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Foreword

The golden era of the biological understanding of the health and disease is now 
unfolding the nature secrets in an unprecedented level. This revolution is not pos-
sible without the contributions of the scientists across the world as well as in many 
subjects, ranging from biologist; physicists; engineers of the variety of fields like 
electrical, mechanical, and computer science; as well innovators of new ideas. This 
free flow of ideas from people with different skills resulted in bringing the new 
technologies and their implementation in a way which was never in doubt changed 
the way we look at the life around as well as inside us from the environment and the 
interaction with genomes resulting in adaption and better management plans of our 
lives with improved health.

Biomedical scientists were the major beneficiaries of such advances of the  
variety of fields mentioned above. Almost 50 years separated the discovery of DNA 
structure to the Human Genome Project achievement. Thousands of scientists devel-
oped new methods and technologies from sequencing and computers with power to 
deal with complex data generation to analysis. The proverb “Necessity is the mother 
of invention” explains the development of bioinformatics aptly. For example, with 
the generation of sequences came the first step of theoretical scientists, mathemati-
cians and statisticians put the first seed for BLAST, to compare different sequences 
now to deal with high-throughput data from a spectrum of “-omic” technologies like 
genomics, proteomics, and metabolomics. Comparing fewer than 1000 bases in 
early years to millions and billions of bases and data points in biology in a short time 
with a variety of tools resulted in the rapid development in diagnosis of many genetic 
defects in rare diseases to identification of hundreds and thousands of risk markers 
for the complex diseases plaguing the human race at an alarming rate. Now, thanks 
to the bioinformatics tool, biologist with limited or no knowledge of computer pro-
grams can analyze the complex data from a variety of high-throughput “-omic” 
fields to search for the answer to their scientific queries.

This book series is trying to target the graduate students and young researchers 
who are keen in understanding and contemplating their future career in high- 
throughput biological fields of their choice. The chapters give the flavor of the 
 various fields from genetic diagnosis, the dissection of complex diseases to  
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application, and the collaborative efforts of bioinformatics scientists with geneti-
cists, statisticians, biochemists, and engineers to deliver the new understanding of 
the human biology. The first volume showed a variety of tools available in bioinfor-
matics field to address a variety of queries with different sets of biological data. The 
current second volume gives a glimpse of the success of such technologies and 
bioinformatics tools in many fields, changing the disease diagnostics and novel 
drug identification to better patient management with better drugs and exploring the 
revolutionary stem cell science to treat patients of devastating diseases. The editors 
were bold enough to take the task of assembling a group of senior scientists and 
young people, who understand the need and difficulties of young researchers and 
graduate students, in unravelling the myth that advanced biological research is 
unreachable to them in a simple format. I congratulate the senior and experienced 
authors of various chapters and editors for providing an excellent overview, high-
lighting the impact of bioinformatics and “-omic” technologies across many fields 
to improve the human welfare.

I strongly recommend this volume series to the young students and budding 
researchers wishing to enter this exciting era of biomedical revolutionary research. 
I am confident this series of volumes will provide the confidence to science students 
in different corners of the world, especially from the developing world with limited 
resources, to dream up the careers in this field to make an impact on the world.

Prof. Kaipa Prabhakar Rao
Department of Genetics  
Osmania University
Hyderabad, India

Foreword



ix

Preface

Bioinformatics is growing along with the rapid advances in many different techno-
logical and scientific fields. The “big data” science is the result of combined work 
of ultrahigh-throughput technology development and high-performance computers. 
Genetics, genomics, proteomics, metabolomics, and metagenomics changed the 
biology more in the recent past. Next-generation sequencing technology is the result 
of Human Genome Project with whole-exome and whole-genome sequencing 
(NGS) possible within 24–56 hours. This revolutionized the genetic diagnosis of 
rare diseases around the world. Almost every country has the scientists equipped 
with the NGS data analysis skills for diagnostic purposes. Bioinformatics tools, 
especially in the public domain, make this technology for research and application 
in diagnosis a reality in every corner of the world. Many nations realized the poten-
tial of the national biobank and their potential contribution to the economy by 
reducing the healthcare burden enormously through the prevention of disease and/
or better management of patients through novel drug discovery to personalized 
medicine.

This volume, like the first volume, is targeting the young researchers to make 
them aware of the recent developments in a variety of fields where bioinformatics 
along with the other multi-omics technologies changed the scientific world, making 
a large impact. It also focusses on the key development in key multi-omics tech-
nologies output and their impact in many aspects of biomedical fields. Human 
genome sequencing project witnessed a heightened activity of bioinformatics scien-
tists and tools. Hundreds and thousands of the easy tools were developed for a 
variety of applications. It is not possible to discuss the examples for any single 
group of bioinformatics tools. Hand in hand with the first volume, this will help the 
young scientists and graduate students realize the role of bioinformatics play in the 
development of many applied biomedical advances toward better healthcare for all.

The chapters are organized in a way to highlight a particular “-omic” technology 
and its role in changing the biomedical scientific area. For example, the microarray 
and NGS technology, combined with the bioinformatics tools, made the genetic 
diagnosis rapid and accurate, even for rare diseases in any corner of the world with 
very little blood within days. Unknown diseases reveal novel hidden mutations, 



x

helping the scientists learn more about the disease biology to address the biological 
understanding in finer detail. Likewise, drug discovery and personalized medicine 
had the bioinformatics stamped its impact along with the technologies. We, as sci-
entists, attempted to highlight the success of various biomedical fields in this vol-
ume to support the role of collaborative nature of modern science among the 
multidisciplinary scientists. It is the celebrations of the collaborative scientists rang-
ing from physical to applied medical and clinical scientists with bioinformatics 
groups, directly or indirectly, through many software tools or specialized databases 
with hidden tools to provide the accurate answer to their queries. Hopefully, the 
young scientists will realize the importance of this type of multidisciplinary col-
laboration and gain success in their professional careers.

We sincerely thank the management, faculty members, staff, and students at 
Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders 
(PACER-HD), Department of Genetic Medicine, Faculty of Medicine, and 
Department of Biology, Faculty of Science, at King Abdulaziz University (KAU) 
for supporting our effort in bringing this book series a reality. Our special thanks go 
to Prof. Jumana Y. Al-Aama, director of PACER-HD, KAU, for letting us realize the 
importance of bioinformatics in clinical practice, for encouraging excellent scien-
tific discussions and raising critical questions as clinicians, and for supporting our 
work throughout this long process. We would also like to thank the chairman of the 
Department of Biological Sciences, Prof. Khalid M. AlGhamdi, and the head of 
Plant Sciences Section, Dr. Hesham F. Alharby, for providing us the valuable sug-
gestions and encouragement to complete this task. We also acknowledge the authors 
of all chapters who spared their precious time in bringing this book out with valu-
able contributions. Last but not the least, we would like to acknowledge Springer 
Nature publishers, especially Mr. Rahul Sharma, for their patience and regular com-
munication with us to move the project forward.

Jeddah, Saudi Arabia  Noor Ahmad Shaik
Jeddah, Saudi Arabia  Khalid Rehman Hakeem
Jeddah, Saudi Arabia  Babajan Banaganapalli
Jeddah, Saudi Arabia  Ramu Elango  
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1.1  Introduction

Bioinformatics focused on sequence analysis processes at inception, starting with 
Genbank and BLAST services. When more and more sequence data were submit-
ted to the GenBank from various organisms by scientists from different parts of the 
world, the scope changed into more critical aspects of characterization of the gene, 
mapping, gene function and variant effect, etc. with dramatic increase in sequence 
data possible by various technological breakthroughs in many fields. There were 
many reviews which discussed these breakthrough technologies in detail over the 
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years. These will not be discussed here. For example, the polymerase chain reaction 
(PCR) using Taq polymerase enzyme is one key technology for amplifying very 
little amount of DNA into millions of copies. Different types of PCR, like real-time 
PCR, reverse transcriptase PCR (R-T PCR), SNaPshot, etc., helped drive the appli-
cation of sequence variations and gene expression for the diagnosis or biology of 
the defective gene function. These techniques along with instruments like genome 
analyzer sequencing machines played the key role in early stages of genetic revolu-
tion in biomedical field. With more advanced instruments developed to generate 
high- throughput sequence data with minimal amount of source DNA as in next- 
generation sequencing machines turned bioinformatics into one of the main players 
in biomedical field (Fig. 1.1).

1.2  Sequencing Technologies

Sequencing the DNA and RNA moved from Sanger sequencing few hundred bases 
at a time to hundreds of millions of bases in a day in the last decade. Introduction of 
genome analyzer to the research community led the scientists to embrace the new 
method quickly. Exciting research output with this method pushed many chemists 
and instrument engineers to develop newer and faster technologies to sequence the 
DNA and RNA. Availability of the cheaper technology and machines spurred more 
research on highly devastating diseases like cancer and complex diseases like myo-
cardial infarction, dementia, and so on. Next-generation sequencing technologies 
introduced new machines especially from Illumina, Thermo Fisher, and Pacific 
Biosciences (PacBio), companies which made the high-throughput rapid 

Fig. 1.1 Potential role of bioinformatics along with -Omic technologies in Health care

R. Elango et al.



3

sequencing to the forefront of the biomedical research. Large-scale generation of 
sequences of these NGS technologies provided the biggest challenge to the bioin-
formatics scientists to analyze and identify crucial markers and genes of interest for 
the bench scientists for functional validation.

Major NGS technologies and machines: Success of NGS depends on the chem-
istry and instrumentation behind the sample preparation. Three leading products 
from three different technologies contributed heavily for many major programs 
across the globe including the Human Genome Project, The Cancer Genome 
Atlas, etc.

Illumina/Solexa system uses the sequencing by synthesis method. They have 
successfully marketed different products targeting small laboratories to large 
genome centers. Major instruments in their portfolio include MiSeq, Nextseq, 
HiSeq, and NovaSeq. They are the market leaders with ~ 85–90% of NGS machines 
in labs around the world, producing large data every day for many groups.

1.2.1  MiSeq

This machine is the basic NGS machine that can be used for whole exome sequenc-
ing (WES) if required, but it is more suitable for targeted sequencing of the multi- 
gene panel for screening, especially in genetic diagnosis or screening for validation 
of novel sequence variants associated with complex diseases.

1.2.2  Nextseq

This is the midrange product from Illumina used for WES and whole genome 
sequencing (WGS) as well as RNA seq for gene expression profile of the specific 
tissues.

1.2.3  HiSeq

This group of instruments initially targeted the big genome centers and core labora-
tories in research organizations and universities across the world. This is one of the 
high-throughput sequencing platform machines which is suitable for large-scale 
WGS sequencing projects like Human Genome Project as well as running thou-
sands of WES of populations for unique coding sequence variant identifications. 
Almost all genome centers across the world installed these machines along with 
commercial NGS providers like BGI, China; Macrogen, Korea; etc. Clinical diag-
nostics companies also use variety of these machines for the clinical diagnosis of 
rare diseases for clinicians from countries where the facility is not available.

1 Driving Forces of Bioinformatics
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1.2.4  NovaSeq

This is the latest new range of product released by Illumina for the large core  
facilities and commercial NGS providers for research and diagnosis. This uses 
refined and better technologies to provide better and faster results for the users.

1.2.5  Thermo Fisher Scientific Range

The ion proton range of products marketed by the Thermo-Fisher Life 
Biotechnologies is mainly used for multi-gene panel screening of cancer or differ-
ent diseases. Though they targeted the WGS and WES customers initially, they are 
being used mainly for the mutation screening in many labs.

1.2.6  Nanopore Technology

Hand-held sequencing machine suitable for field laboratory and epidemic outbreak 
infection detection and work can be carried out in remote areas and data transferred 
to central laboratory for detailed analysis and to get rapid results. Newer machines 
are released with better options for long read sequences and high-throughput data 
generation by Oxford Nanopore technologies company (Oxford, UK). A nano-scale 
hole in proteins (biological nanopores) or in solid materials (solid-state nanopores) 
is called nanopore. One commercially scalable instrument set (MinION, GridION, 
and PromethION) from this company exploited this successfully with protein nano-
pores set in electrical-resistant polymer membrane. This instrument, passing the 
ionic current through nanopores, detects the differences in current variations of 
DNA/RNA when one nucleotide molecule at a time passes through it. Different 
nucleotides, A, T, G, and C, have unique current property – molecular signature – 
which can be used to identify that molecule, when the sample DNA goes through 
the nanopore.

1.2.6.1  Applications of Nanopore Sequence Technologies

Applications of this technology are extensively used for whole genome sequencing, 
exome sequencing, and RNA Seq and are reported in diverse fields of biology and 
biomedical sciences from genetics, genomics, and metagenomics. Main advantage 
of this technology is to reach remote areas where the sophisticated NGS technology 
is not available for rapid screening of biological samples. Its use can be noted by the 
more than 200 articles on epidemic infections in rural populations through the 
detection of causal organisms. They in turn help preventing the disease in living 

R. Elango et al.
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organisms. Excellent reviews were published in many leading journals which will 
give better understanding of the technology and its applications.

1.2.7  Single Cell Genomics

10xgenomics. This rapidly evolving technology is already making big impact on 
many complex disease biology, like in epigenomics, melanoma, inflammatory 
bowel disease, etc. (AlJanahi et  al. 2017; Kinchen et  al. 2018; Rambow et  al. 
2018). Publications and research is growing faster than one can catch up with 
advances in this exciting area, where collaborative interaction between scientists 
from different areas of science with bioinformatics is making a big impact.

1.2.8  Biostatistics

Genetic research in the population owes its growth and advancement to the statis-
tical groups and population geneticists. Biostatistics has evolved through the 
interesting collaborations and questions raised in biology, especially in genetics. 
Face of genetic and genomic revolution of human diseases, especially the com-
plex diseases seen across many countries, changed the biological understanding 
of the complex diseases to an unprecedented fine detail. One area of genetics 
which is dramatically changed by statistical groups is genetic association studies 
in complex diseases. From single genetic marker mapping to genetic association 
study to a trait with the help of human genome markers and sequences, to genome 
wide association studies (GWAS), the impact of statistical science is immense. 
The evolution of the GWAS studies through the eyes of one of the leading groups 
of statistical group is published in a recent review (Visscher et al. 2018). Gene 
expression analysis from microarray experiments was strengthened by the strin-
gent statistical process, which continued its influence in all fields of high-through-
put biological data generation areas like metabolomics, proteomics, metagenome, 
and gene enrichment analysis incorporated into the pathway analysis and other 
advanced applications. Statistics is one of the most important areas that all scien-
tists, whether wet lab, biomedical or bioinformatic scientist, need to learn to apply 
to their study. Many biology-related degree programs made the introductory bio-
statistics course as prerequisite or compulsory courses to graduate. Bioinformatics 
scientists working with statisticians provided hundreds of tools which carry out 
many statistical tests in the background to provide the statistically stronger analy-
sis output, like MetaboAnalyst for metabolomics or GEO-R2 in NCBI with gene 
expression data.

1 Driving Forces of Bioinformatics
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1.3  High-Throughput Technologies and Bioinformatics 
Changing the Biology

From simple sequence analysis to functional effect prediction of variants to miRNA 
localization, transcription factor analysis, etc. pushed the bioinformatics to the 
forefront of biomedical research. Nucleic Acids Research journal has been publish-
ing special issues on different sequences, polymorphic variants, pathways, gene 
sets, etc. which have highlighted the contribution of bioinformatics groups around 
the world (Web Server Issue 2017). The bioinformatics groups not only built the 
databases but also created many powerful and simple-to-use analytical tools to 
query these databases. Such simple tools helped the bench scientists with limited 
bioinformatics exposure access to large experimental data at their fingertips for 
instant decision-making process, planning future experiments, comparing their own 
experimental results for independent validation, discovering the novel functions or 
mechanisms, etc.

The special database issues in Nucleic Acids Research provide update on newer 
tools, technologies, and applications. Many bioinformatics journals started publish-
ing new tools developed by groups of scientists, driven by the requirement of spe-
cialized data analysis for many bench scientists. Such simple and better tools are 
being released by scientists every day for the benefit of bench scientists. Due to 
rapid growth in a variety of databases storing different sets of data, many bioinfor-
matics groups design new powerful integrated genetic and genomic analysis tools 
to query databases. These novel tools help scientists to address the challenging 
questions in biomedical fields, from diagnosis to drug development, disease pre-
vention, patient management, etc.

1.4  Gene Expression Profile

Gene expression profiling started with single gene expression in Northern blotting 
to high-throughput gene expression microarray chips and RNA Seq with genome 
wide expression profiles for the most commonly studied organisms. This high- 
throughput gene expression profiling technology with thousands of probes leads to 
“information overload” with limited suite of bioinformatics tools when these tech-
nologies were introduced. Illumina and ThermoFisher are the leading commercial 
companies which supply microarray-based gene expression chips for a variety of 
research activities. These array data are captured and analyzed by their own suite of 
bioinformatic software which incorporates the statistical functions to normalize the 
gene expression data across the chip, quantify the signal into gene expression level, 
and compare multiple samples across all genes with multiple testing correction 
options to suit the sample size and objectives. Realizing the limitations of the micro-
array and/or RNA Seq instrument-linked bioinformatic suite of programs, many 
groups started developing their own rigorous statistically robust software tools 

R. Elango et al.
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which can be flexible with added features to suit their interest to address the chal-
lenging queries. With these tools and easy access to the data generation technology, 
large number of studies explored complex questions of biological process of spe-
cific tissues, cell types, and organs.

The NCBI (Gene Expression Omnibus-GEO web link: https://www.ncbi.nlm.
nih.gov/geo/) and EMBL (Expression Atlas Web link: https://www.ebi.ac.uk/gxa/
home) are the major storehouses of gene expression profiles of different experimen-
tal condition for a variety of tissues and cell types to provide easy access to large- 
scale data to the scientific community for various organisms. These gene expression 
databases collected data from thousands of experiments carried out by scientists in 
many countries for other scientists. These databases along with bioinformatic analy-
sis tools will be one of the powerful combinations in unravelling the biology of 
normal and affected tissues in patients with a disease of interest. New database of 
single cell transcriptomics in many organisms is established in European 
Bioinformatics Institute, UK, generated with advanced sequencing and other tech-
nologies (Single Cell Expression Atlas- Web link: https://www.ebi.ac.uk/gxa/sc/
home). Rapid growth of this database will have much bigger impact on the under-
standing of the biology of complex diseases in specific tissues. Rapid acceleration 
of high-throughput data generation technologies along with the powerful bioinfor-
matics tools drives many bench scientists to delve into these data to address scien-
tifically challenging questions to propose new hypothesis, validate indirect evidence 
from other experimental data, and open up the new area of in silico biology with 
more questions. The Genotype Tissue Expression (GTEx: http://gtexportal.org/
home/) project collected 53 tissues from 1000 individuals for high-throughput 
molecular studies using WES, WGS, and RNA Seq to understand the tissue-specific 
gene expression and regulation by genetic variants around the genes. This resource 
is valuable in validating many experimental results of groups of scientists who can-
not afford such large-scale study on their own to support their scientific results.

The special issue of Nucleic Acids Research journal regularly publishes many 
special issues on databases and web server—bioinformatics tools available in the 
public domain. The recent issue of web server was published in July 2018 issue. 
This is the 16th annual issue published by the Nucleic Acids Research journal. 
Specialized bioinformatics journals also publish hundreds of new tools with their 
applications in detail, if one is interested in finding some good public domain 
tools.

The impact of bioinformatics along with the rapidly changing biological tech-
nologies from genetics, genomics to metabolomics and metagenomics is enormous. 
To cover all aspects, many volumes of updates are required in many fields. Integrated 
multi-omics data analysis, especially from DNA, RNA, protein, metabolite to 
Metagenomics, is now possible with the combinations of advanced technologies, 
some of which are covered, and many are not addressed in detail. Following chap-
ters will give a glimpse of applications of this revolution in few selected fields. 
Many areas are not covered, not intentionally, as they are rapidly changing field 
with new development and applications like metagenomics and proteomics.

1 Driving Forces of Bioinformatics
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2.1  Introduction

Rapid technological advancements in deciphering the DNA architecture and 
organization of the genomes at various stages revolutionized the role of genetics 
in health and disease conditions. The old proverb “Necessity is the mother of 
invention” is applicable for the development of bioinformatics field in general. 
With technology rapidly driving large-scale genetic and genomic data generation, 
bottleneck issue was the analysis of such data. Biologists and biostatisticians 
started collaborating to work on the statistical programs to simplify the analysis 
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of such large-scale data. Flood of data resulted in highlighting the limitations of 
such statistical tool with large-scale data analysis. With more powerful comput-
ers, speed of analysis is better, but still many biologists started moving toward 
computer scientists to devise a simple bioinformatics tool that can be handled by 
the biologists with limited knowledge of statistics as well as computer programs 
and UNIX platforms. Computer scientists with interest in biological queries 
started the bioinformatics revolution.

Earliest Period (1948–1970)
Geneticists were keen to identify the genetic factors contributing to the common 
diseases as well as to the monogenic diseases. Such work started after the Second 
World War in the late 1940s and continued for many decades. The ABO blood 
groups were the first such genetic markers tested for association with many blood- 
related diseases (O’Hanlon and Stewert 1948; Prest et  al. 1955). Such studies 
continued for a spectrum of diseases of all types for many years, till HLA and 
new serum biomarkers arrived (Cameron and Izatt 1962; McGinniss et al. 1964; 
Patel et al. 1969; Simon et al. 1971).

2.2  Early DNA Marker Development and Application  
(Late 1970s and 1980s)

In 1978, Kan and Dozy (1978) successfully used DNA markers for the prenatal 
diagnosis by testing the amniotic fluid cells for sickle cell anemia. Kan et al. (1980) 
used the DNA markers for beta-thalassemia screening in Italy. The early 1908s 
witnessed flurry of papers with the identification of many restriction fragment 
length polymorphism (RFLP) markers (Sarfarazi et al. 1983; Nussbaum et al. 1983) 
and their application in genetic association studies for beta-thalassemia (Wainscoat 
et al. 1983) and for Duchenne muscular dystrophy (Harper et al. 1983). The HLA 
genotyping by serological cytotoxicity methods was introduced by Terasaki group 
(Patel et al. 1969). Highly polymorphic nature of HLA loci in the world population 
triggered a new approach to study the genetic association between these markers 
and a variety of diseases, especially the autoimmune diseases in the 1980s and 
1990s. Many research groups reported a strong association between many diseases 
like rheumatoid arthritis, spondylitis etc,.

Examples of changing world of genetic association studies through years: 
Genetic association studies in inflammatory bowel disease started with complement 
component C3 polymorphism in Norwegian IBD and healthy control population 
(Elmgreen et al. 1984) by high-voltage plasma electrophoresis. They have reported 
a positive association. Such studies were continued through early parts of the 1990s.

B. Banaganapalli et al.
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2.3  Microsatellite Markers in Genome-Wide  
Association Studies

Genome-level orderly mapping of the genes and markers was possible with tools 
and techniques in many fields. Radiation hybrid panels, chromosome-specific 
genomic libraries, gene-specific probes, and microsatellite markers contributed to 
the rapid development of the human genome mapping (Gyapay et  al. 1996). 
Identification of CA repeat microsatellite markers across many of the mammalian 
genomes resulted in generating more accurate genetic maps of the genomes 
(Dietrich et al. 1996; Schuler et al. 1996). Microsatellite markers across the genome 
were found to be highly polymorphic in many ethnic and racial groups. This highly 
polymorphic nature of the markers helped the geneticists to explore the genetic 
association studies at the genome level. At that time, genotyping of the CA repeat 
markers for any disease studies is time-consuming and resource-demanding. The 
progress was limited to a few centers in the world. These studies are limited not only 
in generating the large-scale data, but also in analysis of such data. Statistical groups 
slowly realized their important role in getting to analyze such data to identify the 
meaningful statistically significant genes’ contribution in complex diseases like 
schizophrenia, cardiovascular diseases, etc. (Pulver et al. 1994) as well as mapping 
many monogenic diseases such as myotonic dystrophy and Huntington disease 
(Brook et al. 1991; Doucette-Stamm et al. 1991).

Slowly and steadily the momentum built on the success of such studies, which 
accelerated the progress of bioinformatics integration into genetic studies. Such 
studies for many diseases started accumulating new markers and mapping informa-
tion for the bioinformatics scientists to play major role in genetics and genomics 
providing simple tools to search through the data. This allowed bench scientists to 
make a meaningful conclusion and accurate mapping of many disease loci leading 
to the identification of causal genes.

2.4  Human Genome Project and GWAS

Human genome project generated multifaceted applications of the reference human 
genome in a variety of studies, including the genetic association studies (NCBI, 
dbSNP, etc.). Millions of SNPs were identified in different ethnic groups which can 
be used for large-scale association studies. Increasing numbers of the SNPs (from 
1000s to million SNPs) were being analyzed with SNP microarray chip technology. 
These studies changed our understanding of the genetics of complex polygenic dis-
eases with more refined details. International collaborations on complex disease 
genetics led to “information overload” and extensive data analysis, with hundreds of 
genetic loci being identified. For autoimmune diseases, a consortium of scientists 
led by Wellcome Trust Sanger Institute developed the immunochip (Illumina 
2015—Infinium ImmunoArray-24 V2.0 Beadchip) with more than 250,000 SNPs 
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from 186 most significantly associated loci (Cortes and Brown 2011; Liu et  al. 
2012), mainly for 17 major autoimmune diseases including type 1 diabetes, celiac 
disease, inflammatory bowel disease, multiple sclerosis, ankylosing spondylitis, 
rheumatoid arthritis, vitiligo, and systemic lupus erythematosus (Illumina 2015). 
One of the advantages of this chip is the refinement of all loci with dense marker set. 
Refinement of non-HLA loci associated with these autoimmune diseases has opened 
up many new avenues of research as well.

More than 120 research projects on the above-mentioned diseases in many coun-
tries were carried out with refinement of many known loci. Immunochip data for 
celiac disease yielded 13 new disease susceptibility loci, total of which now stands 
at 40. This dense genotyping of key autoimmune disease loci resulted in refining the 
known and new loci to one causal gene for almost all (Trynka et al. 2011). This data 
also identified “credible set” of variants, one of which most likely to be a causal 
variant for the risk locus. Rapid refinement of known loci and identification of 
potential causal gene for risk loci for many immune diseases came through such 
customized SNP analysis as well as general SNP microarray. Bioinformatics analy-
sis of the candidate loci for IBD played a key role in providing supporting evidence 
for causal genes and their effect on crucial pathways (Jostins et al. 2012).

Large-scale collaborations like Wellcome Trust Case Control consortium was 
formed in 2005 to harness the power of such new technologies and bioinformatics, 
focusing on 14 complex diseases (Table 2.1) for GWAS data generation with large 
samples from the UK. For seven core diseases (bold letters in Table 2.1), 2000 cases 
and 3000 controls samples were genotyped with 500,000 SNPs by Affymetrix 
microarray chip technology, and association results were published in multiple pub-
lications from the consortium (Wellcome Trust Case Control Consortium 2007; 
Wellcome Trust Case Control Consortium et al. 2007; Barrett et al. 2008; Barton 
et al. 2008; Holmans et al. 2009; Imielinski et al. 2009; Perry et al. 2009; Wellcome 
Trust Case Control Consortium, et al. 2010). Host resistance to infectious diseases 
(TB and malaria) in Africa was funded by Wellcome Trust and Bill & Melinda 
Gates Foundation under MalariaGEN Initiative, providing the initiative for fatal 
diseases of developing countries (Jallow et al. 2009). This study also followed simi-
lar experimental design. Other diseases were genotyped with custom chip of about 
15,000 known non-synonymous SNPs across the majority of the genes in the 
genome with Illumina Infinium custom SNP chip (Wellcome Trust Case Control 
Consortium, et al. 2010; Grozeva et al. 2010).

This is one of the first collaborative efforts of many groups to generate large- 
scale data from sample collections for many common diseases to identify the 
genetic risk factors. Bioinformatics scientists realized their key role in working 
with such large-scale data and provided much needed tools and databases for que-
rying many aspects of biological information to interpret them from variant and 
gene annotations to gene expression and protein interaction for the whole genome 
of multiple organisms. This development led scientists in different fields to come 
together and realize the potential of the GWAS data in the following years with 
many more novel genetic risk loci identified than in the last 30 years put together 
(The GWAS catalogue 2018).

B. Banaganapalli et al.
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The GWAS challenge to the bioinformatics is not only how to store and handle 
large-scale data but to analyze them to bring novel discoveries to contribute to the 
welfare of the populations across the globe. Many of these tools are in the public 
domain, and information about how it can be used by bench scientists and students 
is also available (Shaik et al. 2019). Many groups of scientists applied such bioin-
formatics tools to GWAS data to identify the novel target genes, pathways for the 
disease, as well as novel functional effect of variants on the complex diseases (Eyre 
et al. 2012; Banaganapalli et al. 2017; Uenaka et al. 2018).

2.5  GWAS and Genetically Isolated Populations

Genetically isolated or homogeneous populations, due to their physical isolation 
from admixture or migration, will be a good example to study complex genetic 
diseases. In 1996, Professor Kári Stefánsson, neurologist, of Iceland recognized that 
concept and found the deCODE genetics company. This company recognized the 
value of unlocking the potential genetic contribution to complex diseases in a 
uniquely homogeneous population of Iceland and the excellent personal genealogi-
cal data from about the 1700s to date and healthcare records of the total popula-
tion—about 350,000 in total. This company and the national government built the 
Icelander database, which has records of more than 95% of the population born 
after the 1700s. The largest genealogy of the world and the new high-throughput 
technologies in genetic analysis—genotyping by microarray, whole exome and 
whole genome sequences of the population—combined to provide the strongest 

Table 2.1 WTCC disease areas and control cohorts

Disease Manufacturer

Type 1 diabetes
Type 2 diabetes
Crohn’s disease
Coronary heart disease
Hypertension
Bipolar disorder
Rheumatoid arthritis

Affymetrix 500 K SNPs

Breast cancer
Multiple sclerosis
Ankylosing spondylitis
Autoimmune thyroid disease

Illumina Infinium custom chip

Malaria
Tuberculosis

Affymetrix 500 K SNPs

aControl cohorts
1958 Birth Cohort
UK Blood Service

Affymetrix 500 K SNPs

aDiseases in bold letters are the core diseases. Illumina custom SNP chip contains 15,000 non- 
synonymous SNPs across the genome (From https://www.wtccc.org.uk/)

2 Genetic Association from RFLPs to Millions of Variant Markers: Unravelling…
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support to unlock the genetic architecture of many complex diseases observed in 
that population over the last two centuries. This company aimed to generate a 
500,000 SNP genotype record for all Icelanders and then test for association of the 
diseases in the population. This group has changed the GWAS landscape of many 
diseases from cardiovascular diseases to epilepsy and cancers. Genetic homogene-
ity of the participants helped their research by providing many potential candidate 
loci and genes. These targets were used as potential biomarkers for disease progress 
or as a novel drug target to alleviate the health complications of the diseases (The 
deCode publications: https://www.decode.com/publications/). In the early stages of 
their startup, focus was on identifying the causal mutations in monogenic diseases 
of Icelanders. Identification of TEAD as a causal gene for Sveinsson’s chorioretinal 
atrophy was possible with the 14 generation family records is one such example 
(Fossdal et  al. 2004). Many more disease genes were identified over the years. 
Access to the individual national health records from birth to death analyzed along 
with the genome-wide genotype data resulted in the identification of causal muta-
tion for rare Mendelian disease like Sveinsson’s chorioretinal atrophy and signifi-
cantly associated disease susceptibility loci for many complex diseases including 
myocardial infarction and cancers like prostate cancer (Fossdal et  al. 2004; 
Helgadottir et  al. 2007; Gudmundsson et  al. 2007). Biosample collection from 
patients with cancers and other diseases across the country for many years resulted 
in the discovery of major genetic contributions to cancers and tumors. The strength 
of the company data and core bioinformatics team along with scientists across many 
fields and hospitals in Iceland led the pharmaceutical company Amgen to buy it 
recently. Amgen use their data to develop novel drug target, to stratify population, 
and to utilize in personalized medicine strategy for multiple diseases in their drug 
portfolio. The extensive clinical, family, and genetic data (in the form of whole 
genome genotyping, whole exome sequencing, etc.) is reused for multiple targets 
with powerful bioinformatics tools within their facility. Similar bioinformatics tools 
were in the public domain which is exploiting the large-scale genotyping project 
data in many countries and many novel discoveries followed.

Golden era of bioinformatics growth is linked to the technological developments 
of large-scale data generating capacity. National Center for Biotechnology 
Information (NCBI) of USA and European Bioinformatics Institute (EBI) of Europe 
started storing the spectrum of data sets from sequence to variants and gene expres-
sion profile and functional annotations of genes and proteins in multitude of data-
bases. Access to these databases by scientists, with limited exposure to computer 
programming skills or Unix commands across the world, was made easy by the 
development of many bioinformatics tools integrated within these organizations, as 
well as many independent bioinformatics groups across the world developed many 
easy-to-use web interfaces to query the specific databases for the information for the 
bench scientists and clinical scientists.

From NCBI BLAST, dbSNP query to the GTEx analysis tools, many other use-
ful bioinformatics tools helped the scientists to expand the GWAS outcome beyond 
markers to understanding the role of genetic marker to gene function and disease 
biology. Excellent reviews and meta-analyses of integrative genetic and genomic 
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data reveal the extent of the success of thousands of GWAS on many diseases across 
the world. The GWAS catalogue of EBI in collaboration with NHGRI (National 
Human Genome Research Institute) made it easy for biologists and geneticists by 
capturing 3720 published GWAS data sets to query. The GWAS collection, as of 
December 2018, has 89,680 SNP-trait association and 70,459 SNPs associated with 
many traits and diseases in the database. Recent studies on the impact of GWAS on 
publications of biologists reveal that a new gene associated with a disease or trait by 
GWAS gets more attention and more publication citation immediately after the 
GWAS publications than other genes with no genetic association support (Struck 
et al. 2018). The combined efforts of microarray technology, bioinformatic tools, 
and access to hundreds and thousands of clinical samples and data led to rapid 
increase in GWAS studies, which was less than 200 before 2005 and reached more 
than 3200 between 2010 and 2018, with increasing number of samples and markers 
for spectrum of diseases (The GWAS catalogue – web link 2018).

2.6  National Biobank and Genome Projects

Many countries recognized the importance of the genetics in healthcare and its 
impact on reducing the economic burden of genetic diseases on the national budgets 
(Table 2.2). Many industrialized nations like the UK, the USA, and China followed 
the footpath of Iceland by creating national biobanks. Realization of direct benefit 
of genetic revolution will take time. The “big data” opportunities spur rapid scien-
tific discoveries of the complexities of many common diseases, which was unimagi-
nable two decades ago. This positive step was taken up by many governments with 
ambitious goals set for the scientific teams to scale in the form of discovery and 
development of tools and drugs to treat patients with many diseases. Many countries 
have initiated the national biobank with genetic data linked to long-term health 
records of the nations. Such national data accessibility is restricted by government 
policies or the national committee overseeing the effort in few countries for now. 
The UK Biobank gives access to the data it holds to scientists, whose proposed work 
will be published and the analyzed data and results return to their organization. 
Other countries have various levels of access to their genetic data. One of the first 
successes of the national biobank is discussed below as an example.

The UK Biobank project started as the epidemiological study to address the risk 
factor identification for many diseases based on the long-term population. One of 
the longest ongoing studies for the last 40+ years like the Framingham Heart study 
in the USA of more than 5000 people. In the UK, scientists wanted to expand the 
likes of Framingham Study on a much larger scale (100-fold increase) to 500,000 
people in all walks of life. The Wellcome Trust and Medical Research Council in the 
UK funded the initial recruitment and data gathering effort. More funds from these 
agencies and extensive collaboration among multiple groups led to the large-scale 
data gathering on 500,000 people (Bycroft et  al. 2018). With the genome-wide 
genotyping and whole exome sequencing of these participants along with clinical 
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data form National Health Service (NHS), a large amount of other test results and 
surveys opened up the unique opportunity to explore the novel connections between 
multiple genetic markers and thousands of traits of interest. The UK Biobank data 
is open to the scientists around the world, when the genotype data and clinical data 
are in secure databases. The scientists need to pay UK 2500 Sterling pounds to 
access the 8 terabytes of data on 500,000 individuals with genotypes of millions of 
markers across the genome. The first release of the data resulted in at least 600 
articles in leading journals in a variety of fields (Jansen et  al. 2019), and 1400 
researchers registered their projects with the UK Biobank and analyzed the data for 
multiple diseases and traits association. Exome sequence data of 500,000 people 
will be released in March 2019. This will open again the floodgate for researchers 
to carry out extraordinary large-scale secondary data analysis with exome data and 
reveal the novel discoveries to benefit the world. Many ethnicity-specific major con-
tributing coding variants will be identified for common diseases, which will trigger 
the application of such variants and genes in biomarker development and novel drug 
target molecule search with in silico screening of the compound library as well as 
many other exciting applications.

Secondary analysis of large-scale data is possible with the powerful bioinfor-
matics analysis pipeline along with the strong statistical power. The above-men-
tioned two large data sets are unique. The deCode company is a commercial 
venture with restricted access to their benefit, and the UK Biobank is the largest 
resource with no restriction for access to the data. Such large-scale data are also 
available in the USA. The two major projects such as Million people project of 
Veterans Administrations group and a commercial company (23andMe) collec-
tions are much larger but with access limited by the participants. Recent publica-
tions of the secondary data from these can be accessed from their own websites 
(UK Biobank—https://www.ukbiobank.ac.uk/).

Spin-off of such large-scale data analysis led to many novel discoveries, which 
in turn resulted in novel drug targets for many complex diseases and novel bio-
markers for disease development and many related fields of biomedical sciences. 

Table 2.2 Major national genomics biobanks

Country Projects

USA One million Veterans project
All of Us Research Program—1 million

United Kingdom 100,000 genomes project
China 100,000 genomes project
Saudi Human Genome Program 100,000 genomes project
Dubai, United Arab Emirates Dubai Genomics whole 

population—3 million
Estonia Personalized Medicine Program—100,000
French Plan for Genomic Medicine 2025 100,000 genomes project
The Australian Genomics Health Futures Mission 100,000 genomes project
Japan Initiatives on Rare and Undiagnosed 
Diseases

2000
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For bioinformatics scientists, it is a boon that they can design innumerable  
pipelines to analyze the diverse data from this source to reveal the role of novel 
genetic associations, novel pathways for a variety of diseases and traits recorded, 
and novel biomarkers for disease development which will spur the bench scientists 
to validate the novel associations with elegant experiments like gene editing, sin-
gle cell gene expression, etc.

The UK Biobank data released to global scientists resulted in the discovery of 
many novel disease risk loci for devastating diseases with extensive meta-analysis 
of combined GWAS studies of many ethnic and racial groups. Such an endeavor 
will benefit not only the nation which provided the data but the world. In the future, 
large meta-analysis studies from biobank data of many countries will provide con-
firmed target of intervention by the development of novel drug molecules or disease- 
specific biomarkers which will help the healthcare professionals in prevention 
strategies for high-risk individuals. Meta-analysis of large-scale multiple GWAS 
data are being generated with more powerful statistical and bioinformatics tools and 
methods for many diseases.

Genetic association studies with a variety of marker types like blood group, 
RFLP, and microsatellites to SNPs drive the bioinformatics groups to develop vari-
ous tools to analyze large-scale data to identify the disease contributing genes, novel 
drug targets, or biomarkers. Many new databases resulting from the interdisciplin-
ary collaboration with bioinformatics were useful to suit a variety of biomedical 
fields. The Open Target platform (Koscielny et al. 2017; https://www.targetvalida-
tion.org/) from Wellcome Sanger Institute and EMBL-EBI with the collaboration of 
pharmaceutical industry partners like GSK, Biogen, Sanofi, Takeda, and Celgene is 
one such specialized database which captures and annotates data from many bio-
medical high-throughput platforms in one place. This database provides the inte-
grated robust data from a variety of fields on genes which can be searched for their 
suitability as a novel drug target for the disease of interest.

The genetic association of diseases drives the identification of the role of many 
genes in their development. Advances in the genome-wide genotyping methods, 
tools to analyze large-scale data in the post-human genome sequencing project era 
made it possible to identify thousands of loci and markers associated with suscepti-
bility to different diseases. Databases and tools created to store, annotate, and visu-
alize the results changed the genomic research immensely in the past decade. 
Advances in GWAS and the birth of national biobanks are going to play an impor-
tant role in better management of diseases in the population in the future.

Major Web Links
National Center of Biotechnology Information (NCBI): https://www.ncbi.nlm.nih.

gov/
European Bioinformatics Institute (EBI), an outstation of European Molecular 

Biology organization (EMBO) https://www.ebi.ac.uk/
The GWAS Catalogue: https://www.ebi.ac.uk/gwas/
UK Biobank: https://www.ukbiobank.ac.uk/
Million Veterans Program: https://www.research.va.gov/mvp/
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https://www.targetvalidation.org/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/
https://www.ebi.ac.uk/gwas/
https://www.ukbiobank.ac.uk/
https://www.research.va.gov/mvp/
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All of Us Research Program, NIH, USA: https://allofus.nih.gov/
Saudi Genome Project: https://www.saudigenomeprogram.org/en/about-us/
The Open Target Platform, EBI: https://www.targetvalidation.org/
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3.1  Introduction

Development of novel high-throughput technologies has lasting impact on patient 
care at various stages. Along with such development come the bigger challenges of 
analysing the large-scale data. Necessity is the mother of invention is proven true 
here as well. Hundreds of scientists across multiple disciplines came across to 
address this big challenge. Such collaboration and overlapping interest resulted in 
many bioinformatics tools to address various aspects of the complex nature of the 
genome architecture and to predict functional effect of changes observed in patient 
samples. Before Human Genome Sequencing Project started in the 1990s, around 
1000 genetic diseases were diagnosed. Midway through the Human Genome pro-
gram, spurt of novel high-throughput laboratory techniques and methods were 
being developed to exploit the sequence data for a variety of purposes—from 
genetic diagnosis, novel drug target identification, prevention of adverse reaction to 
drugs, to personalized medicine and to unravel the secrets of the genome architec-
ture, functional genomics and more.

3.2  Genetic Diagnostics Before Human Genome Sequence 
Project

Diagnosis of the inherited diseases started with chromosomal abnormalities from 
trisomy (Down syndrome, etc.) and monosomy (Turner syndrome, etc.) with the 
karyotyping of blood lymphocyte chromosomes. With new technologies like FISH 
(fluorescent in situ hybridization) and SKY (spectral karyotyping of chromosomes), 
more complex chromosomal microdeletion, insertion, and translocation abnormali-
ties were detected, especially in congenital malformations, rare syndromes and can-
cer cells. Limitation of these technologies include failure to identify genetic defects 
at nucleotide level; Sanger sequencing of the DNA and RNA addressed this issue at 
an early stage.

Genetic diagnosis, before the human genome sequences started pouring into the 
GenBank and other sequence databases across many countries, was restricted to few 
genotyping methods like Sanger sequencing, SSCP (single-strand conformation 
polymorphism), RFLP (restriction fragment length polymorphisms), etc. These 
techniques helped scientists across the globe to identify causative genes for many 
genetic diseases from thalassemia, haemophilia to more devastating diseases like 
myotonic dystrophy and Huntington disease. Many such monogenic disease- 
causative genes were revealed in many laboratories. The process of identification of 
genetic defect in these diseases was hindered by lack of genomic sequences with 
limited technology available. With only sequencing of 350–600 bases at a time was 
possible, identification of specific genetic change in a gene requires large technical 
manpower and financial resources. The gene identification involves extensive use of 
lab resources to map the locus through linkage analysis in one or many  families with 
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multiple affected individuals. For linkage analysis, genotyping of highly polymor-
phic markers (microsatellite CA repeat markers) and restriction fragment length 
polymorphism (RFLP) markers spread across the genome, about 200–500 markers, 
was carried out by a large team of workers were generated. Segregation analysis of 
inheritance pattern of the disease with the marker through statistical analysis 
revealed markers which are tightly linked to the disease in independent families 
(Linkage program). These linked markers are the starting point for the causal gene 
search. Radiation hybrid mapping and subcloning the region of interest in bacteria 
and identification of unique RFLP or other markers to narrow down the candidate 
regions took place in the laboratories. Such “chromosome walking” is slow and 
labour-intensive exercise. This laborious process of narrowing down the candidate 
region from about 5–10 Mb to the defective gene forced many research groups to 
address the technological bottleneck issues of the disease gene cloning by increas-
ing the collaboration across many fields.

For example, to identify the Huntington disease gene mutation, teams from 
across the globe worked many years. The first step in identifying the genetic defect 
involves identification of families with multiple affected individuals from remote 
villages in Venezuela. Next breakthrough came from Jim Gusella and his collabora-
tors who identified a marker linked to the Huntington disease to chromosome 4 
(Gusella et al. 1983). This major breakthrough brought the strong international col-
laborations for linkage studies for many single-gene disorders with many RFLP 
markers across the genome. After a decade of hard work of multiple groups of sci-
entists across the world, genetic defect in Huntington disease was revealed (The 
Huntington’s Disease Collaborative Research Group 1993). This example gives an 
overview of the hard work of large collaborating scientists at that time in identifying 
the genetic defects for a variety of diseases.

Many such hard-working groups of scientists discovered many mutations caus-
ing some of the common forms of genetic diseases, with rapidly changing technolo-
gies from different parts of the globe. These discoveries resulted in developing 
targeted screening methods for genetic defect in clinically diagnosed patients. Many 
diagnostic companies exploited the new information and started focusing on devel-
oping diagnostic tools and probes for diagnosis of the affected as well as for prena-
tal diagnosis in high risk pregnancies. This targeted mutation detection is a slow 
process when the genetic defects for the disease vary in different patients. This 
required sequencing of the coding regions of the full gene or, in many cases, differ-
ent genes, like in Parkinson’s disease. Genetic defects in many Mendelian diseases 
were identified through this approach till the birth of the Human Genome Project. 
McKusick and his colleagues collated the Mendelian diseases- related information 
from around the world and kept the catalogue—OMIM (Online Mendelian 
Inheritance in Man)—initially in the book format. With advancing technologies and 
gene discoveries, they have moved the content to digital version, which lists more 
than 4000 Mendelian diseases with causal gene defects. It is being updated at a 
regular interval with more information and used as reference material for geneticists 
for accurate diagnosis and treatment for the affected children under their care.
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Many genetics groups generated large amount of sequences from the regions of 
interest to the diseases they were working. Repository of such sequences for the 
common use and to avoid the waste of resources is created by NIH funds as GenBank 
by NCBI (National Center for Biotechnology Information). Searching this growing 
database requires computational tool. Slowly the high-throughput genotyping and 
sequencing technologies entered the laboratories which resulted in the data analysis 
bottleneck issue. This issue was taken up by biologists with interest in computers 
and specialists across many fields including the mathematicians and engineers. 
Examples of the early bioinformatics tools which still are used extensively by biolo-
gists are FASTA (FAST All) and BLAST (Basic Local Alignment Search Tool) 
(Lipman and Pearson 1985; Altschul et al. 1990). FASTP (FAST- Protein) program 
searches local protein sequence alignment between query and reference database 
using the Smith-Waterman algorithm (Smith and Waterman 1981). Later, modifica-
tion of the FASTP program to include searches for nucleotides as well resulted in 
FASTA (FAST All) program (Pearson and Lipman 1988). These two tools (FASTA 
and BLAST) provide the foundation for the birth of bioinformatics in the analysis 
of biological sequences. These tools contributed in the rapid mapping of query 
sequences, identification of gene mutations, etc. With more sequences deposited to 
the GenBank, many scientists were developing tools to address the challenging 
questions regarding the prediction of the role of the mutation in gene function and 
to understand the biology of the disease. This in turn contributed to biological func-
tion of many genes, which allowed scientists to explore larger challenges of devel-
oping drugs for common diseases based on the functional contribution of the gene 
in preventing or controlling the disease effect on the patient.

3.3  Human Genome Revolution

In the 1990s, the Human Genome Project was initiated with the support of many 
government funding agencies like NIH in the USA and non-governmental research 
funding agencies like Wellcome Trust in the UK.  Different groups focused on 
sequencing different chromosomes. The yeast artificial chromosome (YAC) librar-
ies and bacterial artificial chromosome (BAC) libraries of the human chromosomes 
played a crucial role in kick-starting the project in many countries. Random sequenc-
ing of YAC and BAC clones required better bioinformatics tools. Such necessity 
pushed computer scientists and data analytic teams to expand the spectrum of tools 
to handle such large- scale data. NCBI (sequence analysis suite and GenBank) and 
UCSD (genome browser) and Sanger Institute (Ensembl) developed independently 
sequence visualization tools, which allowed scientists from different corners of the 
world free access to the data when it was released daily. This contributed to the 
rapid mapping of sequences to different regions of the genome. Many groups work-
ing on various diseases which were mapped to chromosomes of their interest used 
the data to rapidly identify mutations in genes.
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At the same time, rapid-sequencing technologies were the focus of many 
 companies and academic groups. Genome Analyzer from Applied Biosystems 
started the revolution, which saw birth of many high-throughput technologies in the 
coming years, from Illumina’s next-generation sequencing (NGS) range, Ion Torrent 
platform, PacBio platform and, recently, a portable Nanopore technology platform 
as well. With these NGS platforms, sequence data started pouring into many inter-
national databases. Analysis of such large-scale data pushed many scientific groups 
with varied interests to collaborate to develop many tools to analyse various aspects 
of the genome data, from orderly mapping of sequence, identification of polymor-
phic markers, genotyping these markers in families with monogenic disease to large 
number of sporadic cases of polygenic diseases along with statisticians and IT 
scientists.

3.4  Post-Human Genome Revolution

By 2005, more than 90–95% of the human genome is sequenced and mapped to 
correct locations with the exception of few regions. Freely available human genome 
sequence and analysis tools spurred the identification of mutations in many mono-
genic diseases by sequencing familial cases collected across the world. Mutations in 
many rare diseases are regularly identified even by small research groups, thanks to 
the NGS technologies and bioinformatics tools to analyse such data. Rare diseases 
programs in the USA, UK and Europe encouraged many clinical teams from other 
parts of the world to share their samples to unravel the novel mutations in novel 
genes for many diseases which are restricted to few families in a region or country. 
Presently, more than 5000 monogenic disease mutations were identified in familial 
cases and many from families with rare diseases. Middle Eastern countries provided 
large number of rare disease families due to the high rates of consanguineous mar-
riages (first cousin marriages are common here). Collaborating with many interna-
tional research groups, scientists from these countries revealed the complex nature 
of many different diseases, which will be the foundation stone for functional genom-
ics of many unknown genes identified. More than 700 such novel gene mutations 
were identified from these regions alone. Now, the application of NGS method to 
identify the causal mutation for rare diseases is routinely used in many laboratories 
and hospitals across the world.

3.5  Next-Generation Sequencing Diagnosis

The SNP microarray chip and NGS technologies are being extensively used to diag-
nose rare familial diseases much more easily. Previously, the rare disease diagnosis 
is through probable candidate gene screen or genetic linkage in families with more 
than two affected patients. With the human genome sequence readily available for 
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comparison, NGS diagnosis is accurate. International and national collaborations in 
the USA, Canada, European countries and Asia led to the large-scale screening for 
mutations in rare diseases at a unprecedented level (NIH rare disease projects- 
Texas, Yale group, DDD- Sanger, European, etc.).

With the NGS technology and the bioinformatics tools (freely available), the 
diagnosis is quicker than ever. The NGS technology is getting ultra-high throughput 
with faster sequencing with better genome coverage. One of the best examples of 
the dramatic changes in the diagnosis of one group of diseases includes primary cili-
ary dyskinesia (PCD). The PCD is a rare disease with variable clinical features in 
young children, who suffer from multiple organ functional defect due to the defec-
tive cilia, especially the lung, heart, kidney and other organs. First genetic defect 
was identified for PCD in 1999, when no NGS technology was available (Pennarun 
et al. 1999). With the availability of the human reference genome sequence through 
Human Genome Project and NGS technology, about 39 more genes causing PCD 
were identified, so far from many different racial/ethnic groups in many countries. 
The NGS technology, easy to use bioinformatic tools and large-scale exome and 
genome sequence in ExAC, 1000 Genome project, ESP6500 and other national 
genome projects of many countries resulted in identification of hundreds of novel 
gene mutations for many rare inherited diseases from many parts of the world. 
Rapid diagnostic screening for many genetic diseases can be carried out for the 
newborn, using the targeted gene panel NGS, where the targeted regions were 
sequenced 100s of times and the mutations are recorded.

Diagnostics of polygenic and complex diseases: The development of NGS gene 
panel for many diseases, which are caused by one single gene or multiple genes, is 
a boon to the clinical community. These gene panels detect accurately any type of 
mutations in the coding part of the gene, whether it is novel or known ones. Other 
methods will screen for only known mutations. For example, the cystic fibrosis (CF) 
is one of the most common diseases. Hundreds and thousands of mutations in the 
CFTR gene are found to be causing CF in affected patients in many parts of the 
world. The gene has 27 exons spanning 188,702 bases in chromosome 7. The CFTR 
protein transcript length is 6132 base pairs, coding for 1480 amino acids. So far, 
hundreds of mutations have been reported in this protein.

Rare Disease Diagnostics: With the advent of NGS technologies, especially the 
whole exome sequencing (WES), hundreds of rare diseases, seen in single family, 
revealed novel gene mutations causing a spectrum of defects. Many diagnostic com-
panies like Centogene and Invitae as well as specialist NGS technology companies 
like BGI and Macrogen provided easier access to clinicians to diagnose genetic 
defects for rare diseases and possibly the carrier and prenatal screening for these 
mutations in those families. National and international rare disease consortiums 
pooled their limited resources and initiated diagnosis of many rare diseases, like the 
Deciphering Developmental disorders (DDD: https://decipher.sanger.ac.uk/
ddd#overview) program based at Wellcome Sanger Institute with multitude of teams 
across the UK and other countries, resulting in DECIPHER (Firth et  al. 2009; 
Deciphering Developmental Disorders Study 2015; https://decipher.sanger.ac.uk/) 
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platform, where clinicians can share and compare genotype and phenotype data 
with the 28,863 patients data in the DDD program. More than 1000 groups used this 
database to publish their work on identifying the genetic defects in rare families.

3.6  Microarray

The SNP microarray technology moved rapidly from thousands of SNPs in the chip 
to more than one million variants for genotyping samples rapidly. Before the Human 
Genome Project era, the GWAS (Genome wide Association Study) involved geno-
typing of 300–600 microsatellite CA repeat markers in few hundred samples. The 
microarray brought a dramatic change to the GWAS, increasingly using more SNP 
variants, though less informative than microsatellite markers. The unimaginable 
100-fold increase in marker numbers for genotyping thousands of samples by this 
technology produced large number of risk loci for many complex diseases. For 
example, with CA repeat marker genotyping, there were about 20–30 disease sus-
ceptibility loci that were identified for any complex diseases like hypertension, 
coronary artery disease (CAD), etc. With the increasing number of microarray plat-
forms and variants with thousands of samples, 100s of new loci for the same dis-
eases are obtained. Such a dramatic turn provided an opportunity to bioinformatics 
and statistics groups to work together to reveal the role of many novel genes and 
pathways in disease development in complex diseases. This opened up the new area 
of functional genomics to test large number of candidate genes and their role in the 
biology of diseases with high- throughput technologies in that field of its own, like 
proteomics, metabolomics, etc.

The SNP microarray platform also plays a crucial role in diagnosis of submicro-
scopic changes, which were not detected by conventional karyotyping or high- 
resolution banding techniques in cytogenetics. Many undiagnosed patients with 
conventional karyotyping approach were found to carry small changes which were 
precisely detected by this technology. Application of this technology in the diagno-
sis extended to the cancers for prognosis and for the personalized medicine program 
or precision medicine.

The NGS technology and SNP microarray complement each other in the diagno-
sis of many rare diseases, especially in families where consanguinity is reported. 
Power of this approach can be seen by the identification of many novel rare disease 
mutations in Middle East Arab population, where the highest consanguinity is 
reported in the world (Alrayes et al. 2016; Scott et al. 2016; Reynolds et al. 2017; 
Monies et al. 2017; Mohamoud et al. 2018).

In the diagnosis of diseases with many known causative genes, screening such 
a long list of genes is not cost-effective with any conventional methods. Microarrays 
and targeted gene panel screening makes the process simple and rapid. Many diag-
nostic screening panels based on the known mutations are available for many dis-
eases, but they have their limitations as well. These panels will detect only known 
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mutations but not the unknown variants or mutations in the sample. Targeted NGS 
gene panels are available as well as one can easily make such for their work 
quickly. These gene panels are helping the clinical team to better manage the 
patients without waiting for a long time.

3.7  Diagnostic Companies

High-throughput technologies including NGS and microarray spurred the new type 
of diagnostics biotech companies around the world. Spin-off from the academic 
labs as well as support from venture capital groups changed the landscape of diag-
nostic companies around the globe. Some of the biggest companies like Centogene 
in Germany developed disease-specific mutation screen for 1000s of genetic dis-
eases through direct sequencing the gene or specific mutation by Sanger sequencing 
or by real-time PCR. If there is more than one gene with many exons that need to be 
screened, these companies use the targeted sequencing using NGS and/or microar-
ray gene panels. These developments generated large-scale genetic data, which are 
being used for the identification of novel mutations. These large databases are being 
searched by many large pharmaceutical companies for their drug development pro-
cess from drug target discovery, validation and precision medicine.

Next generation of biotech companies, which exploit the large-scale NGS 
genetic data, powerful bioinformatics tools and robust statistical methods, are those 
which use WGS/WES to provide most common disease predictive risk scores based 
on worldwide population data as well as GWAS data for many such diseases to the 
public. Companies like 23andMe are mainly focussed on selling this service to the 
general public directly. These NGS companies also carry out the ancestry search 
using the powerful bioinformatic and statistical platforms for the general public. 
They compare the world population frequencies of the highly polymorphic markers 
across the genome from the WGS studies and match with the customer DNA 
sequence and give ancestry roots for them. These companies also use the generated 
WGS data for drug development in collaboration with big pharmaceutical compa-
nies in the world. Large pharmaceutical companies realise the potential of such 
large-scale genetic and genomic databases from a variety of ethnic backgrounds 
and try to exploit the same for the novel drug development process. Major focus of 
such companies is to identify the potential drug target gene for common diseases, 
reduce the cost of clinical trials by selecting patients who will be responding better 
to the new drug molecule through predictive marker mapping, avoid the adverse 
drug reactions of the novel compounds and personalized medicine for patients. 
Many of these diagnostics companies market many gene panel tools based on their 
existing collection of mutations for a particular disease in certain ethnic communi-
ties or groups or for the worldwide population and offer this service for new 
patients. Cardiac arrhythmia panel in many companies feature known mutations or 
targeted sequencing of many genes which have been reported to be mutated in 
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 identified cases. Saudi Genome Project group recently published many such gene 
panels  targeting the Saudi’s Arab population for a variety of organ-specific dis-
eases. They generated such panels based on exome sequencing of 100s of Saudi 
patients with such diseases, and unique mutations in these mutations were selected 
for the panel (Monies et al 2017).

3.8  Transition of Diagnostics to Drug Discovery 
and Precision Medicine

Diagnostics of rare diseases and thousands of monogenic diseases resulted in over-
load of information which is being exploited by many research groups and com-
mercial companies, from spin-off start-up biotech companies of the universities to 
large pharmaceutical companies. Many large-scale diagnostics and genomic service 
companies like BGI, Centogene, 23andMe etc. were actively involved in one or all 
of these activities through commercial licensing of the data accumulated over the 
years to commercial organizations in drug development or in precision medicine 
activities of the existing drugs in stratification of patients to target those with the 
best response for future clinical trials or for marketing their product.

Leading pharmaceutical companies collect the large-scale data from these com-
panies for comparison of their internally stored data from different clinical trials to 
increase the chances of success in clinical trials as well as conduct the trials with 
smaller number of patients with certain genetic profile, who might respond better to 
the drug molecule in question, or identify markers which stratify the clinical trial 
patients to be responders and non-responders for targeted marketing once the regu-
latory approval is obtained.

3.9  National Genome Projects

Impact of Human Genome Project over the last decade has been impressive in many 
areas of research. Many countries recognized the potential role of genomics in 
reducing the disease burden of the people, healthcare system burden and the eco-
nomic burden to the family and the country through their suffering in all fronts. 
Major players of the Human Genome Project were the first ones to step up the effort 
in setting up multiple large-scale population sequencing studies to address potential 
biomarker panel development for screening and precision medicine and to develop 
novel drug-target identification by harnessing the power of genomic data of the 
population (Fig. 3.1). Objectives of most of the national genome projects are simi-
lar, but the scale and scope is limited by various other factors.
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3.9.1  USA

It initiated few initiatives to address multiple objectives. In 2011, National Human 
Genome Research Institute (NHGRI) with co-funding from National Heart Lung 
and Blood Institute and National Eye Institute of NIH funded Centres of 
Mendelian Genomics to identify genetic defects in many Mendelian disorders. 
These four centres were sequencing the exomes of patients with rare diseases 
from around the USA.

 1. Baylor College of Medicine-Johns Hopkins University CMG (http://bhcmg.org/)
 2. Broad Institute Joint CMG (https://www.broadinstitute.org/news/7773)
 3. University of Washington CMG (http://uwcmg.org/#/)
 4. Yale University CMG (https://medicine.yale.edu/keck/ycga/)

The NIH initiated this program to identify the genetic defects in rare and unrec-
ognized diseases seen in the population. These genetic discoveries will help boost 
the understanding of the biology of the disease development and explore the possi-
bility of novel therapies for them and other associated diseases.

Recently, NIH (National Institute of Health), USA, released the new “All of Us 
research program” (https://allofus.nih.gov/). This program will target collecting 
health and wellness data from one million Americans over the age of 18 years. In 
the first phase of generating the genomic data, 100,000 participants each will be 
generated by 3 centres initially. From the second year, it will be scaled up to 200,000 
samples per centre till they sequence all participants by the fifth year. The health 
data from electronic records and survey will be used to address the Precision 
Medicine Initiative (PMI) of the NIH which was launched in 2016. National Cancer 

Fig. 3.1 Caption
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Institute (NCI) leads the cancer genomics efforts of the PMI that will have a big 
impact on this program by reducing the cost of cancer patient management.

Million Veterans Program (MVP): (https://www.research.va.gov/MVP/default.
cfm) also is making big impact on research. Long-term medical history of large 
group of veterans will be a boon to the science in the future.

It is one of the largest voluntary programs funded by Department of Veterans 
Affairs Research and Development. One million volunteers’ baseline health survey 
collects all health-related data and blood samples to understand the role of genes to 
a variety of health conditions including cancer, cardiovascular diseases, diabetes, 
kidney diseases, etc. (Klarin et  al. 2018). This program is part of the Precision 
Medicine Initiative of the USA in 2015.

3.9.2  UK

Genomics England is wholly owned by Department of Health and Social Care to 
carry out the 100,000 genome project. This project is to collect blood samples from 
NHS (National Health Services) patients with rare diseases, families and cancers 
for whole genome sequencing. For the recruitment of the patients and families for 
the study, 11 Genomic Medicine Centres were created, who will collect all the 
necessary clinical and blood samples for processing and analysis. This project 
already sequenced 70,000 genomes, and researchers from around the world are 
exploring the data to identify various diseases risk loci. This will pave the way for 
the NHS to transform how the patients are cared for with the advanced technology 
(Gräf et al. 2018; Turnbull et al. 2018; Klintman et al. 2018; Grant and Maytum 
2018; Barwell et al. 2018). Based on the success of this project, the NHS already 
initiated nationwide genomic medicine service through genomic medical centres 
for the routine use for clinicians for the accurate diagnosis, precision medicine and 
better patient care.

3.9.3  UK Biobank

The UK Biobank has recruited 500,000 volunteers to provide blood, urine and 
saliva samples and provide health data from the NHS as well as provide data through 
an extended survey in the UK. Access to the genetic and health information of these 
participants was given to many research groups across the world for analysis to 
unravel the role of genetic factors to many diseases of interest to the research groups. 
This resulted in some of the highly impactful research to open up the window of 
opportunities to address the disease management through early diagnosis, novel 
drug target identification, identification of biomarkers, etc. (Bycroft et  al. 2018; 
Elliott et al. 2018; Haas et al. 2018; Inouye et al. 2018). This is being funded by 
many charities, including Wellcome Trust, British Heart Foundation, Cancer 
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Research UK, Diabetes UK and government arms of research and service including 
Medical Research Council (MRC, UK), Scottish and Welsh governments and 
National Health Services (NHS, UK).

Many other countries are following these trends and setting up their own national 
genomics programs, listed below with the web links.

China (http://encs.hit.edu.cn/2018/0611/c5396a210190/page.htm)
Japan (https://www.amed.go.jp/en/program/IRUD/)
Estonia (https://www.sm.ee/en/personalised-medicine)
Australia (https://www.australiangenomics.org.au/)
France (https://www.france-genomique.org/spip/?lang=fr)
Saudi Arabia http://shgp.kacst.edu.sa/site/)
Dubai (https://www.dha.gov.ae/en/pages/dubaigneomicsabout.aspx)

Next few years will witness the outcome of these population combined genomic 
and clinical data analyses will drive applied research towards functional genomics, 
personalized medicine, pharmacogenomics and drug discovery of novel targets for 
many diseases of the mankind. Gene-editing technology is being explored for func-
tional validation of the genetic mutations and correction of the genetic defect. This 
will bring the new era of personalized genetic surgery to a reality in the near future.

3.10  Conclusion

Rapidly changing technology and methods made it possible to diagnose many rare 
diseases. These technologies in combination with bioinformatics are helping the 
patient and family with the accurate detection of the mutations in their samples. 
This helps the family and clinical teams in better planning and management of the 
patient care. This chapter highlights few of the technological revolutions in the 
diagnosis.
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4.1  Introduction

The increasing potential of genomic research has integrated it into the global main-
stream healthcare systems. Evidently, the UK 100,000 Genomes Project (UK10K 
Consortium et al. 2015), the Personal Genome Project Canada (Reuter et al. 2018), 
and precision medicine initiatives of the USA (Collins and Varmus 2015) and China 
(Li 2016) are heading the way to personalized healthcare. At this exciting era of 
genomics, the affordability of next-generation sequencing (NGS) technologies 
geared up the data generation from whole genomes and exomes that play a decisive 
role in clinical diagnostics (Dewey et al. 2014; Hegde et al. 2017; Lionel et al. 2017; 
Posey et al. 2016; Taylor et al. 2015). Here comes the imperative participation of 
computational genomicists or, in broad terms, bioinformaticians that critically carry 
out the downstream or post-sequencing analysis to extract relevant information from 
the sequenced genomes (Oliver et al. 2015). As such, the application of NGS in clini-
cal interventions is continuing to provide more facts on the genetic susceptibility to 
diseases (Taylor et al. 2015), unravel the basis of common and rare genetic disorders 
(Lee et al. 2014a), track the spreading of infectious diseases (Metsky et al. 2017), 
and categorize the subtypes of cancer (Foley et al. 2015; Müllauer 2017) and most 
importantly, prenatal as well as newborn screening (Stavropoulos et al. 2016). Day 
by day hundreds of thousands of genome sequences are being generated and depos-
ited in high-throughput storages awaiting computational explorations. This is an 
inspirational opportunity for any level of candidate aspiring to acquire the required 
computational skills involved in NGS analysis. Considering the extent and impor-
tance of NGS in the clinic setting for health improvement and the need to develop the 
related bioinformatics skill set, in this chapter, we have put together most of the 
needed information on the step-by-step analysis methodologies with examples.

4.2  All About Next-Generation Sequencing

Although the history of sequencing dates back to 1960s, the incessant DNA sequenc-
ing technique was established in 1977 by Fred Sanger (Heather and Chain 2016). 
The iconic Human Genome Project was successfully completed using the Sanger 
and shotgun sequencing techniques that belong to the first generation of sequencing 
technologies. Nearly after three decades, since 2007, the second-generation 
sequencers from Roche, Applied Biosystems, and Illumina were extensively 
employed in genetic research as next-generation sequencers. Eventually, the new or 
third-generation sequencing took a new dimension with the advent of Oxford 
Nanopore Technologies (Clarke et al. 2009; Jain et al. 2016) that has recently made 
giant strides in sequencing and assembling the human genome filling some gaps 
missed out by other technologies (Jain et  al. 2018). Heather and Chain, in their 
review, recapitulate the rich history and progress of DNA sequencing technologies 
in detail (Heather and Chain 2016). A brief overview on the widely used NGS plat-
forms is presented in Table 4.1.
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4.2.1  Applications of Next-Generation Sequencing Methods 
in Genomic Research

It is obvious that over the past decade, there has been swift development of NGS 
technologies (Goodwin et al. 2016) that completely transformed genetic and genomic 
research applications (Koboldt et al. 2013). The most common NGS applications 
include DNA sequencing, RNA sequencing (RNA-Seq), chromatin immunoprecipi-
tation sequencing (ChIP-Seq), and methylation sequencing (Methyl-Seq) or whole 
genome bisulfite sequencing (WGBS). The DNA sequencing refers to whole genome 
sequencing (WGS), whole exome sequencing (WES), and target region or gene 
sequencing, which are scrutinized to detect single-nucleotide variants (SNVs), 
genomic structural variants (SVs) like copy number variants (CNVs), small to big 
range of insertions and deletions (INDELs), and duplications and transversions asso-
ciated with human phenotypes and diseases. The gene expression profiles could be 
extracted using RNA-Seq to derive information about novel transcripts including the 
genomic “dark matter,” long non-coding RNAs (lncRNAs). As the name implies, 
ChIP-Seq is employed to determine the modifications associated with chromatin and 
identify the transcription factor binding sites in the genome level. With Methyl-Seq, 
the methylation patterns across the genome regions especially CpG, CHH, and CHG 
can be studied. Typically, all applications exploring every single genomic alteration 
are focused toward protection and treatment of diseases.

4.3  Next-Generation Sequencing Analysis Workflow

Among various sequencing analysis methods, in this review, we concentrate on the 
WGS- and WES-based workflow for post-sequencing processing, variant detection, 
and related clinical implications. A common pipeline for WES analysis involves 
data preprocessing, alignment, variant calling, annotation, and prioritization. WES 
experimental and computational workflow is shown in Fig. 4.1.

4.3.1  Data Preprocessing

The initial step of NGS computational analysis post-sequencing is to perform the 
quality checks (QC) of raw reads that are in FASTQ (Cock et al. 2010) file format. 
Then QC is followed by filtering, trimming, or correcting reads that do not fit the 
defined quality standards. The common errors expected in sequencing data include 
base-calling errors, INDELs, poor-quality reads, and adaptor cross contamination 
(Dai et al. 2010). These errors occur due to failures in instrument hardware, optical 
sensors, and varied sequencing chemistry (Cox et al. 2010; Dohm et al. 2008). It 
should be noted here that many NGS downstream analysis pipelines are not built to 
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deal with poor- or low-quality sequence reads, and so raw data QC and preprocess-
ing step become imperative to avoid any false-positive inferences. Collectively, the 
following are conducted as preprocessing steps: (1) visualization of the distribution 
of Phred-scaled base quality scores along the reads, GC content, read length, and 
sequence duplication level, (2) trimming of base reads, and (3) read filtering or adap-
tor clipping based on Phred score and sequence properties like primer or adaptor 
contaminations, N content, and GC bias. Some of the open-source tools available to 
perform these jobs are FastQC (Andrews 2010), Cutadapt (Martin 2011), and 
Trimmomatic (Bolger et al. 2014), while PRINSEQ (Schmieder and Edwards 2011) 
and QC3 (Guo et al. 2014) are package suites providing preprocessing functions.

4.3.2  Alignment

After QC and preprocessing, standard-quality sequence reads are available to map 
and align against the reference genome. The read alignment enables comparison of 
the sequenced data with the reference genome to determine the genomic variations. 
The largely used versions, GRCh37 and GRCh38, of human reference genome can 
be downloaded from the NCBI website (https://www.ncbi.nlm.nih.gov/genome/
guide/human/). BWA (Li et al. 2009) and Bowtie2 (Wu and Nacu 2010) are the two 
popular short-read alignment tools that apply Burrows-Wheeler transformation 
(BWT) compression technique algorithm. The QC measures followed in the align-
ment against the reference sequence include the proportion of all aligned reads, the 
ratio of unique aligned reads, and the number of reads aligned at a specific locus. 
Further, to reduce the possible artifacts affecting the accuracy of subsequent variant 

Fig. 4.1 The computational analysis workflow of whole exome sequencing data∗. ∗This is a gen-
eral workflow for the downstream analysis of whole exome sequences. Sequencing experiment 
followed by five major steps of computational analysis is shown. The file formats are presented 
within the flowchart document shape and relevant description given in glossary. The program tools 
employed at each step are in italics and highlighted in white color
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calling step, the following three processing steps are performed: (1) duplicate mark-
ing or removal of read duplicates, (2) local or INDEL realignment, and (3) base 
quality recalibration. During the alignment process, some of the reads aligned 
exactly with the mapping coordinates are known as “read duplicates.” These read 
duplicates may either be real DNA materials or PCR artifacts. It is very difficult to 
determine the real case with the alignment information alone. Therefore, in case of 
WES analysis, it is essential to remove the read duplicates before variant calling so 
as to rule out PCR-introduced artifact from the uneven DNA amplification. Several 
tools such as Picard MarkDuplicates (http://broadinstitute.github.io/picard/) and 
SAMtools (Li et al. 2009) efficiently detect the read duplicates based on the orienta-
tion on the genome. Once the read duplicates are removed, the next step is to detect 
the genomic regions with INDELs and improve the alignment quality in the speci-
fied region. This is because, in comparison to the regions containing only SNVs, the 
INDEL regions are likely to be noisy, which requires improvement of gapped align-
ment. IndelRealigner from the Genome Analysis Toolkit (GATK) (McKenna et al. 
2010) and SRMA (Homer and Nelson 2010) are mostly used to perform improved 
local realignment to frame the consensus sequence for INDEL discovery. Followed 
by the local or indel realignment, the base quality recalibration is performed. As the 
Phred-scaled base quality is an essential factor for precise variant detection in the 
downstream analysis, the base quality recalibration step is recommended before 
proceeding to calling variants. This base quality recalibration is commonly done 
using BaseRecalibrator from GATK (McKenna et al. 2010) and ReQON (Cabanski 
et al. 2012). GATK BaseRecalibrator recalibrates the base scores of the alignment 
files from multiple sequencing runs (McKenna et al. 2010), whereas ReQON along 
with recalibration provides range of diagnostic data as well as plots prior and post- 
recalibration to demonstrate the improved accuracy (Cabanski et al. 2012).

4.3.3  Variant Calling

From the previous steps, standard-quality sequence reads, mapped and aligned 
against the reference genome, are available to detect the genomic variants like SNVs 
and SVs (CNVs and INDELs). This is done by calling variants that differ from the 
reference sequence. The accuracy of variant calling step largely depends on the 
higher read depth that helps in detecting rare genetic variants. For example, WES 
requires 100× read depth for heterozygous SNV detection, while WGS requires 35× 
and 60× read depths for detecting genotype and INDELs, respectively (Sims et al. 
2014). Regarding SNVs, two types of variants such as germline and somatic can be 
called separately according to the need. The germline variants are inherited from the 
parents and exist in every cell, whereas somatic variants occur during the lifetime of 
an individual. The contributions of germline variants are generally studied for com-
plex diseases like diabetes. Some of the largely used programs for germline variant 
calling include GATK (McKenna et al. 2010), SAMtools (Li et al. 2009), FreeBayes 
(Garrison and Marth 2012), and Atlas2 (Challis et  al. 2012). GATK implements 
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mainly two variant programs, UnifiedGenotyper and HaplotypeCaller, to detect 
SNVs and INDELs. The former one identifies SNVs and INDELs separately assum-
ing that every single variant locus is independent, whereas the latter calls SNVs, 
INDELs, and some SV classes concurrently. SAMtools package consists of a bat-
tery of utilities to manipulate the aligned sequence reads in the SAM or BAM for-
mat and call the SNVs and INDELs. FreeBayes is a haplotype-based program tool 
that simultaneously detects SNVs, INDELs, multi-base mismatches, polyallelic 
sites, polyploidy, and CNVs in a single sample, pooled multiple samples, or mixed 
populations (Garrison and Marth 2012). Atlas2 implements logistic regression mod-
els trained on validated WES data to detect SNVs and INDELs from the data gener-
ated by the SOLiDTM platform. Also, this tool is used to analyze the Illumina data 
using logistic regression models to call INDELs and a combination of logistic 
regression and a Bayesian model to call SNVs (Challis et al. 2012). Several variant 
calling programs are being developed and evaluated, so it is recommended to criti-
cally choose the suitable one depending on the need of the study (detailed evalua-
tion by Hwang et al. 2015; Sandmann et al. 2017).

The somatic variants associated with disease state are studied for nonheritable 
diseases like some cancers by comparing tumor and normal samples. A number of 
somatic variant caller tools are available (Cai et al. 2016; Krøigård et al. 2016), and 
the following tools SomaticSniper (Larson et  al. 2012), Strelka (Saunders et  al. 
2012), and Virmid (Kim et al. 2013) are discussed here. For calling the somatic vari-
ants, SomaticSniper compares the diploid genotype likelihood in the tumor and 
normal pair (Larson et al. 2012). Strelka implements a Bayesian model-based algo-
rithm to derive a score from the combined probability of a somatic variant and a 
specific genotype in the normal samples for variant calling and computes the allele 
frequency variation in samples at any level without requiring an estimation of tumor 
purity (Saunders et al. 2012). In contrast to Strelka, Virmid considers the level of 
impurity in the sample and utilizes a similar Bayesian model and the maximum 
likelihood estimation (Kim et al. 2013). Virmid also accounts for various other noise 
types including sequencing errors, mapping bias, and CNV stage (Kim et al. 2013).

4.3.4  Variant Annotation

Further to the detection of different classes of genomic variants, annotation is cru-
cial to understand their functional attributes such as synonymous, non-synonymous, 
loss-of-function (LoF), and the like. Majority of disease genetic studies concentrate 
on the non-synonymous SNVs, LoF variants, and INDELs in the exonic regions that 
are mostly associated with Mendelian and complex diseases. It is also important to 
consider synonymous SNVs to estimate the background mutation rate in the 
genome. Apart from these basic annotations, there are several programs that inte-
grate public databases to provide supplementary information of the variants such as 
minor allele frequency (MAF) in normal global populations, experimental evidence 
from clinical studies, deleterious effect prediction of variant function, and 
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collection of variants and genes in disease studies. ANNOVAR is one of the widely 
used variant annotation programs that annotate in three modes, gene-based, region-
based, and filter-based (Wang et al. 2010). This program integrates about 4000 pub-
lic databases to detect variants reported especially in dbSNP (Sherry et al. 2001), 
1000 Genomes Project (Auton et  al. 2015), NHLBI ESP6500 (http://evs.
gs.washington.edu/EVS/), ClinVar (Landrum et  al. 2014), and ExAC (Lek et  al. 
2016). In addition, ANNOVAR combines various deleterious function prediction 
tools, namely, PolyPhen-2 (Adzhubei et al. 2010), Sorting Intolerant From Tolerant 
(SIFT) (Kumar et al. 2009), and the Combined Annotation Dependent Depletion 
(CADD) (Kircher et al. 2014), to provide deleterious scores of the annotated vari-
ants. Some of the other annotation programs used in common are snpEff (Cingolani 
et al. 2012) and the Ensembl Variant Effect Predictor (VEP) (McLaren et al. 2016). 
PharmGKB (Whirl-Carrillo et al. 2012) database can be used to annotate the vari-
ants of pharmacogenetic importance.

4.3.5  Variant Prioritization

This is the prominent decision-making step, which aids in identifying causal variant 
for disease of interest. During the study of Mendelian, rare, and complex diseases, 
it is challenging to discern the disease-causing variants among tens of thousands of 
annotated variants. Notably, a large number of variants are called for all study 
designs, ranging from single individual, trio (affected child and parents), family 
(affected and unaffected individuals), disease vs normal tissue (e.g., cancer) to unre-
lated case-control cohort, requiring different statistical and data processing pipe-
lines. On average, typical WGS experiment generates approximately 1–1.5 million 
variants, and WES yields about 50,000 variants (O’Rawe et al. 2013). Therefore, in 
the direction of detecting functional impact variants, it is indispensable to filter out 
the unreliable variants and prioritize the ones that likely cause the disease for further 
investigation. The filtering criteria include removal of variants (1) with low cover-
age and quality, strand bias, and low-confidence read alignment, (2) with common 
and low frequency, and (3) deviating from Hardy-Weinberg equilibrium. Ultimately, 
variants that change the amino acid and have functional effect are prioritized from 
the filtered variant list. Many tools are available to filter, evaluate, and prioritize 
thousands of variants collectively and systematically, considering annotation out-
comes, patient familial information, phenotypes, and disease subtype information. 
VAAST2 is one such tool that generates variant lists with ranking and sorting 
according to its importance for the disease (Hu et al. 2013). This is very helpful in 
the analysis of complex genetic and rare Mendelian diseases. The other publicly 
available tools are VarSifter (Teer et al. 2012), KGGseq (Li et al. 2012), PLINK/
SEQ (https://atgu.mgh.harvard.edu/plinkseq/), SPRING (Wu et  al. 2014), and 
gNOME (Lee et al. 2014b). Comprehensive review on variant prioritization pipe-
lines have been published recently (Eilbeck et  al. 2017; Jalali Sefid Dashti and 
Gamieldien 2017) for further reading.
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So far, NGS computational analysis workflow (Fig. 4.1) has been outlined gener-
ally. The following section will discuss the common applications of NGS sequenc-
ing approach in clinical research of head and neck squamous cell carcinoma 
(HNSCC).

4.4  Clinical and Research Applications of Next-Generation 
Sequencing Technology in Head and Neck Squamous 
Cell Carcinoma

Head and neck squamous cell carcinoma (HNSCC)—cancers of oral cavity, oro-
pharynx, and larynx—is the sixth most common cancer type worldwide. The major 
risk factors associated with HNSCC are tobacco and alcohol usage and human pap-
illoma virus (HPV) (Ragin et  al. 2007). In addition, recent studies have shown 
genetics to be a significant factor associated with HNSCC (Ragin et  al. 2007; 
Ramakodi et al. 2016, 2017). Pertaining to the importance of genetic factors, the 
high-throughput sequence approach is preferred in HNSCC studies as parallel 
sequencing method yields large data and could provide more details than traditional 
approach. In addition, the decreasing cost of DNA sequencing has enabled the broad 
use of NGS techniques to study the genetic changes in HNSCC.

4.4.1  Molecular Characterization and Subtypes in Head 
and Neck Squamous Cell Carcinoma

HNSCC is a complex and heterogeneous disease which is attributed to many etio-
logical factors. The genomic studies based on NGS technologies have enhanced our 
knowledge about the molecular characteristics of HNSCC types and their clinical 
implications. In general, HNSCC could be broadly classified into HPV(+) and 
HPV(−) based on the HPV status. The exome sequence analyses have shown that 
HPV(+) tumors are different from HPV(−) tumors at molecular level. The analyses 
by Nichols et al. (2012) showed HPV(−) tumors to have more somatic mutations as 
compared to HPV(+) tumor. In contrast, the studies by Seiwert et al. (2015) noted 
that HPV(−) tumor has a similar mutational burden as HPV(+) tumors. However, 
both the studies have demonstrated distinct genomic characteristics of HPV(−) and 
HPV(+) tumors. Especially, the studies by Seiwert et al. (2015) showed HPV(−) 
tumors to harbor more mutations in TP53, CDKN2A, MLL2, CUL3, NSD1, 
PIK3CA, and NOTCH genes, while HPV(+) tumors had mutations in DDX3X and 
FGFR2/FGFR3 and abnormalities in PIK3CA, KRAS, MLL2/MLL3, and NOTCH1. 
The recent analyses by The Cancer Genome Atlas (TCGA) also revealed a distinct 
genomic alterations in HPV(−) tumors as compared to HPV(+) tumors (Cancer 
Genome Atlas 2015). HPV(+) tumors were noted to have recurrent deletions and 
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truncating mutations of TRAF3. In addition HPV(+) tumors had amplifications of 
E2F1 and intact 9p21.3 chromosomal region, whereas HPV(−) tumors had co- 
amplifications of 11q13 and 11q22. Also, HPV(−) tumors had novel alterations in 
NSD1 and tumor suppressor genes along with recurrent amplifications of receptor 
tyrosine kinases. Apart from the molecular differences between HPV(+) and 
HPV(−) tumors, the studies utilizing genomic technologies also helped to charac-
terize the HNSCC into various subclasses such as basal, mesenchymal, atypical, 
and classical (Walter et al. 2013; Cancer Genome Atlas 2015).

4.4.2  Mutational Landscapes of Head and Neck Squamous 
Cell Carcinoma

The exome sequencing approach was utilized to obtain a comprehensive knowl-
edge on the underlying genetic alterations in HNSCC. The analyses by Agrawal 
et al. (2011) revealed the genes TP53, NOTCH1, CDKN2A, PIK3CA, FBXW7, 
and HRAS to be frequently mutated in their study cohort. Especially, NOTCH1 
was found to be the most frequently mutated gene in the dataset. A similar exome 
sequence analyses by another group found 39 genes including TP53, CDKN2A, 
PTEN, PIK3CA, HRAS, NOTCH1, IRF6, and TP63 to be frequently mutated 
(Stransky et al. 2011). An integrated genomic analysis by TCGA revealed sev-
eral novel genomic characteristics of HNSCC tumors (Cancer Genome Atlas 
2015). In addition, the TCGA analyses also suggested many tumor suppressor 
genes, oncogenes, PI3- Kinases, and receptor tyrosine kinases as candidate 
genes for therapeutic targets in HNSCC. Another independent study focused on 
oral squamous cell carcinoma (OSCC) found TP53, FAT1, EPHA2, CDKN2A, 
NOTCH1, CASP8, HRAS, RASA, PIK3CA, CHUK, and ELAVL1 to be fre-
quently mutated in OSCC (Su et  al. 2017). Likewise, other high-throughput 
sequence-based studies also improved our knowledge on the mutational land-
scapes of HNSCC (India Project Team of the International Cancer Genome 
2013; Pickering et al. 2013; Lin et al. 2014; Pickering et al. 2014). Overall, the 
sequence-based studies have enlightened our knowledge about the mutational 
landscape of HNSCC.

4.4.3  Association Between Genetic Polymorphism and Head 
and Neck Squamous Cell Carcinoma Risk

Earlier studies used a limited number of markers to analyze the HNSCC risk associ-
ated with individual genetics. However, the time and cost-effectiveness of NGS 
technologies have enabled the completion of many large population-based genomic 
studies such as the International HapMap project (International HapMap 2003) and 
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the 1000 Genomes Project (Auton et al. 2015), and the data of such large projects 
are freely available for research use. These large population-based data along with 
other functional datasets have helped the researchers to identify and select a com-
prehensive list of genetic polymorphisms in and/or around the genes involved in 
important pathways to evaluate the association between genetic and HNSCC risk. A 
schematic diagram to illustrate a bioinformatics approach to select the single- 
nucleotide polymorphisms (SNPs) for genetic studies is shown in Fig. 4.2.

Fig. 4.2 A schematic diagram illustrating the integrative approach to identify/select candidate 
markers to study genetic risk associated with disease
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Several studies showed that germline genetic polymorphisms in genes involved 
in tobacco metabolism, nicotine addiction, xenobiotic metabolism, and excretion of 
active metabolites/carcinogens are associated with HNSCC risk (Jourenkova et al. 
1998; Olshan et al. 2000; Ying et al. 2012). Similarly, the SNPs in genes involved in 
DNA repair and cancer oncogenesis were also found to be related to HNSCC risk 
(Huang et al. 2005; Al-Hadyan et al. 2012; Zhang et al. 2013). The list of SNPs that 
were found to be associated with HNSCC risk in some of the recent literatures 
(from 2015) is given in Table  4.2. These studies suggest the important role of 
 genetics in HNSCC. The Genome Wide Association Studies (GWAS) in HNSCC 
have also identified several genetic loci to be associated with HNSCC risk (Wei 
et al. 2014; Lesseur et al. 2016). Although the exact mechanism of action of these 
SNPs in HNSCC development are not known, recent analyses showed that these 
germline polymorphisms could act as expression quantitative trait loci (eQTLs) and 
affect expression of genes thereby could be associated with HNSCC progression or 
survival (Hang et al. 2017; Ramakodi et al. 2017).

4.4.3.1  Genetic Association Study: A Case-Control Analysis

The genetic association studies are vital in healthcare research to identify the genetic 
basis and risk associated with a disease. Many epidemiological approaches includ-
ing prospective, retrospective, and case-control analysis are followed to conduct the 
genetic association study. Among those various epidemiological methods, case- 
control approach is being widely used. In this section, we present an example of 
basic workflow involved in a case-control study using hypothetical genotype data.

The first step is to identify genes of interest, which could be done through litera-
ture survey or experimental procedure. Subsequently, putative functional SNPs in 

Table 4.2 Studies reported HNSCC risk-related SNPs

Gene/locus SNPs Type References

MIR548H4 rs7834169 All Wilkins et al. (2017)
rs16914640, rs1134367, rs7306991, rs1373756 OC

HADH rs221347 LA
5p15.33 rs4975616
KIT rs6554198, rs2237025, rs17084687 All Hang et al. (2017)
SOCS3 rs2280148, rs8064821 All Hang et al. (2016)
miR-605 rs2043556 OC Miao et al. (2016b)
miR-196a2 rs11614913
COX-2 rs689466 All Leng et al. (2016)
miR-101 rs578481, rs705509 OC Miao et al. (2016a)
ERCC1 rs3212986, rs11615 All Ding et al. (2015)
EGFR rs12535536, rs2075110, rs1253871, rs845561, 

rs6970262, rs2072454
All Fung et al. (2015)

All squamous cell carcinoma of oral cavity, larynx, and oropharynx, OC oral cavity, LA larynx
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the gene of interest need to be identified using public database or custom array 
techniques. In this example, we have taken TP53 gene that is involved in DNA- 
damage repair mechanism and is one of the important cancer drivers. Several muta-
tions and/or polymorphisms in TP53 are associated with various types of cancer. 
The steps involved in identifying the putative functional SNPs in TP53 gene and 
executing the genetic association study are presented as follows:

 (a) Identification of Single-Nucleotide Polymorphisms in TP53

Primarily, TP53 gene was searched on the 1000 Genomes Project web browser 
available at https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/, and its 
genetic polymorphism in different populations was discerned. The search results 
showed TP53 gene located in chromosome 17 (position: 7,571,720–7,590,868) to 
have 622 polymorphisms. The rs IDs of these 622 polymorphisms were obtained for 
functional analysis. Here, it should be noted that using the 1000 Genomes Project 
Browser is optional. Alternatively, one can download the entire genotype dataset for 
all the populations and obtain the population-wise SNPs information for many 
genes computationally.

 (b) Identification of Putative Functional Single-Nucleotide Polymorphisms in 
TP53

The rs IDs of 622 SNPs present in TP53 were searched on the web interface tool 
Variant Effect Predictor (VEP) available at http://grch37.ensembl.org/Tools/VEP 
(McLaren et al. 2016) to classify the functional characteristics of these SNPs. The 
part of the result as obtained from VEP is shown in Fig. 4.3. Alternative to web 
interface, standalone VEP software is also available, and usage of this will be effi-
cient while analyzing large datasets. The web-based VEP classified the SNPs as 
intron variant, UTR variant, missense, stop_gained, synonymous, etc. Based on this 
information, one could select the SNPs of their interest for further study. This 
computational- based method has been utilized effectively to identify the causal 
SNPs associated with disease in minimal cost and time. For this example analysis, 
we ascertained 53 SNPs classified as “upstream_gene_variant,” considering the fact 
that an upstream variant could be involved in regulation of gene expression and 

Consequences (all) Coding consequences

upstream_gene_variant: 17%
downstream_gene_variant: 8%
non_coding_transcript_variant: 7%
3_prime_UTR_variant: 4%

5_prime_UTR_variant: 1%
Others

missense_variant: 3%

missense_variant: 64%

synonymous_variant: 2%

synonymous_variant: 33%
stop_gained: 3%

intron_variant: 53%

non_coding_transcript_exon_variar

Fig. 4.3 Functional analysis results for SNPs present in TP53 as obtained from Variant Effect 
Predictor (VEP)∗. ∗Only a part of the results obtained from VEP is shown in the figure
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possibly could act as eQTL. Among these 53 SNPs, rs2287499 was selected as a 
marker for the case-control analysis as it is an upstream variant for TP53 gene and 
also a missense variant for WRAP53 gene. Thus, we could frame a hypothesis that 
this SNP is associated with HNSCC risk and will be statistically tested in the fol-
lowing case-control analysis.

 (c) Case-Control Analysis

As stated before, for this analysis, we will use hypothetical genotype data of the 
TP53 gene variant rs2287499. However, it is imperative to know the methodology 
of generating the genotype data for desired analysis. The first step is to identify the 
HNSCC cases and healthy controls following the epidemiological principles. 
Accordingly, for our analysis, let us assume that we have 500 HNSCC cases and 
500 controls. Then, biological samples like blood and/or saliva were collected from 
cases and controls to extract DNA and perform genotyping for rs2287499. Assume 
that all the genotypes passed quality-control evaluation. As the TP53 gene variant 
rs2287499 has two alleles “C” and “G,” the following three possible genotypes CC, 
CG, and GG can be observed in the cases and controls. We generated hypothetical 
genotype counts for cases and controls for further statistical investigation. This gen-
otype data is presented in Table 4.3.

To measure the disease risk associated with exposure in case-control analysis, we 
calculated odds ratio applying logistic regression model. As a result, GG genotype 
was found to be significant based on the p-value 1.44e-08 with the odds ratio of 
2.37. This indicates the association of rs2287499 with HNSCC risk; especially, the 
individuals carrying GG genotype are at high risk of HNSCC by twofold as com-
pared to others. The p-values and odds ratio of each genotype are tabulated and 
shown in Table 4.4.

It is to be noted that the above significant observations are subject to change 
when we consider the confounding factors such as age, sex, population, and the 
like, involved in a case-control study. The appropriate confounder should be 
adjusted when performing the logistic regression analysis to identify the true 
effect of the variants under study. As we dealt with the hypothetical data in this 
example analysis, adjusting for confounders are not shown. We suggest further 
reading of epidemiological principles and statistical analysis-related literature for 
in-depth understanding of case-control studies and appropriate statistical 
calculations.

Table 4.3 Hypothetical genotype data of rs2287499 for cases and controls

Genotype Case Control Total

CC 162 220 382
CG 118 154 272
GG 220 126 346
Total 500 500 1000
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4.4.4  Genetics and Head and Neck Squamous Cell Carcinoma 
Survival

The NGS technology is also utilized to unveil the genetics associated with HNSCC 
survival. Liu and colleagues (Liu et  al. 2016) investigated the effect of somatic 
mutations and genetic variants of NOTCH1 on HNSCC occurrence and develop-
ment using exome sequencing approach. The study revealed that patients with 
somatic mutations in NOTCH1 had higher 5-year relapse-free recurrence and lower 
survival proportions. Another exome sequence analyses showed the amplification of 
PIK3CA and mutations in RAS to be associated with poorer prognosis (Chau et al. 
2016). Also, an integrative genomic analysis using the data generated from exome 
sequences along with other functional datasets identified several eQTLs and enabled 
to understand how the genetics could be associated with HNSCC survival (Ramakodi 
et al. 2017).

4.4.5  Genetics of Head and Neck Squamous Cell Carcinoma 
Disparity

The HNSCC incidence and survival rates differ among different populations. For 
example, African Americans (Afr-Amr) have higher incidence and lower survival 
rates as compared to Caucasian Americans (Cau-Amr) (Walker et al. 1995; Gourin 
and Podolsky 2006; Jiron et  al. 2014). Interestingly, the HNSCC genetics differ 
between Afr-Amr and Cau-Amr patients. In addition, recent studies based on data 
derived from exome sequences from TCGA suggest that genetics could be involved 
in the HNSCC disparity observed between Afr-Amr and Cau-Amr. The mutational 
landscape analyses of laryngeal cancer showed different mutation burdens between 
Afr-Amr and Cau-Amr patients (Ramakodi et  al. 2016). In addition, the signifi-
cantly mutated genes were found to be different in Afr-Amr as compared to Eur- 
Amr patients. For example, PIK3CA, one of the important driver gene, was 
significantly differently mutated between Afr-Amr and Cau-Amr patients. The 
exome sequence data was also used to understand the functional importance of 
genetics in HNSCC and to uncover the association between ancestral genetics and 
HNSCC disparity. The functional analyses by Ramakodi et al. (2017) have identi-
fied many eQTLs, and their study explained the effect of population-specific allele 

Table 4.4 Results of odds ratio calculation following logistic regression approach. The results 
indicate that the genotype GG is associated with increased risk as compared to other genotypes

Genotype Odds ratio (OR) 95% Confidence interval p-value

CC 1.00 – – –
CG 1.04 0.76 1.42 0.804
GG 2.37 1.76 3.19 <0.001
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on HNSCC survival disparity. Thus, the exome sequence data helped to uncover 
how genetic ancestry could be associated with increased HNSCC risk/lower HNSCC 
survival in Afr-Amr.

4.5  Conclusion

The NGS technologies and the algorithms to analyze the sequence data are continu-
ously evolving. Also, the time and cost of sequencing the genomes are currently 
coming down. In addition, many web-based bioinformatics platforms such as 
Galaxy (https://usegalaxy.org/) are readily available to analyze the large NGS data-
set for research purpose. Most importantly, today several online blogs are available 
to get clarifications or suggestions on NGS-related questions. These rapid develop-
ments of NGS technologies and advancements in bioinformatics simplified the use 
of NGS in clinical medicine and other scientific area. Indeed, the sequence-based 
analyses have improved our knowledge about the genetics of various types of can-
cer including HNSCC. The sequence data helped the researchers to understand the 
functionally important genetic factors in cancers. The sequence-based analyses also 
elucidated the important pathways involved in disease development and progression 
and helped to identify therapeutic targets to be used in precision medicine. Today, 
the high-throughput sequencing technologies have been adopted for personalized 
medicine in the developed countries, but the NGS technologies are not often used 
for personalized medicine in the developing or underdeveloped countries. 
Nonetheless, the continuing decrease in the cost of NGS technologies and the 
improvements of web-based analyses tools will benefit the developing and underde-
veloped countries to use NGS technologies in personalized medicine to improve 
the quality of life. In summary, the NGS technologies play an important role in 
clinical medicine and hold a broad and promising future in medical discipline.

Glossary

BAM Binary Alignment Map, a compressed binary format for storing large nucleo-
tide sequence alignments.

FASTQ The text-based format for storing both a DNA sequence and its corre-
sponding quality scores.

Paired-end This sequencing procedure involves sequencing both the ends of the 
DNA fragments in a library and aligning the forward and reverse reads as read 
pairs.

Phred Q scores The base calling converts the signals into actual sequence data 
with this quality scores.

Read The WGS or WES procedure involves shearing DNA into hundreds of thou-
sands of small fragments, and every single fragment is called a “read.”
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Read depth The average number of times that a given nucleotide in the genome 
has been read in a sequencing experiment. For instance, a 40× read depth means 
that each base is present in an average of 40 reads.

SAM Sequence Alignment Map, a genetic format for storing large nucleotide 
sequence alignments.

Single-read This sequencing procedure involves sequencing DNA from only 
one end.

TAB The text-based tab-delimited file format.
VCF Variant Calling Format, a text file format containing meta-information lines, 

a header line, and then data lines, each containing information about a position 
in the genome.
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5.1  Introduction

The introduction of microarray technology in mid-1990s allowed scientists to 
profile and analyze the human genome simultaneously. Since then, a number of 
microarray platforms allowing high volume automated analysis of DNA, RNA, 
and protein on a microchip-based testing platform have evolved. DNA microarray 
reveals genetic imbalances involving many genes and markers at multiple regions 
of the genome in all chromosomes.

Conventional cytogenetics through karyotyping has been the gold standard for 
detecting structural and numerical chromosomal abnormalities including losses, 
gains, inversions, deletions, duplications, and translocations in prenatal diagnosis as 
well as in postnatal diagnosis (in individuals with dysmorphic features, mental 
retardation), in products of conceptions and in cancer. Chromosomal microarray 
analysis (CMA) is a whole genome high-resolution genetic test that can identify 
chromosomal abnormalities that cannot be detected by conventional karyotyping 
and fluorescence in situ hybridization (FISH) assays. CMA not only detects abnor-
malities that are detected by conventional cytogenetics but also reveals microdele-
tions and microduplications. This novel technology was termed “molecular 
karyotyping” (Rauch et al. 2004; Vermeesch et al. 2007). The resolution of conven-
tional cytogenetics is about 5–10 Mb in size whereas CMA has enhanced the ability 
to detect genome-wide imbalances in <1  kb, demonstrating its advantage over 
karyotyping and FISH.

CMA is a powerful diagnostic tool for prenatal, postnatal, and cancer diagno-
sis. CMA offers a much higher diagnostic yield (15%–20%) for genetic testing of 
individuals with unexplained developmental delay (DD), intellectual disability 
(ID), autism spectrum disorders (ASD), and multiple congenital anomalies (MCA) 
than conventional cytogenetics excluding Down syndrome and other known cyto-
genetics syndromes (Shaffer et al. 2006; Sagoo et al. 2009, Cooper et al. 2011; 
Kaminsky et al. 2011; Mefford et al. 2012). This has led to the recommendation to 
use CMA as the first-tier testing for children with DD, ID, ASD, and MCA 
(Manning and Hudgins 2010; Miller et  al. 2010). In cancer diagnostics, earlier 
studies focused on hematological malignancies; however, much progress has been 
made recently for solid neoplasms. An overview of the microarray technology and 
its applications in prenatal, postnatal, and cancer diagnostics will be discussed in 
this chapter.

5.2  Microarray Technology

Currently, different types of DNA-microarray platforms are available. CMA can 
detect microdeletions and microduplications of chromosome segments (referred to 
as copy number variants, CNV) which are too small to be visible by conventional 
karyotyping. There are two major microarray platforms used for identifying the 
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CMAs: array comparative genomic hybridization (aCGH) and single nucleotide 
polymorphism (SNP) arrays. In aCGH, DNA from the patient is compared directly 
or indirectly with a reference genome (normal DNA). For aCGH, both the reference 
and patient DNAs are labeled with different fluorochromes and hybridized to mul-
tiple probes representing sequences across the genome on the microarray. The find-
ings are reported as a signal ratio in the two color assays. The aCGH consists of 
CNV probes and only provides CNV information.

SNP-based arrays use SNP probes in a single color dye and instead of using a 
control sample as a reference in every run, reference intensity data from a popula-
tion of normal samples is used as a reference for the patient sample—in silico refer-
ence (Coughlin et  al. 2012). SNP arrays provide both SNP genotype and CNV 
information. The CNV information is generated using the signal intensity of the 
probes (Wang et al. 2005; Carter 2007; Gresham et al. 2008). The signal intensities 
of the fluorochromes are captured by a scanner. Loss and gains of genomic regions 
are compared with the reference DNA by the differences in the signal intensities of 
the probes. If there is no loss or gain, the expected copy number is “0” and the copy 
number is expressed as a log2 ratio. The log ratios for duplication will be >0 and for 
deletions will be <0. SNP arrays allow simultaneous detection of DNA copy num-
ber changes and absence of heterozygosity (AOH) due to loss of heterozygosity 
(LOH), hemizygosity, or homozygosity. The combined use of CNV and SNP probes 
is ideal for maximum coverage and high resolution in detection of these variants 
(Carter 2007). Both aCGH and SNP arrays detect CNVs, whereas SNP array can 
detect triploidy, uniparental disomy, mosaicism >25%, maternal cell contamination, 
parent of origin, and consanguinity, but aCGH cannot detect triploidy. Arrays using 
oligonucleotides, oligonucleotide plus single nucleotide polymorphism (SNP), and 
SNP are the most commonly available arrays (Agilent technologies, Affymetrix, 
Ilumina, etc.).

Analysis and Reporting It is important to understand the terminology used in 
microarray testing and is imperative how to interpret the findings obtained from 
microarray. A CNV is defined as a segment of DNA at least 1 kb in size that differs 
in copy number compared with a representative reference genome. Interpretation of 
CNVs should be provided as clearly as possible. CNVs can be benign or pathogenic 
depending on clinical relevance and can be interpreted as duplication or deletion to 
clarify the nature of the CNV. American College of Medical Genetics (ACMG) 
guidelines help in promoting consistency in interpretation and reporting (Cooley 
et al. 2013). Deletions less than 200 kb and duplications less than 400 kb are not 
reported, unless they involve regions of the genome with clear or suspected clinical 
significance. Regions of long contiguous stretches of homozygosity (LCSH) are 
reported when they are greater than 10 Mb on a single chromosome or when the 
total LCSH is greater than 2% of the autosomal genome.

If a CNV is clinically significant and has been reported in multiple peer-reviewed 
publications, it will be reported as pathogenic even if there is variable penetrance 
and expressivity. CNVs at the time of reporting are not clearly pathogenic or benign 
should be reported as CNV of uncertain clinical significance. Uncertain clinical 
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significant CNVs can be any one of the following categories: (a) uncertain clinical 
significance, likely pathogenic (based on a single case report with well-defined 
breakpoints and phenotype or if a gene within the CNV has a functional impact on 
the phenotype of the patient); (b) uncertain clinical significance likely benign (when 
no genes in the CNV interval are mapped as well as a small number of cases in the 
database); or (c) uncertain clinical significance with no sub-classification, contain-
ing genes with unknown function, and/or multiple case reports with contradictory 
results and no concrete conclusions. A CNV is considered as benign, if multiple 
peer-reviewed publications or databases annotated it as a benign variant or as a com-
mon polymorphism.

According to the guidelines for CMA reporting, CNVs especially in the postna-
tal constitutional setting, every report follow the current International system for 
Human Cytogenomic nomenclature (ISCN) and should include the cytogenetic 
location, dosage (copy number gains or losses), CNV size and linear co-ordinates 
with specified genome build, clear statement of clinical significance, list of relevant 
genes in the CNV interval, and recommendations for appropriate clinical follow-up. 
In cases with uncertain clinical significance, the report should include recommenda-
tions for continued surveillance through regular medical literature searches for new 
information (McGowan-Jordan et al. 2016). An ideal report preferably have an inte-
grated cytogenetic and CMA results with details as mentioned above.

Advantages CMA is a fast and a highly sensitive test and enables the genome- 
wide detection of imbalances by one assay in an unbiased manner. It allows 
genome- wide screening of samples lacking fresh tissues, where chromosomal 
analysis is not possible. When compared to conventional karyotyping which 
needs culturing of cells, formalin-fixed paraffin-embedded (FFPE) slides can be 
used for CMA. CMA has a rapid turnaround time. CMA also defines the regions 
of imbalance if an abnormality is identified. In addition, CMA can detect most of 
the numerical abnormalities (monosomy, trisomy, triploidy, tetraploidy, etc.), 
and most unbalanced chromosomal rearrangements (unbalanced translocations, 
large deletions, and duplications). In addition to identifying copy number 
changes, copy neutral abnormalities such as LSCH can also be identified. 
Extended regions of homozygosity (AOH or LOH) with a total homozygosity of 
>3 Mb in all autosomes can be associated with uniparental disomy or consan-
guinity. AOH or LOH may pose increased risk for autosomal recessive condi-
tions or imprinting disorders (Papenhausen et al. 2011). Microarray analysis also 
helps to characterize translocations at the molecular level. Translocations that 
are apparently balanced at the microscopic level may be revealed by molecular 
analysis to be unbalanced. About 20% of individuals with apparently balanced 
translocations (de novo or familial) have loss or gain of genetic material (Astbury 
et al. 2004; Sismani et al. 2008). In addition, mosaicism greater than 20%–25% 
can also be detected by CMA testing. Majority of CNVs are benign and clini-
cally insignificant. However, the impact of CNVs is significant when it involves 
a critical region within a gene that has relevant phenotypic features associated 
with patients. If a gene is involved in the critical region of imbalance, CMA 
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makes it possible to correlate the clinical features to the gene. Small gains and 
losses seen in structural abnormalities help to define clinical consequences 
(Astbury et al. 2004; Shanske et al. 2004; Simovich et al. 2007; Higgins et al. 
2008; Tabet et al. 2015).

Limitations It is well recognized that CMA has many advantages over conven-
tional cytogenetics and FISH assays but it also has many limitations. CMA does not 
detect small changes in the genome (point mutations, methylation status), and 
duplications within a single gene, low-level mosaicism below 20%–25%, or bal-
anced rearrangements such as translocations, inversions, and insertions. In addition, 
CMA does not explain the chromosomal mechanism of a genetic imbalance (South 
et al. 2013). Also, CMA cannot differentiate between a free trisomy of an acrocen-
tric chromosome and an unbalanced Robertsonian translocation. It is important to 
differentiate between these two entities as the recurrence risk is different (Fruhman 
and Van den Veyver 2010). In such cases, karyotype is recommended to rule out 
whether the abnormality is inherited or de novo in nature. Some CMA platforms do 
not detect triploidy and other ploidy levels. CMA cannot characterize clonal and 
subclonal populations in neoplastic samples. CMA is not recommended for post 
therapy follow-up or detection of minimal residual disease. Low-level mosaicism 
may not be detected by CMA.  CNVs with incomplete penetrance and variable 
expression are significant challenges particularly in the prenatal setting. In addition, 
the limitations for detection of small CNVs depend on the probe coverage, software, 
and the platform used in each laboratory. Some factors which influence microarray 
are the quality of the DNA sequences on the array, the size of the DNA clones, den-
sity of the regions of interest, and the controls. In an ideal scenario to circumvent 
these limitations, CMA should be used in conjunction with other cytogenetic tech-
niques. The advantages and limitations of the different technologies are summa-
rized in Table 5.1.

5.3  CMA in Postnatal Diagnosis

Genetic testing including cytogenetic analysis through karyotyping has been the 
gold standard for patients with DD, ID, ASD, and MCA. In the general popula-
tion, incidence of DD/ID is about 3% (Shevell et al. 2003) and ASD affects about 
1  in 150 individuals (Autism and Developmental Monitoring Network 
Surveillance Year 2000 Principal Investigators 2007; Newschaffer et al. 2007). 
Since the introduction of CMA, a number of significantly relevant CNVs have 
been identified in about 15%–20% of cases (Rauch et al. 2004; de Vries et al. 
2005; Hochstenbach et al. 2006; Vermeesch and Rauch 2006; Hoyer et al. 2007; 
Vermeesch et al. 2007; Miller et al. 2010; Mefford et al. 2011). The findings of 
these studies resulted in recommending CMA as the first-tier test for postnatal 
evaluation of individuals with DD/ID disorder, global developmental delay, 
ASD, and/or MCA (Kearney et al. 2011). American College of Medical Genetics 
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(ACMG) has developed standards and guidelines to educate the laboratory per-
sonnel to provide quality clinical services with reference to this spectrum of 
diseases (Cooley et al. 2013).

A review of 20 studies in patients with isolated congenital heart disease 
(CHDs) with or without other related defects showed clinically relevant CNVs 
in 3%–25% patients (Lander and Ware 2014). The most common submicrosco-
pic CNV associated with CHD is a deletion of the 22q11.2 region, occurring in 
about 1  in 4000 live births (Fig.  5.1). This 22q11.2 CNV is associated with 
DiGeorge syndrome and other abnormalities including immune deficiency, 
hypocalcemia, and other neurodevelopmental disorders (McDonald-McGinn 
and Sullivan 2011). This abnormality cannot be identified by conventional 
karyotyping, but FISH detects the deletions using specific probes covering the 
22q11.2 region. CMA is also recommended for individuals with multiple con-
genital anomalies and epilepsy. Studies have shown that most of these children 
do not have dysmorphic features that can be recognized as part of a syndrome 
but showed duplications and deletions. Since the inception of CMA as the first-
tier test for the detection of imbalances, a number of new microdeletion and 
microduplication syndromes have been described. Some of the syndromes 
described include regions involving 1q21.1, 15q24, 17q21.31 and 17q23.1q23.2 
(Ballif et  al. 2008; Koolen et  al. 2006; Sharp et  al. 2006; Sharp et  al. 2007; 
Shaw- Smith et al. 2006). Several recurrent genetic imbalances associated with 
incomplete penetrance and highly variable expressivity have also been recog-

Fig. 5.1 SNP array showing 22q11.2 deletion in a patient with DiGeorge syndrome
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nized (Mefford 2009). The microdeletion of 15q13.3 region has been associated 
with intellectual disability, epilepsy, or schizophrenia (Stefansson et al. 2008; 
Sharp et al. 2008; Helbig et al. 2009; International Schizophrenia Consortium 
2008). Largest deletion identified at 16p11.2-p12.2 ranges from 7 to 9  Mb 
including the SH2B1 gene that is associated with DD/and obesity (Bachmann-
Gagescu et al. 2010).

With the introduction of CMA, many CNVs resulting in microduplication 
 syndromes have also been described. Clinically relevant CNVs resulting in 
microduplication syndromes were seen at 1q21.1, 2q31, 3q29, 5q35, 7q11.23, 
11p15 (Beckwith-Wiedemann syndrome), 15q11-13, 15q13.3, 15q24, 16p13.3, 
16p13.11, 16p11.2, 17p13.3, 17p11.2 (Charcot-Marie Tooth type 1A disease), 
17p11.2 (Potocki-Lupski syndrome), 17q21.31, 22q11.2, and 22q13 (Brunetti-
Pierri et al. 2008; Mefford et al. 2008; Lisi et al 2008; Kantaputra et al. 2010; 
Cukier et al. 2012; Mullegama et al. 2015; Ballif et al. 2008; Goobie et al. 2008; 
Lisi et al. 2008; Franco et al. 2010; Zhang et al. 2011; Sanders et al. 2011; Berg 
et al. 2007; Baker et al. 1994; Bolton et al. 2001; Piard et al. 2010; van Bon et al. 
2009; Stewart et al. 2011). A representative image showing a microduplication of 
15q21.3 region is given in Fig. 5.2. When compared to microdeletion syndromes, 
the phenotype of microduplication syndromes is often less defined. 
Microduplication syndromes in general are less pathogenic and can also be 
inherited from normal parents, suggesting incomplete penetrance in some of 
these syndromes.

Fig. 5.2 SNP array showing duplication in chromosome 15
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5.4  CMA in Prenatal Diagnosis

Microarray technology has revolutionized the practice of medical genetics in prenatal 
diagnosis. Structural abnormalities too small to be seen by conventional cytogenetics 
can now be detected by CMA. CMA detects common aneuploidies like trisomy 13, 
trisomy 18, and trisomy 21 in prenatal samples with 100% accuracy when compared 
to karyotyping (Wapner et al. 2012; Breman et al. 2012; Callaway et al. 2013). CMA 
detects about 5–7% of cases with abnormal ultrasound findings with clinically signifi-
cant CNVs over conventional karyotyping (Shaffer et al. 2012; Wapner et al. 2012; 
South et al. 2013; Donnelly et al. 2014). In addition, in patients with advanced mater-
nal age with positive serum screening, CMA detects about 1.7% of imbalances over 
standard karyotyping (Wapner et al. 2012; Srebniak et al. 2018). About 6% of abnor-
mal fetuses with a normal karyotype may have pathogenic CNVs or likely pathogenic 
CNVs (Wapner et al. 2012; Shaffer et al. 2012; Srebniak et al. 2018). Even though 
CMA is recommended as the first tier of clinical diagnostic test for individuals with 
developmental disabilities or congenital anomalies (Manning and Hudgins 2010; 
Miller et al. 2010), prenatal CMA has become the standard of care in fetuses with 
congenital malformations (Wapner et al. 2012). Even though CMA has not yet sub-
stituted conventional cytogenetics through karyotyping for all indications, American 
College of Obstetrics and Gynecology (ACOG) and the Society for Maternal-Fetal 
Medicine (SMFM) (2015) recommended to consider CMA as a first-tier test in preg-
nancies with ultrasound abnormalities (Faas et al. 2010; Hillman et al. 2013; Vanakker 
et  al. 2014; American College of Obstetrics and Gynecologists Committee on 
Genetics 2013; Dugoff et al.  2016; Walser et al. 2016; Wou et al. 2016).

Although advantage of CMA in structurally abnormal fetuses is well accepted, 
its utility in structurally normal fetuses is still a matter of some debate. There has 
been a trend to have CMA for patients who undergo invasive prenatal testing includ-
ing cases with structurally normal fetuses. Pathogenic CNVs have been reported in 
about 1% of structurally normal fetuses (Van Opstal et al. 2015). In such low-risk 
pregnancies, the frequency of pathogenic CNVs reported varied considerably from 
0.4% to 2% (Van Opstal et al. 2015; Wapner et al. 2015; Bornstein et al. 2017). 
Therefore, the ACOG and SMFM advocate that, in patients with a structurally nor-
mal fetus undergoing invasive testing (chorionic villi sampling or amniocentesis), 
fetal karyotyping or CMA may be performed. CMA also detects variants of uncer-
tain clinical significance (VUSs) at a rate of approximately about 1.6%–4.2% 
(Wapner et al. 2012; Hillman et al. 2013; Westerfield et al. 2014). The possibility of 
finding CNVs of uncertain clinical significance, incomplete penetrance, or variable 
expressivity is significant, with associated phenotypic abnormalities ranging from 
normal to severely affected (Martin et  al. 2015). A recent study showed that the 
overall risk for a pregnant woman to have a clinically significant cytogenetic abnor-
mality is higher than 1 in 180 (Srebniak et al. 2018).

In the prenatal setting, interpretation is more challenging especially to predict the 
postnatal outcome in cases with incomplete penetrance and variable expressivity 
(Westerfield et al. 2014). Prenatal CMA detected low penetrance neurosusceptibility 
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loci and created dilemmas in genetic counseling (Brabbing-Goldstein et al. 2018). 
Moreover, genetic counseling can also be challenging as VUS can be reclassified as 
benign or pathogenic variants as more and more cases are published over time 
(Werner-Lin et al. 2016). In spite of CMA being superior to the recently described 
non-invasive prenatal testing techniques, CMA tests dropped considerably for 
amniocentesis and chorionic villi samples over the years (Chan et al. 2015; Chetty 
et al. 2013; Williams 3rd et al. 2015; Brynn and Wapner 2018).

The CMA can be performed on DNA from uncultured cells (chorionic villi, 
amniotic fluid, and fetal blood) which results in a faster turnaround time in report-
ing the results. Due to the better and higher resolution of CMA over the conven-
tional karyotyping, there is a greater likelihood of identifying VOUS, CNV 
containing genes with incomplete penetrance (variants in susceptibility loci, 
VISLs) (Oneda et al. 2014; Rosenfeld et al. 2013; Armengol et al. 2012; Cavalli 
et al. 2012), CNVs signifying a predisposition to late-onset diseases (Pichert et al. 
2011), and CNVs that are relevant for future pregnancies only, for example, 
X-linked CNVs in a female fetus (Oneda et al. 2014).

Pre and post-test genetic counseling should be considered for CMA testing and 
should convey the advantages and limitations of the array. Even though balanced 
rearrangements (translocations and inversions) will be missed by CMA and do not 
have any clinical significance for the patient, it is important for the future pregnan-
cies as the risk cannot be calculated if one of the parents is carrier of a balanced 
translocation. In such cases, karyotyping is necessary for identifying the balanced 
rearrangements. Genetic counselors should inform the patients of the potential find-
ing of a clinically relevant CNV as well as CNVs of uncertain clinical significance. 
They should also discuss the phenotypic heterogeneity, variable penetrance,  variable 
expressivity, potential identification of consanguinity, and non-paternity (Wapner 
et al. 2012; Hillman et al. 2013). Major professional societies like ACMG, ACOG, 
Canadian College of Medical Genetics, and Italian Society of Human Genetics do 
not encourage replacing prenatal karyotyping with CMA but recommend it as an 
adjunct test in specific cases only (ACOG Committee 2009; Duncan and Langolis 
2011; Novelli et al. 2012).

5.5  CMA in Cancer Diagnosis

Although morphology is still the gold standard for cancer diagnostics, cell surface 
markers, immunohistochemistry, cytogenetics through karyotyping, FISH assays, 
real-time PCR, and Sanger sequencing have paved ways to better understand cancer 
and aided in the classification of neoplasms (Gresham et  al. 2008; Paxton et  al. 
2015). However, there are some limitations, for example, morphology does not give 
information about the important factors like the genes involved and the clonal evo-
lution. Cytogenetics has the advantage of not only detecting large chromosomal 
gains and losses, balanced and unbalanced rearrangements, but can also detect 
related and unrelated clones in a sample. However, cytogenetic analysis can only be 
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performed on dividing cells and mature cells like plasma cells do not divide unless 
stimulated by specific mitogens. For some cases, karyotyping may not be possible 
due to the absence of dividing cells and in such cases CMA is extremely useful in 
detecting abnormalities. Moreover, cytogenetic analysis is a time-consuming pro-
cess and the analysis depends on many factors like the skill of the technologist, 
quality of the metaphase cells, complexity of abnormalities, etc. Application of 
CMA in clinical oncology has circumvented most of these problems. However, 
high- resolution CMA on neoplastic samples is challenging because of the multiple 
abnormalities seen at the gene and chromosomal level.

Microarray testing was initially used for hematological malignancies (Golub et al. 
1999; Alizadeh et al. 2000; Ebert and Golub 2004; Bullinger et al. 2004). Using class 
discovery studies Golub et al. (1999) were able to reveal diagnostic classes of acute 
myeloid leukemia and acute lymphoid leukemia especially when morphology sug-
gested differential diagnosis. Alizadeh et al. (2000) in their study of diffuse large 
B-cell lymphoma (DLBCL) were able to distinguish two types of DLBCL which 
were previously unknown. They identified genes involved in B-cell activation and in 
germinal center formation and called these groups as “germinal center B-like 
DLBCL” and “activated B-like DLBCL.” The two entities are biologically different 
but had significant prognostic values. The overall survival at 5 years for germinal 
center B-like DLBCL after anthracycline-based chemotherapy was 78%, whereas 
the overall survival was 16% for activated B-like DLBCL. Rapid integration and the 
clinical utility of microarray in the diagnostic laboratories lead to guidelines for the 
application of the microarray technique, quality control, and interpretation and 
reporting of array results (Cooley et al. 2013; Schoumans et al. 2016).

CMA has enhanced our understanding of diverse genetic abnormalities includ-
ing gain and losses of genetic material, loss of heterozygosity (LOH), and other 
changes in hematological malignancies and has immensely helped in the diagnosis, 
prognosis, and management of cancer patients (Armengol et al. 2010; Gunnarsson 
et al. 2008; Okamoto et al. 2010; Slovak et al. 2011; Jung et al. 2017; Swerdlow 
et al. 2017; Taylor et al. 2017). A recent review of microarray studies on hemato-
logical malignancies emphasized the benefits of using microarray in myelodysplas-
tic syndrome (MDS), B-lymphoblastic leukemia/lymphoma (B-cell ALL), chronic 
lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), and Burkitt-like 
lymphoma with 11q aberration (Peterson et  al. 2018). Studies on MDS patients 
showed that CMA not only confirmed or clarified chromosomal abnormalities seen 
by cytogenetics and FISH but also detected cryptic aberrations including deletions 
and copy neutral LOH (Kolquist et al. 2011; Stevens-Kroef et al. 2017). However, 
balanced rearrangements and low-level mosaicism were not identified by the micro-
arrays. Studies on normal cases with MDS and cases with no analyzable karyotypes 
also showed recurrent CNVs (Thiel et al. 2011; Arenillas et al. 2013).

Microarray using SNP probes on B-ALL samples helped in distinguishing the 
pseudo-hyperdiploidy (due to doubling of near-haploid or low hypodiploid clones) 
from hyperdiploidy as the prognosis of these two abnormalities differs significantly 
(Nachman et al. 2007). Some of the other abnormalities which could be identified 
by CMA are intrachromosomal amplification of chromosome 21 (iAMP21), ETV6 
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and RB1 deletions, and PAR1 deletions resulting in P2RY8-CRLF2 fusions (Baughn 
et al. 2015). CMA can also differentiate iAMP21 from gains of chromosome 21. In 
summary, depending on the type of abnormalities seen in different hematological 
malignancies, microarray should be applied as a complementary technology to con-
ventional cytogenetics, FISH, or RT-PCR. However, for deletions, gains, and ampli-
fication and ploidy levels with clinical significance, CMA is more suitable than 
conventional cytogenetics and FISH. There is substantial evidence that complex or 
increased CNVs and/or CN-LOH predict shortened overall survival in CLL/SLL 
(Ouillette et al. 2011). Laurie et al. (2014) compared the SNP array results of CLL 
patients and found that late-stage CLL has recurrent acquired abnormalities that do 
not occur in precursor conditions or in the general population. SNP-based arrays on 
plasma cell neoplasm (multiple myeloma) identified not only the abnormalities 
observed by FISH but all also identified prognostic relevant CNV-A to V (Stevens-
Kroef et al. 2016, 2017; Agnelli et al. 2009). Additional prognostic relevant abnor-
malities include loss of 1p, 13q, and 17p. CMA in plasma cell neoplasm has helped 
in differentiating a near-tetraploid clone from a hyperdiploid clone (Stevens-Kroef 
et al. 2012). Significance of this finding is that a near- tetraploid clone has interme-
diate prognosis, whereas a hyperdiploid clone has a very favorable prognosis. 
Microarray testing should be used as a complementary test in hematological malig-
nancies to detect copy number alterations, and in situations where normal and com-
plex karyotypes reported, culture failure, and no analyzable metaphase cells are 
encountered and also to differentiate pseudodiploidy from heperdiploidy, detection 
of iAMP21, submicroscopic deletions, and amplifications of genes (Simons et al. 
2012; Peterson et al. 2018).

As in hematological malignancies, microarray has also been used for detecting 
CNVs in solid tumors. However, genome-wide analysis of solid tumors is techni-
cally challenging due to various reasons. Even though DNA can be extracted from 
fresh tissue, typically, in many instances only available source of DNA is from for-
malin-fixed paraffin-embedded (FFPE) samples. FFPE samples represent about 
80–90% of all archived solid tumors (Blow 2007). Different fixation timings, dete-
rioration of DNA, and small amount of DNA can lead to assay failure and subse-
quent misinterpretation of results (Lewis et  al. 2001). Another major obstacle in 
obtaining homogenous tumor DNA for any study is contamination of normal DNA 
that can hinder in getting the accurate LOH and copy number variant calls. A num-
ber of microarray platforms have been developed to evaluate cancer at the genomic 
level. One such array is Oncoscan array (Affymetrix, USA), used for FFPE samples. 
The assay is optimized for whole genome-wide copy number (CN), LOH, and 
somatic mutation (SM) from highly degraded FFPE samples. The assay utilizes the 
molecular inversion probe (MIP) technology (Coughlin et al. 2012). The assay cov-
ers about 900 cancer genes of which 74 clinically actionable SM can be detected. 
The assay requires less than <80 ng of DNA. The ability of genetic profiling of solid 
tumors using FFFP samples provides valuable information for diagnosis and predic-
tion of treatment outcomes. Microarray studies on various tumor types have been 
reported in the literature, and this review does not represent all the studies in solid 
neoplasm.
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Using high-resolution oligonucleotide array, Hawthorn and Cowell (2011) in a 
series Wilms tumor samples showed LOH events in about 45% of tumors. In their 
analysis of CNVs by tumor stage showed relatively stable karyotypes in stage 1 
tumors and more complex array profiles in tumors for stages 3–5. SNP microarray 
provides a valuable insight on genetic aberrations in brain tumors and assists in strati-
fication of patients for prognosis and guiding specific treatment choices. The embryo-
nal tumors, in particular medulloblastoma (MB) and primitive neuroectodermal 
tumors (PNET), showed loss of 17p in more than 40% of cases of MB due to a gain 
of 17q (seen as isochromosome of 17q) (Inda et  al. 2005; Kagawa et  al. 2006). 
Combined analysis of loss of heterozygosity and copy number revealed no copy num-
ber alteration indicating the presence of copy number neutral LOH (cnLOH) in about 
half of the cases in glioblastoma multiforme (GBM) (Kuga et al. 2008). A recent study 
on two cases of clear cell papillary renal carcinoma identified neutral LOH of 10q11.22 
(Alexiev and Zou 2014). Copy neutral LOH is the occurrence of LOH in the absence 
of allelic loss (copy number ≥ 2) and has been associated with the duplication of 
oncogenic mutations with concomitant loss of the normal allele. Increased copy num-
ber events were observed in ductal carcinoma (Gorringe et al. 2015). They also showed 
increased frequency of ERBB2 gene amplification, 20q gain, and 15q loss in recur-
rence ductal carcinoma in situ (DCIS), suggesting copy number changes to provide 
prognostic information for DCIS recurrence.

The first generation of DNA-microarray studies in human cancer focused on 
detecting differences in gene-expression profiles between tumors of different types 
and grades. Even though CMA is significantly superior to conventional cytogenetics 
and FISH in identifying cryptic imbalances, CNVs, and CN-LOH, CMA cannot 
detect balanced rearrangements, or detect evolving and existing clones below 
20–30% of cells. CMA cannot be used to detect minimal residual disease. In MDS 
and acute leukemia, balanced translocations and inversions are quite common and 
certain balanced rearrangements are negative prognostic indicators, for example, 
inv(3)/t(3;3), t(9;22), t(6;9), and 11q23 translocations. Whole genome analysis 
using microarray may identify unrecognized clinically relevant molecular subsets 
that can help in identifying specific markers for personalized therapy. It is important 
to understand that the differential expression of genes does not indicate causality 
but microarray provides an important first step in target identification which can be 
followed by functional studies. The ability to detect and accurately define regions of 
variation across the genome will continue to be an important aspect of precision 
medicine efforts.

5.6  Conclusion

The detection of CNVs in a broad spectrum of disorders in prenatal and neonatal 
cases helps in early diagnosis, timely interventions, and targeted clinical manage-
ment. Microarray studies have improved the diagnosis of cancer and prediction of 
clinical outcome, in turn have guided and optimized the treatment options in a 
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number of hematological and solid malignancies. Although next-generation 
sequencing (NGS) technology has helped in detecting somatic variants including 
SNPs and indels, there are limitations to identify CNV information when compared 
to microarray. In a review of literature comparing the utility of a variety of tech-
niques in MDS, Song et al. (2017) concluded that no single technology provides all 
necessary information for clinicians to plan the treatment protocols and that a com-
bination of techniques is required. In future, combination of routine cytogenetics, 
FISH, SNP and CGH microarray and other high-throughput technologies (NGS, 
whole exome expression profiling) with powerful computational biology tools will 
strengthen the diagnostic specificity and sensitivity of the screening methods and 
in turn will result in better prognosis and treatment options of human diseases at 
the individual level (precision medicine).

Databases for References
Database of genotype and phenotype at NCBI (dbGaP): https://www.ncbi.nlm.nih.

gov/gap
International standard Cytogenomic array (ISCA) https://www.iscaconsortium.org/
Cancer Genomics Consortium (formerly called Cancer Cytogenomics Microarray 

Consortium): https://www.cancergenomics.org/
UCSC genome browser: https://genome.ucsc.edu/
ENSEMBL: https://asia.ensembl.org/index.html
Database of genomic variants (DGV): http://dgv.tcag.ca/dgv/app/links
DECIPHER (Database of Chromosomal Imbalance and Phenotype in Humans 

using Ensembl Resources): https://decipher.sanger.ac.uk/
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6.1  Introduction

An approximate number of 22,000 genes of the human genome encode all the func-
tional proteins forming the protein-coding blueprint of the human proteome 
(International Human Genome Sequencing Consortium 2004). Any molecular 
defect, be it distinct or multiple abnormalities spanning a single or multiple genes in 
the genome, can become the basis of a genetic disease in humans.

A disease condition caused by a mutation in one of the identified genes is known 
as a monogenic or single gene disorder. After the completion of the human genome 
sequencing, researchers began to shift their efforts from monogenic to polygenic 
disorders, which are caused by mutations in multiple genes (Antonarakis and 
Beckmann 2006). There are as many as 1621 monogenic diseases for which identi-
fied genes are very uncommon. Consequently, researchers face complications in 
recognizing relations between mutation and the genetic syndrome and also to col-
lect adequate amounts of genetic and clinical material for the evaluation of unaf-
fected family participants. Moreover, biotechnology corporations, funding agencies, 
and pharmaceutical industries are often not interested in investing financial resources 
in researching rare genetic conditions (Stenson et al. 2003).

The determination of the human genome sequence has enabled scientists to gen-
erate sequence maps of all human chromosomes. The precise location of every gene 
is already mapped, and the polymorphic regions of the genome are identified. Out 
of these genomic variations, single-nucleotide polymorphisms (SNPs), which are 
single base pair polymorphic regions, were of special interest to the scientists and 
clinicians (Schmutz et al. 2004). On average, SNPs occur 1 per every 1000 base 
pairs in the genome (Sachidanandam et al. 2001). HapMap Project documents all 
the discovered SNPs along the length of the chromosome. SNPs can be used as 
biomarkers to map disease-associated genes (Consortium 2003). This information 
has been freely available to scientists worldwide that further developed the new 
fields of biology named bioinformatics and computational biology.

Studying rare disorders is always challenging because of the low occurrence and 
the inadequate penetrance of concerned alleles (Cirulli and Goldstein 2010). The 
whole-genome sequence (WGS) or whole-exome sequence (WES) of rare disease 
patients often generates a huge list of variants, running thousands to hundreds of 
thousands in number (Dewey et al. 2014). Filtering the real disease causative vari-
ants from the huge crowd of neutral variants helps to explore treatment possibilities 
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and for personalized medicine. Effective filtration of neutral variants is key to sig-
nificantly reduce the technical labor, economic cost, and time factors required for 
studying every single mutation generated by sequencing methods.

Bioinformatics scrutinizes genomic information to forecast gene-gene, protein- 
protein, and gene-protein interactions and functions. Additionally, the correlation of 
the sequence of a gene of unidentified function to the rest of the genome helps find 
similar genes with known functions. Based on the relationship between genes, sci-
entists can often predict the function of the hypothetical protein encoded by these 
genes within a cell.

Advances in genetic techniques in the past decade, such as high-throughput tech-
nologies, has been widely applied throughout biological and biomedical fields of 
research. Moreover, WES is the most progressive genomic technique for sequenc-
ing all of the protein-coding genes in a genome. The human has almost 180,000 
exons, creating about 1% of the human genome or nearly 30 million base pairs. The 
main approach is to identify genetic variants that alter protein sequences. Since 
these variants are most studied due to their protein-coding property, it is important 
to know pathogenicity of all those variants before it is studied on population (Yang 
et al. 2013).

Over the last decade, many tools and software are developed introduced to pre-
dict the functional and structural prioritizations of the variants. This is also known 
as computational analysis of genetic variants. However, the availability of multiple 
computational methods which operates on diverse principles to classify deleterious 
variants has further complicated the users to learn the input and output formats and 
interpretation of results for every computational tool. Moreover, analyzing variants 
on individual computational tools and preparing the prediction results in data sheets 
are very laborious as well as time-consuming. In this regard, the Variant Effect 
Predictor computational tool hosted by Ensembl acts as a powerful integrative plat-
form which can be easily used by end users for entering the data and interpreting the 
prediction outcomes easily.

6.2  Ensemble Variant Effect Predictor (VEP)

The Ensembl Variant Effect Predictor (VEP) is a website which hosts a group of 
computational webservers (Table  6.1) used to study, annotate, and prioritize 
genomic variations in coding and noncoding regions. VEP is open-source and free 
and supports full reproducibility of results. It can very well accelerate the interpreta-
tion of the variants in a wide range of research projects (McLaren et al. 2016).

Online VEP offers access to a broad collection of tools for genomic annotation. 
The flexible interface could be set as per the demands of the study by configuring 
simple preferences. This helps to accommodate the diverse requirements of a study. 
The effect of the variations like SNPs or deletions or insertions on the genes or gene 
products or the regulatory sequences could be calculated using VEP.
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Table 6.1 List of tools available in variant effect predictor (VEP)

Tool name Pathogenic range Principle Web link

SIFT Scores range from 0 to 1.
The smaller the score, 
the more likely the SNP 
has damaging effect

A SIFT score predicts 
whether an amino acid 
substitution affects 
protein function

https://ionreporter.
thermofisher.com/
ionreporter/help/
GUID-2097F236-C8A2-
4E67-862D-
0FB5875979AC.html

Polyphen2 The score ranges from 0 
to 1.
Most damaging (largest) 
[0.52844,0.89865]), “P” 
(“possibly damaging”) 
“B” (“benign” HDIV 
score in [0,0.452] or 
rankscore in 
[0.02634,0.34268]) 
deleterious” if the HDIV 
score is larger than 0.5

It is a tool which 
predicts possible 
impact of an amino 
acid substitution on the 
structure and function 
of a human protein 
using straightforward 
physical and 
comparative 
considerations

http://genetics.bwh.
harvard.edu/pph2/

LRT: Ranges from 0 to 1.
The scores range from 
0.00162 to 0.84324

This LRT statistic 
approximately follows 
a chi-square 
distribution. To 
determine if the 
difference in likelihood 
scores between the two 
models is statistically 
significant, we next 
must consider the 
degrees of freedom. In 
the LRT, degrees of 
freedom is equal to the 
number of additional 
parameters in the more 
complex model

http://evomics.org/
resources/
likelihood-ratio-test/

MutationTaster_
score

Ranges from 0 to 1.
0.08979– 0.81033.

The Grantham matrix 
does not provide values 
for an amino acid 
insertion/deletion, no 
score is given in such 
cases. The score is only 
displayed for 
informational reasons 
and does not influence 
the MutationTaster 
prediction as generated 
by our Bayes classifier

http://www.mutationtaster.
org/info/documentation.
html
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(continued)

Table 6.1 (continued)

MutationAssessor_
pred:

H, N, L are 3.5, 1.935, 
and 0.8, respectively. 
The rankscore cutoffs 
between “H” and “M”, 
“M” and “L”, and “L” 
and “N” are 0.92922, 
0.51944, and 0.19719, 
respectively

FATHMM_pred: If a FATHMMori score 
is ≤−1.5
the corresponding 
nsSNV is predicted as 
“D(AMAGING)”

Predicting the 
functional 
consequences of both 
coding variants, i.e., 
non-synonymous 
single nucleotide 
variants (nsSNVs), and 
noncoding variants

http://fathmm.biocompute.
org.uk/

PROVEAN_pred If PROVEANori ≤ −2.5 
(rankscore ≥ 0.543), the 
corresponding nsSNV 
predicted as 
“D(amaging)”

Predicts whether an 
amino acid substitution 
or indel has an impact 
on the biological 
function of a protein

http://provean.jcvi.org/
index.php

VEST3_score VEST 
(Variant Effect 
Scoring Tool)

VEST 3.0 score. Score 
ranges from 0 to 1. The 
larger the score, the 
more likely the mutation 
may cause functional 
change

It predicts the 
functional significance 
of missense mutations 
based on the 
probability that they 
are pathogenic

https://karchinlab.org/
apps/appVest.html

MetaSVM_pred: The rankscore cutoff 
between “D” and “T” is 
0.82268

Achieved the highest 
discriminative power 
compared to all 18 
existing deleteriousness 
prediction scores, 
which demonstrated 
the value of combining 
information from 
multiple orthologous 
approaches

http://wglab.org/
members/15-member-
detail/36-coco-dong

MetaLR_pred The score cutoff between 
“D” and “T” is 0.5. The 
rankscore cutoff between
“D” and “T” is 0.81113

Reliability_index Ranges from 1 to 10

M-CAP_pred The score cutoff between 
“D” and “T” is 0.025

Aims to misclassify no 
more than 5% of 
pathogenic variants 
while aggressively 
reducing the list of 
variants  of  uncertain  
significance
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Table 6.1 (continued)

REVEL_score Scores range from 0 to 1 Predicts the 
pathogenicity of 
missense variants on 
the basis of individual 
tools

https://omictools.com/
revel-tool

MutPred_score Scores range from 0 to 1. 
The larger the score, the 
more likely the SNP has 
damaging effect

Predicts the 
pathogenicity of amino 
acid substitutions and 
their molecular 
mechanisms

http://mutpred.mutdb.org/

MutPred_
Top5features

MutPred_score >0.5 and 
p < 0.05 are referred to 
as actionable hypotheses
MutPred_score >0.75 
and p < 0.05 are referred 
to as confident 
hypotheses.
MutPred_score >0.75 
and p < 0.01 are referred 
to as very confident 
hypotheses

CADD_phred This is phred-like 
rankscore based on 
whole genome CADD 
raw scores.
The larger the score, the 
more likely the SNP has 
damaging effect

It is a method that 
integrates the 
information from many 
various functional 
annotations and 
condenses this 
information into a 
single score

http://epilepsygenetics.
net/2015/07/15/
here-is-why-cadd-has-
become-the-preferred-
variant-annotation-tool/

DANN_score Scores range from 0 to 1. 
A larger number 
indicates a higher 
probability to be 
damaging

Aims to recognize 
pathogenic variants by 
annotating genetic 
variants, and especially 
noncoding variants

https://omictools.com/
dann-tool

Fathmm 
MKL_coding_score

Scores range from 0 to 1. 
SNVs with scores >0.5
are predicted to be 
deleterious, and those 
<0.5 are predicted to be 
neutral or benign.
Scores close to 0 or 1 are 
with the highest 
confidence.

To predict the 
functional 
consequences of both 
coding and noncoding 
sequence variants

https://www.ncbi.nlm.nih.
gov/pubmed/25583119

Fathmm- MKL_
coding_pred

Fathmm- MKL_coding_
score is >0.5 (or 
rankscore >0.28317) the 
corresponding nsSNV is 
predicted as 
“D(AMAGING)”
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(continued)

Table 6.1 (continued)

Eigen-PC- raw_
rankscore

The rankscore is the 
ratio of the rank of the 
score over the total 
number of Eigen-PC- raw 
scores in dbNSFP

Scoring variants which 
does not make use of 
labeled training data. It 
is useful in prioritizing 
likely causal variants in 
a region of interest 
when it is combined 
with population-level 
genetic data in the 
framework of a 
hierarchical model

https://omictools.com/
eigen-tool

GenoCanyon_score_
rankscore

The rankscore is the 
ratio of the rank of the 
score over the total 
number of GenoCanyon_
score scores in dbNSFP

Predicts many of the 
known functional 
regions and its 
generalizable statistical 
framework

https://omictools.com/
search?q=GenoCanyon

integrated_
confidence_value

0 – highly significant 
scores (approx. 
p < 0.003); 1 – 
significant scores
(approx. p < 0.05); 
2 – informative scores 
(approx. p < 0.25); 
3 – other scores (approx. 
p > =0.25)

Integrates functional 
assays (such as 
ChIP-Seq) with 
selective pressure 
inferred using the 
INSIGHT method. The 
result is a score ρ in the 
range [0.0–1.0] that 
indicates the fraction of 
genomic positions 
evincing a particular 
pattern (or 
“fingerprint”) of 
functional assay results 
that are under selective 
pressure

http://compgen.cshl.edu/
fitCons/

GM12878_
confidence_value

0 – highly significant 
scores (approx. 
p < 0.003); 1 – 
significant scores
(approx. p < 0.05); 
2 – informative scores 
(approx. p < 0.25); 
3 – other scores (approx. 
p > =0.25)

H1- hESC_
confidence_value

0 – highly significant 
scores (approx. 
p < 0.003); 1 – 
significant scores
(approx. p < 0.05); 
2 – informative scores 
(approx. p < 0.25); 
3 – other scores (approx. 
p > =0.25)
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Table 6.1 (continued)

HUVEC_
confidence_value

0 – highly significant 
scores (approx. 
p < 0.003); 1 – 
significant scores
(approx. p < 0.05); 
2 – informative scores 
(approx. p < 0.25); 
3 – other scores (approx. 
p > =0.25).

GERP++_RS Scores range from −12.3 
to 6.17

Identifies constrained 
elements in multiple 
alignments by 
quantifying 
substitution deficits

http://mendel.stanford.
edu/SidowLab/downloads/
gerp/

phyloP100way_
vertebrate

Scores range from −20.0 
to 10.003 in dbNSFP

Measures evolutionary 
conservation at 
individual alignment 
sites

https://ionreporter.
thermofisher.com/
ionreporter/help/
GUID-03D1F68A-E646-
4B49-AD59-
AF2F51874BD2.html

phyloP20way_
mammalian

Scores range from 
−13.282 to 1.199 in 
dbNSFP

phastCons100way_
vertebrate

Scores range from 0 to 1 Conservation scoring 
and identification of 
conserved elements

http://compgen.cshl.edu/
phast/

SiPhy_29way_
logOdds

Scores range from 0 to 
37.9718 in dbNSFP

Identifies bases under 
selection from multiple 
alignment data via 
rigorous implemented 
statistical tests

https://omictools.com/
siphy-tool

It is considers three different aspects: (A) web interface, (B) stand-alone Perl 
script, and (C) REST API (Fig. 6.1). The VEP is coded in Perl programming lan-
guage and is available as an Ensembl API. To increase the speed of execution, the 
time-critical parts are coded in C and integrated into the API using the XS frame-
work. Chronological blocks of variants are stored in an input memory buffer. All the 
variants are transformed into an Ensembl Variation Feature objects that point to a 
genetic location and the alleles. Variants in different file formats like tab enclosed or 
collision formats are changed directly to objects. HGVS annotation is mapped to 
their genomic location by removing the applicable reference feature like the protein 
or transcripts or chromosomes using the Ensembl API.

Preprocessing of the VCF input is done to justify the treatment of unbalanced 
substitutions and indels due to the dissimilarities in how VCF and Ensembl charac-
terize them. The input buffer is divided among several sub-processes when using the 
VEP’s diverging functionality. After performing the calculations, the result of each 
sub-process is then formatted into a combined output according to the instruction 
given in the input.
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For recounting variant significance, the standardized sequence ontology (SO) 
terms are used. VEP results could be obtained in the VCF format. There is an ongo-
ing effort to achieve a comprehensive variant annotation data exchange format 
within the Global Alliance for Genomic Health (GA4GH). Moreover, the GA4GH 
has described standards for demonstration of associations between variants and 
phenotypes, diseases, and traits. The VEP will accommodate these provisions when 
the alliance advances them. Present annotation tools are blind to the effects of mul-
tiple allele mergers through the multiple variant loci. This restriction that these tools 
annotate each input variant individually prohibits taking into account the effect of 
having multiple variants disturbing the matching codon or a change in the reading 
frame being modified by a downstream variant. In the future, such limitations are 
expected to be overcome since VEP is actively developed and maintained. New 
features are consistently additional to both the plugin library and the core VEP code. 
These expansions are driven by the emerging new interpretations of the datasets 
available for H. sapiens.

The Ensembl’s VEP offers toolsets to methodically analyze, prioritize, and anno-
tate variants in both large sequencing projects and minor analyses. By automating 
the process of annotation in a standardized manner, VEP reduces the required time 
for physical review. This, in turn, supports the management of many of the collec-
tive challenges related to SNVs’ analysis, copy number variants, short insertions- 
deletions, and structural variants. The VEP annotates variants using various 
reference data, transcripts, citations, regulatory regions, clinical consequences, and 
estimates of the biophysical significance of variants. The characteristics of variant 
annotation gained depend on the choice of transcript set used. VEP offers multiple 
options to format result output and thereby decreases the number of variants requir-

Fig. 6.1 The VEP web page with three different aspects of using VEP
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ing manual review. This increases efficiency in processing high volume numbers of 
variant annotations and transcript isoforms.

6.3  Biological Databases and Computational Methods 
Comprised in VEP

6.3.1  UniProt: The Universal Protein Knowledgebase

The UniProt is a database of protein sequences and related complete annotation. 
The knowledgebase comprises in excess of 60 million sequences, of which above 
half a million sequences have been curated by specialists who judgmentally review 
experimental and expected data for each protein (Apweiler et al. 2004).

6.3.2  TrEMBL

UniProtKB/TrEMBL is an automated annotated protein sequence database. It trans-
lates all coding sequences present in the EMBL/GenBank/DDBJ nucleotide 
sequence databases. Additionally, protein sequences extracted from the literature 
are submitted to UniProtKB/Swiss-Prot. This database automatically classifies and 
annotates the protein sequences added to it (Bairoch and Apweiler 2000).

6.3.3  UniParc

The UniProt Archive (UniParc) is a wide-ranging and nonredundant databank that 
encompasses most of the freely obtainable protein sequences. Proteins may occur in 
altered source databanks and several replicas in the same databank. UniParc can 
escape such severance by storing each distinctive sequence and giving it a steady 
and unique identifier (UPI), creating it likely to find the same protein from a diverse 
source of databases (Sharma 2013).

6.3.4  CSN

Clinical sequencing nomenclature (CSN) is a nomenclature developed by research-
ers to standardize the naming convention for the variations which is in accordance 
with the ideologies of the Human Genome Variation Society (HGVS) guidelines 
(Münz et al. 2015).

Y. Khimsuriya et al.
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6.3.5  Pfam

The Pfam database is a big assortment of protein families, each signified by hidden 
Markov models (HMMs) and multiple sequence alignments (Finn et al. 2014).

6.3.6  PROSITE

PROSITE is a data storage of protein domains and families. It is mainly based on 
the scrutiny that, while there is enormous number of diverse proteins, most of them 
can be assembled, based on comparisons in their sequences, into a restricted num-
ber of families. Proteins or protein domains belonging to a specific family mostly 
share functional characteristics and are consequent from a common ancestor (Hulo 
et al. 2006).

6.3.7  InterPro

InterPro is a source that delivers a functional analysis of protein sequences by cat-
egorizing these sequences into families basing on the expected presence of domains 
and significant sites. To categorize proteins in this way, InterPro uses analytical 
models, known as signatures, provided by several different member databases that 
structure the InterPro consortium (Hunter et al. 2009).

6.3.8  Sift

Sorting Intolerant From Tolerant (SIFT) calculates the probable impact of the sub-
stitution of amino acid on the function of the protein based on a set of rules. SIFT 
analyzes the possible effect an amino acid substitution will have on protein function 
by calculating the sequence homology. These estimations are based on the  hypothesis 
that within a given protein sequence, the significant positions are evolutionarily 
(Sim et al. 2012).

6.3.9  PolyPhen-2

PolyPhen-2 calculates the probable impact of an amino acid change on the perfor-
mance of a human protein (Adzhubei et al. 2013). This tool predicts the position- 
specific independent count (PSIC) score for every variation and calculates the score 

6 Finding a Needle in a Haystack: Variant Effect Predictor (VEP) to Prioritize…



96

variance between variants. The higher the PSIC score variance, the higher the effi-
cient impacts of a particular amino acid replacement.

6.3.10  dbNSFP

dbNSFP is a tool developed for well-designed annotation and prediction of all pos-
sible non-synonymous single-nucleotide variants (nsSNVs) in the human genome 
(Liu et al. 2013). Its present edition is based on the Ensembl version 79/GENCODE 
release 22 and contains a total of 83, 422, 341 non-synonymous SNVs and splicing- 
site SNVs. It collects prediction scores from 20 prediction algorithms such as 
Polyphen2- HDIV, SIFT, MutationTaster2, Polyphen2-VAR (Schwarz et al. 2014), 
LRT, Mutation Assessor (Reva et al. 2011), MetaSVM (Glanzmann et al. 2016), 
FATHMM (Kim et al. 2017), MetaLR (Dong et al. 2015), VEST3 (Kircher et al. 
2014), CADD (Carter et al. 2013), PROVEAN (Choi et al. 2015), fitCons (Gulko 
et al. 2015), FATHMM-MKL coding, DANN (Quang et al. 2015), Eigen coding (Lu 
et al. 2015), Eigen-PC, GenoCanyon (Ionita-Laza et al. 2016), M-CAP (Jagadeesh 
et  al. 2016), MutPred (Ioannidis et  al. 2016), REVEL (Pejaver et  al. 2017). The 
dbNSFP also provides the detailed information about conservation scores (phast-
Consx2, PhyloPx2, SiPhyand GERP++) and other related evidence including allele 
frequencies perceived in the 1000 Genomes Project phase 3 data (Project T 1000 G 
et  al. 2015), UK10K connections data (https://www.uk10k.org/), gnomAD data, 
ExAC consortium data (Karczewski et al. 2017) and the NHLBI Exome Sequencing 
Project ESP6500 data, functional descriptions of genes, various gene IDs from dif-
ferent databases, gene expression and gene interaction information.

6.3.11  Condel

Condel is a scheme to evaluate the consequence of non-synonymous SNVs using a 
Consensus Deleteriousness score that chains various tools (Mutation Assessor, 
FATHMM) (González-Pérez and López-Bigas 2011).

6.3.12  LoFtool

This tool arranges the loss-of-function (LoF) mutations based on their genomic con-
text and their relevance to susceptibility to disease. The ordering is done based on 
the Exome Aggregation Consortium (ExAC) dataset for the candidate disease- 
causing gene (Fadista et al. 2017).

Y. Khimsuriya et al.
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6.3.13  ExAc

The Exome Aggregation Consortium (ExAC) is an alliance of researchers which 
attempts cumulatively harmonizing the exome sequencing data from diverse 
resources of large-scale sequencing projects. The intention is to prepare a summa-
rized data accessible to the broad scientific community. The dataset on this website 
contains 60,706 discrete individuals sequenced as part of several disease-specific 
and population genetic research studies (Karczewski et al. 2017).

6.3.14  MaxEntScan

MaxEntScan is based on the “maximum entropy principle” where the sequences of 
short motifs such as those involved in RNA splicing parallelly account for nonadja-
cent or non-neighboring as well as neighboring dependencies between sequences to 
build a model. This method simplifies the predictable probabilistic models of 
sequence motifs such as inhomogeneous Markov models and weight matrix models 
(Jian et al. 2014).

6.4  Variant Effect Predictor (VEP) Analysis by Web 
Interface

6.4.1  Description of Data Input Form

Once the user reaches the VEP web interface, an input form will be presented to 
enter data and alter various options and filters. Input form contains the following 
entries and selections:

 (i) Species of the data

 – Genomic data of 101 different species including human (Homo sapiens)

 (ii) Name of the job

 – Alphabetical and/or numerical letter (i.e., PAK3_rs121434612)

 (iii) Data uploading

 – Paste the data with any of the following formats (Ensembl default, VCF, 
variant identifiers, HGVS notations) (i.e., rs121434612)

 – Or upload file with any of the abovementioned formats
 – Or provide file URL of publically accessible address
 – Select transcript database (e.g., Ensemble, GENCODE, RefSeq NCBI)
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 (iv) Identifier and variants of frequency data

 – Gene symbol (as HGNC) of the gene to the output
 – Consensus CDS identifier for a core set of Mouse and Human proteins
 – Ensemble protein identifier
 – UniProt for translated protein products from SWISSPROT, TREMBL, and 

UniParc
 – HGVS for generate notation of coding sequence (HGVSc) and protein 

sequence (HGVSp)
 – CSN for generating clinical sequencing nomenclature

 (v) Frequency data for co-located variants

 – This helps report known variants from the Ensemble variation database that 
overlaps with the input

 – Allelic frequency data from major genotyping projects (i.e., 1000 Genomes 
global, 1000 Genomes continental, Exome Sequencing Project for African- 
American and European-American populations, Genome Aggregation 
Database)

 (vi) Extra options (pathogenicity predictions; regulatory region consequences; 
amino acid conservation).

 – Transcript biotype add equivalent to VEP script
 – Protein domains, to report protein domains from Pfam, PROSITE, and 

InterPro tools
 – Exon and intron numbers
 – Transcript support level
 – SIFT, based on the physical properties of amino acids, helps predict the 

possible substitutions of the amino acids which could affect the protein 
function

 – PolyPhen predicts possible impact of an amino acid substitution on the 
protein structure and function using physical comparative considerations

 – dbNSFP provides pathogenicity predictions for missense variants from 
various algorithms

 – ConDel (Consensus Deleteriousness) scores for a missense mutation based 
on pre-calculated SIFT and PolyPhen scores

 – LoFtool calculates, based on the ratio of loss-of-function to synonymous 
mutations in ExAC data, the rank of genic intolerance and following sus-
ceptibility to disease

 – Regulatory data, to get regulatory consequences of variants that overlap 
regulatory features and transcription factor binding motifs

 – dbscSNV, to retrieve data for splicing variants from a tabix-indexed dbsc-
SNV file

 – MaxEntScan, to predict sequence motifs and maximum entropy based 
splice sites consensus predictions

 – BLOSUM62, to report amino acid conservation score
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 – Ancestral allele, to retrieve the ancestral allele for variants inferred from 
the Ensembl Compara Enredo-Pecan-Ortheus (EPO) pipeline

 (vii) Other filtering options

 – Filter by frequency, to exclude common variants to remove input variants 
that overlap with known variants that have a minor allele frequency greater 
than 1% in the 1000 Genomes Phase 1 combined population

 – Use advance filtering to change the population, frequency threshold, and 
other parameters

 – Return results for variants in coding regions only, excluding intronic and 
intergenic regions

 – Restrict results by the severity of consequences that is determined subjec-
tively by Ensembl (Fig. 6.2)

6.4.2  Description of Results and Output

The VEP displays both summary and detailed preview of results on the results page.

6.4.2.1  Summary Details

This panel gives basic statistics of the result, including a brief overview of the VEP 
job (Fig. 6.3a).

Statistics listed include:

Fig. 6.2 New job entry in VEP web interface for PAK3 gene variant rs121434612
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 – Variants processed – any unprocessed variants are not included
 – Variants remaining after filtering
 – Novel/known variants – this shows the number and percentage of novel variants 

over the existing variants
 – Number of overlaps found for genes, transcripts, and regulatory regions

6.4.2.2  Information in Pie Charts’ Preview

Pie charts display the proportion of consequence types called across all variants 
transversely in the results. The color scheme of the graph matches the colors used to 
display variants in detail view (Fig. 6.3b).

The results’ page displays all of the columns by default. To hide columns, the 
“Show/hide columns” button, which is blue in color, could be clicked to select the 
user’s choice. The user-selected columns could be recalled when viewing other jobs.

6.4.2.3  Results Description in the Preview Table

The table of results displays one raw per transcript and variant. The default setting 
shows all of the columns, but as described previously, the user can hide the columns. 
Column headers could be clicked to order sorting as per the user’s need. The table 

Fig. 6.3 Description of obtained results after VEP’s web interface analysis for (a) PAK3 gene 
variant summary preview, (b) pie chart preview, (c) results in preview, (d) navigations of results’ 
pages, (e) downloading the results
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can be downloaded as a spreadsheet by clicking the top right corner spreadsheet 
icon (Fig. 6.3c).

Navigating Results

The result pages could be scrolled using the navigation panel. Five variants are dis-
played by default (Fig. 6.3d). It has to be noted that since there can be an overlap 
between variant and multiple transcripts, the table will often display more than five 
rows. The relevant link could be clicked to change the number of rows shown. As a 
caution, when a large input file is used, it is advised to filter the results before dis-
playing them. This will avoid the unresponsiveness of the browser when it tries to 
load all the results given in the table. The arrow icons could be used for navigating 
through the results.

Downloading the Results

The VEP allows selecting and downloading full or filtered results (Fig. 6.3e):

 – VCF: It is a portable format for variant data. This format stores the consequence 
data as a series of delimited strings

 – VEP: This is the default VEP output format which gives one row per variant and 
transcript overlap

 – TXT: This is a plain text format, which is the tab-delimited format. All the col-
umns are present in the output irrespective of the selection made by the user. This 
format is useful for import into a spreadsheet like Microsoft Excel

6.5  Conclusion

In the age of medical and clinical genomics, SNV prioritization has become more 
important. This task can be performed by many computational tools separately or 
collectively. The Variant Effect Predictor (VEP) can now facilitate the accurate 
assessment of SNVs for clinical diagnostic as well as the genetic disease discovery 
programs. However, researchers who use VEP should comprehend how to interpret 
the prediction outcomes and limitations of the computational tools. Moreover, the 
predictions should be interpreted with knowledge regarding SNVs characteristics 
and properties. The results obtained from the VEP assessment need to correlate with 
previously defined clinical characters by translational research studies. Additionally, 
it is also likely to benefit the research studies currently underway on assessing the 
consequences of genomic variants for various cancers and genetic diseases with 
new insights on the medical relevance of SNVs.
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7.1  Introduction

The ability to counter the progression of disease by targeting the key drivers of dis-
ease progression itself is a hallmark of precision medicine. In many ways, there is 
nothing especially novel about this approach. In therapeutic areas like infectious 
disease, the main identified driver of disease is the infectious agent itself (e.g. bac-
teria or virus), and the approach has always been to discover ways of reducing its 
presence down to zero. This is extremely precise and extremely effective. Antibiotics 
targeted against specific bacteria work to eradicate its presence, and therefore its 
negative effects in the host. And in the parlance of precision medicine development, 
the bacteria (or whichever pathogen) becomes the diagnostic biomarker itself. Such 
an approach in infectious disease has always been envied by drug developers in 
other therapeutic areas, as this approach is eminently simplistic, and the readouts 
are readily measurable. But disease pathology in most therapeutic areas is 
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notoriously complex, and disease classification had always been necessarily organ- 
centric, especially in the pre-molecular era. Therefore, in the case of lung cancer 
even up to the late 1970s, all patients were regarded as having just ‘one’ disease: 
lung cancer. The advent of advanced molecular tools and techniques from the 1970s 
onwards revolutionized what we could do to unpack disease pathophysiology and 
indeed provide significant insights into what constituted a heterogeneous mix of 
diseases, all previously united by their organ of origin.

Indeed, it was the advent of such advanced molecular techniques that provided the 
impetus for the precision medicine development arena we see today. We owe much of 
what we see in precision medicine today to the pioneers of these techniques and the 
visionaries who were able to extend their use to clinical utility and patient benefit. 
Herceptin (trastuzumab), arguably the most well-known of all precision medicine 
drugs had its origins in the wave of exciting new discoveries from molecular tech-
niques in the 1970s. The discovery and identification of the HER2 gene as a major 
driver in metastatic breast cancer led researchers to postulate if it might be possible to 
knock out this single gene in the disease state, thereby potentially stopping breast 
cancer in its tracks. It was a daring hypothesis as it implied that it was possible to apply 
monogenic principles of gene function in a complex multifactorial disease. And as 
researchers began accumulating corroborating data, it became more evident that this 
hypothesis might just be right. It would, however, not be for another 20 years before 
Herceptin was approved by the FDA in 1998 as a therapy specifically against HER2-
overexpressing breast cancer. This 1998 Herceptin FDA approval is a crystallizing 
moment in clinical drug development history. The year 1998 signals the true start of 
the clinical development timeline that specifically targeted or precision medicine is 
and can be a reality for tackling complex diseases such as cancer. Today, 20 years on 
from 1998, the precision medicine landscape has evolved and matured significantly. 
Precision medicine development is still largely powered by ever-improving molecular 
technologies and empowered by clinical visionaries and disease biology experts. We 
will always require these insights to have the upper hand in the battle against seriously 
debilitating disease. This review will look at the way in which our approach and strat-
egy in precision medicine clinical development has evolved over the last 20 years. 
Identifying a key disease- driving gene and then producing a precision medicine prod-
uct is one thing; how you improve on that product and manage the disease is another. 
This review will look at the example of the epidermal growth factor receptor (EGFR) 
gene as a major driver of non-small cell lung cancer (NSCLC) and its pivotal use as a 
target for next- generation precision medicine development in oncology. The strategies 
utilized in the generational development will also be examined.

7.2  The EGFR Inhibitor Approach in Non-Small Cell Lung 
Cancer Precision Medicine Development

The overexpression of the epidermal growth factor receptor or EGFR gene has been 
consistently implicated in the pathophysiology of different cancers for over 20 years 
(Salomon et al. 1995; Hirsch et al. 2009). The observation that the EGFR signalling 
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pathway can also activate the MAPK, PI3K and JAK/STAT pathways amongst 
many other pathways suggests that EGFR may play a crucial early role in tumori-
genesis (Grandis and Sok 2004; Lemmon and Schlessinger 2010). In NSCLC, 
EGFR overexpression in both premalignant and malignant tissues can be as high as 
40–80% (Salomon et al. 1995; Grandis and Sok 2004; Merrick et al. 2006), and it 
therefore made perfect sense to drug developers that an EGFR inhibitor would be 
the natural answer to counter any one of these EGFR overexpressing cancers. The 
first EGFR inhibitors to be developed and explored for NSCLC, the so-called first- 
generation EGFR-tyrosine kinase inhibitor (TKIs), were the small molecules gefi-
tinib and erlotinib and also the chimaeric monoclonal antibody cetuximab. The 
strategy used here in developing the first generation of NSCLC EGFR small- 
molecule TKIs was mainly medicinal chemistry in nature. Both gefitinib and erlo-
tinib are reversible competitive inhibitors for ATP for the tyrosine kinase domain of 
EGFR, this being one of four ways in which TKIs operate (Posner et al. 1994). The 
working hypothesis was that knocking out EGFR, either through a small molecule 
or through monoclonal antibody, would result in the blockade of its downstream 
pathway and therefore its oncogenic consequence. Presumably, the related MAPK, 
PI3K and JAK/STAT pathways would be knocked out as well. And as the drug 
developers were careful to ensure that they mitigated against the safety aspect of 
complete EGFR knockout, a reversible inhibitor would allow for EGFR to at least 
function in a normal capacity, a sort of EGFR reset capacity. In this early develop-
ment of EGFR-TKIs, it is almost hard to believe that the emphasis then was to 
diminish the overexpressing powers of EGFR rather than of the effects of any EGFR 
mutations that we now know. Hence, the early trials of EGFR-TKIs (such as gefi-
tinib and erlotinib) were in unselected NSCLC populations (Fukuoka et al. 2003; 
Kris et  al. 2003; Pérez-Soler et  al. 2004; Pérez-Soler 2004a, b). The gefitinib 
IRESSA Pan-Asia (IPASS) study provides an excellent snapshot of the prevailing 
scientific understanding at this time juncture. IPASS was a randomized trial com-
paring first-line gefitinib against the chemotherapy doublet carboplatin/paclitaxel in 
1217 NSCLC adenocarcinoma patients across multiple sites in Asia who were either 
non-smokers or previous light smokers. The median PFS (primary endpoint) was 
5.7 and 5.8 months for gefitinib and carboplatin/paclitaxel respectively in IPASS 
(Reck et al. 2010). The only conclusion here from such a large dataset was to assert 
a non-inferiority label of gefitinib over carboplatin/paclitaxel. And in terms of clini-
cal development, this result is not only disappointing, but a complete disaster. No 
commercial or scientific justification can or will be made by any company to con-
tinue developing a novel compound that is only just as good as the standard chemo-
therapy agents available. If these initial PFS results stood as a testament to the 
IPASS study, then the pharmaceutical industry EGFR overexpression hypothesis 
and the EGFR-TKI therapeutic option would be in serious jeopardy. The IPASS 
study needed more than just the PFS non-inferiority label to progress.

In these early studies, it was either a stroke of genius planning or ingenious luck 
that additional patient samples for exploratory sub-group analyses were taken. 
Clinical investigators needed to confirm the hypotheses of EGFR overexpression 
being a dominant driver for NSCLC and therefore the justification for using the 
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EGFR inhibitor route, but here was an opportunity to explore if other hitherto 
unknown factors might contribute to patient responses. As it turned out, these 
exploratory analyses revealed a crucial reason for patient responses. NSCLC 
patients with somatic EGFR mutations specifically within exons 18–21 seemed to 
respond better to the EGFR-TKIs than EGFR wild-type (WT) patients. In fact, there 
was a race at this point in time to be the first to report this finding. In the event, two 
groups in Boston and a third in New York (Lynch et al. 2004; Paez et al. 2004; Pao 
et al. 2004) reported in 2004 that mutations of the EGFR gene present in the tumours 
of NSCLC patients predispose them to better responses. This was the first hint that 
EGFR-TKIs for NSCLC should be targeting patients with EGFR tumour mutations 
rather than EGFR overexpressers per se. The mutations within the golden mile of 
exons 18–21 were therefore labelled as ‘activating mutations’, to distinguish them 
from other EGFR mutations which made little difference to EGFR-TKI efficacies. 
These EGFR-activating mutations and the direct link to clinical responses may also 
explain why selecting NSCLC patients based on EGFR overexpression techniques 
like immunohistochemistry or fluorescence in situ hybridization copy number did 
not generate the expected clinical response rates, even if it made biological sense at 
the time, and the large 40–80% EGFR overexpressing patient population (Salomon 
et al. 1995; Grandis and Sok 2004; Merrick et al. 2006) made this a very attractive 
patient stratification strategy. The IPASS clinical study also made a later reference 
that within the 1217 adenocarcinoma patient cohort, a sub-group analysis of patients 
with activating mutations showed superiority of gefitinib over carboplatin/paclitaxel 
(Reck et al. 2010). The median PFS in this IPASS sub-group was 9.5 and 6.3 months 
for gefitinib and carboplatin/paclitaxel respectively, making an emphatic rewording 
of the clinical study conclusion from non-inferiority to superiority for gefitinib (Mok 
et al. 2009).

Indeed, a later study comparing gefitinib against another chemotherapy agent 
validated the utility of selecting EGFR mutation-positive subjects. The INTEREST 
study reported improved PFS in EGFR-mutant NSCLC patients on gefitinib over 
docetaxel. The response rate was also improved by twofold, 42% versus 21% (Kim 
et al. 2008; Douillard et al. 2008).

An important lesson emerges from this first-generation clinical development of 
NSCLC EGFR inhibitors. Without the exploratory analyses of clinical samples 
being factored into the study protocols, it is arguable if the study investigators would 
have discovered the EGFR-activating mutations and its crucial link to improved 
clinical response. More importantly, the study investigators implemented the explor-
atory component of the study protocols expediently and explored other potential 
reasons other than to confirm the EGFR overexpression hypothesis. It is important 
to remember that no matter how plausible a current biological hypothesis is, and 
how unattractive implementing a programme of exploratory analysis might be in 
terms of additional time and budget resource, without actually physically undertak-
ing these ‘nice-to-have’ analyses and being open to other hypotheses, it will not be 
possible to gain additional biological or clinical insights. What this demonstrates is 
that it is very desirable to have a parallel track of exploratory analyses running 
alongside the ‘essential’ clinical study. And in the first-generation EGFR-TKI 
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development, it was the ‘nice-to-have’ exploratory analyses that effectively saved 
the ‘essential’ EGFR clinical programme as it provided the crucial evidence that not 
only was the NSCLC EGFR-TKI angle driven by mutations and not overexpression, 
but it was specific mutations within a certain region.

Despite this tranche of EGFR mutation evidence reaching the attention of clini-
cal developers, it was clear that some developers and companies had already 
invested so heavily on the overexpression strategy that it was difficult to be imme-
diately swayed by the mutation evidence. The EGFR overexpression population 
was so much bigger than the EGFR mutation population (80% versus 10–30%) that 
in commercial terms, this reduction in potential market share and sales would 
appear catastrophic. This genuine struggle to balance the original aspirations of the 
drug target profile and its commercial objectives is reflected in the final report of the 
Tarceva Lung Cancer Survival Treatment (TRUST) Phase IV study (Reck et  al. 
2010). Involving over 6500 patients, Reck et  al. (2010) reported that ‘Although 
patients whose tumors have these mutations are likely to obtain a greater magnitude 
of benefit from EGFR-TKIs such as erlotinib, it is important to note that the absence 
of these mutations does not necessarily result in a lack of benefit with erlotinib 
therapy’. This clear pushback to the greater efficacy of EGFR-TKIs in mutation- 
positive patients in favour of an all-comers EGFR population is further evidenced 
by the use of the Disease Control Rate (DCR) measurement, defined as the sum of 
complete response, partial response and stable disease (CR + PR + SD). The DCR 
in the TRUST study was 69% (3705/6580), and the study authors conclude there-
fore that there was a favourable survival and safety profile of erlotinib in a global 
patient population and across a broad range of patient sub-groups. A second 
extremely important lesson emerges from this study report. It is important for clini-
cal scientists and drug developers to be driven by actual scientific and clinical data 
and less on aspirations, especially from the commercial perspective. Whilst it is true 
that drug development has a very clear commercial angle, this must not take prece-
dence over any actual clinical evidence or the emerging clinical picture. In fact, the 
use of the Disease Control Rate has been very contentious, and one report has even 
described the use of DCR as being ‘disingenuous’ without any meaningful refer-
ence to clinical endpoints (Sznol 2010). In this respect, a lot of time and effort was 
actually wasted in trying to make the case for an EGFR all-comers population rather 
than a mutation-positive EGFR population for EGFR-TKIs. This episode serves as 
a useful lesson and warning that clinical scientists and developers at the forefront of 
clinical trials who see the clinical data and analyse them must themselves be confi-
dent and strong enough to provide the evidence and make the right recommenda-
tions and decisions. Clinical scientists and drug developers clearly owe a duty of 
service to their parent pharmaceutical company, but they must hold fast to their first 
and foremost duty of care to patients. As it turned out, the case for the EGFR muta-
tion population being more efficacious to EGFR-TKIs was convincingly made with 
the IPASS study, initiated firstly in 2006 and finally reported in 2011 (Fukuoka 
et al. 2011).
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7.3  Development of Second-Generation EGFR-TKIs 
for NSCLC

Gefitinib and erlotinib were the first-generation EGFR-TKIs for NSCLC, and the 
experience with all targeted therapies is that they do work very well but within a 
short time, secondary resistance kicks in and there is generally relapse. From the 
IPASS study, the median duration of response to gefitinib was 9.6 months, with data 
based mainly on the Asian population where the incidence of EGFR mutations in 
NSCLC was particularly high (Mok et  al. 2017). For the IRESSA Follow-Up 
Measure (IFUM) study, a commitment to the European Medicines Agency to 
address efficacy in non-Asian patients, the median duration of response to gefitinib 
was even shorter at 6.0 months when ascertained by a BICR (blinded independent 
central review) (Kazandjian et al. 2016).

What this means is that there was a huge motivation to develop the second gen-
eration of EGFR TKIs for NSCLC that may overcome some or all of the reasons for 
the limited duration of response. A median duration of response of between 6 and 
9 months is not an exceptionally cost-effective value for an innovative high-cost 
precision medicine, and patients and payers would want to see greater 
improvements.

First-generation NSCLC EGFR-TKIs were all reversible inhibitors utilizing a 
core 4-anilinoquinazoline scaffold that reversibly inhibited both EGFR mutants and 
wild-type (WT) EGFR. In the thinking about developing second-generation inhibi-
tors, there was discussion about the option for irreversible inhibitors as opposed to 
reversible inhibitors. The rationale behind this thinking was that the safety concern 
by inhibiting EGFR in a reversible manner may have taken off some of the drug 
potency required for a longer duration of response. This therefore led to a strategic 
rethink and refocus on the structural attributes of the ideal second-generation 
EGFR-TKI for NSCLC. If in reconstructing a second-generation EGFR-TKI into 
an irreversible inhibitor, the drug developers can maintain a clear safety profile, then 
this would make a compelling case. Additionally, if the new irreversible construct 
can improve the efficacy profile, then this would make a far greater clinical and 
commercial case. The second-generation development was therefore clearly led 
from the chemistry angle and would now contain a Michael acceptor moiety for 
binding covalently to the thiol group of Cys797  in the ATP-binding domain of 
EGFR (Castellanos and Horn 2015). By this time, NSCLC disease biology under-
standing through use of next-generation sequencing techniques had uncovered a 
series of mutational hotspots on the EGFR gene. The mutational hotspot discovery 
was to have a huge bearing on subsequent thinking around tackling this disease 
through the EGFR TKI route. Interestingly, the medicinal chemists employed in 
developing the second-generation EGFR-TKIs continued to use the anilinoquinazo-
line core as in the first-generation construction, which targeted both mutant and WT 
EGFR. There is essentially a hotspot mutational region within EGFR exons 18–21 
that first-generation EGFR-TKIs like gefitinib and erlotinib were designed to hit. As 
more NSCLC patient DNA sequence information became available, it became clear 
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that patients who developed resistance to these first-generation EGFR-TKIs were 
harbouring specific mutations, especially within exons 19–21. The implication was 
that these are the mutations that are the root cause of the resistance.

In the second-generation construct, attention was therefore focussed on these 
mutations from exons 19–21 that apparently did not respond well to the first- 
generation inhibitors. Examples of second-generation NSCLC EGFR-TKIs are afa-
tinib, developed by Boehringer Ingelheim, and dacomitinib, developed by Pfizer. 
Boehringer Ingelheim conducted a very successful clinical development of afatinib, 
and it obtained its first FDA approval in July 2013. Boehringer Ingelheim also 
implemented the contemporaneous development of a companion diagnostic test 
together with the clinical development of afatinib, the drug-diagnostic co- 
development so favoured by the FDA.  In this respect, the diagnostic company 
Qiagen was engaged to develop a companion diagnostic test at the same time. 
Ultimately, this led to afatinib (marketed as Gilotrif) being FDA-approved along 
with the companion diagnostic, Qiagen’s Therascreen® EGFR RGQ PCR Kit. This 
was an exceedingly clever move as two products are now being marketed. Therein 
lies another important lesson for drug developers: be on the lookout for companion 
diagnostic opportunities. The Qiagen Therascreen® EGFR RGQ PCR Kit compan-
ion diagnostic test specifically targeted just two mutations on the EGFR gene, the 
exon 19 deletions and the exon 21 L858R substitution mutation, these being the 
only mutations that qualify the use of afatinib. There were other EGFR mutations 
already known which were not the ‘official diagnostic’ target for afatinib or indeed 
the Therascreen® EGFR RGQ PCR Kit.

Although second-generation EGFR inhibitors appear able to elicit genuine clini-
cal responses from these particular EGFR mutations that were not achievable by 
first-generation inhibitors, there was a price to pay. Toxicity issues are a known 
feature of EGFR inhibitors and the second-generation EGFR inhibitors have greater 
toxicity issues than first-generation inhibitors. A meta-analysis by Ding et al. (2017) 
of 16 different trials comparing first-and second-generation NSCLC EGFR-TKIs 
showed that, overall, the risk for rash was higher with afatinib (84.8%) than with 
erlotinib (62.0%) or gefitinib (62.0%), and the risk for diarrhoea was more than 
double with afatinib (91.7%) than with erlotinib (42.4%) or gefitinib (44.4%). It 
appears that the improved drug efficacy over the first-generation resistant mutations 
is limited by the pharmacokinetics of dosing itself—to achieve the additional clini-
cal responses over the first-generation resistant mutations, the second-generation 
EGFR-TKIs are prescribed at a stronger and more robust dose, thereby generating 
the unwanted consequence of greater skin and gastrointestinal toxicity issues. 
Although this is not ideal, second-generation NSCLC EGFR-TKIs have their place, 
and it certainly allows physicians another option for treating NSCLC patients. 
However, with anticipated greater skin and gastrointestinal toxicities, NSCLC 
patients have to be physically fitter to tolerate this treatment regime.

Whilst second-generation EGFR-TKIs were being developed, more understand-
ing of the biology of EGFR mutation-mediated NSCLC was being uncovered. It 
transpired that amongst the EGFR mutations that were targeted by the first- and 
second-generation TKIs, one particular mutation, T790M, was resistant to every 
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attempt to overcome its effects. This observation led to T790M being referred to as 
the ‘gatekeeper’ mutation as it was seen as the ultimate hurdle to clear. Furthermore, 
it was discovered that although the frequency of T790M amongst treatment-naïve 
patients was just under 5%, by the time these NSCLC patients had undergone treat-
ment with first- and second-generation EGFR-TKIs, the frequency of T790M had 
increased to 50% (Inukai et al. 2006; Kobayashi et al. 2005; Pao et al. 2005). It 
therefore became very clear that the lack of clinical durability of these first- or 
second- generation EGFR-TKIs was down to the ability of this single mutation to 
withstand the pharmacological effects of these TKIs. Two conclusions can be imme-
diately drawn from this observation.

 1. First- and second-generation TKIs are able to kill off all NSCLC cells with 
EGFR mutations except for the T790M mutation. The physical space created by 
the loss of non-T790M cells allows the resistant T790M cells to very quickly 
multiply and recolonize the available space. This creates a new and dangerously 
high concentration of T790M cells as a direct result of the initial treatment with 
EGFR-TKIs.

 2. The T790M mutation is pharmacologically completely resistant to the first- or 
second-generation EGFR-TKIs such as gefitinib or afatinib. To overcome the 
effects of this mutation, any third-generation TKI must be pharmacologically 
different from the earlier-generation TKIs to have any clinical effect.

7.4  Development of Third-Generation EGFR-TKIs 
for NSCLC

The first- and second-generation EGFR-TKIs for NSCLC perform well in 
treatment- naïve EGFR-mutant patients, but their clinical efficacy is completely 
curtailed when the T790M EGFR mutation becomes the dominant mutation form 
in the disease. It is important to stress that a continuing understanding how the 
disease evolves as a direct consequence of the previous treatment options is a key 
factor in developing the next-generation EGFR-TKIs, in this case, the third-gener-
ation TKIs (Pao and Chmielecki 2010). Current wisdom and understanding of dis-
ease progression inform us that when we attack a drug target that is pivotal to the 
disease, the disease will invariably counteract by switching to a disease pathway 
that is completely unaffected by the drug (the non-canonical pathway) or by switch-
ing to a specific mutation that is resistant to the drug. Either ways, drug developers 
know that this phenomenon of ‘acquired resistance’ to the drug is a very real phe-
nomenon. Inevitably, it often is not a question of if the disease is ever going to 
evolve to a resistant form but when this resistance will happen. Diseases such as 
cancers are especially efficient and adept at developing resistance mechanisms, and 
it is the prudent drug developer who looks out for a decrease in drug durability as a 
clue that the disease may have evolved some resistance to the current treatment 
options.
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The discovery therefore that NSCLC patients who relapse after treatment with 
first- or second-generation EGFR TKIs have a high percentage of their cancer cells 
manifesting the T790M mutation is important. T790M mutations are rarely found in 
treatment-naïve patients (Inukai et al. 2006), and their much higher frequencies in 
the same patient after treatment with first- and second-generation EGFR TKIs sug-
gest that the physical space vacated by cancer cells killed off by the first- and 
second- generation TKIs was now being clonally infiltrated by these resistant T790M 
cells. This is the most plausible explanation for why the T790M frequency is only 
<5% in treatment-naïve patients but rises to >50% in relapsing patients. This dis-
covery also suggested that these T790M cells are unlikely to be significantly affected 
by the pharmacology utilized in first- and second-generation EGFR-TKIs.

First- and second-generation EGFR-TKIs utilized the 4-anilinoquinazoline scaf-
fold as its core, inhibiting both EGFR mutants and WT EGFR, resulting not only in 
significant disease control but also with the predictable side effects of rash and diar-
rhoea (Dungo and Keating 2013). For the third-generation EGFR-TKIs, the medici-
nal chemists and pharmacologists departed from the anilinoquinazoline core 
scaffold and utilized an anilinopyrimidine core instead. This approach generated 
compounds that showed high potency and selectivity for EGFR L858R/T790M over 
WT EGFR, therefore serving as mutant-selective TKIs targeting EGFR mutants 
involved in NSCLC. For the first time, therefore, third-generation EGFR-TKIs for 
NSCLC may now be able to tone down the rash and diarrhoea side effects as a result 
of the greater mutant selectivity (Zhou et al. 2009; Walter et al. 2013; Gray and 
Haura 2014). EGFR drug developers were very keen to call this EGFR wild-type 
sparing, although of course the sparing was only relatively modest. Nevertheless, 
this was a very important developmental approach driven both by chemistry and by 
disease biology. Third-generation EGFR TKIs include osimertinib (AstraZeneca), 
rociletinib (Clovis Oncology) and WZ4002. WZ4002 was the very first third- 
generation EGFR-TKI to be made, and its story is fascinating (Zhou et al. 2009). 
The development of WZ4002 came out of Nathanael Gray’s laboratory at the Dana- 
Farber Cancer Institute and its discovery was highly praised in a Nature publication 
(Zhou et al. 2009). However, what follows next is less clear and probably an impor-
tant lesson for anyone wishing to develop drugs in a commercial context whilst 
retaining an academic standing and access to grants. In light of the discovery of 
WZ4002, a start-up company called Gatekeeper Pharmaceuticals was founded to 
help develop it further. Clearly, WZ4002 had been discovered within the laborato-
ries and therefore auspices, of Dana-Faber but what was not fully appreciated at that 
time was that the research work leading to the discovery of WZ4002 had been 
funded, in part or full, by Novartis. Novartis was notably informed of this 
 development and as a result of protracted legal proceedings about rights and intel-
lectual property relating to WZ4002, Gatekeeper Pharmaceuticals was unable to 
conduct any meaningful further scientific research. In terms of strategic develop-
ment, this is an important point. It is critical to understand and appreciate your drug 
development sponsors and financiers and to be crystal clear about who owns the 
intellectual rights to these developments. Drug development is, by its nature com-
plex, but it does not need to be unduly complicated. Gatekeeper Pharmaceuticals 
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lost at least 4  years in the legal proceedings, and other companies notably 
AstraZeneca and Clovis Oncology, then became the main players in developing the 
third-generation EGFR- TKIs. The revelation that this specific T790M mutation 
could be the most critical mutation by far for EGFR-mutant NSCLC drug develop-
ment immediately spawned a huge interest in clinically developing such third-gen-
eration EGFR-TKIs. Clearly, both clinical and commercial strategies have to be 
very quickly implemented by these companies to undertake the clinical develop-
ment, and the large number of companies that actually did undertake this third-
generation clinical development demonstrates that there are huge clinical and 
commercial reasons driving this. Third-generation EGFR-TKI developers include 
Hanmi Pharmaceuticals working in collaboration with Boehringer Ingelheim to 
develop olmutinib (BI 1482694/HM61713), Novartis developing nazartinib 
(EGF816) and ACEA Biosciences developing avitinib (AC0010).

7.5  The Efficacy of Third-Generation EGFR-TKIs

Currently, the only third-generation EGFR-TKI to be approved by the FDA is 
osimertinib, developed by AstraZeneca and marketed as Tagrisso. Third-generation 
EGFR-TKIs require to show improved efficacy in patients who have relapsed fol-
lowing prior treatment with first-or second-generation EGFR-TKIs. As such, this is 
a huge hurdle for both the drug developer and patient. It is important to remember 
that a patient’s physical fitness to tolerate new and increasingly toxic regimes 
decreases dramatically through every successive round or line of treatment. And 
where additional tumour biopsy specimens are required to confirm the nature of the 
evolved mutation status, this can be very challenging and limiting, not least for the 
now-desperately sick and relapsed NSCLC patient who undoubtedly would have 
had the biopsy procedure previously. This last point is an important strategic consid-
eration and was not lost on the EGFR third-generation drug developers. Both 
AstraZeneca working on osimertinib and Clovis Oncology working on rociletinib 
had to ensure that the relapsed patients did indeed have the T790M mutation. Instead 
of the usual lung tissue biopsy for which the relapsed patient would have already 
had a previous experience, detection of the T790M mutation was focussed on 
detecting it in circulating tumour DNA (ctDNA) in blood plasma wherever possible. 
Fortuitously, there was good concordance between the detection of the T790M muta-
tion in ctDNA and disease lung tissue itself, and this detection method for T790M 
was adopted especially for the AstraZeneca osimertinib AURA trials.

In the pivotal AURA3 trial, osimertinib had a median duration of progression- 
free survival of 10.1 months compared with 4.4 months on platinum therapy plus 
pemetrexed (Mok et al. 2017). On the basis of this improvement in PFS and indeed 
on the basis of the new liquid blood plasma biopsy, the FDA granted approval to 
osimertinib.
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7.6  Resistance to Third-Generation EGFR-TKIs 
and Development of Fourth-Generation EGFR-TKIs

As with the first- and second-generation EGFR-TKIs, the third-generation EGFR- 
TKI osimertinib inevitably fell prey to resistance. Now, this might seem surprising 
at first as the T790M mutation was seen as the ‘last hurdle’ of the mutations to 
overcome. And this is an important point to note. The nature of cancer is that it will 
evolve new mechanisms or activate ultra-rare mutations that may hitherto be unde-
tected and given the physical space freed up by killed cells, adopt a clonal cell 
expansion and grow into that space. This seems to be the most likely reason. DNA 
sequencing has revealed several new mutations within EGFR, these being C797S 
and L718Q. In response to this new tranche of resistance, clinical development is 
currently undertaken to develop the fourth-generation of EGFR-TKIs that have the 
ability to overcome the effects especially of C797S.  At the time of writing, the 
development of these fourth-generation EGFR-TKIs for NSCLC is still in its 
infancy, but, already, a compound named EA1045 has been described that appears 
able to elicit some positive response against C797S (Wang et al. 2016).

7.7  Conclusion

The identification of EGFR as a drug target for NSCLC provides us with one of the 
most compelling and fascinating lessons in clinical drug development. In the space 
of 10–15  years, we have progressed from first- to fourth-generation TKIs for 
NSCLC, all based on a single-target EGFR. It is important that we are able to fully 
exploit and develop to its fullest extent even a single validated drug target. At times, 
a good drug target is discovered, and once a drug has been developed and commer-
cialized, we move on to the next target. Although choosing another target in com-
bating the disease is another strategy that is perfectly reasonable, drug developers 
can be in danger of not extracting all the available clinical potential inherent in a 
single target. This review sets out some of the features and principles that should 
guide us as we enter into the generational progression of drugs. The key guiding 
principle is that disease biology is paramount. Cancer biology will always dictate 
how we develop our drugs with the available chemistry and pharmacology knowl-
edge we have. Additionally, opportunities to develop companion diagnostic tools 
based on disease biomarkers should always be explored. When we are able to intel-
ligently integrate the use of computational and bioinformatics tools and databases 
our understanding of cancer biology with available chemistry tools, we put our-
selves in a good position to develop the right drugs to tackle the disease in 
question.
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Abbreviations

APC Adenomatous polyposis coli
ATP Adenosine triphosphate
BLAST Basic local alignment search tool
CCAP Cancer Chromosome Aberration Project
CGAP Cancer Genome Anatomy Project
cGMP Current Good Manufacturing Practice
COMS Complementary metal oxide semiconductor
CT Computed tomography
DAVID Database for annotation, visualization and integrated discovery
DNA Deoxyribonucleic acid
dNTPs Deoxyribonucleotide triphosphates
DPSCs Dental pulp stem cells
EBI European Bioinformatics Institute
EMBL European molecular biology laboratory
ESCs Embryonic stem cells
G-CSF Granulocyte colony-stimulating factor
GEO Gene expression omnibus
GO Gene ontology
HCS High-content screening
HGBASE Human genic biallelic sequences
HGP Human Genome Project
HTS High-throughput screening
IKB Immunome knowledge base
iPSCs Induced pluripotent stem cells
KEGG Kyoto Encyclopedia of Genes and Genomes
miRNA MicroRNA
MRI Magnetic resonance imaging
MSCs Mesenchymal stem cells
MSD Macromolecular structure database
NCBI National Center for Biotechnology Information
NIH National Institutes of Health
NM Nanomaterial
OMIM Online Mendelian inheritance in man
ORF Finder Open reading frame finder
PCR Polymerase chain reaction
PDLSCs Periodontal ligament stem cells
RefSeq Reference sequence
RNA Ribonucleic acid
SAGE Serial analysis of gene expression
SCAP Stem cells from apical papilla
SGSCs Salivary gland stem cells
SMRT Single-molecule real time
SMS Single-molecule sequencing
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SNP Single-nucleotide polymorphisms
SOLiD Sequencing oligonucleotides by ligation and detection
UniProt Universal Protein resource
UniRef UniProt Reference
ZMW Zero-mode waveguides

8.1  Introduction

Oral and dental health is important, and its neglect predisposes to myriad diseases 
that can not only affect the structures within the oral cavity but also cause systemic 
illness. Diet, personal habits and tobacco smoking are some of the causes that can 
affect tooth, soft gingival tissues and underlying deep structures including the 
bones. Oral cavity consists of diverse bacterial community with nearly more than 
700 different strains identified by metagenomic studies (Jenkinson 2011), and gen-
erally, the oral microbiota helps to prevent colonization of the pathogenic strains 
(Marsh 1994). Improper hygiene and compromised health status can lead to exces-
sive multiplication of these bacteria, which then colonize on the teeth and produce 
a sticky colourless substance commonly known as ‘plaque’. Plaque reacts with sug-
ars in the food that we consume and forms acids which can destroy the outer hard 
covering of the tooth, namely, the ‘enamel’, and cause tooth decay (dental caries) 
(Loesche 1986). Apart from being associated with dental caries, the sticky biofilms 
(plaques) can also lead to infection and inflammation of the gingival tissues result-
ing in periodontitis and peri-implantitis. Persistence of infection can also be associ-
ated with developmental disorders of the tooth, its shape, number and alignment 
(Luder 2015).

The equilibrium that results following invasion of the cariogenic bacteria depends 
on many of the cellular and molecular events including the host immune response; 
cytokine/chemokine signalling; host–pathogen interactions leading to the release of 
toxic materials; damage of the soft and hard tissue; contribution by odotoblasts dur-
ing initial stages; and by the pulp fibroblasts and stem cells at later stages (Cooper 
et al. 2017). Although tissue regeneration and functional restoration is the final pro-
cess following infection/inflammation and tissue damage, vast insights of the 
offending pathogen and its pathological sequelae can be readily obtained using bio-
informatics. This capability will pave way for detection of the early biomarkers in 
disease, their management and prevention. In cases of larger structural defects 
where the inherent in vivo repair/regeneration fails, prosthetic materials are used to 
aid restoration of both structure and function. Bioinformatics can help identify the 
right type of biomaterial by providing the surface protein signature which indirectly 
will influence the cellular properties.

The aim of the present chapter is to highlight (i) the various types of dental stem 
cells and its role in regenerative medicine and (ii) the importance and necessity for 
integration of bioinformatics. A brief background information regarding the 
 development of tooth (odontogenesis), common diseases of tooth and adnexa, 
current management strategies and existing limitations are given in the following 
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section, so that a new reader is exposed to the basics of dentistry. This will help to 
understand comprehensively that both regenerative medicine and bio-informatics 
are essential and are poised to change the landscape in future dentistry.

8.2  Development, Structure and Function of Human Tooth

Tooth development is a complex process and is formed from the embryonic stem 
cells (ESCs) at appropriate stages of foetal development. The primary teeth develop-
ment occurs between the 6th and 8th week of prenatal development and the perma-
nent teeth around the 20th week. Embryologically, the tooth germ cells that eventually 
form the tooth are developed from two different tissue sources, namely, the ectoder-
mal epithelium of the first pharyngeal arch (Fig. 8.1a) and the ectomesenchyme of the 
neural crest (Fig. 8.1b). The enamel of the tooth crown is derived from the amelo-
blasts (ectoderm). The odontoblasts and cementoblasts derived from the ectomesen-
chyme form the pulp, dentin, cementum and the periodontal ligament.

The structure of the tooth can be divided into crown, neck and root, each of 
which contains several distinct parts (Fig. 8.2). The crown is the visible portion of 
the tooth and is made up of ‘enamel’ the outermost hard layer and the ‘dentin’, 
which is the mineralized layer beneath enamel extending from the crown to the root. 
The enamel provides the strength for chewing and dentin helps protect the teeth 
from heat and cold. The neck is the intermediate portion between the crown and the 
root and is formed of ‘gums’ the pink fleshy gingival tissue and the ‘pulp cavity’ 
containing within the ‘pulp’ blood vessels and nerves. The root extends from below 
the neck to the tooth sockets in the bone and is made up of ‘root canal’, the 
 passageway filled with pulp; ‘cementum’ is the bone-like material that covers the 
root and is connected to the periodontal ligament. The ‘periodontal ligament’ is 
made up of collagen and contains the blood vessels and nerves and the jaw bones 
containing tooth sockets which hold the teeth in place.

Fig. 8.1 (a) The Pharyngeal arches showing the mesenchymal tissue and the epithelium. The first 
Pharyngeal arch ectoderm invaginates to form oral cavity (pink shaded). (b) Neural crest cells and 
facial development
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8.3  Common Dental Diseases, Current Treatment 
and Limitations

The most common dental diseases are periodontal diseases and dental caries. Dental 
disease affects people of all age groups and all races. Patients with poor oral health 
are more likely to have respiratory and cardiovascular diseases, adverse pregnancy 
outcomes and diabetes mellitus. Dental diseases are complex diseases with multiple 
genetic and environmental risk factors. Predictive test for dental caries or for peri-
odontal disease does not currently exist. No gene to date has been identified that has 
as large an impact on periodontal disease as do environmental influences, such as 
smoking or diabetes. While genetic testing holds potential for clinical application in 
the future, clinical measurements remain the best approach to assessment of caries 
and periodontal disease at present.

8.3.1  Dental Caries

Dental caries refers to enamel, dentine or cementum destruction of bacterial acid 
produced in dental plaque leading to a cavity in the tooth crown or root (Selwitz 
et al. 2007). Usually, dental caries progresses as a chronic disease (Fig. 8.3).

Numerous efforts on gene mapping have been made so far to identify specific 
genetic loci contributing to caries susceptibility (Werneck et al. 2011). Saliva con-
tains components that can directly kill cariogenic bacteria. Saliva is also rich in 

Fig. 8.2 Structure of tooth
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calcium and phosphates which are actively involved in the enamel remineralization 
process. The physical flow of saliva helps to dislodge microbial pathogens from 
teeth and mucosal surfaces. Saliva can also cause microbes to clump together so that 
they can be swallowed before they become firmly attached. So salivary composition 
and flow are important factors in caries susceptibility (Stookey 2008). Malposition 
of the teeth, deep anatomy grooves and areas of retention due to the natural mor-
phology of the tooth structure can cause difficulties in tooth brushing and fluoride 
penetration and, thus, be considered as caries risk factors (Guzmán-Armstrong 
2005). Dietary and taste preferences can influence the amount and type of plaque 
formation and debris and the presence of relative numbers of cariogenic microor-
ganisms on tooth surfaces. The interactions of the cariogenic potential of foods 
(e.g., sucrose), the frequency of eating and the physical state (or type) of the diet all 
can affect individually or jointly the carious process (Wendell et al. 2010).

Future management of dental caries requires early detection and risk assessment. 
The effects of prevention on caries prevalence and the advantages of improved den-
tal materials have shifted the focus in caries management from restoring tooth struc-
ture to development and use of dental materials to prevent disease, remineralization 
procedures, minimally invasive treatments and materials with which early lesions 
can be impregnated to prevent further progression.

Fig. 8.3 Dental caries progression to pulp and periapical tissues
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8.3.2  Periodontal Disease

Periodontal disease typically affects structures which support the teeth. It ranges 
from a mild gingivitis to a more severe pattern of bone loss. Periodontitis is a chronic 
multifactorial inflammatory disease, and both environmental and genetic factors play 
a major role in the progression of the disease with consequent tissue destruction 
around the dental roots and alveolar bone (Fig. 8.4). The risk of progression of peri-
odontitis is directly associated with the biofilm found in the gingival sulcus, in which 
both amount and presence of specific species of bacteria represent risk factors. 
Recently, research has been focussed on the identification of molecular markers such 
as cytokines, chemokines, membrane surface receptors and antigen recognition 
proteins capable of determining the risk of disease development (Carinci et al. 2015).

The backbone of periodontal treatment consists of mechanical removal of bacte-
rial deposits and calculus from the subgingival environment either by hand instru-
ments or by ultrasonic devices, performed either surgically or non-surgically, along 
with a strict regimen of plaque control. In the future, the emerging field of genomics 
will be identifying individual risk factors, and controlling them will become central 
to periodontal practice.

8.3.3  Oral Cancer

Oral cancer is the sixth most common malignancy in the world. More than 90% of 
oral cancers (occurring in the mouth, lip and tongue) are oral squamous cell carci-
noma. The incidence rate of oral cancer varies widely throughout the world, with an 
evident prevalence in South Asian countries. This high incidence occurs in 

Fig. 8.4 Periodontal disease associated with bone loss. GCF Gingival crevicular fluid
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correlation with oral cancer-associated behaviours such as alcohol and tobacco use 
(Fig. 8.5). These behaviours lead to genetic variations in tumour suppressor genes 
(APC, p53), proto-oncogenes (Myc), oncogene (Ras) and genes controlling normal 
cellular processes (EIF3E, GSTM1). Processes such as segregation of chromo-
somes, genomic copy number, loss of heterozygosity, telomere stabilities, regula-
tions of cell cycle checkpoints, DNA damage repairs and defects in notch signalling 
pathways are involved in causing oral cancer (Ali et al. 2017).

The prime objective of oral cancer management is to prevent mortality and to 
improve the quality of life of the patient. The choice of treatment depends on the site 
and size of the primary lesion, cell type and degree of differentiation, presence or 
absence of lymph node metastases and assessment of potential complications of 
each therapy. Surgery is most commonly accepted in the treatment of oral cancer, 
followed by radiotherapy. Chemotherapy is an adjunct to the principal curative 
modalities of surgery and radiation. Understanding the cancer genetics may also 
permit the development of new cancer therapies.

Given the limitations as with some of the existing management of dental diseases, 
the use of stem cell-based therapies has largely evolved as an attractive and alterna-
tive choice. As such, it will be essential to have some basic understanding about the 
stem cells and their types as well as their potential use in regenerative medicine.

8.4  Stem Cells and Regenerative Medicine

Regenerative medicine is a branch of medicine that integrates two major disciplines, 
namely, cell biology and materials engineering, to aid regeneration of functional 
tissues. It essentially contributes to the repair or replacement of damaged tissues and 

Fig. 8.5 The risk factors in oral carcinoma progression
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organs, when the body’s natural defence mechanisms for repair and homeostasis 
become limited or impossible. The field of tissue engineering and regenerative med-
icine has witnessed tremendous growth in the last two decades mainly due to 
improved methods in isolation and culture expansion of various stem cells including 
the oro-dental stem cells.

8.4.1  Classification of Stem Cells

Stem cells are unspecialized cells that have prolonged self-renewal potential and 
can differentiate into many different cell lineages. Depending on their source from 
which the stem cells are derived, they can be broadly classified into (i) embryonic 
stem cells, (ii) adult stem cells and (iii) foetal stem cells (Fig. 8.6). Embryonic stem 
cells (ESCs) are derived from the inner cell mass of the 4- to 5-day-old blastocyst- 
stage embryos and are the most versatile stem cell type. They have indefinite self- 
renewal capacity and the potential to differentiate into almost all the tissue types 
representing the three germ layers, namely, ectoderm, mesoderm and endoderm 
(Bongso et  al. 1994; Thomson et  al. 1998). These cells are therefore commonly 
referred to as pluripotent stem cells. Adult stem cells are those which are isolated 
from within the special zones, viz. the ‘stem cell niche’ of various adult tissues such 
as the bone marrow (Friedenstein et al. 1966), bone (Owen 1985), limbal region of 
the cornea (Tseng 1989), epidermis of the skin (Toma et al. 2001), adipose tissue 
(Zuk et al. 2001), liver (Dabeva and Shafritz 2003), surface of the articular cartilage 

Fig. 8.6 Classification of stem cells and their differentiation potential. ESCs Embryonic stem 
cells; iPSCs induced pluripotent stem cells; MSCs Mesenchymal stem cells; HSCs 
Haematopoietic stem cells; RBCs Red blood cells; WBCs White blood cells; UC-MSCs Umbilical 
cord- mesenchymal stem cells; hWJSCs human Wharton’s jelly stem cells
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(Dowthwaite et  al. 2004), intestine (De Coppi et  al. 2006), pancreatic islets 
(Gallo et al. 2007), endometrium (Gargett et al. 2009), brain (Kang et al. 2010) and 
heart muscle (Chimenti et  al. 2012), and are commonly referred to as postnatal 
mesenchymal stem cells (MSCs). Foetal stem cells are those derived from the birth-
related tissues (umbilical cord and cord blood) and abortuses (Marcus and Woodbury 
2008). The stem cells that reside within the special niches in various tissues either 
contribute to the normal turnover of cells (as in intestinal or skin epithelium) or 
become activated to differentiate into a specific cell type in response to tissue injury/
damage to maintain homeostasis. In addition to these naturally occurring stem cells, 
currently there are methods to derive pluripotent stem cells from a differentiated cell 
type using forced expression of pluripotent genes, and these cells are known as 
induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka 2006; Yu et al. 
2007). Stem cells, therefore, can also be classified according to their differentiation 
potential into (i) pluripotent stem cells (ESCs, iPSCs) and multipotent stem cells 
(Adult and foetal MSCs) (Fig. 8.6).

8.4.2  Oro-dental Stem Cells

Literature evidences indicate the presence of MSCs from within the various tissues of 
the oral cavity. These MSCs are broadly classified into (i) dental and (ii) non- dental 
MSCs (Fig. 8.7). The dental MSCs include those from the dental pulp (Gronthos et al. 
2000), apical papilla (Huang et al. 2008) and the exfoliated deciduous teeth (Miura 
et  al. 2003). The non-dental MSCs include those from the periodontal (Seo et  al. 
2004), gingival (Zhang et  al. 2009), dental follicle (Morsczeck et  al. 2005), oral 
mucosa (Marynka-Kalmani et al. 2010), periosteum (Arnsdorf et al. 2009), oro-facial 
bone marrow (Akintoye et  al. 2006) and the salivary glands (Sato et  al. 2007). 
Additionally, MSCs have also been isolated from the damaged oral tissues such as the 
inflamed pulp (Alongi et al. 2010) and apical cysts (Marrelli et al. 2013).

Similar to MSCs from other sources, the oro-dental MSCs are also reported to 
exhibit the stipulated minimal criteria for MSCs by the International Society of 
Cellular Therapy (Dominici et al. 2006). Accordingly the oro-dental stem cells have 
the properties of (i) adherence to tissue culture plastic; (ii) differentiation into mul-
tiple cell lineages including osteoblasts, chondroblasts and adipocytes; and (iii) 
positive expression of MSC-related CD makers, namely, CD105, CD73 and CD90, 
and lack of expression of CD14, CD79A, CD45, CD34 and HLA-DR surface mol-
ecules (Dominici et al. 2006) (Fig. 8.8).

8.4.3  Regenerative Medicine Applications of Oro-dental Stem 
Cells

This section will briefly highlight some of the tissue engineering and regenerative 
medicine applications in relation to oral-dental disorders.
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 (a) Dental pulp stem cells (DPSCs): Dental caries is a common disorder, and when 
it becomes deep, pulpectomy is the choice of treatment followed by root canal 
filling. However, associated complications such as apical periodontal lesions 
due to microleakage from the tooth crown and vertical fractures eventually 
results in higher incidences of tooth extraction. A recent pilot clinical study 
demonstrated that transplantation of autologous dental pulp stem cells (DPSCs) 
led to complete recovery of the dental pulp after 24 weeks which was similar to 
that of the untreated normal controls (Nakashima et  al. 2017). The authors 
derived the DPSCs from discarded tooth following stimulation with granulo-

Fig. 8.7 Dental stem cells. SHED cells Stem cells from human exfoliated deciduous teeth

Fig. 8.8 High-throughput systems (HTS). (a) Cell factory and Bioreactor that helps to scale up 
large numbers of cells in 2D (adherent cells) with precise spatiotemporal dynamics and 3D (sus-
pension cells) platforms respectively; (b) Microfluidics platform; (c) In vivo chip
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cyte colony-stimulating factor (G-CSF) and expanded them under current good 
manufacturing practice (cGMP) so as to obtain clinical-grade MSCs. These 
mobilized DPSCs (1 × 106 cells) were then seeded onto a clinical-grade atelo-
collagen scaffold together with G-CSF and transplanted into pulpectomized 
teeth in patients with irreversible pulpitis. The transplanted cells were held in 
place with gently covered gelatin sponge and the cavity was sealed using glass 
ionomer cement and resin with a bonding agent. The electric pulp test of the 
pulp was positive at 4 weeks, and both magnetic resonance imaging (MRI) and 
cone beam computed tomography (CT) at 24 weeks following DPSC transplan-
tation demonstrated function dentin formation (Nakashima et al. 2017).

 (b) Salivary gland stem cells (SGSCs): Irreversible salivary gland (SG) damage can 
occur following disease states such as Sjogren’s syndrome, thyroid disorders 
and metabolic syndromes and after radiotherapy for head and neck cancers (von 
Bültzingslöwen et al. 2007). Autologous SG stem cell progenitors (SGSCs) iso-
lated from salispheres (in vitro floating spheroidal cultures of cells from SG) 
have been used to restore glandular function following irradiation or damage 
(Lombaert et al. 2008; Pringle et al. 2016). Due to the existing limitations in 
expansion of the SGSC progenitors, MSCs from other sources have been equiv-
ocally used (Lim et al. 2013; Ono et al. 2015; Tran et al. 2013). However, it is 
difficult to achieve the orderly arrangement of cells with correct polarity to 
enable directional flow of secretions in the duct. Whole salivary gland regenera-
tion encompassing all its cellular components such as acinar, ductal, myoepi-
thelial, endothelial and neuronal cells is therefore essential for efficient 
functional restoration. Tissue-engineered three-dimensional (3D) scaffolds will 
be capable of providing the needed tissue architecture, and furthermore, the use 
of 3D organ bioprinting systems can help achieve functional organ reconstruc-
tion similar to that of the normal (Ferreira et al. 2016; Lombaert et al. 2017).

 (c) Periodontal ligament stem cells (PDLSCs): Periodontitis is an inflammatory 
disease that can cause damage both to the tooth and its adnexal tissues, namely, 
the cementum, periodontal ligament and the alveolar bone (Lu et al. 2013). This 
could result in tooth loss, and several restorative measures have been attempted 
to treat periodontitis-associated tissue damage including guided tissue regen-
eration procedures with use of bone grafts combined with bioactive agents and 
growth factors (Chen and Jin 2010; Lu et al. 2013); however, these strategies are 
limited in advanced periodontal defects. The periodontal ligament stem cell 
progenitors (PDLSCs) have been identified to be committed to some of the 
developmental cell lineages such as osteoblasts, cementoblasts and fibroblasts 
and have been used effectively in periodontal tissue regeneration (Catón et al. 
2011; Yang et al. 2009). A recent single-centre randomized clinical trial evalu-
ated the feasibility of using PDLSCs derived from impacted third molars (fol-
lowing their removal) under cGMP guidelines to regenerate periodontal 
intra-bony defects (Chen et al. 2016). The PDLSCs were used together with 
commercial osteoconductive material (Bio-Oss® to aid tissue regeneration and 
it was demonstrated that that the alveolar bone height increased with time 
(3–12  months), and the cell transplantation procedures were clinically 
safe. However, there were not much differences in the clinical periodontal 
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parameters such as clinical attachment level, probing depth and gingival reces-
sion (Chen et al. 2016). Further research in this area using suitable scaffolds, 
optimization of the cell numbers and multicentre trials are awaited.

 (d) Stem cells from apical papilla (SCAP): The sequelae of inflammatory cell inva-
sion and fibrous tissue formation in the peri-apical area following endodontic 
infections lead to the formation of peri-apical cysts (Nair 2004). A series of 
interesting clinical observations of periosteal bone formation following removal 
of the apical cysts (Maeda et al. 2004) led to the hypothesis supporting the pres-
ence of stem cell progenitors (Patel et al. 2010) and the isolation and character-
ization of the human periapical stem cells (PASCs) (Marrelli et  al. 2013). 
Similar to MSCs from most tissue sources, the PASCs demonstrated efficient 
multilineage differentiation potential including bone and neuronal cell types 
(Marrelli et al. 2013, 2015). The PASCs are reported to have high proliferative 
ability and wide differentiation potential, thus making these cells an attractive 
choice for bone and dental tissue regeneration either alone or in combination 
with biological scaffolds and growth factors (Tatullo et al. 2017).

8.5  High-Throughput and High-Content Screening

High-throughput screening (HTS) is defined as the use of automated tools to facili-
tate rapid execution of a large number and a variety of biological assays that may 
include several substances in each assay (Nel et al. 2012). HTS typically is used to 
analyse fewer endpoints but repetitively for numerous samples. The advantage is that 
more information of the endpoint is usually known, and therefore, not much infor-
matics may be necessary and helps with rapid decision-making (Pamies et al. 2018). 
High-content screening (HCS) helps screening of hundreds to hundreds of thousands 
of endpoints, capturing large biological information of the model analysed. The 
advantages of HCS are its holistic and non-targeted nature; however, the generation 
of huge data needs expertise and time for data analysis (Pamies et al. 2018). The 
‘omics’ approaches, namely, transcriptomics, epigenomics, lipidomics, proteomics 
and metabolomics, as well as imaging technologies will largely come under the pur-
view of HCS (van Vliet 2011; Van Vliet et al. 2014). It is not uncommon to find both 
HTS and HCS being interchangeably used, but understanding of this difference is 
necessary, and we shall briefly see their respective applications (Fig. 8.9).

8.5.1  HTS in Drug Screening, Cell Culture and Imaging

In pharmaceutical companies, HTS has been used to facilitate rapid evaluation of 
potential drugs as early as the 1980s and continues to remain as a cornerstone for 
small-molecule drug discovery. Using HTS, libraries of compounds can be analysed 
for their biological activity using robotics (automation); carry out robust biological 
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assays, thereby minimizing false positives and increasing the sensitivity of the assay 
system; as well as interpret results using high-content analytical tools (Hook et al. 
2010). Eventually, all the above leads to rapid identification of the lead candidates 
even in the absence of structure-based design.

Conventionally, the cells used as culture models to screen for drug discovery or 
development are derived from primary tissues or immortalized cell lines. These 
cells, however, are not the right choice for use as screening models due to the fol-
lowing reasons: (i) the cells derived from primary tissue have short survival in vitro, 
(ii) presence of aneuploid karyotype as in cells derived from cancer tissue or (iii) 
having phenotype unrelated to the tissue of interest. The above shortcomings can be 
readily overcome with use of embryonic stem cells (ESCs), as these cells are geneti-
cally stable, can be maintained for sufficient durations in culture without undergo-
ing differentiation and can exert uniform physiological responses (Cho et al. 2013). 
Modified culture protocol such as use of feeder-free platform enabled culture and 
maintenance of mouse ESCs in their undifferentiated state for up to 7–8 days in a 
96-well plate format is by itself an advancement towards HTS, given the highly 
sensitive nature of these cells and their stringent culture conditions (Cho et  al. 
2013). This culture system can be scaled up/automated and used for toxicological 
screening of known or unknown compounds/drugs to analyse defined endpoints or 
signalling pathways (Fig. 8.8a). Unlike the in vivo state, stem cell fate can become 
easily altered upon culture on in vitro mechanical platforms due to imprecise tem-
poral and spatial control of the microenvironments.

Progress in micro-/nano-fabrication and microfluidics has enabled development 
of culture systems that closely mimic the in vivo conditions. Microplatforms devel-
oped using biomicroelectromechanical systems technology have found various 

Fig. 8.9 High-content systems (HCS). (a) DNA sequencers (Frist, second and third generation); 
(b) Features of DNA sequencers; (c) Applications of next-generation sequencing (NGS)
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cell-/stem cell-based biomedical research applications such as (i) delivering biomole-
cules to cells in a controllable way, (ii) cell migration or morphogenesis based on 
gradient-dependent morphogens, (iii) embryoid body generation for three- 
dimensional studies and (iv) microarray/microwell culture of cell/stem cell to study 
fate of single stem cells or cell–cell interactions (Park et al. 2015). Similarly, use of 
microfluidic chip-based (Fig. 8.8b) single-cell isolation and culture has paved way 
for high-throughput clonogenic assay of heterogenetically different single cells (Lin 
et al. 2016). An automated microbioreactor system was successful in rapid and con-
sistent large-scale production of antibodies (Velugula-Yellela et al. 2018). All the 
above studies highlight how automation can help with miniaturization of models 
with maximization of product.

Success from miniaturization and HTS research in vitro also paved the way for 
in vivo research applications. Sumiyama et al. (2018) developed a microdevice to 
generate chimeric blastocysts by aggregation of eight-cell-stage embryo (blasto-
meres) and mutant mESCs, which upon transfer to pseudopregnant mice resulted 
in the birth of chimeric pups as indicated by their coat colour (Sumiyama et al. 
2018). The microdevice was fabricated using a polystyrene material and consisted 
of a funnel-like structure to help aggregation of mutant mESCs and blastomeres at 
the bottom (300 uM in diameter). Although one can argue that direct gene-editing 
techniques of fertilized mouse embryos are quite efficient for induction of small 
mutations, the advantages with the generation of individual mice knock-ins/knock-
outs of a relatively large size cannot be refuted. In addition, the reported cell aggre-
gation technique has its own advantages such as (i) the cells that are held in position 
by surface tension can be easily transferred to the culture wells with gentle pres-
sure on the liquid from the top and (ii) the expertise essential as with microinjec-
tion technique is not required. Moreover, scalability can be achieved as the 
microdevice can be used in conjunction with a regular 96-well culture plate and 
hence compatible with use of multichannel pipettes or programmable machines 
(Sumiyama et al. 2018).

Cellular models such as genetically modified cell lines, spheres, organoids and 
small/large whole animal models are indispensable for drug screening. Of these, 
uses of whole animal model as a screening platform would be greatly advantageous 
as the complete pharmacokinetics of a candidate drug can be analysed and rapidly 
advance to human clinical trials. Use of large animal models is expensive and time 
consuming, and therefore, smaller animal models with conserved gene homology to 
humans serve as an alternative. Caenorhabditis elegans has been largely used in 
drug screening studies. A microfluidics immobilization platform consisting of an 
exterior surface of a standard 96-well plate format and an interior surface made of 
microfabricated channels (40 parallel chambers) fitted within a gasket device hav-
ing a single-input and single-output interfaces for easy flow control was developed 
to achieve HTS (Ben-Yakar 2019). This microfluidics platform is capable of imag-
ing ~4000 animals in total in less than 3 minutes with an automated image acquisi-
tion software by screening pre-determined locations (Fig. 8.8c). Using this HTS 
platform, ~1000 FDA-approved compounds were recently screened leading to four 
hits for subsequent validation (Mondal et al. 2016).
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Although the above immobilization microfluidics platform (VivoChip) is an HTS 
system, it is limited in that it can test only 30–40 animals per population and there-
fore may be best suited for secondary screening. This limitation with VivoChip is 
now overcome by using fluorescence imaging with line excitation array detection 
microscopy technique, which can allow imaging of moving C. elegans at a speed of 
>1 m/s without any blur and therefore can be useful to screen much bigger com-
pound libraries (Martin et al. 2018). Therefore, it is irrefutable that HTS is robust, 
has several advantages over the conventional methods and is utilized in almost all 
domains of science and technology.

8.5.2  HCS in Genomics, Proteomics and Metabolomics

Technologies involving miniaturization, automation and analysis have developed 
rapidly in the last decade and continue to do so gaining far-reaching ramifications in 
different disciplines. To better understand the role of HCS in biomedical applica-
tion, let us go through the evolution of high-throughput sequencing platforms from 
one of the major players in the field of deoxyribonucleic acid (DNA) sequencing. 
Sequencing fundamentally refers to decoding the nucleic acid sequence or the order 
of the nucleotides in DNA. Before moving on with high-throughput DNA sequenc-
ing platforms, a brief recapitulation of the fundamentals of molecular biology will 
be pertinent.

Genomics basically refers to genomes and their expression in an organism; the 
organization of the genes within the genome; and their evolution, conservation and 
variations or mutational changes. Within the nucleus of each human cell, there are 
23 pairs of chromosomes (diploid), except the gametes which are haploid. 
Continuous stretches of DNA are tightly coiled around the histone proteins and are 
packaged into a chromosome. Within these vast stretches of the DNA are the genes 
which are capable of expression and translation into proteins. Genes provide neces-
sary genetic information to the ribonucleic acid (RNA) by a process known as tran-
scription to enable synthesis of either structural or functional proteins which are the 
building blocks of various tissues, thereby contributing to the development and 
function of an organism.

Elucidation of the structural details (order of nucleotides) of the DNA stretches 
will provide far greater information with wide ranging applications in medicine, 
forensics and agriculture. The quest to completely sequence the human genome led 
to the initiation of the Human Genome Project (HGP) by the Department of Energy 
and the National Institutes of Health (United States) in 1990. Scientists from around 
the world joined this historic project, and the rough draft of the human genome was 
completed in June 2000. This was further refined and declared completed in 2003, 
coinciding with the 50th anniversary of the publication reporting the double helical 
structure of DNA by Francis Crick and James D Watson (Green et al. 2015).

Until the completion of the Human Genome Project, very scant information of 
the human gene sequences was available. The conventional Sanger sequencing 
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method used in the HGP is not high-throughput and hence is not economical for 
whole-genome sequencing. It was estimated that the HGP would cost around 
2.5–3 billion USD. Genetic sequences are the blueprints of an individual makeup, 
and it is of great importance to know the DNA sequence of a gene as it has profound 
biomedical applications in medicine. Advancements in science and technology 
combined with HTS/HCS can reduce the prohibitive cost of traditional whole 
genome sequencing, thereby facilitating personalized medicine.

The sequencing platforms can be divided into basic, advanced and next- 
generation sequencing (Fig. 8.9a). The Sanger method of sequencing was  developed 
by Fredrik Sanger in the year 1977 and involves chain termination method using 
dideoxynucleotides and DNA polymerase. Sanger sequencing was used in the HGP 
to determine the sequences of many small fragments (usually less than 900 bp) of 
human DNA. The fragments were aligned based on overlapping segments to deter-
mine the sequences of larger regions of DNA. Although Sanger sequencing method 
provides high-quality sequence, it is expensive and inefficient for large- scale proj-
ects. The other type of basic sequencing method is the chemical termination method 
developed by Maxam-Gilbert, where, instead of DNA polymerase to generate frag-
ments, radiolabelled DNA is treated with chemicals that break the chain at specific 
bases into fragments. These first-generation DNA sequencing machines produce 
reads slightly less than one kilobase (kb) in length. Subsequent newer dideoxy 
sequencers – such as the ABI PRISM produced by Applied Biosystems – allowed 
simultaneous sequencing of hundreds of samples, and thus, Sanger sequencing 
came to be used in the HGP, going on to produce the first draft of human genome 
much earlier than the anticipated time frame (Lander 2011; Smith et al. 1986).

The second-generation sequencing includes the pyrosequencing method where 
luminescence was used to measure pyrophosphate synthesis, where ATP sulphury-
lase is used to convert pyrophosphate into ATP, which acts as the substrate for lucif-
erase to produce light proportional to the amount of pyrophosphate (Nyren and 
Lundin 1985). Pyrosequencing was later licenced to 454 Life Sciences and subse-
quently purchased by Roche (Fig. 8.9a), which made a paradigm shift with intro-
duction of techniques supporting massive parallelization (Margulies et al. 2005). 
This was soon followed by Solexa method of sequencing, which was later acquired 
by Illumina, wherein modifications led to the use of adapter-bracketed DNA mole-
cules to be passed over a lawn of complementary oligonucleotides bound to a flow-
cell, instead of parallelizing by performing bead-based emPCR (Bentley et  al. 
2008). Solid-phase PCR subsequently produces neighbouring clusters of clonal 
populations from each of the individual original flow-cell binding DNA strands 
(Fig. 8.9a). This was soon followed with sequencing by oligonucleotide ligation and 
detection (SOLiD) system from Applied Biosystem, which uses DNA ligase for 
ligation and not sequencing by synthesis using DNA polymerase (Shendure et al. 
2005). The other is the Ion Torrent (Life Technologies) (Fig. 8.9a) where the differ-
ence in pH caused by the release of protons (H + ions) during polymerization is 
used for measurement which was made possible by the use of complementary metal 
oxide semiconductor (CMOS) technology (Rothberg et al. 2011).
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The third-generation sequencing technologies are those capable of single- 
molecule sequencing (SMS). DNA templates attached to a planar surface were used 
for sequencing together, where fluorescent reversible terminator dNTPs were 
washed over one base at a time and imaged (Braslavsky et al. 2003). Although slow 
and expensive, the use of non-amplified templates helped to avoid associated biases 
and errors. The most widely used third-generation technology is probably the sin-
gle-molecule real-time (SMRT) platform (Fig. 8.9a) from Pacific Biosciences (van 
Dijk et al. 2014), where DNA polymerization occurs in arrays of microfabricated 
nanostructures called zero-mode waveguides (ZMWs) (Levene et al. 2003). PacBio 
machines are also capable of producing incredibly long reads, up to and exceeding 
10 kb in length, which are useful for de novo genome assemblies (van Dijk et al. 
2014). The characteristics of first, second and third generation sequencers such as 
(i) their read length per run, (ii) number of reads per run, (iii) the time taken, (iv) 
their underlying principle and the various applications of NGS are given in Fig. 8.9b, 
c. The field of sequencing is undergoing great revolution and with more recent plat-
forms will certainly yield vast information in the field of molecular biology, which 
will in turn impact clinical medicine.

8.6  HCS in Dentistry Applications

8.6.1  Oro-dental Disorders

Oro-dental disorders can have genetic, environmental or multifactorial aetiology. 
Interestingly, of the known genetic syndromes (>5000), nearly 900 are associated 
with craniofacial/oro-dental disorders, indicating the role of genetics in oro-dental 
diseases (Crawford et al. 2007). There also exists a wide range of heterogeneity in 
isolated dental diseases making diagnosis of the genetic basis more challenging. 
Targeted next-generation sequencing (NGS) is beneficial in the molecular diagnosis 
of genetically heterogeneous disorders. Moreover, substantial reduction in the cost 
allows the flexibility to perform whole-exome sequencing (WES) or whole-genome 
sequencing (WGS). A NGS gene panel targeting 585 known and candidate genes in 
oro-dental disorders used in screening a cohort of 101 unrelated patients led to the 
identification of 21 novel pathogenic variants and causative mutations in 39 patients 
with an overall diagnostic rate of 39% (Prasad et al. 2016). Furthermore, among 50 
unrelated patients with amelogenesis imperfecta (AI) and 21 patients with syn-
dromic selective tooth agenesis (STHAG), a definitive diagnosis was established in 
14 (27%) and 15 (71%) cases, respectively (Prasad et al. 2016).

Periodontitis is a chronic inflammatory disease of the periodontium character-
ized by extensive destruction of the tooth and its adnexa. The complex interac-
tion between the microbial biofilms and the host immune response is understood 
underlying reason for bone and connective tissue disorders. Transcriptome analysis 
by microarrays is a valuable tool to study changes in gene expression and is a useful 
technique to study changes in gene expression patterns from tissue samples in 
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patients with periodontitis (Beikler et al. 2008). RNA sequencing (RNA-Seq) has 
several advantages over microarray hybridization technique such as (i) unbiased 
approach due to direct sequencing and (ii) highly accurate in detecting gene expres-
sion with dynamic detection range. RNA-Seq of pooled gingival tissue samples of 
periodontitis patients and healthy controls identified 400 upregulated genes and 62 
downregulated genes by differential expression analysis, in periodontitis tissues that 
mainly interact in the immune-related signalling molecules and pathways (Kim 
et al. 2016). Differential alternative splicing analysis revealed unique transcription 
variants in periodontitis tissues, thus highlighting the usefulness of RNA-Seq and 
the high-content screening for differential gene expression and alternative splicing 
in elucidating the mechanisms of pathogenesis in periodontitis (Kim et al. 2016).

RNA-Seq and microarray have also helped largely in understanding the molecu-
lar signature in molar morphogenesis. In a recent study, differential transcript 
expression and functional network during morphogenesis of additional molars at 
three key developmental stages were profiled in miniature pigs using the RNA iso-
lated from additional molar germs. Coding and non-coding transcripts were identi-
fied using Coding–Non-Coding Index (CNCI) and annotated transcripts through 
mapping to the porcine, Wuzhishan miniature pig, mice, cow and human genomes. 
Many new unannotated genes plus 450 putative long intergenic non-coding RNAs 
(lincRNAs) were identified (Wang et  al. 2017). Regulatory network analyses 
revealed that WNT and TGF-β pathways play a determining role in regulating 
sequential morphogenesis of additional molars (Wang et al. 2017).

8.6.2  Biofilms

Oral microbiome, which is referred to as the oral microflora or oral microbiota, is 
defined as all the microorganisms residing in the human oral cavity and their collec-
tive genome. Oral microbiome harbours on teeth, gingival sulcus, tongue, cheeks, 
hard and soft palates, and tonsils, and it is a critical component of oral health and 
disease (Fig. 8.10).

These biofilm communities are not only heterogeneous with respect to the species 
they contain but also can be architecturally diverse; for instance, they can range from 
a few cells thick to visually conspicuous biofilms (Bernimoulin 2003; Marsh 2006). 
The more diverse the community and the greater the biofilm biomass, the more likely 
it is that pathogenic species such as Porphyromonas gingivalis and Treponema den-
ticola will integrate and promote periodontal disease (Kolenbrander 2000).

The ability of bacteria to aggregate via autoaggregative interactions (self- 
aggregation) and coaggregation (the specific recognition and adhesion of different 
species of bacteria to one another) is proposed to be integral to biofilm development 
(Short et al. 1982; Kolenbrander 2000).

Biofilm bacteria are up to 1000-fold less susceptible to antimicrobials than 
planktonic cells (Gilbert et al. 2002; Mah and O’Toole 2001; Roberts and Mullany 
2010). The reasons behind this reduced susceptibility are multifactorial and include 
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retarded antimicrobial penetration of biofilm due to reaction diffusion limitation 
(Stewart 1996), altered growth rates, intraspecies and interspecies metabolite and/or 
cell–cell signalling interactions resulting in altered biofilm-specific phenotypes 
(Peters et al. 2012) and cross-species protection afforded by removal or inactivation 
of a given antimicrobial by a biofilm species (Gilbert et al. 2002).

Approaches to controlling the species composition and overall density of dental 
plaque biofilm communities encompass abrasive regimens (e.g. tooth-brushing and 
flossing) and chemical treatments (e.g. mouthwash).

Application of high-throughput sequencing greatly helps in understanding 
human oral microbiome. Numerous model biofilm systems exist as a representative 
of the oral cavity to examine biofilm development and/or the impact of antimicro-
bial compound conditions. The development of such representative in vitro model 
biofilms is important to accurately predict the in vivo efficacy of current or newer 
antimicrobials that may be used in oral hygiene products. These can be large-scale 
systems suitable for long-term studies, such as newly modified Robbins devices, 
Sorbarod-based biofilm systems and constant-depth film fermenters or simple 
devices such as flow cells. A critical drawback to the operation of such model sys-
tems is their physical footprint (resulting in limited capabilities for performing par-
allel replicate studies) and the often limiting requirement for large amounts of media 
in which to develop biofilms. This latter point is of great importance if the medium 
is expensive or time-consuming to obtain, especially if it is from natural sources 

Fig. 8.10 Dental biofilm colonisers
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(e.g. saliva or wound exudate). For example, when conducting flow cell studies, an 
overnight experiment can require 500 mL (Foster and Kolenbrander 2004).

A microfluidic system, either custom-made or available commercially, removes 
such a limitation and also allows, by virtue of its small footprint, multiple biofilm 
experiments to be run in parallel (Fig. 8.11). The potential for linking such a system 
to 3D imaging systems is only now just being realized and an opportunity to create 
high-throughput screens of antimicrobial or biofilm-structure-altering compounds 
can be explored.

Many biofilm systems use either medium or artificial saliva as the nutrient source. 
This is primarily due to the inherent difficulties in collecting large enough quantities 
of human saliva. These types of artificial media can have significant effects on bio-
film composition and also the responsiveness of the species to environmental 
changes or chemical challenges. As a result, the use of pooled human saliva as an 
inoculum and as a medium source is gaining popularity in model oral biofilm sys-
tems (Foster and Kolenbrander 2004; Ledder et  al. 2006; McBain et  al. 2005), 
although saliva quantity is an issue. High-throughput approach has the potential to 
reproducibly grow oral multispecies biofilms that contain species that are indige-
nous to dental plaque.

Fig. 8.11 BioFlux high-throughput system for screening of flow biofilm viability
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8.6.3  Nanomaterials

Micro-organisms within a biofilm are able to protect themselves from the immune 
system and antibiotics (Smith 2005). Bacteria are estimated to be 10–1000 times 
more tolerant to host defences and antibiotics than in their planktonic state (Costerton 
et al. 1999; Smith 2005). The approaches employed to resist biofilm formation are 
either the production of cytotoxic materials designed to kill bacteria upon contact 
(Kuroda and Caputo 2013) or anti-adhesion strategies whereby the materials cir-
cumvent bacterial attachment, biofilm formation. Compared to antibiotic- containing 
materials, surfaces that resist bacterial attachment do not induce the evolutionary 
pressure, which would lead to bacterial resistance. This characteristic means that 
this class of material is of particular interest in an age of growing antibiotic resis-
tance. The mechanisms that have been employed to prevent attachment include 
electrostatic repulsion, steric repulsion, topography and hydration (Magennis et al. 
2016). In order to optimize the rate at which new biomaterials could be discovered 
and their biological properties assessed, the microarray format has now become 
routine. In this way, hundreds of unique polymers are generated on-slide and 
assayed on a single substrate in a single experiment. Surface analysis techniques 
such as time of flight secondary ion mass spectroscopy (ToF-SIMS), atomic force 
microscopy (AFM), surface wettability measured through water contact angles 
(WCA), surface plasmon resonance (SPR) and X-ray photoelectron spectroscopy 
(XPS) allow for rapid characterization of polymer microarrays (Fig. 8.12). Together 
with the microarray format, these techniques are known as high-throughput surface 
characterization (HTSC) (Davies et al. 2010).

Research is already underway into bioinspired devices where ligands and pro-
teins direct cell behaviours such as colonization and proliferation, so-called ‘third- 
generation’ biomaterials (Hench and Polak 2002). High-throughput strategies are 
leading to novel material discovery when large number scan be screened and ‘hits’ 
identified retrospectively rather than planning those to yield positive results. 
Manufactured nanomaterials (NMs, materials with at least one dimension <100 nm) 
and nanoparticles (NPs, NMs with all three dimensions <100 nm) are considered as 
distinct from normal chemical compounds on account of their size, chemical 
 composition, shape, surface structure, surface charge, aggregation and solubility 
(Donaldson and Poland 2013).

At present, the very limited and often conflicting data derived from published 
literature—and the fact that different NMs are physicochemically so heteroge-
neous—make it difficult to generalize about health risks associated with exposure to 
NMs. The adoption of high-throughput screening (HTS) and high-content analysis 
(HCA) for nanomaterial (NM) toxicity testing allows the testing of numerous mate-
rials at different concentrations and, on different types of cells, reduces the effect of 
inter-experimental variation, and makes substantial savings in time and cost. HCA 
and HTS approaches should deliver information on key biological indicators of 
NM–cell interactions, such as cell proliferation, cellular morphology, membrane 
permeability, lysosomal mass/pH, DNA and chromosome damage, activation of 
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transcription factors, mitochondrial membrane potential changes, oxidative stress 
monitoring and post-translational modification (Prina-Mello et al. 2013).

8.7  Scientific Databases: The Goldmines of Research

Cell and tissue culture are essential pre-requisites for many for biotechnological 
research. Advances in research on human and other cells have led to vast knowledge 
expansion in fields such as cancer research, genetics and public health. This in turn 
is associated with a corresponding increase in related scientific literature. It is prac-
tically a daunting task to identify specific information pertaining to individual 
research needs. Availability of a practical, user-friendly database containing cell 
lines, plasmids, vectors, selection agents, concentrations and media would be a 
great advantage. A database consisting of over 3900 cell lines and 1900 plasmids/
vectors collected from 2700 pieces of published literature was established and is 
being expanded (Amirkia and Qiubao 2012). The electronic web-based version of 
the database can be accessed at http://celllines.toku-e.com/. With continual addition 
of data, the database can greatly aid future research.

The European Bioinformatics Institute (EBI) of the European Molecular Biology 
Laboratory (EMBL) is involved in building and providing biological databases to 
support both data submission and utilization. A number of free databases are oper-
ated and include EMBL Nucleotide Sequence Database (EMBL-Bank), the Protein 
Databases (SWISS-PROT and TrEMBL), the Macromolecular Structure Database 

Fig. 8.12 Interface of material science, informatics, and biology
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(MSD) and ArrayExpress for gene expression (Stoesser et al. 2002). As a result of 
genome sequencing effects, the EMBL Nucleotide Sequence Database is growing 
rapidly, and necessary scientific information can be accessed at http://www.ebi.
ac.ukembl/. New nucleotide sequences or biological information can be submitted 
by individual scientists or sequencing groups through submission portals such as 
Webin or Sequin, and prior vector contamination screening using interactive web- 
based services can be utilized (Stoesser et al. 2002). The list of EMBL-Bank web-
based resources including detailed information on submissions, data access, genome 
data as well as database searching and analysis tools is available in the literature 
(Stoesser et al. 2002).

Gene polymorphisms play a determining role in defining the basis of phenotypic 
references between individual that has intricate relationships in disease predisposi-
tion and drug responses. Human Genic Bi-Allelic Sequences (HGBASE) is a 
resource of human gene-linked polymorphisms (Brookes et al. 2000). Information 
gathered from other public resources are systematically screened to avoid redun-
dancy, and these polymorphism records are provided in a standardized user-friendly 
database in conjunction with other available public resources. The records are cat-
egorized as (i) single base differences, (ii) insertion–deletion variants, (iii) simple 
tandem repeat polymorphisms and (iv) ‘generic’ (or complex) changes involving 
alterations not described by the preceding three alternatives (Brookes et al. 2000). 
Data collection and submission can be done using standard formats and guidelines 
provided in the website and can be accessed at http://hgbase.interactiva.de.

The information system for molecular biology by the National Institutes of 
Health (NIH) is the National Center for Biotechnology Information (NCBI). Apart 
from the GenBank nucleic acid resource that supports data analysis and retrieval, 
resource links to other biological data are available in the NCBI website and can be 
accessed at http://www.ncbi.nlm.nih.gov. The available resources under the NCBI 
website include the Database retrieval tools such as Entrez, ‘PubMed’, LocusLink 
and The Taxonomy Browser. The data analysis resources include BLAST, Electronic 
PCR, OrfFinder, RefSeq, UniGene, database for SNPs (dbSNP), Cancer 
Chromosome Aberration Project (CCAP), Cancer Genome Anatomy Project 
(CGAP), SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian 
Inheritance in Man (OMIM) and many more (Wheeler et al. 2006).

Immune system requires coordinated expression of many genes and proteins to 
mediate their function. In tandem with the explosion of genomic and proteomic 
data, the molecular data related to complex human immune system are readily avail-
able covering cellular, structural or organ levels for both normal and diseased states. 
The Immunome Knowledge Base (IKB) is a dedicated resource for immunological 
information and is formed by integration of three earlier databases, namely, 
‘Immunome’, ‘ImmTree’ and ‘ImmunomeBase’ (Ortutay and Vihinen 2009). IKB 
is freely available for academic research at http://bioinf.uta.fi/IKB/.

Changing patterns in DNA methylation are early even in cancer development. 
Hypomethylation of the gene promoter regions (CpG islands) is associated with 
increased gene activity as seen in various cancers, while hypermethylation is associ-
ated with gene repression or silencing. Therefore DNA methylation analysis will 
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help in better understanding the process of tumour development and progression 
and serve in prognostic assessment (Jones and Baylin 2002; Laird 2003). A sequence 
similarity search program based on the original BLAST algorithm but querying in 
silico bisulphite modified genome sequences to screen oligonucleotide sequence 
similarities was developed and is known as methBLAST. In addition, methPrim-
erDB as database for storage and retrieval of validated PCR-based methylation 
assays was also developed (Pattyn et al. 2006). Free public access to perform meth-
BLAST searches or submit user-based information is possible. The methBLAST 
and methPrimerDB can be accessed at http://medgen.ugent.be/methblast and http://
medgen.ugent.be/methprimerdb.

Other additional useful databases are (i) ZINC a free public resource for ligand 
discovery and can be accessed at http://zinc.docking.org (Irwin et  al. 2012); (ii) 
pathway analysis-related databases, KEGG PATHWAY database (Kanehisa and 
Goto 2000), BioCArta (Nishimura 2001), DAVID (Dennis et al. 2003), GenMAPP 
(Dennis et al. 2003), GeneOntology (Ashburner et al. 2000) and PathAct (Mogushi 
and Tanaka 2013); (iii) protein-related databases, UniProt (Apweiler et al. 2004), 
UniRef (Suzek et al. 2007), neXtProt (Lane et al. 2011); (iv) metabolome-related 
databases, human metabolome database (Wishart et  al. 2016) and metabolomics 
workbench (Sud et  al. 2015); and (v) microRNA-related databases, miRbase 
(Griffiths-Jones et al. 2006), miRWalk (Dweep et al. 2011) and miRTarBase (Chou 
et al. 2015). Numerous other databases are available, and listing or detailing them is 
beyond the scope of this book chapter. Some of the mentioned databases in this 
chapter (Table 8.1) are intended to create awareness and serve as a guide for the 
beginners, especially for students undertaking scientific research.

Table 8.1 Useful web resources

Title URL

BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi
dbSNP https://www.ncbi.nlm.nih.gov/snp
EMBL nucleotide sequence 
database

www.ebi.ac.uk/embl/

EMBL-EBI home page www.ebi.ac.uk/
Entrez https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html
Expressed Sequence Tag (EST) 
resources

www.ebi.ac.uk/embl/Access/est.html

LocusLink https://www.ncbi.nlm.nih.gov/Web/Newsltr/Summer99/
locus.html

PAH gene database http://www.mcgill.ca/pahdb/
RefSeq https://www.ncbi.nlm.nih.gov/refseq/
Sequence Retrieval Service (SRS) http://srs.ebi.ac.uk/
SEQUIN https://www.ebi.ac.uk/Services/Sequin
Taxonomy Browser https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/

wwwtax.cgi
UniGene http://www.bioinfo.org.cn/relative/NCBI-UniGene.htm
WEBIN www.ebi.ac.uk/embl/Submission/
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8.8  Conclusions

Scientific advancements are continuously changing the landscape of clinical fields 
including medicine, dentistry, pharmacy and nursing. These advancements have led 
us to better understand our genome, proteome and metabolome which significantly 
impact most if not all aspects of life and hence clinical practice. Like the numerous 
benefits witnessed with regenerative medicine and tissue engineering in other disci-
plines, they are set to revolutionize the field of dentistry too. Some of the applica-
tions will include (i) use of engineered cells to promote faster growth and filling of 
the cavities, (ii) restoration of tooth with normal formation of dentin and enamel, 
(iii) selection of materials/implants with surfaces that naturally inhibit microbial 
interference, (iv) customization of disease resistance dental tissues and (v) personal-
ized orthodontics. The availability of vast scientific information and technological 
resources if rightly exploited will have tremendous benefits in both medicine and 
dentistry.
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OA Osteoarthritis
RA Rheumatoid Arthritis
x Analyte or Biomarker

9.1  Introduction

The xMAP (x = analyte or biomarker, MAP = multi-analyte profiling) technology 
was invented in the 1990s by the scientists at the Luminex Corporation in the United 
States of America (USA) for the multiple simultaneous detection of analytes in 
biological samples. It is a major advancement in the high-throughput bioassays 
using solid-phase isolation method combined with cutting-edge fluidics, optics, and 
digital signal processing with patented “microsphere” (bead)-based technology. 
xMAP technology enables rapid, cost-effective, and simultaneous analysis of mul-
tiple analytes within a single biological sample. Importantly, it is an open architec-
ture technology and can be configures to formulate an array of assays rapidly, 
precisely, and cost-effectively. The xMAP technology gives many benefits for the 
end user, and therefore it is utilized in pharmaceutical, clinical, and research labora-
tories (Kellar and Iannone 2002; Kellar et  al. 2006; Graham et  al. 2019). Now 
xMAP technology is the most commonly used bead-based multiplexing platform 
with over 15,500 instruments installed, 35,000 peer-reviewed publications, and 
more than 70 Luminex Partners providing xMAP customers over 1300 research kits 
as well as custom assay solutions (Graham et al. 2019). The xMAP instruments cur-
rently available in the market such as Luminex 200, FLEXMAP 3D, and MAGPIX 
are shown in Fig. 9.1 (Angeloni et al. 2014). The main aim of this chapter is to 
discuss the latest findings and applications of xMAP immunoassays coupled with 
functional bioinformatics strategies to unravel protein biomarkers in autoimmune 
inflammatory diseases such as rheumatoid arthritis (RA).

Fig. 9.1 Luminex xMAP instruments currently available in the market such as Luminex 200, 
FLEXMAP 3D, and MAGPIX (Angeloni et al. 2014). (Courtesy: Luminex Corporation, USA)
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9.2  Principle of xMAP Technology

The xMAP technology is based on the principle of microspheres in a liquid suspen-
sion as determiners of analyte specificity. Microsphere sets are either polypropylene 
or magnetic in nature that are impregnated with two spectrally distinct fluorophores. 
The spectral signature of the microsphere are determined by the different concentra-
tions of internal fluorescent dyes, yielding up to 100 spectrally unique bead sets 
(Fig. 9.2). Using third internal fluorescent dye, the microspheres can be expanded 
up to 500 distinct bead sets (Graham et al. 2019). The specific reagents for bioas-
says like antigens, antibodies, or oligonucleotides can be coupled with each distinct 
bead type and used in a single assay for the multiplex detection of up to 500 analytes 
in a single sample. The bead mixture is incubated with the sample, and a fluorescent 
reporter such as Cy-3, Cy-5, Alexa 532, Streptavidin-R-Phycoerythrin, etc., is cou-
pled to a target molecule that allows the detection of analytes captured on the micro-
sphere surface using a Luminex instrument (Fig. 9.1).

This bead-based suspension array system for measuring analytes provides both 
medium to high-throughput and high-content data, and researchers may easily scale 
the number of analytes studied and customize the assays and applications (Lin et al. 
2015; Manglani et al. 2019). xMAP technology can be used for antibody array stud-

Fig. 9.2 xMAP technology uses internally dyed polypropylene or magnetic microspheres. 
Luminex color-codes microspheres (beads) internally with specific concentrations of different flo-
rescent dyes, providing up to 500 distinctly color-coded microsphere sets. (Adapted and modified 
from Reslova et al. (2017), https://doi.org/10.3389/fmicb.2017.00055, and this work is licensed 
under a Creative Commons Attribution 4.0 Generic License)
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ies, as the workflow is simple and does not need purification, and picomolar detection 
levels and dynamic ranges of more than three orders of magnitude have been achieved. 
As a result, xMAP suspension microsphere arrays have been utilized in an array of 
biomarker studies. Importantly, based on the type of Luminex instrument used, up to 
500 bead sets can be used in each well of a 96- or 384-well plate, generating a high-
throughput measurement of protein or oligonucleotide targets (Fig. 9.3).

Many types of microspheres are commercially available for the xMAP assays 
(Table 9.1), and their selection is determined by the type of instrumentation used, 
detection mode, and the number of analytes or biomarkers of interest (Table 9.2) 
(Dunbar and Li 2010; Houser 2012; Reslova et al. 2017). Normal xMAP micro-
spheres are 5.6 μm polystyrene beads with approximately 100 million carboxyl 
groups (COOH) on the surface for covalent coupling of capture reagents (Tang and 
Stratton 2006; Angeloni et al. 2014). On the other hand, the magnetic microspheres 

Fig. 9.3 The structure of microsphere. The polystyrene divinylbenzene core is surrounded by a 
polymer layer, which is formed by polystyrene methacrylic acid (infusion of dyes). The surface of 
each microsphere is irregular, porous, and carboxylated. Magnetic microspheres have an additional 
layer of magnetite within the polymer layer and so differ also in size. (Adapted from Reslova et al. 
(2017), https://doi.org/10.3389/fmicb.2017.00055, and this work is licensed under a Creative 
Commons Attribution 4.0 Generic License)

Table 9.1 Different types of commercially available microspheres used in xMAP assaysa

Type of 
microsphere

Size of 
microsphere 
(μm)

Nature of 
microsphere

Maximum 
number of sets

Compatible 
xMAP 
instrument

Type of 
analyte

MicroPlex 5.6 Nonmagnetic 100 Flow 
cytometry-based

All

MagPlex 6.5 Magnetic 500 All xMAP All
MagPlex-TAG 6.5 Magnetic 150 All xMAP Nucleic 

acid
LumAvidin 5.6 Nonmagnetic 100 Flow 

cytometry-based
Proteins

SeroMAP 5.6 Nonmagnetic 100 Flow 
cytometry-based

Proteins

aAdapted and modified from Reslova et al. (2017), https://doi.org/10.3389/fmicb.2017.00055, and 
this work is licensed under a Creative Commons Attribution 4.0 Generic License
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(Fig. 9.2) vary in size and structure by the addition of a magnetite layer (Dunbar and 
Li 2010; Houser 2012; Reslova et al. 2017). The efficiency of washing is greatly 
increased in the xMAP assays using magnetic beads as the magnetic separation step 
augments the elimination of unwanted or unbound constituents of the sample. 
Importantly, the magnetic MagPlex-TAG beads are covalently linked with specific 
24 base pair-(bp)-long anti-TAG oligonucleotides that bind with the target sequences 
with the complementary TAG sequence. It is termed as the xTAG technology and 
optimized to have least cross-reactivity with other non-specific oligonucleotide 
sequences in the sample (Babady et al. 2012; Angeloni et al. 2014).

9.3  Mechanism of Signal Detection in xMAP Instruments

In the Luminex xMAP instruments, the beads are analyzed mostly with two differ-
ent lasers. The inner fluorescent dyes of the beads are excited by red classification 
laser/LED (635 nm) for the specific identification and classification of microsphere 
set based on its spectral signature. The green reporter laser/LED (525–532 nm) rec-
ognizes the fluorescent reporter bound to the captured analyte on the bead surface. 
The emission spectra of both red and green lasers are simultaneously read in 
purpose- designed xMAP readers (Table 9.2). The xMAP instruments differ by their 
mechanisms of fluorescence detection and by the maximum number of samples 
analyzed in a single sample (Angeloni et al. 2014).

The basic MAGPIX xMAP instrument is only compatible with magnetic 
beads such as MagPlex and MagPlex-TAG. The principle of xMAP assay in the 
MAGPIX instrument is based on the immobilization of magnetic beads in the 
monolayer on the magnetic surface (Fig. 9.4). Contrary to the flow-based xMAP 
instruments, the fluorescent imager of the MAGPIX system reads all the micro-
spheres at once. The reading of a 96-well-plate in the MAGPIX system takes 
about 60 min, and the maximum reading capacity is currently limited to 50 bead 
sets (Angeloni et al. 2014).

Table 9.2 The list of Luminex instruments used for xMAP assaysa

Type of xMAP 
instrument

Analytes per 
reaction Detection method

Compatible 
microspheres

Type of 
microplate

Luminex MAGPIX® 50 Immobilization of 
microspheres in 
magnetic field

Magnetic 
microspheres

96-well plate

Luminex100®/200™ 100 (80 with 
MagPlex)

Flow cytometry-based All types of 
microspheres

96-well plate

FlexMAP 3D® 500 Flow cytometry-based All types of 
microspheres

96 and 
384-well 
plate

aAdapted and modified from Reslova et al. (2017), https://doi.org/10.3389/fmicb.2017.00055, and 
this work is licensed under a Creative Commons Attribution 4.0 Generic License
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9.4  Microsphere-Based Multiplex Immunoassay (MBMI)

The concentration or the detection of a particular analyte (protein) in a biological 
sample or solution is done by microsphere-based multiplex immunoassays (MBMIs) 
using an antibody or immunoglobulin (Angeloni et  al. 2014). In conventional 
enzyme-linked immunosorbent assays (ELISA), a single analyte is measured in a 
sample. However, multiplex detection of more than one analyte of interest in a sam-
ple simultaneously is not possible using conventional ELISA (Bokken et al. 2012) 
and requires relatively large volume of sample, negligible non-specific binding or 
increased background. MBMIs are alternative to conventional ELISA, and conven-
tional ELISA assays can easily be converted to the MBMI format using an uncom-
plicated, efficient, and cost-saving method with a superior range and sensitivity 
(Angeloni et al. 2014). The commonly used methods in MBMI are capture sand-
wich (CS), indirect serological assay (ISA), and competitive ELISA. The competi-
tive ELISA (Type I) enables detection of an analyte with a single capture antibody 
linked to the surface of a microsphere and a competitive, labelled antigen reversibly 
linked to the antibody, whereas in the competitive ELISA (Type 2), the assay format 
is reversed with the antigen attached to the microsphere and the antibody labelled 
(Fig. 9.5) (Bjerre et al. 2009).

Fig. 9.4 Principle of MAGPIX fluorescent imager. The immobilized MagPlex microspheres on 
the magnet are recognized by LEDs and recorded as a picture by a CCD camera (LED light- 
emitting diode, CCD charge-coupled device). (Adapted from Reslova et  al. (2017), https://doi.
org/10.3389/fmicb.2017.00055, and this work is licensed under a Creative Commons Attribution 
4.0 Generic License)
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9.5  xMAP Technology in Biomarker Profiling in Rheumatoid 
Arthritis

xMAP technology is an open architecture system offered by Luminex to customers 
and commercial partners to develop multiplex assays in an array of formats for a 
variety of applications (Graham et al. 2019). The xMAP technology is used in many 
different applications such as the identification of disease-specific target proteins 
present in the biotinylated samples using antibody suspension bead arrays (Darmanis 
et al. 2013) (Fig. 9.6). Some of the key applications are the biomarker discovery and 
profiling, vaccine development, mapping signaling networks, transplant medicine 
and HLA testing, pathogen detection, etc. (Dunbar and Hoffmeyer 2013; Reslova 
et al. 2017; Graham et al. 2019).

Here, we describe the use of xMAP technology for the multiplex detection of an 
array of cytokines, chemokines, and growth factors in the serum of patients suffering 
from autoimmune diseases such as rheumatoid arthritis (RA) using microsphere- based 

Fig. 9.5 Principle of microsphere-based multiplex immunoassays. (a) Capture sandwich (CS; 
yellow hexagon  =  target; blue Y  =  capture antibodies; green Y  =  detection antibody; green 
star = fluorescent reporter); (b) indirect serological assay (ISA; yellow hexagon = capture antigen; 
blue Y  =  specific target antibody; green Y  =  detection anti-antibody; green star  =  fluorescent 
reporter). (c) Competitive ELISA (Type I) enables detection of an analyte with a single capture 
antibody linked to the surface of a microsphere and a competitive, labelled antigen reversibly 
linked to the antibody. (d) In the competitive ELISA (Type 2), the assay format is reversed with the 
antigen attached to the microsphere and the antibody labelled. (Adapted and modified from both 
Angeloni et  al. (2014) and Reslova et  al. (2017), and this work is licensed under a Creative 
Commons Attribution 4.0 Generic License)
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multiplex immunoassay formats (MBMI) described above (Bahlas et  al. 2019). 
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease demonstrated by 
synovitis and joint destruction associated with comorbidities affecting the bone, brain, 
lungs, and underlying vasculature (Smolen et al. 2016; McInnes and Schett 2017). RA 
could gradually lead to permanent disability and severely affects the socioeconomic 
status of these patients (Siebert et al. 2015; McInnes and Schett 2017; Firestein and 
McInnes 2017). An array of genetic and environmental factors are responsible for the 
enteropathogenesis of RA, mainly by increasing the biosynthesis of proinflammatory 
cytokines compared to anti-inflammatory cytokines both systemically in the blood and 
the synovial membranes of the joints (Siebert et al. 2015; McInnes et al. 2016; McInnes 
and Schett 2017; Firestein and McInnes 2017). Studies have shown that the levels of 
proinflammatory mediators are significantly higher than the anti-inflammatory 
 mediators in the RA synovial membrane and potentiate the damage of adjacent carti-
lages and bone erosion (Siebert et al. 2015; McInnes and Schett 2017; Firestein and 
McInnes 2017).

Fig. 9.6 The experimental steps involved in the antibody suspension bead arrays using biotinyl-
ated samples. The samples were distributed into the microtiter plates in a defined and randomized 
manner. (a) The proteins in the samples are labelled with biotin, (b) and beads with distinct color 
codes are coupled with antibodies to create a suspension bead array. (c) Beads and samples are 
mixed for incubation after the samples have been heat treated in assay buffer to expose the epit-
opes. (d) The unbound proteins and antibodies are removed, and fluorescent (phycoerythrin) strep-
tavidin is added for detection. (d) Each bead type is then identified via a red laser, and the emitted 
reporter fluorescence of each bead of the same type is determined using a green laser. The mean 
fluorescence intensity (MFI) for each bead type is a measure of the presence and amount of a spe-
cific protein present in the sample that has reacted with its corresponding antibody, attached to the 
beads (e) using the Luminex instrument. (Adapted and modified from Darmanis et  al. (2013), 
https://doi.org/10.1371/journal.pone.0081712.g003, and this work is licensed under a Creative 
Commons Attribution 2.0 Generic License)
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We have recently measured an array of cytokines, chemokines, and growth fac-
tors by the Human Cytokine Magnetic 30-Plex Panel (LHC6003M) according to the 
manufacturer’s instructions (Thermo Fisher Scientific, USA). The plasma samples 
of healthy volunteers (n = 10), osteoarthritis (n = 10), and RA patients (n = 25) who 
met the diagnostic criteria of 2010 ACR/EULAR (5) (Bahlas et al. 2019) were used 
for the xMAP assay using the MAGPIX instrument (Luminex Corporation, USA). 
The Human Cytokine Magnetic 30-Plex Panel consists of an array of cytokines, 
chemokines, and growth factors as listed in Table 9.3.

The raw data obtained for all the 30 different analytes was analyzed by the 
Luminex xPONENT® multiplex assay analysis software (Luminex Corporation, 
USA) to calculate the absolute concentration. Additionally, the concentration of 
each analyte determined was further analyzed using GraphPad Prism (Version 7) 
software to compute the statistical significance using student’s unpaired t-Test (two- 
tailed) (Figs. 9.7 and 9.8). The P values ≤0.05 were considered to be statistically 
significant (Bahlas et al. 2019). Besides, there are other software packages such as 
R’s drLumi package to read and analyze xPONENT®-derived multiplexed data 
(Breen 2017).

9.6  Functional Bioinformatics Analysis of xMAP Data

One of the major challenges encountered by the research and development sectors 
of pharmaceutical companies is the construction of cellular and molecular signaling 
networks and the identification of disease and drug-specific signatures for the 

Table 9.3 The list of 
analytes present in the 
LHC6003M xMAP kita

Cytokines Chemokines Growth factors

G-CSF Eotaxin EGF
GM-CSF IP-10 FGF-basic
IFN-α MCP-1 HGF
IFN-γ MIG VEGF
IL-1β MIP-1α
IL-1RA MIP-1β
IL-2 RANTES
IL-2R
IL-4
IL-5
IL-6
IL-7
IL-8
IL-10
IL-12 (p40/p70)
IL-13

aAdapted from Thermo Fisher Scientific, USA
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Fig. 9.7 The levels of (a) Th1cytokines, (b) Th2 cytokines, and (c) chemokines in the plasma of 
RA patients with active disease, OA patients, and normal controls. The plasma concentrations (pg/
mL) of all the analytes are expressed as mean ± SD. P < 0.05 was considered to be statistically 
significant (Bahlas et al. 2019)
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Fig. 9.7 (continued)

development of personalized therapies. The differentially regulated pathways or 
signaling maps are usually obtained from manual literature search, automated text 
mining algorithms, or canonical pathway databases (Alexopoulos et al. 2010; Wang 
et al. 2015) and could be used in combination with gene or miRNA expression or 
mass spectrometry data to deduce pathways specific to cell types or diseases 
(Alexopoulos et  al. 2010). The gene or pathway enrichment analyses are mostly 
done by the Database for Annotation, Visualization, and Integrated Discovery 
(DAVID), Ingenuity Pathway Analysis (IPA), Pathway Studio, Reactome, Kyoto 
Encyclopedia of Genes and Genomes (KEGG), STRING, Path Visio, etc.(Pushparaj 
2019). Therefore, the differentially regulated cytokines, chemokines, and growth 
factors identified through xMAP immunoassays can be analyzed using free online 
databases such as DAVID for functional annotation and pathway enrichment analy-
sis or using commercially available softwares such as IPA and Pathway Studio to 
get more insights on the role(s) of these soluble mediators in health and disease. 
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Besides, heatmap and hierarchical cluster analysis of differentially regulated cyto-
kines, chemokines, and growth factors derived from xMAP immunoassays can be 
performed using Genesis Software (Fig. 9.9) (Quackenbush 2002; Pushparaj 2019).

9.7  Conclusions

xMAP technology is a flexible and open multiplexing platform used in academia 
and industry to develop assays for both gene and protein expression. Contrary to 
conventional technologies, xMAP technology can easily be scaled up or down the 
number of analytes or biomarkers studied and to customize wide variety of 

Fig. 9.8 The levels of (d) growth factors, (e) anti-inflammatory cytokines, and (f) Th17 and other 
cytokines in the plasma of RA patients with active disease, OA patients, and normal controls. The 
plasma concentrations (pg/mL) of all the analytes are expressed as mean ± SD. P < 0.05 was con-
sidered to be statistically significant (Bahlas et al. 2019)
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Fig. 9.9 Heatmap and hierarchical cluster analysis using Genesis Software of the cytokines, che-
mokines, and growth factors in the cell culture supernatant of OVCAR3 cells following treatment 
with human Wharton’s jelly stem cell (hWJSC) extracts such as the conditioned medium (hWJSC-
 CM) (50%), cell lysate (hWJSC-CL) (10 μg/mL), and paclitaxel (5 nM) for 48 h and analyzed by 
the 30plex xMAP assay using MAGPIX. Heatmap of the differentially regulated (a) proinflam-
matory cytokines, (b) anti-inflammatory cytokines, (c) chemokines, and (d) growth factors. (e) 
Hierarchical clustering of the differentially regulated cytokines, chemokines, and growth factors in 
the treatment groups compared to the control (Kalamegam et al. 2019), https://doi.org/10.3892/
ol.2019.10094)
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cost- effective bioassays. xMAP technology uses cutting-edge fluidics, optics, and 
digital signal processing combined with patented microsphere technology. The mul-
tiplexing of 1 to 500 analytes can be performed rapidly with precision in a single 
sample with less sample volume which is suitable for wide variety of applications 
such as biomarker discovery and validation, vaccine development, mapping signal-
ing networks, transplant medicine and HLA testing, pathogen detection, etc. 
Besides, an ever-increasing menu of xMAP assays for other applications is avail-
able from the Luminex Corporation, USA, and its commercial partners (Angeloni 
et al. 2014; Graham et al. 2019). More importantly, the differentially regulated ana-
lytes evaluated by xMAP assays can be further subjected to functional bioinformat-
ics analysis using both open source and commercially available software to decipher 
cellular and molecular signaling networks and the identification disease and drug-
specific signatures for the development of personalized medicine.
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10.1  Introduction

Nuclear reprogramming offers unique opportunity to modify the fate of the somatic 
cells and stem cells to obtain the pluripotent stem cells. These reprogrammed cells 
can be directed to specific cell lineage, by targeted differentiation, for their applica-
tion in cell-based therapy and tissue engineering (Yamanaka and Blau 2010). Since 
the first report of somatic cell reprogramming by somatic cell nuclear transfer 
(SCNT) in the year 1997 (Schnieke et al. 1997), the technologies for nuclear repro-
gramming have grown exponentially and have reached a stage wherein somatic 
cells can be directly reprogrammed by introduction of pluripotent Oct4, Sox2, 
Nanog, and Lin28 (OSNL) or Oct4, Sox2, Klf4, and c-Myc (OSKM) factors to 
produce induced pluripotent stem (iPS) cells (Takahashi and Yamanaka 2006). 
More recently, small molecules such as epigenetic modifiers (e.g., valproic acid, 
TSA, 5-Aza-C, BIX, RG108, etc.) and modulators of cell signaling (e.g., pluripotin, 
reversine, PD0325901, kenpaullone, BIM, BayK, etc.) have been identified, which 
can either alter the fate of the somatic cells or, at least, enhance the efficiency of 
nuclear reprogramming (Li and Ding 2010). The later approach has drawn signifi-
cant industrial attention as it paved the way to chemically synthesize newer mole-
cules for generating pluripotent stem cells by nuclear reprogramming. However, a 
clear molecular mechanism of nuclear reprogramming remains poorly elusive. 
Furthermore, pluripotent cells, including iPS cells, generated through pluripotent 
factors and/or small molecular reprogramming are known to show epigenetic errors 
that deter their clinical application. Here, mainly we are focusing on spermatogonial 
stem cells because very less amount of work has been done and reprogramming is 
still elusive. Spermatogonial stem cells (SSCs) can divide themselves and result in 
an immense number of promising progenitors which were intended to differentiate 
into spermatozoa throughout the life span (Kubota et al. 2004; Hess et al. 2006) and 
be used for the treatment of male infertility. Due to the capacity of unlimited self- 
renewal, these cells are studied in long-term maintenance of SSC in culture condi-
tion in the laboratory for various applications like tissue engineering and transgenesis 
(Honaramooz et al. 2008; Hamra et al. 2005). SSCs were cultured with unknown 
media composition with addition of growth factors, such as glial cell line-derived 
neurotrophic factor (GDNF) (de Rooij 2006; Kanatsu-Shinohara et al. 2004). SSCs 
were also called as germ line stem cells (GSCs) which can be reprogrammed into 
multipotent germ line stem cells (mGSs). In spite of their spermatogonial origin, 
mGS cells proliferate without GDNF and produce teratomas in seminiferous tubules 
(Kanatsu-Shinohara et al. 2004). The absence of GDNF affects the growth charac-
teristics of mGS cells (Zechner et al. 2009), so directly or indirectly GDNFs play a 
vital role in the formation mGS cells. Glial cell line-derived neurotrophic factor 
(GDNF) is a key player in restoration and regeneration of the damaged neurons. It 
has the ability to improve the terminals, the sprouting ends of dopamine neurons, 
where the dopamine brain cells are those pivotal cells lost in people with Parkinson’s 
disease leading to the stiffness, slowness, and tremor (Lin et al. 1993; Hoffer et al. 
1994; Beck et al. 1995; Bowenkamp et al. 1995; Hudson et al. 1995; Sauer et al. 1995; 
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Gash et al. 1996; Hebert et al. 1996). Most of the community of preclinical labora-
tory-based scientists recognized that growth factors probably are the most likely 
candidates to be used as first-line therapy to slow the progression of Parkinson’s 
disease. GDNF is considered to be an important therapeutic target for various neu-
rological disorders like Parkinson’s disease (Kordower et al. 2000; Bensadoun et al. 
2000), and it is also known to be essential for proliferation and self-renewal of 
spermatogonial stem cells (SSCs) in testes. Sertoli cells, its receptors, and brain 
cells secrete the GDNF; this binds to GFR alpha 1 expressed in undifferentiated 
spermatogonia in testes (Meng et al. 2000; Jung et al. 2010). Apart from these, an 
agonist N4-{7-chloro-2-[(E)-2-(2-chloro-phenyl)-vinyl]-quinolin-4- yl}-N1,N1-
diethyl-pentane-1,4-diamine (XIB4035) which mimics the effect of GDNF in 
neuro-2A cells was found from reported literature, and it was used as a model to 
study the related functions mediated through GFR alpha 1 protein (Tokugawa et al. 
2003). In this current study, GFR alpha 1 from a position 145–425 of the mouse 
(Mus musculus) was retrieved and modeled using a template in SwissModel server. 
Then the model was docked with non-peptidyl small molecule XIB4035. The gen-
erated model was subjected to structure-based pharmacophore modeling. The phar-
macophore features were identified and saved as query file for virtual screening. 
After screening, it gives some hits which have similar pharmacophoric features. 
From generated data, the hits were docked with the GFR alpha 1 protein to identify 
the novel agonist molecule.

10.2  Methods

10.2.1  Sequence Retrieval, Homology Modeling, and Structure 
Analysis

The binding domain (145–425) of GFR alpha 1 protein sequence of mouse (Mus 
musculus) with accession number P97785 was retrieved from UniProtKB (Arnold 
et al. 2006) (http://www.uniprot.org/). The protein sequence was submitted to auto-
mated model building server SwissModel (Cochrane and Galperin 2009) (https://
swissmodel.expasy.org/interactive). The various physicochemical properties of the 
protein were studied by using ProtParam (Gasteiger et al. 2005) (http://web.expasy.
org/protparam/).

10.2.2  Model Validation

Functional analysis and validation of the generated model was predicted using 
ProFunc (Laskowski et  al. 2005) web server (http://www.ebi.ac.uk/thornton-srv/
databases/profunc/). Ramachandran plot using RAMPAGE was studied (http://mor-
dred.bioc.cam.ac.uk/~rapper/rampage.php) online server (Lovell et al. 2003).
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10.2.3  Molecular Docking

The two-dimensional (2D) structure of N4-{7-chloro-2-[(E)-2-(2-chloro--phenyl)-
vinyl]-quinolin-4-yl}-N1, N1-diethyl-pentane-1, 4-diamine (XIB4035) (Fig.  10.1) 
was retrieved from PubChem (Kim et al. 2015) database (https://pubchem.ncbi.nlm.
nih.gov/). Then, the retrieved ligand was docked with the receptor of three- 
dimensional (3D) structure of GFR alpha 1 protein using PATCHDOCK (Duhovny 
et  al. 2002; Schneidman-Duhovny et  al. 2005) (http://bioinfo3d.cs.tau.ac.il/
PatchDock/) online web server which accesses the surface flexibility. The best ten 
results will be submitted to the FireDock (Andrusier et al. 2007; Mashiach et al. 
2008) (http://bioinfo3d.cs.tau.ac.il/FireDock/) for the refinement. Interactions of 
the best complex with less global energy were analyzed using LIGPLOT+ (Laskowski 
and Swindells 2011; Wallace et al. 1995).

10.2.4  Pharmacophore Modeling and Structure-Based 
Pharmacophore Modeling

Pharmacophore modeling is a type of modeling in which the necessary features of 
a molecule are identified; this is also crucial for the molecular ligand recognition by 
a biological macromolecule. In pharmacophore modeling, training set molecule 
consider pharmacophore features such as the hydrogen-bond acceptor (HBA), the 
hydrogen-bond donor (HBD), ring aromatic (RA), hydrophobic (HY), positive ion-
izable (PI), negative ionizable (NI). In structure-based pharmacophore modeling, 
the pharmacophore models were generated from the receptor binding site. The phar-
macophore features of GFR alpha 1 protein were identified using biophore feature 
analysis in BioPredicta module of VLifeMDS (VLife 2008).

10.2.5  Database Preparation and Virtual Screening 
and Docking Analysis

The molecules dataset in sdf format were retrieved from DrugBank. After retrieving 
the dataset by using VLife engine module, all the SDF molecules dataset were 
imported and converted from 2D to 3D mol2 format. The first 100 molecules were 
taken as a database for virtual screening. MolSign module was used for the virtual 
screening of database to screen the novel lead molecules having same pharmacoph-
oric features present in reference molecule. Batch grip-based docking analysis of 
identified novel lead molecules was done using BioPredicta module in VLifeMDS 
(VLife 2008) (Fig. 10.2).
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10.3  Results and Discussion

10.3.1  Modeling and Structure Analysis

The retrieved protein sequence was modeled by SwissModel with template 3fub.2.A 
to build a model (Fig. 10.3). The model was built by the SwissModel (Cochrane and 
Galperin 2009) server homology modeling pipeline for the top-ranking templates 
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Fig. 10.1 Two- 
dimensional (2d) structure 
of XIB4035

Fig. 10.2 Predetermined cavity of pharmacophore model of protein GFR alpha 1
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using ProMod3. The GFR alpha 1 protein was may be unstable due to high instabil-
ity index (II) (53.30) which is greater than 40. The aliphatic index (AI) was 64.23, 
which indicates the increase of thermostability of the proteins. The grand average of 
hydrophobicity (GRAVY) index of GFR alpha 1 was found to be −0.426, which 
indicated the interaction of water molecule (Fig. 10.4).

10.3.2  Model Validation

Ramachandran Plot analysis using RAMPAGE (Lovell et al. 2003) showed that the 
GFR alpha 1 model had 95.4% residues in most favored region {phi (ϕ) and psi (φ)} 
angles, which helped to know that the generated model was a good model (Fig. 10.5) 
(Table 10.1).

Fig. 10.3 Homology modeling of GFR alpha1 domain region by SwissModel, viewed in discov-
ery studio 3.5v
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Fig. 10.4 Homology modeling of GFR alpha 1 domain region shown in solid ribbon, n-terminal 
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10.3.3  Three-Dimensional Architecture of GFR Alpha 1

The GFR alpha 1 comprises 113 α-helix (56.8% amino acid), 4 β-sheets (2.0%), 6 
strands (3.0%), and 76 (38.2%) other secondary elements. Further, the structure also 
contains 1 β-sheet, 1 β-hairpin, 2 strands, 13 helices, 23 helix-helix interaction, 7 β 
turns, 1 ϒ turn, and 10 disulfides.

10.3.4  Molecular Docking

Docking studies are very crucial for visualizing the interaction between the ligand 
and receptor. Docking studies were done primarily using PATCHDOCK (Duhovny 
et al. 2002; Schneidman-Duhovny et al. 2005), which accesses the surface flexibil-
ity addresses by intermolecular penetration. Docking between the ligand and the 
generated protein model, which obtained the ligand bound to the specific binding 
site of the protein to show as an agonist on GDNF receptor, and induce signal 
transduction mechanism through GFR alpha 1 in mouse cells. The best dock model 
was retrieved from FireDock (Andrusier et al. 2007; Mashiach et al. 2008) with 
low global energy (−40.73 Kcal/mol) shown in Fig. 10.6. To know the interaction, 
recognition site selected the GFR alpha 1-XIB4035 complex in LIGPLOT+ 
(Laskowski and Swindells 2011; Wallace et al. 1995), which shows all the hydro-
gen bonds and hydrophobic interactions between receptor and ligand. It shows one 
hydrogen bond between receptor (Arg 27) and ligand in the distance (2.83) 
(Figs. 10.7, 10.8, and 10.9).

Table 10.1 Ramachandran 
plot analysis with parameters Ramachandran plot analysis parameters

No of residues (in 
%)

No of residues and percentage in most 
favored regions

188 (95.4%)

No of residues and percentage in 
additionally allowed regions

9 (4.6%)

No of residues and percentage in 
disallowed region

0 (0.0%)
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Fig. 10.6 A 3d model of GFR alpha1 binding with XIB4035

Fig. 10.7 A 3d model of GFR alpha1 binding with XIB4035 in PyMol
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10.3.5  Structure-Based Pharmacophore (SBP) Modeling

The modeled protein GFR alpha 1 was subjected to SBP to identify different phar-
macophore features; four query pharmacophoric features (three hydrogen-bond 
donors, one aliphatic group) were generated. Six common amino acid residues 
(CYS 70A, SER 71A, CYS 72A, GLN 199A, GLY 202A, ASN 203A) were present 
near to the pharmacophore features. The abovementioned four pharmacophoric fea-
tures were saved as a query file for virtual screening, as shown in Fig. 10.10.

Fig. 10.8 A 2d model of GFR alpha1 interacting with XIB4035 showing hydrogen bond and 
hydrophobic interactions
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10.3.6  Virtual Screening and Docking Analysis

The query file which was obtained from SBP was screened against the prepared data-
base to identify the novel molecules which may have agonist activity. Thirty- nine hits 
were identified having three common pharmacophore features which include three 
hydrogen bond donors shown in Table 10.2. The distance between the common iden-
tified pharmacophoric features in 39 hit molecules is shown in Fig. 10.11. GRIP-
based batch docking analysis of 39 novel molecules using BioPredicta module in 
VLifeMDS (VLife 2008) reveals that structure eight p10 molecule out of 39 mole-
cules shows the best conformations with dock score (−151.883564 kcal/mol) and 
shows two hydrogen bonds between receptor and ligand (Figs. 10.12 and 10.13).

Fig. 10.9 A 2d model of GFR alpha1 bind with XIB4035, showing covalent bond interactions

10 Design and Development of Small Molecules from Somatic, Stem Cell…



178

Table 10.2 Showing different pharmacophore features

Biophore features
Number of 
features

Aromatic
AroC Aliphatic Positive Negative HAc HDr Mols

HDr, HDr, HDr 3 0 0 0 0 0 3 39
HAc, HDr, HDr 3 0 0 0 0 1 2 38
HAc, HDr, HDr 3 0 0 0 0 1 2 13
HDr, HDr, AroC 3 1 0 0 0 0 2 12
HAC, HDr, HDr 3 0 0 0 0 1 2 10
HAC, HDr, HDr, 
HDr

4 0 0 0 0 1 3 3

HDr, HDr, AroC 3 1 0 0 0 0 2 1

Fig. 10.10 Pharmacophore 
features of GFR alpha 1
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Fig. 10.11 Pharmacophore features of GFR alpha 1 with distances

Fig. 10.12 Alignment of 39 molecules which have same pharmacophore features shown in  
VLife 4.6v
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10.4  Conclusion

GDNF and its receptors GFR alpha 1 are expressed in undifferentiated spermatogo-
nia in testis. An agonist was found from reported literature XIB4035 (N4-{7-chloro- 
2-[(E)-2-(2-chloro-phenyl)-vinyl]-quinolin-4-yl}-N1,N1-diethyl-pentane-1,4- 
diamine). By using structural biology tools, the gfralpha1 protein was modeled by 

Fig. 10.13 Interaction of structure 8_p 10 with GFR alpha 1
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using SwissModel. The docking analysis of GFR alpha 1with XIB4035 revealed 
that it has the strong binding affinity as there is one hydrogen bond between ligand 
XIB4035 with the residues ARG27 of the GFR alpha 1 protein. The structural biol-
ogy tools make it easier for the determination of pharmacophore modeling of pro-
tein GFR alpha 1. Structure-based pharmacophore modeling identified features like 
three hydrogen bonds and one aliphatic group. The pharmacophore model was 
screened against DrugBank database for virtual screening. From the virtual screen-
ing, 39 hit molecules were identified and were again docked by VLifeMDS. One 
novel molecule having docking score of −151.883564 Kcal/mol was identified. 
From the earlier study, we can tell that identified novel molecule may have a similar 
effect like GDNF in reprogramming of spermatogonial stem cells and may also be 
used as therapeutic target for Parkinson’s disease.
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Abbreviations
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11.1  Introduction

A potential drug molecule is one that effectively binds and modulates a molecular 
target in such a manner that is less toxic, safe and effective in the disease context for 
which it is doled out. The drug discovery development is a complex process, which 
can take 12–15 years and entail costs of more than $1 billion. In the modern era of 
drug discovery, development involves the cooperation of many disciplines such as 
chemistry, biology, mathematics and computer science (Herrling 2005). A chemical 
moiety with significant therapeutic value is extensively analyzed for its safety and 
efficacy before it is marketed. The multistep process, termed ‘drug discovery,’ 
includes identification and validation of the drug target and of the lead molecule. 
The drug development process is categorized, basically, into the two major phases 
of drug discovery and drug development. The drug discovery process involves two 
important approches; identification and validation of a potential disease-oriented 
target molecule and another approach is phenotypic screening to identify and refine 
the potential small molecules that can interact with target (Ernst and Obrecht 2008). 
This molecular interaction can be to block, promote or modify the activity of the 
target. In recent years, the drug discovery process has undergone radical changes 
due to the entry of various novel techniques in genomics; proteomics have been 
developed in drug target identification and validation has become more specific 
(Umashankar and Gurunathan 2015). In the past decade, emergence of microbial 
resistance (Amini and Tavazoie 2011) and complicated new diseases and unex-
pected adverse side effects have accelerated the identification of potent lead mole-
cules (Ashrafuzzaman 2014). Infectious diseases, particularly Gram-positive 
bacterial infection, are among the major serious threats to public health worldwide: 
they are difficult to treat and are associated with high morbidity and mortality rates. 
Gram-negative bacteria are highly adaptive pathogens that produce resistance to 
antibiotics through several mechanisms. The production of β-lactamases and hydro-
lyzation of the β-lactam ring represents the most common resistant mechanism in 
Gram-negative bacteria against β-lactam antibiotics. Most bacteria can develop and 
adapt themselves according to their surroundings and subsequently develop several 
protective mechanisms to reduce their susceptibility to antibiotics. In some cases, 
bacteria allow horizontal gene transfer within and between species to become more 
resistant to antibiotics (Palumbi 2001; Thomas and Nielsen 2005). This horizontal 
gene transfer provides the most important mechanism to accelerate the spectrum of 
β-lactamases (ESBLs), causing severe problems in drug resistant in the health care 
world (Giske et  al. 2008; Hawkey and Jones 2009). Bacterial strains capable of 
producing ESBLs are resistant to several antibiotics, including penicillins and ceph-
alosporins, and they are resistant to other antibacterials such as quinolones and ami-
noglycosides. This antibiotic resistance shows a strong correlation between the 
segment of the population that uses antibiotics and the prevalence of antibiotic- 
resistant bacteria in the same population; the correlation has been found on both 
national and regional levels (Bronzwaer et al. 2002; Albrich et al. 2004).
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11.2  Global Battle Against Infectious Diseases

In the middle of the seventeenth century, smallpox infection was the most fatal and 
feared of diseases. The discovery of penicillin developed a new generation of anti-
biotics that cured a wide range of infectious diseases. Several researches focused 
on understanding what mechanisms the microbes used to survive antibiotics, and 
several pharmaceutical and biotech companies nearly stampeded to identify a sig-
nificant bacterial target and to create novel methodologies against the bacteria. 
Recent evidence suggests that mutation with humans is not the only way bacteria 
develop antibiotic resistance; they can also transfer genetic instructions for avoid-
ing an antibiotic to other bacterial species. In the late 1800s, pathogen-specific 
medical diagnosis lent a hand to the identification of microbes that caused specific 
diseases. Molecular genetics technique, polymerase chain reaction (PCR) and, 
more recently, sophisticated, high throughput rapid sequencing of the genome of 
the pathogen are all used to observe the individual genetic variants ,facilitating 
identification of the familial base of drug immunity. Other factor-based, diagnostic 
tools including microchip and serological techniques and enzyme-linked immuno-
sorbent assay can be more sensitive than traditional techniques in finding and mea-
suring antibodies to pathogens (Pallen et  al. 2010). Current data suggest that 
Gram-positive bacteria cause 45–70% of infectious diseases and are behind the 
increase in rates of drug resistance in many infections. The pace of drug resistance 
among bacterial pathogens is increasing; virtually no new antibiotics are being 
developed (Spellberg et al. 2004). Gram-positive organisms such as the bacteria of 
the genera Staphylococcus, Streptococcus and Enterococcus are the predominant 
bacterial spp causing clinical infection, hence, recent attention has focused on the 
multi-drug resistance (MDR) and antimicrobial resistance (AMR) (Menichetti 
2005; Doernberg et al. 2017).

Sulfonamide synthetic antimetabolites were first used clinically in 1932 for a 
wide range of both Gram-negative and Gram-positive bacteria. These synthetic 
metabolites inhibit dihydropteroate synthetase leads to repressed DNA replication. 
Until 1938, β-lactam was another widely used antibiotic. The 28 members that 
include antibiotics/β-lactamase inhibitor combinations are broadly classified into 
three subclasses: penicillins, cephalosporins and carbapenems, which are critically 
used in very broad-spectrum activity against most aerobic and anaerobic Gram- 
positive and Gram-negative bacteria (Walsh 2003; Collignon et  al. 2009; Lewis 
2013). Recently, glycopeptides like vancomycin (VANC) and teicoplanin (TEIC) 
have been widely used against Gram-positive bacteria; these share a mechanism of 
natural process similar to that of β-lactams, except their interruption on cell wall 
synthesis via an interaction with the D-alanyl-D-alanine (DADA) moiety of pepti-
doglycan precursors inhibits the cross-linking stabilization step in bacterial cell wall 
formation (Malabarba and Goldstein 2005). The cyclic lipopeptide daptomycin has 
an extensive range of activity on Gram-positive bacterial infection and also on 
MRSA. Structurally, daptomycin comprises a 13-member hydrophobic polypeptide 
with a lipophilic side chain having a unique mechanism of natural process, which is 
leads insertion of the lipophilic region into the bacterial cell wall, oligomerizing 
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into pore-like constructions, through which a significant efflux of potassium ions 
results in rapid bacterial cell death (Silverman et al. 2003; Steenbergen et al. 2005).

11.3  Methods in Drug Design

Drug development commences with the identification of a molecular target and lead 
molecules followed by lead optimization and preclinical in vitro and in vivo studies 
to recognize potent compounds that fulfill the primary criteria for the drug develop-
ment (Bleicher et al. 2003). But, the development of lead molecules through in vitro 
and in vivo methods takes a long time and is very expensive (DiMasi et al. 2003); 
hence, in recent years in silico drug designing has been widely used to predict active 
lead molecules. Here, we look at discovery. Traditional drug discovery (in vitro and 
in vivo) requires about 12–14 years and costs up to $1.2–$1.4 billion dollars to get 
a drug from discovery to market (Hileman 2006). About 90% of the drugs entering 
clinical trials fail to obtain FDA approval and reach the consumer market (Tollman 
2001). Lately, high throughput screening (HTS) experiments are used to sort thou-
sands of molecules with robotic automation; however, HTS is still expensive and 
requires a great amount of resources. Therefore, computer-aided drug designing 
(CADD) can cut cost- and time-associated drawbacks and ensure the best possible 
lead compounds are used in animal studies. CADD tools have not merely been 
applied to distinguish potential lead molecules; they can also predict effectiveness 
and possible side effects and aid in improving bioavailability of the possible drug 
molecules (Yang et al. 2016). CADD plays a crucial role in the identification of 
many pharmaceutically available drugs, ones that have obtained FDA approval and 
reached the consumer market (Kitchen et al. 2004; Clark 2006; Talele et al. 2010). 
CADD methods are broadly classified into two categories: structure-based (SB) 
drug discovery and ligand-based (LB) drug discovery.

11.3.1  Structure-Based Drug Design

Structure-based drug design (SBDD) methods are prominent tools in modern medic-
inal chemistry that utilize three-dimensional structural information from biological 
targets (Salum et al. 2008). Understanding the mechanism of small molecule reorga-
nization and interaction with biological macromolecules is of great importance in 
pharmaceutical research and development. In recent years, due to wide range of 
application such as molecular docking, molecular dynamic simulation, and struc-
ture-based virtual screening (SBVS), SBDD has played a crucial role in the identifi-
cation of potential drug molecules against various drug target (Kalyaanamoorthy 
and Chen 2011). In SBDD, binding site topology (including clefts, cavities and sub-
pockets) and the electrostatic properties of the target molecule were carefully exam-
ined (Wilson and Lill 2011).
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SBDD is an iterative method involving multiple steps for finding a lead. The first 
step of SBDD includes the cloning, purification and structure elucidation of the tar-
get proteins or nucleic acid by NMR, X-ray crystallography or homology modeling, 
identification of potential ligand molecules and evaluation of biological properties, 
such as potency, affinity and efficacy, as carried out through various experimental 
analyses (Fang 2012). It also provides the structural descriptions of the target-ligand 
complex for understanding the binding mode and conformations, characterization of 
key molecular interaction, characterization of unknown binding sites, mechanistic 
studies and elucidation of ligand-induced conformational changes (Kahsai et  al. 
2011). Methods used in SBDD such as molecular dynamics give insight into not only 
how ligands bind with target proteins but also consider the target flexibility and inter-
action of pathway. SBDD has contributed to several compounds reaching the clinical 
trial stage and getting FDA approval to go into the market (Burger and Abraham 
2006; Wang et al. 2010; Hanson et al. 2015). Thus, SBDD is a cyclic process consist-
ing of several steps, starting from a known target structure, then going on to several 
in silico studies, which are conducted to identify potential ligands. The mechanism 
of structure-based drug design is explained in Fig. 11.1, which shows the binding site 
feature of the protein (Fig. 11.1a); the available drug molecules displaying the bind-
ing phenomenon with the binding site, with a few empty spaces that may be filled 
with water molecules (Fig. 11.1b); and finally the new drug, designed as per the 
binding site feature that perfectly fits with the binding site (Fig. 11.1c).

11.3.2  Ligand-Based Drug Design (LBDD)

LBDD is an one the often used method in computer aided drug design effectively 
used in the absence of the 3D structure of the target and the binding site is not accu-
rately known, then a ligand-based drug design (LBDD) approach is a popular 

Fig. 11.1 Mechanism of SBDD showing the design of a new molecule as per the binding site 
feature of a protein
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technique in the case of experimentally active compounds that bind to the biological 
target of interest. The common assumption in drug identification is that similar 
compounds with similar chemical properties may exhibit similar biological activity. 
Ligand-based virtual screening (LBVS) is based on the exploration of molecular 
descriptors gathered from known active compounds. In general, similar characteris-
tics of a compound series are identified and subsequently applied as molecular fil-
ters. These filtering methods are used to discover potential lead molecules for 
experimental evaluation and reduce the chemical space to be explored in further 
screening steps (Geppert et al. 2010; Sliwoski et al. 2013). This is the main principle 
and motivation of LBDD, where a compound with interesting biological properties 
can act as template for finding potential lead molecules. Basically, three approaches 
–2D fingerprints, 3D methods and pharmacophores—are widely used for defining 
and quantifying chemical similarity in LBDD.

11.3.2.1  Pharmacophore Modeling

Pharmacophore model prediction  is an essential way to describe those steric and 
electronic features needed for optimal interaction of lead with receptor molecules. 
According to the International Union of Pure and Applied Chemistry (IUPAC), phar-
macophore is “the ensemble of steric and electronic features … necessary to ensure 
the optimal supramolecular interactions with a specific biological target structure 
to trigger or to block its biological activity.” (Kaserer et  al. 2015). In drug dis-
covery approaches with small molecules, it is important to analyze the assignment 
of proper protonation and tautomeric states of the lead molecules. Pharmacophore 
describes a set of interactions required to bind in the cavity of target molecules and 
a set of spatially arranged spheres of a certain type and diameter. These spheres are 
commonly known as pharmacophoric features (Fig. 11.2). They include hydropho-
bic centroids, hydrogen-bond acceptor, hydrogen-bond donor, positively ionizable 
groups and negatively ionizable groups— all common features which target their 

Fig. 11.2 Basic pharmacophore features (a) and (b) show the superimposed lead molecule with 
the pharmacophore model
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corresponding sites. For example, a hydrophobic feature corresponds to hydropho-
bic protein side chains in the cavity; and a hydrogen-bond acceptor feature has a 
hydrogen bond-donating counterpart in the protein (Langer and Hoffmann 2006; 
Wolber and Langer 2005). A pharmacophore model was built from a collection of 
known partial agonists, and it was validated with a newly discovered partial ago-
nist. Pharmacophore models are frequently employed in virtual screening processes 
to find a potential lead molecule. For example, Mustata et al. developed a poten-
tial lead molecule against Myc-Max via a pharmacophore model generated using 
known disruptors. In another study, Petersen et al. identified a novel PPARγ partial 
agonist using a pharmacophore model (Mustata et al. 2009; Petersen et al. 2011). 
Pharmacophore-based screening processes match all the atoms or functional groups 
and the geometric relations between them to the pharmacophore in the query. 
Basically, two steps are involved in a pharmacophore-based search: in the first step, 
software checks all the lead molecules as to whether it has the atom type or func-
tional groups required by the pharmacophore; then it checks whether the spatial 
arrangement of this element matches the query.

2D pharmacophore searching

Searching of a 2D database to find potential lead molecules is one of the crucial 
steps in drug discovery. Pharmacophore-based virtual screening has been used for 
the identification of  potential hit molecules in drug development process. This 
approach can used to screen virtually millions of compounds for hit identification. 
However, problems can arise from substructure when the number of compounds 
identified reaches into the thousands. This problem can be rectified by collecting 
these compounds based on similarity between compound in the database and in the 
query (Vyas et al. 2008). The structure activity relationship of these compounds can 
be generated in these processes even before synthetic pans are made for lead opti-
mization based on the biochemical data (Enyedy et  al. 2003). Beyond structure 
similarity, activity similarity has also been the subject of several studies.

3D pharmacophore searching

3D pharmacophore modeling acts as an efficient filter for virtual screening of large 
compound libraries due its simplicity and abstract nature. The computational com-
plexity of the hit identification process in virtual screening is greatly reduced by the 
sparse pharmacophoric representation of ligand-protein interaction. The generation 
of a query pharmacophore model that specifies the type and geometric constraints 
of the chemical feature is the first step in a typical pharmacophore-based virtual 
screening experiment. Both ligand-based and structure-based models can be created 
and used separately or in combination via parallel virtual screening. Ligand-based 
screening is generally used when crystallographic solution structure or modeled 
structure is lacking. Both ligand-based and structure-based pharmacophores 
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significantly screen the potential novel compounds with similar features and activity 
that can bind the same site of the proteins based on the features of the known com-
pounds as mentioned in the Fig. 11.3. Several software products such as Catalyst, 
Sybyl/Unity, MOE and Phase are widely used methods for ligand-based pharmaco-
phore building. Structure-based methods in pharmacophore modeling have gained 
significant interest in recent years, and several new approaches have been described, 
including the application of pharmacophore fingerprints for lead identification 
(Karnachi and Kulkarni 2006; Langer and Hoffmann 2006).

Fingerprinting

Pharmacophore fingerprints are defined as the binary encoded information about 
the presence or absence of pharmacophore features such as the centers and the three 
inter-center distances between them. By default, the seven center types that are 
probably the most important for the ligand-receptor interactions defined are: 
hydrogen- bond acceptor (A) and donor (D), groups with formal negative (N) and 
positive (P) charges, hydrophobic (H) and aromatic ring (R), and distance in a sin-
gle molecule or a compound collection. Generally, fingerprinting focuses two or 
four-point pharmacophore fingerprints, but a larger number can be used, and utili-
zation of up to nine pharmacophores has been described (Martin and Hoeffel 2000; 
Cato 2000). Traditionally, pharmacophore triplets are a widely used method and are 
most effective in terms of information content versus complexity; they are usually 

Fig. 11.3 Working method of 3D pharmacophore searching against small molecule databases
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generated for a set of compounds instead of an individual one. For each compound, 
the flow energy conformer is calculated by every possible combination of three or 
four features and used to set the corresponding bit in the fingerprint. The obtained 
fingerprint is termed the ‘union key’ (Cato 2000). The generation of pharmaco-
phore fingerprints for proteins with known binding site can be calculated from 
complementary site-points in the binding site. Methods such as ChemProtein mod-
ule of Chem-X or the GRID program are often used for generation of site-points 
using a variety of probe atoms (Mason and Cheney 2000; Mason and Beno 2000). 
Chem-X is one of the most popular software packages. The fingerprinting in this 
module is defined according to all the potential pharmacophores that can be present 
in some low-energy conformer of the molecules. Another method, the Oriented 
Substituent Pharmacophore PRopErtY space (OSPPREYS) approach, introduced 
by Martin and Hoeffel, is aimed towards better representation of diversity and simi-
larity in combinatorial libraries in the 3D pharmacophore space (Martin and Hoeffel 
2000). Pharmacophore fingerprint methods have a wide range of applications; they 
can be used to measure molecular similarity (Willett 2006), to design libraries, to 
assess their diversity and to search them for novel active compounds (Beno and 
Mason 2001).

11.3.2.2  QSAR Modeling

Quantitative structure-activity relationship (QSAR) is a highly popular approach for 
ligand-based drug designing. This method significantly quantifies the correlation 
between the chemical structures of a series of compounds and a chemical or biologi-
cal process. The basic mechanism underlying the QSAR method is that structurally 
similar molecules or those compounds having similar physiochemical properties 
yield similar activity (Akamatsu 2002; Verma and Hansch 2009). The first step of 
developing a QSAR model is identification of a group of chemical entities or poten-
tial lead molecules which show the desired biological activity. The developed QSAR 
model is then used to optimize the active compounds to maximize the relevant activ-
ity, and then it is tested experimentally for the desired activity. Mainly, four steps are 
involved in QSAR model prediction (Fig. 11.4). In the first step, potential lead mol-
ecules are identified with experimentally measured values of the desired biological 
activity. In second step, molecular descriptors associated with various structural and 
physiochemical properties of the molecules are identified, and in the third step, the 
correlation between molecular description and biological activity is discovered to 
explain the variation in activity in the dataset. Finally, the statistical stability and 
predictive power of the QSAR model is tested.

In the classical or the 2D QSAR method, various electronic, hydrophobic and 
steric features are correlated with biological activity for a congeneric series of 
 compounds (Acharya et al. 2011). In the classical method the molecular descriptors 
used for correlation with activity are mostly representative of fragments of the par-
ent molecule. The major advantage of the classical method is that it is more effective 
for a congeneric series of molecules; however, the fragment-based descriptors are 
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usually inadequate to capture 3D conformational features of the crucial step for its 
activity (Winkler 2002; Bernard et al. 2005; González et al. 2009). To describe the 
3D features of molecules the new 3D QSAR method was developed in which vari-
ous geometric, physical characteristics and quantum chemical descriptors are used 
to describe the 3D features of a molecule; those descriptors are then combined to 
create a pharmacophore that can explain the biological activity of ligands (Chang 
and Swaan 2006). Then, a developed pharmacophore model is subjected to stability 
and statistical analysis to obtain the final 3D QSAR model. Several techniques 
including CoMFA, CoMSIA and catalyst are currently used for this drug designing 
approach.

11.3.2.3  CoMFA

Comparative molecular field analysis (CoMFA) is one of the 3D QSAR techniques 
mainly used to describe structure activity relationships in a quantitative manner. In 
this method a set of molecules is identified and aligned based on their 3D structures 
on a 3D grid and the values of steric and electrostatic potential energies are calcu-
lated at each grid point. The identified lead molecules should have a similar binding 
mode (identical binding) to the same kind of receptor. In the next step, a certain 
group of molecules is selected as a training set to derive the CoMFA model. The 
residual molecules are considered a test set, which independently proves the 

Fig. 11.4 Working method of QSAR modeling and predictions
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validity of the derived models. A pharmacophore hypothesis of this method is gen-
erated to orient the superposition of all molecules and to afford a rational and con-
sistent alignment. It calculates the values in each grid point, i.e., the energy of 
molecules via a carbon atom, a positively or negatively charged atom, a hydrogen-
bond donor or acceptor, or a lipophilic probe, correlating these values with the bio-
logical activity. Principle component analysis (PCA) and partial least squares (PLS) 
are the most widely used methods for development of pharmacophore in 
CoMFA. The developed model is then tested for statistical significance and robust-
ness (Gohda et  al. 2000; Akamatsu 2002; Yasuo et  al. 2009). The result of this 
approach can be represented as counter maps that indicate points of the lattice where 
variations in field values are related to variations in biological activity. These maps 
can be used to estimate the regions of molecules where some types of interactions 
have a favorable or unfavorable influence on the biological activity. Recently, sev-
eral modifications have been described which significantly are used as alternatives 
to CoMFA (Sen et al. 2012).

11.3.2.4  Comparative Molecular Similarity Indices Analysis (CoMSIA)

CoMSIA is another 3D QSAR method, introduced by Klebe and his coworkers 
(1994) based on the calculation of similarity indices between the alignment’s mol-
ecules and a common probe atom placed at the interaction grid. Most of the features 
of CoMSIA are similar to CoMFA; however, there are differences: The molecular 
field expression includes five different properties such as hydrophobic, hydrogen- 
bond donor and acceptor terms in addition to steric and coulombic contributions, 
and it calculates similarity indices instead of interaction energies by comparing 
each ligand molecule with a common probe. The statical evaluation of these field 
properties are correlated with the biological property by PLS analysis, but the coun-
ter maps are more contiguous and easier to interpret in CoMSIA because they are 
no cut-off values (Flower 2002; Klebe et al. 1994). To calculate the similarity indi-
ces, a Gaussian-type functional form is used to describe steric, electrostatic and 
hydrophobic compounds of the energy function, and it avoids using the arbitrary 
cut-off value for the energy calculation (Acharya et al. 2011). The Gaussian func-
tion also provides a smoother description of potential energy in regions near the van 
der Waals radius atom (Klebe et al. 1994).

11.4  Virtual Screening (VS) for Lead Discovery

The discovery of novel leads with potential interaction with targets is one of the 
important steps in drug discovery. This approach is conventionally achieved by wet- 
lab high throughput screening (HTS) in many pharmaceutical industries, but due to 
the high cost and low hit rate, the alternative method is developed with broad appli-
cation of the cheaper and faster screening of in silico approaches (Clark 2008; 
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Ripphausen et  al. 2010). Alternative virtual screening (VS) uses computational 
power to test a large set of small molecules in a limited time at low cost. VS is a 
stepwise process with a cascade of sequential filters able to narrow down and choose 
a set of lead-like hits with potential biological activity against intended drug targets. 
It can be broadly classified into two categories, ligand-based virtual screening 
(LBVS) and structure-based virtual screening (SBVS). A broad range of computa-
tional techniques that can be applied in this process includes drug likeness screen-
ing, counting scheme, functional group filters, topological drug classification, 
pharmacophore points filter and pharmacophore-based virtual screening. Molecular 
docking is a computationally intensive method that has been applied to very large 
databases of chemical structures.

Protein-ligand docking has become one of the widely used tools in modern drug 
discovery approaches to predict the most likely binding mode of small molecules at 
a particular receptor to explore specific interactions that may be formed and to esti-
mate ligand-binding affinity. A number of protein-ligand methods are available to 
date, from academic groups to commercial software vendors. The binding free 
energy between protein and ligand molecules employs rather heuristic terms and 
these functions are referred as scoring function. Scoring functions is a very impor-
tant step, which includes protein preparation, ligand database preparation, docking 
calculation and post processing. Basically, the scoring process composed of three 
different aspects relevant to docking and design. The first aspect is the ranking of 
the conformations generated by the docking research for one ligand interacting with 
a given protein; this aspect is crucial for detecting the binding mode that best 
approximates the experimentally observed situation. The second aspect is ranking 
the different ligands with respect to binding to one protein; that is, prioritizing 
ligands according to their affinity, which is essential in virtual screening  and 
the third aspect is ranking one or different ligands with respect to their binding affin-
ity to different compounds which is essential for the consideration of selectivity and 
specificity of ligands (Leach and Hann 2000; Lewis et al. 2000). The amount and 
quality of available information on the target protein is one of the key factors in 
designing a virtual screening project (Klebe 2006). The information on the coordi-
nates of the features of the 3D structure of the known targets is valuable data and 
can be used to improve the quality of the results. The predictions of 3D structure of 
biomolecules are obtained by the three exemplary methods of NMR spectroscopy, 
X-ray crystallography and homology modeling. Currently, PDB contains more than 
70,000 experimentally solved 3D structures of proteins that can be used as targets in 
VS and in homology modeling.

11.4.1  Protein Modeling

Proteins are the fundamental structural elements in living organisms; they act as cata-
lytic agents, signal transmitters, transporters and molecular machines in cells (Nelson 
et  al. 2008). Mostly, most the proteins are not functions individually;  they must 
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interact with other molecules to carry out their cellular roles, if any alteration in the 
protein interface leads to a pathological condition. Hence, the protein interface may 
be used as potential targets for rational drug designing approaches (Rask- Andersen 
et al. 2011; Jubb et al. 2015). Many experimental methods including NMR and X-ray 
crystallography have been used to identify and characterize the protein-protein inter-
face at the level of individual atoms and residues, and various mass spectrometry-
based approaches such as chemical cross-linking and hydrogen/deuterium exchange 
have been used, which typically report the location of interface at lower resolution 
(Hoofnagle et al. 2003; Kaveti and Engen 2006; Gobl et al. 2014; Shi 2014). Though 
these experiments provide valuable knowledge of the protein recognition mecha-
nism, technical challenges such as expressing and purifying aggregation-prone pro-
tein samples, obtaining high quality crystals and protein size constraints are both 
labor-intensive and time-consuming. Hence, in the absence of an experimentally 
determined structure, an alternative computational approach such as comparative or 
homology modeling is used to predict the 3D model of proteins related to at least one 
known protein structure. The model gives the 3D structure based on its alignment to 
one or more known protein structures (Pieper et al. 2002).

11.4.1.1  Homology Modeling

Comparative or homology modeling is one the easiest methods among the three- 
structure prediction approach. In homology modeling, the structure process con-
sists of fold assignment, target-template alignment, model building and model 
evaluation. There are several computer programs and web servers that automate the 
comparative modeling of proteins. Generally, the 3D structure of proteins can be 
achieved by several different approaches and is strongly dependent on the sequence 
identity (SI) or the percentage of identical amino acid residues present among the 
target sequence and their templates (Santos Filho and Alencastro 2003). Ab inito is 
the another method used for prediction of 3D structure of protein and mostly suit-
able, when there is no suitable template with significant sequential identity to the 
target sequence. If the sequence identity between target and template protein is 
above 30%, comparative or homology modeling is a suitable approach (Baker and 
Sali 2001; D’Alfonso et al. 2001). In practice, homology modeling consists of the 
seven important steps, which are template recognition and initial alignment, align-
ment correction, backbone generation, loop modeling, side chain modeling, model 
optimization and model validation (Peitsch et  al. 2000; Westbrook et  al. 2002; 
Orengo et al. 2002; Lo Conte et al. 2002).

Template selection is the initial step in safe homology modeling. The percentage 
of sequence identity between the sequence of interest (query) and a possible tem-
plate can be detected by different software. The template model can be found using 
the query sequence from a database such as the protein data bank (Westbrook et al. 
2002), SCOP (Lo Conte et al. 2002) and CATH (Orengo et al. 2002). Three main 
classes of protein comparison methods are involved in fold identification. Initially, 
the target sequence is subjected to pairwise sequence alignment with each database 
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sequence independently to find its homologous sequence (Fiser 2010). Computational 
programs such as BLAST (Schäffer et al. 2001), FASTA (Srivastava et al. 2009) and 
CDART are frequently used methods for searching the related protein sequence and 
structure of the template. The second class of method employed is a multiple 
sequence alignment profile to compare the sequence using profile analysis profile- 
profile comparisons, Hidden Markov models and intermediate sequence search 
(Rychlewski et al. 2000 Yona and Levitt 2002; Zhou and Zhou 2005; Fiser 2010). 
SAM and PSI-BLAST (Karplus et al. 2003) are the most often used programs for 
this approach. The third class of method is also a pairwise alignment method, where 
the target sequence adopts any one of the many known 3D -folds predicted by an 
optimization of the alignment with respect to a structure-dependent scoring function 
independently for each sequence-structure pair; i.e., the target sequence is threaded 
through a library of 3D-folds (Kelley et al. 2000).

The next important step is a sequence alignment between the target and template 
structure. Mostly, fold assignment methods are widely used in this process and it is 
agreed that profile-based alignment produce better quality models than sequence- 
based alignments. In addition, HMM-based alignments produce higher quality 
model than PSSM-based method alignments produced by PSI-BLAST (Yan et al. 
2013). A pairwise comparison of protein sequence and protein structure is matched 
against a library of 3D profiles, this method is also known as fold assignment. Once 
a list of potential templates is obtained using different searching methods, it is nec-
essary to select a potential template more appropriate for the modeling problem. 
The selection of highest sequence similarity is the simplest template selection rule 
for modeling the protein (Retief 2000). After the selection of a potential template, a 
suitable method is used to construct the 3D model from template and alignments. 
Generally rigid-body assembly, segment matching, spatial restraint and artificial 
evolution are used for model building. This rigid-body assembly model relies on the 
natural dissection of the protein into conserved core regions, variable loops that 
connect them and side chains that decorate the backbone. The segment matching 
based on the construction of a model by using a subset of atomic positions from 
template structure and by identifying and assembling short. All atom segments in 
the model that fit  the guiding positions can evaluated by scanning all the known 
protein structures (Xiang 2006). Several programs are available for modeling the 
query sequence. Andrej et al. developed MODELLER, which remains one of the 
most widely used comparative modeling methods. The spatial restraints approach is 
implemented in MODELLER.  It starts by aligning the target sequence with the 
related known 3D structure, and the output obtained by this method contains a 
molecular structure that includes main chain and side chain non-hydrogen atoms 
similar to the known structure. In addition to MODELLER, other tools including 
Swiss Model, RAMP, PrISM, COMPOSER, CONGEN+2 and DISGEO/Co-sensus 
are often used in homology modeling (Schwede et al. 2003; Vyas et al. 2012). This 
homology modeling approach is described in several available programs, both in the 
commercial and public arena.

Model evaluation and validation is necessary to construct a model with good 
stereochemistry; the most important factor in the assessment of constructed mod-
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els is the scoring function, and programs evaluate the location of each residue in a 
model with respect to the expected environment as found in the high-resolution 
X-ray structure. The stereochemistry of the modeled protein can be verified by the 
analysis of parameters like bond lengths and angles, torsional angles and chirality 
of residues using PROCHECK (Laskowski et  al. 1993), WHATCHECK (Hooft 
et al. 1996), PROSA (Sippl 1993) and Molprobity (Davis et al. 2007; Chen et al. 
2010). The reliability of a predicted model is also subject to a check of other 
parameters such as planarity of the peptide bond, chirality of the Cα, bond length 
and angles in the main chain, the planarity of aromatic system, the inner backing 
of globular proteins and the elements of the secondary structure, hydrophobic and 
hydrophilic residues of the predicted protein structure (Schwartz et al. 2001).

11.4.1.2  Threading

In comparative modeling it has been observed that the careful alignment of the cor-
responding amino acid residues of the unknown proteins with a similar sequence, 
often closely related homologues, tend to have similar 3D structure with similar 
conformations. When no sequences are clearly related to the modeling target, the 
alternative method of threading is employed to predict structure via fold recogni-
tion. Protein threading, i.e., sequence-structure alignment, is a promising template 
based on fold recognition, which identifies a suitable fold from a structure library 
for the query sequence and provides an alignment between the query protein and the 
fold (Shan et al. 2001). The word ‘threading’ was first coined by Jones et al. (1992); 
the original term was ‘optimal sequence threading,’ later it shortened ‘threading.’ In 
this method, the query sequence is threaded onto the backbones of the template 
structures. Threading requires four basic components: (1) a template library repre-
senting the 3D protein structure to be used as the template; (2) an energy function to 
describe the fitness of any template; (3) a threading algorithm to search for the low-
est energy among the possible alignments for a given sequence-template pair; (4) a 
criterion to estimate the confidence level of the predicted structure. The treading 
method is further classified into two broad categories, singleton threading, in which 
the threading considers only the preference of amino acids in the query sequence at 
single sites of the templates; and a category that uses the preference on pairs of 
amino acids in the query sequence within contact distance when they are aligned to 
a given structure. Singleton threading constructs a 1D structure profile for each 
amino acid residue position in a template using the 3D structural information, such 
as secondary structure type, degree of environmental polarity and fraction of residue 
surface accessible to solvent. Typically in threading, it is assumed that the back-
bones of the structures are rigid and only the amino acid side chains of the query and 
the template are different. Threading exploits the fact that proteins with different 
functions can possess a similar structure even though they may have little to no 
sequence similarity. Loopp and therader are software (learning, observing and out-
putting protein patterns (Tobi and Elber 2000; Meller and Elber 2001; Teodorescu 
et al. 2004) can be used for structure prediction via fold recognition. Both loop and 
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threader rely on similar strategies, yet they use different energy and scoring func-
tions to generate possible alignments with feasible templates. THREADER uses 
solved protein structure as a scaffold on which to place the target protein sequence 
and analyze secondary structure information about the target sequence used to force 
alignment between predicted secondary structures of the target. It uses a set of basic 
knowledge-based potentials such as statistical data compiled from known protein 
structure and pairwise pseudo-energy to indicate misfolded proteins.

The strategy of LOOPP is similar to THREADER, but it differs in its implemen-
tation of an empirical energy function and its scoring method. The most notable 
aspect of LOOPP is its extensive parameterization, which is based on the structure 
from the protein data bank (PDB) and a database of close to five million decoy 
structures (Berman et al. 2000; Tobi and Elber 2000). Three novel implementations 
of common protocol—the pairwise contact model, gap penalties and Z-scores—dif-
ferentiate LOOPP from other threading methodologies. It creates a new pairwise 
interaction model (empirical energy function) acting as the key to devising a truly 
novel threading algorithm. Basically, two main types of empirical energy functions 
exist in this method: (1) those that pairwise residues contacts for residues within a 
specified distance of one another; (2) those based on the environment of an amino 
acid residue at a point in the structural lattice (Meller and Elber 2001). Several 
threading programs including the NCBI threading package (Bryant and Lawrence 
1993), PROFIT (Sippl and Weitckus 1992), PROSPECT (Xu et al. 1998), CASP-3 
(CASP 1999), TOPITS (Rost and Sander 1995) and SAS (Milburn et al. 1998) are 
used for singleton and pairwise interactions. The NCBI threading package provides 
a good statistical assessment of a threading result, and recently CASP-3 was used as 
a top performer in threading with pairwise interactions.

11.4.1.3  Ab Initio Method

Ab initio method is one of the modeling technique often used for structure predic-
tion when the sequence of the query proteins has  either no or a low amount of 
similarity and in this method the query protein is folded with a random conforma-
tion. The ab initio method is based on the thermodynamic hypothesis proposed by 
Anfinsen, according to which the native structure corresponds to the global free 
energy minimum under a given set of conditions (Floudas et al. 2006). Basically, 
the ab initio category has two subclasses, fragment-based and biophysics-based 
methods. These are often called, respectively, first-principles methods that employ 
database information and first-principles methods without database information 
(Floudas 2007). All types of proposed approaches rely on minimization of the 
energy function over the conformation parameters. The typical method has four 
basic steps for finding the conformation with the lowest energy: (1) start with an 
unfolded/arbitrarily folded conformation; (2) generate alternative conformations 
using some heuristics; (3) estimate their corresponding energy; and (4) again, gen-
erate the alternative conformation until the final criterion is reached. Parameters 
like energy function accuracy, search algorithm efficiency and selection of the 
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best models play a crucial role in the structure prediction ab initio method. In 
the basic modeling, folding process,  and quantum mechanics is used to model 
and estimate the interactions of atoms. Currently, a high performance computing 
facilities force field (FF) or energy function are employed to express a variety 
of atomic interactions such as van der Waals, torsion angles, electrostatics and 
bond length. Energy functions are usually associated with the search procedure 
to locate the conformation that has the minimum energy function value. The most 
popular optimization methods are molecular dynamics and Monte Carlo simula-
tion (Adcock and McCammon 2006). The category of ab initio prediction with 
database information focuses only on predicting as accurately as possible a pro-
tein’s final configuration. In this approach, the structure prediction starts with the 
primary amino acid sequence, which is searched for different conformations, lead-
ing to the prediction of native folds. After the folds have been recognized and 
predicted, the model assessment is performed to verify the quality of the structure. 
ROSETTA and I-TASSER are widely used fragment-based enhanced methodolo-
gies for ab initio structure prediction of a protein. TASSER was initially created 
in 2004 by Zhang and Skolnick (2004), and later the enhanced versions Chunk-
TASSER (Zhou and Skolnick 2007) and I-TASSER were developed in structure 
prediction (Wu et al. 2007). TASSER is a hierarchical approach that encompasses 
three phases, thus its name: threading/assembly/refinement (“TASSER”). The first 
step, threading, is an iterative sequence- structure alignment algorithm that uses the 
program PROSPECTOR_3 (Skolnick et al. 2004). The second step, assembly, uses 
parallel hydrophobic Monte Carlo sampling by rearranging the template fragments 
(Zhang et al. 2005). The final step, refinement, is performed using a clustering pro-
gram called SPICKER (Zhang and Skolnick 2004), and the full atom optimization 
is conducted using the CHARMM22 force field. ROSETTA prediction involves 
the identification of small fragments from the structural databases consistent with 
a local sequence preference.

11.4.1.4  Protein Validation Server

Protein structure has proved to be a crucial piece of information for biochemical 
research. From the millions of currently sequenced proteins only a small fraction is 
experimentally solved for structure, and the only feasible way to bridge the gap 
between sequence and structure data is computational modeling. Unlike experimen-
tal structure, the accuracy of a computationally modeled structure can be estimated 
by a broad range of the accuracy spectrum. Over the past two decades, several 
approaches have been developed to analyze the accuracy of the protein structure and 
model. They use stereochemistry checks, molecular mechanics energy-based func-
tions and statistical potentials to tackle problems. Typically, features like molecular 
environment, hydrogen bonding, secondary structure, solvent exposure, planarity, 
chirality, phi/psi preference, chi angles, non-bonded contact distances, unsatisfied 
donors/acceptors, pairwise residue interaction and molecular packing are analyzed 
in these approaches. A good quality protein should resemble a native protein, with 
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spatial features of the residues complying with empirically characterized constraints 
on torsional angles captured in Ramachandran plots (Ramachandran et al. 1963). 
PROCHECK (Laskowski et al. 1993) and MolProbity (Chen et al. 2010) are widely 
used programs for determining whether a modeled protein structure has native-like 
features. Traditionally, several studies have examined protein structures using an all 
atom-based description. Ramachandran’s plot with backbone dihedral angle ɸ 
(N-Cα) and ψ (Cα-C) is a representative microscopic description of the protein 
structure. Dihedral angle prediction has several applications in protein structure pre-
diction; which include secondary structure prediction (Rost 2001; Wood and Hirst 
2005; Kountouris and Hirst 2009), generation of multiple alignments (Huang and 
Zou 2006a, b; Miao et al. 2008), identification of protein fold (Karchin et al. 2003; 
Zhang et  al. 2008) and fragment-free tertiary structure prediction (Faraggi et  al. 
2009). Quality assessment is an important step in the modeling process, wherein 
processes like template level, alignment level, selected fragment level and structural 
level error are analyzed. A template structure for a target sequence is identified by 
considering the significance of the score that indicates the fitness of the target to the 
template. In principle, most frequently the statistical significance of a raw score is 
considered as either in the form of the E-value (homology search) or the Z-score 
(used in threading algorithms). Z-score are calculated as measured value minus 
population mean, divided by the standard deviation of the population. So, a Z-score 
is negative if the value of X is less than the mean, and it is positive if the measured 
value is greater than the mean value. WHAT IF uses this criterion a lot to calculate 
Z-score. The Z-score provides basic information about the root mean square of a 
population with a Z value and it should be 1.0.

11.4.2  Protein and Ligand Preparation

The success of the various drug designing approaches depends largely on whether 
reasonable starting structures are used for both the protein and the ligand. The pro-
tein structure that is retrieved from PDB (X-ray structure) consists of heavy atoms 
and may contain water molecules, cofactors, activators, ligands and metal ions as 
well as several protein subunits and does not have the information on bond orders, 
topologies. Because of the above structural issues, several protein preparation 
approaches have been developed (Sastry et al. 2013; Pitt et al. 2013). The determi-
nation of protonation states of the amino acid in protein molecules is the first crucial 
step in protein preparation. Several freely available software packages including 
PROPKA (Li et  al. 2005), H++ (Anandakrishnan et al. 2012) and SPORES (ten 
Brink and Exner 2010) are widely used for determining the first step of the protein 
preparation. The next important step is to assign hydrogen atoms and optimize pro-
tein hydrogen bonds according to an optimal hydrogen bond network. PDB2PRO 
software is a widely used tool for these tasks (Dolinsky et al. 2007). The next step 
is assignment of partial charges, capping of residues, treating metals, filling missing 
loops and missing side chains and minimizing the protein structure to relieve steric 
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clashes; also, a crucial decision must be made regarding whether water molecule 
will be left in or removed from the binding site. To tackle the above mentioned chal-
lenging problems, freely available tools such as 3D-RISM (Kovalenko 2003; Young 
et al. 2007; Abel et al. 2008), SZMAP (Myrianthopoulos et al. 2016), JAWS (Michel 
et al. 2009) and WaterMap (Young et al. 2007; WaterMap, Schrödinger 2014) are 
utilized in commercial software (Jorgensen and Tirado-Rives 2005; SZMAP 
Sofware Inc.). In the case of a co-crystallized protein structure with substrates and 
cofactors, Protein Preparation Wizard of Maestro (Maestro, Schrödinger, LLC) is 
used to assign proper bond orders and generate accessible tautomer and ionization 
states prior to virtual screening.

The selection of the type of ligand molecule chosen for docking is another impor-
tant step in virtual screening. The type can be obtained from various databases like 
ZINC or pubchem, or it can be sketched by means of Chemsketch or Chemdraw 
tools (Dias and de Azevedo 2008). A wide variety of small molecule databases are 
available for virtual screening-based drug designing. Many of them are free and pos-
sess desirable characteristic lead molecules. ZINC is a public access database, con-
tains number of commercially available compound that are mostly developed in the 
pharmaceutical chemistry department at the University of California, San Francisco. 
NCI is an another open database developed by the Developmental Therapeutics pro-
gram of the National Cancer Institute, NIH; it currently contains over 250,000 mol-
ecules from both organic synthesis and natural sources. ASINEX is a regularly 
updated commercial database currently containing 600,000 screening compounds, 
27,000 macrocycles, 23, 000 fragments and 7000 building blocks. SPECS is a 
monthly updated database containing more than 240,000 novel drugs—drug-like 
small molecules obtained from an academic research institute. MAYBRIDGE is one 
of the widely used commercial databases containing a screening hit discovery collec-
tion more than 53,000 and offering a fragment library of 30,000. CHEMBRIDGE 
encompasses one million drug-like and lead-like molecules in two non-overlapping 
collections of respectively 460,000 and 620,000 compounds. After selection of 
potential lead molecules, it should be preprocessed before docking. There are several 
thousand small molecules in a ligand database, so one must avoid performing man-
ual steps in data preparation. Typically, information on available ligands is stored in 
2D form in databases, serving as a data repository. Currently, several thousand small 
molecules are available in various databases; Table 11.2 shows widely used small 
molecule repositories. The 2D structure retrieved from these repositories of atom and 
bond types must be checked and corrected; protonation states and charges have to be 
assigned. Then, 3D structures must be converted for calculating ligand conformation 
like rotational barriers or side- chain rotamers allowed. In addition, protein-ligand 
interactions including  site- points that guarantee proper hydrogen-bonding direction-
ality must be assigned (Claussen et al. 2001). LigPrep is the most widely used mod-
ule for ligand preparation implemented in Schrödinger (LigPrep, Schrödinger 2011). 
In this module, ionization/tautomeric states are generated with either a pair of fast 
rule-based programs or with Epik, which is based on the more accurate Hammett and 
Taft methodologies (Shelley et al. 2007; Epik, Schrödinger 2011).
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11.4.3  Active Site Prediction

Binding site prediction and characterization of small molecules is more important 
for drug discovery. Often, possible binding sites for potential small molecules are 
known for co-crystal structures of the target or a closely related protein with natural 
ligand molecules. Recently, Hajduk and coworkers used heteronuclear-NMR-based 
screening to identify and characterize the ligand binding site on a protein surface 
(Hajduk et al. 2005). By screening a large number of lead-like molecules against 23 
target proteins, the results revealed that 90% of the ligand molecules bonded to 
specific locations on the protein surface, depicting that certain properties of small- 
molecule binding sites should be common to general molecular recognition. Mostly 
computational studies have been used to predict the binding site for an unknown or 
if a new binding site is to be identified, e.g., allosteric molecules. Computational 
methods like Q-SITEFINDER, POCKET (Levitt and Banaszak 1992), SURFNET 
(Laskowski 1995), APROPOS (Peters et al. 1996), LIGSITE (Hendlich et al. 1997), 
CAST, CASTp (Binkowski et al. 2003) and PASS (Brady and Stouten 2000) are 
often used for binding site prediction. Computational methods for the identification 
of a binding site can be categorized into three major classes: (1) geometric algo-
rithms to find the shape concave invagination in the protein molecules; (2) energies- 
based method; and (3) method considering dynamic of protein structures. Geometric 
algorithms find a putative binding site through detection of cavities on a protein 
surface. In this algorithm, grids are used to describe the molecular surface of the 
protein, and the boundary of the binding site is determined by rolling a spherical 
probe over the grid surface. This kind of algorithm is used in SURFNET, LIGSITE 
and POCKET, where spheres are placed between all pairs of target atoms and then 
the radius of sphere is reduced until each sphere contains only a pair of atoms. An 
et al. (2005) developed the Pocket Finder algorithm and expanded the geometric 
method by countering a smoothed van der Waals potential for the target protein to 
identify candidate ligand binding sites. The new technique of Sitemap, developed 
by Schrödinger, Inc., identifies the known binding site in >96% of cases by linking 
together site-points that contribute to tight protein ligand binding. Sitemap provides 
quantitative and geographical information that helps guide efforts to modify ligand 
structure to enhance properties (Halgren 2007; Halgren 2009) (Table 11.1).

11.4.4  Molecular Docking

In a modern drug discovery approach, protein-ligand and protein-protein interaction 
mechanisms play a significant role in predicting orientation of the ligand when it is 
bound to a protein receptor or enzyme using shape and electrostatic interaction to 
quantify it. Molecular docking is an attractive scaffold for understanding protein- 
ligand interaction in a rational drug design and drug discovery; in the mechanistic 
study a molecule is placed into the binding site of the receptor molecules mainly in 
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a non-covalent fashion to form a stable complex of potential efficacy and more 
specificity (Rohs et al. 2005; Guedes et al. 2014). The information obtained from a 
docking study can be used to study the binding energy, free energy and stability of 
drug-biomolecular complexes with optimized conformation and with the intention 
of possessing less binding free energy. The basic two steps involved in molecular 
docking, usually related to sampling methods and scoring schemes, are (1) predic-
tion of ligand conformation and position and orientation within these sites (usually 
referred as pose) and (2) assessment of binding affinity (Fig. 11.5).

Most of the docking tools employed the searching algorithms including genetic 
algorithms (GA), Monte Carlo algorithms, molecular dynamics algorithms and con-
formational search algorithms in the molecular docking method. Conformational 
search algorithms perform in the docking approach by applying systematic and sto-
chastic search methods (Agrafiotis et al. 2007; Yuriev et al. 2011). The basic meth-
odology of molecular docking falls into three categories: induced fit docking, where 
both ligand and receptor molecules are flexible; rigid body docking, where ligand 
and receptor molecules are rigid; and flexible docking method, in which it is also the 
case that both interacting molecules are flexible (Meng et al. 2011). The molecular 
docking process involves the following major steps: (1) Preparation of protein—

Table 11.1 Widely used small molecule repositories with basic information about the class of the 
compounds and their size

Database Type Size Citations

PubChem Biologic activities of small 
molecules

40,000,000 Wheeler et al. (2006)

Accelrys Available 
Chemicals Directory 
(ACD)

Consolidated catalog from major 
chemical suppliers

7,000,000 Accelrys (2012)

PDBeChem Ligands and small molecules 
referred in PDB

14,572 Dimitropoulos et al. 
(2006)

Zinc Annotated commercially 
available compounds

21,000,000 Irwin and Shoichet 
(2005)

LIGAND Chemical compounds with target 
and reactions data

16,838 Goto et al. (2002)

DrugBank Detailed drug data with 
comprehensive drug target 
information

6711 Wishart et al. (2006)

ChemDB Annotated commercially 
available molecules

5,000,000 Chen et al. (2005, 
2007)

WOMBAT
Data base

Bioactivity data for compounds 
reported in medicinal chemistry 
journals

331,872 Ekins et al. (2007); 
Hristozov et al. (2007)

MDDR (MDL Drug 
Data Report)

Drugs under development or 
released; descriptions of 
therapeutic

180,000 Hristozov et al. (2007)

3D MIND molecules with target interaction 
and tumor cell line screen data

100,000 Mandal et al. (2009)
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before docking, the 3D structure of the receptor molecule (retrieved from either 
PDB or molecular modeling) should be pre-processed by stabilizing the charges, 
filling the missing residues, and generating and removing free water molecules from 
the cavity. (2) Active site prediction—the binding site of the receptor molecules 
should be predicted in this step; the water molecules and hetero atoms are removed. 
(3) Ligand preparation—the small molecules can be retrieved from small molecule 
databases while choosing the ligand molecules; the LIPINSKY’S RULE OF 5 
should be utilized. (4) Docking—the final step, where the ligand is docked against 
the protein and the interactions are analyzed; the scoring function finds the dock-
ing scores based on best pose of docked ligands complex. Over the last two decades, 
approximately 60 different docking tools and programs have been developed for 
both academic and commercial use, including DOCK (Venkatachalam et al. 2003), 
Auto Dock (Österberg et al. 2002), FlexX (Rarey et al. 1996), Surflex (Jain 2003), 
GOLD (Jones et al. 1997), ICM (Schapira et al. 2003), Glide (Friesner et al. 2004), 
Cdocker, LigandFit (Venkatachalam et al. 2003), MCDock, FRED (McGann et al. 
2003), MOE-Dock (Corbeil et  al. 2012), LeDock (Zhao and Caflisch 2013), 
AutoDock Vina (Trott and Olson 2010), Dock (Ruiz-Carmona et  al. 2014) and 
UCSF Dock (Allen et al. 2015). Table 11.2 shows the basic information on the cur-
rently used docking tools and scoring functions.

Fig. 11.5 Basic steps involved in molecular docking approach. (a) Three-dimensional structure of 
lead molecules; (b) three-dimensional structure of the protein; (c) ligand is docked into the binding 
site of the protein; (d) binding affinity and interactions of ligand molecules with protein
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11.4.5  Scoring Methods

Molecular docking approaches use scoring functions to calculate the binding ener-
gies of the predicted ligand-receptor complexes. Scoring function is a key element 
of a protein-ligand docking algorithm, determining the accuracy of the algorithms 
(Gohlke and Klebe 2001; Schulz-Gasch and Stahl 2004; Jain 2006; Rajamani and 
Good 2007; Gilson and Zhou 2007). Speed and accuracy are the important aspects 
basic to a scoring function. Several scoring functions have been used mainly to 
delineate correct poses from incorrect poses, or binders from inactive compounds 
within a reasonable computation time. Overall, scoring functions can be divided in 
the three categories of as force field-based, empirical-based and knowledge-based 
scoring functions (Kitchen et  al. 2004). A classical force-field scoring function 
estimates the binding energy of a complex by calculating the sum of bonded terms 

Table 11.2 Basic characteristics of widely used docking tools

S. No Docking programs Docking approach Scoring function

1 DOCK Shape-fitting (sphere sets) Chem Score, GB/SA 
solvation scoring, other

2 Auto Dock Genetic algorithm Lamarckian 
genetic algorithm simulated 
annealing

Auto Dock (force-field 
methods)

3 Flex X Incremental construction FlexX Score, PLP, Screen 
Score, Drug Score

4 FRED Shape-fitting (Gaussian) Screen Score, PLP, Gaussian 
shape score, user-defined

5 Glide Monte Carlo sampling Glide Score, Glide Comp
6 GOLD Genetic algorithm Gold Score, Chem Score 

user defined
7 Ligand Fit Monte Carlo sampling Lig Score, PLP, PMF
8 Surflex Surflex-Dock search algorithm Bohm’s scoring function
9 ICM (Internal 

Coordinate
Modelling)

Monte Carlo
minimization

Virtual library screening 
scoring
function

10 MVD (Molegro 
Virtual
Docker)

Evolutionary algorithm MolDock score

11 FITTED 
(Flexibility
Induced Through 
Targeted
Evolutionary 
Description)

Genetic algorithm potential of mean 
force

(PMF),
Drug Score

12 GlamDock Monte Carlo method ChillScore
13 vLifeDock Genetic algorithm PLP score, XCscore
14 iGEMDOCK Genetic algorithm Empirical scoring function
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such as bond stretching, angle bending and dihedral variation, and non-bonded 
terms including electrostatic and van der Waals interactions. Electrostatics terms 
use a set of derived force-field parameters such as AMBER or CHARMM (Miller 
et al. 2017) and are calculated by a coulombic formulation. In addition to the above 
electrostatic terms, the force field-based scoring function also considers hydrogen 
bond, solvation and entropy contributions. The software such as DOCK (Kuntz 
et al. 1982), GLOD (Shoichet et al. 1993) and Auto Dock (Morris et al. 1998) offer 
users such functions. Force fields are mathematical expressions describing the 
dependence of energy of a system on the coordinates of its particles. The force-
feild scoring function shows some differences in the treatment of hydrogen bonds 
in terms of the energy function used, and it is further refined with other techniques 
such as linear interaction energy (Michel et al. 2006) and free-energy perturbation 
method (FEP) (Kollman 1993; Briggs et al. 1996) to improve accuracy in predict-
ing binding energies. To reduce computational expense, alternative approaches 
such as Poisson- Boltzmann/surface area (PB/SA) and the generalized-Born/sur-
face area (GB/SA) models were used to measure accuracy by treating water as a 
continuum dielectric medium (Rocchia et al. 2002; Liu and Zou 2006; Lyne et al. 
2006; Thompson et al. 2008; Guimaraes and Cardozo 2008).

Empirical scoring function is another method to evaluate the types of physical 
events involved in the formation of the ligand-receptor complex. The binding 
energy of a complex is calculated by summing up a set of empirical energy terms 
including van der Waals energy, electrostatic energy, hydrogen bonding energy and 
desolvation terms. Each empirical energy term component is multiplied, and cor-
responding coefficients are determined by reproducing the binding affinity data of 
a training set of protein-ligand complexes with known three-dimensional structure 
using least squares fitting (Ballester and Mitchell 2010). Due to the simple energy 
terms and the nature of their fitting to known binding affinities of the training set, 
empirical scoring functions are computationally more efficient and faster than 
force-field- based methods. Molecular docking tools such as Surflex and FlexX and 
Glidescore (Friesner et al. 2004; Halgren et al. 2004), PLP (Gehlhaar et al. 1995; 
Gehlhaar et al. 1999), SYBYL/F-Score (Rarey et al. 1996), LigScore (Kramer et al. 
1998) and Chemscore are some examples of programs that use empirical scoring 
functions (Jain 2003). Table 11.3 provides the widely used scoring functions imple-
mented in the most frequently used molecular docking programs.

Table 11.3 Provides widely 
used empirical scoring 
functions in frequently used 
molecular docking tools

Force-field-based Empirical Knowledge-based

DOCK Auto Dock SMoG
Auto Dock Gold Score Drug Score
Glide Score Chem Score PMF_Score
ICM X_Score Motif Score
LigandFit F_Score RF_Score
Molegro Virtual Docker Fresno PESD_SVM
SYBYL_G-Score SCORE Pose Score
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A third approach includes knowledge-based scoring functions that use statistical 
analysis, which are directly derived from the structural information in an experi-
mentally determined protein-ligand complex to obtain interatomic contact frequen-
cies and distance between the ligand and protein. Further, this approach uses 
pairwise energy potentials derived from a known ligand-receptor complex to obtain 
a general function (Huang et al. 2006). These potentials are constructed by consid-
ering the frequency distribution and the score is calculated by summing up of the 
individual interactions. Compared to force field and empirical scoring functions, 
knowledge-based scoring functions offer a good balance between accuracy and 
speed and are relatively robust and also enable the scoring process to be as fast as 
the empirical scoring function (Muegge 2006; Huang and Zou 2006a, b). Recently, 
a consensus scoring method has been developed which combines several scores to 
assess the docking conformation.

11.4.6  Molecular Dynamics (MD) Simulations

Molecular dynamics (MD) simulations of recent years play a critical role in compu-
tational drug discovery. Simulation studies can provide detail concerning individual 
particle motion as a function of time and use physics-based energy functions and 
explicit representations of atomic systems to model protein dynamics. MD simula-
tion studies provide basic information to evaluate the stability and functions of the 
protein and to monitor the specific behaviors over the course of many simulations 
and provide information about target structure or properties unobtainable from 
static native structure. MD simulation was first developed in the late 70s when Alder 
and Wainwright performed it using a hard-sphere model. The first molecular simu-
lation of BPTI was done in 1975 with a crude molecular mechanics potential for 
only 9.2 ps (Adcock and McCammon 2006). Molecular dynamics simulation mim-
ics the physical motion of each atom in the macromolecule present in the actual 
environment. Each atom of a protein molecule can interact for a certain period of 
time, which helps in the computation of their trajectory in and around the protein 
molecules. A variety of properties such as free energy, kinetics measures and other 
macroscopic quantities of macromolecules can be calculated by using the trajecto-
ries. Several studies revealed the role of classical MD simulations to obtain different 
conformations of proteins and nucleic acids, including early attempts to stimulate 
spontaneously complex phenomena such as protein folding (Frenkel and Smit 
2001). In recent research, MD simulation has been widely used to overcome the 
major limitation of static structure-based drug design and also to characterize rou-
tinely applied ligand docking calculations which do not sample the major protein 
conformational rearrangements during ligand binding (Carlson 2002; Fanelli et al. 
2008). MD simulation is a multistep process that starts with the knowledge of the 
potential energy of the system with respect to its position coordinates, and these 
position coordinates help to compute the force acting on the individual atoms of the 
system. The next important step is simulation environment, which gives the actual 
environment including optimum pressure and temperature. In general, protein 
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simulation is done in a canonical ensemble (NVT), particularly the initial equilib-
rium steps, or it is done in an isothermal-isobaric (NPT) ensemble. For simulation, 
the protein molecule should be kept in the unit cell and solvated with a suitable 
explicit solvent. Several explicit water models include TIP3P, TIP4P (Jorgensen 
et al. 1983), TIP5P (Mahoney and Jorgensen 2001), SPC and SPC/E (Berendsen 
et  al. 1987) are the most popular models used to imitate the specific nature and 
complexity of molecule hydration, including orientation of solvent dipoles and 
effective electrostatic shielding, subtle hydrogen bond network rearrangements, 
saturation of hydrophobic surface and accompanying changes in entropy.

There are two main families of MD simulation methods, classical and quantum 
simulation, which are distinguished based on the model chosen to represent a physi-
cal system. A basic ball-and-stick model of molecules was used in classical molecu-
lar simulation, where the atoms correspond to soft balls and elastic sticks correspond 
to bonds. Several force fields are widely used in the molecular simulation approach. 
AMBER (Case et al. 2005), NAMD (Phillips et al. 2005), CHARMM (Brooks et al. 
1983) and GROMOS (Pronk et al. 2013) are widely used force fields which differ 
principally in the way they are parameterized, but they generally give similar results. 
Quantum simulation or first principle MD simulation began in 1980s with the semi-
nal work of Car and Parinello, explicitly taking into account the quantum nature of 
the chemical bond. Due to the invention of high configurational computer and the 
advent of graphical processor unit (GPU) architectures, MD simulation software 
can efficiently run on innovative hardware infrastructures, surpassing alternate con-
ventional methods. Even these methods, running on specialized hardware fails to 
describe the slow unbinding events. In fast-paced drug discovery programs, this is 
the major issue limiting the use of MD-based simulation for kinetic prediction 
(Borhani and Shaw 2012). However, sampling issues have led the development of 
several innovative algorithms that form the basis of the enhanced sampling method, 
speeding up the description of slow processes and accelerating the rare events char-
acterized by high-in-free-energy states (Abrams and Bussi 2014). Sampling meth-
ods including free energy perturbation (Jorgensen and Thomas 2008), umbrella 
sampling, replica exchange, meta-dynamics (Laio and Parrinello 2002), steered 
MD (Isralewitz et al. 2001), accelerated MD (Hamelberg et al. 2004) milestoning 
(Faradjian and Elber 2004), transition-path sampling (Bolhuis et al. 2002), Monte 
Carlo sampling of conformational space, quantum mechanics/molecular mechanics 
(QM/MM) and molecular docking simulation are recently used methods for study-
ing protein-ligand binding and estimating the associated energy and kinetics 
(Durrant and McCammon 2011; Harvey and Fabritiis 2012).

11.4.7  QM/MM Simulations

Most of biological systems such as enzymes are heavy atoms, too large to be 
described at any level of ab initio theory, and classical molecular mechanics force 
field is not sufficiently flexible to model processes in which chemical bonds are 

11 Molecular Modeling and Drug Design Techniques in Microbial Drug Discovery



212

broken or formed and make a proper model of the complex environment of the reac-
tion, which involves efficient thermal averaging of the energy landscape. To over-
come these issues, an alternative approach has been developed that treats a small 
part of the system at the level of quantum chemistry (QM) while retaining the com-
putationally cheaper force field (MM) for the large part (Fig. 11.6).

This hybrid strategy QM/MM simulation was introduced by Warshel and Levitt 
and become a power full tool for the analysis of the enzyme reaction mechanism, 
playing a significant role in exciting applications like drug design (Gao and Truhlar 
2002; Shaik et  al. 2010; van der Kamp and Mulholland 2013; Lonsdale and 
Mulholland 2014). Basically, three classes of interaction are involved in QM/MM 
potential energy: interaction between atoms in the QM region, interaction between 
atoms in the MM region and interactions between QM and MM atoms. Quantum 
mechanics calculations are also an essential complement or alternative in the 
 interpretation of outcomes of experiments by theoretical prediction of a molecular 
characteristic such as electrical and magnetic ones and properties related to geo-
metrical derivatives (Cohen et  al. 2012). QM treats molecules as a collection of 
nuclei and electrons, without any reference to chemical bonds, which is important 
in understanding the behavior of system at the atomic level. This method applies the 
lows of QM to approximate the wave function of Schrödinger equation in terms of 
the motions of electrons (Atkins and de Paula 2006; Tannor 2008). QM methods are 
a more accurate but they entail an expensive and time-consuming calculation. 
Calculations are employed in semi-empirical methods such as AM1 and PM3 only 
for valence electrons in the system. The combined QM-MM methods provide the 
accuracy of QM description with the low cost of MM (Lin and Truhlar 2007; 
Menikarachchi and Gascon 2010; Honarparvar et al. 2014). Quantum mechanics-
based methods such as ab initio and the density functional theory (DFT) method fall 

Fig. 11.6 Showing the focused QM region inside the MM region of the whole protein
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within the approximate range of a few picometers to nanometers. These electronic 
structures allow accurate theoretical studies to be certain to extend to both macro-
molecules (synthetic polymers and proteins) and condensed matter (liquid and sol-
ids). DFT provides all the information on the system and avoids the wave function 
calculation. DFT is rooted in the Hoenberg–Kohn theorems, according to which the 
exact energy of a molecular system depends on its electron density; the latter being 
a function of the electronic coordinates. The total energy of a system can be calcu-
lated by the sum of several functionals such as kinetic energy, nucleus-electron 
potential energy, electron-electron repulsion energy and exchange-correlation func-
tional. The choice of QM method, choice of MM force field, segregation of the 
system into QM and MM regions, simulation types and the advanced conforma-
tional sampling are the five important aspects of QM-MM calculation of an enzyme. 
The choice of QM method is crucial: there are different QM methods ranging from 
fast, semi- empirical methods to more accurate and more computationally expensive 
methods; however, not all the methods are applicable to all systems for reasons of 
accuracy, practicality or due to lack of parameters. The Table 11.4 shows the accu-
racy of different quantum methods.

11.5  Drug Delivery Approach Using Computational Methods

In drug delivery approach,    potential drug molecule must have the capability to 
sustain its effectiveness, posing key challenges to effective drug delivery; an admin-
istered drug must penetrate obstacles such as endo or epithelial membranes and 
also survive the host’s defenses to be effective. Hence, to overcome these challenges 
requires some form of drug encapsulation such as the unique molecular encapsula-
tion architecture known as a drug delivery system (Allen et al. 2004; Blanco et al. 
2015). This new approach of controlling the pharmacokinetics, thermodynamics, 
non-specific toxicity, immunogenicity, biorecognition and efficacy of drugs was 
generated to minimize drug degradation and loss and to prevent harmful side effects 
and increase drug bioavailability and the fraction of the drug that accumulates in the 
required zone (Reddy and Swarnalatha 2010). Several mechanisms are involved in 
a drug delivery system such as drug formulation, medical device or dosage technol-
ogy to carry the drug inside the body and a mechanism for the release. Most of the 
commercial applications of nanoparticles in medicine are directed to drug delivery, 

Table 11.4 Accuracy of different quantum mechanics methods

S. No Types of quantum mechanics Accuracy Maximum atoms

1 Semi-empirical Low 2000
2 Hartree–Fock and density functional Medium 500
3 Perturbation and variation methods High 50
4 Coupled cluster Very high 20
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for which several solutions have been proposed, including liposomal and lipid- 
based colloidal nanoDDS, nanoparticulate polymeric micelles (as drug carrier and 
polymer-based nanoparticulate DDS.  Molecular modeling and computational 
chemistry provide several tools such as quantum mechanical ab initio methods, 
molecular dynamics, free energy perturbation and docking to quantify drug-carrier, 
carrier-medium and drug-medium interactions (Neumann et al. 2004).

11.6  Polymer Used as Carrier

Polymers are naturally occurring substances with high molar masses and a large 
number of repeating units; they play a significant role in the development of drug 
delivery systems by releasing both hydrophilic and hydrophobic drug molecules. 
Covalent bond formation of polymers with drug molecules carries the drug mole-
cules to their respective site. Hence, there are several advantages of polymers act-
ing as inert carriers to which a drug can be conjugated; for example, polymers 
improve pharmacokinetic and pharmacodynamic properties of drug molecules. 
Polymers is an important constituents of pharmaceutical forms such as solid dos-
age as in tablets and capsules; they can be dispersed in a system like a suspension, 
emulsion, cream or ointment; and they can be made into a particulate system, 
microcapsules, microparticles and nanoparticles; and they are accepted that formu-
lation  in clinical performance of pharmaceutical dosage  forms (Duncan 2003; 
Raizada et al. 2010). The main function of a polymeric carrier is to carry and trans-
port drug molecules to the site of action. This polymeric drug delivery system sig-
nificantly protects the drug molecule from interaction with other macromolecules 
including proteins and nucleic acids, which could alter the chemical structure of 
the drug molecules. Both non-biodegradable and biodegradable polymers have 
been used in drug delivery systems. Based on their desirable physical properties, 
polymers are selected and used in both non-biological and biological settings. 
Polymers such as polymethyl methacrylate, polyvinyl alcohol, polyurethane and 
polyethylene are a few examples of polymer use in non-biological processes. In 
recent years, polymers have been used as carrier molecules due to their unique 
features such as chemical inertness, freedom from impurities, appropriate physical 
structure and ability to be processed readily. Polyethylene-co-vinyl acetate, poly-
methyl methacrylate, polyvinyl alcohol, poly-N-vinyl pyrrolidine, polyacrylic acid 
and polyacrylamide are often used in controlled drug delivery system (Poddar et al. 
2010; Harekrishna Roy et al. 2013). Smart polymers are those having the capability 
to change their properties in response to the changes in biological conditions (Yang 
and Pierstorff 2012). Several stimuli including temperature, pressure, pH electric 
field, magnetic field, light, change in concentration, ionic strength and potential 
may influence the changes in nature of polymer properties (Schmaljohann 2006). 
For example, a temperature-responsive polymer brings about changes in hydrophi-
licity/hydrophobicity of polymers, enhancing their membrane permeation. This 
alteration in polymer properties can be used to allow adhesion to a cell surface, to 

C. Selvaraj



215

break down a cellular membrane and to release biologically active compounds. 
Recently, polymers have been used for developing controlled drug release systems 
and sustained release formulations, which help regulate drug administration by 
preventing under- or overdosing. These advanced drug-releasing systems play a 
significant role in improving bioavailability, minimizing side effects and other 
types of inconveniences (Liechty et al. 2010).

11.6.1  Drug-Polymer Interaction

Most computational studies for drug delivery use molecular dynamics simulation, 
which mimics the natural pathway of molecular motion to sample successive con-
figuration. Newton’s law and Maxwell–Boltzmann distribution assign initial veloc-
ity of molecules at a given temperature. The interactions between molecules at each 
time are computed and then equations of motion are solved numerically with an 
appropriate time step to update the velocities and position for the next successive 
steps (Frenkel and Smit 2002).

In classical molecular dynamics simulations, the interaction of molecules can 
be described by a force field with certain functional forms and several parameters. 
A force field such as AMBER (Cornell et al. 1995), OPLS (Jorgensen et al. 1996) 
and CHARMM (Mackerell et al. 1998) is widely used to study polymer and pep-
tide drug interactions. Interactions such as hydrogen bonding (Zhang et al. 2012; 
Miyazaki et al. 2011), dipole-dipole interaction (Marsac et al. 2009; Khougaz and 
Clas 2000), ionic interaction (Yoo et al. 2009; Kindermann et al. 2011) and van der 
Waals interaction (Marsac et al. 2009) generally occur between drug and polymer. 
Dissipative particle dynamics (DPD) is a widely used mesoscale simulation for 
identifying and defining chemically distinct components and defining interaction 
parameters between various chemical species. In this model, a fluid system is 
 simulated using a set of interacting particles. Each particle represents a cluster of 
small molecules instead of a single molecule. Drug, polymer, surfactant and sol-
vent are represented as distinct bead types. Polymer bead number length is deter-
mined by

 
N

Mp

MmCDPD ,=
∞  

where Mp is polymer molecular weight, Mm monomer molecular weight and C∞ 
polymer characteristic ratio. However, a detailed mechanism on drug-polymer 
interactions is lacking, such as how chemically substituted cellulosic polymers 
interact with drug molecules at a molecular level and how different structural vari-
ables such as molecular weight and substitution pattern affect the drug-polymer 
interaction. In addition to the classical MD and DPD, another two levels of molecu-
lar models such as coarse-grained molecular dynamics (CG-MD) simulations, 
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which are used to model excipients such as modified cellulosic polymers at a mono-
mer level resolution and drugs at a similar level. The full spectrum of the CG-MD 
approach contains contributions from several different fields and continuum trans-
port modeling, in which diffusion equations for transport of polymer, drug and sol-
vent through a capsule are determined by solving the relevant differential equation. 
Several software packages can integrate these equations, including the popular 
GROMACS (Van der Spoel et al. 2005), NAMD (Phillips et al. 2005), CHARMM 
(Klauda et al. 2010) and AMBER (Wang et al. 2004) packages. Many of the coarse- 
grained methods utilize one of these integrators to perform simulations.

11.7  Computational Methods Used in Toxicity Studies

Toxicity is a measurement of the adverse effect of chemicals, and specific types of 
these adverse effects are known as toxicity endpoints, for example, carcinogenicity 
or genotoxicity. These adverse effects can be quantitatively or qualitatively mea-
sured to identify harmful effects caused by substances on humans and animals 
(Rowe et al. 2010). A number of factors determine the toxicity of chemicals, includ-
ing route of exposure, dose, duration of exposure, ADME properties (absorption, 
distribution, metabolism and excretion), biological properties and chemical proper-
ties (Raies and Bajic 2016). A number of in vitro models have been used to deter-
mine toxicity such as high throughput screening (AltTox) and in  vivo animal 
models. Recently, computational toxicity methods have been widely used to poten-
tially minimize the need for animal testing and reduce the cost and time of the toxic-
ity test to improve toxicity prediction and safety assessment. The major advantage 
of computational toxicity methods is their ability to estimate chemicals for toxicity 
even before they are synthesized (Madan et al. 2013). In silico toxicology analysis 
encompasses a wide range of computational tools including database storage of 
chemical data, their toxicity and chemical properties, and software for generating 
molecular descriptors, simulation tools for systems biology and molecular dynam-
ics and modeling methods for toxicity. Rule-based and structural alerts are often- 
used computational methods for determining toxicity based on chemical properties 
and how drugs should be altered to reduce their toxicity. Another method, read- 
across, is used to predicting the unknown toxicity of a chemical through the use of 
similar chemicals (analogs) with known toxicity from the same chemical category 
(Dimitrov and Mekenyan 2010; Modi et al. 2012; Benigni et al. 2013; Venkatapathy 
and Wang 2013;). There are two approaches—an analog, or one-to-one approach, 
and a category, or many-to-one approach—for developing a read-across method. 
Both approaches are quite sensitive, identifying similar chemicals by calculating 
their properties and the similarities between them. The main advantage of read- 
across is its transparency (Cronin 2011): it is easy to interpret and implement (Enoch 
2009), and it can model quantitative and qualitative toxicity endpoints and allow for 
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a wide range of types of descriptors and similarity measures to be used to express 
similarity between chemicals (Dimitrov and Mekenyan 2010).

Quantitative structure-activity relationship (QSAR) is another widely used 
method that employs molecular descriptors to predict a chemical’s toxicity. 
Generally, the QSAR method predicts toxicity (T) of a lead molecule using a vector 
feature of chemical properties (θp) and a function f that calculates T given θp is

 
T f= ( )θp .

 

There are two QSAR models: local QSAR, which is generated from congeneric 
chemicals, and global QSAR, which is made from diverse chemicals. Local QSAR 
is used to predict toxicity based on the mode of action of specific chemicals, hence, 
local QSAR are more accurate as they are customized for specific chemicals (Valerio 
2009). Mainly two basic steps are involved in the development of a QSAR model: 
the generation of molecular descriptors and then of models to fit the data. The num-
ber of molecular descriptors, as based on simulated annealing, generic algorithm or 
principal component analysis, can be used to determine the chemicals (Deeb and 
Goodarzi 2012; Devillers 2013). If there are a small number of descriptors, using 
two-dimensional scatterplots of each descriptor versus its biological activity can 
help identify significant descriptors (Devillers 2013). There are many tools avail-
able that provide pre-built QSAR model such as OECD QSAR Toolbox (OECD 
2015), TopKat (Accelrys 2015) and METEOR (Lhasa Limited, Meteor Nexus 
2014). The major advantage of QSAR is that it’s easy to interpret and it can model 
categorical and continuous toxicity endpoints and molecular descriptors and toxic 
and non-toxic chemicals. However, it may not be always employable, as a large 
number of chemicals are needed in the model development for QSAR to achieve 
statistical significance (Valerio 2009; Deeb and Goodarzi 2012).

Pharmacokinetic (PK) models relate to the concentration of drug molecules in 
tissues to time, estimating the amount of chemicals in different parts of the body and 
quantifying ADME (absorption, distribution, metabolism and excretion) processes 
(Jack et  al. 2013; Sung et  al. 2014). Mainly, the PK models are used to relate 
 chemical concentration in a part of the body to time of toxic responses. A PK model 
can be categorized as two models: compartment and non-compartmental (Sung 
et al. 2014). A compartment model consists of one more compartments, with each 
compartment represented by differential equations (Sung et al. 2014). One compart-
ment model represents the whole body as a single compartment, assuming rapid 
equilibrium of chemical concentration within the body but not considering the time 
to distribute of the chemical. Two-compartment models consist of two compart-
ments, the central and peripheral with both compartments represented by differen-
tial equations. These models provide mechanistic insight based on pharmacokinetic 
models including concentration and time, physiological descriptors of tissues and 
ADME processes such as volumes, blood flows, chemical binding/partitioning, 
metabolism and excretion (Jack et al. 2013; El-Masri 2013).
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11.8  Outcome of Drug Research in Bacterial Inhibitors

Bacterial infection is one of the major threats to human health because it frequently 
causes severe diseases not only in the form of primary agents but also after patholo-
gies caused by other agents. Compared to Gram-negative bacteria, Gram-positive 
bacteria have a much thicker peptidoglycan layer, which is responsible for the 
increasing occurrence of bacterial resistance to antibiotics in medicinal practice 
(Springer et al. 2010; Nikaido 2003). Since the discovery of several antibiotics in 
the mid-twentieth century, resistance has been a concern (Peters et  al. 2008). 
Although the emergence of antibacterial resistance is not new, it continues to be a 
major health concern. The report from the Centers for Disease Control and 
Prevention on antimicrobial resistance revealed that more than 21% of hospital- 
acquired infections were caused by an antimicrobial resistant pathogen. Hence, 
there is a need for new alternatives in the treatment of infections by multi- resistant 
bacteria. Among the several pathogens, Staphylococcus aureus resistant to methicil-
lin (MRSA), Streptococcus pneumonia, resistant to penicillin, glycopeptide- 
intermediately- resistant S. aureus (GISA), methicillin-resistant S. epidermis, 
glycopeptide-resistant enterococcus spp and vancomycin-resistant Enterococci 
(VRE) are the more important etiological agents of hospital and community infec-
tions and are responsible for high rates of morbidity and mortality in hospitalized 
patients (Woodfor and Livermore 2009; Livermore 2009; Arias and Murray 2009). 
Several fluoroquinolones, ramoplanin, beta-lactams and the quinupristin/dalfopris-
tin are currently used in the market. Moellering et al. (1999) studied the clinical 
efficacy and safety of quinupristin-dalfopristin in the treatment of a patient with a 
vancomycin-resistant infection. From the studies it was noted that the overall clini-
cal and bacteriologic success rate was 66%. In another study, Nichols et al. (1999) 
compared quinupristin-dalfopristin with cefazolin, oxacillin and vancomycin in two 
randomized, open-label clinical trials.

Oxazolidinones, an antimicrobial class of agents, are a unique family of drug 
molecule possessing activity against Staphylococcus aureus and glycopeptide- 
intermediately- resistant S. aureus (Rybak et al. 2000; Wootton et al. 2000) and they 
are also more effective against a wide range of Gram-positive bacteria and 
Mycobacterium tuberculosis. Linezolid was the first approved derivative with 
acceptable tolerability in humans for the treatment of pneumonia, skin and soft tis-
sues infections caused by VRE (Cammarata et  al. 2000). Daptomycin is another 
antibacterial agent used to treat a wide range of Gram-positive bacteria. Recent 
studies from the US and Europe revealed that daptomycin was active against all 
Staphylococcus aureus and Gram-negative bacteria such as Leuconostoc, which are 
characteristically resistant to glycopeptides (Barry et al. 2001; King and Phillips 
2001). The effectiveness of daptomycin has been proved in various animal models 
of Gram-positive infection. Several global randomized, double blind phase II trials 
have investigated the efficacy of daptomycin in the treatment of community- 
acquired pneumonia (Pertel et al. 2008).
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11.9  Future Aspects of Computational Methods in Targeting 
Bacterial Infections

The drug-resistant capability of Gram-positive bacteria is a serious issue in clinical 
practice, and several antibacterial agents have already been approved by the US 
Federal Drug Administration for several infections, while other agents are still 
undergoing clinical trials. However, a lack of effective antibiotics in development 
implies that future treatment strategies for the resistant bacteria may have to show 
enhanced therapeutic efficacy. The battle against antibiotic resistance can be carried 
out on two fronts: either in advancing research efforts toward the discovery of novel 
and potential agents or by enhancing the effectiveness of the currently available 
ones. With the increasing prevalence of bacterial resistance, there is need to identify 
potential lead molecules to combat them. Conventional drug development research 
requires huge investment and at least 12–15 years experimentation, and even so, it 
often does not reach the market; hence; alternative approaches and strategies are 
required to develop safe and effective novel antimicrobial therapies. The current 
scenario of antibiotic research and development is not very effective, so a computa-
tional approach such as structure-based drug design, ligand-based drug design, 
pharmacophore modeling and molecular docking are useful for understanding the 
mechanism of bacterial resistance to antibiotics. In addition to the experimental 
approach, computational biology combination therapy has great potential in the 
future discovery of antimicrobial drugs.
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12.1  Introduction

The emergence of extensively and totally drug-resistant (XDR and TDR) tuberculo-
sis (TB) is a growing global concern. Various strains of XDR Mycobacterium tuber-
culosis (XDR-Mtb) have exhibited resistance to most of the currently prescribed 
first and second line of anti-tuberculosis drugs at an alarming rate (WHO 2018). 
Resistance to isoniazid and rifampicin is termed as multidrug-resistant tuberculosis 
(MDR-TB), and further resistance to fluoroquinolones and any one of the injectable 
drugs such as amikacin, kanamycin or capreomycin is termed extensively drug- 
resistant tuberculosis (XDR-TB) (Coll et al. 2018).

XDR-Mtb cases have been reported in more than 123 countries, and tuberculosis 
remains to be a leading cause of death (1.7 million annually) in developing coun-
tries (Quan et al. 2017). On an average, around 7% of patients with MDR-Mtb have 
XDR-Mtb (Maitre et al. 2017). The emergence of XDR-TB strains is due to the 
mismanagement of MDR cases; hence, new cases of XDR-TB can be prevented by 
early detection and proper treatment of existing patients with XDR-TB and the cor-
rect management of MDR-TB patients (Dheda et al. 2017; Matteelli et al. 2014). 
Further, TB has been associated with an increase (fourfold) in the mortality rates in 
population of patients infected with HIV infections (Bell and Noursadeghi 2018). It 
has also been reported that patients with highly drug-resistant TB are at an increased 
risk of longer and expensive treatments (Coll et al. 2018; Quan et al. 2017).

Computer-aided drug discovery (CADD) serves as an ideal platform for the iden-
tification of potential drug targets and screening of novel lead molecule against 
XDR-Mtb. The present chapter emphasizes that serine hydroxymethyltransferase 
(EC 2.1.2.1) (GlyA) has been identified as a putative drug target by Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analysis (Kanehisa et al. 
2016). This enzyme is crucial for the survival of the bacteria and plays an important 
role in causing virulence (Raman et al. 2008). It has also been reported as a potential 
drug target for pathogenic Plasmodium falciparum and Plasmodium vivax, which 
causes malaria in humans (Sopitthummakhun et al. 2012). Thus, identification of 
effective inhibitors against this target enzyme is crucial in mitigating infections due 
to Mtb.

The development of novel drugs against TB has drawn significant attention to 
plant-based therapeutic agents with high medicinal value and their metabolites for 
potential antibacterial properties. Medicinal plants host innumerable bioactive com-
pounds, and these compounds have progressively highlighted their importance in 
tackling invasive infections caused by MDR bacteria (Mohamad et  al. 2018). 
Several natural compounds and their derivatives have been reported to show growth 
inhibitory activity against Mtb. Plant extracts from Artemisia capillaris, Tinospora 
crispa, Zingiber officinale, Micromelum minutum, Clausena harmandiana, Aegle 
marmelos, Rollinia mucosa, Piper betle, Piper sarmentosum, Vitex trifolia, Piper 
nigrum and many others have previously demonstrated growth inhibitory activities 
against MDR-Mtb (Mohamad et al. 2018; Sanusi et al. 2017). Some of the identified 
and isolated anti-mycobacterial compounds include allicin, β-sitosterol, friedelin, 
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gallic acid, taraxerol, anthocyanidin, decarine, ellagic acids and 1-epicatechol, to 
name a few (Chinsembu 2016). Recently, studies have reported the in vitro anti-TB 
activity of several phytochemicals isolated from Costus speciosus, Cymbopogon 
citratus and Tabernaemontana coronaria (Mohamad et  al. 2018). Similarly, in 
another recent study, the in  vitro activity of Phyllanthus niruri (Bhumyamalaki) 
against Mtb has been described (Putri et al. 2018).

In the recent decades, this bacterium has exhibited resistance to a broad range of 
antibiotics, and the current approaches for the treatment and control of tuberculosis 
caused by XDR-Mtb are not sustainable (Quan et  al. 2017). Hence, there is an 
urgent need, and it is paramount to identify novel drug targets and screen potential 
therapeutics against XDR-Mtb in order to overcome the global burden of TB caused 
by this pathogen (Bell and Noursadeghi 2018). Thus, screening of potential herbal- 
based lead molecules against drug targets of Mtb provides profound insights into 
the development of novel more efficacious antibacterial agents. This chapter illus-
trates the scope and application of computer-aided virtual screening for the identifi-
cation of potential drug targets and screening of novel herbal-based lead molecules 
by various computational approaches to combat the global spread of XDR-Mtb.

12.2  Recent Perspectives on Drug-Resistant Mycobacterium 
tuberculosis

World Health Organization (WHO) declared TB as a global public health emer-
gency in 1993, and since then, efforts are continuously being made to control the 
occurrence and spread of this pathogen. Dr. Margaret Chan, the Director-General of 
WHO, suggests that everyone with TB should have access to the innovative tools 
and services they need for rapid diagnosis, treatment and care. Further, high quality 
and complete care must be provided to combat drug-resistant TB. It has been esti-
mated that there were 600,000 new cases with resistance to rifampicin—the most 
effective first-line antibiotic—out of which 490,000 had MDR-TB and 37,200 had 
XDR-TB. Similarly, in 2016, 87% of new TB cases were reported in the 30 high 
TB-burden countries, and 7 countries including India, Indonesia, Pakistan, Nigeria, 
South Africa, China and Philippines accounted for 64% of the new TB cases. 
Tuberculosis kills 5000 people every day, and efforts are being made to end the 
‘global tuberculosis epidemic’. To take a lead in this direction, WHO has initiated 
‘End TB Strategy’ (2015–2035) with the goals and milestones aligned in a way to 
reduce the number of TB deaths by 95% in number compared with 2015.

Similarly, according to the European Centre for Disease Prevention and Control 
(ECDC) (https://www.ecdc.europa.eu/en/home), 58,994 cases of TB were reported 
in 30 European Union and European Economic Area (EU/EEA) countries. Out of 
these, around 20% of the total TB cases have been XDR-TB in 2016. Similarly, 
70.4% of the cases were newly diagnosed (ECDC 2018). Dr. Andrea Ammon, 
Director of ECDC, has asked all the healthcare systems to remain vigilant about TB, 
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especially in low-incidence settings. She has also suggested making use of recent 
technologies such as whole-genome sequencing (WGS) to investigate cross-border 
outbreaks of MDR-TB. Likewise, ECDC launched a pilot project in 2017 to address 
the threat due to this pathogen. It has been suggested that with the advent of WGS 
technology, the detection and investigation of Mtb in the EU/EEA can be improved 
vastly. Further, this project will also establish guidelines for WGS in investigating 
MDR-TB and XDR-TB bacterial strains to trace outbreaks.

In the United States, according to Centers for Disease Control and Prevention 
(CDC) (https://www.cdc.gov/), a total of 9272 TB cases were reported in 2016 
(CDC 2018). CDC, along with several academic institutions and Division of 
Tuberculosis Elimination (DTBE), has developed ‘The Tuberculosis Epidemiologic 
Studies Consortium II’ (TBESC-II). The goal of this consortium is to develop strat-
egies and tools to increase diagnosis and treatment of latent tuberculosis infection 
in high-risk populations.

India accounts for about a quarter of the global TB burden with an estimated 2.79 
million cases every year. India is the country with the highest burden of both TB and 
MDR-TB. Out of the total, 79,000 MDR-TB patients are notified with the cases of 
pulmonary TB each year. Hence, in March 2017, the Government of India announced 
to eliminate TB by 2025 by initiating ‘National Strategic Plan’ (NSP) (2017–2025) 
(https://tbcindia.gov.in/). According to WHO, elimination can be defined as less 
than one case of TB for a population of a million people. The Union Ministry of 
Health and Family Welfare, Government of India, has committed to ensure afford-
able and quality healthcare to the population in achieving zero TB deaths and to end 
TB by 2025. Due to the growing concerns by various governmental bodies and 
awareness across the world, combating infections due to Mtb must be of paramount 
importance. Hence, by identifying and studying major metabolic pathways respon-
sible for the pathogenesis, conventional therapies and associated drug resistance, 
potential drug targets and screening of novel lead molecules by CADD, efforts can 
be made towards mitigating TB globally.

12.3  Metabolic Pathways in Tuberculosis

Metabolic pathways that are unique to the pathogen and absent in the host help in 
identifying proteins associated with virulence, important for persistence, or vital for 
mycobacterial metabolism and causing pathogenesis of tuberculosis (et al. 2016). 
Biochemical pathways such as polyketide sugar unit biosynthesis, mycobactin bio-
synthesis, peptidoglycan biosynthesis, methane metabolism, alanine metabolism, 
thiamine metabolism and C5-branched dibasic acid metabolism are present in the 
bacteria and absent in the host and, hence, can be studied for their role in pathogen-
esis of tuberculosis (Bushra and Adem 2016).

Mtb has the ability to survive in the nutrient-poor environment by switching to 
fatty acids and lipids as a sole source of carbon. Utilization of fatty acids has been 
possible due to the presence of aceA gene which encodes for the enzyme isocitrate 
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lyase that converts isocitrate to succinate in the fatty acid metabolism pathway 
(Shukla et  al. 2017). This process is further assisted by upregulation of several 
essential genes such as fadD3, fadD26, fadE5, echA19 and fadB2 that code for 
major enzymes in the pathway (Forrellad et al. 2013). Furthermore, genes such as 
gltA1, rv1130 and pckA were also highly expressed for the survival and pathogen-
esis of XDR-Mtb (Raman and Chandra 2008).

Similarly, it has been reported that pantothenate is a key nutrient involved in the 
biosynthesis of fatty acids, synthesis of CoA and other cellular processes. In Mtb, 
the genes PanC and PanD were reported to be upregulated in virulent strains 
(Mukhopadhyay et  al. 2012). These genes code for pantothenate synthetase and 
aspartate-1-decarboxylase, respectively, and play a vital role in the virulence of 
drug-resistant Mtb. It has been observed that DdlA, EmbA, EmbB, AftA, AftB and 
MurG have been suggested as attractive targets in the biosynthesis of mycobacterial 
cell wall (Seidel et al. 2007; Alderwick et al. 2006; Belanger et al. 1996).

ArgA, an essential enzyme catalysing the initial step of arginine biosynthesis, 
and AroB in the shikimate pathway have been associated with virulence and patho-
genesis in tuberculosis (de-Mendonça et  al. 2007; Errey and Blanchard 2005). 
Another important pathway associated with causing virulence and pathogenesis in 
Mtb is the iron acquisition pathway (Mukhopadhyay et al. 2012). There are several 
genes that get upregulated during the survival of this pathogen and hence have been 
identified as an important pathway. Further, in the pantothenic acid biosynthesis 
synthesis pathway, the enzymes PanB, PanC and PanD have been identified for the 
survival and metabolism of fatty acids and lipids in Mtb (Sambandamurthy et al. 
2002). Similarly, in the pathway of two-component system, DevR and DevS have 
been identified as key proteins in causing virulence in Mtb (Saini and Tyagi 2005). 
DevR is also essential for growth of Mtb under low oxygen conditions and DevS 
plays a key role in signal transduction. Hence, the study of the major pathways and 
associated genes related to the pathogenesis and virulence in tuberculosis has pro-
found scope in anti-tuberculosis drug discovery.

12.4  Conventional Treatments Against Tuberculosis

12.4.1  First-Line Anti-tuberculosis Drugs

Isoniazid is a prodrug which gets activated by the catalase/peroxidase enzyme 
encoded by the KatG gene (Dookie et  al. 2018). Activated isoniazid inhibits the 
synthesis of essential mycolic acid (involved in synthesis of mycobacterial cell 
wall) via the NADH-dependent enoyl-acyl enzyme, encoded by the InhA gene 
(Seifert et al. 2015). Isoniazid resistance is usually mediated by mutations in the 
KatG and InhA gene (Mukhopadhyay et al. 2012). Isoniazid-resistant isolates are 
reported more frequently than any other anti-tuberculosis drugs (Seifert et al. 2015). 
Mutations in InhA and KatG not only cause high resistance to isoniazid but also 
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result in cross-resistance to structurally related second-line drug ethionamide 
(Mukhopadhyay et al. 2012).

Rifampicin is a bactericidal antibiotic that acts actively against growing and sta-
tionary phase Mtb isolates (Mukhopadhyay et al. 2012). It binds to the β-subunit of 
the DNA-dependent RNA polymerase, inhibiting the elongation of messenger 
RNA. Rifampicin-resistant Mtb show mutations within the RpoB gene that code for 
the β-subunit of RNA polymerase (Vidyaraj et al. 2017). Majority of rifampicin- 
resistant strains also show resistance to isoniazid; hence, detection of rifampicin 
resistance is considered as an indicator for MDR-Mtb (Forrellad et  al. 2013). 
Further, cross-resistance cases between rifampicin and rifabutin have been linked to 
the mutations in the hotspot region of RpoB gene (Vidyaraj et al. 2017).

Pyrazinamide is an important first-line prodrug that is used along with isoniazid 
and rifampicin for treatment of tuberculosis. The mode of action for pyrazinamide 
is similar to that of isoniazid. Majority of pyrazinamide-resistant Mtb strains (72–
97%) have mutations in the PncA gene (Njire et al. 2016). PncA gene codes for the 
enzyme pyrazinamidase which converts pyrazinamide to pyrazinoic acid (Dookie 
et al. 2018). Pyrazinamide is effective against Mtb and shows no activity against 
other Mycobacterium species (Njire et al. 2016). Hence, pyrazinamide resistance in 
Mycobacterium species is a specific indicator of drug-resistant Mtb (Rajendran and 
Sethumadhavan 2014).

Ethambutol is an important anti-tuberculosis drug that is effective against multi-
plying bacilli (Zhao et al. 2015). However, this bacteriostatic agent fails to show 
effect against non-replicating bacilli (Mukhopadhyay et  al. 2012). In Mtb, the 
EmbB gene encodes for the enzyme arabinosyl transferase which is further involved 
in the biosynthesis of arabinogalactan, a vital component of mycobacterial cell wall 
(Forrellad et al. 2013). Ethambutol inhibits the biosynthesis of the arabinogalactan 
thereby disintegrating the bacterial cell wall (Dookie et  al. 2018). It has been 
observed that the majority of ethambutol-resistant Mtb strains have mutations in the 
EmbB gene (Zhao et al. 2015).

Streptomycin, a bactericidal antibiotic which is effective against stationary phase 
bacilli, inhibits protein synthesis by binding to the 30S ribosomal subunit of the 
bacteria (Sun et al. 2016). The genes RpsL and Rrs in Mtb encode for the ribosomal 
protein S12 and 16S rRNA, respectively. It has been reported that mutations in these 
genes are a major cause of streptomycin resistance in Mtb (Sun et  al. 2016). 
However, mutations in the GidB gene, encoding a 7-methylguanosine methyl trans-
ferase, have also been associated in low-level streptomycin resistance.

12.4.2  Second-Line Anti-tuberculosis Drugs

Amikacin and kanamycin are prescribed as second line of antibiotics for the treat-
ment of tuberculosis. Several studies have reported cross-resistance between amika-
cin and kanamycin or between kanamycin and capreomycin or viomycin (Krüüner 
et  al. 2003). Resistance to amikacin and kanamycin in Mtb has been majorly 
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associated with a mutation in rrs gene, which codes for 16S rRNA of the bacteria 
(Mukhopadhyay et al. 2012; Maus et al. 2005a). Further, mutations in the eis gene 
(promotor region), which codes for acetyltransferase enzyme, have also been 
reported to result in low-level resistance to kanamycin (Forrellad et  al. 2013). 
According to previous studies, viomycin and capreomycin have exhibited full cross- 
resistance due to the mutations in the gene tlyA, which codes for rRNA methyl 
transferase (Maus et al. 2005b).

Fluoroquinolones, specifically ciprofloxacin, moxifloxacin and levofloxacin, are 
currently used as second-line treatment for TB. These antibiotics play an important 
role in the treatment of TB as they show high bactericidal activity with fewer side 
effects in comparison with other TB drugs (Jabeen et al. 2015). These antibiotics 
inhibit the function of mycobacterial DNA gyrase (type II topoisomerase) encoded 
by the gyrA gene (Forrellad et al. 2013). Mtb resistant to the entire class of fluoro-
quinolones has often been associated with genetic mutations in gyrA and gyrB genes 
(Jabeen et al. 2015).

Ethionamide, prothionamide and isoniazid are structurally similar prodrugs pre-
scribed for the treatment of TB (Dookie et  al. 2018). The mechanism of action 
towards the treatment of TB is also similar to that of isoniazid (Vilchèze and Jacobs 
2014). These drugs inhibit the expression of inhA gene present in the mycolic acid 
synthesis pathway (Mukhopadhyay et al. 2012). Hence, ethionamide-resistant Mbt 
strains have been associated to mutations in the ethA and inhA genes which are also 
the responsible genes for isoniazid resistance (Tan et al. 2017). However, another 
gene MshA, encoding glycosyltransferase enzyme involved in mycothiol biosynthe-
sis, has also been suggested as a potential drug target for ethionamide (Vilchèze and 
Jacobs 2014).

Cycloserine is a structural analogue of D-alanine, and it inhibits the biosynthesis 
of mycobacterial cell wall by inhibiting the action of D-alanine ligase enzyme 
(Chen et al. 2017). However, the drug target of cycloserine has not yet been experi-
mentally elucidated in Mtb, yet overexpression of alrA gene in M. smegmatis 
resulted in high resistance to cycloserine.

12.4.3  Third-Line Anti-tuberculosis Drugs

Delamanid belongs to the nitroimidazole class of antibiotics and is structurally sim-
ilar to pretomanid. The mechanism of action towards TB is by inhibiting the synthe-
sis of mycolic acids which are vital for biosynthesis of mycobacterial cell wall 
(Mukhopadhyay et al. 2012). This prodrug specifically inhibits methoxy-mycolic 
and keto-mycolic acids while isoniazid also inhibits α-mycolic acid (D’Ambrosio 
et al. 2017). It has also been reported that mutations in the fbiA and fdg1 genes are 
associated to delamanid resistance (D’Ambrosio et al. 2017).

Bedaquiline belongs to diarylquinolines, a new class of drugs. It acts by inhibit-
ing mycobacterial ATP synthase, which further affects the survival of Mtb. The 
AtpE gene encodes for an important mycobacterial F1F0 proton ATP synthase, a 
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vital enzyme for ATP synthesis and generation of membrane potential. Hence, 
mutations in the AtpE gene have been attributed with increased resistance to beda-
quiline (Dookie et al. 2018). P-amino salicylic acid along with isoniazid and strep-
tomycin was one of the first antibiotics used in the treatment of TB. P-amino 
salicylic acid has been classified as a part of third line of antibiotics in the treatment 
of TB. In Mtb, p-aminosalicylic acid inhibits dihydropteroate synthase, an impor-
tant enzyme in the folate biosynthesis (Forrellad et al. 2013). Similarly, the main 
reason for p-amino salicylic acid resistance has been attributed to mutations occur-
ring in the thyA gene that encodes for thymidylate synthase (Almeida-Da-Silva and 
Palomino 2011).

Linezolid belongs to the class of drugs known as oxazolidinones, and it has been 
approved for the treatment of TB. The mechanism of action in Mtb is by inhibiting 
the synthesis of proteins by binding to the V domain of the 50S ribosomal subunit 
in the bacteria. Linezolid-resistant Mtb strains are rarely reported, yet resistant 
strains have been identified with mutations in the rrl and rplC gene, encoding the 
50S ribosomal sequence (Almeida-Da-Silva and Palomino 2011). An overview of 
currently prescribed antibiotics against XDR-Mtb, their mode of action, associated 
resistance mechanisms (genes involved) and commonly occurring side effects of the 
antibiotics have been depicted in Table 12.1.

12.5  Scope of Computer-Aided Drug Discovery (CADD) 
and Associated Challenges

Modern drug discovery and development focuses on understanding disease mecha-
nisms which further leads to target identification, validation and screening of poten-
tial leads. In this process, computational tools offer tremendous potential in target 
identification, virtual screening, de novo synthesis and integration of data on mul-
tiple levels (Katsila et al. 2016). Similarly, state-of-the-art network-based computa-
tional algorithms pharmacophore substructure similarity searching, data mining 
through machine learning, molecular docking, molecular dynamic (MD) simula-
tions and bioactivity spectra-based algorithms and systems biology approaches help 
in integrating information from various databases and optimize the process of drug 
development (Katsila et al. 2016; Engin et al. 2014). The identification of potential 
drug targets can also be carried out through network-based approaches where infor-
mation from different databases is integrated to understand the importance and role 
of proteins in specific disease networks. This approach is highly reliable and 
includes the amalgamation of data from various fields such as pharmacogenomics, 
genomics, proteomics, transcriptomics, microbiome and metabolomics, to name a 
few. It also makes use of computational biology tools for data correlation and inter-
pretation (Anastasio 2017; Engin et al. 2014). Similarly, the application of connec-
tivity maps has recently helped several researchers and pharmaceutical industries to 
find a common link between functionally associated genes in disease prognosis and 
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drug interactions for a pathogen. A connectivity map is an assembly of data col-
lected from whole-genome transcriptional expression of cultured human cells 
treated with bioactive small molecules (Anastasio 2017). The validation of identi-
fied targets is a laborious, time-consuming and expensive process. The efficiency of 
this process can be vastly improved when combined with computational approaches 
such as step-wise data filtering by biostatistics. High-throughput screening (HTS) 
usually offers identification of several hits; yet, the success rates are often lower as 
many of the identified compounds are rejected due to their lack of physicochemical 
properties. This can be avoided by the combinatorial approach, wherein CADD and 
HTS are applied together to screen and identify novel leads against a particular 
target. An overview of CADD in identifying novel leads against potential drug tar-
gets of Mycobacterium tuberculosis has been depicted in Fig. 12.1.

Recently, a study illustrated structure-based virtual screening of natural com-
pounds to identify potential inhibitors against Mtb isocitrate lyase (Shukla et  al. 
2017). This enzyme catalyses the first step in the glyoxylate cycle and plays a key 
role in the survival of Mtb. Hence, structure-based virtual screening of natural com-
pounds from the ZINC database (167,748 compounds) was performed to identify 
three potential inhibitors (ZINC1306071, ZINC2111081 and ZINC2134917) against 
this enzyme. These ligands were docked against the isocitrate lyase enzyme and were 
further subjected to MD simulation to understand ligand binding and the stability of 
the bound complexes. Similarly, these lead compounds also displayed substantial 
pharmacological and structural properties to be drug candidates (Shukla et al. 2017). 
In another study conducted by Silva et al. (2016), it was suggested that carbapenems 
such as imipenem and meropenem inhibit the activity of L,D- transpeptidase enzyme, 
which is a key enzyme for synthesis of L,D-transpeptide linkages in the mycobacte-
rial cell wall. Further, molecular modelling approaches were undertaken to study the 
enzyme/inhibitor interactions. Furthermore, the binding energies for nine commer-
cially available inhibitors were calculated using molecular mechanics/generalized 
born surface area (MM/GBSA) and solvation interaction energy (SIE) approaches, 
and the calculated energies corresponded well with the available in vitro analysis.

CADD is an interdisciplinary field that requires collaborative efforts among 
highly intellectual professionals from systems biology, computational chemistry, 
chemoinformatics, bioinformatics, computational biology and pharmacogenomics. 
In scientific computing, in order to make the calculations in a finite period of time, 
several assumptions, significant approximations and numerous algorithms are 
applied (Baldi 2010). Hence, these factors weaken the accuracy of any ligand- 
receptor interaction and are identified as major limitations of CADD. Similarly, 
screening of large number of compounds leads to the identification of undesired 
chemical structures which are chemically unstable, synthetically unfeasible or have 
higher toxicity (Baldi 2010). The handling of large amounts of data generated by 
these methods is quite difficult and poses as a drawback. However, there have been 
significant improvements in the development of softwares with user-friendly pro-
grams, and with the advent of ultra-fast supercomputers, CADD has been  considered 
as a reliable approach and has been integrated in the process of modern drug design 
and development (Baldi 2010).
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12.6  Computational Biology Approaches for Identification 
of Putative Drug Targets

Target identification is the first step and the most important step in the drug discov-
ery pipeline. The initial step requires assessing several metabolic pathways to iden-
tify a potential biological target (Mehra et al. 2016; Reddy et al. 2007). The outcome 
of this step can be improved if the molecular mechanisms of disease have been 

Fig. 12.1 An overview of computer-aided drug discovery in identifying novel leads against poten-
tial drug targets of Mycobacterium tuberculosis. Virtual screening has become a key component of 
the modern drug discovery and development process
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previously elucidated (Chandra 2011). Conventional approaches of in  vitro and 
in vivo identification and validation of targets include whole-cell or animal experi-
ments, gene knockout and site-directed mutagenesis studies. These approaches are 
time-consuming, laborious and not feasible for screening large number of receptors 
(Chandra 2011). In the recent decades, in silico approaches help in reducing cost, 
analysing voluminous amounts of data generated from experiments (gene profiling 
by microarrays), and they provide an overall picture of the systems involved at the 
molecular level in the bacteria. Hence, computational approaches offer tremendous 
potential in screening and selecting drug targets along with conventional methods. 
Drug targets can be identified by various approaches such as gene network analysis, 
kinetic modelling, flux balance analysis, topological analysis and rule-based analy-
sis of key enzymes and proteins in the bacteria (Amir et al. 2014; Chandra 2011). 
Gene network analyses have been playing a key role in screening certain proteins 
that may cause resistance in pathogenic bacteria (Reddy et  al. 2007). Similarly, 
these proteins along with other virulence factors can be targeted to inhibit the resis-
tance mechanism in Mtb (Lionta et al. 2014; Chandra 2011).

On the other hand, databases also play a significant role in the identification of sev-
eral drug targets. Some of the commonly used databases include Therapeutic Target 
Database (TTD) (Li et al. 2018), DrugBank (https://www.drugbank.ca/), DrugMap 
Central (http://r2d2drug.org/index.html), Gene Ontology Consortium (http://www.
geneontology.org/), Reactome (https://reactome.org/), Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (http://www.genome.jp/kegg/), Panther 13.1 (http://
www.pantherdb.org/) and Potential Drug Target Database (PDTD) (Gao et  al. 
2008). Similarly, some of the Mtb-specific databases include MIRU-VNTRplus 
(http://www.miru-vntrplus.org/MIRU/index.faces), MycoperonDB (http://cdfd.org.
in/mycoperondb/home.html), TB Drug Target (TBDT) (http://www.bioinformatics.
org/tbdtdb/) and Mycobrowser (https://mycobrowser.epfl.ch/).

Based on the metabolic pathway analysis, several targets can be selected for 
structure-based virtual screening, for example, hydroxymethyltransferase (EC 
2.1.2.1) (GlyA) has been identified as a potential drug target by KEGG pathway 
analysis. This enzyme plays a vital role in causing virulence, pathogenesis and sur-
vival of Mtb. It is actively involved in several pathways such as biosynthesis of 
amino acids and secondary metabolites, metabolism of carbon, methane, cyano-
amino acid and glyoxylate and dicarboxylate. The native structure of serine 
hydroxymethyltransferase (PDB ID: 3H7F) possessed two chains (A and B) with 
molecular weight of 95226.08 Da and a resolution of 1.5 Å (R-value free, 0.196) 
(Fig.  12.2a). Further, gene network analysis for the gene GlyA, performed by 
STRING database, revealed that genes such as guaA, gcvP, purH, folD, PurH, PurN, 
cys, gcvH and PurM (Fig. 12.2c) closely interacted with GlyA and performed major 
functions in metabolic pathway (Szklarczyk et al. 2017). The key proteins associ-
ated to serine hydroxymethyltransferase are glycine dehydrogenase, IMP cyclohy-
drolase, methenyltetrahydrofolate cyclohydrolase, cysteine synthase and 
phosphoribosylglycinamide formyltransferase (Szklarczyk et al. 2017). The genes 
and their gene products involved in this network play an important role in the patho-
genesis and virulence of Mtb. Serine hydroxymethyltransferase has been reported 
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as a potential drug target for pathogenic Plasmodium falciparum and Plasmodium 
vivax, which causes malaria in humans (Sopitthummakhun et al. 2012). Similarly, a 
comprehensive list of potential drug targets, their involvement in major pathways 
and associated genes in drug-resistant Mtb have been tabulated (Table 12.2).

The exploration of pathogenesis caused by Mtb and the identification of the 
related targets is an important step in combating tuberculosis (Geromichalos 2012). 

Fig. 12.2 Visualization, detailed secondary structure analysis and gene interaction network analy-
sis for serine hydroxymethyltransferase from Mtb. (a) Visualization of the 3D structure of serine 
hydroxymethyltransferase by UCSF Chimera. (b) The detailed secondary structure alignment 
visualized using STRIDE web interface revealed 34 α-helices, 59 turns, 29 β-strands and 11 
310-helices. (c) Gene network analysis for the gene GlyA, performed by STRING database revealed 
some of the major interacting genes such as guaA, gcvP, purH, folD, PurH, PurN, cys, gcvH and 
PurM. The gene product of GlyA has been selected as probable drug target in the study and is 
highlighted in the figure. In the figure, coloured nodes represent the first shell of interactors, while 
white nodes represent second shell of interactors and empty nodes represent proteins of unknown 
3D structure. The genes and their gene products involved in this network play an important role in 
the pathogenesis and virulence of Mtb
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Hence, Raman et al. (2008) have developed a comprehensive in silico target identi-
fication pipeline (targetTB) for drug-resistant Mtb by an interactome, reactome and 
genome-wide structural analysis. In the pipeline, the authors have incorporated a 
network analysis of the protein-protein interactome, a flux balance analysis of the 
reactome, experimentally derived phenotype essentiality data, sequence analyses 
and a structural assessment of target ability by the application of novel algorithms 
(Raman et al. 2008). Such resources aid in the identification and validation of drug 
targets of Mtb by computational approaches. Similarly, Amir et al. (2014) have per-
formed an in silico comparative analysis of metabolic pathways of the host Homo 
sapiens and Mycobacterium tuberculosis H37Rv strain to identify potential drug 
targets. The study identified five unique metabolic pathways comprising of 55 
enzymes which are essential for the survival and virulence in Mtb and also which 
are non-homologous to human protein sequences. Further, the functional analysis 
using UniProt and DEG database revealed the importance of all the unique enzymes 
in the synthesis of different cellular components (Amir et al. 2014).

12.7  Protein Structure Prediction

Predicting the 3D structure of molecular targets (most cases a receptor or protein) is 
a key step in structure-based drug discovery as it will assist in designing inhibitors 
or anti-TB drugs against XDR-Mtb (Qiu et al. 2017). The 3D structures of the iden-
tified targets that are not available in their native forms can be computationally 
predicted by various approaches. The 3D structure of proteins can be predicted by 
three different approaches, namely, homology modelling, fold recognition and ab 
initio methods.

12.7.1  Homology Modelling

Homology modelling, also known as comparative modelling, is a process of pre-
dicting a three-dimensional structure of the ‘target’ protein from its amino acid 
sequence and an experimental elucidated 3D structure of a related homologous pro-
tein of the identified template. It has been observed that the protein structures among 
homologous sequences are highly conserved in nature, whereas, sequences that fall 
under 30% sequence identity exhibit different structures (Vyas et  al. 2012). 
Similarly, proteins that are evolutionarily related have similar sequences, and natu-
rally occurring homologous proteins exhibit similar protein structures (Liu et  al. 
2011). This method is widely applied in structure-based drug discovery to predict 
3D structures of potential drug targets that play a vital role in causing pathogenesis 
(Vyas et al. 2012). Some of the key steps involved in the process of homology mod-
elling include target retrieval, template identification, structural alignment and 
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superposition, model prediction, loop modelling, side-chain optimization, model 
refinement and model validation. The most frequently used computational tools/
web-based servers for protein structure prediction by homology modelling include 
3D-JIGSAW (Bates et  al. 2001), MODELLER (Webb and Sali 2017), HHpred 
(Söding et  al. 2005), RaptorX (Peng and Xu 2011), SWISS-MODEL (Schwede 
et al. 2003) and Phyre2 (Kelley et al. 2015b). Qiu et al. (2017) have reported the 
homology model of potential drug target serine acetyltransferase (CysE) from Mtb. 
The study reported the essential amino acids that are associated with enzymatic 
activity of CysE to design inhibitors (Qiu et al. 2017). Similarly, Ko and Choi (2016) 
have reported the 3D structure of QcrB from Mycobacterium tuberculosis cyto-
chrome bc1 complex by homology modelling to study the effect of new anti- 
tuberculosis agent Q203 (Ko and Choi 2016).

12.7.2  Fold Recognition

Fold recognition, also known as protein threading, is a method of structure predic-
tion wherein the three-dimensional structure of proteins is predicted on the basis of 
folds. This process utilizes experimentally elucidated structure of proteins that have 
similar folds. Both fold recognition and homology modelling are template-based 
prediction methods (Vyas et al. 2012); however, it differs from the homology mod-
elling approach, as it is used for proteins which do not have similar protein struc-
tures deposited in any of the structural databases (Liu et  al. 2011). Further, the 
prediction in this method is carried out by aligning each amino acid in the target 
sequence to a position in the template structure and evaluating how well the target 
fits the template (Leelananda and Lindert 2016). The predicted structure is then 
evaluated by using various scoring methods, and this process is reiterated for all 3D 
structures in a structural database until the best structural fit is obtained for a given 
query (Usha et  al. 2017). Some of the commonly used computational tools/web 
servers for protein structure prediction by fold recognition include MUSTER (Wu 
and Zhang 2008), GenTHREADER (Jones 1999), I-TASSER (Yang et al. 2015) and 
DescFold (Yan et al. 2009). In a study conducted by Mao et al. (2013), reported the 
predict 3D fold and structure of several proteins in the genome of Mtb H37Rv strain 
using Phyre2 tool (Mao et al. 2013).

12.7.3  Ab Initio Prediction

Ab initio or de novo methods predict a 3D structure directly from the amino acid 
sequence without the usage of the template. Template-based structure prediction 
methods do not require computationally intensive settings, whereas ab initio meth-
ods make use of high GPU, and the prediction is restricted to smaller proteins (<120 
residues) (Usha et al. 2017). Ab initio prediction is carried out in two steps: first, by 
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formulating a scoring function (such as energy) that separates accurate (native-like 
or native) structures from incorrect ones, and, second, by devising a search method 
for exploring the conformational space (Leelananda and Lindert 2016). It has been 
observed that the template-based methods predict accurate structures in comparison 
to de novo methods for structure prediction (Liu et  al. 2011). Further, these 3D 
structures are validated and explored for molecular docking and MD simulation 
studies in the process of structure-based drug discovery. There are several web serv-
ers and stand-alone softwares for both prediction and validation of 3D structures. 
Some of the commonly used tools/web servers for protein structure prediction by ab 
initio method include QUARK (Xu and Zhang 2012), I-TASSER (Yang et al. 2015), 
Rosetta/Robetta (Bradley et al. 2005), CABS-FOLD (Blaszczyk et al. 2013) and 
EVfold (Marks et al. 2011). These predicted 3D structures are evaluated using vari-
ous bioinformatics tools or web servers such as ProCheck, WHATIF, ERRAT, 
PROVE, ANOLEA, GROMOS, Verify3D, ProMotif, DSSP, QMEAN and ProSA 
(Leelananda and Lindert 2016).

12.8  Virtual Screening of Novel Lead-Like Molecules 
Against Mycobacterium tuberculosis

Conventionally, experimental methods such as high-throughput screening are being 
employed for rapid identification of lead molecules against drug targets by perform-
ing individual biochemical assays for several compounds. However, there are sev-
eral drawbacks of these processes, such as being time-consuming, expensive and 
laborious in nature and these can be surmounted by the integration of computer- 
aided virtual screening (Kar and Roy 2013). Virtual screening is defined as an 
exhaustive process of screening extensive libraries of compounds for identification 
of new lead molecules against biological targets by techniques such as computer- 
aided molecular drug design, pharmacophore searches, homology modelling, high- 
throughput docking and MD simulations (Lionta et al. 2014; Geromichalos 2012). 
Recently, virtual screening techniques have become a key component of modern 
drug discovery and development process. Further, it has also been adopted by phar-
maceutical industries and academic groups in the early stages of drug discovery and 
development to screen undesirable compounds which otherwise result in expensive 
and time-consuming experimental methods (Cheng et  al. 2012; Geromichalos 
2012). Virtual screening methods are further divided into structure-based and 
ligand-based. The underlying principle behind structure-based virtual screening is 
molecular docking and interaction analysis (usually, protein-ligand interactions). 
This process involves automated and fast docking of several compounds against a 
given biological target. In this approach, an accurate understanding about the 
active site or the binding cavities of the target protein is essential. Similarly, 
ligand-based virtual screening is based on similarity, topological and pharmaco-
phore substructure searches against various databases (Reddy et al. 2007). Some 
of the commonly screened databases include PubChem (https://pubchem.ncbi.
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nlm.nih.gov/), ZINC (http://zinc.docking.org/), ACD (http://accelrys.com/products/
collaborative-science/databases/sourcing-databases/biovia-available-chemicals-
directory.html), ChemSpider (http://www.chemspider.com/), ChEMBL (https://
www.ebi.ac.uk/chembl/), Enamine (http://www.enamine.net/), ChemNavigator 
(https://www.chemnavigator.com/), and TCM (http://tcm.cmu.edu.tw/). It is also 
known as neighbourhood behaviour search and is widely employed for identifica-
tion of novel drug- like candidates against the disease. It has been observed that 
there is no universal protocol to follow in the process of virtual screening of novel 
drug-like molecules. However, having in-depth knowledge about the targets and 
through identifying the need for the study, the process can be altered to obtain reli-
able results (Kar and Roy 2013).

In a recent study conducted by Kaur et al. (2018), by drug-targeted virtual screen-
ing and MD simulations, the authors have identified several inhibitors of LipU pro-
tein (a key protein in the survival of Mtb) (Kaur et al. 2018). Similarly, Sengupta 
et al. (2015) have performed pharmacophore-based virtual screening and molecular 
dynamic simulations to identify potential inhibitors of maltosyl transferase (GlgE) 
in Mtb (Sengupta et al. 2015). Further, Maganti et al. (2015) have reported 3D-QSAR 
and shape-based virtual screening of novel inhibitors against aryl acid adenylating 
enzyme (MbtA) involved in the biosynthesis of siderophores (Maganti et al. 2015). 
This study illustrated the molecular dynamics simulations to gain more insights 
about the stability of the ligand-receptor complexes. The application of virtual 
screening, molecular modelling, molecular docking and MD simulations has been 
well established in identifying novel leads against Mtb (Janardhan et al. 2017; Lone 
et al. 2017c; Mansuri et al. 2016; Mehra et al. 2016).

Some of the major drawbacks of this approach include ligand/target flexibility, 
studying multiple binding modes, consideration of solvent parameters, variability in 
the scoring functions, tautomerization and ionization of ligand and protein residues 
and the solvation effects (Cheng et al. 2012; Shoichet 2004). Nevertheless, virtual 
screening has become a valuable and crucial part of drug discovery process and, 
perhaps, is the most practical approach in identifying novel leads against targets of 
XDR-Mtb (Reddy et al. 2007).

12.9  Computational Pharmacokinetic Analysis: Prediction 
of Drug Likeliness and ADMET Properties

Prior to studying the drug-like features, the identified molecules are subjected to 
several molecular descriptors based on topology (connectivity and balaban indices), 
constitution (molecular weight, rotatable bonds, and H-bond acceptors/donors), 
lipophilicity (ocatanol-water partition coefficient), geometry (polar and volume 
related surface area), thermodynamics (heat of formation and molar refractivity) and 
electronic descriptors (partial charges and dipole moment) to screen the molecules for 
further steps (Vyas et al. 2008). Further, the drug-likeliness features of the lead mol-
ecules are usually predicted on the basis of Lipinski’s rule of five (Lipinski 2004), 
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Lead-like rule (Lipinski 2004), Comprehensive Medicinal Chemistry (CMC)-like 
rule (Ghose et al. 2006), World Drug Index (WDI)-like rule (Sneader 1990) and 
MDL Drug Data Report (MDDR)-like rule (Oprea 2000). Similarly, the molecules 
that qualify the initial screening are further evaluated for adsorption, distribution, 
metabolism and excretion (ADME) by various statistical models such as human 
intestinal absorption (HIA%), blood-brain barrier (BBB) penetration (Clark 2003), 
buffer solubility, heterogeneous human epithelial colorectal adenocarcinoma 
(caco2) cell permeability, plasma protein binding (Leeson et al. 2004), Madin Darby 
canine kidney (MDCK) cell permeability, P-glycoprotein inhibition, CYP 2C19 
inhibition, pure water solubility and skin permeability assays (Averbukh et al. 2014; 
Bickerton et al. 2012; Veber et al. 2002). Further, the lead molecules that possess 
good ADME properties are further selected to predict the toxicity in terms of muta-
genicity (based on Ames parameters), rodent carcinogenicity in mouse and rat mod-
els, hERG gene inhibition, acute fish toxicity in minnow (Pimephales notatus) and 
medaka (Oryzias latipes), acute algae and daphnia toxicity assays.

Some of the commonly used computational tools and web servers for the pre-
diction of drug-like and ADMET (absorption, distribution, metabolism, excretion 
and toxicity) features include QikProp (https://www.schrodinger.com/qikprop), 
SwissADME (http://www.swissadme.ch/), PreADMET (https://preadmet.bmdrc.
kr/), ADMEWORKS ModelBuilder (http://www.fqs.pl/en/chemistry/products/
admeworks-modelbuilder), DrugLogit (http://hermes.chem.ut.ee/~alfx/druglogit.
html), AdmetSAR (http://lmmd.ecust.edu.cn/admetsar1/) and ADMET Predictor 
8.5 (https://www.simulations-plus.com/software/admetpredictor/).

In this chapter, the authors have illustrated drug-likeliness features and ADMET 
features of the few herbal leads by PreADMET web server. The drug-likeliness 
properties of all the identified lead molecules are displayed in Table 12.3. Out of the 
four herbal-based compounds screened, all the compounds were qualified for drug- 
like properties according to Lipinski’s rule of five and CMC-like rule and displayed 
mid-structure as per MDDR-like rule. However, only strictamin qualified lead-like 
rule. Further, ajmalicine and strictamin were in the 90% cut-off range for WDI-like 
rule. All the four herbal leads possessed drug-likeliness properties. The ADME 
properties of the lead molecules are displayed in Table 12.4. The computational 
prediction suggested that all the molecules displayed ideal penetration across the 
blood-brain barrier (BBB) (low-level penetration to the suggested targets), exhib-
ited higher bioavailability and were easily absorbed by human intestine. The 
 probability values of the four molecules predicted by caco2 cell permeability model 
demonstrated that they were within the acceptable range of 20–39 which suggested 
good intestinal absorption. Buffer solubility and pure water solubility for strictamin 
(a herbal compound present in Alstonia scholaris) were predicted to be 649 mg/L 
and 416 mg/L, respectively. The prediction by skin permeability model suggested 
that the molecules were in the acceptable range of −2.3 cm/hour (curcumin) to −4.3 
(ajmalicine) cm/hour. The toxicity profiles of the identified leads are displayed in 
Table  12.5. In vitro values of acute algae (algae_at) and daphnia (daphnia_at) 
toxicity were predicted to be within the acceptable range of 0.01 (curcumin) to 0.1 
(limonin). The toxicity prediction for ajmalicine (a herbal compound present in 

N. Bachappanavar and S. Skariyachan

https://www.schrodinger.com/qikprop
http://www.swissadme.ch/
https://preadmet.bmdrc.kr/
https://preadmet.bmdrc.kr/
http://www.fqs.pl/en/chemistry/products/admeworks-modelbuilder
http://www.fqs.pl/en/chemistry/products/admeworks-modelbuilder
http://hermes.chem.ut.ee/~alfx/druglogit.html
http://hermes.chem.ut.ee/~alfx/druglogit.html
http://lmmd.ecust.edu.cn/admetsar1/
https://www.simulations-plus.com/software/admetpredictor/


259

Ta
bl

e 
12

.3
 

C
om

pu
te

r-
ai

de
d 

dr
ug

 li
ke

lin
es

s 
pr

ed
ic

tio
n 

of
 m

ol
ec

ul
es

 f
ro

m
 h

er
ba

l o
ri

gi
n 

su
ch

 a
s 

R
au

vo
lfi

a 
se

rp
en

ti
ne

, C
ur

cu
m

a 
lo

ng
a,

 A
ls

to
ni

a 
sc

ho
la

ri
s 

an
d 

Vi
ti

s 
vi

ni
fe

ra
 u

si
ng

 P
re

A
D

M
E

T
 w

eb
 s

er
ve

r

M
ol

ec
ul

es
Pu

bC
he

m
 I

D
 

(C
ID

)
H

er
ba

l s
ou

rc
e 

(c
om

m
on

 
na

m
e)

M
ol

ec
ul

ar
 W

ei
gh

t 
(D

a)
R

ul
e 

of
 

fiv
e

C
M

C
-l

ik
e 

ru
le

L
ea

d-
lik

e 
ru

le
M

D
D

R
-l

ik
e 

ru
le

W
D

I-
lik

e 
ru

le

A
jm

al
ic

in
e

25
15

61
R

au
vo

lfi
a 

se
rp

en
ti

na
 

(S
ar

pa
ga

nd
ha

)
35

2.
42

Su
ita

bl
e

Q
ua

lifi
ed

V
io

la
te

d
M

id
-s

tr
uc

tu
re

In
 9

0%
 c

ut
-o

ff

C
ur

cu
m

in
96

95
16

C
ur

cu
m

a 
lo

ng
a 

(T
ur

m
er

ic
)

36
8.

37
Su

ita
bl

e
Q

ua
lifi

ed
V

io
la

te
d

M
id

-s
tr

uc
tu

re
O

ut
 o

f 
90

%
 

cu
t-

of
f

St
ri

ct
am

in
64

44
32

5
A

ls
to

ni
a 

sc
ho

la
ri

s 
(S

ap
ta

pa
rn

a)
32

2.
40

Su
ita

bl
e

Q
ua

lifi
ed

Su
ita

bl
e

M
id

-s
tr

uc
tu

re
In

 9
0%

 c
ut

-o
ff

L
im

on
in

17
96

51
Vi

ti
s 

vi
ni

fe
ra

 (
G

ra
pe

s)
47

0.
51

Su
ita

bl
e

Q
ua

lifi
ed

V
io

la
te

d
M

id
-s

tr
uc

tu
re

O
ut

 o
f 

90
%

 
cu

t-
of

f

12 Combinatorial Designing of Novel Lead Molecules Towards the Putative Drug…



260

Ta
bl

e 
12

.4
 

C
om

pu
te

r-
ai

de
d 

A
D

M
E

 p
re

di
ct

io
n 

re
su

lts
 (

us
in

g 
Pr

eA
D

M
E

T
 w

eb
 s

er
ve

r)
 f

or
 h

er
ba

l 
le

ad
s 

sc
re

en
ed

 a
ga

in
st

 d
ru

g-
re

si
st

an
t 

M
yc

ob
ac

te
ri

um
 

tu
be

rc
ul

os
is

L
ig

an
d

Pu
bC

he
m

 I
D

 
(C

ID
)

B
B

B
(C

br
ai

n/
C

bl
oo

d)
a

B
uf

fe
r 

so
lu

bi
lit

y
(m

g/
L

)
C

ac
o2

 
(n

m
/s

)b
C

Y
P 

2C
19

H
IA

c

(%
)

M
D

C
K

 
(n

m
/s

)d

PP
B

 
(%

)e

Pu
re

 w
at

er
 

so
lu

bi
lit

y
(m

g/
L

)
Sk

in
 p

er
m

ea
bi

lit
y 

(l
og

 
kp

, c
m

/h
)f

A
jm

al
ic

in
e

25
15

61
1.

98
41

3.
32

39
.4

6
N

on
- 

in
hi

bi
to

r
93

.3
1

27
.7

7
55

.5
18

4
−

4.
3

C
ur

cu
m

in
96

95
16

0.
09

13
70

14
.2

7
20

.0
7

In
hi

bi
to

r
94

.4
99

.9
8

88
.0

3
10

.8
−

2.
33

St
ri

ct
am

in
64

44
32

5
2.

00
3

64
9

28
N

on
- 

in
hi

bi
to

r
97

.6
18

5
58

.9
41

6
−

4.
01

L
im

on
in

17
96

51
0.

12
2

80
4.

42
27

.6
7

N
on

- 
in

hi
bi

to
r

96
.2

5
0.

78
8

80
.2

7
7.

16
−

3.
73

a I
n 

vi
vo

 b
lo

od
-b

ra
in

-b
ar

ri
er

 p
en

et
ra

tio
n—

(C
br

ai
n/

C
bl

oo
d)

 f
or

 h
ig

h 
ab

so
rp

tio
n 

to
 C

N
S 

>
2.

0;
 m

id
dl

e 
ad

so
rp

tio
n 

to
 C

N
S:

 2
.0

 ≈
 0

.1
; l

ow
 a

bs
or

pt
io

n 
to

 C
N

S 
<

0.
1

b I
n 

vi
vo

 c
ac

o2
 c

el
l p

er
m

ea
bi

lit
y—

lo
w

 <
4;

 m
id

dl
e:

 4
–7

; h
ig

h 
>

7
c H

um
an

 in
te

st
in

al
 (

H
IA

%
) 

ab
so

rp
tio

n—
po

or
: 0

–2
0%

; m
od

er
at

e:
 2

0–
70

%
; w

el
l: 

70
–1

00
%

d I
n 

vi
vo

 M
D

C
K

 c
el

l p
er

m
ea

bi
lit

y—
lo

w
 <

25
; m

id
dl

e:
 2

5–
50

0;
 h

ig
h 

>
50

0
e I

n 
vi

vo
 p

la
sm

a 
pr

ot
ei

n 
bi

nd
in

g—
w

ea
kl

y 
bo

un
d:

 <
90

%
; s

tr
on

gl
y 

bo
un

d:
 >

90
%

f In
 v

iv
o 

sk
in

 p
er

m
ea

bi
lit

y—
lo

w
 <

1;
 m

id
dl

e:
 1

–2
; h

ig
h 

>
2.

0

N. Bachappanavar and S. Skariyachan



261

Ta
bl

e 
12

.5
 

C
om

pu
te

r-
ai

de
d 

to
xi

ci
ty

 p
re

di
ct

io
n 

(u
si

ng
 P

re
A

D
M

E
T

 w
eb

 s
er

ve
r)

 fo
r p

ot
en

tia
l l

ea
d 

m
ol

ec
ul

es
 a

ga
in

st
 d

ru
g-

re
si

st
an

t M
yc

ob
ac

te
ri

um
 tu

be
rc

ul
os

is

L
ig

an
d

Pu
bC

he
m

 I
D

 (
C

ID
)

A
cu

te
 a

lg
ae

 to
xi

ci
ty

(a
lg

ae
_a

t)
A

m
es

 te
st

C
ar

ci
no

ge
ni

ci
ty

 te
st

A
cu

te
 d

ap
hn

ia
 to

xi
ci

ty
(d

ap
hn

ia
_a

t)
hE

R
G

 in
hi

bi
tio

n
M

ou
se

R
at

A
jm

al
ic

in
e

25
15

61
0.

04
84

M
ut

ag
en

N
eg

at
iv

e
N

eg
at

iv
e

0.
12

10
M

ed
iu

m
 r

is
k

C
ur

cu
m

in
96

95
15

0.
01

88
N

on
 m

ut
ag

en
N

eg
at

iv
e

Po
si

tiv
e

0.
03

87
M

ed
iu

m
 r

is
k

St
ri

ct
am

in
64

44
32

5
0.

09
54

M
ut

ag
en

N
eg

at
iv

e
N

eg
at

iv
e

0.
20

34
M

ed
iu

m
 r

is
k

L
im

on
in

17
96

51
0.

10
07

N
on

 m
ut

ag
en

N
eg

at
iv

e
Po

si
tiv

e
0.

51
91

L
ow

 r
is

k

12 Combinatorial Designing of Novel Lead Molecules Towards the Putative Drug…



262

Rauvolfia serpentina) and strictamin (a herbal compound present in Alstonia schol-
aris) were predicted to be non-carcinogenic in both mouse and rat models making 
them potential leads. Similarly, the prediction suggested that limonin (a herbal com-
pound present in Vitis vinifera) displayed low risk for the inhibition of hERG gene, 
while the other leads displayed medium risk. The hERG gene codes for the α-subunit 
of potassium ion channel in humans. Besides curcumin and limonin, all the selected 
molecules were predicted to be mutagenic according to Ames test. Hence, compu-
tational analysis suggested that the herbal leads such as strictamin (Alstonia schol-
aris), ajmalicine (Rauvolfia serpentina), limonin (Vitis vinifera) and curcumin 
(Curcuma longa) qualified for drug likeliness and ADMET and can be further 
selected to study the interactions between the drug target by molecular docking and 
interaction studies. Similarly, the chemical structures of the antibiotics such as iso-
niazid and ethionamide are also used for the comparative analysis, and the 2D struc-
tures of the antibiotics and herbal-based leads are displayed in Fig. 12.3.

Lone et  al. (2017b) have made an effort to identify potential inhibitors from 
herbal sources against the probable drug target, 3-dehydroquinate dehydratase 
(DHQase) of Mtb. The study constructed pharmacophore models and reported the 
probable interactions by molecular docking studies and performed in vitro assays to 
validate the findings (Lone et al. 2017b). Another study identified nine lead com-
pounds against InhA by performing a pharmacophore-based virtual screening of the 
SPECS natural product database. Further, they have performed molecular dynamic 
simulations and quantum chemical studies of the nine leads to understand structural 
features essential for the activity (Lone et  al. 2017a). Hence, computer-aided 

Fig. 12.3 Structural representation of currently prescribed antibiotics and potential natural lead 
compounds (a) isoniazid, (b) ethionamide, (c) ajmalicine, (d) curcumin, (e) limonin, (f) 
strictamin
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poly- pharmacological approach can be applied to screen several inhibitors against 
multiple drug targets of Mtb. A combination of pharmacophore and QSAR-based 
virtual screening strategy was undertaken to screen compounds from Asinex data-
base (435,000 compounds) against three drug targets InhA, GlmU and DapB in 
Mtb. Further, these potential hits were studied in detail by molecular docking analy-
sis (Janardhan et al. 2017).

12.10  Molecular Docking Analysis

In structure-based drug design, molecular docking analysis plays a pivotal role in 
the process of virtual screening for hit identification and in the drug discovery pro-
cess for optimization of potential leads (Pagadala et al. 2017). Molecular docking 
studies help in predicting the orientation of the ligand when it binds to an enzyme 
or a receptor (Chaudhary and Mishra 2016). This methodology is widely employed 
to explore the behaviour of small molecules (ligand/inhibitors) in the active site of 
a receptor (de-Ruyck et al. 2016). It is increasingly being used as a tool in drug 
discovery and development process, as it can be used for both experimental struc-
tures and theoretical models (Meng et al. 2011).

Molecular docking procedures can be carried out in two ways either through 
flexible-body or rigid-body docking approach. In the first approach, both the ligand 
and receptor are conformationally flexible and allowed to rotate along multiple 
degrees of freedom. Secondly, in rigid-body docking, both the ligand and receptor 
are held static during the process (de-Ruyck et al. 2016). Similarly, the two major 
underlying principles involved in the docking studies are conformation search (by 
various algorithms such as point complementary, Monte Carlo, fragment-based 
genetic algorithms, systematic searches and distance geometry) and a scoring func-
tion (either empirical-based, force field-based, consensus-based or knowledge- 
based) to evaluate the binding efficiency of ligand towards a target (Dar and Mir 
2017). Further, key interactions such as hydrogen bonds, hydrophobic interactions, 
van der Waals forces and electrostatic forces (charge-dipole, dipole-dipole and 
charge-charge) are taken into consideration during docking analysis (Chaudhary 
and Mishra 2016). Furthermore, the results obtained from molecular docking analy-
sis include various parameters such as number of electrostatic forces, number of 
hydrogen bonds and the negative binding energy which is usually measured in terms 
of kcal/mol (Dar and Mir 2017). Similarly, the information obtained from these 
docking studies further help in understanding whether an inhibitor will be able to 
bind in the active site of key enzymes majorly responsible for pathogenesis (Meng 
et al. 2011). Likewise, it can be a powerful process for studying the specificity and 
binding of potential lead molecules against selected drug targets (Ferreira et  al. 
2015). The list of commonly used molecular docking softwares and tools has been 
displayed in the Table 12.6.

The authors have tried to elucidate the binding potential perdition of herbal- 
based molecules towards putative drug targets (GlyA) of Mtb identified by molecu-
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Table 12.6 List of commonly used protein-ligand docking programs/software in computer-aided 
drug discovery and development

Docking program/software
Year of 
release

Type of 
license References

DOCK 1988 Freeware Ewing et al. (2001)
AutoDock 1990 Freeware Morris et al. (1998)
SOFTDocking 1991 Academic Jiang and Kim (1991)
DockVision 1992 Commercial Hart and Read (1992)
LUDI 1992 Academic Bohm (1992)
ADAM 1994 Commercial Mizutani et al. (1994)
FLOG 1994 Academic Miller et al. (1994)
DIVALI 1995 Freeware Clark (1995)
GOLD 1995 Commercial Jones et al. (1997)
Hammerhead 1996 Academic Welch et al. (1996)
LIGIN 1996 Commercial Sobolev et al. (1996)
FTDOCK 1997 Freeware Gabb et al. (1997)
ICM-Dock 1997 Commercial Totrov and Abagyan (1997)
QXP 1997 Academic McMartin and Bohacek 

(1997)
SANDOCK 1998 Academic Burkhard et al. (1998)
MCDOCK 1999 Academic Liu and Wang (1999)
PRODOCK 1999 Academic Trosset and Scheraga (1999)
DARWIN 2000 Freeware Taylor and Burnett (2000)
EUDOC 2001 Academic Pang et al. (2001)
PatchDock 2002 Freeware Schneidman-Duhovny et al. 

(2005)
FDS 2003 Academic Taylor et al. (2003)
FRED 2003 Academic McGann et al. (2003)
HADDOCK 2003 Freeware Dominguez et al. (2003)
LigandFit 2003 Commercial Venkatachalam et al. (2003)
Surflex-Dock 2003 Commercial Spitzer and Jain (2012)
iGEMDOCK 2004 Freeware Yang and Chen (2004)
Glide 2004 Commercial Halgren et al. (2004)
YUCCA 2005 Academic Choi (2005)
eHiTS 2006 Commercial Zsoldos et al. (2007)
MolDock 2006 Academic Thomsen and Christensen 

(2006)
PLANTS 2006 Academic Korb et al. (2006)
PSI-DOCK 2006 Academic Pei et al. (2006)
EADock 2007 Freeware Grosdidier et al. (2007)
FLIPDock 2007 Academic Zhao and Sanner (2007)
MEDock 2007 Freeware Chang et al. (2005)
ParDOCK 2007 Freeware Gupta et al. (2007)
PSO@AUTODOCK 2007 Academic Namasivayam and Gunther 

(2007)

(continued)
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lar modelling study and compared to the binding of conventional antibiotics to their 
respective targets of Mtb. The molecular docking analysis was carried out for four 
herbal leads against the potential drug target serine hydroxymethyltransferase 
(GlyA) (PDB: 3H7F) and further compared with the binding interaction of two 
conventionally prescribed antibiotics such as isoniazid (pyridine-4-carbohydrazide) 
and ethionamide (2-ethylpyridine-4-carbothioamide) against their drug target 
enoyl-[acyl-carrier-protein] reductase NADH (InhA) (PDB: 4DRE). The binding 
site for each drug target was predicted by DEPTH web server (Tan et al. 2013). 
Some of the other commonly used tools for predication of binding cavities include 

Table 12.6 (continued)

Docking program/software
Year of 
release

Type of 
license References

SODOCK 2007 Academic Chen et al. (2007)
Lead finder 2008 Commercial Stroganov et al. (2008)
Molecular Operating Environment 
(MOE)

2008 Commercial Vilar et al. (2008)

MS-DOCK 2008 Academic Sauton et al. (2008)
PLATINUM 2008 Freeware Pyrkov et al. (2009)
HomDock 2008 Freeware Marialke et al. (2008)
Q-Dock 2009 Freeware Brylinski and Skolnick (2008)
DOCK Blaster 2009 Freeware Irwin et al. (2009)
DockingServer 2009 Commercial Hazai et al. (2009)
AutoDock Vina 2010 Open source Trott and Olson (2010)
FlexPepDock 2010 Freeware London et al. (2011)
AADS 2011 Freeware Singh et al. (2011)
BetaDock 2011 Freeware Kim et al. (2011)
iScreen 2011 Freeware Tsai et al. (2011)
LigDockCSA 2011 Academic Shin et al. (2011)
PythDock 2011 Academic Chung et al. (2011)
SwissDock 2011 Academic Grosdidier et al. (2011)
VoteDock 2011 Academic Plewczynski et al. (2011)
Pose & Rank 2011 Freeware Fan et al. (2011)
BSP-SLIM 2012 Freeware Lee and Zhang (2012)
idTarget 2012 Freeware Wang et al. (2012)
Fleksy 2012 Freeware Wagener et al. (2012)
ParaDockS 2012 Open source Pippel et al. (2012)
rDock 2013 Open source Ruiz-Carmona et al. (2014)
FlexAID 2015 Open source Gaudreault and Najmanovich 

(2015)
POSIT 2015 Academic Kelley et al. (2015a)
MOLS 2.0 2016 Open source Paul and Gautham (2016)
Galaxy7TM 2016 Freeware Lee and Seok (2016)
HybridDock 2016 Academic Huang et al. (2016)
GalaxyDock BP2 score 2017 Freeware Baek et al. (2017)
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CASTp (Dundas et al. 2006), MetaPocket (Huang 2009), Q-SiteFinder (Laurie and 
Jackson 2005), MDpocket (Schmidtke et  al. 2011) and SURFNET (Laskowski 
1995). Further, a flexible-body docking was performed using AutoDock Vina v1.1.2, 
and the grid dimensions for the binding cavity of the receptors were performed as 
per standard protocols (Trott and Olson 2010). The best docked poses were selected 
on the basis of key interacting residues: cluster RMS, number of hydrogen bonds 
and minimum binding energy (kcal/mol).

The binding potential of four selected herbal leads towards GlyA and the antibi-
otics isoniazid and ethionamide against their drug target InhA has been displayed 
in Table  12.7 and Fig.  12.4. Molecular docking analysis suggested that limonin 
(7,16- Dioxo- 7,16- dideoxylimondiol), commonly present in Citrus species dem-
onstrated the best binding energy of −7.2  kcal/mol against GlyA with Tyr61 as 
the key interacting residue (Fig. 12.4e). Limonin is a vital component in the seeds 
of citrus fruits, and it has exhibited its pharmacological activity against several 
pathogenic Gram-positive and Gram-negative bacteria (Skariyachan et  al. 2018; 
Ayaz et al. 2017). The docked complex of ajmalicine ((19α)-16,17-didehydro-19- 
methyloxayohimban-16-carboxylic acid methyl ester) and GlyA displayed a prom-
ising binding energy of −6.7 kcal/mol with Leu118, Ala119, Leu320 and Gly361 
as key interacting residues (Fig. 12.4c). Ajmalicine is a naturally occurring alka-
loid that is commonly present in Rauwolfia serpentina, Mitragyna speciose and 
Catharanthus roseus (Wink 2015; Nazzaro et al. 2013). This naturally occurring 
compound has exhibited broad-spectrum activity against both Gram-negative and 
Gram-positive bacteria (Wink 2015), and hence, it can be considered as a potential 
lead against various targets of Mtb. Further, strictamin (akuammilan-17-oic acid 
methyl ester) when docked with GlyA displayed the binding energy of −6.5 kcal/
mol with Leu320, Arg363, Val321, Gly361 and Val310 as key interacting residues 
and one stabilizing hydrogen bond (Fig. 12.4f). Similarly, when the antibiotics iso-
niazid and ethionamide were docked with InhA, they revealed binding potential of 
−4.2 kcal/mol and −4.7 kcal/mol, respectively. The key interacting residues for eth-
ionamide and InhA were observed to be Val175, Ala128 and Lys132 (Fig. 12.4b). 
Further, it was observed that the theoretical binding energy of herbal-based mol-
ecules and GlyA was found to be better that of the binding energy of the selected 
antibacterial and respective targets. Hence, from virtual screening and molecular 
docking analysis, it can be suggested that the herbal-based lead molecules displayed 
promising binding potential with minimum binding energy and stabilising interac-
tions in comparison with the binding of two standard antibiotics towards their usual 
targets.

Rajendran and Sethumadhavan (2014) have analysed the role of bacterial enzyme 
pyrazinamidase (PncA) in pyrazinamide resistance by various computational analy-
sis. They have studied the binding pocket analysis, solvent accessibility analysis, 
molecular docking and interaction analysis to understand the behaviour of mutant 
pyrazinamidase in MDR-Mtb. Further, the authors have also reported molecular 
dynamic simulations of this enzyme to understand the three-dimensional (3D) con-
formational behaviour during drug resistance and pathogenesis in Mtb (Rajendran 
and Sethumadhavan 2014). Similarly, Fakhar et al. (2016) have reported potential 
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Fig. 12.4 The binding potential of currently prescribed antibiotics isoniazid and ethionamide with 
InhA and herbal leads ajmalicine, curcumin, limonin and strictamin with GlyA of Mycobacterium 
tuberculosis. (a) The binding energy for the best docked pose of isoniazid and InhA was observed 
to be −4.2 kcal/mol with Met155 as a key interacting residue. (b) The best docked pose of ethion-
amide and InhA with Val175, Ala128 and Lys132 as key interacting residues and a bind energy of 
−4.7 kcal/mol. (c) The binding energy for the best docked pose of ajmalicine and GlyA was pre-
dicted to be −6.7 kcal/mol. The key interacting residues were observed to be Leu118, Ala119, 
Leu320 and Gly361. (d) The binding energy for the best docked pose of curcumin and GlyA was 
predicted to be −4.1 kcal/mol. The key interacting residues were observed to be Leu56 and Arg59. 
(e) The binding energy for the best docked pose of limonin and GlyA was observed to be −7.2 kcal/
mol with Tyr61 as a key interacting residue. (f) The best docked pose of strictamin and GlyA with 
a stabilizing hydrogen bond. The key interacting residues were observed to be Leu320, Arg363, 
Val321, Gly361 and Val310 with a binding energy of −6.5 kcal/mol
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drug targets such as MurG, MurI, MraY, DapA, DapE, Ddl and Alr involved in the 
biosynthesis of peptidoglycan cell wall of MDR-Mtb. The 3D structures of these 
essential enzymes were predicted by homology modelling using Modeller 9v13. 
Further, the structural qualities of these models were validated by PDBsum, 
PROCHECK, ERRAT and QMEAN. The study further performed molecular dock-
ing and MD simulations to understand the interaction between the enzymes and 
their potential inhibitors (Fakhar et  al. 2016). Similarly, in  vitro anti-tubercular 
activity of five medicinal plants Acalypha indica, Adhatoda vasica, Allium cepa, 
Allium sativum and Aloe vera against MDR-Mtb has been reported (Gupta et al. 
2007).

Ramesh et al. (2008) have reported a bio-computational study to understand the 
binding mode of anti-TB herbal ligands against the homology model of fatty acid 
synthase of Mtb H37Rv strain. The 3D structure of this protein was predicted using 
the Modeller package to study the ligand-receptor interactions. Further, molecular 
docking studies suggested that different herbal ligands such as aloe-emodin and 
nimbin are the best herbal candidates to replace the synthetic drugs thiolactomycin 
or cerulenin that are prescribed against Mtb (Ramesh et  al. 2008). Hence, the 
receptor- ligand interactions can be easily studied by assessing thousands of poten-
tial conformations possessed by the process of molecular docking analysis. 
Although, molecular docking is a widely accepted approach in the process of 
structure- based drug discovery and development, there are several shortcomings 
which can be surmounted by molecular dynamic simulation studies (Pagadala et al. 
2017).

12.11  Molecular Dynamic Simulations

A major limitation of molecular docking analysis is that the protein is held static 
during the process (Liu et al. 2018). The static models obtained by various experi-
mental methods or through homology modelling provide vital information about the 
macromolecular structure. However, when a drug binds to its receptor in vivo, it 
does not encounter a frozen model, but rather a structure that is constantly in motion 
(Durrant and McCammon 2011). Molecular docking studies are not considered the 
dynamic motions of the receptor-ligand complex and can be overcome by another 
computational method known as molecular dynamic (MD) simulations (De-Vivo 
et al. 2016). MD simulations can be employed to identify allosteric binding sites, to 
understand the structure and functional association of receptor-ligand interactions, 
to study the mechanism of drug resistance and to provide accurate binding mode 
through optimization of lead compounds (Liu et al. 2018). Similarly, MD simula-
tions can be applied to generate a set of reliable structures for analysis when a 3D 
structure for a particular target is unavailable or the binding sites are poorly defined 
(Ferreira et al. 2015). These studies allow both receptor and ligand(s) to alter their 
biological conformations in the receptor-ligand complex (Durrant and McCammon 
2011). Molecular dynamic simulation studies make use of the most popular force 
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fields such as Assisted Model Building with Energy Refinement (AMBER) 
(Case et al. 2017), GROningen MAchine for Chemical Simulations (GROMACS) 
(Abraham et  al. 2015), Nanoscale Molecular Dynamics (NAMD) (Phillips et  al. 
2005) and Chemistry at HARvard Macromolecular Mechanics (CHARMM) 
(Brooks et al. 2009). These studies can be carried out using various programs such 
as Amsterdam Density Functional (ADF) and Abalone, Desmond and Large-scale 
Atomic/Molecular Massively Parallel Simulator (LAMMPS) (De-Vivo et al. 2016; 
Lindorff-Larsen et al. 2010).

In a recent study conducted by Naz et al. (2018), suggested that a novel benzamide 
inhibitor against α-subunit of tryptophan synthase (α-TRPS) was explored from 
Mtb by structure-based virtual screening, molecular docking and MD simulations 
(Naz et al. 2018). In another study conducted by Pandey et al. (2018), the authors 
have carried out structure-based molecular docking, molecular mechanics/general-
ized Born surface area prediction and MD simulations to study the mechanism 
behind fluoroquinolone resistance in MDR-Mtb. This study provides keys insights 
into the mechanism of drug resistance and identifying potential lead molecules 
against MDR-Mtb (Pandey et al. 2018). Multi-computer approaches such as grid 
computing, workstation clusters, personal computer clusters and massive parallel 
processors (MPP) facilitate CADD, yet, only large research groups or national 
research centres can afford these systems due to their high investment costs (Hung 
and Chen 2014). Nevertheless, MD simulations assist in several key drug discovery 
steps by undergoing continuous improvements in both computer power (increased 
GPU and cloud computing) and algorithm design (Liu et al. 2018).

12.12  Conclusions

XDR-Mtb has proven to be resistant against the majority of currently prescribed 
antibiotics, and hence, discovering compounds with antibacterial activity against 
potential drug targets is crucial in combating tuberculosis. The integration of data-
bases and omics technologies helps in the rapid screening of potential drug targets 
and network-based novel multi-target drugs. Similarly, virtual screening has become 
an integral part of the drug discovery field in screening and optimization of lead 
molecules. This chapter illustrated that the herbal lead molecules possess better 
binding potential towards the putative targets of Mtb, which was identified by meta-
bolic pathways analysis, in comparison with the binding of two conventional antibi-
otics and their respective targets. Thus, it can be suggested that herbal molecules 
such ajmalicine, curcumin, limonin and strictamin can be used as alternative lead 
molecules against the key enzyme serine hydroxymethyltransferase in Mtb. 
Furthermore, this chapter not only provides information about the latest develop-
ments in molecular medicine and computational drug discovery to combat tubercu-
losis but also opens a new paradigm towards the screening and development of 
novel leads against potential drug targets for XDR-Mtb.
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GWAS Genome-Wide Association Studies
RE Regulatory Elements
TF Transcription Factor
TFBS Transcription Factor Binding Site
TSS Transcriptional Start Site
UTR Untranslated Regions

13.1  Introduction

Understanding the gene expression pattern and the identification of the specific genes 
expressed during different cellular and life processes are crucial for the understanding 
of various life processes and it also helps in defining the molecular pathology of dif-
ferent disease states (Baty et al. 2013). The complex and precise spatiotemporal gene 
expression often needs the presence of different cis-REs which are far placed from the 
promoter regions. Cell-lineage-specific TFs bind cis-REs distal to these promoters 
and also to those promoters which are more tightly regulated in spatiotemporal fash-
ion and which needs external signals such as hormones, for example during cell 
growth and differentiation. Different cellular signals are integrated via promoter and 
cis-REs, which in turn regulate complex gene expression patterns in various cells and 
tissues in a coordinated manner (Sakabe et al. 2012).

Transcription in the higher eukaryotes, transcription is regulated by the interaction 
of enhancers and promoter regions which work in a coordinated manner. Several pro-
teins like TFs, RNA polymerase, transcriptional cooactivators and histone modifying 
enzymes are needed for the expression of any gene at a given time. Both promoters 
and enhancers have some similar features such as TFBSs, but historically they are 
considered as two distinct classes of REs. The gene expression is initiated at transcrip-
tional start sites (TSSs) when the promoter elements recruits the RNA polymerase II 
(Pol II) enzyme (Lenhard et al. 2012; Roy and Singer 2015; Schor et al. 2017; Vo 
Ngoc et al. 2017). Whereas, gene expression are promoted/enhanced by cis-regulatory 
DNA element known as enhancer elements. In general, enhancers are made up of 
clusters of TFBSs and it encompasses a few hundred base pairs (bps) to which various 
combinations of sequence-specific repressive and trans- activating factors binds. 
Enhancers has been found to be present in intergenic regions and exons. Interestingly, 
from their target genes, enhancers have been found to be present up to kilobases away 
and mediate their action via directly communicating with the promoter region (Lettice 
et al. 2003; Kleinjan and van Heyningen 2005). Unlike, promoters, enhancers can 
work in an orientation independent manner and can regulate transcription at another 
distal site using a different promoter. Interestingly, the binding of Pol II and general 
TFs to enhancers has also been observed (Koch et al. 2011). Recently, transcription 
has also been observed from enhancer elements (Tuan et al. 1992; De Santa et al. 
2010; Kim et al. 2010; Lam et al. 2013).

 In the process of development REs has been found to play a pivotal role. Any 
misregulation of these sequences may cause phenotypic consequences and can lead to 
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diseases. Genome wide association studies (GWAS) and other similar studies 
(Stranger et al. 2011) have identified several disease- and trait-associated genetic vari-
ants of which a major chunk (~93%) of disease- and trait associated variants has been 
located within noncoding sequence which includes both promoter and enhancer ele-
ments (Cookson et al. 2009; Pomerantz et al. 2009; Musunuru et al. 2010; Harismendy 
et al. 2011). However, the impact of the mutations in the protein- coding regions can 
differ significantly from that of the mutations in cis-regulatory regions, even if they 
are regulating the same gene (Carroll 2008; Dimas et al. 2009). Mutations in the pro-
tein-coding regions are known to disrupt several aspects of gene regulation which 
include mRNA maturation, protein translation etc. and also protein folding and it’s 
structure, whereas mutation related to the cis-regulatory regions like enhancers are 
mainly limited to cis effect on transcription (Sauna and Kimchi- Sarfaty 2011).

In modern biology, the genome wide study of TFBSs is one of the well and heavily 
researched area (Yáñez-Cuna et al. 2013). In general, prediction of the putative TFBSs 
are done in the upstream region of the gene TSS by searching specific short motifs. 
Identification of TFBS from a list of genes are of great importance as it can be helpful 
in interpreting gene expression data and comparing it with that of the TF function. 
Until recently, it was a tedious task to predict the promoter region associated TFBS 
from any gene list, which use to involve the gene promoter sequence extraction fol-
lowed by search of pattern recognition via different motif databases like TRANSFAC 
(Wingender et al. 1996) or JASPAR (Bryne et al. 2008). Based on several experimen-
tal data it has been suggested that genes with similar expression patterns are either 
evolutionary or functionally correlated (Heyer et al. 1999; Spellman et al. 1998; Eisen 
et al. 1998). An important question in the field of gene expression is whether coex-
pressed genes are also co-regulated, that is, whether by sharing common cis-REs in 
their promoter regions these genes are most likely regulated by same TFs (Dottorini 
et al. 2013). Based on several experimental evidences it has currently been understood 
that proteins are not coded from most of the regions of human genome (Pennacchio 
et al. 2007). However, the function of these non- coding regions of genome is yet to be 
systematically categorize and understood. Moreover, several studies in human have 
suggested that complex gene regulation at the transcriptional level is functionally 
related to many discrete DNA elements which are often present hundred of kilobases 
(kb) far from their promoter regions (Lettice et  al. 2003; Nobrega et  al. 2003). 
Interestingly, various studies have suggested that the evolutionary sequence conserva-
tion as a good biological function indicator. Most of the tissue-specific enhancers that 
are functional during development are in the noncoding region of the genome and are 
highly evolutionarily conserved regions (ECRs) (Lettice et al. 2003; Waterston et al. 
2002; Nobrega et al. 2003; Loots et al. 2000; Pennacchio et al. 2006).

 To understand the pathology of a disease it is necessary to investigate the differ-
ences between the healthy and the diseased state and which in turn help in the treat-
ment of the disease. Gene expression studies is a very useful tool to study the 
differences between healthy and a diseased state. Study related to the differentially- 
expressed genes (DEGs) are of importance as it is helpful in identification of DEGs 
in health and disease. Study of DEGs are of great importance in the field of clinical 
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and pharmaceutical research as it can lead to identification of therapeutic targets, 
candidate biomarkers and to pinpoint the gene signature of diagnostic values. It has 
to be noted that sometime the individual DEGs studies may not provide a significant 
biological meaning on it’s own but still will be useful when it is analysed along with 
other similar studies to perform integrated analysis related to a particular disease 
(Rodriguez-Esteban and Jiang 2017; Loging et al. 2007; Campbell et al. 2010).

Here we present a method named DiRE, which is a web server and a bioinformat-
ics tool. It is a user friendly and easy to use online tool by means of which regulatory 
features can be investigated on the dataset of genes submitted by the users. Based on 
the user provided input genes and it’s co-expression pattern (e.g. down- or up-regula-
tion), function-specific (e.g. tissue, time) REs can be predicted by the DiRE server that 
can work as repressors or enhancers. DiRE will also give information about the impor-
tant regulatory TFs which essentially bring about their effects (Gotea and Ovcharenko 
2008). REs can be detected by DiRE which are located outside the proximal promoter 
regions as DiRE conduct the search of full gene locus. Function specific REs which 
consists of conserved and specifically associated TFBSs are predicted by the software. 
DiRE also scores the individual association of TFs shared by the input genes group 
with the biological function (Gotea and Ovcharenko 2008). Candidate REs are 
selected by the DiRE software from the gene loci which are based on pattern of pre-
computed alignments of inter-species conservation of genomic sequence from human, 
rodent, fish and other vertebrates (Aid- Pavlidis et al. 2009). Such alignment allows the 
DiRE software to detect phylogenetically conserved REs present in different species 
at the same genomic positions.

TRANSFAC Professional database (version 10.2) which works on position 
weight matrices (PWM) is used by DiRE tool (Ovcharenko et al. 2004). Around 
7500 background genes are used by the DiRE. TFBSs that are extracted occur in 
less frequently in the 95 percent of permutation tests than in the original distribution 
(corresponding to p-value < 0.05 to observe the original distribution by chance) and 
which corresponds to at least a double increase in the original distribution density 
compared to an average pair density in permutation tests. In the DiRE tool the cor-
rection for the multiple hypothesis testing is done by using hypergeometric distribu-
tion with Bonferroni correction (Waterston et  al. 2002). DiRE describe the 
‘importance score’ as the TF occurrence product (% of tissue-specific TF with par-
ticular TFBS) and its weight candidate TF for each found TFBS. The importance 
score therefore is based on the specificity of the TF containing the specific TFBS 
and the TFBS abundance in tissue-specific TF (Wingender et al. 2000).

In this chapter we present a genomic tool called DiRE, which is a freely available 
web server. This tool can predict distant (outside of proximal promoter regions) REs 
of co-regulated genes in a user-friendly manner.

The tutorial described below is for the set of genes the users have:

Step 1: Open the server DiRE (https://dire.dcode.org/). Users will see the webpage 
as in Fig. 13.1 (see below for details).

Step 2: Copy and paste gene names (or accession numbers) of the co-regulated 
genes in the text box (Fig.  13.2a). List of records should be pasted with one 
record per line by the users in the main DiRE server window (Fig. 13.2a).
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Fig. 13.1 Snapshot of the screen of the DiRE main webpage

Fig. 13.2 An example of the analysis session as shown in the main window of the DiRE server. 
Different panels suggest the available options for the analysis
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Step 3: Users should make sure that the supplied gene list matches one of the fol-
lowing accepted data types like gene symbols, GenBank nucleotide or protein 
accession numbers, Protein RefSeq number, chromosomal location (or chromo-
some coordinates) or accession numbers from the UCSC known genes annota-
tion. From the pull-down menu this can be selected (Fig. 13.2b).

Step 4: Further, users should choose the species from a pull-down menu (Fig. 13.2c) 
for which TFBS content and precomputed alignments presently for rat, human 
and mouse exist. Users should check that the coordinates should match the cor-
responding genome assembly of that species, in case the users choose the genes 
provided in the form of genomic coordinates (Fig. 13.2c).

Step 5: Users should choose the background (control) genes (Fig. 13.2d) which will 
serve as the background distribution of TFBS clusters. It has two option: (i) 
choose from the random set of genes (various static lists of 7500 background 
genes) chosen either from rat, human or the mouse genome in a random way. 
(Fig. 13.2d) or (ii) users can copy and paste their own list of background genes 
(Fig. 13.2e). Opting for option (i) benefits the users in that the list will remain 
same so that across different runs comparison of the results can be made and 
which can be reproduced. However, if there are some genes in both the gene 
background lists and the signal, they will be removed from the background set. 
In such a case the users should opt for option (ii) and provide background genes 
list of their choice (Fig. 13.2e), that could be very helpful if contrasting expres-
sion data exists as in the case of data generated from microarray gene experi-
ments. Similar to co-regulated gene list, the user supplied list of genes should be 
formatted if the user chose for option (ii).

Note: Users should use at least a few thousand genes as the background gene to 
avoid the biased representation of random expectations.

Step 6: Select the target element (Fig.  13.2f). Users may choose from the given 
options with different target elements. Options are available for the different set 
of target elements with evolutionary conserved regions (ECR). If users do not 
specify the “target element’’ field, then the target element “top 3 ECRs + pro-
moter ECRs’’ as default will work.

Step 7: Finally, click “Submit” (Fig. 13.2g).
Step 8: After the job is submitted, while DiRE is running, the users will see the 

screen (Fig. 13.3). For user to return to the query page later, job ID should be 
noted. Depending on the user provided background and signal gene numbers this 
job may take up to thirty minutes.

Step 9: Upon the job completion, users will be taken to the result page (Fig. 13.4). 
This page displays the following sections as “Request ID’’ (Fig. 13.4a), “Potential 
Regulatory Elements’’ (Fig.  13.4b), “Candidate Transcription Factors’’ 
(Fig. 13.4c) and “Extra Data’’ (Fig. 13.4d) sections, in order from top to bottom 
(Fig. 13.4).

Step 10: As shown in (Fig. 13.5), “Request ID’’ is provided (Fig. 13.5a), to the users 
which can be used for retrieval of data in future. A permanent link is also pro-
vided to the users for future data retrieval (Fig. 13.5b).
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Step 11: Users can find the summary of the detected “Potential Regulatory ele-
ments’’ (Fig. 13.6a), categorized as intergenic, promoter, UTR and intron) show-
ing the number and percentage of REs.

Step 12: Users can click on (Fig. 13.6b) and a new widow will appear allowing the 
users to see the genomic distribution of the predicted RE present relative to the 
genes they probably control which is shown by the red bars on the chromosomal 
representations (Fig. 13.7).

Step 13: Users can find the detail “Description of REs’’ by clicking tab as shown in 
(Fig. 13.6c) which will take the users to a new page (Fig. 13.8). For detail see 
below.

Step 14: Users can further click on icon “in tabulated textual format’’ (Fig. 13.6d) 
and go to a new page showing details of the REs in the tabular form.

Step 15: As mentioned in Step 13, users can see the details of the “Description of 
regulatory elements’’ (Fig. 13.8). Users may click on icon “Description of regu-
latory elements’’ (Fig. 13.6c) and go to a new page showing details of the REs in 
the tabular form (Fig. 13.8). Users may also see the description of candidate RE 
containing an annotation (Fig. 13.8a) based on the element location relative to 
the characteristics of the locus of gene (intron, intergenic, UTR) (Fig. 13.8b), 

Fig. 13.3 Screenshot while the DiRE is running after a job submission. Job ID shown at the top 
can be used later to return to the user query
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Fig. 13.4 Screenshot of the DiRE server upon job completion. This page displays various sections 
as shown

Fig. 13.5 Screenshot of “Request ID” panel as shown after job completion is provided along with 
a permanent link to the users for future data retrieval

score (Fig.  13.8c), the gene locus coordinates (Fig.  13.8d), the gene official 
symbol(s) (Fig. 13.8e) and a list of TFBSs that has scored positively in that ele-
ment (Fig. 13.8f). 

Step 16: Furthermore, the users may resort the list by clicking in the column headers 
(Fig. 13.8).
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Fig. 13.7 Enlarged view of the “Chromosomal distribution’’ panel from the result section. Red 
bars on the chromosomal representations shows the predicted REs

Fig. 13.6 Screenshot of the “Potential regulatory elements” panel as shown after the job comple-
tion. It shows the summary of the detected REs

Step 17: The users may also find the detail description of different column headers 
(Fig. 13.8) by clicking (?) tab as shown in (Fig. 13.8g) which will take the user 
to a new page (Fig. 13.9).

Step 18: Users may click on any RE (Fig. 13.8a) and it will be redirected to the ECR 
Browser (Aid-Pavlidis et  al. 2009) (Fig.  13.10), where one can get a more 
 comprehensive picture of the locus. In ECR Browser users can explore the 
genomic landscape and the conservation of individual candidate RE.
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Step 19: Fig. 13.11 shows TFs found in candidate REs and the top 10 are displayed 
in this section (Fig. 13.11a). The occurrence and importance measures for each 
TF can be seen.

Step 20: Furthermore, the users may click on “Full TF list’’ (Fig. 13.11b) and a new 
window will appear with the TFs complete list that are positively linked with the 
co-regulated gene (Fig. 13.12). For each “TF’’ (Fig. 13.12a) users will discover 
the TF “Occurrence’’ in REs (Fig.  13.12b), and the “Importance’’ of TF 
(Fig.  13.12c). Users also may also resort the list by clicking in the column 
headers.

Step 21: The users may also find the detail description of different terms by clicking 
(?) tab as shown in (Fig. 13.12d) (Waterston et al.  2002) which will take the user 
to a new page (Fig. 13.13).

Step 22: For convenience of the users, original data is available through links 
(Fig. 13.14). The initial gene list used in the computation and their mapped posi-
tion are given on the target genome.

Step 23: Finally, the users may return to the submitted job by clicking the tab as 
shown in (Fig. 13.15a). Users may enter a 16-digit request ID (Fig. 13.4a) to the 
box as shown in (Fig. 13.15c) and click the “Submit” button. Users should note 
that the 16-digit request ID to be pasted in Fig. 13.15c is from Fig. 13.4a. 

Following are the advantages/use and limitations of the DiRE genomic tool:

 A. Use/advantages of DiRE tool

 1. It enables scientists to predict prevalent regulatory characteristics of co- 
regulated genes computationally.

 2. In vertebrate genomes, DiRE can predict remote REs regardless of their rela-
tive location on the gene they control.

 3. It can predict either repressor or enhancer elements, based on whether the 
genes of interest are down- or up-regulated, or general REs of any kind if the 
input data originates from a specific biological group that does not necessar-
ily involve expression data (such as a Gene Ontology (Ashburner et al. 2000) 
or KEGG category (Altermann and Klaenhammer 2005)).

Fig. 13.8 View of the “Detailed description of regulatory elements” panel. A new page showing 
details of the REs in the tabular form
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Fig. 13.9 Screenshot showing the detail description of different column headers as present in the 
“Detailed description of regulatory elements” panel
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 4. This genomic tool can also be used to investigate for statistically over- 
represented TFBSs among all the conserved genes and in the clusters.

 5. The TFs of DEGs enriched in KEGG pathways (He et al. 2017) can also be 
predicted from this database.

 6. It can be used to construct the gene-TF regulatory network based on the pre-
dicted TF–DEGs pairs (Pennacchio et al. 2006).

 7. DiRE may also be used to identify phylogenetically conserved REs that are 
present at the same genomic locations in various species.

All the above valuable points can lead to the discovery of therapeutic targets, gene 
signatures and candidate biomarkers, which will be useful for several disease diag-
nostics, including cancer. 

 B. Limitations of DiRE tool

 1. It should be remembered that the outcomes are based on a series of datasets 
which are precomputed.

 2. Draft quality of distinct genomes could jeopardize the precomputed ECR 
Browser (Aid-Pavlidis et al. 2009) alignments.

 3. Since DiRE defines TFBS based on the TRANSFAC database (Ovcharenko 
et al. 2004), therefore a poorly defined TF binding specificity or different TFs 
with very identical binding specificities or a missing TF may adversely 
impact the quality of DiRE predictions. 

Fig. 13.11 Screenshot of the “Candidate Transcription Factors” panel as shown after the job com-
pletion. It shows TFs found in candidate REs and the ten most important ones are highlighted
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Fig. 13.12 Screenshot of the list of TFs that are positively associated with the co- regulated genes. 
For each TF, its “Occurrence” in REs and its “Importance” are shown
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Fig. 13.13 Screenshot showing the detail description of different terms as shown in Fig. 13.12

Fig. 13.14 Screenshot of the “Extra Data” panel as shown after the job completion. For users, 
original data is available through the links provided. Original gene list used in the computation and 
their mapped location on the target genome are also provided

Fig. 13.15 As shown in the figure user can use the unique 16-digit request ID to return to the 
submitted job

13.2  Conclusion

This chapter would enable investigators to predict computationally the prevalent 
regulatory features of co-regulated genes. The above described online web server is 
a freely available and easy-to-use genomic tool. We believe, the step by step method 
described in this chapter will allow biologist with little or no experience in bioinfor-
matics to use such an important genomic tool. The above described method will 
provide the molecular biologist, clinician etc an easy access to study DEGs in health 
and disease conditions. Using the DiRE tool may allow researcher in isolating bio-
markers specific for disease monitoring and it’s progression and development.
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