
Michał Pałka
Magnus Myreen (Eds.)

 123

LN
CS

 1
14

57

19th International Symposium, TFP 2018
Gothenburg, Sweden, June 11–13, 2018
Revised Selected Papers

Trends in
Functional Programming

Lecture Notes in Computer Science 11457

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Michał Pałka • Magnus Myreen (Eds.)

Trends in
Functional Programming
19th International Symposium, TFP 2018
Gothenburg, Sweden, June 11–13, 2018
Revised Selected Papers

123

Editors
Michał Pałka
Chalmers University of Technology
Gothenburg, Sweden

Magnus Myreen
Chalmers University of Technology
Gothenburg, Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-18505-3 ISBN 978-3-030-18506-0 (eBook)
https://doi.org/10.1007/978-3-030-18506-0

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-18506-0

Preface

This volume contains a selection of the papers presented at TFP 2018: the Symposium
on Trends in Function Programming 2018, held June 11–13, 2018, in Gothenburg,
Sweden.

TFP is an international forum for researchers with interests in all aspects of func-
tional programming, taking a broad view of current and future trends in the area. It
aspires to be a lively environment for presenting the latest research results and other
contributions, described in draft papers submitted prior to the symposium. This edition
of the symposium is the first to adopt a new format for selecting articles for publication.
In the new format, authors can choose to have their submissions formally reviewed
either before or after the symposium. Four full papers were submitted for formal review
before the symposium, out of which three were accepted by the Program Committee for
presentation and later publication. Each submission was reviewed by at least three
reviewers. For the remaining submissions, the Program Committee chairs only checked
that the drafts were within the scope of TFP and thus relevant for presentation at
TFP. Submissions appearing in the draft proceedings are not considered as
peer-reviewed publications.

The TFP 2018 program consisted of two invited talks and 16 presentations. The
invited talks were given by Simon Thompson (University of Kent, UK) on
“Refactoring Reflected,” and Neel Krishnaswami (University of Cambridge, UK) on
“Retrofitting Purity with Comonads.” Out of the 16 presentations, three full papers
were accepted for publication before the symposium as mentioned earlier, whereas a
further nine full papers were submitted to the formal post-refereeing process. The
Program Committee selected four more papers for publication from these, which brings
us to the total of seven that are included in these proceedings.

We are grateful to everyone at Chalmers University for their help in preparing and
organizing TFP 2018, in particular Elisabeth Kegel Andreasson. We gratefully
acknowledge the financial support of the Information and Communication Technology
Area of Advance at Chalmers and Erlang Solutions, which allowed us to reduce
registration costs. We also gratefully acknowledge the assistance of the TFP 2018
Program Committee and the TFP Steering Committee for their advice while organizing
the symposium.

February 2019 Michał Pałka
Magnus Myreen

Organization

Program Committee

Soichiro Hidaka Hosei University, Japan
Meng Wang University of Bristol, UK
Sam Tobin-Hochstadt Indiana University Bloomington, USA
Tiark Rompf Purdue University, USA
Patricia Johann Appalachian State University, USA
Neil Sculthorpe Nottingham Trent University, UK
Andres Löh Well-Typed LLP, UK
Tarmo Uustalu Reykjavik University, Iceland
Cosmin E. Oancea University of Copenhagen, Denmark
Mauro Jaskelioff Universidad Nacional de Rosario, Argentina
Peter Achten Radboud University, The Netherlands
Dimitrios Vytiniotis Microsoft Research, UK
Alberto Pardo Universidad de la República, Uruguay
Natalia Chechina Bournemouth University, UK
Peter Sestoft IT University of Copenhagen, Denmark
Scott Owens University of Kent, UK
Michał Pałka (Chair) Chalmers University of Technology, Sweden
Magnus Myreen (Chair) Chalmers University of Technology, Sweden

Sponsoring Institutions

Chalmers ICT Area of Advance
Erlang Solutions

Contents

Colocation of Potential Parallelism in a Distributed Adaptive
Run-Time System for Parallel Haskell . 1

Evgenij Belikov, Hans-Wolfgang Loidl, and Greg Michaelson

Reversible Session-Based Concurrency in Haskell . 20
Folkert de Vries and Jorge A. Pérez

Intrinsic Currying for C++ Template Metaprograms. 46
Paul Keir, Andrew Gozillon, and Seyed Hossein Haeri

Towards Optic-Based Algebraic Theories: The Case of Lenses 74
J. López-González and Juan M. Serrano

Saint: An API-Generic Type-Safe Interpreter . 94
Maximilian Algehed, Patrik Jansson, Sólrún Halla Einarsdóttir,
and Alex Gerdes

Improving Haskell. 114
Martin A. T. Handley and Graham Hutton

High-Performance Defunctionalisation in Futhark . 136
Anders Kiel Hovgaard, Troels Henriksen, and Martin Elsman

Author Index . 157

Colocation of Potential Parallelism
in a Distributed Adaptive Run-Time

System for Parallel Haskell

Evgenij Belikov(B), Hans-Wolfgang Loidl, and Greg Michaelson

School of Mathematical and Computer Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, Scotland, UK

{eb120,H.W.Loidl,G.Michaelson}@hw.ac.uk,
http://www.macs.hw.ac.uk

Abstract. This paper presents a novel variant of work stealing for load
balancing in a distributed graph reducer, executing a semi-explicit paral-
lel dialect of Haskell. The key concept of this load-balancer is colocating
related sparks (potential parallelism) using maximum prefix matching on
the encoding of the spark’s ancestry within the computation tree, recon-
structed at run time, in spark selection decisions. We evaluate spark colo-
cation in terms of performance and scalability on a set of five benchmarks
on a Beowulf-class cluster of multi-core machines using up to 256 cores.
In comparison to the baseline mechanism, we achieve speedup increase
of up to 46% for three out of five applications, due to improved locality
and load balance throughout the execution as demonstrated by profil-
ing data. For one less scalable program and one program with excessive
amounts of very fine-grained parallelism we observe drops in speedup by
17% and 42%, respectively. Overall, spark colocation results in reduced
mean time to fetch the required data and in higher degree of parallelism
of finer granularity, which is most beneficial on higher PE numbers.

Keywords: Parallel functional programming · Graph reduction ·
Load balancing · Distributed-memory work stealing ·
Adaptive parallelism

1 Introduction

Exploiting modern distributed parallel architectures is key for improving appli-
cation performance and scalability beyond a single machine, for instance for
Large-Scale Data Analytics and High-Performance Computing. Additionally,
using a high-level programming language is crucial for countering growing soft-
ware complexity and for increasing programmer productivity by delegating most
of the coordination and parallelism management to the run-time system (RTS).
Functional Programming offers a high level of abstraction and advanced lan-
guage features [1,14,16], e.g. higher-order functions, polymorphism, and type
classes. In particular, functional languages appear suitable for exploitation of
c© Springer Nature Switzerland AG 2019
M. Pa�lka and M. Myreen (Eds.): TFP 2018, LNCS 11457, pp. 1–19, 2019.
https://doi.org/10.1007/978-3-030-18506-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18506-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-18506-0_1

2 E. Belikov et al.

fine-grained parallelism as independent sub-expressions can be evaluated in any
order without changing the result (known as the Church-Rosser property [9]),
facilitating incremental parallelisation and allowing for sequential debugging of
parallel programs, whilst avoiding race conditions and deadlocks [13].

Work stealing [5] is a popular passive (i.e. receiver-initiated) decentralised
load balancing mechanism, where idle processing elements (PEs) attempt to
steal work from busy PEs. Important parameters in this mechanism are the
target of the steal attempt and the choice of the (potential) parallel work units,
or sparks. In our current parallel RTS the target is randomly selected, to avoid
hotspots in the communication, and older sparks are preferred, because they
typically represent work of larger granularity. Large granularity aims at offsetting
the communication costs, especially in computations that use the Divide-and-
Conquer (D&C) pattern or are nested and are run on distributed architectures
with very high communication costs.

Note that in our system all parallelism is advisory rather than mandatory.
This means that RTS policies can adaptively tune the amount of parallelism,
deciding not to generate actual parallelism. This can effectively in-line work into
other threads and thereby improve the granularity of the computation.

In this paper we investigate the effect of a modification to the spark (work)
selection policy, namely spark colocation (SC), on performance and scalability.
SC exports the spark that is, according to a specific metric, most closely related
to the computation performed by the thief and is aimed at resolving the trade-off
between data locality and load balance, instead of exporting the oldest spark.
The chosen metric for proximity is the distance in the compute tree, and the
RTS is extended to capture a trace of spark sites, representing the path in the
tree leading to this spark. On selecting a spark to export to another PE, the one
with the longest common prefix is used, as the one that is most closely related to
recent work performed on the thief’s PE. Compared to the baseline mechanism,
SC achieves speedup increase of up to 46%, due to improved locality and load
balance throughout the execution as demonstrated by profiling data, whilst for
one less scalable application and one with excessive amount of overly fine-grained
parallelism we observe drops in speedup of 17% and 42%, respectively.

Next we introduce the GUM RTS for Glasgow parallel Haskell in Sect. 2 and
discuss the design and implementation of spark colocation in Sect. 3, followed
by evaluation of empirical results for five applications based on means-based
metrics from per-PE profiles gathered from runs on a 256-PE-cluster in Sect. 4.
A brief discussion of related work follows in Sect. 5, before our conclusion and
future work directions are presented in Sect. 6.

2 Distributed Graph Reduction in the GUM RTS

Here we briefly introduce the Glasgow parallel Haskell (GpH) language and
the underlying GUM (Graph Reduction on a Unified Machine Model) RTS that
implements distributed graph reduction [31], including most notably using global
addresses to implement virtual shared memory, thread management using sparks
that efficiently represent potential parallelism, and work stealing, or fishing, for
passive load distribution.

Colocation of Potential Parallelism 3

2.1 Haskell Extension for Semi-explicit Parallelism

Glasgow parallel Haskell (GpH) [12] extends Haskell [15,24], a popular non-strict
purely functional language, by adding a sequential and a parallel combinator as
language primitives (pseq and par), which allow the specification of evaluation
order and identification of potential parallelism, respectively. This high-level
programming model is semi-explicit. The advisory parallelism identification and
optional application-level granularity control are explicit. All other coordination
aspects, such as communication and synchronisation, are implicitly controlled
by the RTS. Listing 1.1 provides an example.
1 f i b 0 = 0 −− s e qu en t i a l v e r s i on
2 f i b 1 = 1 −− NB args o f type In t eg e r
3 f i b n = f i b (n−1) + f i b (n−2)
4

5 p f i b 0 = 0 −− p a r a l l e l v e r s i on
6 p f i b 1 = 1
7 p f i b n t | n <= t = f i b n −− th r e sho ld f o r g r anu l a r i t y c on t r o l
8 | otherwi se = x ‘ par ‘ y ‘ pseq ‘ x + y
9 where x = p f i b (n−1) t

10 y = p f i b (n−2) t

Listing 1.1. GpH Example: Sequential and Parallel Fibonacci Functions

Using par, the programmer provides a hint to the RTS that the first argument
expression can be beneficially evaluated in parallel, thus creating a spark, and
the RTS decides at run time whether the spark will be turned into a light-
weight thread increasing the actual degree of parallelism or ignored. Note that
in order to be useful the first expression should be unevaluated, represent a large-
enough amount of computation, and be shared with the rest of the program [21].
This mechanism can be viewed as implementing lazy futures similar to lazy task
creation [25]. To cleanly separate the computation and coordination concerns
Evaluation Strategies [22,30] were introduced on top of the basic primitives.

2.2 Memory Management

GUM implements GpH by supporting distributed graph reduction, where each
graph node represents a potentially shared computation, using a combination
of a virtual shared memory that holds the shared graph nodes and independent
local heaps associated with separate GUM instances that run on each PE in
parallel. Once a node has been evaluated it is replaced by the result, which is in
turn sent to all the PEs that require it.

This design, based on private heaps with some sharing across them, is scal-
able as most of garbage collection (GC) can be performed locally without the
need for communication and synchronisation. GUM uses a generational garbage
collector that is either copying or compacting depending on the RTS flags set,
thus avoiding a stop-the-world design (e.g. as used in GHC-SMP [23]). Heap
objects that survive for a long time are promoted from the initial and frequently
GC’d heap area (called nursery) to a different space that is GC’d less often. This
GC scheme assumes that most heap objects will expire after a short period of
time allowing the associated memory to be reclaimed. Additionally, GUM uses
distributed weighted reference counting [4] to manage the virtual shared heap.

4 E. Belikov et al.

2.3 Thread and Parallelism Management

GUM represents sub-computations using light-weight threads that are mapped
to relatively few heavy-weight OS threads (often one per core) in an M-to-N
fashion for scalability (similar to Green Threads). Each RTS instance maintains
a local thread pool for runnable threads and blocked queues for threads waiting
on a result of evaluation performed by another potentially remote thread1.

GUM’s scheduler is unfair and non-preemptive. It prioritises handling mes-
sages and implements the evaluate-and-die evaluation model [28]. In this model
a thread picks up a thunk (an unevaluated expression) to evaluate and returns
control to the scheduler once either the evaluation to weak-head normal form
has completed or thread blocks waiting on another value under evaluation.

Sparks that represent potentially parallel work are created using the par
primitive and kept in a separate local pool on each PE. Sparking is inexpen-
sive, as it merely adds a pointer to a graph node representing the expression
to be evaluated to the pool, which is implemented using an efficient lock-free
dequeue [8], which allows the owner to use one end locally for pushing, whilst
older sparks are stolen off the other end using a single atomic compare-and-swap
operation (FIFO). The overhead is absent unless two threads happen to simul-
taneously operate on the same item of the dequeue. Sparks are discarded if they
have been already evaluated or if the spark pool is full.

2.4 Workload Distribution

Load balancing across PEs is achieved through work stealing (also called fishing)
and aims at reducing the overall idle time across PEs. The two main decisions
include: (1) where to steal from (victim selection by the thief or selection of for-
warding destination by victim with no sparks available for export) and (2) which
spark to export (decision made by a victim that has exportable sparks). This
work is focused on the latter decision.

Figure 1 illustrates the message types and the protocol. A FISH message
is a request for work and is forwarded to randomly selected PEs until either
some work was found or the FISH expires by reaching a maximum age (it is
incremented with every hop). If the thief was successful, it receives a SCHEDULE
message containing some work and potentially some related data. The thief
responds by sending an ACK message with an updated list of pairs of old and
new global addresses to the victim to update the virtual shared memory to reflect
the change. If the FISH expires, it is sent back to the original PE, which then
can then send out a new FISH.

The default mechanism selects a victim at random. A victim that receives a
FISH, selects the oldest spark for donation and sends it back to the origin PE.
This is where SC differs: it selects a spark from the same source of parallelism
using maximum prefix matching on the encoding of the path of the spark within

1 Parallelism is exploited over pure functions and I/O is handled orthogonally by a
separate thread.

Colocation of Potential Parallelism 5

Fig. 1. Multi-Hop successful FISHing attempt

the computational graph, rather than using the age of the spark (as described
in detail in Sect. 3).

Fish delay and delay factor as well as a limitation on the number of outstand-
ing fishes (currently one) are used to avoid swamping the network with FISHes.
Thread migration is not supported in the current implementation.

3 Spark Colocation

Spark Colocation is aimed at improving load balance and locality by exporting
the spark that is most closely related to the computation performed by the thief.

3.1 Motivating Example

Consider the example from Fig. 2 that illustrates a situation where two PEs work
on several tasks and one PE needs to decide which spark to donate.

The tree structure represents computational dependencies, whilst the dashed
regions depict which tasks are located on which PE. In particular, both sparks
ended up on PE1. As PE2 continues the evaluation it runs out of tasks and
sends a FISH to PE1. In turn, PE1 can now decide which spark to donate. It
would donate B, which we assume is older2, in the baseline case. Then it would
continue to execute the remaining spark A locally. However, the result of A
is needed by PE2, which would require additional communication. Similarly, if
spark B is exported and turned into a thread on PE2, communication is required
to send the result to PE1. If Spark Colocation is used A would be donated as it
is more related to the computation on PE2.

The main idea is to allocate computations to PEs that have worked on related
computations. A related computation is located closely in the same computa-
tional sub-tree, because its result or produced data are likely to be required by
2 This is reasonable as PE1 is the main PE and PE2 starts with no work.

6 E. Belikov et al.

Fig. 2. Example of potential for colocation

the other computation. The concept of SC builds on the notion of proximity
between computations. Two sparks are defined to be in close proximity if the
path in the tree between their nodes is short. In particular, if the root node is
on the path, the sparks can be considered unrelated.

3.2 Design

SC is an extension of the baseline work stealing mechanism, investigating the
effect of favouring colocation of related sparks, rather than selecting a spark to
export based on its age alone. The idea is to allocate computations to PEs that
have worked on related computations, i.e. computation located closely in the
same computational sub-tree likely to require the result of, or share some data
with the other. Using SC, the information on the proximity between sparks that
would normally be lost during compilation is forwarded to the RTS, where it
can dynamically influence scheduling and load balancing decisions at run time.

Informally, the colocation algorithm behaves as follows: if a PE is idle, it will
attempt to steal work from others that will respond with the spark on the path
through the compute tree that is most related to the computation performed
by the thief, rather than with the oldest. We use the ancestry relation with the
maximum prefix function as the matching function for finding the best match
between the encoding of the thief and of the sparks available to the victim. The
baseline mechanism is used as a fallback.

Figure 3 illustrates the encoding for two sources of parallelism, thus base 2 is
used for the encoding. For example, if spark A with the encoding 01 was turned
into a thread and then had the choice between sparks B and C, the latter would
be chosen as given its encoding 010 it has a longer common prefix of length two
with A as opposed to B with encoding 00, which shares only one symbol with A.
We can also see that A requires the result of computation C, whilst it does not
require the result of B to proceed. An ancestor of a spark is recursively defined as
either the direct creator of the spark (its parent), or as the ancestor of its parent.

Colocation of Potential Parallelism 7

The ancestry relation is encoded as a path in the computation represented by a
string of symbols that encode the branch at each tree level.

Fig. 3. Spark ancestry encoding example

We select maximum prefix as a matching function, because the resulting
encoding mirrors closely the actual tree-like computational structure of the appli-
cation. The ancestry relation defines the distance between a thread’s encoding
and the encoding of a given spark as the sum of edges traversed on the path
from one encoding to the other in the tree. The smaller the distance the more
closely related two sub-computations are deemed to be. Investigation of alterna-
tive encodings and matching functions remains for future work.

3.3 Implementation

SC is implemented as an explicit language primitive—a version of the par combi-
nator we call parEnc—that takes additional encoding arguments that are passed
to the RTS and used to tag the sparks. The path to the spark constitutes an
encoding, where we start from the root and add a symbol for each sub-branch
chosen at each level. The symbol corresponds to the parEnc site that leads to
the creation of the spark and is appended to its inherited parent’s encoding.

Spark Selection: In the baseline mechanism, the spark pool is implemented as a
lock-free double-ended queue, so that the owning PE can add new sparks at the
tail of the deque whilst sparks are exported off the head. This mechanism avoids
most of the synchronisation cost as it is only incurred when threads attempt to
dequeue the same spark, as the owner turns local sparks into threads by taking
them from the tail, which is similar to the Breadth-first-Until-Saturation-then-
Depth-first mechanism [6].

By contrast, SC uses spark encodings to select related sparks, if possible.
Internally, we use hash tables to store and efficiently access the information on

8 E. Belikov et al.

threads and sparks using their respective identifiers as lookup keys. This mecha-
nism enables the RTS to distinguish sparks based on their source of parallelism
and location within the compute tree of the application for a given input. Each
time a spark is created it stores its encoding in the hash table. This encoding is
compared to the encoding carried by an incoming FISH message, extended with
information about the encoding of the thief. The spark pool is traversed and a
spark with a maximum prefix match is donated. To trade precision for overhead,
the maximum traversal length can be specified as an RTS option.

Matching Function: We have chosen to encode ancestry as a string of symbols
to the base needed to encode the maximum number of branches at a level of the
tree, reflecting the dynamic relationship that arises at run time.

As a natural choice, maximum prefix string matching is used to determine the
spark for export, since it represents the closest relation between the computations
in the graph. Nevertheless, the matching may potentially lead to more commu-
nication than in the baseline case and increased amount of inter-PE sharing as
implicated by the number of global addresses. Therefore an empirical evaluation
is needed.

Packet Format: To propagate ancestry information, the packet format is
extended for the FISH and the SCHEDULE protocol messages. FISH is extended to
carry the requesting PE’s encoding, whilst SCHEDULE includes the exported spark
and its encoding. When turned into a thread, the spark’s encoding is used as
the thread’s encoding, which is in turn passed on to the sparks it may generate.

Profiling: To facilitate comparison between SC and the baseline mechanism, the
event-based profiling sub-system is extended to record thread granularities, i.e.
the run time elapsed from start to termination of a thread, and fetch times, i.e.
run time spent in the state waiting for data to arrive, in addition to the already
available profiling information such as per-PE load over time, message counts,
and number of global addresses.

The extension is small as it requires mainly adding calls to a timer function
in places where a thread enters a particular state (e.g. fetching) and recording
the difference when a transition to another state occurs. The extension does not
impede scalability as it only involves keeping an additional per-thread counter
adding little to the existing profiling overhead, whilst the events are written
out to file as they occur using a separate asynchronous thread responsible for
buffered I/O.

Colocation of Potential Parallelism 9

4 Evaluation

We compare SC and the baseline mechanism using empirical measurements.

4.1 Methodology

We run each of the five applications five times for each PE-count both with and
without event-based profiling and compare the median runs with and without
SC3. The elapsed (wall-clock) run time is measured in milliseconds and includes
both the mutation time and the garbage collection time. We don’t have exclusive
access to the cluster, so that although it is usually lightly loaded, we can’t fully
rule out some variation due to interference with other processes running on the
machines. As PVM is used as a communication library [11], processes are placed
onto nodes in a round robin fashion as specified in a hostfile that is read in top-
to-bottom order.

Using ends-based metrics such as run time and speedup alone doesn’t provide
sufficient insight into why the observed effects of SC take place, for instance with
respect to load balance over time. Therefore, we also collect profiling data for
several means-based metrics: per-PE numbers of threads over time as a measure
of load balance and degree of parallelism, thread sizes reflecting granularity,
numbers of transmitted messages of different types, as well as the numbers inter-
PE pointers to assess data locality, and fetch times and counts for data-carrying
messages.

4.2 Target Platform

The applications are run on a 32-node Beowulf cluster of multi-cores using up to
256 PEs. The cluster comprises a mix of 8-core Xeon 5504 nodes with two sock-
ets with four 2 GHz cores, 256 KB L2 cache, 4 MB shared L3 cache and 12 GB
RAM, and 8-core Xeon 5450 nodes with two sockets with four 3 GHz cores, 6 MB
shared L2 cache and 16 GB RAM. The machines are connected via Gigabit Eth-
ernet with an average latency of 0.23 µs, measured using the Linux ping utility
(average round-trip time of 100 packets). We use the CentOS 6.7 operating sys-
tem, the GHC 6.12.3 Haskell compiler, the GCC 4.4.8 C compiler, and the PVM
3.4.6 communication library. The optimisations are turned on (-O2).

4.3 Applications

We use five D&C benchmark applications adopted from the parallel part of the
established nofib benchmarking suite [26] and from a recent study of Evaluation
Strategies [22]. In particular, we use parfib which is the standard parallelism
microbenchmark, parpair with calls to sumeuler and parfib nested within
the pair and evaluated in parallel, interval-based sumeuler version reformulated

3 Median is used as it is more robust to outliers.

10 E. Belikov et al.

using the D&C pattern that calculates the sum of Euler Totient4 functions in
a given range, worpitzky that calculates the Worpitzky identity5 and minimax
that implements a game using alpha-beta pruning (Table 1).

Table 1. Applications overview

Application Parallelism pattern Regularity Input parameters

parfib D&C Regular 50 35

parpair Nested D&C Irregular/regular 100000 10 50 35

sumeuler D&C Irregular 100000 10

worpitzky D&C Irregular 27 30 18

minimax D&C Irregular 4 8 2

4.4 Results

The results summarised in Table 2 demonstrate that substantial speedups can
be reached for both the baseline and for the colocation case over sequential run
time, achieving speedup improvement of up to 46% with SC over the baseline
for three of the programs. However, we also observe a drop in speedup for SC,
for the less scalable minimax, and for worpitzky with excessively fine-grained
parallelism and parallelism degree of 17% and 42%, respectively. We focus on
load balance and granularity profiles for sumeuler as they most clearly depict
the differences between the mechanisms.

Table 2. Applications’ speedups on 256 PEs

Application Sequential
run time (sec)

Baseline
speedup

Colocation
speedup

Change in %

parfib 1609 204 219 +7

parpair 2870 200 231 +16

sumeuler 1450 142 207 +46

worpitzky 3269 175 101 −42

minimax 160 95 79 −17

Load Balance: Figures 4 and 5 show the detailed per-PE profiling data for
sumeuler indicating load balancing behaviour change resulting from SC use.

We visualise data using 128 PEs for readability, but the difference is stronger
for higher numbers of PEs. Figure 4 visualises PEs 1–64 as horizontal bars, Fig. 5
PEs 65–128, baseline being on the left and SC on the right. A per-PE profile

4 http://mathworld.wolfram.com/TotientFunction.html.
5 http://mathworld.wolfram.com/WorpitzkysIdentity.html.

http://mathworld.wolfram.com/TotientFunction.html
http://mathworld.wolfram.com/WorpitzkysIdentity.html

Colocation of Potential Parallelism 11

F
ig
.
4
.
E

v
en

t-
b
a
se

d
lo

a
d

b
a
la

n
ci

n
g

p
er

-P
E

p
ro

fi
le

co
m

p
a
ri

so
n

fo
r
s
u
m
e
u
l
e
r
P
E
s
1
–
6
4

o
u
t

o
f
1
2
8

(C
o
lo

r
fi
g
u
re

o
n
li
n
e)

12 E. Belikov et al.

F
ig
.
5
.
E

v
en

t-
b
a
se

d
lo

a
d

b
a
la

n
ci

n
g

p
er

-P
E

p
ro

fi
le

co
m

p
a
ri

so
n

fo
r
s
u
m
e
u
l
e
r
P
E
s
6
5
–
1
2
8

o
u
t

o
f
1
2
8

(C
o
lo

r
fi
g
u
re

o
n
li
n
e)

Colocation of Potential Parallelism 13

shows PEs on the y-axis and execution time in milliseconds on the x-axis, thus
depicting load-balance across PEs over time. The darkness of the green value at
each point in time shows the utilisation (i.e. the number of runnable threads) as
an average over a fixed time window, whilst idle time is shown in red. Addition-
ally, the small blue stripes embedded in the lines for each individual PE reflect
the number of communicating (blocked-on-fetch) threads.

Overall, we observe better load balance for SC, as almost all of the bars are
green, as opposed to the baseline case, where there are substantially more gaps
and areas with a reduced number of threads visible. In particular, most of the
blocking time is at the end of execution for the baseline (we can distinguish
the execution and the waiting for termination as two distinct phases), but it is
more spread out and more evenly distributed across more PEs for SC, which
exhibits fewer blocking hotspots. We can see noticeably more short green stripes
for baseline reflecting the need to fetch data, which appears less often for SC
as either the data is readily available or the waiting can be overlapped with
computation performed by another thread.

Additionally, the data show good load balance for SC, with very similar total
run times on each PE, whilst for the baseline the run times are more variabile,
with differences of over 30% of the total run time in some cases.

Granularity: We use event-based profiling to record execution time for each
thread. Figure 6 depicts the granularity of sumeuler on 256 PEs, with number
of threads on the y-axis and thread granularity in milliseconds on the x-axis.
Light-red represents the baseline case, light-blue SC, and a darker shade shows
the overlap between both. The granularity profiles are overlapping but distinct.

We observe fewer threads and coarser granularity for the baseline case6, which
results from exporting older and likely larger sparks, which are then turned into
threads on arrival at the thief PE. Note that the RTS cannot re-balance threads,
as opposed to sparks, between PEs, and therefore this behaviour can lead to load
imbalance. By contrast, SC exports sparks that are closer to a thief’s encoding,
but of smaller granularity, which allows more flexibility in saturating larger num-
ber of PEs. Although finer granularity is associated with additional overhead, in
this case the advantage of improved load balance out-weighs this overhead. Note
that due to thread subsumption, which allows a thread to evaluate a potentially
parallel child computation sequentially, not all of the fine-grained sparks will be
turned into threads, thus reducing the overhead.

Degree of Parallelism: Complementing the granularity profiles, Tables 3 and 4
present the measured total (across PEs) and calculated median (per PE) spark
and thread counts, representing the potential and actual degree of parallelism,
respectively. We report data from the median run profiled on 256 PEs for each
benchmark, comparing the baseline against SC.

Overall, we observe consistently higher potential parallelism in the range
between 2% and 45% for SC, which translates into proportionally higher increase

6 For other benchmarks SC consistently leads to more and smaller threads.

14 E. Belikov et al.

Fig. 6. Granularity of sumeuler on 256 PEs (Color figure online)

Table 3. Spark counts for benchmarks on 256 PEs

Application Median Total Change in %

Baseline SC Baseline SC

parfib 11 12 2755 3172 +15

parpair 14 19 3840 5045 +31

sumeuler 6 7 1854 1983 +7

worpitzky 1322 1927 337116 488550 +45

minimax 7 5 2466 2525 +2

in the number of threads of up to 197%. This can be attributed to the export of
related sparks rather than the oldest, which may reduce potential for subsump-
tion once the computation is shared across the PEs. Sparks are inexpensive
as they are pointers to sub-graphs and can be maintained with low overhead
and allow more flexibility for load balancing, potentially increasing utilisation.
Threads are more expensive as they require the creation of data structures in
the heap to hold thread state and related information, which may increase the
memory management overhead.

Colocation of Potential Parallelism 15

Table 4. Thread counts for benchmarks on 256 PEs

Application Median Total Change in %

Baseline SC Baseline SC

parfib 4 6 1127 1584 +41

parpair 5 10 1195 2508 +110

sumeuler 3 4 802 955 +19

worpitzky 322 979 82065 243709 +197

minimax 4 4 1092 1055 −3

Using SC turns out to be particularly beneficial for larger numbers of PEs as
the number of threads per PE is increased in all but one case, whilst the amount
of total heap available grows with the number of PEs reducing the pressure
on the garbage collector. The worpitzky benchmark is an example of worst-
case behaviour, demonstrating that having a higher number of threads may
become counterproductive when there are already more than enough threads in
the baseline case, due to additional overhead, reducing scalability.

Fetching Behaviour: Another distinguishing characteristic and the most direct
indicator of SC’s efficacy is the fetch time threads spend waiting for data
required by the computation to arrive. Table 5 compares the baseline and SC
across applications for the median run on 256 PEs (no data available for
minimax).

Table 5. Overview of fetching on 256 PEs (in ms)

Application Baseline mean
fetch time
across PEs

Colocation
mean fetch
time across
PEs

Mean fetch
time change in
% across PEs

Total fetch
time
change in
%

Total fetch
count
change in
%

parfib 829 637 −23 +8 +35

parpair 1109 566 −49 −5 +78

sumeuler 594 290 −51 −29 +49

worpitzky 19 12 −40 +81 +163

In some cases it is possible that the data is already available or fits into the
same packet, resulting in fetch time of zero, as for many sumeuler threads, and
in other cases the fetch time may exceed the time the thread spends performing
the computation.

We observe that SC has consistently a smaller mean fetch time across PEs
than the baseline, with drops in the range between 23% and 51%. This indicates
that the threads in SC case are ’more useful’ in the sense that they spend less time

16 E. Belikov et al.

waiting on data to arrive. Thus, despite finer granularity, SC threads have higher
average utilisation as can be seen from the load balancing results, and the degree
of parallelism is increased, which allows more overlap between communication
and computation. Although the total number of fetch messages is increased due
to the larger number of threads, for parpair and sumeuler, the benchmarks that
benefit most from SC, the total fetch times are still lower than for the baseline
due to reduction in individual fetch times.

5 Related Work

Although popularised by Cilk [5], work stealing was used in earlier parallel imple-
mentations of functional languages [6,18,27], whilst remaining popular in con-
temporary implementations (e.g. [10]), as reviewed in a recent survey [32], with
locality-awareness being a popular current research direction.

Table 6. Overview of GUM and related systems

RTS (Language) Parallelism
identification

Scheduling Archi-
tecture

Synchro-
nisation

Load
balancing

Cilk [5] (C ext.) Explicit
(cilk spawn)

LIFO Shared Explicit Work
stealing

GHC-SMP [23]
(GpH)

Annotations
(advisory)

FIFO
unfair

Shared Implicit Work
stealing

Manticore [10]
(NESL/CML-
alike)

Impl. data par.
expl. task par

FIFO
nestable

Shared Implicit Work
pushing

X10 [7] (X10) Impl. data par.
expl. task par

PGAS Shared Implicit Work
stealing

GUM [31] (GpH) Annotations
(advisory)

FIFO
unfair

Virtual
shared

Implicit Work
stealing

DREAM [20]
(Eden)

Explicit process
instantiation

Round
robinfair

Shared-
nothing

Implicit Work
pushing

Table 6 provides an overview of GUM compared to the most related systems,
which together span a wide spectrum of parallel language run-time systems. For
more detailed and broader comparisons refer to further literature [2,3]. With
respect to parallelism identification GUM and SMP occupy a unique place in
the design space as the annotations provide hints that are advisory rather than
mandatory, as is e.g. process instantiation performed in an Eden program, which
will lead to a creation of a remote process. Eden and GUM are similar in the
architectural respect that unlike other systems they enable distributed execution.
On the other hand they differ in the implementation as GUM provides a Global
Indirection Table for inter-PE pointers implementing the virtual shared memory

Colocation of Potential Parallelism 17

abstraction, whilst DREAM uses shared-nothing design and sends data once
it is in normal form. Manticore and X10 are somewhat similar in chosing to
incorporate both implicit data parallelism and explicit task parallelism, whilst
GUM makes no special arrangements for data parallelism and treats expressions
requiring data as tasks. There is no agreement on the scheduling style among
the systems, Manticore allowing nested schedulers and X10 following PGAS
distribution style. GUM and SMP follow the evaluate-and-die model that leads
to an unfair design, but helps improve performance by avoiding some overhead.

In all systems thread and memory management are implicit as well as syn-
chronisation, with an exception of Cilk. This allows for a high level of expressive-
ness, compared to explicit synchronisation and parallelism management. Despite
the popularity of work stealing, some systems have chosen to use work pushing
to reduce the amount of communication. This diversity exacerbates the difficulty
of directly comparing these systems and languages.

Granularity control is another key consideration for execution of non-strict
parallel functional programs [19], both through thread subsumption [25] and
explicit application-level specification using thresholding and sophisticated fuel-
based algorithms [29] at application or library level. Moreover, work stealing was
also shown to benefit from granularity awareness [17].

6 Conclusion

We have introduced spark colocation, a work stealing variant that maintains
dynamic information about ancestry throughout the execution and uses this
information to select sparks that are more closely related to a thief’s computa-
tion, rather than picking the oldest spark. We report results from five Glasgow
parallel Haskell benchmark programs running on a cluster of multi-cores using
an extended version of the GUM RTS on up to 256 cores, showing speedup
improvements of up to 46% for three of the programs. Examining profiling data
suggests that the gain is due to improved load balance and reduced average
fetching time, suggesting that related tasks were indeed colocated.

However, the drop in speedup for one less scalable application and one with
excessive amounts of overly fine-grained parallelism, suggests that a heuristic
could be developed to switch between the baseline and spark colocation depend-
ing on both application and architectural characteristics such as the number and
computational capability of PEs.

Our mechanism requires minimal programmer overhead, and we argue that it
is possible to automatically place annotations by enumerating pars and replacing
each par with parEnc, with the corresponding encoding as an argument. As fur-
ther future work, we would like to investigate different encodings and matching
functions to effect granularity in the opposite direction towards a more coarse-
grained setting, which becomes useful if the number of PEs is small or parallelism
degree is excessive.

Acknowledgements. We are grateful to the anonymous reviewers for comments that
have substantially improved the presentation of this paper.

18 E. Belikov et al.

References

1. Backus, J.: Can programming be liberated from the von Neumann style? A func-
tional style and its algebra of programs. CACM 21(8), 613–641 (1978)

2. Belikov, E.: Language run-time systems: an overview. In: Proceedings of Impe-
rial College Computing Student Workshop, OpenAccess Series in Informatics
(OASIcs), vol. 49, pp. 3–12. Leibniz-Zentrum fuer Informatik (2015)

3. Belikov, E., Deligiannis, P., Totoo, P., Aljabri, M., Loidl, H.-W.: A survey of high-
level parallel programming models. Technical report HW-MACS-TR-0103, Depart-
ment of Computer Science, Heriot-Watt University, December 2013

4. Bevan, D.: An efficient reference counting solution to the distributed garbage col-
lection problem. Parallel Comput. 9(2), 179–192 (1989)

5. Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K., Zhou, Y.: Cilk: an
efficient multithreaded runtime system. In: Proceedings of the Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP 1995), pp. 207–216 (1995)

6. Burton, F.W., Sleep, M.R.: Executing functional programs on a virtual tree of
processors. In: Proceedings of the 1981 Conference on Functional Programming
Languages and Computer Architecture, pp. 187–194. ACM (1981)

7. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster com-
puting. In: ACM SIGPLAN Notices, vol. 40, pp. 519–538. ACM (2005)

8. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: Proceedings of the
17th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 21–28
(2005)

9. Church, A., Rosser, J.B.: Some properties of conversion. Trans. Am. Math. Soc.
39(3), 472–482 (1936)

10. Fluet, M., Rainey, M., Reppy, J., Shaw, A., Xiao, Y.: Manticore: a heterogeneous
parallel language. In: Proceedings of the 2007 Workshop on Declarative Aspects of
Multicore Programming, pp. 37–44. ACM (2007)

11. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM:
Parallel Virtual Machine: A User’s Guide and Tutorial for Networked Parallel
Computing. MIT Press, Cambridge (1994)

12. Hammond, K.: Glasgow parallel Haskell (GpH). In: Padua, D. (ed.) Encyclopedia
of Parallel Computing, pp. 768–779. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-0-387-09766-4 46

13. Hammond, K.: Why parallel functional programming matters: panel statement.
In: Romanovsky, A., Vardanega, T. (eds.) Ada-Europe 2011. LNCS, vol. 6652, pp.
201–205. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21338-
0 17

14. Hu, Z., Hughes, J., Wang, M.: How functional programming mattered. Natl. Sci.
Rev. 2(3), 349–370 (2015)

15. Hudak, P., Hughes, J., Peyton Jones, S., Wadler, P.: A history of Haskell: being lazy
with class. In: Proceedings of the Third ACM SIGPLAN Conference on History of
Programming Languages, pp. 1–12. ACM (2007)

16. Hughes, J.: Why functional programming matters. Comp. J. 32(2), 98–107 (1989)
17. Janjic, V., Hammond, K.: Granularity-aware work-stealing for computationally-

uniform grids. In: 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (CCGrid), pp. 123–134. IEEE (2010)

18. Kranz, D.A., Halstead Jr., R.H., Mohr, E.: Mul-T: a high-performance parallel
Lisp. ACM SIGPLAN Not. 24, 81–90 (1989)

https://doi.org/10.1007/978-0-387-09766-4_46
https://doi.org/10.1007/978-0-387-09766-4_46
https://doi.org/10.1007/978-3-642-21338-0_17
https://doi.org/10.1007/978-3-642-21338-0_17

Colocation of Potential Parallelism 19

19. Loidl, H.-W., Trinder, P., Butz, C.: Tuning task granularity and data locality of
data parallel GpH programs. Parallel Process. Lett. 11(04), 471–486 (2001)

20. Loogen, R., Ortega-Mallén, Y., Peña-Maŕı, R.: Parallel functional programming in
Eden. J. Funct. Program. 15(3), 431–475 (2005)

21. Marlow, S.: Parallel and Concurrent Programming in Haskell: Techniques for Mul-
ticore and Multithreaded Programming. O’Reilly, Sebastopol (2013)

22. Marlow, S., Maier, P., Loidl, H.-W., Aswad, M., Trinder, P.: Seq no more: better
strategies for parallel Haskell. In: Proceedings of the 3rd ACM Symposium on
Haskell, pp. 91–102 (2010)

23. Marlow, S., Peyton Jones, S.L., Singh, S.: Runtime support for multicore Haskell.
ACM SIGPLAN Not. 44, 65–78 (2009)

24. Marlow, S.: (Eds.) Haskell 2010 language report 2010. http://www.haskell.org/
onlinereport/haskell2010

25. Mohr, E., Kranz, D., Halstead Jr., R., et al.: Lazy task creation: a technique for
increasing the granularity of parallel programs. IEEE Trans. Parallel Distrib. Syst.
2(3), 264–280 (1991)

26. Partain, W.: The NoFib benchmark suite of Haskell programs. In: Launchbury, J.,
Sansom, P. (eds.) Functional Programming, Glasgow 1992, pp. 195–202. Springer,
Heidelberg (1993). https://doi.org/10.1007/978-1-4471-3215-8 17

27. Peyton Jones, S.L.: Parallel implementations of functional programming languages.
Comput. J. 32(2), 175–186 (1989)

28. Jones, S.L.P., Clack, C., Salkild, J.: High-performance parallel graph reduction. In:
Odijk, E., Rem, M., Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 365, pp. 193–206.
Springer, Heidelberg (1989). https://doi.org/10.1007/3540512845 40

29. Totoo, P., Loidl, H.-W.: Lazy data-oriented evaluation strategies. In: Proceedings
of 3rd ACM Workshop on Functional High-Performance Computing, pp. 63–74
(2014)

30. Trinder, P., Hammond, K., Loidl, H.-W., Peyton Jones, S.L.: Algorithm + strategy
= parallelism. J. Funct. Program. 8(1), 23–60 (1998)

31. Trinder, P., Hammond, K., Mattson Jr., J., Partridge, A., Peyton Jones, S.: GUM:
a portable parallel implementation of Haskell. In: Proceedings of PLDI, pp. 79–88
(1996)

32. Yang, J., He, Q.: Scheduling parallel computations by work stealing: a survey. Int.
J. Parallel Prog. 46(2), 173–197 (2018)

http://www.haskell.org/onlinereport/haskell2010
http://www.haskell.org/onlinereport/haskell2010
https://doi.org/10.1007/978-1-4471-3215-8_17
https://doi.org/10.1007/3540512845_40

Reversible Session-Based Concurrency
in Haskell

Folkert de Vries and Jorge A. Pérez(B)

University of Groningen, Groningen, The Netherlands
j.a.perez@rug.nl

Abstract. A reversible semantics enables to undo computation steps.
Reversing message-passing, concurrent programs is a challenging and
delicate task; one typically aims at causally consistent reversible seman-
tics. Prior work has addressed this challenge in the context of a pro-
cess model of multiparty protocols (or choreographies). In this paper, we
describe a Haskell implementation of this reversible operational seman-
tics. We exploit algebraic data types to faithfully represent three core
ingredients: a process calculus, multiparty session types, and forward
and backward reduction semantics. Our implementation bears witness
to the convenience of pure functional programming for implementing
reversible languages.

Keywords: Reversibility · Message-passing concurrency ·
Session types · Haskell

1 Introduction

This paper describes a Haskell implementation of a reversible semantics for
message-passing concurrent programs. Our work is framed within a prolific line
of research, in the intersection of programming languages and concurrency the-
ory, aimed at establishing semantic foundations for reversible computing in a
concurrent setting (see, e.g., the survey [5]). When considering the interplay of
reversibility and message-passing concurrency, a key observation is that commu-
nication is governed by protocols among (distributed) partners, and that those
protocols may fruitfully inform the implementation of a reversible semantics.

In a language with a reversible semantics, computation steps can be undone.
Thus, a program can perform standard forward steps, but also backward steps.
Reversing a sequential program is not hard: it suffices to have a memory that
records information about forward steps in case we wish to return to a prior state
using a backward step. Reversing a concurrent program is much more difficult:
since control may simultaneously reside in more than one point, memories should
be carefully designed so as to record information about the steps performed in
each thread, but also about the causal dependencies between steps from different
threads. This motivates the definition of reversible semantics which are causally
consistent. A causally consistent semantics ensures that backward steps lead to
c© Springer Nature Switzerland AG 2019
M. Pałka and M. Myreen (Eds.): TFP 2018, LNCS 11457, pp. 20–45, 2019.
https://doi.org/10.1007/978-3-030-18506-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18506-0_2&domain=pdf
http://orcid.org/0000-0002-1452-6180
https://doi.org/10.1007/978-3-030-18506-0_2

Reversible Session-Based Concurrency in Haskell 21

Choreography (Global Type)

Projection

Located Process

Configuration

.Monitor
(Local Type)

Located Process

Configuration

Monitor
(Local Type)

Located Process

Configuration

Monitor
(Local Type)

Fig. 1. The model of multiparty, reversible communications by Mezzina and Pérez [7].

states that could have been reached by performing forward steps only [5]. Hence,
it never leads to states that are not reachable through forward steps.

Causal consistency then arises as a key correctness criterion in the defi-
nition of reversible programming languages. The quest for causally consistent
semantics for (message-passing) concurrency has led to a number of proposals
that use process calculi (most notably, the π-calculus [8]) to rigorously specify
communicating processes and their operational semantics (cf. [7] and references
therein). One common shortcoming in several of these works is that the pro-
posed causally consistent semantics hinge on memories that are rather heavy; as
a result, the resulting (reversible) programming models can be overly complex.
This is a particularly notorious limitation in the work of Mezzina and Pérez [7],
which addresses reversibility in the relevant context of π-calculus processes that
exchange (higher-order) messages following choreographies, as defined by mul-
tiparty session types [3] that specify intended protocol executions. While their
reversible semantics is causally consistent, it is unclear whether it can provide a
suitable basis for the practical analysis of message-passing concurrent programs.

In this paper we describe a Haskell implementation of the reversible seman-
tics by Mezzina and Pérez [7] (the MP model, in the following). As such, our
implementation defines a Haskell interpreter of message-passing programs writ-
ten in their reversible model. This allows us to assess in practice the mechanisms
of the MP model to enforce causally consistent reversibility. The use of a func-
tional programming language (Haskell) is a natural choice for developing our
implementation. Haskell has a strong history in language design. Its type sys-
tem and mathematical nature allow us to faithfully capture the formal reversible
semantics and to trust that our implementation correctly preserves causal con-
sistency. In particular, algebraic data types (sums and products) are essential to
express the grammars and recursive data structures underlying the MP model.

Next, Sect. 2 recalls the key notions of the MP model, useful to follow our
Haskell implementation, which we detail in Sect. 3. Section 4 explains how to
run programs forwards and backwards using our implementation. Section 5 col-
lects concluding remarks. The implementation is available at https://github.
com/folkertdev/reversible-debugger.

https://github.com/folkertdev/reversible-debugger
https://github.com/folkertdev/reversible-debugger

22 F. de Vries and J. A. Pérez

2 The MP Model of Reversible Concurrent Processes

Our aim is to develop a Haskell implementation of the MP model [7], depicted
in Fig. 1. Here we informally describe the key elements of the model, guided by a
running example. Interested readers are referred to Mezzina and Pérez’s paper [7]
for further details, in particular the definition and proof of causal consistency.

2.1 Overview

Figure 1 depicts two of the three salient ingredients of the MP model: config-
urations/processes and the choreography, which represent the communicating
partners (participants) and a description of their intended governing protocol,
respectively. There is a configuration for each participant: it includes a located
process that relies on asynchronous communication and is subject to a moni-
tor that enables forward/backward steps at run-time and is obtained from the
choreography. Choreographies are defined in terms of global types as in mul-
tiparty session types [3]. (We often use ‘choreographies’ and ‘global types’ as
synonyms.) A global type is projected onto each participant to obtain its corre-
sponding local type, which abstracts a participant’s contribution to the protocol.
Since local types specify the intended communication actions, they may be used
as the monitors of the located processes.

The third ingredient of the MP model, not depicted in Fig. 1, is the opera-
tional semantics for configurations, which is defined by two reduction relations:
forward (�) and backward (�). We shall not recall these relations here; rather,
we will introduce their key underlying intuitions by example—see Sect. 2.5 below.

2.2 Configurations and Processes

The language of processes is a π-calculus with labeled choice, communication of
abstractions, and function application: while labeled choice is typical of session π-
calculi [2], the latter constructs are typical of higher-order process calculi, which
combine features from functional and concurrent languages [9]. The syntax of
processes P, Q, . . . is as follows:

P, Q ::= u!〈V 〉.P send value V on name u, then run P

| u?(x).P receive a value on name u, bind it to x, then run P

| u � {li.Pi}i∈I select a label lj (j ∈ I), broadcast this choice, run Pj

| u � {li : Pi}i∈I receive a label lj (j ∈ I), run Pj

| P ‖ Q parallel composition of P and Q

| X | μX.P variable and process recursion

| V u function application

| (ν n)P name restriction: make n local (or private) to P

| 0 terminated process

Reversible Session-Based Concurrency in Haskell 23

In u � {li.Pi}i∈I and u � {li : Pi}i∈I , we use I to denote some finite index set.
The higher-order character of our process language may be better understood
by considering that the syntax of values (V, W, . . .) includes name abstractions
λx.P , where P is a process. Formally we have:

u, w ::= n | x, y, z n, n′ ::= a, b | s[p] v, v′ ::= tt | ff | · · ·
V, W ::= a, b | x, y, z | v, v′ | λx. P

where u, w, . . . range over names (n, n′, . . .) and variables (x, y, . . .). We distin-
guish between shared and session names, ranged over a, b, c, . . . and s, s′, . . .,
respectively. Shared names are public names used to establish a protocol (see
below); once established, the protocol runs along a session name, which is private
to participants. We use p, q, . . . to denote participants, and use session names
indexed by participants; we write, e.g., s[p]. We also use v, v′, . . . to denote base
values and constants. Values V include shared names, first-order values, and
name abstractions. Notice that values need not include (indexed) session names:
session name communication (delegation) is representable using abstraction pass-
ing [4].

The syntax of configurations M, N, . . . builds upon that of processes; indeed,
we may consider configurations as compositions of located processes:

M, N ::= � {a!〈x〉.P} | � {a?(x).P}
| M ‖ N | (ν n)M | 0
| �[p] : �C ; P � | s[p]�H · x̃ · σ�♠ | s : (hi 	 ho) | k�(V u) , ��

Above, identifiers �, �′ denote a location or site. The first two constructs enable
protocol establishment: � {a!〈x〉.P} is the request of a service identified by shared
name a implemented by P , whereas � {a?(x).P} denotes service acceptance.
Establishing an n-party protocol on service a then requires one configuration
requesting a synchronizing with n − 1 configurations accepting a. Constructs for
composing configurations, name restriction, and inaction, given in the second
row, are standard. The third row above defines four constructs that appear only
at run-time and enable reversibility:

– �[p] : �C ; P � is a running process: location � hosts a process P that implements
participant p, and C records labeled choices enforced so far.

– s[p]�H · x̃ · σ�♠ is a monitor where: s[p] is the indexed session being moni-
tored; H is a local type with history (see below); x̃ is a set of free variables;
and the store σ records their values. The tag ♠ says whether the running
process tied to the monitor is involved in a backward step (♠ = �) or not
(♠ = ♦).

– s : (hi 	 ho) is the message queue of session s, composed of an input part hi

and an output part ho. Messages sent by output prefixes are placed in the
output part; an input prefix takes the first message in the output part and
moves it to the input part. Hence, messages in the queue are not consumed
but moved between the two parts of the queue.

24 F. de Vries and J. A. Pérez

– Finally, the running function k�(V u) , �� serves to reverse the β-reduction
resulting from the application V u. In k�(V u) , ��, � is the location where the
application resides, and k is a freshly generated identifier.

These intuitions are formalized by the operational semantics of the MP model,
which we do not discuss here; see Mezzina and Pérez’s papers [6,7] for details.

2.3 Global and Local Types

As mentioned above, multiparty protocols are expressed as global types
(G, G′, . . .), which can be projected onto local types (T, T ′, . . .), one per par-
ticipant. The syntax of value, global, and local types follows [3]:

U, U ′ ::= bool | nat | · · · | T →

G, G′ ::= p → q : 〈U〉.G | p → q : {li : Gi}i∈I | μX.G | X | end
T, T ′ ::= p!〈U〉.T | p?〈U〉.T | p⊕{li : Ti}i∈I | p&{li : Ti}i∈I | μX.T | X | end

Value types U include first-order values, and type T →
 for higher-order values:
abstractions from names to processes (where
 denotes the type of processes).

Global type p → q : 〈U〉.G says that p sends a value of type U to q, and then
continues as G. Given a finite index set I and pairwise different labels li, global
type p → q : {li : Gi}i∈I specifies that p may choose label li, send this selection
to q, and then continue as Gi. In both cases, p �= q. Recursive and terminated
protocols are denoted μX.G and end, respectively.

Global types are sequential, but may describe implicit parallelism. As a sim-
ple example, the global type G = p → q : 〈bool〉.r → s : 〈nat〉.end is defined
sequentially, but describes two independent exchanges (one involving p and q,
the other involving r and s) which could be implemented in parallel. In this line,
G may be regarded to be equivalent to G′ = r → s : 〈nat〉.p → q : 〈bool〉.end.

Local types are used in the monitors introduced above. Local types p!〈U〉.T
and p?〈U〉.T denote, respectively, an output and input of value of type U by p.
Type p&{li : Ti}i∈I says that p offers different labeled alternatives; conversely,
type p⊕{li : Ti}i∈I says that p may select one of such alternatives. Recursive
and terminated local types are denoted μX.T and end, respectively.

A distinguishing feature of the MP model are local types with history (H, H ′).
A type H is a local type equipped with a cursor (denoted ^̂) used to distinguish
the protocol actions that have been already executed (the past of the protocol)
from those that are yet to be performed (the future of the protocol).

2.4 Projection

The projection of a global type G onto a participant p, denoted G↓p, is defined
in Fig. 2. The definition is self-explanatory, perhaps except for choice. Intuitively,
projection ensures that a choice between p and q should not implicitly determine
different behavior for participants different from p and q, for which any different

Reversible Session-Based Concurrency in Haskell 25

Fig. 2. Projection of a global type G onto a participant r [6,7].

behavior should be determined by some explicit communication. This is a con-
dition adopted by the MP model but also by several other works, as it ensures
decentralized implementability of multiparty session types. Our implementation
relies on broadcasts to communicate choices to all protocol participants; this
reduces the need for explicit communications in global types. Projection consis-
tently handles the combination of recursion and choices in global types. In the
particular case in which a branch of a choice in the global type may recurse back
to the beginning, the local types for all involved participants will be themselves
recursive; this ensures that participants will jump back to the beginning of the
protocol in a coordinated way.

2.5 Example: Three-Buyer Protocol

We illustrate the forward and backward reduction semantics, denoted � and
� . To this end, we recall the running example by Mezzina and Pérez [7], namely
a reversible variant of the Three-Buyer protocol (cf., e.g., [1]) with abstraction
passing (delegation).

The Protocol as Global and Local Types. The protocol involves three
buyers (Alice (A), Bob (B), and Carol (C)) who interact with a Vendor (V) as
follows:

1. Alice sends a book title to Vendor, which replies back to Alice and Bob with
a quote. Alice tells Bob how much she can contribute.

2. Bob notifies Vendor and Alice that he agrees with the price, and asks Carol to
assist him in completing the protocol. To delegate his remaining interactions
with Alice and Vendor to Carol, Bob sends her the code she must execute.

3. Carol continues the rest of the protocol with Vendor and Alice as if she were
Bob. She sends Bob’s address (contained in the code she received) to Vendor.

4. Vendor answers to Alice and Carol (representing Bob) with the delivery date.

26 F. de Vries and J. A. Pérez

This protocol may be formalized as the following global type G:

G = A → V : 〈title〉.V → {A, B} : 〈price〉.A → B : 〈share〉.B → {A, V} : 〈OK〉.
B → C : 〈share〉.B → C : 〈{{
}}〉.B → V : 〈address〉.V → B : 〈date〉.end

Above, p → {q1, q2} : 〈U〉.G stands for p → q1 : 〈U〉.p → q2 : 〈U〉.G (and
similarly for local types). We write {{
}} to denote the type end→
, associated
to a thunk λx. P with x �∈ fn(P), written {{P}}. A thunk is an inactive process,
which is activated by applying to it a dummy name of type end, denoted ∗. Also,
price and share are base types treated as integers; title, OK, address, and date
are base types treated as strings. The projections of G onto local types are as
follows:

G↓V = A?〈title〉.{A, B}!〈price〉.B?〈OK〉.B?〈address〉.B!〈date〉.end
G↓A = V!〈title〉.V?〈price〉.B!〈share〉.B?〈OK〉.end
G↓B = V?〈price〉.A?〈share〉.{A, V}!〈OK〉.C!〈share〉.C!〈{{
}}〉.V!〈address〉.V?〈date〉.end
G↓C = B?〈share〉.B?〈{{
}}〉.end

Process Implementations and Their Behavior. We now give processes for
each participant:

Vendor = d!〈x : G↓V〉.x?(t).x!〈price(t)〉.x!〈price(t)〉.x?(ok).x?(a).x!〈date〉.0
Alice = d?(y : G↓A).y!〈‘Logicomix’〉.y?(p).y!〈h〉.y?(ok).0
Bob = d?(z : G↓B).z?(p).z?(h).z!〈ok〉.z!〈ok〉.z!〈h〉.z!

〈{{z!〈‘9747’〉.z?(d).0}}〉

.0
Carol = d?(w : G↓C).w?(h).w?(code).(code ∗)

where price(·) returns a value of type price given a title. Observe how Bob’s
implementation sends part of its protocol to Carol as a thunk. The whole system,
given below, is obtained by placing these processes in locations �1, . . . , �4:

M = �1 {Vendor} ‖ �2 {Alice} ‖ �3 {Bob} ‖ �4 {Carol}
We now use configuration M to discuss the reduction relations � and � ; below
we shall refer to forward and backward reduction rules defined in Mezzina and
Pérez’s paper [7, Sect. 2.2.2].

From M , the session starts with an application of Rule (Init), which defines
a forward reduction that, by means of a synchronization on shared name d,
initializes the protocol by creating running processes and monitors:

M � (ν s)
(

�1[V] : �0 ; V1{s[V]/x}� ‖ s[V]� ^̂ G↓V · x · [x �→ d]�♦

‖ �2[A] : �0 ; A1{s[A]/y}� ‖ s[A]� ^̂ G↓A · y · [y �→ d]�♦

‖ �3[B] : �0 ; B1{s[B]/z}� ‖ s[B]� ^̂ G↓B · z · [z �→ d]�♦

‖ �4[C] : �0 ; C1{s[C]/w}� ‖ s[C]� ^̂ G↓C · w · [w �→ d]�♦ ‖ s : (ε 	 ε)
)

= M1

Reversible Session-Based Concurrency in Haskell 27

where V1{s[V]/x}, A1{s[A]/y}, B1{s[B]/z}, and C1{s[C]/w} stand for the continuation
of processes Vendor, Alice, Bob, and Carol after the service request/accept.
Observe that s is a fresh session name created after initialization; we write {s[V]/x}
to denote a substitution of variable x with session name s[V].

From M1 we could either undo this forward reduction (using Rule (RInit))
or execute the communication from Alice to Vendor, using Rules (Out) and (In)
as follows:

M1 � (ν s)(�2[A] : �0 ; s[A]?(p).s[A]!〈h〉.s[A]?(ok).0�

‖ s[A]�V!〈title〉. ^̂ V?〈price〉.B!〈share〉.B?〈OK〉.end · y · [y �→ d]�♦

‖ N2 ‖ s : (ε 	 (A , V , ‘Logicomix’))) = M2

where N2 stands for processes/monitors for Vendor, Bob, and Carol (not involved
in the reduction). In M2, the message from A to V now appears in the output
part of the queue. An additional forward step completes the synchronization:

M2 � (ν s)(�1[V] : �0 ; s[V]!〈price(t)〉.s[V]!〈price(t)〉.s[V]?(ok).s[V]?(a).s[V]!〈date〉.0�

‖ s[V]�A?〈title〉. ^̂ {A, B}!〈price〉.TV · x, t · σ3�♦ ‖ N3

‖ s : ((A , V , ‘Logicomix’) 	 ε)) = M3

where σ3 = [x �→ d], [t �→ ‘Logicomix’], TV = B?〈OK〉.B?〈address〉.B!〈date〉.end,
and N3 stands for the rest of the system. Note that the cursors (^̂) in the local
types with history of the monitors s[V] and s[A] have moved; also, the message
from A to V is now in the input part of the queue.

We now illustrate reversibility: to return to M1 from M3 we need three back-
ward reduction rules: (RollS), (RIn), and (ROut). First, Rule (RollS) mod-
ifies the tags of monitors s[V] and s[A], from ♦ to �:

M3 � (ν s)(�1[V] : �0 ; s[V]!〈price(t)〉.s[V]!〈price(t)〉.s[V]?(ok).s[V]?(a).s[V]!〈date〉.0�

‖ s[V]�A?〈title〉. ^̂ {A, B}!〈price〉.TB · x, t · σ3��

‖ �2[A] : �0 ; s[A]?(p).s[A]!〈h〉.s[A]?(ok).0�

‖ s[A]�T4 [^̂ V?〈price〉.B!〈share〉.B?〈OK〉.end] · y · [y �→ d]��

‖ N4 ‖ s : ((A , V , ‘Logicomix’) 	 ε)) = M4

where T4 [•] = V!〈title〉.• is a type context (with hole •) and, as before, N4
represents the rest of the system.

28 F. de Vries and J. A. Pérez

M4 has several possible forward and backward reductions. One particular
backward reduction is the one that uses Rule (RIn) to undo the input at V:

M4 � (ν s)(�1[V] : �0 ; s[V]?(t).s[V]!〈price(t)〉.
s[V]!〈price(t)〉.s[V]?(ok).s[V]?(a).s[V]!〈date〉.0�

‖ s[V]� ^̂ A?〈title〉.{A, B}!〈price〉.TB · x · [x �→ d]�♦

‖ �2[A] : �0 ; s[A]?(p).s[A]!〈h〉.s[A]?(ok).0�

‖ s[A]�T4 [^̂ V?〈price〉.B!〈share〉.B?〈OK〉.end] · y · [y �→ d]��

‖ N4 ‖ s : (ε 	 (A , V , ‘Logicomix’))) = M5

As a result, the message from A to V is back again in the output part of the
queue. The following backward reduction uses Rule (ROut) to undo the output
at A:

M5 � (ν s)(�1[V] : �0 ; s[V]?(t).s[V]!〈price(t)〉.s[V]!〈price(t)〉.
s[V]?(ok).s[V]?(a).s[V]!〈date〉.0�

‖ s[V]�̂^A?〈title〉.{A, B}!〈price〉.TB · x · [x �→ d]�♦

‖ �2[A] : �0 ; s[A]!〈‘Logicomix’〉.s[A]?(p).s[A]!〈h〉.s[A]?(ok).0�

‖ s[A]�̂^V!〈title〉.V?〈price〉.B!〈share〉.B?〈OK〉.end · y · [y �→ d]�♦

‖ N4 ‖ s : (ε 	 ε)) = M6

Clearly, M6 = M1. Summing up, the forward reductions M1 � M2 � M3 can be
reversed by the backward reductions M3 � M4 � M5 � M6 = M1.

Abstraction Passing (Delegation). To illustrate abstraction passing, let us
assume that M3 above performs forward reductions until the configuration:

M7 = (ν s)(�3[B] : �0 ; s[B]!
〈{{s[B]!〈‘9747’〉.s[B]?(d).0}}〉

.0�

‖ s[B]�T7 [^̂ C!〈{{
}}〉.V!〈address〉.V?〈date〉.end] · z, p, h · σ7�♦

‖ �4[C] : �0 ; s[C]?(code).(code ∗)�

‖ s[C]�T8 [^̂ B?〈{{
}}〉.end] · w, h · σ8�♦ ‖ N5 ‖ s : (h7 	 ε))

Reversible Session-Based Concurrency in Haskell 29

where {{s[B]!〈‘9747’〉.s[B]?(d).0}} is a thunk (to be activated with the dummy
value ∗) and T7 [•], σ7, T8 [•], σ8, and h7 capture past interactions as follows:

T7 [•] = V?〈price〉.A?〈share〉.{A, V}!〈OK〉.C!〈share〉.•
σ7 = [z �→ d], [p �→ price(‘Logicomix’)], [h �→ 120]

T8 [•] = B?〈share〉. • σ8 = [w �→ d], [h �→ 120]
h7 = (A , V , ‘Logicomix’)

◦ (V , A , price(‘Logicomix’)) ◦ (V , B , price(‘Logicomix’))
◦ (A , B , 120) ◦ (B , A , ‘ok’) ◦ (B , V , ‘ok’) ◦ (B , C , 120)

If M7 � � M8 to enable a (forward) synchronization we would have:

M8 = (ν s)(�3[B] : �0 ; 0�

‖ s[B]�T7 [C!〈{{
}}〉. ^̂ V!〈address〉.V?〈date〉.end] · z, p, h · σ7�♦

‖ �4[C] : �0 ; (code ∗)� ‖ s[C]�T8 [B?〈{{
}}〉. ^̂ end] · w, h, code · σ9�♦

‖ N5 ‖ s : (h7 ◦ (B , C , {{s[B]!〈‘9747’〉.s[B]?(d).0}}) 	 ε))

where σ9 = σ8[code �→ {{s[B]!〈‘9747’〉.s[B]?(d).0}}]. We now may obtain the actual
code sent from B to C:

M8 � (ν s)(ν k)(�4[C] : �0 ; s[B]!〈‘9747’〉.s[B]?(d).0�‖ N6

‖ s[B]�T7 [C!〈{{
}}〉. ^̂ V!〈address〉.V?〈date〉.end] · z, p, h · σ7�♦

‖ k�(code ∗) , �4� ‖ s[C]�T8 [B?〈{{
}}〉.k. ^̂ end] · w, h, code · σ9�♦

‖ s : (h7 ◦ (B , C , {{s[B]!〈‘9747’〉.s[B]?(d).0}}) 	 ε)) = M9

where N6 is the rest of the system. Notice that this reduction has added a running
function on a fresh k, which is also used in the type stored in the monitor s[C].

The reduction M8 � M9 completes the code mobility from B to C: the now
active thunk will execute B’s protocol from C’s location. Observe that Bob’s
identity B is “hardwired” in the sent thunk; there is no way for C to execute the
code by referring to a participant different from B.

3 Implementing the MP Model in Haskell

We represent the process calculus, global types, local types, and the information
for reversal as syntax trees. Local types are obtained by from the global type
via projection, which we implement following Sect. 2.4, whereas processes and
global types are written by the programmer. For this reason, we want to provide
a convenient way to specify them as domain-specific languages (DSLs).

30 F. de Vries and J. A. Pérez

3.1 DSLs with the Free Monad

Free monads are a common way of defining DSLs in Haskell, mainly because
they allow the use of do-notation to write programs in the DSL.

data Free f a
= Pure a
| Free (f (Free f a))

A simple practical example is a stack-based calculator:

data Operation next
= Push Int next
| Pop (Maybe Int -> next)
| End
deriving (Functor)

type Program next = Free Operation next
type TerminatingProgram = Program Void

We define a data type with our instructions, and make sure it has a
Functor instance (i.e., there exists a function fmap :: (a -> b) ->
Operation a -> Operation b). This instance is automatically derived using
the DeriveFunctor language extension. Given an instance of Functor, Free
returns the free monad on that functor. In this example, the free monad on
Operation describes a list of instructions.

In general, a value of type ‘Free Operation a’ describes a program with
holes: an incomplete program with placeholder values of type a in the position of
some continuations. Composition allows filling in the holes with (possibly incom-
plete) subprograms. The holes are places where the Pure constructor occurs in
the program. When evaluating, we want to have a tree without holes. We can
leverage the type system to guarantee that Pure does not occur in the programs
we evaluate by using Void.

Void is the data type with zero values (similar to the empty set). Thus, a
value of the type Free Operation Void cannot be of the shape Pure _, because
it requires a value of type Void. An alternative approach is to use existential
quantification, which requires enabling a language extension.

We define wrappers around the constructors for convenience. The liftF func-
tion takes a concrete value of our program functor (ProgramF a) and turns it
into a free value (Free ProgramF a, i.e., Program a). The helpers are used to
write programs with do-notation:

-- specialized version of liftF for Free
liftF :: (Functor f) => f a -> Free f a
push :: Int -> Program ()
push v = liftF (Push v ())
pop :: Program (Maybe Int)
pop = liftF (Pop id)
terminate :: TerminatingProgram

Reversible Session-Based Concurrency in Haskell 31

terminate = liftF End
program :: TerminatingProgram
program = do

push 5
push 4
Just a <- pop
Just b <- pop
push (a + b)
terminate

Finally, we expose a function to evaluate the structure (but only if it is finite).
Typically, a Free monad is transformed into some other monad, which in turn
is evaluated. Here we can first transform into State, and then evaluate that.

interpret :: TerminatingProgram -> State [Int] ()
interpret instruction =

case instruction of
Pure _ ->

-- cannot occur
return ()

Free End ->
return ()

Free (Push a next) -> do
State.modify (\state -> a : state)
interpret next

Free (Pop toNext) -> do
state <- State.get
case state of

x:xs -> do
State.put xs
interpret (toNext (Just x))

[] ->
interpret (toNext Nothing)

evaluate :: TerminatingProgram -> [Int]
evaluate = flip execState [] . interpret

3.2 Implementing Processes

The implementation uses an algebraic data type to encode all the process con-
structors in the process syntax of P given in Sect. 2.2. Apart from the process-
level recursion, Program is a direct translation of that process syntax:

type Participant = String
type Identifier = String

data ProgramF value next

32 F. de Vries and J. A. Pérez

-- communication primitives
= Send

{ owner :: Participant
, value :: value
, continuation :: next
}

| Receive
{ owner :: Participant
, variableName :: Identifier
, continuation :: next
}

-- choice primitives
| Offer Participant [(String, next)]
| Select Participant [(String, value, next)]

-- other constructors
| Parallel next next
| Application Identifier value
| NoOp
deriving (Functor)

As already discussed, processes exchange values. With respect to the syntax
of values V, W discussed in Sect. 2.2, the Value type, given below, has some
extra constructors which allow us to write more interesting examples: we have
added integers, strings, and basic integer and comparison operators. We use
VReference to denote the variables present in the formal syntax for V . The
Value type also includes the label used to differentiate the different cases of
offer and select statements.

data Value
= VBool Bool
| VInt Int
| VString String
| VUnit
| VIntOperator Value IntOperator Value
| VComparison Value Ordering Value
| VFunction Identifier (Program Value)
| VReference Identifier
| VLabel String

We need some extra concepts to actually write programs with this syntax.

Delegation via Abstraction Passing. Delegation occurs when a participant
can send (part of) its protocol to be fulfilled (i.e., implemented) by another
participant. This mechanism was illustrated in the example in Sect. 2.5, where
Carol acts on behalf of Bob by receiving and executing his code. For further illus-
tration of the convenience of this mechanism, consider a load balancing server:

Reversible Session-Based Concurrency in Haskell 33

from the client’s perspective, the server handles the request, but actually the
load balancer delegates incoming requests to workers. The client does not need
to be aware of this implementation detail. Recall the definition of ProgramF,
given just above:

data ProgramF value next
-- communication primitives
= Send

{ owner :: Participant
, value :: value
, continuation :: next
}

| ...

The ProgramF constructors that move the local type forward (send/receive,
select/offer) have an owner field that stores whose local type they should be
checked against and modify. In the formal definition of the MP model, the con-
nection between local types and processes/participants is enforced by the opera-
tional semantics. The owner field is also present in TypeContext, the data type
we define for representing local types in Sect. 3.4.

As explained in Sect. 2.2, each protocol participant has its own monitor with
its own store. Because these stores are not shared, all variables occurring in the
arguments to operators and in function bodies must be dereferenced before a
value can be safely sent over a channel.

A Convenient DSL. Many of the ProgramF constructors require an owner;
we can thread the owner through a block with a wrapper around Free. We use
StateT containing the owner and a counter to generate unique variable names.

newtype HighLevelProgram a =
HighLevelProgram

(StateT (Participant, Int)
(Free (ProgramF Value)) a)
deriving

(Functor, Applicative, Monad
, MonadState (Participant, Int)
, MonadFree (ProgramF Value))

uniqueVariableName :: HighLevelProgram String
uniqueVariableName = do

(participant, n) <- State.get
State.put (participant, n + 1)
return $ "var" ++ show n

send :: Value -> HighLevelProgram ()
send value = do

34 F. de Vries and J. A. Pérez

(participant, _) <- State.get
liftF (Send participant value ())

receive :: HighLevelProgram Value
receive = do

(participant, _) <- State.get
variableName <- uniqueVariableName
liftF (Receive participant variableName ())
return (VReference variableName)

terminate :: HighLevelProgram a
terminate = liftF NoOp

-- other helpers omitted for brevity

compile :: Participant -> HighLevelProgram Void -> Program Value
compile participant (HighLevelProgram program) = do

runStateT program (participant, 0)

We can now implement the Vendor from the three-buyer example as:

vendor :: HighLevelProgram a
vendor = do

t <- H.receive
H.send (price t)
H.send (price t)
...
terminate

3.3 Global Types

Following Fig. 1, our implementation uses a global type specification to obtain
a local type (of type LocalType), one per participant, by means of projection.
This is implemented as described in Sect. 2.4. Much like the process syntax, the
specification of the global types discussed in Sect. 2.3 closely mimics the formal
definition:

type GlobalType participant u a =
Free (GlobalTypeF participant u) a

type TerminatingGlobalType participant u =
GlobalType participant u Void

data GlobalTypeF participant u next
= Transaction

{ from :: participant
, to :: participant

Reversible Session-Based Concurrency in Haskell 35

, tipe :: u
, continuation :: next
}

| Choice
{ from :: participant
, to :: participant
, options :: Map String next
}

| End
| RecursionPoint next
| RecursionVariable
| WeakenRecursion next
deriving (Functor)

where we use ‘tipe’ because ‘type’ is a reserved keyword in Haskell.
Constructors RecursionPoint, RecursionVariable, and WeakenRecursion

are required to support nested recursion; they are taken from van Walree’s
work [10]. A RecursionPoint is a point in the protocol to which we can jump
back later. A RecursionVariable triggers jumping to a previously encoun-
tered RecursionPoint. By default, it will jump to the closest and most
recently encountered RecursionPoint, but WeakenRecursion makes it jump one
RecursionPoint higher; encountering two weakens will jump two levels higher,
etc.

We use Monad.Free to build a DSL for defining global types:

message :: participant -> participant -> tipe
-> GlobalType participant tipe ()

message from to tipe = liftF (Transaction from to tipe ())

messages :: participant -> [participant]
-> tipe -> GlobalType participant tipe ()

messages sender receivers tipe = go receivers
where go [] = Pure ()

go (x:xs) = Free (Transaction sender x tipe $ go xs)

oneOf :: participant -> participant
-> [(String, GlobalType participant u a)]
-> GlobalType participant u a

oneOf selector offerer options =
Free (Choice selector offerer (Map.fromList options))

recurse :: GlobalType p u a -> GlobalType p u a
recurse cont = Free (RecursionPoint cont)

weakenRecursion :: GlobalType p u a -> GlobalType p u a
weakenRecursion cont = Free (WeakenRecursion cont)

36 F. de Vries and J. A. Pérez

recursionVariable :: GlobalType p u a
recursionVariable = Free RecursionVariable

end :: TerminatingGlobalType p u
end = Free End

Example 1 (Nested Recursion). The snippet below illustrates nested recursion.
There is an outer loop that will perform a piece of protocol or end, and an inner
loop that sends messages from A to B. When the inner loop is done, control flow
returns to the outer loop:

import GlobalType as G

G.recurse $ -- recursion point 1
G.oneOf A B

[("loop"
, G.recurse $ -- recursion point 2

G.oneOf A B
[("continueLoop", do

G.message A B "date"
-- jumps to recursion point 2
G.recursionVariable

)
, ("endInnerLoop", do

-- jumps to recursion point 1
G.weakenRecursion G.recursionVariable

)
]

)
, ("end", G.end)
]

Similarly, the global type for three-buyer example (cf. Sect. 2.5) can be written
as:

-- a data type representing the participants
data MyParticipants = A | B | C | V

deriving (Show, Eq, Ord, Enum, Bounded)
-- a data type representing the used types
data MyType = Title | Price | Share | Ok | Thunk | Address | Date

deriving (Show, Eq, Ord)
-- a description of the protocol
globalType :: TerminatingGlobalType MyParticipants MyType
globalType = do

message A V Title
messages V [A, B] Price
message A B Share

Reversible Session-Based Concurrency in Haskell 37

messages B [A, V] Ok
message B C Share
message B C Thunk
message B V Address
message V B Date
end

3.4 A Reversible Semantics

Having shown implementations for processes and global types, we now explain
how to implement the reversible operational semantics for the MP model, which
was illustrated in Sect. 2.5. We should define structures that allow us to move
back to prior program states, reversing forward steps.

To enable backward steps, we need to store some information when we move
forward, just as enabled by the configurations in the MP model (cf. Sect. 2.2).
Indeed, we need to track information about the local type and the process. To
implement local types with history, we define a data type called TypeContext:
it contains the actions that have been performed; for some of them, it also stores
extra information (e.g., owner). For the process, we need to track four things:

1. Used variable names in receives. Recall the process implementation for the
vendor in the three-buyer example in Sect. 2.5:

Vendor = d!〈x : G↓V〉.x?(t).x!〈price(t)〉.x!〈price(t)〉.x?(ok).x?(a).x!〈date〉.0
We can implement this process as:
vendor :: HighLevelProgram a
vendor = do

t <- H.receive
H.send (price t)
H.send (price t)
...
terminate

The rest of the program depends on the assigned name. So, e.g., when we
evaluate the t <- H.receive line (moving to configuration M3, cf. Sect. 2.5),
and then revert it, we must reconstruct a receive that assigns to t, because
the following lines depend on name t.

2. Function calls and their arguments. Consider the reduction from configuration
M7 to M8, as discussed in Sect. 2.5. Once the thunk is evaluated, producing
configuration M8, we lose all evidence that the code produced by the evalua-
tion resulted from a function application. Without this evidence, reversing M8
will not result in M7. Indeed, we need to keep track of function applications.
Following the semantics of the MP model, the function and its argument are
stored in a map indexed by a unique identifier k. The identifier k itself is also
stored in the local type with history to later associate the type with a specific
function and argument. The reduction from M8 to M9, discussed in Sect. 2.5,
offers an example of this tracking mechanism in the formal model.

38 F. de Vries and J. A. Pérez

Notice that a stack would seem a simpler solution, but it can give invalid
behavior. Say that a participant is running in two locations, and the last-
performed action at both locations is a function application. Now we want to
undo both applications, but the order in which to undo them is undefined: we
need both orders to work. Only using a stack could mix up the applications.
When the application keeps track of exactly which function and argument it
used the end result is always the same.

3. Messages on the channel. We consider again the implementation of the first
three steps of the protocol:
alice :: HighLevelProgram a
alice = do

H.send (VString "Logicomix")
...

vendor :: HighLevelProgram a
vendor = do

t <- H.receive
...

After Alice sends her message, it has to be stored to successfully undo the
sending action. Likewise, when starting from configuration M3 and undoing
the receive, the value must be placed back into the queue.
Our implementation closely follows the formal semantics of the MP model.
As discussed in Sect. 2.2, the message queue has an input and an output part.
This allows to describe how a message moves from the sender into the output
queue. Reception is represented by moving the message to the input queue,
which serves as a history stack. When the receive is reversed, the queue pops
the message from its stack and puts it at the output queue again. Reversing
the send moves the message from the output queue back to the sender’s
program.

4. Unused branches. When a labeled choice is made and then reverted, we want
all our options to be available again. In the MP model, choices made so far
are stored in a stack denoted C, inside a running process (cf. Sect. 2.2).
The following code shows how we store these choices:
type Zipper a = ([a], a, [a])

data OtherOptions
= OtherSelections (Zipper (String, Value, Program Value))
| OtherOffers (Zipper (String, Program Value))

We need to remember which choice was made; the order of the options is
important. We use a Zipper to store the elements in order and use the central
‘a’ to store the choice that was made.

3.5 Putting It All Together

With all the definitions in place, we can now define the forward and backward
evaluation of our system. The reduction relations � and � , discussed and
illustrated in Sect. 2.5, are implemented with the types:

Reversible Session-Based Concurrency in Haskell 39

forward :: Location -> Session ()
backward :: Location -> Session ()

These functions take a Location (the analogue of the locations � in the
formal model) and try to move the process at that location forward or backward.
The Session type contains the ExecutionState, the state of the session (all
programs, local types, variable bindings, etc.). The Except type indicates that
errors of type Error can be thrown (e.g., when an unbound variable is used):

type Session a = StateT ExecutionState (Except Error) a

The configurations of the MP model (cf. Sect. 2.2) are our main reference to
store the execution state. Some data is bound to its location (e.g., the current
running process), while other data is bound to its participant (e.g., the local
type). The information about a participant is grouped in a type called Monitor:

data Monitor value tipe =
Monitor

{ _localType :: LocalTypeState tipe
, _recursiveVariableNumber :: Int
, _recursionPoints :: [LocalType tipe]
, _usedVariables :: [Binding]
, _applicationHistory :: Map Identifier (value, value)
, _store :: Map Identifier value
}
deriving (Show, Eq)

data Binding =
Binding

{ _visibleName :: Identifier
, _internalName :: Identifier
}

deriving (Show, Eq)

Some explanations follow:
– _localType contains TypeContext and LocalType stored as a tuple. This

tuple gives a cursor into the local type, where everything to the left is the
past and everything to the right is the future.

– The next two fields keep track of recursion in the local type. We use the
_recursiveVariableNumber is an index into the _recursionPoints list:
when a RecursionVariable is encountered we look at that index to find
the new future local type.

– _usedVariables and _applicationHistory are used in reversal. As men-
tioned in Sect. 3.4, used variable names must be stored so we can use them
when reversing. We store them in a stack keeping both the original name given
by the programmer and the generated unique internal name. For function
applications we use a Map indexed by unique identifiers that stores function
and argument.

40 F. de Vries and J. A. Pérez

– _store is a variable store with the currently defined bindings. Variable shad-
owing (when two processes of the same participant define the same variable
name) is not an issue: variables are assigned a name that is guaranteed unique.

We can now define ExecutionState: it contains some counters for generating
unique variable names, a monitor for every participant, and a program for every
location. Additionally, every location has a default participant and a stack for
unchosen branches:

data ExecutionState value =
ExecutionState

{ variableCount :: Int
, locationCount :: Int
, applicationCount :: Int
, participants :: Map Participant (Monitor value String)
, locations :: Map Location

(Participant , [OtherOptions], Program value)
, queue :: Queue value
, isFunction :: value -> Maybe (Identifier,Program value)
}

The message queue is global and thus also lives in the ExecutionState. Finally,
we need a way of inspecting values, to see whether they are functions and if so,
to extract their bodies for application.

3.6 Causal Consistency?

As mentioned in Sect. 1, causal consistency is a key correctness criterion for
a reversible semantics: this property ensures that backward steps always lead
to states that could have been reached by moving forward only. The global
type defines a partial order on all the communication steps. The relation of this
partial order is a causal dependency. Stepping backward is only allowed when
all its causally dependent actions are undone.

The reversible semantics of the MP model, summarized in Sect. 2, enjoys
causal consistency for processes running a single global protocol (i.e., a single
session). Rather than typed processes, the MP model describes untyped processes
whose (reversible) operational semantics is governed by local types. This suffices
to prove causal consistency, but also to ensure that process reductions correspond
to valid actions specified by the global type. Given this, one may then wonder,
does our Haskell implementation preserve causal consistency?

In the semantics and the implementation, this causal dependency becomes a
data dependency. For instance, a send can only be undone only when the queue
is in a state that can only be reached by first undoing the corresponding receive.
Only in this state is the appropriate data of the appropriate type available. Being
able to undo a send thus means that the corresponding receive has already been
reversed, so it is impossible to introduce causal inconsistencies.

Reversible Session-Based Concurrency in Haskell 41

Because of the encoding of causal dependencies as data dependencies, and
the fact that these data dependencies are preserved in the implementation, we
claim that our Haskell implementation respects the formal semantics of the MP
model, and therefore that it preserves the causal consistency property.

4 Running and Debugging Programs

Finally, we want to be able to run our programs. Our implementation offers
mechanisms to step through a program interactively, and run it to completion.

We can step through the program interactively in the Haskell REPL envi-
ronment. When the ThreeBuyer example is loaded, the program is in a state
corresponding to configuration M1 from Sect. 2.5. We can print the initial state
of our program:

> initialProgram
locations: fromList [("l1",("A",[],Free (Send {owner = "A", ...

Next we introduce the stepForward and stepBackward functions. They use
mutability, normally frowned upon in Haskell, to avoid having to manually keep
track of the updated program state like in the snippet below:

state1 = stepForwardInconvenient "l1" state0
state2 = stepForwardInconvenient "l1" state1
state3 = stepForwardInconvenient "l1" state2

Manual state passing is error-prone and inconvenient. We provide helpers
to work around this issue (internally, those helpers use IORef). We must first
initialize the program state:

> import Interpreter
> state <- initializeProgram initialProgram

We can then use stepForward and stepBackward to evaluate the program: we
advance Alice at l1 to reach M2 and then the vendor at l4 to reach M3:

> stepForward "l1" state
locations: fromList [("l1",("A",[],Free (Receive {owner = "A", ...
> stepForward "l4" state
locations: fromList [("l1",("A",[],Free (Receive {owner = "A", ...

When the user tries an invalid step, an error is displayed. For instance, in
state M3, where l1 and l4 have been moved forward once (like in the snippet
above), l1 cannot move forward (it needs to receive but there is nothing in the
queue) and not backward (l4, the receiver, must undo its action first).

42 F. de Vries and J. A. Pérez

> stepForward "l1" state
*** Exception: QueueError "Receive" EmptyQueue
CallStack (from HasCallStack):

error, called at ...
> stepBackward "l1" state
*** Exception: QueueError "BackwardSend" EmptyQueue state
CallStack (from HasCallStack):

error, called at ...

Errors are defined as:

data Error
= UndefinedParticipant Participant
| UndefinedVariable Participant Identifier
| SynchronizationError String
| LabelError String
| QueueError String Queue.QueueError
| ChoiceError ChoiceError
| Terminated

To fully evaluate a program, we use a round-robin scheduler that calls
forward on the locations in order. A forward step can produce an error. There
are two error cases that we can recover from:

– blocked on receive, either QueueError _ InvalidQueueItem or Queue
Error _ EmptyQueue: the process wants to perform a receive, but the
expected item is not at the top of the queue yet. In this case we proceed
evaluating the other locations so they can send the value that the faulty loca-
tion expects. Above, ‘_’ means that we ignore the String field used to provide
better error messages. Because no error message is generated, that field is not
needed.

– location terminates with Terminated: the execution has reached a NoOp.
In this case we do not want to schedule this location any more.

Otherwise we continue until there are no active (non-terminated) locations left.
Running until completion (or error) is also available in the REPL:

> untilError initialProgram
Right locations: fromList [("l1",("A",[],Free NoOp)), ...

Note that this scheduler can still get into deadlocks, for instance consider
these two equivalent global types:

globalType1 = do
message A V Title
message V B Price
message V A Price
message A B Share

Reversible Session-Based Concurrency in Haskell 43

globalType2 = do
message A V Title
message V A Price
message V B Price
message A B Share

Above, the second and third messages (involving Price) are swapped. The com-
munication they describe is the same, but in practice they are very different. The
first example will run to completion, whereas the second can deadlock because A
can send a Share before V sends the Price. B expects the price from V first, but
the share from A is the first in the queue. Therefore, no progress can be made.

In general, a key issue is that a global type is written sequentially, while
it may represent implicit parallelism, as explained in Sect. 2.3. Currently, our
implementation just executes the global type with the order given by the pro-
grammer. It should be possible to execute communication actions in different
but equivalent orders; these optimizations are beyond the scope of our current
implementation.

5 Discussion and Concluding Remarks
5.1 Benefits of Pure Functional Programming
It has consistently been the case that sticking closer to the formal model gives
better code. The abilities that Haskell gives for directly specifying formal state-
ments are invaluable. A key invaluable feature is algebraic data types (ADTs,
also known as tagged unions or sum types). Compare the formal definition given
in Sect. 2.3 and the Haskell data type for global types.

G, G′ ::= p → q : 〈U〉.G | p → q : {li : Gi}i∈I | μX.G | X | end
data GlobalTypeF u next

= Transaction {..} | Choice {..} | RecursionPoint next
| RecursionVariable | End
| WeakenRecursion next

The definitions correspond almost directly: the WeakenRecursion construc-
tor is added to support nested recursion, which the formal model does not explic-
itly represent. Moreover, we know that these are all the ways to construct a value
of type GlobalTypeF and can exhaustively match on all the cases. Functional
languages have had these features for a very long time. Secondly, purity and
immutability are very useful in implementing and testing the reversible seman-
tics.

In a pure language, given functions f :: a -> b and g :: b -> a to prove
that f and g are inverses it is enough to prove that f · g and g · f both compose
to the identity. In an impure language, even if these equalities are observed we
cannot be sure that there were no side-effects. Because we do not need to consider
a context (the outside world) in a pure language, checking that reversibility works
is as simple as comparing initial and final states for all backward reduction rules.

44 F. de Vries and J. A. Pérez

5.2 Concluding Remarks

We presented a functional implementation of the (reversible) MP model [7] using
Haskell. By embedding this reversible semantics we can now execute our example
programs automatically and inspect them interactively.

We have seen that the MP model can be split into three core components:
(i) a process calculus, (ii) multiparty session types (global and local types), and
(iii) forward and backward reduction semantics. The three components can be
cleanly represented as recursive Haskell data types. We are confident that other
features developed in Mezzina and Pérez’s work [7] (in particular, an alternative
semantics for decoupled rollbacks) can easily be integrated in the development
described here. Relatedly, the implementation process has shown that sticking
to the formal model leads to better code; there is less space for bugs to creep
in. Furthermore, Haskell’s mathematical nature means that the implementa-
tion inspired by the formal specification is easy (and often idiomatic) to express.
Finally, we have discussed how Haskell allows for the definition of flexible embed-
ded domain-specific languages, and makes it easy to transform between different
representations of our programs (using among others Monad.Free).

Acknowledgments. Many thanks to the anonymous reviewers and to the TFP’18
co-chairs (Michał Pałka and Magnus Myreen) for their useful remarks and suggestions,
which led to substantial improvements. Pérez is also affiliated to CWI, Amsterdam,
The Netherlands and to the NOVA Laboratory for Computer Science and Informatics
(supported by FCT grant NOVA LINCS PEst/UID/CEC/04516/2013), Universidade
Nova de Lisboa, Portugal.

This research has been partially supported by the Undergraduate School of Science
and the Bernoulli Institute of the University of Groningen. We also acknowledge sup-
port from the COST Action IC1405 “Reversible computation – Extending horizons of
computing”.

References

1. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: A gentle intro-
duction to multiparty asynchronous session types. In: Bernardo, M., Johnsen,
E.B. (eds.) SFM 2015. LNCS, vol. 9104, pp. 146–178. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18941-3_4. http://www.di.unito.it/˜
dezani/papers/cdpy15.pdf

2. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

3. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) POPL 2008, pp. 273–284. ACM (2008). https://
doi.org/10.1145/1328438.1328472

4. Kouzapas, D., Pérez, J.A., Yoshida, N.: On the relative expressiveness of higher-
order session processes. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp.
446–475. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-
1_18

https://doi.org/10.1007/978-3-319-18941-3_4
http://www.di.unito.it/~dezani/papers/cdpy15.pdf
http://www.di.unito.it/~dezani/papers/cdpy15.pdf
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-662-49498-1_18
https://doi.org/10.1007/978-3-662-49498-1_18

Reversible Session-Based Concurrency in Haskell 45

5. Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS
114 (2014). http://eatcs.org/beatcs/index.php/beatcs/article/view/305

6. Mezzina, C.A., Pérez, J.A.: Causally consistent reversible choreographies. CoRR
abs/1703.06021 (2017). http://arxiv.org/abs/1703.06021

7. Mezzina, C.A., Pérez, J.A.: Causally consistent reversible choreographies: a
monitors-as-memories approach. In: Vanhoof, W., Pientka, B. (eds.) Proceedings
of the 19th International Symposium on Principles and Practice of Declarative
Programming, Namur, Belgium, 09–11 October 2017, pp. 127–138. ACM (2017).
https://doi.org/10.1145/3131851.3131864

8. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and II.
Inf. Comput. 100(1), 1–40 (1992)

9. Sangiorgi, D.: Asynchronous process calculi: the first-and higher-order paradigms.
Theor. Comput. Sci. 253(2), 311–350 (2001). https://doi.org/10.1016/S0304-
3975(00)00097-9

10. van Walree, F.: Session types in Cloud Haskell. Master’s thesis, University of
Utrecht (2017). https://dspace.library.uu.nl/handle/1874/355676

http://eatcs.org/beatcs/index.php/beatcs/article/view/305
http://arxiv.org/abs/1703.06021
https://doi.org/10.1145/3131851.3131864
https://doi.org/10.1016/S0304-3975(00)00097-9
https://doi.org/10.1016/S0304-3975(00)00097-9
https://dspace.library.uu.nl/handle/1874/355676

Intrinsic Currying for C++ Template
Metaprograms

Paul Keir1(B) , Andrew Gozillon1 , and Seyed Hossein Haeri2

1 University of the West of Scotland, Paisley, UK
{paul.keir,andrew.gozillon}@uws.ac.uk

2 Université catholique de Louvain, Louvain-la-Neuve, Belgium
hossein.haeri@uclouvain.be

Abstract. C++ template metaprogramming is a form of strict func-
tional programming, with a notable absence of intrinsic support for
elementary higher-order operations. We describe a variadic template
metaprogramming library which offers a model of implicitly curried, left-
associative metafunction application through juxtaposition; inspired by
languages such as Haskell, OCaml and F�. New and existing traits and
metafunctions, constructed according to conventional idioms, seemlessly
take advantage of the framework’s features. Furthermore, a distinctive
versatility is exposed, allowing a user to define higher-order metafunc-
tion classes using an equational definition syntax; without recourse to
elaborate nested metafunctions. The primary type expression evalua-
tor of the library is derived from a single application of an elementary
folding combinator for type lists. The definition of the fold’s binary oper-
ator argument is therefore a focal point; and constructed mindful that
substitution failure of a template parameter’s deduced type produces
no compilation error. Two distinctive features of C++ metafunctions
require particular consideration: zero argument metafunctions; and vari-
adic metafunctions. We conclude by demonstrating characteristics of the
library’s main evaluation metafunction in conjunction with the univer-
sal property of an updated right-fold combinator, to compose a range
of metafunctions including map, reverse, left-fold, and the Ackermann
function.

Keywords: Types · Templates · Metaprogramming · Currying

1 Introduction

C++ template metaprogramming is a form of strict functional programming,
with a notable absence of intrinsic support for elementary higher-order opera-
tions. Having no canonical representation of metafunctions, authors of template
metaprogramming libraries are left to endlessly reinvent the wheel. In this paper
we argue that the development of C++ metaprogramming requires a further
component: implicit currying.

c© Springer Nature Switzerland AG 2019
M. Pa�lka and M. Myreen (Eds.): TFP 2018, LNCS 11457, pp. 46–73, 2019.
https://doi.org/10.1007/978-3-030-18506-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18506-0_3&domain=pdf
http://orcid.org/0000-0002-4781-9377
http://orcid.org/0000-0001-7558-7166
http://orcid.org/0000-0002-7969-8573
https://doi.org/10.1007/978-3-030-18506-0_3

Intrinsic Currying for C++ Template Metaprograms 47

Beyond basic parametric polymorphism, interesting template metaprograms
make fullsome use of a Turing complete language, and rely on explicit recursion
for full expressivity; yet the advantages of structured recursion schemes such as
catamorphisms (folds) are widely understood [24].

Considering the high profile of C++, and template metaprogramming, it is
surprising that substantial use of template metaprogramming is so rare. Despite
notable exceptions [12,14,20,21,33,39], the opportunity to enforce program cor-
rectness at compile-time, through embedded domain-specific languages, is under-
explored.

Template metaprogramming libraries certainly exist [4,9,10,17,27] and are
utilised widely. Many basic templates offered by these libraries were added to the
C++11 [2] version of the language standard; including for example a simple type
wrapper for integral constants. Prior to this, libraries such as the Boost Metapro-
gramming Library (MPL) [4] were an obvious choice. Boost itself is a pre-eminent
collection of over 150 open-source C++ libraries. Of these, over 40 make use of
MPL including: Proto, for creating embedded domain-specific libraries (EDSLs);
Spirit, a parser framework; Fusion, a tuple library; Phoenix, a functional pro-
gramming interface; Metaparse, for parsing strings at compile time; Graph, a
generic graph-traversal library; and Hana [9], a more recent metaprogramming
library, which is itself now used by Boost Yap, a C++14 expression template
library. So, as elementary idioms become included within successive C++ stan-
dards, new concepts blossom in fresh libraries. Nevertheless, obstacles inhibit
wider adoption; including the apparent complexity of the discipline.

There are likely a number of reasons for this. Poor syntax is often cited; for
example dependent name disambiguation via the template and typename key-
words. So too, while metaprogramming libraries provide structured recursion
operators1 such as map and fold, standard C++ library support is regrettably
absent. Idiomatic functional programs will of course also utilise the higher order
nature of such operators, and yet no standard C++ representation exists for
metafunctions; nor even a standard approach for returning a metafunction.

Finally on this point, consider the effort of translating a sizable functional
program into a C++ metaprogram without currying. Even the simplest tuto-
rial on recursive combinators such as map will soon introduce code such as:
(map (1+) xs); yet notice the use of implicit currying within the section of the
infix addition operator in (1+). Such missing features are a significant inhibit-
ing factor in the pursuit of good practice, including reuse, in C++ metapro-
gramming. The Curtains library has been developed to address such concerns;
facilitating an embedded domain-specific language for C++ template metapro-
grams, with support for implicit currying. The Curtains equivalent of the Haskell
expression (const map () (1+) [0,1,2]) is shown below:

eval<const_q,map_q,void,eval<add_q,ic<1>>,ilist<0,1,2>>

1 Often map is named transform after the standard C++ runtime function. A fold is
more often named fold; with accumulate provided as an alias.

48 P. Keir et al.

We present three implementations, each built upon a single recursive combi-
nator: a left-fold; and while each implementation is purposefully distinct, differ-
ences are accounted for entirely by the choice of higher-order, binary combining
operation used with the fold. Of the three approaches, our preferred is accom-
plished in just 30 lines of code, and handles fixed arity metafunctions. The sec-
ond approach handles idiomatic variadic and nullary metafunctions; while the
third treatment finds a middle way, by asking the user to select a single arity,
for an otherwise possibly variadic metafunction. Each implementation supports
implicit currying.

2 Elementary Metaprogramming

In C++ a user-defined type is referred to as a class, yet may be declared using
either the class keyword, or the struct keyword. The difference between the
two forms relates only to the default access permission of the class. For ease of
exposition we will use the latter, more permissive form throughout; so avoiding
verbose usage of the public access specifier. Following the class declaration shown
below, the type expression int_wrap::type becomes synonymous with int.

struct int_wrap { using type = int; };

A class may also be parameterised, and so declared as a class template.
The class template add_pointer, shown below, is parameterised with a single
type template parameter2 named T. Providing add_pointer with a type argu-
ment instantiates the template; so forming a type. The resulting type, say
add_pointer<int>, may then be used wherever a type is expected; say to declare
a runtime variable, or as an argument for another template.

template <class T> struct add_pointer { using type = T*; };

A common metaprogramming idiom can then be explained. A class template
with a single member type definition, conventionally names the member: type.
Compile-time class template parameters can then be understood as isomorphic to
common run-time function parameters; with the relevant member type definition
analogous to the return value. A class template so equipped is often referred to
as a metafunction.

From this perspective, the add_pointer type trait class template from the
standard C++ type support library is a unary metafunction. Given an int

argument, the metafunction returns a first order type; an int*, within the type

member of the instantiated add_pointer template. The application of such a
metafunction will involve the familiar angle-bracket syntax: add_pointer<int>;
with the result obtained via typename add_pointer<int>::type3.

2 This is a second, distinct usage of the class keyword. The struct keyword is not
permitted in this context; though typename is.

3 The typename disambiguator informs the compiler that a dependent name following
the :: operator, refers to a type [37, p. 228].

Intrinsic Currying for C++ Template Metaprograms 49

Template metaprograms are untyped; though various mechanisms exist to
allow ad-hoc treatment of particular types, or type patterns, via class template
specialisation. For example, the specialisation on the second line of the following
possible implementation of the standard C++ library type trait, remove_const,
handles types which are const qualified; so matching the type pattern: const T.

template <class T> struct remove_const { using type = T; };

template <class T> struct remove_const<const T> { using type = T; };

A crucial component of elementary first-order template metaprogramming
is recursion. One or more class template specialisations can represent the base
cases. Meanwhile each recursive step includes an instantiation of the class tem-
plate being defined. We demonstrate recursion using integers at the type level;
with the assistance of the ic alias template defined below4. Akin to a C++
typedef, or a Haskell type synonym, an alias template defines a new name for
an existing template: std::integral_constant in this case. On this occasion, ic
specifies a non-type parameter; and the auto specifier ensures the argument’s
type is inferred. Consequently, the type ic<42>, for example, can concisely rep-
resent the word-sized compile-time integer constant: 42.

template <auto I> using ic = std::integral_constant<decltype(I),I>;

Using our integer representation, the code below defines a recursive template
metafunction, fact, which calculates the factorial of its argument5. For example
fact<ic<3>>::type ≡ ic<6>.

template <class T> struct fact;

template < > struct fact<ic<0>> : ic<1> {};

template <auto N> struct fact<ic<N>> :

ic<N*typename fact<ic<N-1>>::type{}> {};

The standard C++ type support library defines an alias template for each
type trait, providing a convenient syntax to access the type member of the
associated class template. For example, add_pointer_t<int> evaluates to int*

using the add_pointer_t alias template shown below:

template <class T> using add_pointer_t = typename add_pointer<T>::type;

Specialisation of alias templates is not possible; and neither is recursion.
Consequently, alias templates have limited capability, and are typically used to
provide syntactic sugar to existing class template definitions. Alias templates
can nevertheless themselves be interpreted as metafunctions.

Lastly, variadic templates facilitate a variable quantity of template argu-
ments. For example, the variadic alias template ct_tail below accepts one or

4 decltype is a keyword used to query the type of an expression.
5 The type expression typename fact<ic<N-1>>::type will evaluate to a type; an

instantiation of ic, and hence also of std::integral_constant. The {} braces which
follow this expression will aggregate-initialise a constexpr std::integral_constant

object before using its conversion operator member to provide an int value as the
multiplier, with N the multiplicand.

50 P. Keir et al.

more arguments: e.g. ct_tail<char*,int,long> ≡ long. The standard library’s
std::common_type_t obtains a common type from its parameter pack argument6.

template <class T, class... Ts> using ct_tail = std::common_type_t<Ts...>;

2.1 Higher Order Metaprogramming

A basic challenge for higher-order template metaprogramming is how a meta-
function should be returned. Metafunctions can certainly be passed as template
arguments. Considering the class template definition ho, below, ho<add_pointer>
and ho<add_pointer_t> are both valid template instantiations.

template <template <class> class> struct ho {};

Given that a metafunction can be defined either using an alias template;
or a class template, it is reassuring that either approach can also represent the
return types: a metafunction can either “return” a nested class template; or an
alias template. The code below defines a unary metafunction, ct, which returns
another metafunction; as the member alias template m_invoke. Applying the ct

metafunction to a type argument, will thus return a metafunction which itself
determines the common type among the arguments that it is provided and the
single argument already provided to ct.

template <class T>

struct ct {

template <class... Ts>

using m_invoke = std::common_type_t<T,Ts...>;

};

Applying the metafunction returned by ct to a long argument, might involve
syntax such as the following: typename ct<long>::template m_invoke<int>7; a
type expression which evaluates to long. The verbosity of such nested metafunc-
tion invocations can be reduced through a helpful combinator:

template <class F, class... Ts>

using invoke = typename F::template m_invoke<Ts...>;

The invoke combinator offers improved syntax when applying a nested meta-
function member named m_invoke; with the previous example represented as
invoke<ct<long>,int>. Applying a returned metafunction can thus both be tran-
scribed more concisely; while clearly articulating the separation of a nested meta-
function from its arguments. Without further treatment, however, non-nested
metafunctions, such as type traits, are incompatible. The first argument of the
invoke combinator, expects a type; not a template. A combinator to envelop
the functionality of an arbitrary type trait template, within the m_invoke alias
template member of a proxy class, would be useful. Consider quote below:
6 Regarding a template parameter pack: note that its declaration is preceded by an

ellipsis; while its expansion is followed by one [37, p. 188].
7 The template disambiguator informs the compiler that a dependent name following

a ::, ->, or . operator, refers to a template [37, p. 230].

Intrinsic Currying for C++ Template Metaprograms 51

template <template <class...> class M>

struct quote {

template <class... Ts>

using m_invoke = M<Ts...>;

};

Instantiating quote with a suitable class template argument, M, will produce
a type with an m_invoke member metafunction, and equivalent functionality to
the M argument. Given a type trait template such as std::common_type_t, for
example, the quote<std::common_type_t> type is a suitable first argument for the
invoke combinator; and the following equivalency between types holds:

invoke<quote<common_type_t>,int,long> ≡ long

Alas, instantiating quote with a non-variadic template argument, as in
quote<std::add_pointer_t>, will produce a compilation error; relating to the
provision of a pack argument to a non-pack template parameter list. The inter-
face and functionality of quote can nevertheless be constructed in unambiguous
C++ using an alternative approach.

Expanding a parameter pack into a fixed length template parameter list is
problematic only within the context of an alias template8; as with the m_invoke

member of quote. By ensuring the parameter pack is instead expanded within a
class template, this problematic and byzantine corner case can be evaded. An
additional class template, iv14309, is therefore introduced:

template <class, template <class...> class, class...>

struct iv1430 {};

template <template <class...> class M, class... Ts>

struct iv1430<void_t<M<Ts...>>,M,Ts...> { using type = M<Ts...>; };

A final version of quote10 can then be defined, using iv1430, as shown below.
With this version, no compilation errors are encountered when quote is provided
with non-variadic template arguments, as pack expansion now occurs within a
class template rather than an alias template. For example, non-variadic traits
such as std::add_pointer_t or std::is_object; as well as variadic ones such as

8 Discussion regarding the virtue of this restriction remains an active topic within the
ISO C++ Standards Committee; identified as core issue 1430 [25].

9 The iv1430 class template makes use of a powerful C++ feature wherein
template substitution failure is not an error (SFINAE). Furthermore,
iv1430 is defined as “SFINAE-friendly”. For example, as int and int*

have no common type, neither common_type<int,int*>, nor the equivalent
iv1430<void,common_type_t,int,int*>, has a type member. The failed instan-
tiation of the iv1430 specialisation with iv1430<void,common_type_t,int,int*>

resolves to the primary template; leaving subsequent access to the absent type

member only a substitution error. The alternative is a hard error. C++17’s
std::void_t is an alias template helpful in such contexts; provided with zero or
more valid type template arguments, the aggregate instantiates to void [37, p. 420].

10 A variant, quote_c, accepting class template arguments, is defined in Appendix A.1.

52 P. Keir et al.

std::conjunction or std::is_constructible can each be converted, using quote,
into a form suitable for use with the invoke combinator. Such a type, suitably
equipped with an m_invoke alias template member, either by the use of the quote

combinator, or by elementary design, is known as a metafunction class.

template <template <class...> class M>

struct quote {

template <class... Ts>

using m_invoke = typename iv1430<void,M,Ts...>::type;

};

The following two equivalences demonstrate the use of invoke along with the
non-variadic metafunctions, std::add_pointer and std::add_pointer_t:

invoke<quote<std::add_pointer_t>,int> ≡ int*

invoke<quote<std::add_pointer >,int> ≡ add_pointer<int>

The intermediate reduction steps for the first of these is shown below:

invoke<quote<std::add_pointer_t>,int>

≡ {invoke alias template}
quote<std::add_pointer_t>::m_invoke<int>>

≡ {m_invoke alias template member of quote template}
iv1430<void,std::add_pointer_t,int>::type

≡ {type member of iv1430 template specialisation}
std::add_pointer_t<int>

≡ {standard C++ alias template add_pointer_t}
std::add_pointer<int>::type

≡ {standard C++ template add_pointer}
int*

2.2 The Identity Metafunction

A metafunction which returns its argument, is a central component throughout
the Curtains implementation. The id metafunction, shown below, utilised as a
mix-in class template, can specify a base class, facilitating the common require-
ment within metaprogramming for a class to include a member type definition
named type; introduced orthogonally here via inheritance.

template <class T> struct id { using type = T; };

A possible implementation of std::add_volatile, constructed using this
idiom, is shown below. Seen as a metafunction, such syntax can be interpreted
as highlighting the type which will be provided as the return “value”; located to
the right of the colon, within the angle brackets of the id template.

template <class T> struct add_volatile : id<volatile T> {};

With routine application of the invoke combinator, providing a type trait as
an argument to the quote combinator can become as common as accessing a type

member. We adopt the “_q” suffix here in deference to the “_t” suffix convention

Intrinsic Currying for C++ Template Metaprograms 53

of the standard C++ type support library’s alias templates. The relevant pair
for the add_volatile type trait are shown in the code below:

template <class T>

using add_volatile_t = typename add_volatile<T>::type;

using add_volatile_q = quote<add_volatile_t>;

3 Curried Template Evaluation

This section presents our implicitly currying evaluation mechanism: the meta-
function eval.

Function application in Haskell [22] is written e1 e2; where e2 is an arbitrary
Haskell expression, and e1 is a Haskell expression which reduces to a value with
a function type. Application associates to the left, and so the parentheses may
be omitted in (f x) y. Hence function application is implicitly curried within
Haskell. We aim to create a comparable evaluation environment within the con-
text of C++ metaprogramming. Given a C++ variadic template evaluator, eval,
we would like metafunction application to be written eval<e1,e2[,...]>, where
the ellipsis represents an optional trailing list of type arguments. Metafunction
application should also associate to the left, and hence the omission of the inner
template instantiation of eval within eval<eval<F,X>,Y> would be permitted;
and denoted as eval<F,X,Y>.

A basic expectation is that a quoted metafunction, provided to eval, together
with a full set of valid template arguments, should produce the same result as
with the traditional metafunction alone. For an arbitrary metafunction M, and
parameter pack Ts, where M<Ts...> is well formed; eval<quote<M>,Ts...> is also
well formed. Furthermore, the following equality holds:

M<Ts...> ≡ eval<quote<M>,Ts...>

For example, given add_pointer_q, defined as quote<std::add_pointer_t>, we
find that eval<add_pointer_q,int> ≡ std::add_pointer_t<int> ≡ int*. Class
templates are also suitable metafunctions; and so eval<quote<std::is_pod>,int>

≡ std::is_pod<int>. Note that the equality assumes a valid left-hand side; for
curried applications of quote<M>, only the right-hand side will be valid.

3.1 Components of Implicit Currying

Given such conditions, it follows that a method for managing the partial eval-
uation of a metafunction is required. The curry class template below can help
here: given a metafunction class F as its first argument, and n further type
arguments, curry will instantiate to a new metafunction class; equivalent to F

partially applied to those n arguments. Additional arguments can be provided
using curry again; or invoke (page 5) may be used to instantiate the full meta-
function application, and optionally also supply any remaining arguments.

54 P. Keir et al.

template <class F, class... Ts>

struct curry {

template <class... Us>

using m_invoke = invoke<F,Ts...,Us...>;

};

The equivalences below demonstrate uses of curry with a metafunction class
common_type_q; constructed via quote from the type trait: std::common_type_t.
Note invoke’s accommodation of nested instantiations of curry, here; and refer-
enced later in Sect. 4.2.

invoke<curry<common_type_q,char>,int> ≡ int

invoke<curry<common_type_q,char,int>,long> ≡ long

invoke<curry<curry<common_type_q,char>,int>,long> ≡ long

The C++ compiler will issue a helpful error if the first argument to curry

is not a metafunction class; due to the instantiation of invoke within curry’s
m_invoke member. Error checking is nevertheless incidental; and providing “too
many” arguments for curry’s template parameter pack is accepted, at least until
its application through invoke.

Note that the absence of currying within the simple invoke, will manifest
itself in a compilation error, and not only with metafunctions applied to “too
few” arguments; as in say invoke<quote<is_same>,int>. In Haskell (id id 42) ≡
((id id) 42); and either expression thus evaluates to 42. Consider the definition
of id_q below, a simple preparation of the earlier id template class:

using id_q = quote_c<id>;

A comparable C++ template expression, invoke<id_q,id_q,ic<42>>, will also
result in an error; as invoke attempts to apply its first argument, to all those
that remain; “too many” arguments. So too the issue may not be as conspicuous;
while the Haskell expression (foldr id 42 [id]) presents foldr with its full quota
of three arguments, reduction will nevertheless require evaluation of the familiar
(id id 42).

One may briefly consider the remedy of prescribing thorough use of the curry

class template. However, while explicit invocation of an occasional application
of curry may be tolerable, systematic integration within a larger system would
be tedious; and error prone as a consequence. This is the explicit currying seen
in other systems.

3.2 Folding with Types

The creation of a C++ metafunction expression evaluator, with implicit cur-
rying, can be achieved by defining both: a generic folding combinator; and a
specific combining operation. Adopting Haskell’s model of function application
involves the left-associative currying operator, denoted by the space between
operands; i.e. their juxtaposition. Given the elementary binary function const,
which returns its first argument, the Haskell-like expression (const 1 2) is parsed

Intrinsic Currying for C++ Template Metaprograms 55

as ((const 1) 2), with (const 1) returning a function equivalent to the partial
application of const. Operationally, this can be processed as a left-fold, with cur-
rying as the binary combining operation. A definition for a similar fold over a
homogeneous list in Haskell is shown below:

foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

Evaluating an expression such as (const 1 2) can then be understood intu-
itively as a left-fold on a heterogeneous list of three elements: the binary function
const; the numeric literal 1; and the numeric literal 2.

The code below defines a C++ left-fold metafunction class11 through two
specialisations of a class template ifoldl; one for the base case; and one for the
recursive step. The type template parameter F, which expects a metafunction
class, is seen applied to two arguments, Z and T, at the invoke<F,Z,T> instantia-
tion within the recursive ifoldl specialisation. Finally, the quote_c alias template
is used to produce a metafunction class suitable for use with invoke: ifoldl_q.

template <class, class Z, class...>

struct ifoldl : id<Z> {};

template <class F, class Z, class T, class... Ts>

struct ifoldl<F,Z,T,Ts...> : ifoldl<F,invoke<F,Z,T>,Ts...> {};

using ifoldl_q = quote_c<ifoldl>;

The left-fold above is defined recursively according to conventional metapro-
gramming idioms. As a simple example of its operation, the code below performs
a compile-time calculation of ((0 − 1) − 2).

template <class T, class U> using sub = ic<T::value - U::value>;

invoke<ifoldl_q,quote<sub>,ic<0>,ic<1>,ic<2>> ≡ ic<-3>

It is noteworthy that an implementation utilising C++17’s fold expressions,
with an equivalent interface and functionality is also possible, though no more
concise, by overloading an arbitrary binary operator. Such a version is provided
in AppendixA.11.

While considering the definition of a combining operation for use with the
folding metafunction class, ifoldl_q, and with which to facilitate an implicitly
currying evaluator, it can be worthwhile to examine the limitations of naively
providing ifoldl_q with a suitably quoted version of either invoke; or curry.
Corresponding evaluators, eval_i and eval_c, are shown below:

template <class F, class... Ts>

using eval_i = invoke<ifoldl_q,quote<invoke>,F,Ts...>;

template <class F, class... Ts>

using eval_c = invoke<ifoldl_q,quote<curry>, F,Ts...>;

11 A template parameter pack Ts is used by ifoldl rather than a type list; and hence
it is not strictly isomorphic to the Haskell fold above; this is however only part of
the implementation, not of the public API.

56 P. Keir et al.

The eval_i combinator will apply invoke, two arguments at a time, starting
from the leftmost pair. Of course as invoke has no support for currying, this only
succeeds for unary functions. For example, eval_i<id_q,id_q,ic<42>>, akin to
the Haskell expression, (id id 42), will reduce to ic<42> as expected. However,
eval_i<const_q,int,bool>, in attempting to instantiate invoke<const_q,int>,
instead produces a compilation error; const_q is defined below:

template <class T, class> using const_t = T;

using const_q = quote<const_t>;

The eval_c combinator will instantiate nested curry classes instead; ever
deeper with recursive step. A final application of invoke may then be useful,
to convert the nested curry classes, into the expected result type. For exam-
ple, eval_c<const_q,int,bool> will reduce to curry<curry<const_q,int>,bool>,
which is a valid metafunction class; providing it to invoke, with no further
arguments, will produce the anticipated result: int. The eval_c combinator,
combined with the final application of invoke, thus behaves exactly as invoke

alone. Consequently, it encounters the same restrictions regarding currying; for
example eval_c<id_q,id_q,ic<42>> fails to compile as id_q is provided with two
arguments; id_q and ic<42>. Another approach is required.

A suitable binary combining operation for use with the left-fold of ifoldl_q
makes conditional use of both curry and invoke. Algorithm 1 illustrates in pseu-
docode the operation of this metafunction; with the C++ definition provided
below. Intuitively, curry_invoke_q will use invoke to apply its first argument to
its second, when possible; otherwise it returns the application in curried form.

template <class F, class T, class = void_t<>>

struct curry_invoke : id<curry<F,T>> {};

template <class F, class T>

struct curry_invoke<F,T,void_t<invoke<F,T>>> : id<invoke<F,T>> {};

using curry_invoke_q = quote_c<curry_invoke>;

With curry_invoke_q as the combining operation of ifoldl_q, and the ele-
mentary id_q as a starting value, an implicitly currying evaluation metafunction,
eval, can be defined; as shown below.

template <class... Fs>

using eval = invoke<ifoldl_q,curry_invoke_q,id_q,Fs...>;

As eval is defined by a conventional catamorphism, eval<> simply returns
the “zero” value of the defining left-fold; the identity metafunction class: id_q.
Likewise, for an arbitrary type T, eval<T> evaluates to T ; consequently eval<int>

and eval<id_q> reduce to int and id_q respectively. Demonstrations of the util-
ity of eval are explored in Sect. 5; while the intermediate steps involved in
reducing a sample expression, eval<const_q,id_q,int,char>, to char are listed
in AppendixA.12.

Intrinsic Currying for C++ Template Metaprograms 57

Algorithm 1. Invocation with conditional currying
Precondition: f is a possibly curried metafunction class
Precondition: t is an arbitrary type
Postcondition: g is a curried metafunction class

1: function Curry-invoke(f, t)
2: if IsValidExpression(f(t)) then
3: g ← f(t)
4: else
5: g ← Curry(f, t)
6: end if
7: return g
8: end function

4 Variadic and Nullary Metafunctions

Section 3’s eval metafunction accommodates a domain-specific language of
expressions involving curried evaluation of fixed arity metafunctions. C++ tem-
plates also support idiomatic nullary and variadic metafunctions. Variadic tem-
plates were introduced in C++11. While the argument count and values of the
instantiated template may be unknown to a template’s author, such aspects are
of course resolved at compile-time. Meanwhile, nullary metafunctions arise when
either the template parameters of a class are specified with default values; or a
variadic class template has a template parameter pack, optionally with preceding
defaulted template parameters. For an arbitrary nullary metafunction, N, angle
brackets remain necessary during instantiation; as in N<>. We propose that a
modified evaluation combinator, eval_v, support the following syntax for such
eventualities: eval_v<N>. Our implementation will continue to operate as a left-
fold, but more intricacy and heuristics is required for the combining operation.

4.1 An Antidetection Idiom

Now is an opportune moment to introduce a novel metafunction: invalid; a
combinator aligned with the SFINAE detection idiom [7], which provides a useful
form of inverse to the idiomatic application of C++17’s std::void_t.

An elementary enquiry, facilitated easily using std::void_t, is whether or
not a class has a member named type. Instantiating the xt class template shown
below using a type which does have such a member, will create a type which
does not ; and vice versa: instantiating xt with an argument which does not have
a type member, will produce a type which does.

template <class, class = void_t<>>

struct xt : id<void> {};

template <class T>

struct xt<T,void_t<typename T::type>> {};

58 P. Keir et al.

For an arbitrary metafunction class F, and type arguments Ts..., where
void_t<invoke<F,Ts...>> instantiates to void, we can interpret the argument
to void_t as being valid. Using the invalid combinator, shown below, with F

and Ts arguments as before, will see void_t<invoke<invalid<F>,Ts...>> fail to
instantiate; where invoke<F,Ts...> is valid, invoke<invalid<F>,Ts...> is invalid.

template <class F>

struct invalid {

template <class... Us>

using m_invoke =

typename xt<iv1430<void,F::template m_invoke,Us...>>::type;

};

Considering the potential for multiple arguments to std::void_t, the
idea emerges to combine requirements for valid instantiations of invoke

with those which are invalid. For example, for arbitrary types T and U,
void_t<invoke<F,T>,invoke<invalid<F>,U>> could help specify that a class tem-
plate specialisation should be selected when invoke<F,T>, but not invoke<F,U>,
is valid.

4.2 The Combining Operation

A new binary combining operation for use with Sect. 3.2’s left-fold again makes
conditional use of curry and invoke; with additional SFINAE guidance from the
invalid class template. Algorithm 2 illustrates in pseudocode the operation of
this recursive metafunction. On line 2, the first argument of Curry-invoke-peek, a
function f, perhaps already with curried arguments, has its potential for applica-
tion determined, both: (1) with no further arguments; and (2) with t as a single
argument. Having the first condition true, with the second false, allows for f to
be evaluated, with the resulting function f’ passed alongside t, via a recursive
call to Curry-invoke-peek on line 4. Alternatively, the Curry-invoke-peek func-
tion will conclude on line 6 simply by returning f, curried with the type t. The
C++ definition, curry_invoke_peek_q, is shown below.

template <class F, class T, class = void_t<>>

struct curry_invoke_peek : id<curry<F,T>> {};

template <class F, class T>

struct curry_invoke_peek<F,T,void_t<invoke<F>,invoke<invalid<F>,T>>>

: curry_invoke_peek<invoke<F>,T> {};

using curry_invoke_peek_q = quote<curry_invoke_peek>;

Algorithm 2 differs from Algorithm 1 in two ways. Firstly, invoke may be
used either to evaluate the application of f to t; or, to evaluate f itself. This
supports variadic metafunctions, through the incremental consideration of addi-
tional arguments. Secondly, Algorithm2 is recursive; accommodating nullary
metafunctions, which too may return nullary metafunctions.

Intrinsic Currying for C++ Template Metaprograms 59

Algorithm 2. Conditional invocation of a function and argument
Precondition: f is a possibly curried metafunction class
Precondition: t is an arbitrary type
Postcondition: g is a curried metafunction class

1: function Curry-invoke-peek(f, t)
2: if IsValidExpression(f()) ∧ ¬IsValidExpression(f(t)) then
3: f ′ ← f()
4: g ← Curry-invoke-peek(f ′, t)
5: else
6: g ← Curry(f, t)
7: end if
8: return g
9: end function

Given a metafunction class F, and a template parameter pack Fs, the type
expression invoke<ifoldl_q,curry_invoke_peek_q,F,Fs...> will produce a cur-
ried representation of a metafunction application. Consider the invocation of
invoke below; comparable to the Haskell (const id 42 ‘a’).

invoke<ifoldl_q,curry_invoke_peek_q,const_q,id_q,int,char>

The expression reduces to curry<id_q,char>. Applying invoke to this, once
again, with no further arguments, can produce the sought char. A curried meta-
function application, with fewer arguments than required by the metafunction,
is also a valid output of the fold; say curry<const_q,int>. Applying invoke to
this, however, produces a compilation error. A metafunction combinator is thus
defined, which applies invoke to a curried metafunction application only when
this can be achieved without error.

The invoke_if metafunction combinator defined below will apply invoke

conditionally to its F parameter whenever possible; otherwise, F is simply
returned. Furthermore, should such an invocation be achieved, the attempt will
be repeated; by passing the result, invoke<F>, recursively to invoke_if. By this
route, the uncommon scenario of a nullary metafunction returning a possibly
nullary metafunction is also handled.

template <class F, class = void_t<>>

struct invoke_if : id<F> {};

template <class F>

struct invoke_if<F,void_t<invoke<F>>> : invoke_if<invoke<F>> {};

template <class F> using invoke_if_t = typename invoke_if<F>::type;

Consequently, eval_v can be defined as shown below. As discussed, the fold
produces a curried result; hence the invoke_if combinator, via invoke_if_t, is
utilised to conditionally apply invoke upon it.

60 P. Keir et al.

template <class... Fs>

using eval_v =

invoke_if_t<invoke<ifoldl_q,curry_invoke_peek_q,id_q,Fs...>>;

Evaluating metafunction applications involving nullary metafunctions can
produce surprising results. Consider the zero_constv_q metafunction class below:

template <class...> struct zero_constv : id<const_q> {};

using zero_constv_q = quote_c<zero_constv>;

Applied to zero arguments, the type expression eval<zero_constv_q>,
reduces to const_q. In fact for an arbitrary pack of types Ts, the expression
eval<zero_constv_q,Ts...> will always reduce to const_q: the fold’s combining
operation curries successive arguments until an invalid set is formed; or until
there are no more.

To define a metafunction which is valid only for nullary invocations, class
template specialisation is necessary. Line 1 in the code below declares a pri-
mary variadic class template, zero_const; which is then specialised on line 2
to return const_q for zero arguments. In this scenario, the operational seman-
tics of eval_v’s underlying fold will evaluate zero_const_q rather than curry
further arguments; ensuring const_q is now the active metafunction. Hence,
eval<zero_const_q,int,bool> will reduce to int.

1 template <class...> struct zero_const;

2 template < > struct zero_const<> : id<const_q> {};

3
4 using zero_const_q = quote_c<zero_const>;

4.3 Explicit Fixed Arity

Our third implementation of the expression evaluator, eval_n, allows the user to
curate a selection of variadic metafunctions, or metafunction classes; but requires
that each is annotated with a chosen arity.

The class template bases, defined below, allows an existing variadic meta-
function class F, to be paired with an arity type N, as a fellow base class, as in
bases<F,N>. For example, constv_q (AppendixA.5) could be given an arity of 7
using bases<constv_q,ic<7>>.

template <class... Ts> struct bases : Ts... {};

template <> struct bases<> {};

Expression evaluation is then undertaken through the eval_n combina-
tor shown below. The binary metafunction classes curry_invoke_peekn_q and
invoke_ifn_t are defined in AppendicesA.2 and A.3. Intuitively, the operation
of curry_invoke_peekn_q is much like curry_invoke_peek_q. Now, however, the
decision to apply invoke rather than curry is determined simply: the arity of
a metafunction’s representation is decremented with each curried argument. If
that arity becomes zero, use invoke.

Intrinsic Currying for C++ Template Metaprograms 61

template <class... Fs>

using eval_n =

invoke_ifn_t<invoke<ifoldl_q,curry_invoke_peekn_q,id_q,Fs...>>;

A disadvantage of this approach is that the user is burdened with the task
of manually adding rank values. Certainly a future iteration of Curtains could
infer the rank attribute with fixed arity metafunctions. Nevertheless, it is likely
that more extensive benefits of this approach will stay muted while template
metaprograms remain untyped. C++ Concepts [3] should shed light here, and
further work will seek to explore Curtains’ relationship with dependent types
[23]; allowing for example, fixed length vectors, and the generic zipWith family
of combinators.

5 Using the Curtains API

The method of evaluating a type expression involving metafunction classes and
other types was introduced via the eval combinator in Sects. 3 and 4. We now
consider examples from the perspective of the end user of the Curtains API.

5.1 Defining Metafunctions Using Equations

Notably, the application of a metafunction class via eval will be curried implic-
itly. For example, eval<const_q,char> produces a curried, unevaluated meta-
function class, which can then be applied to a second type argument; producing
the final result: eval<eval<const_q,char>,bool> ≡ char. We can then comfort-
ably define a metafunction for the composition of two metafunctions; as shown
below.

template <class F, class G>

struct compose_t

{

template <class T>

using m_invoke = eval<F,eval<G,T>>;

};

using compose_q = quote<compose_t>;

Thanks to the implicit currying of the eval combinator, the composition will
also work when given non-unary metafunctions F and G. For example, a compa-
rable C++ template metaprogram expression to Haskell’s ((.) const id 1 2) is
eval<compose_q,const_q,id_q,int,char>; which reduce to 1 and int respectively.

We now highlight a new factor in the definition of higher-order metafunctions,
concerning a flexibility in the syntax. The definition of compose_t shown above
is a binary metafunction which returns a unary metafunction via a nested alias
template named m_invoke. This is analogous to the Haskell definition of the
composition operator (.) shown below:

(.) f g = \x -> f (g x)

62 P. Keir et al.

As with the C++ metafunction compose_t, syntactically this defines a binary
function which returns a unary lambda function. Note that it is also sometimes
convenient to define such functions using a shorter, “equational syntax”:

(.) f g x = f (g x)

This flexibility is found in most languages with lambda expressions; though
C++ metaprogramming does not support the latter form. Curtains’ support for
implicit currying does however permit such equational definitions. The alterna-
tive definition for compose_t is shown below:

template <class F, class G, class T>

using compose_t = eval<F,eval<G,T>>;

using compose_q = quote<compose_t>;

This is especially convenient for C++ metaprogramming. Firstly, the
“lambda syntax” for C++ higher-order metafunctions is verbose. Secondly, while
Curtains uses the name m_invoke, there is no standard naming convention for
this; the returned metafunction.

5.2 Structured Recursion

This integration of currying facilitates a direct transfer of functional program-
ming idioms to C++ template metaprogramming; especially when manipulating
higher-order metafunctions. The derivation of functionality from structure can
be demonstrated by the use of recursion schemes including catamorphisms and
anamorphisms to create metaprogram equivalents of many familiar functions. A
Curtains right-fold definition is shown below, along with a simple type list12.

template <class...> struct list {};

template <class, class, class> struct foldr;

using foldr_q = quote_c<foldr>;

template <class F, class Z, class T, class... Ts>

struct foldr<F,Z,list<T,Ts...>>

: id<eval<F,T,eval<foldr_q,F,Z,list<Ts...>>>> {};

template <class F, class Z>

struct foldr<F,Z,list<>> : id<Z> {};

The foldr metafunction is constructed from two class template specialisa-
tions; corresponding to the traditional pair of defining equations. A Haskell
expression such as (foldr id 42 [id]) reduces to (id id 42) ≡ (42). Such an opera-
tion is accomplished through the elementary treatment of all functions as unary,
with left-associative application; possibly returning another function through

12 A std::tuple would do, though the minimal list class template shown is sufficient
for compile-time calculations.

Intrinsic Currying for C++ Template Metaprograms 63

currying. Given id, the type of the second argument, (a → b → b), resolves with
a as a function type (c → c). Curtains makes no interpretation of the types/kinds
of a metafunction’s arguments, but here usefully places no demand on the fold’s
binary combining operation to be provided with two arguments. Ultimately, an
isomorphic Curtains expression, such as eval<foldr_q,id_q,char,list<id_q>>,
reduces similarly to char.

With the simple list-forming metafunction cons_q provided in AppendixA.4,
metafunctions constructed from foldr_q can be defined; with varying levels of
effort. For example eval<foldr_q,cons_q,list<>> behaves as the identity meta-
function when provided with a list argument. A fold can also produce the familiar
map function in Haskell:

map f = foldr ((:) . f) []

The only difference required for a Curtains definition of map is for the infix
composition operator to be applied prefix:

template <class F>

using map_t = eval<foldr_q,eval<compose_q,cons_q,F>,list<>>;

using map_q = quote<map_t>;

A Haskell function to reverse a list using a right-fold is shown below:

reverse xs = foldr (λx y → y . ((:) x)) id xs []

Preparing an equivalent list reversal in Curtains, and mindful of the lack of
lambda metafunctions, we may consider class or alias templates. A point-free
equivalent of the lambda function can instead be created, (flip (.) . (:)) 13, and
is found on line 4 of the complete Curtains reverse implementation below14:

1 template <class L>

2 using reverse_t = eval<

3 foldr_q,

4 eval<compose_q,eval<flip_q,compose_q>,cons_q>,

5 id_q,

6 L,

7 list<>

8 >;

9 using reverse_q = quote<reverse_t>;

Tools such as the Pointfree.io website can in fact produce an entirely point-
free Haskell list reversal; see reverse_pf_q in AppendixA.6 for the code listing. In
fact, preparing arbitrarily complicated fold operations by this approach becomes
somewhat mechanical. Appendix A.9 includes a Curtains implementation of the
Ackermann function, constructed using foldr_q.

5.3 The Strict Fixed-Point Combinator

A lazy language such as Haskell allows a concise definition of the fixed-point
combinator:
13 The Pointfree.io website is an excellent resource for producing such translations.
14 A Curtains definition of the Haskell flip combinator is provided in Appendix A.4.

http://pointfree.io
http://pointfree.io

64 P. Keir et al.

fix f = f (fix f)

However, as in traditional C++ template metaprogramming, expression eval-
uation in Curtains is eager. In eager functional languages, an η-expanded defini-
tion of the fixed-point combinator can be constructed, wherein the evaluation of
(fix f) on the right-hand side is delayed when only a single argument is provided
to the combinator. This strict form of the fixed-point combinator, sometimes
referred to as the Z combinator, can be defined, say in OCaml, as follows:

let rec fix f x = f (fix f) x;;

Curtains adopts exactly the same approach. As usual, an alias template name
cannot appear on the right-hand side of its definition; and only a class template
can have a forward declaration; which explains the formulation shown below:

template <class,class> struct fix_c;

using fix = quote_c<fix_c>;

template <class F, class X>

struct fix_c : id<eval<F,eval<fix,F>,X>> {};

Curry’s Y combinator defines a fixed point combinator without recur-
sion. This too can be constructed as an η-expanded version of its sym-
metric form where λf.(λx.f(xx))(λx.f(xx)), becomes λf.λg.(λx.λa.f(xx)a)
(λx.λa.f(xx)a)g. The Curtains version is shown below. The non-recursive
factorial function from AppendixA.10 means eval<fix,fix_fact,ic<3>> ≡
eval<y,fix_fact,ic<3>> ≡ ic<6>.

template <class F, class X, class A>

using y_helper_t = eval<F,eval<X,X>,A>;

using y_helper = quote<y_helper_t>;

template <class F, class G>

using y_t = eval<eval<y_helper,F>,eval<y_helper,F>,G>;

using y = quote<y_t>;

6 Related Work

The use of C++ templates and macros for metaprogramming started with
Unruh’s code that emits some prime numbers as warning messages [35]. Veld-
huizen introduced expression templates to the world of C++ metaprogramming
[38]. Austern [6] exemplified some commonalities between the STL (the generic
programming part of the C++98 [1] and C++11 [2] standard libraries) and
functional programming. Alexandrescu [5] presented a tour de force of C++
metaprogramming and was the first to identify similarities between that and
functional programming. Abrahams and Gurtovoy devoted their book [4] to the
metaprogramming libraries of the Boost C++ library.

Intrinsic Currying for C++ Template Metaprograms 65

Golodotz [13] offers a tour on the functional programming nature of C++
metaprogramming by showing how to implement certain metaprograms by mim-
icking the respective Haskell programs. Sipos et al. [34] informally describe a
method for systematically producing metafunctions out of functions written in
the pure functional programming language Clean [36]. They advertise that
their Eval metafunction evaluates the produced metaprograms according to the
operational semantics of Clean. As detailed in [15], whilst they do not for-
mally present their operational semantics, their informal explanation suggests
remarkable differences between the operational semantics of Clean and that of
theirs.

Sinkovics [30] offers certain solutions for improving the functional program-
ming support in Boost.MPL and discusses why they are needed. Sinkovics and
Porkoláb [32] advertise implementation of a λ-library on top of the opera-
tional semantics of Sipos et al. for embedded functional programming in C++.
They also later advertise [28] extension of their λ-library to full support for
Haskell. Sinkovics [30,31] offers a restricted solution for emulating let-bindings
and explicit currying in template metaprogramming.

Haeri and Schupp [15] demonstrate a real-world exemplification of C++
metaprogramming being functional in nature; exploring impediments against
fully automatic cross-lingual development between C++ metaprogramming and
Haskell. Armed with that, they suggest further examination of semi-automatic
cross-lingual development between C++ metaprogramming and hybrid func-
tional programming languages. Haeri et al. [16] examine that suggestion for
Scala and F�. Lincke et al. [19] discuss a real-world semi-automatic translation
from Haskell specifications into efficient C++ metaprograms.

Milewski [26] has a number of posts on his personal blog that speak about
Monads, their benefits for C++, and how to implement Monadic entities in
C++. He also explains how Monads in Haskell can help the understanding of
Boost.Proto – one of the most complicated C++ metaprogramming libraries.
Moreover, he has a post on how template metaprogramming with variadic tem-
plates is similar to lazy list processing in Haskell. Finally, Sankel [29] shows how
to implement algebraic datatypes in C++.

Developments in C++ since 2011 have revolutionised metaprogramming.
Variadic templates; generalised constant expressions (constexpr); alias tem-
plates; and constexpr-if have made an especially notable impression. Louis
Dionne’s influential Hana library [9], now included with the C++ Boost libraries,
exploits constexpr, with richly typed values allowing both runtime and compile-
time overloading through a highly distinctive though traditional syntax. Eric
Niebler exploits C++11 features in his 3500 line Meta library [27], which utilises
variadic templates and demonstrates some support for explicit currying. Numer-
ous other metaprogramming libraries focus on distinctive aspects, including per-
formance [8]; or evaluation schemes, with Metal [10] originally using implic-
itly lazy evaluation; though now using eager evaluation. With subsets of these
libraries now submitted regularly to Boost efforts have also been made [11] to
include common patterns within the standard C++ runtime library.

66 P. Keir et al.

7 Conclusion

C++ template metaprogramming is an expressive, Turing-complete language
which holds the potential to engineer libraries and embedded domain-specific
languages supported by compile-time formal verification. In this paper we have
introduced the Curtains API which provides a model of higher-order func-
tional programming with implicit currying for C++ template metaprograms,
and which aligns with norms adopted by languages such as Haskell, OCaml
and F�.

Three distinct schemes are implemented and described in Sects. 3 and 4. The
first, and simplest, supports only fixed arity metafunctions; the second supports
variadic and nullary metafunctions; while the third can use variadic metafunc-
tions, though only when each instance is annotated with an arity.

With the hope of wider uptake, and of further research, our implementation
has utilised structured recursion, permitting a concise, 30 line implementation
for the simplest of the three schemes described; and 50 lines for the most com-
plex. The choice of the fold’s binary combining operation alone accounts for the
difference in implementation between each of the three approaches.

A practical introduction to the API is included in Sect. 5, highlighting the
library’s accommodation of a distinct equational definition syntax; as well as
demonstration of the potential for implicit currying to enable the use of struc-
tured recursion operators, such as map and fold ; as opposed to the explicit
recursion more commonly employed.

In future we intend to prioritise C++ Concepts [3] integration. Concepts
allow a form of type checking for templates, and are implemented as an extension
within GCC since version 6.1. We believe Concepts can assist users of Curtains
with numerous concerns, including the typing of metafunction classes and their
parameters; and a consequential improvement to error messages. We expect this
should also support our aim to include support for Haskell-style type classes.
Future work will also introduce support for infix alphanumeric operators with
specified associativity and precedence.

A Appendix A

A.1 Quotation for a Class Template Argument

template <template <class...> class M>

struct quote_c {

template <class... Ts>

using m_invoke = typename iv1430<void,M,Ts...>::type::type;

};

Intrinsic Currying for C++ Template Metaprograms 67

A.2 Curry-Invoke with Arity

template <class, class>

struct curry_invoke_peekn;

template <class F, class T, auto N>

struct curry_invoke_peekn<bases<F,ic<N>>,T> :

id<bases<curry<F,T>,ic<N-1>>> {};

template <class F, class T>

struct curry_invoke_peekn<bases<F,ic<0>>,T>

: curry_invoke_peekn<invoke<bases<F,ic<0>>>,T> {};

using curry_invoke_peekn_q = quote_c<curry_invoke_peekn>;

A.3 Conditional Invoke with Arity

template <class F>

struct invoke_ifn : id<F> {};

template <class F>

struct invoke_ifn<bases<F,ic<0>>> : invoke_ifn<invoke<bases<F,ic<0>>>> {};

template <class F>

using invoke_ifn_t = typename invoke_ifn<F>::type;

using invoke_ifn_q = quote<invoke_ifn_t>;

A.4 Additional Utility Metafunctions

template <class, class> struct cons;

template <class T, class... Ts>

struct cons<T,list<Ts...>> : id<list<T,Ts...>> {};

using cons_q = quote_c<cons>;

template <class F, class T, class U>

using flip_t = eval<F,U,T>;

using flip_q = quote<flip_t>;

A.5 A Sample Variadic Metafunction: constv_q

template <class T, class...> using constv_t = T;

using constv_q = quote<constv_t>;

68 P. Keir et al.

A.6 Point-Free Reverse From a Right-Fold

using reverse_pf_q = eval<

flip_q,

eval<

foldr_q,

eval<compose_q,eval<flip_q,compose_q>,cons_q>,

id_q

>,

list<>

>;

A.7 Point-Free Left-Fold From a Right-Fold

Implementation derived from Hutton [18]; with assistance from the Pointfree.io
website; which provides: (flip . flip foldr id . (flip (.) .) . flip).

using foldl_q = eval<

compose_q,

flip_q,

eval<

compose_q,

eval<flip_q,foldr_q,id_q>,

eval<

compose_q,

eval<compose_q,eval<flip_q,compose_q>>,

flip_q

>

>

>;

A.8 The SKI Combinators

template <class X, class Y, class Z>

using S_t = eval<X,Z,eval<Y,Z>>;

using I = id_q;

using K = const_q;

using S = quote<S_t>;

A.9 Point-Free Ackermann Function from a Right-Fold

Here S and const_q are used in lieu of (<∗>) and pure, for the Applicative instance
of ((−>) r). The implementation is derived from Hutton [18]; with assistance
from the Pointfree.io website.

using ack = eval<

foldr_q,

eval<

const_q,

http://pointfree.io
http://pointfree.io

Intrinsic Currying for C++ Template Metaprograms 69

eval<

S,

eval<S,eval<const_q,foldr_q>,const_q>,

eval<flip_q,dollar_q,list<void>>

>

>,

eval<cons_q,void>

>;

A.10 Non-recursive Factorial for Use with the Fixpoint Combinator

template <class, class> struct mul_c;

template <auto M, auto N> struct mul_c<ic<M>, ic<N>> : id<ic<M*N>> {};

using mul = quote_c<mul_c>;

template <class F, class N>

struct fix_fact_c : id<eval<mul,N,eval<F,eval<pred,N>>>> {};

template <class F>

struct fix_fact_c<F,ic<0>> : id<ic<1>> {};

using fix_fact = quote_c<fix_fact_c>;

A.11 Primitive Left-Fold from a C++17 Fold Expression

template <class T, class>

struct const_ { using type = T; };

template <class T, class U, class F>

auto operator+(const_<T,F>, const_<U,F>) {

return const_<invoke<F,T,U>,F>{};

}

template <class F, class Z, class... Ts>

struct ifoldl {

using type =

typename decltype((const_<Z,F>{} + ... + const_<Ts,F>{}))::type;

};

using ifoldl_q = quote_c<ifoldl>;

A.12 Reduction Steps of a Sample Curtains Expression

eval<const_q,id_q,int,char>

≡ {eval alias template}
invoke<ifoldl_q,curry_invoke_q,id_q,const_q,id_q,int,char>

≡ {invoke alias template}
ifoldl_q::m_invoke<curry_invoke_q,id_q,const_q,id_q,int,char>

≡ {ifoldl_q alias template}

70 P. Keir et al.

quote_c<ifoldl>::m_invoke<curry_invoke_q,id_q,const_q,id_q,int,char>

≡ {m_invoke alias template member of quote_c template}
iv1430<void,ifoldl,curry_invoke_q,id_q,const_q,id_q,int,char>::type::type

≡ {type member of iv1430 template specialisation}
ifoldl<curry_invoke_q,id_q,const_q,id_q,int,char>::type

≡ {type member of ifoldl specialisation}
ifoldl<curry_invoke_q,invoke<curry_invoke_q,id_q,const_q>,id_q,int,char>::type

≡ {invoke alias template}
ifoldl<curry_invoke_q,curry_invoke_q::m_invoke<id_q,const_q>,id_q,int,char>::type

≡ {curry_invoke_q alias template}
ifoldl<curry_invoke_q,quote_c<curry_invoke>::m_invoke<id_q,const_q>,id_q,int,char>::type

≡ {m_invoke alias template member of quote_c template}
ifoldl<curry_invoke_q,iv1430<void,curry_invoke,id_q,const_q>::type::type,id_q,int,char>::type

≡ {type member of iv1430 template specialisation}
ifoldl<curry_invoke_q,curry_invoke<id_q,const_q>::type,id_q,int,char>::type

≡ {type member of curry_invoke template specialisation}
ifoldl<curry_invoke_q,invoke<id_q,const_q>,id_q,int,char>::type

≡ {invoke alias template}
ifoldl<curry_invoke_q,id_q::m_invoke<const_q>,id_q,int,char>::type

≡ {id_q alias template}
ifoldl<curry_invoke_q,quote_c<id>::m_invoke<const_q>,id_q,int,char>::type

≡ {m_invoke alias template member of quote_c template}
ifoldl<curry_invoke_q,iv1430<void,id,const_q>::type::type,id_q,int,char>::type

≡ {type member of iv1430 template specialisation}
ifoldl<curry_invoke_q,id<const_q>::type,id_q,int,char>::type

≡ {type member of id template}
ifoldl<curry_invoke_q,const_q,id_q,int,char>::type

≡ {type member of ifoldl specialisation}
ifoldl<curry_invoke_q,invoke<curry_invoke_q,const_q,id_q>,int,char>::type

≡ {invoke alias template}
ifoldl<curry_invoke_q,curry_invoke_q::m_invoke<const_q,id_q>,int,char>::type

≡ {curry_invoke_q alias template}
ifoldl<curry_invoke_q,quote_c<curry_invoke>::m_invoke<const_q,id_q>,int,char>::type

≡ {m_invoke alias template member of quote_c template}
ifoldl<curry_invoke_q,iv1430<void,curry_invoke,const_q,id_q>::type::type,int,char>::type

≡ {type member of iv1430 template specialisation}
ifoldl<curry_invoke_q,curry_invoke<const_q,id_q>::type,int,char>::type

≡ {type member of curry_invoke primary template}
ifoldl<curry_invoke_q,curry<const_q,id_q>,int,char>::type

≡ {type member of ifoldl specialisation}
ifoldl<curry_invoke_q,invoke<curry_invoke_q,curry<const_q,id_q>,int>,char>::type

≡ {invoke alias template}
ifoldl<curry_invoke_q,curry_invoke_q::m_invoke<curry<const_q,id_q>,int>,char>::type

≡ {curry_invoke_q alias template}
ifoldl<curry_invoke_q,quote_c<curry_invoke>::m_invoke<curry<const_q,id_q>,int>,char>::type

≡ {m_invoke alias template member of quote_c template}
ifoldl<curry_invoke_q,iv1430<void,curry_invoke,curry<const_q,id_q>,int>::type::type

,char>::type

≡ {type member of iv1430 template specialisation}
ifoldl<curry_invoke_q,curry_invoke<curry<const_q,id_q>,int>::type,char>::type

≡ {type member of curry_invoke template specialisation}
ifoldl<curry_invoke_q,invoke<curry<const_q,id_q>,int>,char>::type

≡ {invoke alias template}
ifoldl<curry_invoke_q,curry<const_q,id_q>::m_invoke<int>,char>::type

Intrinsic Currying for C++ Template Metaprograms 71

≡ {m_invoke alias template member of curry template}
ifoldl<curry_invoke_q,invoke<const_q,id_q,int>,char>::type

≡ {invoke alias template}
ifoldl<curry_invoke_q,const_q::m_invoke<id_q,int>,char>::type

≡ {const_q alias template}
ifoldl<curry_invoke_q,quote<const_t>::m_invoke<id_q,int>,char>::type

≡ {m_invoke alias template member of quote template}
ifoldl<curry_invoke_q,iv1430<void,const_t,id_q,int>::type,char>::type

≡ {type member of iv1430 template specialisation}
ifoldl<curry_invoke_q,const_t<id_q,int>,char>::type

≡ {const_t alias template}
ifoldl<curry_invoke_q,id_q,char>::type

≡ {type member of ifoldl specialisation}
ifoldl<curry_invoke_q,invoke<curry_invoke_q,id_q,char>>::type

≡ {invoke alias template}
ifoldl<curry_invoke_q,curry_invoke_q::m_invoke<id_q,char>>::type

≡ {curry_invoke_q alias template}
ifoldl<curry_invoke_q,quote_c<curry_invoke>::m_invoke<id_q,char>>::type

≡ {m_invoke alias template member of quote_c template}
ifoldl<curry_invoke_q,iv1430<void,curry_invoke,id_q,char>::type::type>::type

≡ {type member of iv1430 template specialisation}
ifoldl<curry_invoke_q,curry_invoke<id_q,char>::type>::type

≡ {type member of curry_invoke specialisation}
ifoldl<curry_invoke_q,invoke<id_q,char>>::type

≡ {invoke alias template}
ifoldl<curry_invoke_q,id_q::m_invoke<char>>::type

≡ {id_q alias template}
ifoldl<curry_invoke_q,quote_c<id>::m_invoke<char>>::type

≡ {m_invoke alias template member of quote_c template}
ifoldl<curry_invoke_q,iv1430<void,id,char>::type::type>::type

≡ {type member of iv1430 template specialisation}
ifoldl<curry_invoke_q,id<char>::type>::type

≡ {type member of id template}
ifoldl<curry_invoke_q,char>::type

≡ {type member of ifoldl primary template}
char

References

1. International Standard ISO/IEC 14882:1998(E): Programming Languages – C++
(1998)

2. International Standard ISO/IEC 14882:2011: Information Technology - Program-
ming Languages - C++ (2011)

3. International Standard ISO/IEC 19217:2015: Information Technology - Program-
ming Languages - C++ Extensions for Concepts (2015)

4. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools,
and Techniques from Boost and Beyond. AW Prof., Boston (2004)

5. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Pat-
terns Applied. Addison-Wesley Longman Publishing, Boston (2001)

6. Austern, M.H.: Generic Programming and the STL: Using and Extending the
C++ Standard Template Library. AW Prof. Comp. Series. AW Longman Publ.
Co., Boston (1998)

72 P. Keir et al.

7. Brown, W.E.: Proposing standard library support for the C++ detection idiom.
Technical report, ISO WG21 C++ Working Group, April 2015. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2015/n4436.pdf

8. Deppe, N., Douwes, C., Fresk, E., Holmes, O., Poelen, J.: Kvasir::mpl (2017).
https://github.com/kvasir-io/mpl

9. Dionne, L.: Hana (2013). https://github.com/boostorg/hana
10. Dutra, B.: Metal (2018). https://github.com/brunocodutra/metal
11. Escribá, V.J.B.: P0343R1: Meta-programming high-order functions. Technical

report, ISO WG21 C++ Library Evolution Working Group (2016)
12. Gil, J., Gutterman, Z.: Compile time symbolic derivation with C++ templates.

In: Proceedings of the 4th Conference on USENIX Conference on Object-Oriented
Technologies and Systems - COOTS 1998, vol. 4, pp. 18–18. USENIX Association,
Berkeley (1998). http://dl.acm.org/citation.cfm?id=1268009.1268027

13. Golodotz, S.: Functional Programming Using C++ Templates (Part 1), October
2007. http://accu.org/index.php/journals/1422

14. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org
15. Haeri, S.H., Schupp, S.: Functional Metaprogramming in C++ and cross-lingual

development with Haskell. Technical report, Uni. Kansas, October 2011. Draft
Proceeding of 23rd Symposium on Implementation and Application of Functional
Languages, ITTC-FY2012-TR-29952012-01

16. Haeri, S.H., Schupp, S., Hüser, J.: Using functional languages to facilitate C++
Metaprogramming. In: Proceedings of the 8th ACM SIGPLAN Workshop on
Generic Programming, WGP 2012, pp. 33–44. ACM (2012)

17. Holmes, O., Kurdej, M., Poelen, J.: Brigand Meta-programming Library (2015).
https://github.com/edouarda/brigand

18. Hutton, G.: A tutorial on the universality and expressiveness of fold. J. Funct.
Program. 9(4), 355–372 (1999)

19. Lincke, D., Schupp, S., Ionescu, C.: Functional prototypes for generic C++
libraries: a transformational approach based on higher-order, typed signatures.
Int. J. Soft. Tools Tech. Transf. 17(1), 91–105 (2015). https://doi.org/10.1007/
s10009-014-0299-0

20. Lumsdaine, A., Siek, J., Lee, L.Q.: The Boost Graph Library: User Guide and
Reference Manual. Addison-Wesley Longman Publishing Co., Inc, Boston (2002)

21. Mach, S.: Metatrace (2010). https://github.com/phresnel/metatrace
22. Marlow, S.: Haskell 2010 Language Report (2010)
23. McBride, C.: Faking it: simulating dependent types in Haskell. J. Funct. Program.

12(5), 375–392 (2002)
24. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,

lenses, envelopes and barbed wire. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523,
pp. 124–144. Springer, Heidelberg (1991). https://doi.org/10.1007/3540543961 7

25. Merrill, J.: C++ Core Issue 1430 (2011). http://www.open-std.org/jtc1/sc22/
wg21/docs/cwg active.html#1430

26. Milewski, B.: Bartosz Milewski’s Programming Cafe. http://bartoszmilewski.
wordpress.com

27. Niebler, E.: Meta: A Tiny Metaprogramming Library (2014). https://ericniebler.
github.io/meta/index.html

28. Porkoláb, Z., Sinkovics, Á.: C++ template metaprogramming with embedded
Haskell. In: Proceedings of 8th International Conference on Generative Program-
ming & Component Engineering (GPCE 2009), pp. 99–108. ACM, New York (2009)

29. Sankel, D.: Algebraic Data Types Series, C++ Next: The Next Generation of C++.
http://cpp-next.com/archive/2010/07/algebraic-data-types/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4436.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4436.pdf
https://github.com/kvasir-io/mpl
https://github.com/boostorg/hana
https://github.com/brunocodutra/metal
http://dl.acm.org/citation.cfm?id=1268009.1268027
http://accu.org/index.php/journals/1422
http://eigen.tuxfamily.org
https://github.com/edouarda/brigand
https://doi.org/10.1007/s10009-014-0299-0
https://doi.org/10.1007/s10009-014-0299-0
https://github.com/phresnel/metatrace
https://doi.org/10.1007/3540543961_7
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1430
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1430
http://bartoszmilewski.wordpress.com
http://bartoszmilewski.wordpress.com
https://ericniebler.github.io/meta/index.html
https://ericniebler.github.io/meta/index.html
http://cpp-next.com/archive/2010/07/algebraic-data-types/

Intrinsic Currying for C++ Template Metaprograms 73

30. Sinkovics, Á.: Functional extensions to the boost metaprogram library. Electron.
Notes Theor. Comput. Sci. 264(5), 85–101 (2011). Proceedings of 2nd Workshop
on Generative Technologies. https://doi.org/10.1016/j.entcs.2011.06.006

31. Sinkovics, Á.: Nested lamda expressions with let expressions in C++ template
metaprograms, pp. 63–76 (2011)

32. Sinkovics, Á., Porkoláb, Z.: Expressing C++ template metaprograms as lambda
expressions. In: TFP, pp. 1–15 (2009)

33. Sinkovics, Á., Porkoláb, Z.: Metaparse: Compile-Time Parsing with Template
Metaprogramming. Aspen, USA (2012). https://github.com/boostcon/cppnow
presentations 2012/blob/master/papers/metaparse paper.pdf

34. Sipos, Á., Porkoláb, Z., Pataki, N., Zsók, V.: Meta<Fun>: towards a functional-
style interface for C++ template metaprograms. Technical report, Eötvös Loránd
Uni, Fac. of Inf., Dept. Prog. Langs., Pázmány Péter sétány 1/C H-1117 Budapest,
Hungary (2007)

35. Unruh, E.: Prime Number Computation (1994). ANSI X3J16-94-0075/ISO WG21-
462

36. van Eekelen, M., de Mol, M.J.: Mixed lazy/strict graph semantics. In: Grelck,
C., Huch, F. (eds.) 16th International Workshop on Implementation of Applied
Functional Languages, IFL 2004, pp. 245–260. Technical report 0408, Christian-
Albrechts-Universität zu Kiel, Lüebeck, Germany, September 2004

37. Vandevoorde, D., Josuttis, N.M., Gregor, D.: C++ Templates: The Complete
Guide, 2nd edn. AW Prof., Boston (2018)

38. Veldhuizen, T.L.: Expression templates. C++ Rep. 7(5), 26–31 (1995)
39. Veldhuizen, T.L.: Scientific computing: C++ versus Fortran: C++ has more than

caught up. Dr. Dobb’s J. Softw. Tools 22(11), 34, 36–38, 91 (1997)

https://doi.org/10.1016/j.entcs.2011.06.006
https://github.com/boostcon/cppnow_presentations_2012/blob/master/papers/metaparse_paper.pdf
https://github.com/boostcon/cppnow_presentations_2012/blob/master/papers/metaparse_paper.pdf

Towards Optic-Based Algebraic Theories:
The Case of Lenses

J. López-González1,2(B) and Juan M. Serrano1,2

1 Habla Computing, S.L., Leganés, Spain
j.lopezgo@alumnos.urjc.es

2 Universidad Rey Juan Carlos, Móstoles, Spain
juanmanuel.serrano@urjc.es

Abstract. Optics provide rich abstractions and composition patterns
to access and manipulate immutable data structures. However, the state
of real applications is mostly handled through databases, caches, web
services, etc. In this effectful setting, the usefulness of optics is severely
limited, whereas algebraic theories, thanks to their potential to abstract
away from particular infrastructures, shine. Unfortunately, there is a
severe lack of standard algebraic theories, e.g. like MonadState, that
programmers can reuse to avoid writing their domain repositories from
scratch. This paper argues that optics can serve as a fruitful metaphor
to design a rich catalogue of state-based algebraic theories, and focuses
on the paradigmatic case of lenses. It shows how lenses can be gener-
alised into an algebraic theory; how compositionality of these algebraic
theories can be founded on lens composition; and how to exploit the
resulting abstractions in the modular design of data layers. The paper
systematically uses Coq for all its definitions and proofs.

Keywords: Lens · Optic · Algebraic theory · Monad · State ·
Repository · Coq

1 Introduction

Optics provide rich abstractions and patterns to access and manipulate
immutable data structures. They are also known as functional references, since
they point at parts which are contained or determined by a whole. For instance,
a lens [1] is an optic that points at a single value which is always available from
the context; an affine traversal points at a single value that is not necessarily
available; a traversal [2] points at a sequence of values; and so on. Each optic
comes equipped with an interface which is specialized in evolving the whole data
structure by evolving the parts it is pointing at. It is very common to find lenses
pointing at particular fields of a record. We will use the following records to
illustrate the idea, where the details about person are irrelevant1:
1 Coq will be used throughout the paper.

Research Article. Main author is a research student.

c© Springer Nature Switzerland AG 2019
M. Pa�lka and M. Myreen (Eds.): TFP 2018, LNCS 11457, pp. 74–93, 2019.
https://doi.org/10.1007/978-3-030-18506-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18506-0_4&domain=pdf
http://orcid.org/0000-0002-8730-2292
https://doi.org/10.1007/978-3-030-18506-0_4

Towards Optic-Based Algebraic Theories: The Case of Lenses 75

Record department := mkDepartment
{ budget : nat
; lecturers : list person }.

Record university := mkUniversity
{ name : string
; departments : list department
; students : list person }.

For instance, we could define budgetLn, a lens that points at the budget

field of department2. Among other methods, lenses supply a modifying operator
(∼ln), which takes a function over the part and an original whole as arguments, and
produces a new version of the whole as a result, where the part has been updated
by applying the input function over it. We could exploit this operator to double
the budget of the department as follows:

Definition doubleDepBudget : department → department :=
budgetLn ∼ln (λ b ⇒ b * 2).

We may also define a lens for fields that refer to a sequence of values such as
lecturers or departments. For instance, a lens departmentsLn would allow
us to access and modify the whole list of departments of a given university. But
traversals offer a much better interface in this case. For instance, they provide a
modifying operator ∼tr which applies the same modifying function over all the
foci that the traversal is pointing at, so you do not need to manipulate the list
manually. Thus, we could use this operator to double the budget of every single
department in the university:

Definition doubleUnivBudgets : university → university :=
departmentsTr ∼tr doubleDepBudget.

One of the most attractive features of optics is that they compose hetero-
geneously, e.g. it is possible to combine lenses with traversals. As an example,
consider the following definition, where we emphasize this aspect:

Definition doubleUnivBudgets ′ : university → university :=
(departmentsLn � each � budgetLn) ∼tr (λb ⇒ b * 2).

Although you might ignore certain details from the previous definition, it is
not difficult to infer that it is building a traversal that points at the budget of
each department in a modular way, and invoking to its modifying operator. In
fact, as the name suggests, this is just an alternative way of implementing the
very same logic.

In summary, we can appreciate two major benefits from optics, namely the
diversity of abstractions and their compositional capabilities. However, optics
are restricted to work with immutable data structures, whereas the state of
real applications, like university information systems, is mostly handled through
databases, web services, caches and so forth. In this setting, the optic approach
to handle state is not useless, but severely limited. Instead, one of the most
prominent techniques in the realm of effectful systems are algebraic theories [3].

2 For the moment, we will ignore the details about lens representations.

76 J. López-González and J. M. Serrano

Basically, these theories allow us to strive for generality and define a data
layer that abstracts away from the particular infrastructures that actually handle
state (caches, databases, immutable state transformers, etc.). For instance, we
could build an ad hoc repository to deal with university state in a general way.
We encode it as a typeclass [4]:

Class UniversityAlg (p : Type → Type) :=
{ getName : p string
; modName (f : string → string) : p unit
; getDepartments : p (list department)
; modDepartments (f : department → department) : p unit }.

This algebraic theory defines the class of computational effects p that we may
use to get or modify the name and departments of a given university3. Building
our business logic upon algebraic repositories of this kind enables us to remain
unaware of particular infrastructure details. Unfortunately, this approach has
several difficulties, that we show in the next paragraphs.

Firstly, despite the fact that UniversityAlg hides the state of the univer-
sity behind p, some of their methods are exposing the immutable department

structure in their signatures. The information associated to a department could
be large enough to make it non-optimal or even impractical to instantiate such a
value. In these circumstances, the obvious choice is describing the data layer of
a department in a separate algebraic theory, which would describe the accessors
to the department fields and would have its own computational effect q. The
problem with this arrangement is that it actually becomes cumbersome to com-
pose the heterogeneous programs p, q, etc., generated by the different theories,
specially when a large number of them are involved.

Secondly, we are not using standard abstractions to describe the university
data layer, and therefore UniversityAlg contains very fine-grained methods.
This contrasts with the optic approach, where lens or traversal provide stan-
darized methods to get or modify fields of domain entities. In this regard, we
could replace both getName and modName with a MonadState evidence with
focus on the name. This standard algebraic theory fits perfectly to view and
update this field in a general way. However, it does not provide specialized meth-
ods to handle sequences of values. Unluckily, we do not know of any other stan-
dard theory, analogous to traversal, to deal with multiple values at this abstract
level. Even if we had them available, it would not be easy to determine a notion
of composition for them.

In this paper, we argue that optics can serve as a fruitful metaphor to design a
rich catalogue of state-based algebras, that serve as an embedded domain specific
language (EDSL) [5] for the implementation of data layers, aimed at the software
industry. This EDSL would allow programmers to write code at an algebraic
level of abstraction while using a rich catalogue of standard and composable
abstractions, analogous to that supplied by optics.

3 We could also have defined accessors to update the name or departments with a new
value passed as parameter, but they are not used in the upcoming examples.

Towards Optic-Based Algebraic Theories: The Case of Lenses 77

More specifically, this paper sets out to establish the essential pillars in pur-
suit of this golden inventory of so-called optic algebras. In particular, it focuses
on lenses and MonadState as the playing field to identify the first member of
such a catalogue. These are the main contributions of the paper:

– We show that MonadState strictly generalises lenses. Particularly, we show
that lenses can be represented as the state monad instance of this algebraic
theory. Since MonadState distills the algebraic essence of a lens, we will
refer to it as lens algebra (Sect. 3).

– We show how to generalise the state monad morphism representation
of lenses [6] into lens algebra homomorphisms (Sect. 4). This abstraction
enables composition between lens algebras.

– We provide a design pattern to implement the data layer and the business
logic of applications, using lens algebras (Sect. 3.1) and lens algebra homo-
morphisms (Sect. 4.1) as building blocks. We use the university example as
a guide for this task.

As mentioned in the previous paragraphs, Sects. 3 and 4 contain the bulk of
this paper. Section 5 reviews related work in the context of our goals, particu-
larly monadic lenses [7], entangled state monads [6,8] and profunctor optics [9].
Section 6 concludes by outlining a methodology to generalize other optics into
their optic algebra counterparts, and points to Stateless, a work-in-progress
EDSL implemented in Scala that aims to bring optic algebras to the software
industry. All definitions, examples and propositions in this paper have been for-
malized using Coq and are supplied as complementary material in Sect. A. Before
going into further detail, we will provide a brief background in Sect. 2.

2 Background

For the sake of brevity, we will illustrate the background definitions with an ide-
alized version of Coq, where we adopt a notation closer to math. For instance,
fun is replaced by λ, forall is replaced by ∀, and so on. In addition, we delib-
erately ignore level and associativity from Notation for simplicity. Additional
adjustments will be mentioned as they arise.

2.1 Natural Transformations

Definition 1 (natural transformation). Given functors f and g, a natural
transformation is a family of morphisms that turns objects on f into objects on
g. We can represent it as a polymorphic function.

Class natTrans f g ‘{Functor f, Functor g} := mkNatTrans
{ runNatTrans : ∀ X, f X → g X }.
Notation "f � g" :=natTrans f g.

The transformation must preserve the following commuting property.

78 J. López-González and J. M. Serrano

Class natTransLaws f g ‘{Functor f, Functor g} (ϕ : f � g) :=
{ natTrans_comm : ∀ A B (fa : f A) (g : A → B),

ϕ (fmap g fa) = fmap g (ϕ fa) }.

Note that we replaced runNatTrans ϕfx by ϕ fx to improve the readability of
definitions. Moving forward, natural transformations are composable.

Definition composeNT {f g h} ‘{Functor f, Functor g, Functor h}
(ϕ : g � h) (ψ : f � g) : f � h :=

mkNatTrans (λ _ fx ⇒ ϕ (ψ fx)).
Notation "ϕ · ψ" :=composeNT ϕ ψ

The following definition arises naturally when we pay attention to monadic4

functors.

Definition 2 (monad morphism). A monad morphism is a natural transfor-
mation between monadic type constructors that also satisfies these laws.

Record monad_morphism {f g} ‘{Monad f, Monad g} (ϕ : f � g) :=
{ returnMap : ∀ X (x : X),

ϕ (ret x) = ret x
; distrBind : ∀ A B (fa : f A) (f : A → f B),

ϕ (fa �= f) = ϕ fa �= (λ a ⇒ ϕ (f a)) }.

Broadly speaking, these laws are telling us that a monad morphism should dis-
tribute over �= and that mapping ret from the original monad should produce
ret in the destination monad. In effect, a monad morphism allows us to push
whole computations down into f and afterwards lifts the result back to g.

2.2 State

We recall the state monad [10]:

Definition 3 (state monad). State is a data type that transforms a value
into a new version of it, while providing an additional output along with the
transformed value.

Record state (S Out : Type) := mkState
{ runState : S → Out * S }.

State transformations can be composed using Monad combinators:

Instance Monad_state {S : Type} : Monad (state S) :=
{ ret := λ A o ⇒ mkState (λ s ⇒ (o, s))
; bind := λ A B m f ⇒ mkState (λ s ⇒ let (o, s′) :=runState m s

in runState (f o) s′) }.

4 We assume familiarity with monads. You can find the particular Coq encoding that
we use for Monad in the supplementary material (Sect. A).

Towards Optic-Based Algebraic Theories: The Case of Lenses 79

The output provided by a state transformation can be used to include additional
information about the transformation which has taken place.

We also provide a pair of convenience methods which will be helpful later on:

Definition evalState {S Out} (st : state S Out) (s : S) : Out :=
fst (runState st s).

Definition execState {S Out} (st : state S Out) (s : S) : S :=
snd (runState st s).

2.3 Lens

As stated in [1], lenses approach the view update problem for tree-structured
data.

Definition 4 (asymmetric monomorphic lens). An asymmetric lens con-
sists of a pair of functions, one of them views the part from the whole and the
other one updates the part from an old whole, returning a new whole. This is
the concrete monomorphic5 lens representation:

Record lens (S A : Type) := mkLens
{ view : S → A
; update : S → A → S
; modify (f : A → A) : S → S :=λ s ⇒ update s (f (view s)) }.
Notation "ln ∼ln f" :=modify ln f.

The type parameters S and A serve as the whole and the part, respectively. Lens
operations must obey certain laws [11] to be considered very well-behaved 6:

Record very_well-behaved {S A} (ln : lens S A) :=
{ view_update : ∀ s, update ln s (view ln s) = s
; update_view : ∀ s a, view ln (update ln s a) = a
; update_update : ∀ s a1 a2, update ln (update ln s a1) a2 =

update ln s a2 }.

From now on, we will assume asymmetric very well-behaved monomorphic lenses
when we refer to lens, unless otherwise specified.

The very well-behaved class of lenses forms a category, where lenses position
themselves as morphisms. The identity lens is the one where part and whole
correspond to the same value:

Definition identityLn {A} : lens A A :=
mkLens id (λ _ ⇒ id).

The composition of concrete lenses is clumsily achieved by the following function:

5 There exists a polymorphic lens version which is more general, where update
declares a different type for the part, leading to a different type for the resulting
whole.

6 If we discard update_update, we can talk about well-behaved lenses.

80 J. López-González and J. M. Serrano

Definition composeLn {S A B}
(ln1 : lens S A) (ln2 : lens A B) : lens S B :=

mkLens (view ln2 · view ln1)
(λ s a′ ⇒ update ln1 s (update ln2 (view ln1 s) a′)).

Notation "ln1 � ln2" :=composeLn ln1 ln2.

There are other lens representations that improve composability, the most
popular ones being van Laarhoven [2] and profunctor [9] approaches. In this
paper, however, our preferred choice is a representation based on monad mor-
phisms [12], that also enjoys similar benefits with respect to compositionality:

Lemma 1. A monad morphism state A �state S is isomorphic to a very
well-behaved lens S A.

Definition lens′ (S A : Type) := state A � state S.

Informally, the state monad morphism representation can be seen as a morphism
from a program that evolves the part into a program that evolves the whole.

2.4 MonadState

We introduce now the MonadState typeclass [3], as an algebraic theory to manip-
ulate state in a general way:

Definition 5 (MonadState typeclass). MonadState classifies all those
effects which are able to access and manipulate an inner state. It supplies a
couple of methods, the first of them gets the current state and the second one
puts a new state, by replacing the existing one.

Class MonadState (A : Type) (m : Type → Type) ‘{Monad m} :=
{ get : m A
; put : A → m unit }.

These are the properties that should be held by MonadState instances to be con-
sidered lawful:

Record MonadState_Laws {A m} ‘{MonadState A m} :=
{ get_get : get �= (λ s1 ⇒ get �= (λ s2 ⇒ ret (s1, s2))) =

get �= (λ s ⇒ ret (s, s))
; get_put : get �= put = ret tt
; put_get : ∀ s, put s � get = put s � ret s
; put_put : ∀ s1 s2, put s1 � put s2 = put s2 }.

Among the effects that are able to instantiate this typeclass, state is prob-
ably the most widespread one:

Instance MonadState_state {S} : MonadState S (state S) :=
{ get := mkState (λ s ⇒ (s, s))
; put := λ s ⇒ mkState (λ _ ⇒ (tt, s)) }.

Note how the state hidden by state S matches with the focus S we are providing
access to via the MonadState interface.

Towards Optic-Based Algebraic Theories: The Case of Lenses 81

3 The Algebraic Theory for Lenses

There is a degree of overlap and a number of similarities between lens S A and
MonadState A m. Firstly, they provide analogous methods: both view and get

share the notion of reading a value from the current state; analogously, both
update and put share the notion of writing or replacing the state with a new
version of it. Secondly, both abstractions declare a set of properties that must
be held by their instances to be considered lawful. Letting aside get_get from
MonadState, it is easy to observe a strong correspondence among the rest of
them. Thirdly, the university example from Sect. 1 enabled us to appreciate that
both lens and MonadState are suited for accessing and manipulating a single
state which is always available from the context. Throughout this section, we will
show the precise connections between them, starting with an informal derivation
to pave the way.

If we pay attention to view : S → A and update : S → A → S from
lens, we can see that both methods contain an origin source S as first parameter.
However, the rest of the signature does not look homogeneous. In fact, view is
producing an output A and update requires an additional input A and produces
a new version of the state S as a result. Now, we will try to homogenise both
methods, so they both contemplate the notion of input, output and resulting
state, aiming at abstracting away the common parts. We show the process with
the following informal derivation7:

(view : S → A
, update : S → A → S)

� [functional extensionality]
(λ s ⇒ view s : S → A
, λ s a ⇒ update s a : S → A → S)

� [add contrived input to view]
(λ s _ ⇒ view s : S → 1 → A
, λ s a ⇒ update s a : S → A → S)

� [add contrived resulting state to view]
(λ s _ ⇒ (view s, s) : S → 1 → A * S
, λ s a ⇒ update s a : S → A → S)

� [add contrived output to update]
(λ s _ ⇒ (view s, s) : S → 1 → A * S
, λ s a ⇒ (tt, update s a) : S → A → 1 * S)

� [flip parameters]
(λ _ s ⇒ (view s, s) : 1 → S → A * S
, λ a s ⇒ (tt, update s a) : A → S → 1 * S)

� [abstract with state monad]
(λ _ ⇒ mkState (λ s ⇒ (view s, s)) : 1 → state S A
, λ a ⇒ mkState (λ s ⇒ (tt, update s a)) : A → state S 1)

As can be seen, this normalisation process leads us to a pair of kleisli arrows
for the state monad with S as inner value. Having detected this common struc-
ture, we could abstract away state S from their signatures, which would result

7 We represent unit as 1 to simplify signatures.

82 J. López-González and J. M. Serrano

in 1 → m A for the derived view and A → m 1 for the derived update. These are
exactly the signatures of the methods get and put supplied by MonadState. So,
thinking of lens as an instance of MonadState – where A is the focus and state S

is the monadic effect – seems plausible. Notice that this instance is not the same as
MonadState_state (Sect. 2.4), where the focus type does match with the one that
accompanies state. Now, converting concrete lenses into MonadState instances,
and vice versa, turns out to be straightforward.

Instance lens_2_ms {S A} (ln : lens S A)
: MonadState A (state S) :=

{ get := mkState (λ s ⇒ (view ln s, s))
; put a := mkState (λ s ⇒ (tt, update ln s a)) }.

Definition ms_2_lens {S A} (ms : MonadState A (state S))
: lens S A :=

{| view s := evalState get s
; update s a := execState (put a) s |}.

These methods evidence the following statement.

Proposition 1. There is an isomorphism between any lawful instance of
MonadState A (state S) and a very well-behaved lens S A.

We claim therefore that MonadState is a generalisation of lens. Broadly
speaking, MonadState captures the algebra to view and update a single state
which is always available, but at a higher level of abstraction. This is the reason
why we will refer to MonadState as lens algebraic theory, or just lens algebra for
short.

Definition 6. Lens algebra is an alternative way of referring to MonadState,
emphasizing the fact that it generalizes a lens by distilling its algebraic essence.

Record lensAlg (p : Type → Type) (A : Type) ‘{M : Monad p} :=
{ view : p A
; update : A → p unit
; modify (f : A → A) : p unit :=view �= (update · f) }.
Notation "ln ∼ln f" :=modify ln f.

Very well-behaved lens algebra laws are exactly MonadState laws.

Record lensAlgLaws {p A} ‘{Monad p} (ln : lensAlg p A) :=
{ view_view :

view ln �= (λ s1 ⇒ view ln �= (λ s2 ⇒ ret (s1, s2))) =
view ln �= (λ s ⇒ ret (s, s))

; view_update : view ln �= update ln = ret tt
; update_view : ∀ s, update ln s � view ln = update ln s � ret

s
; update_update : ∀ s1 s2, update ln s1 � update ln s2 =

update ln s2 }.

If we discard update_update from the set we get well-behaved lens algebras.

Towards Optic-Based Algebraic Theories: The Case of Lenses 83

Remark 1. Normally, instances of MonadState where the focus and the state
hidden by the effect differ are unusual in the functional programming community.
This is probably a consequence of the functional dependency between the effect
and the focus that some languages impose to this typeclass in order to avoid
ambiguity while resolving instances [13]. We are not interested in resolving lens
algebras implicitly, that is the reason why we use a Record to represent them.

Section 2.4 showed MonadState_state as the most widespread instance of
MonadState. Its type is MonadState S (state S), where the types of focus
and inner value of state match. In fact, this instance corresponds to a well-
known lens.

Corollary 1. MonadState_state (Sect. 2.4) is isomorphic to identityLn
(Sect. 2.3).

Once we have positioned lens algebra, or MonadState, as a standard abstrac-
tion, analogous to lens, but at a more general setting, we will use it to implement
the data layer of the university example.

3.1 Data Layer Design with Lens Algebras

Since this paper puts focus on lenses, we will simplify the original example,
ignoring traversable structures. Thereby, instead of having a list of departments
hanging from the university, we will assume a unique math department in the
university repository:

Record UniversityAlg (p : Type → Type) :=
{ getName : p string
; modName (f : string → string) : p unit
; getMathDep : p department
; modMathDep (f : department → department) : p unit }.

As can be seen, we use a record instead of a class, for analogous reasons to
the ones mentioned in Remark 1. Lens algebras encapsulate the functionality
that we need to get, update or even modify (which we defined as a derived
method) a particular field. Thereby, we could replace the corresponding fine-
grained accessors from the university repository with this abstraction.

Record UniversityAlg p ‘{Monad p} :=
{ nameLn : lensAlg p string
; mathDepLn : lensAlg p department }.

The replacement requires the introduction of a Monad evidence to satisfy lens
algebra dependencies.

As introduced in Sect. 1, it is not recommended to expose the immutable
structure department in the data layer. To avoid that, we should segregate
department into a new repository, and provide an evidence to it from the uni-
versity algebraic theory. It would result in the following data layer:

84 J. López-González and J. M. Serrano

Record DepartmentAlg p Dep ‘{Monad p} :=
{ budgetLn : lensAlg p nat }.

Record UniversityAlg p ‘{Monad p} :=
{ nameLn : lensAlg p string
; q : Type → Type
; Dep : Type
; ev : ‘{DepartmentAlg q Dep}
; mathDepLn : lensAlg p Dep }.

As a result, we get a new theory DepartmentAlg parameterized with its own
effect p and a concrete type Dep. For its part, UniversityAlg has been extended
to establish the link to the new algebraic theory8. Note that Dep does not neces-
sarily correspond to the data structure department. Instead, it determines the
minimal information that we need to know in order to interoperate with the
particular infrastructure. For instance, it could be an url, the primary key in a
database table, or any other kind of index.

Given this implementation of the data layer, we should be able to program
the business logic that doubles the budget of a department.

Definition doubleDepBudget p Dep
‘{Monad p}
(data : DepartmentAlg p Dep) : p unit :=

budgetLn data ∼ln (λ b ⇒ b * 2).

It is easy to see that we have to supply the department repository as an
additional parameter. Then, we simply extract the lens algebra from it and
invoke its modifying operator. The result type of this function is p unit, a
program that achieves a modification over the department and outputs nothing.

We could also be interested in implementing the logic to double the university
budgets9. To do so, we should be able to compose mathDepLn with budgetLn

somehow. However, we do not have the means to adapt q programs, the ones that
evolve a department, into p programs, the ones that evolve the whole university.
We need new abstractions, close to natural transformations, to enable this kind
of composability, which will be introduced in the next section.

4 Composable Lens Algebras

So far, we have taken concrete lenses to a more general setting by abstracting
away state S from them, resulting in lens algebras. This abstraction provides an
analogous interface to the one we find in lenses, but it does not contemplate the
notion of composition. On the other hand, Sect. 1 introduced an alternative lens
representation with better composition guarantees, encoded as a state monad
morphism. In this section, we will achieve an analogous abstraction over this
representation, aiming at enabling composition between lens algebras at this

8 Here, we assume that ev also collects a Monad evidence.
9 Note that this would only involve the math department in the new configuration.

Towards Optic-Based Algebraic Theories: The Case of Lenses 85

general algebraic setting. Equipped with the new abstractions, we will evolve
the university data layer to its final version, which will allow us to implement
the logic to double the university budgets.

Fortunately, the alternative lens representation contains an explicit mention
to state S, so we do not need additional derivations to be able to abstract this
structure away. As a result, we get a new definition.

Definition 7. lensAlg′ is a monad morphism state A �p that adapts
state A programs – which evolve the focus – into p programs – that contex-
tualize and evolve the whole.

Definition lensAlg′ (p : Type → Type) (A : Type) ‘{Monad p} :=
state A � p.

As the name suggests, this abstraction is directly connected with the original
lens algebra, and hence MonadState. Indeed, we could recover view and update

methods by turning the new representation into the original one:

Definition lensAlg′_2_lensAlg {p A} ‘{Monad p}
(ϕ : lensAlg′ p A) : lensAlg p A :=

{| view := ϕ (mkState (λ a ⇒ (a, a)))
; update a ′ := ϕ (mkState (λ a ⇒ (tt, a′))) |}.

The connection also holds in the opposite direction.

Lemma 2. There is an isomorphism between a lawful lensAlg p A and a
monad morphism lensAlg′p A.

Despite having defined an alternative representation for lens algebra which
consists of a unique morphism, we face severe limitations when we try to compose
a pair of them. Particularly, we need to fix the type of program for the second
lens algebra to state X, where X corresponds to the type of focus for the first
lens algebra. By doing so, the only program that we are able to generalize is the
one which corresponds to the leftmost lens algebra in the composition chain. We
need to overcome this strong limitation.

We have abstracted away state S from the alternative lens definition, but
there remains an additional reference to state A in the resulting abstraction.
Is it feasible to abstract it away as well? Interestingly, the state programs that
are passed through the monad morphism in lensAlg′_2_lensAlg are exactly
the ones that we defined in MonadState_state for get and put. Given this
situation, we could abstract the reference to state A away while retaining the
lens algebra interface, as long as we supply a MonadState evidence in exchange
for it.

Definition 8. Lens algebra homomorphisms abstract away any reference to
state A from lensAlg′p A, resulting in a new higher kinded type parameter
q which must be an instance of MonadState A q.

Definition lensAlgHom p q A ‘{Monad p} ‘{MonadState A q} :=
q � p.

86 J. López-González and J. M. Serrano

The new definition does not contain explicit mentions to state any more, pro-
viding a general q instead. The MonadState evidence is all that we need to
recover the interface of lens algebras.

Definition lensAlgHom_2_lensAlg {p q A}
‘{Monad p} ‘{MonadState A q}
(ϕ : lensAlgHom p q A) : lensAlg p A :=

{| view := ϕ get
; update a ′ := ϕ (put a′) |}.

Proposition 2. A lens algebra homomorphism lensAlgHom p q A induces a
lawful lens algebra lensAlg p A.

As we can see, ϕ maps get into view and put into update. If we take
Definition 6 into account, by doing so, we are actually mapping a lens algebra
into another one. That is the reason why we refer to the new abstraction as lens
algebra homomorphism. Particularly, we are turning an instance of lensAlg q

A —or MonadState A q— into an instance of lensAlg p A, where the type of
programs differ, but the focus A is exactly the same. In fact, the homomorphism
is turning q programs that evolve the focus from certain context into p programs
that evolve the very same focus from a broader one. This idea reassembles the
notion of whole and part from ordinary lenses.

Remark 2. If lens algebra is an alternative way of representing MonadState, why
do not we use the former in the definition of lens algebra homomorphisms? As
we said in Remark 1, and contrary to lens algebras, MonadState usually declares
a functional dependency that evidences that the type of program determines the
type of focus. This is exactly the behaviour that we are interested in for the
homomorphism constraint, since we want to keep the inner q program as close
to the focus as possible. In this context, it is fine to exploit the mechanism for
implicit typeclass resolution provided by the language.

Having abstracted state A from the new definition, composition becomes
trivial. In fact, it is basically natural transformation composition:

Definition composeLnAlgHom {p q r A B}
‘{MonadState B r} ‘{MonadState A q} ‘{Monad p}
(ϕ : lensAlgHom p q A)
(ψ : lensAlgHom q r B) : lensAlgHom p r B :=

ϕ · ψ.
Notation "hom1 � hom2" :=composeLnAlgHom hom1 hom2

The composition function is closed under composition and preserves identity and
associativity laws, which leads us to the following lemma.

Corollary 2. Lens algebra homomorphisms conform a category.

All in all, a lens algebra homomorphism is a composable abstraction that
supplies the interface of lens algebras. This abstraction is more general than
lens algebras, but we can overwrite their alternative representation when we
instantiate q to a state program on the focus:

Towards Optic-Based Algebraic Theories: The Case of Lenses 87

Definition lensAlg′ p A := lensAlgHom p (state A) A

Now, we will exploit lens algebra homomorphisms to evolve the university data
layer to its final version.

4.1 Extending Data Layer Design with Homomorphisms

In Sect. 3.1 we faced some limitations to compose lens algebras, aggravated by the
separation of algebraic theories for university and department. Here, we will over-
come those limitations using the new definitions. Firstly, we will encode nameLn

and budgetLn as lensAlg′ structures. Secondly, we will replace mathDepLn

with a lens algebra homomorphism, acting as the nexus between university and
department. The resulting data layer is represented as follows:

Record DepartmentAlg p Dep ‘{MonadState Dep p} :=
{ budgetLn : lensAlg′ p nat }.

Record UniversityAlg p ‘{Monad p} :=
{ nameLn : lensAlg′ p string
; q : Type → Type
; Dep : Type
; ev : ‘{DepartmentAlg q Dep}
; mathDepLn : lensAlgHom p q Dep }.

Also notice how we extended the evidence in DepartmentAlg to be MonadState

instead of simply Monad, since we need it to enable composition. Now, we have
all the ingredients to implement the business logic to double university budgets.

Definition doubleMathBudget p
‘{Monad p}
(data : UniversityAlg p): p unit :=

(mathDepLn data � budgetLn (ev data)) ∼ln (λ b ⇒ b * 2).

The implementation of this method reflects the same elegance which is cus-
tomary in optic-based designs. First of all, the data accessors are composable, so
we can combine the lens algebra that focuses on the university math department
with the lens algebra that focuses on the department budget. Second of all, the
resulting lens algebra can invoke the modifying operator (∼ln), passing the func-
tion that doubles the budget as argument. In contrast with common optic-based
designs, however, this business logic is implemented once and for all, not only for
immutable data structures, but for alternative state-based infrastructures (e.g.
a relational database) as well.

Now imagine we are interested in knowing the resulting budget after doubling
it. There is an obvious implementation for that logic: first we modify the value
and then we consult it. Lens algebras provide such operations, and the monadic
effect allows us to compose their results:

Definition doubleMathBudgetR p ‘{Monad p}
(data : UniversityAlg p) : p nat :=

let ln := mathDepLn data � budgetLn (ev data)
in ln ∼ln (λ b ⇒ b * 2) � view ln.

88 J. López-González and J. M. Serrano

However, if we take into account the complexity of the potential underly-
ing infrastructures, this implementation would not be optimal, since it requires
accessing to the department twice. We could solve this situation by exploiting
the distributive property over bind provided by lens algebra homomorphisms:

Definition doubleMathBudgetR′ p ‘{Monad p}
(data : UniversityAlg p) : p nat :=

let bLn := budgetLn (ev data)
in (mathDepLn data) (bLn ∼ln (λ b ⇒ b * 2) � view bLn).

Instead of performing two small operations – involving a particular field – over
the whole state, this version performs a unique larger operation over the inner
focus, and then lifts the result. This way of programming is essentially enabled
by adopting natural transformations, and it turns out to be extremely handy
for many situations, even when different fields are involved. Moreover, it may
lead to significant optimizations in performance, since this strategy allows us
in principle to push down whole programs to the underlying infrastructure of
particular repositories, and reduce the number of interactions between them.

5 Related Work

5.1 Profunctor Lenses

There is a lens representation based on the notion of profunctors, which can
be seen as a generalisation of functions, that has acquired major significance
recently [9]. It is encoded as follows.

Definition pLens S T A B := ∀ p ‘{Cartesian p}, p A B → p S T.

Note that this representation corresponds with a polymorphic lens, hence the
four type parameters. To recover the monomorphic version, we should restrict
instances to pLens S S A A. If we ignore the Cartesian constraint, which is
just a member of the profunctor hierarchy, we appreciate that this definition
consists of a pure function that turns p A B, a generalized function on the part,
into p S T, a generalized function on the whole.

Despite the generality provided by profunctors, we cannot use this lens rep-
resentation to replace lens algebras. For instance, let us assume a profunctor lens
focusing on the budget of a department, whose type is pLens Dep Dep nat

nat, where Dep corresponds to an index, as introduced in Sect. 3.1. As any other
profunctor lens, it works for all Cartesian instances. Pickering et al. illustrate
that UpStar is an instance of that typeclass. If we combine it with the Constant
functor, we recover the view method from the lens. In this context, we obtain a
pure function from Dep to nat. This stands in conflict with Dep being an index,
which imposes an effectful computation as the only way to retrieve the budget.

All in all, profunctor lens is yet another lens representation, and despite its
great composition capabilities, it is also generalized by lens algebras (provided
that we constraint ourselves to the monomorphic version of lenses). If we want
to relate lens algebras with other abstractions, they must contemplate compu-
tational effects in their definition somehow.

Towards Optic-Based Algebraic Theories: The Case of Lenses 89

5.2 Monadic Lenses

Monadic lenses are a novel approach to combine lenses with monadic effects [7].
Its definition is very similar to lens, though the updating method is effectful.

Record mLens S A m ‘{Monad m} := mkMLens
{ mview : S → A
; mupdate : S → A → m S }.

Note that mview is lacking an effect in its result deliberately, since including
it would lead to severe composition problems. The following laws hold for a
well-behaved monadic lens:

Record mLensLaws {S A m} ‘{Monad m}
(mln : mLens S A m) := mkMLensLaws

{ mview_mupdate : ∀ s, mupdate mln s (mview mln s) = ret s
; mupdate_mview : ∀ B (k : S → A → m B) s a,

mupdate mln s a �= (λ s′ ⇒ k s′ (mview mln s′)) =
mupdate mln s a �= (λ s′ ⇒ k s′ a) }.

These laws establish that no effect should be produced when updating the whole
with the current part, and that viewing the part should be consistent with the
last update. If we set m to Id we recover an ordinary well-behaved lens.

Monadic lenses do not accommodate the stateful infrastructures that we are
interested in. In this sense, the absence of effects in mview is probably the main
evidence of it, in line with the discussion in Sect. 5.1. Broadly speaking, lens
algebras and monadic lenses pursue different goals. On one hand, lens algebras
abstracts away from immutable data structures by parameterizing the computa-
tional effect to access and manipulate state. On the other hand, monadic lenses
aim at enriching plain lenses with all kind of effects, such as partiality or logging,
but they target immutable data structures. We discuss whether lens algebras
support such computational effects in Sect. 5.3.

That said, there are interesting observations from the discussion presented by
Abou-Saleh et al. around effectful mview, that are relevant in our case. In partic-
ular, there is a question that arises naturally: is it safe to define an effectful view
for lens algebra as we do? To answer this question, note that lens algebra laws
(or MonadState laws) impose a strong condition over view, which is described
as follows:

Lemma 3. Consider a (very) well-behaved lens algebra ln with type lensAlg
p A. The following property is derived from its laws:

∀ (X : Type) (px : p X), view ln � px = px.

This lemma tells us that an invocation to view where its result is ignored is
redundant. However, if view produces an effect, it seems hard to reconcile this
property. Strictly speaking, a program that executes a query in a database and
then ignores its result, is not the same as a program that does not invoke such
a query. For that reason, we need to relax the notion of equality for the laws,
considering equivalence up to resulting state instead. In this sense, we can safely

90 J. López-González and J. M. Serrano

remove the ignored query from the program, since it will not affect the final
state after executing the program. We can find a slight variation of this lemma
for the state monad transformer in [6, Lemma 2.7].

5.3 Entangled State Monads

Entangled state monads [6] emerged in the context of bidirectional transforma-
tions as the initial model of the following definition:

Record BX (p : Type → Type) (A B : Type) : Type :=
{ getL : p A
; getR : p B
; putL : A → p unit
; putR : B → p unit }.

We can appreciate that BX p A B is MonadState p A with an additional focus
B, and corresponding methods to access and manipulate it. Its associated laws
duplicate MonadState laws for each focus and append a new law to state that
getL and getR can be commuted. In this regard, the definition does not contem-
plate commutativity of putL and putR, since it would break up the entanglement
among the states.

There are strong similarities between entangled state monads and our work.
Firstly, Abou-Saleh et al. recovers a very well-behaved asymmetric lens S A as
an instance BX (state S)S A, which provides methods to deal with both whole
S and part A. This is basically the same approach that we follow in Proposition 1,
where we also employ the state monad to recover lens. Secondly, BX is closely
related to the way we encode data layers. In particular, the constraint id that
we provide along with the repositories corresponds to the methods getL and
putL, although we ignore them, since we are not interested in evolving the whole
directly (at least, in the examples shown in this paper). For its part, getR and
putR corresponds to a lens algebra hosted by the data layer, such as budgetLn.

Therefore, why do we not use BX to program data layers? First of all, compo-
sition is defined for well-behaved stateful BX [6, Definition 3.8]. A crucial feature
of this class of instances is that getL and getR operations are essentially pure.
Unfortunately, this does not hold in our most relevant use cases. For instance,
if we need to instantiate DepartmentAlg with a state monad transformer to
access the information from a relational database, the getR operation would not
be pure. Second of all, we are interested in deploying different computational
effects for the nested repositories, while BX composition requires a fixed one.
Lens algebra homomorphisms support them, while preserving the look and feel
of classic lenses in the implementation of business logic.

There is a relevant takeaway from entangled state monads, involving over-
writability, that will allow us to answer the question whether lens algebras sup-
port additional effects, such as partiality or logging. Overwritability corresponds
with the controversial [14] update_update law in the context of lens algebras. In
this sense, very well-behaved lens algebras inherit the same limitations. In fact, if
we aim at enriching instances with additional computational, we should embrace
the notion of well-behaved lens algebras, where update_update is discarded.

Towards Optic-Based Algebraic Theories: The Case of Lenses 91

6 Conclusions

Figure 1 summarizes the relationships established in this paper between optics
(first row) and algebraic theories (second row), as far as lenses are concerned.
All the relationships in this diagram were formalised as propositions in Coq.

Fig. 1. Taking lenses to a higher level of abstraction

The left column of this diagram relates the concrete representation of very
well-behaved lenses with the algebraic theory of MonadState. This relationship
was shown to be a correct generalisation, insofar lens S A can be defined as
MonadState A (state S). This justifies the alias of lensAlg for MonadState. The
right column essentially deals with compositional issues. There, we start from an
alternative representation of lenses with better compositional properties, state
A �state S, and proceed towards lens algebra homomorphism, a strict general-
isation that enjoys full compositional properties with respect to lensAlgs. This
direct support for composability at the algebraic level is the major point of depar-
turewith respect toBX, the closest approach in the literature to ourwork.Crucially,
we showed how this algebraic notion of compositionality can be founded on a strict
generalisation of composable lens representations.

Current work focuses on applying the aforementioned approach that allowed
us to turn lenses into algebraic theories, to other members of the optics cata-
logue. To this extent, in order to identify the algebraic counterparts of affines,
traversals, getters, etc., the existence of alternative optic representations based
on natural transformations, like the state monad morphism lens representation,
becomes essential. Unfortunately, we have not found previous work describing
such abstractions for other optics, so we are responsible for building them up.

This paper also provided a design pattern to implement the data layer of
applications with better modularity guarantees. Particularly, instead of defining

92 J. López-González and J. M. Serrano

ad hoc repositories with get/set functions to manipulate particular fields, we
promote lens algebras as a standard reusable abstraction that fulfills that objec-
tive. In addition, we have shown how lens algebra homomorphisms provide the
glue to relate the different algebras that make up the whole data layer. By defin-
ing the data layer using this pattern, we hide the complexity details of natural
transformations behind the API of lens algebras.

For the time being, we have been doing some experiments in implementing
this design pattern in a Scala library that we named Stateless10. The repository
for this project includes several examples, including an extended version of the
university, which reflects the potential of the ideas in this paper. Although it
shows preliminary versions of the algebraic counterparts for other optics, they
have not been formalized yet and their associated laws are still unclear.

Besides the formalization and justification of this catalogue of optic algebras,
the second great challenge that we face is guaranteeing that the data layer of
programs implemented with Stateless can be interpreted in common state-based
infrastructures, with optimal levels of performance. This essentially means that
we don’t incur in performance penalties when translating optic algebra programs
to relational databases, microservices, caches, and so forth. In this vein, we can
build upon existing knowledge around language-integrated query [15,16], where
for-comprehensions are translated into optimal SQL statements. Moreover, we
also plan to exploit specific frameworks in the Scala ecosystem to deal with this
kind of optimization techniques for EDSLs [17,18].

Acknowledgments. We want to thank the anonymous reviewers for their helpful
comments to a previous version of this paper. This work is partially supported by a
Doctorate Industry Program grant to Habla Computing SL, from the Spanish Ministry
of Economy, Industry and Competitiveness.

A Definitions and Proofs

All definitions, examples and proofs have been formalized with Coq 8.7.1 (Jan-
uary 2018) and collected in a GitHub repository11. Source files have a direct
correspondence with the different sections along the paper. We detected that
many of the definitions and theorems appearing in the aforementioned repository
could be reused for formalizing other functional programming research projects.
Thereby, we decided to create Koky12, an open-sourced typeclass library where
we have been collecting them all, which is publicly accessible as well.

References

1. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bi-directional tree transformations: a linguistic approach to the view update
problem. ACM SIGPLAN Not. 40(1), 233–246 (2005)

10 https://github.com/hablapps/stateless.
11 https://github.com/hablapps/lensalgebra.
12 https://github.com/hablapps/koky.

https://github.com/hablapps/stateless
https://github.com/hablapps/lensalgebra
https://github.com/hablapps/koky

Towards Optic-Based Algebraic Theories: The Case of Lenses 93

2. O’Connor, R.: Functor is to lens as applicative is to biplate: introducing multiplate.
In: 7th ACM SIGPLAN Workshop on Generic Programming. ACM (2011)

3. Gibbons, J.: Unifying theories of programming with monads. In: Wolff, B., Gaudel,
M.-C., Feliachi, A. (eds.) UTP 2012. LNCS, vol. 7681, pp. 23–67. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-35705-3 2

4. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 60–76. ACM (1989)

5. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Not. 35(6), 26–36 (2000)

6. Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Notions of
bidirectional computation and entangled state monads. In: Hinze, R., Voigtländer,
J. (eds.) MPC 2015. LNCS, vol. 9129, pp. 187–214. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19797-5 9

7. Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Reflections on
monadic lenses. In: Lindley, S., McBride, C., Trinder, P., Sannella, D. (eds.) A List
of Successes That Can Change the World. LNCS, vol. 9600, pp. 1–31. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30936-1 1

8. Cheney, J., McKinna, J., Stevens, P., Gibbons, J., Abou, F., et al.: Entangled state
monads. In: BX Workshop (2014)

9. Pickering, M., Wu, N., Gibbons, J.: Profunctor optics: modular data accessors. Art
Sci. Eng. Program. 1(2) (2017)

10. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-59451-5 2

11. Fischer, S., Hu, Z., Pacheco, H.: A clear picture of lens laws. In: Hinze, R.,
Voigtländer, J. (eds.) MPC 2015. LNCS, vol. 9129, pp. 215–223. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19797-5 10

12. Shkaravska, O.: Side-effect monad, its equational theory and applications. Arvu-
titeaduse teooriaseminar (2005)

13. Jones, M.P.: Type classes with functional dependencies. In: Smolka, G. (ed.) ESOP
2000. LNCS, vol. 1782, pp. 230–244. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-46425-5 15

14. Johnson, M., Rosebrugh, R.: Lens put-put laws: monotonic and mixed. Electr.
Commun. EASST 49 (2012)

15. Cheney, J., Lindley, S., Wadler, P.: A practical theory of language-integrated query.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2013, New York, NY, USA, pp. 403–416. ACM (2013)

16. Suzuki, K., Kiselyov, O., Kameyama, Y.: Finally, safely-extensible and efficient
language-integrated query. In: Proceedings of the 2016 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, PEPM 2016, New York, NY,
USA, pp. 37–48. ACM (2016)

17. Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled DSLs. ACM SIGPLAN Not. 46, 127–136
(2010)

18. Moors, A., Rompf, T., Haller, P., Odersky, M.: Scala-virtualized. In: Proceedings
of the ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program Manip-
ulation, pp. 117–120. ACM (2012)

https://doi.org/10.1007/978-3-642-35705-3_2
https://doi.org/10.1007/978-3-319-19797-5_9
https://doi.org/10.1007/978-3-319-19797-5_9
https://doi.org/10.1007/978-3-319-30936-1_1
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/978-3-319-19797-5_10
https://doi.org/10.1007/3-540-46425-5_15
https://doi.org/10.1007/3-540-46425-5_15

Saint: An API-Generic Type-Safe
Interpreter

Maximilian Algehed1 , Patrik Jansson1(B) , Sólrún Halla Einarsdóttir1 ,
and Alex Gerdes1,2

1 Chalmers University of Technology, Gothenburg, Sweden
{algehed,patrikj,slrn}@chalmers.se

2 University of Gothenburg, Gothenburg, Sweden
alex.gerdes@cse.gu.se

Abstract. Typed functional programming allows us to write interesting
programs without sacrificing type safety. Programs that expose their API
to an open world, however, are faced with the problem of dynamic type
checking. In Haskell, existing techniques that address this problem, such
as Typeable and Dynamic, are often closed and difficult to extend. We
have constructed an extensible Haskell library for describing APIs using
annotated type representations. As a result, API calls can be interpreted
in a type-safe manner without extra programming effort. In addition, the
user has full control over the universe of allowed types, which helps to
catch misconceptions in an early stage. We have applied our technique
to connect a real-world DSL (GRACe) to a JavaScript GUI.

Keywords: Domain Specific Language · Interpreter · Lambda calculus

1 Introduction

A large number of so-called Embedded Domain Specific Languages (EDSLs) have
been implemented in Haskell for various purposes [1,7,11,16]. Embedding DSLs
in a typed language like Haskell has many advantages, one of the major ones
being that it removes the need for the implementation of tools like parsers and
type-checkers. However, embedded languages require a full Haskell environment
in order to be compiled and executed.

A Haskell EDSL may be used as part of a larger toolchain, in combination
with other programs that may not be written in Haskell and may even be written
in an untyped language. This necessitates communication between the Haskell
EDSL and the untyped world. For instance, we may want to expose functions
from an EDSL as an API to an untyped frontend, accessible through a web
interface, and allow users to write programs using those functions which can be
sent to our Haskell backend for execution.

For example, consider a small Haskell EDSL to build pictures using a set of
functional geometry (FunGeo) combinators, as described by Henderson in [8,9].
An overview of the system can be seen in Fig. 1. The FunGeo EDSL consists of
c© Springer Nature Switzerland AG 2019
M. Pa�lka and M. Myreen (Eds.): TFP 2018, LNCS 11457, pp. 94–113, 2019.
https://doi.org/10.1007/978-3-030-18506-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18506-0_5&domain=pdf
http://orcid.org/0000-0002-1666-9994
http://orcid.org/0000-0003-3908-2843
http://orcid.org/0000-0002-5445-3975
http://orcid.org/0000-0002-7445-211X
https://doi.org/10.1007/978-3-030-18506-0_5

Saint: An API-Generic Type-Safe Interpreter 95

Fig. 1. A high-level overview of the system

a datatype for images and some image combinators. We have added natrec to
make it a bit more powerful and to make sure more than one type is involved.

beside :: Image → Image → Image
above :: Image → Image → Image
over :: Image → Image → Image -- overlay
rot :: Image → Image -- 90 degrees
fish :: Image -- a simple fish to start from
data Image -- implemented as just a list of splines
natrec :: Image → -- base case

(Int → Image → Image) → -- step function
Int → Image -- main input and output

String

untyped Expr

typed Expr

DSL value (Image)

parse

typeInference

interpret

We would like to expose the ability to program safely
in FunGeo where “safe” means“type correct”; we want
to rule out raw expressions like beside 3 fish or
fish fish. We do this in the following manner:

1. Parse the user-written program into an untyped
expression (and find syntax errors).

2. Infer the types of the expression (find type errors).
3. Interpret the typed expression as a DSL value.
4. Send the result of the DSL computation back.

An example program and its output is shown in Fig. 2.

96 M. Algehed et al.

let fish2 = flip (rot45 fish) in
let fish3 = rot (rot (rot fish2)) in
let t = over fish (over fish2 fish3) in
let u = over (over fish2 (rot fish2))

(over (rot (rot fish2))
fish3) in

let qrt = \p.\q. \r.\s.
above (beside p q)

(beside r s) in
let cyc = \p. qrt p (rot p)

(rot (rot p))
(rot (rot (rot p))) in

let side = natrec blank (\n.\img.
qrt img img

(rot t) t) in
let corn = natrec blank (\n.\img.

qrt img (side n)
(rot (side n)) u) in

let bes3 = \a.\b.\c. besideS 1 2 a (beside b c) in
let abo3 = \a.\b.\c. aboveS 1 2 a (above b c) in
let nnet = \p.\q.\r. \s.\t.\u. \v.\w.\x. abo3 (bes3 p q r)

(bes3 s t u)
(bes3 v w x) in

let sqrl = \n. nnet (corn n) (side n) (rot (rot (rot (corn n))))
(rot (side n)) u (rot (rot (rot (side n))))
(rot (corn n)) (rot (rot (side n))) (rot (rot (corn n))) in

scale 1000 (sqrl 3)

Fig. 2. The Escher Woodcut—Square Limit—source code and output.

1.1 APIs as Values

In order to expose our API of DSL functions to users, we describe it as a value
of the type Library , which is a type-annotated lookup table containing an Item
describing each function. An Item contains a function’s name, its semantics, and
a representation of its type. The name can be used for parsing, the semantics
for interpretation, and the type representation for type checking. Our running
example, the FunGeo EDSL, is easily described as a Library value.

data Library = Library String [Item]
data Item = Item String TypedValue
funGeoLib :: Library
funGeoLib = Library "funGeo" (funGeoCore ++ funGeoMore)
funGeoCore, funGeoMore :: [Item]
funGeoCore =

[Item "beside" $ beside ::: image ��� image ��� image
, Item "above" $ above ::: image ��� image ��� image
, Item "over" $ over ::: image ��� image ��� image
, Item "rot" $ rot ::: image ��� image]

Here, triple colon (:::) is used to pair a semantic value with a representation of
its type. The type representations are built from the base type representations
(image, int), the function type combinator (���), and Tag = (#) :: String →
TypeRep → TypeRep. Our TypeRep is explained, and extended, in Sect. 2.

Saint: An API-Generic Type-Safe Interpreter 97

We use tags to annotate parts of the API with appropriate metadata, which
can be used to display the API in the frontend.

funGeoMore = [Item "natrec" $
natrec ::: "Recursion over Nat"#
image ���
"Step function"# (int ��� image ��� image) ���
int ��� image

, Item "fish" $ fish ::: "Base case"# image]

1.2 Type Representations

At the core of the Library datatype is the type TypedValue which stores a value
and a representation of its type. A first implementation version could be this:

data TypedValue where (:::) :: a → TypeRep a → TypedValue

Note that the type a is existentially quantified, which means that we can store
values of different types in, say, a list of typed values, ex1 :: [TypedValue]:

ex1 = [((1+) :: Int → Int) ::: int ��� int , (3 :: Int) ::: int]

The representation of types, TypeRep is also parameterised by an a, the role of
this parameter is to “keep track” of the type a TypeRep represents:

data TypeRep a where
TRImage :: TypeRep Image
TRInt :: TypeRep Int
TRFun :: TypeRep a → TypeRep b → TypeRep (a → b)
TRList :: TypeRep a → TypeRep [a]

image = TRImage; int = TRInt ; (���) = TRFun
infixr 1 ���

The presented type representation and typed values are closely related to the
Haskell library Dynamic together with its TypeRep type family [17]. We found
that Dynamic and TypeRep almost, but not quite, provide the functionality we
need. Their TypeRep is “deep” in that it represents the full type, and support
for it is also built-in to GHC. However, their technique is rigid: TypeRep can-
not be extended with extra constructs. We extend it to store tags in the type
(representation) tree by introducing a variant with the Tag constructor.

data TypeRep t where
TInt :: TypeRep Int
TFun :: TypeRep a → TypeRep b → TypeRep (a → b)
Tag :: String → TypeRep a → TypeRep a

int = TInt ; (���) = TFun; (#) = Tag

Usually this kind of type family is used to represent singleton types, where each
(type) family member TypeRep t contains just one proper value tr :: TypeRep t

98 M. Algehed et al.

which is the representation of t . In our case, due to the Tags, there are more
variants possible. It would be possible to represent these tags at the type level,
but we wanted to keep the library reasonably simple.

1.3 Towards a Type-Safe Interpreter

We can define a generic parser to a “raw” syntax tree (using a datatype for
untyped expressions). Using our Library as a parameter we then infer types and
annotate the syntax tree provided to us by the parser to make typed expressions.
In both of these two phases we discard “bad” inputs to make sure the interpreter
only receives well-typed expressions to evaluate.

The combination of these phases is what we call a “type-safe interpreter”:
you can throw any input term at it but only the (syntax- and) type-correct
inputs are run. The interpreter function itself still uses an Either type to report
errors (in case of the Env does not cover all variables used, for example) but this
should always succeed when called in combination with the type checker.

parse :: String → Maybe UExpr
typeCheck :: Library → UExpr → Maybe Expr
interpret :: Env → Expr → Maybe TypedValue
libToEnv :: Library → Env
run :: Library → String → Maybe TypedValue

This simplified view is expanded and details are explained in following sections.

1.4 Contributions

In this paper we make the following contributions:

– We construct a framework (called Saint) for exposing a typed API to untyped
world (including a parser, type checker, and an interpreter).

– We provide a version of Typeable supporting tags (annotations in the
TypeRep).

– We implement a method of evaluating programs in our framework in a type-
safe way as internal Haskell values.

– We present case studies which show the application of our techniques to DSLs
used in real-world applications.

All the code for our framework, Saint, and the FunGeo case study can be found
online1. The Saint framework satisfies the following criteria:

– It is lightweight: we do not need an entire Haskell compiler to interpret code.
– It is reusable: new functionality can easily be added to a DSL.
– Interpretation of programs is type-safe.
– The results of interpreting client programs are available to the server as

Haskell values, even when the denotation is a function.
– Type information and annotations are correctly exposed to the DSL user.
1 The Saint library: https://github.com/GRACeFUL-project/Saint, and the case

study: https://github.com/GRACeFUL-project/SaintCaseStudy.

https://github.com/GRACeFUL-project/Saint
https://github.com/GRACeFUL-project/SaintCaseStudy

Saint: An API-Generic Type-Safe Interpreter 99

2 Typed Values

Using our framework we can expose the API of an EDSL to external clients
and can safely evaluate programs, expressed in terms of the exported API, to
Haskell values. The two main components in our framework are: type reflection
(representing types as values) and type-safe dynamic typing. This section shows
how we have developed our type reflection implementation. The implementation
is inspired by Typeable [14] but our approach has some advantages: it is extensi-
ble, general, and remains under the control of the programmer rather than being
built in to the compiler.

We continue from the TypeRep GADT presented in the introduction, but
call it TRep for brevity. The basic idea behind this encoding is not new, and
variants of it appear for example in Eisenberg and Weirich [6]. We will now
set up some infrastructure needed for the “type-safe interpreter”: type equality,
type representation equality, coercion, and computation with “typed values”.
The infrastructure consists of the following datatype and functions:

data a ≡ b
(?=) :: TRep a → TRep b → Maybe (a ≡ b)
coerce :: TypedValue → TRep a → Maybe a
app :: TypedValue → TypedValue → Maybe TypedValue

At first we define these functions using the basic TRep type representation from
Sect. 1 but we will later base them on refined and generalised TypeReps.

An important feature of Typeable [14] is that we can determine equality
between types at runtime, based on type reflection. Like Typeable, we repre-
sent equality between types by a GADT—the single constructor Refl supplies
the evidence that two types are equal. Pattern-matching on Refl convinces the
compiler that two types are in fact the same as shown in the example foo below.

data a ≡ b where Refl :: a ≡ a
foo :: (a ≡ Int) → a → Int
foo Refl x = x

Having defined a notion of equality between types, we can now implement equal-
ity checks between type representations:

(?=) :: TRep a → TRep b → Maybe (a ≡ b)
TInt ?= TInt = return Refl
Tag t ?= t ′ = t ?= t ′

t ?= Tag t ′ = t ?= t ′

TFun t0 t1 ?= TFun t0 ′ t1 ′ = do
Refl ← t0 ?= t0 ′

Refl ← t1 ?= t1 ′

return Refl
?= = Nothing

100 M. Algehed et al.

We can construct a TypedValue, as we did before, to hide the type of an expres-
sion using existential quantification.

data TypedValue where (:::) :: a → TRep a → TypedValue

We combine a value of type a with its type representation TRep a and can sub-
sequently treat that combination as an untyped value. For example, we can store
values of different types in a single list. The type representation in a TypedValue
can be used to ‘escape’ from the existential quantification and allows us to
retrieve the original (typed) value. The function coerce retrieves the value from
a TypedValue if it matches the given expected type representation.

coerce :: TypedValue → TRep a → Maybe a
coerce (a ::: t0) t1 = do
Refl ← t0 ?= t1
return a

This approach gives us a type-safe version of dynamic typing. In our interpreter
we use the type information in a TypedValue to apply one TypedValue to another,
because we can check if the actual values have matching types.

app :: TypedValue → TypedValue → Maybe TypedValue
app (f ::: TFun a b) (x ::: a ′) = do

Refl ← a ?= a ′

return (f x ::: b)
app = Nothing

2.1 Generalising Type Representations

A downside of our type representation is that the universe of types, that is the
set of types we can represent, is hard-coded in the TRep datatype. We suffer
from the so-called expression problem [19]: adding more base types (or type
constructors) requires changing both the implementation of TRep as well as
functions working on it, such as (?=). A solution to this problem is to use the
‘datatypes à la carte’-method, which represents a datatype as a co-product of
its constructors [18].

data CoProduct f g a = InL (f a) | InR (g a)

The idea is that f and g are type constructors which each represent an individual
constructor in the type TRep seen previously. For example, we could construct
type representations for Int and Bool as the following datatypes IntT and BoolT :

data IntT a where IntT :: IntT Int
data BoolT a where BoolT :: BoolT Bool

Using these two base type representations we can construct the universe of type
representations that can be either Int or Bool using CoProduct :

type MyTRep a = CoProduct IntT BoolT a

Saint: An API-Generic Type-Safe Interpreter 101

However, constructing values of type TRep Int and TRep Bool is quite cumber-
some, requiring us to make use of the InL and InR constructors as well as BoolT
and IntT . Datatypes à la carte solves this problem by allowing us to construct
a subtyping typeclass which we can use with CoProduct , as shown below:

class f :< g where
inject :: f a → g a
eject :: g a → Maybe (f a)

The code for the simple instances for (:<) is elided:

instance f :< f where -- ...
instance f :< CoProduct f r where
instance {-# OVERLAPPABLE #-} f :< r ⇒ f :< CoProduct l r where

This formulation of (:<) requires the construction of CoProducts to be right-
associated to work correctly, because f :<CoProduct (CoProduct g f) h can not
be made to hold by the instances above. It is also not possible to add another
instance f :< l ⇒ f :< (CoProduct l r) as this would overlap with the last
instance above. Ideally, we would have a disjunctive instance f :< l | f :< r ⇒
f :< (CoProduct l r), but these are not allowed in GHC (and it is not clear
how to resolve such instances). We therefore present the user with a “smart
constructor” for CoProduct in the form of a type family (:+:).

type family f :+: g where
(CoProduct f g) :+: h = CoProduct f (g :+: h)
f :+: CoProduct g h = CoProduct f (g :+: h)
f :+: g = CoProduct f g

Using this smart constructor we can write generic representations, like int and
bool below, to allow us to construct typed values conveniently.

int :: IntT :< tr ⇒ tr Int
int = inject IntT
bool :: BoolT :< tr ⇒ tr Bool
bool = inject BoolT

In order to make use of our new open type universe in TypedValue we need to
alter the type slightly to move from a fixed family TRep (of codes for types) to
a type parameter:

data TypedValue tr where (:::) :: a → tr a → TypedValue tr

We can now use construct typed values in an open manner:

exI :: IntT :< tr ⇒ TypedValue tr
exI = 42 ::: int

We can also use our approach to construct representations for types built from
type constructors like Maybe and (→).

102 M. Algehed et al.

data MaybeT tr a where
MaybeT :: tr a → MaybeT tr (Maybe a)

maybe ::MaybeT tr :< tr ⇒ tr a → tr (Maybe a)
maybe = inject ◦ MaybeT
data FunT tr a where
FunT :: tr a → tr b → FunT tr (a → b)

(���) :: FunT tr :< tr ⇒ tr a → tr b → tr (a → b)
a ��� b = inject (FunT a b)

We can use these representations to construct more interesting TypedValues:

exMI :: (IntT :< tr ,MaybeT tr :< tr) ⇒ TypedValue tr
exMI = Just 42 :::maybe int
exFI :: (IntT :< tr ,FunT tr :< tr) ⇒ TypedValue tr
exFI = (λx → x + 1) ::: int ��� int

Note that each of these examples (exI , exMI , exFI) encodes in its type constraint
the “minimum requirements” of a universe for them to fit into.

2.2 Type Equality for Generalised TypedValues

Deciding equality between types is an important part of what makes our
TypedValues useful, so we need a way to do so in this generalised setting.
What we would prefer, following our previous discussion (in Sect. 2), is a func-
tion coerce :: TypedValue tr → tr a → Maybe a. Recall that the implemen-
tation of the coercion function coerce shown previously relied on computing
a value Refl of type a ≡ a by comparing the type representation in the
TypedValue with the coerced-to type. In coerce we did this using a function
(?=) ::TRep a → TRep b → Maybe (a ≡ b). We now need to generalise over our
type representation, and the natural way to do this is by using a type class:

class TypeEquality tr where
(?=) :: tr a → tr b → Maybe (a ≡ b)

Next we need to make sure that instances of TypeEquality are modular in the
same way that the construction of type universes is modular. The type equality
should be extensible in the same way the type representation is. The first step to
achieving this is to make sure that CoProducts can be tested for type equality.

instance (TypeEquality f ,TypeEquality g) ⇒
TypeEquality (CoProduct f g) where

InL a ?= InL b = a ?= b
InR a ?= InR b = a ?= b

?= = Nothing
We also show how to construct the instances for IntT and MaybeT :

Saint: An API-Generic Type-Safe Interpreter 103

instance TypeEquality IntT where
IntT ?= IntT = Just Refl

instance TypeEquality tr ⇒ TypeEquality (MaybeT tr) where
MaybeT a ?=MaybeT b = do
Refl ← a ?= b
return Refl

Now we can finally define our new and improved version of coerce:

coerce :: TypeEquality tr ⇒ TypedValue tr → tr a → Maybe a
coerce (v ::: a) a ′ = do
Refl ← a ?= a ′

return v

2.3 Constructing Universes

What we need next is the ability to construct a value t a to pass to (:::)
and coerce. We might be tempted to define a type like type TypeUniverse =
IntT :+: MaybeT TypeUniverse in order that we may create types
TypeUniverse (Maybe Int) and TypeUniverse (Maybe (Maybe Int)) to serve
as type representations. However, we can’t do that as GHC disallows cyclic type
synonyms, so instead we create a datatype:

newtype Close a = Close ((MaybeT Close :+: IntT) a)
The choice of the name Close is not an accident as the type represents the
closure of the IntT and MaybeT operations for constructing a type universe.
Type equality is easily implemented for Close:

instance TypeEquality Close where
Close a ?= Close b = a ?= b

In order to use our “type formers” int , maybe, etc to construct values of type
Close we need instances of :< for each type of interest.

instance IntT :< Close where
inject = Close ◦ inject
eject (Close t) = eject t

instance MaybeT Close :< Close where
inject = Close ◦ inject
eject (Close t) = eject t

Defining instances like these for every universe we may want to construct can
become quite cumbersome. Based on the fact that Close looks a lot like the fix
point of a type-level function, it’s tempting to write something along the lines of
the following (assuming a slightly more advanced type system than Haskell’s):

104 M. Algehed et al.

data Close f a = Close (f (Close f) a)
instance t :< f (Close f) ⇒ t :< Close f where

inject = Close ◦ inject
eject (Close t) = eject t

type MyUniverse = Close (λc → MaybeT c :+: IntT) -- not Haskell

This fails because GHC does not allow lambda abstraction on the type level. We
may then be tempted to use a type synonym instead:

type MakeUniverse u = MaybeT u :+: IntT
type MyBadUniverse = Close MakeUniverse

However, this fails because MakeUniverse is partially applied in the definition
of MyBadUniverse. It would appear there is no good way out of this mess!

But there is: by adding an extra type parameter like the one to MaybeT to
all type representations including CoProduct we can generalise the definition,
and type equality for IntT tr is constructed the same way as before.

data IntT (tr :: ∗ → ∗) a where
IntT :: IntT tr Int

data CoProduct f g (tr :: ∗ → ∗) a = InL (f tr a) | InR (g tr a)
instance TypeEquality (IntT tr) where
IntT ?= IntT = Just Refl

Now we can use our definition of Close to define universes without the recursive
occurrence of Close:

type MyUniverse = Close (IntT :+:MaybeT)
int :: forall tr . IntT tr :< tr ⇒ tr Int
int = inject (IntT :: IntT tr Int) -- a generic type code for Int
value ::Maybe Int
value = coerce (42 ::: int) (int ::MyUniverse Int)

Note that the use of coerce in value requires an instance of TypeEquality for
MyUniverse in order to type check. The core to this instance is the instance of
TypeEquality for our new CoProduct type:

instance (TypeEquality (f tr),TypeEquality (g tr))
⇒ TypeEquality (CoProduct f g tr) where

Because tr is used both in the premise and the conclusion of the instance (much
like in the instance for Close above) we are forced to use the GHC language
extension UndecidableInstances. However, this does not cause any issue as the
search for an instance will terminate when it hits IntT tr or similar instances
which do not need to make use of type equality at tr in order to work.

It is possible to generalise the type formers from the previous section even
further than we have done so far. Namely, it is possible to abstract the definition
of any n-ary type representation. For nullary type formers this is straightforward:

Saint: An API-Generic Type-Safe Interpreter 105

data A0 typ (univ :: ∗ → ∗) a where
A0 ::A0 typ univ typ

instance TypeEquality (A0 typ univ) where
A0 ?=A0 = Just Refl

int :: forall u. A0 Int u :< u ⇒ u Int
int = inject (A0 ::A0 Int u Int)

Unary and binary type formers can be constructed in the same way: here we
show the unary case:

data A1 f univ a where
A1 :: univ a → A1 f univ (f a)

instance TypeEquality univ ⇒ TypeEquality (A1 f univ) where
A1 t ?=A1 t ′ = do

Refl ← t ?= t ′

return Refl
maybe ::A1 Maybe u :< u ⇒ u a → u (Maybe a)
maybe = inject ◦ A1

And analogously for the binary case:

data A2 f univ a where
A2 :: univ a → univ b → A2 f univ (f a b)

instance TypeEquality univ ⇒ TypeEquality (A2 f univ) where -- ...

What we have obtained, then, is a general framework in which we can represent
any type, and we have done it all without needing to change the GHC compiler.

2.4 Implementing Tags

As previously discussed, we use Tags to annotate our EDSL types with metadata.
To implement tags for our generalised TypedValues, we want a function like:

(#) :: String → Close u a → Close u a

How would we implement (#)? One option is to add an external type former:

data TagT u a where
TagT :: String → u a → TagT u a

(#) :: TagT u :< u ⇒ String → u a → u a
t # s = inject (TagT t s)

But what instance of TypeEquality should we give for TagT? That depends on
what kind of equality we want to consider. If we want it to be the case that two
types are not considered equal unless their tags are equal, we can use:

TagT s a ?= TagT s ′ b = if s �≡ s ′ then Nothing else a ?= b

However, if we wish for our tags to be transparent so that TypeEquality is inde-
pendent of tags, that is, (s # t) ?= t = Just Refl , this is not sufficient. To achieve

106 M. Algehed et al.

that we need be able to compare a Tag to a constructor which is not a Tag .
The simplest way of doing so is to not consider Tag as a separate type former,
but rather introduce a separate notion of metadata, which we achieve by making
Tag part of Close:

data Close f a = Tag String (Close f a)
| Close (f (Close f) a)

instance TypeEquality (t (Close t)) ⇒ TypeEquality (Close t) where
Tag t ?= t ′ = t ?= t ′

t ?= Tag t ′ = t ?= t ′

Close t ?= Close t ′ = t ?= t ′

(#) :: String → Close t a → Close t a
(#) = Tag

This tagging infrastructure allows us to attach arbitrary information anywhere in
a type representation in the form of a String . Naturally, this could be generalised
to any type of metadata with more structure than a simple type:

data Close f ann a = Tag ann (Close f ann a)
| Close (f (Close f ann) a)

Alongside the appropriate instance of TypeEquality and definition of (#).
This concludes our implementation of type representations. The system is

extensible, yet allows for fine grained control over the type universe in question.
Types can also be annotated with arbitrary information, this feature is particu-
larly useful when exposing EDSLs to the outside world, where different types of
metadata may need to be associated to functions in the EDSL.

2.5 The Saint API

We have presented a number of different encodings of type universes and typed
values. It is time we took a step back and review the final API of Saint. First
we review the generic constructs which form type representations:

data A0 :: (t :: ∗) (univ :: ∗ → ∗) a
data A1 :: (t :: ∗ → ∗) (univ :: ∗ → ∗) a
...
data An :: (t :: ∗ → ... → ∗) (univ :: ∗ → ∗) a
A0 :: A0 t u t
A1 :: u a → A1 t u (t a)
...
An :: u a → u b → ... → u x → An t u (t a b ... x)

These type formers assume they are given a universe u. To construct a repre-
sentation of a concrete universe we give a way to tie the knot:

data Close (f :: (∗ → ∗) → ∗ → ∗) a
type (f :: (∗ → ∗) → ∗ → ∗) :+: (g :: (∗ → ∗) → ∗ → ∗) :: (∗ → ∗) → ∗ → ∗

Saint: An API-Generic Type-Safe Interpreter 107

Using which we can construct a concrete universe:

type MyUniverse = Close (A0 Int :+:A1 Maybe :+:A2 Either)
Elements of the universe can be constructed using smart constructors:

int ::A0 Int u :< u ⇒ u Int
maybe ::A1 Maybe u :< u ⇒ u a → u (Maybe a)
(���) ::A2 (→) u :< u ⇒ u a → u b → u (a → b)
...

In order to add a new smart constructor we need only use the injection from the
:< type class.

int = inject A0
maybe a = inject (A1 a)
a ��� b = inject (A2 a b)
...

Finally, a library can be created which is polymorphic in the representation of
types:

data Item = Item String (TypedValue u)
data Library u = Library String [Item u]

We can now put everything together to create an example of a very simple
library, containing only addition on integers.

myLibrary :: (A0 Int u :< u,A2 (→) u :< u) ⇒ Library u
myLibrary = Library "My Library" [Item "+" ((+) ::: int ��� int ��� int)]

With the library in place we can move on to interpreting programs written in
the DSL.

3 Type-Safe Interpretation

We use our TypedValues to expose EDSLs to the outside world in a type-safe and
useful way. The previous section showed how we can gather a group of functions
into a Library . In this section we construct a type-safe function (interpret),
which interprets a string as a program written in a small functional language
and defined in terms of the Library functions. We start with the definition of a
datatype for expressions, which we limit to the essentials for discussion purposes.
The type UExpr (U for “untyped”) contains constructors for variables (UVar),
application (UApp), and lambda-abstraction (ULam).

data UExpr where
UVar :: String → UExpr
UApp ::UExpr → UExpr → UExpr
ULam :: String → UExpr → UExpr

If we attempt to write an interpreter for expressions of this type we quickly run
into trouble, as it’s unclear how we should interpret the lambda case (ULam):

108 M. Algehed et al.

interpret :: (TypeEquality tr ,A2 (→) tr :< tr)
⇒ Env tr → UExpr → Maybe (TypedValue tr)

interpret en e = case e of
UVar v → en v
UApp f x → do
f ′ ← interpret en f
x ′ ← interpret en x
app f ′ x ′

ULam v e →
let a = -- should be the type of v

b = -- should be the type of e
fun x = fromJust (interpret (extend en v (x ::: a)) e)

in return (fun ::: a ��� b)
type Env tr = String → Maybe (TypedValue tr)

The first case in the definition is self-explanatory. The second case uses the app
function below to apply one TypedValue to another.

app :: forall u. (TypeEquality u,A2 (→) u :< u)
⇒ TypedValue u → TypedValue u → Maybe (TypedValue u)

app (f ::: funType) (x ::: arg) = do
A2 from to ::A2 (→) u f ← eject funType
Refl ← from ?= arg
return (f x ::: to)

The third case is where things get interesting. How do we interpret lambdas?
Clearly, lambda expressions should be interpreted as functions from some type
a to some type b, but how should we choose a and b? The problem is that we
do not have access to the type of the result or the argument of the lambda.
There is no fundamental reason why this has to be the case, type inference for
the simply typed lambda calculus with monomorphic constants is known to be a
solved problem! From an untyped expression and a library we can easily derive
a typed expression. Below is an encoding of the typed expressions:

data Expr tr where
Var :: String → Expr tr
App :: Expr tr → Expr tr → Expr tr
Lam :: String → tr a → Expr tr → tr b → Expr tr

A value Lam x ra e rb represents a lambda expression (λx → e) :: a → b where
ra :: tr a and rb :: tr b. Using a standard type inference algorithm, like algorithm
W [5], it is possible to infer the type annotations in an Expr tr from just an
untyped UExpr and a Library tr . With type annotations in place, we can fix our
interpreter to act correctly in the case for Lam.

Saint: An API-Generic Type-Safe Interpreter 109

interpret :: (TypeEquality u,A2 (→) u :< u)
⇒ Env u → Expr u → Maybe (TypedValue u)

interpret en e = case e of
Var v → en v
App f x → do
f ′ ← interpret en f
x ′ ← interpret en x
app f ′ x ′

Lam v a e b →
let fun x = let en ′ = extend en v (x ::: a)

Just res = interpret en ′ e
in fromJust (coerce res b)

in return (fun ::: a ��� b)

Note the use of fromJust in the last row of the definition of fun. This is an osten-
sibly partial operation, but we claimed to have provided a type-safe interpreter!
Not to worry, the interpreter always returns a Just v given a correct environ-
ment and a well-typed expression e. This means that we can safely use interpret
in a context where expressions are type-checked before we call it. This means
that we can build a safe function run :: Complete tr ⇒ Library tr → String →
Maybe (TypedValue tr), where we have:

type Complete tr = (TypeEquality tr ,A2 (→) tr :< tr)

We elide the functions for parsing and type checking but present run:

parse :: String → Maybe UExpr
typeCheck :: Complete tr ⇒ Library tr → UExpr → Maybe (Expr tr)
libToEnv :: Library tr → Env tr
run :: Complete tr ⇒ Library tr → String → Maybe (TypedValue tr)
run l s = parse s >>= typeCheck l >>= interpret (libToEnv l)

It would be possible to take one further step towards manifest type-safety: we
could add type-indices to Expr and Env to obtain an interpreter without Maybe.
If we ignore variable binding this would result in an interpreter in the style of
eval1 :: E a → a for a type indexed expression type E . With binding, we would
also need a parameter for the environment: eval2 :: env → E env a → a. But
in our full setting, with parameterisation also over the universe, we decided this
would take us too far from the intended application and leave it as future work.

4 Case Study: GRACe

The GRACe language [11] is a Haskell EDSL for working with diagrammatic sys-
tems of components implemented by constraint logic programming. The GRACe
DSL is used in the GRACeFUL RAT [15] (Rapid Assessment Tool), which is a
tool for graphical composition of maps representing causal relationships between

110 M. Algehed et al.

parts of complex systems, such as systems describing urban design and its sen-
sitivity to weather. The rapid assessment tool consists of a Haskell backend con-
nected to a constraint solver and a web-based visual editor frontend [13]. The
tool exposes a library of functions written in the DSL to the user as graphical
widgets (Fig. 3).

Fig. 3. A GRACe graph representation in the visual editor frontend.

The function widgets have parameter fields for the user to specify the function
parameters, as well as input and output ports that can be connected to send the
output of one function as the input to another. Using these widgets, the user
constructs a program in the form of a graph. The graph is submitted to the
Haskell backend using HTTP, at which point it is interpreted as a program in
the GRACe EDSL.

The tool makes use of Typed Values to retain type information for the library
functions exposed to the frontend which allows type-safe interpretation of the
programs sent back from the frontend. The library contains a Typed Value rep-
resenting each of the exposed functions, along with metadata concerning the
visual presentation of the function on the frontend. When the program graph
is submitted to the backend the appropriate library functions are applied to
parameters provided by the user, which are communicated in a type-safe man-
ner using Typed Values. The resulting value is sent back to the frontend to be
displayed to the user.

Using Typed Values we can prevent users from causing type errors by making
mistakes like giving function parameters of the wrong type or sending the output
of one function as the input to a function with a different input type. We use the
Typed Value tags to annotate the library of functions with metadata to specify
how the functions should be presented on the frontend.

Saint: An API-Generic Type-Safe Interpreter 111

5 Related Work

In [17], Peyton Jones et al. present Dynamic and TypeRep, implemented with
built-in support in GHC. We use a similar technique but can unfortunately
not use their TypeRep directly because we want support for “labelling” of type
representations to help communication with the external world. They support
an open universe of all Haskell types rather than our “extensible but closed”
universes.

In his lecture notes on “Typed Tagless Final Interpreters” [12], Kiselyov
presents a technique (or design pattern) for representing typed higher-order lan-
guages (DSLs) in a typed metalanguage (Haskell), along with type-preserving
interpretation. It is a powerful technique, but does not deal with connecting to
the untyped world as we do.

Baars and Swierstra [2] present an approach for dynamic typing that is similar
to the standard libraries Dynamic and Typeable, but they abstract over the
actual type representation using an type class. Whereas they abstract over the
type representation, we show how to control the range of type representation
using an universe of types. We can extend an existing universe of types, instead
of supplying a new instance for a type representation type class. The paper
by Baars and Swierstra [2] also shows how to construct a typed evaluator that
can interpret expressions using dynamic typing. The main difference is that the
supported expressions need to be tagged with their types. We don’t need to have
such annotations since we infer the type of an expression.

Cheney and Hinze [4] use the same type representation encoding, but focus
their library more on generic programming, rather than dynamic type checking.
Similarly Bahr and Hvitved [3] present a compositional encoding of datatypes
with an emphasis on recursion schemes. They do not focus their effort on encod-
ing type representations, however.

6 Conclusions and Future Work

We have presented a framework for exposing Haskell EDSLs to the untyped
world and interpreting the resulting EDSL programs in a type-safe manner.
We have shown how this framework is useful in a small example (Henderson’s
functional geometry EDSL) as well as a larger real-world case study (GRACe).
The mechanisms for achieving this have all been implemented in Haskell without
special compiler support.

Future Work. Currently our technique only supports exposing monomorphic
APIs; supporting polymorphic APIs is noted as future work. Achieving this
would be both useful and technically interesting. To the best of our under-
standing, representing polymorphic types without special compiler support is a
non-trivial task. Being able to expose polymorphic EDSLs using our technique
would significantly increase the versatility of the language.

It would also be interesting to explore the extent to which our technique
for adding annotations could be used to add semantically rich annotations. The

112 M. Algehed et al.

tagging mechanism that allows us to attach additional documentation to a type
in our TypedValues could be extended to express contracts in the style of Hinze et
al. [10], stating properties that the attached value must satisfy. Adding contracts
could potentially greatly increase the utility of the framework for the EDSL
writer. Being able to specify pre- and post-conditions is useful both for the
EDSL writer and the end user.

It would be interesting to evaluate the Saint library both in terms of usabil-
ity (can new users easily apply it to their EDSLs) and efficiency (how much
overhead, in memory and time, is used by Saint).

Finally it would be a natural direction to continue up the ladder of type
safety to a type indexed expression datatype and a tag-less interpreter.

Acknowledgements. This work was partially supported by the projects GRACeFUL
(grant #640954) and CoeGSS (grant #676547), which have received funding from
the European Union’s Horizon 2020 research and innovation programme. It was also
partially supported by the Wallenberg Artificial Intelligence, Autonomous Systems and
Software Program (WASP) funded by Knut and Alice Wallenberg Foundation.

References

1. Axelsson, E., et al.: Feldspar: a domain specific language for digital signal process-
ing algorithms. In: 8th IEEE/ACM International Conference on Formal Methods
and Models for Codesign (MEMOCODE 2010), pp. 169–178. IEEE (2010). https://
doi.org/10.1109/MEMCOD.2010.5558637

2. Baars, A.I., Swierstra, S.D.: Typing dynamic typing. In: Proceedings of the
Seventh ACM SIGPLAN International Conference on Functional Programming,
ICFP 2002, pp. 157–166. ACM, New York (2002). https://doi.org/10.1145/581478.
581494

3. Bahr, P., Hvitved, T.: Compositional data types. In: Proceedings of the Seventh
ACM SIGPLAN Workshop on Generic Programming, WGP 2011, pp. 83–94. ACM,
New York (2011). https://doi.org/10.1145/2036918.2036930

4. Cheney, J., Hinze, R.: A lightweight implementation of generics and dynamics. In:
Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell 2002, pp.
90–104. ACM, New York (2002). https://doi.org/10.1145/581690.581698

5. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 1982, pp. 207–212. ACM, New York (1982). https://
doi.org/10.1145/582153.582176

6. Eisenberg, R.A., Weirich, S.: Dependently typed programming with singletons. In:
Proceedings of the 2012 Haskell Symposium, Haskell 2012, pp. 117–130. ACM,
New York (2012). https://doi.org/10.1145/2364506.2364522

7. Heeren, B., Jeuring, J., Gerdes, A.: Specifying rewrite strategies for interac-
tive exercises. Math. Comput. Sci. 3(3), 349–370 (2010). https://doi.org/10.1007/
s11786-010-0027-4

8. Henderson, P.: Functional geometry. In: Proceedings of the 1982 ACM Symposium
on LISP and Functional Programming, LFP 1982, pp. 179–187. ACM, New York
(1982). https://doi.org/10.1145/800068.802148

https://doi.org/10.1109/MEMCOD.2010.5558637
https://doi.org/10.1109/MEMCOD.2010.5558637
https://doi.org/10.1145/581478.581494
https://doi.org/10.1145/581478.581494
https://doi.org/10.1145/2036918.2036930
https://doi.org/10.1145/581690.581698
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/2364506.2364522
https://doi.org/10.1007/s11786-010-0027-4
https://doi.org/10.1007/s11786-010-0027-4
https://doi.org/10.1145/800068.802148

Saint: An API-Generic Type-Safe Interpreter 113

9. Henderson, P.: Functional geometry. High.-Order Symbolic Comput. 15(4), 349–
365 (2002). https://doi.org/10.1023/A:1022986521797

10. Hinze, R., Jeuring, J., Löh, A.: Typed contracts for functional programming. In:
Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 208–225. Springer,
Heidelberg (2006). https://doi.org/10.1007/11737414 15

11. Jansson, P., et al.: D4.2: a domain specific language for GRACeFUL
concept maps (2017). https://github.com/GRACeFUL-project/DSL-WP/raw/
master/deliverables/d4.2.pdf, deliverable of the GRACeFUL project (640954)

12. Kiselyov, O.: Typed tagless final interpreters. In: Gibbons, J. (ed.) Generic and
Indexed Programming. LNCS, vol. 7470, pp. 130–174. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32202-0 3

13. Krishna Murthy, D.R., Wiens, V., Lohmann, S., Asmat, R.: D3.3: VA EDA tool
prototype (2017). Deliverable of the GRACeFUL project. FETPROACT-1-2014
Grant No. 640954

14. Lämmel, R., Peyton Jones, S.: Scrap your boilerplate: a practical design pattern for
generic programming. In: Proceedings of the 2003 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, TLDI 2003, pp.
26–37. ACM, New York (2003). https://doi.org/10.1145/604174.604179

15. Lohmann, S.: D2.5: CRUD RAT prototype (2017). Deliverable of the GRACeFUL
project. FETPROACT-1-2014 Grant No. 640954

16. Mestanogullari, A., Hahn, S., Arni, J.K., Löh, A.: Type-level web APIs with ser-
vant: an exercise in domain-specific generic programming. In: Proceedings of the
11th ACM SIGPLAN Workshop on Generic Programming, pp. 1–12. ACM (2015).
https://doi.org/10.1145/2808098.2808099

17. Peyton Jones, S., Weirich, S., Eisenberg, R.A., Vytiniotis, D.: A reflection on
types. In: Lindley, S., McBride, C., Trinder, P., Sannella, D. (eds.) A List of Suc-
cesses That Can Change the World. LNCS, vol. 9600, pp. 292–317. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30936-1 16

18. Swierstra, W.: Data types à la carte. J. Funct. Program. 18(4), 423–436 (2008).
https://doi.org/10.1017/S0956796808006758

19. Wadler, P.: The expression problem (1998). http://homepages.inf.ed.ac.uk/
wadler/papers/expression/expression.txt, appeared on the Java-genericity mailing
list

https://doi.org/10.1023/A:1022986521797
https://doi.org/10.1007/11737414_15
https://github.com/GRACeFUL-project/DSL-WP/raw/master/deliverables/d4.2.pdf
https://github.com/GRACeFUL-project/DSL-WP/raw/master/deliverables/d4.2.pdf
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1145/604174.604179
https://doi.org/10.1145/2808098.2808099
https://doi.org/10.1007/978-3-319-30936-1_16
https://doi.org/10.1017/S0956796808006758
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

Improving Haskell

Martin A. T. Handley(B) and Graham Hutton(B)

School of Computer Science, University of Nottingham, Nottingham, UK
{martin.handley,graham.hutton}@nottingham.ac.uk

Abstract. Lazy evaluation is a key feature of Haskell, but can make it
difficult to reason about the efficiency of programs. Improvement theory
addresses this problem by providing a foundation for proofs of program
improvement in a call-by-need setting, and has recently been the sub-
ject of renewed interest. However, proofs of improvement are intricate
and require an inequational style of reasoning that is unfamiliar to most
Haskell programmers. In this article, we present the design and imple-
mentation of an inequational reasoning assistant that provides mechan-
ical support for improvement proofs, and demonstrate its utility by ver-
ifying a range of improvement results from the literature.

1 Introduction

Reasoning about the efficiency of Haskell programs is notoriously difficult and
counterintuitive. The source of the problem is Haskell’s use of lazy evaluation,
or more precisely, call-by-need semantics, which allows computations to be per-
formed with terms that are not fully normalised. In practice, this means that
the operational efficiency of a term does not necessarily follow from the number
of steps it takes to evaluate to normal form, in contrast to a call-by-value setting
where reasoning about efficiency is much simpler.

Moran and Sands’ improvement theory [1] offers the following solution to
this problem: rather than counting the steps required to normalise a term in
isolation, we compare the number of steps required in all program contexts.
This idea gives rise to a compositional approach to reasoning about efficiency in
call-by-need languages that can be used to verify improvement results.

Improvement theory was originally developed in the 1990s, but has recently
been the subject of renewed interest, with a number of general-purpose program
optimisations being formally shown to be improvements [2–4]. In an effort to
bridge the so-called correctness/efficiency ‘reasoning gap’ [5], these articles show
that it is indeed possible to formally reason about the performance aspects of
optimisation techniques in a call-by-need setting.

While improvement theory provides a suitable basis for reasoning about effi-
ciency in Haskell, the resulting proofs are often rather intricate [2], and construct-
ing them by hand is challenging. In particular, comparing the cost of evaluating
terms in all program contexts requires a somewhat elaborate reasoning process,
and the resulting inequational style of reasoning is inherently more demanding
than the equational style that is familiar to most Haskell programmers.
© Springer Nature Switzerland AG 2019
M. Pa�lka and M. Myreen (Eds.): TFP 2018, LNCS 11457, pp. 114–135, 2019.
https://doi.org/10.1007/978-3-030-18506-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18506-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-18506-0_6

Improving Haskell 115

≡ λxs.λys. (case xs of
[] ys
(z:zs) ((f zs) ++ [z]) ++ ys)

[18]> append -assoc -lr-i
�∼ λxs.λys. (case xs of

[] ys
(z:zs) (f zs) ++ ([z] ++ ys))

[19]> right
≡ λxs.λys. (case xs of

[] ys
(z:zs) (f zs) ++ ([z] ++ ys))

[20]> eval -i
�∼ λxs.λys. (case xs of

[] ys
(z:zs) (f zs) ++ (z:ys))

Fig. 1. An extract from a proof in our system

To support interactive equational reasoning about Haskell programs, the Her-
mit toolkit [6] was recently developed, and its utility has been demonstrated in
a series of case studies [7–12]. Although inequational reasoning is more involved
than its equational counterpart, both approaches share the same calculational
style. In addition, the Hermit system and improvement theory are both based
on the same underlying setting: the core language of the Glasgow Haskell Com-
piler. As such, a system developed in a similar manner to Hermit could prove to
be effective in supporting inequational reasoning for proofs of program improve-
ment, just as Hermit has proven to be effective in supporting equational reason-
ing for proofs of program correctness.

To the best of our knowledge, no such inequational reasoning system exists.
To fill this gap, we developed the University of Nottingham Improvement
Engine (Unie): an interactive, mechanised assistant for call-by-need improve-
ment theory. More specifically, the article makes the following contributions:

– We show how the Kansas University Rewrite Engine (Kure), which forms the
basis for equational reasoning in the Hermit system, can also form the basis
for inequational reasoning in our system (Sect. 4);

– We implement Moran and Sands’ tick algebra in our system, which is an
inequational theory that allows evaluation costs to be moved around in terms,
and verify a range of basic tick algebra results (Sects. 3.5 and 4);

– We explain how program contexts, a central aspect of improvement theory, are
automatically managed by our system, and show how this simplifies reasoning
steps in mechanised improvement proofs (Sect. 4.5);

– We demonstrate the practicality of our system by mechanically verifying all
the improvement results in the article that renewed interest in improvement
theory [2], and a number from the original article [1] (Sect. 6).

By way of example, an extract from an improvement proof in our system—
concerning the reverse function on lists—is given in Fig. 1. In each step, the
term highlighted in orange is being transformed. In the first step, the append

116 M. A. T. Handley and G. Hutton

operator ++ is reassociated to the right, which is an improvement, denoted using
the �∼ symbol. We then move to the right in the term, and evaluate the ++, which
is also an improvement. The tick symbol � in the proof represents a unit time
cost. We will revisit this example in more detail throughout the article.

Our improvement assistant comprises approximately 13,000 lines of Haskell
on top of the Kure framework, and is freely available online [13].

2 Example

To provide some intuition for improvement theory, and demonstrate how its tech-
nicalities can benefit from mechanical support, we begin with an example that
underpins the proof in Fig. 1. Consider the following property, which formalises
that Haskell’s list append operator ++ is associative (for finite lists):

(xs ++ ys) ++ zs = xs ++ (ys ++ zs) (1)

A common, informal argument about the above equation is that the left-hand
side is less time efficient than the right-hand side, because the former traverses
the list xs twice. This insight is often exploited when optimising functions defined
in terms of append [14]. Optimisations of this kind typically demonstrate the
correctness of (1), which can be verified by a simple inductive proof, but fail to
make precise any efficiency claims about the equation. Can we do better?

Using improvement theory, we can formally verify which side of the equation
is more efficient by comparing the evaluation costs of each term in all program
contexts. That is, we can show that one side is ‘improved by’ the other, written:

(xs ++ ys) ++ zs �∼ xs ++ (ys ++ zs) (2)

Before sketching how the above inequation can be proven, we introduce some
necessary background material. As the focus here is on illustrating the basic
ideas by means of an example, we simplify the theory where possible and will
return to the precise details in the next section.

Contexts and Improvement. In the usual manner, contexts are ‘terms with
holes’, denoted [−], which can be substituted with other terms. Informally, a
term M is improved by a term N , written M �∼ N , if in all contexts the evaluation
of N requires no more function calls than the evaluation of M . If the evaluations
of the terms require the same number of function calls in all contexts, then the
terms are said to be cost-equivalent, written M ��∼ N .

Ticks. While reasoning about improvement, it is necessary to keep track of
evaluation cost explicitly within the syntax of the source language (see [1] for
a detailed explanation). This is achieved by means of a tick annotation � that
represents a unit time cost, i.e. one function call. Denotationally, ticks have no
effect on terms. Operationally, however, a tick represents a function call. Hence, a
term M evaluates with n function calls iff �M evaluates with n+1 function calls.
Moreover, for any function definition f x = M , we have the cost-equivalence

f x ��∼ �M (3)

Improving Haskell 117

Fig. 2. Proof of property (4)

because unfolding the definition eliminates the function call. Removing a tick
improves a term, �M �∼ M , but the converse M �∼ �M is not valid.

Improvement Induction. A difficulty with the definition of improvement is
that it quantifies over all contexts, and hence proving (2) notionally requires
considering all possible contexts. However, this is a standard issue with contex-
tual definitions, and there are a number of methods for constructing proofs in
a more tractable manner. We use improvement induction [1] for this purpose,
presented here in a simplified form. For any context C, we have:

M �∼ �C[M] �C[N] ��∼ N

M �∼ N

Intuitively, this rule allows us to prove M �∼ N by finding a single context C

for which we can ‘unfold’ M to �C[M] and ‘fold’ �C[N] to N . For example,
applying improvement induction to inequation (2) reduces the problem to finding
a context C that satisfies the following two properties:

(xs ++ ys) ++ zs �∼ �C[(xs ++ ys) ++ zs] (4)

118 M. A. T. Handley and G. Hutton

�C[xs ++ (ys ++ zs)] ��∼ xs ++ (ys ++ zs) (5)

Proof of Property (2). For the purposes of this example, we can assume that
the source language is Haskell, with one small caveat: arguments to functions
must be variables. Improvement theory requires this assumption and it is easy
to achieve by introducing let bindings. For example, the term (xs ++ ys) ++ zs
can be viewed as syntactic sugar for let ws = xs ++ ys in ws ++ zs.

Using improvement induction, we can prove (2) by finding a context C for
which properties (4) and (5) hold. We prove the first of these properties in Fig. 2;
the second proceeds similarly. As we have not yet presented the rules of the tick
algebra (Sect. 3.5), the reader is encouraged to focus on the overall structure of
the reasoning in Fig. 2, rather than the technicalities of each step. Our system
is specifically designed to support and streamline such reasoning.

3 Improvement Theory

In this section, we return to the formalities of Moran and Sands’ call-by-need
improvement theory. While explaining the theory, we describe how our system
supports, and in many cases simplifies, its resulting technicalities.

3.1 Syntax and Semantics

The operational model that forms the basis of call-by-need improvement theory
is an untyped, higher-order language with mutually recursive let bindings. The
call-by-need semantics is originally due to Sestoft [15] and reflects Haskell’s use
of lazy evaluation. Furthermore, the language is comparable to (a normalised
version of) the core language of the Glasgow Haskell Compiler. We use these
similarities to apply results from this theory directly to Haskell.

Terms of the language are defined by the following grammar, which also
comprises the abstract syntax manipulated by our system:

We use the symbols x, y, z for variables, c for constructors, and write x = M for
a sequence of bindings of the form x = M . Similarly, we write ci xi → Ni (or
sometimes alts) for a sequence of case alternatives of the form c x → N . Literals
are represented by constructors of arity 0, and all constructors are assumed to
be fully applied. A term is a value, denoted V , if it is of the form λx .M or c x,
which corresponds to the usual notion of weak head normal form.

The abstract machine for evaluating terms maintains a state 〈Γ,M,S〉 con-
sisting of a heap Γ given by a set of bindings from variables to terms, the term
M currently being evaluated, and the evaluation stack S given by a list of tokens
used by the abstract machine. The machine operates by evaluating the current
term to a value, and then decides how to continue based on the top token on the
stack. Bindings generated by lets are added to the heap, and only taken off when
performing a Lookup operation. A Lookup executes by putting a token on top of

Improving Haskell 119

the stack representing where the term was looked up, and then evaluating that
term to a value before replacing it on the heap. This ensures that each binding
is evaluated at most once: a key aspect of call-by-need semantics. Restricting
function arguments to be variables means that all non-atomic arguments must
be introduced via let statements and thus can be evaluated at most once.

The transitions of the machine are given in Fig. 3. The Letrec transition
assumes that x is disjoint from (written here as �) the domain of Γ and S,
which can always be achieved by alpha-renaming.

〈Γ{x = M}, x, S〉 Γ, M,#x : S〉 { Lookup }
〈Γ, V,#x : S〉 Γ{x = V }, V, S〉 { Update }
〈Γ, M x, S〉 Γ, M, x : S〉 { Unwind }
〈Γ, λx .M , y : S〉 Γ, M [y/x], S〉 { Subst }
〈Γ, case M of alts, S Γ, M, alts : S〉 { Case }
〈Γ, cj y, {ci xi Ni} : S Γ, Nj [y/xj], S〉 { Branch }
〈Γ, let {x = M } in N , S

〈
〈
〈
〈

〉 〈
〉 〈

〉 〈Γ{x = M}, N, S〉 x dom(Γ, S) { Letrec }

Fig. 3. Semantics of the call-by-need abstract machine

3.2 Contexts

Program contexts are defined by the following grammar:

Note that let and case statements admit contexts with multiple holes.
A value context, denoted V, is a context that is in weak head normal form.

There are also two other kinds of contexts, which can contain at most one hole
that must appear as the target of evaluation: meaning evaluation cannot pro-
ceed until the hole is substituted. These are known as evaluation contexts and
applicative contexts, and are defined by the following two grammars, respectively:

As improvement is a contextual definition, intuitively, the transformation
rules we apply when reasoning about improvement must also be defined contex-
tually. In general, however, it is not the case that a given transformation rule is
valid for all contexts. For example, a tick can be freely moved in and out of an
evaluation context using the rule

E[�M] ��∼ �E[M] (�-E)

120 M. A. T. Handley and G. Hutton

but this is not the case for other kinds of contexts. Similarly, under certain
conditions regarding free (FV) and bound (BV) variables, an evaluation context
can be moved in and out of a case statement:

E[case M of {pati → Ni}]
��∼ FV(M) � BV(E) FV(E) � pati (case-E)

case M of {pati → E[Ni]}

Consequently, when applying a transformation rule to a term, we must ensure
that its syntactic form is compatible with the chosen rule. When conducted
manually, the process of deconstructing a term M ≡ C[S] into a context C and
substitution S becomes tedious, time consuming, and prone to error.

To address this problem, our system handles all aspects of context manipula-
tion automatically. Each time a rule is applied, the system analyses the syntactic
form of the term and ensures it is compatible with the rule’s specification. If this
is not the case, the system prevents the rule from being applied and reports
an error. The same is also true if a rule’s side conditions are not satisfied, such
as those regarding free and bound variables for case-E. Thus, with regards to
contexts, not only does the Unie system make a correct transformation much
easier to apply, it makes an incorrect transformation impossible to apply.

3.3 Improvement

Moran and Sands [1] showed that the total number of steps taken to evaluate
any term is bounded by a function that is linear in the number of Lookup opera-
tions invoked during its evaluation. Therefore, evaluation cost can be measured
asymptotically by just counting uses of Lookup. This is the notion of cost used
in their work, and we also adopt it for our system.

Formally, we write M↓n if the abstract machine proceeds from the initial
state 〈∅,M, ε〉 to some final state 〈Γ, V, ε〉 with n uses of Lookup. Similarly, we
write M↓�n to mean that M↓m for some m � n. Using this cost model we can
now formalise the notion of improvement: a term M is improved by a term N ,
written M �∼ N , if the following holds for all contexts C:

C[M]↓n =⇒ C[N]↓�n

That is, one term is improved by another if the latter takes no more Lookup
operations to evaluate than the former in all contexts. In turn, we say that two
terms M and N are cost-equivalent, written M ��∼ N , if for all contexts C:

C[M]↓n ⇐⇒ C[N]↓n

As before, we need to keep track of evaluation costs explicitly. Our informal
introduction viewed the tick operator as a syntactic construct that represents a
unit time cost. Here we follow [2] and define tick as a derived operation:

�M ≡ let {x = M } in x (x fresh)

Improving Haskell 121

This definition takes precisely two steps to evaluate to M : one to add the binding
to the heap, and the other to look it up. As one of these steps is a Lookup
operation, the cost of evaluating M is increased by exactly one, as required. The
following tick elimination rule still holds, but as before the reverse is not valid:

�M �∼ M (�-elim)

The relation �∼ formalises when one term is at least as efficient as another in
all contexts, but this is a strong requirement. We use the notion of weak improve-
ment [2] when one term is at least as efficient as another within a constant factor.
Formally, M is weakly improved by N , written M �∼∼ N , if there exists a linear
function f(x) = kx + c (for k, c � 0) such that for all contexts C:

C[M]↓n =⇒ C[N]↓�f(n)

This can be interpreted as “replacing M with N may make programs worse,
but will not make them asymptotically worse” [2]. Analogous to cost-equivalence,
we also have weak cost-equivalence, written M ��∼∼ N , which is defined in the
obvious manner. As weak improvement ignores constant factors, we can intro-
duce and eliminate ticks while preserving weak cost-equivalence:

M ��∼∼ �M (�-intro)

3.4 Inequational Reasoning

When constructing improvement proofs, careful attention must be paid to their
respective improvement relations. This is because the transformation rules we
apply during reasoning steps are defined using the different notions of improve-
ment (�∼,�∼∼,��∼ ,��∼∼), some of which may not entail the relation in question. For
example, given that �∼ ⊆ �∼∼, any transformation defined using �∼ automatically
entails �∼∼, but the converse is not true. Similarly, removing a tick (�-elim) is an
improvement, whereas unfolding a function’s definition (3) is not.

In this instance, our system simplifies the necessary inequational reasoning
by ensuring that each transformation rule applied by the user entails a particular
improvement relation established prior to the start of the reasoning process. If
the user attempts to apply a rule that does not entail this relation, the system
will reject it and display an error message.

3.5 The Tick Algebra

We conclude this section by discussing the tick algebra [1], which is a collection of
laws for propagating evaluation costs around terms while preserving or increasing
efficiency. These laws make up a large proportion of the transformation rules that
are provided by our system, and are a rich inequational theory that subsumes
all axioms of the call-by-need calculus of Ariola et al. [16].

122 M. A. T. Handley and G. Hutton

We refer the reader to [1] for the full tick algebra, but present two example
laws below to illustrate their nature and complexity:

let {x = L} in let {y = M } in N
��∼ x � y y � FV (L) (let-flatten)

let {x = L,y = M } in N

�let {x = z ,y = M [z/w]} in N [z/w]
�∼ (var-expand)

let {x = z ,y = M [x/w]} in N [x/w]

The (let-flatten) rule is a cost-equivalence, and allows us to merge the binders
of two lets modulo binder collisions and variable capture. In turn, (var-expand)
is an improvement that allows us to replace a binding with its binder provided
there is a tick in front of the let to pay for this expansion. Also included in the
tick algebra are (�-E) and (case-E) introduced previously.

The laws discussed above are only a small fragment of the tick algebra, how-
ever, it should be evident from these examples that applying such rules manually
can be a difficult task. In particular, the use of different improvement relations,
different kinds of contexts, and each rule having a unique syntactic form, makes
it challenging to know when a rule can be applied correctly. Furthermore, many
laws have side conditions, often concerning free and bound variables as with
(case-E) and (let-flatten), which must be checked every time they are applied.

A key strength of our system is that it provides mechanical support for all
of these tasks, and moreover, it will automatically perform, for example, alpha-
renaming to enable rules such as (let-flatten) to be applied correctly. Thus,
the system allows the user to focus on the key aspects of their improvement
calculations by handling tedious but important technical details on their behalf.

4 System Architecture

The main components of our system are illustrated in Fig. 4. The read-evaluate-
print-loop (Repl) handles interaction with the user. The inequational layer checks
that transformation rules invoked by the user are safe to apply in the current
proof state. The primitive rewrites and congruence combinators are basic build-
ing blocks used to define transformation rules in a modular manner [12], and are
implemented using the Kure rewrite engine [17]. The history records successful
commands entered by the user, and the resultant proof state of each command.
In turn, the library maintains a collection of term, context, and cost-equivalent
context definitions for use during proofs, together with a collection of command
scripts that can be used to define transformation sequences. Finally, the con-
text manipulation component supports the automatic generation, matching, and
checking of the different kinds of program contexts.

Improving Haskell 123

Fig. 4. Architecture of our system

4.1 Read-Eval-Print-Loop (Repl)

A necessary aspect of constructing interactive proofs is transforming sub-terms.
We prioritise this requirement by maintaining a focus into the term being trans-
formed, and providing navigation commands for changing the focus. Transfor-
mations are then applied to the sub-term currently in focus. By default, only
the focused sub-term is displayed, which is updated each time a navigation com-
mand is executed. For situations when it may be beneficial to always display
the whole term or some designated part, the system provides an option for the
current focus to be highlighted. This feature is exhibited in Fig. 1.

4.2 Inequational Layer

Each time a transformation rule is invoked, the system checks that it is safe
to apply in the current proof state. One aspect of this verification step is to
ensure that the rule’s corresponding operator entails the proof’s improvement
relation. If this is not the case, the transformation rule is rejected. Not only is
this essential to ensuring well-formed calculations, it also permits users to safely
experiment with improvement rules (for example, those from the tick algebra).

4.3 Primitive Rewrites, Congruence Combinators, and Kure

Similarly to the equational reasoning assistant Hermit [6], our system utilises
the Kansas University Rewrite Engine (Kure) [17] for specifying and applying
transformations to the abstract syntax of its operational model.

In brief, Kure is a strategic programming language [18] that provides a prin-
cipled method for traversing and transforming data types. The fundamental idea
behind Kure is to separate the implementations of traversals and the implemen-
tations of transformations. Traversal strategies and transformation rules can thus
be reused and combined independently. For our system, this allows a sophis-
ticated library of transformation rules, tailored to the needs of improvement

124 M. A. T. Handley and G. Hutton

theory, to be constructed by composing a small number of primitive operations
using a selection of Kure’s primitive combinators.

In addition, Kure’s approach to datatype-generic programming [19] means
that traversals can navigate to particular locations in order to apply type-specific
transformations, giving fine control over when and where transformations are
applied within a data type. This is vital for our implementation, as each reason-
ing step in an improvement proof typically transforms only a single sub-term.

Overall, our approach to implementing transformations rules using primitive
rewrites and congruence combinators has been heavily inspired by the Hermit
system, and builds on the work in [6,12]. We refer the reader to [6,17] for a
detailed discussion of the relevant concepts.

4.4 Cost-Equivalent Contexts

The system maintains a library of cost-equivalent contexts. These are contexts
whose syntactic forms do not satisfy the requirements for a particular kind of
context (value, evaluation, applicative) but are nevertheless cost-equivalent to
a context of this kind, and hence admit the same laws. Such contexts occur
frequently in improvement proofs [1,2], as they lead to simplified reasoning steps.
Once added by the user, cost-equivalent contexts are manipulated by the system
in the same manner as other kinds of contexts (see Sect. 6 for an example).

4.5 Context Manipulation

Managing contexts is one of the primary intricacies in constructing improvement
proofs. In this section, we explain how this is handled by our system.

Context Matching. In our system, a context pattern is simply a shorthand
for a context, allowing sub-terms to be specified implicitly using wildcards and
constructor patterns. For example, the context let {x = a; y = b} in [−] may
be described by any of the following context patterns (among others):

The underscores above are wildcards that match with any term, while VAR is a
constructor pattern that matches with any variable.

Context patterns do not represent unique contexts, but when used in conjunc-
tion with a specific transformation rule, are often sufficient to determine a unique
context. In practice, they are used to simplify the amount of input required from
a user interacting with the system. Recall the following rule, which allows ticks
to be moved in and out of evaluation contexts:

E[�M] ��∼ �E[M] (�-E)

Suppose we wish to apply this rule to the term �(a b c). To do so, we must
determine an evaluation context E and a term M for which �E[M] ≡ �(a b c).
In this case it is simple, such as by taking E = [−] b c and M = a. Applying
�-E (right to left) then allows us to move the tick inside the context:

Improving Haskell 125

�(a b c)
��∼ { �-E [−] b c }

(�a) b c

This transformation can be mirrored almost identically in our system:

Here the system uses the specified context [−] b c and the given term �(a b c)
to verify the preconditions necessary for �-E’s safe application. That is, it checks
[−] b c is a valid evaluation context and, by calculating the substituted term
M = a, ensures the initial term has the required form �E[M]. If any of these
preconditions were not met, the transformation step would be rejected.

Suppose now that the context E from the above example was more complex,
such as a let statement with multiple bindings. In this case, it would be imprac-
tical to expect the user to manually enter its full definition. Context patterns
address this problem by allowing users to specify contexts by shorthand rep-
resentations. The system uses these representations to automatically calculate
valid contexts on the user’s behalf, by matching the specified pattern against
the syntax of the term being transformed. For example, we can use wildcard
patterns to apply the above transformation in a simplified manner:

Context Generation. If we apply the same transformation rule as above, but
without specifying a context parameter, the system will respond as follows:

That is, three possible context/substitution pairs have been automatically gen-
erated by the system, each allowing �-E to be correctly applied to the given
term. Option three corresponds to our previous choice:

[1]> 3
��∼ ✓a b c

Context generation is available when applying any of the system’s transfor-
mation rules. This feature has proven to be invaluable when validating proofs
from the original improvement theory article [1], as the calculations in this arti-
cle only specify the rules that are applied, and not how they are applied. Context
generation often allows us to fill in these details automatically.

126 M. A. T. Handley and G. Hutton

4.6 Inequational Reasoning

A central feature of our system is its support for inequational reasoning. The
relationship between the different improvement relations that were introduced
in Sect. 3 are summarised in the following lattice:

An improvement proof is initiated by the user entering a proof statement,
such as ��x �∼ x . The system uses this statement to establish a ‘global’ improve-
ment relation, in this case �∼. Each time a transformation is applied, the corre-
sponding operator is checked to ensure that it entails this global relation in the
above lattice. If this is not the case, the transformation is prevented from being
applied and an error message is displayed. For example:

5 Worker/Wrapper Transformation

During the development of the Unie system, we were guided by the desire
to mechanically verify all the results from the paper that renewed interest in
improvement theory [2]. In this section, we review the main result of this paper,
which shows that the worker/wrapper transformation is an improvement, and
an example application of this result, which shows how a naive reverse function
on lists can be improved to a more efficient version. In the next section, we will
show how the latter result can be mechanised in our system.

5.1 Correctness

The worker/wrapper transformation is a technique for improving the perfor-
mance of recursive programs by changing their types [20]. Given a recursive
program of some type, the basic idea is to factorise the program into a worker
program of a different type, together with a wrapper program that acts as an
interface between the original program and the new worker. The intention is
that if the worker type supports more efficient operations than the original type,
then this efficiency should result in a more efficient program overall.

More formally, suppose we are given a recursive program defined as the least
fixed point fix f of a function f on some type A. Now consider a more efficient
program that performs the same task, defined by first taking the least fixed point

Improving Haskell 127

fix g of a function g on some other type B , and then migrating the resulting value
back to the original type by applying a conversion function abs. The equivalence
between the two programs is captured by the following equation:

fix f = abs (fix g)

This equation states that the original program fix f can be factorised into
the application of a wrapper function abs to a worker program fix g . As one may
expect, the validity of the equation depends on some properties of the functions
f , g , and abs, together with a dual conversion function rep. These properties
are summarised in the following worker/wrapper correctness theorem [21]: given
functions f : A → A, g : B → B , abs : B → A, and rep : A → B satisfying one of
the assumptions (A–C) and one of the conditions (1–3),

(A) abs ◦ rep = idA (1) g = rep ◦ f ◦ abs
(B) abs ◦ rep ◦ f = f (2) g ◦ rep = rep ◦ f
(C) fix (abs ◦ rep ◦ f) = fix f (3) f ◦ abs = abs ◦ g

then we have the correctness equation fix f = abs (fix g).

5.2 Improvement

The previous section formalised that the worker/wrapper transformation is cor-
rect, in the sense that the original and new programs have the same denotational
meaning. We now formalise that the transformation improves efficiency, in the
sense that the new program improves the runtime performance of the original.

To reformulate the correctness theorem as an improvement theorem, we must
first make some changes to the basic setup to take account of the differences
between the underlying denotational and operational theories. In particular,
functions are replaced by contexts, i.e. the functions f and g become contexts F
and G; the use of a fix operator is replaced by recursive let bindings, i.e. fix f
becomes let x = F[x] in x ; and the use of equality is replaced by an appropriate
improvement relation, i.e. = becomes �∼, �∼∼ or ��∼∼ . Using these modifications, we
have the following worker/wrapper improvement theorem [2]: given value con-
texts F, G, Abs, and Rep satisfying one of the assumptions (where x is free)

(A) Abs[Rep[x]] ��∼∼ x
(B) Abs[Rep[F[x]]] ��∼∼ F[x]
(C) let x = Abs[Rep[F[x]]] in x ��∼∼ let x = F[x] in x

128 M. A. T. Handley and G. Hutton

and one of the conditions

(1) G[x] �∼∼ Rep[F[Abs[x]]]
(2) G[�Rep[x]] �∼ Rep[�F[x]]
(3) Abs[�G[x]] �∼∼ F[�Abs[x]]

then we have the improvement inequality let x = F[x] in x �∼∼ let x = G[x] in
Abs[x]. The assumptions and conditions above that ensure the original recursive
program let x = F[x] in x is improved by let x = G[x] in Abs[x] are natural
extensions of the corresponding properties for correctness. For example, correct-
ness condition (1), g = rep ◦ f ◦ abs, is replaced by improvement condition (1),
G[x] �∼∼ Rep[F[Abs[x]]]. Note that because improvement theory is untyped, there
are no typing requirements on the contexts.

The proof of the above theorem utilises two other results: a ‘rolling’ rule
and a fusion rule. Both are central to the worker/wrapper transformation [20],
and can be proven using tick algebra laws. Consequently, the worker/wrapper
improvement theorem is itself a direct result of the tick algebra’s inequational
theory. All aforementioned results have been verified using our system [13].

5.3 Example

Consider the following naive definition for the reverse function on lists:

Here the function is defined using a recursive let binding rather than explicit
recursion, and the context Revbody captures the non-recursive part of the func-
tion’s definition. This implementation is inefficient due to the use of the append
operator ++, which takes linear time in the length of its first argument. We would
like to use the worker/wrapper technique to improve it.

The first step is to select a new type to replace the original type [a] → [a],
and define contexts to perform the conversions between the two types. In this
case, we utilise the type [a] → [a] → [a] that provides an additional argument
that is used to accumulate the resulting list [14]. The contexts to convert between
the original and new types are then defined as follows [2]:

We must now verify that the conversion contexts Abs and Rep satisfy one of
the worker/wrapper assumptions. We verify assumption (B) as follows:

Improving Haskell 129

Abs[Rep[Revbody[f]]]
≡ { apply definitions of Abs and Rep }

λxs.(λxs.λys.Revbody[f] xs ++ ys) xs []
��∼ { β-reduction }

λxs.Revbody[f] xs ++ []
≡ { apply definition of Revbody }

λxs.(λxs.case xs of
[] → []
(y : ys) → f ys ++ [y]) xs ++ []

��∼ { β-reduction }
λxs.(case xs of

[] → []
(y : ys) → f ys ++ [y]) ++ []

��∼ { case-E rule, where E ≡ [−] ++ [] }
λxs.case xs of

[] → [] ++ []
(y : ys) → (f ys ++ [y]) ++ []

��∼∼ { associativity of ++ }
λxs.case xs of

[] → [] ++ []
(y : ys) → f ys ++ ([y] ++ [])

��∼∼ { evaluate [] ++ [] and [y] ++ [] }
λxs.case xs of

[] → []
(y : ys) → f ys ++ [y]

≡ { unapply definition of Revbody }
Revbody[f]

Note that the above calculation uses the fact that ++ is associative up to weak
cost-equivalence, that is, (xs ++ ys) ++ zs ��∼∼ xs ++ (ys ++ zs).

Next we must verify that one of the worker/wrapper conditions is satisfied.
In this example, we can use condition (2) as a specification for the context G,
whose definition can then be calculated using laws from the tick algebra. We
omit the details here for brevity, but they are included in the original paper [2],
and result in the following context definition:

The crucial step in the construction of G is applying property (2) from our
example in Sect. 2, which expresses that reassociating append to the right is an
improvement, i.e. (xs ++ ys) ++ zs �∼ xs ++ (ys ++ zs).

Finally, if we define fastrev = let x = G[x] in Abs[f], then by applying the
worker/wrapper improvement theorem, we have shown that the original version
of reverse is improved by the new version, i.e. reverse �∼∼ fastrev . Expanding out
the definition of fastrev and renaming/simplifying the resulting let binding gives
the familiar fast version of the original function:

6 Mechanising Fast Reverse

In this section, we demonstrate how to improve the naive reverse function
mechanically using our system. In doing so, we illustrate a number of the system’s
key features, and show how it supports interactive reasoning using transforma-
tion and navigation rules. All of the interaction is taken directly from the system
itself, with some minor reformatting for the paper-based medium.

As in the previous section, we focus on the proof of assumption (B). Prior
to constructing the proof, we must ensure that the system has access to the

130 M. A. T. Handley and G. Hutton

definitions from Sect. 5, which are required at different stages throughout. For
convenience we have stored them in a file, which is imported into the system’s
library using the import-lib command, and the names of the new definitions
displayed using show-lib defs. We have also included the definition of ++, as
this is required in a number of proof steps involving evaluation.

We instruct the system to enter its transformation mode using trans. The
relevant proof statement Abs[Rep[Revbody[f]]] ��∼∼ Revbody[f] is supplied as a
parameter, and determines the proof’s global relation and goal. The global rela-
tion will prevent rules being applied whose operators do not entail weak cost-
equivalence ��∼∼ , and we will be notified when the goal Revbody[f] is reached.
When entering terms into the system, the kinds of contexts must be specified.
Abs, Rep, and Revbody are value contexts, so we use the V_ prefix.

As with the paper proof, we begin by applying the definitions of Abs and Rep,
and beta-reducing inside the body of the outer lambda abstraction. In order
to reduce the correct sub-terms, we must navigate using left and right, which
move the focus to the current terms left and right child, respectively. The last
step uses top, which restores focus to the full term.
V_Abs[V_Rep[V_Revbody[f]]]

[1]> apply -def 'Abs ; apply -def 'Rep
≡ λxs.(λxs.λys.(V_Revbody[f] xs) ++ ys) xs []
[3]> right
≡ (λxs.λys.(V_Revbody[f] xs) ++ ys) xs []
[4]> left
≡ (λxs.λys.(V_Revbody[f] xs) ++ ys) xs
[5]> beta
��∼ λys.(V_Revbody[f] xs) ++ ys

[6]> up ; beta
��∼ (V_Revbody[f] xs) ++ []

[8]> top
≡ λxs.(V_Revbody[f] xs) ++ []

Next we apply the definition of Revbody and beta-reduce the resulting redex.
We then move up to focus on the application of append.

[9]> apply -def 'Revbody
≡ λxs.((λxs.case xs of

[] → []
(y:ys) → (f ys) ++ [y]) xs) ++ []

[10]> right ; left
≡ (++) ((λxs.case xs of

[] → []
(y:ys) → (f ys) ++ [y]) xs)

[12]> right
≡ (λxs.case xs of

[] → []
(y:ys) → (f ys) ++ [y]) xs

Improving Haskell 131

[13]> beta
��∼ case xs of

[] → []
(y:ys) → (f ys) ++ [y]

[14]> up ; up
≡ (case xs of

[] → []
(y:ys) → (f ys) ++ [y]) ++ []

Now recall the case-E rule, which allows an evaluation context to be moved
inside a case statement (subject to certain conditions regarding free and bound
variables, which are automatically checked by our system):

E[case M of {pati → Ni}] ��∼ case M of {pati → E[Ni]}

Here we would like to use this rule to move ++ [] inside the case statement.
We know that the system can generate evaluation contexts, so we can attempt
to apply the rule without specifying a parameter:

[16]> case -eval
Error: no valid evaluation contexts.

However, an error results because the context [−] ++ [] we wish to use is not
strictly speaking an evaluation context, but is only cost-equivalent to an eval-
uation context [2]. By default, only contexts of the correct syntactic form are
accepted by the system, meaning that even if we manually specified the desired
context as a parameter to case-eval, it would be rejected as invalid.

The solution is to add [−] ++ [] to the library of cost-equivalent evaluation
contexts, which allows the system to treat it as if it were strictly an evaluation
context. This is done using the add-lib command. In fact, the proof in [2] is
more general than this particular example, and shows that [−] ++ xs is cost-
equivalent to an evaluation context for any list xs. This can be captured using
the constructor pattern LIST that matches with any list:

Cost-equivalent contexts are incorporated into the system’s context genera-
tion and matching mechanisms, meaning that when we apply case-eval again
without a parameter, the correct context is used automatically. Note that in this
example, the context pattern [−] ++ LIST has been instantiated to [−] ++ [] in
order to apply the transformation rule correctly.

[16]> case -eval
��∼ case xs of

[] → [] ++ []
(y:ys) → ((f ys) ++ [y]) ++ []

We have almost completed the proof. All that is left to do is evaluate the
applications of append that have resulted from ++ [] being moved inside both
alternatives in the case statement. Note that in the second alternative, we wish
to evaluate [y] ++ []. In order to do so we must first reassociate the term using
the fact that append is associative up to weak cost-equivalence.

132 M. A. T. Handley and G. Hutton

[17]> right ; rhs
≡ [] ++ []
[19]> eval -wce
��∼∼ []

[20]> up ; next ; rhs
≡ ((f ys) ++ [y]) ++ []
[23]> append -assoc -lr -wce
��∼∼ (f ys) ++ ([y] ++ [])

[24]> right ; eval -wce
��∼∼ [y]

[26]> top
≡ λxs.case xs of

[] → []
(y:ys) → (f ys) ++ [y]

Finally, we unapply the definition of Revbody and are notified that we have
reached our goal. The proof of the property is complete:

[27]> unapply -def 'Revbody
Info: transformation goal reached!
≡ V_Revbody[f]

In conclusion, the above calculation demonstrates how improvement proofs
can be constructed using our system. By following the same pattern as the orig-
inal paper proof, with the addition of navigation steps to make the point of
application of each rule clear, we were able to mechanise the calculation by sim-
ply entering the transformation rules as commands into the system. Behind the
scenes, the technicalities of each proof step were administered automatically on
our behalf to ensure the resulting proof is correct. Moreover, by entering com-
mands without parameters, we allowed the system to simplify the development
of proof steps by automatically generating the necessary contexts.

7 Related Work

Several tools have been developed to mechanise equational reasoning about
Haskell programs [22–25]. Most relevant to our system is Hermit [6], which builds
upon the Haskell Equational Reasoning Assistant (Hera) [26]. There appears to
be no other systems in the literature that directly support inequational reason-
ing about Haskell programs, and to the best of our knowledge, our system is the
first to provide mechanical support for improving Haskell programs.

In other languages, the Algebra of Programming in Agda (AoPA) library [27]
is designed to encode relational program derivations, which supports a form of
inequational reasoning. The Jape proof calculator [28,29] provides step-by-step
interactive development of proofs in formal logics, and supports both equational
and inequational reasoning. Improvement theory has not been explored within
either of these settings, however. More generally, automated theorem provers [30,
31] can be used to provide formal, machine-checked proofs of program properties,
but require expertise in dependently-typed programming.

Other methods for reasoning about time performance in a lazy setting
include [32,33]. Most notably is the work of Okasaki [34], who used a notion of
time credits to analyse the amortized performance of a range of purely functional

Improving Haskell 133

data structures. This approach has recently been implemented in Agda [35].
Research has also been conducted on type-based methods for cost analysis, for
example in [36,37], but in general these frameworks do not incorporate call-by-
need semantics. GHC itself provides cost centres, which can be used to annotate
source code so that the GHC profiler can indicate which parts of a program cost
the most to execute. A formal cost semantics for GHC core programs based on
the notion of cost centres is presented in [38].

8 Conclusion and Further Work

In this article, we have presented the design and implementation of an inequa-
tional reasoning assistant that provides mechanical support for proofs of pro-
gram improvement. In doing so, we have highlighted a number of difficulties in
manually constructing improvement proofs, and described how the system has
been developed to address these challenges. We have illustrated the applicability
of our system by verifying a range of improvement results from the literature.
Specifically, we have mechanised all proofs in [2], including the proof of the work-
er/wrapper improvement theorem, which relates to a highly general optimisation
technique. We have also mechanically verified a number of proofs in [1]. All of
these proofs are freely available online as scripts that can be loaded into our
system, along with the system itself [13].

We have three main avenues for further work. First of all, we would like
to investigate higher-level support for navigating through terms during improve-
ment proofs, for which we expect to be guided by our experience using the Hermit
system [6]. Secondly, we would like to extend our system to produce proof objects
that can be independently checked using an external proof assistant such as Coq
or Agda, to provide a formal guarantee of their correctness. And finally, we are
also interested in lightweight approaches to verifying improvement properties,
for example, in a similar manner to which the QuickCheck [39] system supports
lightweight verification of correctness properties.

Acknowledgements. We’d like to thank Jennifer Hackett and Neil Sculthorpe for
many useful discussions, and the anonymous referees for their useful suggestions. This
work was funded by EPSRC grant EP/P00587X/1, Mind the Gap: Unified Reasoning
About Program Correctness and Efficiency.

References

1. Moran, A.K., Sands, D.: Improvement in a Lazy Context: An Operational Theory
for Call-By-Need. Extended version of [40] (1999)

2. Hackett, J., Hutton, G.: Worker/wrapper/makes it/faster. In: ICFP (2014)
3. Schmidt-Schauß, M., Sabel, D.: Improvements in a functional core language with

call-by-need operational semantics. In: PPDP (2015)
4. Hackett, J., Hutton, G.: Parametric polymorphism and operational improvement.

University of Nottingham (2017, in preparation)

134 M. A. T. Handley and G. Hutton

5. Harper, R.: The Structure and Efficiency of Computer Programs. Carnegie Mellon
University (2014)

6. Farmer, A.: Hermit: Mechanized Reasoning During Compilation in the Glasgow
Haskell Compiler. Ph.D. thesis, University of Kansas (2015)

7. Sculthorpe, N., Farmer, A., Gill, A.: The HERMIT in the tree: mechanizing pro-
gram transformations in the GHC core language. In: Hinze, R. (ed.) IFL 2012.
LNCS, vol. 8241, pp. 86–103. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-41582-1 6

8. Farmer, A., Höner zu Siederdissen, C., Gill, A.: The Hermit in the stream. In:
PEMP (2014)

9. Farmer, A., Sculthorpe, N., Gill, A.: Reasoning with the Hermit: tool support for
equational reasoning on GHC core programs. In: Haskell Symposium (2015)

10. Adams, M.D., Farmer, A., Magalhães, J.P.: Optimizing SYB Is easy! In: PEPM
(2014)

11. Adams, M.D., Farmer, A., Magalhães, J.P.: Optimizing SYB traversals is easy!.
Sci. Comput. Program. 112, 170–193 (2015)

12. Farmer, A., Gill, A., Komp, E., Sculthorpe, N.: The Hermit in the machine: a plugin
for the interactive transformation of GHC core language programs. In: Haskell
Symposium (2012)

13. Handley, M.A.T.: GitHub Repository for the University of Nottingham Improve-
ment Engine (Unie) (2017). https://github.com/mathandley/Unie

14. Wadler, P.: The Concatenate Vanishes. University of Glasgow (1987)
15. Sestoft, P.: Deriving a lazy abstract machine. JFP 7(3), 231–264 (1997)
16. Ariola, Z.M., Maraist, J., Odersky, M., Felleisen, M., Wadler, P.: A call-by-need

lambda calculus. In: POPL (1995)
17. Sculthorpe, N., Frisby, N., Gill, A.: The Kansas university rewrite engine. JFP 24,

434–473 (2014)
18. Lämmel, R., Visser, E., Visser, J.: The Essence of Strategic Programming (2002)
19. Gibbons, J.: Datatype-generic programming. In: Backhouse, R., Gibbons, J., Hinze,

R., Jeuring, J. (eds.) SSDGP 2006. LNCS, vol. 4719, pp. 1–71. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-76786-2 1

20. Gill, A., Hutton, G.: The worker/wrapper transformation. JFP 19(2), 227–251
(2009)

21. Sculthorpe, N., Hutton, G.: Work it, wrap it, fix it, fold it. JFP 24(1), 113–127
(2014)

22. Tullsen, M.A.: Path, A Program Transformation System for Haskell. Ph.D. thesis.
Yale University (2002)

23. Guttmann, W., Partsch, H., Schulte, W., Vullinghs, T.: Tool support for the inter-
active derivation of formally correct functional programs. J. Univers. Comput. Sci.
9, 173 (2003)

24. Thompson, S., Li, H.: Refactoring tools for functional languages. JFP 23(3), 293–
350 (2013)

25. Li, H., Reinke, C., Thompson, S.: Tool support for refactoring functional programs.
In: Haskell Workshop (2003)

26. Gill, A.: Introducing the Haskell equational reasoning assistant. In: Haskell Work-
shop (2006)

27. Mu, S.C., Ko, H.S., Jansson, P.: Algebra of programming in Agda: dependent types
for relational program derivation. JFP 19(5), 545–579 (2009)

28. Bornat, R., Sufrin, B.: Jape: a calculator for animating proof-on-paper. In:
McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 412–415. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63104-6 41

https://doi.org/10.1007/978-3-642-41582-1_6
https://doi.org/10.1007/978-3-642-41582-1_6
https://github.com/mathandley/Unie
https://doi.org/10.1007/978-3-540-76786-2_1
https://doi.org/10.1007/3-540-63104-6_41

Improving Haskell 135

29. Bornat, R., Sufrin, B.: Animating formal proof at the surface: the jape proof cal-
culator. Comput. J. 42(3), 177–192 (1999)

30. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-662-07964-5

31. Norell, U.: Towards a Practical Programming Language Based on Dependent Type
Theory. Ph.D. thesis, Chalmers University of Technology (2007)

32. Wadler, P.: Strictness analysis aids time analysis. In: POPL (1988)
33. Bjerner, B., Holmström, S.: A composition approach to time analysis of first order

lazy functional programs. In: FPCA (1989)
34. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, Cam-

bridge (1999)
35. Danielsson, N.A.: Lightweight semiformal time complexity analysis for purely func-

tional data structures. In: POPL (2008)
36. Brady, E., Hammond, K.: A dependently typed framework for static analysis of

program execution costs. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005.
LNCS, vol. 4015, pp. 74–90. Springer, Heidelberg (2006). https://doi.org/10.1007/
11964681 5

37. Çiçek, E., Barthe, G., Gaboardi, M., Garg, D., Hoffmann, J.: Relational cost anal-
ysis. In: POPL (2017)

38. Sansom, P.M., Peyton Jones, S.L.: Formally based profiling for higher-order func-
tional languages. TOPLAS (1997)

39. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell Programs. In: ICFP (2011)

40. Moran, A.K., Sands, D.: Improvement in a lazy context: an operational theory for
call-by-need. In: POPL (1999)

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/11964681_5
https://doi.org/10.1007/11964681_5

High-Performance Defunctionalisation
in Futhark

Anders Kiel Hovgaard , Troels Henriksen , and Martin Elsman(B)

DIKU, University of Copenhagen, Copenhagen, Denmark
hzs554@alumni.ku.dk, {athas,mael}@di.ku.dk

Abstract. General-purpose massively parallel processors, such as
GPUs, have become common, but are difficult to program. Pure func-
tional programming can be a solution, as it guarantees referential trans-
parency, and provides useful combinators for expressing data-parallel
computations. Unfortunately, higher-order functions cannot be efficiently
implemented on GPUs by the usual means. In this paper, we present a
defunctionalisation transformation that relies on type-based restrictions
on the use of expressions of functional type, such that we can completely
eliminate higher-order functions in all cases, without introducing any
branching. We prove the correctness of the transformation and discuss
its implementation in Futhark, a data-parallel functional language that
generates GPU code. The use of these restricted higher-order functions
has no impact on run-time performance, and we argue that we gain
many of the benefits of general higher-order functions, without in most
practical cases being hindered by the restrictions.

Keywords: Defunctionalisation · GPGPU · Compilers

1 Introduction

Higher-order functional languages enable programmers to write abstract, com-
positional, and modular programs [24], and are often considered well-suited for
parallel programming, due to the lack of shared state and side effects. The emer-
gence of commodity massively parallel processors, such as GPUs, has exacer-
bated the need for developing practical techniques for programming parallel
hardware. However, GPU programming is notoriously difficult, since GPUs offer
a significantly more restricted programming model than that of CPUs. For exam-
ple, GPUs do not readily allow for higher-order functions to be implemented,
mainly because GPUs have only limited support for function pointers.

If higher-order functions cannot be implemented directly, we may opt to
remove them by means of a program transformation that replaces them by a
simpler language mechanism. The canonical such transformation is defunctional-
isation, which was first described by Reynolds [31]. Reynolds’ defunctionalisation
abstracts each functional value by a set of records representing each particular
instance of the function, and the functional values in a program are abstracted
c© Springer Nature Switzerland AG 2019
M. Pa�lka and M. Myreen (Eds.): TFP 2018, LNCS 11457, pp. 136–156, 2019.
https://doi.org/10.1007/978-3-030-18506-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18506-0_7&domain=pdf
http://orcid.org/0000-0001-7166-1613
http://orcid.org/0000-0002-1195-9722
http://orcid.org/0000-0002-6061-5993
https://doi.org/10.1007/978-3-030-18506-0_7

High-Performance Defunctionalisation in Futhark 137

let twice (g:i32 ->i32) =

\x -> g (g x)

let main =

let f =

let a = 5

in twice (\y -> y+a)

in f 1 + f 2

(a) Source program

let g’ (env:{a:i32}) (y:i32) =

let a = env.a in y+a

let f’ (env:{g:{a:i32}})

(x:i32) =

let g = env.g

in g’ g (g’ g x)

let main =

let f = let a = 5

in {g = {a = a}}

in f’ f 1 + f’ f 2

(b) Target program

Fig. 1. Example demonstrating the defunctionalisation transformation

by the disjoint union of these sets. Each application in a program is then replaced
by a call to an apply function, which performs a case match on each of the func-
tional forms and essentially serves as an interpreter for the functional values in
the original program. The most basic form will add a case to the apply function
for every function abstraction in the source program. This amount of branching
is very problematic for GPUs because of the issue of branch divergence. Since
threads in a GPU execute together in lockstep, in so called warps of usually 32
threads, a large amount of branching will cause many threads to be idle in the
branches where they are not executing instructions.

By restricting the use of functions in programs, we are able to statically
determine the form of the applied function at every application. Specifically, we
disallow conditionals and loops from returning functional values, and we disallow
arrays from containing functions. These restrictions allow defunctionalisation by
specializing each application to the particular form of function that may occur
at run time. The result is essentially equivalent to inlining completely the apply
function in a program produced by Reynolds defunctionalisation. Notably, the
transformation does not introduce any additional branching.

We have used the Futhark language [17–21] to demonstrate this idea. Futhark
is a data-parallel, purely functional array language with the main goal of gener-
ating high-performance parallel code. Although the language itself is hardware-
agnostic, the main focus is on the implementation of an aggressively optimizing
compiler that generates efficient GPU code via OpenCL.

To illustrate the basic idea, we show a simple Futhark program in Fig. 1a and
the resulting program after defunctionalisation in Fig. 1b (simplified slightly).
The result is a first-order program that explicitly pass closure environments, in
the form of records capturing the free variables, in place of first-class functions
in the source program.

138 A. K. Hovgaard et al.

The principal contributions of this paper are:

– A defunctionalisation transformation expressed on a simple data-parallel
functional array language, with type rules that restrict the use of higher-order
functions to allow for the defunctionalisation to remove effectively higher-
order functions in all cases, without introducing any branching.

– A correctness proof of the transformation: A well-typed program will translate
to another well-typed program and the translated program will evaluate to
a value, corresponding to the value of the original program, or fail with an
error if the original program fails.

– A description and evaluation of the transformation as implemented in the
compiler for a real high-performance functional language (Futhark).

In the following, we use the notation (Zi)i∈1..n to denote a sequence of objects
Z1, . . . ,Zn, where each Zi may be a syntactic object, a derivation of a judgment,
and so on. Further, we sometimes write D ::J to give the name D to the deriva-
tion of the judgment J so that we can refer to it later.

2 Language

To be able to formally define and reason about the defunctionalisation trans-
formation, to be presented in Sect. 3, we define a simple functional language on
which the transformation will operate. Conceptually, the transformation goes
from a source language to a target language, but since the target language will
be a sublanguage of the source language, we shall generally treat them as one and
the following definitions will apply to both languages, unless stated otherwise.

The language is a λ-calculus extended with various features to resemble the
Futhark language, including records, arrays with in-place updates, a parallel
map, and a sequential loop construct. In the following, we define its abstract
syntax, operational semantics, and type system.

2.1 Syntax

The set of types of the source language is given by the following grammar. The
meta-variable � ∈ Lab ranges over record labels.

τ ::= int | bool | τ1 → τ2 | {(�i : τi)i∈1..n} | []τ

Record types are considered identical up to permutation of fields.
The abstract syntax of expressions of the source language is given by the

following grammar. The meta-variable x ∈ Var ranges over variables of the
source language. We assume an injective function Lab : Var → Lab that maps
variables to labels. Additionally, we let n ∈ Z.

e ::=x | n | true | false | e1 + e2 | e1 ≤ e2 | if e1 then e2 else e3

| λx : τ. e0 | e1 e2 | let x = e1 in e2 | {(�i = ei)i∈1..n} | e0.�

| [(ei)i∈1..n] | e1[e2] | e0 with [e1] ← e2 | length e0

| map (λx. e1) e2 | loop x = e1 for y in e2 do e3

High-Performance Defunctionalisation in Futhark 139

Expressions are considered identical up to renaming of bound variables. Array
literals are required to be non-empty in order to simplify the rules and relations
in the following and in the meta theory.

The syntax of expressions of the target language is identical to that of the
source language except that it does not have λ-abstractions and application.
Similarly, the types of the target language does not include function types.1

We define a judgment, τ orderZero, given by the following rules, which assert
that a type τ does not contain any function type as a subterm:

int orderZero bool orderZero
(τi orderZero)i∈1..n

{(�i : τi)i∈1..n} orderZero
τ orderZero

[]τ orderZero

2.2 Typing Rules

The typing rules for the language are mostly standard except for restrictions
on the use of functions in certain places. Specifically, a conditional may not
return a function, arrays are not allowed to contain functions, and a loop may
not produce a function. These restrictions are enforced by the added premise
of the judgment τ orderZero in the rules for conditionals, array literals, parallel
maps, and loops. Aside from these restrictions, the use of higher-order functions
and functions as first-class values is not restricted and, in particular, records are
allowed to contain functions of arbitrarily high order.

A typing context (or type environment) Γ is a finite sequence of variables
associated with their types:

Γ ::= · | Γ, x : τ

The empty context is denoted by ·, but is often omitted from the actual judg-
ments. The variables in a typing context are required to be distinct. This require-
ment can always be satisfied by renaming bound variables as necessary.

The set of variables bound by a typing context is denoted by domΓ and
the type of a variable x bound in Γ is denoted by Γ (x) if it exists. We write
Γ, Γ ′ to denote the typing context consisting of the mappings in Γ followed by
the mappings in Γ ′. Note that since the variables in a context are distinct, the
ordering is insignificant. Additionally, we write Γ ⊆ Γ ′ if Γ ′(x) = Γ (x) for all
x ∈ dom Γ . The typing rules for the language are given in Fig. 2.

2.3 Semantics

For the sake of the meta theory presented later, we choose to define a big-step
operational semantics with an evaluation environment and function closures.

Evaluation environments Σ and values v are defined mutually inductively:

Σ ::= · | Σ, x �→ v

v ::= n | true | false | clos(λx : τ. e0, Σ) | {(�i = vi)i∈1..n} | [(vi)i∈1..n]
1 In the actual implementation, the target language does include application of first-

order functions, but in our theoretical work we just inline the functions for simplicity.

140 A. K. Hovgaard et al.

Γ � e : τ

T-Var: (Γ (x) = τ)
Γ � x : τ

T-Num:
Γ � n : int

T-True:
Γ � true : bool T-False:

Γ � false : bool

Γ � e1 : int Γ � e2 : int
T-Plus:

Γ � e1 + e2 : int
Γ � e1 : int Γ � e2 : int

T-Leq:
Γ � e1 ≤ e2 : bool

Γ � e1 : bool Γ � e2 : τ Γ � e3 : τ τ orderZero
T-If:

Γ � if e1 then e2 else e3 : τ

Γ, x : τ1 � e0 : τ2
T-Lam:

Γ � λx : τ1. e0 : τ1 τ2

Γ � e1 : τ2 τ Γ � e2 : τ2T-App:
Γ � e1 e2 : τ

Γ � e1 : τ1

Γ, x : τ1 � e2 : τ
T-Let:

Γ � let x = e1 in e2 : τ

(Γ � ei : τi)i∈1..n

T-Rcd:
Γ � {(�i = ei)i∈1..n} : {(�i : τi)i∈1..n}

Γ � e0 : {(�i : τi)i∈1..n}
T-Proj: (1 ≤ k ≤ n)

Γ � e0.�k : τk

Γ � e0 : []τ
T-Length:

Γ � length e0 : int

(Γ � ei : τ)i∈1..n τ orderZero
T-Array:

Γ � [e1, . . . , en] : []τ

Γ � e0 : []τ Γ � e1 : int
T-Index:

Γ � e0[e1] : τ

Γ � e0 : []τ
Γ � e1 : int Γ � e2 : τ

T-Update:
Γ � e0 with [e1] e2 : []τ

τ orderZero
Γ � e2 : []τ2 Γ, x : τ2 � e1 : τ

T-Map:
Γ � map (λx. e1) e2 : []τ

Γ � e0 : τ Γ � e1 : []τ ′ Γ, x : τ, y : τ ′ � e2 : τ τ orderZero
T-Loop:

Γ � loop x = e0 for y in e1 do e2 : τ

Fig. 2. Typing rules

Evaluation environments Σ map variables to values and have the same properties
and notations as the typing context with regards to extension, variable lookup,
and distinctness of variables. A function closure, denoted clos(λx : τ. e0, Σ), is
a value that captures the environment in which a λ-abstraction was evaluated.
The values of the target language are the same, but without function closures.

Because the language involves array indexing and updating that may fail, we
introduce the special term err to denote an out-of-bounds error and we define
a result r to be either a value or err.

The big-step operational semantics for the language is given by the derivation
rules in Fig. 3. In case any subexpression evaluates to err, the entire expression
should evaluate to err, so it is necessary to give derivation rules for propagating
these error results. Unfortunately, this error propagation involves creating many
extra derivation rules and duplicating many premises. We show the rules that

High-Performance Defunctionalisation in Futhark 141

introduce err; however, we choose to omit the ones that propagate errors and
instead just note that for each of the non-axiom rules below, there are a number
of additional rules for propagating errors. For instance, for the rule E-App, there
are additional rules E-AppErr{1, 2, 0}, which propagate errors in the applied
expression, the argument, and the closure body, respectively. Techniques exist for
limiting this duplication [6,30], but, for simplicity, we have chosen a traditional
style of presentation.

The rule E-Loop refers to an auxiliary judgment form, defined in Fig. 4,
which performs the iterations of the loop, given a starting value and a sequence
of values to iterate over. Like the main evaluation judgment, this one also has
rules for propagating err results, which are again omitted.

3 Defunctionalisation

We now define the defunctionalisation transformation which translates an
expression in the source language to an equivalent expression in the target lan-
guage that does not contain any higher-order subterms or use of first-class func-
tions.

Translation environments (or defunctionalisation environments) E and static
values sv are defined mutually inductively, as follows:

E::= · | E, x �→ sv

sv ::=Dyn τ | Lam x e0 E | Rcd {(�i �→ sv i)i∈1..n} | Arr sv0

Translation environments map variables to static values. We assume the same
properties as we did for typing contexts and evaluation environments, and we
use analogous notation. As the name suggests, a static value is essentially a
static approximation of the value that an expression will eventually evaluate to.
Static values resemble the role of types, which also approximate the values of
expressions, but static values posses more information than types. As a result
of the restrictions on the use of functions in the type system, the static value
Lam, which approximates functional values, will contain the actual function
parameter and body, along with a defunctionalisation environment containing
static values approximating the values in the closed-over environment. The two
other constructors Rcd and Arr complete the correspondence between types and
static values.

The defunctionalisation translation takes place in a defunctionalisation envi-
ronment, as defined above, which mirrors the evaluation environment by approx-
imating the values by static values, and it translates a given expression e to a
residual expression e′ and its corresponding static value sv . The residual expres-
sion resembles the original expression, but λ-abstractions are translated into
record expressions that capture the values in the environment at the time of
evaluation. Applications are translated into let-bindings that bind the record
expression, the closed-over variables, and the function parameter.

142 A. K. Hovgaard et al.

Fig. 3. Big-step operational semantics

As with record types, we consider Rcd static values to be identical up to
reordering of the label-entries. Additionally, we consider Lam static values to be
identical up to renaming of the parameter variable, as for λ-abstractions.

The transformation is defined by the derivation rules in Figs. 5 and 6.

High-Performance Defunctionalisation in Futhark 143

Σ;x = v0; y = (vi)i∈1..n � e r

EL-Nil:
Σ;x = v0; y = · � e v0

Σ, x v0, y v1 � e v′
0 Σ;x = v′

0; y = (vi)i∈2..n � e v
EL-Cons:

Σ;x = v0; y = (vi)i∈1..n � e v

Fig. 4. Auxiliary judgment for the semantics of loops

E � e � 〈e′, sv〉

D-Var: (E(x) = sv)
E � x � 〈x, sv〉 D-Num:

E � n � 〈n,Dyn int〉
D-True:

E � true � 〈true,Dyn bool〉 (equivalent rule D-False)

E � e1 � 〈e′
1,Dyn int〉 E � e2 � 〈e′

2,Dyn int〉
D-Plus:

E � e1 + e2 � 〈e′
1 + e′

2,Dyn int〉 (rule D-Leq)

E � e1 � 〈e′
1,Dyn bool〉 E � e2 � 〈e′

2, sv〉 E � e3 � 〈e′
3, sv〉

D-If:
E � if e1 then e2 else e3 � 〈if e′

1 then e′
2 else e′

3, sv〉
D-Lam:

E � λx : τ. e0 �
〈{(Lab(y) = y)y∈domE},Lam x e0 E

〉

E � e1 � 〈e′
1,Lam x e0 E0〉

E � e2 � 〈e′
2, sv2〉 E0, x �→ sv2 � e0 � 〈e′

0, sv〉
D-App:

E � e1 e2 � 〈e′, sv〉
where e′ = let env = e′

1 in (let y = env .Lab(y) in)y∈domE0

let x = e′
2 in e′

0

E � e1 � 〈e′
1, sv1〉 E, x �→ sv1 � e2 � 〈e′

2, sv〉
D-Let:

E � let x = e1 in e2 � 〈let x = e′
1 in e′

2, sv〉

Fig. 5. Derivation rules for the defunctionalisation transformation

In the implementation, the record in the residual expression of rule D-Lam
captures only the free variables in the λ-abstraction. Likewise, the defunction-
alisation environment embedded in the static value is restricted to the free vari-
ables. This refinement is not hard to formalise, but it does not add anything
interesting to the development, so we have omitted it for simplicity.

Notice how the rules include aspects of both evaluation and type checking,
in analogy to how static values are somewhere in-between values and types. For
instance, the rules ensure that variables are in scope, and that a conditional has
a Dyn boolean condition and the branches have the same static value. Interest-
ingly, this constraint on the static values of branches allows for a conditional to

144 A. K. Hovgaard et al.

Fig. 6. Derivation rules for the defunctionalisation transformation (cont.)

return functions in its branches, as long as the functions are α-equivalent. The
same is true for arrays and loops.

This transformation translates any order-zero expression into an equivalent
expression that does not contain any higher-order functions. Any first-order
expression can be translated by converting the types of its parameters (which are
necessarily order zero) to static values, by mapping record types to Rcd static
values and base types to Dyn static values, and including these as bindings for
the parameter variables in an initial translation environment.

By a relatively simple extension to the system, we can support any number
of top-level function definitions that take parameters of arbitrary type and can
have any return type, as long as the designated main function is first-order.

4 Meta Theory

In this section, we show type soundness and argue for the correctness of the
defunctionalisation transformation presented in Sect. 3. We show that the trans-

High-Performance Defunctionalisation in Futhark 145

formation of a well-typed expression always terminates and yields another well-
typed expression. Finally, we show that the meaning of a defunctionalised expres-
sion is equivalent to the meaning of the original expression.

4.1 Type Soundness and Normalisation

We first show type soundness. Since we are using a big-step semantics, the situa-
tion is a bit different from the usual approach of showing progress and preserva-
tion for a small-step semantics. One of the usual advantages of using a small-step
semantics is that it allows distinguishing between diverging and stuck terms,
whereas for a big-step semantics, neither a diverging term nor a stuck term is
related to any value. As we shall see, however, for the big-step semantics that we
have presented, any well-typed expression will evaluate to a result that is either
err or a value that is, semantically, of the same type. Thus, we also establish
that the language is strongly normalizing, which comes as no surprise given the
lack of recursion and bounded number of iterations of loops.

To this end, we first define a relation between values and types, given by
derivation rules in Fig. 7, and extend it to relate evaluation environments and
typing contexts.

� v : τ

� n : int � true : bool � false : bool

∀v1. � v1 : τ1 =⇒ ∃r. Σ, x v1 � e0 r ∧ (r = err ∨ (r = v2 ∧ � v2 : τ2))
� clos(λx : τ1. e0, Σ) : τ1 τ2

(� vi : τi)i∈1..n

� {(�i = vi)i∈1..n} : {(�i : τi)i∈1..n}
(� vi : τ)i∈1..n

� [(vi)i∈1..n] : []τ

� Σ : Γ

� · : ·
� Σ : Γ � v : τ

� (Σ, x v) : (Γ, x : τ)

Fig. 7. Relation between values and types, and evaluation environments and typing
contexts, respectively

We then state and prove type soundness as follows. We do not go into the
details of the proof and how the relation between values and types is used.
The cases for T-Lam and T-App are the most interesting in this regard, but
we omit the details in favor of other results which more directly pertain to
defunctionalisation. A similar relation and its role in the proof of termination
and preservation of typing for the defunctionalisation transformation is described
in more detail in Sect. 4.2.

146 A. K. Hovgaard et al.

Lemma 1 (Type Soundness). If Γ � e : τ (by T) and � Σ : Γ , for some
Σ, then Σ � e ↓ r, for some r, and either r = err or r = v, for some v, and
� v : τ .

Proof. By induction on the typing derivation T . In the case for T-Lam, we prove
the implication in the premise of the rule relating closure values and function
types. In the case for T-App, we use this implication to obtain the needed
derivations for the body of the closure. In the case for T-Loop, in the subcase
where the first two subexpressions evaluate to values, we proceed by an inner
induction on the structure of the corresponding sequence of values for the loop
iterations.
�

4.2 Translation Termination and Preservation of Typing

In this section, we show that the translation of a well-typed expression always
terminates and that the translated expression is also well-typed, with a typing
context and type that can be obtained from the defunctionalisation environment
and the static value, respectively.

We first define a mapping from static values to types, which shows how the
type of a residual expression can be obtained from its static value:

�Dyn τ �tp = τ

�Lam x e0 E �tp = {(Lab(y) : � svy �tp)(y �→svy)∈E}
�
Rcd {(�i �→ sv i)i∈1..n}

�
tp

= {(�i : � sv i �tp)i∈1..n}
�Arr sv �tp = [](� sv �tp)

This mapping is extended to map defunctionalisation environments to typing
contexts, by mapping each individual static value in an environment.

� · �tp = ·
� E, x �→ sv �tp = �E �tp , x : � sv �tp

In order to be able to show termination and preservation of typing for defunc-
tionalisation, we first define a relation, � sv : τ , between static values and types,
similar to the previous relation between values and types, and further extend it
to relate defunctionalisation environments and typing contexts. This relation is
given by the rules in Fig. 8.

By assuming this relation between some defunctionalisation environment E
and a typing context Γ for a given typing derivation, we can show that a well-
typed expression will translate to some expression and additionally produce a
static value that is related to the type of the original expression according to
the above relation. Additionally, the translated expression is well-typed in the
typing context obtained from E with a type determined by the static value.
This strengthens the induction hypothesis to allow the case for application to go
through, which would otherwise not be possible. This approach is quite similar
to the previous proof of type soundness and normalisation of evaluation.

High-Performance Defunctionalisation in Futhark 147

� sv : τ

� Dyn int : int � Dyn bool : bool

∀sv1. � sv1 : τ1 ∃e′
0, sv2. E0, x sv1 � e0 �

〈
e′
0, sv2

〉

∧ � sv2 : τ2 ∧ E0, x sv1 tp � e′
0 : sv2 tp

� Lam x e0 E0 : τ1 τ2

(� sv i : τi)i∈1..n

� Rcd {(�i sv i)i∈1..n} : {(�i : τi)i∈1..n}
� sv : τ τ orderZero

� Arr sv : []τ

� E : Γ

� · : ·
� E : Γ � sv : τ

� (E, x sv) : (Γ, x : τ)

Fig. 8. Relation between static values and types, and defunctionalisation environments
and typing contexts, respectively

We first prove an auxiliary lemma about the above relation between static
values and types, which states that for types of order zero, the related static
value is uniquely determined. This property is crucial for the ability of defunc-
tionalisation to determine uniquely the function at every application site, and
it is used in the proof of Theorem1 in the cases for conditionals, array literals,
array updates, and loops.

Lemma 2. If � sv : τ , � sv ′ : τ , and τ orderZero, then sv = sv ′.

Proof. By induction on the derivation of � sv : τ .
�
The following lemma states that if a static value is related to a type of order

zero, then the static values maps to the same type. This property is used to
establish that the types of order zero terms are unchanged by defunctionalisation.
It is also used in the cases for conditionals, array literals, loops, and maps in the
proof of Theorem1.

Lemma 3. For any sv, if � sv : τ and τ orderZero, then � sv �tp = τ .

Proof. By induction on the structure of sv .
�
Finally, we can state and prove termination and preservation of typing for

the defunctionalisation translation as follows:

Theorem 1. If Γ � e : τ (by T) and � E : Γ , for some E, then E � e �
〈e′, sv〉, � sv : τ , and �E �tp � e′ : � sv �tp, for some e′ and sv.

Proof. By induction on the typing derivation T . Most cases are straightforward
applications of the induction hypothesis to the subderivations, often reasoning
by inversion on the obtained relations between static values and types, and
extending the assumed relation � E : Γ to allow for further applications of
the induction hypothesis. Then the required derivations are subsequently con-
structed directly. For details, please consult [23].
�

148 A. K. Hovgaard et al.

4.3 Preservation of Meaning

In this section, we show that the defunctionalisation transformation preserves
the meaning of expressions in the following sense: If an expression e evaluates to
a value v in an environment Σ, then the translated expression e′ will evaluate to
a corresponding value v′ in a corresponding environment Σ′, and if e evaluates
to err, then e′ will evaluate to err in the context Σ′ as well (the notion of
correspondence will be made precise shortly).

We first define a simple relation between source language values and static
values, given in Fig. 9, and extend it to relate evaluation environments and
defunctionalisation environments in the usual way. Note that this relation actu-
ally defines a function from values to static values.

� v : sv

� n : Dyn int � true : Dyn bool � false : Dyn bool

� Σ : E
� clos(λx : τ. e0, Σ) : Lam x e0 E

(� vi : sv i)i∈1..n

� {(�i = vi)i∈1..n} : Rcd {(�i sv i)i∈1..n}
(� vi : sv)i∈1..n

� [(vi)i∈1..n] : Arr sv

Fig. 9. Relation between values and static values

Next, we define a mapping from source language values to target language
values, which simply converts each function closure to a corresponding record
expression that contains the converted values from the closure environment:

� v �val = v , for v ∈ {n, true, false}
� clos(λx : τ. e0, Σ) �val = {(Lab(y) = � vy �val)

(y �→vy)∈Σ}
�

{(�i = vi)i∈1..n}
�
val

= {(�i = � vi �val)
i∈1..n}

�
[(vi)i∈1..n]

�
val

= [(� vi �val)
i∈1..n]

We extend this mapping homomorphically to evaluation environments. The case
for arrays is actually moot, since arrays will never contain function closures.

The following lemma states that if a value is related to a type of order zero,
according to the previously defined relation between values and types used in
the proof of type soundness, then the value maps to itself, that is, values that
do not contain function closures are unaffected by defunctionalisation:

Lemma 4. If � v : τ and τ orderZero, then � v �val = v.

Proof. By induction on the derivation of � v : τ .
�

High-Performance Defunctionalisation in Futhark 149

We now prove the following theorem, which states that the defunctionali-
sation transformation preserves the meaning of an expression that is known to
evaluate to some result, where the value of the defunctionalised expression and
the values in the environment are translated according to the translation from
source language values to target language values given above.

Theorem 2 (Semantics Preservation). If Σ � e ↓ r (by E), � Σ : E (by
R), and E � e � 〈e′, sv〉 (by D), then if r = err, then also �Σ �val � e′ ↓ err
and if r = v, for some value v, then � v : sv and �Σ �val � e′ ↓ � v �val.

Proof. By structural induction on the big-step evaluation derivation E . For
details, please consult [23].
�

4.4 Correctness of Defunctionalisation

To summarize the previous properties and results relating to the correctness of
the defunctionalisation transformation, we state the following corollary which
follows by type soundness (Lemma 1), normalisation and preservation of typing
for defunctionalisation (Theorem1), and semantics preservation of defunction-
alisation (Theorem 2), together with Lemmas 3 and 4.

Corollary 1 (Correctness). If � e : τ and τ orderZero, then � e ↓ r, for some
r, � e � 〈e′, sv〉, for some e′ and sv, and � e′ : τ and � e′ ↓ r as well.

5 Implementation

The defunctionalisation transformation that was presented in Sect. 3 has been
implemented in the Futhark compiler, which is developed in the open on GitHub
and publicly available at https://github.com/diku-dk/futhark.

In this section, we discuss how our implementation diverges from the theo-
retical description. As Futhark is a real language with a fairly large number of
syntactical constructs, as well as features such as uniqueness types for support-
ing in-place updates and size-dependent types for reasoning about the sizes of
arrays, it would not be feasible to do a formal treatment of the entire language.

Futhark supports a small number of parallel higher-order functions, such as
map, reduce, scan, and filter, which are specially recognized by the compiler,
and exploited to perform optimisations and generate parallel code. User-defined
parallel higher-order functions are ultimately defined in terms of these. As a
result, the program produced by the defunctionaliser is not exclusively first-
order, but may contain fully saturated applications of these built-in functions.

5.1 Polymorphism, Function Types, and Monomorphisation

Futhark supports parametric let-polymorphism. Defunctionalisation, however,
works only on monomorphic programs and therefore, programs are monomor-
phized before being passed to the defunctionaliser.

https://github.com/diku-dk/futhark

150 A. K. Hovgaard et al.

Due to our restrictions on function types, it is necessary to distinguish
between type variables which may be instantiated with any type, and type vari-
ables which may only take on types of order zero. Without such distinction, one
could write an invalid program that we would not be able to defunctionalise, for
example by instantiating the type a with a function type in the following:

let ite ’a (b: bool) (x: a) (y: a) : a =
if b then x else y

To prevent this situation from happening, we have introduced the notion of lifted
type variables, written ’^a, which are unrestricted in the types that they may
be instantiated to, while the regular type variables may only take on types of
order zero. Consequently, a lifted type variable must be considered to be of order
greater than zero and is thus restricted in the same way as function types.

The Futhark equality and inequality operators == and != are overloaded oper-
ators, which also work on structural types, such as arrays and tuples. However,
Futhark does not support type classes [29] or equality types [11]. Allowing the
equality and inequality operators to work on values of abstract types (i.e., on all
non-lifted types) could potentially violate abstraction properties, which is the
reason for the special treatment of equality types and equality type variables in
the Standard ML programming language.

5.2 Array Shape Parameters

Futhark employs a system of runtime-checked size-dependent types, where the
programmer may give shape declarations in function definitions to express shape
invariants about parameter and result arrays. Shape parameters (listed before
ordinary parameters and enclosed in brackets) are not explicitly passed on appli-
cation. Instead, they are implicitly inferred from the arguments of the value
parameters. Defunctionalisation could potentially destroy the shape invariants.
For example, consider partially applying a function such as the following:

let f [n] (xs: [n]i32) (ys: [n]i32) = ...

In the implementation, we preserve the connection between the shapes of the
two array parameters by capturing the shape parameter n along with the array
parameter xs in the record for the closure environment. In the case of the func-
tion f, the defunctionalised program will look something like the following:

let f^ {n: i32 , xs: []i32} (ys: [n]i32) = ...
let f [n] (xs: [n]i32) = {n=n, xs=xs}

The Futhark compiler will then insert a dynamic check to verify that the size of
array ys is equal to the value of argument n.

Of course, built-in operations that truly rely on these invariants, such as zip,
will perform this shape check regardless, but by maintaining these invariants in
general, we prevent code from silently breaching the contract that was specified
by the programmer through the shape annotations in the types.

High-Performance Defunctionalisation in Futhark 151

Having extended Futhark with higher-order functions, it is useful to be able to
specify shape invariants on expressions of function type in general. This feature
can be implemented by eta-expanding the function expression and inserting type
ascriptions with shape annotations on the order-zero parameters and bodies. For
instance, the type ascription

e : ([n]i32 -> [m]i32) -> [m]i32

would be translated into the expression

\x -> (e (\(y:[n]i32) -> x y : [m]i32)) : [m]i32

This feature has not yet been implemented in Futhark.

5.3 Optimisations

When the defunctionalisation algorithm processes an application, the D-App
rule will replicate the lambda body (e0) at the point of application. This implicit
copying is equivalent to fully inlining all functions, which will produce very large
programs if the same function is called in many locations. In our implementation,
we instead perform lambda lifting [25] to move the definition of the lambda to a
top-level function, parameterized by an argument representing its lexical closure,
and simply insert a call to that function.

However, this lifting produces the opposite problem: we may now produce a
very large number of trivial functions. In particular, when lifting curried func-
tions that accept many parameters, we will create one function for each partial
application, corresponding to each parameter. To limit the copying and lifting,
our implementation extends the notion of static values with a dynamic function,
which is simply a first-order functional analogue to dynamic values. We then add
a translation rule similar to D-App that handles the case where the function is
a dynamic function rather than a Lam.

Finally, our implementation inlines lambdas with particularly simple bodies;
in particular those that contain just a single primitive operation or a record
literal. The latter case corresponds to functions produced for partial applications.

6 Empirical Evaluation

The defunctionalisation technique presented in this paper can be empirically
evaluated by two metrics. First, is the code produced by defunctionalisation effi-
cient? Second, are higher-order functions with our type restrictions useful? The
former question is the easier to answer, as we can simply rewrite a set of bench-
mark programs to make use of higher-order functions, and measure whether the
performance of the generated code changes. We have done this by using the exist-
ing Futhark benchmark suite, which contains more than thirty Futhark programs
translated from a range of other suites, including Accelerate [4], Rodinia [7],
Parboil [32], and FinPar [1]. These implementations all make heavy use of oper-
ations such as map, reduce, scan, filter, which used to be language constructs,

152 A. K. Hovgaard et al.

but are now higher-order functions that wrap compiler intrinsics. Further, most
benchmarks have been rewritten to make use of higher-order utility functions
(such as flip, curry, uncurry, and function composition and application) where
appropriate. As expected, this change had no impact on run-time performance,
although compilation times did increase by up to a factor of two.

The more interesting question is whether the restrictions we put on higher-
order functions are too onerous in practice. While some uses of higher-order
functions are impossible, many “functional design patterns” are unaffected by the
restrictions. Such examples include the use of higher-order functions for defining
a Futhark serialisation library [13,27] and for introducing the notion of functional
images [9], as we shall see in the following section. Higher-order functions also
make it possible to capture certain reusable parallel design patterns, for instance,
for flattening some cases of nested irregular parallelism [15].

6.1 Functional Images

Church Encoding can be used to represent objects such as integers via lambda
terms. While modern functional programmers tend to prefer built-in numeric
types for efficiency reasons, other representations of data as functions have
remained popular. One of these is functional images, as implemented in the
Haskell library Pan [9]. Here, an image is represented as a function from a point
on the plane to some value. In higher-order Futhark, we can define this as

type img ’a = point -> a
type cimage = img color

for appropriate definitions of point and color. Transformations on images are
then defined simply as function composition.

Interestingly, none of the combinators and transformations defined in Pan
require the aggregation of images in lists, or returning them from a branch.
Hence, we were able to translate the entirety of the Pan library to Futhark. The
reason is likely that Pan itself was designed for staged compilation, where Haskell
is merely used as a meta-language for generating code for some high-performance
object language [10]. This approach requires restrictions on the use of functions
that are essentially identical to the ones we introduced for Futhark. In Futhark,
we can directly generate high-performance parallel code, and modern GPUs are
easily powerful enough to render most functional images (and animations) at
a high frame rate. Essentially, once the compiler finishes its optimisations, we
are left with a trivial two-dimensional map that computes the color of each pixel
completely independently. Example images are shown on Fig. 10. The Mandel-
brot fractal, the implementation of which is translated from [26], in particular
is expensive to compute at high resolutions.

High-Performance Defunctionalisation in Futhark 153

Fig. 10. Images rendered by the Futhark implementation of functional images. The
annulus defined by the left-most image is used to overlay grey scale and colorized
Mandelbrot fractals. (Color figure online)

7 Allowing Conditionals of Function Type

Given that the main novelty enabling efficient defunctionalisation is the restric-
tions in the type system, it is interesting to consider how these restrictions could
be loosened to allow more programs to be typed and transformed, and what
consequences this would have for the efficiency of the transformed programs.

In the following, we consider lifting the restriction on the type of conditionals.
This change introduces a binary choice for the static value of a conditional and
this choice may depend on dynamic information. The produced static value must
capture this choice. Thus, we may extend the definition of static values as follows:

sv ::= · · · | Or sv1 sv2

It is important not to introduce more branching than necessary, so the static
values of the branches of a conditional should be appropriately combined to
isolate the dynamic choice at much as possible. In particular, if a conditional
returns a record, the Or static value should only be introduced for those record
fields that produce Lam static values.

The residual expression for a functional value occurring in a branch must
be extended to include some kind of token to indicate which branch is taken
at run time. Unfortunately, it is fairly complicated to devise a translation that
preserves typeability in the current type system. The residual expression of a
function occurring in a nested conditional would need to include as many tokens
as the maximum depth of nesting in the outermost conditional. Additionally,
the record capturing the free variables in a function would need to include the
union of all the free variables in each λ-abstraction that can be returned from
that conditional. Hence, we would have to include “dummy” record fields for
those variables that are not in scope in a given function, and “dummy” tokens
for functions that are not deeply nested in branches.

What is needed to remedy this situation, is the addition of (binary) sum
types to the language:

τ ::= · · · | τ1 + τ2

154 A. K. Hovgaard et al.

If we add binary sums, along with expression forms for injections and case-
matching, the transformation would just need to keep track of which branches
were taken to reach a particular function-type result and then wrap the usual
residual expression in appropriate injections. An application of an expression
with an Or static value would then perform pattern matching until it reaches
a Lam static value and then insert let-bindings to put the closed-over variables
into scope, for that particular function.

8 Related Work

Support for higher-order functions is not widespread in parallel programming
languages. For example, they are not supported in the pioneering work on
NESL [3], which was targeted at a vector execution model with limitations simi-
lar to modern GPUs. Data Parallel Haskell (DPH) [5] does support higher-order
functions via closure conversion, but targets traditional multicore CPUs where
this is a viable technique. The GPU language Harlan [22] is notable for its pow-
erful feature set, and it does support higher-order functions via Reynolds-style
defunctionalisation. The authors of Harlan note that this could cause perfor-
mance problems, but that it has not done so yet. This is likely because most of
the Harlan benchmark programs do not make much use of closures on the GPU.

A general body of related work includes mechanisms for removing abstrac-
tions at compile time including the techniques, used for instance by Accelerate
[4] and Obsidian [8], for embedded domain specific languages (EDSLs). These
languages use a staged compilation approach where Haskell is used as a meta-
language to generate first-order imperative target programs. While the target
programs are themselves first-order, meta-programs may use the full power of
Haskell, including higher-order functions. As our approach has limitations, so
does the EDSL approach; in particular, care has to be taken that source language
functions do not end up in target arrays. Other approaches at removing abstrac-
tions at compile time include the use of quoted domain specific languages [28],
techniques for multi-stage programming, such as [33], and the notion of static
interpretation of modules [12], which is also applied in the context of Futhark
[2,14] for eliminating even higher-order module language constructs entirely at
compile time (before monomorphisation).

Another body of related work includes the seminal work by Tait [34] and
Girard [16] on establishing the basic proof technique on using logical relations
for expressing normalisation and termination properties for the simply-typed
lambda calculus and System F, which has been the inspiring work for establishing
the property of termination for our defunctionalisation technique.

9 Conclusion and Future Work

We have shown a useful design for implementing higher-order functions in high-
performance functional languages, by using a defunctionalisation transformation
that exploits type-based restrictions on functions to avoid introducing branches

High-Performance Defunctionalisation in Futhark 155

in the resulting first-order program. We have proven this transformation correct.
Further, we have discussed the extensions and optimisations we found necessary
for applying the transformation in a real compiler, and demonstrated that the
type restrictions are not a great hindrance in practice.

References

1. Andreetta, C., et al.: FinPar: a parallel financial benchmark. ACM Trans. Arch.
Code Optim. (TACO) 13(2), 18:1–18:27 (2016)

2. Annenkov, D.: Adventures in formalisation: financial contracts, modules, and two-
level type theory. Ph.D. thesis, University of Copenhagen, April 2018

3. Blelloch, G.E.: Programming parallel algorithms. Commun. ACM (CACM) 39(3),
85–97 (1996)

4. Chakravarty, M.M., Keller, G., Lee, S., McDonell, T.L., Grover, V.: Accelerating
Haskell array codes with multicore GPUs. In: Workshop on Declarative Aspects of
Multicore Programming, DAMP 2011. ACM, January 2011

5. Chakravarty, M.M., Leshchinskiy, R., Jones, S.P., Keller, G., Marlow, S.: Data
parallel Haskell: a status report. In: Workshop on Declarative Aspects of Multicore
Programming, DAMP 2007. ACM, January 2007

6. Charguéraud, A.: Pretty-big-step semantics. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 41–60. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-37036-6 3

7. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: IEEE
International Symposium on Workload Characterization, IISWC 2009, October
2009

8. Claessen, K., Sheeran, M., Svensson, B.J.: Expressive array constructs in an embed-
ded GPU kernel programming language. In: Workshop on Declarative Aspects of
Multicore Programming, DAMP 2012. ACM, January 2012

9. Elliott, C.: Functional images. In: The Fun of Programming. Cornerstones of Com-
puting Series. Palgrave, March 2003

10. Elliott, C., Finne, S., de Moor, O.: Compiling embedded languages. J. Funct. Pro-
gram. 13(2), 455–481 (2003)

11. Elsman, M.: Polymorphic equality–no tags required. In: Second International
Workshop on Types in Compilation (TIC 1998), March 1998

12. Elsman, M.: Static interpretation of modules. In: Proceedings of the ACM SIG-
PLAN International Conference on Functional Programming, ICFP 1999. ACM
Press, September 1999

13. Elsman, M.: Type-specialized serialization with sharing. In: Sixth Symposium on
Trends in Functional Programming (TFP 2005), September 2005

14. Elsman, M., Henriksen, T., Annenkov, D., Oancea, C.E.: Static interpretation of
higher-order modules in Futhark: functional GPU programming in the large. Proc.
ACM Program. Lang. 2(ICFP), 97:1–97:30 (2018)

15. Elsman, M., Henriksen, T., Oancea, C.E.: Parallel Programming in Futhark.
Department of Computer Science, University of Copenhagen, November 2018.
https://futhark-book.readthedocs.io

16. Girard, J.Y.: Interpretation Fonctionnelle et Elimination des Coupures de
l’Arithmetique d’Ordre Superieur. In: Proceedings of the Second Scandinavian
Logic Symposium, pp. 63–92. North-Holland (1971)

https://doi.org/10.1007/978-3-642-37036-6_3
https://doi.org/10.1007/978-3-642-37036-6_3
https://futhark-book.readthedocs.io

156 A. K. Hovgaard et al.

17. Henriksen, T.: Design and implementation of the Futhark programming language.
Ph.D. thesis, DIKU, University of Copenhagen, November 2017

18. Henriksen, T., Elsman, M., Oancea, C.E.: Size slicing: a hybrid approach to size
inference in Futhark. In: Proceedings of the 3rd ACM SIGPLAN International
Workshop on Functional High-Performance Computing, FHPC 2014. ACM (2014)

19. Henriksen, T., Elsman, M., Oancea, C.E.: Modular acceleration: tricky cases
of functional high-performance computing. In: Proceedings of the 7th ACM
SIGPLAN International Workshop on Functional High-Performance Computing,
FHPC 2018. ACM, New York, September 2018

20. Henriksen, T., Serup, N.G., Elsman, M., Henglein, F., Oancea, C.E.: Futhark:
purely functional GPU-programming with nested parallelism and in-place array
updates. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, pp. 556–571. ACM, June 2017

21. Henriksen, T., Thorøe, F., Elsman, M., Oancea, C.E.: Incremental flattening for
nested data parallelism. In: Proceedings of the 24th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2019. ACM (2019)

22. Holk, E., Newton, R., Siek, J., Lumsdaine, A.: Region-based memory management
for GPU programming languages: enabling rich data structures on a spartan host.
In: Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2014, pp. 141–155.
ACM, New York, October 2014

23. Hovgaard, A.K.: Higher-order functions for a high-performance programming lan-
guage for GPUs. Master’s thesis, Department of Computer Science, Faculty of
Science, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen,
May 2018

24. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107
(1989)

25. Johnsson, T.: Lambda lifting: transforming programs to recursive equations. In:
Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 190–203. Springer, Hei-
delberg (1985). https://doi.org/10.1007/3-540-15975-4 37

26. Jones, M.P.: Composing fractals. J. Funct. Program. 14(6), 715–725 (2004)
27. Kennedy, A.J.: Functional pearl: pickler combinators. J. Funct. Program. 14(6),

727–739 (2004)
28. Najd, S., Lindley, S., Svenningsson, J., Wadler, P.: Everything old is new again:

quoted domain-specific languages. In: Proceedings of the ACM Workshop on Par-
tial Evaluation and Program Manipulation, PEPM 2016. ACM, January 2016

29. Peterson, J., Jones, M.: Implementing type classes. In: Proceedings of the ACM
SIGPLAN 1993 Conference on Programming Language Design and Implementa-
tion, PLDI 1993, pp. 227–236. ACM, New York (1993)

30. Poulsen, C.B., Mosses, P.D.: Flag-based big-step semantics. J. Log. Algebr. Meth-
ods Program. 88, 174–190 (2017)

31. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proceedings of the ACM Annual Conference-Volume 2, pp. 717–740. ACM
(1972)

32. Stratton, J.A., et al.: Parboil: a revised benchmark suite for scientific and com-
mercial throughput computing. Technical report, University of Illinois at Urbana-
Champaign, IMPACT-12-01 (2012)

33. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit anno-
tations. Theor. Comput. Sci. 248(1), 211–242 (2000). PEPM 1997

34. Tait, W.W.: Intensional interpretations of functionals of finite type. J. Symb. Log.
32, 198–212 (1967)

https://doi.org/10.1007/3-540-15975-4_37

Author Index

Algehed, Maximilian 94

Belikov, Evgenij 1

de Vries, Folkert 20

Einarsdóttir, Sólrún Halla 94
Elsman, Martin 136

Gerdes, Alex 94
Gozillon, Andrew 46

Haeri, Seyed Hossein 46
Handley, Martin A. T. 114
Henriksen, Troels 136

Hovgaard, Anders Kiel 136
Hutton, Graham 114

Jansson, Patrik 94

Keir, Paul 46

Loidl, Hans-Wolfgang 1
López-González, J. 74

Michaelson, Greg 1

Pérez, Jorge A. 20

Serrano, Juan M. 74

	Preface
	Organization
	Contents
	Colocation of Potential Parallelism in a Distributed Adaptive Run-Time System for Parallel Haskell
	1 Introduction
	2 Distributed Graph Reduction in the GUM RTS
	2.1 Haskell Extension for Semi-explicit Parallelism
	2.2 Memory Management
	2.3 Thread and Parallelism Management
	2.4 Workload Distribution

	3 Spark Colocation
	3.1 Motivating Example
	3.2 Design
	3.3 Implementation

	4 Evaluation
	4.1 Methodology
	4.2 Target Platform
	4.3 Applications
	4.4 Results

	5 Related Work
	6 Conclusion
	References

	Reversible Session-Based Concurrency in Haskell
	1 Introduction
	2 The MP Model of Reversible Concurrent Processes
	2.1 Overview
	2.2 Configurations and Processes
	2.3 Global and Local Types
	2.4 Projection
	2.5 Example: Three-Buyer Protocol

	3 Implementing the MP Model in Haskell
	3.1 DSLs with the Free Monad
	3.2 Implementing Processes
	3.3 Global Types
	3.4 A Reversible Semantics
	3.5 Putting It All Together
	3.6 Causal Consistency?

	4 Running and Debugging Programs
	5 Discussion and Concluding Remarks
	5.1 Benefits of Pure Functional Programming
	5.2 Concluding Remarks

	References

	Intrinsic Currying for C++ Template Metaprograms
	1 Introduction
	2 Elementary Metaprogramming
	2.1 Higher Order Metaprogramming
	2.2 The Identity Metafunction

	3 Curried Template Evaluation
	3.1 Components of Implicit Currying
	3.2 Folding with Types

	4 Variadic and Nullary Metafunctions
	4.1 An Antidetection Idiom
	4.2 The Combining Operation
	4.3 Explicit Fixed Arity

	5 Using the Curtains API
	5.1 Defining Metafunctions Using Equations
	5.2 Structured Recursion
	5.3 The Strict Fixed-Point Combinator

	6 Related Work
	7 Conclusion
	A Appendix A
	A.1 Quotation for a Class Template Argument
	A.2 Curry-Invoke with Arity
	A.3 Conditional Invoke with Arity
	A.4 Additional Utility Metafunctions
	A.5 A Sample Variadic Metafunction: [style=cppstyle,literate=,,1]constvq
	A.6 Point-Free Reverse From a Right-Fold
	A.7 Point-Free Left-Fold From a Right-Fold
	A.8 The SKI Combinators
	A.9 Point-Free Ackermann Function from a Right-Fold
	A.10 Non-recursive Factorial for Use with the Fixpoint Combinator
	A.11 Primitive Left-Fold from a C++17 Fold Expression
	A.12 Reduction Steps of a Sample Curtains Expression

	References

	Towards Optic-Based Algebraic Theories: The Case of Lenses
	1 Introduction
	2 Background
	2.1 Natural Transformations
	2.2 State
	2.3 Lens
	2.4 MonadState

	3 The Algebraic Theory for Lenses
	3.1 Data Layer Design with Lens Algebras

	4 Composable Lens Algebras
	4.1 Extending Data Layer Design with Homomorphisms

	5 Related Work
	5.1 Profunctor Lenses
	5.2 Monadic Lenses
	5.3 Entangled State Monads

	6 Conclusions
	A Definitions and Proofs
	References

	Saint: An API-Generic Type-Safe Interpreter
	1 Introduction
	1.1 APIs as Values
	1.2 Type Representations
	1.3 Towards a Type-Safe Interpreter
	1.4 Contributions

	2 Typed Values
	2.1 Generalising Type Representations
	2.2 Type Equality for Generalised TypedValues
	2.3 Constructing Universes
	2.4 Implementing Tags
	2.5 The Saint API

	3 Type-Safe Interpretation
	4 Case Study: GRACe
	5 Related Work
	6 Conclusions and Future Work
	References

	Improving Haskell
	1 Introduction
	2 Example
	3 Improvement Theory
	3.1 Syntax and Semantics
	3.2 Contexts
	3.3 Improvement
	3.4 Inequational Reasoning
	3.5 The Tick Algebra

	4 System Architecture
	4.1 Read-Eval-Print-Loop (Repl)
	4.2 Inequational Layer
	4.3 Primitive Rewrites, Congruence Combinators, and Kure
	4.4 Cost-Equivalent Contexts
	4.5 Context Manipulation
	4.6 Inequational Reasoning

	5 Worker/Wrapper Transformation
	5.1 Correctness
	5.2 Improvement
	5.3 Example

	6 Mechanising Fast Reverse
	7 Related Work
	8 Conclusion and Further Work
	References

	High-Performance Defunctionalisation in Futhark
	1 Introduction
	2 Language
	2.1 Syntax
	2.2 Typing Rules
	2.3 Semantics

	3 Defunctionalisation
	4 Meta Theory
	4.1 Type Soundness and Normalisation
	4.2 Translation Termination and Preservation of Typing
	4.3 Preservation of Meaning
	4.4 Correctness of Defunctionalisation

	5 Implementation
	5.1 Polymorphism, Function Types, and Monomorphisation
	5.2 Array Shape Parameters
	5.3 Optimisations

	6 Empirical Evaluation
	6.1 Functional Images

	7 Allowing Conditionals of Function Type
	8 Related Work
	9 Conclusion and Future Work
	References

	Author Index

