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Abstract. Fault Injections (FI) against hardware circuits can make a
system inoperable or lead to information security breaches. FI can be
used preemptively in order to detect and mitigate weaknesses in a design.
FI is an old field of study and therefore numerous techniques and tools
can be used for that purpose. Each technique can be used at different
levels of circuit design, and has strengths and weaknesses. In this paper,
we review these techniques to show their pros and cons and more pre-
cisely we highlight their shortcomings with respect to the complexity of
modern systems.

1 Introduction

In the field of hardware security, Fault Injection (FI) is a technique to alter the
correct execution of a program in a chip. The resulting errors can be harnessed
in order to weaken the security of the device, by extracting cryptographic keys
for example. In the case of hardware security, the distinction between errors (the
internal system state is erroneous) and failures (the behaviour does not follow
specifications) is blurred. Indeed, the attacker can observe, or deduce, the state
of the device though its interaction with the environment; thus it is considered
that the attacker can observe errors and exploit them. For example, a timing
attack can leak a password during its verification. It is therefore common to use
the term errors to designate either errors or failures.

A fault may be caused by radiation (laser pulses, electromagnetic pulses,
alpha particles, . . . ), power glitches, clock glitches, abnormal temperatures, etc.
Faults are naturally found in hardware, but can also be voluntarily caused by
an attacker. In all cases, they can often be exploited for malicious activities.
Therefore faults must be mitigated.

FI can be used to infer the faults that can be created in a system, to analyse
the errors created as a consequence and whether they make the system vul-
nerable. The difficulty is in the trade-off between the size of the state space to
explore and the speed of the analysis. We will show that the complexity of mod-
ern system renders FI tools less precise because they cannot accurately model
the erroneous states.
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In this paper, after a context presentation in Sect. 2, we review the techniques
and tools to assess the vulnerability of a device to FI in Sect. 3. The shortcomings
of actual techniques will be presented in Sect. 4 as well as a discussion on how
to improve them. Finally, the conclusion is drawn in Sect. 5.

2 Context Safety/Security

FI is an old research discipline [1–4], which originates from the study of fault
tolerant systems, mainly from aerospace. FI is defined by Arlat [5] as a valida-
tion technique of dependability for fault tolerant systems. It consists in observ-
ing system behaviour in presence of faults defined with a fault model. At the
beginning, FI was applied on hardware components. Consequently, correspond-
ing fault models were comprised of effects that were deemed representative for
failing logic elements, in particular stuck-at logical zero or one. One would be
able to inject a fault at transistor level which models an unintended physical
effect, such as a signal transition caused by a heavy ion hit and resulting in a
communication error at system level for example. While this approach is close
to reality, a practical implementation is barely possible.

All FI techniques aim to solve several problems:

– Injection of faults;
– Observation of their effects;
– Intrusiveness of the solution;
– Capacity to explore the entire state space.

The FI techniques have been recognized for a long time necessary to validate
the dependability of a system by analysing the behaviour of devices when a fault
occurs. More recently, secure devices have to face fault attacks which are similar
to failure problems. Efforts have been made to develop techniques for injecting
faults into a system prototype or model.

When considering information security, fault injection assumes that the
attacker is able to target specific assets in the system. It means that she knows
exactly what kind of behaviour she requires to reach her goal. In case of targeting
cryptographic algorithms [6,7] or assets (keys, tokens, . . . ) several solutions have
been proposed to protect them against fault injections [8]. Applications can be
designed to be resilient against FI, but this resilience mainly focus on software
execution of these applications, in some cases this can be a problem, indeed a
complete confidence is given to hardware.

3 Fault Injection Techniques

Several techniques exist to inject faults, all of them with advantages and disad-
vantages. Here is an overview of these techniques.
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3.1 Hardware-Based FI

Hardware based FI aims at disturbing hardware with physical and environmental
parameters (heavy ion radiation, electromagnetic interferences [9], etc.), injecting
voltage dips on power rails [10,11] laser fault injection [12] or modifying the value
of some pins with circuit editing. The main advantage of this family of techniques
over the other solutions is that they evaluate the final device. To achieve this
kind of FI it is necessary to possess a final version of the evaluated device.

The effects of physical injections are difficult to control and repeatability
of experiment is hard to achieve. To obtain repeatability, instead of injecting
physically a fault, injection mechanisms emulate effects of physical perturbations
on hardware such as pin-level FI [13].

Fault Injection system for Study of Transient fault effects (FIST) uses heavy-
ion radiation or power disturbance faults to create faults inside a chip when it is
exposed to radiation. It can cause single or multiple bit-flips producing transient
faults at random locations directly inside a chip, which cannot be done with
pin-level injections.

Messaline [5] is a pin-level fault forcing system. It uses both active probes
and sockets to conduct pin-level fault injection. It can inject stuck-at, open,
bridging and complex logical faults, among others. It can also tune the duration
of the fault existence and its frequency. RIFLE [14] is also a pin-level fault
injection system for dependability validation. This system can be adapted to a
wide range of target systems and faults are mainly injected in processor pins. FI
is deterministic and can be reproduced if needed. Different kind of faults can be
injected and the fault injector is able to detect whether the injected fault has
produced an error or not without specific hardware.

Obviously, hardware-based tools are also hardware dependent. Furthermore,
the setup of these hardware-based injectors is rather complex.

3.2 Simulation-Based FI

Simulation based hardware fault injection techniques simulate hardware descrip-
tion of tested circuit using high-level models (mostly Hardware Description Lan-
guage (HDL) models). It consists in injecting faults into that model to evaluate
their impacts. Most of the tools modify the hardware description of tested cir-
cuit to include the components necessary to inject faults. These fault injection
components can be designed to inject different fault behaviours depending on
the fault model. Faults can also be injected using hardware description language
simulator commands which allow variables and signals of circuit being modified.

A major disadvantage of simulation based techniques is that they are
extremely slow. Simulating the register transfer level (RTL) description of a cir-
cuit is multiple orders of magnitude slower than actual circuit operation speed.
Hence, even for relatively small processors, simulation based fault injection tools
can only evaluate fault propagation for a very short time interval.

VERIFY [15] (VHDL-based Evaluation of Reliability by Injection Faults Effi-
ciently) uses an extension of VHDL for describing faults correlated to a com-
ponent, enabling hardware manufacturers to express their knowledge of fault
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behaviour on their components. Multi-threaded fault injection which uses check-
points and comparison with a golden run is used for faster simulation of faulty
runs. Proposed extension to VHDL language unfortunately requires modifica-
tion on language itself. VERIFY uses an integrated fault model which cannot
be extended.

MEFISTO-C [16] conducts fault injection experiments using VHDL simu-
lation models. The tool is an improved version of MEFISTO tool which was
developed jointly by LAAS-CNRS and Chalmers. MEFISTO-C uses a VHDL
simulator and injects faults via simulator commands in variables and signals
defined by a VHDL model. It offers to users a variety of predefined fault mod-
els as well as other features to set-up and automatically conduct fault injection
campaigns.

FAUMachine [17] is a tool allowing simulation of complete systems, it was
the main core for different works in the field of fault injections [18,19]. Its partic-
ularity is that it allows to simulate various types of faults and in various devices
connected to the system, while making possible the observation of the impacts
on the total operation of the system

3.3 Emulation-Based FI

System emulation uses hardware prototyping on Field Programmable Gate
Arrays (FPGA) based logic emulation systems [20,21]. This technique has
been presented as an alternative solution in order to reduce time spent during
simulation-based fault injection campaigns.

This technique allows designer to study the actual behaviour of circuits in
application environment, taking into account real-time interactions. However,
when an emulator is used, initial VHDL description must be complete and fully
synthesizable. Modified circuit contains sequences of operations which can flip
their output bit based on a control signal value. Such techniques require an
additional control mechanism to specify time and location of fault injection in
circuit. If such a control mechanism is implemented in circuit, its complexity
increases with number of fault injectable memory elements.

Antoni et al. [22] proposed a technique to inject a fault on chosen memory
elements at run time on a FPGA using runtime reconfiguration. This eliminates
the need for having a complex control circuit to determine injection location.
However, the time required to reconfigure the circuit could be significant when
compared to the total application run time.

Civera et al. [20] proposed another solution to provide a more flexible con-
trol over runtime fault injection. They used modified flip-flop circuits capable of
injecting faults based on a control bit associated with each flip-flop. All these con-
trol bits are tied together like a scan-chain and at run time can be programmed
to inject fault in any desired flip-flop in the circuit.
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3.4 Software Implemented FI

The objective of these techniques consists in reproducing at software level errors
that would have been produced by faults at hardware level. They are mostly
used in order to detect and predict vulnerabilities with respect to hardware
fault injection. Software implemented fault injection (SWIFI) tools use a software
level abstraction of fault models in order to inject errors in software while it runs
or by modifying programs before execution. This approach does not need any
hardware modification. SWIFI provides a way to test complete systems including
the operating system and the applicative layer. This makes SWIFI techniques
quite popular and a large number of such tools exists, Table 1 summarizes some
of them and explore their particularities.

Table 1. Overview of some SWIFI techniques

SWIFI technique Fault model Fault target Injection point

CEU [23] Bit flip Variables Runtime
(interruptions)

DOCTOR [24] Bit flips Communications,
variables

Preruntime

EFS [25] Bit flips, code insertion,
data modifications

Control flow, variables Runtime (OS
service)

FERRARI [26] Address, data or flags
modifications

Control flow, variables Runtime (parallel
process)

FIES [27] Bit flip, bridging and
stuck-at faults

Control flow, variables Runtime

XCEPTION [28] Bit flip, bridging and
stuck-at faults

Variables Runtime
(interruptions)

The most common fault models are:

– instruction skip (one or several instructions are not executed),
– instruction modification (one or several instructions are modified according

to a pattern such as single bit-flip, random change, . . . ).

Common software mechanisms used for run time FI, such as perturba-
tion functions require a modification of the program. Unfortunately, this extra
instrumentation causes execution overhead that will affect the system behaviour
(speed, memory consumption, . . . ). For example, FERRARI [26] and EFS [25]
tools require some context switches between its fault injection process and target
system process.

A common problem with run time approach is the intrusiveness which refers
to the alteration of the original system due to fault injection experiment setup
(e.g. changes in program flow, additional components, temporal variation, ...).
Depending on the actual intention of fault injection, respective tools have to
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cope with completely different requirements. In contrast to an ideal tool which
always provides low intrusiveness, high visibility and high performance, available
tools are only specialized on a subset of these requirements.

The major drawback of SWIFI is related to state space problem. The tools
often generate much more faults than any other techniques (since the abstrac-
tion level has a richer representation, i.e. there may be 232 possible instruction
values in a 32-bit system and less that 232 wires in the chip). Yet most of the
time generated faults do not lead to failures, the error may have been silently
suppressed during the execution. The challenge is to either generate only a min-
imal set of faults (those that can lead to a Silent Data Corruption) or to prune
them while they are generated. This leads to several optimization phases during
simulation and remains a difficult challenge.

In the context of information security, errors can often be exploited even in
the absence of failures. An error can cause copying of a secret in a vulnerable
part of memory for example. Since SWIFI tools use a software level abstraction
of fault models, they cannot capture such vulnerabilities.

4 Techniques Validity

We consider ourselves as evaluators. When it comes to FI, we want to evaluate if
a technique is more appropriate in order to evaluate behaviour of a device when
a fault occur.

Various injection means exist and several techniques have been using them
in different way and targeting several type of devices. Since simulation and emu-
lation based techniques require a white-box model (access to HDL sources, . . . )
that are most of the time not available to evaluators.

In this section we limit ourselves to hardware-based and software-based injec-
tions techniques.

4.1 Experiences

In order to test the consistency of SWIFI models, in particular their software
level abstraction of fault models with real observations, we conducted different
experiments, which we will present here.

Faustine Platform. Our platform, called Faustine Fig. 1, is made of a Keysight
33509B pulse generator, a Keysight 81160A signal generator and a Milmega
80RF1000-175 power amplifier, connected in sequence to generate a signal. This
signal then passes through a Langer RF probe RF B 0.3-3 located on the targeted
chip to generate an Electromagnetic Fault Injection (EMFI).

In order to launch a fault injection, a synchronization signal (a trigger) is
sent by the targeted chip General-Purpose Input/Output (GPIO) (controlled
from the code) directly to the 33509B pulse generator. This experimental trick,
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Fig. 1. Overview of Faustine platform

possible when the attacker has control of the code (i.e. only for vulnerability
assessment) is not mandatory. Other synchronization possibilities include sniffing
communications with the target or measuring its EM emissions to find a relevant
pattern.

The location of the probe on the chip was chosen after a scan that deter-
mined the most sensitive area on the chip. The same location was kept for all
experiments.

Microcontroller. We first analyse a Microcontroller (µC). The targeted board
is an STM32VLDISCOVERY board with an STM32F100RB chip, embedding
an ARM Cortex-M3 core running at 24 MHz (41.7 ns clock period). As shown in
Fig. 2, probe is just on top of the chip.

On this board the tested software is a PIN code checker, the entered PIN
code is compared with the internal PIN code if it is false (false=1 in Listing 1.1),
the status variable takes the value 0xFFFFFFFF, otherwise it takes 0x55555555.
Thus in the first case, access will be denied, in the second it will be granted.

if(false == 1) {

status = 0xFFFFFFFF; }

else {

status = 0x55555555; }

Listing 1.1. Targeted C code



250 S. K. Bukasa et al.

Fig. 2. STM32 under probe

cmp r3, #1 ; r3 contains *false*

ite eq ; if then else

moveq.w r4, #4294967295 ; 0xFFFFFFFF

movne.w r4, #1431655765 ; 0x55555555

Listing 1.2. Resulting assembly (thumb2)

As we can see on Listing 1.2, in order to modify the behaviour of the program
and thus get access without the PIN code, we can target the if then else (ite)
instruction. If it is possible to not execute it, then the next two instructions will
execute in sequence and, as their result is stored in the same register (r4), only
the second assignment will have an impact (overwriting the first one).

In the case of SWIFI, we consider the software level abstraction of fault
model by deleting (manual edition of the binary) this instruction which allows
us to see that it is indeed the right target, then we target the execution of this
instruction with a hardware fault.

In this way, when we inject our fault, we try to synchronize with the code
snippet in Listing 1.2 and target the instruction ite eq. In 10% of the cases, the
execution is faulty (status = 0x5555555), proving that the SWIFI allows us in
this case to find a point of sensitivity and thus to inject our fault effectively.

However, we found that different timings (over a span of 5 instructions) were
able to get our faulty behaviour. This can have several plausible explanations,
such as the fact that several different skipped instructions can lead to the same
impact, or that the ite eq instruction can be impacted at different levels of its
execution pipeline.
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System-on-Chip. We then analysed a System-on-Chip (SoC). The targeted
board is a Raspberry Pi3 board with a BCM2837 chip, which embeds 4 ARM
Cortex-A53 cores, running at up to 1.2 GHz (833ps clock period).

while(1){

wait(x*desynch value+x);

turn_on_LED(y);

wait(x*activation duration+x)

turn_off_LED(y);

}

Listing 1.3. Targeted C code

Here we want to evaluate the impact of a fault and compare it to the SWIFI
models. The goal is to see if a hardware generated fault can be explained by
a software abstraction of the fault model, represented by software modifica-
tion. Thus we inject faults at different timings during the execution of a loop
(Listing 1.3) on 2 of the 4 cores, others being used to communicate with the
host, while desynchronizing them (they are not started at the same time). The
2 cores (x) are activating their own signal (y) during a given time in parameter
(x ∗ activation duration + x), this leads to a time span visible in Fig. 3.

Fig. 3. Signals are desynchronized. Channel 1 for GPIO signal sent by core 1, channel
2 for GPIO signal sent by core 2. Time span between the two rising edges is due to
“x ∗ desynch value + x” in Listing 1.3.
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Whatever the timing of the injection, the impact was the same: this had
the effect of largely modifying the execution time of the loop on each core,
alternately faster or slower in a random way. Another effect is to synchronize
the different cores between them (in Fig. 4), but also to break one of the two
channels of communication with our host (application channel on one core and
debug channel using JTAG).

Fig. 4. Signals are shorter and synchronized. First, time span seems to have disap-
peared, then “x ∗ activation duration + x” (in Listing 1.3) seems to have changed to
be equal in the 2 cores.

In this case we were not able to find a match with software abstraction of
the fault model as usually used in SWIFI techniques. So this lead us to question
what makes the difference between a µC and a SoC and thus what prevents us
from using SWIFI in the second case.

4.2 System Complexity

Abstraction Layers. A computing system is a complex device. In order to
allow humans to build mental models of how such systems work, this complexity
is often hidden behind abstraction layers as visible in Fig. 5.

There is a main division between these layers corresponding to the hard-
ware/software interface constituted by the Instruction Set Architecture (ISA).
On the upper side, software is constituted of a succession of instructions.
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Software

Microarchitecture

Instruction set

OS Drivers

Applications

Datapath

Registers ALU. . .

Fig. 5. Abstraction layers

On the lower side, the micro-architecture (hardware) is responsible for upholding
this abstract representation.

The micro-architecture is widely different if we consider a µC or a SoC.
In the first case, the instruction execution flow is quite simple, with a single
core, a simple memory hierarchy, in-order execution, etc. In the case of a SoC,
the micro-architecture can be quite complex. Several core can share the same
memory space, with a complex memory hierarchy (several cache levels, shared
or not). Instructions can be executed out-of-order or even speculatively. What
happens in hardware differs from the simple model provided by the ISA.

SWIFI Shortcomings. The hardware part is mostly fixed, the application
designer cannot modify it whereas she controls the software part of the appli-
cation. In consequences, in order to protect her application, she will act on the
software only. This fact remains a main reason that SWIFI techniques are quite
popular: they allow the application developer to act upon the results. Therefore
SWIFI techniques are preferred by software developers whereas hardware-based
fault models are preferred by hardware designers in order to secure the system.
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The problem is that the application still executes on a given hardware that
may or may not be vulnerable to fault injection. The application developer would
like to free herself from this responsibility by considering only software.

Yet SWIFI cannot capture the full extent of hardware fault injection con-
sequences. Indeed they are not able to analyze the range of interactions and
components present at the hardware level (the microarchitecture in Fig. 5) by
abstracting the behaviour at the software level. Consider a Direct Memory Access
(DMA) transfer for example. In this case, a section of memory is copied to
another without the Central Processing Unit (CPU) involvement. Instructions
are present to describe the desired memory transfer then it is enforced in parallel
of the program execution. Therefore, any fault on the DMA transfer cannot be
captured by a SWIFI technique.

Complexity Evolution. It can be argued that cases that cannot be captured
by SWIFI, such as DMA transfers, are special cases not representative of classical
applications.

But as we have show in Sect. 4.1, if these asynchronous behaviours are seldom
present in simple systems, they are ubiquitous in modern SoCs. In order to
squeeze the maximum performance out of modern SoCs, a lot of processing is
done in parallel of the instruction flow execution.

The recent trend is in more complex systems, not simpler. As a consequence,
SWIFI techniques are less and less able to capture the extent of possible errors
in these systems.

5 Conclusions

FI tools are quite useful in the context of dependability and information security.
They can be used to assess the security of a system with respect to fault attacks.
Application developers mostly use SWIFI tools to predict the behaviour of their
program in the event of a fault according to a software abstraction of the fault
model. However, we have seen that the part targeted by the fault attacks is at
the microarchitecture level which is the physical representation of the system,
we have seen that in the case of a simple system, such as an µC (also in [29,30]),
it was possible to find an abstraction at the software level of behaviour occurring
at the hardware level. Nevertheless, through the experiments we conducted it
appeared to us that on systems where the microarchitecture is more complex,
as in the case of the SoC it became complex to find an abstraction at the soft-
ware level of the models of faults corresponding to those generally considered
by SWIFI methods (bit-flip, stuck-at, skip instruction, etc.). As a consequence,
SWIFI is less and less relevant for such systems.
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27. Höller, A., Rauter, T., Iber, J., Kreiner, C.: Diverse compiling for microproces-
sor fault detection in temporal redundant systems. In: 2015 IEEE International
Conference on Computer and Information Technology; Ubiquitous Computing and
Communications; Dependable, Autonomic and Secure Computing; Pervasive Intel-
ligence and Computing, pp. 1928–1935, October 2015

28. Carreira, J., Madeira, H., Silva, J.G., et al.: Xception: software fault injection and
monitoring in processor functional units. Dependable Comput. Fault Tolerant Syst.
10, 245–266 (1998)

29. Yuce, B., Ghalaty, N.F., Schaumont, P.: Improving fault attacks on embedded soft-
ware using RISC pipeline characterization. In: 2015 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC), pp. 97–108. IEEE (2015)

30. Riviere, L., Najm, Z., Rauzy, P., Danger, J.-L., Bringer, J., Sauvage, L.: High
precision fault injections on the instruction cache of ARMv7-M architectures. arXiv
preprint arXiv:1510.01537 (2015)

http://arxiv.org/abs/1510.01537

	When Fault Injection Collides with Hardware Complexity
	1 Introduction
	2 Context Safety/Security
	3 Fault Injection Techniques
	3.1 Hardware-Based FI
	3.2 Simulation-Based FI
	3.3 Emulation-Based FI
	3.4 Software Implemented FI

	4 Techniques Validity
	4.1 Experiences
	4.2 System Complexity

	5 Conclusions
	References




