Michal Patka
Magnus Myreen (Eds.)

Trends in
Functional Programming

19th International Symposium, TFP 2018
Gothenburg, Sweden, June 11-13, 2018
Revised Selected Papers

LNCS 11457

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology Madras, Chennai, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA

11457

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Michat Patka - Magnus Myreen (Eds.)

Trends in
Functional Programming

19th International Symposium, TFP 2018

Gothenburg, Sweden, June 11-13, 2018
Revised Selected Papers

@ Springer

Editors

Michat Patka Magnus Myreen

Chalmers University of Technology Chalmers University of Technology
Gothenburg, Sweden Gothenburg, Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)

Lecture Notes in Computer Science

ISBN 978-3-030-18505-3 ISBN 978-3-030-18506-0 (eBook)

https://doi.org/10.1007/978-3-030-18506-0
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-18506-0

Preface

This volume contains a selection of the papers presented at TFP 2018: the Symposium
on Trends in Function Programming 2018, held June 11-13, 2018, in Gothenburg,
Sweden.

TFP is an international forum for researchers with interests in all aspects of func-
tional programming, taking a broad view of current and future trends in the area. It
aspires to be a lively environment for presenting the latest research results and other
contributions, described in draft papers submitted prior to the symposium. This edition
of the symposium is the first to adopt a new format for selecting articles for publication.
In the new format, authors can choose to have their submissions formally reviewed
either before or after the symposium. Four full papers were submitted for formal review
before the symposium, out of which three were accepted by the Program Committee for
presentation and later publication. Each submission was reviewed by at least three
reviewers. For the remaining submissions, the Program Committee chairs only checked
that the drafts were within the scope of TFP and thus relevant for presentation at
TFP. Submissions appearing in the draft proceedings are not considered as
peer-reviewed publications.

The TFP 2018 program consisted of two invited talks and 16 presentations. The
invited talks were given by Simon Thompson (University of Kent, UK) on
“Refactoring Reflected,” and Neel Krishnaswami (University of Cambridge, UK) on
“Retrofitting Purity with Comonads.” Out of the 16 presentations, three full papers
were accepted for publication before the symposium as mentioned earlier, whereas a
further nine full papers were submitted to the formal post-refereeing process. The
Program Committee selected four more papers for publication from these, which brings
us to the total of seven that are included in these proceedings.

We are grateful to everyone at Chalmers University for their help in preparing and
organizing TFP 2018, in particular Elisabeth Kegel Andreasson. We gratefully
acknowledge the financial support of the Information and Communication Technology
Area of Advance at Chalmers and Erlang Solutions, which allowed us to reduce
registration costs. We also gratefully acknowledge the assistance of the TFP 2018
Program Committee and the TFP Steering Committee for their advice while organizing
the symposium.

February 2019 Michatl Patka
Magnus Myreen

Program Committee

Soichiro Hidaka
Meng Wang

Sam Tobin-Hochstadt
Tiark Rompf

Patricia Johann

Neil Sculthorpe
Andres Loh

Tarmo Uustalu
Cosmin E. Oancea
Mauro Jaskelioff
Peter Achten
Dimitrios Vytiniotis
Alberto Pardo
Natalia Chechina
Peter Sestoft

Scott Owens

Michat Patka (Chair)
Magnus Myreen (Chair)

Sponsoring Institutions

Organization

Hosei University, Japan

University of Bristol, UK

Indiana University Bloomington, USA
Purdue University, USA

Appalachian State University, USA
Nottingham Trent University, UK
Well-Typed LLP, UK

Reykjavik University, Iceland

University of Copenhagen, Denmark
Universidad Nacional de Rosario, Argentina
Radboud University, The Netherlands
Microsoft Research, UK

Universidad de la Republica, Uruguay
Bournemouth University, UK

IT University of Copenhagen, Denmark
University of Kent, UK

Chalmers University of Technology, Sweden
Chalmers University of Technology, Sweden

Chalmers ICT Area of Advance

Erlang Solutions

Contents

Colocation of Potential Parallelism in a Distributed Adaptive
Run-Time System for Parallel Haskell
Evgenij Belikov, Hans-Wolfgang Loidl, and Greg Michaelson

Reversible Session-Based Concurrency in Haskell.
Folkert de Vries and Jorge A. Pérez

Intrinsic Currying for C++ Template Metaprograms.
Paul Keir, Andrew Gozillon, and Seyed Hossein Haeri

Towards Optic-Based Algebraic Theories: The Case of Lenses.
J. Lopez-Gonzdlez and Juan M. Serrano

Saint: An API-Generic Type-Safe Interpreter
Maximilian Algehed, Patrik Jansson, Solrun Halla Einarsdottir,
and Alex Gerdes

Improving Haskell.
Martin A. T. Handley and Graham Hutton

High-Performance Defunctionalisation in Futhark
Anders Kiel Hovgaard, Troels Henriksen, and Martin Elsman

Author Index e

®

Check for
updates

Colocation of Potential Parallelism
in a Distributed Adaptive Run-Time
System for Parallel Haskell

Evgenij Belikov(®™) | Hans-Wolfgang Loidl, and Greg Michaelson

School of Mathematical and Computer Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, Scotland, UK
{eb120,H.W.Loidl,G.Michaelson}@hw.ac.uk,
http://www.macs.hw.ac.uk

Abstract. This paper presents a novel variant of work stealing for load
balancing in a distributed graph reducer, executing a semi-explicit paral-
lel dialect of Haskell. The key concept of this load-balancer is colocating
related sparks (potential parallelism) using maximum prefix matching on
the encoding of the spark’s ancestry within the computation tree, recon-
structed at run time, in spark selection decisions. We evaluate spark colo-
cation in terms of performance and scalability on a set of five benchmarks
on a Beowulf-class cluster of multi-core machines using up to 256 cores.
In comparison to the baseline mechanism, we achieve speedup increase
of up to 46% for three out of five applications, due to improved locality
and load balance throughout the execution as demonstrated by profil-
ing data. For one less scalable program and one program with excessive
amounts of very fine-grained parallelism we observe drops in speedup by
17% and 42%, respectively. Overall, spark colocation results in reduced
mean time to fetch the required data and in higher degree of parallelism
of finer granularity, which is most beneficial on higher PE numbers.

Keywords: Parallel functional programming + Graph reduction -
Load balancing - Distributed-memory work stealing *
Adaptive parallelism

1 Introduction

Exploiting modern distributed parallel architectures is key for improving appli-
cation performance and scalability beyond a single machine, for instance for
Large-Scale Data Analytics and High-Performance Computing. Additionally,
using a high-level programming language is crucial for countering growing soft-
ware complexity and for increasing programmer productivity by delegating most
of the coordination and parallelism management to the run-time system (RTS).
Functional Programming offers a high level of abstraction and advanced lan-
guage features [1,14,16], e.g. higher-order functions, polymorphism, and type
classes. In particular, functional languages appear suitable for exploitation of

© Springer Nature Switzerland AG 2019
M. Patka and M. Myreen (Eds.): TFP 2018, LNCS 11457, pp. 1-19, 2019.
https://doi.org/10.1007/978-3-030-18506-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18506-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-18506-0_1

2 E. Belikov et al.

fine-grained parallelism as independent sub-expressions can be evaluated in any
order without changing the result (known as the Church-Rosser property [9]),
facilitating incremental parallelisation and allowing for sequential debugging of
parallel programs, whilst avoiding race conditions and deadlocks [13].

Work stealing [5] is a popular passive (i.e. receiver-initiated) decentralised
load balancing mechanism, where idle processing elements (PEs) attempt to
steal work from busy PEs. Important parameters in this mechanism are the
target of the steal attempt and the choice of the (potential) parallel work units,
or sparks. In our current parallel RTS the target is randomly selected, to avoid
hotspots in the communication, and older sparks are preferred, because they
typically represent work of larger granularity. Large granularity aims at offsetting
the communication costs, especially in computations that use the Divide-and-
Conquer (D&C) pattern or are nested and are run on distributed architectures
with very high communication costs.

Note that in our system all parallelism is advisory rather than mandatory.
This means that RTS policies can adaptively tune the amount of parallelism,
deciding not to generate actual parallelism. This can effectively in-line work into
other threads and thereby improve the granularity of the computation.

In this paper we investigate the effect of a modification to the spark (work)
selection policy, namely spark colocation (SC), on performance and scalability.
SC exports the spark that is, according to a specific metric, most closely related
to the computation performed by the thief and is aimed at resolving the trade-off
between data locality and load balance, instead of exporting the oldest spark.
The chosen metric for proximity is the distance in the compute tree, and the
RTS is extended to capture a trace of spark sites, representing the path in the
tree leading to this spark. On selecting a spark to export to another PE, the one
with the longest common prefix is used, as the one that is most closely related to
recent work performed on the thief’s PE. Compared to the baseline mechanism,
SC achieves speedup increase of up to 46%, due to improved locality and load
balance throughout the execution as demonstrated by profiling data, whilst for
one less scalable application and one with excessive amount of overly fine-grained
parallelism we observe drops in speedup of 17% and 42%, respectively.

Next we introduce the GUM RTS for Glasgow parallel Haskell in Sect. 2 and
discuss the design and implementation of spark colocation in Sect. 3, followed
by evaluation of empirical results for five applications based on means-based
metrics from per-PE profiles gathered from runs on a 256-PE-cluster in Sect. 4.
A brief discussion of related work follows in Sect. 5, before our conclusion and
future work directions are presented in Sect. 6.

2 Distributed Graph Reduction in the GUM RTS

Here we briefly introduce the Glasgow parallel Haskell (GpH) language and
the underlying GUM (Graph Reduction on a Unified Machine Model) RTS that
implements distributed graph reduction [31], including most notably using global
addresses to implement virtual shared memory, thread management using sparks
that efficiently represent potential parallelism, and work stealing, or fishing, for
passive load distribution.

Colocation of Potential Parallelism 3

2.1 Haskell Extension for Semi-explicit Parallelism

Glasgow parallel Haskell (GpH) [12] extends Haskell [15,24], a popular non-strict
purely functional language, by adding a sequential and a parallel combinator as
language primitives (pseq and par), which allow the specification of evaluation
order and identification of potential parallelism, respectively. This high-level
programming model is semi-explicit. The advisory parallelism identification and
optional application-level granularity control are explicit. All other coordination
aspects, such as communication and synchronisation, are implicitly controlled
by the RTS. Listing 1.1 provides an example.

1 fib 0 =0 —— sequential version

2 fib 1 =1 — NB args of type Integer

3 fib n = fib (n—1) + fib (n-2)

A

pfib 0 - =0 — parallel version

¢ pfib 1 _ =1

7 pfib nt | n<=t = fib n — threshold for granularity control
8 | otherwise = x ‘par‘ y ‘pseq‘ x + y

9 where x = pfib (n-—1) t
10 y = pfib (n—2) t

Listing 1.1. GpH Example: Sequential and Parallel Fibonacci Functions

Using par, the programmer provides a hint to the RTS that the first argument
expression can be beneficially evaluated in parallel, thus creating a spark, and
the RTS decides at run time whether the spark will be turned into a light-
weight thread increasing the actual degree of parallelism or ignored. Note that
in order to be useful the first expression should be unevaluated, represent a large-
enough amount of computation, and be shared with the rest of the program [21].
This mechanism can be viewed as implementing lazy futures similar to lazy task
creation [25]. To cleanly separate the computation and coordination concerns
Evaluation Strategies [22,30] were introduced on top of the basic primitives.

2.2 Memory Management

GUM implements GpH by supporting distributed graph reduction, where each
graph node represents a potentially shared computation, using a combination
of a wirtual shared memory that holds the shared graph nodes and independent
local heaps associated with separate GUM instances that run on each PE in
parallel. Once a node has been evaluated it is replaced by the result, which is in
turn sent to all the PEs that require it.

This design, based on private heaps with some sharing across them, is scal-
able as most of garbage collection (GC) can be performed locally without the
need for communication and synchronisation. GUM uses a generational garbage
collector that is either copying or compacting depending on the RTS flags set,
thus avoiding a stop-the-world design (e.g. as used in GHC-SMP [23]). Heap
objects that survive for a long time are promoted from the initial and frequently
GC’d heap area (called nursery) to a different space that is GC’d less often. This
GC scheme assumes that most heap objects will expire after a short period of
time allowing the associated memory to be reclaimed. Additionally, GUM uses
distributed weighted reference counting [4] to manage the virtual shared heap.

4 E. Belikov et al.

2.3 Thread and Parallelism Management

GUM represents sub-computations using light-weight threads that are mapped
to relatively few heavy-weight OS threads (often one per core) in an M-to-N
fashion for scalability (similar to Green Threads). Each RTS instance maintains
a local thread pool for runnable threads and blocked queues for threads waiting
on a result of evaluation performed by another potentially remote thread®.

GUM’s scheduler is unfair and non-preemptive. It prioritises handling mes-
sages and implements the evaluate-and-die evaluation model [28]. In this model
a thread picks up a thunk (an unevaluated expression) to evaluate and returns
control to the scheduler once either the evaluation to weak-head normal form
has completed or thread blocks waiting on another value under evaluation.

Sparks that represent potentially parallel work are created using the par
primitive and kept in a separate local pool on each PE. Sparking is inexpen-
sive, as it merely adds a pointer to a graph node representing the expression
to be evaluated to the pool, which is implemented using an efficient lock-free
dequeue [8], which allows the owner to use one end locally for pushing, whilst
older sparks are stolen off the other end using a single atomic compare-and-swap
operation (FIFO). The overhead is absent unless two threads happen to simul-
taneously operate on the same item of the dequeue. Sparks are discarded if they
have been already evaluated or if the spark pool is full.

2.4 Workload Distribution

Load balancing across PEs is achieved through work stealing (also called fishing)
and aims at reducing the overall idle time across PEs. The two main decisions
include: (1) where to steal from (victim selection by the thief or selection of for-
warding destination by victim with no sparks available for export) and (2) which
spark to export (decision made by a victim that has exportable sparks). This
work is focused on the latter decision.

Figure 1 illustrates the message types and the protocol. A FISH message
is a request for work and is forwarded to randomly selected PEs until either
some work was found or the FISH expires by reaching a maximum age (it is
incremented with every hop). If the thief was successful, it receives a SCHEDULE
message containing some work and potentially some related data. The thief
responds by sending an ACK message with an updated list of pairs of old and
new global addresses to the victim to update the virtual shared memory to reflect
the change. If the FISH expires, it is sent back to the original PE, which then
can then send out a new FISH.

The default mechanism selects a victim at random. A victim that receives a
FISH, selects the oldest spark for donation and sends it back to the origin PE.
This is where SC differs: it selects a spark from the same source of parallelism
using mazimum prefic matching on the encoding of the path of the spark within

! Parallelism is exploited over pure functions and I/0 is handled orthogonally by a
separate thread.

Colocation of Potential Parallelism 5

PE PE PE

i i k

FISH (age:O)

FISH (age-age, 1)

SCHEDULE (packedGraph)

T

Fig. 1. Multi-Hop successful FISHing attempt

the computational graph, rather than using the age of the spark (as described
in detail in Sect. 3).

Fish delay and delay factor as well as a limitation on the number of outstand-
ing fishes (currently one) are used to avoid swamping the network with FISHes.
Thread migration is not supported in the current implementation.

3 Spark Colocation

Spark Colocation is aimed at improving load balance and locality by exporting
the spark that is most closely related to the computation performed by the thief.

3.1 Motivating Example

Consider the example from Fig. 2 that illustrates a situation where two PEs work
on several tasks and one PE needs to decide which spark to donate.

The tree structure represents computational dependencies, whilst the dashed
regions depict which tasks are located on which PE. In particular, both sparks
ended up on PEl. As PE2 continues the evaluation it runs out of tasks and
sends a FISH to PEl. In turn, PE1 can now decide which spark to donate. It
would donate B, which we assume is older?, in the baseline case. Then it would
continue to execute the remaining spark A locally. However, the result of A
is needed by PE2, which would require additional communication. Similarly, if
spark B is exported and turned into a thread on PE2, communication is required
to send the result to PE1. If Spark Colocation is used A would be donated as it
is more related to the computation on PE2.

The main idea is to allocate computations to PEs that have worked on related
computations. A related computation is located closely in the same computa-
tional sub-tree, because its result or produced data are likely to be required by

2 This is reasonable as PE1 is the main PE and PE2 starts with no work.

6 E. Belikov et al.

@ = evaluated ®= spark
O = to be evaluated

Fig. 2. Example of potential for colocation

the other computation. The concept of SC builds on the notion of proximity
between computations. Two sparks are defined to be in close proximity if the
path in the tree between their nodes is short. In particular, if the root node is
on the path, the sparks can be considered unrelated.

3.2 Design

SC is an extension of the baseline work stealing mechanism, investigating the
effect of favouring colocation of related sparks, rather than selecting a spark to
export based on its age alone. The idea is to allocate computations to PEs that
have worked on related computations, i.e. computation located closely in the
same computational sub-tree likely to require the result of, or share some data
with the other. Using SC, the information on the proximity between sparks that
would normally be lost during compilation is forwarded to the RTS, where it
can dynamically influence scheduling and load balancing decisions at run time.

Informally, the colocation algorithm behaves as follows: if a PE is idle, it will
attempt to steal work from others that will respond with the spark on the path
through the compute tree that is most related to the computation performed
by the thief, rather than with the oldest. We use the ancestry relation with the
mazximum prefix function as the matching function for finding the best match
between the encoding of the thief and of the sparks available to the victim. The
baseline mechanism is used as a fallback.

Figure 3 illustrates the encoding for two sources of parallelism, thus base 2 is
used for the encoding. For example, if spark A with the encoding 01 was turned
into a thread and then had the choice between sparks B and C| the latter would
be chosen as given its encoding 010 it has a longer common prefix of length two
with A as opposed to B with encoding 00, which shares only one symbol with A.
We can also see that A requires the result of computation C, whilst it does not
require the result of B to proceed. An ancestor of a spark is recursively defined as
either the direct creator of the spark (its parent), or as the ancestor of its parent.

Colocation of Potential Parallelism 7

The ancestry relation is encoded as a path in the computation represented by a
string of symbols that encode the branch at each tree level.

Fig. 3. Spark ancestry encoding example

We select maximum prefiz as a matching function, because the resulting
encoding mirrors closely the actual tree-like computational structure of the appli-
cation. The ancestry relation defines the distance between a thread’s encoding
and the encoding of a given spark as the sum of edges traversed on the path
from one encoding to the other in the tree. The smaller the distance the more
closely related two sub-computations are deemed to be. Investigation of alterna-
tive encodings and matching functions remains for future work.

3.3 Implementation

SC is implemented as an explicit language primitive—a version of the par combi-
nator we call parEnc—that takes additional encoding arguments that are passed
to the RTS and used to tag the sparks. The path to the spark constitutes an
encoding, where we start from the root and add a symbol for each sub-branch
chosen at each level. The symbol corresponds to the parEnc site that leads to
the creation of the spark and is appended to its inherited parent’s encoding.

Spark Selection: In the baseline mechanism, the spark pool is implemented as a
lock-free double-ended queue, so that the owning PE can add new sparks at the
tail of the deque whilst sparks are exported off the head. This mechanism avoids
most of the synchronisation cost as it is only incurred when threads attempt to
dequeue the same spark, as the owner turns local sparks into threads by taking
them from the tail, which is similar to the Breadth-first-Until-Saturation-then-
Depth-first mechanism [6].

By contrast, SC uses spark encodings to select related sparks, if possible.
Internally, we use hash tables to store and efficiently access the information on

8 E. Belikov et al.

threads and sparks using their respective identifiers as lookup keys. This mecha-
nism enables the RTS to distinguish sparks based on their source of parallelism
and location within the compute tree of the application for a given input. Each
time a spark is created it stores its encoding in the hash table. This encoding is
compared to the encoding carried by an incoming FISH message, extended with
information about the encoding of the thief. The spark pool is traversed and a
spark with a maximum prefix match is donated. To trade precision for overhead,
the maximum traversal length can be specified as an RT'S option.

Matching Function: We have chosen to encode ancestry as a string of symbols
to the base needed to encode the maximum number of branches at a level of the
tree, reflecting the dynamic relationship that arises at run time.

As a natural choice, maximum prefix string matching is used to determine the
spark for export, since it represents the closest relation between the computations
in the graph. Nevertheless, the matching may potentially lead to more commu-
nication than in the baseline case and increased amount of inter-PE sharing as
implicated by the number of global addresses. Therefore an empirical evaluation
is needed.

Packet Format: To propagate ancestry information, the packet format is
extended for the FISH and the SCHEDULE protocol messages. FISH is extended to
carry the requesting PE’s encoding, whilst SCHEDULE includes the exported spark
and its encoding. When turned into a thread, the spark’s encoding is used as
the thread’s encoding, which is in turn passed on to the sparks it may generate.

Profiling: To facilitate comparison between SC and the baseline mechanism, the
event-based profiling sub-system is extended to record thread granularities, i.e.
the run time elapsed from start to termination of a thread, and fetch times, i.e.
run time spent in the state waiting for data to arrive, in addition to the already
available profiling information such as per-PE load over time, message counts,
and number of global addresses.

The extension is small as it requires mainly adding calls to a timer function
in places where a thread enters a particular state (e.g. fetching) and recording
the difference when a transition to another state occurs. The extension does not
impede scalability as it only involves keeping an additional per-thread counter
adding little to the existing profiling overhead, whilst the events are written
out to file as they occur using a separate asynchronous thread responsible for
buffered I/0.

Colocation of Potential Parallelism 9

4 FEvaluation

We compare SC and the baseline mechanism using empirical measurements.

4.1 Methodology

We run each of the five applications five times for each PE-count both with and
without event-based profiling and compare the median runs with and without
SC3. The elapsed (wall-clock) run time is measured in milliseconds and includes
both the mutation time and the garbage collection time. We don’t have exclusive
access to the cluster, so that although it is usually lightly loaded, we can’t fully
rule out some variation due to interference with other processes running on the
machines. As PVM is used as a communication library [11], processes are placed
onto nodes in a round robin fashion as specified in a hostfile that is read in top-
to-bottom order.

Using ends-based metrics such as run time and speedup alone doesn’t provide
sufficient insight into why the observed effects of SC take place, for instance with
respect to load balance over time. Therefore, we also collect profiling data for
several means-based metrics: per-PE numbers of threads over time as a measure
of load balance and degree of parallelism, thread sizes reflecting granularity,
numbers of transmitted messages of different types, as well as the numbers inter-
PE pointers to assess data locality, and fetch times and counts for data-carrying
messages.

4.2 Target Platform

The applications are run on a 32-node Beowulf cluster of multi-cores using up to
256 PEs. The cluster comprises a mix of 8-core Xeon 5504 nodes with two sock-
ets with four 2 GHz cores, 256 KB L2 cache, 4 MB shared L3 cache and 12 GB
RAM, and 8-core Xeon 5450 nodes with two sockets with four 3 GHz cores, 6 MB
shared L2 cache and 16 GB RAM. The machines are connected via Gigabit Eth-
ernet with an average latency of 0.23 ps, measured using the Linux ping utility
(average round-trip time of 100 packets). We use the CentOS 6.7 operating sys-
tem, the GHC 6.12.3 Haskell compiler, the GCC 4.4.8 C compiler, and the PVM
3.4.6 communication library. The optimisations are turned on (-02).

4.3 Applications

We use five D&C benchmark applications adopted from the parallel part of the
established nofib benchmarking suite [26] and from a recent study of Evaluation
Strategies [22]. In particular, we use parfib which is the standard parallelism
microbenchmark, parpair with calls to sumeuler and parfib nested within
the pair and evaluated in parallel, interval-based sumeuler version reformulated

3 Median is used as it is more robust to outliers.

10 E. Belikov et al.

using the D&C pattern that calculates the sum of Euler Totient* functions in
a given range, worpitzky that calculates the Worpitzky identity® and minimax
that implements a game using alpha-beta pruning (Table 1).

Table 1. Applications overview

Application | Parallelism pattern | Regularity Input parameters
parfib D&C Regular 50 35
parpair Nested D&C Irregular/regular | 100000 10 50 35
sumeuler |D&C Irregular 100000 10
worpitzky |D&C Irregular 27 30 18
minimax D&C Irregular 482

4.4 Results

The results summarised in Table2 demonstrate that substantial speedups can
be reached for both the baseline and for the colocation case over sequential run
time, achieving speedup improvement of up to 46% with SC over the baseline
for three of the programs. However, we also observe a drop in speedup for SC,
for the less scalable minimax, and for worpitzky with excessively fine-grained
parallelism and parallelism degree of 17% and 42%, respectively. We focus on
load balance and granularity profiles for sumeuler as they most clearly depict
the differences between the mechanisms.

Table 2. Applications’ speedups on 256 PEs

Application | Sequential Baseline Colocation |Change in %
run time (sec) |speedup speedup

parfib 1609 204 219 +7

parpair 2870 200 231 +16

sumeuler |1450 142 207 +46

worpitzky |3269 175 101 —42

minimax 160 95 79 —17

Load Balance: Figures4 and 5 show the detailed per-PE profiling data for
sumeuler indicating load balancing behaviour change resulting from SC use.
We visualise data using 128 PEs for readability, but the difference is stronger
for higher numbers of PEs. Figure 4 visualises PEs 1-64 as horizontal bars, Fig. 5
PEs 65-128, baseline being on the left and SC on the right. A per-PE profile

* http://mathworld.wolfram.com /TotientFunction.html.
5 http://mathworld.wolfram.com/WorpitzkysIdentity.html.

http://mathworld.wolfram.com/TotientFunction.html
http://mathworld.wolfram.com/WorpitzkysIdentity.html

sumeuler 0 100000 10

spark colocation

baseline

140k

120k

100k

80k

60k

40k

20k

140k

120k

100k

80K

60k

40k

20k

[T

Colocation of Potential Parallelism

AT T A AT

130k

120k

100k

80k

60k

0k

20k

140k

120k

100k

80k

B

40k

20k

execution time (ms)

11

Fig. 4. Event-based load balancing per-PE profile comparison for sumeuler PEs 1-64 out of 128 (Color figure online)

E. Belikov et al.

12

(sur[uo oS8y 10100)) QT JO MO KZT—G9 SHJ IeTneums I0j uostredmod agoid {J-1od Suruereq peol paseq-juesy g *Srq

(sw) awi uonndaxa

R ¥oz 1004 x0e 409 xow ¥0T [] A0 N0z Ho0 ¥08 ¥09 x0F 40z []

=)
=3

e e ——— LTI ,|RF
I3 Yoz ¥oo ¥0e %08 ¥0r %0z [xon ¥z w001 ¥oe ¥os A% %0z [l
uones’o|od v_Lme aul|eseq

0T 00000T 0 43|n3WNs

Colocation of Potential Parallelism 13

shows PEs on the y-axis and execution time in milliseconds on the x-axis, thus
depicting load-balance across PEs over time. The darkness of the green value at
each point in time shows the utilisation (i.e. the number of runnable threads) as
an average over a fixed time window, whilst idle time is shown in red. Addition-
ally, the small blue stripes embedded in the lines for each individual PE reflect
the number of communicating (blocked-on-fetch) threads.

Overall, we observe better load balance for SC, as almost all of the bars are
green, as opposed to the baseline case, where there are substantially more gaps
and areas with a reduced number of threads visible. In particular, most of the
blocking time is at the end of execution for the baseline (we can distinguish
the execution and the waiting for termination as two distinct phases), but it is
more spread out and more evenly distributed across more PEs for SC, which
exhibits fewer blocking hotspots. We can see noticeably more short green stripes
for baseline reflecting the need to fetch data, which appears less often for SC
as either the data is readily available or the waiting can be overlapped with
computation performed by another thread.

Additionally, the data show good load balance for SC, with very similar total
run times on each PE, whilst for the baseline the run times are more variabile,
with differences of over 30% of the total run time in some cases.

Granularity: We use event-based profiling to record execution time for each
thread. Figure6 depicts the granularity of sumeuler on 256 PEs, with number
of threads on the y-axis and thread granularity in milliseconds on the x-axis.
Light-red represents the baseline case, light-blue SC, and a darker shade shows
the overlap between both. The granularity profiles are overlapping but distinct.

We observe fewer threads and coarser granularity for the baseline case®, which
results from exporting older and likely larger sparks, which are then turned into
threads on arrival at the thief PE. Note that the RTS cannot re-balance threads,
as opposed to sparks, between PEs, and therefore this behaviour can lead to load
imbalance. By contrast, SC exports sparks that are closer to a thief’s encoding,
but of smaller granularity, which allows more flexibility in saturating larger num-
ber of PEs. Although finer granularity is associated with additional overhead, in
this case the advantage of improved load balance out-weighs this overhead. Note
that due to thread subsumption, which allows a thread to evaluate a potentially
parallel child computation sequentially, not all of the fine-grained sparks will be
turned into threads, thus reducing the overhead.

Degree of Parallelism: Complementing the granularity profiles, Tables3 and 4
present the measured total (across PEs) and calculated median (per PE) spark
and thread counts, representing the potential and actual degree of parallelism,
respectively. We report data from the median run profiled on 256 PEs for each
benchmark, comparing the baseline against SC.

Overall, we observe consistently higher potential parallelism in the range
between 2% and 45% for SC, which translates into proportionally higher increase

5 For other benchmarks SC consistently leads to more and smaller threads.

14 E. Belikov et al.

75~

50~

threads

25-

o=

2000

4000
runtime in ms

benchmark

. sumeuler
. sumeuler_sc

6000

Fig. 6. Granularity of sumeuler on 256 PEs (Color figure online)

Table 3. Spark counts for benchmarks on 256 PEs

Application | Median Total Change in %
Baseline | SC | Baseline | SC

parfib 11 12| 2755 3172 | +15

parpair 14 19| 3840 5045 | 4+-31

sumeuler 6 7| 1854 1983 | +7

worpitzky | 1322 | 1927 337116 | 488550 +45

minimax 7 5 2466 2525 | +2

in the number of threads of up to 197%. This can be attributed to the export of

related sparks rather than the oldest, which may reduce potential for subsump-

tion once the computation is shared across the PEs. Sparks are inexpensive

as they are pointers to sub-graphs and can be maintained with low overhead
and allow more flexibility for load balancing, potentially increasing utilisation.

Threads are more expensive as they require the creation of data structures in

the heap to hold thread state and related information, which may increase the
memory management overhead.

Colocation of Potential Parallelism 15

Table 4. Thread counts for benchmarks on 256 PEs

Application | Median Total Change in %
Baseline | SC | Baseline | SC

parfib 4 6| 1127 1584 | +41

parpair 5 10| 1195 2508 | +110

sumeuler 3 4 802 955 | +19

worpitzky | 322 979 | 82065 |243709|+197

minimax 4 4 1092 1055 | -3

Using SC turns out to be particularly beneficial for larger numbers of PEs as
the number of threads per PE is increased in all but one case, whilst the amount
of total heap available grows with the number of PEs reducing the pressure
on the garbage collector. The worpitzky benchmark is an example of worst-
case behaviour, demonstrating that having a higher number of threads may
become counterproductive when there are already more than enough threads in
the baseline case, due to additional overhead, reducing scalability.

Fetching Behaviour: Another distinguishing characteristic and the most direct
indicator of SC’s efficacy is the fetch time threads spend waiting for data
required by the computation to arrive. Table5 compares the baseline and SC
across applications for the median run on 256 PEs (no data available for
minimax).

Table 5. Overview of fetching on 256 PEs (in ms)

Application | Baseline mean |Colocation |Mean fetch Total fetch |Total fetch
fetch time mean fetch |time change in |time count
across PEs time across | % across PEs |change in |change in

PEs % %

parfib 829 637 —23 +8 +35

parpair 1109 566 —49 -5 +78

sumeuler 594 290 —51 —29 +49
worpitzky 19 12 —40 +81 +163

In some cases it is possible that the data is already available or fits into the
same packet, resulting in fetch time of zero, as for many sumeuler threads, and
in other cases the fetch time may exceed the time the thread spends performing
the computation.

We observe that SC has consistently a smaller mean fetch time across PEs
than the baseline, with drops in the range between 23% and 51%. This indicates
that the threads in SC case are 'more useful’ in the sense that they spend less time

16 E. Belikov et al.

waiting on data to arrive. Thus, despite finer granularity, SC threads have higher
average utilisation as can be seen from the load balancing results, and the degree
of parallelism is increased, which allows more overlap between communication
and computation. Although the total number of fetch messages is increased due
to the larger number of threads, for parpair and sumeuler, the benchmarks that
benefit most from SC, the total fetch times are still lower than for the baseline
due to reduction in individual fetch times.

5 Related Work

Although popularised by Cilk [5], work stealing was used in earlier parallel imple-
mentations of functional languages [6,18,27], whilst remaining popular in con-
temporary implementations (e.g. [10]), as reviewed in a recent survey [32], with
locality-awareness being a popular current research direction.

Table 6. Overview of GUM and related systems

RTS (Language) |Parallelism Scheduling |Archi- |Synchro-|Load
identification tecture | nisation |balancing
Cilk [5] (C ext.) |Explicit LIFO Shared |Explicit |Work
(cilk_spawn) stealing
GHC-SMP [23] | Annotations FIFO Shared |Implicit |Work
(GpH) (advisory) unfair stealing
Manticore [10] Impl. data par. |FIFO Shared |Implicit | Work
(NESL/CML- expl. task par nestable pushing
alike)
X10 [7] (X10) Impl. data par. |PGAS Shared |Implicit |Work
expl. task par stealing
GUM [31] (GpH) | Annotations FIFO Virtual | Implicit |Work
(advisory) unfair shared stealing
DREAM [20] Explicit process |Round Shared- |Implicit | Work
(Eden) instantiation robinfair nothing pushing

Table 6 provides an overview of GUM compared to the most related systems,
which together span a wide spectrum of parallel language run-time systems. For
more detailed and broader comparisons refer to further literature [2,3]. With
respect to parallelism identification GUM and SMP occupy a unique place in
the design space as the annotations provide hints that are advisory rather than
mandatory, as is e.g. process instantiation performed in an Eden program, which
will lead to a creation of a remote process. Eden and GUM are similar in the
architectural respect that unlike other systems they enable distributed execution.
On the other hand they differ in the implementation as GUM provides a Global
Indirection Table for inter-PE pointers implementing the virtual shared memory

Colocation of Potential Parallelism 17

abstraction, whilst DREAM uses shared-nothing design and sends data once
it is in normal form. Manticore and X10 are somewhat similar in chosing to
incorporate both implicit data parallelism and explicit task parallelism, whilst
GUM makes no special arrangements for data parallelism and treats expressions
requiring data as tasks. There is no agreement on the scheduling style among
the systems, Manticore allowing nested schedulers and X10 following PGAS
distribution style. GUM and SMP follow the evaluate-and-die model that leads
to an unfair design, but helps improve performance by avoiding some overhead.

In all systems thread and memory management are implicit as well as syn-
chronisation, with an exception of Cilk. This allows for a high level of expressive-
ness, compared to explicit synchronisation and parallelism management. Despite
the popularity of work stealing, some systems have chosen to use work pushing
to reduce the amount of communication. This diversity exacerbates the difficulty
of directly comparing these systems and languages.

Granularity control is another key consideration for execution of non-strict
parallel functional programs [19], both through thread subsumption [25] and
explicit application-level specification using thresholding and sophisticated fuel-
based algorithms [29] at application or library level. Moreover, work stealing was
also shown to benefit from granularity awareness [17].

6 Conclusion

We have introduced spark colocation, a work stealing variant that maintains
dynamic information about ancestry throughout the execution and uses this
information to select sparks that are more closely related to a thief’s computa-
tion, rather than picking the oldest spark. We report results from five Glasgow
parallel Haskell benchmark programs running on a cluster of multi-cores using
an extended version of the GUM RTS on up to 256 cores, showing speedup
improvements of up to 46% for three of the programs. Examining profiling data
suggests that the gain is due to improved load balance and reduced average
fetching time, suggesting that related tasks were indeed colocated.

However, the drop in speedup for one less scalable application and one with
excessive amounts of overly fine-grained parallelism, suggests that a heuristic
could be developed to switch between the baseline and spark colocation depend-
ing on both application and architectural characteristics such as the number and
computational capability of PEs.

Our mechanism requires minimal programmer overhead, and we argue that it
is possible to automatically place annotations by enumerating pars and replacing
each par with parEnc, with the corresponding encoding as an argument. As fur-
ther future work, we would like to investigate different encodings and matching
functions to effect granularity in the opposite direction towards a more coarse-
grained setting, which becomes useful if the number of PEs is small or parallelism
degree is excessive.

Acknowledgements. We are grateful to the anonymous reviewers for comments that
have substantially improved the presentation of this paper.

18

E. Belikov et al.

References

10.

11.

12.

13.

14.

15.

16.
17.

18.

. Backus, J.: Can programming be liberated from the von Neumann style? A func-

tional style and its algebra of programs. CACM 21(8), 613-641 (1978)

. Belikov, E.: Language run-time systems: an overview. In: Proceedings of Impe-

rial College Computing Student Workshop, OpenAccess Series in Informatics
(OASIcs), vol. 49, pp. 3-12. Leibniz-Zentrum fuer Informatik (2015)

Belikov, E., Deligiannis, P., Totoo, P., Aljabri, M., Loidl, H.-W.: A survey of high-
level parallel programming models. Technical report HW-MACS-TR-0103, Depart-
ment of Computer Science, Heriot-Watt University, December 2013

Bevan, D.: An efficient reference counting solution to the distributed garbage col-
lection problem. Parallel Comput. 9(2), 179-192 (1989)

Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K., Zhou, Y.: Cilk: an
efficient multithreaded runtime system. In: Proceedings of the Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP 1995), pp. 207-216 (1995)
Burton, F.W., Sleep, M.R.: Executing functional programs on a virtual tree of
processors. In: Proceedings of the 1981 Conference on Functional Programming
Languages and Computer Architecture, pp. 187-194. ACM (1981)

Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster com-
puting. In: ACM SIGPLAN Notices, vol. 40, pp. 519-538. ACM (2005)

Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: Proceedings of the
17th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 21-28
(2005)

Church, A., Rosser, J.B.: Some properties of conversion. Trans. Am. Math. Soc.
39(3), 472-482 (1936)

Fluet, M., Rainey, M., Reppy, J., Shaw, A., Xiao, Y.: Manticore: a heterogeneous
parallel language. In: Proceedings of the 2007 Workshop on Declarative Aspects of
Multicore Programming, pp. 37-44. ACM (2007)

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM:
Parallel Virtual Machine: A User’s Guide and Tutorial for Networked Parallel
Computing. MIT Press, Cambridge (1994)

Hammond, K.: Glasgow parallel Haskell (GpH). In: Padua, D. (ed.) Encyclopedia
of Parallel Computing, pp. 768-779. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-0-387-09766-4_46

Hammond, K.: Why parallel functional programming matters: panel statement.
In: Romanovsky, A., Vardanega, T. (eds.) Ada-Europe 2011. LNCS, vol. 6652, pp.
201-205. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21338-
017

Hu, Z., Hughes, J., Wang, M.: How functional programming mattered. Natl. Sci.
Rev. 2(3), 349-370 (2015)

Hudak, P., Hughes, J., Peyton Jones, S., Wadler, P.: A history of Haskell: being lazy
with class. In: Proceedings of the Third ACM SIGPLAN Conference on History of
Programming Languages, pp. 1-12. ACM (2007)

Hughes, J.: Why functional programming matters. Comp. J. 32(2), 98-107 (1989)
Janjic, V., Hammond, K.: Granularity-aware work-stealing for computationally-
uniform grids. In: 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (CCGrid), pp. 123-134. IEEE (2010)

Kranz, D.A., Halstead Jr., R.H., Mohr, E.: Mul-T: a high-performance parallel
Lisp. ACM SIGPLAN Not. 24, 81-90 (1989)

https://doi.org/10.1007/978-0-387-09766-4_46
https://doi.org/10.1007/978-0-387-09766-4_46
https://doi.org/10.1007/978-3-642-21338-0_17
https://doi.org/10.1007/978-3-642-21338-0_17

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Colocation of Potential Parallelism 19

Loidl, H.-W., Trinder, P., Butz, C.: Tuning task granularity and data locality of
data parallel GpH programs. Parallel Process. Lett. 11(04), 471-486 (2001)
Loogen, R., Ortega-Mallén, Y., Pefia-Mari, R.: Parallel functional programming in
Eden. J. Funct. Program. 15(3), 431-475 (2005)

Marlow, S.: Parallel and Concurrent Programming in Haskell: Techniques for Mul-
ticore and Multithreaded Programming. O’Reilly, Sebastopol (2013)

Marlow, S., Maier, P., Loidl, H.-W., Aswad, M., Trinder, P.: Seq no more: better
strategies for parallel Haskell. In: Proceedings of the 3rd ACM Symposium on
Haskell, pp. 91-102 (2010)

Marlow, S., Peyton Jones, S.L., Singh, S.: Runtime support for multicore Haskell.
ACM SIGPLAN Not. 44, 65-78 (2009)

Marlow, S.: (Eds.) Haskell 2010 language report 2010. http://www.haskell.org/
onlinereport/haskell2010

Mohr, E., Kranz, D., Halstead Jr., R., et al.: Lazy task creation: a technique for
increasing the granularity of parallel programs. IEEE Trans. Parallel Distrib. Syst.
2(3), 264-280 (1991)

Partain, W.: The NoFib benchmark suite of Haskell programs. In: Launchbury, J.,
Sansom, P. (eds.) Functional Programming, Glasgow 1992, pp. 195-202. Springer,
Heidelberg (1993). https://doi.org/10.1007/978-1-4471-3215-8_17

Peyton Jones, S.L.: Parallel implementations of functional programming languages.
Comput. J. 32(2), 175-186 (1989)

Jones, S.L.P.; Clack, C., Salkild, J.: High-performance parallel graph reduction. In:
Odijk, E., Rem, M., Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 365, pp. 193—206.
Springer, Heidelberg (1989). https://doi.org/10.1007/3540512845_40

Totoo, P., Loidl, H.-W.: Lazy data-oriented evaluation strategies. In: Proceedings
of 3rd ACM Workshop on Functional High-Performance Computing, pp. 63-74
(2014)

Trinder, P., Hammond, K., Loidl, H.-W., Peyton Jones, S.L.: Algorithm + strategy
= parallelism. J. Funct. Program. 8(1), 23-60 (1998)

Trinder, P., Hammond, K., Mattson Jr., J., Partridge, A., Peyton Jones, S.: GUM:
a portable parallel implementation of Haskell. In: Proceedings of PLDI, pp. 79-88
(1996)

Yang, J., He, Q.: Scheduling parallel computations by work stealing: a survey. Int.
J. Parallel Prog. 46(2), 173-197 (2018)

http://www.haskell.org/onlinereport/haskell2010
http://www.haskell.org/onlinereport/haskell2010
https://doi.org/10.1007/978-1-4471-3215-8_17
https://doi.org/10.1007/3540512845_40

q

Check for
updates

Reversible Session-Based Concurrency
in Haskell

Folkert de Vries and Jorge A. Pérez(®)

University of Groningen, Groningen, The Netherlands
j.a.perez@rug.nl

Abstract. A reversible semantics enables to undo computation steps.
Reversing message-passing, concurrent programs is a challenging and
delicate task; one typically aims at causally consistent reversible seman-
tics. Prior work has addressed this challenge in the context of a pro-
cess model of multiparty protocols (or choreographies). In this paper, we
describe a Haskell implementation of this reversible operational seman-
tics. We exploit algebraic data types to faithfully represent three core
ingredients: a process calculus, multiparty session types, and forward
and backward reduction semantics. Our implementation bears witness
to the convenience of pure functional programming for implementing
reversible languages.

Keywords: Reversibility - Message-passing concurrency -
Session types - Haskell

1 Introduction

This paper describes a Haskell implementation of a reversible semantics for
message-passing concurrent programs. Our work is framed within a prolific line
of research, in the intersection of programming languages and concurrency the-
ory, aimed at establishing semantic foundations for reversible computing in a
concurrent setting (see, e.g., the survey [5]). When considering the interplay of
reversibility and message-passing concurrency, a key observation is that commu-
nication is governed by protocols among (distributed) partners, and that those
protocols may fruitfully inform the implementation of a reversible semantics.
In a language with a reversible semantics, computation steps can be undone.
Thus, a program can perform standard forward steps, but also backward steps.
Reversing a sequential program is not hard: it suffices to have a memory that
records information about forward steps in case we wish to return to a prior state
using a backward step. Reversing a concurrent program is much more difficult:
since control may simultaneously reside in more than one point, memories should
be carefully designed so as to record information about the steps performed in
each thread, but also about the causal dependencies between steps from different
threads. This motivates the definition of reversible semantics which are causally
consistent. A causally consistent semantics ensures that backward steps lead to

© Springer Nature Switzerland AG 2019
M. Patka and M. Myreen (Eds.): TFP 2018, LNCS 11457, pp. 20-45, 2019.
https://doi.org/10.1007/978-3-030-18506-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18506-0_2&domain=pdf
http://orcid.org/0000-0002-1452-6180
https://doi.org/10.1007/978-3-030-18506-0_2

Reversible Session-Based Concurrency in Haskell 21

| Choreography (Global Type) |

Projection
A A I
Monitor Monitor Monitor
(Local Type) e (Local Type) T (Local Type)
]]
Located Process |Located Process| |L0cated Process|
Configuration Configuration Configuration

Fig. 1. The model of multiparty, reversible communications by Mezzina and Pérez [7].

states that could have been reached by performing forward steps only [5]. Hence,
it never leads to states that are not reachable through forward steps.

Causal consistency then arises as a key correctness criterion in the defi-
nition of reversible programming languages. The quest for causally consistent
semantics for (message-passing) concurrency has led to a number of proposals
that use process calculi (most notably, the m-calculus [8]) to rigorously specify
communicating processes and their operational semantics (cf. [7] and references
therein). One common shortcoming in several of these works is that the pro-
posed causally consistent semantics hinge on memories that are rather heavy; as
a result, the resulting (reversible) programming models can be overly complex.
This is a particularly notorious limitation in the work of Mezzina and Pérez [7],
which addresses reversibility in the relevant context of 7w-calculus processes that
exchange (higher-order) messages following choreographies, as defined by mul-
tiparty session types [3] that specify intended protocol executions. While their
reversible semantics is causally consistent, it is unclear whether it can provide a
suitable basis for the practical analysis of message-passing concurrent programs.

In this paper we describe a Haskell implementation of the reversible seman-
tics by Mezzina and Pérez [7] (the MP model, in the following). As such, our
implementation defines a Haskell interpreter of message-passing programs writ-
ten in their reversible model. This allows us to assess in practice the mechanisms
of the MP model to enforce causally consistent reversibility. The use of a func-
tional programming language (Haskell) is a natural choice for developing our
implementation. Haskell has a strong history in language design. Its type sys-
tem and mathematical nature allow us to faithfully capture the formal reversible
semantics and to trust that our implementation correctly preserves causal con-
sistency. In particular, algebraic data types (sums and products) are essential to
express the grammars and recursive data structures underlying the MP model.

Next, Sect. 2 recalls the key notions of the MP model, useful to follow our
Haskell implementation, which we detail in Sect.3. Section4 explains how to
run programs forwards and backwards using our implementation. Section 5 col-
lects concluding remarks. The implementation is available at https://github.
com/folkertdev/reversible-debugger.

https://github.com/folkertdev/reversible-debugger
https://github.com/folkertdev/reversible-debugger

22 F. de Vries and J. A. Pérez

2 The MP Model of Reversible Concurrent Processes

Our aim is to develop a Haskell implementation of the MP model [7], depicted
in Fig. 1. Here we informally describe the key elements of the model, guided by a
running example. Interested readers are referred to Mezzina and Pérez’s paper [7]
for further details, in particular the definition and proof of causal consistency.

2.1 Overview

Figure 1 depicts two of the three salient ingredients of the MP model: config-
urations/processes and the choreography, which represent the communicating
partners (participants) and a description of their intended governing protocol,
respectively. There is a configuration for each participant: it includes a located
process that relies on asynchronous communication and is subject to a moni-
tor that enables forward/backward steps at run-time and is obtained from the
choreography. Choreographies are defined in terms of global types as in mul-
tiparty session types [3]. (We often use ‘choreographies’ and ‘global types’ as
synonyms.) A global type is projected onto each participant to obtain its corre-
sponding local type, which abstracts a participant’s contribution to the protocol.
Since local types specify the intended communication actions, they may be used
as the monitors of the located processes.

The third ingredient of the MP model, not depicted in Fig. 1, is the opera-
tional semantics for configurations, which is defined by two reduction relations:
forward (—) and backward (~~). We shall not recall these relations here; rather,
we will introduce their key underlying intuitions by example—see Sect. 2.5 below.

2.2 Configurations and Processes

The language of processes is a m-calculus with labeled choice, communication of
abstractions, and function application: while labeled choice is typical of session 7-
calculi [2], the latter constructs are typical of higher-order process calculi, which
combine features from functional and concurrent languages [9]. The syntax of
processes P, Q, ... is as follows:

P,Q:=ul{(V).P send value V on name u, then run P
| u?(z).P receive a value on name u, bind it to z, then run P

| wa{li-Pi}ier select a label I; (j € I), broadcast this choice, run P;

| wo{l; : Pi}ier receive a label [; (j € I), run P;
| PlQ parallel composition of P and
| X | uX.P variable and process recursion
| Vu function application
| (vn)P name restriction: make n local (or private) to P

| 0 terminated process

Reversible Session-Based Concurrency in Haskell 23

In w<{l;.Pi}icr and u> {l; : P;}icr, we use I to denote some finite index set.
The higher-order character of our process language may be better understood
by considering that the syntax of values (V,W,...) includes name abstractions
Az.P, where P is a process. Formally we have:

ww = n |,y 2 nn' = a,b| sy v,v n= Lt | £E |
V,W u= a,b|z,y,2| v, | \z. P

where u, w, ... range over names (n,n’,...) and variables (z,y,...). We distin-
guish between shared and session names, ranged over a,b,c,... and s,5,...,
respectively. Shared names are public names used to establish a protocol (see
below); once established, the protocol runs along a session name, which is private
to participants. We use p,q,... to denote participants, and use session names
indexed by participants; we write, e.g., sip). We also use v,v', ... to denote base
values and constants. Values V' include shared names, first-order values, and
name abstractions. Notice that values need not include (indexed) session names:
session name communication (delegation) is representable using abstraction pass-
ing [4].

The syntax of configurations M, N, ... builds upon that of processes; indeed,
we may consider configurations as compositions of located processes:

M,N = ({a{(z).P} | £{a?(z).P}
| M||N|(n)M [0
| 6 1C 3 PS | s [H-F-0)* | 52 (hinho)| k[(Vu), €]

Above, identifiers £, ¢’ denote a location or site. The first two constructs enable
protocol establishment: £ {a!{x).P} is the request of a service identified by shared
name a implemented by P, whereas £{a?(x).P} denotes service acceptance.
Establishing an n-party protocol on service a then requires one configuration
requesting a synchronizing with n — 1 configurations accepting a. Constructs for
composing configurations, name restriction, and inaction, given in the second
row, are standard. The third row above defines four constructs that appear only
at run-time and enable reversibility:

— L) : |C 5 P is a running process: location £ hosts a process P that implements
participant p, and C records labeled choices enforced so far.

— Spp| LH X UJ is a monitor where: sy is the indexed session being moni-
tored; H is a local type with history (see below); T is a set of free variables;
and the store o records their values. The tag # says whether the running
process tied to the monitor is involved in a backward step (# =) or not
(&d=29).

— s : (hyxhy) is the message queue of session s, composed of an input part h;
and an output part h,. Messages sent by output prefixes are placed in the
output part; an input prefix takes the first message in the output part and
moves it to the input part. Hence, messages in the queue are not consumed
but moved between the two parts of the queue.

24 F. de Vries and J. A. Pérez

— Finally, the running function kL(V u), EJ serves to reverse the S-reduction
resulting from the application V u. In k |_(V u), EJ , £ is the location where the
application resides, and k is a freshly generated identifier.

These intuitions are formalized by the operational semantics of the MP model,
which we do not discuss here; see Mezzina and Pérez’s papers [6,7] for details.

2.3 Global and Local Types

As mentioned above, multiparty protocols are expressed as global types
(G,G',...), which can be projected onto local types (T,T’,...), one per par-
ticipant. The syntax of value, global, and local types follows [3]:

U,U" == bool |nat | --- | T—o
G,G" == p—q:({U)G|p—q:{li:Gi}icr | pX.G| X | end
T,7" == plU).T | p?({U).T | p@{li : Ti}ier | p&{li : Ti}ier | pX.T | X | end

Value types U include first-order values, and type T'— ¢ for higher-order values:
abstractions from names to processes (where ¢ denotes the type of processes).

Global type p — q: (U).G says that p sends a value of type U to q, and then
continues as G. Given a finite index set I and pairwise different labels /;, global
type p — q: {l; : G;}ier specifies that p may choose label [;, send this selection
to q, and then continue as G;. In both cases, p # q. Recursive and terminated
protocols are denoted pX.G and end, respectively.

Global types are sequential, but may describe implicit parallelism. As a sim-
ple example, the global type G = p — q : (bool).r — s : (nat).end is defined
sequentially, but describes two independent exchanges (one involving p and q,
the other involving r and s) which could be implemented in parallel. In this line,
G may be regarded to be equivalent to G’ = r — s : (nat).p — q: (bool).end.

Local types are used in the monitors introduced above. Local types pl{U).T
and p?(U).T denote, respectively, an output and input of value of type U by p.
Type p&{l; : T;}ier says that p offers different labeled alternatives; conversely,
type p®{l; : T;}icsr says that p may select one of such alternatives. Recursive
and terminated local types are denoted pX.T and end, respectively.

A distinguishing feature of the MP model are local types with history (H, H').
A type H is a local type equipped with a cursor (denoted ™) used to distinguish
the protocol actions that have been already executed (the past of the protocol)
from those that are yet to be performed (the future of the protocol).

2.4 Projection

The projection of a global type G onto a participant p, denoted G'|;, is defined
in Fig. 2. The definition is self-explanatory, perhaps except for choice. Intuitively,
projection ensures that a choice between p and q should not implicitly determine
different behavior for participants different from p and q, for which any different

Reversible Session-Based Concurrency in Haskell 25

a(U).(Gl:) ifr=p

(= q:(U).G)lr =S pNU).(Glx) ifr=q

(Glo) ifr£qr#p

a®{li : (Gilr)}ier ifr=p

p&{li : Gilr}ier ifr=gq

(G1ls) if r # q,r # p and
Vi,j € 1.Gil:=Gjlx

uX.Gly if r occurs in G

end otherwise

(p—a:{li:Giticr)de=

(MXG) b= {

X=X end/,= end

Fig. 2. Projection of a global type G onto a participant r [6,7].

behavior should be determined by some explicit communication. This is a con-
dition adopted by the MP model but also by several other works, as it ensures
decentralized implementability of multiparty session types. Our implementation
relies on broadcasts to communicate choices to all protocol participants; this
reduces the need for explicit communications in global types. Projection consis-
tently handles the combination of recursion and choices in global types. In the
particular case in which a branch of a choice in the global type may recurse back
to the beginning, the local types for all involved participants will be themselves
recursive; this ensures that participants will jump back to the beginning of the
protocol in a coordinated way.

2.5 Example: Three-Buyer Protocol

We illustrate the forward and backward reduction semantics, denoted — and
~- . To this end, we recall the running example by Mezzina and Pérez [7], namely
a reversible variant of the Three-Buyer protocol (cf., e.g., [1]) with abstraction
passing (delegation).

The Protocol as Global and Local Types. The protocol involves three
buyers (Alice (A), Bob (B), and Carol (C)) who interact with a Vendor (V) as
follows:

1. Alice sends a book title to Vendor, which replies back to Alice and Bob with
a quote. Alice tells Bob how much she can contribute.

2. Bob notifies Vendor and Alice that he agrees with the price, and asks Carol to
assist him in completing the protocol. To delegate his remaining interactions
with Alice and Vendor to Carol, Bob sends her the code she must execute.

3. Carol continues the rest of the protocol with Vendor and Alice as if she were
Bob. She sends Bob’s address (contained in the code she received) to Vendor.

4. Vendor answers to Alice and Carol (representing Bob) with the delivery date.

26 F. de Vries and J. A. Pérez

This protocol may be formalized as the following global type G:

G = A—V: (title).v — {A,B} : (price).A — B : (share).B — {4, V} : (OK).
B — C: (share).B — C: ({{o}}).B — V: (address).V — B : (date).end

Above, p — {a1,92} : (U).G stands for p — q; : (U).p = a2 : (U).G (and
similarly for local types). We write {{¢}} to denote the type end — o, associated
to a thunk Az. P with « ¢ £n(P), written {{P}}. A thunk is an inactive process,
which is activated by applying to it a dummy name of type end, denoted *. Also,
price and share are base types treated as integers; title, OK, address, and date
are base types treated as strings. The projections of G onto local types are as
follows:

G ly = A (title).{A, B}!{price).B?(OK).B?(address).B!(date).end

G |4 = V(title).V?(price) .B!(share).B?(OK}).end

G g = V?{price).A?(share).{A, V}!(OK).C!(share).C!({{c}}).V!(address).V?(date).end
G |c = B?(share).B?{({{c}}).end

Process Implementations and Their Behavior. We now give processes for
each participant:

Vendor = dl{(z: G ly).x?(t).xl(price(t)).x(price(t)).x?(ok).2?(a).xz!{date).0
Alice = d?(y: Gla).y!{‘Logicomix’).y?(p).y!(h).y?(ok).0
Bob = d?(z: G l3).27(p).27(h).z!(0k).2!(ok).2(h) .2 ({{21(*9747).27(d).0}}) .0
Carol = d?(w: G l¢).w?(h).w?(code).(code)
where price(-) returns a value of type price given a title. Observe how Bob’s

implementation sends part of its protocol to Carol as a thunk. The whole system,
given below, is obtained by placing these processes in locations f1, ..., {4:

M = ¢y {Vendor} || €2 {Alice} || 5 {Bob} || £4 {Carol}

We now use configuration M to discuss the reduction relations — and ~- ; below
we shall refer to forward and backward reduction rules defined in Mezzina and
Pérez’s paper [7, Sect. 2.2.2].

From M, the session starts with an application of Rule (INIT), which defines
a forward reduction that, by means of a synchronization on shared name d,
initializes the protocol by creating running processes and monitors:

M~ (s) (i 103 Vi{sw/a}S || sy | ~Glv -z - [= d])°
| gy 105 As {sw/w}S | sl "Gy [y = d])°
| €35 : 10 3 Bi{s6)/2}S || 55| “Gle -2 [z dHO
| €aig 105 Cafsie/w}§ || sl ~Gho-w-[w =]| || s+ (exe)) = M,y

Reversible Session-Based Concurrency in Haskell 27

where V1 {8w/z}, A1{5w/y}, B1{51#)/z}, and C1{5c)/w} stand for the continuation
of processes Vendor, Alice, Bob, and Carol after the service request/accept.
Observe that s is a fresh session name created after initialization; we write {s[v)/z}
to denote a substitution of variable with session name sy).

From M; we could either undo this forward reduction (using Rule (RINIT))
or execute the communication from Alice to Vendor, using Rules (OuT) and (IN)
as follows:

My — (v S)(fz[A] 210 S[A]?(p).S[A]!<h>.S[A]?<Ok’).OS
|| spa [VI(title). ~V?(price).Bl(share).B?(OK).end - y - [y — d] | ¢
|| No || s:(ex(A, V, ‘Logicomix’))) = M,
where Ny stands for processes/monitors for Vendor, Bob, and Carol (not involved

in the reduction). In Ms, the message from A to V now appears in the output
part of the queue. An additional forward step completes the synchronization:

My — (v s)(Lpy : 10 5 spy!(price(t)).sp!(price(t)).sw ? (ok).sw ?(a).sw)(date) .0f
| 514 [A7 (title). ~{&, B} (price) Ty - 2, ¢ - o5] || N
|| s:((A,V, ‘Logicomix’) x€)) = Ms
where 03 = [z — d], [t — ‘Logicomix’], Ty = B7{OK).B?(address).B!(date).end,
and N3 stands for the rest of the system. Note that the cursors (™) in the local
types with history of the monitors sy and sp have moved; also, the message
from A to V is now in the input part of the queue.
We now illustrate reversibility: to return to My from M3 we need three back-

ward reduction rules: (RoLLS), (RIN), and (ROUT). First, Rule (ROLLS) mod-
ifies the tags of monitors spy and sp, from ¢ to ¢:

M3z ~~ (v s)(Lipy = 10 5 syl (price(t)) s (price(t)). sy ? (ok).sy 7 (a) .5y (date).0f
| 514 | A7 (title). {4, B}!(price) T - 2, - o3 | *
| £21a) = 10 5 514)7(p)-Spay ! (h) 574 7 (0K).0F
EN | T, [~ V?(price).B!(share).B?(OK).end] - y - [y ~ d] | ¢
| Na|ls:((A,V, ‘Logicomix’) x€)) = My

where Ty [o] = Vl{title).e is a type context (with hole o) and, as before, Ny
represents the rest of the system.

28 F. de Vries and J. A. Pérez

M, has several possible forward and backward reductions. One particular
backward reduction is the one that uses Rule (RIN) to undo the input at V:

My~ (vs)(Lip 2 105 s ?(t) .8 (price(t)).
sl (price(t)).sp 2(0k).sp?(a). s (date) .0
|| s | A% (title).{A, B}!(price).T - = - [z — d]J<>
| Lapay = 10 5 502 (p)- (! (R) 5[4 ? (0k).0
I s | T4 [V2 (price).B!(share) .B?(OK).end] - y - [y + d] | *
| Ny |l s: (ex (A, V, ‘Logicomix’))) = Ms

As a result, the message from A to V is back again in the output part of the
queue. The following backward reduction uses Rule (ROUT) to undo the output
at A:

Ms ~ (v s)(Ly = 10 5 s ?(t).sp(price(t)) s (price(t)).
s ?(0k).sp?(a).sy ! (date).0F
| s [~ A?(title).{A, B} (price).Th - 2 - [+ d] |
| €275 : 10 5 s(a!(‘Logicomix’).s(x ?(p)-spu! (h).s[a 7 (0k).0f
|| spa [VI(title).v?(price).B!(share).B?(OK).end - y - [y — d] | ¢
| Nal['s:(exe)) = Ms

Clearly, Mg = M;. Summing up, the forward reductions M; — Ms — M3 can be
reversed by the backward reductions Mz ~~» My ~~ Mg ~~ Mg = M.

Abstraction Passing (Delegation). To illustrate abstraction passing, let us
assume that Mz above performs forward reductions until the configuration:

M7= (vs)(L3p : 10 5 55! {{{5})!("974T").5)?(d).0}}).0F
| sz [T7 [Cl({{o}})-V!(address).v?(date).end] - 2, p, h - o7)
|| Laq) : 10 5 s ?(code).(code *)S§
I st | Ts [B2 ({{o}}).end] - w, h- o5 | || Ns || s (hy#e))

Reversible Session-Based Concurrency in Haskell 29

where {{s)!(‘9747).57(d).0}} is a thunk (to be activated with the dummy
value *) and T+ [e], o7, Ts [e], 05, and hy capture past interactions as follows:
T [¢] = V?(price).A?(share).{A, V}!{OK).C!(share).o
o7 = [z — d], [p — price(‘Logicomix’)], [h — 120]
Tg [¢] = B?(share). @ og = [w — d], [h — 120]
h7 = (A, V, ‘Logicomix’)
o (V, A, price(‘Logicomix’)) o (V, B, price(‘Logicomix’))
o(A, B, 120)0 (B, A, ‘ok’) o (B, V, ‘ok’) o (B, C, 120)

If M; — — Mg to enable a (forward) synchronization we would have:

Ms = (vs)(ls : 10 ; 0
| s | T7 [CH{({{o}}). ~VI(address).V?(date).end] - z,p, h - 07| ¢
| £age) : 10 5 (code)] || s | Ts [B2({{e}}). “end] - w, h, code - oy | °
| N5 [|'s:(h7o(B,C, {s!('9747").557(d).0}}) *€))

where 09 = og[code — {{s[5)!('9T47").55?(d).0}}]. We now may obtain the actual
code sent from B to C:

Mg — (vs)(v k) (Lagg) : 10 5 55 (‘9747").515?(d).0f]| Ne
|| s | T7 [CH{{{o}}). " V!(address).V?(date).end] - z,p, h - O’7J
|| k[(codex), La] || sig)| Ts [B?({o}}).k. "end] - w, h, code - UgJO
|'s: (hzo (B, C, {{s!("9747).5 7(d).0}}) x€)) = Mo

where Ng is the rest of the system. Notice that this reduction has added a running
function on a fresh k, which is also used in the type stored in the monitor s

The reduction Mg — My completes the code mobility from B to C: the now
active thunk will execute B’s protocol from C’s location. Observe that Bob’s
identity B is “hardwired” in the sent thunk; there is no way for C to execute the
code by referring to a participant different from B.

3 Implementing the MP Model in Haskell

We represent the process calculus, global types, local types, and the information
for reversal as syntax trees. Local types are obtained by from the global type
via projection, which we implement following Sect. 2.4, whereas processes and
global types are written by the programmer. For this reason, we want to provide
a convenient way to specify them as domain-specific languages (DSLs).

30 F. de Vries and J. A. Pérez

3.1 DSLs with the Free Monad

Free monads are a common way of defining DSLs in Haskell, mainly because
they allow the use of do-notation to write programs in the DSL.

data Free f a
= Pure a
| Free (f (Free f a))

A simple practical example is a stack-based calculator:

data Operation next

= Push Int next

| Pop (Maybe Int -> next)

| End

deriving (Functor)
type Program next = Free Operation next
type TerminatingProgram = Program Void

We define a data type with our instructions, and make sure it has a
Functor instance (i.e., there exists a function fmap :: (a -> b) ->
Operation a -> Operation b). This instance is automatically derived using
the DeriveFunctor language extension. Given an instance of Functor, Free
returns the free monad on that functor. In this example, the free monad on
Operation describes a list of instructions.

In general, a value of type ‘Free Operation a’ describes a program with
holes: an incomplete program with placeholder values of type a in the position of
some continuations. Composition allows filling in the holes with (possibly incom-
plete) subprograms. The holes are places where the Pure constructor occurs in
the program. When evaluating, we want to have a tree without holes. We can
leverage the type system to guarantee that Pure does not occur in the programs
we evaluate by using Void.

Void is the data type with zero values (similar to the empty set). Thus, a
value of the type Free Operation Void cannot be of the shape Pure _, because
it requires a value of type Void. An alternative approach is to use existential
quantification, which requires enabling a language extension.

We define wrappers around the constructors for convenience. The 1iftF func-
tion takes a concrete value of our program functor (ProgramF a) and turns it
into a free value (Free ProgramF a, i.e., Program a). The helpers are used to
write programs with do-notation:

-—- specialized version of liftF for Free
1iftF :: (Functor f) => f a -> Free f a
push :: Int -> Program ()

push v = 1iftF (Push v ()

pop :: Program (Maybe Int)

pop = 1liftF (Pop id)

terminate :: TerminatingProgram

Reversible Session-Based Concurrency in Haskell 31

terminate = 1iftF End
program :: TerminatingProgram
program = do

push 5

push 4

Just a <- pop

Just b <- pop

push (a + b)

terminate

Finally, we expose a function to evaluate the structure (but only if it is finite).
Typically, a Free monad is transformed into some other monad, which in turn
is evaluated. Here we can first transform into State, and then evaluate that.

interpret :: TerminatingProgram -> State [Int] ()
interpret instruction =
case instruction of
Pure _ >
-- cannot occur
return ()
Free End ->
return ()
Free (Push a next) -> do
State.modify (\state -> a : state)
interpret next
Free (Pop toNext) -> do
state <- State.get
case state of
x:xs —> do
State.put xs
interpret (toNext (Just x))
-
interpret (toNext Nothing)

evaluate :: TerminatingProgram -> [Int]
evaluate = flip execState [] . interpret

3.2 Implementing Processes

The implementation uses an algebraic data type to encode all the process con-
structors in the process syntax of P given in Sect.2.2. Apart from the process-
level recursion, Program is a direct translation of that process syntax:

type Participant = String
type Identifier = String

data ProgramF value next

32 F. de Vries and J. A. Pérez

-— communication primitives

= Send
{ owner :: Participant
, value :: value
, continuation :: next
}
| Receive
{ owner :: Participant
, variableName :: Identifier
, continuation :: next
}

-— choice primitives

| Offer Participant [(String, next)]

| Select Participant [(String, value, next)]
-- other constructors

| Parallel next next

| Application Identifier value

| NoOp

deriving (Functor)

As already discussed, processes exchange values. With respect to the syntax
of values V,W discussed in Sect.2.2, the Value type, given below, has some
extra constructors which allow us to write more interesting examples: we have
added integers, strings, and basic integer and comparison operators. We use
VReference to denote the variables present in the formal syntax for V. The
Value type also includes the label used to differentiate the different cases of
offer and select statements.

data Value
= VBool Bool
| VInt Int
| VString String
| VUnit
| VIntOperator Value IntOperator Value
| VComparison Value Ordering Value
| VFunction Identifier (Program Value)
| VReference Identifier
| VLabel String

We need some extra concepts to actually write programs with this syntax.

Delegation via Abstraction Passing. Delegation occurs when a participant
can send (part of) its protocol to be fulfilled (i.e., implemented) by another
participant. This mechanism was illustrated in the example in Sect. 2.5, where
Carol acts on behalf of Bob by receiving and executing his code. For further illus-
tration of the convenience of this mechanism, consider a load balancing server:

Reversible Session-Based Concurrency in Haskell 33

from the client’s perspective, the server handles the request, but actually the
load balancer delegates incoming requests to workers. The client does not need
to be aware of this implementation detail. Recall the definition of ProgramF,
given just above:

data ProgramF value next
-— communication primitives

= Send
{ owner :: Participant
, value :: value
, continuation :: next
}

The ProgramF constructors that move the local type forward (send/receive,
select/offer) have an owner field that stores whose local type they should be
checked against and modify. In the formal definition of the MP model, the con-
nection between local types and processes/participants is enforced by the opera-
tional semantics. The owner field is also present in TypeContext, the data type
we define for representing local types in Sect. 3.4.

As explained in Sect. 2.2, each protocol participant has its own monitor with
its own store. Because these stores are not shared, all variables occurring in the
arguments to operators and in function bodies must be dereferenced before a
value can be safely sent over a channel.

A Convenient DSL. Many of the ProgramF constructors require an owner;
we can thread the owner through a block with a wrapper around Free. We use
StateT containing the owner and a counter to generate unique variable names.

newtype HighlevelProgram a =
HighLevelProgram

(StateT (Participant, Int)

(Free (ProgramF Value)) a)

deriving
(Functor, Applicative, Monad
, MonadState (Participant, Int)
, MonadFree (ProgramF Value))

uniqueVariableName :: HighlLevelProgram String
uniqueVariableName = do

(participant, n) <- State.get

State.put (participant, n + 1)

return $ "var" ++ show n

send :: Value -> HighLevelProgram ()
send value = do

34 F. de Vries and J. A. Pérez

(participant, _) <- State.get
1liftF (Send participant value ())

receive :: HighLevelProgram Value
receive = do
(participant, _) <- State.get
variableName <- uniqueVariableName
1iftF (Receive participant variableName ())
return (VReference variableName)

terminate :: HighLevelProgram a
terminate = 1iftF NoOp

-— other helpers omitted for brevity

compile :: Participant -> HighLevelProgram Void -> Program Value
compile participant (HighLevelProgram program) = do
runStateT program (participant, 0)

We can now implement the Vendor from the three-buyer example as:

vendor :: HighLevelProgram a
vendor = do

t <- H.receive

H.send (price t)

H.send (price t)

terminate

3.3 Global Types

Following Fig. 1, our implementation uses a global type specification to obtain
a local type (of type LocalType), one per participant, by means of projection.
This is implemented as described in Sect. 2.4. Much like the process syntax, the
specification of the global types discussed in Sect. 2.3 closely mimics the formal
definition:

type GlobalType participant u a =
Free (GlobalTypeF participant u) a

type TerminatingGlobalType participant u =
GlobalType participant u Void

data GlobalTypeF participant u next
= Transaction
{ from :: participant
, to :: participant

Reversible Session-Based Concurrency in Haskell 35

, tipe :: u
, continuation :: next
}
| Choice
{ from :: participant
, to :: participant
, options :: Map String next
}
| End
| RecursionPoint next
| RecursionVariable
| WeakenRecursion next
deriving (Functor)

where we use ‘tipe’ because ‘type’ is a reserved keyword in Haskell.

Constructors RecursionPoint, RecursionVariable, and WeakenRecursion
are required to support nested recursion; they are taken from van Walree’s
work [10]. A RecursionPoint is a point in the protocol to which we can jump
back later. A RecursionVariable triggers jumping to a previously encoun-
tered RecursionPoint. By default, it will jump to the closest and most
recently encountered RecursionPoint, but WeakenRecursion makes it jump one
RecursionPoint higher; encountering two weakens will jump two levels higher,
etc.

We use Monad.Free to build a DSL for defining global types:

message :: participant -> participant -> tipe
-> GlobalType participant tipe ()
message from to tipe = 1iftF (Transaction from to tipe ()

messages :: participant -> [participant]
-> tipe -> GlobalType participant tipe ()
messages sender receivers tipe = go receivers
where go [] = Pure ()
go (x:xs) = Free (Transaction sender x tipe $ go xs)

one0f :: participant -> participant
-> [(String, GlobalType participant u a)l
-> GlobalType participant u a
one0f selector offerer options =
Free (Choice selector offerer (Map.fromList options))

recurse :: GlobalType p u a —-> GlobalType p u a
recurse cont = Free (RecursionPoint cont)

weakenRecursion :: GlobalType p u a —-> GlobalType p u a
weakenRecursion cont = Free (WeakenRecursion cont)

36 F. de Vries and J. A. Pérez

recursionVariable :: GlobalType p u a
recursionVariable = Free RecursionVariable

end :: TerminatingGlobalType p u
end = Free End

Ezample 1 (Nested Recursion). The snippet below illustrates nested recursion.
There is an outer loop that will perform a piece of protocol or end, and an inner
loop that sends messages from A to B. When the inner loop is done, control flow
returns to the outer loop:

import GlobalType as G

G.recurse $ - recursion point 1
G.oneOf A B
[("loop"
, G.recurse $§ —— recursion point 2
G.one0f A B

[("continueLoop", do
G.message A B "date"
-- jumps to recursion point 2
G.recursionVariable

)

, ("endInnerLoop", do
-— jumps to recursion point 1
G.weakenRecursion G.recursionVariable

)
("end", G.end)
]

Similarly, the global type for three-buyer example (cf. Sect.2.5) can be written
as:

-— a data type representing the participants
data MyParticipants = A | B | C | V
deriving (Show, Eq, Ord, Enum, Bounded)
-- a data type representing the used types
data MyType = Title | Price | Share | 0Ok | Thunk | Address | Date
deriving (Show, Eq, Ord)
-— a description of the protocol
globalType :: TerminatingGlobalType MyParticipants MyType
globalType = do
message A V Title
messages V [A, B] Price
message A B Share

Reversible Session-Based Concurrency in Haskell 37

messages B [A, V] Ok
message B C Share
message B C Thunk
message B V Address
message V B Date

end

3.4 A Reversible Semantics

Having shown implementations for processes and global types, we now explain
how to implement the reversible operational semantics for the MP model, which
was illustrated in Sect.2.5. We should define structures that allow us to move
back to prior program states, reversing forward steps.

To enable backward steps, we need to store some information when we move
forward, just as enabled by the configurations in the MP model (cf. Sect. 2.2).
Indeed, we need to track information about the local type and the process. To
implement local types with history, we define a data type called TypeContext:
it contains the actions that have been performed; for some of them, it also stores
extra information (e.g., owner). For the process, we need to track four things:

1. Used variable names in receives. Recall the process implementation for the
vendor in the three-buyer example in Sect. 2.5:

Vendor = di(x : Gly).x?(t).xl(price(t)).x!(price(t)).x?(ok).z?(a).z!{(date).0

We can implement this process as:
vendor :: HighLevelProgram a
vendor = do

t <- H.receive

H.send (price t)

H.send (price t)

terminate
The rest of the program depends on the assigned name. So, e.g., when we
evaluate the t <- H.receive line (moving to configuration Ms, cf. Sect. 2.5),
and then revert it, we must reconstruct a receive that assigns to t, because
the following lines depend on name t.

2. Function calls and their arguments. Consider the reduction from configuration
My to Msg, as discussed in Sect. 2.5. Once the thunk is evaluated, producing
configuration Mg, we lose all evidence that the code produced by the evalua-
tion resulted from a function application. Without this evidence, reversing Mg
will not result in M7. Indeed, we need to keep track of function applications.
Following the semantics of the MP model, the function and its argument are
stored in a map indexed by a unique identifier k. The identifier & itself is also
stored in the local type with history to later associate the type with a specific
function and argument. The reduction from Mg to Mg, discussed in Sect. 2.5,
offers an example of this tracking mechanism in the formal model.

38 F. de Vries and J. A. Pérez

Notice that a stack would seem a simpler solution, but it can give invalid
behavior. Say that a participant is running in two locations, and the last-
performed action at both locations is a function application. Now we want to
undo both applications, but the order in which to undo them is undefined: we
need both orders to work. Only using a stack could mix up the applications.
When the application keeps track of exactly which function and argument it
used the end result is always the same.

3. Messages on the channel. We consider again the implementation of the first
three steps of the protocol:
alice :: HighLevelProgram a
alice = do

H.send (VString "Logicomix")

vendor :: HighLevelProgram a
vendor = do
t <- H.receive

After Alice sends her message, it has to be stored to successfully undo the
sending action. Likewise, when starting from configuration M3 and undoing
the receive, the value must be placed back into the queue.

Our implementation closely follows the formal semantics of the MP model.
As discussed in Sect. 2.2, the message queue has an input and an output part.
This allows to describe how a message moves from the sender into the output
queue. Reception is represented by moving the message to the input queue,
which serves as a history stack. When the receive is reversed, the queue pops
the message from its stack and puts it at the output queue again. Reversing
the send moves the message from the output queue back to the sender’s
program.

4. Unused branches. When a labeled choice is made and then reverted, we want
all our options to be available again. In the MP model, choices made so far
are stored in a stack denoted C, inside a running process (cf. Sect.2.2).

The following code shows how we store these choices:
type Zipper a = ([al, a, [al)

data OtherOptions

= OtherSelections (Zipper (String, Value, Program Value))

| OtherOffers (Zipper (String, Program Value))
We need to remember which choice was made; the order of the options is
important. We use a Zipper to store the elements in order and use the central
‘a’ to store the choice that was made.

3.5 Putting It All Together

With all the definitions in place, we can now define the forward and backward
evaluation of our system. The reduction relations — and ~-, discussed and
illustrated in Sect. 2.5, are implemented with the types:

Reversible Session-Based Concurrency in Haskell 39

forward :: Location -> Session ()
backward :: Location -> Session ()

These functions take a Location (the analogue of the locations ¢ in the
formal model) and try to move the process at that location forward or backward.
The Session type contains the ExecutionState, the state of the session (all
programs, local types, variable bindings, etc.). The Except type indicates that
errors of type Error can be thrown (e.g., when an unbound variable is used):

type Session a = StateT ExecutionState (Except Error) a

The configurations of the MP model (cf. Sect. 2.2) are our main reference to
store the execution state. Some data is bound to its location (e.g., the current
running process), while other data is bound to its participant (e.g., the local
type). The information about a participant is grouped in a type called Monitor:

data Monitor value tipe =

Monitor
{ _localType :: LocalTypeState tipe
, _recursiveVariableNumber :: Int
, _recursionPoints :: [LocalType tipel]
, _usedVariables :: [Binding]
, _applicationHistory :: Map Identifier (value, value)
, _store :: Map Identifier value
X

deriving (Show, Eq)

data Binding =

Binding
{ _visibleName :: Identifier
, _internalName :: Identifier
}

deriving (Show, Eq)
Some explanations follow:

— _localType contains TypeContext and LocalType stored as a tuple. This
tuple gives a cursor into the local type, where everything to the left is the
past and everything to the right is the future.

— The next two fields keep track of recursion in the local type. We use the
_recursiveVariableNumber is an index into the _recursionPoints list:
when a RecursionVariable is encountered we look at that index to find
the new future local type.

— _usedVariables and _applicationHistory are used in reversal. As men-
tioned in Sect. 3.4, used variable names must be stored so we can use them
when reversing. We store them in a stack keeping both the original name given
by the programmer and the generated unique internal name. For function
applications we use a Map indexed by unique identifiers that stores function
and argument.

40 F. de Vries and J. A. Pérez

— _store is a variable store with the currently defined bindings. Variable shad-
owing (when two processes of the same participant define the same variable
name) is not an issue: variables are assigned a name that is guaranteed unique.

We can now define ExecutionState: it contains some counters for generating
unique variable names, a monitor for every participant, and a program for every
location. Additionally, every location has a default participant and a stack for
unchosen branches:

data ExecutionState value =

ExecutionState
{ variableCount :: Int
, locationCount :: Int
, applicationCount :: Int
, participants :: Map Participant (Monitor value String)
, locations :: Map Location
(Participant , [OtherOptions], Program value)
, queue :: Queue value
, isFunction :: value -> Maybe (Identifier,Program value)
X

The message queue is global and thus also lives in the ExecutionState. Finally,
we need a way of inspecting values, to see whether they are functions and if so,
to extract their bodies for application.

3.6 Causal Consistency?

As mentioned in Sect. 1, causal consistency is a key correctness criterion for
a reversible semantics: this property ensures that backward steps always lead
to states that could have been reached by moving forward only. The global
type defines a partial order on all the communication steps. The relation of this
partial order is a causal dependency. Stepping backward is only allowed when
all its causally dependent actions are undone.

The reversible semantics of the MP model, summarized in Sect.2, enjoys
causal consistency for processes running a single global protocol (i.e., a single
session). Rather than typed processes, the MP model describes untyped processes
whose (reversible) operational semantics is governed by local types. This suffices
to prove causal consistency, but also to ensure that process reductions correspond
to valid actions specified by the global type. Given this, one may then wonder,
does our Haskell implementation preserve causal consistency?

In the semantics and the implementation, this causal dependency becomes a
data dependency. For instance, a send can only be undone only when the queue
is in a state that can only be reached by first undoing the corresponding receive.
Only in this state is the appropriate data of the appropriate type available. Being
able to undo a send thus means that the corresponding receive has already been
reversed, so it is impossible to introduce causal inconsistencies.

Reversible Session-Based Concurrency in Haskell 41

Because of the encoding of causal dependencies as data dependencies, and
the fact that these data dependencies are preserved in the implementation, we
claim that our Haskell implementation respects the formal semantics of the MP
model, and therefore that it preserves the causal consistency property.

4 Running and Debugging Programs

Finally, we want to be able to run our programs. Our implementation offers
mechanisms to step through a program interactively, and run it to completion.

We can step through the program interactively in the Haskell REPL envi-
ronment. When the ThreeBuyer example is loaded, the program is in a state
corresponding to configuration M; from Sect.2.5. We can print the initial state
of our program:

> initialProgram
locations: fromList [("11",("A",[],Free (Send {owner = "A",

Next we introduce the stepForward and stepBackward functions. They use
mutability, normally frowned upon in Haskell, to avoid having to manually keep
track of the updated program state like in the snippet below:

statel = stepForwardInconvenient "11" stateO
state2 = stepForwardInconvenient "11" statel
state3 = stepForwardInconvenient "11" state2

Manual state passing is error-prone and inconvenient. We provide helpers
to work around this issue (internally, those helpers use I0Ref). We must first
initialize the program state:

> import Interpreter
> state <- initializeProgram initialProgram

We can then use stepForward and stepBackward to evaluate the program: we
advance Alice at [; to reach M> and then the vendor at 4 to reach Ms:

> stepForward "11" state

locations: fromList [("11",("A",[],Free (Receive {owner = "A",
> stepForward "14" state
locations: fromList [("11",("A",[],Free (Receive {owner = "A",

When the user tries an invalid step, an error is displayed. For instance, in
state M3, where I; and l4 have been moved forward once (like in the snippet
above), l; cannot move forward (it needs to receive but there is nothing in the
queue) and not backward (l4, the receiver, must undo its action first).

42 F. de Vries and J. A. Pérez

> stepForward "11" state
%x Exception: QueueError "Receive" EmptyQueue
CallStack (from HasCallStack):
error, called at
> stepBackward "11" state
*xx Exception: QueueError "BackwardSend" EmptyQueue state
CallStack (from HasCallStack):
error, called at

Errors are defined as:

data Error

= UndefinedParticipant Participant

| UndefinedVariable Participant Identifier
| SynchronizationError String

| LabelError String

| QueueError String Queue.QueueError

| ChoiceError ChoiceError

| Terminated

To fully evaluate a program, we use a round-robin scheduler that calls
forward on the locations in order. A forward step can produce an error. There
are two error cases that we can recover from:

— blocked on receive, either QueueError _ InvalidQueueltem or Queue
Error _ EmptyQueue: the process wants to perform a receive, but the
expected item is not at the top of the queue yet. In this case we proceed
evaluating the other locations so they can send the value that the faulty loca-
tion expects. Above, ‘_’ means that we ignore the String field used to provide
better error messages. Because no error message is generated, that field is not
needed.

— location terminates with Terminated: the execution has reached a NoOp.
In this case we do not want to schedule this location any more.

Otherwise we continue until there are no active (non-terminated) locations left.
Running until completion (or error) is also available in the REPL:

> untilError initialProgram
Right locations: fromList [("11",("A",[],Free NoOp)),

Note that this scheduler can still get into deadlocks, for instance consider
these two equivalent global types:

globalTypel = do
message A V Title
message V B Price
message V A Price
message A B Share

Reversible Session-Based Concurrency in Haskell 43

globalType2 = do
message A V Title
message V A Price
message V B Price

message A B Share

Above, the second and third messages (involving Price) are swapped. The com-
munication they describe is the same, but in practice they are very different. The
first example will run to completion, whereas the second can deadlock because A
can send a Share before V sends the Price. B expects the price from V first, but
the share from A is the first in the queue. Therefore, no progress can be made.

In general, a key issue is that a global type is written sequentially, while
it may represent implicit parallelism, as explained in Sect.2.3. Currently, our
implementation just executes the global type with the order given by the pro-
grammer. It should be possible to execute communication actions in different
but equivalent orders; these optimizations are beyond the scope of our current
implementation.

5 Discussion and Concluding Remarks

5.1 Benefits of Pure Functional Programming

It has consistently been the case that sticking closer to the formal model gives
better code. The abilities that Haskell gives for directly specifying formal state-
ments are invaluable. A key invaluable feature is algebraic data types (ADTs,
also known as tagged unions or sum types). Compare the formal definition given
in Sect. 2.3 and the Haskell data type for global types.

G,G" == p—q:({U)G|p—q:{li:Gi}icr | pX.G| X | end

data GlobalTypeF u next
= Transaction {..} | Choice {..} | RecursionPoint next
| RecursionVariable | End
| WeakenRecursion next

The definitions correspond almost directly: the WeakenRecursion construc-
tor is added to support nested recursion, which the formal model does not explic-
itly represent. Moreover, we know that these are all the ways to construct a value
of type GlobalTypeF and can exhaustively match on all the cases. Functional
languages have had these features for a very long time. Secondly, purity and
immutability are very useful in implementing and testing the reversible seman-
tics.

In a pure language, given functions f :: a -> bandg :: b -> a to prove
that f and g are inverses it is enough to prove that f - g and g- £ both compose
to the identity. In an impure language, even if these equalities are observed we
cannot be sure that there were no side-effects. Because we do not need to consider
a context (the outside world) in a pure language, checking that reversibility works
is as simple as comparing initial and final states for all backward reduction rules.

44 F. de Vries and J. A. Pérez

5.2 Concluding Remarks

We presented a functional implementation of the (reversible) MP model [7] using
Haskell. By embedding this reversible semantics we can now execute our example
programs automatically and inspect them interactively.

We have seen that the MP model can be split into three core components:
(i) a process calculus, (ii) multiparty session types (global and local types), and
(iii) forward and backward reduction semantics. The three components can be
cleanly represented as recursive Haskell data types. We are confident that other
features developed in Mezzina and Pérez’s work [7] (in particular, an alternative
semantics for decoupled rollbacks) can easily be integrated in the development
described here. Relatedly, the implementation process has shown that sticking
to the formal model leads to better code; there is less space for bugs to creep
in. Furthermore, Haskell’s mathematical nature means that the implementa-
tion inspired by the formal specification is easy (and often idiomatic) to express.
Finally, we have discussed how Haskell allows for the definition of flexible embed-
ded domain-specific languages, and makes it easy to transform between different
representations of our programs (using among others Monad.Free).

Acknowledgments. Many thanks to the anonymous reviewers and to the TFP’18
co-chairs (Michal Patka and Magnus Myreen) for their useful remarks and suggestions,
which led to substantial improvements. Pérez is also affiliated to CWI, Amsterdam,
The Netherlands and to the NOVA Laboratory for Computer Science and Informatics
(supported by FCT grant NOVA LINCS PEst/UID/CEC/04516/2013), Universidade
Nova de Lisboa, Portugal.

This research has been partially supported by the Undergraduate School of Science
and the Bernoulli Institute of the University of Groningen. We also acknowledge sup-
port from the COST Action IC1405 “Reversible computation — Extending horizons of
computing”.

References

1. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: A gentle intro-
duction to multiparty asynchronous session types. In: Bernardo, M., Johnsen,
E.B. (eds.) SFM 2015. LNCS, vol. 9104, pp. 146-178. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18941-3 4. http://www.di.unito.it/~
dezani/papers/cdpyl15.pdf

2. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122-138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

3. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) POPL 2008, pp. 273-284. ACM (2008). https://
doi.org/10.1145/1328438.1328472

4. Kouzapas, D., Pérez, J.A., Yoshida, N.: On the relative expressiveness of higher-
order session processes. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp.
446-475. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-
118

https://doi.org/10.1007/978-3-319-18941-3_4
http://www.di.unito.it/~dezani/papers/cdpy15.pdf
http://www.di.unito.it/~dezani/papers/cdpy15.pdf
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-662-49498-1_18
https://doi.org/10.1007/978-3-662-49498-1_18

10.

Reversible Session-Based Concurrency in Haskell 45

Lanese, 1., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS
114 (2014). http://eatcs.org/beatcs/index.php/beatcs/article/view /305

Mezzina, C.A., Pérez, J.A.: Causally consistent reversible choreographies. CoRR
abs/1703.06021 (2017). http://arxiv.org/abs/1703.06021

Mezzina, C.A., Pérez, J.A.: Causally consistent reversible choreographies: a
monitors-as-memories approach. In: Vanhoof, W., Pientka, B. (eds.) Proceedings
of the 19th International Symposium on Principles and Practice of Declarative
Programming, Namur, Belgium, 09-11 October 2017, pp. 127-138. ACM (2017).
https://doi.org/10.1145/3131851.3131864

Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and II.
Inf. Comput. 100(1), 1-40 (1992)

Sangiorgi