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Preface

This volume contains the papers presented at the 11th International Symposium on
Foundations and Practice of Security (FPS 2018), which was held at Gina Cody School
of Engineering and Computer Science, Concordia University, Montreal, Quebec,
Canada, during November 13–15, 2018. The Symposium received 51 submissions,
from countries all over the world. Each paper was reviewed by at least three committee
members. The Program Committee selected 16 full papers for presentation. The pro-
gram was completed with one short paper and one position paper, and three excellent
invited talks given by Guang Gong (University of Waterloo), Sanjay Goel (University
at Albany, SUNY) and Sébastien Gambs (Université du Québec à Montréal, UQAM).
At least three reviews were given for each submitted paper. The decision on acceptance
or rejection in the review process was completed after intensive discussions over a
period of one week.

Many people contributed to the success of FPS 2018. First, we would like to thank
all the authors who submitted their research results. The selection was a challenging
task and we sincerely thank all the Program Committee members, as well as the
external reviewers, who volunteer to read and discuss the papers. We greatly thank the
general chair, Frédéric Cuppens (IMT Atlantique); the organization chair, Amr Youssef
(Concordia University, Canada); the local organization chairs, Paria Shirani (Concordia
University, Canada) and Jun Yan (Concordia University, Canada); and the publications
and publicity chairs, Arash Mohammadi (Concordia University, Canada) and Joaquin
Garcia-Alfaro (IMT, Paris-Saclay, France). We also want to express our gratitude to all
the attendees and volunteers. Last but, by no means least, we want to thank all the
sponsors for making the event possible.

We hope the articles contained in this proceedings volume will be valuable for your
professional activities in the area.

February 2019 Nur Zincir-Heywood
Guillaume Bonfante

Mourad Debbabi
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Securing Internet-of-Things

Guang Gong(B)

Department of Electrical and Computer Engineering, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

ggong@uwaterloo.ca

Abstract. In this survey, we first present some vulnerabilities and
attacks on IoT systems, and classification of IoT devices, we then show
the evolution of the development of lightweight cryptography for securing
IoT, the metrics for the design of lightweight cryptography, and the appli-
cations in privacy preserving authentication protocols. We use examples
including the development of Simon, Simeck, and sLiSCP/sLiSCP-Light
lightweight ciphers to demonstrate those approaches.

Keywords: Internet-of-Things (IoT) · Security and privacy ·
Lightweight cryptography

1 Introduction

The IoT connects an extraordinarily wide range of computing technologies,
spanning from computers and servers through to smart devices. Sensors, actu-
ators, radio frequency identification (RFID) tags, vehicular ad hoc networks
(VANETs) and micro-controllers equipped with RF transceivers capture and
communicate various types of data related to, for example, industrial and build-
ing control, e-health (e.g., wearable devices embedded in our clothing), smart
energy grid, home automation (Internet-connected appliances in our increasingly
smart homes, such as washing machines, dryers, and refrigerators), self driving
cars, and embedded systems. That data is transmitted through the Internet
via wireless, wired and/or hybrid to back-end business application/integration
servers that receive and process it into meaningful information (such as data
analytic services and cloud analytic services). Personal and potentially sensitive
information may flow through shared data centres and the cloud, where it can
be exposed to multiple shareholders and, more broadly, to countless business
partners. A graphic schematic of information flow in the IoT system is shown in
Fig. 1.

There is consensus that IoT will continue to grow by approximately 20% per
year, and the greatest risks for IoT are security, scalability, and reliability [14]. In
2017, IoT devices outnumbered the world’s population! It is expected that there
will be 30 billion connected devices by 2020, each with different operational and

Supported by NSERC.

c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-18419-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18419-3_1&domain=pdf
http://orcid.org/0000-0003-2684-9259
https://doi.org/10.1007/978-3-030-18419-3_1


4 G. Gong

Fig. 1. A diagram of information flow of the IoT

security requirements. Much of the growth in IoT stems from the volume and
diversity of data produced by IoT devices. The value of this data has given rise to
new economic opportunities, such as data markets. At the same time, it also gen-
erates new vulnerabilities for security and privacy due to rapidly increasing cyber
attacks against the critical infrastructure. According to current developments,
the most rapid growing applications of IoT are smart cities (≈26%), industrial
IoT (≈24%), connected health (≈20%), followed by smart homes (≈14%), then
connected cars, wearables, and smart utilities.

This survey article intents to provide the envisions of vulnerabilities, attacks
and countermeasures in securing IoT. The rest of the paper is organized as
follows. In Sect. 2, we introduce vulnerabilities and attacks on IoT systems,
and some efforts for standardization of IoT security mechanisms. In Sect. 3,
we provide the classification of IoT devices according to their communication
transmission systems. In Sect. 4, we show the evolution of how lightweight cryp-
tography (LWC) has been merged as a new interdisciplinary research field of
electrical and computer engineering, cryptography, and computer science from
lightweight cipher suites’ design to privacy preserving authentication protocols.
Section 5 provides an example of such an evolution for LWC using our work from
Simeck to sLiSCP/sLiSCP-light. We conclude this paper in Sect. 6 by presenting
some open problems and remarks.

2 Challenges in Securing IoT

The challenges for securing IoT come from security (how to securely share pri-
vate information), scalability (how to interface different protocols and to opti-
mize connectivity (e.g. 5G cellular systems), and reliability (how much available
resources can be allocated to each task).

2.1 Attacks

The complexity, large volume and need for real-time access to data (coined
as big data) within IoT systems make it extremely challenging to implement
security and privacy protection mechanisms. These challenges are compounded
by a historically ad hoc approach to Internet-based security. In the last several
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decades, since the inception of the Internet, security has been handled as an
afterthought and not by design. Quick-fix add-ons developed post-attacks have
proven ill equipped to address new security risks presented by an ever-expanding
stream of technologies and applications. For example, Wi-Fi service, which is
pervasive in today’s society, was introduced with serious security flaws. The
Wired Equivalent Privacy (WEP) algorithm is now used as the textbook example
for how easily security can fail. In current IoT systems, attackers continue to find
the simplest, easiest and most cost efficient ways to access secure systems. We
can classify the reported attacks on commercial products into the following three
categories.

A. Weak Authentication Yields Malware Attacks. In this class, noticeable exam-
ples are as follows.

– Weak login password: Mirai malware attack launched in 2016 [22]. Those
attacks first exploit the weakness of the password based authentication at
login phase of IoT devices like cameras, routers, DVRs, or even baby monitors
in order to break in those devices to install malware (e.g., when they connect
to the Internet through Telnet or SSH), in sequel the attacker can conduct
brute force search for login information since its using only about 60 known
default passwords.

– Single master key for updating software: Attacks on Philips Hue smart bulbs
which infected millions of ZigBee sensors connected to Internet through WiFi.
In those attacks [27], the attacker exploits manufacturers unprofessional prac-
tices, i.e., one master key for all bulbs for firmware updates. However, this is
just simply repeated an old attack on radio frequency identification (RFID)
proximity card in 2005 [18]! The lesson is never learned.

B. Weakness of Underlying Cryptographic Algorithms. Those attacks are
launched by observing some weakness of employed cryptographic algorithms
and protocols. We list some of them below.

– In 2011, Lockheed Martin networks were breached and, in 2012, the Master
Key for Sony Playstation 3 system was leaked. Both used weak pseudorandom
bit generators.

– In 2014, compatibility downgrade attacks were demonstrated on TLS (i.e.,
forcing a connection which runs TLS v1.2 down to SSL v3, where an insecure
cipher (i.e., DES) is employed).

– In 2008, MIFARE RFID tag encryption [21] was cracked and, in 2012, HID
iClass cards were cloned for which, weak cipher suites are employed (both
are privately designed (violating Kerckhoffs’ law) publicly released by reverse
engineering approaches).

– In 2015, hackers took remote control of Jeep and Chevrolet Corvette vehicles
while on route (due to weak authentication).
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C. Attacks on Protocols Which Connect IoT Devices. In 2013, we have reported
in [29] that message authentication code of 4G-LTE can be forged when it con-
juncted with its authenticated key agreement (AKA) protocol. The significant
effect of this attack is that it may migrate to future 5G which designates to con-
nect IoT devices, since 5G will adopt 4G-LTE’s AKA and cipher suites [4]. The
attack works together with the man-in-the-middle (MITM) attacks. An MITM
attacker first records all user data messages and control messages, including the
authentication and key agreement (AKA) messages. When this attacker observes
the package he wants to forge, he shuts down the radio of the victim and then
turns it on. The MITM attacker uses the recorded AKA messages to conduct
a replay attack. In the AKA protocol, mobile devices are not required to verify
whether the random number has been received before or not. They only check
the freshness of radio resource control sequence number (RRC SQN). However, in
some cases, we can make the RRC SQN wrap around. Thus, the victim believes
it is talking to the real network.

Notice that the AKA is claimed to be mutually authenticated. The user
equipment (UE) proves its identity to the mobility management entity (MME)
by replaying to the challenge from the MME. However, since the UE does not
send the challenge to the MME, the MME can prove itself only by transmit-
ting the valid messages protected by the correct session key in the succeeding
communication. This enables the replay attack. Such an attack makes the UE
accepting the fake MME. Generally, the attacker can get nothing from the replay
attack, because he still cannot get the key. However, in this case, it forces the
IV to repeat, so a meaningful MAC can be forged.

Four years later, in 2017, Vanhoef and Piessens [28] found that WiFi systems
suffered a similar attack to the attack described above for 4G-LTE, i.e., forcing
IV repeated in the IEEE 802.1X 4 way authentication and key establishment by
applying a man-in-the-middle attack.

2.2 Law and Standardization Efforts

California just became the first state with an Internet of Things cybersecurity law
(Sep 28, 2018). It states that starting on January 1st, 2020, any manufacturer
of a device that connects “directly or indirectly” to the internet must equip it
with “reasonable” security features, designed to prevent unauthorized access,
modification, or information disclosure. The most improving part is that the
law requests a unique password for each device when they will connect to the
internet!

The second is the event of NIST Lightweight Crypto Standardization com-
petition for low-end IoT devices, which was initialized in 2017 [24]. It announced
the call-for-submission for the standardization of lightweight cryptographic prim-
itives to protect IoT devices in April 2018 where the 128-bit security is minimal
requirement and submissions are due in Feb. 2019. Note that ISO has the initia-
tive to standardize lightweight cryptographic primitives for several years now,
see [13].



Securing Internet-of-Things 7

3 Classification of IoT Devices

In this section, we first introduce IoT devices and how they can be connected to
Internet. Then we conclude why lightweight cryptography is needed for imple-
menting security mechanisms. According to the complexity of transmitter and
receiver (Tx/Rx) structures, we may classify the IoT devices or cyber physical
devices [2] into the following three classes.

– Single Tx/Rx pairs, such as GPS receivers, RFID tags [3], cameras, etc.
– Single input and single output (SISO) devices: BlueTooth or BlueTooth Low

Energy (BLE), ZigBee [1], NB-IoT, etc.
– More complicated structures, i.e., multiple input multiple output (MIMO)

devices, such as WiFi, 4G-LTE, 5G and beyond, Wi-MAX, etc.

In Tables 1, 2 and 3, we provide their communication protocols, operation fre-
quencies, multiple access methods and possible applications. For a more detailed
list of IoT devices, the reader is referring to [2,26].

Table 1. IoT devices with simple Tx/Rx

Communication
protocol

Spectrum Trans. rate and
Trans. range

Multiple
access

Applications

RFID tags 125–135KHz 5–98Kbps,
<50 cm

Pure Aloha Low: smart cards, ticketing,
tagging, access control

13.56MHz ∼106Kbps,
∼1m

F-TDMA High: anti-theft, supply chain,
indexing

866–
960MHz

∼115Kbps,
∼2–7m

CSMA/CA UHF: vehicle ID, supply Chain,
indexing, access/security

NFC 13.56MHz 106–424Kbps,
< 20 cm

Single
service
coupling

Mobile commerce, bootstrap
setups, social networking,
identification

Wireless
cameras

900MHz,
2.4/5.8GHz

1.5–150Mbps,
<4800m

CSMA/CA Surveillance, video streaming

GPS Spectrum: 1575.42 (L1), 1227.6 (L2),
1176.45 (L5) MHz

Location service

3.1 Why Lightweight Crypto?

According to the above classifications, IoT devices are distinguished from general
computing platforms in both their structure and behaviour. They have small
limited memory and computation resources, compared with their counterpart,
servers, and are used in a specific application domain, e.g., automotive on board
unit, Electronic Product Code (EPC) tags, and sensors, actuators, etc. They
also use specialized network protocols to communicate wirelessly with back-end
data-aggregation and computing servers, e.g. RFID (EPC and NFC), ZigBee,
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Table 2. SISO IoT devices

Communication

protocol

Spectrum Trans. rate and

Trans. range

Multiple

access

Applications

ZigBee 2.4GHz/866MHz20–250Kbps,

∼40m

CSMA/CA Smart home, physical security,

medical devices (including

implantable devices) smart meter,

home automation

BlueTooth 3.0 2.4GHz ∼25Mbps,

∼10m

TDMA Wearable electronics, peripherals,

device pairing, vehicle

entertainment

BLE 2.4GHz ∼1Mbps,

>100m

TDMA Medical devices, wearable

electronics, sensor networks,

electronic leashing

UWB >500MHz ∼100Mbps,

∼30m

TDMA,

CDMA

Video streaming, wireless

displays, wireless

printing/scanning (WPS), file

transfers, peer-to-peer (P2P)

connections

Bluetooth/BLE, 4G-LTE or 5G, WiFi, etc. (see Tables 1, 2 and 3). In Table 4,
we emphasize the security constrains in some applications.

Nevertheless, a standard cryptography aimed for securing Internet commu-
nication may not be suitable for IoT applications. We will discuss this deeply in
the next section.

4 Evolution of Lightweight Cryptography for IoT

In the literature, metrics for what constitutes a lightweight cryptographic design
have been studied. More precisely, researchers have investigated throughput,
power consumption, latency, but most importantly hardware area. In fact, it is
long commonly set in the literature that an upper bound of 2000 GE (gate equiv-
alents) hardware area is what defines a lightweight design [8,19]. Such a bound
is derived from passive RFID tags whose areas range between 1000 and 10000
GE, out of which, a maximum of 20% is to be used for all security functional-
ities [19]. Note that although lightweight applications span over a spectrum of
devices which vary from highly constrained in terms of area and power consump-
tion such as EPC tags [3,19] and implantable medical devices, to less constrained
ones such as vehicular embedded system where latency may be the most impor-
tant metric [20], the 2000 GE bound is one of the design criteria for a lightweight
cryptographic primitive.

From those practices, we understand that lightweight cryptography lies in the
interdisciplinary areas of electrical engineering, cryptography and computer sci-
ence. Hence, we single out the criteria below for a cipher qualified as a lightweight
primitive [7].
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Table 3. MIMO IoT devices

Communication

protocol

Spectrum Transmission

rate and Trans.

range

Multiple accessApplications

WiFi 2.4/5.8GHz 50–320 Mbps,

∼100m

CSMA/CA Internet access points (AP), video

streaming, wireless displays, WPS,

file transfers, P2P connections

Wi-Max 2–11GHz ∼70Mbps,

∼50 km

OFDMA Portable internet AP, smart meters,

air traffic communications, smart

cities, VoIP

3G 700–3500 MHz

(UMTS),

450–2100 MHz

(CDMA)

<2.4Mbps,

5–70 km

TD-CDMA,

CDMA

GPS services, high-speed data

(emails, maps, directions, News,

shopping, e-commerce, interactive

gaming, etc.)

4G-LTE 400MHz–

3.5GHz

300Mbps (D),

75Mbps (U),

2–103 km

OFDMA (D),

SC-FDMA (U)

Video streaming, mobile Internet,

telecommunications, ubiquitous

computing with location intelligence

5G and beyond Up to 90GHz Up to 1Gbps,

2–150 km

Various Supporting IoT, smart city,

industrial automation

D = downlink and U = uplink

Table 4. Bit security, and the corresponding dedicated GE area and cost in applications
using common communication protocols

Trans. rate Bit security Sec. area (approx) Cost (approx)

Internet 10 Gbps 128–512 200 kGE $50

BLE 1 Mbps 128 40 kGE $2

ZigBee 20–250 Kbps 128 10 kGE $0.1

NFC 106–424Kbps 128 5 kGE $0.01

EPC 26.7–128 Kbps 80 2 kGE $0.01

4.1 Criteria of Lightweight Cryptography

Definition 1 (The requirements of lightweight cryptography (LWC)). A crypto-
graphic primitive is said to be lightweight if the hardware area of the implemen-
tation is less than 2000GE, its power consumption is very small and it supports
a sustained throughput of 1 bit per clock cycle at a clock speed of 2MHz. For
a cryptographic primitive together with a mode (e.g., authenticated encryption),
the GE requirement will be loosened up to 3000GE.

From this definition, we may bound how small we can do given the security
and throughout requirements.

Definition 2 (Cryptographic minimal design). A cryptographic algorithm is said
to be a minimal design if the design with well justified building components has
minimal overhead for providing multiple cryptographic functionalities including
encryption, hashing, authentication, and pseudorandom bit generation without
compromising the security and decreasing the throughput.



10 G. Gong

The key point of the design of lightweight cryptographic primitives is to
balance trade-offs among three requirements: security strength, the hardware
area, and throughput.

4.2 LWC Development and Reverse Engineering

At the earlier time, the effort of the research was concentrated at low-cost imple-
mentations of AES (Advanced Encryption Standard), hash-based RFID privacy
enhancements, and some non cryptographic approaches, like minimalist. Only in
recent years, it is devoted to investigate new cryptographic schemes under the
constraints of hardware area, key sizes and power consumption.

Along this approach, there are a number of lightweight ciphers which were
designed secretly in the industrial community for low-cost applications (violat-
ing Kerckhoffs’ principle published in 1883) and publicly released by reverse
engineering approaches. Examples include

– Keeloq (Microchip Technologies Inc., designed in 1985) used for car immobi-
lizer and in garage doors (designed in 1985, released and broken in 2007);

– MIFARE RFID tag encryption algorithm (2008), cipher in HID iClass cards
(2012);

– GMR (2012) in satellite telecommunication systems;
– A5/1 (1991) in GSM cellular communication networks; and
– RC4 (not lightweight) for web, gmail (used until 2015), and many Internet

applications.

All those ciphers, except for RC4, use linear feedback shift register (LFSR)
based structures.

4.3 Privacy Preserving Entity Authentication for RFID Systems

RFID systems are the first which demand to use lightweight ciphers for privacy
preserving entity authentication. The link between RFID readers and back-end
database is assumed to be secured by known security mechanisms (e.g., TLS and
IPSec), and wireless links between RFID readers and RFID tags are insecure. An
entity authentication protocol is a challenge-response protocol, as shown below.

Privacy preserving authentication in RFID

Reader (K) Tag (K)
ch−−−−−−−−−−−−−−−−−→
res←−−−−−−−−−−−−−−−−− res = Enck(ch)

A general approach for preserving privacy of devices is that device’s ID is
not sent. In order to verify the validity of the response, the back-end server
is required to do an exhaustive search in the space of the pairing ID and key
to identify the tag, therefore, verifies the device’s response. So, this imposes the
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request that the implementation of a cipher at server side should be of high speed
(see our work [15] for details about this argument). In addition to the protocol
design, this puts another dimension of challenges for securing IoT which requests
an asymmetric design for underlying cryptographic primitives having the smaller
hardware area of the implementation for device sides and high speed software
implementation for server sides as well.

The decision of the success of an entity authentication protocol can be imple-
mented by two different methods.

1. Deterministic verification: Use an LWC primitive to generate an authentica-
tion tag (e.g., ISO/IEC 9798 2 or 3-pass mutual authentication protocol).

2. Probabilistic verification: Use a new hard problem, learning parity with noise
(LPN), e.g., HB like protocols [17,19] as well as our work [23], which can
resist all known attacks on LPN based entity authentication.

4.4 Security Associations in IoT

In order to have a shared key ahead of communication, currently, in the most
of IoT applications, a master key is embedded into an IoT device during its
manufacture. In near future, elliptic curve cryptography will be deployed as there
are four curves that have been recommended for NFC, ZigBee, and VANETs [16]
a few years ago. The authentication for establishing an authenticated channel
for key sharing is to use the certificate based authentication. This is the same
approach as is now used in TLS. However, this requests public-key infrastructure
(PKI), which may be not suitable for many IoT applications. Thus, this remains
a challenging problem.

5 Examples of LWC

In this section, we introduce an evolutional process from lightweight ciphers
Simon and Speck to Simeck to sLiSCP/sLiSCP-light.

5.1 Simon and Simeck

A Feistel structure in block cipher design is a two-stage NLFSR with input. The
most noticeable cipher in 2-stage NLFSR is DES, developed in 1976 which has 56
bit key. In 2013, a group of the researchers from NSA (National Security Agency,
USA) published a paper, called their ciphers Simon and Speck [9]. Simon family
is optimized in hardware and Speck, optimized in software (both are submitted
to the ISO for possible standardization [13]). Shortly after that, we have found
a way to further decrease Simon’s hardware footprint with slightly decreasing
security, namely, Simeck [30] (i.e., the design is aimed at extracting good features
from both Simon and Speck).

The round function of both Simon and Simeck is given in Fig. 2 where (x0, x1)
is an initial state and the feedback function is a simplest quadratic function
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Fig. 2. Simeck round function as an 2-NLFSR with the input key ki and (a, b, c) =
(1, 8, 2) for Simon and (a, b, c) = (0, 5, 1) for Simeck.

where <<< is the (circular) left shift operator. For encryption, (x0, x1) is loaded
as a plaintext, and the ciphertext is the internal state after r rounds. Simon
(2013)/Simeck (2015) have register sizes m/2 where m = 32, 48, 64 and r varies
according to different m. The hardware implementations of the Simeck family
are shown in Table 5. Currently, they are the smallest ciphers compared with
those having the same parameters including Simon family.

Table 5. Performance of hardware implementations of Simeck

Size Simeck Tech (nm) Area (GEs) Throughput@100 KHz
(Kbps)

Power@100 KHz
(µW )

32/64 130 505 5.6 0.417

32/64 65 454 5.6 1.292

48/96 130 715 5.0 0.576

48/96 65 645 5.0 1.805

64/128 130 924 4.2 0.754

64/128 65 828 4.2 2.304

5.2 sLiSCP/sLiSCP-light Families

Simeck is a block cipher family. So we need to use modes to provide authentic-
ity. Currently, the main approaches to add authentication to a block cipher are
CBC MAC (cipher-block-chain message authentication code) or GCM (polyno-
mial evaluations). Both are very costly. In the search of minimal designs, we find
that permutation-based sponge duplexing [10] is well suited for a minimal cryp-
tographic design and thus, we resolve to designing a lightweight family of per-
mutations to efficiently provide multiple cryptographic functionalities with one
circuit. This results in the two families of LWC, i.e., sLiSCP: Simeck-based Per-
mutations for Lightweight Sponge Cryptographic Primitives and sLiSCP-light.
For the details in this subsection, the reader is referring to [6,7].
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Fig. 3. 2-branches GFS in sLiSCP/sLiSCP-light designs.

Both sLiSCP and sLiSCP-light can be used in a unified sponge duplex con-
struction in order to provide (authenticated) encryption and hashing function-
alities. The sLiSCP family of permutations adopts two of the most efficient and
extensively analyzed cryptographic structures, namely a 4-subblock Type-2 Gen-
eralized Feistel-like Structure (GFS) [11,25], and a round-reduced unkeyed ver-
sion of the Simeck encryption algorithm [30]. A Type 2 GFS, a general nonlinear
feedback shift register (NLFSR) generator in Galois mode, consists of multiple
branches of Feistel structures, which is shown in Fig. 3.

Table 6. Branch size: m, state size: b = 4 m, # Simeck rounds: u, and # GFS steps: s.

Permutation (b-bit) Subblock
width m

Rounds u Steps s Total # rounds
(u · s)

sLiSCP/sLiSCP-light-192 48 6 18/12 108/72

sLiSCP/sLiSCP-light-256 64 8 18/12 144/96

Table 7. The performance of hardware implementations of sLiSCP/sLiSCP-light

State size
(b bits)

Security
(bits)

Process
(nm)

Area (GE)

sLiSCP sLiSCP-light

192 80–112 65 2153 1820

130 2318 1892

256 128 65 2833 2397

130 3040 2500

In sLiSCP/sLiSCP-light designs, both f1 and f2 are identical and imple-
mented by an unkeyed Simeck round function with multiple rounds. Their spec-
ifications are given in Table 6.
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sLiSCP-b (CMOS 65 nm) sLiSCP-b (CMOS 130 nm)

State registers

Temporary registers

LFSR

Simecku-m boxes

Step constant addition

MixSubblocks

35%

16%

5%

33%

4%
7%

35%

17.5%

4%

34%

2.5%

7%

Fig. 4. Resource allocation for sLiSCP/sLiSCP-light

The sLiSCP-light is obtained by turning sLiSCP to a partial substitute permu-
tation network (SPN) structure to get 16% reduction in HW footprint, better dif-
fusion and algebraic properties. We have implemented the sLiSCP/sLiSCP-light
instances in the CMOS 65 and 130 nm technology. The performance is shown in
Table 7 and the resource allocation for different operations in the implementation
is shown in Fig. 4.

We can provide multi-cryptographic primitives using a single sLiSCP
permutation as a unified round function in the sponge, i.e., to provide an all-in-
one module including authenticated encryption, stream cipher, pseudorandom bit
generation, MAC and hash function.

6 Concluding Remarks

IoT is bringing an exciting new era of the digital world as well as nightmare due
to their security concerns for civilian applications. In this survey, we presented
vulnerabilities and attacks on recent IoT products, and pointed out that in all of
those attacks, attackers exploited the weakness of the underlying cryptographic
primitives including those malware attacks. We have walked through the path for
the development of lightweight cryptography for securing IoT. Now we present
some possible future research problems.

Future Research Problems

(a) How to balance the tradeoffs between security, throughout and hardware
footprint for lightweight cryptographic primitives?

(b) How to balance the tradeoffs between usability and security (e.g., relay
attacks occur because reducing the communication cost for user easiness,
in 4G-LTE message authentication in data field is not required, · · · ), and
safety and security (e.g., the emergency case in a smart hospital)?

(c) How to implement machining learning for efficiency of IoT as well as for
detection of malicious behaviours in IoT?
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(d) Can physical layer security (i.e., using signals, channels, antennas, · · · ) solve
some problems in IoT without using crypto (e.g., in control area networks,
see some solutions from our earlier work in [12])?

(e) Recently, there are a number of work to investigate blockchain based IoT
security mechanisms (e.g., our attempt on using blockchain to solve own-
ership transfer problem in supply chains [5]). However, how to solve the
scalability and privacy of blockchains for IoT applications?
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Abstract. The advent of Big Data coupled with the profiling of users
has lead to the development of services and decision-making processes
that are highly personalized, but also raise fundamental privacy and
ethical issues. In particular, the absence of transparency has lead to the
loss of control of individuals on the collection and use on their personal
information while making it impossible for an individual to question
the decision taken by the algorithm and to make it accountable for it.
Nonetheless, transparency is only a prerequisite to be able to analyze the
possible biases that personalized algorithms could have (e.g., discrimi-
nating against a particular group in the population) and then potentially
correct them. In this position paper, I will review in a non-exhaustive
manner some of the main privacy and ethical challenges associated with
Big Data that have emerged in recent years before highlighting a few
approaches that are currently investigated to address these challenges.

Keywords: Big Data · Privacy · Transparency · Interpretability ·
Fairness

1 Introduction

The democratization of mobile systems and the development of information
technologies have been accompanied by a massive increase in the amount and
the diversity of data collected about individuals, often referred to as Big Data.
Beyond the technical definition in terms of five “V’s” (Volume, Variety, Velocity,
Variability and Veracity), the main promise offered by the analysis of these large-
scale datasets is the possibility to realize inferences with an unprecedented level
of accuracy and details. Furthermore, in Machine Learning, the Deep Learning
revolution [16] coupled with the access to Big Data has enabled a “quantum
leap” in the prediction accuracy in many domains.

However, the collection and analysis of Big Data also raises serious privacy
and ethical issues. In particular, while privacy risks have existed for a long time
due to the sharing of personal data, Big Data magnifies these risks and makes
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them more difficult to grasp and predict due to the possibility of combining
data from different sources while also bringing new risks related to the inference
attacks that are possible against models learned from Big Data (Sect. 2). Privacy
is only one side of the coin as other ethical issues associated to the analysis of
Big Data should be addressed such as the Transparency, Interpretability and
Fairness of the algorithms that are learned from this data (Sect. 3). Finally,
it is also important to acknowledge that these challenges should be tackled in
an integrated manner due to the connections between the different underlying
ethical values (Sect. 4).

2 Privacy

As we have seen in the wake of the Facebook-Cambridge Analytica scandal,
privacy is not only a fundamental right protected by legislations around the
world, such as the recent European General Data Protection Regulation (GDPR)
as well as the future California Consumer Privacy Act, but also an essential
ingredient to democracy. First, it is important to acknowledge that most of Big
Data is actually personal data that are explicitly produced by individuals or
generated by their behaviors online or in the physical world, and thus directly
relates to privacy. For example, Big Data issued from existing and emerging
technologies include mobility data, health and genomic data, social networks
or data captured by IoT (Internet of Things) devices. Most of these datasets
cannot be shared directly without endangering the privacy of the individuals
that have contributed to this data. This limits both our ability to analyze such
data to derive useful information and slows down the innovative services that
could emerge from such data.

For instance, in the context of large-scale mobility analytics the D4D (Data
for Development) challenge1 is a concrete example in which the sharing of mobil-
ity data (here in the form of Call Details Records - CDRs - generated by phone
usage) can be used by scientists to derive useful knowledge. Indeed, these CDRs
have a high value [3], not only for scientific research, but also for society in
general and for the economy. However, learning the location of an individual
is one of the greatest threats against privacy because it can be used to derive
other personal information regarding this individual (such as home and place
of work, main interests, social network and so forth) [10]. Thus, the sharing
of such data is limited and is usually only granted under restricted conditions
(i.e., the signature of a non-disclosure agreement), although other models for
the privacy-preserving conscientious of mobile data are possible2.

Genomic data is another paramount example, both due to the sensitivity
of this type of data but also the potential for scientific advances in health and
related areas [21]. In addition of privacy risks related to the individual concerned,
such as inference on genetic diseases, tendency to develop particular health prob-
lems or leaking of information about ethnic origin, disclosing his genomic data
1 http://www.d4d.orange.com/en/Accueil.
2 https://www.nature.com/articles/sdata2018286.
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also impact other members of the families through the possibility to reconstruct
the genomics of relatives.

The main impacts of Big Data on privacy can be summarized as follows:

1. Magnification of the privacy risks due to the increase in volume and diversity
of the personal data collected and the computational power to process them.
In contrast to the context a few years in which data was siloed and thus
the possibility of cross-referencing data were limited, the situation is very
much different today as the tendency is more towards the pooling of informa-
tion coming from different sources into data lakes. For instance, Google has
changed in privacy policy in 2012 to enable the sharing of data among the
different services it runs while previously the data collected and processed by
each service was governed by its own terms of use3. In addition, the quantity
and diversity of data available has also increased significantly and nourished
by phenomenons such as smart cities, the open data movement, IoT or the
quantified-self movement.

2. Often data collected about individuals are “re-used” for a different purpose
without asking their consent. An important use of Big Data is for exploratory
analysis in which by definition the data scientist does not know necessarily in
advance what he will find in the data. Thus, classical approaches to privacy
protection such as consent-based mechanisms do not really make sense any-
more as it is impossible to foresee in advance all the possible secondary uses
of the data.

3. The inferences that are possible with Big Data are much more fine-grained
and precise than before. The possibility of inferences as well as their accuracy
has significantly increased due to the availability of Big Data to the point
that many services can now be highly personalized according to the profile
of the user himself, and not simply with respect to the main category he
is clustered in. For instance, the analysis of data collected from quantified-
self devices opens the possibility to predict the pregnancy of a person or a
particular health condition even before this person is herself aware of this.

4. The massive release of data without taking into account the privacy aspect
is likely to lead to a major privacy breach. Indeed once data is disclosed, it
is there forever. In particular, even if privacy legislations such as the GDPR
guarantees a right to erasure to individuals with respect to the data collected
by service providers, there is no magical solution that will remove all the
copies of the data that could have been spread around the four corners of
the Web once the data is released. As a consequence, caution should be the
default approach when disclosing personal data, such as for example when
opening the data of inhabitants or citizens.

The relevant literature on Privacy and Big Data is quite extensive considering
that privacy has been a very active research domain for the last two decades
and it would be illusory to cover it in this paper. In a nutshell, the proposed

3 https://www.theverge.com/2012/3/1/2835250/google-unified-privacy-policy-
change-take-effect.

https://www.theverge.com/2012/3/1/2835250/google-unified-privacy-policy-change-take-effect
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approaches can be split between techniques that have been developed to protect
privacy in the online and the offline contexts.

Basically, the online context considers the real-time analysis of data in which
for instance the data is distributed among several participants that do not trust
each other to the point of directly sharing their data but are willing to col-
laborate to conduct a joint analysis on the data (e.g., by learning a classifier
on their joint inputs). Cryptography [12] is one of the fundamental ingredi-
ents to implement Privacy Enhancing Technologies (PETs) [11]. For instance,
secure multiparty computation can be used for computing data mining tasks in
a distributed manner such that only the output of the analysis is revealed and
nothing else (including the private inputs of participants) [18]. While the generic
techniques in this area were generally costly in terms of computation and com-
munication costs, there has been a strong effort in the last decade to improve
their efficiency as well as developing specialized protocols that are dedicated to
specific data analysis tasks. Privacy-preserving machine learning is a very impor-
tant and active area of research, but hereafter we focus on the offline context,
which corresponds to the situation in which the data of users has been collected
and must be sanitized before its release (e.g., before sharing or publishing it) or
before it is given as input to an algorithm to limit the subsequent privacy risks.

Since the seminal work of Sweeney more than two decades ago that has shown
that 87% of the American population can be uniquely re-identified based on a
combination of three attributes (namely date of birth, gender and ZIP code)
and the introduction of the k-anonymity privacy model [27], an important part
of the privacy research has focused on the development of privacy models and
sanitization mechanisms that can reach the guarantees as defined by the privacy
model (see [9] for a survey). The main objective of a sanitization mechanism is
to modify the dataset (e.g., by introducing some uncertainty or removing some
part) before its publication to ensure that breaching the privacy of an individual
is harder when working on the sanitized dataset than it is on the original one. The
notion of differential privacy [6], which was introduced in the context of private
analysis on statistical databases, has gained widespread adoption in the privacy
community in recent years. The main guarantee provided by differential privacy
is that for any analysis performed on a dataset satisfying this property, adding
or removing a single individual from the dataset will not significantly change the
probability of an output of the analysis. Thus, the information that the adversary
can gain about a specific individual by observing the output of the analysis is
limited and can be formally characterized in terms of a privacy parameter ε. In
addition, differential privacy has been proved to provide compositionality, which
allows to bound the global amount of information that will be leaked by several
analyses made on the same data. This property is essential within the context of
Big Data in which datasets coming from many sources will be gather together.

Challenge 01 (Privacy evaluation of large-scale datasets). Despite the
fact that anonymization has been an active field of research for a long time, for
many domains a fundamental question remains on how to evaluate the privacy
risks incurred by users before publishing (possibly sanitized) large-scale datasets,
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in particular with respect to the inferences that can be performed on specific
sensitive information.

Most of the current existing privacy models measure the protection level
provided in terms of an abstract privacy parameter (e.g., k for k-anonymity [27]
or ε for differential privacy [6]). However, a complementary aspect that should
be investigated more is how to relate the value of a privacy parameter to the
possible inferences that can be performed from the disclosed data. In particular,
for each type of data (e.g., mobility or genomics data), it is important to con-
duct a thorough study assessing how well the existing privacy models fare with
respect to state-of-the-art inference attacks. Due to their difference in structure
and characteristics, each domain often also requires the design of novel inference
attacks that are specific both in terms of the information they can predict but
also how they work (e.g., inference methods for exploiting the spatiotemporal
nature of mobility traces are very different than the ones working on genomic
data). Afterwards, based on the findings of this study, novel privacy models
integrating the semantic inferences that can be drawn out of the disclosed data
should be conceived. To realize this, one possible approach would be to design
of a privacy model in which the value of the privacy parameter directly reflects
the amount and sensitivity of personal information that can be inferred from the
data released (as quantified by the inference attacks). This type of model would
really be very useful for practitioners to relate the value of the privacy param-
eter to the privacy guarantees provided, and thus reduces the gap between the
theory and practice of anonymization. Nonetheless, this “meaningful” privacy
model should also aim to achieve strong composition properties (like differen-
tial privacy) to be able to bound the effect on privacy of several data releases.
Another interesting approach for the empirical evaluation of sanitization meth-
ods and inference attacks is to organize competitions open to the community
in which teams of researchers can propose novel sanitization methods for a par-
ticular task as well as inference attacks aiming at countering these sanitization
methods (e.g., by re-identifying a record that was previously anonymized).

Challenge 02 (Privacy assessment of machine learning models). In
addition to the inferences that can be made from the data itself, it is also impor-
tant to understand how much the output of the learning algorithm itself ( e.g.,
the classifier) leaks information about the input data it was trained on.

One possible avenue to tackle this challenge is to evaluate how much of the
input data can be reconstructed from the classifier either by reversing the learn-
ing algorithm [7] (if its structure allows it) either in the white-box setting (i.e.,
in which the description of the classifier is known) or the black-box (i.e., in
which it is only possible to interact with the classifier by querying with a partic-
ular input to receive the associated output). Another possible inference attack
against a machine learning model is a membership attack [26] in which the objec-
tive of the adversary is to be able to predict whether the profile of a particular
individual (which is known to him) was in the dataset used to train the model.
Generally, this inference is deemed problematic if revealing the membership of
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the profile to this database leads to a learning a sensitive information (e.g., that
the individual is part of a cohort of patients for a particular disease). This line
of research is still in its infancy and much work remains to be done, in particular
with respect to how to prevent these inference attacks.

3 Ethical Issues

As mentioned previously, machine learning has now a central role as most of the
personalization algorithms are now learnt from data rather than being written
by programmers. As a consequence, the machine learning community has also
started recently to investigate the concept of Fairness, Accountability and Trans-
parency through the organization since 2014 of an annual specialized workshop
dedicated to this issue4 in more recently through the creation of the FAT* con-
ference5, which follows a highly multidisciplinary approach to address some of
the ethical challenges highlighted in the following.

Challenge 03 (Transparency of personalization processes). Character-
izing the personal information collected about an individual and how this data
is transformed before being exploited by the personalization algorithm is the first
step before being able to perform algorithm auditing for other ethical values.

To complement the existing PETs, more recently the concept of TETs
(Transparency Enhancing Technologies) was introduced to precisely increase the
transparency of information technologies [15]. In addition, the study of profiling
techniques used to track web users for various recommendation and personal-
ization goals has attracted attention from the computer science community for
more than a decade [1]. However, a unified view, driven by privacy concerns, of
how the data is exploited by these techniques is missing. Thus, being able to
“open the black-box” of personalization algorithms remains a challenging issue
[22]. As often the code source of these algorithms might not be directly available
(e.g., because it is proprietary or is only accessible as a black-box), some prelim-
inary works have investigated how to lift the opacity of personalization systems
starting with the work of data journalists that have investigated how systems
such as Uber personalized the price proposed to a customer [4]. Another possible
approach is to take a machine learning view of the problem by learning a model
(e.g., classifier) approximating how the algorithm works from a training set com-
posed of examples of inputs (i.e., user profiles) and outputs (i.e., personalized
service or information). To obtain samples of inputs/outputs, one possibility is
to “probe” the personalization system with artificially generated profiles [17] or
to rely on a collaborative approach (e.g., through a crowdsourcing platform).
Opening the algorithms to the scrutiny of the public is usually not an end but
rather only a first step make them more accountable.

4 http://www.fatml.org.
5 https://fatconference.org.

http://www.fatml.org
https://fatconference.org
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Challenge 04 (Explainability of machine learning models). The complex
design of machine learning models makes it difficult to understand and explain
their predictions, which may lead to a lack of trust if their predictions is used in
a decision-making process that has a significant impact on humans.

Deep learning is a typical example of a opaque model as the structure of
the classifier, which is composed of many layers of neural networks, makes the
decision of the algorithm difficult to interpret [19]. This is highly problematic as
their decisions can have a high impact on individuals, and thus might lead to a
lack of control in their digital life, which has been coined as the “governmentality
of algorithms” by Antoinette Rouvroy [24]. To ensure the transparency and
explainability in algorithmic decision processes, several initiatives have emerged
for regulating the use of machine learning models. For instance, in Europe, the
new General Data Protection Regulation has a provision requiring explanations
for the decisions of machine learning models that have a significant impact on
individuals [13].

In the context of machine learning, interpretability can be defined as the abil-
ity to explain or to provide the meaning in understandable terms to a human
[5]. Examples of interpretable models found in the literature include linear mod-
els, decision trees, rule lists as well as rule sets. The explainability requirement
can be achieved by two common approaches, namely transparent-box design
and black-box explanation. The former consists in building by design trans-
parent models, thus requiring the cooperation of the entity responsible for the
training and usage of the model. In contrast, the latter involves an adversar-
ial setting in which the black-box model, whose internal logic is hidden to the
auditor, is reversed-engineered to create an interpretable surrogate model. While
transparent-box design seems to be the best approach as far as interpretability
of decisions is concerned, black-box explanation is sometimes the only available
option.

Current techniques for providing black-box explanations include model expla-
nation, outcome explanation and model inspection [14]. Model explanation con-
sists in building an interpretable model to explain the whole logic of the black
box while outcome explanation only cares about providing a local explanation of
a specific decision. Finally, model inspection consists of all the techniques that
can help to understand (e.g., through visualizations or quantitative arguments)
the influence of the attributes of the input on the black-box decision.

Once a good representation of how the algorithm works has been learnt, it
becomes possible to investigate if this algorithm has a bias and its consequence
for users. For example in application domain such as predictive recruiting, one
of the main benefit of automating the process advertise by companies is that
the recruitment process will become more objective because the machine is not
influenced by the biases and stereotypes that a human recruiter could have.
However, if the data used to train the learning algorithm is historically biased
then there is a good chance that the model outputted by the algorithm will also
be biased. For example, in the case of a credit scoring algorithm, some ethnic
group in the population might have to pay a higher rate for a loan because they
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are considered at risk. Even if the ethnicity of a user is not used as an input
(anti-discrimination laws might forbid to ask it directly), it might be inferred
indirectly from other attributes such as the ZIP code [25].

Challenge 05 (Quantifying and redressing discrimination). Due to their
prevalence in our society, it is important to investigate how to measure and
quantify the bias of algorithms learned from Big Data, in particular with respect
to the possible risks of discrimination against subgroups of the population, and
propose solutions to correct the unwarranted biases.

The analysis of the algorithms must be performed jointly with that of the
data used to learn these algorithms. To quantify discrimination, one possibility
is to look at existing metrics that can be found in the computer science lit-
erature or to develop new metrics in collaboration with legal and sociological
researchers [23]. Discrimination laws that protect specific type of sensitive data
(e.g., religion, political opinion or ethnic origin) sometimes specify very concrete
criteria that could be used to assess the bias of the algorithm. Moreover, soci-
ological studies enable to better clarify the sometimes “fuzzy” border between
legitimate personalization and unfair discrimination. One difficult challenge is
the fact that discrimination can also occur in many ways [29]. For instance as
mentioned previously, even if an attribute such as the religion is not directly
asked to the user, it could be deduced from observing that he visits a place of
worship on a regular basis (similarly the ethnic origin can be partially inferred
from the genomic data). Discriminatory decisions may also result from mistakes
in the data or wrong predictions.

There are many different definitions of fairness in the literature [28] and the
choice of the appropriate definition really depends on the context. For instance,
one natural approach for defining fairness is the concept of individual fairness,
which states that individuals that are similar except for the sensitive attribute
should be treated similarly and thus should receive similar decisions. This notion
relates to the legal concept of disparate treatment, which occurs if the decision
process was made based on sensitive attributes. This definition is only relevant
when discrimination is due to a prejudice caused by the decision process and
therefore cannot be used in the situation in which the objective is to address
the biases in the data. In contrast to individual fairness, group fairness relies
on statistic of outcomes of the subgroups indexed by and can be quantified in
several ways, such as the demographic parity and the equalized odds.

Afterwards, the ultimate objective of this key activity is to propose mean-
ingful ways to reduce the bias, and thus the discrimination. In recent years,
many approaches have been developed to improve the fairness of machine learn-
ing algorithms. Most of these tech-niques can be classified into three families of
approaches: namely (1) the pre-processing approach in which fairness is achieved
by changing the characteristics of the input data (e.g., by suppressing unwar-
ranted correlations with the protected attribute), (2) the algorithmic modifi-
cation approach (also sometimes called constrained optimization) in which the
learning algorithm is adapted to ensure that it is fair by design and (3) the
post-processing approach that modifies the output of the learning algorithm to



Privacy and Ethical Challenges in Big Data 25

increase the level of fairness. We refer the interested reader [8] to for a recent
survey comparing the different fairness enhancing methods.

4 Conclusion

In this paper, we have discussed separately different privacy and ethical chal-
lenges related to Big Data. Nonetheless, in order to achieve a responsible and
socially acceptable use of Big Data in our Information Society, it is important to
address jointly these challenges due to the existing connections between them.
For example, to be able to audit a machine learning model for his potential
biases, it is often easier (but not necessary mandatory) to have access to its
structure or at least an approximation of the classifier, thus highlighting the
strong link between interpretability and fairness. In addition, as we have seen in
the previous section one of the proposed approach to enhance fairness relies on
the use of anonymization methods thus showing a connection between privacy
and fairness.

However, a fundamental open question is to investigate whether the achieve-
ments of these different objectives is always a positive sum game. Indeed, as
shown by recent works [20], aiming for interpretability can open the door to
inference attacks against privacy. In addition, it is possible that under the excuse
of making its learning models more interpretable and transparent, a company
might be tempted to perform fairwashing, which can be defined as promoting
the false impression that the models used by the company respect some partic-
ular ethical values while it might not be the case. An example of such a risk has
been studied in [2] in which the authors demonstrate that it is possible to use
black-box explanation to rationalize the decisions of a predictive model that is
particularly discriminating towards a particular subpopulation.

References

1. Acar, G., Eubank, C., Englehardt, S., Juárez, M., Narayanan, A., Dı́az, C.: The
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Abstract. To date, Android is by far the most prevalent operating sys-
tem for mobile devices. With Android devices taking a vital role in the
everyday life of users, applications on these devices are handling vast
amounts of private and potentially sensitive information, as well as sen-
sitive sensor data like the device location. The built-in security mecha-
nisms of the Android platform offer only limited protection for this data
and device resources, and are not sufficient to enforce fine-grained policies
on how data is used by applications. We present CliSeAuDroid, a run-
time enforcement mechanism for Android applications that can enforce
fine-grained security policies, either locally within a single application,
across multiple applications, or even across multiple devices. We show
that CliSeAuDroid can effectively ensure user-defined security require-
ments that protect sensitive data and resources on Android devices and
adds only little runtime overhead to protected applications.

1 Introduction

Over the last decade, the Android platform has gained increasing popularity. To
date, it is the most prevalent mobile operating system, with a market share of
85.9% in the first quarter of 2018.1 Users are entrusting more and more private
data to mobile applications, including, e.g., financial data for online banking,
calendar entries, or health data. This makes mobile applications also a prime
target for attackers. In addition to sensitive user data, mobile devices also expose
a variety of privacy-relevant sensors, like the device camera or audio recording.

At the core of the built-in security mechanisms of the Android platform is
the Android permission system. Whenever an application tries to access sensi-
tive data or device resources, this access is controlled by the middleware layers
of the Android platform. Before such an access can happen for the first time, the
device user has to explicitly grant the corresponding permission to the applica-
tion. Once an application has been granted a permission, however, the further
usage of assets protected by this permission is only little controlled. Another
challenge for Android security efforts is the fragmentation of the Android land-
scape into the many active Android versions. The slow migration of existing
1 https://www.gartner.com/newsroom/id/3876865.
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devices to current Android versions means that new security features cannot be
incorporated by applications running on older devices. While the current major
version of the Android platform, Android 8, has been available for roughly one
year, only 14.6% of all active devices are running on Android 8 in August 2018
[1]. Android versions older than Android 6, which introduced major improve-
ments on permission management, are still used by roughly 32% of all active
devices.

The shortcomings of the security mechanisms on the Android platform have
attracted growing attention by the scientific community over the last years,
leading to many security concepts in the area of Android security. Most of these
concepts complement the built-in security mechanisms rather than replacing
them. These concepts range from static analyses assessing the security of appli-
cations before they are installed (e.g., [5,8,18]), over adaptations or modifications
of the operating system kernel or middleware layers (e.g., [6,7,9]), to dynamic
approaches hardening applications on the application layer (e.g., [15,16,19]).

In this paper, we present CliSeAuDroid, a novel, flexible and light-weight
dynamic enforcement mechanism for fine-grained security policies for Android
applications.2 CliSeAuDroid resides completely on the application level, and
can be instantiated to address various security considerations not addressed by
built-in security mechanisms. Our approach can be used to enforce all of local,
cross-application, and cross-device security policies. By local policies, we refer
to policies that involve only a single application. By cross-application and cross-
device policies, we refer to policies that involve multiple applications on a single
device or across devices, respectively. Such policies require coordination between
applications and devices for effectively enforcing given security requirements.
The capability to enforce cross-device policies for multiple devices of a user is
desirable, and is not addressed by previous work on Android application security.

In detail, the contributions of this article are the following:

– We present CliSeAuDroid, a dynamic enforcement mechanism for user-
defined, fine-grained security policies for Android applications. CliSeAu-
Droid can enforce both local policies and distributed policies on the same
device or across devices. CliSeAuDroid incorporates the crosslining [11]
technique that separates the interaction with the target program from the
decision making. Such a separation is crucial for ensuring the reachability of
the decision maker in distributed settings, especially on Android, where only
one application can actively run in the foreground at a time.

– We evaluate the effectiveness and efficiency of the enforcement capabilities of
CliSeAuDroid in case studies involving real, open-source Android applica-
tions. We show that CliSeAuDroid can effectively enforce both local poli-
cies and distributed policies. Our results indicate that the runtime overhead
added by the enforcement are small, leading to no perceivable delay in the

2 The implementation of CliSeAuDroid, all case study policies, and our results are
available online. See Sect. 3 for details.



Decentralized Dynamic Security Enforcement for Mobile Applications 31

application execution for local enforcement. Distributed enforcement involv-
ing network communication shows a mean overhead below one second for
up to four devices involved in the enforcement.

2 Android Application Security in a Nutshell

The Android platform provides various security mechanisms that are built into
the platform implementation at different levels of the platform architecture. At
the core of the security mechanisms for applications are a strong sandboxing
mechanism, and a permission system for restricting access of applications to
potentially sensitive user data and device resources.

2.1 The Android Security Architecture

The Android software stack is built on top of a Linux kernel. End-user applica-
tions run on top of multiple layers of middleware offered by the system architec-
ture, consisting of the Android runtime, libraries, and the Java API framework.
These middleware layers manage most of the interaction of applications with
lower system levels, including access to protected resources on the device or to
implementations of the IPC mechanisms.3

All applications on the Android platform are strictly sandboxed. Concep-
tually, this is achieved by providing distinct Linux UIDs to each application
together with mandatory access control enforced by SELinux on the kernel level
of the Android platform.4 This sandboxing also applies for privileged system
applications, as well as native code parts of applications. The strict sandboxing
ensures that applications cannot access data that is local to other applications.
Furthermore, the sandboxing mechanism ensures that access to protected sys-
tem resources and data is managed by the Android platform implementation for
each application, adhering to security policies established at the kernel level.

The core of the Android security architecture that is building on the strong
sandboxing is its permission system that restricts the usage of certain desig-
nated operations and resources on a device.5 These permissions are divided into
three categories: normal permissions, signature permissions, and dangerous per-
missions. Data and resources protected by normal permissions are considered
as low-risk operations and are granted to applications automatically when they
request them, not requiring user confirmation. Signature permissions are granted
to each application that requests them, provided that the application defin-
ing the permission has been signed with the same certificate as the requesting
application. This can, for instance, be facilitated for custom-defined permissions
that are shared between applications from the same developer. Dangerous per-
missions are considered to pose a significant risk for the user’s privacy or the
device’s functionality. Examples for those dangerous permissions are sending
3 https://developer.android.com/guide/platform/.
4 https://developer.android.com/guide/components/fundamentals.
5 https://developer.android.com/guide/topics/permissions/overview.
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SMS messages (SEND SMS ) or accessing the current device location via GPS
(ACCESS FINE LOCATION ). Dangerous permissions are not granted to the
application automatically, but have to be accepted by the user manually.

Prior to Android 6, permission requests were only posed at installation time
of an application. Hence, users had only limited control over the behavior of
applications: an installed application either got access to all requested permis-
sions, or could not be installed on the device. From Android 6 onwards, these
install-time requests were replaced with runtime requests. When installing an
application, users are still presented with all permissions that the application
requests. The actual granting of these permissions, however, is performed when
the application tries to use them for the first time. Dangerous permissions can
be revoked or regranted at any time using the system settings of the device.

Exemplary Shortcomings of Built-in Security Mechanisms. The built-in security
mechanisms of the Android platform offer only a limited granularity for control-
ling sensitive data and resources on devices. For instance, the granting procedure
for permissions at the first time of use is not sufficient to provide users with a
fine-grained control over sensitive data and resources. Consider, for instance, a
simple security requirement stating that an installed application may not send
SMS messages to expensive premium SMS services (this requirement has been
considered in other work, e.g., by DroidForce [19]). Using the built-in per-
mission system, users have the choice to either grant the application with the
permission to send SMS messages when it first asks for it, or can deny it. How
the permission is actually used after granting the permission is not controlled
by the Android system. In particular, an application requiring the permission to
send SMS messages for benign purposes can also abuse this permission to send
expensive messages without users noticing.

Naturally, on-device security mechanisms are limited to controlling applica-
tions on that very device. However, this can be insufficient to enforce user-specific
security policies. Consider, for instance, a variant of the premium SMS require-
ment stating that multiple installed applications may send SMS messages also to
expensive premium numbers, but within each 24-h interval only three such mes-
sages may be sent altogether from all devices of the user. In order to ensure this
property, global knowledge of the execution history across devices is required.
This cannot be achieved by the built-in Android security architecture.

2.2 State of the Art

To overcome the limitations of Android’s built-in security mechanisms, a large
variety of security solutions has been proposed in the literature, ranging from
static analyses that assert application security before installation, to dynamic
approaches that enforce security requirements at runtime.

Static Approaches. Static analysis techniques can be used for establishing trust
in applications, enabling informed user decisions whether to install a given appli-
cation or not. A large number of static analysis techniques for Android appli-
cations has been proposed. A recent, comprehensive literature survey of static
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analysis mechanisms for Android has analyzed over 120 research papers on static
analysis approaches for Android applications [17]. These static approaches range
from tools that build on analysis techniques that are proven to be sound (like,
e.g., [8,18]) to tools that aim for a high recall in combination with high precision,
but do not build on such formal foundations (like, e.g. [5]).

While static approaches can detect potential security violations in applica-
tions, they do not modify application behavior at runtime to make it compliant
to a given security policy. In addition, static approaches can be overly restric-
tive, as they cannot take runtime information into consideration to determine
whether sensitive information is actually leaked for a certain program run.

OS-Level and Middleware-Level Dynamic Enforcement. Application security can
be ensured dynamically by enforcement mechanisms that are integrated into the
operating system kernel or the middleware. Such approaches can offer a high level
of protection by providing additional security features on devices. However, such
approaches usually require substantial modifications of the platform running on
the device, like rooting the device or flashing modified system images.

The Android Security Framework (ASF) [6] provides a module-based mech-
anism to extend the Android security mechanisms. The ASF resides on multiple
layers of the Android platform, providing an API for security module developers.
Security modules are provided in the form of code, and can be used to implement
security enforcement for applications running on top of the ASF. The CRePE
mechanism introduced context-aware enforcement of security policies for the
Android platform [9]. CRePE resides in the Android middleware, and provides a
hook-based system to detect access to permission-protected APIs of the Android
system. It consists of a centralized policy provision and management system that
is able to track the current device context, like, e.g., the current location of the
device. Similar to CRePE, the Security Enhanced Android Framework (Seaf)
provides a modified Android middleware layer that incorporates hooks to detect
access to protected resources [7]. It provides both, a more fine-grained access
control model for Android and behavior-based enforcement of security policies.
This behavior-based enforcement can, e.g., be used to detect suspicious orderings
of permission usages that indicate malicious behavior of a target application.

Application-Level Dynamic Enforcement. As an orthogonal approach to modifi-
cations of the operating system kernel or the Android middleware, enforcement
mechanisms can reside completely on the application level. While such mecha-
nisms are not closely integrated into the low-level parts of the system, they come
with the advantage that usually no modification of the platform is required for
enforcing security policies. Since this approach does not offer monitoring capa-
bilities on the lower levels of the system (like, e.g., hooks), application-level
enforcement mechanisms usually involve application instrumentation.

DroidForce [19] is a tool for enforcing complex, data-centric, system-
wide policies for Android applications. Conceptually, DroidForce consists of
a policy enforcement point that is inlined into target applications, and a cen-
tral enforcement decision point on the device. Hence, enforcement decision in
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DroidForce are always made centrally, and can consider the state of multiple
applications on the same device. For detecting security-relevant program points,
DroidForce incorporates a machine-learning approach. The framework pre-
sented in [16] provides capabilities to protect data usage on Android devices.
The focus of this framework is the enforcement of attribute-based usage con-
trol depending on local or remote attributes that may change over time. Data
providers embed usage control policies in data, which are then enforced by a
central data protection system application on the device. Approaches that build
on dynamic taint-tracking systems like, for instance, TaintDroid [10] follow an
approach that is focused on data-flow tracking. Such approaches can analyze the
flow of sensitive data inside or across applications, e.g., in order to prevent pro-
cessing of sensitive data by third-party libraries. Many variants of dynamic or
hybrid taint-tracking have been proposed, ranging from basic data-flow tracking
to more sophisticated analyses that, e.g., consider native code inside apps [15].

3 CliSeAuDroid

With CliSeAuDroid, we present a novel runtime enforcement mechanism that
enables the enforcement of fine-grained, user-defined security policies for Android
applications both locally (i.e., within a single application), and in a distributed
fashion (i.e., across different applications on the same device, or across differ-
ent devices). CliSeAuDroid operates completely on the application layer, and
can be applied to applications running on unmodified and unrooted Android
devices. Policies for CliSeAuDroid are provided as Java source code, and are
compiled for execution on devices. This approach provides support for using
method and field invocations at the target program in the decision-making pro-
cess, in particular involving the Android application lifecycle. In terms of the
Android permission system, CliSeAuDroid offers a more fine-grained possibil-
ity to specify permission access, as well as a more sophisticated way to specify
how data and device resources may be used after the corresponding permissions
have been granted to an application. The implementation of CliSeAuDroid
is provided as open-source software and available online. We provide the source
code of CliSeAuDroid, sample security policies, and our evaluation results at
www.mais.informatik.tu-darmstadt.de/assets/tools/cliseaudroid.zip.

3.1 Architecture

Figure 1 shows the architecture of CliSeAuDroid. It consists of four com-
ponents: the interceptor, the coordinator, the local policy, and the enforcer.
The interceptor component is responsible for monitoring the target application
(Arrow 1), and communicating intercepted program events to the coordinator
(Arrow 2). The coordinator component, in turn, checks with the local policy
component whether the observed program behavior complies with the enforced
security requirement (Arrow 3a). In case the observed behavior would violate

www.mais.informatik.tu-darmstadt.de/assets/tools/cliseaudroid.zip
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the security requirement, a suitable countermeasure is determined and com-
municated to the enforcer component (Arrow 4). Finally, the enforcer compo-
nent implements this countermeasure at the interaction point with the target
application (Arrow 5). CliSeAuDroid supports the enforcement of distributed,
system-wide security policies by communicating with other encapsulated appli-
cations. By system-wide policies, we refer to policies that consider all nodes in a
distributed system, and that require global knowledge of the system state. This
communication might involve other applications on the same device, or appli-
cations on a different device. In such settings, the coordinator can delegate the
decision-making to other encapsulated applications instead of deciding locally
(Arrow 3b).

Fig. 1. Architecture of CliSeAuDroid

All components of the enforcement mechanism are located at the applica-
tion level, depicted by the upper, dark-gray box in Fig. 1. This is achieved by
instrumenting the target application APK file, placing the interceptor compo-
nent and the enforcer component inlined into the target application code. The
decision-making part of the mechanism, i.e., the coordinator component and the
local policy component are located in a separate decider service. This technique
of splitting the enforcement into an inlined entity and an entity outside the
original application code, known as crosslining [11], guarantees that the decision
making components are reachable for other applications, even if the target appli-
cation is not actively running. The instrumentation results in an encapsulated
application, in which all components of CliSeAuDroid are included into the
target application. The inlined part of the security mechanism and the decider
service communicate via the binder interface provided by the Android kernel,
depicted by the lower, light-gray box of Fig. 1.
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The component design of CliSeAuDroid implements the concept of ser-
vice automata, a parametric framework for enforcing security requirements in
local and distributed systems at runtime [14]. The service automata framework
is parametric in the enforced security requirement, the possible countermeasures
on the target, and the monitored program events. For all communication within
the enforcement and for the decision-making, we abstract from target application
events by generating internal events based on the observed behavior. Implement-
ing the concept of Service Automata, CliSeAuDroid enables the decentralized
coordination between different target applications running on a single device or
across devices, and thus the enforcement of system-wide policies. A decentralized
coordination that does not require a central decision-making entity can be ben-
eficial depending on the application scenario, especially in distributed settings
involving mobile devices that might not be reachable continuously.

3.2 Implementation Details

The implementation of CliSeAuDroid builds on CliSeAu [11], an implementa-
tion of the service automata framework for Java programs. CliSeAu is designed
in a modular fashion that already enabled its extension for Ruby target pro-
grams [12]. The modular design of CliSeAu enabled us to reuse large parts of
the existing codebase, since most components are working with an internal event
abstraction that is target-language independent.

In addition to the existing codebase of CliSeAu, we developed software
components that are specifically tailored to the peculiarities of the Android
platform. The decision-making process is implemented as a background ser-
vice, that is kept alive even when the target application is not actively run-
ning. The communication of the interceptor and the enforcer components with
the decision-making service facilitate the Android inter-process communication
mechanisms, in particular the Android binder interface using Intents. Different
target applications instrumented with CliSeAuDroid communicate over plain
Java sockets. Currently, this requires a-priori knowledge of the IP addresses of
all targeted devices. However, CliSeAuDroid is designed in a modular fash-
ion that enables its adaptation to different communication strategies. Hence,
the socket-based communication can be adapted to a setting that is agnostic
of the actual IP addresses of target devices, e.g., using cloud-based communi-
cation mechanisms like Firebase Cloud Messaging [3]. Regardless of the actual
communication strategy, applications instrumented by CliSeAuDroid require
the permission for internet access for distributed enforcement scenarios. We also
enhanced the instrumentation infrastructure of CliSeAu to enable the instru-
mentation of Android applications using the AspectBench Compiler (abc) [4].

3.3 Application Instrumentation

The instrumentation process of CliSeAuDroid operates on the application
package file (APK) of the target application. APKs are container files, including
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the binary files of the application as well as necessary dependencies and appli-
cation resources. Figure 2 visualizes the instrumentation process of CliSeAu-
Droid. The instrumentation operates on three input artifacts: the APK file of
the target application, an instantiation of CliSeAuDroid for the target appli-
cation, and a pointcut specification of the security-relevant program points.

Fig. 2. Application instrumentation

The instantiation of CliSeAuDroid for the target program and policy con-
sists of an implementation of the local policy component, the enforcer compo-
nent, a factory class for abstracting from intercepted program behavior, and a
factory class for creating enforcer objects from decisions. These implementations
can be reused between different application scenarios, e.g., when the same policy
shall be enforced but different program points are relevant for the monitoring
process. The security-relevant program points are specified as AspectJ pointcuts.
Program points matching these pointcuts are intercepted during the enforcement
and translated to the internal event abstraction by a factory class.

The CliSeAuDroid instantiation for the target application is provided as
source code and compiled against a JAR file (generated with dex2jar) con-
taining class information of the target application. In particular, this JAR
includes dependencies inside the target application that are required for compil-
ing the policy instantiations. These dependencies include, for instance, informa-
tion about the fields of classes in the target application, or method signatures
of these classes. After compiling the CliSeAuDroid instantiation to class files,
they are converted to smali files using the dx and baksmali tools, because regular
Java class files cannot be directly used inside APK containers. In order to include
the generated smali files into the target APK, we first extract the existing smali
files from the APK using the apktool and subsequently repackage all files into a
single APK file using the apktool. Finally, the AspectBench Compiler (abc) [4]
combines the repackaged target APK that now contains all components required
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for an enforcement with CliSeAuDroid and the pointcut specification that pro-
vides the program points of the target application relevant for the enforcement.
The result is an instrumented APK that is monitored by CliSeAuDroid. In
case policy violations are detected, suitable countermeasures are taken. Note
that the instrumented APK file needs to be signed after the instrumentation, as
the existing signature of the APK is not preserved during the instrumentation.

4 Security Evaluation

CliSeAuDroid can enforce user-defined usage control policies for granted per-
missions and device resources locally, across applications and across devices.
We empirically evaluate the capabilities of CliSeAuDroid for enforcing such
fine-grained and system-wide security policies using exemplary case study poli-
cies highlighting security aspects that cannot be enforced by the Android plat-
form security architecture. The flexible and modular design of CliSeAuDroid
enables the enforcement of user-defined policies for a variety of requirements. The
policies can reuse existing code from other policy instantiations, or can be devel-
oped from scratch to match given scenarios. In this paper, we focus on example
policies that we also provide as part of our implementation. For evaluating the
effectiveness of enforcing these policies, we target open-source applications pub-
licly available on the F-Droid store [2] that make use of specific permissions that
we target in the case study policies.

4.1 Case Study Policies

We present three classes of security policies that we investigate in our case stud-
ies. For each of these classes, we present an exemplary instantiation for a specific
permission-protected part of the Android API.

Explicit Permission Usage Control. Permissions on the Android platform are
granted per application based on user confirmation. Once the permission has
been granted, users are not asked for confirmation again when the application
accesses an API protected by that permission. While there might be benign
reasons for an application to access a permission-protected API at the time a
permission is granted, the application can also misuse the permission later.

CliSeAuDroid can be instantiated to ask users for explicit confirmation
whenever the target application tries to access an API protected by a permission.
We evaluate an instantiation of such a policy for the SEND SMS permission. The
SmsUserConfirmation policy provides users with a fine-grained control over
permission usage for sending SMS messages. Instead of granting the SEND SMS
permission forever, users can choose to be asked every time the application tries
to send a SMS message. When the application first tries to access the permission-
protected API method for sending SMS messages, the user is presented with a
popup window. In this popup window, the user can decide to grant or deny
access for the permission to the application. In addition, the user can choose
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to remember this decision for the application. If the user does not choose to
remember this decision, he will be presented with a popup message asking for
permission each time the application tries to send a SMS message. Enforcing this
policy for applications running on older devices also provides a backport of the
permission model of Android starting from Android 5 in case the user chooses
to remember the decision.

Rate-Limiting Policies. Once an application has been granted with a specific per-
mission, there is no limit on the frequency the application can use API methods
protected by this permission. While users might be willing to grant applications
with a specific permission, they might want to ensure that the permission is not
used extensively.

CliSeAuDroid enables the enforcement of user-defined rate limits for
accessing permission-protected API methods. We evaluate an instantiation of
such a policy for the SEND SMS permission. The SmsRateLimiting policy
limits the amount of SMS messages that can be sent by a specific application.
Using the distributed enforcement capability of CliSeAuDroid, this policy can
also be applied to enforce rate limits across multiple applications and devices of
the user. This enables settings where a user wants to use applications that make
use of SMS messaging on more than one device, e.g., on a smartphone and on
a tablet device. Note that for both local and distributed rate limiting, we can
reuse the same instantiation of CliSeAuDroid. In distributed settings each
unit is instrumented separately and installed on the corresponding device. The
coordinator components of the different units will handle the decision-making
during runtime in a transparent fashion for the end user.

Provision of Fake Data. Denying applications access to permission-protected
APIs can lead to application crashes, as the application might depend on the
presence of data queried from the APIs. While users might want to deny certain
applications access to specific permissions, they might still have an interest in
using other functionalities of the application. Hence, avoiding application crashes
in such cases is a desirable goal for enforcement mechanisms.

CliSeAuDroid can be instantiated to deny applications access to spe-
cific permissions, providing fake data for the application instead. We evaluate
an instantiation of such a policy for the ACCESS FINE LOCATION permis-
sion. The FakeLocationProvision policy can prevent application crashes by
enabling the provision of fake location data to applications. Whenever the target
application tries to access the current location of the device, the return values
of the API calls are intercepted and modified to show a different location (e.g.,
in Antarctica). This enables users to still run the application, without provid-
ing it with the actual location of the device. Note that the generic architecture
of CliSeAuDroid also allows the provision of more sophisticated return data,
like, e.g., plausible movement profiles for fake locations. For the evaluation in
this article, we limit ourselves to a static return value that is used as fake data.
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4.2 Case Study Instantiations

In our evaluations, we target two open-source applications that are publicly
available on F-Droid: TinyTravelTracker6 and ShellMS7. The TinyTravelTracker
app collects GPS location data in the background in order to provide the user
with movement profiles. Naturally, TinyTravelTracker requires access to the
ACCESS FINE LOCATION permission for this purpose. The ShellMS app, in
turn, provides a background service that can be used by other applications on
the device or by users via the Android Debug Bridge (adb) for sending SMS
messages. Naturally, ShellMS requires the SEND SMS permission.

Evaluation Setup. We instantiate the FakeLocationProvision policy for
TinyTravelTracker. We instantiate both the SmsUserConfirmation policy,
and the SmsRateLimiting policies for ShellMS. For the SmsRateLimiting
policy, we evaluate four variants: a purely local variant involving only one
application instance and device, and distributed variants involving 2, 3, and 4
devices, correspondingly. We evaluated all policy instantiations on Google Nexus
5 devices running Android 4.4.3 in a local WiFi network.

Evaluation Results. The left-hand side of Fig. 3 shows a screenshot of an instru-
mented ShellMS instance using the SmsUserConfirmation policy. Our evalu-
ation confirms that CliSeAuDroid can effectively enforce the policy, and will
ask users for permission whenever the application tries to send SMS messages.
No SMS message was sent without explicit user confirmation in our experi-
ments. We further confirmed in our experiments that the SmsRateLimiting
policy was correctly preventing ShellMS from sending more messages than the
quota permits. We were able to confirm this both locally, and in our cross-device
experiments. The quota limit was enforced across all involved devices, regard-
less of where the permitted messages originated before. The right-hand side of
Fig. 3 shows a screenshot of an instrumented TinyTravelTracker instance for the
FakeLocationProvision policy. As can be seen in the figure, the application
is correctly prevented from access to the real device location and is provided with
a fake location in Antarctica instead. Note that we do not evaluate in full rigor
whether all invocations of security-relevant methods are intercepted and han-
dled by CliSeAuDroid. We rely on the automatized instrumentation by abc
for ensuring a sound instantiation of the monitoring. Defining suitable pointcuts
for given security requirements is part of policy development and controlled by
the user of CliSeAuDroid.

In summary, CliSeAuDroid succeeded in enforcing all of our security policy
instantiations, both locally on a single device and in distributed settings involv-
ing up to four devices. In our experiments, we did not observe any disruption of
regular application functionality that was not covered by the security policies.

6 https://f-droid.org/en/packages/com.rareventure.gps2/.
7 https://f-droid.org/en/packages/com.android.shellms/.

https://f-droid.org/en/packages/com.rareventure.gps2/
https://f-droid.org/en/packages/com.android.shellms/
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Fig. 3. Screenshots of encapsulated target applications

5 Performance Evaluation

Dynamically enforcing security policies at runtime comes at the cost of a per-
formance overhead. This overhead is caused by the additional time required for
monitoring application behavior, the time required for the decision making, and
the time required to impose countermeasures on the application. In addition to
the runtime overhead, some preprocessing time is required when instrumenting
the target application. In this section, we evaluate the performance overhead
introduced by CliSeAuDroid in both of these dimensions for the case study
policies presented in Sect. 4. We show that the runtime overhead of CliSeAu-
Droid achieves its goal of achieving a light-weight enforcement without adding
extensive runtime overhead, and that the runtime overhead of CliSeAuDroid
is not perceivable to end users for local enforcement.

5.1 Instrumentation Overhead

Instrumenting a target application with CliSeAuDroid is a one-time opera-
tion. Once an instance of the target application has been instrumented for a
specific device, the resulting APK file can be installed on the device like a regu-
lar application. The instrumentation process can thus be kept transparent to the
end user, who is provided with the instrumented APK file. When instrumenting
applications for a distributed setting, one instance of the target application is
instrumented per unit of the distributed system.
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Figure 4 summarizes the instrumentation times and size overheads for the dif-
ferent target applications and case study policies. Overall, our evaluation shows
that the instrumentation time is below three minutes for all our case study poli-
cies and applications. Since the instrumentation is carried out only once before
installing the target application on a device, we consider this an acceptable over-
head. Regarding application size, the instrumentation added less than 1 MB to
the original application size for each policy instantiation.

security policy instrumentation time size overhead

SmsUserConfirmation 35s 100.5kB (25.2%)
SmsRateLimiting 34s 96.7kB (24.3%)

FakeLocationProvision 150s 591.9kB (3.3%)

Fig. 4. Instrumentation time and application size overhead (per unit)

5.2 Runtime Overhead

We evaluate the runtime overhead introduced by CliSeAuDroid when running
an encapsulated application by measuring the time spent within the enforcement
components. For this, we measure the start time when we first intercept a pro-
gram event that is relevant for the enforced security policy. We measure the end
time at the point just before the enforcer applies the determined countermea-
sure to the target program. For our experiments, we carried out measurements
for each policy instantiation, discarding outliers that lie more than three abso-
lute standard deviations from the median. All experiments were carried out on
Google Nexus 5 devices running Android 4.4.3. The start and end times, respec-
tively, were logged to the device for evaluation. These log results were extracted
from the devices using the Android debug bridge (adb).

Figure 5 summarizes the mean overhead times (with 95% confidence inter-
vals) and the standard deviation introduced by CliSeAuDroid for each policy
instantiation. For the policies that do not involve direct user interaction (i.e.,
the SmsRateLimiting policy, and the FakeLocationProvision policy), we
carried out 2,000 experiments. For the SmsUserConfirmation policy involv-
ing user interaction, we carried out 100 experiments. Our results show that for
purely local enforcement within a single application, the mean overhead added
by CliSeAuDroid is below 6 ms for each runtime check on the invocation
of a security-relevant method. For distributed enforcement across devices, our
results show a comparably high overhead that is increasing with the amount of
network hops performed during the enforcement. In addition to the higher mean
enforcement overhead, we can also observe that the standard deviation is sig-
nificantly higher than for local enforcement. Figure 6 visualizes the distributions
of overhead times for local enforcement of the FakeLocationProvision and
SmsRateLimiting policies.



Decentralized Dynamic Security Enforcement for Mobile Applications 43

security policy mean overhead standard deviation

SmsUserConfirmation 1.6726± 0.0232 ms 0.2753 ms
SmsRateLimiting (local) 5.4051± 0.0443 ms 2.3608 ms
SmsRateLimiting (2 hops) 423.4710± 5.3791 ms 287.8840 ms
SmsRateLimiting (3 hops) 616.0131± 7.0449 ms 377.2245 ms
SmsRateLimiting (4 hops) 712.3791± 6.2084 ms 332.2642 ms
FakeLocationProvision 3.6122± 0.0227 ms 1.1995 ms

Fig. 5. Runtime overhead introduced by CliSeAuDroid enforcement

Our results indicate that the runtime overhead introduced by CliSeAu-
Droid is within limits that are not perceivable to the end user for local enforce-
ment. Indeed, during our experiments we did not notice any disruption of
application functionality. This observation lines up with the overhead added by
CliSeAu for other target languages, and is competitive with other enforcement
mechanisms for the Android platform, like, e.g., DroidForce [19].

For distributed policies, we can observe a much higher overhead above 400
ms. This magnitude of runtime overhead can be clearly perceivable to end users.
However, depending on the application scenario, the security benefits can still
outweigh the overhead. Our experiments show that even with up to four devices
involved in the enforcement process, the overhead remains below 1 s. Interpreting
the overhead in distributed settings, the biggest part of the overhead seems to
stem from network communication overhead. We consider investigations of pos-
sibilities to decrease this overhead while still ensuring a sound enforcement as
an interesting direction for future work. Decreasing this overhead might involve
different communication technologies, or strategies to reduce the amount of com-
munication required for decision making, e.g., by precomputing decisions. Previ-
ous evaluations of such precomputation strategies showed a significant potential
for reducing overhead [13].

Fig. 6. Runtime overhead distribution introduced by local enforcement for the
SmsRateLimiting policy (left) and FakeLocationProvision policy (right)
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6 Conclusion

In this article, we presented CliSeAuDroid, a mechanism for dynamically
enforcing both local and system-wide security policies for Android applications at
runtime. CliSeAuDroid enables the enforcement of fine-grained security poli-
cies that cannot be enforced with built-in Android security mechanisms. Our
mechanism is implemented completely at the application layer, and can be used
on unmodified and unrooted Android devices.

We showed that CliSeAuDroid can effectively enforce realistic, user-defined
security policies for applications running on a single device or across devices. Our
experimental evaluation indicates that the performance overhead added by this
enforcement is small, and within boundaries that are not recognizable by end
users for local enforcement. When enforcing distributed policies, the performance
overhead is significantly higher, but was still below 1 second in our experiments.

The capability to enforce cross-device security policies adds to our confidence
that CliSeAuDroid is not just yet another tool for Android security, but pro-
vides a flexible and light-weight solution for security concerns in our increasingly
connected world.
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Abstract. The international travel continuum is a highly demanding environ-
ment in which the participating entities have goals which are sometimes in
conflict. The traveler seeks the ability to plan trips in advance and to travel
conveniently, minimizing line-ups and unforeseen problems. Service providers
seek to make the most of specialized resources, maximize quality of service,
intercept security threats, and enforce the controls appropriate for their zones of
responsibility. This paper proposes a system to benefit the needs of these
multiple stakeholders: the needs of the traveler for convenience, privacy and
efficiency, and the needs of the service provider for security, reliability, and
accountability. Today’s environment is characterized by paper documents, tra-
ditional biometric verification using facial and fingerprint images, and the
manual processing of queues of passengers. Instead of this, we present a novel
approach centered on fully electronic travel documents stored on the traveler’s
phone, secured by cryptographic operations that utilize privacy-respecting bio-
metric references. A prototype system has been developed and implemented,
demonstrating the intended benefits for all stakeholders.

Keywords: e-Passport � Privacy � Credential � Biometrics � Cryptography

1 Introduction

The current travel environment is characterized by paper-based documents, physical
checkpoints staffed with agency personnel, and a medium level of systems integration
between collaborating agencies. Traveler identity is largely verified based on the e-
passport (a paper-based document augmented with a chip that stores traveler data) [1].
System integration occurs between immigration authorities, airlines, border control,
and agencies such as Interpol [2]. Self-serve kiosks at airports perform traditional
biometric verification and check identities against operational databases [3, 4]. Sharing
of traveler data between airlines and border agencies is common practice, occurring in a
controlled and regulated manner [5]. The system proposed in this paper builds on much
of this practice, but introduces electronic credentials in such a way that convenience
and efficiency is enhanced, while simultaneously enhancing privacy and security. The
focus of this paper (and of the prototype system that was implemented) is to describe
the credential issuance and credential verification processes.

We present a smartphone-based credential system for international travel in which a
digital credential is created by an issuer (the immigration authority) and verified by an
airport kiosk controlled by the border security authority.
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This paper has the following structure. Section 2 provides a brief discussion of the
travel process today, along with some of the drawbacks that can be seen in this system.
Section 3 presents the architecture of our proposed system. Section 4 describes the
credential issuance process, and Sect. 5 describes the credential verification process.
Section 6 discusses our prototype implementation, highlighting the benefits that are
now available to the various stakeholders. The final section presents our conclusions
and discusses some directions for ongoing and future work in this area.

2 The Current Travel Process

Today’s travel process makes use of chip-augmented paper-based credentials, bio-
metric verification, and e-border systems.

In the current travel and identity landscape, ICAO compliant chip-augmented
passports (e-passports) are widely deployed. The e-Passport contains printed pages and
data stored electronically on the chip. Of the 10 to 20 printed pages in the passport,
there is one distinguished page (often referred to as the “bio-data” page) which is of
particular interest. On this page are printed a passport photograph, subject attribute
data, a machine readable zone mrz, and various security markings. The mrz contains
various document identification information, of which some fields are used as a low-
entropy secret allowing a two-step authentication protocol (c.f. ICAO Basic Access
Control [1]) between passport and inspection station to protect wireless read-access to
the e-passport chip. Our proposed system takes full advantage of today’s e-passport and
all the security and standards currently in place for its processing and use.

A strong binding is required between the e-passport and the individual to whom it is
issued. Biometric technology has offered the strongest and most robust of such bind-
ings. A number of biometric modalities are used in international travel systems
including face, fingerprints, and iris [6]. The most prevalent and universal of modalities
in travel is facial biometrics, which is the single mandatory biometric in ICAO-
compliant e-passports [1]. Algorithms for facial matching in the portrait-styled images
used in e-passports are well studied [7]. Our system builds on [8], offering formal
definition and a prototype construction for mobile travel credentials (MTC). The
algorithm is defined in terms of privacy-respecting biometrics [9–11]. The construction
and prototype are defined to be compatible with ICAO Standards, corporate-standard
cryptography, e-passport facial biometrics, and commercial biometric matchers.

Our algorithm also defines a QR-code [12] based protocol which is analogous to the
e-passport protocol to allow authenticated read of the credential using NFC.

Finally, the e-border landscape is comprised of the interconnected systems of
multiple authorities including foreign immigration agencies, airlines, and border
security. Immigration systems include traditional and web-enabled systems and,
increasingly, mobile systems to support the issuance of visas and electronic travel
authorizations (eTA) [13–15]. Various airlines implement “Advanced Passenger
Information” and “Passenger Name Record” (API/PNR) systems [5] which provide
passenger information to border security systems before take-off, to allow risk-based
board/no-board decisions to be made. Airlines and Border Security Authorities often
provide a self-service system featuring airport kiosks that perform biometric and
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passport checks [3, 4]. The system proposed in this paper demonstrates how a mobile
travel credential can integrate with an online travel authorization issuance system and a
self-serve kiosk at the border, to demonstrate a possible architecture that can be used in
today’s environment to provide increased convenience, privacy, efficiency, reliability,
security, and accountability.

2.1 Drawbacks in the Current Travel Process

The current travel process works reasonably well for most travelers, but it does have a
number of limitations or drawbacks that can be improved. Several of these are listed
below.

• In today’s travel system, travelers may be required to be physically present at a
travel authority in order to obtain a travel credential such as a visa or an eTA.
Furthermore, manual processes at issuance time and at verification time (at the
airport) can lead to delays and frustration for travelers.

• Travelers applying for a visa or eTA today may fill out an application by hand or
may use an online form. In either case, data may be missing or incorrect (e.g., due to
typographical errors), leading to delays in processing and, potentially, mistakes in
allowing or disallowing travel.

• Finally, manual processing and electronic transaction logs stored in various systems
with different levels of protection can lead to situations in which records of deci-
sions are either not kept or are vulnerable to unauthorized modification.

The travel process proposed in the following sections was designed to mitigate the
above drawbacks to improve the experience of both travelers and travel authorities.

3 Proposed System Architecture

Our proposed system (see Fig. 1 below) has a smart-phone application that captures a
facial biometric (i.e., a “selfie” photo), reads an e-passport, collects some data from the
user for the credential application form, and (collaboratively with an immigration
server) creates a digital mobile travel credential (MTC) which is stored on the phone.
This credential is later presented to a travel kiosk at the airport of arrival along with a
fresh biometric and a scan of the e-passport. The kiosk is where privacy-respecting
biometric verification is performed and permission to enter the country is determined.

An app on the mobile device is responsible for presenting the travel application
questionnaire to the user (e.g., intended destination, dates of travel, etc.) and obtaining
the user’s responses. The app also retrieves “bio data” from the passport’s mrz and
chip, and uses the device camera to obtain a “selfie” photograph of the traveler. These
are packaged together and sent to the travel authority (e.g., immigration server), which
can do a passport integrity check, a biometric match of the selfie and the image from
the e-passport chip, and other security checks as performed today. The server creates a
credential (e.g., visa, eTA) that is digitally signed with the authority’s private key and
sent to the mobile device for storage.
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At the destination airport, the user will go to a self-serve kiosk. The kiosk will read
the traveler’s e-passport, take a photo of the traveler, and download the credential from
the traveler’s mobile device. Verification processes (including matching the new photo
with the e-passport image, an integrity check of the passport, verification of the
authority’s digital signature on the travel credential, and revocation checks on the
credential itself) will allow the kiosk to instruct the traveler to enter the country or to go
to a secondary location (to meet with a human officer).

4 Credential Issuance Process

Issuance. As shown in Fig. 2, the credential issuance process is a request-response
protocol between user U and issuer I. In the first step, using mobile device m, the
traveler U assembles the request q ¼ X 0; be;Dh i, submitting U’s answers X 0 ¼ Xif g to
questionnaire Q, enrollment biometric be, and the e-passport data groups D.

Issuance

Verification

Fig. 1. Proposed system architecture

Mobile Travel Credentials 49



When I receives q, the relevant data is parsed out of the passport into X, to support
application data and conformance modules RI ¼ RI1 ; . . .;RInf g, as well as the action-
labeling function assessðÞ which assigns a label (e.g., “accept”, “reject”, escalate”) to q.
Based on the assigned label, I conducts the appropriate follow-up processing which
could be to refuse the application or to escalate the case to supporting systems (which
may include manual processes). If assessment yields acceptance, the response c is
created. This credential is a cryptographic object, signed by the issuer and encrypted for
the verifier.

Various techniques have been explored to mitigate the privacy concerns of bio-
metric storage; one promising technique is a cryptographic primitive called a fuzzy
extractor [11]. A fuzzy extractor is a scheme that takes input which is “fuzzy” (i.e.,
input that may vary over time, such as a biometric) and produces a highly random bit
string and some additional data (“helper data”) that can be publicly known. On sub-
sequent use, a variation of the original data is input (e.g., another biometric reading)
along with the helper data. If the variation is sufficiently close to the original data, the
same bit string will be produced; otherwise, a completely different bit string will be
produced. The bit string produced by the fuzzy extractor system is long enough and
random enough that it can be used as a cryptographic key (e.g., an AES key).

In our proposed system, we use the fuzzy extractor as follows. The traveler’s face
biometric at issuance time (i.e., the selfie photo) is input to the fuzzy extractor to
produce an AES key and the helper data. The AES key is used to encrypt the credential.
The helper data can be stored on the phone along with the credential. The AES key is

Fig. 2. Mobile travel credential issuance protocol
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itself encrypted using the public key of the kiosk at the destination airport. In our
system, this derived AES key is referred to as a “renewable biometric reference”, or
RBR.

Note that since the communication between the mobile device and the issuance
server occurs over the Internet, a secure communication channel must be established
between this client and server. The obvious choice would be to use SSL/TLS so that the
server can be cryptographically authenticated and the mobile device can transfer the
relevant travel application data with confidence.

5 Credential Verification Process

Figure 3 shows the workflow between the smartphone, the kiosk, and the server sys-
tems at the time of verification. The kiosk application guides the user through the
sequence, instructing the traveler to put her passport on the document reader, and
steering the traveller through the acquisition process for the verification-time facial
image. Once the passport is read and the fresh image is captured, the mobile credential
from the phone is transferred via NFC to the kiosk. At this point, the kiosk uses a
commercial matcher MV to perform biometric matching between the chip image and
the fresh facial image. If the match is within the accepted threshold for the border
security process, the kiosk verifies the credential obtained from the phone. If the
credential is valid (note that this validation process may include an online revocation

Fig. 3. Mobile travel credential verification protocol
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check with the immigration server to confirm the current status of the eTA), the next
screen shows that the application was successful; otherwise, it shows an error code and
the traveler is referred to the border service officer to solve the problem.

Upon arrival, the traveler photo taken by the kiosk is used to re-derive the AES key
(along with the helper data downloaded from the phone). This key is then compared
with the AES key decrypted using the kiosk private key (alternatively, the re-derived
key is used to attempt to decrypt the credential that has been downloaded from the
phone). If the kiosk photo and helper data can generate the correct AES key, then this is
highly likely to be the person that applied for the credential at issuance time. This RBR
technology allows biometric verification without the use of a stored biometric template.

In this verification process, the kiosk is able to confirm the binding between the
human user and the passport (using accurate face matching technology), between the
human user and the mobile travel credential (using a privacy-respecting biometric
approach), and between the passport and the mobile travel credential (using digital
signature technology over the data from the passport that is also encoded in the cre-
dential). This conjunction of bindings enhances security over the processes in place
today in which a human officer does a manual face match between the traveler standing
in front of him/her and the image on the passport bio-data page.

6 Prototype Implementation

We developed an android application to obtain the application request data from the
user, as well as to read the passport data and allow a selfie to be captured. This app also
communicates with an issuance server to create a mobile travel credential and store it
on the phone. We also developed software on the kiosk to take a traveler photo, read
the passport, download the mobile travel credential from the traveler phone, and
communicate with backend servers, as required, for the verification process. We further
developed a biometric token approach for the RBR which uses a commercial face
matcher and hashing to produce a biometric key. In addition, we pursued a parallel
research project to apply the fuzzy extractors of [10] to the MTC scenario.

Credential Issuance
The mobile device m is responsible for data acquisition. The issuance server S creates a
signed and encrypted mobile travel credential c, and sends it to the client. The MTC
c contains the RBR, and the attributes Y = {passport_no, passport_exp_dt, eta_num,
eta_exp_dt}. In order to achieve the best performance and scalability, the server side
uses restful web service architecture, built on Apache Tomcat Server. The ECDSA,
RSA, and AES encryption algorithms are implemented by standard java crypto libraries
to achieve the highest reliability.

Request q is processed by a connected Server S hosted by I. Server S has access to a
1:1 biometric matcher MI, supporting corporate information systems DBI; risk scoring
modules RI ¼ RI1 ; . . .;RInf g, and a labeling function assessðR; TÞ which applies a
set of thresholds T ¼ s1; . . .; snf g to perceived risk to determine the required next steps
in processing an application. We assume a simplistic “green”, “yellow”, “red” labeling
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scheme which signals the approval, escalation for manual intervention, or automated
refusal of request q. On approval of q; I prepares credential c which is stored on m for
presentation at the verification system at the border.

Credential Verification
Verifier V commissions self-service kiosk K which is responsible for presenting a
questionnaire Qv, processing answers, capturing the verification biometric, reading the
passport, accessing risk, and labelling the outcome (which can include manual inter-
vention, or automated approval).

Key Generation
Key generation algorithms are as per ECDSA [16], RSA [17] and AES [18]. Storage
uses X.509 encoding for the public keys and PKCS-8 encoding for the private keys.

Communications
HTTPS is used to establish a secure communication channel for all communicating
entities [19, 20]. HTTPS uses SSL/TLS to provide a secure channel for the exchange of
data by implementing encryption and certificate-based authentication.

Issuance Data Acquisition
The answers to the questionnaire XI were obtained from keyboard input. Facial bio-
metric be was obtained using the smartphone front-facing camera. The application
rendered an oval overlay to help guide the user through photo capture. Open source
optical character recognition was used to extract the BAC keying fields from mrz.
Reading D from m was achieved using JMRTD [21], which also provided facilities to
parse D and complete ICAO Passive Authentication.

Issuance Risk Assessment and Conformance
Biometric risk was simplified to threshold match scores of commercial 1:1 face
recognition engines. Thus, RIb ¼ BI MI ; tI ; bo; beð Þ. Document risk was assessed in
two manners. First, as a function of the BAC and ICAO integrity checks on D, and
second, as a simulated call to the Interpol “Stolen and Lost Travel Document” database
[2]. Attribute risk was illustrated using mock business rules to assign country-specific
risk given the input data XI :

Prototype-RBR Generation
Having passed risk and conformance assessment, the last step was to generate the
credential itself. The biometrically derived AES key (RBR) was created using the
procedure described in Sect. 4.

Credential Issuance
The credential was signed using the issuer’s private ECDSA key, the signed credential
was encrypted using RBR as an AES key, and RBR was encrypted using the RSA
public key of the kiosk. This whole package was then stored on the traveler’s phone.

Verification: Data Acquisition
As represented in Fig. 4, standard kiosk features are used to acquire
Xv mrz;Pbd; and D: Xv is obtained by user input on the soft-keyboard of k. The bio-
metric bv of U is captured by the kiosk’s image capture camera. The document reader
of k captures an image of Pbd , obtains mrz and uses it to read D.
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In the prototype, k did not have facilities to read c. A custom prototype peripheral
was constructed to do so. This module consisted of a cradle to hold the phone against
an nfc reader [22], a camera [23], and an ODroid controller [24]. The traveler inserts m
into the cradle, at which point the kiosk’s NFC module is able to download c.

Credential Opening
Having obtained c from the NFC module, the kiosk first verifies the signed credential
against the issuer verification key Ipk then applies a 2 step decryption process (see
Fig. 5). First, Vsk is used with rsa:decVsk to decrypt c1. This yields symmetric key ks
which is then used to decrypt c2 with aes:dec to produce \Y[ .

Conformance and Risk Assessment
The sequence of validations completing the verification protocol are as follows.

(1) The freshly obtained biometric is compared against the extracted passport photo
BI MV ; tV ; bo; bVð Þ. A favorable match suggests that the individual at the kiosk is
the rightful passport holder.

(2) The rbr derived from the kiosk photo (and the helper data from the phone) is used
to decrypt the downloaded credential. Success indicates that the credential holder
(physically present at the kiosk) is the same individual to whom the mobile travel
credential was originally issued.

(3) The mtc exp dt must be greater than the current date. This ensures that travel is
within the permitted MTC period.

(4) An online call to the Issuer is made to verify that the MTC is not revoked. This
ensures that no recent problems exist in the current subject’s case.

Together these checks ensure the entitlement-ownership relationship: the subject at
the kiosk is the passport holder; the passport holder is the person to whom the MTC
was issued; the MTC is still valid.

Fig. 4. Data acquisition at the time of verification

Fig. 5. Credential opening
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6.1 Benefits of the Proposed System

Section 2.1 discussed some of the drawbacks of the current travel process. In this
section we recall those drawbacks and mention how they are mitigated by our proposed
system.

• In today’s travel system, travelers may be required to be physically present at a
travel authority in order to obtain a travel credential such as a visa or an eTA
Furthermore, manual processes at issuance time and at verification time (at the
airport) can lead to delays and frustration for travelers.

Our proposed system automates these processes and incorporates self-serve airport
kiosks so that the entire travel process may occur without queues and human inter-
vention, greatly increasing convenience and efficiency.

• Travelers applying for a visa or eTA today may fill out an application by hand or
may use an online form. In either case, data may be missing or incorrect (e.g., due
to typographical errors), leading to delays in processing and, potentially, mistakes
in allowing or disallowing travel.

In our system, passport data is read electronically, ensuring that it is complete and
correct in the application request; this greatly enhances reliability during the issuance
process.

• Manual processing and electronic transaction logs stored in various systems with
different levels of protection can lead to situations in which records of decisions are
either not kept or are vulnerable to unauthorized modification.

Our proposed system uses strong cryptographic protection (including encryption
and digital signatures) throughout, ensuring that transaction logs cannot be altered,
greatly enhancing the accountability of all actors in the travel process.

7 Conclusions and Future Work

The current travel process today relies on traveler identification that is largely paper-
based (though augmented with an e-passport chip), along with traditional biometric
verification systems and extensive manual processing of passenger queues. In this
paper we have proposed novel credential issuance and verification processes that can
bring multiple benefits to the travel process, including convenience, privacy, efficiency,
security, reliability, and accountability. Our proof-of-concept implementation has been
successfully completed and demonstrates secure credential issuance using a mobile app
and a server, and secure credential verification using a mobile app and an airport kiosk.
This implementation confirms the viability of our approach and provides a solid
foundation for further work in this area.

Future Work. While this paper and the prototype focus on only two traveler touch-
points (issuance and verification), we believe our paradigm delivers most benefit when
multiple checkpoints are placed throughout the travel continuum. Further work
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continues in this area to demonstrate how an intelligent system with risk-aware
adaptive processes applied to the travel continuum can be built using our proposed
approach [25, 26, 27].

This paper demonstrated the generation and verification of RBR using the e-
passport chip image. While this is a workable approach that can be deployed on an
international scale, we believe significant benefit to privacy can be delivered using a
fuzzy extractor approach. Ongoing work examines the applicability of fuzzy extractors
to the passport face biometric modality.

Self-enrollment using a smartphone certainly augments convenience and may
streamline issuer costs. However, as we have discussed in this paper, self-serve
enrollment with an uncontrolled enrollment environment and bring-your-own mobile
devices brings a level of vulnerability. On-going work is being conducted in the area of
levels-of-assurance for mobile enrolment and quantifying risks and counter-measures.

The area of 1:1 verification with mobile phone generated images is under study.
Our project empirically experienced acceptable results. A follow-up paper reporting the
biometric results is in development.

Finally, our study demonstrated immutability of processing logs for reliable
accountability. The reader may discern the applicability of Distributed Ledger Tech-
nologies (DLT) to this area. While full ecosystem availability of traveler data may seem
to offer large potential [28], legal concerns over privacy risks in the area of interna-
tional travel are ongoing [29, 30]. Misapplied, DLT could exacerbate privacy concerns,
resulting in immense exposure for citizens and Government data custodians [31]. As
always, privacy and security must be considered together [32]. Future work will
explore the applicability of DLT in this, and in other areas of social-service and cyber-
physical, social systems [33].
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Abstract. Cloud computing is emerging as a promising IT solution for
enabling ubiquitous, convenient, and on-demand accesses to a shared
pool of configurable computing resources. However, the widespread adop-
tion of cloud is still being hindered by security and privacy concerns.
Various cloud security and privacy issues have been addressed in the
literature. However, the mere existence of such security mechanisms is
usually insufficient to fully relieve cloud tenants from their security and
privacy concerns. To increase tenants’ trust in cloud, it is of paramount
importance to provide adequate auditing mechanisms and tools to verify
the security postures of their applications. However, there are currently
many challenges in the area of cloud auditing and compliance valida-
tion. There exists a significant gap between the high-level recommenda-
tions provided in most cloud-specific standards and the low-level logging
information currently available in existing cloud infrastructures. Further-
more, the unique characteristics of cloud computing may introduce addi-
tional complexity to the task, e.g., the use of heterogeneous solutions for
deploying cloud systems may complicate data collection and processing
and the sheer scale of cloud, together with its self-provisioning, elastic,
and dynamic nature. In this paper, we conduct a survey on the existing
cloud security auditing approaches. Additionally, we propose a taxonomy
identifying the classifications based on auditing objectives and auditing
techniques. We further devise a systematic process flow for cloud secu-
rity auditing. Also, we conduct a comparative study on existing works
to identify their strengths and weaknesses. Finally, we report existing
challenges in cloud security auditing.
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1 Introduction

Cloud computing has been gaining momentum as a promising IT solution for
enabling cost-effective, ubiquitous, and on-demand access to a shared pool of con-
figurable computing resources. Based on the provided services, cloud computing
has been divided into three main models, namely, infrastructure as a service
(IaaS), platform as a service (PaaS), and software as a service (SaaS). In those
models, there exist at least three main stakeholders: cloud service providers,
tenants and their users.

A cloud service provider owns a significant amount of computational, storage
and networking resources, and offers different paid services (e.g., IaaS, PaaS,
etc.) to its customers by utilizing this pool of resources. A cloud tenant, the
direct customer of cloud providers, enjoys the ad-hoc and elastic (i.e., on demand
provisioning and deprovisioning) nature of the cloud to use the shared pool of
resources for conducting his operations. Usually, tenants are different companies
or departments within a company, while users are customers availing services
offered by cloud tenants.

While cloud computing has seen such increasing interests and adoption, the
fear of loosing control and governance still persists due to the lack of trans-
parency and trust [41]. Security auditing and compliance validation may increase
cloud tenants’ trust in the service providers by providing assurance on the com-
pliance with the applicable laws, regulations, policies, and standards. However,
there are currently many challenges in the area of cloud auditing and compliance
verification. For instance, there exists a significant gap between the high-level
recommendations provided in most cloud-specific standards (e.g., Cloud Control
Matrix (CCM) [7] and ISO 27017 [22]) and the low-level logging information cur-
rently available in existing cloud infrastructures (e.g., OpenStack [38]). In prac-
tice, limited forms of auditing may be performed by cloud subscriber administra-
tors [36], and there exist a few automated compliance tools (e.g., [12,47]) with
several major limitations, which are discussed later in this section. Furthermore,
the unique characteristics of cloud computing may introduce additional com-
plexity to the task, e.g., the use of heterogeneous solutions for deploying cloud
systems may complicate data collection and processing, and the sheer scale of the
cloud together with its self-provisioning, elastic, and dynamic nature, may render
the overhead of many verification techniques prohibitive. In particular, the multi-
tenancy model and self-service nature of clouds usually imply significant oper-
ational complexity, which may prepare the floor for misconfigurations and vul-
nerabilities leading to violations of security compliance. Therefore, the security
compliance verification with respect to security standards and policies is desir-
able to boost the trust relationship between the cloud stakeholders. Evidently,
the Cloud Security Alliance (CSA) has recently introduced the Security, Trust &
Assurance Registry (STAR) for security assurance in clouds, which defines three
levels of certification, namely, self-auditing, third-party auditing, and continuous,
near real-time verification of security compliance [8]. However, above-mentioned
complexities coupled with the sheer size of clouds (e.g., a decent-size cloud is
said to have around 1,000 tenants and 100,000 users [39]) implies one of the main
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challenges in cloud security auditing. In summary, the major challenges are to
handle the unique nature of cloud and to deal with the sheer size of cloud in
providing a scalable and efficient security auditing solution for clouds.

To this end, existing approaches can be roughly divided into three cat-
egories. First, the retroactive approaches (e.g., [3,11,12,23,29,32,47,48,50])
catch compliance violations after the fact by verifying different configura-
tions and logs of the cloud. However, they cannot prevent security breaches
from propagating or causing potentially irreversible damages (e.g., leaks of
confidential information or denial of service). Second, the intercept-and-check
approaches (e.g., [5,19,27,37,43]) verify the compliance of each user request
before either granting or denying it, which can solve the limitation of the former
approach. However, existing intercept-and-check methods cause a substantial
delay in responding to each user request. Third, the proactive approaches, as
in [5,30,31,37,51], address the limitations of previous approaches by starting
the auditing process in advance and responding in a practical time at runtime.
However, this approach is still suffering from certain practicality issues, such as
how to decide about triggering the proactive step and how to reduce the man-
ual process involved in the auditing process (a detailed discussion is provider in
Sect. 4).

Contributions. The main contributions of our paper are as follows:

– As per our knowledge, this is the first effort to study the existing work on
cloud security auditing and categorize the current techniques based on their
adopted techniques and auditing objectives. To this end, we first study the
landscape of cloud security auditing, then identify the existing categories and
finally propose a taxonomy to present the whole landscape.

– In addition, we are the first to identify the structure of the automated security
auditing process. For this purpose, we utilize our above-mentioned study to
identify the mandatory steps of an automated security auditing system, and
present the process flow of such auditing process.

– Furthermore, we are the first to conduct a qualitative comparison between
existing works to highlight their coverage, strengths and weaknesses.

– Finally, we report the unaddressed challenges in cloud security auditing as
the key observations of this survey. Our hope is that those challenges will
draw the attention among security researchers to further improve the field of
cloud security auditing.

The remainder of the paper is organized as follows. Section 2 discusses the
structure of the automated security auditing process. Then, Sect. 3 describes the
existing works, presents our proposed taxonomy and summarizes the findings of
our comparative study. Afterwards, in Sect. 4, we report the existing challenges
in cloud security auditing. Section 5 discussed different aspects of cloud security
auditing. Finally, Sect. 6 concludes the paper discussing potential future work.
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2 Structure of the Automated Security Auditing Process

Though security auditing is not a new process, automation of this process and
complexity of targeted infrastructures introduce non-trivial challenges. Man-
ual auditing is still in practice, where internal or third party auditors conduct
the auditing process based on the collected data/evidence. Initial approaches of
automating the auditing process are mostly to detect network intrusions. Later
it has been adapted in other domains, such as data systems, access control and
distributed systems. One of the most recent additions in the list is the cloud
infrastructure. Based on the proposed solutions and best practices, we identify
different phases (as in Fig. 1) of an automated security auditing process.

Fig. 1. Different steps of the cloud security auditing process

Defining the Scope and Threat Model. As a very first step, an organiza-
tion should define the scope of its auditing. Part of it is to identify the critical
and sensitive assets, operations and the modules in the system that deal with
those assets and operations. The following step is to identify threats or nature
of threats to be considered for the auditing process. Most of the time, threat
model depends on the nature of the business and demand of customers. Part of
this step is to describe security assumptions while considering each threat. To
this end, last few years different studies have been conducted to identify risks
and threats in the cloud computing ecosystem. Based on those threats, several
security properties are proposed by CSA [6], ENISA [14], ISO [22], NIST [35],
CUMULUS [9], etc.

Data/Evidence Collection. The next phase is to gather evidences/data to
conduct the audit process. Based on the target system and threat model, audit
data is enlisted. In some cases (e.g., cloud and distributed systems), locating
those audit data is non-trivial.

The data collection phase has become more dynamic with the virtualization
and multi-tenancy; which results in an increase in the amount of data to be
collected. We also consider security aspects of data collection in addition to
the different runtime and continuous data collection techniques of different data
types. The trust model ensures that the audit data provided by a tenant is real
and fresh. At the same time, there might exist the privacy concerns in a central
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auditing system, such as any tenant must not leak any sensitive information to
the auditor, which can benefit any other tenants in case of colluding with the
auditor.

In the cloud, most of the audit data is any events, logs and system configu-
rations. Data collection techniques vary in terms of targeted environments and
data, e.g., what data to collect based on the scope, threat model and objectives,
and how to collect data (more challenging in a cloud-based system).

Data/Evidence Processing. The previous step collects raw data from the
system. It requires further processing to be able to conduct auditing. In case
of verifying compliance with a policy language, it depends on the language.
Collected data needs to be sanitized, as data is collected from different sources.
For better understanding and interpretation, different correlation methods are
applied on sanitized data to categorize them. There are different techniques (e.g.,
call graph, information flow graph, reachability graph) to represent the audit
data. Heterogeneous data is normalized by different methods, e.g., [10]. Storing
this processed audit data is also an important phase specially when dynamic
cloud auditing generates enormous amount of data over time.

Auditing. In the auditing phase, processed data is verified against the poli-
cies for any violation. The process either validates the system or detects if
any anomaly exists. There are different auditing techniques proposed over time,
though comparatively less automated techniques exist for the cloud. To under-
stand better and to adapt other approaches, automated auditing methods in
other analogous environments, such as intrusion detection systems and event
correlation in multi-domain network/infrastructure, might be interesting. We
consider different techniques of verifying policy compliance or detection of any
policy violation including formal verification and validation (V&V) methods.

Audit Output. The proper representation of auditing output is the last and
one of the important phases of security auditing. The audit report varies depend-
ing on the different demands and requirements of the customers (e.g., tenants).
Hierarchy-based reporting helps to fulfill different levels of expectation. A major
concern in outputting the result is not to leak any sensitive and unnecessary
information to any tenant. Proper information isolation must be ensured.

3 Survey on Cloud Security Auditing

This section first categorizes the existing cloud security auditing, then elaborate
each category mainly based on their coverage and adopted verification techniques
and finally present a taxonomy based on these works.

There exist mainly three categories of cloud security auditing approaches.
In the following, we discuss each of the approach with corresponding example
works.
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3.1 Retroactive Auditing

Retroactive auditing approach (e.g., [3,11,12,23,29,32,47,48,50]) in the cloud
is a traditional way to verify the compliance of different components of a cloud.
Works under this approach in the cloud targets a wide range of security proper-
ties that cover various cloud layers, such as data, user and virtual infrastructure.

There are several works that target auditing data location and storage in the
cloud (e.g., [21,23,48,50]). Wang et al. [48] propose a cloud storage system which
enables privacy-friendly public auditing to ensure data security in the proposed
system. The work leverages public key based homomorphic linear authenticator
(HLA) to significantly reduce the communication and computation overhead at
the auditor side. Kai et al. [23] can handle multiple auditing requests to verify
the data integrity in the multi-cloud environment. In addition, similar as the
former this work preserves the privacy of the audit data. On the other hand,
Ismail et al. [21] propose a game theory based auditing approach to verify the
compliance of data backup requirements of users. Unlike previous ones, Wang
et al. [50] offer auditing of data origin and consistence in addition to data
integrity.

There exist other works, which target virtual infrastructure change auditing
(e.g., [11,12,28,29,32,47]). These works cover different layers (e.g., user, virtual
network, etc.) in the virtual infrastructure. Particularly, Ullah et al. [47] propose
an architecture to build an automated security compliance tool for cloud comput-
ing platforms focusing on auditing clock synchronization and remote administra-
tive & diagnostic port protection. Doelitzscher [11] proposes on-demand audit
architecture for IaaS clouds and an implementation based on software agents
to enable anomaly detection systems to identify anomalies in IaaS clouds for
the purpose of auditing. The works in [11,47] have the same general objective,
which is cloud auditing, but they use empirical techniques to perform audit-
ing whereas we use formal techniques to model and solve the auditing problem.
Madi et al. [28,29] verify a list of security properties to audit the cross-layer
consistencies in the cloud.

In addition, several industrial efforts include solutions to support cloud audit-
ing in specific cloud environments. For instance, Microsoft proposes SecGuru [3]
to audit Azure datacenter network policy using the SMT solver Z3. IBM also
provides a set of monitoring tool integrated with QRadar [20], which is their secu-
rity information and event management system, to collect and analyze events
in the cloud. Amazon is offering web API logs and metric data to their AWS
clients by AWS CloudWatch & CloudTrail [2] that could be used for the audit-
ing purpose. Although those efforts may potentially assist auditing tasks, none
of them directly supports auditing a wide range of security properties covering
authentication, authorization and virtual infrastructure on cloud standards.

Furthermore, there are several auditing solutions (e.g., [16–18,32,46]) target-
ing the user-level (e.g., authentication and authorization) of the cloud. Majum-
dar et al. [32] verify the role-based access control implementation in Open-
Stack, a popular cloud platform. This work also verifies a list of security prop-
erties to ensure proper implementation of authentication steps in the cloud.
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To accommodate the need of secure collaborative environments such as cloud
computing, there have been some efforts towards proposing multi-domain/multi-
tenant access control models (e.g., [16,17,46]). Gouglidis and Mavridis [17] lever-
age graph theory algorithms to verify a subset of the access control security
properties. Gouglidis et al. [18] utilize model-checking to verify custom exten-
sions of RBAC with multi-domains [17] against security properties. Lu et al. [26]
use set theory to formalize policy conflicts in the context of inter-operation in
the multi-domain environment.

3.2 Intercept-and-Check Auditing

Existing intercept-and-check approaches (e.g., [5,19,27,33,37,43,45]) perform
major verification tasks while holding the event instances blocked. Works under
this category cover the virtual network, user-level and software defined network
(SDN) layers of a cloud environment as discussed in the following.

The works (e.g., [5,37]) at the virtual network level are mainly verifying the
security properties to safeguard multiple layers in a virtual network through an
intercept-and-check approach. These works focus on operational network prop-
erties (e.g., black holes and forwarding loops) in virtual networks, whereas our
effort is oriented toward preserving compliance with structural security proper-
ties that impact isolation in cloud virtualized infrastructures. Designing cloud
monitoring services based on security service-level agreements have been dis-
cussed in [40].

The user-level runtime auditing is proposed in Patron [27] and Majumdar
et al. [33]. More specifically, Patron [27] audits the access control rules defined
by the cloud tenants. In addition, Patron enforces these rules on the cloud by
leveraging the middleware supported in OpenStack, one of the major cloud plat-
forms. Majumdar et al. [33] utilize similar interception approach in OpenStack
and audit the proper deployment of various authentication and authorization
plugins, such as single sign-on (SSO), role-based access control (RBAC) and
attribute-based access control (ABAC) in the cloud.

There are also few works (e.g., TopoGuard [19] and TopoGuard+ [43]) which
adopt the intercept-and-check approach in the software defined network (SDN)
environment. TopoGuard [19] and TopoGuard+ [43] perform the interception
and enforcement to prevent topology tempering attacks in SDN. Those works in
SDN can be complements to the above-mentioned solutions for other layers in
the cloud.

3.3 Proactive Auditing

The concept of proactive security auditing for clouds is different than the tradi-
tional security auditing concept. The first proactive auditing approach for clouds
is proposed in [5]. Additionally, the Cloud Security Alliance (CSA) recommends
continuous auditing as the highest level of auditing [8], from which latter works
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(e.g., [30,31]) are inspired. The current proactive and runtime auditing mecha-
nisms are more of a combination of traditional auditing and incident manage-
ment. For example, LeaPS [31] learns from incidents and intercepted events to
process or detect in a similar manner as a traditional incident management sys-
tem. At the same time, LeaPS verifies and enforces compliance against different
security properties, which are mostly taken from different security standards, and
provide detailed evidence for any violation through LeaPS dashboard. Therefore,
the concept of proactive security auditing is a combination of incident manage-
ment and security auditing.

Proactive security analysis has also been explored for software security
enforcement through monitoring programs’ behaviors and taking specific actions
(e.g., warning) in case security policies are violated. Many state-based formal
models are proposed for those program monitors over the last two decades.
First, Schneider [42] modelled program monitors using an infinite-state-automata
model to enforce safety properties. Those automata recognize invalid behaviors
and halt the target application before the violation occurs. Ligatti [24] builds
on Schneider’s model and defines a more general program monitors model based
on the so called edit/security automata. Rather than just recognizing execu-
tions, edit automata-based monitors are able to suppress bad and/or insert new
actions, transforming hence invalid executions into valid ones. Mandatory Result
Automata (MRA) is another model proposed by Ligatti et al. [13,25] that can
transform both actions and results to valid ones. Narain [34] proactively gen-
erates correct network configurations using the model finder Alloy, which lever-
ages a state of the art SAT solver. To this end, they specify a set of end-to-end
requirements in First Order Logic and determine the set of existing network com-
ponents. Alloy uses a state of the art SAT solver to provide the configurations
that satisfy the input requirements for each network component. Considering the
huge size of cloud environments and the tremendous space of possible events,
adapting those solutions in the cloud is possibly very challenging.

Weatherman [5] is aiming at mitigating misconfigurations and enforcing secu-
rity policies in a virtualized infrastructure. Weatherman has both online and
offline approaches. Their online approach intercepts management operations for
analysis, and relays them to the management hosts only if Weatherman confirms
no security violation caused by those operations. Otherwise, they are rejected
with an error signal to the requester. The work defines a realization model, that
captures the virtualized infrastructure configuration and topology in a graph-
based model. The latter is synchronized with the actual infrastructure using the
approach in [4]. Two major limitations of this proposition are: (i) the model
capturing the whole infrastructure causes a scalability issue for the solution,
and (ii) the time consuming operation-checking that should be performed on
the emergence of each event, makes security enforcement not feasible for large
size data centers. Congress [37] is an OpenStack project offering both online
and offline policy enforcement approaches. The offline approach requires sub-
mitting a future change plan to Congress, so that the changes can be simulated
and the impacts of those changes can be verified against specific properties.
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In the online approach, Congress first applies the operation to the cloud, then
checks its impacts. In case of a violation, the operation is reverted. However,
the time elapsed before reverting the operation can be critical to perform some
illicit actions, for instance, transferring sensitive files before loosing the assigned
role. Foley et al. [15] provide an algebra to assess the effect of security policies
replacement and composition in OpenStack. Their solution can be considered as
a proactive approach for checking operational property violations.

3.4 Taxonomy of Cloud Security Auditing

Based on the above-mentioned study on cloud security auditing, we devise a
primary taxonomy for these works (as in Fig. 2). We consider the whole landscape
from the perspective of their coverage and applied techniques. Therefore, we first
categorize them based on their targeted cloud layers (e.g., data, user, virtual
network and SDN), then further identify various high-level security properties
that these works support, and finally show their adopted approaches. Thus, it is
trivial to understand which approaches are already explored for certain security
problems under a particular cloud layer. Furthermore, our taxonomy can be
useful towards building a fine-grained classification of cloud security auditing
approaches.

3.5 Comparative Study

We conduct a comparative study based on the taxonomy presented in the previ-
ous section. Table 1 summarizes the findings of this study. The first and second
columns of the table enlist existing works and their verification methods. The
next four columns present their covered layers in the cloud. We mainly include
works on four cloud layers: data, user, virtual network and software defined
network (SDN). In next three columns, we show the approaches (retroactive,
intercept-and-check and proactive) that a work adopts. Afterwards, there are five
features enlisted to demonstrate the special skills of these works. The caching
feature is marked when a work enables caching of verification results to enhance
the efficiency of the auditing process. We mark the dependency model when a
work utilizes the dependency relationship in the cloud to improve the efficiency
and accuracy of the auditing process. The pre-computation step is to identify
the works which performs a significant part of the verification step in advance
to reduce the response time of the runtime (usually in intercept-and-check and
proactive) solutions. There exist few works which support auditing of multiple
requests together. For them, we mark the batch auditing feature. The active
auditing feature is an active-probing-based auditing solution which does not
fully rely on the cloud provider for the audit data and instead actively partici-
pate in the targeted protocol to verify certain properties. The next four columns
indicate the supporting cloud platforms for these auditing solutions. We mark
the adaptable to others column when a work provide detailed discussion on the
process of porting the solution to different platforms. In the last four columns,
we evaluate existing works based on the commonly observed constraints in the
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Fig. 2. A taxonomy of cloud security auditing

field of cloud security auditing. The after-the-fact constraint is marked if a work
cannot prevent a security violation. The prohibitive delay is checked when a
runtime work (i.e., intercept-and-check and proactive approaches) causes signif-
icant delay in responding to a user request. For retroactive solutions, we mark
this column as not applicable (N/A). If a work involves significant manual effort
(apart from the inputs from the users) in the auditing process, then we check
the manual effort constraint. The limited coverage constraint is defined based on
the expressiveness of a auditing solution. For instance, a work supporting first
order logic to define security properties does not suffer from this constraint.

The key observations of this comparative study are as follows. First, there
is no single auditing solution to verify multiple layers of the cloud. Therefore,
today’s cloud tenants require at least three different solutions to fulfill their
auditing need; which might not be very usable for the tenants. Second, even
though intercept-and-check approach is designed to prevent security violations,
existing works under this category are not practical due to their prohibitive delay.
Third, the proactive auditing approach is a promising solution to overcome the
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limitations of both retroactive and intercept-and-check approach. However, this
approach still suffers from several practical issues, such as relying on manual
efforts and limiting the expressiveness of security properties. Finally, there exist
several features in the wild which significantly can improve the efficiency and
accuracy of the auditing solution. However, there is a need of a unified solution
with all these features at least to overcome major constraints.

4 Challenges in Cloud Security Auditing

In the following, we discuss the key challenges in cloud security auditing that
we identified during our survey.

High-level Security Properties. There is a significant gap between the high-
level standards (defining security requirements) and the low-level cloud config-
urations (providing the audit data). Even though several works (e.g., [28,29,32]
highlight this challenge and partially address the concern, the issue still persists
in interpreting security guidelines and defining security properties ready to be
used in auditing solutions. Current solutions rely on manual identification of
security properties, which is infeasible and error-prone especially when we con-
sider the multiple layers of cloud and intend to provide a unified security solution
for the whole cloud.

Non-trivial Log Processing. One mandatory and non-trivial step of cloud
security auditing is log processing. This step involves several challenging tasks.
First, identifying the heterogeneous sources of audit data requires well realiza-
tion of the deployed cloud system, which usually consists of several complex
components, e.g., management platform and layer-2 plugins. Second, due to the
different nature (e.g., database and text files) of storing the configurations and
logs, the collection of audit data has to be performed by adopting multiple meth-
ods. Finally, the diverse format of the logs require extensive processing efforts
to uniform the format before using them in auditing.

Reducing Manual Involvement. Automating the auditing process is a must
in a dynamic environment like cloud to ensure the accuracy and efficiency. How-
ever, the current solutions still rely on manual efforts in several critical steps.
Fully eliminating or at least reducing manual effort is not trivial mainly for the
following two reasons. First, defining the security properties is a mandatory step
for any auditing process and we fully rely on human inputs for this step. Existing
rule mining techniques in access control might be useful in automating this step.
Second, all intercept-and-check and proactive approaches (as reported in Sect. 4)
rely on manual identification of critical operations (which potentially can violate
a property). Applying machine learning or more specifically interactive machine
learning techniques may reduce the manual efforts involved with this step.

Unified Auditing Solution for Multi-layer Clouds. Table 1 pinpoints that
a tenant requires at least three auditing solutions if s/he wants to verify all four
layers of her/his cloud, and there is a need of unified auditing solution support-
ing multi-layer of a cloud. However, to propose a unified solution is non-trivial
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Table 1. Summary of existing cloud security auditing solutions highlighting their
adopted methods, covered cloud layers, applied approaches, offered features, supported
platforms and constraints. The symbols (•), (-) and N/A mean supported/required, not
supported/required, and not applicable, respectively. Note that, for both Weatherman
and Congress, V1 and V2 refer to their proactive and intercept-and-check variants,
respectively.
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Wang et al. [48] Cryptographic • - - - • - - - - - • - - - - • • N/A - -

Kai et al. [23] Cryptographic • - - - • - - - - - • - - - - • • N/A - -

Doelitzscher et al. [12] Custom algorithm - - • - • - - - - - - - • - - • • N/A - -

Ullah et al. [47] Custom algorithm - - • - • - - - - - - - • - - - • N/A - -

Solanas et al. [44] Classifiers - • - - • - - - - - - - • - - - • N/A - -

Majumdar et al. [32] CSP - • - - • - - - - - - - • - - - • N/A - -

Madi et al. [28,29] CSP - - • - • - - - - - - - • - - - • N/A - -

Cloud radar [4] Graph theory - - • - • - - - - - - - - - • - • N/A - -

TenantGuard [49] Graph theory - - • - • - - - - - - - • - - - • N/A - -

SecGuru [3] SMT - - • - • - - - - - - - - • - - • N/A - -

QRadar [20] Custom - - • - • - - - - - - - - - • - • N/A - -

SPV [1] Custom - - - • • - - - - - - • • - - • • N/A - -

Patron [27] Custom algorithm - • - - - • - - • - - - • - - - - • • -

Weatherman (V1) [5] Graph theory - - • - - • - - - - - - - - • - - • • •
Congress (V1) [37] Datalog - • • - - • - - - - - - • - - - - • • -

TopoGuard [19,43] Custom - - - • - • - - - - - - - - - • - • - •
Majumdar et al. [33] CSP + Custom - • - - - • - - - - - - • - - • - • • -

Weatherman (V2) [5] Graph theory - - • - - - • - - • - - - - • - - - • •
Congress (V2) [37] Datalog - • • - - - • - - • - - • - - - - - • •
PVSC [30] Custom algorithm - • • - - - • • • • - - • - - • - - • •
LeaPS [31] Custom + Bayesian - • • - - - • - • • - - • - - • - - • •

for the following fact. First, each layer of the cloud contains unique auditing
requirements (e.g., audit data type and security properties). Second, there exist
security threats involving multi-layer (as reported in [28]); which currently being
ignored in the solutions dedicated for a single layer. Finally, it is very difficult to
be comprehensive in covering security properties from various layers. However,
we believe that this is a more generic problem in the field of auditing and require
more attention from the researchers to overcome the concern.

Privacy Concerns in Audit Inputs and Outputs. Both third party and
cross-tenant auditing raise privacy concerns resulting from both audit inputs
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and outputs. In addressing these privacy concerns, there exist at least two major
challenges. First, how we can preserve tenants’ privacy in the input data so
that the utility (i.e., auditing capability) is not much affected. Second, how to
hide cross-tenant sensitive information so that the usefulness of auditing output
remains unchanged.

5 Discussion

In the following, we discuss several important aspects of cloud security auditing.

Why Traditional Auditing is not Enough for the Cloud. Based on the
previously discussed cloud security issues, it is obvious that traditional security
auditing techniques are not enough to be directly applied to the cloud. The
two most existing on-premise IT models are IT housing and IT outsourcing
[11]. In IT housing, it belongs to the customer to provide and manage his own
hardware. The datacenter provider just provides the remaining facilities such as
network components, cooling and power. Traditional IT outsourcing is gener-
ally a medium to long term contract. In the latter, the customer rents all the
infrastructure components from the service provider. The rented infrastructure is
exclusively used by one customer which is called the single-tenant model. A prior
communication with the provider is required whenever any modification is to be
applied to the rented infrastructures. In these two models, the IT organization
has full governance over the different IT technology layers. In the cloud, however,
as we move from IaaS to PaaS to SaaS, the level of control of cloud providers
increases and the burden of access, control, management and the infrastructure’s
trust boundaries is considerably shifted to the cloud provider and responsibilities
become more or less shared between the latter and its customers, which raises
trust issues between the two parties.

How Cloud Auditing Helps Mitigating Security Issues. In a cloud envi-
ronment, though asymmetric, trust needs to be boosted in both directions. Most
importantly, the potential customer needs to trust the cloud provider in order to
feel comfortable when outsourcing his assets. The other way around, the cloud
provider needs as well to gain some assurance that the customer will benefit
from the offered services in a honest way and does not use it for cybercrime, but
at the same time, the provider is supposed to immune his services against mali-
cious insiders. Although trust plays a vital role in the cloud ecosystems, it should
be further boosted with other tools. With this regard auditing is a good fit to
increase the confidence of different stakeholders. Continuous auditing allows to
analyze the service conditions and the infrastructure health through detailed log
records to access conformity between security measures and policies. Although it
seems that cloud providers might not be willing to allow for auditing tasks, they
actually should have their own incentives. In effect, auditing helps reducing the
scope of search and identifying responsible parties in case of incidents or legal
actions which, in some cases, can exonerate the provider and prevent him consid-
erable money loss. For instance, the cloud security alliance recommends auditing
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different critical components of a cloud including privileged user access, regula-
tory compliance, isolation, tenant segregation, monitoring, and data storage and
processing.

6 Conclusion

Cloud computing has seen a lot of interests and adoption lately. Nonetheless, the
widespread adoption of cloud is still being hindered by the lack of transparency
and accountability, which has traditionally been ensured through security com-
pliance auditing techniques. In this paper, we conducted a survey on the existing
cloud security auditing approaches. To this end, we first categorized the existing
solutions and elaborate each category with example works. Second, we proposed
a taxonomy identifying the classifications mainly based on auditing objectives
and auditing techniques. Third, we conducted a comparative study on these
works to identify the strengths and weaknesses of these works. Finally, we iden-
tified current challenges in cloud security auditing; which potentially may draw
the attention of security researchers. However, there are few limitations of this
work which we intend to overcome in our future work. For instance, we plan to
increase the granularity of the proposed taxonomy to pinpoint more precisely the
gaps in cloud security auditing. In addition to qualitative comparison presented
in this paper, we intend to compare existing works quantitatively to understand
better how to improve the efficiency and accuracy of these approaches.
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Abstract. MapReduce is one of the most popular programming para-
digms that allows a user to process Big data sets. Our goal is to add
privacy guarantees to the two standard algorithms of join computation
for MapReduce: the cascade algorithm and the hypercube algorithm. We
assume that the data is externalized in an honest-but-curious server and
a user is allowed to query the join result. We design, implement, and
prove the security of two approaches: (i) Secure-Private, assuming that
the public cloud and the user do not collude, (ii) Collision-Resistant-
Secure-Private, which resists to collusions between the public cloud and
the user i.e., when the public cloud knows the secret key of the user.

Keywords: Database query · MapReduce · Security · Natural joins

1 Introduction

With the advent of Big data, new techniques have been developed to process
parallel computation on a large cluster. One of them is the MapReduce pro-
gramming paradigm [11], which allows a user to keep data in public clouds and
to perform computations on it. A MapReduce program uses two functions (map
and reduce) that are executed on a large cluster of machines in parallel. The pop-
ularity of the MapReduce paradigm comes from the fact that the programmer
does not need to handle aspects such as the partitioning of the data, schedul-
ing the program’s execution across the machines, handling machine failures, and
managing the communication between different machines.

MapReduce users often rent storage and computing resources from a public
cloud provider (e.g., Google Cloud Platform, Amazon Web Services, Microsoft
Azure). External storage and computations with a public cloud make the Big
data processing accessible to users that can not afford building their own clus-
ters. Yet, outsourcing data and computations to a public cloud involves inherent
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security and privacy concerns. Since the data is externalized, it can be commu-
nicated over an untrustworthy network and processed on some untrustworthy
machines, where malicious public cloud users may learn private data.

Fig. 1. The system architecture.

We address the fundamental prob-
lem of computing relational joins
between an arbitrary number of rela-
tions in a privacy-preserving manner
using MapReduce. We assume that the
data is externalized in the cloud by the
data owner and there is a user that is allowed to query it as shown in Fig. 1.
This standard model has been used recently by Dolev et al. [14].

We next present via a running example the concept of relational joins. Then,
we present MapReduce computations, our problem statement, and illustrate the
privacy issues related to joins computation with MapReduce.

Example 1. The data owner is a hospital storing relations R1, R2, R3 cf. Fig. 2.
The (natural) join of these relations, denoted R1 �� R2 �� R3, is the relation
whose tuples are composed of tuples of R1, R2 and R3 that agree on shared
attributes. In our case, the attribute Name is shared between R1 and R2. More-
over, the attribute Disease is shared between intermediate join result (R1 �� R2)
and relation R3. In Fig. 2, we give both the intermediate result (R1 �� R2) and the
final result (R1 �� R2) �� R3. We observe that tuple (Alice,NYC) from relation
R1, tuple (Bob,Diabetes) from relation R2, and tuple (Bob,London,Diabetes)
from relation R1 �� R2 do not participate to the final result.

Fig. 2. Joins between relations R1, R2 and R3.

1.1 Joins with MapReduce

Two algorithms for computing relational joins with MapReduce are presented
in the literature: the Cascade algorithm (i.e., a generalization of the binary join
from Chapter 2 of [18]) and the Hypercube algorithm [4,9]. In the following, a
reducer refers to the application of the reduce function to a single key.
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Cascade Algorithm. To compute an n-ary join (n � 2), the cascade algorithm
uses n − 1 MapReduce rounds i.e., a sequence of n − 1 binary joins. A binary
join works as follows: first, it applies the map function on the first two relations
R1 and R2 that are spread over sets of nodes R1 and R2, respectively. The map
function creates for each tuple of each relation a key-value pair where key is
equal to values of shared attributes between the two relations, and value is equal
to non-shared values of the tuple as well as the name of the relation. Then, the
key-value pairs are grouped by key i.e., all key-value pairs output by the map
phase which have the same key are sent to the same reducer. For each key and
from the associated values coming from these two relations, the reduce function
creates all possible tuples corresponding to the joins of these two relations. We
obtain as intermediate result a new relation denoted Q2 that is spread over a
set of nodes Q2. This first step defines the first round of the cascade algorithm.
We illustrate this process in Fig. 3.

Fig. 3. Cascade of joins with MapReduce between n relations.

Example 1 Continued. To compute (R1 �� R2) �� R3 with MapReduce following
the cascade algorithm, we start by joining R1 and R2. Relations R1 and R2

share attribute Name. Hence from R1, the map produces the following key-value
pairs: (Alice, (R1, NYC)), (Bob, (R1, London)), and (Eve, (R1, Tokyo)). These
key-value pairs are sent to three different reducers depending on the key value.
From relation R2, the map produces key-value pairs (Bob, (R2, Diabetes)), (Bob,
(R2, AIDS)), and (Eve, (R2, Cancer)). We stress that values of pairs (Bob, (R2,
Diabetes)) and (Bob, (R2, AIDS)) are sent to the same reducer as the pair
(Bob, (R1, London)) since all these pairs have the same key. Similarly, (Eve,
(R2, Cancer)) and (Eve, (R1, Tokyo)) are sent to the same reducer. The pair
(Alice, (R1, NYC)) does not participate in the join result since no other pair
shares the same key. Then, from values (R1, London), (R2, Diabetes), and (R2,
AIDS) present on the reducer associated to the key Bob, the reduce creates all
possible tuples with values coming from different relations i.e., (Bob, London,
Diabetes) and (Bob, London, AIDS). Similarly, the reducer associated to the
key Eve produces (Eve, Tokyo, Cancer). These tuples correspond to the relation
(R1 �� R2) cf. Fig. 2. We apply the map and the reduce functions on relations
(R1 �� R2) and R3 sharing the attribute Disease. From (R1 �� R2), the map
function produces key-value pairs: (Diabetes, (R1 �� R2, Bob, London)), (AIDS,
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Fig. 4. Running example with hypercube algorithm. Underlined tuples correspond to
tuples that participate to the final join result.

(R1 �� R2, Bob, London)), and (Cancer, (R1 �� R2, Eve, Tokyo)). From R3, the
map produces: (AIDS, (R3, Hopkins)), and (Cancer, (R3, Jude)). Finally, the
reduce step produces tuples (Bob, London, AIDS, Hopkins) and (Eve, Tokyo,
Cancer, Jude) corresponding to relation (R1 �� R2) �� R3 cf. Fig. 2.

Hypercube Algorithm. Contrarily to cascade, the hypercube computes the join of
all n relations in only one MapReduce round. The hypercube has dimension d
(where d is the number of join attributes). There are p =

∏
1�j�d αj reducers

denoted Hi (for 1 � i � p), where αj is the number of buckets associated
with the jth attribute. Hence, each reducer Hi can be uniquely identified by
a point in the hypercube. For each relation Ri spread over a set of nodes Ri,
the map function computes the image of all tuples on the d dimensions of the
hypercube to decide to which reducers Hi the tuple should be sent. Then, each
reducer computes all possible combinations of input tuples that agree on shared
attributes, only if all n relations are represented on the same reducer. All these
combinations correspond to the final result of the n-ary join.

Example 1 Continued. We have two join attributes (Name and Disease), hence
two hash functions hN and hD for attributes Name and Disease, respectively.
For instance, assume 4 reducers establishing a 2 × 2 square cf. Fig. 4, where
hN (Eve) = 0, hN (Alice) = hN (Bob) = 1, hD(Diabetes) = hD(AIDS) = 0, and
hD(Cancer) = 1. For each tuple of each relation, we compute the value of the
Name component (if there exists) with the hash function hN and the value of the
Disease component (if there exists) with the hash function hD. For instance, the
tuple t6 = (Eve,Cancer) of the relation R2 is sent to the reducer of coordinates
(0, 1) since hN (Eve) = 0 and hD(Cancer) = 1 (cf. Fig. 4). If one of these two
attributes is missing in a tuple, then the tuple is replicated over all reducers
associated to the different values of the missing attributes of the tuple. For
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example, tuple t1 = (Alice,NYC) of relation R1 has no attribute Disease, and
consequently, is sent to reducers (1, 0) and (1, 1). In such a situation we may
write (1, �) to simplify presentation. Finally, each reducer performs all possible
combinations over tuples that agree on join attributes of the three relations R1,
R2, and R3. We obviously obtain the same final result as for cascade algorithm.

1.2 Problem Statement

We assume three participants: the data owner, the public cloud, and the user
(cf. Fig. 1). The data owner externalizes n relations R1�i�n to the public cloud.
We assume that the public cloud is honest-but-curious i.e., it executes dutifully
the computation tasks but tries to learn the maximum of information on tuples
of each relation. In order to preserve privacy of data owner and to allow the join
computation between relations, we want that the cloud learns nothing about
input data or join result. Moreover, we want that the user who queries the
join result learns nothing else than the final join result i.e., she does not learn
information on tuples of relations that do not participate to the final result.

Sets of nodes of type R, Q, and H are honest-but-curious. We denote by Ri

the set of attributes of a relation Ri, for 1 � i � n. In the case of the cascade
algorithm, we denote by Qi the set of attributes of relation Qi for 1 � i � n,
where R1 = Q1. Finally we denote by X the set of shared attributes between the
n relations i.e., X = | ∪1�i�=j�n Ri ∩ Rj |.

We expect the following security properties:

1. Neither a set of nodes Ri nor data owner learn final result data.
2. A set of nodes Qi (resp. Hi) cannot learn owner’s data and final result.
3. The user learns nothing else than result R1 �� . . . �� Rn i.e., he does not learn

tuples from the input relation that do not participate in the result.

Example 1 Continued. Looking at the three security properties of the problem
statement, we see that the cascade and the hypercube algorithms do not respect
properties (1), (2), and (3). In fact, both algorithms reveal to the public cloud all
tuples of relations R1, R2 and R3 since they are not encrypted. Moreover, if the
user colludes with the intermediate set of nodes R1 �� R2, then he learns tuples
that he should not, in this case the tuple (Bob,London,Diabetes) (Fig. 2).

Contributions. We propose two approaches that extend the two aforementioned
join algorithms while ensuring the desired security properties, and remaining
efficient from both computational and communication points of view.

• The Secure-Private (SP) approach assumes that the public cloud and the
user do not collude. We encrypt all values of each tuple using a public key
encryption scheme with the user public key pku. To be able to perform the
equality joins between relations we rely on pseudo-random functions.
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• The Collision-Resistant-Secure-Private (CRSP) approach assumes that the
public cloud and the user collude, that means the public cloud knows the
private key sku of the user. In this case, we cannot encrypt all tuples using
simply a public encryption scheme since the public cloud can decrypt all these
encrypted tuples using the secret key of the user. To avoid this problem, we
introduce a proxy such that the data owner also uses the public key of the
proxy pkt to encrypt ciphers of tuple values. Thus, we avoid that the public
cloud decrypts tuples values received from the data owner even if the public
cloud has the secret key sku of the user.

• We give experimental results of our SP and CRSP approaches for the cas-
cade and the hypercube algorithms using Apache Hadoop [1] open-source
MapReduce implementation and a real-world Twitter dataset [2].

• We prove that our SP and CRSP approaches satisfy the security properties
using the random oracle model. We also notice a limitation regarding learning
repetitions between pseudo-random values which seems to us inherent because
we need to perform equi-joins.

Related Work. Since the seminal MapReduce paper [11], different protocols have
been proposed to perform operations in a privacy-preserving manner [12] such
as search [6,20], count [24], matrix multiplication [7] or joins [14].

Chapter 2 of [18] presents an introduction to the MapReduce paradigm.
In particular, it includes the MapReduce algorithm for cascade joins that we
enhance with privacy guarantees. Very few approaches address the privacy pre-
serving execution of relational joins in MapReduce and have different assump-
tions than we do. For instance, Emekçi et al. [16] proposed protocols to perform
joins in a privacy-preserving manner using the Shamir’s secret sharing [23]. Con-
trary to us, they do not consider the MapReduce paradigm and their approach
cannot be trivially adopted in MapReduce because values of shared attributes are
encrypted in a non-deterministic way. Laur et al. [17] also proposed a protocol to
compute joins using secret sharing but do not consider the MapReduce paradigm
and their approach is limited to two relations. Chow et al. [8] introduced a generic
model that uses two non-colluding servers to perform join computation between
n relations in a privacy-preserving manner but do not consider the MapReduce
paradigm. On the other hand, we assume a more general setting where the pub-
lic cloud servers collude. Dolev et al. [14] proposed a technique for executing
MapReduce computations in the public cloud while preserving privacy using the
Shamir’s secret sharing [23] and accumulating-automata [13]. Join computation
is executed on secret-shares in the public cloud and at the end, the user performs
the interpolation on the outputs. Contrary to us, authors assume that the dif-
ferent cloud nodes do not collude, otherwise they can construct the secret from
shares. Moreover in our setting, we externalized entirely the computation in the
cloud and the user has only to decrypt the join result, contrary to the need
of doing interpolations in [14]. Finally, none of the aforementioned approaches
propose a secure approach for the hypercube algorithm with MapReduce.

Finally, the system that is most closely related to our work is Popa et al.’s
CryptDB [21,22]. CryptDB provides practical and provable confidentiality in
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the face of curious server for applications backed by SQL databases. It works
by executing SQL queries over encrypted data using a collection of efficient
SQL-aware encryption schemes. However, they do not consider the MapReduce
paradigm.

To the best of our knowledge, we are the first to propose two secure approaches
of join computation for the cascade and the hypercube MapReduce algorithms,
where the user has only to decrypt the result received from the cloud.

Outline. We present the cascade and hypercube algorithms for the n-ary
join computation with MapReduce in Sect. 2. We present our SP and CRSP
approaches for both algorithms in Sect. 3. In Sect. 4, we compare experimen-
tally the performance of our approaches vs the insecure algorithms. Then, we
prove the security of the SP and CRSP approaches in Sect. 5. Finally, we outline
conclusion and future work in Sect. 6.

2 n-ary Joins with MapReduce

We formally present the standard algorithms for computing n-ary joins Q =
R1 �� . . . �� Rn with MapReduce: cascade i.e., a sequence of n − 1 rounds of
binary joins [18] and hypercube [4] i.e., a single round doing all the n − 1 joins.
We have already presented examples for both algorithms in Sect. 1.1.

Fig. 5. BinaryJoin algorithm for natural join with MapReduce between Q and R.

2.1 Cascade Algorithm

We recall that the ith round of the cascade algorithm takes action between sets
of nodes Qi and Ri+1, with 1 � i � n − 1 and that relation R1 is denoted Q1.
The term chunk refers to a fragment of information. Moreover, R denotes the
schema of the relation R i.e. the set of attributes of the relation R.

We present in Fig. 5 the binary join with MapReduce between two relations.
To compute join between n relations R1, . . . , Rn, we apply n−1 times the binary
join (Fig. 5) as presented in the cascade algorithm in Fig. 6. The final relation
Qn corresponds to R1 �� · · · �� Rn.
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Fig. 6. Cascade algorithm.

2.2 Hypercube Algorithm

We assume that we have an hypercube of dimension d, where d = |X| =
|{X1, . . . , Xd}| = | ∪1�i�=j�n Ri ∩ Rj | i.e., d is the number of join attributes.

Fig. 7. Hypercube algorithm.

Moreover, we assume that we
have d (non-cryptographic) hash
functions h� (where 1 � � � d)
such that h� : X� → �0, α�� where
α� is the number of buckets for the
attribute X�. Hence, the hypercube is
composed of α1 · · · α� reducers where
each reducer is uniquely identified
by a d-tuple (x1, . . . , xd) with x� ∈
�0, α�� for 1 � � � d. In the following,
we denote by Ai

j the j-th attribute of
the relation Ri where 1 � i � n and
1 � j � |Ri|.

We present in Fig. 7 the hyper-
cube algorithm for the join computa-
tion with MapReduce between n rela-
tions R1, . . . , Rn. The map function
sends the pair to the corresponding
reducer of the hypercube associated
to the coordinates of the key-value
pair’s key where the star � in the �-
th coordinate means that we dupli-
cate the tuple t on all the α� buckets of the �-th dimension of the hyper-
cube. Then, if the same reducer of the hypercube has at least one tuple coming
from all the n relations and that these tuples agree on their shared attributes
then the reduce function produces all possible key-values pairs of the form
(t1 �� . . . �� tn, t1 �� . . . �� tn) where ti ∈ Ri (with 1 � i � n).

3 Secure n-ary Joins with MapReduce

Before formally presenting our secure algorithms, we present the needed crypto-
graphic tools. We illustrate the intuition of each of our algorithms while relying
on our running example from the Introduction.
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3.1 Cryptographic Tools

We define negligible function, pseudo-random function, and public key encryp-
tion cryptosystem.

Definition 1 (Negligible function). A function ε : N → R is negligible in η
if for every positive polynomial p(·) and sufficiently large η, ε(η) < 1/p(η).

Definition 2 (Pseudo-random function). Let η be a security parameter. A
function f : {0, 1}�(η) × {0, 1}l0 → {0, 1}l1 is a pseudo-random function if it is
computable in polynomial time in η and if for all polynomial-size B,

∣
∣ Pr

[Bf(k,·) = 1: k
$← {0, 1}�(η)

] − Pr
[Bg(·) = 1: g

$← Func[l0, l1]
]∣
∣ � ε(η)

where, �(·) is a polynomial function, Func[l0, l1] is the space of functions defined
over domain {0, 1}l0 and codomain {0, 1}l1 , ε(·) is a negligible function in η and
the probabilities are taken over the choice of k and g.

In the rest of the paper, the pseudo-random function f(k, ·) is denoted fk(·).
Definition 3 (Public Key Encryption). Let η be a security parameter. A
Public Key Encryption (PKE) scheme Π is defined by three algorithms (G, E ,D):

G(η): it takes the security parameter η and returns a key pair (pk, sk).
Epk(m): it takes a public key pk and a plaintext m and returns the ciphertext c.
Dsk(c): it takes a private key sk and a ciphertext c and returns the plaintext m.

3.2 Preprocessing and Outsourcing

To prevent the cloud from learning the content of relations, the data owner pro-
tects each relation R1�i�n before outsourcing. The protected relation obtained
from Ri is denoted R̂i and is sent to the public cloud by the data owner.

Fig. 8. Preprocessing of relations.

The data owner protects rela-
tions in two ways. First, it uses
a pseudo-random function fk(·)
where k is the data owner secret
key. The data owner applies fk(·)
on values of shared attributes of
each tuples of relations R1�i�n.
Since a pseudo-random function is
deterministic, it allows the cloud
to perform equality tests between
values of join attributes. On other
hand, the data owner encrypts for
each user each component of tuples
with an indistinguishable under
chosen plaintext attack (IND-CPA)
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public key encryption scheme (e.g., ElGamal [15], RSA-OAEP [5]) using the pub-
lic key pku of the user. Hence the encrypted values of non-shared attributes do
not give any information to an adversary. Values of shared attributes are also
encrypted using the public scheme encryption since we want the user can decrypt
them.

We present the preprocessing algorithm in Fig. 8. The set visited prevents
the data owner from (IND-CPA) encrypting several times the same values.
We stress that Af and AE are just notations making explicit the correspon-
dences between initial and outsourced data. For instance, if a relation R has
one attribute “Name” that is shared with an other relation, then this attribute
in the protected relation will be denoted “Namef”; we apply the same way the
notation AE . Moreover R̂i is the schema of the protected relation R̂i. We give
an example for the cascade algorithm in Fig. 9 using the running example.

For both algorithms, we remark that the cloud knows when components of
same attribute are equal since a pseudo-random function is deterministic. We
see in Fig. 9 that the cloud knows that R̂2 and R̂3 share two same values of
disease since values 18 and 99 are present in both relations. However, we notice
that only the data owner knows the secret key k used by the pseudo-random
function.

Fig. 9. Intuition of the SP approach. We denote an IND-CPA public encryption scheme
by {·}, and pseudo-random values by integers.

3.3 SP n-ary Joins with MapReduce

We present the Secure-Private (SP) approach for cascade and hypercube algo-
rithms to compute joins between n > 2 relations with MapReduce. We recall
that we assume in the SP approach that the user and the public cloud do not
collude.

SP Cascade Algorithm. If a relation participating at the i-th round contains an
attribute that will participate to the join in a following round, the algorithm must
anticipate the pseudo-random values of the shared attribute to perform joins. In
the original cascade algorithm presented in Sect. 2.1, tuples are not encrypted
and the anticipation is not necessary since each tuple value is available. In the SP
approach, we add in value of pairs the pseudo-random evaluations of all needed
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pseudo-random values allowing joins in other rounds. This is possible since the
preprocessing done by the data owner outsources protected relations containing
pseudo-random evaluations of values of join attributes.

Fig. 10. SecCascade algorithm.

The process of the SP-cascade
algorithm is presented in Fig. 10.
The SP approach between relations
Q̂i and R̂i+1 participating at the
i-th round is presented in Fig. 11,
where Q̂i = Q̂i−1 �� R̂i and Q̂1 = R̂1.

SP Hypercube Algorithm. We present the SP approach for the hypercube algo-
rithm in Fig. 12. The main difference compared to the insecure approach is that
the map function receives encrypted tuples from the data owner. As for the cas-
cade algorithm, we add pseudo-random evaluations in value of each pair allowing
the reduce function to check correspondences of tuples on join attributes.

Fig. 11. SecBinary algorithm. Fig. 12. SecHypercube algorithm.
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3.4 CRSP n-ary Joins with MapReduce

We present the Collision-Resistant-Secure-Private (CRSP) approach for cas-
cade and hypercube algorithms to compute joins between n > 2 relations with
MapReduce. We recall that we assume in the CRSP approach that the user and
the public cloud collude i.e., the public cloud knows the secret key sku of the
user. Even in this scenario, we want that the security properties are satisfied.

When the public cloud and the user collude, the SP approach does not satisfy
anymore the security properties since the public cloud can decrypt all tuples
using the user’s private key sku. Hence, the user learns intermediate results that
she should not know, and property security (3) is not satisfied.

Fig. 13. CRSP n-ary joins with MapReduce.

To solve this issue, we introduce a trusted set of nodes as proxy (which do
not collude with the public cloud and the user) denoted P. This proxy has a key
pair (pkt, skt). The public key pkt is used by the data owner in the preprocessing
phase. In this case the value of tE is equal to ×AE∈R

E
i
Epkt(Epku(πA(t))). In fact,

the data owner encrypts (with the proxy public key) each encrypted values
obtained with the user public key pku. This avoids the public cloud to decrypt
the encrypted components outsourced in the cloud. Hence, the public cloud does
the join computation as usually, and sends the result to the proxy. The proxy
uses his secret key skt and sends the result only encrypted by the user’s public
key to the user. We illustrate the CRSP approach in Fig. 13.

CRSP Cascade Algorithm. The CRSP approach for the cascade algorithm
between n relations uses the same algorithm than the SP approach and is pre-
sented in Fig. 10. The difference lies in the preprocessing where the data owner
uses the proxy public key pkt to encrypt the encrypted values obtained using
the user public key. Hence, the public cloud cannot use the user’s secret key sku

to learn information about tuples. We stress that P is a trusted set of nodes i.e.,
the proxy colludes neither with the public cloud nor the user.

CRSP Hypercube Algorithm. The CRSP approach for the hypercube algorithm
between n relations presented in Fig. 12 uses the same algorithm than the SP
approach. As for the cascade algorithm in the CRSP approach, the difference
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lies in a second encryption of values done by the data owner using the proxy
public key. This second encryption avoids the public cloud to learn information
on relations sent by the data owner, even if the cloud and the user collude.

4 Experimental Results

We present the experimental results for the insecure, SP and CRSP approaches
with the cascade and hypercube algorithms using the Hadoop [1] implementation
of MapReduce. We have done all computations on a cluster running on Ubuntu
Server 14.04 with Vanilla Hadoop 2.7.1 using Java 1.7.0. The cluster is composed
of one master node and of three data nodes. The master node has four CPU
cadenced to 2.4 GHz, 80 Gb of disk, and 8 Gb of RAM. The three data nodes
have of two CPU cadenced to 2.4 GHz, 40 Gb of disk, and 4 Gb of RAM.

We use the real-world Higgs Twitter Dataset [2] that we denote by relation
R(A,B) where attributes A and B encode followee-follower relation on Twitter.
The relation R(A,B) has 15M tuples. To perform joins with this dataset, we
generate two relations S(B,C) and T (C,A) that are copies of R. The join query
used in our experiments is R(A,B) �� S(B,C) �� T (C,A), consisting on all
directed triangles of the Higgs Twitter Dataset. Using such a dataset and query
is a standard practice in the database community literature to evaluate the
performance of join query algorithms, as recently done e.g., in [9]. We use the
AES encryption scheme [10] as the pseudo-random function, and the RSA-OAEP
encryption scheme [5] as the public key encryption scheme.

Scalability. We present in Fig. 14a the running time for the cascade and hyper-
cube algorithms, for each security approach. The different numbers of selected
tuples come from the original dataset, where a sample is selected randomly. In
the figures presented in Fig. 14, we consider size up to 2, 356, 225 tuples because
after such a size, our cluster gives out-of-memory errors hence we cannot com-
pare meaningful results for all approaches. We report average times over five
runs. For the hypercube algorithm, we use four buckets for each of the three
dimensions defined by attributes A, B, and C, hence a total number of 43 = 64
reducers. Without any security, the cascade and hypercube algorithms perform
very similarly, although the hypercube seems a bit better for the largest input
data sizes. For each of our secure approaches (SP and CRSP), the hypercube
algorithm performs better than the cascade, hence the aforementioned trend is
visible starting from small input data sizes. Intuitively, this happens because
the hypercube avoids computing large intermediate results as may happen in
practice when triangle queries are computed with a cascade approach.

Behind the Curtain. We look in details at the main parts behind the algorithm
execution for SP Cascade (Fig. 14b), SP Hypercube (Fig. 14c), CRSP Cascade
(Fig. 14d), and CRSP Hypercube (Fig. 14e). For each of the aforementioned
cases, the cryptography is not the dominant cost, which confirms our intuition
that the overhead needed to secure standard join algorithms is a constant factor.
The communication and the computation dominate the total execution time.
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Fig. 14. Running time and zoom-in on the different steps of our protocols. Number of
tuples are expressed in thousands.

5 Security Proofs

We present briefly the security proofs of the cascade and the hypercube algo-
rithms in our two approaches considering the Random Oracle Model (ROM).
Complete proofs are given in the technical report available online [3]. We use
the standard multi-party computations definition of security against honest-but-
curious adversaries. We refer the reader to [19] for further details.

Theorem 1. Assume f is a secure pseudo random function and Π is an IND-
CPA public key encryption scheme. Then, the SP cascade and the SP hypercube
algorithms securely computes joins between n relations in ROM in the presence
of honest-but-curious adversaries if the cloud and the user do not collude.

Proof. We use the hybrid argument. For each protocol (SP cascade and SP
hypercube), we first build a simulator Sim1 where the pseudo random function
is simulated by a random oracle. We show that it does not exist a polynomial-
time algorithm such that it can distinguish the view of real protocols to the view
of Sim1 since we assume that f is a secure pseudo random function. Values of
attributes are encrypted using a public key encryption scheme with the user’s
public key, hence we build a second simulator Sim2 working as Sim1 but where
all encryptions are replaced by random values. We show that a distinguisher can
distinguish an execution of Sim1 to an execution of Sim2 only with a negligi-
ble probability if the public key encryption scheme is semantically secure. By
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transitivity, we prove that it does not exist a polynomial-time algorithm that
can distinguish the view generated by real protocols and the view generated by
the simulator Sim2. Hence, if f is a secure pseudo random function and Π is
an IND-CPA public key encryption scheme, then the SP cascade and the SP
hypercube algorithms securely computes joins between n relations in ROM in
the presence of honest-but-curious adversaries if the cloud and the user do not
collude.

Theorem 2. Assume f is a secure pseudo random function and Π is an IND-
CPA public key encryption scheme. Then, the CRSP cascade and the CRSP
hypercube algorithms securely computes joins between n relations in ROM in the
presence of honest-but-curious adversaries even if the public cloud and the user
collude.

Proof. First, we use the hybrid argument to show that it does not exist a
polynomial-time algorithm that is able to distinguish the view of the cloud col-
luding with the user generated by the real protocols (CRSP cascade and CRSP
hypercube) and the view generated by a simulator using inputs and outputs of
the cloud and of the user. As in the previous proof, it relies on the secure pseudo
random function f and on the IND-CPA public key encryption scheme. In the
same way, we prove that we can perfectly simulate the view of the proxy using
its input and output. Hence, if f is a secure pseudo random function and Π is
an IND-CPA public key encryption scheme, the CRSP cascade and the CRSP
hypercube algorithms securely computes joins between n relations in ROM in
the presence of honest-but-curious adversaries even if the public cloud and the
user collude.

6 Conclusion

We have presented two efficient approaches for computing joins with MapRe-
duce. The SP approach assumes that the cloud and the user do not collude,
whereas the CRSP approach resists to collusion, but needs more resources as it
needs to communication with an honest proxy. We have thoroughly compared
these two approaches with respect to their privacy guarantees and their practical
performance using a standard real-world dataset.

As future work, we plan to integrate our secure join algorithms in a secure
query optimizer system based on the MapReduce paradigm. We also aim at
designing a protocol that is secure in the standard model and that not depends
on a trusted third party.

Acknowledgements. This research was conducted with the support of the FEDER
program of 2014–2020, the region council of Auvergne-Rhône-Alpes, the support of the
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Abstract. In this paper, we propose a scalable framework, called
Daedalus, to analyze streams of NIDS (network-based intrusion detec-
tion system) logs in near real-time and to extract useful threat secu-
rity intelligence. The proposed system pre-processes huge amounts of
BRO NIDS logs received from different participating organizations and
applies an elaborated anomaly detection technique in order to distinguish
between normal and abnormal or anomalous network behaviors. As such,
Daedalus detects network traffic anomalies by extracting a set of features
of interest from the connection logs and then applying a time series-based
technique in order to detect abnormal behavior in near real-time. More-
over, we correlate IP blocks extracted from the logs with some exter-
nal security signature-based feeds that detect factual malicious activities
(e.g., malware families and hashes, ransomware distribution, and com-
mand and control centers) in order to validate the proposed approach.
Performed experiments demonstrate that Daedalus accurately identifies
the malicious activities with an average F1 score of 92.88%. We further
compare our proposed approach with existing K-Means approaches and
demonstrate the accuracy and efficiency of our system.

1 Introduction

During the last decade, a huge increase in the number of cyber threats and secu-
rity attacks has been observed ranging from ransomware attacks to denial of
service attacks and botnets, and from social engineering threats to data breach
threats, which pose a serious threat to millions of users. Therefore, detection,
prevention and mitigation of such attacks are essential, while this is a challeng-
ing task for the security analysts. As an example to such threats, Wannacry
Ransomware [15] propagated worldwide during May 2017, had devastating con-
sequences (e.g., major disruption to operations) in several countries affecting
hundreds of thousands of machines and many organizations, such as Cambrian
College in Canada and Saudi Telecom company. Another example is the Mirai
Botnet [1], which had also a severe impact worldwide in late 2016 mostly in the
U.S. by affecting vulnerable Internet of Things devices and turning them into a
zombie army. These two examples alongside with many others make the detec-
tion, prevention, and mitigation of malicious activities of primordial importance
c© Springer Nature Switzerland AG 2019
N. Zincir-Heywood et al. (Eds.): FPS 2018, LNCS 11358, pp. 95–111, 2019.
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and a paramount task for any security expert. Therefore, many techniques have
been proposed and developed to monitor network traffics in real-time and pro-
vide insights and information on what is happening inside the network from a
security perspective.

Intrusion detection systems (IDS) monitor and record network traffics in
order to detect security threats and network violations in a fast and efficient
manner. The main objective of any security expert is to find an approach that
takes best advantage of the IDS logs and generates useful cyber threat intelli-
gence. One of the most frequently used and efficient methods to leverage IDS
logs is anomaly detection, which analyzes the traffic in order to detect network
abnormalities and misbehaviours. On the other hand, scalability is a main con-
cern that needs to be taken into account seriously, especially when the amount
of traffic is tremendous (in the order of millions of connections). Thus, in order
to address the scalability issue, various factors, such as time complexity of the
proposed algorithms, and less memory and CPU consumption, should be one of
the top priorities and considerations during the setup, development, implemen-
tation, and deployment of such solutions.

Different network anomaly detection techniques have been proposed in the
literature. In [27], the authors compare three standard or conventional SVMs,
weighted SVMs, and one class SVMs (OC-SVM) techniques to be used in
their anomaly detection system, and then demonstrate that the latter achieves
the highest accuracy rate of 78%. However, supervised techniques generally
require several iterations for training to have an accurate model. In [8], the
authors propose a deep learning-based anomaly detection approach for detect-
ing cyberthreats in 5G networks in an efficient and fast manner. The authors
demonstrate that their proposed technique can self-adapt itself depending on the
volume of network flows collected. In [11], the authors propose a tool called Kit-
sune that detects anomalies on local networks by tracking the network behavior
using an ensemble of autoencoders in a completely unsupervised manner. How-
ever, the last two aforesaid techniques [8,11] deal only with local and small
networks, and indeed the scalability of their work on big data and large network
traffics (e.g., hundreds of millions of connections similar to our case) has not
been examined.

The goal of our research is to provide a scalable tool that can detect anoma-
lies accurately in near-real time on any IDS stream logs (achieving interoperabil-
ity [6]) and provide security analysts alarms and detailed information about the
anomalous connections. To this end, we propose Daedalus, an anomaly detection
time-series (statistical) based approach that addresses the aforementioned lim-
itations and captures/summarizes the network profile and behavior from BRO
NIDS connection logs [22,23]. Inspired by [4], we apply our proposed algorithm
for predicting normal traffic behavior and removing noises and uncertainties [4]
using particle swarm optimization (PSO) [2,9,26] combined with stationarity
augmented Dickey-Fuller [12] test. Moreover, we compute the scores using fuzzy
logic [4,10] to deal with imprecisions [4], and further decide whether obtained
scores are anomalous by leveraging the exponential weighted moving average
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(EWMA) [7] technique. Our work is inspired by the work presented in [4]; how-
ever, we consider more features which consists of source and destination bytes
and packets separately, while in [4] the authors merge source and destination
bytes into one value (the same applies to packets). Additionally, we have replaced
the predictive step with an optimization algorithm, which provides a more scal-
able framework compared to genetic algorithms used by [4]. Finally, we examine
the scalability of our technique, while such a test has not been performed in [4].

Contributions. The main contributions of this work are presented as follows.
– Elaboration of an anomaly detection technique on IDS stream data using

time-series analysis to predict the normal behaviour and prevent anomalies.
We further correlate the generated results with other security sources in order
to validate the results of proposed anomaly detection approach.

– We propose a technique that regardless of IDS types, identifies the network
anomalies. Daedalus extracts features that are common amongst most fre-
quently used IDSs, and therefore achieves the interoperability goal.

– Our experimental results ascertain the accuracy of the proposed system, with
an average F1 score of 92.88%. In addition, we investigate the scalability of
Daedalus by performing the experiments on a large amount of connections. We
further compare our proposed approach with existing K-Means approaches
and demonstrate the accuracy and efficiency of our system.

– We generate relevant and useful threat intelligence out of huge amounts of
IDS streams that can be used in the detection, prevention, identification,
mitigation, and attribution of cyber threats.

2 Approach Overview

An overview of our approach is represented in Fig. 1, which consists of four major
steps: feature extraction, adaptive thresholding, predictive analysis, and anomaly
detection. In the feature extraction step, the features that are considered as
paramount to our anomaly detection system are extracted. More specifically, we
extract a set of eight features that can be found in any IDS logs in order to achieve
system interoperability. We further summarize the network behavior/profile for
each of the chosen features within a time batch of five minutes. The obtained
eight time series representations are considered as the first input and observed
network behavior/profile to our anomaly detection system.

In the next phase, an adaptive threshold using the exponential weighted mov-
ing average (EWMA) [7] statistical metric is calculated for each of the pre-
computed network behavior profiling time-series. The reason of using such tech-
nique is that daily users’ Internet connections are in some way auto-correlated
over time; meaning that each user connection on the Internet is mostly affected
by his/her past interactions and not completely random, and the interactions’
influences (weights) on the current connection decreases back in time. Therefore,
we utilize a metric that best captures and defines these weights.

In the predictive analysis step, we consider a time-window of one hour and
try to predict the expected behavior of each of these network features within
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Fig. 1. Proposed anomaly detection approach

the same time frame without any noise or seasonal trends. Consequently, we
utilize the particle swarm optimization (PSO) optimization algorithm, which is
designed to mimic the social behavior of some animals (e.g., birds and fishes)
[2]. We modify and adapt this algorithm to our objectives by defining the fitness
function as the augmented Dickey-Fuller (adfuller) test [12], which examines the
stationarity of a given time series as input.

Finally, in the last step, we take as input the three pre-computed time series
for each feature and compute the corresponding anomaly scores. More specif-
ically, a fuzzy logic inference system which has two main Fuzzification and
Defuzzification phases is utilized. In Fuzzification phase, a membership func-
tion (Gaussian membership function) is applied on the time series, in which the
anomaly scores are computed. Afterwards, in the Defuzzification phase, the adap-
tive thresholding is applied on these scores, and further according to obtained
scores and their representative threshold, the associated features are flagged as
either anomalous or non-anomalous.

3 Anomaly Detection Time-Series Approach

In this section, we describe our time-series based anomaly detection approach,
which is combined with particle swarm optimization (PSO) algorithm.

3.1 Feature Extraction

Prior anomaly detection process, a set of features should be extracted. This
task is primordial as it affects the final results of the approach tremendously.
Many works have been achieved in the field of network anomaly detection in
order to determine what are the features that give better insights of the network
behavior [3,4,6]. In this work, we aim at not merely gather a set of attributes
that best describe the network profile and behavior, but also obtain an anomaly
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detection system which works with any IDS logs, such as BRO, Snort and Sur-
ricata IDSs. Achieving the latter property provides the interoperability to our
proposed system. Therefore, we target the possible features that are present in
any IDS system. According to the aforesaid criteria and alongside with some
literature review [6] regarding this objective, we extract the set of eight features
of Originator IP Address, Responder IP Address, Originator TCP/UDP Port,
Responder TCP/UDP Port, number of bytes sent by the originator IP, number
of bytes sent by the responder IP, number of packets sent by the originator IP,
and number of packets sent by the originator IP.

On the other hand, we receive the connection logs in the order of millions
(sometimes hundreds of millions connection logs) per day, and therefore there
would be a scalability issue to process all of these connection logs in a reasonable
time. Therefore, to address the scalability issue we propose to use time-batches
splitting [4] of five minutes to reduce the amount of processing time.

Our approach is a time-series based technique, which accepts numerical val-
ues in order to build the time-series representations. However, the type of the
first four selected features (Originator and Responder IP Addresses, and Origi-
nator and Responder TCP/UDP Ports) is nominal. In order to convert nominal
attributes to numerical representations, inspired by [6], we choose to use Shan-
non Entropy [4,6,13] as a summarization tool to represent the distribution of
the features. Additionally, the authors prove that feature distributions enable
the detection of a wide range of network anomalies, including unknown anoma-
lies. The authors further demonstrate that studying these distributions can lead
to an automatic unsupervised classification (clustering) represented in Table 1.

The intuition behind studying traffic features distributions is that the major-
ity of network attacks affect the distributions of aforementioned attributes. For
instance, consider a DDOS attack in which multiple source hosts (compromised
machines) flood the targeted destination machine until the aimed goal is achieved
(take down a specific service). By looking at the distributions of both source
and destination IPs it could be inferred whether there is any spike/surge in the
source IPs distribution and a drop-down in the destination IPs distributions,
which leads to the detection of anomalies/attacks.

Shannon Entropy is a good metric to represent the degree of dispersal or
concentration of any distribution and quantify these changes in a single numerical
value. Given an attribute X = {x1, x2, . . . , xn}, where xi is the frequency of the
ith attribute sample with the targeted time-batch (five minutes), the Shannon
Entropy, H(X), is computed as follows [4,13]:

H(X) =
n∑

i=1

⎛

⎜⎜⎝
xi

n∑
i=1

xi

⎞

⎟⎟⎠ . log2

⎛

⎜⎜⎝
xi

n∑
i=1

xi

⎞

⎟⎟⎠ (3.1)

Finally, we need to quantify the other four numerical values (sent bytes and
packets from both originator and responder IPs) into a single value. For this
purpose, inspired by [4] we simply consider the cumulative sum of each one of



100 A. Chohra et al.

Table 1. Effect of various anomalies on different feature distributions [6]
Anomaly
type

Description Affected distributions on

Src IP Dest IP Src Port Dest Port
Denial of
Service (DoS)

A single infected host is
used to attack a victim and
disable some services

Low Low - -

Distributed
Denial of
Service
(DDoS)

Multiple infected hosts and
internet connections are
used to target a single host

High - - -

Port
scanning

A large amount of traffic is
sent to a small amount of
destination IPs using large
amount of destination
ports

- Low - High

Network
scanning

A large amount of traffic is
sent to a large amount of
destination IPs using a
small amount of
destination ports

- High - Low

Outage
events

The traffic amount goes
down due to the fact that a
service went down,
equipment failure, or
maintenance operations

≈ 0 ≈ 0 ≈ 0 ≈ 0

Flash crowd
attacks

A huge surge in the
amount of traffic going to
one single destination IP

Low Low

their values during the specific time-batch. By performing all the pre-processing
steps, we end up with a full time-series representations (eight time-series, one
for each feature) for the observed network behavior over the time.

3.1.1 Adaptive Thresholding
The next step of our approach consists of finding a metric to compute the thresh-
olds of our pre-computed time-series representations. We deal with Internet con-
nections, which are auto-correlated; meaning that the behaviors of users using a
specific network are not random and thus they are affected mostly by their past
interactions on the Internet. Therefore, we use the exponential weighted mov-
ing average (EWMA) as such metric. EWMA is a statistical metric that allows
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analysts to monitor the average of the data by giving more importance to the
most recent data observations. This weighting system is computed in exponential
fashion using all prior data observations. Considering that we have a time-series
based representation of data observations in a specific time-window, EWMA is
computed as follows [7]:

EWMAt =

{
X1, , if: t = 1
α.Xt + (1 − α) .Xt−1 , if: t > 1

(3.2)

where X1 is the network observation at the time t = 1, Xt is the current network
feature observation, Xt−1 is the most recent (previous) network feature observa-
tion, and α is the weighting exponential factor which falls between 0 and 1 and
is computed as α = e−( ε

σ ) [18], where ε represents the time elapsed since the
time-window started until the current observation, and σ represents the size of
the time window (in our case it is set to one hour).

In addition, EWMA is a good statistical metric for measuring historical
volatility, which represents the degree of dispersion for a given dataset over a
defined period of time [24]. There are two main approaches to measure the volatil-
ity of data over time, namely Implicit and Historical [24]. Historical approaches
assume that past data observations are essential for the prediction of future
observations. Implicit approaches, on the other hand, ignore the past observa-
tions completely, and try to predict future observations based on the current
observations. The fact that we are dealing with Internet connection logs implies
that there are some auto-correlations (inter-connections) between the current
and the past (most recent) internet connections of the users.

These summarization techniques have a major drawback in the way that
all past observations during the time-window will have the same influence or
weighting system [24]. This weakness would significantly influence and affect
our results. Let’s take an example where we have Internet connection logs over
one month, and during let’s say the 24th day of this month a DDOS attack
occurred affecting all the source IPs in the logs that we receive. The next day
(25th), this DDoS attack led the services to shut down or outage of most services
on the targeted hosts (source) or IPs. If one applies the approach where the same
weights are applied to all the observations of that month, this will terribly affect
our system in the way that when computing the measure for the 25th day, and
considering that the time window is of one month, the same importance will be
given to the day when the attack occurred (previous day) but also to all previous
days of the month. However by applying EWMA and computing the historical
volatility measure for the day after the attack occurred (25th), the previous and
most recent day (24th) will be given much more weight and importance over the
previous days of the month, leading to capturing more patterns of the attack
from the network flow attributes.

As an example of the resulting time series for these two steps (features extrac-
tion and adaptive thresholding), we collect around 400 million connections from
one participating organization and apply these two steps on them. The obtained
time-series representations are depicted in Figs. 2 and 3 respectively. The blue
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Fig. 2. Originators observed behaviours (in blue) and adaptive thresholds (in red)
(Color figure online)

Fig. 3. Responders observed behaviours (in blue) and adaptive thresholds (in red)
(Color figure online)

curves represent the observed feature behavior (from the features extraction
step) and the red curves depict the computed adaptive thresholds (from the
adaptive thresholding step).
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3.1.2 Predictive Analysis
The next step of our anomaly detection system consists of predicting the normal
network profile or behavior. One common and simple approach that is gener-
ally applied would be computing the differences between observed (real) net-
work traffic and computed (fixed) thresholds and in the case of positive results,
infer that the real traffic is anomalous (above thresholds), otherwise no anomaly
is detected. However, we are dealing with Internet connection logs, which are
not pre-filtered (or pre-cleaned) and are received on a daily basis, that result
into a huge number of false positives. For instance, each day thousands or even
hundreds of thousands of users and academics connect to Google website, if
we consider only the two pre-computed steps (feature extraction and adaptive
thresholding), we would end up with a lot of misleading attacks classifications
and false positives (it could be classified as a DDOS attack). Therefore, we
expand these two steps with another predictive step, which tries to delete most
of the false positive incidences; in other words, given a real raw network traffic,
we ask our system how much clean the network traffic should look like?

In order to do so, we opt for using an optimization algorithm, namely parti-
cle swarm optimization (PSO) [2,9,26] as shown in Algorithm1, which achieves
the desired goal of this step. PSO is a meta-heuristic global optimization tech-
nique that belongs to the family of swarm intelligence algorithms [2]. It is based
in analogy with the social behavior of certain animals and most precisely bird
flocks and fish schools. In PSO, the ensemble or set of possible solutions to the
optimization task are called a swarm and each element of this swarm is called a
particle. These particles move and change their positions in the search (param-
eter) space based on their own and neighbors’ best performances. Therefore,
this evolution process of the swarm is based on two main principles: coopera-
tion and competition among these particles across multiple generations (several
iterations).

Algorithm 1. Particle Swarm Optimization Algorithmic Description [2,9,26]
• Initialization Process: For each of the N particles:

1: Initilize the position xi(0)∀i ∈ N
2: Set the particle’s best personal or local position as its initial position: pi(0) = xi(0)
3: Compute the fitness of the particle and if f (xj(0)) ≥ f (xi(0)) ∀i �= j initialize the swarm global

best as: g = xj(0)
• Repeat the following steps until the pre-defined criterias are met:

4: Update the particle velocity according to the equation (3.6).
5: Update the particle position according to the equation (3.5).
6: Compute the fitness of the particle f (xi(t + 1))
7: if f (xi(t + 1)) ≥ f (pi), update the particle’s personal or local best as: pi = xi(t + 1)
8: if f (xi(t + 1)) ≥ f (g), update the swarm’s global best as: g = xi(t + 1)

• Once the stopping criterias are met and the iterations are stopped, the best solution
to the problem is represented by g.

Accordingly, in PSO, each particle is defined in the D-dimensional search
space, where D represents the set of parameters to be optimized. The position of
the ith particle is defined by the following vector xi = [xi1, xi2, xi3, . . . , xiD], and
the population (swarm) of N candidate solutions is X = {x1, x2, x3, . . . , xN}. In
their journey of finding the optimal solution, each particle updates its own posi-
tion using xi(t+1) = xi(t)+ vi(t+1), where t and t+1 represent two successive
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iterations of the algorithm and vi represents a vector called the velocity, which
governs the way the particle changes its position across the search space. The
velocity parameter is defined according to three factors: (i) Inertia or Momen-
tum: represents the previous velocity of the same partcile (previous iteration of
the algorithm) and helps prevent from drastic position changes. (ii) Cognitive
Component: represents the possibility of the partcile to return to the previous
position. (iii) Social Component: identifies the ability of the particle to move
forward the best solution of the whole swarm.

Based on these definitions, the velocity of the ith particle is defined as
vi(t + 1) = vi(t) + c1 (pi − xi(t))R1 + c2 (g − xi(t))R2, where pi represents the
particle’s best solution (local or personal best), while g represents the global best
(the overall best solution found by the whole swarm). The two real-values of c1
and c2 are called acceleration constants that define the way by which the particle
moves toward the global best solution. On the other hand, R1 and R2 represent
respectively two diagonal matrices of randomly generated numbers from a uni-
form distribution in the interval [0, 1]. For both cognitive and social components
to influence the particle’s velocity in a stochastic way, the acceleration constants
are generally set to 2 so that they meet the 0 ≤ c1.c2 ≤ 4 criteria [9].

In order to get the PSO work correctly, the fitness or objective function,
which defines the stopping criteria of the optimization task needs to be defined.
In this work, we aim our predicted time-series to achieve stationary. The reason
behind this logic is the fact that time-series statistical summarization techniques
(such as the mean, variance, and standard deviation) do not give consistent
results due to the presence of trends and seasonal effects (presence of periodic
fluctuations). While time-series are stationary, they are not bounded by the
time and summary statistics are more consistent. In addition, they can easily be
modelled by statistical modelling approaches (e.g., forecasting techniques). Thus,
it is always recommended to check if a time-series representation is stationary,
and if not, make it stationary by the removal of any trends and seasonal effects
before moving to analysing the residual effects [20].

One of the most frequently used stationary tests techniques is the Augmented
Dickey-Fuller Test (adfuller) [12], which is a type of statistical test and autore-
gressive model for stationary that belongs to the unit root tests family. In adfuller
algorithm, a time-series is considered as non-stationary if one of its monomials
is equal to 1; this is equivalent to say that it can be defined in function of some
specific trend (case of null hypothesis satisfied). On the other hand, if this test is
rejected (alternate hypothesis satisfied), none of its monomials would be equal
to 1, therefore it is considered as stationary [20].

In our work, once we build our representation of the network traffic behavior
or profile (feature extraction phase), we then call adfuller test on each of the
features’ time-series. If at least one of the eight time-series is found as non-
stationary (null hypothesis satisfied), then we trigger our PSO implementation
in order to remove the presence of any trends and seasonal effects on that specific
time-series. Otherwise (in the case of alternate hypothesis satisfaction and thus
the null hypothesis rejection), if all the time-series are stationary, we do not
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trigger our PSO implementation and consider for our anomaly detection module
only the observed behavior and the computed adaptive thresholds. Algorithm 2
best describes this statement.

3.1.3 Anomaly Detection
The final step of our anomaly detection system consists of using all the pre-
computed time-series for detecting anomalies on each feature. For that purpose
we employ Fuzzy-Logic [4,10] or fuzzy inference system for computing anomaly
scores for each feature. In the fuzzification step, we compute anomaly scores
ranging between 0 and 1 on the pre-computed time-series (observed, thresholds,
and predicted behaviors) using the Gaussian Membership Function as defined
in Eq. 3.7. If the prediction step was not triggered, we compute these scores
using the Eq. 3.8. After the fuzzification process is terminated, we move on
to the defuzzification process, where we define adaptive thresholds on these
anomaly scores using the same technique presented for adaptive thresholding
step (EWMA), and then flag each feature as anomalous (flag it as 1 if the
anomaly score is above the threshold) or not (flag it as 0 if the anomaly score is
below the threshold). The Gaussian membership function is defined as follows
[4,10]:

scorek = 1 − e
−(xk−yk)

2

2.ε2
k (3.7)

where k ranges from 0 to 8 and represents the corresponding feature, xk rep-
resents the observed or expected behavior, yk represents the predicted feature
behavior in the case our predictive step is triggered, and εk represents the com-
puted adaptive threshold for that feature. However, if the prediction step is not
triggered, the Gaussian membership function is defined as follows:

scorek = e−(xk−εk)
2

(3.8)

Algorithm 2. Predictive Algorithm.

1: InputVector ← ObservedSeries
2: for each FeatureTS ∈ InputVector do
3: InputData ← Feature − Time − Series
4: Stop ← False
5: ResultingTimeSeries ← InputData
6: iCounter ← 0
7: while Stop = False and iCounter ≤ 20

do
8: p_value ← adfuller(InputData)
9: if p_value > 0.5 then
10: InputData ← PSO(InputData)
11: else
12: ResultingTimeSeries ← InputData
13: Stop ← True
14: end if
15: end while
16: end for
17: end

Algorithm 3 . Proposed Fuzzy Infer-
ence Algorithm.
1: InputVector ← ObservedSeries
2: for each FeatureTS ∈ InputVector do
3: for each Obse,Threshl,Pred ∈ FeatureTS

do
4: S ← guassianFun(Obs, Threshl, Pred)
5: TH ← Anomaly-Threshl(S)
6: for each score, threshold ∈ S ,TH do
7: if score ≥ threshold then
8: anomalyflag ← 1
9: else
10: anomalyflag ← 0
11: end if
12: end for
13: end for
14: end for
15: end
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Algorithm3 describes how anomalies are detected on each feature. At the end
of this process, we end up with each connection extended with eight anomaly
scores and flags (one for each feature), as depicted in Table 2. Each connection
is considered as anomalous if at least one of these eight flags is set to 1.

Table 2. Anomaly scores and flags
Anomaly Features
Scores
(between 0
and 1)

id_orig_h_anomaly_score, id_resp_h_anomaly_score,
id_orig_p_anomaly_score, id_resp_p_anomaly_score,
orig_bytes_anomaly_score, resp_bytes_anomaly_score,
orig_pkts_anomaly_score, resp_pkts_anomaly_score

Flags
(either 0 or 1)

id_orig_h_anomaly_flag, id_resp_h_anomaly_flag,
id_orig_p_anomaly_flag, id_resp_p_anomaly_flag,
orig_bytes_anomaly_flag, resp_bytes_anomaly_flag,
orig_pkts_anomaly_flag, resp_pkts_anomaly_flag

4 Evaluation

This section gives more details about our experimental dataset and the evalua-
tion metrics used to validate our proposed technique.

4.1 Experimental Setup

All of our experiments are conducted on a dedicated processing server running
CentOS Linux version 7 with Intel Xeon E5-2630 2.30GHz CPU and 126GB of
RAM. Our framework is developed by using Python programming language and
by leveraging Elasticsearch as an indexing and search database for data ana-
lytics. Apache Spark alongside with pandas Python library are used to improve
the scalability and to exploit the full capacity of our server (CPU and RAM
resources). Kibana is used as a visualization tool on top of Elasticsearch in order
to create the required dashboards. X-Pack security tool, which is a plugin that
can be integrated on top of both Elasticsearch and Kibana is employed to provide
additional functionalities of user management, user authentication, and indices
access roles. All the data are stored in a storage server of 500TB capacity.

Experimental Dataset. In order to perform the experiments, a number of
organizations participated to collect and share their IDS logs. Almost 90% of the
participants installed BRO IDS, with some exceptions that employed other types
of IDS. Moreover, the locations of the sensors were different. Some organizations
choose to install their BRO sensors outside their firewalls, and therefore collect
all the connections incoming and outgoing to/from their network. This results
into sharing more consistent sizes of logs per day (sometimes hundreds of millions
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of connections each day). Whilst others capture only the traffic outgoing from
their network, and thus less connection logs are received. In total, we receive
millions of connection logs from the participants on a daily basis, which are
stored on the dedicated storage server as compressed files.

Evaluation Metrics. In order to evaluate the performance and validate our
approach, Accuracy ( TP+TN

TP+FP+TN+FN ), and F1 score ( 2×TP
2×TP+FP+FN ) metrics

are computed.

4.2 Ground Truth Correlation

In this section, we validate the results of our anomaly detection technique by
correlating them with some existing resources. We test our technique on a set
of connection logs and identify the anomalies. Then, all the detected anoma-
lous connections are correlated with external security feeds, such as malware
sandboxing reports. The IP blocks are extracted from each connection (origi-
nator and responder IPs) and are correlated with the extracted malicious IPs
from existing security sources within the same time interval that the connec-
tion occurred. We consider only three days of lag. Therefore, we first perform
malware correlation within the same day that the connection occurred. If there
is no match, we continue the correlation with the data of previous day. This
process is repeated until the last three days. The reason of considering the three
days of lag is due to the fact that most of the malware tend to change their IP
addresses in order to evade detection. We further perform the correlation with
an open-source ransomware database, Ransomware Tracker [21], which will be
updated in the case of the detection of a new worldwide ransomware. Therefore,
we download the Ransomware Tracker database, and on a weekly basis we check
for any changes to keep our database updated.

From the correlation results, we consider the number of connections that
were detected both by our system as anomalies and by the correlation as mali-
cious as true positives (TP), the ones that we flagged as anomalous but did
not return correlation results as false positives (FP), the benign connection that
were not flagged as anomalies as true negatives (TN), and the malicious connec-
tion that were not flagged as anomalous as false negatives (FN). As an example,
we examine 2, 438, 294 connections detected as anomalous (from approximately
400 million connections) from one of the randomly chosen participating organi-
zation collected from August 20, 2018 to 4th of September 2018. We correlate
our results with both malware and ransomware databases and then measure the
aforementioned security metrics. Our experiments show that Daedalus achieves
83.68% of accuracy and 91.11% of F1 score.

4.3 Validation on Benchmark Dataset

We further examine our proposed technique with benchmark datasets. We choose
UNBCIC 2017 IDS Dataset [14,25], which contains the BRO connection logs as
well as two csv files that label the connections as Benign, DDoS or PortScan.
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We run our proposed technique on 350, 137 randomly selected connection logs in
order to detect anomalies, among which 256, 540 were detected as true positives
(flagged as anomalous and labeled either as DDoS attacks or Port Scan attacks),
16, 775 connections were detected as false positives (flagged as anomalous but
there were no correlation results with DDoS and Port Scanning datasets), 64, 575
were detected as true negatives (neither detected as anomalous nor DDoS nor
Port Scanning), and 12, 247 were detected as false negatives (were not flagged as
anomalous but there were correlation matches with DDoS and Port Scanning).
The obtained results demonstrate 91.71% of accuracy and 94.64% of F1 score.

4.4 Comparison with Other Anomaly Detection Approaches

In this section, we compare our proposed technique with an exiting anomaly
detection approach. To this end, we choose the K-Means clustering method [17]
written in Python to detect anomalies on time series data. In this approach, the
anomalies are detected based on the reconstruction error curve. We modify the
provided implementation in order to fit it with the format of our datasets by
using only four features (originator bytes and packets, and responder bytes and
packets), and we also reduce the default number of clusters to 3. The imple-
mentation is applied on the same dataset of UNBCIC 2017 IDS, and then the
results are correlated with the labelled dataset (DDoS and PortScan attacks).
The obtained results show that we achieve 44.38% of accuracy and 56.28% of F1

score.

4.5 Scalability Study

We compare the execution time and resources consumption of our last two eval-
uations (Subsects. 4.3 and 4.4 using 350, 137 connections from UNBCIC 2017
IDS ) with the K-Means algorithm and report the results as illustrated in Table 3.
The htop Linux command [19] is used to monitor the percentage of each CPU
core usage.

Table 3. Scalability comparison
Our approach K-Means

Execution time 19 (m) and 25 (s) 1 h and 16 (m)
CPU cores used 24 cores dedicated; less

than 50% usage for each
core

24 Cores Dedicated; 3
cores were used critically
(more than 70% usage)

Memory (RAM) used 4GB 5.22GB
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5 Related Work

In this section, we present briefly the most recent and prominent works that have
been achieved and proposed in the field of network anomaly detection. In [5],
the authors proposed a new SVM system called robuts support vector machines
(RSVMs) and compared its performance with classical SVM systems and near-
est neighbours classifiers using the DARPA BSM dataset of 1998. The authors
have proved that their proposed technique achieves 81.8% accuracy results and
less then 1% false positives rates. In addition, the suggested method can consid-
erably reduce the execution time, as it generates less support vectors compared
to conventional SVMs. In [27], the authors have compared three SVM tech-
niques for their anomaly detection system, namely: standard or conventional
SVMs, weighted SVMs, and one class SVMs (OC-SVM). They observed that
the latter one achieves the highest accuracy detection rates with almost 78%.
In [8], the authors proposed a deep learning based anomaly detection approach
for detecting cyberthreats in 5G networks in an efficient and fast manner. They
showed that their proposed technique can self-adapt itself depending on the vol-
ume of network flows collected. In [4], on which the logic of our paper is mainly
based, the authors have used a network behavior profiling technique that is
based mainly on genetic algorithms and fuzzy logic. The authors have compared
their suggested method with other techniques of SVM approach, Rigid thresh-
olds, ACODS approach, and outlier detection one, and demonstrated that their
technique achieves a higher area under the curve (AUC). In [11], the authors
have proposed a tool called Kitsune that detects anomalies on local networks by
tracking the network behavior using an ensemble of autoencoders in a completely
unsupervised manner. Last but not least, in [16], the authors have studied the
detection of intrusions in web services using Auto-Regressive Integrated Moving
Average (ARIMA) technique.

6 Conclusion and Future Discussions

In this paper, we presented Daedalus, a highly scalable time-series and unsuper-
vised anomaly detection approach on network IDS logs. Our main contribution
resides in the predictive analysis step which has been improved significantly in
terms of scalability. This technique was validated during a three-steps process:
ground truth correlation, validation on a benchmark dataset, and comparison with
other techniques. The results show that our approach achieves higher accuracy
results and better resources consumption (execution time, CPU cores usage and
memory). Investigating other anomaly detection techniques, such as long-short
terms memory networks (LSTMs), gated recurrent units (GRUs), and autoen-
coders, and further comparing them with our proposed technique is the subject
of our future work.
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Abstract. The Internet of Things is a highly distributed, highly dynamic
environment where data can flow among entities (the ‘things’) in complex data
flow configurations. For data secrecy, it is important that only certain data flows
be allowed. Research in this area is often based on the use of the well-known
lattice model. However, as shown in previous papers, by using a basic result of
directed graph theory (or of order theory) it is possible to use a less constrained
model based on partial orders, for which a formal notion of secrecy can be
defined. We define a notion of ‘allowed contents’ for each ‘thing’ and then the
data flows follow by inclusion relationships. By taking advantage of transitivity
of data flows and of strongly connected component algorithms, these data flow
relationships can then be simplified. It is shown that several data flow rela-
tionships can coexist in a network. Two small examples are presented, one on
hospital applications and another on e-commerce. Implementation issues are
discussed.

Keywords: Internet of Things � Data secrecy � Data confidentiality � Privacy �
Data flow control � Partial orders

1 Introduction and Motivation

Given that we have a network of entities representing an abstract view of an Internet of
things (IoT) network, how can we set up the data communications channels between
entities so that data originating in one entity can or cannot reach another entity? Being
able to answer this question is important to answer questions of:

• Secrecy (also called confidentiality): can data stored in an entity reach another
entity? This question has clear consequences for the question of privacy, which will
be implied henceforth.

• Integrity: can data originating from an entity at some level of integrity reach an
entity at higher level of integrity, thus potentially polluting it?

• Availability: can an entity always access the data it needs?

It is of course a basic requirement for the IoT that “data should be able to flow as
needed” with as little confinement as possible, but also “data should not flow to
unauthorized parties” [22]. With respect to privacy, we agree that “the fundamental

© Springer Nature Switzerland AG 2019
N. Zincir-Heywood et al. (Eds.): FPS 2018, LNCS 11358, pp. 115–130, 2019.
https://doi.org/10.1007/978-3-030-18419-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18419-3_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18419-3_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18419-3_8&amp;domain=pdf
https://doi.org/10.1007/978-3-030-18419-3_8


nature of a privacy violation is an improper information flow” [13]. Paper [23] takes a
broad view of the importance of information flow control to achieve legal obligations in
the IoT. Many IoT diagrams in the literature show bidirectional channels among
entities, however clearly for secrecy and privacy some channels may have to be uni-
directional or absent altogether. These problems are common between the IoT and
Cloud, since IoT is often implemented on Cloud platforms [9, 11, 12].

We propose in this paper a new method to design networks with data flow
topologies (i.e. configurations of entities and channels) that can satisfy secrecy
requirements as specified in terms of logic expressions. We will also mention why we
believe that integrity requirements are also addressed by the same method. Related
important questions that we discuss in this paper are the following: given certain data
flow relationships in an IoT system, and the fact that we know that certain data
originate in certain entities, which are the entities that will be privy to these data?
Which are the most secret or least secret entities, in the sense that data that are in them
cannot or can propagate to others?

As already discussed in [14] and [24], it turns out that a simple result of directed
graph theory, associated with well-known efficient algorithms, can be used to provide
solutions for this problem, which are generic, i.e. independent of the application, or of
the devices used to implement the entities, or of the physical network. These papers did
not explicitly consider the IoT, which will be the focus of this paper.

2 Literature Review

Although the concept of Internet of Things is not much older than our century, the
literature on the general subject of ‘security in the IoT’ is already extensive, and several
survey papers exist. However most of this literature is about attacks, vulnerabilities,
access control, and is not particularly related to the problem of data flow control for
security. We are interested in globally controlling all the possible ‘things’ where the
data of certain other ‘things’ can end through sequences of data transfers, while access
control controls data transfers between pairs of ‘things’. In this brief literature review,
we cite only papers that are closely related to our problem and proposed solution.

An extremely influential pioneering paper on the general subject of data flow in
programs and networks is the one by Denning [4]. It showed that by using principles of
lattice structuring, data flow security properties can be guaranteed in programs or
networks. Almost all papers cited here refer to the lattice model by proposing appli-
cations, variants and enhancements of it. Our model has in common with the lattice
model the fact that it is relational, rather than state-transition based. It generalizes
Denning’s model because it uses partial orders instead of lattices. In [14] it is shown
that partial orders are necessary and sufficient for data flow secrecy and that they
always exist. In [24] it is shown that they can be efficiently found.

It should be noted that the subjects of flow control in the IoT and in the Cloud are
closely intertwined and on the way to integration [2]. Many papers in this general
research area propose the use of authentication, encryption and access control methods,
including variations of RBAC [6], in the IoT. Many of these papers are reviewed in
[16]. Although authentication, encryption and access control are mechanism for
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realizing flow control, we will limit our consideration here to methods for designing the
overall flow control.

Much classical literature, such as the paper of Samarati et al. [19] deals with the
problem of preventing or blocking illegal flows. Our purpose is dual, i.e. to identify (in
a current configuration) or permit (in a configuration to be established) all legal flows.

Blackstock and Lea [3] address the need for IoT data flow platforms to create
“systems suitable for executing on a range of real-time environments, toward sup-
porting distributed IoT programs that can be partitioned between servers, gateways and
devices”. They describe their experiences with two existing data flow platforms
towards designing their own.

Narendra Kumar and Shyamasundar [15] use a formalism based on identifying
separate subjects and objects (rather than entities only) and separate reading and writing
authorizations, rather than on a single CanFlow relationship as we do. They define a
Readers and Writers Flow Model based on Denning’s lattice model. Each entity is
provided with a label defining the entities that can read from it and the entities that can
write on it. This paper is in the context of Cloud computing. In a very recent follow-up
paper [12], Khobragade and the two authors just cited extend their method to the IoT.
We will come back to these papers in the Conclusions.

Bacon et al. [1, 12, 18] have developed data flow control methods and software for
the Cloud and the IoT using data tagging. We agree that data tagging seems to be
necessary for configuring data flows. as we will see later in our paper.

Schütte and Brost [21] present a policy language, LUCON, designed to control the
routing of messages across services. Message routes can be model-checked to see
whether they violate policies. The method uses message labels to which policies refer
in order to decide what happens to the messages during routing. Again, this kind of
labelling will play a role in our model.

These papers agree on the fact that generic solutions for IoT data flow control exist,
and should be used before application-specific ones. We share this opinion.

Although IoT networks are usually represented as directed graphs (digraphs), we
could not find a single paper that references or uses the basic result of digraph theory
that is presented in the following section, and which is the basis of our method. The use
of this result, instead of the classical lattice model, is the salient distinguishing char-
acteristic of our approach.

3 Basic Concepts

This section is mainly an adaptation to the IoT context of results presented in [14, 24].
We consider sets of abstract entities that can communicate among themselves by
unidirectional abstract channels (bidirectional arrows in our diagrams mean that there
are two channels in opposite directions). Entities represent ‘things’ or objects such as
sensors, databases, etc. Each entity has computing and storage power, can also have
sensing capabilities. We call network topology a given set of entities with channels
between them, which is fixed at any network state. We use the letter e with primes and
subscripts to denote variables for entities. We write CF1(e, eʹ) (can flow) to say that
there is a channel that can carry data from e to eʹ. In practice, CF1 can be implemented
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in several ways, this will be discussed later. We write CF(e, eʹ) if there is a commu-
nication path, consisting of one or several channels, from e to eʹ. If the data of e is
encrypted so that eʹ cannot decrypt it, then the relation is false.

Definition 1: CF(e, eʹ) is true if:

(a) CF1(e, eʹ) or
(b) there is a eʹʹ such that CF1(e, eʹʹ) and CF(eʹʹ, eʹ).

So CF is a transitive relationship. This is a pessimistic view, which can make
networks over-protected; it ignores the fact that some entities may decide to block some
data. Our (perhaps simplistic) view is that if Alice talks to Bob and Carl talks to Alice,
Carl can expect whatever he says to end up with Bob. We also assume that CF is
reflexive, since we can assume the existence of a channel from any entity to itself,
although for simplicity such channels will be left implicit. It is important to note that,
by its transitivity and reflexivity, CF is a quasi-order [7]. The relation CF will be
shown in the form of directed graphs (or digraphs). To enhance this generic view, in
Sect. 6 we shall informally introduce the notion of several separate data flows.

We say that an entity e can hold data x, written CH(e, x), iff data item x can be
present in e. CH(e, x) can be a fact known a priori, an axiom. For example, a sensor in a
refrigerator can hold a temperature reading. In other cases, CH(e, x) can be a derived
fact, if there exists a eʹ such that CH(eʹ, x) and CF(eʹ, e). So, if there is a channel from
the sensor to a HomeComputer (HC), then the HC can also hold the temperature
reading.

It would be possible to continue in the same way, considering the level of gran-
ularity of single data items; however in this paper we won’t need to reason at this fine
level of granularity. Henceforth we use the notation CH(e, eʹ) to say that entity e can
hold the data in eʹ. In the example above, if there is a channel that can carry data from a
sensor in the refrigerator to the HC, we say that both the sensor and the HC can hold all
data in the sensor. In our examples below we will construct networks by using a reverse
principle, i.e. starting from the fact that HC can hold all data in the sensor, we conclude
that there is a flow, or a channel, from the sensor to the HC.

Formally, we write:

Definition 2:

(a) CH(e, e) is our axiom
(b) CH(e, eʹ) iff CF(eʹ, e) is our inference rule

The following definition will allow us to refer to all the data that can be contained
in an entity, given a data flow configuration:

Definition 3:

CHS(e) = {eʹ such that CH(e, eʹ)}

CHS stands for CanHoldSet. For example, if there is a path from a fridge to a HC,
and from a thermostat to the same HC, then the entity HC can hold temperatures from
both the fridge and the thermostat.
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Clearly, we have:

Property 1:

(a) CF(e, eʹ) iff CHS(e) � CHS(eʹ)
(b) CF(e, eʹ) and CF(eʹ, e) iff CHS(e) = CHS(eʹ)

These definitions could appear to be counterintuitive at first because it might be
thought that two different entities could be able to acquire the same data directly and
independently, consider for example two independent sensors that sense the same
conditions. When this is possible, it is still safe to assume, from the security point of
view, that there is a bidirectional channel between the two entities.

We now describe the basic result of digraph theory that is at the basis of our
method. This result also appears, in simpler form, in the theory of relations and in the
theory of orders [7], but in our research area the graph-theoretical view may be the
most useful, and so we adapt here the theory presented in [10]. We define components
of our digraphs to be sets of entities such that for any two entities e and eʹ in the set, CF
(e, eʹ) and CF(eʹ, e). By Property 1, CHS(e) = CHS(eʹ). We are interested only in
components that are maximal, i.e. they are not contained in larger components, so
henceforth the adjective maximal will be implicit when we will mention components.
Let us condense each component in a single node in the digraph. Since the original CF
digraph represented a quasi-ordering, the resulting condensed digraph represents a
partial order [7]: this is because all symmetric relationships have disappeared, having
been encapsulated in nodes. Let us call [e] the node corresponding to the component
containing entity e (clearly, the mapping e ! [e] is a function). It is easily seen that
there is a path (a CF relationship) from e to e′ in the original digraph iff there is a path
from [e] to [eʹ] in the condensed digraph [10].

There are well-known and efficient (linear-time) algorithms to find condensed
digraphs, and their use will be demonstrated in this paper. It is important to note that
such condensed digraph will be acyclic. We will call such algorithms strongly con-
nected components algorithms. We use Tarjan’s algorithm [25] as implemented in
MATLAB [8].

As a generalization of the above notation, we allow specifying flow relationships
between sets of entities. For S and Sʹ finite sets of entities, CF(S, Sʹ) means that CF(e,
eʹ) holds between each e 2 S and all eʹ 2 Sʹ. The sets can be specified either by
enumeration, or by set-theoretical expressions, based on the attributes of entities as we
will see. For example, if S is a set of patients having a specific illness and Sʹ is a set of
doctors that specialize in that illness, then CF(S, Sʹ) means that data can flow from each
patient in S to all doctors in Sʹ.

So entities e have named attributes, in variable numbers and according to appli-
cation needs. We assume that each entity has attributes according to application needs.
Hence the constraint above can be specified as follows:

CH(e, eʹ) if patient(e) and illness e = stroke and doctor(eʹ) and specialty
(eʹ) = stroke

By Property 1, this implies CF(S, Sʹ), where S is the set of all such patients and Sʹ
is the set of all such doctors.
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We refine this view by allowing CF relationships to be specialized by the type of
data involved. We shall see later an e-commerce example where there are two different
CF relationships, one for ordering and one for billing. Many different CF relationships
can coexist in a network. In real life, Alice might talk to Bob on work matters, but not
on private matters. Knowing this, Carl can talk to Alice on private matters, assuming
that this will not end up with Bob.

Note finally that we use the term component in the described graph theoretical
meaning. This is quite different from the term’s use in some IoT literature, where it can
denote hardware entities with specific physical characteristics. In our sense, an entity
that belongs to a singleton equivalence class is also a component. On the other hand,
entities that are physically identical can belong to different components in our sense.
We use the term device to refer to components in this other sense.

4 The Method

Our method is based on the idea that if an entity e can hold all the data that an entity eʹ
can hold (plus possibly other data) then CF(eʹ, e) should be true. So each entity will
have attributes and will be associated with a logical expression, based on the available
attributes, defining the set of data that it can hold. The channels will be placed by
calculating the inclusion relationships between these sets. This can be done dynami-
cally, in the sense that every time a new entity is defined, the channels it should have
can be calculated, by checking the data set inclusion relationships between the new
entity and the existing ones (this step is not trivial from the point of view of compu-
tational complexity, and will be discussed in future papers).

The method described so far may be impractical, since it might generate ‘too many
channels’. In terms of digraphs, its result can be visualized as a transitively closed
digraph, see Fig. 1(a) for an example. According to the properties presented in the
previous section, a streamlined digraph can be obtained in the following way:

A

B C

D

EF

B,C,D

E

A

F

A

BC

D

EF

Fig. 1. (a): A data flow graph; (b) its partial order of components; (c) an equivlent data flow
graph
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(1) Using a strongly connected components algorithm, calculate the compressed
digraph for the CF relation (recall that it will be acyclic).

(2) Calculate the transitive reduction of the compressed digraph, see Fig. 1(b) where
each box represents a component (often a single algorithm will do both (1) and
(2)).

(3) For each component in this last digraph, connect the entities (if they are more than
one) in any way that maintains the mutual reachability relation;

(4) For any two components S and Sʹ such that S� S0, connect one or more element
(s) in S to one or more element(s) in Sʹ (Fig. 1(c). By transitivity, CF(S, Sʹ).

In practice data flow graphs may be large and complex, with component nesting
difficult to unravel, but each of the algorithms involved is (at most) polynomial, thus
‘efficient’ in complexity theory terms. Therefore, it might be conceivable to re-execute
the procedure every time there is a change in a network, or periodically, whenever a
network reconfiguration is desired.

Note that several communication paths that are direct in Fig. 1(a) are indirect by
transitivity in Fig. 1(c). Our method may produce communication patterns inappro-
priate for the intended application, but it won’t produce any that violate secrecy con-
straints. Step (3) can be done in different ways: in Fig. 1 we implemented the goal of
reducing the number of edges by using transitivity, but other goals can be implemented.
Therefore, we propose the use of this method as a basic method only, that may be
adapted to the needs of specific networks.

The use of this method will be assumed in the rest of the paper. The theory above
will be used implicitly.

5 Network Creation: A Hospital Example

We use here small examples to demonstrate our method, but as mentioned this is
scalable because of the existence of efficient algorithms.

As a first example, we consider a toy hospital system. In its final configuration, the
system will be as in Fig. 2, however we will show how it can be built step by step.

Fig. 2. A hospital example
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The types of the entities are: PressDetect, PulseDetect, NurseWkstn, DocWkstn,
ReanimationWkstn, WardDB, ChiefMedicWkstn, AdminDB (in Fig. 2, numerals are
added to the type names in order to distinguish different instances). We have three
patients, Sam, Bob and Sally, which however do not appear as entities but as parts of
the labels of the entities. In other words, we have labels: SamPress, BobPulse, Sally-
Press etc. We also have some statistical data that are created in some entities. When an
entity of one of the mentioned types is created, it is associated with a label, which
indicates the data that it can hold. We use a command New to create a new entity with a
label. A channel, which is a CF relationship, is automatically created between the new
entity and all the previously created entities such as the label of the new entity is
included in the label of the previously existing entity. Then the method of Sect. 4 can
be executed to reduce the edges if possible. For example,

New(A) = Nurse1Wkstn{SamPress, BobPulse, Stats1}.
New(B) = Nurse2Wkstn{SallyPulse, Stats2}.
New(C) = Doc1Wkstn{SamPress, BobPulse, Stats1}.
New(D) = Doc2Wkstn{SallyPulse, Stats2}.
New(E) = Ward1DB{SamPress, BobPulse, Stats1}.
New(F) = Ward2DB{SallyPulse, Stats2}.
New(G) = ReanimationWkstn{SamPress, BobPulse, SallyPulse}.
Etc.

After C is created, we have CF(A, C) and CF(C, A) since CH(A) = CH(C). Sim-
ilarly for D and B. After H is created, we have CF(H, A), CF(H, C) etc. So channels are
created between entities as the entities are created. In the graph of Fig. 2, we have
placed the entities in ascending order of inclusion, starting from those that have the
smallest CHSs at the bottom. Certain things of interest can be seen: for example, we say
that BobPulse is a secret of the set of entities {I, G, A, E, C, L, K} which are the only
entities that CanHold this data (in terms of [14, 24] this is the Area of BobPulse). It can
also be said that entities that appear towards the bottom of the partial order are the least
secretive, because they allow their data to flow up to other entities. On the contrary,
entities appearing at the top {L, K} are the most secretive, because their data cannot
flow further. They are also the entities that can hold the most data, in fact they can hold
all data available in the network in this example.

Note that there are some non-singleton components in this digraph, they are {A, C,
E},{B, F, D},{L, K}. In each such component, the entities are mutually reachable and so
they can all hold the same data. The partial order of equivalence classes for this digraph
is shown in Fig. 3.

Fig. 3. Partial order of components for the hospital example
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Note also the following important point. Suppose that for some reason, the entities
are created in the following order: first H, then L, then C. In practice this might lead to a
mis-configuration and there might be application-specific protocols to prevent this from
happening. Without this, our method will produce the following results. After L is
created, data can flow from H to L, and after C is created, data can flow from H to C,
also from C to L. At this point, transitive reduction will eliminate the direct flow from
H to L. Secrecy constraints will never be violated and whatever order is followed in the
creation of entities, we will always end up with the network depicted in Fig. 2.

6 Separate Data Flows: An E-Commerce Example

We introduce now a second example, where for readability we have done some sim-
plifications of notation with respect to the previous one (for example, we don’t
explicitly show that each entity contains its own data). This is an e-commerce network
with four clients, two retailers and four suppliers. Client 3 and 4 collaborate and so they
share data. We have two retailers. Finally, we have four suppliers, of which the first
three collaborate and so share client data. After having created all the entities, the
network is as shown in Fig. 4.

The partial order of equivalence classes for this example is shown in Fig. 5.

Supp1
{Client1,Client2}

Supp2
{Client1,Client2}

Supp3
{Client1,Client2}

Retail1
{Client1,Client2}

Client1 Client2 Client4Client3

Supp4
{Client2,Client3,

Client4}

Retail2
{Client2,Client3

Client4}

Fig. 4. An e-commerce example
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Again, this example can be analyzed to see what data are secret of which entities.
This example is useful to show the (usual) necessity of having several coexistent

but separate data flows in the same network. The previous diagrams dealt with ordering
information. Billing information travels in the opposite direction, and has different
secrecy requirements. Since each client should get only its own bills (except perhaps
for Clients 3 and 4 who share bills), then this requires defining as many separate data
flows as there are clients. Figure 6 shows the data flow for the bills of Client 1 (in this
case we show a downward flow for consistency with the previous figure). To keep the
two flows separate, we can identify the label sets that are relevant for each flow. For
example, the labels for Supp1 could be as follows: Supp1:Order{Client1,Client2};Bill1
{Bill1-1};Bill2{Bill1-2}. This means that Supp1 participates in three data flows, one for
ordering and two for billing, for each of its two possible clients. This starts to be
complex, but seems to be necessary for the secrecy of bills.

Supp1,Supp2,
Supp3

Retail1

Client1 Client2
Client3,
Client4

Retail2

Supp4

Fig. 5. Partial order of components for the e-commerce example

Supp1
{Bill1-1}

Supp2
{Bill2-1}

Supp3
{Bill3-1}

Retail1
{Bill1-1,Bill2-1,Bill3-1}

Client1
{Bill1-1,Bill2-1, 

Bill3-1}

Fig. 6. Partial billing flow in the e-commerce example
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7 Network Re-configurations

We must allow for data flow changes that can be requested by end users or adminis-
trators, entities which we see as external to our networks. These changes must be in
some way approved by authorities in charge of protecting security and privacy in the
system. Often one such change will motivate others in order to maintain useful data-
flows. In Fig. 1, suppose that there is a request by which Client1 should be allowed to
subscribe to Retail 2, and the request is granted. Then Retail2{Client2,Client3,Client4}
becomes Retail2{Client1,Client2,Client3,Client4}. Retail2 can no longer flow to Sup-
p4. So another authorization seems to be necessary for Supp4{Client2,Client3,Client4}
to become Supp4{Client1,Client2,Client3,Client4} and Supp4 or some conflict of
interests among clients may refuse this second change. Therefore, the requesting and
granting of authorizations cannot be purely local, it must be done with a global plan to
do all the other changes that may be necessary to return to a desired global flow.
A method to avoid such problems would be to deny authorizations unless it is possible
to grant at the same time all others that are necessary to maintain the required flow
structure. All such authorizations would have to be granted at the same time. The
mechanisms for these label changes will vary according to the nature of the system. In
almost every system there will be incompatibilities that cannot be violated, e.g. if two
clients are in conflict of interest, it must be impossible for each of them to hold secret
data from the other, or even for a third party to jointly hold their secret data. Label
changes that lead to such combinations must be refused.

From the point of view of access control theory, it is interesting to note that such
transformations are essentially the same that are implicit in classical mechanisms such
as ‘High water mark’ and ‘Chinese wall’. The former is the attribution of new
authorizations and the latter is the preclusion of certain combinations of authorizations
[20].

We leave entity disappappearance, removal of authorizations, declassification of
data, etc. to further research [12, 18]. In some cases, local repairs may be possible, and
at worst a global reorganization according to our method might be necessary.

8 Towards a Language for IoT Secrecy Requirements

Clearly, it is necessary to have a language for defining abstract entity types and allow
the creation of different topologies of instantiated entities, with different allowed
contents. We will in this section give an idea of how such a language could be
constructed, although it has the potential of becoming quite complex. For ease of use,
this language might have to provide for the definition of entities that are not devices or
‘things’ but can be instrumental in defining attributes of ‘things’, such as wards, nurses,
doctors, patients and clients, etc.

Essentially, the language must provide:

• primitives to define entity types with attributes, such as entity Ward, entity Supplier
etc. We will distinguish two types: types for real ‘things’ in the network, and they
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will prefixed by capital T, and types for logical concepts used to define the attributes
of the ‘things’. These will be prefixed by a capital L.

• an operator to define New entities with given attributes, and one to Dismiss them
• operators to Add or Remove attributes from entities
• primitives to define constraints for data flows; below we have simply a CH rela-

tionship as we will see.

In our hospital example, we could have the following types:

LType Patient(PatientId) (to define logical type Patient)
TType PressDetect(DetectId) (to define a device PressDetect with a DetectId)
TType PulseDetect(DetectId) (to define a PulseDetect)
LType Ward(WardId).
LType Nurse(NurseId)
TType NurseWkstn(WkstnId)

etc., and the following operators:

Assign (DetectId,Patientid)      (to assign a detector to a patient)
Assign (PatientId, WardId) (to assign a patient to a ward)
Assign (NurseId,WardId) (to assign a nurse to a ward)
Assign (WkstnId,WardId) (to assign a workstation to a ward)
Etc.

We need also a number of CanHold definitions, which generalize the previously
introduced labels, such as the following one:

CH(WkstnId,DetectId) if Assign(PatientId,WardId(WkstnId)) and Assign(DetectId,
PatientId)

The network construction can start as follows:

New Ward (Emerg). 
New NurseWkstn(EmergWkstn)
New Nurse (Alice)
Assign (Alice,Emerg).
Assign (EmergWkstn,Emerg)

New Patient (Sam).
Assign (Sam,Emerg)
New PressDetect(PRD0001)
Assign (PRD0001, Sam)
Etc.

Now, by the CH definition we know that EmergWkstn can hold the data in Sam’s
pulse detector PRD0001 and so data can flow from the latter to the former. This
establishes a CF relationship, hence a channel. So we have created a network with two
physical devices and a channel, and the procedure presented in Sect. 4 can be executed,
although of course it won’t find anything to improve.

In some systems there can be many more CanFlow requirements than NoFlow
requirements, or many more CanNotHold requirements than CanHold. in fact the
negative requirements could be more obvious for the designer than the positive. One
could allow the designer to specify the negative requirements, and then the positive
ones could be found by complementing the negatives. Another possibility would be to
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allow the designer to specify both positive and negative requirements, but this would
require a system to detect and correct inconsistencies. We leave these issues for future
research.

9 Implementation Issues

The conventional way to enforce data flows is by enforcing access controls on the indi-
vidual channels. The literature on techniques available for this is extensive, and one
recent comprehensive paper with a good literature review is [16].

Tags allow deciding whether certain data can cross certain channels; they must
follow the data as they move in the network. Data tagging for access control and flow
control has been studied in the literature [1, 5, 18], as well as provenance tagging [17]
but they are not part of widely implemented access control methods, because these
consider tags only for subjects and data objects (such as databases). In order to
implement our method, data must be tagged in two ways: to determine what flow the
data belongs to (ordering, billing) and to determine the data’s provenance (Pressure
detector, Client1 …).

It is likely that implementations of our method will require a combination of routing
and encryption. Routing will be based on the tags and then the question that comes up
is how to combine our method with IoT routing methods.

The Routing Protocol for Low-Power and Lossy Networks (RPL) is a protocol
defined by the Internet Engineering Task Force (IETF). It is one of the best-known
protocols for routing in the IoT [26], and it supports ad hoc configuration. RPL uses for
routing DODAGs (Destination-Oriented Directed Acyclic Graphs). DODAGs describe
efficient routes between the sink and other nodes for both collecting and distributing
data traffic. DODAGs are usually constructed on the basis of criteria of transmission
efficiency called OF (Objective Functions). New entities will autonomously find their
place in the network by using OFs. The ideas presented in this paper may lead to
research on methods for combining our own acyclic data flow digraphs with the
DODAGs, thus including data flow constraints in RPL routing, hence possibly in
Objective Functions.

Encryption appears to be necessary to establish channels that go through nodes that
should not be able to read the data.

Clearly, implementation issues require further research.

10 Discussion

Although one of the basic requirements IoT is that the system topology should be very
dynamic and varied, at present and for the foreseeable future, the IoT is a vast col-
lection of customized subsystems, each with its own set of users, data sets and func-
tionalities, as well as data security requirements: e.g. hospital networks for hospitals,
home networks for homes, warehouse systems for companies, fleets for truck com-
panies, etc. Each subsystem will have its own specific organization and data flows. In
specific networks, entities are organized according to these structures, and new entities
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that enter a network must join pre-extisting structures. These structures of course can be
changed, but each change must be prepared by the re-evaluation of several aspects, in
our case of the data security aspects.

We have limited ourselves to a high-level view, based on entities that have a
functional meaning for the end-user. In reality, the IoT includes types of entities that we
have not considered, such as routers, gateways, etc. Our view could be extended to
such other entities: routers and gateways are also limited by the kinds of data that they
can hold. However if encrypted data is transmitted through an entity that cannot
decrypt it, then we cannot say that data cant flow to this second entity by effect of this
transmission. This transmission belongs to a lower logical layer.

Although we have concentrated ourselves on secrecy, we argue that our method
takes care simultaneously of the main aspects of the two data security properties of
secrecy and integrity. This is because each of these properties specifies what should be
the origin of the data each entity can hold, and this is what our labels specify. Con-
cerning availability, our method can only allow to conclude that certain data ‘can be
available’ to certain entities, but for them to be actually available the ‘possible’ data
transfers must be executed. In other words, our model does not guarantee that a system
will actually function, it can only guarantee conformity to data security requirements,
essentially that certain data can or cannot reach certain ‘things’.

11 Conclusions and Future Work

We have presented a method for configuring IoT networks in such a way as to comply
to logically specified security data flow constraints. The method is exact, in the sense
that it allows all and only specified data flows. It is also scalable, since it uses efficient
algorithms. It could be seen as a generalization of well-known Mandatory Access
Control methods. We have also proposed a language for specifying the constraints.

With respect to previous work, the approach that is most similar to ours is the one
of [12]. As mentioned, in this paper a distinction is made between subjects and objects
and labels are assigned to subjects and objects to define which objects subjects can read
or write. However in the IoT it may be impossible to distinguish between subjects and
objects, or between reading and writing (these distinctions are common in access
control, less common in the IoT). In addition, the labels in our method determine
directly what the data contents of each entity can be. Perhaps the approaches of our two
methods can be mutually transformed, but ours uses a more direct notation, based on
the possible data contents of the ‘things’, as specified by our logical expressions.

Surely, the solutions we have given for our two examples are not different from
those that could have been obtained by intuition, without using our method. We take
this fact as a confirmation that our method finds acceptable solutions, and would
continue to find them for examples of thousands of entities, possibly generated by
requirement languages such as the one we have sketched.

Based on our concepts, one can imagine graphic interfaces that would make it
possible to design IoT systems with secrecy requirements by manipulating on the
screen graphic representations such as the ones we have used. For scalability however,
abstraction mechanisms such as encapsulation will have to be devised. It is interesting
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to consider that the problem of removing unwanted communication paths in existing
networks is much more difficult than the problem of allowing only certain paths at the
design stage, in fact we have not been able to find any solution for the first problem.
This is because unwanted paths can be part of other paths that are wanted.
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Abstract. The pervasiveness of Internet of Things (IoT) solutions have
stimulated research on the basic security mechanisms needed in the wide
range of IoT use case scenarios, ranging from home automation to indus-
trial control systems. We focus on access control for cloud-edge based
IoT solutions for which—in previous work—we have proposed a lazy
approach to Access Control as a Service for the specification, adminis-
tration, and enforcement of policies. The validity of the approach was
evaluated in a realistic smart-lock scenario. In this paper, we argue that
the approach is adaptable to a wide range of IoT use case scenarios
by validating the requirements elicited when analyzing the smart lock
scenario.

Keywords: Access control · IoT · Requirements validation

1 Introduction

While the Internet of Things (IoT) is already making an impact on the global
economy, market forecasts note that both IoT and the business models associ-
ated with it are immature at this point [2]. It is believed (see, e.g., [1]) that
the true potential of the IoT will be achieved only if the problems of today IoT
solutions are solved or, at least, alleviated. The most important issues of IoT
implementations include interoperability, latency, safety, security, trust, and pri-
vacy. If the problems related to guarantee these properties are not adequately
addressed, Gartner predicts that by 2020, 80% of all IoT projects will fail at the
implementation stage [2].

One of the most important approaches to ensure suitable levels of service to
fulfill the properties above stems from cloud computing and its combination with
edge computing. This approach seems to be promising in tackling several of the
challenges identified by Gartner in [2] with particular attention to latency and
security by exploiting the following two observations. First, both network latency
and the amount of computation to be done in the cloud (e.g., data analytic) are
c© Springer Nature Switzerland AG 2019
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decreased by playing out some computationally lightweight assignments (e.g.,
pre-processing or aggregation of data) near the end points generating the infor-
mation. Second, Cloud Service Providers (CSPs)—such as Amazon, Google, and
Microsoft—offer a cornucopia of well-engineered and widely tested security mech-
anisms (e.g., Identity and Access management) that might be valuable addition
to cloud-edge solutions, when incorporated with security measures for endpoints,
i.e. edge and smart devices.

The main roadblock to the wider adoption of cloud-edge IoT solutions is their
complexity, arising from the combination of heterogeneous techniques, including
virtual machines, server-less and mobile computing together with communica-
tion protocols for resource constrained devices. This prevents the possibility of
confining the core functionality of security mechanisms to a trusted base as it
is the case with more traditional systems. To illustrate, consider security policy
evaluation; it becomes unreliable when updates to the latest version of the poli-
cies are prevented by some features of mobile devices such as the so called air
mode that aims to guarantee availability. It is thus no more possible to sepa-
rate the concerns of validating and enforcing policies as typically done in a long
line of works in the literature (see, e.g., [10]). For these reasons, [3] proposes
a new approach to design and implement access control—which is one of the
most important security mechanisms—for cloud-edge IoT solutions. The idea
is to offer Access Control as a Service (ACaaS) for the specification and man-
agement of policies independently of the CSP while leveraging its enforcement
mechanisms.

In [3], the lazy approach to ACaaS for cloud-edge IoT solutions is justified
by a thorough analysis of a realistic smart-lock use case scenario. This has lead
to the identification of a minimum set of requirements that any ACaaS should
satisfy for its effective use with cloud-edge IoT solutions. However, the smart-
lock scenario is one of the many possible IoT use cases. The obvious question of
the validity of the requirements in [3] naturally arises, in particular their com-
pleteness, when considering the heterogeneity of the possible use cases includ-
ing transportation, health and well-being, home and building automation, smart
metering, and industrial control systems. To answer the question, we consider the
IoT use case scenarios in [11] whose main goal is to list the relevant authorization
problems of heterogeneous IoT deployments. We argue that the set of require-
ments in [3] is complete in the sense that covers all the requirements elicited in
the scenarios of [11]. This implies that the implementation of the lazy approach
to ACaaS described in [3]—which is shown to verify all the requirements—can
be effectively deployed across a wide spectrum of IoT uses cases.

The paper is organized as follows. Sect. 2 summarizes the lazy approach to
ACaaS for cloud-edge IoT solutions. Sect. 3 discusses the access control require-
ments of the use cases in [11]. Sect. 4 validates the requirements of the lazy
approach to ACaaS against those in [11] and draws some conclusions.



Validating Requirements of Access Control 133

2 A Lazy Approach to ACaaS in Cloud-Edge Solutions

ACaaS allows for outsourcing the administration and enforcement of access con-
trol policies to a trusted third party. The advantages of ACaaS are several and
include a comprehensive and uniform support for policy administration and an
expressive and high-level (independent of a particular CSP) policy specifica-
tion language. These allow for mitigating the problems of access control mech-
anisms that are available in current cloud-edge solutions by Amazon, Google,
and Microsoft, such as limited support for policy administration, vendor lock-in
(because of proprietary policy languages), and limited expressiveness in speci-
fying complex authorization conditions that depend on a several resource and
context attributes.

The main difference between the lazy approach in [3] and most existing
ACaaS solutions [4–6,8] is that the former outsources the management but not
the enforcement of policies. Following and extending [9], the lazy approach to
ACaaS translates a high-level policy language based on Attribute Based Access
Control (ABAC) [7] to the policy language adopted by a given CSP. This allows,
on the one hand, to reuse well-engineered, robust, and tested enforcement mech-
anisms and, one the other hand, reduce the overhead due to the invocation of
an external evaluation point for every authorization request (as it is the case in
other ACaaS solutions). Two additional advantages are the possibility to avoid
vendor lock-in by translating to the various policy specification languages of
the available CSPs and to improve on latency by speeding up the authorization
request evaluation with the help of edge computing that is available in most
cloud-edge IoT solutions.

Based on the thorough analysis of a smart-lock use case scenario, [3] identifies
seven main requirements for access control systems for IoT. The requirements are
shown in Table 1 and are briefly discussed in the following. (AC1) An access con-
trol system for IoT should be applicable in all security contexts by allowing the
specification of authorization conditions that are depend on several attributes of
users, resources, and the environment. (AC2) The access control system should
provide stakeholders with a single administration point for easy translation of
multiple (possibly conflicting) security requirements into enforceable access con-
trol policies and the configuration of security mechanisms that better fit other
functional requirements (e.g., enforcement of policies in the edge to avoid latency
problems). (AC3) The inherent difficulties in defining authorization conditions
are exacerbated by a plethora of access control mechanisms offered by the various
CSPs; this makes the porting of policies across different platforms a daunting
task, thereby resulting in vendor lock-in. (AC4) An access control system should
provide hooks to customize policy evaluation with respect to the needs of the
application domain; for IoT, it is crucial to augment the access control system
with event driven functions for the evaluation of custom constraints in access
control policies. (AC5) Several IoT applications have stringent latency require-
ments, it is thus crucial for access control systems to optimize the process of
evaluating authorization requests by choosing the most appropriate configura-
tion that combines cloud and edge computing. (AC6) Cloud computing supports
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the use of several different technologies (e.g., mobile devices) that may signifi-
cantly enlarge the attack surface; for instance, connectivity problems or features
of mobile devices (such as air mode) may cause coherence problems with the dis-
tribution of policies that have been modified in the cloud. (AC7) Many predict
the exponential growth of the number of smart devices; this implies a substan-
tial scalability problems for the management and administration of access control
systems.

Table 1. Requirements of access control systems for IoT

ID Requirement Description

AC1 Expressibility The access control system must allow users to specify
fine-grained access control policies

AC2 Administration The access control system must provide an
administration point to easily configure policies for
connected devices and available resources

AC3 Portability The access control system needs to be platform
independent

AC4 Extensibility The access control system must support the
enforcement of arbitrary security constraints

AC5 Latency The access control system must be designed
according to the latency requirements of the IoT
application

AC6 Reliability The access control system must provide a reliable
access decision in every system state

AC7 Scalability The access control system must be able to handle a
growing number of devices and amount of data
generated and processed by those devices

While we have already argued that the implementation of the lazy approach
described in [3] verifies requirements (AC1)–(AC7), in the following we validate
the requirements by showing that the authorization problems identified in [11]
arising in a variety of heterogeneous IoT use cases are all instances of the require-
ments in Table 1.

3 Authorization Problems from IoT Use Cases

For the sake of brevity, we consider only two of the seven use cases from [11]
(however, our findings hold also for the other five use cases). Each use case
description contains a table summarizing the authorization problems by using
the labels used in [11] for ease of reference, a high level description, and the
relationship with the requirements in Table 1. The latter will be discussed in
Sect. 4.
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3.1 Container Monitoring for Food Transportation

Containers are used for storage and transportation of goods that need various
type of climate control such as cooling and freezing. Container monitoring is
a challenging task and IoT provides an opportunity for its simplification. The
process involves various stakeholders such as food vendor, transporters and the
super market chain, each with different monitoring requirements. The vendor
packs food in sensor fitted boxes that communicate with a climate-control sys-
tem. Each container carry boxes of same owner however adjacent containers
might contains boxes of different owners. Keeping in view, the environmental
constraints on the way, the sensors might need to communicate to the endpoints
over the Internet via relay stations owned by the transport company. The own-
ership of goods also changes on the way while they are handed over from one
stakeholder to the other. The main authorization problems are the following.

– U1.1: Each stakeholder have different authorization needs of resources and
endpoints.

– U1.2: Each stakeholder requires integrity and authenticity of relevant sensor
data.

– U1.3: Each stakeholder requires the confidentiality of relevant sensor data.
– U1.4: Stakeholders require authorization enact without manual intervention.
– U1.5: The capability of stakeholders to grant and revoke authorization per-

mission.
– U1.6: Ensure the reliability of authorization in presence of relay stations.
– U1.7: Ensure the reliability of authorization without access to remote autho-

rization server.

3.2 Smart Metering

Smart meters provide a reliable and secure source for real-time insight on energy
consumption. Consider an Advance Metering Infrastructure (AMI) as a use case
scenario of smart metering that measures, collects, analyzes usage, and interacts
with metering devices either on request or on predefined schedule. It allows con-
sumers to control their utility consumption and aids utility providers in accurate
and timely billing. Smart meters deal with sensitive user related data and are
often installed in hostile locations that makes security assurance as a concerns
for users as well as service providers. The main authorization problems are the
following.

– U5.1 The utility providers want to make sure that an attacker can not use
data from a compromised meter to attack

– U5.2 The utility providers want to control the flow of data in their smart
metering network.

– U5.3 The utility providers want to ensure the integrity and confidentiality of
data.



136 T. Ahmad and S. Ranise

Table 2. Container monitoring use case

Authorization problems Description Requirements

U1.1, U1.2, U1.3 The language used to express
access control policies must ensure
the integrity/confidentiality of
sensor data and also allow
specification of fine-grained access
control polices by different
stakeholders

AC1: Expressibility

U1.4, U1.5 Pre-configured access control that
require minimal or no configuration
at access time. The administration
point must allow user to grant and
revoke authorization permissions

AC2: Administration

U1.2 The access control must be
extensible to ensure authenticity of
sensor data

AC4: Extensibility

U1.6, U1.7 Reliability of authorization
mechanism in every system state

AC6: Reliability

Table 3. Smart metering

Authorization problems Description Requirements

U5.1, U5.2, U5.3,
U5.4, U5.5, U5.9

The language used to express
access control policies must be able
to completely capture the security
requirements of an organization.
The access control mechanism
must ensure integrity and
confidentiality of user related data

AC1: Expressibility

U5.4, U5.7 The access control system provide
a single point of administration. It
must allow management of user
related data

AC2: Administration

U5.5, U5.6, U5.8 Correct enforcement of
authorization policies. The access
control mechanism must be reliable
in every system state

AC6: Reliability

U5.7 The coherence of the access control
system must be guaranteed as the
network scales

AC7: Scalability
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– U5.4 Consumers want to access own usage data and also prevention of unau-
thorized access to such data.

– U5.5 The utility providers want the authorization policies enact even if the
meters uses intermediaries for Internet connectivity.

– U5.6 Authorization mechanism must be enforced during all times without
human intervention.

– U5.7 Keeping in view the scale of the network, direct update of authorization
policies on each and every node is almost impossible.

– U5.8 Authentication and authorization must work even if messages are stored
and forward over multiple nodes.

– U5.9 Consumers want to preserve privacy by providing access to fine-grained
level of consumption data to the utility providers.

4 Discussion and Conclusion

We argue why the authorization problems listed in Sects. 3.2 and 3.1 are covered
by the requirements in Table 1 as shown in Tables 2 and 3. This validates the
requirements for the container monitoring and the smart metering scenarios. We
make two observations. First, similar results can be obtained for the other five
use cases in [11]. Second, the only reason for which (AC3) does not show up
in the analysis is that the use cases do not consider the problem of porting a
solution to a different IoT platform.

(AC1): Expressibility. The language used to express access control policies must
ensure the integrity and confidentiality of data and allow specification of access
rules for single entity as well as group of entities. These requirements are easily
satisfied by the use of a language based on ABAC which is well-known (see,
e.g., [7]) to support the specification of complex confidentiality and integrity
goals by permitting the definition and combination of several policy idioms for
defining fine-grained and context dependent authorization conditions.

(AC2): Administration and (AC5): Latency. The single point of administration
is important mainly in two respects. First, it simplifies the specification of
enforceable policies that result from the reconciliation of possibly conflicting
security goals by different stakeholders. Support for this task comes from the
precise semantics of the high-level specification language. Second, by allowing
the configuration of how the enforcement of policies is performed (e.g., autho-
rization requests are evaluated on the edge), the single point of administration
permits to fine tune the system to satisfy other crucial requirements, such as
Latency.

(AC4): Extensibility. To guarantee the authenticity, integrity, and confidentiality
of the widely heterogeneous types of data acquired and processed by IoT devices,
it is crucial to provide the ACaaS with points of extension that allow for the
integration of the most appropriate, with respect to to the type of device and use
case scenario—code for data acquisition and processing. This is fundamental in
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the presence of constrained environments in which devices and protocols are lim-
ited and can support neither heavy computation (e.g., standard cryptography)
nor communication (e.g., TLS).

(AC6): Reliability. The distributed nature of cloud-edge IoT solutions give rise
to synchronization and coherence problems that may adversely affect security;
e.g., updates of access control policies should be propagated as quickly as pos-
sible to avoid taking the wrong decision when the evaluation of authorization
requests is distributed. To complicate the situation further is the presence of
some functionality of, for example, mobile computing (such as air mode), that
can be exploited to retain rights that have been revoked by presenting invalid
access token to edge devices.

(AC7): Scalability. When considering very large deployments, the number of
IoT devices may become so large and the topology of the network so complex
to make the enforcement of evolving policies very difficult, if possible at all. An
ACaaS should be able to blend with the elasticity of cloud-based IoT solutions
to cope with a possibly exponential growth of IoT devices and the associated
communication overhead.

4.1 Conclusion

We have validated the requirements on access control (c.f. Table 1) for IoT solu-
tions that we have elicited in [3] from the analysis of a realistic smart-lock use
case scenario. We have done this by considering the variety of use case sce-
narios (such as container monitoring and smart metering) presented in [11], a
document whose main goal is to identify authorization problems. We have suc-
cessfully shown that each authorization problem is covered by one (or more)
of the previously identified requirements. This entitles us to conclude that the
implementation of the lazy approach to ACaaS for cloud-edge IoT solutions of [3]
can be effectively re-used in several other IoT uses cases. Indeed, qualitative and
quantitative evidence that such an implementation verifies the requirements have
been already provided in [3].
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Abstract. With recent advancements in computing technology,
machine learning and neural networks are becoming more wide-spread
in different applications or software, such as intrusion detection applica-
tions, antivirus software and so on. Therefore, data safety and privacy
protection are increasingly reliant on these models. Deep Neural Net-
works (DNN) and Random Forests (RF) are two of the most widely-
used, accurate classifiers which have been applied to malware detection.
Although their effectiveness has been promising, the recent adversarial
machine learning research raises the concerns on their robustness and
resilience against being attacked or poisoned by adversarial samples. In
this particular research, we evaluate the performance of two adversar-
ial sample generation algorithms - Jacobian-based Saliency Map Attack
(JSMA) and Fast Gradient Sign Method (FGSM) on poisoning the deep
neural networks and random forests models for function call graph based
malware detection. The returned results show that FGSM and JSMA
gained high success rates by modifying the samples to pass through the
trained DNN and RF models.

Keywords: Adversarial Machine Learning · Neural Network ·
Random Forest · Graphlet

1 Introduction

With recent advancements in machine hardware and computing technology,
researchers have been focusing on expanding the usage of machine learning.
Machine learning refers to inputting large amounts of data to an algorithm dur-
ing a training phase. This, in turn, causes the algorithm (or model) to learn
particular patterns of the training data, and then react on new data depending
on those learned patterns. With this technique, machines gain the ability to self-
improve and adapt to new data. This technology can be used in several different
c© Springer Nature Switzerland AG 2019
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aspects, including related searches on Google or self-driven cars. Because of the
automation gained from it, machine learning can increase the comfort and effi-
ciency of our daily lives. Hence, this topic is currently under intensive studies.
However, on the other side, hackers attempt to attack or poison the machine
learning algorithms. Hacking into the machine learning algorithm leads to great
security threats on data privacy and security; therefore, adversarial machine
learning, a new research field intending to investigate how to detect adversarial
activities of the machine learning algorithms, is needed.

In this paper, we investigate and compare two adversarial example generation
algorithms that attempt to mislead the trained machine classifiers for malware
detection. The first algorithm is known as Jacobian-based Saliency Map Attack
(JSMA), proposed by Papernot et al. [8]. It exploits the forward derivative of a
deep neural network (DNN) to find perturbations, then creates adversarial mod-
ifications to some components of normal malware data using the perturbations.
The second algorithm is known as Fast Gradient Sign Method (FGSM) [12].
This method aims to generate malicious samples by using gradient computa-
tions. Both methods attempt to generate adversarial malware samples so that a
trained machine learning model would classify the adversarial malware samples
as benign. In this research, we explore and compare these two adversarial exam-
ple generation algorithms on two well-known learning algorithms: deep neural
network (DNN) and random forest (RF). Deep neural networks are a series of
interconnected nodes. Each connection between nodes has a weight associated
with it, and the nodes are structured in layers: an input layer, a series of hid-
den layers, and an output layer. The random forest, another machine learning
algorithm, is composed of several decision trees. It classifies data by growing
binary branches from splitting variables, and it is known to be useful for several
classification and regression tasks. The malware dataset used in this research
is a graphlet dataset which include 2394 function call graphs extracted from
Android malware and benign applications. Each malware or benign instance in
this dataset is described as a set of graphlets. This dataset is built by a pre-
vious research [3]. The returned results of this research show that FGSM can
generate instances to evade both DNN and RF algorithms with 100% success
rate when degree of perturbation is high. On the other hand, JSMA can gain
high success rate with DNN but not with RF algorithm. We hypothesize that
is because JSMA is based on selecting the features first before generating per-
turbation values; therefore, the selected features might be different from those
selected by RF to build the tree structure. The FGSM can be further evaluated
on generate instances to evade other machine learning algorithms in the near
future.

The rest of paper is organized as following: related work is presented in
Sect. 2, the details of the FGSM and JSMA algorithms for generating adversarial
samples are given in Sect. 3, two classification algorithms - DNN and RF are
described in Sects. 4 and 5 demonstrates the experimental settings and discusses
the results, Sect. 6 explains how we validate the generated adversarial samples,
the conclusion and future work is concluded in Sect. 7.
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2 Related Work

Adversarial Machine Learning is a relatively new field of study. Attacks on Deep
Neural Networks and Random Forests, in particular, are emerging. There are
related techniques and concepts described in the literature.

Some literatures provide tactics of adversarial data manipulation given that
the target classifier is minimally exposed to the adversary, such as having only
the information of its final classification decision. Given these conditions, Dang
et al. [13] performed an evasion attack on non-image datasets. They targeted
two generic PDF malware classifiers - PDFRATE and Hidost - then generated
malicious samples using only a blackbox morpher and a sandbox in order to
find the most optimal path of modifications needed for a file to missclassify
from malware to benignware. This met the challenge of evading the two PDF
classifiers by morphing malicious samples “in the dark”. The method, although
effective and capable of wider application, was limited by the amount of queries
that can be made to a classifier while also avoiding detection. Another method
of evasion is generating malicious samples and testing them on phishing website
classifiers. Hu and Tan [13] proposed a generative adversarial network (GAN)
based algorithm named MalGAN to generate adversarial malware examples.
These examples were able to bypass machine learning based detection models,
not knowing what type of model it is. This was made possible due to a substi-
tute detector that MalGAN uses to fit the black-box malware detection system.
Then, a generative network was trained to minimize the malicious probabilities
predicted by the substitute detector. Although relatively difficult in application,
MalGAN proves to be effective, decreasing adversarial malware detection rates
to almost zero.

More recently, Elsayed, et al. [15] devised a technique to re-purpose a target
model by means of an adversarial program. The adversarial program was added
to a network’s input in order to force it to perform a different task. This kind of
attack was ideal for an adversary that has gained access to a neural network’s
parameters. Grosse et. al. [16] also constructed an adversarial attack on machine
learning malware detectors. They take into account the existing adversarial-
crafting algorithms, but expand on it to use discrete, often binary, input domains
as opposed to continuous ones. In addition, they proved that their manipulated
program would perform malware functions. This work provided a more discrete,
yet promising method to generate adversarial samples. Jia et. al. [17], on the
other hand, focused on the prevention of adversarial attribute inference attacks,
specifically on machine learning algorithms. An attribute inference attack lever-
ages a machine learning classifier to infer a target user’s private attributes. To
counteract this, Jia et. al. [17] created a method that evades users’ original infor-
mation from the attacker’s classifiers by adding noise to the user information.
This study showed a way of using evasion as security instead of attack. Another
recent work looked into classifier evasion via altering malware binary payloads
[18], which is the most similar to ours. It also aimed to evade neural network
malware/benignware classifiers. However, it differs in that we also evaluate eva-
sion success in RF classifiers and that our approach does not modify binary
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payloads. Rather, we propose that an adversary can simply modify the function
calls of their malware to attain the results we seek.

Although all of the mentioned works inspired our work, the strongest motiva-
tion behind this literature was to utilize the methods developed by Goodfellow
et al. [12] and Papernot et al. [5]. Both of these works develop methods aimed
to perturbing MNIST images in order to cause misclassification. Goodfellow
et al. addresses a method known as Fast Gradient Sign Method (FGSM). Given
a model with an associated cost function, the FGSM crafts an adversarial sample
for an original sample by computing perturbations. Perturbations are made to
every value of the whole sample vector. Increasing the perturbations increases
the likelihood of the adversarial sample being mis-classified, but also decreases
the discreteness of the adversarial change.

Papernot et al. [5] propose the Jacobian-based Saliency Map Attack (JSMA)
respectively. Given a model, an adversarial sample is created by adding a per-
turbation to only a subset of the values in the given sample vector. The two
attacks will be elaborated further in Sect. 5 of our paper. The JSMA attack is
known to be strong with targeted misclassification and creates less perturbations
than the FGSM, making it less detectable, but with greater cost. FGSM is more
applicable in any misclassification attack and can quickly create many adversar-
ial samples, but makes larger perturbations, creating danger of detection. After
the proposal of these two attacks, Papernot et al. [9] then makes use of both
methods to study the evading success of the attacks among different machine
learning classifiers.

Our work differs from the above in that we attempt to use the FGSM and
JSMA methods developed by Goodfellow et al. and Papernot et al. respectively
in order to attack the trained DNN and RF classifiers using the malware Graphlet
Frequency Distribution (GFD) vectors. We have also studied the perturbation
degree required to attain satisfactory results as well as the evading success to
Deep Neural Network and Random Forest classifiers.

3 Adversarial Sample Generation

Consider a malicious adversary that wants to deploy a malicious android appli-
cation in a setting where their target uses a malware detection engine. The
adversary has knowledge about the classifier used by their target, but does not
have access to the model used by their target. Further, the adversary is aware
that the target uses either a DNN or RF model to classify via graphlet frequency
distributions of function call graphs. The adversary also has access to a mod-
est set of malicious and benign android applications, and uses them to create a
simple DNN or RF malware classifier.

In this study, we compare two algorithms to execute evasion attacks on clas-
sifiers that have completed their training phase. The goal of these algorithms is
to modify malware instances so that the changes are unnoticeable, but they are
enough to mislead the classifier into classifying the modified malware as benign.
This section explains the two different attack methodologies used to maliciously
modify the regular malware samples.
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3.1 Fast Sign Gradient Method (FGSM)

The Fast Sign Gradient Method is developed by Goodfellow, et al. [12], which can
be summarized follows. Given a classification model F with an associated cost
function J(θ, x, y), the adversary generates an adversarial sample using Eq. 1:

x∗ = x + η (1)

where η is defined as Eq. 2:

η = ε sign(∇xJ(θ, x, y)) (2)

where ε refers to a perturbation, which can be any arbitrary number between
0 and 1. This perturbation value influences the significance of the modification
as well as the effectiveness of the algorithm. Higher ε values yield better results,
however they also result in less subtle differences between x and x∗. Nevertheless,
the objective is to generate sample x∗ to be mis-classified from class x to class y
without modifying the model F . In our study, the objective is to generate x∗ to
be mis-classified from malware to benign without modifying the Deep Neuron
Networks and Random Forest.

3.2 Jacobian-Based Saliency Map Attack (JSMA)

The Jacobian-based Saliency Map Attack (JSMA), proposed by Papernot et al.
[8], exploits the forward derivative of a deep neural network (DNN) and finds
perturbation. To decide which features to change, the algorithm orders each
feature by its importance in creating the adversarial sample. Then, the input
components are added to the perturbation value in the importance order. This
is continued until the sample becomes mis-classified as the target. This is accom-
plished using the adversarial saliency map, defined as Eq. 3.

S(X, t)[i] =

{
0, if ∂Fi(X)

∂Xi
) < 0 or

∑
j �=t

∂Fi(X)
∂Xi

) > 0
(∂Fi(X)

∂Xi
)|∑j �=t

∂Fi(X)
∂Xi

)|, otherwise
(3)

Given target t, exploiting this map allows Ft(X), the target class output, to
increase while probabilities Fj(X) of other classes j �= t decrease, until target
t = arg max Fj(X). With this method, modifications can be made to malware
data that will lead the model to mis-classify it as normal. The advantage of this
algorithm is that it requires very small changes to be made to minimum number
of features from the original malware data. Hence, it makes the attack more
discrete. However, the computational cost is higher than the FGSM method.

4 Learning Algorithms

In this study, we evaluated the two adversarial sample generation algorithm on
two well-known and widely used learning algorithms: Deep Neural Network and
Random Forest. These two algorithms are described as following.
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4.1 Deep Neural Network (DNN)

Deep Neural Network (DNN) is a machine learning technique consisting of inter-
connected nodes. An example of a DNN classifier is given in Fig. 1. There are
several implementations of this technique. However, they all have three key fea-
tures: one layer of input nodes, a set number of hidden layers, and a final layer
of output nodes. Each connection from one node to another has a weight value;
this value is used to determine the activation of the node it is connected to. The
number of nodes and connections in each layer are ideally set to represent some
linear or non-linear problem; the network as a whole is called the model. In this
study, we implement a fully connected neural net as a classifier for detecting
malware in the dataset.

Fig. 1. Example of a DNN classifier. M components are the number of neurons at the
input layer. Normally, they equal to the number of features in the dataset. N compo-
nents at the output layers correspond to the number of classes to predict. Given an
input, there is a associated probability of each class at the output layer. The probability
to a class is between 0 and 1.

The Deep Neural Network is similar to other machine learning algorithms.
In order to build the model, a training phase and a testing phase are involved.
During the training phase, the network accepts inputs and feed forward math-
ematical operations that ultimately set off an activation function on each node
of the network. The activation of the node relies on the weights associated with
itself. Normally, higher weight results in greater activation. The activation of the
final layer is then compared to the inputs, and a cost or a loss is computed. The
weights of the final layer and the preceding layers are adjusted based on the cost
function in order to minimize the cost of the next prediction. Once the training
phase is done, the trained model can be loaded into a system for testing. The
testing phase simply refers to inputting test data that was not used in the train
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phase and then predicting their class labels - malware or benign in the study,
and calculating the accuracy.

Fig. 2. RF classifier and its basic structure.

4.2 Random Forest (RF)

A random forest (RF) is a classifier composed of several decision trees [4].
Figure 2 demonstrates a visual explanation of the random forest skeleton [14].
If a dataset D is the input of the classifier, the algorithm creates several sets
of randomly selected samples of D. Each decision tree randomly takes one set
of the samples as its input. Then, each tree grows binary branches from split-
ting variables. For this study, the trees use the entropy algorithm to determine
splitting variables. Entropy measures the uncertainty of the class in a subset
of examples, and the goal is to maximize the purity of the groups for every
split. Therefore, the algorithm will always choose a splitting variable that will
decrease the entropy. Each tree stops growing either after reaching maximum
depth or purity. After all decision trees classification finish, the most frequent
output (majority vote) of all the trees becomes the output of the random for-
est. Comparing to decision tree, the random forest may be visually difficult to
interpret. However, it’s supposed to avoid the problem of over-fitting due to the
“majority vote” output. Also, it increases independence among trees, making it
robust when dealing with a large number of features in data.

5 Experiments and Results

5.1 Data Set

The dataset used in this study is a graphlet dataset for function call graphs
of Android applications [3]. It is comprised of 2394 samples. The training set
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consists of 597 malware and 600 benign samples, while the testing set consists
of 600 malware and 597 benign samples. These malware and benign samples
present function call graphs of programs that are extracted from the Android
applications [10]. A function call graph contains nodes and edges, each node
represents a function while each edge represents a function call. Each function
call may be one way or bi-directed. A graphlet is a sub-graph which consists of
n nodes from a function call graph. Figure 3 shows the number of combinations
obtained from a graphlet of n = 3. A function call graph can contain different
combinations of these graphlets. Gao et al. [10] extracts graphlet frequency dis-
tribution (GFD) vectors from n = 3 up to n = 5. A GFD vector presents a
function call graph. Each entry of the vector presents the frequency of a type of
a graphlet i (i ∈ {1, . . . , N}). In this dataset, there are N = 125 different types
of graphlets. They are attributes of the input data to train and test the DNN
and RF classifiers.

Fig. 3. The 13 graphlet types when n= 3

5.2 Classification Performance on Normal Samples

Before the learning algorithms are tested by the generated adversarial samples,
they are evaluated and compared against the traditional evaluation metric for
classification. Since only malware and benign samples are included in our exper-
imental dataset, this turns to a binary classification task.

Deep Neural Network. The deep neural network implemented in this research
consists of 125 input nodes which corresponds to the types of graphlet, 3 hid-
den layers consisting of 100, 50 and 10 nodes respectively, and 2 output nodes
which corresponds to the output classes: malware and benign. The training set
described in Sect. 5.1 is used to train the model, then the model is tested by
the test set. After the network is trained for 15 epochs utilizing an Adam opti-
mizer and a learning rate of 0.0001, it gains an accuracy 85.38% training set and
83.62% on test set.
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Random Forest. The “Random Forest” package in WEKA machine learning
tool [11] is used to implement the algorithm. The network has 125 input nodes,
one node for each graphlet type. Same training and test data setting is used for
training the RF model. The RF algorithm achieves 99.9% on the training set and
87.80% accuracy on test set. Although the accuracy rates of RF algorithm are
higher than those gained by DNN algorithm, the accuracy differences between
training and testing is significantly higher than that of the DNN algorithm. This
implies that the RF algorithm might overfit to the training data.

Table 1 provides an overview of the accuracy of both algorithms.

Table 1. Classification accuracy on the original data

DNN RF

Training 85.38% 99.9%

Test 83.62% 87.80%

5.3 Performances of Adversarial Sample Generation Algorithms

In this section, we analyze and output the overall effectiveness and efficiency of
the adversarial sample generational methods - FGSM and JSMA.

The two methods are evaluated from two aspects: (1) the average difference
between original malware and generated adversarial malware with the increas-
ing of the perturbation (a parameter that controls the subtlety of modifications
made) (2) the relationship between perturbation and the success rate of evading
the detection of the trained machine learning models. In order to evaluate two
methods from the first aspect, 200 malware samples from the testing dataset
were modified through using FGSM and JSMA respectively. Figure 4 shows the

Fig. 4. Average difference among adversarial vs. original GFD vectors
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averaged difference of the 200 samples with the increase of perturbation. The
averaged difference is calculated as the sum of element-wise difference between
the original malware GFD vector and the generated adversarial malware GFD
vector. It is found that as the perturbation increases, the difference between
the original malware and generated adversarial malware by FGSM increases,
whereas the difference between the original malware and the generated adver-
sarial malware by JSMA is not noticeable and stays almost the same. Through
looking into the detailed adversarial malware, it is found that JSMA only makes
very negligible changes to most of the original malware graph. It increases a few
values from 0 to whatever the perturbation was. For example, if the perturbation
value is .001, then it typically changes about 2 elements of the GFD from 0 to
the perturbation and leaves the rest nearly identical.

After analyzing the degree of perturbations and their effects, we generate 5
groups, a total of 1000 adversarial generated malware using perturbation value of
ε = 1e−7, 5e−7, 1e−5, 5e−5, and 1e−3 respectively. Then, these groups of 200
adversarial malware are inputted into the trained DNN and RF classifiers. The
success rate is used to evaluate how success the generated adversarial malware
can evade the trained DNN and RF. Success rate is calculated as Eq. 4. The
total number of adversarial malware is 200 in this case.

Success Rate =
Number of adversarial malware classified as benign

Total number of adversarial malware
∗ 100.

(4)
The success rates for all 5 groups are shown in Table 2 and Fig. 5. From the

results, we can tell the FGSM attack creates successful adversarial examples for
both classifiers with good success rates when the perturbation is about 1e-5.
In order to gain a high success rate, JSMA needs a higher perturbation value
than the FGSM. We also notice that the FGSM-generated adversarial malware
can evade the detection of both DNN and RF. Meanwhile, the JSMA-generated
adversarial malware cannot evade the detection of RF. Only 13–14% of the
adversarial malware generated by JSMA are classified as benign. We hypothesize
that this is due to the nature of the algorithms of the RF and JSMA. The JSMA
only modifies around 10 to 20 most important attributes of the input. Given that
its attribute importance ranks are similar to that of the RF, slightly changing
important attributes might only change some of the top few splitting variable
attributes of the RF. If the change is not significant, this may not change the
RF’s decision. To improve the success rate of the JSMA could be increasing the
number of features to modify. However, it might be computationally costly.

Overall, both adversarial malware generation methods successfully generate
malware that evade the detection of DNN. Based on Table 2, given that the suc-
cess rate of JSMA on RF is relatively low, we could draw the conclusion that RF
may be a more robust model for classifying malware presented as GFD vectors.
However, this might also be because the JSMA method creates adversarial mal-
ware using neural network features (number of inputs, prediction outputs, etc.),
and are therefore more specifically geared to target neural networks like DNN.
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Table 2. Different Model Performance Results

Attack method Performance on attack (%)

Perturbation RF DNN

FGSM 1.e-7 13.0 16.5

JSMA 1.e-7 13.0 12.5

FGSM 5.e-7 14.5 24.0

JSMA 5.e-7 13.0 12.5

FGSM 1.e-5 81.0 92.5

JSMA 1.e-5 13.0 13.5

FGSM 5.e-5 100.0 100.0

JSMA 5.e-5 14.0 89.5

FGSM 1.e-3 100.0 100.0

JSMA 1.e-3 14.0 100.0

6 Conceptual Validation of the Generated Adversarial
Malware

In this section, we demonstrate how a function call graph can be modified concep-
tually to reflect generated adversarial malware - graphlet frequency distribution
(GFD) vector. A function call graph can be sub-divided into graphlets which
consists of n nodes. Figure 3 demonstrates 13 directed graphlets of 3 nodes that
could be found in a FCG. The GFD vector is a vector of length m which is the
total number of different graphlets in the whole dataset. Each unit of the vector

Fig. 5. Comparison between FGSM and JSMA performance on DNN and RF classifiers
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is the relative frequency of the corresponding graphlet in the function call graph
[10]. The relative frequency of each type of graphlet is calculated as Eq. 5:

fn,i∑n
i=1 fn,i

(5)

where fn,i is type i graphlet of n nodes,
Hence, one relative frequency of a graphlet increases, it affects the relative

frequencies of every other graphlet. So, a desired adversarial GFD vector is min-
imized change to the units of the original GFD vector. As shown in Fig. 5, both
FGSM and JSMA make small changes to the GFD vectors. In particular, JSMA
maintains the changes needed in order to attain desired results to only modifying
but a few units of the original GFD vector. In our test, JSMA simply increases the
frequency of a unit from zero to the value of the assigned perturbation (ε) while
making negligible changes to other units. We have investigated how many units
increased in this manner by using ε values of 1e−5, 1e−4, 1e−3, 1e−2, 1e−1. It
is found that 10, 4, 2, 2 and 2 units changed with these ε values respectively. This
indicates that the less number of units affected the more ε grows. So, in order to
change the original malware to adversarial one, a very small amount of graphlets
to original function call graph is needed. More specifically, ε

∑n
i=1 fn,i need to be

added to the original function call graph of the malware. The changes are small
enough that the generated adversarial GFD vector remains nearly identical to
the original.

7 Conclusion and Future Work

In this research, we explore two algorithms: FGSM and JSMA for generating
of adversarial graphlet frequency distribution (GFD) vectors. The Deep Neural
Network and Random Forest classifiers are used to test adversarial graphlet fre-
quency distribution (GFD) vectors to see whether they can evade the detection.
It is found that the FGSM gains 100% success rate on both DNN and RF classi-
fiers by using any perturbation ε ≥ 1e − 5, while the JSMA samples yields high
success rates (close to 100%) when using ε ≥ 1e−4 on classifier DNN. The JSMA
method on the RF classifier merely succeeds in misclassifying 14% of samples
with perturbations as high as ε = 1e − 3. Nevertheless, we conclude that both
methods are a viable way to generate adversarial graphlet frequency distribution
vectors. In the future, we plan to evaluate FGSM and JSMA on other machine
learning algorithms and other types of data. Integration of FGSM and JSMA
algorithms can also be investigated in the future.
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Abstract. A fuzzing attack enables an attacker to gain access to
restricted resources by exploiting a wrong specification implementa-
tion. Fuzzing attack consists in sending commands with parameters out
of their specification range. This study aims at protecting Java Card
applets against such attacks. To do this, we detect prior to deployment
an unexpected behavior of the application without any knowledge of its
specification. Our approach is not based on a fuzzing technique. It relies
on a static analysis method and uses an unsupervised machine-learning
algorithm on source codes. For this purpose, we have designed a front
end tool fetchVuln that helps the developer to detect wrong implemen-
tations. It relies on a back end tool Chucky-ng which we have adapted
for Java. In order to validate the approach, we have designed a mutant
applet generator based on LittleDarwin. The tool chain has successfully
detected the expected missing checks in the mutant applets. We eval-
uate then the tool chain by analyzing five applets which implement
the OpenPGP specification. Our tool has discovered both vulnerabili-
ties and optimization problems. These points are then explained and
corrected.

Keywords: Unsupervised machine-learning · k-Nearest-Neighbors ·
Vulnerability detection · Fuzzing attacks · Java Card · Chucky

1 Introduction

A fuzzing attack aims at sending crafted messages to a running program in order
to test all the possible paths of its control flow. With this method and according
to the system response, an attacker can detect a deviation of the program’s
expected behavior, in response to his message. This same crafted message can
perturb the program’s state machine and change its current state. By modifying
the state of the program, an attacker can illegally gain access to resources stored
onto the Java Card. One of the reasons for this illegal transition in the state
machine can be related to the absence of input validation tests. Such a forgotten
condition is called a missing-check. With this work, we aim at detecting those
missing-checks before a fuzzing attack.
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Our approach is not based on a fuzzing attack, but on a static analysis of
the source codes. To achieve this task, we have created three tools. The first
one, ChuckyJava is an adaptation of Chucky-ng [8,17] for Java. The second tool
we have designed is fetchVuln. It is a front-end layer above ChuckyJava which
aims at automating tests of ChuckyJava. Moreover, it gathers all the outputs
that ChuckyJava generates and it processes them to produce a report about
vulnerable methods of the applet under analysis. The last tool is LittleDarwinJC
which is based on LittleDarwin [10]. Its objective is to generate Java mutant
applets and it enables us to characterize and evaluate the ability of fetchVuln to
detect those mutants. We have tested fetchVuln on an applet set implementing
OpenPGP. This evaluation has brought to the fore two optimization problems
while we have discovered two vulnerabilities in the implementations.

The context is presented in Sect. 2. The state of the art is exposed in Sect. 3.
Section 4 explains the functioning of Chucky-ng. The adaptation phase is shown
in Sect. 5. We expose our methodology in Sect. 6. Then, we describe our results
and discuss the evaluation of the performances in Sect. 7. The limitations of our
tool are exposed in Sect. 8. To finish, we present our conclusion in Sect. 9.

2 Context

A program with a state machine accepts only a set of commands from a spe-
cific state. Such commands enable the program to change its state from one to
another. A specification clarifies both states and transition links that shall be
implemented for a program. OpenPGP is an open version of the Pretty Good
privacy (PGP) standard defining encryption formats. Figure 1 shows a frag-
ment of the OpenPGP state machine specification with the command COM-
PUTE_DIGITAL_SIGNATURE. It allows or denies the data to be signed
before being written to the card. The S node (state Selected) is where the pro-
gram accepts messages. During the process, the state checks the value of the

Fig. 1. Partial state machine of the COMPUTE_DIGITAL_SIGNATURE. There are
conditions to transition from a state to another. States are represented by the nodes.
The S node is the Selected state. Source from the OpenPGP specification [11]
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incoming message in order to determine which command to execute. This is rep-
resented by the test on transition from state S to the state 1. The state machine
then checks the parameter PW1 (Password 1 ) if necessary. If verifyPW1() fails,
then the state machine enters the ERROR state. If the test succeeds, the applet
can perform the signature operations. By entering in the state S, the program
waits for another command. To illustrate a missing-check, suppose that the con-
dition verifyPW1() from node 2 to node 3 is missing does not exist. It is possible
for an attacker to enter state 3 with a wrong PW1.

3 State of the Art

Dynamic and Hybrid Protection. Dynamic and hybrid protection techniques
consist in filtering user controlled inputs. We have found this kind of input
cleaning on web application domains. As an example, the XSS attack mitigation
which uses (UrlEncoder or HtmlEncoder [9] for example) to filter user controlled
inputs. This step has to ensure that the message format and its application
domain are correct. One drawback of this mitigation method is the possibility
of missing cases against a new attack and it needs to be updated to improve
the filtering accuracy. If an attacker has access to the source code of the library,
then he can adapt its inputs to bypass the secure filter. In her PhD [5], Kamel
proposes to implement a filtering library API JCXSSFilter. She chooses to adapt
it to fit in the OWASP ’s ESAPI [1] open-source web application. Added to this,
the use of such secure libraries add an extra overhead in the system.

Formal Methods. The tools Z [14], VDM [3] rely on formal methods. They aim
to mathematically specify the expected behavior of a sequential system by using
sets, relations and functions. Burdy et al. [2] present an experiment on formal
validation of Java Card applets. To specify a behavior, the user has to annotate
his Java classes with the Java Modeling Language. One of the drawbacks of this
method is the necessity to specify the right behavior for all classes. Depending on
the size of the project, this step can be difficult. Added to this, if the specification
of the applet changes, the developer has to adapt his code in order to fit it to
the new expected behavior.

Static Analysis. A concolic analysis performs both concrete and symbolic anal-
ysis for a given source code. This is the case for the tool JDart [7] which relies
on this kind of static analysis. For instance, the symbolic execution aims at dis-
covering the paths a program can follow, while the concrete one proposes valid
inputs to use in order to follow a specific path.

In the static analysis field, taint analysis techniques aims at following the
evolution of an input through a program. To illustrate this method, suppose
that one wants to follow a parameter. To do this, the tool has to taint this
variable. Then, every variable which uses this tainted parameter gains the same
taint color. Pixy [4] uses taint analysis. It aims at propagating limited string
value information in order to handle some of PHP ’s most dynamic features.
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One drawback of a concolic analysis is that if there is a lot of paths, then the
analysis could never finish its execution.

Text Mining. Text mining is a technique which consists in extracting the terms
(words) present in software components (files) and their frequencies. Then, the
term frequencies are correlated in order to build a model which predicts if a
given software component is vulnerable. This method is implemented in the tool
of Scandariato et al. [13].

Machine Learning. The tool entitled Chucky-ng [8], based on Chucky [17], relies
on machine-learning to discover vulnerabilities in a source code. It extracts and
compares functions with a unsupervised machine-learning algorithm in order
to flag the vulnerable ones. Chucky-ng relies on the k-Nearest-Neighbors [12]
algorithm. An important advantage for this tool is that Chucky-ng does not
require to calibrate the tool with any sort of training step.

3.1 Our Contribution

At the best of our knowledge, no tool for mitigation against fuzzing attacks
on smart cards is publicly available. We do not want to create a smart card
fuzzer to extract vulnerabilities for two reasons. The first one is the required
time to send a command from a terminal to a smart card is time expensive. We
want our tool to perform an analysis in the best delays. The second reason is
that smart cards contains Non Volatile Memory (NVM ). Such memory has a
short life expectation. Therefore, sending too many commands to the card would
trigger many write functions and then prematurely aging the card.

We have created both fetchVuln and ChuckyJava. The former is the front-end
of ChuckyJava. The latter allows the parsing of Java source codes and perform
on them the unsupervised machine-learning technique of Chucky-ng.

4 Description of Chucky-ng

Chucky-ng takes three inputs:

– the folder of applet’s source codes to analyze,
– one or more API symbols, such as variable names, parameter names or

method names,
– the number of neighbors to select k.

The API symbols are the element that Chucky-ng searches in every method
of the source code. An analyst can add several API symbols in the analyze queue.
Therefore, in order to be added to the methods to analyze, this same method
must manipulate all of these API symbols. The necessity of the k parameter
is explained in the Neighborhood discovery step. Once Chucky-ng succeeds its
execution, it returns an anomaly score for each function containing at least
one of the API symbol. The tool processes the anomaly score in four distinct
steps: The parsing, the neighborhood discovery, the reduction of the vector’s
dimensions and the anomaly detection.
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4.1 Parsing

The tool named Joern [16], first parses Java files in the applet’s folder source
code to analyze. Based on this, it creates a Code Property Graph [17]. This graph
gathers all nodes and links of the abstract syntax tree, the control flow graph
and the data flow graph into one single graph. This same graph focuses mainly
on the representation of functions from the source code.

4.2 Neighborhood Discovery

During this step, Chucky-ng creates a set of functions which contain at least one
API symbol under analysis. This is done by running through the Code Property
Graph. From this set, Chucky-ng picks one function. Then, it represents every
function of the set as vectors of dimension |API symbols|. It uses the machine-
learning algorithm k-Nearest-Neighbors [12] on these vectors in an unsupervised
way, in order to gather the most k similar neighbors to the picked one. This
value of k is required as input and it determines the number of similar functions
to gather. The k-Nearest-Neighbors algorithm is split into two steps.

The first step aims at increasing the selection of neighbor’s accuracy. To do
so, Chucky-ng uses an approach based on Inverse Document Frequency (IDF) in
order to discriminate rares API symbols. It insists on the fact that rare symbols
are meaningful compared to others used by the vast majority of the function set.
Two functions using the same rare API symbols should be more similar than
two functions using only regular API symbols. Chucky-ng ’s set of vectors now
contains these new values based on the IDF.

The second step consists in gathering the k most similar functions from the
one picked at the beginning of the Neighborhood discovery. To do so, Chucky-ng
processes the vectors using the cosine distance metric where x and y are vectors
API symbols values restricted by the IDF filtering:

cos(xxx,yyy) = 1 − xxx · yyy
||xxx|| · ||yyy|| . (1)

The use of this distance metric is twofold. Since Chucky-ng needs to consider
rare API symbols, this metric takes into account both the orientation and the
Euclidean distance of vectors.

Since Chucky-ng has the similar methods set to the one picked, it does not
need the vectors anymore. Instead, Chucky-ng uses new vectors whose dimen-
sions are the number of the total number of expressions used in every method of
the set. Mind that the Neighborhood discovery, the Reduction of vector’s dimen-
sion and the Anomaly detection steps are repeated as many times as there are
methods in the set.

4.3 Reduction of the Vector’s Dimension

This step objective is to reduce the dimension of the method set. It achieves
this by removing tests of the program which does not manipulate any of the
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API symbols. For example, if a control structure does not uses this API symbol
either in its condition or body, Chucky-ng discards this control structure for the
rest of the algorithm. It reduces the total number of expressions and therefore
the dimension of vectors. To do so, Chucky-ng relies on the Code Property Graph
in order to taint the API symbol evolution through the source code.

Added to this, Chucky-ng manages to reduce the dimensions of the vectors
by normalizating the remaining expressions. It suppresses minor syntactical dif-
ferences. As an example, the binary relational operators (�, <, �, >) are now
replaced by $CMP expression. It affects the arguments, the return value of callees
(callees) and the conditions of control structures. For example, the expression
if(ident � 1) is normalized as if(ident $CMP $NUM). It reduces the impact
of small syntactical differences.

4.4 Anomaly Detection

During this step, Chucky-ng creates a model of normality. This object is a vector
whose dimensions are each of the remaining expressions. For each dimension, the
value is the average presence for this expression in all the functions of our set
as shown in Eq. (3). Let E be the normalized expression set and X the set
of neighbor functions. ϕ(x) is the mapping function that transforms neighbors
in a vector space. The function I(x, e) is equal to 1 if neighbor x contains the
expression e. Otherwise I is equal to 0.

ϕ : X → R
|E|, ϕ(x) �→ (I(x, e))e∈E . (2)

Let μ be the vector of normality and N the neighbor set.

μ =
1

|N |
∑

n∈N

ϕ(n), μ ∈ R
|E|. (3)

Chucky-ng then creates a distance vector d as in Eq. (4) which corresponds
to the values of the normality model minus the values of our function vector
under test. The distance vector is in fact the list of the anomaly scores for each
expression.

d = μ − ϕ(x), d ∈ R
|E|. (4)

To finish, the anomaly score for the function under analysis is the maximum
value of the distance vector as shown in Eq. (5). Its range is from [−1.00, 1.00].
If the anomaly score is closer to 1.00, our function is more likely to omit an
expression, compared to the other functions. On the contrary, if it is closer to
−1.00, our function has an expression that none of the others perform.

Score = max(d). (5)

Even if Chucky-ng precises the anomaly score for a whole function, in prac-
tice, we observe all of its expression’s anomaly scores. For example, if a function’s
anomaly score is set to 1.00 for an expression, all scores ranked under 1.00 are



162 L. Ouairy et al.

hidden by the result of Chucky-ng. To be efficient, an analyst has to read the
whole distance vector including the −1.00 expressions. As we have discovered
in the methodology (Sect. 6), an anomaly score of −1.00 is meaningful in our
case: it corresponds to an extra-check. In other words, the applet may accept an
unwanted additional command in the state machine.

5 Adaptation

5.1 From C/C++ to Java

Java shares notions that are similar to those in C++. For instance, the class
abstraction and virtual methods are similar. While such notions are shared with
C++, we have syntactically adapted them in order to fit to the Joern [16], the
parser. To achieve this task, we have modified Joern and Chucky-ng in order to
link them together to the functionalities we have implemented. We now explain
how we handle those specificities.

Abstract Classes. Methods which are declared in an abstract class in Java do
not have definition. Since such methods are defined in another Java source file,
ChuckyJava discards methods only declared. This prevent the use of duplicates
methods.

Virtual Methods. If a class inherits of methods defined in the Java API, than
ChuckyJava cannot parse them. To prevent this, we have created a tool that
gathers both used and defined classes in the source code, and then it warns the
user if a class is used but is never declared. This can happen if the user calls an
object constructor from the Java’s API.

New Expressions. We have to take into account new expressions or control flow
structures. As an example, in C++, the try/catch clause does not have the
finally block. Since this last one is executed either if the catch is triggered or
not, we have decided to treat it as code block, outside of the control flow of
the try/catch. Other ways to iterate exists in Java and not in C++ such as the
iteration over a list. For example, for(Element e: elements) { [...] }.

New Operators. We have implemented two binary operators which exist in Java
but not in C/C++. Those operators are the structure comparison operator of
strict equality === and the bit shift to the right, which includes the sign byte
>>>.

Switch/Cases. Chucky-ng does not handle and detect missing cases in a switch/-
case structure. ChuckyJava takes into account the missing cases in order to
detect this kind of missing-check. It means that ChuckyJava can now return an
anomaly score for such tests. Every applet has to declare a process method in
order to handle the reception of a message from an external source. In many
cases, they use a switch/case to handle the instruction byte and launch the
expected operations. In Java Cards, switches are important since they inform us
about the allowed or denied commands of an applet.
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5.2 ChuckyJava

We modify the ChuckyJava’s algorithm in order to improve its accuracy during
the Neighborhood discovery step.

Object Type. For the Neighborhood Discovery step, we now take into account two
new API symbols. An object’s cast type and the type of an object if it is created
as a parameter of a method call. To illustrate the cast, from the expression (byte)
0x0F, we now extract the byte type and we include it in the vector’s dimension.
For the second new API symbol, the expression call(new OwnerPin(0x03, 0x04))
corresponds to the object creation inside a method call. From now on, the type
OwnerPin would be included in the vector’s dimension too. These modifications
improve ChuckyJava’s ability to gather similar functions with a better accuracy.

6 The Methodology

This section presents the test framework we have created. It includes the
three tools fetchVuln, LittleDarwinJC, ChuckyJava. Figure 2 shows the relation
between those tools.

Fig. 2. fetchVuln requests ChuckyJava to test every API symbols. For each analyzed
symbols, the output from ChuckyJava is stored and processed by fetchVuln. LittleDar-
winJC produces different sets from the original ones, each of them containing one single
mutation

6.1 FetchVuln

We have created the tool fetchVuln. This front-end’s objective is to help an
analyst to discover vulnerabilities easier. This tool operates in two distinct steps.
It can be seen as a top layer over ChuckyJava.
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Firstly, it lists all API symbols used within all the applets and their usage.
Based on this, the tool is able to perform an analysis with ChuckyJava for each of
these symbols. This is useful since ChuckyJava requires to specify one or multiple
API symbols. Once ChuckyJava returns its output containing the anomaly score
for each selected methods, fetchVuln stores it. It is stored as a list of triplets:
method, missing-check (or feature) and anomaly score.

Secondly, when the execution of ChuckyJava for each API symbol is done, it
outputs a report. Based on a configurable output filter value, this report contains
the anomaly scores, the method names, the locations in the source code and
the missing-check associated. This is readable by an analyst and it sorts the
result from the highest anomaly score 1.00 to the defined output filter value.
Moreover, our tool feedbacks statistics. For instance, it is able to output the
number of API symbols for which we do not have enough similar neighbors. This
can happen if a precise parameter name is used in too few functions. Another
example of statistics that fetchVuln outputs is the number of functions with
anomalies compared to total number of functions.

6.2 LittleDarwinJC

Thanks to fetchVuln, we are now able to output automatically a vulnerability
report for an applet folder. We validate the adaption of Chucky-ng to Java.
Secondly, we want to verify fetchVuln capacity to detect single variation of con-
ditions in a source code. It enables us to characterize our tool. To do this, we have
chosen to adapt the tool LittleDarwin [10]. We base our tool LittleDarwinJC on
it since it generates mutations on the source code instead of the bytecode of a
Java file. Then, we create a folder of one applet1. This same applet is duplicated
five times inside the folder. LittleDarwinJC creates many copies of the original
applets folder as there are existing conditions in the applet. On each folder, it
removes one different single condition. Therefore, each applet folder is now a
mutant and none of these mutants is duplicated. Then, a temporary tool we
have created requests fetchVuln to perform an analysis on every mutant applet
folders. If its final report shows an abnormal method with an anomaly score set
to 1.00, then the mutant has been found by fetchVuln. We conclude from our
tests that fetchVuln is able to detect missing-checks.

An extra-check is the anomaly where only one applet of the set per-
forms a tests, but none of the others. A missing/extra-assignment is similar
to missing/extra-checks, but on variable assignments. After this first step, we
have tested the tool ability to discover other varieties of anomaly. From our
results, fetchVuln is able to detect extra-checks and missing/extra-assignments
too. Moreover, since we implemented the switch-case as conditions in Chucky-
Java, fetchVuln is able to detect missing-checks within the cases.

1 https://github.com/FluffyKaon/OpenPGP-Card.

https://github.com/FluffyKaon/OpenPGP-Card


Protection of Systems Against Fuzzing Attacks 165

7 Evaluation

7.1 Vulnerability Results

Description of the Dataset. Our dataset is made of five different Java Card
applets, all implementing the OpenPGP [11] specification. Among these applets,
we can find two different versions of OpenPGP : the 2.0.1 one, and the 3.3.1 one.
These applets and their OpenPGP versions are listed in Table 1.

Table 1. OpenPGP applets and their implementation versions
Applet name OpenPGP version

FluffyPGP 2.0.1
JCOpenPGP 2.0.1
MyPGPid 2.0.1
OpenPGPCard 2.0.1
SmartPGP 3.3.1

To communicate from a card terminal to the Java Card, one has to send
an APDU object which contains the communication information. Among the
bytes sent during this process, we present three APDU ’s header bytes: the CLA
byte, the INS byte and the P1 byte. The CLA (Class) byte is used to define
the interindustry class. The second one is the INS (Instruction) which enables
the applet to determine which command the user wants to perform. The last
one, the P1 (Parameter 1) byte, is a parameter for the instruction command.
We analyze the results of fetchVuln and therefore ChuckyJava.

A Useless Check. We have executed an analysis on the callee
JCSystem.makeTransient-ByteArray. We set the value of the number of neigh-
bors to select (parameter k) to 4. Since all applets implement a process method,
this value of k enables us to gather all the process functions in order to compare
them with ChuckyJava. Listing 1.1 shows the output we obtain with ChuckyJava
for the PGPKey constructor in the PGPKey.java file.

Listing 1.1. The anomaly score, the expression, the function and file concerned
−1.00 " ( nu l l $CMP $RET )" PGPKey PGPKey. java :38

Since the anomaly score is evaluated to −1.00, it means that the test is
performed in this method while it is not in other similar methods. We can verify
this assumption with this code snippet available in the Appendix A. At this point
in the applet, tmpBuf has been declared but no memory has been allocated, this
it points on null. The evaluation is always true. ChuckyJava detects here a useless
test which can be eliminated.
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Dead Code Detection. We are able to detect dead code with ChuckyJava.
Listing 1.2 shows the output we obtain for analysis of the process method of the
MyPGPid applet.

Listing 1.2. ChuckyJava output for MyPGPid
−1.00 " case ISO7816 . INS_SELECT" proce s s MyPGPid . java

ChuckyJava returns an anomaly score of −1.00. It means that the pro-
cess function performs a case ISO7816.INS_SELECT which is not in other
process functions. By analyzing the code of Appendix B, we can see a test
performed at the beginning: selectingApplet(). Both this test and the case
ISO7816.OFFSET_INS check the value of the APDU ’s INS byte. Moreover,
both of them returns immediately if this byte’s value is 0xA4. This explains why
the second test in the switch can not be reached and is therefore not necessary.

A Misuse of the CLA Byte. By analysing the ChuckyJava output for the
process method, we are able to detect a misuse of the CLA byte. This same byte
has to be checked before usage, as requested in the OpenPGP specification [11].
In the MyPGPid applet, this byte is tested by a bitwise AND and the value
0xFC, but not in the other applets.

Listing 1.3. misuse of the CLA byte
−1.00 " bu f f e r [ ISO7816 .OFFSET_CLA] = ( byte ) ( bu f f e r [ ISO7816 .OFFSET_CLA

↪→ ] & ( byte ) 0xFC) proce s s MyPGPid . java :347

We have discovered that this assignation performed, but the value of
buffer[ISO7816.-OFFSET_CLA] is practically never checked in the source code.
The value is verified once in a method. Nearly every values for the CLA byte are
possible for this applet. An attacker could be able to exploit it to make the pro-
gram unexpectedly enter in a new state. The OpenPGP specification stipulates
that this CLA byte shall be verified in order to allow only specific values (most
of the time: 0x00, 0x0C, 0x10 or 0x1C according to the current state).

A Missing-Check for the P1 Byte. We have discovered an anomaly for
the P1 byte. We have investigated the verify functions of our applet set. The
output of ChuckyJava in Listing 1.4 warns us about an anomaly existing in the
OpenPGPApplet.java file. This anomaly shows the verify function which does
not use nor check the P1 byte while the others do it.

Listing 1.4. Missing-check of P1 byte
0 .67 " bu f f e r [ ISO7816 .OFFSET_P1] $CMP ( byte ) ($NUM)" v e r i f y

↪→ OpenPGPApplet . java :413

According to the specification for the verify method, the P1 byte shall be set
to 0x00 for this precise command. This is a missing-check because it is performed
in the verify functions of the other applets of the set. The code snippet for
OpenPGPApplet is available in Appendix C. The anomaly score of 0.67 instead
of 1.00 is due to a limitation which we discuss in Sect. 8.
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7.2 Performance Evaluation

A quality assurance tool (QA) in smart cards aims at verifying if all the specified
commands are implemented (conformance testing). Our tool fetchVuln is not a
QA tool. It detects if the applet has more functionalities than expected. To
illustrate this purpose, imagine an applet which is perfectly implementing the
OpenPGP specification. Each command a user send to the applet returns the
expected output. We now suppose that a back-door exists in the applet. A QA
tool is not able to detect it, because the applet performs perfectly according
to its specification. However, since fetchVuln detects extra-checks, it is able to
discover such an anomaly in an applet.

7.3 Time Overheads

This performance evaluation focuses on the advantages of using fetchVuln instead
of a physical verification.

To test a Java applet, an analyst can first generate several different messages.
Then, he sends them individually to the smart card to obtain the output. Finally,
he verifies that the combination input/output is conform to the specification. The
drawback of physically testing the inputs is the communication cost between a
smart card and the terminal. It is time expensive. We have tested the method
and the process has last roughly one second to transmit a single command to the
applet FluffyPGPApplet. The time required with such an analysis, increases with
the number of states which the specification plans. As a comparison, fetchVuln
requires about 3min to analyze a set of five applets implementing the OpenPGP
specification, including FluffyPGPApplet. This analyzes was performed on a Intel
i7-7600U 2.8GHz CPU, using two of the four threads available in a virtual
environment.

8 Limitations

8.1 Number of Missing-Checks

During the fourth step, ChuckyJava creates vectors which contain information
about the presence or not of a normalized expression only. For example, the
condition if (k == 3) is normalized as (k $CMP $NUM). If there are multiple
conditions comparing k with a number, the tool normalizes them with the same
expression. Then, the value for the dimension (k $CMP $NUM) is equal to
one regardless of the number of comparison. We can see in Listing 1.5 that
two tests are executed. However, only one is performed in Listing 1.6. After
the normalization step, both vectors representing the code snippet have the
dimension (k $CMP $NUM). Its value is equal to one in both vectors. This leads
to a non-detection of some missing-checks.
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Listing 1.5. Two comparisons of number with k
public void t e s t ( int k )
{

i f ( k <= 1)
c a l l e e (1 ) ;

else i f ( k <= 2)
c a l l e e (2 ) ;

}

Listing 1.6. Vulnerable code
public void t e s t ( int k )
{

i f ( k <= 1)
c a l l e e (1 ) ;

//Missing check . . .
c a l l e e (2 ) ;

}

8.2 Missing Distinction Between Variables and Constants

We are able to observe that in some cases it is not possible for ChuckyJava to
distinguish a variable from a constant. Listing 1.7 shows an initialization with
a variable. This same variable could be uninitialized at this point but there is
no test to verify it. In Listing 1.8, the same function call uses a constant as a
parameter. Since it is a constant, it is more likely to be defined in one of the
project classes. In this example, its value is set to 10. It is not necessary to
test its value before using it. However, if the other applets use a variable as like
in Listing 1.7, then ChuckyJava detects a wrong missing-check here for code
snippet in Listing 1.8.

Listing 1.7. Local variable
i f ( my_variable > 0)

myInitMethod (my_variable ) ;

Listing 1.8. Constant
private stat ic f ina l int MY_CONSTANT = 10 ;
myInitMethod (MY_CONSTANT) ;

Added to this, ChuckyJava is not able to handle differences between identi-
fiers. For example, we want ChuckyJava to analyze the identifier buffer. Then,
all similar identifiers (tmpBuff, buf, etc.) are discarded. To perform an accurate
analyze with our tool, we first have to normalize the used identifiers, which is
one of our current research directions.

9 Conclusion

We have designed a tool chain which includes ChuckyJava, fetchVuln and Lit-
tleDarwinJC. It aims at detecting incorrect implementations of specification



Protection of Systems Against Fuzzing Attacks 169

within Java Card applets. We have improved the original tool by adding various
features. fetchVuln has successfully detected mutant applets generated with Lit-
tleDarwinJC. Added to this, we have discovered that our tool is able to detect
extra-checks and missing-assignments too. In real conditions, fetchVuln is able
to detect wrong implementations specification. However, the tool has two limi-
tations. We are currently working on the identifier problem since it is the most
restrictive one. Because it is a known problem, we have found different methods
to start with. We are heading to source code de-obfuscation and source codes
merging techniques [6,15] to solve this limitation.

A PGPKey Constructor

private stat ic byte [ ] tmpBuf ;
[ . . . ]
public PGPKey( ) {

key = new KeyPair ( KeyPair .ALG_RSA_CRT, KEY_SIZE) ;
fp = new byte [ FP_SIZE ] ;
Ut i l . arrayFil lNonAtomic ( fp , ( short ) 0 , ( short ) fp . length , (byte ) 0) ;
U t i l . s e tShor t ( a t t r i bu t e s , ( short ) 1 , KEY_SIZE) ;
Ut i l . s e tShor t ( a t t r i bu t e s , ( short ) 3 , EXPONENT_SIZE) ;
//The use l e s s check
i f ( tmpBuf == null ) {
tmpBuf = JCSystem . makeTransientByteArray ( ( short ) (KEY_SIZE_BYTES /

↪→ 2) , JCSystem .CLEAR_ON_DESELECT) ;
}

}

B Process Function of MyPGPid Applet

public void proce s s (APDU apdu ) {
byte [ ] b u f f e r = apdu . ge tBu f f e r ( ) ;
short l c ;
boolean s t a tu s = fa l se ;

// ignore the app le t s e l e c t command dispached to the process
i f ( s e l e c t i ngApp l e t ( ) ) {

return ;
}

bu f f e r [ ISO7816 .OFFSET_CLA] = (byte ) ( bu f f e r [ ISO7816 .OFFSET_CLA] & (
↪→ byte ) 0xFC) ;

i f ( bu f f e r [ ISO7816 .OFFSET_INS] == GET_RESPONSE) {
i f ( remainingDataLength <= 0) {

ISOException . throwIt ( ISO7816 .SW_CONDITIONS_NOT_SATISFIED) ;
}
else { sendData ( apdu , tmpData , remainingDataLength ) ; }
return ;

} else {
remainingDataLength = 0 ;
remainingDataOffset = 0 ;

}

switch ( bu f f e r [ ISO7816 .OFFSET_INS ] ) {
case ISO7816 . INS_SELECT:

return ;
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case GET_DATA:
getData ( apdu ) ;
return ;

case PUT_DATA:
putData ( apdu ) ;
return ;

case PUT_DATA_CHAINING:
putDataChaining ( apdu ) ;
return ;

case VERIFY:
i f ( bu f f e r [ ISO7816 .OFFSET_P1] != 0) { ISOException . throwIt

↪→ ( ISO7816 .SW_WRONG_P1P2) ; }
l c = apdu . setIncomingAndReceive ( ) ;
i f ( l c == 0) {

ISOException . throwIt ( ISO7816 .
↪→ SW_SECURITY_STATUS_NOT_SATISFIED) ;

}
switch ( bu f f e r [ ISO7816 .OFFSET_P2] ) {

case (byte ) 0x81 :
i f ( chv1 . getTriesRemaining ( ) == (byte ) 0) {

ISOException . throwIt (SW_PIN_BLOCKED) ;
}
s t a tu s = chv1 . check ( bu f f e r , ( short ) ISO7816 .

↪→ OFFSET_CDATA, (byte ) l c ) ;
break ;

case (byte ) 0x82 :
i f ( chv2 . getTriesRemaining ( ) == (byte ) 0) {

ISOException . throwIt (SW_PIN_BLOCKED) ;
}
s t a tu s = chv2 . check ( bu f f e r , ( short ) ISO7816 .

↪→ OFFSET_CDATA, (byte ) l c ) ;
break ;

case (byte ) 0x83 :
i f ( chv3 . getTriesRemaining ( ) == (byte ) 0) {

ISOException . throwIt (SW_PIN_BLOCKED) ;
}
s t a tu s = chv3 . check ( bu f f e r , ( short ) ISO7816 .

↪→ OFFSET_CDATA, (byte ) l c ) ;
break ;

default :
ISOException . throwIt ( ISO7816 .SW_WRONG_P1P2) ;

}
i f ( ! s t a tu s ) { ISOException . throwIt ( ISO7816 .

↪→ SW_SECURITY_STATUS_NOT_SATISFIED) ; }
return ;

case GENERATE_ASYMMETRIC_KEY_PAIR:
generateAssymetr icKeyPair ( apdu ) ;
return ;

case PERFORM_SECURITY_OPERATION:
per formSecur i tyOperat ion ( apdu ) ;
return ;

case CHANGE_REFERENCE_DATA:
/∗ Fa l l through ∗/

case RESET_RETRY_COUNTER:
changeResetChv ( apdu ) ;
return ;

case INTERNAL_AUTHENTICATE:
i f ( bu f f e r [ ISO7816 .OFFSET_P1] != 0 | | bu f f e r [ ISO7816 .

↪→ OFFSET_P2]
!= 0) {

ISOException . throwIt ( ISO7816 .SW_WRONG_P1P2) ;
}
i f ( ! chv2 . i sVa l i da t ed ( ) ) {

ISOException . throwIt ( ISO7816 .
↪→ SW_SECURITY_STATUS_NOT_SATISFIED) ;

}
l c = rece iveData ( apdu , tmpData ) ;
s i g . i n i t ( keyAuth . ge tPr iva te ( ) , Cipher .MODE_ENCRYPT) ;
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l c = s i g . doFinal ( tmpData , ( short ) 0 , l c , tmpData , ( short ) 0)
↪→ ;

sendData ( apdu , tmpData , l c ) ;
return ;

case GET_CHALLENGE:
i f ( bu f f e r [ ISO7816 .OFFSET_P1] != 0 | | bu f f e r [ ISO7816 .

↪→ OFFSET_P2]
!= 0) {

ISOException . throwIt ( ISO7816 .SW_WRONG_P1P2) ;
}
l c = apdu . setOutgoing ( ) ;
random . generateData ( tmpData , ( short ) 0 , l c ) ;
apdu . setOutgoingLength ( l c ) ;
apdu . sendBytesLong ( tmpData , ( short ) 0 , l c ) ;
return ;

//case EXPORT_KEY_PAIR:
//exportKeyPair (apdu) ;
// return ;

case INS_CARD_READ_POLICY:
ReadPolicy ( apdu ) ;
return ;

case INS_CARD_KEY_PUSH:
KeyPush ( apdu ) ;
return ;

default :
ISOException . throwIt ( ISO7816 .SW_INS_NOT_SUPPORTED) ;

}
}

C Verify Function of OpenPGPApplet

private void v e r i f y (APDU apdu , byte mode) {
i f (mode == (byte ) 0x81 | | mode == (byte ) 0x82 ) {
// Check l eng th of input
i f ( in_rece ived < PW1_MIN_LENGTH | | in_rece ived > PW1_MAX_LENGTH)
ISOException . throwIt ( ISO7816 .SW_WRONG_LENGTH) ;

// Check given PW1 and se t requested mode i f v e r i f i e d s u c c e s f u l l y
i f (pw1 . check ( bu f f e r , _0 , (byte ) in_rece ived ) ) {
i f (mode == (byte ) 0x81 )
pw1_modes [PW1_MODE_NO81] = true ;

else
pw1_modes [PW1_MODE_NO82] = true ;

} else {
ISOException
. throwIt ( ( short ) (0x63C0 | pw1 . getTriesRemaining ( ) ) ) ;

}
} else i f (mode == (byte ) 0x83 ) {
// Check l eng th of input
i f ( in_rece ived < PW3_MIN_LENGTH | | in_rece ived > PW3_MAX_LENGTH)
ISOException . throwIt ( ISO7816 .SW_WRONG_LENGTH) ;

// Check PW3
i f ( ! pw3 . check ( bu f f e r , _0 , (byte ) in_rece ived ) ) {
ISOException
. throwIt ( ( short ) (0x63C0 | pw3 . getTriesRemaining ( ) ) ) ;

}
} else {
ISOException . throwIt ( ISO7816 .SW_INCORRECT_P1P2) ;

}
}
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Abstract. Timing side-channel attacks remain a major challenge for
software security, in particular for cryptographic implementations. Mul-
tiple countermeasures against such attacks have been proposed over the
last decades, including static and dynamic approaches. Although such
countermeasures have been extensively studied in the literature, pre-
vious evaluations have mostly relied on simplified system settings. In
this article, we provide a comparative evaluation of the effectiveness
of both static and dynamic countermeasures in a realistic setting for
Java programs. Our experimental setup considers the effects of the non-
deterministic timing behavior introduced by the Java VM, in particular
involving just-in-time compilation (JIT). Our empirical results indicate
that such countermeasures vary heavily on how much they can reduce
information leakage, and show that negative effects of non-deterministic
timing behavior on their effectiveness are substantial.

1 Introduction

One particular class of timing side-channel vulnerabilities that is frequently
exploited by adversaries is caused by conditionals that are dependent on secret
data [9]. In this case, a timing side channel is introduced when the if branch of a
secret-dependent conditional takes a different time to be executed then the else
branch. An adversary can exploit this to deduce information about the secret.
For cryptographic implementations, for instance, it has been shown that attacks
can, in the worst case, leak the entire secret key [8].

In order to mitigate timing side channels caused by such conditionals, one can
modify program behavior to reduce information leakage via the channel. For this
article, we consider two classes of such program modifications, which we refer to
as static and dynamic transformations. Conceptually, static transformations, like
cross-copying [1] or conditional assignment [16], aim to completely remove timing
side-channel vulnerabilities by modifying the source code of the target program.
Dynamic transformations, like bucketing [10] or predictive timing mitigation
[19], in contrast, delay program events at runtime up to well-defined points in
time to reduce the amount of information leaked by the target program.

Previous evaluations of both static and dynamic transformations have been
mostly carried out in simplified settings. One of the most prevalent simplifica-
tions is the assumption of deterministic timing behavior (e.g., [2,10]). In a system
c© Springer Nature Switzerland AG 2019
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with deterministic timing behavior, each input always results in the same timing
observation. The impact of non-deterministic timing behavior on bucketing has
been investigated in [4]. In that study, two implementations of bucketing that
reside at the application and kernel level were developed for reducing timing
side channels in Java programs. Empirical results indicated that indeed both
implementations performed comparably worse than previous evaluations in set-
tings with deterministic timing behavior. To the best of our knowledge, such an
evaluation has not been carried out for predictive timing mitigation. A previ-
ous study on different static transformations [14] has compared four well-known
static transformations for Java in a simplified setting with just-in-time compila-
tion (JIT) disabled. To date, the impact of non-deterministic timing behavior on
different static transformation techniques has not been investigated as rigorously.

The goal of this article is to provide a comparative study on the effectiveness
of static and dynamic transformations in a more practical setting that considers
the non-deterministic timing behavior introduced by JIT. In particular, we pro-
vide an answer to the following research question: ‘How do static and dynamic
transformations compare to each other in terms of reduction of side-channel leak-
age?’. To this end, we evaluate implementations of two static transformations
(cross-copying and conditional assignment), and two dynamic transformations
(bucketing and predictive timing mitigation). For the static transformations, we
evaluate the implementations presented in [14] in a setting with JIT enabled.
For the dynamic transformations, the results of [4] indicated that application-
level implementations are more effective in reducing information leakage than
kernel-level implementations. In order to better understand the effects of differ-
ent implementation strategies on the application level for such transformations,
we present an implementation that manually modifies the target program to
enforce bucketing. We compare this implementation to the bucketing imple-
mentation presented in [4] that is using a generic enforcement mechanism. In
addition, we present and evaluate two implementations of predictive timing mit-
igation on the application-level, using the same implementation strategies as for
bucketing.

Our results indicate that the impact of non-deterministic timing behavior on
side-channel countermeasures can be substantial. This impact reduces the effec-
tiveness of both static and dynamic techniques when compared to simplified
settings, e.g., assuming deterministic timing behavior. The reduction of effec-
tiveness seems to be more severe for static techniques, and cross-copying seems
to be especially affected. While evaluations of cross-copying in simplified settings
indicated a reduction of information leakage by roughly 96% [14], the reduction
is substantially smaller for our experiments – achieving, on average, a reduc-
tion of only 4.48%. The impact on conditional assignment, in contrast, is also
clearly negatively affected, but still ensures an average reduction of roughly 87%
(in contrast to over 99% in simplified settings [14]). Dynamic transformations
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seem to be more promising in settings with non-deterministic timing behavior,
achieving an average reduction of over 90% in our experiments1.

2 Timing Side Channels

In a timing side-channel attack, an adversary exploits the timing behavior of a
program to deduce secret information. Timing side channels have been a long-
standing problem for software security, going back to the work of Kocher [9].
A classical example of a timing-side channel vulnerability can be found in the
square-and-multiply implementation of modular exponentiation. Modular expo-
nentiation (modExp for short) is an operation that can be used to compute p =
cd (mod n). This is especially relevant in RSA implementations, where c is the
ciphertext, d the secret key, and n the modulus. In a nutshell, the running time
of the square-and-multiply implementation of modExp is dependent on the Ham-
ming weight of the secret key, thus leaking private information to an adversary.

1 input: c, d, n;
2 r ← 1;
3 for i = 1 to length(d) do
4 if d % 2 == 1 then
5 r ← (r * c) % n;
6 end
7 c ← (c * c) % n;
8 d ← d � 1;
9 end

10 return r % n;

Fig. 1. Algorithm of modExp

The algorithm of the square-and-
multiply implementation of modExp

is illustrated in Fig. 1. The timing
behavior of modExp depends on the
secret d since Line 5 is executed more
often when more bits of d are set
(condition of Line 4). This enables
adversaries to learn the Hamming
weight of d by measuring the run-
ning time of modExp. If an adver-
sary knows the Hamming weight of
the secret key, the brute force search
space is reduced, opening the possi-
bility of deducing the entire secret key.

Statistical Estimation of Information Leakage. A side channel can be
modeled as an information-theoretical channel with input alphabet X and out-
put alphabet Y , where X and Y are random variables [15]. Intuitively, X models
the possible secret inputs that a program can process, while Y models the pos-
sible (timing) observations an adversary can gather through the side channel.
The leakage that occurs via the side channel can be measured by the notion of
mutual information of X and Y . Mutual information describes the amount of
information that Y contains about X, and is calculated as the difference between
the (Shannon) entropy [17] and the conditional (Shannon) entropy.

The channel capacity C(X;Y ) [17] is defined as the worst-case (i.e., maximal)
mutual information across all prior distributions. We use the notion of channel
capacity to evaluate the effectiveness of the static and dynamic transformations

1 We provide all implementations and experimental results online: https://drive.
google.com/file/d/1CHfHD6Huo2Wp2y ZQb7OgsKeNxiuhxB3/view?usp=sharing.

https://drive.google.com/file/d/1CHfHD6Huo2Wp2y_ZQb7OgsKeNxiuhxB3/view?usp=sharing
https://drive.google.com/file/d/1CHfHD6Huo2Wp2y_ZQb7OgsKeNxiuhxB3/view?usp=sharing
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considered in this article. To this end, we use the leakiEst tool [3] that provides
statistical estimations of the channel capacity based on provided sample runs of
a program for different inputs.

3 Static Transformations

Static transformation techniques for mitigating timing side channels like, e.g.,
cross-copying [1] and conditional assignment [16] aim at mitigating side channel
vulnerabilities introduced by secret-dependent conditionals. In such settings, a
timing side channel can occur when the if branch of a conditional takes a differ-
ent execution time than the else branch. A special instance of this problem are
secret-dependent conditionals that only consist of an if branch, and an empty else
branch. Static transformation techniques modify the program code of a target
program such that the executions of all branches in secret-dependent condition-
als take the same time. In this section, we discuss two static transformation
techniques, namely cross-copying and conditional assignment.

3.1 Cross-Copying

The approach of the cross-copying [1] technique is to add dummy statements
resembling the complete corresponding other branch at the end of each branch
of secret-dependent conditionals. The goal of this technique is to ensure that each
branch takes the same execution time, because the statements of both branches
will be executed. Cross-copying can be seen as a special case of unification [11],
a similar technique that can add dummy statements at arbitrary points in each
branch, and can thus lead to less dummy statements being added. In this article,
we consider modExp that contains a secret-dependent conditional without an else
branch. Hence, we investigate the simpler cross-copying rather than unification.

1 input: c, d, n;
2 r ← 1;
3 for i = 1 to i = length(d) do
4 if d % 2 == 1 then
5 r ← (r * c) % n;
6 else
7 rd ← (r * c) % n;
8 end
9 c ← (c * c) % n;

10 d ← d � 1;
11 end
12 return r % n;

Fig. 2. modExp after cross-copying

Previous work on the evaluation
of different static transformation tech-
niques [14] has shown how it is
possible to implement cross-copying
in Java programs. We leverage this
implementation for our comparative
experiments.

For the example presented in
Fig. 1, cross-copying modifies the con-
ditional starting in Line 4 as depicted
in Fig. 2. The cross-copying technique
adds a dummy variable (rd) to the
program, performing the same com-
putation in both branches of the con-
ditional. Note that only in the if
branch the result is applied to the
local variable that is used to calculate
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the return value. In the else branch, the result of the computation is assigned to
the dummy variable, which is expected to take the same execution time, but will
not affect the return value of the algorithm. Hence, this implementation strategy
for cross-copying is transparent.

3.2 Conditional Assignment

Conditional assignment [16] aims to mitigate timing side channels caused by an
assignment to a local variable that affects the program state, and is dependent
on secret information. The conditional assignment technique ensures that all
computations that might occur based on the secret-dependent conditional are
executed, and assign the desired value of these computed values to the variable
afterwards using a bitmask that chooses the desired value of the computation.
This approach eliminates secret-dependent conditionals, as the conditional is
completely encoded by the masking process.

1 input: c, d, n;
2 r ← 1;
3 for i = 1 to i = length(d) do
4 r′ ← (r * c) % n;
5 m = Mask(d % 2 == 1);
6 r ← (m & r’) | (∼m & r);
7 c ← (c * c) % n;
8 d ← d � 1;
9 end

10 return r % n;

Fig. 3. modExp after conditional assign-
ment

For the example presented in
Fig. 1, conditional assignment modi-
fies the conditional starting in Line
4 as depicted in Fig. 3. Instead of
adding dummy assignments as for
cross-copying, conditional assignment
ensures that both the updated value
r′ (Line 4) from the if branch and the
unchanged r are used for computing
the new value of r (Line 6). The assign-
ment to r is performed by masking the
updated result and the non-updated
result based on the original condition.
The Mask function used in Line 5 is
supposed to return 2l − 1 in the case
that d % 2 == 1 holds (the condition

for the if branch to be taken), where l is the bitlength of the variable r. Corre-
spondingly, the Mask function is supposed to return 0 in the case that d % 2 ! = 1
holds (the condition for the else branch to be taken). Hence, the computation
result that should not affect the return value of the algorithm is masked out,
making conditional assignment transparent.

4 Dynamic Transformations

Dynamic transformation techniques for mitigating timing side channels monitor
program behavior during runtime and react to the monitored behavior dynam-
ically in order to reduce or prevent information leakage via a timing channel.
In this section, we discuss implementations of two such dynamic transformation
techniques, namely bucketing [10] and predictive timing mitigation [19].
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4.1 Bucketing and Predictive Timing Mitigation in an Nutshell

The goal of both bucketing and predictive timing mitigation is to reduce the
amount of information leakage via timing side channels at runtime. In contrast
to the static transformations presented in Sect. 3, the goal of both techniques
is not to completely remove timing side channels. They rather aim at reducing
the amount of information that is leaked via the side channel, thus limiting the
information about the secret that an adversary can learn. From a high-level per-
spective, both approaches delay sensitive program events to well-defined points
in time, thus reducing the amount of possible distinct timing observations. It has
been shown that reducing the number of possible distinct observations directly
reduces the upper bound of possible information leakage via a timing channel
(see, e.g., [12]). By adjusting this delay, both approaches allow a navigation in
the tradeoff between security and performance.

To achieve the reduction of possible timing observations that an adversary
can get, the two approaches follow different strategies. The bucketing technique
discretizes the timing behavior of a protected program by delaying events to a
set of predefined points in time, the so called bucket boundaries. Each event that
occurs within the interval of a certain bucket is delayed up to the corresponding
bucket boundary of that bucket. The approach of predictive timing mitigation, in
turn, is to provide a certain prediction schedule that observed events shall adhere
to. In case an event is observed before the next point in time that is scheduled
– the so called quantum –, the event is delayed up to that quantum. In case the
program violates the schedule, the schedule is adapted dynamically, penalizing
the program for not adhering to the schedule. The time frame in which a given
schedule is adhered to by the program is called an epoch. Penalizing the target
program by updating the schedule thus starts a new epoch.

4.2 Implementations

Previous work on bucketing has investigated the effects of different implementa-
tion techniques for the bucketing mechanism on the security guarantees provided
by these implementations [4]. That work provided first evidence that the choice
of system layer where the implementation is placed can have a direct effect
on the provided security by the implementation. In this article, we investigate
two implementation strategies at the application layer for both bucketing and
predictive timing mitigation: instantiations of the generic enforcement frame-
work CliSeAu [6] for the two approaches, and manual implementations that
are inlined into the protected program. We assume that program operations
that cause a timing leak are located in specific methods. Hence, our implemen-
tations monitor invocations to these methods and delay program execution after
each such method invocation. Our goal is to evaluate the effects of these different
implementation strategies on the same system level.
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Implementations of Dynamic Transformations Using CliSeAu.
CliSeAu is a generic framework for enforcing security requirements for Java
programs on the application level at runtime. Conceptually, CliSeAu encap-
sulates a target program into a so called enforcement capsule that consists of
four additional components responsible for the enforcement: the interceptor, the
coordinator, the local policy, and the enforcer. In this work, we follow the app-
roach of [4], and focus on the interceptor component and the enforcer component
in our implementation. The interceptor is responsible for intercepting security-
relevant program events from the target program. Based on these intercepted
events, a decision how to handle the events is made. This decision is then enforced
by the enforcer component. For implementing dynamic side-channel mitigation
techniques, the interceptor component is used to determine the start time of
timing-sensitive computations, while the enforcer component is used to delay
events based on the delay strategy by a given mitigation technique.

This implementation strategy for dynamic side-channel mitigation has been
used to implement the bucketing mechanism in CliSeAu [4]. As a point of
comparison with predictive timing mitigation and static transformations, we
reuse the CliSeAu implementation of bucketing in this article. In a nutshell, the
implementation provides the CliSeAu components for enforcing bucketing for
Java programs, making it sufficient to declare the method signatures of timing-
sensitive computations and to provide the amount and placement of buckets to
instantiate it for a given target program. For more details, we refer the interested
reader to the original work [4].

We present an implementation of predictive timing mitigation in CliSeAu
that builds on the implementation of bucketing in CliSeAu. The overall work-

Fig. 4. Visualization of implementation strategy using a generic framework (upper
part), and inlining the mitigation (lower part)
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flow of any dynamic transformation technique that delays program events at
runtime can be seen in Fig. 4. In particular, the upper part of Fig. 4 shows the
workflow when using a generic mechanism like CliSeAu. Just before a timing-
sensitive computation is about to start (at time tobs), the mechanism is notified,
and program execution continues with the computation. After the computation,
the mechanism is notified that the computation has been finished. Based on
the delay strategy, the mechanism then delays further program execution to
reduce the amount of distinct possible timing observations (up to time tdelayed).
For predictive timing mitigation, there are two cases how the mechanism can
delay program events based on the current schedule. In case the timing-sensitive
computation finished before the next scheduled quantum, the mechanism delays
further program execution up to that quantum and the program continues regu-
larly. In case the computation does not finish before the next scheduled quantum,
the mechanism adapts the schedule based on a predefined penalty function, i.e., a
new epoch is started. The mechanism delays further program execution until the
newly scheduled quantum, and keeps the new schedule afterwards. In order to
instantiate the predictive timing mitigation implementation, users of the mech-
anism provide the method signatures of the methods containing timing-sensitive
computations, and provide the initial schedule as well as the penalty function.

Manually Inlined Implementations. Instantiating a generic mechanism for
mitigation techniques offers an increased level of reusability of the security solu-
tions, as the instantiation can be specialized to a variety of target programs
with relatively few implementation overhead. The clear separation of the tar-
get program and the enforcement mechanism also decouples the development of
the mitigation mechanism, making it possible to treat security as an orthogonal
aspect. However, such generic mechanisms inherently introduce a runtime over-
head and might even decrease the precision of the mitigation technique. Our
goal in this article is to evaluate the effects of the two implementation strate-
gies empirically. We therefore provide manually inlined implementations of both
bucketing and predictive timing mitigation. The overall workflow of such inlined
implementations is depicted in the lower part of Fig. 4. Conceptually, the man-
ually inlined versions of the mitigation strategies are the same as described for
the instantations of CliSeAu. In contrast, the inlined implementations contain
all code used for the mitigation inside the target program, avoiding splitting
the mitigation into multiple components that need to communicate with each
other. This increases implementation effort, as developers have to ensure that
the mitigation code is located at all occurrences of timing-sensitive computations
manually. On the other hand, the avoidance of component interaction and close
coupling of the target program and the mitigation code might lead to increased
security guarantees and program performance. We provide an empirical evalua-
tion of these effects in the next section.
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5 A Comparative Security Evaluation

The goal of this section is to report and discuss the findings of our evaluation
regarding the static and dynamic transformations presented in Sects. 3 and 4.

We provide all implementations of the transformation techniques, and all
experimental results online.2

5.1 Experimental Setup, Metric, and Design

Setup. We conduct all experiments on a 3.7 GHz Intel Xeon E3-1240 server with
16 GB of RAM running Ubuntu 16.04 LTS with kernel 4.4.0, and OpenJDK 8.
Furthermore, all experiments are conducted with JIT enabled using the so-called
tiered optimization mode. We apply the static and dynamic transformations
investigated in this article to an implementation of modExp in Java3.

We consider a passive adversary who locally measures the running time of
modExp using System.nanoTime(). Each measurement consists of a timing obser-
vation value collected by this adversary. We consider an adversary who can
observe the execution time of the target program, but not the program’s inter-
nal state. In particular, he cannot observe internal communication events used
in the implementations of bucketing and predictive timing mitigation.

We conduct 100 samples for each mitigation technique to evaluate the practi-
cal impact of our results. For each sample, we start with a warm-up phase of 219

measurements that is discarded in the results. We chose this number in order to
reach the steady-state of JIT before collecting measurements for our experiments.
This approach follows the best practices proposed in [7] for Java performance
evaluations. Subsequently, we start with an experimental-phase of 219 measure-
ments that is kept in the results as these measurements relate to the steady-state
of modExp. To evaluate the effectiveness of static and dynamic transformations
in reducing timing side channels, we consider the mean and worst-case values of
our sample distributions. From all collected samples, we reject outliers that lie
further than 1 absolute standard deviation from the mean.

Metric. Following the methodology used in [4,14], we consider channel capacity
as our metric to determine the effectiveness of static and dynamic transforma-
tions. That is, we measure the correlation between secret inputs and their timing
distributions in order to estimate the amount of information (in bits) that might
be leaked via a timing side channel.

Design. We conduct the so-called distinguishing experiments (as in [13,14]) for
two distinct secret input values, namely key1 and key2. Both keys have 32 bits

2
https://drive.google.com/file/d/1CHfHD6Huo2Wp2y ZQb7OgsKeNxiuhxB3/view?usp=sharing.

3 The modExp implementation considered in this article is the same used in [14].

https://drive.google.com/file/d/1CHfHD6Huo2Wp2y_ZQb7OgsKeNxiuhxB3/view?usp=sharing
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(with Hamming weights 5 and 25, respectively4). Using distinguishing experi-
ments, we can identify a side-channel vulnerability that enables adversaries to
distinguish whether either key1 or key2 is used by modExp. In our experiments,
we generated such distinct keys and conducted experiments with and without
any transformation. As a result, we can quantify the channel capacity with the
help of an off-the-shelf information leakage estimation tool named leakiEst [3].

5.2 Static Transformations

Static transformations have been evaluated in a simplified setting with JIT dis-
abled in previous work [14]. Our goal in this article is to investigate the impact
of non-deterministic timing behavior on static transformations. To this end, we
quantify the effectiveness of cross-copying and conditional assignment in terms
of channel capacity.

(a) CC (b) CA

Fig. 5. Timing distributions of modExp after applying static transformations

Figures 5 and 6 illustrate our experimental results. Figure 6 shows the his-
togram of the scenario where no transformation (baseline) is applied to modExp.
Figures 5a and b show the histograms of the scenarios where modExp is using
cross-copying (CC) and conditional assignment (CA), respectively. The overall
results regarding the effectiveness of cross-copying and conditional assignment
are presented in Fig. 7.

Fig. 6. baseline

We observe that when modExp is not using any
transformation (Fig. 6) the timing distributions of
key1 and key2 can be clearly distinguished. That
is, the histograms indicate that an adversary can
distinguish whether modExp is using key1 or key2

via a timing side channel. When modExp is using
cross-copying, we can observe that the distributions
are scarcely overlapping each other. On the other

4 We also considered keys with other Hamming weights than 5 and 25, but this is
outside the scope of this article.
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hand, when modExp is using conditional assignment, the distributions are nearly
overlapping. These results give us a first hint that cross-copying is not as effective
as conditional assignment in a setting with JIT enabled.

Our results are quantified in terms of the channel capacity for the baseline,
and both static transformations. For the transformations, we also consider the
capacity reduction achieved by the techniques. We quantify both the mean chan-
nel capacity across our experimental samples (with 95% confidence intervals),
and the worst-case capacity we have observed in the samples. We can observe
that cross-copying and conditional assignment clearly differ on how much they
can reduce the side-channel vulnerability in modExp. While cross-copying can
only reduce the channel capacity by roughly 4.5% for the mean case, conditional
assignment achieves a reduction of almost 90%. For the worst-case we observed in
our experimental samples, cross-copying can only reduce the capacity by 2.35%,
while conditional assignment achieves roughly 73% of reduction. These results
substantiate those illustrated in Fig. 5, where e.g. the timing distributions of
key1 and key2 are scarcely overlapping when cross-copying is applied to modExp.

scenario channel capacity reduction
mean worst-case mean worst-case

baseline 0.9546±0.0042 0.9997 - -
CC 0.9119±0.0042 0.9762 4.48% 2.35%
CA 0.1209±0.0065 0.2698 87.33% 73.01%

Fig. 7. Estimated capacity of timing side channels after static transformations

Our results indicate that the impact of the non-deterministic timing behavior
introduced by JIT is substantial on cross-copying. In a setting with JIT disabled,
as shown in [14], cross-copying is able to reduce the side-channel vulnerability
in modExp by 96%. On the other hand, the impact of non-deterministic timing
behavior on conditional assignment is clearly observable (the results of [14] have
shown a reduction of 99.88% in a setting without JIT), but conditional assign-
ment still seems to be quite effective in systems with non-deterministic timing
behavior. While some impact of non-deterministic timing behavior on the effec-
tiveness of static transformations are to be expected, we were surprised by the
extent of the impact on cross-copying. Our investigations on the implementation
of cross-copying have shown that indeed the mitigated branches look the same,
also on the bytecode level. Possible explanations for the poor reduction achieved
by cross-copying include factors like branch prediction, garbage collection, or
system load. However, most of these factors apply also to conditional assign-
ment, making it hard to find possible reasons for the difference in the achieved
reductions. The conditional assignment technique completely eliminates condi-
tionals by relying on bitmasks. Cross-copying, on the other hand, still includes
conditionals in the mitigation – but they are designed to take the same execution
time for each branch. We believe that this difference might be a key factor for
the difference between both techniques.
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5.3 Dynamic Transformations

With regard to dynamic transformations, our goal is to investigate the impact of
non-deterministic timing behavior on different implementations of bucketing and
predictive timing mitigation at the application level. To this end, we quantify
the effectiveness of such transformations in terms of channel capacity.

Instantiation of Transformations. Following [4], we conduct experiments
using bucketing in isolation. By isolation, we refer to an instantiation of a 1-
bucketing. We set the same bucket size for both keys1 and key2. Note that
this bucket size is greater than the expected worst case running time for either
key. Events with running time greater than this bucket size are classified as
outliers and, thus, they are released directly by the mechanism. The nature of
the implementations of bucketing and predictive timing mitigation is different
(as explained in Sect. 4.2), but in order to enable a comparison between such
implementations, we instantiated predictive timing mitigation as follows. We set
the initial quantum to the same value as the bucket size. In order to avoid effects
of penalization, we choose the penalty function that directly releases events that
are not arriving on time (classified as outliers), and stay within the same epoch
without adapting the schedule.

We consider scenarios where modExp is using bucketing and predictive tim-
ing mitigation. We use subscripts to refer to when e.g., bucketing is manually

(a) bucketingINL (b) bucketingGEN

(c) predictiveINL (d) predictiveGEN

Fig. 8. Timing distributions of modExp after applying dynamic transformations
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inlined into modExp (bucketingINL) and implemented using a generic frame-
work (bucketingGEN). The histograms of such scenarios are depicted in Fig. 8.
The histogram of the baseline is the same illustrated in Fig. 6. The overall
results regarding the effectiveness of bucketing and predictive timing mitigation
are described in Fig. 9.

The histograms of bucketing (Figs. 8a and b) and predictive timing miti-
gation (Figs. 8c and d) indicate there are no substantial difference between the
timing distributions of key1 and key2. That is, their distributions are mostly over-
lapping. These results suggest successful mitigation of the timing side-channel
vulnerability observed in Fig. 6.

Our experimental results are quantified in terms of channel capacity in Fig. 9.
We quantify both the mean channel capacity across our experimental samples
(with 95% confidence intervals), and the worst-case capacity we have observed
in the samples. Our results show that both bucketing and predictive timing mit-
igation achieve a very high reduction regarding the side-channel vulnerability in
modExp, regardless of the mean or worst-case results. One important observation
is that there is a slight difference in the effectiveness of bucketing and predic-
tive timing mitigation when implemented inlined and using a generic mecha-
nism. For instance, considering the worst-case reduction, bucketingINL and
predictiveINL can, respectively, reduce the channel capacity by roughly 95%
and 94%, while bucketingGEN and predictiveGEN can, respectively, reduce
the channel capacity by 91% and 92%.

scenario channel capacity reduction
mean worst-case mean worst-case

baseline 0.9546±0.0042 0.9997 - -
bucketingINL 0.0137±0.0010 0.0484 98.56% 95.16%
bucketingGEN 0.0354±0.0022 0.0891 96.29% 91.09%
predictiveINL 0.0117±0.0010 0.0626 98.77% 93.74%
predictiveGEN 0.0260±0.0017 0.0798 97.28% 92.02%

Fig. 9. Estimated capacity of timing side channels after dynamic transformations

Our experimental results reflect the fact that generic mechanisms can
(although slightly) reduce the effectiveness of mitigation techniques. However,
it is not clear to us whether bucketingGEN or predictiveGEN leak any addi-
tional information related to the secret key. This difference can happen due to
additional overhead (e.g., communication between internal components) caused
by generic mechanisms. Clarifying whether such information is related to the
secret key appears to be an interesting direction for future work.

Regarding the results achieved by bucketing and predictive timing mitigation,
we are not surprised by their similarities. Both transformations delay sensitive
program events up to well-defined points in time. Furthermore, we instantiated
predictive timing mitigation in a comparable fashion with bucketing.
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Overall, our results show that both predictive timing mitigation and bucket-
ing are effective in systems with non-deterministic timing behavior. On the other
hand, our results also show that neither predictive timing mitigation nor buck-
eting (confirming the results from [4]) are able to completely close the timing
side channel. Possible explanations for these results are activities in the CPU,
e.g., system load, that can cause a latency in the response time of programs [4].

5.4 Comparison Between Static and Dynamic Transformations

This section summarizes our answer to the following research question: ‘How do
static and dynamic transformations compare to each other in terms of reduction
of side-channel leakage?’. In this section, we consider the worst-case reduction
observed in our experiments. The summary of our results are given in Fig. 10. The
blue bars illustrate cross-copying and conditional assignment as static transfor-
mations, and the green bars illustrate both implementation strategies for buck-
eting and predictive timing mitigation as dynamic transformations.

Fig. 10. Overall comparison between static and dynamic transformations

The first important observation is that all transformations are affected by our
setting with non-deterministic timing behavior. In a system with deterministic
timing behavior, each given input would always lead to the same timing obser-
vation. In such systems, all transformations investigated in this article are able
to reduce the side-channel capacity by 100%. Our experimental results indicate
that this is not true for systems with non-deterministic timing behavior, since
neither transformation is able to reduce the side-channel capacity by that factor.

The second important observation is that the impact of non-deterministic
timing is much more substantial on static than dynamic transformations. The
dynamic transformations – bucketing and predictive timing mitigation – per-
formed well in reducing the side-channel vulnerability in modExp. Regardless of
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the implementation strategy, both transformations performed well comparably
by achieving reductions higher than 90%. In contrast, the static transformations
– conditional assignment and cross-copying – performed worse in comparison.

Regarding cross-copying, the impact is substantial. Our experiments suggest
that cross-copying can poorly reduce the channel capacity by 2.35%. This result
is a huge drawback in comparison to the other transformations. Furthermore,
in comparison to [14], which investigated cross-copying in a scenario with JIT
disabled, the effectiveness of cross-copying falls from 96% to 2.35%. The impact
is lower on conditional assignment, but still observable. Our experiments suggest
that conditional assignment can reduce the channel capacity by 73%. This result
is, however, a drawback in comparison to the results from [14]. That is, with JIT
enabled, the effectiveness of conditional assignment falls from 99.88% to 73%.

In summary, our experimental results suggest that dynamic transformations
are more effective than static transformations in our setting with JIT enabled.

6 Related Work

Mantel and Starostin [14] have investigated the trade-off between security and
overhead of four well-known static transformations, namely cross-copying, condi-
tional assignment, transactional branching, and unification. Their experimental
results showed that such transformations differ w.r.t how much security and
overhead they add to the program. Our work differs from [14] in how we evalu-
ate static transformations. In [14], all experiments were conducted in a simplified
Java environment (with JIT disabled). In contrast, we evaluate the impact of the
non-deterministic timing behavior introduced by JIT on conditional assignment
and cross-copying, showing that this impact is indeed substantial. Evaluating
other techniques (like e.g., unification) in this setting are left for future work.

The effectiveness of dynamic transformation techniques has been evaluated
from different perspectives. Bucketing has been originally presented for systems
with deterministic timing behavior [10]. Subsequent studies of bucketing have
established an algorithm for optimal bucket placement strategies in the tradeoff
between security and performance [5]. The original work on bucketing included
an information-theoretical upper bound on the leakage of the mitigation that is
based on the number of distinct timing observations that an adversary can get,
and the number of experiments the adversary obtains. Tighter bounds for this
leakage have been presented (e.g., [12,18]). All of these bounds, however, assume
that events can be released sharply at the bucketing boundaries.

Dantas et al. [4] have investigated the impact of non-deterministic timing
behavior on bucketing. To this end, they provided two implementations of buck-
eting that reside at the application level and kernel level. Experimental results
indicated that their implementations are not able to release events sharply at
the bucket boundary. This led to a large number of observations that an adver-
sary can gather via a timing side channel, and thus to a very high amount of
information leakage predicted by the theoretical leakage bounds. Their experi-
mental results also provided the first evidence that the choice of system layer
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where bucketing is placed can have a direct effect on the provided security by
bucketing. That is, their experimental results indicated that bucketing imple-
mented at the application level provides more security (w.r.t. leakage bounds
and channel capacity) to Java programs than bucketing implemented at the ker-
nel level. Our work builds on top of [4], providing an empirical investigation of
two implementation strategies for bucketing at the application level.

The technique of predictive timing mitigation has been presented in [19] as a
generalization of predictive black-box mitigation [2]. In [19], Zhang et al. leverage
the black-box mitigation model to web applications. More concretely, they devel-
oped a server-side wrapper to mitigate timing leaks from web applications. The
predictive black-box model assumes that it can precisely control when events are
released by the model. As for bucketing, this assumption does not necessarily
hold in systems with non-deterministic timing behavior. Our work empirically
investigates predictive timing mitigation for non-deterministic timing behavior
to enable a empirical evaluation with bucketing and static transformations.

7 Conclusion

We presented a comparative study on the effectiveness of static and dynamic
transformations in a realistic setting with non-deterministic timing behavior.
Our results are particularly interesting in three aspects: (1) We show that such
transformations differ on how much they can reduce the timing side-channel
capacity. (2) We show that the impact of non-deterministic timing behavior is
substantial on static transformations, especially on cross-copying. (3) We show
that dynamic transformations manually inlined into the target program are more
effective (although slightly) than implementations using generic mechanisms.

An interesting direction for future work is a comparative study on the per-
formance overhead caused by static and dynamic transformations. In particular,
it could be interested to investigate the applicability of such transformations in
resources-constrained settings like e.g., IoT devices.
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Abstract. This paper proposes new card-based cryptographic protocols
with the minimum number of cards using private operations under the
semi-honest model. Though various card-based cryptographic protocols
were shown, the minimum number of cards used in the protocol has not
been achieved yet for many problems. Operations executed by a player
where the other players cannot see are called private operations. Private
operations have been introduced in some protocols to solve a particular
problem or to input private values. However, the effectiveness of intro-
ducing private operations to the calculation of general logic functions has
not been considered. This paper introduces three new private operations:
private random bisection cuts, private reverse cuts, and private reveals.
With these three new operations, we show that all of logical and, logical
xor, and copy protocols are achieved with the minimum number of cards
by simple three round protocols. This paper, then shows a protocol to
calculate any logical functions using these private operations.

Keywords: Multi-party secure computation ·
Card-based cryptographic protocols · Private operations ·
Logical computations · Copy

1 Introduction

Card-based cryptographic protocols [9,17] have been proposed in which physical
cards are used instead of computers to securely calculate values. den Boer [2]
first showed a five card protocol to securely calculate logical AND of two inputs.
Since then, many protocols have been proposed to calculate logical functions
[3,4,14,16,18,21,27,29] and specific computations such as computations on three
inputs [23,24], millionaires’ problem [20,26], voting [15,19], random permutation
[6,7], grouping [5], matching [13] and so on.

Private randomization is the most important primitive in these card-based
protocols. Many recent protocols use random bisection cuts [18], which randomly
execute swapping two decks of cards or not swapping. If the random value used
in the randomization is disclosed, the secret input value is known to the players.
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There are two types of randomization: single player randomization and multiple
player randomization. For the single player randomization, the player must not
know the random value he selected. Ueda et al. [30] proposed several methods
that can be done in front of people, but no one can know the random value. How-
ever, if a person privately brings a high-speed video camera, he might able to
know the random value by analyzing the image. Currently, the size of high-speed
video cameras is too large to privately bring without getting caught, but the size
might become smaller in a near future. In the case, the randomization in a pub-
lic place becomes difficult. By introducing additional cards, a random bisection
cut can be executed using a random cut [30]. Koch and Walzer [10] proposed a
protocol for a player to execute a private permutation that is unknown to the
other players, but the player can prove that he really executed an allowed per-
mutation. The protocol can be executed in a public place, but it needs additional
special cards.

A simple solution to execute a private randomization is a multiple player
randomization, in which some operations are executed in a hidden place. In order
to execute a private random bisection cut, Alice executes a random bisection cut
in a place where Bob cannot see (under the table, or in the back, etc.). Then, Bob
executes a random bisection cut in a place where Alice cannot see. The result
is unknown to either player. Note that the number of players can be arbitrarily
increased. In order to know the random value, a person needs to know all of the
values the players used. Such an operation that is done where the other players
cannot see is called a private operation. So we have a natural question: if we
introduce some private operations other than the random bisection cut, can we
have effective card-based cryptographic protocols to calculate logical functions?

Private operations have been first introduced to solve millionaires’ problem
[20,26]. The private operations used in the papers are similar to the primitives
proposed in this paper, but the operations were embedded into the millionaires’
protocol, thus it is not clear that the primitives can be used to the other pro-
tocols. Then private operations were used to calculate logical functions [12,28].
These papers discussed a private operation that sets each player’s private inputs.
Though the number of cards used in these protocols is less than the ones in the
conventional protocols, these protocols cannot be used for general cases when the
players do not know the inputs, that is, the inputs are given as committed values.
Protocols with committed inputs can also be used for the cases when each player
knows his input values by setting his private inputs as committed values. Thus
protocols that accept committed inputs are desirable. Another desirable prop-
erty is committed output. If the output is given as a committed value, further
private calculation can be done using the output value.

This paper considers card-based protocols with committed inputs and com-
mitted outputs using private operations under the semi-honest model. This
paper introduces three private operations: private random bisection cuts, pri-
vate reverse cuts, and private reveals. This paper shows protocols which execute
logical and, logical xor, and copy with four cards, which is the minimum. We
also show protocols that calculate any logical functions.
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As for the number of cards used for copy protocols, 6 was the minimum
for finite-runtime copy [18], as shown in Table 1. The protocol in [25] uses 5
cards, but the number of steps of the protocol is unbounded. It is proved to
be impossible to achieve copy with 4 cards by the conventional model without
private operations [8]. In their model, each card sequence has a probability to
occur. Using the probabilities, players are prohibited to open a card that reveals
secret information. Such arguments lead to the impossibility results. On the
other hand, if private operations are executed, one card sequence can have two
different probabilities: the one Alice knows and the other one Bob knows. Bob is
allowed to privately open a card that does not reveal secret information to Bob.

The numbers of cards in committed-input, committed-output AND protocols
are shown in Table 2. The protocol in [18] uses 6 cards. Though the protocol in
[11] uses 4 cards, the protocol uses a non-uniform shuffle, which obtains one
result by the probability of 1/3 and the other result by the probability of 2/3.
Such a non-uniform shuffle is difficult to achieve without some special tools.
Another four-card protocol with uniform shuffles [27] does not terminate within
a finite time. It is proved to be impossible to achieve finite-runtime AND with
4 cards by the conventional model without private operations [8]. Our protocol
uses 4 cards, which is the minimum, and it is easy to execute.

The number of cards in XOR protocols is shown in Table 3. Though the
number of cards is the same in our protocol and [18], an input preserving (shown
in Sect. 4.7) can be realized by our protocol without additional cards.

2 Preliminaries

This section gives the notation and basic definitions of card-based protocols.
This paper is based on two type card model. In the model, there are two kinds

of marks, and . Cards of the same marks cannot be distinguished. In

addition, the back of both types of cards is . It is impossible to determine

the mark in the back of a given card with . One bit of data is represented

by two cards as follows: = 0 and = 1. One pair of cards that repre-
sents one bit x ∈ {0, 1}, whose face is down, is called a commitment of x, and

denoted as commit(x). It is written as
x

. Note that when these two cards

are swapped, commit(x̄) can be obtained. Thus, NOT can be calculated without
private operations.

A linearly ordered cards are called a sequence of cards. A sequence of cards
S whose length is n is denoted as S = s1, s2, . . . , sn, where si is the i-th card of

the sequence. S =
s1 s2 s3

. . . ,

sn

. A sequence whose length is even is

called an even sequence. S1||S2 is a concatenation of sequence S1 and S2.
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All protocols are executed by multiple players. Throughout of this paper,
all players are semi-honest, that is, they obey the rule of the protocols, but
try to obtain information x of commit(x). There is no collusion among players
executing one protocol together. No player wants any other player to obtain
information of committed values.

3 Private Operations

We introduce three private operations: private random bisection cuts, private
reverse cuts, and private reveals.

Primitive 1 (Private random bisection cut). A private random bisection cut is
the following operation on an even sequence S0 = s1, s2, . . . , s2m. Alice selects a
random bit b ∈ {0, 1} and outputs

S1 =
{
S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

Alice executes this operation in a place where Bob cannot see. Alice does not
disclose the bit b. ��

Note that the protocols in this paper use the operation only when m = 1 and

S0 = commit(x). Given S0 =
x

, Alice’s output S1 =
x⊕b

, which is
x

or
x̄

.

Note that a private random bisection cut is exactly the same as the random
bisection cut [18], but the operation is done in a hidden place.

Primitive 2 (Private reverse cut, Private reverse selection). A private reverse
cut is the following operation on an even sequence S2 = s1, s2, . . . , s2m and the
bit b ∈ {0, 1}, which is selected by Alice during a private random bisection cut.
Alice outputs

S3 =
{
S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

Alice executes this operation in a place where Bob cannot see. b is the secret
value that only Alice knows. Alice does not disclose b.

Note that in many protocols below, the left m cards are selected after a private
reverse cut. The sequence of these two operations is called a private reverse selec-
tion. A private reverse selection is the following procedure on an even sequence
S2 = s1, s2, . . . , s2m and the bit b ∈ {0, 1}, which is selected by Alice during the
private random bisection cut. Alice’s output

S3 =
{
s1, s2, . . . sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1 �
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Next, we define a private reveal. Consider the case Alice executes a private
random bisection cut on commit(x). A private reveal, executed by Bob, is as
follows.

Primitive 3 (Private reveal). Bob privately opens a given committed bit. Since
the committed bit is randomized by the bit b selected by Alice, the opened bit is
x ⊕ b. ��
Using the obtained value, Bob privately sets a sequence of cards.

Even if Bob privately opens the cards, Bob obtains no information about x
if b is randomly selected and not disclosed by Alice. Bob must not disclose the
obtained value. If Bob discloses the obtained value to Alice, Alice knows the
value of the committed bit.

Card-based protocols are evaluated by the following criteria.

– The number of cards used in the protocol.
– The number of operations executed in the protocol.
– The number of communications: the number of times when cards are handed

between players.

4 New Copy, Logical AND, and Logical XOR Protocols

Using the private random bisection cuts, private reveals, and private reverse
cuts, COPY protocol, AND protocol, and XOR protocol with committed inputs
and committed outputs can be realized with the minimum number of cards. All
of these protocols are executed between two players, Alice and Bob. In Sect. 5,
the number of players is increased in order to improve security.

4.1 COPY Protocol

Protocol 1 (COPY protocol).
Input: commit(x). Output: m copies of commit(x).

1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Note that x′ = x ⊕ b. Alice hands commit(x′) to Bob.

2. Bob executes a private reveal on commit(x′) and obtains x′. Bob makes m
copies of x′. Bob faces down these cards. Bob hands these cards, m copies of
commit(x′), to Alice.

3. Alice executes a private reverse cut to each copy of commit(x′) using the
bit b Alice generated in the private random bisection cut. Alice outputs these
copies. ��
The protocol is three rounds. The number of communications between players

is two.

Theorem 1. The COPY protocol is correct and secure. It uses the minimum
number of cards.
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(Proof) Correctness: If b = 0, Bob sees x and makes m copies of x. Alice does
nothing at the private reverse cut, thus m copies of x are obtained. If b = 1, Bob
sees x̄ and makes m copies of x̄. Alice swaps each copy of x̄, thus m copies of x
are obtained.

Alice’s security: Alice sees no opened cards, thus Alice obtains no information
about x.

Bob’s security: When Bob privately opens commit(x′), x′ = x⊕ b, thus Bob
obtains no information about x if b is randomly selected and not disclosed.

The number of cards: In order to obtain m copies of a commitment, at least
2m cards are necessary. The protocol is executed with 2m cards, thus the number
of cards is the minimum. ��

Comparison of COPY protocols (when m = 2) is shown in Table 1. This
protocol is the first protocol that achieves the minimum number of cards.

Table 1. Comparison of COPY protocols

Article # of cards Note

[3] 8

[18] 6

[25] 5 Number of steps is not bounded

This paper 4 Use private operations

4.2 AND Protocol

Logical AND can also be executed with the minimum number of cards.

Protocol 2 (AND protocol).
Input: commit(x) and commit(y). Output: commit(x ∧ y).

1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Alice hands commit(x′) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x′). Bob sets

S2 =
{
commit(y)||commit(0) if x′ = 1
commit(0)||commit(y) if x′ = 0

and hands S2 to Alice.
3. Alice executes a private reverse selection on S2 using the bit b generated in the

private random bisection cut. Let the obtained sequence be S3. Alice outputs
S3. ��
Note that the two cards that were not selected by Alice at the last step of

the protocol, must be discarded. Since the unused cards have some information
on x and y, information about input values are leaked if the cards are opened.
The protocol is three rounds. The number of communications between players
is two.
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Theorem 2. The AND protocol is correct and secure. It uses the minimum
number of cards.

(Proof) Correctness: The desired output can be represented as follows.

x ∧ y =
{
y if x = 1
0 if x = 0

When Bob obtains x′ = 1, commit(y)||commit(0) is given to Alice. When
Bob obtains x′ = 0, commit(0)||commit(y) is given to Alice. Thus Alice’s output
is commit(y) if (x′, b) = (1, 0) or (0, 1). Since x′ = x ⊕ b, these cases equal to
x = 1.

Alice’s output is commit(0) if (x′, b) = (1, 1) or (0, 0). Since x′ = x⊕ b, these
cases equal to x = 0. Therefore, the output is correct.

Alice and Bob’s security: The same as the COPY protocol.
The number of cards: Any committed-input protocol needs at least four

cards to input commit(x) and commit(y). When Bob sets S2, the cards used for
commit(x′) can be used to set commit(0). Thus, the total number of cards is
four and the minimum. ��

A careful discussion is necessary when a player knows the value x of given
commit(x), for example, x is the player’s private input value.

First, consider the case when Bob knows x. When Bob executes a private
reveal on commit(x ⊕ b), Bob knows the bit b Alice selected. This scenario is
not a security problem. Bob knows b, thus he knows whether the final output is
commit(0) or commit(y) in advance. However, since

x ∧ y =
{
y if x = 1
0 if x = 0

it is not new information for Bob who already knows x.
Note that if x = 0 and Bob wants to know y, Bob can replace commit(y) with

two new cards (that Bob hidden in his pocket), and sends commit(0)||commit(0)
to Alice. The result is still correct and Bob can privately open commit(y) after-
wards. In order to prevent this type of attack, marking currently using cards or
a watch person (discussed in Sect. 5) is necessary.

Next, consider the case when Alice knows x. Alice knows x′ = x ⊕ b. Thus
Alice knows whether the final output is commit(0) or commit(y) in advance,
but it is not new information for Alice. Note that if x = 0 and Alice wants to
know y, Alice can replace commit(y) with two new cards during the execution.
Prevention of this type of attack is just the same as the one for the case of Bob.

A similar discussion can be done for the other protocols shown in this paper.
A comparison of AND protocols is shown in Table 2. Though Koch et al. [11]

showed a finite step protocol with the minimum number of cards, their protocol
must use a non-uniform shuffle, which is not easy to realize.
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Table 2. Comparison of AND protocols

Article # of cards Input Output Note

[2] 5 commit non-commit

[3] 10 commit commit Four color cards

[21] 12 commit commit

[29] 8 commit commit

[18] 6 commit commit

[1] 5 commit commit Number of steps is not bounded

[11] 4 commit commit Non-uniform shuffle

[27] 4 commit commit Number of steps is not bounded

[16] 4 commit non-commit

[28] 3 non-commit non-commit Use private operations

[12] 4 non-commit commit Use private operations

This paper 4 commit commit Use private operations

4.3 XOR Protocol

Protocol 3 (XOR protocol).
Input: commit(x) and commit(y). Output: commit(x ⊕ y).

1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Alice hands commit(x′) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x′). Bob sets

S2 =
{
commit(ȳ) if x′ = 1
commit(y) if x′ = 0

and hands S2 to Alice. Note that commit(ȳ) can be obtained by swapping the
two cards of commit(y).

3. Alice executes a private reverse cut on S2 using the bit b generated in the
private random bisection cut. Let the obtained sequence be S3. Alice outputs
S3. ��
The protocol is three rounds. The number of communications between players

is two.

Theorem 3. The XOR protocol is correct and secure. It uses the minimum
number of cards.

(Proof) Correctness: The desired output can be represented as follows.

x ⊕ y =
{
ȳ if x = 1
y if x = 0
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When x′ = 1, commit(ȳ) is given to Alice. When x′ = 0, commit(y) is given
to Alice. Thus, Alice’s output is commit(ȳ) if (x′, b) = (1, 0) or (0, 1). Since
x′ = x ⊕ b, these cases equal to x = 1.

Alice’s output is commit(y) if (x′, b) = (1, 1) or (0, 0). Since x′ = x⊕ b, these
cases equal to x = 0. Therefore, the output is correct.

Alice and Bob’s security: The same as the COPY protocol.
The number of cards: At least four cards are necessary for any protocol to

input commit(x) and commit(y). This protocol uses no additional cards other
than the input cards. ��

A comparison of XOR protocols is shown in Table 3. Though the mini-
mum number of cards is already realized by [18]. an input preserving (shown
in Sect. 4.7) can be realized without additional cards.

Table 3. Comparison of XOR protocols

Article # of cards Input Output Note

[3] 14 commit commit Four color cards

[18] 4 commit commit

[28] 2 non-commit commit

[12] 2 non-commit commit

This paper 4 commit commit Use private operation

Preserving an input is possible

4.4 Any Logical Functions

Though this paper shows AND and XOR, any two-variable logical functions can
also be calculated by a similar protocol.

Theorem 4. Any two-variable logical function can be securely calculated in three
rounds and four cards.

(Proof) Any two-variable logical function f(x, y) can be written as

f(x, y) =
{
f(1, y) if x = 1
f(0, y) if x = 0

where f(1, y) and f(0, y) are y, ȳ, 0, or 1.
First, consider the case when both of f(1, y) and f(0, y) are 0 or 1.

(f(1, y), f(0, y)) = (0, 0) (or (1, 1)) means that f(x, y) = 0 (or f(x, y) = 1),
thus we do not need to calculate f . (f(1, y), f(0, y)) = (1, 0) (or (0, 1)) means
the f(x, y) = x (or f(x, y) = x̄), thus we do not need to calculate f by a two
player protocol.

Next, consider the case when both of (f(1, y), f(0, y)) are y (or ȳ). This case
is when f(x, y) = y (or f(x, y) = ȳ), thus we do not need to calculate f by a
two player protocol.
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The next case is when (f(1, y), f(0, y)) is (y, ȳ) or (ȳ, y). (f(1, y), f(0, y))
= (ȳ, y) is x ⊕ y (XOR). (f(1, y), f(0, y)) = (y, ȳ) is x ⊕ y, thus this function
can be calculated as follows: execute the XOR protocol and NOT is taken to the
output. Thus, this function can also be calculated.

The remaining case is when one of (f(1, y), f(0, y)) is y or ȳ and the other is
0 or 1. We modify the second step of AND protocol, so that Bob sets

S2 =
{
commit(f(1, y))||commit(f(0, y)) if x′ = 1
commit(f(0, y))||commit(f(1, y)) if x′ = 0

using one commit(y) and the two cards used for commit(x′). Then, Alice obtains
commit(f(1, y)) if x = 1 and commit(f(0, y)) if x = 0 by the private reverse
selection.

Thus, any two-variable logical function can be calculated. ��
In [18] without private operations, two additional cards are required to cal-

culate any two-variable logical function.

4.5 Parallel Computations

The above two-variable logical function calculations can be executed in parallel.
Consider the case when commit(x) and commit(yi)(i = 1, 2, . . . , n) are given and
commit(fi(x, yi))(i = 1, 2, . . . , n) need to be calculated. They can be executed
in parallel. Alice executes a private random bisection cut on commit(x) and
hands commit(x′) and commit(yi)(i = 1, 2, . . . , n) to Bob. Bob sets Si

2(i =
1, 2, . . . , n) using x′, commit(yi), and fi. Alice executes a private reverse cut or
a private reverse selection on each of Si

2(i = 1, 2, . . . , n) using the bit b selected
at the private random bisection cut. By the procedure, commit(fi(x, yi))(i =
1, 2, . . . , n) are simultaneously obtained.

4.6 Side Effects

When we execute the AND protocol, two cards are selected by Alice at the final
step. The remaining two cards are not used, but they also output some values.
The unused two cards’ value is {

0 if x = 1
y if x = 0

thus the output is commit(x̄∧y). The cards can be used as a side effect just like
the six-card AND protocol in [18].

Generally, for a function f that is calculated by AND type protocol shown
in Theorem 4, the side-effect output is commit(x̄ ∧ f(1, y) ⊕ x ∧ f(0, y)).

4.7 Preserving Input

In the above protocols to calculate logical functions, the input commitment values
are lost. If the input is not lost, the input commitment can be used as an input to
another calculation. Thus, the input preserving calculation is discussed [22].
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In the XOR protocol, commit(x′) is no more necessary after Bob sets S2.
Thus, Bob can send back commit(x′) to Alice when Bob sends S2. Then, Alice
can recover commit(x) using the private reverse cut. In this modified protocol,
the output is commit(x⊕y) and commit(x) without additional cards or rounds.

As for the AND type protocol, commit(x′) can be sent back to Alice and
Alice can recover commit(x). This modified protocol needs 6 cards in total.

An input preserving calculation without increasing the number of cards can
be executed for AND type protocols just like [22]. Note that the function f
satisfies that one of (f(0, y), f(1, y)) is y or ȳ and the other is 0 or 1. Otherwise,
we do not need to calculate f by the AND type two player protocol. At the end
of the protocol, the side-effect output is x̄ ∧ f(1, y) ⊕ x ∧ f(0, y). The output
f(x, y) can be represented as x ∧ f(1, y) ⊕ x̄ ∧ f(0, y). Execute the above input
preserving XOR protocol for these two output values so that f(x, y) is recovered.
The output of XOR protocol is x̄∧f(1, y)⊕x∧f(0, y)⊕x∧f(1, y)⊕ x̄∧f(0, y) =
f(1, y) ⊕ f(0, y). Since one of (f(0, y), f(1, y)) is y or ȳ and the other is 0 or 1,
the output is y or ȳ (depending on f). Thus, input y can be recovered without
additional cards. Thus, input preserving can be realized by 4 cards, which is
the minimum. Comparison of input preserving AND type protocols is shown in
Table 4.

Table 4. Comparison of input preserving AND protocols

Article # of cards Input Output Note

[22] 6 commit commit

This paper 4 commit commit Use private operations

4.8 n-Variable Logical Functions

Since any 2-variable logical function, x̄, and COPY can be executed, any n-
variable logical function can be calculated by the combination of the above pro-
tocols.

Using the technique in [22] and above input preserving logical function cal-
culations, any n-variable logical function can be calculated with 2n+ 4 cards as
follows.

Any logical function f(x1, x2, . . . , xn) can be represented as follows:
f(x1, x2, . . . , xn) = x̄1∧x̄2∧· · · x̄n∧f(0, 0, . . . , 0)⊕x1∧x̄2∧· · · x̄n∧f(1, 0, . . . , 0)⊕
x̄1 ∧ x2 ∧ · · · x̄n ∧ f(0, 1, . . . , 0) ⊕ · · · ⊕ x1 ∧ x2 ∧ · · ·xn ∧ f(1, 1, . . . , 1).

Since the terms with f(i1, i2, . . . , in) = 0 can be removed, this function f can
be written as f =

⊕k
i=1 v

i
1 ∧ vi2 ∧ · · · ∧ vin, where vij = xj or x̄j . Let us write

Ti = vi1 ∧ vi2 ∧ · · · ∧ vin. The number of terms k(< 2n) depends on f .
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Protocol 4 (Protocol for any logical function (1)).
Input: commit(xi)(i = 1, 2, . . . , n). Output: commit(f(x1, x2, . . . , xn)).

The additional four cards (two pairs of cards) p1 and p2 are used as follows.
p1: the intermediate value to calculate f is stored.
p2: the intermediate value to calculate Ti is stored.

Execute the following steps for i = 1, . . . , k.

1. Copy vi1 from the input x1 to p2.
2. For j = 2, . . . , n, execute the following procedure: Apply the input-preserving

AND protocol to p2 and input xj (If AND is taken between x̄j, first execute
NOT to the input, then apply the AND protocol, and return the input to xj

again).
At the end of this step, Ti is obtained at p2.

3. If i = 1, move p2 to p1. If i > 1, apply the XOR protocol between p1 and p2.
The result is stored to p1.

At the end of the protocol, f(x1, x2, . . . xn) is obtained at p1. ��
The number of additional cards in [22] is 6. Thus our protocol reduces the number
of cards. The number of rounds is O(2n).

As another implementation with a larger number of cards, we show that any
n-variable logical function can be calculated by the following protocol, whose
technique is similar to the one in [12]. Let f be any n-variable logical function.

Protocol 5 (Protocol for any logical function (2)).
Input: commit(xi)(i = 1, 2, . . . , n). Output: commit(f(x1, x2, . . . , xn)).

1. Alice executes a private random bisection cut on commit(xi)(i = 1, 2, . . . , n).
Let the output be commit(x′

i)(i = 1, 2, . . . , n) Note that one random bit bi is
selected for each xi(i = 1, 2, . . . , n). Alice hands commit(x′

i)(i = 1, 2, . . . , n)
to Bob.

2. Bob executes a private reveal on commit(x′
i)(i = 1, 2, . . . , n). Bob gener-

ates 2n commitment Sa1,a2,...,an
(ai ∈ {0, 1}, i = 1, 2, . . . , n) as Sa1,a2,...,an

=
commit(f(a1 ⊕ x′

1, a2 ⊕ x′
2, . . . , an ⊕ x′

n)). Bob hands these commitments to
Alice.

3. Alice outputs Sb1,b2,...,bn . ��
Since Sb1,b2,...,bn = commit(f(b1 ⊕ x′

1, b2 ⊕ x′
2, . . . , bn ⊕ x′

n)) =
commit(f(x1, x2, . . . , xn)), the output is correct. The security is the same as
the COPY protocol. The protocol is three rounds. The number of communica-
tion between players is two. The number of cards is 2n+1.

5 Improving Security

Although this paper assumes all players are semi-honest, some players might be
malicious in real cases. It is very hard to prevent malicious actions when a player
executes a private operation. One countermeasure to deal with a malicious player
is setting one watch person to each player.
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The watch person for Alice watches the execution by Alice and verifies that
(1) Alice does not open the cards, (2) Alice really uses a random number gen-
erator (for example, coin-flipping) to select her random bit, (3) Alice honestly
executes a private random bisection cut using the random bit, and (4) Alice
honestly executes a private reverse cut or private reverse selection using the bit
generated in (2).

The watch person for Bob watches the execution by Bob and verifies that (1)
Bob does not open the cards that are not allowed and (2) Bob honestly generates
the committed cards using the value Bob privately opened.

Note that the watch persons must not disclose the values they watch.
When the number of players is more than two, each player can simultaneously

act as a player and a watch person. Suppose that player P0, P1, . . . , Pn−1(n > 2)
execute the AND protocol together and no collusion exists. Select some random
number i(0 < i < n). One player is out of the room when each player executes
a round of the protocol. All the other players in the room watch the execution
by the current player and verifies the correctness of the current player. Pj(j =
0, . . . , n−2) executes a private random bisection cut on commit(x) using random
bit bj when Pj+i mod n is out of the room, thus commit(x⊕n−2

j=0 bj) is obtained.
Pn−1 executes a private reveal and sets S2 when Pn−1+i mod n is out of the
room. Then, Pj(j = 0, . . . , n − 2) executes a private reverse cut using bj when
Pj+i mod n is out of the room. When all the private reverse cuts are finished, the
left pair is selected as the output. In this execution, any player cannot obtain
the value of the committed value because he does not have all information if
no collusion exists. Note that the number of watch persons can be arbitrary
changed.

6 Conclusion

This paper proposed new card-based cryptographic protocols with the mini-
mum number of cards using private operations. Though the private operations
are effective, the protocols cannot be used when a malicious player exists. How
to prevent active attacks using some protocol techniques just like the zero-
knowledge proofs is an open problem.
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Abstract. Under intractability assumptions commonly used in cryp-
tography, we show an efficient program obfuscator for large classes of
programs, including any arbitrary monotone formula over statements
expressed as equalities to a secret. Previously, only a handful set of indi-
vidual functions were known to have such program obfuscators. This
result has both theoretical and practical relevance. On the theoretical
side, it significantly increases the class of functions that are known to
have a cryptographically secure program obfuscator, and it shows that
general-purpose program obfuscation results do exist with at least some
level of generality, despite the likely impossibility, proved in [2], to achieve
a related notion of obfuscation for any arbitrary polynomial-time pro-
gram. On the practical side, there are many computational programs
that can be expressed as monotone formulae over equality statements,
and can now be securely obfuscated. Our most foundational contribution
is a new type of obfuscation: protecting the privacy of the formula gates,
and thus of much of the computation carried out by the program, in
addition to the privacy of secrets used by the program. Previous program
obfuscators only targeted the privacy of secrets used by the program.

1 Introduction

The problem of program obfuscation (i.e., turning an input program into an
intelligible one) is recently attracting a significant amount of attention in the
cryptography literature. While previous studies on program obfuscation did not
target rigorous obfuscation guarantees, in cryptographic program obfuscation a
researcher’s goal is to design an obfuscator following the standard of modern
cryptography; i.e., by proving that any successful de-obfuscation attack can be
used to efficiently solve a seemingly hard mathematical problem.

Interestingly enough, general solutions to the cryptographic program obfus-
cation problem seem to have far-reaching application potential. Examples of
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surprising theoretical implications that would be made possible from a general
solution to the cryptographic program obfuscation problem include: transform-
ing any private-key encryption scheme into a public-key encryption one, and
transforming any public-key encryption scheme into a fully-homomorphic one.
Moreover, there is a host of real-life applications for cryptographic program
obfuscation, including digital right management, protection against intellectual
property theft, protection of secrets and policies embedded in software, etc.

Unfortunately, early results in the area [2] showed a likely impossibility
of constructing a general-purpose obfuscator (i.e., an obfuscator whose input
program is taken within the class of all polynomial-time programs), satisfying
the virtual-black-box obfuscation notion. Thus, starting with [23], researchers
have focused on constructing a special-purpose obfuscator (i.e., an obfuscator
whose input program is taken within a small class of polynomial-time programs,
often semantically interpreted as a ‘single function’), although efficient construc-
tions for obfuscators provable under widely accepted assumptions were given
only for few functions. Obfuscators for point functions with fixed secret length
[1,3,8,13,23], and point functions with variable secret length [12] were shown
to be efficient in [1,12,13]. Other efficient obfuscators provable under widely
accepted assumptions include short-distance matching [15], proxy re-encryption
[20], and encrypted signatures [19]. Other special-purpose obfuscator proved
under a widely accepted assumption were shown for wildcard-based matching [6],
and compute-and-compare programs [24], or under heuristic assumptions, includ-
ing the random oracle assumption (see, e.g., [21]), the generic group assumption
(see, e.g., [11]), and assumptions related to approximated versions of multilinear
forms (see, e.g., [17]).

1.1 Our Contribution and Comparison with Previous Work

In this paper we propose two efficient special-purpose obfuscators with obfus-
cation provable under widely accepted assumptions, and improving the state of
the art in two important directions: expressibility and obfuscation quality.

As for expressibility, we show the first paradigm for efficient program obfusca-
tion that works for a large family of functions (although smaller than the family
of all polynomial-time programs), which is encouraging in light of the impos-
sibility results in [2]. Our obfuscators efficiently combine obfuscators of point
functions into obfuscators for monotone/boolean formulae over point functions,
by running only a linear (in the number of formula inputs) number of point
function obfuscators.

As for obfuscation quality, our techniques additionally provide a new type of
obfuscation, protecting the privacy of some computation carried out by the pro-
gram rather than just the privacy of secrets used by the program. For instance,
our main obfuscator hides to an attacker whether gates in the monotone or
boolean formula are, say, OR gates or AND gates, while potentially leaking the
formula structure, in addition to protect the secrets involved in equality state-
ments at the bottom of the formula. Previously to our results, obfuscators only
protected the privacy of one particular secret string embedded in the program.
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Our obfuscators satisfy an obfuscation notion from [3], which was proved to
be incomparable with the original virtual-black-box notion. Informally speaking,
this notion says that an obfuscation of a specific function in its class is not
efficiently distinguishable from an obfuscation of a random function in the same
class. Both notions offer useful guarantees, applicable to a large class of real-
life scenario, including software theft, where the attacker steals a program but
cannot guess (much of the) embedded secrets or computation.

Other contributions include: (1) defining two new obfuscation properties: for-
mula indistinguishability obfuscation, for any functions expressible as formulae
over equality statements, and output indistinguishability obfuscation, for any
functions expressible as multi-bit-output equality functions; and (2) analyzing
the resiliency to secret leakage or exhaustive search, and targeting the design of
obfuscators that increase such security. This latter property is especially relevant
in practical applications, where the amount of entropy in the secrets may vary
across all secrets.

1.2 Basic Definitions, Approach and Statement of Main Results

Our goal is to design an obfuscator for a class of (secret-based) point functions,
parameterized by secret strings s1, . . . , sm, that output 1 if the input strings
x1, . . . , xm satisfy φ((x1 = s1), . . . , (xm = sm)), where φ is a monotone for-
mula, and 0 otherwise. (Wlog, we consider monotone formulae φ parameterized
by strings s1, . . . , sm, which have a 1-1 correspondence with fan-out-1, fan-in-2,
monotone circuits denoted as Cφ,s1,...,sm

.) The obfuscator we propose for this
type of functions returns an obfuscated program which computes the same func-
tion, while protecting both the privacy of strings s1, . . . , sm, and privacy of the
formula within a class. In the simplest meaningful example, where m = 2 and φ
is a 1-gate formula; the family has only 2 functions: (x1 = s1) ∨ (x2 = s2), and
(x1 = s1) ∧ (x2 = s2) and our second obfuscator hides s1, s2, and whether the
gate is an AND or an OR. With our newly defined formula indistinguishability
obfuscation property, we generalize this to any two adversarially chosen formu-
lae within a known class. For instance, in our second obfuscator we consider
the class of m-input monotone formulae with the same structure (i.e., the wire
connections between the gates); note that in this case, we do not attempt to
obfuscate the circuit structure.

A natural starting point to design new constructions would be to take the
obfuscator for the equality function with secret si, for i = 1, . . . , m. In fact, we
use a variant of this obfuscator with multi-bit outputs, so that at obfuscation
time, a label can be associated to each equality statement in a way that it can
be recovered at evaluation time if and only if, except with negligible probability,
the equality statement is satisfied by the current input. Our constructions follow
the same paradigm, which can be abstractly described as follows.

Input to Obf: a circuit whose description contains m-input formula f and
secrets s1 . . . sm ∈ {0, 1}n; and security parameter 1�
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Instructions for Obf:

1. Randomly choose generation labeling λg for φ
let u ∈ {0, 1}� be the label associated to φ’s output by λg

let u1, . . . , um ∈ {0, 1}� be labels associated to the m input wires by λg

2. For i = 1, . . . , m,
generate obfuscation Di of i-th equality statement,

with secret si, and multi-bit output ui

3. Let oCD1,...,Dm,λg
be the circuit that, on input (x1, . . . , xm), goes as follows:

based on λg,D1, . . . , Dm, randomly choose evaluation labeling λe for φ
let v ∈ {0, 1}� be the label associated by λe to φ’s output wire

if an output test T , based on λg, λe (including u, v), is true then return: 1
else return: 0.

4. Return: obfuscated program oCD1,...,Dm,λg

The generation labeling λg, the evaluation labeling λe and the output test T
are instantiated differently for each of the 2 obfuscators proposed in the rest
of the paper. Syntactically, labelings λg, λe for φ consist of an assignment of
strings in {0, 1}� to wires in the circuit associated with monotone formula φ,
and the output test T is a predicate evaluated on these strings. In our main
construction, these are instantiated as follows. Labeling λg is a known function
labeling, previously used in other cryptography areas, such as secret sharing [4]
and zero-knowledge proofs [22]. The obfuscator for an mbo equality function can
be the scheme from [9], which is based on any obfuscator for point functions.
These two ingredients are combined by setting the obfuscator’s output string
equal to the label associated with the equality statement. The labeling λe is new
and is built based on λg so that the code for both λe and T does not depend on
φ’s gates, but only on its formula structure (i.e., how gates are connected to each
other). Then, a wire label in λe can be computed if and only if the subformula
having that wire as output is satisfied by the program input. Finally, in our
main construction, the output test T consists of checking if the label u in λg

associated with the output wire of φ is equal to the label v in λe associated with
the same output wire.

Our first obfuscator works for the class of boolean formulae φ over point func-
tions satisfying φ(0, . . . , 0) = 0 and having binary descriptions upper bounded
by a known polynomial. The formula indistinguishability property of this obfus-
cator does not satisfy any resiliency to secret exposure. Our second obfuscator
works for all monotone formulae over point functions and its formula indistin-
guishability satisfies resiliency to a linear number of exposed secrets on some
subclass of formulae. Both obfuscators assume the existence of an obfuscator
for point functions satisfying the rrIND-obfuscation notion. These were shown
in [3] based on any deterministic encryption scheme, and thus happen to have
several instantiations under widely accepted hardness assumptions (e.g., lattice
problems [25] or lossy trapdoor functions [5], which in turn exist under group-
theoretic assumptions, including the hardness of computing discrete logarithms,
quadratic/decisional residuosity, etc.; see, e.g., [13,16]).
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Finally, we remark that the class of monotone formulae over point functions
has interesting applicability properties since it includes several variations of for-
mulae related to well-known computational problems, on search, matching, set
theory, access control, etc.

2 Definitions and Preliminaries

Basic Notations. The expression {0, 1}n denotes the set of n-bit strings, where
n is a positive integer. If S is a set, the expression x ← S denotes the proba-
bilistic process of uniformly and independently choosing x from set S. If A is an
algorithm, the expression y ← A(x1, x2, . . .) denotes the probabilistic process of
running algorithm A on input x1, x2, . . . and any necessary random coins, and
obtaining y as output. A function ε over the set of natural numbers N is negli-
gible if for every polynomial p, there exists an n0 such that ε(n) < 1/p(n), for
all integers n ≥ n0.

Formulae Over Point Functions. A (secret-based) point function fs :
{0, 1}n → {0, 1} is a function, parameterized by a secret string s, that out-
puts 1 if input string x is = s and 0 otherwise. The boolean circuit computing
fs is also denoted Ceq,s. A multi-bit-output point function (briefly, mbo point
function) fs,y : {0, 1}n → {0, 1} is a function, parameterized by a secret string s
and an output string y, that outputs y ∈ {0, 1}� if input string x is = s and 0�

otherwise. The boolean circuit computing fs,y is also denoted Ceq,s,y.
Let φ be a boolean formula over m bits. A boolean formula over point func-

tions fφ,s1,...,sm
: ({0, 1}n)m → {0, 1} is a function, parameterized by secret

strings s1, . . . , sm, that outputs φ(b1, . . . , bm), where bi = 1 if xi = si and 0
otherwise, and x1, . . . , xm are its input strings. The boolean circuit computing
fφ,s1,...,sm

is also denoted Cφ,s1,...,sm
. A monotone formula over point functions

is a boolean formula over point functions where φ is monotone (i.e., expressible
only using AND and OR operations).

Obfuscators: Formal Definitions. Let Obf be an efficient probabilistic algo-
rithm that, on input an n-bit circuit C, returns a circuit oC in time polynomial
in n. We say that Obf is an obfuscator for the class of functions F , if, for any
function f ∈ F , and any circuit Cf computing f :

1. (Correctness): Prob [ oCf ← Obf(Cf ) : oCf (x) = Cf (x) ] ≥ 1 − δ, for δ negli-
gible in n.

2. (Efficiency): The size of the obfuscated circuit oCf is polynomial in the size
of circuit Cf .

Several different obfuscation notions have been proposed in the literature. The
original notion from [2], denoted here as VBB-obfuscation, was based on simula-
tion through access to a virtual black box for the function. Here, we use the IND
notion from [3], relabeled as real-vs-random indistinguishability obfuscation, and
our new notion of formula indistinguishability obfuscation, and adapt definitions
of both notions to the obfuscation of formulae over equality statements. As in
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[3], we also use the notion of a secret generator: a (probabilistic) polynomial-time
algorithm, denoted as sGen, that returns a secret string y ∈ {0, 1}n (i.e., a string
that is a parameter of the program to be obfuscated and that we would like to
keep secret after running the obfuscator on the program).

Real-vs-Random Indistinguishability Obfuscation. Informally, this obfuscation
notion says that no efficient adversary can distinguish an obfuscation of a circuit
parameterized with random secret points from an obfuscation of a circuit with
(real) secret points generated from algorithm sGen. More formally, let Cm be
a class of m-input circuits. We say that the obfuscator Obf for class Cm satis-
fies the real vs random indistinguishability notion called rrIND-obfuscation from
now on, relative to secret generator sGen if for all polynomial-time (adversary)
algorithms A = (A1, A2) such that A1 returns a function in Cm, if it holds that

|Prob
[
RealExpCm,A,sGen(1

n) = 1
] − Prob

[
RandExpCm,A,sGen(1

n) = 1
] |

is negligible in n, where experiments RealExp,RandExp are detailed below.
RealExpCm,A,sGen(1

n)

1. (s1, . . . , sm, aux) ← sGen(1n),
2. s = (s1, . . . , sm)
3. (f, aux) ← A1(1

n, aux)
4. oCf,s ← Obf(Cf,s)
5. return: b ← A2(1

n, oCf,s , aux)

RandExpCm,A(1n)

1. (s1, . . . , sm, aux) ← sGen(1n),
2. ui ← {0, 1}n, for i = 1, . . . ,m
3. u = (u1, . . . , um)
4. (f, aux) ← A1(1

n, aux)
5. oCf,u ← Obf(Cf,u)
6. return: b ← A2(1

n, oCf,u , aux)

A composable version of this definition, called composable rrIND-obfuscation
from now on, can be derived, similarly as in [3,9], by slightly modifying the
above definition, as follows: in experiment RealExp, A2 has access to a polyno-
mial number of independently computed obfuscations based on the same formula
f and the same secrets s1, . . . , sm; in experiment RandExp, A2 has access to a
polynomial number of independently computed obfuscations based on the same
formula f and random and independent (even across all obfuscations) secrets
s1, . . . , sm. The rrIND-obfuscation notion for the case of trivial formulae with a
single input was first studied in [3], where it has been used mainly to demon-
strate feasibility results of special-purpose obfuscators. In particular, under the
existence of deterministic encryption schemes, the family of equality or point
functions admits an obfuscator that satisfies this composable notion [3]. The
existence of deterministic encryption schemes can be, in turn, established from
lossy trapdoor functions [5], and the latter have been constructed from various
standard number-theoretic hardness assumptions. We also note that the trivi-
ality theorems from [3] in the case of uniform secrets apply here as well. The
relationship between VBB-obfuscation and rrIND-obfuscation was studied in [3]
for the case of point functions, where it was proved that the two notions are
incomparable, in that there is an obfuscator satisfying one notion that does not
satisfy the other, and viceversa. This relationship carries over to our notion used
here, since our generalized notion includes the one in [3] in the base case of one-
input formulae. Moreover, [7] studies variants of the above rrIND-obfuscation
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notion, by further characterizing the predictability of algorithm sGen, and shows
relationships of these variants with other literature notions.

Formula Obfuscation. Informally, the formula obfuscation notion says that no
efficient adversary can distinguish among the obfuscations of two same-structure,
but distinct, formulae from a given class, when evaluated over uniformly and
independently chosen secrets. (Here, we simplify the definition by only consider-
ing uniformly distributed secrets, since all schemes in the paper will also satisfy
rrIND-obfuscation, but note that the definition with respect to a secret genera-
tor sGen is easily derived.) Formally, we say that the obfuscator Obf for the class
of formulae Φ satisfies formula indistinguishability obfuscation relative to secret
generator sGen, if for all polynomial-time (adversary) algorithms A = (A1, A2),
such that A1 returns same-structure formulae φ0, φ1 ∈ Φ, it holds that

|Prob
[
ObfExpC,A,0(1

n) = 1
] − Prob

[
ObfExpC,A,1(1

n) = 1
] |

is negligible in n, where experiments ObfExpC,A,0,ObfExpC,A,1 are detailed
below.

ObfExpC,A,0(1n)
1. si ← {0, 1}n, for i = 1, . . . , m
2. s = (s1, . . . , sm)
3. (φ0, φ1, aux) ← A1(1n)
4. oCφ0,s ← mObf(Cφ0,s)
5. Return: b ← A2(1n, oCφ0,s , aux)

ObfExpC,A,1(1n)
1. si ← {0, 1}n, for i = 1, . . . ,m
2. s = (s1, . . . , sm)
3. (φ0, φ1, aux) ← A1(1n)
4. oCφ1,s ← mObf(Cφ1,s)
5. Return: b ← A2(1n, oCφ1,s , aux)

We also extend forIND-obfuscation to a notion capturing resilience to some secret
exposure or search attacks. We say that an obfuscator for a class C of formulae
over point functions satisfies t-resilient (to exhaustive search attacks) forIND-
obfuscation with respect to a subclass C0 of formulae in C if forIND-obfuscation
holds even if the adversary is leaked or can compute via exhaustive search t
secrets of its choice. More formally, this notion is obtained by modifying the
above formal definition of the forIND-obfuscation notion, as follows:

1. step 3 in the above ObfExp experiments becomes: (φ0, φ1, i1, . . . , it, aux) ←
A1(1n, 1�),

2. in step 5 of the same two experiments, A2 takes si1 , . . . , sit as additional
inputs.

3. the condition in the definition holds for all adversaries A such that A1 returns
same-structure formulae φ0, φ1 that belong to C0 ⊆ Φ”.

This property captures resiliency to leakage or exhaustive search attacks, which
is especially relevant in applications where there are multiple secrets, and these
may naturally have varying length or entropy. Accordingly, in the rest of the
paper we also discuss this property for the two different solutions satisfying
forIND-obfuscation.
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3 Output Indistinguishability of Mbo Point Function
Obfuscators

In this section we define a new obfuscation notion for mbo point functions,
called output indistinguishability, and show that a previous technique from [9]
can be used to transform any rrIND-secure obfuscator for point functions into
an obfuscator for mbo point functions satisfying this new notion (in addition
to rrIND-security). This result will be used later in the security proof for our
formula obfuscators. We note that relationships between VBB-secure mbo point
function obfuscators and symmetric encryption schemes, as studied in [10,14],
do not imply this result as we consider rrIND-secure obfuscation.

Output Indistinguishability Obfuscation. Informally, an obfuscator for
mbo point functions satisfies the output indistinguishability notion if no efficient
adversary can distinguish an obfuscated program when the function’s output is
y0 from an obfuscated program when the function’s output is y1, for any two out-
put (same-length) strings y0, y1 returned by the adversary. (Here, we simplify the
definition by only considering the uniform distribution for the program’s secret,
since all schemes in the paper will also satisfy rrIND-obfuscation, but note that
the definition with respect to a secret generator sGen is easily derived.) More
formally, let MboEqFC be a class of mbo point functions. We say that obfuscator
MboEqObf for the class of functions MboEqFC satisfies output indistinguishabil-
ity obfuscation (briefly, outIND-obfuscation) if for all polynomial-time (adver-
sary) algorithms A = (A1, A2) such that A1 returns (y0, y1) ∈ {0, 1}�, it holds
that

|Prob
[
OutIndExpMboEq,A,0(1

n) = 1
] − Prob

[
OutIndExpMboEq,A,1(1

n) = 1
] |

is negligible in n, where experiments OutIndExpMboEq,A,0,OutIndExpMboEq,A,1

are detailed below.
OutIndExpMboEq,A,0(1

n)

1. s ← {0, 1}n,
2. (y0, y1, aux) ← A1(1n, 1�)
3. oCs,y0 ← MboEqObf(Ceq,s,y0 )
4. Return: b ← A2(1n, 1�, oCs,y0 , aux)

OutIndExpMboEq,A,1(1
n)

1. s ← {0, 1}n,
2. (y0, y1, aux) ← A1(1n, 1�)
3. oCs,y1 ← MboEqObf(Ceq,s,y1 )
4. Return: b ← A2(1n, 1�, oCs,y1 , aux)

An Output-Indistinguishable Obfuscator. We now use a technique from
[9] to prove that any rrIND-obfuscator for a point function can be transformed
into an rrIND-obfuscator for an mbo point function. (We can actually establish
this result using techniques from almost all other obfuscators in the literature
for mbo point functions.) Let uGen denote the secret generator that returns
uniformly and independently distributed secrets s1, . . . , sm ∈ {0, 1}�. Formally,
we show the following
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Theorem 1. Let EqObf be an obfuscator for the class EqFC of (secret-based)
point functions. There exists (constructively) an obfuscator MboEqObf for the
class MboEqFC of (secret-based) mbo point functions such that:

1. if EqObf satisfies composable rrIND-obfuscation with respect to a secret gen-
erator sGen then MboEqObf satisfies rrIND-obfuscation with respect to sGen;
and

2. if EqObf satisfies composable rrIND-obfuscation with respect to secret gen-
erator uGen then MboEqObf satisfies outIND-obfuscation.

We prove Theorem 1, by first defining an mbo point function obfuscator and then
showing its properties. The obfuscator is almost identical to the construction in
[9], the main difference being that it uses an rrIND-obfuscator for point functions
instead of a VBB-obfuscator. Let y = y1 · · · ym be the desired output for an mbo
point function, parameterized with secret s, from class MboEqFC. The obfusca-
tor MboEqFC is defined by computing a concatenation of m + 1 outputs of the
obfuscator EqObf for the (single-bit-output) point function, parameterized with
secret s, and with the following values used as a secret: the first execution uses
secret s; the next m executions use secret s when yi = 1 or a random and inde-
pendent n-bit string si when yi = 0. Then, the obfuscated program is defined
to compute all bits of the output string y by running all these obfuscated pro-
grams for the point function with secret s. If the input x is different from s, the
first obfuscated version of EqObf will reveal that fact and the obfuscated pro-
gram returns: 0�. Note that EqObf, satisfying the composable rrIND-obfuscation
notion, is not a deterministic function and can be safely applied multiple times
within MboEqObf without leaking the equality pattern of value y. A formal
description follows.

Input to MboEqObf: a circuit whose description contains secret string s ∈
{0, 1}n, output string y ∈ {0, 1}�

Instructions for MboEqObf:

1. Let D0 = EqObf(fs) and y = y1 · · · ym

2. For i = 1, . . . ,m,
if yi = 1 then set si = s

else randomly and independently choose si ∈ {0, 1}n

let Dy,i = EqObf(fsi
)

3. Let oCD0,Dy,1,...,Dy,m,y be the circuit that, on input x, does the following:
if D0(x) = 0 then output: 0 and halt
for i = 1, . . . ,m,

if Dy,i(x) = 1 then set yi = 1 else set yi = 0
output: y = y1 · · · ym.

4. Return: (oCD0,Dy,1,...,Dy,m,y)

To prove the rrIND-obfuscation property of MboEqObf, it suffices to prove that
the following two distributions are computationally indistinguishable: (a) the
circuit oCD0,Dy,1,...,Dy,m,y output by MboEqObf and computed on input a secret
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s randomly sampled according to sGen; and (b) a circuit oCrD0,rDy,1,...,rDy,m,y

computed as in MboEqObf, but on input a uniformly distributed secret s′. We
prove this by using a hybrid argument [18], and applying the composable rrIND-
obfuscation of EqObf.

To prove the outIND-obfuscation property of MboEqObf, it suffices to show,
for any outputs y1, y2 chosen by the adversary, that the following two distribu-
tions are computationally indistinguishable: (a) the circuit oCD0,Dy1,1,...,Dy1,m,y1

output by MboEqObf and computed on input a uniformly distributed secret s;
and (b) the circuit oCD0,Dy2,1,...,Dy2,m,y2 output by MboEqObf and computed on
input a uniformly distributed secret s. We note that Dy1,i and Dy2,i are equally
distributed for all i such that y1i = y2i. On the other hand, for all i such that
y1i 	= y2i, the obfuscated programs Dy1,i are outputs of EqObf on input the same
uniformly distributed secret s, while the obfuscated programs Dy2,i are outputs
of EqObf on input the uniformly and independently distributed secrets si. How-
ever, these are computationally indistinguishable by the assumed composable
rrIND-obfuscation of EqObf with respect to secret generator uGen.

4 Our First Formula Obfuscator

In this section we show an obfuscator bObf for a class zBoolFC of boolean for-
mulae over point functions fφ,s1,...,sm

such that φ is a boolean formula satisfying
φ(0, . . . , 0) = 0 and has binary descriptions upper bounded by a known poly-
nomial (note that this class includes all monotone formulae φ with this size
upper bound as well as some non-monotone ones). This obfuscator satisfies both
rrIND-obfuscation and forIND-obfuscation, although with no resiliency (indeed,
knowledge of a single secret is sufficient to an attacker to learn the description
of the entire formula). Therefore, this obfuscator is only useful in applications
where secret leakage is unlikely and each secret is large enough to withstand
exhaustive search attacks. Formally, we obtain the following

Theorem 2. Let EqObf be an obfuscator for the class EqFC of (secret-based)
point functions. There exists (constructively) an obfuscator bObf for the class
zBoolFC of boolean formulae over point functions such that

1. if EqObf satisfies composable rrIND-obfuscation with respect to a secret gen-
erator sGen then bObf satisfies rrIND-obfuscation with respect to sGen;

2. if EqObf satisfies composable rrIND-obfuscation with respect to uniform
secret generator uGen then bObf satisfies forIND-obfuscation.

However, bObf does not satisfy 1-resilient forIND-obfuscation with respect to
any formula in zBoolFC.

The obfuscator claimed in Theorem 2 is a simple instantiation of the paradigm
described in Sect. 1. Thus, to explain it informally, it suffices to describe an obfus-
cator for mbo point functions, a generation labeling λg, an evaluation labeling
λe, and an output test T . As obfuscator for mbo point functions, we use the
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scheme in Sect. 3 and its properties from Theorem 1. The generation labeling
λg consists of labels u1, . . . , um, all set equal to a random string k, and a label
u, which is set as the obfuscation of an mbo point function with k as secret
string and with the binary description desc(φ) of formula φ as output string.
The obfuscated program is defined, on input n-bit strings x1, . . . , xm, to com-
pute evaluation labeling λe, as follows. First, for i = 1, . . . ,m, it computes label
vi as the output of the obfuscated program for equality function with secret si,
when evaluated on input xi. If there is a vi 	= 0�, for some i ∈ {1, . . . , m}, a
string k′ is set as equal to this vi. Then, label v is computed as the output of
the obfuscated program for equality function with secret k, when evaluated on
input k′, and the output test T , is simply set as “v((u1 = v1), . . . , (um = vm))”.
If all vi = 0� then T is set to an unsatisfiable test. The output of the obfuscated
program is then set as 1 if the test T is satisfied or as 0 otherwise. A formal
description follows.

Input to bObf: security parameter 1σ and a circuit Cφ,s1,...,sm
whose description

contains strings s1, . . . , sm ∈ {0, 1}n and desc(φ), where φ is boolean formula
satisfying φ(0, . . . , 0) = 0 and |desc(φ)| ≤ p(m), for some public polynomial p.

Instructions for bObf:

1. Randomly choose k ∈ {0, 1}σ and set u1 = · · · = um = k
2. let Di = mboCsi,ui

= MboEqObf(Ceq,si,ui
), for i = 1, . . . , m

3. set u = D = mboCk,desc(φ) = MboEqObf(Ceq,k,desc(φ))
4. let oCD1,...,Dm,D,u be the circuit that, on input (x1, . . . , xm), does the

following:
let vi = Di(xi), for i = 1, . . . , m
if vi 	= 0� for some i ∈ {1, . . . , m} then set k′ = vi

else output: 0 and halt
let desc(φ) = v = D(k′)
if φ((u1 = v1), . . . , (um = vm)) = 1 then output: 1 else output: 0.

5. return: (oCD1,...,Dm,u)

The efficiency property of bObf follows from direct code inspection.
The correctness property of bObf follows from the following observation: if

at least one of the xi’s is equal to at least one of the secrets si’s, then k′ = k, v
is a description of formula φ, and test T is exactly the evaluation of φ on input
(u1 = v1), . . . , (um = vm).

To prove the rrIND-obfuscation property of MboEqObf, it suffices to prove
that for any formula φ in zBoolFC, the following two distributions are compu-
tationally indistinguishable: (a) the circuit oCD1,...,Dm,D output by bObf and
computed on input secrets s1, . . . , sm randomly sampled according to sGen and
formula φ; and (b) a circuit oCrD1,...,rDm,rD computed as in MboEqObf, but on
input random secrets s′

1, . . . , s
′
m and formula φ. We prove this by using a hybrid

argument [18], and applying the composable rrIND-obfuscation of EqObf.
To prove the forIND-obfuscation property, we first observe that secret string

k is obfuscated as the output string of the mbo point function obfuscator
MboEqObf using secret strings s1, . . . , sm, and then observe that desc(φ) is
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obfuscated as the output string of the mbo point function obfuscator MboEqObf
using k. Then the forIND-obfuscation property follows by a hybrid argument
where we apply twice the outIND-obfuscation property of MboEqObf, estab-
lished in Theorem 1 implying the obfuscation of k and desc(φ).

Finally, note that an adversary knowing any one of secrets si will learn k and
therefore desc(f); thus, this obfuscator does not satisfy 1-resilience with respect
to any subclass of zBoolFC.

5 Our Second Formula Obfuscator

In this section we show an obfuscator mObf for the class MonoFC of all monotone
formulae fφ,s1,...,sm

over point functions. (Here, φ can be an arbitrary m-input
monotone formula). This obfuscator is obtained as a different instantiation of the
paradigm described in Sect. 1. It satisfies both rrIND-obfuscation and forIND-
obfuscation, and has some resiliency properties. Therefore, it is useful in appli-
cations where secret leakage cannot be ruled out and not all secrets are large
enough to withstand exhaustive search attacks. Formally, we obtain the following

Theorem 3. Let EqObf be an obfuscator for the class EqFC of (secret-based)
point functions. There exists (constructively) an obfuscator mObf for the class
MonoFC of monotone formulae over point functions such that:

1. if EqObf satisfies composable rrIND-obfuscation with respect to a secret gen-
erator sGen then mObf satisfies rrIND-obfuscation with respect to sGen;

2. if EqObf satisfies composable rrIND-obfuscation with respect to uniform
secret generator uGen then mObf satisfies forIND-obfuscation.

Moreover, there is a class of m-input monotone formulae for which mObf satisfies
�m/2�-resilient forIND-obfuscation.

We prove Theorem 3 by first informally describing an obfuscator for a single-gate
monotone formula and then formally describe the obfuscator for any arbitrary
polynomial-size monotone formula and its claimed properties.

Description of a 1-gate Obfuscator. For the base case of a single-gate mono-
tone formula φ, we consider functions fφ,s1,s2 such that φ ∈ { AND, OR }. The
obfuscator for such functions follows the paradigm discussed in Sect. 1. There,
it was defined in terms of an obfuscator for mbo point functions, a generation
labeling λg, an evaluation labeling λe, and an output test T . As obfuscator for
mbo point functions, we use the scheme described in Sect. 3, along with its
Theorem 1. The generation labeling λg consists of labels u, u1, u2, set as
u = u1 = u2 if φ = OR, or so that u = u1 ⊕ u2, for randomly chosen u, u1,
if φ = AND. Note that they satisfy the following conditions: (a) if φ = OR any
one of u1, u2 suffices to compute u; and (b) if φ = AND, knowing both u1, u2

allows to compute u, while knowing only one of them leaves u undetermined.
Then, for i = 1, 2, label ui is computed using an obfuscator for the mbo point
function associated with point function with secret si. Finally, the obfuscated
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program is defined, on input n-bit strings x1, x2, to compute evaluation label-
ing λe, as follows. First, for i = 1, 2, it computes label vi as the output of the
obfuscated program for point function with secret si, when evaluated on input
xi. Then, it combines labels v1, v2 into a third label v such that the obtained 3
labels somehow ‘match’ the previously generated labeling λg, through the out-
put test T , here simply set as “(u = v)”. Specifically, if v1 = v2 then v = v1 else
v = v1⊕v2. The output of the obfuscated program is then set as 1 if the test T is
satisfied or as 0 otherwise. Here, a key property to prove the forIND-obfuscation
property is that the code for neither λe nor T depend on the value of gate φ.
Key property to prove the correctness property are the following properties of
labelings λg, λe (in turn proved by a case analysis): for i = 1, 2, vi = ui with
probability 1 if xi = si or negligible otherwise; moreover, v = u with probability
1 if (x1 = s1) (gate(φ)) (x2 = s2) or negligible otherwise.

Description and Properties of Obfuscator mObf. This obfuscator follows
the paradigm in Sect. 1 and can also be seen as an extension of the just described
obfuscator from a single gate to arbitrary polynomial-size monotone formulae.
The use of the obfuscator MboEqObf for mbo point functions and the definition
of the output test T are actually the same as in the obfuscator for single-gate for-
mulae. The new components in obfuscator mObf are the definitions of labelings
λg, λe.

Specifically, the labels in λg are generated by procedure GenLabel recursively
over the monotone formula φ, starting from randomly choosing the top label u,
and then generating labels for all subformulae, until the recursion reaches to the
formula inputs. Labels in λg are set to satisfy the following conditions: (a) if
φ = φ1 ∨ φ2, any one of u1, u2 suffices to compute u; and (b) if φ = φ1 ∧ φ2,
knowing both u1, u2 allows to compute u, while knowing only one of them leaves
u undetermined.

Moreover, the labels in λe are generated by procedure EvaLabel recursively
over the monotone formula φ, starting from the generation of the bottom label at
φ’s inputs, based on evaluating the obfuscated programs D1, . . . , Dm. For these
labels, the following condition will hold: for any subformula of φ, the labels
from λg, λe associated with this subformula’s output wire will be equal with
probability 1 if a subformula of φ is satisfied under input x1, . . . , xm or with
negligible probability otherwise.

A formal description follows.

Input to GenLabel: m-input monotone formula φ and label u ∈ {0, 1}�

Instructions for GenLabel:

1. If φ = ‘(xi = si)’ for some i ∈ {1, . . . , m}, then
let Di be the output of MboEqObf using secret si and output u, and return:

Di

2. If φ = φ1 ∨ φ2 then set u1 = u2 = u
3. If φ = φ1 ∧ φ2 then randomly choose u1 ∈ {0, 1}� and set u2 = u1 ⊕ u
4. let a be the number of inputs to φ1, for some 1 ≤ a ≤ m − 1
5. let (D1, . . . , Da) = GenLabel(φ1, u1)
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6. let (Da+1, . . . , Dm) = GenLabel(φ2, u2)
7. return: (D1, . . . , Dm)

Let struct(φ) denote the structure of formula φ; that is, the description of for-
mula φ, where gates of φ are replaced by a special symbol that does not reveal
the gate type.

Input to EvaLabel: strings x1, . . . , xm, circuits D1, . . . , Dm and struct(φ) for
monotone formula φ,

Instructions for EvaLabel:

1. If φ = ‘(xi = si)’ for some i ∈ {1, . . . , m}, then set v = Di(xi) and return: v
2. If φ has two sub-formulae φ1, φ2 then

let a be the number of inputs to φ1, for some 1 ≤ a ≤ m − 1
set v1 = EvaLabel(φ1,D1, . . . , Da)
set v2 = EvaLabel(φ2,Da+1, . . . , Dm)
if v1 = v2 then set v = v1 else set v = v1 ⊕ v2

3. return: v

Input to mObf: security parameter 1� and a circuit Cφ,s1,...,sm
whose descrip-

tion contains m-input monotone formula φ and secrets s1, . . . , sm ∈ {0, 1}n;

Instructions for mObf:

1. Randomly choose u ∈ {0, 1}�

2. Let (D1, . . . , Dm) = GenLabel(φ, u)
3. let oCD1,...,Dm,u be the circuit that, on input (x1, . . . , xm, struct(φ)), does the

following:
let v = EvaLabel(struct(φ),D1, . . . , Dm)
if v = u then output: 1 else output: 0.

4. return: (oCD1,...,Dm,u)

The rrIND-obfuscation and forIND-obfuscation properties claimed in Theorem 3
for mObf reuse the main ideas in the proofs of Theorems 1 and 2, and are proved
by induction over the input formula φ, the base case being a 1-gate formula.

For the efficiency property, one can verify by inspection that the runtime
of the obfuscated program returned by mObf is dominated by m executions of
obfuscator mObf and m executions of the obfuscated equality function programs
Di, for any m-input formula.

For the correctness property, the main labeling claims we prove inductively
and for any label u, are: (1) if φ(x1, . . . , xm) = 1 then it holds that v = u,
where v = EvaLabel(φ,D1, . . . , Dm) and (D1, . . . , Dm) = GenLabel(φ, u); and
(2) if φ(x1, . . . , xm) = 0 then it v = u holds with probability ≤ 2−|u|.

For the resiliency property, we now show a subclass of MonoFC relative
to which mObf satisfies t-resilient forIND-obfuscation, for some t linear in m
(specifically, t = �m/2� − 1). Specifically, consider the class of monotone formu-
lae of the type (w1 ∧ . . . ∧ w�m/2�) ◦ (w�m/2�+1 ∧ . . . ∧ wm), for some ◦ ∈ {∨,∧},
where wi denotes the equality statement ‘(xi = si)’. This subclass contains only
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two formulae, depending on the value of the top gate ◦. Now, note that in order
to determine the value of gate ◦, an adversary has access, in addition to the label
u already contained in oCD1,...,Dm,u, to all labels ui associated with secret si,
if known, for all i ∈ {1, . . . , m}. We then observe that by the properties of the
generation labeling λg used, the adversary obtains information about the value
of the top gate ◦ if and only if it obtains information about one of the 2 labels
va, vb associated with the input wires to ◦. Specifically, it holds that ◦ = ∨ if
va = vb = v and ◦ = ∧ if va ⊕ vb = v, in which case, with high probability
va, vb 	= v. Accordingly, determining va or vb suffices to check these conditions
and therefore determine ◦. On the other hand, in the considered subclass of
formulae, because of the properties of the generation labeling λg on ∧ gates,
label va remains completely undetermined unless m/2 labels ui are known. This
implies that knowing up to t ≤ m/2 − 1 secrets si will not help the adversary
determine va or vb, and thus will leave ◦ completely undetermined.

6 Conclusions

We proposed formula obfuscation as a paradigm to achieve program obfus-
cation with a desirable combination of properties: correctness (i.e., a single
obfuscator approach for a large class of programs), efficiency (runtime of the
obfuscator program) and provability (i.e., some obfuscation notion is achiev-
able under intractability assumptions that are standard in cryptography). Our
formula obfuscation results are the first to significantly enlarge the class of pro-
grams with these properties, previously consisting of essentially variations of
point functions or less than a handful of cryptographic functionalities. Several
research directions remain of interest on this paradigm, including constructions
with improved resiliency properties, more general boolean formulae, different
intractability assumptions, and different obfuscation notions.
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Abstract. Kupyna has been selected by the Ukrainian government as
the new national hash function standard in 2015. In this paper, we apply
two fault attacks on Kupyna. In the first attack, we assume that the
attacker knows all the hash parameters and aims to recover the input
to the hash function. We experiment using three different fault mod-
els which are random byte fault model, known byte unique fault model
and known byte random fault model. In the second fault attack, we
assume that the attacker does not know the entries of the SBoxes used
in Kupyna and aims to recover the SBox entries. Our experimental results
in both attacks illustrate the importance of protecting implementations
of Kupyna against fault analysis attacks.

Keywords: Cryptanalysis · Kupyna · Hash · Streebog · Grøstl ·
DFA · IFA · DSTU 7564:2014

1 Introduction

GOST 34.311-95 has been used in Ukraine as the national standard hash function
until 2015 [17]. It provides an acceptable level of security since it uses 256-bit
keys. However, two theoretical attacks have been presented against this standard
[15,16]. In [15], the authors analyzed the security of GOST 34.311-95 with respect
to pre-image attacks and concluded that it has a certificational weakness. In [16],
the authors presented a collision attack on GOST 34.311-95 and demonstrated
that their attack is an improvement over [15]. In addition to those vulnerabilities,
GOST 34.311-95 is also found to be impractical for modern platforms. Also,
most Commonwealth of Independent States (CIS) countries other than Ukraine
started to adopt newer standards such as GOST R 34.11-2012 [1] instead of
GOST 34.311-95 in Russia. As a result, the Ukrainian government decided to
adopt a new standard hash function called Kupyna under the standard DSTU
7564:2014 [17].

In this paper, we present two different fault attacks against Kupyna. In the
first case, we assume that the attacker has access to the hash function output,
without knowing the input, and all the hash function parameters are known
including the round constants, substitution box entries, and the initialization
c© Springer Nature Switzerland AG 2019
N. Zincir-Heywood et al. (Eds.): FPS 2018, LNCS 11358, pp. 225–240, 2019.
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vector. Also, the attacker is able to request the output of the hash function as
many times as needed by faulting either known or random bytes at a certain
state. So, the attacker knows where the fault occurs but the attacker may or
may not know which byte has been faulted depending on the fault model. In
the second case, the attacker is assumed to know everything about the hash
function except the entries of the SBoxes. The attacker is assumed to have access
to the hash function where the attacker has control over the input given to the
hash function and tries to recover all 4 different SBoxes using stuck-at-0 fault
model [6]. We show that even if the SBoxes are not known, the attacker can
still successfully recover all 4 different SBoxes and hence secret SBoxes may not
provide additional security to Kupyna.

The rest of the paper is organized as follows. In Sect. 2, a brief overview of
fault analysis is given with the specification of Kupyna. In Sect. 3, we provide
descriptions of two fault attacks on Kupyna. In Sect. 4, we provide our simulation
results and discussions. Section 5 concludes the paper.

2 Background and Related Work

2.1 Fault Analysis

In fault analysis [12], an attacker tries to retrieve information which is not known
to the attacker such as a secret key or a secret input by intervening with the
computation. Intervening with the computation allows the attacker to retrieve
a set of correct and faulty output pairs. By comparing those correct and faulty
output pairs, the attacker recovers the secret key or the secret input. Fault
attacks are mostly applied to ciphers since the security of ciphers relies on a
secret key. However, hash functions also started to receive attention in terms
of fault analysis since they can be used to build MAC (Message Authentication
Code) schemes. In a typical fault analysis, the attacker gives a plaintext and
retrieves the correct ciphertext. After that, the attacker faults the computation
at a specific state and retrieves a set of faulty ciphertexts. Using the correct
ciphertext and the set of faulty ciphertexts, the attacker aims to retrieve infor-
mation about the secret material. In differential fault analysis, information is
retrieved by comparing differences between the correct ciphertext and the set of
faulty ciphertexts. In ineffective fault analysis [6], information about the secret
material is retrieved when the presented fault has no effect on the output. In
other words, a fault gives information about the secret material only when the
correct and faulty outputs are the same. In this paper, we apply both differential
fault analysis and ineffective fault analysis to Kupyna.

In order to perform fault analysis, faults need to be injected in order to inter-
vene with the computation of the internal state of the cryptographic primitive.
Fault injection can be done in different ways which include power glitches, clock
pulses, laser radiation [13]. Fault analysis was first applied to retrieve the secret
key in RSA-CRT algorithm [5] by Boneh et al. After that, this idea was general-
ized by Biham and Shamir where they introduced a concept called Differential
Fault Analysis [4].
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In addition to the fault attack applied on RSA-CRT algorithm [5], fault
attacks were also applied to other cryptographic primitives. In [4], authors
showed that differential fault analysis can be applied to DES (Data Encryp-
tion Standard) and it allows the attacker to break DES by analyzing a small
number of ciphertexts generated from random plaintexts. In [9], authors apply
differential fault analysis on AES (Advanced Encryption Standard) and show
that AES-128 can be broken with ten faulty messages in a short time. In [19],
authors introduced a fault attack which can break AES-128 with only 2 faulty
ciphertexts. In [20], the authors performed fault analysis on CEASAR candidate
ACORN v2 and concluded that all faults can be located and the initial step can
be recovered with 41 faults. In [10], the authors performed differential fault anal-
ysis on the hash function, Grøstl, and showed that attackers are able to recover
input messages. In [14], the authors performed fault analysis on SHACAL-1 and
demonstrated that the 512-bit secret key in SHACAL-1 can be recovered using
120 faults. In [8], the authors performed fault analysis on the Ukrainian standard
cipher, Kalyna, and showed that even though Kalyna seems to be more resistant
to fault analysis compared to other standard ciphers such as AES, it can still
be broken using a reasonable number of faults. For further information about
the plausibility of fault analysis and different fault models, the reader is referred
to [12].

2.2 Specification of Kupyna

Kupyna hash function is an IV (initialization vector) dependent mapping of a
given message to a hash code. After the input massage is given, the result of each
computation is referred as the internal state. A given hash input goes through
many states until it becomes the hash output. The number of output bits can
be chosen by the user and it determines the number of bytes in the state and
the number of rounds. The notation Kupyna-η denotes Kupyna with η output
bits, where η ε {8 × s|s = 1, 2, ..., 64}. For Kupyna-η, the number of rounds (ρ)
and the number of bytes in the internal state (μ) are given by:

ρ =

{
10, if 8 ≤ η ≤ 256.

14, if 256 ≤ η ≤ 512.

μ =

{
64, if 8 ≤ η ≤ 256.

128, if 256 ≤ η ≤ 512.

Kupyna can be used with a known IV or secret IV, where in known IV, IV
is defined as:

IV =

{
1 � 510, ifμ = 64.

1 � 1023, ifμ = 128.

Kupyna can process messages with length from 1 bit to 296 − 1 bits. Each
message is padded regardless of its length and the padding adds one additional
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block to hashing. This additional block contains single “1” bit, followed by d
zero bits where d is calculated as:

d = (−N − 97) mod β

where N is the number of bits in the input block and β is the number of bits
in the state which is calculated as β = 8 × μ. Padding ensures that number of
input bits is a multiple of number of bits in the internal state (β ε {512, 1024}).
After that, the next 96 remaining bits contain the length of the input message
in terms of number of bits, N, in little endian. After padding, the message is
divided into k blocks of length μ bytes each. So, the hash function processes
k blocks, i.e., it involves k block operations and one truncation operation at
the end.

Each block contains functions which work similar to the cipher Kalyna [18],
these functions are called: τ⊕ and τ+ and are defined as:

τ⊕ =
ρ−1∏
0

(ψ ◦ α ◦ σ ◦ κ) τ+ =
ρ−1∏
0

(ψ ◦ α ◦ σ ◦ θ)

where:

– ψ is a linear transformation layer which uses the same vector as Kalyna [18]
which is :

υ = (0x01, 0x01, 0x05, 0x01, 0x08, 0x06, 0x07, 0x04)

Row i and column j of the new state matrix are calculated as:

ωi,j = (υ ≫ i) ⊗ Gj ,

where Gj is column j of the state matrix and ⊗ is Galois field multiplication in
the finite field GF(28) with irreducible polynomial γ(x) = x8+x4+x3+x2+1.

– α is the shift rows operation which circular right shifts each row. There are 8
rows in the state matrix for each column numbered as 0 · · · 7, and each row i
is circular right shifted by i bytes except the row number 7. Row number 7 is
circular right shifted by 7 bytes if block size (μ) is 64 bytes and it is circular
right shifted by 11 bytes if block size (μ) is 128 bytes.

– σ is the non-linear transformation of bytes, where each byte value is mapped
to another byte value based on Kupyna SBoxes. Kupyna uses 4 different
SBoxes (S0, S1, S2, S3) and which SBox to use depends on the row number
and for row i, SBox to use is calculated as “i mod 4”.

– θ is the modulo 264 addition of round constant to the current state.
– κ is XOR addition of the round constant to the current state.
– Gi,j refers to row i and column j of the current state.
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The round keys for operations κ and θ are known and are calculated as
follows:

– For κ, where the round key is added to current state using XOR operation
(modulo 2 addition), the round key is calculated as �(j) = ((j � 4) ⊕
v, 0, 0, 0, 0, 0, 0, 0)T where v is the round number and j is the column of current
state Gi,j .

– For θ, where the round key is added to current state using modulo 264

addition, the round key is calculated as κ(j) = ((0xF3, 0xF0, 0xF0,
0xF0, 0xF0, 0xF0, 0xF0, (c−1−j) � 4))T where c is total number of columns
in state which is 8 for μ = 64 and 16 for μ = 128 and j is the column of current
state Gi,j .

For a given message M which is padded and divided into k blocks
m1,m2, ..,mk, the result of the hash function Kupyna-η is calculated as:

h0 = IV
hi = τ⊕(hi−1 ⊕ mi) ⊕ τ+(hi−1) ⊕ hi−1 for i = 1, 2, .., k

H(IV,M) = Rl,n(τ⊕(hk) ⊕ hk)

where Rl,n is the truncation function which retrieves l most significant bits of
input of n bits. Figure 1 shows a block diagram of Kupyna for a given message
M and an initialization vector IV.

Fig. 1. Block diagram of Kupyna hashing operation

During the description of our attacks on Kupyna, we use the same notation
as we use for operations to refer to states except we have two subindices which
are the block number and the round number. Block numbers go from 1 to k.
The last τ⊕ block before the truncation is a special block and it will be referred
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as block number t. As an example, if we refer to block number k and the state
input to the substitution layer in round r − 1 in τ⊕ operation of the block, we
will refer to that state as τ⊕[σk,r−1] where r is the total number of rounds. In
order to refer to a specific byte in the state located at row i and column j, we
use τ⊕[σk,r−1][i][j].

2.3 Existing Attacks on Kupyna

In [11], the authors present a collision attack and a preimage attack on 5 rounds
of Kupyna-256 but conclude that their attacks do not demonstrate that Kupyna
is not secure. Later, in [7], the authors perform rebound attacks on Kupyna and
conclude that even though Kupyna contains a modular addition of some round
constants rather than XOR addition, it is still vulnerable to rebound attacks.

3 Proposed Attacks on Kupyna

3.1 Differential Fault Analysis on Kupyna with Known SBoxes

Attack Goal. Kupyna can be used to build MAC schemes in secret-IV or
secret prefix mode. In the secret-IV mode, the IV is the secret information to
be recovered. In the secret prefix mode, a secret input is appended to the input
message such that the message input to the hash function becomes Prefix || M .
In this attack we are going to recover all the message blocks and the value of
IV which allows us to break the MAC scheme if the MAC scheme is used in
secret-IV or secret prefix settings. Throughout the rest of the paper, we will
illustrate our attacks on Kupyna-256 but our analysis can be extended to other
versions of Kupyna with different message digest lengths.

Attack Procedure. Our approach contains two stages. First, we aim to recover
hk which is the input to τ⊕[κk+1,0] as shown in Fig. 1. So, τ⊕

k+1 is the first
block we are going to apply faults to. After recovering hk, our next goal is to
recover inputs to each block (m1,m2, · · · ,mk). During this process, the IV is
also recovered. It should be noted that the size of the hash output is not the
same as the size of the state since there is a truncation step in Kupyna. Hence,
we first recover some bytes of the state τ⊕[σk+1,t−1], we will refer to that partial
state as τ⊕[σk+1,t−1]

′
. After that, we recover the full state of τ⊕[σk+1,t−2] which

allows us to recover hk by going backwards. In order to recover the inputs to a
message block i, which are hi−1 and mi, we first recover the input to τ+[σi,t−1],
then going backwards allows us to recover mi. After that we recover the input
to τ⊕[σi,t−1] and going backwards allows us to recover the value of mi ⊕ hi−1.
By knowing mi and mi ⊕ hi−1, we can recover hi−1. Then the same approach
is recursively applied to all the blocks until all inputs are recovered.

In order to recover the partial state τ⊕[σk+1,t−1]
′
, we first need to find byte

indices in the state τ⊕[σk+1,t−1] that propagate to the output (see Fig. 2 which
shows indices of bytes that survive after the truncation step). Faults are applied
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to the input to τ⊕[σk+1,t−1]. Some faults give us information about state bytes in
the input to the last round SubBytes operation. However, some faults do not give
any information about the input state to the last round SubBytes. As shown in
Fig. 2, if a fault is applied to the byte index 0 among the indices, then this fault
does not give any information about the partial state τ⊕[σk+1,t−1]

′
. However, if

the fault is applied to the byte index 32, this fault gives us information about
the byte index 32 (row 0, column 4) of the partial state τ⊕[σk+1,t−1]

′
. Using the

same approach, we recover all state bytes in the partial state that propagate to
the output.

Fig. 2. Propagation of bytes to the output in Kupyna

In order to find the value of byte input in the partial state τ⊕[σk+1,t−1]
′
for

a specific index among indices, which survive the truncation step, we use the
following property of the SBoxes:

If x is a random input byte, and if Δi is chosen from the set: Δ = {0x01,
0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80} where 1 < i ≤ n, and n is the number
of faults, then x is uniquely determined using only using the values for Λi in the
following equation [2]:

S(x) ⊕ S(x ⊕ Δi) = Λi (1)

This means that x can be recovered using n output differences Λi correspond-
ing to n one-bit distinct faults Δi. According to our experiments, the average
number of faults required to recover x uniquely is about 2.42 if known byte ran-
dom fault model is used. If known byte unique fault model is used, the average
number of faults required to recover x uniquely is about 2.21.
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In order to retrieve the state bytes in the partial state τ⊕[σk+1,t−1]
′
, first the

attacker calculates the correct hash value for a given message. After that, the
attacker faults the computation at τ⊕[σk+1,t−1] by applying one of the values
among Δ to a byte value. The attacker knows which byte is faulted if it is a
chosen fault model. However, in the random fault model, the attacker does not
know which byte is faulted. After the attacker applies the fault, she receives a
faulty result. We call the correct hash value as H and the faulty hash value as
H

′
. After getting H and H

′
, the attacker calculates the difference between H

and H
′
backwards by calculating the following equation:

Ω = α−1 ◦ ψ−1(H ⊕ H
′
) (2)

Figure 3 shows the propagation of a fault applied at byte index 4 in the
input to SubBytes operation in the last round. Ω is calculated as the inverse
MixColumns and the inverse ShiftRows operations are applied to the difference
between the correct state and the faulty state. The result of this calculation will
be all zeros except in one byte position and that byte position gives us which byte
was faulted and the nonzero value in that byte position gives us one value for
Λ. Using this Λ, we find candidates for the byte using Eq. 1. After that, we find
other values for Λ and narrow down the list of candidates until there is only one
candidate remaining. This allows us to recover the partial state τ⊕[σk+1,t−1]

′
.

Fig. 3. Propagation of a fault applied at byte index 4 in Kupyna

Then the next step is to recover the full state just before that partial state.
This state, τ⊕[κk+1,t−1], can be recovered directly since the round constant is
known. However, recovering the input to the MixColumns operation just before
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the addition of the round constant in the last round (τ⊕[ψk+1,t−2]) is a bit more
difficult. In order to recover the input to MixColumns operation in the round
(t−2), we are going to use the following property of the MixColumns operation:

Let s ε G be a state matrix with only one non-zero entry in row i and column
j such that Gi,j = s

′
and Gi,j = 0 for all other entries, then the value of s

′
can

be determined by knowing two entries in MixColumns operation applied to G.
This means that if we give an input to the MixColumns operation a state

matrix which has only one nonzero entry, we can get this nonzero entry uniquely
if we know at least two bytes in the result of the MixColumns operation. Note
that, this MixColumns operation changes byte values in the same column as that
nonzero entry. To illustrate, as shown in Fig. 4, if we give a state matrix as input
which is all zeros except byte a to the MixColumns operation, then we can find
a uniquely if we know at least two entries among A, · · · ,H. In order to use this
property, we fault the SBox input to round (t − 2), which is τ⊕[σk+1,t−2].

After faulting the SBox input at round (t − 2), the attacker retrieves the
correct and the faulty hash results which are H and H

′
. Then, the attacker

calculates the difference between these as H ⊕ H
′
and calculates this difference

backwards by calculating the following equation:

Ω
′
= α−1 ◦ ψ−1(H ⊕ H

′
)

Fig. 4. Kupyna MixColumns with input which has only one nonzero byte

However, since the SBox operation is not linear, in order to calculate the
difference between the correct state and the faulty state just before SBox oper-
ation, we will use the bytes of partial state τ⊕[σk+1,t−1]

′
we recovered in the

previous step which corresponds to actual bytes in the correct state. Let xi be
one of the bytes recovered in the previous step, i be the byte index for xi and
G

′
[i] be the byte at index i at the faulty state, then

G
′
[i] = S(xi) ⊕ Ω

′
[i]

gives us the byte value of the faulty state after the SubBytes operation and
before the ShiftRows operation at round (t − 1), τ⊕[αk+1,t−1]. We do the same
for all values of xi we recovered in the previous step and we get the partial bytes
of the faulty state after the first SubBytes operation in the last round. After
that, if we go backwards, by applying the inverse of SubBytes (σ−1) operation
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to the bytes of the faulty state, we get the state difference after addition of the
round constant in the last round as:

G
′
[i] = σ−1(G

′
[i])

Since we know the bytes just before SubBytes operation in the correct state and
in the faulty state, we can then calculate their state difference as:

Ω
′′
[i] = G

′
[i] ⊕ xi

This difference will have only one nonzero byte in one column and using the
property of the MixColumns operation, we are able to retrieve the location of
the byte and the value of the byte at the input to the MixColumns operation at
round (t− 2), τ⊕[ψk+1,t−2]. This is the state matrix which has one nonzero byte
value and applying the inverse of ShiftRows to this state matrix (α−1(G

′
)), we

get the difference after the SubBytes operation at round (t− 2) and using Eq. 1,
we are able to get the SBox input to round (t − 2), so we are able to recover the
full state τ⊕[σk+1,t−2]. Then we are able to recover hk by going backwards from
the state τ⊕[σk+1,t−2].

After recovering hk, our goal is to recover the inputs to each block in order
to break the hash function by recovering the input message and the value of
IV. Since the attacker is only able to observe the correct and the faulty results,
we need to create a lookup table for each possible case when we apply fault
analysis to recover inputs of each block. The cost of creating such a lookup table
can be calculated as μ × 255 since we consider each fault applied to each byte.
This lookup table is created by applying possible differences that can come from
faults to hk before applying hk to the truncation function. In order to recover
mk and hk−1 for the block k, first the attacker faults τ+[σk,t−1] and recovers the
full state at the input to the SBox operation at τ+ block of round (t − 1). After
that, the attacker inverts that full state and recovers mk.

The next step is to recover hk−1. In order to do so, the attacker faults
τ⊕[σk,t−1] and recovers the full state at the input to the SBox operation at
τ⊕[σk,t−1] block of round (t − 1) and inverts this state to recover hk−1 ⊕ mk as
shown in Fig. 1. Using this known input and the recovered mk from the previous
step, the attacker is able to recover hk−1. The same procedure is applied for all
other blocks from 1 to (k − 1).

For the known byte random and known byte unique fault models, each fault
gives us information about the state we are aiming to recover. However, in the
random fault model, some faults may end up giving no information about the
state we are aiming to recover since the difference between the correct result and
the faulty result may be 0 if the faulted byte was truncated by the truncation
step.

So far, we have shown how to break Kupyna if it is used in the secret-IV
or secret prefix mode. We recover all inputs to the hash function including the
value of IV and m1. If Kupyna is used as the underlying block for HMAC [3],
then the output is calculated as:

HMAC(K,m) = H((K ⊕ opad)||H((K ⊕ ipad)||m))



Fault Analysis of the New Ukrainian Hash Function Standard: Kupyna 235

Fig. 5. Kupyna in HMAC mode

In this function, opad and ipad are known constants and K is the secret key we
are aiming to recover (see Fig. 5).

In this case, we first recover the input to the hash function which is ((K ⊕
opad)||H((K⊕ipad)||m)). This allows the attacker to know the values of H((K⊕
ipad)||m) and since the value of opad is known, the attacker can determine the
value of K. Using the value of H((K ⊕ ipad)||m), which is the output of the
first hash block as shown in Fig. 5, the attacker can recover the input which is
((K ⊕ ipad)||m). Then, the value of K can be recovered along with the value of
m if the secret prefix is applied to the value of m.

In the case of NMAC, two keys are employed and the NMAC is calculated as:

NMAC(M) = HK2(HK1(M))

This is basically applying K2 and K1 instead of the known value of IV in Fig. 5.
Similar to our attack in the HMAC case, we first recover K2 which is the input
to outer block, then we recover K1 which is the input to the inner block.

3.2 Fault Analysis on Kupyna with Unknown SBoxes

In order to recover S−1
i [0] for a specific SBox, firstly, the attacker needs to

find ineffective bytes [6], i.e., bytes values in the input for an index that make
the SBox output for that index 0. In this case, the SBox fault becomes an
ineffective fault since the correct calculation and faulty calculation produce the
same results. Algorithm 1 describes steps used to recover the SBox inputs that
produce 0 output for each SBox.

After finding the ineffective bytes, we subtract the round constants that are
added to those ineffective bytes to recover the SBox inputs. After finding the
SBox inputs that lead to zero, the next step is to recover all the SBox inputs and
outputs. In order to do so, we fault the SBoxes in the second round and we use
two nonzero values in the first column of the state, one being an SBox entry we
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Algorithm 1. Recovering Ineffective Bytes in Kupyna
1: // RC0 refers to the round constant matrix for round 0 in τ+

2: Set input M to 32 bits which has all zeros. We refer to input as M =
m1||m2||m3||m4.

3: Initialize Ineffective Bytes[0 · · · 3] to all 0s
4: for Each SBox index i from 0 to 3 do
5: for Each byte value from 0 to 255, called currentByte and IneffectiveByte is

not found do
6: Set mi to currentByte
7: Set input M to all zeros except mi which is currentByte
8: Calculate the hash value without fault, called H
9: Calculate hash value with fault to SBox S1,0[i][0]

10: if H is equal to H’ then
11: Set IneffectiveBytes[i] = currentByte and ineffectiveByte is found.
12: end if
13: end for
14: Calculate the SBox inputs which give output 0 for each SBox i as S−1

i [0] =
IneffectiveBytes[i] − RC0[0][i]

15: end for

recovered before and the other being the byte input we would like to find and
which forces the output of SBox in the second round to 0. Figure 6 shows how
the attacker is able to choose the input to the hash function in a way such that
the state becomes all zeros except two positions after the first round SubBytes
and the ShiftRows operations.

Figure 6 also shows how the state propagates after σ1,0. In this figure a is
an SBox input that has been recovered and S(a) is the corresponding output,
and m is the byte value that propagates from 0 to 255 until an ineffective fault
occurs. The attacker needs to take the ShiftRows operation into account since
the input to the MixColumns operation has to be all zeros except the two bytes
in the first column. The location of the fault is shown in red and faults are
applied to the bytes in the state after σ1,1. For S0, we use indices 0 and 4. For
S1, we use indices 1 and 5. For S2, we use indices 2 and 6 and for S3, we use
indices 3 and 7. Algorithm 2 explains steps to recover all SBox entries.

The above attack allows us to recover all the four SBoxes used in Kupyna.
Since the round key addition is modulo 264 addition, sometimes we get two
candidates for S(m). In this case, we ignore those candidates and only add
entries when we are able to determine S(m) uniquely for a given m.

4 Results and Discussion

For the first experiment, we simulate Kupyna-256 using three different fault
models and using random input of 64 bytes which is processed in two blocks after
padding. For known byte fault models, we estimate the number of faults required
to recover SBox input for each byte, that is number of Λ (SBox difference) values
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Algorithm 2. Recovering all SBox entries in Kupyna
1: Initialize RecoveredValues to empty set for each SBox.
2: // FirstIndex refers to index where m is iterated
3: // SecondIndex refers to index where a is used.
4: for each SBox index i from 0 to 3 do
5: Initialize a to S−1

i [0] recovered in algorithm 1
6: for each index from 0 to 7 which refers to bytes in the first column of ψ1,0 do
7: for each m from 0 to 255 do
8: Find hash input which makes MixColumns input in round 0, ψ1,0 to all

zeros except ψ1,0[FirstIndex][0] = Si(m) and ψ1,0[SecondIndex][0] = Si(a)
9: Get the Hash output without fault, called H

10: Get the Hash output with faulted SBox at S1,1[index][0] called H
′

11: If ineffective fault occurs, find the value of S(m) according to the Mix-
Columns operation that makes the output byte at index S1,1[index][0] = 0

12: If Si(m) is found uniquely, add (m, S(m)) to RecoveredV alues[i]
13: end for
14: Set a to the next value in RecoveredV alues[i] and find another m,
15: If all possible RecoveredV alues[i] are used for a, then go to next index
16: end for
17: end for

that uniquely define the value of x (SBox input) in Eq. 1. For unique fault model
the average number of Λ values that uniquely find x is 2.21. For random fault
model the average number of Λ values that uniquely find x is 2.43. After that,
we experiment each fault model 10 times and find the average number of faults

Fig. 6. Kupyna SBox fault at round 1 and recovering SBoxes
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required to recover half of state at τ⊕[σt,r−1] (Input to last round MixColumns),
than to recover τ⊕[κt,r−1] (Input to last round XOR addition of the round key),
which are needed to recover hk (output from the last block). After that we need
to recover two inputs to each of two blocks which are input values for h and m.
Our simulation results can be summarized as follows:

– For known byte random fault model, the average number of faults required to
recover half of the state σt,r−1 is 79.3, the average number of faults to recover
the full state κt,r−1 is 155.8 (h2 is recovered using the full state κt,r−1).
For block number 1, the average number of faults to recover the message
input(m1) is 153.1, the average number of faults to recover the hash input(IV)
is 157.7. For block number 2, the average number of faults to recover the
message input(m2) is 154.3, the average number of faults to recover the hash
input(h1) is 155.1. So, inputs to the hash function (IV, m1, m2, h1, h2) can
be recovered using ≈ 79.3 + 155.8 + 153.1 + 157.7 + 154.3 + 155.1 = 855.3
faults.

– For known byte unique fault model, the average number of faults required to
recover half of the state σt,r−1 is 70.7, the average number of faults to recover
the full state κt,r−1 is 141.3 (h2 is recovered using the full state κt,r−1).
For block number 1, the average number of faults to recover the message
input(m1) is 142.2, the average number of faults to recover the hash input(IV)
is 142.1. For block number 2, the average number of faults to recover the
message input(m2) is 140.6, the average number of faults to recover the hash
input(h1) is 143.9. These results are consistent in terms of the number of
expected faults required to recover each byte. So, inputs to the hash function
can be recovered using ≈ 70.7 + 141.3 + 142.2 + 142.1 + 140.6 + 143.9 =
780.8 faults.

– For random fault model, not every fault results in useful information since
bytes affected by the fault may be eliminated during the truncation step. In
this model, the average number of faults required to recover the half of the
state σt,r−1 is 454.5, the average number of faults to recover the full state
κt,r−1 is 587 (h2 is recovered using the full state κt,r−1). For block number 1,
the average number of faults to recover the message input (m1) is 535.4, the
average number of faults to recover the hash input(IV) is 570.3. For block
number 2, the average number of faults to recover the message input(m2) is
558.5, the average number of faults to recover the hash input(h1) is 543.1.
In average, number of faults is mostly between 8 and 9 per byte if random
fault model is used. So, inputs to the hash function can be recovered using
≈ 454.5 + 587 + 535.4 + 570.3 + 558.5 + 543.1 = 3248.8 faults.

For the SBox recovery attack, our simulation results confirmed that our
attack successfully recovers the entries for all the 4 SBoxes. More precisely, we
experimented 10 times using randomly selected SBoxes, and we were always able
to correctly recover all the SBox entries.

Table 1 summarizes our experiment results for differential fault analysis.
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Table 1. Summary of experiments

Recovered
values

Fault model

Known byte random
fault model

Known byte unique
fault model

Random byte random
fault model

m1 153.1 142.2 535.4

m2 154.3 140.6 558.5

h1 155.1 143.9 543.1

h2 79.3 + 155.8 = 235.1 70.7 + 141.3 = 212 454.5 + 587 = 1041.5

IV 157.7 142.1 570.3

Total 855.3 780.8 3248.8

5 Conclusion

In this paper, we investigated the security of Kupyna hash function, which is a
newly accepted standard by the Ukrainian government, against fault analysis.
We proposed two different fault attacks against Kupyna. In the first attack, we
assume that the attacker has all the information except the input to the hash
function and the attacker is trying to recover the input to the hash function.
In the second case, we assume that Kupyna is used with secret SBoxes and the
attacker aims to recover SBox entries for all SBoxes. According to our experi-
ments, if Kupyna-256 is using two blocks for a given input, the input and the
value of IV can be recovered using known byte random fault model with 855.3
faults, using known byte unique fault model 780.8 faults, using random fault
model with 3248.8 if fault models on average. We have also shown that mak-
ing Kupyna SBoxes secret does not add any security since round constants are
known and SBoxes can be recovered easily. We have also shown how our attacks
can be applied to different modes which are Secret-IV, Secret-Prefix, HMAC and
NMAC. Even though those attacks may not present a threat to the theoretical
security of Kupyna directly, they serve as example to demonstrate the fact that
it is important to protect implementations of Kupyna when utilized to build
MAC schemes, even if its Sboxes are kept secret.
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Abstract. Fault Injections (FI) against hardware circuits can make a
system inoperable or lead to information security breaches. FI can be
used preemptively in order to detect and mitigate weaknesses in a design.
FI is an old field of study and therefore numerous techniques and tools
can be used for that purpose. Each technique can be used at different
levels of circuit design, and has strengths and weaknesses. In this paper,
we review these techniques to show their pros and cons and more pre-
cisely we highlight their shortcomings with respect to the complexity of
modern systems.

1 Introduction

In the field of hardware security, Fault Injection (FI) is a technique to alter the
correct execution of a program in a chip. The resulting errors can be harnessed
in order to weaken the security of the device, by extracting cryptographic keys
for example. In the case of hardware security, the distinction between errors (the
internal system state is erroneous) and failures (the behaviour does not follow
specifications) is blurred. Indeed, the attacker can observe, or deduce, the state
of the device though its interaction with the environment; thus it is considered
that the attacker can observe errors and exploit them. For example, a timing
attack can leak a password during its verification. It is therefore common to use
the term errors to designate either errors or failures.

A fault may be caused by radiation (laser pulses, electromagnetic pulses,
alpha particles, . . . ), power glitches, clock glitches, abnormal temperatures, etc.
Faults are naturally found in hardware, but can also be voluntarily caused by
an attacker. In all cases, they can often be exploited for malicious activities.
Therefore faults must be mitigated.

FI can be used to infer the faults that can be created in a system, to analyse
the errors created as a consequence and whether they make the system vul-
nerable. The difficulty is in the trade-off between the size of the state space to
explore and the speed of the analysis. We will show that the complexity of mod-
ern system renders FI tools less precise because they cannot accurately model
the erroneous states.
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In this paper, after a context presentation in Sect. 2, we review the techniques
and tools to assess the vulnerability of a device to FI in Sect. 3. The shortcomings
of actual techniques will be presented in Sect. 4 as well as a discussion on how
to improve them. Finally, the conclusion is drawn in Sect. 5.

2 Context Safety/Security

FI is an old research discipline [1–4], which originates from the study of fault
tolerant systems, mainly from aerospace. FI is defined by Arlat [5] as a valida-
tion technique of dependability for fault tolerant systems. It consists in observ-
ing system behaviour in presence of faults defined with a fault model. At the
beginning, FI was applied on hardware components. Consequently, correspond-
ing fault models were comprised of effects that were deemed representative for
failing logic elements, in particular stuck-at logical zero or one. One would be
able to inject a fault at transistor level which models an unintended physical
effect, such as a signal transition caused by a heavy ion hit and resulting in a
communication error at system level for example. While this approach is close
to reality, a practical implementation is barely possible.

All FI techniques aim to solve several problems:

– Injection of faults;
– Observation of their effects;
– Intrusiveness of the solution;
– Capacity to explore the entire state space.

The FI techniques have been recognized for a long time necessary to validate
the dependability of a system by analysing the behaviour of devices when a fault
occurs. More recently, secure devices have to face fault attacks which are similar
to failure problems. Efforts have been made to develop techniques for injecting
faults into a system prototype or model.

When considering information security, fault injection assumes that the
attacker is able to target specific assets in the system. It means that she knows
exactly what kind of behaviour she requires to reach her goal. In case of targeting
cryptographic algorithms [6,7] or assets (keys, tokens, . . . ) several solutions have
been proposed to protect them against fault injections [8]. Applications can be
designed to be resilient against FI, but this resilience mainly focus on software
execution of these applications, in some cases this can be a problem, indeed a
complete confidence is given to hardware.

3 Fault Injection Techniques

Several techniques exist to inject faults, all of them with advantages and disad-
vantages. Here is an overview of these techniques.



When Fault Injection Collides with Hardware Complexity 245

3.1 Hardware-Based FI

Hardware based FI aims at disturbing hardware with physical and environmental
parameters (heavy ion radiation, electromagnetic interferences [9], etc.), injecting
voltage dips on power rails [10,11] laser fault injection [12] or modifying the value
of some pins with circuit editing. The main advantage of this family of techniques
over the other solutions is that they evaluate the final device. To achieve this
kind of FI it is necessary to possess a final version of the evaluated device.

The effects of physical injections are difficult to control and repeatability
of experiment is hard to achieve. To obtain repeatability, instead of injecting
physically a fault, injection mechanisms emulate effects of physical perturbations
on hardware such as pin-level FI [13].

Fault Injection system for Study of Transient fault effects (FIST) uses heavy-
ion radiation or power disturbance faults to create faults inside a chip when it is
exposed to radiation. It can cause single or multiple bit-flips producing transient
faults at random locations directly inside a chip, which cannot be done with
pin-level injections.

Messaline [5] is a pin-level fault forcing system. It uses both active probes
and sockets to conduct pin-level fault injection. It can inject stuck-at, open,
bridging and complex logical faults, among others. It can also tune the duration
of the fault existence and its frequency. RIFLE [14] is also a pin-level fault
injection system for dependability validation. This system can be adapted to a
wide range of target systems and faults are mainly injected in processor pins. FI
is deterministic and can be reproduced if needed. Different kind of faults can be
injected and the fault injector is able to detect whether the injected fault has
produced an error or not without specific hardware.

Obviously, hardware-based tools are also hardware dependent. Furthermore,
the setup of these hardware-based injectors is rather complex.

3.2 Simulation-Based FI

Simulation based hardware fault injection techniques simulate hardware descrip-
tion of tested circuit using high-level models (mostly Hardware Description Lan-
guage (HDL) models). It consists in injecting faults into that model to evaluate
their impacts. Most of the tools modify the hardware description of tested cir-
cuit to include the components necessary to inject faults. These fault injection
components can be designed to inject different fault behaviours depending on
the fault model. Faults can also be injected using hardware description language
simulator commands which allow variables and signals of circuit being modified.

A major disadvantage of simulation based techniques is that they are
extremely slow. Simulating the register transfer level (RTL) description of a cir-
cuit is multiple orders of magnitude slower than actual circuit operation speed.
Hence, even for relatively small processors, simulation based fault injection tools
can only evaluate fault propagation for a very short time interval.

VERIFY [15] (VHDL-based Evaluation of Reliability by Injection Faults Effi-
ciently) uses an extension of VHDL for describing faults correlated to a com-
ponent, enabling hardware manufacturers to express their knowledge of fault
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behaviour on their components. Multi-threaded fault injection which uses check-
points and comparison with a golden run is used for faster simulation of faulty
runs. Proposed extension to VHDL language unfortunately requires modifica-
tion on language itself. VERIFY uses an integrated fault model which cannot
be extended.

MEFISTO-C [16] conducts fault injection experiments using VHDL simu-
lation models. The tool is an improved version of MEFISTO tool which was
developed jointly by LAAS-CNRS and Chalmers. MEFISTO-C uses a VHDL
simulator and injects faults via simulator commands in variables and signals
defined by a VHDL model. It offers to users a variety of predefined fault mod-
els as well as other features to set-up and automatically conduct fault injection
campaigns.

FAUMachine [17] is a tool allowing simulation of complete systems, it was
the main core for different works in the field of fault injections [18,19]. Its partic-
ularity is that it allows to simulate various types of faults and in various devices
connected to the system, while making possible the observation of the impacts
on the total operation of the system

3.3 Emulation-Based FI

System emulation uses hardware prototyping on Field Programmable Gate
Arrays (FPGA) based logic emulation systems [20,21]. This technique has
been presented as an alternative solution in order to reduce time spent during
simulation-based fault injection campaigns.

This technique allows designer to study the actual behaviour of circuits in
application environment, taking into account real-time interactions. However,
when an emulator is used, initial VHDL description must be complete and fully
synthesizable. Modified circuit contains sequences of operations which can flip
their output bit based on a control signal value. Such techniques require an
additional control mechanism to specify time and location of fault injection in
circuit. If such a control mechanism is implemented in circuit, its complexity
increases with number of fault injectable memory elements.

Antoni et al. [22] proposed a technique to inject a fault on chosen memory
elements at run time on a FPGA using runtime reconfiguration. This eliminates
the need for having a complex control circuit to determine injection location.
However, the time required to reconfigure the circuit could be significant when
compared to the total application run time.

Civera et al. [20] proposed another solution to provide a more flexible con-
trol over runtime fault injection. They used modified flip-flop circuits capable of
injecting faults based on a control bit associated with each flip-flop. All these con-
trol bits are tied together like a scan-chain and at run time can be programmed
to inject fault in any desired flip-flop in the circuit.
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3.4 Software Implemented FI

The objective of these techniques consists in reproducing at software level errors
that would have been produced by faults at hardware level. They are mostly
used in order to detect and predict vulnerabilities with respect to hardware
fault injection. Software implemented fault injection (SWIFI) tools use a software
level abstraction of fault models in order to inject errors in software while it runs
or by modifying programs before execution. This approach does not need any
hardware modification. SWIFI provides a way to test complete systems including
the operating system and the applicative layer. This makes SWIFI techniques
quite popular and a large number of such tools exists, Table 1 summarizes some
of them and explore their particularities.

Table 1. Overview of some SWIFI techniques

SWIFI technique Fault model Fault target Injection point

CEU [23] Bit flip Variables Runtime
(interruptions)

DOCTOR [24] Bit flips Communications,
variables

Preruntime

EFS [25] Bit flips, code insertion,
data modifications

Control flow, variables Runtime (OS
service)

FERRARI [26] Address, data or flags
modifications

Control flow, variables Runtime (parallel
process)

FIES [27] Bit flip, bridging and
stuck-at faults

Control flow, variables Runtime

XCEPTION [28] Bit flip, bridging and
stuck-at faults

Variables Runtime
(interruptions)

The most common fault models are:

– instruction skip (one or several instructions are not executed),
– instruction modification (one or several instructions are modified according

to a pattern such as single bit-flip, random change, . . . ).

Common software mechanisms used for run time FI, such as perturba-
tion functions require a modification of the program. Unfortunately, this extra
instrumentation causes execution overhead that will affect the system behaviour
(speed, memory consumption, . . . ). For example, FERRARI [26] and EFS [25]
tools require some context switches between its fault injection process and target
system process.

A common problem with run time approach is the intrusiveness which refers
to the alteration of the original system due to fault injection experiment setup
(e.g. changes in program flow, additional components, temporal variation, ...).
Depending on the actual intention of fault injection, respective tools have to
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cope with completely different requirements. In contrast to an ideal tool which
always provides low intrusiveness, high visibility and high performance, available
tools are only specialized on a subset of these requirements.

The major drawback of SWIFI is related to state space problem. The tools
often generate much more faults than any other techniques (since the abstrac-
tion level has a richer representation, i.e. there may be 232 possible instruction
values in a 32-bit system and less that 232 wires in the chip). Yet most of the
time generated faults do not lead to failures, the error may have been silently
suppressed during the execution. The challenge is to either generate only a min-
imal set of faults (those that can lead to a Silent Data Corruption) or to prune
them while they are generated. This leads to several optimization phases during
simulation and remains a difficult challenge.

In the context of information security, errors can often be exploited even in
the absence of failures. An error can cause copying of a secret in a vulnerable
part of memory for example. Since SWIFI tools use a software level abstraction
of fault models, they cannot capture such vulnerabilities.

4 Techniques Validity

We consider ourselves as evaluators. When it comes to FI, we want to evaluate if
a technique is more appropriate in order to evaluate behaviour of a device when
a fault occur.

Various injection means exist and several techniques have been using them
in different way and targeting several type of devices. Since simulation and emu-
lation based techniques require a white-box model (access to HDL sources, . . . )
that are most of the time not available to evaluators.

In this section we limit ourselves to hardware-based and software-based injec-
tions techniques.

4.1 Experiences

In order to test the consistency of SWIFI models, in particular their software
level abstraction of fault models with real observations, we conducted different
experiments, which we will present here.

Faustine Platform. Our platform, called Faustine Fig. 1, is made of a Keysight
33509B pulse generator, a Keysight 81160A signal generator and a Milmega
80RF1000-175 power amplifier, connected in sequence to generate a signal. This
signal then passes through a Langer RF probe RF B 0.3-3 located on the targeted
chip to generate an Electromagnetic Fault Injection (EMFI).

In order to launch a fault injection, a synchronization signal (a trigger) is
sent by the targeted chip General-Purpose Input/Output (GPIO) (controlled
from the code) directly to the 33509B pulse generator. This experimental trick,
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Fig. 1. Overview of Faustine platform

possible when the attacker has control of the code (i.e. only for vulnerability
assessment) is not mandatory. Other synchronization possibilities include sniffing
communications with the target or measuring its EM emissions to find a relevant
pattern.

The location of the probe on the chip was chosen after a scan that deter-
mined the most sensitive area on the chip. The same location was kept for all
experiments.

Microcontroller. We first analyse a Microcontroller (µC). The targeted board
is an STM32VLDISCOVERY board with an STM32F100RB chip, embedding
an ARM Cortex-M3 core running at 24 MHz (41.7 ns clock period). As shown in
Fig. 2, probe is just on top of the chip.

On this board the tested software is a PIN code checker, the entered PIN
code is compared with the internal PIN code if it is false (false=1 in Listing 1.1),
the status variable takes the value 0xFFFFFFFF, otherwise it takes 0x55555555.
Thus in the first case, access will be denied, in the second it will be granted.

if(false == 1) {

status = 0xFFFFFFFF; }

else {

status = 0x55555555; }

Listing 1.1. Targeted C code
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Fig. 2. STM32 under probe

cmp r3, #1 ; r3 contains *false*

ite eq ; if then else

moveq.w r4, #4294967295 ; 0xFFFFFFFF

movne.w r4, #1431655765 ; 0x55555555

Listing 1.2. Resulting assembly (thumb2)

As we can see on Listing 1.2, in order to modify the behaviour of the program
and thus get access without the PIN code, we can target the if then else (ite)
instruction. If it is possible to not execute it, then the next two instructions will
execute in sequence and, as their result is stored in the same register (r4), only
the second assignment will have an impact (overwriting the first one).

In the case of SWIFI, we consider the software level abstraction of fault
model by deleting (manual edition of the binary) this instruction which allows
us to see that it is indeed the right target, then we target the execution of this
instruction with a hardware fault.

In this way, when we inject our fault, we try to synchronize with the code
snippet in Listing 1.2 and target the instruction ite eq. In 10% of the cases, the
execution is faulty (status = 0x5555555), proving that the SWIFI allows us in
this case to find a point of sensitivity and thus to inject our fault effectively.

However, we found that different timings (over a span of 5 instructions) were
able to get our faulty behaviour. This can have several plausible explanations,
such as the fact that several different skipped instructions can lead to the same
impact, or that the ite eq instruction can be impacted at different levels of its
execution pipeline.
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System-on-Chip. We then analysed a System-on-Chip (SoC). The targeted
board is a Raspberry Pi3 board with a BCM2837 chip, which embeds 4 ARM
Cortex-A53 cores, running at up to 1.2 GHz (833ps clock period).

while(1){

wait(x*desynch value+x);

turn_on_LED(y);

wait(x*activation duration+x)

turn_off_LED(y);

}

Listing 1.3. Targeted C code

Here we want to evaluate the impact of a fault and compare it to the SWIFI
models. The goal is to see if a hardware generated fault can be explained by
a software abstraction of the fault model, represented by software modifica-
tion. Thus we inject faults at different timings during the execution of a loop
(Listing 1.3) on 2 of the 4 cores, others being used to communicate with the
host, while desynchronizing them (they are not started at the same time). The
2 cores (x) are activating their own signal (y) during a given time in parameter
(x ∗ activation duration + x), this leads to a time span visible in Fig. 3.

Fig. 3. Signals are desynchronized. Channel 1 for GPIO signal sent by core 1, channel
2 for GPIO signal sent by core 2. Time span between the two rising edges is due to
“x ∗ desynch value + x” in Listing 1.3.
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Whatever the timing of the injection, the impact was the same: this had
the effect of largely modifying the execution time of the loop on each core,
alternately faster or slower in a random way. Another effect is to synchronize
the different cores between them (in Fig. 4), but also to break one of the two
channels of communication with our host (application channel on one core and
debug channel using JTAG).

Fig. 4. Signals are shorter and synchronized. First, time span seems to have disap-
peared, then “x ∗ activation duration + x” (in Listing 1.3) seems to have changed to
be equal in the 2 cores.

In this case we were not able to find a match with software abstraction of
the fault model as usually used in SWIFI techniques. So this lead us to question
what makes the difference between a µC and a SoC and thus what prevents us
from using SWIFI in the second case.

4.2 System Complexity

Abstraction Layers. A computing system is a complex device. In order to
allow humans to build mental models of how such systems work, this complexity
is often hidden behind abstraction layers as visible in Fig. 5.

There is a main division between these layers corresponding to the hard-
ware/software interface constituted by the Instruction Set Architecture (ISA).
On the upper side, software is constituted of a succession of instructions.
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Software

Microarchitecture

Instruction set

OS Drivers

Applications

Datapath

Registers ALU. . .

Fig. 5. Abstraction layers

On the lower side, the micro-architecture (hardware) is responsible for upholding
this abstract representation.

The micro-architecture is widely different if we consider a µC or a SoC.
In the first case, the instruction execution flow is quite simple, with a single
core, a simple memory hierarchy, in-order execution, etc. In the case of a SoC,
the micro-architecture can be quite complex. Several core can share the same
memory space, with a complex memory hierarchy (several cache levels, shared
or not). Instructions can be executed out-of-order or even speculatively. What
happens in hardware differs from the simple model provided by the ISA.

SWIFI Shortcomings. The hardware part is mostly fixed, the application
designer cannot modify it whereas she controls the software part of the appli-
cation. In consequences, in order to protect her application, she will act on the
software only. This fact remains a main reason that SWIFI techniques are quite
popular: they allow the application developer to act upon the results. Therefore
SWIFI techniques are preferred by software developers whereas hardware-based
fault models are preferred by hardware designers in order to secure the system.
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The problem is that the application still executes on a given hardware that
may or may not be vulnerable to fault injection. The application developer would
like to free herself from this responsibility by considering only software.

Yet SWIFI cannot capture the full extent of hardware fault injection con-
sequences. Indeed they are not able to analyze the range of interactions and
components present at the hardware level (the microarchitecture in Fig. 5) by
abstracting the behaviour at the software level. Consider a Direct Memory Access
(DMA) transfer for example. In this case, a section of memory is copied to
another without the Central Processing Unit (CPU) involvement. Instructions
are present to describe the desired memory transfer then it is enforced in parallel
of the program execution. Therefore, any fault on the DMA transfer cannot be
captured by a SWIFI technique.

Complexity Evolution. It can be argued that cases that cannot be captured
by SWIFI, such as DMA transfers, are special cases not representative of classical
applications.

But as we have show in Sect. 4.1, if these asynchronous behaviours are seldom
present in simple systems, they are ubiquitous in modern SoCs. In order to
squeeze the maximum performance out of modern SoCs, a lot of processing is
done in parallel of the instruction flow execution.

The recent trend is in more complex systems, not simpler. As a consequence,
SWIFI techniques are less and less able to capture the extent of possible errors
in these systems.

5 Conclusions

FI tools are quite useful in the context of dependability and information security.
They can be used to assess the security of a system with respect to fault attacks.
Application developers mostly use SWIFI tools to predict the behaviour of their
program in the event of a fault according to a software abstraction of the fault
model. However, we have seen that the part targeted by the fault attacks is at
the microarchitecture level which is the physical representation of the system,
we have seen that in the case of a simple system, such as an µC (also in [29,30]),
it was possible to find an abstraction at the software level of behaviour occurring
at the hardware level. Nevertheless, through the experiments we conducted it
appeared to us that on systems where the microarchitecture is more complex,
as in the case of the SoC it became complex to find an abstraction at the soft-
ware level of the models of faults corresponding to those generally considered
by SWIFI methods (bit-flip, stuck-at, skip instruction, etc.). As a consequence,
SWIFI is less and less relevant for such systems.
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Abstract. Cyber-physical systems (CPSs) integrate programmable
computing and communication capabilities to traditional physical envi-
ronments. The use of SCADA (Supervisory Control And Data Acquisi-
tion) technologies to build such a new generation of CPSs plays an impor-
tant role in current critical national-wide infrastructures. SCADA-driven
CPSs can be disrupted by cyber-physical attacks, putting at risk human
safety, environmental regulation and industrial work. In this paper, we
address the aforementioned issues and provide a discussion on the mit-
igation techniques that aim to optimize the recovery response when a
SCADA-driven CPS is under attack. Our discussion paves the way for
novel cyber resilience techniques, focusing on the programmable com-
puting and communication capabilities of CPSs, towards new research
directions to tolerate cyber-physical attacks.

1 Introduction

Current Cyber-Physical Systems (CPSs) integrate modern computation and net-
working resources to control physical processes. These systems use sensor mea-
surements to get information about physical processes, then control processing
units to analyze and make decisions that are performed by system actuators, e.g.,
to maintain the stability of the physical processes. Supervisory Control And Data
Acquisition (SCADA) is a traditional technology to build CPSs. SCADA pro-
tocols can be used to monitor and control hardware that may be separated by
relatively large distances. SCADA-driven CPSs play an important role in most
national critical infrastructures. This includes electrical transmission, energy dis-
tribution, manufacturing and supply chain, waste recycling, public transporta-
tion, e-health, financial services and several others.

Disruption of SCADA-driven CPSs have a direct impact in the physical
world. Cyber-physical attacks may lead to negative impact on human safety,
cause harm in natural environments, interrupt industrial process continuity,
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hence leading to large economic losses, generate legal problems and damage
the reputation of the affected organizations [9,12].

Traditional protection techniques have been centered in detection and pre-
vention methodologies, in order to build preemptive approaches that aim at iden-
tifying and responding to potential threats, even when vulnerability removal is
not possible [10,11]. Attack tolerance should be enforced in such environments,
in order to provide a correct service even in the presence of successful attacks
against the system. The resulting systems should satisfy high availability require-
ments to guarantee the execution of the critical tasks. To guarantee that the
whole system remain operational even in the presence of attacks, the activation
of mitigation techniques shall be enforced, even if that means to work under
graceful degradation modes.

Graceful degradation is the ability of a system to continue functioning even
after parts of the system have been damaged, compromised or destroyed. The
efficiency of the system working in graceful degradation usually is lower than the
normal performance and it may decrease as the number of failing components
grows. The purpose is to prevent a catastrophic failure of the system. In this
paper, we address the aforementioned issue, and discuss the use of mitigation
techniques aiming to ease and improve recovery response when a SCADA-driven
CPS is under attack. Our discussion paves the way for orchestration and config-
uration of novel techniques, focusing on current capabilities of modern SCADA
systems, capable of enabling programmable computing and communication func-
tionalities.

The paper is structured as follows. Section 2 provides the background.
Section 3 surveys representative mitigation techniques for SCADA-driven CPSs.
Section 4 provides a discussion about a novel mitigation technique and how to
optimize the response of the system under an attack using the existing mitigation
approaches. Section 5 provides the conclusions of the work.

2 Background

SCADA-driven CPSs have special requirements that may affect traditional secu-
rity mechanisms designed for traditional IT systems. In the following, some of
these requirements are reviewed.

2.1 Cyber-Physical Systems

A Cyber-Physical System (CPS) consists of two main parts. First, a pro-
grammable (cyber) layer, containing the computing and network functionali-
ties. Second, a physical layer, representing dynamic automation processes. Both
together hold the series of distributed resources leading the environment that is
expected to monitor the behavior of physical phenomena, as well as to taking
the necessary actions to get control over them.

The components of the cyber layer control the behavior of the physical layer
and the feedback of the physical layer affects the decisions of the cyber layer.
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The CPS become smarter as the interaction between physical and cyber layers
grows up. As a consequence, they get more vulnerable to attacks. The integra-
tion between layers is an important point to evaluate and determine how the
information flow should be protected.

The cyber layer uses security mechanisms similar to the mechanisms for
traditional information systems. The physical layer has different requirements
and can be controlled in different ways. For example, considering the model of
the involved physical process. However, it is important to see the system as a
whole, also thinking about the information flows to and from the cyber layer
and the interconnected networks to determine how to protect them.

Most of the proposals work only on the cyber layer or in the physical layer
in a separate way, without keeping in mind the information flows from one layer
to another or the communication patterns allowed between different compo-
nents. Security solutions should work on a more general approach that takes
into account attack vectors that exploit vulnerabilities of different components at
the same time instead of focusing on analyzing isolated components. In addition,
correlating events may help to detect security incidents that occur in different
components and can not be detected analyzing the components separately.

2.2 Specificity and Characteristics of SCADA-Driven Systems

SCADA-driven systems have particular characteristics and requirements that
must be taken into account with respect to traditional information systems. For
instance, they may need to satisfy real time constraints, e.g., for the execution
of critical functionality. This may include satisfying high speed communications,
synchronization of tasks, etc.

A second characteristic is the priority of such systems at guaranteeing avail-
ability constraints. Indeed, availability and service continuity requirements in
SCADA-driven systems are a crucial factor, more than any other property
addressed from an information technology standpoint. The whole system may
require to prove and fulfill the ability of the system in order to continue its
operations through enabling redundant controls, while some mitigation patches
are applied to the affected resources, even if this requires moving the system to
degraded state modes.

Finally, other representative characteristics may lay on the geographic dis-
tribution of system components (e.g., some of the monitoring or surveyed nodes
being deployed at remote locations), the constrained nature of the computation
resources associated to some of the field devices (e.g., in terms of memory and
processing power), and the existence of outdated and highly vulnerable legacy
systems, given the lifetime cycle of SCADA resources (much longer than any
other equivalent technology deployed over traditional information systems).

Attacks against SCADA-driven CPSs may exploit vulnerabilities at both the
physical and the cyber layers. Regardless the layer, attacks may exploit vul-
nerabilities in the associated resources of the whole system, such as transport
protocols, low-level transmission technologies, system-oriented monitoring lan-
guages, etc.
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3 Mitigation Techniques

The main objective of protecting a SCADA-driven CPS is to enable attack tol-
erance while satisfying the requirements listed in Sect. 2.2. Attack tolerance
assumes that a system remains to a certain extent vulnerable and attacks on
components can happen and be successful. However, the CPS must ensure that
the overall system nevertheless remains operational and can continue to function
under graceful degradation [16].

One of the earliest techniques to respond and mitigate the effect of an attack
is the use of redundancy. This technique uses alternative copies of, e.g., sys-
tem components, in order to guarantee system availability. If the system finds
that the output values of a primary component are not correct (e.g., accord-
ing with the output values of redundant components), then the responsibility
is transferred to one of the redundant components assuming that there was an
infiltration or compromise. This technique is mostly used for achieving fault tol-
erance in case one of the components fail. However, its use for security purposes
has some drawbacks. Since the replicas are identical, if the attacker manages to
compromise one of them, then the rest of the replicas can be compromised too.
Nonetheless, if the replicas are placed geographically distributed, then this app-
roach may be useful for attacks that exploit vulnerabilities that require physical
access to the devices. But this mitigation approach would be based on the inabil-
ity of the attacker to physically reach the other locations. Regardless, this would
not solve the possible malicious access through the network. For this reason,
redundancy is often combined with the use of diversity. The goal is to guarantee
the existence of different replicas failing in an independently manner and with
non-overlapping patterns. To achieve this, replicas may hold different hardware,
platform or software. Thus, the system is protected from specific infrastructure
failures, errors, bugs or vulnerabilities. Authors in [4] use this approach with
hardware and software diversity to achieve cyber-resilience of industrial control
systems. This technique may also be used to achieve resilient web services [6,7].
This approach increases the management complexity of the platform as well as
the effort required to control the vulnerabilities and keep all the components cor-
rectly patched. It also increase the required investment to acquire the redundant
components.

In a similar vein, recovery techniques may also help to repair the damages
caused by an attack against the systems. For instance, imagine the situation
in which roll-back actions can be enforced to returning the system to a pre-
vious state that was considered as correct prior an attack. If this is possible,
complementary techniques could include resuming and deploying of operations,
re-execution of disrupted operations, as well as re-installation of corrupted files
and renewal of cryptography [16]. Other examples include the use of periodic
software rejuvenation in a proactive and reactive mode [14], in a way in which a
system gets recovered automatically and periodically whenever an attack against
the system is detected. However, this approach has the same problem as the
redundancy technique, since the vulnerabilities are not removed, the attacker
may compromise the system again.
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Another example is the use of model-based responses, in which a model of the
physical process is computed in order to generate an approximation of the normal
behavior of the system prior the execution of an attack. This approach can use as
input parameters an estimation of the true value of, e.g., system sensors; as well
as the resulting value after the attack has occurred, i.e., right after the sensor
has been tampered [3]. This approach should be used only as a temporal solution
because using a simulation value instead of the real sensor measured opens the
control loop and this may bring cause problems in the system behavior.

Mechanisms to detect attacks in SCADA-driven CPSs have been developed
but there is very little work on how to automatically respond to them. Most of
the response solutions are manual or aim at absorbing the impact of the attack
through redundancy, diversity, restoration or containment techniques. However,
more effective solutions that take into account the dynamic and changing nature
of an attacker could be achieved, e.g. using a technique that considers dynamic
adaptation of the system as a reaction, i.e. the system could deploy different
defense policies depending on the attack or it could also modify the executed
actions as the attack is going on. In this line, authors in [8,13] have proposed
response solutions based in the network reconfiguration. In these solutions, the
network controller coordinates the mitigation strategies. However, this approach
could be enhanced using software reflection, in order to achieve a system capable
of modifying the code to achieve state reparation. Software reflection is a tech-
nique appropriate for high-level languages. However, since the SCADA-driven
CPSs controllers are located within the cyber layer of the system, they can
monitor the system and apply these mitigation techniques.

4 Mitigation of Attacks Using Software Reflection

A promising technique to be fully explored under the problem domain addressed
in this paper deals with the use of software reflection to handle attack on
SCADA-driven CPSs. Software reflection is a meta-programming technique that
allows a system to adapt itself through the ability of examining and modifying
its execution behavior at runtime. As a mitigation technique, software reflection
has the potential to allow a system to react and defend itself against availabil-
ity threats. When a malicious activity is detected, the system shall dynamically
change the implementation to activate remediation techniques to guarantee that
the system will continue to work. During the development process it is impor-
tant to do non-regression testing over the alternatives defense implementation to
verify that the system is still correct according to the functional specifications.

Notice that software reflection provides the ability to analyze, inspect and
modify the structure and behavior of an application at runtime. This allows
the code to inspect other code within the same system or even itself. Reflection
allows inspecting classes, examining fields, changing accessibility flags, dynamic
class loading, method invocation and attribute usage at runtime even if that
information is unavailable at compile time.

This kind of approach has been successfully explored to mitigate attacks
against Internet web services [2] restoring the interface of a system to the state
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previous to the attack. The idea relies on enabling reflection as a remediation
techniques, when attacks are detected. However, research challenges include the
application of this technique in more complex scenarios as well as modeling and
orchestration of the appropriate plans in order to activate the technique, while
guaranteeing the availability of the service, even if offered under a degradation
mode.

Software reflection can complement the list of mitigation techniques listed in
Sect. 3, in order to enable an optimal management of attacks against SCADA-
driven CPSs. Research work remains to be explored, in order to put in practice
such a solution. Some concerns, directions and discussions to address the afore-
mentioned goal is presented in the sequel.

4.1 Discussion and Research Directions

The first concern deals with performance overhead. Reflection involves program-
ming types that are dynamically resolved. Some optimization that typically are
done in advance may risk to fail performance guarantees. In addition, reflection
takes execution time and memory to discover and manipulate class properties
during the runtime execution of the system. Reflective operations may suffer
from slower performance than their non-reflective counterparts. It should be
avoided in sections of a code that are called frequently in performance sensitive
applications [5]. This may be used or restricted to small code sections that are
not intensively called.

The second concern is in terms of access restrictions. Reflection requires
runtime permissions which may not be present when running normally. This is an
important consideration for code which has to run in a restricted security context
[1,5]. Reflection may allow to access and update fields, and execute methods
that are forbidden by normal access or visibility rules. This is achieved due to
reflection breaks object encapsulation. If this technique is not used properly, it
increases considerably the attack surface of a program and may allow malicious
access to information that is supposed to be hidden, access files on the local
machine, allow the injection of malicious native code or load restricted classes.

Solutions to the aforementioned problem exist. For instance, the issue may
be addressed by using dynamic object ownership concepts, e.g., to design an
access control policy to reflective operations [15]. This policy grants objects full
reflective power over the objects they own but limited reflective power over other
objects. This is done through an object ownership relation to determine access
rights to reflective operations on a per-object basis and based on the dynamic
arrangement of objects rather than on static relations between structural entities.

In terms of complexity, reflection procedures fail more often at runtime than
during compilation. For instance, changing the object to be loaded will probably
cause the generated loading class to throw a compilation error, but the reflexive
procedure will not see any difference until the class is used during runtime.
Moreover, determining exactly what the code is doing is quite complex due to
reflection can obscure what is actually going. So, the only way to truly determine
its behavior is to execute the code and see how it would behave at runtime with
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sample data. However, to do this for every possible data combination is nearly
impossible. In addition, this increases the complexity of the maintenance of the
software due to the reflection code is also more complex to understand than
the corresponding direct code. Many of the security problems are due to human
programming errors and this approach increases the complexity of the solution.
So, it also increases the likelihood of errors in the code.

Finally, languages with software reflection capabilities must to be explored
under the problem domain context of SCADA-driven CPSs. Note that reflection
is an advanced development technique for high-level languages such as Java,
Python and Ruby. The possibility of extending traditional languages for the
family of systems explored in this paper, e.g., given the low resource capabilities
of some of the components, may be a barrier to our proposal. Nevertheless, the
technique may certainly be applied by those component at the cyber layers,
holding much less resource constraints.

5 Conclusion

This paper has surveyed some current trends in terms of mitigation techniques
aiming to optimizing the recovery response of cyber-physical systems (CPSs)
under attack. We have focused on CPS built using SCADA (Supervisory Con-
trol And Data Acquisition) technologies, in order to provide their computing and
communication capabilities, beyond traditional physical components. We have
enumerated some ongoing solutions in order to build higher resilient environ-
ments. We argued that the use of software reflection, in addition to traditional
techniques such as redundancy, diversity and automated recovery is a promising
way to enable an efficient response under the presence of cyber-physical attacks.
We have also discussed some concerns and limitations that would deserve new
research directions to enable and orchestrate such a technique, in order to drive
our next steps and future work.
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Abstract. Relationship-based access control (ReBAC) extends
attribute-based access control (ABAC) to allow policies to be expressed
in terms of chains of relationships between entities. ReBAC policy min-
ing algorithms have potential to significantly reduce the cost of migration
from legacy access control systems to ReBAC, by partially automating the
development of a ReBAC policy. This paper presents algorithms for min-
ing ReBAC policies from information about entitlements together with
information about entities. It presents the first such algorithms designed to
handle incomplete information about entitlements, typically obtained from
operation logs, and noise (errors) in information about entitlements. We
present two algorithms: a greedy search guided by heuristics, and an evolu-
tionary algorithm. We demonstrate the effectiveness of the algorithms on
several policies, including 3 large case studies.

1 Introduction

In relationship-based access control (ReBAC), access control policies are
expressed in terms of chains of relationships between entities. This increases
expressiveness and often allows more natural policies. High-level access control
policy models such as ABAC and ReBAC are becoming increasingly important,
as policies become more dynamic and more complex. This is reflected in the
widespread transition from access control lists (ACLs) to role-based access con-
trol (RBAC), and more recently in the ongoing transition from ACLs and RBAC
to ABAC. High-level policy models allow concise policies and promise long-term
cost savings through reduced management effort.

Policy mining algorithms automatically produce a “first draft” of a high-level
policy from existing lower-level data. They promise to drastically reduce the cost
for an organization to migrate from a legacy access control technology to a high-
level policy model. There is a significant amount of research on role mining, and
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role mining is supported by several commercial products, including IBM Tivoli
Access Manager and Oracle Identity Analytics. Research on ABAC policy mining
is much younger but growing as adoption of ABAC increases [4,7,13,14].

Mining of ReBAC policies, expressed as object-oriented ABAC policies with
path expressions, has been explored in recent work by Bui, Stoller, and Li
[3]. They present two algorithms, called the greedy algorithm and the evo-
lutionary algorithm, to mine a ReBAC policy from a set of entitlements, a
class model, and an object model. An entitlement is represented as a tuple
〈subject , resource, action〉, indicating that subject is authorized to perform action
on resource.

The meaning of a policy π, denoted [[π]], is the set of granted entitlements.
Both algorithms produce mined policies whose meaning is exactly the given set of
entitlements. Consequently, they do not handle cases where that set is incomplete
or noisy, which is often the case in practice. We propose more practical policy
mining algorithms that do.

Incomplete information about entitlements is often readily available from
operation logs, even when complete information is not, e.g., because the policy
is not enforced by software, or because the policy is expressed using obscure ad
hoc code. Many systems produce operation logs, e.g., for auditing or accounting.
A set of entitlements can easily be extracted from a log. However, that set is
typically incomplete, i.e., lacks some entitlements granted by the policy, because
those entitlements were not exercised during the period covered by the log.
We refer to these as missing entitlements. If the log contains entries for access
requests that were denied, a set of denials can also be extracted from it. We
represent denials as 3-tuples, just like entitlements.

Information about entitlements, even when nominally complete, is often
noisy, i.e., contains errors in the form of missing entitlements (i.e., entitlements
that should be present but aren’t) and excess entitlements (i.e., entitlements
that should not be present but are). Note that incomplete inputs typically have
a much larger percentage of missing entitlements than noisy inputs.

We modify Bui et al.’s algorithms to handle incomplete and noisy inputs. Our
algorithms identify suspected missing entitlements and add them to the meaning
of the mined policy, so we also call them added entitlements. Our algorithms
identify suspected excess entitlements and omit them from the meaning of the
mined policy, so we also call them omitted entitlements.

To handle excess entitlements, our algorithms, like [14], construct a candidate
policy, classify entitlements covered only by low-quality rules as suspected excess
entitlements, and omit them from the meaning of the mined policy by discarding
the low-quality rules.

We extend the greedy algorithm with two approaches for missing entitle-
ments. The validity-threshold (VT) approach [14] modifies the algorithm to keep
rules that are “almost valid”, i.e., whose meaning contains a percentage of added
entitlements that is below a specified threshold. The extended quality (EQ)
approach [13] does not impose a strict cutoff on the percentage of added entitle-
ments in the meaning of a rule. Instead, it extends the notion of rule quality with
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a term proportional to the percentage of added entitlements in the meaning of
the rule, allowing a smooth trade-off between this and other aspects of quality.
We refer to the versions of the greedy algorithm extended with these approaches
as VT greedy algorithm and EQ greedy algorithm, respectively.

We extend the evolutionary algorithm to handle missing entitlements using
a combination of the above approaches. We modify the fitness function so that,
when the fraction of added entitlements in a rule’s meaning is below a threshold,
the added entitlements do not affect the rule’s fitness, and when that fraction is
above the threshold, the rule’s fitness is redued proportionally to that fraction.
We tried simpler approaches, but they produced worse results. We also mod-
ify the algorithm to use a validity threshold when deciding whether to add a
candidate rule to the policy.

We evaluate our algorithms on four relatively small but non-trivial sample
policies and three larger and more complex case studies. One sample policy is
for electronic medical records (EMR), based on the EBAC policy in [2], trans-
lated to ReBAC; the other three are for healthcare, project management, and
university records, based on ABAC policies in [14], generalized and made more
realistic by translation to ReBAC. Two of the case studies are based on Software-
as-a-Service (SaaS) applications offered by real companies [5,6]; one is based on
a university’s grant proposal workflow management system [10]. More details
about these policies (other than the last one, which is new) appear in [3]. Our
evaluation methodology is to start with a ReBAC policy π0, compute the set
[[π0]] of granted entitlements, create from it a set of entitlements E0 that is either
incomplete (by pseudorandomly removing a significant percentage of the entitle-
ments) or noisy (by pseudorandomly adding and removing small percentages of
entitlements), run a policy mining algorithm on E0 (along with the class model
and object model from π0), and compare the meaning [[π]] of the mined ReBAC
policy π with [[π0]]. If the algorithm correctly compensates for the incompleteness
or noise, they will be the same.

In our experiments with the greedy algorithm, the VT approach achieves
better results than the EQ approach. We initially expected the EQ approach
to be superior, because its quality metric is sensitive to the exact number of
added entitlements. We now believe that the VT approach achieves better results
because the goal is not to minimize the added entitlements, but rather to add
just the right ones.

In our experiments comparing the VT greedy algorithm with the evolutionary
algorithm, the VT greedy algorithm runs faster and achieves slightly to moder-
ately better results. This is somewhat surprising, considering that, in Bui et al.’s
experiments for ReBAC policy mining without incompleteness or noise [3], the
evolutionary algorithm achieved somewhat better results than the greedy algo-
rithm. It will be interesting to see if one of the algorithms can be improved to
match or beat the other in both settings. One reason for favoring improvement
of the evolutionary algorithm (e.g., by experimenting with new mutations) is its
superior extensibility: it relies less on language-specific heuristics and hence is
easier to extend to handle additional policy language features, e.g., additional
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data types (numbers, sequences, etc.) and associated relational operators. We
plan to investigate extensibility in future work. We also plan to try to get real-
world logs and associated policies to further evaluate our approach.

We also evaluated Rhapsody’s approach to handling missing entitlements in
the context of mining ABAC policies from logs [4]. There is no easy way to
combine Rhapsody’s approach with our algorithms, so we evaluate Rhapsody by
running it and Xu and Stoller’s EQ greedy algorithm for mining ABAC policies
from logs [13] on the same data sets. We find that Rhapsody is much slower and
would be usable for ReBAC mining only on small problem instances.

2 Policy Language

Since our algorithms are based on Bui et al.’s, we also adopt their ReBAC policy
language, ORAL (Object-oriented Relationship-based Access-control Language)
[3]. It formulates ReBAC as an object-oriented extension of ABAC. Relationships
are expressed using attributes that refer to other objects, and path expressions
are used in conditions and constraints to follow chains of relationships between
objects. We describe the language briefly and refer the reader to [3] for details.

A ReBAC policy is a tuple π = 〈CM ,OM ,Act ,Rules〉, where CM is a class
model, OM is an object model, Act is a set of actions, and Rules is a set of rules.

A class model is a set of class declarations. Each field has a multiplicity
that specifies how many values may be stored in the field and is “one” (also
denoted“1”), “optional” (also denoted “?”), or“many” (also denoted “*”, mean-
ing any number). Boolean fields always have multiplicity 1. Every class implicitly
contains a field “id” with type String and multiplicity 1. A reference type is any
class name (used as a type).

An object model is a set of objects whose types are consistent with the class
model. Let type(o) denote the type of object o. The value of a field with multi-
plicity “many” is a set. The value of a field with multiplicity “optional” may be
a single value or the placeholder ⊥ indicating absence of a value.

A path is a sequence of field names, written with “.” as a separator. A con-
dition is a set, interpreted as a conjunction, of atomic conditions. An atomic
condition is a tuple 〈p, op, val〉, where p is a non-empty path, op is an operator,
either “in” or“contains”, and val is a constant value, either an atomic value or a
set of atomic values. For example, an object o satisfies 〈dept.id, in, {CompSci}〉
if the value obtained starting from o and following (dereferencing) the dept field
and then the id field equals CompSci.

A constraint is a set, interpreted as a conjunction, of atomic constraints.
Informally, an atomic constraint expresses a relationship between the request-
ing subject and the requested resource, by relating the values of paths starting
from each of them. An atomic constraint is a tuple 〈p1, op, p2〉, where p1 and
p2 are paths (possibly the empty sequence), and op is one of the following four
operators: equal, in, contains, supseteq. Implicitly, the first path is relative to
the requesting subject, and the second path is relative to the requested resource.
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The empty path represents the subject or resource itself. For example, a sub-
ject s and resource r satisfy 〈specialties, contains, topic〉 if the set s.specialties
contains the value r.topic.

A rule is a tuple 〈subjectType, subjectCondition, resourceType, resource
Condition, constraint, actions〉, where subjectType and resourceType are class
names, subjectCondition and resourceCondition are conditions, constraint is a
constraint, actions is a set of actions. For a rule ρ = 〈st, sc, rt, rc, c, A〉, let
sType(ρ) = st, sCond(ρ) = sc, rType(ρ) = rt, rCond(ρ) = rc, con(ρ) = c, and
acts(ρ) = A.

For readability, we may prefix paths with “subject” or“resource”, to indicate
the object from which the path starts. For example, our e-document case study
involves a large bank whose policy contains the rule: A project member can
read all sent documents regarding the project. This is expressed as 〈Employee,
subject.employer.id = LargeBank, Document, true, subject.workOn.relatedDoc
� resource, {read}〉, where Employee.workOn is the set of projects the employee
is working on, and Project.relatedDoc is the set of sent documents related to the
project.

The type of a path p (relative to a specified class), denoted type(p), is the
type of the last field in the path. Given a class model, object model, object o, and
path p, let nav(o, p) be the result of navigating (a.k.a. following or dereferencing)
path p starting from object o. The result might be no value, represented by ⊥,
an atomic value, or (if a field in p has multiplicity many) a set of values. This is
like the semantics of path navigation in UML’s Object Constraint Language.

An object o satisfies an atomic condition c = 〈p, op, val〉, denoted o |= c, if
(op = in ∧ nav(o, p) ∈ val) ∨ (op = contains ∧ nav(o, p) � val). Objects o1 and
o2 satisfy an atomic constraint c = 〈p1, op, p2〉, denoted 〈o1, o2〉 |= c, is defined
in a similar way. An entitlement 〈s, r, a〉 satisfies a rule ρ = 〈st, sc, rt, rc, c, A〉,
denoted 〈s, r, a〉 |= ρ, if type(s) = st ∧ s |= sc ∧ type(r) = rt ∧ r |= rc ∧ 〈s, r〉 |=
c ∧ a ∈ A. The meaning of a rule ρ, denoted [[ρ]], is the set of entitlements that
satisfy it. The meaning of a ReBAC policy π, denoted [[π]], is the union of the
meanings of its rules.

3 Problem Definition

A ReBAC policy that grants a given set E0 of entitlements can be trivially
constructed, by creating a separate rule that grants each entitlement in E0,
using conditions on the “id” field to specify the relevant subject and resource.
Such a ReBAC policy is no better than ACLs.

We adopt two criteria to specify which ReBAC policies are most desirable.
One criterion is to use “id” field only when necessary, i.e., only when every
ReBAC policy consistent with π0 contains rules that use it, because rules that
use the “id” field are identity-based, not attribute-based or relationship-based.
The other is to maximize a policy quality metric, which is a function Qpol from
ReBAC policies to a totally-ordered set, e.g., natural numbers. For generality,
we parameterize the policy mining problem by the policy quality metric, with
the convention that smaller values indicate higher quality.
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The extended ReBAC policy mining problem is: given a set E0 of entitlements,
a set D0 of denials, an object model OM , and a class model CM , find a set Rules
of rules such that the ReBAC policy π = 〈CM ,OM ,Act ,Rules〉 that uses the
“id” field only when necessary, denies all requests in D0, and has the best quality,
according to Qpol, among such policies. Here, Act is the set of actions that appear
in E0.

We call this the “extended” problem to distinguish it from the ReBAC policy
mining problem in [3], which requires [[π]] = E0 and can be viewed as a special
case corresponding to policy quality metrics that give overwhelming penalty to
mismatches between [[π]] and E0.

The policy quality metric that our algorithms aim to optimize is a sum of
three terms. Our algorithms do not guarantee to optimize it; that is NP-hard
even for ABAC mining [13]. The first term is weighted structural complexity
(WSC), a generalization of policy size. It is the same as in [3]. Minimizing policy
size is consistent with prior work on ABAC mining and role mining and with
usability studies showing that concise policies are easier to manage [1]. The WSC
of a policy, denoted WSC(π), is the sum of the WSCs of its rules. The WSC of
a rule ρ, denoted WSC(ρ) is a weighted sum of the WSCs of its components,
ignoring the two types, because they always have the same size. We ignore the
weights hereafter, because we always set them to 1. The WSC of an atomic
condition 〈p, op, val〉 is |p|+ |val |, where |p| is the length of path p, and |val | is 1
if val is an atomic value and is the cardinality of val if val is a set. The WSC of
a condition is the sum of the WSCs of the atomic conditions in it. The WSC of
a constraint is defined similarly [3]. The WSC of an action set is its cardinality.

The second and third terms measure differences between [[π]] and E0. They
are not needed in [3], which requires [[π]] = E0. They measure the numbers
of addeed and omitted entitlements, respectively. We divide them by |OM | (the
number of objects), because incompleteness and noise are typically characterized
by percentages, not absolute numbers, of affected entitlements, and the number
of granted entitlements is typically proportional to the size of the object model.

In summary, policy quality is Qpol(π) = wwscWSC(π)+wadd| [[π]]\E0|/|OM |+
womit|E0 \ [[π]] |/|OM |, where the weights are user-specified.

4 Greedy Algorithm

Our VT and EQ greedy algorithms are based on the greedy algorithm for ReBAC
policy mining (without incompleteness or noise) in [3]. It has three phases. The
first phase iterates over the given entitlements, uses selected entitlements as seeds
for constructing candidate rules, and attempts to generalize each candidate rule
to cover more of the given entitlements, greedily selecting the highest-quality
generalization according to a heuristic rule-quality metric. The second phase
improves the policy by merging and simplifying candidate rules. The third phase
selects the highest-quality candidate rules for inclusion in the mined policy.
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4.1 Validity-Threshold (VT) Approach

Top-level pseudocode appears in Fig. 1. It returns a rule set Rules ′. Entitlements
covered by Rules ′ and not in E0 are the suspected missing entitlements. Entitle-
ments in E0 not covered by Rules ′ are the suspected excess entitlements. It calls
several functions, described below, after a summary of how missing and excess
entitlements are handled. Note that function names hyperlink to descriptions of
the functions.

Missing Entitlements. The algorithm has a parameter α that bounds the accept-
able fraction of added entitlements (i.e., entitlements not in E0) for a rule.
A rule ρ is α-valid iff the fraction of added entitlements is at most α (i.e.,
| [[ρ]]\E0|÷| [[ρ]] | ≤ α) and the rule does not cover any denials (i.e., [[ρ]]∩D0 = ∅).

// Phase 1: Create a set Rules of candidate rules that covers E0.
Rules = ∅
// uncov contains entitlements in E0 that are not covered by Rules
uncov = E0.copy()
while uncov is not empty
// Use highest-quality uncovered entitlement as a “seed” for rule creation. Quality
// of 〈s, r, a〉 is proportional to the number of occurrences in E0 of 〈r, a〉 and s.
〈s, r, a〉 = highest-quality entitlement in uncov
cc = candidateConstraint(s, r)
// ssub contains subjects with permission 〈r, a〉 and with same candidate constraints as s
ssub = {s′ ∈ OM | type(s′) = type(s)∧ 〈s′, r, a〉 ∈ E0 ∧ candidateConstraint(s′, r) = cc}
// Add candidate rule that covers at least permission 〈r, a〉 for subjects in ssub
addCandidateRule(type(s), ssub, type(r),{r}, cc,{a},uncov,Rules)
// sact is set of actions that s can perform on r
sact = {a′ ∈ Act | 〈s, r, a′〉 ∈ E0}
// Add candidate rule that covers at least permissions {〈r, a′〉 | a′ ∈ sact} for subject s
addCandidateRule(type(s),{s}, type(r),{r}, cc, sact,uncov,Rules)

end while
// Phase 2: Merge and simplify rules.
Repeatedly call mergeRules(Rules), simplifyRules(Rules), and
mergeRulesInheritance(Rules), until they have no further effect
// Remove redundant rules
while Rules contains rules ρ and ρ′ such that [[ρ]] ⊆ [[ρ′]]
Rules.remove(ρ)

end while
// Phase 3: Select high quality rules into Rules′.
Rules′ = ∅
Repeatedly move highest-quality rule from Rules to Rules′ until

∑
ρ∈Rules′ [[ρ]] ⊇ E0,

using E0 \ [[Rules′]] as second argument to Qrul, and discarding a rule if it does not
cover any tuples in E0 currently uncovered by Rules′ or if its quality is below τ
return Rules′

Fig. 1. Greedy algorithm for the extended ReBAC policy mining problem. Inputs:
subject-permission relation E0, class model CM , object model OM . Output: set of
rules Rules ′.
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The usual notion of validity [3] corresponds to α = 0. Candidate rules are checked
for α-validity at several places in the algorithm, as discussed below.

Excess Entitlements. Excess entitlements typically result from individual errors
in policy administration and hence do not fit any pattern that can be expressed
concisely as rules. Consequently, excess assignments lead to the creation of low-
quality candidate rules. As described in Sect. 1 and embodied in the last line in
Fig. 1, our algorithm drops rules whose quality is below a threshold τ , which is
a parameter of the algorithm.

The function candidateConstraint(s, r) returns a set containing all the atomic
constraints that hold between subject s and resource r and that satisfy specified
limits on the lengths of the path expressions. It first computes all candidate
constraints that contain type-correct paths that start from type(s) and type(r),
respectively, and satisfy the length limits, and then it computes and returns the
subset of these that are satisfied by 〈s, a〉. The length limits mainly bound the
difference between the length of the path and the length of the shortest path
between the same types.

The function addCandidateRule(st, ssub, rt, sres, cc, sact, uncov ,Rules) first
computes conditions sc and rc that characterize (i.e., whose meaning equals)
the set ssub of subjects and the set sres of resources, respectively. It tries to do
this using paths that satisfy the length limits and without using the path “id”
(this is a path of length 1); if this is insufficient, an atomic condition on the path
“id” is added. addCandidateRule then constructs a rule ρ = 〈st, sc, rt, rc, ∅, sact〉,
calls generalizeRule (described below) to generalize ρ to ρ′, adds ρ′ to candidate
rule set Rules, and then removes the entitlements covered by ρ′ from uncov .

The function generalizeRule(ρ, cc, uncov ,Rules) attempts to generalize rule
ρ by adding some atomic constraints in cc to ρ and eliminating the conjuncts (if
any) of the subject condition and resource condition that use the same paths as
those atomic constraints. A rule obtained in this way is called a generalization
of ρ. It is more general in the sense that it refers to relationships instead of
specific values, and its meaning is a superset of the meaning of ρ. In more
detail, generalizeRule tries to generalize ρ using each constraint in cc separately,
discards the generalizations that are not α-valid, sorts the α-valid generalizations
in descending order of the number of covered entitlements in uncov , recursively
tries to further generalize each of them using constraints from cc that produced
α-valid generalizations later in the sort order, and then returns the highest-
quality rule among them (rule quality is defined below); if no generalizations of
ρ are α-valid, it simply returns ρ.

A rule quality metric is a function Qrul(ρ,E) that maps a rule ρ to a totally-
ordered set, with the order chosen such that larger values indicate higher quality.
The second argument E is a set of subject-permission tuples. Based on our
primary goal of minimizing the mined policy’s WSC, a secondary preference for
rules with more constraints (because constraints tend to produce more general
rules than conditions), and a tertiary preference for rules with shorter paths
in constraints, we define Qrul(ρ,E) = 〈| [[ρ]] ∩ E|/WSC(ρ), |con(ρ)|, 1/TCPL(ρ)〉
where TCPL(ρ) (“total constraint path length”) is the sum of the lengths of the
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paths used in the constraints of ρ. In generalizeRule, the second argument to
Qrul is uncov , so [[ρ]] ∩ E is the set of currently uncovered entitlements that are
covered by ρ.

The function mergeRules(Rules) attempts to improve the quality of Rules by
merging pairs of rules with the same subject type, resource type, and constraint
by taking the least upper bound (LUB) of their subject conditions, the LUB
of their resource conditions, and the union of their sets of actions. The least
upper bound of conditions c1 and c2 is obtained by combining “in” conditions
with the same path in c1 and c2, keeping “contains” conditions with the same
path and constant in c1 and c2, and dropping other atomic conditions in c1 and
c2. Thus, if c1 contains 〈p, in, val1〉 and c2 contains 〈p, in, val2〉, then their LUB
contains 〈p, in, val1 ∪ val2〉; and, if c1 contains 〈p, contains, val〉 and c2 contains
〈p, contains, val〉, then their LUB contains 〈p, contains, val〉.

The meaning of the merged rule ρmrg is a superset of the meanings of the
rules ρ1 and ρ2 being merged. If ρmrg is α-valid, then it is added to Rules, and
ρ1 and ρ2 are redundant and will be removed later.

The function simplifyRules(Rules) attempts to simplify each of the rules in
Rules using several transformations, detailed in [3]. For example, it eliminates
atomic conditions from the subject condition and resource condition, and elim-
inates atomic constraints from the constraint, if the resulting rule is α-valid.

The function mergeRulesInheritance(Rules) attempts to merge a set of rules
if their subject types or resource types have a common superclass and all the
other components of the rule are the same. In this case, it replaces that set of
rules with a single rule whose subject type or resource type is the most general
superclass for which the resulting rule is α-valid, if any.

Complexity Analysis. The step with the highest asymptotic complexity is
mergeRules, since the number of attempted merges is O(|Rules|2). In the worst
case, each rule covers only one entitlement, and this is quadratic in log size.
In practice, a rule covers many entitlements on average, and the complexity is
much less. The complexity is similar as for Bui et al.’s algorithm [3], and in
their experiments, measured growth in running time is less than quadratic with
respect to number of entitlements.

Example. We illustrate the VT greedy algorithm on a small fragment of the
workforce management case study containing only the rule “Help desk operators
can modify work orders that apply to active contracts of a Primary Tenant for
which he/she is assigned responsible”, formalized as ρ0 = 〈HelpdeskOperator,
true, WorkOrder, resource.contract.active = true, subject.tenants � res.contract.
tenant, {modify}〉.

The object model contains: PrimaryTenant objects telco and pp; Helpdesk-
Operator objects ho1 and ho2 with ho1.tenants = {telco, pp} and ho2.tenants
= {pp}; Contract objects telcoActive, telcoInactive, and ppActive whose tenant
and active status are as indicated in the name; WorkOrder objects telcoWO1
on telcoActive contract, telcoWO2 on telcoInactive contract, and ppWO1 on
ppActive contract.



276 T. Bui et al.

For the policy π containing only ρ0, [[π]] = {〈ho1, telcoWO1,modify〉, 〈ho1,
ppWO1, modify〉, 〈ho2, telcoWO1,modify〉}. Suppose the input E0 is missing
entitlement 〈ho1, ppWO1,modify〉 and contains excess entitlement 〈ho2, ppWO1,
modify〉.

Our algorithm selects 〈ho2, telcoWO1,modify〉 as the first seed. The first call
to addCandidateRule creates a rule with conditions subject.tenants � {Telco},
resource.contract.tenant ∈ {Telco}, and resource.contract.active = true, and
then calls generalizeRule on it. The generalization with candidate constraint
subject.tenants � resource.contract.tenant succeeds, removing the first two con-
ditions and creating a rule ρ1 identical to ρ0, provided α ≥ 1/3 (to allow covering
the missing entitlement). The second call to addCandidateRule generates a rule
similar to rule ρ0 except that it has additional condition subject = ho2; later,
this rule is merged with ρ1, and the merge leaves ρ1 unchanged.

Our algorithm selects 〈ho2,ppWO1,modify〉 as the next seed. The two
calls to addCandidateRule generate two rules without constraints; merging
and simplification produces a rule with conditions subject = {ho2} and
resource.contract.tenant = {pp}. This rule’s quality is low, since it covers only
1 entitlement (the excess one). It will be discarded, provided τ ≥ 1/6.

4.2 Extended-Quality (EQ) Approach

The main difference in this approach compared to the VT approach is that the
algorithm uses a modified rule quality metric that takes added entitlements into
account. The rule quality metric Qrul in Sect. 4.1 is replaced with a rule quality
metric QEQ

rul whose first component includes a factor that imposes a penalty for
added entitlements, measured as a fraction of the number of entitlements covered
by the rule, and with a weight specified by a parameter wEQ

rul .

QEQ
rul (ρ,E) = 〈 | [[ρ]] ∩ E|

WSC(ρ)
× (1 − wEQ

rul × | [[ρ]] \ E0|
| [[ρ]] | ), |con(ρ)|, 1/TCPL(ρ)〉

Also, the four functions that involve α-validity checks are modified as follows.
In generalizeRule, the α-validity check is replaced with a check that the rule
does not cover any tuples in D0. In mergeRules, instead of checking whether
ρmrg is α-valid, the algorithm compares the policy quality (as defined in Sect. 3,
with womit = 0, since omitted entitlements are not determined yet) of Rules and
Rules∪{ρmrg}\{ρ1, ρ2}, where ρ1 and ρ2 are the rules being merged. If the latter
has higher quality, and ρmrg does not accept any tuples in D0, then ρ1 and ρ2 are
replaced with ρmrg. In simplifyRules(Rules) and mergeRulesInheritance(Rules),
instead of checking α-validity of the simplified or merged rule, the algorithm
checks that the rule does not cover any denials in D0 and that it does not
cover any new added entitlements, i.e., entitlements not in E0 and not currently
covered by Rules; allowing new added entitlements in those places led to overly
permissive policies.
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5 Evolutionary Algorithm

Our evolutionary algorithm is based on the evolutionary algorithm for ReBAC
mining (without incompleteness or noise) in [3], which is inspired by Medvet
et al.’s work [7]. It is in the context-free grammar genetic programming (CFGGP)
paradigm, in which individuals, which in our context are ReBAC rules, are rep-
resented as derivation trees of a context-free grammar (CFG). The main part of
the algorithm is preceded by grammar generation, which specializes the generic
grammar of ORAL to a specific input, so that rules in the language of the gram-
mar contain only classes, fields, constants, and actions that appear in the input,
and all path expressions are type-correct and satisfy the same length limits as in
the greedy algorithm.

The algorithm’s first phase iterates over the given entitlements, and uses
each of the selected entitlements as the seed for an evolutionary search that
adds one new rule to the candidate policy. Each evolutionary search starts with
an initial population containing candidate rules created from a seed tuple in a
similar way as in the greedy algorithm along with numerous random variants of
those rules together with some completely random candidate rules, evolves the
population by repeatedly applying genetic operators (mutations and crossover),
and then selects the highest quality rule in the population as the result of that
evolutionary search. The second phase improves the candidate rules by further
mutating them.

Pseudocode appears in Fig. 2. Function initialPopulation(〈s, r, a〉,Rules ,
uncov) creates an initial population for the evolutionary search for a high-quality
rule that covers the seed 〈s, r, a〉 and other tuples. It is implicitly parameterized
by the desired population size popSize. Half of the initial population is generated
as follows: perform the same two calls to addCandidateRule as in Fig. 1, add those
rules to the initial population, and thenadd randomvariants of those rules obtained
by removing some atomic conditions and atomic constraints. The other half con-
sists of rules with subject type type(s) or one of its ancestors (selected randomly),
resource type type(r) or one of its ancestors, randomly generated conditions and
constraint, and action set {a}.

Rule quality is measured using a fitness function f , modified from
the one in [3] to take missing assignments into account using a thresh-
old approach: false acceptances are ignored unless they exceed a thresh-
old specified by algorithm parameter α. The fitness function is f(ρ, α) =
〈FAR(ρ, α),FRR(ρ), ID(ρ),WSC(ρ)〉. The false acceptance rate FAR(ρ, α) is 0
if |[[ρ]]\E0|

|[[ρ]]| < α and is |[[ρ]]\E0|
|[[ρ]]| otherwise. The false rejection rate is FRR(ρ) =

|uncov \ [[ρ]] |, and ID(ρ) is the number of atomic conditions in ρ with path “id”.
The two validity checks used in the algorithm in [3] are replaced with

α-validity checks, as shown in Fig. 2. Also, to deal with excess entitlements,
the algorithm returns only rules with quality at least τ .

The set searchOps of genetic operators used in the search phase contains the
two traditional CFGGP genetic operators: a mutation operator that randomly
selects a non-terminal in the derivation tree being evolved, and replaces the
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// Phase 1: Construct candidate policy, using evolutionary search to create each rule.
Rules = ∅; uncov = E0.copy()
while uncov is not empty
seed = highest-quality entitlement in uncov (same quality metric as in greedy algorithm)
pop = initialPopulation(seed,Rules,uncov)
for gen = 1 to nGenerationsSearch
op = a genetic operator randomly selected from searchOps
S = set of nTournament rules randomly selected from pop
if op is a mutation
pop.add(the rule generated by applying op to the highest-quality rule in S)

else // op is a cross-over
pop.add(the two rules generated by applying op to the two highest-quality rules in S)

end if
remove the lowest-quality rules in pop until |pop| = popSize

end for
ρ = the highest-quality rule in pop
if α-valid(ρ);
Rules.add(ρ); uncov.removeAll([[ρ]])

end if
end while
// Phase 2: Improve the candidate rules by further mutating them.
for each ρ in Rules
for gen = 1 to nGenerationsImprove
if gen = nGenerationsImprove/2 ∧ (all attempted improvements to ρ failed)
break // This rule is unlikely to improve. Don’t bother trying more.

end if
op = a genetic operator randomly selected from improveOps
ρ′ = the rule generated by applying op to ρ
if α-valid(ρ′) ∧ ID(ρ′) ≤ ID(ρ)
redundant = {ρ0 ∈ Rules | [[ρ0]] ⊆ [[ρ′]]}
if (Rules ∪ {ρ′} \ redundant) covers E0 and has lower WSC than Rules
Rules.removeAll(redundant); Rules.add(ρ′)

end if
end if

end for
end for
Repeatedly call mergeRules(Rules) and simplifyRules(Rules) until they have no effect
return the rules in Rules with quality at least τ

Fig. 2. Evolutionary algorithm for extended ReBAC policy mining problem. Inputs:
subject-permission relation E0, class model CM , object model OM . Output: set of
rules Rules.
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existing subtree rooted at that non-terminal with a new subtree randomly gen-
erated starting from that non-terminal, and a cross-over operator that randomly
selects a non-terminal that appears in both of the derivation trees being evolved
(called “parents”), and swaps the subtrees rooted at that non-terminal. It also
contains a double mutation operator that mutates two out of the three predicates
(the subject condition, resource condition, and constraint) in a rule (this enables
the operator to have an effect similar to generalizeRule), and a simplify mutation
that removes one randomly selected atomic condition or atomic constraint (this
mutation is included to increase the overall probability of these mutations). The
set improveOps of genetic operators used in the improvement phase is similar,
except it also contains a type mutation operator that can replace the subject
type or resource type with one of its ancestors.

The version of simplifyRules used in this algorithm is the same as in the greedy
algorithm except extended with an additional simplification: replace the subject
type or resource type with one of its children, if the policy still covers E0.

6 Evaluation

This section presents experimental results evaluating our algorithms on the four
sample policies and three large case studies mentioned Sect. 1, following the
evaluation methodology sketched in Sect. 1. Our code and data are available at
http://www.cs.stonybrook.edu/∼stoller/software/. Parameters of the algorithms
(e.g., popSize) have the same values as in [3]. Since the results of experiments with
the EMR and project management sample policies are similar to the results for
the other two sample policies, we summarize their results, omitting details due
to space constraints. Each policy has handwritten class model and rules, and a
synthetic object model generated by a policy-specific pseudorandom algorithm
designed to produce realistic object models, by creating objects and selecting
their attribute values using appropriate probability distributions.

Similarity Metrics. We evaluate the quality of the generated policy using three
similarity metrics. They are normalized to range from 0 (completely differ-
ent) to 1 (identical). They are based on Jaccard similarity of sets, defined by
J(S1, S2) = |S1 ∩ S2| / |S1 ∪ S2|. The semantic similarity of policies π1 and π2 is
J([[π1]] , [[π2]]). We use this metric to compare meaning of the original policy π0

and the mined policy π. If the algorithm accurately identifies and compensates
for all incompleteness and noise, the semantic similarity will equal 1. Missing
entitlements similarity is the Jaccard similarity of the set of actual missing enti-
tlements (removed when creating E0 from [[π0]]) and the set of suspected missing
entitlements. Excess assignments similarity is the Jaccard similarity of the actual
excess entitlements (added when creating E0 from [[π0]]) and the suspected excess
entitlements.

Running Time. An organization needs to run policy mining occasionally, not
frequently, so our evaluation focuses on quality of results. Both algorithms have
reasonable running times, although the VT greedy algorithm is significantly

http://www.cs.stonybrook.edu/~stoller/software/
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faster than the evolutionary algorithm. With our implementation in Java on
an Intel i7-3770 CPU, each run of the VT greedy algorithm and evolutionary
algorithm take at most 8.5 and 70 min, respectively. The policies involve up to
several hundred objects, a few thousand entitlements, and a few dozen rules
(more details on policy size are in [3]). The evolutionary algorithm can be sped
up significantly, at the cost of a small decrease in quality, by varying parame-
ters. For example, for e-document (our largest case study), reducing the number
of generations per evolutionary search from 2000 (the value used in our main
experiments) to 1000 reduces the running time by 27%, with a decrease of only
0.02 (from 0.87 to 0.85) in policy semantic similarity.

6.1 Experiments with Noise

We introduce synthetic noise at a specified level into the meaning of a ReBAC pol-
icy π0 in a similar way as [14], apply our policy mining algorithms to the resulting
set of entitlements E0 along with the class model and object model, and then com-
pute the above metrics comparing the original policy π0 and mined policy π. Noise
level is expressed as a fraction of | [[π0]] |; thus, noise level ν means that ν| [[π0]] |
entitlements are added to or removed from [[π0]]. To introduce a specified level ν
of noise, we introduce ν| [[π0]] |/6 missing entitlements and 5ν| [[π0]] |/6 excess enti-
tlements. This ratio is based on the data in [8, Table 1]. Missing entitlements are
selected from a discrete normal distribution on [[π0]], to reflect that policy errors
are usually non-uniformly distributed. Excess entitlements are selected from a dis-
crete normal distribution on the complement of [[π0]]. We tune all of the algorithm
parameters manually, so the experimental results reflect the capabilities of the
algorithms with an experienced user.

Figure 3 shows results for the VT greedy algorithm and evolutionary algo-
rithm. Each datapoint is the average over 10 runs (except 5 runs for grant
proposal and e-doc) on inputs with different pseudorandom object model and
noise. The 95% confidence intervals using Student’s t-distribution are reasonably
small, less than 0.13 in all cases except missing assignment similarity for grant
proposal policy when running with evolutionary algorithm, for which it is 0.18.
For experiments on healthcare and university sample policies (not shown in the
figure), both algorithms achieve perfect values (i.e., 1.0) on all three similarity
metrics at all three noise levels.

To compare the algorithms, we average the similarity metrics over all three
noise levels and all seven policies. For both algorithms, the average policy seman-
tic similarity is 0.99, and the average excess entitlement similarity is 0.98; the
latter is not surprising, since the algorithms use the same approach to identify
excess entitlements. The average missing entitlement similarity is 0.96 for the
greedy algorithm, and 0.94 for the evolutionary algorithm. We conclude that
VT greedy algorithm is slightly better than evolutionary algorithm at detect-
ing missing entitlements. Noise detection results for the EQ greedy algorithm
are significantly worse: the average excess entitlement similarity is 0.95, and the
average missing entitlement similarity is 0.73.
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Fig. 3. Left: Excess entitlement similarity. Center: Missing entitlement similarity.
Right: Policy semantic similarity. The legend is the same for all three graphs. Suffixes
“ g” and“ e” indicate VT greedy algorithm and evolutionary algorithm, respectively.
Results for the two algorithms are plotted with dashed and solid lines, respectively.

6.2 Experiments with Incompleteness (Mining from Logs)

Given a set of entitlements E0, which is a subset of the meaning of a ReBAC
policy π0, the completeness of E0 (relative to π0) is |E0|/| [[π0]] |, i.e., the fraction
of entitlements in [[π0]] that are in E0. Given a ReBAC policy π0 and a desired
completeness level c, we pseudorandomly select (1 − c)| [[π0]] | entitlements in
[[π0]] and remove them to create E0. We select them from a discrete normal
distribution on [[π0]], to reflect that some entitlements are used more often and
hence more likely to appear in an access log. We also generate a set of denials
D0 by pseudorandomly selecting tuples from a discrete normal distribution on
the complement of [[π0]]. We set the number of denials to 4% of | [[π0]] |, based on
Cotrini et al.’s comment that the percentage of denied operations in logs used
in their experiments is usually less than 5% [4]. For simplicity, we do not add
excess entitlements as noise in these experiments, because sets of entitlements
obtained from logs are expected to contain a relatively small percentage of excess
entitlements, which would not appreciably affect our results.

Figure 4 shows results for the VT greedy algorithm and evolutionary algo-
rithm. Each datapoint is the average over 10 runs (except 5 runs for grant
proposal and e-doc) on inputs with different pseudorandom object model and
incompleteness. The 95% confidence intervals using Student’s t-distribution are
reasonably small, less than 0.12 in all cases. As expected, the results are better
for higher completeness. For inputs with completeness 0.7 and higher, policy
semantic similarity is above 0.93, and missing entitlements similarity is above
0.8, for all policies. For the healthcare and university sample policies (not shown
in the figure), for all four completeness levels, both algorithms achieve perfect
values on both similarity metrics.

To compare the algorithms, we average the similarity metrics over all four
completeness levels and all seven policies. The average policy semantic similarity
is 0.98 for VT greedy algorithm, and 0.97 for evolutionary algorithm. The aver-
age missing assignments similarity is 0.94 for VT greedy algorithm, and 0.91 for
evolutionary algorithm. Thus, the VT greedy algorithm is modestly better than
the evolutionary algorithm on incomplete inputs. Since the EQ greedy algorithm
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was less effective in the noise experiments, we run incompleteness experiments
for it on a subset of policies, namely, EMR, grant proposal and workforce man-
agement. The results are consistent with our expectation: the average policy sim-
ilarity is 0.89, compared to 0.97 for VT greedy algorithm on the same datasets,
and the average missing assignments similarity is 0.67, compared to 0.89 for VT
greedy algorithm on the same datasets.

Fig. 4. Left: missing entitlements similarity. Right: policy semantic similarity. The
suffixes and line styles have the same meaning as in Fig. 3.

6.3 Comparison with Rhapsody

We evaluated Rhapsody’s approach to handling incompleteness by running
Rhapsody [4] and Xu et al.’s algorithm [13] on some of the ABAC policies
used in [13]. For the university policy with manually written attribute data [13],
which involves 10 ABAC rules and 16 attributes, and a log with completeness
0.8, Rhapsody’s running time (based on its progress indicator) would exceed 24
hours. In contrast, Xu et al.’s algorithm produces a policy with a perfect policy
semantic similarity of 1 in less than 1 second. We created a very small version
of the policy, with only 7 ABAC rules and 9 attributes. After parameter tun-
ing based on guidance in [4], the best result is a policy with policy semantic
similarity 0.65, and Rhapsody took 3.7 hours to produce it.

The implementation of Rhapsody we were given considers neither conditions
involving set relations nor constraints of any kind. Extending the implementation
to consider these (as our algorithms do) would significantly increase the number
of atoms (predicates that can appear in rules) and hence the running time.
Further extending it to support ReBAC instead of ABAC would further greatly
increase the number of atoms and hence the running time, making it usable only
on small problem instances.

7 Related Work

The only prior work on mining of ReBAC policies (or object-oriented ABAC
policies with path expressions) is [3], which is discussed in Sect. 1. The contribu-
tions of this paper include adapting their algorithms to handle incompleteness
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and noise using two approaches, and extensive experimental evaluation of the
accuracy and performance of the two approaches and the two algorithms in this
context. Interestingly, we find that the VT greedy algorithm achieves slightly
to moderately better results; in contrast, the evolutionary algorithm achieves
somewhat better results in the experiments in [3].

The earliest work on mining of access control policies from logs is Molloy
et al.’s algorithm to mine “meaningful” roles from logs and attribute data, i.e.,
roles whose membership is statistically correlated with user attributes [9]. Their
algorithm is based on a reduction to the author-topic model problem. Xu and
Stoller adapted that approach to ABAC policy mining and found that it is less
accurate and less scalable than the validity-threshold approach [13]. Other work
on mining roles from incomplete or noisy data, e.g., [11,12], uses thresholds but
does not consider attribute data.
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Abstract. Microservices-based applications are considered to be a promising
paradigm for building large-scale digital systems due to their flexibility, scala-
bility, and agility of development. To achieve the adoption of digital services,
applications holding personal data must be secure while giving end-users as
much control as possible. On the other hand, for software developers, the
adoption of a security solution for microservices requires it to be easily adapt-
able to the application context and requirements while fully exploiting
reusability of security components. This paper proposes a solution that targets
key security challenges of microservice-based applications. Our approach relies
on a coordination of security components, and offers a fine-grained access
control in order to minimise the risks of token theft, session manipulation, and a
malicious insider; it also renders the system resilient against confused deputy
attacks. This solution is based on a combination of OAuth 2 and XACML open
standards, and achieved through reusable security components integrated with
microservices.

Keywords: Microservices � Security � Confused deputy attack � Gateways �
Access control

1 Introduction

Enterprise applications nowadays require using multiple, distributed and multi-owner
components. While Service Oriented Architecture has been adopted for over a decade,
its underlying model is now proving complex to manage given its tendency to a small
number of large and complex components, referred to as monolithic applications
(“monoliths”) [4]. To ensure better software maintainability, faster development and
deployment, and a more efficient scalability, microservice architecture is gaining
popularity [22]. With Microservices, monolithic applications are replaced by a large
number of loosely coupled components, yet each small and easy to maintain. By
definition, microservices need to have a small role and should be designed to com-
municate with other services over a network [4] in a distributed fashion. Compared to
monoliths, the considerable number of independent services renders enforcing security
solutions and verifying every request’s authenticity much more challenging.

Moreover, Microservices do introduce coordination complexity which, in turn,
creates new security risks. This brings forward trust challenges as, effectively, every
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microservice is an independent party that, in the extreme case, cannot be trusted [22].
In particular, distributed architectures create access control problems such as the so-
called confused deputy attacks and the use of powerful tokens. A confused deputy,
referred to as the ‘vulnerability du jour’ [7], is a privilege escalation attack in which a
microservice that is trusted by other microservices is compromised; this results in the
trustees responding to the compromised microservice requests, not knowing that it is
acting on behalf of the attacker [13]. Powerful tokens, in turn, result from the fact that,
typically, one valid authorisation token is enough to have access to every microservice
since requests pass through a gateway (the orchestrator) that can access all the system
services with that access token. These are normally Open Authorization (OAuth)
tokens that are created through one OAuth client, and their theft leads to data exposure
at the level of every microservice [1].

The context of this paper is user-centred services that are multi-party and inter-
domain. In particular, we consider scenarios where multiple parties are requesting
access to personal data or assets; the data exchange process should be transparent to
and controlled by the data owners. One example of such systems is a digital govern-
ment portal: multiple administrations, that are nevertheless independent and segregated,
have to coordinate to provide services for citizens, and citizens need to ensure that their
data is safe, while being aware of how this data is being used, and what is being
processed; on the other hand, each administration is responsible for protecting the
citizens’ data, and of correctly performing its role. Our solution for these requirements
applies to microservice-based systems with access to sensitive data in different
administrative domains.

This paper proposes a security solution for Microservices that enables fine-grained
access-control policies to be deployed, thus mitigating several problems while giving
the user control over their requests. Beyond globally validating a token at the entrance
(the Gateway interfacing the user or another external application), we propose that each
service has its own local Gateway that validates highly-descriptive and fine-grained
tokens. These tokens are centrally generated, short-lived and have a narrow access
scope. Additionally, these gateways include security checks that reveal and mitigate
potential malicious activities, like data theft from government departments or tam-
pering with government digital services, through a compromised microservice in one
department. Furthermore, to enable scalability and reusability, we propose that these
gateways are configurable and reuse security components that get added to microser-
vices templates outside their core functionalities, and can scale with them when needed.
Our solution is based on OAuth 2 and eXtensible Access Control Markup Language
(XACML) open standards. To summarize, our architecture requires a user to explicitly
allow actions from the multiple services engaged and belonging to different parties,
while confining permissions of the services with pre-defined policies that all parties
agree on.

The structure of this paper is as follows. The next section reviews related work and
Sect. 3 describes the problem. In Sect. 4 we describe our solution, followed by an
analysis in Sect. 5. Section 6 discusses our implementation, Sect. 6.1 shows the
experimental results, and we conclude the paper in Sect. 7 with some future directions
for our work.
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2 Related Work

Many approaches found in the literature rely on powerful tokens strategy, i.e. one
access token giving access to all the system’s components, for access control. This
results from using one OAuth client for a microservice-based application: [12] is an
example of an implementation where powerful tokens are being used, and [3, 5, 6, 15]
also point out to using similar approaches in their systems. OAuth token theft has been
approached in literature. Ahmad et al. [2] used ID and OAuth tokens to minimise the
possibility of token theft; however, the combination only reduces the chances of a
successful attack and does not protect against powerful tokens theft in the service-to-
service communication. Security architectures, [18] for example, recommend using
standard mechanisms like OAuth 2 and XACML for API protection. XACML and
OAuth 2 are discussed separately in [9, 14], and Suzic [17] mentioned the possibility of
combining the two standards; however, the combination was not detailed or applied by
any of them. Zhang et al. [20] based their implementation on this combination; how-
ever, their solution targets a specific use case that is not applicable to microservices.
The confused deputy is another possible attack. Härtig et al. [7] call for tools to detect
this attack; our work directly addresses that. Finally, work on a new OAuth grant type,
Token Exchange [10], still in progress, tackles a similar problem as this paper. It is
equally tailored for microservices in which the authorization server is in charge of
policy decisions based on the identity of users, calling and called services, predefined
action and access rules.

In short, to the best of our knowledge, this is the first attempt for designing a reusable
and user-centric Identity and Access Management (IAM) security solution for primitive
(only implementing functional requirements) microservices that mitigates token theft
and the confused deputy problem. The reusability and configurability of our solution
render it scalable and adaptable in agile Microservice Architecture (MSA) systems.

3 Problem Statement

This section presents a scenario to illustrate our security requirements. We then show
our threat model for a Microservice-based system, give an overview of the principles
that we are abiding by, the inadequacy of most used approaches and their common
vulnerabilities, and a rationale for our design decisions.

To illustrate, we consider a digital government scenario of applying for a passport
at the Department of State. The applicant needs to be a citizen to be eligible to apply for
the passport service. The user logs in to a central portal, and selects the passport
service; by logging in, the portal fetches the required information for access control: the
citizenship status in this example. The passport service asks for further identity
information required from the Department of Interior Affairs, and other data attributes
from the Department of Justice to show a clean record; these attributes are already
agreed on between the departments. The user needs to approve on the personal data
attributes that will be shared between departments, and an access token will be pro-
duced for each consent. Each token only serves to access one specific service of one
department.
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3.1 Threat Model

In this threat model, we assume that traditional inter-domain security mechanisms,
including intrusion detection and prevention systems, firewalls, input validation,
mutual TLS authentication and encryption are placed between different security
domains. We trust these security mechanisms, and that the authentication and autho-
risation servers are not compromised, but not the application microservices.

These microservices, and the Virtual machines (containers) which they run on, can
be under the control of an attacker, or even abused by a privileged insider. This gives
the adversary the ability to intercept requests and responses, steal and manipulate
tokens by replacing a token belonging to a user with another, and send requests from
the compromised microservice. A compromised microservice cannot generate a new
access token without the user’s consent on the list of scopes; this happens with a
redirection to the OAuth server. Access Token theft can happen at the level of any
compromised microservice, or by an insider monitoring local traffic.

3.2 Security Requirements

Considering the scenario detailed in Sect. 3, our approach uses the following as
requirements:

– R1: Access policies are needed to control which services a user can access.
– R2: Every personal data attribute at each department needs user consent to be

shared with another department.
– R3: Departments only share data following pre-defined and verifiable agreements

with service consumers.
– R4: An access token should only serve to access the assets of a user exposed by a

single service in one department.

Where the corresponding security goals are:

• R1 requires fine-grained access policies, that must relate to the (micro-)service itself
• R2 separates control between user and service providers by allowing administrative

policies on a per-service basis
• R3 verifies the authenticity of consumers and limits insiders malicious activities
• R4 protects against Powerful Token and Confused Deputy attacks.

3.3 Decoupling Security from Functional Requirements

A further requirement is to decouple the control of the microservice from the service
itself. We approach this by designing our architecture using reusable and configurable
gateways at the level of each microservice. These components can be added to secure
primitive services, and modified to meet different policies. Figure 1 shows a primitive
Resource Microservice (RMS) protected by a local Gateway (GW). In order for a
request to reach the RMS, security policies enforced by GW have to be met by the
requesting service or party (the consumer microservice); note that the consumer
microservice should have another gateway to enforce access control policies. The
Resource Microservice (RMS), which encapsulates only the primitive functionality, is
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thus released from the verification logic and only manages the assets themselves (such
as personal data).

A reusable security solution placed around services provides better consistency,
simplicity, and portability [21]; adaptability and flexibility are essential requirements to
follow. For different scenarios, a variety of attributes have to be considered when
designing security solutions, and a trade-off has to be made between multiple variables
including performance, security tightness, user-friendliness, and ease and flexibility of
management.

3.4 Limitations of Current Practices

Open Authorization 2 (OAuth 2) is one of the most commonly used mechanisms in a
microservice architecture for access delegation. OAuth 2 access scopes are used to
define the token holder’s access rights. However, the standard only gives the ability to
define static, normally coarse-grained scopes, and does not provide any support for
auditing and flexible policy enforcement [16, 17]. OpenID Connect, built on top of
OAuth 2, is commonly used for authentication with MSA [12]; it is an enabler for
identity federation by producing an ID token with end-user information, and a practice
of the separation of concerns principle. Nevertheless, these approaches are not par-
ticularly suitable for MSA due to their large attack surface in such a fine-grained
architecture [4]. These approaches normally rely on a single token that is used to access
all parts of the system resulting in several problems, Powerful Token Theft being the
most obvious [1, 2]. With this approach, any service having access to a session with a
valid token can make requests to other components on behalf of the user [12].

On the other hand, we have the confused deputy problem. As explained, this
consists of a component which has access to sensitive resources, and which can be
manipulated by an adversary to have an indirect access to these resources [13]. In
essence, the confused deputy attack arises from trusting a component based on mere
identity information such as the component’s IP address or an ID token [11]; in our
scenario, presented in Sect. 3, the passport service is a potential confused deputy. The
key point to prevent this is to have the resource services, the department of Justice and
of Interior Affairs microservices in our scenario, verify that the calling microservice is

Fig. 1. Gateway to secure primitive services
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acting truthfully on behalf of the user. This requires, for example, tokens to be indi-
vidual to each component, and have finer granularity reflecting users’ consents on
access rules.

4 An Access Control Solution for Microservices

Figure 2 represents our approach for access control between consumer and resource
microservices. This solution is built on a combination of XACML for administrative
and OAuth 2 for user-defined policies. The architecture involves an Access Control
Server (ACS) acting as an OAuth 2 and XACML server, consumer microservices
(CMS) containing OAuth 2 client credentials and requiring access to resources,
Resource Microservices (RMS) hosting and exposing assets, and a Gateway (GW) to
secure each microservice.

A request to CMS requires an ID token, generated by ACS when the user logs in,
from the authentication session to verify the access rights of the user; to request
resources from RMS, it also needs to generate an OAuth 2 token by having the user
consent on the access scopes. As shown in Fig. 2, RGW1 and RGW2 are gateways to
the resource microservices RMS1 and RMS2; consumer microservices also have a
gateway each, CGW1 and CGW2, to enforce administrative access control policies.
Typically, a central gateway in MSA sits in front of all services and can take different

Fig. 2. Overview of our security architecture: Gateways for security enforcement, and an OAuth
client per consumer-resource.
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roles ranging from a simple address forwarder to an orchestrator. In our architecture,
each microservice has its own gateway that gathers security and control functions, and
is minimally dependent of the microservice; this makes it reusable as a configurable
component across different microservices. Note that a central gateway is still present as
a single entry point to the administrative and security domain to provide conventional
network security services such as intrusion detection and prevention, firewalls, input
validation, mutual TLS authentication or encryption.

The key functionality of a gateway per microservice is becoming a single entry
point to each microservice that, while being fairly agnostic to the service itself, is able
to validate the authenticity of the incoming requests. Our implementation of these
gateways include other mechanisms for security assurance, policy enforcement, token
theft detection, auditing and incident reporting; these serve to minimise blind trust
between services, and therefore limit the effect of a successful confused deputy attack.
The details for these checks and the requests flow of requests are explained in the next
parts of this section.

4.1 A Fine-Grained Access Control

XACML is used to create access control policies. These define whether a user can
interface a particular microservice. Policies are directly enforced by the GWs, each
acting as a Policy Enforcement Point (PEP). The PEP component of the GW checks the
user’s identifier by inspecting the user’s ID token in the authentication session.
The ACS is the Policy Decision Point (PDP) and determines if this user is authorized to
access a microservice endpoint to make a particular request. In the case of resource
microservices, the request goes through other security checks discussed in Sect. 4.2.

OAuth 2 is used for users to delegate access to part of their protected data, residing
at a resource microservice, to a consumer microservice. We use OAuth 2 to produce a
token that maps to access scopes; these scopes are indicators for what the token gives
access to. Being part of the token, scopes are used by RMS to share only the data that
the owner has given consent for. Our proposal includes creating an OAuth client for
every pair of consumer-resource microservices, to allow the generation of verifiable
tokens with access scopes tailored for the combination.

Consider Fig. 2 OAuth clients C1 and C2 are used to send requests from the
consumer microservice CMS1 to two different resource services, RMS1 and RMS2
respectively, exposing user’s data. Although our approach gives the flexibility of using
one OAuth client for multiple microservices, we recommend one OAuth client per
consumer-resource microservices to limit the power of access tokens. Also, a
microservice can receive requests from more than one consumer service as shown with
RMS2 receiving requests from both CMS1 and CMS2. OAuth client creation is always
done at the ACS level following the OAuth 2 common practice. Scopes are defined
during creation, and client credentials (a unique identifier and a password) are gener-
ated to be used by consumer microservices for access tokens production.
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4.2 Proposed Security Checks

For each request from microservices to access resources of another, an OAuth access
token needs to be provided, alongside the ID token in the authentication session, by the
sender of the request. The ID token is inspected by the GW of every microservice
(Consumer or Resource) to verify the eligibility of access of the user, and the OAuth
token is to be inspected by the RGW of the resource microservice before the request
gets through to the RMS. This gateway sends the access token to an endpoint of the
ACS to verify its authenticity and retrieve the information mapped to it.

To illustrate with Fig. 2, if a service CMS1 needs some of the user’s personal
information from RMS1, CMS1 uses C1’s client credentials to produce an OAuth
access token following OAuth 2 common practice. The user is required to choose the
access scopes and confirm access for the OAuth token to be produced for CMS1. An
access request is sent from service CMS1 to RMS1. RMS1, through its gateway
RGW1, uses the token inspection endpoint of ACS to verify the authenticity of the
access token and to decode it. The token would have a reference to the OAuth client ID,
token scopes, the subject (user) identifier, and an expiry date. Given that the token is
authentic and valid, RGW1 would perform the following security checks:

1. ‘User Identity Check’ by verifying that the user in the ID Token (the user that
authenticated to the portal) is the same as the subject of the token

2. ‘Client ID Check’, by checking C1’s client ID against a set of authorized client IDs
to access the service

The first check reveals tokens’ theft and manipulation attempts, and the second
diminishes a token’s power, and limits blind trust between components. If these checks
pass, the gateway forwards the token information to the microservice; otherwise, the
request is denied and the incidence gets reported. If the gateway lets the request
through to the resource microservice, the latter returns the attributes of the user mapped
to the scopes of the access token.

4.3 Operational Flow

The sequence diagram in Fig. 3 shows a representative example of our proposal. This
shows the dataflow of an operation between a CMS and RMS of Fig. 2; it also reflects
an access request between the passport microservice and one of the resource
microservices in the scenario presented in Sect. 3. One service, the CMS, is to retrieve
resources from another service, the RMS. A central ACS is used as an OAuth 2
authorization server, as well as an XACML server with policy administration and
decision points. The ACS can include or be linked to an authentication server that
produces and keeps track of authentication sessions with ID tokens. Each gateway
(CGW and RGW) functions as a PEP which inspects the ID token, and uses the
ACS PDP to check the policy rules. Access rules can be defined as a set of URLs and
actions mapped to a group of users (i.e. Role-based); however, more complex policies
can be defined following any policy definition criteria.

Before any attempt to access CMS, the user has to have an active session with an
ID token. When the user sends a request, the PEP at CGW inspects the user’s ID token
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with the Policy Decision Point of ACS, and if the action with CMS is allowed, this user
is able to initiate a request with the service. When CMS requires data/service from an
external resource (RMS), it first needs to request an OAuth access token. CMS uses its
OAuth credentials, specific for RMS, to initiate the token production request with ACS.
In turn, ACS requires the user to be authenticated and to choose the access scopes. At
the level of ACS, an Intrusion Detection System can detect session manipulation
attempts between the last two interactions with it. The produced access token is sent to
CMS, and a request with the ID and OAuth tokens in the header is sent to RGW. RGW,
protecting the resource microservice, checks if the user is authorized to access the
service that it protects and, if so, the OAuth token is sent to the OAuth token inspection
endpoint of ACS. This token gets verified, decoded, and sent back to RGW to perform
the User Identifier and Client ID Checks described in Sect. 4.2. If any of the previous
checks fails, an appropriate alert will be sent to the system administration and the user
session and access token get deactivated. If all conditions are met, RGW sends the
request with the user ID and the access scopes to RMS. This service has now the data
attributes and/or methods mapped to the token scopes and the data of the user will now
be sent to CMS.

5 Analysis

We now revisit the early requirements listed in Sect. 3 and discuss how our proposal
addresses them.

Fig. 3. Sequence diagram representing a service-to-service interaction.
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5.1 Fine-Grained Access Control

With PEPs used at each microservice gateway level, access policies allow defining
access roles for users to particular services (R1). Gateways here keep any unnecessary
potential load off the microservices and act as a further defence layer. Since XACML
allows to define complex policies, one can further add contextual access rules such as
time and location.

Having multiple OAuth 2 clients helps to enforce transparency in the system by
requiring users’ consent for each access operation to their personal data, and giving
them the option to choose what they want to share. Scopes are defined during OAuth 2
client creation following agreements between the resource and consumer microservices
departments (R3), and having an OAuth client per consumer-resource microservice
enables a fine-grained user-centred access control at the level of microservices (R2).
Scope to resource mapping is done at the RMS level, and having scopes tailored to
each service gives the transparency needed for systems in which privacy is key to
users’ trust.

5.2 Token Theft Mitigation

Having multiple OAuth 2 clients, for different consumer-resource combinations, limits
the power of access tokens. With one OAuth 2 token per access task, a stolen token
would only be a threat to the data of a particular person in one microservice only. These
tokens can have a short lifespan since they are meant to be used once and for one
particular request. Also, due to the User Identity Check at the gateway level, access to
information from a stolen access token is not possible without access to the ID token of
the same user. Any attempt from a conflicting user session would result in deactivating
the tokens and reporting the incidence; even session hijacking can be rendered inef-
fective with a stolen token’s short lifespan. Also, the Client ID Check diminishes the
token’s power, by limiting the services that accept the token. This partially fulfils the
security goal of R4.

5.3 Confused Deputy Mitigation

Going back to Fig. 2, a token produced with C1, belonging to CMS1 and valid for
RMS1, would not be valid for RMS2. This is also valid if service CMS1 is allowed to
access both services RMS1 and RMS2, and even if RMS1 and RMS2 belong to the
same department (R4). The combination of the User Identity Check, the Client ID
Check, and requiring user consent for every service to service data access is a miti-
gation against the confused deputy attack. These security checks and practices min-
imise trust between services and give an assurance that a service is acting faithfully on
behalf of the user. Therefore, this solution achieves the security goal of R4.

On a related note, our design mitigates some malicious insiders’ activities.
According to an IBM report in 2015, 60% of attacks are due to an insider [8]. If she or
he manages to create an OAuth client on ACS to be used by a malicious node, the
resource microservices would not accept any access token from this new client since its
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ID is not in the list of trusted clients of any RGW. This approach minimises the
possibility of having a service confused with a rogue/fake client (R3).

5.4 Manageability and Reusability

To help manageability, categorising services into groups, according to their security
requirements is likely necessary. These requirements are decided based on the func-
tionality of the microservices, the criticality of assets, and the trust context. This is a
common approach for large enterprise software to protect their resources [19]. In our
scenario, we separated consumer from resource microservices and required different
gateways for each; other microservices may require encrypting their data at rest and on
exchange for example. Having reusable security components helps to define configu-
rations with security functions to meet different requirements; this facilitates securing
new primitive microservices by plugging in these predefined gateways. Security
gateways are extensible and can include other security functionalities including, but not
limited to, logging and auditing, cryptographic roles, and throttling. However, these are
out of the scope of this paper.

6 Implementation

We implemented a proof of concept using ForgeRock1 open source components.
ForgeRock Access Management (AM2) is used as the central access control server
(ACS) for its ability to manage authentication, OAuth access delegation and XACML
policies. As for microservices local gateways, ForgeRock Identity-Gateway (IG3) is
used due to its Policy Enforcement and OAuth 2 token validation filters, and the
flexibility that it provides to extend its functionality. This solution is feasible using any
technological stack implementing OAuth 2 and XACML; a gateway can be written
with any programming language that supports XACML, HTTPS calls, and the
implementation of our proposed security checks. For the sake of clarity of this
demonstration, we have used Postman4 to play the role of a consumer microservice
with an ID token, accessed by the authentication cookie, and an OAuth 2 token,
sending an access request to an RMS protected behind an IG. This shows the same
behaviour of a consumer-to-resource microservice call, with the resource microservice
protected by RGW.

Figure 4 shows the response of an RGW on a failed User Identification Check. This
is one approach to detect session hijacking and OAuth token theft. Both tokens would
be deactivated in this case.

Figure 5 shows a request sent to RMS from an unauthorized OAuth client; this
reflects the response of using an access token for a different consumer-resource

1 https://www.forgerock.com/platform/.
2 https://www.forgerock.com/platform/access-management.
3 https://www.forgerock.com/platform/identity-gateway.
4 https://www.getpostman.com/.
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combination, even if this resource and RMS are part of the same department. Client ID
Check weakens the power of tokens, limits the trust between services to minimize the
effect of a successful confused deputy attack, and mitigates creating fake OAuth clients
by an insider.

In Fig. 6, we show a successful malicious request caused by the absence of our
security checks. In this case, an unauthorized client, potentially created by an insider, is
used to send the request, and the resource microservice responded with the data. Due to
the lack of our Client ID Check, a malicious microservice with a fake OAuth client can
be a threat, leading to data exfiltration from RMS. Having an OAuth client per

Fig. 4. Token theft detection

Fig. 5. Unauthorized client detection
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consumer-resource combination, alongside the Client ID Check mitigates this threat. It
also minimizes the trust between microservices by only allowing essential communi-
cations between them, and requiring the access control server involvement for token
production and verification rather than blindly trusting a microservice or its domain.
This practice minimises the impact of a confused deputy attack by limiting what can be
done with a potentially compromised microservice.

Moreover, the user of the session and the OAuth token subject are not the same,
which suggests using a stolen token for the request. Without our User Identity Check,
token theft would not be detected. This gives this malicious user the ability to apply to
services using another user’s information. Our User Identity Check mitigates these
attacks.

6.1 Performance

In this section, we show the overhead resulting from our proposed solution. We have
conducted this experiment on an Ubuntu 17.10 running on a machine with 2.6 GHz Core
i7 processor and 12 GB of RAM; we show the overhead caused by adding gateways
configured for consumer microservices (CGW) and resource microservices (RGW). The
line chart in Fig. 7 visualises the response time of 250 service calls for the same
microservice without any gateways, with CGW, and with RGW. ACS is placed in a
separate Linux container, on the same machine, to isolate the effect of data propagation
over the internet. The lines show that the response time is the highest for microservices
protected by RGW; the numbers confirm that, on average, an overhead of 23% results
from adding a CGW, and of 32% occurs from adding RGW to amicroservice. Thismeans
that a mixture of gateways protecting consumer and resource microservices should lead
to an overhead of less than 32% on average. The overhead of User Identity Check and
Client ID Check is minimal, given that it is all done within the GW program with no data
propagation to the ACS.

Fig. 6. Malicious request without our security checks.
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As for ACS, the load factor is mostly affected by the number of exposed resource
microservices due to the extra checks of OAuth 2 tokens; this is relatively easy to
overcome with the cheap cloud elastic scaling.

7 Conclusions and Future Work

In this paper, we highlighted some security challenges that microservice-based appli-
cations are prone to in connection to access control and authorisation, both when the
User is the trust anchor and when microservices work in conjunction. We presented a
security design allowing fine-grained access control, while not compromising scala-
bility, by proposing an access gateway at a per-microservice level. We have demon-
strated the concept by implementing a prototype using XACML and OAuth 2, two
leading open standards and readily available for microservices.

This work is part of a larger project that, on one hand, is looking into the chain of
trust of distributed, multi-party many-component systems; on the other hand, we are
developing solutions for digital governments where user control and trust are the
central requirements. Several challenges are kept open. Our solution still largely
depends on trusting key elements – for example, the Access Control Servers pose a risk
and are able to compromise the whole system if they get compromised. On the other
hand, from a user perspective, aspects such as repudiation and secure delegation of
control are still open. Finally, we are also looking into the implications of having
interdomain borders on which different (human) administrations sit. In other words,
how to dynamically set very short-lived and on-on-the-fly trust boundaries, between
multiple security administrations and environments.

Fig. 7. Line chart showing our experimental results
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Abstract. Mobile Health (mHealth) refers to a healthcare-provision
scheme which uses mobile communication devices for effective detection,
prognosis and delivery of services. mHealth systems consists of sensors
collecting information from patients, cell phones through which users
access the data, and a cloud-based remote data store for holding health
information of the patients. Healthcare data contains sensitive informa-
tion and it must be protected from unauthorized access. Although role-
based access control is commonly used for healthcare data, we advocate
the use of attribute-based access control as it offers finer granularity of
access and can be used across organizational boundaries. Specifically, we
use the NIST Next Generation Access Control (NGAC) for represent-
ing the access control policies as it is efficient, expressive, and simplifies
policy management. We propose an approach that allows constant time
evaluation of access decisions based on using a graph database.

1 Introduction

The proliferation of smartphone applications provide enhanced services and func-
tionality to users. Many healthcare smartphone applications, commonly referred
to as mHealth applications, such as the one proposed by Avancha et al. [1] shown
in Fig. 1, are commonly used. An mHealth system consists of several Sensor
Nodes (SN) attached to a person’s body, which detect health-related parame-
ters such as blood pressure, and relay the same to a Mobile Node (MN) or a
Mobile Internet Device (MID). The SNs and the MID constitute the Body-Area
Network (BAN). The MID eventually transmits this information over the Inter-
net, to a remote data store called the Health Records System (HRS), for secure,
persistent storage.

Many different categories of users, including patients, healthcare providers,
insurance agents, researchers, and law enforcement agencies may need to access
healthcare data for various purposes. However, healthcare data is sensitive in
nature. Inadvertent or malicious disclosure has grave consequences. Access con-
trol, is therefore, critical for such data [2]. Lomotey et al. [3] have used Role-
Based Access Control (RBAC) [4] for their application, where access is governed
by the roles of the healthcare professionals. RBAC suffers from the problem of
role explosion and role management for larger institutions [2,5] and often times
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more finer grained access control is needed [6]. Attribute-Based Access Control
(ABAC) [7] can, however, overcome these drawbacks [8–10]. Our work improves
upon the performance over existing literature in ABAC for mHealth.

Fig. 1. mHealth architecture

Basnet et al.’s [10] is closest to ours and we use the same graph structure
for representing mHealth policies. However, there is scope for investigating their
algorithms further, as access-request evaluation is not being done in constant-
time. In their work, they use different indexes and lists maintained at the nodes
of the NGAC DAG. The time complexity of these pre-computations are also
very high (cubic, in terms of number of users/objects), and is not suitable for
implementation in a real-world scenario. The current work builds on this work
by Basnet et al. [10] but improves upon the performance time significantly. In
the current work, access-request evaluation can be achieved in O(1). We give a
detailed comparison in Sect. 4. The current work also provides algorithms doing
incremental analysis when the graph structure changes so that the users access-
ing the graph are not inconvenienced. The current work is also able to handle
multiple policy classes.

The rest of the paper is organized as follows. Section 2 contains a descrip-
tion on NIST’s NGAC framework. Section 3 describes our enhanced approach.
Section 4 provides complexity evaluation for the proposed algorithms. Section 5
concludes the paper with pointers to future directions.

2 Background on NIST Next-Generation Access Control

NGAC is essentially a framework for specifying and enforcing ABAC [11].

NGAC Policy Elements
Some relevant policy elements are - (1) users, (2) objects, (3) user attributes, (4)
object attributes, (5) operations (6) policy classes and (7) access rights. Let us
examine each of these. Users (u) are entities authenticated by the system and
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have access to system resources. Objects (o) are the resources needing protec-
tion. User attributes (ua) are properties associated with users. Object attributes
(oa) are properties of the objects. Operations (op) are actions that a user can
perform and are classified into resource operations (ROP) or administrative oper-
ations (AOP). The actions that a user performs on a resource are referred to as
resource operations. The operations that a user performs that operate on pol-
icy elements are referred to as administrative operations. The permitted actions
are given through access rights, which can be resource access rights (RAR) or
administrative access rights (AAR) depending on whether the operations are
administrative operations or resource operations respectively.

NGAC Relationships
Two different types of relationships can exist between policy elements. Assign-
ment (ASSIGN) is a irreflexive binary relation that can exist between a user and
user attribute, object and object attribute, user attribute and user attribute,
object attribute and object attribute, user attribute and policy class, object
attribute and policy class. An ASSIGN essentially conveys a ‘belongs-to’ rela-
tionship. Therefore, an object attribute cannot be assigned to an object, a user
attribute cannot be assigned to a user. There should also be no cycles formed
by a series of ASSIGNs. Finally, every user, user attribute and object attribute
should have a sequence of ASSIGNs that eventually lead to a policy class element.
Association (ASSOC) is a binary relation between NGAC elements, which essen-
tially represents an access privilege. An ASSOC < ua, ar, oa > indicates that
users assigned to user attribute ua have access right ar over objects assigned to
object attribute oa. An ASSOC can exist only between a user attribute and an
object attribute.

According to Mell et al. [12], an NGAC policy can be effectively represented
as a Directed Acyclic Graph (DAG), and this feature is used extensively to
optimize the complexity associated with access-request evaluation. In their work,
two types of access requests are considered - (1) a single user requesting to
perform an operation on a single object and (2) a single user requesting to view
all privileges at the disposal. The first request performs linearly with respect to
the number of operations, and the second request it’s log-linear with respect to
the number of operations and users. Also, this complete graph determines which
authorizations are allowed, due to which it shall be referred to in following
sections as the ‘authorization graph’.

3 Our Approach

We use the Neo4j graph database platform for implementing the authorization
graph. Neo4j allows for fast graph traversal and look-up of a record’s location in
constant time, using the record ID [13]. We represent an association in the form
of an operation node with an out-degree of zero. An example of such an imple-
mentation is shown in Fig. 2. The authorization graph is ‘indexed’, meaning, we
maintain a data structure at two types of nodes - users and objects, to enable
fast evaluation of access decisions.
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3.1 Authorization Graph Indexing

We index the authorization graph by storing every allowable access right for the
user u in the form of < op, o >, at each user node. Every access right allowed
to different users, for accessing object o, is stored in the form of < u, op >,
at each object node. As stated before, this graph can be modified in different
ways, and for some types of these changes, this indexing procedure has to be
carried out on the graph. In Algorithm 1, the authorization graph is traversed
using depth-first search from every user and object node, whilst keeping track
of the nodes visited at each respective user and object node (lines 10–12). Once
this is done, we perform an intersection across these indexes for every u and o
node combination (lines 13–24). It is clear that the common nodes in the visited-
node list are the operation op nodes. If such a common node is encountered, we
immediately store the < op, o > node combination in the permissions index
of that particular user node, in line 18. The data structure used to construct
permissions at each user and object node is a hash-map, with a self referencing
key. We also store < u, op > in the permissions index of the object node, in
line 19.

Fig. 2. Neo4j implementation of authorization graph

This approach could, however, pose a problem when multiple policy classes
are involved. In our work, we shall simply consider multiple authorization graphs,
one for each corresponding policy class. Algorithm 1 shall be followed for each
of these graphs, and the final permissions index built at the user node would
be the intersection of the permissions list associated with each user, intersected
across the different authorization graphs.
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It is also crucial to ensure that the storage of permissions does not result in
a large overhead. Let us assume that each permission represented by < op, o > or
< u, op >, takes up around 20 bytes of memory. Now, even if the authorization
graph consists of up to 10 million permissions in total (which is quite a stretch),
the space complexity would be 20 × 107 Bytes = 0.2 GB. 0.2 GB does not pose
a significant challenge at all, for present day RAMs, thereby allowing storage of
permissions in-memory.

3.2 Access Request Evaluation

We shall take into consideration three types of queries.

Queries of the form < u, op, o >: A query of the form < u, op, o > essentially
represents a user u requesting whether they have permissions for performing
operation op on the object o. Algorithm 2 shows how we shall handle this.
Storing every authorized permission at the user node, renders this a simple task.
We simply have to look up the permissions hash-map belonging to the user u,
and determine if < op, o > is present, in the same. If this is indeed present, we
grant access, in line 4. Otherwise, the access request is denied.

Queries of the form < u, ∗, ∗ >: Occasionally, a user might want to know
every privilege at their disposal. This type of access request is represented by
the query type < u, ∗, ∗ >. As mentioned before, storing of access decisions
during the indexing renders this task to be trivial. This is done in Algorithm
3, where, in response to this query type, we simply look up the permissions
hash-map of user u, and return the same.

Queries of the form < ∗, ∗, o >: In some situations, the administrator may
issue a query to determine which access rights are allowed to whom, for access-
ing an object o. We handle this using Algorithm 4, where, we look up the
permissions hash-map of object o and return it.

4 Complexity Analyses

Indexing. We shall now assay the worst-case time complexity of the indexing
procedure, being performed in Algorithm 1. Since this is not being done in real-
time, and is evaluated before-hand, it is not necessary to consider the indexing
time with respect to performance of access request evaluation. This procedure
is performed once a change is made to the authorization graph as discussed in
Sect. 3. While the authorization graph is being updated, it is unable to respond to
access request evaluation. Thus, it is important to minimize the time needed for
indexing the graph. The time complexity of Algorithm 1 at worst case is O(|u|)
and O(|o|), with respect to increasing number of users and objects respectively.

Processing for <u, op, o>: For evaluating <u, op, o>, our approach achieves
theoretically constant worst-case time complexity O(1). While processing
< u, op, o >, we have to perform two major look-ups which may cost time.
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Firstly, in Algorithm 2, we need to look up the right user node for checking
permissions. This can be successfully achieved in O(1). The second major look-
up to be performed lies in checking permissions itself. It is necessary to check
this for the existence of < op, o > for the user u. This may contain many thou-
sands of allowed access permissions, but since we use a hash-map to store the
same, this permissions check can also be achieved in O(1). Therefore, theoreti-
cally, the time complexity of access request evaluation is O(1).

Algorithm 1. Indexing
1: [Input: Unlabelled Graph = (users ∪ objects ∪ operations, E) where ∀u ∈

users, u.permissions = ∅ and ∀o ∈ objects, o.permissions = ∅]

2: [Output: Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where ∀u ∈
users

′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅]

3: for all u ∈ users do
4: u.permissions = {}
5: end for
6: for all o ∈ objects do
7: o.permissions = {}
8: end for
9: source nodes ← users ∪ objects

10: for all s ∈ source nodes do
11: s.nodes ← set of all the nodes visited during DFS traversal from s
12: end for
13: for all u ∈ users do
14: for all o ∈ objects do
15: for all nodeA ∈ u.nodes do
16: for all nodeB ∈ o.nodes do
17: if nodeA.id= nodeB.id then � nodeA is an op node
18: u.permissions ← u.permissions ∪ 〈nodeA, o〉 � Building

permissions hash-map associated with u [Output]
19: o.permissions ← o.permissions ∪ 〈u, nodeA〉 � Building

permissions hash-map associated with o [Output]
20: end if
21: end for
22: end for
23: end for
24: end for
25: return Labelled Graph

Processing for < u, ∗, ∗ >: In our approach (Algorithm 3), it is only necessary
to look up the user in the query, and return the permissions for that user. As
stated before, looking up a particular user in Neo4j is O(1), which leads us to
establish that, the access request of the type < u, ∗, ∗ > can be achieved in
constant time as well.

Processing for < ∗, ∗, o >: The worst-case time complexity of evaluating a
query of this type is, once again, O(1), with respect to increasing users, objects
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and type of policy. The complexity evaluation for Algorithm 4 is quite similar
to Algorithm 3, wherein, we simply look up permssions for object o (which can
be done in O(1) in Neo4j), and return the same in constant time.

Algorithm 2. Evaluate < u, op, o >

1: [Input: Query < u, op, o >, u.permissions].
2: [Output: Granted or Denied]
3: if 〈op, o〉 ∈ u.permissions then
4: return Granted � [Output] is Granted
5: else
6: return Denied � [Output] is Denied
7: end if

Algorithm 3. Evaluate < u, ∗, ∗ >

1: [Input to the algorithm u] � u is the user who want to know their capabilities
2: return u.permissions

Algorithm 4. Evaluate < ∗, ∗, o >

1: [Input to the algorithm o] � o is the object for which the allowed rights are
requested

2: return o.permissions

4.1 Evaluation of Structural Changes in Authorization Graph

Here we look into the different types of changes possible in the authorization
graph, and analyze the time complexity cost incurred with respect to performing
the indexing procedure, after each change. Instead of analyzing the entire graph,
we only assess the subgraphs impacted by the change.

Adding a New User/New Object. When a new user/object node is added to
the system, no permissions are associated with it. The node is created, labeled as
‘user’/‘object’, and permissions for that node is set to NULL. The user/object is
uniquely identified by the node ID. This operation can be achieved in constant
time.

Removing a User. When a user is removed, the permissions index stored
at some object nodes might have to be modified. Algorithm 5 will be followed,
wherein, we simply iterate through the permissions index of the user to be
deleted u, and remove the entries for user u from the permissions of each cor-
responding object. This delete operation is affected by the number of policies
stored at the user node being deleted, and in object nodes. The worst case time
complexity is O(|u|) and O(|o|), with respect to increasing user and objects.

Removing an Object. Removal of an object might warrant the need to change
the permissions index of some users, due to which Algorithm 6 is followed.
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Algorithm 5. Delete User

1: [Input: Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where ∀u ∈
users

′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅]

2: [Input: User to be deleted = u]

3: [Output: Updated Labelled Graph = (users
′ ∪objects

′ ∪operations, E) where ∀u ∈
users

′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅ and u �∈ users

′
]

4: for all (ou, opu) ∈ u.permissions do
5: for all (uo, opo) ∈ ou.permissions do
6: if uo = u then
7: Delete (uo, opo) from ou.permissions
8: end if
9: end for

10: end for
11: Delete user u
12: return Updated Labelled Graph

Similar to Algorithm 5, the stored permissions list of the object to be removed
is used to find out which users’ permissions list has to be changed. This results
in a worst-case time complexity of O(|u|) and O(|o|), with respect to increasing
user and objects.

Algorithm 6. Delete Object

1: [Input: Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where ∀u ∈
users

′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅]

2: [Input: Object to be deleted = o]

3: [Output: Updated Labelled Graph = (users
′ ∪objects

′ ∪operations, E) where ∀u ∈
users

′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅ and o �∈ objects

′
]

4: for all (uo, opo) ∈ o.permissions do
5: for all (ou, opu) ∈ uo.permissions do
6: if ou = o then
7: Delete (ou, opu) from uo.permissions
8: end if
9: end for

10: end for
11: Delete object o
12: return Updated Labelled Graph

Adding a User Attribute. When a new user attribute is added to the system,
no policies are associated with it yet. Due to this, changes need not be made to
any of the indices, and the complexity is constant.

Removing a User Attribute. When a user attribute is removed from the
system, a subset of the users and objects may need to change their permissions.
Algorithm 9 is used to handle this. We simply run a DFS in the reverse direction
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to the assignments, from the user attribute to be deleted. This would give us
the set of object nodes which will be affected by the change. We then use their
existing indices to find out the object nodes which will also be affected. Now,
we have a subset of user and object nodes on which we will do the intersection
as shown in Algorithm 1, as opposed to doing in intersection on all objects and
users. The average case complexity of doing this is lesser than that of Algorithm
1, but in the worst case, it is O(|u|) and O(|o|), with respect to increasing user
and objects.

Adding an Object Attribute. When an object attribute is added, no new
policies are associated with it yet, due to which no changes need to be made
to the permissions index of any users or objects. This can be done in constant
time.

Algorithm 7. Add and Delete u to ua ASSIGN

1: [Input: Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where ∀u ∈
users

′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅]

2: [Input: User = u]
3: [Input: User Attribute = ua]

4: [Output: Updated Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where

∀u ∈ users
′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅ and u −

uaASSIGN ∈ E]
5: u.nodes ← set of all the nodes visited during DFS traversal from u
6: for all o ∈ objects do
7: o.nodes ← set of all the nodes visited during DFS traversal from o
8: end for
9: for all o ∈ objects do

10: for all nodeA ∈ u.nodes do
11: for all nodeB ∈ o.nodes do
12: if nodeA.id= nodeB.id then � nodeA is an op node
13: u.permissions ← u.permissions ∪ 〈nodeA, o〉 � Building permissions

hash-map associated with u [Output]
14: o.permissions ← o.permissions ∪ 〈u, nodeA〉 � Building permissions

hash-map associated with o [Output]
15: end if
16: end for
17: end for
18: end for
19: return Updated Labelled Graph

Removing an Object Attribute. When an object attribute is deleted, we
shall follow Algorithm 10, where the permissions index of only those affected
user and object nodes are changed. We find out this subset of nodes to update
by performing a DFS in the reverse direction, which will lead us to all the user
nodes. The object nodes are discovered by examining the permissions hash-map
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of each user. After this, we intersect across all nodes visited using DFS from each
user and object, to find the common operation nodes, and update the indices.
In the average case, this would incur lesser complexity cost than Algorithm 1,
but in the worst case, it is O(|u|) and O(|o|), with respect to increasing user and
objects.

Adding a u to uaASSIGN. As shown Algorithm 7, we perform a DFS traversal
from the user node u, and every object node, and perform an intersection across
both these sets of visited nodes, to get the common operation nodes. The worst
case time complexity is O(1) and O(|o|) with respect to number of users and
objects respectively.

Algorithm 8. Add and Delete o to oa ASSIGN

1: [Input: Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where ∀u ∈
users

′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅]

2: [Input: Object = o]
3: [Input: Object Attribute = oa]

4: State [Output: Updated Labelled Graph = (users
′ ∪objects

′ ∪operations, E) where

∀u ∈ users
′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅ and o −

oaASSIGN ∈ E]
5: o.nodes ← set of all the nodes visited during DFS traversal from o
6: for all u ∈ users do
7: u.nodes ← set of all the nodes visited during DFS traversal from u
8: end for
9: for all u ∈ users do

10: for all nodeA ∈ u.nodes do
11: for all nodeB ∈ o.nodes do
12: if nodeA.id= nodeB.id then � nodeA is an op node
13: u.permissions ← u.permissions ∪ 〈nodeA, o〉 � Building permissions

hash-map associated with u [Output]
14: o.permissions ← o.permissions ∪ 〈u, nodeA〉 � Building permissions

hash-map associated with o [Output]
15: end if
16: end for
17: end for
18: end for
19: return Updated Labelled Graph

Removing a u to ua ASSIGN. In this case, we perform the same procedure as
done for adding a u to ua assignment. We again follow Algorithm 7 for performing
this.

Removing a User. For adding an o - oa assignment, we shall follow Algorithm
8, where a procedure similar to Algorithm 7 is followed, but on the objects’ side.
We perform the DFS from the object node o and from every user, and follow
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this up with the intersection. The time complexity of this algorithm is O(|u|)
and O(1) with respect to number of users and objects respectively.

Removing an o to oa ASSIGN. We follow the same procedure as done when
adding an o to oa ASSIGN (Algorithm 8).

Algorithm 9. Delete User Attribute

1: [Input: Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where ∀u ∈
users

′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅]

2: [Input: User attribute to be deleted = ua]

3: [Output: Updated Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where

∀u ∈ users
′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅ and ua �∈

Updated Labelled Graph]
4: onodes = {}
5: unodes = {}
6: unodes ← set of all the user nodes visited during reverse DFS traversal from ua
7: for all u ∈ unodes do
8: onodes ← onodes ∪ u.permissions[1]
9: end for

10: source nodes ← unodes ∪ onodes
11: Delete(ua)
12: for all s ∈ source nodes do
13: s.nodes ← set of all the nodes visited during DFS traversal from s
14: end for
15: for all u ∈ unodes do
16: for all o ∈ onodes do
17: for all nodeA ∈ u.nodes do
18: for all nodeB ∈ o.nodes do
19: if nodeA.id= nodeB.id then � nodeA is an op node
20: u.permissions ← u.permissions ∪ 〈nodeA, o〉 � Building

permissions hash-map associated with u [Output]
21: o.permissions ← o.permissions ∪ 〈u, nodeA〉 � Building

permissions hash-map associated with o [Output]
22: end if
23: end for
24: end for
25: end for
26: end for
27: return Updated Labelled Graph

Adding a ua to ua ASSIGN. A ua - ua assignment is added using Algorithm
11. We assume the user attribute ua1 is assigned to the user attribute ua2. In
this case, as shown in Algorithm 11, we perform a DFS in the reverse direction
from ua1, which leads us to every u node whose permissions has to be updated.
We then perform forward DFS from this subset of user nodes, and all objects
nodes, followed by the intersection. The worst case time complexity comes out
to be O(|u|) and O(|o|) with respect to number of users and objects respectively.



312 V. Pagadala and I. Ray

Algorithm 10. Delete Object Attribute

1: [Input: Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where ∀u ∈
users

′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅]

2: [Input: Object attribute to be deleted = oa]

3: [Output: Updated Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where

∀u ∈ users
′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅ and oa �∈

Updated Labelled Graph]
4: onodes = {}
5: unodes = {}
6: onodes ← set of all the object nodes visited during reverse DFS traversal from oa
7: for all o ∈ onodes do
8: unodes ← unodes ∪ o.permissions[0]
9: end for

10: source nodes ← unodes ∪ onodes
11: Delete(oa)
12: for all s ∈ source nodes do
13: s.nodes ← set of all the nodes visited during DFS traversal from s
14: end for
15: for all u ∈ unodes do
16: for all o ∈ onodes do
17: for all nodeA ∈ u.nodes do
18: for all nodeB ∈ o.nodes do
19: if nodeA.id= nodeB.id then � nodeA is an op node
20: u.permissions ← u.permissions ∪ 〈nodeA, o〉 � Building

permissions hash-map associated with u [Output]
21: o.permissions ← o.permissions ∪ 〈u, nodeA〉 � Building

permissions hash-map associated with o [Output]
22: end if
23: end for
24: end for
25: end for
26: end for
27: return Updated Labelled Graph

Removing a ua to ua ASSIGN. Here we follow the same procedure as done
with adding a ua to ua ASSIGN, which is shown in Algorithm 11.

Adding a oa to oa ASSIGN. A oa - oa assignment is added using Algorithm
13. We assume the object attribute oa1 is assigned to the object attribute oa2. In
this case, as shown in the algorithm, we perform a DFS in the reverse direction
from oa1, which leads us to every o node whose permissions has to be updated.
We then perform forward DFS from this subset of object nodes, and all user
nodes, followed by the intersection. The worst case time complexity is O(|u|)
and O(|o|) with respect to number of users and objects respectively.

Removing a oa to oa ASSIGN. Here we follow the same procedure as done
with adding a oa to oa ASSIGN, which is shown in Algorithm 13.
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Algorithm 11. Add and Delete ua to ua ASSIGN

1: [Input: Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where ∀u ∈
users

′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅]

2: [Input: User Attribute 1 = ua1]
3: [Input: User Attribute 2 = ua2]

4: [Output: Updated Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where

∀u ∈ users
′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅ and ua −

uaASSIGN ∈ E]
5: unodes ← set of all the user nodes visited during reverse DFS traversal from ua1

6: source nodes ← unodes ∪ objects
7: for all s ∈ source nodes do
8: s.nodes ← set of all the nodes visited during DFS traversal from s
9: end for

10: for all u ∈ unodes do
11: for all o ∈ objects do
12: for all nodeA ∈ u.nodes do
13: for all nodeB ∈ o.nodes do
14: if nodeA.id= nodeB.id then � nodeA is an op node
15: u.permissions ← u.permissions ∪ 〈nodeA, o〉 � Building

permissions hash-map associated with u [Output]
16: o.permissions ← o.permissions ∪ 〈u, nodeA〉 � Building

permissions hash-map associated with o [Output]
17: end if
18: end for
19: end for
20: end for
21: end for
22: return Updated Labelled Graph

Adding a ua to oa ASSOC. Adding an association between a ua and an oa
node, implies the addition of an op node. For doing this, we simply perform
a DFS in the reverse direction from ua and oa, as shown in lines 7 and 8 in
Algorithm 12. This gives us the subset of u and o nodes whose permissions has
to be updated. Now, we simply iterate through each user and object node, and
include every object node in the user’s permissions hash-map, and vice verse.
The worst case time complexity is O(|u|) and O(|o|) with respect to number of
users and objects respectively.

Removing a ua to oa ASSOC. As shown in Algorithm 14, when a permission
gets deleted, we first find out the subset of users and objects affected by this
change, by performing a reverse DFS from ua and oa. Once we achieve this, we
simply do a forward DFS from each of these nodes, and store all visited nodes.
The intersection across the visited nodes from the users and objects will enable
us to find the common operation nodes and update the permisisons hash-map
of the users and objects. The worst case time complexity is O(|u|) and O(|o|)
with respect to number of users and objects respectively.
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Algorithm 12. Add ua to oa ASSOC

1: [Input: Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where ∀u ∈
users

′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅]

2: [Input: User Attribute = ua]
3: [Input: Object Attribute = oa]
4: [Input: Operation = op]

5: State [Output: Updated Labelled Graph = (users
′ ∪objects

′ ∪operations, E) where

∀u ∈ users
′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅ and ua −

oaASSOC ∈ operations,E]
6: unodes ← set of all the user nodes visited during reverse DFS traversal from ua
7: onodes ← set of all the object nodes visited during reverse DFS traversal from oa
8: for all u ∈ unodes do
9: for all o ∈ onodes do

10: u.permissions ← u.permissions ∪ (o, op)
11: end for
12: end for
13: for all o ∈ onodes do
14: for all u ∈ unodes do
15: o.permissions ← o.permissions ∪ (op, u)
16: end for
17: end for
18: return Updated Labelled Graph

Algorithm 13. Add and Delete oa to oa ASSIGN

1: [Input: Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where ∀u ∈
users

′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅]

2: [Input: Object Attribute 1 = oa1]
3: [Input: Object Attribute 2 = oa2]

4: [Output: Updated Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where

∀u ∈ users
′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅ and oa −

oaASSIGN ∈ E]
5: onodes ← set of all the object nodes visited during reverse DFS traversal from oa1

6: source nodes ← users ∪ onodes
7: for all s ∈ source nodes do
8: s.nodes ← set of all the nodes visited during DFS traversal from s
9: end for

10: for all u ∈ users and o ∈ onodes do
11: for all nodeA ∈ u.nodes and nodeB ∈ o.nodes do
12: if nodeA.id= nodeB.id then � nodeA is an op node
13: u.permissions ← u.permissions ∪ 〈nodeA, o〉 � Building permissions

hash-map associated with u [Output]
14: o.permissions ← o.permissions ∪ 〈u, nodeA〉 � Building permissions

hash-map associated with o [Output]
15: end if
16: end for
17: end for
18: return Updated Labelled Graph
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Algorithm 14. Delete ua to oa ASSOC

1: [Input: Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where ∀u ∈
users

′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅]

2: [Input: User Attribute = ua, Object Attribute = oa, Operation = op]

3: [Output: Updated Labelled Graph = (users
′ ∪ objects

′ ∪ operations, E) where

∀u ∈ users
′
, u.permissions �= ∅ and ∀o ∈ objects

′
, o.permissions �= ∅ and ua −

oaASSOC �∈ operations,E]
4: unodes ← set of all the user nodes visited during reverse DFS traversal from ua
5: onodes ← set of all the object nodes visited during reverse DFS traversal from oa
6: source nodes ← unodes ∪ onodes
7: for all s ∈ source nodes do
8: s.nodes ← set of all the nodes visited during DFS traversal from s
9: end for

10: for all u ∈ unodes do
11: for all o ∈ onodes do
12: for all nodeA ∈ u.nodes do
13: for all nodeB ∈ o.nodes do
14: if nodeA.id= nodeB.id then � nodeA is an op node
15: u.permissions ← u.permissions ∪ 〈nodeA, o〉 � Building

permissions hash-map associated with u [Output]
16: o.permissions ← o.permissions ∪ 〈u, nodeA〉 � Building

permissions hash-map associated with o [Output]
17: end if
18: end for
19: end for
20: end for
21: end for
22: return Updated Labelled Graph

5 Conclusion and Future Work

We propose the use of attribute-based access control for specifying and enforcing
mHealth access control policies and provide efficient algorithms for policy enfore-
cement and management. A lot of work remains to be done. We need to extend
our approach to handle multiple policy classes and further look at techniques for
optimizing the approach. We need to implement our approach on Neo4j for real-
world case studies and investigate whether the model is adequately expressive
and efficient to meet real-time requirements of mHealth applications.
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