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Preface

The International Conference on Database Systems for Advanced Applications
DASFAA provides a leading international forum for discussing the latest research on
database systems and advanced applications. DASFAA 2019 provided a forum for
technical presentations and discussions among database researchers, developers, and
users from academia, business, and industry, which showcases state-of-the-art R&D
activities in database systems and their applications. The conference’s long history has
established the event as the premier research conference in the database area.

On behalf of the DASFAA 2019 program co-chairs, we are pleased to welcome you
to the proceedings of the 24th International Conference on Database Systems for
Advanced Applications DASFAA 2019, held during April 22–25, 2019, in Chiang
Mai, Thailand. Chiang Mai is the largest city in northern Thailand. It is the capital of
Chiang Mai Province and was a former capital of the kingdom of Lan Na 1296–1768,
which later became the Kingdom of Chiang Mai, a tributary state of Siam from
1774 to 1899, and finally the seat of princely rulers until 1939. It is 700 km north of
Bangkok near the highest mountains in the country. The city sits astride the Ping River,
a major tributary of the Chao Phraya River.

We received 501 research paper submissions, each of which was assigned to at least
three Program Committee (PC) members and one SPC member. The thoughtful
discussion on each paper by the PC with facilitation and meta-review provided by the
SPC resulted in the selection of 92 full research papers (acceptance ratio of 18%) and
64 short papers (acceptance ratio of 28%). In addition, we included 13 demo papers and
six tutorials in the program. This year the dominant topics for the selected papers
included big data, machine learning, graph and social network, recommendation, data
integration and crowd sourcing, and spatial data management.

Three workshops are selected by the workshop co-chairs to be held in conjunction
with DASFAA 2019, including BDMS: the 6th International Workshop on Big Data
Management and Service; BDQM: the 4th Workshop on Big Data Quality Manage-
ment; GDMA: the Third International Workshop on Graph Data Management and
Analysis. We received 26 workshop paper submissions and accepted 14 papers.

The conference program included three keynote presentations by Prof.
Anthony K. H. Tung National University of Singapore, Prof. Lei Chen The Hong Kong
University of Science and Technology, and Prof. Ashraf Aboulnaga Qatar Computing
Research Institute.

We wish to thank everyone who helped with the organization including the chairs of
each workshop, demonstration chairs, and tutorial chairs and their respective PC
members and reviewers. We thank all the authors who submitted their work, all of
which contributed to making this part of the conference a success. We are grateful to
the general chairs, Xue Li from The University of Queensland, Australia, and Nat
Vorayos from Chiang Mai University, Thailand. We thank the local Organizing
Committee chairs, Juggapong Natwichai and Krit Kwanngern from Chiang Mai



University, Thailand, for their tireless work before and during the conference. Special
thanks go to the proceeding chairs, Yongxin Tong Beihang University, China and
Juggapong Natwichai Chiang Mai University, Thailand, for producing the proceedings.

We hope that you will find the proceedings of DASFAA 2019 interesting and
beneficial to your research.

March 2019 Guoliang Li
Joao Gama
Jun Yang
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Abstract. Existing approaches are insufficient to provide real-time
results for tracking applications against big and fast data streams. In
this paper, we leverage freshness sensitive properties of tracking appli-
cations and propose an approximate query answering approach, called
FS-Sketch, to accelerating real-time temporal queries over big data
streams. FS-Sketch constructs its sketch over high-speed data streams
via composed online sampling strategies, including sliding-window sam-
pling and space-constrained sampling. Furthermore, FS-Sketch can com-
press its sketch into constrained space dynamically via utilizing time-
decayed mechanism. We evaluate performance of FS-Sketch using real-
world and synthetic datasets. FS-Sketch can respond temporal queries
within 2ms from 1.4 billion records with accurate estimates. Meanwhile,
FS-Sketch can also outperform the state-of-the-art big data analytical
system (Spark) by 5 orders of magnitude on response time when we
query over TB-scale real-world datasets.

Keywords: Approximate answering · Big data query · Data streams ·
Distributed computing · Networks

1 Introduction

Recently, many network applications produce high-speed and continuous data
streams. It is necessary to perform tracking applications to monitor, track and
explore time-evolving anomalies over the big and fast data streams, and provide
interactive queries for users. Typical examples include finding frequency of a
term in all of the posted tweets in the last ten hours and returning the number
of page-views in large-scale websites from 01/05/2013 to 08/05/2013. We call
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such operations temporal aggregation queries (TAQs). We have seen a flurry
of activities in the area of building large-scale analytics for big data query and
processing [10,12,25]. Examining current tracking and exploring applications
in detail allows us to understand the challenging problems which we confront:
Firstly, the key operations of network tracking applications are to apply flexible
aggregation functions, such as count, sum, avg and quantiles etc., on stream-
ing elements within a time-interval of interest. Secondly, the drivers of tracking
applications are usually deployed over continuous data streams using small space,
yet they require real-time (or near real-time) query response time for emergent
events.

An exact solution for obtaining temporal statistics over data stream costs lin-
ear time and space [5,17]. Therefore, methods of approximate query processing
(AQP) are essential for dealing with massive and high-speed data streams in cur-
rent commercial product [16] and academic prototypes [5,11,14,22]. Currently,
there are mainly two types of AQP techniques deployed over data streams: (1)
fingerprint-based synopsis, and (2) sampling-based synopsis respectively. The
first type of synopsis builds fingerprints of input elements by hash function(s),
such as Count-Mini sketch [6], Bloom filters [8] and ECM-Sketch [14] etc. These
techniques are space-efficient and can be optimized for inserting and searching
operations, while they can not provide the capability of searching aggregates
within any temporal interval of interest. Moreover, they are often hard to be
resized for continuously inputs with error-defined estimates.

Methods of sampling-based synopsis select a small number of representative
items from data streams with adjusted weights, and can support a wide variety
of queries. However, current methods make different trade-offs between samples
size and query accuracy they support when confronting continuous data streams.
For details, let N be value of summarization of input items, Ê be an estimate
for true value E, R be an additive error of estimation (i.e., R = |Ê − E|),
and ε be a relative error of estimation (ε = |Ê − E|/E, ε ≤ 1). On one end
of the spectrum, existing sampling approaches over synchronous data streams
[9,14] and asynchronous data streams [18,22] exhibit error-guaranteed accuracy
estimates for current window, i.e., R ≤ εE, while they usually discard (or weight
zero) items which are out-side of the window, and they can not provide estimates
for long-lifetime elements. On the other end of the spectrum, such as variance-
optimal sampling and structure-aware sampling [3], these algorithms construct
space constrained summaries to provide estimates with an upper-bounded error
for long-lifetime elements, i.e., R → εN , while they can not report emerging
events precisely from fresher items, for εN is usually too large to accurately
measure emerging events.

We notice that many tracking operations have freshness sensitive properties,
i.e., they are sensitive to emergent events and can tolerate some error for explor-
ing long-lifetime events [15,19,21]. In this paper, we leverage freshness sensitive
properties of tracking applications and design an accuracy-decayed sketching
approach to improve query quality and query efficiency over continuous data
streams. We call it Freshness Sensitive Sketch (FS-Sketch). The contributions
are as follows:
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1. We present a novel composed online sampling technique to conquer the
requirement of flexible temporal queries within any time-interval of interest.
We first extract samples from data streams in a symmetrical sliding-window
manner to support queries with temporal length larger than a window. More-
over, for discarded elements of a window, we compress them dynamically
into constrained space according to a running bounded error. This technique
makes our approach appropriate for obtaining error-bounded temporal statis-
tics within any time interval of interest.

2. We design an accuracy-decayed sketch compression method to strive to
achieve a better balance between sketch size and sketch accuracy it sup-
ports over large-scale datasets. FS-Sketch maintains samples in an accuracy-
decayed manner: fresher windows maintain more samples for accurate query
answers, while older windows keep fewer samples to improve spatial con-
sumption with upper bounded error. Moreover, the decayed properties, such
as query accuracy and space consumption, can be depicted and maintained
by general time-decayed functions.

3. We present detailed theoretical and experimental analysis to evaluate usabil-
ity of our approach. We also compare our prototype with big data analytics,
such as MapReduce, Spark, Spark Streaming under production environments
using real-world datasets. Our approach is more appropriate for solving big
data streams and can provide real-time responses for temporal queries with
accurate estimates.

We implement prototype of FS-Sketch on Linux platform, and compare it
with big data analytics, such as MapReduce, Spark and Spark streaming, over
real-world and synthetic datasets. The experimental results validate the effi-
ciency and effectiveness of our approach. FS-Sketch only costs 2 ms for an ad-hoc
temporal aggregation queries over 1.4 billion records. When compared to Spark,
FS-Sketch can even achieve 4–5 orders of magnitude improvement on query
response time for tracking applications using TB-scale real-world datasets.

2 Approach Overview

2.1 Problem Statement

As mentioned earlier, a tracking application is sensitive to emergent events and
can tolerate some error for long-lifetime events. We first depict freshness sensitive
properties of tracking applications as follows:

Problem 1. The input to the problem is a stream of elements (v1, ts1), (v2, ts2),
(v3, ts3), .... The goal is to compute an aggregate for a temporal query Q, which
searches within a time-interval [c−w, c] of interest using constrained space, where
c is an arbitrary time point on time-scales and w is the length of a time-interval.
We are interested in freshness sensitive error Rg(T ), such that Rg(T ) increases
according to a time-decayed function g(T ) which progresses from current time
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(a) traditional queries. (b) freshness sensitive queries.

Fig. 1. Terminologies of freshness sensitive queries.

(a) data model. (b) data structure.

Fig. 2. Design principles of FS-sketch.

T . The time-decayed query accuracy Rg(T ) of an estimate ÊQ of the query Q for
true value EQ is depicted as

EQ ∈ [ÊQ − Rg(T ), ÊQ + Rg(T )]. (1)

2.2 Design Principle

We now present principle of FS-Sketch for solving continuous data streams using
constrained space and returning real-time results with time-decayed accuracy.
Traditional sampling techniques provide uniform quality of query accuracy when
they solve large scale datasets. An intuitive example is shown in Fig. 1(a), let
sk1 and sk2 be two sketches built from the same sampling technique, and sk2
can provide more accurate results than sk1 (R1 < R2), iff. sk2 consumes more
space than sk1 (S2 > S1). Previous techniques can not compress older samples
dynamically to improve space consumption and provide more accurate estimates
for queries of fresher elements.

As with freshness sensitive queries in tracking applications, i.e.,
Q1(T2, Rg(T2)) and Q2(T1, Rg(T1)) in Fig. 1(b), Q1 searches more fresher ele-
ments than Q2 (T2 > T1) and requires more accurate estimates than Q2

(Rg(T2) < Rg(T1)). Note that Q1 and Q2 might be a same query which is con-
ducted at different timestamps T2, T1 respectively, while the differences among
query accuracy requirements are owning to the differences of query times.

We propose a novel sketching model whose additive error Rg(x) changes with a
time-decayed function g(x) and it costs constrained space (as shown in Fig. 2(a),
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(b)). The g(x) could be a general time-decayed function, such as a polynomial
decayed function (g(x) = 1

xα , α > 0) or a polyexponential decayed function
(g(x) = xke−x/k!, k = 1, 2, 3, ...), and we can compute prior space consumption
of a sketch by summarization of g(x) at data domain [0, N − 1].

In general, polynomial decayed function is regarded as a common case. If
we define g(Ti) = (1 − 1/(T − Ti)

α), α > 0, as the time-decayed function at
time point Ti, S1 be the space of the first window, the space of FS-Sketch can
be depicted as S = S1(1−αn)

1−α , where n is the number of windows in the sketch.
Meanwhile, the additive error Rg(x) can be depicted as Rg(Ti) = U × g(Ti) =
U(1−1/(T − Ti)

α), where U is an upper bound of estimation, Ti is the timestamp
for a query, Ti < T . For fresher elements queries, T − Ti → 1 and Rg(Ti) → 0,
while for older elements queries, T − Ti → T − 1 and Rg(Ti) → U .

The key idea of FS-sketch implementation is that we first define parameters
(ε, S) for a driver, where ε is minimum relative error for tracking application, S
is configured space for a sketch, and then we can select a time-decayed function
g(x) to fit the space limitation of S. For details, we utilize a composed sam-
pling technique to meet the time-decayed mechanism as time progresses. For
fresher elements, we maintain data streams in the form of sliding-window to sus-
tain accurate estimation, i.e., R ≤ εE, meanwhile for long-lifetime elements, we
use space-constrained sampling techniques iteratively to sustain error-bounded
estimation, i.e., R ≤ U = εN . As time progresses, the estimation error of a
sliding-window changes, and the decayed samples from a window are merged
incrementally into the space-constrained samples set to keep the size of the
sketch. Notice that other AQP techniques, e.g., Bernoulli sampling, exponen-
tial histogram, random waves [9] can also be tailored and incorporated into the
model of FS-Sketch.

In order to boost the performance of FS-Sketch construction for high-speed
data stream processing, we develop an ε-approximate solution to merge samples
with the accuracy-decayed policy as time progresses. Let g′(Tj) be the approxi-
mate function of g(Tj), which ensures that ∀ Tj , Tj < T such that

∑j
x=1 g′(T − Tj)

∑j
x=1 g(T − Tj)

≤ 1 + ε. (2)

We employ the approximate solution for accuracy-decayed sketch compres-
sion, and it would improve the space of computation from O(log2(N)) to
O(log(N)) and augment the usability of our approach in data stream processing
significantly.

3 Approach Design

In this section, we present details of FS-Sketch implementation, including com-
posed sampling strategies, sketch construction and query operations respectively.
The proposed techniques all target at maintaining time-evolving statistics over
continuous data streams and answering freshness sensitive queries using small
space.
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Fig. 3. The architecture of FS-Sketch in distributed scenarios.

3.1 Software Architecture

FS-Sketch is a composed sketch, which comprises a series of continuous temporal
windows. A window is depicted by a regular length of time-interval. We term
the interval as window length (wl) in the following discussion, and difference of
samples in a window is no bigger than wl. Figure 3 presents the basic idea of FS-
Sketch deployed over a high-speed data stream. A logical stream is partitioned
into sub-streams. Usually, a hash-based function is used to boot the process of
sub-streams assignment.

An input element of a sub-stream is inserted into the first window of a local
sketch. When the length of the first window is bigger than wl, the following
elements are inserted into a newly created window, and the former window is
inactive for writing and becomes an older window. We design a freshness sensitive
sketch compression method, such that the samples size and query accuracy of
a window are depicted by data freshness simultaneously. The size of an older
window is compressed dynamically according to its freshness.

To answer flexible predictions of a request as defined in Problem 1, we propose
composed sampling methods to select elements from data stream and arrange
them in a symmetric sliding-window manner. The design of symmetric sliding-
window enables our approach to provide error-guaranteed estimates in time-
interval [StartTs; ∗] or [∗;EndTs], where * is an arbitrary time point in a win-
dow. For the discarded elements from sliding-window, we compress them into
a set, which is tailored by a running bounded value Rk, using k samples. The
space-constrained set can answer subset summarization queries with Rk as the
upper-bounded error. Therefore, FS-Sketch can answer requests of TAQs within
any time-interval of interest, whether the queries intervals are larger than wl or
not, with time-decayed errors.

3.2 Composed Sampling Strategies

We now present details of FS-Sketch implementation. We first describe the online
sampling techniques, including sliding-window sampling and space-constrained
sampling, which are used to select elements from data streams and arrange them
in a space-constrained window.
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Sliding-Window Sampling. We extend methods of symmetrical sliding-
windows sampling presented in [22] to extract elements from streams, and tailor
them to high-speed data streams processing. We keep elements in L-‘levels’ for
the temporal aggregation problem, L = �log Ns�, where Ns is the value summa-
rization of elements. Within a level, it maintains the first l elements and outdated
elements are discarded directly. The previous literature has proved that when
we keep l samples at each level, l = O(� 1

2ε )�, we can obtain error-guaranteed
estimates within time-interval [*, T ] for streams with time-series model, where
‘*’ is any time point in the window, and T is current time. Furthermore, we can
also increase the size of a level l to O( 1

ε2 ), and we can achieve probabilistic error
guaranteed for streams with out-of-order series [9].

For an input element ei, ei = (vi, tsi), it is arranged at ‘level’-l within the
first window. The ‘level’-l keeps samples which make l be the largest number for
2l < Ns(Ti) at time stamp Ti, where Ns(Ti) is summarization of elements at Ti

in data streams, i.e., Ns(Ti) =
∑Ti

j=1 vj . The Ns(Ti) is called rank of Ti in the
following discussion. A window works with �log(Ns)� levels, Ns = max{Ns(Ti)}.
As shown in Fig. 2(b), the numbers of levels in a window are labeled by l0, l1,
l2..., respectively. A hash-based algorithm can insert an element into the sketch
using O(1) time. Within a level, we select and keep � 1

2ε� exact elements which
are close to current time point. When the level size is larger than � 1

2ε�, the
outdated elements will be pushed into space-constrained synopsis. The size of
samples kept in the sliding-window can be depicted as � log Ns

2ε � totally.

Space-Constrained Sampling. As with long-lifetime elements, our aim is
to provide weight-bounded estimates with accuracy-decayed policy using con-
strained space. We need to compute a running upper-bound Rk for the samples
set using constrained space k on the fly. We first compute the upper-bound Rk

via tracking the total weight of all discarded elements from sliding-window syn-
opsis and maintain O(k) samples in the summaries. When a discarded element
from sliding-window is inserted into the summaries and its timestamp is fresher
than the time when Rk is computed, we recompute Rk by samples in the sum-
maries, and this can be computed in O(1) time [3]. The new value of Rk is
upwards on the go. After the new Rk is obtained, we adjust weights of k samples
in the samples set, and keep the current timestamp for Rk until next insertion.

For details, when a new sample is inserted into sample set of the space-
constrained summaries, we eject a sample from the summaries to keep the k
samples on the fly. We use time-decayed range cost ρg with each possible pairs
(ei1, ei2) and select the smallest range cost as a candidate. We accumulate weight
of the smaller sample of the candidate into the bigger one, and eject the smaller
one from the summaries directly. An optimal candidate pairs selection method
can be found in literature [3], which costs O(k2) time for the summaries updating.

An more efficient and heuristics way to compute range cost ρg(.) for a pair
(ei1, ei2) is that we can use summarization and production along with the time-
decayed function g(.) as range cost (shown in Eq. 3). It can also achieve appropri-
ate accuracy in experimental evaluation, moveover, it can improve the updating
time from O(k2) to O(k) [3].
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ρg(x)|x=i1(ei1, ei2) =
1
3
ei1ei2(ei1 + ei2) × g(i1). (3)

3.3 Compression

We incorporate the time-decayed mechanism into FS-Sketch organization to
improve the space consumption for long-lifetime windows. Note that this method
is interesting itself, since the sketch structure needs to be compressed iteratively
and provide deterministic error for temporal queries in each round of compres-
sion. We formalize the time-decayed function g(x), with the following property:
for any time interval w, the ratio g(x)/g(x + w) is no-increasing with x (x is an
integer and x > 0).

The structure of FS-Sketch constitutes sketches sk1, sk2, ..., skT/w, and [0, w],
[w+1, 2w], ..., [mw,T ] are m corresponding windows to the sketches respectively.
Let ski be the sketch for the ith window, and (i − 1)w + 1 and iw are the start
time and end time of the window, i ≥ 1. The decayed accuracy of sketch ski can
be described by a triple (εi, Ri, ri), where εi and Ri are sampling parameters in
sliding-window sampling and space-constrained sampling respectively, and ri is
the decay ratio computed by time-decayed function.

We consider an incremental method to maintain sketches in different time
intervals. For current window (εT , Rk,T , rT ), we define the basic sampling param-
eters εT and Rk,T , such that we keep O( 1ε log Ns) samples in the first sliding-
window and k samples in constrained space set. Meanwhile, the decay ratio
would be rT = g(1). For the ith window ski, i > 1, we first compute the decay
ratio ri of ski. A simple method is that we can compute the decay ratio ri of ski

by time-decayed function g(T − x)|x=iw−1. So as the sampling parameters, such
that εi = εT × ri, Ri = Rk,T × ri. When we obtain the new sampling parameters
εi and Ri, we can compress the sketch accordingly.

For samples compression within sliding-windows, let εnew
i be the new error

parameter computed by time-decayed ratio in window wi, and εi is the previous
error parameter, εnew

i ≥ εi. The number of samples in a level of sliding-window
is related to the error parameter. Thus, we can reset samples size of a level
according to the new parameter (εnew

i ). We only keep O( 1
εnew

i
) samples in each

level, i.e., we can delete the samples after the position of O( 1
εnew

i
) directly.

As shown in Fig. 4, the samples in a symmetrical sliding-window can be
maintained at two dequeues fiq and liq. When we organize the sketch using the
new parameter εnew

i , we just keep 1
2 (1+ 1

εnew
i

) samples at the head of each queue,
and remove the samples after the position of 1

2 (1 + 1
εnew

i
) directly. The window

wi can provide error-guaranteed estimates with relative error less than εnew
i . For

example, when r = 2, the window wi can provide estimates with relative error
less than 2εi, and the rate of space improvement will be 2(εi+1)

2εi+1 . When εi is small
enough, εi 
 1, nearly a half of samples are removed from the window wi. An
initiative example is shown in Fig. 4, and the gray part of a level denotes the
discarded samples in the process of sketch compression.
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Algorithm 1. SketchCompression(ski, ri).
input : (ski, ri);
ri: the compression ratio of ski decaying from the first window (εT ,RT ).
output: (ski).
1 εnew

i ← εT × ri ;
2 Ri ← RT × ri ;

3 n ← � 1+1/εnew
i

2
�;

4 foreach each level l in ski do
5 nl ← |fiq[l]|;
6 n2 ← |liq[l]|;
7 if n1 + n2 > 2n then
8 Remove samples whose positions are larger than n from tail of fiq[l]

and liq[l];
9 Insert the discarded samples into space-constrained summaries;

10 Compress space-constrained summaries using Ri;

11 return ski.

Fig. 4. Sketch compression in a window.

For the sketch compression within space-constrained summaries, we resample
the summaries by the new parameter of Ri, Ri = RT ×ri. A more efficient process
for the sub-sampling can be carried out by the streaming probability aggregation
process. We set the inclusive probability pi of a sample as pi = min{ai/Ri, 1},
and accumulate the pi to the next sample when the sample is not included into
the summaries, where ai is adjusted weight of the sample. We introduce the
process of sketch compression in Algorithm 1 for a sketch ski. This algorithm
makes fresher windows keep more samples to improve query accuracy and older
windows keep fewer samples to improve space consumption.

We design an ε-approximate function g(x)′ for g(x), such that
∑T

x=1 g(x)′/
∑T

x=1 g(x) = 1 + ε. When defined with the deterministic param-
eter ε, the g(x)′ is also a time-decayed function, such that g(x)′/g(x + w)′ ≥ 1,
for any w > 0.

An efficient implementation of the approximate time-decayed function g′(x) is
that we can build a Merging-Based Exponential Histogram (WBEH) to achieve ε-
approximation of a time-decayed function using O(log(n)) time over data streams
[4]. We briefly present the key points of the WBEH for implementing the function
g(x)′. Within WBEH, the buckets are B1, B2, ..., Bi, ...., and if B1 is the current
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(a) normal distribution. (b) zip distribution.

Fig. 5. Compared with ASY-Sketch over synthetic datasets.

bucket, we have that T mod b1 = 0, where T is current timestamp. Whenever,
there is a bi at the two consecutive buckets [as, at] and [at + 1, ae], such that
bi ≤ T − at and T − as ≤ bi+1 − 1, the two buckets are merged into one bucket
[as, ae]. And all the samples arranged in bucket [as, ae] will share the same
decayed ratio, such that if the start time of ski belongs to a time interval divided
by the anchor points [bj−1, bj −1], bj −1 ∈ [as, ae], and the decay ratio ri of ski

will be approximately computed by the estimate in MBEH using buckets [as, ae].
As proved in LEMMA 5.1 of previous work [4], the MBEH can solve the time-
decayed counting and summarization problems using O(log log(N) log(D(g)))
space, where D(g) = g(1)/g(N).

4 Analysis

We now describe the query accuracy, as well as time and space complexity of our
approach when answering freshness sensitive queries for tracking applications.
Here, we just present brief description of query accuracy and detailed proof is
presented in the Appendix. Let [c − w, c] be the queried time-interval, wl be the
window length, ε be the minimum error defined in a tracking application, and
Ê be the estimate. We can depict query accuracy in the following cases:

1. For queries within fresher elements, i.e. c = T and w > 0, FS-Sketch can
obtain estimates with deterministic relative error ε, such that E ∈ [(1 −
ε)Ê, (1 + ε)Ê];

2. For queries within large-scale and long-lifetime elements, i.e. w ≥ wl, FS-
Sketch can also obtain deterministic relative error εi, E ∈ [(1−εi)Ê, (1+εi)Ê],
εi is the error parameter of the ith window of sketch ski such that (c−w) ∈ ski;

3. For queries within smaller time-interval elements, i.e. w < wl, we use the
weight-bounded synopsis to achieve upper-bounded error estimate, such that
E ∈ [Ê − Rg(i), Ê + Rg(i)], and Rg(i) is an upper bounded value of the ith
window.
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(a) space improvement. (b) response time.

Fig. 6. Sketch compression evaluation.

For complexity analysis, FS-sketch keeps O(� 1
2ε log N� + k) samples in a

window, and it costs logarithmic space complexity with rank (N) of the data
streams. When an element is inserted into the sketch, it is first inserted into
deterministic synopsis and the outdated element is pushed into weight-bounded
synopsis. It costs O(1) time to insert an element into a level of the deterministic
synopsis and discard an outdated element from the tail of the level. The updat-
ing operation in space-constrained synopsis is relative complex. The approxi-
mate time-decayed function can be computed using O(log log(N) log(D(g))) time
when two consecutive buckets merging. We get an upper bound Rk of the syn-
opsis using O(1) time, and thus we need O(k) time to update the weight of
samples in space-constrained synopsis. Therefore, the worst case updating time
is O(log log(N) log(D(g) + k)) for an element inserting and the average time is
O(k) for each inserting.

5 Experimental Evaluation

We implement FS-Sketches on Linux platform using Java 1.8 packages with 64-
bit addressing. The experiments are performed on a cluster of 11 machines, each
server with 32 GB RAM and 8 × 2.0GHz CPU. We conduct the evaluations
on real-world and synthetic datasets, and compare our approach with sliding-
window algorithms and the state-of-the-art big data analytics to demonstrate
the effectiveness and efficiency of our approach.

We use real-world datasets, which are hourly page-views from Wikipedia
[13]. We select 8 days page-view traffics (100 GB uncompressed data, 1.4 billion
records), and 8 weeks of page-view traffics, nearly 1TB uncompressed data, to
perform the examination. We also generate synthetic datasets to simulate the
high-speed data streams to overcome limitations of the real-world datasets. We
generate two types of synthetic datasets, which obey the Normal Form distribu-
tion N(μ = 1000, δ = 50) and the Zipf distribution Z(deg = 0.5). We use the
number of records in a window to represent the velocity of data streams. The
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(a) response time. (b) accuracy.

Fig. 7. Compared with big data analytic systems over real-world datasets.

number of records changes from 24 to 230 in a window (1 million records per
second).

As explained in Sect. 3, FS-Sketch incorporates sliding-window model into
our approach to support temporal summarization over data streams. ASY-Sketch
[18] is also a useful method, which is an extension from randomized waves to
support values summarization over data streams. We generate 300 random tem-
poral queries and compute relative error using the two approaches under different
freshness sensitive queries. Each query searches within a time-interval [T −w, T ],
where T is the current timestamp and w is the length of a time-interval, w > 0.
We increase w gradually to examine the query accuracy with data freshness
changing. We conduct the testing under two types of synthetic data streams
using same space overhead, and the results are shown in Fig. 5(a) and (b). Com-
pared with ASY-Sketch, FS-Sketch keeps more samples for fresher elements and
achieves more accurate estimates for fresher elements queries. As the length
of the queried time-interval (w) increases, the relative error of estimates of FS-
Sketch increases gradually. When w is close to the window length, the estimation
error of FS-Sketch is slightly bigger than ASY-Sketch.

Finally, we evaluate the space improvement when we use the time-decayed
mechanism to compress local sketch. We focus our evaluation on the aspects of
the space improvement and time costed in the process of sketch compression.
After we load the high-speed data stream into a local sketch, we increase error
parameter and compress sketch gradually. We present the space improvement
and time used in the process of sketch compressing. In Fig. 6(a), we present the
sample size and the corresponding relative error in a window. In the evaluation,
when the relative error ε changes from 0.05 to 0.5, the size of samples decreases
from 1.4×107 to 1.5×106 accordingly. It achieves nearly linear improvement on
space consumption. We also notice that when the error becomes large enough, the
improvement is not so rapidly. Because the local sketch includes two summaries,
i.e., leveled samples and space-constrained samples, and their size is changing
inversely with the error-parameter respectively. To examine the efficiency of
sketch compression, we reconstruct local sketch at different error parameters
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gradually. We just remove samples from the tail of levels in randomized waves,
and it can be carried out efficiently in structure of FS-Sketch. As shown in
Fig. 6(b), the sketch can be reconstructed in 100 ms–200 ms under the loaded
data streams. Therefore, the process of sketch compression is a useful method to
improve space consumption when the error ε is small. Users can achieve a better
balance between query accuracy and space consumption when they confront
large-scale datasets analytics with small space.

In order to evaluate the macro properties of FS-Sketch, we implement FS-
Sketch on Linux platform and compare it with Spark-Streaming, Spark and
MapReduce when processing the real-world datasets. These systems are the
state-of-the-art systems for big data analytics. We load the real-world traffics
of page-view into the FS-Sketch, Spark, Spark-Streaming, and HDFS respec-
tively, and carry out a same request of TAQ in these systems. Spark and Spark-
Streaming are both efficient distributed memory-computing frameworks. Spark
transforms the fields of interest into RDDs. Once the RDDs are created in the
memory, they can be reused for further queries. Spark-Streaming is based on the
framework of Spark. It further transforms the RDDs into DStreams by param-
eters of window length and temporal intervals in the window.

We cache the DStreams in a queue for a request of TAQ. In our experiments,
the production cluster is configured with 12 workers, and the total configured
memory in the 11 servers is nearly 100 GB. It is a time-consuming operation
to load data from the HDFS into memory in the framework of MapReduce.
It costs nearly 300s to respond a request of TAQ in MapReduce. Spark and
Spark-Streaming can improve query performance by one order of magnitude
than MapReduce. They cost about 25 s to obtain an exact answer for a request
of TAQ.

FS-Sketch can obtain nearly real-time responses of queries over different input
size. As shown in Fig. 7(a), FS-Sketch costs about 2 ms to respond a request
of TAQ. When the size of input increases, the cost time is nearly unchanged.
Meanwhile, the relative error is less than 0.01 in the testing as shown in Fig. 7(b).

6 Related Work

The temporal aggregation query (TAQ) problem has been study explicitly and
implicitly in previous literatures [9,11,17,22,23]. An exact solution for obtain-
ing statistics of TAQ costs linear time and space [5,17]. Traditional approxi-
mate engines focus on evaluating ad-hoc queries over static datasets [23]. Serval
emerging applications require answering on dynamic streaming data, which is
highly distributed and constantly updated. The techniques of sketching over
dynamic data streams have been proposed in recent years. The sliding-window
is a well-known streams processing model which focuses on computing estimates
for elements seen so far. Many sliding-window methods have been explored over
the past decades, such as Exponential Histogram [7], random waves [9] and asyn-
chronous streaming sketch [18] etc. However, traditional sliding-window models
are designed as one sketch for one operator service schema. For example, Expo-
nential Histogram [7] and random waves [9] are efficient on answering aggregation
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queries. The G-K and q-digits algorithms can provide an ε-approximation esti-
mate for quantiles queries [20]. Composed sketches are also proposed by Arasu
and Manku within the context of sliding-window to solve the approximate counts
and quantiles in a same structure [2]. The preceding studies provide theories and
baseline algorithms for Approximate Query Processing. We combine the core idea
of these techniques to produce composed sampling strategies and improve query
accuracy for practical data streams processing.

Big data analytic systems, based on Hadoop, have experienced tremendous
growth over past few years. Many approximate answering engines have been
built on top of the Hadoop software stacks, but few of them focused on low-
latency query processing requirements of high-speed data streams. For example,
the Hadoop-based approximate answering engines, such as BlinkDB [1] and G-
OLA tools [24], extract offline samples from HDFS and then support OLAP
queries over the samples with relative complex clauses. The latency of offline
sampling techniques make these approximate answering engines do not meet the
strict low-latency requirement of analytical queries over data streams.

7 Conclusion

Network tracking applications need to provide capability of real-time monitor-
ing and tracking emergent events over continuous data streams using limited
resources. In this paper, we propose FS-Sketch which utilizes time-decayed mech-
anism to improve query quality and query efficiency when confronting the big
and fast data streams using constrained space. The theoretical analyses and
experimental results validate the efficiency and effectiveness of our approach. As
future work, we plan to consider more query optimization strategies into FS-
Sketch and incorporate FS-Sketch into production stream-computing systems to
deal with streams with different arrival rates.

Appendix

We now describe the query accuracy of FS-Sketch when solving time-decayed
query problems. For a TAQ searching in a time-interval [c − w, c], where w is a
length of a time-interval, and we have:

Theorem 1. FS-Sketch can provide an estimate Ê of true value E for fresher
TAQs with deterministic relative error ε, such that E ∈ [(1 − ε)Ê, (1 + ε)Ê].

Proof. We arrange fresher � 1
2ε� elements in the model of time-series sliding-

window [9]. For a TAQ, we search elements in [T − w, T ], and the synopsis can
provide estimates with relative error less than ε, and thus the additive error is
less than εÊ. ��
Theorem 2. FS-Sketch can provide a time-decayed additive error Rg for long
lifetime TAQs, such that additive error E ∈ [Ê − Rg, Ê + Rg], meanwhile Rg is
less than an upper bounded value U .
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Proof. We select a sample pair with minimum range cost ρg(ei1, ei2) as a candi-
date to eject to keep synopsis size. We notice that our selectivity mechanism can
be considered as an invariant of space-constrained sampling technique [3], which
can support any key-range sum query with upper bound Rk using k samples.
If we change the samples size according to the time-decayed function g(x), we
can provide estimates for a TAQ with additive error less than Rg. For exploring
query over long lifetime elements, the additive error is less than an upper bound
U , such that U = Max{⋃j

i=1 Rg(i)}, where 1, 2, ..., j are windows satisfy the
query prediction. ��

Notice that the space-constrained summaries can be considered an invariant
of WB-summaries [3], which can support any key-range sum query with bounded
with R using k samples.
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Abstract. It is important for big data systems to identify their per-
formance bottleneck. However, the popular indicators such as resource
utilizations, are often misleading and incomparable with each other. In
this paper, a novel indicator framework which can directly compare the
impact of different indicators with each other is proposed to identify and
analyze the performance bottleneck efficiently. A methodology which can
construct the indicator from the performance change with the CPU fre-
quency scaling is described. Spark is used as an example of a big data
system and two typical SQL benchmarks are used as the workloads to
evaluate the proposed method. Experimental results show that the pro-
posed method is accurate compared with the resource utilization method
and easy to implement compared with the white-box method. Meanwhile,
the analysis with our indicators leads to some interesting findings and
valuable performance optimization suggestions for big data systems.

1 Introduction

Big data systems for large-scale data processing are now in widespread use.
To improve their performance, both academia and industry have expended a
great deal of effort in identifying their performance bottleneck. The more time a
specified resource is used to execute a workload, the larger impact it can change
the total performance, and vice versa. The resource with the highest impact
(the longest time consumption) is the bottleneck. How to evaluate the resource
impact on performance is an essential work to design the big data systems.

Most big data systems use Mapreduce-like frameworks, such as Apache
Hadoop and Apache Spark. They allow distributed computing [11] across clusters
and always parallelize the use of four major system resources, including CPU,
main memory (memory for short), disk and network. It is complex to directly
measure the time consumed on different major resources for big data systems.
Many researchers [2,9,18,21,24] use resource utilizations as indicators to evalu-
ate the resource impact. Many measurement tools have also been developed to
c© Springer Nature Switzerland AG 2019
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monitor the different utilizations [10,16]. However, picking the resource having
the greatest utilization as the bottleneck is often not correct and misleading.
Different resource utilizations are incomparable with each other, due to differ-
ent means. For example, the CPU utilization measures percentage of the CPU
usage time and the disk bandwidth utilization measures the percentage of the
used bandwidth. They are not based on the same metric.

Some researches [18] measure the time consumed on the specified resource
directly by adding the fine-gained instrumentations into systems, currently only
for the disk and network. However, such white-box approaches are too detailed
and complicated to implement them easily. In addition, the results are also not
accurate. Based on our experiments, the time consumed on I/O resources may
be underestimated by 1.6× (see Sect. 5.5 for details), causing the bottleneck to
be misidentified.

Some comparable metrics which can locate the performance bottleneck in
an easy way are necessary for big data systems. Unfortunately, the existing
approaches cannot work well. We propose a comparable analysis method to
handle this problem instead of the utilization or white-box method. Employing
the CPU frequency scaling performance results, our approach can separate the
impact of different resources and construct corresponding indicators derived from
the same metric. So the value of our indicators are comparable and it is easy to
analyze the performance bottleneck based on the proposed indicator framework.
The major contributions of this paper are as follows.

– A methodology is proposed to capture the degree of performance impact by
measuring how the performance is close to linear speedup when improving
the CPU frequency.

– Based on the proposed methodology, a comparable performance indicator
framework as a black-box approach to quantify the impacts of four major
resources on big data systems is built.

– The proposed framework has been employed on a typical Spark based big data
system to evaluate its accuracy and efficiency. Furthermore, many interesting
findings are gained and many valuable performance optimization suggestions
are proposed to help users tune big data systems like Spark.

The rest of the paper is organized as follows. Section 2 describes the related
work. Section 3 presents our approach. Section 4 describes the experimental
method. Section 5 presents our experimental results along with a detailed anal-
ysis. Section 6 discusses how to use our indicator framework efficiently. Section 7
summaries our work.

2 Related Work

The existing researches have extensively studied on the resource impact on the
system performance in various flavors, including (1) hardware event counters,
(2) resource utilization and (3) resource score. However, they do not provide an
easy and comparable approach to evaluate the impacts of four major resources
of big data systems.
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Hardware Event Counters. The current computer system provides lots of
performance event counters from hardware layer. Hardware events are excel-
lent at capturing how a given piece of hardware is used. Many tools can collect
them to help users analyze the performance, such as Perf [3] in Linux core
and Dtrace [8], etc. Although they can dynamically trace the system runtime
with a low overhead, they never provide the analytical approaches which can
quantify the resource bottleneck. In addition, many works focus on interpreting
these event counts to analysis the performance bottleneck, including experi-
mental approaches [20,22] and modeling approaches [13,25]. However, they cur-
rently focus on the low-level indicators. Our approach can generate high-level
indicators.

Resource Utilization. For profiling a given program to find the bottleneck
of major resources, a basic idea is to use resource utilizations. Lots of works
[9,18,21] consider a bottleneck resource with a high resource usage and vice
versa. Others [2,24] simply optimize resource allocation on the basis of resource
utilization. However, an important misleading is that resource utilizations are
incomparable with each other. The highest utilization might not mean the bot-
tleneck. It might lead to incorrect conclusions of the above works. For example,
the blocked time analysis method [18] considers that CPU is the bottleneck
resource of Spark by a high CPU utilization in its experiments. Actually, we find
that it ignores the memory impact because the classic CPU utilization contains
the memory stall cycle (see Sect. 5.1 for details).

Resource Score. For keeping the comparability, many works give each resource
a score and use the score as the resource impact. MIA [26] uses the stochastic gra-
dient boosted regression tree to assign the existing indicators the new scores. The
new scores are to measure the importance of existing indicators. However, many
existing indicators, such as resource utilization, may be not strongly related to
the resource impact, so that it cannot correctly find the bottleneck resource. The
main goal of our new indicators is to find the bottleneck. Another approach is
to run the elaborate benchmark and give a specified resource a unique score to
represent the resource performance, such as Spec score for CPU [5]. [12] uses
the similar scores to compare the performance of the same resource on differ-
ent cloud instance types. However, those methods can only evaluate the physics
performance of given resources, not the resource impact on a given system.

3 Methodology for Building a Comparable Performance
Indicator Framework

In this section, we will propose our methodology on how to build a comparable
performance indicator framework to identify the performance bottleneck of a big
data system.
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3.1 Problem Formulization

In this paper, we focus on analyze the resource impact on the end-to-end per-
formance of big data systems using Mapreduce-like framework as the processing
engine. We assume that the systems run on a homogeneous cluster with a given
resource provisioning and data size. In addition, the system parameters about
the resource allocation are also fixed. These requirements mean that we only
concern the resource impact on the system under the given configuration. In
addition, the load is equally divided among all the tasks, just most of the Spark
systems done.

For a given cluster, four major resources are formalized as a vector Rb =
<cb,mb, db, nb> as the base resource scheme, which represents the CPU including
the on-chip cache hierarchy, main memory, disk and network, respectively. Noting
that when the CPU is given, we specify cb as the CPU frequency. With the
improvement of CPU frequency, we assume that the memory performance is
little or no change and the performance of on-chip cache hierarchy is linear
correlation in our cluster. This hypothesis is widely accepted for most x86 64
computes [14]. Thus, for a full CPU-intensive workload (i.e., only using the
CPU), the performance should change linearly with the CPU frequency scaling.

Cited above, our methodology is to observe the performance improvement
with the CPU frequency scaling. We first define the performance improvement.
For a given cluster, CF = {c1, c2, ..., cl} is the CPU frequency set from the same
CPU where cj ≥ ci if j ≥ i and c1 ≥ cb. We can easily scale the CPU frequency
on modern CPUs. DB = {d1, d2, ..., dm} is the disk set, where the performance of
∀dj ∈ DB is better than db. NB = {n1, n2, ..., nz} is the network bandwidth set,
where the performance of ∀nk ∈ NB is faster than nb. The set about memory
has not been defined due to not upgrade memory.

RT (c, d, n) is the running time of one workload, where the resource scheme
<c,mb, d, n> is configured to a cluster. When the CPU frequency goes up to
ci ∈ CF from cb and the other resources are fixed, we can define the CPU
performance improvement degree CPI as

CPI(ci, d, n) = 1 − RT (ci, d, n)
RT (cb, d, n)

, (1)

where CPI ∈ [0, 1). If it is closer to 1, the performance improvement is higher.

3.2 Performance Indicator Definition

For a given big data system, the execution time can be formalized as follows.

RT = θ1
scale

machine
+ θ2 log (machine) + θ3machine + θ4, (2)

where scale is the data size and machine is the cluster size [23]. The first item
is the computation time, including CPU impact and memory impact, i.e., the
time consumed on the CPU and the memory. The rest are communication time
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Fig. 1. Left: The speedup (i.e., RT (cb, d, n)/RT (ci, d, n), cb = 1.0) on different kinds
of workloads when improving the CPU frequency. Middle: The impacts of non-CPU
resources are derived from the variation of CPU impact. Right: We decouple the
resource impacts by alternating resource schemes and each resource scheme corresponds
to an evaluation of resource impact.

and fixed cost, mainly including disk impact and network impact, i.e., the time
consumed on the disk and the network.

Cited above, both data size and cluster size are fixed in our scenario. By
improving CPU frequencies, we can only reduce the CPU impact of Eq. (2),
causing the performance improvement. In this way, we can demonstrate the
relation between the system performance and CPU frequency. For easy under-
standing, we use the speedup, not CPI in Fig. 1 but their features are similar.
For a CPU-intensive system, it will be always on-CPU and rarely be blocked
by I/O or memory stalls. The CPU is the only limiting resource. Therefore, the
speedup is linearly proportional to the improvement of the CPU frequency in
the ideal case. Obviously, if the CPU impact is low at Eq. (2), CPU frequency
scaling will have little impact on the performance (i.e., low speedup), showing
the high non-CPU impact. It motivates us to understand both CPU impact and
non-CPU impact by observing the non-linear change in performance.

CPU Relative Impact. With the improvement of CPU frequency, we can
define the linearity of performance improvement as CPU relative impact (CRI)
to correlate the CPU impact. For assigning CRI ∈ [0, 1], we define 1 − cb/ci
(ci ∈ CF ) as the upper bound of the performance improvement. If CPI(ci, d, n),
instead of speedup, is closer to 1 − cb/ci, systems are more CPU-intensive. If
CPI(ci, d, n) is closer to 0, systems are not CPU-intensive. To describe this
relationship, we formalize CRI on Rb as

CRI(Rb) =
1
l

∑

ci∈CF

CPI(ci, d, n)
1 − cb/ci

, (3)

where l = |CF | is the number of alternative CPU frequencies, and CRI ∈ [0, 1].
For ∀ci ∈ CF , if CPI(ci, d, n) = 1 − cb/ci, then CRI = 1, the workloads will
be full CPU-intensive. On the other extreme, for ∀ci ∈ CF , if CPI(ci, d, n) = 0
then CRI = 0, the CPU has no impact on the system performance.
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Disk Relative Impact. If the disk is upgraded to dj ∈ DB, the upper bound of
the performance improvement being similar to 1−cb/ci is unknown, so we cannot
use a method similar to Eq. (3) to evaluate the disk relative impact (DRI).
Actually, if we could eliminate the disk blocked time, the system will tend to
more CPU-intensive leading that CRI will be higher. It in essence correlates
the disk impact to the change of CRI by the CPU frequency scaling. Thus, we
can identify the disk impact from the change of CRI. We can eliminate the disk
blocked time by upgrading the disk in Fig. 1 and use the increment of CRI to
define DRI as

DRI(Rb) = max
dj∈DB

(CRI (cb,mb, dj , nb) − CRI (Rb)), (4)

where m = |DB| is the number of alternative disks, and DRI ∈ [0, 1]. If
DRI → 0, the disk has no impact on the system performance. On the other
extreme, if DRI → 1, the system is full disk-intensive. In addition, the upgraded
disks may introduce different performance improvements due to sequential and
random access. However, the precision of DRI is dependent on the performance
of upgraded disk, so that the equation suggests that the optional disk should
maximize CRI, otherwise the evaluated DRI will be small.

Network Relative Impact. The same method for the disk can be used to
evaluate the network relative impact (NRI) as

NRI(Rb) = max
nk∈NB

(CRI (cb,mb, db, nk) − CRI (Rb)), (5)

where z = |NB| is the number of alternative networks, and NRI ∈ [0, 1]. This
is similar to DRI, where NRI → 1 represents highly network-intensive systems
and vice versa.

Memory Relative Impact. Because the performance of different consumer
memories are so close to each other, we cannot identify the memory impact by
upgrading the memory hardware. For example, our test finds that STREAM [6]
(an intensive memory access benchmark) with DDR3-1600 RAM is only 4.2%
faster than with DDR3-1333 RAM. Thus, the performance improvement is hard
to be observed by using the faster memory. From another perspective, we can
eliminate the I/O impact (disk and network) as much as possible, leading the
system to be only impacted by the CPU and memory. Based on this observation,
we define memory relative impact (MRI) as

MRI(Rb) = 1 − max
dj∈DB,nk∈NB

(CRI (cb,mb, dj , nk)), (6)

where MRI ∈ [0, 1]. A high MRI means a memory-intensive big data system.

4 Experimental Method

In this section, we use our approach to analyze Spark’s performance, including
two running modes, which have different performance characteristics, so that
they can be considered as two systems. The detailed cluster setup and running
mode are as follows.
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Fig. 2. The procedures of disk mode and memory mode

4.1 Cluster Setup

In our experiment, the baseline resource scheme is set as Rb = {1.2GHz,DDR3-
1600,HDD, 1Gbps} and other resource sets are CF = {2.4GHz, 3.6GHz}, DB
= {SSD} and NB = {5Gbps, 10Gbps}. The processor is Intel i7-4790, which
has 8 logical CPU cores. We investigate the long-term scientific data services of
our collaborators and find that the CPU frequency is usually set at a low level
to save energy. Therefore, we set the base CPU frequency to 1.2 GHz to get close
to the production environment. For disk, we upgrade the disk by replacing HDD
with SSD that has the same capacity. The performance of SSD can eliminate
most of disk blocked time for our experimental setup. In addition, the software
environment, cluster configuration, and data distribution are identical between
HDD and SSD. For network, we have a fiber-optic 10 Gbps network environment.
Here, 1 Gbps and 5 Gbps can be obtained by the network speed limit using tc.
Our cluster has 10 nodes with 1 master and 9 slaves, where every node has 1
processor, 32 GB RAM and two 500 GB SATA disks.

We build our system environment by using stable versions of the software
(Apache Spark 1.6.3, Apache Hadoop 2.6.0, and 64-bit Ubuntu 14.04 Server),
where Hadoop and Spark use the same machine as the master node. We run
Spark on the standalone and create one worker configured with 8 threads and
28 GB RAM (i.e., one thread per CPU). We store the input data in HDFS
(Hadoop Distributed File System), and the output data will also be written to
HDFS.

We use two SQL benchmarks, i.e., BDBench [19] (Big Data Benchmark,
50 GB Gzip data) and TPC-DS [17] (40 GB Parquet data [4]). BDBench has
9 queries and in TPC-DS we choose 42 queries. The chosen benchmarks are
comprehensive and can cover most of the basic operations for big data.
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Table 1. Average resource relative impact on Rb

Resource relative impact Running mode BDBench TPC-DS Avg

CRI Disk mode 0.73 0.58 0.61

Memory mode 0.55 0.52 0.53

MRI Disk mode 0.04 0.18 0.16

Memory mode 0.18 0.31 0.3

DRI Disk mode 0.17 0.25 0.24

Memory mode 0.19 0.2 0.2

NRI Disk mode 0.04 0.015 0.02

Memory mode 0.06 0.06 0.06

4.2 Running Mode

Every query is finally parsed into on-disk and in-memory workloads (i.e., in-
memory analytics) by Spark. For disk mode, on-disk workloads read the input
data from HDFS and write the output data to HDFS, and we collect the running
time over the whole process, as shown in Fig. 2(a). For memory mode, in-memory
workloads read input data from the memory and write output data to HDFS.
As shown in Fig. 2(b), we have to run every workload twice because the cache
function is not a action operator [1]. The first running is to cache data and the
second running is just called as the memory mode, which will be monitored.

5 Experimental Results and Analysis

In this section, we split the whole experiment into five parts to study the
resource impact on Spark. We compare our performance indicator framework
with the resource utilization (e.g., CPU utilization, disk bandwidth utilization
and network bandwidth utilization) and the time blocked white box analysis
method [18].
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Fig. 4. Different resource utilizations on HDD and 1Gbps

5.1 CPU Impact Analysis

Table 1 shows CRI solved by Eq. (3), where the label “Avg” represents the aver-
age of both benchmarks. Overall, CRI is, on average, 0.57 for both running
modes, where 76% queries in disk mode are CPU-intensive and 64% queries in
memory mode are CPU-intensive, i.e., CRI ≥ 0.5. It suggests that the CPU
is the bottleneck for Spark. Curiously, for both benchmarks, CRI in memory
mode is always lower than it in disk mode. This implies that Spark is more
CPU-intensive when reading input data from the disk. We put BDBench and
TPC-DS together to find that CRI in memory mode tends to two extreme poles,
as shown in “DH1” and “MH1” of Fig. 3.

When CRI ≥ 0.6, the approximate median 51% of in-memory workloads are
only slightly greater than the 45% of on-disk workloads. This phenomenon shows
the memory mode has more CPU-intensive workloads. However, too many in-
memory workloads are low CPU-intensive. When CRI ≤ 0.4, 27% are in-memory
workloads (approximately 87% of them in TPC-DS), far more than the 2% of
on-disk workloads. This phenomenon that reading data from memory has a lower
CPU impact can be be reasonably explained as follows.

– Reading the cache data causes a lower LLC (Last Level Cache) hit rate, so
the memory stall time gets longer. Details are provided in Sect. 5.2.

– The high CRI is incurred when decompressing input data in disk mode, but
it is not required for memory mode. Relatively speaking, memory mode will
show the low CPU impact. Details are provided in Sect. 5.3.

– Spark is blocked by the network I/O more frequently in memory mode. This
phenomenon can also reduce CRI. Details are provided in Sect. 5.4.
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Why CPU Utilization Is Not a Good Representation of the CPU
Impact on Performance? For most of performance analysis scenarios, the
CPU utilization (CPU-util) is usually used to evaluate the CPU impact on
performance. A high CPU utilization means that applications are more CPU-
intensive and vice versa. Strictly speaking, it is not accurate enough.

In Fig. 4, for TPC-DS CPU-util in memory mode is greater than it in disk
mode. This trend contradicts CRI. The reason is that LLC misses are more
frequent causing the high memory stall time in memory mode of TPC-DS and
CPU-util includes the memory stall time. Too many stall cycles cause a high
CPU-util. However, the memory stall time should be the memory impact, not
the CPU impact. This finding suggests that a high CPU-util cannot always
represent a high CPU impact.

For both benchmarks, especially in TPC-DS, CPU-util is very low, but CRI
suggests that the CPU is the bottleneck. This is also contradictory. The reason is
that CPU-util only shows the system impact on the CPU (the CPU usage), not
the CPU impact on the system (the percentage of the CPU usage time). For a
multicore processor, in most cases, CPU-util is the average utilization of all cores.
For Spark, because of scheduling delay and task difference, the scheduler cannot
ensure that the task threads always run on all cores. Thus, in our experiments, it
is normal that some CPU cores are idle but other CPU cores are always in use,
causing the low CPU-util. However, it does not mean that the CPU consumes
less time than other resources. This finding suggests that a low CPU-util cannot
represent a low CPU impact.

Suggestion. CPU-util and CRI can be combined to help users give the opti-
mized suggestions. For example, the high CPU-util and the low CRI may imply
that the system has a weak memory management strategy. The low CPU-util
and the high CRI may imply that the CPU cores are not fully used.

5.2 Memory Impact Analysis

As shown in Fig. 3, we focus on “DS10” and “MS10”. There is an abnormal
phenomenon. After we only upgrade the I/O resources, CRI in memory mode
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shows a downward trend relative to CRI in disk mode, compared with the
upward trend on HDD and 1 Gbps. It reveals that the memory impact in memory
mode is 2-4.5× greater than it in disk mode. Based on this, we determine MRI
by Eq. (6), as shown in Table 1. Overall, the average MRI is 0.23. For both
benchmarks, MRI in memory mode is always greater than it in disk mode. This
shows that reading the cache data makes Spark more memory-intensive.

Why Is Memory Mode More Memory-Intensive? It is worth to note the
LLC hit rate. In Fig. 5, we demonstrate the distribution of LLC hit rate, where
the interval of every bar is nearly equal. For memory mode, the average and
highest bars have 14–21% deteriorations compared with those in disk mode.
This shows that the performance of LLC hit in memory mode is weak.

Especially when we run TPC-DS on SSD and 1 Gbps, memory mode (Run-
ning time is average 56.7 s) is unexpectedly slower than disk mode (average
55.7 s). The high overhead of moving data into the CPU even exceeds the advan-
tage of caching data in memory, causing caching data to have no effect. Therefore,
for memory mode reading cache data causes MRI to be increased.

The cache operation for Spark 1.6.3 is important because it is the basis for
in-memory data analytics. In Spark SQL, the main idea of the cache strategy
for structured data is as follows. When data are cached in memory, Spark stores
them in a two-dimensional array into a columnar format. This data structure
is conducive to in-memory compression. However, when the data is processed,
Spark must transform them from columnar format into a row format. This trans-
formation can break the data locality, leading to a reduction of the LLC hit rate.

Suggestion. The high MRI implies that the performance of Spark SQL in
memory mode can be improved by optimizing the cache operation. Actually, we
find that reading cache data in memory mode has to transform a columnar array
into a row array, causing the performance reduction.

5.3 Disk Impact Analysis

We solve DRI using Eq. (4), and the average is 0.22 for both modes. Disk mode
is more disk-intensive than memory mode, as shown in Table 1. This trend is
also demonstrated in Fig. 6(a). However, for different benchmarks, the trend is
the opposite. For BDBench, memory mode is more disk-intensive. For TPC-DS,
disk mode is more disk-intensive. Especially for BDBench, the abnormal trend of
DRI suggests that reading input data from disk does not necessarily represent
that the system is more disk-intensive. We also show the traditional indicator
(i.e., disk bandwidth utilization) in Fig. 4. It suggests that disk mode is more
disk-intensive for BDBench, being different from the trend of DRI. Actually, we
think the disk bandwidth utilization cannot accurately reflect the disk impact.

What Factors Cause the Difference of DRI? Combined with our experi-
ments, we summarize two reasons causing different disk impacts for both bench-
marks as follows.
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Fig. 6. Disk relative impact and network relative impact

Compression for BDBench. Memory mode is more disk-intensive in
BDBench. The additional decompression in disk mode increases much compu-
tation, causing the relatively low disk impact. The only difference between disk
mode and memory mode is reading compression data from the disk or not.
CRI in disk mode is 0.73, far more than 0.55 in memory mode, showing that
many CPU cycles are used for the decompression. Relatively speaking, the disk
impact is low in disk mode, compared with memory mode. Therefore, the high
disk bandwidth utilization does not mean the high disk impact.

Short Tasks for TPC-DS. Disk mode is more disk-intensive in TPC-DS.
Unlike the long-calculation tasks in BDBench, the short tasks in TPC-DS easily
are blocked by I/O due to the less overlap. The current big data systems leverage
the asynchronous I/O mechanism to overlap the computation and I/O request to
improve the performance. However, in disk mode of TPC-DS the CPU overhead
is relatively low for each task, causing the overlap to be disabled. Thus, the
disk impact increases. For example, the low CPU-util in TPC-DS is on average
17% in disk mode and 25% in memory mode, showing the lower opportunity
for overlap. In addition, TPC-DS has many short tasks (e.g., 0.7 s per task in
TPC-DS, compared with 9.1 seconds per task in BDBench) also showing the less
overlap. It leads to an interesting phenomenon that DRI is excellent in TPC-DS,
but the disk-bandwidth-util is very low, as shown in Fig. 4. Therefore, the low
disk bandwidth utilization does not mean the low disk impact.

Suggestion. The high disk-bandwidth-util and the low DRI imply that the
system has a good I/O performance with less disk blocked time when reading
much data. In contrast, the low disk-bandwidth-util and the high DRI mean a
weak I/O performance. The SQL’s optimizer should build the long computing
tasks or merge I/O requests as much as possible to maximize the overlap.

5.4 Network Impact Analysis

As shown in Table 1, we solve NRI using Eq. (5), and the average is 0.04 for
both modes, which is minimal within the four major resources. NRI in memory
mode is 1.5-4× greater than it in disk mode in Fig. 6(b). The network bandwidth
utilization in Fig. 4 also has the same trend.
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Why Does Memory Mode Have a Higher NRI? Spark uses the network in
the following three stages. (1) The input data may be read from remote disks, but
this rarely happens (ie.g., only 5% of the data from remote disks in our cluster),
because HDFS preferentially reads input data from local disks. (2) The shuffle
read stage needs to read data from both local and remote disks. (3) Writing
output data to HDFS needs to backup two duplicates to remote disks. Because
HDFS rarely reads input data from remote disks, the network I/O has nothing
to do with the decompression. Moreover, shuffle and output stages are the same
in both modes. Thus, the amount of data transferred over the network is nearly
equal in both modes (The difference is, on average, 5.6% in our cluster). Due to
the shorter running time in memory mode, more data are transferred over the
network per second. This is manifested as a higher network impact.

Suggestion. Memory mode needs to transfer data over the network more fre-
quently, causing the higher NRI. Combined with the result that BDBench’s
memory mode have a higher disk impact than disk mode in the previous section,
it is actually necessary for users to pay more attention to the I/O impact, rather
than the CPU impact for in-memory analytics in some cases.

5.5 Inaccuracy of Time Blocked White-Box Method

The blocked time analysis method [18] for Spark is used for analyzing the impacts
of the disk and network. It collects the I/O blocked time by adding some instru-
mentations into the system and simplifies part of shuffle I/O into the upper
bound of the disk I/O or network I/O. Finally, simulate the infinitely fast disk
or network by ignoring I/O blocked time to evaluate Spark’s maximum perfor-
mance improvement. Actually, it mainly evaluates the I/O impact, i.e., both disk
and network.

This method relies on adding some instrumentations into HDFS’s core to get
the blocked time when Spark accesses HDFS. However, the corresponding codes
have not been opened, so that only shuffle I/O can be profiled [7]. Even so, we
design several cases to illustrate the limitations of this approach.

Major Page Faults. Spark is usually impacted by the external factors, such as
OS. The intra-system instrumentations cannot monitor them. For example, the
system execution is not only blocked when reading data from disk, may also be
blocked due to major page faults issued by OS. We design a simple experiment to
demonstrate this problem. In BDBench, q3C is the most complex query. When
we use 56 GB compressed data to run Spark with q3C in our cluster, Spark will
be starved for memory. We run q3C without output in memory mode on Rb.
For contrast, this query also runs when I/O resources are upgraded to SSD and
10 Gbps. Time blocked analysis method shows that q3C can be sped up by 48.6%
(<50%), suggesting that q3C might not be the I/O bottleneck, but it is actually
sped up by 77.7%, suggesting that q3C is definitely the I/O bottleneck. The I/O
impact is underestimated by 1.6×. Actually, Spark on HDD is slowed down due
to major page faults (6,394 per node) but it can be significantly sped up by SSD.



32 C. Yang et al.

This phenomenon is ubiquitous. In 42 queries of TPC-DS, approximately 79% of
them have major page faults. Overall, the I/O impact might be underestimated.

Compared with the blocked time analysis method, our indicator framework
does not only focus on the impacts of four major resources, but it can also
evaluate the latent I/O impact by upgrading I/O resources.

6 Discussion

In this section, we discuss the major characteristics of our indicator framework
and how to use our method efficiently.

Comparability. Our indicator framework is built from CRI, so their values
are comparable. Thus, the greatest one can be identified as the bottleneck. It
is noted that the sum of them is not necessarily equal to 1. When we upgrade
the disk and network simultaneously for calculating MRI, the improvement of
CRI may be not equal to the sum of DRI and NRI by upgrading the disk or
network separately.

Scalability. The resource replacement method may limit our indicators on large-
scale clusters. Our indicators are only dependent on the end-to-end performance
in essence. Thus, we can leverage the performance prediction technique to achieve
the scalability. For example, Ernest [23] can predict the end-to-end performance
of the large-scale MapReduce-like workloads by training a performance model
with the performance data from different small-scale clusters. Thus, we can run
the system on small-scale clusters with our indicator framework and train the
performance model by Ernest. Further, we can predict the resource impact on
large-scale clusters.

Cost. For our indicator framework, the major cost is upgrading the disk and
network. However, it is not necessary to upgrade I/O resources for CPU-intensive
applications, e.g., CRI > 0.5. This observation is very helpful to reduce the usage
cost of our indicators.

Accuracy. The workload and the alternative resources can affect the accuracy
of the value of our indicators. If the load can be equally divided among all the
tasks, our indicator framework will identify the performance change as accurate
as possible when upgrading resources. To evaluate the linearity of performance
improvement with CRI, we run the system at different ci ∈ CF and use the
average as the CRI to improve the accuracy. For three other indicators, it is
easily to achieve the upgrade of I/O resources. For the disk, both SSD and main
memory are used as dj . The RamDisk technique [15] supported by Linux core
can use the main memory as the disk. For the network, both fiber-optic 10 Gbps
network or faster InfiniBand network architecture can be used as nk.

7 Summary

In this paper, we propose a performance indicator framework to evaluate the
relative impact of four major resources on big data systems. Values of different
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indicators can be built based on measuring the CPU frequency scaling perfor-
mance results. Many experiments are done to verify our approach and Spark’s
performance is analyzed in depth. We summary the most important advantages
of our framework. In addition, many interesting findings are found and some
valuable suggestions are given to help users tune their Spark.

Advantages. First, our four indicators are comparable with each other because
they are derived from the same metric. The feature ensures the bottleneck can
be easily found through our approach. Second, our indicators are more accurate
compared with the resource utilization and the existing white-box approach
because our approach is strongly related to the time consumed on the specified
resource. Therefore, our approach can easily find the underlying performance
issues. Third, our approach is also easy to implement relying on the general
CPU frequency scaling technology.

Findings. (1) The CPU impact may go down when Spark reads data from
memory instead of disk, because lower LLC hit rate, no data decompress, and
more frequent network blocking will happen. (2) Using CPU utilization as CPU
performance impact indicator is often misleading because long memory stall
time may lead to high CPU utilization and unbalanced tasks/threads scheduling
on multicore systems will lead to low CPU utilization. (3) Reading data from
memory will significantly increase the memory impact by 2-4.5× because lower
LLC hit rate will happen. Sometimes the performance will be lower than reading
data from disk because data locality is broken. (4) Disk bandwidth utilization
is also often misleading to identify the disk impact because it cannot show how
much disk time can be overlapped with CPU time. (5) The network impact is
often the lowest for most Spark big data systems. But its value can be increased
by 1.5-4× when Spark reads data from memory.

Suggestions. Even though resource utilizations are often misleading, with the
help of our indicator framework, it is easy for us to not only find the cause,
but also give the method to handle the problem. So we can combine the two
methods together to identify some Spark’s potential problems on the memory
management strategy, the scheduler and the SQL’s optimizer. Some specific tun-
ing suggestions can also be given from our work. For example, users should pay
more attention to the impact of I/O resources when executing in-memory ana-
lytics, rather than ignore them.
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Abstract. Multiple identity deception, called as sockpuppet, has been
commonly used in online social media to spread rumours, publish hate
speeches or evade censors. Current works are continually making efforts
to detect sockpuppets based on verbal, non-verbal or network-structure
features. Network structure has attracted much attention, while the time
series dynamic characteristic of sockpuppet network has not been consid-
ered. With our observation, after being blocked, a puppetmaster tends
to recover previous social relationships as soon as possible to maintain
the propagation influence. The earlier the relationship is recovered, the
more important it is. To take advantage of this dynamic nature, a time-
series sockpuppet detection method is proposed. We first design a weight
representation method to record the dynamic growth of sockpuppet’s
social relationships and then transfer sockpuppets detection to a simi-
larity time-series analysis problem. The experiments on two real-world
datasets of Sina Weibo demonstrate that our method obtains excellent
detection performance, significantly outperforming previous methods.

Keywords: Identity deception · Time-series sockpuppet detection ·
Dynamic social network structure

1 Introduction

Online social media has become a daily part of people’s lives due to its conve-
nience on information spread. The existence of malicious accounts on the online
social media leads to serious risks. Malicious accounts utilize online social media
to spread unwelcome information such as spamming [1], fraud [10], cyberbully-
ing [3], hate speech [9], discrimination [22], etc. When the malicious accounts
are detected and blocked, they create some new accounts called sockpuppets
[14] to continue spreading information. We broadly define a sockpuppet as a user
account that is controlled by an individual (or puppetmaster) who controls at
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least one other user account. A sockpuppet pair means two or more sockpup-
pets controlled by a puppetmaster. To cope with this serious risk, it is essential
to provide an accurate and effective detection method to find sockpuppets and
sockpuppet pairs among a large number of accounts in social media.

Some existing methods for sockpuppets detection exploit verbal features,
including characters, sentences, words, tokens, etc. Their effectiveness is affected
by computational efficiency, complexity of practical implementation and the
availability of the appropriate data [15]. In addition, some non-verbal behav-
iors are introduced in sockpuppets detection, such as the number of revisions,
the total number of bytes added and removed on Wikipedia [13]. Compared with
verbal methods, non-verbal ones are more computationally efficient [8]. However,
non-verbal features dug from one platform (e.g.Wikipedia) may not be fit for
other platforms (e.g. Twitter) and these methods only focus on the sockpup-
pet account but not sockpuppet pairs [23]. Moreover, network-structure method
based on community detection has been proposed to detect sockpuppets [2],
while the time series dynamic characteristic of sockpuppet network has not been
considered [20]. Dynamic characteristic of relationship can indicate the sockpup-
pets’s nature features, who prefer to establish the relationship according to the
different importance.

In this paper, by delving into the sockpuppets’ temporal character of social
networks, we observe that sockpuppets tend to keep similar propagation influence
with previously blocked accounts by dynamically recovering similar social net-
works in temporal order. To take advantage of this dynamic nature, a time-series
sockpuppet detection method is proposed. We first design a weight representa-
tion method to record the dynamic growth of sockpuppet’s social relationships
and then transfer sockpuppets detection to a similarity time-series analysis prob-
lem. To summarize, the main contributions of this study can be summarized as
follows:

– We observe that after being blocked, a puppetmaster tends to recover previous
social relationships as soon as possible to maintain the propagation influence.
The earlier the relationship is recovered, the more important it is.

– Further, we exploit a time-series sockpuppet detection method for dynamic
social networks based on the observation. We first design a weight representa-
tion method to record the dynamic growth of sockpuppet’s social relationships
and then transfer sockpuppets detection to a similarity time-series analysis
problem. As far as we know, this is the first work to introduce the dynamic
social structure to sockpuppet detection field.

– To validate the effectiveness of our method, we collect two real-world, publicly
available data from Sina Weibo. The experimental results have achieved a
precision of 0.901 and recall at 0.925, for a best F1 of 0.913 on datasets,
demonstrating that our proposed method can be more widely used and is
significantly better than the previous methods.

The rest of this paper is organized as follows: Sect. 2 is about the current
techniques to detect sockpuppets. Section 3 explores social networks of accounts
and social structure features. And, Sect. 4 introduces our structure-based online
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method and its efficiency. Then, Sect. 5 presents our dataset and experimental
results. Finally, in Sect. 6 we conclude and show our future directions.

2 Related Work

Sockpuppet detection is to detect whether a given account is a sockpuppet or not
[8,12,23], or whether a pair is controlled by the same puppetmaster [2,5,14,15,
18]. The existing sockpuppet detection methods are roughly classified into verbal
communication, non-verbal behaviors, and network structure-based methods.

2.1 Verbal Features

For verbal features, in Wikipedia, according to alphabet count, number of tokens,
emoticons count or the use of words without vowels, Solorio et al. [14] explored
sockpuppet detection on 77 sockpuppets. Hosseinia et al. [5] proposed a trans-
duction scheme, spy induction that leverages the diversity of authors in the
unlabeled test set by sending a set of spies (positive samples) from training set
to retrieve hidden samples in the unlabeled test set using nearest and farthest
neighborsand. For the detection efficiency, better sockpuppets seeds get higher
accuracy. Character n-grams, as a feature set for authorship attribution, also
can identify sockpuppets on the basis of similarity scores [6]. As a matter of
fact, because the verbal communication is static and assumes that sockpuppet
has similar linguistic styles [18,21], the accuracy of detection will be affected by
the behaviors of puppetmasters by changing their writing styles on purpose [8].

2.2 Non-verbal Behavior

Tsikerdekis et al. [8] studied the posting behaviors including the number of revi-
sions, the total number of bytes added or removed on Wikipedia, etc. Yamak et
al. [23] proposed an automatic detection approach for sockpuppets on Wikipedia,
based on features of the number of user’s contributions, the frequency of revert
after each contribution in the articles, etc. Compared with verbal-based meth-
ods, the above methods are computationally efficient, and the reason is that
these methods do not have to process large amounts of text data and ignore the
link between the sockpuppets from the same puppetmaster and do not group
the sockpuppets.

2.3 Network Structure

Existing network structure-based detection methods are subjectively based on
user views or emotional similarities. Bu et al. [21] proposed a sockpuppet detec-
tion algorithm based on authorship-identification techniques and relationship
analysis. The relationships between two accounts are built if they have a similar
attitude to most topics and similar writing styles. Then, the relationship-based
community detection is performed to identify sockpuppets. Besides, Kumar et al.
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[11] created a reply network on The AV Club discussion community and observed
that the nodes denoting socpuppets were more central and highly active. As a
result, the above network structure-based methods focused on establishing social
relationship and identify sockpuppets based on the relationships, where ignoring
the time series dynamic characteristic of sockpuppet network.

3 Time-Series Social Relationship

We observe that, after being blocked, a puppetmaster tends to recover previous
social relationships as soon as possible to maintain the propagation influence.
The earlier the relationship is recovered, the more important it is. In this section,
we introduce our observation in details and analyze the difference of dynami-
cally social networks between sockpuppet pairs and sockpuppet-ordinary pairs.
The sockpuppets we analyzed in this section are widely known or have been
published.

Fig. 1. An example of dynamic social relationship of a sockpuppet pair

In order to get an insight into the relationships of sockpuppets, we record
the dynamic growth of sockpuppet’s and ordinary account’s social relationships
as the time goes. For example, as Fig. 1(a) shown, we suppose Account a is a
blocked one with many relationships to the other accounts and the weights on
relationships mean their importance. If Account b is a ’s sockpuppet, we can
observe that as time goes, there are many same relationships with account a
established around b and the more important the relationship is, the earlier it
is established, shown in Fig. 1(b). At t time, there are only S, Q, N in the
same relationships. While t+Δt, accounts B, M, C are added and the number
of same relationships increases to 6. As the time goes, W, I, Z become b’s
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neighbors and so on. In sum, we can conclude that a and b have 14 identical
relationships in the top-20 neighbors [17], as shown in Fig. 1(c).

The situation is different for sockpuppet-ordinary pair. In Fig. 2, the
sockpuppet-ordinary pair (sockpuppet Account a and ordinary Account c) inter-
act with different neighbors. After a while, the number of their identical rela-
tionships is only one.

By comparison of this two situations, we can observe that the social relation-
ship formed in the early days is more important because it represents the social
relationship that the puppet master urgently needs to recover.

Fig. 2. An example of network structure between a sockpuppet-ordinary pair

Over all, we randomly collect a total of 284 accounts, consisting of 93 sock-
puppet pairs and ordinary accounts from Sina Weibo. Then, we analyze the time
series dynamic characteristic of sockpuppet pairs and sockpuppet-ordinary ones.

Based on statistics, some findings are as follows:

– The sockpuppet pairs are more likely to establish similar social networks. The
average number of identical neighbors contained in the interaction network of
the sockpuppet pair is much larger than that of the sockpuppet-ordinary pair
(83 s. 7), shown in Fig. 3a. This suggests that after the new sockpuppet is reg-
istered, the puppetmaster would like to recover previous social relationships
in order to continue spreading their malicious posts.

– The earlier the relationship is recovered, the more important it is. As the
time goes, we can find that the number of establishing more important rela-
tionships firstly is larger (65 vs. 11 vs. 7), shown in Fig. 3b.
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(a) The difference between sockpuppet pair
and sockpuppet-ordinary pair

(b) The difference with time going by: t1 →
t2 → t3.

Fig. 3. The statistical results of differences between sockpuppet pairs and sockpuppet-
ordinary ones.

4 Sockpuppet Detection Method for Dynamic Social
Relationships

To take advantage of this dynamic nature, a time-series sockpuppet detection
method is proposed. We first construct the social graph and then design a weight
representation method to record the dynamic growth of sockpuppet’s social rela-
tionships. Furthermore, we formalize sockpuppets detection as a similarity time-
series analysis problem. Finally, to prove the efficiency of our method, the time
complexity is further calculated.

4.1 Graph Construction

All the symbols we used are listed in Table 1. In this subsection, we build the
social relationships for each account, which is the interaction graph as defined
below:

Interaction Graph. We represent the interactions as a link in the graph.
A directed and weighted interaction graph of the center node u is defined as
Gu = (Vu, Eu,Wu), where (1) Vu is a set of ordinary nodes and the center
one; (2) Eu ⊆ Vu × Vu is a set of edges between nodes in Vu; (3) Wu is a set
of weight of edges. In our model, nodes are accounts and edges represent the
interaction relationship between these nodes. Figure 4 represents an example of
two interaction graphs with center nodes u, v, and there are four identical nodes
(node B, C, E, H). The interaction relationship does not limit by one hop and
the weight between two nodes with no direct connection can be computed by
combining all the weights of their path. In order to represent the intimacy degree
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Table 1. Symbol definition

Number Symbol Description

1 Gu The interaction graph of the center node u

2 Vu A set of nodes that have interactions with the center node u

3 Wu A set of weight of edges with the center node u

4 ui The ith element of Vu

5 A The set of interactions between two accounts

6 Ai The ith element of A

7 w
uj
ui The weight between uj and ui

8 pa
u A shortest path from node u to a, a ∈ Vu

9 Xu,v The set Vu

⋂
Vv

10 xi The ith element of X

11 k The account to be detected

12 B The set of all blocked users

13 bi The ith element of the blocked users

14 Sk The set of k’s sockpuppets

of two users, the weight w
uj
ui of e

uj
ui (uj , ui ∈ V ) is calculated as F (ui, uj) the

logarithm of the value of each interaction type between ui and uj :

wuj
ui

= F (ui, uj) = lg
|A|∑

i=1

TypeAi
(ui, uj) (1)

where A represents the set of interactions between two accounts (ui, uj), and the
more interactions means the larger weight. The value of an interaction type is
obtained by the function Type(·). Inside, TypeAi

(·) represents the value of this
interaction type (Ai). Particularly, the interaction in social media can be built
passively or actively, e.g. Weibo Search, Weibo Recommending on Sina Weibo.
And, the more active the interaction type is, the larger the value of the function
Type(·) is, because the more active type indicates that the user is eager to build
relationships with the other.

4.2 Interaction Graph with Time Series

In this subsection, we encode time series into the constructed social graph by
adjusting the weights of relationships.

wuj
ui

= (1 − λ) ∗ F (ui, uj) + λ ∗ K(ui, uj) (2)

Where λ represents the proportion of the time series in the weight and K(·)
represents the time series of two nodes forming the edges in the social network,
and the specific calculation method is as follows:
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Fig. 4. The social network graph of center nodes u and v

K(ui, uj) =
∑|A|

i=1 TimeAi
(ui, uj)

|A| (3)

where the value of an interaction time is obtained by the function Time(·).
Inside, TimeAi

(·) represents the value of this time series (Ai). Particularly, the
sooner an interaction builds on social media, the larger the value of the function
Time(·) is, because the earlier interactions indicate that the user is eager to
build relationships with others.

4.3 Graph Similarity with Dynamic Social Relationship

In this section, we formalize sockpuppets detection as a similarity time-series
analysis problem. We first apply the shortest path hops and the weight sum of
edges between two nodes to show the degree of relationships between accounts
and the degree function Φ(ui, uj) can be expressed as:

Φ(ui, uj) =
w

uj
ui

|puj
ui |2

(4)

Ruan et al. proposed to use Jaccard coefficient as defined below to calculate
the graph similarity [19] as below:

jaccard(Gu, Gv) =
|Vu

⋂
Vv|

|Vu

⋃
Vv| =

|Xu,v|
|Vu

⋃
Vv| (5)

Our method improves the Jaccard coefficient, which combines with the degree of
relationship between each of the same nodes. Therefore, the method calculates
the interaction graph similarity H(u, v) as follows:

H(u, v) =
∑|X|

i=1(Φ(u, xi) + Φ(v, xi))
|Vu

⋃
Vv| (6)
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Algorithm 1. Detect whether a newly registered account is a sockpuppet and
find his/her sockpuppets
Input: newly registered account k, all blocked users B
Output: sockpuppet set Sk or ordinary users
1: Given account k and all blocked users B, construct their interaction networks Gk,

Gbi , and bi is one of the blocked users
2: Sk = NULL
3: LOOP: bi in B
4: LOOP: node j in Gk

5: compare node j with nodes in Gbi to find same interaction nodes
6: END LOOP
7: calculate relationship degree, Φ(ui, uj)
8: calculate interaction graph similarity, H(k, bi)
9: classification algorithm combined with graph similarity to find the association

between accounts
10: if graphs are similar
11: Sk = Sk + bi
12: END LOOP
13: if Sk == NULL
14: return k is an ordinary account
15: else
16: return Sk

4.4 Efficiency

This subsection describes the efficiency of our method. In the online platform,
accounts will be blocked when they spread rumors or post malicious contents.
They will register new accounts to continue their purposes. Our method detects
these accounts by social network structures, as shown in the Algorithm 1. Our
method just needs to match the social network subgraphs between the account
(k) with each blocked user (bi) based on a classification algorithm by comparing
each node in the Gk with Gbi . The procedure requires to be continuously exe-
cuted until all blocked users have been matched to find k’s all sockpuppets. The
time consumption depends on the number of the blocked accounts and the size
of the social graph of account k. Therefore, the time complexity of the proposed
algorithm is:

O(Algorithm 1) = O(|B| ∗ |Gk|) (7)

5 Experiment and Results

5.1 Data Collection and Analysis

Data. To demonstrate our method’s effectiveness, we collected public data from
Sina Weibo as our experimental data, which is different from the analytical data
we mentioned above. In this platform, users can establish social relationships
with others to share information [4]. From the website, we collect each user’s
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homepage which contains the user profile (e.g. username, gender, description,
etc.), posts information, and interaction users.

Identifying Sockpuppets. For our method, we need an accurately classified
sockpuppet dataset. In previous work, there are many ways to identify sockpup-
pets. We combine these methods. According to observation, some sockpuppets
will announce their own sockpuppet information in their posts to help others
finding them. Based on this information, some other user information is also
used to help label, such as the username, avatar, registration time, unhidden
login IP and posts. Once different user accounts have announced their sockpup-
pet information and have quite similar even identical profile information (e.g.,
the login within a short time interval many times, their login IPs are similar,
and their avatar are very similar as well), they are considered to be controlled
by the same puppetmaster [2].

Dataset Construction. In order to verify the effectiveness of our method,
we choose users of different time periods, which can construct two datasets,
summarized in Table 2. According to the above method to judge sockpuppets,
our datasets contain 4035 sockpuppets and 48309 ordinary users, including their
profiles, posts and social network information.

In this paper, for the convenience of calculation, we only regard the inter-
action network that the path hops from the center node to other nodes are no
more than two.

Table 2. Statistics of dataset 1 and dataset 2

Dataset 1 Dataset 2

# of sockpuppets 1905 2130

# of ordinary users 19763 28546

# of interaction nodes of sockpuppets 64873 105347

# of posts of sockpuppets 143065 150899

sockpuppets ratio 9.64% 7.46%

5.2 Experimental Design

In our experiment, the interaction types can be divided into Weibo Search Fol-
lowing, Weibo Recommending Following, Forwarding, etc., which are assigned
different function values. For the convenience of the experiment, we only consider
user nodes that have 2 hops to a center node in its social network.

In the previous work, Solorio et al. [14] evaluated their proposed model using
only Support Vector Machine (SVM), while Tsikerdekis et al. [8] used Support
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Vector Machine, Random Forest (RF), Logistic Regression (LR) and Adaptive
Boosting (ADA) to evaluate their models, where ADA performs best. Besides,
Yamak et al. [23] used six classification algorithms, and the RF performed best.
Therefore, to further verify the effectiveness of our method with different algo-
rithms, we employed the following four classification algorithms: LR, SVM, RF,
ADA. To identify the different performances of our features, we have firstly
designed two models: interaction graph with interaction type (M1 ); interaction
graph with time series (M2 ).

We applied 10-fold cross-validation procedure to achieve our experimental
method. The procedure splits the data into ten parts, taking nine of them as the
training set whereas the other as the testing set. The procedure is sequentially
executed until all possible ten combinations have been applied. Our experiment
results are the average of ten executions.

To more comprehensively evaluate the efficiency of our models, we derived
results to use following metrics: Recall (the fraction of sockpuppet pairs in the
sample is predicted correctly), Precision (the fraction of positive predictions
that are valid sockpuppet pairs), F1 (the harmonic mean that combines recall
and precision), Accuracy (the fraction of true positives and true negatives over
the total number of data), False positive rate (FPR) (the fraction of falsely
identified sockpuppet pairs).

5.3 Performance Evaluation Comparison

Interaction Graph Similarity with Interaction Type (M1). Let λ =
0, which means that we only consider building the interaction type through
the similarity of the interaction graph (M1). Referring to M1 in Table 3a, the
performance on dataset 1 is surprisingly high compared with the precision at
0.960, the recall at 0.738 and the F1 at 0.835 through ADA. Relative to the
dataset 2, the performance of M1 has decreased. But, on two datasets, the
interaction graph similarity can get good performance with ADA.

In a word, the result further illustrates the fact that the feature we proposed
is extremely effective, because the feature reflects the purpose of sockpuppets.

Table 3. The result of M1

(a) dataset 1

P R F1 Acc FPR

LR 0.978 0.692 0.811 0.838 0.015
SVM 0.958 0.708 0.814 0.838 0.03
RF 0.940 0.723 0.817 0.838 0.046

ADA 0.960 0.738 0.835 0.854 0.031

(b) dataset 2

P R F1 Acc FPR

LR 0.938 0.692 0.796 0.823 0.046
SVM 0.902 0.708 0.793 0.815 0.077
RF 0.873 0.738 0.800 0.815 0.108

ADA 0.860 0.754 0.803 0.815 0.123
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Table 4. The result of M2

(a) dataset 1

P R F1 Acc FPR

LR 0.877 0.905 0.891 0.889 0.126
SVM 0.861 0.916 0.888 0.884 0.147
RF 0.923 0.884 0.903 0.905 0.073

ADA 0.896 0.923 0.909 0.908 0.108

(b) dataset 2

P R F1 Acc FPR

LR 0.901 0.846 0.873 0.877 0.092
SVM 0.889 0.864 0.875 0.877 0.108
RF 0.919 0.877 0.898 0.900 0.077

ADA 0.921 0.892 0.906 0.908 0.077

Interaction Graph Similarity with Time Series (M2). Let λ = 1, which
means that we only consider building the time series through the similarity of
the interest graph (M2), whose precision is 0.896, recall 0.923, F1 0.909 through
ADA on dataset 1, shown in Table 4a. Comparing M2 with M1, the best recall
almost increases by 18% on dataset 1 and 14% on dataset 2, which reveals that
the dynamic social network is booming in detecting more sockpuppet pairs.
According to analysis, in the early days, the sockpuppet will quickly resume
his social network. The earlier the time represents, the more important this
person is. Even if the social network intersection between the two sockpuppets
is relatively small, if the weight values are large, it proves that these nodes are
more important and can make up for the smaller intersection defects. Therefore,
adding timing features to our method can better find more sockpuppet pairs.

Discussion of Results. These results show that ADA algorithm appears to
provide almost the best performance and our method provides the best balance
between recall and precision whereas maintaining the highest achieved accuracy.
The recall level is relatively high (0.923) on dataset 1, which means that most
sockpuppets are picked up by our proposed model. On dataset 2, the experimen-
tal performance is also excellent and optimal. This indicates that our method is
effective in detecting sockpuppets. Interaction graph similarity is the basis of our
method and is important to ensure the validity of our method. In addition, our
method has a relatively high precision with LR, thus if we tend to detect whether
an account is a sockpuppet of blocked users, this method is precise and can get
results quickly. Above all, our method can not only detect sockpuppets, but also
can find out the puppetmaster’s sockpuppets accurately from a large number of
users. Besides, puppetmasters have a difficulty to skip from the detection and to
change their social network structures if they wish to achieve their objectives.
Therefore, our method can guarantee the detection effect and be disposed on
different social platforms to meet different demands with different models.

5.4 Parameter Analysis

According to the above models, we find that the change of parameters has a
great influence on the experiment. The time series can effectively improve the
experimental results. Therefore, in this sub-section, we want to find the best
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parameters to balance the interaction type and time series. Specifically, we track
how the sockpuppet detection quality changes when the value of λ is varied from
0.1 to 0.9 with a step length of 0.2. According to the above experimental results,
the ADA algorithm performs best, so in this sub-section we use ADA as the
classification algorithm.

(a) dataset1 (b) dataset2

Fig. 5. Effect of varying λ on performance

From Fig. 5, performance on two datasets is constantly improving when λ
increases (i.e. more weight assigned to time series). But when λ = 0.7, the
performance is the best with the precision of 0.901, recall at 0.925, F1 of 0.913
on dataset 1 and the precision of 0.916, recall at 0.899, F1 of 0.907 on dataset
2. From the experimental results, we can see that the time series can effectively
improve the recall rate, but the impact on accuracy is not very large.

This result indicates that time series helps us detecting more sockpuppets
and is important to find more sockpuppets. Some newly created sockpuppets
have not yet recovered to a large enough social network, but if existing nodes
account for a large proportion in the network, they can also help us judge it as a
sockpuppet. Therefore, the reasonable weight distribution can achieve the best
experimental performance.

5.5 Literature Comparison

In order to investigate the superiority of our method, we assess the effectiveness
of different types of information on sockpuppet detection. In particular, we com-
pare our proposed method with those of four previous approaches on our two
datasets.

– Profile Similarity (PS): This method applys the user profile (the user-
name, gender and description, etc.) similarity to detecting the sockpuppet
pairs because sockpuppets’ profiles to a certain extent will reflect the pup-
petmasters’ lexical preferences with character n-grams [16].
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– Verbal Features (VF): Verbal features [14], such as total number of words,
sentences, punctuations, are used to capture the similarity of linguistic styles
between accounts.

– Non-verbal Behavior (NVB): Simple and more complex variables are used
to represent users’ posting behaviors [7], such as the time interval of posting
blogs, the number of posts in one day and so on.

– Similar-orientation Network (SON): The approach first analyzes users’
sentiment orientation to topics based on emotional phases [2], and then eval-
uates the similarity between sentiment orientations of account pairs to build
a similar-orientation network. Finally, community detection is adopted to
detect sockpuppets in the network.

Table 5. Methods comparison on two datasets

Model Dataset 1 Dataset 2 Efficiency for a newly account

P R F1 P R F1

PS 0.727 0.615 0.667 0.726 0.602 0.658 O(B ∗ C)

VF 0.732 0.745 0.739 0.753 0.625 0.683 O(B ∗ R ∗ F )

NVB 0.759 0.745 0.752 0.770 0.648 0.704 O(B ∗ R)

SON 0.719 0.631 0.672 0.726 0.602 0.658 O(B ∗ (R + T ))

Our method 0.960 0.738 0.835 0.860 0.754 0.803 O(B ∗ |Gk|)
Our method with λ = 0.7 0.901 0.925 0.913 0.916 0.899 0.907 O(B ∗ |G′

k|)

In the above table, B is the number of all users, C means the number of
n-grams, R is all posts made by each user and F is the number of features. T
is the number of topics, |Gk| is the number of all social nodes and |G′

k| is the
number of all social nodes where |G′

k| � |Gk|. We compare our method with
these above methods and ADA is selected as classification model. The results on
two datasets are shown in Table 5. We have the following observations:

– With different types of the features considered, our method with time series
obtains the best F1 by approaching to 0.913 and is suitable for the online
platform with low time complexity.

– The Profile Similarity achieves the worst performance. Observing from social
media platform, the profiles of many sockpuppets are missing or different,
which leads to low recall. It also indicates that smart sockpuppets tend to
empty or change their profiles irregularly to avoid being blocked. In our
method, we just focus on the social network structure, and ignore verbal
characters. It will help us diminish the misleading of primer deliberated dis-
guise.

– Verbal Features and Non-verbal Behaviors achieve better performance com-
pared to Profile Similarity, because they align with the purpose of puppet-
masters and indicate the hidden information of sockpuppets. However, they
ignore the important social network feature controlled by the same puppet-
master, which is not easy to be disguised.
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– The Similar-orientation Network method uses network structure built by
similar opinions. The network assumes that two users have links if they have
similar orientations to most topics. However, this assumption ignore several
features of sockpuppets. In our method, we focus on the social network graph
similarity of each sockpuppet. It reflects that sockpuppets will construct the
similarity social network because sockpuppets want to maintain influence.
And, our method analyzes the characteristics from the purpose of sockpuppet
creation, which gets better performance.

6 Conclusion

In this paper, we deeply observe social structure of sockpuppets and propose
an online method to detect sockpuppets by introducing structural time-series
features. The experimental results have achieved a precision of 0.901 and recall
at 0.925, for a best F1 of 0.913, which can certify the method we proposed is
efficient, relatively to other methods. In addition, our work can be used to online
detect sockpuppets of large-scale social media platform with low time complexity.
In the future work, we plan to further study other features of social relationships
to help improving the efficiency, including the recovering speed, interval, etc.
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Abstract. To efficiently deal with OLTP and OLAP workload simul-
taneously, the conventional method is to deploy two separate process-
ing systems, i.e., the transaction-friendly designed OLTP system and
the analytic-friendly optimized OLAP system. To maintain the fresh-
ness of the data, extra ETL tools are required to propagate data from
the OLTP to the OLAP system. However, low-speed ETL process-
ing is the bottleneck in those business decision support systems. As a
result, there has been tremendous interest in developing hybrid trans-
actional/analytical processing (HTAP) systems. This paper proposes a
wait-free HTAP (WHTAP) architecture, that can perform both OLTP
and OLAP requests efficiently in a wait-free form. We develop and evalu-
ate a prototype WHTAP system. Our experiments show that the system
can obtain a similar OLTP performance as the TicToc system and a four
to six times acceleration in analytical processing at the same time.

Keywords: HTAP · In-memory database systems ·
Transaction concurrency control

1 Introduction

From a database perspective, there are two types of workloads, i.e., online trans-
action processing (OLTP) and online analytical processing (OLAP). It is well
known that OLTP and OLAP are difficult to process uniformly for a given sys-
tem. The conventional approach for dealing with such hybrid workloads is to
maintain a data warehouse for OLAP that is independent of the OLTP sys-
tem. The data generated by OLTP systems are periodically transferred into
the OLAP systems for analytical processing in a batch-wise fashion (i.e., ETL
tools), where ETL tools provide both excellent performance isolation between
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the two workloads and the ability to tune each system independently. However,
the traditional methods are not always timely enough when making business
decisions.

In the last few years, organizations have grown increasingly interests in con-
ducting real-time analyses of, and hence making decisions based on, up-to-date
sets of raw data. As a result, the freshness of the data used for analysis becomes
increasingly important. Recently, there has been tremendous interest in develop-
ing hybrid transactional/analytical processing (HTAP) systems. Gartner coined
the term “(HTAP)” to describe this new type of database [8]. A similar term
used to describe this type of processing is operational analytics [1], which
indicates that insight and decision-making occur instantaneously with a transac-
tion. HTAP offers 3 advantages: 1. Lower implementation complexity. The
implementation of HTAP no longer requires the consideration of data movement
between transactional and analytical databases. 2. Lower analytic latency.
Analytic queries can access the latest transactional data to any extent needed,
guaranteeing freshness in decision-making activities. 3. Less data duplication.
Since data movement is avoided, it is possible to reduce data duplication.

Fortunately, the recently emerged database technologies, such as in-memory
computing (IMC), have brought new opportunities for the support of hybrid
workloads within one database instance. Currently, there are two main types of
HTAP implementations: true-HTAP and loose-form HTAP.

1.1 true-HTAP

To handle the OLTP and OLAP workloads in one single system, multi-version
concurrency control (MVCC) is the currently accepted approach [30]. MVCC
guarantees a high degree of parallelism, since writes are never blocked by reads.
If a tuple is updated, a new physical version of this tuple is created and stored
alongside the old version by engaging a version chain, which allows the old version
to remain available for the allowed readers.

Limitations. MVCC does not distinguish between transaction types. Both
short-running OLTP transactions and long-running read-oriented OLAP queries
are treated in the same way on the same database. Obviously, it is inefficient
to treat both OLTP and OLAP workloads similarly. First, scan-heavy OLAP
queries require a substantial amount of time to deal with long version chains [30].
Second, costly garbage collections are inevitable in the recycling of unattended
data.

Therefore, uniform processing approaches, such as MVCC, cannot meet the
requirements of HTAP workloads, which consist of transactions of inherently
different natures.

1.2 Loose-Form HTAP

As mentioned above, true-HTAP, which treats OLTP and OLAP equally, is not
a suitable solution for the unsatisfactory performance of this approach. To the
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best of our knowledge, recently published studies typically classify queries based
on the query type and execute the queries in separate replicas within a single
system (loose-form). Two methods are used to organize the replicas of OLTP
and OLAP.

– Copy on Write. The system call of fork obtain a virtual snapshot of the
OLTP data as an OLAP replica, as in Hyper [13]. However, OLTP and OLAP
replica data own the same physical data layouts, which is not effective for
optimizing these methods simultaneously. Furthermore, the granularity of the
fork is too coarse, which significantly influences performance based on dataset
size. In this sense, the fork is not a particularly flexible solution. Anker [37]
proposed a fine-grained system-level virtual snapshot system call (similar to
the fork), but this method must be applied at the column storage level.

– Recording and merging delta snapshot. The recently published AIM [2]
and BatchDB [26] both employ the delta snapshot method for data propaga-
tion. These methods require additional memory space to record transactions,
generate delta snapshots over certain intervals and then merge the snapshots
into the OLAP datasets. Note that BatchDB exploits a special in-memory
log to record delta updates as a kind of delta snapshot. The most typical
industry system is SAP HANA [7,38]. HANA holds a write-optimized delta
store to collect the insert and delete operations and then merges the stores
into a read-optimized and immutable main store.

1.3 Motivation

Apparently, the delta snapshot scheme is more flexible. However, two challenges
are encountered when using delta snapshots. (1) It is difficult to record delta
snapshots without significantly affecting the OLTP’s latency and throughput.
(2) It is difficult to avoid merging snapshots without blocking OLAP queries.
For interactive applications, it is better to run both OLTP and OLAP in a wait-
free manner. To the best of our knowledge, the state-of-the-art systems both in
academia and industry have not yet addressed the wait-free execution of OLTP
and OLAP. Is it possible to run both transactions and analysis in a wait-free
manner and to perform transactions and analysis simultaneously while ensuring
good performance?

This paper presents a wait-free HTAP (WHTAP) architecture. The key fea-
ture of the WHTAP architecture is a primary-secondary replication plus a dual
snapshot. The primary replica is dedicated for OLTP, whereas the secondary
replica is dedicated to OLAP workloads. The OLTP replica and OLAP replica
are then connected by a dual-snapshot. Hence, WHTAP can independently opti-
mize OLTP and OLAP according to their workload characteristics while physi-
cally isolating their resources. WHTAP not only guarantees both short transac-
tions and long-running analytical queries execute in wait-free manner, but also
ensures data freshness besides the consistency and isolation.
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In summary, this work results in the following contributions:

– Dual snapshot-based engine. We design a dual snapshot structure in the
storage engine to ensure the data freshness and wait-free features of WHTAP
(Sect. 3).

– LSM-like query layer. To ensure that the analytical queries can always
access the latest data, we propose an LSM-like query algorithm with a state
controller, which ensures that analysis transactions run in a wait-free mode
and access the freshest data (Sect. 4).

– High-performance wait-free HTAP (WHTAP) system. We implement
a prototype and open the source code on Github1, which can ensure the
serialization of OLTP and OLAP at the snapshot isolation level. Compared
with the traditional single-engine (true-HTAP) method, WHTAP can obtain
a similar performance as previously documented for OLTP while delivering
an OLAP performance that is approximately 4 to 6 times better relative to
values recorded when using single engine. (Sect. 5).

The remainder of the paper is organized as follows: Sect. 2 shows the archi-
tecture of the WHTAP system, and Sects. 3 and 4 give the details of the com-
ponents of WHTAP. Section 5 evaluates several experiments with a modified
YCSB benchmark. Related work is discussed in Sect. 6. Section 7 presents our
conclusion.

2 Dual Snapshot-Based Architecture

In this paper, we propose a dual delta snapshot-based structure for managing
mixed workloads. In this structure, both the transactions and analytical queries
are handled in isolation mode. In other words, distinct data replicas are used by
OLTP and OLAP.

Fig. 1. Architecture of WHTAP

At the highest level, the system runs alternately between two periods. As
shown in Fig. 1, we assume that in period one, the transaction data are recorded
1 https://github.com/bombehub/WHTAP.git.

https://github.com/bombehub/WHTAP.git
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into delta snapshots delta1 and delta2, which will be merged into the OLAP data
store. Then, in the next period, the roles of delta1 and delta2 are exchanged.
That is, the delta snapshot remains delta2, while delta1 is merged into the OLAP
data store. The data freshness of the WHTAP system can be guaranteed by
minimizing the duration of each period.

As is known, taking a delta snapshot will lead to a throughput loss and
latency spike, and merging a delta snapshot will break the OLAP’s read-only
feature. Therefore, the challenge in design is how to record a delta snapshot
(Component 3) but not block the OLTP from running, followed by merging the
delta snapshot (Component 4) but not blocking the OLAP running at the same
time.

To overcome those challenge, we propose an architecture named WHTAP
that possesses six total components: the logical components of OLTP are dual-
snapshot storage engine and delta snapshot recording, and the OLAP part
includes snapshot compaction, LSM-like query layer, and state controller.

– Storage Engine. OLTP and OLAP are stored in 2 replicas. Additionally,
space to recode the delta data is necessary. This module is primarily respon-
sible for the organization and storage of data.

– Transaction Concurrency Control. This control relates to scheduling of
the running logic of the OLTP workload and guarantees that the structure is
serializable and meets the desired performance.

– Delta Snapshot. To ensure the data freshness, the running data of the
transaction must be transformed into an OLAP Store. To collect the snapshot,
three difficulties must be overcome. First, the linear serializability between
the OLTP and delta snapshot must be ensured; second, the litter performance
must be disregarded as much as possible; and third, it is important not to
cause a significant latency spike.

– Compact Snapshot. The dual snapshot structure must periodically merge
the frozen snapshot data into the OLAP data. The difficulty that must be
overcome here is merging of the snapshot without blocking the normal exe-
cution of the OLAP queries.

– State Controller. The WHTAP system maintains a state controller to
ensure that the query runs correctly and is wait-free, and that the snapshot
is merged within a suitable amount of time.

– Query Execution. The OLAP data are updated periodically by the delta
snapshot data, thus ensuring the high performance of OLAP queries and
guaranteeing the snapshot isolation level. Doing so while also maintaining
the wait-free feature remains a challenge that must be addressed.

3 OLTP Components

3.1 Storage Engine

It is better for a system to expose one single schema while maintaining two data
replicas for OLTP and OLAP. The storage engine should also employ two extra
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Fig. 2. Dual snapshot-based storage engine.

memory spaces to record the delta snapshots. For each tuple, we use two counters
to represent the read and write timestamps for concurrency control, similar to
the approach presented in TicToc [42]. The storage engine is organized in the
form of a tuple level. Each logical tuple contains two static in-memory rows that
store the OLTP and OLAP data, one set per row. Additionally, the logical tuple
holds two copies of dynamic data, delta1 and delta2 (Fig. 2). The dynamic data
are used to record increments in an alternating fashion. The use of dynamic
memory can save memory footprint as desired, while static memory can help
avoid memory allocation times.

Many indexes have been designed to organize in-memory row data, such
as the Adaptive Radix Tree (ART) [18,19], BwTree [20], Masstree [27], and
SkipList [34]. [40] gives an in-depth performance evaluation of the state-of-the-
art indexes. How the appropriate index is chosen is beyond the scope of this
paper. To access the table in a fast and easy manner, we can exploit a hash
index or use a memory-optimized b+ tree for organizing the tuples. The OLTP,
OLAP and dual delta snapshot components share the same index.

3.2 Transactions and Concurrency Control

Component 2 (Fig. 1) entails choosing an OCC-based protocol to schedule the
OLTP workload. One of the largest advantages of using the optimistic concur-
rency control protocol for main memory DBMSs is that the contention period
is short, because transactions write their updates to shared memory only at the
commit time [15]. This outstanding feature could be combined with a record-
ing snapshot, i.e., each write operation occurring in the write phase will be
accompanied by a write delta (details are available in Sect. 3.3) operation syn-
chronously. As a result, we chose OCC as WHTAP’s transaction execution pro-
tocol. Our baseline OCC protocol is specified in TicToc [42], which details a new
concurrency control algorithm that achieves higher concurrency than state-of-
the-art T/O schemes. Another popular OCC protocol that can be used to replace
TicToc is Silo [39]. Although our algorithms can also be adapted to the multiple-
version concurrent control, we abandon MVCC in designing our WHTAP system
due to its high overhead memory cost.

3.3 Delta Snapshot

Our concurrency control algorithm falls under the framework of TicToc, although
we must record the delta snapshots in conjunction with transaction execution.
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We integrate Pingpong [3] (or Hourglass [24]) with TicToc. Each OLTP’s
write instruction (only appearing in the write phase) should not only write to the
OLTP data but also write to a particular delta snapshot according to the pointer,
as introduced in Pingpong. Both Pingpong and Hourglass can be combined with
a virtual snapshot approach [23,35], i.e., when we take virtual snapshots into
consideration, once the pointers have been exchanged, this approach only affects
the behavior of the new transactions and has no effect on the current running
transactions.

Algorithm 1. Transaction Execution Thread
Input: Transaction T

1 Read Phase
2 if Validation Passed then
3 pointer = p update
4 for each request in T.writeset do
5 write(index(request.key))
6 malloc delta(pointer)
7 write delta(index(request.key), pointer)
8 KeySet.insert(request.key)
9 index(request.key).wts = commit ts

10 index(request.key).rts = commit ts
11 unlock(index(request.key))

Since TicToc accesses OLTP data only during the write phases, we can
improve the algorithms by making WHTAP only determine to which period (odd
or even period) the time point (at the beginning of the write phase) belongs.
That is, pointer swapping (see Algorithm Sect. 2 Line 5) only affects the trans-
actions that extend into the write phase after the pointer swapping moment.

Algorithm 1 presents the details of the transactions’ concurrency control and
the delta recording process. The read and validation phase is the same with
TicToc, so the details regarding line 1 and line 2 can be found in [42]. The
primary difference between WHTAP and TicToc exists in the write phase. Once
deep into the write phase, the transaction first decides which period it belongs to
(line 3) and then determines whether the delta snapshot should be recorded in
delta1 or delta2. The thread commits the writeset data to OLTP data (line 5) and
the corresponding periodic delta snapshot (lines 6 and 7). Memory needs to be
allocated dynamically (line 6) before each delta recording operation. Considering
that malloc is very time-consuming, we set delta1 and delta2 to be static memory
spaces. Since the storage engine shares the index structure, our approach requires
an additional KeySet to record the modified keys (line 8) during the current
period. If we maintain the index structure separately for the delta structure,
then the KeySet here is unnecessary.
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4 OLAP Components

4.1 Compact Snapshot and State Controller

Section 3.3 describes an approach for freezing delta snapshots interchangeably.
With the help of the dual snapshot scheme, it is possible to always maintain
the data freshness of the OLAP component by frequently compacting the frozen
data in the snapshot into the OLAP store. However, the approach that must
be used to compact the delta snapshot into the existing OLAP data without
blocking the execution of the OLAP query and while maintaining the model’s
high performance is a challenge.

We propose to solve the problem and make OLAP wait-free by distinguish-
ing and scheduling five states/phases, i.e., NORMAL, FROZEN, WAITING,
COMPACTION, and GC phase, between consecutive pointer swapping events.

NORMAL Phase. In the NORMAL phase, every update transaction that
reaches the write phase should write to both the OLTP store and the delta
snapshot (lines 5 and 7 in the Algorithm1). Long-running OLAP queries must
directly consume data in the OLAP store in a consistent manner. Therefore,
the time duration of this phase becomes a key factor with regard to the data
freshness of OLAP.

FROZEN Phase. The FROZEN phase occurs after the NORMAL phase. The
delta snapshot must be frozen in this phase. Accordingly, The first step is to
swap the p update and p delta pointers, in other words, to exchange the dual
snapshot roles. As an exception, the transactions with write phases that begin
in the NORMAL phase but have not yet been committed at this point (called
dirty transaction) should ignore the role change operations. The completion of
all the dirty transactions denote the end time point of the FROZEN phase. At
the end boundary of the FROZEN phase, the delta snapshot is frozen, meaning
that no OLTP transaction should write data to this dataset. We can see that
at the beginning of the FROZEN phase, all of the new OLTP transaction write
data should be allowed to write to another delta snapshot.

A global counter is needed to identify the end times of all of the dirty transac-
tions. The use of a global counter will affect performance, this element behaves
as a bottleneck in a multi-core system [39]. Because the OLTP transaction is
usually short, we assume that the OLTP transaction is less than 1µs, we sim-
ply wait for 1µs because the transaction time under the memory database will
be very short. It should be noted that this time can be directly adjusted. The
specific code corresponds to line 6 in the Algorithm 2.

WAITING Phase. The Waiting phase begins at the completion of the
FROZEN phase and includes all transactions started when the NORMAL phase
commenced. At the beginning of the WAITING phase, the delta frozen snapshot
is generated. The snapshot cannot be compacted into the OLAP data because
several active OLAP queries are still running; hence, we must wait for all active
OLAP queries to finish (i.e., static counter = 0). Because those transactions
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are queries from OLAP data, the data should not be able to write. Once those
queries have finished, we reach the end point of the WAITING phase.

We innovatively introduce a Log Structure Merge tree [12] approach for query
execution. Here, the frozen delta snapshot can be regarded as a MemTable like
that in the LSM tree, while OLAP data storage can be regarded as an SSTable.
Once the delta snapshot is generated (i.e., has been frozen), the system compacts
the snapshot into the OLAP data. Any query transaction must first search the
delta and then access the OLAP data if the result is not found in the delta.
The queries that begin in the WAITING phase should query the delta first. For
the wait-free consideration, since the “MemTable” has been generated, we can
query more fresh data from the delta and then can merge the data into the
OLAP (SSTable).

COMPACTION Phase. The WAITING phase ends when all queries begun
in the GC and NORMAL and FROZEN phases have been committed. Next,
the system enters the COMPACTION phase. Once this phase begins, the delta
data are traversed sequentially according to the keyset, then compacted into
the OLAP data set. If the OLAP storage engine is column-major designed, this
approach will be more complicated.

For querying transactions, we still require an LSM-like query approach. First,
we query the frozen delta, and if the result is found, we return it directly; oth-
erwise, we continue the search in the OLAP storage. We can even add a bloom
filter to the frozen delta.

Note that in this process, because our OLAP query looks up the delta first,
if the query finds the result and hence does not need to look up the OLAP data,
then the compaction work can be conducted in a lock-free manner and will not
cause any blocks.

GC Phase. GC is the last phase of the cycle and immediately follows the
COMPACTION phase. Hence, any query beginning in the GC phase can read
the latest data directly from the OLAP. As the frozen delta snapshot has been
successfully compacted, the snapshot can be released just like the process of
“Garbage Collection”. The process remains in the GC phase until the completion
of all queries issued during the Waiting and Compaction phases. When the GC
phase finished, the system has now entered the next cycle of the NORMAL
phase.

Algorithm Code. As shown in the Algorithm 2, the system alternates between
five phases. From the normal to the frozen phase (line 3), we can control the
duration of this phase. If the time duration is too long, the data of the OLAP
will be out of date, because the data freshness will not be good enough. Once
the system enters the FROZEN phase, we must exchange the roles of the dual-
snapshot and wait for the dirty transaction to commit. Note that in line 6 of
the code, for performance reasons, we can directly wait for a period of time
(such as 1µs) to replace the function to ensure that the dirty transactions are
all committed. For the duration of the waiting phase, we need to use the counter
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Algorithm 2. State Controller and Compaction Work
1 while true do
2 State = NORMAL
3 Waiting for the delta snapshot frozen signal
4 State = FROZEN
5 Swap(p update, p delta)
6 Wait Until Dirty Transaction Finished
7 State = WAITING
8 wait until static counter = 0
9 State = COMPACTION

10 Compact(p delta, AP)
11 State = COMPLETE
12 Gargage Colection(p delta)
13 wait until delta counter = 0

to determine whether the transactions (which were queried directly from the
OLAP) are all committed. The compact function (line 10) must be used to
merge the data by engaging KeySet. In the GC phase, the main goal is to free
useless data and wait until the LSM-like queries have finished.

4.2 LSM-Like Query Layer

In Sect. 3.2, we discuss approaches to handling the OLTP workload; in this part,
we describe the OLAP workload running process.

Once a query request is accepted, the system detects the state phase in
which it was begun. For performance reasons, only in the WAITING and
COMPACTION phases do we execute the LSM-like query strategies; in con-
trast, in the NORMAL, FROZEN and GC phases, we query the OLAP data
directly. As shown in the Algorithm3, line 5 Query Static() and line 11
Query DeltaFirst() represent two different query strategies. The 2 counters,
static counter and delta counter, are essential for identifying the state in which
the system is functioning.

Algorithm 3. Query Execution Thread
Input: Query Q

1 start state = State
2 if start state = GC‖NORMAL‖FROZEN then
3 fetch and add(static counter)
4 for each request in Q do
5 Query Static(index(request.key))

6 fetch and sub(static counter)

7 else
8 if start state = WAITING‖COMPACTION then
9 fetch and add(delta counter)

10 for each request in Q do
11 Query DeltaFirst(index(request.key)) //LSM-alike query

12 fetch and sub(delta counter)
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The performance associated with looking up a delta first is worse (slower)
than the performance achieved by querying OLAP data directly. Fortunately,
Query DeltaFirst() is a relatively rare event, because the frozen and compact
phases are short. The next section elaborates on this idea.

4.3 Running Example

To enhance clarity in our explanation of the system, the Fig. 3 is presented,
detailing a running example of our WHTAP algorithm. This figure fully illus-
trates the five phases in a cycle and shows several types of transactions running.

As shown in the Fig. 3, green represents each transaction that successfully
enters the write phase within the current cycle. Write transactions for the pre-
vious period are shown in yellow. After the system triggers the frozen signal (at
time t1), the new transaction entering the write phase (green, T2, T3, T4, T5,
T6, T7) records the delta into another data set. Transactions that have not been
completed (T2) continue to execute; once they are finished, the system exits the
frozen phase.

Fig. 3. Running example of WHTAP. (Color figure online)

At time t2, the system has obtained a stable delta snapshot of the previous
cycle. Next, we can compact the delta snapshot from the previous cycle into
the OLTP storage. Unfortunately, several active OLAP queries (Q1, Q2) remain
uncommitted. As a result, the delta snapshot may overwrite this part of the
data during direct compact, causing a query error. Therefore, we must invoke a
waiting phase to wait for the blue query transaction in the figure to complete.
For queries that are started during the waiting phase (Q3), we need to query
the delta snapshot first to execute the OLAP queries, since this approach will
ensure that the write phase of the COMPACT phase can merge in a lock-free
manner. Once transactions Q1 and Q2 are committed, the system can start the
compact operation. The yellow rectangle in the figure represents the COMPACT
operation, which basically merges the incremental transaction data for the pre-
vious cycle into the OLAP store. Similarly, any query started in this phase is
still queried in a similar way as those in LSM. Once this phase is over and the
incremental data from the previous cycle have become useless, we can naturally
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delete these data (blue rectangle). At the same time, we must also wait for the
end of the transaction for the LSM-style query (Q4). Once that point has been
reached, we can proceed to the next normal phase of the cycle and once more
wait for the frozen signal to trigger.

5 Experimental Study

This section implements and evaluates the WHATP prototype. The prototype is
based on DBx1000 OLTP DBMS [41]. To integrate our WHTAP algorithm into
the DBx1000 system, we need to modify the storage engine and the concurrent
processing of the OLTP transaction and then must separate the OLAP queries
from the OLTP component, and add the state controller and LSM-like OLAP
query methods. The prototype allows us to compare five approaches all within
the same system: TicToc [42], SILO [39], HEKATON [5], Basic MVCC and
WHTAP. All of the experiments are run on a high-end server, which is equipped
with two E7-4820 CPU sockets each with 40 physical sockets, 512 GB of memory,
and 1 TB of hard disk drive space. CentOS 7.3 X86 64 with Linux kernel 3.10
and g++ 4.8 is installed.

5.1 Benchmark Setup

The experiments focus on OLTP and OLAP mixed transactions. The perfor-
mance of the HTAP workloads was evaluated with the YCSB [4] benchmark.
Because YCSB is used to evaluate the OLTP workload, we must modify the ori-
gin benchmark to support the evaluation of both transaction and long-running
read-only queries. First, we prepared a single table database for the experiments.
The schema of the database table was configured to own 11 columns. The first
column is the primary key, and the following 10 columns store randomly gener-
ated string values. Initially, 10M records were bulk-loaded into the table. The
accesses (reads or writes) of records follow a Zipfian distribution that can be
controlled by parameter θ (reflecting the level of contention).

For OLTP transactions, 16 accesses per transaction (50% reads and 50%
writes) with a hotspot of 10% tuples accessed by 75% of all queries (θ = 0.9).
For OLAP queries, 48 queries (100% reads) per transaction and a uniform access
distribution (θ = 0).

The first group evaluation fixes the number of threads in OLAP and tests
the performance impact of the number of OLTP thread. In the second group
evaluation, the number of threads in the OLTP is fixed, and the performance
impact of the number of OLAP threads is tested.

5.2 Fixing OLAP Threads

We fix the number of OLAP threads to 8 and then fix the length of each OLAP
query to 48. Figure 4(a) shows the performance results of OLTP when the num-
ber of OLAP threads is fixed. The horizontal axis corresponds to the number
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(a) OLTP performance (OLAP thread = 8)
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(b) OLTP performance (OLTP thread = 8)
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(c) OLAP performance (OLAP thread = 8)
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(d) OLAP performance (OLTP thread = 8)
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(f) Abort rate (OLTP thread = 8)

Fig. 4. Performance of HTAP

of threads in OLTP from 1 to 32, which shows that the OLAP workload has
little impact on OLTP performance. Figure 4(c) shows the performance results
of OLAP in which the number of OLAP threads is 8, and the number of OLTP
threads is from 1 to 32. The performance of OLAP is 2–3 times that of other
algorithms. Increasing the number of OLTP threads in the WHTAP algorithm
has little impact on OLAP performance, which effectively does not decrease with
the increase of OLTP threads. In the traditional concurrency control algorithm,
as the number of OLAP threads is increased, the performance decreases of the
algorithm decreases significantly. In particular, even MVCC and HEKATON are
suitable for reading operations, but the performance of OLAP remains poor due
to version chain scanning. Figure 4(e) gives the effect of the number of OLAP
threads on the abort rate. As it can be seen, our algorithm has the lowest abort
rate (substantially lower than that of TicToc), because our algorithm’s OLAP
thread is executed on the snapshot and does not require abort at all.
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5.3 Fixing OLTP Threads

Figure 4(b) shows the performance results of OLTP when the number of OLTP
threads is fixed. The horizontal axis corresponds to the number of threads of
OLAP and ranges from 1 to 32. When the OLAP’s workload is increased, the
OLTP performance decreases accordingly. The performance of the OCC-based
single-version concurrent control algorithm should be comparatively worse. As
the number of OLAP threads increases, the performance of OLTP decreases.
MVCC decreases significantly, while the OCC scheme decreases by a small
amount. The OLTP workload performance of WHTAP is slightly worse than
that of TicToc. Figure 4(d) shows the performance results of OLAP when the
number of OLTP threads is fixed. We can see that the performance of WHTAP
has increased significantly, mainly because the algorithm benefits from technolo-
gies that are processed separately from OLTP and OLAP. When the number
of OLAP threads is 32, WHTAP has 3.2 times the performance of TicToc and
5.5 times that of HEKATON. Figure 4(f) shows the number of system rollback
transactions when the number of OLTP threads is fixed. As the OLAP workload
increases, the number of WHTAP rollback transactions is trending downward,
because OLAP transactions are certain to execute and do not abort. The read-
only queries of other algorithm can also result in abort events.

Combining the above results, we obtain the following findings:

– When both OLTP and OLAP workloads exist at the same time in a given
scenario, WHTAP outperforms other algorithms. The performance of the
OLTP part is close to that of TicToc (Fig. 4(a) and (b)), although WHTAP
has an absolute advantage over the performance of the OLAP part (Fig. 4(c)
and (d)).

– In the WHTAP algorithm, OLTP and OLAP workloads have the least impact
on each other’s performance (Fig. 4(c) and (b)).

6 Related Work

HTAP. Hybrid transaction/analytical processing (HTAP) was first defined by
Gartner Inc. [8,9] and referred to a novel architecture that could effectively
combine both types of processing to fulfill the emerging requests in informa-
tive and real-time decision making activities. A recent works [1,10,31] survey
on this topic was conducted. HTAP emphasizes two main points: data freshness
and unified data representation. Since the 2000s, many systems have targeted
the HTAP market. Typical systems include SAP HANA [7,38], Hyper [30] and
HYRIES [11], Peleton [32]. The other systems (including MemSQL [28], Heka-
ton [5] and Apollo [16]) can support OLTP and OLAP workload separately.

The effective design of an HTAP system remains an open problem that can
be broadly divided into three categories. (1) One straightforward method is to
use a single system to process the mixed workload. Hyper [30] proposed a novel
MVCC implementation that can update in place and store prior versions before
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image deltas, enabling both an efficient scan execution and the fine-grained seri-
alizability validation needed for the rapid processing of point access transactions.
From the NoSQL side, Pilman et al. [33] demonstrated how scans can be effi-
ciently implemented on a key value store (KV store) to enable more complex
analytics with large and distributed KV stores. (2) The second method is to
create a copy of the main database, which is then used as an OLAP dataset.
Specifically, Hyper [13] and Swingdb [29] use such an approach. (3) The 3rd
method is to generate a delta snapshot, which is then periodically merged into
the second replica. Specifically, BatchDB and SAP HANA do this.

In-Memory Concurrency Control. The traditional OCC [15] algorithm is
found to be effective in the control of concurrency in OLTP with the advent of
new high-performance DBMSs. For example, OCC variants are commonly used
in in-memory database scenarios and include examples such as TicToc [42] and
SILO [39].

MVCC and its variants constitute another type of concurrency control algo-
rithm that has been widely adopted in in-memory databases. Such algorithms
can be found in Hekaton [5,17], HyPer [30], Bohm [6], Deuteronomy [21,22] and
ERMIA [14] and Cicada [25]. For a record, MVCC creates multiple version copies
to reduce conflict between transactions and allow access to earlier versions of a
record.

Frequent Snapshot. To obtain a consistent snapshot, Salles et al. [36] pro-
vides a comparison of several state-of-the-art snapshot algorithms. In this work,
the authors concluded that Naive Snapshot is good for high-throughput work-
loads with small datasets, whereas Copy On Update is more widely applicable.
Swingdb [29] and Hyper [13] work by modifying the Linux kernel to support
a fine-grained fork-like system that is then called to generate the snapshot.
Zigzag [3] was developed for use in MMO game scenarios, although it is suitable
for use only with small datasets and is not a more generally applicable algorithm.
Pingpong, Hourglass and Piggyback [24] all use a kind of pointer swapping tech-
nique to generate snapshots. Moreover, both Pingpong and Hourglass can be
used to generate a delta snapshot, and therefore are useful with HTAP systems.
It is important to note that all of these snapshot algorithms depend on a phys-
ical consistent time-point. In contrast, for more widely applicable cases, such
as OLTP, to establish a physical consistent state in a running system, system
blocks must be introduced. In the most recent work on this subject, CALC [35],
the authors invent a virtual snapshot idea to solve the problem; in this case, it
would be possible to integrate both Pingpong and Hourglass with this idea.

7 Conclusion

In this paper, we proposed a wait-free HTAP control protocol and implemented
a prototype (WHTAP). We used WHTAP to exploit a dual-snapshot structure
to isolate OLTP and OLAP workloads. The OLTP transaction was able to run in
a serializable context, whereas OLAP was able to yield isolated snapshots. Our
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prototype enabled both OLTP and OLAP to simultaneously function in a high
throughput manner, furthermore, both OLTP and OLAP could be executed in
a wait-free manner. We evaluated the performance of our prototype using the
modified YCSB benchmark to validate our performance with regard to the HTAP
workload. Compared with the TicToc concurrency control protocol, WHTAP
can achieve an OLTP performance that is similar to that of TicToc, and in
contrast, the performance of OLAP with our algorithm is approximately four
times that of TicToc. We strongly recommend that developers in scenarios in
which significant data quantities are processed use the WHTAP architecture
for scenarios that require real-time analysis and processing, such as “Amazon’s
Prime Day”.
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Abstract. Automatic survey generation for a specific research area can
quickly give researchers an overview, and help them recognize the tech-
nical developing trend of the specific area. As far as we know, the most
relevant study with automatic survey generation is the task of auto-
matic related work generation. Almost all existing methods of automatic
related work generation extract the important sentences from multiple
relevant papers to assemble a related work. However, the extractive meth-
ods are far from satisfactory because of poor coherence and readability. In
this paper, we propose a novel abstractive method named Hierarchical
Seq2seq model based on Dual Supervision (HSDS) to solve problems
above. Given multiple scientific papers in the same research area as
input, the model aims to generate a corresponding survey. Furthermore,
we build a large dataset to train and evaluate the HSDS model. Exten-
sive experiments demonstrate that our proposed model performs better
than the state-of-the-art baselines.

Keywords: Abstractive · Survey · Dual Supervision

1 Introduction

It is very important to make a survey for a specific research area, because the
researchers can quickly grasp the corresponding area and recognize the techni-
cal developing trend through reading the survey. However, current surveys are
almost made by reading lots of papers and summarizing them manually, which
is time-consuming and costly. Taking the Gartner Inc.1 for example, it employs
about 6,600 professionals, including more than 1,500 research analysts and con-
sultants, to spend a lot of time reading and summarizing the latest papers into
surveys. Therefore, it is highly desirable to automatically make surveys.

1 https://www.gartner.com/en.
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The related work can be regarded as a survey for a specific area, thus the
related work is a good annotated survey for its corresponding cited papers. To
study how to automatically obtain a related work, several methods [5,10,11] have
been proposed. They extract important sentences from multiple original papers
to assemble related work. Unfortunately, these works belong to extractive meth-
ods, which simply select and reassemble sentences from the original papers. They
hence face the drawbacks of information redundancy and incoherence between
sentences. For example, we compare the results of survey generated by state-of-
the-art extractive method called SummaRuNNer [16] and man-made survey in
Fig. 1. In the result of extractive survey, the first and the second sentence have
the same sentence pattern “We propose (introduce) . . . ” without considering the
real interaction between these two works. However, the concatenation between
the descriptions of different works in the man-made survey is much smoother
because of “This trend”. What’s more, extractive survey selects one sentence
from one of the original papers each time, thus, each sentence in extractive sur-
vey has only a citation. While man-made survey can simultaneously summarize
one or more works within a sentence. The above two shortcomings make the
extractive survey far from satisfactory.

Fig. 1. Comparison of survey generated by the state-of-the-art extractive method
(SummaRuNNer) and man-made survey with the same multiple original papers.

In this paper, we regard automatic survey generation as a task of multiple
papers’ summarization and propose an abstractive method for the task, named
Hierarchical Seq2seq model based on Dual Supervision (HSDS). Compared with
traditional abstractive models [14,19,22], the HSDS model use the hierarchical
structure to learn the more precise vector representations for original papers and
target survey. Moreover, we introduce the dual supervised information including
citation supervision and text supervision, and design a multi-task learning frame-
work to train the HSDS model. Concretely, we first use a hierarchical Recurrent
Neural Network (RNN) to encode input words and papers respectively. Then,
the attention based RNN is utilized as a sentence decoder and a word decoder
respectively. Particularly, in the sentence decoder, we use citations as interme-
diate supervised information and introduce the residual mechanism [9] to decide
which papers should be cited by current decoding sentence. And in word decoder,
the texts are sequentially generated according to the content of the cited papers.
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Extensive experimental results demonstrate that our HSDS model outperforms
state-of-the-art baselines.

2 Related Work

Automatic survey generation can be regarded as a summarization of multiple
relevant papers in a specific area. In this section, we introduce relevant studies
on Multi-document Summarization and Automatic Survey Generation.

2.1 Multi-document Summarization

Multi-document summarization aims to summarize multiple original relevant
documents to a summary. As a long text generation task, the existing multi-
document summarization methods are almost extractive. The extractive meth-
ods can be divided into two folds, i.e., unsupervised and supervised methods.
Some prior unsupervised works [2,8] used lexical and grammatical structure
of documents to synthesize summaries. After that, combinatorial optimization
and approximation methods have been widely used for multi-document sum-
marization, e.g., ILP [7], TextRank [15], and sparse coding [13]. In contrast to
unsupervised approaches, supervised methods treat document summarization as
a sequence classification task. [21] used Conditional Random Fields to binary-
classify sentences sequentially. Other representative methods such as R2N2 [3]
and GCN [23] used deep neural networks to extract important sentences.

2.2 Automatic Survey Generation

The related work can be regard as a survey for a specific area. As far as we know,
some past studies focused on generating a related work via extracting important
sentences from multiple original papers. The earliest method ReWoS took in a
set of keywords arranged in a hierarchical fashion that describes a target paper’s
topics to extract related works [10]. The later work [11] improves that by con-
sidering the content of the target paper and creating topic-biased related works
using PLSA model. Recently, [5] used reference papers cited in related works as
multiple original papers and proposed a graph based comparative summariza-
tion approach to generate related works. However, all those studies are based on
extractive methods and the generated related works have a poor coherence and
readability. Therefore, we explore an abstractive method for automatic survey
generation in this paper.

3 Our Proposed Model

The input of HSDS is multiple relevant papers d = {d1, d2, · · · , dN} in a
specific area, where N is the number of relevant papers in a research area,
di = {xi,1, xi,2, · · · , xi,Ni

}, where Ni is the number of words in di. The target is
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Fig. 2. The overall framework of HSDS model.

a corresponding survey s = {s1, s2, · · · , sL}, where L is the number of sentences
in a survey, si = {yi,1, yi,2, · · · , yi,Li

}, where Li is the number of words in si.
An overall framework of our HSDS model is shown in Fig. 2. For auto-

matic survey generation, the HSDS model exceeds traditional abstractive models
because of following three aspects: (1) The hierarchical structure in HSDS can
capture hierarchical information among words, sentences and documents and
generate more precise vector representations. (2) The residual connection in
sentence decoder helps to accelerate convergence of citation generation. (3) The
multi-task learning framework based on the dual supervised information includ-
ing citation supervision and text supervision can promote mutually to generate
a better survey. The three key modules will be introduced in Sects. 3.1, 3.2, 3.3
and 3.4 respectively.

3.1 Hierarchical Encoder

The HSDS model utilizes the hierarchical encoder to map input words and papers
into the more precise vector representations, while traditional abstractive mod-
els regard multi-document summarization as a single document summarization
and lose the hierarchical information between them. The hierarchical encoder
contains word encoder and document encoder.

Word Encoder. Word encoder is based on the bidirectional Gated Recurrent
Unit (BiGRU). The BiGRU contains a forward GRU and a backward GRU.
For each original paper words sequence {xi,1,xi,2, · · · ,xi,Ni

}, the BiGRU get
forward hidden states sequence (

−→
h i,1,

−→
h i,2, · · · ,

−→
h i,Ni

) and backward hidden
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states sequence (
←−
h i,1,

←−
h i,2, · · · ,

←−
h i,Ni

). Then each forward and backward GRU
state are combined to a single state using a simple feed-forward network:

h(x)
i,j = relu(We[

−→
h i,j ;

←−
h i,j ] + be) (1)

where We is the weight matrix and be is the bias vector, [; ] is the concatenation
operation and h(x)

i,j is the hidden state of input word xi,j . The
−→
h i,Ni

and
←−
h i,1

are used to combine a embedding representation zi of the document di, denoted
as:

zi = relu(Wx[
−→
h i,Ni

;
←−
h i,1] + bx) (2)

where Wx is the weight matrix and bx is the bias vector.

Document Encoder. For original papers sequence representation (z1, z2,
· · · , zN ) which is obtained by word encoder, we use BiGRU to get the forward
GRU state (

−→
h 1,

−→
h 2, · · · ,

−→
hN ) and backward GRU state (

←−
h 1,

←−
h 2, · · · ,

←−
hN ).

Then they are combined to get the hidden state sequence (h(d)
1 ,h(d)

2 , · · · ,h(d)
N ):

h(d)
i = relu(Wd[

−→
h i;

←−
h i] + bd) (3)

where Wd is the weight matrix and bd is the bias vector. Furthermore, the
−→
hN

and
←−
h 1 are used to get the embedding representation I of multiple papers:

I = relu(Wm[
−→
hN ;

←−
h 1] + bm) (4)

where Wm is the weight matrix and bm is the bias vector.

3.2 Hierarchical Decoder

Similar to hierarchical encoder, the decoder is also divided into two steps: sen-
tence residual decoder and word decoder.

Sentence Residual Decoder. Sentence residual decoder is used to generate
representation of each sentence in a survey. Compared with traditional decoder,
the sentence residual decoder has innovations in two aspects: (I) The attention
mechanism in sentence residual decoder is taken as a selective gate to decide
which original papers should be cited by current sentence, thus it can be trained
according to the citations in a target survey. (II) Considering that sentences with
different citations may be not adjacent, we introduce the residual connection to
depict the phenomenon.

Following above (I), at each sentence decoding time step t, the unidirectional
GRU reads the previous sentence hidden state h(s)

t−1, previous sentence vector
vt−1 (while training, this is the mean vector of all words of the previous sentence
in target survey; at test time it is the previous sentence representation emitted
by the sentence decoder) and previous context vector ct−1 to compute current
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hidden state h(s)
t . We initialize the h(s)

0 according to multiple original papers
representation I obtained by document encoder:

h(s)
t = GRU(vt−1,h

(s)
t−1, ct−1) (5)

h(s)
0 = relu(WsI + bs) (6)

where Ws is the weight matrix and bs is the bias vector.
For current time step t, the context vector ct is calculated through a soft

selective mechanism which is achieved by a special attention function:

at
i = sigmoid(vT

a1tanh(Wa1h
(s)
t + Ua1h

(d)
i + ba1)) (7)

ct =
N∑

i=1

at
ih

(d)
i (8)

where Wa1 and Ua1 are the weight matrixes, va1 is the weight vector and ba1

is the bias vector. During training, we learn the at
i supervised by the citations

in target survey. During test, we generate the citations according the trained at
i

(This will be discussed in “Multi-task Test” section).
Following above (II), we add skip residual connections between two GRU

hidden states with a wide range of distance l, such that ∀t = {1+l, 1+2l, · · · , 1+
[L−1

l ]l}:
h(s)
t = GRU(vt−1,h

(s)
t−1, ct−1) + h(s)

t−l (9)

Word Decoder. At each word decoding time step k for sentence t, the uni-
directional GRU reads the previous word hidden state h(w)

t,k−1, previous word
yt,k−1 (while training, this is the previous word of the target survey; at test
time it is the previous word emitted by the word decoder) and previous context
vector ct,k−1 to calculate current word hidden state h(w)

t,k . The h(w)
t,0 is initialized

according to sentence representation h(s)
t obtained by sentence decoder:

h(w)
t,k = GRU(yt,k−1,h

(w)
t,k−1, ct,k−1) (10)

h(w)
t,0 = relu(Woh

(s)
t + bo) (11)

where Wo is weight matrix and bo is bias vector.
For current step k, the context vector ct,k is calculated by softmax attention

score:
et,ki,j = vT

a2tanh(Wa2h
(w)
t,k + Ua2h

(x)
i,j + ba2) (12)

pt,ki,j = at
ie

t,k
i,j (13)

at,k
i,j =

pt,ki,j∑N
i=1

∑Ni

j=1 pt,ki,j

(14)
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ct,k =
N∑

i=1

Ni∑

j=1

at,k
i,jh

(x)
i,j (15)

where Wa2 and Ua2 are the weight matrixes, va2 is the weight vector and ba2

is the bias vector.
Then the current word hidden state h(w)

t,k and the context vector ct,k are used
to estimate the probability distribution of word yt,k:

P (yt,k|yt,1:k−1) = softmax(V[h(w)
t,k ; ct,k] + b) (16)

where V is the vocabulary weight matrix, b is the vocabulary bias vector and
P (yt,k|yt,1:k−1) is the probability distribution over all words in the vocabulary.

Copy Source. The unknown words (UNK ) is a common problem in text gener-
ation task. A well-known work to address the UNK is Pointer-Generator Network
[20]. Following that, we adopt a pointer-generator network to reduce the genera-
tion of unknown words. The pointer-generator network add a hybrid pgen ∈ [0, 1]
which controls ratio between copying words from original papers and generating
words from a vocabulary, pgen is defined as:

pgen = sigmoid(wT
p ct,k + uT

p h
(w)
t,k + vT

p yt,k−1 + bp) (17)

where wp, wp and vp are the weight vectors, and bp is the learnable scalar,
yt,k−1 is the word decoder input. Thus the probability of generating word w is
defined as:

Pcopy(yt,k = w|yt,1:k−1) = pgenP (yt,k = w|yt,1:k−1)

+ (1 − pgen)
∑

(i,j):xi,j=w

at,k
i,j

(18)

Coverage Mechanism. For a long text generation task, the neural network
tends to generate phrases and words repeatedly. Pointer-Generator Network [20]
used a coverage model where attention scores were tracked to avoid repeatedly
attending to the same steps. We follow this work and maintain a coverage vector
covt,k which is the sum of weight vectors for original words at previous time
steps:

covt,k
i,j =

k−1∑

q=0

at,q
i,j (19)

such that we change Eq. (12) to follows:

et,ki,j = vT
a2tanh(Wa2h

(w)
t,k + Ua2h

(x)
i,j + ga2cov

t,k
i,j + ba2) (20)

where ga2 is the weight vector of same length as va2.
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3.3 Multi-task Learning

Multi-task learning [4] aims to solve the multiple learning tasks at the same
time. Different from training the models separately, it exploits commonalities
and differences across multiple learning tasks to improve learning efficiency and
prediction accuracy for the task-specific models.

Automatic survey generation can be viewed as a multi-task learning in which
generating citations and texts (i.e., words) are two inter-related tasks. The cita-
tions can guide to generate the more accurate texts and vice versa. So we can
optimize the two learning tasks at the same time.

We first define the objective function of generating citations in each sentence:

Lt
citation = −

∑

i

ãt
ilog(at

i) + (1 − ãt
i)log(1 − at

i) (21)

where ãt is the binary vector representing citations of sentence st in a ground
truth survey. The dimension size of ãt is N which is the number of original papers.
We set the bits corresponding to citation indexes to “1” and the other bits to
“0”. For example, under the assumption that the number of original papers is
“5” and the ground truth citations in st are “[1, 3]”, we set ãt = [1, 0, 1, 0, 0].

Then we define the objective function of generating texts of each sentence,
particularly, we add coverage loss to penalize the repetition:

Lt,k
words = −logPcopy(yt,k) + λ

∑

i,j

min(at,k
i,j , covt,ki,j ) (22)

Finally, we add the Lt
citation into the Lt,k

words using weight β:

L =
1∑
t Lt

L∑

t=1

Lt∑

k=1

Lt,k
words + β

1
L

L∑

t=1

Lt
citation (23)

where t is the t-th generated sentence in the survey and k is the k-th generated
word in the current sentence.

3.4 Multi-task Test

During test, multiple papers are fed into trained HSDS model and the model
generate citations and texts of a survey.

For generating citations of a survey, the at
i (as described in Eq. (7)) in sen-

tence residual decoder is used to calculate the cited probability of original paper,
furthermore, the citation Ĩdxt of sentence s̃t in a generated survey are calculated
according to the equation:

Ĩdxt = {i | ai,t > 0.5} (24)

For generating texts of a survey, Pcopy(yt,k = w|yt,1:k−1) (as described in
Eq. (18)) is calculated to generate word w with the max probability.
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4 Experiments

4.1 Dataset Construction

To train the proposed model, we need first to build a large dataset about surveys
and their corresponding relevant papers. Fortunately, related work section in a
paper is a survey for a specific research area, and cited papers in the related
work section is relevant papers in the survey. Therefore, it is reasonable to build
a dataset including related works and their respective cited papers.

Following the procedure in Fig. 3., we first crawl related work sections of
numerous papers from IEEE Xplore Digital Library2. Each related work section
contains multiple cited papers. Considering that the main idea of a cited paper
is described in its abstract, title and authors, we use a combination of above
three parts to represent full paper. The three parts can be obtained by searching
the names of cited papers in Baidu Scholar3. For simplicity and not to cause
confusion, we call the combination of three parts in a cited paper as a pseudo
reference paper, thus the corresponding related work section is a survey of
multiple pseudo reference papers. Finally, each survey and its corresponding
multiple pseudo reference papers are regarded as a dataset of parallel pair. The
dataset totally have 390,000 parallel pairs.

Fig. 3. The flowchart of dataset construction in HSDS model.

For further experiments, all words in dataset are lowercased. And the PTB
tokenizer4 is used as our word segmentation tool. Following the setting of auto-
matic document summarization in [20], we save the top 50k most frequent words
as vocabulary, and the other rare words are replaced with <unk>. Furthermore,
for each survey, we use NLTK5 to split it into sentences. Unfortunately, half of
the sentences have no citations. For those sentences without citations, we take

2 https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true.
3 http://xueshu.baidu.com/.
4 https://nlp.stanford.edu/software/tokenizer.html.
5 https://www.nltk.org/.

https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true
http://xueshu.baidu.com/
https://nlp.stanford.edu/software/tokenizer.html
https://www.nltk.org/
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the citations of the most adjacent sentence as their citations, which is because
the adjacent sentences may summarize the same papers. Particularly, if there are
two most adjacent sentence located in front and back position respectively, we
take the citations of front sentence, that is because when multiple sentences refer
to the same citations, the citations usually will be marked in the front sentence.
The dataset is divided into 312,000 training pairs, 39,000 validation pairs and
39,000 test pairs with the ratio of 8:1:1. More detailed statistics of our dataset
are shown in Table 1.

Table 1. Statistics of our dataset. (avg.paper.num) indicates the average number of
pseudo reference papers in a pair, (avg.paper.word.num) indicates the average number
of words in a pseudo reference paper, (avg.sen.num) indicates the average number of
sentences in a survey, (avg.sen.word.num) indicates the average number of words in a
sentence of surveys.

Avg.paper.num Avg.paper.word.num Avg.sen.num Avg.sen.word.num

Train 9.89 187.36 25.75 21.45

Valid 9.87 190.78 25.71 21.36

Test 10.09 187.97 25.63 21.72

4.2 Implementation Details

We use Pytorch6 for implementation. For all experiments, the GRU forward
and backward hidden state size is 256 and the word embedding size is 128. In
particular, the word embedding is pre-trained on our training set using word2vec7

and that will be further trained in the model. The source and target have the
same vocabulary including the top 50k most frequent words. According to the
Table 1, we limit the number of pseudo reference papers in a pair to 10, length
of each pseudo reference paper to 200, the number of sentences in a survey to
25, and length of each sentence to 20.

We use the Adam optimizer with a learning rate 0.001 and gradient clipping
with range [−5, 5]. To speed up the training, we use layer normalization [1] and
set mini-batch size 8. After the grid search of parameters, we set the coverage
loss weight as λ = 1 (as described in Eq. (22)), multi-task learning loss weight
as β = 5 (as described in Eq. (23)) to get the best performance. The residual
connection distance l (as described in Eq. (9)) is empirically set as 2 (that will
be further discussed in discussion section). Following the PntrGen [20], we first
train the model without coverage and add it at the last two epochs. We use the
loss on the validation set to implement early stopping. The model is trained for
about 50 epochs in a NVIDIA 1080 Ti GPU with 12 days. During test, a beam
search with beam size of 4 is used to generate survey.

6 https://pytorch.org/.
7 https://code.google.com/archive/p/word2vec/.

https://pytorch.org/
https://code.google.com/archive/p/word2vec/
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4.3 Baseline

We compare our proposed model with several well-known multi-document
extractive methods and the state-of-the-art abstractive methods. For abstractive
baselines, we regard multiple documents as a single document. Furthermore, to
analyze the detailed effectiveness of three innovative components (described in
“Our Proposed Model Section”) in HSDS model, three additional baselines are
introduced. The total compared methods are as follows:

– Lead is an extractive baseline which selects the lead several sentences.
– TextRank [15] proposed a graph-based method to calculate the similarity

between two sentences and rank them using PageRank algorithm [18].
– NeuralSum [6] is a data-driven approach based on neural networks. They

developed a hierarchical document encoder and an attention-extractor to
extract sentences and words.

– SummaRuNNer [16] proposed a recurrent neural network (RNN) based
sequence model for extractive summarization.

– Attn+Seq2Seq [17] proposed a single layer encoder-decoder model based
on recurrent neural network (RNN). We regard it as our abstractive baseline.

– PntrGen+Seq2Seq [20] is a pointer-generator network proposed by [20] for
the purpose of solving UNK and repetition.

– HSDS-citation-residual remove the citation supervision during training
and residual connection in sentence decoder, then the HSDS model is only a
hierarchical framework based on PntrGen+Seq2Seq.

– HSDS-citation only remove the citation supervision during training, thus
our HSDS model is trained only supervised by text information, i.e., a single-
task learning method. Through it, we can observe the effectiveness of citation
supervision for generating better surveys.

– HSDS-residual only remove the residual mechanism in sentence decoder to
observe whether the residual connection help generate the better citations.

4.4 Evaluation Metric

Evaluation for the quality of generated surveys contains following two aspects:
the quality of generated citations and the quality of generated texts.

– Evaluation for Quality of Generated Citation: Idxt is a set of indexes
of the cited papers in a sentence st in ground truth survey, and Ĩdxt is a
set of indexes of the cited papers in a sentence s̃t in corresponding generated
survey. The Precision is defined as ˜Idxt∩Idxt

˜Idxt
, Recall is defined as ˜Idxt∩Idxt

Idxt

and F1 score is defined as 2∗Precision∗Recall
Precision+Recall .

– Evaluation for Quality of Generated Text: We employ ROUGE-1.5.5
[12] which was widely used in text summarization task and report the F-
measures of ROUGE-1 (unigram), ROUGE-2 (bigram) and ROUGE-SU4
(skip-gram plus unigram) to evaluate the overlap between generated text
and target text. The formula of Rouge-N is defined in [12].
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Table 2. Comparison results on our test set. The precision, recall and F1 are respec-
tively the average results of all generated citations, ‘–’ indicates not available. RG
refers to ROUGE and all our ROUGE scores have a 95% confidence interval of at most
±0.25. The top half of the table are extractive methods and bottom half of the table
are abstractive methods. The best results are shown in bold face.

Method Precision Recall F1 RG-1 RG-2 RG-SU4

Lead 0.23 0.15 0.18 36.63 8.47 14.36

TextRank 0.46 0.32 0.38 38.13 9.61 16.04

NeuralSum 0.55 0.35 0.43 39.14 9.17 16.49

SummaRuNNer 0.59 0.36 0.45 39.58 9.51 17.12

Attn+Seq2Seq – – – 33.05 7.19 13.10

PntrGen+Seq2Seq – – – 35.91 8.29 14.24

HSDS-citation-residual 0.50 0.65 0.57 37.23 9.10 14.91

HSDS-citation 0.51 0.68 0.58 37.71 9.17 15.61

HSDS-residual 0.64 0.75 0.69 39.58 9.31 16.82

HSDS 0.67 0.76 0.71 39.76 9.49 17.26

4.5 Experimental Results

The experimental results contain the following two aspects:

– Result of Generated Citation: The results for citation generation contain
precision, recall and F1 score and they are show in left half of Table 2. It is
obvious that extractive methods assign only one citation for each generated
sentence in a survey. Therefore the extractive methods have the high precision
scores but the low recall scores. The traditional abstractive methods including
Attn+Seq2Seq and PntrGen+Seq2Seq cannot assign any citations for gener-
ated sentences because of its single layer structure. Compared with above
methods, HSDS model has two advantages: (1) The hierarchical structure
overcomes the defect that traditional single-layer abstractive model cannot
assign citations for sentences in a survey. It can be seen that HSDS-citation-
residual has available evaluation results, i.e., 0.50 precision, 0.65 recall and
0.57 F1 score; (2) The dual supervised information including citation super-
vision and text supervision in HSDS model promote mutually to achieve the
higher scores (+0.17 Precision, +0.11 Recall, +0.14 F1 score) than HSDS-
citation-residual.

– Result of Generated Text: The results for text generation contain
ROUGE-1, ROUGE-2 and ROUGE-SU4 and they are shown in right half
of Table 2. Our HSDS model outperforms the state-of-the-art abstractive
methods PntrGen+Seq2Seq with higher scores (+3.85 ROUGE-1, +1.20
ROUGE-2, +3.02 ROUGE-SU4), which is a significant improvements. What’s
more, comparing PntrGen+Seq2Seq (35.91 ROUGE-1, 8.29 ROUGE-2, 14.24
ROUGE-SU4) with HSDS-citation-residual (37.23 ROUGE-1, 9.10 ROUGE-
2, 14.91 ROUGE-SU4), we observe that hierarchical structure indeed has a
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good performance for the automatic survey generation. Furthermore, when
adding citation supervision and residual mechanism into the hierarchical
structure, our HSDS model has the higher scores (+2.53 ROUGE-1, +0.39
ROUGE-2 and +2.35 ROUGE-SU4). It demonstrates the citation supervi-
sion helps a lot not only in citation generation but also in text genera-
tion. However, our HSDS model do not always outperform extractive base-
lines. Our ROUGE-2 score (9.49 ROUGE-2) is a little lower than TextRank
(9.61 ROUGE-2). One possible explanation is that the target surveys usually
include some overlapping phrases with the abstract sections of pseudo refer-
ence papers, therefore, it is easier for extractive methods to achieve higher
ROUGE scores.

5 Discussion

5.1 Citation Supervision Discussion

We divide dataset into several groups according to the number of multiple pseudo
reference papers in pairs. For each group, different methods including Pntr-
Gen+Seq2Seq, HSDS-citation and HSDS generate different results. The com-
parisons are shown in Fig. 4. It shows that the ROUGE curves (ROUGE-1,
ROUGE-2 and ROUGE-SU4) of HSDS always appear to be on the top of those
of PntrGen+Seq2Seq and HSDS-citation. With the number of pseudo reference
papers increasing, all curves have the lower ROUGE scores because of the longer
text. However, our HSDS model decline more slowly than the other two models.
It indicates that the citation supervision plays a more and more important role
in generating the better survey when increasing the number of pseudo reference
papers.

(a) ROUGE-1 (b) ROUGE-2 (c) ROUGE-SU4

Fig. 4. Rouge results of auto-evaluation of different number of pseudo reference papers
on our dataset

5.2 Residual Hyper-parameter Discussion

The results of convergence for different residual connection distance l (as
described in Eq. (9)) are shown in Fig. 5. It can be observed that a suitable
value (e.g. l = 2) for l can accelerate the convergence, however, extreme value
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Fig. 5. Loss of training dataset with different l

(e.g. l = 4) for l may destroy the trend of gradient descent during training and
lead to the worse performance. Intuitively, the residual connection distance is
about the average interval between two adjacent and different citations.

5.3 The Area of Input Papers Discussion

Survey means making an overview for a specific area. Thus, there is a hidden
assumption in our work, i.e., the input of our model is the relevant papers for
a specific area, and these papers are required to be in the same area. Note that
the area is not limited in theory. Of course, in practice, the effectiveness of the
model depends not only the ability of the model, but also the quality of the
input relevant paper. Table 3 shows the evaluation results of generated survey
based on input papers in different areas. We found that if all input papers are
in the same area, the generated survey has a better performance.

Table 3. Evaluated results of generated survey based on input papers in different areas.
RG refers to ROUGE. NLP means natural language process, CV means computer
vision, NLP+CV means that half of input papers is NLP and the other half of input
papers is CV.

Area of input papers Precision Recall F1 RG-1 RG-2 RG-SU4

NLP 0.67 0.74 0.70 39.64 9.49 17.18

CV 0.62 0.75 0.68 39.77 9.50 17.22

NLP+CV 0.57 0.54 0.55 37.24 9.09 15.83

5.4 Case Study

The examples of surveys generated by different methods are shown in Fig. 6.
It can be observed that the state-of-the-art extractive model SummaRuNNer
has a poor coherence between sentences and only contains one citation within
a sentence. Therefore, the extractive survey has a lower average F1 score for
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Fig. 6. Illustration of a case study. The green text indicates the concatenation words
between two sentences. The red indexes indicates right citations generated by HSDS
model. (Color figure online)

generated citations in each sentence than HSDS model. The survey generated
by PntrGen+Seq2Seq is too short to describe the main ideas of multiple original
papers roundly and lack the citations, while our HSDS model can generate a
better survey.

6 Conclusion

In this paper, we investigate the features of automatic survey generation and
propose a novel abstractive model named HSDS. Furthermore, we introduce the
dual supervised information including citation supervision and text supervision
in a survey to improve the performances of HSDS. Various experiments have
demonstrated the effectiveness of our proposed method.

Acknowledgment. The work is supported by NSFC (No. 61772076 and 61751201),
NSFB (No. Z181100008918002), BIGKE (No. 20160754021) and CETC (No. w-
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Abstract. Real-world time series classification applications often
involve positive unlabeled (PU) training data, where there are only a
small set PL of positive labeled examples and a large set U of unla-
beled ones. Most existing time series PU classification methods utilize all
readings in the time series, making them sensitive to non-characteristic
readings. Characteristic patterns named shapelets present a promising
solution to this problem, yet discovering shapelets under PU settings is
not easy. In this paper, we take on the challenging task of shapelet dis-
covery with PU data. We propose a novel pattern ensemble technique
utilizing both characteristic and non-characteristic patterns to rank U
examples by their possibilities of being positive. We also present a novel
stopping criterion to estimate the number of positive examples in U .
These enable us to effectively label all U training examples and conduct
supervised shapelet discovery. The shapelets are then used to build a
one-nearest-neighbor classifier for online classification. Extensive exper-
iments demonstrate the effectiveness of our method.

Keywords: Time series · Shapelets · Positive unlabeled classification

1 Introduction

Time series classification (TSC) is an important research topic with applications
to medicine [3,9], biology [4], electronics [17], etc. Conventional TSC [2] tasks are
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fully supervised. However, real-world TSC problems often fall into the category
of positive unlabeled (PU) classification [8]. In such cases, only a small set
PL of positive and labeled training examples and a large set U of unlabeled
ones are available to help distinguish between two classes1. For example, in
heartbeat classification for medical care, we may need to train a classifier based
on a limited number of abnormal heartbeats and a large number of unlabeled
(normal or abnormal) ones [3]. To the best of our knowledge, no conventional
supervised TSC methods can be applied to such cases where only one class is
labeled, thus specialized PU classification methods are required.

Most existing PU classification methods for time series [3,4,6,13,16,17] are
whole-stream based, utilizing all readings in the training examples. This makes
them sensitive to non-characteristic readings [15,19]. One effective solution to
this problem is time series shapelets [7,10,15,18,19], which are character-
istic patterns2 that can effectively distinguish between different classes. For
instance, consider three electrocardiography time series from the TwoLeadECG
dataset [5]. Under whole-stream matching (Fig. 1 left) with the highly effec-
tive [4] DTW distance [6,13,16], ts2 is incorrectly deemed to be more similar to
ts3 than ts1. In contrast, with a shapelet (Fig. 1 right), we can obtain its best
matching subsequence in each time series, and uncover the correct link.

Fig. 1. A comparison of whole-stream based and shapelet-based methods. While the
former incorrectly links ts2 with ts3 (left), the latter uncovers the correct link (right).

In this paper, we undertake the task of shapelet discovery with PU data. To
the best of our knowledge, no previous work deals with this problem. Exist-
ing shapelet discovery methods are either supervised [7,10,18] or unsuper-
vised [15,19]. Concretely, a classic framework [18,19] of shapelet discovery is
to extract a pool of subsequences as shapelet candidates, rank them with an
evaluation metric, and select the top-ranking ones as shapelets. For the choice of
the evaluation metric, supervised metrics [7,10,18] can effectively discover high-
quality shapelets. However, they need labeled examples from both classes, while
1 The term positive unlabeled can be confusing, where positive actually means positive
labeled. In this paper, we still use positive unlabeled (PU) to refer to what is actually
positive-labeled unlabeled. However, in other cases, we use positive/negative to refer
to all positive/negative examples, regardless of whether they are labeled or not.
Positive examples that are labeled will be explicitly referred to as being positive
labeled (PL).

2 In this paper, we use the terms subsequence and pattern interchangeably.



PU-Shapelets: Towards Pattern-Based PU Classification of Time Series 89

under PU settings, only one class is (partly) labeled. An unsupervised evaluation
metric [15,19] aims to maximize the inter-class gap and minimize the intra-class
variance, yet this rationale often fails to hold, which is likely due to the typi-
cally noisy and high-dimensional nature of time series, and the sparsity of small
datasets.

Faced with the difficulties of directly applying existing shapelet discovery
methods, we propose our novel PU-Shapelets (PUSh) algorithm. To be specific,
we opt to first label the unlabeled (U) examples, thus obtaining a fully labeled
training set. This enables us to conduct supervised shapelet discovery. To label
the U examples, we present a novel Pattern Ensemble (PE) technique that
iteratively ranks all U examples by their possibilities of being positive. PE uti-
lizes both potentially characteristic and potentially non-characteristic shapelet
candidates, without the need to know their actual quality. We then develop a
novel Average Shapelet Precision Maximization (ASPM) stopping cri-
terion. Based on a novel concept called shapelet precision, ASPM determines
the point where the PE iterations should stop [3,4,6,13,16,17]. All U examples
ranked before and at this point are labeled as being positive and the rest are
considered negative. ASPM is essentially an estimation of the number of positive
examples in U . Having labeled the entire training set, we select the shapelets
with the supervised evaluation metric of information gain [10,18]. The discovered
shapelets are used to build a nearest-neighbor classifier for online classification.
The complete workflow of PUSh is shown in Fig. 2.

Fig. 2. The workflow of our PU-Shapelets (PUSh) algorithm.

Our main contributions in the paper are as follows.

– We present PU-Shapelets (PUSh), which addresses the challenging task of
discovering time series shapelets [7,10,15,18,19] with positive unlabeled (PU)
data. As far as we know, this is the first time this task has been undertaken.

– We develop a novel Pattern Ensemble (PE) technique to iteratively
rank the unlabeled (U) examples by their possibilities of being positive.
PE effectively utilizes both potentially characteristic and potentially non-
characteristic patterns, without the need to know their actual quality.

– We present a novel Average Shapelet Precision Maximization
(ASPM) stopping criterion. Based on a novel concept called shapelet preci-
sion, ASPM can effectively estimate the number of positive examples in U
and determine when to stop the PE iterations. We combine PE and ASPM
to label all U examples. We then conduct supervised shapelet selection and
build a nearest-neighbor classifier for online classification.
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– We conduct extensive experiments to demonstrate the effectiveness of our
PUSh method.

The rest of the paper is organized as follows. Section 2 introduces the prelimi-
naries. Section 3 presents our PUSh algorithm. Section 4 reports the experimental
results. Section 5 reviews the related work. Section 6 concludes the paper.

2 Preliminaries

We now formally define several important concepts used in this paper. We begin
with the concept of positive unlabeled classification [8].

Definition 1 Positive unlabeled (PU) classification. Given a training set
with a (small) set PL of positive labeled examples and a (large) set U of unlabeled
examples, the task of positive unlabeled (PU) classification is to train a classifier
with P and U and apply it to predicting the class of future examples.

We move on to the definitions of time series and subsequence.

Definition 2 Time series and subsequence. A time series is a sequence
of real values in timestamp ascending order. For a length-L time series T =
t1, . . . , tL, a subsequence S of T is a sequence of contiguous data points in T.
The length-l (l ≤ L) subsequence that begins with the p-th data point in T is
written as S = tp, . . . , tp+l−1.

We then introduce the concept of subsequence matching distance (SMD).

Definition 3 Subsequence matching distance (SMD). For a length-l sub-
sequence Q = q1, . . . , ql and a length-L time series T = t1, . . . , tL, the subse-
quence matching distance (SMD) between Q and T is the minimum distance
between Q and all length-l subsequences of T under some distance measure D,
i.e. SMD(Q,T ) = min{D(Q,S)|S = tp, . . . , tp+l−1,∀p, 1 ≤ p ≤ L − l + 1}.

For the choice of the distance measure, we apply the length-normalized
Euclidean distance [10], which is the Euclidean distance between two equal-
length subsequences divided by the square root of the length of the subsequences.

We now formally define the concept of orderline [10,15,18,19].

Definition 4 Orderline. Given a subsequence S and a time series dataset DS,
the corresponding orderline OS is a sorted vector of SMDs between S and all time
series in DS.

We conclude with the definition of time series shapelets.

Definition 5 Time series shapelets. Given a set DS of training time series,
time series shapelets are characteristic subsequences that can distinguish between
different classes in DS. Concretely, given a shapelet candidate set CS consisting
of subsequences extracted from time series in DS, let m be the desired number of
shapelets. Time series shapelets are the top-m ranking subsequences in CS under
some evaluation matric E. E indicates how well separated different classes are
on the orderline of a shapelet candidate.
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3 The PU-Shapelets Algorithm

We now present our PU-Shapelets (PUSh) algorithm. Following the workflow
shown in Fig. 2, we will first elaborate on how to label the unlabeled (U) set,
and then introduce the shapelet selection and classifier construction processes.

3.1 Labeling U Examples

We now introduce the process of labeling U examples. Our first step is to obtain
a pool of patterns as shapelet candidates, which will also be useful when labeling
the U set. Concretely, we set a range of possible shapelet lengths. For each length
l, we apply a length-l sliding window to each training time series (regardless of
whether it is labeled or not), extracting all length-l subsequences in the training
set and adding them to the candidate pool. The final pool of shapelet candidates
is obtained when all possible lengths are exhausted [7,10,15,18,19].

Having obtained all shapelet candidates, we now move on to labeling the U
set. This is typically achieved by first rank the U examples by their possibilities
of being positive, and then estimate the number npu of positive examples in
U [3,4,6,11–13,16,17], thus the top-ranking npu examples in U are labeled as
being positive and the rest are labeled as being negative. This workflow has been
illustrated in Fig. 2. We now separately discuss how to rank the U examples, and
how to estimate the number of positive examples.

Ranking U Examples with Pattern Ensemble (PE). We first discuss rank-
ing the U examples. Previous works [3,4,6,13,16,17] have adopted the propagat-
ing one-nearest-neighbor (P-1NN) algorithm [21]. P-1NN works in an iterative
fashion. In each iteration, the nearest neighbor of the positive labeled (PL) set
in the unlabeled (U) set is moved from U to PL. The nearest neighbor of PL in
U is defined as the U example with the minimum nearest neighbor distance to
PL, i.e.

NN(PL,U) = arg min{NNDist(u, PL) | u ∈ U} (1)

The iterations go on until U is exhausted. The order by which the U examples
are added into PL is their rankings.

The problem with previous works is that when obtaining the nearest neigh-
bors, they calculate the distances between entire time series, utilizing all the
readings. This makes them susceptible to non-characteristic readings. In con-
trast, we attempt to actively minimize the interference from non-characteristic
shapelet candidates. However, as was discussed in Sect. 1, no existing evaluation
metric can effectively estimate the qualities of the candidates under PU settings.
Without such prior knowledge, which candidates should we rely on? The answer
is surprisingly simple: All of them.

To be specific, we develop the following Pattern Ensemble (PE) tech-
nique, whose workflow is shown in Fig. 3. PE adopts a similar iterative process
as P-1NN. However, in each iteration of PE, we let each shapelet candidate
individually identify the nearest neighbor of PL in U on its orderline (Fig. 4),
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Fig. 3. The workflow of pattern ensemble (PE).

and vote for it. The U example receiving the most votes is moved to PL. The
iterations stop when U is exhausted, and the order by which U examples are
moved to PL is their rankings.

Fig. 4. An illustration of finding the nearest neighbor of PL in U on an orderline.

At first glance, PE seems highly unlikely to perform well, especially when the
number of non-characteristic patterns significantly exceeds that of characteristic
ones. However, note that in many cases, while the non-characteristic patterns
do not significantly favor the positive set, they are not significantly biased to the
negative set either. This is because non-characteristic readings exist not only in
negative examples, but also positive ones. As a result, various non-characteristic
patterns can vote for both negative and positive examples, thus cancelling out
the effect of each other. On the other hand, the characteristic patterns strongly
favor the positive class, ensuring that an actual positive example wins the vote.
This effect is illustrated in Fig. 5.

Fig. 5. An illustration of the rationale of pattern ensemble. Here PL contains only one
example. While the votes from non-characteristic patterns cancel each other out, the
characteristic patterns ensure the correct example is chosen.

Compared with previous works [3,4,6,13,16,17], our method also utilizes
potentially non-characteristic readings. The critical difference is that for each
time series, our method exploits multiple patterns. In contrast, previous works
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utilize only one pattern (i.e. the entire time series itself). This means the negative
effect of one non-characteristic pattern cannot be cancelled out by the positive
effect of another, making previous works less robust than our method.

Algorithm 1. PatternEnsemble(PL, U , CS)
Input : initial positive labeled examples PL, initial unlabeled examples U ,

shapelet candidate pool CS
Output: U example rankings R (by the U examples’ possibilities of being

positive)

1 np0 = |PL|;
2 while U �= ∅ do
3 votes = zeros(1, |PL| + |U |);
4 foreach S ∈ CS do
5 us = FindNN(PL,U ,S);
6 votes(us) + +;

7 nextP =argmax(votes);
8 PL = [PL, nextP ]; U = U \ {nextP};

9 R = PL(np0 + 1 : end);
10 return R;

The complete process of ranking U examples with PE is illustrated in Algo-
rithm1. To begin with, we cache the number of initial positive labeled examples
(line 1), then iteratively take the following steps until U is exhausted (line 2):
We first initiate a vote counter (line 3; note that among the |PL| + |U | indices,
only |U | are valid. The others are simply used to avoid index mapping.). Then,
we let every shapelet candidate S (line 4) identify the nearest neighbor us of PL
in U on its orderline (line 5) and vote for it (line 6). The U example receiving the
most votes (line 7) is moved to PL (line 8). The order by which the U examples
are added into PL is their rankings. (lines 9–10).

The Average Shapelet Precision Maximization (ASPM) Stopping Cri-
terion. With the U examples ranked, we can now move on to estimating the
number npu of positive examples in U . Note that for iterative algorithms such as
the aforementioned P-1NN [21] and our PE, estimating npu is essentially finding
a stopping criterion to decide when to stop the iterations. All examples ranked
before and at the stopping point is labeled as being positive, and the rest are con-
sidered negative. Previous works [3,6,13,16,17] have proposed several stopping
criteria for whole-stream based P-1NN algorithms. However, these methods are
susceptible to interference from non-characteristic readings, and some [6,13,17]
are incompatible with our PE technique.

In light of these drawbacks, we present a brand new stopping criterion tailored
to our PE technique. We first introduce the novel concept of shapelet precision.
In a certain iteration of PE, for the current PL set and a pattern S, let LS and
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RS be the sets of the leftmost and rightmost |PL| examples on the orderline of
S. The shapelet precision (SP) of S with respect to PL is

SPPL
S =

max(|PL ∩ LS|, |PL ∩ RS|)
|PL| (2)

For example, for the orderline in Fig. 4, we have |PL| = 2 in the current iteration.
One of the two leftmost examples is in PL, and none of the two rightmost
examples is in PL, thus the shapelet precision is max(1, 0)/2 = 0.5.

Note that SP is derived from the concept of precision in the classification
literature. Essentially, we “classify” the leftmost (or rightmost) |PL| examples
on the orderline as being positive, and evaluate the “classification” performance
with SP. Intuitively, at the best stopping point where PL is most similar to the
actual positive set (which is unknown for U), the average SP (ASP) value of
the top shapelet candidates should be the highest. Based on this intuition, we
develop the following Average Shapelet Precision Maximization (ASPM)
stopping criterion, whose workflow is illustrated in Fig. 6.

Fig. 6. The workflow of the Average Shapelet Precision Maximization (ASPM) stop-
ping criterion.

To be specific, after each iteration of PE (lines 3–10 of Algorithm1), we
select the top-k assumed shapelets (rather than actual shapelets, since we do
not know if they are actually the final shapelets yet) with the highest SP values
and calculate their ASP score. Each iteration with the highest ASP value is
considered to be a potential stopping iteration (PSI). Note that the ASP score
of the last iteration is always 1, since at this point all examples are labeled as
being positive and the SP scores of all shapelet candidates are 1. In response,
we disregard this trivial case.

To break the ties between multiple PSIs, we consider their gaps. Suppose
iterations i and j (i < j) are two consecutive PSIs (i.e. all iterations between
them, if any, are non-PSIs with lower ASP scores), their gap is defined as

gap(i, j) =
{

j − i − 1, if j − i − 1 > 1
0, otherwise (3)

Essentially, the gap between i and j is the number of non-PSIs between them.
If the gap is 1, we consider it accidental and reset the gap to 0.
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After getting all gaps, we set a gap threshold gTh that equals half the maxi-
mum gap between consecutive PSIs (except when the maximum gap is 0, where
gTh is set to a random positive value). We find the first “large” gap gap0 ≥ gTh.
Under the assumption that the positive class is relatively compact while the
negative class can be diverse [4], gap0 indicates a decision boundary between
the positive and negative classes. Later “large” gaps may indicate boundaries
between sub-classes of the negative class. At gap0, we select the final stopping
point in one of three cases (Fig. 7).

1. No gap0 exists (namely the maximum gap is 0). Here we select the last PSI
as the stopping point. The rationale is that on the orderlines of multiple
assumed shapelets, the rankings of the negative examples are too diverse to
yield a high ASP score, thus all PSIs correspond to the positive class.

2. Neither of the PSIs i before gap0 and j after gap0 is isolated (we say a PSI
is isolated if there are no PSIs before and after it within the range of gTh).
Here we select i as the stopping point. The rationale is that in the last few
iterations before i, the rankings of the remaining positive unlabeled examples
are relatively uniform on multiple orderlines, resulting in high ASPs before
and at i. Similarly, the rankings of the first few negative unlabeled examples
are relatively uniform, resulting in high ASPs at and after j.

3. At least one of i and j is isolated. Here we select j as the stopping point.
Empirically, if i is isolated, i being a PSI is more likely a coincidence. If j is
isolated, it is more likely that on multiple orderlines, the rankings are diverse
for both the last few positive unlabeled examples (between i and j) and the
first few negative unlabeled examples (after j), yet a clear decision boundary
between the positive and negative classes is at j, resulting in an isolated point
with a high ASP score.

Fig. 7. Different strategies of stopping point selection in the three cases of ASPM. Note
that we have left out the last iteration for its triviality.

To determine the number of assumed shapelets k, we set a largest allowed
value maxK and examine all k ∈ [1,maxK]. We find the stopping point for
each k and pick the one with the maximum gap0. Ties are broken by picking the
one with the latest stop. This reduces the risk of false negatives, which is more
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troublesome than false positives in applications such as anomaly detection in
medical care. Also, to prevent too early or too late a stop, we pre-set the lower
and upper bounds of the stopping point. Note that we usually only need loose
bounds to yield satisfactory performance, which are relatively easy to estimate
in real applications.

Our ASPM stopping criterion is illustrated in Algorithm2. After initiation
(line 1), we examine each possible number k of assumed shapelets (line 2). We
first calculate the ASP values for all iterations except the last (lines 3–6), and
then obtain the PSIs (line 7). Next, we obtain the gap threshold gTh (line 8)
and gap0 along with the two PSIs before and after it (line 9). We then select
the stopping point for the current k (lines 10–12), and update the best-so-far
stopping point if the current k is the better than previous ones (lines 13–14).
The best stopping point is obtained after examining all k values (line 15).

Algorithm 2. ASPM(R, CS, lb, ub, maxK)
Input : the U example rankings R, the shapelet candidate pool CS, the lower

and upper bounds of the stopping point lb and ub, the maximum
number of assumed shapelets maxK

Output: the stopping point bestStop

1 bestStop = INF; maxGap0 = −INF;
2 for k = 1 : maxK do
3 aspList = [];
4 for iter = 1 : |R| − 1 do
5 asp = getAvgShapeletPrecision(CS, R, iter, k);
6 aspList = [aspList, asp];

7 psiList = getPotentialStopIter(aspList, lb, ub);
8 maxGap = getMaxGap(psiList); gTh = �maxGap/2�;
9 [gap0, i, j] = getGap0(psiList, gTh);

10 if gap0 == 0 then stop = psiList(end);
11 else if !(isIsolated(i) || isIsolated(j)) then stop = i;
12 else stop = j;

13 if maxGap0 < gap0 then maxGap0 = gap0; bestStop = stop;
14 else if maxGap0 == gap0 && bestStop < stop then bestStop = stop;

15 return bestStop;

Having obtained the stopping point, we label all U examples ranked before
and at it as being positive and the rest as being negative. The newly labeled U
examples and the initial PL examples make up a fully labeled training set.

3.2 Selecting the Shapelets and Building the Classifier

With a fully labeled training set, we can now select the shapelets using a super-
vised evaluation metric [7,10,18]. Concretely, we adopt the classic [18] informa-
tion gain metric [10,18] to rank and select the top-m shapelet candidates as the
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final shapelets. Next, we conduct feature extraction with the shapelets. To be
specific, we represent each training time series with an m-dimensional feature
vector in which each value is the SMD between the time series and one of the
shapelets. This representation is called shapelet transformed representation [7].
The feature vectors are used to train a one-nearest-neighbor classifier. To clas-
sify a future time series, we obtain its shapelet transformed representation and
assign to it the label of its nearest neighbor in the training set.

4 Experiments

For experiments, we use 21 datasets from [5]. For brevity, we omit further descrip-
tion of the datasets. The names of the datasets will be presented along with the
experimental results, and their detailed information can be found on [5].

All datasets have been separated into training and test sets by the original
contributors [5]. We designate examples with the label “1” in each dataset as
being positive, and all others as being negative. Let the number of positive train-
ing examples in each dataset be np, For datasets with np ≥ 10, we randomly
generate 10 initial PL sets for each dataset, each containing 10% of all posi-
tive training examples. For datasets with np < 10, we generate np initial PL
sets, each containing one positive training example. All experimental results are
averaged over the 10 (or np) runs.

Our baseline methods come from [3,4,6,13,17]. Like our PUSh method, they
also label the U examples by first ranking them, and then find a stopping cri-
terion. To rank the U examples, the baselines utilize the P-1NN algorithm [21]
(see Sect. 3.1) on the original time series with one of three distance measures:
Euclidean distance (ED) [3,4,17] DTW [6,13], and DTW-D [4]. As to stop-
ping criteria, our baselines utilize eight stopping criteria: W [17], R [13], B [3]
and G1–G5 [6] which are a family of five stopping criteria. The description
of criterion W in [17] is insufficient for us to accurately implement it. Luckily,
another criterion is implicitly used by [17], which is the one we use. To make
up for not testing the former, we first find a stopping point using the latter
and then examine all iterations before and at this point, reporting only the best
performance achieved. Also, criterion B [3] only supports initial PL sets with a
single example. For initial PL sets with multiple examples, we use each exam-
ple to individually find a stopping point and pick the one with the minimum
RDL value (RDL is a metric used in [3] to determine the stopping point). We
compare PUSh (i.e. PE+ASPM) against the combination of each of the three
U example ranking methods with each of the eight stopping criteria, resulting
in a total of 24 baseline methods. For all 25 methods being compared, we label
all U examples before and at the stopping point as being positive, and the rest
as being negative. The fully labeled training set is used for one-nearest-neighbor
classification.

For parameter settings, we set the range of possible shapelet lengths to 10 :
(L − 10)/10 : L, where L is the time series length. For Algorithm 2, we set the
lower bound lb to 5 if the number of positive examples np ≥ 10. Otherwise, it is
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set to 1 which is essentially no lower bound at all. The upper bound ub is set to
n × 2/3 − np0, where n is the total number of training examples and np0 is the
size of the initial PL set. This means we assume that the positive class makes up
no more than two thirds of all training data. Again, we stress that these settings
are usually loose bounds than can be estimated relatively easily. For fairness, we
apply the same lower and upper bounds to our baselines. The maximum number
of assumed shapelets maxK is set to 200. The number of final shapelets m is
set to 10. As we will show later, our method is not sensitive to m. For DTW and
DTW-D, we set the warping constraints as the values provided on [5], including
the setting of no constraint if it yields better supervised performance. If this
setting is 0, DTW is reduced to ED and DTW-D is ineffective. In such cases,
we set the constraints to 1%, 2%, . . . , 10% of the time series length L, and only
report the best results. The parameters cardinality and β for criteria B [3] and
G1–G5 [6] are set to 16 and 0.3 as suggested by the original authors.

For reproducibility, our source code and all raw experimental results can be
found on [1]. All experiments were run on a laptop computer with Intel Core i7-
4710HQ @2.50 GHz CPU, NVIDIA GTX850M graphics card (GPU acceleration
was used to speed up DTW computation [14]), 12 GB memory and Windows 10
operating system.

4.1 Performance of Labeling the U Examples

We first look into the performance of labeling the U set. Note that this can
be seen as classifying the U set, thus we can apply an evaluation metric for
classification. Here we adopt the widely used [6,11–13,16] F1-score, which is
defined as F1 = 2 × precision × recall/(precision + recall).

Fig. 8. Performances of ranking the U examples (disregarding the stopping criteria).
(left) Precision-recall breakeven points. (right) Critical difference diagram for all four
methods. PE outperforms all baseline methods and significantly outperforms DTW.

We first evaluate the performance of PE. In this case, we need to disregard the
effect of the stopping criterion. Therefore, we assume the actual number of posi-
tive examples np is known, and the stopping point is where there are np examples
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in PL. At this point, precision, recall and F1-score share the same value, which is
called precision-recall (P-R) breakeven point [17]. The P-R breakeven points for
all methods are illustrated in Fig. 8. There are no significant differences among
the performances of the three baseline methods. Our PE outperforms all base-
lines and significantly outperforms DTW.

Fig. 9. Performances of labeling the U set (taking into account the stopping criteria).
(left) F1-scores. (right) Critical difference diagram for PUSh (PE+ASPM) and the
top-10 baselines. PUSh significantly outperforms the others.

We then take the stopping criteria into account. The F1-scores at the stop-
ping points are shown in Fig. 9. Among the top-10 baselines, no significant dif-
ference in performance is observed. Most top ranking baselines utilize one of
G1–G5. Their high performances is likely due to G1–G5’s abilities to take into
account long term trends in minimum nearest neighbor distances [6]. Our PUSh
(PE+ASPM) significantly outperforms the top-10 baselines.

4.2 Performance of Online Classification

We now move on to classification performance. Once again we use the F1-score
for evaluation. We need to first set the number of shapelets m for our PUSh. We
have set m = 10 : 10 : 50 and performed pairwise Wilcoxon signed rank test on
the performances of PUSh under these settings. The minimum p-value is 0.0766.
With 0.05 as the significance threshold, there are no significant differences among
these settings. We set m to 10 for shorter running time.

The classification performances are shown in Fig. 10. Not surprisingly, most of
the top ranking methods in the U example labeling process (Fig. 9) remain highly
competitive. This is because for online classification, the labels of the training
examples are the labels obtained from the U example labeling process, not the
actual labels (which are unknown for U). Therefore the performance of labeling
U directly affects the classification performance. While no significant difference
is observed among the top-10 baselines, our PUSh (PE+ASPM) significantly
outperforms nine of them and is as competitive as DTWD-R.
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Fig. 10. Online classification performances. (left) F1-scores. (right) critical difference
diagram for PUSh (PE+ASPM) and the top-10 baselines. PUSh is as competitive as
DTWD-R and significantly outperforms the others.

4.3 Running Time

We now look into the efficiency aspect of PUSh. For the training step (from
labeling the U examples to building the classifier, see Fig. 2), the computational
bottlenecks are obtaining the orderlines and calculating the shapelet precisions.
Let the number of training examples be N and the length of the time series
be L, there are O(NL) shapelet candidates. For each candidate, the amortized
time to obtain its orderline is O(NL) using the fast algorithm proposed by [10],
and the time to calculate its SP values in all iterations is O(N2), thus the total
time is O(N2L2) + O(N3L). As is shown in Fig. 11 (left), despite the relatively
high time complexity, PUSh is able to achieve reasonable running time, with the
longest average running time less than 1100 s.

Fig. 11. Running time of PUSh. Note that all axes are in log scale. (left) Training
time. (right) Online classification time per example.
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For online classification, the bottleneck is to obtain the shapelet transformed
representation [7] (see Sect. 3.2), whose time is O(L2) per test example. As is
shown in Fig. 11 (right), for time series lengths in the order of 102 to 102.5

(which is typical in applications such as heartbeat classification [3] in medicine),
the average time is in the order of 10−3 to 10−2 s, which is sufficient for real-time
processing.

5 Related Work

PU classification of time series [3,4,6,11–13,16,17] is a relatively less well-studied
task in time series mining. Most existing works [3,4,6,13,16,17] are whole-stream
based propagating one-nearest-neighbor [21] algorithms which tend to be sensi-
tive to non-characteristic readings [15,19]. [11,12] selects local features from time
series. However, the selected features are discrete readings that do not necessarily
form continuous patterns, while the latter often contains valuable information on
the trend of the data. In this work, we explicitly discover characteristic patterns
called shapelets, which have been applied to supervised classification [7,10,18]
and clustering [15,19,20]. Previous works utilize supervised [7,10,18] and unsu-
pervised evaluation [15,19] metrics to assess shapelet candidates. However, both
are not directly suitable for PU settings. Therefore we opt to first label the U
set and then conduct supervised shapelet discovery.

Most previous works on PU classification of time series [3,4,6,13,16,17] iter-
atively rank the U examples by their possibilities of being positive. A stopping
criterion is needed to determine where to stop the iterations. Existing stopping
criteria can be divided into two types: Distance-based criteria [6,13,17] utilize
distances between PL and U to decide the stopping point. Minimum descrip-
tion length based criteria [3,16] utilize the initial PL to encode the training set.
The stopping point is where the encoding is most compact. Both types of criteria
suffer from the interference from non-characteristic readings, and distance-based
criteria are not compatible to our method. This has motivated us to develop our
novel ASPM stopping criterion.

6 Conclusions and Future Work

In this paper, we have taken on the challenging task of positive unlabeled [8]
discovery of time series shapelets [7,10,15,18,19]. To label the U set, we have
developed a novel pattern ensemble (PE) method that ranks U examples with
both potentially characteristic and potentially non-characteristic patterns, with
no need to know their actual qualities. We have also developed a novel ASPM
stopping criterion, which estimates the number of positive examples based on the
novel concept of shapelet precision. After labeling the entire training set, we have
conducted supervised shapelet selection and built a one-nearest-neighbor clas-
sifier. Extensive experiments have demonstrated the effectiveness and efficiency
of our method. Currently, our method utilizes the orderlines of all shapelet can-
didates, which is highly costly in terms of space and time efficiency. For future
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work, we plan to develop heuristics for more efficient selection of shapelet can-
didates for the PE subroutine. We also plan to apply GPU acceleration to our
method.
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Abstract. Sequential data mining is prevalent in many real world appli-
cations, such as gene sequence analysis, consumer shopping log analysis,
social networking analysis, and banking transaction analysis. Contrast
sequence data mining is useful in describing the differences between two
sets (classes) of sequences. However, in prior studies, little work has been
done in how to mine the patterns from sequences formed by associated
temporal events, where there exist relationships in chronological order
between any two events in a sequence. To fill this gap, we consider the
problem of mining associated temporal relationship pattern (ATRP) and
propose a method, called ATTEND (AssociaTed Temporal rElationship
patterN Discovery), to discover ATRPs with top contrast measure from
two sets of associative temporal event sequences. Moreover, we design
several heuristic strategies to improve the efficiency of ATTEND. Exper-
iments on both real and synthetic data demonstrate that ATTEND is
effective and efficient.

Keywords: Contrast sequence data mining · Relationship pattern ·
Temporal event sequence

1 Introduction

Sequential data exists in many fields including gene sequence analysis, shopping
log analysis, social networking analysis, banking transaction analysis, etc. Min-
ing sequential patterns from sequences can unveil useful hidden information and
provide decision support. Distinguishing sequential patterns (DSPs) [1,2], based
on the events frequently occurring in a class of sequences but infrequently in
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another, can describe the differences between two associated sequence classes.
Consider the scenario where a male patient A and two female patients B and
C all suffer the same disease, amyotrophic lateral sclerosis (ALS). By clinical
records, it can be found that patients of different genders may have some distin-
guishable symptoms (a patient’s record is a temporal event sequence). Moreover,
relationships can be found between different symptoms such as the onset of heavy
periods came before that of spotting menstrual for patients B and C, while for A,
the symptom prostatic hyperplasia came after the symptom enlarged prostate.
Such relationships could be clinically interesting, but hard to formulate with tra-
ditional DSPs. Intuitively, there are different relationships among events, such
as the order and duration, which can provide informative characteristics of the
events. Thus, it is necessary to take the relationships among events into consid-
eration when mining associated data sequences.

However, there was no existing sequential data mining or DSP mining meth-
ods aiming at solving the above problem. To fill this gap, we propose a novel
problem of finding DSPs with temporal relationships, i.e., we aim to discover
relationship patterns from associated temporal event sequences, named as asso-
ciative temporal relationship patterns (ATRPs). Once the relationship patterns
are identified, they can be further applied for clustering even sequences in accor-
dance with given criteria.

Despite there are existing studies on DSP mining and event temporal rela-
tionship mining respectively, none of these studies has ever focused on the DSP
mining taking temporal relationships among events into consideration. Thus,
without either the DSP or the temporal relationship, such methods cannot find
the ATRPs.

Nevertheless, finding ATRPs is a challenging problem due to the following
reasons. First, in order to guarantee the completeness of solution space, all pos-
sible candidate event patterns as well as various temporal relationships should
be enumerated. However, as the number of all candidates is extremely large,
reducing the enumeration space becomes a challenging task. Second, the time
complexity is high because of the large number of candidates. Thus, it is impor-
tant to develop adequate techniques to empower our method for the efficiency
of discovering ATRPs.

Coping with the above challenges, we made the following contributions: (1)
proposing a novel problem of mining top-k associated temporal relationship pat-
terns; (2) designing the algorithm ATTEND (short for AssociaTed Temporal
rElationship patterN Discovery) in conjunction with heuristic strategies to effi-
ciently speed up the mining of top-k ATRPs; (3) evaluating the proposed method
on both real and synthetic data with satisfactory outcomes of effectiveness and
efficiency of the method.

Note that in our work, the sequence order is formed by the starting and end
time of events. If the events are initially given in some other order (unordered),
they can be sorted to form the sequence order. In this sense we could talk about
event sets, but conceptually we focus on the sequential nature of the data.
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The rest of the paper is organized as follows. We review related studies in
Sect. 2, and formulate the problem of mining top-k associated temporal relation-
ship patterns (ATRPs) in Sect. 3. The design of the proposed method ATTEND
is detailed in Sect. 4. The experiments based on real-world data and synthetic
data are presented in Sect. 5 and the paper is concluded in Sect. 6.

2 Related Work

Sequential pattern mining is an important task in data mining, which has long
attracted wide attention in academic studies. Srikant et al. [3] firstly introduced
the problem of sequential pattern mining and proposed a sequential pattern
mining algorithm called GSP. Zaki et al. [4] presented SPADE for fast discovery
of sequential patterns. Ayres et al. [5] used bitmaps to represent the sequential
data, and proposed SPAM to mine sequential patterns. However, all the above
methods can only deal with sequences of single class, let alone discover differences
among sequence sets of different classes.

Distinguishing sequential pattern (DSP) mining has many meaningful appli-
cations, as it aims to discover patterns that best describe the significant differ-
ences between two classes of sequences. Dong et al. [6] proposed the minimal
distinguishing sequential subsequence (MDS), and designed the algorithm Con-
sGapMiner to discover MDSs. Yang et al. [1] proposed an approach to find top-k
minimal item-based distinguishing sequential patterns with largest contrast val-
ues. Duan et al. [7] studied the problem of mining distinguishing customer focus
sets from customer reviews, which can be helpful for online shopping decision
support. Wang et al. [2] introduced the concept of density-aware distinguish-
ing sequential patterns. Zheng et al. [8] proposed a CSP-tree-based approach
to client sequential behavior analysis. Zhao et al. [9] focused on the problem
of discovering diagnostic gene patterns from microarray data. Zhu et al. [10]
designed an approach to mining user-related rare sequential topic patterns from
document streams on the Internet to characterize and detect personalized and
abnormal behaviors of users.

Many studies have focused on the problem of mining sequential event patterns
with time intervals. Allen et al. [11] first proposed thirteen event relationships
and described the temporal representation, and there are studies to discover fre-
quent patterns with temporal intervals [12–14]. Yang et al. [15] utilized an index
structure to extract the time interval-based events with duration. Patel et al. [16]
used frequent temporal patterns to build an interval-based classifier. Mörchen
et al. [17] presented a method for the understandable description of local tempo-
ral relationships in multivariate data. Tang et al. [18] studied the problem of find-
ing lag intervals for temporal dependency analysis. Duan et al. [19] proposed the
distinguishing temporal event patterns (DTEP) and designed a method called
DTEP-Miner to find DTEPs.

However, to the best of our knowledge, none of existing methods has ever
focused on the problem of mining associated temporal relationship patterns
(ATRPs) from associated temporal event sequences, which are meaningful and
necessary in many real-life scenarios.
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Table 1. A toy set of temporal event sequences (Ω = {a, b, c})

ID Temporal event sequence Dataset

S1 <(a, 3, 8), (c, 4, 5), (b, 4, 9), (a, 9, 14), (c, 10, 11), (b, 14, 15), (c, 16, 17)>

S2 <(b, 1, 6), (c, 6, 7), (b, 8, 27), (a, 8, 12), (c, 10, 25), (a, 13, 14), (b, 37, 39)>

S3 <(b, 1, 5), (a, 2, 3), (c, 4, 10), (b, 6, 8)> D+

S4 <(a, 2, 8), (b, 3, 5), (c, 6, 7), (b, 6, 9), (a, 10, 12), (c, 16, 18)>

S5 <(a, 3, 8), (b, 4, 5), (c, 8, 12), (b, 9, 12), (c, 13, 16), (b, 18, 20)>

S6 <(b, 2, 6), (b, 8, 10), (a, 9, 10), (b, 11, 14), (a, 12, 15), (b, 16, 19)>

S7 <(c, 2, 22), (a, 7, 8), (b, 9, 10), (a, 10, 12), (b, 11, 14), (a, 13, 14), (b, 22, 24)>

S8 <(a, 1, 5), (b, 4, 5), (b, 6, 10), (a, 6, 8), (a, 16, 18), (b, 16, 18)> D−
S9 <(b, 3, 5), (a, 4, 7), (b, 8, 14), (a, 10, 12), (b, 22, 24)>

S10 <(b, 3, 6), (a, 7, 8), (b, 8, 11), (a, 9, 12), (b, 12, 16), (b, 22, 28)>

3 Problem Definition

We start with some preliminaries. Let Ω be the set of all possible events. Exam-
ples of events include “shopping”, “sleep” or “travel” etc. We use the symbol o,
possibly with subscripts, to denote an event in Ω. We use a series of continuous
non-negative integers starting from 0 to denote the time points of events. With-
out loss of generality, we assume that the smaller the value is, the earlier the
time is.

An event instance e is a triplet (o, t+, t−) where o ∈ Ω, t+ denotes the starting
time point of e, and t− denotes the end time point of e. Naturally, t+ < t−. A
temporal event sequence S is a list of event instances, ordered by their starting
time points, of the form S = <(o1, t+1 , t−1 ), (o2, t+2 , t−2 ), ..., (on, t+n , t−n )>, where
oi ∈ Ω, 0 ≤ t+i ≤ t+j (1 ≤ i < j ≤ n). The length of S is the number of
event instances in S, denoted by |S|. We denote by S[i] the i-th element in S
(1 ≤ i ≤ |S|). For S[i], we use S[i].o to denote the event, and use S[i].t+ (S[i].t−)
to denote the starting (end) time point of S[i]. Taking S6 in Table 1 for instance,
we have |S6| = 6, S6[2].o = b, S6[2].t+ = 8, S6[2].t− = 10.

Allen et al. pointed out that for any two event instances, there exist 7 tem-
poral relations between them [11], which we include into a relation set denoted
by R. For the sake of clarity, we define 7 symbolic notations in Table 2.

For two events o, o′ ∈ Ω, we use oRo′ (R ∈ R) to describe the temporal
relationship between o and o′. For example, o ↑ o′ means that o happens before
o′. Given a set of temporal relationships P = {oRo′ | o, o′ ∈ Ω,R ∈ R}, we
denote by E(P ) the events referred to in P . For a given temporal event sequence
S, we say S holds P , denoted by P � S, if there exist integers 1 ≤ k1 < k2 <
· · · < k|E(P )| ≤ |S| such that {S[ki].o | 1 ≤ i ≤ |E(P )|} = E(P ) and time points
of S[ki] satisfy the conditions of every temporal relation stated in P .

Example 1. Considering S3 in Table 1, the temporal relationships contained in
S3 are {b1 ⇔ a, b1 � c, b1 ↑ b2, a ↑ c, a ↑ b2, c ⇔ b2}. For a temporal relationship
set P = {a ↑ c, a ↑ b, c ⇔ b}, we have P � S3.
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Table 2. Temporal relations between events ei and ej

Relation Illustration Notation Condition

before ei ↑ ej ei.t
− < ej .t

+

overlaps ei ej ei.t
+ < ej .t

+, ei.t
− > ej .t

+, ei.t− < ej .t
−

during ei ⇔ ej ei.t
+ < ej .t

+, ei.t
− > ej .t

−

equal ei = ej ei.t
+ = ej .t

+, ei.t
− = ej .t

−

starts ei ← ej ei.t
+ = ej .t

+, ei.t
− > ej .t

−

finishes ei → ej ei.t
+ < ej .t

+, ei.t
− = ej .t

−

meets ei ↔ ej ei.t
− = ej .t

+

The support of a temporal relationship set P in a set of temporal event
sequences D, denoted by Sup(D,P ), is

Sup(D,P ) =
|{S ∈ D | P � S}|

|D| (1)

Definition 1. Given two sets of temporal event sequences D+ and D−, the con-
trast score of P targeting D+ against D−, denoted by cScore(P ), is

cScore(P ) = Sup(D+, P ) − Sup(D−, P ) (2)

Example 2. For a temporal relationship set P = {a ↑ c, a ↑ b, c ⇔ b}, we
have |D+| = |D−| = 5, Sup(D+, P ) = 1/5 = 0.2, Sup(D−, P ) = 0. Thus,
cScore(P ) = 0.2 − 0 = 0.2.

Definition 2. Given two sets of temporal event sequences D+ and D−, a tem-
poral relationship set P is an associative temporal relationship pattern (ATRP)
targeting D+, if cScore(P ) > 0.

To select top-k ATRPs, we first define a total order on all discovered ATRPs.

Definition 3. Given two ATRPs P and P ′, P � P ′ (called P precedes P ′ or P
has a higher precedence than P ′) if:

1. cScore(P ) > cScore(P ′), or
2. cScore(P ) = cScore(P ′), but |E(P )| > |E(P ′)|, or
3. all of the above parameters are the same, but E(P )[i] is lexically smaller than

E(P ′)[i], where i = min{j | E(P )[j] �= E(P ′)[j], 1 ≤ j ≤ |E(P )|}.
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Table 3. Top-10 ATRPs discovered from Table 1

Rank ATRP cScore

1 {b1 ↑ c, b1 ↑ b2, c ↑ b2} 0.8

2 {c1 ↑ c2} 0.8

3 {b ↑ c1, b ↑ c2, c1 ↑ c2} 0.6

4 {b1 ↑ c1, b1 ↑ b2, b1 ↑ c2, b2 ↑ c1, b2 ↑ c2, c1 ↑ c2} 0.4

5 {a ↑ c1, a ↑ c2, c1 ↑ c2} 0.4

6 {a ⇔ c, a ↑ b, c ↑ b} 0.4

7 {c ↑ a, c ↑ b, a ↑ b} 0.4

8 {c1 ↑ a, c1 ↑ c2, a ↑ c2} 0.4

9 {a ⇔ b} 0.4

10 {a � c} 0.4

Fig. 1. An example of event set enumeration tree

Given k, the problem of mining top-k temporal relationship patterns is to
find ATRPs with top-k precedence targeting D+ against D−.

Table 3 lists the top-10 ATRPs discovered from Table 1.

4 The Design of ATTEND

In this section, we present the details of ATTEND finding top-k ATRPs targeting
D+ against D−, and discuss the key techniques including heuristic strategies to
speed up our method.

In general, ATTEND consists of two main steps: (1) generating the set of
candidate ATRPs (Sect. 4.1), and (2) evaluating the contrast score of each can-
didate to find the top-k ATRPs (Sect. 4.2).

4.1 Candidate ATRPs Generation

To generate all possible candidate ATRPs systematically, the set enumeration
tree approach [20] is adopted by ATTEND. ATTEND firstly generates the events
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involved in the candidate. Then, for the generated events, ATTEND enumerates
all possible pairwise temporal relationships between every two events.

Figure 1 illustrates an example of an event set enumeration tree generating
candidate ATRPs over Ω = {a, b, c}. Taking the candidate ATRPs containing
two events for instance. We can see that there are 9 combinations of two events,
i.e., {aa, ab, ac, ba, bb, bc, ca, cb, cc}. Furthermore, for ab, 7 temporal relationships
can be generated, i.e., {a ↑ b, a � b, a ⇔ b, a = b, a ← b, a → b, a ↔ b}.

Clearly, in the l-th (l ≥ 2) level of an event set enumeration tree, there
exist |Ω|l|R||l−1|! candidate ATRPs. A straightforward (time consuming) way
is evaluating the cScore of each candidate on the two sets of temporal event
sequences. Fortunately, Theorem 1 demonstrates the monotonicity of Sup(D,P )
with respect to P .

Theorem 1. Given a temporal event sequence set D, for any two events tem-
poral relationship sets P and P ′, Sup(D,P ) ≤ Sup(D,P ′) if P ′ ⊂ P .

Proof (Outline). For given P and P ′ satisfying P ′ ⊂ P , we have {S ∈ D | P �
S} ⊆ {S ∈ D | P ′ � S}. Then, by Eq. 1: |{S∈D|P�S}|

|D| ≤ |{S∈D|P ′�S}|
|D| . Thus,

Sup(D,P ) ≤ Sup(D,P ′). �

To minimize computation cost, we develop following pruning rule determining
the candidate ATRPs that cannot be included in the top-k result based on
Theorem 1.

Pruning Rule 1. For a temporal relationship set P , if Sup(D+, P ) < min, all
supersets of P can be pruned, where min (initialized as 0) is the k-th largest
contrast score value of the candidate ATRPs searched so far.

We also get the following observations.

Observation 1. For any event o ∈ Ω, there does not exist the follow-
ing temporal relations: overlaps (�), during (⇔), equal (=), starts (←),finishes
(→),meets (↔) for o itself.

Observation 2. Some temporal relations are not compatible. For event a, b, c ∈
Ω, if the temporal relations between a and b is before (a ↑ b), and that between
a and c is during (a ⇔ c), then the temporal relations {b ↑ c, b � c, b ⇔ c, b =
c, b ← c, b → c, b ↔ c} do not hold (conflicting with a ⇔ c).

To avoid generating a candidate ATRP containing conflicting temporal rela-
tions, ATTEND generates all logical relations among the starting time points
and end time points of every event following the conditions listed in Table 2. If
there are more than one illogical relations between the time points of two events,
then we say this candidate ATRP is conflicting.

Example 3. Given a temporal relation set P = {a ↑ b, a ⇔ c, b ⇔ c}. (I) From
the conditions of a ↑ b and a ⇔ c, we have a.t+ < c.t+, c.t− < a.t−, a.t− < b.t+.
As relation ‘↑’ (before) is transitive, we can get c.t− < b.t+. (II) From the
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Fig. 2. Sorted index of S2 in Example 4

conditions of b ⇔ c, we have b.t+ < c.t+, c.t− < b.t−. As c.t+ < c.t−, we can get
b.t+ < c.t−. (I) conflicts with (II). Thus, P is conflicting. (There are more than
one temporal relations between b.t+ and c.t−.).

Based on Observations 1 and 2, we design the following pruning rule to
remove invalid candidate ATRPs.

Pruning Rule 2. For a given temporal relationship oRo′ in a temporal rela-
tionship set P ,

– if o and o′ are the same event, only o ↑ o′ is generated;
– if oR′o is conflicting, P and its supersets can be pruned.

Observation 3. The frequencies of different temporal relationships listed in
Table 2 vary. Intuitively, the condition strength of the temporal relationship before
is the weakest, while that of the relationship meets is the strongest.

Based on Observation 3, we get following heuristic rule.

Heuristic Rule 1. For an event set E, ATTEND enumerates the temporal
relationships among every two events in E in the preference order of “before,
overlaps, during, equal, starts, finishes, meets”.

By Heuristic Rule 1, ATTEND pretends to find temporal relationships with
higher cScore value as early as possible, correspondingly the value of min can
also be updated with a higher value quickly. As a result, more temporal rela-
tionships can be pruned by Pruning Rule 1.
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Algorithm 1. ATTEND(D+,D−, k)
Input: D+ and D−: two sets of temporal event sequences, k: an integer
Output: atrp: the set of top-k ATRPs
1: initialize min ← 0, atrp ← ∅;
2: for each event set E searched by traversing the event set enumeration tree in a

depth-first way do
3: generate a candidate ATRP P ← {oRo′ | o, o′ ∈ E, o �= o′, R ∈ R};
4: P ← P ∪ {o ↑ o | o ∈ E};
5: if P is conflicting then
6: perform Pruning Rule 2 and go to Step 2;
7: end if
8: compute Sup(D+, P ) using Equation 1;
9: if Sup(D+, P ) < min then

10: perform Pruning Rule 1 and go to Step 2;
11: end if
12: compute Sup(D−, P ) using Equation 1;
13: cScore ← Sup(D+, P ) − Sup(D−, P );
14: if cScore > min then
15: if |atrp| < k then
16: atrp ← atrp ∪ {P};
17: else
18: update atrp with P ;
19: end if
20: min ← cScore;
21: end if
22: end for
23: return atrp;

4.2 Contrast Score Calculation

According to Eq. 2, given a temporal event sequence set D and a candidate
ATRP P , ATTEND evaluates Sup(D,P ). For the sake of efficiency, we design a
sorted index recording the starting/end time point of each event in S (S ∈ D).
Thanks to the efficient operations on the sorted index, ATTEND can quickly
check whether or not S holds P . Specifically, the contrast score of P can be got
by three steps: (1) building the sorted index of each event in S by the ascending
order of starting time points; (2) searching each temporal relationship in P by
the sorted index; (3) updating the value of Sup(D,P ).

Example 4. The sorted index of S2 ∈ D+ in Table 1 is illustrated in Fig. 2. For a
given candidate ATRP P = {c ↑ b, c ↑ a, b ← a}, to check whether or not P ⊂ S2,
ATTEND searches the sorted index of c, b and a one by one. For event c, (c, 6, 7)
is the first event instance stored in the sorted index. Then, for event b, ATTEND
searches the first event instance satisfying the temporal relationship c ↑ b. As a
result, event instance (b, 8, 27) is got. Next, for event a, (a, 8, 12) is the first event
instance satisfying the temporal relationship c ↑ a. Since (b, 8, 27) and (a, 8, 12)
satisfy the temporal relationship b ← a, we have P ⊂ S2. Correspondingly, the
value of Sup(D+, P ) is increased by 1.
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Table 4. Characteristics of datasets

Datasets D+/D− |S|avg |S|min |S|max |D| |Ω|
ADL1 A 18 12 27 16 22

B 12 8 17 17 24

ADL2 Subject1 145 64 210 58 33

Subject2 176 90 280 61 33

ADL3 h1 23 30 17 17 26

h2 78 42 201 16 26

PRO-ACT male 16 9 76 1862 3111

female 17 9 78 1264 2594

dead 18 10 77 1168 2512

alive 18 10 71 277 1021

Based on the discussion above, we present the pseudo-code of ATTEND in
Algorithm 1.

5 Empirical Evaluation

In this section, we evaluate the performance of ATTEND on both real and
synthetic data. All experiments were conducted on a PC with an Intel Core
i7-4790 3.60 GHZ and 16 GB main memory, running the Windows 10 operating
system. All algorithms were implemented in Python 2.7.

5.1 Effectiveness

We apply ATTEND to three daily activity datasets and a disease dataset to test
its effectiveness. Each of the three activity datasets, called ADL1 [21], ADL2

1

and ADL3
2, respectively, records the daily activities of two users. Table 5 lists

the abbreviations of the activities discovered in the experiment. PRO-ACT3 is
an open clinical trial dataset, collected from the clinical diagnosis and treatment
data from more than 8500 patients suffering amyotrophic lateral sclerosis (ALS ).
Each PRO-ACT record collects the information of each patient suffering ALS,
such as the basic statistical information, family history, onset time of symptoms,
classification of symptoms, and the treatments used. Table 4 summarizes the
characteristics of all datasets.

1 http://courses.media.mit.edu/2004fall/.
2 http://ailab.wsu.edu/casas/hh/.
3 http://nctu.partners.org/ProACT.

http://courses.media.mit.edu/2004fall/
http://ailab.wsu.edu/casas/hh/
http://nctu.partners.org/ProACT
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Table 5. Activities and corresponding abbreviations

Bathing (BA) Breakfast (BR) Bed Toileting (BT)

Call (CA) Doing Laundry (DL) Dinner (DN)

Dressing (DR) Going Entertainment (GE) Grooming (GR)

Going Work (GW) Leaving (LE) Lunch (LU)

Morning Meds (MM) Preparing Breakfast (PB) Preparing Dinner (PD)

Personal Hygiene (PH) Preparing Lunch (PL) Preparing Snack (PS)

Read (RD) Relax (RE) Sleep (SE)

Shower (SH) Snack (SN) Spare Time/TV (ST)

Toileting (TO) Wash Breakfastdishes (WB) Work on Computer (WC)

Wash Dishes (WD) Wash Dinnerdishes (WI) Work (WO)

Table 6. Top-10 ATRPs discovered from ADL1 (k = 10)

Rank userA(+) userB(+)

ATRP cScore ATRP cScore

1 {BR � LE, BR ↑ TO, LE � TO} 0.476 {BR � LE, BR ↑ LU, LE � LU} 0.476

2 {BR � LE, BR ↑ TO, LE ↑ TO} 0.476 {SE1 ↑ TO, SE1 ↑ SE2, TO ↔ SE2} 0.476

3 {BR � LE1, BR ↑ LE2, LE1 ↑ LE2} 0.476 {BR ↑ TO} 0.476

4 {SH ↑ LE, SH ↑ BR, LE ↔ BR} 0.476 {ST ⇔ SN} 0.476

5 {DN ↑ LE} 0.476 {GR ↑ LE} 0.476

6 {SH ↑ BR} 0.476 {GR ↑ BR} 0.476

7 {BR ↑ GR} 0.476 {SH ↑ GR} 0.333

8 {SH ↑ ST} 0.476 {LE ↑ DN} 0.333

9 {BR ↑ LU} 0.476 {TO ↑ SH} 0.333

10 {TO ↑ ST} 0.333 {GR ↑ TO} 0.333

Table 6 lists the top-10 ATRPs discovered by ATTEND targeting user A and
user B, respectively, where some interesting patterns characterizing the daily
activities of each user can be found. For example, user A often ate breakfast
before grooming (the top-7 ATRP targeting user A), while user B often groomed
before eating breakfast (the top-6 ATRP targeting user B). Also, user A often
had dinner before leaving from home (the top-5 ATRP targeting user A), while
user B often left from home before dinner (the top-8 ATRP targeting user B).
In addition, the result of top-6 ATRPs targeting user A indicated that user
A often did three activities, that is, breakfast, leaving and toileting, with the
corresponding ATRP as {Breakfast � Leaving, Breakfast ↑ Toileting, Leaving
� Toileting}. While user B often had breakfast, leaving and having lunch, with
the corresponding ATRP as {Breakfast � Leaving, Breakfast ↑ Lunch, Leaving
� Lunch}.
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Table 7. Top-10 ATRPs discovered from ADL2 and ADL3 (k = 10)

Rank Subject1 (+) Subject2 (+) h1 (+) h2 (+)

ATRP cScore ATRP Score ATRP cScore ATRP cScore

1 {PL ↑ WD} 1.0 {PD ↑ GW} 1.0 {PH ↑ RD} 1.0 {PH ⇔ WC} 1.0

2 {PL ↑ GE} 1.0 {PD ↑ DL} 1.0 {PH � RD} 1.0 {PH � WC} 1.0

3 {PL � WD} 1.0 {PL ↑ GW} 1.0 {WD ↑ RD} 1.0 {PD ⇔ WC} 1.0

4 {PL ⇔ WD} 1.0 {PL ↑ DL} 1.0 {DR ⇔ BT} 1.0 {BT ↑ MM} 1.0

5 {PL � GE} 1.0 {TO � DR} 1.0 {SE ⇔ BA} 1.0 {WC ↑ SE} 1.0

6 {PL ⇔ GE} 1.0 {PD ↑ GE} 1.0 {WI ⇔ PL} 1.0 {MM � PB} 1.0

7 {TO ↑ WD} 1.0 {PB � PL} 1.0 {PB � RE} 1.0 {PD → DR} 1.0

8 {TO � WD} 1.0 {PS ↑ GW} 1.0 {GR � PD} 1.0 {PL ⇔ WC} 1.0

9 {TO ↑ GE} 1.0 {BA � PD} 1.0 {WO ⇔ RE} 1.0 {PD � CA} 1.0

10 {TO ⇔ WD} 1.0 {DR ↑ PL} 1.0 {WB ↔ WO} 1.0 {PD ↔ RE} 1.0

Table 8. Top-10 ATRPs discovered from PRO-ACT (k = 10)

Rank ATRP cScore D+

1 {Normocytic Anaemia � Perleche} 0.0383

2 {Tired Eyes ↑ Arcus Senilis} 0.0380

3 {Contact Lens Intolerance → Arcus Senilis} 0.0380

4 {PTT Prolonged ↑ Thrombocytopenia} 0.0380

5 {Alkaline Phosphatase Increased ⇔ Blood Lactate Dehydrogenase Abnormal} 0.0380

6 {Blood Lactate Dehydrogenase Abnormal � Blood Alkaline Phosphatase High} 0.0380 dead

7 {Unattended Death ↑ Died in Sleep} 0.0380

8 {T4 Abnormal ↑ Increased TSH} 0.0380

9 {Increased TSH ⇔ Increased TSH} 0.0380

10 {Blood Pressure Orthostatic � Normocytic Anaemia} 0.0379

1 {Pancytopenia ↑ Incomplete Bundle Branch Block} 0.0380

2 {Tachycardia � Atrial Fibrillation} 0.0380

3 {Creatine Phosphokinase Abnormal ↑ Blood Alkaline Phosphatase Abnormal} 0.0380

4 {Cataract ↑ Burning Oral Sensation} 0.0380

5 {Cataract ↑ Graves-Basedow Disease} 0.0380

6 {Bilateral Cataracts � Bilateral cataracts} 0.0379 alive

7 {Normocytic Anaemia ↑ Supraventricular Arrhythmia NOS} 0.0337

8 {Tachycardia Nervous � Tachycardia Nervous} 0.0337

9 {Nocturnal Dyspnea ↑ Activities of Daily Living Impaired} 0.0337

10 {Joint Manipulation ↑ Hip Prosthesis Insertion} 0.0168

Table 7 lists the top-10 ATRPs discovered by ATTEND targeting user Sub-
ject1 and user Subject2 and the top-10 ATRPs targeting user h1 and user h2,
respectively, from which we can also deduce the habits of different users.

The dataset PRO-ACT is divided into two target classes according to the
living status of the patient, i.e., dead or alive and Table 8 shows the top-10
ATRPs targeting the patients belonging to each of the classes, respectively. For
the class dead, {Normocytic Anaemia � Perleche} is the most distinguishing
ATRP, where proofs can be found to support that Normocytic Anaemia and
Perleche are two main symptoms accounting for the death of ALS patients. For
the patients with Pancytopenia and are alive, some measures can be taken in
advance to avoid the onset of Incomplete Bundle Branch Block. PRO-ACT is
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then divided into another two target classes according to the gender of patients.
Table 9 shows the top-10 ATRPs targeting male patients and female patients.
Take the class female for example, {Heavy Periods � Bleeding Menstrual Heavy}
got the highest cScore, and Heavy Periods, Absence of Menstruation, Premen-
strual Syndrome, Breast Mass, Breast Cyst are some frequent symptoms for the
female patients with ALS. Clearly, ATRPs can give some assistance to the treat-
ment of patients with ALS and provide different treatment options for patients
in different gender.

Figure 3 shows the contrast scores of top-k ATRPs with respect to k. As
k grew larger, more ATRPs were found by ATTEND and ATRPs with lower
contrast scores were got.

Table 9. Top-10 ATRPs discovered from PRO-ACT (k = 10)

Rank ATRP cScore D+

1 {Prostatic Hyperplasia � Benign Prostatic Hyperplasia} 0.0380

2 {Prostatic Hyperplasia ↑ Benign Prostatic Hyperplasia} 0.0380

3 {Enlarged Prostate ↑ Prostatic Hyperplasia} 0.0380

4 {Genital Itching ↑ Genital Rash} 0.0380

5 {Impotent ↑ Disorder Testicle} 0.0380

6 {Impotence � Erection Failure} 0.0300 male

7 {Impotence ↑ Erection Failure} 0.0270

8 {Pain in Testis ↑ Genital Itching} 0.0270

9 {Penile Abrasion � Sexual Dysfunction} 0.0270

10 {Testicular Cyst � Cystocele} 0.0240

1 {Heavy Periods � Bleeding Menstrual Heavy} 0.0420

2 {Heavy Periods ↑ Spotting Menstrual} 0.0380

3 {Heavy Periods � Spotting Menstrual} 0.0380

4 {Primary Ovarian Failure ↑ Metrorrhagia} 0.0380

5 {Absence of Menstruation ↑ Premenstrual Syndrome} 0.0378

6 {Amenorrhea ↑ Premenstrual Syndrome} 0.0370 female

7 {Menstrual Cycle Abnormal ↑ Menstrual Cycle Abnormal} 0.0370

8 {Breast Mass � Breast Cyst} 0.0337

9 {Breast Mass ↑ Breast Cyst} 0.0210

10 {Breast Tension � Breast Cyst} 0.0120

In addition, Fig. 4 shows the frequency of relationships of top-k ATRPs with
respect to k. We can see that frequency of some relationships increased as k
became larger, such as the relationships before, overlaps and during occurred
frequently, while starts, finishes and meets occurred little. This demonstrates
that Heuristic Rule 1 is effective.

5.2 Efficiency

To the best of our knowledge, there are no previous methods handling this
problem. Thus we test the efficiency of ATTEND compared with two of its
variations, that is, Baseline and Baseline∗. Baseline does not adopt Pruning
Rule 2 and Heuristic Rule 1, while Baseline∗ does not follow Pruning Rule 1. In
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Fig. 4. Effectiveness test: the number of relationships w.r.t. k

all efficiency tests, we set k = 10, |D| = 100, |S| = 100, and |Ω| = 20 in default,
and the synthetic event sequences are generated randomly.

Figure 5 shows the runtime with respect to k. As k increased, all algo-
rithms (ATTEND, Baseline and Baseline∗) took more time to run. In partic-
ular, ATTEND ran much faster than both Baseline and Baseline∗. The result
indicates that ATTEND is insensitive to k.
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Figure 6 shows the impact of |D|, |S| and |Ω| on the runtime of each algo-
rithm. As |D|, |S| and |Ω| grew larger, the runtime of Baseline and Baseline∗

both increased rapidly, while the runtime of ATTEND also increased but in a
slow and steady way. The runtime of all algorithms increased because the gener-
ation of candidate ATRPs are positively correlated to |Ω|, and the computation
of contrast scores of candidate ATRPs also relies on both |D| and |S|. Com-
pared with the baseline methods, ATTEND ran much faster because it adopted
all heuristic strategies, which helped to speed up the search of top-k ATRPs.
The results indicate that the heuristic strategies are effective and ATTEND is
scalable.

6 Conclusions

In this paper, we studied the novel problem of mining ATRPs from temporal
event sequences. We proposed ATTEND with heuristic strategies to find top-
k ATRPs. Experiments on both real and synthetic data demonstrate that our
proposed ATTEND is effective and efficient.

In the future, ATTEND can be applied to different fields such as financial
data and electric data to further verify its effectiveness. Considering the huge
search space for candidate ATRP generation, we also plan to design an approx-
imate algorithm to find ATRPs faster.
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Abstract. This paper investigates the problem of efficiently discovering
periodicity of a certain event in data series. To that end, the current
work argues firstly that the periodicity of an event in data series may
be formalized as the distribution period, the structure period, or the
both. Along this line, a partition method, π(n), is proposed to divide the
data series into length-equal and position-continuous segments. Based
on the results of implementing π(n) on a data series, we propose two
new concepts of distribution periodicity and structure periodicity. Then,
a cross-entropy-based method, namely CEPD, is proposed to mine the
periodicity of data series. The experimental results show that CEPD can
be used to mine feasible event periodicity in data series, especially, with
very low level of time consumption and high capability of noise resilience.

Keywords: Data series · Cross entropy · Distribution periodicity ·
Structure periodicity

1 Introduction

Data series is commonly used in presentation of the events sequentially happened
in real world, such as the weather data for a location [22], the gene expression
data [12], the finance fluctuation data [20,32], the web site visiting traffic [5,29],
and the consumption sequence of a user [1]. Data series is mostly characterized
by being composed of repeating cycles [19], especially, for those data series gen-
erated by user behaviors [30]. For instance, “The vendors purchase twice a month
from the suppliers,” “Bob visits gym every Tuesday,” and so on. Basically, such
repeating patterns could reveal important observations about the behavior and
future trends of the events represented by the data series, and hence would lead
to more effective decision making [16]. These gave rise to an important process
for mining regular patterns within a data series.

In general, event(s) may show three types of periodicity in a data series: the
symbol periodicity, the partial (sequence) periodicity, and the full-cycle (seg-
ment) periodicity [19]. Given a periodicity mining task, the methods proposed
in the literature would like to treat the task of periodicity detection as a process
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11446, pp. 124–139, 2019.
https://doi.org/10.1007/978-3-030-18576-3_8
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of finding temporal regularities within the data series [8,13,19,28,30]. Although
these methods had performed well for event periodicity mining in certain situa-
tions, nevertheless, they also face some technical challenges:

– First, the common problem for these approaches is their computational per-
formance, especially in a big data environments. To address this issue, they
would assume previously that users either know the value of the period before-
hand or are willing to try various period values until satisfactory periodic
patterns emerge [7]. However, if there are multiple events embedded in a data
series, then more prior information is needed for event periodicity mining
task, or it will make the mining methods present relative poor performance,
both on efficiency and completeness [31].

– Second, these methods mainly identify the structural periodicity of the events
over a set of periods (time intervals), i.e., those events which occurred at a
fixed position in each period may be considered as having periodicity [13].

– Third, data collected from the real-world, which is the input of mining
algorithms, are affected by several components; among them, noise is an
unavoidable problem [25]. Therefore, the event periodicity mining methods
are expected to provide better robustness to noise [11,18].

In this work, we will introduce the distribution periodicity and structure peri-
odicity to measure the periodic information of an event in a data series. The main
contributions of this paper lie in two aspects: first, to the best of our knowledge,
it is the first time to distinguish the idea of distribution periodicity and structure
periodicity; second, based on the minimum cross entropy principle, an efficient
method is proposed to mine the periodicity of an event in data series, which also
has a better performance on noise resilience.

2 Related Work

There are lots of studies proposed in the literature of data stream mining. In
summary, they can be categorized into types of signal-processing-based, data-
structure-based, and statistics-based method.

Signal-Processing-Based Method. The signal processing method in periodic
pattern mining is mainly reflected in the data processing and transformation. [6]
used the Haar Wavelet Transform and discrete fourier transform (DFT) for time
series indexing. The algorithm presented by [24] is the first one that exploits the
information in both periodogram and autocorrelation to provide accurate peri-
odic estimates without upsampling. In this work, both DFT and power spectral
density (PSD) estimation method are introduced to deal the time series data.
A convolution-based algorithm is proposed for segment periodicity and symbol
periodicity, and the periodic patterns of unknown periods are also discovered
without affecting the time complexity [7]. As pointed out in [18] and [13], the
fast Fourier transform (FFT) [3] can also be used to identify periodicity. How-
ever, there are two problems in the FFT method. First, it does not cope well with
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random off-segments in periodic patterns. Further, the computational efficiency
is very complicate when events in data series are sparse [30].

Data-Structure-Based Method. In earlier studies, the work in [10] use a slid-
ing window over the data sequence and extract its features, then [26] presented
mining technology from a time series database based on a moving-window. Also,
by using an expanding sliding windows, [9] improved the accuracy of the discov-
ered periodicity rates. In recent, a pattern-growth approach which is based on
a tree structure, called Periodic Frequent-tree (PF-tree) has been discussed for
mining periodic patterns [23]. In the paper of [23], the authors use a so called
Periodic-frequent pattern tree to capture the database contents and generate the
complete set of periodic-frequent patterns.

Since partial periodicity is very common in practice, [13] studied an interest-
ing data mining problem of searching for partial periodic patterns in time-series
databases, their algorithm based on a max-subpattern tree offers excellent perfor-
mance. Promoted by this research, [4] proposed a new structure, the abbreviated
list table (ALT), and several efficient algorithms to compute the partial periods.
Sheng et al. [21] developed an algorithm to utilize optimization steps to find
dense periodic areas in the time series.

Statistics-Based Method. Some basic static methods such as autocorrelation
and ranking are commonly used. [2] proposed an algorithm for finding approx-
imate periodicities in large time series data, utilizing autocorrelation function
and FFT. And it can discover weak periodic signals in time series databases. [14]
investigated an interesting type of periodic pattern, called partial periodic (PP)
correlation. Especially, a more suitable measurement, information, is introduced
in [27] to naturally value the degree of surprise of the pattern within a data
sequence. In [30], the authors presented a variance-based approach to model
periodicity, which is to detect event periodicity basing on the statistical variance
of the gaps at which a pattern occurs in data series (i.e., the variance of the
interarrival times of the pattern). Ghosh et al. [11] have demonstrated the use
of a sequential Monte Carlo method to detect and track the periodicity in dis-
crete event streams. Unlike other methods, this technique does not rely on the
underlying process sticking to a constant phase.

3 Concepts and Model Formulation

3.1 Data Series and Event Periodicity

A data series S is an ordered sequence of |S| feature values:

S = (s1s2...st...s|S|), st ∈ R, (1)

where st is the value of the feature at position t, for example, the feature might
be the daily average stock price of a company.
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In order to facilitate the calculation, we usually transfer S into a more easy-
to-compute formation. If we discretize the feature values in S into nominal dis-
crete events (e.g, stock price goes “up”, “down” or “flat”), then the set of feature
values can be denoted as Σ = {a, b, c, ...}[7] by representing each event as a sym-
bol (i.e., a = “goes up”, b = “goes down”, c = “goes flat”, etc.). As a result, S can
be viewed as a sequence of |S| events (symbols) drawn from a finite event set of
ΣS . Further more, let et be any event occurred at position t in S, then a set of
events happened sequentially over continuous position space of [1, |S|] can
be specified as follows:

S = (e1e2...et...e|S|), et ∈ ΣS . (2)

Using x to denote the focal event in ΣS , and x̃ denotes any event type in
ΣS \ {x}, if et = x, then we said that event x appears at position t in S.
Especially, when we only concern about whether event x occurred at position t,
BSx is then can be encoded as a binary data series,

BSx = (b1b2...bt...b|S|), bt ∈ {0, 1}. (3)

where bt is specified as follows:

bt =

{
1 if et = x (i.e., x appears at position t);
0 otherwise (i.e., x̃ appears at position t).

Definition 1. An event x ∈ ΣS is said to have periodicity (or x is a periodic
event) in data series S, if its appearances are shown repeated periodically in S.

Apparently, if event x appears periodically in data series S, we can expect
that the appearances of code “bt” in BSx are also periodically.

3.2 Data Series Partitioning

To mine the periodicity of event x in data series S, a feasible way is to divide S
into segments [17].

Given a set of partition methods
∏

defined over S, if there always exists a
partitioning scheme π(n) ∈ ∏

(where n < |S|) such that n is the (distribution or
structure) period of event x, then

∏
is called a complete partition set with

respect to the periodicity of x in S. Moreover, π(n) is then called a “good”
partition for detecting the periodicity of x in S.

Accordingly, we propose a simple and complete partitioning method, i.e.,
π(n), n ∈ [1, |S|], to divide the data series S into segments iteratively as follows:

Step 1: Begin with the first position t = 1;
Step 2: Every n position-continuous elements are partitioned into a same seg-
ment P , i.e., the first n events are in P1, the second n events are in P2, and so
on. As a result, π(n) = {P1|P2| · · · |P� |S|

n �} partitions S into � |S|
n � length-equal1

segments, and Pj =
(
e(j−1)∗n+1, · · · , ej∗n

)
, where j ∈ [1, � |S|

n �].
1 |P� |S|

n
�| ≤ n is allowed.
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For example, BS = (00111000100110001000), then method π(4) will parti-
tion BS into five segments as follows:

π(4) = {0011︸︷︷︸
P1

|1000︸︷︷︸
P2

|1001︸︷︷︸
P3

|1000︸︷︷︸
P4

|1000︸︷︷︸
P5

}.

By implementing π(n) = {P1|P2| · · · |P� |S|
n �} on a binary time-series BS, we

can obtain a partition matrix by rearranging all the segments Pj as follows:

P1 b1 ... bn

P2 bn+1 ... b2n

...
... ...

...
Pj = b(j−1)∗n+1 ... bj∗n

...
... ...

...
P� |S|

n � b
(� |S|

n �−1)∗n+1
... b

(� |S|
n �)∗n

.

In general, the matrix has a total of � |S|
n � rows and n columns. Row j ∈

[1, · · · , � |S|
n �] is just the contents of j-th segment, i.e., Pj . Column τ ∈ [1, · · · , n]

is corresponding to the appearances of event x at the τ -th position, which is

referred to as Cτ =
(
bτ , ..., b(j−1)∗n+τ , ..., b

(� |S|
n �−1)∗n+τ

)T

.

Definition 2. The total appearances of event x in segment Pj (j ∈ [1, · · · ,

� |S|
n �]) is called the support of x in Pj, it is defined as

supp(x|Pj) =
∑

bt∈Pj

bt. (4)

Lemma 1. supp(x|Pj) + supp(x̃|Pj) = n, j ∈ [1, ..., � |S|
n � − 1]2.

Definition 3. The total appearances of event x in Cτ (τ ∈ [1, · · · , n]) is called
the support of x at position τ , which is represented by:

supp(x|Cτ ) =
∑

bt∈Cτ

bt. (5)

Lemma 2. supp(x|Cτ ) + supp(x̃|Cτ ) = � |S|
n �, τ = 1, ..., n.

Further more, we can define that the total appearances of event x in S is
called the support of x, which is defined as

supp(x) =
∑

bt∈BSx

bt. (6)

2 supp(x|P� |S|
n

�)+supp(x̃|P� |S|
n

�) may less than n while incomplete partition happened

in the last segment.
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Accordingly, the distribution of x in Pj , i.e., p(Pj), and the distribution of x
in Cτ , i.e., q(Cτ ), are defined as following respectively,

p(Pj) =
supp(x|Pj)

supp(x)
, and q(Cτ ) =

supp(x|Cτ )
supp(x)

. (7)

3.3 Distribution Periodicity and Structure Periodicity

An event x is said to have distribution periodicity in S with respect to
“good” partition π(n), if its support (appearance) in each segment is equal. For
the distribution periodicity, we have the following theorem:

Theorem 1. If event x has a distribution period of n in S, then the ideal dis-
tribution of x in � |S|

n � segments is as

pn =

{
1

� |S|
n �

, ...,
1

� |S|
n �

, ...,
1

� |S|
n �

}
. (8)

Proof. The good partition π(n) = {P1|P2| · · · |P� |S|
n �} divides S into � |S|

n � equal
length segments. Since x shows distribution periodicity with respect to partition
π(n), we can expect that supp(x|Pi) ≈ supp(x|Pj) for any i �= j, where i, j =
{1, .., � |S|

n �}. Moreover, with Lemma 1, we obtain:

supp(x) =
� |S|

n �∑
j=1

supp(x|Pj) ≈ �|S|
n

� × supp(x|Pj).

That is, the distributions of x in {Pj}, i.e., supp(x|Pj)
supp(x) , are equally to 1/� |S|

n �.

Definition 4. An event x is said to have structure periodicity in S with
respect to “good” partition π(n), if its position (time point) in each segment is
the same.

For the structure periodicity, we have the following theorem:

Theorem 2. If event x has a structure period n in S at position τ# ∈ [1, ..., n],
then the ideal distribution of x on the n positions is as

qn = {q(C1), ..., q(Cτ#), ..., q(Cn)} = {0, ..., 1, ..., 0}. (9)

Proof. If event x has structure periodicity in data series BSx with respect to
“good” partition π(n), then

– bi∗n+τ = bj∗n+τ , here i, j ∈ [0, · · · , � |S|
n � − 1] and τ ∈ [1, ..., n]; and

– ∃ τ# ∈ [1, ..., n] such that bτ# = 1 and bτ = 0 (τ �= τ#).
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We obtain ∀ j ∈ [0, · · · , � |S|
n � − 1], bj∗n+τ# = 1 and bj∗n+τ = 0 holds. Then,

supp(x|Cτ#) =
� |S|

n �−1∑
j=0

bj∗n+τ# = � |S|
n

�,

and supp(x|Cτ )τ �=τ# = 0. Based on Lemma 2, we know that q(Cτ#) = 1, and
{q(Cτ )}τ �=τ# are all 0.

If π(n) is the “good” partition for the distribution periodicity of x in S, and
π(n) is also the “good” partition for the structure periodicity of x in S, then x
is said to have a perfect periodicity in S.

3.4 Research Problem

Implementing partition method π(n) ∈ Π on a binary time-series BSx, it would
generate two distributions for the appearances of x in data series, i.e.,

p̂n = {p̂(Pj)}1≤j≤� |S|
n �] and q̂n = {q̂(Cτ )}1≤τ≤n. (10)

If there exists a feasible measurement of d(·) that can be used to evaluate the
distance between two distributions in (10), then d(p̂n, pn) and d(q̂n, qn) would
show how close a real probability distribution p̂n (q̂n) is to a candidate distri-
bution of pn (qn). Without losing generality, it can be assumed that the more
closer p̂n (q̂n) to pn (qn), the more smaller the value of d(p̂n, pn) and d(q̂n, qn)
would be. Along this line, the event periodicity detection is changed to find an
optimal partition π(n) on S to minimize the distance between the generated two
distributions with two distributions respectively:

minπ(n)∈∏{d(p̂n, pn)} and minπ(n)∈∏{d(q̂n, qn)}
st. 2 � n � � |S|

2 �. (11)

4 Mining Event Periodicity

4.1 Cross Entropy

In this work, we introduce the cross entropy [15] to measure the similarity
between two distributions. Given two distributions of p̂n and pn, the cross
entropy or the Kullback-Leibler (KL) divergence between p̂n and pn is defined
by

KL(p̂||p)n =
∑

n

p̂n log
p̂n

pn
. (12)

The cross entropy determines the ability to discriminate between two states
of the world, yielding sample distributions p̂n and ideal distribution pn.

Theorem 3. KL(p̂||p)n ≥ 0, and it is minimized if the distributions match
exactly, i.e., KL(p̂||p)n = 0 if p̂n = pn.

Theorem 3 provides theoretical clues for finding a feasible n in task of event
periodicity detection.
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4.2 Identifying Distribution Periodicity

According to the definition of Theorem1, if event x has distribution periodicity
in S with respect to the “good” partition π(n), then

pn =

{
1

� |S|
n �

, · · · ,
1

� |S|
n �

}
.

The appearances of x in each segment Pj is supp(x|Pj) with respect to π(n).
Accordingly, the posterior probability distribution of p̂n is calculated as:

p̂n =

{
supp(x|P1)

supp(x)
, · · · ,

supp(x|P� |S|
n �)

supp(x)

}
.

Known from Theorem 3, a smaller value of KL(p̂||p)n means the poste-
rior distribution pn is more close to qn, which indicates that pn ∼ qn means
KL(p̂||p)n ∼ 0 and then π(n) may be a “good” partition for detecting the peri-
odicity of event x. Thus, the task of detecting distribution periodicity of event
x in S is equal to find a “good” partition π(n∗) to minimizes the KL distance:

n∗ = arg min
π(n)∈∏{KL(p̂||p)n} st. 2 � n � � |S|

2
�. (13)

We propose an Algorithm 1 to calculate the minimized KL(p̂||p)n.

Algorithm 1. Calculate KL(p̂||p)n

1: Input: Binary data series BSx;
2: Output: KL;
3: KL = φ;
4: for n = 2 to � |S|

2
� do

5: KLn = 0;
6: for j = 1 to � |S|

n
� do

7: Pj = {b(j−1)∗n+1, ..., bj∗n};

8: pj =
supp(x|Pj)

supp(x)
;

9: KLn = KLn + pj log
(
pj ∗ � |S|

n
�
)
;

10: end for
11: KL ← KLn;
12: end for
13: return KL;

The proposed method traverses all the n in [2, � |S|
2 �] to find the most

feasible π(n) such that the value of KL(p̂||p)n can be minimized. Based on
the partition results provided by π(n), we have to calculate � |S|

n � values, i.e.,
supp(x|Pj)j={1,...,� |S|

n �}, which can be obtained in O(1) time. Therefore, the over-

all complexity of Algorithm 1 is very efficient of
∑� |S|

2 �
2 � |S|

n � = O(|S| ln |S|).



132 H. Yuan et al.

4.3 Identifying Structure Periodicity

We consider the opposite side of the above mentioned “good” partition, that
is, the “worst” partition for showing the structure periodicity of event x. In
such a poor case, the distribution of x would not obey the rule of Theorem2,
which means the distributions of x in Ct, (t = 1, ..., n) are the same instead of a
distribution shown in relation (9). Such a distributions of x can be referred as:

qn =
{

1
n

, · · · ,
1
n

}
.

In real, the posterior probability distribution of x in Cτ is:

q̂n =
{

supp(x|C1)
supp(x)

, · · · ,
supp(x|Cn)

supp(x)

}
.

Using KL(q̂||q)n to measure the difference between two distributions of q̂n

and qn, a bigger value of KL(q̂||q)n indicates that the posterior distribution q̂n is
deviated much from the route of qn, and thus π(n) may be a “good” partition for
detecting the structure periodicity of event x. Detecting structure periodicity of
event x is thus equal to find a π(n) ∈ Π to minimizes the value of −KL(q̂||q)n.

n# = arg min
π(n)∈∏{−KL(q̂||q)n} st. 2 � n � � |S|

2
�. (14)

Algorithm 2 is used to calculate all the value of −KL(q̂||q)n for x.

Algorithm 2. Compute −KL(q̂||q)
1: Input: Binary data series BSx;
2: Output: KL;
3: KL = φ;
4: for n = 2 to � |S|

2
� do

5: KLn = 0;
6: for k = 1 to n do
7: Ck = {bk, bn+k, ..., b

(� |S|
n

�−1)∗n+k
};

8: qk = supp(x|Ck)
supp(x)

;

9: KLn = KLn + qk ∗ log(qk ∗ n);
10: end for
11: KL ← −KLn;
12: end for
13: return KL;

There are totally supp(x) appearances of x in S and � |S|
2 � partition results,

we then can calculate supp(x|Cτ ) for all the partition results by traversing all
the appearance of x in S. Along this way, the complexity of Algorithm2 is
O(supp(x)|S|) and the operation time can be optimized, especially, when x is
sparsely distributed in S. Note that, the basic operation for this method is to
calculate supp(x|Cτ ) with (5) for all the � |S|

2 � partition results. Therefore, the
complexity of Algorithm2 is characterized by max{O(|S| ln |S|), O(supp(x)|S|)}.
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5 Experimental Results

5.1 Experimental Setup

We conduct a series of experiments to evaluate the performance of the proposed
method, namely Cross-Entropy based Periodicity Detection (CEPD). To that
end, three algorithms of WARP [8], CONV [7] and VAR [30] are selected for
comparisive purpose. Given that the performance of VAR are affected heavily by
a user-specified parameter of va, i.e., a bigger threshold value of va will result in
an increased time consumption [30], the VAR method will be conducted 3 times
with different parameter settings of va = 0.01, 0.1, and 0.2 respectively.

All these algorithms suffer from the poor performance to big data and poor
resilience to noise. To support this claim and make the experimental results more
clear, we conduct a series of experiments using synthetic data. The synthetic data
have been generated by controlling parameters of data distribution (uniform or
normal), alphabet size (number of unique symbols in the data), size of the data
series (total number of symbols), period length, and the amount of noise in the
data, which is the same way as done in [7,19]. In addition, each algorithm will
be run 10 times, and then take the averaged value of these experimental results
as the final result to avoid potential bias.

The confidence of a periodic event x occurring in data series S is the ratio
of its actual periodicity to its expected periodicity. Formally, the periodicity
confidence of x in S under partition π(n) is defined as [13,19]:

conf(x)n =
Actual Periodicity(x)

� |S|
n �

, (15)

where Actual Periodicity(x) is computed by counting the number of segments
in which x is appearanced.

5.2 Efficiency of the Method

In the efficiency experiments, we test the time consumption of the four algorithms
of CEPD, WARP, CONV and VAR under the impacts of following circumstance:
the total data size |S|, the period length n, the alphabet size |ΣS | and the
(replacement) noise ratio in S.

The first set of experiments is about the effect of data series size, |S|, on
the efficiency of algorithms, all the methods will be conducted on a set of syn-
thetic data series by varying data size from 100 to 500. These synthetic data
series have been generated by following uniform distribution with alphabet size
of 4 and embedded identical period of 5. The results are presented in Fig. 1(a)
and (b). Obviously, the running time of all the four methods will go increas-
ing dramatically while |S| becomes bigger. WARP has the highest complexity
(Fig. 1(a))3. Figure 1(b) is a locally magnified image of Fig. 1(a), which shows
that both the efficiency of CEPD and CONV are better than that of VAR,
3 In Fig. 1, symbol † means the experimental results without WARP.
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this advantage becomes more obvious with the decrease of va. The experiments
indicate that the efficiency of CEPD is superior to the others when data series
becomes very large.
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Fig. 1. Efficiency experiments

The next set of experiments are intended to show the efficiency of the algo-
rithms by varying the embedded period size. In the experiment, we fixed the
number of alphabets as 4, and embedded period are varied from 4 to 20. The
curves of running time taken by CEPD, WARP, CONV and VAR have been plot-
ted in Fig. 1(c), and an amplification version for the comaprison among CEPD,
CONV and VAR is shown in Fig. 1(d). The results show that the time consump-
tion of all the four algorithms are increased while the period length becomes
longer. Again, WARP has the highest complexity which is followed by VAR,
CONV and then CEPD.

The third set of experiments are intended to show the performances of all
the four methods under effects of different alphabet size |Σ| in a data series. The
synthetic data series used in the experiments are embedded with a period of 32
and the number of alphabets are varied from 1 to 20 (smaller than the period
value). The experimental results show that, along with the increasing of the
alphabet size |Σ|, the running time of WARP is stable and significantly higher
than the other methods. Interestingly, the running time of VAR and CONV
increase dramatically when |Σ| is relative small, and then fall down when |Σ|
goes bigger (Fig. 1(e) and (f)). The running time of CEPD increases slowly and
lower than that of the other methods.

The fourth experiments are conducted to measure the impact of noise ratio
on the time performance of the four methods. To that end, we fixed the length
of the time series as 500, and replaced some regular symbols with noise symbols
in the experiments. The noise ratio is varied from 0 to 0.5. As we can see, the
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running efficiency of CEPD, WARP and CONV perform stably under different
noise ratio. In other words, the performance of these algorithms are not sensitive
to replacement noise (Fig. 1(g) and (h)). This is similar to the results presented
in [19]. As for VAR, it performs worse as the ratio noise increasing (Fig. 1(h)).

5.3 Accuracy of the Method

Two different ways are conducted to study the accuracy of the algorithms. The
first compares the value of confidence for each method assuming that the period
can be identified by all the methods. Whereas, the second compares the period
identified by each method when the confidence is maximized. Five synthetic
data sets are generated for the experiments (Table 1). In the experiments, the
potential period length is set as 10, and the data series is generated by repeating
the period 100 times.

Table 1. The generation of synthetic data set (denoted by D).

D Generation rules Sample data series

1 1 periodic event 1000 1000 1000 1000

2 1 random event 1000 0010 0001 0100

3 2 periodic events 1010 1010 1010 1010

4 1 periodic and 1 random event 1001 1100 1010 1010

5 2 random events 0101 1001 1010 0011

For the experiments of confidence comparison, the results are listed in Table 2.
As we can see, the CEPD can identify all the events with confidence 100% since
all the events in the data series are uniformed distributed with respect to the
period. WARP also show a better performance on accuracy (close to 100%) than
CONV and VAR. However, CONV performs good on data set 1, 3 and 4, and
bad on data set 2 and 5 (the events are randomly distributed). That is to say,
CONV prefers to structure period. The VARs show good efficiency on the data
series having only 1 event embedded (data set 1 and 2).

5.4 Noise Resilience

In data series, there are three types of noise: replacement, insertion, and deletion
noise [8]. Accordingly, the purpose of the following experiments are to study the
behavior of the different methods in periodicity detection with respect to toward
these noise as well as some mixtures of them. In the experiments, we used a
synthetic time series containing 4 symbols and period size of 10. The noise ratio
increased gradually from 0.0 to 0.5. Finally, we report the averaged confidence
level of all the symbols at which the actual period of 10 is detected.
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Table 2. The comparison of confidence (the period is fixed).

Data Set CEPD CONV WARP VAR VAR VAR

(va = 0.2) (va = 0.1) (va = 0.01)

1 1 1 1 1 1 1

2 1 0 0.9959 1 1 -

3 1 1 1 - - -

4 1 1 0.9989 - - -

5 1 0.0813 0.9975 - - -

In general, along with the increase of noise ratio, the accuracy of all the algo-
rithms are in decline; especially when considering insertion, deletion or hybrid
noise increasing, the accuracy of these algorithms will fall shapely (Figs. 2 and
3). In case that the noises are uniformly distributed in data series, CEPD has
the best performance for the replacement noise (Fig. 2(a)). When the insertion,
deletion and hybrid noises are embedded uniformly into a data series, WARP
shows the best performance on noise resilience, followed by CEPD (Fig. 2(b), (c)
and (d)). In case that the noises are normally distributed in data series, simi-
larly, CEPD performances best under the situation that the replacement noises
are embedded (Fig. 3(a)). However, for the situations of insertion, deletion and
hybrid noises, the comparative results are mixed and no method has a significant
advantage over the others in noise resilience (Fig. 3(b), (c) and (d)).
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Fig. 2. Accuracy (uniformly distributed noise).

5.5 A Case Study on Real Dataset

A real-world data set, i.e., Amazon access samples data set (AASDS)4, has been
used in the experiments which was created and donated by Amazon.com in 2011
and has been cited for many times. AASDS contains 17612 users’ access history
from 2005.8 to 2010.8. To study the periodicity of each Amazon user, we take
“Day” as the basic time unit, and all the accessing actions are then counted
by 24-hours-day, for example, if a user had accessed Amazon.com more than 0

4 http://archive.ics.uci.edu/ml/datasets/.

https://www.amazon.com/
https://www.amazon.com/
http://archive.ics.uci.edu/ml/datasets/
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(b) Insertion noise.
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(c) Deletion noise.
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(d) RID noise.

Fig. 3. Accuracy (normally distributed noise).

times in Sep. 2, 2005, then we marked the value of et at the position of day Sep.
2, 2005 as “1” in SA, otherwise, “0” is marked. Finally, we can generate a data
series of SA for the targeted user.

Taking the No. #33400 user as an example, the results are shown in Fig. 4. As
we can see that, the minimized value of KL shows that the distribution period
of users #33400 accessing Amazon.com can be approximated as n∗ = 15 days
(two weeks). That is to say, the user trended to visit Amazon.com equal times
every 15 days. Although the event of user #33400 accessing Amazon.com has a
distribution of two weeks, but the multiple relationship between the positions of
local minimized −KL′ for data set AASDS is weak, which means the user has
no regular time point for visiting Amazon.com.
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Fig. 4. KL and −KL′ in real data series.

6 Conclusion

Discovering the periodicity of event happened in sequential data series is a valu-
able work for data analyzing. In this paper, a novel and efficient method, namely
CEPD is proposed to address the event-based periodicity mining problem in data
series. The advantages of the proposed method are summarized as follows: first,
it is the first time to distinguish the idea of distribution periodicity and structure
periodicity. Second, a simple and complete partition method π(n) is proposed.
Third, basing on the minimum cross entropy principle and the property of peri-
odic function, we present an efficient method to measure and determine the
periodicity of an event. The experimental results show that CEPD has a best
performance of running efficiency due to its less complexity.

https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
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Abstract. The way in which jobs are scheduled is critical to achieve high
job processing performance in large scale data clusters. Most existing
scheduling mechanism employs a First-In First-Out, serialized approach
encompassed with task straggler hunting techniques which launches spec-
ulative tasks after detecting slow tasks. This is often achieved through
the instrumentation of processing nodes. Such node instrumentation
incurs frequent communication overheads as the number of processing
nodes increase. Moreover the sequential scheduling of job tasks and
the straggler hunting approach fails to meet optimal performance as
they increase job waiting time in queue and incurs delayed specula-
tive execution of straggling tasks respectively. In this paper we pro-
pose an Enhanced Phase based Performance Aware Dynamic Scheduler
(EPPADS), which schedules job tasks without additional instrumenta-
tion modules. EPPADS uses a two staged scheduling approach, that
is, the slow start phase (SSP) and accelerate phase (AccP). The SSP
schedules the initial task in the queue in the normal FIFO way and
records the initial execution times of the processing nodes. The AccP
uses the initial execution times to compute the processing nodes task
distribution ratio of the remaining tasks and schedules them using a
single scheduling I/O. We implement EPPADS scheduler in Hadoop’s
MapReduce framework. Our evaluation shows that EPPADS can achieve
a performance improvement on FIFO scheduler of 30%. Compared with
existing Dynamic scheduling approach which uses node instrumentation,
EPPADS achieves a better performance of 22%.

Keywords: Distributed processing · Scheduling · MapReduce

1 Introduction

For the past decade or so, we have experienced a data deluge [15] which keeps
increasing at an exponential rate, doubling every two years and consequently
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raising storage and computational concerns. With this massive amounts of data
stored, the need for effective parallel processing in large scale data centers
arises. Prior works have shown that in large parallel data processing clusters,
job response time is a key performance factor that needs serious attention [4].
To achieve high job processing performance, most approaches split jobs into
several smaller tasks which are then distributed to multiple processing nodes.
However, job response time is often delayed by tasks running on slower nodes
known as stragglers. The presence of stragglers is mainly due to the high con-
tention or failures in processing nodes. It is therefore critical to mitigate the job
execution slowdown caused by stragglers in order to achieve high processing per-
formance. An example of a widely used parallel processing framework adopted
by the cloud community is MapReduce [7]. One important benefit of MapReduce
framework is that it abstracts the complications of handling stragglers, from the
programmer by automatically invoking duplicate tasks of the stragglers onto idle
slots of faster processing nodes. This phenomenon is known as speculative execu-
tion. Speculative execution of stragglers often results in reduced job completion
time. Prior works [7] shows that speculative execution can reduce job execution
time by 44%.

However, the default scheduler in MapReduce framework, splits the job tasks
uniformly to the processing nodes called task trackers (TT) in a First-In First-
Out (FIFO) manner for parallel task execution. Such task distribution assumes
a homogeneous compute capability across all task trackers. However, this will
not perform well when subjected to heterogeneous cluster setups, where some
task trackers are faster than others. Previous work, LATE [19], proved that
when the default FIFO scheduler is employed in a heterogeneous cluster envi-
ronment, it frequently invokes unnecessary speculative tasks which often elongate
the job completion time. To mitigate such unnecessary speculative task execu-
tion, a number of self-adaptive dynamic schedulers, LATE, LA, DDAS, ESAMR,
COSSH [11,13,14,18] were proposed. These schedulers operate by regularly col-
lecting and using system level information to dynamically make scheduling deci-
sions in heterogeneous environments. This was achieved through employing some
modules in the job tracker node (also called master node) which instruments the
compute capabilities of all task trackers. This therefore enforced the use of always
up to date system level information to make scheduling decisions. As a result,
speculative tasks will be invoked only if their invocation can result in shorter
job execution time. However the monitoring can contribute additional overhead
as the number of nodes to be monitored increase above certain limits.

In summary, the existing approaches are coupled with some drawbacks that
limits the attainment of maximum job execution performance in large scale clus-
ters. firstly, sequential task scheduling, i.e., a successive task in the job queue is
scheduled only if the predecessor task has completed, elongates the job comple-
tion time as all successive tasks has to wait until previously scheduled task is
completed. Secondly, existing approaches uses the straggler “hunting” approach,
which only invokes a speculative task in the middle of executing a straggling task.
This speculative task invocation approach occurs when the job monitor notices
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that the progress of the job is well below average. Job completion performance
is then degraded as speculative execution is often invoked late. lastly, frequent
collection of processing nodes system level information to predict the time to
complete a task and make scheduling decisions causes additional performance
degradation. Such communication overheads increase dramatically as we scale
up task trackers in the cluster.

To overcome the above mentioned problems in existing approaches, we
propose an Enhanced Phase based Performance Aware Dynamic Scheduler
(EPPADS), which uses a rolling scheduling window in which incoming tasks
are split into smaller partitions, called scheduling window instances. EPPADS
launches the first tasks in the scheduling window instance in a normal FIFO
way. Basing on the initial time to complete and progress rate of the initial tasks,
straggler nodes are marked. This eradicates the need for system level communi-
cation modules used in previous works. This process happens in the first phase
of EPPADS known as Slow-Start Phase (SSP). EPPADS resolves the drawback
of sequential task scheduling by distributing the remaining job tasks within the
scheduling window instance at one go. This is achieved in the second phase
of EPPADS called the Accelerate Phase (AccP). Since the straggler nodes are
marked during the SSP, tasks scheduled to straggler nodes are launched at the
same time with their corresponding speculative tasks. This removes the draw-
back caused by late invocation of speculative tasks. The main contributions of
our work are as follows;

• We design a lightweight dual-phase opportunistic job task scheduler, which
amortizes the performance drawbacks caused by node monitoring and sequen-
tial task scheduling.

• We design and implement a sliding scheduling window technique that fuse job
scheduling together with task pre-speculation based on the compute capabili-
ties of each worker node. Task allocation decisions are made at each scheduling
window instance.

• We implemented our EPPADS prototype in Yarn Scheduler Load Simulator
(SLS) which has the capability to emulate a large scale production cluster.
Our evaluation shows that EPPADS achieves a performance improvement of
30% and 22% as compared to default FIFO scheduler and existing dynamic
self adaptive schedulers which uses node monitoring, respectively.

2 Background and Motivation

2.1 MapReduce and Job Scheduling

Figure 1 shows the general design of MapReduce framework. In a MapReduce
cluster, clients submit job requests through the job-tracker node. The job-tracker
splits the job requests into smaller tasks that are uniformly scheduled to multi-
ple task-tracker nodes for parallel processing. The job-tracker is responsible for
tracking the progress of each assigned task in all the task-trackers. Each MapRe-
duce job has a map and reduce stage and it is the responsibility of the job-tracker
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Fig. 1. MapReduce framework. Fig. 2. Node instrumentation.

# Task Trakers

R
un

tim
e

(m
s)

4 8 16 32 64 12
8

25
6

0

3000

6000

9000

12000

0
20
40
60
80
100

Job runtime CPU Usage
Job tracker

JT
C

PU
us

ag
e

(%
)

Fig. 3. An analysis of the default FIFO scheduler. JT in Y-axis means job tracker.

node to harmonize the map and reduce stages of the MapReduce job. The Map
phase partitions the input data and outputs some intermediate key and value
pairs which are sorted and combined so that similar key and value pairs are
processed by the same reducer on the reduce phase. Finally the reducers will
process the key, value pairs and output the final results.

It is important to note that the manner in which jobs are scheduled and pro-
cessed is of significance importance to achieve high job execution performance in
large scale data processing clusters. In MapReduce programming model, tasks
are scheduled equally among task trackers for processing using the FIFO sched-
uler. The job-tracker monitors the progress of all tasks in all task tracker nodes. If
a straggler task is detected, a speculative task is invoked on a faster task-tracker
with an available processing slot. The results of the task which finishes first is
then used, and the other task is destroyed immediately. This speculative task
execution shortens the job completion time significantly [7]. However, the perfor-
mance gain significantly decreases when the default FIFO scheduler is subjected
to heterogeneous cluster environments [19]. This is because FIFO scheduler was
designed with homogeneous environments in mind, where all nodes have equal
processing capabilities. It is therefore vital to design effective performance-aware
schedulers that improve the job execution performance in a heterogeneous large
scale data clusters.
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2.2 Motivation

Communication and Monitoring Overheads: Quite a number of previous
works [8–11,13,14,18,19] has concentrated on enhancing job processing perfor-
mance in heterogeneous clusters. Most large scale data processing clusters are
commonly faced with frequently fluctuating system loading. Usually this might
be caused by other non-MapReduce processes running on the cluster. Therefore,
there is need for provisioning of a consistent and accurate speculative execution
scheme that keeps track of task tracker nodes system level information [6,11,14].
Basing on these system level information, speculative task execution is invoked
judiciously only on tasks that reduce the job completion time.

Figure 2 shows the widely used instrumentation approach in previous and
existing works [6,11,14]. It uses additional modules for collecting system level
information of all task-tracker nodes and make scheduling decisions based on the
collected task trackers’ system level information. However, additional instrumen-
tation can cause system performance degradation as the number of tasks tracker
nodes increases. Figure 3 shows an analysis of the default FIFO scheduler, and
the job runtime performance when FIFO scheduler is adopted. The details of the
testbed setup are the same as the ones in Sect. 4 - Table 1, using the Scan work-
load traces from the HiBench suite. We observed that when we initially increase
the number of task trackers, the job runtime performance increases. However, it
reaches a point (In our case above 64 task trackers) where increasing the number
of task trackers starts to degrade the job execution performance. We observed
also that the CPU utilization on the Job tracker node is very high when the num-
ber of task trackers are greater than 64. This shows that the communication and
monitoring overheads are non negligible in large scale data processing clusters.
This is because a large number of task trackers create significant contention
on the job tracker node and consequently suppress the overall job execution
performance.

Sequential Task Scheduling: All prior studies adopted the traditional way
of scheduling tasks in a sequential manner. This implies that a successive task
can only be scheduled only if one of the already scheduled tasks is completed.
By so doing, it causes a major constraint in achieving maximum job completion
throughput. Serialization of task scheduling usually result in increased scheduling
time considering a large number of tasks that can be scheduled in large scale
data processing clusters. Also, the average waiting time of successive tasks and
jobs in the job tracker’s job queue consequently increases, thereby affecting job
processing performance.

Delayed Speculative Task Execution: Current scheduling techniques in
MapReduce adopts a straggler “hunting” approach in-order to invoke specu-
lative tasks of stragglers. In this approach, all scheduled tasks are monitored for
their execution process. While in the middle of task execution, if the progress
of any scheduled tasks is below the average progress rate of all processing tasks,
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Fig. 4. An overview of EPPADS architecture.

a corresponding duplicate task are launched speculatively on other faster task
trackers. However this approach waits for straggler task detection before invoking
a speculative task. Invoking a speculative task at the time of straggler detection
might be too late to limit the slowdown caused by the straggling tasks.

To amortize the above mentioned drawbacks we propose EPPADS, which
achieves high performance job execution without the need for any additional
instrumentation modules, schedules multiple tasks in the same scheduling win-
dow instance in a concurrent manner and incorporates job scheduling and task
pre-speculation withing a scheduling window instance. In this case straggling
tasks are predicted and their speculative tasks are invoked at the same time with
their predicted straggler. The following section explains in detail the design of
our proposed EPPADS scheduler.

3 EPPADS Design

3.1 Overview of EPPADS

Figure 4 depicts the overview of the EPPADS design. The design of EPPADS,
splits the processing of incoming job requests into three memory regions, receiv-
ing zone, staging zone and scheduling zone. The receiving zone receives and splits
the incoming job requests into smaller tasks. The staging zone is a fixed allo-
cated buffer which prepares tasks for scheduling. Finally, the scheduling zone
is a smaller buffer area inside the staging zone in which the scheduling occurs.
Recall, when clients submit their job requests to the job tracker node, the job
requests are split into smaller equal sized tasks. In the default scheduling in
MapReduce, the smaller sized tasks are then distributed equally to the available
task tracker nodes one at a time.

However, to achieve our goal in EPPADS when the job tracker receives job
requests from clients, the job requests are initially split into smaller tasks as
usual in the receiving zone. These smaller tasks are then forwarded to the stag-
ing zone in which the staged tasks are absorbed into the smaller scheduling
region called scheduling zone. The scheduling zone uses a rolling scheduling win-
dow that schedules all the tasks in the staging zone. We discuss in detail the
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Fig. 5. Rolling scheduling window design in EPPADS

rolling scheduling window technique in Sect. 3.2. To reduce the impact caused
by monitoring system level of task trackers, EPPADS uses a two phase schedul-
ing approach. In the first phase, called the Slow Start Phase, the first tasks
inside the current scheduling window instance, are scheduled in the usual FIFO
manner to the available task trackers. The initial execution time for the first
scheduled tasks are then recorded and stored in an Execution Time Prediction
Table (ETP). We discuss the details of the ETP in Sect. 3.3

In the 2nd phase, called the Accelerate Phase, EPPADS uses the execu-
tion time ratios of the initial tasks and compute the task distribution of all the
remaining tasks in the current scheduling window and distributes them to the
task trackers via a single I/O operation. After the scheduled tasks finish exe-
cution, the window rolls to the next scheduling window and so on. Note that,
during the Slow Start Phase, EPPADS also detect slow task tracker nodes and
flag them as straggler nodes. We also explain in detail how the straggler node
are detected in Sect. 3.3. When scheduling a task to a task tracker marked as
a straggler node, EPPADS simultaneously schedules a redundant task to the
nearest non-straggler node in the cluster. This amortize the overhead caused by
the delay in speculative task invocation in prior works. Next we discuss in detail
the scheduling in EPPADS.

3.2 Staging and Scheduling of Tasks

In order for tasks to be scheduled in EPPADS, they must be first moved onto
the staging zone. This area is a pinned memory region which makes sure all task
requests marked for scheduling are not swapped. The rolling scheduling window
inside the staging zone will then start scheduling tasks per each scheduling win-
dow instance as depicted in Fig. 5. After all the scheduled tasks in the current
scheduling window instance have finished execution, the scheduling window rolls
to the next tasks in the staging zone by an offset equal to the scheduling win-
dow size. This offset shifting happens up to the end of the staging zone memory
region and then reset back to the start of the staging zone region. We set the size
of the staging zone to 4x the size of the scheduling zone. The reason is to reduce
the memory copy time between the receiving zone and the staging zone and the
waiting time to forward tasks in the staged area to the scheduling window area.
Figure 9 shows that setting the staging zone size greater than 4× that of the
scheduling zone didn’t have any benefit. Every instance of a scheduling window,
is composed of a dual phase scheduling approach which does the task scheduling
in two stages (Slow Start phase and Acceleration phase). Before we detail the
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Fig. 6. Slow-start phase (SSP). Fig. 7. Accelerate phase (AccP).

two phased scheduling approach, we will explain the execution time prediction
table which is used in both the slow start phase and the accelerate phase.

3.3 Execution Time Prediction Table (ETP)

In the ETP, each task tracker ID (TT-ID) has a corresponding initial execution
time, time ratio, distribution ratio and a straggler flag. The initial execution time
is the time taken to compute the initial task in the slow start phase. The time
ratio is the ratio of the task tracker execution time to the total initial execution
time of all the first scheduled tasks, e.g., task-1 to task-4 in Fig. 6. The dist. value
is the ratio used in the accelerate phase to distribute the remaining tasks, e.g.,
task-5 to tasks-11 in Fig. 7. This distribution value is calculated by multiplying
the total number of remaining tasks in the scheduling window by the time ratio
of the task tracker node and rounding the value to nearest whole number. For
all task trackers, the straggler flag is set to either 0 when its not a straggler or to
1 when the node is a straggler. If the execution time of a task tracker is less by
8% or more from the average execution time, then its straggler flag is marked as
1, otherwise it is flagged to 0. To determine the 8% value, we measured job slow
down caused by the increase in negative deviation from the average task on the
straggler node. We increased the load in the straggler node at each experimental
run as we measure the job slow down. Figure 10 shows that a negative deviation
of less than 8% from the average progress will not cause significant slowdown.
With the Dist. Value and straggler flag result we can schedule all the remaining
tasks in the scheduling window at once rather than one at a time.

3.4 Slow-Start Phase

The scheduling of tasks inside the current scheduling window instance starts with
the slow start phase. Figure 6 depicts an example of scheduling in the slow start
phase. In this phase, the first tasks, e.g. tasks 1, 2, 3 and 4, at the front of the task
queue in the scheduling window are scheduled to the available task tracker nodes
sequentially just like in the default FIFO scheduler. The execution time of these
first scheduled tasks are recorded in the ETP table. At this stage EPPADS also
computes for each node, the time ratio, distribution value and sets the straggler
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Fig. 8. Clone invocation in AccP.
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flag to either 0 or 1. The reason to do this is to get an insight on a single task
execution time of each task tracker node. Since the scheduling window is small
we assume; (i) It is fast enough to execute all tasks in the current scheduling
window before any significant change in task tracker node system load. (ii) Since
it is fast enough to compute all tasks in a scheduling window instance, we assume
that the time to compute each remaining task on the task-tracker is equal to the
recorded time taken to compute the first issued task. By so doing, our key idea is
to eliminate the overhead caused by task tracker system level instrumentation.
Although the slow start phase of the EPPADS scheduling limits performance, the
worst case scenario is equal to the performance of the default FIFO scheduler.

3.5 Acceleration Phase

With the knowledge of the time to compute a single task at each task tracker
node (stored in the ETP table), EPPADS then distributes the remaining tasks
using a single I/O. For example in Fig. 7 EPPADS uses the task tracker dis-
tribution value, which is computed from the initial time ratio, to schedule the
remaining tasks 5, 6, 7, 8, 9, 10, and 11 at once. The key idea here is to achieve
the best overall execution time by making sure that scheduled tasks in the AccP
phase finish at almost same time on all nodes as they are scheduled based on
the nodes execution capabilities. Therefore, for any scheduling window instance,
we assume time to compute scheduled tasks on all task-trackers is almost equal.
Consequently, the overall scheduling time is speed up as the remaining tasks are
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Algorithm 1. Enhanced Phase-based Performance-Aware Dynamic
Scheduler (EPPADS).
Input: Ji, ith Requested job to cluster
Ω, Rolling scheduling size;
α, Initial sequentially scheduled tasks
T, Total tasks for scheduling window
ti, ith task in scheduling window
M, Number of task-trackers in the cluster
Wi, ith window of Ji
Prate, Average Progress Rate
prate, Task Progress Rate
Cti, Clone of Task ti
TSCi, , Completion time of Clone Cti
TSti, Completion time of task Cti
Output: RESULT, key, value pair of task ti;

1 for Wi �= 0 do
2 for 0 < ti <T /* begin Slow-Start Phase (SSP) */
3 do
4 Insert ti into scheduling window Wi
5 Query progress for α tasks
6 for all ti with prate < (Prate - 8 ) do
7 Mark task-tracker as straggler
8 end
9 for Remaining tasks in Wi /* Initialize Accelerate Phase */

10 do
11 Preschedule all ti using the time from α tasks
12 Pre-clone tasks scheduled on stragglers
13 end
14 for All pre-scheduled Cti do
15 if slot_exists=true then
16 Launch Cti together with corresponding ti
17 if TSCi < TSTi then
18 RESULT = result of Cti
19 end
20 else
21 RESULT = result of ti
22 end
23 end
24 else
25 Execute Cti on next available slot
26 end
27 end
28 end
29 Slide by offset Ω to next scheduling window
30 return RESULT
31 end

scheduled at once in the accelerate phase, rather than in a serialized way. The
main benefit of the acceleration phase is to amortize the drawback caused by
sequential scheduling of tasks.

3.6 Optimizing Delay in Speculative Execution

In order to increase the job execution performance the manner in which straggler
nodes within the cluster are detected is important. Two important questions to
come up with a suitable solution arises; (i) At which stage during task execution
is a straggling node detected? (ii) At the time of straggler node detection, does
the launch of a speculative task abate the job execution delay or it actually
causes more overheads? To answer these two questions, the dual-phase design
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of EPPADS assist in detecting straggler nodes early before serious degradation
in job processing performance. At the slow start phase a straggling node is
flagged. Later at the accelerate phase, if a task is scheduled to a straggler node
a redundant task called a clone is concurrently scheduled to the nearest non-
straggler node. We use a topology-aware mechanism that prioritizes a faster
node within the same rack. The nearest node here refers to the shortest hop
count, location in cabinet, etc, depending with cluster set-up. Figure 8 shows
the invocation of a clone of task-5 which was scheduled to straggler task tracker-
1. The benefit of the concurrent scheduling of a straggler task and its clone,
is that we can fuse the task scheduling together with the task pre-speculation.
This helps to amortize the delay in speculative execution caused in previous
works where a straggler is detected at the middle of task execution. In the event
that two or more tasks are scheduled to a straggler node, then the tasks are
shared equally among the nearest non-straggler nodes. By so doing we improve
the speculative task execution and consequently improve job processing time. A
complete flow of our proposed approach is described in Algorithm 1.

We evaluate our proposed EPPADS scheduling scheme in the next section.
We compare the performance with existing adaptive scheduling algorithm on top
of the default FIFO schedulers.

4 Evaluation

4.1 Testbed Setup

To evaluate the behavior and performance of our proposed EPPADS scheduler
on a large scale data cluster, we used a modified version of the Yarn Scheduler
Load Simulator (SLS) [2] that fuses with our proposed scheduler. The reason for
using the SLS simulator is because of its ability to simulate large scale MapRe-
duce clusters and gives a near accurate analysis of our EPPADS prototype. We
configured hadoop and the SLS simulator on a single powerful server running
on Linux CentOS v7.3 and equipped with a dual CPU socket each with 32 core
Intel Xeon Skylake-EP v5 processor, running at 2.30 GHz. The server is also
equipped with 8 DIMM slots of 32 GB DRAM each, making a total of 256 GB of
DRAM. The total amount of storage in the server is 24 TB made out of 6× 4 TB
HDDs. We physically define the size of containers and the amount of resources
dedicated to each container using the YARN reservation system. We configure
different range of containers (Task trackers) with different specification values
to depict heterogeneity among task tracker nodes. For all experiments we fix
the container specifications to those defined in Table 1. Each task tracker in the
same allocation range is allocated the same amount of memory, e.g, TT-1 to TT-
32 are all allocated with 1024 MB of RAM. We also allocate different numbers
of processors to different task tracker ranges to enable variance in processing
power. We then restrict containers in the same range to use only the allocated
processors, e.g, TT-1 to TT-32 only utilize processors 0 to 13. Finally, On the
hadoop configuration we set the replication factor of 3 and set the number of
Map and reduce tasks per each node to 3.
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Workloads: For all experiments irrespective of difference in workload type, we
used a total of 10 TB input data. In cases where the input data is less than
10 TB we simply amplified the input data by a factor which makes it equal or
close to 10 Terabytes. For experiments in Figs. 11, 12 and 14 we used the Scan
workload traces with the number of processing nodes equal 256. For experiments
in Fig. 13, we used a variety of workload traces from the HiBench suite and also
with a fixed number of processing nodes equal 256.

To evaluate the effectiveness of the proposed EPPADS scheduler, we compare
the following systems:

• FIFO: This is the default scheduler in MapReduce framework. We used this
as the baseline in our evaluation. FIFO schedules tasks equally between task
tracker nodes irrespective of any difference in processing capabilities that
might exist between the nodes.

• DynMon: To show the impact of node instrumentation in large scale pro-
cessing clusters, we implemented a Dynamic Scheduling Algorithm which uses
some instrumentation modules to monitor task trackers. The instrumenta-
tion modules regularly collect task tracker system level information and com-
pute some utility value which is used to make scheduling decisions. Like all
the existing Dynamic approaches it follows a First-In First-Out approach of
scheduling job tasks. We called this Approach DynMon.

• Proposed: This refers to our proposed EPPADS implementation approach
refered to in Sect. 3.

Table 1. Testbed setup depicting task tracker (TT) heterogeneity in different process-
ing node ranges. We configure the Job-Tracker (JT) with much higher specifications
than TT nodes.

JT-NodeTT 1–32TT 33–64TT 65–96TT 97–128TT 129–160TT 161–192TT 193–224TT 225–256

RAM
(MB)

4096 1024 768 1024 1280 1536 1024 512 1024

Storage
(GB)

80 80 80 80 80 80 80 80 80

Processor
no.

0–13 14–21 22–25 26–29 30–31 32–35 36–43 44–49 50–59

4.2 Scalability Analysis

To show the scalability effectiveness of our proposed EPPADS scheduler we
first measure the performance effect caused by increasing the number of the
nodes in the cluster. We start with a small cluster size and double the cluster
processing nodes at each experimental run until the size depicts a large sized data
processing cluster. Figure 11 shows the results of our experiment. The results
shows that as the number of task-tracker nodes increases, the job execution
performance increases for all algorithms. This is because the contention in the
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cluster decreases with increasing number of task-trackers. However as we keep
on adding the cluster processing nodes, we observe that the performance start to
degrade at a certain point (after 64 nodes in our setup) in FIFO and the DynMon
scheduling approaches. However, EPPADS performance does not suffer from the
performance degradation due to continuous increase in cluster nodes. This is
because of the fact that, though the node instrumentation forms an integral part
of dynamic and self adaptiveness of scheduling algorithm, it incurs monitoring
overheads as the number of nodes to be monitored increases above some certain
limit. This is mostly due to the frequent communication overheads between the
centralized job tracker node and the processing task tracker nodes. However
due to the approach in which EPPADS eliminates the use of instrumentation
modules, this communication overhead is greatly amortized, thus no degradation
as the cluster size becomes huge.

4.3 Execution Time Perfomance

Figure 12 shows the job execution time comparison between FIFO, DynMon and
proposed EPPADS, at different stages in their Map phases. NF and FJ, stands
for No-Fault and Faulty jobs respectively. Each doted point on the plot depicts
a single job and its execution time at different stages of Map phase. The solid
dotted points represent jobs without failures and the non-solid dotted points
represent jobs which incurred some failure or slow down during their processing.
We observed a big job execution performance degradation of 2× or more when
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there is a job failure in the baseline FIFO scheduling approach and the DynMon
scheduling approach. We attribute this to the delayed speculative task invocation
caused by the straggler hunting approach. Mostly a speculative task is invoked
at a later stage when the primary task has been running for quite a number of
seconds. The Job tracker later observes that the task is straggling and decides to
launch a redundant task. However this speculative task invocation is often too
late to minimize the slowdown to job processing performance. However the job
slow is significantly less in our proposed EPPADS scheduling approach. This is
due to the dual-phase approach used in our approach. The straggler detection is
determined in the Slow Start Phase and then any task which are scheduled to
nodes marked as stragglers has a corresponding cloned task which is scheduled
at the same time with the straggler task. This drastically reduces the delay in
speculative task invocation caused in current scheduling approaches. EPPADS
reduces the delayed speculative task invocation by almost 2x, thereby drastically
improving the job processing performance.

4.4 Job Throughput Analysis

Figure 13 shows the job throughput comparison between the baseline FIFO
scheduler, Adaptive Dynamic Approach with monitoring-DynMon, and the pro-
posed EPPADS scheduler. To do an intensive evaluation of our proposed app-
roach, we employed the HiBench benchmark suite which consists of a number of
benchmark workloads. We observed that our proposed EPPADS scheduler have
an average throughput performance improvement of 30% and 22%, over base-
line and DynMon scheduling approach respectively. The reason behind this is the
concurrent scheduling of job tasks in the accelerate phase (AccP) of EPPADS
using a single scheduling I/O. One might argue that the scheduling in the slow-
start phase degrades the job processing throughput, but the worst case scenario
is equal with the best case of baseline FIFO and DynMon cases which all sched-
ules the task in a sequential First-In First-Out Approach. However the AccP of
EPPADS increases the job throughput significantly as multiple jobs are sched-
uled at one go. Furthermore the concurrent scheduling of straggling tasks with
their clones increases the performance as they amortize the speculative execution
delay.

4.5 Job Queuing Time

Another important factor in determining job processing performance is the
amount of time a job spends in the queue before it can be scheduled for pro-
cessing. For each approach we profiled the job waiting time from the time the
job tracker node receive a job request until the first task of that job is sched-
uled for processing in any of the task tracker nodes. Figure 14 shows the results
of this experiments. We observed that when there is no fault in the processing
nodes, the job waiting time in EPPADS is less as compared to baseline FIFO
and DynMon approaches. However this gap increases when there are job faults
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within the processing nodes. We observe that in the existence of job faults the
job waiting time in FIFO and DynMon approaches increases dramatically.

This is mostly due to the following two factors; (i) The serialized scheduling
of job tasks in FIFO and DynMon approaches increases the job waiting time.
Furthermore, when multiple job failure occurs, other jobs has to wait whilst
the failed jobs execute extra speculative tasks. (ii) To make it worse there is
a delay in launching these extra speculative tasks in the FIFO and DynMon
scheduling approaches. On the other hand the job waiting time in the proposed
EPPADS scheduler does not increase significantly. This is because of the early
detection of straggler nodes in EPPADS. Furthermore, the job waiting time is
reduced significantly due to the scheduling of multiple job tasks in one go in
the accelerate phase. The reduction of job waiting time in the queue further
increases the job processing performance.

5 Related Works

Scheduling and processing mechanisms play a major role in determining the job
processing efficiency. The default FIFO scheduler distributes job tasks in a uni-
form manner across available task tracker nodes [7]. However, when subjected to
heterogeneous cluster environments, performance is heavily degraded due to the
imbalance of processing power between the nodes. Many prior works on self adap-
tive schedulers [1,10–14,18,19] has been explored to minimize job response time
in heterogeneous clusters. All these prior works achieved this through instru-
mentation of processing nodes, which frequently collects nodes load level infor-
mation, which in turn is used for job tasks scheduling decisions and speculative
tasks invocation. However, additional instrumentation can cause system perfor-
mance degradation as the number of tasks tracker nodes increases. Furthermore,
all these prior studies follows a sequential task scheduling approach in which a
successive task can only be scheduled only if one of the already scheduled tasks
is completed, which is a major constraint in achieving maximum job processing
performance.

The authors of [4–6,10,16], proposed proactive straggler mitigation tech-
niques to minimize job processing time in production clusters. The technique
of straggler “hunting” was used in these works which often wait until tasks
are straggling so as to invoke a speculative task. However, these solutions suf-
fer from enough information needed to separate between slow nodes and faster
nodes. These approaches are likely to cause some unnecessary over-utilization
of resources without any improvement in job completion performance. This is
likely due to scheduling of speculative tasks onto already slower nodes. To avoid
such scenarios our proposed EPPADS scheduler detects the stragglers in an early
stage of the slow-start phase and speculative tasks are launched on the nearest
faster node using a topology aware policy (preference given to node in the same
rack).

Other previous works [3,8,17] proposed an enhanced blacklisting instru-
mentation approach that avoids scheduling tasks on slower blacklisted nodes.
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The scheduling node (Master), collects system level information from processing
nodes (slaves) at finer time intervals. This help to provide warning about pos-
sible stragglers and scheduling is done whilst avoiding such blacklisted nodes.
However, this blacklisting at finer time interviews can degrade the cluster perfor-
mance due to frequent communication overheads between the scheduling node
and processing nodes. Our approach eliminates this huge monitoring overhead
by implementing a small time based scheduling window which amortizes signif-
icantly the communication costs caused by frequent node monitoring in large
scale data processing clusters.

Overally, none of the previous works implemented a multi-task scheduling
approach which is employed in our proposed approach. the phase based imple-
mentation in EPPADS improves greatly the job execution performance as evi-
denced by our evaluation results.

6 Conclusion

This paper presents EPPADS, a lightweight and high performance job scheduler
for improving job processing performance in large scale data processing clusters.
With its dual phased scheduling approach, EPPADS can drastically mitigate
the job straggler problem in production clusters. This is achieved through the
early detection of stragglers in the slow-start phase (SSP) and the speed-up in
scheduling performance that occurs at the acceleration phase(AccP). The eval-
uation results confirms the effectiveness of EPPADS over existing approaches.
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Abstract. Order dependencies (ODs) are recently proposed to describe
a relationship of ordering between lists of attributes. It is typically too
costly to design ODs manually, since the number of possible ODs is of
a factorial complexity in the number of attributes. To this end, auto-
matic discovery techniques for ODs are developed. In practice, data is
frequently updated, especially with tuple insertions. Existing techniques
do not lend themselves well to these situations, since it is prohibitively
expensive to recompute all ODs from scratch after every update. In this
paper, we make a first effort to investigate incremental OD discovery
techniques in response to tuple insertions. Given a relation D, a set Σ of
valid and minimal ODs on D, and a set �D of tuple insertions to D, it is
to find, changes �Σ to Σ that makes Σ ⊕�Σ a set of valid and minimal
ODs on D + �D. Note that �Σ contains both new ODs to be added
to Σ and outdated ODs to be removed from Σ. Specifically, (1) We for-
malize the incremental OD discovery problem. Although the incremental
discovery problem has a same complexity as its batch (non-incremental)
counterpart in terms of traditional complexity, we show that it has good
data locality. It is linear in the size of �D to validate on D+�D any OD
ϕ that is valid on D. (2) We present effective incremental OD discovery
techniques, leveraging an intelligent traversal strategy for finding �Σ
and chosen indexes to minimize access to D. Our approach computes
�Σ based on ODs in Σ, and is independent of the size of D. (3) Using
real-life data, we experimentally verify that our approach substantially
outperforms its batch counterpart by orders of magnitude.

1 Introduction

Data dependencies, a.k.a. integrity constraints, specify data semantics and inher-
ent attribute relationships. They are widely employed in schema design, query
optimization [15] and data cleaning [3,5,10,11], among other things. Recently,
order dependencies (ODs) [15,18] are proposed to describe the relationship
between two lexicographical ordering specifications on lists of attributes. ODs
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properly subsume functional dependencies (FDs), and can define lexicographic
orders used in the SQL order-by clause. Hence, ODs are proved to be useful in
query optimizations concerning sorting [15,18]. Compared to traditional depen-
dencies based on sets, e.g., FDs, denial constraints (DCs) [5] and differential
dependencies (DDs) [14], ODs are defined on lists, and are hence quite different.
We will review formal definitions of OD in Sect. 2, and first provide an illustrative
example to highlight features of OD.

A B C D E F G

D

t1: 1 2 3 4 1 1 1
t2: 1 2 3 4 2 1 2
t3: 2 1 4 2 4 1 3
t4: 2 4 5 1 4 1 4

D t : 1 2 3 5 4 2 5
t : 1 2 4 3 5 6 7

Fig. 1. An instance D, and �D of tuple insertions to D.

Example 1: Figure 1 shows an instance D with four tuples {t1, t2, t3, t4}. If we
sort tuples by attribute A, and then break ties by attribute B, these tuples are
also sorted by attribute C first and then by attribute D. This sorting specification
is in accordance with the SQL order by clauses. With the notation of OD, this is
written as AB �→ CD, i.e., AB orders CD. Here AB and CD are lists of attributes.
Leveraging this example, we illustrate several unique features of ODs.

(1) OD AB �→ CD states that values on CD are monotonically non-decreasing
with respect to values on AB [15]. Specifically, (a) AB �→ CD implies an
FD AB → CD. Here set AB (resp. CD) denotes the set of elements in list
AB (resp. CD). To guarantee that when tuples are sorted by AB, they are
also sorted by CD, tuples with a same value on AB must have a same value
on CD, e.g., t1 and t2. (b) ODs also impose order semantics on tuples with
different values on AB. For example, t3 has a larger AB’s value than t2, the
CD’s value of t3 cannot be less than that of t2, to satisfy AB �→ CD.

(2) Unlike other constraints, e.g., FDs and DCs, ODs are specified on lists of
attributes, and the order of attributes on the left-hand side (LHS) and right-
hand side (RHS) matters. For example, neither BA �→ CD nor AB �→ DC
holds.

(3) FDs can be always converted into the form with a single RHS attribute. For
example, AB → CD can be expressed as AB → C and AB → D. This sim-
plifies FD discovery [9,13]. In contrast, RHS attributes of an OD are taken
as a whole and may not be splitted. As an example, AB �→ D does not
hold. ��
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No matter how desirable, it is prohibitively time-consuming to design ODs

manually, even by domain experts. Automatic discovery techniques for ODs [12,
16,17] are hence studied, just like those for FDs [9,13], DCs [2,4] and DDs [14],
among others. The need for automatic OD discovery is even more evident, since
the number of possible list-based ODs is of a factorial complexity in the number
of attributes [12], much larger than that of FDs.

Discovering ODs is already shown to be a hard problem. Worse, Data in
practice is typically dynamic, i.e., frequently updated. Even if tuple deletions
are not allowed, tuple insertions are generally supported on most data. It is too
expensive to recompute all ODs, especially when data grow with tuple insertions.
This highlights the quest for incremental OD discovery techniques, to update the
set Σ of discovered (valid and minimal) ODs on an instance D as a set �D of
tuple insertions is applied to D. Intuitively, when �D is small compared to D, it
is more efficient to find update �Σ to Σ than the entire set of ODs on D + �D
from scratch. However, the incremental OD discovery problem is very intricate,
as illustrated by the example below.

Example 2: We illustrate two ways to find ODs in �Σ. In Fig. 1, suppose �D
with a single tuple t′ is applied to D (neglecting t′′ at this time).
(1) In instance D, the algorithm for OD discovery, e.g., [12], finds AB �→ CD

and adds it into Σ. It can be verified that AB �→ CD is no longer valid
(holds) on D + �D. As a violation, tuples t1, t

′ agree on their AB’s value,
but have different CD’s values. An incremental OD discovery algorithm then
has to compute updates �Σ to Σ. It finds that ABE �→ CD, ABF �→ CD,
ABG �→ CD and AB �→ C are all valid on D+�D. Therefore, it adds all these
ODs into �Σ+, the set of ODs to be added into Σ, and adds AB �→ CD into
�Σ−, the set of ODs to be removed from Σ. Note that none of ABE �→ CD,
ABF �→ CD, ABG �→ CD or AB �→ C is in Σ, since they are not minimal
(formalized in Sect. 2). Theoretically, they are not in Σ because AB �→ CD is
in Σ and AB �→ CD logically implies them [12,15]: any instance that satisfies
AB �→ CD also satisfies them. However, when AB �→ CD no longer holds, our
incremental method has to discover them, since they are valid on D + �D,
and are minimal now.

(2) Both E �→ F and EB �→ G are in Σ. EFB �→ G is not in Σ; it is valid but
not minimal. Theoretically, EFB �→ G is an “embedded” OD w.r.t. EB �→ G
according to E �→ F [12,15]. Since the order of E determines that of F,
adding F after E in a list does not impose any new order restrictions and is
regarded as redundancy (formalized in Sect. 2). However, E �→ F is not valid
after t′ is inserted. Our incremental algorithm has to check the validity of
EFB �→ G. Indeed, although EB �→ G is not valid on D + �D, EFB �→ G is
valid. EFB �→ G is hence put into �Σ+: it is both valid and minimal now.
Note that even when EB �→ G is valid on D + �D and is not removed from
Σ, EFB �→ G is still minimal. This is because EB is not a prefix of EFB. Also
note that EFB �→ G cannot be discovered following the strategy in (1), i.e.,
adding attributes to the tail of LHS attribute list, or removing attributes
from the tail of RHS attribute list. ��
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Contributions. We make a first effort to investigate incremental OD discovery.

(1) We formalize the incremental OD discovery problem (Sect. 3). We show that
this problem has a same complexity as its batch (non-incremental) counter-
part, in terms of the traditional complexity analysis. Nevertheless, we prove
that the incremental problem has a good data locality. Specifically, given an
OD ϕ valid on D and a set �D of tuple insertions to D, it is linear in the
size of �D to check the validity of ϕ on D + �D.

(2) We present efficient methods for incremental OD discovery (Sect. 4). We
present an intelligent traversal strategy for finding new valid and minimal
ODs on D + �D, based on those already discovered ODs in Σ. We study
techniques for choosing indexes, such that the access to D is minimized, and
hence the required local data can be effectively fetched. Our approach has a
desirable property that it is independent of the size of D.

(3) Using real-life data, we experimentally verify that our incremental algorithm
outperforms the batch counterpart by orders of magnitude (Sect. 5).

Related Work. Dependency discovery is one of the most important aspects of
data profiling. To alleviate the burden of users, automatic dependency discoveries
are conducted for a host of different constraints; see e.g., FDs [9,13], conditional
FDs (CFDs) [6,8], DCs [2,4] and DDs [14].

Order dependencies (ODs) [15,18] state a relationship of order between lists
of attributes. Theoretical foundations of ODs are well discussed in [15,18]. ODs

properly subsume FDs, and are well employed in query optimizations concerning
order. [12] presents the first approach for discovering ODs, with a level-wise
bottom-up traversal of the lattice of permutations of attributes, an efficient OD

validation method and some pruning rules to reduce the search space. Since ODs

are defined on lists, the search space (the number of possible ODs) is factorial in
the number of attributes. [16,17] present a polynomial mapping form ODs defined
in lists to a canonical form of ODs in sets; this canonical form of ODs in sets has
an advantage that the search space is exponential in the number of attributes.
[16,17] then present discovery techniques for ODs via set-based axioms. In this
paper, we follow the notation of list-based ODs. This is because (1) ODs defined in
lists are preferable, since they naturally model the lexicographic orders employed
in the SQL order-by clause; (2) each list-based OD of the form X �→Y has to
be expressed in |X|·|Y| set-based ODs, where |X| (resp. |Y|) is the number of
attributes in list X (resp. Y). Therefore, the discovery of set-based ODs does not
lead to the discovery of list-based ODs; and (3) we address the incremental OD

discovery problem, to improve the efficiency from another perspective.
Incremental techniques are developed in different aspects of data quality. [3]

discusses incremental data repairing for CFDs. Taking a clean relation D w.r.t.
a set Σ of CFDs and a set �D of tuple insertions, [3] presents methods to repair
tuples in �D such that Σ is satisfied. [7] investigates incremental detection of
CFD violations in distributed data. Given a set V of violations w.r.t. a set Σ
of CFDs on a distributed database D and updates �D to D, [7] aims to find
changes �V to V , with minimum data shipment among sites. Our work considers
incremental constraint discovery for ODs, and significantly differs from [3,7].
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To our best knowledge, the only incremental algorithm for constraint discov-
ery on dynamic data is [1], concerning unique column combinations (Uccs), a.k.a.
candidate keys. [1] employs indexes on attributes to reduce access to old data,
and expands attributes in old Uccs for new Uccs when old Uccs no longer hold.
Note that OD subsumes FD, and FD subsumes Ucc. We consider ODs with multi-
ple LHS and RHS attributes in lists. This makes the traversal for OD candidates,
OD validations and index choice far more complicated, compared to [1].

2 Preliminaries

We review basic notations and formal definitions of ODs [12,15–18].

Relation. R(A1, . . . , Am) denotes a relation schema, where each Aj(j ∈ [1,m])
denotes a single attribute. D denotes a specific instance, and t, s denote tuples.
For an attribute Aj , tAj

denotes the value of attribute Aj in a tuple t.

Sets and Lists. X and Y denote sets of attributes, while X and Y denote lists
of attributes. Specifically, {} (resp. [ ]) denotes the empty set (resp. empty list).
XY is a shorthand for X ∪ Y, and XY is a shorthand for the concatenation of
X and Y. For a list X, set X denotes the set of elements in X.

For an attribute list X = [A1,. . . ,Ak], we say X contains another list Y, when
there exists some 1 ≤ i ≤ j ≤ k such that Y = [Ai,. . . ,Aj ]. We use prefixes(X)
to denote the set of all possible prefixes of X, i.e., [A1,. . . ,Ai] for any i ≤ k.

Order on Lists. For a tuple t and an attribute list X = [A1,. . . ,Ak], we use tX
to denote the projection of tuple t on X, i.e., [tA1 ,. . . ,tAk

]. For two tuples t, s,

(1) t ≺X s if there exists some i ≤ k such that tAi
< sAi

and for all j < i,
tAi

= sAi
.

(2) t =X s when tAi
= sAi

for all i ∈ [1, k].
(3) t �X s if t ≺X s or t =X s.

Order Dependency [12,15–18]. For attributes lists X, Y on schema R, X �→Y
denotes an order dependency. An instance D of R satisfies an OD ϕ =X �→Y, if
for any two tuples t, s ∈ D, when t �X s, t �Y s. We say ϕ is valid on D and ϕ
holds on D interchangeably. If X �→Y is not valid on D, we write X ��→Y.

Remark. As stated in [15,18], ODs strictly generalize FDs. Specifically, each
OD X �→Y has an “embedded FD” X →Y; if X �→Y holds, X →Y holds.

Violations of Order Dependency [15,18]. For an OD ϕ = X �→Y, two sources
of OD violations exist:

(1) A split w.r.t. ϕ is a pair of tuples t and s such that t =X s, but t �=Y s.
(2) A swap w.r.t. ϕ is a pair of tuples t and s such that t ≺X s but s ≺Y t.

Example 3: (1) A split is actually a violation of the “embedded” FD. In Fig. 1,
t1 and t2 lead to a split w.r.t. F �→G. t1 =F t2, but t1 �=G t2. (2) t1 and t3 cause
a swap w.r.t. A �→B. t1 ≺A t3, but t3 ≺B t1. ��
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The number of ODs valid on an instance can be very large. Similar to discov-
ery techniques for other constraints, it is more instructive to find minimal valid
ODs than to find all valid ODs. List-based ODs lead to an intricate definition of
minimality. We follow similar criteria as [12,15], formalized as follows.

Minimality of an Attribute List. An attribute list X is minimal, iff for any
disjoint sub-lists Y and W in X: if W follows (maybe not directly) Y,Y ��→ W.

Intuitively, when the order of Y determines that of W, adding W after Y in a
list does not impose any new order restrictions. It is easy to see that an attribute
Ai occurs at most once in any minimal attribute list X.

Minimality of ODs. An OD X �→Y is minimal, iff

(1) � ∃ X′ �→YY′, such that X′ ∈prefixes(X) and X′ �→YY′ is valid (if X′ = X, Y′

is not empty; otherwise Y′ can be empty); and
(2) both X and Y are minimal.

Example 4: Recall the instance D presented in Fig. 1. (1) AB �→ CD is minimal,
but ABE �→ CD is not minimal. (2) Because E �→ F, EFB is not a minimal
attribute list and hence EFB �→ G is not a minimal OD. ��

3 Data Locality for Incremental OD Discovery

We formalize the incremental OD discovery problem and show its complexity. We
then justify that the incremental OD discovery problem has good data locality.

Incremental OD Discovery. Given a relation D of schema R, a set Σ of valid
and minimal ODs on D, and a set �D of tuple insertions to D, incremental OD

discovery is to find, changes �Σ to Σ that makes Σ ⊕ �Σ a set of valid and
minimal ODs on D + �D; �Σ contains both new ODs to be added to Σ and
outdated ODs to be removed from Σ.

Note that each batch (non-incremental) OD discovery problem on D can
be directly modeled as an incremental OD discovery problem with inputs D′,
�D′ and Σ, by setting D′ = φ, �D′ = D and Σ = φ. Since the incremental
OD discovery includes the batch counterpart as a special case, the incremental
problem at least has a same complexity as the batch one in terms of traditional
complexity. In practice, �D is typically (much) smaller than D. In contrast
to batch algorithms that recompute the output from scratch, an incremental
algorithm can greatly improve efficiency if its cost is independent of D.

In light of this, we classify local data for an inserted tuple t′ and an OD ϕ
that is already valid on D, followed by computations concerning only local data.

Local Data of a Single Tuple Insertion. Given an OD X �→Y valid on D
and a tuple t′ inserted into D, we can find the following three sets of tuples on
D, as local data of t′ w.r.t. X �→Y :

equ(X, t′): tuple s ∈equ(X, t′), if s =X t′;
low(X, t′): tuple s ∈low(X, t′), if (1) s ≺X t′; and (2) there exists no s′ such

that s ≺X s′ ≺X t′;
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high(X, t′): tuple s ∈high(X, t′), if (1) t′ ≺X s; and (2) there exists no s′ such
that t′ ≺X s′ ≺X s;

Note that equ(X, t′) (resp. low(X, t′), high(X, t′)) may be empty. Incremental
OD discovery takes as inputs D and the set Σ of ODs valid on D. Hence, some
auxiliary data structure can be built to effectively obtain required local data.

Example 5: In Fig. 2(a), we show a simplified B+ tree built on D (Fig. 1) with
AB as the key. For each key value in a leaf node, we store the set of tuple ids.
In addition, we build a doubly linked list between successive leaf nodes. For t′,
equ(AB, t′) ={t1, t2}, high(AB, t′) ={t3} and low(AB, t′) = { }. With the B+
tree, it takes O(log |D|) to fetch equ(AB, t′), and then O(1) to fetch (non-empty)
low(AB, t′) (resp. high(AB, t′)), where |D| is the number of tuples in D. ��

…
…

equ(AB, )

(2,1)
t3

(2,4)
t4

(1,2)
t1t2

high(AB, )
(a)

…
…

equ(AB, )

(2,1)
t3

(2,4)
t4

high(AB, )
(b)

equ(AB, )

(1,2)

t1t2

Fig. 2. Example local data

Note that ∀s, t ∈ equ(X, t′) (resp. low(X, t′), high(X, t′)), t =Y s on instance
D, since X �→Y is valid on D. We choose an arbitrary tuple from equ(X, t′) (resp.
low(X, t′), high(X, t′)), denoted as t

′X
e (resp. t

′X
l , t

′X
h ), when the set is not empty.

The following theorem states that whether X �→Y is valid on D + {t′} concerns
computations only on t′ and t

′X
e , t

′X
l , t

′X
h .

Theorem 1: ϕ=X �→Y is valid on D + {t′}, when (1) there is no split between
t′ and t

′X
e ; and (2) there is no swap between t′ and t

′X
l (resp. t

′X
h ). ��

Local Data of �D. We then consider �D with multiple tuple insertions. For
a tuple t′ in �D, we still denote by equ(X, t′), low(X, t′) and high(X, t′) local
data on D, while denote by equ′(X, t′), low′(X, t′) and high′(X, t′) local data
on D + �D. equ′(X, t′) = equ(X, t′) ∪ �equ(X, t′), where �equ(X, t′) is the set
of tuples t ∈ �D such that t =X t′. Obviously, t′ ∈ �equ(X, t′); equ′(X, t′) =
equ′(X, t′′) if t′′ =X t′. Similarly for low′(X, t′) and high′(X, t′).

Leveraging the auxiliary structure to effectively obtain required data, Theo-
rem 2 shows the good data locality of incremental OD validation, as an important
building block of incremental OD discovery.

Theorem 2: For any OD ϕ that is valid on D, it is linear in |�D| to check the
validity of ϕ on D + �D, where |�D| is the number of tuples in �D. ��
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Algorithm. We prove Theorem 2 by providing algorithm �Check(ϕ) with the
required property, for checking the validity of ϕ =X �→Y on D+�D. �Check(ϕ)
divides �D into k disjoint sets = {�D1, . . . ,�Dk} with hashing, such that
∀t′, t′′ ∈ �Di (i ∈ [1, k]), t′ =X t′′. It then selects an arbitrary t′i in each �Di.

(1) To check swap w.r.t. t′i, it finds t
′max
e = argmaxt(tY) and t

′min
e =

argmint(tY) in all t ∈ equ′(X, t′i) (ties broken by an arbitrary one). It then
finds t

′max
l (resp. t

′min
h ) in low′(X, t′i) (resp. high′(X, t′i)) similarly. There is

no swap iff t
′max
e �Y t

′min
h and t

′max
l �Y t

′min
e .

(2) To check split w.r.t. t′i, it suffices to check whether t
′max
e =Y t

′min
e .

Example 6: Consider �D with two tuples t′, t′′ (Fig. 1) and ϕ =AB �→CD.
As shown in Fig. 2(b), equ′(AB, t′) = equ′(AB, t′′) ={t1, t2, t

′, t′′}: equ(AB, t′)
={t1, t2}, �equ(AB, t′) ={t′, t′′}. high′(AB, t′) =high(AB, t′) ={t3}.

t
′max
e = t′′, t

′min
e = t1 and t

′min
h = t3. split exists since t1 �=CD t′′, and swap

exists since t3 ≺CD t′′. ��

Complexity. It is easy to see the correctness of �Check(ϕ). We then prove
�Check(ϕ) is linear in |�D|. Observe that the total number of required
equ′(X, t′i), low′(X, t′i) and high′(X, t′i) for all t′i is at most 3×|�D|. In equ′(X, t′i),
it takes O(1 + |�equ(X, t′i)|) to find t

′max
e and t

′min
e , where |�equ(X, t′i)| is the

number of tuples in �equ(X, t′i). This is because all tuples in equ(X, t′i) agree on
values of Y. Note that the sum of |�equ(X, t′i)| for all t′i equals |�D|.

If �low(X, t′i) is not empty for some t′i, low′(X, t′i) = equ′(X, s′) for any s′ ∈
�low(X, t′i). In this case, no additional computation on low′(X, t′i) is required. If
�low(X, t′i) is empty, it takes O(1) to find t

′max
l in low′(X, t′i) because all tuples

in low(X, t′i) have a same value on Y. Similarly for high′(X, t′i).
To sum up, �Check(ϕ) is linear in |�D|.

4 Incremental OD Discovery

We first discuss methods for finding �Σ on D+�D, based on Σ. We then study
techniques for choosing indexes, to minimize access to the original data.

4.1 Finding ODs in �Σ

Note that �Σ consists of two disjoint sets �Σ+ and �Σ−; �Σ+ contains new
valid and minimal ODs as additions to Σ, while �Σ− contains non-valid ODs

that should be removed from Σ. Taking as input the set Σ of minimal and valid
ODs on D, it is relatively easy to compute �Σ−. As stated in Theorem 2, we
can effectively check the validity of any OD ϕ in Σ on D + �D by �Check(ϕ).
If ϕ no longer holds on D + �D, we add it to �Σ−.

It is, however, much more intricate to compute �Σ+ as shown in Example 2.
To fully take advantage of incremental computations, we should always leverage
�Check(ϕ) in the validation of any OD ϕ; a prerequisite is that ϕ must hold on
D. This is possible since any OD valid on D+�D must be valid on D, and hence
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ODs in �Σ+ can be computed based on ODs in Σ. We present two ways to find
ODs (candidates) in �Σ+, referred to as enrichment and expansion, respectively.

Enrichment of an Attribute List. Given an OD ϕ =X �→ Y ∈ Σ, but invalid
on D + �D, and an attribute list Z, when (1) Z contains X, and (2) Z and Y
are disjoint, we “enrich” Z by ϕ, to generate a set of attribute lists, denoted by
enrich(Z, ϕ). W.l.o.g., let Z = X′XA1′ . . .Ak′ . enrich(Z, ϕ) = { Z, X′XYA′

1 . . .A′
k,

. . . , X′XA′
1 . . .A′

kY }. If either condition (1) or (2) is false, enrich(Z, ϕ) = { Z }.
Intuitively, enrich(Z, ϕ) (excluding Z) is a set of non-minimal attribute lists

due to the validity of X �→ Y on D. When X �→ Y no longer holds on D + �D,
these attribute lists become minimal. We then present our first way to generate
candidates in �Σ+, referred to as enrichment.

Enrichment of an OD. Given an OD ϕ = X �→ Y in Σ and a set Υ of ODs

{ϕ1, . . . , ϕm}, where each ϕi (i ∈ [1,m]) is in Σ, but is invalid on D + �D,
enrichment of ϕ by Υ , denoted by Enrich(ϕ, Υ ) is to generate a set of ODs = {U
�→ V }, where U ∈ enrich(X, ϕi), V ∈ enrich(Y, ϕj), ∀ϕi, ϕj ∈ Υ .

Example 7: Suppose ϕ = AB �→ CD and Υ ={B �→ E, C �→ F }, enrichment of
ϕ by Υ is {AB �→ CD, AB �→ CFD, AB �→ CDF, ABE �→ CD, ABE �→ CFD, ABE
�→ CDF }. ��
Complexity. Observe that enrichment is conducted based on attributes in ODs.
Its complexity is irrelevant of |R|, the number of attributes of the schema R,
and it requires no data access to D.

Intuitively, enrichment of ϕ by Υ is to enrich the LHS and RHS attribute
lists of ϕ by ODs in Υ respectively. It is easy to prove the following results. (1)
Any OD in Enrich(ϕ, Υ ) is valid on D; and (2) none of ODs in Enrich(ϕ, Υ ) is
minimal on D (excluding ϕ = X �→ Y). ODs generated by enrichment are only
candidates in �Σ+, since some of them are invalid on D + �D. Based on those
invalid candidates and ODs in �Σ−, we provide another approach to computing
ODs in �Σ+, referred to as expansion.

Algorithm. Algorithm Expand is presented to apply expansion to an OD ϕ =
X �→Y valid on D but invalid on D + �D. It produces a set Υ of ODs valid on
D + �D. Each OD ∈ Υ is of the form XZ �→Y′, where Y′ ∈ prefixes(Y). It is
easy to see that these ODs are valid but not minimal on D.

(1) Expand first eliminates possible swap by removing attributes from the tail
of Y one by one, until no swap exists or Y is empty (lines 2–4). Note that
adding attributes to the tail of X does not help remove swap. If swap cannot
be removed, Expand returns an empty set; no valid ODs can be generated
based on X �→Y.

(2) Expand then turns to eliminate split. In its loop (lines 6–11), Expand tries X
�→Y′ for each prefix Y′ of Y (line 11). (a) If no split exists, Expand returns
current results (line 8). This is because adding more attributes to the tail
of X and (or) removing attributes from the tail of Y cannot further produce
minimal ODs. (b) Otherwise, function ExpandL is called to remove split by
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Algorithm 1: Expand
input : a relation D of schema R, an OD ϕ = X �→Y valid on D, and a set

�D of tuple insertions to D.
output: a set Υ of ODs valid on D + �D, where each OD ∈ Υ is of the form

XZ �→Y′, where Y′ ∈ prefixes(Y).
1 Υ := {}; LHSset := {}; Vset := {};
2 while Y is not empty do
3 if there is no swap detected by �Check(ϕ) then break;
4 Remove the last attribute from Y;

5 if Y is empty then return { };
6 while Y is not empty do
7 Check split by �Check(ϕ), and put violations into Vset;
8 if Vset is empty then return Υ∪{X �→Y };
9 foreach X′ ∈ ExpandL(Vset,X,Y, LHSset) do

10 Add X′ �→Y to Υ ; Add X′ to LHSset;
11 Remove the last attribute from Y;

12 return Υ ;

13 Function ExpandL(Vset,U,W, LHSset)
input : a set Vset of split violations; each violation is a set of tuples with a

same U’s value but different W’s values. LHSset is a set of attribute
lists: ∀ Z ∈ LHSset, Z �→WW′ is valid on D + �D for some list W′.

output: a set Ω of attribute lists, ∀U ′ ∈ Ω, U′ �→W is valid on D + �D.
14 Ω := {};
15 foreach attribute A ∈ R\U such that swap free(Vset, A), and there is no Z in

LHSset, where Z ∈ prefixes(UA) do
16 V ′

set := update(Vset, A);
17 if V ′

set is empty then Ω := Ω ∪ { UA };
18 else Ω := Ω ∪ ExpandL(V ′

set, UA, W, LHSset);

19 return Ω;

adding attributes to the tail of X, and its results are kept (lines 9–10). Recall
that �Check(ϕ) divides tuples in �D into {�D1, . . . ,�Dk} based on their
X’s values. It then detects split on equ′(X, t′i) for a tuple t′i in each �Di.
All equ′(X, t′i) with different Y’s values are collected in Vset (line 7), as a
parameter of ExpandL (line 9).

(3) Function ExpandL takes a set Vset of split violations, where each violation
is a set of tuples that have a same value on U but different values on W.
ExpandL returns a set Ω of attribute lists. Each U′ ∈ Ω is obtained from U
by adding attributes to its tail, and U′ �→W is valid on D + �D. Instead of
simply trying permutation of all attributes in R\U , ExpandL employs both
instance-based and schema-based strategies to effectively prune the search
space (line 15). (a) ExpandL only chooses attribute A that does not cause
swap among tuples in a same set in Vset (checked by swap free(Vset, A)).
Recall that in Vset, each set (violation) vio = {t1, . . . , tm}, contains tuples
that have a same value on U but different values on W. Adding A to the tail
of U does not cause swap if for any two tuples ti, tj in vio, when ti ≺A tj ,
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ti �W tj . (b) ExpandL avoids UA when Z ∈ prefixes(UA) for some Z in
LHSset; if Z �→WW′ is valid, UA �→W is not minimal. Recall that LHSset

is maintained when new ODs are found (line 10).
(4) Vset is updated after A is added to the tail of U (update(Vset, A)) (line 16).

Specifically, (a) it further divides sets in Vset based on values on A; tuples
t′, t′′ are in a same set in V ′

set when t′ =UA t′′; and (b) it discards set vio
in V ′

set when vio contains only one tuple, or ∀t′, t′′ ∈ vio, t′ =W t′′. If V ′
set

is empty, no further attribute additions are required (line 17). Otherwise,
ExpandL is recursively called with updated violations and a lengthened LHS

attribute list (line 18).

Example 8: Recall D and �D with two tuples t′, t′′ (Fig. 1) and ϕ =AB �→CD.
(1) Expand first tries to eliminate swap by removing attributes from the RHS of
ϕ; this is done after removing D. (2) Expand detects split on equ′(AB, t′), and
hence the set {t1, t2, t

′, t′′} is put into Vset. (3) ExpandL tries to eliminate split
by adding attributes to the end of AB. For example, adding E does not cause a
swap. (4) After that, the only violation {t1, t2, t

′, t′′} in Vset is divided into four
singleton sets {t1},{t2},{t′},{t′′}. Therefore, no split exists now. ABE is collected
in Ω. There is no need for more attributes at the end of ABE, and step (3) is
repeated by trying other attributes at the end of AB. (5) After ExpandL returns,
all ODs of the form ABS �→C (resp. ABS) are collected in Υ (resp. LHSset). Since
no more attributes can be removed from the RHS of ϕ, Expand terminates. ��
Complexity. (1) In terms of data complexity, recall that �Check(ϕ) is linear in
|�D|. On Vset, function update(Vset, A) is linear in m on a set vio with m tuples
(line 16). The most expensive part is function swap free(Vset, A) (line 15). To
check whether adding attribute A causes swap w.r.t. W, it takes O(m · logm) to
sort tuples in vio based on values on A, followed by a linear scan to check values
on W between successive tuples in O(m). Vset is initialized with equ′(X, t′i) with
different Y’s values (line 7). Hence, Expand is irrelevant of |D|. (2) Removing
attributes from the tail of Y is linear in the size of Y, while adding attributes to
the tail of X has a worst-case factorial complexity in the number of attributes in
R\X . However, ExpandL is also bounded by the number of violations in Vset; the
size of each violation monotonously decreases and all violations are eventually
eliminated. Moreover, effective pruning rules are applied in lines 8, 15 and 17.

We are now ready to present the algorithm to compute �Σ, by combining
enrichment and expansion together.

Algorithm. Algorithm IncOD takes as inputs a relation D of schema R, a set
Σ of valid and minimal ODs on D, and a set �D of tuple insertions to D. It
computes �Σ such that Σ ⊕�Σ is a set of valid and minimal ODs on D +�D.

(1) It initializes three empty sets Σcand, Σvalid and Σpre, for OD candidates,
new valid ODs in D + �D, and ODs in Σ that are also valid on D + �D,
respectively. It validates every ϕ ∈ Σ on D + �D by �Check(ϕ), and puts
invalid (resp. valid) ϕ into �Σ− (resp. Σpre) (lines 2–4).

(2) It applies enrichment to every ϕ ∈ Σ by �Σ−, and collects results in Σcand

(line 5). ODs in Σcand are then validated on D + �D. Those valid ones
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Algorithm 2: IncOD
input : a relation D of schema R, a set Σ of valid and minimal ODs on D,

and a set �D of tuples insertions to D.
output: �Σ = �Σ+ ∪ �Σ−. �Σ+ contains new valid and minimal ODs as

additions to Σ, �Σ− contains non-valid ODs to be removed from Σ.
1 Σcand := {}; Σvalid := {}; Σpre := {};
2 foreach ϕ ∈ Σ do
3 if ϕ is invalid by �Check(ϕ) then add ϕ into �Σ−;
4 else add ϕ into Σpre;

5 foreach ϕ ∈ Σ do Σcand := Σcand ∪ Enrich(ϕ, �Σ−);
6 foreach ϕ ∈ Σcand do
7 if ϕ is valid by �Check(ϕ) then move ϕ from Σcand to Σvalid;
8 foreach ϕ ∈ Σcand ∪ �Σ− do Σvalid := Σvalid ∪ Expand(D, ϕ, �D);
9 �Σ+ := Prune(Σvalid, Σpre);

are moved from Σcand to Σvalid (lines 6–7). It applies expansion to ODs in
Σcand ∪�Σ−, i.e., ODs valid on D but invalid on D+�D, and adds results
to Σvalid (line 8).

(3) It finally prunes non-minimal ODs in Σvalid to get �Σ+ (line 9); Σpre

is required in this step. (a) For each OD X �→Y ∈ Σvalid, it requires to
check whether there exists some OD U �→V in Σvalid ∪ Σpre, such that U
∈prefixes(X) and Y ∈prefixes(V). It suffices to consider only those ODs U
�→V, whose |U| ≤ |X|, and whose |V| ≥ |Y| . (b) To verify whether X (resp.
Y) is minimal, it requires to check whether there exists some OD U �→V in
Σvalid ∪ Σpre, such that U is before V, both contained in X (resp. Y). It
suffices to consider only those ODs U �→V, whose |U| + |V| ≤ |X| (resp. |Y|).

Complexity. IncOD employs �Check(·), Enrich(·) and Expand(·) in OD val-
idations and computations of Σcand, Σvalid and Σpre. Pruning of non-minimal
ODs in Σvalid concerns attributes of ODs in Σvalid ∪ Σpre, and requires no visits
to D. To conclude, IncOD is irrelevant of |D|, and �Σ is computed based on
ODs in Σ via enrichment and expansion only.

We provide insights into the interaction between enrichment and expansion,
for developing optimization techniques.

Theorem 3: On D + �D, if W �→V does not cause a split, (1) when UWA1

. . .Ak �→Y is valid (resp. invalid), UWA1 . . .AiVAi+1 . . .Ak �→Y is valid (resp.
invalid); and (2) when UWA1 . . .AkZ �→Y′ is valid for some Z, and some Y′

∈prefixes(Y), UWA1 . . .AiVAi+1 . . .AkZ �→Y′ is valid. ��
Theorem 3 states that when an OD ϕ is invalid only due to swap (no split),

(1) the enrichment of any valid OD ξ by ϕ also generates valid ODs; and (2)
the enrichment of any invalid OD ξ by ϕ also generates invalid ODs, and any
expansion of ξ that results in valid ODs also works for those ODs. We leverage
these observations to avoid unnecessary expansion in our implementation. This
optimization is proved to be very effective in our experimental studies, since
expansion is the most expensive part of IncOD.
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Algorithm 3: CoverIndex
input : a set Σ of ODs
output: a set of attribute lists on which indexes to be built

1 U := φ; output := φ;
2 foreach X �→Y ∈ Σ do
3 foreach X′ ∈ prefixes(X) do
4 if X′ 	∈ U then
5 add X′ to U ; X′.price := 0; X′.weight := assignweight(X′);
6 while there exists X �→Y such that ∀ X′ ∈ prefixes(X), X′.price < X′.weight do
7 Z := argmin

X′∈prefixes(X)

(X′.weight − X′.price);

8 foreach X′ ∈ prefixes(X) do X′.price := X′.price + Z.weight − Z.price;

9 foreach X′ ∈ U do if X′.weight = X′.price then put X′ into output;

4.2 Building Indexes

Only local data are required in IncOD. Our incremental OD discovery problem
takes as inputs D and the set Σ of ODs valid on D, and hence some auxiliary
structures can be built to help fetch those required data more efficiently.

We employ composite indexes (indexes on multiple attributes) as our aux-
iliary structure. In a composite index, tuples are sorted by concatenating val-
ues of the indexed attributes (see Example 5). Note that a composite index on
attributes [ ABC . . . ] can be used when values of A, or AB or ABC are provided.
We use memory-based B+ tree to implement composite indexes in this paper.
Since B+ tree is well adopted in most commercial DBMS, our approach can be
easily extended to handle data stored in DBMS as well.

To speed up data visits concerning X �→Y, a straightforward way is to build
a composite index indX on X. In practice when the number of ODs in Σ is large,
building composite indexes on all distinct LHS attribute lists for ODs may become
costly in terms of both computation and storage. We present another strategy
that aims to build a minimal set of composite indexes and guarantees that for
any OD at least one index is usable. We tackle this by relating the problem of
building indexes to techniques for weighted vertex cover problems [19].

More specifically, for all X �→Y in Σ, (1) for any X′ ∈prefixes(X), we treat
X′ as a vertex, to build a set of vertices; and (2) we treat X as a hyperedge, with
all X′ ∈prefixes(X) as its vertices. Then, our goal is to index at least one X′

∈prefixes(X) for any X �→Y in Σ, the same as the goal of vertex cover, to pick
at least one vertex for any hyperedge. We also assign a weight to each prefix
X′ = [A1, . . . , Ak], based on its selectivity. The weight of X′ is computed as (1 −
dist(A1)

|D| ) · . . . ·(1− dist(Ak)
|D| ), where dist(Ai) is the number of distinct values of Ai.

We use uniform random sampling to estimate dist(Ai) in our implementation.
If the weight of some X′ is zero, we assign a small number α as its weight.

Algorithm. Algorithm CoverIndex is to find a set of attribute lists on which
we build indexes. It is an adaption of the “pricing” method for weighted vertex
cover. It first initializes the set U of vertices (lines 2–5). It then continues to pick
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X (hyperedge) when neither of its prefix X′ (vertex) is tight (line 6); a prefix X′ is
tight when X′.price = X′.weight. It then increases the price of all X′ as much as
possible, but guarantees that X′.price ≤ X′.weight (lines 7–8). Finally, all tight
prefixes are collected as the output (line 9).

Complexity. CoverIndex terminates when at least one prefix is tight for each X,
and all tight prefixes form a cover. CoverIndex is linear in the size of U , i.e., the
number of prefixes of all X �→Y ∈ Σ. CoverIndex is a d-approximation algorithm
where d = max(|X|) for all X �→Y ∈ Σ in our setting, following [19].

Remark. The index built on a prefix X′ of X can be used for new ODs based on
X �→Y by both expansion and enrichment. We denote by local′(X, t′) = equ′(X, t′)
∪ low′(X, t′) ∪ high′(X, t′). Observe that (1) in expansion, we generate ODs of the
form XZ �→prefixes(Y), local′(XZ, t′) ⊆ local′(X′, t′); and (2) in enrichment, we
generate ODs of the form X′′Z �→Y′, where X′′ ∈prefixes(X). (a) If X′ is a prefix
of X′′, local′(X′′Z, t′) ⊆ local′(X′, t′). (b) If X′′ is a prefix of X′, local′(X′′Z, t′) ⊆
local′(X′′, t′), and the index on X′ can be used when X′′ value is available.

5 Experimental Study

Experimental Setting. We used one machine with Intel Xeon CPU E5-2640
and 32GB RAM, ran each experiment 3 times and report the average here.

Data. We used two real datasets that have been used to evaluate OD discovery
algorithms [12,16,17]. FLI is about US flights information, with 500K tuples
and 20 attributes (www.transtats.bts.gov). NC contains data of registered voters
from North Carolina, with 1M tuples and 22 attributes (ncsbe.gov). To improve
efficiency and avoid uninteresting ODs, we replaced attribute values with integers
in a way that the ordering is preserved, and removed tuples with NULL values,
similar to [12,16,17].

Algorithms. We implemented our algorithms in Java: IncOD for incremental OD

discovery (with �Check(·), Enrich(·) and Expand(·)) and CoverIndex for choos-
ing attributes on which to build minimal indexes. For comparison, we obtained
a batch OD discovery implementation ORDER [12] from www.metanome.de. To
our best knowledge, this is the only algorithm for list-based OD discovery.

All experiments are controlled by 3 parameters: (1) |D|: the number of orig-
inal tuples; (2) |�D|: the number of tuples inserted into D; and (3) |R|: the
number of attributes. We vary |R| by taking random projections of the dataset.
We employ ORDER to compute Σ on D, as inputs of CoverIndex for index build-
ing. IncOD then computes �Σ with inputs D, �D and Σ, leveraging indexes.
The correctness of IncOD is verified by checking whether Σ ⊕ �Σ equals the
results of ORDER on D+�D. We report the time of ORDER on D+�D, against
the time of IncOD for updating indexes and computing �Σ on tuple insertions.

Exp-1. We compare IncOD against ORDER using FLI. We set |D| = 300K,|�D| =
90K and |R|= 8 by default, and vary one parameter in each of the experiments.
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Fig. 3. Experimental results

Varying |D|. Fig. 3(a) shows results by varying |D| from 200K to 400K. ORDER

scales well with |D|, consistent with results in [12]. Times of IncOD increase
slightly, due to more local data w.r.t. |�D| as |D| increases. IncOD outperforms
ORDER by two orders of magnitude on all sizes of D. As an example, ORDER

takes more than 45 min when |D| is 400K, while IncOD takes only 22 s.
Varying |�D|. Fig. 3(b) shows results by varying |�D| from 30K to 150K. We
find IncOD scales very well with |�D|: the time increases from 12 s to 21 s, when
the ratio of |�D| to |D| increases from 10% to 50%. IncOD outperforms ORDER

by two orders of magnitude even when |�D| is half of |D|.
Varying |R|. We vary |R| from 5 to 9 in Fig. 3(c). |R| has the most effect on the
time of list-based OD discovery, since the number of possible list-based ODs is
of a factorial complexity in |R|. ORDER does not scale well with |R|, consistent
with results in [12]. The scalability of IncOD is far more better. As |R| increases
from 8 to 9, the time for ORDER increases from 33 min to more than 4 h, while
the time for IncOD only increases from 19 s to 46 s.

In Fig. 3(d) we decompose the overall time into times for (i) updating indexes
and obtaining local data via indexes for �D, (ii) OD validations by �Check(·),
and (iii) OD expansion; other times are marginal. The times for (i) and (ii) are
related to ODs in Σ, while time (iii) is related to ODs for expansion, whose
numbers are shown in Fig. 3(e). We also report in Fig. 3(e) the number of ODs in
�Σ. We find time (i) is short, due to the fact that almost all of ODs on FLI contain
a single LHS attribute, and hence local data w.r.t. �D can be directly fetched
via indexes built by CoverIndex. Time (ii) is also short; �Check(·) requires only
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local data of �D and is linear in |�D| (Theorem 2). The time for expansion
(Time (iii)) governs the overall time. The search space of our approach is much
smaller than its batch counterpart since �Σ is computed based on Σ, fully
leveraging incremental computations. Moreover, instance-based pruning rules in
expansion and optimizations by Theorem 3 are proved to be quite effective.

Exp-2. We then compare IncOD against ORDER using NC, with |D| = 300K,
|�D| = 90K and |R| = 9 by default. We vary |D| from 200K to 400K in Fig. 3(f),
vary |�D| from 30K to 150K in Fig. 3(g), and vary |R| from 6 to 10 in Fig. 3(h).
In the same setting as Fig. 3(h), we report the time breakdown and number of
related ODs in Figs. 3(i) and 3(j). The results confirm our observations on FLI.
(1) IncOD significantly outperforms ORDER: IncOD is on average 48 and 51 times
faster in Figs. 3(f) and 3(g), respectively. (2) IncOD scales much better with |R|.
As |R| increases from 6 to 10 in Fig. 3(h), the time for ORDER increases by more
than two orders of magnitude, while the time for IncOD increases by less than 7
times. (3) Fig. 3(i) shows that more time is required in the index processing phase
of NC. Most of ODs found on NC have multiple LHS attributes. Since CoverIndex
may choose to build indexes on prefixes of LHS attributes, some post-processing
after index visits is required to fetch local data of �D. Specifically, to fetch local
data local′(X, t′) with an index indX′ where X′ is a prefix of X, we need to sort
tuples in local′(X′, t′) on X \ X′; this incurs additional costs. Note that as |R|
increases from 8 to 10, the same number of ODs are found on D (Fig. 3(j)).

Exp-3. We evaluate different index strategies on NC. We denote by IndexAll when
indexes are built on all distinct LHS attribute lists of ODs in Σ, and compare it
against IncOD with CoverIndex. We denote by (|D|,|R|,|Σ|,|�D|) indexes with
different settings: index building depends on D and Σ; Σ is determined by D
and R; running times concern �D. We report in Fig. 3(k) total running time and
index processing time; index time is part of the running time and IndexAll differs
from IncOD only in this time. We also show in Fig. 3(l) index time breakdown.
We find IndexAll takes less time compared to IncOD, as expected. The total
time of IndexAll is about [68%, 88%] of that of IncOD in Fig. 3(k). The efficiency
of IndexAll comes at the cost of more indexes. For the case that |Σ| = 25 in
Fig. 3(k), IndexAll has to build 25 indexes since each OD has a distinct LHS

attribute list, while CoverIndex suffices to cover all ODs with 5 indexes. Hence,
IndexAll takes more time to update indexes, shown in Fig. 3(l). IncOD takes more
time for fetching local data of �D due to required post-processing, as illustrated
before. We contend that CoverIndex is a better choice when index space is a major
concern, e.g., for large |Σ| or |D|. IncOD already achieves very good performance.
In practice if we can afford more space, we can combine some extra indexes with
the indexes built by CoverIndex, to further improve the efficiency.

6 Conclusions

We have formalized the problem of incremental OD discovery, studied its com-
putational complexity, discussed its data locality property, presented algo-
rithms and optimizations, and experimentally demonstrated our approaches.
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We are developing distributed techniques for incremental OD discovery to fur-
ther enhance the scalability, and studying incremental discoveries for other con-
straints.
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Abstract. In recent years, multi-view clustering has been widely used
in many areas. As an important category of multi-view clustering, multi-
view spectral clustering has recently shown promising advantages in par-
titioning clusters of arbitrary shapes. Despite significant success, there
are still two challenging issues in multi-view spectral clustering, i.e., (i)
how to learn a similarity matrix for multiple weighted views and (ii) how
to learn a robust discrete clustering result from the (continuous) eigen-
vector domain. To simultaneously tackle these two issues, this paper pro-
poses a unified spectral clustering approach based on multi-view weighted
consensus and matrix-decomposition based discretization. In particular,
a multi-view consensus similarity matrix is first learned with the differ-
ent views weighted w.r.t. their confidence. Then the eigen-decomposition
is performed on the similarity matrix and a set of c eigenvectors are
obtained. From the eigenvectors, we first learn a continuous cluster label
and then discretize it to build the final clustering label, which avoids the
potential instability of the conventional k-means discretization. Exten-
sive experiments have been conducted on multiple multi-view datasets
to validate the superiority of our proposed approach.

Keywords: Multi-view spectral clustering · Weighted consensus ·
Matrix-decomposition · Discretization

1 Introduction

With the development of the information technology [1], a huge amount of multi-
view data have emerged from various kinds of real-world applications [2–12].
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Multi-view data can be captured from heterogenous views or sources, and these
different views or sources reveal the distinct information of the same object. For
instance, a YouTube video consists of text features, auditory features and visual
features. A text news can be translated into different languages. In traditional
multi-view clustering, a straightforward idea to deal with multi-view data is to
concatenate all the features into a new feature vector, and then perform single-
view clustering method on the new feature vector to obtain the clustering result.
However, this simple strategy ignores the different characteristics as well as the
correlation among multiple views. The features for multiple views are able to
provide complementary information between views. To capture the diversity and
correlation in multi-view data, many multi-view clustering algorithms have been
developed to improve the robustness of the clustering by making full use of the
information from multiple views [13–18].

In the past few years, many multi-view clustering algorithms have been pro-
posed by considering the rich information of multiple views [19–24]. For example,
Cai et al. [22] developed a multi-view spectral clustering framework to integrate
heterogeneous image features. Kumar et al. [21] introduced the co-regularization
technique in multi-view spectral clustering. These methods, however, may be
affected by weak or poor views, and thereby result in degraded clustering perfor-
mances. In multi-view clustering, different views may be associated with very dif-
ferent reliability and should be weighted accordingly. Inspired by the co-training
technique [19], Kumar and Daumé III [20] exploited prior knowledge to decide
the view weights, and designed a consensus cluster label matrix for multi-view
spectral clustering. However, besides the view-weighting issue, another limita-
tion to these existing multi-view spectral clustering methods [21,25,26] is that
they mostly rely on the k-means algorithm to perform discretization on the
continuous eigenvector domain, where the inherent instability of k-means may
significantly affect the final clustering result after discretization.

To simultaneously deal with the issue of view weighting and the issue of
potentially unstable discretization of k-means, in this paper, we propose a uni-
fied multi-view spectral clustering framework based on multi-view weighted con-
sensus similarity and matrix-decomposition based discretization. Specifically, a
consensus similarity matrix is first built with the multiple views evaluated and
weighted. Then, a continuous cluster label is learned, from which the final dis-
crete clustering label can be obtained in an optimization model. In the optimiza-
tion model, we exploit an alternative iteration scheme to achieve an approximate
solution. Extensive experiments have been conducted on multiple multi-view
datasets, which demonstrate the superiority of our proposed method.

The following sections are organized as follows. In Sect. 2 we describe the
proposed model in detail, and present an optimization algorithm to solve the
model. Next in Sect. 3, extensive experiments are conducted on four real-world
datasets to show the superiority of our method. Finally in Sect. 4, we conclude
the whole paper.
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Notations. In this paper, uppercase letters are used to represent the matrices.
For a matrix M , its i-th row can be written as mi whose j-th entry is denoted as
mij . Tr(M) stands for the trace of the matrix M . The v-th view of the matrix
M is expressed as M (v). We use ‖M‖2 and ‖M‖F to respectively represent the
l2-norm and the Frobenius norm of the matrix M . In addition, 1n means the
column vector whose length is n and the entries are all one.

2 The Proposed Algorithm

In this section, we introduce in detail the proposed Multi-view Spectral Cluster-
ing via Multi-view Weighted Consensus and Matrix-decomposition based Dis-
cretization (MvWCMD) algorithm. First of all, we will briefly introduce the
preliminary knowledge. And then we will describe in detail the proposed model,
the optimization problem of which will be solved by the alternative iteration
scheme. Finally, we will summarize the entire algorithm and provide time com-
plexity analysis.

2.1 Preliminary Knowledge

Graph-Based Clustering Description. Suppose there are n samples which
can be partitioned into c categories. To well represent the affinities between
these samples, a similarity matrix is supposed to be constructed in a graph-
based clustering method. A decent graph plays a vital role therein, therefore
it has been studied in many works [27]. When a similarity matrix is ideal, the
number of its connected components must be c the same as the number of the
final clusters, and it can be directly applied for clustering. Inspired by the idea
above, Nie et al. [28] proposed a Constraint Laplacian Rank (CLR) method
which aims to learn an ideal graph from the given similarity matrix. Given an
arbitrary similarity matrix A ∈ R

n×n, the target graph can be solved by the
following model

min
si1n=1,sij≥0,S∈C

‖S − A‖2F , (1)

where S is non-negative, and the entries of each row sum up to 1. C indicates
a set of n by n square matrices whose connected components are c. In the light
of the graph theory in [29], the connectivity constraint can be substituted for a
rank constraint, and thus the problem (1) can be rewritten as

min
si1n=1,sij≥0,rank(L)=n−c

‖S − A‖2F , (2)

where rank(L) stands for the rank of the Laplacian matrix L, and L =

D − (ST+S)
2 . The n by n degree matrix D is a diagonal matrix, and D (ii) =

∑
j(sij+sji)

2 . In this way, the ideal similarity matrix S can be obtained, and thus
it can be directly used in clustering. However, the CLR method is just applicable
for single-view clustering.
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Spectral Clustering Revisit. Looking back on the spectral clustering method
[30], data points can be partitioned into different groups according to their simi-
larities. Not requiring data is linearly separable, the method can explore the non-
convex pattern. For spectral clustering, Laplacian matrix L ∈ R

n×n is required
as an input. To obtain the Laplacian matrix L, the similarity matrix S ∈ R

n×n

is firstly needed to be constructed in traditional spectral clustering methods by
one of the three common strategies, such as the k-nearest-neighborhood (knn).
Suppose in data X there are c clusters, the spectral clustering problem can be
written as

min
Y

Tr
(
Y T LY

)
, s.t. Y ∈ Ind, (3)

where Y = [y1, y2, ..., yn]T ∈ R
n×c is the cluster indicator matrix whose labels

are discrete, and Y ∈ Ind indicates that the cluster label vector of each point
yi ∈ {0, 1}c×1 only comprises one and only one element “1” to reveal the cluster
membership of xi. Actually, the problem (3) is an NP-hard problem according
to the discrete constraint on Y . Thus, the matrix Y is usually relaxed to allow
continuous values, and finally the problem becomes

min
F

Tr
(
FT LF

)
, s.t. FT F = I, (4)

where F ∈ R
n×c is the relaxed continuous cluster label matrix, and the triv-

ial solution can be avoided by the orthogonal constraint therein. And then the
approximate solution of F can be achieved by the c eigenvectors of L correspond-
ing to the c smallest eigenvalues. Subsequently, traditional clustering method
such as k-means is applied to compute on F to get the final discrete cluster
labels [31]. Nevertheless, there still exists potential instability. Due to the uncer-
tainty of the post-processing step, the final solution may deviate from the real
discrete labels unpredictably [32].

2.2 The Proposed Model

Motivated by the idea that the spectral embedding matrix F is spanned by the
column vectors of the cluster indicator matrix Y ∈ Ind [31] when the similarity
matrix is ideal, we extend the CLR method mentioned above to the multi-view
clustering. Despite of this idea, the spectral embedding matrix F is actually not
equal to the cluster indicator matrix Y ∈ Ind. Thus, in this paper, not only
the spectral embedding matrix can be focused on, but also the cluster indicator
matrix can be solved finally without k-means discretization.

In multi-view clustering, the same object represented in different views is
expected to be partitioned into the same group. Thus, the ground truth simi-
larity matrix of each view is supposed to be the same. That is to say, there is
a consensus similarity matrix among all the views. For multi-view data, sup-
pose that there are m views, and A(1), A(2), ..., A(m) corresponding to the
similarity matrix of each view, we aim to get the multi-view consensus simi-
larity matrix S that can well approximate the original input similarity matrix
A(v) ∈ R

n×n (1 ≤ v ≤ m). A straight-forward solution is to assign the same
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weight to every input similarity matrix and achieve an average similarity matrix
by the equation A = 1

m

∑m
v=1 A(v). However, this simple way ignores the different

contributions among views, leading to bad clustering performance when there
are poor quality views. Accordingly, a group of meaningful weights are needed
to be introduced to measure the importance of different views. In this paper, a
trick idea [24] is followed by our algorithm to adaptively measure the weights
of the views. Consequently, the target multi-view weighted consensus similarity
matrix S with rank constraint is learned to approximate the similarity matrix of
each view with different weights. To solve this problem, a linear combination of
the reconstruction error ‖S −A(v)‖2F for each view will be minimized [24]. Thus,
the problem can be written as

min
S

m∑

v=1

w(v)‖S − A(v)‖2F ,

s.t. si1n = 1, sij ≥ 0, rank(L) = n − c,

(5)

where the constant w(v) is the optimal target function value of the following
problem:

w(v) def
= min

S

1
‖S − A(v)‖F

. (6)

We can obviously find that w(v) depends on S. If the view v is good, the value
of ‖S − A(v)‖F should be small, and therefore w(v) is supposed to be large.
Otherwise, a small weight is required to be assigned to a weak view.

Problem (5) is not easy to be solved, due to the rank constraint where L =

D− (ST+S)
2 and D is an n by n diagonal matrix whose diagonal elements D (ii) =

∑
j(sij+sji)

2 also depend on the similarity matrix S. Here L is a positive semi-
definite matrix, and thus σi (L) ≥ 0, where σi (L) corresponds to the i-th smallest
eigenvalue of the Laplacian matrix L. Inspired by [29], rank(L) = n − c is
tantamount to

∑c
i=1 σi (L) = 0. To cope with the optimization question with

rank constraint whose complexity analysis is combinatorial, the rank constraint is
incorporated into the objective function as a regularizer term [28,33]. Therefore,
the constraint is relaxed and our model is reformulated as

min
S

m∑

v=1

w(v)‖S − A(v)‖2F + α

c∑

i=1

σi (L) ,

s.t. si1n = 1, sij ≥ 0.

(7)

If α is enough large, the minimization of Eq. (7) will make the regularizer term∑c
i=1 σi (L) → 0. And then the rank constraint rank(L) = n − c will be solved.
Despite all this, problem (7) still remains a challenging problem as a result

of the last term. Fortunately, the Ky Fan’s Theorem [34] can be applied to solve
the problem above, that is to say

c∑

i=1

σi (L) = min
FT F=I

Tr
(
FT LF

)
, (8)
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where F ∈ R
n×c is a spectral embedding matrix, and the spectral embedding

matrix F is actually not equal to the cluster indicator matrix Y ∈ Ind. To better
achieve our clustering task, our multi-view spectral clustering via multi-view
weighted consensus and matrix-decomposition based discretization (MvWCMD)
model is proposed as follows:

min
S,F,Y,Q

m∑

v=1

w(v)‖S − A(v)‖2F
︸ ︷︷ ︸

multi-view weighted consensus similarity learning

+

αTr
(
FT LF

)

︸ ︷︷ ︸
continuous cluster label learning

+ β‖Y − FQ‖2F︸ ︷︷ ︸
discrete cluster label learning

,

s.t. si1n = 1, sij ≥ 0, FT F = I,QT Q = I, Y ∈ Ind, (9)

where α and β are the penalty parameters, and Q is a rotation matrix. Due to
the invariance property of spectral solution [35], FQ is another solution for any
solution F [36]. The last term expects to find an appropriate orthogonal rotation
matrix Q so that the result of FQ is closely approaching to the ground truth
discrete cluster label matrix Y . From Eq. (9), the multi-view weighted consensus
similarity matrix S, the continuous cluster label matrix F and the final discrete
cluster label matrix Y can be automatically learned from the data. Ideally, we
must have sij = 0 if data point i and j belong to different groups and vice versa.
That is to say, if and only if data point i and j belong to different groups, we
have sij = 0 or fi �= fj . Therefore, the correlation between the learned similarity
matrix and the cluster labels can be exploited in our unified framework Eq. (9).
In fact, there is a self-taught property in our clustering model because of the
feedback of cluster labels to induce the ideal similarity matrix and vice versa.

2.3 Optimization

In this subsection, an alternative iteration scheme is utilized to solve the prob-
lem (9). When updating one variable, the remaining variables will be fixed in
the alternative iteration scheme.

Computation of S. With F , Q and Y fixed, the problem is reduced to

min
S

m∑

v=1

w(v)‖S − A(v)‖2F + αTr
(
FT LF

)
,

s.t. si1n = 1, sij ≥ 0.

(10)

In particular, the problem (10) can be further written as

min
si1n=1,sij≥0

m∑

v=1

w(v)
n∑

i,j=1

(
sij − a

(v)
ij

)2

+ α

n∑

i,j=1

‖fi − fj‖22sij . (11)
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Due to the independence of the problem (11) for different i, it is equivalent to
separately solving the following problem for each i

min
si1n=1,sij≥0

n∑

j=1

m∑

v=1

w(v)
(
sij − a

(v)
ij

)2

+ α

n∑

j=1

‖fi − fj‖22sij . (12)

For briefness, vij = ‖fi − fj‖22 is used, and vi is a vector whose j-th entry is vij .
si and ai are in like manner. Thus, the problem (12) becomes

min
si1n=1,si≥0Tn

‖si −
∑m

v=1 w(v)a
(v)
i − α

2 vi∑m
v=1 w(v)

‖22. (13)

The problem above can be addressed by an efficient iterative algorithm pro-
posed in [37]. To rapidly obtain the totally sparse multi-view consensus similar-
ity matrix S, the neighbors of the i-th data can be chosen to be updated, and
exactly the neighbors can be set as a const, like 10 in our algorithm.

Computation of F . With S, Q and Y fixed, we have

min
F

αTr
(
FT LF

)
+ β‖Y − FQ‖2F , s.t. FT F = I. (14)

The problem (14) which is constrained by the orthogonal condition can be settled
efficiently by the algorithm proposed by [38].

Computation of Q. With S, F and Y fixed, the problem becomes

min
Q

‖Y − FQ‖2F , s.t. QT Q = I. (15)

This is an orthogonal Procrustes problem [39], which allows a closed-form solu-
tion, and the solution is as follows

Q = UV T , (16)

where U and V are the left and right components of the SVD decomposition of
Y T F .

Computation of Y . With S, F and Q fixed, it is equivalent to solving

min
Y

‖Y − FQ‖2F , s.t. Y ∈ Ind. (17)

Knowing that Tr
(
Y T Y

)
= n, the problem above can be reformulated as

max
Y

Tr
(
Y T FQ

)
, s.t. Y ∈ Ind. (18)

Consequently, the optimal solution can be achieved from the following equation

Yij =

⎧
⎨

⎩

1, j = arg max
k

(FQ)ik

0, otherwise.
(19)

The variables S, F , Q and Y are separately initialized at first. And then they
are updated iteratively in an interplay manner until convergence. In this way,
an overall optimal solution can be achieved.



182 M.-S. Chen et al.

2.4 Algorithm Summary and Time Complexity Analysis

For clarity, the main procedure of the proposed MvWCMD method is sum-
marized in Algorithm 1. In what follows, we will provide the time computa-
tional complexity analysis. With our optimization strategy, the computation of
S requires O (

n3 + nv
)

complexity where v � n, since it needs to perform eigen-
value decomposition in every iterative step. SVD is involved in the updating of
Q, and its computational complexity is O (

nc2 + c3
)
. The complexity for F is

O (
nc2 + c3

)
. To update Y , O (

nc2
)

is needed. The number of clusters c is usu-
ally a small digit. Therefore, the main computational load of the model in Eq. (9)
relies on obtaining the multi-view consensus similarity matrix S.

Algorithm 1. Multi-view Spectral Clustering via Multi-view Weighted Con-
sensus and Matrix-decomposition based Discretization
Input: Similarity matrices for m views A(1), A(2), ..., A(m) and A(v) ∈ R

n×n, number
of clusters c, parameter α > 0, β > 0

1: Initialize the weight of each view w(v) = 1
m

, random matrices F ∈ R
n×c and

Q ∈ R
n×n, zero matrix Y ∈ R

n×c.
2: Let A =

∑m
v=1 w(v)A(v).

3: Compute F , which is spanned by the c eigenvectors of L = D−AT +A
2

corresponding
to the c smallest eigenvalues.

4: repeat
5: repeat
6: For each i, update the i-th row of S by solving the problem of Eq. (13).
7: until stopping criterion is met.
8: Update F according to Eq. (14).
9: Update Q by solving Eq. (16).

10: Y = 0.
11: Update Y by solving Eq. (19).
12: until stopping criterion is met.
Output: S ∈ R

n×n with exactly c components, spectral embedding matrix F ∈ R
n×c,

orthogonal rotation matrix Q ∈ R
n×n and indicator matrix Y ∈ Ind.

3 Experiment

In this section, extensive experiments are conducted to verify the superiority of
the proposed method on four real-world datasets. In our experiments, two com-
mon evaluation metrics, accuracy (ACC), and normalized mutual information
(NMI) are used to estimate the clustering performance of our proposed method
and baselines. For each measure, the value is higher, the clustering performance
is better [40]. Readers can refer to [41] for further details of the two measures. In
addition, parameter analysis, convergence analysis and comparison experiments
are separately conducted on the four real-world datasets.
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3.1 Real-World Datasets

In our experiment, the four benchmark datasets, UCI Handwritten digits,
MSRCv1, Caltech101-7 and Caltech101-20 are used. In the following, we will
introduce the details of these datasets.

1. Handwritten digits dataset
Coming from UCI machine learning repository, multiple features (Mfeat)
dataset is a handwritten digits dataset1. The dataset consists of 2000 samples
in which there are 10 classes. In our experiment, three kinds of features, 216
profile correlations, 76 Fourier coefficients and 47 Zernike moments are used
to represent images. Each type of features is considered as a view.

2. MSRCv1 dataset
MSRCv1 dataset is an image dataset [42]. The dataset consists of 210 objects
and 7 classes. In our experiment, four kinds of features, CM feature, GIST
feature, LBP feature and GENT feature are used to represent images, and
each type of features is regarded as a view.

3. Caltech101 datasets
Consisting of 101 categories of images, caltech101 [43] is an image dataset.
For experimental purpose, two subsets are chosen to represent two datasets
following the previous work [25]. The one dataset is named Caltech101-7, and
it has 1474 images and 7 widely used classes. The other dataset which is larger
is called Caltech101-20, and it is made up of 2386 images and 20 classes. Three
types of features, 1984-dimensional HOG feature, 512-dimensional GIST fea-
ture and 928-dimensional LBP feature from the images are selected to stand
for three views.

The summarization of the four real-world datasets is shown in Table 1.

Table 1. Statistic of the four real-world datasets.

Mfeat MSRCv1 Caltech101-7 Caltech101-20

View1 fac(216) cm(24) hog(1984) hog(1984)

View2 fou(76) gist(512) gist(512) gist(512)

View3 zer(47) lbp(256) lbp(928) lbp(928)

View4 - gent(254) - -

# Size 2000 210 1474 2386

# Class 10 7 7 20

3.2 Parameter Analysis

There are two parameters in our model: α and β. In the following, parame-
ter analysis is conducted to show the effect of the two parameters. There are
1 http://archive.ics.uci.edu/ml/index.php.

http://archive.ics.uci.edu/ml/index.php
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different properties of different datasets, and thus different ranges of α and β
are applied to different datasets. For example, the ranges of α and β are sepa-
rately 10, 30, 50, 70, 90 and 0.01, 0.03, 0.05, 0.07, 0.09 in Mfeat dataset, while the
ranges of α and β are separately 1, 3, 5, 7, 9 and 0.001, 0.003, 0.005, 0.007, 0.009
in Caltech101-7 dataset. The experimental results are respectively exhibited in
Figs. 1, 2, 3 and 4. According to the figures, best results in different datasets
can be obtained. For Mfeat dataset, there are the best results when α is 50 and
β is 0.01. Similarly, when α is 1 and β is 0.009, best results are achieved for
MSRCv1 dataset. In particular, when α is 7 and β is 0.003, the best ACC value
can be obtained in Caltech101-7, but the NMI value is lower at this time. To be
balanced, the comparatively better results are chosen when α is 9 and β is 0.007
for Caltech101-7. In Caltech101-20 dataset, α is 30 and β is 1 when there are
the best results.
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Fig. 1. Parameter analysis on α and β on Mfeat.
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Fig. 2. Parameter analysis on α and β on MSRCv1.
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Fig. 3. Parameter analysis on α and β on Caltech101-7.
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Fig. 4. Parameter analysis on α and β on Caltech101-20.

3.3 Convergence Analysis

To verify the convergence property of the proposed method, convergence analysis
is conducted. With the best results, the values of α and β from different datasets
are set according to the parameter analysis. The experimental results are showed
in Fig. 5. Obviously, we can generally conclude that the method will converge
during the 30 times of iterations from the subfigures.

3.4 Comparison Experiment

To validate the superiority of the proposed MvWCMD method, we compare
our algorithm with the following methods: Constraint Laplacian Rank [28]
(CLR), Co-Regularized Spectral Clustering [21] (CoReg), Co-Training Multi-
view Clustering [20] (CoTrn), Self-weighted Multi-view Clustering [24] (SwMC),
Multi-View Spectral Clustering [22] (MVSC), Robust Multi-view Spectral Clus-
tering [26] (RMSC) and Multi-view Learning with Adaptive Neighbors [44]
(MLAN). Following the CLR method, an initial input similarity matrix A(v)
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Fig. 5. Convergence analysis of optimization.

can be constructed for each view. Only a parameter k that means the number
of neighbors is needed to be set in the construction method. For the proposed
method, the k is fixed as 10. With the advantage of this graph construction
method, the neat normalized similarity matrix of each view is achieved. For all
the compared methods, the corresponding parameters are tuned to achieve bet-
ter performance suggested by the authors. The number of clusters c is set to
be equal to the number of the ground truth cluster labels. At the same time,
all the methods are conducted for 20 times to avoid the randomness, and the
average performance and their standard deviation (std) are computed. The best
experimental results will be remarked in bold face.

Tables 2 and 3 show the ACC and NMI results of all algorithms on the four
real-world datasets. From the two tables, the proposed algorithm can be seen
to obtain the best results among all the state-of-the-art methods in compari-
son. Thus, our proposed method MvWCMD which jointly learn the multi-view
weighted consensus similarity matrix and the cluster label matrix in a unified
framework is preferred.
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Table 2. Clustering results in terms of ACC on all datasets.

Method Mfeat MSRCv1 Caltech101-7 Caltech101-20

CLR 0.7385(0.0000) 0.5524(0.0000) 0.6859(0.0000) 0.4933(0.0000)

CoTrn 0.8002(0.0128) 0.6898(0.0139) 0.4184(0.0082) 0.4283(0.0055)

CoReg 0.7387(0.0095) 0.6241(0.0078) 0.4101(0.0033) 0.3796(0.0033)

SwMC 0.8300(0.0000) 0.5619(0.0000) 0.6635(0.0000) 0.4434(0.0000)

MLAN 0.7640(0.0000) 0.7098(0.0066) 0.6255(0.0000) 0.5270(0.0223)

MVSC 0.8224(0.0511) 0.7205(0.0452) 0.6197(0.0159) 0.4316(0.0329)

RMSC 0.5789(0.0126) 0.3246(0.0098) 0.5369(0.0047) 0.4909(0.0066)

MvWCMD 0.8479(0.0092) 0.7243(0.0332) 0.7169(0.0633) 0.5585(0.0485)

Table 3. Clustering results in terms of NMI on all datasets.

Method Mfeat MSRCv1 Caltech101-7 Caltech101-20

CLR 0.7609(0.0000) 0.4857(0.0000) 0.5112(0.0000) 0.3795(0.0000)

CoTrn 0.7494(0.0051) 0.6142(0.0090) 0.4145(0.0022) 0.5380(0.0015)

CoReg 0.6949(0.0044) 0.5088(0.0058) 0.4026(0.0027) 0.4884(0.0023)

SwMC 0.8542(0.0000) 0.5639(0.0000) 0.5251(0.0000) 0.4123(0.0000)

MLAN 0.8110(0.0005) 0.6007(0.0134) 0.5482(0.0002) 0.5478(0.0295)

MVSC 0.8393(0.0270) 0.6162(0.0198) 0.5256(0.0206) 0.5505(0.0111)

RMSC 0.5759(0.0142) 0.3103(0.0077) 0.5333(0.0055) 0.5021(0.0064)

MvWCMD 0.8792(0.0124) 0.6868(0.0310) 0.5521(0.0178) 0.5569(0.0439)

4 Conclusion

In this work, to eliminate the potential instability from the conventional k-means
discretization, we have proposed a novel Multi-view Spectral Clustering via
Multi-view Weighted Consensus and Matrix-decomposition based Discretization
(MvWCMD) method aiming to jointly learn the multi-view weighted consen-
sus similarity matrix, the continuous cluster label matrix and the final discrete
cluster label matrix without k-means discretization. With the help of this frame-
work, variables are updated iteratively in an interplay manner until convergence,
so that an overall optimal solution can be achieved. Extensive experiments have
been conducted on several real-world datasets to show the superiority of our
proposed method.
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Abstract. Multi-stream data with high variation is ubiquitous in the
modern network systems. With the development of telecommunication
technologies, robust data compression techniques are urged to be devel-
oped. In this paper, we humbly introduce a novel technique specifically
for high variation signal data: SIRCS, which applies linear regression
model for slope, intercept and residual decomposition of the multi data
stream and combines the advanced tree mapping techniques. SIRCS
inherits the advantages from the existing grouping compression algo-
rithms, like GAMPS. With the newly invented correlation sorting tech-
niques: the correlation tree mapping, SIRCS can practically improve
the compression ratio by 13% from the traditional clustering mapping
scheme. The application of the linear model decomposition can further
facilitate the improvement of the algorithm performance from the state-
of-art algorithms, with the RMSE decrease 4% and the compression time
dramatically drop compared to the GAMPS. With the wide range of the
error tolerance from 1% to 27%, SIRCS performs consistently better than
all evaluated state-of-art algorithms regarding compression efficiency and
accuracy.

Keywords: High variation data · Multi-signal compression ·
Correlation mapping · Linear regression model · Error detection

1 Introduction

Multi-stream data is ubiquitous in the modern network systems [13]. With the
development of telecommunication technologies, information is usually gener-
ated as a collective and multi-dimensional data stream from different sources.
As the popularisation of the Internet of Things [17], the time-series group data
compression is becoming more popular and important than ever before in both
industry and academia. Meanwhile, in today’s critical network systems, infor-
mation with high variation is also frequently generated, such as in the stock
c© Springer Nature Switzerland AG 2019
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trade, traffic systems, massively distributed solar systems, etc. Such data usu-
ally preserves ambiguous variation pattern, big data range and high variance,
and hence becomes a challenging data type to compress in the communication
network. Therefore, current research needs to be widely extended to optimally
encode and reconstruct the high variation data in a highly correlated multi-signal
network system.

Previous work has been conducted for single-stream time-series data compres-
sion, such as APCA [2] and SF [6], to name a few. In a multi-signal environment,
however, if we apply these methods directly to compress each single stream one
by one without considering their correlation, it is highly possible to result in a
small compression ratio.

To simultaneously handle all streaming data, multi-signal compression algo-
rithms, such as GAMPS [7], are developed based on the data correlation infor-
mation. Particularly, GAMPS first groups signals within spatial proximity into
a cluster, and determines the best base signal in the cluster by iteratively check-
ing the compression performance of using each stream as the base signal. For
each data other than the base signal, it then constructs a ratio signal based on
its difference with the base signal, called “cluster mapping”. Finally, it applies
APCA to compress both base signal and ratio signals. However, such methods
still have some drawbacks especially when dealing with high variation data: (1)
The brute-force search for the base signal is extremely time-consuming; (2) The
correlation information is never fully utilised when we transform each signal
only according to the base signal in the cluster mapping; (3) Ratio signal can-
not comprehensively capture complex patterns in high variation data, leading to
relatively large reconstruction error.

To address the above issues, we propose a novel algorithm, SIRCS (Slope-
Intercept-Residual compression by Correlation Sequencing), for multi-stream
compression with high variation data. We introduce decomposition-based com-
pression and tree mapping techniques in this work, and SIRCS is a condign
combination of these techniques, which demonstrates an overall improvement
over current state-of-the-art compression methods in both efficiency and preci-
sion. Our major contributions can be summarised as follows:

1. We study the problem of multi-signal compression which has important appli-
cations in modern network systems. The problem is challenging due to various
correlation levels, and variation patterns existed in the streaming signals.

2. We introduce the correlation tree mapping technique for data grouping to
fully utilise the correlation information between signals efficiently. The map-
ping can efficiently configure a tree index with a selected base signal, and
meanwhile, maximise the preservation of the highest correlation information
in the index. We theoretically prove the improvability of the tree mapping
technique over traditional cluster mapping.

3. We propose a regression-based decomposition technique for data-variation
reduction, which results in smaller fluctuation in the residual signals and
hence better compression performance.
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4. We propose a new idea of residual compression with the guarantee of the
worst-case maximum L∞ error derived from the base signal error bound.
This assures all signals to be perfectly reconstructed with a maximum error
guarantee.

5. We empirically compare SIRCS with several state-of-the-art compression
algorithms on a real-world dataset, and the experimental result demonstrates
better performance achieved by SIRCS regarding compression ratio, recon-
struction precision, and compression speed.

For the rest of the paper, we review the work of data compression in Sect. 2,
then formulate the problem of multi-stream high variation data compression
in Sect. 3. In Sect. 4, the SIRCS algorithm is introduced to solve the problem
in Sect. 3 by integrating the tree mapping, regression-based decomposition, and
residual compression. We report our empirical results in Sect. 5, followed by a
brief conclusion in Sect. 6.

2 Related Work

Numerous state-of-art algorithms exist in the computing systems, usually clas-
sified into lossless and lossy compression schemes. Prevalent application of the
lossless algorithms, such as Adaptive and Non-adaptive Huffman Coding [19],
LZ77 [22], LZ78 [23], LZW [16], BWT [14] and PPM [4], remain robust and func-
tional even in most of the modern operating systems. BWT-based compression
reaches the optimised performance at O( log(n)

n ), improving from O( log(log(n))
log(n) )

from LZ77 [21] and O( 1
log(n) ) from LZ78 [12]. However, the compression ratio

cannot be dramatically increased from a lossless algorithm, therefore, lossy com-
pression is introduced for a better trade-off of the compression efficiency.

In lossy compression for single data, the piecewise approximation algorithms,
in particular, are the most fundamental and can be furthermore classified into:
piecewise constant approximation (eg., PCA [11], APCA [2], PAA [8], etc.), linear
approximation (eg., SF [6], PWLH [1], PLA [3], etc.), and polynomial approxima-
tion (eg., CHEB [20], etc.). Another lossy compression type is the decomposition
based algorithms, such as DWT [15], DCT [9], DFT [10], etc. Those compres-
sion algorithms usually preserves high compression ratio but longer compression
time. However, in modern network systems, the correlation between multiple
signals should also be considered to improve compression performance further.

Group data compression algorithms are introduced in the lossy compression
domain. GAMPS is the first application using the data correlation. In GAMPS,
ratio signals are introduced by dividing one signal value with the selected base
signal value. Due to the signals similarity, the ratio signal from two highly cor-
related signals is much flatter than its original data, thus largely reducing the
variation level. Compressing the low variation data by APCA, in turn, increases
the total compression ratio. To select the proper base signal, GAMPS computes
the compression ratio in every scenario with different signals as the base signal.
Thorough iteration occurs to estimate the consumptions by summing the size
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of all compressed signals. The algorithm then picks the base signal leading to
the smallest compressed file size. Consequently, GAMPS can lead to an excellent
compression ratio but relatively large precision error and long compression time.
Our work, on the contrary, aims to optimise all the three performance criteria
in multi-stream compression.

3 Problem Definition

Definition 1. (High Variation Time Series Data) The time-series data with
high variation D is defined as a stream of data points (ti, vi) with a consecutive
time index ti (i.e., D = [(t1, v1), (t2, v2), . . . , (tn, vn)]), where the standard devi-
ation σD and the range Dmax − Dmin are much higher than regular time-series
data. The time index follows monotonicity: ∀i < j, ti < tj.

We use S = {D1,D2, . . . , Dn} to denote a multi-signal time series dataset,
i.e., a set of time-series data D which share the same time index with the length
n (i.e., Di = [(t1, vi

1), (t2, v
i
2), . . . , (tn, vi

n)]). The problem studied in this paper
can be formulated as follows.

Definition 2. (Group Compression of High Correlation Data with Max-error
Precision) A dataset S formed by the high variation time-series data Di, where
i ∈ [1, n], and an error bound ε are given. The problem is to compress all Di

in the dataset S so that the reconstructed signal D′
i suffice the equation: ∀Di ∈

S, (D′
i(t)) − Di(t)) ≤ ε.

Intuitively, the hypothesis can be made that the higher the correlation, the
higher the compression ratio will be obtained. We conduct an empirical evalua-
tion to test the relationship between the correlation of a paired signal and their
compression ratio, along with the precision. Assume two randomly picked sig-
nals from the signal network are Di,Dj , and their correlation is R2

i,j . In this two
signals compression, we link the R2 values to the CR and NRMSE from the
compression between Di,Dj . The result of the evaluation shows the statistical
significance in the positively associated relationship between the correlation and
the compression ratio. The detailed information of the empirical evaluation will
be reported in Sect. 5. This result validates the hypothesis that a high correla-
tion between two signals can improve the compression performance. Therefore,
we focus our study of multi-stream data compression in a highly correlated net-
work system as defined below.

Definition 3. (Correlated Multi-signal Network) The correlated multi-signal
network is a system where any two randomly selected signals, Di(t) and Dj(t),
are correlated, thus similar in variation pattern, with a mathematical relation as
a function of F , denoted as Di(t) = F (Dj(t)) + δj(t).
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4 SIRCS: Slope-intercept-residual Compression by
Correlation Sequencing

4.1 Overview

The algorithm consists of three main components: correlation tree sequencing,
regression-based decomposition and the residual data compression. First, given
the time-series dataset S = {D1,D2, . . . , Dn}, the correlation tree sequencing
is to create a compressing index Itree and select the base signal Dbase. Second,
following Itree and Dbase, the regression-based decomposition dissemble Di into
its residual Ri and the regression coefficients. Finally, the residual data is com-
pressed with a newly estimated error bound. This residual error bound assures
that the recovered residuals and the regression coefficients can reconstruct the
raw signal under the original maximum error guarantee. We will elaborate on the
technical details of these three components in the following sections, respectively.

4.2 Correlation Sequencing Mechanism

According to our hypothesis, data correlation can effectively minimise the mem-
ory consumption of multi-stream data. In this section, we will introduce our
method of correlation tree mapping and meanwhile theoretically prove the
improvability of the tree mapping over the cluster mapping.

Technique 1. (Correlation Tree Mapping) The cluster mapping is based on a
unique base signal, so its information index, Icluster, processes only one pass
to each of the child signal (Dbase → Di, where 0 ≤ i ≤ n − 1). Replacing the
cluster to tree mapping, whose information index, Itree, processes multiple passes
from one child signal to another child signal (Dbase → Di → · · · → Dj , where
0 ≤ i, j ≤ n − 1), we always have the compression ratio compared as

(CR)tree(
n∑

i=0

Di(t)) ≥ (CR)cluster(
n∑

i=0

Di(t)). (1)

Tree Components Formation

Definition 4. Correlation pairs are the signal link between two signals; corre-
lation branches are the signal link with multiple signals sharing one head node
and; correlation twigs are the branch components which are different in length
but share the same head node with their branch.

Tree components formation aims to extract the high correlation pairs from
signals m and n and arrange them in an ordered sequence. Considering the non-
repetitive collection: if r(m,n) is chosen, the system will check if either m and n
is already collected, and if not, the system will register r(m,n). Such correlation
collection will not end until all signals are contained. During the signal collection,
there will be three scenarios:
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1. r(m,n) where m is in the list, and n is in the list. In this case, there will be no
collecting operation occurred.

2. r(m,n) where m is in the list, but n is not in the list. In this case, only
the signal n is collected. It further implies the node m is an intermediate
connection between a collected signal and n.

3. r(m,n) where both m and n are not in the list. In this case, both signal ID
m and n will be collected. It implies that the connecting pair m and n are
isolated from the other signal nodes.

These three possibilities will impact on the branch creation in the later pro-
cedure: if there’s a node acting as an intermediate connection with two other
nodes, a branch will be created. Then the high correlation pairs obtained pre-
viously will be connected to several branches with longer connections in each
segment. The connection starts with connecting one pair’s head with the other
pair’s tail if the head and tail have the same signal index. To achieve the repeti-
tive seeking for the same heads and tails, the recursion algorithm is implemented
to keep connecting the previously and newly generated segments until no same
heads and tails occur in the segments. As a special case of the branch, several
twigs may be included in one branch. In this case, they will be encapsulated in
one branch.

Example 1. In Fig. 1, r11,12 → r11,0 → r1,2 → . . . → r7,6 is sorted and there
are 14 elements in total. All the 18 signals are just recovered from those 14
paired segments, where the signal 6 is the last selected element. The rest of the
correlation pairs after r7,6 will be ignored. In the left figure of Fig. 2, we find
the repetition of the signals in the parental and child node position, such as the
pairs 3 ↔ 15 against 15 ↔ 17 and 15 ↔ 7. The connection will be ended with
the segment 3 ↔ 15 ↔ 17 and 3 ↔ 15 ↔ 7 ↔ 6. After the connections, the
branch with only one twig is 1 : [[2, 0]], and the branch with multiple twigs is
11 : [[0, 8], [12]], 3 : [[15, 7, 6], [15, 17], [9]], and 5 : [[13], [4, 16], [14]].

Base Signal Selection. In this step, we aim to find a common based signal for
all branches by seeking the highest correlation pair between one branch’s head
node and any elements in the other branches. To assure the result of iteration
is the highest correlation among all possibilities, the connecting candidates will
not be defined until all the head nodes of the branches go through every element
of the other branches and estimate their correlation level. The highest pair will
be given the priority to connect and for each loop. As the plantation of branches
is accomplished, there will be only one head node in the tree, which will be
nominated as the base signal Dbase(t).

Example 2. Right figure in Fig. 2(a) demonstrates four branches with the head-
node 3, 5, 1, and 11. The first highest correlation searching ends up with con-
necting the signal 12 with the head node 3 at R2 = 0.88. The second searching
follows up with the connection between signals 5 and 7 at R2 = 0.81. The last
searching ends up with connecting signals 1 and 10 at R2 = 0.78. Finally, the
tree index is constructed and Dbase(t) is D11(t), shown in Fig. 2(b).
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Fig. 1. (a) Shows the example of the correlation sequencing: the system will
arrange those collected signal pair into a structure similar to: Dr2 = r11,12 :
[11, 12], r11,0 : [11, 0], . . . , r7,6 : [7, 6]. (b) demonstrates the example of connecting same
ID of different pairs to branches.

Fig. 2. (a) Demonstrates searching for the highest correlated pair: the searching pro-
cess iterates three times in total, indicating the optimal connecting index among the
branches, after which the correlation tree is eventually created. The whole steps guar-
antee that for each connection, the chosen correlation level remains the highest from
the rest. (b) shows the result of the correlation tree mapping, the index of the signals
is encoded in digital numbers as the header of the compressed file.

Proof of Improvability. The following theorem highlights the superiority of
our proposed tree mapping over traditional cluster mapping.

Theorem 1. If the information of the total correlation level from an index
is given by I, the sum of correlation level from the cluster mapping is always
less equal than the sum of correlation level from the tree mapping, denoted as
Icluster ≤ Itree.
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Proof. Assume the branch number of the index is m, and within a branch, if the
connecting nodes number is greater than 2, assume the node connection number
as n. The formulas of the total correlation level from both cluster index mapping
and tree index mapping can be written as

Icluster =
m∑

i=1

Cor(Dbase,0(t),Di,1(t)), (2)

Itree =
m∑

i=1

n∑

j=1

Cor(Di,j(t),Di,j+1(t)). (3)

In the cluster mapping formula, it is known there are only two signals in one
branch: the base signal as Dbase,0(t) and child signal as Di,1(t), where the base
signal is fixed once the index is created. Suppose the first component in the
correlation calculation is a set of the possible parental signals, denoted as P ,
the set of the parental signals in the cluster mapping will then be Pcluster =
Dbase,0(t). It can be observed that the total number of elements in the cluster
mapping is unique, while in the tree mapping, multiple parental signals including
that in the cluster mapping case can concurrently exist, denoted as Dbase,0(t) ∈
Ptree. Therefore, the relation between the parental set from cluster and tree
mapping will be Pcluster ⊂ Ptree. Since the parental-signal selection in the tree
mapping has greater flexibility, a wider range of the correlation selection exists
in the tree mapping than the cluster mapping, denoted as

Set(Cor(Dbase,0(t),Di,1(t))) ⊂ Set(Cor(Di,j(t),Di,j+1(t))). (4)

More correlation selection in the tree mapping further implies the tree index can
cover higher correlation information. After all, cluster mapping only manifests
the correlation between the base signal and its child signals, while the in tree
mapping, both correlation between two child signals are also free to choose. With
a wider range of selection, total correlation from tree mapping is no less than
that from cluster mapping, denoted as Itree ≥ Icluster.

4.3 Regression-Based Decomposition Mechanism

The essential reason for using regression-based decomposition is to reduce the
data variation from raw to residual signal compression. With one base signal
Dbase selected from the dataset S, other signals can be decomposed via the base
signal and the correlation coefficients into another signal with a much smaller
size D̂. In this paper, D̂ is the residual data D̂i = Ri, whose validity will be
affirmed by proving σ(Ri) < σ(D) in this section. Reversely, based on Dbase,
correlation coefficients and D̂i, the signals can be reconstructed with a given
normalised error tolerance of ε. The problem can be formulated as follow.

Technique 2. (Reduction of Data Variation) Based on the preceding assump-
tions, if a child signal is given by Di(t) and its residual signal is denoted as Ri(t),
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for the variation level represented by standard deviation of σ, they are always
satisfying the following relation: σ(Ri(t)) < σ(Di(t)).

We recall the definition of the correlated signal network that Di(t) =
F (Dj(t)) + δj(t), while we also assume the time lag between two randomly
selected signals in the network cannot be too large compared to the signal
period: Δi 	 T . Then we configure the linear model (LM) as ŷ = β0x̂ + β1.
To minimise the mean square error of the regression line from the real data:
Ek

i =
∑n

i=0(y − ŷ)2, the coefficients are adjusted to the least square estimates
[18] as

β0 =
∑N

i=0(yi − ŷi)(xi − x̂i)∑N
i=0(xi − x̂i)2

, (5)

β1 =
∑N

i=0(yi − ȳ)(xi − x̄)
∑N

i=0(xi − x̄)2
. (6)

Such regression model can extract the coefficient of slope, intercept, and the
residual data with zero mean and lower variation level. This theorem of data
variation reduction can be proved bellow and visually shown in Fig. 3.

Fig. 3. (a) Shows an example of three raw signals from the solar panel in St Lucia Cam-
pus. (b) Indicates the residual signals from the left figure have been visually reduced
in data variation.

Theorem 2. Assume the original data has high range and standard deviation,
while their variation patterns are also similar. Given the child signal Si(t) and
its parental signal Sj(t) = β0Si(t + Δ) + β1 + δi(t) where Si(t), Sj(t) ≥ 0 , we
define SΔ(t) = Si(t)−Sj(t). If σ represent the standard deviation, we can always
have σ(SΔ(t)) ≤ σ(Si(t)).

Proof. If the coefficient of variation is defined as σ(S(t)) =
√∑n

i=0(S(t)−S̄)2

n−1 .
Taking SΔ(t), we have

σ(SΔ(t)) =

√∑n
i=0(SΔ(t) − S̄Δ)2

n − 1
. (7)
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Since SΔ(t) = Si(t) − Sj(t), we can deduce

σ(SΔ(t)) =

√∑n
i=0((Si(t) − (β0Si(t + Δ) + β1 + δi(t))) − S̄Δ)2

n − 1
. (8)

As Si(t) is periodic, and apparently β0Si(t+Δ)+β1 is also periodic, according to
the linearity of Fourier Transform, ST (t) = Si(t)−(β0Si(t+Δ)+β1) is a periodic
signal. Since S̄Δ = E(ST (t))+E(δi(t)) and from the linear regression model, we
know E(δi(t)) = 0, then S̄Δ = E(ST (t)). The formula can be rewritten as

σ(SΔ(t)) =

√∑n
i=0(ST (t) − δi(t) − S̄T )2

n − 1
. (9)

Since the assumption of the distributed signals network is geographically closed,
while the time latency Δ should be small enough for the similarity detection,
which is formulated as Si(t) ≈ Si(t + Δ).

We assume that the order of magnitude in delta signal and the error sig-
nal is much smaller than that of the original signal. This is normal to expect
since Power(Si(t)) ≈ β0Si(t + Δ) + β1 and, without bad leverages and outliers,
Power(δi(t)) 	 Si(t). Therefore, we have ST (t), δi(t) 	 Si(t)).

Now that we want to compare the between σ(Si(t)) and sigma(SΔ(t)). In
the course, we can rely on the aforementioned assumptions to approximate∑n

i=0(ST (t) − S̄T )2 ≈ 0, compared to the much larger value of Si(t). There-
fore we have

σ(SΔ(t)) ≈
√∑n

i=0(δi(t))2

n − 1
. (10)

As one of the assumptions, V ar(Si(t)) = σ2(Si(t)) � σ2(SΔ(t)), we can deduce

σ(Si(t)) ≥
√∑n

i=0(δi(t))2

n − 1
= σ(SΔ(t)). (11)

4.4 Residual Data Compression

This section is proposed to compressed the Ri(t) decomposed from the signals
Di(t) based on the linear regression model with Dbase(t). The problem of the
residual compression is shown as follow.

Technique 3. (Error Bound of Residual Compression) If the error precision
of the raw signal is given by εraw and the corresponding error precision of the
residual signal is given by εres, the algorithm needs to assure for any signal
reconstruction from its residual data with εres, the precision of the reconstructed
signal should fall in the range of εraw.

The problem is solved by the theorem of the residual error bound, in which
the signals D(t) are divided into direct parent signal P (t) and its child signals
C(t). It implies that the error precision of the residual signal is equal to the
error precision of the child signal, which we assumed to be the maximum error
guarantee as εraw.
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Theorem 3. Suppose the error precision of the raw signal is given by εraw and
the reconstructed parental and child signal is denoted as Prec(t) and Crec(t). If
the linear regression model gives

Craw(t) = β0Prec(t) + β1, (12)

the maximum error tolerance of the residual signal will be equal to that of its raw
signal, denoted as εres = εraw.

Proof. The relationship between the raw signal data and the residual data can
be denoted as

Craw(t) = β0Praw(t) + β1 + Rraw(t). (13)

Symbol C means the child signal, P means the parental signal, and R means the
residual signal. We also recall the relation between the raw and reconstructed
signal as Rec(t) = Raw(t) + δ(t). We can deduce that the coefficients β0 and
β1 are from the raw child signal and raw parental signal. Let us redesign the
linear model between the raw child signal and the recovered parental signal. The
equation is reformatted:

Craw(t) = β0Prec(t) + β1 + Rraw(t). (14)

Let us assume that Prec(t) has high similarity with Praw(t). In decompression
side, what are known are the values of β0 and β1, two reconstructed signals
Prec(t) and Rraw(t). The reconstructed child signal will be

Crec(t) = β0Prec(t) + β1 + Rrec(t). (15)

Taking the residual signal to the linear model, we have

Crec(t) − Craw(t) = β0Prec(t) + β1 + Rrec(t) − β0Prec(t) − β1 − Rraw(t). (16)

Eventually, the formula can be rewritten as δR(t) = δC(t) ≤ εraw.

The theorem finalises the estimation of the residual data error bound, there-
fore, the final design of the SIRCS algorithm can be integrated in Algorithm1.
Here we assume the group dataset as S, single data stream as D, lists for signal
collection as L, and encapsulate the tree index creation in the starting procedure
of pseudo code.

5 Experiment and Results

5.1 Experiment Setup

In the experiment, we use the real world dataset of the solar network system
of the University of Queensland. 26 historical solar data are used from three
different campuses: St Lucia Campus (18 signals), Gatton Campus (6 signals),
and Herston Campus (2 signals). The time range of the data is 20 days from 10th

to 29th in November in 2017, with the data sampling period of 60 s.
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Algorithm 1. SIRCS(S, ε)
1: procedure Tree(S) � Tree Configuration from S
2: Ipairs ← sort(S) � correlation sequencing
3: Ibranches ← sort(Ipairs) � R2 to branches
4: Itree ← sort(Ibranches) � Plantation of branches
5: end procedure
6: Itree ← Cor(S)
7: for b ← branch to last branch in tree do
8: for D ← b to last element in current branch do
9: if s ∈ compressedbucket then continue � skip shared-node signals

10: else � start compression
11: function get lm coefficient(last Drec, currentsignal)
12: β0 ← lmCoeff [0] � function’s returned list: lmCoeff
13: β1 ← lmCoeff [1]
14: residual ← lmCoeff [2]
15: end function
16: Lβ0 ← append(β0)
17: Lβ1 ← append(β1)
18: function residual compression(residual, ε)
19: Dcom ← compression algorithms � from single data compression
20: Drec ← recover algorithms � for finding next LM coefficient
21: end function
22: Lcom ← append(Dcom)
23: Lrec ← append(Drec)
24: end if
25: end for
26: end for

The performance evaluation is mainly based on traditional compression
benchmarks, including compression ratio, normalised root-mean-square error,
and computational time. They are formulated as follow:

CR =
Size(Fraw(t))

Size(Fcompressed(t))
(17)

NRMSE =
1

norm

√∑N
i=0(ŷ − y)2

N
(18)

Additional evaluation, nominated as the precision test, is introduced in RIDA [5].
The test demonstrates the compression precision in a given compression ratio,
regardless of the error tolerance selection.

State-of-art algorithms are realised under Python Environment (3.6.4) in the
operating system with a 2.2 GHz Intel Core i7 processor and a 16 GB 1600 MHz
DDR3 memory. Particularly, APCA, SF and GAMPS are selected for the per-
formance comparison against the SIRCS. Their algorithm realisation is slightly
customised in favour of the maximum performance: we adjust the floating pre-
cision to 5 digits and the coefficient c as 0.4 in GAMPS.
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5.2 Effect of Correlation Level

The linear model test shows that a positive association exists between compres-
sion ratio and the signal pairs correlation, with the p-value approaching zero.
From LM test in Fig. 4(a), p-value approaches to 0. For every unit increase of the
correlation, the compression ratio rises 1.42856. The linear model test also shows
that a positive association exists between NRMSE and the signal pairs correla-
tion, with the p-value approaching zero. From LM test in Fig. 4(b), p-value also
approaches to 0. The outcome implies the higher correlation grouping between
two data streams will statistically lead to a higher compression ratio, therefore
we validate the statement that picking high correlation signal pairs can improve
the total compression performance.

Fig. 4. (a) Implies that higher the correlation level, smaller the file will be compressed
and (b) Implies that higher the correlation level, greater the compression error will be
generated. (c) Shows the box plot of the two-sample t-test of the one-day dataset, and
(d) shows that of twenty-day dataset, both of which manifests the improvement of the
residual data compression.

5.3 Effect of Regression-Based Decomposition

We conduct two-sample t-tests between using and not using residual data com-
pression for both the twenty days dataset and a one-day dataset on 21st of
January 2018. In Fig. 4(c), practically significant increase can be observed in
SIR algorithm with the corresponding state-of-art algorithms: SIR application
on Swing Filter has average 0.27 increase in compression ratio, while on APCA
also has average 0.42 increase. To consolidate the persuasiveness of the result,
Fig. 4(d) shows the outcome of the compression ratio comparison over a one-
day dataset and the improvement is similar to the twenty-day dataset scenario.
Two-sample t-tests imply a strong evidence that using SIR algorithm can sig-
nificantly improve the compression ratio based on the corresponding state-of-art
algorithms.

5.4 Effect of Tree Mapping

First, we demonstrate the difference between the cluster mapping and the tree
mapping in Fig. 5(a). The bar chart in Fig. 5 shows practical improvement, from



204 Z. Ye et al.

0.04 to 0.18, for all eighteen tested signals in both APCA and Swing Filter. The
improvement in compression ratio in APCA is averagely 0.026 higher than the
improvement in Swing Filter. From this outcome, the improvement of the tree
mapping is practically significant. The increased level varies with the base signal
selection, but the improvement applies in all circumstances. Therefore, from
the empirical evaluation, the improvement from the tree mapping is practically
significant over the cluster mapping.

Fig. 5. Shows the compression ratio with or without the tree mapping in different base
signal selection. In all situations, tree mapping improves the compression efficiency in
various extent.

5.5 Effect of Error Tolerance

From the outcome of the evaluation, we estimate the percentage improvement
of SIRCS based on the state-of-art algorithms. In the compression ratio per-
formance, the SIRCS has averagely 15% of the increase from the compression
ratio of APCA, shown in Fig. 6 (a). It can shoot up to 30% of increase with
the error tolerance equal to 1% and also go up to 11% when the error toler-
ance is equal to 13%. The swing filter algorithm applying SIRCS can increase
its compression ratio up to 14%, and averagely increase 5% for any error level,
shown in Fig. 6(b). The compression time shows in the similar level except that of
GAMPS, which shoots up to 103.67 s to compress the whole datasets, according
to Fig. 6(c). The rest has similar computational time varying from 1.05 to 4.72 s.
In the precision test, SIRCS also has the noticeable improvement in reducing the
NRMSE-compression ratio trade-off, shown in Fig. 6(d). In the APCA scheme,
the SIRCS can decrease almost 75% of NRMSE when the compression ratio is
1.11, and it can also reduce 15% more in most of the compression ratio level. The
swing-filter-based algorithm can reduce its NRMSE by using SIRCS up to 50%.
Even though such improvement differs from applying different error tolerance,
the improvement is proved to be practically significant.
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Fig. 6. Comparison of the performance between SIRCS and the other three state-of-art
algorithms in terms of compression ratio in (a), NRMSE in (b), compression time in
(c), and the precision level against a given compression ratio in (d).

6 Conclusion

In this paper, we have demonstrated the impact of data correlation level on the
group compression performance. We proposed a new correlation grouping tech-
niques: correlation tree mapping and developed a novel compression technique
SIRCS for high variation data in the multi-signal network under a certain error
bound. Conspicuous features of SIRCS include: (i) For high variation data, it
improves the original algorithm’s performance in both compression ratio and
NRMSE. (ii) Tree index provides optimal solutions of preserving the highest
correlation level of the signal network, taking less compression time than the
traditional grouping techniques. In summary, SIRCS is the first algorithm pro-
viding maximum correlation preservation and effectively compressed the high
variation data. The evaluation of SIRCS from the real world dataset shows the
practical improvement from its existing counterparts.
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Abstract. The modern In-Memory Database (IMDB) can support
highly concurrent OLTP workloads and generate massive transactional
logs per second. Quorum based replication protocols such as Paxos or
Raft have been widely used in distributed databases. However, it’s non-
trivial to replicate IMDB because high transaction rate has brought
new challenges. First, the leader node in quorum replication should have
adaptivity by considering various transaction arrival rates and the pro-
cessing capability of follower nodes. Second, followers are required to
replay logs to catch up the state of the leader in the highly concurrent
setting to reduce visibility gap. To this end, we built QuorumX, an effi-
cient quorum-based replication framework for IMDB under heavy OLTP
workloads. QuorumX combines critical path based batching and pipeline
batching to provide an adaptive log propagation scheme to obtain a sta-
ble and high performance at various settings. Further, we propose a safe
and coordination-free log replay scheme to minimize the visibility gap
between the leader and follower IMDBs. Our evaluation results with the
YCSB and TPC-C benchmarks demonstrate that QuorumX achieves the
performance close to asynchronous primary-backup replication without
sacrificing the data consistency and availability.

Keywords: Log replication · Log replay · High performance · Quorum

1 Introduction

Replication is the technique used for a traditional DBMS or fast, multi-core
scalable In-Memory Database (IMDB) to support high-availability. In this work,
we assume a full database copy is held on a single IMDB node, and each backup
node has the full replication. In replicated IMDBs, the execution of a transaction
is completely in the primary IMDB. Primary-backup replication is the well-
known replication method in database community. The asynchronous primary-
backup replication used in traditional database systems [3,4] trades consistency
for performance and availability. The synchronous primary-backup replication
trades performance and availability for consistency.
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Today’s mission-critical enterprise applications in Banking or E-commerce
require the back-end database system to provide high-performance and high-
availability without sacrificing consistency. Compared with primary-backup
replication, the quorum-based replication (e.g. Multi-Paxos [9], Raft [19], etc.)
can guarantee strong consistency, tolerate up to F out of 2F+1 fail-stop failures,
and achieve good performance because it only requires the majority of repli-
cas to response to the leader. The quorum-based replication adopts consensus
protocols to take more reasonable trade-off among performance, availability and
consistency, and thus it has been regarded as a practical and efficient replication
protocol for large scale datastores [14,22,23].

Quorum-based replication protocols are the natural choice for replicating
IMDB as a highly available and strongly consistent OLTP datastore. However,
it’s non-trivial to translate the quorum-based replication protocol into a prag-
matic implementation for industrial use. The basic principle of various quorum-
based protocols is that committing a transaction requires its log to be replicated
and flushed on non-volatile storage on the majority of follower replicas. A trans-
action may take extremely short time to complete its execution in the leader
IMDB. But, committing this transaction may take more time to wait its log
replicated to the majority of followers. As a result, the performance of repli-
cated IMDBs significantly depends on the quorum-based log replication which
is influenced by many factors.

To achieve read scalability, the followers need to replay committed logs at a
fast speed to keep up with the leader’s state. The classic quorum-based repli-
cation needs the leader to send followers the maximal committed log sequence
number (MaxComLSN), and then follower can commit and replay these logs
with LSN smaller or equal to MaxComLSN. Replaying logs after receiving the
specified MaxComLSN leads to that the committed data on followers are visi-
ble at a later time than that on the leader, referred to as visibility gap (VGap).
Without careful design, VGap would be larger when the leader IMDB is running
under a heavy OLTP workload, and generates transactional logs at a high rate.

In this paper, we present an efficient quorum-based replication framework,
called as QuorumX, to optimize log replication and replay for IMDB under highly
concurrent OLTP workloads. Main contributions are summarized as follows:

– QuorumX combines critical path based batching and pipeline based batching
to adaptively replicate transactional logs, which takes into account various
factors including the characteristics of transactional workloads and the pro-
cessing capability of follower.

– We introduce a fast and coordination-free log replay scheme without waiting
for the MaxComLSN, which applies logs to memory ahead of time in parallel
to reduce the risk of increased VGap.

– QuorumX has been implemented in Solar [10], an in-memory NewSQL
database system that has been successfully deployed on Bank of Communica-
tions, one of the biggest commercial banks in China. Extensive experiments
are conducted to evaluate QuorumX under different benchmarks.
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2 Preliminary

Overview of Quorum-Based Log Replication. Figure 1 shows the overall
architecture of replicating an IMDB. The replicated IMDB cluster contains one
primary IMDB as a leader and more than two replica IMDBs as followers. All
requests of read/write transactions are routed to the leader IMDB. Transac-
tions are concurrently executed on the leader. When a transaction completes all
transactional logics and starts to execute the COMMIT statement, the leader
generates its transactional logs and appends them to log buffer (at steps 1 and 2
in the left side of Fig. 1). Then this transaction enters the commit phase, waits
to be committed (at step 3) and finally responses to the client (at step 6). The
single commit thread in the leader sends these logs to all followers and flush them
to local disks (at steps 4 and 5). A transaction can be committed only after the
leader receives more than half responses from followers. After that, leader will
asynchronously send the latest committed log sequence number (MaxComLSN)
to followers. Follower replicas then replay committed logs less than the latest
received MaxComLSN. It should be noted that the execution worker is multi-
threaded. The new arrived transaction requests from clients can be processed
in parallel although previous transactions have not been committed. The new
transactions cannot be committed until the previous ones have been committed.
That means the commit order is sequential.

Worker threads Commit thread

Commit queue

Log buffer

Log file
Log file

Replay workerMultilevel pipeline Replay buffer
I

II

III

Leader IMDB Follower IMDB

memtable memtableresponse to client

Fig. 1. Overall architecture of replicating an IMDB.

The follower replica who receives logs will first parse it into entries with log
format and check the integrity, then write it to non-volatile storages and send
a response message to leader. Under a heavy OLTP workload, if followers use
a single thread to process received logs in a sequential manner, the replication
latency would be unacceptable in practical settings. Pipeline and batching are
general methods used to improve the performance of log replication.

– Pipeline parallelism in a follower replica. The basic steps for processing
a received log by replica can be divided into three relatively independent
stages: parsing logs, flushing logs and sending response to leader. The pipeline
of processing logs in follower is that: the parsing thread gets network packets,
parses them to log entries and appends these logs to the replay buffer (at steps
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I in the right side of Fig. 1). At the back-end, the single persistence thread
reads logs from the replay buffer and flushes them to log files (at step II).
When finishing writing a batch of logs, the persistence thread notifies the reply
thread to send a response to the leader (at step III). The replication latency
introduced by follower replicas is hidden through pipelined log processing.

– Batching logs in the leader. Pipeline and batching are often used together
[22,25]. Without batching, the pipeline will be hard to work effectively. Basi-
cally, batching several requests into a single instance allows the overhead to
be amortized over per-request. The systems built over quorum-based replica-
tion can adopt the batching method to boost the throughput. However, the
parameters such as batch size have greater impacts on the performance of
batching method. The manual configurations for these parameters are proved
to be time consuming and can not adapt to different settings. Existing works
on automatic batching are limited in replicated IMDBs. For example, the
factor on processing capability of follower has not been fully considered in
the log replication.

In this work, we investigated several batching methods and found that they
were not always effective under the context of replicating a fast IMDB. Quorum-
based replication needs an adaptively self-tuning batching mechanism that is not
only parameter-free but also considers: (1) the capacity of follower; and (2) the
workload characteristics (e.g. the arrival rate).

Log Replay. To avoid the follower lagging behind the leader too much, fol-
lower requires a fast mechanism of replaying committed logs. On the back-end,
follower IMDBs replay logs to memtables (which is often implemented by B+
Tree or SkipList in IMDB) to provide read-only transaction requests. The max-
imal committed log sequence number (MaxComLSN) is piggybacked on logs to
notify the follower the latest committed point. Conventional quorum replication
schemes only allows logs with LSN less than MaxComLSN to be replayed. In the
case of highly concurrent workloads, this principle of relaying logs by follower
causes a challenge in visibility gap. In this paper, visibility gap is defined as the
time difference between leader and follower for making the committed data be
visible. Real Applications such as HTAP often take real-time OLAP analysis
over follower nodes [20], and it’s expected that there is a as small as possible
VGap between leader and followers.

Recently proposed solutions to VGap aim at resolving the problem in the
asynchronous primary-backup replication, which can not be applied to the
quorum-based replication [16,21]. In the asynchronous primary-backup repli-
cation, follower could replay the received logs immediately without any coordi-
nation with leader. However, in the quorum-based replication, it is leader that
notifies followers the consensus decision of committing transactions by send-
ing the current MaxComLSN. After receiving MaxComLSN, follower nodes are
agreed to replay logs with LSN no larger than MaxComLSN. Since it’s expensive
to read logs from disk for replay, the replicated and uncommitted logs need to
reside in the memory for a period of time before being replayed. The structure
holding un-replayed logs is the replay buffer. However, in the case where the
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leader generates logs at a high speed, e.g SiloR could produce logs at gigabytes-
per-second rates [27], un-replayed logs in the buffer can be soon erased by the
new arrivals if the size of replay buffer is insufficient. Followers still needs to read
flushed logs from disk for replay, and would definitely lag behind the leader and
produces larger and larger VGap. Therefore, to achieve read scalability for IMDB
replicated by quorum based protocols, VGap of a follower should be minimized
in order to keep up with the state of leader.

3 Adaptively Self-tuning Batching Scheme

The design objectives of batching scheme have three aspects. First, no parame-
ters are required to be calculated offline and then manfully tune system config-
urations. Because once the environment settings are changed, these parameters
need to be calculated again. It should be totally automatic to cope with uncer-
tainty without manual intervention. Second, workloads in real setting are often
dynamically changed and have an important effect on the performance of batch-
ing scheme. For instance, if the transaction arrival rate becomes low, a batch
should be constructed by a small number of transactional logs. Last but not
least, considering the processing capacity of follower is essential for adaptively
tuning algorithm, especially in the case where the whole performance relies on
the processing speed of followers under heavy workloads. Follower replicas may
be overloaded if logs are replicated with a wrong batch size (Table 1).

Table 1. Features of batching algorithms.

Batching scheme Parameter-free Workload-adaptive Replica-friendly

JPaxos [13] × � ×
Nuno Santos [25] × � ×
Paolo Romano [24] × � ×
AB [11] � × ×
TAB [11] × � ×
QumrumX � � �

3.1 Batching Scheme

Based on the above design objectives, we propose to combine critical-path-based
batching (CB) [11] and pipeline-based batching (PB). CB automatically adjusts
the batch size according to workload characteristics. PB is complementary to
CB by considering the processing capability of follower, which can adaptively
tune the frequency of sending logs to avoid followers being overloaded in highly
concurrent workloads.

The CB mechanism operates as following: as shown in Fig. 2, after finishing
processing transaction logics, each worker thread will enter a global common code
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Fig. 3. Pipeline-based batching (PB).

fragment, that is commitTxn. The entry code is used for registering the commit
queue as the task is inside. Similarly, the exit code deregisters the task and
appends it to the sending batch. The intuition behind CB is that multiple tasks
should be included in the same batch only if they arrive “close together” to the
sendBatch. When implementing CB, we treat the commit queue as a doorway.
A batch is complete and sent to follower when the commit queue is empty, since
the next task is too far behind to join into the current batch. Compared with
batching with a fixed time or a fixed size, CB could adjust sending frequency
according to the arrival rate. When the arriving rate is high, CB gathers a lot
of close tasks and achieves good throughput. And if the arrival rate is low, CB
will not waste a long time for waiting for more tasks. The disadvantage of CB
is that when the arrival rate stays constantly high, CB will continue to gather
too many tasks without sending a batch in a proper size. We combine PB with
CB mechanisms to resolve this issue.

PB takes a full consideration of the pipelined replication scheme in follower.
As described above, pipelined replication scheme in follower consists of three
stages (s1, s2, s3). It should be noted that an optimal performance can be achieved
if the slowest pipeline stage handles tasks all the time and has no idle time. Tak-
ing Fig. 3(a) for example, suppose that s2 is the most time-consuming stage,
and the optimal send interval for a batch should be ts2. Upon this sending rate,
every batch could get a smallest replication latency and next batches would
not be blocked by the previous ones. As a result, during the pipeline replica-
tion, QuorumX collects the consumed time of each stage by followers for each
batch, and embedded them into the response to be sent to the leader. QuorumX
requires the time interval of sending two batches should not to be less than it.
If logs are sent with a interval larger than that value, the resources cannot be
utilized sufficiently. On the contrary, if the sending interval is less than that
value, congestion should happen during replication.
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3.2 Discussion

We demonstrate that network latency between leader and follower has no effect
to set sending frequency with Fig. 3(a) and (b). No matter how the network
latency changes, the optimal frequency is always restricted by the most time-
consuming stage of follower. However, we need to point out that network band-
width can affect the sending frequency. Under complicated network environment
especially the wide area network, bandwidth is often limited and may be occu-
pied by some unknown applications. Here, log replication is constrained by the
limited network bandwidth of the leader. As a result, the sending frequency
should be lowered properly. How to automatically adjust the frequency of send-
ing logs over complicated, unreliable networks is still an open question, and we
will study this problem in our future work.

4 Coordination-Free Log Replay

4.1 Design Choices for Replay Buffer

The replay buffer in follower is an important structure which is responsible for
caching the received logs from the leader. The persistence thread can flush a
batch of buffered logs at one time, and the replay thread can directly replay the
buffered log to keep in sync with the primary. The design of replay buffer should
guarantee replicated logs are replayed from memory most of the time and avoid
re-loading them from HDD/SDD.

The size of the replay buffer is a key design consideration. IMDB such as
SiloR could generate logs at gigabytes-per-second rates. Caching all logs in the
replay buffer leads to excessive memory consumption. If the size is set to a small
value, the buffered and non-replayed logs would be covered by the new arrivals
under heavy workload. Reading the received yet covered logs from disk for log
replay would introduce extra disk I/O latency. This causes the risk of cascading
latency as more non-replayed logs continue to be covered by newly arrived logs.
Finally, it will make the follower nodes never catch up with the leader. The basic
idea of determining the buffer size is that it should be greater than the rate of
log generation on the leader.

In order to provide read services on fresh data by followers, they need to
replay received logs to memory as soon as possible. However, as discussed
above, different from asynchronous replication, the time to replay a log entry
is restricted by the quorum-based replication scheme. A follower is only allowed
to replay logs with LSN not larger than MaxComLSN for guaranteeing consis-
tency. However, wait-for-replay logs residing in the memory may cause the replay
buffer overwhelmed. To this end, we design a coordination-free log replay (CLR)
scheme which directly applies the received logs to the memtable without waiting
for the MaxComLSN. CLR ensures consistency by separating the replay proce-
dure into two phases. The first phase converts logs into uncommitted cell lists
of memtable in parallel, where the applied data are invisible. The second phase
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sequentially installs them into memtable according their LSNs, where the consis-
tency is guaranteed. It’s should be emphasized that the second phase is extremely
lightweight without introducing overhead as the installation only contains a few
pointer manipulations.

4.2 Mechanism of Coordination-Free Log Replay

Basically, different from transaction execution in the leader, there has NO roll-
back when replaying logs in follower. That means all of the logs must be replayed
successfully in order. We choose to replicate value logs instead of operation logs,
which could promise a lock-free replay strategy. When CLR begins to replay
a batch of logs, in the first phase, multiple threads (replay workers) works in
parallel. Replay worker first starts a transaction for each log entry. Then it looks
up the memtable to find the node that the transaction wants to modify. After
that, logs are translated into several uncommitted cell informations in which
each cell has a pointer pointing to the actual node in the memtable. Translating
won’t directly installed modifications into the memtable and therefore has no
need to acquire any locks. The uncommitted cell informations are stored in the
transaction context.

Algorithm 1. QuorumX commit algorithm of replaying
/* Commit transactions according to log sequence */

Input: MaxComLSN
1 while !thread .stop() do

/* Get a transaction from commit queue sequentially. */

2 log id = commit queue.seq ;
3 while true do
4 if log id > MaxComLSN then
5 wait(wait time ms);
6 continue;

7 txn ctx = commit queue.get(log id);
8 if NULL == txn ctx then
9 wait(wait time ms);

10 continue;

11 sync bool compare and swap(&commit queue.seq , log id, log id + 1);
12 break;

/* Install the modification into memtable. */

13 for cell info in txn ctx.uc info do
14 memnode = cell info → node;
15 exclusive lock(memnode.rowlock);
16 memnode.value list.append(cell info);
17 exclusive unlock(memnode.rowlock);
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After completing the above procedures, transaction will be pushed into the
commit queue of a single commit thread. It was the single commit thread that
ensures the safety and consistency of quorum-based replication. In the second
phase of CLR, commit thread sequentially pops transaction whose log id is
smaller than the MaxComLSN, and does the commit transaction operation. As
shown in the Algorithm1, transactions with log id less than MaxComLSN will
be committed and their uncommitted cell informations will be directly append
to the value list in the memtable. Locks are necessary in this part, but as we can
see, the duration is short (lines 13–17).

The main processing flow of CLR can be processed totally in parallel and
only the commit part is done sequentially in order to promise transaction modifi-
cations are installed into memtable by the LSN order. CLR immediately replays
the received logs without waiting for MaxComLSN. One advantage is to avoid
the risk of reading flushed logs from disk and the memory resources consumed
by the replay buffer has a minor risk of being excessive. Besides, since CLR
performs replaying ahead of time, the VGap can be minimized compared with
scheme waiting for MaxComLSN.

4.3 Discussion

Nevertheless, there are additional demands on fault handing introduced by our
proposed replay strategy. Suppose such a scenario in Fig. 4, five replicas (R1−R5)
form a cluster and R1 is the initial leader. Before crashed, R1 has generated
five log entries and committed four log entries. Log five has flushed to disk
and entered into the first phase of CLR in R2 while the other three followers
haven’t received log five. According to election algorithm, R4 is elected as the
new leader. It generates a different log five and replicates it, and there is growing
problem that R2 has began to replay a log five from the old leader. Although
the modification has not been installed in the memtable, the transaction context
with log five still reside in the memory (dirty contents). If R2 begins to replay
another log five, there may be some checksum errors. If similar situations arise
when we don’t adopt CLR, there are no dirty contents in R2’s memory, R2 only
needs to rewrite log five to its disk.

R1

R2

R3

R4

R5

R1

R2 R3

R4 R5

R1

R2 R3

R4 R5

R1 is leader, but crashes

R4 becomes new leader

replay point

replaying

replayed

Fig. 4. An example illustrates a fault caused by CLR.
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Based on above description and discussion, when introducing CLR, we also
refine the fault handing algorithm. More concretely, when role change happens,
each node will firstly perform replay-revoking operation before actually getting
into working. CLR ensures that dirty contents can be easily erased since it neither
modify any structure that stores data nor hold any locks. The commit thread
pops all tasks from its commit queue, cleaning uncommitted cell informations
and ending these transactions.

5 Evaluation

In this section, we evaluate the performance of QuorumX for answering the
following questions:

– The first question is whether QuorumX could support a high performance
replication for fast IMDB, and how much additional performance is sacrificed
by QuorumX through comparing it with the asynchronous primary-backup
replication and the single replica without replication.

– Another question is that whether QuorumX can be self-tuning to workloads.
We evaluate its performance under different concurrency by comparing batch-
ing methods include AB [11] and JPaxos [13]. Since the calculation of offline
models in [24,25] requires a lot of additional parameters which are difficult
to collect, we didn’t implement them in QumrunX.

– The final question is that how much VGap can be reduced by the CLR of
QuorumX in contrast with asynchronous primary-backup replication. Besides,
CLR replays logs without waiting for MaxComLSN in order to avoid reading
logs from disk and thus reduces the VGap. We also measured how much VGap
could be reduced by CLR even if QuorumX replays logs after receiving the
MaxComLSN.

Experiment Setup. We have implemented QuorumX in Solar [10], an open-
source, scalable IMDB. We implement QumrumX by adding or modifying 31282
lines of C++ code on the original base. Therefore, Solar is a completely func-
tional and high available in-memory database system. It has also been deployed
on Bank of Communications, one of the biggest commercial banks in China.
The default cluster consists of three replicas and the leader has the full-copy of
data. We also evaluate performance of different number of replicas. Each server
is equipped with two 2.3 GHz 20-core E5-2640 processors, 504 GB DRAM, and
connected by a 10 Gigabit Ethernet.

5.1 Workloads

In the following experiments, we use three benchmarks that allows us to measure
how QuorumX performs in specific aspects.

YCSB. The Yahoo! Cloud Serving Benchmark (YCSB) [6] is designed to
evaluate large-scale Internet applications. The scheme contains a single table
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(usertable) which has one primary key (INT64) and 9 columns (VARCHAR).
The usertable is initialized to consist of 10 million records. A transaction in
YCSB is simple and only includes one read/write operation. The record is
accessed according to an uniform distribution.

TPC-C. This benchmark models a warehouse ordering processing which simu-
lates an industry OLTP application. We use a standard TPC-C workload and
populated 200 warehouses in the database by default. The transaction parame-
ters are generated according to the TPC-C specification.

Micro-benchmark. As a fully functional database, Solar requires to interact
with clients, interpret SQL statements and translate them into physical execu-
tion plans, so it could not achieve a similar performance like Silo. Therefore, we
build a write-intensive micro-benchmark, which originates from a realistic bank
application used for importing massive data into databases everyday. Instead
of sending the leader IMDB transaction requests coded by SQL statements,
this micro-benchmark directly issues raw write operations to the leader. As a
result, the micro-benchmark makes leader IMDB is running under extremely
high-concurrent, write-intensive workloads. By default, the micro-benchmark
contains 10 GB data modifications, which could produce gigabyte of logs per
second.

5.2 Replication Performance

We firstly measure the throughput and latency under the YCSB workload with
100% write operations and the complicated TPC-C workload. The comparing
methods include QuorumX with three replicas one of which servers as the leader
(abbr. QuorumX), asynchronous primary-backup replication (abbr. AsynR) with
three replicas and a single replica without replication (abbr. NR).
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Experimental results of YCSB are shown in Figs. 5 and 6. We can observe
that the throughput trend of all replication scheme is increasing firstly and then
remaining at a high level. In general, QuorumX sacrifices about 11% performance
compared with AsynR and 26% compared with NR to provide data consistency
and high availability. As for latency, QuorumX produces about 0.6 more mil-
liseconds than AsynR and 1.1 ms than NR in average. Figures 7 and 8 illustrates
the performance under the TPC-C workload. We find that the throughput gap
among QuorumX and AsynR and NR reaches to 2% and 8% respectively, which
is smaller than that in YCSB. The reason is that a transaction in TPC-C con-
tains more read/write operations than that in YCSB so the leader takes more
time to execute a TPC-C transaction. As a result, the percentage of replication
latency is relatively small in the whole transaction latency.

5.3 The Ability of Adaptive Self-tuning

To compare the performance of self-tuning batching scheme of QuorumX with
other batching algorithms, we implemented a parameter-free method—AB,
which adopts critical-path-based batching. We choose AB instead of TAB since
the batching method of AB is totally parameter-free. Besides, JPaxos, which
needs manually set the parameter of batch size, is also compared with Quo-
rumX to evaluate their effectiveness under various number of concurrent clients.
JPaxos is configured to two batchsize values: 32 and 256 respectively, referred to
as JPaxos-32 and JPaxos-256. Experiments are run over YCSB workloads with
100% write requests.

Figure 9 illustrates the experimental results on different client concurrency.
It is clear that QuorumX performs best under all concurrency. We can observe
that the performance of AB is close to that of QuorumX when the concurrency
is low. However, as the number of clients increases, AB could not achieve good
performance. Recall from Sect. 3, under a light workload, critical path based
batching works well. But, under a highly concurrent workload, the throughput of
the system would be determined by the slowest stage in the pipelined processing
on followers. In this case, the pipeline batching mechanism in QuorumX can
adaptively tune the interval of sending logs.
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The trend of JPaxos-32 increases firstly and could stay at a similar through-
put to QuorumX, but decreases sharply when the number of client exceeds 25.
This is because, when the client number is small, the arrival rate of transactions
is slow, and waiting 32 requests to generate a batch is relatively reasonable.
However, when the arrival rate rises, sending batches with size of 32 exceeds
the processing capacity of followers. Follower cannot process as many as batches
produced by JPaxos-32 in time and these received batches would be blocked. So
there is a sudden drop of the performance. On the contrary, JPaxos-256 performs
badly when the client concurrency is low and gradually close to QuorumX with
the increasing of the number of client. It is clear that, sending batches with size
of 256 is too slowly for followers when the arrival rate is low. The leader wastes
too much time on waiting for enough requests. Under the high concurrency, col-
lecting 256 requests for a batch becomes easier, and the sending frequency can
match the processing capacity of follower.

5.4 VGap Results

We measure the VGap between the leader and followers to explore the effec-
tiveness of CLR under a continued, write-intensive micro-benchmark. Assuming
that the leader l and the follower f commit the same transaction at physical
time tl and tf , we use the value tf −tl to donate the VGap between the same
visible state of leader l and the follower f . We compare VGap of three methods:
QuorumX, QuorumX without CLR and AsynR.

Figure 10 shows the VGap results over 60 s. The number of client is fixed to
800. Results shows that QuorumX could gain the lowest and most stable VGap
among three methods. The VGap of AsynR exceeds 200 ms, which suggests that
follower in AsynR lags far behind the leader. And the VGap of QuorumX without
CLR remains about 100 ms at beginning, but it suddenly increases sharply at
time 45. By our analysis, the replica may perform disk-read operations for getting
logs to replay, and the trace log also proved that. QuorumX with CLR has a
stable VGap and most of it is under 60 ms. Using CLR could achieve a 3.3x
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lower VGap than AyncR and 1.67x than not using CLR. Therefore, in the case
of heavy workload, reading from follower under QuorumX with CLR could get
a fresher and more stable state.

5.5 The Number of Replicas

To investigate the scalability of QuorumX, we evaluate the performance over
different number of replicas under two YCSB workloads of different write/read
ratios: 100/0 and 50/50. Experimental results are shown in Fig. 11. The number
of clients is fixed to 125. We can see that under workload with 100% writes,
the performance decreased most significantly when the number of replicas is
changed from one to three, dropped about 26%. This is because transaction
processed under three-replica cluster has obviously longer latency than under
single server. When the number of replicas keeps increasing, the throughput
decline is not intense, performance under five replicas only decreases 9% than
three replicas. This is acceptable since logs have to be replicated to more replicas.
Under the workload with 50/50 write/read ratio, the performance decline is even
less obvious. As more replicas could provide scalable read service, we can see that
with the number of replicas increase, the performance could achieve a sustainable
growth. After all, QuorumX has a good scalability with more replicas.

6 Related Work

Replication is an important research topic across database and distributed sys-
tem communities for decades [15,18]. In this section, we review relevant works
mainly on two widely used replication schemes, i.e. primary-backup replication
and quorum based replication.

Primary-Backup Replication. Asynchronous primary-backup replica-
tion [26], proposed by Michael Stonebraker in 1979, has been implemented in
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many traditional database systems. In most typical deployment scenarios, asyn-
chronous primary-backup replication is used to transfer recovery logs from a
master database to a standby database. The standby database is usually set
up for fault tolerance, and not required to provide the query on the latest data.
The performance of log replication and replay have not received much attentions
in the last several decades. Recently, the researchers [12,16] suggest that serial
log replay in the primary-backup replication can cause the state of replica is
far behind that of the primary with modern hardware and under heavy work-
loads. KuaFu [12] constructs a dependency graph based on tracking write-write
dependency in transactional logs, and it enables logs to be replayed concur-
rently. The dependency tracking method works well for traditional databases
under normal workloads, and it might introduce overheads for IMDB under
highly-concurrent workloads. [16] proposed a parallel log replay scheme for SAP
HANA to speed up log replay in the scenario where logs are replicated from
an OLTP node to an OLAP node. Qin et al. [21] proposed to add the trans-
actional write-set into its log in SQL statement formats, which can reduce the
logging traffics. Log replay in classical quorum-based replication has different
logics to primary-backup replication. Followers using quorum-based replication
cannot replay received logs to memtable immediately, and they need to wait for
MaxComLSN from the primary. Due to this difference, these works that opti-
mize log replay for primary-backup replication can not be directly applied to the
quorum-based replication.

Despite the low transaction latency, the asynchronous primary-backup repli-
cation cannot guarantee high availability and causes data loss when the primary
is crashed. PacificA [17] resolves these problems by requiring the primary to
commit transactions only after receiving persistence responses from all replicas.
The introduced synchronous replication latency depends on the slowest server in
all replicas. Kafka [5] reduces replication latency by maintaining a set of in-sync
replicas (ISR) in the primary. Here ISR indicates the set of replicas that keep
the same states with the primary. A write request is committed until all replicas
in ISR reply. Kafka uses the high watermark (HW) to mark the offset of the
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last committed logs. The replicas in ISR need to keep the same HW with the
primary. When the offset of a replica is less than HW, it would be removed from
ISR. Through ISR, Kafka can reduce negative impact on performance caused by
the network dithering.

Quorum-Based Replication. Replication based on consensus protocols is
referred to as quorum-based replication, which is also called as state machine
replication in the community of distributed system. Paxos based replication
ensures all replicas to execute operations in their state machines with the same
order [9]. Paxos variants such as Multi-Paxos used by Spanner [7] are designed to
improve the performance. Raft [19] is a consensus algorithm proposed in recent
years. One of its design goals is more understandable than Paxos. For this rea-
son, Raft separates log replication from the consensus protocol. Many systems
such as AliSQL [1] and etcd [2] adopt Raft to provide high availability. However,
these systems use Paxos or Raft to replicate meta data, where replication perfor-
mance is not a serious problem. Spanner as a geo-distributed database system
supports distributed transactions, and each partitioned database node is not
designed to handle highly concurrent OLTP workloads. AliSQL only uses Raft
to elect leader in the occurrence of system failures. Etcd is a distributed, reliable
key-value store that uses the Raft for log replication. Similar to Zookeeper [8],
these kinds of datastore are designed to provide high availability for meta data
management and are not suitable for highly concurrent OLTP workloads.

There are a few works on tuning replication performance of Paxos with batch-
ing and pipeline [13,25]. Nuno Santos et al. [25] provide an analytical model to
determine batch size and the pipeline size through gathering a lot of parame-
ters, like bandwidth and the application properties. [13] proposed to generate
batches and instances according to three input parameters: the maximum num-
ber of instances that can be executed in parallel, the maximum batch size, and
the batch timeout. These parameters need to be calculated offline and set man-
ually which can not adapt to various environments.

7 Conclusion and Future Work

In this paper, we built QuorumX, an efficient quorum-based replication frame-
work for replicating fast IMDB. We propose an adaptive batching scheme which
could self-tuning sending frequency and could adapt to both light and heavy
workloads. In order to produce a minimal and stable visibility gap between
leader and follower, we design a fast and coordinate-free log replay mechanism
to replay logs without waiting for MaxComLSN. Experimental results show that
QuorumX supports strong data consistency and high availability by sacrific-
ing only 8%–25% performance than single IMDB replica and has a 2%–11%
decline than asynchronous primary-backup replication. The batching scheme
always performs better than existing methods. Also, the visibility gap produced
by QuorumX can reach to a low level.

QuorumX is designed for fast IMDBs without harsh assumptions, so it is
also applicable to NoSQL systems. In our future work, we will erect a more
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general, pluggable quorum-based replication framework that not only provides
high replication performance for these high-throughput systems but also takes
many complicated factors like network bandwidth into consideration.
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Abstract. Mobile sensing mines group information through sensing and
aggregating users’ data. Among major mobile sensing applications, the
distinct counting problem aiming to find the number of distinct ele-
ments in a data stream with repeated elements, is extremely important
for avoiding waste of resources. Besides, the privacy protection of users
is also a critical issue for aggregation security. However, it is a challenge
to meet these two requirements simultaneously since normal privacy-
preserving methods would have negative influence on the accuracy and
efficiency of distinct counting. In this paper, we propose a Privacy-
preserving Distinct Counting Scheme (PDCS) for mobile sensing. By
integrating the basic idea of homomorphic encryption into Flajolet-
Martin (FM) sketch, PDCS allows an aggregator to conduct distinct
counting over large-scale data sets without knowing privacy of users.
Moreover, PDCS supports various forms of sensing data, including cam-
era images, location data, etc. PDCS expands each bit of the hashing
values of users’ original data, FM sketch is thus enhanced for encryption
to protect users’ privacy. We prove the security of PDCS under known-
plaintext model. The theoretic and experimental results show that PDCS
achieves high counting accuracy and practical efficiency with scalability
over large-scale data sets.

Keywords: Distinct counting · Privacy-preserving · Mobile sensing ·
Flajolet-Martin sketch · Secure bitwise XOR

1 Introduction

With the rapid development of information technology and modern manufactur-
ing, mobile devices have occupied an indispensable position in daily life. Espe-
cially, those devices, like smartphones, which are equipped with CPUs and a
variety of sensors such as GPS and camera, are used not only for their tradi-
tional functions, but also for sensing and calculation. These features make these
devices ideal mobile carriers favored by researchers as they study many issues.
The mobile sensing problem is one of them. Recent years, an amount of mobile
sensing projects have been developed with different mobile devices [18,21,23].
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The process of mobile sensing can be described as: the aggregator issues tasks
to users with mobile devices, then mobile devices of users collect sensing data
and send them to the aggregator, after that, the aggregator processes all the data
to draw valid conclusions. Generally, the aggregator needs to collect and monitor
users’ data continuously, meaning a considerable scale of collected sensing data.

There are two essential challenges in actual mobile sensing projects. One is
that whether users are willing to give the original sensing data to the aggregator.
As original data may contain users’ private information such as physical loca-
tion, consumption habits, physical health, etc. Most users would give a negative
reaction to such a mobile sensing application lacking reliable privacy protection.
The other one is, for the aggregator, how to solve the distinct counting problem
[3] when facing the huge sensing data set with a large amount of duplicate data
in various forms. If the aggregator fails to get the cardinality of users’ data, then
lots of computing resources will be wasted to handle duplicate data. In addition,
excessive repetitive elements in an aggregated data set may result in character-
istics of data being inconspicuous. In other words, a solution which can ensure
users’ privacy safety as well as solve distinct counting problem is in urgent need.

Exiting studies about distinct counting problem in mobile sensing mainly
focus on various algorithms (such as Flajolet-Martin sketch [13], LogLog [24]),
while few works have considered users’ privacy during data aggregation. Han
et al. [8] propose a secure data aggregation scheme to enable the traffic mon-
itoring center to verify whether an aggregate sensing report is correct. Their
security refers to the reliability of aggregated data rather than the user’s privacy
protection.

In this paper, we propose a scheme, Privacy-preserving Distinct Counting
Scheme (PDCS), to solve the distinct counting problem with privacy protection
of users. PDCS is based on a semi-honest model and it can complete distinct
counting over large data sets with various forms of elements in the mobile sens-
ing scenario. Through expanding each bit of the hashing values of users’ original
data added to the FM sketch, PDCS enhances FM sketch to apply the bitwise
XOR homomorphic encryption algorithm as an encryption method, so that users’
privacy gets protected even under known plaintext model. We conduct theoret-
ical analysis and experiments, and the results show that our scheme achieves
practical counting accuracy and efficiency.

The remainder of this paper is organized as follows. Section 2 discusses the
related work. Section 3 defines related models and introduces several necessary
preliminaries. Section 4 presents main idea and essential module of PDCS and
analyze the correctness and security. Section 5 evaluates the accuracy rate and
efficiency of PDCS. We conclude the paper in Sect. 6.
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2 Related Work

2.1 Privacy Preserving in Mobile Sensing Applications

In terms of the applications about mobile sensing, most works focus on research-
ing the various methods of user’s privacy protection or discussing the operation
of aggregated data, like [1,2,15,16,19].

Both [10] and [11], consider about the protection of user’s privacy and then
to seek the minimum computation in the aggregated data set. They study how
an untrusted aggregator can periodically obtain desired statistics over the data
contributed by multiple mobile users, without compromising the privacy of each
user. Their scheme [11], which is based on [10], utilizes the redundancy in security
to decrease the communication cost caused by each users joining and/or leaving
activities. Their protocol traverses the entire data space to find the minimum
value based on summation protocols rather than bitwise XOR operations.

In [25], Zhang and Chen propose semi-honest protocols to calculate the min-
imum and kth minimum values in mobile sensing systems. The data can be
time-series. By using probabilistic coding schemes and a cipher system, they
construct two protocols that allows homomorphic bitwise XOR computations
for their problems. And the homomorphic bitwise XOR algorithm ensures pri-
vacy during the whole process. As the interaction times increase, the bits sent
or received by users and the aggregator are much more.

2.2 Distinct Counting

On the other hand, distinct counting is also interested by a lot of researches.
However, it is mainly discussed in Vehicular Ad Hoc Networks [8,13], rather
than a more general mobile sensing scenario. Meanwhile, there are a group of
works adopting different algorithms including FM sketch to solve this problem
[5,14].

Considine et al. in [4] use FM sketches to accomplish a kind of robust in-
network aggregation in sensor networks. The application situation is believed to
exist packet loss or node failures. They consider about the coordinated collec-
tion of information towards a sink in the sensor network. However, the security
problem is overlooked during the entire aggregation process. In [22], FM sketch
is used to integrated with spatio-temporal indexes to solve the problem: “How
many objects were in region x over the time interval t?”. Like [4], Tao et al. in
[22] do not mention the privacy protection of user’s data.

Han et al. propose a secure data aggregation scheme in Vehicular Ad Hoc
Networks which is based on FM sketch in [8]. And they also consider about the
security problem, while their security goal is to enable the traffic monitoring
center to verify whether an aggregate sensing report is correct or not. Their
security refers to the aggregator’s aggregated security rather than the user’s
privacy protection.

Remark: In general, there are few works that have studied on privacy protection
of users and distinct counting for mobile sensing simultaneously. PDCS reduces
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the consumption of storage space and other resources, and has practicality due
to guaranteeing user’s privacy, which makes it worthy to be studied.

3 Problem Statements and Preliminaries

3.1 System and Security Model

System Model. We consider the system model in this paper as follows: there
is a group of users with mobile devices who are providing data to an aggregator
to do some sensing task. Assume that sensing data of each user is a set of data
in various forms. The aggregator needs to find the cardinality of all users data,
a big data set composed by plenty of sub data sets. When transmitting sensing
data, all users would not reveal their original data to the aggregator. We discuss
a general network model in mobile sensing, which exists a direct communication
channel between the aggregator and every user. That is to say, the aggregator
and all users form a star network topology. The communication channels could
be 3G/4G, WiFi, or others supported by mobile devices and the aggregator in
practical applications. Besides, as for each device, it can do the hash and bitwise
XOR operation on its sensing data and transmit them to the aggregator.

Security Model. In this paper, we assume that it is a semi-honest model. All
the aggregators and users observe the data transmission and collection process
described above. However, they may attempt to derive extra information about
other participators’ private inputs, which they should not know. Therefore, the
scheme is believed to be secure if it guarantees that every participator can learn
no more information from the process than that this participator is entitled to
know. For the users, they should not be able to get any data of each other without
a permission. While for the aggregator, except for the encrypted data from users
and the calculating result of these aggregated data, no extra knowledge about
users ought to be acquired or speculated from the data he aggregates.

3.2 XOR Homomorphic Encryption

We choose the bitwise XOR homomorphic encryption as the encryption algo-
rithm in this paper. A trusted third party, the authority, is needed during
the process of key generation. Let fm,α,β() denote a function in the pseudo-
random function family Fm,α,β = {fm,α,β : {0, 1}α → {0, 1}β}m∈{0,1}γ , where
α, β, γ ∈ N. Denote t ∈ {0, ..., 2v − 1} the nonce information. The details are
shown as follows.

a. Key generation:
(1) The trusted authority uniformly and independently picks m1, ...,mn ∈

{0, 1}γ . Then the authority computes M i
a = mi and M i

b = m(i mod n)+1

for each user i(i = 1, ..., n), and sends them to user i.
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(2) For each data set with the nonce information t which is different in each
time of transmission, user i computes its secret key by

ki = FMi
a,v,l(t) ⊕ FMi

b ,v,l(t) (1)

b. Encryption: Denote by xi ∈ {0, 1}l a bit-string. The user i encrypts it by
computing

xi = xi ⊕ ki (2)

c. Decryption: Denote by xi a ciphertext of user i. The user i decrypts it by
computing

xi = xi ⊕ ki (3)

d. Aggregation: Anyone can decrypt the bitwise XOR of all users plaintexts
without any user’s secret key by computing

x1 ⊕ ... ⊕ xn = x1 ⊕ ... ⊕ xn (4)

From Eq. (4), it is straightforward to see that the bitwise XOR of all users’
keys equals to 0. As a result, the bitwise XOR of all users’ ciphertexts is equal to
the bitwise XOR of all users’ plaintexts. In other words, this encryption algorithm
is homomorphic on the bitwise XOR computation.

In this paper, the aggregator does not have any user’s private key, so that
it cannot decrypt any user’s plaintext. Instead, it decrypts the bitwise XOR
of all users’ plaintexts and uses this information to solve the distinct counting
problem. Therefore, when we talk about the aggregator’s decryption operation,
it means the decryption of the bitwise XOR of all users’ plaintexts.

3.3 FM Sketch

A FM sketch is a data structure for probabilistic counting of distinct elements
that has been introduced in [6]. It is widely used in network applications, such
as data dissemination [12] and probabilistic aggregation [7,17].

FM sketch represents an approximation of a positive integer by a bit field
S = s1, s2, ..., sw of length w, where w ≥ 1. The bit field is initialized to zero at
all positions. To add an element x to the sketch, it is hashed by a hash function
h with geometrically distributed positive integer output, where the probability
is P (h(x) = i) = 2−i. The entry sh(x) is then set to 1. With probability 2−w, we
have h(x) > w and no operation is performed in this case. A hash function with
the necessary properties can easily be derived from a common hash function
with equidistributed bit string output by using the position of the first 1-bit in
the output string as the hash value.

According to [6], an approximation C(S) of the number of distinct elements
added to the sketch can be obtained by locating the end of the initial, uninter-
rupted sequence of ones.

Z(S) := min({i ∈ N0 | i < w ∧ si+1 = 0} ∪ {w}) (5)
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C(S) :=
2Z(S)

ϕ
,ϕ ≈ 0.775351 (6)

Since the variance of Z(S) is pretty significant, the approximation C(S) in
Eq. (6) is not very accurate. To avoid this situation, a set of sketches will be
used to represent a single value instead of only one sketch. [6] proposes the
respective technique called Probabilistic Counting with Stochastic Averaging
(PCSA). With PCSA, before being added there, each element is first mapped
to one of the sketches by using an equidistributed hash function. If d sketches
are used, denoted by S1, ..., Sd, the estimation for the total number of distinct
elements added is then calculated through

C(S1, ..., Sd) := d · 2
∑m

i=1
Z(Si)

d

ϕ
(7)

However, [6] also points out that Eq. (7) is rather inaccurate as long as the
number of elements is below approximately 10 · d. According to [20], we modify
Eq. (7) in the following way:

C(S1, ..., Sd) := d · 2
∑d

i=1
Z(Si)

d − 2−κ·∑d
i=1

Z(Si)
d

ϕ
, κ ≈ 1.75 (8)

This alleviates the initial inaccuracies, while otherwise being asymptotically
equivalent to Eq. (7). PCSA with d sketches yields a standard error of approx-
imately 0.78/

√
d [6,9]. For many mobile sensing projects, it can achieve suffi-

ciently good approximations when the sizes of data set are reasonable.
The FM sketch can be merged to obtain the total number of distinct elements

added to any of them by a simple bitwise OR. Important here is that, by their
construction, repeatedly combining the same sketches or adding already present
elements again will not change the results, no matter how often or in which order
these operations occur. This makes FM sketches ideally suited for the distinct
counting scheme in mobile sensing.

4 Privacy-Preserving Distinct Counting Computation

In this section, we describe a specific operation on the sensing data of users based
on FM sketch. Here we employ a knack to greatly reduce the overall computing
time. And then, the important part in PDCS, operations of encryption and
decryption(i.e. calculation based on ciphertexts), are presented in detail. After
that, in Sect. 4.3, the correctness and the security of PDCS will be discussed.
Assume that the space of users’ data is [0, N − 1](N � 2), and w = 
log2 N�.

4.1 Main Idea

From Sect. 3.3, it is obvious that while dealing with the distinct counting prob-
lem, FM sketch cannot provide the protection of users’ privacy during the trans-
mission and calculation process. Therefore we provide a method that expands
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each bit of the string to make the sketch suitable for encryption operation, where
the string is the calculating result of each user’s data set.

As mentioned above, there are n users in total. In the FM sketch, the bit
field S = s1, s2, ..., sw of length w is initialized to zero at all positions. In the
meanwhile, each user’s sensing data is a data set with various forms of elements,
ranging in size from small to large. Assume that user i(i = 1, ..., n) has Li

elements in his sensing data set. Let the set {x
(i)
l } denote the original sensing

data set of user i, where l = 1, ..., Li. While putting user i’s sensing data {x
(i)
l }

into the FM sketch, PDCS determines the bit field S bit by bit, from the Most
Significant Bit (MSB) to the Least Significant Bit (LSB). The MSB refers to the
last bit of S, and the LSB is the first bit relatively.

Fig. 1. An example of the process that user 1 deals with his original data set. Here,
for example, the elements in the data set are all integers. User 1 hashes elements of
his data set into 8-bit strings and do the bitwise OR operation to get a string as the
representation of his data set. Then each bit of this string is coded to a 5-bit string.

Step 1

This step is taken by users. For a user i(i = 1, ..., n), every element x
(i)
l (l =

1, ..., Li) in his original data set {x
(i)
l } is hashed by a hash function h with a

w-bit string output. Let Λ
(i)
l = (r(i)l )1, ..., (r

(i)
l )w denote this bit string output

of length w, where (r(i)l )j is the jth bit in the string and the probability is
P ((r(i)l )j = 1) = 2−j . That is to say, Λ

(i)
l = h(x(i)

l ). Then a bitwise OR operation
is taken to get

Λi = Λ
(i)
1 ∨ ... ∨ Λ

(i)
Li

(9)

The string Λi = ri1 , ..., riw
represents all elements in user i’s original data set.

According to the knowledge mentioned in Sect. 3.3, Eq. (10) should be correct.

S = Λ1 ∨ ... ∨ Λn (10)

However, S should not be calculated out straightforward. Because according to
Eq. (9), if the aggregator could receive Λi directly, Λi would reveal the original
data of user i, especially when the size of his data set is small. Therefore, a series
of operations should be carried on the Λi.

Step 2
This step is also done on the user’s side. The user i operates on each bit of

the string Λi in order to avoid any damage caused on the privacy. In PDCS,
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we design a kind of specific coding scheme for these bits. Let T (rij
) denote the

corresponding code of rij
in the coding scheme, where j = 1, ..., w. The coding

scheme is defined as follows:

T (rij
)
{

= 0q, if rij
= 0

� {0, 1}q \ 0q, if rij
= 1 (11)

where q ∈ N is the accuracy controlling parameter and � denotes to sample
uniformly at random. Figure 1 shows an example of the process user 1 deals
with his original data set.

Step 3
The aggregator takes this step after aggravation all users’ coded data. Let

G(j) = T (r1j
)⊕ ...⊕T (rnj

) with bitwise XOR operation. Then there is a judge-
ment rule designed to determine each bit of FM sketch S, corresponding to the
coding scheme (11). We define the rule as follows:

sj =
{

0, if G(j) = 0q

1, if G(j) = 0q (12)

where sj is the jth-LSB, or (w − j)th-MSB in the bit field S. Notice here that
when PDCS judging each bit in FM sketch, it starts from the MSB to the LSB.

Step 4
The calculation work is done by the aggregator. Based on the FM sketch S,

the aggregator can get a significant parameter Z(S), the position of the last bit
in S that is 1, according to Eq. (5). As mentioned in Sect. 3.3, the approximation
of distinct counting needs several more FM sketches in which the hash functions
are different. After taking Step 1 to Step 3 for d times and according to Eq. (8),
the aggregator can get the final result C(S), the number of distinct elements in
the sensing data set.

Remark 1: In Step 2, it is worth noting that there is a probability of 1 − 1/2q

to occur such a situation, where rij
equals to 1 but T (rij

) is coded to be 0q.
Thus in Eq. (11), the coding scheme requires that if this situation happened, rij

should be recoded until T (rij
) is not 0q. In that step, each bit of the string Λi,

from MSB to LSB, would be expanded into a q-bit string T (rij
) under the action

of our coding scheme (11), which is suitable for encryption operation.

Remark 2: Notice that during the whole process, in order to reduce the com-
puting time, we employ a knack here which is that PDCS determines bits of
FM sketch S from the last bit to the first bit. When the aggregator applies FM
sketches, the purpose is to find out the position of the last bit in S that is 1
and regard it as an index. And this purpose is equal to find out the position
of the first bit in S that is 1, when PDCS starts finding from the last bit of S.
This transformation means the aggregator does not have to determine all bits in
S, after all, what the aggregator needs is the index to calculate the number of
distinct counting of the data set rather than the whole S. Through this knack,
PDCS can leave out a lot of computing steps, thus improving the efficiency.
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4.2 Privacy-Preserving Distinct Counting Scheme

In Sect. 4.1, we can calculate the number of distinct counting through PDCS.
The specific operation towards users’ data is prepared for the homomorphic
encryption to protect users’ privacy. In this subsection, we highlight the modules
of encryption and decryption(i.e. calculation based on ciphertexts) in PDCS
that allow the aggregator to solve the distinct counting problem and to avoid
acquiring each user’s data privacy at the same time. In our assumption, there
is a trusted authority as a third party who helps users and the aggregator to
establish a key system each time.

(1) Setup
The protection mechanism of PDCS is based on the bitwise XOR homomor-

phic encryption introduced in Sect. 3.2. The trusted authority has m1, ...,mn ∈
{0, 1}γ privately and he computes M i

a = mi and M i
b = m(i mod n)+1 for each

user i(i = 1, ..., n). Then the two seeds are sent to the corresponding user. The
user i does a bitwise XOR operation on the seeds as well as a nonce number t
according to Eq. (1) to acquire his own key ki. Notice that the nonce number t
used for calculating k is different in each transmission.

Fig. 2. An example of determining the 5th bit in FM sketch S with the bitwise XOR
homomorphic encryption, where the coding scheme defined the length of the bit string
T (rij ) is 5. The result shows that the aggregation result is not influenced by the
operations of user’s privacy protection.

(2) Encrypt
The data encryption is operated on the user’s side. The user i regards the

coding string T (rij
) for jth bit of his data representation Λi as the plaintext

and encryptes it with the bitwise XOR homomorphic encryption algorithm to
get the ciphertext

T (rij
) = T (rij

) ⊕ ki, (j = 1, ..., w) (13)

where the user i’s key ki is generated as introduced above. Then the ciphertext
T (rij

) is sent to the aggregator as user i’s sensing data.
(3) Aggregate
On the side of the aggregator, he collects all the n users’ data about the

jth-LSB and then does the bitwise XOR computations. Denote by G(j) the bit
string result. According to Eq. (4) it can be drawn that
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Algorithm 1. Privacy-preserving Distinct Counting Scheme
Input:

{xl
i}: User i’s data set with various elements, l ∈ [0, Li], x

l
i ∈ [0, N − 1], i = 1, ..., n;

h: a hash function with a w-bit string output;
d: the number of FM sketches;
M i

a and M i
b : two secret seeds of User i;

t ∈ [0, 2v − 1]: a public known nonce number;
q ∈ N: an accuracy controlling parameter.

Output: The number of distinct elements in {xi}, i = 1, ..., n.
1: for k = 1 to d do
2: for i = 1 to n do
3: User i: Λi ← h(xi), len(Λi) = w;
4: User i: ki = FMi

a,v,q(t) ⊕ FMi
b
,v,q(t);

5: end for
6: for j = w to 1 do
7: for i = 1 to n do
8: User i: T (rij ) ← rij in Λi, len(T (rij )) = q;

9: User i: T (rij ) = T (rij ) ⊕ ki;
10: end for
11: Aggregator P : G(j) = T (r1j ) ⊕ ... ⊕ T (rnj ).

12: if G(j) = {0}q then
13: continue;
14: else
15: break;
16: end if
17: end for
18: end for

19: return C(S) = d · 2
∑d

k=1
Z(Sk)

d −2
−κ·∑d

k=1
Z(Sk)

d

ϕ
;

G(j) = T (r1j
) ⊕ ... ⊕ T (rnj

) (14)

It is easy to see if the jth-LSBs of the n users are all 0, then the bitwise XOR of
the corresponding strings G(j) is always a q-bit string of 0s. If there is any user
whose data Λ is 1 on the jth-bit, the bitwise XOR of all reports corresponding
strings is not a q-bit string of 0s with a probability of 1 − 1/2q. However this
situation has little damage on the accuracy which will be proved in Sect. 4.3.

(4) Judge
Just like the rule mentioned above, we define the rule as follows:

sj =
{

0, if G(j) = 0q

1, if G(j) = 0q (15)

where sj is the jth-LSB in the bit field S.
In Fig. 2, a detailed example of aggregation in the FM sketch is shown. And

we present the formal description of PDCS in Algorithm1.

Remark 1: The operation of homomorphic encryption causes no damage on the
accuracy of PDCS. According to the property of the bitwise XOR homomorphic
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encryption, there is G(j) = T (r1j
) ⊕ ... ⊕ T (rnj

) = T (r1j
) ⊕ ... ⊕ T (rnj

) =
G(j). Thus, we can say that Eq. (15) is equal to Eq. (12), which means that the
calculated aggregation result is not influenced by the encryption and decryption
operations for user’s privacy protection. Then the final result of distinct counting
problem is calculated by Step 4 in Sect. 4.1.

Remark 2: The correctness and security of PDCS are credible. According to
Eq. (10), we have

sj = ri1 ∨ ... ∨ riw
(16)

In PDCS, Eq. (15) is equal to Eq. (16) with a probability of 1−1/2q, which means
that the operations in PDCS have nearly no effect on the final result when the
parameter q is appropriate. We will prove it in Theorem1. The security of PDCS
will later be formally proved in Theorem2.

4.3 Scheme Analysis

Theorem 1. (Correctness). The probability that the result of Eq. (15) equals to
that of Eq. (16) is greater or equal to 1−1/2q. The correctness of PDCS is greater
or equal to 1 − (w/2q)d.

Proof. According to the definition in Sect. 3.3, it is obvious that the sketch con-
structed by Eq. (10) is the correct result of our problem. Equation (16) is one of
Eq. (10)’s mutually independent w parts to determine the jth-LSB bit. While in
PDCS, Eq. (15) represents the result. Actually, Eq. (15) is equal to Eq. (16) with
a probability of 1 − 1/2q on the calculation.

On the basis of the regular of the bitwise OR, only when all the numbers on
that bit are 0, the result bit is 0, which is 0 ∨ ... ∨ 0 = 0. Otherwise, that bit
should be 1. If our scheme is 100 percent accurate, when sj = 0, it means G(j)
should be 0q where all users’ rij

should be 0. However there is a special case that
a user y whose ryj

is 1 while y’s encrypted bit string equals the bitwise XOR of
all other users’ encrypted strings. Since the encoding function in our scheme is
random and the encoding string has 2q different choices, the probability for the
result of our scheme being not accurate is 1/2q. Therefore, we have:

P (the jth bit is accurate)
= P (all users′ jth bits are 0) × 1 + P (any user′s jth bit is 0) × (1 − 1/2q)
� 1 − 1/2q

Because Eq. (15) has to be independently calculated for w times to achieve
the goal of Eq. (10) and there are d FM sketches used, it is obvious that the
correctness of PDCS is greater or equal to 1 − (w/2q)d.

As in most cases, a malicious aggregator can only have the knowledge of
ciphertext in privacy-preserving mobile sensing schemes. This belongs to the
ciphertext-only attacks, which corresponds to an attaker of minimal capability.
However, we still analyze the security of PDCS under a more stronger model,
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Fig. 3. Accuracy rate
influenced by the
value of q.

Fig. 4. Error rate
affected by the
value of d.

Fig. 5. The contrast of the num-
bers of distinct counting coming
from the true value and the cal-
culated value.

known plaintext model, which assumes that the attackers may obtain a certain
number of plaintext-ciphertext pairs through extra channels. The security of the
proposed PDCS is summarized in the following theorem.

Theorem 2. (Security). or the homomorphic operations in PDCS, there is no
probabilistic polynomial time (P.P.T.) adversary that can break the data confi-
dentiality of user’s data under known plaintext model.

Proof. In PDCS, for the aggregator, we prove that there is no extra knowledge
revealed to him in PDCS. We consider the situation that the aggregator could
acquire most information. To calculate out the final result, all the w bits in S
should be confirmed, which means that there must be w times communication
between each user and the aggregator and each time the aggregator could get n
cipertexts from all users. Let I = (I1, ..., Iw) denote the aggregator’s information
received from all users for w times, where Ij = (T (r1j

), ..., T (rnj
)) (j = 1, ..., n)

is the ciphertexts of q-bit bit strings from all users to decide the jth bit in S.
The aggregator calculates G(j) according to Eq. (14) and then determines s(j)
in S by Eq. (15).

If the result is sj = 1, then G(j) = 0q, which can help the aggregator spec-
ulate that in Ij there is at least one bit string T from some user which is not
0q. The aggregator wants to speculate T from T . Since the aggregator has no
corresponding key, the probability that he guesses the correct plaintext is 1/2q.
Under known plaintext model, the aggregator could get a plaintext-ciphertext
pairs to calculate a keys. Then the probability of knowing a certain user’s origi-
nal data rises to 1/Aa

n. However, the fact that users’ keys are different each time
leads to low probability and the attacking time O(nq) is over P.P.T. Therefore,
the aggregator could not conjecture any extra knowledge about the users.

If sj = 0, then Ij are all 0q or it happens to such a case that some bit
strings, {0, 1}q \0q, equal to 0q under the effect of XOR operations. However the
aggregator could not distinguish these two situations by calculation in P.P.T.

Moreover, because the keys are pseudo-random for each user and each time,
I1, ..., Iw are independent. As a result, there is no probabilistic polynomial time
(P.P.T.) adversary that can break the data confidentiality of user’s data under
known plaintext model. PDCS ensures the privacy protection of users.
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Table 1. Communication cost and computation complexity

A user The aggregator R. complexity

Comm. cost Comp. complexity Comm. cost Comp. complexity

Baseline N�log2 n� O(N�log2 n�) nN�log2 n� O(nN�log2 n�) 1

PDCS q�log2 N� O(q�log2 N�) nq�log2 N� O(nq�log2 N�) d

5 Performance Evaluation

In this section, we conduct experiments to evaluate the accuracy of PDCS and
its efficiency compared with the situation lacking of privacy protection.

5.1 Accuracy Evaluation of PDCS

In PDCS, q is an accuracy controlling parameter, the length of encoded bit string
in Step 2 of Sect. 4.1. Figure 3 shows the relationship between the value of q and
the accuracy rate when the length w of FM sketch is changing, where the total
amount of users is n = 15000. It can be concluded that no matter what value
w is, as the value of q approaches w, the accuracy rate gradually increases to
nearly 100%, which is in accord with theoretical analysis above.

Since there is a significant error in applying only one FM sketch, d, the
number of FM sketches, must be discussed. Figure 4 shows that the error rate of
estimated data decreases dramatically along with the increase of repeat times in
the beginning, then keeps relatively stable after a specific threshold, like d = 4
in this experiment. For different sizes of data sets, the threshold will be different.

We set experiments with different number of users participating in the pro-
gram. The corresponding number of distinct counting in each data set is inde-
pendent and irregular since the elements which present users’ sensing data are
generated entirely randomly. The calculated values of PDCS are contrasted with
true values in Fig. 5. There is difference between the two values, and as the size
of the data set improves, the overall difference tends to decrease but still exists
fluctuation. The fluctuation is associated with the nature result of FM sketch
which has a close relationship with the multiply of 2.

According to the results in Fig. 5, we calculate out the accuracy rate of PDCS
presented in Fig. 6 to evaluate the correctness of PDCS more intuitively. It is
obvious that the accuracy rate of PDCS is gradually raising to close 100% along
with the increase of the size of data sets, where even in the case of a small data
set the accuracy rate can still reach 97%. When the amount of users are huge
and corresponding cardinal number is big, PDCS can perform much better.

5.2 Efficiency Evaluation of PDCS

We explore efficiency of PDCS by testing the communication cost and computing
time.
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Fig. 6. Accuracy
rate of PDCS on
different size of
data sets.

Fig. 7. Comput-
ing time of the
unencrypted pro-
cess and PDCS.

Fig. 8. Computing
time of PDCS with
different value of q.

Fig. 9. Computing
time spent by
different steps in
PDCS.

(1) Communication Overhead
Table 1 shows the comparison of communication cost between baseline

method without privacy protection and PDCS. In the Table 1, the total bits
sent by a user, as the communication cost of a user, and the total bits received
by the aggregator, as the communication cost of the aggregator, are the mea-
sured standards, as well as the computation complexity and round complexity
of two schemes. Mentioned parameters includes: n is the total number of users
and the range of users’ data is [0, N − 1], and w = 
log2 N� is the length of
each user’s bit string, and d is the number of FM sketches we applied. As the
proof of Theorem1 shows, 1 − (w/2q)d is the upper limit of the correctness of
PDCS. When q is approximately equal to w and not too small, the error rate
of PDCS will decrease to an acceptable level(for example, less than 0.001). At
the meanwhile, the communication cost of PDCS affected by q would also be
reduced. Besides, PDCS can achieve to send or receive less data than the baseline
method when n is not too much greater than N , i.e. n = O(N).

However, the total communication cost is also influenced by the round com-
plexity. The round complexity refers to the amount of time a user has to
keep communicating online. Notice that the baseline method needs only one
round communication which is its most significant advantage. Therefore, the
cases PDCS performs better are that the network connection is stable, while
when the network connection cannot stay reliable, the baseline method is more
suitable.

(2) Computation Overhead
We discuss the computing time spent during the whole process. Here the com-

puting time of PDCS includes the time of hash operation and coding, encryption
time for each user, and the time of decryption to determine the final FM sketch S
and calculating results for the aggregator. The data used as a comparison is the
computing time of the number of distinct counting calculated without privacy
protection in Fig. 7. It can be seen that it takes more time for PDCS to calcu-
late out the results. Since there are more processes like encoding, encrypting,
decrypting and formula calculating than the general method, PDCS is relatively
more time-consuming. However, this consumption is within an acceptable range,
as shown in Fig. 7 that with the data set expanding, the trend of the increase in
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the consumption time is slower than the linear increase. Besides, due to solving
the distinct counting problem, the following other operations on the aggregated
data set will reduce resources consumption of repetitive process. Furthermore,
when the size of data set is huge, the probability of the index Z(S) approaching
the end of FM sketch S is high. With our knack in Sect. 4.1, the computing
time will gradually decrease accordingly. Therefore, on the whole, PDCS does
not waste computing time. This conclusion proves that the efficiency of PDCS
is appropriate for large-scale data aggregation processing.

About the computing time, we also conducted assessments of PDCS under
different factors. Firstly, the value of q is obvious to have affection on the com-
puting time. Figure 8 shows the variation trend of computing time of PDCS with
different value of q. As the q is bigger, the corresponding time is much more and
the difference caused between contiguous different q is rising when the size of
data set increases. Therefore, an appropriate value of q is needed. Next, we eval-
uate the computing time spent by each step in PDCS. The corresponding results
are present in Fig. 9. In Fig. 9, the encryption and decryption step which is the
most important part of achieving users’ privacy-preserving in PDCS, is the most
costly compared with other steps. Due to the bitwise XOR operation, such result
is reasonable. And as the size of data set raises, the increase of encryption and
decryption time will slow down, since we employ the knack on FM sketches in
PDCS. Besides, the increasing curves of all steps in Fig. 9 tend to be lower than
the linear increase, which is in accord with the result in Fig. 7.

6 Conclusion

Both privacy protection of users and distinct counting problem on large data sets
are essential issues in the mobile sensing applications. In this paper, we propose a
privacy-preserving distinct counting scheme, PDCS, to solve these two problems
simultaneously. PDCS expands each bit of the hashing values of users’ original
data, so that FM sketch is enhanced for encryption to protect user’s privacy. And
we choose the bitwise XOR encryption algorithm as the encryption algorithm.
According to the theoretical analysis, PDCS causes little damage on the accuracy
of FM sketch. Moreover, a set of experiments demonstrates that with appropriate
value of several parameters, PDCS achieves high counting accuracy and practical
efficiency with scalability over large-scale data sets.
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Abstract. Spatial Crowdsensing Networks limit the sensing tasks in
some special places where workers should sense data for them. Due to
the lack of a priori information about quality of workers, guaranteeing
the quality of the sensing tasks remains a key challenge. In this paper,
we model the quality of workers through two factors, namely bias and
variance, which describe the continuous value feature of sensing tasks.
After calibrating the bias, we should iteratively estimate worker variances
more and more accurately. Meanwhile, we should select more reliable
workers with low variances to finish sensing tasks. This is a classic explo-
ration and exploitation dilemma. Therefore, to overcome the dilemma, we
design a novel Multi-Armed Bandit (MAB) algorithm which is based on
Upper Confidence Bounds (UCB) scheme and combined with a weighted
data aggregation scheme to calculate a better ground truth of a sens-
ing task. Then, we prove the expected sensing error of sensing tasks can
be bounded according to the regret bound of the MAB in our setting.
In simulation experiments, we use a real world data set to validate the
theoretical results of our algorithm and it outperforms two baselines sig-
nificantly in different settings.

Keywords: Crowdsensing · Worker selection · Multi-Armed Bandit ·
Data aggregation

1 Introduction

Crowdsourcing (CSo) is becoming an important outsourcing way in ubiquitous
mobile wireless networks. There are many crowdsourcing platforms to release
tasks, e.g., Amazon Mechanical Turk, Upwork, CrowdFlower, and uTest. In these
systems, guaranteeing the completion quality of tasks remains a main challenge,
due to the limited a priori information about the quality of workers. Therefore,
data management becomes interest of many industrial and academic communi-
ties. Meanwhile, many techniques in CSo, such as data aggregation [26], worker
selection [14], and task assignment [29] (online version of worker selection) are
developed to improve the completion quality of the tasks.
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Most crowdsourcing tasks require workers to upload their answers for ques-
tion tasks or choices for labelling tasks. The metrics for evaluating quality of
workers in question or labelling tasks are normally error ratio or accuracy which
are commonly discrete values. From the perspective of data type, Crowdsensing
(CSe) can be viewed as a special kind of CSo, which brings in continuous value.
In order to seek for high-quality sensing data, we consider using worker bias and
variance to model quality of workers in CSe, because worker bias and variance
can provide a continuous and uncertain description for quality of workers.

In this paper, we propose a spatial CSe framework which aims to infer the
truth value of some physical measures such as temperature, humidity, noise and
so on, at different points of interest (PoIs). Opportunistic workers with mobile
devices, who go by one of PoIs, will be candidates to execute sensing tasks
for CSe requesters. However, we do not know the quality of these workers in
advance. Therefore, we should select them to do sensing tasks for many times
and estimate their quality according to their sensing data. It means that the
more times a worker is selected to do tasks, the more accurate the estimation
of his/her quality is. Additionally, a budget is given by platform and limited for
selecting finite high-quality workers. Obviously, the exploration and exploitation
procedure appropriately matches the feature of Multi-Armed Bandit (MAB)
which expects to reduce the regret of multi-decision procedure under the budget.
We should define a suitable reward for the MAB in CSe, which involves worker
bias and variance together, to implement a more accurate measure. Authors in
[19] also use MAB to solve the worker selection problem. However, their task
type and data aggregation method are different from ours in this paper.

Due to lack of Ground Truth (GT) of physical measure, we should exploit
the sensing data from workers to infer it and apply it in the estimation of quality
of workers. Therefore, estimating the GT well not only helps estimate quality of
workers more accurately but also accelerates the convergence of MAB method.
We will introduce a Bayesian estimation method for GT which outperforms
maximum likelihood method in our simulation experiments.

The framework of reinforced reliable worker selection for Crowdsensing is
illustrated in Fig. 1. The circles in this figure are the main operations of the
framework. As we can see from the top left of the figure, the tasks requester
will send requests associated with several PoIs for sensing tasks via the crowd
platform. Then, the crowd platform divides the workers into groups according to
the current locations of workers and the locations of PoIs. Each group of workers
finish one sensing task at a specific PoI. Note that some of the workers that are
far away from the PoIs will not be selected as candidates in this round, however,
they might still be selected in future rounds.

After the process of worker groups division, the processes of workers calibra-
tion and selection are described as follows. Firstly, the platform will calibrate
the newly coming workers whose biases are unknown. Under the constraint of
the sensing budget, the platform will select workers who have as high quality
as possible to produce sensing data for each task (PoI). However, the worker
variance is unknown, which makes it difficult to select the best one. Therefore,
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Fig. 1. The framework of reinforced reliable workers selection for Crowdsensing.

the platform introduces one MAB to make the decision of worker selection for
each one of tasks. As a result, there are N tasks to be done and N MABs to
perform the worker selection procedure. Moreover, workers can be selected sev-
eral times to do the same sensing task, hence their estimated variance will be
updated to approach the true variances gradually. In data aggregation stage,
the platform should infer a good estimation of GT. The estimations of GTs as
the results for sensing task requests will be output. The worker sensing qual-
ity and their locations should be updated for next requests in following time.
As the process continues, the knowledge about the quality of workers becomes
clearer and clearer. Due to the fact that the regrets of MABs are bounded, the
expected sensing error of the tasks will become smaller and smaller, which will
be theoretically analyzed in Sect. 4.

The contributions of this paper have several folds and are summarized as
follows.

1. We model the worker quality with two continuous factors: bias and variance.
To the best of our knowledge, it is a first try to combine them to model quality
of worker in CSe. We also propose an expected sensing error minimization
problem based on the quality of workers.

2. We address a worker selection problem without the quality of workers in CSe
tasks, which is very rare in research literature in comparison with worker
selection in question tasks or labeling tasks.

3. A novel MAB is proposed to solve the exploration and exploitation dilemma of
worker selection according to the quality of workers in multi-rounds. Besides,
it is also novel to use the bayesian estimation for GT estimation which brings
a significant improvement of performance as shown in our experiments on the
real world data.

The rest of this paper is organized as follows. Some related work is reviewed
in Sect. 2. The framework of reinforced reliable worker selection is introduced
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in Sect. 3. Expected error minimization problem is proposed and analyzed in
Sect. 4. We propose a Multi-Armed Bandit based estimation method in Sect. 5.
Finally experiments and conclusions are discussed in Sects. 6 and 7 respectively.

2 Related Work

This section discusses related work mainly about three topics in crowdsourcing,
namely task allocation, truth discovery, and exploration and exploitation which
are wildly used in reinforcement learning.

2.1 Task Allocation

To achieve better data quality in crowdsourcing, workers and tasks should be
matched properly. There are two perspectives of settings: task assignment and
worker selection. In the task assignment setting, when a worker comes, the focus
is on studying which subset of tasks should be assigned to the coming worker,
namely online task assignment problem [4,9,11,12,29]. In the worker selection
setting, given a task and a set of candidate workers, the focus is on studying
which subset of workers should be selected to answer the task, namely jury
selection problem [6,27,28].

In this paper, our problem is the worker selection setting but we consider the
worker selection without knowledge of worker quality which is a more open and
more challenging problem. Moreover, authors in [28] uses the Bayesian voting
which is the optimal strategy. We also consider the Bayesian method to estimate
the ground truth of a task. However, we exceed the scope of [28] because we
take estimating numerical sensing values into consideration instead of discrete
decision-making values.

2.2 Truth Discovery

In order to identify reliable answers from workers’ noisy or even conflicting sens-
ing data in mobile crowdsourcing systems, truth discovery methods [13,15–17,25]
have drawn significant attentions. Researches on truth discovery jointly estimate
data quality of workers and the underlying truths through quality-aware data
aggregation. Besides of sensing quality, there are some researches discussing dif-
ferent application scenarios in crowdsourcing, e.g. [8,18,24]. Authors in [8] pro-
posed a general truth discovery method for human answer tasks by combining
reliability model and pattern of task clusters and source clusters. Research in
[18] exploited cognitive psychology studies on dynamic memory structures and
cognitive heuristics by tagging a place of the crowd participant. Authors in [24]
proposed a graph-based PageRank-HITS Hybrid model to distinguish authori-
tative workers from unreliable ones in machine translation.

However, none of above research proposes similar truth discovery for numer-
ical sensing value. Although Researches in [3,16,20] also considered numeri-
cal tasks in crowdsourcing, we innovatively considers both data bias, variance
together as factors of quality of workers. Moreover, we borrow a reinforcement
learning idea to solve a expected error minimization problem.
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2.3 Exploration vs. Exploitation

The quality of workers is commonly unknown to crowdsourcing platform. There-
fore, the trade-off between exploration and exploitation in reinforcement learning
can be borrowed as a strategy for worker selection. The Multi-Armed Bandit
(MAB) model gives a description of the sequential decision-making problem
under incomplete information [21]. Here, we will discuss the allocation of budget
for exploration and exploitation.

A variety of budget constrained models have been studied in the MAB setup
[1,5,10]. These works considered a budget-limited exploration in the initial phase
followed by a cost-free exploitation phase. However, in a real world setting such
as the one considered in budget-aware crowdsourcing, the exploitation phase is
not free of cost. This limitation is addressed in the budget-limited MAB problem,
where both the exploration and exploitation phase are limited by a single budget.
This model also considers different costs for arm selection. Two different policies
were proposed in this setting, called ε-first policy and KUBE [22,23].

In our research, we do not consider the budget allocation directly for explo-
ration and exploitation and use an UCB based MAB algorithm to solve the
exploration and exploitation tradeoff. Authors in [19] also have this settings to
optimize the discrete label annotation task but they do not focus on a numerical
value Crowdsensing task, while we model worker quality with bias and variance
which are suitable for numerical value Crowdsensing tasks.

3 Reinforced Reliable Worker Selection Framework

3.1 Overview

In this section, we propose the reinforced reliable worker selection framework, to
iteratively estimate workers’ sensing quality and select workers to execute regular
spatial sensing tasks. The framework is a multi-round process. In each round,
there is a set of workers available to execute sensing tasks. As the quality of some
newly coming workers is unknown and the quality of existing workers might
change, the framework should estimate the quality of workers while allocate
spatial sensing tasks to workers with high quality.

In the following subsections, we will firstly model the factors that influence
the sensing quality of workers. Then the process of worker selection is introduced.
At last we provide a scheme of worker sensing quality estimation and weighted
ground truth aggregation.

3.2 Model Establishment

The sensing quality of a worker could be modeled by two factors, namely bias
and variance. Bias is a factor caused by the device which represents a constant
distance between the mean of the sensing data and the ground truth. Variance
reflects the stability of a worker to accurately estimate the sensing target.
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Definition of Worker Attributes. Typically, a data sample X of a worker uj

taken for task ti could be regarded as the result of a bias and a noise added to the
ground truth of the task. The sensor on worker’s device might have a natural bias
which is introduced by device model and the calibration accuracy of the sensor
producer. The noise is generated due to the distortion in the mobile device within
usage environment. Therefore, suppose the ground truth of the task is GTi, then
the sample X is drawn a from Gaussian distribution N (GTi + bj , σ

2
j ), where bj

is worker bias and σ2
j is worker variance.

As σ2
j is a nature of the mobile device of uj , its value is unavailable for the

platform and is required to be estimated. The number of samples utilized to
estimate σ2

j has an impact on the reliability of the estimation on σ2
j . That is to

say, the larger size of data used, the more accurate we can estimate σ2
j .

Definition 1 (Worker Attributes). A worker uj ∈ K is associated with bj , σ
2
j

to represent her bias and variance respectively.

Impact of Worker Attributes. On the one hand, the bias of a worker is used
to adjust the value of data samples so that the ground truth could be estimated
accurately (without bias). On the other hand, The variance of a worker reflects
how stable her data sample is. That is to say, worker variance could be referred
to as a weight to the worker’s data samples when we aggregate her and other
workers’ data samples to estimate the ground truth. This is an intuition of the
impacts of worker attributes, a mathematical analysis of how these attributes
are used to estimate the ground truth is shown in Sect. 3.5.

3.3 Process of Reliable Worker Selection

Initially, the platform does not know the sensing quality of workers. Therefore,
our framework employs a multi-round reinforced worker selection scheme to both
estimate the sensing quality of workers and allocate sensing tasks to workers.

A round in our framework is a period of time when the workers might not
change their positions and are available to repeatedly execute sensing tasks in
the same place. For example, a couple of office hours could be regarded as the
time range of a round and the positions of workers in this round are stable. On
the other hand, we also assume that during a round, the ground truth of the
sensing tasks will not change as the time range of a round will not be too long.

As the bias is a nature of the mobile devices of workers, we assume that in
different rounds of our framework, the bias of workers remains unchanged. How-
ever, the variance of a device is influenced by both the device and environment.
As a result the variance of workers is different in different rounds.

In a round r, the platform will receive a set of sensing tasks T (r) and a
budget B(r) from requesters. Suppose |T (r)| = N (r). Our framework will firstly
check the availability of workers and obtain N (r) sets of candidate workers for
the tasks. The candidate set of task ti ∈ T (r) is denoted by K(r)

i . Denote the
number of workers in K(r)

i as M
(r)
i .
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As both the bias and variance of workers are unknown, the framework is
supposed to estimate these factors. For the new coming workers who the platform
has no prior knowledge of, our framework will allocate calibration tasks to these
workers to obtain some knowledge of her bias and variance. In real situations,
we may not be able to get the ground truth, so a method in Sect. 5.2 is proposed
to get a approximation of ground truth for calibration tasks.

Suppose a subset K
′(r)
i of workers in K(r)

i are new to the platform. Then
we split B

(r)
c = M

′(r)
i units of total budgets to allocate calibration tasks to

workers in K′(r)
i . In a calibration task, both the bias and variance of workers

are estimated according to the known ground truth of the calibration tasks. The
rest of budgets are equally split to each task, namely budget for ti ∈ T (r) is
B

(r)
i = (B(r) − B

(r)
c )/N (r).

The confidence level of estimation of variance in the calibration task is not a
hundred percent and the variance of workers might be changed in later rounds.
Hence the variance of workers should be further explored. The exploration of
variance is considered in our framework by formulating the problem as a MAB
problem, which will be discussed in Sect. 4.

3.4 Estimation of Worker Attributes

The estimation of worker attributes takes place in two cases. Firstly, in the
calibration phase, the bias and variance of workers are estimated. Secondly, we
update the value of variance according to the data samples of sensing task.

The bias of workers might be estimated in two ways. The first method is
used when we have some ground truth of PoIs where workers might visit. In this
case, the bias could be directly estimated by the mean of sampled data and the
ground truth. The second method is used when the ground truth is not available.
This method of estimation will be introduced in Sect. 5.2.

Notations for Sensing Data. Suppose the data sample of the τ -th time that
worker uj execute the task ti is X(τ)

i,j = {X
(τ)
i,j,1, . . . , X

(τ)
i,j,n}, where n is the number

of samples generated in a task. The sample mean and sample variance of data
are denoted as X̄

(r)
i,j and S

(r)
i,j respectively. For the calibration task, the notation

is defined as X(0)
j , X̄

(0)
j and S

(0)
j .

Bias Estimation in Calibration Phase. As the ground truth of the calibra-
tion task is known, denoted by GT , the bias of uj could be estimated by

̂bj = X̄
(0)
j − GT (1)

The sample variance could be regarded as an unbiased estimation of σ2
j .

Hence,
(

σ̂2
j

)(0) = S
(0)
j .
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Variance Updating in a Spatial Sensing Task. For a sensing task ti, sup-
pose worker uj is allocated to execute this task. At the τ -th execution of task ti
for uj , the variance of this worker could be updated by

(

σ̂2
j

)(τ)
=

1
(τ + 1)n − 1

(

S
(τ)
i,j · (n − 1) +

(

σ̂2
j

)(τ−1) · (τn − 1)
)

(2)

3.5 Estimation of Ground Truth

We use a weighted combination of the estimated results provided by K(r)
i to

estimate the ground truth of task ti ∈ T (r), denoted by ̂GT
(r)

i . As a worker
might be selected multiple times to execute ti, we denote the number of times
that our allocation scheme A has selected uj to execute ti as NA

j (B(r)
i ).

The estimated result of worker uj is

̂X
(r)
i,j =

1

NA
j (B(r)

i )

NA
j (B

(r)
i )

∑

τ=1

X̄
(τ)
i,j (3)

The estimated ground truth could be expressed as

̂GT
(r)

i =

∑M
(r)
i

j=1 w
(r)
j NA

j (B(r)
i )( ̂X

(r)
i,j −̂bj)

∑M
(r)
i

j=1 w
(r)
j NA

j (B(r)
i )

(4)

Without ambiguity, we omit superscript r in this section. To analyze the
case without considering the influence of allocation scheme, we assume we are
aggregating the result using one execution of task ti. The problem is to determine
the weight for each worker uj so that the ground truth of ti is well estimated.
For a task ti, the error of the worker is modeled by a Gaussian distribution
εj ∼ N (bj , σ

2
j ). Then the total error for estimated ground truth after each worker

executes once is

ε ∼ N

⎛

⎝

∑M
(r)
i

j=1 wj(bj −̂bj)
∑M

(r)
i

j=1 wj

,

∑M
(r)
i

j=1 w2
j σ2

j

n(
∑M

(r)
i

j=1 wj)2

⎞

⎠ (5)

To find a weight of workers that minimize the variance of the total error, the
following problem is solved.

min
{wj}

M
(r)
i

∑

j=1

w2
j σ2

j s.t.

M
(r)
i

∑

j=1

wj = 1 (6)

Solving this convex optimization problem, we can obtain that the optimal
weight is wj ∝ 1/σ2

j . Therefore, in our framework, the weight is set as

w
(τ)
j =

1
(

σ̂2
j

)(τ)
(7)
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Interestingly, the same conclusion that the weight could be set as Eq. (7) could
be drawn by bayesian estimation. This is because bayesian estimation minimizes
the combined posterior probabilistic distribution of data samples from different
workers and Eq. (7) coincidentally is the solution of the minimization problem
of bayesian estimation of ground truth. The proof is ignored due to space limit.
Besides, if all wj are equal, the estimation of ground truth is maximal likelihood
estimation. In the experiments, we will show the bayesian estimation outperforms
the maximal likelihood estimation.

4 Problem Formulation

4.1 Objective Description

From the perspective of requesters in many scenarios, they wish to obtain accu-
rate data on some POIs. Therefore, the sensing quality is highly dependent on
the expectation of error between the estimated result and the ground truth.
Therefore, we define the following expected sensing error as our objective. Note
that in this section we only analyze the result of one task in one round. Hence
we omit the superscript r.

Definition 2 (Expected Sensing Error). The expected sensing quality Ei of
a task ti is defined as

Ei = E{NA
j (Bi)}E{Xi,j}

[

(̂GT i − GTi)2
]

= E{NA
j (Bi)}E{Xi,j}

⎡

⎣

(
∑Mi

j=1 wjN
A
j (Bi)( ̂Xi,j −̂bj)

∑Mi

j=1 wjNA
j (Bi)

− GTi

)2
⎤

⎦

(8)

4.2 Expected Error Minimization Problem

Definition 3 (Expected Error Minimization Problem). Given a sensing
task ti, sets of candidate workers Ki available for task ti, and a total budget Bi,
select workers from Ki to execute task ti such that Ei is minimized and the budget
Bi is not exhausted.

As the bias and variance of workers are unknown to the platform, the selection
scheme of workers could not be directly obtained by minimizing the function of
expected sensing error. The bias of workers could be calibrated via calibration
tasks. However, the variance of workers are to be explored after we allocate some
tasks to workers. This meets an exploration-exploitation dilemma. In this paper,
we employ an algorithm for MAB problem to depict the process of exploring
the workers’ variance while selecting low variance workers to perform sensing
tasks. Meanwhile, we provide a theoretical bound to show that when selecting
low variance workers using the MAB, the expected error could be bounded by a
value which decreases as the total budget increases.
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In this setting, workers are regarded as the arms of a bandit. The reward
of a worker is set according to her variance. As shown in Definition 4, we set

the reward of a worker uj to be 1 − σ̂2
j

C where C is a sufficiently large constant,
which means that when we select workers with lower variance, the reward will
be higher.

Definition 4 (Reward). The reward of a worker uj in a step τ is defined by

1 − (σ̂2
j )

(τ)

C .

4.3 Theoretical Bound for Expected Sensing Error

Suppose our algorithm A for the MAB will allocate NA
j (Bi) times of the task ti

to worker wj given a total budget Bi. Note that Bi =
∑K

j=1 NA
j (Bi). The regret

of the MAB is described in Eq. (9), where A∗ is an optimal algorithm for the
MAB.

R(A) = E [G(A∗)] − E [G(A)]

=
Mi
∑

j=1

E

[

NA∗
j (Bi)

]

μj −
Mi
∑

j=1

E
[

NA
j (Bi)

]

μj

=
Mi
∑

j=1

E

[

NA∗
j (Bi) − NA

j (Bi)
]

(

1 −
σ2

j

C

)

(9)

Theorem 1. Suppose R(A) could be bounded by O(F (Bi)) where F (Bi) is a
function of budget Bi, then Ei could be bounded by

Ei ≤
C · O(F (Bi)) + E

[

∑Mi

j=1 NA∗
j (Bi)σ2

j

]

B2
i

+ max
j′∈[Mi]

{bj′ −̂bj′}2 (10)

The proof of Theorem1 could be seen in our technical report1.
As we can see in Eq. (10), the bound of Ei is related to both the accuracy of

estimated bias (i.e. maxj′∈[Mi]{bj′ −̂bj′}) and the budget for the task. Note that
an optimal algorithm solving the MAB problem as a regret of O(log Bi). Hence
the first term of Eq. (10) is bounded by O(1/Bi). As a result, both providing more
budget and obtaining a better estimation of worker bias could lead to a smaller
bound of expected sensing error, which improves the accuracy of estimated result.

5 Algorithm

5.1 Multi-Armed Bandit Based Estimation Method

Our algorithm is depicted in Algorithm1. In each round of task assignment, we
use |T (r)| MAB with Upper Confidence Bound (UCB) algorithm to assign tasks,

1 https://www.dropbox.com/s/3643ygf0jvu11vs/Technical Report.pdf?dl=0.

https://www.dropbox.com/s/3643ygf0jvu11vs/Technical_Report.pdf?dl=0
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in order to select workers with high sensing quality. The reason why we use UCB
algorithm is that the quality of workers is unstable between different rounds.

In order to select the optimal worker, we estimate the expected rewards of
all the the workers. Both estimating the qualities of workers and exploiting the
optimal worker consume budget, and the UCB algorithm can help us effectively
balance these trade-off between estimation and exploitation.

In each step of the UCB algorithm, we select the worker uj with maximum

trade-off reward r̂j = rj +
√

2 lnn
nj

, where rj is the estimate of expected real

reward E(rj) of worker uj . In this formulation, n is total number of steps, and
nj is the number of times that worker uj has been selected.

In each round of our algorithm, we set up p bandits in p places, separately. At
one step, every bandit selects one worker uj to sense data (X1, · · · ,Xn). Then
from the data, we can update the estimated quality of the worker uj , by using
Eqs. (1) and (2).

With the goal to maximize the total quality of all the worker we chosen,
reward rj was formulated as:

rj = 1 −
σ̂2

j

C
(11)

Note that C is a constant which satisfy C ≥ σ̂2
j ,∀j in the equation above. With

the action-reward pair, UCB algorithm can update its estimate of reward r.
Repeat the process until all the budget runs out. After the task assignment,

we can estimate the ground truth ̂GT in all the places for this round and update
our estimate of all worker’s bias b̂j , according to Eq. (1).

For each step, bandit i infers worker and updates estimate in O(|K(r)
i |). In

a round, the upper bound of total number of steps for task ti equals to the
upper bound of budget, which denoted as B. With the assumption that one
worker only belongs to one place in a round, the num of all over the worker
|K(r)| =

∑|T (r)|
i |K(r)

i |. Therefore, the time complexity is bounded by O(B|K(r)
i |).

The regret of UCB algorithm is proven to be O(log B) [2].

5.2 Estimate Bias with Calibration

Without given ground truth, we need to assume the expected value of all the
bias E [bj ] = 0. To get the estimation of bias b̂j , we need to use Eq. (1). In fact,
we actually do not have the ground truth GT , and the estimation, ̂GT need use
the bias bj of every worker uj . To solve this dilemma, we use the approximations
of ̂GT for r-th round and rewrite Eq. (1) as:

b̂j =
1

∑

r,i NA
j (B(r)

i )

∑

r,i

X̄
(r)
i,j − ̂GT

(r)

i (12)

Bias b̂j update after getting the estimation of ground truth ̂GT
(r)

i at the end
of round r, and in this way, the estimation for bias will become more and more
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Algorithm 1. The weighted MAB algorithm in one round
1: % Initialize MABs
2: for task ti in T (r) do
3: Set up the i-th bandit for task ti
4: end for
5: % Make task assignment until no budget left
6: while budget left do
7: for task ti in T (r) do
8: if Remaining budget B̂

(r)
i for task ti large than 0 then

9: Infer action j from i-th MAB with UCB algorithm
10: Let worker uj sense new data (X1, · · · , Xn) from environment
11: Get reward rj of action j using Equation (11).
12: Update the i-th MAB with reward r
13: B̂

(r)
i ← B̂

(r)
i − 1

14: end if
15: end for
16: end while
17: % Update values for every place
18: for task ti in T (r) do
19: Update ground truth of task ti with weighted estimation method according to

Equation (4)
20: Estimate each worker’s bias (b̂1, · · · , b̂n)
21: end for

accurate. However, the approximation may bring some error and let the estima-
tion for GT become harder, and what is more, there is not a b̂ to estimate ̂GT
for the first round.

A straightforward method is to set the default initialization as 0 for every
b̂i. When the value of bias is far away from 0, this initialization is obviously
inappropriate. With this assumption, another method is to randomly select the
worker and simply estimate the ground truth by taking average. Interestingly,
this method can find good estimations without b̂j .

Therefore, an intuitive approach is to use this trivial method as calibration.
In the first L rounds, we only use the random method to get a preliminary
estimation of bj , and then use these estimations in the latter rounds.

6 Simulation Experiments

6.1 Experimental Setup

Data Description. We apply our algorithm to a synthetic data set based on
the real world trace data and temperature data. We use real world data provided
by the trace data set to obtain available workers and use temperature data set
to obtain the ground truth of each sensing task.

The trace data is a set of real GPS data in DataTech Modeling Contest
Samples [7] from ChinaMobile. They collected daily GPS track logs from Hang
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Zhou in Zhe Jiang province. We select 50 locations that are frequently visited
by people as PoIs. All the people staying at a PoI within the time range of a
task are regarded as available workers.

The temperature of a PoI is obtained from Dark Sky API2 which can retrieve
observed temperature from a couple of reliable data sources. Whenever a task is
generated in our simulations, the temperature on PoI within the time range of
the task is queried via Dark Sky API.

Environment Simulation. Without loss of generality, we use the temperature
queries of 50 fixed places as the spatial task set T (r). In a single round, tasks
need to find the ground truths of these places. Each round lasts one hour.

We extract a possible worker set from people once passed that place according
to the trace data above. At the beginning of every round, the 40–50 workers in
set K(r)

i are randomly picked from the available worker set.
The variance of each worker is randomly chosen from the interval [0.1, σ2

max],
and the bias of each worker is randomly chosen from the interval [−bmax,+bmax],
where σ2

max, bmax is the maximum of the variance and bias for all the workers,
separately. When a worker sense data, her sensing samples are generated from
a Gaussian distribution N (GTi + bj , σ

2
j ), and the number of samples for an

execution is n = 50.

Baselines. To understand the properties of our methods and their performance,
we consider the following the baselines:

Random selector. This method simply selects one worker at each step and esti-
mates the ground truth by taking average value of all the samples. In fact, with
the assumption that the expected average of samples equal to the ground truth,
this method is enough powerful.

Naive MAB. This baseline uses UCB algorithm for MAB in order to select
workers with high quality. The difference between this baseline and our method
is that it finally estimate the ground truth by simply setting all the wj in Eq. (4)
equally. This weights setting leads to a maximal likelihood estimation of the
ground truth.

6.2 Performance Evaluation

The first part of experiments shows the advantage of our algorithm. By the
assumption that the bias of workers b̂ is well estimated, we set bmax = 0. Our
algorithm selects the workers with high quality, therefore, the more diverse the
quality of workers are, the better performance our algorithm will receive. On the
other hand, if the budget is infinity, all the methods will get good performance.
It means that our method should get better result with limited budget.

2 https://darksky.net/dev.

https://darksky.net/dev
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(a) Variance in [0.1, 2] (b) Variance in [0.1, 10] (c) Variance in [0.1, 50]

Fig. 2. Performance of methods with different budgets in one round.

(a) Bias in [−0.1, 0.1] (b) Bias in [−1, 1] (c) without Calibration

Fig. 3. Performance of methods in several rounds.

Therefore, we evaluate these methods in different σ2
max, the results are showed

in Fig. 2. The loss in these figures is calculated by
√

1
N(r)

∑N(r)

i (GTi − ̂GTi)2.
The max budget is almost two times of the number of workers. These results
show that our algorithm has a good performance with limited budget, and both
the MAB algorithm and the weighted estimation can improve the performance.

With only 40–50 budgets, MAB algorithm tries all the worker one by one,
which has the same effect with Random method. Hence the Naive MAB get a
better performance than the Random method with more than 50 budgets. With
the budget increasing, the difference between different methods becomes smaller.
Comparing these sub-figure (a), (b), and (c) in Fig. 2, it shows that the more
diverse workers are, the better our method works significantly.

At the second part of experiments, we take the estimation of bias into consid-
eration. Therefore, we fix σ2

max = 10, change the value of bmax and add L = 10
rounds of calibration in the beginning. The results are shown as Fig. 3.

In sub-figure (a) and (b), the estimation of ground truth finally converges,
and workers with small bias can slightly decrease the difficulty of convergence.

Finally, we fix σ2
max = 10, bmax = 1, and try to run our algorithm with b̂ = 0

in the first round to show the effects of calibration. The result in sub-figure (c)
shows that it can hardly find a correct estimation of bias.
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7 Conclusion

In this paper, we model the quality of workers in Crowdsensing with two fac-
tors: bias and variance. For the classic exploration and exploitation dilemma, we
introduce a novel Multi-Arms Bandit (MAB) to solve it. A weighted data aggre-
gation (based on bayesian estimation) scheme is proposed which is shown to be
a better way to calculate the ground truth of a sensing task. Besides, we prove
that the expected sensing error can be bounded according to the bounded regret
of the MAB. In simulation experiments, we use a real world data set to validate
the theoretical results of our algorithm and it outperforms random and naive
MAB baselines significantly in different settings. In the future, we will consider
the partition method to allocate different budgets for different tasks for a global
optimization instead of minimizing expected sensing error of each sensing task.

Acknowledgment. This work was supported by the National Key R&D Program
of China (2018YFB1004703), the National Natural Science Foundation of China
(61872238, 61672353), the Shanghai Science and Technology Fund (17510740200), the
Huawei Innovation Research Program (HO2018085286), and the State Key Laboratory
of Air Traffic Management System and Technology (SKLATM20180X).

References
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Abstract. Task appearance prediction has great potential to improve
task assignment in spatial crowdsourcing platforms. The main challenge
of this prediction problem is to model the spatial dependency among
neighboring regions and the temporal dependency at different time scales
(e.g., hourly, daily, and weekly). A recent model ST-ResNet predicts traf-
fic flow by capturing the spatial and temporal dependencies in historical
data. However, the data fragments are concatenated as one tensor fed
to the deep neural networks, rather than learning the temporal depen-
dencies in a sequential manner. We propose a novel deep learning model,
called SeqST-ResNet, which well captures the temporal dependencies
of historical task appearance in sequences at several time scales. We
validate the effectiveness of our model via experiments on a real-world
dataset. The experimental results show that our SeqST-ResNet model
significantly outperforms ST-ResNet when predicting tasks at hourly
intervals and also during weekday and weekends, more importantly, in
regions with intensive task requests.

Keywords: Task prediction · Spatial crowdsourcing ·
Deep neural network

1 Introduction

Spatial Crowdsourcing (SC) [20] has attracted lots of attentions in recent years.
A typical SC system consists of a platform that is responsible for releasing
location-based tasks and a crowd of workers that can physically move to specified
locations to perform tasks. Emerging SC applications include taxi-hailing ser-
vice such as Didi and Uber, meal order and delivery service such as Eleme, and
dynamic information collection service such as Gigwalk. In practice, hundreds
c© Springer Nature Switzerland AG 2019
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T1 T2 T1 T2

(a) (b) (c) (d)

g1g1 g2g2

g3g3 g4g4

g2g2 g2g2 g2g2

g3g3 g3g3 g3g3g4g4 g4g4 g4g4

g1g1 g1g1 g1g1

Fig. 1. Task assignment with/without task prediction in spatial crowdsourcing. With-
out task prediction, idle workers at T1 in (a) make aimless movement, then at T2 in
(b) only one task-worker pair can be matched. With the guidance of task prediction,
idle workers at T1 in (c) move to g4 which is predicted to have several task requests.
Then at time T2 in (d), three task-worker pairs are matched.

or thousands of workers and tasks could be online simultaneously, so an impor-
tant problem in SC is to assign tasks to workers with the aim to maximize the
number of total assigned task-worker pairs. In previous studies the online task
assignment problem is usually decomposed into a series of offline task assignment
problems, each of which is further reduced to be a maximum matching problem
in a weighted bipartite graph [13,22]. While this reduction can generate feasible
solutions, it does not consider the dynamic feature of workers and tasks. After
one round of offline task assignment, idle workers are assumed to stay in place or
just move around aimlessly, waiting for the next round of offline task assignment
with new coming tasks. In fact, these idle workers can move towards some places
or areas where new tasks are likely to arrive, so that more task-worker pairs can
be assigned. This motivation can be further illustrated by the following example.

Figure 1 demonstrates a real time taxi-hailing service where tasks are pas-
sengers and workers are taxis. To facilitate later discussion, the whole area is
divided into 4 grids and each taxi has a service range shown by dotted circles.
At current time T1, the platform can generate three task-worker pairs as three
passengers are just in the service range of three taxis in g1, as shown in Fig. 1(a).
For taxis in other grids, if they stay at place (e.g., the taxi in g3) or move around
aimlessly (e.g., the taxis in g2 and g4), at next time T2 shown in Fig. 1(b), only
one task-worker pair can be made as most new tasks are appeared in g4 but no
workers are there. However, if the platform can guide idle workers to move to
grid g4 as shown in Fig. 1(c), then at time T2 in Fig. 1(d), three task-worker pairs
can be matched. From this toy example, we observe that it is beneficial to let
idle workers move to areas that new tasks may appear, but the challenge here is
how to predict accurately the time and the location of new coming tasks.

However, since tasks are always published individually, it is challenging to
predict the specific position and time of the new coming tasks. This important
problem recently has caused increasing attention. Several studies relax the prob-
lem to predict the future distribution of the new coming tasks using grid-based
methods. Cheng et al. [4] used linear regression to predict the future number
of workers/tasks of each grid cell. Tong et al. [23] compared the performance of
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several traditional statistical methods (e.g., ARIMA [3]) and traditional machine
learning methods (e.g., GBRT [7]) on this problem. However, these methods are
too simple and not good enough to model both spatial and temporal dependen-
cies in task prediction problem, and the experimental results in this paper show
that these methods have close performance and it is difficult to improve one over
another.

Our study in this paper, for the first time, attempts to apply deep neural
networks on addressing the task prediction problem. Deep neural networks have
shown its success on diverse applications fields, and outperform traditional meth-
ods on modeling complex temporal and spatial feature dependency. For example,
deep spatio-temporal residual network (ST-ResNet) in [29] is proposed to predict
inflow and outflow of crowds in grid regions of a city by using convolution-based
residual networks to model nearby and distant spatial dependencies between any
two regions in a city, and the temporal properties of flows regarding temporal
closeness, period, and trend.

Our problem of task appearance prediction shares similar challenges in traffic
flow prediction on modeling the spatial dependency among regions and tempo-
ral dependency on dates and trend. However, the ST-ResNet model has a major
limitation on learning the temporal dependency in historical sequences. It con-
catenates data in one sequence as one tensor, which weakens the sequential
dependency in successive time units. Thus, we design a spatial-temporal resid-
ual network that learns from the sequential historical data, in a manner like
Recurrent neural networks (RNN) and Long-short term memory (LSTM) learn
from time series and word sequence.

The main contributions in this paper are summarized as follows:

– We analyze the spatial dependencies and temporal dependencies in task pre-
diction problem, and targets on modeling the temporal dependencies in the
sequences of historical task appearances at different scales, e.g., on the time
interval level (e.g., half-hour) from t − 2 to t − 1 to t, on the daily level from
one day to another, and on the weekly level from one week to another.

– We proposed a model called SeqST-ResNet, which well captures the temporal
dependencies of historical task appearance in sequences, and the spatial
dependencies among neighboring regions.

– We validate the effectiveness of our model on a real-world dataset. The exper-
imental results show that our SeqST-ResNet model significantly outperforms
the most competitive baseline ST-ResNet when predicting tasks at different
time scales, and more importantly, in regions with intensive task requests.

The remainder of this paper is organized as follows. We give the definitions of
task prediction problem and then analyze the spatial and temporal dependencies
in Sect. 2. Section 3 presents the details of the proposed model. Experimental
results are presented in Sect. 4 to demonstrate the performance of our methods.
Related work and conclusion are discussed in Sects. 5 and 6, respectively.
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2 Problem Definition and Analysis

2.1 Problem Definition

Following the previous work in [4,23], we address the task prediction problem
by relaxing it to predict the number of task appearances in a specific spatio-
temporal scope. In a city or region of interest, we divide its map into M×N grids,
by partitioning along the longitude and latitude. The resolution of grid partition
is controlled by M and N according to the application need. This practical grid-
based map partition has been widely used in many spatio-temporal problems
[4,23,29–31].

Based on the grid partition, at each time moment t, the task distribution can
be considered as an image. We formally define it as:

Definition 1. (Task image at time t) Task image of the whole area (M × N
grids) at interval t can be defined as:

Xt =

⎡
⎢⎢⎢⎢⎣

X
(0,0)
t X

(0,1)
t · · · X

(0,N)
t

X
(1,0)
t X

(1,1)
t · · · X

(1,N)
t

...
...

. . .
...

X
(M,0)
t X

(M,1)
t · · · X

(M,N)
t

⎤
⎥⎥⎥⎥⎦

(1)

The element of task image matrix at the i-th row and the j-th column is

X
(i,j)
t =

∑
P∈IP

|{Ploc ∈ grid(i, j) ∧ Ppt = t}| (2)

which is the count of tasks P published at time Ppt at location Ploc belonging
to grid cell grid(i, j). Here, IP denotes the task set in the spatial crowdsourcing
system.

Then, our task appearance prediction problem is defined as

Definition 2. (Task Prediction Problem) Given the sequence of historical task
images {X0,X1, . . . ,Xt−1}, the goal is to predict Xt at next time t.

2.2 Temporal and Spatial Dependency Analysis

To address the task appearance prediction problem, we discuss two important
types of dependencies that should be included in prediction model design.

– Temporal Dependencies: at a given location, the task image value at a
time t depends on the values before t. Such dependencies are often observed
due to the time dependent properties of tasks. For example, at a central
business district (CBD), the number of lunch orders on Grubhub or Eleme
will have little differences between 11:30am–12:00pm and 12:00pm–12:30pm
because these time intervals are both in lunch time. And the orders quantity
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will be similar from Monday to Friday as they are workdays. Also, similar
order numbers can be found from one weekend to another. More importantly,
the dependency between t and t−1 is stronger than that between t and t−2.
Therefore, the temporal dependencies should be modeled in the sequence
of task images at different scales, e.g., on the time interval level (e.g.,
hourly or half-hourly) from t − 2 to t − 1 to t, on the daily level from day1 to
day2 to day3, and on the weekly level from 1-st Monday to 2-nd Monday to
3-rd Monday and so on.

– Spatial Dependencies: the task image value at one location depends on the
values at neighboring locations, because the neighboring grid cells may cover
a same urban functional region. For example, at different grid cells around
a commercial center. there will be similar number of taxi orders. Moreover,
similar task appearance can even exist in distant grid cells when they cover
the same type of functional region, e.g., train stations distributed in a big city.

3 The Proposed Approach, SeqST-ResNet

In this section, we will introduce our proposed model, SeqST-ResNet, which
is a deep neural network model capturing the sequential dependencies in
temporal features and spatial features of task appearance predication problem.
We first present the network architecture and then discuss the network learning
process, and its relevance to the ST-ResNet in [29].

3.1 SeqST-ResNet Architecture

As we discussed in the previous section, the sequential dependency on time-line
is important for making correct prediction. Like in language models, video pro-
cessing models and time-series models, the historical sequence is memorized for
making predicting at the next time moment. Recurrent neural networks (RNN),
Long-short term memory (LSTM), and all their variants have been widely used
for this purpose. To incorporate the temporal dependency on different levels, we
learn from the three types of historical sequences of task images:

{Xt−n,Xt−n+1, . . . ,Xt−2,Xt−1} interval-level
{Xt−n∗p,Xt−(n−1)∗p, . . . ,Xt−2∗p,Xt−p} day-level when p = one day
{Xt−n∗q,Xt−(n−1)∗q, . . . ,Xt−2∗q,Xt−q} week-level when q = one week

where p and q are parameters controlling the different level of temporal depen-
dency to be modeled.

The architecture of our model, SeqST-ResNet, is shown in Fig. 2. The time
axis on the top indicates the three types of dependency we modeled, denot-
ing recent time (interval-level, in color red), near history (day-level, in color
green) and distant history (week-level, in color blue). The sequence of each level
(task images in the same color) goes through the same multi-layer deep network,
including a convolution layer followed by several ResUnits, which are designed
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Fig. 2. SeqST-ResNet Architecture. The time axis on the top indicates three types of
dependency, denoting recent time (interval-level, in color red), near history (day-level,
in color green) and distant history (week-level, in color blue). The sequence of each
level (task images in the same color) goes through the same multi-layer deep network,
including a convolution layer followed by several ResUnits. The outputs from each
sequence learning component are then combined by a fusion layer and followed by a
final activation layer, as shown in bottom. (Color figure online)

following the Residual Network (ResNet) [9]. ResNet has been a great achieve-
ment in deep learning for addressing the gradients vanish problem and makes the
deep network trainable even with over 1000 layers [10]. The outputs from each
sequence learning component are then combined by a fusion layer and followed
by a final activation layer, as shown in bottom of Fig. 2.

We next discuss the details of each sequence learning component, which con-
sists of four parts: inputs, convolution layers, residual units, and addition layers.
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Inputs. The input sequence of task images can be an interval-
level sequence {Xt−n,Xt−n+1, . . . ,Xt−1}, or a day-level sequence {Xt−n∗p,
Xt−(n−1)∗p, . . . ,Xt−p}, or a week-level sequence {Xt−n∗q,Xt−(n−1)∗q, . . . ,
Xt−q}, as we discussed previously.

Convolution Layers. The convolution operation captures the spatial depen-
dency. Taking a task image, it outputs1:

X
(1)
t−n = f(W (1) ∗ X

(0)
t−n + b(1)) (3)

where * denote the convolution operation and f is an activation function (e.g.,
ReLu, Tanh, or Sigmoid), W (1) and b(1) are the learnable network parameters.
With the increase of the number of the convolution layers, each unit of the
feature map in the output of the component can cover more grids in input (task
images). We use a 3 × 3 kernel as the filter. After one convolution layer, each
unit of the output feature map can catch 9 pixels’ information of the input.
After two convolution layers, each unit can catch 27 pixels’ information as the
image is big enough. Thus, to capture the whole task image’s information we
use several convolution layers. To reduce training time, most convolution layers
are contained in residual unit.

Residual Unit. The residual unit we use is shown in Fig. 3. Formally, a residual
unit is defined as:

Xl = Xl−1 + F (X) (4)

where Xl and Xl−1 denote the input and output of a residual unit, respectively.
Function F is a residual function which consists of multiple convolution layers
and Batch Normalization [12] layers also with several ReLu transition function
[17]. Batch Normalization is known by a lot of advantages, such as faster training,
allowing, higher learning rate, easy to initialize network weights, regularization
and improvement of network performance.

Convolu on Batch 
Normal ReLu Convolu on Batch 

Normal
ReLu OutputInput

Residual Unit

Fig. 3. Residual unit

Addition Layer. The addition layer, denoted by
⊕

serves for absorbing the
task image into the sequence modeling component. Taking the first addition
layer as an example, it operates

X
(1)
t−n+1 : X(1)

t−n+1 + X
(l+1)
t−n (5)

1 We show conv1 as an example. Other convolution layers follow the same function.
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where X
(1)
t−n+1 on the right is the output of conv2, and the second term X

(l+1)
t−n

is the output of ResUnit 1 L. After merging X
(l+1)
t−n , X(1)

t−n+1 is sent forward to
next layers.

To demonstrate the end-to-end SeqST-ResNet model, we take a simple
sequence of two task images, {X0,X1}, as input to one sequence modeling com-
ponent (e.g., the interval-level model). The feed-forward procedure will be:

X
(1)
0 = f0(W

(1)
0 ∗ X

(0)
0 + b

(1)
0 )

X
(1)
1 = f1(W

(1)
1 ∗ X

(0)
1 + b

(1)
1 )

X
(l+1)
0 = X l

0 + F
(l)
0 (X(l)

0 ) (for l from 1 to L)

X
(1)
1 = X

(1)
1 + X

(l+1)
0

X
(l+1)
1 = X l

1 + F
(l)
1 (X(l)

1 ) (for l from 1 to L)

The fusion layer will coalesce the output of three components with a simple
parameter-matrix-based method. Suppose Xc, Xp, Xq are the output of each
component respectively, the output of the fusion layer is:

Xout = Wc ∗ Xc + Wp ∗ Xp + Wq ∗ Xq (6)

where the symbol ∗ is the hadamard product. The final activation function is
Sigmoid, which predicts the output X̂t = sigmoid(Xout). The loss function MSE
(Mean Square Error) is defined to measure the difference between the predicted
task image at t and the ground truth Xt:

loss = ||Xt − X̂t||22 (7)

3.2 Network Training

We use Adam algorithm as the optimizer. The learning rate is set as 0.003, and
batch size is set as 16. The convolution kernels are with size of 3 × 3 both in
convolution layers and residual blocks.

To reduce the influence of anomalies in training task image sequences, we
apply moving average (e.g., with window length 3) on the input sequences. Min-
max normalization is used for data pre-processing. The length of the interval-
level and day-level sequences is set as 3, and the length of the week-level
sequences is set to be 1 unless specified differently. The influence of these length
parameters will be analyzed in the experimental result section.

3.3 Discussion

Our proposed model SeqST-ResNet shares the similar architecture of using three
components of ResNet in ST-ResNet [29]. Our interval-level component corre-
sponds to the closeness component in ST-ResNet, while day-level and week-
level component corresponds to the period and trend component in ST-ResNet,
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respectively. The key difference lies in how to model the historical sequences.
In each component of ST-ResNet, the fragments in one sequence are concate-
nated as one tensor, and then modeled by convolution layer and residual units.
In our proposed SeqST-ResNet, the task images in a sequence are mod-
eled by considering their time order, and thus captures the temporal
dependency in a more reasonable way than taking concatenation as
a tensor. The evaluation results in next section also verify that our sequential
deep network architecture can better model the temporal dependency in task
image sequences and achieves better prediction results than ST-ResNet in [29].

4 Experiments

In this section, we evaluate our proposed model SeqST-ResNet on a real-world
dataset and compare it with the state-of-the-art models.

4.1 Dataset

The dataset we use is the taxi request data in Chengdu, China, provided by
Didi GAIA Open Dataset [1]. The detail information of this dataset is shown
in Table 1. The whole area covered by the dataset in Chengdu is divided by a
10 × 10 grid-based map partition. We set time interval as 30 min, and then get
2928 intervals totally from Oct. 1st to Nov. 30th, 2016.

Table 1. Dataset information

City Chengdu, China

Time span 10/1/2016–11/30/2016

# taxi orders 11779076

Time interval 30 min

# intervals 2928

Grid-based map partition 10× 10

Area of each grid Nearly 800× 800 m2

4.2 Baselines and Settings

We compare our method with the following baselines including both traditional
methods and deep learning methods:

– HA: Historical Average. This naive approach uses the historical average value
in the same interval and same grid as the prediction.

– ARIMA: Auto-Regressive Integrated Moving Average [3]. It is a well-known
time series prediction model.
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Table 2. Prediction errors of different models

Model RMSE

Baselines HA 22.99

ARIMA 17.40

LSTM-48 39.87

LSTM-96 39.97

DeepST 18.52

ST-ResNet 16.28

Our methods SeqST-ResNet-1AVG 14.00

SeqST-ResNet-3AVG 12.95

SeqST-ResNet-5AVG 12.97

SeqST-ResNet-7AVG 13.61

– LSTM: Long-Short-Term-Memory Network [11]. Its chain like neural net-
work structure is capable of learning long-term dependencies.

– ST-ResNet: Spatio-Temporal Residual Network [29]. The deep learning
model is designed for predicting traffic flow based on historical data.

– DeepST: Deep Spatio-Temporal Network [30]. It is similar to ST-ResNet,
but without using residual units.

For all methods, we select the data in the last 7 days (nearly 10%) for eval-
uating the prediction accuracy, while all data before that are used for training.
The parameters of deep learning models (DeepST, ST-ResNet and our SeqST-
ResNet) are set to the same values: p = 48 intervals (24 h) and q = 48 × 7
intervals (one week), such that day-level and week-level sequences are fed with
interval-level sequences to the corresponding components in the deep networks.
The parameter settings in other baselines methods are tuned for achieving their
best performance.

Evaluation Metrics. We use the most common metrics in this paper: Root
Mean Squared Error (RMSE) for evaluation:

RMSE =

√√√√ 1
n

n∑
i=1

(
Xi − X̂i

)
(8)

The results reported next are the average of 5 independent runs.

4.3 Results

Overall Prediction Performance. Table 2 presents the prediction results
of baseline methods and our proposed models with different smoothing win-
dow sizes (SeqST-ResNet-τAVG represents our model is trained by smoothed
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sequences with window size τ). The lower RMSE value indicates more accurate
prediction. We can see that our SeqST-ResNet models consistently outperform
the baseline methods. Especially SeqST-ResNet-3AVG shows the best perfor-
mance with RMSE of 12.95. Obviously, smoothing of sequences can improve
the results due to the elimination of anomalies (SeqST-ResNet-1AVG without
smoothing is not as good as other SeqST-ResNet settings). One interesting obser-
vation is that SeqST-ResNet-5AVG has the closest RMSE (12.97) to the best
result, and SeqST-ResNet-7AVG has higher RMSE (13.61). This is due to the
over-smoothing of the sequences with a large window (length of 7 intervals means
3.5 h). Over all, the results in Table 2 verify that our proposed SeqST-ResNet
model can capture well the sequential dependency in time order and among spa-
tial locations, and thus make more accurate prediction of future task appearance
than other models.

To demonstrate the model training and testing errors in the learning process,
the training error curve and test curve of epochs are shown in Figs. 4 and 5. We
can see clearly that SeqST-ResNet models always have lower error than DeepST
and ST-ResNet in both training and testing. Moreover, SeqST-ResNet-7AVG
is worse than SeqST-ResNet-5AVG and SeqST-ResNet-3AVG, but still better
than SeqST-ResNet-1AVG without using smoothing. The training error curve
and test error curve have the same tendency and similar value, which indicates
that the parameters we use in these models are suitable and do not result in
over-fitting or under-fitting issues.

Fig. 4. Training error Fig. 5. Test error

Prediction Performance with Respect to Time. To evaluate the predic-
tion accuracy at different time moments during a day, and on weekdays and
weekends, we compare our best model SeqST-ResNet-3AVG and the most com-
petitive baseline ST-ResNet. Figure 6(a) and (b) show that our model has lower
prediction errors at the half-hour resolution prediction during a day, and also
much lower prediction errors during weekends and weekdays. That is to say, our
model can predict the task appearance at different time scales more accurately
than ST-ResNet. This is mainly because our model learns from the sequences of
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task images at different time scales, rather than taking concatenation of tasks
images as done in ST-ResNet.

)b()a(

Fig. 6. Prediction at different time in one day (a) and at weekends and weekdays (b)

Prediction Performance on Regions with Different Request Intensity.
We are also interested in evaluating the prediction performance of our model
on regions with different true task frequency, e.g., request intensive regions vs
mild regions. We calculate the average of ground truth task appearance fre-
quency in each grids (10 × 10 grids), and then sort these grid cells by the aver-
age frequency with ascending order (from the most idle region to the most busy
region). Figure 7 shows the prediction performance on these grid cells ordered on
x-axis. In regions with intensive task requests, our SeqST-ResNet-3AVG model
has much lower error than the baseline ST-ResNet model, while they have simi-
lar performance in mild regions. This is an important advantage, because correct
prediction of tasks in request intensive regions (e.g., around commercial centers,
central transportation stations) will highly improve the task assignment efficacy
in spatial crowdsourcing platform.

Influence of the Sequence Length. Our model learns from three types of
sequences. We also evaluate how the sequence length can affect the prediction
performance. Let li, ld, lw denote the length of interval-level sequence, day-
level sequence and week-level sequence, respectively. In Fig. 8(a), we show the
prediction error when changing li from 1 to 5, while fixing ld = 1, lw = 1. The
result shows that with li increasing, the RMSE decreases. This indicates longer
interval-level sequences can help on improving prediction accuracy, but also takes
more training time. An appropriate setting is li = 3 because the error decreases
slowly after li is larger than 3. Figure 8(b) shows the influence of ld when fixing
li = 3, lw = 1. The results show that the model performs best when ld = 3.
Neither too long nor too short day-level sequence is helpful. Then we set li = 3
and ld = 3, and show the impact of lw in Fig. 8(c) where we find lw = 1 is the
best setting.
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Fig. 7. Prediction on regions with different request intensity

Fig. 8. Impact of sequence length at different levels. In (a), the length of interval-level
sequence li varies when ld = 1, lw = 1. In (b), the length of day-level sequence ld varies
when li = 3, lw = 1. In (c) the length of week-level sequence lw varies when li = 3 and
ld = 3.

5 Related Work

In this section we briefly review some recent advances on task assignment in
spatial crowdsourcing and deep learning since the focus of this paper is to apply
deep neural networks on addressing the task prediction problem during task
assignment in spatial crowdsourcing.

In [13], Kazemi and Shahabi propose several heuristics to maximize the num-
ber of assigned tasks in a given time interval while meeting the constraints spec-
ified by workers. In practice, tasks often arrives dynamically. This kind of online
scenarios is more challenging and has been addressed in [20,21,23] where effi-
cient algorithms with provable competitive ratio are proposed. Song et al. in
[18] extend conventional task assignment from two objects matching problem to
trichromatic matching problem. In [15,16,25,27,28], privacy of user or platform
are considered when making the task assignment. In [4], spatial distribution of
workers and tasks are taken into account when maximizing a global assignment
quality score. In [14,24], travel time, as an important factor, the prediction of
which has drawn some attentions recently. [32] tackles the problem of assign-
ing tasks to workers such that mutual benefit are maximized. All these studies
fail to model the spatial dependency among regions and temporal dependency
on successive time units, which is the focus of our work in this paper. To the
best of our knowledge, there is no deep learning based method to solve the task
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prediction problem. Thus, it is necessary to design a deep neural network based
method.

On the other hand, recent years have witnessed the big success of deep learn-
ing in a variety of application domains. Specifically, there are lots of achievements
in catching spatial or temporal properties. For temporal property, recurrent neu-
ral networks (RNN) [6] is designed to make use of sequential information, and has
been shown great success in many NLP tasks [19]. However, vanishing gradient
problem causes it to be difficult to capture the long-term dependency [2]. Long
short term memory networks (LSTM) [11] improved RNN by using “gates” which
control what to forget or remember. Gated Recurrent Unit (GRU) [5] simplifies
LSTM by reducing the “gates” from 3 to 2. Bidirection LSTM (BiLSTM) [8] not
only considers the forward data flow but also backward. For spatial property,
convolution neural networks (CNN) can effectively capture the spatial property
from near to distant with the depth deeper. Residual Networks (ResNet) [9]
makes the deep network realize really “deep” even over 1000 layers. For com-
bination of spatial and temporal properties, convolution LSTM (ConvLSTM)
[26] and deep spatial temporal networks (DeepST) [29] are proposed to capture
the two properties. However none of them can model long dependency as the
training cost is really huge in practice.

6 Conclusion and Future Work

In this paper, we study the problem of predicting the task appearance in a spa-
tial crowdsourcing platform. To take advantage of the temporal dependency of
the historical sequential task request and the spatio-dependency in neighboring
regions, we proposed a novel deep network model that learns from the sequences
of task image data at different time scales. Experimental results on a real dataset
demonstrated that our methods can significantly improve the prediction accu-
racy when comparing with the baselines. In future, we will consider to add
the attention mechanism to further reduce the prediction error, and extend the
application to other spatial crowdsourcing data such as meal order data.
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Abstract. Clustering high-dimensional data is challenging since mean-
ingful clusters usually hide in the arbitrarily oriented subspaces, and
classical clustering algorithms like k-means tend to fail in such case. Sub-
space clustering has thus attracted growing attention in the last decade
and many algorithms have been proposed such as ORCLUS and 4C.
However, existing approaches are usually sensitive to global and/or local
noisy points, and the overlapping subspace clusters are little explored.
Beyond, these approaches usually involve the exhaustive local search for
correlated points or subspaces, which is infeasible in some cases. To deal
with these problems, in this paper, we introduce a new subspace cluster-
ing algorithm called RAOSC, which formulates the Robust Arbitrarily
Oriented Subspace Clustering as a group structure low-rank optimization
problem. RAOSC is able to recover subspace clusters from a sea of noise
while noise and overlapping points can be naturally identified during the
optimization process. Unlike existing low-rank based subspace cluster-
ing methods, RAOSC can explicitly produce the subspaces of clusters
without any prior knowledge of subspace dimensionality. Furthermore,
RAOSC does not need a post-processing procedure to obtain the clus-
tering result. Extensive experiments on both synthetic and real-world
data sets have demonstrated that RAOSC allows yielding high-quality
clusterings and outperforms many state-of-the-art algorithms.

Keywords: Subspace clustering · Correlation clustering

1 Introduction

In high-dimensional data set, meaningful clusters usually hide in the arbitrar-
ily oriented subspaces, i.e., subsets of points showing linear correlations among
subsets of dimensions [11]. To explain this idea, consider a real-world example
illustrated in Fig. 1. The 2D plot represents a Height/Weight Standard1, which
consists of two subspace clusters of male and female, respectively. In contrast to

1 http://www.angelo.edu/dept/rotc/height weight chart.php.
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C1

C2

projection

Fig. 1. A real-world example of subspace clustering. C1 and C2 are two subspace
clusters.

the classical clustering, points are grouped into the same cluster because they
exhibit high correlation (i.e., they locate near the same line or plane), rather
than closeness. Only when projecting the points into the subspace orthogonal
to the plane where they are lying in, they will exhibit high density. Since each
cluster lies in an arbitrarily oriented subspace, it is referred to as arbitrarily
oriented subspace clustering or correlation clustering.

Clustering a 2D data is just a piece of cake, but how about a high-dimensional
data having dozens or hundreds of attributes? In such case, detecting subspace
clusters is a challenging task since many dimensions are irrelevant and only a
few of dimensions truly contribute to the cluster structure. The word “Rele-
vant” means that a cluster shows high correlation in and only in these relevant
dimensions. More importantly, the relevant dimensions often differ largely for
different clusters [11]. Therefore, global dimensionality reduction methods like
Principal Component Analysis (PCA) cannot be used to preserve the subspace
cluster structure. To tackle this problem, most approaches adopt certain assump-
tions/heuristics and start from a local search of subspaces and clusters.

During the past decade, many subspace clustering approaches have been pro-
posed from various perspectives. The earliest attempt is to heuristically exam-
ine all possible axis-parallel subspaces and identify clusters, algorithms include
CLIQUE [4], ENCLU [7], PROCLUS [2], SUBCLU [10], DUSC [5], to name
a few. However, these algorithms can only find axis-parallel subspace clusters.
Afterwards, arbitrarily oriented subspace clustering emerges. Most of these algo-
rithms rely on the search of local correlated points to identify clusters and sub-
spaces. Algorithms include, for examples, ORCLUS [3], 4C [6], CURLER [21],
SSCC [9], FOSSCLU [8], ORSC [18] and CoSync [19]. However, most previous
solutions of finding suitable subspaces work well if and only if subspace clusters
are locally well separated and no noise/outlier points exist. In the presence of
noise/outliers in the local neighbourhood of cluster points or cluster representa-
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tives in the entire feature space, most previous methods fail to detect meaningful
subspace clusters. Besides, due to the (exhaustive) heuristic local search, they
are generally time consuming especially when the dimensionality is high.

In contrast to previous methods that use certain heuristic ways to search
subspace clusters, we turn to formulate the subspace clustering task as a group
structure low-rank optimization problem. The key idea is to assign data points
to clusters to meet the correlation and closeness criteria. Specifically, if we
examine an arbitrarily oriented subspace cluster w.r.t. its relevant dimensions,
we find these cluster objects exhibit a high correlation. Meanwhile, when pro-
jecting these cluster objects into the orthogonal complementary space spanned
by the irrelevant dimensions, they exhibit a high closeness. We argue that tak-
ing both of the correlation and closeness into account improves the robustness.
Motivated by the observations, in this paper, we propose a new subspace cluster-
ing algorithm called RAOSC, which formulates the Robust Arbitrarily Oriented
Subspace Clustering as a group structure low-rank optimization problem. It has
several attractive properties. Firstly, since the optimization does not rely on the
local search, it is more efficient. Furthermore, the optimization problem well char-
acterizes the two criteria of correlation and closeness simultaneously where most
previous methods only consider the correlation criterion. This makes RAOSC
more robust to noisy objects or outliers. Inspired by [17], we develop an effective
and efficient optimization algorithm to solve RAOSC. During the optimization
process, noise and overlapping points can be naturally identified. Last but not
least, unlike the previous low-rank representation (LRR) based subspace clus-
tering methods [12,13] that cannot give explicit subspaces of clusters and need a
two-step algorithm to do clustering, RAOSC is able to find explicit subspace for
each cluster without knowing the subspace’s dimensionality. It directly obtains
the discrete cluster membership indicators by the optimization, no further post-
processing procedure is needed. In summary, the main contributions of our work
are listed as follows.

– We formulate the identification of arbitrarily oriented subspace clustering as
an optimization problem by exploiting two intrinsic properties of a subspace
cluster: correlation and closeness. We integrate the two properties and
formulate a group structure low-rank model for subspace clustering.

– We develop an effective and efficient optimization algorithm for RAOSC. Dur-
ing the optimization process, noise and overlapping points can be naturally
identified. To the best of our knowledge, for arbitrarily oriented subspace clus-
tering problem, we are the first to handle both noise and overlapping points
in one unified framework.

– We perform extensive experiments on synthetic and real-world data sets and
compare with the state-of-the-art algorithms to demonstrate the effectiveness
of our approach.
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2 The Proposed Method

2.1 Problem Formulation

Formally, let X ∈ R
m×n be a data matrix of n instances with m dimensions,

the objective of this study is to find k overlapping arbitrarily oriented subspace
clusters {C1, C2, . . . , Ck}, and a noise point set C0. Xi is a matrix containing
data points in cluster Ci. For each cluster, we use a diagonal indicator matrix
Pi ∈ {0, 1}m×m to indicate the relevant dimensions in the original space, and
use P̄i = I−Pi to indicate the irrelevant dimensions, where I denotes an identity
matrix. Specifically, PT

i Xi sets the rows of Xi corresponding to the irrelevant
dimensions to zero, and leaves the rest of the rows corresponding to the relevant
dimensions untouched, which extracts the axis-parallel relevant dimensions of
Xi. Since subspace clusters may accommodate in arbitrarily oriented subspaces,
thereby, inspired by [14], an orthonormal rigid rotation matrix Si ∈ R

m×m is
further introduced. Si rotates the i-th cluster so that its relevant dimensions
align to the parallel axes. Combine these two matrices, PT

i S
T
i Xi is thus used to

characterize the relevant subspace for the cluster Ci. Finally, we use a diagonal
matrix Gi ∈ {0, 1}n×n to indicate the corresponding cluster membership, where
Gi(j, j) = 1 if the j-th data point is grouped into the i-th subspace cluster,
and 0 otherwise. Thus XGi leaves the columns corresponding to the i-th cluster
points untouched and sets the others to zero. Therefore, for a given data set, the
subspace clustering is conducted by learning the three matrices for each cluster.

2.2 Clustering via Correlation and Closeness

In this study, we consider that a subspace cluster should satisfy two criteria:
correlation and closeness. Specifically, we first refer to the subspace spanned
by the relevant dimensions as the correlation space, the subspace spanned by the
irrelevant dimensions as the cluster space. Note the two subspaces are orthogonal
complementary to each other w.r.t. the full space. Data points in a subspace
cluster should show high correlation in the correlation space. Meanwhile, they
should be as close as possible when projecting them into the cluster space. By
contrast, most existing approaches only consider the correlation for subspace
clustering. To illustrate this basic idea, Fig. 2 gives a toy example. Figure 2(a)
shows that data points in a subspace cluster should locate near an arbitrarily
oriented 2D plane in the full 3D space (i.e., strong correlation). In addition, data
points are close to each other when projecting them into the cluster space (i.e.,
high closeness) (see Fig. 2(b)). In the following, we will formulate our objective
function in terms of the two criteria.

For the i-th cluster, we assume that we can find an orthonormal rigid rotation
matrix Si [14], which rotates the original space and thus the first di dimensions
span the correlation space accommodating all data points in the i-th cluster
(e.g., S in Fig. 2). And the last (m − di) dimensions span the cluster space (e.g.,
R3\S in Fig. 2). Note that the dimensionality di is not a parameter that needs
to be manually set. It is automatically determined in the optimization process.
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(a) High correlation. (b) High closeness.

Fig. 2. Illustration of subspace clustering with criteria of correlation and closeness in
correlation space S and cluster space R3\S.

Accordingly, we use two diagonal indicator matrices Pi and P̄i defined as follows
to split the two subspaces.

Pi =
[
Idi

0m−di

]
, P̄i =

[
0di

Im−di

]
. (1)

A data point x can project into the correlation space and the cluster space by
PT

i S
T
i x and P̄T

i S
T
i x, respectively.

Since we require closeness of a cluster in the cluster space, one intuitive option
is to minimize the pairwise distance of all cluster points, which can be formulated
as

∑
x,y∈Ci

||P̄T
i S

T
i x−P̄T

i S
T
i y||. To characterize the correlation in the correlation

space, we consider a group structure low-rank model, i.e., a group of data points
in the same cluster are low-rank in the full-dimensional space. We can minimize
the ranks of clusters to find subspace clusters. That is, min

C
∑k

i=1 rank(Xi)2.

Since multiplying an orthogonal matrix, and discarding the irrelevant dimensions
of a subspace cluster in the full-dimensional space do not change the rank, we
can equivalently write it as min

P,S,C
∑k

i=1 rank(PT
i S

T
i Xi)2. Note the square on the

rank function is used to avoid trivial solution as discussed in [17]. We formulate
the problem as the following objective function.

min
P,S,C

k∑
i=1

(
rank(PT

i S
T
i Xi)2 +

∑
x,y∈Ci

||P̄T
i S

T
i (x − y)||

)

s.t. ∀ 1 ≤ i ≤ k, ST
i Si = I.

(2)

We use an alternative diagonal indicator matrix Gi to rewrite Eq. (2) as
follows.
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min
P,S,G

k∑
i=1

(
rank(PT

i S
T
i XGi)2 +

∑
x,y∈Ci

||P̄T
i S

T
i (x − y)||

)

s.t.

k∑
i=1

Gi � I,
k∑

i=1

Tr(Gi) = kl,

∀ 1 ≤ i ≤ k, Gi ⊆ {0, 1}n×n,ST
i Si = I,

(3)

where the term
∑k

i=1 Gi � I and
∑k

i=1 Tr(Gi) = kl ensure that each data point
has to be assigned to at least one group, and some data points can be assigned
to multiple groups to allow overlapping clustering. l is an integer parameter that
controls the degree of overlapping, which is within the range of [n/k, n]. l = n/k
means no overlapping clusters, l = n is complete overlapping (i.e., each data
point belongs to all clusters). Since l depends on the number of data points
so that it is not convenient to set, we use a variable substitution trick which
replaces l with l̃ ∈ [0, 1]. It stands for the proportion of the overlapping data
points, where l =

⌊
l̃n(k−1)+n

k

⌋
.

Since the rank minimization problem is NP-hard, the common practice is to
relax the rank function to the nuclear norm. However, inspired by [17], we use
the Schatten-1 norm for relaxation. Schatten-1 norm is numerically equal to the
nuclear norm, but it can be more efficiently optimized by adopting certain strat-
egy. In addition, finding an optimal cluster assignment on the minimization of
all pairwise distances (i.e.,

∑
x,y∈Ci

||P̄T
i S

T
i x−P̄T

i S
T
i y||) is also computationally

infeasible. We relax it by minimizing distances between data points and cluster
centroids. Thereby, the second term can be relaxed as a k-means style term. The
overall objective function is given as follows.

min
P,S,G,M

k∑
i=1

((∣∣∣∣PT
i S

T
i (X − Mi)Gi

∣∣∣∣p
Sp

)2

+ α
∣∣∣∣P̄T

i S
T
i (X − Mi)Gi

∣∣∣∣2
F

)

s.t.
k∑

i=1

Gi � I,
k∑

i=1

Tr(Gi) = kl,

∀ 1 ≤ i ≤ k, Gi ⊆ {0, 1}n×n,ST
i Si = I,

(4)

where ||X||pSp = Tr((XXT )
p
2 ) is the Schatten-p norm of matrix X, and we take

p = 1 in this study. Mi = μi1T
n , μi is the mean vector of the i-the cluster. Using

X − Mi to replace X at the first term is to make the rank approximation more
robust [17]. α > 0 is a real number parameter to balance the dimensionality of
the correlation space and the cluster space, which will be discussed later.

2.3 Optimization Algorithm

To solve the optimization problem, we use an iterative algorithm to update Pi,
Si, Gi and Mi one at a time while fixing the others to achieve a local optimum.
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Updating G. Let O denote the objective function Eq. (4), we write the
Lagrange function of Eq. (4) w.r.t. variables G as follows.

L(G, Λ) = O(G) + g(Λ,G), (5)

where Λ is the Lagrange dual variable, g(Λ,G) encodes the constraints on G in
problem Eq. (4).

By taking the derivative of Eq. (5) w.r.t. G, and setting it to zero, we have:

k∑
i=1

2AiGi +
∂g(Λ,Gi)

∂Gi
= 0, (6)

where Ai and Bi are:

Ai = X̃T
i SiPiBiPT

i S
T
i X̃i + αX̃T

i SiP̄2
iS

T
i X̃i, (7)

Bi = p
∣∣∣∣PT

i S
T
i X̃iGi

∣∣∣∣p
Sp

(PT
i S

T
i X̃iG2

i X̃
T
i SiPi)

p−2
2 . (8)

X̃i = X − Mi. Ai and Bi depend on Gi. It can be solved via an iteration
based re-weighted algorithm [16,17]. We first calculate Ai and Bi based on the
current Gi. After Ai and Bi are fixed and treated as constants, we can solve
the following problem which satisfies Eq. (6) to update Gi.

min
G

k∑
i=1

Tr(GT
i AiGi)

s.t.

k∑
i=1

Gi � I,
k∑

i=1

Tr(Gi) = kl,

∀ 1 ≤ i ≤ k, Gi ⊆ {0, 1}n×n.

(9)

Due to the diagonality and the discrete constraints of Gi, Eq. (9) can be
equivalently written as:

min
g

k∑
i=1

n∑
j=1

aijgij

s.t.

k∑
i=1

gij ≥ 1,

k∑
i=1

n∑
j=1

gij = kl,

∀ 1 ≤ i ≤ k, 1 ≤ j ≤ n, gij ∈ {0, 1},

(10)

where gij is the j-th diagonal element of matrix Gi, aij is the j-th diagonal ele-
ment of matrix Ai. The objective function above derives a 0-1 integer program-
ming problem, which is usually NP-hard. Fortunately, the constraints imposed
on gij significantly reduce the searching space, we can still obtain an efficient
algorithm to solve this problem. Firstly, for every data point, we assign clus-
ter i which has the minimum aij value to the j-th data point. This ensures
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every data point has been assigned to one cluster. Afterwards, we deal with the
remaining (kl − n) overlapping data points. We sort the remaining aij in an
ascending order, then record the first (kl − n) subscripts (ij) of aij and set the
corresponding gij = 1.

Meanwhile, noise can be naturally identified during the cluster membership
assigning process. We additionally let G0 denote the noise indicator matrix,
G0(j, j) = 1 if data point j is a noise, otherwise 0. Given the current cluster
indicator vector gi for the i-th cluster, we first collect all aij which satisfy gij = 1,
then find their median mi. A data point j in the i-the cluster is a noise, if
aij > λmi, where λ > 0 is a real number parameter. The rationale is, if we closely
look into aij , it consists of two parts: the first part can be regarded as a weighted
Mahalanobis-like distance between xj and the group mean of the i-th cluster in
the correlation space. If data point j has been assigned to the i-the subspace
cluster but deviates from the principal component directions of the i-th subspace
cluster (i.e., deviates from the plane where the subspace cluster is lying in), it
tends to produce a large value of aij . The second part represents the Euclidean
distance between xj and the group mean in the cluster space. Noise points are
far away from the cluster center in the cluster space, which also produce large
aij . In summary, a noise point can be pinpointed by checking the anomaly large
aij . Note that the overlapping points are identified by fulfilling the constraint of∑

i,j gij = kl. We need to recalculate l =
⌊
l̃(n−Tr(G0))(k−1)+(n−Tr(G0))

k

⌋
at each

iteration otherwise noise points will be assigned to the overlapping clusters. We
summarize the algorithm to solve problem Eq. (10) in Algorithm 1.

Updating S and P. Adopting the similar derivation of updating Gi, we can use
the iteration based re-weighted method to solve Si by optimizing the following
objective function.

min
S

k∑
i=1

Tr(ST
i CiSiPiPT

i ) + Tr(ST
i DiSiP̄iP̄T

i )

s.t. ∀ 1 ≤ i ≤ k, ST
i Si = I,

(11)

where Ci, Di and Ei are:

Ci = X̃iGiEiGT
i X̃

T
i , (12)

Di = αX̃iG2
i X̃

T
i , (13)

Ei = p
∣∣∣∣GT

i X̃
T
i SiPi

∣∣∣∣p
Sp

(GT
i X̃

T
i SiP2

iS
T
i X̃iGi)

p−2
2 . (14)

Note that PiPT
i leaves the upper left di×di matrix untouched and sets the other

elements to zero, thus the value of Tr(ST
i CiSiPiPT

i ) is equal to the summation
of the eigenvalues of that upper left matrix. It is similar for P̄iP̄T

i .
To solve problem Eq. (11), we first calculate the eigenvalues of Ci and Di

and put them in an array as δi = {δ
(1)
Ci , . . . , δ

(m)
Ci , δ

(1)
Di , . . . , δ

(m)
Di }, then sort δi in
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Algorithm 1. Algorithm to solve problem Eq. (10).
Input:

Variable Ai(1 ≤ i ≤ k), number of clusters k, parameters l̃, λ.
Output:

Cluster and noise indicators Gi(0 ≤ i ≤ k).
1: Initialize G0 = 0n×n.
2: for i = 1 to k do
3: // Make sure every point has been assign to one cluster.
4: for j = 1 to n do

5: Gi(j, j) =

{
1, i = argmin

i
Ai(j, j)

0, otherwise
6: end for
7: // Handle the noise points.
8: J = {j | Gi(j, j) = 1}.
9: mi = median of Ai(J , J ).
10: for j in J do
11: if Ai(j, j) > λ × mi then
12: G0(j, j) = 1.
13: Gi(j, j) = 0.
14: end if
15: Ai(j, j) = Inf.
16: end for
17: end for
18: // Handle the overlapping points.

19: l =
⌊

l̃(n−Tr(G0))(k−1)+(n−Tr(G0))
k

⌋
.

20: I = {(i, j) | sort Ai(j, j) in an ascending order then leave the first kl−(n−Tr(G0))
entries}.

21: Gi(j, j) = 1, if (i, j) ∈ I.

an ascending order. Without loss of generality, we assume that di eigenvalues
of Ci and m − di eigenvalues of Di are in the m-smallest set of δi. Then we
permute the m-smallest set so that the first di and the last m−di entries are the
eigenvalues of Ci and Di, respectively. The optimal solution of problem Eq. (11)
can be obtained by putting di eigenvectors of Ci and m − di eigenvectors of Di

corresponding to their smallest eigenvalues into Si’s columns. Note that di is
automatically determined by the sorting rather than a parameter. Then we can
update Pi and P̄i by using Eq. (1).

Updating M. Mi is a matrix whose columns are identical, every column is the
mean vector of the i-th cluster. Thus the actual variable that needs to be solved
is μi. We solve the following problem to update Mi.

min
μ

k∑
i=1

Tr(GT
i (X − Mi)TFi(X − Mi)Gi)

s.t. ∀ 1 ≤ i ≤ k, Mi = μi1T
n ,

(15)
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Algorithm 2. Algorithm to solve RAOSC
Input:

Data matrix X, the number of clusters k, parameters l̃, λ, α.
Output:

Cluster and noise indicators Gi(0 ≤ i ≤ k), subspace indicators Pi(1 ≤ i ≤ k) and
the orthonormal rigid rotation matrix Si(1 ≤ i ≤ k).

1: Initialize all Gi such the constraints in Eq. (10) are satisfied. Si, Pi, P̄i = I.
Mi = 0.

2: repeat
3: Calculate X̃i|ki=1 = X − Mi.
4: Calculate Ai|ki=1 and Bi|ki=1 using Eq. (7-8).
5: Update Gi|ki=0 using Algorithm 1.
6: Calculate Ci|ki=1, Di|ki=1, Ei|ki=1 using Eq. (12-14).
7: Update Si|ki=1 by putting m eigenvectors ofCi|ki=1 orDi|ki=1 corresponding to the

m-smallest eigenvalues in δi|ki=1 = {δ
(1)
Ci , ..., δ

(m)
Ci , δ

(1)
Di , ..., δ

(m)
Di } into its columns.

8: Permute columns of Si|ki=1 so that the first di and the last m − di columns are
the eigenvectors of Ci|ki=1 and Di|ki=1, respectively.

9: Update Pi|ki=1 and P̄i|ki=1 using Eq. (1).
10: Update Mi|ki=1 using Eq. (16).
11: until convergence or max no. iterations reached.

where Fi = SiPiBiPT
i S

T
i + αSiP̄2

iS
T
i , though it is irrelevant for updating Mi.

By substituting the variable and calculating the derivative w.r.t. μi and setting
it to zero, it is easy to obtain the update rule of Mi as follows.

Mi =
1

Tr(Gi)
XGi1n1T

n . (16)

It can be seen that updating Mi is just simply calculating the mean of a cluster
in the original space.

Finally, we summarize the overall optimization procedure in Algorithm2.

2.4 Relationship to Existing Clustering Paradigms

For α, when setting it to a relative small value, step 7 in Algorithm2 will put
all Di’s eigenvectors into Si’s columns, so that the correlation space is vanished
(Pi = 0) and the cluster space gains full dimensionality (P̄i = I). This yields the
problem Eq. (4) without the first term, which is the ordinary k-means algorithm
(suppose no overlapping or noise). Similarly, if we set α to a large value, it yields
the problem Eq. (4) without the second term, which degenerates to a generalized
version of the LRS model [17]. When setting α to a medium value, it balances
the dimensionality between the correlation space and the cluster space, thus the
correlation and closeness of a cluster are both taken into consideration.

2.5 Time Complexity

Without loss of generality, we assume m < n in the following analysis. The
computational bottleneck of RAOSC lies in the SVD decomposition at step 4, 6
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and 7 of Algorithm 2. In step 4, computing Bi needs to compute
∣∣∣∣PT

i S
T
i X̃iGi

∣∣∣∣p
Sp

and (PT
i S

T
i X̃iG2

i X̃
T
i SiPi)

p−2
2 , both rely on the SVD of PT

i S
T
i X̃iGi, which costs

O(m2n). Thus computing all Bi costs O(m2nk). Computing Ai costs O(m2nk).
Thus step 4 costs O(m2nk). Similar to step 4, step 6 costs O(mn2k). Step 7
needs to compute SVD of Ci and Di, which costs O(m3k). In summary, the
time complexity of Algorithm 2 is O((mn2 + m2n + m3)kt), where k is usually
a small constant that can be ignored, t is the number of iterations. Usually, the
algorithm converges in a few iterations, e.g., 50 iterations.

3 Experiments

In this section, we evaluate our method with respect to its clustering results on
both synthetic data and real-world data. We start with the synthetic data to
show a proof-of-concept of finding arbitrarily oriented subspace clusters in the
presence of noise and overlapping points. Afterwards, we compare our method
with six state-of-the-art algorithms on nine real-world data sets obtained from
the UCI and UCR repositories. For real-world data, we have no prior knowledge
about the noise nor overlapping, and most of the typical comparison algorithms
cannot handle such case. So we only perform clustering on real-world data sets
with an assumption that there are no noise or overlapping points, since we have
demonstrated it on the synthetic data.

3.1 Evaluation on Synthetic Data

We start with the synthetic data to demonstrate the effectiveness of finding
arbitrarily oriented subspace clusters in the presence of noise and overlapping
points. Here three synthetic data sets are generated. In details, synthetic data
1 consists of three subspace clusters in 3D space, where one of the subspace
cluster forms a 2D plane and the other two subspace clusters form two cross lines
passing through the plane’s origin. Each subspace cluster contains 500 points
with 5% level perturbation added to deviate from the subspace. Synthetic data
2 consists of two subspace clusters forming two perpendicular 2D planes in 3D
space, each subspace cluster contains 500 uniformly distributed points with 5%
level perturbation added. Synthetic data 3 consists of two perpendicular subspace
clusters in 2D space. Each subspace cluster contains 500 uniformly distributed
points forming a long and narrow rectangle shape. Note that synthetic data 2
and 3 have approximate 10% overlapping points. Finally, we add uniform noise
points into all synthetic data set with noise level ranging from 0.1 to 0.8.

For comparison, we select three state-of-the-art subspace clustering algo-
rithms and compare the clustering performance while varying the noise level.
The comparison algorithms are NrKmeans [15], ISAAC [22] and ORSC [19]. The
reason we select these algorithms is that they can handle noise and/or overlap-
ping to a certain extent. We select the parameters according to the true statistics
of the data and from a wide tuning range to obtain the best result. For numeri-
cal evaluation, we use the pair-counting F1-measure [1], which is commonly used
when encountering overlapping clustering.
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(a) Synthetic 1. (b) Synthetic 2. (c) Synthetic 3.

Fig. 3. Visualization of the clustering results of RAOSC on synthetic data sets. Colored
points are the found subspace clusters. The orange points are the found overlapping
points. Noise are plotted with gray points. Arrows at the bottom-left represent the
found subspaces of the corresponding clusters. (Color figure online)
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Fig. 4. Clustering results while varying noise levels on synthetic data sets in the pres-
ence of noise and overlapping points.

Figure 3 visualizes the clustering results of RAOSC. Note that we only plot
the low noise level (about 0.3) results for legibility reason, though it can cor-
rectly find the subspace clusters and identify noise points at a higher level of
noise. As we can see, RAOSC successfully assigns data points into the correct
clusters in a sea of noise, and the noise and overlapping points are all correctly
identified. Besides, it obtains the corresponding subspaces as well (indicated by
the arrows at the bottom left corner). Figure 4 shows the numerical evaluation
of the comparison algorithms. RAOSC achieves promising results and outper-
forms other algorithms in most cases. When the noise level is extremely high,
the performance drops sharply, because the extreme noise points have covered
the cluster structure and meaningful clusters no longer exist. We observe that
the performance of comparison algorithms drop down at first and then go up.
This might be because they are mild arbitrators. With the increase of noise level,
they tend to assign noise into multiple overlapping clusters. This can still increase
the score w.r.t. the pair-counting F1-measure though they actually produce the
wrong assignment.
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3.2 Evaluation on Real-World Data

Next we compare with extensive clustering algorithms on the real-world data
sets. Nine real-world data sets are used in this study, which include Pendigits,
Seeds, Soybean, Spam, Wine and Zoo from the UCI repository, OliveOil, Plane
and Symbols from the UCR repository. The statistics of these data sets are given
in Table 1.

Table 1. Statistics of the real-world data sets.

Name #Classes #Dim. #Inst. Name #Classes #Dim. #Inst.

Wine 3 13 178 Seeds 3 7 210

Pendigits 10 16 10092 Soybean 4 35 47

Zoo 7 16 101 Spam 2 57 4601

Plane 7 144 210 Symbol 6 398 1020

Olive 4 570 60

Here, six arbitrarily oriented subspace clustering algorithms are selected.
ORCLUS [3] and 4C [6] are the two most typical arbitrarily oriented subspace
clustering algorithms. SubKmeans [14] and FOSSCLU [8] are two recent sub-
space clustering algorithms. Different from ORCLUS and 4C, they only find one
optimal subspace for clustering. LRR [12] and LRS [17] are two low-rank based
subspace clustering algorithm. Though they are not considered as the classi-
cal subspace clustering algorithm in the data mining community, they are still
closely related to our method. Source codes of all algorithms are downloaded
from the authors’ websites. The source code of RAOSC can be downloaded from
Dropbox2.

For a comprehensive evaluation, we tune all the algorithms’ parameters from
wide ranges while being compatible with the original papers. We search LRR’s
parameter λ within the set of {10−5, 10−4, . . . , 105}. For LRS, we select its
parameter p from {0.1, 0.2, . . . , 1}, and set K = 2. We use PCA and k-means
to do initialization as described in its paper. We search ORCLUS’s parameter
l in the range of [2;min(20,m)], and run 4C for ε ∈ [2; 20], minPts ∈ [1; 15]
and λ ∈ [2;min(20,m)]. SubKmeans has no additional parameters except for k.
FOSSCLU determines parameters automatically. For RAOSC, we search param-
eter α from {10−5, 10−4, . . . , 105}. In addition, we set parameter l to zero, λ to
a large number, which gives no overlapping nor noise result. Similar to LRS, we
use PCA and k-means to initialize the cluster indicator matrices and the cluster
centroids. For all experiments, we standardize all data so that all features have
zero mean and unit variance. Since some algorithms may run into a local opti-
mum and produce insufficient outcomes, we run all algorithms for 10 times and

2 https://www.dropbox.com/s/7csm3itojmb5glh/RAOSC code.rar?dl=0.

https://www.dropbox.com/s/7csm3itojmb5glh/RAOSC_code.rar?dl=0
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Table 2. Clustering results in terms of NMI (%) on the real-world data sets. Results
marked with † were aborted due to memory limit or convergence issues, or cannot
obtain results in reasonable running time. In either case, we report the best results
that have been achieved.

Pendigits OliveOil Seeds Soybean Spam Symbol Wine Zoo Plane

RAOSC 73.68 76.30 73.69 100.00 41.05 81.56 88.26 89.11 91.23

SubKmeans 67.94 75.42 72.79 100.00 2.17 79.48 87.59 83.39 91.23

ORCLUS 68.32 75.86 72.69 96.89 36.13 65.60† 87.79 87.33 70.84

4C 69.99 63.96 16.50 100.00 11.78 81.41 48.11 85.48 88.08

FOSSCLU 70.20 0.00† 63.95 37.02 0.00† 0.00† 84.68 0.00† 0.00†

LRS 65.13 44.16 73.30 69.10 27.04 60.72 63.22 67.03 57.37

LRR 70.85 40.12 21.58 81.49 4.67 78.09 41.36 76.02 93.29

sort the results by their costs and remove the half with higher costs. Then we
report the average NMI for evaluation.

Table 2 summarizes the clustering results. As shown in Table 2, SubKmeans,
ORCLUS, and 4C achieve comparable results. However, SubKmeans only finds
one optimal subspace for clustering rather than distinct subspaces for all clusters.
ORCLUS and 4C are time consuming especially when the number of dimensions
is high. Besides, it is hard to find the optimal parameters for 4C. FOSSCLU also
only finds one optimal subspace for clustering, however, there seems to be conver-
gence issue in the author provided implementation. In general, the two low-rank
based algorithms LRR and LRS perform poorly on these data sets. Neither LRR
nor LRS can give the explicit subspaces of clusters, they all find implicit subspace
clusters in the full-dimensional space, where the low-rank structure is seem to be
dim. By contrast, RAOSC outperforms other algorithms on eight data sets, only
slightly lags behind on the Plane data set. RAOSC naturally characterizes the
intrinsic correlation and closeness properties of subspace cluster, which accounts
for the promising clustering results.

4 Conclusion

In this paper, towards the arbitrarily oriented subspace clustering problem, we
propose a novel algorithm called RAOSC. RAOSC formulates the task as a group
structure low-rank optimization problem, which well characterizes the intrinsic
correlation and closeness properties of subspace cluster. RAOSC can not only
recover the subspace clusters from a sea of noise points but also explicitly obtains
the corresponding subspaces. It can naturally identify the noise and overlapping
points during the optimization process. Empirical experiments on both synthetic
data sets and real-world data sets have demonstrated its effectiveness. In future
work, we would like to reduce the computational complexity. One potential route
is to incorporate accelerated SVD, another is to develop data parallelism at the
algorithmic level [20].
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8. Goebl, S., He, X., Plant, C., Böhm, C.: Finding the optimal subspace for clustering.
In: Proceedings of the 14th IEEE International Conference on Data Mining, pp.
130–139 (2014)
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11. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: a survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Trans. Knowl. Discov. Data 3(1), 1 (2009)

12. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace
structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell.
35(1), 171–184 (2013)

13. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation.
In: Proceedings of the 27th International Conference on Machine Learning, pp.
663–670 (2010)



Towards Robust Arbitrarily Oriented Subspace Clustering 291
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Abstract. Crowdsensed Data Trading (CDT) is a novel data trading
paradigm, in which each data consumer can publicize its demand as some
crowdsensing tasks, and some mobile users can compete for these tasks,
collect the corresponding data, and sell the results to the consumers.
Existing CDT systems either depend on a trusted data trading broker or
cannot ensure sellers to report costs honestly. To address this problem,
we propose a Reverse-Auction-and-blockchain-based crowdsensed Data
Trading (RADT) system, mainly containing a smart contract, called
RADToken. We adopt a greedy strategy to determine winners, and prove
the truthfulness and individual rationality of the whole reverse auction
process. Moreover, we exploit the smart contract with a series of devises
to enforce mutually untrusted parties to participate in the data trading
honestly. Additionally, we also deploy RADToken on an Ethereum test
network to demonstrate its significant performances. To the best of our
knowledge, this is the first CDT work that exploits both auction and
blockchain to ensure the truthfulness of the whole data trading process.

1 Introduction

Owing to the huge potential economic value of data resources, many online
data trading systems [12] have emerged in recent years, such as CitizenMe,
DataExchange, Datacoup, Factual, and Terbine, etc., whereby data consumers
can search and purchase their interested data. However, most data in the real
world are preserved by few research institutions or companies only for their own
analysis purposes rather than sharing them with others who have data needs but
cannot afford to collect data by themselves, which causes trouble to the availabil-
ity of data. Consequently, the volumes of data in trading systems are still very
limited, which has significantly suppressed the increasing market demand for
data [24]. To tackle this problem, a novel data trading paradigm, called Crowd-
sensed Data Trading (CDT), is proposed, in which the mobile crowdsensing
technology is adopted to provide data resources for trading, i.e., a large crowd
of mobile users are leveraged to collect data with their smart phones [17,24].
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In general, a typical CDT system (e.g., Thingful [1], Thingspeak [2]) includes
a data trading broker, some data consumers, and data sellers (a.k.a., crowdsens-
ing workers). The broker employs a large amount of sellers to collect data accord-
ing to some requirements, and then sells the sensed data to the consumers who
are interested in. So far, there have been a few works focusing on the CDT sys-
tem design. For example, [24] proposes a profit-driven data collection framework
for crowd-sensed data markets, called VENUS, in which a data procurement
auction is adopted to determine the minimum payment for each data collection.
A data sharing market is introduced in [11], where the sensed data is saved
and processed in user devices locally and shared among users in a P2P man-
ner. A brokerage-based market is launched in [23], where sellers and consumers
propose their selling and buying quantities, respectively, to match the market
supply and demand in the trading platform. However, these CDT systems have
to depend on a data trading broker, making those data consumers worry about
the truthfulness and even unwilling to use the systems.

On the other hand, blockchain [16], a newly-emerging decentralized transac-
tion recording technology, shows a glimpse of solutions to fairness and trans-
parency issues which is resistant to modification of the data. In addition,
blockchains allow mutually distrusted users to complete data exchange or trans-
action securely without a centralized truthful intermediary, avoiding high legal
and transactional costs [13]. Smart contracts [5] are some complex programs
deployed on blockchains which can automatically execute operations according
to treaty conditions. An important advantage of smart contracts is that they
can enforce the participants, who might not trust each other, to fulfill their obli-
gations. Due to this characteristic, smart contracts are introduced into CDT
systems as a truthful broker to conduct the data trading between sellers and
consumers. For instance, [6] proposes a CDT framework which enables efficient
truth discovery over encrypted crowdsensed data streams and knowledge moneti-
zation on smart contract. A reliable mechanism that allows consumers to search
directly over encrypted data is also implemented on blockchain [10].

Although blockchain-based CDT systems can create trust between sellers and
consumers of data trading, they cannot guarantee the truthfulness of individuals,
i.e., sellers might report fake data collection costs to achieve more rewards. As
we know, auction mechanisms can ensure the participants to report their bids
honestly, which have been widely used in crowdsensing systems [8,21]. Hence,
to construct fully truthful data trading systems on blockchain, we propose a
Reverse-Auction-and-blockchain-based crowdsensed Data Trading (RADT) sys-
tem in this paper, which mainly contains a smart contract, called RADToken.
Each consumer can start a RADT by issuing the data demand via RADTo-
ken (e.g., report traffic conditions of multiple locations), and sellers who have
registered in RADToken can bid for their interested tasks. RADToken will auto-
matically execute to determine the winners and payments. After sellers complete
the data collection and submit the results, the consumer will pay some rewards
to sellers via RADToken. Since bids on blockchain is transparent and public visi-
ble, RADToken takes a two-stage bidding strategy to ensure the security of bids.
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Moreover, both consumer and sellers are asked for a deposit which keeps them
comply with the prescribed rules. Once they finish their obligations, RADToken
will automatically and transparently transfer their deposits and payments. We
summarize the contributions of this paper as follows:

1. We propose a CDT system based on reverse auction and blockchain, i.e.,
RADT. It does not need any truthful broker but can provide truthful data
trading between mutually untrusted consumers and sellers. To the best of our
knowledge, this is the first CDT system that exploits both auction theory and
blockchain technology to ensure the truthfulness of the whole data trading.

2. We design a reverse-auction-based smart contract for the RADT system, i.e.,
RADToken, where the reliability of each seller is taken into consideration
and a greedy strategy is used to determine winners. Moreover, we prove the
truthfulness and individual rationality of the whole auction process, which
implies that all sellers will report their data collection costs honestly.

3. To ensure the truthfulness of the data trading process, we devise some modi-
fiers and set life span limitations for each procedure to filter the illegal invokes
which can resist certificate forgery and tamper attacks effectively. Meanwhile,
we adopt a two-stage bid strategy to protect bid privacy in auction procedure
and use symmetric and asymmetric encryptions for data delivery procedure
which can protect the confidentiality of the sensed data.

4. We implement a prototype of the RADT system and deploy RADToken to an
Ethereum test network. Extensive simulations are conducted to demonstrate
the significant performances and the practicability of RADToken.

The paper is organized as follows. In Sect. 3, we present a system model for
RADT and analyze the security in Sect. 4. The reverse auction is elaborated
in Sect. 5. We carry on the theoretical analysis in Sect. 6. We present simula-
tions and evaluations in Sect. 7 and review related works in Sect. 8. Finally, we
conclude in Sect. 9.

2 Preliminaries

We first introduce the background of Ethereum before the system overview.

2.1 Account Types

– Externally Owned Accounts (EOAs). An EOA only has a balance which
can send transactions either to transfer ether or to trigger contract code.

– Smart Contract Accounts. A smart contract has a balance and associated
code. Code execution is triggered by transactions from EOAs.

A contract is invoked by a transaction and is run by Ethereum Virtual
Machine on each node participating in the network as part of their verifica-
tion of new blocks. Contracts like autonomous agents have direct control over
their balances and dictionary (key/value-datatype) storage.
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2.2 Transaction

The term transaction is used in Ethereum to refer to the signed data package.
Its VALUE field is the amount of wei to be transferred from the sender to the
recipient. All values are denominated in units of wei: 1 ether is 1018 wei. Once
a smart contract receives a transaction (msg), it can obtain two parameters:

– msg.sender is sender’s account.
– msg.value is the amount of ether that sender transfer to it.

2.3 Gas System

Ethereum charges a fee (gas) per computational step to prevent deliberate
attacks and abuse on Ethereum. Each transaction is required to include a gas
limit and a fee that it is willing to pay per gas. If the total gas used for the com-
putational steps spawned by the transaction is not greater than the gas limit,
the transaction will be processed. Otherwise, all modifications are reverted. The
excess gas is reimbursed to the sender. The total cost involves two aspects:

– gasUsed is the total gas which is consumed by the transaction.
– gasPrice is the price of one unit gas that is specified in the transaction.

Hence, the total cost = gasUsed × gasPrice.

3 System Overview

3.1 The RADT System

Figure 1 illustrates the RADT system including 4 major entities, i.e., consumer,
RADToken, Secure Cloud Server (SCS) and seller. The consumer sends data
collection job requirements to RADToken, a smart contract on Ethereum. The
job includes a set of Points of Interest (PoIs) which correspond to the location-
sensitive sensing tasks, denoted as T = {t1, t2, · · · , tl}. Sellers who participate in
the job, denoted by W = {w1, w2, · · · , wn}. Each seller wi can submit a bid βi for
their interested tasks Ti (⊆T ). Moreover, we denote the sellers who can execute
tj by Wj (⊆W). RADToken as a broker then executes a reverse auction to select
winners S(⊆W) and determine payments P = {pi|si ∈ S} for the winners. The
winners upload the encrypted sensed data (EnData) to SCS where the consumer
can download and decrypt EnData to obtain the real sensed data (Data). The
consumer and sellers can get the refund and payments respectively after the job
ends. We specify two key features of a smart contract [13]:

– Timing. A smart contract has a time clock which is modeled as a continuously
increasing variable now. now is an alias for a timestamp of the blockchain.

– Function Modifier. Modifiers are inheritable properties of contracts which are
used to automatically check a condition prior to executing the function.
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Fig. 1. The RADT system

3.2 The Workflow of the RADT System

Sellers register in RADToken to be informed once a data collection job appears.
RADToken maintains Registry which contains a dictionary R to record sellers’
reliabilities and R(wi) = ri. The system works as follows:

Initiate(T , τbid, τreveal, τexec, kp
0 ):

1. require $deposit(msg.value) ≥ guaranty.
2. set Q = msg.sender and store kp

0 .
3. set T = T , tbid = now + τbid, treveal = tbid + τreveal, texec = treveal + τexec.
4. trigger Notify event to inform the registered data sellers.

Fig. 2. The initiate function

Step 1: Job Initialization. The consumer describes a data collection job with
requirements: T , bid commitment duration τbid, bid reveal duration τreveal and
job execution duration τexec. The consumer generates a pair of keys k0 = (kp

0 , k
s
0),

where kp
0 is his public key and ks

0 is his private key. Then, he sends a transaction
which contains the job description and the public key kp

0 to RADToken. The
detailed function is given in Fig. 2.
Step 2: Notify Data Providers. Initiate() notifies all registered sellers of the
new job. A seller provides a deposit ($depositi) for participating in the job.
To prevent the bids from being intercepted, a two-stage bidding strategy is
adopted in Sect. 4.2. Each seller has an encrypted bid enBi = (Ti, enβi) and a real
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bid Bi = (Ti, βi). RADToken uses two dictionaries EnBids and Bids to record
them respectively, where EnBids(wi) = enβi and Bids(wi) = (Ti, βi, $depositi).

CommitBid(Ti, enβi) payable:
1. require now ≤ tbid and msg.value ≥ guaranty.
2. add (msg.sender, Ti, msg.value) to Bids. i = msg.sender, depositi = msg.value
3. add (msg.sender, enβi) to EnBids.

RevealBid(Ti, βi, noncei):
1. require tbid ≤ now ≤ treveal.
2. require EnBids(msg.sender)=sha3(Ti, βi, noncei).
3. require Bids(msg.sender).T = Ti.
4. add βi to Bids(msg.sender).

Fig. 3. The two-stage bidding procedure

Step 3: Commit Encrypted Bid. A seller computes his encrypted bid enβi

using Secure Hash Algorithm-3 (SHA-3) [4]. SHA-3 takes as input his account
wi, his bid βi and a randomly selected noncei, i.e., enβi = sha3(wi, βi, noncei).
CommitBid() in RADToken takes as input a binary tuple enBi and records it.
Step 4: Reveal Real Bid. RADToken is invoked by a seller wi to send Ti, βi

and noncei. RevealBid() will check the bid’s authenticity and record the legal
bid. If wi sends illegal bid, he is untruthful and his $depositi will be forfeited.
The detailed functions of CommitBid() and RevealBid() are given in Fig. 3.

WinnerSelection():
1. require now ≥ treveal and msg.sender = consumer.
2. compute (S, C) according to Winner Selection algorithm in Fig. 9.

Pricing(si):
1. require msg.sender = consumer.
2. compute P(si) according to Pricing algorithm in Fig. 10.
3. trigger AuctionEnd event to inform all winners(S) and send them kp

0 .

Fig. 4. The reverse auction procedure

Step 5: Inform Winners. RADToken executes a reverse auction in Fig. 4 to
select winners S and determine payments for all winners. All winners will get
informed the auction results and public key kp

0 . The detailed reverse auction
process is in Sect. 5.
Step 6: Send Keys. To ensure the confidentiality of the sensed data, wi gen-
erates a symmetric key kdata,i and encrypts Datai with kdata,i. After upload-
ing the encrypted data (Endatai) to SCS, wi generates a pair of asymmetric
keys k1,i = (kp

1,i, k
s
1,i). And he obtains keydata,i and key1,i by encrypting kdata,i

and kp
1,i as described in Sect. 4.3. Then the seller invokes SetKey() to delivery
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keydata,i and key1,i. RADToken maintains two dictionaries KDs and K1s to
store keydata,i and key1,i respectively, as shown in Fig. 5.

SetKey(keydata,i, key1,i):

1. add (msg.sender, keydata,i) to KDs.
2. add (msg.sender, key1,i) to K1s.

GetKey(si):
1. require msg.sender = consumer.
2. require $rewards ≥ si∈S P(si). consumer transferred $rewards before
3. send (KDs(si), K1s(si), R(si)) to consumer.

Fig. 5. The key exchange procedure

Step 7: Download EnData. The consumer downloads EnData from SCS.
Step 8: Get Keys. In Fig. 5, the consumer can invoke GetKey() to get keys
for decrypting EnData. Before the invocation, he should transfer some ethers
($rewards) to RADToken which are no less than the total payments.

Refund():
1. require now ≥ texec.
2. compute untruthful sellers’ total deposits which is $fines.
3. compute the remaining rewards $rewards = $rewards − si∈S P(si).
4. transfer $deposit+$fines+$rewards to consumer.

Payment():
1. require Bids(msg.sender).β = 0. untruthful according to step 4 in Fig. 3
2. if msg.sender ∈ S, require KDs(msg.sender)= 0 and K1s(msg.sender)= 0.
3. transfer the final payment $P = P(msg.sender) + $depositi+$fine to msg.sender

Fig. 6. The refund and payment procedure

Step 9: Payment and Refund. Upon receiving the total rewards, RADToken
will return the deposit to the consumer. Each winner can get his payment only
when he had sent his keys. The functions are detailed in Fig. 6.

4 Security Analysis

4.1 Robustness of RADToken

We use some modifiers introduced at the beginning of Sect. 4 in Fig. 7 to ensure
that RADToken can run steadily. The keyword require can roll back all states
without deducting gas when encountering some invalid codes. The robustness of
RADT is guaranteed by the following points:



Truthful CDT Based on Reverse Auction and Blockchain 299

Modifiers:
1. modifier onlyBefore(uint time) require(now < time);
2. modifier onlyAfter (uint time) require(now > time);
3. modifier onlyTrue (uint flag) require(flag == true);
4. modifier onlyFalse (uint flag) require(flag == false);

Fig. 7. Some modifiers

1. Only one job in one round. Once a consumer invokes RADToken to launch
a job like in Fig. 2, others cannot invoke it until the job ends. If there exists an
active job, the value of flag jobEnded whose default is true would be false,
which cannot pass the check of onlyTrue(jobEnded) in Initiate, so that other
consumers will be rejected.

2. Each participant should offer deposit. We set Initiate() and Commit-
Bid() payable, a keyword of smart contract, which requires invokers to trans-
fer ethers to RADToken. We assume that the consumer will transfer rewards
and will not quit the RADT system midway. Otherwise his deposit offered
in Initiate() will be fined as a compensation for sellers and he even cannot
get keys to decrypt EnData. Each seller should invoke CommitBid() with his
deposit, which urges him to reveal his bid truthfully.

Fig. 8. The sequence diagram of RADT system

3. Each procedure only be executed orderly. Every function in our RAD-
Token is an independent entry through separate calls. We also set some time
modifiers to ensure the safety. We illustrate the sequence diagram of RADT
in Fig. 8. For example, RevealBid() should be invoked after tbid and before
treveal where the auction only can be executed after RevealBid().

4.2 Security and Truthfulness of Bid

Everything on blockchain is transparent, which enables a potential adversary to
reconstruct the entire transaction history and find out the meanings and logic
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behind it. That means the adversary can grab other bids and make a bid in his
favour. Thus, we should consider how to guarantee the security of each bid.

Security. Since smart contracts cannot handle complex encryption and decryp-
tion, we adopt a two-stage bidding strategy to protect bids. At the first stage, a
seller wi can encrypt his bid βi using SHA-3 as follows:

enβi = “0x” + ethereumjs.ABI. soliditySHA3([“address”, “uint256”, “uint256”],

[wi, βi, noncei]).toString(“hex”)

Then, he sends enBi to RADToken but other users can only read a hash
value enβi rather than the real bid βi. Moreover, a wise adversary will not try
to crack the hash value which is impossible to succeed. So βi is secure until tbid.

Truthfulness. Even though an adversary can obtain other bids which will be
revealed at the second stage, he cannot adjust his bid which will make him
untruthful for the bid check of RevelBid() in Fig. 3. First, it recomputes the
hash value sha3(msg.sender, βi, noncei) of wi and compares it with his recorded
enβi (step 2). RADToken also checks if his new submitted tasks are same with
Ti (step 3). wi will be accepted as a truthful seller only when he passes the check.

4.3 Confidentiality of Data

Symmetric encryption has more efficiency and less computation overhead. So we
use it to encrypt data and asymmetric encryption to protect keys as below:

1. A winner si encrypts his sensed data with a symmetric key kdata, i.e.,
EnDatai = ENC(Datai, kdata,i). Then he uploads the EnDatai to SCS.

2. si uses his private key to encrypt kdata and get keydata,i = ENC(ks
1,i, kdata,i).

3. si encrypts kp
1,i with kp

0 , i.e., key1,i = ENC(kp
0 , k

p
1,i).

4. si invokes SetKey() to send keydata,i and key1,i to RADToken.
5. The consumer downloads EnDatai and invokes GetKey() to get

(keydata,i, key1,i).
6. The consumer decrypts key1,i with ks

0 to get kp
1,i = DEC(key1,i, k

s
0).

7. The consumer then decrypts keydata with kp
1,i to get kdata,i = DEC

(keydata,i, k
p
1,i).

8. Finally, the consumer can obtain the real data Datai = DEC
(EnDatai, kdata,i).

5 The Reverse Auction Mechanism of RADT

5.1 Problem Formulation

As more sellers take part in the job, the actual sensed data would exceed the
reliability requirements ε = {εj |tj ∈ T }, whereas it also increases the total costs
C. Furthermore, we adopt σS

j to denote the overall reliability that all winners
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contribute to tj ∈ T . In order to estimate σS
j , we compute the sum of the

reliabilities of the winners who process tj as follows:

σS
j =

∑
si∈S∩Wj

ri (1)

Due to the truthfulness of sellers, we regard a seller wi’s bid βi as his cost
(i.e., ci = βi). The goal of the auction is to find a subset of sellers that minimize
the overall cost while satisfying the reliability requirements of data. Hence, the
RADT problem can be formulated as follows:

Minimize : C(S) =
∑

si∈S βi, //ci = βi (2)
Subject to : S ⊆ W (3)

σS
j ≥ εj , 1 ≤ j ≤ l (4)

Here, Eq. 4 indicates that the total reliability of task tj is no less than εj .
The auction first selects winners who minimize the total costs under reliability

constraints. Then, it determines payments for winners so that the whole auction
satisfies truthfulness and individual rationality which are defined as follows:

Definition 1 (Truthfulness). Let Bi be the truthful bid and B′
i be the untruth-

ful bid where the payments are pi(Bi) and pi(B′
i) respectively. Then, if

pi(Bi) − ci ≥ pi(B′
i) − ci, (5)

we say that the auction mechanism is truthful.

Definition 2 (Individual Rationality). The payoff for Bi is non-negative,

pi(Bi) − ci ≥ 0. (6)

5.2 The Winner Selection Algorithm of RADT

WinnerSelection():

1. repeat until G(S) = l
j=1 j :

(a) for ∀Bi, compute ρi = vi(S)
βi

;
(b) record the index of the maximum ρi as i∗;
(c) add si∗ to S, set C = C + βi∗ ;

2. return (S, C).

Fig. 9. The reliability-aware winner selection algorithm

The RADT problem is NP-hard, because the minimum weight set cover problem
is to find a subset that minimize the total weight which can be polynomial-
time reducible to the RADT problem according to [8]. So we propose a greedy
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algorithm to solve RADT. A seller who has the largest reliability to execute the
most tasks with the least cost will be selected and added into the set S first.

To design an appropriate approximation algorithm, we first define a reliability
contribution function G(S). G(S) indicates the current total reliability of winners
who process T under the constraint of ε, defined as follows:

G(S) =
∑

l
j=1 min{σS

j , εj} (7)

Based on G(S), the marginal reliability contribution vi(S) is the marginal
reliability that wi ∈ W − S can contribute to the whole job, defined as follows:

vi(S) = G(S ∪ {wi}) − G(S) (8)

Based on Eq. 8, we illustrate the winner selection algorithm in Fig. 9. The
algorithm begins from an empty set S. In each iteration, it adds the winner who
has the maximum weight ρi = vi(S)

βi
into S. The algorithm terminates when

G(S) =
∑l

j=1 εj . The computation overhead of the algorithm is O(n2l), where
n is the number of sellers and l is the number of tasks.

5.3 The Critical Pricing Algorithm of RADT

Pricing(si):

1. create a empty winner set S .
2. record bid = Bids(si) and set Bids(si) = 0. remove Bi from B
3. repeat until G(S ) = l

j=1 j :

(a) compute ρk = vi(S )
βk

, for ∀sk is not in S and satisfies Bids(sk) = 0;
(b) record the index of the maximum ρk as k∗;

(c) if P(si) <
βk∗ vi(S )

vk∗ (S ) , set P(si) =
βk∗ vi(S )

vk∗ (S ) ;

(d) add sk∗ to S .
4. set Bids(si) = bid, delete S .

Fig. 10. The reliability-aware pricing algorithm

The pricing algorithm in Fig. 10 is to determine payments for winners. We con-
sider that each winner is priced at pi for his winning bid Bi. Let B−i denote all
bids except Bi. Then, we conduct the greedy winner selection over B−i to get a
solution, denoted by S ′. We assume that the bid Bk is the winning bid in the kth

iteration, where G(S ′) is the utility before adding wk into S ′. So the payment of
Bi must be no more than βkvi(S′)

vk(S′) . Otherwise, the weight ρi is not the largest.
So the critical payment of winner si is the maximum critical value:

pi = max{βk vi(S ′)
vk(S ′)

|k = 1, 2, · · · } (9)

which terminates at G(S ′) =
∑l

j=1 εj . The total time complexity of pricing is
O(n3l), where n is the number of sellers and l is the number of tasks.
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6 Theoretical Analysis

To prove the truthfulness of our RADT system, we should ensure some properties
of the RADT auction. First, we simply define a notation:

G(j|S) = min{σS
j , εj}.

Lemma 1. G(S) is an increasing function.

Proof. Considering two arbitrary winner sets S1 and S2, S1 ⊆ S2 ⊆ S. According
to Eq. 1, we have σS1

i ≤ σS2
i and G(j|S1) ≤ G(j|S2) for ∀tj ∈ T . Then G(S1) ≤

G(S2) when S1 ⊆ S2, which implies G(S) is increasing. �

Theorem 1. G(S) is submodular.

Proof. Without loss of generality, we assume that for two arbitrary winner sets
A,B ⊆ S. For ∀ti ∈ T , we have the conclusion that σA

j + σB
j = σA∩B

j + σA∪B
j

which indicates σS
j is submodular. Since G(j|S) is the cut-off function of σS

j , we
can prove that G(j|S) is submodular according to [8]. Hence, G(S) is submodular
because of the fact that G(S) =

∑l
j=1 G(j|S). �

Lemma 2 (Bid monotonicity). Each seller wi who wins by bidding (Ti, βi)
still wins by biding any β′

i < βi and any T ′
i ⊃ Ti given that other bids are fixed.

Proof. Let ρi, vi(S) denote the weight and marginal reliability of seller wi who
bids (Ti, βi), where ρi = vi(S)

βi
. Let ρ′

i, vi(S)′ denote the weight and marginal reli-
ability respectively if wi bids (T ′

i , βi) or (Ti, β
′
i). Either in (T ′

i , βi) or in (Ti, β
′
i),

it is clear that vi(S) ≥ vi(S)′ and ρi ≥ ρ′
i because of the submodularity of

G(S) according to Theorem 1. Moreover, if wi has not been selected by bidding
(Ti, βi), he will not be selected by bidding (Ti, β

′
i) or (T ′

i , βi). �

Lemma 3 (Critical payment). Each seller si is paid a critical value pi.

Proof. We assume si wins in the kth iteration, so the set S of winner selection
and S ′ of pricing is same from the 0th to the (k − 1)th iterations. If si reports a
bid β′

i instead of βi. We need to prove that β′
i will fail if β′

i > pi, otherwise he
still wins when β′

i ≤ pi. Then we consider these two cases in the kth iteration:

Case 1: β′
i > pi. According to Fig. 9, we can derive that vi(Sk−1)

β′
i

= vi(S′
k−1)

β′
i

<

vi(S′
k−1)

pi
≤ vi(S′

k−1)

βk
, where sk is a winner, so that S ′ = S ′ ∪ {sk}. The first

equation holds because Sk−1 = S ′
k−1. And the last inequation makes sense due

to pi ≥ βkvi(S′
k−1)

vk(S′
k−1)

according to Eq. 9. Hence, sk is selected as a winner instead of
si in the kth iteration. So, S ′

k = Sk−1 ∪ {sk} = Sk. Based on the above analysis,
we can conclude that si will fail in all iterations of the winner selection in Fig. 9.

Case 2: β′
i ≤ pi. Assume that the winner selection runs over B−i which is

the process for pricing si. According to Eq. 9, we assume that pi = βkvi(Sk′−1)

vk(Sk′−1)
,

where sk is the winner in the k′
th iteration. Now we run the winner selection
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again with the input set B. We discuss two subcases of this process: (1) si wins
before the k′

th iteration; (2) si does not win before the k′
th iteration. In the k′

th

iteration: vi(Sk′−1)

β′
i

≥ vi(Sk′−1)

pi
≥ vk(Sk′−1)

βk
. Therefore, si wins in this iteration.

In Summary, the payments for all winners are critical. �

Theorem 2. The RADT auction is truthful.

Proof. Lemmas 2 and 3 prove that the winner selection is monotonic and all the
payments are critical respectively. So the auction is truthful according to [15]. �

Theorem 3. The RADT auction is individually rational.

Proof. We consider that a seller wi probably encounters these two situations,
wi ∈ S and wi /∈ S. If wi /∈ S, his payment will be zero. Otherwise, he wins the
auction and his payment is pi. According to Lemma 3, wi will always be paid
with the critical value pi when he bids any βi < pi. Each seller bids his truthful
cost due to the truthfulness in Theorem 2. Apparently, pi − ci ≥ 0 holds. �

Theorem 4. The RADT system is truthful.

Proof. We guarantee the truthfulness of RADT from three aspects.

1. Deposit. The consumer and sellers are asked for deposits which enforce them
not to deviate from RADT, i.e., quit midway.

2. Truthful auction. The two-stage bidding strategy in Sect. 4.2 requires sellers
to reveal bids truthfully. And the reverse auction can make sellers bid their
truthful cost according to Theorem2.

3. Modifier. The consumer must offer rewards to sellers to get keys for decryp-
tion, guaranteed by the modifiers in GetKey(). Moreover, some time modifiers
are used to ensure that each procedure is invoked orderly.

Hence, the whole data trading process of RADT is truthful. �

7 Implementation and Evaluations

Fig. 11. Gas consumption of each pro-
cedure in Ganache Cli (with 20 sellers)

Fig. 12. Time consumption of each pro-
cedure in Ganache Cli (with 20 sellers)
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We implement a prototype of RADT including the RADToken, the consumers
and sellers. RADToken is deployed to a local simulated network TestRPC using
Ethereum development tool Ganache Cli which is realized in the programming
language Solidity with JavaScript (JS) as the intermediate interactive language.
The consumer side is written in Python who needs to complete data decryption.
And seller side is written in JS and Python who should finish the bid encryption
and data encryption.

Due to difference of SHA-3 between JS and Solidity, we implement a custom
SHA-3 in JS to make enβi have the identical value with sha3 (wi, βi, noncei)
in Solidity. We employ the standard cryptographic toolkit in Python, where we
use AES for symmetric encryption and RSA for asymmetric encryption. Before
the evaluation, we set some major parameters of RADT. The number of tasks l
varies in [20, 30, 40, 50, 60] while the number of sellers n is fixed at 20. For each
seller, his reliability is randomly generated from 0.6 to 1 and his bid is from 10
to 20. The reliability requirements ranges from 1 to 2.

7.1 Evaluations on Simulated Network at System Level

Fig. 13. GCPI vs.
iterations

Fig. 14. GCPW vs. ID Fig. 15. NTPW vs. ID

To demonstrate the practicality of our system, we first use Ganache Cli to con-
struct a simulated network which is much like the real Ethereum environment
except for its automatically mining mechanism in the background. This allows
us to focus on the performance of RADToken, irrespective of time-consuming
mining process and complex network circumstances in Ethereum. Our RADTo-
ken consists of nine main functions which correspond to Procedures 1–9 that
reflect the functionalities of Initiate, CommitBid, RevealBid, WinnerSe-
lection, Pricing, SetKey, GetKey, Refund and Payment in Sect. 3.2.

To evaluate the unique performance of RADToken at the system level, we
use two metrics for each procedure: gas consumption and time consumption
which are depicted in Figs. 11 and 12 respectively. Since each computational
step will be charged some gas, the more complicated the procedure is, the more
gas and time it will consume. The operations to create and write storage data
are relatively expensive [20], as we can see, Procedure 2, 4 and 5 use more gas
and time. Procedure 4 need execute a nontrivial set of add, subtract, multiply,
divide, compare and write operations, and there is a positive correlation between
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the number of winners and gas consumption. Procedure 5 is roughly equivalent
to execute Procedure 4 |S| times. On the other hand, we may traverse more
iterations than the entire Procedure 4 to find the critical payment for a winner,
which uses more gas and time accordingly. Procedure 3 uses much gas because
each encrypted bid is a 32-bytes hash value which will take up more storage.
Other procedures use less gas due to their most read operations and smaller
data length. Notice that here we use gas in wei where 1 ether = 1018 wei.

7.2 Evaluations of Auction Mechanism

Fig. 16. Overpayment
ratio

Fig. 17. Payoff of a bid Fig. 18. Payments vs. bids

Since the auction including WinnerSelection and Pricing is the core mech-
anism of RADToken, we explicitly evaluate the performance of WinnerSelec-
tion and Pricing respectively. To avoid exceeding gasLimit, we divide the
winner selection and pricing procedures into multiple iterations and repeatedly
send a transaction to RADToken to select a winner and price the winner.

WinnerSelection. We give an example in Fig. 13 to compare the gas consump-
tion per iteration (GCPI) under different number of tasks from 20 to 60. We
notice a gradual decline of GCPI. We explain that by the constant cost of load-
ing past mined blocks from storage into memory before each selection [10].

Pricing. We use gas consumption per winner (GCPW) and number of trans-
actions per winner (NTPW) as two metrics in Figs. 14 and 15 respectively. We
figure out that determining the payment for each winner will consume how much
gas and need how many transactions. Figure 14 shows that the total gas con-
sumption increases as the increasing number of tasks from an overall perspective.
The GCPW has nothing to do with the iteration sequence which is only related
to the number of PoIs and the number of traverse times to obtain its critical pay-
ment, which we can see in Fig. 15. The NTPW represents traverse times needed
to price a winner and the corresponding GCPW shows that more gas will be
used if more transactions are needed when the number of PoIs is 60.

Beyond valuating the performance on blockchain, we should ensure that the
properties of our auction mechanism holds. we use the following metrics: overpay
ratio, truthfulness and individual rationality. The overpay ratio is defined as:

λ = (P − C(S))/C(S) (10)
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where P is the total payment and C(S) is the total cost. It measures the cost
paid by the consumer to induce the truthfulness overall. Ensuring truthfulness
means that no sellers can improve his payment by committing a different bid
from the real one. Individual rationality ensures that each payoff is non-negative.

Overpayment Ratio: Figure 16 plots the overpayment ratio λ when l changes
from 20 to 60. The results show that λ is always less than 0.6, which means that
the consumer does not have to pay much extra money to induce truthfulness.
λ increases monotonously with increasing l because more sellers will be selected
and the increments of the payments are greater than those of the costs.

Truthfulness: To verify the truthfulness, we randomly pick a winner and change
its claimed bid, then recalculate the payments as well as the payoffs. The results
illustrated in Fig. 17 show that when the truthful bid (real cost) is 13, the pay-
ment is 23 and the payoff is 10. The payoff remains unchanged when the bid is
no more than 23. However, if the bid is larger than the critical payment 23, the
payoff becomes zero which means that the winner loses the auction.

Individual Rationality: We demonstrate individual rationality in Fig. 18.
Each payment is greater than the related bid when l varies from 20 to 60.

8 Related Works

We review related works from the following two aspects:

Trading on Blockchain: Blockchain offers users new options for managing
their holdings and their trading intentions which can ensure the data integrity.
Due to the honest-but-curious property of secure third party, a few works resort
to blockchain to build trading systems. [3] implements a decentralized energy
trading system using blockchain to address the problem of providing transac-
tion security. [12] proposes AccountTrade for big data trading which can achieve
book-keeping ability and accountability against dishonest consumers. In addition
to P2P trading, blockchain is fit for the crowd trading. For instance, [14] con-
ceptualizes a blockchain-based decentralized framework named CrowdBC, which
does not depend on any central third party to accomplish crowdsourcing process.
However, the high storage requirement prevents the wide usage of blockchains on
mobile phones. A novel concept, Consensus Unit (CU) [22], organizes different
nodes into one unit and lets them to store at least one copy of blockchain data,
which can be applied in more application scenarios. Blockchains conduct trading
will consume resources, so BLOCKBENCH is designed in [7] to understand the
performance of blockchains against data processing workloads.

Incentive Data Trading Mechanism: In order to improve the repetitive use
rate of data, [18] designs a DataMart to determine the pricing and consumer-
seller matching in distributed fashion which is suited for highly dynamic and
heterogeneous market environment and ad-hoc setting. It adopts double auc-
tion for pricing to ensure the truthfulness. However this cannot satisfy some
consumers’ needs who want buy large volumes of data which is not easy to
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collect. [24] designs a practical data collection scheme leveraging mobile crowd-
sensing and proposes VENUS-PRO for profit maximization and VENUS-PAY
for payment minimization which is a data procurement auction in Bayesian set-
ting. The above incentive data trading which adopts auction is executed by a
third-party which may disclose privacy or data information. A novel distributed
agent-based privacy-preserving framework DADP proposed in [19] enables real-
time crowd-sourced statistical data publishing with strong privacy protection
under an untrusted server. [9] considers the introduction of homomorphic cryp-
tography to allow the auctions to be processed using only encrypted bids. More-
over, it uses the digital signature to ensure that data has not been manipulated
in transmission or by a compromised entity in network.

9 Conclusion

In this paper, we first propose a Reverse-Auction-and-blockchain-based crowd-
sensed Data Trading system. Different from the existing CDT, we use a metic-
ulous designed smart contract to replace a third-party data broker which can
ensure the truthfulness of data consumers and data sellers. In order to incen-
tivize more sellers to participate in the crowdsensing data collection, we propose
a reverse auction mechanism to prompt sellers to provide high quality sensing
data and claim truthful bids. Meanwhile, we protect sellers’ bids by leveraging
a two-stage bidding strategy which can blame untruthful sellers and ensure the
immutability of bids. The confidentiality of data is preserved by the introduction
of symmetric and asymmetric cryptography where the keys cannot be grabbed
in transmission. Finally, we implement a prototype on an Ethereum test network
and the evaluations demonstrate its practicability.
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Abstract. Matrix factorization based data fusion solutions can account
for the intrinsic structures of multi-relational data sources, but most
solutions equally treat these sources or prefer sparse ones, which may
be irrelevant for the target task. In this paper, we introduce a Selec-
tive Matrix Factorization based Data Fusion approach (SelMFDF) to
collaboratively factorize multiple inter-relational data matrices into low-
rank representation matrices of respective object types and optimize the
weights of them. To avoid preference to sparse data matrices, it addi-
tionally regularizes these low-rank matrices by approximating them to
multiple intra-relational data matrices and also optimizes the weights
of them. Both weights contribute to automatically integrate relevant
data sources. Finally, it reconstructs the target relational data matrix
using the optimized low-rank matrices. We applied SelMFDF for predict-
ing inter-relations (lncRNA-miRNA interactions, functional annotations
of proteins) and intra-relations (protein-protein interactions). SelMFDF
achieves a higher AUROC (area under the receiver operating charac-
teristics curve) by at least 5.88%, and larger AUPRC (area under the
precision-recall curve) by at least 18.23% than other related and com-
petitive approaches. The empirical study also confirms that SelMFDF
can not only differentially integrate these relational data matrices, but
also has no preference toward sparse ones.
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1 Introduction

With the rapid growth of Internet and modern technologies, we can obtain var-
ious data sources that are directly related to the main task, and also other
data sources indirectly related to the task, which can still facilitate the comple-
tion of this task. For example, the accuracy of gene function prediction can be
improved by integrating the gene-level data (gene expression, gene-gene inter-
actions), and also by fusing transcript-level data (miRNA-gene interactions,
miRNA-miRNA interactions) that convey complementary information about
gene functions [7,26]. The ever-increasing heterogeneous data sources make data
fusion approaches increasingly popular over the past decade, which aim to col-
lectively explore interesting patterns from multiple data sources, and to reduce
the impact of noisy or irrelevant ones [7,15].

An intuitive solution to fuse multiple data sources is concatenating the fea-
ture vectors of the same object across different data sources into a longer feature
vector, and then applying off-the-shelf learners on this long vector. But this con-
catenation ignores the intrinsic characteristics of these feature vectors and may
(and often does) suffer from the issue of curse of dimensionality and of miss-
ing features. Another intuitive solution is to train a classifier on each feature
view and then combine these classifiers for ensemble prediction [21], but this
ensemble solution may be impacted by low-quality base classifiers independently
trained on individual views, which can not ensure a base classifier with sufficient
accuracy. Furthermore, the early fusion (feature concatenation) and late fusion
(classifier ensemble) can not capture heterogeneous relations between different
object types. For these reasons, many inter-median data fusion solutions have
been proposed in recent years [6,13,23].

Inter-median data fusion methods can be generally divided into three cate-
gories: multiple kernel(network) learning-based (MKL), Bayesian network -based
(BN) and matrix factorization-based (MF) [7]. MKL methods firstly trans-
form multi-relational data matrices onto the homologous data matrices that
are directly related with the target task, and then applies different techniques
to combine these transformed data matrices for prediction [8,13,23]. These
MKL-based methods can selectively integrate multiple homologous data matri-
ces. However, they have to transform heterogeneous features or project multi-
relational data into a common feature space before fusion. This hand-crafted
transformation and projection may enshroud the intrinsic structure of multi-
relational data, and thus does not make full usage of them [26]. BN-based
approaches combine the concepts from probability and graph theory to rep-
resent and model causal relations between random variables [17]. BN was ini-
tially applied to gene function prediction [18] and also shows the potentiality in
patient-specific data integration [25]. Although BN-based solution can capture
conditional dependence between data sources and variables, it suffers from a
heavy computational limitation and asks for sufficient training data with labels.

MF-based solutions generally factorize multiple data matrices into low-rank
matrices to explore latent relationships between objects across different data
sources. Solutions in this type do not need to project multi-relational data matri-
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ces into the common feature space and thus can account for the intrinsic struc-
ture of these information sources. To name a few, Ding et al. [5] extended the
classical nonnegative matrix factorization (NMF) [14] to nonnegative matrix
tri-factorization (NMTF) to co-cluster heterogeneous data, but NMTF can
only fuse inter-relational data matrices and ignore the intra-relational ones.
Wang et al. [19] proposed the symmetric nonnegative matrix tri-factorization
(SNMTF) to simultaneously cluster different types of objects, and incorpo-
rates the intra-relational ones through manifold regularization [1]. However,
SNMTF has a heavy computational complexity and large runtime, because it
performs matrix factorization on a big matrix, whose block matrices embody
inter-relations between objects. Zitnik and Zupan [26] developed a penalized
matrix tri-factorization based model (DFMF) to jointly factorize multiple rela-
tional data matrices for predicting gene functions and pharmacologic actions.

These aforementioned MF-based solutions show great potential in exploring
the underlying relations between objects, but they ignore the different relevances
of multi-relational data sources, since they implicitly assume each source hav-
ing equal relevance toward the target prediction task, while they may not (and
often does). To overcome this problem, Fu et al. [6] introduced a MF-based model
(MFLDA) to predict lncRNA-disease associations by assigning different weights
to multiple inter-relational data matrices for objects of different types and by
jointly factorizing these matrices into low-rank ones. MFLDA then uses the opti-
mized matrices to reconstruct the target matrix to predict new inter-relations
between objects of different types. However, MFLDA does not account for the
different relevances of intra-relational data matrices for objects of the same types,
and thus its performance may be compromised by the low-quality or irrelevant
data sources. To simultaneously account for the different relevances of multi-
ple intra-relational data matrices, MFLDA was further extended to WMFLDA,
which can selectively fuse multiple intra-relation matrices [24]. However, these
extended solutions prefer to assigning larger weights to sparse data matrices, or
have a priority toward sparser ones, which may be irrelevant (or even harmful)
for the target task. In fact, this preference is also suffered by many MKL-based
solutions [9,20,23].

To address these issues, we propose a Selective M atrix Factorization
based Data Fusion (SelMFDF) solution for integrating multi-relational data.
SelMFDF can avoid preferring the sparse relational data matrices during the
fusing process. It performs collaborative matrix tri-factorization to optimize the
low-rank representation matrices of respective object types and the weights of
inter-relational data matrices. To selectively integrate multiple intra-relational
data matrices, it further optimizes these low-rank matrices by approximating
them to multiple intra-relational data matrices and the weights of these matri-
ces. These two types of weights contribute to identify relevant data sources and
remove irrelevant ones. After that, it approximates the target relational data
matrix using the optimized low-rank matrices. The main contributions of this
paper are summarized as follows:
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(i) Our introduced SelMFDF can respect and explore the intrinsic structures of
multi-relational data matrices to simultaneously predict inter(intra)-relation
between objects of different (same) types, automatically discard irrelevant
data sources and credit larger weights to the more relevant ones.

(ii) An alternative optimization procedure is developed to jointly optimize the
low-rank matrix approximations and weights of multi-relational data matri-
ces for the target prediction task.

(iii) Empirical study on predicting lncRNA-miRNA associations, gene functions
and protein-protein interactions shows that SelMFDF significantly outper-
forms the related and competitive methods NMTF [5], SNMTF [19], DFMF
[26], MFLDA [6], and WMFLDA [24].

2 Methodology

Fig. 1. The operating principle of SelMFDF. In the left figure, Rij is the inter-relational

data matrix between object type i and j, R
(v)
ii is the v-th intra-relational matrix of the

i-th object type; in the right figure, Gi is the low-rank representation matrix of the
i-th object type. Wr

ij and Wh
iv are the weights assigned to respective inter-relational

and intra-relational data matrices.

The operating principle of SelMFDF is illustrated in Fig. 1. SelMFDF presets
weights for inter-relational and intra-relational data matrices, and performs col-
laborative low-rank matrix factorization. It then jointly optimizes the weights
and the low-rank matrix approximations of these relational matrices. After that,
it reconstructs the target relational data matrix based on the product of opti-
mized low-rank matrices.
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2.1 Matrix Factorization Model for Multiple Relational Data

The relationships between multi-type objects can be divided into inter-relations
and intra-relations, both of which can be encoded by relational data matrices. To
fuse these relational data sources, various solutions follow different principles to
transform these data matrices toward the target relational matrix using the inter-
relations between objects [7,22]. However, this transformation often overrides or
even distorts the intrinsic structures of multi-relational data. To avoid this issue,
Zitnik and Zupan [26] introduced a penalized matrix factorization based data
fusion framework (DFMF). The objective function of DFMF is:

min
G≥0

L(G,S) =
∑

Rij∈R

∥∥Rij − GiSijGT
j

∥∥2

F

+
m∑

i=1

maxi ti∑

t=1

tr(GT Θ(t)
i G)

(1)

where ‖·‖2F and tr(·) are the Frobenius norm of a matrix and the matrix trace
operator. DFMF simultaneously considers m object types and fuses a collec-
tion of relational data sources (R). The inter relations between ni objects of
type i and nj objects of type j are stored in Rij ∈ R

ni×nj , Gi ∈ R
ni×ki is

the low-rank representation of object type i, Sij ∈ R
ki×kj encodes the latent

relationship between Gi and Gj , ki � ni is the low-rank size of the respec-
tive object type, G = diag(G1,G2, · · · ,Gm). Without loss of generality, sup-
pose the i-th object type has ti intra relational data matrices and Θ(t)

i is the
t-th one. Θ(t) collectively contains all the following block diagonal matrices:
Θ(t) = diag(Θ(t)

1 ,Θ(t)
2 , · · · ,Θ(t)

m ), t ∈ {1, 2, · · · ,maxi ti}, and the i-th block
matrix along the main diagonal of Θ(t) is zero if t ≥ ti.

Equation (1) can respect and explore the intrinsic structure of multiple rela-
tional data matrices, since it does not project these matrices onto the same
space for fusion. However, it equally treats all the relational matrices and ignores
the different relevances of them toward the target task. As a result, its perfor-
mance may be dragged down by noisy or irrelevant data sources. To address
this issue, Fu et al. [6] extended DFMF by optimizing the weights assigned
to inter-relational data matrices. However, it still can not differentiate noisy
intra-relational matrices during the fusing process. Given that, Yu et al. [24]
further specified weights to different intra-relational matrices. The theoretical
analysis and experimental results show that these two extensions can indeed
selectively fuse multiple relational data sources. However, they are inclined to
select sparse ones with more zero elements, since the sparse data matrices gen-
erally have a smaller approximate loss (

∥∥Rij − GiSijGT
j

∥∥2

F
) or smoothness loss

(tr(GT
i Θ(t)

i Gi)). In practice, a too sparse data matrix often cannot encode suf-
ficient information for the target task, and thus is irrelevant for the task.
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2.2 Objective Function of SelMFDF

Based on the above analysis, to reduce the impact of noisy data sources and to
avoid inclined to sparse ones, we define the objective function of SelMFDF as
follows:

min
G≥0

L(G,S,Wr,Wh) =
∑

Rij∈R
Wr

ij

∥∥∥Rij − GiSijG
T
j

∥∥∥
2

F

+
m∑

i=1

τ∑

t=1

Wh
it

∥∥∥R(t)
ii − GiSiiG

T
i

∥∥∥
2

F

s.t. Wr ≥ 0,Wh ≥ 0

(2)

where Wr ∈ R
m×m, Wh ∈ R

m×τ , τ = maxi ti, Wr contains the weights
assigned to different inter-relational data matrices, if Rij /∈ R, Wr

ij = 0.
Wh contains the weights assigned to different intra-relational data matrices.
If R(t)

ii /∈ R or t > ti, Wh
it = 0. Unlike Eq. (1), our objective function utilizes

the shared low-rank matrices Gi and Sii ∈ R
ki×ki across ti intra-relational data

matrices to approximate R(t)
ii . In this way, a data matrix inconsistent with other

intra-relational data matrices of the same objects will be assigned with a lower

weight. Particularly, for a sparse data matrix R(t)
ii ,

∥∥∥R(t)
ii − GiSiiGT

i

∥∥∥
2

F
results in

a large loss, because R(t)
ii encodes much fewer relations between objects than its

cousin matrices ({R(t′)
ii }ti

t′=1, t
′ �= t}) and the loss is dominated by tr(GiSiiGT

i ).

Similarly, for a dense matrix with noisy entries,
∥∥∥R(t)

ii − GiSiiGT
i

∥∥∥
2

F
also results

in a big loss. To minimize the above objective function, a smaller weight will
be automatically assigned to these two types of data matrices. Since Gi is
also shared by the inter-relational data matrices, the first term in Eq. (2) can
also avoid preferring to sparse ones. As a result, Eq. (2) can avoid the prefer-
ence toward the sparse data matrices. We want to remark that low-rank matrix
approximation can also reduce the impact of noises to some extent [4,16].

However, Eq. (2) may only set Wr
ij = 1 to Rij if Rij has the smallest

approximation loss (‖Rij − GiSijGj‖2F ) among all the inter-relational matrices,
and the other inter-relational ones will be discarded. Equation (2) may also assign
Wh

it = 1 to R(t)
ii , if R(t)

ii has the smallest approximation loss among all the intra-
relational matrices. As a result, the contribution of other intra-relational ones will
be disregarded. To remedy this issue, we add two l2-norm based regularizations
on Wr and Wh, and update the objective function as follows:

min
G≥0

L(G,S,Wr,Wh) =
∑

Rij∈R

Wr
ij

∥∥∥Rij − GiSijG
T
j

∥∥∥
2

F

+
m∑

i=1

τ∑

t=1

Wh
it

∥∥∥R(t)
ii − GiSiiG

T
i

∥∥∥
2

F

+ α ‖vec(Wr)‖2
F + β

∥∥∥vec(Wh)
∥∥∥
2

F

s.t. Wr ≥ 0,Wh ≥ 0,
∑

vec(Wr) = 1,
∑

vec(Wh) = 1

(3)
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where vec(Wr) and vec(Wh) are the vectorization operator that stacks the
rows of Wr and Wh, α > 0 and β > 0 are used to control the complexity of
vec(Wr) and vec(Wh). By adding these two regularization terms, SelMFDF can
selectively integrate several relevant data matrices, and automatically remove
irrelevant ones. Our following optimization procedure for Wh and Wr will the-
oretically confirm this advantage.

G̃ can be viewed as the optimized low-rank matrices of these object types,
we can approximate the target inter-relational data matrix between object type
i and j as Eq. (4). Similarly, we can also approximate the intra-relational data
matrix as Eq. (5).

R̂ij = G̃iS̃ijG̃T
j (4)

R̂ii = G̃iS̃iiG̃T
i (5)

In this way, SelMFDF can not only predict the inter-relations between different
types of objects, but also the intra-relations between objects of the same type.

2.3 Optimization of SelMFDF

The optimization problem in Eq. (3) is non-convex with respect to G, S, Wr

and Wh simultaneously. It is difficult to seek the global optimal solutions for all
the variables at the same time. Here, we follow the idea of alternating direction
method of multipliers (ADMM)[2] and DFMF [26] to alternatively optimize one
variable by fixing other three of these four variables in an iterative way.

To account for Gi ≥ 0, we import the Lagrangian multipliers {λi}m
i=1 and

reformulate Eq. (3) as follows:

min
G≥0

L̃(G,S,Wr,Wh, λ) =
∑

Rij∈R
Wr

ijtr(R
T
ijRij − 2RT

ijGiSijGT
j + GT

j GjST
ijG

T
i GiSij)

+
m∑

i=1

τ∑

t=1

Wh
ittr(R

(t)
ii

T
R(t)

ii − 2R(t)
ii

T
GiSiiGT

i + GT
i GiST

iiG
T
i GiSii)

+ α ‖vec(Wr)‖2F + β
∥∥vec(Wh)

∥∥2

F
−

m∑

i=1

tr(λiGT
i )

s.t. Wr ≥ 0,Wh ≥ 0,
∑

vec(Wr) = 1,
∑

vec(Wh) = 1

(6)

Next, we goto the alternative optimization procedure.

Optimizing Sij: Suppose G, Wr and Wh are known and fixed, and let the
partial derivative of Eq. (6) with respect to Sij and Sii equal to 0, we can obtain
the explicit solution of Sij and Sii as follows:

Sij = (GT
i Gi)−1GT

i RijGj(GT
j Gj)−1 (7)
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Sii = (GT
i Gi)−1

∑τ
t=1 Wh

it(G
T
i R(t)

ii Gi)∑τ
t=1 Wh

it

(GT
i Gi)−1 (8)

Optimizing Gi: Similar as the optimization of S, we also take the partial
derivative of Eq. (6) with respect to Gi with known S, Wr and Wh:

∂L̃
Gi

=
∑

j:Rij∈R
Wr

ij(−2RijGjST
ij + 2GiSijGT

j GjST
ij)

+
∑

j:Rji∈R
Wr

ji(−2RT
jiGjSji + 2GiST

jiG
T
j GjSji)

+
τ∑

t=1

Wh
it2R

(t)
ii Gi − λi

(9)

Multipliers λi can be obtained from Eq. (9) by letting ∂L̃
Gi

= 0 and the KKT
(Karush-Kuhn-Tucker) complementary condition [2] for nonnegativity of Gi as:

0 = λi ◦ Gi (10)

where ◦ denotes the Hadamard product. Equation (10) is a fixed point equation
and the solution must satisfy it at convergence. Thus, we can obtain:

For Rij ∈ R:

G(e)
i + = Wr

ij(RijGjST
ij)

+ + Wr
ijGi(SijGT

j GjST
ij)

−

G(d)
i + = Wr

ij(RijGjST
ij)

− + Wr
ijGi(SijGT

j GjST
ij)

+

G(e)
j + = Wr

ij(R
T
ijGiSij)+ + Wr

ijGj(ST
ijG

T
i GiSij)−

G(d)
j + = Wr

ij(R
T
ijGiSij)− + Wr

ijGj(ST
ijG

T
i GiSij)+

(11)

For t = 1, 2, . . . , τ :

G(e)
i + = 2Wh

it(R
(t)
ii GiST

ii)
+ + 2Wh

it(GiSiiGT
i GiST

ii)
−

G(d)
i + = 2Wh

it(R
(t)
ii GiST

ii)
− + 2Wh

it(GiSiiGT
i GiST

ii)
+

(12)

where the matrices with positive and negative symbols are defined as A+ =
|A|+A

2 and A− = |A|−A
2 , respectively. Then we can construct G as:

G ← G ◦ diag(

√√√√G(e)
1

G(d)
1

,

√√√√G(e)
2

G(d)
2

, . . . ,

√
G(e)

m

G(d)
m

) (13)

Optimizing Wr: After updating S and G, we view them as known and take
the partial derivative of Eq. (6) with respect to Wr. In this case, the second,
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fourth and fifth terms on the right of Eq. (6) are irrelevant to Wr. Then we
have:

L̃(G,S,Wr) =
∑

Rij∈R
Wr

ij

∥∥Rij − GiSijGT
j

∥∥2

F

+ α ‖vec(Wr)‖2F
s.t. Wr

ij ≥ 0,
∑

vec(Wr) = 1

(14)

Let Lij =
∥∥Rij − GiSijGT

j

∥∥2

F
be the reconstruction loss for Rij , then Eq. (14)

can be updated as:

L̃(L,Wr, δ, γ) = vec(Wr)T vec(L) + αvec(Wr)T vec(Wr)

−
m∑

i,j=1

δijWr
ij − γ(

m∑

i,j=1

Wr
ij − 1)

(15)

Equation (15) is a quadratic optimization problem with respect to vec(Wr) and
the Lagrangian multipliers (δ and γ) are the two constraints of Wr.

Base on the KKT conditions, the optional Wr should satisfy the following
four conditions:

(i) Stationary condition: ∂ ˜L
∂Wr = L + 2αWr − δ − γ = 0

(ii) Feasible condition: Wr
ij ≥ 0,

∑m
i,j=1 Wr

ij − 1 = 0
(iii) Dual feasibility: δij ≥ 0,∀Rij ∈ R
(vi) Complementary slackness: δijWr

ij = 0,∀ Rij ∈ R
From the stationary condition, Wr

ij can be computed as follows:

Wr
ij =

δij + γ − Lij

2α
(16)

We can find that Wr
ij depends on the specification of δij and γ, and the speci-

fication of δij and γ can be analyzed in the following three cases:

(i) If γ > Lij , then Wr
ij > 0, because of the complementary slackness δijWr

ij =
0, δij = 0 and Wr

ij = γ−Lij

2α

(ii) If γ = Lij , because of δijWr
ij = 0 and Wr

ij = δij
2α , then δij = 0 and Wr

ij = 0
(iii) If γ < Lij , since Wr

ij ≥ 0, it requires δij > 0; because δijWr
ij = 0, then

Wr
ij = 0

From the above analysis, we can set Wr
ij as:

Wr
ij =

⎧
⎪⎨

⎪⎩

γ−Lij

2α if γ > Lij and Rij ∈ R

0 if γ ≤ Lij or Rij /∈ R
, (17)

Let vL ∈ R
|R| store the entries of vector vec(L) in ascending order with

entries corresponding to Rij /∈ R removed. Accordingly, vr ∈ R
|R| stores
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the corresponding entries of vec(Wr). For a not too big predefined α, there
exists p ∈ {1, 2, . . . , |R|} with vL(p) < γ and vL(p + 1) ≥ γ, satisfying∑

vL =
∑

vL(p)<γ
γ−vL(p)

2α = 1. Then vr(p′) has the following explicit solution:

vr(p′) =

⎧
⎪⎨

⎪⎩

γ−vL(p′)
2α if p′ ≤ p

0 if p′ > p

, (18)

From
∑|R|

p′=1 vr(p′) =
∑p

p′=1
γ−vL(p′)

2α = 1, we can get the value for γ as:

γ =
2α +

∑p
p′=1 vL(p′)
p

(19)

To search the optimal p, we initialize p = |R| and decrease it step by step. In
each step, we repeatedly refer to Eqs. (18–19) and stop the search once a feasible
p is obtained. From Eq. (19), we can observe that for a nonnegative γ, at least
one inter-relational data matrix can be selected.

Optimizing Wh: When G, S and Wr are fixed, the first, the third and fifth
terms on the right of Eq. 3 are irrelevant to Wh, and can be ignored. Then we can
follow the similar procedure as that of Wr to obtain the explicit solution of Wh:

Wh
it =

⎧
⎪⎪⎨

⎪⎪⎩

μ−O
(t)
i

2β if μ > O(t)
i and t ≤ maxi ti

0 if μ ≤ O(t)
i and t > maxi ti

, (20)

where O(t)
i =

∥∥∥R(t)
ii − GiSiiGT

i

∥∥∥
2

F
, μ = 2β+

∑h
h′=1 vO(h′)

h , vO stores the entries

of vector vec(O) in ascending order with entries corresponding to {R(t)
ii }ti

t=1

(i = 1, 2, · · · ,m), and h can also be sought in the similar way as p in Eq. (18). We
can see from Eq. (20) that if O(t)

i is larger, Wh
it will be smaller. Once GiSiiGT

i

is a fixed appropriation, a sparser (or denser) R(t)
ii causes a larger reconstruction

loss (O(t)
i ). As a result, the explicit solution of Wh can also avoid the preference

toward the ‘sparse’ data matrices.

3 Experiments

3.1 Experimental Setup

To investigate the effectiveness of SelMFDF, we apply it for inter-relation
and intra-relation prediction tasks. The inter-relation prediction tasks include
lncRNA-miRNA associations and Gene Ontology (GO) annotations of genes,
where the target relational matrix is a binary matrix, representing associations
between lncRNAs and miRNAs or between genes and GO terms (labels). The
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intra-relation prediction task is to predict protein-protein interactions by recon-
structing the target adjacent matrix of proteins. We collect five object types:
lncRNA, genes, miRNA, diseases and Gene Ontology, and adopt eight inter-
relational data sources and twelve intra-relational data sources between these
objects for experiments. The details of these sources are provided in Table 1.

Table 1. Details on the collected inter-relations and intra-relations from different data
sources

Datasets Size #Associations Sources

LncRNA-Gene 240 × 15527 6186 R12 http://www.lncrna2target.org/

LncRNA-miRNA 240 × 495 1002 R13 http://starbase.sysu.edu.cn/mirLncRNA.php/

LncRNA-Disease 240 × 412 2697 R14 http://www.cuilab.cn/lncrnadisease/

LncRNA-GO 240 × 6428 3094 R15 ftp://ftp.ncbi.nih.gov/gene/GeneRIF/

Gene-Disease 15527 × 412 115317 R24 http://www.disgenet.org/

Gene-GO 15527 × 6428 1191503 R25 http://geneontology.org/

miRNA-Gene 495 × 15527 135852 R32 http://mirtarbase.mbc.nctu.edu.tw/

miRNA-Disease 495 × 412 13562 R34 http://www.cuilab.cn/hmdd/

Gene-Gene 2719 × 2719 4551 R
(1)
22 http://dip.doe-mbi.ucla.edu/dip/Main.cgi

7898 × 7898 32097 R
(2)
22 http://hprd.org/index html

13106 × 13106 283306 R
(3)
22 http://ophid.utoronto.ca/ophidv2.204/index.jsp

11778 × 11778 113973 R
(4)
22 http://www.ebi.ac.uk/intact/

7898 × 7898 32097 R
(5)
22 http://mint.bio.uniroma2.it/

13086 × 13086 223546 R
(6)
22 http://thebiogrid.org/

miRNA-miRNA 239 × 239 57121 R
(1)
33 https://doi.org/10.1186/1471-2164-8-166

443 × 443 196249 R
(2)
33 https://doi.org/10.1093/bioinformatics/btx019

495 × 495 225645 R
(3)
33 http://www.cuilab.cn/hmdd/

495 × 495 202833 R
(4)
33 http://mirtarbase.mbc.nctu.edu.tw/

495 × 495 42723 R
(5)
33 http://starbase.sysu.edu.cn/mirLncRNA.php/

22 × 22 32 R
(6)
33 https://doi.org/10.1016/j.gene.2012.09.066

To comparatively study the performance of SelMFDF, we compare it against
five matrix factorization based data fusion methods, including NMTF [5], S-
NMTF [19], DFMF [26], MFLDA [6] and WMFLDA [24]. The first three compar-
ing methods equally treat inter-relational matrices or intra-relational matrices
during the fusion process. MFLDA optimizes weights to different inter-relational
ones and WMFLDA further assigns weights to different intra-relational ones. The
input parameters of these methods are set as specified by the authors in the code,
or optimized in the suggested ranges. We use the area under the receiver operat-
ing characteristic curve (AUROC) and the area under the precision recall curve
(AUPRC) to quantify the overall performance. We run five fold cross validation
for ten independent rounds, and report the average results.

3.2 Results of Inter-relation Prediction Tasks

For this investigation, we randomly divide the original lncRNA-miRNA associa-
tions (R13) into five folds for cross validation. Next, we plot the ROC curves of

http://www.lncrna2target.org/
http://starbase.sysu.edu.cn/mirLncRNA.php/
http://www.cuilab.cn/lncrnadisease/
ftp://ftp.ncbi.nih.gov/gene/GeneRIF/
http://www.disgenet.org/
http://geneontology.org/
http://mirtarbase.mbc.nctu.edu.tw/
http://www.cuilab.cn/hmdd/
http://dip.doe-mbi.ucla.edu/dip/Main.cgi
http://hprd.org/index_html
http://ophid.utoronto.ca/ophidv2.204/index.jsp
http://www.ebi.ac.uk/intact/
http://mint.bio.uniroma2.it/
http://thebiogrid.org/
https://doi.org/10.1186/1471-2164-8-166
https://doi.org/10.1093/bioinformatics/btx019
http://www.cuilab.cn/hmdd/
http://mirtarbase.mbc.nctu.edu.tw/
http://starbase.sysu.edu.cn/mirLncRNA.php/
https://doi.org/10.1016/j.gene.2012.09.066
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the comparing methods and report their corresponding AUROCs in Fig. 2(a). We
can see that SelMFDF always has the highest TPRs (true positive rates) under
the same FPRs (false positive rates), and achieves the highest AUROC among
these methods. Figure 2(b) plots the PR curves and reports the AUPRCs, we can
also observe that SelMFDF consistently outperforms these comparing methods.
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Fig. 2. Results of lncRNA-miRNA association prediction. (a) ROC curve and
AUROCs. (b) PR curve and AUPRCs.

SelMFDF performs significantly better than WMFLDA and MFLDA,
although the latter two also account for the different relevances of multiple rela-
tional data matrices. This is because they both use the manifold regularization
and approximation loss to determine the relevance of these matrices. As such,
they prefer sparse data matrices during the fusion process. However, those sparse
matrices may be irrelevant for the target task. SelMFDF does not have such
preference, and thus it obtains better results than WMFLDA and MFLDA. The
other comparing methods equally treat all the data matrices. As expected, they
have much lower AUROC and AUPRC than those of WMFLDA and MFLDA,
and say nothing of SelMFDF. In practice, S-NMTF costs the largest runtime
costs and memory, since it performs matrix factorization on a big adjacency
matrix of all objects. NMTF only fuses inter relational data matrix and thus
loses to all the comparing methods.

To investigate whether SelMFDF has the capability to identify relevant data
matrices and avoid too sparse ones, we report the weights assigned to different
intra-relational matrices. The weights assigned to R(i)

22 , (i = 1, . . . , 6) are (0,
0.0946, 0, 0.0537, 0.0946, 0.1084) and the weights assigned to R(i)

33 , (i = 1, . . . , 6)
are (0.1033, 0.1572, 0.1133, 0.1092, 0.1568, 0.0089). We can see SelMFDF assigns
a zero weight to the sparsest R(1)

22 and R(6)
33 , and it also assigns a zero weight

to the densest R(3)
22 . The sparsity of these data matrices is included in Table 1

(column ‘#Associations’). These two assignments are expected from Eq. (20)
that SelMFDF can avoid preferring to too sparse and too dense data matrices
by crediting lower weights to them. In contrast, these comparing methods either
equally integrate them or prefer the sparse ones.
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Fig. 3. The AUROCs and AUPRCs of SelMFDF with different collections of intra-
relational data matrices. R1 = {R(1)

22 ,R
(2)
22 ,R

(3)
22 ,R

(4)
22 ,R

(5)
22 ,R

(6)
22 }, R2 = R1 − R1

22,
R3 = R1 − R3

22, R4 = R1 − R1
22 − −R3

22.

To prove these discarded matrices are indeed irrelevant, we further report the
results of SelMFDF by discarding R(1)

22 and R(3)
22 , in Fig. 3. SelMFDF obtains the

highest AUROC and AUPRC when R(1)
22 and R(3)

22 are excluded. We also see that
R(1)

22 has little contribution. This observation confirms the sparse data matrix
has a tiny impact on the target prediction task, since it is too sparse to encode
sufficient information for the target task. In addition, SelMFDF has an increased
performance when R(3)

22 is discarded. That is possible because R(3)
22 is a dense

matrix with many noisy entries.
We further apply these comparing methods to predict GO annotations of

genes (the target relational matrix is R25) in five-fold cross validation. The
AUROCs and AUPRCs of these comparing methods are revealed in Fig. 4. We
can clearly see that SelMFDF again performs consistently better than the other
five approaches and the results give the similar conclusions as those on predicting
lncRNA-miRNA associations.
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Fig. 4. Results of predicting GO annotations of proteins. (a) ROC curve and AUROCs.
(b) PR curve and AUPRCs.
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3.3 Results of Intra-relation Prediction Task

To further explore the usage of SelDFMF in predicting intra-relations between
the same type of objects, we apply SelMFDF to predict protein-protein inter-
actions. For this study, we pick out the protein-protein interaction matrix col-
lected from BioGrid [3] from the collection of intra relational matrices {R(t)

22 }6t=1,
and then use G2S22GT

2 to approximate the target intra-relational data matrix.
Next, we select the top K predicted interact-pairs and check them by referring
to available interactions in BioGrid [3]. The number of confirmed interactions
under different K is reported in Table 2.

Table 2. Number of confirmed PPIs (from BioGrid) predicted by comparing methods.

Methods Confirmed interactions

K = 20 K = 50 K = 100 K = 500 K = 1000 K = 10000

SelMFDF 5 9 17 56 118 879

WMFLDA 2 5 10 31 69 521

MFLDA 2 4 13 26 52 511

DFMF 2 4 10 23 43 482

S-NMTF 2 4 4 9 24 140

NMTF 0 0 0 1 1 9

From Table 2, we can clearly see that SelMFDF always more accurately pre-
dicts protein-protein interactions than other methods. In addition, from the
remaining 15 interactions (not recorded in the BioGrid) in top 20 predicted by
SelMFDF, we further find 6 interactions confirmed by HRPD [11], IntAct [10]
and I2D [12] databases. These results indicate SelMFDF can be more reliably
applied for the intra-relations prediction.

3.4 Parameter Analysis

The low-rank size ki is an important parameter for low-rank matrix approxi-
mation based solutions. To study the sensitivity of ki, we fix all ki = k across
these five types of objects for simplicity, and then increase k from 10 to 200.
Figure 5 reports the AUROC and AURPC under different input values of ki in
predicting lncRNA-miRNA associations in five-fold cross validation. Both the
AUROC value and AUPRC value increase as the increase of k and reach to a
highest when k ≈ 20. Then the AUROC value has a slight decrease and keeps
stable after k > 100. The AURPC value nearly keeps stable when k ≥ 20. Given
these observations, we adopt k = 20 for experiments.

From Eqs. (18) and (20), we can find that once the input value of α or β is
specified, the weights Wr and Wh assigned to the relational data matrices are
also determined. Thus, we further conduct five-fold validation to evaluate the
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Fig. 5. The AUROC and AUPRC of SelMFDF under different low-rank sizes k.

performance of SelMFDF under different combinations of α and β. We vary α
and β in {10−2, 10−1, · · · , 1010} and report the average AUROC and AUPRC
in Fig. 6. We can clearly see that when α = 107 and β = 104, SelMFDF achieves
the highest AUPRC. The input value of α significantly affects the performance;
the AUROC value and AUPRC value increase as α increase, and reach a plateau
when α > 107. The input value of β also affects the performance; the AUPRC
value increases as β get larger, and then it slightly decreases when β > 104.
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Fig. 6. AUROC and AUPRC of SelMFDF under different input values of α and β. (a)
AUROCs. (b) AUPRCs.

From these results, we can conclude that SelMFDF can automatically identify
irrelevant relational data matrices, and achieve a more prominent performance
on predicting the inter- and intra-relations between multiple object types. In
addition, it is effective in a wide combination of α and β values, and low-rank
sizes.
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4 Conclusion

We introduced a selective matrix factorization based solution (SelMFDF) to fuse
multi-relational data matrices. Unlike existing matrix factorization based data
fusion approaches, SelMFDF can not only selectively integrate multi-relational
data matrices, but also avoid preferring to sparse ones and dense ones. Exten-
sive experimental results show that SelMFDF achieves a much better perfor-
mance than the state-of-the-art solutions in predicting inter-relations and intra-
relations between objects. In our future work, we will extend SelMFDF for
large scale heterogeneous data fusion. The code and datasets are available at
http://mlda.swu.edu.cn/codes.php?name=SelMFDF.
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Abstract. In this paper, we study the problem of selectivity estimation
on set containment search. Given a query record Q and a record dataset
S, we aim to accurately and efficiently estimate the selectivity of set con-
tainment search of query Q over S. The problem has many important
applications in commercial fields and scientific studies.

To the best of our knowledge, this is the first work to study this
important problem. We first extend existing distinct value estimating
techniques to solve this problem and develop an inverted list and G-
KMV sketch based approach IL-GKMV. We analyse that the perfor-
mance of IL-GKMV degrades with the increase of vocabulary size. Moti-
vated by limitations of existing techniques and the inherent challenges
of the problem, we resort to developing effective and efficient sampling
approaches and propose an ordered trie structure based sampling app-
roach named OT-Sampling. OT-Sampling partitions records based on ele-
ment frequency and occurrence patterns and is significantly more accu-
rate compared with simple random sampling method and IL-GKMV.
To further enhance performance, a divide-and-conquer based sampling
approach, DC-Sampling, is presented with an inclusion/exclusion pre-
fix to explore the pruning opportunities. We theoretically analyse the
proposed techniques regarding various accuracy estimators. Our com-
prehensive experiments on 6 real datasets verify the effectiveness and
efficiency of our proposed techniques.

1 Introduction

Set-valued attributes are ubiquitous and play an important role in modeling
database systems in many applications such as information retrieval, data clean-
ing, machine learning and user recommendation. For instance, such set-valued
attributes may correspond to the profile of a person, the tags of a post, the
domain information of a webpage, and the tokens or q-grams of a document. In
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the literature, there has been a variety of interests in the computation of set-
valued records including set containment search (e.g., [6,18,24,32]), set similarity
joins (e.g., [27,29]), and set containment joins (e.g., [10,21,22,30]).

In this paper, we focus on the problem of selectivity estimation of set con-
tainment search. Considering a query record Q and a collection of records S
where a record consists of an identifier and a set of elements (i.e., terms), a
set containment search retrieves records from S which are contained by Q, i.e.,
{X|X ∈ S ∧ Q ⊇ X}, where Q contains X (Q ⊇ X) if all the elements in X
are also in Q. Figure 1 shows an example with eight records in a dataset and a
query record Q where Q contains X2, X3 and X5. Selectivity (cardinality) of a
query refers to the size of the query result size. For instance, the selectivity of
Q in Fig. 1 is 3.

Selectivity estimation on set containment search aims at estimating the car-
dinality of the containment search. As an essential and fundamental tool on
massive collections of set-values, the problem has a wide spectrum of applica-
tions because it can provide users with fast and useful feedback. As a simple
example, when introducing a new product to the market, its characteristics and
features could be described as a set of keywords. Assume a preference dataset
consists of such characteristics and features desired by users from online survey.
Size estimation of the new product descriptions on the preference dataset esti-
mates the total number of users who may be interested in the product and could
serve as a prediction of the product’s market potential. In another example,
companies may post positions in an online job market website where a position
description contains a set of required skills. A job-seeker may want to have a
basic understanding of the job market by obtaining the total number of active
job vacancies that he/she perfectly matches (i.e., the skill set of the job-seeker
contains the required skills of the job).

id record id record
X1 {e1, e2, e3, e4, e7} X5 {e1, e3, e5, e7}
X2 {e2, e3, e5} X6 {e2, e6, e7, e8}
X3 {e2, e5, e7} X7 {e4, e8}
X4 {e1, e2, e6, e10} X8 {e4, e10}
Q {e1, e2, e3, e5, e7, e9}

Fig. 1. A record dataset with eight records and a query Q

Challenges.The key challenges of selectivity estimation on set containment
search come from the following three aspects. Firstly, the dimensionality (i.e.,
the number of distinct elements) is high. As shown in our empirical studies, the
vocabulary size in real-world dataset could reach more than 3 million when the
high-order shingles are used. This makes the selectivity estimation techniques
which are sensitive to dimensionality inapplicable to our problem. Secondly, the
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number of records in the dataset could be very large. Moreover, the length of
query and data record may also be large. To deal with the sheer volume of the
data, it is desirable to efficiently and effectively provide approximate solutions.
Thirdly, the distribution of element frequency may be highly skewed in real
applications. It is desirable to devise sophisticated data-dependent techniques to
properly handle the skewness of data distribution to boost accuracy.

Even though selectivity estimation has been widely explored, most of the
existing techniques cannot be trivially applied to handle the problem studied in
this paper. We discuss two categories of techniques which can be extended to
support the selectivity estimation problem, range counting estimating (e.g., [12],
[5]) and distinct value estimating [9,13].

Given the element universe (vocabulary) E , a record Xi can be regarded as an
|E|-dimensional binary vector, where Xij = 1 if element ej appears in Xi (ej ∈
Xi) and Xij = 0 otherwise, for 1 ≤ j ≤ |E|. Let n denote the vocabulary size |E|.
Under this context, the dataset S can be modeled as a set of points in {0, 1}n

where each record corresponds to an n-dimensional point and the query is a
hypercube in {0, 1}n. Thus, we can rewrite the selectivity estimation problem as
the approximate range counting problem in computational geometry. However,
the approximate range counting problem suffers from the curse of dimensionality
where the computing cost is exponentially dependent on dimensionality n [13,
23]. As the vocabulary size is usually large, applying range counting estimating
methods to our problem is not applicable.

Distinct value estimators (e.g., KMV [9], bottom-k, min-hash [13]) can effec-
tively support size estimation for set operations (e.g., union and intersection)
and are widely used for problems of size estimation under different context. In
Sect. 3.2, we show how to extend the distinct value based estimator to the prob-
lem studied in this paper combining with inverted list techniques. We also analyse
that the performance of distinct value estimators based approach degrades when
the vocabulary size is large due to the inherent superset containment semantics of
the problem studied in this paper. [28] studies selectivity estimation on stream-
ing spatio-textual data where the textual data is a set of keywords/terms (i.e.,
elements). However, the query semantic is different as it specifies a subset con-
tainment search on the textual data, i.e., the keywords (elements) in the query
should be contained by the keywords from spatial objects. This is different from
the superset query semantic in our problem which is more challenging to handle
using distinct value estimators as discussed in Sect. 3.2.

Contributions. Motivated by the challenges and limitations of existing tech-
niques, in the paper we aim to develop efficient and effective sampling based
approaches to tackle the problem. Naively applying random sampling over the
dataset ignores the element frequency distribution and results in compromised
performance. Intuitively, combinations of high-frequency elements (i.e., frequent
patterns) occur among data records with high frequency, and records with simi-
lar frequent patterns are more likely to be contained by the same query. Thus, we
use the frequent patterns as labels and partition records by these labels to boost
efficiency and accuracy. Moreover, assume that the elements are ordered based
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on frequency, we use ordered trie structure to maintain partitions of the dataset
and present OT-Sampling method. This ordered trie based approach, though
demonstrated to be highly efficient and accurate, does not consider element dis-
tribution of the query Q. Inspired by the observation that query Q must include
a subset of record X in order to contain X, efficient pruning techniques are
developed on the partitions of dataset. We further propose a divide-and-conquer
based sampling approach named DC-Sampling which only conducts sampling on
the qualified partitions surviving from the pruning.

The principle contributions of this paper are summarized as follows.

– This is the first work to systematically study the problem of selectivity esti-
mation on set containment search, which is an essential tool for set-valued
attributes analyses in a wide range of applications.

– Two baseline algorithms are devised. The first algorithm is based on ran-
dom sampling. We also extend distinct value estimator G-KMV sketch and
propose an inverted list based approach IL-GKMV. Insights about the limita-
tions of the two baseline approaches are theoretically analysed and empirically
studied.

– We develop two novel sampling based techniques OT-Sampling and DC-
Sampling. OT-Sampling integrates ordered trie index structure to group the
dataset and achieves higher accuracy by capturing the element frequency and
frequent patterns. DC-Sampling employs divide-and-conquer philosophy and
an exclusion/inclusion-set prefix to further improve performance by explor-
ing pruning opportunities and skipping sampling on pruned partitions of the
dataset.

– Comprehensive experiments on a variety of real-life datasets demonstrate
superior performance of the proposed techniques compared with baseline algo-
rithms.

2 Preliminary

In this section, we first formally present the problem of containment selectiv-
ity estimation, and then give some preliminary knowledge. The notations used
throughout this paper are summarized in Table 1.

2.1 Problem Definition

Suppose the element universe is E = {e1, e2, ..., en}. Each record X consists of a
set of elements from domain E . Let S be a collection of records {X1,X2, ...,Xm}.
Given two records X and Y , we say X contains Y , denoted as X ⊇ Y , if all
elements of Y can be found in X. In the paper, we also say X is a superset
of Y or Y is a subset of X. Given a query record Q and a dataset S, a set
containment search of Q over S returns all records from S which are contained
by Q, i.e., {X|X ∈ S, Q ⊇ X}. We use t to denote the selectivity (cardinality) of
the set containment search. The selectivity of Q measures the number of records
returned by the search, namely, t = |{X|X ∈ S, Q ⊇ X}|.
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Table 1. The summary of notations

Notation Definition Notation Definition

X, Q, S A record, a query
record, a set of records

Pi, P A partition of dataset, all
partitions

e, E An element, element
domain (vocabulary)

mi Size of partition Pi

m Number of records in S m′
i Sampling size in partition Pi

n Number of distinct
elements (vocabulary
size)

pi Sampling probability in Pi

t (t̂) Containment selectivity
(estimation of t)

ti Containment selectivity of Q in Pi

Considering the containment relationship between a given query Q and a
record Xi ∈ S (1 ≤ i ≤ m), let ni be the indicator function such that

ni :=

{
1 if Q ⊇ Xi,

0 otherwise
(1)

then the selectivity of the set containment search on dataset S with respect to
the query Q can also be calculated as t =

∑
Xi∈S ni.

Problem Statement. In this paper, we investigate the problem of selectivity
estimation on set containment search. Given a query record Q and a dataset S,
we aim to accurately and efficiently estimate the selectivity of the set contain-
ment search of Q on S.

Hereafter, whenever there is no ambiguity, selectivity estimation on set con-
tainment search is abbreviated to containment selectivity estimation.

Estimation Measure. In order to evaluate the accuracy of containment selec-
tivity estimation, we apply the mean square error (MSE) to measuring the
expected difference between an estimator and the true value. The MSE formula
is as follows,

E(t̂ − t)2 = V ar(t̂) + (E(t̂) − t)2 (2)

where t̂ is an estimator for t. If t̂ is an unbiased estimator, the MSE is simply
the variance.

2.2 KMV Synopses

The k minimum values (KMV) technique first introduced in [8] is to estimate
the number of distinct elements in a large dataset. Given a no-collision hash
function h which maps elements to range [0, 1], a KMV synopses of a record
(set) X, denoted by LX , is to keep k minimum hash values of X. Then the
number of distinct elements |X| can be estimated by |̂X| = k−1

U(k)
where U(k) is
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k-th smallest hash value. [9] also methodically analyses the problem of distinct
element estimation under set operations. As for union operation, consider two
records X and Y with corresponding KMV synopses LX and LY of size kX and
kY , respectively. In [9], LX ⊕ LY represents the set consisting of the k smallest
hash values in LX ∪ LY where k = min(kX , kY ). Then the KMV synopses of
X ∪ Y is L = LX ⊕ LY . An unbiased estimator for the number of distinct
elements in X ∪ Y , denoted by D∪ = |X ∪ Y |, is as follows.

D̂∪ =
k − 1
U(k)

(3)

The variance of D̂∪, as shown in [9], is

V ar[D̂∪] =
D∪(D∪ − k + 1)

k − 2
(4)

As shown in [9], Eq. 3 can be modified to compound set operation where L =
LA1 ⊕ ... ⊕ LAn

and k = min(kA1 , ..., kAn
).

An improved KMV sketch, named G-KMV, is proposed to estimate the
multi-union size in [28]. G-KMV imposes a global threshold and ensures that all
hash values smaller than the threshold will be kept. Considering a union opera-
tion

⋃
Xi with the sketch as L = LX1 ∪ LX2 ... ∪ LXn

, the sketch size k for the
union is k = |LX1 ∪ LX2 ... ∪ LXn

|. The estimation variance by G-KMV method
is smaller than that of simple KMV method under reasonable assumptions as
analysed in [31].

3 Baseline Solutions

In this section, we introduce two baseline solutions following simple random
sampling and G-KMV sketching techniques, respectively.

3.1 Random Sampling Approach

A simple way to tackle the set containment estimation problem is to adopt the
random sampling techniques and conduct set containment search over a sampled
dataset S ′ which is usually much smaller compared with the original dataset S.
After getting the selectivity of Q on sampled dataset S ′, we scale it up to get
an estimation of containment selectivity regarding S.

Given sampling size budget b in terms of number of records, we describe
the random sampling based approach in the following two steps: (1) uniformly
at random sample b (b � m) records X1,X2, ...,Xb from S; (2) compare each
sampled record Xi (1 ≤ i ≤ b) with the query Q and assign ni accordingly.
Recall that ni is the containment indicator for a record Xi as shown in Eq. 1.
Based on this, the containment selectivity estimator (t̂R) of the random sampling
approach is:

t̂R =
m

b

b∑
i=1

ni (5)
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Note that ni is a binary random variable because of the random sampling on
records. Next we show that the estimator for baseline solution t̂R is an unbiased
estimator and then derive its variance. We first compute the probability of the
event {ni = 1}. Let t denote the containment selectivity over dataset S with
respect to query Q, i.e., t = |{X|X ∈ S, Q ⊇ X}|, then Pr[ni = 1] = t

m where
m is total number of records, and thus the expectation of ni is E[ni] = t

m . By
the linearity of expectation, we get the expectation of the estimator for baseline
solution in Eq. 5 is E[t̂R] = t, and the variance is

V ar[t̂R] =
t(m − t)

b
. (6)

3.2 IL-GKMV: Inverted List and G-KMV Sketch Based Approach

The random sampling method, which is very efficient, may result in poor accu-
racy because it ignores the data distribution information, e.g., the distribution of
element frequency or record length. In this section, we develop containment selec-
tivity estimation techniques which are data-dependent by utilizing the inverted
list and G-KMV sketch techniques.

In the first step, we build an inverted index I on the dataset S where an
element (token) ei is associated with a list of record identifiers such that the cor-
responding records contain the element ei [7]. For instance, in Fig. 1, the inverted
list of element e3 is {X1,X2,X5}. Let fi denote the frequency of an element ei,
i.e., the size of the inverted list Iei

; let Pr[ei = 1] denote the probability that
a record in a dataset contains the element ei, then we have Pr[ei = 1] = fi

m .
Similarly, given a record X = {e1, e2, ..., e|X|}, the probability of X appearing
in the dataset is

Pr[X = 1] = Pr[
⋂

e∈X

{e = 1},
⋂

e∈E\X

{e = 0}].

Note that record X can be duplicated in the dataset S; given a query Q, the
containment selectivity t of Q is calculated as

t̂ =
∑

X∈2Q

m ∗ Pr[X = 1] (7)

where the sum is over all subsets of Q. The above equation enumerates every
subset of the query Q to check if it appears in the dataset. In order to compute
Eq. 7, we need to compute the joint probability Pr[X = 1] for each subset X of
Q. Clearly, the complexity in Eq. 7 is exponentially dependent on the query size
|Q| which is not acceptable when |Q| is large. Furthermore, the joint probability
computation of Pr[X = 1] is complicated and expensive.

Given the difficulty of directly computing the containment selectivity, we
consider the complement version of set containment search. It is easy to see that
Xi ⊆ Q if and only if E\Xi ⊃ E\Q; this implies that, if an element e ∈ E \ Q
and there exists a record X with e ∈ X, then record X is definitely not a subset
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of the query Q. Thus, if we exclude all the records that contain any element in
E\Q, the remaining records in dataset S are all subsets of Q, namely, satisfying
the set containment search. Given that, the containment selectivity t of query
Q can be computed as

t = m − m ∗ Pr[
⋃

e∈E\Q

e = 1] (8)

where Pr[e = 1] denotes the probability that some record in the dataset S
contains the element e. Remind that the event {e = 1} corresponds to all the
records containing element e in dataset S, i.e., the inverted list Ie = {X|e ∈ X},
we can rewrite Eq. 8 as

t = m − |
⋃

e∈E\Q

Ie| (9)

The key point in the above equation is to calculate the union size of the inverted
lists, which has the time complexity of

∑
e∈E\Q |Ie| by merge-join. Since the set

of E\Q and the inverted list Ie could both be very large, directly computing
the multi-union operation could result in unaffordable time consumption. Based
on this, we adopt approximate methods (e.g., G-KMV sketch) to estimate the
union size of the inverted lists.

For each element e ∈ E , Le denotes the G-KMV synopsis of its inverted
list with k (=|Le|) smallest hash values. Considering the union of inverted lists
in Eq. 9, we have the sketch L =

⋃
e∈E\Q Le and k = |L| as introduced in

Sect. 2.2, then the size D∪ of the multi-union set
⋃

e∈E\Q Ie can be estimated as
D̂∪ = k−1

U(k)
, where U(k) is the k-th smallest hash value in the synopsis L. Thus the

containment selectivity of G-KMV sketch based method is computed as t̂G =
m − D̂∪. Furthermore, the variance can be calculated as V ar[t̂G ] = D∪(D∪−k+1)

k−2
by Eq. 4.

Analysis. Given the space budget b in terms of number of records, the sketch
size of IL-GKMV method is |L| ≈ b ∗ d̄ where d̄ denotes the average record
length. By G-KMV sketch, the budget size is proportionally assigned to each
inverted list. Apparently, with the very large vocabulary size, the performance
significantly deteriorates since each inverted list receives little sampling space.
Remark that the time complexity for simple random sampling method is O(b∗C)
where C is the time cost for set comparison. The time cost of IL-GKMV is O(|L|)
which is comparable with O(b ∗ C) since |L| ≈ b ∗ d̄.

4 Our Approach

As analysed in the previous section, the random sampling approach fails to
capture the element frequency distribution. IL-GKMV approach, on the other
hand, considers data distribution by utilizing the inverted lists (i.e., frequent
elements are associated with longer inverted lists) and G-KMV sketch (i.e.,
inverted lists with larger size keep more hashing values) techniques. However,
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due to the inherent superset query semantics studied in this paper, the number of
inverted lists involved in IL-GKMV method linearly depends on the vocabulary
size which leads to compromised accuracy. In this section, we aim to develop
sophisticated sampling approaches which strike a balance between accuracy and
efficiency.

4.1 Trie-Structure Based Stratified Sampling Approach

Trie is a widely used tree data structure for storing a set of records (i.e., dataset).
Observing that combinations of high-frequency elements (i.e., frequent patterns)
occur among records with high frequency and records with similar frequent pat-
terns are more likely to be included by the same query, we adopt the trie structure
to partition the dataset using the combinations of high-frequency elements as
labels. Assume that elements of the vocabulary E are ordered based on decreas-
ing frequency in the underlying dataset. For example, the most frequent element
in Fig. 1 is e2 as it appears 5 times; e7 appears 4 times and is ranked 2nd place.
Based on this ordering, we refer the top-k high-frequency elements as Ek, and
adopt the combination of high-frequency elements within Ek as label. The choice
of k will be discussed later in Sect. 5.

e2 e7 e4

rootnull

e7 e1 e3 e1

e5 e3

e5

X7

e8
X8

e10

X5

e6

X6

e8

X4

e10

e1

X3

e5 e6

e3

X1

e4

X2

P1

P2 P3

P4

Fig. 2. Trie structure

Figure 2 illustrates an ordered trie T built on dataset in Fig. 1. It is easy to
see that each record in the trie is stored in a top-to-down manner with a start
node as null. Next we give an example about the labels.

Example 1. Consider the top-2 elements E2 in Fig. 2; {e2, e7} is the label for
records X1,X3,X6, {e2} is for records X4,X2 and {e7} is for X5.

It is interesting to notice that the left and upper part of the trie encompasses
most of the dataset, since this part is made up of high-frequency elements in the
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Algorithm 1. Ordered Trie Structure Based Estimation
Input : Q, a query set; b, sample size budget

S, a dataset; k, top-k high-frequency elements
Output : t̂: estimation of containment selectivity under query Q
Ek ← the top-k high-frequency elements;1

construct a trie T on dataset S;2

L ← all labels in trie T w.r.t Ek;3

for each label Li ∈ L do4

Pi ← records with Li as the prefix in trie T ;5

P ′
i ← sample m′

i records from Pi based on sample size budget b;6

conduct containment search regarding Q over sampled records P ′
i ;7

t̂ ← estimator based on each partition P = {P1, ..., P|P|};8

return t̂9

dataset. Based on this, there is a natural partition strategy generated by the trie
T . Namely, from the root node along the high-frequency part (left and upper
of trie), each path (label for records) comprises a partition of the dataset since
records in the corresponding partition are all made up of this path as prefix. Note
that all the remaining records that do not share any high-frequency element are
accumulated as a partition by themselves, and we set the label of this partition
as φ. Here is an example about the partition on trie.

Example 2. In Fig. 2, there are four partitions as {X1,X3,X6}, {X2,X4}, {X5}
and {X7,X8} with labels {e2, e7}, {e2}, {e7} and φ, respectively.

Next, we propose an approximate method to compute the containment selec-
tivity based on the partition P = {P1, ..., P|P|}. Given a query record Q and
sample size budget b (number of sampled records), we allocate the sample size
budget proportionally to the size mi = |Pi| of each partition in P (i.e., strat-
ified sampling). Namely, for partition Pi, there are m′

i = |Pi|
m ∗ b records uni-

formly at random sampled from Pi. Let P ′
i denote these sampled records, i.e.,

P ′
i = {Xi1, ...,Xim′

i
}, then in each partition, the query Q is compared with each

sampled records Xij ; let nij be the indicator such that

nij :=

{
1 if Xij ⊆ Q,

0 otherwise,
(10)

then an estimator of the containment selectivity is

t̂P =
∑

Pi∈P

mi

m′
i

m′
i∑

j=1

nij (11)

Algorithm 1 illustrates the ordered trie based sampling approach (OT-
Sampling). Line 1 collects the k most frequent elements Ek and Line 2 con-
structs the ordered trie structure based on the dataset S, followed by obtaining
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the labels according to Ek (Line 3). Lines 4–7 groups the dataset based on the
labels, and conduct the set containment search over each sampled P ′

i from indi-
vidual partitions regarding Q. Line 8 retrieves the final selectivity estimation.

Analysis. Next we show that the estimator t̂P in Eq. 11 is unbiased, followed
by an analysis of the variance V ar[t̂P ]. Recall that the containment selectivity is
t = |{X|X ⊆ Q and X ∈ S}|; for each partition Pi, let ti be the size of subsets of
Q in partition Pi, i.e., ti = |{X|X ⊆ Q and X ∈ Pi}|, and t =

∑
Pi∈P ti, then we

have Pr[nij = 1] = ti
mi

which means that the probability of a sampled record Xij

in partition Pi being the subset of Q is ti
mi

; the expectation of nij is E[nij ] = ti
mi

and variance is V ar[nij ] = ti(mi−ti)
m2

i
. Let t̂i = mi

m′
i

∑m′
i

j=1 nij , then E[t̂i] = ti and

V ar[t̂i] = ti(mi−ti)
m′

i
by linearity of expectation, thus the expectation of Eq. 11 is

E[t̂P ] =
∑

Pi∈P
E[t̂i] = t

which proves that t̂P is an unbiased estimator of containment selectivity. Simi-
larly, the variance of t̂P is

V ar[t̂P ] =
∑

Pi∈P
V ar[t̂i] =

∑
Pi∈P

ti(mi − ti)
m′

i

(12)

Compare with Random Sampling (RS) Approach. Comparing the vari-
ance of OT-Sampling in Eq. 12 with that of RS-Sampling in Eq. 6, we show
that V ar[t̂P ] ≤ V ar[t̂B ] as follows. Let pi denote the sampling probabil-
ity in partition Pi, and there is pi = m′

i

mi
= b

m by the stratified sampling
strategy. Suppose that the number of partitions is q = |P|, then we have
V ar[t̂P ] − V ar[t̂B ] = −∑

(i,j)∈(q2)
∏q

k=1 mk

mimj
(timj − tjmi)2 ≤ 0.

Time Complexity. The time complexity of the OT-Sampling method is O(b ∗
C) + O(P ) where C is the containment check cost and O(P ) is the pre-process
time on trie partition. As demonstrated in our empirical studies, O(b ∗ C) is the
dominating cost and O(P ) is negligible since we only consider top-k (small k).

4.2 Divide-and-Conquer Based Sampling Approach

In OT-Sampling, the sampling strategy is independent of query workload; that
is, we do not distinguish the data information (e.g., labels) of each partition
with respect to the query. In this section, we propose a query-oriented sampling
approach to improve the estimation accuracy.

Consider the records X’s in a dataset as binary vectors with respect to the
element universe E = {e1, ..., en}, i.e., each record is regarded as a size-n vector
with i-th position as 1 if ei ∈ X and 0 otherwise; divide the element universe
E into two disjoint parts as E1 and E2, then each record X can be written
as two parts X1 and X2 corresponding E1 and E2 respectively, and we have
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X = {X1;X2} where X1 is concatenated with X2. We give a lemma based on
the division.

Lemma 1 (Subset Inclusion). Given a query record Q and a record X from
the dataset S, Q and X are under the same division strategy described above and
let Q = {Q1;Q2} and X = {X1;X2}. We have X ⊆ Q if and only if X1 ⊆ Q1

and X2 ⊆ Q2.

The proof of the lemma is straightforward. From this lemma, a simple pruning
technique can be derived such that if X1 � Q1 then X � Q.

Recall the tire-based partition method; we partition the dataset into several
groups by the labels of records, where the label can be regarded as the represen-
tative for each partition. Before drawing samples from a partition with label X1,
we can calculate if X1 is a subset of query Q. If not, we can skip sampling from
that collection of records with X1 as a label. In order to specify the grouping of
records, we give a definition as follows.

Definition 1 ((E1, E2)-Prefix Collection). Given E1 and E2 as the sub-
sets of element universe E, the (E1, E2)-prefix collection of records denoted as
S(E1, E2) consists of all records X’s from dataset S such that all elements
of E1 are contained in X while no element of E2 appears in X, that is,
S(E1, E2) = {X ∈ S|E1 ⊆ X and E2 ∩ X = Φ}.
Note that E1 and E2 are respectively named as inclusion element set and exclu-
sion element set.

Example 3. An ({e2}, {e7})-prefix collection in Fig. 1 is {X2,X4}.

Recall that in Sect. 3.2 we model the record X as a random variable and
give the probability that X appears in dataset S. Similarly, we compute the
generating probability of the prefix collection S(E1, E2) as follows:

Pr[S(E1, E2)] = Pr[
⋂

e∈E1

{e = 1},
⋂

e∈E2

{e = 0}]. (13)

Next we compute the number of subsets of a given query Q within the prefix
collection S(E1, E2), i.e., the containment selectivity in regard to S(E1, E2). Let
nX denote the indicator function such that

nX :=

{
1 if Q ⊇ X,

0 otherwise

then the containment selectivity of Q with respect to S(E1, E2) is

tS(E1,E2) =
∑

X∈S(E1,E2)

nX ∗ Pr[X]
Pr[S(E1, E2)]

(14)

Now we can present the lemma which lay the foundation of the divide-and-
conquer algorithm.
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Algorithm 2. Divide-And-Conquer Exact Algorithm
Input : S, a collection of records as dataset; Q, a query set

E1 (E2), elements included (excluded) in the prefix collection
Output : t̂: containment selectivity of query Q within S(E1, E2)
procedure T(S, E1, E2, Q)1

if E1 � Q then2

return 03

choose an element e /∈ E1 ∪ E2;4

return Pr[e = 1|S(E1, E2)] ∗ T(S, E1 ∪ {e}, E2, Q) + Pr[e =5

0|S(E1, E2)] ∗ T(S, E1, E2 ∪ {e}, Q)

Lemma 2. Considering a prefix collection S(E1, E2) and an element e which
does not belong to E1 ∪E2, the containment selectivity of a given query Q within
S(E1, E2) can be calculated as

tS(E1,E2) = Pr[e = 1|S(E1, E2)] ∗ tS(E1∪{e},E2) + Pr[e = 0|S(E1, E2)] ∗ tS(E1,E2∪{e}).

The key point in the proof of Lemma 2 is to consider the conditional probability.
We omit the detailed proof here due to space limitation.

Based on Lemma 2, we propose the divide-and-conquer algorithm illustrated
in Algorithm 2. We can calculate the containment selectivity of Q within dataset
S by invoking procedure T(S, φ, φ,Q); by Lemma 2, the dataset is partitioned
into two groups of records by choose an element e ∈ E and we have

tS(φ,φ) = Pr[e = 1|S(φ, φ)] ∗ tS({e},φ) + Pr[e = 0|S(φ, φ)] ∗ tS(φ,{e})

then compute the containment selectivity in each of the two groups recursively as
shown in Line 4–5. When there is E1 � Q, we can prune this collection of records
S(E1, E2) by Lemma 1. Obviously, the time complexity of the exact divide-and-
conquer algorithm is O(C ∗ 2n) where n is the size of the element universe E and
C is the cost of set comparison. Recall that the element frequency distribution
is usually skew in real dataset, and we can arrange the elements by decreasing
frequency order when choosing the element e in Line 4 of Algorithm 2, which
can accelerate the computation by pruning more records corresponding to the
high-frequency elements.

Approximate Divide-And-Conquer Algorithm. Next we propose an
approximate method based on the exact divide-and-conquer algorithm. In Algo-
rithm 2, the dataset S is recursively partitioned into two collection of records
by choosing an element e /∈ E1 ∪ E2. In addition, we can order the elements
by decreasing element frequency to boost the computation efficiency. However,
the complexity is still O(C ∗ 2n). In this section, we only consider the top-k
high-frequency elements Ek, from which the element is selected to partition the
dataset. After finishing all the elements in Ek, we end up with 2k prefix collec-
tions of records Si(E1, E2), i = 1, 2, ..., 2k, which is much smaller than 2n. Note
that (E1, E2) can be regarded as the label for each prefix collection.
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Recall Lemma 1, all the records X’s can be described as the binary vector
with X = {X1;X2} where X1 corresponds to the top-k high-frequency elements
part Ek and X2 is the rest part concatenated with X1. Similarly, when a query
record Q arrives, let Q be Q = {Q1;Q2} following the same manner; then by
Lemma 1, we can exclude all the prefix collections S(E1, E2) with E1 � Q1.
For the remaining prefix collections, we sample some records from each group
and conduct containment search of Q over sampled records. Let X = {X1;X2}
be a sampled record, it is only required to test if X2 ⊆ Q2 since X1 ⊆ Q1. In
the following part, we formally demonstrate how to estimate the containment
selectivity of Q by the divide-and-conquer method.

Let Ii denote the indicator function for prefix collection Si(E1, E2) (Si for
short) such that Ii = 1 when E1 ⊆ Q1 otherwise 0. The size of prefix collection
Si(E1, E2) can be computed as mi = |Si(E1, E2)| = m∗Pr[Si(E1, E2)] by Eq. 13.
Let pi be the sampling probability in Si, then the sample size is m′

i = mi ∗ pi.
For any sampled record Xj = {X1;X2} in this prefix collection Si, let nij be the
indicator for which nij = 1 if X2 ⊆ Q2 otherwise 0. Then an estimator for the
containment selectivity of Q by divide-and-conquer algorithm can be expressed
as

t̂D =
∑
Si

Ii

m′
i∑

j=1

nij

pi
(15)

It can be verified that t̂D is an unbiased estimator and the variance of t̂D is

V ar[t̂D] =
∑
Si

Ii ∗ ti(mi − ti)
pimi

(16)

where ti is the number of records satisfying X2 ⊆ Q2 in Si. Let Si, i = 1, 2, ..., l
be all the prefix collections with E1 ⊆ Q1 for a given query Q, then the variance
can be written as V ar[t̂D] =

∑l
i=1

ti(mi−ti)
pimi

.

Compare with OT-Sampling. Obviously, in DC-Sampling method, we avoid
allocating the space budget to unqualified partitions compared with OT-
Sampling. In formal, assume there are q partitions (corresponding to prefix
collections) in total with {P1, ..., Pq}; after pruning, there remains l parti-
tions, w.l.o.g, {P1, ..., Pl}. Then for DC-Sampling, the sampling probability is
pi = b∑l

i=1 mi
where mi = |Pi| and b is space budget, and the sampling prob-

ability of OT-Sampling is p′
i = b∑q

i=1 mi
. Thus we have V ar[t̂P ] − V ar[t̂D] =∑l

i=1(
1

p′
imi

− 1
pimi

)ti(mi − ti) +
∑q

i=l+1
1

p′
imi

ti(mi − ti) ≥ 0 since p′
i ≤ pi.

Time Complexity. The time complexity of DC-Sampling method is O(b ∗ C̃)+
O(P ) where C̃ is the cost for two-record containment check. After pruning the
unqualified partitions, we can skip comparing the prefix part of a record with
the query by our algorithm, thus the time cost of C̃ is smaller than that of
OT-sampling, which leads to better efficiency than DC-Sampling.
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5 Experimental Evaluation

In this section, we evaluate the estimation accuracy and computation efficiency
of different strategies on a variety of real-life datasets. All experiments are con-
ducted on PCs with Intel Xeon 2x2.3 GHz CPU and 128 GB RAM running
Debian Linux.

5.1 Experimental Setting

Algorithms. Since there exists no previous work for tackling the problem of set
containment selectivity estimation, we evaluate the following estimation methods
introduced in this paper.

– RS. Direct random sampling method in Sect. 3.1.
– IL-GKMV. Inverted lists and G-KMV sketch based method in Sect. 3.2.
– OT-Sampling. Ordered trie structure based sampling method in Sect. 4.1.
– DC-Sampling. The divide-and-conquer based sampling method in Sect. 4.2.

The above algorithms are implemented in C++. In verifying the inclusion rela-
tionship between the query and records, we apply the merge-join method. For
records with large size, we utilize the prefix-tree structure to boost the compu-
tation efficiency.

Datasets. We deploy 6 real-life datasets which are chosen from various domains
with different data properties. In Table 2, we illustrate the characteristics of these
6 datasets in details. For each dataset, we show the representations of record and
element, the number of records, the average record length, and the number of
distinct elements in dataset.

Table 2. Characteristics of datasets

Dataset Abbreviation Record Elements #Records AvgLength #Elements

Bookcrossing [1] BOOKC Book User 340,523 3.38 105,278

Delicious [2] DELIC User Tag 833,081 98.42 4,512,099

Livejournal [3] LIVEJ User Group 3,201,203 35.08 7,489,073

Netflix [10] NETFLIX Movie Rating 480,189 209.25 17,770

Sualize [4] SUALZ Picture Tag 495,402 3.63 82,035

Twitter [19] TWITTER Partition User 371,586 65.96 1,318

Workload. The workload for the selectivity estimation of set containment search
is made up of 10000 queries, each of which is uniformly at random selected from
the dataset. Note that we exclude the queries with size smaller than 10 in order
to evaluate the accuracy properly.

Measurement. In the following part, we use relative error to measure the accu-
racy. Let t be the exact result and t̂ be the estimation one, then the relative
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error denoted by ε is calculated as ε = |t−t̂|
t . The sampling size is in terms of

the number of records. For IL-GKMV approach, the space budget is allocated
as discussed at the end of Sect. 3.

Tuning k. In order to evaluate the impact of the high-frequency elements in
OT-Sampling and DC-Sampling, we first tune the number of highest-frequency
elements, i.e., top-k. By experimental study, we set the k value as 12 which can
well balance the trade-off between accuracy and efficiency.

5.2 Overall Performance

Figure 3(a) compares the estimation accuracy and time cost of the four algo-
rithms on 6 datasets. The sample size is set as 1000 in terms of number of records;
for trie-structure based approach and divide-and-conquer algorithm, the k-value
is 12 as mentioned above. Overall, we can see that the divide-and-conquer (DC-
Sampling) algorithm achieves the best performance in accuracy on all datasets,
which can reduce the relative error of the random sampling (RS ) method by
around 60% and cut the relative error of IL-GKMV method by more than 80%.
Also, the ordered-trie structure-based approach (OT-Sampling) can diminish the
relative error of RS by around 40% for most datasets and narrow the relative
error of IL-GKMV by about 70%. Moreover, divide-and-conquer (DC-Sampling)
algorithm outperforms the ordered tire structure based approach (OT-Sampling)
by decreasing the relative error about half.
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Fig. 3. Overall performance

Figure 3(b) reports the query response time on 6 datasets with 10000 queries,
where DC-Sampling method consumes less time than the other three because
of the pruning techniques. It is remarkable that for each dataset, the time costs
of the four algorithms are comparable since we keep the same sample size in
every algorithm. Meanwhile, the response time varies among different datasets
because of the diverse average record lengths, and datasets with larger average
length, e.g., NETFLIX with AvgLength 209.25, consume more query time.
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Fig. 4. Accuracy vs space

5.3 Estimation Accuracy Evaluation

In this section, we assess the effectiveness of the four methods in terms of rela-
tive error. We consider the effect of space budget on the estimation accuracy by
changing the sampling size. Figure 4 illustrates superior accuracy achievement
of DC-Sampling against the other three by varying the space budget. As antic-
ipated, the accuracy performance of all algorithms is ameliorated when more
sampling size is provided.

5.4 Computation Efficiency Evaluation

In the last part of experiment, we evaluate the efficiency of the four algorithms
in terms of query response time with 10, 000 queries. Figure 5 demonstrates the
response time of four algorithms with different space budget. Obviously, the
query response time increases as the sampling size grows. The DC-Sampling
method outperforms the other three algorithms because of the pruning tech-
niques.

6 Related Work

To the best our knowledge, there is no existing work on selectivity estimation
of set containment search. In this section, we review two important directions
closely related to the problem studied in this paper.

Searching Set-Valued Data. The study of set-valued data has attracted great
attention from research communities and industrial organizations due to an ever
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Fig. 5. Efficiency vs space

increasing prevalence of set-valued data in a wide range of applications. The
research in this area focuses on set containment search [15,16,24], set similarity
and set containment joins [17,19,20,26]. In one of the representative work on
set containment search [24], Terrovitis et. al introduce a OIF index combined
the inverted index with B-tree to tackle three kinds of set-containment queries:
subset queries, equality queries and superset queries. In a recent work [30], Yang
et. al propose a TT-join method for the set containment join problem, which
is based on prefix tree structure and utilize the element frequency information;
they also present a detailed summary of the existing set-containment join meth-
ods. The containment queries can also be modeled as range searching problem
in computational geometry [5]; nevertheless, the performance is exponentially
dependent on dimension n which is unsuitable in practice for our problem.

Selectivity Estimation. The problem of selectivity estimation has been stud-
ied for a large variety of queries and over a diverse range of data types such as
range queries (e.g., [13]), boolean queries (e.g., [11]), relational joins (e.g., [25]),
spatial join (e.g., [14]), and set intersection (e.g., [13]). Nevertheless, many of
the techniques developed above are sensitive to the dimension of data and not
applicable to the problem studied in this paper. Moreover, the superset con-
tainment semantics brings in extra challenges in adopting existing techniques.
Although the set containment search query can be naturally modeled as range
counting problem as discussed in Sect. 1, existing range counting techniques are
exponentially dependent on the dimensionality (i.e., number of distinct elements
in our problem) and not applicable to solving the containment selectivity esti-
mation problem in our problem [13,23]. Distinct value estimators (e.g., KMV
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[9], bottom-k, min-hash [13]) are adopted in [28] to solve subset containment
search (i.e., query record is a subset of data record). We also extend the dis-
tinct value estimator KMV and develop the IL-GKMV approach in Sect. 3 and
demonstrate theoretically and through extensive experiments that distinct value
estimators cannot efficiently and accurately support the superset containment
semantics studied in this paper.

7 Conclusion

The prevalence of set-valued data generates a wide variety of applications that
call for sophisticated processing techniques. In this paper, we investigate the
problem of selectivity estimation on set containment search and develop novel
and efficient sampling based techniques, OT-Sampling and DC-Sampling, to
address the inherent challenges of set containment search and the limitations of
existing techniques. Simple random sampling techniques and a G-KMV sketch
based estimating approach IL-GKMV are also devised as baseline solutions.
We theoretically analyse the accuracy of the proposed techniques by means
of expectation and variance. Our comprehensive experiments on 6 real-life
datasets empirically verify the effectiveness and efficiency of the sampling based
approaches.
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Abstract. News archives constitute a rich source of knowledge about
the past societies. In order to effectively utilize such large and diverse
accounts of the past, novel approaches need to be proposed. One of them
is comparison of the past and present entities which can lay grounds for
better comprehending the past and the present, as well as can support
forecasting techniques. In this paper, we propose a novel research task of
automatically generating across-time comparable entity pairs given two
sets of entities, as well as we introduce an effective method to solve
this task. The proposed model first applies the idea of typicality analy-
sis to measure the representativeness of each entity. Then, it learns an
orthogonal transformation between temporally distant entity collections.
Finally, it generates a set of typical comparables based on a concise inte-
ger linear programming framework. We experimentally demonstrate the
effectiveness of our method on the New York Times corpora through
both qualitative and quantitative tests.

Keywords: Comparable entity mining ·
Temporal embeddings alignment · Integer linear programming

1 Introduction

Comparison is an effective strategy extensively adopted in practice to discover
commonalities and differences between two or more objects. Users can benefit
from comparison for a myriad of needs such as understanding complex concepts,
gaining insights about similar objects/situations, making better decisions and
so on. Entity comparison has been studied in the past (e.g., [31]). For an input
entity pair the task was to find their differences and similarities. Other work
focused on finding a comparable entity for a given input entity [15,17].

Sometimes, however, what users want is to compare different entity sets
across time. For example, a journalist or historian may be interested in the com-
parison of contemporary politicians with ones of 30 years ago. Another example
could be a comparison of electronic gadgets used in 1980s–1990s with those
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used at present, i.e., 2000s–2010s, that a student or scholar in the history of
science/technology might wish to conduct. This kind of temporal analogy deter-
mination could be beneficial for general understanding of the relation of and
the similarity between the past and present. Furthermore, it could then lead to
not only improved comprehension of the past but could also complement and
support our forecasting abilities. Manual comparison of entity sets across time
is however non-trivial due to the following reasons: (1) In the current fast-paced
world, people tend to possess limited knowledge about things from the past. In
other words, it is difficult for average users to find temporal comparable entities
(e.g. to know that music device like Walkman was playing a similar role 30 years
ago as iPod does nowadays.); (2) such comparison involves entire entity sets,
which is not an easy task given their diversity and complexity, thus it would
require much cognitive effort. Note that entity sets are quite common in the
real world and can be massive. For example, Wikipedia, which is considered to
be the most comprehensive encyclopedia, contains over 1.13 million categories
grouping numerous entities and concepts in many diverse ways [1].

A natural method of comparison is to find pairs of corresponding entities
(e.g., finding a set of representative pairs of similar politicians or correspond-
ing technological devices from among temporally distant time periods). Indeed,
learning from examples is regarded an effective strategy extensively adopted in
daily life. Good examples are often easier to be understood for learning concepts
or categories of entities than high-level feature descriptions. Therefore, given
two collections of entities from different historical times (e.g. the lists of contem-
porary politicians and the one of politicians active 30 years ago), it would be
useful to automatically find a diverse set of corresponding entity pairs (e.g., U.S.
Presidents: Donald Trump and Ronald Reagan, Russian Presidents: Vladimir
Putin and Mikhail Gorbachev) as such pairs do not only provide contrasting
information, but can be also understandable and intuitive.

Users can benefit from our study with respect to many needs. First of all,
our study paves the way for the automatic discovery of mapping relationships
between exemplars, which gives rise to the entity analogy solving task. Solving
analogy tasks and generating analogical examples can be then enhanced using
our method. Besides, finding typical comparables is a natural prerequisite step
of discovering the commonalities and differences.

The problem of automatically detecting comparable entity pairs is however
non-trivial due to the following reasons: (1) To measure across-time entity corre-
spondence is a difficult task. The general context of the two compared entity col-
lections which originate from different time periods may be fairly different. Intu-
itively, the correspondence of entities in different contexts cannot be computed
properly without a solid understanding of the connection (analogies) between
their contexts. Moreover, it is difficult to collect training data for learning such
connections. (2) Naturally, only typical entities should be chosen for comparison.
This is because typical instances are usually associated with more representa-
tive features and thus are less likely to cause misunderstanding. For instance,
to compare mammals with another animal class, typical examples of mammals
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such as lions should be preferred rather than atypical instances like platypuses
(which lay eggs instead of giving birth). (3) The input sets of entities can be very
diverse and may cover multiple latent subgroups. Thus instead of a single output
entity pair, a set of pairs that represent latent subgroups within the input entity
sets should be returned. Given the limitation on the size of output, selecting a
subset of optimal pairs is a challenging problem since they should contain both
typical and temporally comparable entities.

In view of the above-mentioned challenges, we propose a novel method to
address the task of generating typical comparables. First of all, we formulate the
measurement of entity typicality inspired by research in psychology and cogni-
tive science [6,14,38]. In particular, for an entity to be typical in a diverse set
it should be representative within a significant subset of that set. Moreoever,
we formulate the measurement of across-time entity comparability by aligning
different vector spaces and finding corresponding terms. We first adopt the dis-
tributed vector representation [27] to represent the context vectors of entities;
then we learn linear and orthogonal transformations between two vector spaces
of input collections for establishing across-time entity correspondence. Finally,
inspired by the popular Affinity Propagation algorithm (AP) [11], we propose a
concise joint integer linear programming framework (J-ILP) which detects typi-
cal entities (which we call exemplars) and, at the same time, generates compa-
rable pairs from the detected exemplars. Based on this formulation, the optimal
solution can be obtained.

To sum up, we make the following contributions: (1) We introduce a new
research problem of automatically discovering comparable entity pairs from two
across-time collections of entities. (2) We develop a novel method to address
this task based on an efficient entity typicality estimation, an effective across-
time entity comparability measurement, and a concise integer linear program-
ming framework. (3) Finally, we perform extensive experiments on the New York
Times Annotated Corpus, which demonstrates the effectiveness of our approach.

2 Problem Definition

Formally, given two sets of entities denoted by DA and DB , where DA and DB

come from different time periods TA and TB, respectively (TA ∩ TB = ø and,
typically TA represents some period in the past while TB represents more present
time period), the task is to discover m comparable entity pairs P = [p1, p2, ...,
pm] to form a concise subset conveying the most important comparisons, where
pi = (eAi , eBi ). eAi and eBi are entities from DA and DB , respectively.

3 Estimation of Entity Typicality

Learning from examples is an effective strategy extensively adopted in cognition
and education [14]. Good examples should be however typical. In this work, we
apply the strategy of using typical examples for discovering comparable entity
pairs. We denote the typicality of an entity e with regard to a set of entities S as
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Typ(e, S). The entities to be selected for comparison should be typical in their
sets, namely, Typ(eAi ,DA) and Typ(eBi ,DB) should be as high as possible when
pi = (eAi , eBi ) is a selected entity pair.

As suggested by the previous research in typicality analysis [14], an entity e in
a set of entities S is typical, if it is likely to appear in S. We denote the likelihood
of an entity e given a set of entities S by L(e|S) (to be defined soon). However,
it is not appropriate to simply use L(e|S) as an estimator of typicality Typ(e, S)
considering the characteristics of our task. First of all, the collections of entities
for comparison can be very complex, thus they may cover many different kinds
of entities. For example, if we want to compare US scientists across time, each of
entity collections will include multiple kinds of entities such as mathematicians,
physicists, chemists and so on. It is then very difficult for a single entity to
represent all of them. In addition, different entity kinds vary in their significance.
For instance, “physicists” are far more common than “entomologists”. Naturally,
entities typical in a salient entity subset should be more important than those
belonging to small subsets.

Given a set S including k mutually exclusive latent subgroups [S1, S2, ..., Sk],
let eti denote the ith entity in the tth subgroup of S. We state two criteria required
for eti to be typical in the entire set S:

Criterion 1 eti should be representative in St.
Criterion 2 The significance of St in S should be high.

The typicality of eti with respect to S is then defined as follows:

Typ(eti, S) = L(eti|St) · |St|
|S| (1)

where L(eti|St) measures the representativeness of eti with regard to the subgroup

St. In addition, |St|
|S| indicates the relative size of St regarded as an estimator

of significance. eti is more typical when the number of entities in its subgroup is
large.

The likelihood L(e|S) of an entity e given a set of entities S is the posterior
probability of e given S, which can be computed using probability density estima-
tion methods. Many model estimation techniques have been proposed including
parametric and non-parametric density estimations. We use kernel estimation
[3] as it does not require any distribution assumption and can estimate unknown
data distributions effectively. Moreover, we choose the commonly used Gaussian
kernels. We set the bandwidth of the Gaussian kernel estimator h = 1.06s

5√n
as sug-

gested in [35], where n is the size of the data and s is the standard deviation of
the data set. Formally, given a set of entities S = (e1, e2, ..., en), the underlying
likelihood function is approximated as:

L(e|S) =
1
n

n∑

i=1

Gh(e, ei) =
1

n
√

2π

n∑

i=1

e− d(e,ei)
2

2h2 (2)

where d(e, ei) is the cosine distance between e and ei, and Gh(e, ei) is a Gaussian
kernel.
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4 Measurement of Temporal Comparability

In this section, we describe the method for measuring temporal comparability
between an entity eA in set DA and an entity eB in the other set DB . Intuitively,
if eA and eB comparable to each other, then eA and eB contain comparable
aspects. For instance, (iPod, Walkman) could be regarded as comparable based
on the observation that Walkman played the role of a popular portable music
player 30 years ago same as iPod does nowadays. The key difficulty comes from
the fact that there is low overlap between terms’ contexts across time (e.g., the
set of top co-occurring words with iPod in documents published in 2010s has
typically little overlap with the set of top co-occurring words with walkman that
are extracted from documents in 1980s). Thus our task is then to build the
connection between semantic spaces of DA and DB .

Let transformation matrix W map the entities from DA into DB , and trans-
formation matrix Q map the entities in DB back into DA. Let a and b be
normalized entity representations from DA and DB , respectively. The compa-
rability between entities a and b can be evaluated as the similarity between
vectors b and Wa, i.e., Comp(a, b) = bTWa. However we could also form
this correspondence as Comp′(a, b) = aTQb. To be self-consistent, we require
Comp(a, b) = Comp′(a, b), thus the linear transformations W and Q between
entity collections DA and DB should be orthogonal [36,40], i.e., WTW = I
(where I denotes the identity matrix).

Our task is then to train the transformation matrix W to automatically align
the semantic vector space across time. We adopt here a technique proposed by
[42] for preparing sufficient training data. Namely, we use so-called Common
Frequent Terms (CFT) as the training term pairs. CFT are very frequent terms
in both dates TA and TB , which the compared entity collections originate from
(e.g. man, woman, sky, water). Such frequent terms tend to change their mean-
ings only to a small extent across time. The phenomenon that words which are
intensively used in everyday life evolve more slowly has been reported in several
languages including English, Spanish, Russian and Greek [13,23,29]. We first
train the time-aware distributional vectors of CFTs using the New York Times
Corpus [32] published within TA and TB , respectively. Given L pairs composed
of normalized vectors of CFTs trained in both news corpora [(a1,b1), (a2,b2), ...,
(aL,bL)] (where ai and bi denote the vector of i-th CFT in TA and TB, respec-
tively), we should learn the transformation W by maximizing the accumulated
cosine similarity of CFT pairs,

max
W

L∑

i=1

bTi Wai, s.t.W
TW = I (3)

The solution corresponds to the best rotational alignment [34] and can be
obtained efficiently using an application of SVD. By computing the SVD of M =
ATB = UΣV T , the optimized transformation matrix W ∗ satisfies W ∗ = U ·V T .
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Based on it, we measure the temporal comparability between an entity eA in set
DA and an entity eB in the other set DB as follows:

Comp(eA, eB) = Simcosine(W ∗ · eA, eB) (4)

5 ILP Formulation for Detecting Comparables

In this section, we describe our method for discovering comparable entity pairs.
Given two sets of entities DA and DB the output are m comparable entity
pairs [p1, p2, ..., pm], where each pair contains an entity from DA and an entity
from DB . Inspired by AP algorithm [11], we formulate our task as a process of
identifying a subset of typical comparable entity pairs. It has been empirically
found that using AP for solving objectives such as in our case (see Eq. (5)) suffers
considerably from convergence issues [41]. Thus, we propose a concise integer
linear programming (ILP) formulation for discovering comparable entities, and
we use the branch-and-bound method to obtain the optimal solution.

Specifically, we formulate the task as a process of selecting a subset of kA and
kB exemplars for each set respectively and choosing m entity pairs based on the
identified exemplars. Each non-exemplar entity is assigned to an exemplar entity
based on a measure of similarity, and each exemplar e represents a subgroup
comprised of all non-exemplar entities that are assigned to e. On the one hand,
we wish to maximize the overall typicality of selected exemplars w.r.t. their
representing subgroups. On the other hand, we expect to maximize the overall
comparability of the top m entity pairs, where each pair consists of two exemplars
from different sets.

We next introduce some notations used in our method. Let eAi denote the ith
entity in DA. MA = [mij ]A is a nA × nA binary square matrix such that nA is
the number of entities within DA. mA

ii indicates whether entity eAi is selected as
an exemplar or not, and mA

ij:i�=j represents whether entity eAi votes for entity eAj
as its exemplar. Similar to MA, the nB ×nB binary square matrix MB indicates
how entities belonging to DB choose their exemplars, where nB is the number of
entities within DB . mB

ii indicates whether entity eBi is selected as an exemplar or
not, and mB

ij:i�=j represents whether entity eBi votes for entity eBj as its exemplar.
Different from MA and MB , MT = [mij ]T is a nA × nB binary matrix whose
entry mT

ij denotes whether entities eAi and eBj are paired together as the final
result. Then the following ILP problem is designed for the task of selecting kA
and kB exemplars for each set respectively and for selecting m comparable entity
pairs:

max λ · m · [T ′(MA) + T ′(MB)]
+ (1 − λ) · (kA + kB) · C ′(MT )

(5)

T ′(MX) =
nX∑

i=1

mX
ii · Typ(eXi , G(eXi )),X ∈ {A,B} (6)

C ′(MT ) =
nA∑

i=1

nB∑

j=1

mT
ij · Comp(eAi , eBj ) (7)
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G(eXi ) =
{
eXj |mX

ji = 1, j ∈ {1, ..., nX}}
,

i ∈ {1, ..., nX} ,X ∈ {A,B} (8)

s.t. mX
ij ∈ {0, 1}, i ∈ {1, ..., nX},

j ∈ {1, ..., nX},X ∈ {A,B} (9)

mT
ij ∈ {0, 1}, i ∈ {1, ..., nA}, j ∈ {1, ..., nB} (10)

nX∑

i=1

mX
ii = kX ,X ∈ {A,B} (11)

nX∑

j=1

mX
ij = 1, i ∈ {1, ..., nX} ,X ∈ {A,B} (12)

mX
jj − mX

ij ≥ 0, i ∈ {1, ..., nX},

j ∈ {1, ..., nX},X ∈ {A,B} (13)

nA∑

i=1

nB∑

j=1

mT
ij = m (14)

mA
ii − mT

ij ≥ 0, i ∈ {1, ..., nA}, j ∈ {1, ..., nB} (15)

mB
jj − mT

ij ≥ 0, i ∈ {1, ..., nA}, j ∈ {1, ..., nB} (16)

nB∑

j=1

mT
ij ≤ 1, i ∈ {1, ..., nA} (17)

nA∑

i=1

mT
ij ≤ 1, j ∈ {1, ..., nB} (18)

We now explain the meaning of the above formulas. First, Eq. (11) forces
that kA and kB exemplars are identified for both sets DA and DB , respectively,
and Eq. (14) guarantees that m entity pairs are selected as the final result. The
restriction given by Eq. (12) means each entity must choose only one exemplar.
Equation (13) enforces that if one entity eXj is voted by at least one other entity,
then it must be an exemplar (i.e., mX

jj = 1). The constraint given by (15) and
(16) jointly guarantees that if an entity is selected in any comparable entity pair
(i.e., mT

ij = 1), then it must be an exemplar in its own subgroup (i.e., mA
ii = 1 and

mB
jj = 1). Restricted by Eqs. (17) and (18), each selected exemplar in the result is

only allowed to appear once to avoid redundancy. T ′(MX) represents the overall
typicality of selected exemplars in both sets DA and DB , and G(eXi ) denotes
the representing subgroup for entity eXi (if eXi is not chosen as an exemplar, its
representing subgroup will be null). C ′(MT ) denotes the overall comparability
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of generated entity pairs. In view of the fact that there are (kA + kB) values
(each value is in [0,1]) in the typicality component T ′(MA) + T ′(MB), and m
numbers (each number is in [0,1]) in the comparability part C ′(MT ), we add the
coefficients m and (kA + kB) in the objective function to avoid suffering from
skewness problem. Finally, the parameter λ1 is used to balance the weight of
the two parts. Our proposed ILP formulation guarantees to achieve the optimal
solution by using branch-and-bound method.

6 Experiments

6.1 Datasets

We perform the experiments on the New York Times Annotated Corpus [32].
This corpus is a collection of 1.8 million articles published by the New York
Times between January 01, 1987 and June 19, 2007 and has been frequently
used to evaluate different researches that focus on temporal information pro-
cessing or extraction in document archives [4]. For the experiments, we first
divide the corpus into four parts based on article publication dates: [1987, 1991],
[1992, 1996], [1997, 2001] and [2002, 2007]. The vocabulary size of each time
period is around 300k. We then set on comparing the pair of time periods which
are separated by the longest time gap, [1987, 1991] (denoted as TA) and [2002,
2007] (denoted as TB). We assume here that the more the two time periods are
farther apart, the stronger is the context change, which increases the difficulty
of finding corresponding entity pairs. We obtain the distributed vector repre-
sentations for time period TA and ones for TB by training the Skip-gram model
using the gensim Python library [30]. The number of dimensions of word vectors
is experimentally set to be 200.

To prepare the entity sets for each period, we retain all unigrams and bigrams
which appear more than 10 times in the collection of news articles within that
period, excluding stopwords and all numbers. We then adopt spaCy2 for recog-
nizing named entities based on all unigrams and bigrams. In total we extract
68,872 entities and 34,151 entities in TA ([1987, 1991]) and TB ([2002, 2007]),
respectively. The details of identified entities are shown in Table 1. The meaning
of sub-categories can be found at spaCy website3. Note that some sub-categories
of entities were not used due to their weak significance, e.g., TIME/DATE.

Table 1. Summary of datasets.

Period LOC PRODUCT NORP WOA GPE PERSON FACT ORG LAW EVENT TOTAL

TA 427 87 2,959 129 7,810 33,127 328 23,775 18 212 68,872

TB 304 44 1,573 91 4,460 16,103 221 11,215 11 129 34,151

1 We experimentally set the value of λ to be 0.4 in Sec “Experiments”.
2 https://github.com/explosion/spaCy.
3 https://spacy.io/api/annotation#named-entities.

https://github.com/explosion/spaCy
https://spacy.io/api/annotation#named-entities
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6.2 Test Sets

As far as we know, there is no ground truth data available for the task of identi-
fication of across-time comparable entities. Hence, we then apply pooling tech-
nique for creating test sets. In particular, we have leveraged the pooling technique
by pulling the resulting comparable entity pairs from all the proposed methods
and baselines as listed in Sect. 6.4). Three annotators then judged every result in
the pool based on the following steps: firstly highlight all the typical entities in
the results, then create reference entity pairs based on the highlighted entities.
There was no limit on the number of highlighted entities nor chosen entity pairs.
The annotators did not know which systems generated which answers. They
were allowed to utilize any external resources or use search engines in order to
verify the correctness of the results. In total, 447 entities and 315 entities were
chosen as typical exemplars for periods TA and TB, respectively. Among them,
168 pairs were constructed.

6.3 Evaluation Criteria

Criteria for Quantitative Evaluation. Given the human-labeled typical
entity set and the comparable entity pairs’ set, we compare the generated results
with the ground truth. We compute precision, recall and F1-score to measure
the performance of each method.

Criteria for Qualitative Evaluation. To further evaluate the quality of the
results we also conducted user-based analysis. In particular, 3 subjects were
invited to annotate the results generated by each method using the following
quality criteria: (1) Correctness - it measures how sound the results are. (2)
Comprehensibility - it measures how easy it is to understand and explain the
results. (3) Diversity - it quantifies how varying and diverse information the
annotators could acquire. All the scores were given in the range from 1 to 5 (1:
not at all, 2: rather not, 3: so so, 4: rather yes, 5: definitely yes). We averaged
all the individual scores given by the annotators to obtain the final scores per
each comparison. During the assessment, the annotators were allowed to utilize
any external resources including the Wikipedia, Web search engines, books, etc.

6.4 Baselines

We prepare different methods to select temporally comparable entity pairs.
We first compare our model with three widely-used clustering methods: K-
Means clustering, DBSCAN clustering [7] and aforementioned AP clustering
[11]. Besides, we also adopt the mutually-reinforced random walk model [5]
(denoted as MRRW) to judge entity typicality based on the hypothesis that
typical exemplars are those who are similar to the other members of its cate-
gory and dissimilar to members of the contrast categories. Finally, we also test
a limited version of our approach called Independent ILP (denoted as I-ILP)
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that separately identifies exemplars of each input sets based on our proposed
ILP framework. I-ILP aims to maximize the overall typicality of selected exem-
plars for each set respectively without considering whether chosen exemplars are
comparable or not. In this study we use the Gurobi solver [12] for solving the
proposed ILP framework. After the exemplars have been selected by the above
methods, we construct the entity pairs which have the maximal comparability
based on identified exemplars as follows.

P ≡ argmax
m∑

i=1

Comp(eAi , eBi ) (19)

where P = [p1, p2, ..., pm] are expected comparables, and pi = (eAi , eBi ). eAi and
eBi are chosen exemplars from the compared sets.

Besides, we also test effectiveness of orthogonal transformation for comput-
ing across-time comparability. To this end, we test the method which directly
compares the vectors trained in different time periods separately without per-
forming any transformation (denoted as Embedding-S + Non-Tran). Moreover,
we also analyze the methods which utilize the distributional entity represen-
tation trained on the combination of news articles from two compared periods
jointly (denoted as Embedding-J). We denote the proposed transformation-based
methods as Embedding-S + OT.

6.5 Experiment Settings

We set the parameters as follows:

(1) number of subgroups of each input set: Following [39] we set the
number k of latent subgroups of each input set as:

k = �√n	 (20)

where n is the number of entities in the set.
(2) number of generated pairs for comparison: In view of the fact that

the number of counterparts for each entity is at most one in the output, we
set the number of generated pairs m to be its upper bound min{kA, kB},
where kA and kB are the numbers of identified exemplars of two compared
entity sets.

(3) number of used CFTs: Following [42] we utilize the top 5% (≈18k) of
Common Frequent Terms to train the orthogonal transformation in Sect. 3.

6.6 Evaluation Results

Results of Quantitative Evaluation. Table 2 shows the performance of all
the analyzed methods in terms of Precision, Recall and F1-score, while we show
the detailed results for a few examples in Table 3. We first notice that the perfor-
mance is extremely poor without transforming the contexts of entities. Only very
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few results in Non-Tran approaches are judged as correct. On the other hand,
although methods based on the jointly-trained word embeddings perform better
than Non-Tran, the performance increase is quite limited. It can be observed
that the across-time orthogonal transformation is quite helpful since it exhibits
significantly better effectiveness in terms of all the metrics than the other two
types of methods. This observation suggests little overlap in the contexts of news
articles separated by longer time gaps, and that the task of identifying temporal
analogous entities is quite difficult.

Moreover, a closer look at Table 2 reveals that regardless of the type of evalua-
tion metric, J-ILP improves the performance of the other models under transfor-
mation. From Table 2, it can be seen that 27.3% entity pairs generated by J-ILP
model are judged as correct by human annotators, and that 29.0% of ground
truth entity pairs are discovered. Specifically, J-ILP improves the baselines by
87.3% when measured using the main metric F1-score on average. These results
are observed because the proposed J-ILP formulation takes both necessary fac-
tors (typicality and comparability) into consideration. Based on this formulation,
the optimal solution can be obtained using the branch-and-bound method.

We also investigate the possible reasons for the poor performance of baselines.
K-Means suffers from strong sensitivity to outliers and noise, which leads to
a varying performance. On the other hand, although AP shares many similar
characteristics with J-ILP, its belief propagation mechanism does not guarantee
to find the optimal solution, hence its lower performance. DBSCAN relies on the
concept of “core point” for identifying exemplars with high density, however it
is possible that a typical point does not have many points lying close to it, and a
“core point” may not be typical in the scenarios of unbalanced clusters. Finally,
MRRW tends to select entities that contain more discriminative features rather
than common traits, which can explain why it has worse performance.

Table 2. Performance of models in terms of Precision, Recall and F1-score. The best
results of each setting are indicated in bold, while the best overall results are underlined.

Method Embedding-S+Non-Tran Embedding-J Embedding-S+OT

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

K-Means 0.027 0.030 0.028 0.081 0.089 0.085 0.186 0.195 0.190

DBSCAN 0.000 0.000 0.000 0.000 0.000 0.000 0.105 0.106 0.105

AP 0.016 0.018 0.017 0.049 0.054 0.051 0.154 0.160 0.156

MRRW 0.000 0.000 0.000 0.027 0.030 0.028 0.132 0.136 0.133

I-ILP 0.016 0.018 0.017 0.049 0.054 0.051 0.165 0.171 0.167

J-ILP 0.000 0.000 0.000 0.124 0.137 0.130 0.273 0.290 0.281

Results of Qualitative Evaluation. Figure 1 shows the evaluation scores in
terms of Correctness, Comprehensibility and Diversity judged by annotators,
respectively. We first note that our J-ILP model achieves better results than the
baselines based on both Correctness and Comprehensibility criteria. On average,
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Table 3. Example results where entity pairs are ground truth. The entity on the left
in parentheses is from period [1987, 1991] while the entity on the right is from [2002,
2007]. The tags (0,1) shown in parentheses denote the appearance of ground truth
entity in results (1 means the entity matches the ground truth exemplars, while 0
means otherwise). Note that only the tag (1,1) indicates the ground truth entity pair
was identified correctly, while (1,1)* denotes that although both entities are recognized
as exemplars, they are not paired together in the results.

Entity pair K-Means DBSCAN AP MRRW I-ILP J-ILP

(iraq, syria) (0,0) (1,1)* (1,0) (1,0) (1,1)* (1,1)

(president reagan, george bush) (1,1)* (0,1) (0,1) (0,1) (1,0) (1,1)

(american express, credit card) (1,0) (0,0) (0,0) (0,0) (1,1) (1,1)

(macintosh, pc) (1,1) (1,0) (0,0) (0,0) (1,0) (1,0)

(salomon, morgan stanley) (0,1) (0,0) (1,0) (1,0) (0,1) (1,1)

(national basketball, world series) (1,1) (0,0) (0,1) (0,0) (0,1) (0,1)

(european community, china) (0,1) (0,0) (0,1) (1,0) (0,0) (0,1)

(pan am, american airlines) (1,1)* (1,0) (1,1)* (0,0) (1,1) (1,0)

(mario cuomo, george pataki) (0,1) (1,0) (0,1) (0,0) (1,1)* (1,1)

(bonn, berlin) (0,0) (0,0) (1,0) (1,0) (1,1) (1,1)

(sampras, federer) (0,0) (1,1) (0,0) (0,0) (0,1) (0,0)

(saddam, al qaeda) (1,1) (1,0) (1,0) (0,1) (0,0) (1,0)

Fig. 1. Qualitative evaluation of results.

J-ILP outperforms baselines by 20.2% and 28.0% in terms of Correctness and
Comprehensibility, respectively. This observation proves that J-ILP has relatively
good performance in detecting dominant and reasonable entity pairs, which tend
to be highly scored by annotators. On the other hand, J-ILP underperforms two
baselines AP algorithm and I-ILP in terms of diversity by 10.0% and 18.2%,
respectively. It may be because AP algorithm and I-ILP are intrincically better
in capturing representative and diverse exemplars, while J-ILP aims to balance
the entity typicality and comparability simultaneously.

6.7 Additional Observations

Effects of Trade-Off Parameter. We perform a grid search to find the best
trade-off parameter λ. We set λ in the range [0.0, 1.0] with a step of 0.1. Note
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that when λ = 1.0, the J-ILP formulation degenerates into the aforementioned
I-ILP model. From Fig. 2, we see that when λ is within the range [0.0, 0.4],
the performance of J-ILP reaches its maximal value and remains stable. On the
other hand, the values of all metrics degrade when increasing the value of λ
after λ = 0.4. In general, we can see that λ needs to be fine-tuned to achieve
an optimal performance. In this study we set λ as 0.4 based on the observations
received from Fig. 2.

Fig. 2. Performance variation of precision, recall and F1-score w.r.t. λ.

Sensitivity to Kernel Choice. In this work we adopt Gaussian kernel func-
tion for computing entity typicality. Let the generated pairs returned by using
Gaussian kernel be PG and the results generated by other popular kernel func-
tions be PO. The difference of PG and PO is measured as the difference rate d
as follows.

d =
|PG − PO|

|PG| · 100% (21)

Table 4. Difference rate vs. kernel function.

Kernel function Quatic Triweight Epanechnikov Cosine

Difference rate 15.9 10.3 5.5 15.9

Table 4 shows that the exemplars identified by different kernels are in general
consistent, as the difference rate d is low.

7 Related Work

Comparable Entity Mining. The task of comparable entity mining has
attracted much attention in the NLP and Web mining communities [15–19,22].
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Approaches to this task include hand-crafted extraction rules [8], supervised
machine-learning methods [26,33] and weakly-supervised methods [17,22]. Jin-
dal et al. [18,19] was the first to propose a two-step system in finding comparable
entities which first tackles a classification problem (i.e., whether a sentence is
comparative) and then a labeling problem (i.e., which part of the sentence is the
desideratum). Later work refined that system by using a bootstrapping algorithm
[22], or extended the idea of mining comparables to different types of corpora
including query logs [16,17] and comparative questions [22]. In addition, com-
parable entity mining is strongly related to the problem of automatic structured
information extraction, comparative summarization and named entity recogni-
tion. Some work lies in the intersection of these tasks [10,24].

Temporal Analog Detection and Embeddings Alignment. A part of our
system approaches the task of identifying temporally corresponding terms across
different times. The related work to this subtask include computing term simi-
larity across time [2,20,21,37]. In this study we represent terms using the dis-
tributed vector representation [27]. Thus the problem of connecting news articles’
context across different time periods can be approached by aligning pre-trained
word embeddings in different time periods. Mikolov et al. proposed a linear trans-
formation aligning bi-lingual word vectors for automatic text translation such as
translation from Spanish to English [28]. Faruqui et al. obtained bi-lingual word
vectors using CCA [9]. More recently, Xing et al. argued that the linear matrix
adopted by Mikolov et al. should be orthogonal [40]. Similar suggestion has
been given by Samuel et al. [36]. Besides linear models, non-linear models such
as “deep CCA” has also been introduced for the task of mapping multi-lingual
word embeddings [25]. In this study we adopt the orthogonal transformation
for computing across-time entity correspondence due to its high accuracy and
efficiency.

To the best of our knowledge, we are the first to focus on the task of automat-
ically generating across-time comparable entity pairs given two entity sets, and
on using the notion of typicality analysis from cognitive science and psychology.

8 Conclusions and Future Work

Entity is an evolving construct. This fact is nicely portrayed by the Latin
proverb: “omnia mutantur, nihil interit” (in English: “everything changes, noth-
ing perishes”) which indicates that there are no completely static things [42].
Across-time comparison based on typical exemplars is an effective strategy used
by humans for obtaining contrastive knowledge or for understanding unknown
entity groups by their comparison to familiar groups (e.g., entities from the past
compared to ones from present). In this work, we propose a novel research prob-
lem of automatically detecting across-time typical comparable entity pairs from
two input sets of entities and we introduce effective method for solving it. We
adopt a concise ILP model for maximizing the overall representativeness and
comparability of the selected entity pairs. The experimental results demonstrate
the effectiveness of our model compared to several competitive baselines.
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In future we plan to test our model on more heterogeneous datasets where
contexts of entities are more difficult to be compared. We will also modify our
model for query-sensitive comparative summarization tasks benefiting from high
flexibility of the proposed ILP framework.

Acknowledgements. This research has been supported by JSPS KAKENHI grants
(#17H01828, #18K19841). We thank the anonymous reviewers for their insightful
comments.

References

1. Bairi, R.B., Carman, M., Ramakrishnan, G.: On the evolution of Wikipedia:
dynamics of categories and articles. In: AAAI (2015)

2. Berberich, K., Bedathur, S.J., Sozio, M., Weikum, G.: Bridging the terminology
gap in web archive search. In: WebDB (2009)

3. Breiman, L., Meisel, W., Purcell, E.: Variable kernel estimates of multivariate
densities. Technometrics 19(2), 135–144 (1977)

4. Campos, R., Dias, G., Jorge, A.M., Jatowt, A.: Survey of temporal information
retrieval and related applications. ACM Comput. Surv. (CSUR) 47(2), 15 (2015)

5. Chen, Y.N., Metze, F.: Two-layer mutually reinforced random walk for improved
multi-party meeting summarization. In: 2012 IEEE SLT, pp. 461–466. IEEE (2012)

6. Dubois, D., Prade, H., Rossazza, J.P.: Vagueness, typicality, and uncertainty in
class hierarchies. Int. J. Intell. Syst. 6(2), 167–183 (1991)

7. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp.
226–231 (1996)

8. Etzioni, O., et al.: Web-scale information extraction in knowitall: (preliminary
results). In: Proceedings of the 13th WWW, pp. 100–110. ACM (2004)

9. Faruqui, M., Dyer, C.: Improving vector space word representations using multi-
lingual correlation. In: EACL, pp. 462–471 (2014)

10. Feldman, R., Fresco, M., Goldenberg, J., Netzer, O., Ungar, L.: Extracting product
comparisons from discussion boards. In: Data Mining, ICDM 2007, pp. 469–474.
IEEE (2007)

11. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science
315(5814), 972–976 (2007)

12. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2016). http://www.
gurobi.com

13. Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal
statistical laws of semantic change. arXiv preprint arXiv:1605.09096 (2016)

14. Hua, M., Pei, J., Fu, A.W., Lin, X., Leung, H.F.: Efficiently answering top-k typ-
icality queries on large databases. In: Proceedings of VLDB, pp. 890–901. VLDB
Endowment (2007)

15. Huang, X., Wan, X., Xiao, J.: Learning to find comparable entities on the web. In:
Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE 2012. LNCS, vol. 7651, pp.
16–29. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35063-4 2

16. Jain, A., Pantel, P.: Identifying comparable entities on the web. In: Proceedings of
the 18th ACM CIKM, pp. 1661–1664. ACM (2009)

17. Jiang, Z., Ji, L., Zhang, J., Yan, J., Guo, P., Liu, N.: Learning open-domain com-
parable entity graphs from user search queries. In: Proceedings of the 22nd ACM
CIKM, pp. 2339–2344. ACM (2013)

http://www.gurobi.com
http://www.gurobi.com
http://arxiv.org/abs/1605.09096
https://doi.org/10.1007/978-3-642-35063-4_2


Across-Time Identification of Comparable Entities 365

18. Jindal, N., Liu, B.: Identifying comparative sentences in text documents. In: Pro-
ceedings of ACM SIGIR, pp. 244–251. ACM (2006)

19. Jindal, N., Liu, B.: Mining comparative sentences and relations. In: AAAI, vol. 22,
pp. 1331–1336 (2006)

20. Kaluarachchi, A.C., Varde, A.S., Bedathur, S., Weikum, G., Peng, J., Feldman,
A.: Incorporating terminology evolution for query translation in text retrieval with
association rules. In: CIKM, pp. 1789–1792. ACM (2010)

21. Kanhabua, N., Nørv̊ag, K.: Exploiting time-based synonyms in searching document
archives. In: JCDL, pp. 79–88. ACM (2010)

22. Li, S., Lin, C.Y., Song, Y.I., Li, Z.: Comparable entity mining from comparative
questions. IEEE TKDE 25(7), 1498–1509 (2013)

23. Lieberman, E., Michel, J.B., Jackson, J., Tang, T., Nowak, M.A.: Quantifying the
evolutionary dynamics of language. Nature 449(7163), 713 (2007)

24. Liu, J., Wagner, E., Birnbaum, L.: Compare&contrast: using the web to discover
comparable cases for news stories. In: Proceedings of the 16th WWW, pp. 541–550.
ACM (2007)

25. Lu, A., Wang, W., Bansal, M., Gimpel, K., Livescu, K.: Deep multilingual corre-
lation for improved word embeddings. In: NAACL HLT, pp. 250–256 (2015)

26. McCallum, A., Jensen, D.: A note on the unification of information extraction and
data mining using conditional-probability, relational models (2003)

27. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

28. Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for
machine translation. arXiv preprint arXiv:1309.4168 (2013)

29. Pagel, M., Atkinson, Q.D., Meade, A.: Frequency of word-use predicts rates of
lexical evolution throughout indo-European history. Nature 449(7163), 717 (2007)
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Abstract. Entity alignment aims to find entities referring to the same
real-world object across different knowledge graphs (KGs). Most exist-
ing works utilize the relations between entities contained in the relation
triples with embedding-based approaches, but require a large number
of training data. Some recent attempt works on using types of their
attributes in attribute triples for measuring the similarity between enti-
ties across KGs. However, due to diverse expressions of attribute names
and non-standard attribute values across different KGs, the information
contained in attribute triples can not be fully used. To tackle the draw-
backs of the existing efforts, we novelly propose an unsupervised entity
alignment approach using both attribute triples and relation triples of
KGs. Initially, we propose an interactive model to use attribute triples by
performing entity alignment and attribute alignment alternately, which
will generate a lot of high-quality aligned entity pairs. We then use these
aligned entity pairs to train a relation embedding model such that we
could use relation triples to further align the remaining entities. Lastly,
we utilize a bivariate regression model to learn the respective weights of
similarities measuring from the two aspects for a result combination. Our
empirical study performed on several real-world datasets shows that our
proposed method achieves significant improvements on entity alignment
compared with state-of-the-art methods.
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1 Introduction

Entity alignment is a core task in knowledge graphs (KGs) integration, which
aims to find entities referring to the same real-world object across different KGs.
It is pretty challenging due to the diverse expressions and structures of knowledge
in different KGs. An example of entity alignment scenario is depicted in Fig. 1,
where both e12 from the KG1 and e22 from the KG2 refer to Steven Jobs.

Most existing approaches for entity alignment tend to utilize the relations
between entities on different KGs. Typically, they encode these entities and their
relations with the other entities on KGs into a semantic space, such that the sim-
ilarity between entities could be measured. Various embedding models, TransE
[2] and its variants [12,13,19], have been proposed to perform the encoding. How-
ever, building the relation embedding model requires a large number of aligned
entity pairs for training, which may not always be easily available. In addition,
entity relations do not always have high quality (such as incompleteness or inac-
curacy), which may harm the accuracy of the entity alignment results. Out of
these reasons, some researchers turn to explore how to leverage crowdsourcing
to achieve large-scale annotated data for training [21].

Fig. 1. An example for entity alignment between two KGs

Some recent attempt utilizes the attributes of entities in entity alignment.
An alignment model called JAPE (Joint Attribute-Preserving Embedding) [17] is
proposed, which jointly embeds the structures of two KGs into a unified vector
space and further refines it by leveraging the attribute correlations between
KGs. To avoid from tackling the problem of diverse expressions of attribute
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values, JAPE does not fully use the information of attribute values, but simplifies
the attribute values into data types, e.g., (Steven Jobs, birthdate, 1955-02-24)
is simplified into (Steven Jobs, birthdate, Datetime). So far, no existing work
considers to fully use attribute names and values for entity alignment given that
both the expressions of attributes and attribute values are diverse across KGs. As
can be observed in Fig. 1, an attribute “birth time” could be denoted by “birth-
time” in KG1 but “birthdate” in KG2. There also exist a lot of non-standard
attribute values in KGs, e.g., a date time could be represented in several different
formats such as “1955-02-24”, “02/24/1955”, and “24th Feb. 1955”, etc.

To tackle the drawbacks of the existing approach, we propose an unsupervised
entity alignment approach using both attribute triples and relation triples of
KGs. Initially, we propose to fully use attribute triples for entity alignment,
which will generate a lot of high-quality aligned entity pairs. We then use these
aligned entity pairs to train a relation embedding model such that we could use
relation triples to further align the remaining entities.

The challenge lies on how to fully use attribute triples for entity alignment.
So as to tackle the two challenges mentioned above in using attribute triples for
entity alignment, we novelly propose an interactive approach for entity alignment
by performing entity alignment and attribute alignment alternately. It is worth
noting that instead of performing entity alignment based on attribute names
and values in one round, which deprives us further chances to update the align-
ment results, we make full use of the interaction between them to benefit each
other in an iterative way. That is, we first perform entity alignment using values
of common attributes and then do attribute alignment based on the matched
entities, which could mutually promote the two alignment results iteratively.

Lastly, we utilize a bivariate regression model to learn respective weights
of the similarity results, measured from the proposed iteration model using
attribute triples and the relation embedding model using relation triples. In this
way, we could fit the weights between the leveraging of relations and attributes.
That is, on one hand, it is definitely beneficial for the alignment of entities with
few relations in KGs to use attributes. On the other hand, taking advantage of
relations could greatly reduce the harm brought by the inconsistent expressions
of attributes names and values across different KGs.

We summarize our contributions as follows:

– We propose an unsupervised entity alignment approach using both attribute
triples and relation triples of KGs, where the entity alignment results based
on attribute triples could provide the training data for learning the relation
embedding model based on relation triples.

– To deal with the challenges of diverse expressions of attributes names, we
novelly propose an interactive approach for entity alignment by performing
entity alignment and attribute alignment alternately.

– We utilize a bivariate regression model to fit the weights between the lever-
aging of relations and attributes in merging the alignment results of the two
models.
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Our empirical study conducted on several real-world data sets demonstrates
that our entity alignment approach reaches a higher precision than the state-of-
the-art relationship-embedding and attribute-embedding approaches.
Roadmap. The rest of the paper is organized as follows: We define the entity
alignment problem in Sect. 2, and then present our approach in Sect. 3. After
reporting our empirical study in Sect. 4, we cover the related work in Sect. 5. We
finally conclude in Sect. 6.

2 Problem Definition

A typical KG consists of a number of facts, usually in the form of triples denoted
by (subject, predicate, object), where the subject is an entity, and the object can
be either another entity or an attribute value of the subject entity. We call a
triple as a Relation Triple if the object of the triple is also an entity and the
predicate denotes the relation between the two entities. We call a triple as an
Attribute Triple if the predicate denotes an attribute of the entity and the object
of the triple is the corresponding attribute value of the entity.

Given two KGs, the task of entity alignment aims at identifying all pairs
of entities referring to the same real-world objects between the two KGs. More
formally, we define the entity alignment problem as follows.

Definition 1 (Entity Alignment). Given two knowledge graphs denoted by
KG1 = {E1, RT1, AT1} and KG2 = {E2, RT2, AT2}, where Ei, RTi and ATi

are the set of entities, relation triples and attribute triples of KGi respectively
(i = {1, 2}), the task of Entity Alignment aims at finding every entity pair
{(e1m, e2n)|m ∈ [1, |E1|], n ∈ [1, |E2|], e1m ∈ E1, e

2
n ∈ E2, e

1
m � e2n}, where e1m � e2n

means e1m and e2n refer to the same real-world object.

3 Our Approach

The architecture of our approach is given in Fig. 2: The inputs are two KGs, KG1

and KG2, and the outputs are aligned entity pairs. Our approach uses both
relation triples and attribute triples for entity alignment, and then combines
the two alignment results by using a bivariate regression model to learn the
respective weights. In our approach, we propose to fully use attribute triples for
entity alignment, which will generate a lot of high-quality aligned entity pairs.
We then use these aligned entity pairs to train a relation embedding model
(called structure embedding) such that we could use relation triples to further
align the remaining entities. For using attribute triples for entity alignment,
we novelly propose an interactive approach for entity alignment by performing
entity alignment and attribute alignment alternately.

In the following of this section, we first introduce the interactive model using
attribute triples for entity alignment in Sect. 3.1, and then employ the results of
the interactive model on the structure embedding for the training set in Sect. 3.2.
We finally present how we use the bivariate regression model for alignment results
combination in Sect. 3.3.
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Fig. 2. Architecture of our approach

3.1 An Interactive Model Using Attribute Triples

A basic way to use attribute triples for entity alignment is to identify the per-
centage of common attributes and attribute values between the attribute triples
of two entities, according to which we could measure a similarity between enti-
ties. However, the number of the common attributes with the same names across
different KGs might be small. The diverse expressions of attribute values also
aggravate the case. Thus it is very intractable for entity alignment with the basic
way.

In this approach, we would like to perform attribute alignment together with
entity alignment, based on the observation that the two tasks could be mutually
reinforced by each other. That is, the matched entities are helpful to find more
matched attributes and vice versa. Therefore, we propose an interactive model
to make the two processes perform alternately.

Specifically, in each iteration, we first do entity alignment based on attribute
values and build the matching set of entity pairs OE increasingly and then
employ the results to do attribute alignment and establish the matching set of
attribute pairs OA cumulatively. We iteratively repeat the above process until
there are no more new common attributes or matched entities generated. The
algorithm of interactive model is introduced in Algorithm1. Next, we introduce
the details of the interactive model as follows.

(1) Entity Alignment Based on Aligned Attributes. As mentioned before,
we do entity alignment based on the common attributes between KGs. How-
ever, we find that there exists a huge gap in the same entities’ attributes when
analyzing data extracted from Baidu Encyclopedia and Wikipedia. This results
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Algorithm 1. An Interaction Algorithm
Input : KGi = {Ei, RTi, ATi}, i = 1, 2, where Ei = {ei1, ei2, ..., ei|Ei|}, RTi, ATi

denote the Relation Triples and Attribute Triples. Te, Ta denote the
threshold of the accepted Entity Pairs and Attribute Pairs.

Output: Matching Entity Pairs

1. Set OE = OA = Oiter
A = Oiter

E = �, where OE ,OA stand for all accepted
matching Entity Pairs and Attribute Pairs, Oiter

E ,Oiter
A are the results of iter-th

iteration. And let iter = 0;

2. while Oiter
E �= � or Oiter

A �= � or iter = 0 do
3. Oiter

E = Oiter
A = �;

4. ∀ep = (e1i , e
2
j ), e

1
i ∈ E1, e

2
j ∈ E2;

5. if Sim(e1i , e
2
j ) ≥ Te then

6. Add (e1i , e
2
j ) to Oiter

E ,OE ;
end
7. Extract two attribute sets Attr1, Attr2 from KG1 and KG2, among
which are all belonging to the entities in OE ;
8. ∀ap = (attr1i , attr

2
j ), attr

1
i ∈ Attr1, attr

2
j ∈ Attr2;

9. if SimA(attr1i , attr
2
j ) ≥ Ta then

10. Add (attr1i , attr
2
j ) to Oiter

A ,OA;
11. Replace attr1i in KG1 to attr2j ;

end
12. iter + +;

end
return OE ,OA;

from the following reasons: low coverage of attributes, various values of common
attributes, and diversity of attribute names.

First, when using the values of attributes to do entity alignment, we find that
the coverage of attributes is very low such that we cannot give the attributes
different weights from a holistic view according to their importance, just like the
way we do in relational databases. Thus, we have to repute that all common
attributes of two entities share the equal weights. Based on this idea, we define
the following function to calculate the similarity between two entities:

SimA(e1, e2) =
1
n

n∑

k=1

SimV (v1
k, v

2
k) (1)

where SimA(e1, e2) denotes the similarity between entities e1 and e2, v1
k repre-

sents the e1’s value of the k − th attribute owned by both e1 and e2, and n is
the size of all same attributes. SimV denotes the similarity between attribute
values, v1

k and v2
k, which is defined as the following equation:

SimV (v1
k, v

2
k) =

lcsSim(v1
k, v

2
k)

levenshteinSim(v1
k, v

2
k) + lcsSim(v1

k, v
2
k)

(2)
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where levenshteinSim(·, ·) is Levenshtein distance [8], a string metric for mea-
suring the difference between two sequences. lcsSim(·, ·) measures the similarity
through two strings’ Longest Common Substring [9]. As a result, we can make
full use of entities’ common attributes to represent the entities’ similarity.

Second, we also find that although entities have the common attributes, the
values often vary greatly, especially for numeric attributes, e.g., the form of a per-
son’s birth time may show as “1955-02-24”, “24/02/1955”, or “24th Feb. 1955”,
etc. If calculating their similarity through SimV (·, ·), the results will be rather
inaccurate. Moreover, due to different statistical time, the values of the number
vary a lot, e.g., the values of attribute “population” for the same city in different
datasources are different in different years. So as to tackle these problems, we
normalize values into the most popular ones, e.g., “yyyy-mm-dd” for date. Then
we extract all numbers in string through regular expression and define the fol-
lowing function to calculate their values’ similarity through extracting number
from the normalized values:

Sim(num1, num2) =
|num1 − num2|

max(num1, num2) + 1
(3)

And only if Sim(num1, num2) ≤ 0.01, num1 will be seen as equivalence to
num2. Furthermore, we normalize some other attributes like area, length, height,
population.

Last but not the least, considering the case when two entities share no com-
mon attributes, we are unable to calculate their similarity even if they refer to
the same real-world object. In addition, the diversity of attribute names across
KGs makes the phenomenon quite serious, such as the attribute “birth time”
displaying as “birthdate” in Baidu Encyclopedia but presenting as “birth-time”
in Wikipedia. We cannot use this kind of attributes well for entity alignment.
Therefore, we decide to utilize the aligned entities to align this kind of attributes.
The details will be introduced in the following part.

(2) Attribute Alignment Based on Aligned Entities. As mentioned before,
we can find more possibly aligned attribute pairs by leveraging the set of aligned
entity pairs. Supposing that in a certain iteration iter, we have a set of aligned
entity pairs, OE

iter = {ep1, ep2, ep3, ..., ep|OE
iter|} where epi is the aligned entity

pair (e1i , e
2
j ). Next, for the candidate attribute pairs (a1

m, a2
n) which are possessed

by the subset of OE
iter denoted as EP (a1

m,a2
n)

= {ep1, ep4, ep10, ..., epk}. We lever-
age all values of attributes owned by entity pairs to represent the similarity of
attribute pairs. For each epl(1 ≤ l ≤ k) whose attribute values are vi

m and vi
n

for attribute pair (a1
m, a2

n), the similarity can be calculated with the following
equation:

SimA(a1
m, a2

n) =
1
Z

Z∑

i=1

SimV (vi
m, vi

n) (4)

where Z = |EP {a1
m,a2

n}| represents the size of EP (a1
m,a2

n)
and SimV (·, ·) denotes

the similarity between attribute values. Here we take a running example to
illustrate our model as follows.
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Fig. 3. An example of interactive alignment model

Example 1. As we can see in Fig. 3, we suppose the precondition is a1
i = a2

i , i ∈
[1, 5] and we do not know the matching results of the remaining attributes.
Under the precondition, each entity pair has at least one common attribute
except (e13, e

2
4). Through leveraging these attribute alignment seeds, we can get

two aligned entity pairs (e11, e
2
1) and (e12, e

2
2), but they are not able to determine

whether e13 and e24 are aligned. Then, based on the two aligned entity pairs, we do
attribute alignment. Two more attribute matching pairs (a1

6, a
2
6) and (a1

8, a
2
8) are

generated. In the next iteration, leveraging the attribute alignment results gen-
erated in the first iteration, we can determine the matching result of the entity
pair (e13, e

2
4), which is aligned.

3.2 Structure Embedding

We select entity pairs with high confidence (larger than a predefined threshold)
from the results of interactive model as the training set for structure embedding.
Then we use relation triples and the training set to do structure embedding (SE),
aiming to model the geometric structures of two KGs and learning approximate
representations for entities and relations. Formally, given a relation triple tr =
(h, r, t) where h is the head entity and r is the tail entity, we expect h + r = t.
To measure the plausibility of tr, SE model optimizes the margin-based ranking
loss to make the scores of positive triples lower than negative ones [17]:

OSE =
∑

tr∈Tr

∑

tr′∈Tr′
(f(tr) − α(tr′)) (5)

where f(tr) = ||h+r−t||22 is the score function, Tr and Tr′ are the sets of all pos-
itive triples and the associated negative triples, and α is a ratio hyper-parameter
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that weights positive and negative triples and its range is [0, 1]. Through the
above embedding process, we could learn approximate vector representations of
the entities across KGs, e.g., in order to get the similarity between an entity pair
(ei, ej), we can calculate its similarity with entities’ embedding results (ei ,ej )
according to the following equation:

simR(ei, ej) = cos(ei ,ej ) (6)

3.3 A Bivariate Regression Model for Weights Allocation

As we said before, we represent the similarity between entities both from the
aspects of relations and attributes. Specifically, we incorporate the similarities
calculated by the relation triples and attribute triples in linear weighting. We
utilize the following formulation to represent the final similarity of any entity
pair ei ∈ KG1 and ej ∈ KG2:

Sim(ei, ej) = λ · simR(ei, ej) + (1 − λ) · simA(ei, ej) (7)

where simR(·, ·) is the similarity measure to calculate the embedding similarity
using relation triples, and simA(·, ·) represents the similarity of entities calcu-
lated through their attribute triples. λ is the parameter to balance the impor-
tance of left part and right part.

Instead of setting parameter λ artificially, we take the aligned entity pairs
as training data to learn λ through a bivariate regression model. It comes
from the fact that for different datasets, the respective importance of rela-
tions and attributes should be different, i.e., for a data set full of entities with
high-quality relations, the weight of relations should have a higher confidence.
On the contrary, if the number of entities’ relations is quite small, attributes
should be assigned with a higher weight. Specifically, we leverage those train-
ing entity pairs, also treating as the training set of Unsupervised SE model,
to construct the input of our regression model. e.g., for a matched entity pair
(ei, ej), we suppose it’s final similarity to be 1.0. So we let the input form
be (simR(ei, ej), simA(ei, ej), 1.0). We want the final similarities Sim(ei, ej) of
these matching entity pairs close to 1.0 as much as possible. Besides, we use MSE
(Mean Squared Error) [20] as our loss function and SGD [3] as the optimizer.

4 Experiments

We first introduce our datasets and the metrics we would use for evaluation, and
then represent the existing state-of-the-art approaches that we would compare
with. Finally, we evaluate our proposed approach on several metrics.
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4.1 Datasets and Metrics

We collect our data from Baidu Encyclopedia1, Wikipedia2 and Hudong Ency-
clopedia3. We extract triples from the infobox, if a value in the infobox is a link
or contains several links, we will save it as a relation triple or separate it into
several relation triples. Otherwise, we take it as an attribute triple. Then, we do
object linking for all triples to replace the values with the URIs of the entities
that they actually refer to in the KG. Specially, for some relation triples, whose
objects are not in our KG, we treat them as attribute triples, aiming to construct
a small but complete KG. Here, we have two datasets where one is about persons
entities, places entities and others, while the other is about natural creatures,
like animals and plants. As we can see in Table 1, the number of attribute triples
are nearly 4 times of relation triples in the first dataset while the number of
relation triples and attribute triples are almost equal in the second dataset.

Table 1. Statistics of the datasets

Datasets Entities Relations Attributes Rel. triples Attr. triples

Dataset1 Baidu 12,647 715 5,166 29,373 108,052

Wiki 8,218 231 1,904 14,351 66,249

Dataset2 Baidu 13,983 470 2,322 79,025 79,658

Hudong 10,263 79 870 44,613 56,270

As for the evaluation metrics, we use Hits@k and Mean to assess the per-
formance of the approaches. Hits@k reflects the proportion of correctly aligned
entities ranked in the top k. And Mean calculates the mean of these ranks. Nat-
urally, a higher Hits@k and a lower Mean indicate a better performance. We
also evaluate the influence on the precision of the iterative time in the interactive
model.

4.2 Approaches for Comparison

In this section, we briefly introduce five comparative methods including SE [2],
JAPE [17], our proposed Baseline Model, the Interactive Model and Interactive
Model + Unsupervised SE.

– The SE method aims to learn representations of all entities and relations
in KG1 and KG2. In order to model the geometric structures of two KGs,
SE serves the seed alignments as bridge to build an overlay relationship
graph, essentially encoding the entities and relationships of various KGs into
a semantic space to measure the similarity between entities.

1 https://baike.baidu.com.
2 https://zh.wikipedia.org.
3 http://www.baike.com.

https://baike.baidu.com
https://zh.wikipedia.org
http://www.baike.com
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– The JAPE method jointly embeds the structures of two KGs into a unified
vector space and further refines it by leveraging attribute correlations in the
KGs. It employs two models, namely structure embedding (SE) and attribute
embedding (AE), to learn embedding of KGs where SE models relation struc-
tures of two KGs from the aspect of relation triples and AE attempts to
encode the entities more accurately leveraging attribute triples.

– The Baseline only leverages the attribute values to do entity alignment just
one time and attribute alignment is not involved.

– The Interactive Model (IM for short) also just considers the attribute val-
ues, but different from Baseline, it also lets entity alignment and attribute
alignment benefit each other iteratively.

– The Interactive Model + Unsupervised SE (IMUSE for short) method takes
some high-quality entity pairs generated by the Interactive Model as the train-
ing data of Unsupervised SE model, and then incorporates results of two
models by linear weighting.

4.3 Experimental Results

(1) Top-K and Mean Results. For SE and JAPE, we use 60% entity pairs of
the groundtruth as alignment seeds while the rest is the testing data. Note that
the other three methods do not need these seeds for training. The predefined
thresholds are 0.89 and 0.92 respectively for dataset1 and dataset2. As can be
seen from Table 2, when varying hits@k, IMUSE always largely outperforms the
other methods on the two datasets in that it incorporates relation embedding
method with attribute-value based method which can find more aligned entities.
And JAPE performs better than SE since it encodes entities through jointly
embedding the relation and attribute triples. And we can see that the iterative
process enables IM perform better than Baseline, because IM can benefit from
the interaction to align more entities. We can also see that in Table 2, IMUSE
has the smallest Mean values among IM and Baseline in two datasets while SE
and JAPE have the highest Mean values.

Table 2. Comparison with Hits@k and Mean

Approaches Dataset1 Dataset2

Hits@1 Hits@5 Hits@10 Mean Hits@1 Hits@5 Hits@10 Mean

SE 0.5825 0.6539 0.7464 29 0.6331 0.6570 0.6982 58

JAPE 0.6317 0.7182 0.8157 17 0.7029 0.7362 0.7451 30

Baseline 0.7162 0.9448 0.9682 8 0.6102 0.8943 0.9270 14

IM 0.7901 0.9590 0.9747 5 0.6809 0.9274 0.9416 10

IMUSE 0.8232 0.9593 0.9755 3 0.7336 0.9328 0.9560 7

It is noticeable that the results of these models on the two datasets perform a
little difference on Hits@1, which results from the following reasons. (1) Entities
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in the first dataset have an average of 2 relations and 8 attributes while entities
in the second dataset have 5 relations and 5 attributes averagely. Therefore, SE,
only using entities’ relation information, performed worse than Baseline and IM
on the dataset1 but better on the dataset2. (2) As is shown in Table 1, the kinds
of relations and attributes are much smaller in the dataset2 than in the dataset1.
So, these methods performed a little worse on the dataset2. (3) Entities in the
dataset2 are mainly about animals and plants, whose properties (relations and
attributes) are almost “Kingdom”, “Phylum”, “Classes”, “Family”, etc, and the
values under these properties are very similar. So, the final result of dataset2 is
not so good as that in the dataset1.

(2) The Effectiveness of Iterations. We also evaluate the influence of itera-
tions on Hits@1 for our proposed method IMUSE. As shown in Fig. 4, with the
increase of iterative time, Hits@1 also went up with it since new aligned attributes
contribute to aligning more entities and vice versa. In addition, when the iterative
time increases to 4 and 3 for the dataset1 and the dataset2 respectively, Hits@1
of them keep stable in that no more entities or attributes can be aligned.
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Table 3. The effectiveness of dynamic combination

SE IM Static combination Dynamic combination

Dataset1 0.5825 0.7901 0.8127 0.8232

Dataset2 0.6331 0.6809 0.7110 0.7336

(3) Dynamic Combination (Bivariate Regression) v.s. Static Combi-
nation. Instead of combining the results generated by Interactive Model and
Unsupervised SE in a static way, we choose to learn respective weights of simi-
larities measuring from the aspects of relations and attributes through bivariate
regression, called Dynamic Combination. On the contrary, we manually give the
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two results the same weights to combine them together to represent the pro-
cess of Static Combination. As is shown in Table 3, Dynamic Combination truly
performs better than Static Combination because learning weights contain the
information of different importance of the entities’ relations and attributes when
doing entity alignment.

(4) The Effectiveness of Different Predefined Thresholds. As mentioned
before, the predefined threshold enables us to select entity pairs with high con-
fidence as the training set for structure embedding. Obviously, the higher the
threshold is, the higher accuracy that the training set is, but the less training
entity pairs it gets. Intuitively, there may be a balance between the accuracy and
quantity. In order to find the optimal result, according to the size of training
set, we set five different thresholds, corresponding to 30%, 40%, 60%, 80% and
90% of the size of SE’s training set, to illustrate the idea on two datasets.

As we can see in Fig. 5, on dataset1 when the threshold decreases, the value of
hit@1 goes up. When the threshold is 0.52, the accuracy is the highest, 86.25%.
After that, it begins to drop. Similarly, on the dataset2 the accuracy reaches the
best result, 76.27%, when the threshold is 0.68. Therefore, we can conclude that
the predefined threshold truly plays an important role to the final results.

5 Related Work

Entity alignment is a sub-problem of KG integration. In this section, we first
give some introduction to a similar problem of KG integration called database
integration, and then cover some mainstream methods on entity alignment.

5.1 Database Integration v.s. KG Integration

Data integration in relational databases has gained lots of attentions [11], which
consists of two main tasks, i.e., Record Matching [5] and Schema Matching [16].
Record Matching aims at identifying records in the same or different databases
that refer to the same real-world objects.
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There are several typical approaches commonly used to detect approximately
duplicate records such as probabilistic methods [14], supervised or unsuper-
vised machine learning techniques [15,18], variations based on active learning
[4], etc. Schema Matching refers to matching combinations of elements that
appear together in a structure. In current implementations, schema matching is
typically performed manually, which has significant limitations. Of course, some
automatic matching algorithms have been proposed based on name similarity
[1], description similarity [10], etc. Besides, some other methods [6] incorporate
crowdsourcing to improve the accuracy of automatic algorithms.

Compared to the relational database integration, KG integration is more
challenging due to the complex structures of KGs and more diverse expressions
of properties and values. In relational databases, entities belonging to the same
field always appear in the same table. Even if some difficulties, like transcription
errors and incomplete information, actually exist, these entities’ properties are
all same to each other. However, due to diverse expressions of properties and
values in KGs, only a few entities have identical properties. As a result, entity
alignment in KGs are faced with more challenges.

5.2 Entity Alignment

Entity alignment is pretty challenging due to the diverse expressions and struc-
tures of knowledge in different KGs. So far, plenty of work has been done on
this problem, most of which are based on embedding methods. Some of them
only leverage relation triples, commonly called KG Embedding, while the others
jointly embed both relation and attribute triples, like JAPE [17].

KG Embedding. Recently, a lot of researchers have been trying every effort
to learning and improving KG embedding. For example, TransE [2], the basic
of all embedding based methods, treats a relation triple as (h, r, t) where h
is head entity, r is relation, and t is tail entity. TransE tries to embed entities
and relations of multi-relational data to low-dimensional vector spaces. So as to
decrease the costs of training and reduce the number of parameters, Bordes et
al. interpret relations as translating operations from head to tail entities, which
can be expressed as h + r = t. Since then, a lot of embedding models have
been proposed to improve TransE, such as TransR [13] and PTransE [12]. Dif-
ferent from TransE, they project both entities and relations into a continuous
vector space. Specifically, TransR model maps entities and relations into sepa-
rated entity space and relation space, and performs translation in relation space.
Considering that TransE only leverages individual triples and ignores multi-step
relation paths, PTransE [12] encodes multi-step paths to address this issue. How-
ever, most of these methods just focus on how to encode relation triples in better
ways, neglecting those attribute triples. Especially for the entities lacking in rela-
tions, it does not work well if only leveraging relations.

JAPE. In order to take advantage of attribute triples, Sun et al. propose an
alignment model called JAPE (Joint Attribute-Preserving Embedding) which
focuses on the cross-lingual entity alignment [7]. It jointly embeds the structures
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of two KGs and further refines it by leveraging attribute correlations in the
KGs. Specifically, it employs two models, namely structure embedding (SE) and
attribute embedding (AE), to learn embedding of KGs where SE models relation
structures of two KGs from the aspect of relation triples and AE attempts to
cluster those attributes often used together to describe an entity. The average of
attributes embedding results will be used to encode entities. As a result, those
entities which possess similar attributes will be close to each other. Finally, it
combines SE and AE to jointly embed all the entities in two KGs into a unified
vector space. However, JAPE does not use the information of attribute values
well. Alternatively, so as to tackle the problem of diverse expression of values,
they reduce the attribute values to data type, e.g., (Barack Obama, birthdate,
1961-08-04) is replaced by (Barack Obama, birthdate, Datetime). Obviously, it
is just a coarse-grain way to deal with attribute values where the importance
of attribute values is ignored. In order to overcome the heterogeneity between
different KGs, we propose an interactive approach to integrate entity alignment
and attribute alignment together.

6 Conclusions and Future Work

We work on leveraging both relation and attribute triples to do entity alignment
between two KGs through our proposed model. In order to make full use of
attribute triples, we propose an interactive method to do entity alignment and
attribute alignment to calculate the similarities. And then we utilize the results
of the interaction as the training set to embed relation triples for computing the
similarities in an unsupervised manner. Last, we incorporate the two kinds of
results in linear weights to represent the final similarities of entity pairs through a
bivariate regression model. Our experiments on real-world datasets demonstrate
that our approach performs much better than the state-of-the-art methods.

In the future work, we look forward to decreasing the influence of non-
standard attribute values by learning patterns to build standard data forms.
In addition, we would like to turn to crowdsourcing to help decide whether
attribute pairs with great difference in expressions should be aligned.
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Abstract. Recently heterogeneous information network (HIN) has
gained wide attention in recommender systems due to its flexibility in
modeling rich objects and complex relationships. It’s still challenging for
HIN based recommenders to capture high-level structure and fuse the
mined features of users and items effectively. In this paper, we propose
an approach for the recommendation over HIN, called MGAR, which
combines Meta-Graph and Attention to address the challenge. Informally
speaking, meta-graph is applied to feature extraction, so as to capture
more semantic information, while the attention mechanism is used to fuse
the features arising from different meta-graphs. MGAR can be divided
into two stages. In the first stage, we apply the matrix factorization tech-
nique to generate latent factors based on predefined meta-graphs. In the
second stage, the embeddings of users and items are fused with the neu-
ral attention mechanism. And then the deep neural network is employed
to make recommendations by modeling complicated interactions. Exper-
iments over two real datasets indicate MGAR achieves state-of-the-art
performance.

Keywords: Heterogeneous information network · Meta-graph ·
Attention · Recommender system

1 Introduction

Recommender system gains extensive attention with the widespread use of the
Internet. Users’ preferences can be mined from the feedback of items that were
rated or clicked in recommender systems. For example, on Yelp1, users are pro-
vided a 5-point rating scale to express their likes and dislikes of each item.
Existing models mainly utilized the rating information to make recommenda-
tions. But they can not address the sparsity and cold start issues. Actually,
there is rich semantic information in different types of data, which can be con-
sidered as a starting point to alleviate the above two issues. But it is not yet
easy to incorporate the heterogeneity of data to the recommender system.
1 http://www.yelp.com.
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Heterogeneous information network (HIN) [20] is proposed to capture rich
semantic information in data, which is promising to solve the challenges of
sparsity and cold start. Figure 1(a) shows a example of HIN schema on Yelp
dataset. Comparing with the homogeneous information network, HIN has mul-
tiple objects and relations. To capture the semantic information of HIN, a net-
work schema, called meta-path, has been proposed in [19]. Meta-path based
methods over HIN have been applied in many different domains, such as social
network analysis [10] and relation graph [8]. Recently, meta-path is utilized in
the recommender system as a powerful representation of heterogeneous types of
data [26]. Two objects in HIN can be connected via different meta-paths and
these paths have different meanings. From HIN’s schema on Yelp dataset, we
can build a meta-path User → Item → User to capture the semantic rela-
tion that users provide ratings to the same item. However, meta-path may
not suitable to incorporate complex relationships. For example, if we want
to obtain user’s similarity by user’s similar reviews on items, a meta-path
User → Review → Aspect → Review → Item can be defined to capture this
similarity according to users’ reviews on the same aspect. But if we want to cap-
ture the semantic that users have similar review content, and at the same time,
they rate on the same item, none of single meta-path can model such complex
information.

(a) Schema (b) Meta-graphs

Fig. 1. Example of HIN schema and meta-graphs on Yelp dataset. A: aspects extracted
from reviews; R: reviews; U: users; I: items; Cat: category of item.

As an extension of meta-path, a new network schema called meta-graph has
been proposed to model complex information and incorporate richer semantics
[6]. Mc presented in Fig. 1(b) is a meta-graph, which describes that users not only
rated on the same item and they have also mentioned the same aspect. The meta-
path is a special case of meta-graph, such as Ma and Mb presented in Fig. 1(b).
As such, introducing meta-graph in the HIN-based recommender system can
allow us to consider the relation between users and items meticulously. Then,
we can capture more semantic information in HIN.

Nevertheless, different meta-graphs have different effects on recommenda-
tion. For example, User → Review → Aspect → Review → Item counts
more when we compare some similar products of the different brand, while
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User → Item → User matters when we want to compare user’s preference
on the same item. Thus, each meta-graph should be attached a different weight.
However, as far as we know, meta-graph based works, such as [27], did not
consider that different meta-graphs may have different contributions to the rec-
ommendation procedure explicitly. Actually, attention mechanism presented in
[12] provides a promising way to address such an issue. Note that a prominent
advantage of attention mechanism is the ability to attach attentive weights to
the obtained latent features. The attention mechanism has made a significant
improvement in many different domains, like computer vision [22,23] and natural
language processing [1,18]. Recently, attention mechanism is applied to recom-
mender system [2,4].

In this paper, we propose a two-stage method for HIN-based recommenda-
tion. Our contributions are listed as follows.

– We propose an approach for recommendation over HIN, called MGAR, which
combines Meta-Graph and Attention.

– Predefined meta-graphs are utilized to model the multiple types of nodes and
links, while attention mechanism is used to integrate the mined features from
different meta-graphs.

– Experiments are conducted on Amazon and Yelp datasets. The experimental
results validate the effectiveness of our model.

The rest of the paper is organized as follows: Sect. 2 presents a brief overview
of related work. We introduce our model in detail in Sect. 3. And we analyze the
experimental results in Sect. 4. At last, a conclusion is presented in Sect. 5.

2 Related Work

In this section, we will briefly introduce heterogeneous information network
(HIN) and recommendations in HIN.

2.1 Heterogeneous Information Network

HIN has rapidly become a hot research topic, which contains multiple types of
objects and relationships. Meta-path based methods over HIN have been widely
applied in data mining tasks over HIN, including classification [7], clustering [21],
especially recommendation [17,26], etc. For example, the graph-based ranking
model established on meta-path was built to iteratively computing the ranking
distribution of the objects within each class [7]. Sun et al. [21] integrated the
meta-path selection problem with the user-guided clustering problem in HIN to
generate the clusters under the learned weights of meta-paths. Yang et al. [24]
proposed a semantic path-based similarity measure for weighted HIN, which
can capture the semantics of weighted meta-path. However, meta-path fails to
describe complex relations over HIN. Recently, meta-graph was proposed to
model complicated information and incorporate the richer semantics in HIN [6].
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Huang et al. [6] computed the relevance between the same type of two objects
based on meta-graphs in large HIN. Jiang et al. [9] proposed a meta-graph guided
random walk ensemble method in HIN for classification. In this paper, we exploit
the rich information provided by meta-graphs. And we utilize user-item matrices
based on meta-graphs to generate latent features for the prediction.

2.2 Recommendations in HIN

Recommendation over HIN has been paid much attention recently. Yu et al. [25]
proposed a matrix factorization method with similarity regularization for recom-
mendations in HIN. In [26], different types of meta-paths were used to generate
user and item latent features, then a recommendation model was designed for
both global and personalized levels. SemRec [17] proposed by Shi et al., calcu-
lated similarities between users with same ratings based on meta-paths, then
combined the similarities with all meta-paths by a weight mechanism. Han et al.
[4] proposed a neural network model based on meta-path to exploit different
aspect latent factors, such as the brand-aspect and category-aspect of items. All
of the above methods for recommendations are based on meta-paths. In [27],
FMG model proposed by Zhao et al. used Factorization Machine with Group
lasso based on latent features generated by matrix factorization on meta-graphs.
FMG did not yet consider the explicit difference of meta-graphs for the recom-
mendation. To address this problem, our approach utilizes the attention mech-
anism to make recommendations on meta-graphs with different weights.

3 Meta-Graph Based Neural Network Model

In this section, we present an approach for recommendation over HIN, called
MGAR, by combining Meta-Graph and Attention. For capturing high-level
structure and fusing the mined features of users and items effectively, the pro-
posed MGAR method can be divided into two stages. In the first stage, matrix
factorization (MF) based method is used to obtain the embeddings of users and
items. Then, we aggregate the embedding of users and items with the attention
mechanism and use DNN to make a prediction of ratings in the second stage.

3.1 Node Embedding Based on Meta-Graph

Definition 1. Meta-Graph [27]. A meta-graph M is a directed acyclic graph
(DAG) with a single source node ns and a single sink node nt, defined on a HIN
G = (V, E) with schema TG = (A,R), where V is the node set, E is the edge
set, A is the node type set, and R is the edge type set. Then we define a meta-
graph as M = (VM , EM ,AM ,RM , ns, nt), where VM ⊂ V, EM ⊂ E constrained
by AM ⊂ A and RM ⊂ R, respectively. A meta-path is a special case of meta-
graph when the schema TG is a path.
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The definition of HIN and HIN schema have been introduced in [19]. From
the definition we can know that each meta-graph contains explicit semantic
information in HIN. As chosen in [27], we use the meta-graphs presented in Fig. 2

on Yelp and Amazon datasets without U
buy−−→ I

belongto−−−−−→ Brand
belongto←−−−−− I. The

reason is that we can only extract little information from U
buy−−→ I

belongto−−−−−→
Brand

belongto←−−−−− I on Amazon dataset.

Fig. 2. Meta-graphs used for Yelp and Amazon datasets

In order to obtain embeddings of users and items, we need to calculate the
commuting matrix between users and items. For a given HIN G and a meta-path
P = (A1, A2, · · · , An), the commuting matrix of the meta-path is calculated by
Eq. 1:

CP = MA1,A2MA2,A3 · · · MAn−1,An
, (1)

where Ai ∈ A denotes a node type, for i = 1, 2 · · · n and n is the length of
meta-path. MAi,Aj

denotes the adjacency matrix between type Ai and type Aj .
Next, we extend the meta-path based method to meta-graph based method.

As presented in [6], a meta-graph can be spilt into many meta-paths. The method
provided by [27] to calculate similarity matrices of meta-graphs can only be used
to calculate similarity matrix like M9 in Fig. 2. Our method is a generalization
of the previous method presented in [27]. A meta-graph can be seen as a network
with many layers, where each layer refers to the objects from one or more types.
As shown in Fig. 3, a meta-graph can be treated as a meta-path from layers’
perspective. For a meta-graph G = (L1, L2, · · · , Ln) represented in layers’ per-
spective, the commuting matrix of G can be calculated by Eq. 2, which is an
extension of Eq. 1:



388 C. Zhao et al.

CG = ML1,Lj1
MLj1 ,Lj2

· · · MLjm,Ln
, (2)

where 1 < j1 < j2 < · · · < jm < n, and for all k = 1, 2, · · · ,m, Ljk only have one
node type. The adjacency matrix MLjk

,Ljk+1
between Ljk , Ljk+1 is defined by

the paths between two layers. We denote the commuting matrix of paths between
Ljk , Ljk+1 as Mk

1 , · · · ,Mk
kl

. The adjacency matrix is defined as follows:

MLjk
,Ljk+1

= Mk
1 � Mk

2 · · · � Mk
kl

, (3)

where � denotes the Hadamard product. For example, in Fig. 3, paths between
L1 and L3 are P1 = (A,B1, C) and P2 = (A,B2, C). The commuting matrices
are M1

1 = MA,B1MB1,C and M1
2 = MA,B2MB2,C . So the commuting matrix

ML1,L3 = M1
1 � M1

2.

Fig. 3. Layers’ perspective of a meta-graph

Given a specific meta-graph, a commuting matrix can be used to calculate
similarities of users and items over HIN. Here we employ matrix factorization [16]
to extract features on the obtained commuting matrices, because it can reduce
noise and solve the sparsity problem. The method of matrix factorization is to
factorize the commuting matrix into two low-rank matrices, the users’ embedding
matrix U and items’ embedding matrix I. The embedding matrix of users (items)
is designed to capture the abstract feature of users (items) in a low dimensional
vector space. With the Frobenius norm regularization to avoid overfitting, the
embedding problem is converted to optimize the following objective function:

min
U ,I

1
2
||Ω � (UIT − R)||2F +

λu

2
||U ||2F +

λi

2
||I||2F , (4)

where Ω is the indicator matrix that Ωui is equal to 1 if user u rated the item i
and equal to 0 otherwise, and λu, λi represent the regularization parameters.

3.2 Neural Network Recommendation

Once the embeddings of users and items for different meta-graphs are obtained
from the above procedure, aggregator function can be employed to aggregate all
the embeddings based on meta-graphs to make a more representative embedding.
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There are some commonly used aggregation techniques such as concatenating
[27] and averaging [3] the latent factors. Concatenation is a straightforward and
high-dimensional way, but the dimension of embedding increases a lot when
adding more meta-graphs. In contrast, averaging all embeddings is not influenced
by the dimension, but this way will lose something useful. Intuitively, users have
different preferences on different meta-graphs. Then in a user-item interaction,
we should make a distinction between these different meta-graphs. We consider
the attention mechanism to integrate meta-graph embeddings, which can assign
the attentive weights to the meta-graphs. We apply this method to HIN based
recommender system, called attention aggregator. The weight obtained for a
meta-graph represents the importance of the meta-graph, which can provide the
choice and suggestion for recommender system agent. Attention is implemented
as follows.

Attention Aggregator. In this paper, we adopt a two-layer architecture to
implement the attention. We denote the embedding of user and item as ul, il

under the meta-graph l. The attentive score αl
u is calculated by Eq. 5:

αl
u = W T

2 f(W T
1 ul + b1) + b2, (5)

where W 1 and W 2 denote the weight matrix, b1 and b2 denote the bias. f(·)
is set to the ReLU function [13]. By normalizing the above attentive scores,
user’s final attention weight is:

wl
u =

exp(αl
u)

∑
p∈L exp(αp

u)
. (6)

Then the aggregated latent factor representation of user is calculated by
Eq. 7. L means the number of meta-graphs. A means the attention aggre-
gator. Item’s final embedding is also obtained by the same way:

uA =
∑

l∈L

wl
u · ul, iA =

∑

l∈L

wl
i · il. (7)

To verify the effectiveness of the attention mechanism in our model, we com-
pare concatenation and mean aggregators. C denotes the concatenation aggre-
gator. M denotes the mean aggregator. The specific formalizations are given
as follows, respectively:

uC = [u1,u2, · · · ,uL], iC = [i1, i2, · · · , iL]. (8)

uM =
∑

l∈L

ul/L, iM =
∑

l∈L

il/L. (9)

Deep Neural Network. With the embeddings of user u and item i, the rating
of each pair is denoted as Ru,i. We use a 3-layer DNN to predict the rating
of each pair, the entire model represents in Fig. 4. The neural network can
extract more attractive features of the provided data.
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For each (user, item) pair (u, i), we concatenate the features of user and item
as the input of DNN. The input vector of DNN is x = [u, i] and the output
of hidden layer is denoted as hl where l is the l-th layer, l = 0, 1, 2, · · · , n − 1
and n means the total number of layers. The predicted rating Ru,i can be
learned by multi-layer functions. The formalizations are as follows:

h0 = x

h1 = f(W T
1 h0 + b1)

· · ·
hl = f(W T

l hl−1 + bl)
· · ·
Ru,i = f(W T

nhn−1 + bn)

(10)

where W j is the weight matrix and bj is the bias for the j-th layer, j =
1, 2, · · · , n. f(·) is a nonlinear activation function. In experiment, we use ReLU
[13] as the activation function.

Fig. 4. Combining meta-graph and attention for recommendation over HIN

The entire method called MGAR, which combines meta-graph and attention
for the recommendation over HIN. In addition, we apply concatenation aggrega-
tor and mean aggregator to our model, called MGCR and MGMR respectively.

4 Experiments

In this section, we conduct experiments on two real datasets. We demonstrate
the ability of MGAR on recommender system by comparing with some baseline
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methods. Then we analyze the effect of MGAR and other two aggregate functions
applied on our model, respectively. Finally, we explore the differences between
meta-graphs and the effects of the dimension of latent features on MGAR.

4.1 Datasets

In experiments, we adopt Yelp2 and Amazon3 datasets with rich heterogeneous
information. Yelp dataset is provided for recommending businesses to users. We
randomly extract subsets from Yelp dataset containing 18465 users, 536 busi-
nesses, 20k ratings from 1 to 5. The higher rating means the higher degree of
user’s preference on business. Amazon dataset is provided by [5,11] for recom-
mending multi-categories items to users who are surfing on the Amazon website,
including 16970 users, 336 businesses with 20k ratings from 1 to 5. The detailed
information of datasets is shown in Table 1.

Review-Aspect in Table 1 means the aspects extracted from review text. We
use the Gensim [14] model to extract 10 topics, from the review text on Yelp
and Amazon datasets. Each row of this Review-Aspect matrix refers to the
probability of the 10 topics corresponding to each review.

Table 1. Statistics of Yelp/Amazon datasets

Dataset Relations
(A-B)

Number
of A

Number
of B

Number
of (A-B)

Ave. Degrees
of A/B

Yelp User-User 18454 18454 125223 6.79/6.79

User-Business 18454 576 20000 1.08/34.7

User-Review 18454 20000 20000 1.08/1.0

Business-Star 576 9 576 1.0/64.0

Business-State 576 51 576 1.0/11.29

Business-Category 576 1237 1827 3.17/1.48

Business-City 576 1010 576 1.0/0.57

Review-Business 20000 576 20000 1.0/34.72

Review-Aspect 20000 10 172349 8.62/17234.9

Amazon User-Business 16970 336 19287 1.14/57.40

User-Review 16970 18331 18198 1.07/0.99

Business-Category 336 16 323 0.96/20.19

Review-Business 18331 336 20000 1.09/59.52

Review-Aspect 18331 10 162407 8.86/16240.7

2 http://www.yelp.com/dataset/.
3 http://jmcauley.ucsd.edu/data/amazon/.

http://www.yelp.com/dataset/
http://jmcauley.ucsd.edu/data/amazon/
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4.2 Metric

In order to evaluate the performance of models for recommendations, we utilize
Root-Mean-Square-Error which is commonly used as metric on recommender
system. A smaller RMSE means better performance. The formula is as follows:

RMSE =

√∑
(u,i)∈Rtest

(Ru,i − R̂u,i)2

|Rtest|

where Rtest denotes the test set, R̂u,i represents the predicted rating of user u
on item i and Ru,i is the real rating of the user u on item i.

4.3 Baseline Methods

To verify the effectiveness of MGAR model, we compare baseline methods which
are quite typical and perform well on recommender system. The baseline methods
are introduced following.
• PMF [16]: Probabilistic Matrix Factorization (PMF) model without consid-
ering meta-graphs only uses user-item rating matrix R to product two lower-
rank users matrix U and items matrix V , and then predicts the ratings with
R̂ = UTV .
• FM [15]: Factorization Machine (FM) only uses rating matrix to predict the
rating of users on items. FM not only works with any real-valued feature vec-
tor, it also uses decomposition parameters to model all the interactions between
variables. FM works on recommender system without considering meta-graphs.
• SemRec [17]: The recommendation method SemRec on weighted HIN defined
the similarity measure by the same rating of users on items under given meta-
paths. Different similarities between users can be learned from different meta-
graphs. By the method of weight learning, SemRec can predict the ratings
according to the weighted sum of R̂l

u,i under each path l.
• FMG [27]: FMG is a meta-graph based method for recommendations, which is
modeled by matrix factorization and factorization machine. The method adopts
MF to generate latent features for users and items, and then use FM with Group
lasso (FMG) to learn from the observed ratings to make predictions.
• NeuACF [4]: NeuACF is a neural network model based on meta-paths to
exploit different aspect latent factors. The method applied PathSim [19] to com-
pute similarity matrix on meta-paths.
• MGMR: MGMR denotes that mean aggregator by the average of latent fea-
tures from users and items replaced attention aggregator on our model.
• MGCR: MGCR denotes that concatenation aggregator connecting the embed-
dings of users and items directly replaced attention aggregator on our model.

In experiments, we use the meta-graphs from Yelp and Amazon datasets
shown in Fig. 2. The similarity measure of SemRec and NeuACF is built between
users under given meta-paths, then we select U → I → U , U → U , U → I →
∗ → I → U , where ∗ includes categories, cities, and states of business. The
parameters on all methods are set with the best performance.
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4.4 Experimental Results

The results are shown in Table 2. In experiments, we use the 80% of a dataset as
the training dataset, which means utilizing 80% rating data of rating matrix to
predict the remaining 20%. The percentage in Table 2 means the gain of MGAR
on two datasets comparing with each method. The time here presented in Table 2
only includes the training time of models after obtaining matrices or embeddings
of users and items.

Table 2. Experimental results on Yelp and Amazon datasets

RMSE on Yelp and Amazon datasets

PMF FM SemRec FMG NeuACF MGMR MGCR MGAR

Yelp 1.8765

+69.1%

1.2917

+55.0%

1.2732

+54.4%

1.1238

+48.3%

0.8023

+27.6%

1.0604

+45.2%

0.6716

+13.5%

0.5807

Amazon 1.9513

+64.1%

1.1575

+39.5%

1.2038

+41.9%

1.1323

+38.2%

0.9451

+26.0%

1.1112

+37.0%

0.8565

+18.3%

0.6998

Average training time on Yelp and Amazon datasets

Time 97.45 s 107.26 s 167.29 s 181.51 s 3231.44 s 160.83 s 168.64 s 303.94 s

Comparing with the Former Five Baseline Methods. For Yelp and Ama-
zon dataset, MGAR always achieves the best performance. As compared to
PMF, MGAR improves the recommendation performance by 69.1% of RMSE
on Yelp. MGAR outperforms FMG 48.3% on Yelp, validating that fusing the
meta-graph-based features with weights is significant. The MGAR method does
not perform as well as the Yelp dataset on the Amazon dataset. It’s because the
Amazon dataset has only 5 meta-graphs. There is not enough information, but
it also performs better than other baseline methods, which fully demonstrates
the effectiveness of the MGAR method. MGAR outperforms SemRec 48.2% on
average of two datasets. NeuACF preforms only inferior to MGCR and MGAR,
but costing much time. It’s mainly because the obtained feature by PathSim
with a high dimension. MGAR model uses the Matrix Factorization to obtain
low-dimensional features to avoid the problem of long time caused by high dimen-
sionality. The above phenomenons can indicate the information contained in the
meta-graph is much more than which contained in the meta-path. And com-
bining meta-graph and attention can improve the recommendation performance
effectively.

The Effect of Three Aggregator Functions. Experimental results of three
aggregator functions on our model can be seen in Table 2. As compared to
MGCR, MGAR improves by an average of 15.9% on RMSE for recommenda-
tions. MGMR performs not well, from Table 2, we can know that the performance
gap between MGMR and FMG is small. Because averaging the latent features
will lose some useful information. We can get a conclusion that using atten-
tion aggregator function on our model can improve the learning performance in
recommendation tasks.
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4.5 Single Meta-Graph

In this section, we compare different meta-graphs on our model respectively. The
RMSEs of all single meta-graphs on two datasets are shown in Fig. 5. M-A-all
means the RMSE of MGAR using all meta-graphs.

(a) Yelp RMSE (b) Amazon RMSE

Fig. 5. Single meta-graph

Single meta-graph always performs not well. In Fig. 5(a), M6 defined as
U → I → State → I → U performs better than other meta-graphs. The result
indicates that the states where businesses are located in provide more important
information. In Fig. 5(b), M5 on Amazon performs best compared with other
single meta-graphs. M5 contains more types of objects and relations which are
helpful to capture critical information. In Fig. 5, MGAR with all meta-graphs
always performs best, indicating that more meta-graphs used will make better
recommendations. From the results, we can get some differences between differ-
ent meta-graphs, but we can’t find obvious rules. In the future, we will extract
more meta-graphs from datasets to explore the difference.

4.6 The Parameter K

In this section, we conduct experiments with varying parameter K in the range
of {2, 5, 10, 20, 30, 40, 50, 100} on Yelp and Amazon datasets. K is set as the
dimension of latent features to obtain the embedding of users and items. The
results can be seen in Fig. 6. After the threshold value 10, with the increase
of parameter K, RMSE will not change significantly, but the training time will
increase a lot. When setting K = 10, MGAR obtains the better performance
without costing much time, indicating the latent features can provide enough
information. So we set K = 10 on experiments in Sects. 4.4 and 4.5.
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(a) RMSE (b) Training Time

Fig. 6. RMSE and training time with varying K

5 Conclusion

In this paper, we proposed an approach for recommendation over HIN, called
MGAR, by combining Meta-Graph and Attention. MGAR can effectively model
the complicated information in HIN for the recommendation. We used meta-
graphs to capture the complex relationships. The attention mechanism was
applied to fuse the mined features of uses and items from different meta-graphs.
Our model contains two stages. In the first stage, matrix factorization was used
to generate latent features which were based on many pre-defined meta-graphs
to capture semantic features of multiple types of objects. In the second stage,
the embeddings of users and items were aggregated by the attention mechanism,
then we utilized a DNN method to predict the rating of users on items. Also, we
considered the other two types of alternative aggregator functions. Experimen-
tal results validated the effectiveness of MGAR on the recommendation tasks,
which achieved state-of-the-art performance on Yelp and Amazon datasets. In
addition, we provided a way to choose the optimal dimension of latent features,
which can achieve the balance of effect and training time.

In this paper, meta-graphs we applied were predefined, which was restricted
by the quantity and length of meta-graphs in complex scenarios. It is interesting
and natural to automatically mine meta-graphs according to different scenarios.
Combining our model with meta-graph mining will be the next step.
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Abstract. Attributed networks are used to model various networks,
such as social networks, knowledge graphs, and protein-protein inter-
actions. Such networks are associated with rich attributes such as spa-
tial locations (e.g., check-ins from social network users and positions of
proteins). The community search in attributed networks have been inten-
sively studied recently due to its wide applications in recommendation,
marketing, biology, etc. In this paper, we study the problem of searching
the most cohesive co-located community (MC3), which returns communi-
ties that satisfy the following two properties: (i) structural cohesiveness:
members in the community are connected the most intensively; (ii) spa-
tial co-location: members are close to each other. The problem can be
used for social network user behavior analysis, recommendation, disease
predication etc. We first propose an index structure called DkQ-tree
to integrate the spatial information and the local structure information
together to accelerate the query processing. Then, based on this index
structure we develop two efficient algorithms. The extensive experiments
conducted on both real and synthetic datasets demonstrate the efficiency
and effectiveness of the proposed methods.

Keywords: Community search · Attributed networks ·
Co-located community

1 Introduction

Attributed networks are used to model various networks, including social net-
works, knowledge graphs, and protein-protein interactions [2,11,27]. The increas-
ing data volume and rich attributes of such networks pose great challenges to
community search, which have attracted much attention in recent years (e.g.,
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[12,19]). The research studies on finding communities can be categorized into
community detection (e.g., [14,26,30]) and community search (e.g., [20]). Com-
munity detection methods are often used to discover communities in social net-
works based on the predefined implicit criteria, e.g., modularity [14]. Differently,
community search is to find cohesive communities satisfying a given set of explicit
criteria in an online manner, such as k-core [28] and k-truss [8].

Spatial attribute is one of the most important and useful feature in attributed
networks. In a spatial-aware network, each node is attached with the spatial
information. For example, the social networks such as Twitter and Foursquare
can be modeled by such networks where each node (i.e., user) has one or more
locations (e.g., the current position or check-in histories) [12]. Searching com-
munities by taking into the account of the users’ location information can bring
the understanding of user activities from the virtual world to reality.

Various structure cohesiveness metrics have been used to find densely-
connected communities, including k-core [4,10,29], k-clique [9,24], k-truss [8,18],
densest subgraph [31], connectivity [17], etc. Most of existing studies only con-
sider non-attributed networks and overlook the rich information of vertices in
attributed networks. The studies on spatial-aware communities [7,12] look for
communities such that the vertices are densely and closely connected in terms of
both social and spatial proximity. In these works, the structure cohesiveness is a
query constraint. For example, the users need to specify a k value in community
search for the k-core [12] or k-truss [7] measure.
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C2

Fig. 1. An example of attributed networks and MC3

In this work, we propose to study the problem of finding the most cohesive
co-located communities (MC3) from attributed networks in which each node
has one or several spatial locations. Specifically, given a spatial-aware network
and a value D, we aim to find the most cohesive connected subgraph (a com-
munity) that can be enclosed by a circle with diameter D. In this paper, we
apply the widely-used k-core [4,12,29] to measure the structural cohesiveness,
and thus we finally find a core with the largest value of k enclosed by a circle
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with diameter D. Different from existing work, the structure cohesiveness is the
optimization objective in our problem rather than a constraint. Our framework
works generally for other cohesive measures such as k-clique [24] and k-truss [8].

Example 1. For example, Fig. 1 shows a small attributed network, in which each
vertex in the network is associated with a location in the space. C2 is the MC3

for the given circle size, since it encloses a 3-core which is the core with the
largest k value.

The problem of finding MC3 can find applications in many fields. For exam-
ple, it can be used in social network users behavior analysis. Assume Fig. 1
represented a geo-social network, where each location is the position of a user
at a certain time point. By detecting MC3 from the network, we can further
analyze the group of users’ behavior for public security (e.g., detect emerging
community gathering). If the attributed network represent protein-protein inter-
actions, the proteins interact with each other the most intensively in a small area
represent some abnormal functions. The MC3 can help predict the diseases or
protein abnormal functionalities.

The key challenge of finding MC3 is that the global structure cohesiveness
does not consist with the local structure cohesiveness. The members in a struc-
ture cohesive community may be faraway form each other, while the nearby
vertices may not be connected in the network. In order to deal with this prob-
lem, we propose an index structure called DkQ-tree (distance-aware k-core
quadtree) based on the Quadtree. We integrate the location information and the
structure information together for each tree node, which enable us to obtain the
local structure cohesiveness at query time. Based on this index structure, we
first develop an algorithm MC3Alg which involve two iterative steps: pruning
the vertices and verifying the candidate vertices. We also develop an enhanced
algorithm MC3Alg+ to further improve the verification cost by utilizing a two-
phase binary search.

In summary, the contribution of this work is as follows: (1) we first propose
the most cohesive co-located community search, in which the structure cohesive-
ness is the optimization objective; (2) we propose an index structure DkQ-tree
to organize the attributed network data; (3) we develop two efficient algorithms
based on DkQ-tree to find MC3; (4) we conducted experiments on both real-
world and synthetic data sets to demonstrate the performance of our methods.

2 Related Work

The research studies on finding communities can be categorized into community
detection (e.g., [14,26,30]) and community search (e.g., [10,20,29]). Community
detection methods are often used to discover communities in social networks
based on the predefined implicit criteria. Differently, community search (CS) is
to find cohesive and densely communities satisfying a given set of query request
in an online manner. Various structure cohesiveness metrics have been used
to find densely-connected communities, including k-core [4,10,22,29], k-clique
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[9,24], k-truss [1,8,18,21], densest subgraph [31], connectivity [17], etc. These
studies only consider non-attributed networks, and overlook the rich information
of vertices in attributed networks.

The studies on spatial-aware communities [7,12,23,33,34] look for commu-
nities such that the vertices are densely and closely connected in terms of both
social and spatial proximity. For instance, Fang et al. [12] studied searching the
minimum spatial-aware community, in which the vertices form a k-core and their
locations are very close. Chen et al. [7] proposed to search co-located commu-
nity with the maximum number of nodes by using k-truss. The main difference
between [7] and our work is the optimization objective. We aim to find com-
munities with the most cohesive structure rather than the community with the
maximum number of nodes. However, there exist no studies on finding the most
cohesive co-located/spatial-aware communities. In these works, the structure
cohesiveness is a constraint rather than the optimization objective.

In spatial databases, several works studied the group objects retrieval prob-
lem based on users’ spatial locations such as [16,25,32]. Guo et al. [16] studied
the m-closest keywords query which retrieves a group of objects close to each
other and cover a set of keywords together. Wu et al. [32] adapted the dens-
est subgraph model to the spatial community search problem on dual networks.
Qu et al. [25] proposed localitySearch which retrieves top-k sets of spatial web
objects by integrating spatial distance, textual relevance, and a “co-locality”
measure into one ranking function. These studies did not consider the structure
cohesiveness, and thus are different from our problem.

The densest subgraph search is also relevant to our work. In its basic form, the
problem is to find the subgraph with maximum average edge weight. This prob-
lem can be solved in polynomial time [15]. For large graphs, efficient approxima-
tion algorithms have been developed. A 2-approximation algorithm is proposed
in studies [3,6]. This problem is different from MC3 because the cohesiveness
measure is different and more importantly they ignore the spatial information
in the subgraph search.

3 Problem Definition

Our problem is defined over an undirected attributed network G = (V,E, S)
with vertex set V , edge set E, and spatial location set S. The degree of a vertex
v (e.g., a user in social networks) in G is denoted by degG(v). Each vertex v has
a spatial location v.l = (x, y) ∈ S (e.g., the check-in of users), where x and y are
the coordinates along x- and y-axis in a two-dimensional space. Table 1 lists the
notations used throughout the paper.

We aim to find a community represented by a connected subgraph satisfying:
(1) structure cohesiveness: the vertices in the subgraph are connected the
most intensively; (2) spatial cohesiveness: the vertices in the subgraph are
highly compact in the space.

Before formally defining the problem, we first introduce the following impor-
tant concepts.
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Table 1. The summary of notations

Notation Definition

G(V, E, S) A geo-social graph with vertex set V and edge set E and spatial location set S

(v.x, v.y) The position of vertex v along x− and y−axis

degG(v) The degree of vertex v in G

γ(N) The side length of node N in index structure

Definition 1 (k-core [28]). Given a non-negative integer k, the k-core of G is
the largest subgraph of G in which the degree of each vertex v is no less than k.

The concept of k-core has been widely used for structure cohesiveness in many
applications [10,12] due to its effectiveness. A k-core may not be connected. In
this paper, we use a connected k-core in graph G (denoted by Gk) to represent
a communities. We say that Gk has an order of k. Given a graph, the k-cores
can be obtained by a linear core decomposition algorithm proposed by Batagelj
and Zaversnik [5] with complexity O(|E|).

Note that our proposed solutions can be easily adapted to other cohesive
structure concepts (e.g., k-truss [8] and clique [24]) which can be used to capture
the social cohesiveness from different perspectives.

Definition 2 (Core Number). Given a vertex v in G, its core number is the
highest order of a k-core that contains v, denoted by CG[v].

Definition 3 (Co-located Community). A co-located community is a con-
nected subgraph (k-core) Gk such that the locations of the vertices in this subgraph
can be enclosed by a circle with a pre-defined diameter D.

We expect that the vertices in a co-located community have nearby locations.
This reflect the “co-location” of this community.

Now we are ready to formally define the Most Cohesive Co-located Commu-
nity (MC3) search problem:

Problem 1. Given an undirected attributed graph G and a diameter D, the MC3

query returns any groups of vertices with their locations, satisfying the following
constraints: (a) Locations of vertices can be enclosed in a circle with diameter
D; (b) Vertices form a k-core with the highest order.

More generally, we also consider the MC3 problem when each vertex could
have multiple locations (e.g., the check-in histories). The following example
explains what is a MC3.

Example 2. As shown in Fig. 1, both C1 and C2 are two co-located communities
(i.e., members can be enclosed by a circle with diameter D). C2 is a 3-core, which
is a core with the highest order among all co-located communities w.r.t. D, and
thus C2 is the MC3 for the given attributed network.
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4 Baseline Approaches

4.1 A Spatial-First Approach

The MC3 problem aims to find the most cohesive community that can be
enclosed in a circle with diameter D. Hence, a naive approach is to check all
possible circles in the space and then check the largest core order of the vertices
enclosed in this circle. Finally, after all circles are checked, we return the largest
core order across all circles.

To enumerate all possible circles, we can fix two locations in S whose distance
is smaller than or equal to D, and then we can obtain at most two circles with
diameter D passing by the two locations in the space. Next, we get the vertices
from the graph to which these locations belong, and we apply the well-known
liner core decomposition algorithm [5] to compute the largest core order. This
methods require us to check O(|V |2) circles in the worst case. Thus, it is obvious
that this method is quite time-consuming.

4.2 A Social-First Approach

Another approach is to perform the social-first search, and the idea is to utilize
the structure of the network to accelerate the search. We can first do the core
decomposition to compute the core number on each vertex. Next, we search in
the core with the largest k value (we denote this as kmax). We get the locations
from the vertex in this kmax-core, and then perform a search over these locations
by enumerating all possible circles (similar to the spatial-first approach). After
this step, we can obtain the current best core order (we denote this as kcur).
Then, we move to (kmax-1)-cores for further checking. We repeat this process
until we reach the kcur-cores, and we can terminate the algorithm. This can help
reduce the number of circle verifications. However, it is still not efficient since
the globally cohesive subgraph may not be locally cohesive.

5 The Distance-Aware k-Core Quadtree

It is shown that both the spatial first and social first approaches cannot achieve
good performance, because the MC3 problem considers both the spatial and
structure cohesiveness, but the two methods ignore either the spatial or structure
features of the data. This inspires us to design an index that can pre-compute the
local structure cohesiveness, and this would enable us to accelerate the search
and prune the search space. We first introduce the proposed tree index structure
named DkQ-tree (Distance-aware k-core Quadtree) based on the well-known
spatial index Quadtree [13], and then we present two algorithms based on this
index for solving the MC3 problem.
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5.1 Index Overview

The linear k-core decomposition algorithm [5] can only compute the global core
number of the vertices, and thus the local cohesive information is unknown
during query time. The key challenge of developing such an index is how to
integrate both the structure and spatial information together for computing
the local cohesiveness w.r.t. the user provided D. To this end, we utilize the
Quadtree and pre-compute the local cohesiveness and other useful information
for each tree node, based on the following property of the local cohesiveness.

Property 1. Spatial-monotonicity: Given a spatial region R (e.g., a square),
if the vertices in this region can form a k-core with an order at most h, for any
region R′ inside R, the order of the k-core formed by the vertices in R′ is no
larger than h.

This property is quite straightforward since it is obvious that a smaller region
has fewer vertices. In each node N of the DkQ-tree, we pre-compute the core
number of each vertex in the node within the subgraph extracted from this area
and record the largest core number of vertices in the node, denoted by LCN . We
perform this computation is due to the following lemma:

Lemma 1. Given a query diameter D and a tree node N that can be enclosed
by a circle with diameter D, the order of MC3 is no smaller than LCN .

Since N can be enclosed by a circle with diameter D, it can be easily proved
according to Property 1. Hence, we are able to get a lower bound estimation of
the order of MC3 from the DkQ-tree with this pre-computed information.

However, this is still not enough to obtain the local cohesiveness. We only
can get the largest core number in each node. From Fig. 2, we can see that the
vertices could form a k-core with the other vertices not in this node. Thus, we
cannot get a bound for the core number of these nodes for a given D. Thus,
we further compute a distance map DistMap in each tree for the vertices. The
idea is that, given a node N , for each value k > LNC , we expand the node to
a vertex with the smallest distance d such that the vertices involved during the
expansion can form a k-core. We record this distance d and k in the distance
map. The distance map can help us to prune the search space according to the
following lemma:

Lemma 2. Assume the current best order of MC3 is kcur. Given a query diam-
eter D and a node N , if N.DistMap[kcur] > D, N cannot contribute any vertex
to MC3.

Again this lemma can be proved by using Property 1. If N.DistMap[kcur] >
D, it means that when we expand the border of N with length D we still cannot
find a kcur-core in this area. Hence, the core number of any node in this area is
smaller than kcur, and thus can be pruned.

In addition, in order to get vertices quickly from locations, we also use a
vertex map to organize the mapping information when vertices have multiple
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Fig. 2. An example of DkQ-tree (Color figure online)

locations. In summary, in each node of DkQ-tree, we store: (1) vertices in this
node; (2) the largest core number in this node; (3) a vertex map; (4) a distance
map. The tree structure is as shown in the Fig. 2.

5.2 Index Construction

We proceed to explain how to build the DkQ-tree. The root node is the entire
space. Then, we repeatedly partition each node into four child nodes. When we
obtain a new node, we first do a core decomposition using the vertices within
the node and store the largest core number. If it is smaller than a certain value
kε, we do not further split the node. For example, in Fig. 2, in the blue area, the
vertices {A, B, C} form a 2-core, so we split this area. After splitting, any sub
area cannot form a 2-core, and we stop splitting these nodes.
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1-Core : d1
2-Core : d2d1

d2

Fig. 3. An example of building distance map
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Next, when we obtain a new node, we also build its distance map and vertex
map. Building the vertex map is quit straightforward. The idea of building the
distance map is that, For each value k, we perform a binary search to expand
the node to a vertex with the smallest distance such that the vertices involved
during the expansion can form a k-core. For example, in Fig. 3, the node only
has one vertex C. When it expands to vertex A, it first form a 2-core, and we
store the distance d2 to the distance map.

6 Algorithms

In this section, we propose two efficient algorithms by utilizing the DkQ-tree.
First, we propose an algorithm MC3Alg, which involve two major iterative
steps: one step is to get candidate nodes from DkQ-tree and prune the nodes
we do not need to check; the other step is to find MC3 from the candidate
nodes. In our experiments, MC3Alg is more efficient than baseline algorithms.
However, the verification of MC3Alg still has high complexity. To address this
issue, we further develop a more efficient algorithm MC3Alg+. It improves the
deficiencies of MC3Alg’s verification step and achieves excellent performance.

6.1 Algorithm MC3ALG

The MC3Alg algorithm involves two iterative steps: (1) prune nodes in
DkQ-tree; and (2) find MC3 from nodes cannot be pruned. We proceed to
present this algorithm.

We first get a lower bound for the order of MC3 based on Lemma 1. Given
a diameter D, we traverse the DkQ-tree from top to bottom and get all nodes
whose side length is smaller than D and whose parent nodes’ side length is larger
than D. We store these nodes in a node list nodeList. Next, we get the maximal
core number from these nodes, which serves as a lower bound denoted by kcur.
Using this lower bound of the order of MC3, we can further prune nodes in
nodeList according to Lemma 2.

For the remaining nodes in nodeList, we order them according to their core
number upper bound obtained from their distance maps, and we start the ver-
ification on the best node N . Specifically, given a node N , if N.distMap[k1] ≤
D ≤ N.distMap[k2], we can know that k1 is the core number upper bound of
vertices in N . We first extend N with D length and do a core decomposition in
the extended square region. Then, we can safely ignore the vertices whose core
number is smaller than kcur, since they cannot be contained in MC3. To verify if
there exits a k-core with higher order on the remaining vertices in the extended
area, instead of checking all the possible circles as we did in the spatial-first
baseline method, we utilize the rotating circle method [16]. The idea is that, for
each vertex in node N , we make it on the boundary of a circle with diameter D.
Then, we rotate the circle clockwise. When a vertex enter the circle, we check
if there is a k-core with order higher than kcur. If so, we record the k-core and
update kcur. For example, in Fig. 4, we make vertex G on the boundary of circle
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and rotate the circle clockwise, when F enters the circle (circle with solid blue
line), we can find a 2-core formed by {G, F , H, I}.

Since kcur may be updated after verifying N , we can further prune more
nodes in nodeList, and then perform verification from the next best node. We
repeat the two steps until all nodes in nodeList are processed. Algorithm 1
presents the framework of MC3Alg. First, it gets nodeList from DkQ-tree
(line 1). Then, we obtain the lower bound of the order of MC3 and use ϕ to
store the best k-core in Nmax (lines 2–4). For each node in nodeList, we get
its distance map DistMap and check how far we need to expand it to include a
k-core. We safely remove nodes by Lemma 2 (lines 5–8). We get the core number
upper bound of vertices in this node (line 9). Next, we sort nodeList in ascending
order of the nodes’ upper bounds (line 10). For each node, we extend it with D
length and prune vertices as mention before. For each vertices not pruned in N ,
we use the rotating circle method to check k-cores and update ϕ (lines 11–15).
The k-cores with the highest order is finally stored in ϕ (line 16).

Algorithm 1. MC3Alg(G, D, root)
1 nodeList ← getnodes(root,D);
2 initialize kcur ← 0,ϕ ← ∅;
3 Nmax ← find a node in nodeList which has maximal value k;
4 kcur ← Nmax.k, ϕ ← get maximal kcore in Nmax;
5 foreach node in nodeList do
6 DistMap ← node.distMap;
7 if DistMap[kcur] > D then
8 remove node from nodeList;
9 node.upper ← getUpper(DistMap);

10 nodes ← sort nodeList according to node.upper;
11 foreach N in nodes do
12 S ← SearchNode(root, N, D, G, kcur);
13 if S �= ∅ & S.k >= kcur then
14 kcur ← S.k;
15 update ϕ;

16 return ϕ

Example 3. Given a candidate node which contains G, H, I, we make G on the
boundary of the circle, and I,H, F,E,D are in the circle’s rotating area. We get
ordered list {I,H, F,E,D} according to the order in which they enter the circle.
Then, we rotate the circle clockwise. Each time, when a vertex in {I,H, F,E,D}
enters the circle (on its boundary), the rotation stops and check if there is a k-core
inside it. when F enters the circle (solid line), we can get a 2-core ({G, I,H, F})
inside it. When circle rotates to D, we can get a 3-core ({G,H,F,E,D}). After
processing H and I in the same way, we find {G,H,F,E,D} is the k-core with
the highest order in this node.
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Complexity. We assume that in average each unit space area contains n vertices
and m edges, and we get X nodes from DkQ-tree for the given D. We first
sort the nodes according to their core number upper bounds with complexity
O(X log X). Then, for each node N with γ(N) = l, we extend N by length D,
i.e., γ(Nex) = 2D + l, and do a core decomposition in this square area. In the
extended square, there are (2D + l)2m edges, and thus the core decomposition
costs O((2D+l)2m). Next, we rotate the circle on each vertex in N . In each circle,
there are π(D

2 )2n vertices and π(D
2 )2m edges. Note that, the k-core verification

we perform in the circle can be divided into 3 steps: (1) The degree check costs
O((D

2 )2n); (2) The core decomposition costs O((D
2 )2m); and (3) The BFS check

costs O((D
2 )2m). Hence, the k-core verification costs at most O(π(D

2 )2(n+2m)).
In the worst case, we do at most πD2n times for each vertex in N (the number
of verteces in N is l2n). Thus, the total complexity of MC3Alg is O(X log X +
X((2D + l)2.m + l2n × πD2n × π(D

2 )2(n + 2m))).

Fig. 4. An example of MC3Alg (Color figure online)

6.2 Enhanced Algorithm MC3ALG+

MC3Alg is still not efficient enough in large attributed networks and has its
limitations. First, in each node to be checked, there are lots of vertices and on
each of them we need to apply the rotating circle method. Second, there are many
vertices in the extended area of a node, and thus during rotating the circles we
need to verify the k-cores for many times. To alleviate these issues, we develop a
more efficient algorithm MC3Alg+. The main difference between MC3Alg+
and MC3Alg is the verification cost on a node (prune nodes in DkQ-tree the
same as MC3Alg).

In MC3Alg+, for each node N to be checked, we perform a binary search to
find the largest core number in this node. The upper bound of the core number
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is obtained from N ’s distance map as we did in MC3Alg, and the lower bound
is the current best order. During the binary search process, we check if there
is a k-core in the extended region of N with the current core number kc. This
strategy can quickly get a larger kc, and we can benefit from this in two ways:
first, it reduces the vertices in N to be checked since; second, it also reduces the
number of vertices in the extended area involved in the circle rotation.

Next, to further reduce the vertices in N to be checked, we divide the
extended square region into m × m cells and use a small square to filter out
the vertices which cannot form the solution. The idea is that, instead of check-
ing the vertices one by one directly, we use a square covering s × s cells that
can enclose a circle with diameter D to search all k-cores in the extended square
region. We move the (s × s) square from left top corner of the extended square
region to the right bottom corner, and we check if there exists a kc-core at each
position of the square. We record all the squares that contain kc-cores, and we
only do circle rotation on vertices in both N and such squares. The verification
granularity is cells rather than vertices, and thus it is much faster.

Finally, we propose a binary rotating circle method to check the candidate
vertices to improve the verification costs. The main difference with MC3Alg
is that when we rotate the circle, we do not stop rotating when a new vertex
enters the circle. Instead, we use the binary search strategy to deal with this.
We stop when we reach a vertex such that from the starting entering vertex to
this vertex, a kc-core is firstly met. Then, we check the circle with this vertex on
the boundary. If there exist a kc-core, we record it and stop rotating; otherwise,
we start from the checked circle, and find the next vertex that we can meet a kc-
core. This technology is very efficient since we can skip a large region containing
no cores.

Example 4. Figure 5 shows an example of the binary searching process (i.e.,).
Given the same candidate node as in Example 3, we perform the binary search
on the core number. We first have upper = 3 (from distance map) and lower = 2
(the current best value), so kc is � 3+2

2 � = 2. Then, we set vertices G, H, I as the
boundary vertex in. During the rotation process, we consider a binary strategy.
First, we get a ordered list (denoted by InAngleList) {I,H, F,E,D} according
to the order that they enter the search circle. Next, we perform the binary search
over InAngleList to find the vertex such that a 2-core is first met, which is H
since the rotation area (light blue area) form a 2-core (i.e., {G,H, I}). We rotate
the circle to H (blue solid circle) and find a 2-core (i.e., {G,H, I}). We record it
and update lower = 2+1 = 3. kc now is 3, and we set vertex G as the boundary
vertex and repeat above process. When D is on the boundary of search circle,
the rotation area (light red area) form a 3-core (i.e., {G,D,E, F,H}). Rotate
the circle to D directly (red solid circle), we can find a 3-core inside the circle.
Finallly, we find {G,D,E, F,H} as the best core in this node.

Complexity. We do the same assumption as MC3Alg. We perform the binary
search on each extended node Nex (γ(Nex) = 2D + l) that needs to be checked.
Assume that the largest core number obtained from the distance map is kmax,
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and the binary search on k is at most log kmax times. We divide the extended
square region into T × T cells and use a small square covering s × s to filter
out some vertices. The small square covers ( s(2D+l)

T )2n vertices and ( s(2D+l)
T )2m

edges, and we need to move the small square (T − s)2 times. Thus the moving
process costs at most O((T −s)2( s(2D+l)

T )2(n+2m)). For each vertex in N , during
the process of binary circle rotation, it costs at most O(log(πD2n)π(D

2 )2(n+2m))
(each circle covers π(D

2 )2n vertices and π(D
2 )2m edges). Thus, in the worst

case, the total complexity of MC3Alg+ is O(X log X + X(log kmax((T −
s)2( s(2D+l)

T )2(n + 2m) + l2n × log(πD2n) × π(D
2 )2(n + 2m)))).

Fig. 5. An example of MC3Alg+ (Color figure online)

7 Experiments

7.1 Experimental Setting

Algorithms. We evaluate our 2 algorithms MC3Alg and MC3Alg+, as well
as the two baseline methods. However, since the two baselines runs extremely
slow, we only report their performance on one set of experiments.
Datasets. We consider four datasets in our experiment, three real datasets
(Gowalla, FourSquare, Flickr) and one synthetic datasets (YoutubeSyn). In
Gowalla1, each vertex is a user in Gowalla, and each edge represents the friend-
ship between two users. Each user has many checkins, we choose the most fre-
quent one as his location. Note that, we also do an experiment for the situation
that a user has many checkins in this dataset. In FourSquare2, each vertex is

1 http://snap.stanford.edu/data/index.html.
2 https://foursquare.com/.

http://snap.stanford.edu/data/index.html
https://foursquare.com/
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a user of Foursquare website, and each edge represents the social relationship
between two users. For each user, we choose his most frequent checkin infor-
mation as his location. In Flickr3, a vertex is a user and an edge represents
the “follow” relationship between two users. We mark a user’s location where
she has token the most photos. In YoutubeSyn4, each vertex represents a user
of Youtube, each edge is the“follow” relationship between two users. However,
there is no location information of the users. So, we generate a location for each
user. In addition, in our experiment, we also use two distribution methods to
generate locations, i.e., random distribution and gaussian distribution. Detailed
information of the datasets is summarized in Table 2, where ̂deg is the average
degree, maxk is the maximum number of locations on a node.

Table 2. Dataset properties

Type Name Vertices Edges ̂deg maxk

Real Gowalla 107092 456830 4.50 43

Real Flickr 214600 2168900 19.73 50

Real FourSquare 1050000 3362325 7.40 130

Synthetic YoutubeSyn 550000 1952308 7.09 50

Parameters and Query Generation. We set the number of m (the number
of grid cells in an extended search area) to 10. We have conducted experiments
on this parameter, and it does not affect the performance much. We achieve
the best runtime when m = 10, and thus we use 10 as the default value on all
experiments. We ignore the details due to the space limitation. In the experiment
of multiple locations for a user, for Gowalla, a user’s locations are all the checkins
of this user. For YoutubeSyn, we randomly generate the locations of a user.
In the different distribution experiment, we generate locations satisfying two
distribution requirement, i.e., random distribution and gaussian distribution.
For all the datasets, we put the locations in a square with size [0, 100] × [0,
100].
Setup. We run experiments on a machine having a Intel i7-6700 3.40 GHz pro-
cessor and 16 GB of memory, with Windows 10 installed, and all algorithms were
implemented in Java.

7.2 Experimental Results

Varying the Given Diameter. The value of the given diameter D affects
the search region and efficiency of baselines, MC3Alg and MC3Alg+. In this
experiment, we vary the given diameter from 2.5 to 12.5. Figure 6(a) to (c)
shows the runtime of algorithms. It can be observed that MC3Alg+ always
3 https://www.flickr.com/.
4 http://snap.stanford.edu/data/index.html.

https://www.flickr.com/
http://snap.stanford.edu/data/index.html
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Fig. 6. Varying the diameter
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Fig. 7. Runtime of multiple checkins

outperforms than other algorithms, since it has the most prune strategies and
optimization strategies. The two baselines spatial-first and structure-first are
very time consuming, and thus we ignore them in the subsequent experiments.

Effectiveness When a User has Mutiple Checkins. In this experiment,
we test the algorithms’ performance when a vertex has multiple checkins. Recall
the process of rotating circle, more checkins will cause more checks of k-
core. Hence, the number of checkins affects the performance of both MC3Alg
and MC3Alg+. Figures 7(a) to (b) show the results. We can observe that
MC3Alg+ are less affected by multiple checkins, the reason is we perform a
binary search to accelerate the rotating process of MC3Alg+. Observing that
the runtime of MC3Alg+, it is about 7 times faster than MC3Alg.

100

101

2.5 5.0 7.5 10.0 12.5

R
un

tim
e 

(s
ec

)

value of diameter

MC3Alg MC3Alg+

(a) YoutubeSyn Gaussian

100

101

102

2.5 5.0 7.5 10.0 12.5

R
un

tim
e 

(s
ec

)

value of diameter

MC3Alg MC3Alg+

(b) YoutubeSyn Random

Fig. 8. Runtime of varying the distribution of checkins



Efficient Search of the Most Cohesive Co-located Community 413

Varying the Distribution of Locations. Figures 8(a)–(b) show the results
of varying the location distribution of locations. We consider using two classical
distributions, Gaussian distribution and Random distribution to evaluate the
performance of the two algorithms. It can be observed that MC3Alg+ outper-
forms MC3Alg consistently. Note that, the superiority of MC3Alg+ is more
obvious in Gaussian distribution. The reason is that some nodes contain very
large number of vertices, and this leads to a higher complexity in searching these
nodes for MC3Alg.
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Fig. 9. Runtime of scalability

Scalability. By following the work [12], we vary the percentage of vertices on
two datasets, i.e., Flickr and FourSquare. The results are reported in Figs. 9(a)–
(b). We can observe that both algorithms scale well with the data set size and
MC3Alg+ also runs fastest as it has more pruning strategies.

8 Conclusion

In this paper, we study the most cohesive co-located communities search prob-
lem. We first propose an index structure, i.e., DkQ-tree, to integrate the spatial
information and the local structure information together to accelerate the query
processing. Then, based on DkQ-tree, we develop two efficient algorithms.
Extensive experiments conducted on both real and synthetic datasets demon-
strate the efficiency and effectiveness of our proposed algorithms.
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Abstract. Neural bag-of-words models (NBOW) have achieved great
success in text classification. They compute a sentence or document rep-
resentation by mathematical operations such as simply adding and aver-
aging over the word embedding of each sequence element. Thus, NBOW
models have few parameters and require low computation cost. Intu-
itively, considering the important degree of each word and the word-order
information for text classification are beneficial to obtain informative
sentence or document representation. However, NBOW models hardly
consider the above two factors when generating a sentence or document
representation. Meanwhile, term weighting schemes assigning relatively
high weight values to important words have exhibited successful perfor-
mance in traditional bag-of-words models. However, it is still seldom used
in neural models. In addition, n-grams capture word-order information
in short context. In this paper, we propose a model called weighted word
embedding model (WWEM). It is a variant of NBOW model introducing
term weighting schemes and n-grams. Our model generates informative
sentence or document representation considering the important degree of
words and the word-order information. We compare our proposed model
with other popular neural models on five datasets in text classification.
The experimental results show that our proposed model exhibits compa-
rable or even superior performance.

Keywords: Neural bag-of-words models · Term weighting schemes ·
N-grams · Text classification

1 Introduction

Text categorization (TC) is a fundamental and traditional problem in natural
language processing (NLP), which automatically classifies sentences or docu-
ments into some predefined categories. In a TC task, text representation is an
important step. In recent years, neural models have been employed to learn text
c© Springer Nature Switzerland AG 2019
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representation because of the effectiveness of word embeddings learned from
massive unstructured text data [1,6,16,25]. Compositional function is used in
neural models to represent a text as a low dimensional vector. It is a mathe-
matical process for combining multiple word embeddings into a single vector.
Compositional functions fall into two classes: syntactic and unordered [5]. Syn-
tactic functions take word-order and sentence structure information into account
dubbed “sophisticated models”. These models have shown impressive results in
text classification, such as Recurrent Neural Networks (RNNs) [20,21], Recursive
Neural Networks [17] and Convolutional Neural Networks (CNNs) [2,7,27]. How-
ever, there is a drawback: they are typically computationally expensive or limited
computing resources, due to the need to estimate hundreds of thousands, if not
millions, of parameters [15]. In contrast, unordered functions treat texts as bags
of word embeddings dubbed “neural bag-of-words models” (NBOW). They com-
pute a sentence or document representation by simply adding, or averaging, over
the word embedding of each sequence element obtained via, e.g., word2vec [13].
Although NBOW models hardly consider the word-order information, they still
exhibit comparable or even superior performance in the text classification, com-
paring with sophisticated models [16]. In this paper, our works are focus on
NBOW models.

In addition, term weighting schemes are shown to bring significant improve-
ments over raw Bag-Of-Words representation in text classification. They are
used in traditional Vector Space Model to assign a reasonable weight value for
each token [12,23]. For instance, in sentiment classification, the word ‘excellent’
in sentence “I have been here twice and it was excellent both times” are much
more important than other words like ‘I’ and ‘it’. Thus, the weight value of
the word ‘excellent’ is higher in the Bag-of-Words representation. Intuitively,
considering the important degree of each word is also beneficial to neural mod-
els. Note that word embeddings cannot explicitly reflect the important degree of
words in a sentence or document representation. Therefore, most NBOW models
based on word embeddings ignore that the different tokens have different impor-
tance degrees to text classification. Meanwhile, most NBOW models cannot take
the word-order information into consideration. For example, “not really good”
and “really not good” convey different levels of negative sentiment, while being
different only by their word orderings [16].

Thus, both the important degree of words and word-order informa-
tion should not be ignored in a sentence or document representation. In this
paper, we propose a model called weighted word embedding model (WWEM).
WWEM is a variant of neural bag-of-words models. It combines term weight-
ing schemes and n-grams with the NBOW model. Different with most current
NBOW models, a new sentence or document representation method is applied in
our proposed model. It takes the important degree of each word and word-order
information into consideration. Meanwhile, term weighting schemes explicitly
reflect the important degree of words and just require a small amount of com-
puting resources. Therefore, we initialize the weight value of each token through
term weighting schemes in our model. The weight values of tokens are fine-tune
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during training. After training, they become more reasonable. What’s more, n-
grams can capture the word-order information in the short context, thus we
exploit it to enrich the semantic of a sentence or document representation [11].
We conduct experiments on five datasets in text classification. The experimen-
tal results show the effectiveness of our proposed model. We also find that the
weight value of tokens become more reasonable after training.

The rest of our paper is organized as follows: Sect. 2 introduces the related
work about our proposed model. Section 3 details relative models and our pro-
posed model WWEM. Section 4 conducts five datasets to verify the effectiveness
of our model. Meanwhile, two cases are given to interpret our proposed model
intuitively. We draw a conclusion in Sect. 5.

2 Related Work

Bag-of-words models treat each word in text as an independent token, which
ignore the fact that texts are essentially sequential data [14]. Thus, the word-
order and syntax information is discarded. Due to the advantages of being effec-
tive, efficient and robust, they are still widely used in various kinds of NLP tasks
such as information retrieval, question answering and text classification [11].
Usually, term weighting schemes are used to obtain better performance in bag-
of-words models. These schemes can be interpreted as methods to measure the
utility of a token in discriminating different categories. According to whether
the categories information is used, term weighing schemes can be divided into
unsupervised ones and supervised ones. TF, IDF, and TF·IDF [18] are the unsu-
pervised ones while RF [9], DC and BDC [24] belong to supervised ones. BDC
scheme measures the discrimination power of a token based on its global distribu-
tional concentration in the categories of a corpus [24]. Important words are given
higher weight values while unimportant words are given less weight values. Cur-
rently, term weighting schemes have been successfully applied in bag-of-words
models, but it is still seldom used in neural models. To the best of our knowl-
edge, there is a few works in combining term weighting schemes and n-grams
with neural models [11]. [11] exploit term weighting schemes and n-grams in
objective function based on the Paragraph Vector (PV) model [10].

In recent years, many deep neural models with expressive compositional func-
tions (e.g. CNNs or RNNs) are proposed and have achieved impressive results. [7]
proposes convolutional neural networks (CNNS) to extract text features and gen-
erate a sentence or document representation. Meanwhile, Recurrent Neural Net-
works (RNNs) is suitable for the sequence text due to its special network struc-
ture [20,21]. Although these models have achieved impressive performance, they
are typically computationally expensive. Comparing with CNNs and RNNs mod-
els, neural bag-of-words models with simple compositional functions are effec-
tive and only need low computational cost such as SWEM [16] and LEAM [22].
SWEM is a variant of NBOW model with simple compositional functions, which
gets comparable results and even obtains better performance in some NLP tasks.
At the same time, LEAM is another variant of NBOW model which introducing
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an attention between words and labels [22]. In this paper, we propose a variant of
NBOW model introducing term weighting schemes and n-grams. Our proposed
model generates informative sentence or document representation considering
the important degree of words and the word-order information.

3 Model

In order to consider the important degree of each word and the word-order
information for text classification, we propose a variant of NBOW model
called Weighted Word Embedding Model (WWEM). The overall architecture of
Weighted Word Embedding Model (WWEM) is shown in Figs. 1 and 2. The intu-
itive of our model is that not all words in the sentences or documents are equally
important for text classification. Thus, our model introduces term weighting
schemes to initialize the weight values of words. The more important the word,
the higher the weight values. Note that the weight values of words are fine-tune
in training process. What’s more, n-grams information is considered in our pro-
posed model to capture word-order information in short context shown in Fig. 2.
The last layer of our model is a classifier which a sentence or document repre-
sentation will be fed into it. It is implemented as a 300-dimensional Multilayer
Perceptron (MLP) layer followed by a sigmoid or softmax function depending
on the specific task.

In this section, we first introduce the neural bag-of-words model which per-
forms simple operations over word embeddings to get a sentence or document
representation. Then, we introduce term weighting schemes which give each word
a reasonable weight value in a sentence or document representation. Finally, our
proposed model which combines term weighting schemes and n-grams with neu-
ral bag-of-words model will be described in detail. For convenience, we define
the mathematical symbols shown in Table 1.

Table 1. The description of some mathematical symbols

Symbol Description

X = {x1, x2, ..., xL} A text sequence

xi (i ∈ [1, L]) The ith token in X

L The number of tokens in X

V = {v1, v2, ..., vL} A word embedding sequence

vi ∈ R|e| (i ∈ [1, L]) The word embedding of ith word xi (i ∈ [1, L])
−→z A sentence or document representation vector

g (V) The compositional function
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3.1 Neural Bag-of-Words (NBOW) Model

Neural Bag-of-Words (NBOW) models take each token in the text sequence X as
independent and unordered. They treat the text sequence as bags of word embed-
dings. Although NBOW models compute a sentence or document representation
by simply adding or averaging over the word embeddings, they have exhibited
comparable or even superior performance in some NLP tasks [16]. Commonly,
most NBOW models map the text sequence X into a low-dimensional vector −→z
using the simple compositional function g (V) over the word embedding sequence
V : −→z = g (V) (1)

When g (V) is a linear function, a sentence or document representation −→z can
be viewed as the weighted summation of word embeddings. Thus, a sentence or
document representation −→z and the word embedding have the same number of
dimension. The linear function can be uniformly described as follows:

−→z = w1 · v1 + w2 · v2 + ... + wL · vL (2)

where wi ∈ [1, L] is a scalar value used to measure the important degree of each
word in the text sequence. If wi is equal to 1

L , the model can be viewed as the
simplest NBOW model [16] which takes each word equally important in the text
sequence. The simplest NBOW model can be described as follows:

−→z avg =
1
L

·
L∑

i=1

vi (3)

At the same time, g (V) can also be a non-linear function. For instance, to extract
the most salient features, each dimension of −→z can be obtained by taking the
maximum value over same dimension of the word embedding sequence. Note
that a sentence or document representation and the word embedding also have
the same number of dimension:

−→z max = Max-pooling (v1, v2, ..., vL) (4)

Meanwhile, g (V) can also be a composite function. For example, a common
operation is to concatenate −→z avg and −→z max to get a new sentence or docu-
ment representation −→z concat. Note that the dimension of −→z concat is twice the
dimension of −→z avg or −→z max:

−→z concat = concat (−→z max,
−→z avg) (5)

3.2 Term Weighting Schemes

In the text classification task, term weighting schemes are often used to extract
text features in traditional bag-of-words models. It is a strategy to measure
the important degree of words. We can divide term weighting schemes into an
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unsupervised weighting schemes and supervised weighting schemes according to
whether the label information is used. TF, IDF, and TF·IDF [18] belong to the
unsupervised ones. RF [9], DC and BDC [24] can be divided into supervised ones.
BDC scheme is based on information theory and measures the discriminating
power of a token based on its global distributional concentration in the categories
of a corpus [24]. BDC scheme is used to initialize the weight value of tokens in
our proposed model and is described in the following subsection.

bdc (t) = 1 − BH (t)
log (|C|) = 1 +

∑|C|
i=1 f (t|ci) logf (t|ci)

log (|c|) (6)

f (t|ci) =
p (t|ci)∑|C|
i=1 p (t|ci)

(7)

p (t|ci) =
num (t|ci)
num (ci)

, i ∈ [1, |C|] (8)

where |C| denotes the number of the categories, num (t|ci) denotes the frequency
of token t in category ci, and num (ci) represents the frequency sum of all terms
in category ci. We can conclude that the larger the value of bdc (t), the greater
the term’s discriminating power.

3.3 Weighted Word Embedding Model

Word embedding is a kind of word representation obtained by training a large
amount of corpus in an unsupervised manner. Thus, word embedding can be
viewed as a spatial representation of a word. However, it cannot explicitly
express the important degree of each word in a text sequence. On the con-
trary, term weighting schemes can explicitly measure the important degree of
each word. Therefore, as shown in Figs. 1 and 2, we propose a model which
combines the term weighting schemes and n-grams with the neural bag-of-words
model, termed Weighted Word Embedding Model (WWEM). For each ngram,
we can get a weighted token representation. Then, a sentence or document rep-
resentation can be obtained with compositional function over the weighted token
representations. Meanwhile, according to the difference of n-grams and the com-
positional function, our proposed models can be divided into two types, namely
WWEM-uni gram models (WWEM-uni avg, WWEM-uni max) and WWEM-
bi gram models (WWEM-bi avg and WWEM-bi max). Then, we will introduce
these four models separately.

WWEM model initializes the weight value of each token by BDC scheme.
We normalize them using the softmax function:

w
′
i = bdc (xi) , i ∈ [1, L], xi ∈ X (9)

wi =
ew

′
i

∑L
i=1 e

w
′
i

, i ∈ [1, L] (10)
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At the same time, the weight wi, i ∈ [1, L] calculated by Eq. (10) is the
initial weight value of each token in WWEM model. The sentence or document
representation can be obtained by Eq. (2). Thus, both the word embeddings and
term weight values are the input of our proposed model. They are set as a variable
respectively. Meanwhile, the weight value of each token would be fine-tune to
get more reasonable. It can be shown in our experiments.

Fig. 1. Uni-gram weighted word embedding model (WWEM-uni avg, WWEM-
uni max). (1) The shade of the blue color is used to measure the weight value of
tokens. (2) The value of term weight range from 0 to 1

As shown in Fig. 1, to extract the most salient features from every word-
embedding dimension, our proposed model take the maximum value over each
dimension of the weighted word embeddings. Then, the sentence or document
representation of WWEM-uni max model and WWEM-uni avg model can be
separately obtained by Eqs. (11) and (12).

−→z uni max = Max-pooling (w1 · v1, w2 · v2, ..., wL · vL) (11)

−→z uni avg =
L∑

i=1

(wi · vi) (12)

Figure 2 shows the framework of WWEM-bi avg model or WWEM-bi max
model. In order to take account of the word-order information, we combine n-
grams information with our model. In WWEM-bi avg model, the sentence or
document representation can be obtained by Eqs. (13), (14) and (15).

−→z WWEM-ngram avg = concat(−→z WWEM avg,
−→z ngram avg) (13)

−→z WWEM-avg = w1 · v1 + w2 · v2 + ... + wL · vL (14)
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Fig. 2. Bi-gram weighted word embedding model (WWEM-bi avg, WWEM-bi max).
(1) The shade of the blue color is used to measure the weight value of tokens. (2) The
value of term weight range from 0 to 1 (Color figure online)

−→z ngram avg = wngram,1 ·
n∑

i=1

wivi + wngram,2 ·
n+1∑

i=2

wivi +

... + wngram,L−n+1 ·
L∑

i=L−n+1

wivi (n ≥ 2) (15)

where wi, i ∈ [1, L] denotes the weight values of uni-grams and wngram,i, i ∈
[1, L − n + 1] denotes the weight values of n-grams. Both of them are initialized
by BDC scheme. In our proposed model, n is set to 2. The sentence or document
representation in WWEM-bi max model can be calculated by Eqs. (16), (17),
(18) and (19).

−→z WWEM-ngram max = concat (−→z WWEM max,
−→z ngram max) (16)

−→z WWEM max = Max-pooling (w1 · v1, w2 · v2, ..., wL · vL) (17)

−→z ngram max = wngram,1 · −→z win max (1, n) + wngram,2 · −→z win max (2, n + 1) +
... + wngram,L−n+1 · −→z win max (L − n + 1, L) (18)

−→z win max (i, j) = Max-pooling (wivi, wi+1vi+1, ..., wjvj) (19)
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4 Experiments

Experimental Setting. We conduct the experiments on five datasets to eval-
uate the effectiveness of our proposed model. In our experiments, we use Google
300-dimensional word2vec as initialization for our model’s word embeddings.
Out-of-Vocabulary (OOV) words are initialized from a uniform distribution with
range [−0.01, 0.01]. The final layer of our proposed model is a classifier which is
implemented as an MLP layer followed by a sigmoid or softmax function depend-
ing on the special task. The hyper-parameter settings of the neural network are
as follows:

(1) We train our model’s parameters with the Adam Optimizer [8] with an
initial learning rate of 0.001 and a minibatch size of 100.

(2) The MLP layer’s dimension is selected from the set [100, 150, 200, 300].
(3) Dropout regularization [19] is employed on the MLP layer, with dropout

rate 0.8. The model is implemented using Tensorflow and is trained on GTX
1080Ti.

Table 2. Summary statistics of five datasets. #classes denotes the number of classes,
#Training: the number of training samples. #Testing: the number of testing samples.
|V | denotes the vocabulary size.

Dataset #classes #Training/#Testing |V |
AGNews 4 120k/7.6k 90k

Yelp binary 2 560k/38k 314k

Yelp full 5 650k/38k 340k

DBPedia 14 560k/70k 667k

Yahoo 10 1400k/60k 990k

4.1 Datasets

We evaluate our proposed model on the same five benchmark datasets as in [26].
All the datasets use accuracy as the metric. The summary statistic of the datasets
is shown in Table 2 and the simple descriptions of each dataset are shown as
follows:

AGNews. The dataset is obtained from Internet news articles [4]. Each article
consists of news title and the description fields. The articles are classified into
four topics: Word, Entertainment, Sports and Business.

Yelp Review Polarity. The dataset is obtained from the Yelp Dataset Chal-
lenge in 2015. It is used for sentiment classification task, predicting a polarity
label by considering stars 1 and 2 negative, and 4 and 5 positive.
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Yelp Review Full. The Yelp Review Full dataset is also obtained from the Yelp
Dataset Challenge in 2015. It is used for sentiment classification task, predicting
full number of stars the user has given.

DBPedia. DBPedia is an ontology dataset, and is constructed by picking 14
non-overlapping classes from DBPedia 2014 (Wikipedia). Each article consists
of the title and abstract of the Wikipedia article.

Yahoo! Answers Topic. The dataset is obtained from Yahoo! Answers Com-
prehensive Questions and Answers version 1.0 dataset. It is used for the topic
classification task. Each article consists of question title, question content and
best answer.

We compare with different types of models. According to the complexity of
model, the models can be summarized into three types as follows:

(1) The traditional bag-of-words model in [26] denoted as Bag-of-words.
(2) Sophisticated deep CNN/RNN models: Small word CNN, Large word CNN,

LSTM reported in [26] and SA-LSTM (word-level) [3]
(3) Simple neural bag-of-words models: simple word embedding models

(SWEM-aver, SWEM-max) [16] and Label-Embedding Attentive Model
(LEAM) [22].

4.2 Result Analysis

Accuracy Analysis. Compared with sophisticated deep learning models
(such as CNN and RNN models), simple neural network structure models also
achieve comparable performance and even get higher accuracy on some datasets
(Table 3). Then, we analyse the experimental results from two perspectives as
follows.

Comparing with Different Models

The traditional bag-of-words models perform worse than other methods. We
analyse that bag-of-words models may not take the contextual, syntax and more
semantic information of the sentence or document into account. In traditional
bag-of-words method, term weighting scheme is a significant method to extract
features. To some extent, our proposed model combining term weighting scheme
with word embedding may obtain semantic and contextual information. From
the experimental results, our proposed model gets higher test accuracy rate than
traditional bag-of-words methods. We argue that our model may make use of
the information of the word embedding.

Meanwhile, models with expressive compositional function (e.g. RNNs or
CNNs), have demonstrated impressive results; however, they are typically com-
putationally expensive [22]. On the contrary, our proposed model with simple
compositional functions achieves comparable results or even exhibits stronger
performance on some datasets. For example, in dataset Yahoo! Answers Topic,
DBPedia, and Yelp Review Full, the test accuracy of our proposed model is
about 1–2% higher than that of the CNN or LSTM models.



A Weighted Word Embedding Model for Text Classification 429

Table 3. Test accuracy on classification tasks, in percentage; the results of the other
models are directly cited from the respective papers.

Model Yahoo DBPedia AGNews Yelp P. Yelp F.

Bag-of-words [26] 68.90 96.60 88.80 92.20 58.00

Small word CNN [26] 69.98 98.15 89.13 94.46 58.59

Large word CNN [26] 70.94 98.25 91.45 95.11 59.48

LSTM [26] 70.84 98.55 86.06 94.74 58.17

SA-LSTM (word-level) [3] - 98.60 - - -

SWEM-aver [16] 73.14 98.42 91.71 93.59 60.66

SWEM-max [16] 72.66 98.24 91.79 93.25 59.63

LEAM [22] 75.22 98.32 92.45 93.43 61.03

WWEM-uni avg 72.34 98.65 93.08 93.20 59.73

WWEM-uni max 72.79 98.11 92.54 93.11 60.00

WWEM-bi avg 73.50 98.72 92.86 94.50 61.35

WWEM-bi max 73.49 98.73 93.20 94.20 61.03

Finally, simple word embedding models (SWEM) [16] with parameters-free
pooling operation and other simple compositional functions also exhibit com-
parable or even superior performance. However, SWEM ignores a point that
not all the words are equally important for the text classification task. Mean-
while, word-order information has not been considered in SWEM model. At the
same time, the LEAM [22] model obtains the important degree of words by
measuring the similarity between the label embedding and the word embedding.
However, word-order information is ignored. In some cases, there is no explicit
corresponding word embedding available for the label embedding initialization
during learning. Thus, it may give an unreasonable weight to words in a sen-
tence or document representation. Intuitively, considering the important degree
of each word and the word-order information are beneficial to obtain informative
a sentence or document representation. Our proposed model takes account of the
above factors and get better performance than SWEM model and LEAM model
in some datasets.

Comparing with Different Type Tasks
On topic classification task (e.g. Yahoo dataset and Agnew’s dataset), our pro-
posed model exhibits stronger performances relative to both LSTM and CNN
sophisticated architectures. On the ontology classification problem (DBPedia
dataset), we find the same trend that our proposed model obtains comparable
or even superior results relative to CNN or LSTM models.

On the sentiment analysis tasks, several deep learning models based on CNN
or LSTM perform better than our proposed model. There is probably due to
two reasons: (1) Word-order information may be required for predict sentiment
orientations. For instance, two phrases “not really good” and “really not good”
convey different levels of negative sentiment, while being different only by their
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word orderings [16]. (2) Syntax information also affects the sentiment orienta-
tions. The examples are shown in Table 4. For the first case, the first part of the
sentence conveys positive sentiment. However, the latter part of the sentence is
what the reviewer really want to express. The word “But”, a transitional word,
conveys a signal that the latter part of sentence should be give more attention.
On the contrary, we consider that word-order and syntax information may be
less useful for the topic classification tasks.

Table 4. Case samples extracted from dataset Yelp Review Polarity.

Label Sentence

Negative Breakfast is always good. But too much Pamela’s seems greasy

Negative I like domino’s pizza. . ./The location however is awful

4.3 Case Study

In order to validate that our proposed model is able to select informative words
and generate the informative sentence or document representation, we analyze
two cases. In Tables 5 and 6, we give two cases and visualize the change in
term weights based on the Yelp Review Polarity dataset. In both two cases, we
normalize the term weights: wnormalize = w−min

max−min , where w denotes the term
weight vector of the sentence and min denotes the minimum of the term weight
vector, while max is the maximum of the term weight vector.

Table 5. Case samples extracted from dataset Yelp Review Polarity.

Model type Label Predict result Sentence

WWEM uni Positive Positive “I love old navy clothing it’s vintage
styling with good prices. Great jeans
too I love the painter’s jeans.”

Case One
As shown in Table 5, the category of the sample sentence can be predicted cor-
rectly by our proposed model. In Fig. 3(a) and (b), our model can assign the
words carrying strong sentiment like “great”, “vintage”, “love” and “old” to
high weight. On the Contrary, the words hardly expressing sentiment obtain low
weights, like “with”, “it” and the punctuation.

However, the word “good” carrying strong sentiment get a low initialization
weight in Fig. 3(a). We analysis that the word “good” appears frequently in both
categories. BDC schemes based on information theory give the word “good” low
discrimination power. We argue that term weighting schemes hardly take the
semantic information into account.
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Fig. 3. Term weight values in WWEM-uni avg model. (a) Term weights before model
training; (b) Term weights after model training

In order to get informative sentence or document representation, the term
weights can be set to fine-tune during model training. As shown in Fig. 3(b),
the word “good” can be given high weight after training the model. To some
extent, our proposed model may make good use of the semantic information.
Meanwhile, the words, expressing strong sentiment, also get high weight values,
like “great”, “love”, “vintage” and “old”.

Table 6. Case samples extracted from dataset Yelp Review Polarity

Model type Label Predict result Sentence

WWEM-uni avg Positive Negative “Pretty good food fantastic
atmosphere slightly overpriced but
not unreasonable for the quality
and atmosphere”

WWEM-bi avg Positive Positive

Case Two
As shown in Table 6, the WWEM-uni avg model gives a wrong prediction for
the sample sentence. Instead, the model WWEM-bi avg correctly predicts the
category of the sample sentence. In the following content, we analyze this case.
In Fig. 4(a) and (b), Our proposed model can pay more attention to the senti-
ment words like “overprice”, “fantastic”, “unreasonable” and “good”. From these
key words expressing strong sentiment, the WWEM-uni gram models would be
difficult to make a correct prediction. We analysis that the WWEM-uni gram
model ignores the word-order information. Thus, the bigram features cannot be
extracted, like “slightly overpriced” and “not reasonable”.

N-grams can also reflect semantic information that cannot be obtained by
considering the words individually. The unigram “overprice” and “unreasonable”
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Fig. 4. Term weight values in WWEM-uni avg model. (a) Term weights before model
training; (b) Term weights after model training

are given high weights in WWEM-uni avg models. Thus, the WWEM-uni avg
model is difficult to give a correct prediction. On the contrary, both bi-gram
“slightly overprice” and “not unreasonable” are given relatively low weight in
WWEM-bi avg model. Meanwhile, the bigram “good food” and “fantastic atmo-
sphere” are given more attention (Fig. 5). Finally, the WWEM-bi avg model can
give a correct prediction. Thus, WWEM-bi gram models can take the word-order
information into account and capture more significant semantic information.

Through the analysis of the two cases above, we can conclude that our pro-
posed model can capture more semantic information by combining term weight
schemes and n-gram information.

Fig. 5. Term weight values in WWEM-bi avg model. (a) Term weights before model
training; (b) Term weights after model training
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5 Conclusion

In this work, we propose a variant of neural bag-of-works model combining with
term weighting schemes and n-grams information. The model has few param-
eters and requires much lower computational cost. It is tested on several large
public datasets. According to our experimental results, we find that our proposed
model exhibits comparable or even superior performance in the text classifica-
tion compared with the state-of-the-art. The weight values of words are highly
interpretable. It is beneficial to generate an informative sentence or document
representation. Meanwhile, n-gram information is significant for the model to
achieve better performance. We also find that sentiment analysis tasks are more
sensitive to the word-order information than the topic classification.
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Abstract. Network representation learning, or network embedding,
aims at mapping the nodes of the network to low-dimensional vector
space, in which the learned node representations can be used for a vari-
ety of tasks, such as node classification, link prediction, and visualiza-
tion. As a special class of complex networks, the bipartite network is
composed of two different types of nodes in which the links only exist
among different types of nodes, has important applications in the rec-
ommendation system, link prediction, and disease diagnosis. However,
most existing methods for network representation learning are aimed at
homogeneous networks in general, while the special properties of bipar-
tite networks are not taken into account, such as the implicit relations
(i.e., unobserved links) between nodes of the same type. In this paper, we
propose a novel deep learning framework for bipartite networks, which
integrates the explicit and implicit relations, while preserving the local
and global structure, to learn the highly non-linear representations of
nodes. Extensive experiments conducted on several real-world datasets,
based on the link prediction, recommendation, and visualization, demon-
strate the effectiveness of our proposed method compared with state-of-
the-art network representation learning based methods.

Keywords: Bipartite networks · Network representation ·
Deep learning

1 Introduction

Many biological, social, and information systems in the world can be modeled
as complex networks, which has received extensive attention and research in
the past few years. The bipartite network is an important manifestation of the
complex network, which is composed of two different types of nodes, and nodes
of the same type are not connected. In the real world, the user-item network,
author-paper collaboration network, and disease-gene interaction network are all
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belong to bipartite networks. Modeling and predicting bipartite networks have
widely applications, such as the link prediction, question answering systems and
recommender systems.

For analysis on the bipartite network, traditional methods usually extract
features by feature engineering [17], but searching for valuable features in large-
scale data is a time-consuming and costly effort, and can lead to poor accu-
racy. Recently, network representation learning can solve this challenge, which
enable learning meaningful feature representations from the network data auto-
matically. It aims at mapping each node of the network into a low-dimensional
vector space, where similar nodes are closer. These representations can be used
as features of nodes in a variety of network application tasks, such as node
classification, link prediction, and visualization [8,19].

Recently, a variety of representation learning methods for complex networks
(we call homogeneous networks) have been proposed, such as DeepWalk [12],
LINE [16], Node2vec [6] and so on. However the applications of these methods
in the bipartite network face the following two major challenges: (1) Ignore
implicit relations between the same type of nodes. (2) The highly non-linear
structure of the bipartite network cannot be captured. Taking the LINE model
as an example, it learns the first-order similarity and second-order similarity of
the homogeneous network respectively, which doesn’t consider the type of nodes
in the bipartite network. Although there are no links between nodes of the same
type, there will be some implicit relations between them. For example, in a
user-item network, there will be some kind of friendship between the users, and
similar attributes between the items. Meanwhile, LINE only leverages a single-
layer nonlinear function, which can’t capture the highly non-linear structure of
the bipartite network.

At the same time, the bipartite network can be regarded as a special het-
erogeneous network. Metapath2vec++ is proposed as one of the pioneers of
the heterogeneous network representation learning [3]. It applies the meta-path-
guided random walk to capture the semantic and structural correlations among
different types of nodes. Although metapath2vec++ can be applied to bipartite
networks, its inherent structural properties are not taken into account. To our
knowledge, Gao et al. [5] proposed a BiNE model for bipartite networks, which is
the only specially proposed method for bipartite network representation learning.
It models the explicit relations between different types of nodes and the implicit
relations between nodes of the same type simultaneously. However, the BiNE
model learns the explicit and implicit relations in two steps without integrating
them, and cannot capture the high non-linear structure of the network.

In order to solve the above limitations of network representation learning
methods for bipartite network, in this paper, we propose a novel Bipartite Net-
work Embedding model Integrating the Explicit and Implicit relations, named
BiNE-IEI. First, we apply a method based on projection to obtain the implicit
relations between nodes of the same type, and model the explicit relations
between different types of nodes by the observed links. For each node of bipartite
networks, we use a uniform representation of the explicit and implicit relations.
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Second, to integrate explicit and implicit relations effectively of each node while
capturing the highly non-linear structure of bipartite networks, we propose a
novel deep learning framework based on two parallel deep autoencoders which
can be considered as extensions to the multi-layer autoencoder proposed by
Salakhutdinov et al. [14]. It can reconstruct the neighborhood structure of each
node through the deep autoencoders to preserve the global structure of bipartite
networks. Besides, to preserve the local structure of networks, we model two
directly connected nodes by learning the node representations. Last, we evaluate
our model compared with a variety of baselines on three datasets, which show
the effectiveness of our model on several data mining tasks, including the link
prediction, recommendation, and visualization.

The contributions and advantages of this paper can be summarized as follows:

– We propose a novel deep learning framework, named BiNE-IEI, which inte-
grates explicit and implicit relations to learn the node representations of the
bipartite network.

– Our deep learning framework can capture the highly non-linear structure of
the bipartite network while preserving local and global network structure.

– The experimental results show the effectiveness of our proposed model which
outperform other state-of-the-art methods.

2 Related Work

Here, we introduce the traditional methods for link prediction in the bipartite
network, the node representation learning methods based on the homogeneous
network and heterogeneous network.

2.1 Traditional Bipartite Network Link Prediction

We divide these methods into two categories, projection based and topological
similarity-based. The nature of the first type is mapping the bipartite network
into the unipartite network for link prediction, such as the methods proposed
in ProbS [22] and HeatS [21]. The idea of the latter is to directly calculate the
similarity between the two kinds of nodes based on the observed networks. Sev-
eral classical similarity indices based on local network topological structure have
been proposed [11], including Common Neighbors (CN), Jaccard’s index (JC),
Adamic Adar (AA), allocation of resources (RA) and Preferential Attachment
(PA). Compared with the link prediction methods of local network topological
structure, the global network topological structure similarity methods [11] take
the structure of the whole network into account, including Katz Index (Katz)
and Leicht Holme-Newman (LHN2).

2.2 Representation Learning of the Homogenous Network

The network representation learning aims to learn a low-dimension representa-
tion of nodes. The methods and models for homogeneous networks are mainly
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divided into the following two categories: (1) Linear dimension reduction: Prin-
cipal component analysis (PCA) [9] is one of the common methods for linear
dimension reduction, while singular value decomposition (SVD) contains the
kernel of PCA. (2) Nonlinear dimension reduction: Perozzi et al. [12] proposed
a method DeepWalk, which generates a large number of random walk sequences
by truncated random walk. After that, a simple neural network based model
LINE [16] was proposed to learn the network representations separately through
first-order and second-order similarity. Node2vec [6] is another improved algo-
rithm for DeepWalk, which adjusts the process of random walk by introducing a
depth-first and breadth-first strategy. Wang et al. [18] proposed a model named
SDNE, which exploits deep learning to learn node representations. The first
and second order similarity of networks are preserved while the highly non-
linear structure is captured. Detailed reviews can be seen in [1,2]. However,
these methods are designed for homogeneous networks without considering the
type of nodes in bipartite networks, which are not optimal or apply to node
representations of the bipartite network.

2.3 Representation Learning of the Heterogeneous Network

The representation learning on heterogeneous networks can well describe the
complex relations among different types of nodes. Dong et al. [3] extracted the
node structure information by performing the random walk based on the meta-
paths in the heterogeneous network and applied the skip-gram algorithm to
learn the node representations. On the basis of this work, the author proposed
Metapath2Vec++ [3], which considers the node type information in softmax. The
HIN2Vec proposed by Fu et al. [4] can not only learn the representations of nodes
but also learn the vector representation of meta-paths. HINE [7] first calculates
the similarity between nodes based on the random walk of the meta-paths and
uses it as the supervised information to guide the vector representations of the
nodes. Meanwhile, Gao et al. [5] proposed a BiNE model for bipartite network
embedding, which models the explicit relations between different types of nodes
by the first-order similarity and captures the implicit relations between the same
nodes by performing a biased and self-adaptive random walk. However, BiNE
does not consider the integration of the explicit and implicit relations, nor does
it capture the highly non-linear structure of networks.

3 Methodology

In this section, we first describe the notations used in this paper and define
our problem. Then we present our proposed model and give our designed loss
functions for optimization. Note that the bold letters used in mathematics that
appear in this paper represent vector or matrix.

3.1 Definition and Notation

Definition 1 (Bipartite Graph). Let G = (U, V,E) denote a general undi-
rected bipartite graph, where U and V are two sets of different types of nodes
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and E is the set of links. Suppose there are n nodes of type U = {ui, ..., un} and
m nodes of type V = {vi, ..., vm}. For a bipartite graph, we denote its weight
matrix as A ∈ Rn×m. Each edge eij ∈ E is associated with a weight aij, where
the weight aij > 0 if nodes ui and vj are connected and aij = 0 otherwise.

Definition 2 (Bipartite Network Embedding). Given a bipartite graph
denoted as G = (U, V,E), the bipartite network embedding aims to learn a func-
tion f : U ∪ V → Rd, which maps each node ui ∈ U (or vj ∈ V ) into a low-
dimensional embedding space. In the embedding space, both the local and global
structure are preserved while integrating explicit and implicit relations.

Definition 3 (Local Network Structure). The local network structure can
be described by local similarity between directly connected nodes. For any node
pair (ui, vj), the local structure can be defined as: {aij |aij > 0,∀ui ∈ U,∀vj ∈ V }.
Definition 4 (Global Network Structure). The global network structure can
be described by the similarity of the node pair’s neighborhood structure. For any
node ui ∈ U , it’s global structure is formulated as: {ai∗|ai∗ > 0,∀v∗ ∈ V, ui ∈ U}.
Similarly, for any node vj ∈ V , the global structure is defined as: {a∗j |a∗j >
0,∀u∗ ∈ U, vj ∈ V }.

3.2 Modeling Implicit Relations

The recommendation system is an important application of the bipartite net-
work. Some researches have shown that implicit social relations can help improve
the performance of recommendation systems. The correlation between users or
items can be treated as an implicit relation. For example, users are more likely
to purchase items based on their friends’ recommendations, and if two users
have purchased the same item, it means they have some kind of similarity. The
more the same items they have purchased, the more similar they are. Similarly,
if two items are purchased by many users, then they are similar. In this paper,
we apply the bipartite network projection technique based on Cosine similarity
to obtain implicit relations between nodes of the same type. The Cosine distance
between two nodes of type U is defined as:

SU
ij =

|N(ui) × N(uj)|√
kikj

, ui, uj ∈ U, (1)

where N(ui) = {vj ∈ V |aij > 0, ui ∈ U} denote the set of neighbors of node ui,
and ki is the degree of node ui. The same similarity measure is also applicable
to the nodes of the V type, which can be defined as:

SV
ij =

|N(vi) × N(vj)|√
kikj

, vi, vj ∈ V, (2)

In fact, not all nodes of the same type have significant implicit relations. To
solve this problem, we introduce a threshold γ :

SU
ij =

{
SU
ij , SU

ij ≥ γ,
0, SU

ij < γ,
(3)



440 Y. Wang et al.

The same process is applied to SV
ij .

3.3 Deep Learning Framework

In a bipartite network, we take the observed links as explicit relations, which
can be represented by the weight matrix A. For unobserved links between nodes
of the same type, we regard them as implicit relations and represent them with
the similarity matrix SU (or SV ) defined in Eqs. 2 and 3. In order to obtain a
uniform representation of the explicit and implicit relations of nodes in bipartite
networks, we introduce an extended weight matrix A

′ ∈ R(n+m)×(n+m) in Eq. 4,
which contains both the explicit and implicit relations.

A
′
=

[
SU A
AT SV

]

, (4)

The process for calculating the extended weight matrix A
′
is shown in Algo-

rithm1. Next, we propose a deep learning framework to integrate explicit and
implicit relations while preserving the highly non-linear structure of the bipartite
network, whose framework is shown in Fig. 1.
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Fig. 1. The framework of the deep model of BiNE-IEI, which the blue solid line rep-
resents the explicit relations between different types of nodes, and the blue dotted line
represents the implicit relations between the same type of nodes. (Color figure online)

In detail, in order to integrate the explicit and implicit relations in the weight
matrix A

′
, We use two parallel deep autoencoders to capture the highly non-

linear structure of the bipartite network. For each node in the bipartite network,
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Algorithm 1. Extend Adj
Input: Bipartite network G = (U, V, E)
1: A ← convert G to adjacency matrix
2: for i ∈ {1, 2, . . . , | U |} do
3: for j ∈ {1, 2, . . . , | U |} do
4: SU

ij ← apply Eq. 1
5: end for
6: end for
7: for i ∈ {1, 2, . . . , | V |} do
8: for j ∈ {1, 2, . . . , | V |} do
9: SV

ij ← apply Eq. 2
10: end for
11: end for
12: A′ ← Based on A, SU

ij and SV
ij , apply Eq.4

13: return an extended weight matrix A
′

we can obtain its explicit and implicit neighborhood structure according to the
weight matrix A

′
, and then reconstruct the neighborhood structure of each node

in the network through the deep autoencoders, which preserves the global struc-
ture of the bipartite network. Capturing the local structure of the network is
equally important, we use the hidden feature representation of two directly con-
nected nodes learned from two parallel deep autoencoders to preserve the local
similarity structure of networks.

3.4 Loss Functions

From the extended weight matrix A
′
, each node xi (xi ∈ U ∪V ) is represented as

a high-dimensional vector as a
′
i (i.e., xi), which represents the i-th node’s explicit

and implicit neighborhood structure (the i-th row of the adjacency matrix A
′
).

We reconstruct the neighborhood structure of each node by deep autoencoders,
which preserves the global structure of the bipartite network. A deep autoencoder
consists of two parts: the encoder and the decoder. Formally, we denote the input
data and reconstructed data as X = {xi}n+m

i=1 and X̂ = {x̂i}n+m
i=1 , then given

an input data xi = a
′
i and the number of layers K of the encoder, the hidden

feature representations of each layer in the encoding process are as follows:

hi
1 = f(W1xi + b1),

hi
k = f(Wkhk−1 + bk), k = 2, ...,K,

(5)

where hi
k denotes the representation of the k-th hidden layer, Wk and bk denote

the k-th hidden layer’s weight matrix and bias, and f is the sigmoid function.
In reverse, we denote the hidden representations for a node in each layer in

the decoding process as:

ĥi
k−1 = f(Ŵkx̂i + b̂k), k = K, ..., 2,

x̂i = f(Ŵ1ĥ1 + b̂1),
(6)
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where ĥi
k−1, Ŵk, and b̂k denote the hidden representations, weight matrix, and

bias term of the (k − 1)-th reconstruction layer, respectively.
The objective of the loss function is to minimize the reconstruction loss of X

and X̂ to optimize the parameters and learn the latent representations, which
can be formulated as:

Lglobal = ‖(X − X̂) � Z‖2F (7)

where � denotes the Hadamard product, and Z is the weight matrix, which con-
tains n + m weight vectors z1, . . . , zn+m. For each weight vector zi = {zij}n+m

j=1 ,
the detailed definition is as follows:

zij =

{
α > 1, a

′
ij > 0,

1, a
′
ij = 0,

(8)

where a
′
ij is the j-th elements of a

′
i and α is the hyper-parameter. Due to the

sparsity of the network, we introduce a weight matrix Z to impose more penalty
to the reconstruction loss of the non-zero elements than that of zero elements
in input data. Intuitively, minimizing the loss function Lglobal will make two
nodes with similar neighborhood structure in the original network also similar
in the embedding space, which is able to preserve the global network structure
as desired.

We preserve local proximity of the network by modeling explicit link relations
between two directly connected nodes. The loss function for capturing the local
structure of a bipartite network can be formulated as:

Llocal =
n∑

i=1

m∑

j=1

aij‖hi
k − hj

k‖
2

2
, (9)

Minimizing the loss function Llocal makes two nodes with direct links to be
mapped close in the embedding space, which can preserve the local network
structure. In order to integrate the explicit and implicit relations while preserving
the local and global structure of bipartite networks, the joint objective function
of our proposed framework is defined as follows:

L = Lglobal + λ1Llocal + λ2Lreg, (10)

where λ1 and λ2 are balancing parameters and Lreg is the regularization term
that prevents overfitting, which is formulated as follows:

Lreg =
K∑

k=1

(‖Wk‖22 + ‖Ŵk)‖22 + ‖bk‖22 + ‖b̂k‖22), (11)

Our method is summarized in Algorithm 2.

4 Experiments

In this section, we conduct experiments on several real-world datasets to sys-
temically evaluate the effectiveness of BiNE-IEI.
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Algorithm 2. Training algorithm for the deep model of BiNE-IEI
Input: Bipartite network G = (U, V, E), the parameters α, λ1 and λ2.
Output: The network representations H
1: Initialize W = {W1, . . . ,WK}, b = {b1, . . . ,bK}, Ŵ = {Ŵ1, . . . ,ŴK}, b̂ =

{b̂1, . . . , b̂K}
2: A′ ← Extend Adj(G)
3: X = A′

4: repeat
5: x̂ ← apply Eqs. 5 and 6

6: Lglobal ← ‖(X − X̂) � Z‖2

F

7: Llocal =
n∑

i=1

m∑

j=1

aij‖hi
k − hj

k‖2

2

8: L = Lglobal + λ1Llocal + λ2Lreg

9: Back-propagate to get updated parameters W,b,Ŵ and b̂
10: until converge
11: return The network representations H = {h1, . . . ,h|U|+|V |}

4.1 Datasets

We evaluate our proposed model BiNE-IEI on the following three datasets to
demonstrate it’s effectiveness.

– DBLP1: The DBLP dataset is a weighted bipartite publish network, which
depicts the author’s publishing relationship on the venues, where the edge
weight means the number of papers an author has been published on a venue.

– VisualizeUs2: The VisualizeUs dataset is the bipartite picture tagging network
consisting of two types of nodes, where the nodes represent tags and pictures
respectively, and the edge weight indicates the number of times a tag has
been tagged on a picture.

– Wikipedia3: It is an unweighted Wikipedia dataset. The nodes in this dataset
contain authors and pages, in which the edge indicates that the authors have
edited a page in Wikipedia.

The detailed statistics of the above datasets are summarized in Table 1.

Table 1. Statistics of the dataset.

Name DBLP VisualizeUs Wikipedia

| U | 6001 6009 15000

| V | 1308 3355 3214

| E | 29256 38780 172426

Density 0.4% 0.2% 0.4%

1 http://dblp.uni-trier.de/xml.
2 http://konect.uni-koblenz.de/networks/pics ti.
3 http://konect.uni-koblenz.de/networks/wikipedia link en.

http://dblp.uni-trier.de/xml
http://konect.uni-koblenz.de/networks/pics_ti
http://konect.uni-koblenz.de/networks/wikipedia_link_en
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4.2 Baselines

For comparison, we introduced the benchmark methods of three categories. The
first categories are the benchmark methods only for link prediction tasks, The
second categories are the benchmark methods for all tasks, while the third cat-
egory is the benchmark approach specifically for recommended tasks.

(1) Methods based on topological structure [11]: We compare with several tra-
ditional link prediction methods based on the topological structure in the
network, including Common Neighbors (CN), Jaccard’s index (JC), Adamic
Adar (AA), Preferential Attachment (PA).

(2) Methods based on network embedding: We compare with the following sev-
eral methods based on network embedding.
– DeepWalk [12]: DeepWalk leverages skip-gram model to learn node

embedding with truncated random walks.
– LINE [16]: LINE preserves both the first-order and second-order proxim-

ity to learn representations of nodes.
– Node2vec [6]: Node2vec designs a biased random walk by introducing

two hyper-parameters to balance the sampling process and generate the
corpus of node sequences in the network, which improves the performance
of the node representation.

– Metapath2vec++ [3]: As a heterogeneous network embedding method,
Metapath2vec++ performs the meta-path-guided random walk, which is
able to capture the semantic and structural correlations among different
types of nodes.

– BiNE [5]: BiNE models the explicit relations by the first-order similar-
ity, and captures the implicit relations by performing a biased and self-
adaptive random walk in the bipartite network.

– BiNE-IEI-I: It’s the variant of BiNE-IEI, which removes the modeling of
implicit relations.

– BiNE-IEI-L: BiNE-IEI-L is similar to BiNE-IEI except that it removes
the component which preserves the local structure.

(3) To evaluate the performance of the Top-N recommendations, we compare
BiNE-IEI with the following three methods:
– BPR [13]: It presents an optimization criterion BPR-Opt with a pairwise

ranking loss for personalized ranking, which aims to learn from implicit
feedback. It is a classic benchmark for item recommendations.

– RankALS [15]: This method directly minimizes the ranking objective
function without sampling, and can cope with the case of implicit feed-
back.

– FISM [10]: FISM is a method based on item similarity for the top-N
recommendation tasks, which is able to handle sparse datasets effectively.

4.3 Parameter Settings

BiNE-IEI contains a multi-layer deep neural network and we use a 2-layer auto-
encoders by default, and the embedding layer or the dimension d of node repre-
sentation is set to 120. Besides, the weight α of reconstruction loss for non-zero
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elements is set to 10, the threshold γ is set to 0.2, and the hyper-parameters to
balance the loss function is set to λ1 = 10, λ2 = 0.02, respectively. The gradient
is calculated using back-propagation and optimization using Adadelta [20] algo-
rithm. And the parameters for all the baseline methods are set to the optimal
value for the model mentioned in their own paper.

4.4 Link Prediction

For the link prediction task, we randomly sample a node pair which is not
connected as a negative instance for each edge, while the links are considered
positive instances. Then we randomly split 60% of instances as training set and
the remaining instances as the test set. Then we learn the node embedding on
the training set and generate edge embedding by concatenating the two node
embedding of links. Finally, the embeddings of edges are treated as features and
whether or not a node pair has edges as the ground truth. We train a simple
logistic regression classifier on the training set and adopt area under the ROC
curve (AUC-ROC) and Precision-Recall curve (AUC-PR), which have been used
in the previous work [5] to evaluate the performance on the test set. The results
of the experiment are shown in Table 2 compared with the baseline methods in
the link prediction task. Note that the “N/A” in Table 2 represents that the
result could not be computed for the corresponding method which cannot apply
to large-scale networks. The main observations we made are as follows:

– BiNE-IEI obviously outperforms those methods based on network topological
structure, which only consider the local or global network structure.

Table 2. Link prediction on DBLP and Wikipedia.

DBLP Wikipedia

AUC-ROC AUC-PR AUC-ROC AUC-PR

CN 82.85% N/A 86.85% 90.68%

JC 81.05% N/A 63.90% 73.04%

AA 82.70% N/A 87.37% 91.12%

PA 81.05% N/A 90.71% 93.37%

DeepWalk 66.94% 71.51% 89.71% 91.20%

LINE 69.36% 73.64% 91.62% 93.28%

Node2vec 63.24% 67.69% 89.93% 91.23%

Metapath2vec++ 71.61% 66.78% 89.56% 91.72%

BiNE 84.48% 86.21% 92.91% 94.45%

BiNE-IEI-I 79.98% 79.65% 93.53% 94.22%

BiNE-IEI-L 84.76% 85.95% 93.40% 94.50%

BiNE-IEI 85.46% 86.50% 93.62% 95.19%
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– DeepWalk, LINE and Node2vec perform worse than BiNE-IEI, because our
embedding method is aimed at bipartite networks, which considers the spe-
cial properties of bipartite networks compared with those methods based on
homogeneous networks.

– The performance of BiNE-IEI is better than Metapath2vec++ and BiNE,
which is due to our method integrates implicit and explicit relations. Although
Metapath2vec++ and BiNE consider both the implicit and explicit relations,
they don’t consider the integration of them.

– BiNE-IEI-I and BiNE-IEI-L are two variants of BiNE-IEI, which outperform
poor than our method on the dataset of DBLP and Wiki. This is due to the
two variants not consider the integration of implicit and explicit relations or
preserve local network structure which is helpful for link prediction.

4.5 Recommendation

The performance of recommendation can reveal the quality of learned node rep-
resentations. Specially, we randomly split 60% of the links as training set and
remaining links as test set, for a user and an item in training set, we use the inner
product of their embedding to evaluate the user’s preference for the item, and for
each user, we select n = 10 items with a largest preference scores for recommen-
dation. All the results of three data sets on F1@10 and MAP@10 [5] are listed
in Table 3. From these results, we have the following insightful observations.

– Obviously, BiNE-IEI outperforms all baseline methods in three data sets,
indicating the effectiveness of integrating explicit and implicit relationships
and preserving the local and global structures.

Table 3. Top-10 recommendation on VisualizeUs, DBLP, and Wikipedia.

VisualizeUs DBLP Wikipedia

F1@10 MAP@10 F1@10 MAP@10 F1@10 MAP@10

BPR 6.22% 5.51% 8.95% 13.55% 14.12% 17.20%

RankALS 2.72% 1.50% 7.62% 7.52% 9.70% 14.05%

FISM 10.25% 8.86% 9.81% 7.38% 16.03% 16.74%

DeepWalk 5.82% 4.28% 8.50% 19.71% 2.28% 1.20%

LINE 9.62% 7.81% 8.99% 9.62% 5.52% 14.93%

Node2vec 6.73% 6.25% 8.54% 19.44% 3.83% 2.59%

Metapath2vec++ 5.92% 5.35% 8.65% 19.06% 2.05% 1.26%

BiNE 13.63% 16.46% 11.79% 20.62% 13.67% 19.66%

BiNE-IEI-I 9.85% 12.00% 11.60% 12.78% 14.45% 13.30%

BiNE-IEI-L 10.33% 21.67% 15.38% 29.82% 18.97% 35.27%

BiNE-IEI 20.21% 49.18% 16.81% 31.75% 19.45% 35.91%
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– Overall, the three state-of-the-art homogeneous network embedding methods,
including DeepWalk, LINE and Node2vec show relatively poor performance
compared with our method, which indicate the methods based on the homo-
geneous network does not take into account the node type information of
bipartite network and are not the optimal methods for the representation
learning for bipartite network.

– BiNE-IEI outperforms Metapath2vec++ significantly, which is a method
based on the heterogeneous network. This is due to the factors that Metap-
ath2vec++ models explicit and implicit relations equally. The bipartite net-
work embedding method BiNE is also shows poor performance compared with
BiNE-IEI. Although BiNE considers the different importance of the implicit
and explicit relations, it do not integrate them in an efficient way.

– BiNE-IEI outperforms it’s variants BiNE-IEI-I and BiNE-IEI-L, removing the
modeling of implicit relations and local network structure, respectively. The
results show the effectiveness of our method which integrates explicit and
implicit relations while preserving the local and global network structure.

4.6 Parameters Sensitivity

In this subsection, we investigate the impact of the dimension d, the hyper-
parameters α and λ1 for our model. we use AUC-ROC and AUC-PR to evaluate
the performance of the link prediction on the dataset of Wikipedia in Fig. 2.
Figure 2(a) demonstrates the impact of the embedding dimension d. At first, as
the dimension increases, the effect raises significantly, this is due to the increase
of d can embed more information. However, the performance does not increase
and even decrease slightly when d continues to increase, which shows that too
large a dimension d cannot embed more information and even introduce noises.

(a) d (b) α (c) λ1 (d) γ

Fig. 2. Parameter w.r.t. dimension d, hyper-parameters α, λ1 and γ

The hyper-parameter α can impact the reconstruction loss for non-zero ele-
ments. From Fig. 2(b), we can see that introducing parameter α is effective. On
the other hand, when α is large enough, the performance remains stable. The
reason is that too much reconstruction loss is useless in the learning.

The parameter sensitivity analysis for λ1 is shown in Fig. 2(c). The hyper-
parameter λ1 is used to balance the loss of reconstruction and the loss of local
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network structure, when λ1 = 0, the model cannot preserve the local network
structure. From Fig. 2(c), we can see that the performance of λ1 > 0 is better
than that of λ1 = 0, which demonstrates that preserving both the local and
global network structure are essential for our model.

Figure 2(d) shows the impact of the threshold γ, which is used to preserve
significant implicit relations between nodes of the same type. We can see that
with the increase of γ, the experimental performance first increases and then
decreases, and the best experimental result is obtained when γ = 0.2.

4.7 Visualization

Due to the lack of ground truth in the above dataset nodes, we conduct a visu-
alization task on a subset of Aminer dataset4 which is a heterogeneous collab-
oration network. The subset of Aminer dataset consists of 981 authors and 28
venues which are from the research field of Theoretical Computer Science or
Computer Science Databases & Information Systems. A link will be constructed
between an author and a venue if the author published a paper in this venue.
In addition, we select the research field in which the author publishes the most
papers as the author’s ground truth. We leverage the t-SNE tool to reduce the
embedding of authors to 2 dimensions, the visualization results are shown in
Fig. 3. The color of the vertex represents the author’s research field, where blue
represents the research field of Theoretical Computer Science and red represents
the research field of Computer Science Databases & Information Systems. Deep-
Walk, Node2vec and metapath2vec++ which based on random walks perform

(a) DeepWalk (b) Node2vec (c) LINE

(d) Metapath2vec++ (e) BiNE (f) BiNE-IEI

Fig. 3. Visualization of authors in the subset of Aminer, where blue represents the
research field of Theoretical Computer Science and red represents the research field of
Computer Science Databases & Information Systems. (Color figure online)

4 https://www.aminer.cn/data.

https://www.aminer.cn/data


BiNE-IEI 449

worst because the two types of nodes are mixed together. For BiNE which cap-
tures the implicit relations by performing a biased and self-adaptive random
walk in the bipartite network perform slightly better. It is surprising that LINE
can distinguish well the category of authors, this may be due to the second-
order proximity of LINE helps to distinguish the authors in different research
fields. However, BiNE-IEI obviously performs best, because the authors of the
same category are closely gathered together, and the different types of nodes
are clearly distinguished. In summary, Fig. 3 proves the superiority of our model
once again.

5 Conclusions

In this paper, we propose BiNE-IEI for bipartite networks embedding, which
integrates explicit and implicit relations to learn the representations of nodes.
Besides, our model can capture the highly non-linear structure while preserving
the local and global structure of the network. We conduct extensive experiments
on some widely used datasets compared with several state-of-the-art baselines
and show the superior performance of our method on link prediction, recom-
mendation, and visualization tasks. Intuitively, SDNE [18] and our model are
partially similar in form but there are mainly the following differences. Firstly,
SDNE is the representation learning method of the homogeneous network, and
cannot model the bipartite network compared with our method; Secondly, SDNE
preserves the local structure between the nodes of the same type, while our pro-
posed method BiNE-IEI preserves the local structure between different types of
nodes in the bipartite network; Finally, BiNE-IEI can integrate the explicit and
implicit relations of the bipartite network. Because of the sparseness and large
missing observed data, in the future, we will extend BiNE-IEI to model auxiliary
information, such as images, textual descriptions or other attributes of the node
in bipartite networks for embedding.
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Abstract. Network embedding aims at learning the low dimensional
representation of nodes. These representations can be widely used for
network mining tasks, such as link prediction, anomaly detection, and
classification. Recently, a great deal of meaningful research work has
been carried out on this emerging network analysis paradigm. The real-
world network contains different size clusters because of the edges with
different relationship types. These clusters also reflect some features of
nodes, which can contribute to the optimization of the feature represen-
tation of nodes. However, existing network embedding methods do not
distinguish these relationship types. In this paper, we propose an unsu-
pervised network representation learning model that can encode edge
relationship information. Firstly, an objective function is defined, which
can learn the edge vectors by implicit clustering. Then, a biased random
walk is designed to generate a series of node sequences, which are put into
Skip-Gram to learn the low dimensional node representations. Extensive
experiments are conducted on several network datasets. Compared with
the state-of-art baselines, the proposed method is able to achieve favor-
able and stable results in multi-label classification and link prediction
tasks.

Keywords: Network embedding · Feature learning ·
Edge representation · Network mining

1 Introduction

Social networks, paper citation networks, semantic networks and other large-
scale networks have penetrated into all aspects of our real life [14]. These net-
works usually have complex structure and large scale. Moreover, the high dimen-
sional and sparse characteristics of networks have brought unprecedented chal-
lenges to existing network mining technologies. To solve these problems, network
embedding is designed to learn the low dimensional representation of nodes,
while preserving the structure and inherent characteristics of the network. It can
be effectively used by vector-based machine learning models for mining tasks,
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including node classification, personalized recommendation, and link prediction,
etc. [2,13,18,23].

Following the initial ideas in network embedding [18,24], recent techniques
such as DeepWalk [18] and node2vec [13] learn node representation using random
walks sampled in the network. Thereafter, Cao et al. [5] developed a GraRep
model, which integrates the global structure information of the network into
the learning process. They adopt the idea of matrix decomposition, achieve
the dimensionality reduction by decomposing the relationship matrix, and thus
obtain the network representation of nodes. Tang et al. [20] proposed a large-
scale information network embedding method called LINE that preserves both
the first-order and second-order proximity. Wang et al. [21] designed a Struc-
tural Deep Network Embedding (SDNE) model, which maintains the proximity
between 2-hop neighbors through deep automatic encoders. Recently, Ribeiro
et al. [6] developed a novel and flexible model, called Struc2vec, which uses
hierarchical structure to measure the similarity of nodes at different scales, and
constructs a multi-layer network to encode the similarity of nodes and generate
the structure context for nodes.

However, most of the aforementioned methods mainly focus on the existence
of edges between nodes and ignore the differences between edges. A node may be
connected with other nodes for different relationship types. The edges with the
same relationship types can form a cluster. These clusters hide abundant infor-
mation. For example, the similarity between the inner vertices within the same
cluster is relatively higher than that within the different clusters. The clusters
reflect auxiliary information for network representation learning, and contribute
to the generation of more accurate node vectors. In this paper, we propose an
unsupervised model for network representation learning, which can strengthen
the use of the first-order proximity of network structure and improve accuracy
of preserving two-order proximity. Our main contributions can be summarized
as follows:

– We propose an unsupervised model for network representation learning, called
NEWEE, which can utilize the information of node neighbors as well as the
information of the relationship types between nodes.

– We propose a new way to distinguish the relationship types for edges, which
can learn similar vectors from similar relationship types without labeling data,
and only use the structure information of the network itself.

– Extensive experiments on several datasets demonstrate that our proposed
method produces significantly increased performance over the current state-
of-the-art network embedding methods in most cases.

The rest of this paper is organized as follows; Sect. 2, briefly outlines a list
of related works and our motivation. Detailed steps of the proposed method are
presented in Sect. 3. Section 4, presents the experiment results, and comparison
with completing algorithms. Finally, this paper is concluded in Sect. 5.
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2 Related Work

Traditional network representation learning methods include network represen-
tation learning based on spectral method, such as locally linear embedding
(LLE) [19,25] and laplacian eigenmaps based on manifold assumption [3]. In
addition, there is optimization based representation learning for networks, a
low-dimensional representation of network can be grasped by optimizing an
objective function. Representative algorithms include mapping to homogeneous
model (MTH) [9], content diffusion kernel (CDK) [4], and content-based source
diffusion kernel (CSDK) [4]. Some scholars improve the description of node con-
tent by introducing network information based on subject probability model.
Representative methods include Link-PLSA-LDA [16], relational topic model
(RTM) [26] and probabilistic latent document network embedding (PLANE)
[10]. These methods cannot be applied to generalized node feature representa-
tion. Besides, most of above-mentioned methods are expensive in calculation and
non-expandable for large networks.

Nowadays, representation learning methods are widely applied in the field of
natural language processing (NLP), among which, a representative one is word
embed-ding [15]. The researchers believe that words with similar contexts should
also have similar semantics. The word vectors obtained through unsupervised
learning method have achieved excellent performance in many tasks.

Inspired by the above method, the researchers began to apply word embed-
ding into feature learning of network nodes [7,8]. Perozzi [18] discovered that
the number of words appearing in text corpus and the number of visits for nodes
by random walk from network obey exponential distribution. Therefore, Perozzi
[18] considered that the Skip-Gram model could be transplanted to representa-
tion learning of network as well, and DeepWalk model was proposed [18]. The
similar method is Node2vec [1], a process of adjusting random walk by introduc-
ing depth first and breadth first strategies based on DeepWalk. Struc2vec [6],
another type of node embedding strategy, is based on random walk, which finds
similar embedding on nodes that are structurally similar. Wang et al. [22] devel-
oped an innovative network representation learning framework, called Graph-
GAN, which unifies generative models and discriminative models. The LINE
[20] method combined first-order proximity with second-order proximity, which
was as the final representation of nodes.

Although these methods are fast and effective, all existing methods mainly
consider the existence of a link between nodes instead of the difference between
these links. Therefore, we propose a new way to distinguish these relationship
types, which can encode the edges to update network by implicit clustering, and
without labeling data. Then a biased random walk from the updated network
can generate more accurate node sequences.

3 The Proposed Model

The problem in this paper is how to construct a suitable model for network
representation learning, which can map the networks data to a low-dimensional
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vector space. Each low-dimensional vector represents one node, and the relation-
ships between these vectors reflect the first-order and the second-order proximity
between nodes.

3.1 Framework

In this section, we describe the main steps of NEWEE model. The flow-graph of
the proposed model is shown in Fig. 1. The NEWEE model is divided into three
phases, which are described in the following procedure:

1. The edge sampling is used to optimize an objective function, and to learn a
low-dimensional representation for each edge in the network. If the relation-
ship type of two edges is similar, their vectors are similar as well;

2. By learning the edge vectors from the first phase, a biased random walk is
adopted, which can increase the similarity of the two edge vectors before and
after walking;

3. The node sequences are obtained from the second phase as the input of Skip-
Gram. The original Skip-Gram model only indirectly preserves part of the
first-order proximity. Therefore, the improvement of the original Skip-Gram
model is made to enhance the similarity between directly connected nodes.

Fig. 1. Overview of NEWEE model: (a) Encode edge: Reconstruct the network and
learn a low-dimensional representation for each edge in network. If the relationship
type of two edges is similar, their vectors are similar as well; (b) The node sequences
generated by biased random walk from the network; (c) Embedding with improved
Skip-Gram.

3.2 Encode Edge

The purpose for encoding edges is to learn a low-dimensional representation for
each edge of the network. If the relationship types between two edges are similar,
their vectors are also similar. We have noticed that a node can be clustered
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with other nodes due to different relationship types, so the node neighbors can
be divided into different neighbor clusters, and the relationship types among
different neighbor clusters are different. That means we only need to train one
model, which ensures the similarity of the inner edges of the same neighbor
clusters, is higher than that of the outer edges of the clusters. Here, we first
introduce the concept of self-centered network.

Definition 1 (self-centered network). Given a network G = (E, V). For any
node vi in G, its self-centered network is G

′
= (E

′
, V

′
). The node set V

′
includes

the node vi and its neighbors, and E
′
represents the set of edges between all nodes

in V
′
.

Each node has its own self-centered network. Figure 2 (left) shows the self-
centered networks of node a. The neighbors of node a are divided into two
neighbor clusters of C1 and C2, b and c belong to C1. We have also noticed
that most of the edges in C1 also exist in the self-centered networks of b and
c, as shown in Fig. 2 (middle and right). In general, the closer the cluster is,
the more edges exist simultaneously in the self-centered networks of the multiple
nodes within the cluster; conversely, if multiple edges exist simultaneously in the
self-centered networks of multiple nodes, the multiple edges should belong to the
same cluster. Thus, we cannot only avoid explicitly calling clustering algorithm
to cluster the node neighbors, but also use the nature of the network itself to
implicit clustering.

Fig. 2. The self-centered networks of nodes a (left), b (middle) and c (right).

In order to make the similarity of edge vectors of the same self-centered
networks higher than that of the other self-centered networks, the objective
function is defined as follows:

max
∑

v∈V ′

∑

e∈E′
log P (v|e) (1)

Where P(v |e) is the probability that the network is the self-centered network
of node v when the edge is e. To achieve the purpose of making the edge vectors
of the same self-centered networks similar, we regard it as a binary classification
problem, and use the logical regression as the classification method to reconstruct
the probability function. The negative sampling technique [17] is used to speed
up the training. For ∀u ∈ V, we first define the following indication function:
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Iv (u) =
{

1, u = v
0, u �= v

(2)

For a given node v, the set of negative sampling is NST (v). The probability
function (1) is reconstructed by using negative sampling technique as follows:

P (v|e) =
∏

u∈{v}∪NST e(v)P (u|e)

P (u|e) =
{

σ
(
eT θu

)
, Iv (u) = 1

1 − σ
(
eT θu

)
, Iv (u) = 0

(3)

Where σ is the sigmoid function. The parameter θu is the vector of node
u. e is the vector of edge e, and is the final output. It is obtained by bitwise
operations of the vectors of two ends of edge. In order to adapt to both the
directed networks and the undirected networks, the average operation is used.
That is, two ends of edge e are respectively vi and vj . The edge vector ei,j is
denoted as follows:

ei,j =
vi + vj

2
(4)

The final objective function is:

max
∑

v∈V ′

∑

ei,j∈E′

∑

u∈{v}∪NST ei,j (v)

L (v, e, u)

L (v, e, u) = Iv (u) · log
[
σ

(
eT

i,jθ
u
)]

+ [1 − Iv (u)] · log
[
1 − σ

(
eT

i,jθ
u
)]

(5)

We use gradient descent method to optimize the formula (5). First, we con-
sider the gradient of L(v, e, u) on θu.

∂L (v, ei,j , u)
∂θu

=
∂

∂θu

{
Iv (u) · log

[
σ

(
eT

i,jθ
u
)]

+ [1 − Iv (u)] · log
[
1 − σ

(
eT

i,jθ
u
)]}

= Iv (u)
[
1 − σ

(
eT

i,jθ
u
)]

ei,j − [1 − Iv (u)] σ
(
eT

i,jθ
u
)
ei,j

=
[
Iv (u) − σ

(
eT

i,jθ
u
)]

ei,j

(6)
The update formula of θu is:

θu = θu + η
[
Iv (u) − σ

(
eT

i,jθ
u
)]

ei,j (7)

Where η is the learning rate. Then, we consider the gradient of L(v, e, u)
about ei,j . Because ei,j and θu are symmetrical in L(v, e, u), it is easy to obtain
the following formula:

∂L (v, ei,j , u)
∂ei,j

=
[
Iv (u) − σ

(
eT

i,jθ
u
)]

θu (8)

According to the continuous derivation rule and the symmetry of vi and vj

in ei,j .

∂L (v, ei,j , u)
∂vi

=
1
2

[
Iv (u) − σ

(
eT

i,jθ
u
)]

θu (9)
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The update formula of vi is:

vi = vi +
η

2

∑

u∈{v}∪NST ei,j (v)

[
Iv (u) − σ

(
eT

i,jθ
u
)]

θu (10)

The update formula of vi is same to vj . If inputting the self-centered networks
of multiple nodes, the following situations will occur:

– The similarity between the inner edges within the same self-centered network
will be higher than that within the different clusters. For example, when
inputting the self-centered networks of the nodes a, b, c, and the edges simi-
larity in clusters C1 and C2 will be constantly strengthened;

– The similarity between edges within the different self-centered networks will
be weaken. For example, when inputting the self-centered networks of the
nodes a, b, c, and the similarity between edges in clusters C1 and C2 constantly
weaken.

3.3 Learning Node Features

This section mainly describes how to use the edge vectors obtained in the first
phase to train nodes. Like the article [1,18], which first obtain a series of node
sequences by random walk from the network, but we adopt a biased random walk.
In particular, by learning the edge vectors from the first stage, the similarity of
the two edge before and after walking can be increased, so that the preservation
accuracy of the second-order proximity of the network structure can be improved.
Then, the node sequences are as the input of Skip-Gram model.

Biased Random Walk . After the first phase, we get a network with edge
vectors, which preserves the relationship types information. Then, a series of
node sequences are obtained by a biased random walk from the network. If the
started node is v0, the next walk node is randomly selected from its neighbors
as v1. If the current walk node is vk (k ≥ 1), the selection of the next walk node
vk+1 follows the following probability distribution:

P (vk+1 = x|vk = v, vk−1 = t) =
{

π(t,v,x)
Z , ev,x ∈ E

0, otherwise
(11)

Where Z is a normalization constant. π(t, v, x ) is a transition probability of
walking from node t to node v and then walking from node v to node x :

π (t, v, x) =

⎧
⎨

⎩

μ, if x = t
similarity (et,v, ev,x) , if x �= t and ev,x ∈ E
0, otherwise

(12)

Where μ is a return parameter and set to 0.5. In addition, we use cosine
similarity to calculate similarity.

similarity (et,v, ev,x) =
et,v · ev,x

‖et,v‖ · ‖ev,x‖ (13)
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Where et,v and ev,x are the vectors of edge et,v and ev,x respectively. They
are learned from the first phase. Each node in the network is taken as the walk
started node of the sequence in turn, and sampling the neighbors1 according to
the selection probability distribution of neighbors. For each walk started node
v0, we do biased random walk from the network to get a node sequence with
length l. After repeating the above operation r times, a series of node sequences
are obtained.

Example. There are two node sequences of 〈v1, v2, v3, v4, v5〉 and 〈v1, v2,
v6, v4, v5〉 (Fig. 3). The nodes v3 and v6 have similar contexts, so they can learn
the similar learning representations. In order to get the node sequences of (1)
and (2), the edge vector e1,2 should be similar to e2,3, and the edge vector e2,6

should be similar to e1,2. That is, the edge vector e2,3 should be similar to e2,6. If
adopting the random walk method of DeepWalk, it may get the node sequences
of (2), (3), and (4). v3 and v6 may have similar left and right neighbors v2 and
v4, but due to the uncertain relationship type, it is difficult to have the opportu-
nity to reappear both v1 and v5 in the nodes extending forward and backward,
which greatly reduce the context similarity of v3 and v6. On the contrary, if the
relationship types between nodes (v3 and v8) and their neighbors (v2 and v4) are
not similar, the conclusion of v3 similar to v8 is not credible even their contexts
are similar.

According to the rule of NEWEE model for generating node sequences, any
two connected edges have a high similarity in the sequence. If the two node
sequences are similar, the edges of the two sequences are also similar. Con-
versely, If the nodes have different relationship types with their neighbors. As
shown (2) and (3), with the sequence extends the similarity of the learned vector
representation of v6 and v8 is decreased.

Improved Skip-Gram. As mentioned above, we have enhanced the utilization
of first-order proximity. The objective function of Skip-Gram can achieve similar

Fig. 3. An example of the influence of relationship type information on the node
sequences (same type lines mean similarity relationship type).

1 The alias sampling algorithm [12] method can be used to complete the sampling
process in the time complexity of O(1).
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vectors from nodes with similar contexts. We make the improvement to it as
follows:

∏

w̃∈C(w)

p (w|w̃) →
∏

ei,j∈E

p (vi, vj)
∏

w̃∈C(w)

p (w|w̃) (14)

Where p(vi, vj) is used to preserve first-order proximity, and defined as:

p (vi, vj) = σ
(
vT

i vj

)
(15)

Where vi and vj are vector representations of node vi and vj as context nodes
respectively. When the sequences are put into the improved Skip-Gram model,
the nodes with similar contexts will be similar.

3.4 Complexity Analysis

In the first phase, the time complexity of training the edge vectors is O(|V | ·
kndi), where |V | is the number of nodes in the network, k is the average degree of
nodes, n is the number of negative sampling, d is the dimension of edge vectors,
and i is the number of iterations. The parameters n, d and i are constants.
The time complexity of the first phase is linear correlation with the number of
nodes |V |.

The second phase includes random walk and training a Skip-Gram model.
The time complexity of random walk is O(|V| · kdrl), where r is walk times, l
is the length of the node sequence, these parameters are all constants. The time
complexity of the random walk is also linear correlation with the number of
nodes |V |. As for training a Skip-Gram model, its time complexity is O(swndi),
where s is the number of nodes in the input document and w is the size of the
context window. The time complexity of training a Skip-Gram model is linear
correlation with the number of nodes s. Therefore, the overall computational
time complexity of NEWEE is O (| V | · kndi + |V | · kdrl + swndi).

4 Experiments

In this section, we mainly consider the method of quantitative analysis for the
NEWEE model. In order to fully describe the effectiveness of our model, the
experiments are conducted on the two tasks of link prediction and multi-label
classification. For the sake of verifying the robustness and efficiency, the exper-
iments are performed from the perspectives of parameters sensitivity and the
running time for learning different size networks. Furthermore, we also apply
the same networks in the competing algorithms, including DeepWalk [18], LINE
[20], AANE [8], Stru2vec [6], GraphSAGE [7] and Node2Vec [1]. The param-
eters of the six comparison algorithms are set in such a way that they either
take advantage of the default settings suggested by the authors or adjust them
experimentally to find the best Settings. After applying these network embedding
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algorithms, the representation of low-dimensional nodes can be obtained respec-
tively. The hardware environment of the experiment is a PC with a stand-alone
Intel Xeon processor with 2.67 GHz and 16 G memory. The software platform is
python 2.7 in Windows.

4.1 Parameter Settings

The default settings of our parameters are mostly consistent with those in article
[21]: the negative sampling parameters n1 and n2 are both set to 5. The vector
dimensions d1 and d2 are both set to 128. The number of walks started per node
r is 10. Each sequence length l and the size of context window w is set to 80
and 10 respectively.

4.2 Evaluation Metrics

For link prediction, we use precision@k and Mean Average Precision (MAP) to
evaluate the performance. Their definitions are listed as follows:

precision@k is a metric, which gives equal weight to the returned instance.
It is defined as follows:

Precision@k =
| {ei,j |vi, vj ∈ V, index (ei,j) < k,
i,j = 1} |

k
(16)

Where E
′′

is a hidden edge set hidden in the network. ei,j represents an
edge between nodes vi and vj . index(ei,j) is the ranked index of an edge ei,j in
prediction results. 
i,j = 1 indicates an edge ei,j exists in E

′′
.

Mean Average Precision (MAP) is a metric with good discrimination
and stability. Compared with Precision@k, MAP pays more attention to the
instances of ranked ahead in prediction results. It is defined as follows:

AP =
∑|E′′ |

i=1 Precision@i · 
i

|E′′| , MAP =

∑Q
j=1 AP (j)

Q
(17)

Where 
i is an indicator function. When the i -th prediction result is hit,
the value 
i is 1, otherwise, it is zero. Q is query times.

For multi-label classification, we adopt Macro-F1 and Micro-F1 as evaluation
indexes. Specifically, Suppose C is a label set and A is a label. We denote TP(A),
FP(A) and FN (A) as the number of true positives, false positives and false
negatives in the instances which are predicted as A, respectively. F1 (A) is the
F1-measure for the label A. Micro-F1 and Macro-F1 are defined as follows:

Pr =
∑

A∈C TP (A)∑
A∈C (TP (A) + FP (A))

, R =
∑

A∈C TP (A)∑
A∈C (TP (A) + FN (A))

Macro − F1 =
∑

A∈C F1 (A)
|C| , Micro − F1 =

2 · Pr · R

Pr + R

(18)
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4.3 Multi-label Classification

Multi-label classification is an important task to measure the effectiveness of
network representation. We select three social networks to perform multi-label
classification task in this experiment. The detailed statistics of datasets can
be summarized in Table 1. For Blogcatalog, we randomly select 10% to 90% of
nodes as training data. For Flickr and Youtube, we randomly select 1% to 10%
of nodes as training data. We run 5 times for each algorithm and recorded the
mean values in our results.

Table 1. Statistics of the dataset.

Dataset |V | |E | Average degree Label number

Blogcatalog 10,312 333,983 64.9 39

Flickr 80,513 5,899,882 146.7 195

Youtube 1,138,499 2,945,443 5.25 47

The results are shown in Fig. 4. For the Blogcatalog dataset, when the ratios
of training data are 10% and 20%, the Micro-F1 value of NEWEE is slightly
lower than the values of other models. For other ratios of training data, NEWEE
and Stru2vec perform well, especially when setting 50% of nodes as training data,
our model is 10% higher than Stru2vec on Macro-F1.

Node2Vec is superior to DeepWalk, but it has no advantage only on the
Youtube dataset. The Micro-F1 value of Node2Vec is lower than DeepWalk.
Because Youtube network is relatively sparse and the randomness of sampling
neighbor nodes is reduced, therefore, the walk strategy of Node2Vec cannot
bring obvious improvement. On the contrary, LINE performs well on the sparsest
Youtube network, but not on other datasets. Because LINE preserves the first-
order proximity well. Our model not only controls the way of walks, but also
strengthens the utilization of first-order proximity. Therefore, the performance
of NEWEE is superior to Node2Vec and LINE.

The performance of DeepWalk and GraphSAGE is the worst among the
network embedding methods. The reason is that they do not well capture the
network structure. Based on the above results, although the proposed method
does not perform best on different types of networks, overall, compared with the
other six algorithms, our model shows good performance.

4.4 Link Prediction

We conduct the link prediction task on arXiv GR-QC [11] to test our model. The
dataset arXiv GR-QC is a collaboration network of papers. It has 5,242 nodes
and 14,490 edges. Each node represents an author. If two authors cooperate to
write a paper, there is an undirected edge between the two nodes. We randomly
hide some edges from the network as test samples, and the remaining part of
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Fig. 4. Macro-F1 scores and Micro-F1 scores on Blogcatalog, Flickr, and Youtube.

the network as training samples. The nodes vectors are obtained after training,
and the cosine similarity between the two nodes is calculated. We consider that
there may be an edge between the two nodes with larger similarity. We conduct
two experiments: The first evaluates the performance; the second evaluates the
performance impact of different sparsity of networks on link prediction.

Table 2. precision@k values of arXiv GR-QC on link prediction task.

Method P@10 P@100 P@200 P@300 P@500 P@800 P@1000

Node2vec 0.51 0.42 0.36 0.31 0.26 0.25 0.24

LINE 0.43 0.22 0.17 0.15 0.19 0.21 0.21

DeepWalk 0.42 0.27 0.31 0.31 0.26 0.24 0.25

AANE 0.65 0.48 0.31 0.37 0.31 0.27 0.30

Stru2vec 0.61 0.41 0.34 0.36 0.35 0.31 0.29

GraphSAGE 0.39 0.35 0.28 0.20 0.21 0.29 0.23

NEWEE 0.71 0.45 0.35 0.40 0.38 0.34 0.31

For the first experiment, we extract 15% of edges from the network, and use
Precision@k as evaluation criterion. The value k increased from 2 to 1,000. The
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results are shown in Table 2. NEWEE is slightly better than other models in
most cases. For the second experiment, we change the ratio of edges extracted
from the network and use MAP as evaluation criterion. The experimental results
are shown in Fig. 5. The results show that NEWEE is always better than the
other six models. The performance of LINE and GraphSAGE is poor, because
the LINE method relies more on first-order proximity. When the ratio of edges
extracted reaches 80%, the damage to first-order proximity is more serious, so
the effect of LINE has been greatly reduced. In addition, we find that with the
increase of the ratio of edges extracted from the network, the effect of the seven
models increases first and then decreases. This is because an increase in the ratio
of edges extracted means an increase in the set of test samples. Therefore, the
probability hitting the correct edge is decreased. On the other hand, as the ratio
of edges extracted increases, the less information is provided for training. When
the benefit of increasing the test samples can no longer offset the loss caused by
the reduction of training samples, the effect of model begins to decline.

Fig. 5. Influence of ratio of removed links.

4.5 Parameter Sensitivity

In this section, the sensitivity of our model to parameters is tested. In addition to
the parameters currently being tested, other parameters keep the default value.
Multi-label classification task on Blogcatalog is performed to show the effect.

Firstly, the effect of the edge vector dimension and the node vector dimension
on NEWEE model are evaluated respectively. The results are shown in Fig. 6((a)
and (b)). Along with the increase of dimension, the performance of the model is
slightly improved since the larger dimension can store more information. Espe-
cially for the edge vectors, they contain more information than node vectors.
Therefore, the influence of edge vector dimension on NEWEE model is slightly
more obvious than that of node vector dimension. In addition, the effect of ran-
dom walk parameters (walk times r and walk length l) on the model is tested.
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The results are shown in Fig. 6((c) and (d)). With the increase of r and l value,
the performance of the model is improved rapidly and then became relatively
stable. The two parameters can also improve the performance of NEWEE model
due to that the random walk can traverse more paths from the network to pro-
vide more useful information. However, when the two values increase to a certain
value, the provision of information becomes redundant.

Fig. 6. Effect of different parameters on performance of NEWEE model.

5 Conclusion

This paper presents an unsupervised network representation learning model,
called NEWEE, which can not only preserve the information of neighbor nodes,
but also preserve the information of the relationship types between nodes and
their neighbors. By performing multi-label classification and link prediction tasks
on several real-world networks, our model can achieve excellent performance.
Moreover, we provide a new way to distinguish relationship types without label-
ing data, and it is scalable, and can be applied to large-scale real-world networks.
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Abstract. In recent years, both the academic and commercial communities
have paid great attentions on embedding methods to analyze all kinds of net-
work data. Despite of the great successes of DeepWalk and the following neural
models, only a few of them have the ability to incorporate contents and labels
into low-dimensional representation vectors of nodes. Besides, most network
embedding methods only consider universal representations and the optimal
representations could not be learned for specific tasks. In this paper, we propose
a Multi-task Dual Attention LSTM model (dubbed as MDAL), which can
capture structure, content, and label information of network and adjust repre-
sentation vectors according to the concrete downstream task simultaneously. For
the target node, MDAL leverages Tree-LSTM structure to extract structure, text
and label information from its neighborhood. With the help of dual attention
mechanism, the content related and label related neighbor nodes are emphasized
during embedding. MDAL utilizes a multi-task learning framework that con-
sidering both network embedding and downstream tasks. The appropriate loss
functions are proposed for task adaption and a joint optimization process is
conducted for task-specific network embedding. We compare MDAL with the
state-of-the-art and strong baselines for node classification, network visualiza-
tion and link prediction tasks. Experimental results show the effectiveness and
superiority of our proposed MDAL model.

Keywords: Dual attention � Network embedding � Multi-task learning

1 Introduction

At present, analyzing network data have drawn extensive attentions from research
communities for a wide range of applications, such as node classification [18, 29], link
prediction [8], community discovery [7], anomaly detection [10]. Now network rep-
resentation learning (NRL) has emerged as the primary method for modeling the
network structures and paved the way for the downstream application task [1, 18, 30].
NRL aims to map node into low-dimensional vector, which ideally should retain all the
node information in the network, such as structure, content, and label information.

Inspired by DeepWalk [18], a large number of network embedding algorithms
based on neural models have been proposed. Some of these algorithms use network
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topological structure [8, 18, 21], and some algorithms consider both network structure
and node content [24, 31]. But only a handful of existing literature take into account the
node label information [17, 27] partially because of the sparse labels. Typically, only a
small subset of nodes in the network had labels. Moreover, compared with text, node
labels are all high-level concepts with limited semantics, so it is usually not easy to
model this kind of information. Finally, structure, content and label information are
three different kinds of information sources, and the heterogeneity between these
sources make it difficult to embed all the three information into the same vector space.
Therefore, how to properly embed three aspects of node still remains as a major
challenge.

The vector representations learned by network embedding algorithm are usually
evaluated by two classic downstream tasks: node classification and link prediction. For
node classification, learning representations of nodes and training node classifier are
usually separated. That means we need firstly to obtain vector representation by
specific network embedding algorithm, and then fed the vectors into the subsequent
classifier. This two stage approach will make the node embeddings insensitive to node
classification task. To tackle this problem, previous literature have attempted to learn
network representation and node classifier jointly, and the experimental results show
that the joint training methods have achieved better results than the two stage approach
[15, 22]. However, the existing joint learning framework does not fully utilize the label
information for network embedding, because the node label is only regarded as the
standard of classifier during joint training.

For link prediction, the learned node vectors are directly fed into a function to
obtain the features of node pair, then the AUC metric is used to evaluate the perfor-
mance [2]. Similar to node classification task, the learned node embeddings are task-
insensitive for link prediction, which will decrease the performance of prediction
model. As far as we known, only limited literature have been published for jointly
optimizing network presentation and link prediction task [25].

In this paper, we propose a Multi-task Dual Attention LSTM model (dubbed as
MDAL) for semi-supervised network embedding. MDAL employs a multi-task deep
learning framework that can jointly optimize the network representation learning and
downstream task. The core of MDAL is a proposed Dual Attention Tree-LSTM network
(dubbed as DAL), which can capture structure, content, and label information of node
simultaneously. The Tree-LSTM naturally represents the network structure between
nodes and the dual attention mechanism that considering both text contents and labels is
able to obtain the relatedness between neighborhood and target node. Furthermore, with
the help ofMDAL framework, the vector representation of target node isfine-tuned by the
downstream tasks. As a result, MDAL can generate task-sensitive network embeddings
and further improve the performance of the specific tasks.

In addition, MDAL model has good extensibility and interpretability. On one hand,
based on MDAL framework we can easily incorporate auxiliary information, such as
community structure and user profile, from nodes into vector representations. On the
other hand, the dual attention mechanism gives us reasonable explanation for the
weights of text and label when we analyze the downstream task. We evaluate MDAL
by node classification, network visualization, and link prediction tasks on three real-
world datasets. The experimental results show that the proposed model not only
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outperforms the state-of-the-art baseline algorithms, but also has strong adaptability to
different tasks.

The main contributions of our paper are three-fold: (1) We propose a semi-
supervised network embedding model MDAL with a multi-task deep learning frame-
work, which can jointly optimize the network representation learning and specific
downstream tasks. (2) The proposed MDAL model can integrate structure, text and
label information into the low-dimensional vector representation of nodes, and generate
better task-sensitive embeddings by using dual attention mechanism in multi-task
framework. (3) We conduct extensive experiments on three real-world benchmark
datasets. The results confirm the superiority of our proposed approach over the state-of-
the-art baseline methods.

The rest of this paper is organized as follows. We briefly review semi-supervised
NRL models and the Tree-LSTM in the Sect. 2. In Sect. 3, we introduce our MDAL
model in detail, and discuss two specific tasks, i.e. node classification and link pre-
diction in Sect. 4. Extensive experiments are conducted in Sect. 5 to show the effec-
tiveness of MDAL model. Finally, Sect. 6 summarizes the work of this paper.

2 Related Work

In this paper, the proposed model leverages semi-supervised learning strategy and Tree-
LSTM for modeling the network. Therefore, we briefly introduce a variety of semi-
supervised NRL algorithms and Tree-LSTM models. A detailed summary of the semi-
supervised NRL is made in the survey [30]. In general, such algorithms can be divided
into two categories depending on whether node content is considered: the first category is
semi-supervised structure preserving NRL, and the second is semi-supervised content
augmented NRL. The structure preserving NRL mainly considers the structure and label
information of nodes. The existing algorithm such as DeepWalk [18], node2vec [8] and
LINE [21], only consider the structure information. Getting vector representation of
nodes and training subsequent classifiers for classification of nodes are separated. This
two-stage model does not obtain discriminative vector representations and good classi-
fication result. To solve this problem, DDRW [15], MMDW [22] and TLINE [32] add
classifier optimization target into the NRL objective function. The experimental results
show that these methods are better than the above two-stage model in terms of node
classification. Other semi-supervised structure preserving NRL models, such as GENE
[3], LENE [5], and PNE [4], incorporate label information into the vector representation
of node by maximizing node and label co-occurring probability. Then these model trains
another classifier for the node classification task. In general, this kind of NRL models
does not take full advantage of node content.

Semi-supervised content augmented NRL uses textual information as complement
of structure and label information. The following models are the most common.
TriDNR [17] and LDE [24] incorporate label and content information into node
embedding by maximizing the node-text-label co-occurring conditional probability.
LANE [11] enriches the vector representation of nodes by embedding the structure, text
and the label information into the same low-dimensional space. In addition, GCN [13]
and GraphSAGE [9] spread information of each node to its neighbors through multiple
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iterations and aggregations and use the label information of nodes through the clas-
sifier. The most relevant work with this paper is AGRNN model [27]. AGRNN first
obtains neighbors of target node by constructing a subtree with target node as root, then
applies the Tree-LSTM structure to obtain the vector representation of target node.
AGRNN takes into account network structure and text information, and jointly opti-
mizes node embedding model and node classifier so that the label information can be
used. In our paper, the proposed MDAL model is different from AGRNN. Firstly,
MDAL uses label attention to directly fuse label information into node embedding;
secondly, in MDAL model, we design different loss functions according to different
downstream tasks and jointly optimize the network embedding and specific down-
stream task under a multi-task learning framework.

Tree-structured neural networks, also known as recursive neural networks, were
first used in the NLP domain [19]. If Tree-structured neural network is very deep, then
gradient exploding or vanishing problem will damage the model’s effect. Therefore, Tai
et al. [20] first introduced Long Short-Term Memory (LSTM) unit to tree-structured
neural networks and proposed a Tree-LSTM model. The special structure of Tree-
structured neural networks allows this model to be well fit for network data. Kim et al.
[12] firstly used this structure to classify users in Twitter space. Then AGRNN model
[27] added the attention mechanism into this structure. Based on the achievements of
above work, our MDAL model also employs Tree-structured neural networks, and
adopts LSTM as recursive neural unit.

3 The Proposed Model

Assume information network G = {V, E, X, L}, V is the node set and V = {v1, v2, …,
vn}, E is the edge set and each edge represents a relationship between nodes; X = {x1,
x2,…, xn} is the text set of nodes and xt is the text vector of node vt; L is the label set of
nodes and L = {l1, l2, …, ln}. If node vt has a label, then lt is the corresponding label
vector value, otherwise lt is zero vector. For a given target node vt, our goal is to learn a
low-dimensional vector representation of ht 2 Rk (k <<n). Here ht should not only
contain the structure, text, and label information of vt in the original network G, but
also be suitable for specific task such as node classification and link prediction.

The general framework of our proposed model MDAL is presented as Fig. 1.
Firstly, for a given target node vt (red node) in the network, we need to obtain its
neighbors (green node) and the first order and second order neighbors are elected here.
Then the target node and its neighbors are fed into Tree-LSTM model to obtain the
hidden vector representation ht of target node. Finally, the hidden vector is fed into
different loss functions for specific downstream tasks aiming to get target node’ vector
representation for a specific task. We will explain details of the MDAL model next.

3.1 Dual Attention Tree-LSTM Model

The nature of node in network is not only related to its text and labels, but also to the
properties of its surrounding neighbors. Further, for the target node vt, the influence of
its neighbors is different depending on distance between neighbors and target node. For
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example, first order neighbor information has a great influence on vt, and second order
neighbors and third order neighbors have smaller impact. So we need a special model
to consider effect of neighbor on target node embedding. Tree-LSTM model is a
common network model, which can continuously and recursively learn vector repre-
sentation of parent node by child nodes. Based on its essential characteristic, Tree-
LSTM model is a well fit for network data.

With Tree-LSTM model, the hidden vector representation of target node can nat-
urally contains information from itself and surrounding neighbors. Besides, in order to
better consider the influence of surrounding neighbor information on target node, we
propose a dual attention mechanism, namely, text attention and label attention.
Through text attention, vector representation of target node can contain more infor-
mation of neighbors that have more similar text to target node. Identically, label
attention can also make target node more focus on neighbors with similar label
information. Because of the fact that only some of the nodes in the network have labels,
in order to use label attention mechanism, we need to get label vectors for all the nodes.
In this paper, the label vectors of those nodes without tags are obtained by bootstrap
algorithm. In brief, we use traditional node classification algorithm ICA [16] to train a
classifier and then this classifier is applied to unlabeled nodes to obtain the pseudo-
label.

Given a target node vt, in order to use Tree-LSTM model, we first need to obtain a
subtree Tt with vt being root node. As shown in the left part of Fig. 1, we can take vt as
root node (red node) in original network to obtain a subtree of depth d (here d = 2) by
breadth-first search, which contains vt and its neighbors. Unlike the traditional LSTM
model, as shown in the middle part of Fig. 1, Tree-LSTM model starts with leaf nodes
of subtree and uses LSTM unit to obtain hidden vector representation of each node in a
bottom-up manner. In this way, the information of neighbors is gradually converging to
the root node, i.e. target node vt. The Tree-LSTM model obtains structure information
of vt through subtree, and uses the LSTM unit to obtain text and label of each node in
the subtree. So the Tree-LSTM model can incorporate both structure, text and label
information of nodes. For any node vp in the subtree, the computation equations of
hidden vector hp are as follows:

Obtain neighbor nodes

Feed into Tree-LSTM

Label Loss

Task-specific Loss

Content Attention
Label Attention

Network
Generating Hidden Vector

Multi-Task Loss

vt

LSTM

LSTM

LSTM

LSTM
LSTM

LSTM

LSTM

LSTM
ht

Fig. 1. MDAL framework (Color figure online).
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~hp ¼ meanvr2CðvpÞfhrg ð1Þ

ip ¼ rðW ðiÞxp þ k2V
ðiÞlp þUðiÞ~hp þ bðiÞÞ ð2Þ

fpr ¼ rðW ðf Þxp þ k2V
ðf Þlp þUðf Þhr þ bðf ÞÞ ð3Þ

op ¼ rðW ðoÞxp þ k2V
ðoÞlp þUðoÞ~hp þ bðoÞÞ ð4Þ

up ¼ tanhðW ðuÞxp þ k2V
ðuÞlp þUðuÞ~hp þ bðuÞÞ ð5Þ

cp ¼ ipHup þ
X

vr2CðvpÞ fprHcr ð6Þ

hp ¼ op H tanh(cpÞ ð7Þ

where xp and lp are text vector and label vector of node vp; C(vp) is the set of child of vp
and vr is a concrete child; hr and cr are hidden vector and cell vector of child vr; ehp is
the summation of child hidden vector; W(t) denotes the weight matrix and b(t) is bias
with t 2 {i, f, o, u}; r denotes the logistic sigmoid function and H denotes element-
wise multiplication; k2 is a hyper-parameter that controls the weight of label vectors of
node vp and belongs to numerical interval [0, 1], because for many nodes their label
vectors are pseudo-labels, so we need this parameter. According to the above formulas,
we can obtain the hidden vector hp of node vp. In this way, we can obtain the hidden
vector of root node vt, in which we consider it as the node embedding. It is important to
note that there is no child node for the leaf node, so hr and cr of child node of leaf node
are set to zero vector. In addition, in order to prevent overfitting, hr and cr of child node
are regularized with zoneout [14].

To better consider influence of neighbor information on root node embedding, we
propose a dual attention mechanism to focus on nodes that are more relevant to root
node. As shown in middle part of Fig. 1, for subtree with vt being root node, the hidden
vector hp of any node vp in the subtree should contain information more relevant to root
node by content attention and label attention. To achieve this, we need to reconsider
formula of ehp as follow:

acc ¼ softmaxðxTWcxrÞ ð8Þ

alc ¼ softmaxðlTWllrÞ ð9Þ

~hp ¼
X

vr2CðvpÞ ða
c
c þ k1a

l
cÞhr ð10Þ

First we select child nodes that have more similar text with respect to root node
content. As shown in Formula (8), we use a parameter matrix Wc to determine the
content attention score acc between root node text xT and child node text xr. Secondly,
we select children whose label is more similar to root node label. As shown in For-
mula (9), we use a parameter matrix Wl to get the label attention score alc. For a child
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node, if it has not a label, it is assigned the corresponding pseudo-label. Finally, ehp is
the summation of child hidden vectors with corresponding text and label attention score
in Formula (10), in which k1 is a hyper-parameter that controls the proportion of text
attention and label attention, and belongs to numerical interval [0, 1].

3.2 Parameters Learning

When we obtain the hidden vector ht of target node vt, ht is fed into subsequent fully
connected layer classifier to train the parameters of LSTM unit. It is important to note
that we use the same LSTM unit parameters for the entire Tree-LSTM model. Finally
the predicted probability distribution pt is obtained by softmax function:

pt ¼ softmaxðWtht þ btÞ ð11Þ

Here cross-entropy loss with L2 regularization is used as cost function. The goal of
model training is to minimize the cross-entropy J1 between predicted probability dis-
tribution and label vectors for all labeled nodes:

Eðlt; ptÞ ¼ �
Xk

i¼1
lit � log pit ð12Þ

J1 ¼ � 1
N

XN

t¼1
Eðlt; ptÞþ k

2
hk k

2

ð13Þ

where k is number of categories, N is number of labeled nodes, all the model
parameters including Wc and Wl are denoted as h, k denotes a regularization coefficient.
The vector representation of node obtained through the objective function J1 is uni-
versal, which can be applied to any downstream tasks. We call this Dual Attention
Tree-LSTM model as DAL. Note that DAL is a universal model and the core of MDAL
framework. Finally, the algorithm of DAL model is presented in Algorithm 1.
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4 MDAL Variants for Specific Downstream Tasks

In this section, MDAL integrates DAL into a multi-task learning framework, which can
simultaneously learn task-sensitive embeddings and fulfill downstream task. We
introduce two MDAL variant models for node classification and link prediction tasks
respectively.

4.1 Node Classification

When we obtain hidden vector ht of target node vt, we need to design a specific
objective function, which lets ht be adapted to node classification task. For node
classification, we can train the parameters of Tree-LSTM model by feeding ht into the
objective function J1 as described in Sect. 3.2. However, for the practical application,
the node label is not easy to be obtained, namely, only a small number of nodes have
tags. If only the actual labeled nodes are calculated to obtain hidden vector and then fed
into loss function J1, the information of untagged nodes is not fully exploited. Based on
the characteristics of network data, we use the link between nodes to conduct unsu-
pervised learning. For the target node vp, we use the first-order proximity of nodes [8,
17] to enforce vp and its neighbors with similar hidden vectors, and vp and its non-
neighbors with distinct hidden vectors. Based on the above description, for the node
classification task, we define graph-based loss function J2 as follow:

J2 ¼ �
X

ði; jÞ2E ðlog rðh
T
i hjÞþ

XK

k¼1
Evn �PnðvÞ½log rð�hTi hnÞ�Þ ð14Þ

where hi is hidden vector of node vi learned from Tree-LSTM model and (i, j) is an
edge; vn is obtained by negative sampling; K is the number of negative edges; Pn is a
negative sampling distribution.

Therefore, for the node classification task, we can minimize the label loss function
J1 and graph-based loss function J2 in the multi-task learning framework, and obtain
the final node classification loss Jc by a weighted combination between J1 and J2 as
shown in Formula (15), where kc is used to balance the relative proportions of two
losses. We call this variant model MDAL-C, where C stands for classification.

Jc ¼ kcJ1 þ J2 ð15Þ

4.2 Link Prediction

After getting hidden vectors of nodes, we can use these vectors for link prediction. The
common approach is to get edge features by binary operators [8], and then train a
classifier with aim to classify node pairs that have link or no link. Through the clas-
sifier, for any node pairs we can get the probability of existence of link, and finally use
AUC indicator to measure node embedding performance in the link prediction task.
The above approach has the following problems. First, for the network data, the node
pair with a link can be used as a positive example and the node pair with unknown link
state cannot be used as a negative example, because these node pairs may have a link
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that is not observed or what we need to predict. Therefore, it is unreasonable to directly
take these node pairs as negative examples. So the link prediction problem itself is a
Positive-Unlabeled learning problem [23]. Secondly, embedding of nodes obtained by
model has task independence, and it is less effective to measure the performance of
model in the link prediction task if we directly use these nodes embedding. In order to
solve the second question, we use the AUC indicator as part of loss function. However,
the direct optimization of AUC also need to pre-select positive and negative examples
and as mentioned above directly selecting the node pair with unknown link state as a
negative example is unreasonable. To overcome this obstacle, we optimize the AUC
with node pairs that has a link (that is, positive examples) or have unknown link state.
The specific reason is as follows: research work has demonstrated that, as shown in
Formula (16), PU-AUC risk RPU is equivalent to supervised AUC risk RPN with a
linear transformation [26]. So even if we do not have negative data, we can optimize
RPU instead of optimizing RPN.

RPU ¼ 1
2
hP þ hNRPN ð16Þ

where hP and hN are percentage of positive data and negative data. Based on the above
conclusions, for link prediction tasks, we need to include PU-AUC risk J3 in the loss
function of model, where J3 is defined as follows:

J3 ¼
X

ði; jÞ2Ep

X
ðm; nÞ2EU

gðSðhi; hjÞ; Sðhm; hnÞÞ ð17Þ

where Ep represents a set of node pairs having link and EU is a set of node pairs having
unknown link state; g denotes loss function and here we adopt hinge loss function; S(hi,
hj) represents how we get the similarity of node pairs for vi and vj, and we use the L2
norm. Because many nodes have unknown link in the network, in order to reduce the
computational cost, we use the idea of negative sampling to construct a set of triplets P,
where (i, j, k) 2 P and vi has link with vj and has unknown link state with vk. Based on
the above description, J3 is redefined as follows:

J3 ¼
X

ði; j; kÞ2P maxð0; dþ Sðhi; hjÞ � Sðhi; hkÞÞ ð18Þ

where d is a threshold to regulate the similarity.
For the link prediction task, we can not only optimize the AUC index directly by

minimizing the loss function J3, but also use label information in the graph. Therefore,
we minimize the loss function J1 and J3 in the multi-task learning framework. Through
a weighted combination, we obtains the final link prediction loss function Jl as shown
in Formula (19), where kl is used to balance the relative proportions of two losses. We
call this variant model MDAL-L, where L stands for link prediction.

Jl ¼ klJ1 þ J3 ð19Þ
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5 Experiments

Our MDAL model can be applied to many network data related tasks. In this paper, we
compare MDAL model with other baseline models in the real-world datasets with
respect to node classification, network visualization and link prediction tasks. Here we
first introduce the benchmark datasets and baselines. Then we analyze the performance
of the MDAL model and its variants on three classical tasks.

5.1 Experiment Setup

Datasets. There are three datasets for this experiment, two of which are citation net-
works: Cora and Citeseer [22]. These two citation networks use papers as nodes and
reference relationships between papers as edges (undirected). Each of paper contains a
set of keywords as attributes of node, and the corresponding attribute features are
represented by a 0/1-valued word vector. The research field of each paper is used as a
label. In order to verify the effectiveness of proposed model on social network da-ta, we
use WebKB dataset [27]. In WebKB dataset, each node represents a website, each link
represents a hyperlink between web pages, node attribute represents contents of web
page and the node label represents the department to which website belongs. For the
sparsity of WebKB dataset, we use the WebKB-sim dataset [27], which adds additional
three edges for each node on the basis of WebKB dataset. And extra three edges are
connected to each node most similar to attribute of each node. An overview about
above three datasets is given in Table 1.

Baselines. For comprehensive and comparative analysis of MDAL model, we utilize
the following methods as strong baselines. DeepWalk [2] directly leverages the net-
work topology. TADW [28] model uses structure and attribute information in the form
of matrix decomposition. ICA [16] algorithm is a classical network data classification
algorithm and we use its variant, ICA-count, which uses the number of labels as label
information. Considering the fact that the number of tagged nodes is sparse, the ICA
model approximately can be regarded as a content-only baseline. GraphSAGE-sup [9]
obtains the vector representation of node by aggregator functions, which can take
advantage of structure, label and attribute of nodes. It is important to note that we use
GCN aggregator for the GraphSAGE-sup model. Similar to our MDAL model,
AGRNN [27] model can obtain the vector representation of target node through
attribute attention, and also make use of three aspects of node information.

Table 1. Datasets statistics

Dataset Cora Citeseer WebKB-sim

Nodes 2708 3312 877
Edges 5429 4732 2631
Features 1433 3703 1703
Labels 7 6 5
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Parameter Setup. For all datasets and model, the dimension of node represents is set
to 128. For baselines we refer to the parameter settings in the corresponding paper. For
the model proposed in this paper, unless otherwise specified, for each node we build a
subtree with depth d being 2. For the balance parameter k1 (controlling label attention)
and k2 (controlling label vector), we conduct a parameter sweep on {0.01, 0.001,
0.0001}. The number of negative edges is 5; regularization coefficient k is 1e–4;
threshold d is 1. In terms of the optimization process, for the DAL model, the learning
rate is set to 0.01; for the MDAL-C and MDAL-L model, the learning rate is set to 1e–
5. For the loss balance parameter kc and kl, we conduct grid-search on numerical
interval (0, 2).

5.2 Node Classification

In this section, we first verify the performance of MDAL model in terms of multi-class
node classification task. First for the network dataset, we select some nodes to give the
real label, then select 10% as the validation set from unlabeled data, and the remaining
90% as the test set. Before conducting the experiment, we used the ICA model to
obtain pseudo-label of unlabeled node through preprocessing, so as to make the label
attention mechanism can be implemented. Then the node embedding is obtained using
a specific model on the network dataset. We use representation vector as feature vector
for classification tasks. In order to eliminate the effect of classifier on the performance
of multi-label classification, if not explained, we send representation vector of node
into single-layer neural network model to obtain the label.

Classification performance is measured by Micro F1-score metric. We use 5-fold
cross validation to evaluate Micro F1-score. For node classification tasks, we use the
baselines mentioned in Sect. 5.1, as well as two proposed models: DAL and MDAL-C.
It is important to note that DAL represents a model not designed for any task, and
MDAL-C is a model designed for node classification tasks. Table 2 shows the per-
formance of different models on different datasets, and the best result is boldfaced.
From these three tables, we have the following observations and analysis.

Compared with DeepWalk model, which only utilizes structure information of
network, TADW and ICA can make use of node attribute information, so these two
models get better results on three datasets across all training ratios. The reason is that
the three datasets are very sparse and DeepWalk model cannot give full play to its own
advantages. Therefore, in this case, the text information can be more helpful to node
classification. Secondly, for GraphSAGE, AGRNN and MDAL variant models, all
these models can take advantage of structure, label and text information of nodes. So
compared with TADW and ICA, these models can achieve obvious improvements on
Cora and Citeseer datasets. However, it is important to note that in WebKB-sim
dataset, the GraphSAGE model does not achieve satisfactory results. The reason may
be that the WebKB-sim dataset is a semi-synthetic dataset and additionally added links
disrupt the aggregator functions. Comparatively speaking, AGRNN and MDAL variant
models can still be effective for semi-synthetic dataset WebKB-sim, which shows the
effectiveness of Tree-LSTM structure on modeling network data.

For AGRNN, DAL takes label information of node fully into account in the vector
representation learning process, so DAL obtains better results on three datasets.
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Because there are relatively few tagged nodes, the label information is limited. In this
case, the information of unlabeled nodes is fully taken into account in the MDAL-C
model through graph-based loss function J2, so that MDAL-C achieves better results
than AGRNN and DAL. For example, on Cora and Citeseer dataset, MDAL-C obtains
improvement from 0.5% to 2% over AGRNN and DAL under all training ratio settings.
For WebKB-sim, MDAL-C achieves about average 3.3% gain over DAL. In general,
DAL outperforms or competitive with baselines, which proves that the proposed model
DAL effectively fuses structure, content and label information of nodes. For node
classification tasks, the proposed task-specific model MDAL-C is consistently better on
all datasets, which effectively shows that the proposed model MDAL has good task
adaptability.

5.3 Network Visualization

In order to further illustrate that vector representation of node is discriminative, we map
those representations for node classification task into the 2-D space and display the
distribution of different categories of nodes in the planar axis using t-SNE visualization
tool with its default parameter values [6]. Here we take Cora dataset as an example, first
select 20% of data set as a labeled dataset, and then get vector representation of node
through the corresponding model. As shown in Fig. 2, each dot in figure represents a
node, and each color represents a category. The good vector representations should
enable nodes with similar tags to gather together in space.

Table 2. Node classification Micro-F1 score (%) with various methods on different datasets

Dataset %Labeled
nodes

Deep
walk

TADW ICA Graph
SAGE

AGRNN DAL MDAL-C

Cora 5% 71.73 70.89 74.23 80.06 78.32 78.40 80.64
10% 74.33 77.89 75.10 82.86 81.24 82.13 82.95
15% 76.20 81.71 76.29 84.21 84.59 85.26 85.51
20% 77.25 83.94 77.38 85.01 85.23 85.69 86.66
25% 78.24 84.17 78.76 85.19 85.65 86.15 87.51

Citeseer 5% 50.58 62.04 65.53 70.90 69.38 69.84 70.90
10% 52.45 66.81 68.61 69.76 69.68 70.17 71.02
15% 53.76 69.26 69.33 71.02 71.45 72.65 72.85
20% 54.73 71.06 68.79 70.47 72.74 73.20 74.21
25% 55.28 72.46 69.44 71.49 73.16 73.82 74.63

WebKB-sim 5% 46.40 46.64 48.60 55.15 50.80 55.06 64.66
10% 47.72 53.03 67.79 56.43 68.07 70.45 73.13
15% 50.34 57.51 70.34 56.71 72.87 74.96 75.41
20% 51.56 58.40 73.05 58.01 74.32 75.11 76.70
25% 53.79 60.63 73.64 59.62 75.01 76.68 78.88
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For Cora datasets, nodes represent papers, link represents references between
papers, and labels represent the research field to which paper belongs. Because the
correlation between these research fields is relatively large, a paper may have many
references bibliography belong to many research fields. So using only the reference
relationship between papers does not distinguish the label of paper very well, which
can be seen from the visualization results of the DeepWalk. As shown in Fig. 2(a),
DeepWalk model uses only the structure information of network, so the visualization
result is not good and we can find that different types of nodes are mixed together. As
far as the citation dataset, the content information of paper can better express the
domain of paper. The TADW model incorporates content information on the basis of
DeepWalk, so visualization results of TADW in Fig. 2(b) are slightly better than
DeepWalk. As mentioned earlier, ICA model approximately can be seen as a content-
only model. From Fig. 2(c), the visualization result of ICA is better than DeepWalk
and TADW. After incorporating the label information of nodes, GraphSAGE,
AGRNN, DAL and MDAL-C get better visualization results (Fig. 2(d)–(g)). It is clear
that the visualization of DAL and MDAL-C performs best in both models. From Fig. 2
(g), we can find that different types of nodes are clustered together, and the boundary
between different groups is obvious. From the above analysis and Fig. 2, we can find
the effectiveness of the proposed MDAL-C model in network visualization.

(a) DeepWalk (b) TADW (c) ICA

(d) GraphSAGE                 (e) AGRNN                (f) DAL

(g) MDAL-C

Fig. 2. t-SNE visualization of cora dataset (Color figure online)
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5.4 Link Prediction

In this section, we evaluate MDAL model on the link prediction task. In terms of link
prediction task, our goal is to predict the unobserved edge based on existing network
structure. In order to carry out the link prediction task, first we need to randomly select
p% node pairs with unknown link state as negative samples, and then randomly hide
p% linked node pairs as positive samples. It is important to note that after hiding p%
linked nodes, the residual network needs to be connected. Secondly, we use corre-
sponding model to get vector representation of nodes on the residual network. Finally,
we calculate similarity between node pairs and use AUC index to measure the per-
formance of model on link prediction task. Here for three datasets, we select 20% nodes
to assign labels and conduct experiment after respectively hiding 10%, 20% and 30%
links. For link prediction task, we use baselines mentioned in Sect. 5.1, as well as two
models proposed: DAL and MDAL-L. DAL represents a model not designed for any
task and MDAL-L is designed for link prediction tasks. It is important to note that for
Cora and Citeseer datasets, for each node we build a subtree with depth 2 to achieve
better results; for WebKB-sim datasets, the depth is 1. Table 3 shows the results of link
prediction on three datasets.

Overall, as the percentage of hidden node pairs increases, the performances of all
models decrease. Compared with AGRNN and DAL, MDAL-L model which is
designed for link prediction tasks, improves the AUC score by at least 2.4% in Cora,
0.6% in Citeseer and 28% in WebKB-sim. This phenomenon shows that the proposed
model MDAL has good task adaptability. Compared to other baselines, MDAL-L still
outperforms these baselines to all datasets, because the loss function of MDAL-L
contains the loss items that directly optimize the AUC index. It is important to note that
for WebKB-sim datasets, all baselines do not achieve good results on account of some
links are manually added to this network, which makes the dataset full of noise.
However, MDAL-L still achieves very satisfactory results on this dataset by directly
optimizing the AUC indicator.

Table 3. Link prediction AUC with various methods on different datasets

Dataset %Linked
nodes

Deep
walk

TADW ICA Graph
SAGE

AGRNN DAL MDAL-C

Cora 10% 0.904 0.919 0.909 0.922 0.889 0.902 0.932
20% 0.885 0.903 0.904 0.914 0.878 0.896 0.917
30% 0.865 0.898 0.897 0.908 0.869 0.887 0.911

Citeseer 10% 0.887 0.956 0.925 0.939 0.944 0.951 0.960
20% 0.836 0.944 0.904 0.935 0.941 0.949 0.958
30% 0.822 0.942 0.894 0.932 0.933 0.948 0.954

WebKB-sim 10% 0.768 0.675 0.533 0.663 0.656 0.656 0.942
20% 0.781 0.648 0.544 0.655 0.596 0.636 0.937
30% 0.771 0.628 0.536 0.617 0.584 0.605 0.926
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6 Conclusion

In this paper, we proposed a semi-supervised network embedding model MDAL,
which is based on Tree-LSTM structure. For target node, MDAL model can recursively
obtain information from its surrounding neighbors. In order to better obtain the
effective information contained in surrounding neighborhood, we use dual attention,
i.e. content-attention and label-attention to choose neighbor nodes more related to
target node. For the purpose of making embedded vector more suitable for downstream
task, we design corresponding objective functions for node classification and link
prediction, and optimize the network representation learning task and specific down-
stream tasks jointly under the multi-task learning framework. A large number of
experimental results show the validity of MDAL model on node classification, link
prediction and network visualization tasks. Future research work can introduce MDAL
model into the recommendation system.
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Abstract. Writing an item review for online shopping or sharing the
dining experience of a restaurant has become major Internet activities
of young people. This kind of review system could not only help users
express and exchange experience but also prompt business to improve
service quality. Instead of taking time to type in the review, we would
like to make the review process more automated. In this work, we study
an edge labelling language model for personalized review generation, e.g.,
the problem of generating text (e.g., a review) on the edges of the net-
work (e.g., online shopping). It is related to both network structure and
rich text semantic information. Previously, link prediction models have
been applied to recommender system and event prediction. However,
they could not migrate to text generation on the edges of networks since
most of them are numerical prediction or tag labelling tasks. To bridge
the gap between link prediction and natural language generation, in this
paper, we propose a model called Net2Text, which can simultaneously
learn the structural information in the network and build a language
model over text on the edges. The performance of Net2Text is demon-
strated in our experiments, showing that our model performs better than
other baselines, and is able to produce reasonable reviews between users
and items.

Keywords: Link prediction · Language model · Graph mining ·
Data mining

1 Introduction

Under the wave of mobile Internet development, we witness and engage more
and more online review system. For example, before we purchase a product on
Amazon we always check reviews from other buyers to determine if buy it or
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Fig. 1. Our personalized review generation task. Top blocks are reviews that Alice
gave to other restaurants, and bottom blocks are reviews that Pizza Hut received from
other customers. Our goal is to help Alice generate review automatically for Pizza Hut
(see the text in the green box). We provide detail explanation in Sect. 1. (Color figure
online)

not. Meanwhile, we write our own using experience for the products purchased
as well. In addition to online shopping, we also focus on movie reviews and
restaurant reviews. Review system influences various aspects of our life.

Sometimes, writing a review is a trivial work for customers, and most cus-
tomers share thoughts on fixed aspects (e.g., quality, service). In this work,
we would like to help customers generate accurate reviews automatically given
historical reviews between users and items. Descriptive text can encode rich
semantic information and structural relationship between user-item network.

Figure 1 describes our task of personalized review generation. Top blocks are
reviews that Alice gave to other restaurants, and bottom blocks are reviews that
Pizza Hut received from other customers. After analyzing the reviews given by
Alice, we can conclude that he concerns more about price, position and ser-
vice (emphasized in red bold). Pizza Hut has received some reviews from other
customers and some of them mentioned the attributes that Alice cares about.
Since most of reviews to Pizza Hut are positive, our generated review for Alice is
friendly and reasonable. Consequently, it will help users to alleviate the burden
of typing by generating accurate reviews automatically.

Essentially, it is a kind of edge labelling task for network, which can be recog-
nized as a link prediction problem. In previous researches, link prediction models
are mainly applied to recommender system. For example, in social networks, we
usually predict the evolution of networks like recommending new friends [1] by
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Fig. 2. Previous models on link prediction task and multimodel language generation
task.

calculating similarities based on user activities. In online e-commerce websites,
instead of just recommending new links, link prediction models also predict
events like buying an item (Fig. 2a). In this area, collaborative filtering (CF)
is a successful recommendation paradigm that employs transaction information
to enrich user and item features for recommendation [12]. However, these mod-
els could not migrate to text generation on the edges since most of them are
numerical prediction or tag labelling tasks.

From the aspect of language modeling, although we have a lot of sophisticated
language models nowadays, it is not a trivial task to employ it into network
structure. Common language generation models, including n-gram models [7] and
deep learning models (e.g., LSTM [24]), always generate text without considering
additional features of network structures. Text produced by these models cannot
reflect the specialization between vertices. Karpathy et al. proposed an image
caption model (Fig. 2b) and it is a kind of language model that considers image
features [13]. This model cannot be applied in network structure but inspired us
to build a multimodel language model over a network structure.

To our best of knowledge, there are no previous models on personalized review
generation. Therefore, in this paper, we propose a model, Net2Text, based on
network structure with text on the edges. Our model innovatively solves the task
of generating personalized text on network edges automatically and makes up
the gap in the study of edge labelling language model.

Our method proposed in this paper has following three-fold contributions:

1. It is the first work to propose automated personalized review generation task,
which is an extensive work of image caption to network structure. It builds a
bridge between network structure and text generation.

2. Our Net2Text is a novel model on edge labelling for personalized comment
generation by learning the structural information in the network and language
modeling in the text.

3. We demonstrate the performance of our model in experiments on real
datasets. By comparing Net2Text to other baselines, we show that our model
performs better under machine translation metrics. We also present some
generated reviews to prove the readability and personality.
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2 Problem Definition

In this section, we first introduce related concepts and notations, then define our
problem.

Table 1. Important Notations.

Symbol Definition

G = (V1, V2, E) A network with text on edges

V1 = {1, · · · , n1}, V2 = {1, · · · , n2} Two sets of vertices, n1 and n2 are
vertex number of each set

E = {(li, ri, si)}m
i=1 The set of m links in network G

li, ri Two connected vertices of i-th link in E
si = (s1i , · · · , sTi

i ) Sequence of i-th edge text. ∀t ∈ [1..Ti],
sti correspondes to a word of text si at
position t. Ti is the number of words on
the i-th sequence

xi = (s0i , · · · , sTi
i ) Text sequence on i-th edge si with an

additional pre tag START

X = {x1, · · · ,xm} Input vectors for all instances

F = {f1, · · · , fm} Link features for all instances

fi = [Φ(li), Φ(ri)] ∈ R
2×d i-th link features combined by vector

representation of vertex li ∈ V1 and
vertex ri ∈ V2. d is the dimension of
each vertex vector

Y = {y1, · · · ,ym} Output vectors for all instances

yi = (s1i , · · · , sTi+1
i ) i-th edge text sequence si with an

additional post tag END

Φ ∈ R
(n1+n2)×d Representation vectors for all the

vertices in network G

L and U The training set and testing set

In our task, we have two types of vertices in network. One is the user (Alice),
the other is the item or business (Pizza Hut). Therefore, we denote a network,
G = (V1,V2, E), where V1 = {1, · · · , n1} and V2 = {1, · · · , n2} are two partitions
of this network, and E = {(li, ri, si)}m

i=1 denotes the edges of the network. m is
the total number of edges in G. For the i-th edge, li ∈ V1 and ri ∈ V2 are two
connected vertices. si = (s1i , · · · , sTi

i ) denotes the text sequence on i-th edge.
∀t ∈ [1..Ti], st

i correspondes to a word in sequence si at position t. Ti is the
number of words of the sequence on the i-th edge.

Now we formally define our problem as follow:

Definition 1. Given a network G = (V1,V2, E) with text on its edges, for each
edge (l, r, s) ∈ E, our goal is to learn an edge labelling language model g(l, r) ≈ s,
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that can map all the edges in the network into personalized reviews. For a new
edge (lnew, rnew), we could generate a personalized review snew = g(lnew, rnew).

Since we take network structure information into consideration in our task,
for i-th edge (li, ri, si) we begin with learning vector representation Φ(li) ∈ R

d

of vertex li ∈ V1 and Φ(ri) ∈ R
d of vertex ri ∈ V2, and then we denote a vector

fi = [Φ(li), Φ(ri)] ∈ R
2×d by concatenating representation of two vertices as

features of i-th edge. d is the embedding dimensions of each vertex.
Now we create a new edge set E ′ = (X ,F ,Y), where X = {x1, · · · ,xm}

represents input vectors, F = {f1, · · · , fm} represents edge features and Y =
{y1, · · · ,ym} represents output vectors.

For the sequence si, we add a special tag START as s0i to the beginning, which
forms our input vector xi = (s0i , · · · , sTi

i ) for i-th edge. We add another special
tag END as sTi+1

i to the end, which forms our output vector yi = (s1i , · · · , sTi+1
i ).

Our instances in E ′ are then divided into a training set L ⊂ {E ′
1, · · · , E ′

m}
and test set U ⊂ {E ′

1, · · · , E ′
m}, where L⋃ U = E ′ and L⋂ U = ∅. For ∀i ∈ L,

xi, fi and yi are fully observed, while ∀i ∈ U , we only observe x0
i , which is tag

START, and feature fi for i-th edge. Since we use previous output as new input
in text generation process, we denote yo

i as previously generated word sequence.
Here, yo

i = (y0
i , · · · , yt−1

i ) changes as the step goes to t-th position.

Our task on the i-th instance is to predict yi = (yj
i )

Ti

j=1 based on yo
i and fi

until tag END appears or designated text length arrives.
We use YU = {yi|∀i ∈ U} to denote all the target text on unconnected

vertices for prediction. In addition, we define Yo
U = {yo

i |∀i ∈ U} to denote all
the generated outputs during the test phase. FU = {fi|∀i ∈ U} is the collection
of edge features in test set U . The overall goal of Net2Text model is to estimate
a probability distribution:

Pr(YU |FU ,Yo
U ) ∝

∏

i∈U
Pr(yi|yo

i , fi) (1)

Table 1 explains details of our important notations.

3 Proposed Method

3.1 Overview

In this section we will explain details of our method.
In general, our model integrates the process of vertex embedding and text

generation. We first learn representations of vertices with random-walk-based
method, then train a language generation model over existing text on the edges
by incorporating vertical features. Figure 3 describes the architecture of our
model Net2Text.
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Fig. 3. Architecture of Net2Text. We first learn vertex representations from review
network. For unconnected user 3 and item 2, we combine their embeddings into an
edge feature, together with each word in the review sequence, as the input to the
nGRU.

Algorithm 1. Learning vector representations.
Input: vertices set V, edge set E , windows size w

embedding size d, number of walks per vertex b

Output: matrix of vector representations Φ ∈ R
N×d

1 Initialize Φ
2 for i = 1 to b do
3 Reorder the vertices set V
4 foreach vi ∈ V do
5 Wvi = RandomWalk(V, E , vi)
6 SkipGram(Φ, Wvi , w)

7 end

8 end

3.2 Learning Representation of Vertices

To learn latent representations of vertices in a network, we use local information
obtained from truncated random walks by treating walks as the equivalent of
sentences [20]. We merge vertices from V1 and V2 into V = {1, · · · , N} where
N = n1 + n2, then we define Φ ∈ R

N×d as vector representations of all the
vertices.

We initialize the mapping function Φ by uniformly sampling a random walk.
We choose a random vertex vi as the root of the walk, then sample uniformly
from the neighbors of previous vertices visited. Therefore, the objective function
of this optimization problem is:

min
Φ

−log Pr({vi−w, · · · , vi−1, vi+1, · · · , vi+w}|Φ(vi)) (2)

where w is the context windows size for each vertex in the walk.
In each iteration, we start a new random walk at each vertex and update the

objective function Φ.
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For each vertex vi in the inner loop, we generate a random walk Wvi
, which

starts from vertex in one side to the vertex in the other side back and forth
in the network. We then use the generated walk to update our representations
Φ and our objective function Eq. 3.2 with SkipGram [17] loop. For each vertex
vj ∈ Wvi

we map it to current representation vector Φ(vj) ∈ R
d, and maximize

the probability of its neighbors {uk} with context window size w in the walk.

3.3 Text Generation on Edges

Next step after learning vertex representations is to incorporate them into our
edge labelling language model.

Formally, for each edge (li, ri, si) in the network G, we first construct edge
features fi = [Φ(li), Φ(ri)] by combining vector representations of vertex li
and vertex ri, then convert text si on the edge into a sequence of words
xi = (x0

i , · · · , xTi
i ).

Recurrent Neural Network (RNN) [16] is one of frequently used deep neu-
ral language model. It defines a probability distribution of the next word given
the current word and previous context sequence generated. Simple RNN unit
in vanilla version could not capture long dependency due to the gradient explo-
sion/vanishing problem, therefore, we replace it with Gated Recurrent Unit [8].
Since current GRU model just tries to generate text that has correct spelling
and grammar while ignoring our network structural information, we define a
new unit called nGRU. nGRU makes an improvement to the original GRU, that
it can condition text generation on vector representations Φ of all the vertices
learned from previous process to build our edge labelling language model for our
personalized review generation task.

The t-th nGRU unit has two gates: an update gate zt and a reset gate rt,
and two states: a candidate state h̃t and a hidden state ht. For each step t, we
compute input vector ut which is a linear transformation of edge features f t

i

and current t-th word xt
i, and outputs the next word ot. Update rules for our

recurrent units are below:

ut = Wuff t
i + Wuxembed(xt

i) + bu (3)
zt = σ(Wzuut + Wzhht−1) (4)
rt = σ(Wruut + Wrhht−1) (5)

h̃t = tanh(Whuut + Whh(rt � ht−1)) (6)

ht = (1 − zt) � ht−1 + zt � h̃t (7)
ot = softmax(Wohht + bo) (8)

Here, function embed() turns a word into a low dimension embedding vector.
It can be assigned with fixed global word vector or trained by the model itself.
W(·) are weight matrix and b(·) are bias vectors. σ is the logistic function and
the operator � means element-wise product between two vectors. We initialize
h0 as a vector of all zeros.

Until now, we build the basic architecture of our model as shown in Fig. 3,
in next part we will introduce the procedure of our algorithm.
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Algorithm 2. Net2Text Algorithm
Input: Network G = (V, E), training set L, test set U

windows size w, embedding size d, walks per vertex b, max sentence
length pmax

Output: YU = {yi|∀i ∈ U}, each yi is a generated link text in test set U .
Data Preparing:

- Generate vector representations:
Φ = Learning vector representations(V, E , w, d, b)
- Create new link dataset: E ′ = (X , F , Y)

Training Phase:
- Construct extended dataset X ′ = (x′

1, · · · ,x′
m):

for i = 1 to m do
Extend i-th link x′

i = ([x0
i , fi], · · · , [xT

i , fi]) by concatenating link
features to each timestep over the whole text.

end
- Let g = Net2Text(X ′) be our model trained on X ′

Test:
foreach i ∈ U do

- Use START as our first token: y0
i =(START)

- Initialize our test parameters: len = 1, xi = ([y0
i , fi])

repeat
- Predict next character with our trained model: token = g(xi)
- Append newly generated character to existed text:
yi.append(token)
- Update input vector with the new token: xi.append([token, fi])
- Move to next character: len = len + 1

until token = END or len >pmax

end

3.4 Net2Text Algorithm

We conclude a procedure of our method as shown in Algorithm 2. According to
Sect. 2, the input to our algorithm will be a network G = (V, E) with random
splitted training set L and test set U . The algorithm will output generated text
that belongs to edges from test set U .

The algorithm has following steps:

1. Data Preparing. First, we use random-walk-based algorithm to extract
the representations of all the vertices Φ, and generate a new edge set
E ′ = (X ,F ,Y) through the problem definition mentioned in Sect. 2.

2. Model Training. We extend text vectors X to a new combined vectors X ′

by concatenating edge features to each word over the whole sequence. With
this operation, we can take local network features into consideration while
modeling languages. Finally we train a language model g on dataset X ′.
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Table 2. Experiment datasets.

Dataset Average words/review Number of reviews

Amazon - clothing & jewelry 57 263890

Amazon - health care 72 301284

Amazon - sports 67 263212

Amazon - video games 81 151018

Yelp 98 517729

3. Text Prediction. In the testing phase, we first set tag START as the initial
word to our model. For each generation step, we update input vectors as in the
training phase, and repeat predicting new word until the tag END appears
or maximum length of text reaches.

4 Experiments

In order to validate the performance of our model, we applied Net2Text to several
real world review datasets in our experiments.

4.1 DataSets

• Amazon1 is the world leading e-ecommerce platform, and customers often
write down their reviews for their purchases. Amazon datasets [11] we used
in this experiment contains product reviews, including 142.8 million reviews
spanning May 1996 - July 2014. We choose 4 categories of items, and each of
which has been reduced to extract the 5-core, such that each of the remaining
users and items has 5 reviews each.

• Yelp2 is one of the biggest online restaurant reservation service provider. It
has a huge amount of data, including customer profile, resturant informa-
tion, customer review and so on. They open-sourced their dataset on the
official website3. We reduced the dataset to the 30-core, such that each of the
remaining customers and businesses has 30 reviews each.

All the datasets are splitted into training sets and test sets. Statistical details
on our datasets are presented in Table 2.

4.2 Experiment Setup

We have some basic configurations in our experiments. The vector representation
dimension for user and item vertices is set to 256. For language modelling part, we
use nGRU units with 512 dimension hidden nodes. We choose cross-entropy [23]

1 https://www.amazon.com/.
2 https://www.yelp.com/.
3 https://www.yelp.com/dataset/challenge.

https://www.amazon.com/
https://www.yelp.com/
https://www.yelp.com/dataset/challenge
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Table 3. Algorithms for comparison.

Method Content Network Publication

wordRNN � � [25]

Random-walk-based � � [10,20]

Net2Text � � This paper

Table 4. Experiments results under different datasets and algorithms.

Dataset BLEU

wordRNN Random-walk-based Net2Text

Amazon - clothing & jewelry 0.192 0.173 0.345

Amazon - health care 0.185 0.165 0.332

Amazon - sports 0.181 0.168 0.357

Amazon - video games 0.184 0.153 0.323

Yelp 0.19 0.17 0.382

as our loss function. In Sect. 4.4 we compare performance of different dimensions
for nGRU units and vector representation. For comparison algorithms we have
the same configurations as ours. All the experiments were conducted under a
Linux workstation with a Nvidia GTX 1080 GPU (8 G graphic memory).

4.3 Algorithms for Comparison

To our best of knowledge, there are no comparable models since we are the
first to propose text generation on network edges. In addition to various ver-
sions of Net2Text, we evaluated the performance against the following baseline
algorithms (Summarized in Table 3):

• wordRNN [25]: This method does not consider the local network structure
between user and item but only concentrates on review content. It only builds
word level generation language model for all the reviews and generates review
based on the first few words. We use the same language model structure as
Net2Text but remove edge features.

• Random-walk-based algorithm [10,20]: We compare to a baseline with the
idea of edge similarity. It chooses a review from the training set that expresses
the most similar edge features. In other words, it only considers network
structure information and neglects text content.

• Net2Text: This is our proposed method mentioned in Sect. 3, which generates
personalized review for users conditioned on both historical review content
and network relationships between users and items.
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Table 5. Experiments results under different embedding methods.

Dataset BLEU

Deepwalk Node2vec

Amazon - clothing & jewelry 0.202 0.345

Amazon - health care 0.211 0.332

Amazon - sports 0.302 0.357

Amazon - video games 0.296 0.323

Yelp 0.247 0.382

Table 6. Experiments results under different vertex embedding dimension.

Dataset BLEU

Dim. 64 Dim. 128 Dim. 256 Dim. 512

Amazon - clothing & jewelry 0.205 0.168 0.229 0.345

Amazon - health care 0.194 0.221 0.214 0.332

Amazon - sports 0.252 0.212 0.241 0.357

Amazon - video games 0.187 0.199 0.291 0.323

Yelp 0.239 0.253 0.343 0.382

4.4 Evaluation

BLEU (Bilingual Evaluation Understudy) score [18] is a commonly used metric
in the area of language generation. We apply it to measure the quality of our
generated reviews. Since the length of our generated reviews are longer than that
of image captions and we have only one reference review per case for evluation,
the BLEU score of our experiments will be lower than other language generation
tasks (e.g. image caption).

We compared our model Net2Text with the other two baseline algorithms.
As the results showed in Table 4, our method Net2Text considers not only
review semantic information, but also local network structure features, and has
significant improvement than baseline algorithms. As a contrast, the baseline
random-walk-based algorithm has the worst performance under BLEU score.
One explanation is that random-walk-based algorithm only selects a similar
existing review without concerning its content, it may be totally different from
what the review really is, which leads to a low BLEU score. Instead, wordRNN
tries to generate reviews based on first few words from real reviews, and it helps
establish a similar context (quality, service) and predicts in the right direction.
Therefore, wordRNN performs better than random-walk-based algorithm under
BLEU score.

We will show some cases in Sect. 4.6.
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Table 7. Experiments results under different nGRU dimension.

Dataset BLEU

Dim. 128 Dim. 256 Dim. 512

Amazon - clothing & jewelry 0.225 0.243 0.345

Amazon - health care 0.282 0.304 0.332

Amazon - sports 0.221 0.289 0.357

Amazon - video games 0.224 0.25 0.323

Yelp 0.282 0.319 0.382

4.5 Model Selection

In this section, we will conduct some analysis on model parameters. We mainly
consider three aspects of parameter influence. First two are embedding method
and embedding dimension for the network. Another one is hidden dimension of
nGRU units. All of them have effects on performance according to our experi-
ments.

Influence of Embedding Method. Our model use random-walk-based algo-
rithms as our vertex embedding method, therefore, we compare experiments
performance between Deepwalk [20] and node2vec [10]. Table 5 tells us node2vec
leads to a better performance. Since node2vec defines a flexible notion of a node’s
network neighborhood and design a biased random walk procedure, which effi-
ciently explores diverse neighborhoods, and this kind of flexibility in exploring
neighborhoods is the key to learning richer representations [10]. We choose the
flexible parameters that applicable in our experiments.

Influence of Vertex Embedding Dimensions. In accordance with [20], net-
work embedding dimensional representations are distributed, meaning each user
or item is expressed by a subset of the dimensions and each dimension contributes
to a subset of social concepts expressed by the space. We used the default experi-
ment setup, and changed the variable embedding size d in vector representations
learning phase. Table 6 shows that the dimension 512 performs the best, which
means larger dimension could express complex social concepts and that could
help make personalized review more accurate.

Influence of nGRU Parameters. In our experiment we chose nGRU as the
base language modeling method. To improve the performance of Net2Text, we
adjust hidden dimension of nGRU units. Table 7 shows that 512 hidden dimen-
sion has significant improvement than other small dimension.
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Table 8. Comparison of generated reviews with ground-truth reviews.

Case 1: Amazon - clothing & jewelry

Source Crocs are a really comfortable slippers. Looks great and you
can make your activities with comfort and good looking

Generated I really love them! They are perfect and very comfortable.
They look good and I will recommend this item

Case 2: Amazon - health care

Source I take vitamins three times a day. This product fits the bill
perfectly when I travel. I like it so much! I bought two of
them. I first went to a chain pharmacy and discount store
but their offerings were too expensive and were too small.
This product was far cheaper and works for me

Generated I love these vitamins. Easy small pills to take and a
good quality product. Great price on Amazon! Will order
again

Case 3: Amazon - sports

Source It is very easy to use good equipment. It came with in a
short time. Really happy to have it

Generated It’s great and easy and it is not too big to install. It will
work. I have a good purchase

Case 4: Amazon - video games

Source This game is awesome! Beautiful landscapes and adventures!
It puts you right in the fantasy world. Very addictive!

Generated Great graphics! I would love playing the series and it was
very well! Great price and I recommend this

Case 5: Yelp

Source Always great sushi no matter if you are doing AYCE or
individual orders. Always a wait for this place

Generated I enjoy the panko a lot. I always love family style ramen but
always looking for a spot

4.6 Case Study

Our goal is that the predicted reviews can reflect suggestions and feelings existed
in the real reviews as much as possible, since it could alleviate the burden of user’s
typing modification.

To gain a better understanding of our method, we explain more details on
some example reviews we generated. Table 8 lists cases of our results selected
from each of five datasets compared to original reviews.

Case 1 is a perfect generated review example. The customer mentions good
feedback about the looking and the feeling of purchased product slippers (a really
comfortable slippers and Looks great). In our generated review, we predict pre-
cisely the same keywords (very comfortable and They look good) as the original
one.
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In case 2, the customer originally gave a long review to the item. Although
long sentence generation is more challenging, we still have the ability to cap-
ture the important information for this purchase relationship. For example, we
produce the name of this product (vitamins), and mention the product quality
(works for me and good quality product) and the price (far cheaper and Great
price) as well.

Case 3 is the case from sports shopping in Amazon. We generate the word
easy as the same from source review. The customer also wrote the joy feeling to
have this item, and we generate it in a different expression (happy to have it v.s.
good purchase).

Review in cases 4 looks like a general comment to video games. We emphasize
graphical performance that summarize description in source review.

After comparing the generated review with the original review in case 5, we
find that this customer went to a Japanese food resturant and he/she praised
the food (great sushi, enjoy the panko a lot and love family style ramen). This
customer also complained about the waiting time (Always a wait and always
looking for a spot).

According to above cases, our model could not only capture real facts about
items/restaurants but also express original meanings for users. This work will
greatly help users alleviate the trouble of typing text by filling the review content
automatically.

5 Related Work

As we mentioned in Sect. 1, our task is a variant to common link prediction
problems.

Most link prediction models study the task of recommender system. For
example, in social networks (e.g. Facebook, Twitter, Instagram, etc.) we can
recommend new friends based on current relationships [1]. In some domain spe-
cific social networks like academic social network, link prediction can help find
domain experts or co-authors [19]. Large online shopping platforms could form a
behaviour network based on user behaviours as well, and link prediction models
can recommend personalized items for individual customers [14]. In the advertise-
ment recommendation area, Wang et al. propose a framework SHINE to predict
possibly existing sentiment links in the presence of heterogeneous information,
which could generate sentiment tags between users and advertisers [26]. Link pre-
diction also predicts the missing links on an incomplete observed networks [15].
For dynamic networks such as P2P lending networks, it can infer the future
newly added links and evolution process [27,30,31] as well. In other domains
like bioinformatics area, there exists networks such as gene expression networks.
We can use link prediction to predict new protein-protein interactions [2], which
has great significance to human life health and disease treatment. All the prob-
lems mentioned above are numerical prediction or tag labelling tasks on links,
and they cannot be applied to our problem.



498 S. Xu et al.

Statistical language modeling (SLM) is an important research topic all the
time in natural language processing field. It is commonly used in speech recog-
nition [9], machine translation [4], handwriting recognition [29] and other appli-
cations. N-gram model [7] was the earliest technique for language modeling. It
models the probability of a word appears next given a sequence of context words.
Later, models based on decision tree [21] and maximum entropy techniques [6]
appeared. They build models with consideration of other features such as part
of speech tags. Bengio et al. [5] first applied neural networks to language model
domain in 2003. He proposed a Feed-forward Neural Network (FNN) which can
predict the next word given the fixed size of the previous sequence of words
and learn the word representation in the vocabulary at the same time. This
model greatly improves the performance of speech recognition [22]. However,
previous models still have the shortcoming that long range dependencies can-
not be captured due to the fixed context constrain. Mikolov et al. proposed a
Recurrent Neural Network (RNN) which allows context information passing all
through [16]. To address the issue of gradient vanishing, a variant of RNN called
Long-Short Term Memory (LSTM) [24] is presented later. In recent years, gen-
erating natural language text for image (Image Caption) has been researched
in depth. Karpathy et al. proposed an image caption model and it builds a
multimodel RNN that considers image features [13]. Anderson et al. propose a
combined bottom-up and top-down attention mechanism that can enable deeper
image understanding for image caption and visual question answering [3]. How-
ever, image caption models cannot be migrated to network because they have
different structures. Yao et al. also study the problem of generating fake reviews
for specific restaurant automatically [28]. Their reviews cannot reflect the per-
sonalization because they do not concern about the network structure even the
customers.

6 Conclusion

In this paper, we propose a novel application of language modelling on network
structure, which is generating text on each edge of a network. It is a challeng-
ing work because text on edges encodes not only the relationship between two
network entities but also rich semantic information. We build an edge labelling
language model Net2Text that considers both network structure information
and text on edges, to generate personalized reviews for users. The performance
of Net2Text is demonstrated in experiments on real world datasets, showing
that our model performs better than other baselines, and is able to generate
reasonable reviews for customers.
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Abstract. Predicting information diffusion in social networks has
attracted substantial research efforts. For a specific user in a social net-
work, whether to forward a contagion is impacted by complex interac-
tions from both her neighboring users and the recent contagions she has
been involved in, which is difficult to be modeled in a unified model.
To address this problem, we investigate the contagion adoption behav-
ior under a set of interactions among users and contagions, which are
learned as latent representations. Instead of learning each type of repre-
sentations separately, we try to jointly encode the users and contagions
into the same latent space, where their complex interaction relationships
can be properly incorporated. To this end, we construct a heterogeneous
information network consisting of users and contagions as two types of
objects, and propose a novel random walk algorithm by using meta-path-
based proximity as a guide to learn the representations of heterogeneous
objects. In the end, to predict contagion adoption, we judiciously design
an effective neural network model to capture the interactions based on
the representations. The evaluation results on a large-scale Sina Weibo
dataset demonstrate our proposal can outperform the competing base-
lines. Moreover, the latent representations are also suitable for multi-class
classification of contagions.
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1 Introduction

The online social networks such as Twitter and Weibo have become the funda-
mental platforms for information and contagion diffusion. The opinions of the
social networking users tend to be influenced by their neighbors [11], and such
influence can propagate through links and spread over the network.

Massive efforts have been devoted to understanding the information dynamics
in social networks [3,4,11,12,20,30,31,33]. However, most previous works focus
on studying how a single piece of information spreads, but the interactive effects
among multiple contagions and users are not fully explored. The interactions
among users and contagions have impacts on the diffusion of contagions. For
example, if two users u1 and u2 have common interests and are close friends, a
contagion posted by u1 will be more likely adopted by u2. In addition to user
interactions, interactions among contagions, i.e., competition or cooperation,
may also affect the adoption of a contagion [1,7,16,18,19,23,28,32], which should
also be considered for making the decision for contagion adoption. Therefore,
there is a clear motivation to extend the understanding of information diffusion
by studying the joint interactions among the contagions and users. Though recent
works begin to make initial discoveries [16,23,24], how to effectively capture and
use their comprehensive interactions remains an open problem.

In this paper, we study the problem that when a user is exposed to a set
of contagions posted or forwarded by her neighbors, whether she would like to
forward them (as shown in Fig. 1). Our aim is to effectively capture the inter-
actions among users and contagions, and use such interactions to predict the
user’s adoption behavior more accurately. It is challenging due to the interac-
tions are rather complex and often present strong coupling relations. Instead of
exploiting each kind of interactions separately, it is necessary to incorporate all
the interactions in a unified way.

We approach this problem by introducing the representation learning tech-
niques, which have been widely exploited in natural language processing [14,15],
into our interaction-aware diffusion analysis. Although existing methods can
produce user embeddings given the social structures (e.g., DeepWalk [17],
node2vec [10], and Line [27]) and contagion embeddings given the text infor-
mation (e.g., LDA [2]), they learn each kind of embeddings separately, ignoring
the coupling effects between users and contagions in the information diffusion
process, which may limit the predictive capability. To address this challenge, we
develop a novel framework, termed Heterogeneous integrated Users and Conta-
gions Embedding (HUCE), to (1) jointly learn the representations of users and
contagions based on a heterogeneous information network (HIN) consisting of
two types of objects, users and contagions and (2) judiciously integrate the user
and contagion representations while capturing the various types of interactions
among users and contagions. Specifically, we first construct the HIN and then
propose HWalk, a novel random walk algorithm designed for the HIN, where
meta-path-based proximity is used to guide the transitions between neighboring
nodes. With HWalk, a set of random walk paths is generated with semantic
meanings. Then we extend the traditional Skip-gram model [15] to process these
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paths to encode different types of nodes in a low-dimensional continuous vec-
tor space. Finally, to predict contagion adoption, we design an effective neural
network model to capture the interactions based on the latent representations.

Although several recent works have also tried to use representation learn-
ing techniques for information diffusion, they either only embed the users into
a latent space without considering any contagion information [4], or fall short
in modeling the comprehensive interactions among users and contagions [3].
For some works [3,9], the prediction goals and the required prior inputs for
the models are also different from our work. Moreover, compared to some het-
erogeneous representation learning techniques in [6,21,26,35,36], the proposed
representation learning algorithm is suitable for large-scale dense heterogeneous
network, doesn’t require external networks and labeled data, and is task-guided
for information diffusion. The obtained representations in our proposal can also
be applied to other applications, e.g., the multi-class classification for contagions,
sentiment analysis [34].

The major contributions can be summarized as follows:

(1) A HUCE framework based on representation learning is proposed to model
the forwarding contagion behavior of users by jointly incorporating the char-
acteristics of users and contagions, and their interactions.

(2) To obtain the embeddings of users and contagions in the same latent space, a
HIN is constructed, and a meta-path guided random walk algorithm HWalk
is developed to capture the comprehensive neighborhood information for
various types of nodes. An effective neural network model is designed based
on the latent representations for capturing the various types of interactions
and predicting contagion adoption.

(3) Experiments on a large-scale Weibo dataset demonstrate that HUCE out-
performs the state-of-the-art works for predicting the contagion adoption
behavior. Moreover, we also observe superior performance when using the
latent representations for the task of contagion classification.

2 Overview

In this section, we first provide the statement of the problem, and then describe
the framework of the proposed model.

2.1 Problem Statement

In a social network, when a contagion is posted or forwarded by a user, the
contagion is exposed to her neighbors, and the contagion is called an exposure.
If one neighbor forwards a contagion, we call that the neighbor adopts this
contagion, and this contagion gets propagated. We make the same assumption
as [16] that at a specific time, the user has read through all the contagions
that forwarded by her neighbors. We study the problem that whether a user
will adopt a contagion that she has just read, and the contagion is called the
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Fig. 1. An illustration of the interacting scenario that we model. User ua has been
exposed to a sequence of contagions {m1, m2, m3} in her attention window, and is
examining whether to adopt m1. ua’s decision is not only influenced by her own pref-
erence and the content of m1, but also impacted by three types of interactions: the
interaction between ua and m1, the interaction between ua and user ub, and the inter-
actions among m1 and other contagions (m2 and m3).

examined contagion. There is an attention window of the user, which contains
the examined contagion and the other most recent K exposures kept in her
mind. An example of the interacting scenario in Weibo that we study is shown
in Fig. 1, where m1 is the contagion which is previously forwarded by ub, and now
is examined by ua. M = {m1,m2,m3} is the attention window, and it implies
K = 2 for this case.

The decision made by ua is not only affected by the inherent characteristics
of m1 and ua, but also by a few interaction factors among users and contagions,
including: (1) the User-Contagion Interaction, which is the interaction between
the examining user ua and the examined contagion m1, reflecting the preference
of ua over m1; (2) the User-User Interaction, which is the interaction between
the examining user ua and the neighbor ub who has forwarded the examined con-
tagion, reflecting the influence between them; and (3) the Contagion-Contagion
Interaction, which is the interaction between the examined contagion m1 and the
other contagions in the attention window (e.g., m2), reflecting their competing
or cooperating relationships. Given an interacting scenario, our task is to predict
the user’s adoption behavior by incorporating the above factors.

2.2 Framework

In this paper, we model users’ adoption behavior by jointly considering the char-
acteristics of both users and contagions, as well as their interaction effects. These
factors are commonly learned through Bayesian methods in existing studies [23].
We devise here an alternative approach based on representation learning tech-
niques, which use the representations of users and contagions as input features for
the prediction task. Since the users and contagions are tightly correlated, rather
than learning their representations separately, we develop the HUCE framework
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that learns their embeddings simultaneously by encoding the users and conta-
gions into the same latent space, in order to achieve more effective embeddings.
Moreover, a task-guided neural network is devised to capture the various inter-
actions among users and contagions for predicting contagion adoption.

Fig. 2. HUCE framework.

The overall framework is depicted in Fig. 2, which consists

1. It first takes the social structures, texts of contagions and the historical for-
warding behaviors as input, and construct the HIN that consists of two kinds
of vertices, i.e., users and contagions. This HIN can describe the relations
among users and contagions in the diffusion process.

2. To encode two types of objects into one latent space, a random walk algo-
rithm called HWalk is proposed, which is guided by meta paths to generate
sequences of heterogeneous vertices for node representation learning.

3. Given the representations, an effective neural network is designed to capture
the necessary interaction characteristics required for contagion adoption.

3 Construction of User-Contagion HIN

A HIN is defined as a network with multiple types of objects and/or multi-
ple types of links. Given the social relations between users, contagions and the
historical adoption behaviors, we construct a HIN involving all these elements.
Formally, we define a directed graph G = (V,E), where V is the set of vertices
and E ⊆ (V × V ) is the set of edges. There is a network schema S = (R,L),
where R and L are the sets of node types and edge types, respectively. More
specifically, R = {Ru, Rm}, where Ru denotes the type of user nodes and Rm

denotes the type of contagion nodes. L = {Luu, Lum, Lmm}, where Luu, Lum

and Lum represent the types of user-user links, the user-contagion links and the
contagion-contagion links, respectively.
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The overall HIN can be viewed as a combination of three subnetworks, and
each subnetwork consists of only one link type. We introduce each subnetwork in
detail as follows. The User-User Following Subnetwork is the social network
structure indicating the follower and followee relationships among users. The
User-Contagion Adoption Subnetwork is built based on historical adoption
behaviors. Specifically, if a user ua has forwarded a contagion mi, we will set
up two opposite directed edges between them. For the Contagion-Contagion
Correlation Subnetwork, there are no explicit relationships between conta-
gions in the social network. To set up such a subnetwork, we define the similarity
of contagions according to their contents. If two contagions are similar, there will
be two directed links between them, with opposite directions.

Here we explain how to measure the contagion-contagion similarity. LDA [2]
algorithm is exploited to extract the latent topic distribution of each contagion.
For one contagion, if the distribution value of one topic is larger than 0.5, then we
define that this contagion belongs to this topic. Each pair of contagions belonging
to the same topic would have two directed links between them. Besides, not
every contagion belongs to a specific topic, to measure the contagion-contagion
similarity, we also propose a clustering method. The similarity between two
contagions is calculated according to the distance of their topic distributions.
Given the similarity metric and the topic distribution of contagions, we can
cluster the contagions with Mini Batch K-means [22], which is effective and fast
to handle large-scale dataset. Now the contagions are clustered into T clusters,
and each pair of contagions belonging to the same cluster would also have two
directed links between them.

With the three subnetworks, the HIN can be constructed by combining them.

4 Learning Integrated Users and Contagions Embeddings

In this section, we present how to embed users and contagions of the HIN into
a common latent space. We first introduce the HWalk algorithm to obtain the
node sequences, and then give the optimization method to get the embeddings.

4.1 Random Walks on the HIN

Motivated by the idea of random walks in word2vec [15], DeepWalk [17] and
node2vec [10], we extend this technique to HINs by considering the network
heterogeneity. The premise of our method is to preserve the proximity of nodes
in HINs. To perform this, we present a new random walk algorithm for HINs
termed HWalk. Different from traditional random walk algorithms, HWalk is
guided by meta paths in HIN that involves the rich semantics among different
types of relationships among nodes in the context of information diffusion, which
facilitates our adoption prediction problem. Compared to the recent random walk
algorithm that is constrained to step over meta paths only [8], HWalk is able to
walk through any path, and thus can incorporate richer semantics.
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Algorithm 1. TransProbGeneration (G)
Input: HIN G = (V, E)
Output: transition probabilities TP (P ∈ {UUU, UMU, MUM})

1 for each node x ∈ V do
2 for each node y ∈ ne(x) do
3 if x and y are both users then
4 Calculate SP (x, y) (P ∈ {UUU, UMU});
5 end
6 if x and y are both contagions then
7 Calculate SP (x, y) (P = MUM);
8 end

9 end
10 for each node y ∈ ne(x) do
11 if x and y are nodes of the same type then
12 Calculate ProbP (y|x);
13 TP (x, y) = ProbP (y|x);

14 end

15 end

16 end

Meta paths in HINs have been proven to be beneficial to a lot of data mining
tasks, and here we show how to define meta paths in our application and how to
use them to guide the random walkers. Given the network schema S = (R,L),
where R and L are the sets of node types and edge types respectively, a meta
path P is defined in the form of R1

L1−−→ R2
L2−−→ ...

Ln−−→ Rn+1. Thus, a meta
path defines a composite relation between node types R1 and Rn+1. In our
HIN, similar users are measured based on their common followees and common
contagions they adopted, and similar contagions can be measured based on their
contents and common adopters. The corresponding meta paths are defined as

Ru
follow−−−−→ Ru

followed−by−−−−−−−−→ Ru, for short as UUU ;
Ru

adopt−−−→ Rm
adopted−by−−−−−−−→ Ru, for short as UMU ;

Rm
adopted−by−−−−−−−→ Ru

adopt−−−→ Rm, for short as MUM .

Here, U denotes the user type and M denotes the contagion type. Please
note that these meta paths are symmetric as the first node and the last node are
the same type. Then we use PathSim [25], a meta-path-based similarity measure
to capture the subtlety of peer similarity between two nodes of the same type.
The intuition behind is that two similar objects should not only be strongly
connected, but also share comparable visibility. Here the visibility is defined as
the number of path instances between them. Given a symmetric meta path P ,
PathSim similarity between objects x and y is defined as:

SP (x, y) =
2 × |{px�y : px�y ∈ P}|

|{px�x : px�x ∈ P}| + |{py�y : py�y ∈ P}| (1)
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Algorithm 2. HWalk (G, TP , v, l)
Input: HIN G = (V, E), transition probabilities TP , source node v, walk

length l
Output: Random walk path W

1 Initialization: the walk W = [v], cur = v;
2 while W.length < l do
3 Randomly choose a node type r(r ∈ {Ru, Rm}) from the types of cur’s

neighbors;
4 if r equals to cur’s node type then
5 if r = Ru then
6 Randomly choose a meta path P ∈ {UUU, UMU};
7 else
8 P = MUM ;
9 end

10 s = AliasSample(ner(cur), TP );
11 Append s into W;

12 else
13 s = Random(ner(cur));
14 Append s into W;

15 end
16 cur = s;

17 end

Here px�y is a path instance between x and y. px�x is that between x and
x, and py�y is that between y and y. If both x and y are users, the meta path
P is either UUU or UMU . If both x and y are contagions, P is MUM .

We denote the set of x’s outgoing neighbors of node type r as ner(x). Given
a node x, a node type r which is the same as that of x, and a meta path P ,
the similarity SP (x, y) between x and each node y ∈ ner(x) can be calculated
according to Eq. (1). In each step, if the current node is x and the type of the
next node is r, the transition probability to y ∈ ner(x) is proportional to

ProbP (y|x) =
SP (x, y)

∑
z∈ner(x)

SP (x, z)
(2)

The transition probabilities between neighboring nodes of the same type
can be precomputed in Algorithm 1, where Tp(x, y) is the transition probability
between nodes x and y with respect to meta path P . If two connected nodes are
both users, two transition probabilities can be derived with respect to P = UUU
and P = UMU respectively. If they are both contagions, meta path P = MUM
is used to derive the transition probabilities.

Please note that PathSim is only able to calculate the similarity between
two nodes of the same type, and thus is only used for transition to a node with
the same type as the current node. If the walker is stepping to a node with a
different type, it just randomly chooses a neighboring node of that type. The
overall walking procedure is described in Algorithm2. The walk starts from the
source node v, and in each step, a node type r is first chosen randomly from
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Algorithm 3. HEmbedding
Input: HIN G = (V, E), window size w, embedding size d, walks per node γ,

walk length l
Output: Node representations Φ ∈ R

|V |×d

1 TP = TransProbGeneration(G);
2 for iter=1 to γ do
3 for each node v ∈ V do
4 Wv = HWalk(G, TP , v, l);
5 Skip-gram(Φ, Wv, w);

6 end

7 end

the types of the current node’s neighbors (line 3). If r is the same as the type
of current node (line 4), we sample one neighbor of type r to walk according to
the transition probabilities generated in Algorithm 1 (line 10). This sampling
process can be done efficiently using alias sampling [13,29], which takes only
O(1) time when repeatedly drawing a sample from the same discrete probability
distribution. If r is different from the current node’s type, we randomly choose a
node from the current node’s neighbors of type r (line 13). The walk continues
until the length of the path achieves the pre-defined walk length l. Thus the time
complexity of HWalk is O(l).

4.2 Heterogeneous Node Embedding

Based on HWalk, a sequence of node paths can be obtained. Then we learn rep-
resentations of heterogeneous nodes based on these random paths. Our goal is to
learn a mapping function Φ : v ∈ V →∈ R

|V |×d, where d is the dimension of the
representations. The mapping Φ represents the representation associated with
each user and contagion in the HIN. We proceed by extending the Skip-gram [14]
to HINs, with the corpus of node paths are taken as input. The algorithm of het-
erogeneous node embedding (HEmbedding) is shown in Algorithm 3.

The generated representations are then used for the contagion adoption prob-
lem as well as contagion classification.

5 Capturing Interactions for Predicting Contagion
Adoption

After generating the latent representations of multiple types of objects of the
HIN, conventional methods commonly measure the similarity between a user
and a contagion by their representations, and use this similarity to make the
prediction for contagion adoption. However, this may limit its performance as it
discards the complex interactions from other users and contagions. In contrast,
we delicately design an effective neural network model to capture the interactions
based on the representations.
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Fig. 3. NN for capturing interactions on contagion adoption. Here ua is the examining
user; mi is the examined contagion; ub is the user who has forwarded mi; m2 is the
contagion in the examining user’s attention window. We assume K = 1, that is, there
is one contagion in the examining user’s attention window. The inputs Xua , Xmi , Xub

and Xm2 are embeddings of ua, mi, ub and m2. Hua , Hmi , Hub , Hm2 and Htop in
hidden layers are real-valued vectors. All the W as well as V are parameters in this
neural network, and y is the output.

As shown in Fig. 3, the neural network contains five layers. In this neural net-
work, Xua

reflects the user characteristic and Xmi
reflects the contagion charac-

teristic. Xua
is integrated with Hub

to generate the vector Hua
, and this vector

indicates the impact of ub on ua’s adoption behavior, i.e., the User-User Inter-
action. Similarly, the generated vector Hmi

of the integration of Xmi
and Hm2

indicates the impact of m2 on the adoption of mi, i.e., the Contagion-Contagion
Interaction. In the upper layer, Hua

and Hmi
are integrated to generate Htop

that directly indicates the preference of ua over mi, i.e., the User-Contagion
Interaction, and indirectly indicates the impact of ub on ua and the impact of
m2 on mi. Based on Htop, whether ua will adopt mi can be predicted in the form
of output layer y. The neural network not only considers the intrinsic charac-
teristics of the examining user and the examined contagion, but also takes three
types of interactions into account, which provides more informative prediction.

The calculations in all the layers are shown as follows:

Hub (j) = sig(
∑

i

Xub (i)Wub (j, i))

Hm2 (j) = sig(
∑

i

Xm2 (i)Wm2 (j, i))

Hua (j) = sig(
∑

i

(Xua ⊕ Hub )(i)Wua (j, i))

Hmi (j) = sig(
∑

i

(Xmi ⊕ Hm2 )(i)Wmi (j, i))

Htop(j) = sig(
∑

i

(Hmi ⊕ Hua )(i)Wtop(j, i))

y = sig(
∑

j

Htop(j)V (j))

(3)
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Here ⊕ represents a concatenation operator and sig is the sigmoid function.
Backpropagation algorithm is used to train the parameters of the neural network.

6 Experiments

In this section, we conduct experiments on a public Sina Weibo dataset. Then,
we discuss various qualitative insights obtained by applying our framework to
the dataset.

6.1 Experimental Settings

Dataset. The Weibo dataset [37] provides the friendship links of Weibo users
(1,776,950 users, 308,489,739 links), the contagion adoption behaviors of the
users (23,755,810 retweets), as well as the textual information of the conta-
gions (300,000 original microblogs). Due to the crawling strategy, the amounts
of retweet behaviors in different months are highly imbalanced. Thus, we select
the diffusion data from July 2012 to December 2012, in which the retweet counts
are large enough and more balanced. Consequently, we get 19,388,727 retweets
on 140,400 popular microblogs. To construct the HIN, we use the retweets from
July 2012 to November 2012 to generate the user-contagion links. To set up
the contagion-contagion links, the contagions are clustered into 3,000 sets. To
balance the effectiveness and efficiency of the model, we choose the parameters
d = 30, l = 15, γ = 10 and w = 5 in the experiments. We set K = 1 and K = 2
as the size of contagions a user kept in mind besides the examined contagion.

For each user, when she reads a newly posted contagion, an interacting sce-
nario occurs. If the examined contagion is adopted, the instance is positive,
otherwise, it is negative. To train and test our model, we do statistical work to
extract interacting scenarios from the data in December 2012, and observe that
the positive and negative instances are highly unbalanced in the dataset, so we
sampled the positive and negative instances with the equal number. In total,
2,000,000 interacting scenarios are used for training and testing. We randomly
sample 90% of the instances as the training set, and the left 10% as the testing
set. The performance is evaluated in terms of F1-score and Accuracy.

Baselines. We compare our proposal with:

– DeepWalk [17] is a representative representation learning method for homo-
geneous networks. We provide two versions of DeepWalk with different inputs.
One is called uDeepWalk where we only feed the social network structure
for embedding, and thus it only produces user representations. The other is
called hDeepWalk, with the constructed HIN as input. Thus, hDeepWalk
learns the representations of both users and contagions.

– metapath2vec [8] is a meta-path-based representation learning method for
heterogeneous networks, in which the random walkers traverse through pre-
defined meta-paths. Since it can only support one meta-path scheme, we
choose UMU .
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– LDA [2] learns contagion representations as the latent distributions over
topics.

– IAD [23] is a state-of-the-art information diffusion prediction framework
based on Bayesian theory, which also takes the interactions among conta-
gions and users into account.

For all the representation learning methods that are compared, we adopt
the same parameter settings as HUCE. Given the representations learned by
these methods, we apply logistic regression (LR) as the off-the-shelf classifica-
tion algorithm for prediction. For uDeepWalk, the input feature for LR is the
representation of the examining user. For LDA, the input feature for LR is the
representation of the examined contagion. As hDeepWalk and metapath2vec all
produce representations of both users and contagions, their input features are
concatenated using the representation of the examining user, the representation
of the examined contagion, together with the representations of three kinds of
interactions. Here the vector of User-User Interaction is established by the dif-
ference in each dimension of the representation of the examining user and that
of the user who has forwarded the examined contagion; the vector of Contagion-
Contagion Interaction is established by the difference in each dimension of the
representation of the examined contagion and that of the contagion which is in
the examining user’s attention window; the vector of User-Contagion Interaction
is established by the difference in each dimension of the representation of the
examining user and that of the examined contagion. Besides, to analyze the effec-
tiveness of the proposed neural network, we propose a variation of the HUCE,
named HUCE-LR, which applies logistic regression for prediction instead, and
the input features are constructed in the same way as those in hDeepWalk and
metapath2vec.

6.2 Results

Table 1. Performance of HUCE compared to baselines (%)

Models Accuracy F1-score Accuracy F1-score

(K = 1 ) (K = 1 ) (K = 2 ) (K = 2 )

uDeepWalk 68.95 61.79 68.95 61.79

LDA 64.16 59.13 64.16 59.13

IAD 73.50 65.58 74.03 66.52

hDeepWalk 73.49 66.74 73.38 66.65

metapath2vec 71.47 61.37 71.61 61.21

HUCE-LR 77.58 72.42 77.53 72.32

HUCE 78.76 73.87 78.62 73.75
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Table 1 summarize the experimental results. Overall, HUCE consistently and
significantly outperforms all the baselines. Generally, uDeepWalk and LDA per-
form worse than HUCE, hDeepWalk and metapath2vec, indicating that consider-
ing only the characteristic of users or contagions is not enough to make accurate
predictions. HUCE outperforms IAD by 5.26% and 8.29% in terms of accuracy
and F1-score respectively when K = 1, and by 4.59% and 7.23% in terms of
accuracy and F1-score respectively when K = 2, showing that HUCE can model
the interactions more effectively than IAD. HUCE outperforms hDeepWalk by
5.27% and 7.13% in terms of accuracy and F1-score respectively when K = 1,
and by 5.24% and 7.10% in terms of accuracy and F1-score respectively when
K = 2, demonstrating that considering the heterogeneity of nodes in walking
can facilitate the embedding. However, though metapath2vec is also designed
for HINs, it performs worse than HUCE and hDeepWalk. The possible reason is
that metapath2vec can only traverse through a pre-defined meta-path schema,
which works well on some HINs such as academic networks, but is difficult to
adapt to other scenarios such as information diffusion which requires more com-
prehensive neighborhood information. Moreover, the jointly derived representa-
tions on users and contagions are more effective, since HUCE-LR is better than
all the baselines. It can also be observed that HUCE-LR is worse than HUCE,
which indicates that neural network is effective in capturing the various types
of interactions (user-user, contagion-contagion, user-contagion) and fusing the
heterogeneous representations together.

To analyze the importance of different features, we propose several variations
of the HUCE framework as follows:

– HUCE-U : Only the user representations learned by HUCE are fed into logistic
regression.

– HUCE-M : Only the contagion representations learned by HUCE are fed into
logistic regression.

– HUCE-UM : Both the representations of the users and contagions learned by
HUCE are fed into logistic regression. Compared with HUCE, HUCE-UM
lacks the three interaction features among users and contagions.

Table 2. Results with different input features (%)

Models Accuracy F1-score Accuracy F1-score

(d = 20 ) (d = 20 ) (d = 30 ) (d = 30 )

HUCE-U 70.90 65.75 70.85 65.63

HUCE-M 63.70 53.29 70.58 63.63

HUCE-UM 71.88 65.90 72.38 66.09

HUCE 77.96 73.02 78.76 73.87

Table 2 shows the comparison results, while we set K = 1 for HUCE-LR and
HUCE. When d = 30, in terms of F1-score, HUCE achieves an improvement



514 Y. Su et al.

of 8.24%, 10.24% and 7.78% over HUCE-U, HUCE-M and HUCE-UM. When
d = 20, in terms of F1-score, HUCE achieves an improvement of 7.27%, 19.73%
and 7.12% over HUCE-U, HUCE-M and HUCE-UM, respectively. In terms of
accuracy, HUCE also outperforms the variations when d = 30 and d = 20. It can
be concluded that all the factors including the user’s characteristic, the conta-
gion’s characteristic and three kinds of interactions among users and contagions,
are judicious for the contagion adoption problem, and ignoring any one of them
would limit the predictive capability.

6.3 Contagion Classification

Table 3. Multi-class contagion classification results (%)

Models Macro F1-score Micro F1-score

LDA 23.03 26.78

HUCE 31.15 32.33

As the contagion representation is learned jointly with users, it is in fact
more effective than doing it alone even for contagion classification. For the Weibo
dataset, we manually define 15 categories of contagions, that is, advertisement,
constellation, culture, economy, food, health, history, life, movie, music, news,
politics, sports, technology and traffic. We randomly labeled 10,000 contagions in
the dataset by hand to these categories, while each category has around 600 to
700 contagions. The labeled dataset is publicly available1. We randomly sample
90% of these labeled contagions for training, and the left 10% for testing. For
the multi-class classification problem, the performance is evaluated in terms of
Macro F1-score as well as Micro F1-score.

We perform the multi-class classification with the contagion representations
learned by HUCE and LDA, using C-Support Vector Classification (SVC) imple-
mented in scikit-learn based on libsvm [5]. It can be observed in Table 3 that
HUCE performs much better than LDA. In terms of Macro F1-score, our pro-
posal outperforms LDA by an impressive 8.12% (relatively 35.26%), and in terms
of Micro F1-score, the gain achieves 5.55% (relatively 20.72%). This represents
that involving the user-contagion relationships can learn better representations
than only considering the contents.

7 Conclusion

We propose HUCE, a novel approach for modeling the contagion adoption behav-
ior in information diffusion by considering the complex interactions among users

1 https://www.dropbox.com/s/b0ym8cmyzp5gpyx/InforClass.zip?dl=0.

https://www.dropbox.com/s/b0ym8cmyzp5gpyx/InforClass.zip?dl=0
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and contagions. At first, a HIN consisting of users and contagions is constructed,
and then we propose a new algorithm that uses the meta-path-based proximity
to guide the transitions between nodes. After jointly learning the representations
of various types, to predict contagion adoption, we delicately design an effective
neural network model to capture the interactions based on the representations.
Although our framework is designed for information diffusion prediction, the
learned representations are general and can be used for other tasks such as con-
tagion classification. Experiments on a large-scale Weibo dataset demonstrate
the effectiveness of our framework over the state-of-the-art baselines.
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Abstract. Structural holes in social networks are vertices that serve
as gateways for information exchange between communities. Although
many algorithms have been proposed to detect structural holes, they
are not scalable to big graphs. This paper proposes a structural hole
detection algorithm ESH based on distributed parallel graph process-
ing frameworks. Instead of using substructures in social networks, the
algorithm exploits a factor diffusion process in structural hole detection.
The algorithm naturally fits the vertex-centric programming models and
can be easily implemented on the graph-parallel processing frameworks.
Extensive experiments show that ESH can handle social networks with
billions of links and produce structural holes of higher quality than the
existing algorithms.

1 Introduction

Structural hole is an important concept in social network analysis. Informally,
the structural holes in a social network refer to the vertices (i.e. persons) that
bridge a number of communities in the network. Note that a community in a
social network represents a group of persons who share common interests, and
therefore the structural holes in the network serve as the gateways between
communities, via which information exchanges between different communities.
For illustration, the vertices in red corlor in Fig. 1 are the structural holes in the
network, which bridge two non-overlapping densely communities. For another
practical example, Lou and Tang [1] studied the AMiner academic network in
computer science and found 107 researchers as structural holes who served as
program committee members for conferences in different fields.

Structural holes play an important role in social network analysis and have
attracted considerable research interests in recent years. For example, influence
maximization can be benefited when structural holes are selected as seeds in
information diffusion models [2]. Community detection can also be benefited as
the removal of structural holes can cut off the ties between communities [3,4].
Monitoring the information that structural holes receive and publish can help
grasp popular topics in social networks [5].
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As social networks are becoming increasingly larger, the existing structural
hole detection algorithms [1,2,6–9], are faced with a series of challenges, espe-
cially the scalability issue. In this paper, we propose a new structural hole detec-
tion algorithm ESH based on the distributed parallel graph processing framework
PowerGraph. To this end, we first introduce a new concept of entropy-based struc-
tural hole. The concept is formulated based on a factor diffusion process rather
than substructures in graphs. The process imitates the propagation of informa-
tion on social networks. In the beginning, each vertex creates a unique factor
(a user’s interest or a topic). In the diffusion process, a factor is propagated
from a vertex to its neighbors. After a vertex receives factors from its neighbors,
the vertex selects one factor from the received ones and adds it to the factor
list attached with the vertex. After many iterations of the process, the factor
list attached with a vertex can be seen as the “fingerprint” of the vertex. The
distribution of the factors in the factor list characterizes the role of the vertex
in the graph. A structural hole is likely to collect a number of heterogeneous
factors propagated from various communities that the structural hole links to;
while an interior vertex in a community is likely to collect homogeneous fac-
tors propagated from other vertices within the same community. Therefore, we
evaluate the likelihood of a vertex being a structural hole by the entropy of the
distribution of the factors in the factor list attached with the vertex.

The proposed algorithm ESH is substantially different from the existing algo-
rithms. First, our concept of structural hole is defined based on a factor diffusion
process rather than the substructures or communities in a graph. Second, the
algorithm is simple but effective and naturally fits to be implemented on the
distributed parallel graph processing frameworks. Although some of the existing
algorithms can also be implemented on the distributed parallel graph process-
ing frameworks, they are really more complex than our algorithm. For example,
the 2-Step algorithm needs to collect the 2-hop neighbors of each vertex and
therefore yields high communication cost between computers. The other existing
algorithms are not suitable to be implemented on the distributed parallel graph
processing frameworks because they either need to know the global structure
of the graph (such as PathCount [6]) or must do expensive matrix computation
(such as HAM [2]).

The main contributions of this paper are listed as follows.

– We formulate the new concept of entropy-based structural hole based on a
factor diffusion process.

– We propose a new structural hole detection algorithm ESH based on the
distributed parallel graph processing framework PowerGraph.

– We compare our algorithm ESH with the existing algorithms by an extensive
set of experiments and verify that the ESH algorithm can efficiently detect
high-quality structural holes on graphs with billions of edges.

The rest of this paper is organized as follows. Section 2 presents the funda-
mental concepts and explains the rationale behind the new concept. Section 3
proposes the structural hole detection algorithm ESH based on the distributed
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parallel graph processing framework PowerGraph. Section 4 reports the exper-
imental evaluation results. The related work is reviewed in Sect. 5. Lastly, the
paper is concluded in Sect. 6.

2 Entropy-Based Structural Holes

In this section, we propose a new notion of entropy-based structural hole.

2.1 Formulation

In the literature, the notion of structural hole is defined based on static structural
properties of a graph. In this paper, we give a new formulation of structural hole
based on an information diffusion process. Given a graph G = (V,E), let F be
a set of factors of the vertices in V . Specifically, a factor in a social network is a
user’s interest; a factor in a citation network is the topic of a paper. Each vertex
has a distinct factor, and factors can propagate within a graph.

We formulate a stochastic process of factor propagation over graph G as
follows. Each vertex v ∈ V maintains a factor list Lv, which initially contains
the single factor fv that uniquely corresponds to v. In the beginning of the
process, each vertex v sends the only factor fv ∈ Lv to all its neighbours. Then,
the factor propagation process iterates according to the bulk synchronization
protocol (BSP) [10]. In each iteration of BSP, we carry out the following steps
for each vertex v ∈ V .

1. Gather the factors sent from all neighbors of v in the previous iteration and
add one of the factors to Lv.

2. Update the distribution of the factors stored in Lv.
3. Pick a factor f from Lv at random according to the distribution of the factors

in Lv.
4. Send the picked factor f to all neighbors of v.

After executing a large number of iterations, we evaluate the entropy H(v)
of the factors in Lv, that is,

H(v) = −
∑

f∈Lv

P (f) log P (f), (1)

where P (f) is the probability of factor f in Lv. Factor list Lv can be seen as
the “fingerprint” of vertex v, and entropy H(v) evaluates the “skewness” of the
factor distribution of Lv. Intuitively, a structural hole vertex is likely to collect a
number of heterogeneous factors propagated from several different communities,
and therefore, the entropy of its factors tends to be high; while an interior vertex
within a community is likely to collect homogeneous factors, and thus, its entropy
tends to be low. Hence, we have the following definition of structural holes in a
graph.

Definition 1. Given a graph G and an integer k, the top-k structural holes in
G are the k vertices with the highest entropy of factor distribution.
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2.2 Rationale

In this subsection, we discuss the rationale behind the definition of entropy-based
structural holes. In Step 1 of the factor propagation process, each vertex v ∈ V
gathers the factors sent from all its adjacent vertices and adds one of them to
the factor list Lv associated with v. The description of Step 1 is too general. We
have three specific strategies to pick one factor from the collected factors:

– Strategy 1 (Random): Select a factor uniformly at random from the col-
lected factors.

– Strategy 2 (MostFrequent): Select the factor that occurs the most fre-
quently from the collected factors. Ties are broken arbitrarily.

– Strategy 3 (LeastFrequent): Select the factor that occurs the least fre-
quently from the collected factors. Ties are broken arbitrarily.

We analyze the factor propagation process and the entropy of a factor dis-
tribution as follows.

Factor Propagation. Let Tn
f be the number of propagation of factor f within

graph G in the nth iteration of the factor propagation process. Tn
f is a random

variable over {0, 1, 2, . . . , n}. The probability distribution of Tn
f is essential for

our study.
Recall that fv is the unique factor corresponding to vertex v. The following

theorem shows that Tn
fv

is expected to be d(v) when the factor diffusion process
uses the Random strategy.

Theorem 1. When the Random strategy is applied, we have E[Tn
fv

] = d(v) for
all vertices v ∈ V and n > 0.

Proof. Let Xn
v,f be a 0–1 random variable which indicates whether vertex v sends

factor f to its neighbors in the nth iteration. Particularly, Xn
v,f = 1 if and only if

v sends f to its neighbors in the nth iteration. Let Y n
v,f be a 0–1 random variable

which indicates whether vertex v adds factor f to its factor list Lv in the nth
iteration. Particularly, Y n

v,f = 1 if and only if v adds f to its factor list Lv in the
nth iteration. Let Pn

v (f) represent the probability of factor f occurring in the
factor list Lv in the nth iteration. We have

E[Xn
v,f |Y n

v,f = 1] = P (Xn
v,f = 1|Y n

v,f = 1) =
(n − 1)Pn−1

v (f) + 1
n

,

E[Xn
v,f |Y n

v,f = 0] = P (Xn
v,f = 1|Y n

v,f = 0) =
(n − 1)Pn−1

v (f)
n

.

Then,

E[Xn
v,f ] = P (Y n

v,f = 1)E[Xn
v,f |Y n

v,f = 1] + P (Y n
v,f = 0)E[Xn

v,f |Y n
v,f = 0]

=
P (Y n

v,f = 1) + (n − 1)Pn−1
v (f)

n

=
1

d(v)

∑
u∈N(v) Pn−1

u (f) + (n − 1)Pn−1
v (f)

n
,
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Fig. 1. The karate club graph. (Color figure online)

where N(v) denotes the set of neighbors of vertex v. Thus,

E[Tn
f ] =

∑

v∈V

d(v)E[Xn
v,f ] =

1
n

⎛

⎝
∑

v∈V

∑

u∈N(v)

pn−1
u (f) +

∑

v∈V

(n − 1)d(v)pn−1
v (f)

⎞

⎠

=
1
n

(
∑

v∈V

d(v)pn−1
v (f) +

∑

v∈V

(n − 1)d(v)pn−1
v (f)

)

=
∑

v∈V

d(v)pn−1
v (f) = E[Tn−1

f ].

Finally, we have E[Tn
f ] = E[Tn−1

f ] = · · · = E[T 1
f ]. In the first iteration, each

vertex v sends its own distinguished factor fv to exactly d(v) neighbors, so
T 1

fv
= d(v). Hence, E[Tn

fv
] = E[T 1

fv
] = d(v), and thus the theorem holds. ��

It is not easy to formulate the closed form of E[Tn
fv

] when the MostFrequent
strategy or the LeastFrequent strategy is applied. Instead, we empirically study
the number of propagation of a factor in one iteration under these strategies.
We first carried out experiments on the “karate club” graph [11], which is illus-
trated in Fig. 1. The graph can be conveniently visualized and has two significant
communities, which are highlighted in green and yellow, respectively. It is con-
venient to reveal the concept of structural holes with the graph. The red vertices
are the structural holes. We ran the factor propagation process for 150 itera-
tions. Figure 2 depicts the relationship between the degree d(v) of vertex v and
the average number of propagation T̄fv

of factor fv in the middle 50 and the last
50 iterations. We have the following observations.

– As shown in Figs. 2a and b, when the Random strategy is applied, T̄fv
is very

close to d(v). The Pearson’s correlation coefficient between d(v) and T̄fv
is

0.92 and 0.95 in Figs. 2a and b, respectively, which means that d(v) and T̄fv

are strongly positively correlated. This experimental result is consistent with
Theorem 1.

– As shown in Fig. 2c, when the MostFrequent strategy is applied, we have
T̄f6 = 70 for vertex 6 whose degree is 4 and T̄f32 = 64 for vertex 32 whose
degree is 16. As shown in Fig. 2d, when the MostFrequent strategy is applied,
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(a) Random
(Iterations 51–100).

(b) Random
(Iterations 101–150).

(c) MostFrequent
(Iterations 51–100).

(d) MostFrequent
(Iterations 101–150).

(e) LeastFrequent
(Iterations 51–100).

(f) LeastFrequent
(Iterations 101–150).

Fig. 2. The degree d(v) of vertex v and the average number T̄fv of propagation of
factor fv on the karate club graph in the last 100 iterations.

we have T̄f6 = 73 and T̄f32 = 74. Except vertices 6 and 32, T̄fv
< d(v) holds for

all vertices v. Therefore, factors f6 and f32 dominate the factor propagation
process because more than 40% of factors propagated in an iteration are
f6 and f32. Interestingly, vertices 6 and 32 are in the interior of the two
communities of the karate club graph, respectively. Moreover, the Pearson’s
correlation coefficient between d(v) and T̄fv

is 0.32 and 0.28 in Figs. 2c and d,
respectively, which means that the correlation between d(v) and T̄fv

is very
weak.

– As shown in Fig. 2e, when the LeastFrequent strategy is applied, we have
T̄fv

≤ 16 for all vertices v. As shown in Fig. 2f, when the LeastFrequent strat-
egy is applied, we have T̄fv

≤ 23 for all vertices v. The Pearson’s correlation
coefficient between d(v) and T̄fv

is 0.21 and −0.11 in Figs. 2e and f, respec-
tively, which means that d(v) and T̄fv

are nearly uncorrelated. Figures 2e
and f also show that the factor propagation process under the LeastFrequent
strategy is unstable.

Furthermore, we performed the same experiments on the DBLP graph [12]
which contains 317,080 vertices and 1,049,866 edges. We use the same experi-
mental setting as in the previous experiments on the karate club graph. Figure 3
shows the experimental results. Overall, the experimental results obtained on
the DBLP graph exhibit similar patterns as on the karate club graph. Notably,

– When the Random strategy is applied, T̄fv
is very close to d(v), so it is con-

sistent with Theorem 1.
– When the MostFrequent strategy is applied, about 4% of factors dominate the

factor propagation process. In particular, 78.3% of factors propagating in the
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(a) Random
(Iterations 51–100).

(b) Random
(Iterations 101–150).

(c) MostFrequent.
(iterations 51–100).

(d) MostFrequent
(Iterations 101–150).

(e) LeastFrequent.
(iterations 51–100).

(f) LeastFrequent
(Iterations 101–150).

Fig. 3. The degree d(v) of vertex v and the average number T̄fv of propagation of
factor fv on the DBLP graph in the last 100 iterations.

middle 50 iterations correspond to the interior vertices of the communities,
and the proportion increases to 81.5% in the last 50 iterations.

– When the LeastFrequent strategy is applied, d(v) and T̄fv
are uncorrelated,

and the factor propagation process is unstable.

Results. According to the experimental results shown above, the MostFrequent
strategy is preferable since a fraction of factors dominate the factor propagation
process after a long run of the factor propagation process, and these dominat-
ing factors correspond to the vertices in the interior of different communities.
Therefore, in the rest of this paper, we only use the MostFrequent strategy in
the factor propagation process.

Entropy of Factor Distribution. In order to explain the rationale behind
the concept of entropy-based structural hole, we also study the entropy of the
distribution of the factors in a vertex’s factor list.

Figure 4 illustrates the changes of entropy H(v) for all vertices v in the karate
club graph in the 10th, 50th, 100th and 500th iterations. The red bars correspond
to the structural hole vertices 2, 8, 13, 19 and 30 (the red ones in Fig. 1). In the
10th iteration, H(v) is large for almost all vertices v in the graph. As the factor
propagation process proceeds, the entropy H(u) for most of the vertices u in
the communities decreases more significantly than the entropy H(v) for the
structural hole vertices v. Therefore, in terms of entropy, the contrast between
the structural holes and the vertices in the communities become more and more
significant.
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The entropy of the distribution of the factors in a vertex’s factor list of DBLP
graph is similar to the karate club graph, so we don’t show the result repeatedly.

(a) Iteration 10. (b) Iteration 50. (c) Iteration 200. (d) Iteration 500.

Fig. 4. Variantion of entropy H(v) of all vertices v in the karate club graph.

Results. The factor list Lv attached with vertex v can be seen as the “finger-
print” of v. A structural hole is likely to collect a number of heterogeneous factors
propagated from various communities that the structural hole links to; while an
interior vertex in a community is likely to collect a few homogeneous factors
propagated from other vertices within the same community. The distribution of
the factors in Lv characterizes the “role” of vertex v in the graph.

3 Structural Hole Detection Algorithm

The definition of entropy-based structural hole naturally implies a distributed
parallel algorithm for structural hole detection on a big graph. In this section, we
propose an algorithm called ESH based on the popular graph-parallel computing
framework PowerGraph [13]. The ESH algorithm is described as a vertex-centric
program that will be executed on each vertex in the graph according to the bulk
synchronization protocol (BSP) [10].

A vertex-centric program running on PowerGraph basically needs to imple-
ment three functions gather, apply and scatter. For a vertex v, these functions
work as follows.

– The gather function gathers and preprocesses data sent from the vertices
adjacent to v in the graph.

– The apply function updates the data attached to v using the data obtained
from the gather function.

– The scatter function scatters the updated data attached to v to all neigh-
bours of v in the graph.

The ESH algorithm is described in Algorithm 1. The input is a graph G =
(V,E), the number k of structural hole vertices to be discovered from G and
three integers n1, n2 and n3 which indicate the numbers of iterations when to
stop the three stages of the algorithm, respectively. In this paper, we assume
that G has been partitioned into subgraphs and the subgraphs have already
been placed on the nodes of a cluster.
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Algorithm 1. ESH
Input: a graph G = (V, E) and integers k, n1, n2, n3
Output: k structural holes
1: for all v ∈ V do
2: v.t ← 0; v.f ← v.id; v.L ← [ ]
3: v.L[0] ← v.f
4: scatter(v, v.f)
5: for all v ∈ V do
6: while v.t ≤ n3 do
7: v.t ← v.t + 1
8: FP(v)
9: H(v) ← the entropy of the distribution of the factors v.L[n1], . . . , v.L[n3]
10: return k vertices with the largest entropy H(v)

Procedure FP(v)
11: f ← gather(v)
12: apply(v, f)
13: scatter(v)

Procedure gather(v)
14: S ← ∅
15: for u ∈ N(v) do
16: S.add(u.f)
17: return the most frequently occurred factor in S

Procedure apply(v, f)
18: v.L[tv ] ← f
19: if v.t ≤ n2 then
20: v.f ← the factor selected from v.L[0], . . . , v.L[v.t] uniformly at random
21: else
22: v.f ← the factor selected from v.L[n1], . . . , v.L[n2] uniformly at random

Procedure scatter(v)
23: active all the neighbors of v to gather v.f from v

4 Experimental Evaluation

This section evaluates the proposed structural hole detection algorithm ESH by
experiments.

4.1 Experimental Setting

We implemented ESH on PowerGraph 2.2 and complied it by gcc 4.8.5. For
comparisons, we implemented a bunch of existing algorithms, whose details are
presented in Table 1. Except HAM which was implemented in MatLab, all the
algorithms were implemented in C++. Since PageRank and 2-Step only require
local neighborhood information of a vertex, we parallelized PageRank and 2-Step
and implemented them on PowerGraph 2.2, which are called PageRank-P and
2-Step-P, respectively. The other algorithms are not parallelized because they
require global information of a graph and are not suitable to be parallelized. For
example, BICC must access l-hop neighbors of a vertex, and AP BICC must know
the articulation points of a graph. Specifically, the serial structural hole detection
algorithms PathCount, PageRank, 2-Step, ICC, BICC, AP BICC, HIS, MaxD and
HAM were executed on a PC with 3.40 GHz Intel Core i7 CPU and 32 GB of
DDR3 RAM, running Ubuntu 16.04. The distributed parallel algorithms ESH,
PageRank-P and 2-Step-P were run on a cluster of 30 Dell PowerEdge 370 servers.
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Every node is installed with two Intel Xeon E5-2609 V3 CPUs (1.9 GHz and 12
cores) and 32 GB of DDR3 RAM.

Table 1. Comparisons between structural hole detection algorithms.

Algorithm Time complexity∗ Communities

PathCount [6] O(|V ||E|) Not required

PageRank [7] O(TΔ) Not required

2-Step [8] O(|E|1.5) Not required

HIS [1] O(T2c|E|) Required

MaxD [1] O(4ct(|V |)) Required

ICC [9] O(|V ||E|) Not required

BICC [9] O(l(|V | + |E|)) Not required

AP BICC [9] O(|V | log k + |E|) Not required

HAM [2] O(|V |3) Not required

ESH (this paper) O(TΔ) Not required
∗Notation: |V |—number of vertices, |E|—number of
vertices, T—number of iterations, Δ—maximum vertex
degree, c—number of communities, l—radius of neigh-
borhood, and k—number of structural holes.

Table 2. Statistics of graph datasets.

Dataset Type #Vertices #Edges #Communities Diameter Size

DBLP Collaboration

network

317, 080 1, 049, 866 13, 477 21 13.9MB

Orkut Social network 3, 072, 441 117, 185, 083 6, 288, 363 9 1.8GB

Friendster Social network 65, 608, 366 1, 806, 067, 135 957, 154 32 32.4GB

In order to show that the vertices with the largest degrees may not be good
structural holes, we implemented a distributed parallel algorithm called k-Hub
that returns k vertices with the largest degrees as structural holes.

The experiments were carried out on three real graphs DBLP, Orkut and
Friendster obtained from the SNAP project of Stanford University [12]. The
statistics of these graphs are listed in Table 2.

By default, we use the following parameters in the experiments. For ESH, we
set the numbers of end iterations of three stages to n1 = 33, n2 = 66, n3 = 100
and set the number k of detected structural holes to 20. For PageRank and
PageRank-P, the number T of iterations is set to 100 as well. For AP BICC, the
neighbors of a vertex are bounded to within l = 3 hops.
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4.2 Evaluation Measures

We evaluate the quality of a set S of structural holes by three measures described
below. The measures assess different aspects of the detected structural holes.

– Average weighted number of connected communities (AWCC). The
AWCC measure was originally proposed in [9]. Let C(v) be the set of com-
munities adjacent to structural hole vertex v ∈ S and d(v) be the degree of
v. Intuitively, the larger |C(v)| is and the smaller d(v) is, the more likely v is
a structural hole. Thus, the quality of S is measured by

AWCC(S) =
1

|S|
∑

v∈S

|C(v)|
d(v)

.

We further revise this measure. Let Cα(v) be the set of communities that
connect to structural hole vertex v and consist of more than α vertices. By
setting threshold α, small communities are filtered out to eliminate noises.
Thus, the quality of S is measured by

AWCCα(S) =
1

|S|
∑

v∈S

|Cα(v)|
d(v)

. (2)

If not otherwise stated in the rest of the paper, the AWCC measure refers to
our revised AWCC measure.

– Average community size (ACS) connected to structural holes. Intu-
itively, the more and the larger communities a vertex connects to, the more
important role it plays in information diffusion over the graph. Thus, we
design the following measure to assess the quality of S.

ACS(S) =
1

|S|
∑

C∈⋃
v∈S C(v)

|C|. (3)

4.3 Competing Algorithms

As the first step of our experimental evaluation, we select a list of competitors for
ESH from the 12 algorithms mentioned earlier. First, we ran the serial algorithms
on the DBLP graph, the smallest one in our experiments, on the PC that we
used in the experiments. We have the following observations:

– MaxD returns the result in more than 20 h.
– ICC and PathCount return the result in more than 11 h.
– HIS fails to complete in 24 h due to its extremely high time complexity.
– HAM, which is implemented in MatLab, fails to complete in 24 h.
– Although BICC completes in 192 s on the DBLP graph, it takes more than

12 h on the LiveJournal graph.
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(a) DBLP. (b) Orkut. (c) Friendster.

Fig. 5. AWCC values of structural holes detected by AP BICC, PageRank, 2-Step, k-Hub
and ESH.

(a) DBLP. (b) Orkut. (c) Friendster.

Fig. 6. ACS values of structural holes detected by AP BICC, PageRank, 2-Step, k-Hub
and ESH.

In addition, HIS and MaxD must be provided with the communities of a
graph as additional input, so they differ from the other algorithms that only
utilize graph structures. Thus, we can eliminate MaxD, ICC, PathCount, HIS,
HAM and BICC from the list of competitors, so we select PageRank, 2-Step,
AP BICC, k-Hub, PageRank-P and 2-Step-P as the competitors for ESH in our
experiments.

4.4 Quality Evaluation

First, we evaluate the quality of the structural holes detected by ESH using the
measures described in Sect. 4.2.

Evaluation by the AWCC Measure. Figure 5 shows the AWCC values
(Eq. (2)) of the structural holes detected by PageRank, 2-Step, AP BICC, k-Hub
and ESH on graphs DBLP, Orkut and Friendster. In the experiment, we varied
α, the threshold on community size, from 0 to 500. Except on Orkut and at
α = 0, the AWCC value of the structural holes detected by ESH is much larger
than the AWCC values of the structure holes produced by the other algorithms.
It verifies that the structural holes detected by ESH connect to more impor-
tant communities. Therefore, ESH outperforms the other algorithms in terms
of AWCC. Notably, on Orkut and at α = 0, the AWCC value for ESH is less
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(a) DBLP. (b) Orkut. (c) Friendster.

Fig. 7. Execution time of structural hole detection algorithms.

than the AWCC values for PageRank, 2-Step and k-Hub because Orkut contains
a very large number of communities, and the large amount of small communities
become noises and have a negative effect on the AWCC measure when α = 0.
For this reason, we propose the enhanced AWCC measure to evaluate the quality
of structural holes.

Evaluation by the ACS Measure. Figure 6 shows the ACS values of the
structural holes (Eq. (3)) detected by PageRank, 2-Step, AP BICC, k-Hub and
ESH on the four graphs. In the experiment, we varied k, the number of structural
holes, from 30 to 500. For any k, we find that the ACS value of the structural
holes detected by ESH is larger than the ACS values of the structural holes
detected by the other algorithms. It verifies that the structural holes detected
by ESH connect to more and larger communities. Therefore, ESH outperforms
the other algorithms in terms of ACS.

Summary. The ESH algorithm is able to detect the structural holes in a graph
that connect to more and larger communities and that are separated from each
other in the graph. It verifies the effectiveness of ESH. The most interesting
finding in this experiment is that the simple factor diffusion process adopted by
ESH can yield better structural holes in practice.

4.5 Efficiency Evaluation

This subsection evaluates the efficiency of ESH. Figure 7 shows the execution
time on the three graphs. The serial algorithms AP BICC, PageRank and 2-Step
were executed on the PC, and the distributed parallel algorithms PageRank-P,
2-Step-P and ESH were run on the computer cluster. The executing time shown
in Fig. 7 consists of the data loading time and the computing time.

The serial algorithms AP BICC and PageRank run faster than the distributed
parallel algorithms PageRank-P, 2-Step-P and ESH on DBLP and Orkut. This
is because the distributed parallel algorithms spend much time in loading data
and communication between the cluster nodes. It is not worth when the graph
is small. However, as the graph size increases, the computing time of AP BICC
and PageRank increases significantly comparing with their data loading time,
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which indicates that AP BICC and PageRank are not scalable to large graphs.
As verified by Fig. 7c, when the graph is too large to fit into the main memory
of the PC, AP BICC and PageRank cannot terminate in reasonable time.

The serial algorithm 2-Step only runs fast on the smallest DBLP graph but
performs worse than all the other algorithms on all the other graphs. The k-Hub
algorithm shows good efficiency on all graphs. However, as verified by the previ-
ous experiments, the quality of the structural holes detected by this algorithm
are not good.

The distributed parallel algorithms PageRank-P and ESH demostrate good
scalability. The ratio between the data loading time and the computing time
decreases as the graph becomes larger. In more details, PageRank-P is faster than
ESH because PageRank-P only performs simple mathematical computation in its
vertex-centric program. However, the quality of the structural holes detected by
this algorithm is not as good as ESH as verified by the previous experiment.

The distributed parallel algorithm 2-Step-P cannot work on Friendster and
always make one node of the cluster halt whenever we try to run the algorithm.
This is because the algorithm needs to know the 2-hop neighbors of a vertex,
which are too many to fit into the main memory for the Friendster graph.

5 Related Work

This section reviews the related work on structural hole detection and informa-
tion diffusion.

5.1 Structural Hole Detection

Since Burt first introduced the concept of structural hole in [14], many algorithms
have been proposed to detect structural holes in graphs in recent years. Many
structural hole detection algorithms are based on centrality measures. Goyal
and Vega-Redondo [6] evaluate the betweenness centrality [15] (the number of
shortest paths passing a vertex) of the vertices in a graph and select k vertices
with the largest betweenness centrality as structural holes. In this paper, we
call this algorithm PathCount. Rezvani et al. [9] propose the concept of inverse
closeness centrality (ICC) of a vertex. The basic idea is that the average distance
between the vertices in a graph increases the most when the structural holes are
removed. The time complexity of ICC is O(mn), where m and n are the number
of edges and vertices in the input graph, respectively. As the time complexity is
too high, the BICC algorithm is proposed by limiting the computation of the ICC
of a vertex in its l-hop neighborhood, i.e. bounded inverse closeness centrality
(BICC). To further improve efficiency, the AP BICC algorithm is proposed, which
first computes the BICC of the articulation points in a graph to filter out the
vertices that need not to be considered. The 2-Step algorithm [8] proposed by
Tang et al. introduces a concept that is a special case of BICC. PageRank [7] is a
crucial technique to measure the importance of the vertices in a graph. Although
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its original use is different from the centrality measures, PageRank can also be
applied in structural hole detection.

The algorithms above only make use of the topological structure of a graph
in structural hole detection. Different from these work, Lou and Tang [1] find
structural holes using prior knowledge about communities. They propose two
algorithms, namely HIS and MaxD, whose time complexity are exponential to
the number of cummunities. Moreover, the algorithms require information about
communities in prior, which is often unavailable in data, and needs extra time
to be discovered by the community detection algorithms.

In most work on structural hole detection, the structural holes in a graph
are detected separately from the communities. Recently, He et al. [2] proposed a
new approach to find structural holes and communities at the same time. They
define a vertex to be a structural hole if the vertex connects to many vertices that
belong to other communities. They detect communities through intra-community
neighbors and structural holes through inter-community neighbors using a har-
monic function. However, the algorithm must do matrix computation, and the
time complexity is O(n3), where n is the number of vertices.

5.2 Information Diffusion

The research on information diffusion in online social networks mainly focus on
three aspects [5], namely popular topic detection, information diffusion models
and influential spreader identification. Popular topic detection aims to discover
topics that are currently popular or will become popular in future [16]. Informa-
tion diffusion models are used to understand how information diffuses within a
network [17]. Influential spreader identification aims to find the most influential
vertices in a network to ensure efficient diffusion of information [18].

The label propagation algorithm LPA [19] also applies the idea of information
diffusion to community detection. Each vertex initializes itself with a distinct
community label. Then, each vertex updates its community label based on its
neighbors’ community labels in each iteration. The community label is set to the
most label of its neighbors. If two or more labels has the same occurrence number,
one is selected randomly; while the others are broken down. Both LPA and ESH
select labels (or factors) with the highest frequency. However, ESH maintains a
list to store gathered factors. The list rather than using a single label is used as
the fingerprint of the vertex. Moreover, LPA identifies a community by grouping
vertices with same label; while ESH detects structural holes according to the
distributions of the factors stored in the vertices’ factor lists. Not surprisingly,
ESH can be modified to identify communities as the information entropy of the
interior vertex in a community is small. This will be our future work.

6 Conclusions

We address the structural hole detection problem on big graphs by proposing the
ESH algorithm based on the graph-parallel processing framework PowerGraph.
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The factor diffusion process adopted by ESH is very simple yet very effective too.
The experimental results verify that ESH is able to detect structural holes of even
better quality than the state-of-the-art algorithms. The ESH algorithm naturally
fits the vertex-centric programming paradigm and is very easy to be implemented
on PowerGraph. The experimental results verify that ESH is scalable to graphs
consisting of billions of edges that are difficult to be handled by the state-of-the-
art algorithms. These interesting findings make ESH an ideal choice for structural
hole detection on big graphs.
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Abstract. Graphs have become widely adopted as a means of represent-
ing relationships between entities in many applications. These graphs
often evolve over time. Learning effective representations preserving
graph topology, as well as latent patterns in temporal dynamics, has
drawn increasing interests. In this paper, we investigate the problem of
dynamic graph embedding that maps a time series of graphs to a low
dimensional feature space. However, most existing works in the field of
dynamic representation learning either consider temporal evolution of
low-order proximity or treat high-order proximity and temporal dynam-
ics separately. It is challenging to learn one single embedding that can
preserve the high-order proximity with long-term temporal dependen-
cies. We propose a Generative Adversarial Networks (GAN) based model,
named DynGraphGAN, to learn robust feature representations. It con-
sists of a generator and a discriminator trained in an adversarial process.
The generator generates connections between nodes that are represented
by a series of adjacency matrices. The discriminator integrates a graph
convolutional network for high-order proximity and a convolutional neu-
ral network for temporal dependency to distinguish real samples from
fake samples produced by the generator. With iterative boosting of the
performance of the generator and discriminator, node embeddings are
learned to present dynamic evolution over time. By jointly considering
high-order proximity and temporal evolution, our model can preserve
spatial structure with temporal dependency. DynGraphGAN is opti-
mized on subgraphs produced by random walks to capture more complex
structural and temporal patterns in the dynamic graphs. We also lever-
age sparsity and temporal smoothness properties to further improve the
model efficiency. Our model demonstrates substantial gains over several
baseline models in link prediction and reconstruction tasks on real-world
datasets.
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1 Introduction

Graph embedding is known as learning graph representation in a latent low-
dimensional space, in which each node can be represented as a vector. Graph
embedding has demonstrated its utilities in a wide range of applications, such as
merchant advertisements [1], friend recommendation in social networks [21] and
gene expression analysis in biological networks [20]. Most existing works focus
on analyzing a static graph. These include random walk based methods such as
DeepWalk [26] and Node2vec [12], matrix factorization based methods such as
HOPE [24], and deep autoencoder based methods such as SDNE [29].

Alex Bob−

+ Alex Bob

Alex Bob

Fig. 1. An example of a dynamic social network.

However, many graphs in real world evolve over time. For example, new
friendships may be formed in a social network [28]; and new co-authorships may
emerge in a citation network [19]. We take the evolution of a social network as
an example shown in Fig. 1, where each node indicates a user and each edge
represents a friendship between two users. The black solid edges are existing
relationships at time t − 1 and the red dashed edges indicate newly formed
relationships at time ≥ t. At time t − 1, users Alex and Bob are two core users
that connect to most other users. They do not know each other until time t. At
time t, a new friendship is built between Alex and Bob but their friends are still
separated with no other connections yet. At time t+1, several new friendships are
established between other users. Analyzing these temporal evolutions requires a
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graph embedding that can capture these changes as a function of time1, while
still preserves the structural feature over the entire graph. Traditional embedding
techniques designed for static graphs fail to meet this requirement. Because they
can only be applied to each graph independently, graphs at different time are
represented in different latent spaces so that we cannot directly compare the
embeddings of a given node across multiple time points to model the evolution
of its relationships to others.

Various attempts have been made to jointly model spatial topology and tem-
poral evolution. Matrix factorization based approaches such as TNE [36] and
LIST [33] consider temporal evolution but limit the scope of spatial topology
to first-order proximity. Features concerning high-order proximity are largely
ignored in these models. Even though DHPE [35] preserves the high-order prox-
imity, it does so by applying a static model to each graph and thus has limited
capacity to capture temporal evolution. In this paper, we consider the task of
learning node embeddings of dynamic graphs that can adequately capture graph
topological features and temporal smoothness simultaneously. Despite the sig-
nificance of it, this task is highly challenging, as summarized below.

• High-order proximity is often modeled by the powers of the adjacency
matrix of a graph [3,32]. However, on a large graph, especially a dynamic
one containing many snapshots, computing cost of high powers of adjacency
matrices is expensive. It is a challenge to model high-order proximity effi-
ciently.

• Temporal evolution is another key property of dynamic graphs. Most exist-
ing methods examine this property by modeling evolution at node- or edge-
levels [33,36]. However, dynamics of a graph not only includes evolution of
nodes and edges, but also the evolution of (sub-)structures.

While Zhou et al. [34] considered triads in graphs, it is still challenging to
model temporal evolution at a higher level. To tackle the aforementioned chal-
lenges, instead of explicitly formulating the high-order proximity and temporal
evolutions, we leverage the Generative Adversarial Network (GAN) [10] to cap-
ture the essence of real dynamic graphs and learn their distributions. This is
inspired by the recent success of GAN (e.g., GraphGAN [30], NetGAN [2] and
AIDW [5]) in learning embeddings for static graphs.

Our proposed model, DynGraphGAN, includes a generator and a discrim-
inator. The generator generates a sequence of adjacency matrices mimicking
the evolution of a subgraph (i.e., a graph connecting a subset of nodes). The
generated subgraph evolutions and the subgraph evolutions from real data are
fed to the discriminator whose job is to assess the probability of which a given
subgraph evolution is real. The discriminator needs to be carefully designed. If
the discriminator is weak and converged quickly, there will be no longer useful

1 Following settings in related work, we only consider discrete-time dynamic graphs
since we can take discrete snapshots from a continuously varying graph. This is also
the case of many real applications where recording every changes is expensive or
unnecessary, e.g., brain networks and bibliographic networks.
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Table 1. Important notations.

Symbol Definition

V The node set of a graph. Specially, a subset of nodes is
defined as V ′

E The edge set of a graph

G = (V, E) A static graph with a node set V and an edge set E
SV The adjacency matrix representing the connections between

nodes in V
T The number of timestamps of a dynamic graph ranging from

1 to T

G = {G1, . . . ,GT } The definition of a dynamic graph with a set of graph
snapshots along time

SV = {S1
V , . . . ,ST

V } The structure of a dynamic graph represented by a sequence
of adjacency matrices

G The generator function

D The discriminator function

V (G,D) The value function with respect to G and D

{X1, . . . , XT } The node embedding matrices in the discriminator

{A1, . . . , AT } An input sample to the discriminator D, which is a sequence
of adjacency matrices

Ãt The adjacency matrix with self-connections

Ât The reconstruction of At

Ht
l The embeddings at the l-th layer at snapshot t in the graph

convolutional network

ut
i , ũ

t
i Embeddings of node ui at time t, differing only in their

random initialization

information to propagate to the generator, in which case, the generator fails to
capture the true data distribution. Thus in our design, the discriminator employs
two components to learn graph embeddings: a multi-layer Graph Convolutional
Network (GCN) [17] for modeling high-order proximity, followed by a Convo-
lutional Neural Network (CNN) for capturing temporal evolution. Similar to
WGAN-GP [13], we use a gradient penalty to ensure smooth convergence.

It is worth noting that different from previous GAN-based models [2,5,30]
that directly use nodes, edges, or random walks, we feed sequences of subgraphs
to the discriminator. Subgraphs contain richer topological information that can
be further revealed by graph convolutional layers, where high-order proximities
are extracted. The following CNN module is then able to examine community-
level temporal evolutions. Moreover, instead of sampling subgraphs fully ran-
domly, we use random walks with different starting nodes to sample sets of
nodes and then extract the corresponding subgraphs. This procedure ensures
that each node can be covered, and meaningful structural and temporal pat-
terns are contained in sampled subgraphs.
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Our main contributions are three-folded. We propose DynGraphGAN, an
effective GAN-based approach for dynamic graph embedding, which is suited
for most common tasks such as link reconstruction and prediction; we apply a
multi-layer GCN to model high-order proximity based on subgraphs. The fol-
lowing CNN module is then used to capture temporal evolution over time; we
conduct experiments on four real-world datasets and compare DynGraphGAN
with five baseline methods on two tasks. Our model is able to achieve significant
improvements over baseline methods in all settings.

2 Problem Statement

A graph G can be considered as (V, E), where V is a set of nodes and E ⊆
V × V contains edges between nodes. In this paper, we only consider undirected
unweighted graphs. Let SV be the adjacency matrix of nodes V. We have (SV)ij =
(SV)ji = 1 if (ui, uj) ∈ E , and 0 otherwise.

Definition 1. Dynamic graph. A dynamic graph is considered as a series of T
graph snapshots G =

{G1, . . . ,GT
}

defined over a given node set V with evolving
edge sets Et at time t. Here Gt = (V, Et) is the graph snapshot at time t, whose
adjacency matrix is denoted by St

V . Then the evolution of the dynamic graph
can be represented by a sequence of adjacency matrices SV =

{S1
V , . . . ,ST

V
}

over
node set V.

Definition 2. Dynamic graph embedding. Dynamic graph embedding aims to find
a low-dimensional latent space to represent a dynamic graph. This can be rep-
resented by a mapping function from a node set to a low-dimensional space at
time t, f t : ui �→ �d, where ui ∈ V and d is the dimension of the latent space.

Ideally, nodes sharing similar topological features at any time t should be
close to each other in this latent space, and a node should not “move” too much in
this latent space between two consecutive graph snapshots. For simplicity, f t(ui)
is denoted as ut

i in the remainder of this paper. The notations are summarized
in Table 1.

3 Methodology

In this section, we introduce the framework of DynGraphGAN, a Generative
Adversarial Network based model for dynamic graph embedding. As shown in
Fig. 2, our model is composed of a generator G and a discriminator D. During
each iteration of training, instead of simply providing random noises to the gen-
erator, we sample a sizeable subset V ′ of nodes as the input and use the induced
subgraph snapshots SV′ as the “real sample” in our training. Using subgraphs
will not only provide an effective means to capture proximity features [7,18] but
also enable efficient computation. There exist many sampling algorithms to gen-
erate V ′. We adopt the random walk approach of Node2vec [12] here, because
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Fig. 2. Framework of DynGraphGAN

subgraphs induced by random walk contain richer structural information, e.g.,
denser connections. In the experimental section, we find a subgraph size around
80 generally leads to good performance.

Given V ′, the generator G returns a sequence of T adjacency matrices,
denoted by ŜV′ � G(V ′), representing the evolution of subgraph formed by nodes
in V ′, which will be used as the “fake samples” in the training. The discriminator
D is then trained to distinguish the real samples SV′ from the fake samples ŜV′ .
Concretely, D and G play the minimax game with value function V (G,D):

min
G

max
D

V (D,G) = E
V′∼PV

[D (SV′) − D (G (V ′))]

+ α E
V′∼PV

(∥
∥
∥∇

ŜV′ D
(
ŜV′

)∥
∥
∥
2

− 1
)2

+ λ ‖ΔG‖2F ,

where PV is a distribution of V from which V ′ is sampled by Node2vec. We
adopt a linear gradient penalty function (defined on ŜV′ sampled uniformly along
straight lines between SV′ and G (V ′)) to provide stable convergence [13]. A
‖ΔG‖2F regularization term is used to preserve embedding smoothness between
adjacent snapshots, where DeltaG is the union of all

{
ut
i − ut−1

i

}
ui∈V,t≤T

. α

and λ are hyperparameters for tuning the gradients of the discriminator and the
temporal smoothness. Both G and D are optimized in the adversarial process.
In the rest of this section, we describe details of DynGraphGAN design and
different strategies for adjacency matrix generation.
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3.1 Generator

Given a subset of nodes V ′, G generates T adjacency matrices to represent the
evolution of a subgraph over time:

ŜV′ � G (V ′) =
{
G0 (V ′) , G1 (V ′) , . . . , GT (V ′)

}
(1)

=
{(

p0ij
)
|V′|2 ,

(
p1ij

)
|V′|2 , . . . ,

(
pT

ij

)
|V′|2

}
, (2)

where in Eq. (1), Gt (V ′) ⊆ �|V′|×|V′| is the adjacency matrix at time t. The
probability of whether there is an edge between two nodes ui, uj ∈ V ′ at time
t is defined by pt

ij in Eq. (2). Intuitively, pt
ij should depend on the similarity

or distance between the embeddings of ui and uj at time t. Thus we employ
a sigmoid function of their learned embeddings, that is, pt

ij = σ(ut
i ,u

t
j ), which

defines a mapping V ′ × V ′ → (0, 1). The closer the two embeddings ut
i and ut

j ,
the higher the probability that ui and uj are connected by an edge at time t. In
this paper, we investigate two popular choices of the sigmoid function.

Inner Product Similarity: We use the sigmoid function of the inner product
of two nodes’ embeddings:

σinner

(
ut
i , ũ

t
j

)
=

[
1 + exp

(− 〈
ut
i , ũ

t
j

〉)]−1
. (3)

〈·, ·〉 denotes the operation of the inner product. The sigmoid function squeezes
node similarity into edge probability in (0, 1). Instead of using the inner product
of ut

i and ut
j , we choose to replace ut

j by ũt
j from another node embedding.

Here, ut
i and ũt

i are two node embeddings learned in the same way but with
different random initializations. This is because that it has been observed that
the inner product of ut

i and ut
j (learned from the same initialization) may result

in unexpected artifact. Replacing ut
j by ũt

j may avoid such artifact and make
the training more stable and converge faster [4,25]. Therefore, in our model,
we train two graph embeddings ut

i and ũt
i in parallel using different random

initializations. The final output of the graph embedding is the average of the
two.

Euclidean Distance: The Euclidean distance indicates the difference between
two nodes in the graph embedding space. We use a sigmoid function of negative
Euclidean distance to define the edge probability.

σdiff

(
ut
i ,u

t
j

)
=

[
1 + exp

((
ut
i − ut

j

)2)]−1

. (4)

Because only matrices subtraction is used in this function, we do not need to
use a second embedding ũt

i .

3.2 Discriminator

Given a subset of nodes V ′, the discriminator D aims to distinguish real subgraph
samples from fake subgraph samples produced by generator G. To facilitate the
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discussion, we let
{
A1, . . . , AT

}
denote the sequence of adjacency matrices of

a sample (which could be either a real sample SV′ or a fake one ŜV′), where
At ⊆ R|V′|×|V′| is the adjacency matrix at time t. Ãt = At + I represents the
adjacency matrix with self-connections added, and D̃t = diag

(
{∑

j Ãt
ij}i

)
the

diagonal node degree matrix. The objective of the discriminator D is to maximize
the probability of assigning the correct label to each sample.

As discussed in Sect. 1, the discriminator should be carefully designed so that
it can provide useful information to the generator. To achieve this goal, we use the
following components in the discriminator of DynGraphGAN in succession: (1) a
graph convolutional network (GCN) [17] that encodes neighborhood features of
nodes and captures high-order proximity through multi-layer propagation; (2) a
convolutional neural network (CNN) that learns temporal graph evolution along
the time dimension.

The GCN treats each snapshot separately. At time t, it takes At and
Xt

V′ as inputs through a layered propagation. Here Xt
V′ is the embeddings

of nodes in V ′ at time t, learned by the discriminator. At the l-th layer, we
apply the forward propagation of graph convolutional network [17] defined as
Ht

l+1 = ϕ
(
(D̃t)− 1

2 Ãt(D̃t)− 1
2 Ht

l W
t
l

)
. Here, (D̃t)− 1

2 Ãt(D̃t)− 1
2 is the approximate

Laplacian produced by the matrix multiplication of an adjacency matrix with
self-connections Ãt and the diagonal node degree matrix D̃t. W t

l ∈ Rdl×dl+1 is
a matrix of filter parameters, Ht

l ∈ R|V′|×dl is an embedding matrix of nodes
and dl is the embedding dimension at the l-th layer. ϕ is an activation function.
Specifically, Ht

0 is set to node embedding Xt
V′ . After K convolutional operations,

Ht
K captures the high-order proximity by convolutions of neighborhood which

are K distance from the central node. The output of the GCN is {Ht
K}T

t=1.
To capture temporal dependencies over time, we apply a CNN to the node

embeddings generated by the GCN. For each node v, we concatenate the node
embeddings in ascending order of time into a matrix of size T ×dK . We call this
matrix the image of node v.

imagev = stack
({

Ht
K (v)

}
t≤T

)
,

where Ht
K (v) is the embedding vector of node v produced by the graph convo-

lutional network at time t. As shown in Fig. 2, T vectors in green can be found
in the output of the graph convolutional network. We stack these vectors along
the time dimension and get a green matrix. Similarly, we can generate a yellow
matrix, a blue matrix and a grey matrix for the remaining three nodes. Next,
these images are stacked together to form a tensor tensor ∈ RT×dK×|V′|:

tensor = stack
({imagev}v∈V′

)
.

In the example in Fig. 2, the four matrices are stacked to form a tensor with four
channels.

In the CNN, multiple kernels are used as the convolution filters. Specially,
the last kernel is used to combine all features together. Finally, a fully-connected
layer is used to produce a discriminative probability for a given

{
A1, . . . , AT

}
:
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Algorithm 1. DynGraphGAN training with batch size 64, penalty coefficient
α = 0.1 and learning rate τ = 0.001, optimized by Adam with hyperparameters
β1 = 0.5, β2 = 0.9, ε = 0.0001.
Input: Dynamic graph, G; Model parameters, α, λ,γ; Learning rate τ ; Node2vec

hyperparameters, p, q, nw, nl; Adam hyperparameters, β1, β2, ε;
Output: Node embedding;
1: walks ← node2vecWalk(GT ,p,q,nw,nl)
2: for i = 1 to n do
3: for node set V ′ ∈ walks do
4: x ← SV′ // real sample
5: x̂ ← (γ · (1 − SV′) + SV′) ◦ G (V ′) // fake sample
6: μ ∼ U [0, 1] // random value
7: x̃ ← μ · x + (1 − μ) · x̂

8: Lpenalty ← (‖∇x̃D (x̃)‖2 − 1)2

9: LD ← D (x̂) − D (x) + αLpenalty

10: LG ← −D (x̂) + λ ‖ΔG‖2F
11: θD ← Adam (∇θD

LD, θD, τ, β1, β2, ε)
12: θG ← Adam (∇θG

LG, θG, τ, β1, β2, ε)
13: end for
14: end for
15: return

{
ut

i+ũt
i

2

}

ui∈|V |,t≤T

D
({

A1, . . . , AT
})

= full(cnn(tensor)).

Here, cnn is a CNN function and full is a fully-connected operation.
In both GCN and CNN, we use LeakyReLU [22,31] as the activation func-

tion. We demonstrate in Sect. 4 that combining GCN and CNN can capture the
temporal dependency and high-order proximity.

3.3 Implementation Details

Node Sampling. The generator G simulates subgraph evolution on a subset of
nodes V ′ selected by Node2vec [12]. The random walk approach of Node2Vec is
a 2nd order random walk that explores network neighborhood.

Attention Balance. Most graphs we study are sparse in that each node only
connects to a small number of other nodes at any time. This is particularly
true for graphs representing social networks. This results in an overwhelming
percentage of 0s in the adjacency matrices. In the generative adversarial network,
if the model pays equal attention to each 0 and 1, these 0s will dominate the
gradient descent procedure and produce a suboptimal solution. To overcome this
sparsity challenge, it is necessary to balance the attention by reconstructing the
input of discriminator D. Inspired by [29], a hyperparameter γ is used to reduce
the attention of 0s in adjacency matrices. The reconstruction of the adjacency
matrix at time t is denoted as Ât:
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Ât =
{

(γ · (1 − St
V′) + St

V′) ◦ At
{
A1, . . . , AT

} ∼ PG,
At otherwise,

where ◦ is the Hadamard product, i.e., element-wise multiplication, and γ ≤ 1 is
the hyperparameter for adjusting the attention. All operations are element-wise
product applied to St

V′ and At. Reconstruction is only applied to the adjacency
matrices produced by generator G because it does not affect the adjacency matri-
ces of real samples.

Algorithm 1 summarizes the training procedure. All networks are optimized
by Adam [16] with batch size 64 and an initial learning rate τ = 0.001.

4 Experiments

In this section, we demonstrate the performance of our model DynGraphGAN
on four real-world datasets, and compare with five baseline models.

4.1 Datasets

We use four dynamic graph datasets in our experiments, of which three are
generated from social networks, and one is from co-authorship networks. All
graphs are undirected and unweighted. Detailed descriptions are summarized
below and statistics are described in Table 2:

• Facebook (wall) [28], Facebook (friendship) [28], Digg [15]: These three
datasets are collected from the Facebook or Digg’s front page. The nodes rep-
resent users and edges indicate friendships between users or posting behaviors.
Based on the time at which a friendship was established or a post was made,
we aggregate all such events in one year to construct a graph snapshot. This
results in five graph snapshots in every datasets. For those events do not have
any timestamps, we assume that they exist at the initialization and belong
to the first snapshot.

• DBLP2: This dynamic graph represents the co-authorships between users
from the DBLP computer science bibliography from 2000 to 2015. We aggre-
gate all co-authorships in one year into a graph snapshot. This results in 16
snapshots of graphs.

The partition of training and test sets need to be carefully designed to
avoid potential information leaking. To avoid the case that an edge in the
test set may have already been observed in earlier graph snapshots in train-
ing set, we start with the last graph snapshot (at time T ) and randomly sam-
ple 20% edges, denoted as Ghide. To create the training set, we remove these
edges from all earlier snapshots, Gtrain = {Gt

train = Gt − Ghide}t≤T . The test
set consists of edges in Ghide and their occurrences in all earlier snapshots,
Gtest = {Gt

test = Gt ∩ Ghide}t≤T . This will guarantee that each edge in Gtest

2 http://projects.csail.mit.edu/dnd/DBLP/.

http://projects.csail.mit.edu/dnd/DBLP/
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Table 2. Statistics of datasets

Dataset #V #E #Snapshots

Facebook (wall) 46,952 876,993 5

Facebook (friendship) 63,731 817,035 5

Digg 279,630 1,731,653 5

DBLP 1,482,029 10,615,809 16

does not appear in any snapshots of Gtrain. Edges in Gt
train are treated as pos-

itive samples. We also randomly select an equal number of node pairs without
any edges to add to Gt

train as negative samples, resulting in a balanced training
set.

4.2 Baseline Algorithms

We compare our model with several baselines:

• Node2vec3 [12]: This is a random walk based method on static graphs, and
therefore can only be applied to each graph snapshot independently.

• TNE4 [36]: This is a dynamic graph embedding method based matrix fac-
torization with temporal smoothness. We set the type of method to be
“global auto”. We run a grid search on parameter λ from 0 to 10 and report
the best performance.

• LIST [33]: This model captures dynamic graph properties by decomposing
the graph adjacency matrices into time-dependent matrices.

• DHPE [35]: This model learns graph embeddings with high-order proximity
preserved and updates the embedding of nodes by an acceleration technique.

• DynamicTriad5 [34]: A triadic closure process is considered for preserving
both structural information and evolution patterns of dynamic graph. We run
a grid search on parameters β0 and β1 from 0.01 to 10 and report the best
performance.

• DynGraphGAN (euclid): This is the proposed method using the
Euclidean distance (defined by Eq. (4)) in the generator. Subgraphs are gen-
erated by setting parameters num walks = 1 and walk length = 80.

• DynGraphGAN (inner): This is the proposed method using the inner sim-
ilarity (defined by Eq. (3)) in the generator. Parameters of subgraph sampling
are the same as DynGraphGAN (euclid).

The embedding dimension is set to 50 for all datasets except the DBLP
dataset, for which it is set to 20 (in order to fit in the limited GPU memory).
We also notice that different baseline methods choose different functions to infer

3 https://github.com/aditya-grover/node2vec.
4 https://github.com/linhongseba/Temporal-Network-Embedding.
5 https://github.com/luckiezhou/DynamicTriad.

https://github.com/aditya-grover/node2vec
https://github.com/linhongseba/Temporal-Network-Embedding
https://github.com/luckiezhou/DynamicTriad
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the likelihood of an edge. For example, TNE reconstructs each edge by the inner
product of node embeddings. Therefore, we use a sigmoid function of the inner
product of node embeddings in TNE. The sigmoid function of similarity 〈ut

i ,u
t
j 〉

is used in Node2vec, LIST, DHPE and DynGraphGAN (inner). The sigmoid
function of negative euclidean distance (ut

i − ut
j )

2 is used in DynamicTriad and
DynGraphGAN (euclid).

4.3 Evaluation Tasks

Two tasks are considered for evaluating the performance of the graph embed-
dings:

• Link reconstruction: The aim of this task is to infer whether an edge in Gt
test

exists at time t using the embeddings ut
i. We do not use any information from

earlier snapshots. The goal is to evaluate whether a dynamic graph embedding
is equally effective on static settings.

• Link prediction: The aim of this task is to predict whether an edge in Gt+1
test

exists in a future snapshot at time t + 1 using the embeddings ut
i of time t.

This task can demonstrate whether dynamic graph embeddings can capture
temporal evolutions, offering advantages over static methods.

For both link reconstruction and link prediction tasks, we use AUC [8] score
and F1 score [27] to evaluate the performance. Because edges are not uniformly
distributed across all snapshots in each dataset, we report both micro-averaging
and macro-averaging.

• Micro: In micro-averaging, metrics are averaged globally over all edge deci-
sions. Snapshots having more edges will contribute more to the overall per-
formance.

• Macro: In macro-averaging, the performance is first aggregated for each snap-
shot and the metrics is averaged over all graph snapshots. This gives equal
weights to each snapshot instead of edges.

4.4 Link Reconstruction and Link Prediction

Table 3 demonstrates the comparison of our model versus baseline models. LIST
and DynamicTriad have no result on DBLP because of large data size. From
Table 3, we have following observations and analysis:

• Our model DynGraphGAN achieves significant improvements in AUC and
F1 scores over the baseline models. In the link reconstruction task, the aver-
age improvements of mi-AUC, ma-AUC, mi-F1 and ma-F1 are 0.0314, 0.035,
0.0409 and 0.0425 respectively. In the link prediction task, we observe 0.0671,
0.0616, 0.0755 and 0.0692 improvements of mi-AUC, ma-AUC, mi-F1 and
ma-F1 on average respectively.

• As a static graph embedding model, Node2vec shows substantial performance
loss in link prediction task. This is largely due to the inability of capturing
temporal evolution by Node2Vec.



548 Y. Xiong et al.

Table 3. Link reconstruction and link prediction.

Dataset Algorithm Link reconstruction Link prediction

mi-AUC ma-AUC mi-F1 ma-F1 mi-AUC ma-AUC mi-F1 ma-F1

Facebook

(wall)

Node2vec 0.8923 0.8217 0.8273 0.7644 0.6171 0.6237 0.5852 0.5896

TNE 0.6872 0.6972 0.6412 0.6730 0.5461 0.5574 0.5373 0.5860

LIST 0.7375 0.7428 0.6858 0.7428 0.7251 0.7234 0.6739 0.6706

DHPE 0.8371 0.8302 0.7747 0.7643 0.8089 0.8071 0.7353 0.7404

DynamicTriad 0.8321 0.8329 0.7669 0.7651 0.7798 0.7890 0.7158 0.7264

DynGraphGAN (euclid) 0.9196 0.9249 0.8546 0.8611 0.8885 0.8840 0.8193 0.8130

DynGraphGAN (inner) 0.8530 0.8575 0.7860 0.7928 0.8300 0.8250 0.7569 0.7571

Facebook

(friendship)

Node2vec 0.9198 0.9169 0.8547 0.8517 0.8859 0.8941 0.8216 0.8284

TNE 0.7892 0.7916 0.7191 0.7182 0.6854 0.6932 0.6197 0.6284

LIST 0.8553 0.9139 0.7699 0.8491 0.8734 0.8717 0.8073 0.8051

DHPE 0.9032 0.9046 0.8471 0.8491 0.8715 0.8618 0.8077 0.8061

DynamicTriad 0.9412 0.9450 0.8788 0.8841 0.9079 0.8888 0.8414 0.8305

DynGraphGAN (euclid) 0.9491 0.9493 0.8926 0.8928 0.9291 0.9261 0.8656 0.8602

DynGraphGAN (inner) 0.9506 0.9518 0.9002 0.9021 0.9271 0.9189 0.8675 0.8615

Digg Node2vec 0.8565 0.7939 0.7939 0.6923 0.5057 0.5043 0.5082 0.5041

TNE 0.8279 0.7562 0.7575 0.7333 0.6003 0.5862 0.5679 0.6368

LIST 0.8729 0.7646 0.8118 0.7113 0.8852 0.8366 0.8247 0.7778

DHPE 0.7915 0.7034 0.7523 0.6686 0.7991 0.7626 0.7641 0.7252

DynamicTriad 0.8824 0.7233 0.8264 0.6829 0.8861 0.8219 0.8332 0.7671

DynGraphGAN (euclid) 0.9021 0.8037 0.8301 0.7376 0.8875 0.8412 0.8210 0.7712

DynGraphGAN (inner) 0.8791 0.7737 0.8237 0.7119 0.8948 0.8452 0.8431 0.7832

DBLP Node2vec 0.8660 0.8764 0.7873 0.8002 0.5789 0.5783 0.5524 0.5521

TNE 0.5406 0.5860 0.5101 0.5673 0.5222 0.5614 0.4953 0.5514

LIST - - - - - - - -

DHPE 0.7844 0.7731 0.7151 0.7061 0.7856 0.7783 0.7134 0.7071

DynamicTriad - - - - - - - -

DynGraphGAN (euclid) 0.9415 0.9407 0.8815 0.8827 0.9124 0.9211 0.8512 0.8663

DynGraphGAN (inner) 0.8386 0.8410 0.7761 0.7751 0.7979 0.8088 0.7371 0.7469

• TNE is an algorithm designed for dynamic graph embedding but still performs
poorly on several datasets. One possible reason is that TNE is more sensitive
to the edge sparsity than other models.

• Our model DynGraphGAN achieves better results than LIST, DHPE and
DynamicTriad. This is because that LIST only captures first-order proximity.
DHPE considers the spatial structure and temporal dependence separately.
DynamicTriad only makes use of triads in graphs and ignores more globally
information. DynGraphGAN uses convolutional networks to make full use of
the graph structure along time.

4.5 Effect of Parameters

• The Effect of Temporal Smoothness. The temporal smoothness of
dynamic graph embedding is controlled by parameter λ in DynGraphGAN.
The higher the value of λ, the smoother the node transitions in the embedding
space. We vary λ from 0 to 10 and report the mi-AUC scores in Figs. 3(a)
and (b). Obviously, if we do not consider the temporal smoothness (λ = 0),
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Fig. 3. Hyperparameter analysis

a low mi-AUC score is observed. It is evidenced that the temporal smooth-
ness is necessary in dynamic graph embedding. Our model cannot score more
improvement when λ ≥ 1, because the strong temporal smoothness may put
too much constraint on the embedding. Therefore, λ is chosen between 0 and
1 in the experiments.

• The Effect of Attention Balance. The attention is controlled by parame-
ter γ. We vary γ from 0 to 1 and report the mi-AUC scores in Figs. 3(c) and
(d). When presence and absence of an edge receives equal attention (γ = 1),
our model performs substantially worse on these sparse graphs. This proves
the importance of attention balance.

• The Effect of Subgraph Size. A larger subgraph may contain richer struc-
tural information but entail higher computational complexity. We vary the
subgraph size nl from 20 to 300 and report the mi-AUC scores in Figs. 3(e)
and (f). The mi-AUC score is positively correlated to nl and converges to a
plateau when nl ≥ 80. Thus, we use nl = 80 in most experiments, as the
additional benefit of using larger subgraphs diminishes when nl > 80.

5 Related Work

Graph embedding models aim to learn low-dimensional features of nodes in a
graph. On static graphs, the random walk based models, such as DeepWalk
[26] and Node2vec [12], seek to maximize the log-likelihood of observing net-
work neighborhoods for the given nodes. DeepWalk firstly uses random walk to
generate node sequences from the original graph, and then learns node embed-
dings via Skip-gram [23]. As a variant of DeepWalk, Node2vec designs a biased
random walk procedure to explores diverse neighborhoods. Matrix factoriza-
tion based methods such as HOPE [24] approximate the high-order proximity
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measurements on directed graphs to capture asymmetric transitivity property.
Autoencoder based method SDNE [29] uses deep autoencoders to code non-linear
dependencies to enrich the embeddings.

All aforementioned methods do not perform well on dynamic graphs as they
are not able to represent graph evolution. This inspired the development of
dynamic graph embedding models. LIST [33] uses the time-dependent matrix
factorization to express the network structure as a function of time. However, it
only focuses on modeling the first-order proximity and assumes linear dependen-
cies between nodes and between consecutive snapshots. DynGEM [11] designs
a deep autoencoder framework for dynamic graph embedding, which combines
first-order proximity and second-order proximity to preserve graph structure.
DynamicTriad [34] imposes triad to model dynamic changes of graph structures.
These two methods consider more complex relations between nodes, but high-
order proximity is still largely ignored. DHPE [35] is the first model to consider
high-order proximity by a GSVD-based static model, but it consider the spatial
structure and temporal evolution separately.

Recently, many generative adversarial models [6,9] show promises in learn-
ing robust feature representations: NetGAN [2] employs the Long short-term
memory (LSTM) [14] architecture for learning the distribution of biased ran-
dom walks. GraphGAN [30] proposes a novel graph softmax and approximates
the connectivity distribution by sampling node pairs. AIDW [5] uses the IDW
model first to generate node embeddings, and then applies an adversarial learn-
ing component to regularize the embeddings. These models unfortunately cannot
be easily adapted for dynamic graphs.

6 Conclusions

In this paper, we propose DynGraphGAN, a GAN based model that learns fea-
ture representations of dynamic graphs. Specifically, to capture the high-order
proximity, a multi-layer graph convolutional network is used to preserve struc-
ture features of each graph snapshot in the discriminator. Then a convolutional
neural network follows to capture the temporal dependency in a community-
level. This convolutional architecture considers the high-order proximities and
the temporal dependency jointly, from which the generator can model proper-
ties of the dynamic graph efficiently. Moreover, we further improve the model
efficiency by exploiting sparsity and temporal smoothness. By simultaneously
optimizing the generator and the discriminator, our model DynGraphGan is
robust and scalable to large dynamic graphs. Experimental results on various
real-world datasets demonstrate its effectiveness and advantages over alterna-
tive graph embedding models.
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Foundation of China Projects No. U1636207, No. 91546105, the Shanghai Science and
Technology Development Fund No. 16JC1400801, No. 17511105502, No. 17511101702.



DynGraphGAN 551

References

1. Barkan, O., Koenigstein, N.: ITEM2VEC: neural item embedding for collabora-
tive filtering. In: IEEE International Workshop on Machine Learning for Signal
Processing, pp. 1–6 (2016)
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Abstract. Developing efficient and scalable techniques for pattern
queries over large graphs is crucial for modern applications such as social
networks, Web analysis, and bioinformatics. In this paper, we address the
problem of efficiently finding the homomorphic matches for tree pattern
queries with child and descendant edges (mixed pattern queries) over a
large data graph. We propose a novel type of materialized views to accel-
erate the evaluation. Our materialized views are the sets of occurrence
lists of the nodes of the pattern in the data graph. They are stored as com-
pressed bitmaps on the inverted lists of the node labels in the data graph.
Reachability information between occurrence list nodes is provided by a
node reachability index. This technique not only minimizes the materi-
alization space but also reduces CPU and I/O costs by translating view
materialization processing into bitwise operations. We provide conditions
for view usability using the concept of pattern node coverage. We design
a holistic bottom-up algorithm which efficiently computes pattern query
matches in the data graph using bitmap views. An extensive experimen-
tal evaluation shows that our method evaluates mixed patterns up to
several orders of magnitude faster than existing algorithms.

1 Introduction

Graphs are used as the underlying data structure in many modern applications
ranging from chemical, medical, and bioinformatics to health informatics, social
networks, and Web analysis applications. A fundamental operation in big data
graph management and analysis is the evaluation of pattern queries to a data
graph. This operation involves finding all the matches of a given pattern to the
graph structure. As this is a central issue for graph analysis, it has been the focus
of previous attention [2–4,6,8,13,17]. Existing approaches are characterized by:
(a) the type of edges the patterns have, and (b) the type of morphism used to
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map the pattern to the graph structure. An edge in a pattern can be either a child
edge, in which case it is mapped to an edge in the graph, or a descendant edge,
in which case it is mapped to a path in the graph. The morphism determines
how a pattern is mapped to the data graph and, in this context, it can be an
isomorphism or a homomorphism.

Earlier works have considered isomorphisms for matching patterns with child
edges [10,12] while more recent ones focus on homomorphisms for matching pat-
tern queries with descendant edges [2–4,8,20,21]. By allowing edge-to-path map-
ping on graphs, homomorphisms are able to extract matches “hidden” deeply
within large graphs which might be missed by isomorphims. On the other hand,
the patterns with child edges can discover important parent-child relationships
in the data graph which can be missed by patterns with descendant edges. In
this paper, we consider mixed patterns which generalize the other two types of
patterns by allowing both child and descendant relationships and can extract
detailed information which cannot be extracted by either one of the other
patterns. We focus, in particular, on tree-structured mixed patterns on data
graphs as they are the building blocks for general graph patterns. Mixed pat-
tern queries have been ignored in existing evaluation algorithms which allow
edge-to-path mapping in graphs by considering only patterns with descendant
edges [2,3,8,20,21]1. Mixed pattern queries cannot be simply evaluated by post-
filtering descendant-edge only pattern queries as this would generate a large
number of redundant intermediate results.

Since answering pattern queries on massive graphs can be very time consum-
ing, devising techniques to improve their response time is of great importance.
A powerful query optimization technique in current database systems consists
in materializing (i.e., precomputing and storing) views. The idea is that stor-
ing these materializations in a view pool is beneficial for query evaluation. In
this paper, we adopt a novel approach for materializing views in the context of
pattern queries on large data graphs. Unlike other materialized view approaches
which store the matches of the patterns, our approach sees materialized views
as sets of occurrence lists of the pattern query nodes.

Contribution. The main contributions of the paper are the following:

• We address the problem of efficiently finding the homomorphic matches of
tree-pattern queries on large data graphs. Previous approaches consider iso-
morphic pattern matches or adopt simulation-based matches to cope with the
hardness of the graph pattern matching problem. Our pattern queries involve
both child and descendant edges (mixed pattern queries), which generalize
child- or descendant-edge-only patterns, allowing for more specific informa-
tion to be extracted from the data.

• We study how to efficiently evaluate mixed pattern queries on large data
graphs using materialized views. We adopt bitmap views, a type of view
which materializes the occurrence lists of the pattern nodes, stored as com-
pressed bitmaps on the inverted lists of the data graph labels. Bitmap views

1 [2] defines patterns which involve both child and descendant edges, but provides an
algorithm for patterns with only descendant edges.
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consume very little space. They further result in CPU cost savings by trans-
lating materialized view processing into bitwise operations over bitmaps.

• We provide conditions for answering pattern queries using views through view
homomorphisms. We also show how multiple bitmap views can be exploited
for answering a query by intersecting their node occurrence lists.

• We design a bitmap-view-based approach for evaluating pattern queries on
data graphs. Our approach first identifies bitmap views in the view pool that
can be used for answering the query. It then uses these views to generate
occurrence lists for the query nodes excluding inverted list data graph nodes
that do not contribute to the query answer, thus narrowing down the search
space. Finally, it employs a bottom-up algorithm on the reduced size occur-
rence lists to compute the query answer.

• We run extensive experiments to evaluate the efficiency and scalability of
our bitmap view-based approach. We also compare with previous approaches
which do not use materialized views. Our results show that our approach
outperforms previous approaches by orders of magnitude in terms of both
time efficiency and scalability.

2 Data Graph, Pattern Queries and Bitmap Views

Next, we present the data model, pattern queries, and the concept of bitmap
view.

Definition 1 (Data Graph). A data graph is a directed node-labeled graph
G = (V,E) where V denotes the set of nodes and E denotes the set of edges
(ordered pairs of nodes). Let L be a finite set of node labels. Each node v in V
has a label τ(v)∈ L associated with it. Given a label x in L, the inverted list Ix
is the list of nodes in G whose label is x.

Definition 2 (Reachability). A node u is said to reach node v, denoted by
u ≺ v, if there exists a path from u to v in G. Clearly, if (u, v) ∈ E, then u ≺ v.
Abusing tree notation, we refer to v as a child of u (or u as a parent of v) if (u,
v) ∈ E, and v as a descendant of u (or u is an ancestor of v) if u ≺ v.

Given two nodes u and v in G, in order to efficiently check whether u ≺
v, graph pattern matching algorithms use some kind of reachability indexing
scheme. Most reachability indexing schemes associate with every graph node a
label which is an entry in the index for the data graph [11]. Our approach can
flexibly use any labeling scheme to check node reachability. In order to check if
v is a child of u, the basic access information of the graph G can be used; for
example, the adjacency lists.

Definition 3 (Tree Pattern Query). We focus on tree-pattern queries and
views. Every node x in a tree pattern Q has a label τ(x) from L. There can be
two types of edges in Q. A child (resp. descendant) edge denotes a child (resp.
descendant) structural relationship between the respective two nodes.
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A view is a named query. The class of views is not restricted; any query can be
a view.

Definition 4 (Homomorphism). Given a tree pattern Q and a data graph G,
a homomorphism from Q to G is a function m mapping the nodes of Q to nodes
of G, such that: (1) for any node x ∈ Q, τ(x) = τ(m(x)); and (2) for any edge
(x, y) ∈ Q, if (x, y) is a child edge, (m(x),m(y)) is an edge of G, while if (x, y)
is a descendant edge, m(x) ≺ m(y) in G.

We call occurrence of a pattern query Q on a data graph G a tuple indexed
by the nodes of Q whose values are the images of the nodes in Q under a
homomorphism from Q to G.

Definition 5 (Query Answer). The answer of Q on G is a relation whose
schema is the set of nodes of Q, and whose instance is the set of occurrences of
Q under all possible homomorphisms from Q to G.

If x is a node in Q labeled by label a, the occurrence list of x on G is a sublist
Lx of the inverted list Ia containing only those nodes that occur in the answer
of Q on G for x (that is, nodes that occur in the column x of the answer). We
introduce answer graphs to compactly encode all possible homomorphisms of a
query in a data graph.

Definition 6 (Answer Graph). The answer graph GA of a pattern query Q is
a k-partite graph. Graph GA has an independent node set for every node q ∈ Q
which is equal to the occurrence list Lq of q. There is an edge (vx, vy) in GA

between a node vx ∈ Lx and a node vy ∈ Ly if and only if there is an edge (x, y)
in Q and a homomorphism from Q to G which maps x to vx and y to vy.

The answer graph GA losslessly summarizes all the occurrences of Q on
G. Similar to factorized representations of query results studied in the context
of classical databases and probabilistic databases [9], GA exploits computation
sharing to reduce redundancy in the representation and computation of query
results. A useful property of GA is that through a top-down traversal, the answer
of Q on G can be obtained in time linear to the total number of occurrences of
Q on G; also, the cardinality of the query answer can be calculated without
explicitly enumerating the occurrences of Q on G.

For evaluating pattern queries and views on a graph G, we use the inverted
lists of the node labels that appear in G. Reachability information for a pair of
nodes is provided by a reachability index. In order to evaluate a pattern query
Q on G only the inverted lists of the query node labels are needed. The input to
the query pattern evaluation algorithms on a graph G is the set I of the inverted
lists of the node labels in G. In the following, we might refer to a graph G and
to its inverted list set I interchangeably.

Materialized Views. We materialize views on a data graph by storing only
the occurrence list of its nodes.
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Definition 7 (View Materialization). The materialization V (I) of a view V
on the inverted list set I of a graph is the set of occurrence lists of the nodes of
V on I along with a function that maps each node x in V to its occurrence list
Lx. A view is characterized as materialized if it has a materialization.

Bitmap Views. The occurrence list Lx of a view node x labeled by a on I
can be represented by a bitmap on Ia that has a ‘1’ bit at position i iff Lx

comprises the graph node at position i of Ia. We refer to the materialized views
whose occurrence lists are bitmaps as bitmap views. The bitmaps are stored
compressed to even further reduce the materialization space. Clearly, storing
the materialization of multiple views as compressed bitmaps results in important
space savings.

3 Answering Pattern Queries Using Bitmap Views

We show next how a pattern query can be answered using one or multiple materi-
alized views. We first provide necessary and sufficient conditions for answering a
pattern query using inclusively or exclusively one or multiple materialized views.

Let x be a node in a pattern query Q labeled by a. In order to evaluate Q on
an inverted list set I of a data graph, an algorithm iterates over the inverted list
Ia in I. If there is a sublist, say Ix, of Ia such that Q can be computed on I by
iterating over Ix instead of Ia, we say that node x can be computed using Ix on
I. Let now y be a node in a view V and let Iy be the occurrence list of y on I. If
node x can be computed using Iy for every I, we say that node x is covered by
node y or that y is a covering node for x. The idea of our approach for answering
Q using V on I is to identify covering nodes in Q. The occurrence lists of these
nodes on I can then be used to compute the answer of Q on I instead of using
the corresponding inverted lists in I.

Answering a Pattern Query Using a View. We start by defining what
answering a pattern query using a view means in our framework of view mate-
rialization.

Definition 1. A pattern query Q can be answered using a view V if a node in
Q is covered by a node in V . If every node in Q is covered by a node in V , we
say that Q can be answered exclusively using V . Otherwise, we say that Q can
be answered inclusively using V .

When the answer of a query is computed using a view, a node of the query
that is covered by a view node uses only the occurrence list of this view node.
Since the occurrence list of the view node is usually much smaller than the
inverted list of the corresponding node label, the cost for computing the answer
of the query is reduced.

View Usability Conditions. The following theorem provides necessary and
sufficient conditions for node coverage.
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Theorem 1. Let x be a node in a pattern query Q and y be a node in a view
V . Node x in Q is covered by node y in V iff there is a homomorphism from V
to Q that maps y to x.

As a consequence, pattern query Q can be answered using V iff there is
a homomorphism from V to Q. Further, query Q can be answered using V
exclusively iff there are homomorphisms from V to Q such that every node of Q
is the image of a node in V under some homomorphism.

Computing the Answer of a Pattern Query Using a View. In order to
compute the answer of a query using a view what is needed is an association of the
query nodes with covering view nodes. The set of covering view nodes of a given
query node is determined as follows: let h1, . . . , hk be the homomorphisms from
a view V to a query Q and y1

i , . . . , y
mk
i be the nodes in V whose image under hi is

x. Then, the set m(x) of covering nodes for x in V is m(x) = ∪i∈[1,k], j∈[1,mk]{yj
i }.

The occurrence list on I of any node in m(x) can be used for computing x on
I. However, we might also use the occurrence lists of multiple (or all the) nodes
in m(x) by computing and using the intersection of their occurrence lists.

Note that a view V can have a number of homomorphisms to a query which
is exponential in the number of view nodes. Nevertheless, the number of covering
nodes in m(x) is bounded by the number of nodes in V . In the next section, we
present a procedure which computes the covering nodes in m(x) in polynomial
time.

Answering a Pattern Query Using Multiple Views. In order to compute
the answer of the query using a set of materialized views we need to associate
query nodes with covering nodes in the views. Let x be a node in query Q, and
m1(x), . . . , mn(x) be the sets of covering nodes of x in V1, . . . , Vn, respectively.
Then, the set m(x) of covering nodes of x in V1, . . . , Vn is m(x) =

⋃
i∈[1,n] mi(x).

As with the case of a single view, we might also use the occurrence lists of
some (or all the) nodes in m(x): during the computation of the answer, node x
will be computed using the intersection of the occurrence lists of these view nodes
in m(x). As the occurrence lists are stored as bitmaps, their intersection can be
computed efficiently by applying bit wise operations. Of course, the higher the
number of covering nodes from m(x) used for computing x, the smaller the size
of the employed inverted list will be.

4 Algorithm for Evaluating Pattern Queries Using
Bitmap Views

In this section, we present the bitmap view approach for optimizing pattern
queries. We assume that a set of views are materialized as compressed bitmaps
in a view pool. In order to compute the answer of a query Q, our approach
computes, for every query node x, all the covering view nodes in the view pool.
Then, it intersects the occurrence lists of these covering view nodes. The resulting
sublist is used for the computation of x. If x does not have covering nodes, the
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corresponding inverted list is used for its computation. Next, we describe each
step in more detail.

4.1 Computing Covering Nodes

As discussed in Sect. 3, given a query Q and a view V , the covering nodes for a
node of Q in V are defined in terms of the homomorphisms of V to Q. A brute-
force method for computing covering nodes computes all the possible homomor-
phisms from V to Q. Unfortunately, the number of these homomorphisms can be
exponential on the size of V . Therefore, we have designed an algorithm which,
given two patterns P and Q, compactly represents all the homomorphisms from
P to Q in polynomial time and space O(|P | × |Q|). The algorithm employs a
standard dynamic programming technique for computing a Boolean matrix M(p,
q), p ∈ nodes(P ), q ∈ nodes(Q), such that M(p, q) is true if: (1) there exists
a homomorphism from the subpattern rooted at p to the subpattern rooted at
q; and (2) there exists a homomorphism from the prefix path of p to the prefix
path of q, where prefix path of a node is the path from the pattern root to that
node. A detailed description is omitted here in the interest of space.

4.2 Computing Query Node Inverted Sublists with Bitwise
Operations

The intersection of the occurrence lists of the covering view nodes can be imple-
mented by a bitwise operation on the corresponding bitmaps: first, the bitmaps
of the operand view nodes are fetched into memory and bitwise AND-ed. Then,
the target inverted sublist is constructed by fetching into memory the inverted
list nodes indicated by the resulting bitmap.

Besides space savings, exploiting bitmaps and bitwise operations results in
time saving for two reasons. First, bitwise AND-ing bitmaps incurs less CPU cost
than intersecting the corresponding inverted sublists, especially if there are many
views. Second, fetching into memory the bitmaps of the operand view nodes and
the target inverted sublist nodes indicated by the resulting bitmap incurs less
I/O cost than fetching the entirety of the inverted sublist for the operand view
nodes as this is required for performing a regular intersection operation.

4.3 Bottom-Up Evaluation of Pattern Queries

We present now a mixed pattern query evaluation algorithm called BUP (Fig. 1).
Before describing the algorithm, we introduce the terminology and notation used.

Notation. Given query Q, let IQ denote the set of inverted sublists obtained
by the inverted sublists generation procedure (Sect. 4.2). Each node q of Q is
associated with a sublist IQq in IQ. A candidate occurrence list CLq of a query
node q in Q is the occurrence list of the root of the subquery of Q rooted at
q. Clearly, CLq ⊆ IQq and Lq ⊆ CLq. Let (qi, qj) be a query edge in Q, and vi
and vj be two nodes in G, such that τ(qi) = τ(vi) and τ(qj) = τ(vj). The pair
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Input: Tree pattern query Q, and inverted sublists IQ

Output: Answer graph GA of Q on G

1. GA := a k-partite graph without edges having one data node set CLq for every node q ∈ Q;
2. Let initially CLq = ∅ for every node q ∈ Q;
3. traverse(root(Q));
4. for (every q ∈ Q, q �= root(Q), in a top-down manner) do
5. Remove the data nodes of CLq which do not have an incoming edge;

Procedure traverse(q)
1. if (isLeaf(q)) then
2. CLq := IQq ;
3. return
4. for (qi ∈ children(q)) do
5. traverse(qi);
6. for (vq ∈ Iq) do
7. expand(q, vq);

Procedure expand(q, vq)
1. Append vq to CLq;
2. for (qi ∈ children(q)) do
3. for (vqi ∈ CLqi ) do
4. if ((vq, vqi) is an occurrence of the query edge (q, qi)) then
5. Add the edge (vq, vqi) to GA;
6. if (no match to (q, qi) is found) then
7. remove vq from CLq;
8. return

Fig. 1. Algorithm BUP.

(vi, vj) is called occurrence of the query edge (qi, qj) if: (a) (qi, qj) is a child edge
in Q and (vi, vj) is an edge in G, or (b) (q, qi) is a descendant edge in Q and
vi ≺ vj in G.

The Algorithm. Given query Q and its associated inverted sublists IQ, Algo-
rithm BUP builds Q’s answer graph GA by doing a postorder traversal on Q.
Specifically, it first generates the candidate occurrence lists for the query nodes
in Q and links their nodes with edges: a data node v ∈ IQq is put in the candidate
occurrence list CLq of a query node q ∈ Q if there are data nodes v1, . . . , vk for
the child query nodes q1, . . . qk of q such that: (a) for every i ∈ [1, k], vi ∈ CLqi ,
and (b) for every i ∈ [1, k], (v, vi) is an occurrence in G of the edge (q, qi) ∈ Q.
For every i ∈ [1, k], an edge is added in GA from a node v ∈ CLq to a node
vi ∈ CLqi if and only if (v, vi) is an occurrence in G of the edge (q, qi) ∈ Q. Due
to the bottom up traversal of Q, the candidate occurrence lists of the child nodes
qi of a q are available from the previous iteration of the algorithm. At the end
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Fig. 2. Queries on the XMark graph.

Table 1. Parameters for query generation.

Parameters Range Description

Q 300 to 1800 Number of queries

D 6 to 16 Maximum depth of queries

DS 0 to 1 Probability of setting an edge to be a
descendant edge (‘//’)

NP 1 to 3 Number of branches per query node

of the process, a top-down traversal of the answer graph GA under construction
eliminates nodes in the CLq’s (and their incident edges) which are not in Lq.

The bottom-up processing of BUP is realized by procedure traverse. Let q be
the current query node under consideration. For each node vq in IQq , procedure
traverse invokes procedure expand to potentially expand GA by putting vq into
the candidate occurrence list CLq and by adding incident edges to GA (lines 6–7
in traverse).

When traverse terminates after processing the root of Q, CLroot(Q) is
Lroot(Q). The candidate occurrence lists CLq for other nodes q of Q might con-
tain nodes that are not in Lq. To discard these nodes, a breadth first traversal of
Q is performed. For every node q of Q encountered (other than the root node),
all the data nodes which do not have an incoming edge are removed from GA

along with their incident outgoing edges (lines 6–7 in the main procedure). The
resulting graph is the answer graph GA of Q.

The following theorem shows the correctness of Algorithm BUP. We omit its
proof here in the interest of space.

Theorem 2. Algorithm BUP puts a data node vq ∈ Iq in the list CLq under
construction if and only if it is in the candidate occurrence list of the root of the
subquery of Q rooted at q.

Complexity. The time complexity of BUP is determined by the total number
of pattern edge matches checked, which is |Q|×|IQmax|2, where |Q| is the number
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Table 2. Dataset statistics. |V |, |E| and |L| are the number of nodes, edges and distinct
labels, respectively. maxout and maxin are the maximum out-degree and in-degree of
the graph. davg (=|E|/|V |) denotes the average degree of a graph.

Dataset |V| |E| |L| Maxout Maxin davg

xm03 50266 57992 92 765 152 1.15

xm05 83533 96484 92 1275 162 1.16

xm07 118670 136828 92 1785 151 1.15

xm09 151289 174737 92 2295 154 1.15

xm5 832911 960941 92 12750 168 1.15

acm 629814 631215 12610 195 816 1.00

cite-lb10000 6540401 15011260 8343 181247 203695 2.30

cite-lb8000 6540401 15011260 6124 181247 203695 2.30

cite-lb7000 6540401 15011260 5662 181247 203695 2.30

cite-lb6000 6540401 15011260 4969 181247 203695 2.30

cite-lb5000 6540401 15011260 3970 181247 203695 2.30

rand-v300k 300000 518528 3799 10 12 1.73

rand-v500k 500000 864057 4038 10 11 1.73

rand-v700k 700000 1208868 3826 11 11 1.73

rand-v1000k 1000000 1727123 3721 12 11 1.73

rand-v1500k 1500000 2590639 4048 12 12 1.73

of pattern nodes and |IQmax| is the size of the largest inverted list in IQ. The
time R for checking if a pair of data nodes is an edge occurrence is bound by the
time for checking reachability for a pair of nodes in the data graph. Therefore,
the time complexity of BUP is O(|Q| × |IQmax|2 × R). The memory consumption
is determined by the size of the answer graph which is bound by |Q| × |IQmax|2.

5 Experimental Evaluation

We present an experimental evaluation of our bitmap view approach by com-
paring it with other previous approaches in terms of time performance and scal-
ability.

5.1 Experimental Setting

Algorithms. We implemented and compared the following algorithms. The first
includes two versions of the stack-based algorithm TwigStackD [2,21], using two
different reachability index schemes: TSD-SSPI uses the Surrogate Surplus Pre-
decessor Index (SSPI) [2], while TSD-BFL uses the Bloom Filter Labeling (BFL)
index [11]. We modified TwigStackD to output the query answer graph, instead
of enumerating solution tuples using expensive merge-join operations over query
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Table 3. Query set statistics. ‘//’ denotes the descendant pattern edge.

Query set # queries Avg. |V| Avg. height % of ‘//’ Maxout Avg. # solutions

XQ1 10 7 4 100.00 2 19842.4

XQ2 10 9 4 100.00 3 2001.5

XQ3 10 11 4 100.00 3 7913.5

acm.qry 100 7.16 2.69 16.20 2.13 6804.59

cite-lb10000.qry 10 3.5 1.4 65.71 1.9 219.9

cite-lb8000.qry 10 3.2 1.2 65.63 2 93.4

cite-lb7000.qry 10 3.1 1.1 67.74 2 1859.1

cite-lb6000.qry 10 3.3 1.2 63.64 2 760.9

cite-lb5000.qry 10 3.2 1.1 65.63 2 582.9

rand-v300k.qry 10 4.5 2.5 60.00 1.7 46769.4

rand-v500k.qry 10 4.9 2.3 55.10 1.8 978.2

rand-v700k.qry 10 6.9 3.8 40.58 1.9 6375.1

rand-v1000k.qry 10 4.9 2.8 59.18 1.7 264620.5

rand-v1500k.qry 10 6.2 3.4 50.00 1.8 33960.2

path solutions. The second is our proposed bitmap materialized views approach,
denoted as BUP-MV, presented in Sect. 4. The third is the bottom-up pattern
evaluation algorithm without using materialized views, denoted as BUP. The
last is the algorithm BUP with an node pre-filtering technique introduced in
[2,21], denoted as BUP-FLT. All implemented algorithms, except TSD-SSPI,
use BFL for reachability checking. We present no performance comparison with
the decomposition-based algorithms R-Join [3] and HGJoin [13] because their
design is closely tied to some specific reachability indexing schemes, whose overall
performance has already been shown to be much worse than BFL [11]. Also, the
performance of HGJoin has been reported in [8] to be even worse than TSD-SSPI
for queries similar to those used in our experiments. We used roaring bitmaps
[1] for the implementation of compressed bitmap view materializations. Roaring
bitmaps have been shown to outperform conventional compressed bitmaps such
as WAH, EWAH or Concise [14]. Our implementation was coded in Java. All
the experiments were performed on a workstation having an Intel Xeon CPU
1240V5@3.50 GHz processor with 32 GB memory.

Datasets. We ran experiments on four types of graph datasets with different
structural properties. Their main characteristics are summarized in Table 2.

XMark2 is a synthetic benchmark dataset modeling an auction website. We
generated five XMark datasets using scaling factors, 0.3, 0.5, 0.7, 0.9, 5, named
xm03, xm05, xm07, xm09, and xm5, respectively. For each dataset, we generated
a graph by treating internal links (parent-child) and ID/IDREF links as edges.
As in [8,20], we randomly classified person and item elements of the XMark
graphs into ten groups and assigned a distinct label to each group.

2 xml-benchmark.org.

http://xml-benchmark.org/
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Fig. 3. Performance evaluation on the XMark dataset.

acm3 models citations of the ACM publications and consists of a directed
graph with 615K nodes and 616K edges. Nodes represent papers while edges
represent citations.

citeseerx4 represents a directed graph consisting of 6.3M publications (nodes)
and 14.3M citations between them (edges). The original graph does not have
labels. We wrote a label assignment program which randomly adds a specified
number of distinct labels to graph nodes, following a Gaussian distribution.
Using this program, we generated five labeled citeseerx graphs whose number of
labels ranges from 5,000 to 10,000. Each graph is named as cite-lbx, where x is
the number of labels in the graph.

We also implemented a random graph generator which creates a random
graph based on the Erdos-Renyi model. Given three input parameters n, m, and
l, the generator first creates a random graph with n nodes and m edges; then
it calls the label assignment program to randomly add l distinct labels to the
nodes. Using the graph generator, we generated five graphs varying the size n
of the nodes from 300,000 to 1,500,000. The size m of the edges was 2n, and l
was fixed to 5000. These five graphs are named rand-vx, where x is 300K, 500K,
700K, 1000K, or 1500K.

Our materialized view approach works on general graphs. Since most of the
reachability indexing schemes including BFL and SSPI work only with dags, in
the experiments, we converted directed graphs with cycles to dags, by removing
back edges. All the statistics shown in Table 2 are for dags.

Queries. For the XMark dataset, we used the three query templates XQ1–XQ3

shown in Fig. 2. These are descendant-only tree patterns which were also used
in [8,20] and are useful for comparing the performance of algorithms TSD-SSPI
and TSD-BFL which are not designed for mixed pattern queries. For each query
template, we generated 10 queries by randomly choosing the labels on person
and item nodes. For the experiments on the acm, citeseerx, and random datasets,
we used randomly generated queries. We implemented a query generator that
3 www.aminer.cn/citation.
4 citeseerx.ist.psu.edu.

www.aminer.cn/citation
http://citeseerx.ist.psu.edu/
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Fig. 4. Performance evaluation on the acm graph.

creates a set of tree pattern queries based on the parameters listed in Table 1.
Random queries are generated according to the input data graph and these
parameters. For each data graph, we first generated a number of queries (in the
range of 300 to 1800) using different value combinations of the parameters listed
in Table 1, and then we formed a query set by randomly selecting 10 to 100
among them. Table 3 summarizes the statistics of the query sets.

Views. In the experiments, we used single edge (child or descendant) path
patterns as views. The views cover in each dataset all the queries generated.

5.2 Algorithm TSD vs. BUP on XMark Graphs

We first compared the time performance of the three pattern matching algo-
rithms TSD-SSPI, TSD-BFL and BUP. Figure 3(a) shows the execution time
of the three algorithms for the query templates XQ1–XQ3 of Fig. 2 over the
XMark graph dataset xm5. We can see that in all the cases, TSD-BFL outper-
forms TSD-SSPI by about two orders of magnitude, whereas BUP is at least six
times faster than TSD-BFL. We also studied the scalability of the three algo-
rithms for evaluating XQ1–XQ3 over XMark graphs of various sizes. In Fig. 3(b),
we present the results for XQ3 obtained for graphs whose scaling factors vary
from 0.5 to 5. The increase in the execution time of TSD-SSPI is much sharper
than that of TSD-BFL, which in turn grows faster than BUP. Therefore, BUP
scales better than the other two when the input size increases.

Note that the underlying graph matching process of TSD-SSPI and TSD-
BFL is stack-based [2,20], which is different from the bottom-up technique used
by BUP. The only difference between TSD-SSPI and TSD-BFL lies in the reach-
ability index scheme used.

5.3 Results on acm, citeseerx, and random Graphs

In the experiments below, we use BUP as the baseline algorithm, and compare
its performance with the two algorithms BUP-MV and BUP-FLT. The difference
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Fig. 6. Performance evaluation on the randomly generated graphs.

of these algorithms is that, while BUP computes the answer over the original
graph inverted lists, both BUP-MV and BUP-FLT employ some technique to
filter out, in advance, nodes of the inverted lists that do not participate in the
answer of the query.

Query Evaluation Time. The query evaluation time of BUP-MV consists of
the optimization time and the query execution time. The query execution time
is the time needed for computing the query using the view materializations.
The optimization time consists of the time needed for finding the covering view
nodes of the query nodes and the time needed for disk loading, decompress-
ing and bitwise ANDing the bitmaps of the node materializations. Unlike the
materialized view approach, the pre-filtering technique [2,20] does not exploit
pre-computation, but repeats the filtering process for every incoming query.
Specifically, it conducts two traversals on the data graph: one for pruning nodes
that violate the downward structural constraints and one for checking upward
constraints. The pre-filtering technique prunes data nodes for descendant-only
pattern queries. Our materialized view approach does not have such restriction.
As BUP-MV, the mixed pattern query evaluation time of BUP-FLT has two
parts: optimization time (for node punning) and query execution time.
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Varying Query Sizes. We designed experiments to examine the impact of
query size on the performance of the three algorithms. In order to do so, we
used our query generation tool to generate a random query set called acm.qry
for the acm graph (Table 3). Queries in this set were grouped by query size (i.e.,
the number of nodes in the query) into the following four groups: 2–10, 11–
20, 21–30, 31–53. Figure 4(a) compares the average evaluation time of the three
algorithms when the query size increases on the acm data graph. Figure 4(b)
shows the average percentage of the number of inverted list nodes appearing in
the query occurrence lists. It also shows the average percentage of the number
of inverted list nodes accessed by BUP-MV and BUP-FLT during the matching
process. BUP accesses all the nodes (100%) of the inverted lists during the
matching process since it does not have a filtering phase.

We observe that: (1) BUP is more than one order of magnitude slower than
both BUP-MV and BUP-FLT; this can be explained by the fact that the latter
two algorithms access about 2% of the inverted list nodes accessed by BUP
(Fig. 4(b)) during the matching process. (2) BUP-MV is faster than BUP-FLT
since it only needs to access about 76% of the nodes accessed by BUP-FLT. Their
performance gap widens when the query size becomes larger than 20 (Fig. 4(a)).
We found that in this experiment, BUP-FLT spent most time on optimization,
which increases when the query size increases. In contrast, the optimization
time of BUP-MV was too small to even be noticed in all cases. This explains the
performance difference between BUP-MV and BUP-FLT.

Varying the Number of Graph Data Labels. We examine the impact
of the total number of distinct graph labels on the performance of the three
algorithms. We used the aforementioned five labeled citeseerx graphs cite-lbx
(Table 2), where the number of labels x increased from 5,000 to 10,000. For each
graph cite-lbx, we generated a query set cite-lbx.qry with 10 distinct queries
(Table 3). As shown in Fig. 5(a), the execution time for all algorithms decreases
with the increase of the total number of graph labels. This is reasonable, since
the average size of the input inverted list per graph node label is reduced when
more labels are added. This confirms the complexity results of Sect. 4.3 that
show dependency of the execution time on the input size. As with the previ-
ous experiment, BUP-MV has the best performance overall; it is more than one
and two orders of magnitudes faster than BUP-FLT and BUP, respectively. It
accesses around 2% and 41% of inverted list nodes visited by BUP and BUP-
FLT, respectively, during the matching process (Fig. 5(b)). Its optimization time
revolves around 1.5 ms in all cases. By accessing 5% of the number of nodes vis-
ited by BUP, BUP-FLT achieves a speedup of 2.6 on average. Its optimization
time is around 6 s on average, i.e. about 2% of the average evaluation time.

Varying Random Graph Sizes. We evaluate the performance of the three
algorithms on randomly generated graphs. We used the five random graphs
rand-vx (Table 2), where the number of nodes x was increased from 300,000
to 1,500,000, while the total number of labels is fixed to 5,000. For each graph
rand-vx, we generated a random query set rand-vx.qry with 10 distinct queries
(Table 3).
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The results are shown in Fig. 6(a). The execution time for all algorithms goes
up when the total number of graph nodes increases. BUP-MV displays signifi-
cantly better performance than the other two algorithms, achieving a speedup
of at least one order of magnitude across the entire range of random graphs.
During the filtering phase it eliminates on average 95% of the inverted list nodes
accessed by BUP (Fig. 6(b)). Its average optimization time was 7 ms. The evalua-
tion time of BUP-FLT is 56% of that of BUP on average over all random graphs.
BUP-FLT accesses about 56% of inverted list nodes visited by BUP (Fig. 6(b)).
Its average optimization time is 1.6 s.

5.4 Summary

The experiments reported here have examined the performance of four pattern
query evaluation algorithms on graphs. The results can be summarized as follows:

– The performance of a graph pattern matching algorithm is affected signif-
icantly by both the graph matching process and the reachability indexing
scheme used.

– The total number of graph nodes accessed by each algorithm for computing
a pattern query is the principal determining factor of the query evaluation
time.

– The bitmap view materialization approach has better graph node pruning
power than the pre-filtering technique for optimizing mixed pattern queries
over large graphs.

– BUP-MV shows the best efficiency and scalability performance among all
tested algorithms, while displaying a negligible optimization cost.

6 Related Work

A number of papers have recently addressed the important problem of answering
pattern queries on graphs using views [5,7,15,16]. Two types of approaches,
namely, equivalent answering and approximate answering have been considered.
The equivalent pattern query answering aims at producing all the results to the
query using the given view materialization(s), whereas the approximate pattern
query answering may produce a subset of the results. Previous work on this line
has also considered two kinds of pattern matching models: subgraph isomorphism
and graph simulation. Subgraph isomorphism retrieves the exact topological
matches. However, subgraph isomorphism is an NP-complete problem. Graph
simulation relaxes the restrictions enforced by subgraph isomorphism and can
be computed in polynomial time.

The main problem studied in the simulation-based approach is pattern con-
tainment. It determines the conditions under which the results of a pattern
query are contained in the results of a set of views. Fan et al. [5] proposed an
equivalent pattern containment scheme based on (bounded) simulation model to
characterize pattern matching using views. They also developed efficient algo-
rithms for pattern containment checking. Equivalent pattern containment based
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on subgraph isomorphism was investigated in [16]. Wang et al. [15] studied the
problem of reusing the results of previously executed queries to answer sub-
graph/supergraph queries based on subgraph isomorphism.

The approximate graph pattern answering, a.k.a maximally contained pat-
tern rewriting, aims at identifying a maximal part of the pattern query that
can be answered using a set of views. A contained rewriting helps to answer
approximately the original pattern query on a data graph. Both [5] and [16]
studied maximally contained pattern rewriting albeit under the two different
pattern matching models described above (graph simulation and subgraph iso-
morphism). Li et al. [7] studied the problem of computing upper and lower
approximations from views for pattern queries in both models.

Our work differs from prior work [5,7,15,16] in the following: (1) We address
the problem of tree-pattern matching on large data graphs using homomor-
phisms. Homomorphisms relax the strict one-to-one mapping to a more general
many-to-one matching, and allow a pattern edge to be matched to a path in the
data graph. It is therefore more flexible than subgraph isomorphism. In addition,
homomorphic tree-pattern matching on graphs can be computed in polynomial
time. Homomorphism preserves the topology of data graphs. In contrast, simu-
lation (and its variants) may match together a data graph and a pattern with
drastically different structures. (2) We study how to efficiently evaluate mixed
pattern queries on large data graphs using materialized views. Instead of mate-
rializing pattern matches, our approach materializes the occurrence lists of the
pattern nodes, stored as compressed bitmaps on the inverted lists of the data
graph labels. Materializing views as bitmapped occurrence lists are also adopted
in [18,19]. However, the focus of those papers was on the problem of answering
XML queries using materialized views over XML data.

7 Conclusion

In this paper we have addressed the problem of efficiently evaluating mixed
pattern queries on large data graphs using materialized views. Unlike other
approaches which store the matches of the patterns, our approach sees material-
ized views as sets of occurrence lists of the pattern query nodes and stores them
as compressed bitmaps. We have provided conditions for pattern query answer-
ability using bitmap views through view homomorphisms. We have also designed
a bitmap-view-based approach for evaluating pattern queries on data graphs. An
extensive experimental evaluation has verified the efficiency and scalability of our
approach and has shown that it largely outperforms other approaches that do
not use views. We are currently working on developing elaborate techniques for
selecting views for bitmap materialization.

References

1. Chambi, S., Lemire, D., Kaser, O., Godin, R.: Better bitmap performance with
roaring bitmaps. Softw. Pract. Exper. 46(5), 709–719 (2016)



570 X. Wu et al.

2. Chen, L., Gupta, A., Kurul, M.E.: Stack-based algorithms for pattern matching
on DAGs. In: VLDB (2005)

3. Cheng, J., Yu, J.X., Yu, P.S.: Graph pattern matching: a join/semijoin approach.
IEEE Trans. Knowl. Data Eng. 23(7), 1006–1021 (2011)

4. Fan, W., Li, J., Ma, S., Wang, H., Wu, Y.: Graph homomorphism revisited for
graph matching. PVLDB 3(1), 1161–1172 (2010)

5. Fan, W., Wang, X., Wu, Y.: Answering pattern queries using views. IEEE Trans.
Knowl. Data Eng. 28(2), 326–341 (2016)

6. Gallagher, B.: Matching structure and semantics: a survey on graph-based pattern
matching. AAAI FS 6, 45–53 (2006)

7. Li, J., Cao, Y., Liu, X.: Approximating graph pattern queries using views. In:
CIKM, pp. 449–458 (2016)

8. Liang, R., Zhuge, H., Jiang, X., Zeng, Q., He, X.: Scaling hop-based reachability
indexing for fast graph pattern query processing. IEEE Trans. Knowl. Data Eng.
26(11), 2803–2817 (2014)

9. Olteanu, D., Schleich, M.: Factorized databases. SIGMOD Rec. 45(2), 5–16 (2016)
10. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an efficient

algorithm for testing subgraph isomorphism. PVLDB 1(1), 364–375 (2008)
11. Su, J., Zhu, Q., Wei, H., Yu, J.X.: Reachability querying: can it be even faster?

IEEE Trans. Knowl. Data Eng. 29(3), 683–697 (2017)
12. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42

(1976)
13. Wang, H., Li, J., Luo, J., Gao, H.: Hash-base subgraph query processing method

for graph-structured XML documents. PVLDB 1, 478–489 (2008)
14. Wang, J., Lin, C., Papakonstantinou, Y., Swanson, S.: An experimental study

of bitmap compression vs. inverted list compression. In: SIGMOD, pp. 993–1008
(2017)

15. Wang, J., Ntarmos, N., Triantafillou, P.: Indexing query graphs to speedup graph
query processing. In: EDBT, pp. 41–52 (2016)

16. Wang, X.: Answering graph pattern matching using views: a revisit. In: Bensli-
mane, D., Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R.
(eds.) DEXA 2017. LNCS, vol. 10438, pp. 65–80. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-64468-4 5

17. Wu, X., Souldatos, S., Theodoratos, D., Dalamagas, T., Sellis, T.K.: Efficient eval-
uation of generalized path pattern queries on XML data. In: WWW (2008)

18. Wu, X., Theodoratos, D., Wang, W.H.: Answering XML queries using materialized
views revisited. In: CIKM (2009)

19. Wu, X., Theodoratos, D., Wang, W.H., Sellis, T.: Optimizing XML queries:
bitmapped materialized views vs. indexes. Inf. Syst. 38(6), 863–884 (2013)

20. Zeng, Q., Jiang, X., Zhuge, H.: Adding logical operators to tree pattern queries on
graph-structured data. PVLDB 5(8), 728–739 (2012)

21. Zeng, Q., Zhuge, H.: Comments on “stack-based algorithms for pattern matching
on dags”. PVLDB 5(7), 668–679 (2012)

https://doi.org/10.1007/978-3-319-64468-4_5
https://doi.org/10.1007/978-3-319-64468-4_5


Heterogeneous Information Network
Hashing for Fast Nearest Neighbor Search

Zhen Peng1, Minnan Luo1(B), Jundong Li2, Chen Chen2,
and Qinghua Zheng1,3

1 School of Electronic and Information Engineering, Xi’an Jiaotong University,
Xi’an, China

zhenpeng27@outlook.com, {minnluo,qhzheng}@xjtu.edu.cn
2 Computer Science and Engineering, Arizona State University, Tempe, USA

{jundongl,chen chen}@asu.edu
3 National Engineering Lab for Big Data Analytics, Xi’an Jiaotong University,

Xi’an, China

Abstract. Heterogeneous information networks (HINs) are widely used
to model real-world information systems due to their strong capability
of capturing complex and diverse relations between multiple entities in
real situations. For most of the analytical tasks in HINs (e.g., link pre-
diction and node recommendation), network embedding techniques are
prevalently used to project the nodes into real-valued feature vectors,
based on which we can calculate the proximity between node pairs with
nearest neighbor search (NNS) algorithms. However, the extensive usage
of real-valued vector representation in existing network embedding meth-
ods imposes overwhelming computational and storage challenges, espe-
cially when the scale of the network is large. To tackle this issue, in
this paper, we conduct an initial investigation of learning binary hash
codes for nodes in HINs to obtain the remarkable acceleration of the
NNS algorithms. Specifically, we propose a novel heterogeneous informa-
tion network hashing algorithm based on collective matrix factorization.
Through fully characterizing various types of relations among nodes and
designing a principled optimization procedure, we successfully project
the nodes in HIN into a unified Hamming space, with which the com-
putational and storage burden of NNS can be significantly alleviated.
The experimental results demonstrate that the proposed algorithm can
indeed lead to faster NNS and requires lower memory usage than several
state-of-the-art network embedding methods while showing comparable
performance in typical learning tasks on HINs, including link prediction
and cross-type node similarity search.

1 Introduction

A heterogeneous information network (HIN) is a logical network that contains
multiple types of entities and various relations between them [22]. Since it can
capture rich information in a wide diversity of realistic scenarios via characteriz-
ing the heterogeneity of entities and their interactions, HINs become increasingly
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11446, pp. 571–586, 2019.
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important and have widespread usage in many high-impact domains, such as the
critical infrastructure systems, the knowledge graphs and the social media net-
works. Over the past few decades, many prevalent network learning tasks have
been studied in HINs, most of which heavily depend on the nearest neighbor
search (NNS) algorithms, examples include network clustering [16], link predic-
tion [14], personalized recommendation [15], chemical similarity search [29], to
name a few. Therefore, it is essential to provide an effective and trustworthy
search function to advance these tasks in HINs. More specifically, we need a
measure (e.g., Euclidean distance or cosine distance) to quantify the node close-
ness in HINs such that given a query node in the HIN, we can retrieve the sets
of nodes that are most similar to the query node by computing their similarity.
Moreover, it should be noted that for the NNS algorithms, their utility is nor-
mally determined by two leading factors: (1) time complexity - the retrieval time
for the nearest neighbors; and (2) space complexity - the storage costs of the used
data structures. Typically, network embedding [9] is often regarded as a popu-
lar way to tackle the NNS problem by projecting nodes into a low-dimensional
real-valued space while maximally preserving the node proximity in the HIN.

In fact, a vast majority of existing network embedding approaches such as
PTE [23], metapath2vec [5] and HIN2Vec [7] generate real-valued node embed-
dings, which brings formidable computational and storage challenges to the NNS
algorithms. The main reason is that a large number of indispensable similarity
calculations in the NNS algorithms are directly performed on the learned real-
valued node vectors, while the storage and the associated floating-point arith-
metic operations could be very expensive. For instance, recommending a movie
of interest for all users in a social media network including n users and m movies
has a time complexity of O(nmd) and a space complexity of O((n+m)d), where
d is the dimensionality of the node embeddings. Considering that the real-world
social media networks may contain millions or billions of users and movies, the
computational and storage costs of the NNS algorithms will be extremely high
and are difficult to scale. Fortunately, hashing has been widely recognized as a
promising technique to accelerate the similarity search [26]. Through transform-
ing the real-valued vectors to compact binary codes consisting of a sequence of
bits, hashing not only gains the advantage of reducing the memory storage costs
but also lowers the time complexity of the nearest neighbor retrieval, as the
similarity of two binary hash codes can be easily obtained with fast Hamming
distance calculations.

The success of the hashing technique in many applications motivates our
initial investigation of learning binary hash codes for nodes in HINs. However,
it is a nontrivial problem with the following two unique challenges. The first
core problem lies in how to elaborately characterize the diversity of connectivity
patterns observed in HINs for the binary hash code learning. Secondly, after
imposing the binary constraints on the learning model, designing a principled
optimization algorithm is imperative as binary constraints can make the learn-
ing procedure NP-hard. To tackle these challenges, in this paper, we develop a
novel heterogeneous information network hashing algorithm, called HIN2Hash.
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Benefiting from the collective matrix factorization (CMF) [21] technique which
not only supports multi-relational learning but also improves the prediction accu-
racy, HIN2Hash models the diverse relations among nodes in HINs delicately and
then learns unified binary hash codes for each node via a well-designed optimiza-
tion framework. The superiority of HIN2Hash over other conventional methods
rests with lower time cost and memory usage, and meanwhile, HIN2Hash exhibits
competitive performance in some typical learning tasks on HINS, including link
prediction and cross-type node similarity search. The main contributions of our
work are as follow:

• Studying the problem of heterogeneous information network hashing which
aims at (1) speeding up the downstream graph mining tasks on HINs that
heavily depend on the NNS algorithms; and meanwhile (2) reducing the mem-
ory storage usage.

• Proposing a novel CMF based heterogeneous information network hashing
algorithm HIN2Hash which carefully addresses the diversity of node types
and relations among nodes, and encodes nodes into binary hash codes.

• Evaluating the performance of the proposed algorithm on three real-world
datasets and the results illustrate that HIN2Hash can indeed accelerate sim-
ilarity calculation and reduce storage with little sacrifice of performance.

2 Related Work

With the rise of representation learning research on networked data, a wide range
of techniques have been developed in the past few years, especially for homoge-
neous network embedding. For instance, DeepWalk [17] and node2vec [8] are two
typical algorithms based on the skip-gram model by using uniform and parame-
terized random walks, respectively. LINE [24] preserves 1st-order and 2nd-order
proximities separately, to learn two different types of node embeddings. NetMF
[18] is a matrix factorization based framework for network embedding. Different
from the above methods, heterogeneous network embedding approaches fully
consider the heterogeneity of nodes and edges for representation learning. For
example, metapath2vec [5] learns node embeddings based on meta-path-based
random walks and the heterogeneous skip-gram model.

Learning to hash (a.k.a. Hashing) [26], a widely studied solution to the
approximate nearest neighbor search, attracts an enormous number of research
efforts due to its comparable performance and superiority in time and storage.
Typically, hashing algorithms can be classified into two classes: (1) two-stage
approaches which first derive real-valued vectors and then convert them into
binary codes, and (2) discrete hashing learning for binary hash codes directly.
Recently, a number of network embedding algorithms adopt this idea to learn
binary hash codes of nodes and are referred to as network hashing. However,
these methods [13,20] only focus on homogeneous networks, and ignore the var-
ious types of nodes and edges in HINs. Different from existing works, our algo-
rithm is proposed for heterogeneous information network hashing and derive
binary hash codes straightly through joint optimization of hashing and network
embedding.



574 Z. Peng et al.

3 The Proposed Methodology

We first introduce the notations used in this paper. Following the standard
notation, we use bold uppercase letters (e.g.,A) for matrices and bold lowercase
letters (e.g.,b) for vectors. Scalars are indicated as normal lowercase letters
(e.g., c) and uppercase italic letters (e.g.,V ) represent sets. Also, we denote the
i-th row of the matrix A ∈ R

m×n as A(i, :), the j-th column as A(:, j), and the
(i, j)-th entry as A(i, j). As for the matrix norms, the only used matrix norm is
the Frobenius norm, written as ‖A‖F =

√∑m
i=1

∑n
j=1 A(i, j)2. We denote tr(·)

as the matrix trace, and sign(·) : R → {±1} as the round-off function.

3.1 Problem Formulation

With the above-mentioned notations, we now formally define the studied prob-
lem of heterogeneous information network hashing. It should be noted that we
follow the definition of HINs as in [5,7].

Definition 1. Heterogeneous Information Networks. A heterogeneous
information network is defined as a graph G = (V,E, Φ, Ψ) in which each
node v ∈ V and each edge e ∈ E is associated with its own mapping func-
tion Φ(v) : V → E and Ψ(e) : E → R, i.e., each node is mapped to one particular
node type in E and each edge belongs to a specific edge type in R. Furthermore,
we have |E| + |R| > 2.

According to the definition, it is obvious that an HIN G contains two different
types of links, one is the relations among nodes of the same type (intra-type
relations), and the other is the relations among nodes across two different node
types (inter-type relations). Formally, suppose E = {E1, . . . , Eg} indicate a set of
g node types, then there are g intra-type relations and C2

g inter-type relations
theoretically. We adopt a set of matrices A = {A1, . . . ,Ag} to describe the
proximity among nodes within each node type, where Ai ∈ {0, 1}ni×ni (i =
1, . . . , g); and a set of matrices X = {Xij , (i, j = 1, . . . , g)(i �= j)} to represent
interactions among nodes of different types, where Xij ∈ {0, 1}ni×nj denotes
the inter-type relations between Ei and Ej . Taking an HIN represented by A and
X as an input, the problem of heterogeneous information network hashing is
formally defined as follows.

Problem 1. Heterogeneous Information Network Hashing. Given an
HIN G, the problem of heterogeneous information network hashing aims to learn
a function F : V → {±1}d that projects each node v ∈ V to a low-dimensional
Hamming space {±1}d shown in U = {U1, . . . ,Ug}, where Ui ∈ {±1}d×ni (i =
1, . . . , g) and d � |V |. In the learned hashing space {±1}d, two additional con-
straints on the binary codes introduced by [28], i.e., bit uncorrelation and bit
balance (more details later), should be satisfied as much as possible.
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3.2 Heterogeneous Information Network Hashing

As shown in [18], matrix factorization provides a principled framework to unify
the prevalent network embedding methods such as DeepWalk, node2vec, LINE
and achieves comparable performance. Hence, in the following context, we resort
to the matrix factorization to elaborate our developed framework for heteroge-
neous information network hashing. Distinct from conventional homogeneous
networks, in HINs, multiple types of nodes and edges are presented together,
and a particular node type may be involved in more than one types of relations.
In order to fully characterize these complex and diverse connectivity patterns
among nodes, we expand our view from separately factoring the individual con-
nectivity matrix of each node type to collective matrix factorization as it is able
to take full advantage of different types of connections among nodes in HINs for
representation learning.

Mathematically, we first define a pairwise relational schema S = {(i, j)|Ei ∼
Ej , i < j} to include all possible C2

g inter-type relations. Then the objective
function is formulated as:

min
Ui∈U∗

∑
(i,j)∈S

αij‖Xij − UT
i Uj‖2F +

g∑
i=1

βi‖Ai − UT
i Ui‖2F , (1)

where Ui denotes the binary hash codes of all ni nodes belonging to Ei. It should
be noted that Ui has to satisfy the bit uncorrelation and balance constraints
such that U∗ = {Ui ∈ {±1}d×ni |UiUT

i = niId,Ui1ni
= 0}. The constraints

in U∗ maximize the information encoded in the binary embedding space. To be
more specific, the bit uncorrelation constraint ensures that each bit should be as
independent as possible. Meanwhile, the bit balance constraint makes each bit
of almost equal chance of being 1 or -1. In other words, it maximizes the entropy
of each bit. By simultaneously decomposing the relation matrices Xij and Ai

into a product of two matrices in a low-dimensional Hamming space, we obtain
unified binary codes in which different types of relations among nodes can be
captured. The trade-off parameters αij , βi ≥ 0 measure the importance of each
relation matrix in the reconstruction process.

Admittedly, solving Eq. (1) is a challenging task since the existence of binary
constraints makes the optimization process of learning binary hash codes NP-
hard [10] and may cause Eq. (1) infeasible to solve. For the sake of solving it in a
computationally tractable manner, we reformulating Eq. (1) by softening the bit
balance and uncorrelation constraints [13,30]. Considering that the bit balance
condition is easier to deal with, we intend to handle these two constraints sepa-
rately by splitting the constraint set U∗ into U0 = {Ui ∈ {±1}d×ni |Ui1ni

= 0}
and U⊥ = {Ui ∈ {±1}d×ni |UiUT

i = niId}. As for the uncorrelation constraint,
we approximate it by introducing Z = {Zi ∈ R

d×ni |ZiZT
i = niId} and a penalty

term recording the deviation between a feasible Ui and the set Z. Hence, the
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original objective function can be softened as:

min
Ui∈U0,Zi∈Z

∑
(i,j)∈S

αij‖Xij −UT
i Uj‖2F +

g∑
i=1

βi‖Ai−UT
i Ui‖2F +

g∑
i=1

ϕi‖Ui−Zi‖2F .

(2)
The above equation allows a certain discrepancy between the binary hash

codes (e.g.,Ui) and their delegate continuous values (e.g.,Zi), which makes these
constraints computationally tractable. In fact, we can impose a very large param-
eter ϕi to force the matrix Ui to be equal to Zi such that the constraints in
Eq. (1) become feasible. By jointly optimizing the binary codes and the delegate
real variables, we can obtain nearly balanced and uncorrelated Hamming codes
for each node v in the HIN G.

4 The Optimization Algorithm

Due to the existence of binary constraints, we employ the alternating direction
method of multipliers (ADMM) [1] to solve Eq. (2). First, we introduce variables
Ũi (i = 1, . . . , g) to convert Eq. (2) to the following equivalent objective function:

min
Ui∈U0,Zi∈Z

∑
(i,j)∈S

αij‖Xij − UT
i Uj‖2F +

g∑
i=1

βi‖Ai − ŨiUi‖2F

+
g∑

i=1

ϕi‖Ui − Zi‖2F s.t.UT
i = Ũi. (3)

The augmented Lagrange function of Eq. (3) is:

L{ρi}g
i=1

({Ui, Ũi,Zi, Λi}g
i=1)

=
∑

(i,j)∈S

αij‖Xij − UT
i Uj‖2F +

g∑
i=1

βi‖Ai − ŨiUi‖2F +
g∑

i=1

ϕi‖Ui − Zi‖2F

+
g∑

i=1

〈Λi,UT
i − Ũi〉 +

g∑
i=1

ρi

2
‖UT

i − Ũi‖2F s.t.Ui ∈ U0,Zi ∈ Z, (4)

where Λi is Lagrange multiplier, and ρi is the constraint violation penalty param-
eter. Normally, in ADMM, the basic Gauss-Seidel structure in (t+1)-th iteration
is as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ut+1
i = arg minL(Ui, {Ũt

i,Z
t
i, Λ

t
i}g

i=1) (i = 1, . . . , g),

Ũt+1
i = arg minL(Ũi, {Ut+1

i ,Zt
i, Λ

t
i}g

i=1) (i = 1, . . . , g),

Zt+1
i = arg min L(Zi, {Ut+1

i , Ũt+1
i , Λt

i}g
i=1) (i = 1, . . . , g),

Λt+1
i = Λt

i + ρi((Ut+1
i )T − Ũt+1

i ) (i = 1, . . . , g).

(5)

Next, we give the details to show how to solve above-mentioned subproblems.
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Ut+1
i -subproblem. When the other variables are fixed, via the basic algebraic

operations, the optimization problem for Ut+1
i is formulated as:

Ut+1
i = arg max

Ui∈U0

∑
(i,j)∈Si

αijtr(Xij(Ut
j)

T Ui) +
∑

(k,i)∈Si

αkitr(XT
ki(U

t+1
k )T Ui)

+ βitr(AT
i Ũt

iUi) +
ρi

2
tr(Ũt

iUi) − 1
2
tr(Λt

iUi) + ϕitr((Zt
i)

T Ui), (6)

where Si is a subset of S which contains all inter-type relations involving Ui.
Mathematically, Eq. (6) is also equivalent to:

Ut+1
i = arg min

Ui∈U0
‖Ui − Πi‖2F , (7)

where Πi = (
∑

(i,j)∈Si
αijXij(Ut

j)
T +

∑
(k,i)∈Si

αkiXT
ki(U

t+1
k )T + βiAT

i Ũt
i +

ρi

2 Ũt
i − 1

2Λt
i + ϕi(Zt

i)
T )T . It can also be interpreted as projecting Πi onto a

balanced Hamming space and the optimal solution can be easily obtained by:

Ut+1
i = sign(Πi − λ1T

ni
), (8)

where λ = median(Πi) is the row median of Πi and can be viewed as a multiplier
of the bit balance constraint.

Ũt+1
i -subproblem. To achieve Ũt+1

i , we need to solve:

Ũt+1
i = arg min βi‖Ai − ŨiUt+1

i ‖2F +
ρi

2
‖(Ut+1

i )T − Ũi +
Λt

i

ρi
‖2F . (9)

By setting the derivative of Eq. (9) w.r.t. Ũi to zero, we get a closed-form solution
of Ũt+1

i as follows:

Ũt+1
i =

1
2niβi + ρi

(2βiAi(Ut+1
i )T + ρi(Ut+1

i )T + Λt
i). (10)

Zt+1
i -subproblem. The subproblem regarding Zt+1

i is:

Zt+1
i = arg min

Zi∈Z
ϕi‖Ut+1

i − Zi‖2F . (11)

It is easy to derive the update rule of Zi which is equivalent to projecting
Ut+1

i to the Stiefel manifold [6] and an analytical can be derived. Specifically,
on the basis of Von Neumann’s trace inequality [11], we have tr(Ut+1

i ZT
i ) ≤∑d

k=1 σk(Zi)σk(Ut+1
i ), where σk(Zi) is the k-th largest singular value of Zi.

Assume that Ut+1
i = PiΣQT

i is the thin SVD decomposition of Ut+1
i , then

Zt+1
i can be updated according to:

Zt+1
i =

√
niPiQT

i . (12)

The key steps of the proposed algorithm are summarized in Algorithm 1.
By optimizing the network embedding and hashing in a joint fashion, HIN2Hash
generates compact binary hash codes for nodes in HINs. After analysis, the total
time complexity is #iterations ∗ O((g − 1)n2d + n2d + nd2), i.e., #iterations ∗
O(n2d), where n = max{ni}g

i=1 (detailed analysis omitted for brevity).
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Algorithm 1. HIN2Hash: Heterogeneous information network hashing for fast
nearest neighbor search
Input: An HIN G including intra-type relations A and inter-type relations X, the

embedding dimension d, parameters αi, βi and ϕi (i = 1, . . . , g).
Output: The binary hash codes U of all nodes.
1: Initialize Ui, ˜Ui and Λi (i = 1, . . . , g) to be zero matrices, ρi = 10−6 (i = 1, . . . , g),

maxρ = 1010, τ = 1.1, ε = 10−3, t = 0.
2: Initialize Zi (i = 1, . . . , g) by Eq. (12).
3: while objective function in Eq. (2) not converge do
4: Update Ut+1

i (i = 1, . . . , g) by Eq. (8);

5: Update ˜Ut+1
i (i = 1, . . . , g) by Eq. (10);

6: Update Zt+1
i (i = 1, . . . , g) by Eq. (12);

7: Update Lagrange multipliers Λt+1
i (i = 1, . . . , g) via

Λt+1
i = Λt

i + ρi((U
t+1
i )T − ˜Ut+1

i );
8: Update the parameters ρi (i = 1, . . . , g) by

ρi = min(τρi, maxρ);
9: t = t + 1;

10: Check the convergence conditions ‖(Ut
i)

T − ˜Ut
i‖∞<ε (i = 1, . . . , g) and

|F t−F t−1

F t−1 |<ε, where F t is the value of Eq. (2) at the t-th iteration.
11: end while
12: Output the learned hash embedding U for the HIN G.

5 Experiments

In this section, we empirically verify the effectiveness of the proposed algorithm
HIN2Hash on two fundamental tasks on HINs, including link prediction and
cross-type node similarity search [3]. In particular, we attempt to answer the
following three research questions:

Q1 How effective is the proposed algorithm in predicting missing links and
performing cross-type node similarity search?

Q2 Will the binary codes reduce the processing time of the task that rely on
the NNS algorithms?

Q3 Will the binary codes reduce the memory storage costs?

5.1 Datasets

We perform evaluations on three datasets that have been widely used in the pre-
vious research [2,12], including one academic network - AMINER, one infrastruc-
ture system network - INFRA, and one comparative toxicogenomics database
(CTD) network in the biological domain - BIO. The statistics of the datasets
are listed in Table 1, and Fig. 1 is a schematic diagram of their respective link
relations.

AMINER [25] is an academic network in the domain of computer science1

which contains three node types, i.e., papers, authors and conference venues.
1 https://aminer.org/.

https://aminer.org/
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Table 1. Statistics of the used datasets.

AMINER INFRA BIO

#node types 3 3 3

#inter-type relations 2 3 3

#nodes 17,504 8,325 35,631

#intra-type links 107,466 15,138 253,827

#inter-type links 35,229 23,897 75,456

Fig. 1. Abstract network structure diagram.

Specifically, there are three intra-type relations: (1) a paper-paper citation net-
work, (2) an author-author co-authorship network, and (3) a venue-venue cita-
tion network; and two inter-type relations: (1) the paper-author dependency,
and (2) the paper-venue dependency. The abstract network structure diagram
of AMINER is shown in Fig. 1(a).

INFRA [27] involves three critical infrastructure networks: (1) an autonomous
system network2, (2) an airport network3, and (3) a power grid networks. The
above three networks record the intra-type relations, and they are functionally
dependent on each other and form a triangle-shaped inter-type dependency net-
work as shown in Fig. 1(b).

BIO is a CTD network that is constructed based [4,19]. It includes three
intra-type relations which are chemical, disease and gene similarity networks.
Meanwhile, as shown in Fig. 1(c), interactions in the form of inter-type relations
also exist among three types of nodes.

5.2 Compared Methods

We compare HIN2Hash with six state-of-the-art network embedding methods
which can be roughly categorized into two classes: matrix factorization based
methods and skip-gram based methods. The details of compared baseline meth-
ods are given as follow.

2 http://snap.stanford.edu/data/.
3 http://www.levmuchnik.net/Content/Networks/NetworkData.html.

http://snap.stanford.edu/data/
http://www.levmuchnik.net/Content/Networks/NetworkData.html
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• CMF [21]: The collective matrix factorization (CMF) approach can be
regarded as a variant of HIN2Hash. Specifically, it removes the binary con-
straints imposed on the objective function, and encodes nodes into a contin-
uous low-dimensional feature space.

• DeepWalk [17]: DeepWalk learns low-dimensional node representations via
truncated random walks and the skip-gram model.

• LINE [24]: LINE is a large-scale information network embedding method
which preserves the 1st-order and the 2nd-order node proximity. In the
experiments, we concatenate both the 1st and the 2nd order representations
together.

• Node2vec [8]: With parameterized random walks and the skip-gram model,
node2vec explores neighborhood structure around each node in a more flexible
way for embedding representation learning.

• DCF [30]: The discrete collaborative filtering (DCF) algorithm is originally
applied to the recommendation problem. In the experiments, we ignore the
node and edge types, and transform the heterogeneous network G into a large
flattened homogeneous network.

• Metapath2vec [5]: Metapath2vec learns node embeddings in HINs through
meta-path-guided random walks and a heterogeneous skip-gram model.

Among them, DeepWalk, LINE and node2vec are designed for homogeneous
networks. In the experiments, they are performed in a way by treating different
types of nodes and edges as the same type. According to the form of derived
embeddings, the above algorithms can fall into two categories: algorithms for
generating binary hash codes including DCF and HIN2Hash, and the remaining
algorithms for generating real-valued embedding representations.

5.3 Settings and Evaluation Metrics

In terms of the default parameter settings, the dimension of node vectors d is
set to 128 for all approaches. For DeepWalk and node2vec, the context window
size, walk length and the number of walks per node are set to 8, 80, and 10,
respectively. For LINE, the size of negative samples is set to 5. The two param-
eters p and q for parameterized random walks in node2vec are set to 1 and 4,
respectively. As for metapath2vec, the context window size, walk length, the
number of walks per node and the number of negative examples are set as 5, 80,
600, and 5, separately. Regarding the regularization parameters in the proposed
framework, we tune them in the range of {10−3, 10−2, 10−1, 100, 101, 102, 103}.

For the link prediction task, we refer to the experimental settings and the
evaluation metrics in [8]. To be more specific, given a network with a certain
fraction of edges removed, the task is to predict these missing edges. In particular,
we randomly remove 10%, 20% and 50% neighbors of each node and use the rest
for training, while ensuring that the residual network obtained after the edge
removal is fully connected. The criteria we adopted is AUC which is the area
under the ROC curve. Additionally, the negative examples involved in AUC are
built by randomly sampling an equal number of node pairs with no connections
in the original network.
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For the cross-type node similarity search task, we also remove a portion of
edges with the goal of detecting the robustness of HIN2Hash. Since our work is
on heterogeneous network hashing, we focus more on the similarity search across
different types of nodes. For instance, given a particular disease as a query node,
the task can be finding the genes that highly associated with this disease. In
order to quantitatively evaluate the performance of our method, we leverage
MAP to measure the mean average precision over all nodes in the inter-type
relations and the other types of nodes that are connected to the query node are
taken as the ground truth.

5.4 Experimental Results

Quantitative Results. Tables 2 and 3 summarize the AUC and MAP scores
of all the methods, respectively. We have the following observations from these
tables:

• The AUC scores of HIN2Hash are comparable to the best baseline method
on all datasets, regardless of the removal ratio of edges. The MAP scores
of HIN2Hash is slightly worse than DeepWalk and node2vec on INFRA and
BIO. While on the AMINER dataset, our approach achieves the best perfor-
mance.

• In the link prediction task, CMF outperforms HIN2Hash in most cases but
is not as good as ours on the AMINER dataset. In the cross-type node simi-
larity search task, HIN2Hash outperforms CMF on all datasets. Hence, it is
reasonable to conclude that even though transforming the node embeddings
from real-valued vectors to binary hash codes will result in certain informa-
tion loss, but the sacrifice is not much. In some certain cases, it may even be
helpful to filter out the noise in the embedding such that a number of tasks
that heavily reply on the NNS algorithms can be even slightly improved.

• The DCF algorithm, the other algorithm which learns the binary hash codes
for nodes in the network, is almost the worst among all the methods. Their
inferior performance can be attributed to the following two reasons: (1) it does
not differentiate different inter-type and intra-type connections among nodes,
and (2) the optimization algorithm used in DCF loses a lot of information as
its subproblems are NP-hard to solve, while the subproblems in our algorithm
have closed optimal solutions.

• For metapath2vec, it often requires prior human knowledge to define the most
appropriate metapaths. Even though the high-quality matapaths have been
well discovered in the academic datasets such as AMINR, it is difficult to
achieve desirable results on INFRA and BIO with limited human experiences
of the optimal metapaths.

Time Cost. Since the time cost of similarity calculation for CMF, Deep-
Walk, LINE, node2vec and metapath2vec (algorithms for generating real-valued
embeddings) are quite close, Table 4 only illustrates the results of HIN2Hash
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Table 2. AUC scores for link prediction on three datasets.

Algorithm AMINER INFRA BIO

10% 20% 50% 10% 20% 50% 10% 20% 50%

CMF 0.9216 0.9074 0.8807 0.8899 0.8651 0.7612 0.9452 0.9401 0.9314

DeepWalk 0.9624 0.9575 0.9238 0.8764 0.8676 0.8306 0.9241 0.9200 0.9051

LINE 0.9424 0.9348 0.9035 0.8122 0.7244 0.5332 0.6048 0.5963 0.5789

Node2vec 0.9684 0.9568 0.9354 0.8753 0.8662 0.8281 0.9165 0.9076 0.9048

DCF 0.8495 0.8431 0.8055 0.6960 0.6850 0.5555 0.5681 0.5536 0.5337

Metapath2vec 0.9110 0.9008 0.8735 0.8615 0.7820 0.6762 0.8206 0.8027 0.7728

HIN2Hash 0.9426 0.9316 0.9260 0.8313 0.8258 0.7950 0.9104 0.9101 0.8871

The percentage denotes the removal ratio of edges.

Table 3. MAP scores for cross-type node similarity search on three datasets.

Algorithm AMINER INFRA BIO

10% 20% 50% 10% 20% 50% 10% 20% 50%

CMF 0.6480 0.5941 0.5431 0.5914 0.5783 0.5080 0.6446 0.6158 0.5124

DeepWalk 0.5260 0.4949 0.4660 0.8711 0.8436 0.8039 0.7544 0.7439 0.7248

LINE 0.4370 0.4098 0.3875 0.4549 0.4271 0.3867 0.3678 0.3766 0.3601

Node2vec 0.6147 0.5704 0.5285 0.8579 0.8384 0.7927 0.7538 0.7517 0.7223

DCF 0.4083 0.3875 0.3624 0.4016 0.3921 0.3701 0.3445 0.3368 0.3154

Metapath2vec 0.4906 0.4780 0.4666 0.4665 0.4342 0.3980 0.5676 0.5493 0.5152

HIN2Hash 0.7809 0.6978 0.6303 0.8147 0.7760 0.7138 0.7056 0.7006 0.6947

The percentage denotes the removal ratio of edges.

and node2vec in node similarity computation. As can be seen, the similarity cal-
culation on binary codes is significantly faster than that on real-valued vectors
in all cases, which substantiates our motivation. We can attribute this superi-
ority to the fact that similarity calculation in the real-valued vector space is
replaced by the bit operations in a low-dimensional Hamming space. It is well
known that computers are better at performing bit operations than floating-
point arithmetic. Therefore, hashing is a promising and impactful technique in
accelerating computing on large-scale networks.

Memory Usage. This part is carried out on the MATLAB platform. As algo-
rithms for generating real-valued embeddings included in baselines use double
data type to store vector representations, occupying the same storage space,
we show the memory usage of node2vec and ours for storing network embed-
ding/hashing results in Table 5. In theory, only 1 bit is enough to represent
binary numbers. Hence, we design an algorithm to compress the binary codes
and store them with uint8 data type instead of double. As for external mem-
ory, we save the above embeddings as MAT files, where MATLAB compresses
the data using HDF5-variant format. It is obvious to see that compared with
node2vec, HIN2Hash remarkably reduces the memory usage of embeddings with
the same dimensionality. Besides, HIN2Hash only needs to store less than 1 MB
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Table 4. Time cost for similarity calculation of node2vec and HIN2Hash.

Metric Dataset HIN2Hash Node2vec

Time (s) Time (s) Speedup

AUC AMINER 0.013 ± 0.001 0.079 ± 0.004 6.08×
INFRA 0.011 ± 0.001 0.074 ± 0.001 6.73×
BIO 0.021 ± 0.001 0.149 ± 0.013 7.10×

MAP AMINER 49.342 ± 0.196 404.118 ± 1.617 8.19×
INFRA 22.241 ± 0.114 205.192 ± 0.791 9.23×
BIO 355.383 ± 2.834 3077.695 ± 11.079 8.66×

Table 5. Memory usage of embeddings derived by node2vec and HIN2Hash.

Computer memory Dataset HIN2Hash Node2vec

Size (KB) Size (MB) Reduction

Internal memory AMINER 273.50 17.09 64×
INFRA 130.08 8.13 64×
BIO 556.73 34.80 64×

External memory AMINER 274.03 15.76 59×
INFRA 130.43 7.52 59×
BIO 557.61 32.27 59×

of binary codes for all three datasets, which further demonstrates the superiority
of hashing in reducing storage costs.

5.5 Parameter Analysis

Dimensionality and Training Time. Due to space limitation, only the results
of link prediction are given here. Figure 2(a) shows how the AUC scores vary with
different dimensionality d. In AMINER, the best performance is achieved when
d is 128. In INFRA and BIO, the performance enhances with the increasing d
up to 256, but only a little. Therefore, setting d to 128 is reasonable as it is
sufficient to capture the node proximity among nodes, and too large d cannot
gain desired benefits but greatly increases the burden of storage. Also, we have an
interesting observation on BIO as shown in Fig. 2(b). HIN2Hash requires much
less training time (657 s) to obtain competitive results with node2vec, while
node2vec takes about three times (1,711 s). The main reason is that HIN2Hash
benefits from the characteristics of ADMM that produces acceptable results for
practical use within tens of iterations. The reduction of walk length in node2vec
can accelerate training but has the side effect of reduced performance since
walk length has a relatively high impact on the performance of skip-gram based
network embedding algorithms.
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Fig. 2. (a) AUC scores in different dimensions. (b) AUC scores v.s. training time on
BIO dataset. (c) Effects of intra-type relations on link prediction. (d) Effects of intra-
type relations on cross-type node similarity search.

Effects of Intra-type Relations. Among the parameters appeared in Eq. (2),
αi and βi(i = 1, . . . , g) are relatively more important since they control the
participation of inter-type and intra-type relations for binary hash codes learn-
ing, respectively. In this section, we attempt to explore the impact of intra-type
relations on the quality of heterogeneous network hashing. By setting βi to be
zero, only inter-type relations are taken into consideration in the learning pro-
cess, while two kinds of relations are both used when βi does not equal to zero.
Figure 2(c) and (d) shows the performance of link prediction and cross-type
node similarity search in these two scenarios. As can be observed, when the
intra-type relations are ignored, the AUC and MAP scores are lower on all the
three datasets. Hence, we can conclude that the intra-type relations play a vital
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role in heterogeneous network hashing and it is necessary to consider them in
our framework.

6 Conclusions and Future Work

In this work, we study the issue of learning to hash HINs and propose a novel
CMF based heterogeneous information network hashing algorithm HIN2Hash
that projects nodes into a low-dimensional Hamming space instead of Euclidean
space. Experiments on three real-world datasets indicate that HIN2Hash can
achieve comparable results in most cases w.r.t. the link prediction and the cross-
type node similarity search tasks, and even outperforms other prevalent network
embedding techniques in certain cases. Meanwhile, HIN2Hash is superior to
other embedding methods in both computation time and memory usage, due to
the characteristics of the learned discrete binary hash codes. Future work will
concentrate on attributed network hashing and task-oriented network hashing.
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Abstract. The adoption of Electronic Health Records (EHRs) enables
comprehensive analysis for robust clinical decision-making in the rapidly
changing environment. Therefore, using historical and similar patient
records, we investigate how to utilize EHRs to provide effective and
timely treatments and diagnoses for them under the circumstances that
our patients are likely to respond to the therapy. In this paper, We pro-
pose a novel framework that embeds the Markov decision process into
the multivariate time series analysis to research the meaningful distance
among patients in Intensive Care Units (ICU). Specifically, we develop
a novel deep learning model TDBNN that employs Triplet architec-
ture, Dynamic Bayesian Network (DBN), and Recurrent Neural Network
(RNN). Causal correlations among medical events are firstly obtained
by the conditional dependencies in DBN, and to transmit this kind of
correlations over time as temporal features, conditional dependencies in
DBN are used to construct extra connections among RNN units. With
specially-designed connections, the RNN is further utilized as funda-
mental components of the Triplet architecture to study the fine-grained
similarities among patients. The proposed method has been applied to
a real-world ICU dataset MIMIC-III. The experimental results between
our approach and several existing baselines demonstrate that the pro-
posed approach outperforms those methods and provides a promising
direction for the research on clinical decision support.

1 Introduction

Health Information Technology (HIT) has improved the efficiency and quality
of modern healthcare systems while the accumulation of EHRs provides strong
supporting evidence for clinical decision making in an ICU, including lab mea-
surements and vital signs. However, most of the existing methods fail to explicitly
obtain the causal correlations among medical events or transmit such correla-
tions over time as temporal features to obtain underlying changing patterns of
patient conditions, which could help search for similar patients who will sup-
port evidence-based decision making in the ICU. As a key and fundamental
c© Springer Nature Switzerland AG 2019
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component, the study of patient similarity aims at deriving a measurement of
distance in the clinical field to measure the similarity among patients which is
based on their multiple types of medical information. And an effective similarity
metric plays an important part in obtaining accurate alternative treatments and
diagnoses based on historical and similar cases, which could assist in improving
chance of survival in the ICU. Moreover, case-based decision supports employ
similar patients as explanations, making the decisions much more convincing.

Motivation. Explanations of the diagnoses and treatments given by a clinical
decision-making system are crucial for convincing physicians and patients the
reliability of the system. Although multiple strategies for decision support in the
ICU have been proposed to handle tasks such as prediction of disease onsets and
mortality [6,9,22,37], most of them focus on providing effective pattern recogni-
tion solutions and final results directly. When these applications are employed to
provide assessments and diagnoses in the ICU, the explanations become critical
and are mostly offered by physicians wielding individual experiences. However, it
is common that a decision made by machine learning algorithms is not explain-
able to humans. Meanwhile, despite the fact that some proposed methods try to
capture the correlation among medical variables by deriving DBN from EHRs
[2,20], they ignore that EHRs could hardly meet the conditional independence
assumption, an essential property for learning accurate DBN from data. There-
fore, case-based explanations plus the reasons for the similarity of these cases
are indispensable for a reliable decision support system.

Driven by providing similar patients for case-based explanations, we believe
that an effective patient similarity metric is crucial for developing clinical
decision-making system in the ICU. To demonstrate the importance of simi-
lar patients in case-based decision-making system, we illustrate how the illness
severity of two similar patients shown by Sequential Organ Failure Assessment
(SOFA) change over time in Fig. 1. These two patients are similar to each other
according to their International Classification of Diseases, Ninth Revision (ICD-
9) codes, but while one’s SOFA score tends to be stable, the other patient still

Fig. 1. Comparison of SOFA scores change in two similar patients.
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suffers from worrying health status shown by the dramatically changing SOFA
score. With patient similarity metric, there would be effective treatment rec-
ommendations and the deterioration of the second patient’s condition could be
avoided.

Challenge. Numerous deep learning models have been proposed in recent years
to tackle difficulties in the study of the similarities of patients. Distributional
representation models from Natural Language Processing (NLP) field are com-
monly adopted for deriving clinically meaningful representations for medical
events [8,16], which are furthermore employed for patient profiling. Meanwhile,
both sequence modeling methods [7] non-sequence methods [6,25] have been
applied to mine sequential information from comprehensive representations of
patients, while Siamese architecture [21], and Triplet architecture [34], are the
two common choices for studying the similarities of patients.

However, most of the existing methods either combine all the medical events
to treat them as a single time series, or process different variables separately
without developing extra mutual connections, which leads to an obvious neglect
of causal correlations among variables that reveal the fundamental mechanism
of how different systems of the human bodies interact with each other. Mean-
while, they could only handle similarity in category-level, where two patients
are considered to be similar as long as they suffer from a particular disease
that chosen as the class label. This could hardly achieve good performance for
healthcare applications that require the distinction of difference among patients
within the same category, i.e., fine-grained patient similarity. Moreover, similar
cases provided by previous models are complicated to be explained without the
causal correlations among medical indicators revealing the dynamic trends of
how changes in one indicator are affected by changes in others.

Solution. To achieve a better performance in the study of patient similarity,
we propose the Triplet architecture based on Dynamic Bayesian Neural Network
(TDBNN). The main challenges for this framework include capturing causal
dependencies from heterogeneous EHRs regarding data types, data categories,
and frequency of sampling, and transferring the time-invariant dependencies into
correlated temporal features to study long-term memories contained in multivari-
ate time series. To capture the causal correlations among various heterogeneous
medical indicators, DBNs are derived from medical indicators and the condi-
tional dependencies among indicators are then employed to construct specially-
designed connections among Gated Recurrent Units (GRU) at two adjacent
time stamps of RNN, so that the temporal correlations among medical indi-
cators could be utilized and transmitted over time to research long-term memo-
ries while overcoming the constraint of conditional independence assumption in
the DBN. The RNN with specially-designed connections is further employed as
fundamental components of a Triplet architecture, which simultaneously utilize
three patients to study how they are similar to each other.
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Contributions. Our contributions could be summarized as follows:

– To obtain causal correlations among various medical events, the DBN model
is applied to study conditional dependencies among variables, while overcome
multiple challenges brought about by data heterogeneity in EHRs.

– Conditional dependencies in DNBs are employed to develop specially-
designed connections among GRU units in RNN to transmit temporal cor-
relations among medical indicators over time. The combination of DBN and
RNN provides a promising way for capturing temporal causal correlations.

– The Triple architecture is used for fine-grained patient similarity learning,
providing an effective basic component for case-based clinical decision making
and explainable treatment recommendation.

– Comparative experiments are conducted between the proposed method and
some other baselines on a real-world ICU dataset, and the experimental
results have demonstrated the effectiveness of our method.

2 Related Work

Concept Embedding. Deriving meaningful representation vectors that cap-
ture the latent similarities and context of discrete medical events is the primary
objective of medical concept embedding. Choi et al. [9] use skip-gram to project
medical codes into real-value vectors since the chronologically arranged clinical
concepts of a patient are similar to sentences. However, the definition of context
is not as clear as in NLP when it comes to EHRs, so Choi et al. [10] choose to
partition a patient’s event sequence into small chunks, and randomize the order
of events within each chunk to treat them as separate sequences. The Med2Vec
model proposed by Choi et al. [8] takes both code-level and visit-level informa-
tion into account for representation learning. In addition to NLP techniques,
Tran et al. [28] apply Restricted Boltzmann machine (RBM) to increase repre-
sentation interpretation, and Lv et al. [19] use Autoencoders (AEs) to generate
concept vectors from word-based concepts that extracted from the clinical free
text.

Extra Entity Connection. Constructing extra specially-designed connections
in standard neural networks is a promising direction for a better understanding of
the raw data. Santoro et al. [26] introduce a new Relational Memory Core (RMC)
which uses multi-head dot product attention to allow memories to interact with
each other. Li et al. [17] introduce an extension of Graph Neural Networks and
construct special connections among entities according to graph-based inputs,
presenting a novel framework on feature learning for graph-structured inputs.
Beck et al. [1] make further improvements by incorporating the full graph struc-
ture to develop an encoder to encode the complete structural information that
contained in the graph. Oord et al. [23] present the PixelRNNs for large-scale
modeling of natural images, which adopts a convolution to compute at once all
the states along one of the spatial dimensions of the data.
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Sequence Modeling. The RNN is a typical technique for sequence modeling,
and multiple variants such as LSTM and GRU have been proposed for long-term
memories learning. Chen et al. [4] proposed a approach that based on multi-task
RNN to predict the illness severity of patients in the ICU, and Lipton et al.
[18] use LSTM to recognize latent patterns in multivariate time series of clini-
cal measurements to classify diagnoses. Chen et al. [5] use RNN for EEG-based
motion intention recognition. Aside from RNN, many non-sequence models are
presented and used in sequence modeling problem. Van Den Oord et al. [29] use
the dilated convolution skips input values with a certain step to enable the net-
work to operate on sequential data while Vaswani et al. [30] apply convolutional
neural networks with attention mechanism to sequence modeling tasks.

Deep Metric Learning. Deep metric learning aims to learn nonlinear mean-
ingful representations of the raw data which could act as inputs of models for
various different tasks. Muller et al. [21] present a Siamese adaptation of LSTM
for labeled data comprised of pairs of variable-length sequences to learn sentence
similarity. But Siamese architecture treats similarity learning as a classification
problem and is not able to deal with fine-grained similarity. Wang et al. [34]
propose a Triplet architecture for fine-grained image similarity learning, which
characterizes the fine-grained image similarity relationship with a set of triplets.
Ni et al. [22] further refine the problem and present a deep metric learning
framework by optimizing quadruplet loss for fine-grained patient similarity.

Patient Similarity. Learning patient similarity has received enormous atten-
tion in recent years. Chan et al. [3] uses Support Vector Machine (SVM) to
weight the similarity measure, while Wang et al. [32] uses a Local Spline Regres-
sion based method to embed medical events into an intrinsic space to mea-
sure patient similarity. Sun et al. [27] proposed the Locally Supervised Metric
Learning (LSML) that is tailored toward physician feedback, which also combine
multiple similarity measures from multiple physicians. Ni et al. [22] proposed a
deep metric learning framework with a quadruple loss objective function for
fine-grained patient similarity learning. But these methods do not take temporal
information in EHRs into consideration, so Wang et al. [33] present a covolu-
tional matrix factorization for detection of temporal patterns, and Cheng et al.
[6] proposed an adjustable temporal fusion scheme using CNN extracted features.

3 Proposed Method

In this section, we describe the details of our framework for fine-grained patient
similarity learning in the ICU. Firstly, we introduce data preprocessing and how
to obtain meaningful embedding vectors for medical events based on Med2Vec.
Then, we introduce the DBN structure learning process and how to employ the
DBN to develop specially-designed connections among GRU units. At last, we
describe how to apply the Triplet architecture for fine-grained patient similarity
learning. The whole workflow of the proposed method is illustrated in Fig. 2.
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Fig. 2. Workflow of TDBNN. Medical indicators will be firstly extracted from MIMIC
III fed into the DBN Structure Learning module, whose outputs would be used for
special connection design in RNN Based on DBN module, while sequences of medical
events from MIMIC III would act as input to the Embedding Vector Learning
module, whose output would be combined with medical indicators to act as inputs of
the RNN in the RNN Based on DBN module, which would act as the query network
components in the Triplet architecture.

Data Acquisition. Medical Information Mart for Intensive Care (MIMIC) III
[14] is a real-world clinical database comprising health data relating to over
40,000 patients admitted to ICU at the Beth Israel Deaconess Medical Center.
We have applied the latest version MIMIC III v1.4 and carried out a selection of
patient cohort to exclude those patients under the age of 15 or stay in the ICU
for less than 48 h. Children are excluded since the definition of a normal range
for medical indicators are different between adults and children, and the require-
ment for 48 h in ICU guarantees enough data for analysis. Meanwhile, since too
much imputation for missing data may introduce variances with negative effect,
patients with a large amount of missing data are excluded. Totally 3251 patients
are finally selected for modeling and analysis.

To obtain the physiological features of patients, we select 21 medical variables
from EHRs as shown in Table 1 according to studies that make use of MIMIC III
and require comprehensive physiological characteristics of patients [16,18,25]. To
make use of the supervised feedback to the physiological changes of patients from
physicians, we also extract the prescriptions and procedures of these patients,
which are presented as distinct medical events in the form of National Drug
Code (NDC) and Current Procedural Terminology (CPT) code respectively.
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Table 1. List of selected medical indicators from MIMIC III

Id Vital signs Id Lab measurements

1 Systolic blood pressure (BPs) 11 Bicarbonate

2 Mean blood pressure (BPm) 12 Bilirubin

3 Arterial pH 13 Blood urea nitrogen

4 Fractional inspired oxygen (FiO2) 14 Calcium

5 Glasgow coma scale (GCS) 15 Chloride

6 Heart rate (HR) 16 Creatinine

7 Respiratory Rate (RR) 17 Glucose

8 Body temperature 18 Hematocrit

9 Blood oxygen saturation (SpO2) 19 Potassium

10 Partial pressure of carbon dioxide (PaCO2) 20 Sodium

21 White blood cells

Embedding Vector Learning. Low-dimensional and clinically meaningful
representation vectors of medical events are crucial for efficient similarity learn-
ing, and we employ Med2Vec to obtain embedding vectors for the selected vital
signs, lab measurements, prescriptions, and procedures. Firstly, the numerical
values of vital signs and lab measurements are discretized into different clinical
states based on cut-offs from medical knowledge [24], which represent different
physiological states, including unusually low, low, normal, high, and unusually
high. Then these discrete states, as well as prescriptions and procedures, are fur-
ther arranged chronologically to form a sequence of medical events, which would
be divided into different time windows later. Thus, each patient can be repre-
sented by X = {x1, x2, ..., xn}, where xi is the sequence of the medical events
within time window i, and n is the total number of time windows. Different sizes
of time window are considered here, including 6 h, 12 h, 18 h and 24 h. Finally,
these sequences of medical events are fed into Med2Vec to obtain embedding
vectors for medical events. Totally 2868 events are taken into account, and the
length of embedding vectors is set to 200.

DBN Learning. Deriving causal correlations among medical variables as con-
ditional dependencies is the primary purpose of DBN structure learning, and
the causal correlation is the relationship that indicates how changes in a medi-
cal variable is affected by the others, which reveals how different organ systems
interact with each other.

To learn the DBN structure, those medical variables arranged chronologi-
cally are firstly divided into different time windows, and the numerical values
of each vital signs and lab measurements within a time window will be aver-
aged as the new value in that time slot, which would be further discretized into
different physiological states based on clinically meaningful cut-offs known from
medical knowledge. Due to different frequency of sampling, vital signs and lab
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Fig. 3. DBN structure derived from vital signs (a) and lab measurements (b). Each
dynamic variable is represented by a node, and each edge in the graphs represents a
conditional dependency between two variables existing in adjacent time windows. If a
node is not connected to any edge, then the corresponding variable is not affected by
the other variables in previous time windows.

measurements are handled respectively, and the size of time windows for vital
signs is 6 h while it is 12 h for lab measurements. To tackle the missing value
problem, we have imputed those windows without values with the last value
from previous windows, and if no value is sampled for a variable throughout the
entire ICU admission, all the windows will be imputed with a ‘normal’ state. At
last, greedy search and BDe score [13] are employed to learn DBN structures
from the processed dataset. The DBN structures for selected vital signs and lab
measurements are illustrated in Fig. 3(a) and (b) respectively.

Meanwhile, since prescriptions and procedures belong to static variables while
vital signs and lab measurements are dynamic variables [20], these prescriptions
and procedures would be represented by two distinct nodes respectively, which
would act as parent nodes of all the other variables.

RNN Connection Design. How physicians make diagnoses on patients could
be regarded as a Markov decision process, and a DBN could represent the process
by decomposing the temporal evaluation of medical variables into local transition

Time t-1 t t+1 t+nt+2

Procedures

A B

C D

DBN Structure

RNN with Special Designed Connections Based on DBN

Prescriptions

Fig. 4. The RNN with specially-designed connections among GRU units based on DBN
derived from medical indicators. Extra connections are developed among GRU units
based on the DBN, with two data nodes representing information from static variables.
At last, The outputs of GRU units are flattened to form the final output.
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probability. However, applying a DBN alone can not model the decision process
accurately due to the conditional independence assumption, which EHRs can
hardly meet. Besides, DBN can not learn long-term dependencies either.

Thus, we propose to develop extra connections among GRU units in two
adjacent time stamps wielding DBN to learn long-term memories that reveal
underlying temporal patterns in EHRs, so that the Markov decision process is
embedded into RNN as specially-designed connections. For simplicity, suppose
there are four selected medical variables A,B,C, and D, with a DBN indicating
their conditional dependencies as illustrated in Fig. 4, and two static variables
Prescription and Procedures. Accordingly, there are four GRU units at each
time stamp that represent those four variables, and two data nodes which rep-
resent information that derived from prescriptions and procedures.

To propagate information over time, a GRU unit firstly receives the hidden
state h(t) from previous time window t, then it combines information from four
sources to form the input x(t+1) of the current time window using Eq. (1). The
e(t+1) as calculated in Eq. (2) is the mean of all the n embedding vectors cor-
responding to the n different states of a variable in time window t + 1, which
indicate those discrete states assigned to the variable based on medical cut-offs,
and e

(t+1)
i is the embedding vector of the ith status in time window t+ 1. Simi-

larly, there may also be multiple prescriptions and procedures in a time window,
so the embedding vectors of those prescriptions and procedures are averaged
as the second and third sources based on Eqs. (3) and (4) respectively, where p

and q are the numbers of prescriptions and procedures while e
(t)
Pre,u and e

(t)
Pro,v

are the embedding vectors for the uth and vth prescriptions and procedures in
time window t. The final source comes from the variables on which a variable is
conditionally depended in the DBN, and those m outputs from these units are
added up according to Eq. (5). With hidden states from previous time windows
and inputs for current time windows defined, the framework could now work as
a normal GRU-based RNN. At last, the outputs of GRU units are flattened to
form a final output vector.

x(t+1) = e(t+1) + Pre(t) + Pro(t) + C(t) (1)

e(t+1) =
∑n

i=1(e
(t+1)
i )

n
(2)

Pre(t) =

∑q
u=1(e

(t)
Pre,u)

q
(3)

Pro(t) =

∑p
v=1(e

(t)
Pro,v)

p
(4)

C(t) =
m∑

j=1

(h(t)
j ) (5)

Since vital signs and lab measurements are processed respectively due to
different frequency of sampling, two individual RNNs will be developed based
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on the derived DBN structures in Fig. 3(a) and (b), which will run simultaneously
to form a single component of the Triplet architecture.

Triplet Architecture. The Triplet architecture is a commonly used framework
for fine-grained similarity learning tasks. The framework takes information from
three patients of a triplet as inputs, and uses three identical neural networks to
transfer patients’ information into effective representations in the feature space,
which would act as inputs to the distance metric learning layer for distance
calculation. Meanwhile, a triplet of patients contains three patients, namely a
query patient pi, a positive patient p+i and a negative patient p−

i . With a function
S(pi, pj) measuring the similarity between two patients, these three patients
should meet the constraint S(pi, p+i ) > S(pi, p−

j ).
There are three layers in the Triplet architecture. The sampling layer aims

at sampling effective triplets of patients and providing inputs to the model.
Pairwise supervised similarity of patients for triplet sampling and model training
are calculated according to Eq. (6), where LCP() is the function that obtains the
longest common prefix, and La and Lb are the ICD code sets belonging to patient
a and b, while La,i and Lb,j are the ith and jth icd code in La and Lb.

S(La, Lb) =

∑m
i=1

∑n
j=1(|LCP(La,i, Lb,j)|)
|La| × |Lb| (6)

The representation layer feeds medical information of triplets to three identical
RNNs respectively. In our framework, RNNs with specially-designed connec-
tions will act as the three identical components. After obtaining the representa-
tions f(pi), f(p+i ) and f(p−

i ) for patients of a triplet, the metric layer calculates
the square Euclidean distance between two patients to get D(f(pi), f(p+i )) and
D(f(pi), f(p−

i )) respectively. Then the metric layer employs these two distances
to define hinge loss as in Eq. (7), where m represents the preset threshold of the
margin between the distances of two pairs of patients.

L(pi, p+i , p
−
i ) = max {0,m + D(f(pi, p+i )) − D(f(pi), f(p−

i ))} (7)

4 Experiments

To evaluate the performance of TDBNN, we have conducted comparative exper-
iments on a publicly available clinical dataset MIMIC III v1.4, and compared
our model with several baselines in terms of different evaluation metrics. We also
investigate the influence of different sizes of time windows based on which the
embedding vectors for medical events are obtained, in order to reveal the period
of change of patient’s physiological features.

Dataset. We have conducted extensive experiments on a real-world ICU dataset
MIMIC III v1.4. A patient cohort selection is carried out to select adult patients
(age > 15) staying in the ICU for more than 48 h. We do not take those patients
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who entered ICU more than once in a single hospitalization or died into account
either. Totally 3251 patients are finally selected and divided into training set
(80%), test set (10%), and validation set (10%). The number of triples generated
in these three datasets are 1,000,000 for the training set, 10,000 for the testing
set, and 10,000 for the validation set.

The neural network model was implemented with PyTorch and trained on 2
Nvida 1080 Ti GUPs in a fully-supervised manner and the purpose is to mini-
mize the hinge loss in Eq. 7, which was achieved by employing stochastic gradient
descent with Adma update rule [15] with a learning rate of 5×10−4. The imple-
mentation is available at Github1.

Comparison Methods. To evaluate the effectiveness of the proposed TDBNN,
we compare the method with the following baselines and approaches in terms
of different performance metrics. We implemented the first three baselines with
Python ourselves while the rest four methods were implemented with scikit-learn.

1. T-SRNN: A Triplet architecture based on standard RNNs, namely no extra
connections among units in two adjacent time stamps are developed.

2. T-MLP: A Triplet architecture based on Multi-Layer Perceptron (MLP)
inspired by Patient Similarity Deep Metric Learning Framework (PSDML).

3. RV and dCor: A unsupervised method proposed by Zhu et al. [37] that
adopts RV and dCor coefficient to measure linear and non-linear relations
between pairwise patients based on their temporal embedding matrices.

4. ITML: A framework proposed by Eavis et al. [11] that minimizes the differ-
ential relative entropy between two multivariate Gaussians under constraints
on the distance function.

5. LMNN: A method presented by Weingerger et al. [35] that learns a
Mahanalobis distance metric in the kNN classification setting to keep k-
nearest neighbors in the same class, while keep examples from different classes
separated by a large margin.

6. NCA: A supervised learning method introduced by Goldberger et al. [12] for
classifying multivariate data into distinct classes according to a given distance
metric over the data.

7. MMC: A framework introduced by Xing et al. [36] that minimizes the sum
of squared distances between similar examples, while enforcing the sum of
distances between dissimilar examples to be greater than a certain margin.

Different performance metrics are employed to compared TDBNN with those
baselines in terms of different potential clinical applications.

Triplet Similarity Ranking: Given a large number of triplets con-
sisting of patients with different similarities, we calculate the proportion of
correctly ranked triplets as a performance evaluation. Specifically, given a
triplet ti = (pi, p+i , p

−
i ) and the embedding representations f(pi), f(p+i ), f(p−

i ),
we say the triplet is correctly ranked if the the Euclidean distance d+i =
distance(f(pi), f(p)) is smaller than d−

i = distance(f(pi), f(p−
i )).

1 https://github.com/vpccw152c/TDBNN.

https://github.com/vpccw152c/TDBNN
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Classification Based on SOFA: SOFA is a morbidity severity score and
mortality estimation tool developed from a large sample of ICU patients through-
out the world, and it can be divided into two groups: stable stage (SOFA
score< 9) and critical stage (SOFA score≥ 9) [31]. Thus, classification based on
SOFA could indicate whether the obtained embedding vectors could represent
the overall severity of patients. Given a visit, we use Logistic Regression (LR)
to predict the binary SOFA class associated with the visit, and use Area Under
The Curve (AUC) to measure the classification accuracy.

Multi-Lable K-Nearest-Neighbors (MLKNN) Classifier: MLKNN
classifier based on patients’ embedding representations could be used to indi-
cate whether these representations truly reflect the distance among patients,
while the classification result is a reasonable reference for diagnosis. We take
the ten ICD-9 codes that appears most frequently in the selected cohort as class
labels, and observe how Hamming loss changes with the number of neighbors.

Evaluation. Checking whether a model could accurately rank the patients of
a triplet by their pairwise similarities is a sensible strategy to verify its perfor-
mance. Table 2 shows the accuracy of similarity ranking of different methods,
and it is clear that TDBNN achieves the best performance with an accuracy of
82.99%, followed by the figure of T-SRNN at 76.35%. Meanwhile, T-MLP, RV,
and dCor get close accuracy ranging from 62.11% to 64.39%, which show signif-
icant gaps with those of TDBNN and T-SRNN. The remaining three methods,
namely ITML, NCA, and MMC, show another decline in accuracy compared
to all those previous methods and MMC achieves the lowest global accuracy.
Overall, the proposed TDBNN surpasses all the other baselines.

Different frameworks are then evaluated using binary classification of SOFA
score to see whether these representations truly reflect the overall severity of
patients. Note that RV and dCor coefficients have not been taken into account
here, since they do not generate embedding representations for patients that

Table 2. Accuracy of triplet rank-
ing of different frameworks

Index Method Accuracy

1 T-SRNN 76.35%

2 T-MLP 62.11%

3 RV 63.02%

4 dCor 64.39%

5 ITML 55.8%

6 NCA 54.27%

7 MMC 53.84%

8 TDBNN 82.99%

Table 3. AUC of binary SOFA classification
of different methods. Note that RV and dCor
are not compared here since they do not gen-
erate patient representations that used for
classification

Index Method Accuracy

1 T-SRNN 70.59%

2 T-MLP 51.85%

3 ITML 70.77%

4 NCA 71.44%

5 MMC 77.11%

6 TDBNN 82.29%



TDBNN 599

Table 4. Hamming loss of different frameworks

Neighbors K T-SRNN T-MLP ITML NCA MMC TDBNN

5 0.2858 0.2856 0.2874 0.2780 0.2752 0.2858

7 0.2743 0.2778 0.2787 0.2749 0.2651 0.2770

9 0.2722 0.2652 0.2739 0.2811 0.2621 0.2628

11 0.2694 0.2652 0.2682 0.2808 0.2608 0.2616

13 0.2698 0.2620 0.2661 0.2779 0.2618 0.2564

15 0.2720 0.2595 0.2621 0.2768 0.2617 0.2530

17 0.2616 0.2593 0.2629 0.2676 0.2600 0.2464

19 0.2613 0.2579 0.2651 0.2737 0.2644 0.2523

5 7 9 11 13 15 17 19
0.24
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Fig. 5. Hamming loss of different frameworks.

could be used for classification. We convert patients’ SOFA scores into binary
labels with a cutoff value of 9, and use LR to predict the binary SOFA labels while
the performance is evaluated with AUC. The corresponding AUC are shown in
Table 3, and it is obvious that TDBNN achieves a higher AUC than all the other
methods, indicating the effectiveness of the embedding representations obtained
by TDBNN on representing overall severity of patients.

Next, we use MLKNN classification to compare the performance of different
methods. The experimental results are shown in Table 4 and Fig. 5 illustrates
trends of Hamming loss of those methods over different numbers of nearest
neighbors K. The Hamming loss of TDBNN is lower than those of all the other
methods for most of the values that K takes, decreasing modestly from 0.2858 to
0.2464 before getting to the minimum value when K = 17. Meanwhile, the values
of MMC, T-MLP and ITML show a similar trend that decrease steadily with
the increase in the number of nearest neighbors K before they remain roughly
unchanged. By contrast, the losses of NCA and T-SRNN fluctuate throughout
the whole period, showing no tendency to stabilize. Overall, most of the com-
pared methods show a downward trend in Hamming loss except for NCA and
T-SRNN, and the proposed TDBNN outperforms all the other methods.



600 Y. Wang et al.

Finally, to investigate the period of change of patient’s status, we compare
the performance of TDBNN using embedding vectors that obtained from 6-h, 12-
h, 18-h, and 24-h time windows according to all the three performance metrics.
Table 5 presents the results, and it is clear that when the TDBNN model carries
out triplet similarity ranking using embedding vectors derived from 24-h time
window, it achieves a much higher accuracy. The 24-h time window also leads to
the lowest Hamming loss in MLKNN classification and the highest AUC in the
binary classification of SOFA score. Therefore, it is reasonable to regard 24 h as
the period of change of patient’s conditions.

Table 5. Performance comparison of TDBNN based on different time window sizes

Index Time window
size (hours)

Triplet similarity
ranking (Accuracy)

MLKNN classification
(Hamming loss)

Binary classification
of SOFA (AUC)

1 6 54.68% 0.2614 76.25%

2 12 57.68% 0.2612 78.86%

3 18 49.15% 0.261 77.23%

4 24 82.99% 0.2464 82.29%

The experimental results demonstrate that TDBNN achieves better perfor-
mance than all the other methods on patient similarity learning in terms of
different performance evaluation metrics. The comparison between TDBNN and
T-SRNN implies that the specially-designed connections among RNN units help
to transmit underlying dependencies among medical variables, which have a
positive effect on learning patient similarity. Furthermore, both TDBNN and
T-SRNN employ RNN to process sequential information obtained from EHRs,
which achieve far better performances than those methods that do not consider
temporal information. Thus, it is sensible to think that temporal information
plays an important role in deriving meaningful information from EHRs. Mean-
while, the experiment on length of time window for embedding vector learning
shows that 24 h could be the period of change of patient’s conditions.

5 Conclusion

Providing physicians with historical and similar cases assist in making timely
medical decisions for better clinical cares as well as predicting possible chang-
ing trends of patients’ conditions. Causal correlations among medical events in
the form of DBN are employed to develop specially-designed connections among
RNN units, so that both such causal correlations and temporal features could
be used for fine-grained patient similarity. Meanwhile, the changes in medical
indicators following causal correlations could be used to explain the similarities
among patients, making the recommended medical decisions much more convinc-
ing. The TDBNN achieves better performance in terms of multiple performance
metrics, and indicates a promising approach for fine-grained similarity learning.
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To sum up, taking causal correlations among medical indicators into account
and applying such correlations to construct specially-designed connections in
RNN are the most significant advantages of our method. The proposed TDBNN
provides a promising direction for the study of fine-grained patient similarity,
which acts as an important role in medical decision support system.
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Abstract. Analyzing the structure of real-world networks has attracted
much attention over years and cohesive subgraph models are commonly
used to characterize the structure of a network. Recently, a model named
k-Peak is proposed to address the issue failing to detect sparser regions if
the network contains distinct regions of different densities in the cohesive
subgraph models. However, k-Peak only considers the edge connection
(i.e., degree) in the network and the loose structure restricts the effective-
ness of the k-Peak. On the other hand, triangles are fundamental building
blocks of a network and are widely used in the literature. Motivated by
this, in this paper, we propose the k-TriPeak model based on the trian-
gles and study the problem of k-TriPeak decomposition that computes
the k-TriPeak for all possible k values to understand the structure of a
network. Through investigating the drawbacks of the baseline algorithm
following the idea of k-Peak decomposition, we devise a new efficient
algorithm to perform the k-TriPeak decomposition. Our new algorithm
adopts a top-down decomposition paradigm and integrates two novel
upper bounds with which large unnecessary computation can be pruned.
We conduct extensive experiments on several large real-world datasets
and the experimental results demonstrate the efficiency and effectiveness
of our proposed algorithm.

1 Introduction

Due to the rapid development of information technology, we are witnessing the
proliferation of graph data based applications over recent years. This has led to
huge research efforts devoted to real-world network analytics [2,4–6,10,16,23,
27]. Among them, identifying cohesive subgraphs to characterize the structure
of real-world networks has been extensively studied. Observing that the cohesive
subgraph models are often computed globally and fail to detect sparser regions
if the network contains distinct regions of different densities, Govindan et al.
proposed a new model named k-Peak recently [7]. By conducting the k-Peak
decomposition (compute the k-Peak for all possible k values in the graph), [7]
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11446, pp. 604–621, 2019.
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can divide the graph into separate ’mountains’ and can find the centers of distinct
regions in the graph.

Motivation. The k-Peak decomposition addresses the issue of neglecting sparser
regions in the existing cohesive subgraph model [7], however, since k-Peak only
considers the edge connection (i.e., degree) between nodes in the subgraph,
the returned results are often not that cohesive [5,14,28]. The returned loose
structure restricts the effectiveness of the k-Peak decomposition. On the other
hand, triangles are higher-order connectivity structure than degree [3,19] and
are known as fundamental building blocks of a network [12,17,18]. Therefore,
triangles are commonly treated as the building blocks for the cohesive subgraph
model in the literature [5,8,16,27]. Motivated by this, in this paper, we propose
a new model named k-TriPeak based on the triangles and study the k-TriPeak
decomposition problem. The model inherits the ability to find the centers of
distinct regions of k-Peak model and avoids the problem of incohesiveness for
the returned result. Formally, given a graph G, the support of an edge is the
number of triangles containing it. A k-TriContour of G is the largest subgraph of
G such that (i) the support of edges in it is at least k − 2; (ii) the k-TriContour
does not include edges from a higher TriContour. The k-TriPeak of G is the
union of j-TriContours, where j ≥ k. And k-TriPeak decomposition computes
the k-TriPeak for all possible k values.

Fig. 1. k-Peak vs k-TriPeak

Example 1. Consider the graph in Fig. 1, we show the 3-Peak and 5-TriPeak of
G (The counterpart of 3-Peak is 5-TriPeak since the support of edges is at least
k − 2 in the definition of k-TriContour). As shown in Fig. 1, since 3-Peak only
considers the edge connection between nodes, the incohesive subgraph induced by
v11, . . . , v15 is also returned. On the contrary, this incohesive subgraph is filtered
out by the 5-TriPeak. In the literature, another similar cohesive subgraph model
defined based triangles, k-truss, is also studied [5]. It is defined as the largest
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subgraph of G in which every edge is contained in at least (k−2) triangles within
the subgraph. The problem of k-truss is that it is unable to find the centers of
distinct regions in the graph. As shown in Fig. 1, two centers of regions exist in
G, namely {v1, . . . , v5}, {v5, . . . , v10}. For k-truss model, if we return the 6-truss,
the center {v1, . . . , v5} will be missed; if we return 5-truss, the two centers are
returned but the returned result also contains node v11 and v16 and these two
nodes are loosely connected with each other and are not what we want. On the
contrary, 5-TriPeak can find these two centers.

Applications. k-TriPeak decomposition can be used in many applications. For
example, in the community detection, since k-TriPeak model can find central
regions with different densities, those sparser communities in the graph will not
be missed if the k-TriPeak model is adopted [8,14]. Similar to k-Peak decompo-
sition, k-TriPeak decomposition can also be used to visualize the graph through
the mountain plot technique presented in [7]. Moreover, understanding the hier-
archical structure facilitates graph-topology analysis [1,22]. The k-TriPeaks of
a graph for all k values form a hierarchical structure. It is clear that k-TriPeak
decomposition is helpful for understanding the hierarchical structure in a graph.

Our Approach. To perform the k-TriPeak decomposition, a direct approach
is following the idea of k-Peak decomposition in [7]. In [7], the k-Peak decom-
position is achieved by iteratively computing the k-core with maximum k value
in the graph through the k-core decomposition algorithm [2] and removing the
computed k-core until the graph is empty. Following the idea, we can implement
the k-TriPeak decomposition through k-truss decomposition algorithm [15] in
a similar way. However, as analysed in Sect. 3, lots of unnecessary edges will
involve in the expensive k-truss decomposition procedure, which leads to the
inefficiency of this direct approach. To address the drawback of this approach,
in this paper, we propose a new algorithm for the k-TriPeak decomposition.
Our new algorithm adopts a top-down decomposition paradigm in which k is
explored in decreasing order. Based on this top-down decomposition paradigm,
we design two effective but lightweight upper bounding techniques. Using these
two upper bounding techniques, we can prune the unpromising edges involving
in the expensive k-truss decomposition procedure and the unnecessary compu-
tation in the direct approach can be significantly reduced.

Contribution. In this paper, we make the following contributions:

(1) The k-TriPeak model to find the centers of distinct regions in the graph. We
investigate the drawbacks of existing k-Peak model and propose a new model,
namely k-TriPeak. Based on the k-TriPeak model, we study the problem of
k-TriPeak decomposition. To the best of our knowledge, this is the first work
to study the problem of efficient k-TriPeak decomposition.

(2) An efficient algorithm for k-TriPeak decomposition. We present an efficient
algorithm to perform the k-TriPeak decomposition. In our algorithm, we
adopt a top-down decomposition paradigm and devise a static upper bound
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and a dynamic upper bound to reduce the unnecessary computation. More-
over, we also explore efficient techniques with which we can maintain the
dynamic upper bound in O(1) time for each update during the decomposi-
tion process.

(3) Extensive performance studies on large real-world datasets. We conduct
extensive performance studies using large real-world datasets. The experi-
mental results demonstrate the effectiveness of our proposed model and the
efficiency and scalability of the devised decomposition algorithm.

2 Preliminaries

We model a undirected graph as G(V,E), where V (G) represents the set of nodes
and E(G) represents the set of edges in G. We denote the number of nodes as n
and the number of edges as m, i.e., n = |V (G)| and m = |E(G)|. We define the
size of G, denoted by |G|, as |G| = m+n. For a node u ∈ V (G), we use nbr(u,G)
to denote the neighbor set of u in G, i.e., nbr(u,G) = {v ∈ V (G)|(u, v) ∈ E(G)}.
The degree of a node u ∈ V (G), denoted by deg(u,G), is the number of neighbors
of u, i.e., deg(u,G) = |nbr(u,G)|. A triangle in G is a cycle of length 3. In this
paper, we omit G in the notations when it is explicit in context.

Definition 1 (Support). Given a graph G, the support of an edge e ∈ E(G),
denoted by sup(e,G), is the number of triangles that contain e in G.

Definition 2 (k-TriContour). Given a graph G, a subgraph S is the k-
TriContour of G, denoted by Ck(G), if (i) sup(e, S) ≥ k − 2 for every edge
e ∈ S; (ii) the k-TriContour does not include edges from a higher TriContour;
(iii) S is maximal, i.e., any subgraph S′ ⊃ S is not a k-TriContour.

Definition 3 (k-TriPeak). Given a graph G, a k-TriPeak, denoted by Pk(G),
is the union of j-TriContours, where j ≥ k.

Definition 4 (TriPeak Number). The TriPeak number of an edge e in G,
denoted by κ(e,G), is the value k such that e is contained in the k-TriContour.

Problem Statement. In this paper, we study the problem of k-TriPeak decom-
position that computes the k-TriPeak for all possible k values in the given graph.
Since the k-TriPeak consists of the edges with TriPeak number at least k. The k-
TriPeak decomposition problem equals to compute the TriPeak number for each
edge in the given graph. Therefore, in this paper, we aim to design an efficient
algorithm to perform the assignment of TriPeak number to each edge.

Example 2. Consider the graph G illustrated in Fig. 2, we also show its cor-
responding k-TriContour and k-TriPeak in Fig. 2. For example, for the edge
(v8, v9), its support is 3 since it is contained in triangles {v8, v9, v6}, {v8, v9,
v10}, {v8, v9, v11}. The 5-TriContour of G is the subgraph induced by nodes
{v5, v6, v8 . . . v15} except edge (v5, v6) and (v10, v13) as this is the maximal sub-
graph such that the support for each edge in it is 3 and it does not contain any
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Fig. 2. An example graph G

edges from a k-TriContour with k > 5. Note that although (v1, v7) has support
3, it is not in the 5-TriContour of G. This is because (v1, v7) is contained in
{v1, v7, v2}, {v1, v7, v3}, {v1, v7, v4} but edges (v7, v2), (v7, v3) and (v7, v4) are in
the 6-TriContour of G. After the TriPeak decomposition, all the TriPeak number
of edge can be obtained. For example, κ((v6, v7)) = 6 as it is in the 6-TriContour
and κ((v10, v13)) is 3 as it is in the 3-TriContour.

3 Baseline k-TriPeak Decomposition Algorithm

Inspired by the solution proposed in [7] to perform the Peak decomposition, we
present a baseline solution for the TriPeak decomposition problem in this section.
In [7], to conduct the Peak decomposition, it iteratively computes the k-core with
maximum k value in the graph by the k-core decomposition algorithm [2] and
removing the computed k-core until the graph is empty. Following the same idea,
we can perform the TriPeak decomposition through the k-truss decomposition
[15] based on the following lemma:

Lemma 1. Given a graph G, let kmax be the maximum value such that the
corresponding k-truss in G, denoted by Tkmax

(G), is not empty, then Tkmax
(G) =

Pkmax
(G).

Proof. According to Definition 2, Ckmax
(G) = Tkmax

(G) since there doesn’t exist
Ck(G) with k > kmax, otherwise such Ck(G) is also a Tk(G) that k > kmax.
And by Definition 3, Pkmax

(G) is the union of Cj(G) where j ≥ kmax. Thus
Pkmax

(G) = Ckmax
(G) = Tkmax

(G).

Based on Lemma 1, for a given graph G, the kmax-truss and kmax-TriPeak in
G are the same, which means the TriPeak number of edges in Tkmax

(G) equals
to kmax exactly. Moreover, based on Definitions 2 and 4, the edges with TriPeak
number k have no impact on the TriPeak number of edges whose TriPeak number
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Algorithm 1. Baseline(Graph G)
1: while not all edges in G are removed do

2: Ckmax ← maxTruss(G);
3: for each edge e ∈ Ckmax do
4: κ(e) ← kmax;
5: remove e from G;

6: procedure maxTruss(Graph G)
7: compute sup(e) for each edge e ∈ E(G) using the triangle counting algorithm [9];

8: sort all edges in ascending order of their support;

9: kmax ← 2;
10: while not all edges in G are removed do

11: let e = (u, v) be the edge with the lowest support in G; (assume deg(u) ≤ deg(v))
12: k ← sup(e) + 2;

13: kmax ← max(kmax, k);
14: Φkmax ← Φkmax ∪ {e};
15: for each w ∈ nbr(u) do
16: if (v, w) ∈ Gk then

17: sup((u, w)) ← sup((u, w)) − 1;

18: sup((v, w)) ← sup((v, w)) − 1;
19: update the new positions of (u, w) and (v, w) in the sorted edge array;

20: remove e from G;

21: return Φkmax ;

is k′, where k′ < k. In other words, for a graph G, if we remove the edges with
TriPeak number k from G, the edges with TriPeak number k′ in G and the
new generated graph G′ after the edge removal are the same. Therefore, we can
conduct the TriPeak decomposition by iteratively computing the k-truss with
the maximum k value and removing the edges in the graph until the graph is
empty.

Algorithm. Based on the above analysis, the baseline algorithm, Baseline, is
shown in Algorithm 1. The baseline algorithm iteratively computes and removes
the k-truss with the maximum k value of G at each iteration (line 2–5). If an
edge is contained in k-truss with the maximum k value of G at current iteration,
the TriPeak number of it will be assigned (line 4) and it will be removed from G
then (line 5). This process is carried out until all edges in G are removed (line 1).

Procedure maxTruss computes the k-truss with the maximum k value in G. It
first computes the support of each edge in G by the triangle counting algorithm
[9] (line 7). Then it sorts all the edges in ascending order of their supports and
keep them in an array (line 8). After that, the algorithm iteratively removes
the edge e with the lowest support, which is the first edge in the sorted edge
array, and add e into the result set of Φkmax

(line 11–14). When removing e, the
supports of all other edges that form a triangle with e should be decreased, and
their new positions in the sorted edge array should be updated (line 15–20). This
algorithm terminates after all edges in G are removed (line 10) and returns the
k-truss with the maximum k value (line 21). [15] shows that the time complexity
of procedure maxTruss is O(m1.5).
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Drawbacks of the Baseline Solution. In the baseline algorithm, we conduct
the TriPeak decomposition through k-truss decomposition iteratively. In each
iteration, the edges with κ(e) = kmax are assigned by computing the k-truss of G
with the maximum k value in current iteration (line 4). For a specific iteration,
an ideal algorithm is that the computation in this iteration only involves the
edges with κ(e) = kmax. However, in the baseline algorithm, all the edges in the
remaining graph are taken as the input for the k-truss decomposition algorithm
(line 2). Assume that there is an edge e with a small TriPeak number k′ in
G, it will participate in all iterations computing k-truss where k ≥ k′ in the
baseline algorithm. Therefore, lots of redundant computation exist in the baseline
algorithm and it is inefficient to conduct TriPeak decomposition considering the
time complexity of k-truss decomposition is O(m1.5).

Fig. 3. A running example of Algorithm 1

Example 3. Figure 3 shows a running example of Algorithm 1 on the graph G
in Fig. 2. It first performs k-truss decomposition on the whole graph and finds
6-TriPeak. Then, it removes edges in the 6-TriPeak and performs k-truss decom-
position on all remaining edges to find the 5-TriContour on the remaining graph.
The procedure terminates when all the edges are removed. As shown in Fig. 3,
although the TriPeak number of edges incident to v1, v16, v17, v18 and (v10, v13)
is not 5, all of these edges involve the k-truss decomposition to compute 5-
TriContour on the remaining graph, which leads to the inefficiency of Algo-
rithm 1.

4 Our New Approach

To overcome the drawbacks of the baseline solution, we propose a new paradigm
for the TriPeak decomposition problem. In this section, we first present an
overview of the new paradigm in Sect. 4.1. Then, we show our concrete tech-
niques in Sects. 4.2 and 4.3, respectively.
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4.1 A New Top-Down Decomposition Paradigm

In the baseline algorithm (Algorithm 1), in a specific iteration, we compute the
TriPeak number for the edges with κ(e) = kmax, where kmax is the maximum
k value such that the corresponding k-truss exists in the remaining graph of
current iteration. Since the kmax for current iteration cannot be determined in
advance, it has to conduct the truss decomposition on the graphs consisting
of the edges with κ(e) ≤ kmax, which leads to the inefficiency of the baseline
algorithm for the TriPeak decomposition problem. On the other hand, based on
Lemma 1, we know the maximum TriPeak number for all edges in G equals to
the maximum k value such that the k-truss exists in the original input graph.
For brevity, we denote it as κmax. In other words, we know the TriPeak number
for all edges of G is in the range from 1 to κmax. According to the definition of
TriPeak decomposition, the essence of the problem is to determine the TriPeak
number for each edge. Therefore, to perform the TriPeak decomposition, we can
iterate all the possible TriPeak number of the graph in decreasing order based
on their values and compuate the edges whose TriPeak number equals to the
specific TriPeak number. The benefit of this paradigm is that it is possible to
prune the edge with κ(e) < k in a specific iteration as we know the TriPeak
number k to be handled in each iteration in advance. In this way, we can reduce
the redundant computation in the baseline algorithm caused by edges with small
TriPeak number involving truss decomposition many times.

Fig. 4. The new paradigm

Algorithm Framework. Following the above analysis, the new TriPeak decom-
position paradigm is illustrated in Fig. 4. Staring from κmax, the paradigm com-
putes the TriPeak number for the edges in decreasing order of k. For a specific
k, the edges with κ(e) = k are computed. As analysed above, we aim to limit the
edges involving the truss computation in this step to the edges with κ(e) = k.
However, this goal is hard to achieve. Therefore, we compute upper bounds of
TriPeak number for the edges and use these upper bounds to prune the useless
edges. Specifically, when processing a specific k (without loss of generality, we
denote the input graph regarding k as Gk), it first prunes the edges whose upper
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bound of TriPeak number is less than k, i.e., κ(e) < k. We denote the pruned
graph as G′

k. Then, we determine the edges with κ(e) = k by computing the
k-truss on G′

k. After that, the edges with κ(e) = k are removed from Gk and
the remaining graph are treated as the input graph for the next iteration. The
process terminates when Gk is empty.

4.2 Upper Bounding Techniques

As analysed in Sect. 4.1, the key point for the efficiency of the new paradigm is
tight upper bounds of κ(e). To achieve this goal, in this part, we will introduce
two kinds of upper bounding techniques for κ(e).

A Static Upper Bound. Based on the definition of TriPeak number, a direct
upper bound of the TriPeak number of the edges in G can be obtained by the
truss number:

Definition 5 (Truss Number). Given a graph G, the truss number of an edge
e in G, denoted by φ(e), is the maximal number of k such that e is contained in
a k-truss.

Lemma 2. Let e be an edge in G, φ(e) is the truss number of e, and κ(e) is the
TriPeak number of e, then φ(e) ≥ κ(e).

Proof. By the definition of k-TriContour, every edge in k-TriContour has no less
than k − 2 triangles inside k-TriContour, which indicates that the k-TriContour
is a part of k-truss. Thus if e is in k-TriContour, it must also be in k-truss. Hence
φ(e) ≥ κ(e) holds.

The truss number for each edge can be easily obtained through the k-truss
decomposition algorithm. However, since k-TriContour does not consider the
support from triangles in higher TriContours, as our decomposition paradigm
progresses, the pruning power of truss number weakens and the edges with
φ(e) > κ(e) accumulate more and more. Therefore, we propose another tight
but lightweight upper bound for κ(e). The upper bound is defined based on Gk

(the input graph of our paradigm when processing a specific k, i.e., the graph
after removing all the edges with κ(e) > k) and is dynamically maintained as
our decomposition paradigm progresses.

A Dynamic Upper Bound. Given an edge (u, v) ∈ E(Gk), sup((u, v), Gk) be
the support of e = (u, v) in Gk. For a node u ∈ V (Gk), let h(u,Gk) returns
the maximum value h such that there exist at least h neighbours v of u with
sup((u, v), Gk) ≥ h. We define λ(e,Gk) = min{sup(e,Gk), h(u,Gk), h(v,Gk)} +
2. And we can prove that for any arbitrary valid k in our paradigm, λ(e,Gk) is
an upper bound of κ(e,G), which is shown in the following lemma:

Lemma 3. Let e be an edge in G, then λ(e,Gk) ≥ κ(e,G).
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Algorithm 2. TriPeakDecom(Graph G)
1: compute κmax and sup(e), φ(e) for all edges by maxTruss in Algorithm 1;
2: compute h(u) for each node u ∈ V (G);
3: for each e = (u, v) ∈ E(G) do
4: λ(e) ← min{sup(e), h(u), h(v)} + 2;
5: κ(e) ← min{λ(e), φ(e)};

6: k ← κmax; Gk ← G;
7: while Gk �= ∅ do
8: G′

k ← {e|e ∈ E(Gk), κ(e) ≥ k};
9: Ck′ ← maxTruss (G′

k)
10: if k′ = k then
11: S ← ∅;
12: for each edge e = (u, v) ∈ Ck′ (assume deg(u) ≤ deg(v)) do
13: κ(e) ← k; remove e from Gk;
14: update h(u), h(v);
15: add u (or v) into S if h(u) (or h(v)) is changed;
16: for each w ∈ nbr(u) do
17: if (v, w) ∈ Gk then
18: sup((u, w)) ← sup((u, w)) − 1; sup((v, w)) ← sup((v, w)) − 1;
19: update h(w), h(u), h(v) and λ((u, w)) and λ((v, w));
20: add u(v or w) into S if h(u) (h(v) or h(w)) is changed;

21: for each node w in S do
22: update κ(e) for each edge e incident to w as line 4-5;

23: Gk−1 ← Gk; k ← k − 1;

Proof. Since e = (u, v) is still remained in Gk, we know Cκ(e,G)(G) ⊆ Gk. And
within Cκ(e,G)(G), we know that sup(e, Cκ(e,G)(G)) + 2 ≥ κ(e,G), h(u,Cκ(e,G)

(G)) + 2 ≥ κ(e,G) and h(v, Cκ(e,G)(G)) + 2 ≥ κ(e,G). Thus λ(e,Gk) =
min{sup(e,Gk), h(u,Gk), h(v,Gk)} + 2 ≥ min{sup(e, Cκ(e,G)(G)), h(u,Cκ(e,G)

(G)), h(v, Cκ(e,G)(G))} + 2 ≥ κ(e,G).

4.3 Our k-TriPeak Decomposition Algorithm

In this part, we present our algorithm to conduct the TriPeak decomposition.
With the new decomposition paradigm and upper bounding techniques, the
only challenge is integrating the upper bounding techniques into decomposi-
tion paradigm efficiently, especially the maintenance of upper bound λ(e,Gk).
This part addresses this challenge.

Algorithm. Our algorithm, TriPeakDecom, is shown in Algorithm 2. It first
computes the κmax and initializes the auxiliary information for the upper bounds
(line 1–5). Then, it conduct the TriPeak decomposition following the new top-
down paradigm until the graph is empty (line 6–23).

Specifically, it first invokes procedure maxTruss in Algorithm 1 to compute
κmax, sup(e) and φ(e) for each edge e (φ(e) equals to kmax when e is removed
from G in line 20 of Algorithm 1). Then it computes h(u) for each node u based
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on the supports of edges incident to u (line 2). At last, λ(e) for each edge e
is assigned according to its definition and κ(e) of each edge e is initialized as
min{λ(e), φ(e)} (line 4–5).

Then, it conducts the TriPeak decomposition iteratively starting with k =
κmax and Gk = G (line 6) and the decomposition terminates when Gk is empty
(line 7). In a specific iteration processing k, it first extracts G′

k from Gk with
edges of which the upper bound κ(e) is no less than k (line 8). This step filters
out the unpromising edges. Then it computes the Ck′ of G′

k by the maxTruss
procedure (line 9). If k′ = k, for each edge e = (u, v) ∈ C ′

k, it assigns κ(e) = k
and removes the edge from Gk (line 13). The remaining work is to maintain
the incorrect κ(e) caused by the removal of edges. As φ(e) is fixed in the whole
process, we only need to find the edges whose λ(e) changes after the edge removal.
To achieve this goal, TriPeakDecom uses a set S to store the nodes u that h(u)
has changed in the iteration since this change may influence λ(e) of any edges
incident to u (line 11). Regarding a removed edge (u, v), for u, v and each
common neighbor w of u and v, it decreases the support of (u,w) and (v, w)
(line 18), updates h(u), h(v) and h(w) (line 14, 19) and λ((u,w)) and λ((v, w))
(line 19). If a node u whose h(u) is changed, adds u into S (line 15, 20). At the
end of iteration, for each node w ∈ S, it updates κ(e) for all edges incident to
w, since the change of h(w) may change κ(e) (line 21–22). When an iteration
finishes, k is decreased and the remaining edges are be taken as the input graph
for the next iteration (line 23).

Efficient Maintenance of λ(e,Gk). In Algorithm 2, we maintain λ(e,Gk)
dynamically as the decomposition processes (line 19, 22). Based on the definition
of λ(e,Gk), for an edge e = (u, v), the key to obtain λ(e,Gk) is to compute
h(u,Gk) and h(v,Gk). However, the time complexity to compute h(u,Gk) and
h(v,Gk) on the fly based on the edge support maintained in Algorithm 2 is at
least O(max{deg(u,Gk), deg(v,Gk)}). Since h(u,Gk) is recomputed frequently in
Algorithm 2 (line 14, 19), this approach is inefficient. To improve the efficiency
to maintain h(u), for each node u, besides h(u), we maintain the number of
edges incident to u with different support values, respectively, i.e., cntui , which
represents the number of edges incident to u with support equals i. Moreover, we
also maintain cntu≥h(u) that stores the number of edges incident to u with support
not less than h(u). During the decomposition, when the support of an edge
e = (u, v) decrease from i to j, we just decrease cntui and cntvi by 1 and increase
cntuj and cntvj by 1. And for the node u (the same as v), if i ≥ h(u), j < h(u)
and if cntu≥h(u) > h(u), we decrease cntu≥h(u) by 1; and if cntu≥h(u) = h(u), we
decrease h(u) by 1 and update cntu≥h(u) as cntu≥h(u) + cntuh(u) − 1. Otherwise, we
just keep h(u) and cntu≥h(u) unchanged. In this way, for the operation updating
h(u) regarding a node u in line 14 and 19 in Algorithm 2, we can finish it in
O(1) time. As a result, for each edge e, the λ(e,Gk) are maintained in O(1) in
the decomposition procedure.
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Fig. 5. A running example of Algorithm 2

Example 4. Figure 5 shows a running example of Algorithm 2 on the graph G
in Fig. 2. Similar to Algorithm 1, it first performs truss decomposition and finds
6-TriPeak. Then, it removes edges in the 6-TriPeak and performs truss decom-
position to find the 5-TriContour. Different from Algorithm 1, when performing
the k-truss decomposition to find 5-TriContour, it first prunes the edges with
κ(e) < 5. For example, the edge (v10, v13) is pruned by static upper bound as
φ((v10, v13)) < 5 though λ((v10, v13)) ≥ 5; edge (v1, v7) is pruned by dynamic
upper bound as λ((v1, v7)) < 5 though φ((v1, v7)) ≥ 5. As illustrated in Fig. 5,
Algorithm 2 significantly reduces the number of unnecessary edges involving the
procedure of truss decomposition compared with Algorithm 1.

Theorem 1. Given a graph G, the running time of Algorithm 2 can be bounded
by O(κmax · m1.5).

Proof. The whole algorithm can be divided into two stages, the initialization
stage (line 1–6) and the main iteration stage (line 7–23). Line 1 invokes maxTruss
procedure using O(m1.5) time. Line 2–5 can be done in O(m) time. In the main
iteration stage, line 9 takes O(m1.5) time. Line 13–15 and line 18–20 can be done
in constant time, and line 21–22 requires O(m) time. Now the only question left
is what is the number of loops in line 12 and 16. For a certain node u, line 16 is
bounded by deg(u), and line 12 is bounded by |nbr≥u|, which is the number of
neighbors of u whose degree is not smaller than u. Thus line 12–20 can be done in
O(

∑
u∈Gk

(deg(u) · |nbr≥u|)) time, which is bounded by O(m1.5). This is because
if deg(u) ≤ √

m, |nbr≥u| ≤ deg(u) ≤ √
m and

∑
u∈Gk

(deg(u) · |nbr≥u|) ≤ m1.5.
If deg(u) >

√
m, |nbr≥u| ≤ √

m as well for deg(u) · |nbr≥u| ≤ ∑
v∈|nbr≥u| deg(v) <

2m, and
∑

u∈Gk
(deg(u) · |nbr≥u|) ≤ m1.5. The number of iterations is bounded

by κmax. Thus, the the running time of Algorithm 2 can be bounded by O(κmax ·
m1.5).
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5 Performance Studies

In this section, we evaluate the effectiveness of our model and the efficiency
and scalability of our proposed algorithm. The experiments are conducted on a
machine with an Intel Xeon 2.20 GHz CPU and 128 GB memory running Red
Hat Linux 4.8.5, 64 bit.

Table 1. Datasets used in experiments

Datasets Type Number of nodes Number of edges Average degree κmax

DBLP Citation 317,080 1,049,866 6.62 114

Livemocha Social 104,103 2,193,083 42.13 27

Flickr Misc 105,938 2,316,948 43.74 574

Flixster Social 2,523,386 7,918,801 6.28 47

Skitter Computer 1,696,415 11,095,298 13.08 68

LiveJournal Social 3,997,962 34,681,189 17.35 352

Datasets. In our experiments, we evaluate the algorithms on six publicly avail-
able real-world datasets as listed in Table 1. Of these, DBLP and LiveJournal
are downloaded from SNAP1, and the others are downloaded from KONECT 2.

Algorithms. We implement and compare the following four algorithms:

• Baseline: Algorithm 1
• TriPeakDecoms: TriPeak decomposition algorithm with static upper bound

only.
• TriPeakDecomd: TriPeak decomposition algorithm with dynamic upper bound

only.
• TriPeakDecom: Algorithm 2

All algorithms are implemented in C++ and compiled with GNU GCC 4.8.5
using optimization level 2. The time cost of the algorithm is measured as the
amount of elapsed wall-clock time during the program execution.

Exp-1: Effectiveness. We evaluate the effectiveness of k-TriPeak and k-Peak
by examining the quality of detected subgraph via the clustering coefficient [18]
metric. Clustering coefficient (CC) indicates the tendency of nodes in a subgraph
to cluster together. Thus, high clustering coefficient means high probability that
the connections inside the detected subgraph are dense. In this experiment, we
find all k-TriPeaks and k-Peaks with different k values and compute the clus-
tering coefficient of them. Since the distributions of k in findings of k-TriPeak
and k-Peak are quite different, here we compare the clustering coefficient of k1-
TriPeak and k2-Peak of similar size even if k1 �= k2. The results are shown in
1 http://snap.stanford.edu/.
2 http://konect.uni-koblenz.de/.

http://snap.stanford.edu/
http://konect.uni-koblenz.de/
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Fig. 6. Effectiveness of k-TriPeak and k-Peak

Fig. 6. In Fig. 6, the horizontal coordinate denotes the size of k-TriPeak (k-Peak)
as a persentage of total graph.

As shown in Fig. 6, as the size of k-TriPeak (k-Peak) increases, the value of
clustering coefficient for both of them generally decreases. However, it can be
observed that, of similar size, the k-TriPeak is much denser than k-Peak. For
example, in Flixster dataset, the k-TriPeak of which the size is around 30% of the
total graph has clustering coefficient of 0.7, while the k-Peak of similar size only
have 0.1. This is because k-TriPeak takes a high-order connectivity structure as
the building blocks while k-Peak only considers degree. These results indicate
that compared with the k-Peak model, the returned result of k-TriPeak are
more cohesive and k-TriPeak is better cohesive subgraph model compared with
k-Peak.
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Table 2. Running time on real-world datasets

Alg Dataset

DBLP Livemocha Flickr Flixster Skitter LiveJournal

Baseline 81.85s 178.5 s 3538.5 s 1017.25 s 1993.32 s 29768.37 s

TriPeakDecoms 19.69 s 62.1 s 2020.35 s 194.41 s 545.78 s 5530.65 s

TriPeakDecomd 15.56 s 98.67 s 1228.3 s 285.02 s 615.49 s 5038.35 s

TriPeakDecom 14.75 s 58.29 s 834.79 s 150.9 s 471.26 s 2653.01 s

Exp-2: Efficiency. In this experiment, we compare the total processing time
of those four algorithms on six real-world datasets. The results are reported in
Table 2.

Generally, the processing time increases as the size of the graph increases.
Baseline takes the most time on all six datasets. It spends more than 8 hours
to perform the TriPeak decomposition on LiveJournal dataset. The reason for
Baseline’s long running time is that edges with small TriPeak number, which
make up a large portion of the whole graph, take participate in the k-truss
decomposition for the big TriPeak number many times. The algorithms solely
adopting static or dynamic upper bounding technique run much faster than
Baseline. TriPeakDecoms is faster than TriPeakDecomd on Livemocha, Flixster
and Skitter and the opposite on DBLP, Flickr and LiveJournal, for they play to
their strength on different stages in a decomposition. TriPeakDecom algorithm,
which adopts both upper bounding techniques, achieves the best performance on
all six datasets. For example, on LiveJournal, it achieves an order of magnitude
faster than Baseline.

Exp-3: Scalability. We study the scalability of the four algorithms in this
experiment. To test the scalability, we randomly sample the nodes and edges
respectively of two largest datasets Skitter and LiveJournal from 20% to 100%
and take the induced subgraph as the input graph. The results are shown in
Fig. 7.

As shown in Fig. 7, as the size of the graph increases, the processing times
of four algorithms increase due to the increasing of the number of iterations
and the number of involved edges in each iteration. Moreover, as the size of the
graph increases, the gap in processing times between Baseline and other three
algorithms increases. This is because the unnecessary computation on edges,
which are reduced by other three algorithms but remained in Baseline, make
up larger portion of computation when the size of the graph grows. The gap
in processing times between TriPeakDecoms and TriPeakDecomd remains small
on both datasets. The TriPeakDecom algorithm consumes the least time and its
processing time grows the most stably on all datasets. The results show the good
scalability of our proposed algorithm.
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Fig. 7. Scalability testing

6 Related Work

The most related works to k-TriPeak are k-Peak [7] and k-truss [5], which have
been introduced in Sect. 1. Since k-Peak is defined based on degree, the returned
results of k-Peak are often not that cohesive [5,14,28] compared with the k-
TriPeak [14]. The difference between k-TriPeak and k-truss is that in a k-truss,
triangles containing edges from the higher k-truss are taken into consideration
while in a k-TriPeak, all these edges are filtered out. This difference leads to
it that k-TriPeak is able to find the centers of distinct regions in a graph as
k-Peak [7].

Besides k-Peak and k-truss, there are many different models proposed in
the literature. One of the most intuitive cohesive subgraph models is the clique
model in which each node is adjacent to every other node [4]. More complex
models based on the clique model [20,21,25] are also studied in the literature.
However, clique is often too restrictive for many applications, thus, more clique
relaxation models have been proposed, such as the k-plex [13], n-clan and n-
club [11]. Nevertheless, these models always face the problem of computational
intractability. To address this problem, more polynomial time solvable cohe-
sive subgraph models are proposed recently, such as k-core [2], triangle k-core
[27], (k, s)-core [26], DN-Graph [16], k-edge connected component [22,24] and
k-mutual-friend subgraph model [28].
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7 Conclusion

Motivated by the recent proposed k-Peak model, in this paper, we propose a
new k-TriPeak model based on the triangles in the graph and study the k-
TriPeak decomposition problem. To perform the k-TriPeak decomposition, we
first present an approach following the idea of k-Peak decomposition. However,
this approach involves lots of unnecessary computation. Therefore, we propose
a new top-down paradigm to conduct the decomposition. Based on the new
paradigm, we devise two effective upper bounds to prune the unnecessary edges
involving computation in the baseline approach. Moreover, we explore efficient
techniques to maintain the upper bounds during the decomposition. We conduct
experiments on large real-world datasets and the experimental results demon-
strate the efficiency and effectiveness of our proposed algorithm.
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Abstract. Tags play a crucial role in CQA sites by facilitating orga-
nization, indexing and categorization of the entire post in a few words.
The choice of tags determines the audience that is elicited upon to seek
a response for any particular post. This could either lead to receiving an
accurate response for the question or result in receiving no answers. The
choice of tags, thus, directly determines the quality of the post as well as
to a large extent the success of the CQA site itself. In this paper, we a
present a novel approach to evaluate the choice of tags in any post. We
perform tag network analysis to find relationship between tags. We then
find the anomalous combination of tags by performing anomaly detec-
tion. We demonstrate the robustness of our approach by showing high
AUC, in the range of 0.95 to 0.98, on four datasets from Stack Exchange,
namely Ask Ubuntu, Server Fault, Super User and Software Engineering.

Keywords: Tag network · Anomaly detection · CQA sites

1 Introduction

Community Questions Answering (CQA) sites have been evolving rapidly in the
past few years. In CQA sites questions are posed to a large community of users
with the intent of finding an accurate response in the minimum possible time.
Although many users in these sites have high expertise in wide range of topics,
the knowledge is distributed among a wide range of users. Hence, identifying an
appropriate expert for answering a question is a challenging task. In CQA sites,
such as Stack Overflow, tags are the predominant means to elect the experts
who are notified to answer a question.

Users subscribe to tags that pertain to their topics of interest and get noti-
fied when a question is posted with their subscribed tags. Choice of wrong tags
spawns numerous problems. For example, an incorrect tagging not only directs
the questions to an erroneous group of users, but also attracts down-votes that
strongly demotivates subsequent users to pursue the question. Another alternate
means to receive responses is by search engines that index the website content.
However, the most immediate responses to a question are received from sub-
scribers rather than those from external search engines [3]. Tags, thus play a
direct role in influencing the response time of a post in CQA sites.
c© Springer Nature Switzerland AG 2019
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Let’s consider the following two example questions that illustrate the impor-
tance of choosing appropriate tags while posting a question:

Example 1 – Title: What does the ‘yield’ keyword do? Tags: {python,
iterator, generator, yield, coroutine} Body: What is the use of the
yield keyword in Python? What does it do? For example, I’m trying to under-
stand...What happens when the method get child candidates is called? Is a list
returned? A single element? Is it called again? When will subsequent calls stop?

Example 2 – Title: How do genetic algorithms work exactly? Tags:
{encoding, score, crossover, mutation, solution} Body: I was look-
ing at the basic genetic algorithm here...You have a problem you want a good
enough solution to. You create N random solutions. You evaluate a fitness or
score for each for how good a solution it is. Based on each score, they have a
higher chance of being picked. Then for those 2 picked, there is a cross over step.
There is a chance associated with a crossover...We created a new solution. Do
we remove one of the existing ones? If so, which one?

Then there is a mutation step. This is the part that confuses me most...What
do we mutate? A or B or C?...Finally re-evaluate the score for all and repeat all
of this until you find a good enough solution. Does anyone know?

The first question is a top voted post from Stack Overflow. It has good choice of
tags that spans the entire range of the underlying domain. It has the right mix
of generic (python, iterator) and specific tags (yield,coroutine). Here the
python tag is generic because it points to the broad topic Python. On the other
hand, the tags like yield and coroutine are specific tags as they pinpoint to a
narrow sub-domain within the entire domain. Thus, experts who are interested
in both python and coroutine would be notified about this question.

The second question demonstrates a bad tagging practice. It is expected that
a question on genetic algorithms should include tags on artificial intelligence,
evolutionary learning, genetics and algorithms. On the other hand, trivial tags
that do not pinpoint to the question have been chosen. Tags like mutation, score
and solution do not precisely convey the domain of the question. This would
result in the question missing out responses from expert users of the community
and instead redirect to a broad range of users who might have no involvement
with genetics.

Since the number of posts in CQA sites are increasing drastically, it is difficult
to judge high quality incoming questions that needs more attention. One way
to address this problem is to evaluate the tags associated with the particular
question. Often a question is framed on the intersection of content from a wide
range of topics. When a question is framed by an expert a coherent combination
of tags is noticed. Tags are chosen such that they exhibit both the breadth as
well as the intent of the question clearly. Thus, it is not too far-fetched to assume
that most good questions, raised by experts, would necessarily have appropriate
tag choices. We utilize this intuition to model normal tagged questions, and then
demonstrate in later sections that this characteristic can be utilized to identify
low quality questions in CQA sites.



Evaluating the Choice of Tags in CQA Sites 627

The task of predicting the correctness of tag choices has four main challenges:
(a) No standard guidelines for good or bad tagging practice; (b) Due to constant
topic evolution, a set of tags which is very unlikely today may become common
after few years; (c) High-dimensionality of the tag data, where each tag is a
dimension and sites have between between 3K–60K tags, and (d) No existing
labelled dataset of good and bad tag choices.

In this paper, we present an unsupervised solution to the problem of eval-
uating the correctness of tag choices in CQA sites. We use social interaction
information from CQA sites to create a dataset of good and bad tag choices.
Assuming most of the good questions have good choice of tags, we find the bad
choice of tags using anomaly detection. Since the tag dataset is extremely high-
dimensional and is also very sparse, we show the Anomaly detection algorithms
do not perform well when we use all the dimensions or do dimensionality reduc-
tion using common techniques such as PCA. In this paper, we propose a novel
tag network analysis based feature reduction algorithm that gives very high AUC
for the anomaly detection problem.

The paper is structured as follows: Sect. 2 discusses the related work in
this field, Sect. 3 discusses standard dimensionality reduction based approaches,
Sect. 4 discusses the proposed tag network based approach, Sect. 5 discusses the
results of the implementation and Sect. 6 offers a conclusion to the problem.

2 Related Work

To the best of our knowledge there is no prior work that evaluates the com-
bination of tags in CQA sites. However, lots of work has been done on tag
recommendation systems. We use community detection on the tag network to
group semantically tags. We compare various community detection algorithms
and justify the choice of Infomap for our work. Finally, we substantiate on the
need to pose tag evaluation as an anomaly detection problem.

Tag Recommendation – The problem of evaluating tag choices is closely
related with tag recommendation. This is because a tag evaluation system can
be effectively used to judge the correctness of the set of tags that have been
suggested by a tag recommendation algorithm. A tag evaluation system could
thus be viewed as a complement to a recommendation system.

There are two broad approaches for tag recommendation, namely graph based
and content based approaches [7]. Graph based systems create a folksonomy
graph to model mutual tag relations and then leverage this information to per-
form tag recommendations. For example, [4] proposed a graph based recommen-
dation system built on top of FolkRank, which is a modified version of PageRank
for folksonomy graphs. [11,16] proposed tag recommendations systems based on
tensor factorization. The method proposed by [16] represents the data in the
form of a 3-order tensor of users, items and tags and uses Higher Order Singular
Value Decomposition (HOSVD) to model the relation between the triplets. The
Ranking with Tensor Factorization (RTF) model proposed in [11] outperformed
both FolkRank and HOSVD. [6] proposed a method based that applies Latent
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Dirichlet Allocation (LDA) to a dense core folksonomy graph and extracts topics
that are later used to perform tag recommendations.

Content based systems solve the problem of sparsity in the tag graphs by
adding the post content information to the folksonomy network. This additional
information allows them to perform superior recommendations. [17] created a tag
recommendation system that uses both user profiling and NLP techniques to do
tag recommendation. [5] proposed a tag recommendation algorithm for social
bookmarking systems that uses resource descriptions, previous annotations on
the resource and annotations by the same person to perform recommendations.
[9] proposed a system that does recommendation by leveraging tag information of
the author from previous posts and exploiting the contextual similarity between
posts.

Community Detection – Community detection algorithms are used to find
relationships between nodes in networks. [21] is nice survey paper that compares
popular community detection algorithms. In this paper, we use a hierarchical
community detection algorithm known as Infomap, which was proposed by Ros-
vall et al. [12,13]. Infomap analyzes the information flow of the network and
optimizes the map equation by use of random walks. The time complexity of the
Infomap algorithm is O(E ), where E is the number of edges in the graph.

Anomaly Detection – In CQA sites, if a post has high upvotes, then it is
highly likely that the post has appropriate combination of tags. However, a post
with lot of downvotes or no votes does not imply that the tag combinations
are incorrect. Moreover, the number of good quality tag combinations may be
much less. Thus in this paper we model our problem as a one class classification
problem. Bellinger et al. [21] demonstrated that the more the class imbalance the
more superior the performance of a one-class classifier over a binary classifier.

Diversity in CQA Sites – Since CQA sites are not mediated, there is high
diversity in both users and content. Good quality users are expected to post good
quality questions with the right set of tags, whereas uninformed users cannot
post their question properly. The same holds true for content. Our work attempts
to model the diversity in tagging practices of users and evaluate the set of tags
that would make an appropriate combination. We view this is as an effective
addition in resolving the challenge of diversity in CQA sites.

There are many existing papers that have studied the user diversity aspect
in CQA sites. [2] have explored the personality traits of Stack Overflow users by
using reputation and attempted to study its effect on upvotes and downvotes.
[20] studied the expert behaviour of Stack Overflow users and demonstrated the
difference between highly active low quality users and less frequent high quality
users. [15] discussed why about half of the users contribute only once in Stack
Overflow and how they could be enabled to become more active.

A substantial amount of work has been done that discusses the diversity
of posts in CQA sites. [10] proposed a method to detect low quality posts by
using both textual features as well as community related aspects to create an
automated identification system. [1] addressed why and how the long questions
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could remained unanswered and factors that lead to the same. [14] evaluated the
attributes that contribute to a good code example in Stack Overflow.

3 Tag Anomaly Detection

In this section, we present baseline approaches to find uncanny combinations of
tags. In the next section, we present our solution based on tag network analysis.

3.1 Learning Model

There is no simple heuristic to find such uncanny combinations. Since there
is no standard metric to find valid tag choices, we use the social interaction
information in CQA sites to find questions with good tags. We assume that if a
question has got many upvotes, most likely it is a good question and should also
have a good combination of tags. However, the vice versa is not true. A post
having no votes or negative votes may not necessarily be due to unfavourable
tag combinations. Hence, due to the lack of negative training samples, we find
it appropriate to model the problem of detecting anomalous tag choices as an
outlier detection problem rather than a binary classification problem.

We use one-class SVM to model the valid tag combinations, where the train-
ing data consists of tags of the top-k questions. In Stack Exchange, each question
has a score based on social interactions, and we use the tags of the top 10K ques-
tions. We assume each tag as a dimension and encode our data using one-hot
vector representations. This results in a very high-dimensional dataset, where
the number of tags could vary from 2K–50K. Since each question can at most
have five tags, this data is also very sparse. For the evaluation in Sect. 5, we use
this as the baseline method.

3.2 Dimensionality Reduction

To deal with high-dimensionality, we considered standard feature selection and
feature reduction techniques. Since the data is already very sparse and we can-
not afford to ignore any of the tags given in the question, we do not consider
feature selection methods. We next present three different approaches for fea-
ture reduction using combination of Principal Component Analysis (PCA) and
t-Distributed Stochastic Neighbor Embedding (t-SNE).

PCA is one of the standard feature reduction method for high-dimensional
data. However, we found that the prediction accuracy with PCA reduction is
even lower compared to the one-hot encoded tag matrix. This is because the tag
matrix is extremely sparse and there is no lower dimensional PCA transforma-
tion that can capture significant variance in the data without losing too much
information.

The problem that arises with PCA is while reducing the dimensions focus
is being given on retaining large pairwise distances instead of short pairwise
distances. This is results in a crowding problem. In such a case, the datapoints
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that are close to each other in the high dimensional space get squashed in the
low dimensional latent representation [18]. This prevents a good separation of
class labels.

This problem can be overcome by use of a manifold learning technique like t-
SNE. In contrast to PCA, t-SNE is non-linear approach to dimensionality reduc-
tion [19]. t-SNE attempts to model high dimensional points in a low dimensional
space such that similar points are mapped close and dissimilar points are mapped
far apart with a high probability. This is done by minimizing the Kullback-Leibler
divergence between the high dimensional and the low dimensional distributions
of the points. t-SNE does not suffer from the crowding problem unlike PCA
because a heavy tailed distribution is used to compute the pairwise distances in
the low dimensional space [8].

t-SNE yields better results than that obtained without feature reduction or
the one obtained using PCA on the tag matrix. However, a drawback of this app-
roach is its quadratic computational complexity in the number of datapoints [19].
Thus, there exists a trade-off between computation time and effective feature
representations.

To obtain a good feature representation in unison with a discounted compu-
tation time, a third approach is employed. To being with, a significantly higher
number of principal components are chosen in order to capture sufficient variance
from the matrix. This PCA reduced feature matrix is then further condensed
to lower dimensions by use of t-SNE. This approach gives much better results
compared to PCA and slightly better than those obtained without any feature
reduction. This improvement is due to the superior manifold detection capabil-
ities of t-SNE on the reduced PCA feature matrix. The ROC curves for all the
above discussed approaches can be found in Fig. 2a.

4 Anomaly Detection Using Tag Network Analysis

As discussed above, standard feature reduction methods fail to provide any sig-
nificant improvement in the outlier prediction over a standard one-hot vector
tag model. In this section, we present a novel dimensionality reduction method
that is based on tag communities. We use the social interactions in CQA sites to
group tags into communities and then use anomaly detection to detect tag com-
binations that are unlikely. This method gives a very high AUC of 0.982, which
is very high compared to the best baseline method, namely feature reduction
with t-SNE, with AUC of 0.795.

This is primarily due to the following two reasons: Firstly, they do not account
for the synonymy of tags. The tags windows-7 and windows-10 are treated as
two separate topics. For example, if the tag adobe-acrobat has occurred with
the tag windows-7 in many previous posts, it is quite probable that the same tag
might also occur with windows-10 tag later. Secondly, the association among
similar topics is missing. Consider two topics ‘adobe-acrobat’ and ‘windows’.
There are multiple tags belonging to these two topics. It is highly likely that any
tag from the ‘adobe-acrobat’ topic may occur with any tag from the ‘windows’
topic. They do not capture association among the tags across topics.
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To address these challenges, we propose a folksonomy based feature reduc-
tion technique, where we use tag communities to do feature reduction. To do
community detection we need to create a tag graph, where the edge between
tags is derived from the questions posted in the CQA site. Finally, we use the
community features to detect anomalous tags using one-class classifier. These
steps are explained below in detail.

4.1 Tag Network

We use the connectivity among tags in the CQA site to create the proposed tag
graph, which is both weighted and directed each tag forms a unique node in this
graph. For each pair of tags, bidirectional edges are created with the edge weight
given by the Nearness score, which is defined as:

NScore(ti, tj) =
#(ti, tj)

|Q| (1)

where #(ti, tj) is the number of times the tag ti has co-occurred with the tag tj
and |Q| is the total number of questions. NScore(ti, tj) is a symmetric score.

The graph created so far is a directed graph with the number of nodes equal
to the number of tags in the entire dataset. The edges in this graph are then
pruned using the Edge Direction score, which is defined as:

EDScore(ti → tj) =
#(ti, tj)

#ti
(2)

where #(ti, tj) is the number of times the tag ti has co-occurred with the tag tj
and #ti is the number of times the tag ti. The EDScore(ti → tj) measures the
likelihood that tag tj will occur given tag ti. This is an asymmetric score. From
the graph we prune edges that have EDScore below some given threshold. This
pruning greatly improves the quality of tag communities we get from applying
community detection algorithm on the tag graph.

4.2 Finding Tag Communities

To find tag communities we use the Infomap algorithm, which works by opti-
mizing the map equation for the network. The map equation uses a flow based
approach that captures the modular structure of the network and is derived
from information theory. The Infomap is a two-level algorithm that works simi-
lar to the Louvain method used for community detection. Initially, each node is
assigned its own module. Each node is moved to the neighbouring module if it
decreases the map equation, else it is not moved at all. This process is repeated
until no move decreases the map equation. Using, this algorithm, a fairly good
graph clustering is obtained in a very short time.

After community detection, the tags that are strongly associated with each
other end up in the community. For example, tags like C#, Java and .NET end up
in one community, while tags like html, css and javascript end up in another
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community. Since the flow between the nodes control how clusters are formed,
both the edge direction measure and the nearness measure play a vital role in
the generation of the communities.

Table 1. Sample tag communities obtained using Infomap algorithm

Communities NScore EDScore NScore + EDScore

Community 1 java, code-smell,
graphics,
philosophy, ebook,
rdbms, friends, ssa,
blockchain,
google-drive

java, solid,
aesthetics, nosql,
wcf, linq, vb.net,
design-principles,
membership-
provider

object-oriented,
java, interfaces,
c++, .net, c,
asp.net, mvc,
inheritance, c#,
architecture

Community 2 agile, wiki,
graphical-code,
startup,
sublime-text,
cowboy-coding

budget, xna,
peopleware, uml,
offshore, visio,
brookslaw, srs,
agile, prince2

node.js, javascript,
web-development,
web-applications,
html, css, jquery,
php, html5, ajax

Community 3 unit-testing, webgl,
phpunit, specflow,
behat, tdd,
selenium-
webdriver, xunit,
rspec

database, c++11,
php, aesthetics,
reflector,
default-method,
liskov-substitution

database,
database-design,
mysql, sql, nosql,
sql-server, orm,
mongodb, rdbms

Community 4 easter-eggs,
freeware, apache2,
advertisement,
time-stamp,
warranty, fonts

linux, windows,
computer-
architecture, c,
hacking,
pronunciation

agile, scrum,
project, user-story,
waterfall,
estimation,
teamwork, sprint

Community 5 google-maps,
stereotypes,
use-case,
generalization,
activity

calculus,
np-complete,
dijkstra, geometry,
compression, byte,
text-processing

licensing, gpl,
open-source,
mit-license, legal,
copyright, lgpl,
bsd-license

In Table 1, we show the communities obtained by using only NScore, only
EDScore and combination of both NScore and EDScore. In the first approach,
we only use nearness as edge weights between the edges and without any edge
pruning. The final graph is an undirected graph with NScore as edge weight. For
the second approach, we use only EDScore to determine edge direction. If the
EDScore between two tags is less than a threshold, then that edge is pruned as
there is very low likelihood that one tag implies the other tag. For example, if
we consider the tags Java and JButton, then if a question has the tag JButton,
then it is very likely that the question will also have the tag Java. However, the
vice-versa relationship may not hold true. Since NScore is not used, the weights
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between the edges is set to one for the edges that are not pruned. For the third
approach, we use both NScore and EDScore. It uses EDScore as a threshold for
pruning while NScore is used as the edge weight between pairs of nodes.

In Sect. 5, we present detailed evaluation on how the two measures, namely
NScore and EDScore, affects the community detection and anomaly detec-
tion algorithm. From the sample communities shown in Table 1, we can make
some interesting observations. For example, in the first community detected by
Infomap when only NScore is used, tags like java, code-smell, blockchain and
google-drive end up in a single community, although they are not so related
with each other. When EDScore is used, the results are somewhat better. A
clear distinction within communities can be noticed. However, the best results
are obtained when NScore and EDScore is combinedly used. Different domains
are easily identifiable and therefore make for better representations.

At the conclusion of this step, each tag is assigned to a community. A com-
munity is a collection of one or more tags. Further on, each tag is identified by
the community it belongs to. This information is used in the next step to model
the tag data.

4.3 Detecting Anomalous Tag Choices

In situations where there is abundance of data of one particular class label, a
one-class classifier makes for an appropriate choice for modelling rather than a
binary classifier. The entire dataset consists of a huge number of questions that
have both good and bad choices of tag combinations. Since, it is not feasible
to annotate the entire dataset, we make a convenient assumption to extract
out those questions that would have good tag combinations. We sort the entire
dataset by the upvotes a question has received and choose the top 25% of the
posts for modelling the data. The assumption here is that there is a very high
probability that the top questions of the dataset must have valid and appropriate
tag choices. We model only the top questions and hence, the task of detecting
incorrect tag choices is formulated as an outlier detection problem.

Each question has one or more tags assigned to it. To leverage the commu-
nity data that was obtained in the previous step, we identify each tag by the
community it belongs. Each question in the dataset is represented by a one-hot
vector of the community of the underlying tags rather than a one-hot vector of
the tags. This gives two benefits: (a) Reduction in the number of dimensions,
and (b) Handles topic drift by reducing over-fitting.

The number of tags in a website is in the order of thousands. Due to curse of
dimensionality, the number of training samples needed to train a model increases
exponentially with increasing number of dimensions. We need to ensure that
there are sufficient number of samples with each combination of feature values.
Since the tag data is very sparse, we cannot get sufficient training data for
such high-dimensional data. Since the tag data is represented by the community
data, the number of dimensions reduce from the order of thousands to less than
a hundred. This naturally improves performance of the classifier.
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Which topics stay popular in CQA sites change constantly from time to time
and so do their corresponding tags. New domains become popular over time
and a combinations of tags which was previously rare may become popular over
time. For example, tags like deep-learning have become popular in the past
few years and were not used a decade before. So, for example, a combination like
{deep-learning, python, resnet} would be considered valid at the present
moment, but would be deemed invalid a decade earlier. The opposite is also
true. Tags that are not used frequently are eliminated from the database by the
administrators. This poses a challenge on how the tag data must be modelled so
that this topic drift characteristic is accommodated.

Communities are a high level projection of the tag data. By representing
questions by the community data, we build a model that is more robust to over-
fitting. If the tags are used directly in the model, even a slight drift in topic
would be identified as an outlier due to a complete change of the associated
tags. Further, it is possible to have more than a single correct tag combination
for a question. By projecting the high dimensional tag vector to a lower, more
concise community vector, a more abstract and meaningful model is created.

This one-hot vector dataset is then used to train a one-class SVM with a
RBF kernel. To evaluate tag choices in the test set, the above process is repeated
and the community vector data is then forward passed through the model. The
invalid tag combinations are detected as outliers by the model. The one-class
SVM also outputs the distance from the separating hyperplane, which provides
a measure of severity of the outlier.

5 Evaluation

In this section, we present the evaluation of our proposed algorithms for detecting
aberrant tag combinations. We validate our results using four big datasets, shown
in Table 2, from the Stack Exchange network, namely Software Engineering, Ask
Ubuntu, Server Fault and Super User.

Table 2. The four datasets used for evaluation

Dataset Posts Questions Tags AUC

Software Engineering 1,96,986 48,604 1,640 0.982

Ask Ubuntu 6,79,669 2,94,010 3,045 0.957

Server Fault 6,96,606 2,60,696 3,608 0.96

Super User 9,44,029 3,77,484 5,267 0.972

Due to space constraint, we present detailed analysis only for the Software
Engineering dataset. For other three datasets, we only present the result for
a single choice of parameter. Software Engineering website is a member of the



Evaluating the Choice of Tags in CQA Sites 635

larger Stack Exchange community, which comprises of several CQA sites of var-
ious genres. The dataset had 48,604 questions that were posted in the period
of September 2010 to March 2018. Each question had at least one tag and a
maximum of five tags. There were a total of 1,639 distinct tags in the dataset.

5.1 Experimental Setup

As discussed before, we do not have any existing annotated dataset of well tagged
questions. We therefore rely on the heuristic that questions with high upvotes
should have good tag combinations. However, questions having high (or no)
downvotes may not necessarily have bad tag combinations. For evaluation, we
consider two datasets: Well Tagged Questions and Randomly Tagged Questions.

Well Tagged Questions – We sort the questions in order of upvotes and select
the top 25% questions as the Well Tagged Questions. We split these questions
in 9:1 ratio to create the training and the test datasets. We refer to these two
datasets as Well Tagged Questions I and Well Tagged Questions II respectively.
We consider the latter dataset as the test inliers and any question marked as
outlier is considered a false positive.

Randomly Tagged Questions – To generate the bad tag combinations we
randomly selected combinations of 3, 4 and 5 tags from the set of all possible
tags. We consider these as outliers. There is very low likelihood that a random
set of selected tags would collide with a valid tag combination in the training
sample. This assumption is valid since tags often co-occur only in particular
selected combinations. Since, this is an outlier dataset, any tag combination
marked as a non-outlier by any algorithm is considered to be a false negative.

Figure 1 presents a visual representation of the well tagged and the randomly
tagged questions. It is observed that the Well Tagged II samples almost entirely
coincides with the Well Tagged I samples and the Randomly Tagged questions
are significantly isolated from them. This suggests that the heuristics used to
generate these datasets are valid.

5.2 Evaluation Metric

To evaluate the effectiveness of the proposed approaches in isolating the anoma-
lous tag combinations from the good tag combinations, a third test dataset is
constructed. Around 2% of datapoints from the Randomly Tagged dataset are
alloyed with the Well Tagged II dataset. The new dataset thus comprises of 1,020
datapoints, of which 1,000 are inliers and 20 are outliers.

To evaluate the algorithm’s performance, a ranking based external validity
measure is used. To begin with, outliers are ranked according to their extremity.
The extremity can be quantified as the distance of the datapoint from the SVM’s
hyperplane. Now given this ranking, the top-k outliers are referred to as the
declared outliers, denoted by S (k). The ground truth outliers belonging to the
Randomly Tagged dataset, are denoted by G. The ground truth inliers belonging
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Fig. 1. Visualizing the well tagged and randomly tagged questions using PCA + t-SNE

to the Well Tagged II dataset are denoted by I. Then sensitivity and specificity
are defined as follows:

Sensitivity =
|S (k) ∩ G|

|G|

Specificity =
|S (k) − G|

|I|
The parameter k is uniformly varied in the range of 0–1020 in steps of 20,

and the corresponding ROC curve is produced.

5.3 Results

Figure 2 a shows the ROC curve obtained for the baseline methods described in
Sect. 3. Using the one-hot vector of all tags, we get an AUC of 0.776. For the
Software Engineering dataset, there are 1640 tags and the encoded matrix is
extremely sparse with only 3.57% of non-zero values. To reduce the dimension-
ality we applied PCA to the tag matrix. The number of principal components
are chosen such that atleast 75% of the variance is captured. Since the matrix is
extremely sparse, the PCA reduced features gave an AUC of 0.365, which much
low compared to using all the features.

To address the problem of linearity with PCA, we tried out a non-linear
manifold detection algorithm t-SNE. With t-SNE we get an AUC of 0.795, which
higher than both the above cases. However, as discussed in Sect. 3, the drawback
is the quadratic time complexity of t-SNE. If we combine PCA and t-SNE, we get
an AUC of 0.699, which is lower than using only t-SNE, but takes significantly
less time compared to using only t-SNE.
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Fig. 2. (a) shows the ROC curves for baseline methods and (b) shows the ROC curves
for the proposed method for various EDScores.

Figure 2b depicts the ROC curves obtained when feature reduction is done
using tag community detection. An AUC in the range of 0.433 to 0.963 is
obtained depending upon the choice of EDScore used to prune the tag net-
work. Without any edge pruning an AUC of 0.433 is obtained. However, a sharp
increase in the AUC is obtained when the EDScore is increased. The highest
AUC of 0.963 is obtained for an EDScore of 1%.

All community detection algorithms rely a lot on the quality of input graph.
EDScore plays a very important role in finding good quality communities. As
shown in Fig. 3a, the number of communities obtained from the community
detection algorithm is least when we do not use EDScore for pruning edges, and
then the number of communities goes on increasing as we increase the threshold
for EDScore. When we do not use EDScore, then we get very big communities
where distinct communities gets merged. As we increased the threshold, it creates
smaller communities by splitting the bigger community. If this parameter is not
chosen correctly it will create many small communities, and thereby leading to
over-fitting. In other words, under-fitting and over-fitting will occur when the
number of communities is very low or very high respectively.

Figure 3b also shows the effect of EDScore in detecting anomalous tag com-
binations. With the increase in the EDScore, the number of outliers detected in
randomly tagged questions increases, peaks, and then begins to fall. There exists
an optimum set of communities that best represents the combination of tags in
the dataset. Thus, correspondingly there also exists an optimum EDScore. It
turns out to be around 1.5% for this dataset. For the other three datasets also
we found that EDScore between 1.5% to 2% gives the best result.

In the one-class SVM, the hyperparameter ν determines the effectiveness of
detecting the anomalous tag combinations. The value of ν sets an upper bound
on the fraction of training errors and a lower bound on the fraction of support
vectors. Its value is in the interval (0, 1]. Figure 4a shows the ROC curves for ν
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Fig. 3. (a) shows the relation of the number of communities detected by Infomap with
the EDScore and (b) shows the relation of the number of outliers detected by the
algorithm with the EDScore.

values in the range of 0.01 to 0.5. Decreasing ν causes over-fitting while increasing
ν to a very high value causes underfitting. The highest AUC of 0.982 is observed
for ν = 0.1.

Fig. 4. (a) shows the ROC curves for different values of ν and (b) shows the ROC
curves for different datasets present in the Stack Exchange network.

To evaluate the robustness of the algorithm across multiple CQA sites, we
consider three other datasets from the Stack Exchange network, namely Ask
Ubuntu, Server Fault and Super User. Retaining the optimum parameters for
EDScore = 1.5% and ν = 0.1, we repeat the above process for the remaining three
datasets. It is observed a high AUC in the range of 0.957 to 0.972 is obtained
with all of them.

A slight shift in the AUC scores can be explained as follows: Primarily, the
tag network changes from across datasets. This is due to the change in the tags
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and the associations among them. Table 2 provides a detailed information of
these datasets. The number of tags is highest for Super User at 5,267 and lowest
for Software Engineering at 1,640. Thus, with a change in the tag network, the
optimum value of EDScore suffers a mild shift. This EDScore can be viewed
as a hyperparameter in our algorithm that fine tunes the community vector
used to represent the tagging, However, this change is only moderate and results
indicate that our algorithm still outperforms a naive approach or feature reduced
approaches like PCA or t-SNE by wide margins. It is thus safe to assume that
this algorithm performs aptly in a wide variety of data.

6 Conclusion

In this paper, we present a novel collaborative approach to detect anomalous
tag combinations in CQA sites. We demonstrate that by creating an appropriate
folksonomy graph, it is possible to predict whether a certain set of tags is likely
to co-occur with a high accuracy. To validate the effectiveness of the algorithm,
we compare its results with standard dimensionality reduction techniques, such
as PCA and manifold learning techniques like t-SNE. These standard methods
manage to produce an AUC in the range of 0.363 to 0.795. We showed that due
to sparsity of the tag data and lack of utilization of any tag association infor-
mation, such methods perform poorly in generating an effective low dimensional
representation of the tag network. However, when the underlying tag network is
leveraged better feature representations can be obtained. By doing so, we manage
to achieve an AUC of 0.982. To be certain of the effectiveness of this technique,
we apply the algorithm on a total of four datasets and achieve a consistently
high AUC in the range of 0.957 to 0.982. This ensures that the algorithm can
effectively deduce anomalous tag combinations in a wide variety of CQA sites.
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Abstract. Maximal Clique Enumeration (MCE) is one of the most fun-
damental problems in graph theory, and it has extensive applications in
graph data analysis. The state-of-art approach (called as MCEdegeneracy

in this paper) that solves MCE problem in real-world graphs first com-
putes the degeneracy ordering of the vertices in a given graph, and then
for each vertex, conducts the BKpivot algorithm in its neighborhood
(called as degeneracy neighborhood in this paper). In real-world graphs,
the process of degeneracy ordering produces a large number of dense
degeneracy neighborhoods. But, the BKpivot algorithm, with its down-
to-top nature, adds just one vertex into the result set at each level of
recursive calls, and cannot efficiently solve the MCE problem in these
dense degeneracy neighborhoods.

In this paper, we propose a new MCE algorithm, called as BKrcd,
to improve the efficiency of MCE in a dense degeneracy neighbor-
hood by recursively conducting core decomposition in it. Contrary to
BKpivot, BKrcd is a top-to-down approach, that repeatedly chooses and
“removes” the vertex with the smallest degree until a clique is reached.
We further integrate BKrcd into MCEdegeneracy to form a hybrid app-
roach named as MCEhybrid

degeneracy, that chooses BKrcd or BKpivot adap-
tively according to the structural properties of the degeneracy neighbor-
hoods. Experimental results conducted in real-world graphs show that
MCEhybrid

degeneracy achieves high overall performance improvements on the

graphs. For example, MCEhybrid
degeneracy achieves 1.34× to 2.97× speedups

over MCEdegeneracy in web graphs taken in our experiments.

1 Introduction

Clique is one of the fundamental structures in an undirected graph that consists
of vertices and edges connecting the vertices. In a clique, each vertex is connected
to every other vertex via an edge, and a clique is maximal if it is not contained
by a bigger one. As enumerating all maximal cliques (MCs) in a graph facilitates
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Fig. 1. Density distribution (left columns) of the degeneracy neighborhoods and the
corresponding portion of execution times (right columns) of BKpivot

understanding and processing the graph, Maximal Clique Enumeration (MCE)
problem has been widely studied and used in applications, such as social network
analysis [2], community detection [16], computational biology [1]. MCE is also the
basis for solving other problems in graph theory, including Maximal Independent
Set (MIS) [20], graph coloring [3], and many others.

The state-of-art approach [11] (called as MCEdegeneracy in this paper) of
solving the MCE problem in a given real-world graph first computes the degen-
eracy ordering of the vertices. The degeneracy ordering of a vertex in a graph
G is the order that the vertex is removed during a process that repeatedly
removes the vertices with the smallest degree from the graph till the graph is
empty (i.e., core decomposition [5]). After computing the degeneracy ordering,
MCEdegeneracy then divide-and-conquers the MCE problem in G into many
small MCE problems that are conducted in each vertex’s neighborhood by using
BKpivot [19]. Figure 1 studies the density distributions of the degeneracy neigh-
borhoods, as well as the corresponding execution times of BKpivot in them when
conducting MCEdegeneracy in the real-world graphs of Table 2.

From Fig. 1, we can observe that although the original graph is sparse (see the
sixth column of Table 2), their degeneracy neighborhoods are rather dense: for
the first four web graphs, the densities of about 60% degeneracy neighborhoods
are above 0.5, while for social graphs, the densities of about 20% degeneracy
neighborhoods are above 0.5. The reason for this phenomenon, as will be dis-
cussed in Sect. 6, is that a large portion of these degeneracy neighborhoods are
adjacent clique communities that widely exist in real-world graphs [16], and they
are dense when these adjacent cliques share many of their vertices in common.

From Fig. 1, we can also observe that the times paid on MCE (using BKpivot)
in these degeneracy neighborhoods are approximately proportional to their den-
sity distributions, even for the dense degeneracy neighborhoods. This observation
is somewhat counter-intuitive: for a dense degeneracy neighborhood (consider a
complete graph, or a complete graph with only one edge missing), enumerating
its MCs should incur less overhead. Considering a complete degeneracy neigh-
borhood containing k vertices, it only needs a test that consumes O(k) time
(by scanning the vertices and comparing their degrees) to discover the MC.
Nevertheless, BKpivot needs k recursive calls, each of which chooses the pivot



Fast Maximal Clique Enumeration for Real-World Graphs 643

vertex by scanning its adjacency lists and adds the pivot into the result set.
This process consumes approximately O(k2) time in total. Our insight to this
inefficiency problem of BKpivot when conducting MCE in dense sub-graphs is
that: BKpivot is, in essence, a down-to-top approach that starts from individual
vertices, adds only one vertex into the result set with one independent recursive
call, and discovers a MC till all its vertices are added into the result set .

To improve the efficiency of MCE in the dense degeneracy neighborhoods,
in this paper, we propose a new MCE algorithm named as BKrcd, whose basic
idea is to conduct core decomposition, that repeatedly chooses and “removes”
the vertices with the smallest degrees, in a given (sub-)graph till a clique is
reached, and recursively conducts core decomposition in the neighborhoods of
the vertices“removed” during the process to prevent from missing MCs. Different
from BKpivot, BKrcd is a top-to-down approach that starts from a (sub-)graph
and stops enumeration when the (sub-)graph becomes complete.

Further, by discussing the efficiencies of BKpivot and BKrcd when solving
the MCE problem in a special type graph (named as s, k-graph) that consists of
multiple adjacent cliques, and extending the discussion to general graphs by the
notion of divergence, we give the criteria that a graph should satisfy to benefit
from choosing BKrcd than BKpivot to enumerate its MCs. With these criteria,
we integrate BKrcd into the framework of MCEdegeneracy to form a new hybrid
approach named as MCEhybrid

degeneracy, that chooses BKrcd or BKpivot adaptively
by telling if the degeneracy neighborhood to be processed satisfies the criteria.

This paper makes the following contributions:

(1) proposes a new MCE algorithm named as BKrcd that solves the MCE prob-
lem in a graph by recursive core decompositions.

(2) gives the criteria that should be satisfied by a (sub-)graph to achieve better
performance with BKrcd during MCE than with BKpivot.

(3) integrates BKrcd into the framework of the state-of-art approach, to build
a hybrid approach named as MCEhybrid

degeneracy.
(4) extensively evaluates the performances of MCEhybrid

degeneracy, and shows that it
can improve the efficiency of MCE especially for real-world web graphs.

The rest of this paper is organized as follows: Sect. 2 briefly surveys the
related works of this paper. Section 3 lists the notations and gives the background
knowledge of this paper. Section 4 presents the algorithm of BKrcd. Section 5
designs the hybrid approach. Section 6 empirically evaluates the result hybrid
approach, and Sect. 7 concludes the paper.

2 Related Works

Many algorithms have been proposed to solve and accelerate the solution to the
MCE problem. BK algorithm is the most widely-used MCE algorithm proposed
in [6], and BKpivot [19] improves BK by avoiding the useless enumerations
(Sect. 3 will give more details of these two algorithms). Like BKpivot, BKrcd,
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which is the MCE algorithm proposed in this paper, can also be considered
as a variant of the BK algorithm with its recursive nature. However, different
from BKpivot, BKrcd is a top-to-down approach that uses core decomposition
to repeatedly remove vertices with the least neighbors in the candidate set till a
clique is reached.

With the recent trend of solving the MCE problem in practical settings
[7,8,10,11], MCEdegeneracy [11] leverages the fact that real-world graphs usu-
ally have small degeneracy values, and is the state-of-art approach on solving
MCE in real-world graphs (Sect. 3 will also give more details of MCEdegeneracy).
Based on MCEdegeneracy, our hybrid approach (i.e., MCEhybrid

degeneracy), proposed
in this paper, further improves the solution of MCE in real-world graphs by
adaptively choosing BKpivot or BKrcd according to the structural property of
the degeneracy neighborhoods that a real-world graph has.

Besides, there are many other approaches proposed to optimize the MCE
solution in other special-case graphs. For example, [9] considers the graphs with
polynomial amount of MCs (e.g., planar graphs), [18] considers the dynamic
graphs, and [15] solves the problem in uncertain graphs.

3 Preliminaries

3.1 Notations

In order to simplify our discussions in this paper, we consider the simple undi-
rected graph G = <V,E>, where V is the set of vertices and E is the set of
edges. That is, we do not consider graphs with self-loops or multi-edges. n is the
number of vertices in G, and m is the number of edges.

For a vertex v ∈ V , we use ΓG(v) to denote the set of neighboring vertices of
v in G and use ΓG(S) to denote the set of common neighbors for vertices in S
in G. NG(v) denotes the neighborhood of v, which is the induced sub-graph of
ΓG(v) with respect to G. With the degeneracy ordering, the set of neighboring
vertices of v, i.e., ΓG(v) can be further divided into two parts: Γ+

G (v), which
contains vertices with higher (later) degeneracy orders than v, and Γ−

G (v), which
contains vertices with lower (earlier) degeneracy orders than v. In this paper, we
call the sub-graph, N+

G (v), which is induced by Γ+
G (v) with respect to NG(v), as

the degeneracy neighborhood. In the following discussions, if G is obvious in the
context, we will omit G for brevity.

3.2 Background

It is NP-hard to solve the MCE problem in G. Since a graph with n vertices
can have up to 3n/3 MCs [14], and consequently it might be impossible to find
a polynomial solution to this problem. BK is a recursive algorithm with three
input parameters: R stands for the result set that stores the vertices belonging to
a MC, P denotes the set for candidate vertices that are going to be considered
during MCE, and X is the set of vertices that should be excluded from enu-
meration as they have been considered. BKpivot, which is listed in Algorithm1,
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improves the efficiency of MCE by avoiding the useless enumerations of the BK
algorithm with the following method: choose a pivot vertex v from G, the MCs
in G can be divided into two types: those containing v, and those not containing
v. The MCs containing v will be found by recursively conducting enumeration on
N(v), and those not containing v can be discovered by conducting enumeration
on the neighborhoods of v’s non-neighbors.

Algorithm 1. BKpivot(R, P , X)

1 if P
⋃

X is empty then
2 output R as a maximal clique

3 choose a pivot v from P
⋃

X to maximize Γ (v)
⋂

P
4 foreach u ∈ {v and v’s non-neighbors} do
5 BKpivot(R

⋃{u}, P
⋂

Γ (u), X
⋂

Γ (u))
6 P == P − {u}
7 X == X

⋃{u}

MCEdegeneracy, which is the state-of-art solution on solving the MCE prob-
lem in real-world graphs, first computes the degeneracy ordering of the vertices,
and then conducts BKpivot in the neighborhood of each vertex. In order to pre-
vent duplicated results (i.e., output the same MC more than once), when con-
ducting BKpivot in the neighborhood of v, Γ+(v) is taken as the candidate set,
and Γ−(v) is taken as the exclusive set, according to the degeneracy orderings.
Algorithm 2 lists its pseudo code.

Algorithm 2. MCEdegeneracy(G)

1 Compute the degeneracy orders of all vertices in V
2 foreach v ∈ V do
3 BKpivot(v, Γ+(v), Γ−(v))

4 MCE by Recursive Core Decomposition

The basic idea of BKrcd is to consider a clique as an entity that does not need
further enumeration. For an input graph, it repetitively “removes” the vertices
that have non-neighbors in the candidate set, until the remaining graph becomes
complete (and thus a clique, we call it as the remaining clique in this paper).
After that, it outputs the remaining clique as a MC if it passes the maximality
check. To avoid missing the MCs that contain the vertices“removed” during this
process, BKrcd recursively conducts itself in the neighborhoods of the “removed”
vertices. Algorithm 3 lists the pseudo-code.
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Algorithm 3. BKrcd(R,P ,X)
1 if P

⋃
X is empty then

2 output R as a maximal clique

3 while P is not clique do
4 choose v ∈ P which has the most non-neighbors
5 BKrcd(R

⋃{v}, P
⋂

Γ (v), X
⋂

Γ (v))
6 P = P \ {v}
7 X = X

⋃{v}
8 if P �= ∅ and Γ (P )

⋂
X == ∅ then

9 output R
⋃

P as a maximal clique

Fig. 2. An example graph Fig. 3. The search tree of conducting
BKrcd in the left example graph

Algorithm 3 first checks if both P and X are empty, and outputs R as a MC
if they are (Line 1–2). The algorithm then checks whether the candidate set P
is a clique (Line 3): if P is a clique, the algorithm will stop enumeration, and try
to output it at Line 8 to 9. If P is not a clique, the algorithm chooses the vertex
v that has the largest number of non-neighbors in P , removes v from P (Line
6), and (recursively) conducts the algorithm itself on v’s neighborhood (Line
5) before adding it into exclusive set X (Line 7). The algorithm repeats this
process until P becomes a clique (i.e., the remaining clique). After that, a check
is conducted at Line 8 to tell if the remaining clique is maximal. The criterion of
this check is to tell whether X contains any vertex that is a common neighbor
to all vertices in P : R

⋃
P is maximal if X does not contain such vertex, and

it is not if otherwise. The reason for this check is to prevent the case that some
vertices of the MC containing P are “removed” and then added to X (e.g., due
to ties) during the process. If such case happens, the MC will be discovered
and outputted by conducting Algorithm3 in the neighborhoods of the removed
vertex, not P .

Consider conducting Algorithm 3 in the example graph shown in Fig. 2: in the
beginning, the graph is not a clique, and vertex a and b have the same number of
non-neighbors. Assume a wins the tie, and is “removed” by the algorithm. After
that, P contains 5 vertices: b, c, d, e, and f , and it is maximal, i.e., 5-MC of
{b, c, d, e, f}, as X (containing only a) does not have any common neighbors to
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the vertices in P . The other 5-MC, i.e., {a, c, d, e, f}, is discovered by conducting
the algorithm in the neighborhood of a. The execution path (search tree) of this
process is illustrated in Fig. 3. It is easy to infer that comparing with BKpivot

(Algorithm 1), the search tree of BKrcd is much smaller in this example graph,
which means that BKrcd spends much less recursive calls, and thus is more
efficient, on solving the MCE problem in this example graph.

5 Hybrid Approach

To compare BKpivot and BKrcd, in this section, we consider a special graph
structure, the s, k-graph, and analyze the efficiencies of these two algorithms
when solving the MCE problem in such special structure. With these analyses,
we have the criteria of choosing these algorithms for higher performance, and
can further integrate BKrcd into the state-of-art approach of MCEdegeneracy.

5.1 The s, k-Graph

The definition of s, k-graph is given as follow.

Definition 1. (s, k-graph)A s, k-graph, denoted asGs,k (Gs,k = <Vs,k, Es,k>),
consists of k adjacent (s + 1)-cliques, which share s vertices in common.

Fig. 4. Three example s, k-graphs (light-yellow vertices are in K set and dark-grey
vertices are in S set) (Color figure online)

The reason for choosing such graph structure is that as shown in [16], the
pattern of adjacent clique communities, that consist of multiple cliques that share
a set of vertices in common, widely exists in the real-world graphs. Figure 4 gives
three example s, k-graphs with different s and k values.

We further divide the vertex set, i.e., Vs,k, of a s, k-graph into two sets: the
set (denoted as S) that contains the former s vertices which are connecting to
all other (s + k − 1) vertices, and the set (denoted as K) containing the latter
k vertices which are only connecting to all vertices in S. It is easy to infer that
the degree of any vertex taken from S is s + k − 1, and the degree of any vertex
taken from K is s. An independent s, k-graph has k (s + 1)-MCs.
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5.2 MCE in s, k-Graph

When conducting BKpivot and BKrcd in a s, k-graph, the shapes of the search
trees of these two algorithms can be illustrated as in Fig. 5(a) and (b), respec-
tively.

Fig. 5. The shapes of the search trees when conducting BKpivot and BKrcd in a s, k-
graph (square denotes vertex choosing, ellipse or circle denotes recursive call)

At the BKpivot side, it first chooses s vertices which have the largest degrees
from S one after another. These recursive calls form first s trunk nodes of the
search tree shown in Fig. 5(a), and the last trunk node of the search tree chooses
the pivot from K set. After that, each leaf node of the search tree conducts a
recursive call to add a vertex from the K set to the result set, and outputs a
(s + 1)-MC.

On the other hand, according to Algorithm3, there will be k − 1 vertices
from the K set being chosen and “removed” at the beginning, and leaves behind
a (s + 1)-MC as the remaining clique. Each recursive call conducted in the
neighborhood of a chosen vertex will output a (s + 1)-MC after the clique test,
whose essence is vertex choosing.

From the above discussion, we find that although these two algorithms have
different mechanisms, the overheads incurred by them during MCE are similar,
and can broadly classified into two parts: the overhead of the vertex choosing
and that of the recursive calls.

In order to choose a vertex with the most number of neighbors (in BKpivot),
or a vertex with the most number of non-neighbors (in BKrcd), in a candidate
set P , the common practice is to browse the adjacency lists of all vertices in P
(P ⊆ Vs,k for a s, k-graph), and at each adjacency list, scan each neighboring
vertex in the list to judge whether it belongs to P . Assume the time complexity
of a judge operation is O(1), the time complexity of vertex choosing can be
approximated to the summation of the lengths of the adjacency lists that are
scanned during the process. The total cost of vertex choosing in BKpivot (denoted
as Cvc

pivot), when conducting in a s, k-graph, can be approximated by the following
equation:
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Cvc
pivot =

s−1∑

i=0

(s − i) · (s + k − 1) + k · s2 + k · s (1)

where at the right of the equal sign, the first and second items are the costs of
vertex choosing that happens in the vertices in S and K respectively (vertices
in K participate each choosing, while fewer and fewer vertices in S participate
the choosing with the algorithm’s progress) in the first s trunk nodes, and the
third item is the cost of vertex choosing of the last trunk node of the search tree
shown in Fig. 5(a).

Using the same method, the total cost of vertex choosing in BKrcv (denoted
as Cvc

rcd), can be approximated by the following equation:

Cvc
rcd = k · s · (s + k − 1) +

k−1∑

i=0

(k − i) · s + s · (s + k − 1) · (k − 1) (2)

Regarding to a recursive call, as its heaviest operation is the set intersection
(i.e., P

⋂
Γ (v), where v denotes a selected vertex) that happens when preparing

the candidate sets, and generally, it is implemented by scanning the adjacency
list of Γ (v) to identify the neighbors that belong to P , we use the length of Γ (v)
to approximate the cost of a recursive call. By this way, the total cost of the
recursive calls in BKpivot (denoted as Crc

pivot), can be approximated as:

Crc
pivot = (s + k − 1) · s + k · s (3)

Fig. 6. The benefit function f(s, k)
when both s and k vary (the values of
f(s, k) are represented as pillars)
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Fig. 7. The intersection of f(s, k) to
the sk-plane

Similarly, the total cost of the recursive calls in BKrcd (denoted as Crc
rcd),

when conducting in a s, k-graph, can be approximated as:

Crc
rcd = (k − 1) · s (4)
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5.3 Criterion on Choosing BKrcd

In order to pick up the situations that BKrcd harvests higher efficiency, we
combine Eqs. 1, 2, 3, and 4 to define a benefit function below that approximately
depicts the performance gains of choosing BKrcd over BKpivot when solving the
MCE problem in a given s, k-graph.

f(s, k) =Cvc
pivot + Crc

pivot − Cvc
rcd − Crc

rcd

=
1
2
s3 + (−k

2
+ 2)s2 + (−5

2
k2 + 5k − 3

2
)s

(5)

We plot f(s, k) when both s and k vary in Fig. 6. Figure 7 plots the curve
that f(s, k) intersects the sk-plane. According to the shape of f(s, k) illustrated
in Fig. 6, we know that when the point of (s, k) falls in the left region of the curve
in Fig. 7, we will have f(s, k) > 0, which means BKrcd achieves higher efficiency
than BKpivot. On the contrary, if the point of (s, k) falls in the right region of
the curve in Fig. 7, we will have f(s, k) < 0, which means the opposite. As large
portion of the intersection curve in Fig. 7 overlaps with the linear function of
s = 2.8k − 4.5, we thus have the following approximate conditional formula:

f(s, k)

{
≥ 0, if s ≥ 2.8k − 4.5
< 0, if s < 2.8k − 4.5

(6)

With Formula 6, we have the concise form of the criterion on choosing BKrcd:
for a s, k-graph, when s ≥ 2.8k − 4.5, BKrcd has higher efficiency than BKpivot

on solving the MCE problem in the graph.

5.4 Divergence

Consider an arbitrary undirected graph G = <V,E>, suppose there are s ver-
tices that connect to all other vertices in V , but there may be some edges con-
necting vertices in remaining k vertices. This kind of graph is not a s, k-graph
due to the existence of these edges. We further divide V into two subsets like
s, k-graph: the S set of G including s fully connected vertices and K set including
all other k vertices.

Use d(v) to denote the degree of a vertex v, the divergence of G, denoted as
div(G), is thus defined to express the quantitative difference between G and the
s, k-graph which has the same s and k values, by the following formula:

div(G) = max
v∈KG

(d(v) − s) (7)

We use the right superscript to annotate the divergence of a graph, and can
thus express the arbitrarily taken undirected graph G as G

div=div(G)
<s,k> . We will

call the edges that connect vertices in K as divergence edges in the following
discussions. Figure 8 gives three examples of s, k-graphs with divergence.

We now discuss the criterion that should be satisfied by G
div=div(G)
<s,k> , to ben-

efit from choosing BKrcd to solve the MCE problem than BKpivot. Consider the
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Fig. 8. Example s, k-graphs with divergence (dashed lines denotes the divergence
edges)

case of only adding one divergence edge which implies div(G) = 1, the intro-
duction of the edge affects the costs of vertex choosing and recursive calls, and
following equations lists the variations to these costs (based on Eqs. 1–4):

ΔCvc
pivot = 3s + 3 ΔCrc

pivot = 2

ΔCvc
rcd = 2(k − 1) − [2(k + s − 1) · s + s] ΔCrc

rcd = −s

With the introduction of the divergence edge, two of the (s + 1)-cliques in G
merge into one (s + 2)-clique. The search tree of BKpivot now has s + 1 trunk
nodes, 1 branch node and k − 1 leaf nodes, as two leaf nodes in Fig. 5(a) become
a branch node and a leaf node respectively. On the other hand, the search tree
of BKrcd will have only k − 2 leaf nodes with the introduction of the divergence
edge. With these variations in the costs of two MCE algorithms, we will get a
new benefit function. By using the same method used in Subsect. 5.3, we have
the concise form of the criterion on choosing BKrcd for a s, k-graph with only
one divergence edge as the linear function of s = 2.8k − 8.

Note that for a Gdiv=1
<s,k> graph, it may have multiple divergence edges like

Fig. 8(b). Adding more divergence edges into Gdiv=1
<s,k> will not change the size of

remaining clique in BKrcd. Therefore, the new benefit function always holds for
the Gdiv=1

<s,k> graph with more divergence edges if we continue above discussions.
By using the above methodology, we have the criterion on benefiting from

choosing BKrcd over BKpivot for Gdiv=2
<s,k> graphs as linear function s ≥ 2.8k −

11. For Gdiv≥3
<s,k> graphs, we continue to use s ≥ 2.8k − 11 as the criterion on

choosing BKrcd over BKpivot for two reasons: first, from the above discussions
on the divergences of s, k-graphs, we find that the criterion relaxes with higher
divergences introduced to a s, k-graph, at least from div = 0 to div = 2. Second,
in our experiments conducted in Sect. 6, we find that in a real-world graph, there
is only a small portion of degeneracy neighborhoods that are the s, k-graphs with
much higher divergences (i.e., div ≥ 3) and satisfy the criterion of the Gdiv=2

<s,k>

graphs at the same time. We thus use the criterion of the Gdiv=2
<s,k> graphs to the

graphs with larger divergences, to prevent from complicating our discussions.
We summarize the criteria of choosing BKrcd over BKpivot in Table 1 and

thus can combine the merits of both these two algorithms to solve the MCE
problem. The idea is to consider the degeneracy neighborhood of each vertex of
the input real-world graph as a s, k-graph with divergence, and chooses MCE
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Table 1. The criteria that a s, k-graph with divergence should satisfy to benefit from
choosing BKrcd over BKpivot

Divergence Criterion Notes

div(G) = 0 s ≥ 2.8k − 4.5 s, k-graphs by Definition 1

div(G) = 1 s ≥ 2.8k − 8 k ≥ 3

div(G) = 2 s ≥ 2.8k − 11 k ≥ 4

div(G) ≥ 3 s ≥ 2.8k − 11 Approximate and empirical criterion

Algorithm 4. MCEhybrid
degeneracy(G(V,E))

1 Compute the degeneracy orders of vertices in V
2 foreach v ∈ V do
3 Consider N+(v) as a s, k-graph with divergence, extract div, s and k.
4 if div, s and k satisfy criteria listed in Table 1 then
5 BKrcd({v}, Γ+(v), Γ−(v))

6 else
7 BKpivot({v}, Γ+(v), Γ−(v))

algorithms with higher efficiency according to the criteria listed in Table 1. Based
on this idea, we build a “hybrid” version (named as MCEhybrid

degeneracy) of the
original MCEdegeneracy, and list its pseudo-code in Algorithm 4.

Different from MCEdegeneracy (Algorithm 2), MCEhybrid
degeneracy chooses BKrcd

if the structural parameters (i.e., div, s and k) of an input degeneracy neighbor-
hood satisfy the criteria listed in Table 1, and chooses BKpivot if otherwise.

6 Empirical Evaluation

In this section, we evaluate the performance of our proposed hybrid MCE app-
roach on the chosen real-world graphs.

6.1 Experiment Setup

Experiment Environment. We conducted all experiments in this section on
a server configured with one Intel Xeon E5-2670 CPU (8 cores, 20 MB shared
cache, running at 2.60 GHz), and 220 GB DDR4 memory. The operating system
is Ubuntu 16.04 Linux.

Graph Data-Sets. We use the eight graph data-sets listed in Table 2 (left part)
to conduct MCE algorithms. notredame, google, berkstan, trec are four real-world
web crawler graphs, where vertices represent the web-pages and edges represent
the hyper-links connecting the web-pages. Four social networks dblp, youtube,
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Table 2. Chosen real-world graph datasets (left part, deg. stands for the degeneracy
of a graph) and the overall execution times of MCE approaches (right part, digits after
the plus sign in the brackets of the “Original approach” column are the execution times
paid on computing the degeneracy orderings of the vertices)

Dataset DataSet properties Running time (in seconds)

Type n m deg. Density Original
approach

Naive
approach

Hybrid
approach

notredame Web 325, 729 1, 090, 108 155 2.05e−5 0.54 (+0.32) 0.47 0.34

google 875, 713 4, 322, 051 44 1.13e−5 3.06 (+1.80) 2.77 2.28

berkstan 685, 231 6, 649, 470 201 2.83e−5 8.59 (+1.56) 7.78 2.89

trec 1, 601, 787 6, 679, 248 140 5.20e−6 3.42 (+2.19) 3.04 1.86

dblp Social 317, 080 1, 049, 866 113 2.09e−5 0.15 (+0.25) 0.15 0.14

youtube 1, 134, 890 2, 987, 624 51 4.64e−6 3.68 (+1.47) 3.77 3.32

wiki-talk 2, 394, 385 4, 659, 565 131 1.63e−6 226.86 (+2.63) 234.15 223.73

cit-Patents 3, 774, 768 16, 518, 947 64 2.32e−6 20.32 (+12.05) 20.41 19.73

wiki-talk, cit-Patents describe the social network or collaboration network. All
eight datasets except trec, which could be gotten in [4], are taken from [13].

Evaluated Approaches. We evaluate three approaches listed below:

• Original approach. This approach is the state-of-art approach introduced in
Subsect. 3.2. It has been introduced in [11] and implemented in [12].

• Naive approach. This approach slightly modifies the original approach by
adding a complete graph test in BKpivot before it is conducted in a sub-
graph. With this test, BKpivot quits the enumeration if the input subgraph
is complete. The complete test saves the costs of MCE while P is already a
clique.

• Hybrid approach. This approach uses MCEhybrid
degeneracy listed in Algorithm 4 to

solve the MCE problem in a given graph. It chooses MCE algorithms (i.e.,
BKrcd or BKpivot) with higher efficiency according to the structural proper-
ties (more specifically, s, k and the divergence) of a degeneracy neighborhood.

All these approaches are implemented based on or by revising the source code
of MCEdegeneracy that is available at [17]. GNU C++ version 5.4.0 is used to
compile and link the source codes with optimization option of -O3.

6.2 Overall Execution Times

Table 2 (right part) reports the overall execution times of MCE when conducting
three approaches listed above in the chosen graphs.

From Table 2, we can observe that compared with the original approach, the
naive approach improves the performance of MCE in most cases, although the
performance improvements are much smaller than our hybrid approach. Occa-
sionally, the naive approach may deteriorate the MCE performance (e.g., in the
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Table 3. The statistics of degeneracy neighborhoods (N+(v)) of the chosen graphs (a
N+(v) is “valid” if it has more than one vertex)

Dataset # of valid N+(v) # of BKrcd eligible N+(v)

div = 0 div = 1 div = 2 div ≥ 3

notredame 155, 250 54, 719 4, 831 3, 943 608

google 686, 885 360, 944 25, 673 19, 362 8, 397

berkstan 611, 599 286, 778 13, 730 16, 358 15, 846

trec 1, 148, 361 721, 758 29, 461 24, 454 7, 781

dblp 24, 979 3, 591 65 17 0

youtube 442, 451 65, 299 2, 588 1, 085 6

wiki-talk 621, 338 82, 099 2, 124 726 4

cit-Patents 3, 073, 519 76, 525 9, 002 8, 435 50

wiki-talk graph). The reason for such phenomenon is that although the added
complete graph test in BKpivot reduces the overhead of MCE, when the algo-
rithm finds that the input degeneracy neighborhoods is complete (the reason
for the performance improvements), the way of pivot vertex choosing (always
chooses the vertex with the most neighbors in the candidate set) in BKpivot pre-
vents it from reaching a “remaining clique” as fast as in BKrcd. In quasi-complete
(dense, but not complete) degeneracy neighborhoods, the added complete graph
test brings almost no performance benefits while introducing extra overheads
(for testing), which counteracts the performance benefits gained from the com-
plete degeneracy neighborhoods, and may even cause worse performance than
the original approach.

From Table 2, we can observe that compared with the original approach,
our hybrid approach achieves significant performance improvements in the web-
graphs. The speedups are 1.59, 1.34, 2.97, and 1.84 respectively for notredame,
google, berkstan, and trec. The speedups of our hybrid approach compared to the
original approach in the chosen social graphs, however, are small. They are 1.07,
1.11, 1.01, 1.03 respectively for dblp, youtube, wiki-talk, cit-Patents. In order to
explain these figures, we need to take deeper looks to the degeneracy neighbor-
hoods of the chosen graphs, since our hybrid approach uses different algorithms
to conduct MCE in a degeneracy neighborhood according to its structure.

6.3 The Degeneracy Neighborhoods

We report the statistics of the degeneracy neighborhoods of the chosen graphs
in Table 3. From Table 3, we can observe that in web graphs, there are lots
of degeneracy neighborhoods that satisfy the criteria listed in Table 1 and are
thus eligible to use BKrcd to improve the efficiency during MCE. To facilitate
discussion, we call such degeneracy neighborhoods as the BKrcd eligible degen-
eracy neighborhoods. It is easy to calculate that for notredame, google, berkstan,
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Fig. 9. Breakdown of the execution times paid on MCE in the original approach (left
columns) and in our hybrid approach (right columns). (all figures are normalized to
the total execution time of the original approach.)

and trec, the portions of the BKrcd eligible degeneracy neighborhoods are about
55.16%, 60.33%, 54.4%, and 68.22% respectively. However, the portions of BKrcd

eligible degeneracy neighborhoods are relatively low in our chosen social graphs:
they are only about 14.7%, 15.59%, 13.67%, and 3.06% respectively for dblp,
youtube, wiki-talk, cit-Patents. Moreover, the majorities of the BKrcd eligible
degeneracy neighborhoods in our selected real-world graphs are the s, k-graphs
whose divergences equal to 0.

We use the symbol Nrcd to denote the set of degeneracy neighborhoods that
do not satisfy the criteria. Figure 9 reports the execution times of solving the
MCE problem in the chosen graphs with the original approach and our hybrid
approach. To show the effectiveness of BKrcd, in Fig. 9, the execution times are
broken down to illustrate the portion of time spent in various kinds of degeneracy
neighborhoods (those of Nrcd, and those of BKrcd eligible degeneracy neighbor-
hoods). Note that in the original approach, BKpivot is employed to conduct MCE
in the degeneracy neighborhoods, even when they satisfy the criteria listed in
Table 1.

From Fig. 9, we can observe that: (1) For the social graphs, their BKrcd eligi-
ble degeneracy neighborhoods consume little time even when they are processed
by using BKpivot in the original approach (may due to their relatively simple
structure). Combined with the fact that they occupy a small portion of all the
degeneracy neighborhoods as shown in Table 3, it explains the marginal perfor-
mance improvements that can be harvested by our hybrid approach. (2) For
the web graphs, the majority of performance improvements by choosing BKrcd

than BKpivot in the hybrid approach comes from the degeneracy neighborhoods
whose divergences equal to zero (i.e., div = 0), since they occupy the majority
of the BKrcd eligible degeneracy neighborhoods as shown in Table 3.

However, for these BKrcd eligible div = 0 degeneracy neighborhoods, the
performance improvements vary from one graph to another: the speed-ups are
2.39×, 1.83×, 6.99×, and 2.77× respectively for notredame, google, berkstan, and
trec. In order to explain this phenomenon, we choose two graphs (google and
berkstan) that lie at two extremes, and plot the size distributions and execution
times of their degeneracy neighborhoods in Fig. 10.
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Fig. 10. The size distributions and execution times of the BKrcd eligible div = 0
degeneracy neighborhoods in google and berkstan

From Fig. 10(a) and (c), we can observe that the BKrcd eligible div = 0
degeneracy neighborhoods in google are generally small due to its small degen-
eracy (i.e., 44, see Table 2), while some of the BKrcd eligible div = 0 degeneracy
neighborhoods in berkstan are relatively large due to its large degeneracy (i.e.,
201). Moreover, most of the div = 0 degeneracy neighborhoods that are eligible
to use BKrcd are small with small s and k values for both of these two real-world
graphs.

From Fig. 10(b), we can observe that the performance improvements by
choosing BKrcd than BKpivot in google are limited to the small degeneracy
neighborhoods (s in the range of [1, 20)), and in these degeneracy neighborhoods,
BKrcd spends half of the execution time of BKpivot to solve the MCE problem.
This explains the execution times of google in Fig. 9. The situation changes in
Fig. 10(d), where large degeneracy neighborhoods (s in the range of [40, 60) and
[100, 120)) consume the most of the execution times paid on MCE when using
BKpivot. For these degeneracy neighborhoods, BKrcd achieves salient perfor-
mance improvements during enumeration. From Fig. 10(d), we can observe that
the performance improvements by choosing BKrcd over BKpivot are higher when
the input degeneracy neighborhoods become larger (with larger s values), which
validates our approximation method, which uses the lengths of the adjacency
lists to approximate the overhead of MCE, and the benefit function illustrated
in Fig. 6, as discussed in Sect. 5.

7 Conclusion and Future Works

In this paper, based on the fact that many of the degeneracy neighborhoods in
real-world graphs are dense, we propose a new MCE algorithm, named as BKrcd,
to improve the efficiency of MCE in these dense sub-graphs. We further integrate
BKrcd into the state-of-art approach to form a hybrid approach to improve
its overall performance on solving the MCE problem in real-world graphs. By
empirical evaluations, we show that our hybrid approach is especially effective
in improving the efficiency on solving the problem in real-world web graphs.

Our study conducted in this paper suggests that we can take advantage of
the structural properties of an input graph to improve the efficiency of MCE.
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We believe that the s, k-graph structure discussed in this paper is not the only
viable way on improving the efficiency of MCE, and place the analysis on other
structures and further discussions to them in our future works.
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Abstract. A promising pathway for natural language question answer-
ing over knowledge graphs (KG-QA) is to translate natural language
questions into graph-structured queries. During the translation, a vital
process is to map entity/relation phrases of natural language questions
to the vertices/edges of underlying knowledge graphs which can be used
to construct target graph-structured queries. However, due to linguis-
tic flexibility and ambiguity of natural language, the mapping process is
challenging and has been a bottleneck of KG-QA models. In this paper,
we propose a novel framework, called KemQA, which stands on recent
advances in relation phrase dictionaries and knowledge graph embed-
ding techniques to address the mapping problem and construct graph-
structured queries of natural language questions. Extensive experiments
were conducted on question answering benchmark datasets. The results
demonstrate that our framework outperforms state-of-the-art baseline
models in terms of effectiveness and efficiency.

Keywords: Knowledge graph
Natural language question answering · Knowledge graph embedding

1 Introduction

Large-scale knowledge graphs (KGs), such as DBpedia [10] and Wikidata [19],
organize web information in the form of KG triples, e.g., (Renée Zellweger, award,
Academy Award). Each KG triple contains two vertices (e.g., Renée Zellweger,
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Who played in Chicago and won an Oscar?Natural language 
question:

Possible semantics 
of phrases:

Candidate matching 
vertices/edges:

“played in teams”
“played in films” “city” “film”

“team”“album” “drama”

Chicago (drama)

Chicago Bears

Chicago Bulls

City of Chicago Chicago (film)

…

Candidate graph-
structured queries:

?who
starring

Chicago (film)Academy Award
award

starringstars team

playedForclub …

?who
stars Chicago (drama)Academy Award

award

(1)

(2)

(entity phrase)(relation phrase)

Fig. 1. The general translation process of an example natural language question.

Academy Award) and an edge (e.g., award). Consequently, a KG can be repre-
sented by an oriented graph, and graph-structured queries, such as SPARQL [7]
queries and GraphQL [8] queries, are natural and effective methods for access-
ing the KG. However, issuing such graph-structured queries requires users to be
precisely aware of complicated query syntaxes, and users prefer querying KGs
directly with natural language questions (NLQs). Therefore, it is imperative to
provide an interface which can translate NLQs into graph-structured queries
accurately and efficiently. KG-QA models [1,6,9,23,25] have been proposed in
recent years. However, there are still many non-trivial issues due to linguistic
flexibility and ambiguity of natural language.

Challenges. Let us consider the translation of the example NLQ “Who played
in Chicago and won an Oscar?”. As illustrated in Fig. 1, a KG-QA model
needs to first map entity/relation phrases of the NLQ to vertices/edges of
the underlying KG and then assemble the matching vertices/edges into graph-
structured queries. There are four major challenges during this process. Firstly,
entity/relation phrases of the NLQ may be ambiguous. For example, the rela-
tion phrase “played in” may denote “played in films” or “played in teams”, and
the entity phrase “Chicago” may denote a “city”, a “film”, or even a “sports
team”. Secondly, assuming that exact semantics have been determined, search-
ing the matching vertices/edges of an entity/relation phrase in the underlying
KG is hard. This is because the entity/relation phrase may be very different from
its name in the KG. For example, the candidate matching edges of the phrase
“played in films” include starring and stars, and there is no similarity between
them in form. Thirdly, a phrase may have too many candidate matching ver-
tices/edges. For example, if “Chicago” denotes a “sports team”, then Chicago
Bulls, Chicago Bears, and all the other Chicago sports teams are candidates.
This poses a challenge to efficiency of KG-QA models. Lastly, as illustrated in
Fig. 1, we may construct multiple candidate graph-structured queries with the
matching vertices/edges, and it is hard to select the optimal one.
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Our Solution. In this paper, we focus on the above challenges and propose a
novel framework, called KemQA (Knowledge Graph Embedding based Question
Answering Framework), which leverages the relation phrase dictionary [13] and
knowledge graph embedding techniques [3,4,11] during the translation of NLQs.

In the off-line stage, KemQA encodes the underlying KG and relation phrase
dictionary into a common low-dimensional vector space. Learned embedding vec-
tors of vertices, edges, and relation phrases are essentially latent representations
of the KG and relation phrase dictionary, and the embedding vectors can be
utilized during the translation of NLQs without any further modification. In
the on-line stage, given an NLQ, KemQA first maps entity/relation phrases to
their candidate matching vertices/edges. KemQA does not handle the ambigu-
ity issue of phrases during the mapping process, and all candidate matching
vertices/edges of each phrase are obtained with the help of learned embedding
vectors. Then, KemQA employs a “clustering+translation” strategy to compute
the exact semantic of each phrase in the embedding space and generate the
matching vertices/edges of each phrase. Finally, KemQA utilizes the matching
vertices and edges to construct candidate graph-structured queries and selects
the optimal query based on the translation mechanism. In a nutshell, our work
makes the following contributions:

– We propose a novel framework, i.e., KemQA, based on KG embedding tech-
niques to answer NLQs by translating NLQs into graph-structured queries.

– We propose a novel embedding method which utilizes the translation mecha-
nism to preserve the structure of the KG while considering the context infor-
mation to incorporate relation phrases into the common embedding space.

– We propose effective and efficient approaches to map phrases, address the
ambiguity issue, and generate target graph-structured queries based on the
learned embedding vectors.

– We conduct extensive experiments over the benchmark dataset to evaluate
the performance of KemQA. The results prove that KemQA outperforms
existing models regarding effectiveness and efficiency.

Organization: The rest of this paper is organized as follows: We introduce
our framework in Sect. 2. Experiments are reported in Sect. 3. Related work is
discussed in Sect. 4. Finally, conclusions are presented in Sect. 5.

2 Proposed Framework

In this section, we first introduce the notations employed in this paper and then
give an overview of our framework.

NLQ and Entity/Relation Phrase. We denote a natural language question
(NLQ) as Q. The entity phrase (e.g., “Who”, “Chicago”, and “Oscar”) and the
relation phrase (e.g., “played in” and “won”) of the NLQ are denoted as ent and
rel, respectively.
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Knowledge Graph (KG). Let V be a set of vertices, E be a set of edges that
link vertices. A KG G = (V, E) is a finite set of KG triples which are in the form
(vh, e, vt), where vh, vt ∈ V, and e ∈ E . A KG triple (vh, e, vt) indicates that the
head vertex vh is linked to the tail vertex vt by the edge e.

Graph-Structured Query. Let Vv be a set of variables1, where each variable
vv ∈ Vv is distinguished from vertices by a leading question mark symbol, e.g.,
?actor. The triple pattern is similar to the KG triple but allows the usage of
variables, e.g., (?actor, award, Academy Award). We define the graph-structured
query GQ as a finite set of triple patterns.

Relation Phrase Dictionary. We denote a relation phrase dictionary as D =
(R, S(·)), where R = {rel1, . . . , relm} is a set of relation phrases, and S(·) is a
function that returns a set of supporting vertex pairs for each relation phrase
in R. Specifically, the supporting vertex pairs of the relation phrase rel ∈ R
are denoted as S(rel) = {(v1

h, v1
t ), . . . , (vn

h , vn
t )}. We employ PATTY [13] as the

relation phrase dictionary in this paper, and Table 1 shows two example relation
phrases and their supporting vertex pairs.

Table 1. Example relation phrases and their supporting vertex pairs

Relation phrase Supporting vertex pairs

“played in films” (Una Merkel, Abraham Lincoln (1930 film)),
(Brandon Routh, Superman Returns), ...

“played in teams” (Al Nesser, New York Giants),
(Sedric Toney, Phoenix Suns), ...

KG Embedding. We use boldface letters to denote learned embedding vectors
of v ∈ V, e ∈ E , and rel ∈ R as v, e, and rel, respectively. We employ the
translation mechanism of TransE [3] in KemQA, which refers to that edges of
KGs are represented as translation operations from head vertices to tail vertices
in the embedding space. Specifically, given a KG triple (vh, e, vt) ∈ G, we learn
the embedding vectors vh, e, and vt which hold vh + e ≈ vt (vt should be the
closest vertex to vh + e in the embedding space).

2.1 Overview of Our Framework

Our framework KemQA consists of four modules: embedding learning module,
phrase mapping module, disambiguation module, and query generation module.
We depict an overview of KemQA with a concrete example in Fig. 2.

In the off-line stage, KemQA encodes the underlying KG G = (V, E) and the
relation phrase dictionary D = (R, S(·)) into a common low-dimensional vector
1 In this paper, we focus on the NLQs whose answers are vertices in the underlying

KG. Therefore, we only consider vertex variables.
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?whoAcademy Award award(rel' )

Optimal Query Graph
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(v1) (v3)

v2

v1
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Fig. 2. An overview of our framework.

space. As illustrated in Fig. 2(c), in the embedding space, semantically similar
vertices/edges are close to each other, e.g., v1 is close to v2, and e1 is close to
e2, and relation phrases are close to their matching edges, e.g., rel′ is close to
e1 and e2. Meanwhile, the translation mechanism is maintained to capture the
inherent structure of the KG and information of the relation phrase dictionary,
e.g., v1 + e1 ≈ v3 and v1 + rel′ ≈ v3.

In the on-line stage, given the NLQ “Who played in Chicago and won an
Oscar?”, KemQA first maps each entity/relation phrase of the NLQ to its can-
didate matching vertices/edges which are referred to as mapping results. For
example, KemQA maps “Chicago” to City of Chicago and Chicago (film), as
shown in Fig. 2(a). Especially for the relation phrase rel, KemQA first searches
its similar relation phrases in the relation phrase set R, e.g., rel′, then KemQA
obtains the edges which are close to rel′ in the embedding space as candidate
matching edges of rel.

Then, KemQA handles ambiguity of entity/relation phrases by a “cluster-
ing+translation” strategy, as illustrated in Fig. 2(b). Firstly, the mapping results
of each phrase are clustered into several mapping result clusters according to
their semantics. Since we require that semantically similar vertices/edges should
be close to each other in the embedding space, the clustering is processed in
the embedding space, and we expect that each cluster contains mapping results
which have similar semantics. For example, the mapping results of “Chicago” are
clustered into three clusters, i.e., {Chicago (drama), Chicago (film), ...}, {City
of Chicago, ...}, and {Chicago Bulls, ...}. Then, KemQA utilizes the mapping
result clusters to compute the exact semantic of each phrase based on transla-
tion mechanism and select the optimal cluster which contains the exact matching
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vertices/edges. For example, the exact semantic of “Chicago” is “film”, and its
optimal mapping result cluster is {Chicago (drama), Chicago (film), ...}.

In the last module, KemQA assembles matching vertices and edges into
graph-structured queries which can be evaluated to obtain answers. Since a
phrase may correspond to multiple matching vertices/edges, e.g., “Chicago”
corresponds to Chicago (film) and Chicago (drama), we may construct multi-
ple candidate queries. We represent the candidates with query graphs and select
the optimal one based on translation mechanism, as shown in Fig. 2(d).

2.2 Embedding Learning

As introduced above, we have three requirements for the embedding learning
module: (1) embedding vectors of semantically similar vertices/edges should be
close to each other; (2) relation phrases should be close to their matching edges
in the embedding space; (3) translation mechanism should be maintained.

In this module, KemQA encodes the KG G = (V, E) and the relation phrase
dictionary D = (R, S(·)) into a common low-dimensional embedding space.
Specifically, the embedding vectors of vertices/edges in G are learned based on
their context information, and the embedding vectors of relation phrases in D are
learned based on their supporting vertex pairs. The supporting vertex pairs have
been introduced above, and we define the context of vertices/edges as follows:

Definition 1 (Vertex/Edge Context). Given a KG G = (V, E), the vertex
context of v ∈ V is Cv(v) = {(e, v̂)|e ∈ E , v̂ ∈ V, (v, e, v̂) ∈ G||(v̂, e, v) ∈ G}. The
edge context of e ∈ E is Ce(e) = {(vh, vt)|vh, vt ∈ V, (vh, e, vt) ∈ G}.

For the vertex v ∈ V, the edge e ∈ E , and the relation phrase rel ∈ R, we
respectively define the conditional probability of v, e, and rel given the context
Cv(v), Ce(e), and the supporting vertex pairs S(rel) as follows:

P (v|Cv(v)) =
exp(f1(v, Cv(v)))

∑
v′∈V exp(f1(v′, Cv(v)))

, (1)

P (e|Ce(e)) =
exp(f2(e, Ce(e)))∑

e′∈E exp(f2(e′, Ce(e)))
, (2)

P (rel|S(rel)) =
exp(f3(rel, S(rel)))

∑
rel′∈R exp(f3(rel′, S(rel)))

, (3)

where f1(v′, Cv(v)), f2(e′, Ce(e)), and f3(rel′, S(rel)) are functions that respec-
tively measure the correlation between an arbitrary vertex v′ ∈ V and Cv(v),
the correlation between an arbitrary edge e′ ∈ E and Ce(e), and the correla-
tion between an arbitrary relation phrase rel′ ∈ R and S(rel). Equations 1, 2,
and 3 can be considered as the compatibility between the vertex/edge/relation
phrase and the vertex context/edge context/supporting vertex pairs. They are
formulated as softmax-like representations which have been validated [14,22].



Leveraging Knowledge Graph Embeddings for NLQ Answering 665

The functions f1(v′, Cv(v)), f2(e′, Ce(e)), and f3(rel′, S(rel)) are formulated as
follows:

f1(v′, Cv(v)) = − 1
|Cv(v)|

∑

(e,v̂)∈Cv(v)

f4(v′, e, v̂), (4)

f2(e′, Ce(e)) = − 1
|Ce(e)|

∑

(vh,vt)∈Ce(e)

f5(vh, e′, vt), (5)

f3(rel′, S(rel)) = − 1
|S(rel)|

∑

(vh,vt)∈S(rel)

f6(vh, rel′, vt), (6)

where f4(v′, e, v̂), f5(vh, e′, vt), and f6(vh, rel′, vt) are cost functions based on
the translation mechanism of TransE, formulated as follows:

f4(v′, e, v̂) =
{

‖v′ + e − v̂‖22, if (v, e, v̂) ∈ G,
‖v̂ + e − v′‖22, if (v̂, e, v) ∈ G.

(7)

f5(vh, e′, vt) = ‖vh + e′ − vt‖22. (8)

f6(vh, rel′, vt) =
{

‖vh + rel′ − vt‖22, if ∃e ∈ E , (vh, e, vt) ∈ G,
‖vt + rel′ − vh‖22, if ∃e ∈ E , (vt, e, vh) ∈ G.

(9)

KemQA learns the embedding vectors of vertices, edges, and relation phrases
by maximizing the joint probability of all vertices/edges in G and relation phrases
in D, which is formulated as follows:

O = λv

∑

v∈V
log P (v|Cv(v)) + λe

∑

e∈E
log P (e|Ce(e)) + λrel

∑

rel∈R
log P (rel|S(rel)),

(10)
where λv, λe, and λrel are weighting hyper-parameters.

The intuition of vertex/edge embedding learning is that semantically similar
vertices/edges tend to share common context information. For example, Chicago
(drama) and Chicago (film) are semantically similar vertices, and both of them
are intensively linked with actors and directors in the KG. Starring and stars
are semantically similar edges, and both of them link a set of “actor-film” vertex
pairs. Since we learn the embedding vectors of vertices and edges based on their
context, i.e., Eqs. 1 and 2, semantically similar vertices and edges should be close
to each other in the embedding space.

The intuition of relation phrase embedding learning is that, if we regard the
context of an edge as its supporting vertex pairs, relation phrases and their
matching edges tend to share common supporting vertex pairs. For example,
given a relation phrase “played in films”, its supporting vertex pairs include
“actor-film” vertex pairs and its matching edge starring also links “actor-film”
vertex pairs in the KG. Since we encode relation phrases and edges based on
supporting vertex pairs and edge contexts, respectively, i.e., Eqs. 2 and 3, relation
phrases should be close to their matching edges in the embedding space.
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Fig. 3. The learned embedding vectors of the relation phrase rel, the matching edge
e, and the vertices in Ce(e) and S(rel).

Note that the translation mechanism is maintained in our embedding module
since we adopt it in cost functions, i.e., Eqs. 7, 8, and 9.

In the following, we discuss an important issue during the embedding learning
of relation phrases, which is the data sparsity issue of relation phrase dictionar-
ies. We first illustrate an ideal scenario of relation phrase embedding learning in
Fig. 3(a), where e is a matching edge of the relation phrase rel, and e links all
supporting vertex pairs of rel in the KG, i.e., Ce(e) = S(rel). Then, according
to Eqs. 2 and 3, we expect that e = rel. However, compared to the edge context
Ce(e), the size of the supporting vertex pair set S(rel) is usually very limited.
For example, in DBpedia, an edge usually links over thousands of vertex pairs2.
However, in PATTY, a relation phrase only has 11 supporting vertex pairs on
average [26]. Therefore, as illustrated in Fig. 3(b), it seems like the learned rela-
tion phrase embedding vector rel is very possible to be not close to the edge
embedding vector e. Addressing this issue is another reason why we leverage
context information of vertices during embedding learning. Since vertices from
the same side of supporting vertex pairs of the relation phrase/the matching
edge are usually semantically similar, and considering the context information
of vertices helps to make semantically similar vertices be close to each other, the
distribution of vertices in S(rel) is close to the distribution of vertices in Ce(e) in
the embedding space, as shown in Fig. 3(c). Then, even S(rel) is a small subset
of Ce(e), we can still make sure that e is close to rel in the embedding space.

2.3 Phrase Mapping

In this module, we adopt the pre-processing method in [5] and the node-first
Super Semantic Query Graph building method in [9] to extract entity/relation
phrases of the given NLQ and generate phrase triples, each of which consists
of one relation phrase and two entity phrases. We denote the phrase triple as
tp = (rel, ent, ent′) which indicates that there is a relation rel between ent and

2 http://wiki.dbpedia.org/dbpedia-2016-04-statistics.

http://wiki.dbpedia.org/dbpedia-2016-04-statistics
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Fig. 4. Mapping result clusters of “Chicago” and “played in”.

ent′. For instance, we extract phrase triples (“played in”, “Who”, “Chicago”)
and (“won”, “Who”, “Oscar”) from the example NLQ in Fig. 2.

The mapping results of entity phrases are obtained during the above process.
However, the mapping of relation phrases is generally considered to be a more
difficult and problem-specific task [5]. We design a novel method which utilizes
the learned embedding vectors to perform the mapping of relation phrases, as
shown in Fig. 2. Specifically, given a relation phrase rel of the NLQ, we first
employ Levenshtein distance to retrieve similar relation phrases of rel from the
relation phrase dictionary D. For example, the similar relation phrases of “played
in” include “played in films” and “played in teams”. Then we search the edges
which are close to the similar relation phrases in the embedding space according
to cosine similarity and collect these edges as candidate matching edges of rel.
For example, stars and starring are close to “played in films” in the embedding
space, then they are candidate matching edges of “played in”.

2.4 Disambiguation

In this module, we employ a “clustering+translation” strategy to compute the
exact semantic of each entity/relation phrase and distill the above mapping
results of entity/relation phrases in the embedding space.

Firstly, we cluster the mapping results of each entity/relation phrase into sev-
eral disjoint clusters. Specifically, given an entity phrase ent along with its map-
ping results {v1, . . . , vi, . . . , vm}, we perform K-means algorithm in the embed-
ding space to cluster them into α clusters Cv(ent) = {Cv1, . . . , Cvj , . . . , Cvα},
where the value of α is estimated based on the gap statistic [15], and if vi is clus-
tered into Cvj , vi ∈ Cvj . Analogically, given a relation phrase rel, we cluster its
mapping results {e1, e2, . . . , en} into β clusters Ce(rel) = {Ce1, Ce2, . . . , Ceβ}.
As analyzed in the embedding learning module, we learn embedding vectors
of vertices/edges based on their context information, and semantically similar
vertices/edges are close to each other in the embedding space. Therefore, ver-
tices/edges in the same cluster share similar semantics, as shown in Fig. 4.

Then, we employ translation mechanism to address the ambiguity issue of
entity/relation phrases and determine the optimal mapping result cluster of each
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phrase. Let us first consider a simple NLQ which contains only one phrase
triple tp = (rel, ent, ent′). The mapping result clusters of rel, ent, and ent′

are respectively denoted as Ce(rel), Cv(ent), and Cv(ent′). Then, we represent
each entity/relation phrase in tp by one of its mapping result clusters to con-
struct a cluster triple (Cv,Ce,Cv′), where Cv ∈ Cv(ent), Ce ∈ Ce(rel), and
Cv′ ∈ Cv(ent′). According to the translation mechanism of TransE, the cost of
the cluster triple (Cv,Ce,Cv′) is computed by the following equation:

costc(Cv,Ce,Cv′) = ‖f7(Cv) + f7(Ce) − f7(Cv′)‖22, (11)

where f7(·) is the function that computes the mean embedding vector of a map-
ping result cluster. f7(Cv) is formulated as follows:

f7(Cv) =
1

|Cv|
∑

v∈Cv

v. (12)

Since phrase triple does not specify the direction of relation phrase, we can
construct 2 · |Cv(ent)| · |Ce(rel)| · |Cv(ent′)| cluster triples for the phrase triple tp.
If a cluster triple (Ĉv, Ĉe, Ĉv′) has the minimum cost, we regard Ĉv, Ĉe, and
Ĉv′ as optimal mapping result clusters of ent, rel, and ent′, respectively.

If the NLQ contains ω phrase triples {t1p, . . . , t
l
p, . . . , t

ω
p }, we construct

the cluster triple set Tc =
{
(Cv1, Ce1, Cv′1), . . . , (Cvl, Cel, Cv′l), . . . , (Cvω,

Ceω, Cv′ω)
}
, where (Cvl, Cel, Cv′l) is the cluster triple of tlp. The cost is com-

puted as follows:

CostC(Tc) =
ω∑

l=1

costc(Cvl, Cel, Cv′l). (13)

Assuming that the NLQ consists of m entity phrases {ent1, . . . , enti, . . . , entm}
and n relation phrases {rel1, . . . , relj , . . . , reln}, we can construct 2n ·∏m

i=1 |Cv(enti)| ·
∏n

j=1 |Ce(relj)| cluster triple sets. Analogically, the cluster triple
set which has the minimum cost contains the optimal mapping results. Consid-
ering that real-world NLQs usually consist of less than three phrase triples [17],
it is fairly feasible to compute the costs of all possible cluster triple sets.

2.5 Graph-Structured Query Generation

In this module, we assemble matching vertices/edges of entity/relation phrases
into graph-structured queries. Let us first consider a simple NLQ which con-
tains one phrase triple tp = (rel, ent, ent′). Ĉv, Ĉe, and Ĉv′ are optimal map-
ping result clusters of ent, rel, and ent′, respectively. We assemble matching
vertices/edges v ∈ Ĉv, e ∈ Ĉe, and v′ ∈ Ĉv′ into a candidate query graph
Gq = {(v, e, v′)}. There are |Ĉv| · |Ĉe| · |Ĉv′| candidate query graphs, and we rank
them according to the cost of Gq which is computed as follows:

Costq(Gq) =
∑

(v,e,v′)∈Gq

‖v + e − v′‖22. (14)
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For the candidate query graph Ĝq which has the minimum cost, we search class
vertices in Ĝq which represent types of vertices (e.g., Actor and Person) and
replace them with variables to generate the target graph-structured query. Ana-
logically, for the NLQ which consists of multiple phrase triples, we also employ
the optimal mapping results to generate all candidate query graphs and evalu-
ate them by Eq. 14. The target graph-structured query is finally generated by
replacing class vertices with variables, as illustrated in Fig. 2(d).

3 Experiments

In this section, to scrutinize the effectiveness and efficiency of our framework,
we compare KemQA with several state-of-the-art KG-QA models, including
RFF [9], NFF [9], and the models participating QALD-6 [17]. All experiments
were conducted on a Linux server with an Intel Core i7 3.40Ghz CPU and 128GB
memory running Ubuntu-14.04.1. Note that we employ the Implicit Relation
Prediction method in [6] to address implicit relation phrases [6] of NLQs in the
following experiments. In the embedding learning, we treat literal values of the
underlying KG as vertices and add generalized KG triples [21] to the KG. Con-
sidering the large scale of the KG, we also follow [14] to sample vertex/edge
context and approximate Eqs. 1, 2, and 3 based on negative sampling. Dimen-
sions of embedding vectors are set to 100, and we set λv = 0.5, λe = 0.5, and
λrel = 1. In addition, if the graph-structured query generated by the candidate
query graph which has the minimum cost returns an empty answer due to errors
of the embedding learning, we would generate another query based on candidate
query graphs with higher costs.

DBpedia. DBpedia [10] is a large-scale KG extracted from Wikipedia3.
DBpedia-20154 is the specified benchmark dataset of QALD-6, and it consists
of 6.7M vertices, 1.4K edges, and 583M KG triples.

NLQ Dataset. QALD is a series of challenges on KG-QA. We employ QALD-
6 [17] as the NLQ dataset in our experiment, which releases 350 training NLQs
and 100 test NLQs over DBpedia in its Task-1.

Relation Phrase Dictionary. PATTY is a large resource for text patterns (i.e.,
relation phrases) that denote binary relationships between vertices in KGs [13].
We employ the Wikipedia version of PATTY5 which contains 350,569 relation
phrases and 3,862,331 supporting vertex pairs.

3.1 Effectiveness Evaluation

In this section, we follow [17] to evaluate the effectiveness of KemQA and report
the results in Table 2, where Processed states for the number of NLQs processed

3 https://www.wikipedia.org.
4 http://wiki.dbpedia.org/develop/datasets.
5 http://www.mpi-inf.mpg.de/yago-naga/patty/.

https://www.wikipedia.org
http://wiki.dbpedia.org/develop/datasets
http://www.mpi-inf.mpg.de/yago-naga/patty/
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Table 2. Results on QALD-6 benchmark (Total number of questions: 100)

Processed Recall Precision F-1

CANaLI [12] 100 0.89 0.89 0.89

KemQA 100 0.73 0.89 0.80

NFF [9] 100 0.70 0.89 0.78

UTQA [18] 100 0.69 0.82 0.75

KWGAnswer [9] 100 0.59 0.85 0.70

RFF [9] 100 0.43 0.77 0.55

NbFramework [17] 63 0.85 0.87 0.54

SemGraphQA [17] 100 0.25 0.70 0.37

UIQA (with manual) [17] 44 0.63 0.54 0.25

by the system, Recall indicates the ratio of correct returned answers over all
gold answers, Precision indicates the ratio of correct returned answers over all
returned answers, and F-1 is a weighted average between the precision and recall
[17]. It is worth mentioning that Recall and Precision are computed with respect
to the number of processed NLQs, and F-1 is computed with respect to the total
number of NLQs, i.e., 100.

We make the following observations: (1) Recall, precision, and F-1 of CANaLI
are significantly higher than KemQA and other baselines. The reason is that
questions answered by CANaLI are posed in Controlled Natural Language [12],
and CANaLI is not regarded as a fully developed KG-QA system [9]; (2) Except
CANaLI, among the systems processed 100 questions, KemQA achieves the high-
est recall; (3) KemQA achieves the same precision as CANaLI and NFF. (4) F-1
of KemQA is the highest among all baselines except CANaLI.

In summary, KemQA outperforms the baselines in terms of effectiveness. We
conclude the following reasons: (1) KemQA utilizes learned embedding vectors to
map relation phrases to their candidate matching edges, which achieves a high
mapping precision after addressing the data sparsity issue of relation phrase
dictionaries by employing entity context information. (2) KemQA generates a
cluster of matching vertices/edges for each phrase during the disambiguation pro-
cess, which guarantees a high disambiguation recall. (3) The learned embedding
vectors are essentially the latent representations of the underlying KG. KemQA
computes the semantics of entity/relation phrases and evaluates the generated
query graphs based on learned embedding vectors, which makes sure that the
generated graph-structured queries are consistent with the underlying KG.

3.2 Efficiency Evaluation

In this section, we evaluate our framework in terms of efficiency. The average time
cost of KemQA to answer an NLQ is 473.4 ms, and we report the average time
cost of each module in Table 3. The phrase mapping module spends much more
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Table 3. Average time cost of each module

Module Avg. time cost (ms)

Phrase mapping 270.7

Disambiguation 110.2

Query generation and evaluation 92.5
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100
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10000
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Fig. 5. Time costs of KemQA, RFF, and NFF.

time than other modules because it involves searching in the embedding space.
The most time cost of the disambiguation module is spent on the clustering of
mapping results. And the evaluation of graph-structured queries spends most
time cost of the last module.

Then, we compare KemQA with RFF and NFF which have state-of-the-art
efficiency performances. We randomly select 20 NLQs from the QALD-6 dataset
and report time costs of answering the 20 NLQs by KemQA, RFF, and NFF in
Fig. 5. We can observe that the time cost of KemQA is significantly less than the
other two models. We conclude the following reasons: (1) The embedding vec-
tors employed by KemQA are learned in the off-line stage, and we do not need
to modify them during the on-line process. (2) Since the phrase mapping and
disambiguation of KemQA are performed in the embedding space, KemQA can
avoid frequent searches over the large-scale KG. (3) Different from RFF and NFF
which obtain question answers by subgraph matching over the underlying KG,
KemQA obtains answers by evaluating graph-structured queries which are gen-
erated based on numerical calculations according to the translation mechanism.
Numerical calculations are time-saving, and the evaluation of graph-structured
queries is more efficient than the sub-graph matching of RFF and NFF.

3.3 Failure Analysis

Among the 100 test NLQs of QALD-6, 72 NLQs are answered correctly by
KemQA with the F-1 measure of 1. In this section, we analyze the failure rea-
sons of the rest 28 NLQs. As reported in Table 4, for each phase of KemQA, we
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Table 4. Failure analysis of KemQA on QALD-6

Failure phase # (Ratio) Sample question

Phrase extraction 6 (21.43%) What is the atmosphere of
the Moon composed of?

Phrase mapping 6 (21.43%) What are the five boroughs
of New York?

Disambiguation 5 (17.86%) Who was on the Apollo 11
mission?

Query generation 2 (7.14%) Who was Vincent van Gogh
inspired by?

Other 9 (32.14%) Show me all basketball
players that are higher than
2m

count the number of incorrectly answered NLQs caused by this phase. Phrase
extraction phase is responsible for 6 failures. Entity/relation phrases of some
NLQs are hard to be extracted. For example, the relation phrase of the NLQ
“What is the atmosphere of the Moon composed of?” is the combination of
“atmosphere of” and “composed of” which corresponds to the edge atmosphere-
Composition. Errors in the phrase mapping phase lead to 6 failures which are
mainly due to the limitation of the relation phrase dictionary. For example, given
the NLQ “What are the five boroughs of New York?”, KemQA cannot map the
phrase “five boroughs of” based on PATTY. Disambiguation phase is responsi-
ble for 5 failures, and the main reason is that some relationships between entity
phrases are expressed by ambiguous relation phrases which may have too many
semantics. For example, in the NLQ “Who was on the Apollo 11 mission?”,
the relationship between “Who” and “Apollo 11 mission” is expressed by “on”.
KemQA failed to compute the exact semantic of “on”. Query generation phase is
responsible for 2 failures, and the reason is that directions of some edges are hard
to be determined by the translation mechanism, e.g., influencedBy. In addition,
KemQA cannot answer 9 questions which require complex operations in target
queries.

4 Related Work

A variety of techniques have been leveraged by KG-QA models, including seman-
tic parsing [1,24], templates [16,25], and subgraph matching [9,26]. Given an
input NLQ, [1] first constructs candidate queries, each of which is associated with
a canonical realization in natural language. Then, [1] scores candidate queries by
comparing their associated realizations with the input NLQ using a paraphrase
model. The method in [16] produces templates which mirror the internal struc-
tures of given NLQs and then instantiates templates by entity identification and
predicate detection. Hu et al. [9] propose the semantic query graph to model the
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query intention of the given NLQ and obtain question answers by matching the
semantic query graph over the underlying KG.

With the increasing of scales of underlying KGs, the KG-QA models lever-
aging conventional graph-based algorithms are compromised by computational
inefficiency issues. To address this problem, embedding techniques-based KG-
QA models [2,6,20,23] have been proposed in recent years. Bordes et al. [2]
learn vector representations of NLQs along with their paired answers and do
not translate NLQs into graph-structured queries. Their model requires large-
scale question-answer pairs for training and cannot answer NLQs which contain
multiple entity phrases. Han et al. [6] propose a more scalable model which
leverages the learned embedding representation of the underlying KG to gen-
erate query graphs of given NLQs. However, they do not discuss the mapping
and disambiguation of phrases which are vital and also the focus of this paper.
Wang et al. [20] propose a context-based KG embedding model to answer failing
queries by an approximating way, but only focused on the structured SPARQL
queries. Yang et al. [23] propose a model which translates NLQs into graph-
structured queries using the learned joint relational embeddings. Their model
ranks candidate queries by computing the similarity between embeddings of
observed features in the NLQ and embeddings of logical features in candidate
queries. Different from this model, KemQA generates graph-structured queries
based on the translation mechanism which is more interpretable and efficient.

5 Conclusions and Future Work

In this paper, we propose a KG-QA framework, called KemQA, which translates
NLQs into graph-structured queries to obtain question answers. In the off-line
stage, KemQA encodes the underlying KG and the relation phrase dictionary
into a common embedding space. During the embedding learning, we employ the
translation mechanism of TransE to capture the inherent structure of the KG and
information of the relation phrase dictionary, and the data sparsity issue is well
addressed by considering context information. The learned embedding vectors
are utilized in all three on-line modules of KemQA which are phrase mapping
module, disambiguation module, and query generation module. Results of exten-
sive experiments on the benchmark dataset illustrate that KemQA outperforms
the baseline models in both effectiveness and efficiency.

In future work, we intend to employ more complex translation mechanisms,
such as the mechanism of TransR [11], in our embedding method to improve the
performance of KemQA.
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Abstract. Measuring semantic relatedness between two words is
a fundamental task for many applications in both databases and natu-
ral language processing domains. Conventional methods mainly utilize
the latent semantic information hidden in lexical databases (WordNet)
or text corpus (Wikipedia). They have made great achievements based
on the distance computation in lexical tree or co-occurrence principle
in Wikipedia. However these methods suffer from low coverage and low
precision because (1) lexical database contains abundant lexical infor-
mation but lacks semantic information; (2) in Wikipedia, two related
words (e.g. synonyms) may not appear in a window size or a sentence,
and unrelated ones may be mentioned together by chance. To compute
semantic relatedness more accurately, some other approaches have made
great efforts based on free association network and achieved a significant
improvement on relatedness measurement. Nevertheless, they need com-
plex preprocessing in Wikipedia. Besides, the fixed score functions they
adopt cause the lack of flexibility and expressiveness of model. In this
paper, we leverage DBPedia and Wikipedia to construct a Knowledge
Association Network (KAN) which avoids the information extraction
of Wikipedia. We propose a flexible and expressive model to represent
entities behind the words, in which attribute and topological structure
information of entities are embedded in vector space simultaneously. The
experiment results based on standard datasets show the better effective-
ness of our model compared to previous models.

Keywords: Semantic relatedness · Knowledge graph ·
Network embedding

1 Introduction

Computing semantic relatedness between two words is a fundamental task in
many databases and natural language processing problems such as lexicon induc-
tion [17], Named Entity Disambiguation [7], Keyword Extraction [27], semantic
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11446, pp. 676–691, 2019.
https://doi.org/10.1007/978-3-030-18576-3_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18576-3_40&domain=pdf
https://doi.org/10.1007/978-3-030-18576-3_40


Measuring Semantic Relatedness with Knowledge Association Network 677

Fig. 1. Knowledge association network (Color figure online)

correspondences discovering [3] and Entity Matching [23]. In the aspect of spam
problem [19] and image classification [10], semantic relatedness measurement
plays a great role as well.

Due to its importance, plenty of efforts have been made on semantic relat-
edness measurement. The existing approaches can be roughly divided into three
categories as below: (i) The lexical-based methods [16,25,28] measure the seman-
tic relatedness between two words based on some lexical databases such as Word-
Net and Wikitionary. These methods mainly utilize fixed score functions, such
as the path information between two words or the nearest parent common node
which two words hold in a lexical tree. Apparently, they only employ pure lexical
information but miss semantic information. (ii) The co-occurrence-based meth-
ods regard two words are related if they appear together in a fixed window size or
a sentence. So far plenty of efforts [4,20,25] have applied this co-occurrence prin-
ciple in the dumps of Wikipedia for semantic relatedness measurement. However,
the co-occurrence principle does not always work well. Given that two words are
semantically closed, such as synonyms, they do not necessarily appear together.
Besides, two words that appear in the same sentence by chance may not neces-
sarily be closely related in semantic space [5]. (iii) The association network-based
methods propose that for a given word, the first word that comes into human
mind is the most related one. To improve the co-occurrence-based methods, a
more advanced approach builds an association network based on not only co-
occurrences between words, but also the links and shared attributes between
entities [5,26]. Based on the association network, some heuristic score functions
are adopted to compute the semantic relatedness between entities [5,26]. In this
way, they make a great improvement in measuring the semantic relatedness.
However, the adopted heuristic score functions are not extensible and cause the
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lack of flexibility. In addition, to get the structured information of entities, they
need significant preprocessing and data transformation efforts in Wikipedia.

To overcome the weaknesses of association network-based approaches men-
tioned above, we propose a Knowledge Association Network (KAN) to better
capture the semantic features of words and entities, which consists of word-level
and entity-level based on Wikipedia1 and DBPedia2. The word-level leverages
the co-occurrence relationship between words to capture the semantic features of
words, and the entity-level exploits the semantic features of entities behind words
to enhance the word-level relatedness measurement. As shown in Fig. 1, initially,
for a word apple, we look for related Wikipedia pages Apple and Apple Inc,
where the semantic information of word apple could be captured by text anal-
ysis based on co-occurrence principle, and the entities Apple and Apple Inc are
utilized to reinforce the semantic information of apple. Then given that each
Wikipedia page has a corresponding entity on DBPedia, we could further cap-
ture word-to-entity and entity-to-entity linking information on DBPedia for the
input words. In the entity-level, attribute and topological structure space are
utilized to represent semantic features of an entity. In Fig. 1, each orange node
denotes an attribute of an entity, which constitutes the attribute space. And
the relationships among entities form the topological space of entities, where the
relationships are mapped from the original topological structure of the entity
network on DBPedia.

In our model, we use two different strategies to perform the relatedness mea-
surement in word and entity level respectively. At the word-level, word2vec [11] is
carried out to compare the semantic information of words. At the entity-level, we
firstly propose a novel entity embedding model by simultaneously considering the
attribute space and topological structure space of entities. The attribute space
captures the semantic information of attributes around an entity by minimizing
a margin ranking loss function inspired by translation embedding on knowledge
graph. The topological structure space utilizes random walk to generate sampled
sequences and adopts Skip-gram model to get the entities embedding. Compared
to existing association network-based methods [5,26], our method could avoid
the significant preprocessing on the Wikipedia dump given the natural mapping
relations between DBPedia entities and Wikipedia pages. Besides, the entity
embedding model also works better than the heuristic score functions used in
previous models [5,26].

The contributions made in this paper include:

1. We construct a knowledge association network to compute the relatedness
of word-to-word, word-to-entity and entity-to-entity based on Wikipedia and
DBPedia for better semantic relatedness measurement.

2. We propose a novel entity embedding model by simultaneously considering
the attribute and topological structure space of entities, which works better
than heuristic score functions.

1 https://en.wikipedia.org/wiki/Main Page.
2 http://dbpedia.org.

https://en.wikipedia.org/wiki/Main_Page
http://dbpedia.org
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3. Our experiments conducted on standard datasets for semantic relatedness
measurement show that our approach outperforms several benchmarking
methods.

The rest of the paper is organized as follows: We first cover the related work
in semantic relatedness measurement in Sect. 5, and then give the definition and
construction process of knowledge association network in Sect. 2. After that, in
Sect. 3 we elaborate our approach for computing the semantic relatedness based
on the KAN. Next we introduce our experiments in Sect. 4, then finally conclude
this paper in Sect. 6.

2 Knowledge Association Network

In this paper, we consider the entities associated with words to enhance the
relatedness measurement of word-to-word, and we build a Knowledge Association
Network (KAN) to achieve this purpose. The symbols used in this paper are
listed in Table 1.

Table 1. Symbols and their meanings

Symbol Meaning

KAN Knowledge Association Network

G = (W, E, R) A graph with word set W , entity set E and edge set R

G{attr,t} Attribute space Gattr and topological structure space Gt

R{w,we,e} Three types of edge set

f{w,we,e} Three types of relatedness measurement

W{cnt,tf idf} Two ways of weighting transition probability in Gt

e(w) Entities set related to word w

R� Attribute space in vector space

R≈ Topological structure space in vector space

Definition 1 Knowledge Association Network (KAN). Knowledge asso-
ciation network is a graph G = (W,E,R), where W is the word set in vocabu-
lary, E is the entity set associated with the given words, and edge set R denotes
the relationships of word-to-word (Rw), entity-to-entity (Re), and word-to-entity
(Rwe).

There are many data resources that contain entities which are relevant to
words such as Wikipedia, WordNet and DBPedia etc. WordNet provides precise
lexical information but lacks adequate semantic information. Wikipedia is a large
corpus where entities are described by natural language, that provides abundant
unstructured semantic information. Recently, plenty of knowledge graphs are
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Fig. 2. The semantic features around an entity

established to hold structured knowledge. For example, DBPedia consists of
a great number of entities and structured RDF format triples extracted from
Wikipedia.

In this paper, we consider the DBPedia as entities database to avoid the
significant preprocessing and data transformation efforts in Wikipedia [5,26].
To compute the relatedness of entity-to-entity, we consider two major factors in
DBPedia: attributes information and topological structure. The attributes of an
entity include the properties, categories, ontology information and some other
information which enhance the entity itself. The topological structure reflects the
relation between entities on the basis of a special predicate WikiPageRedirectOf,
that means two entities appear in the same Wikipedia page.

As shown in Fig. 2, for the technology company Apple described as Apple Inc
in DBPedia, we get its attributes, that is, “Apple is the manufacturer of IPod
Mini (properties)”, “Apple is a company (categories)” etc. The relationship
descriptions (e.g. “manufacturer”, “is-a”) are named on the basis of ontology
language that contains affluent semantic information. In the aspect of links
among other co-occurrence entities in the same Wikipedia page, there are
Apple Fellow and Apple (Computers) in accordance with the special relation-
ship WikipageRedirectOf.

To distinguish different semantic features of entities conveniently, we denote
the attributes of an entity as attributes graph Gattr = {a1 , a2 , ..., aj }, where ai

denotes an attribute. We define topological structure as Gt = G(E ,Rredirect ),
where E is a set of entities connected by WikiPageRedirectOf (i.e. Rredirect).

In Wikipedia, a page and it’s corresponding DBPedia entity describe the same
entity. The predicate called wikiPageID reflects this mapping by one unique id,
which can be obtained by the Gensim3. We can get the unique corresponding
entity in DBPedia by wikiPageID and SPARQL endpoint4. For example, the id
of Wikipedia page Apple Inc is 856, then we can use a simple query to get the
corresponding entity name Apple Inc:

3 https://radimrehurek.com/gensim/wiki.html.
4 http://dbpedia.org/sparql.

https://radimrehurek.com/gensim/wiki.html
http://dbpedia.org/sparql
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PREFIX dbo: <http :// dbpedia.org/ontology/>

SELECT ?E WHERE {

?E dbo:wikiPageID 856.

}

3 Semantic Relatedness Measurement

We give an overview of our model in Fig. 3 where solid lines lead the flow of
model and dotted lines demonstrate an additional function from source part to
target part, which illustrates the construction of KAN and the relatedness mea-
surement. (1) After an ordinary preprocessing in Wikipedia, for the words in
vocabulary, we can get a mapping between words and pages in Wikipedia. (2)
Then we query the unique entity by the page id by DBPedia SPARQL endpoint.
(3) For the relatedness of entity-to-entity, we divide it into attribute and topo-
logical structure and adopt different models within it. Finally we combine three
kinds of relatedness measurement word-to-word, word-to-entity and entity-to-
entity to form the final semantic relatedness measurement.

3.1 Word-to-Word

The semantic relatedness in word level is mainly measured by (1) distributed
vector representation such as word2vec [11] and GloVe [13] etc. (2) word co-
occurrence [4,20], which means two words are relevant when they appear in a
given window size. Experimental results prove that distributed vector represen-
tation works better in computing semantic relatedness [11]. Therefore in this
paper, we abandon co-occurrence-based methods and adopt word2vec to train
the Wikipedia corpus to product effective vector representation for each word.
Formally, let −→v i and −→v j denote the vector representation of wi and wj which
can be utilized to calculate the semantic relatedness fw(wi, wj) between wi and
wj at the word-level based on cosine function, we have:

fw(wi, wj) = cos(−→v i,
−→v j) =

−→v i · −→v j

‖−→v i‖ ‖−→v j‖ (1)

The word2vec includes skip-gram and CBOW models, using either hierarchi-
cal softmax or negative sampling. The combination of skip-gram and negative
sampling are used frequently and are effective experimentally. We choose this
training program accordingly. The detailed parameters setting can be seen in
experiments.

3.2 Word-to-Entity

In KAN, word-level and entity-level hold the one-to-many relationship. For a
given word, several relevant entities will rise from KAN due to the word ambi-
guity. To measure the degree of association between a word (w) and an entity
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Fig. 3. Semantic relatedness measurement with KAN

(e), (1) some researchers [15] take the co-occurrence times between w and e as
the judgement of relatedness, which is insensitive for some common words like
this, that and so on. (2) and some other works [5] consider w and e are closely
related if e is the only semantic meaning for word w. They compute the degree
of strong connections between only anchor words and their out linked entities
based on the link popularity (LP) equation,

LP (w, e) =
∑

P

∑

w∈S

∑
w′∈S tf idf(w

′
, e)∑

e′∈e(w)

∑
w′ ∈S tf idf(w′, e′)

(2)

where P indicates a page in Wikipedia, S represents one sentence in P that
contains the word w, and w

′
means every contextual word in S. e(w) is a set of

entities which are linked from anchor word w. This method just considers anchor
word and out linked entities, but ignores the relevant pages that mention the
word. In this paper, we extend the relevant entities e(w) as:

e(w) = ea(w) ∪ em(w) (3)

where ea(w) is the out linked entities set associated with w, and em(w) contains
entities that mention the word w but not the out linked entities of w. So we have
the full popularity (FP) that reflects the degree of connection between w and e:

FP (w, e) =

⎧
⎪⎪⎨

⎪⎪⎩

LP (w, e) e ∈ ea(w)

tf idf(w,e)
∑

e
′ ∈em(w)

tf idf(w,e′ )
e ∈ em(w)

(4)

Finally, we have the relatedness of word-to-entity defined as fwe:

fwe(w, e) =
FP (w, e)∑

e′∈e(w) FP (w, e′)
(5)
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3.3 Entity-to-Entity

The knowledge association network at the entity-level is fundamentally a multi-
relational graph where an entity is described by some discrete attribute and
topological structure collectively. It is unreasonable to just consider either of the
these information. Two entities may hold totally different attributes but they
appear in the similar topological structure and vice verse. The part of attribute
holds the detailed semantic information e.g. person A is the friend of B, person B
is the member of organization C etc. The topological structure reflects the latent
semantic information of co-occurrence relationship of entities. In our model, we
adopt two different methods to obtain the vector representation of attribute and
topological structure space.

Attribute Space. The straightforward method to embed a set of attributes
around an entity is one-hot, where when one attribute appears in the attribute
space of an entity, the corresponding vector position would be assigned 1, oth-
erwise 0. Nevertheless, a surprisingly large number of attributes in DBPedia
bring an insoluble problem for one-hot because of the excessive dimensions.
Fortunately, there exists a kind of one-to-many relationship between entities
and their attributes, which can be interpreted as a translation operation on
the low-dimension entities embedding [2,21]. Suppose that there are N different
attributes in our network and the attribute space is denoted as R�

|N |×|d|, where
d is the dimension of vector for one attribute. We combine the relationships and
entities to minimize a margin ranking loss over the attribute graph Gattr:

L =
∑

(a,b)∈G+
attr

∑

b−∈G−
attr

[� + cos(a, b) − cos(a, b−)]+ (6)

where [x]+ = max(0, x), and � is a margin hyperparameter. The Gattr contains
a set of (h, r, t) triples, that is a head entity h, a relation r and a tail entity t.
We select uniformly at random to get positive sample G+

attr in two strategies: (i)
a consists of the bag of h and r, while b only consists of t; (ii) a consists of h,
b consists of r and t. Negative entities b− are sampled from the set of possible
triples G−

attr. We utilize a k-negative sampling strategy [11] to select k negative
pairs for each batch update. The optimization of this method inherits the strat-
egy of stochastic gradient descent (SGD). Each SGD step is one sampling from
G+

attr in the outer sum.

Topological Structure Space. The topological structure space (Gt) of
an entity contains latent semantic information, for example, when somebody
browses the Wikipedia page of Apple Inc, there are lots of related entities con-
tained in text description such as Microsoft Windows and Graphical user inter-
face, but they are not the attributes of Apple Inc. To consider this latent seman-
tic information, previous works [5,26] make lots of preprocessing in Wikipedia
to extract the latent semantic features of entities. To avoid the extraction of
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link information in Wikipedia, we use DBPedia where a special relation named
WikiPageRedirectOf connects two entities when one entity’s anchor text is men-
tioned in the Wikipedia page of the other. Then we can get the topological
structure space Gt = G(E,Rredirect), where E is a set of entities and Rredirect

is the edge set formed by WikiPageRedirectOf.
It can be easily seen, Gt is represented as a weighted graph model, where

the edges in Rredirect hold different transition weights. For instance, somebody
is browsing the page of Apple Inc in Wikipedia in which dozens of entities are
linked. He wants to know more extended details about Apple Inc, the most
several related entities will draw his attention. So he will check the related out
linked entities but ignore some other unrelated. It can be seen there are different
transition weights from Apple Inc to other entities. Moreover, the transition
among different entities is directed, which means Gt is a directed graph as well.
Nevertheless, in DBPedia, the raw connections are represented as triples which
are unweighted.

To get the weighted graph Gt, suppose that entity ei and ej are connected by
rij , the most straightforward way to weight rij is to consider the occurrence times
of the anchor text of ej in the page of ei. We regard the anchor text as a single
term ti for ei. Let cnt(ei, ej) denote the co-occurrence times of appearance of tj
in page of ei. Formally we have the count-based transition weight Wcnt(ei, ej)
from ei to ej :

Wcnt(ei, ej) =
cnt(ei, ej)∑

e′ ∈Pi
cnt(ei, e

′)
(7)

where Pi denotes the corresponding Wikipedia page of ei. The e
′
is one out linked

entity in Pi. However, just consider anchor text frequency would give some gen-
eral frequent terms high degree of relatedness. In order to remedy this weakness,
we calculate the tf idf -based (Term Frequency–Inverse Document Frequency)
transition weight Wtf idf (ei, ej) from ei to ej as follows:

Wtf idf (ei, ej) =
tf idf(ei, ej)∑

e′∈Pi
tf idf(ei, e

′)
(8)

After getting the weighted Gt, to make the entities are comparable in topo-
logical space, we need to embed the entities in expressive vector space. It is
easy to understand that the related entities are close to each other in Gt and
they hold similar neighborhoods. It requires us to maximize the probability of
observing neighborhoods for an entity. Formally, given an entity ei, we predict
its neighborhood entities (e0, e1, ..., ei, ...el) with the conditional probability Pr:

Pr((e0, e1, ..., ei−1, ei+1, ..., el)|ei) (9)

How to sample the neighborhood of an entity is widely studied in previous
work [6,14]. In this paper, we adopt the randomized walk sampling strategy
[6] to get the neighborhoods N(ei) around the entity ei.

In order to maximize the probability of Eq. 9 in vector representation, we
introduce a mapping function Φ : e ∈ E → R≈

|E|×d where E is the entity set
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of Gt. Φ is a |E| × d matrix of parameters which could be obtained by training.
For each ei ∈ E, we can get a d-dimension vector. And our goal is to minimize
the following loss function:

minimize − logPr(N(ei)|Φ(ei)) = −log
∏

e′ ∈N(ei)

Pr(e
′ |Φ(ei)) (10)

where Pr(e
′ |Φ(ei)) indicates how likely e

′
appears in neighborhoods of ei. For

each e
′ ∈ N(ei), we adopt the softmax function to normalize the likelihood

probability as each e
′

has a symmetric effect with ei in feature space [6], so we
have conditional probability Pr:

Pr(e
′ |Φ(ei)) =

exp(Φ(e
′
) · Φ(ei))∑

ek∈N(ei)
exp(Φ(ek) · Φ(ei))

(11)

Finally, We optimize function 10 using stochastic gradient descent (SGD).

Relatedness of Entity-to-Entity. We can get the embedding for an entity
ei, that consists of attributes embedding (−→vai) and topological space embedding
(
−→
vti). Formally, we formulate the relatedness of entity-to-entity as fe(ei, ej):

fe(ei, ej) = αcos(−→vai,
−→vaj) + (1 − α)cos(

−→
vti,

−→
vtj) (12)

where α ∈ [0, 1] is to adjust the weights of two parts.

3.4 Word Semantic Relatedness Measurement F

The final semantic relatedness measurement has three parts including word-to-
word, word-to-entity and entity-to-entity. We combine the word-to-entity and
entity-to-entity as entity-level defined as Fe(wi, wj):

Fe(wi, wj) =
∑

ei∈Ei

∑

ej∈Ej

fwe(wi, ei)fe(ei, ej)fwe(wj , ej) (13)

where Ei is the entities set associated with word wi. And we denote the word-
to-word relatedness as Fw(wi, wj) that equals to fw(wi, wj). Finally, we can get
the semantic relatedness measurement F (wi, wj) in KAN:

F (wi, wj) = ϕFw(wi, wj) + (1 − ϕ)Fe(wi, wj) (14)

where ϕ ∈ [0, 1] trades off the weight of Fw against Fe.

4 Experiments

In this section, we conduct extensive experiments on different datasets which
contain the semantic relatedness measurement by human perceptions. We com-
pute the Pearson correlation coefficient γ, Spearman correlation coefficient ρ and
harmonic mean coefficient μ = 2γρ

γ+ρ between results of our experiment and scores
of human judgement to evaluate the performance of our model.
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4.1 Datasets

The Knowledge Association Network KAN is constructed based on the dump
of Wikipedia5 and DBPedia6. The details about the basic datasets are shown
in Table 2. The number of entities in DBPedia is larger than that in Wikipedia,
since the entities set contain entities extracted from not only Wikipedia but also
some other semantic datasets such as ontology language, YAGO and so on. It is
necessary to preprocess the Wikipedia before constructing KAN . For each page
in Wikipedia, we remove the stop words and punctuations, ignore the shorter
pages whose words number less than 50 and some useless namespaces7 such as
Category, File, Template without introducing any entity.

Table 2. Wikipedia and DBPedia information

Entities Date

Wikipedia 5.5M 2016–10

DBPedia 6.6M 2016–10

4.2 Evaluation

A great number of datasets record the scores of human quantitative judgement
for semantic relatedness. We evaluate KAN on three frequently used datasets
that are listed in Table 3. Based on the standard datasets, we compare our model
with some existing models, containing (1) co-occurrence-based methods: ESA [4],
SSA [8], word2vec [11] and SaSA [22]; (2) association network-based methods:
AN [26] and HAN [5].

Parameters Tuning. In this paper, it is necessary to determine the following
parameters:

– Recall word-to-word, we train word2vec in Wikipedia to get the vector repre-
sentations for words. And we adopt 100 dimension, 30 window size, Skip-gram
model and negative sampling for word2vec.

– In the section of attributes space embedding, we set margin � = 0.05, dimen-
sion d = 100, negative sampling number k = 50, and we set the learning rate
of SGD as 0.1 to optimize the margin ranking loss.

– In the section of embedding for topological structure space, the Skip-gram
model is used for training the sequences of random walk, and we set the 100
dimension, 10 window size as the basic parameters for training.

– α is proposed for the balance of attributes information and topological struc-
ture. ϕ trades off the weight of word-level against entity-level.

5 https://dumps.wikimedia.your.org/.
6 https://wiki.dbpedia.org/downloads-2016-10.
7 https://en.wikipedia.org/wiki/Wikipedia:Namespace.

https://dumps.wikimedia.your.org/
https://wiki.dbpedia.org/downloads-2016-10
https://en.wikipedia.org/wiki/Wikipedia:Namespace
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Table 3. Word relatedness datasets information

Datasets Word pairs Range of score Reference

MC 30 [0, 4] Miller and Charles (1991)

RG 65 [0, 4] Rubenstein and Goodenough (1965)

WS353 353 [0, 10] Finkelstein et al. (2002)

Fig. 4. α tuning on WS-Rel only con-
sidering Entity-to-Entity

Fig. 5. Performance with value of λ

In order to get the optimal correlation, we pick WS-Rel [1] to tune the param-
eter α, since there are not many comparison systems in literature report results
on this dataset. WS-Rel contains 252 pairs of words along with relatedness judge-
ment. We compute word semantic relatedness just on entity-to-entity part (fe)
to tune α, as shown in Fig. 4, Spearman correlation (ρ) increases evidently when
the importance of topological structure is raised. And we get the optimal values
for α to be 0.5, which means attributes information and topological structure
play the same role for semantic relatedness measurement.

Another parameter ϕ trades off the weight of word-level relatedness Fw

against entity-level relatedness Fe. We set tuning rate as 0.1. Figure 5 shows
the results w.r.t the multiple value of ϕ and when ϕ = 0.2, we get the largest
Spearman correlation (ρ). Obviously, Fw has a leading role and our Fe makes a
great supplement for final semantic relatedness measurement.

Comparions Results. Evaluation results of word relatedness on different cor-
relation coefficients are shown in Table 4. Recall embedding for topological struc-
ture of our network, there are two strategies to weight the relationship among
entities: (1) Wcnt(ei, ej) denotes the co-occurrence frequency of ej in page of ei;
(2) Wtf idf (ei, ej) adopts tf idf to judge how import an entity is to another.
Based on these two weight strategies, we construct KANcnt and KANtf idf

respectively. We can see that the KANtf idf outperforms KANcnt in different
datasets and measurement coefficients, since tf idf increases proportionally the
number of times a term (t) appears in the page of an entity. And the value
of tf idf is offset by the number of pages in Wikipedia that contain the item
t, which helps to adjust the weight for the fact that some items appear more
frequently in general.
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Table 4. Pearson-λ, Spearman-ρ, harmonic mean-μ on the word relatedness datasets

Model λ ρ μ

MC RG WS353 MC RG WS353 MC RG WS353

ESA 0.588 - - 0.503 0.727 - - 0.748 0.650 - - 0.602

SSA 0.879 0.861 0.590 0.843 0.833 0.604 0.861 0.847 0.597

word2vec 0.852 0.834 0.633 0.836 0.812 0.645 0.844 0.823 0.639

SaSA 0.886 0.882 0.733 0.855 0.851 0.739 0.870 0.866 0.736

ANwiki 0.865 0.858 0.740 0.848 0.843 0.813 0.856 0.850 0.775

HANwiki 0.886 0.884 0.772 0.860 0.857 0.826 0.873 0.870 0.798

KANcnt 0.850 0.826 0.630 0.836 0.805 0.633 0.842 0.816 0.631

KANtf idf 0.892 0.887 0.783 0.866 0.861 0.835 0.879 0.874 0.808

When compared with other methods shown in Table 4, our method performs
better. ANwiki and HANwiki get excellent performance on word semantic fea-
tures relatedness on the idea of free association network, which improve the
weakness of co-occurrence-based methods. In this paper, we adopt two different
model to capture the semantic of attributes (Gattr) and topological structure
(Gt) in KANtf idf and make the model more flexible and expressive.

5 Related Work

Plenty of researchers have studied semantic relatedness between two words and
made significant accomplishments, which include:

(i) The lexical -based methods measure the semantic relatedness between two
words based on some lexical databases such as WordNet and Wikitionary.
WordNet based methods [16] compute semantic relatedness for automatic
speech recognition in meetings. However, they do not provide an individual
result to reveal the efficiency of semantic relatedness measurements. Wiki-
tionary [25] is introduced as an emerging lexical semantic resource that could
be used as a substitute for expert-made resources in AI applications. Other
lexical-based methods choose a path based approach [18], which can be uti-
lized with any resource containing concepts connected by lexical semantic
relations. Or they adopt a concept vector based approach [4], which is gen-
eralized to work on each resource that offers a textual representation of a
concept.

(ii) The co-occurrence-based methods regard two words are related when they
appear in a sentence or a fixed window in corpora texts such as Wikipedia.
The initial model WikiRelate! [20] estimates relatedness based on categories
in the articles of Wikipedia. Explicit Semantic Analysis (ESA) [4] represents
the meaning of articles in a high-dimensional space. WikiRelate! and ESA
only leverages texts in Wikipedia but does not consider links among arti-
cles. Another model WLM [12] scrutinizes incoming/outgoing links from/to
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articles instead of exploiting texts in Wikipedia articles. WikiWalk [24]
extends the WLM by exploiting not only links that appear in an article
but all links, to perform a random walk based on Personalized PageRank.
However, those methods are faint to distinguish the different word senses.
SensEmbed [9] leverages BabelNet8 to annotate different word senses in the
dump of Wikipedia, and exploits word2vec [11] to train the sense-annotated
Wikipedia to get distributed representation of different word senses. Essen-
tially this method is based on the large corpora and needs a significant pre-
processing. The REWOrd [15] proposes an approach that exploits the graph
nature of RDF and SPARQL query language to access knowledge graph. It
not only obtains the comparable result with the state-of-art at that moment,
but also avoids the burden of preprocessing and data transformations.

(iii) In order to improve the co-occurrence-based methods, association network -
based methods is proposed to compute the semantic relatedness between
two words utilizing free association network, that is, for a given word, the
first word that appears in human mind intuitively is the most relevant one.
AN [26] is proposed to build an association network based on not only
co-occurrences between words, but also the links between Wikipedia pages
of entities. Recently, HAN [5] constructs hierarchical association network to
capture the association of word-to-word, word-to-entity and entity-to-entity.
In this way, they make a great improvement in measuring the semantic
relatedness. However, the adopted heuristic score functions are not reliable
and cause the lack of flexibility. In addition, to get the semantic information
of entities, they need significant preprocessing efforts in Wikipedia.

In this paper, we propose a Knowledge Association Network to measure semantic
relatedness. Our model avoids the preprocessing of Wikipedia and considers the
attribute and topological structure space simultaneously to capture the semantic
features of entities. Experimental results show that our model outperforms the
benchmarking models.

6 Conclusion

In this work, we focus on computing semantic relatedness to get an approx-
imation to human judgement. We utilize the DBPedia which is derived from
Wikipedia as background knowledge to construct a Knowledge Association Net-
work. To measure the word semantic relatedness, we propose a flexible and
expressive model to represent entities behind the words, where attribute and
topological structure information of entities are embedded in vector space simul-
taneously. The experiments based on benchmarking datasets show that our
model outperforms the state-of-the-art models.
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Abstract. Network embedding learns low-dimensional features for
nodes in a network, which benefits the downstream tasks like link pre-
diction and node classification. Real-world networks are often accom-
panied with rich side information, such as attributes and labels, while
most of the efforts on network embedding are devoted to preserving the
pure network structure. Integrating side information is a challenging task
since the effects of different attributes vary with nodes and the unla-
beled nodes can be influenced by diverse labels from neighbors, not to
mention the heterogeneity and incompleteness. To overcome this issue,
we propose Side Information Network Embedding (SINE), a novel and
flexible framework using multiple side information to learn a node repre-
sentation. SINE defines a flexible and semantical neighborhood to model
the inscape of each node and designs a random walk scheme to explore
this neighborhood. It can incorporate different attributes information
with particular emphasis depending on the characteristics of each node.
And label information can be both explicitly and potentially integrated
into the representation. We evaluate our method and existing state-of-
the-art methods on the tasks of multi-class classification. The experi-
mental results on 5 real-world datasets demonstrate that our method
outperforms other methods on the networks with side information.

Keywords: Network embedding · Random walk · Multilayer network

1 Introduction

Network data are ubiquitous in the real world, ranging from social networks
like Wechat and Facebook, marketing networks, airline transportation networks
to academic citation networks, to name a few. Abundant useful knowledge is
concealed in these networks which can benefit network analysis and applications
in reality. For instance, in social networks, link prediction analysis could lower
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the cost and difficulty for users to seek friends online as well as offer a chance for
service providers to improve their user experience. As the size of networks grows,
opportunities come with challenges. On the one hand, it enriches the network
treasure house and provides ample materials for network researchers. On the
other hand, more complex relationships coupled in the networks are increasing
the challenges dramatically in the analysis tasks.

Recently, as a novel dimensional reduction technique in analyzing large-scale
networks, network embedding is proposed and has attracted a surge of research
attention in many researches ranging from data mining, machine learning to
mathematics. The main target of network embedding is to preserve as much
information as possible from the network with a low dimension representation
for each node. To achieve this goal, multiple approaches have been proposed, such
as GraRep [2], DeepWalk [14], LINE [17] and SDNE [20]. More importantly, a
lot of real-world applications have demonstrated their value in the downstream
learning tasks, such as node classification, link prediction and data visualization.

Despite the improvement it gains, current works of network embedding
mostly concentrate on preserving the structure of pure networks. In the real
world, nodes in a network are usually accompanied with rich side information,
such as attributes and labels. The attribute homophily theories [9,10] show
the strong connection between node attributes and topological structure. They
depend on and influence each other in the network. For instance, articles in
Wikipedia might not only cite or be cited by other related articles, but also
contain a detailed explanation of the specific object, which helps in link pre-
diction tasks to precisely provide editors with highly related articles. Moreover,
labels such as group or community categories also provide useful information to
assist in network learning. Even a limited number of labeled nodes can conduct
a discriminative embedding. Taking Wechat as an example, users in the same
group chat tend to share posts or links of related themes which is informative
in precise advertisement targeting. Thus, the importance of side information is
self-evident, whilst network embeddings ignoring the side information not only
weaken the ability of expression but also blur the representations.

However, it is not easy for the pure network embedding methods like Deep-
Walk to incorporate additional information during its random walk in the origi-
nal network since the heterogeneity and incompleteness complicate the situation.
Thus, applying the pure network embedding methods directly is problematic. In
contrast to the pure network embedding, side information network embedding
targets at leveraging the discrepancy of the heterogeneous data sources and dis-
tilling the complementary information. What’s more, attributes and labels might
be sparse, noisy and incomplete. Hence, it is nontrivial to study the problem of
fusing labels and attributes into network structure and learning discriminative
representations for network nodes. Some recent works have scratched the surface
of this topic, yet various problems exist. They either lack careful and specific con-
sideration of side information or are trapped in time-consuming learning models.
Exhaustive discussions are given in Sect. 2.
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In this paper, we investigate the side information network embedding deeply.
Inspired by the groundbreaking work DeepWalk and the constructive follow up
work Node2vec on the pure network, we propose an innovative random walk
scheme to integrate multiple knowledge on side information network. We aim at
answering the following questions: (1) How to incorporate topological structure,
attribute information and node labels into a unified representation meanwhile
tackling the incomplete, sparse and noisy problem accompanied; (2) How much
does this random walk scheme contribute to downstream learning tasks like node
classification.

Our main contribution is a flexible framework for learning latent represen-
tations for the attributed network with a limited number of labels, called Side
Information Network Embedding (SINE). The key ideas of SINE are:

– Measure the node relationships with others on attributes information and
then evaluate the importance of attributes and geometric structure for each
node individually. In contrast to treating information of each node unani-
mously, learning on a discriminative data makes the delicate embedding pos-
sible.

– Establish label hubs and label hyperlinks for the labeled nodes to communicate
with each other explicitly. And we design a label biased random walk scheme
to integrate label information potentially.

– Generate sampled contexts (neighborhoods) for nodes, which contain imme-
diate geometric neighbors, similar nodes in the aspect of attributes and nodes
explicitly or latently sharing the same label. Thus, in such all-side neighbor-
hood built with nodes in a heterogeneous relationship, nodes can be modeled
with more precise representation. The more frequently two nodes appear in
the similar neighborhoods, the more likely they possess similar information.

The rest of this paper is organized as follows: First a brief overview of pure
network and side information network embedding is provided, followed by the
proposed SINE framework. Then sound experiments are presented. Finally, con-
clusion and future works are discussed.

2 Related Work

Network embedding can be traced back to the manifold learning, which aims to
analyze the structure of manifold and map it into a low dimension Euclidean
space to facilitate the machine learning algorithms. However, these meth-
ods, such as IsoMap [18], LLE [16], LE [1] and LPP [5], are trapped in the
time-consuming eigen-decomposition and not applicable for large scale network
embedding.

Recently, inspired by the Skip-Gram [11] learning word representation from
its context, [14] propose DeepWalk that generates node neighborhoods with a
truncated random walk to simulate the relationship between words and sen-
tences, and bring prosperity to the embedding community. In Node2vec [4], a
follow up work of DeepWalk, authors propose a biased random walk which can
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explore neighborhood under control of extra parameters. To preserve the struc-
ture similarity, Struc2vec [15] generates node contexts on the graph which is
newly constructed based on structure similarity. On the other line of pure net-
work embedding, a variety of methods [2,15,17,20] are proposed. For example, to
preserve first- and second-order proximity, LINE [17] proposes a joint probabil-
ity and conditional probability model while SDNE [20] adopts an autoencoder
model. However, losing sight of labels and attributes may set a limit on the
performance of all these topological structure based methods.

Some recent efforts have explored the possibility of integrating side informa-
tion of the node to learn a better representation. TADW [21] employs an induc-
tive matrix factorization to integrate attributes. SNE [8] proposes a multi-layer
perceptron to model the reconstruction error by concatenating attribute record
as an input. While they don’t model the attribute affinity, which is essential
for network analysis. TriDNR [13] learns three kinds of relation node-attribute,
inter-node and attribute-label in a coupled deep model. Label information is
not used for inter-node relationship modeling, which might weaken its represen-
tation power. LANE [7] learns a smooth representation from three individual
representations of structure, attribute and label. AANE [6] accelerates the joint
learning process of attribute and network structure. However, they equally treat
the effect of attribute information on each node, which is too coarse in learning
the representations. MMDW [19] only integrates label information by a semi-
supervised model, which jointly optimizes the matrix factorization of adjacency
matrix and the max-margin classifier of SVM. DANE [3] learns a consistency
from the structure and attribute representation which captures the nonlinearity
encoded by two autoencoders. However, it suffers from the high computational
drawbacks. All in all, the existing methods come across various deficiency. To
overcome the problems they meet, we propose a new model with strong perti-
nence.

3 Framework of SINE

In this section, the problem formulation is firstly given. Then we present the fea-
ture learning framework in our method. Next, we introduce attribute embedding
module followed by the label embedding module.

3.1 Problem Formulation

We consider the problem of learning node representations in three aspects: struc-
ture, attributes and labels. Let G = {V,E,W} be a pure network, where V rep-
resents the nodes of the network, E ⊆ (V × V ) are the topological connections
and W are edge weights (one for unweighted network). With side information,
network is further denoted as GS = {V,E,W,X, Y }, with multiple attributes
X = {X(i)}mi=1, X(i) ∈ R

|V |×si where m is the number of attributes and si is
the size of the ith feature space, and Y ∈ R

|V |×|Y| where Y is the set of labels.
We define a function L : V → Y, and L(u) = i if node u is labeled with i.
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Formally, we aim to learn the low-dimensional representation H ∈ R
|V |×d which

can incorporate information from three sources of data. As a result, H could
achieve better performance in the downstream tasks such as node classification.
We denote hu, a column of HT , as the representation of node u.

3.2 Feature Learning Framework

We extend the Skip-Gram architecture [11] to the side information network.
Formally, in network GS we maximize the log-probability of observing a network
neighborhood NS(u) for node u conditioned on its representation hu:

max
H

∑

u∈V

log Pr(NS(u)|hu). (1)

With the assumption of conditional independence and symmetry effects from
neighbors, Eq. 1 simplifies to:

max
H

∑

u∈V

[
log λu +

∑

v∈NS(u)

hT
v · hu

]
, (2)

where λu =
∑

v∈V exp(hT
v ·hu). We can see that nodes in a more similar neighbor-

hood would have similar representations. And a semantically rich neighborhood
can more precisely describe the intrinsic correlation on the node. In the following
subsections, we will propose our method to integrate side information into the
neighborhood. As for the problem of the expensive computational cost on λu

in Eq. 2, negative sampling [12] is adopted. We optimize Eq. 2 using stochastic
gradient ascent over the model parameters defining the features h.

3.3 Measure the Attribute Importance

In contrast to assuming attribute information on different nodes is independent
like TADW and SNE, we measure the correlation between nodes with respect to
attributes. In detail, a kernel method K is taken to measure the attribute affinity
between any pair of nodes: K(u, v) = φ(Xu) · φ(Xv). We construct the attribute
network A that encodes the affinity between two nodes. The edge weight between
two nodes u and v is then given by:

Auv = K(u, v),∀u, v ∈ V. (3)

In GS , now we have a stack of information networks, 1 topological network G
and m weighted networks {A(i)}mi=1 built from diverse attributes.

Since the attributes information and topological knowledge are concealed
in different networks, we ought to learn the representation from each of the
networks. A straightforward way is to build different neighborhoods N

(i)
S (u)

(N (0)
S (u) denote the neighborhood of node u on G) for each node u on each

network of G ∪ {A(i)}mi=1 and then concatenate their representation learned
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from respective Skip-Gram models as the final representation. Although from an
information preserving view point concatenating different representations could
maintain characteristics in diverse networks, it neither alleviates the effect of
noise nor distills information hidden across representations from the perspective
of integrating information. Furthermore, any incomplete attribute information,
which is quite common in real-world datasets, can crash it down for the unob-
served node in one of the networks. Another way is to combine neighborhoods⋃

i N
(i)
S (u) extracted from different networks and then learn the representation

from a unique Skip-Gram model. Yet the combination that treats all the side
information equally without discrimination for the individual node is careless
and unacceptable in the analysis, not to mention the expensive computational
cost of building multiple neighborhoods for a node. All in all, how to discrim-
inatingly learn the side information and efficiently sample node neighborhood
matters.

Supported by the analysis above, we first propose a measurement on the
neighborhood of attribute affinity networks to evaluate the local property. Intu-
itively, the more similar neighbor is, the more attention should be paid to explor-
ing this neighbor. Exploring the neighborhood shares the same principle. To this
end, we define the local cohesion of node u on A(i) as follow:

ρ(i)u =
ā
(i)
u

ā(i)
=

avgt(A
(i)
ut )

avgs,t(A
(i)
st )

, (4)

where ā(i) is the average edge weight of the ith complete affinity network A(i)

and ā
(i)
u is the average weight of edges that associate with node u w.r.t. A(i).

Thus, the larger ρ
(i)
u is, the more informative immediate neighbors are provided.

Then, by comparing the strength of node’s local cohesion in different networks,
we can distinguish the importance of different attributes for a specific node. In
other words, if neighbors are more similar with node u in a certain network
than in others, this network should undertake more responsibility for exploring
neighbors. For the importance of topology, we can calculate in the same way.
We denote A(0) = G, A

(0)
uv = Wuv and ρ

(0)
u = 1 for unweighted network, which is

also included in Eq. 4.
Then we propose a multi-network random walk strategy to generate node

neighbors NS(u). Walking across {A(i)}mi=0 generates a semantically rich node
sequence that incorporates diverse node relationships (or similarities) from dif-
ferent networks. After that, we can construct a neighborhood with multi-relation
neighbors for each node. In the proposed random walk scheme, we first decide
“which network should be traversed” by ρ

(i)
u , namely choose the more important

data source for node u. The probability is proportional to the importance, in
particular:

P (u,A(i)) =
ρ
(i)
u

∑m
i=0 ρ

(i)
u

. (5)
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And then we carry out the weighted random walk in the chosen network (e.g.
A(i)) with the probability as follow:

PA(u, v) =
A

(i)
uv

∑
x∈V A

(i)
ux

. (6)

3.4 Fuse the Label Information

Modeling label information is entirely different from attributes, the other kind
of side information. Labels are much more refined and scarce in networks. Own-
ing to the sparsity, if we treat labels like attributes to construct an independent
network, there would be two problems: Firstly, a great number of nodes without
labels will be absent in this network; Secondly, the linkage connecting nodes
sharing same the label will build information isolated island, which has no assis-
tance to other nodes. In network analysis, it is always assumed that the node’s
label is highly correlated to the topological structure and could be affected by its
labeled neighbors according to their similarity. We propose two ways to explic-
itly and potentially fuse labels information in the topological neighborhood as
shown in Fig. 1.

v

x1 x2

x3

ciτ(v, ci)
τ(x3, ci

)

u

α = 1/p
+ a2

(β = 1/p
)

α
=

1/q

(β
=

1)

α
=

1

(β
=

1/
q)

α = 1 + a2
(β = 1/q)

Fig. 1. Illustration of label incorporation way. The nodes colored in cyan are with
the same label and the others’ label are unknown. The explicit way: The label hub
ci is linked with label hyperlink (e.g. (v, ci) and (x3, ci)) presented in dashed line.
Nodes sharing the same label can walk to each other via their common label hub. The
potential way: The following example is given to show the influence of node sequence
and restrict the influence within 2nd order, which compatible with Node2vec. The walk
just transitioned from labeled node v to unlabeled node u and is now evaluating its
next step out of node v. Edge notations indicate search bias α for SINE and β for
Node2vec. α comprise of bias from topology and label.

To take advantage of label’s guidance in gathering node together, we first
introduce the notions of label hyperlink and label hub that help to explicitly learn
the label information in the random walk procedure. By building an imaginary
label hub ci, i ∈ Y for each label on network G, nodes with same label can
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connect to each other through the label hyperlink to the corresponding label hub.
In particular, the unnormalized probability of walking through label hyperlink is
defined as follow:

τ(u, ci) =
{

γ, if L(u) = i,
0, otherwise, (7)

where γ is a hyperparameter. This explicit method will directly bridge the gap
between labeled nodes which are not so close to each other in the topological
network. It is also reasonable that nodes with the same label are much closer
than those nodes with different labels. In this way, nodes in the neighborhood
containing the same label hub are more likely to have similar representations
than those who don’t.

However, the explicit label hub method restricts the influence of label within
the labeled nodes, and can not spread the labeled nodes’ information to affect the
unlabeled neighbors. Thus, we resort to the random walk sequence for a helping
hand. Intuitively, a node sequence would be more likely to walk to the related
labeled community where it came from. Since nodes in the same community
are similar both in topology and label and the node sequence can be regarded
as a sampling of the corresponding community, the alternative nodes that are
either immediate neighbors of sequence or sharing the same label in the sequence
would be more attractive. To measure the attraction of the alternative nodes, we
present the biased random walk with two additive parts: topological and labeled
parts. Consider a random walk that has a traversed node sequence T = {ui}ni=1

with length n and now resides at node un (Fig. 1). The walk now defines the
unnormalized transition probability of its neighbor x as follow: τ(un, x) = α ·
wun,x, where α = αtopo + αlabel,

αtopo =

⎧
⎨

⎩

1/p, if d({ui}n−1
n−m, x) = 0,

1/q, if d({ui}n−1
n−m, x) = 1,

1, otherwise,
(8)

αlabel =

⎧
⎪⎨

⎪⎩

m∑

i=0

I(L(un−i) = L(x))ai, if x is labeled,

0, otherwise,

(9)

and d(U, x) denotes the shortest distance between node x and nodes in set U , I is
the indicator function, m is the range of influence of T and {ai}mi=1 controls the
label influence of different distance. To make it clear, αtopo controls the sequence
to revisit T with bias 1/p and walk around T with bias 1/q. While the αlabel

controls the probability of traversing the neighbors with label that has been
visited in T . We perform the label biased random walk with the probability as
follow:

PG(u, v) =
τ(u, v)∑

x∈V ∪{ci}|Y|
i=1

τ(u, x)
. (10)

It occurs to us that when we restrict the influence of T within the last two
nodes (i.e. m = 1) when computing αtopo, it is similar to Node2vecWalk defined
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in [4] with exchanging parameters 1 and 1/q. We denote the bias as β and
explain in Fig. 1. The pseudocode for SINE Walk is given in Algorithm1. The
time complexity analysis of this algorithm is given in the experiment section.

To sum up, by generating the node sequences in the newly designed net-
work with the proposed random walk scheme, we can incorporate topology,
attributes and labels information into each node’s neighborhood NS(u). Then
we can learn the node representation hu by solving Eq. 2 with stochastic gradient
ascent method.

Algorithm 1. The SINE Walk
Input: Start node u, networks {A(i)}m

i=0, walk length l, label hub weight γ,
revisit p, look-around q, label influence φ(d)

Output: node sequence T
Initialize T to empty;
Append u to T ;
for iter = 1 to l do

Let curr be the last node of T ;

Sample Graph from {A(i)} with Eq. 5 ;
Vcurr = GetNeighbors(curr ∈ Graph);
if Graph is G then

VC = {ci}|Y|
i=1 ;

Sample node from Vcurr ∪ VC with Eq. 10;

else
Sample node from Vcurr with Eq. 6;

end
Append s to T ;

end
return T ;

4 Experiments

In this section, we conduct experiments to evaluate the effectiveness of our pro-
posed framework SINE. In particular, we want to answer the following questions.

(1) What are the impact of attributes information on network embedding and
how effective is the multi-network random walk strategy to incorporate
attributes?

(2) How effective is the guidance impact of the label in the label biased random
walk scheme?

(3) How effective are the node representations learned by SINE compared with
other state-of-the-art methods in the downstream tasks?



SINE: Side Information Network Embedding 701

Table 1. Statistics of the dataset

Dataset Node Edge Attribute Label

BC 5,196 171,743 8,189 6

Flickr 7,575 239,738 12,047 9

Cora 2,708 5,429 1,433 7

Citeseer 3,312 4,732 3,703 6

Wiki 2,405 17,981 4,973 19

4.1 Datasets

In our experiments, we employ 5 real-world datasets: BlogCatalog (BC),
Flicker, Cora, Citeseer and Wiki. All of them are publicly available, and
specially the first two have been used in [7]. BlogCatalog and Flickr are
social media networks. Each node is a user and links are the interaction between
them. We take their descriptions as the attributes and the groups or categories
they joined as labels. Cora, Citeseer and Wiki are citation networks. Each
node is a publication and the links are citation relationships between them. The
attribute of each node is the bag-of-words representation of the corresponding
paper. Statistics of the datasets are summarized in Table 1. Note that all these
datasets provide only one attribute feature.

4.2 Baseline Methods

We compare our method with 7 baseline methods. To evaluate the contri-
bution of the side information, two pure network embedding methods, four
attributed network embedding methods and a labeled attributed network embed-
ding method are used for comparison. The first category contains DeepWalk
[14] and Node2vec [4]. The second category includes AANE [6], TADW [21],
SNE [8] and DANE [3]. The last one contains LANE [7].

4.3 Metric and Parameter Settings

We perform the multi-class node classification task to evaluate the quality of
node representations learned by different methods. To be more specific, we ran-
domly select some portion of the nodes as training set and the remaining as a
test set. We train a one-vs-rest SVM classifier on the training set and evalu-
ate it on the test set. For each training ratio, we repeat the trial for 10 times
and report the average results. To measure the classification result, we employ
Micro-F1 and Macro-F1 scores as metrics.

In SINE, we compute the attribute affinity network with K(·, ·) defined as
cosine similarity of attributes. In experiments, we only preserve the top 20 similar
neighbors for each node, randomly sample 20 neighbors when performing label
biased random walk, and restrict the attraction of the sequence nodes within two
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step with a1 = r, a2 = s, which is the trade-off between the computational cost
and the accuracy. The default parameters of SINE are set as follows: window
size k = 5, walks per node t = 20, walk length l = 20, label biased random
walk parameters p = 4, q = 4, r = s = 4, label hub weight γ = 0.5. The
label ratio used for embedding is 10%. For fairness of comparison, the dimension
of embedding vectors d is set to 100 for all the methods. The parameters of
DeepWalk and Node2vec are kept the same with SINE. The rest parameters
for other algorithms are set following the suggestion in their original papers or
source codes.

Table 2. Micro-F1 score of classification

Datasets Ratio SINE LANE AANE TADW SNE DANE DW Node2vec

BC 10% 0.8459 0.5696 0.7036 0.7502 0.5714 0.7404 0.3561 0.5750

20% 0.8805 0.6543 0.7756 0.7623 0.6201 0.7907 0.4982 0.6317

30% 0.8959 0.6915 0.8103 0.7972 0.6515 0.8084 0.5295 0.6477

40% 0.8991 0.6987 0.8261 0.8053 0.6744 0.8171 0.5666 0.6524

50% 0.9055 0.7199 0.8353 0.8378 0.6773 0.8348 0.5836 0.6739

Flickr 10% 0.7897 0.6212 0.5663 0.2901 0.1164 0.4297 0.1563 0.3089

20% 0.8454 0.7043 0.6301 0.3674 0.1542 0.5655 0.2475 0.3772

30% 0.8617 0.7444 0.6583 0.4210 0.1938 0.6091 0.2760 0.3929

40% 0.8678 0.7664 0.6834 0.4429 0.2171 0.6354 0.2942 0.4171

50% 0.8780 0.7856 0.7034 0.4510 0.2402 0.6530 0.3098 0.4256

Cora 10% 0.7263 0.6966 0.3601 0.7166 0.5806 0.5099 0.7301 0.7098

20% 0.7987 0.7666 0.5539 0.7974 0.6631 0.6102 0.7819 0.7694

30% 0.8176 0.7836 0.6260 0.8225 0.7079 0.6529 0.7961 0.7928

40% 0.8290 0.8057 0.6728 0.8356 0.7350 0.6774 0.8191 0.8166

50% 0.8350 0.8173 0.7029 0.8471 0.7555 0.6978 0.8330 0.8291

Citeseer 10% 0.6651 0.4977 0.3575 0.5594 0.2138 0.5366 0.4722 0.4095

20% 0.7189 0.5655 0.5101 0.6316 0.3366 0.6210 0.5432 0.5110

30% 0.7282 0.6073 0.5566 0.6595 0.3937 0.6535 0.5846 0.5563

40% 0.7390 0.6281 0.5825 0.6690 0.4354 0.6541 0.6013 0.5925

50% 0.7476 0.6391 0.5915 0.6862 0.4617 0.6734 0.6139 0.5995

Wiki 10% 0.6601 0.5684 0.6159 0.4498 0.5624 0.6501 0.4269 0.4427

20% 0.7315 0.6382 0.7066 0.5664 0.6310 0.7087 0.5448 0.5505

30% 0.7647 0.6629 0.7414 0.6168 0.6612 0.7385 0.5780 0.5803

40% 0.7765 0.6832 0.7551 0.6518 0.6871 0.7471 0.6117 0.6190

50% 0.7879 0.6951 0.7698 0.6688 0.7062 0.7609 0.6311 0.6377

4.4 Performance Evaluation

In this section, we will answer the questions proposed in the beginning of Sect. 5
one by one.
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Effectiveness of Multi-network Random Walk Strategy. To answer the
first question, we evaluate the proposed multi-network random walk strategy
which performs random walk cross multiple networks (including topological net-
work and attribute affinity networks) by conducting a series of experiments. We
first perform random walk on the attribute affinity network (Attribute) and
topological network (Structure) respectively and feed the node sequences to
Skip-Gram model to get the embeddings for each network. Then we mix the
node sequences generated on these two networks and use this mixed corpus
to produce embeddings in the same way (Combine). Finally, we perform the
proposed multi-network random walk strategy without labels. The classification
results of these four methods on BlogCatalog dataset with different training
ratios are shown in Table 3.

Table 3. F1-score of classification on BlogCatalog

Training ratio 10% 30% 50% 70%

Micro Structure 0.3520 0.5317 0.5696 0.5987

Attribute 0.7677 0.8172 0.8360 0.8446

Combine 0.7866 0.8575 0.8691 0.8833

SINE 0.8183 0.8770 0.8909 0.9015

Macro Structure 0.3592 0.5428 0.5810 0.6101

Attribute 0.7797 0.8241 0.8426 0.8498

Combine 0.7946 0.8624 0.8735 0.8869

SINE 0.8251 0.8808 0.8946 0.9044

The results in Table 3 illustrate the improvement of our multi-network ran-
dom walk strategy. Specifically, compared to the first two methods which only
utilize either attribute information or network structure, the Combine and
SINE methods always achieve significantly better performance, showing that
attribute information is valuable on network embedding. More importantly, our
method outperforms other methods in all situations, which proves that our pro-
posed multi-network random walk strategy is effective. In contrast to treat-
ing attribute and structure separately, we consider the correlation and interac-
tion between them by a unified random walk sequence to effectively incorporate
attribute information, leading to much better node representations.

Effect of Label Information. To answer the second question, we investigate
the guidance effect of the label by varing the ratio of labeled nodes from 10% to
90% when performing labeled biased random walk. The training ratios of SVM
classifier is fixed to 50%. The result is presented in Fig. 2.

From Fig. 2, we can see that with the increase of label ratio, both metrics are
rising, which validates the guidance effect of label on embedding.
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(a) Micro-F1 score (b) Macro-F1 score

Fig. 2. Classification results of different label ratios

Effectiveness of SINE. To study the effectiveness of our SINE framework
which is mentioned in the third question, we compare its performance with all
baseline methods with varing the training ratio from 10% to 50%. The classifi-
cation results of eight methods on five datasets are shown in Table 2. Due to the
limitation of space, we only show the result of micro-F1 score and the result of
macro-F1 score is similar. From Table 2, we find that our method achieves better
performance in most situations with the following observations.

– First, by incorporating the attribute information, most attributed network
embedding methods achieve significant improvement compared to the pure
network embedding methods.

– Second, with the proposed framework, SINE outperforms other baseline meth-
ods in most situations. This is because SINE can effectively integrate the side
information and get much more valuable node representations, resulting in
better classification results.

– Third, our method performs fairly well when the training ratio is quite small
while other baseline methods degrade quickly as the training ratio decreases
due to that their representations are noisy and inconsistent in training set
and test set. Compared to other algorithms, SINE learns node representations
from three data sources, including network structure, attributes information
and node labels, which makes the representations more consistent and less
noisy.

4.5 Parameter Analysis

In this section, we investigate the effects of parameters, including embedding
dimension d, label hub weight γ, and labeled bias r and s. We fix the training
ratio to 50% and test the classification F1 scores with different parameters. For
dimension d, we vary it from 10 to 100 and conduct experiments on five datasets.
Figure 3 shows the variations of classification results with different d. The result
suggests that our method is stable when d within a reasonable range. As for label
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(a) Micro-F1 score (b) Macro-F1 score

Fig. 3. Classification results of different dimensions

(a) Results of different r (b) Results of different s

(c) Results of different γ (d) Average execution time

Fig. 4. Results of parameters analysis and scalability

related parameters γ, r, and s, we set the other two parameters to zeros when
analyzing one of them. We vary each of them in different range on the Citeseer
dataset and the result is presented in Fig. 4. We can find out that the influences
of these three parameters are similar. As they increase, the performance becomes
better due to the guidance effect of label. However, when they are larger than
a threshold, random walk method will always walk to labeled node without
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walking to its neighbors, losing the information of topological neighborhoods,
which reduces the quality of node representations.

4.6 Scalability

The time complexity of our random walk scheme is O(tle · |V |) where e is the
average number of edges. In practice, we set e = 20 as mentioned in parameter
settings so it can be regarded as a constant. The time complexity of Skip-Gram
is O(k(d + d · log |V |)) where the window size k and the embedding vector size
d are constants so the total complexity is still O(|V |). To test for scalability, we
learn node representations using SINE with default parameter values for Erdos-
Renyi graphs with node sizes increasing from 102 to 105. We compute the average
running time for 10 independent executions. The result of running time (in log
scale) is shown in Fig. 4d. We observe that SINE scales linearly with the size of
nodes, which is acceptable in practice. Thus, SINE can be applied to large-scale
networks.

5 Conclusion

In this paper, we propose a novel network embedding framework SINE, which
can learn high-quality node representations for networks with side information,
including attributes and labels. We design a flexible random walk scheme to
generate semantically rich neighborhoods for nodes, which contains the prox-
imity in topological structure, node attributes and node labels. The extensive
experiments on 5 real-world datasets validate its effectiveness and efficiency.
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Abstract. Traditional Chinese Medicine (TCM) plays an important
role in Chinese society and is an increasingly popular therapy around
the world. A data-driven herb recommendation method can help TCM
doctors make scientific treatment prescriptions more precisely and intel-
ligently in real clinical practice, which can lead the development of TCM
diagnosis and treatment. Previous works only analyzing short-text medi-
cal case documents ignore rich information of symptoms and herbs as well
as their relations. In this paper, we propose a novel model called Knowl-
edge Graph Embedding Enhanced Topic Model (KGETM) for TCM herb
recommendation. The modeling strategy we used takes into considera-
tion not only co-occurrence information in TCM medical cases but also
comprehensive semantic relatedness of symptoms and herbs in TCM
knowledge graph. The knowledge graph embeddings are obtained by
TransE, a popular representation learning method of knowledge graph,
on our constructed TCM knowledge graph. Then the embeddings are
integrated into the topic model by a mixture of Dirichlet multinomial
component and latent vector component. In addition, we further propose
HC-KGETM incorporating herb compatibility based on TCM theory to
characterize the diagnosis and treatment process better. Experimental
results on a TCM benchmark dataset demonstrate that the proposed
method outperforms state-of-the-art approaches and the promise of TCM
knowledge graph embedding on herb recommendation.

Keywords: Traditional Chinese Medicine · Topic model ·
Knowledge graph embedding · Recommendation

1 Introduction

Traditional Chinese Medicine (TCM) has been assiduously developed over thou-
sands of years. As a comprehensive system which studies disease prevention,
diagnosis, treatment, rehabilitation, and healthcare, TCM plays an important
c© Springer Nature Switzerland AG 2019
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Fig. 1. The relation between symtoms,
syndromes, treatments and herbs.

Fig. 2. The schematic diagram of Tradi-
tional Chinese Medicine knowledge graph.

role in Chinese society and is increasingly adopted as a complementary therapy
around the world. Figure 1 shows the general therapeutic process in TCM. First,
the doctor examines the symptoms of the patient, such as “aversion to cold”,
“headache”, “anhidrosis” et al. Then, the syndrome is determined after analyzing
symptoms. The syndrome, in this case, is “superficies excess syndrome”. Third,
the doctor decides the treatment, in this case, is “resolving superficies method”.
Finally, a prescription which contains a group of herbs is given according to
the first three steps and herb compatibility. There are some herb combinations
summarized by TCM practicers after long-term development. Some of the herb
combinations are often used together to improve treatment effectiveness. While
the others are forbidden to be used together since they can have negative effects.

In real clinical practice, the diagnosis and treatment result is given based
on TCM theory and the doctors’ own experience, which is subjective and lacks
standards. The inheriting way of TCM is based on the summarization of previ-
ous medical cases literature. Therefore, depicting the diagnosing and prescribing
process from medical cases is a vital task, which can be used in objectively giv-
ing auxiliary diagnosis and herb recommendation to help TCM doctors making
scientific decisions in clinical practice.

We face several challenges on TCM herb recommendation task. First, differ-
ent from Western Medicine, TCM views the human body as an organic whole.
A set of symptoms of the patient are interdependent and interactional. It is
inappropriate to treat each symptom of the patient independently. Second, as
mentioned above, the therapeutic process in TCM involves four steps and covers
a large amount of complex TCM domain knowledge such as herbal compati-
bility. So there is great difficulty in characterizing the therapeutic process fully
and precisely. Third, short texts, such as TCM medical cases, do not contain
sufficient statistical information for small amounts of words. Yao et al. [2] pro-
posed a prescription topic model (PTM) for exploring the prescribing patterns
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in TCM. PTM regarded symptom terms and herb terms as observed variables,
and syndrome (the topic of symptoms), treatment (the topic of herbs) as latent
variables. However, PTM, as well as the existing method for TCM knowledge
mining based on the topic model, have a common drawback: they model symp-
tom terms and herb terms with a bag-of-words model, in other words, they ignore
the relatedness between symptoms and relatedness between herbs in fact. These
bag-of-word models only consider word co-occurrence in the medical case, with-
out taking full advantage of the prior relevance of symptoms and herbs in the real
world. The inference provided by word co-occurrence is single and incomplete,
which is not able to explore the relationship of symptoms and herbs sufficiently,
especially for short texts like medical cases. While there is TCM literature that
records the properties of symptoms and herbs, as well as their relations (such as
efficacy, indication, syndrome, or channel tropism). Therefore, how to use this
information to improve the existing works is a vital task.

To address the aforementioned challenges, in this paper, we propose a novel
method named knowledge graph embedding enhanced topic model (KGETM)
based on topic model incorporated with knowledge graph embedding for herb
recommendation. We improve the performance of the topic model by incorporat-
ing knowledge graph. Knowledge graph is a large scale semantic network consists
of triplets. It represents concepts and relations among them adequately and is
easy to use. We construct a TCM knowledge graph to express related concepts
and relations among them in the form of triplets as auxiliary information for
the topic model. TCM theory concepts exist as entities in the knowledge graph,
such as herbs, symptoms and their properties. The knowledge graph provides
rich semantic relatedness between symptoms and herbs for the topic model,
which can improve the abilities of topic model to find the latent connection
between symptoms and herbs. For incorporating information of TCM knowledge
graph into the topic model, we obtain the embeddings of symptom and herb in
the knowledge graph by TransE [9]. In our models, the topic-to-word Dirichlet
multinomial component in LDA [3] was replaced with a mixture of a Dirichlet
multinomial component and a latent vector component to utilize symptom and
herb embeddings.

Unlike LDA [3], there are two topic-to-word distributions in our model cor-
respond to symptom part and herb part of a medical case. For symptom part, as
mentioned in the therapeutic process in TCM, doctors determined syndrome by
analyzing symptoms. So our models regard symptoms as words and syndrome as
the topic. For the herb part, doctors choose herbs according to the treatment for
the syndrome. So herbs are viewed as words and treatment is viewed as the topic
in our models. The topic syndrome and treatment share the same medical case-
topic distribution. In addition, to model the complex TCM therapeutic process
as mentioned above, our model incorporated herbal compatibility knowledge.
We call this model knowledge graph embedding enhanced topic model with herb
compatibility (HC-KGETM), which incorporated herb combinations by encod-
ing herb combinations as sparse constraints.
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The contributions of this paper are summarized as follows:

• To the best of our knowledge, we are the first work integrating knowledge
graph into TCM clinical data analysis. We propose a Knowledge Graph
Embedding Enhanced Topic Model (KGETM) for herb recommendation. The
model characterizes the diagnosis and treatment process.

• We further propose HC-KGETM taking herb compatibility into considera-
tion, which is consistent with TCM theory.

• Experimental results demonstrate the effectiveness of the proposed method
and the promise of KG embedding for herb recommendation.

• We provide a TCM knowledge graph triplets dataset.

2 Related Work

Topic models are widely used in herb recommendation for TCM researches. Wang
et al. [7] propose an asymmetric multinomial probabilistic model for the joint
analysis of symptoms, diseases, and herbs, which can be used in herb treatment
prediction. Ji et al. [1] proposed a topic model named MCLDA for modeling
relationship between the symptoms and herbs. The model considers “pathogen-
esis” as the latent topic that connects symptoms and herbs. Then a hybrid herb
recommendation method is proposed based on the model. Yao et al. [2] pro-
posed a prescription topic model (PTM) which integrates TCM concepts into
topic modeling such as “syndrome”, “treatment”, “herb roles” to better charac-
terize the generative process of prescriptions. However, these topic models find
topic patterns in TCM data only by word co-occurrence, without considering
the subsistent semantic similarity of symptoms or semantic similarity of herbs.

In recent years, researchers find that incorporating external knowledge into
the topic model can extract more semantic coherent topics and learn a better
representation of documents. For example, in [11], the authors extend LDA and
DMM models by integrating the latent feature vector of words. In [4], the authors
replace LDA’s categorical distributions of topics with multivariate Gaussian dis-
tributions on the embedding space.

Knowledge graph is a semantic network which consists of triple facts (head
entity, relation, tail entity). One of the wide usages of knowledge graph is
knowledge graph embedding, aiming to embed entities and relations into low-
dimensional continuous vector spaces, so as to simplify the manipulation while
preserving the properties of the graph. TransE [9] is the most representative
model for KG embeddings. It considers a relation r as a translation from head
entity h to tail entity t, so that h + r ≈ t when (h, r, t) holds. Yu et al.
[5] designed and constructed a TCM knowledge graph, and applies the knowl-
edge graph in TCM health preservation. Zhang et al. [6] proposed a hybrid
recommendation framework which leverages KG embeddings to learn a struc-
tural representation of items. Wang et al. [10] construct a medical knowledge
graph based on MIMIC-III and DragBank, then they use the KG embeddings
to decompose the medicine recommendation into a link prediction process. Yao
et al. [8] combine KG embeddings with LDA model by characterizing each topic
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as a vMF distribution to improve the performance of LDA. However, to the
best of our knowledge, there is no existing work incorporating TCM knowledge
graph embeddings to analyze TCM clinical data for diagnosis or further herb
recommendation.

3 Approach

3.1 Preliminary

The task of herb recommendation is to output a set of herbs given a set of
symptoms. By analyzing medical cases, our models can obtain medical case-topic
distribution θ, syndrome-symptom distribution φs and treatment-herb distribu-
tion φh. We calculate the probability for a herb given a set of symptoms using
θ, φs and φh, and then choose top-ranked herbs as the result according to the
probability.

As shown in Fig. 3, M denotes the number of all medical cases. A medical case
m is divided into two parts, the symptom part and herb part. The symptom part
of m contains a set of symptoms denoted by ms = {ms1,ms2, ...,msNms

}, where
Nms is the total number of symptoms in the medical case m. The set of herbs of
m denoted by mh = {mh1,mh2, ...,mhNmh

}, where Nmh is the total number of
herbs in m. Usually, Nmh is bigger than Nms. The vocabulary of symptoms Vs

with S distinct symptoms denoted by Vs = {Vs1 , Vs2 , ...,VsS}. The vocabulary
of herbs Vh with H distinct herbs denoted by Vh = {Vh1 , Vh2 , ...,VhH

}.
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Fig. 3. The graphical representation of KGETM and HC-KGETM.

3.2 KGETM

Here, we introduce the details of Knowledge Graph Embedding Enhanced Topic
Model (KGETM). As shown in Fig. 3(a), KGETM has two topic-word distribu-
tions correspond to symptom part and herb part in a medical case. In symp-
tom part, the model views symptom s as observed variable, syndrome zs as
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latent variable. φs is S-dimensional syndrome-symptom multinomial for syn-
drome k ∈ 1, ...,K. In the herb part, herb h is regarded as observed variable,
treatment zh is regarded as latent variable. φh is H-dimensional treatment-herb
multinomial for treatment k ∈ 1, ...,K. To encode symptom and herb embed-
dings in the topic model, as LFLDA [11], we replace the Dirichlet multinomial
component in LDA [3] with a mixture of Dirichlet multinomial component and
latent feature component. The latent feature consists of symptom/herb embed-
dings and topic vectors. As shown in Fig. 3(a), es ∈ R

De×Vs , eh ∈ R
De×Vh are

symptom and herb embedding respectively; τs ∈ R
Dk×K , τh ∈ R

Dk×K are syn-
drome vector and treatment vector respectively. The latent feature component
of KGETM defined as:

softmax(w)k =
exp(τ∗k · e∗w)

∑
w′∈V∗ exp(τ∗k · e∗w′)

(1)

where w denotes or a symptom or a herb. e∗w is the TCM knowledge graph
embedding of w, which is obtained by TransE [9] in this work. bsi/bhj

is a
binary indicator variable is sampled from a Bernoulli distribution to determine
whether symptom i/herb j is to be generated by the Dirichlet multinomial or
latent feature component. V∗ denotes the vocabulary of symptoms or herbs.
KGETM applies regularized maximum likelihood estimation as [11] to estimate
the latent-feature vector of the topic (syndrome/treatment). Log-loss function
with �2 regularization for topic (syndrome/treatment) k is defined as:

Lk = −
∑

w∈V∗

Kk,w

(

τ∗k · e∗w − log

(
∑

w′∈V∗

exp (τ∗k · e∗w′)

))

+ μ‖τk‖22 (2)

The derivative with respect to the jth element of the vector for syn-
drome/treatment k is:

∂Lk

∂τ∗k,j
= −

∑

w∈V∗

Kk,w

(

e∗w,j −
∑

w′∈V∗

e∗w′,jsoftmax (w′)k

)

+ 2μτ∗k,j (3)

We obtain syndrome/treatment k vector τ∗k by minimizing Lk.
The generative process of our model is given as shown in Algorithm 1.

Inference Estimation for KGETM. We use the collapsed Gibbs sampling
algorithm to perform inference to calculate the conditional topic assignments
zsmi and zhmj in KGETM.

The sampling equation for syndrome zsmi is defined as

p(zsmi = k|smi, zs¬mi, τs, es) ∝

(Nk
m + α) ×

(

(1 − λ)
Nksmi

+ βs

Nk + Sβs
+ λsoftmax (smi)k

)
(4)

where k is a syndrome, zs¬mi denotes the syndrome assignments of all symptoms
ignoring ith symptom of medical case m. Nk

m is the number of times a symptom
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Algorithm 1. Generative process of KGETM
1: for each each medical case m do
2: Draw θm∼Dir(α)
3: end for
4: for each syndrome k in 1,...,K do
5: Draw φs

k∼Dir(βs).
6: end for
7: for each treatment k in 1,...,K do
8: Draw φh

k∼Dir(βh).
9: end for

10: for each ith symptom of the Nms symptoms in medical case m do
11: Draw a syndrome zs

mi
∼Mult(θm).

12: A binary indicator variable bsmi∼Ber(λ)
13: Draw a symptom smi∼(1 - bsmi)Mult(φs

zsmi
)+bsmisoftmax(smj)zsmi

14: end for
15: for each jth herb of the Nmh herbs in medical case m do
16: Draw a treatment zh

mj
∼Mult(θm).

17: A binary indicator variable bhmj∼Ber(λ)

18: Draw an herb hmj∼(1 - bhmj )Mult(φh
zhmj

)+bhmj softmax((hmj)zhmj
)

19: end for

or a herb in medical case m is generated from topic k (syndrome or treatment)
by Dirichlet multinomial component or latent feature component. Nms and Nmh

is the number of symptoms and herbs in prescription p respectively. Nksmi
is the

number of times symptom smi is generated from syndrome k. Nk is the number
of times any symptom is generated from syndrome k.

The sampling equation for treatment zhmj is defined as

p(zhmj = k|hmj , zh¬mj , τh, eh)

∝ (Nk
m + α) ×

(

(1 − λ)
Nkhmj

+ βh

N ′
k + Hβh

+ λ · softmax (hmj)zh
mj

) (5)

where k is a treatment, zh¬mj denotes the treatment assignments of all herbs
ignoring jth herb of medical case m. hmj is ith herb in medical case m. Nkhmj

is
the number of times hmj is generated from k. N ′

k is the number of times any
herb in all medical cases is generated from k.

With Gibbs sampling, we can make the following parameter estimation:

θmk =
Nk

m + α

Nms + Nmh + Kα
(6)

φs
ksmi

= (1 − λ)
Nksmi

+ βs

Nk + Sβs
+ λ · softmax (smi)zs

mi
(7)

φh
khmj

= (1 − λ)
Nkhmj

+ βh

N ′
k + Hβh

+ λ · softmax (hmj)zh
mj

(8)
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3.3 HC-KGETM

Synergism of set herbs is one important part of Herbal compatibility. There
are seven states of herbal compatibility called “seven emotions” in TCM the-
ory. Seven emotions can be simplified into two states: the combination of a set
of herbs with a positive influence and the combination of a set of herbs with
negative influence. We name the model incorporating herbal compatibility HC-
KGETM. Here, we introduce the details of how HC-KGETM incorporates herb
combination.

Through the long-term development, TCM theory has summarized some
commonly used herb combinations that meet the herbal compatibility princi-
ples. As mentioned above, these herb combinations are classified into two kinds:
the herb combinations that improve the treatment effectiveness and the herb
combinations that have negative effects. The former herb combinations in HC-
KGETM called positive-link combinations LP , the poster herb combinations
called negative-link combinations LN . As shown in Fig. 3(b), hp and hn are
herbs in LP and LN of h respectively. Every LP and LN contains at least
two herbs. For example, a combination of Pinellia ternata, Baikal Skullcap,
China Goldthread and Dried Ginger plays a positive role, this combina-
tion for Pinellia ternata is denoted by LN

Pinellia ternata = {Baikal Skullcap,
China Goldthread, Dried Ginger}. The potential score of sampling topic treat-
ment k for the combination of herb h is

f(k, h) =
∑

i∈LP
h

log max(γ,Ni,k) +
∑

j∈LN
h

log
1

max(γ,Nj,k)
(9)

where γ is a hyperparameter. γ has a negative correlation with the influence of
herb combinations. The smaller γ is, the stronger correlation between the herbs
in the combination is, the stronger influence of the combination is. Ni,k and Nj,k

are the number of times positive-link herb i and negative-link herb j generated
from treatment k. Equation 9 increases the probability that herb h will be drawn
from the same topics as those of h’s positive-link herb set LP , and decreases its
probability of being drawn from the same topics as those of h’s negative-link
herb set LN .

The generative process of HC-KGETM is as shown in Algorithm 2.

Algorithm 2. Generative process of HC-KGETM
Process of drawing θm, φs

k, φh
k and smi is the same as before.

1: for each jth herb of the Nmh herbs in medical case m do
2: Draw a treatment zh

mj
∼Mult(θm).

3: A binary indicator variable bhmj∼Ber(λ)

4: Draw an herb hmj∼ ((1 - bhmj )Mult(φh
zmjx

h
mj

) +bhmj softmax(hmj)zhmj
) ×

expf(zh
mj

, hmj)
5: end for
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Inference Estimation for HC-KGETM. We use the collapsed Gibbs sam-
pling algorithm to perform inference to calculate the conditional topic assign-
ments zsmi and zhmj in HC-KGETM.

The inference equation for zsmi is same as KGETM. The inference equation
for zhmj is defined as

p(zhmj = k|hmj , zh¬mj , τ
′
h, eh) ∝ (Nk

m + α)

×
(

(1 − λ)
Nkxhmj

+ βh

Nkx + Hβh
+ λsoftmax (hmj)

)

× expf(k, hmj)
(10)

where f(k, hmj) denotes potential score of sampling treatment k for combination
of herb hmj .

With Gibbs sampling, we can make the following parameter estimation:

φh
khmj

=
(

(1 − λ)
Nkxhmj

+ βh

Nkx + Hβh
+ λsoftmax (hmj)

)

× expf(k, hmj) (11)

3.4 Prediction

The aim of the herb recommendation is predicting a set of herbs given a set of
symptoms.

The probability of herb hj given a set of test symptoms s′
m is defined as

p(hj |s′
m) =

1
Ns′

m

∑

si∈s′
m

p(hj |si) (12)

where s′
m is the set of test symptoms, Ns′

m
is the number of symtoms in s′

m.
The probability of herb hj given a symptom si is

p(hj |si) =
K∑

k=0

p(hj |k)p(k|si) =
K∑

k=0

p(hj |k)
p(si|k)p(k)

p(si)
(13)

where p(hi|k) is parameter φkhi
, p(sj |k) is parameter φksj in KGETM and HC-

KGETM.
The models choose top N herbs as recommendation result for given symp-

toms according to the probabilities.

4 Experiment

In this section, we conduct experiments for demonstrating the effectiveness of
our models on the following research questions:

Question 1: Can our models outperform the state-of-art on herb recommenda-
tion task?
Question 2: Can our models outperform other topic models on generalization
performance?
Question 3: How do knowledge graph embeddings influence herb recommen-
dation?
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4.1 Experimental Settings

TCM Knowledge Graph. We construct a TCM knowledge graph from mul-
tiple data sources. Figure 2 shows a part of TCM knowledge graph. The graph
views TCM concepts as entities and relatedness between them as relations. The
statistical information of the graph is shown in Table 1. The entities contain
herbs, herbal properties, efficiencies, symptoms, pathogeny et al. And relations
in the graph contains “hasChemical”, “treat”, “channel tropism”, “hasNature”
et al. we obtain 100-dimension symptom and herb embeddings by TransE [9].

Table 1. Information about TCM knowledge graph

#entity 55556

#relation 23

#triples 1336421

Data source TCM-Mesha

Chinese Traditional Medicine Encyclopediab

Pharmacopoeia of the People’s Republic of China 2005 [19]

Clinic Terminology of Traditional Chinese Medical Diagnosis [20]

Clinic Terminology of Traditional Chinese Medical Treatment-Diseases [20]
ahttp://mesh.tcm.microbioinformatics.org.
bhttp://www.a-hospital.com.

Dataset. We experimented with the benchmark TCM dataset [2]. The TCM
dataset contains 98,334 raw medical cases and 33,765 processed medical cases
(only consist of symptoms and herbs). The total number of symptoms and herbs
in 33,765 processed medical cases is 390 and 811 respectively. Among 33,765
processed medical cases, 26,360 of them have both symptoms and herbs appear
in our TCM knowledge graph. The 26,360 medical cases are divided into 22,917
for training and 3,443 for testing.

Baseline. We compare our models with eight baselines as follows. The top
four methods are topic modeling method, the last three methods are group
recommendation method.

• Author-topic model(ATM) [13] regards herbs as authors, symptoms as words.
• LinkLDA [14] regards herbs as words, symptoms as references.
• Block-LDA [15] can model links between herbs.
• Prescription Topic Model(PTM) [2] regards symptoms and herbs as words,

syndromes and treatments as topics.
• Bilingual Biterm Topic Model (BiBTM) [18] regards herbs as the words in a

document and symptoms as the words in the translation.
• COnsensus Model (COM) [17] regards symptoms as a group of users for herbs

recommendation.

http://mesh.tcm.microbioinformatics.org
http://www.a-hospital.com
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• User-based collaborative filtering with averaging strategy (CF-AVG) [16]
regards symptoms as users and herbs as items. CF-AVG uses the average of
score of each user gained by collaborative filtering as recommendation score.

• User-based collaborative filtering with least-misery strategy (CF-LM) [16] is
similar to CF-AVG, the difference is CF-LM uses smallest score as recom-
mendation score.

Note that there are four models in PTM, we choose the best one as the baseline.

Parameter Setting. The parameter setting of baselines and our models is
charted as follows: For ATM, α = 50/K, β = 0.01; for LinkLDA, α = 1, β = 0.1,
β′ = 0.01; for Block-LDA, αD = αL = 1, γ = 0.1; for BiBTM, α = 1, β = 0.1;
for COM, α = 50/K, β = η = 0.01, γ = γt = 0.5, ρ = 0.01; for PTM, α = 1,
β = β′ = 0.1, η = 1; for CF-AVG and CF-LM, the similarity measurement is
Pearson correlation similarity; for KGETM, α = 0.05, βs = βh = 0.01, λ = 0.6.
for HC-KGETM, α = 0.05, βs = βh = 0.01, λ = 0.6, γ = 1.

4.2 Herbs Recommendation (Question 1)

The task of herbs recommendation is outputting a set of herbs given a set of
symptoms. We adopt precision@N and recall@N to measure the results of herb
recommendation.

Table 2. precision@N of each model with different K and N

K=10 K=20 K=30 K=40

p@5 p@10 p@20 p@5 p@10 p@20 p@5 p@10 p@20 p@5 p@10 p@20

ATM 0.0094 0.0099 0.0079 0.0101 0.0086 0.0089 0.0077 0.0077 0.0077 0.0084 0.1069 0.0099

LinkLDA 0.2398 0.1962 0.1418 0.2372 0.1881 0.1343 0.2358 0.1838 0.1309 0.2300 0.1827 0.1296

BlockLDA 0.2342 0.1842 0.1384 0.2323 0.1842 0.1325 0.2289 0.1847 0.1347 0.2143 0.1784 0.1295

BiBTM 0.2243 0.1669 0.1259 0.2243 0.1669 0.1259 0.2243 0.1669 0.1259 0.2243 0.1669 0.1259

CF-AVG 0.2387 0.1993 0.1510 0.2387 0.1993 0.1510 0.2387 0.1993 0.1510 0.2387 0.1993 0.1510

CF-LM 0.2397 0.1995 0.1515 0.2397 0.1995 0.1515 0.2397 0.1995 0.1515 0.2397 0.1995 0.1515

COM 0.2269 0.1784 0.1313 0.2290 0.1800 0.1351 0.2299 0.1830 0.1382 0.2302 0.1819 0.1376

PTM 0.2521 0.1987 0.1472 0.2552 0.2066 0.1547 0.2594 0.2077 0.1558 0.2622 0.2112 0.1572

KGETM 0.2627 0.2078 0.1563 0.2687 0.2138 0.1574 0.2730 0.2162 0.1598 0.2758 0.2162 0.1597

HC-KGETM 0.2639 0.2103 0.1561 0.2694 0.2161 0.1597 0.2751 0.2204 0.1622 0.2783 0.2197 0.1626

Tables 2 and 3 present Precision@N and Recall@N on herb recommendation
of each model with different K and N values respectively. From the result, we
can observe that KGETM and HC-KGETM outperform the other methods.
HC-KGETM attains 3.2%–6.1% over PTM on Precision@N , 4.2%–8.8% over
PTM on Recall@N . Note the results of group recommendation methods (CF-
AVG and CF-LM) are only related to N , because these methods do not have
parameter about the number of topics K. Precision@N and Recall@N of topic
model based methods increased with the increase of K. KGETM outperforms
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Table 3. recall@N of each model with different K and N

K=10 K=20 K=30 K=40

r@5 r@10 r@20 r@5 r@10 r@20 r@5 r@10 r@20 r@5 r@10 r@20

ATM 0.0057 0.0148 0.0232 0.0069 0.0129 0.0247 0.0050 0.0110 0.0228 0.0063 0.0156 0.0273

LinkLDA 0.1683 0.2730 0.3919 0.1701 0.2646 0.3476 0.1678 0.2596 0.3636 0.1642 0.2589 0.3591

BlockLDA 0.1603 0.2557 0.3811 0.1649 0.2569 0.3654 0.1631 0.2589 0.3727 0.1513 0.2509 0.3568

BiBTM 0.1537 0.2238 0.3425 0.1537 0.2238 0.3425 1537 0.2238 0.3425 1537 0.2238 0.3425

CF-AVG 0.1724 0.2872 0.4314 0.1724 0.2872 0.4314 0.1724 0.2872 0.4314 0.1724 0.2872 0.4314

CF-LM 0.1728 0.2861 0.4309 0.1728 0.2861 0.4309 0.1728 0.2861 0.4309 0.1728 0.2861 0.4309

COM 0.1557 0.2447 0.3617 0.1568 0.2472 0.3708 0.1570 0.2504 0.3782 0.1569 0.2484 0.3763

PTM 0.1734 0.2728 0.4006 0.1753 0.2848 0.4249 0.1787 0.2863 0.4252 0.1809 0.2937 0.4309

KGETM 0.1822 0.2907 0.4296 0.1908 0.2998 0.4384 0.1928 0.3039 0.4441 0.1954 0.3054 0.4426

HC-KGETM 0.1838 0.2912 0.4312 0.1901 0.3007 0.4431 0.1948 0.3098 0.4508 0.1959 0.3072 0.4523

PTM, that means TCM knowledge graph embeddings in KGETM play an active
role. TCM knowledge graph introduces comprehensive semantic correlate about
symptoms and herbs, which makes the result better than other methods based on
bag-of-words models. HC-KGETM outperforms KGETM, which means herbal
compatibility knowledge has positive effects on herb recommendation.

4.3 Evaluation of Topic (Question 2)

Quantitative Results. We adopt perplexity to measure how well the model fits
the test data, which is the most common metrics in topic models. A lower per-
plexity score indicates better overall performance. The perplexity of M medical
cases can be defined to:

perplexity(h′|s′) = exp

(

−
∑Mtest

m=1 logp(h′
m|s′

m)
∑Mtest

m=1 Nhm

)

(14)

where mtest are the test medical case, mtrain are the training medical case. s′
m are

symptoms in medical case m of the test set, h′
m are herbs in medical case m of the
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Fig. 4. Herb predictive perplexity of
PTM, KGETM and HF-KGETM with
different number of topics K.

K=10 K=20 K=30 K=40

ATM 770.93 793.35 805.53 806.56

Link-LDA 303.07 370.51 357.95 350.69

Block-LDA 386.69 425.33 416.78 397.26

PTM 149.72 143.38 140.59 137.21

KGETM 139.02 135.45 133.14 131.91

HC-KGETM 138.94 133.10 132.07 131.89

Fig. 5. Herb predictive perplexity of six
topic models with different number of top-
ics K.
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test set. There is a big difference between herb predictive perplexity of these topic
models, They cannot be shown in the same figure well. Figure 4 shows herb pre-
dictive perplexity of PTM, KGETM, and HC-KGETM with a different number
of topics. Figure 5 shows all herb predictive perplexity with a different number of
topics. As shown in Fig. 4, KGETM has lower perplexity on herb prediction than
PTM, which shows TCM knowledge graph embeddings play a positive role in the
herb recommendation task. HC-KGETM improves the performance of KGETM
shows the positive effect of herb compatibility. As shown in Fig. 5 Block-LDA out-
performs Link-LDA reflects the efficiency of herb pair. KGETM and HC-KGETM
significantly outperform ATM, Link-LDA, and Block-LDA.

Qualitative Results. This section evaluates topics learned from all medical
cases by our model. Figure 6 shows the top 10 symptoms and herbs of the

(a) skin-related topic

(b) women-related topic

Fig. 6. Top words of topics learned by PTM, KGETM and HC-KGETM (Color figure
online)
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skin-related topic and female-related topic. We marked the symptoms in red
which do not belong to the topic in fact, marked the herbs in red which can not
treat the symptoms.

The first topic is about skin-related symptoms and their corresponding herbs.
From the result, we can observe that: for PTM, on the one hand, it finds four
symptoms are skin-related. On the other hand, PTM finds eight herbs can treat
related symptoms. For KGETM, it finds five correct symptoms. Top three symp-
toms are all skin-related. On the other hand, all of the herbs KGETM finds can
treat these symptoms. For HC-KGETM, it finds six symptoms are skin-related
and ten correct herbs. In addition, the herbs which HC-KGETM finds accord
with herbal compatibility. For example, the combination of realgar, frankincense,
moschus, and Myrrh is often used to treat dermatosis.

The second topic is female-related symptoms and their corresponding herbs.
We can observe from the result that: for PTM, it finds five correct symptoms, and
the top three symptoms are all female-related. On the other hand, PTM finds
eight correct herbs. For KGETM, it finds eight female-related symptoms. All of
ten herbs KGETM finds can treat female-related symptoms. For HC-KGETM,
it finds nine correct symptoms, and ten herbs can treat these symptoms. The
combination of Angelica, Chuanxiong Ligusticum and Paeonia lactitol is active
against catamenial symptoms.

We can observe that these three models’ performance on herbs terms are
better than symptoms terms. The performance of KGETM and HC-KGETM
are better than PTM’s on both herbs and symptoms. Furthermore, the herbs in
the result of HC-KGETM accord with herbal compatibility better.

4.4 Comparsion with Different Parameter λ (Question 3)

Hyperparameter λ is the probability of a herb or symptom being generated
by latent feature component, that means λ controls the influence of knowledge
graph embeddings. The smaller λ is, the weaker influence of knowledge graph
embeddings has. To study the influence of knowledge graph embedding, we use
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Fig. 7. precision@5 and recall@5 results with different number of topics K, varying
the mixture weight λ from 0.0 to 1.0.
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KGETM who has no other constraints rather than HC-KGETM. The value of
λ is set from 0.0 to 1.0.

Figure 7(a) and (b) shows precision@5 and recall@5 by KGETM with dif-
ferent number of topics K varied from 10 to 40, and the value of the mixture
weight λ varied from 0.0 to 1.0. From the result, we can observe precision@5 and
recall@5 changes with λ changes. KGETM gain the worst result when λ = 0.0
and λ = 1.0. λ = 0.0 means TCM knowledge graph embeddings are not available
in models. KGETM changed to bag-of-words based model. Therefore the models
gain bad results when λ = 0.0. λ = 1.0 means co-occurrence of herb terms and
symptom terms are not available in models. KGETM can not mine latent cor-
relations between herb terms and symptom terms well without co-occurrence in
medical cases. Therefore the models gain bad results when λ = 1.0. precision@5
and recall@5 increase with λ increases when λ ∈ [0.0, 0.7], decrease with λ
increases when λ ∈ [0.8, 1.0]. We can observe models gain the best result when
λ = 0.6.

5 Conclusion and Future Work

In this paper, we propose a novel method for TCM herb recommendation based
on the topic model incorporating TCM knowledge graph embeddings. TCM
knowledge graph embeddings introduced comprehensively correlated about
symptoms and herbs into the topic model and improved the performance on
herb recommendation. In addition, this model incorporated TCM herb compat-
ibility knowledge. Our models outperform the state-of-art methods. The results
of herb recommendation can be used to assist TCM doctors to prescribe herbs.

In future work, we will improve the quality of TCM knowledge graph embed-
dings by using more effective representation learning, increasing the dimension of
embeddings. In addition, we will introduce more TCM domain knowledge such
as dosage and contraindications of herbs.
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Abstract. Recently, knowledge bases (KBs) have become more and
more essential and helpful data source for various applications and
researches. Although modern KBs have included thousands of millions
of facts, they still suffer from incompleteness compared with the total
amount of facts in real world. Furthermore, a lot of inaccurate and out-
dated facts may be contained in the KBs. Although there have been many
studies dealing with incompleteness of the KBs, very few of works have
taken into account detecting the errors in the KBs. Broadly speaking,
there are three main challenges in detecting errors in the KBs. (1) Sym-
bolic and logical form of the knowledge representations cannot detect
the inconsistencies very well on large scale KBs. (2) It is hard to capture
the correlations between relations. (3) There is no golden standard to
learn or observe the patterns of inaccurate facts. In this work, we pro-
pose a Relation Sensitive Embedding Approach (RSEA) to detect the
inconsistencies from KBs. We first design two correlation functions to
measure the relatedness between two relations. Then, a dynamic cluster
algorithm is presented to aggregate highly correlated relations into the
same clusters. Finally, we encode discrete knowledge facts with effects of
correlated relations into continuous vector space, which can effectively
detect errors in KBs. We perform extensive experiments on two bench-
mark datasets, and the results show that our approach achieves high
performance in detecting incorrect knowledge facts in these KBs.

Keywords: Knowledge base · Embedding model · Error detection

1 Introduction

Nowadays, Knowledge Base (KB) has become the most important cornerstone
in many researches and applications such as semantic search, entity linking,
question answer system and natural language processing, which can provide data
sharing and semantic interpretation [9,11,13,14,19]. Many large scale knowledge
bases (Freebase [3], Yago [30], DBpedia [20], WordNet [26], and etc.) have been
constructed either automatically or collaboratively in various regions. Although
c© Springer Nature Switzerland AG 2019
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thousands of millions of facts were included in these KBs, they are still far from
complete compared with the total number of facts in the real world. On the
other hand, due to constantly new emerging facts and outdated information as
the world evolves, many inaccurate facts existed in the KB(s) [2,22,31], which
were ignored by most of existing applications and works.

In the past few decades, there were many researches leveraged symbolic and
logical approaches to augment new facts into the KB(s), but none of them was
either tractable or effective. Fortunately, in order to deal with incompleteness of
the KBs, many knowledge embedding techniques have been developed recently,
which embed all of the entities and relations in the KBs into k-dimensional vector
space. Then, given a relation, it predicted new facts by randomly replacing one
of the subject or object in the golden triplets, i.e., predicting missing edges
in the knowledge graph. The main idea is to define a translation function, in
the embedding vector space, which projects the subject through the relation
to the corresponding object as similar as possible, if a given triplet is positive,
otherwise, as dissimilar as possible. For example, TransE [6] is one of the most
representative approaches which utilizes a simple summation function to measure
whether the subject plus relation approximates to the object in the vector space.

In contrast, detecting errors in the knowledge bases is still a challenging prob-
lem, especially, self-detecting incorrect facts without both external data sources
and manual labours. There are three main challenges with corresponding limita-
tions. (1) KBs were constructed with discrete representations of the knowledge
facts. Thus, by using traditional data cleaning approaches [16,17,21], it is hard
to execute a wide range inference over a huge scale knowledge graph to detect
global inconsistencies between the triplets. (2) Compared with the entities with
a large quantity of descriptive informations, the relations have few contexts to
capture their semantic correlations. Thus, traditional embedding techniques only
considered single relationships between the entities and ignored the correlations
between the multiple relations. (3) Since there isn’t any golden standard for ref-
erence, previous embedding works assumed all of the triplets in the KB as the
golden triplets and automatically generate negative triplets by randomly replac-
ing the entities of either side of the golden triplets. Consequently, they may
generate false negative triplets and ignore false positive triplets as well, because
the KB is neither complete nor absolutely correct.

In order to address the above challenges, we propose a novel Relation Sensi-
tive Embedding Approach (RSEA) which can detect the inconsistencies between
the knowledge facts by computing the holistic correlations among the entities
and relations in a large scale knowledge graph. Our main idea is that highly
correlated relations can be leveraged to detect inconsistencies with each others.
For example, in Fig. 1, five relations, “IsPresidentOf”, “IsPoliticianOf”, “IsC-
itizenOf”, “BornIn”, “LivesIn”, will be correlated with each other, especially,
first three ones. Because the president of a country must be the citizen of this
country and a politician of this country, as well as lives in this country and etc.
Thus, if there is an error fact 〈“MoonJae – in”, “LivesIn”, “NorthKorea”〉, we
can utilize other correlated relations to detect its inconsistency, because most of
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Fig. 1. Example of relation sensitive error detection

relations indicate that “Moon Jae-in” should live in “South Korea”. However,
since the relations, unlike the entities, have very few descriptive contexts, it is
very difficult to represent the relations for computing their correlations. There-
fore, we design two correlation functions, based on the probability method and
vector representation method, to measure the relatedness between two relations.
In order to find dependencies among the relations, we also propose a dynamic
cluster algorithm to effectively aggregate highly correlated relations into the
same groups. Then, due to the difficulties of long inference on discrete knowl-
edge representations, we encode knowledge facts along with correlation effects
of relations into the continuous vector space. Finally, by performing our RSEA,
we can learn a model to detect errors in KBs. Also, our RSEA can easily extend
previous embedding techniques with enhanced prediction result. According to
our knowledge so far, this is the first paper to doubt authority of KBs, which
aims to detect the incorrect facts in the KBs, i.e., identifying misplaced edges in
the knowledge graph, while KB completion task is to find missing edges.

In this paper, we make the following contributions: (1) We propose a novel
relation sensitive embedding approach which involves the effect of correlations
between the relations. (2) We define two correlation functions based on proba-
bility theory and vector representation methods. (3) We also design a dynamic
cluster algorithm to aggregate highly correlated relations effectively. (4) We eval-
uate our RSEA by conducting extensive experiments on two benchmark datasets.
Experimental results demonstrate that our method can not only detect errors
in KBs effectively, but also outperform state-of-the-art models significantly in
predicting missing facts.

Paper Structure: We review previous embedding techniques in Sect. 2. In
Sect. 3, we introduce the basic knowledge base model and formalize our problem,
then describe the workflow in details. We present two correlation functions with
dynamic cluster algorithm in Sect. 4 and explain our relation sensitive embed-
ding approach in Sect. 5. We exhibit experimental results and summarize the
conclusion in Sects. 6 and 7 respectively.
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2 Related Works

Recently, many knowledge base embedding techniques were proposed to
encode discrete knowledge graph into the continuous vector spaces. We first
introduce some frequently used notations. A fact triplet in the KB, i.e.,
〈subject, relation, object〉, were named as head, relation and tail in the embed-
ding works respectively. Hence, a triplet is denoted as (h, r , t), and their corre-

sponding vector representations are denoted as (
⇀

h ,
⇀
r ,

⇀
t ). We also denote the

matrix as
⇀

M and the tensor as
⇀

T . Score function f⇀
r
(
⇀

h,
⇀
t ) will obtain higher

scores for the positive triplets belonging to the KB and lower scores for the
negative triplets generated automatically.

Table 1. Model Comparisons with score function, the number of parameters and time
complexity within the same k dimension embedding space R

k×k. Ne, Nr, Nt, c, h were
denoted as the number of entities, relations and triplets in the KB, channels in a
tensor and hidden nodes in the neural network, respectively. v is the average number
of clusters in a relation.

Models Score function # of parameters O(−) Time

complexity

O(−)

TransE ‖
⇀
h +

⇀
r − ⇀

t ‖2
2 kNe + kNr Nt

TransH ‖
⇀
h⊥ +

⇀
dr − ⇀

t⊥‖2
2 kNe + 2kNr 2kNt

TransR ‖
⇀
h

⇀
Mr +

⇀
r − ⇀

t
⇀
Mr‖2

2 kNe + k(k + 1)Nr 2k2Nt

CTransR ‖
⇀
h

⇀
Mr +

⇀
r c − ⇀

t
⇀
Mr‖2

2 + α‖⇀
r c − ⇀

r ‖2
2 kNe + k(k + v)Nr 2k2Nt

TransD ‖
⇀
Mrh

⇀
h +

⇀
r −

⇀
Mrt

⇀
t ‖2

2 2kNe + 2kNr 2kNt

SE ‖
⇀
Mrh

⇀
h −

⇀
Mrt

⇀
t ‖1 kNe + 2k2Nr 2k2Nt

Unstructured ‖
⇀
h − ⇀

t ‖2
2 kNe Nt

SME(linear) (
⇀
M1

⇀
h +

⇀
M2

⇀
r +

⇀
b 1)

�(
⇀
M3

⇀
t +

⇀
M4

⇀
r +

⇀
b 2) kNe + kNr + 4h(k + 1) 4khNt

SME(bilinear)((
⇀
M1

⇀
h ) ⊗ (

⇀
M2

⇀
r ) +

⇀
b 1)

�((
⇀
M3

⇀
t ) ⊗ (

⇀
M4

⇀
r ) +

⇀
b 2)kNe + kNr + 4h(kc + 1)4khcNt

SLM
⇀
u

�
r g(

⇀
Mr1

⇀
h +

⇀
Mr2

⇀
t +

⇀
b r) kNe + 2h(k + 1)Nr (2k + 1)hNt

NTN
⇀
u

�
r g(

⇀
h

�⇀
T r

⇀
t +

⇀
Mr

⎡
⎣

⇀
h
⇀
t

⎤
⎦ +

⇀
b r) kNe + (k2 + 2k + 2)cNr (ck2 +(2h+

c)k + h)Nt

LMF
⇀
h

� ⇀
Mr

⇀
t kNe + k2Nr (k2 + k)Nt

TransE: TransE was proposed by Bordes et al. [6], which defined a simple and

efficient score function to translate h through r to t , i.e.,
⇀

h plus
⇀
r approximately

equals to
⇀
t .

f⇀
r
(
⇀

h,
⇀
t ) = ‖

⇀

h +
⇀
r − ⇀

t ‖22 (1)

Therefore, TransE assumes the score of Eq. 1 will be as low as possible, if (h,
r , t) belongs to the KB as a positive triplet, and high otherwise. Although
TransE performed pretty well, when dealing with 1-to-1 relations, it had very



Knowledge Base Error Detection with Relation Sensitive Embedding 729

poor performance with 1-to-N, N-to-1 and N-to-N relations, as well as reflexive
relations. This is because TransE cannot distinguish the entities appeared in the
side of N.

TransH: In order to address the above drawbacks, Wang et al. proposed a
hyperplane based method, named TransH [32]. Instead of using relation vector

⇀
r

to directly translate
⇀

h to
⇀
t in the same embedding space, TransH introduced the

relation-specific hyperplane
⇀
wr (normal vector) on which triplet vector (

⇀

h,
⇀
r ,

⇀
t )

was projected to (
⇀

h⊥,
⇀

dr,
⇀
t⊥). The main idea of TransH is that entity vectors of

N side can be projected to one point on the hyperplane. Then, similar to TransE,
it used the following score function to measure whether a triplet holds, or not.

f⇀
r
(
⇀

h,
⇀
t ) = ‖

⇀

h⊥ +
⇀

dr − ⇀
t⊥‖22 (2)

where
⇀

h⊥ =
⇀

h − ⇀
wr

�⇀

h
⇀
wr and

⇀
t⊥ =

⇀
t − ⇀

wr

�⇀
t

⇀
wr when restricting ‖ ⇀

wr‖2 = 1.

TransR/CTransR: Lin et al. introduced TransR [23] which indicates that
entities and relations should not embed into the same vector space R

k, because
they are completely different objects. Thus, TransR embeds entities and relations
into two different embedding spaces, entity space R

k and relation space R
d,

respectively. Then, it uses the following score function to translate h to t in the

relation space R
d by defining a mapping matrix

⇀

Mr w.r.t. each relation r which
maps entity vectors from R

k to R
d.

f⇀
r
(
⇀

h,
⇀
t ) = ‖

⇀

h
⇀

Mr +
⇀
r − ⇀

t
⇀

Mr‖22 (3)

where (
⇀

h,
⇀
t ) ∈ R

k,
⇀
r ∈ R

d and
⇀

Mr ∈ R
k×d. They also proposed a cluster-based

CTransR as the extension of TransR. Based on the vector offsets of entity pairs

of head and tail, i.e., (
⇀

h −⇀
t ) obtained from TransE, CTransR aggregates similar

entity pairs of a relation into more specific clusters, then assigns a relation vector
for each cluster.

TransD: Similar to TransR/CTransR, TranD proposed by Ji et al. [18] also
separately embedded entities and relations into different vector spaces, i.e.,

(
⇀

h,
⇀
t ) ∈ R

k and
⇀
r ∈ R

d. However, TransD is more fine-grained model by
introducing different projection matrices for h and t respectively, denoted as
⇀

Mrh,
⇀

Mrt ∈ R
d×k, due to various types of entities and relations. Hence, for each

triplet (h, r , t), it has a triplet of embedding vectors (
⇀

h,
⇀
r ,

⇀
t ) and a triplet

of projection vectors (
⇀

hp,
⇀
r p,

⇀
t p), where

⇀

h,
⇀
t ,

⇀

hp,
⇀
t p ∈ R

k and
⇀
r ,

⇀
r p ∈ R

d.
Then, its score function is defined as follows:

f⇀
r
(
⇀

h,
⇀
t ) = ‖

⇀

Mrh

⇀

h +
⇀
r −

⇀

Mrt

⇀
t ‖22 (4)
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where
⇀

Mrh =
⇀
r p

⇀

h
�
p + Id×k and

⇀

Mrt =
⇀
r p

⇀
t

�
p + Id×k, and Id×k is an identity

matrix. Thus, TransD has more representative ability to distinguish different
types of entities and relations.

Other Methods: Bordes et al. also proposed Structured Embedding (SE)
model [7], Unstructured model [4] and Semantic Matching Energy (SME)
model [5] in 2011, 2012 and 2014 respectively. SE model employed two relation-

specific matrices
⇀

Mrh and
⇀

Mrt to project head h and tail t , then defined

a score function with L1 distance, f⇀
r
(
⇀

h,
⇀
t ) = ‖

⇀

Mrh

⇀

h −
⇀

Mrt

⇀
t ‖1. Unstruc-

tured model is a simplified version of TransE, which only embedded head h
and tail t and ignored all of the relations r , then defined a score function

f⇀
r
(
⇀

h,
⇀
t ) = ‖

⇀

h − ⇀
t ‖22. Thus, it cannot recognize different relations. SME

model utilized the neural network as its score function which is able to con-
sider the correlations between entities and relations by applying matrix prod-
ucts and Hadamard products, then, all of the relations shared parameters of
the network. SME defined semantic matching energy functions with linear and

bilinear forms, i.e., f⇀
r
(
⇀

h,
⇀
t ) = (

⇀

M1

⇀

h +
⇀

M2
⇀
r +

⇀

b 1)�(
⇀

M3

⇀
t +

⇀

M4
⇀
r +

⇀

b 2)

and f⇀
r
(
⇀

h,
⇀
t ) = ((

⇀

M1

⇀

h) ⊗ (
⇀

M2
⇀
r ) +

⇀

b 1)�((
⇀

M3

⇀
t ) ⊗ (

⇀

M4
⇀
r ) +

⇀

b 2), where ⊗ is

Hadamard product and
⇀

b 1,
⇀

b 2 are bias vectors. Note that Bordes et al. replaced
the matrices in the bilinear form with tensors in after work.

Socher et al. designed two models, Single Layer Model (SLM) [29] and Neural
Tensor Network (NTN) [28]. SLM was a simplified version of NTN model, which

leveraged non-linear neural network to define its score function, f⇀
r
(
⇀

h,
⇀
t ) =

⇀
u

�
r g(

⇀

Mr1

⇀

h +
⇀

Mr2

⇀
t +

⇀

b r), where
⇀

Mr1,
⇀

Mr2 are weight matrices w.r.t. relation

r ,
⇀

b r is bias vector and g() is tanh operation. NTN model also utilized non-linear
neural network to define its score function by combining the second-order corre-

lations. Thus, its score function is f⇀
r
(
⇀

h,
⇀
t ) =

⇀
u

�
r g(

⇀

h
�⇀

T r

⇀
t +

⇀

Mr

[⇀

h
⇀
t

]
+

⇀

b r),

where
⇀

T r,
⇀

Mr,
⇀

b r denoted 3-way tensor, weighted matrix and bias vector respec-
tively, and g() is tanh operation. Although, NTN had very strong expressive
ability, it cannot perform on large scale KB, due to its a large number of param-
eters.

Latent Factor Model (LMF) was introduced by Jenatton et al. (Sutskever
et al.), which used quadratic form to represent second-order correlations between
entity vectors. Then, it defined a simple but effective bilinear score function,

f⇀
r
(
⇀

h,
⇀
t ) =

⇀

h
� ⇀

Mr

⇀
t .

Besides those studies, there were many models with strong performances pub-
lished recently, e.g., MANIFOLDE [34], HOLE [27], CONVE [12], and for more
details, please refer to the references. Finally, we summarized score function, the
number of parameters and time complexity of the above models in Table 1.
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3 Overview

In this section, we first introduce the knowledge base model with notations, then
give the formalization of our problem definitions. Finally, we describe the overall
workflow in details.

3.1 Knowledge Base

Knowledge Base (KB) is represented in Resource Description Framework (RDF)
language with a vast amount of resources in the World Wide Web. Now, we define
our KB model with a simple version of RDF. A general KB can be regarded as
a quintuple (E,T,R,F,G), where E,T,R denote the set of entities(instances),
types(classes) and relations(predicates) respectively. Tuple F ⊆ E×R×E is the
set of facts, each of which is represented as a triplet (h, r, t). Tuple G is a multi-
relational knowledge graph in which each of nodes represents an entity and each
of edges indicates a relation r from head h to tail t.

3.2 Problem Definitions

As introduced in Sect. 1, KB has many missing facts, as well as a number of incor-
rect facts, i.e., missing and misplaced edges in the knowledge graph. However,
most of previous works only considered filling up missing edges in the knowledge
graph and sweep the misplaced edges under the rug. Thus, we aim to detect the
inconsistencies between the fact triplets in the KB by utilizing the correlations
between the relations. Also, it is able to complete the new facts more accurately.
Now, we formalize our problems with three definitions.

Definition 1. Clustering Correlated Relations: Given the set of rela-
tions R in the KB, clustering correlated relations is to aggregate semantic related
relations into the same groups by employing our correlation functions.

Definition 2. Detecting Inaccurate Facts: Given a knowledge graph G

with the set of fact triplets F, inaccurate facts detection problem is to find most
likely inaccurate fact triplets in F, i.e., misplaced edges in G.

Definition 3. Predicate Missing Facts: Given a fact triplet, (h, r, t) /∈ F,
missing facts predication problem is to predicate whether this triplet should add
to F with minimum loss, i.e., adding new edge into the G ≡ (h, r, t) + G, where
≡ means no conflicts.

3.3 Workflow

In this section, we describe the details of our workflow. As shown in Fig. 2, there
are four main parts. Given a KB as an input, we first utilize our correlation
functions to measure the correlations between the relations, then leverage our
dynamic clustering algorithm to partition highly correlated relations into the
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Fig. 2. Illustration of RSEA workflow (Color figure online)

same groups, as shown in red square part. See in green square part, in order to
represent the semantics of relations more precisely, we also exploit the traditional
models to obtain embeddings to describe the relations semantically by using
our relation expression simultaneously. Then we utilize our relation sensitive
embedding approach to merge the correlation effects of clusterd relations into
the knowledge graph embedding process. Finally, given a fact triplet our RSEA
can predicate whether it is true or false with a probability score. Note that our
RSEA can also predicate new fact triplets like previous works by rating the
triplets in the KB.

4 Correlation Functions with Dynamic Cluster Algorithm

In this section, we propose two correlation functions (probability based function
P(ri, rj) and vector based function V(ri, rj)) to measure the correlation between
two relations ri and rj , then design a novel clustering algorithm to group highly
correlated relations.

4.1 Probability-Based Correlation Function: P(ri , rj)

Intuitively, if two relations have more common elements in the fact triplets in the
KB, i.e., entities of subject and object, they will be more likely to correlate with
each other. For example, relation “IsPresidentOf” is more coherent to relation
“IsCitizenOf” than relation “LivesIn” as they have more common entity pairs
of subject and object. Motivated by the aforementioned, we define a probabil-
ity based correlation function P(ri, rj) by using Pointwise Mutual Information
(PMI) [10] to measure the correlation between ri and rj .

We first introduce some notations. S(ri) and O(ri) are the set of subject and
object entities of relation ri in the KB. N is the total number of facts in the KB.
PS(ri) = |S(ri)|

N and PO(ri) = |O(ri)|
N are the probability of an entity belonging

to relation ri as the subject and object respectively. PS(ri ∩ rj) = |PS(ri)∩PS(rj)|
N

is the probability of common subjects of relation ri and rj , and PO(ri ∩ rj) =
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|PO(ri)∩PO(rj)|
N is as same as the above with common objects. Therefore, the

subject PMI score of ri and rj is:

PMIS(ri, rj) = log
PS(ri ∩ rj)

PS(ri) · PS(rj)
(5)

Definition of the object PMI score, PMIO(ri, rj), is similar. In the following
learning tasks, normalization can benefit the model training process [8]. Thus,
we normalize the PMI score into [−1,+1] as the follows:

NPMIS(ri, rj) =
PMIS(ri, rj)

− logPS(ri ∩ rj)
(6)

Furthermore, note that there does not exists any negative correlation between
relation ri and rj because each pair of ri and rj have 0 common fact triplets at
least. Thus we define our probability based correlation function by constraining
score into [0, 1] as the follows:

P(ri, rj) =
NPMIS(ri, rj) + NPMIO(ri, rj) + 2

4
(7)

4.2 Vector-Based Correlation Function: V(ri , rj)

Note that probability based correlation function is based on the discrete rep-
resentations of the entity pairs w.r.t. the relation, which may not represent it
sufficiently. For example, in the Fig. 1, the entity of “Trump Donald” and “Xi
Jinping” indeed have similar meaning of the president of the country but are
regarded as different vocabularies in discrete representation. In order to obtain
stronger representations of the correlation between ri and rj , we measure the
correlations within the continuous vector space by defining a vector based corre-
lation function V(ri, rj). However, unlike entities, the relations have few describ-
ing context informations. Inspired by the work [33], we utilize all of the pairs of
subject and object entity vectors w.r.t. the relation r to represent it.

In this work, we leverage Word2Vec to obtain the embedding vector for each
of entities. Word2Vec [15,24,25] is a very popular and famous natural language
processing tool published by Google in 2013, which takes a huge text corpus as
the input to encode words into the vectors by utilizing either continuous bag-of-
words (CBOW) model or continuous skip-gram model. Now, we can define the
vector correlation function as the follows:

V(ri, rj) = cos(E+(ri), E+(rj)) + λ
cos(S+(ri), S+(rj)) + cos(O+(ri), O+(rj))

2
(8)

where S+(ri) and O+(ri) are the summation of the set of subject entity vectors
and object entity vectors w.r.t. relation ri respectively, and the vector represen-
tation of the relation ri is denoted as E+(ri) = S+(ri) + O+(ri).

Equation 8 has two parts, each of which is computed by cosine similarity
function. The first part of Eq. 8 only takes into account the overall distance
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Fig. 3. Dynamic clustering example (Color figure online)

between ri and rj in the trained word embedding space, while the second part
considered direction of two relations by computing the similarity of the sets of
subjects and objects respectively. Finally, we use hyper parameter λ to control
its balance which is learned from the experience.

4.3 Dynamic Cluster Algorithm

Our framework first blocks the relations into the clusters and then use highly
correlated relations of relation ri to detect incorrect triplets w.r.t. relation ri,
thus we introduce the clustering algorithm (K-means, DBScan, HAC and etc.)
based on proposed correlation functions mentioned in Sects. 4.1 and 4.2.

Intuitively, we could simply use K-means algorithm to divide the relations
into the clusters. Although K-means is very fast in practice, such method would
have two main drawbacks. First, we do not have prior knowledge about the
distributions of the relations w.r.t. the parameter K. Therefore, it is always
hard to select a proper K in advance. Second, usually, some relations need to be
clustered into more specific groups. For example, in Fig. 3, r1 and r2 should be
clustered into a more specific cluster, because r1, r2 and r3 should not be in the
same cluster. However, K-means algorithm with an inappropriate K = 3 will
misplace r1, r2, r3 into the same cluster.

Considering the above drawbacks, we propose a Dynamic Clustering Algo-
rithm. After clustering, we observe that there exist many clusters which need to
be clustered more specifically. For example, in Fig. 3, the green relations should
actually fall into two clusters, thus we need to further split them into two clus-
ters. Our insight is that a cluster with uniformly distributed points will have
smaller variance than a cluster with skewed distributed points. Based on the
above analysis, we first employ K-means algorithm to divide the relations into
2 ‘big’ clusters. For each cluster, we iteratively check if its variance is less than
a given threshold, if yes, we believe it is a specific enough cluster, otherwise, we
use K-means algorithm again to divide it into two clusters dynamically until
achieving convergence. Algorithm 1 illustrates the processing of dynamic clus-
tering with K-means algorithm (K = 2).

5 Relation Sensitive Embedding Approach

In this section, we introduce our relation sensitive embedding approach, named
RSEA, which can take account into the effect of correlations between the rela-
tions, so that our model has the ability to detect the errors in the KB.
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Algorithm 1. Dynamic Cluster Algorithm(R, δ)
Input: R : set of relations; δ : variance threshold
Output: C : set of relation clusters

1 begin
2 L ← null; // List of clustered relations
3 v = 0; //variance of each cluster
4 L ← Kmeans(R); // set k=2
5 while L.length �= 0 do
6 for each relation cluster ci ∈ L do
7 v = CalculateV ariance(ci); // calculate cluster variance of ci

8 if v < δ then
9 C.add(ci);

10 L.remove(ci);

11 else
12 L ← L ∪ Kmeans(ci); // set k=2

13 return C;

5.1 Definition of RSEA

Our RSEA can easily merge with other knowledge base embedding models, e.g.,
TransE, TransH, TranR and etc. Here, we take TransE model as an example.
We combine the relation of TransE and correlations between the relations in a
cluster to define an upgrade relation vector

=⇒
r as the followings.

=⇒
r =

⇀
r tr +

⇀
r co (9)

⇀
r co =

k∑
i

wi · ⇀
r i

where
⇀
r tr is the relation vector from traditional embedding model (TransE) and

⇀
r co is the correlated relation vector, i.e., wi = Si∑ Si

and
⇀
r i = E+(ri), where

Si is the correlation score computed by either P or V. Thus, upgrade relation
vector in RSEA can be revised by its highly correlated relations in its cluster.
Then, our score function is defined as the follows:

f=⇒
r

(
⇀

h,
⇀
t ) = ‖

⇀

h +
=⇒
r − ⇀

t ‖22 (10)

In practice, we limit the following constrains on the norms of the embeddings

h, r , t . {||
⇀

h ||2, ||=⇒
r ||2, ||

⇀
t ||2, ||⇀r co||2} ≤ 1.

By merging the information contained in the correlated relations, the repre-
sentations of the relations could be improved, so that the representation result
of the relation will be closer to the true semantics. The optimization strategy is
based on the fact that, in a knowledge base, the amount of incorrect information
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is much less than the correct information, as a consequence of which incorporat-
ing the auxiliary information obtained form the correlated relations will have a
positive impact for the relation representation.

5.2 Training Processing

Here, we define the loss function L as the following margin based score function:

L =
∑

(h,r,t)∈F

∑
(h′,r,t′)∈F′

[γ + f=⇒
r

(
⇀

h,
⇀
t ) − f=⇒

r
(
⇀

h′,
⇀

t′ )]+ (11)

where [∗]+ = max(0, ∗) means the maximum value of two inputs, F′ ∈ {E×R×
E − F}, i.e., corrupting triplets do not exist in the KB, γ is the margin used to
separate positive and negative triplets. To construct F

′, we follow the previous
works [23,32] by replacing one of the entities in (h, r, t) ∈ F with probability
of position appearance. During the training processing, we employ Stochastic
Gradient Descent (SGD) to minimize our loss function.

Table 2. Details of benchmark datasets

Datasets #Relation #Entity #Training #Valid #Test Source

WN18 18 40,943 141,442 5,000 5,000 WordNet

FB15K 1,345 14,951 483,142 50,000 59,071 Freebase

6 Experiments

6.1 Experimental Settings

Datasets. In our experiments, we employ two benchmark datasets, “WN18”
generated from WordNet and “FB15K” generated from Freebase [6]. WordNet
is a large lexical database in English in which similar entities are corresponding
to the same synset. Freebase is one of the largest knowledge bases corresponding
to a graph of real world facts constructed by users collaboratively. The detailed
statistics of the two datasets are shown in Table 2.

Evaluation. We conduct extensive experiments on two tasks, error detection
and link prediction. Knowledge base error detection is to determine whether a
given fact triple (h, r, t) is correct. Link prediction is to predict the missing entity
h or t in a triple (h, r, t) according to the embedding of another entity and rela-
tion. We compared our RSEA with state-of-the-art knowledge base embedding
methods (TransE, TransH, TransR and TransD) to justify the effectivity and
efficiency of our approach. We merge our RSEA with TransE (TransH, TransR,
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TransD) using method in Sect. 5 by running probability (vector) based corre-
lation function in Sect. 4.1 (4.2). We denote these methods as RSEA-(*)-(+).
*∈ {E,H,R,D} where E denotes TransE, H denotes TransH, R denotes TransR
and D denotes TransD. +∈ {P, V } where P denotes probability correlation func-
tion in Sect. 4.1 and V denotes vector correlation function in Sect. 4.2.

Metric. For error detection task, “WN18” and “FB15K” have already contained
negative triples obtained by corrupting 10% of golden triples in the KB [28]. We
compute the accuracy of error detection. For link prediction task, we replace the
head/tail of each testing triple (h, r, t) with each entity in the knowledge graph,
and give a ranking list of candidate entities in descending order of the scores

calculated by score function f=⇒
r

(
⇀

h,
⇀
t ). Based on the entity ranking lists, we

adopt two evaluation metrics by aggregating overall testing triples: (1) Hits@10:
the proportion of correct entities in Top-10 ranked entities; (2) Mean Rank: the
averaged rank of correct entities;

Implementation. All models are trained and tested on a single GTX 1080 TI
GPU implemented in Tensorflow [1]. We conducted all the experiments for 1000
times and compute the average results.
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Fig. 5. Error detection of FB15

6.2 Error Detection

For each triple (h, r, t), if the score obtained by score function f=⇒
r

(
⇀

h,
⇀
t ) is

below the relation-specific threshold θ, the triple will be classified as an incorrect
fact, otherwise as a correct fact. The threshold θ is optimized by maximizing
classification accuracy on the validation set. In experiments, we set learning rate
α as {0.1, 0.01, 0.001}, dimension of entities and relations k as {50, 100, 150,
200}, threshold θ as {0.6, 0.7, 0.8, 0.9} and batch size B as {32, 64, 128} in
custom. We tune the parameters and finally find that the optimal configurations
for RSEA are α = 0.01, k = 200, θ = 0.5 and B = 128.
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The evaluations of error detection on “WN18” and “FB15” are shown in
Figs. 4 and 5 respectively. We report the error detection accuracy of our RSEA
combining with different methods. As seen in the results, the best error detec-
tion accuracy with our RSEA on WN18(FB15) is the RSEA-D-V which achieved
86.5%(85.4%), while the worst one on WN18(FB15) is the RSEA-E-P which
achieved 81.9%(73.5%). We observe that: (1) On both WN18 and FB15K, RSEA-
(*)-P and RSEA-(*)-V consistently outperform the baselines, especially on
FB15K. The reason may be that WordNet itself is a lexical database and different
relationships are far apart. (2) RSEA-(*)-V methods outperform the RSEA-(*)-P
because the vector correlation function could better mine the semantic informa-
tion in related relations by taking the characteristics of entities, which could offer
more precise on the semantic representation of the relation in the knowledge base.
(3) For comparison of accuracy, TranD/RSEA-D-(+) > TranR/RSEA-R-(+) >
TranH/RSEA-H-(+) > TranE/RSEA-E-(+). Because the TransD/RSEA-D-(+)
distinguished head entities and tail entities with relations in different dimensions
of vector space separately, while TransR/RSEA-R-(+) only considered the enti-
ties and relations with a same matrix. Thus, it achieved higher accuracy than
other methods. TranE/RSEA-E-(+) is only suitable for 1-to-1 relations which
leads to the worst performance.

6.3 Link Prediction

In a link prediction task, a corrupted triple may also exist in the knowledge
graphs, such a prediction should be considered as correct. The evaluation may
rank these corrupted but correct triples with a high score. However, the above
evaluations do not deal with the issue and may underestimate the results. To
eliminate this factor, we filter out those corrupted triples which appear in either
training, validation or testing sets before getting the ranking lists. We name the
first evaluation setting as “Raw” and the second one as “Filter”. In both settings,
a higher Hits@10 is better, while lower Mean Rank is better. The parameter
settings are the same as those in the task of error detection task. The best
configuration is determined according to the accuracy in validation set.

The experimental results are reported in Table 3. We can observe that: (1)
RSEA-(*)-V methods outperform the RSEA-(*)-P because the vector based cor-
relation function could better mine the semantic information in related relations
by taking the characteristics of entities, which promises to handle multiple rela-
tion semantics. (2) RSEA-(*)-(+) methods outperform other baselines signifi-
cantly and consistently due to the former introduces more information in the
embedding process, which indicates the effectiveness of incorporating semantic
information to knowledge graph representation learning. (3) For all the methods,
we get a better performance on “Filter” setting than “Raw” setting. Because we
eliminate corrupted triples in “filter” setting.
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Table 3. Evaluation results on link prediction by mapping properties of relations.

Datasets WN18 FB15

Metric Mean rank Hits@10 Mean rank Hits@10

Raw Filter Raw Filter Raw Filter Raw Filter

TransE/RSEA-E-P 261/136 252/127 75.3/80.1 89.6/91.2 241/227 122/81 36.2/44.5 47.5/67.2

TransE/RSEA-E-V 261/132 252/120 75.3/80.4 89.6/91.5 241/221 122/76 36.2/45.3 47.5/68.4

TransH/RSEA-H-P 318/146 312/144 76.4/79.3 90.1/91.7 216/214 118/94 42.5/44.9 65.2/70.1

TransH/RSEA-H-V 318/141 312/140 76.4/80.4 90.1/92.3 216/212 118/91 42.5/52.6 65.2/74.6

TransR/RSEA-R-P 287/204 221/168 78.6/82.9 91.3/91.6 248/237 106/90 48.6/52.1 68.7/70.5

TransR/RSEA-R-V 287/192 221/154 78.6/84.4 91.3/92.7 248/228 106/87 48.6/52.4 68.7/71.4

TransD/RSEA-D-P 275/196 217/161 78.2/82.5 91.5/91.8 239/230 120/92 52.2/54.6 70.1/71.7

TransD/RSEA-D-V 275/190 217/149 78.2/83.9 91.5/92.9 239/221 120/89 52.2/54.9 70.1/72.4

7 Conclusion

In this paper, we propose a relation sensitive embedding approach for error
detection in the knowledge bases. In our model, we design two correlation func-
tions for both discrete and continuous representations of relations in knowledge
bases. Based on proposed correlation similarities, we present a dynamic clus-
tering algorithm which can give more specific categorization for the relations.
Finally, our RSEA encodes the knowledge facts into the vector space which can
effectively detect errors in the KB by computing the inconsistent scores. Exper-
imental results show that our model can not only detect errors effectively, but
also outperforms existing models in link prediction task on both WordNet and
Freebase datasets.
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31. Töpper, G., Knuth, M., Sack, H.: DBpedia ontology enrichment for inconsistency
detection. In: 8th International Conference on Semantic Systems, I-SEMANTICS
2012, pp. 33–40 (2012)

32. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by trans-
lating on hyperplanes. In: Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, pp. 1112–1119 (2014)

33. Wang, Z., Li, J.: Text-enhanced representation learning for knowledge graph. In:
ICAI, pp. 1293–1299 (2016)

34. Xiao, H., Huang, M., Zhu, X.: From one point to a manifold: knowledge graph
embedding for precise link prediction. In: IJCAI, pp. 1315–1321 (2016)



Leon: A Distributed RDF Engine
for Multi-query Processing

Xintong Guo, Hong Gao, and Zhaonian Zou(B)

Harbin Institute of Technology, Harbin, China
{xintong.guo,honggao,znzou}@hit.edu.cn

Abstract. As similar queries keep springing up in real query logs, few
RDF systems address this problem. In this paper, we propose Leon, a
distributed RDF system, which can also deal with multi-query prob-
lem. First, we apply a characteristic-set-based partitioning scheme. This
scheme (i) supports the fully parallel processing of join within char-
acteristic sets; (ii) minimizes data communication by applying direct
transmission of intermediate results instead of broadcasting. Then, Leon
revisits the classical problem of multi-query optimization in the context
of RDF/SPARQL. In light of the NP-hardness of the multi-query opti-
mization for SPARQL, we propose a heuristic algorithm that partitions
the input batch of queries into groups, and discover the common sub-
query of multiple SPARQL queries. Our MQO algorithm incorporates
with a subtle cost model to generate execution plans.

Our experiments with synthetic and real datasets verify that: (i)
Leon’s startup overhead is low; (ii) Leon consistently outperforms cen-
tralized RDF engines by 1–2 orders of magnitude, and it is competitive
with state-of-the-art distributed RDF engines; (iii) Our MQO approach
consistently demonstrates 10× speedup over the baseline method.

1 Introduction

The Resource Description Framework (RDF) and SPARQL are W3C recom-
mendations for representing and querying graph data on the Web. As RDF data
become larger and wider in range, similar query patterns appear frequently in
real query logs. For example, users want to get some information from an aca-
demic network, so queries in Fig. 1 may be submitted by different users at the
same time. There are overlapped sub-queries between these four queries.

We will revisit the classical problem of multi-query optimization (MQO) in
the context of RDF and SPARQL. MQO for SPARQL queries has been proved to
be NP-hard. The problem of multi-query optimization has been well studied in
relational databases [22,26,31] and semi-structure data [8,12,25]. To apply the
MQO techniques developed in these systems to address the MQO problem in
SPARQL is a potential solution. However, these off-the-shelf methods are hard
to be plugged into RDF query engines seamlessly. The difficulty of using the
relational techniques stems mainly from the physical design of RDF data itself.
While indexing and storing relational data commonly conform to a carefully
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11446, pp. 742–759, 2019.
https://doi.org/10.1007/978-3-030-18576-3_44
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calibrated relational schema, the storage scheme for RDF is diversified, e.g., the
triple table adopted in RDF-3X [18], the property table in Jena [3], and more
recently the use of vertical partitioning in S2RDF [23]. These various storage
modules, along with the disparate indexing techniques, make the cost estimation
highly error-prone and store dependent.

Some recent works [13,14,16] discuss multi-query optimization algorithms
tailored for SPARQL. However, these methods, as well as MQO for graph
databases [20], mainly rely on subgraph isomorphism algorithms to detect com-
mon sub-queries. This increases the computational complexity, and becomes
intolerable when a large amount of queries arrive at the same time.

Fig. 1. Multi-query example.

Besides the intrinsic complexity of MQO, the scalability problem becomes
more and more severe since the datasets are growing larger and larger. A natural
idea is to leverage distributed techniques to handle high latency and highly par-
allel tasks over large-size datasets. To build a distributed RDF engine for MQO,
we face two major challenges: Partitioning cost: In systems like [6,7] that use
simple hash partitioning heuristics, queries have low chances to be evaluated
in parallel without any communication between nodes. Whereas, systems using
sophisticated partitioning heuristics [9,28] suffer from high preprocessing cost
and sometimes high replication. More importantly, sophisticated methods do not
always lead to good query performance. The complexity of detecting com-
mon sub-queries: There exist an exponential number of ways to partition the
input queries. Neither Subgraph-isomorphism-based nor relational-based meth-
ods are realistic for a large number of queries. Besides, different query execution
plans bring about different query performance, we need a robust cost model to
compare candidate strategies.

In this paper, we built a system, called Leon, a distributed in-memory RDF
engine specialized for multi-query optimization problem. It mitigates the afore-
mentioned limitations of existing systems. We summarize the novel aspects of
our work as follows:

– We present a partitioning scheme based on characteristic sets. It has a low
startup cost, and it is also favorable to multi-query optimization.

– We present a heuristic technique for MQO in SPARQL. We leverage char-
acteristic set to detect common sub-structure efficiently and effectively in a
batch of SPARQL queries.
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– We proposed a robust cost model to reduce communication dramatically.
– We provide an extensive experimental comparison of Leon to the state-of-

the-art RDF engines. Leon partitions billion-scale RDF data and starts up in
a reasonable time. For single query performance, Leon consistently performs
better than centralized RDF engines and MapReduce ones by 1–2 orders
of magnitude. It is competitive with the state-of-the-art distributed RDF
engines. For large query workloads, MQO approach processes 10x faster over
baseline method.

The rest of the paper is organized as follows. Section 2 reviews RDF sys-
tems and MQO problem briefly. Section 3 provides essential background on RDF
and SPARQL. Section 4 presents the architecture of Leon and an overview of
the system components. Section 5 discusses our partitioning technique. Section 6
explains MQO algorithm and locality-aware query planner. Section 7 contains
the experimental results. We conclude the whole paper in Sect. 8.

2 Related Work

In this section, we review some representative RDF systems related to Leon,
together with multi-query optimization. We refer the readers to [1,5,10] for a
comprehensive overview of recent approaches.

2.1 RDF Systems

Triple table is a common practical storage scheme for RDF. It uses a single table
with three columns corresponding to subject, predicate and object. An index is
created per column for faster join evaluation. This approach scales poorly due
to expensive self joins. RDF-3X [18] reduce this cost by using a set of indices
that cover all possible permutations of s, p and o. These indices are stored
as clustered B+-trees and are compressed using rigorous byte-level techniques.
gStore [32] and TripleBit [29] typically employ adjacency lists as a basic building
block for storing and processing RDF data. These approaches prune many triples
before invoking relational joins to finally generate the row-oriented results of a
SPARQL query. However, the performance drop significantly when dealing with
complex queries.

It has become infeasible to store all RDF triples in a single machine with the
quick proliferation of RDF data. Many distributed RDF engines have sprung
up. The quality of partitioning has great impact on the query performance. A
popular data partitioning method is hash partitioning, including AdPart-NA [7],
H2RDF+[19], and SHARD [21]. This approach distributes RDF triples across
different partitions by computing a hash key over the subject or the object of
each triple. Hence, hash partitioning can work well for star queries, but for chain
or more complex queries, its performance is inefficient.

Several systems employ general graph partitioning techniques, like METIS
[11], to partition RDF data in order to improve data locality. Both EAGRE [30]
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and TriAD [6] use METIS for data partitioning. These algorithms suffer from
the skewed data distribution and replication problem.

In a nutshell, systems using simple partitioning methods, have a low startup
overhead; however, queries with long paths and complex structures incur high
communication costs. Sophisticated partitioning schemes are built specifically for
some query shapes, and they do not always guarantee better performance against
simple partitioning. MapReduce-based systems offer seamless data distribution
and parallelization, while join evaluation suffer from its high overhead.

2.2 Multi-query Optimization

Multi-query optimization is a very classical problem in database history. It has
been well studied in relational databases [22,25,26]. The main idea is to iden-
tify the common sub-expressions in a batch of queries. Global optimized query
plans are constructed by reordering the join sequences and sharing the interme-
diate results within the same group of queries, therefore minimizing the cost for
evaluating the common sub-expressions.

MQO has also been studied on semi-structured data [8,12,25]. Bruno et al.
[25] studied navigation and index based path MQO in XML. Unlike the MQO
problem in relational and SPARQL cases, path queries can be encoded into a
prefix tree where common prefixes share the same branch from the root. This
nature provides an important advantage in optimizing concurrent path queries.
Nevertheless, the problem of multi-query join optimization was not addressed.
However, existing MQO techniques proposed in relational cases cannot be triv-
ially extended to work for SPARQL queries over RDF data, since RDF stor-
age module and indices are highly diversified and prefix-tree notion can not be
applied to genetic graph.

There are some works [13,14,16,20] discusses a multi-query optimization
algorithm tailored for SPARQL. Nevertheless, these works rely on subgraph
isomorphism algorithms to detect common structure of queries. This increases
the computational complexity and becomes intolerable when a large amount of
queries arrive at the same time.

Fig. 2. An RDF graph example. Fig. 3. A query graph.
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3 Preliminaries

In this section, we review the terminologies of RDF and SPARQL Query.
RDF models facts about entities in a triple format consisting of a subject s, a

predicate p and an object o. A collection of triples D is usually represented as a
directed labeled graph with subjects and objects being the nodes, and predicates
being the edges of the graph. Formally, let U , B, L be infinite, pairwise disjoint
sets of URIs, blank nodes and literals, respectively. Then, an RDF triple t is
represented by a triple (s, p, o) ∈ (U ∪ B) × (U) × (U ∪ B ∪ L) and a collection
of triples {t1, t2, . . . , tn} is represented by an RDF graph, in which every node
v ∈ T = (U ∪ B ∪ L) and every edge e ∈ U . Figure 2 shows an example RDF
graph of an academic network. An edge and its associated vertices correspond
to an RDF triple, e.g., 〈Bill, worksFor, CS〉.

Following this notation, a SPARQL query Qi defines a set of triple patterns
of the form (T ∪ V ) × (I ∪ V ) × (T ∪V ), where V is the set of variables that can
be bound to T . For simplicity, we merely consider Basic Graph Pattern (BGP)
in this paper. Figure 3 shows the query graph of Q1 in Fig. 1, where ?prof, ?stud,
?univ are variables.

As we study a multi-query problem in this work, the input is a set of queries
Q = {Q1, Q2, . . . , Qm} that users submit in a given period. We use MQO algo-
rithm to compute a new set QOPT of queries, evaluate QOPT over D. There
are two requirements for MQO approach: (1) The query results of QOPT are
identical to Q; (2) the overall evaluation time of QOPT , must be less than the
baseline of executing the queries in Q sequentially.

4 System Overview

Leon employs the typical master-slave paradigm and is deployed on a shared-
nothing cluster of machines. This architecture is used by many other systems,
like [6,24]. Leon uses the standard Message Passing Interface (MPI) [27] for
master-worker communication.

The master begins by encoding the RDF triples, and then partitions triples
among all workers. Master collect some global statistics during this phase. Each
worker loads its triples and collects local statistics. Then, the master aggregates
these local statistics and becomes ready for answering queries. Queries are sub-
mitted to the master, which decomposes the queries according to partitions.
Then, master itself detects the common sub-structures which can be optimized
via shared computation. After grouping queries into batch and generating query
plans, sub-queries are sent to workers.

Each worker executes a query in two types: distributed and parallel. Queries
that require communication are processed in distributed type. The query plan-
ner in master devises a global query plan. Each worker gets a copy of this plan
and exchange intermediate results. Queries that can be answered without com-
munication are executed in parallel type. In this case, each worker has all the
data needed for query evaluation; therefore it generates a local query plan using
its local statistics and executes the query without communication.
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Fig. 4. System architecture of Leon Fig. 5. Example of five CS(left).
The CSmap contains the bitmap of
CS(right).

5 Partitioning

In this section, we present a heuristic partitioning strategy based on character-
istic sets. First, we introduce the definition of characteristic sets, together with
its merits in SPARQL query processing. Then, we present an algorithms for CS
extraction and a balanced partitioning strategy. Finally, we give four basic data
access operations.

5.1 Characteristic Sets (CS)

Every subject in RDF graph has a set of predicates. Subjects of the same cat-
egory are likely to share the same set of predicates. For example, there are
only 615 distinct combinations for more than 845 million triples in UniProt
[17]. These observations have been reported for many real-life data sets, such
as Yago, LibraryThings, Barton, BTC and UniProt. Inspired by this observa-
tion, Neumann and Moerkotte [17] introduced the notion of characteristic set
as a mean to capture the underlying structure of an RDF dataset. A charac-
teristic set CS identifies node types based on the set of predicates they emit.
Formally, given a collection of triples D, the characteristic set S(s) of a subject
s is: S(s) = {p|∃o : (s, p, o) ∈ D}. And the set of all CS for a dataset D is:
S(D) = {S(s)|∃p, o : (s, p, o) ∈ D}.

Figure 5 shows five CSs derived from Fig. 2. S1 corresponds to the type of
the nodes “Bill” and “James”, which comprises the predicates {uGradFrom,
gradFrom, worksFor}.

Characteristic sets provide a node-centric partitioning of an RDF dataset,
based on the structure of a node. This CS-based partitioning scheme has the
following advantages:

– Any join within the same CS can be evaluated without communication, espe-
cially join on the subject.

– CS can be directly used to answer certain queries. Many SPARQL queries
are specified with constraints on predicates only. For instance, “Select ?x
where{?x uGradFrom ?y, ?x gradFrom ?z}”, where ?y and ?z are only used
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to make sure the existence of the predicates “uGradFrom” and “gradFrom”.
In such cases, joins can be eliminate completely by checking the corresponding
CSs.

– Cost estimation is accurate. Some query is non-selective in each triple pattern,
but final outcome is selective. For instance, “Select ?x where{?x uGradFrom
?y, ?x advisor ?z}”, where the cardinality of “?x uGradFrom ?y” is 4 in Fig. 5,
and “?x advisor ?z” is 4. So the estimation of ?x should be 4. If we use CS to
estimate instead, we know the combination of “uGradFrom” and “advisor”
only belongs to S2. So the number of subject in S2 is 2.

– CS can also used to detect similar queries efficiently, since it contains star-
shaped structure information. We will elaborate in the next section.

5.2 RDF Encoding and CS Extraction

RDF contains long strings in the form of URIs and literals. To avoid the storage,
processing, and communication overheads, it is a common practice to encode
RDF strings into numerical IDs and build a bi-directional dictionary. In Leon,
triples are stored in memory as four consecutive integers of 4 bytes, one for each
triple component, namely cs id, sub id, pred id and obj id.

Characteristic set S(D) can be easily extracted by linear scan on the triples
of a dataset. The algorithm is presented in Algorithm 1. We omit the building
progress of bi-directional dictionary due to the space shortage.

First, for every triple, we do string-to-id encoding, and write to new encoded
triple table CSD (Line 2–6). Then, we store every new predicate for each subject
in Sub preds (Line 7–8). Multi-value is common in RDF dataset. We only store
per p once in each CS. We iterate over the Sub preds and construct a new CS
each time a new combination of predicates is found (Line 9–17). Each CS is
assigned a unique integer identifier, namely cs id, and holds a bitmap of the
predicates that define it. Every bitmap is stored in CSmap. Figure 5 has an
example of CSmap. Each bit corresponds to the presence of a predicate. This is
useful for fast subset checking.

We also store a bi-directional dictionary between CS’s id and subject. A
map from CS to sets of subjects is in CSsub. We can use this index to get the
triples associated with a specific CS. A map from a subject to CS in Subcs. This
engages locality-awareness of a given subject. When we know the exact location
of a subject, we can send intermediate results directly to corresponding machine
without broadcasting in the cluster. Finally, we go over CSD to set the first
element of the triple’s vector to cs id (Line 18–20).

5.3 Balanced CS Partition

After extracting CSs, the next step is to allocate all triples on clusters. In order
to achieve simplicity and workload balance, we assure that the triples on each
machine is even. Suppose that we want to allocate triples on N machines, so CSD

will be fragmented into a collection of disjoint subsets P = {P1, P2, . . . , PN}.
The number of triples on each machine |Pi| should be |CSD|/N . As we know
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the exact number of triples of each CS, we sort it in descending order and put
it into machines which will not violate the balancing principle. For example, we
sort the CSs in Fig. 5, which is S2, S1, S5, S4 and S3. We want to allocate them
across two machines, so the ideal number of triples on each machine should be
10. We start from putting S2 into P1. When it comes to S1, it will exceed the
size limitation if we put it into P1. So we put it into P2. Do the same action for
S5, S4 and S3. Finally, we have P = {(S2, S5), (S1, S3, S4)}.

Algorithm 1. Loading Triples and Extracting CSs
Input: Triples D
Output: CSD , CSmap, CSsub, Subcs

1: for every triple t in D do

2: sub, pred, obj = parse(t)

3: sub id, pred id, obj id = encode(sub, pred, obj)

4: CSD [t][1] = sub id

5: CSD [t][2] = pred id

6: CSD [t][3] = obj id

7: if pred id not in Sub preds[sub] then

8: Sub preds[sub].append(pred id)

9: for each sub id in Sub preds do

10: if Sub preds[Sub id] not in CS then

11: cs id=cs id+1

12: CSmap[cs id] = newCS(Sub preds[Sub id])

13: CSsub[cs id+1] = {sub id}
14: Subcs[sub id] = cs id

15: else
16: CSsub[cs id+1].append(sub id)

17: Subcs[sub id] = cs id

18: for every t in CSD do

19: sid = CS[t][1]

20: CSD [t][0] = Subcs[sid]

21: return CSD , CSmap, CSsub, Subcs

5.4 Basic Data Operations

Each machine wi stores its local set of CSs in an in-memory data structure,
where t, s, p, and o are cs, subject, predicate, and object respectively. Assume P
is a set of predicates {p1, p2, . . . , pn}. We provide the following data operations
for the SPARQL query processing module:

– GetCSs(P): given P , return set {Si|P ⊆ Si};
– LoadTriples(t): given CS t, return set {(s, p, o)|(s, p, o) ∈ CSD(t)}
– GetPreds(s): given s, return set {p|(s, p) ∈ CSD};
– GetObjs(s,p): given s and p, return set {o|(s, p, o) ∈ CSD}.

Leon has indexed the mapping between predicates and CSs in CSmap, the
operator GetCSs(P) can be executed very fast. LoadTriples(t) loads all the triples
associated with t according to CSD’s first element. Given s, GetPreds(s) is imple-
mented by checking the Subcs index first to get cs id associated with s, and then
get the p from CSmap. With s and p in hand, we can get o by calling GetO-
bjs(s,p). In summary, these operators are able to represent all the SPARQL triple
patterns as listed in Table 1.
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Table 1. Translating SPARQL triple patterns to basic operations

Patterns Translated operations

s, p, o if o ∈ GetObjs(s, p), true; otherwise, false

s, p, ?o GetObjs(s, p)

s, ?p, o {p|p ∈ GetPreds(s) ∩ o ∈ GetObjs(s, p)}
s, ?p, ?o {(p, o)|p ∈ GetPreds(s) ∩ o ∈ GetObjs(s, p)}
?s, p, o {s|t ∈ GetCSs(p) ∩ (p, o) ∈ LoadTriples(t)}
?s, p, ?o {(s, o)|t ∈ GetCSs(p) ∩ (s, p, o) ∈ LoadTriples(t)}
?s, ?p, o {(s, p)|s ∈ S ∩ p ∈ GetPreds(s) ∩ o ∈ GetObjs(s, p)}
?s, ?p, ?o Return all triples

6 Multi-query Optimization

Our MQO algorithm accepts a set Q = {Q1, Q2, . . . , Qm} of queries as input.
The algorithm identifies whether there is a cost-effective way to share the eval-
uation of structurally-overlapped patterns among the queries in Q. Briefly, the
algorithm works as follows: (1) It partitions the input queries into groups accord-
ing to queries’ CSs, where queries in the same group are more likely to share
common sub-queries that can be optimized. (2) it detects the common parts in
the same group, further filter out queries which are unproductive to query in
batch, and then generate query plans. We have a robust cost model to decide
whether query should be execute in batch or not; (3) it executes the queries
according to correspondent cost-efficient query plan.

6.1 Query Decomposing and Coarse-Grained Clustering

Incoming queries are first mapped to CS by the query parser. During this
step, the dictionary is used for id resolution of predicates and any other
bound nodes in the patterns. Then, each query Qi is decomposed into a
sequence of disjoint forks. A fork is a star-shaped sub-query. The triple
patterns in a fork share identical subject join variable. For example, Q1

is decomposed into two forks, f1 = {?prof worksFor CS} and f2 =
{?stud advisor ?prof, ?stud uGradFrom ?univ}. We use f = (r, P, L) to denote
a fork, where r is the identical subject node, P = {p1, p2, . . . , pn} are predicates
emitting from r, and L = {l1, . . . , ln} is the object nodes. So f2 can be denoted
as ({?stud}, {advisor, uGradFrom}, {?prof, ?univ}). Then, each fork matches
to zero or more CSs. In Fig. 1, Q1 is mapped to {(S1), (S2)}, Q2 is mapped to
{(S2)}, Q3 is mapped to {(S1, S2), (S5)}, Q4 is mapped to {(S1), (S5)}.

Finding structural overlaps for a set of queries amounts to finding the iso-
morphic subgraphs among the corresponding query graphs. This process is com-
putationally expensive, so ideally we would like to find these overlaps only for
groups of queries that are promising to be optimized. That is, we want to mini-
mize the computation spent on identifying common subgraphs for query groups
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that lead to less optimal MQO solutions. Consequently, we implement k-means
clustering for an initial partitioning of the input queries into a set G of k query
groups, that is G = {G1, . . . , Gk}. k-means algorithm uses Jaccard coefficient of
their CS sets as similarity measure. The rational is that, CS could capture not
only similarity in predicates, but also the underlying structure of the query. If
the CSs’ are dissimilar, their structural overlap in original query may also be
small; so it is safe to not consider grouping such queries for MQO. We will prove
that kmeans by CS is simple but effective in the experiments.

For example, consider the queries in Fig. 1, we partition Q into two groups
G = {G1, G2} according to their similarities in CS, where G1 = (Q1, Q2) and
G2 = (Q3, Q4).

6.2 Refining Query Clusters

Starting with the k-means generated groups G, we refine the partitioning of
queries further based on their structure similarity and the estimated cost.

We sort CSs according to frequency in each Gi, suppose the most frequent CS
is Sj . And then we set the group size |Gi| to freq(Sj). Queries who do not have
Sj will be eliminated. In Fig. 1, the most frequent CS in G1 is S2, so |G1| = 2;
|G2| = freq(S1) = freq(S5) = 2, respectively. In this way, each query group
shares at least one common CS. We detect the actually common parts within
same CSs by scanning all triple patterns in Gi. The predicates and constants
associated with nodes are also taken into considerations. So the common part of
Gi is G1

com = {(?stud advisor ?prof, ?stud uGradFrom ?univ)}, G2
com = {(?univ

addr ?addr, ?univ tele ?tele)}.
The natural routine of multi-query optimization is to precompute the

Gcom part, so the others can use the intermediate results without computa-
tion redundancy. However, some queries could not benefit from MQO. Con-
sider Q3, the selectivity of G2

com may be very low, because all schools have
address and telephone in real world, while the selectivity of Q3\G2

com =
{Bill underGraduateFrom ?univ} is high. If we compute G2

com first, mounting
intermediate results will be generated. As the joining variable of Q3\G2

com and
G2

com is ‘?univ’ and the results of G2
com are not at same machine with Q3\G2

com, it
will incur a broadcasting subject-object join. We could tell from the above exam-
ple, whether queries should be optimized as a group depends on both selectivity
of Gcom and the join type for each single query.

We design a delicate cost model to refine the query clusters. This model could
eliminate the queries who can not benefit from MQO.

6.3 Cost Model

Since data are memory resident, we apply hash joins as it proves to be com-
petitive to more sophisticated join methods. Our dynamic-programming-based
query planner devises an ordering of query forks and generates a left-deep join
tree, where the right operand of each join is a base fork. We do not use bushy
tree plans to avoid building indices for intermediate results.
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We first describe the statistics used for cost estimation. Recall that Leon col-
lects and aggregates statistics from workers for global query planning during the
query process. We focus on CSs rather than predicates as many other works do;
this way the storage complexity of statistics is much smaller and more accurate
than statistics based on predicates only.

For each unique CS Si, we denote the number of subject in each CS as
N(Si). For each predicate p ∈ Si, we count the distinct object values associated
p as: N(p|Si) = |{o|(s, p, o) ∈ Si}|. For a variable predicate, its cardinality is
estimated as the sum of the possible predicates. For a fork query f = (r, P, L)
without constraint, the cardinality of its subject r is calculated as: N(r|f) =∑

Sj∈Sq
N(Sj), Sq = GetCSs(P ). And the cardinality of object li whose corre-

sponding predicate is pi in f is estimated by: N(li|f) =
∑

Sj∈Sq
N(pi|Sj).

Communication overhead plays a significant role in distributed environment.
Consequently, we use communication overhead as our cost function. We set the
initial communication cost of DP states to zero. Cardinalities of forks with vari-
able subjects and objects are already captured in the master’s global statistics.
Hence, we set the cumulative cardinalities of the initial states to the cardinal-
ities of the forks. Furthermore, the master consults the workers to update the
cardinalities of fork patterns that are attached to constants or have unbounded
predicates. This is done locally at each worker by simple lookups to its indices
to update the cardinalities of variables bindings accordingly.

Now, we estimate the cost of expanding a state S with a fork fj , where
cj is the join variable in fj . Suppose there are N machines in the cluster. If
the join does not incur communication, the cost of the new state S∗ is zero.
Otherwise, the expansion is carried out through hash join and we incur two
phases of communication: (i) transmitting intermediate results and (ii) replying
with the candidate triples.

Estimating the communication depends on the cardinality of the join variable
bindings in S and join type. C(S) denotes the cardinality of state S. There are
three cases of expanding S with fj : Case 1. If cj is a subject, cj and S are
at the same machines, no communication is incurred, then: cost(S, fj) = 0;
Case 2. If cj is a subject, cj and S are not at the same machines. As we
know the location of cj , we send C(S) to the machines of cj directly, then:
cost(S, fj) = C(S)+N(cj |fj); Case 3. If cj is not a subject, we must broadcast
to all over the network, and collect the returning results, then: cost(S, fj) =
(N − 1)C(S) + (N − 1)N(cj |fj).

We use the cumulative cardinality when we reach the same state by two
different ordering. We finish the cluster refinement here. For each query Qj in a
query group Gi, we estimate the cardinality of (Gi

com, qj\Gi
com). If precomputing

Gi
com is beneficial to evaluating Qj , then Qj will stay in Gi; otherwise, Qj will

be executed as a single query. The cost model suggests that a good optimization
should keep the Gcom cardinality as small as possible. The result cardinality of
Qi\Gcom is upper bounded by Gcom since we use left-deep join tree. After the
query clusters are finalized, the algorithm precomputes the common parts of
each cluster of queries. The overall progress of MQO is presented at Algorithm
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2. We use an extra query set Gk+1 to denote a set of queries which are executed
sequentially. First, we decompose each Qi into forks, and match forks to CSs
(Line 1–2). We cluster all queries according to CSs (Line 3). The Gcom part for
each query group is computed by scanning all triple patterns (Line 4–5). Finally,
we refine the query cluster by cost estimation (Line 6–12). If precomputing Gcom

is favourable to a query, the query will by optimized in group; otherwise, it will
be put into Gk+1.

Algorithm 2. MQO
Input: Q = {Q1, ..., Qm}: a set of queries

Output: QOPT = {G1, ..., Gk, Gk+1}: optimized queries
1: for each Qi in Q do
2: F = CS decomposition(Qi)
3: G = kmeans(F )

4: for each Gi in G do
5: Gi

com = Compute com(Gi)

6: for each Gi in G do
7: for each Qj in Gi do

8: non-opt = Cost estimate(Qj \ Gi
com, Gi

com)

9: opt = Cost estimate(Gi
com, Qj \ Gi

com)
10: if opt > non-opt then
11: Gi = Gi \ Qj

12: Gk+1 = Qj ∪ Gk+1

13: return QOPT

7 Experiments

Since Leon is designed to serve massive real-life RDF datasets, we want to test it
from following aspects: (1) Query performance on single query. (2) Multi-query
optimization. This is the highlight of our system.

7.1 Experimental Setup

Datasets: We conducted our experiments using real and synthetic datasets of
variable sizes. Table 2 describes these datasets, where S, P, O and CS denote
respectively the numbers of unique subjects, predicates, objects and characteris-
tic sets. Their basic information are as follows: (1) We use the synthetic LUBM1

data generator to generate a dataset called LUBM1k. LUBM is a RDF bench-
mark widely used for comparing the performance of RDF stores. As we can see
from Table 2, the number of CS is only 12, which means entities of the same type
have the same set of predicates. (2) WatDiv2 is a benchmark that enable diver-
sified stress testing of RDF data management systems. In WatDiv, entities of
the same type can have the different sets of predicates. For testing our methods,

1 http://swat.cse.lehigh.edu/projects/lubm/.
2 http://dsg.uwaterloo.ca/watdiv/.

http://swat.cse.lehigh.edu/projects/lubm/
http://dsg.uwaterloo.ca/watdiv/


754 X. Guo et al.

we use dataset WatDiv1B. (3) We also use YAGO23, a real dataset derived from
Wikipedia, WordNet and GeoNames. WatDiv and YAGO2 both hold thousands
of CS, which will test our system fully.

Hardware Setup: We implement Leon in C++ and use a Message Passing
Interface library for synchronization and communication. We set up Leon and
its competitors on a cluster of 5 machines each with 198 GB RAM, 480 GB SSD,
and two Intel Xeon CPUs (6 cores each). The machines run 64-bit CentOS 7
and are connected by a 10 Gbps Ethernet.

Competitors: We compare Leon against AdPart [7], a recent in-memory RDF
system, which is the state-of-the-art. It has two versions, AdPart-NA and
AdPart(adapt to workload). We will run AdPart-NA in single query experiments
and AdPart in multi-query experiments. We compare with two well-known cen-
tralized RDF systems, RDF-3X [18] and TripleBit [29]. We also compare against
SHAPE [15], a hadoop-based system relies on semantic hash and RDF-3X as
underlying data store. We configure SHAPE with full level semantic hash parti-
tioning and enable the type optimization.

Table 2. Data statistics

Dataset Triples(M) S ∪ O (M) P Size (G) CS

LUBM1k 137.31 33.52 17 24.7 12

WatDiv1B 1092.16 97.39 86 149 96344

YAGO2 284.42 60.70 98 42 25511

Table 3. Preprocessing time (minute)

System LUBM1k WatDiv1B YAGO2

RDF-3X 26 427 83

TripleBit 10 496 40

SHAPE 26 521 242

AdPart 2 16 4

Leon 3 21 7

7.2 Startup Time

Our first experiment measures the time it takes all systems for preparing the
data prior to answering queries. For a fair comparison, we include the overhead
of loading data into HDFS for Hadoop.

Table 3 shows the result. AdPart employs hash partitioning on subject, so
it starts fastest. SHAPE suffers from the overhead of loading data in HDFS
before encoding. TripleBit is faster than RDF-3X, and both of them can finish
in a reasonable time. Leon has to extract and partition CSs, so it is slower than
AdPart. It takes more time on WatDiv1B and YAGO2, as they have more CSs.
But it still outperforms RDF-3X and SHAPE.

7.3 Query Performance

In this section, we focus on single query performance. We demonstrate that Leon
is competitive with the state-of-the-art RDF engine.

3 http://yago-knowledge.org/.

http://yago-knowledge.org/
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LUBM: In the first experiment, we compare the performance of all systems
using LUBM1k dataset and queries Q1–Q7 defined in [2]. Q4 and Q5 are simple
selective star queries, whereas Q2 is a simple yet non-selective star query that
generates large final results. Q6 is a simple query because it is highly selective.
Q1, Q3 and Q7 are complex queries with large intermediate results but very few
final results. In Table 4, TripleBit, Leon and AdPart-NA, are close for queries
Q4-Q6, due to their high selectivities and star-shapes. They both solves these
queries with little communication. SHAPE do not need communication, but it
suffers from the non-negligible overhead of using MapReduce to dispatch queries
to workers. RDF-3X performs really bad on complex queries.

WatDiv: The WatDiv benchmark defines 20 query templates classified into
four categories: linear (L), star (S), snowflake (F) and complex queries (C).
We generated 5 queries for each template to get mean time for single query.
In Table 6, Leon and AdPart-NA, provide way better performance than other
systems. Leon performs better than AdPart-NA for C, S and F queries, as CS
reduces the number of joins and prunes search space dramatically. Centralized
systems cannot deal with WatDiv datasets gracefully. TripleBit fails to answer
C1–C3 queries in all the datasets. Although SHAPE use full level semantic hash
partitioning, they do not always outperform the single-machine RDF-3X, and
its performance fell significantly as the datasets become large.

YAGO: We use Y1-Y4 defined by AdPart [7], since YAGO has no official bench-
mark. In Table 5, although object-object joins exist, Leon and TripleBit perform
better than others. It is because most of the join data are located on same
machine for Leon, and TripleBit is a centralized system which avoids large com-
munication cost. AdPart-NA is slower than Leon, while RDF-3X performs really
bad.

Table 4. Query runtimes (ms) for LUBM
queries. Bold means the fastest.

System Q1 Q2 Q3 Q4 Q5 Q6 Q7

RDF-3X 94817 8346 94837 24 57 285 5071

TripleBit 3440 4620 238 42 345 874 2094

SHAPE 17543 759 18709 114 260 275 21356

AdPart-NA 3150 98 234 1 1 27 1756

Leon 1245 64 263 1 2 20 1306

Table 5. Query runtimes (ms) for
YAGO2. Bold means the fastest.

System Y1 Y2 Y3 Y4

RDF-3X 60 361550 3700 120

TripleBit 19 7 191 86

SHAPE 1569 43891 1531 1408

AdPart-NA 16 51 683 98

Leon 18 34 310 56

7.4 Multi-query Performance

The objective of this section is to evaluates how well MQO algorithm optimizes
its alternatives, including the comparison with the baseline approach without
any optimization. For this purpose, we define different query workloads on two
large scale datasets that have different characteristics, namely, LUBM1k and
WatDiv1B. We use 14 queries in LUBM as template, and 20 templates from
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Table 6. Query runtimes (ms) for WatDiv queries. ‘-’ means system could not finish
the query within 10 min. Bold means the fastest.

System C1 C2 C3 S1 S2 S3 S4 S5 S6 S7 F1 F2 F3 F4 F5 L1 L2 L3 L4 L5

RDF-3X 1670 18710 258160 23 67 52 43 10 67 27 59 387 878 735 656 213 190 3 132 387

TripleBit - - - 45 789 435 405 603 262 9 1364 659 488 372 73 53 166 136 114 63

SHAPE 5632 14852 - 447 410 604 734 521 935 587 4935 2414 463 685 4375 3018 2405 653 735 145

AdPart-NA 2640 1245 243 5 3 4 1 4 2 7 210 54 72 85 4 5 136 9 65 32

Leon 1327 583 341 4 2 6 2 5 7 3 36 23 56 53 10 45 62 23 25 43

WatDiv. We test three algorithms, MQO-non (no optimization), MQO (k-means)
and MQO-R (k-means and refinement). MQO-non is the baseline method.

In the experiments, query templates are utilized to generate a seed set,
namely Qseed. The generator first choose α seeds from Qseed, and generate
remaining parts randomly as W . We change the constants and structures in
W , then randomly attach W to seeds to construct the final queries. Each seed
group is corresponding to same number of queries in Q, which is |Q|

α . The seed in
each seed-group is the common sub-query Gcom what our algorithm is expected
to discover.

Impact of kmeans by CS: In this experiment, we want to prove that cluster
by CS is meaningful. We adopted the extended Normalized Mutual Information
(NMI) [4] to measure the quality of kmeans. NMI is a popular criterion for eval-
uating the accuracy of clustering result with ground-truth based on information
theory. It yields the values between 0 and 1, with 1 corresponding to a perfect
matching. We vary α from 10 to 50, and set k = α, |Q| = 1000. In Fig. 6, kmeans
by CS performs consistency better than kmeans by predicate. Because we gener-
ate queries who are similar in predicates but dissimilar in structure. kmeans by p
relies solely on predicates to determine groups, while CS captures the underlying
star-shaped structure. So it is simple but useful to cluster by CS.

Impact of k: We discuss how to set k in kmeans. We set α = 25, |Q| = 1000,
and vary k from 10 to 50. Figure 7 illustrates when k = α, the runtime is shortest
as it fully utilizes the power of shared computation. When k becomes smaller,
the query groups contain fewer similar queries. When k gets larger, Gcom in
each query group is bigger. But there exists some computation redundancy.
The principle to choose an appropriate k, is better larger than smaller. In the
following experiments, if not said specifically, we set k = α.

Impact of |Q|: We analyze the evaluating cost spent on query clustering, by
fixing α = 10. In Fig. 8, we report the clustering time as |Q| getting large, and
Q is generated from LUBM templates. MQO-R is slower than MQO obviously,
since MQO-R does a selectivity check on Gcom. Nevertheless, clustering is a
small fraction of the total evaluating cost (less than 1%).

Impact of α: We analyze the impact of the number α of seed queries on
LUBM1k dataset, by setting |Q| = 1000, varying α from 5 to 25. Figure 9 shows
that as α increases, less queries can be optimized by MQO and MQO-R. Not
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Fig. 6. Impact of
kmeans.

Fig. 7. Varying k. Fig. 8. Varying |Q|.

Fig. 9. Varying α.

(a) LUBM workload (b) WatDiv workload

Fig. 10. Workload performance, α = 10, |Q| = 10k

surprisingly, a larger α increases query diversity and reduces the potential for
optimization. This affects evaluation time, but MQO-R is still the best of the
three. MQO runtime is larger than MQO-non when α = 25. It suggests refine-
ment is essential, and bad optimization strategy will hurt the performance.

Workload Performance. We generate 10k queries for LUBM1k and WatDiv1B
workload. We compare four algorithms, namely AdPart-random, AdPart-seq,
Leon-MQO-R, Leon-MQO-non. ‘seq’ suffix means similar queries are putting
together, because AdPart is based on hot pattern detection in a period of time
and replication among workers.

Figure 10(a) show the cumulative time as the execution progresses in
LUBM1k. For AdPart-seq, after every sequence of 1K query executions, the type
of queries changes. For AdPart-random, the cumulative time increase sharply
although workload adaptivity is available The factor behind this situation lies
in that queries from the same seed group do not arrive at the same time, so
AdPart could not detect the hot patterns which are accessed a lot. Compare to
this, Leon treats a batch of queries as a unit, so the sequence does not influence
the query performance. Leon-MQO-R outperforms AdPart-seq as it shares com-
putation as much as possible. The same behavior is observed from the WatDiv
workload in Fig. 10(b).

8 Conclusions

In this paper, we presented Leon, a distributed RDF engine which can also deal
with multi-query problem. Leon exploits CS-based partitioning to minimize the
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communication cost during query evaluation, and to detect common structure
with a fine-tuned cost model. Our experimental results verify that Leon achieves
better query performance than its competitors. More importantly, multi-query
optimization algorithm reduces query response time and communication cost
dramatically.

Acknowledgment. The work is partially supported by the National Natural Science
Foundation of China (No. 61532015, No. 61672189, No. 61832003, No. 61732003 and
U1811461).
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Abstract. Knowledge graphs are widely applied in many applications.
Automatically solving mathematical exercises is also an interesting task
which can be enhanced by knowledge reasoning. In this paper, we design
MathGraph, a knowledge graph aiming to solve high school mathe-
matical exercises. Since it requires fine-grained mathematical derivation
and calculation of different mathematical objects, the design of Math-
Graph has major differences from existing knowledge graphs. MathGraph
supports massive kinds of mathematical objects, operations, and con-
straints which may be involved in exercises. Furthermore, we propose
an algorithm to align a semantically parsed exercise to MathGraph and
figure out the answer automatically. Extensive experiments on real-world
datasets verify the effectiveness of MathGraph.

Keywords: Knowledge graph · Mathematical exercise ·
Knowledge reasoning

1 Introduction

Currently, large scale knowledge graphs are widely used in many real-world appli-
cations, such as semantic web search, and question-answer systems, natural lan-
guage processing, and data analytic. For example, if we ask “What is the highest
mountain?” on a web search engine, it may directly show the answer “Everest”
with the help of a knowledge graph.

Recently intelligent education is more and more popular and automatically
resolving mathematical exercises can help students improve the comprehensive
ability. However, it is rather challenging to automatically resolve mathematical
exercises without knowledge graphs, because it requires to use complex semantics
and extra calculations. In this paper, we propose MathGraph, a knowledge
graph aiming to solve high school mathematical exercises. MathGraph must be
specially designed and differentiated from other knowledge graphs. The reasons
are listed as follows:
c© Springer Nature Switzerland AG 2019
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1. Knowledge in MathGraph belongs to a very specific domain. Building
MathGraph requires specific mathematical knowledge. Traditional knowledge
graphs are built based on extensive semantic data, e.g., Wikipedia. However,
it is very hard to get the semantic data for mathematical problems.

2. Knowledge in MathGraph is stored in class-level rather than
instance-level. Most of the traditional knowledge graphs focus on extracting
instances, categories, and relations among instances. For example, a 3-tuple
(Beijing, isCaptialOf, China) shows a relation between two instances. How-
ever, in MathGraph, there is no instance in the origin graph, but only many
class-level mathematical objects (such as Complex Number, Ellipse, etc.).
Only if an exercise is given, instances will be created accordingly.

3. MathGraph supports mathematical derivation and calculation. The
reasoning process of mathematical problems is different from other problems,
because besides logical relation, mathematical derivation must be included in
the knowledge graph to solve mathematical exercises.

Thus, in this paper, we focus on building a knowledge graph MathGraph for
resolving mathematical problems. We propose an effective algorithms to align a
mathematical problem to MathGraph, and use the aligned sub-graph to resolve
a mathematical exercise. The contributions of this paper are as follows.

– We specially design the structure of MathGraph to support mathematical
derivation and calculation. We model different mathematical objects, oper-
ations and constraints in MathGraph. To the best of our knowledge, this
is the first attempt to build a knowledge graph for resolving mathematical
problems.

– We propose an algorithm to align a mathematical problem to MathGraph.
– We design a method to resolve mathematical exercises by the help of a seman-

tic parser.
– Experimental study shows great performance of MathGraph and our proposed

method.

Figure 1 gives an overview of the exercise-solving process with MathGraph.
We detail the structure of MathGraph and the exercise-solving algorithm later.

2 Related Work

2.1 Reasoning with Knowledge Graph

Since knowledge graphs can provide well-structured information and relations
of the entities, it is known to be useful to do reasoning in many tasks, such
as query answering and relation inference (i.e., to infer missing relations in the
knowledge graph [4,11,12]). Guu et al. [7] proposed a technique to answer queries
on knowledge graph by “compositionalizing” a broad class of vector space mod-
els, which preforms well on query answering and knowledge graph completion.
Toutanova et al. [17] proposed a dynamic programming algorithm to incorpo-
rate all paths in knowledge graph within a bounded length, and modelled entities
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Fig. 1. Overview of using MathGraph to solve a mathematical exercise

and relations in the compositional path representations. Zhang et al. [18] pro-
posed a deep learning architecture and a variational learning algorithm, which
can handle noise in the question and do multi-hop reasoning in knowledge graph
simultaneously. Zheng et al. [19] used a large number of binary templates rather
than semantic parsers to query knowledge graph with natural language. A low-
cost technique that can generate a large number of templates automatically is
also proposed. Our work is different from above works. Firstly, there are some
differences between the structure of MathGraph and existing knowledge graphs
(e.g. Freebase and NELL [2]). Secondly, to solve a math exercise usually requires
multi-step mathematical derivation, and the derivation procedures need to be
output as the problem-solving process. Thirdly, derivation and calculation should
be performed simultaneously when solving an exercise to retrieve the answer.

2.2 Automated Solving Mathematical Problems

Automated solving mathematical problems has been studied over years. But they
only focused on easy problems, e.g., mathematical problems in primary schools.

Kojiri et al. [10] constructed a mechanism called solution network to auto-
matically generate the answers for mathematical exercises. The solution network
is represented as a tree to describe inclusive relations of exercises.

Tomas et al. [16] proposed a framework of Constraint Logic Programming to
automatically generate and solve mathematical exercises. This paper proposed
to concentrate on the solving procedures rather than many simple exercise tem-
plates so that the generation and explanation of these exercises is easy.

Ganesalingam et al. [6] proposed a method that solves elementary mathe-
matical problems using logical derivation and shows solutions which are made
difficult to distinguish from human’s writing.

However, these works all have their own limits. For example, some can solve
problems only involving elementary math (e.g. set theory, basic algebraic oper-
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ation) and have no deeper theorems; some only support very limited logical
derivation. Thus, in this paper, we decide to use a knowledge graph to represent
as many mathematical entities and logical relationships as possible.

3 Preliminaries

In this section, we describe the entities that may appear in MathGraph, including
mathematical objects and instances, operations, and constraints.

Mathematical Object and Instance. A mathematical object is an abstract
object which has a definition, some properties, and can be taken as the target of
some operations or derivation. Note that a mathematical object can be defined
in terms of other objects. A concrete object that satisfies the definition of the
mathematical object is called an instance.

For example, Complex Number can be considered as a mathematical object:

– Definition: A complex number is a number that can be in the form a + bi,
where a and b are both real numbers and i is the imaginary unit which satisfies
i2 = −1.

– Property example: Imaginary part is a property of a complex number. The
imaginary part of a complex number a + bi is b.

– Operation example: (a1 + b1i) · (a2 + b2i) = (a1a2 − b1b2) + (a1b2 + a2b1)i
– Derivation example: If (a1 + b1i) and (a2 + b2i) are conjugated to each other,

then a1 = a2 and b1 + b2 = 0.

And 2 + 3i and (i + 1)(i − 3) are instances of Complex Number.
Different mathematical objects should be described as different structures in

MathGraph. Thus, in MathGraph, a mathematical object is represented with a
tuple of key properties (p1, p2, · · · , pn). The key properties of a mathematical
object are those properties that together can form and describe all the informa-
tion of an instance of the object. Table 1 shows examples of key properties of
some mathematical objects. Two instances of a mathematical object is equivalent
if and only if all the key properties are equivalent.

In a mathematical exercise, instances can be categorized into certain
instances and uncertain instances depending on whether it contains some uncer-
tain values as its key properties. An instance is a certain instance if all key
properties are certain; uncertain instance otherwise. For example, a real number
2.3 and a function f(x) = x+sin(x) are certain; a complex number 3+ai (where
a ∈ R) and a random triangle �ABC are uncertain.

Operation. Generally, an operation is an action or procedure which, given one
or more mathematical objects as input (known as operands), produces a new
object. Simple examples include addition, subtraction, multiplication, division,
and exponentiation. In addition, other procedures such as calculating the real
part of a complex number, the derivative of a function, and the area of a triangle
can also be considered as operations.
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Table 1. Examples of key properties of different mathematical objects

Mathematical object Example instance Key properties
Complex number ai + b (a, b)

Elementary function f(x) = 〈an algebraic expression about x〉 〈the algebraic expression〉
Triangle �ABC (a, b, c,∠A,∠B,∠C)

Line Ax + By + C = 0 (A, B, C)

Ellipse
x2

a2
+

y2

b2
= 1 (a, b)

Constraint. A constraint is a description or condition about one or more
instances, at least one of which is an uncertain instance. There are four types
of constraints: descriptive constraints (e.g. complex numbers x and y are conju-
gated), equality constraints (e.g. a + 2 = b), inequality constraints (e.g. a2 ≤ 5),
and set constraints (e.g. a ∈ N).

Most descriptive constraints cannot be applied directly to solve the exercise,
but can be converted into other three types of constraints using some definitions
or theorems. For example, if an exercise says “a + 3i and 7 − bi are a conjugate
pair”, by the definition of conjugate complex, we can know that a = 7 and
3 + (−b) = 0 by derivation.

4 The Structure of MathGraph

MathGraph is a directed graph G = 〈V,E〉, in which each node v ∈ V denotes
a mathematical object, an operation or a constraint, and each edge e ∈ E is the
relation of two nodes.

4.1 Nodes

In general, nodes are categorized into three different types: object nodes, oper-
ation nodes and constraint nodes.

Object Nodes. An object node vo = (t, P, C) represents a mathematical
object, where t denotes an instance template of this mathematical object;
P = (P1, P2, · · · , Pn) is a tuple indicating key properties of the mathemati-
cal object; and C is a set of constraints that, according to the definition or some
theorems, must be satisfied by this mathematical object. Table 2 shows an exam-
ple of “triangle” as an object node. We can see that properties and theorems of
triangles are included in the constraint set.

Operation Nodes. An operation node vp = (X1,X2, · · · ,Xk, Y, f) represents
a k-ary operation, where Xi(i = 1, 2, · · · , k) and Y are object nodes representing
the domain of the ith operand xi and the result of the operation y respectively,
and f is a function that implements the operation and can be finished by a series
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Table 2. An example of object node: triangle

Mathematical object Triangle

Instance template �ABC

Key properties (a, b, c, A, B, C)

Constraint set

{a, b, c > 0,

0 < A, B, C < π,

A + B + C = π,

a + b > c, a + c > b, b + c > a,
a

sinA
=

b

sinB
=

c

sinC
,

a2 = b2 + c2 − 2bc sinA,

b2 = a2 + c2 − 2ac sinB,

c2 = a2 + b2 − 2ab sinC}

of symbolic execution [1,3,9] process using a symbolic execution library (e.g.
SymPy [13], Mathematica [8]) even if some operands are uncertain instances.

For example, getting the modulus of a complex number is an unary operation
where X1 = 〈Complex Number〉, Y = 〈 Real Number〉, and f can be implemented
by the following symbolic execution process: (1) Get the real part of x1; (2) Get
the imaginary part of x1; (3) Return the squared root of the sum of (1) squared
and (2) squared.

Constraint Nodes. A constraint node vc = (d,X1,X2, · · · ,Xk, f) represents a
descriptive constraints of k instances, where d is the description of the constraint,
Xi(i = 1, 2, · · · , k) are object nodes representing the domain of each involving
instance, and f is a function which maps this descriptive constraint into several
equality constraints, inequality constraints and set constraints.

For example, a constraint node represents that x1 and x2 are a conjugate
pair, where X1 = X2 = 〈 Complex Number〉, and f can be implemented by the
following process: (1) Get the real part of x1 as a1; (2) Get the real part of x2

as a2; (3) Get the imaginary part of x1 as b1; (4) Get the imaginary part of x2

as b2; (5) Return two equality constraints: a1 = a2 and b1 + b2 = 0.

4.2 Edges

There are two types of edges in MathGraph: the derive edges and the flow

edges.

The derive Edge. For two object nodes X and Y , there may be a derive

edge ederive = (X,Y, f) to indicate a general-special relationship between them,
such as Triangle and Isosceles Triangle. If X

derive−−−−→ Y , an instance of X can be
reassigned as an instance of Y if certain conditions are met. These conditions
are encapsulated into a function f : X → {False,True}: if these conditions are
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met, the function f will return True and reassign the instance from X to Y ;
otherwise it will simply return False.

For example, there is a derive edge from object node Triangle to Isosceles
Triangle, where the function f can be implemented as: (1) if the values of key
properties or a constraint shows that two angles or lengths of two edges of the
origin instance are equal, return an instance of Isosceles Triangle with the same
key properties; (2) return False otherwise.

When solving an exercise, reassigning an instance to a more specific object
node will bring more constraints of this object and help find the answer. For
example, for a rhombus ABCD, if we know that ∠A = 90◦, we can infer, by the
derive edge from object node Rhombus to Square, that ABCD is a square and
has constraints that ∠A = ∠B = ∠C = ∠D = 90◦.

The flow Edge. A flow edge eflow = (X,Y ) indicates the flow direction
of instances during the exercise solving process, which may only exist from an
object node to an operation node, from an operation node to an object node, or
from an object node to a constraint node.

The flow edges between object nodes and operation nodes represent the
process of passing instances as parameters before the operation and the process
of returning a new instance after it. For example, in Fig. 2, the two flow edges
pointing to the operation node “addition” indicate that this operation takes two
instances of complex number as its input values, and the edge leading from this
operation node indicates that it returns a new instance of complex numbers.

Fig. 2. Example of the flow edges

The flow edges from object nodes to constraint nodes also represent the
process of passing parameters of the constraints. For example, in Fig. 2, the two
flow edges pointing to the constraint node “x and y are a conjugate pair” indi-
cates that this constraint takes two complex number as its input. Note that
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constraints nodes only convert descriptive constraints into other types of con-
straints and generate no instances, so there are no flow edges from a constraint
node to an object node.

In summary, MathGraph is a well-structured graph supporting different
mathematical objects, operations and constraints. Next, we will discuss how
to solve mathematical exercises using it.

5 Solving Mathematical Exercises with MathGraph

In this section, we propose a framework to solve a mathematical exercise using
MathGraph. First, we use a semantic parser mapping exercise text to the
instances, operations and constraints respectively. Then, we solve the constraints
and update uncertain instances. Finally, we return the answer of this exercise.

Fig. 3. Example of parsing the text into nodes in MathGraph

5.1 Mapping Text in MathGraph

Considering the limited information and expression in the mathematical exer-
cises, we can easily use a rule-based semantic parser to parse the exercise text
and then map them to corresponding nodes in MathGraph.

The rule-based semantic parser uses a set of rules to parse every sentence of
the exercise and recognize the logical relationship in the text. For example, “Let
x and y be complex numbers” will be parsed as declaration of two uncertain
instances; “Find the coordinates of the conjugate complex of (i + 1)(i − 1)” will
be parsed as a declaration of a certain instance and two operations.

Mapping Instances. With the semantic parser, every instance generated from
the exercise should have already mapped into the corresponding object node.
That is, a set of instances I = {(x1,X1), · · · , (xk,Xk)} is generated by pars-
ing the text of the exercise, where xi denotes the instance and Xi denotes the
corresponding object node.

Instances are classified as certain instances or uncertain instances depending
on if the exercise provide certain values or expressions of them. For uncertain
instances generated from text, key properties with unknown value should be
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generated as instances, since they may be used in the operations and constraints
of this exercise. For example, for the exercise shown in Fig. 3, x and y are both
uncertain instances of object node Complex Number. Therefore, we need to gen-
erate ax, bx, ay and by as four uncertain instances of object node Real Number,
where ax and bx stand for the two key properties of x, and ay and by stand for
the key properties of y.

Mapping Operations. The semantic parser can also parse out the a set of
operations from the text. Every operation (o, (x1,X1), · · · , (xn,Xn)) in it will be
aligned to the corresponding operation node in MathGraph o with its operands,
trigger the function in the operation node, and then finally generate a new
instance as the output of the operation.

Mapping Constraints. Similar to mapping operations, for every descriptive
constraint (c, (x1,X1), · · · , (xn,Xn)) in the exercise, the semantic parser can
map it to the corresponding constraint node c with some involving instances,
trigger the function in the node, and convert it to several equality/inequality/set
constraints.

Also, note that when an uncertain instance is generated, some constraints
may also be generated according to the constraint set of the corresponding object
node. After that, we gather all the constraints in the exercise as a set for further
using.

Algorithm1 shows the process of mapping text of the exercise.

5.2 Solving Uncertain Instances and Constraints

After parsing all the instances and operations in the exercise, the answer of the
exercise should already be generated as an instance (from the text or by an
operation). If this instance is a certain instance, we can directly return the value
of this instance as the answer; otherwise, we must deal with these uncertain
instances and solve the constraints in the exercise to update their values and
finally retrieve the answer of the exercise.

Reassign Uncertain Instances. First, we need to check every uncertain
instance if it can be reassigned to a more specific object node in MathGraph
by a derive edge. For an uncertain instance i that is assigned to an object node
vo, we check every outgoing derive edge of vo, and if the function of an edge e
returns true, then we reassign i to the object node that e points to and add all
the constraints in this node to the constraint set. Algorithm 2 shows the pseudo
code of this process.
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For example, if we have an uncertain instance �ABC, and there is a con-
straint ∠B = ∠C in the constraint set, then the derive edge from Triangle to
Isosceles Triangle should return true. So the instance should be reassigned
to Isosceles Triangle, and a new constraint AB = AC should be added to
the constraint set.

Algorithm 1. MappingText(t,G)
Input: t : text of the exercise;

G : MathGraph
Output: Icertain: a set of certain instances;

Iuncertain: a set of uncertain instances;
C: a set of constraints;
Sdependency: a set denoting dependencies of uncertain instances;

1 begin
2 Initialize P as a semantic parser;
3 Icertain, Iuncertain ← P.mappingInstances(t, G);
4 O ← P.mappingOperations(t, G);
5 C ← P.mappingConstraints(t, G);
6 Let Sdependency be an empty set;
7 for each (x, X) ∈ Iuncertain do
8 for each key property(p, Xp) ∈ x.keyProperties do
9 if p is an uncertain instance then

10 Iuncertain ← Iuncertain ∪ {(p, Xp)};
11 Sdependency ← Sdependency ∪ {(p, x)};

12 for each (o, (x1, X1), · · · , (xk, Xk)) ∈ O do
13 (y, Y ) = o.f(x1, · · · , xk);
14 if y is a certain instance then
15 Icertain ← Iuncertain ∪ {(y, Y )};
16 else
17 Iuncertain ← Iuncertain ∪ {(y, Y )};
18 C ← S ∪ y.ConstraintSet;
19 for i = 1 to k do
20 if xi is an uncertain instance then
21 Sdependency ← Sdependency ∪ {(xi, y)};

22 for each (c, (x1, X1), · · · , (xk, Xk)) ∈ C do
23 if c is a descriptive constraint then
24 c ← c.f(x1, · · · , xk);

25 return Icertain, Iuncertain, C, Sdependency
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Algorithm 2. ReassignUncertainInstances(G, Iuncertain, C)
Input: G: MathGraph;

Iuncertain: the set of uncertain instances;
C: the constraint set;

1 begin
2 for each instance (x, X) ∈ Iuncertain do
3 for each derive edge (Xe, Ye, fe) ∈ G do
4 if Xe == X and fe(x) == True then
5 C ← C ∪ Ye.ConstraintSet;
6 update (x, X) as (x, Y );

Algorithm 3. OrganizeUncertainInstances(Iuncertain,Sdependency)

Input: Iuncertain: a set of uncertain instances;
Sdependency: the set denoting dependencies of uncertain instances;

Output: GI : the graph to organize the uncertain instances;
SI : a set denoting all instances in GI without incoming edges;

1 begin
2 Let GI〈VI , EI〉 be an empty graph;
3 for (x, y) ∈ Sdependency do
4 VI ← VI ∪ {x, y};
5 EI ← EI ∪ {(x, y)};

6 SI ← {v|v ∈ VI ∧ ∀u ∈ VI , (u, v) /∈ EI};
7 return GI , SI

Organizing Uncertain Instances. Note that for two uncertain instances α
and β, there may be a dependency relationship between them, which is caused
due to either α is one of the input of an operation node and β is the output or
α is one of the key properties of β.

Thus, we use a graph GI = 〈VI , EI〉 to describe dependency of all the uncer-
tain instances, where v ∈ VI is a node representing an uncertain instance and
e ∈ EI is a directed edge representing a dependency relationship of two nodes.
Note that GI is always a DAG, since there will be no dependency loop in it.

Let SI = {v|v ∈ VI ∧ ∀u ∈ VI , (u, v) /∈ EI} denote the set containing all node
without any incoming edges in GI . It is obvious that if all nodes in SI can turn
into certain instances, the instance corresponding to the answer can be derived
to a certain instance. Algorithm3 demonstrates this process.

For example, Fig. 4 shows GI of the exercise in Fig. 3, where x and y depend
on their respective key properties, and z = x+y depends on its two operands. In
this context, SI = {ax, bx, ay, by} and the instance corresponding to the answer
is z.
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Algorithm 4. ProcessConstraints(C,GI ,SI)

Input: C: the constraint set;
GI : the graph for dependency of uncertain instances;
SI : the set denoting all instances in GI without incoming edges;

1 begin
2 for each (c, (x1, X1), · · · , (xk, Xk)) ∈ C do
3 for i = 1 to k do
4 if xi /∈ SI then
5 Replace (xi, Xi) with its key properties (p1, P1), · · · , (pn, Pn);

6 SolveConstraints(Sconstraint, SI);

Organizing and Solving Constraints. After the last step, we now have a set
of constraints. First, we need to make sure every variable in every constraint is
in SI . If not, this constraint needs to be rewritten by using its key properties
as the variable. For example, for the exercise in Fig. 3, the set of the constraint
is {x + y = 6, xy = 10, ax = ay, bx + by = 0}. Since x, y /∈ SI , the first two
constraints will be rewritten as ax+bxi+ay+byi = 6 and (ax+bxi)(ay+byi) = 10.

Now the constraint set includes and formalizes all the constraints in the exer-
cise. So we can apply methods of a symbolic execution library [8,13] or some
approximation algorithms [5,15] to solve these equations and/or inequalities.
Finally, we will get the value (or range of value) of every instance in SI . Algo-
rithm4 shows this process.

Updating Uncertain Instances and Retrieving the Answer. After solv-
ing all the constraints in the exercise, we need to update the value of the rest
instances in GI . Since we now know the value of instances in Si, we can traverse
every instance in GI in the topological sorting order and update their values in
turn. Finally, we return the value of the instance corresponding to the answer.
Algorithm5 shows the complete process of using MathGraph to solve exercise.

Algorithm 5. SolvingExercise(t,G)
Input: t : text of the exercise;

G : MathGraph
Output: answer of the exercise

1 begin
2 Icertain, Iuncertain, C, Sdependency ← MappingText(t, G);
3 Mark the instance corresponding to the answer as xans;
4 ReassignUncertainInstances(G, Iuncertain, C);
5 GI , SI ← OrganizeUncertainInstances(Iuncertain, Sdependency);
6 ProcessConstraints(C, SI);
7 Update the value of every node in GI in the topological sorting order;

return value of xans;
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6 Experiments

In this section, we conduct extensive experiments on real mathematical datasets
to evaluate the performance of our method.

6.1 Datasets and Experiment Setting

We collect four real-world datasets of mathematical exercises of Chinese high
schools, namely Complex, Triangle, Conic and Solid. The exercises are stored
in plain text, and the mathematical expressions are stored in the LaTeX format.

– Complex: This dataset contains 1526 mathematical exercises related to calcu-
lation and derivation of complex numbers, including basic algebraic operation,
the modulus and the conjugate of a complex number, Argand plane, polar
representation, etc.

– Triangle: This dataset contains 782 mathematical exercises related to solv-
ing triangles (using Law of Sines and Law of Cosines), which includes finding
missing sides and angles, perimeter, area, radius of the circumscribed circle,
etc.

– Conic: This dataset contains 1196 exercises related to Conic sections, includ-
ing calculation and derivation on ellipse, hyperbola and parabola.

– Solid: This dataset contains 653 exercises related to solid geometry, which
involves a variety of geometries in three-dimension Euclidean space, including
pyramids, prisms, etc.

Exercises in the four datasets are categorized into three levels (i.e. easy,
medium, and hard) based on the difficulty (which is classified according to the
accuracy of many high school students). Table 3 shows the number of exercises
with different difficulty levels in the datasets.

Table 3. Summary of exercises in the datasets

Easy Medium Hard Total

Complex 685 634 207 1526
Triangle 179 470 133 782
Conic 486 602 108 1196
Solid 217 336 100 653

In the experiments, we use Neo4j [14] as the graph database platform to build
and index MathGraph. For the datasets, we build the knowledge graph manually
involving only the instances, operations and constraints that may exist in these
exercises. The experiments are implemented in Python 3.7. Sympy is used to do
the work of symbolic execution. All the experiments are conducted in a machine
with 2.40GHz Intel Xeon CPU E52630, 48GB RAM, running Ubuntu 14.04.
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6.2 Evaluation and Discussion

We implement a rule-based baseline method as the following procedures:

1. We still use a rule-based semantic parser to parse the text and extract the
information.

2. A large quantity of rules are written in advance to match different situations
of exercises. Every rule represents an exercise type and has a built-in solving
process only for this exercise type.

3. If the exercise matches a rule, then we apply the solving process of the rule
and return the answer.

Fig. 4. GI : a DAG to organize the uncertain instances

Fig. 5. Overall accuracy on four datasets

Figure 5 shows the exercise-solving accuracy on four datasets. We can see
that in every dataset, our method achieves higher accuracy than baseline, e.g.,
20% higher accuracy. This result shows the effectiveness of solving problems
using MathGraph.

Figure 6 demonstrates the exercise-solving accuracy on different difficulty
level. From the experiment result, we have the following observations. Firstly, as
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(a) Dataset Complex (b) Dataset Triangle

(c) Dataset Conic (d) Dataset Solid

Fig. 6. Accuracy on different difficulty levels

the difficulty of the exercises increases, the accuracy of both methods decreases.
Secondly, for easy exercises, the baseline and our method have similar perfor-
mance; but for medium and hard exercises, MathGraph significantly outperforms
the baseline, because our method can use the knowledge graph to do mathemat-
ical derivation.

The rule-based baseline considers the exercise as a whole and solving it
according to the logic specified by a rule. This means that this method relies on
a large amount of rules, and the more complex the exercise is, the more rules
and the higher difficult it needs to write. Therefore, this method has a poor
performance in hard exercises. However, our method extracts the mathematical
objects, calculations, and constraints from these rules and models them into a
graph, so it can be used for multi-step calculation and derivation.

7 Conclusion

In this paper, we proposed MathGraph, a knowledge graph for automatically
solving mathematical exercises. MathGraph is specially designed to represent
different mathematical objects, operations and constraints. Given an exercise, we
can use the proposed method to solve it with the help of MathGraph and a pre-
built semantic parser. Experimental study on four real-world datasets demon-
strates the accuracy of our method.
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Abstract. There has been increasing research interest in inferring miss-
ing information from existing knowledge graphs (KGs) due to the emer-
gence of a wide range of knowledge graph downstream applications such
as question answering systems and search engines. Reasoning over knowl-
edge graphs, which queries the correct entities only through a path con-
sisting of multiple consecutive relations/hops from the starting entity, is
an effective approach to do this task, but this topic has been rarely stud-
ied. As an attempt, the compositional training method equally treats the
constructed multi-hop paths and one-hop relations to build training data,
and then trains conventional knowledge graph completion models such
as TransE in a compositional manner on the training data. However,
it does not incorporate additional information along the paths during
training, such as the intermediate entities and their types, which can be
helpful to guide the reasoning towards the correct destination answers.
Moreover, compositional training can only extend some existing mod-
els that can be composable, which significantly limits its applicability.
Therefore, we design a novel model based on the recently proposed neu-
ral memory networks, which have large external memories and flexible
writing/reading schemes, to address these problems. Specifically, we first
introduce a single network layer, which is then used as the building block
for a multi-layer neural network called TravNM, and a flexible memory
updating method is developed to facilitate writing intermediate entity
information during the multi-hop reasoning into memories. Finally, we
conducted extensive experiments on large datasets, and the experimental
results show the superiority of our proposed TravNM for reasoning over
knowledge graphs with multiple hops.
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1 Introduction

Automated reasoning refers to the ability for computing systems to make
new inferences from the observed evidence, which is an important concept
in artificial intelligence, and has attracted extensive attention over the past
decades [1,23,29]. For example, one of the recent research trends focuses on
reasoning over graphs (networks) [4,12,13,26,35–37]. On the other hand, knowl-
edge graphs (KGs), constructed by relations and entities, have become effective
and important underlying representations of knowledge for complex reasoning
tasks such as question-answering systems, search engines and recommender sys-
tems. Combining both, our work focuses on multi-hop reasoning over knowledge
graphs, which aims to infer entities that can be reached by a path only composed
of multiple consecutive relations/hops starting from a given entity. For example,
(DonalTrump, PresidentOf, FoundedIn, ?) is to answer the complex question
Which year was the country that DonalTrump is President of founded in?. This
task could be trivial if the target entity exists in the knowledge graph, but this
is usually impossible because most existing knowledge graphs are quite sparse,
far from complete and can only capture a fraction of world knowledge [22], e.g.,
in Freebase [2], 71% of the roughly 3 million people lack place of birth, 94% lack
parents, and 99% lack ethnicity. Therefore, how to accurately and effectively
perform multi-hop reasoning over those highly incomplete knowledge graphs
becomes a challenging task.

Early works mostly focused on logic-based reasoning approaches that employ
symbolic representations such as [16,24], which extract rules through mining
methods and use these extracted rules to infer new links. While these methods
could be rather expressive and interpretable, they have the risk of suffering from
the following drawbacks. First, the rules over observed nodes only cover a subset
of patterns in knowledge graphs and useful rules could be difficult to capture.
Secondly, they explicitly require the rules to be specified by hand before the
inference starts running, which could be expensive in the practical applications.
Thirdly, when the size of the knowledge graph is large, the inference could easily
become intractable.

Another line of work focused on the path ranking algorithm (PRA) and its
variants [17,18], which could provide tractable inference over large knowledge
bases. However, they require training and maintaining separated models whose
parameters are not shared for different relation types, which leads to large num-
ber of parameters to learn. Moreover, they operate in a fully discrete space,
making the comparison among similar entities and relations in a knowledge
graph especially hard. Therefore, these weaknesses make them impractical in
real-world downstream KG applications.

Recently, encoding the knowledge graph into a low-dimensional vector space
to learn latent representations of entities and relations has become the main-
stream, but most existing models in this line of work such as TransE [3] only
have one-hop reasoning abilities. Therefore, the most straightforward solution
for multi-hop reasoning is to recursively apply the embeddings of those models
for every hop in the path. However, this simple solution turns out to be infea-
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sible because it would cause cascading errors, that is, minor noise generated in
each hop would be added up, causing large deviation from the right answers in
the end. Recently, [10] tried to eliminate the cascading errors by compositional
training, which equally treats one-hop relations and multi-hop paths to train the
traditional knowledge graph completion models such as TransE. One weakness
of their method is that during the training phase, it ignores the rich intermediate
entity information, e.g., the entity itself or its type, at each hop, which can be
helpful to guide the reasoning towards the correct direction. Another weakness
is that compositional training can only be applied to models that are composable
(TransE and Bilinear Model [27]), which limits its applicability. After that, [5]
proposed a recurrent neural network (RNN) based model to do multi-hop rea-
soning, which incorporates entity types during reasoning, but it lacks flexible
reading/writing operations and its memory capacities are too small to store
sufficient long-term information for complex queries.

To address the problems above, we propose TravNM (Traversing KG with
Neural Memories Networks) which is a multi-layer neural network with care-
fully designed writing operations. Each network layer as the building block is
based on Neural Memory Networks (NemNN) [30] which include two main com-
ponents: large augmented memories that selectively store the information about
knowledge graphs and controller networks that control the input/output data
flow into/from the memories. Moreover, at each hop, TravNM writes informa-
tion of entities appearing in the path into the memories to better refine them. In
particular, TravNM has the following advantages. (1) It encourages local changes
instead of global changes in memories. Specifically, it attentively reads the infor-
mation it needs from the memories, hence, the final output as the predicted
entity can be produced after multiple reasoning steps (or hops) are made. (2)
It has large external memories instead of using only one hidden state vector
in recurrent neural networks (RNN) or long short-term memory (LSTM), and
these large memories are critical to memorize longer-term information in order
to enhance the reasoning abilities. (3) It explicitly conditions on the outputs
stored in memory from previous hops, thus both long- and short-term memories
are taken into account.

Finally, we listed four research questions to verify the performance of the pro-
posed model, and extensive experiments on two datasets created from well-known
knowledge graphs are conducted to answer them. The experimental results show
the superiority of our proposals by comparing with the state-of-the-art models.

2 Related Work

2.1 Reasoning over KG

Over the past decade, there has been extensive research on how to infer missing
facts from existing knowledge graphs, and these methods fall into three major
categories.

The first category of methods are based on logic rules. Some early work [15,
28] employed Markov Logic Networks (MLN) to reason with first order-logic.
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Any rule in first-order logic can be included in an MLN, which makes MLN a
powerful tool, but these methods are unable to scale to large knowledge bases.
The ProPPR system was proposed to address the scalability problem, which
uses random walks through a “proof space” based on a set of logical inference
rules to perform the query that is independent of the size of the knowledge base.
This allows ProPPR to cope with larger KBs. AMIE [7] is a rule mining system
that extracts logical rules based on their support in a knowledge graph, which
can handle the open-world assumption of knowledge graphs and has superior
efficiency on large knowledge graphs.

The second category of methods are based on the path ranking algorithm
(PRA) [17]. The main idea of PRA and its variants is to first find a set of node
pairs connected by sequences of edges (or paths) from a graph by random walks
and then use those paths as features in a logistic regression model to infer missing
edges in the graph.

The third category is the most recent embedding methods, which learn and
represent entities and relations as low-dimension embedding vectors in the latent
space. These solutions can be easily and naturally applied to one-hop reasoning
over knowledge graphs by retrieving the most relevant entities using their defined
operations within the latent space. Among these methods, translational models
are the most representative ones. TransE [3] was first proposed, which views the
relation as the translation from a head entity to a tail entity in the same space.
Following TransE, other translational methods were also proposed to address its
limitations in dealing with none 1-to-1 relations. TransH [33] and TransR [19]
force entities to have different embeddings when involved in different relations.
Specifically, TransH introduces relation-specific hyperplanes, where the relation
is on its specific hyperplane. TransR extends TransH by modeling entities and
relations in separate semantic spaces, and translate entities in the relation space.
Despite the huge advancement of one-hop reasoning, the multi-hop reasoning
over knowledge graphs has been rarely studied so far. One straightforward solu-
tion for this task is based on learned representations of entities and relations
in the one-hop reasoning models and recursively apply those models to answer
path queries. [10] showed that this solution would cause cascading errors, result-
ing in wrong answers, and they proposed compositional training that considers
two entities connected not only by relations by also relations paths, which can
effectively reduce cascading errors. Specifically, based on this idea, the authors
proposed to train TransE and Bilinear models [14] in a compositional way, that is,
TransE employs the addition composition and Bilinear models employ the mul-
tiplication composition. Recently, [5] proposed a chain model based on recurrent
neural networks that additionally considers the intermediate entities’ types along
the path during reasoning. This model achieves the state-of-the-art results.

2.2 Neural Memory Networks

Neural memory network (MemNN) [8], inspired by the physical computer archi-
tecture, has attracted increasing attention recently due to its strong abilities in
capturing very long ranged dependencies that recurrent neural networks (RNN)
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and long short-term memory (LSTM) suffer from. Moreover, compared to RNN
and LSTM, MemNN can manipulate the memory in a more flexible way. Typi-
cally, a MemNN model consists of two parts: a memory to store the information
and a controller to interact with data, i.e, to read from and write to the mem-
ory. Specifically, to read from the memory for an input vector, similarities (e.g.,
cosine similarity and inner product) between it and each slot of the memory
are first computed, then a softmax function is applied to these similarity values
to obtain read weights. To write new information into the memory, an atten-
tion mechanism of focusing by content or by location is proposed in [8] to fully
utilized all the locations of the memory and make the whole process end-to-end.

MemNN achieved its success in many applications such as recommenda-
tion [32], neural language translation [9] and knowledge tracking [38] but it is
rarely studied in the field of knowledge graph completion, especially multi-hop
reasoning over knowledge graphs. Our model is based on the key-value paired
memory networks model [38], a recently proposed MemNN variant, which is a
generalization of the way that contexts (e.g., knowledge bases or documents to
be read) are stored in memory. The lookup (addressing) stage is based on the
key memory while the reading stage (given the returned address) uses the value
memory. This provides more flexibility and effectiveness [21].

3 Preliminaries

First, we introduce the notations and concepts used in this paper. Note that
in the description below, vectors and matrices are denoted with lowercase bold
letters and uppercase bold letters respectively.

E is a set of entities and R is a set of relations, and the sizes of E and R are N
and M , respectively. A knowledge graph G is defined as a set of triples in the form
(h, r, t) representing head entity, relation and tail entity respectively, where h, t ∈
E and r ∈ R, and their r-dimensional embedding representations are h, r and t.
The multi-hop reasoning task can be characterized by path queries that are first
introduced in [10]. A path query is represented as a triple (h, π, �q�) ∈ Gp, where
Gp is the path query dataset constructed from G and h is the starting entity,
followed by an L-hop path π = (r1/ . . . /rL) which is a sequence of relations
ri ∈ R, and �q� ⊆ E is the answer set for this query. We simplify this problem by
assuming that �q� only contains one entity t, so the path query triple is denoted
as (h, π, t). If �q� contains multiple entities, we can easily convert (h, π, �q�) ∈ Gp

to multiple (h, π, t). π can be augmented with intermediate entity information
for training purpose in the form π = r1/t1, ct1/r2, ct2 . . . /rL where ci is the type
annotated for the intermediate ti. Take the toy example mentioned above for
illustration, the path query (DonalTrump, PresidentOf/FoundedIn, ?) expects
the resulting answer to be 1776.

4 Network Layer

In this section, we describe the single network layer used as a building block
for TravNM introduced later. In each layer, A and B are entity and relation
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embedding matrices with the size of M ×r and N ×r respectively, where r is the
embedding size. Mk and Mv are key memory matrix and value memory matrix,
both with the size of D × r, where D and r are the numbers of memory slots
and their dimension.

4.1 Memory Addressing

Given a triple (h, r, t), we take h as an index to get its corresponding r-
dimensional vector h from the entity embedding matrix A, and similarly, r is
transformed by the relation embedding matrix B into an r-dimensional vector
r. Then their sum h + r is fed into the key memory matrix Mk, resulting in
attention weights w by the following steps. First, the similarity between h + r
and each key memory slot is measured based on their inner product:

simj =
∑

(h + r)Mk(j) (1)

Then, we apply Softmax, i.e., Softmax(zi) = ezi/Σje
(zj), to the similarity so

that the most similar memory slot produces the largest weight to obtain an
attention weight vector w with size D:

w(j) = Softmax(simj) (2)

The differentiable Softmax function is employed in the soft attention mechanism.
This attention process is analogous to physical memory addressing operations
in computer architectures [21].

4.2 Memory Reading

In this stage, each value memory slot is multiplied by the corresponding attention
weight, resulting in an r-dimensional vector t̄.

t̄ =
∑D

j=1
w(j)Mv(j) (3)

t̄ is a soft representation of the translating result of h + r, which is important
for the multi-hop reasoning. Specifically, t̄ relaxes the overstrict requirement of
h + r ≈ t in TransE, and encourages the intermediate result to only be close to
t̄. Therefore, it is a good abstraction of all possible results, which can effectively
avoid cascading errors.

5 TravNM

In this section, we introduce how to stack multiple single layers introduced above
into TravNM to support multi-hop reasoning over knowledge graphs.
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5.1 Structure

In order to adapt to L hops, L network layers could be stacked to process a given
path query triple (h, π, t) from training datasets. The input to the ith layer of
TravNM, i.e., at the ith hop of reasoning, is t̄i−1 + ri, where t̄i−1 is the output
embedding from the previous (i − 1)th layer and ri is the embedding of the ith

relation in π. Note that in the first hop of the reasoning, the input is h+ ri, i.e.,
the model directly utilizes the given head entity. The output of the ith network
layer is an intermediate entity embedding t̄i which abstracts all possible results
reasoned by the first i − 1 relations in π, i.e., r1, . . . , ri−1, in sequence.

Algorithm 1: Training TravNM
1 INPUT: Training set Gp = (h, π, t), where π = r1/t1, ct1/r2, ct2 . . . /rL

2 INITIALIZE: A, B, Mk
1 , ldots,Mk

Lmax
, Mv

1 , . . . ,Mv
Lmax

3 Gp
batch ← sample(Gp, b) ; � sample a minibatch of size b

4 Tbatch ← ∅ ; � Tbatch holds positive and negative triples

5 for (h, π, t) in Gp
batch do

6 for hop ith do
7 ri = embed(ri, Bi);
8 if i = 1 then
9 h = embed(h,Ai);

10 wi ← attention(h + ri, M
k
i );

11 end
12 else
13 wi ← attention(̄ti−1 + ri);
14 end

15 t̄i ← read(wi, M
v
i );

16 ti = embed(ti,Ai);
17 Mv

i+1 ← write(wi, ti, M
v
i );

18 (h, π, t′) ← sample(Gp
batch(h,π,t)

) ; � corrupt a triple

19 Tbatch ← Tbatch ∪ {((h, π, t), (h, π, t′))};
20 end
21 end
22 Update model w.r.t.

∑
((h,π,t),(h,π,t′))∈Tbatch

∇[γ + f(h, π, t) − f(h, π, t′)]+;

Fig. 1. The architecture of single network layer (Left). The architecture of TravNM
(Middle). The multi-hop reasoning with TravNM when L = 3; The detailed writing
module (Bottom Right).
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5.2 Layers Stacking

In order to stack multiple layers, two strategies on parameters tying (i.e.,
key/value memories) within the unified model are proposed: “sole” and “shared”:

1. “sole”: We proposed this strategy following [30]. In this setting, for the ith

network layer that handles its corresponding hop, it has its own independent
key memory matrix Mk

i and value memory matrix Mv
i .

2. “shared”: Key memory matrices and value memory matrices are shared
across different layers, i.e., Mk

1 = Mk
2 = · · · = Mk

L and Mv
1 = Mv

2 = · · · =
Mv

L.

5.3 Refining Value Memories

Intermediate entity information (e.g., entities themselves or entity types) appear-
ing in the path could be critical for multi-hop reasoning to eventually reach the
correct answer entity, so it should be incorporated into the stacked model in a
proper way. Note that this information is only incorporated into the model for
training purpose, i.e., this information only exists in training phase in order to
refine the value memories, because intermediate entity information is unavailable
in testing phase or real-world scenarios. To this end, we propose three methods
for writing information into the memories inspired by [8,38], which locally update
the value memory matrix with important information. The three methods are
developed w.r.t. the information type to be consumed by the stacked model.

“entity”. In this method, the value memory matrix at the ith layer is updated
with the embedding of the intermediate entity ti connected by the ith relation
by the writing operation introduced later. For example, regarding (DonalTrump,
PresidentOf/FoundedIn, ?), the intermediate entity the United States as the
answer of the first hop is consumed to update the value memory. We show this
model setting in Fig. 1(Middle). Specifically, we take the intermediate entities
to be incorporated into the stacked model as an example to explain the writing
operation, which is illustrated in Fig. 1(Bottom Right). Say we are at the ith hop,
after its memories being read, the embedding of the corresponding intermediate
entity ti will be written to the value memory matrix Mv

i using the same attention
weights wi generated in the memory reading stage. The relevant memory slots
are first partially erased and then the information of ti is written into the value
memory. To update the value memory matrix Mv

i into Mv
i+1 for the next hop,

ti is first linearly transformed, and the result is fed into the Sigmoid function,
then we obtain the erased vector ei:

ei = Sigmoid(Weti + be) (4)

where We is a linear transformation matrix with size of r × r, and be is an
r-dimensional bias vector, and both We and be are shared across all layers. As
a result, ei is an r-dimensional vector, whose values range from 0 to 1. Then the
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value memory Mv
i is partially erased to be M̃v

i , and each of its memory slots
M̃v

i (j) is modified by:

M̃v
i (j) = M̃v

i (j) ◦ [i − wi(j)ei] (5)

where i is an r-dimensional unit vector with each element being 1, and ◦ is
element-wise multiplication. Similar to the reading case, the weight wi(j) tells
the operation where to pay more attention. In this way, the value location is
reset to 0 if the corresponding weight and the erased vector element are both 1,
otherwise, this location remains unchanged. Following the erasing operation, an
r-dimensional add vector ai is calculated for updating the value memory, i.e., a
linear transformation and the Tanh function are applied to v sequentially:

ai = Tanh(Wav + ba) (6)

and both of them are linear transformation matrix and bias vector with size r×r
and r, where both Wa and ba are also shared across all layers. Finally, each slot
of the value memory matrix is updated to be Mv

i+1(j) as follows:

Mv
i+1(j) = M̃v

i (j) + wi(j)ai (7)

“type”. In this method, only the types associated with intermediate entities
appearing in the path are exploited to help to reason. Specifically, the entity
types are also represented by embeddings through another independent embed-
ding matrix with the same dimension as the entity, then these embeddings are
written into the value memory with the same write operation introduced above.
Take the same query path mentioned above as an example, the entity type place
for the intermediate entity the United States in the last example is considered. In
many knowledge bases, the entity is annotated with types and could be obtained
by the provided API. For example, the types of entities in Freebase can be openly
accessed by Google Knowledge Graph Search API 1. There might be more than
one types for an entity but we only choose the most popular one.

“relation”. This is a baseline method, where only the relations appearing in the
path are considered by the model, a common strategy adopted by many existing
works [10,25]. We implemented this baseline method by simply removing the
writing operation from the model shown in Fig. 1(Middle).

5.4 Training

The score for each training triple in TravNM is defined as:

f(h, π, t) = ‖t̄L − t‖2 (8)

1 https://developers.google.com/knowledge-graph/.

https://developers.google.com/knowledge-graph/
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where t̄L is the final output embedding from the last (Lth) layer, representing the
answer for this path query, and t is the ground truth answer entity’s embedding
in the path query dataset Gp. We employ the following loss function for each
given path query triple (h, π, t):

L =
∑

(h,π,t)∈Gp,(h,π,t′)∈Gp′
(h,π,t)

[m + f(h, π, t) − f(h, π, t′)]+ + λ

L∑

i

(̄ti − ti)2 (9)

where [z]+ = max(z; 0) denotes the standard Hinge-loss with margin m and
(h, π, t′) is obtained by corrupting (h, π, t), i.e., randomly sampling an entity t′

(t′ �= t) from E to replace the tail entity t:

Gp′

(h,π,t) = {(h, π, t′), t′ ∈ E} (10)

the second regularization term encourages the generated intermediate entity
embeddings to lie near the real intermediate entity embeddings, and λ is a
parameter which controls the importance of the regularization term.

If the data points in a high-dimensional space spread too widely, the model
would fail due to the curse of dimensionality [6]. To solve it, we bound all entity
embeddings within a unit sphere to ensure the model robustness [11], i.e., ‖h‖ ≤
1 and ‖t‖ ≤ 1. The training algorithm is listed in Algorithm 1, where the “sole”
and “entity” settings are adopted.

6 Experiment Setups

In this section, we describe our experimental setups. First, we list four research
questions (RQs) to investigate our proposals, then introduce the datasets and
the evaluation metrics. Finally, we conduct experiments to answer the RQs.

6.1 Research Questions

We aim to answer the following research questions to evaluate the proposed
TravNM model.

RQ1: In terms of layers stacking strategies in TravNM, does “shared” out-
performs “sole”?

RQ2: In terms of memory update methods, which of “entity”, “type” and
“relation” could achieve the best performance?

RQ3: Based on proper layer stacking and memory updates, can TravNM
perform better multi-hop reasoning than other comparison models?

RQ4: How do the hyper-parameters affect TravNM in effectiveness and what
are the optimal ones?
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6.2 Datasets and Metrics

In this section, we introduce the datasets used for evaluating the multi-hop
reasoning task.

First, we introduce two large real-world fact knowledge graphs, called Base
Datasets.

FB15K-237: The widely used FB15k [3] extracted from Freebase is not
adopted in our experiments, since they suffer from test leakage through inverse
relations, i.e., many test triples can be obtained by inverting them in the train-
ing data [31]. Instead, we use the improved FB15K-237 introduced in [31] that
removes inverse relations from FB15k.

YAGO3-10: We also use YAGO3-10 [20] that is a subset of YAGO3 [20], a
large knowledge graph extracted from several sources. Each entity in YAGO3-
10 co-occurs with at least 10 relations, and most triples deal with descriptive
attributes of people like citizenship, gender and profession.

Query path datasets Gp are then constructed from Base Datasets. We propose
a random walk procedure to generate query paths that include intermediate
entity information by repeating the following steps, inspired by [10]:

1. Uniformly sample a path length L ∈ {1, . . . , Lmax} where Lmax is the prede-
fined maximum path length, and uniformly sample a head entity h ∈ E .

2. An L-step random walk is performed starting from h. For the ith hop, uni-
formly choose a relation ri from all relations incident on the previous entity
ti−1 (or h if i = 1 for consistence).

3. If i < L, uniformly choose the entity ti from E that ri reaches, and look up
for its entity type cti

. If i = L, just choose a tL (denoted as t).
4. Output a query path (h, π, t), where π = r1/t1, ct1/r2, ct2 . . . /rL for training

set or π = r1/r2 . . . /rL for valid and test set, and add it to Gp.

Statistics of all datasets we use are shown in Table 1.
Following [3,19], we adopt two metrics to evaluate the model.
MRR: Mean Rank Reciprocal Rank calculates the average reciprocal rank

of all correctly predicted entities. Compared with Mean Rank (MR), MRR is
less sensitive to outliers

Hit@10: This metric calculates the proportion of correct entities in top-10
ranked entities. i.e., the proportion of correct entities in top-10 ranked entities.

Table 1. Statistics of the experimental datasets

Dataset | E | | R | # of triples in train/valid/test

FB15K-237 14,541 237 272,115 17,535 20,466

FB15K-237-Path 4,455,610 146,611 109, 165

YAGO3-10 123,182 37 1,079,040 5,000 5,000

YAGO3-10-Path 12,174,868 29,684 34,643
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6.3 Comparison Methods

Various experiments are designed to answer the four proposed research questions.
Experiment 1. To answer RQ1 and RQ2, we develop different variants of

TravNM that employ different layer stacking strategies (i.e., “sole” and “share”)
and different value memory update methods (i.e., “entity”, “type” and “rela-
tion”), and they will be evaluated on FB15K-237 w.r.t. the metric MMR and
Hit@10 to find out the optimal setting. As for the entity types, there are 56 of
them in this dataset.

Experiment 2. To answer RQ3, we compare TravNM, which employs the
optimal layer stacking strategy and value memory update method from previous
experiments, with Comp. TransE, Comp. Bilinear and Comp. Bilinear Diag that
use compositional training proposed in [10], and Rajarshi’s Model based on RNN
proposed in [5]. The essential idea for compositional training methods including
Comp. TransE, Comp. Bilinear and Comp. Bilinear Diag is to train entity pairs
connected by both relations and paths:

– Comp. TransE: Comp. TransE uses the addition composition, and defines
the score of (h, π, t) as:

f(h, π, t) = −‖h + (r1 + · · · + rL) − t‖ (11)

– Comp. Bilinear: Comp. Bilinear uses the multiplication composition and
defines the score as:

f(h, π, t) = hᵀ(Mr1 ◦ · · · ◦ MrL)t (12)

– Comp. Bilinear Diag: Compared with Comp. Bilinear, this method con-
straints the relation matrices to be diagonal [34].

Since they have been proved to have better performance than PRA and its
variants in [10], we do not compare with them in the experiment.

Rajarshi’s Model: This model is based on RNN which allows chains of
reasoning across multiple relations and considers entity types as input.

TravNM-Single: We use entity and relation embeddings learned by only
one network layer on the fact knowledge graph G to directly perform multi-hop
reasoning. Specifically, a query path is modeled as the sum of the embeddings
of all relations in the path, where each embedding is learned from (h, r, t) only
by the single layered network.

Furthermore, we show the top-3 ranked answers output by TravNM for three
different path queries as case studies. We also evaluate the overall performance
of our model with respect to different path length.

Experiment 3. To answer RQ4, we run grid search to show how the two
important model hyper-parameters (i.e., r, the number of latent factors in A,B,
Mk and Mv, and D, the number of key/value memory slots) affect its reasoning
ability and find out the optimal ones. Specifically, the search for r ranges from
40 to 200 and for D ranges from 24 to 128 on both path datasets, and the
hyper-parameters with the best MRR performance are chosen.
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Table 2. Results of TravNM variants with different model settings on FB15K-237-
Path.

Variant shared sole

MMR Hit@10 MMR Hit@10

relation 0.382 40.7 0.297 35.8

type 0.403 46.6 0.315 37.3

entity 0.437 52.1 0.380 39.3

7 Experimental Results

In this section, we present the experimental results and discuss them.

7.1 RQ1 & RQ2

To answer RQ1 and RQ2, we run Experiment 1 and its results are shown in
Table 2. Similar experimental results are also achieved on the dataset YAGO3-
10-Path. Due to the space limitation, we simply omit them.

RQ1. From the column perspective of Table 2, we find that the “shared”
strategy achieves better performance than the “sole” strategy. We give several
explanations for this. One reason is that “sole” requires a sufficiently large num-
ber of training examples for each hop, which is generally not possible, so there
are risks that the model would be overfitting during training, but in “shared”,
the parameters can be trained in every hop. Moreover, for “sole”, reasoning with
a long path query might not work well because fewer training examples could
be provided for the parameters in the higher layers. In real-world applications,
the number of relations in each query path (or the path length) is dynamic and
even unknown in advance, therefore, the “shared” is more practical and robust.

RQ2. From the row perspective of Table 2, we notice that “entity” that
incorporates the intermediate entities has the best performance among“entity”,
“type” and “relation”. This is mainly because the reasoning can be better guided
towards the correct final answers by providing the most detailed intermediate
routing information among the three. Another reason is that in this way, the
value memory could be better trained with more data, i.e., the same value mem-
ory can be trained at every hop. Moreover, the “type” setting achieves the second
best result, and is better than the “relation” setting as it provides a degree of
additional information to the reasoning process compared with “relation”, and
this conclusion is consistent with that reached in [5]. In conclusion, the opti-
mal model settings for layer stacking and value memory update are “share” and
“entity”.

7.2 RQ3

We run Experiment 2 to answer RQ3. From Table 3, we can see that TravNM
outperforms other models in both datasets in terms of MRR and Hit@10.
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Table 3. Experimental results of TravNM and other models in terms of MRR and
Hit@10 in the task of multi-hop reasoning. [�]: Results are obtained by running
codes released by their authors (https://github.com/kelvinguu/traversing-knowledge-
graphs). [�]: Results are obtained by running codes released by their authors (https://
github.com/rajarshd/ChainsofReasoning).

Method FB15K-237-Path YAGO3-10-Path

MRR Hit@10 MRR Hit@10

Comp. Bilinear [�] 0.369 44.1 0.467 35.3

Comp. Bilinear Diag [�] 0.329 42.8 0.463 32.0

Comp. Trans-E [�] 0.331 45.7 0.604 38.8

Rajarshi’s Model [�] 0.394 48.2 0.618 37.1

TravNM-Single 0.297 38.1 0.446 35.7

TravNM 0.437 52.1 0.641 42.9
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Fig. 2. Performance of TravNM with different path lengths on FB15K-237-Path

Table 4. Top-3 ranking answers for 3 example path queries output by TravNM from
FB15K-237-Path test dataset, where reverse relations are prefixed with two asterisks
(**). The meanings of these complex path queries are: “What country was the movie
that Amy Smart was nominated for filmed in?”, “What is the citytown that the institute
in which the person who wrote the story of ‘Man of Steel’ studied locates in?” and
“What institute does the place where the award the person producing ‘The Sopranos’
was given to contains?”. The ground truth answer is in bold.

Path Query Amy Smart/nominated for/country

Top-3 Answers textbfUnited States, England, United Kingdom

Path Query Man of Steel/story by/**student/citytown

Top-3 Answers East Lansing, Boston, New York City

Path Query The Sopranos/**program/award winner/place of birth/contains

Top-3 Answers Indiana University, Pratt Institute, Harvard University

Specifically, TravNM has better performance than the compositional training
models that do not consider intermediate entity information. Also, Memory
Networks-based TravNM achieves better results than RNN-based Rajarshi’s

https://github.com/kelvinguu/traversing-knowledge-graphs
https://github.com/kelvinguu/traversing-knowledge-graphs
https://github.com/rajarshd/ChainsofReasoning
https://github.com/rajarshd/ChainsofReasoning
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Fig. 3. Model performance w.r.t. to different values of r and D on FB15K-237-Path
(left) and YAGO3-10-Path (right)

Model, validating the advantages of Memory Networks in the task of multi-
hop reasoning. Another observation is that RNN-based Rajarshi’s Model still
achieves promising results compared with other methods, showing the signifi-
cance of memory structures in sequential multi-hop reasoning.

As a case study, we examine some query paths with length 2, 3 and 4 from
the test dataset. In Table 4, we show three concrete path queries in the FB15K-
237-Path test dataset and their Top-3 answers predicted by TravNM, which are
retrieved from all entity embeddings based on their similarities with the final
output embedding. From this table we can see that the top ranked answers for
each query path are similar in concept (country for the first query, city for the
second query and institute for the third query) and the correct answer is ranked
higher than the others, indicating that given a query path, our model is able
to reason out the most probable answer from many entities with the similar
concept. Another observation is that although the final relation is 1-to-N in the
third query (i.e., the relation contains), which is more challenging, our model is
still able to rank the correct answer in the top-2.

In addition, Fig. 2 shows the performance of TravNM by varying the path
length from 1 to 5, and the experimental results show that our model achieves
its best performance on the path queries of length 3, which conforms to the con-
clusion obtained in [5]. On the other hand, in this table, TravNM-Single achieves
poor performance, validating the statement that the existence of cascading errors
could really damage performance.

In conclusion, by carefully and smartly stacking multiple single layers, sig-
nificant improvement is achieved in our model. One reason is that we adopt
the strategy of compositional training, which can effectively reduce cascading
errors [10].

7.3 RQ4

We run Experiment 3 to find out how different values of two important hype-
parameters (r and D) affect the performance of TravNM, and the results are
shown in Fig. 3. From those figures, we can observe that the optimal D for both
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datasets is 128, and the optimal r for FB15K-237-Path and YAGO3-10-Path are
120 and 140 respectively.

8 Conclusion

In this paper, we proposed a Neural Memory Networks-based model called
TravNM for the increasingly important but rarely studied multi-hop reason-
ing task over knowledge graphs. The major weakness of existing methods is that
they are unable to incorporate intermediate entity information during training.
To address this, we first proposed a single layered network, then stacked mul-
tiple network layers in order to adapt to the multi-hop reasoning task, and we
also designed proper parameters tying strategy and memory updating method to
incorporate entity information. We evaluate TravNM through extensive experi-
ments, and the results validate its superiority compared with other models.
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0101985) and National Natural Science Foundation for Young Scientists of China under
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Abstract. This paper studies sentiment classification in a setting where
a sequence of classification tasks is performed over time. The goal is to
leverage the knowledge gained from previous tasks to do better on the
new task than without using the previous knowledge. This is a lifelong
learning setting. This paper proposes a novel deep learning model for
lifelong sentiment classification. The key novelty of the proposed model
is that it uses two networks: a knowledge retention network for retaining
domain-specific knowledge learned in the past, and a feature learning net-
work for classification feature learning. The two networks work together
to perform the classification task. Our experimental results show that the
proposed deep learning model outperforms the state-of-the-art baselines.

1 Introduction

In many sentiment analysis applications, one needs to perform many tasks over
time, e.g., to analyze reviews of different products for many different clients,
or to analyze reviews of many/all products of a single client (e.g., a retailer). A
natural question is whether the system can improve itself over time as it analyzes
reviews of more and more categories of products. This is a lifelong learning (LL)
setting. LL is stated as follows: At any point in time, the learner has performed
learning on a sequence of tasks from 1 to N − 1. When faced with the Nth
task, it uses the knowledge gained in the past N − 1 tasks to help learn the Nth
task [7,31,34], which should do better than learning using only the training data
of the Nth task alone (without using any past knowledge). In our case, each task
is a sentiment classification problem that aims to classify each review into the
positive or negative class [19,23].

In [8], a lifelong learning technique is proposed for sentiment classification in
the context of naive Bayesian Classification. The method exploited the knowl-
edge of word probabilities under different classes in the past tasks/domains as
priors to help optimize the new task learning. In this paper, we propose a novel
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11446, pp. 795–811, 2019.
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deep learning model, which outperforms this existing approach. Note that by a
domain we mean a category of products. Since each of our task is from a different
domain, we use the terms domain and task interchangeably in this paper.

The proposed deep learning architecture is called SRK (Sentiment classifi-
cation by leveraging the Retained Knowledge). It consists of two networks, i.e.,
the “Feature Learning Network” (FLN) and the “Knowledge Retention Net-
work” (KRN), which jointly perform the supervised learning task. The FLN is
like a traditional network for supervised learning. The only difference is that it
learns a sequence of tasks. When it comes to learn the next/new task, it has
a set of very rich features as the network parameters gained from the previous
tasks can help the new task learning. That is because sentiment classification
in different domains is quite similar in the sense that sentiment expressions are
largely shared and have the same polarities across domains.

As we will see in Sect. 4.2, FLN alone is already able to outperform learning
using only the data from each task (without using any previous knowledge or
task data). However, we can do better. One weakness with using FLN alone is
that if the immediate previous task N −1 is very different from the new task N ,
then the new task may not perform well (see Sect. 4.3) because the short-term
memorized/residual parameters from task N − 1, which can be viewed as a type
of parameter initialization, will not be helpful to the new task N . But there may
be some other earlier tasks that may be helpful to the new task N . However, it
is hard for FLN to use them because of catastrophic forgetting [10]. Catastrophic
forgetting describes a phenomenon in learning multiple tasks sequentially in a
neural network, i.e., after each new task is learned, the knowledge learned from
the previous tasks may be forgotten by the network. Because of this problem, the
past knowledge that can be leveraged by the new task in FLN is quite limited,
which results in weaker performance (see Sect. 4.3). To deal with this problem,
we introduce the knowledge retention network KRN with the goal of retaining
domain-specific knowledge from the past domains. In order to achieve this goal,
KRN needs to deal with catastrophic forgetting.

A novel learning mechanism is proposed for KRN to deal with the forgetting
problem. It is thus able to retain domain-specific knowledge learned from indi-
vidual past domains, which is very helpful in learning similar tasks in the future.
The two networks (FLN and KRN) work together through a gate mechanism to
provide a robust solution.

Although several models for dealing with catastrophic forgetting exist, their
main goal is to preserve the past task learning. That is, after learning the Nth
task, the previous N − 1 tasks will still work. Their main goal is not to leverage
the knowledge learned and retained from the previous tasks to help learn the
new Nth task better. The focus of the proposed architecture is to leverage the
past learned knowledge to do better for the new task. That is why we propose a
two-network solution. More related work will be discussed in Sect. 2.

In summary, this paper makes the following contributions:

1. It proposes a deep learning architecture SRK for lifelong sentiment classifica-
tion, which has not been done before. SRK consists of two sub-networks to
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separately capture rich features and also shared knowledge of tasks. A knowl-
edge gate is designed to make the two networks work jointly. As discussed
above, this architecture allows the system to flexibly leverages the knowledge
learned from previous domains in the new domain.

2. To achieve the goal of retaining domain-specific knowledge to be used in simi-
lar tasks in the future, the knowledge retention network (KRN) needs to deal
with catastrophic forgetting. A novel partially (gradient) update mechanism
is proposed for the purpose based on the observation of activation sparsity in
neural networks (see Sect. 3).

3. Experimental results on sentiment classification show that the proposed
model SRK outperforms the state-of-the-art baselines from both lifelong
learning and continual learning which tries to deal with catastrophic for-
getting. It is also more stable/robust as we will see in Sect. 4.3.

2 Related Work

Our work is related to text classification. Traditional text classification mainly
uses Bag-of-Words models. In recent years, neural networks have been very pop-
ular due to their superior performance [47]. Classic neural networks do not con-
sider the sequential information in text, which is a drawback. To address the
issue, various Recurrent Neural Networks (RNNs) have been proposed, e.g., Long
Short-Term Memory (LSTM) [13], Gated Recurrent Units (GRU) [9], bidirec-
tional RNN [44], and attention-based RNN [42]. In this work, we adopted GRU
as the base for our lifelong RNN model. GRU has been shown to achieve similar
performances as LSTM for many NLP tasks.

2.1 Sentiment Classification

Sentiment classification, a key task of sentiment analysis [23], is a special case
of text classification. Earlier techniques use hand-crafted features and external
resources [21,23,38,43,46], which involve a great deal of human efforts. Recent
data-driven neural network methods directly use word features and/or discov-
ered new features by the models themselves. Many neural network based sen-
timent classification techniques have been reported [4,27,32,41,48]. They don’t
involve lifelong learning. Many aspect-based sentiment analysis methods are also
reported [5,14,17,26,33,36,37,39]. However, these methods also do not accumu-
late or use knowledge to learn new tasks as we do.

2.2 Lifelong Learning and Catastrophic Forgetting

Our work is most closely related to lifelong learning (LL) [6,7,31,34]. LL has
been used for sentiment classification in [8] based on naive Bayesian classifier.
However, its method is not applicable to neural networks because LL in [8]
exploits word probabilities from past domains, which is not directly usable in
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neural networks. Furthermore, neural networks suffer from catastrophic forget-
ting [10] when it learns continually. Similarly, the method in [29] is also hard to
apply to neural networks.

Several methods, under the name of continual learning, have been proposed
to overcome catastrophic forgetting, e.g., system-level consolidation [15,16] and
sequential Bayesian [2,11]. However, their main goal is to preserve the previously
learned results for past tasks while learning new tasks. Our focus is on how to
exploit previously learned knowledge to improve the new task learning. Also,
existing works are independent models with specific loss functions. They are
hard to be employed in our two-brunch framework.

2.3 Transfer Learning and Multitask Learning

Transfer learning or domain adaptation uses labeled training examples from the
source domain to help learning in the target domain that has no or very few
labeled training examples [1,12,18,22,40]. One typical use of transfer learning
is deep domain adaptation, which usually setups shared weights [20,35] or two-
stream architecture [28] to reduce the difference of distributions between the
source and target domains. Our feature learning network (FLN) functions like
transfer learning as it can transfer some knowledge from past domains to the
new domain. However, its transfer is limited as discussed in Sect. 1 because
the new domain is mainly affected by its immediate previous domain due to
catastrophic forgetting. That is why we use the knowledge-retention network
(KRN) to retain past domain-specific knowledge so that the new domain learning
can use knowledge from any similar past domains, which transfer learning or
domain adaptation cannot do.

LL is also different from multitask learning [3], which tries to optimize the
learning of multiple tasks simultaneously [17,30,45]. It does not accumulate past
knowledge and does not learn sequentially as LL does.

3 The Proposed Solution

Our lifelong sentiment classification problem can be stated as follows: At a par-
ticular point in time, the system has performed a sequence of N − 1 sentiment
classification (SC) tasks using their training data D1 to DN−1. It now has to
learn to perform the Nth new SC task given its training data DN , where each
training example is labeled with a positive or negative polarity (or sentiment).
The goal is to leverage the knowledge gained in the past N − 1 tasks to pro-
duce a better classifier than without using the past knowledge. The following
subsections present the proposed model.

3.1 Overall Framework

The overall architecture of the proposed SRK model is shown in Fig. 1. It con-
sists of three main components: (1) Feature Learning Network (2) Knowledge
Retention Network, and (3) Network Fusion component.
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Fig. 1. The overall architecture of the proposed SRK model.

Feature Learning Network. We use the Feature Learning Network (FLN) to
learn document representations to perform classification. As shown in the blue
box in Fig. 1, the structure of this network is a conventional Gated Recurrent
Units (GRU) [9], which is formulated as:

z = σ(Uzxt + Wzht−1),
r = σ(Urxt + Wrht−1),
h′ = tanh(Uhxt + Wh(r � ht−1)),
ht = (1 − z) � h′ + z � ht−1,

(1)

whose inputs are one-hot representations of words in sentences x =
{w1,w2, . . . ,wl}, where l is the sentence length. These one-hot vectors are first
mapped into dense representations by a pre-trained word embedding model E.
Then, we utilize a GRU cell whose state size is 500 to process the words one by
one:

ui = Ewi, i ∈ 1, 2, . . . , l,

{h1,h2, . . . ,hl} = GRU({u1,u2, . . . ,ul}),
(2)

{ui} and {hi} separately indicate word embedding of word i and GRU’s ith
state, respectively. We take the final hidden state hl as the feature embedding
vfeature = hl or representation of the whole document.

Knowledge Retention Network. To achieve lifelong sentiment classification,
we propose a Knowledge Retention Network to learn and to retain domain-
specific knowledge from previous tasks. Similar to Feature Learning Network,
the structure of this network is also a GRU cell with its state size 500 which has
the same input x and gives out states {h′

1,h
′
2, . . . ,h

′
l}. The final state h′

l is used
as the knowledge embedding vknowledge = h′

l. To retain knowledge, a different
learning method, called partial update, is proposed, which will be described in
detail in Sect. 3.2.

Network Fusion Component. To make the above networks work together
to produce the final result, we designed a Knowledge Gate to integrate the two
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kinds of representations, which is shown in the black box in Fig. 1. By using
the knowledge gate, the relevant information for the current task from both
two networks will be selectively combined to make the final decision, which is
formulated as follows:

g = σ(Wkvfeature + Ukvknowledge),
v = (1 − g) · vfeature + g · vknowledge,

P (y|x) = σ(Wv + b).
(3)

Here, g denotes the knowledge gate, W and b are parameters of the last fully
connected layer, and σ means the sigmoid activation function.

Finally, we choose Mean-Square Error (MSE) as the training loss function.
Note that other loss functions such as cross-entropy can also be applied as alter-
natives. Furthermore, to ensure both the Feature Learning and the Knowledge
Retention Networks learn good representations, we also use additional losses for
those two networks:

LF = MSE(y, σ(Wvfeature + b)),
LK = MSE(y, σ(Wvknowledge + b)),

(4)

where y is the true label. The final objective function is formulated as:

L = MSE(y, P (y|x)) + LF + LK . (5)

3.2 Partial Updating Mechanism

In order to perform sentiment classification tasks sequentially, the Knowledge
Retention Network needs to learn and retain domain-specific knowledge from
every task. However, conventional neural networks have poor performances
because they often suffer from the catastrophic forgetting problem as we dis-
cussed in the introduction section. Based on our pilot study, we found that
even though neural network based models have the ability to learn knowledge
from tasks in our case, they have the tendency to remember only knowledge

Fig. 2. Activation statistics in the state layer of GRU after convergence. Higher acti-
vation degree means more chance to be activated in a task.
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that is common across all tasks rather than important specific features in spe-
cific domains. They also tend to remember more of the last task learned due to
catastrophic forgetting. We propose a Partial Update Mechanism to solve the
problem.

The idea of partial update is inspired by the observation of activation sparsity
in neural networks. Figure 2 shows the histogram of the activation value of state
vector ht in Eq. 1 from a trained GRU network. We can see that only a small
number of hidden nodes have very high degrees of activation. Most hidden nodes
have relatively tiny activation values. This phenomenon becomes more obvious
as the number of model parameters grows.

Fig. 3. An example of a dense layer from a network. Colors of the input neurons
indicate the activation values. Darker color means a higher activation value or more
activated.

This observation indicates that we can exploit the property of activation
sparsity for knowledge learning and sharing among tasks. Specifically, for any
network converged on task (Di,Ti), we compute such statistical information for
every layer. Shown in Fig. 3, it is clear that the output weights corresponding to
those less activated neurons (neurons 2 and 3) can be regarded as less important
to task (Di,Ti). At the same time, we can say those weights corresponding
to those frequently activated neurons (neurons 1, 4 and 5) store much of the
important knowledge of the task. It is easy to understand that in a matrix
multiplication form y = Wh, when h2 and h3 have tiny values, any modification
for columns 2 and 3 in matrix W have relatively little impact on the output y.
Thus, when we train matrix multiplication based networks like RNNs, we can
keep some columns in the weight matrix unchanged, and only update those less
important ones.

To simplify our description, we name the partially updated weights as lifelong
weights, their inputs as control vectors and the tiny valued components of the
control vectors as free neurons. Along this line, we can divide the partial update
mechanism into two parts: Free Neuron Detection and Gradient Mask.

Free Neuron Detection. Suppose we are training a model with lifelong weights
{W i} and control vectors {hi}. To measure the importance of neurons in {hi},
we maintain a series of statistical information for {hi} as {si}, where the values
of si indicate the activation degrees of the corresponding neurons.

For each feed forward pass, values in {si} are updated as follow:

si
t = si

t−1 + |hi
t|, t = 1, 2, . . . , si

0 = 0, (6)
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where |hi
t| indicates the absolute value of the control vector, and si

t is actually
the accumulation of all |hi

t| through feed forward propagation during a task
training.

As the number of tasks grows, accumulation values {si} become larger and
larger. To avoid overflow, we perform a linear normalization for {si} before using
it directly:

ŝi
j =

si
j − min(si)

max(si) − min(si)
, j = 1, 2, . . . , d, (7)

where d is the dimension of si, and min() and max() indicate the minimum
and maximum values across si respectively. Then, in order to find free neurons
based on ŝi, we further sort the values of ŝi in ascending order. The dimen-
sions (neurons) whose values are in the top ε percentage will be regarded as free
neurons.

Gradient Mask. With the free neurons detected, when we are going to train the
model on a new task, gradient masks will be used. A gradient mask is a vector
which has the same size as the corresponding control vector hi. It tells us which
columns in the lifelong weight W i can be updated. Based on the normalized
accumulation ŝi defined in Eq. 7, we compute the gradient mask mi for weight
W i as:

mi
j =

{
1 − ŝi

j ŝi
j is in the top ε%,

0 otherwise.
(8)

Then the update rule for weight W i is modified as:

W i = W i − η(mi � ∂L

∂W i
). (9)

where η is the learning rate for back-propagation, and � represents element-wise
multiplication across the rows of the gradient matrix.

We want the ε to be self-adaptive in the lifelong learning setting. We propose
a self-adjusting strategy for ε. It is intuitive that if the model starts the first task
with a small ε, the knowledge network will suffer from the cold start problem,
and will have poor performance for a long time. To avoid this, we set ε to 100%
to allow the parameters to be fully updated in the first task, and then gradually
decrease it to a minimum value using the following function:

ε = (1 − τ)e−λn + τ, n = 0, 1, . . . , N, (10)

where n is the index of the current task, λ and τ separately indicate the scale
factor and the minimum value of the threshold, respectively. In our experiments,
we found setting both λ and τ to 0.1 usually generate good results.

Specifically, for our Knowledge Retention Network, we can find in Eq. 1 that
the lifelong weights are Uz, W z, U r, W r, Uh and W h. The corresponding
control vectors are xt, ht−1 and r�ht−1. In order to increase the value difference
between the neurons with high activation degrees and the neurons with low
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activation degrees, i.e., to enlarge the gap of their activation values in ht−1 (in
a GRU), we replace the original activation function tanh with the following:

f(x) =

⎧⎨
⎩

0.9 + kx x ≥ 0.9,
x 0 < x < 0.9,
kx x ≤ 0,

(11)

which is modified from the leaky-ReLU and k is the leak value that is usually set
as 0.001. We limit the value of the positive axis to 0.9 in order to make sure that
in most cases, the activation value will be no larger than 1.0, which is important
to avoid gradient explosion.

4 Experiments

We now evaluate the proposed model SRK and compare it with state-of-the-art
baselines. We will see that SRK is not only markedly better than the baselines
in general, but also more stable/robust when there is a major domain difference
in the successive tasks, a highly imbalanced training data distribution, or a very
small training dataset. This is because the accumulated past knowledge in SRK
can compensate for these undesirable but realistic training scenarios.

4.1 Experimental Setup

Experiment Data: We use the real-world Amazon review dataset from [8]. This
dataset has reviews of 20 categories of diverse products, which we also called 20
domains. Following the existing studies in [1,8,24], for each domain, the reviews
with rating score greater than 3 (>3) are regarded as positive reviews and the
reviews with rating score less than 3 (<3) are regarded as negative reviews. This
gives us 20 sentiment classification tasks (one for each domain). Details about
the dataset are given in Table 1. The size in the table is the number of reviews
and the neg(%) is the proportion of negative reviews in each domain. For each
domain, we further split its dataset into training and testing sets by 80% and
20%. During training, 10% of the training data is used as the development set.
Note that our dataset setting here is slightly different from that in [8], which uses
only 1000 reviews for each domain before the training and testing split because
their method is based on naive Bayes classification. We use the full dataset of
each domain for training because deep learning typically needs more training
data to learn effective models.

Models for Comparison. We consider the following models for comparison.

– SRK. This is our proposed model. Weights of the GRUs are initialized
randomly using truncated normal distribution N(0, 0.001). Weights of other
dense layers are randomly set following the uniform distribution in the range
between −√

6/(nin + nout) and
√

6/(nin + nout), where nin and nout are
the number of input and output neurons, respectively. Additionally, we use
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Table 1. Data statistics about 20 domains

Domain Size Neg (%) Domain Size Neg (%)

Kitchen 5,646 15.18 PC 7,393 21.58

Software 3,633 30.31 Players 5,467 43.23

Sports 4,638 15.17 Camera 4,587 29.28

Music 1,948 2.42 Tools 6,463 29.81

Baby 3,723 13.02 Audio 3,661 19.91

Home 9,355 18.9 Phone 2,703 32.89

Books 2,725 20.9 Laptop 3,686 23.28

Shoes 6,523 12.52 TV 4,579 28.41

Automotive 5,677 10.79 Network 2,815 27.32

Bed 2,750 17.32 Office 4,575 30.01

GloVe [25] as the pre-trained word embedding mentioned in Eq. 2. The model
is trained using the RMSProp optimizer1, where the batch size, learning rate
and momentum are set as 32, 0.0001 and 0.9, respectively.

– LSC (Lifelong Sentiment Classification). This is the näıve Bayes-based life-
long sentiment classification model in [8], which accumulates knowledge in a
Bayesian framework. We use all the parameter settings used in the original
work. We obtained the LSC system (and also the Amazon review dataset)
from the first author of the paper.

– I-RNN (Isolated RNN). A classic RNN model performing each task individ-
ually. It does not use knowledge sharing between multiple tasks. Each task is
viewed as an isolated one. Its parameters follow the same setting as SRK.

– FLN. This model uses only the feature learning network (FLN) of the pro-
posed SRK as described in Sect. 3.1. That is, only the FLN branch of SRK is
employed. Its parameters also follow the same setting as SRK.

– 2-FLN. This model uses two identical feature learning networks (FLNs). Its
parameters also follow the same setting as SRK. We use this baseline to see
if our SRK results can be achieved by a combination of two FLNs.

– EWC (Elastic Weight Consolidation). This is a well-known state-of-the-art
algorithm for continual learning that deals with catastrophic forgetting [15].
EWC tries to keep the network parameters close to those of past tasks during
the processing of a new task. To achieve that, a constraint is imposed on
the network to make the learned parameters staying close to their old values
weighted by their importance to the previous tasks. We follow the parameter
settings in the original paper.

Evaluation Measure. To have a fair and clear comparison with LSC [8], which
is most closely related to our work, we use balanced test sets (by down-sampling
the majority class) in our testing (training still uses the original imbalanced
1 http://www.cs.toronto.edu/∼tijmen/csc321/slides/lecture slides lec6.pdf.

http://www.cs.toronto.edu/~{}tijmen/csc321/slides/lecture_slides_lec6.pdf
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data as in [8]). Due to the balanced test set, we use accuracy as the evaluation
measure. Note that for all our experiments, all compared systems use the same
training and test data.

Two Experimental Settings: We use two experimental settings to evaluate
SRK: (1) Knowledge accumulation and application. In this setting, we show the
importance of knowledge accumulation to the new domain task. Specifically,
each domain is treated as the last domain with the rest 19 domains (randomly
sequenced) as the previous (or past) domains. (2) Continuous learning and test-
ing. In this case, we evaluate model performance in a continuous learning setting.
Specifically, we first set a fixed sequence of all domains, which is randomly cho-
sen. We then let a model process every domain one after another based on the
sequence. After each model is built for a domain, it is evaluated based on the
test data of that domain. We do this for all candidate models so as to test their
performance in this continuous learning setting.

4.2 Results in Experimental Setting (1)

In the first experimental setting, each domain is treated as the last domain in
turn. We first compare the performance from all candidate models. The accuracy
scores shown in Table 2 are the averaged scores of all 20 domains (averaging the
scores of each domain being the last). Based on the overall results, we can see
that SRK gives the best accuracy overall.

Table 2. Overall performance of all candidate models.

Model Accuracy Model Accuracy

LSC 86.68 2-FLN 88.44

I-RNN 83.86 EWC 86.29

FLN 87.73 SRK 89.85

Comparing SRK with I-RNN, FLN and 2-FLN, we first see that FLN
improves I-RNN markedly. This is because I-RNN treats every domain as an
independent task, but FLN implicitly retains some common knowledge in its
parameters during learning of previous tasks. This also indicates the existence
of knowledge sharing in sentiment classification tasks. Comparing 2-FLN and
FLN, we see that 2-FLN improves the results obtained by FLN. This is mainly
attributed to the capacity of more knowledge learned by the two networks in
2-FLN. Although 2-FLN only learns a single type of features, its two-thread
learning mechanism helps capture and keep more useful information from the
data. However, SRK outperforms 2-FLN. This is also intuitive because SRK
models two types of different information separately, namely, domain-specific
(KRN) and cross-domain knowledge (FLN), whereas 2-FLN only considers the
same type of information in its two network components. Note that although
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Table 3. Performance on 20 domains from all candidate models.

Domain LSC I-RNN FLN 2-FLN EWC SRK

Kitchen 74.44 84.79 86.14 87.50 85.99 89.18

Software 84.69 85.66 87.33 88.66 84.70 88.33

Sports 82.23 79.05 82.90 86.75 81.09 84.61

Music 85.52 87.50 75.00 75.00 87.50 87.50

Baby 86.54 76.47 88.82 88.23 88.52 92.94

Home 87.37 85.29 88.39 89.21 85.19 90.52

Books 84.89 83.65 88.94 85.57 88.68 89.42

Shoes 86.48 82.40 87.60 87.20 88.13 89.20

Automotive 90.00 81.06 83.98 88.34 83.15 87.37

Bed 84.02 80.62 87.50 90.62 85.09 90.62

PC 87.83 85.53 90.89 91.25 85.19 90.71

Players 87.96 86.80 90.95 91.87 88.96 92.48

Camera 88.70 85.85 89.64 90.40 88.88 90.65

Tools 87.12 85.73 90.98 89.67 87.62 90.16

Audio 89.37 82.45 88.15 90.78 87.71 91.22

Phone 87.54 82.90 89.31 88.46 84.73 88.46

Laptop 89.69 87.69 89.23 93.07 90.05 92.69

TV 88.76 85.46 91.13 90.64 83.63 91.87

Network 91.45 84.95 90.65 86.99 83.93 90.24

Office 88.81 83.25 86.92 88.53 86.99 88.76

FLN suffers from catastrophic forgetting to some extend as mentioned in Sect. 1,
but since sentiment classification tasks are similar, it retains some cross-domain
knowledge in feature learning.

Comparing SRK with LSC and EWC. We can see that SRK achieves a much
better result than EWC. The main reason is that, when EWC is enforced to
protect its parameters learned in the past domains, its regularization may hin-
der the model to reach a better parameter fitting for the new domain. Unlike
EWC, SRK does not impose restrictions for the past tasks, i.e., no explicit opti-
mization terms for the previous domains, which enable it to fit the current task
better, with the knowledge still being retained and used. LSC, a näıve Bayes-
based lifelong learning approach, achieves competitive results compared with
other neural models, which implies the usefulness of the knowledge accumula-
tion and utilization. However, LSC cannot model the contextual relationship due
to its conditional independence assumption on features (words). Its knowledge
is also restricted to some extent by only considering the word frequency/count
from different (past) domains. SRK, on the other hand, does not have those
limitations.
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Performance on All 20 Domains: The full results of all models on 20 domains
is reported in Table 3. We can make the following observations: (1) SRK achieves
the highest scores more than half of the time across all domains (11 out of 20)
and outperforms other models by a large margin. (2) In other domains (9 out
of 20) where SRK does not perform the best, we can see its performance is
competitive, with almost all less than 1% compared to the best model. SRK is
thus very stable/robust. (3) Although other models can attain the highest scores
in some domains, their performances are quite unstable, i.e., none of them can
reach the best scores consistently in those domains where SRK is not the best.

4.3 Results in Experimental Setting (2)

In the second experimental setting, we evaluate the performance gain in a con-
tinuous learning fashion. The results from the consecutive learning tasks are pre-
sented in Fig. 4, where four models are compared, namely, I-RNN, FLN, EWC
and SRK. Since 2-FLN has the closest performance to FLN in this setting and
LSC does not learn the same type of parameters like other neural models, their
results are excluded here. This simplified visualization and also makes our anal-
ysis more focused and clearer.

Fig. 4. Accuracy of a specific task sequence.

The conclusion that we can draw from Fig. 4 is three-fold. First, all three
continuous learning models (FLN, EWC and SRK) present an overall trend of
performance gain over I-RNN from task 1 to task 20, which shows the use-
fulness of knowledge accumulation during continuous learning. Second, SRK
consistently outperforms the other three models. This indicates the superiority
of the proposed architecture design in SRK for capturing both domain-specific
and cross-domain knowledge. Third, SRK demonstrates its superior stability or
robustness to the other models, which we detail next.
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Stability/Robustness of SRK. The stability/robustness is a key strength of
SRK. Briefly, SRK can address many hard cases where other models can’t.

(1) Domain difference. A notable dropping point can be observed from domain
Shoes to domain Automotive in Fig. 4, which can be attributed to their
domain differences, i.e., Shoes and Automotive are very different. In this case,
the model cannot rely on the parameters learned from its immediate previ-
ous (or (i − 1) th) domain to improve the current (or i th) domain. In other
words, the short-term memorized/residual parameters, which can be viewed
as a type of parameter initialization obtained from the last (i − 1) task, will
not be very helpful for the ith task. This is reflected by both FLN and EWC,
where they perform poorly for domain Automotive. The proposed SRK is
dramatically better in this case because it is able to leverage the knowledge
in KRN that is beyond/before the immediate previous domain. However, it is
hard for FLN to retain and to exploit such long-term knowledge due to forget-
ting. EWC mainly aims to deal with catastrophic forgetting by imposing the
constraint that its model parameters for learning the i domain are required
not to interfere with the old values in the previous domains. It is more likely
to ensure the performance of all tasks rather than to learn features or knowl-
edge to help the new task. These explain why SRK reaches a much better
result (86.89%) than FLN (81.07%) and EWC (82.04%). A similar situation
also occurs from baby to music.

(2) Imbalanced class distribution in training. In real-world review datasets, the
classes are usually imbalanced. Since we used the original class distribution in
training, there could be insufficient information to fit the minority class (e.g.,
the negative class) well and the training/learning might be biased toward
the dominating class (e.g., the positive class). This leads to the notably infe-
rior performance for models I-RNN, FLN and EWC for domains Automotive
and Shoes, for models I-RNN and FLN for domains Baby and Music, respec-
tively. However, this causes no problem for our SRK model as its accumulated
knowledge from the past in KRN helps to distinguish positive and negative
sentiment signals.

(3) Training data size. When the training data size is small, it causes underfit-
ting. However, since SRK retains the shared knowledge in its KRN (Knowl-
edge Retention Network), this self-learned prior knowledge can provide more
supervisory information to help learning to give a better performance. We can
see this from domains Music and Bed, where their dataset sizes are small. In
those cases, FLN and I-RNN did not work well but SRK does.

5 Conclusion

In this paper, we proposed a novel deep learning model SRK for lifelong senti-
ment classification. Specifically, a shared knowledge network is used to retain the
knowledge learned from each previous task, and at the same time employed a
traditional recurrent neural network to perform feature learning across domains.
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Two networks are combined to perform the classification task. For knowledge
retention and sharing, a partially update mechanism was designed to preserve the
knowledge from individual domains, which has been shown instrumental. Exper-
imental results on real-world datasets shown that the new architecture markedly
outperforms the state-of-the-art baselines and is also more stable/robust.
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