
Chapter 5
Realism, Non-Contextuality, Local
Causality, Entanglement

We have accumulated enough theoretical material to tackle some aspects of
an important and intriguing issue regarding the theoretical interpretation of the
quantum realm.

5.1 Hidden Variables and no-go Results

There exist approaches to quantum phenomenology, called hidden-variable for-
mulations (see, e.g.,[BeCa81, Ghi07, Lan17, BeZe17, SEP], and [Red98] for the
viewpoint of QFT), that compete with the standard interpretation of the formalism
also known as Copenhagen interpretation, which is the one adopted in this book.

The most important exemplar of these alternative formulations is certainly the
well-known Bohmian mechanics [DüTe09], a quite articulate and healthy theory.
Also known as pilot-wave theory or de Broglie–Bohm theory, Bohmian mechanics
posits that a quantum particle has a definite position at every time (in this sense
it is a partially classic system and the position is the hidden variable) and moves
according to an equation of motion subsuming a “quantum” interaction due to a
wavefunction that evolves under the usual Schrödinger equation. Randomness arises
from the fact that we do not know which trajectory the particle actually follows
among the plethora permitted by the evolution law. Bohmian mechanics is named
after David Bohm, who was the first physicist to frame (in 1952) into a definite form
this alternate description, which had already been proposed in similar yet vague
forms by other scientists like de Broglie, thus enabling it to make correct predictions.
A thorough examination would deserve more than an entire chapter, so we shall not
discuss it here (see also [Tum17] for a recent review).

Another classical subject concerns the celebrated Bell theorem apropos the
BCHSH inequality and the role of locality (or local causality) in QM, in relationship
to the phenomenology of entangled states. The reader may profitably consult
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[BeZe17] for a recent review on Bell’s achievements and the developments of
his ideas on locality and entanglement in quantum theory—with regard to other
topics discussed in the rest of this chapter—also including recent experimental
achievements.

Although we will introduce two versions of Bell’s analysis on the interplay
between entanglement, realism, and locality in two sections of this chapter, we are
also interested in discussing a different theoretical milestone about hidden-variable
theories, known as the Kochen–Specker theorem, and the related notions of realism
and non-contextuality. The last section tackles the interaction between entanglement
and non-contextuality by addressing the BCHSH inequality from a different point
of view.

5.1.1 Realistic Hidden-Variable Theories

The pivotal idea at the heart of hidden-variable formulations is that a quantum
system is actually partially classic (quantum phenomenology and the constant
h̄ must however enter the theory, eventually) and the observed randomness of
measurement outcomes is due to an incomplete knowledge of the system. There
are in particular hidden variables, cumulatively denoted by λ ∈ � usually, whose
knowledge would completely fix a classical-like state of the system. For this school
of thought it is implicit that all observables always have definite values when λ is
given, even if we do not know them. Measurements are thus simple observations
of values which already exist. This hypothesis goes under the name of realism after
the celebrated analysis by Einstein et al. [EPR35] (though this notion of realism
specifically refers to a theoretical context only, and should not be taken literally as
a general philosophical assumption!). As we said above, due to reasons specified in
concrete models, when we observe the quantum behaviour of our physical system,
the knowledge of hidden variables is limited in a way similar to what happens in
statistical mechanics. As a matter of fact, we only have access to a probability
distribution of λ over �, which we shall denote by μ. The quantum fluctuations
of the outcomes of a measurement are explained as statistical fluctuations related to
μ. In this view, quantum randomness is merely epistemic rather than ontic, as in the
Copenhagen interpretation.

5.1.2 The Bell and Kochen–Specker no-go Theorems

Let us get started with a non-existence theorem in the standard formulation of QM.
Under the hypotheses of Gleason’s theorem, quantum-state operators and quan-

tum probability measures correspond one-to-one, so the notion of expectation value
and standard deviation of an observable can be ascribed to quantum probability
measures ρ ∈ M (H). In particular 〈A〉ρ and �Aρ can be defined when A is
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bounded simply by replacing ρ with the corresponding state T and using the already
known definitions (4.33) and (4.34).

Definition 5.1 If H is a Hilbert space, a quantum probability measure ρ ∈ M (H)

is called dispersion-free if �Aρ = 0 for every observable A ∈ B(H). �
Theorem 4.49 is the important consequence of Gleason’s theorem discovered by
Bell [Bel66] in 1966 (already known to von Neumann in 1932, however). Now we
may rephrase it as a non-existence result for dispersion-free quantum probability
measures.

Theorem 5.2 (Bell’s Theorem (Alternative Statement)) Let H be a Hilbert
space, either of finite dimension dim(H) > 2 or infinite-dimensional and separable.
There exist no dispersion-free quantum probability measures in M (H).

Proof Suppose that such a ρ ∈ M (H) exists and let T ∈ S (H) be the associated
quantum-state operator according to Gleason’s theorem. Assuming A = P ∈
L (H), it follows 0 = (�PT )2 = tr(T PP) − tr(T P )2 = tr(T P ) − tr(T P )2.
As a consequence, either tr(T P ) = 0 or tr(T P ) = 1 for every P ∈ L (H). This is
impossible by Theorem 4.49. ��
Remark 5.3 The only technical difference with Theorem 4.49 is that now general
bounded observables are considered, and not only elementary propositions. Notice
that Theorem 5.2 easily implies Theorem 4.49 when we look at elementary
observables. But is also uses Theorem 4.49 in its proof, so the two versions are
indeed equivalent. �
If we specialise to the finite-dimensional case, we can recast the theorem in a form
that has several implications for the hidden-variable theory. Improving on an earlier
non-existence result due to von Neumann (1932), the famous 1967 Kochen–Specker
theorem [KoSp67] is actually an elementary corollary of Gleason’s theorem, as Bell
realized, even though the original proof was direct and completely different (see,
e.g., [Lan17, SEP]). We state and prove the theorem below, and then discuss the
relevant theoretical consequences.

Notation 5.4 For a given Hilbert space H, B(H)sa indicates the real linear space of
selfadjoint elements of B(H). �
Theorem 5.5 (Kochen–Specker Theorem) Let H be a finite-dimensional Hilbert
space with dim(H) > 2. For any non-zero map v : B(H)sa → R, the
requirements

(i) v(A + B) = v(A) + v(B) if A,B ∈ B(H)sa commute,
(ii) v(AB) = v(A)v(B) if A,B ∈ B(H)sa commute,

are incompatible.

Proof Every orthogonal projector P ∈ L (H) belongs to B(H)sa . If a map v exists
as in the hypotheses, then v(P ) = v(PP) = v(P )2 due to (ii), hence v(P ) ∈
{0, 1}. In particular v(I) = 1, otherwise v(A) = v(IA) = v(I)v(A) = 0, which



190 5 Realism, Non-Contextuality, Local Causality, Entanglement

is not permitted (v �≡ 0). Observing that PiPj = 0 implies PiPj = PjPi for
Pi, Pj ∈ L (H), it is easy to check that the map ρ : L (H) 
 P �→ v(P ) defines a
quantum probability measure by (i) and v(I) = 1. Note that (i) implies the additivity
of this map on L (H). In turn, additivity implies σ -additivity because H is finite-
dimensional and hence only finite sequences of non-vanishing orthogonal projectors
onto pairwise orthogonal subspaces exist, and also v(0) = 0 from v(I) = 1 and (i).
Such ρ is not allowed by Theorem 4.49, since ρ(L (H)) ⊂ {0, 1} and dimH > 2.
Consequently v cannot exist. ��
Remark 5.6 If H is infinite-dimensional but is separable, the thesis of Theorem 5.5
is still valid if we add the requirement that (iii) v is continuous in the strong operator
topology. In fact, according to the above proof of Theorem 5.5, the only extra fact
to be proved is that ρ : L (H) 
 P �→ v(P ) is σ -additive. If P is the strong limit of∑N

k=1 Pk as N → +∞, where PkPh = 0 if k �= h, the additivity of v together with
its strong continuity force the σ -additivity of ρ. �
We will use quite often in the rest of the chapter a technical lemma related to the
hypotheses of the Kochen–Specker theorem.

Lemma 5.7 Let H be a Hilbert space of any dimension, and A ∈ B(H)sa .
Take a non-zero real-valued map v defined on the unital Abelian algebra of real
polynomials of A. If v fulfils the Kochen–Specker requirements (i) and (ii), then it
also satisfies v(I) = 1 and v(aA) = av(A) for a ∈ R.

Proof The first relation was shown during the proof of Theorem 5.5 (without using
dimH < +∞). To prove the other one, recall a known analysis result whereby the
only non-zero additive and multiplicative map f : R → R (f (a+b) = f (a)+f (b)

and f (ab) = f (a)f (b) for every a, b ∈ R) is the identity f (a) = a. The function
f (a) := v(aI) satisfies the conditions above (in particular f (1) = v(I) = 1 �= 0).
Hence, v(aA) = v(aI)v(A) = av(A) for a ∈ R and A ∈ B(H)sa . ��
Let us start discussing the physical repercussions of the Kochen–Specker no-go
result. Theorem 5.5 imposes strong limitations on any theory of hidden variables
which assumes the realism hypothesis, when taking the quantum phenomenology
into account.

As already said, within these approaches it is supposed that a quantum system S

is actually partially classic and the observed randomness of measurement outcomes
is due to an incomplete knowledge of the system making quantum randomness
merely epistemic. There exist hidden variables λ ∈ � that completely fix a
classical-like state of the system and the values of every observable, that are always
defined (realism hypothesis). If we knew λ, we would know also the precise value
vλ(A) ∈ σ(A) every observable A has. Here the quantum observables A are seen
as classical quantities that attain real values, the same permitted by the quantum
theory, depending on the value of the hidden variable.

However, it is by no means evident how the assignment A �→ vλ(A) ∈ σ(A)

should encompass functional relations between observables when these relations
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exist at quantum level. For instance, if C = A + B, we cannot in general assume
that vλ(C) = vλ(B) + vλ(B), because it is not obvious how to interpret classically
C = A + B when the selfadjoint operators A and B do not commute, in other
terms when these observables, in the quantum interpretation, cannot be measured
simultaneously. (In this case also the relationship between the spectra of A,B,C is
generally complicated and unexpected: think of H = X2 + P 2 on L2(R, dx).)
Yet, there remains to explain how to interpret “A and B cannot be measured
simultaneously” in a realistic hidden-variable theory, where we assume from the
very beginning that every observable is always defined. In some sense, the values
assumed to exist simultaneously for A and B in the hidden-variable theory cannot
be measured (do they fluctuate wildly?).

The spirit of the Kochen–Specker theorem is just to avoid these difficult and
subtle questions and concentrate on what we can reasonably assume. The eventual
no-go result is independent of such nuanced details. Indeed, in the special case
where all the involved observables are pairwise compatible, we expect that they can
be treated as classical quantities measured on the system and thus, at least in this
case, some functional relations may be preserved by the assignment vλ. Observe in
particular that, if H has finite dimension,

σ(A + B) ⊂ {ν + μ | ν ∈ σ(A) , μ ∈ σ(B)} when A,B ∈ B(H)sa commute,

so maps vλ : B(H)sa → R satisfying (i) vλ(C) = vλ(B) + vλ(B) are in principle
conceivable. Condition (ii) can be similarly fulfilled, on the whole, since

σ(AB) ⊂ {νμ | ν ∈ σ(A) , μ ∈ σ(B)} when A,B ∈ B(H)sa commute.

The hypotheses of Theorem 5.5 concern the preservation of some very mild
functional relations by the assignment of classical-like values A �→ vλ(A) fixed
by the hidden variable λ when dealing with compatible observables. Even with such
a minimal requirement, there can be no such map B(H)sa 
 A �→ vλ(A) ∈ σ(A) ⊂
R. This is the powerfulness of the Kochen–Specker result.

The premises of the analogue 1932 no-go theorem by von Neumann can be
phrased, in our setup, by making requirement (i) hold also for incompatible
observables A,B—where v more generally represents an expectation value over a
distribution of possible λ (including the assignment of a precise value, as before)—
and weakening (ii) to v(aA) = av(A), a ∈ R. In 1966 Bell [Bel66] found a simple
example showing that these stronger conditions cannot be fulfilled regardless of the
rest of von Neumann’s argument, thus proving the inadequacy of von Neumann’s
hypotheses. All that gave rise to an animated discussion to which the Kochen–
Specker theorem put an end in 1967 [KoSp67] (see [Lan17] for a critical and
historical discussion on the subject).
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5.1.3 An Alternative Version of the Kochen–Specker Theorem

We present here an alternative version of the Kochen–Specker theorem which deals
with the elementary observables, instead of insisting on functional identities of
general observables. This is a formulation essentially analogous to Theorems 4.49
and 5.2 in the finite-dimensional case. Mild probabilistic requirements are assumed
on a possible “probability distribution” p defined on a subset P (not necessarily
the whole L (H)) of elementary observables and only attaining sharp values 0 or
1. Such a distribution p cannot exist if P is sufficiently large, i.e. large enough
to contain pairs of incompatible elementary observables. Assuming the standard
interpretation of the quantum formalism regarding the notion of observable and
its decomposition in elementary observables, this reformulation of the Kochen–
Specker result is however equivalent to statement 5.5, as we prove below.

Theorem 5.8 (Kochen–Specker Theorem (Alternative Version)) Let H be a
Hilbert space with 2 < dim(H) < +∞. There exists a set of elementary observables
P ⊂ L (H) for which there is no map p : P → {0, 1} satisfying the following
requirements:

(i’) p(P)p(P ′) = 0 if P,P ′ ∈ P define compatible and mutually exclusive
elementary observables (i.e. PP ′ = 0),

(ii’)
∑

j∈J p(Pj ) = 1 for every subset {Pj }j∈J ⊂ P made of compatible, pairwise
exclusive elementary observables such that ∨j∈J Pj = I .

Proof Let us prove that Theorem 5.8 is a consequence of Theorem 5.5. Since
the latter is true, this concludes the proof. Assume that Theorem 5.8 is false. Fix
P := L (H). There must exist a map p : P → {0, 1} satisfying (i’) and (ii’).
Define the map v : B(H)sa → R such that v(A) := ∑

a∈σ(A) ap(P
(A)
a ), where

A ∈ B(H)sa and P (A) is the PVM of A. Notice that the map does not vanish
because v(I) = p(I) = 1 by (ii’), with {Pj }j∈J := {I }, and furthermore only

one element of {p(P
(A)
a )}a∈σ(A) does not vanish because the projectors P

(A)
a are

pairwise compatible and mutually exclusive and (i’), (ii’) are assumed. Observe that,
with this definition of v, v(f (A)) = f (v(A)) is satisfied for every f : R → R in
view of the finite-dimensional version of the functional calculus, the uniqueness
of the PVM of a selfadjoint operator, and the fact every p(P

(A)
a ) vanishes but

one. If A,B ∈ B(H)sa commute, using their spectral decompositions and the fact
that dim(H) < +∞, it is easy to prove that there exists C ∈ B(H)sa such that
A = fA(C) and B = fB(C) for suitable functions fA, fB : R → R. Indeed,
the real number c is a discrete parameter which faithfully labels the finitely many
(a, b) ∈ σ(A) × σ(B) and P

(C)
c := P

(A)
ac

P
(B)
bc

, fA(c) := ac, fB(c) := bc. The
map v satisfies (i),(ii) of Theorem 5.5. In fact, v(A + B) = v(fA(C) + fB(C)) =
v((fA + fB)(C)) = (fA + fB)(v(C)) = fA(v(C)) + fB(v(C)) = v(A) + v(B)

and a similar argument is valid for (ii). Hence Theorem 5.5 is false and this is not
possible. ��
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Proposition 5.9 The statement of Theorem 5.8 is equivalent to the statement of
Theorem 5.5.

Proof It is sufficient to prove that Theorem 5.8 implies Theorem 5.5 since the
converse is part of the proof of Theorem 5.8. Assume that Theorem 5.5 is false
and let v : B(H)sa → R be a non-vanishing map which satisfies (i) and (ii). Since
L (H) ⊂ B(H)sa , we have in particular that v(P ) = v(PP) = v(P )v(P ), so that
(a) v(P ) ∈ {0, 1} for P ∈ L (H) and also v(I) = 1, otherwise v(A) = v(AI) =
v(A)0 = 0 for every A ∈ B(H)sa which is not permitted. Iterating (ii), noticing
that J must be finite (≤ dimH), we find (b)

∑
j∈J v(Pj ) = v(I) = 1 for any

set {Pj }j∈J ⊂ L (H) such that
∑

j Pj = I and PjPh = 0 when j �= h (notice
that PjPh = PhPj in this case). It is now easy to prove that the map p := v|P
satisfies (i’) and (ii’) of Theorem 5.8, for every P ⊂ L (H) such that (i’) and (ii’)
are eligible, invalidating Theorem 5.8. In fact, if P,P ′ ∈ P ⊂ L (H) satisfies
PP ′ = 0, we can augment the sequence to P,P ′,Q1, . . . ,Qn, where the operators
project onto pairwise-orthogonal subspaces and their sum is I . This implies, from
(b), that v(P ) + v(P ′) + ∑

k v(Qk) = 1. Since v(P ), v(P ′), v(Qk) ∈ {0, 1} by (a),
then p(P)p(P ′) = v(P )v(P ′) = 0 and (i’) is satisfied. Similarly, if {Pj }j∈J ⊂ P,
with PjPh = 0 when j �= h, satisfy

∑
j Pj = I , then

∑
j p(Pj ) = ∑

j v(Pj ) = 1
from (b), proving (ii’). ��
Remark 5.10 For every dimension dimH ≥ 3, there is numerical evidence that the
set P violating (i’) and (ii’) is a proper, finite subset of L (H). As a matter of fact,
the original proof in [KoSp67] for dim(H) = 3 establishes that there exists a subset
P ⊂ B(H)sa of cardinality 117, whose elements project onto one-dimensional
subspaces, satisfying the thesis of Theorem 5.8. See [Cab06] for a discussion about
the minimal cardinality of P, and [AHANBSC13] for an interesting discussion of
the experimental tests on version 5.8 of the Kochen–Specker theorem. �
Remark 5.11 In the rest of this chapter, the theorem quoted as ‘Kochen–Specker
theorem’ will refer to Theorem 5.5, unless otherwise declared. �

5.2 Realistic (Non-)Contextual Theories

The simplest way out of the no-go result by Kochen and Specker, if one insists on a
hidden-variable formulation, is to just reject the realism assumption and accept that
not all observables are simultaneously defined, even if we fix the hidden state λ.

Another possibility is to assume that all observables are always and simultane-
ously defined, and is contingent on the idea of contextuality. It must be said that the
same proposal was addressed by Bell in 1966 in his second celebrated paper [Bel66]
in a more general context and with reference to the consequences of Gleason’s
theorem for the theories of hidden variables.
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5.2.1 An Impervious Way Out: The Notion of Contextuality

First of all, observe that B(H)sa contains a profusion of real unital Abelian algebras
S of mutually compatible observables (whose unit and structure are inherited from
the complex algebra B(H)). From a practical point of view S represents observables
we may measure simultaneously. Among the different choices for S many will be
inequivalent. The observation playing a crucial role in the following discussion is
that a generic A ∈ B(H)sa will belong to different algebras S, since compatibility
is not a transitive relation.1 Notice furthermore that the Kochen–Specker constraints
(i) and (ii) concern only compatible observables, so they may be imposed on the
elements of a given real unital Abelian algebra. To fulfil them without running
into the negative result of Theorem 5.5, we could try the following: drop the main
hypothesis of the Kochen–Specker theorem, thus foregoing the unique assignment
of values vλ on B(H)sa , and allow instead for distinct values vλ(A|S) of the
observable A, for every real unital Abelian algebra S containing A.

Remark 5.12

(a) S 
 A can be taken to be the space of real polynomials p(A) of A (where
A0 := I ). This choice of S means in practice that we are measuring A alone.
In this case, measuring only A automatically permits us to know also the values
of the remaining observables in S: the values of the polynomials p(A) satisfy
vλ(p(A)) = p(vλ(A)) by virtue of (i), (ii) in Kochen–Specker’s theorem and
the relations of Lemma 5.7.

(b) S 
 A may be defined by means of several substantially distinct observables
A1, . . . , An that we measure together with A. In this case, S coincides with the
family of real polynomials p(A,A1, . . . , An). The values of p(A,A1, . . . , An)

are known from the values of the generators A1, . . . , An, again by (i) and (ii)
and Lemma 5.7.

(c) In any case, to know the values of all the observables of a generic unital Abelian
algebra S it suffices to measure a linear basis A1, . . . , Am of S. Since the
elements of S are linear functions of these, once more by (i), (ii) in the Kochen–
Specker theorem and Lemma 5.7 we have vλ(

∑m
j=1 cjAj ) = ∑m

j=1 vλ(Aj ).
Such a basis always exists, see Remark 5.14 below. �

Let us now prove that it is possible to prescribe the values of any fixed A depending
on the chosen S 
 A satisfying (i) and (ii) in Kochen–Specker’s theorem. The
paradoxical aspect is that we are about to use the mathematical structure of quantum
theory to corroborate the idea that a certain competitor theory is not mathematically
contradictory!

1These sets of observables S represent the most classical structures one may extract form the whole
set of observables of a quantum system. The fact that these structures are distinct and physically
incompatible is one manifestation of Bohr’s complementarity principle.
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Proposition 5.13 Assume dimH < +∞ and let us denote by C the family of real
unital Abelian algebras S ⊂ B(H)sa . For every given S ∈ C, there exists a non-zero
map

S 
 A �→ v(A|S) ∈ σ(A)

satisfying (i) and (ii) of the Kochen–Specker theorem and also

v(I |S) = 1 and v(aA|S) = av(A|S) for A ∈ S and a ∈ R.

Proof Since the selfadjoint operators in S commute with one another and dimH =
n < +∞, it is easy to prove that there exists a collection {Pk}k=1,...,m ⊂ L (H),
m ≤ n, of non-zero orthogonal projectors, with

∑m
k=1 Pk = I and PrPh = 0 if

r �= h, such for every A ∈ S,

A =
m∑

k=1

a
(A)
k Pk for some a

(A)
1 ≤ a

(A)
2 ≤ · · · ≤ a(A)

m ∈ R. (5.1)

Notice that it may happen that a
(A)
k = a

(A)
k+1. By construction, {a(A)

k | k =
1, . . . ,m} = σ(A). Furthermore, every orthogonal projector px = 〈x|·〉x, for
x ∈ Pk(H) of unit norm, satisfies pxA = Apx for every A ∈ S. If x ∈ H is as
above, define

S 
 A �→ v(A|S) := 〈x|Ax〉 .

By construction 〈x|Ax〉 = a
(A)
k ∈ σ(A) for some k = 1, 2, . . . ,m, because x is a

unit-norm eigenvector of A with eigenvalue a
(A)
k . Since this is valid for every A ∈ S,

properties (i) and (ii) of Theorem 5.5 are immediate. Finally, v(aA|S) = av(A|S)

is due to linearity of the inner product, and v(I |S) = 1 because 〈x|x〉 = 1. ��
Remark 5.14 The m orthogonal projectors Pk appearing in the proof above are
linearly independent because PkPh = δhkPk . Therefore (5.1) guarantees that
{Ak}k=1,...,m with Ak := Pk is a linear basis of observables of the real unital Abelian
algebra S. �
In this abstract context, a hidden variable can be defined as the choice of λ =
{xS}S∈C, where xS ∈ H is a common eigenvector of all the observables A ∈ S

picked out as prescribed above. Hence for every λ and every S, the maps

S 
 A �→ vλ(A|S) := 〈xS |AxS〉 ∈ σ(A)

possess the desired properties. The price to pay when adopting this new
framework—circumventing the Kochen–Specker no-go result—is that the value
vλ(A|S) ∈ σ(A) of an observable A ∈ S is determined not only by the hidden
variable λ, but also by (finitely many) mutually compatible other observables that
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we want to measure together with A (and that generate the chosen Abelian algebra
S). This peculiar property a hidden-variable theory satisfies is called contextuality.
Together with the realism assumption, the Kochen–Specker theorem only admits
realistic contextual hidden-variable theories and denies realistic non-contextual
ones.

Remark 5.15

(a) The existence of a finite linear basis of S ∈ C is guaranteed if the Hilbert space
is finite-dimensional and every element of B(H)sa represents an observable,
whereas it is not warranted automatically if we relax these hypotheses.

(b) It has been argued that the standard formulation of QM is non-contextual,
though this adjective is more often used do distinguish between theories of
hidden variables alternative to the standard formulation. This means nothing
but, when we fix the quantum state T ∈ S (H) of the system so that an
observable A attains a definite value in that state (�AT = 0), this value does
not depend on other possible observables we can measure simultaneously with
A. The problem, so to speak, lies with the realism postulate: necessarily there
exist other observables, different from A, that do not admit precise values for
the quantum state T , as a consequence of Theorem 5.2.

(c) It is important to warn the reader that the notion of (non-)contextuality has
acquired a wealth of different meanings originating in the debate on hidden
variables. The rather cumbersome version discussed in this section is strictly
pertaining to hidden variable theories in the framework of the Kochen–Specker
theorem. The contextuality of Bohmian mechanics and the version dealing
with Bell’s inequality and entanglement have slightly different meanings. In
all cases contextuality means that the value of one observable depends on the
other observables (and their values) measured simultaneously; the specificities
of this dependence may vary according to the notion of (non-)contextuality one
adopts. �

5.2.2 The Peres–Mermin Magic Square

The Kochen–Specker theorem, in the form of Theorem 5.5, assumes that the set
of observables considered is the whole B(H)sa . However, in the spirit of the
reformulation of Theorem 5.8, the no-go result can be obtained also by restricting
the family of observables to a smaller set made of orthogonal projectors. After
[KoSp67] many explicit proofs of that kind were produced. There are alternative, but
theoretically equivalent formulations of the Kochen–Specker no-go result where the
attention is placed on a minimal number of observables (not necessarily orthogonal
projectors) violating some statement concerning the possibility to assign values
to them in accordance with realism and non-contextuality. A popular and direct
argument for dim(H) = 4 is provided by the well-known Peres–Mermin magic
square [Per90, Mer90]. It refers to a system of two particles of spin 1/2, and focuses
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just on the spin part of the Hilbert space, H = C
2 ⊗ C

2. One considers the 9
observables assembled in a square

A11 A12 A13

A21 A22 A23

A31 A32 A33

=
σx ⊗ I I ⊗ σx σx ⊗ σx

I ⊗ σy σy ⊗ I σy ⊗ σy

σx ⊗ σy σy ⊗ σx σz ⊗ σz

(5.2)

The standard Hermitian Pauli matrices σk (see (1.12)) have eigenvalues ±1 and
satisfy the equations

σxσy = iσz , [σx, σy ] = 2iσz for all cyclic permutations of x, y, z.

It is easy to prove that the three operators on each row or column are linearly
independent and pairwise commuting.2 Furthermore, the row and column of any
given element contain a pair of incompatible elements (if we choose σx ⊗ I for
example, I ⊗ σx and I ⊗ σy are incompatible).

For this special case, we will prove a Kochen–Specker-type theorem on B(C2 ⊗
C

2)sa with the further hypothesis that v(A) ∈ σ(A).

Proposition 5.16 Let H = C
2 ⊗C

2 and Aij ∈ B(H)sa be defined as in (5.2). There
exists no assignment of real values Aij �→ v(Aij ) ∈ σ(Aij ), for i, j = 1, 2, 3,
satisfying (ii) of the Kochen–Specker theorem and v(±I) = ±1.

Proof The product of the values in all rows
∏3

i=1
∏3

j=1 v(Aij ) equals the product

of the values in all columns
∏3

j=1
∏3

i=1 v(Aij ), so their product is 1. On the

other hand, requirement (ii) implies that
∏3

i=1
∏3

j=1 v(Aij ) = ∏3
i=1 v(

∏3
j=1 Aij )

and
∏3

j=1
∏3

i=1 v(Aij ) = ∏3
j=1 v(

∏3
i=1 Aij ) since row elements are pairwise

compatible, and column elements too. Therefore
∏3

j=1 Aij = I for i = 1, 2, 3 and
∏3

i=1 Aij = I for j = 1, 2, but
∏3

i=1 Ai3 = −I . In summary, using v(−I) = −1,
we find

1 =
⎡

⎣
3∏

j=1

3∏

i=1

v(Aij )

⎤

⎦
3∏

i=1

3∏

j=1

v(Aij ) =
⎡

⎣
3∏

j=1

v

(
3∏

i=1

Aij

)⎤

⎦
3∏

1=1

v

⎛

⎝
3∏

j=1

Aij

⎞

⎠

= v(I)3v(I)2v(−I) = −1 ,

which is impossible. ��
Remark 5.17 Proposition 5.16 automatically implies the thesis of the Kochen–
Specker theorem on the whole B(C2 ⊗ C

2)sa (assuming also that v(Aij ) ∈

2For instance, if aσx ⊗I +bI ⊗σx +cσx ⊗σx = 0, multiplying by σa ⊗I or I ⊗σa and computing
the partial trace gives a = b = c = 0 easily, because tr(σa) = 0, tr(σaσb) = 2δab .
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σ(Aij )), just because the restriction to the observables Aij of the map v posited
by the Kochen–Specker’s theorem satisfies Proposition 5.16. However, here we are
considering a smaller set of observables Aij ∈ B(H)sa and we cannot say a priori
that no assignment vλ(Aij ) ∈ {±1} satisfies (some of the) requirements (i) and
(ii) of Kochen–Specker and also Lemma 5.7. This is the relevance of the above
proposition. �

5.2.3 A State-Independent Test on Realistic Non-Contextuality

The Peres–Mermin square can be used as experimental test for the no-go assertion
of the Kochen–Specker theorem restricted to the only observables of a quantum
physical system described on H = C

2 ⊗C
2, interpreting the observables as classical

quantities satisfying the realism and non-contextuality assumptions in a hidden-
variable theory.

Consider a concrete physical system with Hilbert space C2 ⊗C
2, and suppose we

are able to give a definite interpretation to all observables Aij in the Peres–Mermin
square. If we measure the observables A ∈ B(C2 ⊗ C

2)sa repeatedly when the
quantum state of the system T ∈ S (H) is fixed, the values will in general fluctuate.
If we adopt a realistic non-contextual hidden-variable description, we are committed
to assume that the fluctuation of the values vλ(A) is caused by a fluctuation of the
state λ ∈ �, which is known only statistically and is described by a probability
measure μ on a σ -algebra 	 of subsets of � (	 obviously contains the singletons
{λ} as measurable sets). Quantum expectation values tr(T A) must be interpreted as
classical standard expectation values

Eμ(A) =
∫

�

vλ(A)dμ(λ) .

Suppose that the map vλ : B(C2 ⊗ C
2)sa → R satisfies the very mild

conditions of the Kochen–Specker theorem. There exists a quantity allowing, in
principle, to choose between non-contextual hidden-variable models and a quantum
description on the grounds of the experimental data. (Actually we already know that
Proposition 5.16 rules out these assignments, but we will ignore this fact since we
are interested in constructing an elementary experimental example.)

Consider the observable

χ := A11A12A13 + A21A22A23 + A31A32A33 + A11A21A31

+ A12A22A32 − A13A23A33. (5.3)

This is a selfadjoint operator because the selfadjoint operators in the products
pairwise commute.



5.2 Realistic (Non-)Contextual Theories 199

Remark 5.18 Notice that every observable Aij appears in two different sets of
pairwise compatible observables, yet these sets are not compatible to each other.
E.g., A11, A12, A13 and A11, A21, A31 contain A11, but [A12, A21] �= 0. �
Now consider the experimental expectation value 〈χ〉 obtained by collecting many
measurement outcomes. There are two main possibilities:

1. fluctuations have a quantum nature, so that 〈χ〉 = tr(T χ),

2. fluctuations have a hidden-variable nature, hence 〈χ〉 = Eμ(χ).

In case (1), since χ = 2I ⊗ I + 2I ⊗ I + 2I ⊗ I , we should obtain

〈χ〉 = 6 ,

independently of the quantum state T ∈ S (H). In case (2), if we also assume
the two Kochen–Specker hypotheses restricted to our observables—notice that the
summands in (5.3) pairwise commute (each equals ±I ⊗I !) so we may assume both
(i) and (ii) in Kochen–Specker theorem—we have that

vλ

(
3∏

i=1

Aij

)

=
3∏

i=1

vλ

(
Aij

)
and vλ

⎛

⎝
3∏

j=1

Aij

⎞

⎠ =
3∏

j=1

vλ

(
Aij

)
.

Hence using Lemma 5.7 on the polynomials of A13A23A33,

vλ(χ) := vλ(A11)vλ(A12)vλ(A13)+vλ(A21)vλ(A22)vλ(A23)+vλ(A31)vλ(A32)vλ(A33)

+vλ(A11)vλ(A21)vλ(A31) + vλ(A12)vλ(A22)vλ(A32) − vλ(A13)vλ(A23)vλ(A33) .

Remark 5.19 It is very important to stress that we have explicitly made use of
non-contextuality since each observable Aij appears simultaneously in two sets that
contain incompatible observables. Nonetheless, we have given Aij a unique value
vλ(Aij ) independently of the set to which it belongs. �
Each value vλ

(
Aij

) ∈ {−1,+1} is completely determined by λ, in some unknown
way. It is however possible to prove that, in all cases, −4 ≤ vλ(χ) ≤ 4, so that the
integration with respect to the probability measure μ gives

−4 ≤ 〈χ〉 ≤ 4 .

This is consequence of the following more general proposition.
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Proposition 5.20 Let M(3,R) denote the algebra of real 3 ×3 matrices and define
the map f : M(3,R) 
 X → f (X) ∈ R by

f (X) := X11X12X13 + X21X22X23 + X31X32X33 + X11X21X31

+ X12X22X32 − X13X23X33. (5.4)

Then |f (X)| ≤ 4 if X ∈ [−1, 1]9, where we have identified M(3,R) with R
9.

Proof The map f is continuous on [−1, 1]9 and �f = 0 on (−1, 1)9. As a
consequence of the maximum principle, f �[−1,1]9 attains its extremal values on
the boundary of [−1, 1]9. The boundary is the union of the 18 sets Q±

ij := {X ∈
[−1, 1]9 | Xij = ±1}. It is evident that the restriction of f to Q±

ij is continuous and

harmonic in the interior of Q±
ij ⊂ R

8. The argument can be iterated, and eventually

the extreme values of f belong in the discrete set D = {X ∈ [−1, 1]9 | Xab =
±1 for a, b = 1, 2, 3}. Therefore it is sufficient to prove that |f (X)| ≤ 4 if
Xij ∈ {−1, 1}. First of all, if Xij = 1 then f (X) = 4. Let us prove that a larger
value is impossible to achieve when Xij ∈ {−1, 1}. From the expression of f it
immediately follows the only possible value greater than 4 which f could attain if
all Xij ∈ {−1, 1} is 6. This value would be reached iff the first 5 summands in (5.4)
had value 1 and the last one (X13X23X33) were −1. In turn this would mean that:
(1) in each of first 5 addends an even number of factors Xij (or none) take value
−1; (2) in the last term an odd number take value −1. In summary, f attains value
> 4 iff an odd number of factors Xij in (5.4) take the value −1. This is impossible
because every Xij occurs twice with the same value. We conclude that f (X) ≤ 4
in [−1, 1]9. Since f (−X) = −f (X) and [−1, 1]9 is invariant under X �→ −X, we
also have −4 ≤ f (X) in [−1, 1]9. ��
To recap:

1. quantum mechanics implies 〈χ〉 = 6, independently of the quantum state;
2. realistic non-contextual hidden-variable models (assuming (i) and (ii) of the

KS theorem) imply −4 ≤ 〈χ〉 ≤ 4 , independently of the hidden-variable
distribution μ.

It is evident that quantum theory is incompatible with realistic non-contextual
hidden-variable models, and 〈χ〉 could be exploited to test the difference experi-
mentally.

Real experiments have been performed to test the Kochen–Specker theorem on
concrete physical systems (photons [MWZ00, HLZPG03], neutrons [HLBBR06,
BKSSCRH09] and trapped ions [KZGKGCBR09]) using observables similar to χ

and possibly dealing with suitably prepared quantum states. State-independent tests
have been studied in [AHANBSC13].
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5.3 Entanglement and the BCHSH Inequality

According to Sect. 4.4.8, if a quantum system is made of two subsystems, the overall
Hilbert space has the form H1 ⊗ H2, where H1 and H2 are the Hilbert spaces of the
two subsystems. S (H1 ⊗ H2) contains the so-called (pure) entangled states: by
definition these are represented by unit vectors that are not factorized as ψ1 ⊗ ψ2,
but rather linear combinations of such vectors

� =
n∑

k=1

ckψ1k ⊗ ψ2k ,

where at least two ck do not vanish. As first observed by Einstein, Podolski
and Rosen in a celebrated 1935 paper [EPR35], this sort of state gives rise to
very peculiar phenomena—often mentioned as the EPR paradox—as soon as one
assumes the postulate of collapse of the state after a measurement (see Sect. 4.4.7)
with post-measurement state (4.23). Suppose the whole state is represented by the
entangled vector

� = 1√
2

(
ψa ⊗ φ + ψa′ ⊗ φ′) ,

where ψa,ψa′ ∈ H1 and φ, φ′ ∈ H2 are of unit norm. We also assume that A1ψa =
aψa and A1ψa′ = a′ψa′ for a certain observable A1 ∈ B(H1)sa belonging to part
S1 of the total system and such that a, a′ ∈ σp(A1). Due to the collapse of the state,
when performing a measurement of A1 on S1 we actually act on the whole state,
hence also on the part describing S2. As a matter of fact,

(i) if the outcome of the measurement of A1 ⊗ I is a, then the state of the full
system after the measurement will be described by ψa ⊗ φ;

(ii) if the outcome of the measurement of A1 ⊗ I is a′ then the state of the full
system after the measurement will be described by ψa′ ⊗ φ′.

Therefore as we act on S1 by measuring A1, we “instantaneously” produce a change
of S2 which, in principle, can be observed by performing measurements on it.
All of this happens even if the measuring apparatus of S2 is very far from the
instrument measuring S1. It is further possible to realize a more subtle version
of the experiment where we can measure different observables on each side of
the experiment, and the (possibly random) choice of these observables and the
associated measurement are made in such a short lapse of time that any non-
superluminal exchange of information between the two sides is prevented (see
[BeZe17] for up-to-date theoretical and experimental discussions). This seems
to stand in flat contradiction to the locality postulate of Relativity (whereby a
maximal speed exists, the speed of light, for propagating physical information) in
connection with the realism assumption that the values of the observables pre-exist
the measurements and can be changed only through sub-luminal interactions.
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5.3.1 BCHSH Inequality from Realism and Locality

We shall give an outline of Bell’s 1964 analysis [Bel64] of an improved version
of the EPR phenomenon proposed by Aharonov and Bohm, for a physical system
consisting of a pair of spin 1/2 particles, so that

H = Horbital ⊗ H1,spin ⊗ H2,spin

where Horbital = L2(R3, dx1) ⊗ L2(R3, dx2) � L2(R3 × R
3, dx1 ⊗ dx2) and

Hi,spin � C
2 for i = 1, 2, and the entanglement takes place in the space of spins,

� = φ1 ⊗ φ2 ⊗ 1√
2

(
ψ1 ⊗ ψ2 + ψ ′

1 ⊗ ψ ′
2
)

with φi ∈ L2(R3, dxi) ψi, ψ ′
i ∈ H

i,spin.

Once created into sharply separated wavepackets, the particles φ1, φ2 move along
opposite directions towards the detectors where the spin observables are eventually
measured.3

Bell’s analysis considered the possibility of explaining the phenomenology
of entanglement in terms of a hidden-variable theory and, most importantly, he
proposed an experiment capable of checking if local realism is satisfied.

As in the previous sections, it is supposed that there exists a hidden variable
λ ∈ � which completely fixes the state of the couple of particles when they
are spacelike separated. As before, we do not have direct access to λ but we do
know its probability distribution μ over �, and this statistical description should
be in agreement with (actually it should explain it!) the stochastic behaviour of
measurement outcomes of QM. To be precise, λ generally indicates a set of hidden
variables, and the state of S1 only depends on a subset of these parameters while the
state of S2 depends on another subset. In a complete theory, one could also assume
that hidden variables have a deterministic dynamical evolution. If so, our λ would
represent the initial values of that evolution.

We are in particular interested in the value A(a|λ) ∈ {±1} of the spin along the
direction a ∈ S

2 (the unit sphere in R
3) detected on particle S1, and in the value

B(b|λ) ∈ {±1} of the spin along the direction b ∈ S
2 detected on particle S2.

(Actually the true spin values amount to h̄A(a|λ)/2 and h̄B(b|λ)/2 but we shall
henceforth ignore the factor h̄/2.)

Remark 5.21 As opposed to previous sections, we are not directly assuming that
the spin is a quantum observable, i.e. a selfadjoint operator on a Hilbert space. It

3A more complete model would include the state’s skew-symmetry (the electrons may be
swapped), but we shall disregard details such as this one. When dealing with photons the spin
must be replaced by the polarization, which is still described on C

2, and the positions xi by the
momenta ki ; in this case the state must be symmetric when swapping the photons.
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is just a quantity, taking values in {±1}, that we can measure on both sides of the
system depending on the choice of direction. �
Let us make explicit two assumptions involved in Bell’s picture.

1. Realism. The values of A and B exist at every time and for every choice of the
directions a,b ∈ S

2, independently of their explicit observation.
2. Locality. When measurements are performed on S1 and S2 by devices placed

in causally separated regions of spacetime, the choice of a ∈ S
2 cannot have

any influence on the outcome B(b|λ), and the choice of b ∈ S
2 cannot have any

influence on the outcome A(a|λ); moreover, these outcomes are (pre-)determined
by the hidden variable λ. (This is the reason why we write A(a|λ) but not, say,
A(a|λ,b).)

Let us consider the quantity, obtained by measurements,

χ(a, a′,b,b′|λ) := A(a|λ)B(b|λ)+A(a′ |λ)B(b|λ)+A(a′|λ)B(b′|λ)−A(a|λ)B(b′|λ)

which depends on four choices of directions a, a′ for S1 and b,b′ for S2. Since

χ(a, a′,b,b′|λ) = A(a|λ)
[
B(b|λ) − B(b′|λ)

] + A(a′|λ)
[
B(b|λ) + B(b′|λ)

]
,

and B(b|λ), B(b′ |λ) ∈ {±1}, only one summand survives. As A(a|λ),A(a′|λ) ∈
{±1}, we conclude that

− 2 ≤ χ(a, a′,b,b′|λ) ≤ 2 . (5.5)

If we take the expectation value of χ(a, a′,b,b′|λ) when λ varies in � according
with its probability distribution μ,

Eμ(χ) :=
∫

�

χ(a, a′,b,b′|λ)dμ(λ) ,

we find −2 ≤ Eμ(χ) ≤ 2 since the measure is positive and the total integral is 1.
Defining

Eμ(a,b) :=
∫

�

A(a|λ)B(b|λ)dμ(λ) a,b ∈ S
2 ,

we obtain the famous BCHSH inequality, after J. Bell, J. Clauser, M. Horne, A.
Shimony, and R. Holt4:

− 2 ≤ Eμ(a,b) + Eμ(a′,b) + Eμ(a′, b′) − Eμ(a,b′) ≤ 2 for every a, a′, b,b′ ∈ S
2.

(5.6)

4The original paper of Bell [Bel64] presented a slightly less general inequality.
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The BCHSH inequality—regarding correlations of measurements of spin compo-
nents of pair of particles—must be satisfied by every realistic local theory.

What is the quantum prevision instead? First of all, the spin observable along
a ∈ S

2 must be defined as the selfadjoint operator in B(C2)sa

a · σ :=
∑

k=x,y,z

akσk . (5.7)

In this context, we have to interpret Eμ(a,b) as an expectation value with respect to
a quantum state T ∈ S (C2 ⊗ C

2) (neglecting the state’s orbital part, which plays
no role at present):

ET (a,b) = tr [T (a · σ ⊗ b · σ)] . (5.8)

We restrict the choice of state to entangled pure states T± = 〈�±| · 〉�± of a
particular type, called Bell states,

�+ := 1√
2

(ψ+ ⊗ ψ+ + ψ− ⊗ ψ−) , �− := 1√
2

(ψ+ ⊗ ψ− − ψ− ⊗ ψ+) ,

(5.9)

where ψ± ∈ C
2 are ±1-eigenvectors of σz: σzψ± = ±ψ±. If ex, ey, ez ∈ S

2 are the
unit vectors along three orthogonal axes of the physical rest space of the laboratory,
we choose

a = ex , a′ = ez , b = ex + ez√
2

, b′ = ez − ex√
2

(5.10)

An elementary but lengthy computation based on (1.12) yields

ET±(a,b) + ET±(a′,b) + ET±(a′,b′) − ET±(a,b′) = ±2
√

2 . (5.11)

Since 2
√

2 > 2, we conclude that the result predicted by Quantum Theory, with said
choices of directions and entangled states, is incompatible with realism and locality.

The strong empirical evidence is that local realism is rejected by experimental
data accumulated, over the years, in several very delicate experiments performed to
test the BCHSH inequality on couples of particles in entangles states. See [GaCh08]
for a review on the various experiments and [Han15] for a recent important
experimental achievement on the subject. The non-locality of QM—with the above
specific meaning due to Bell [BeZe17]—is nowadays widely accepted as a real and
fundamental feature of Nature [Ghi07, SEP, Lan17].
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Remark 5.22

(a) We stress, without entering in details, that the quantum violation of locality
together with the stochastic nature of measurement outcomes do not permit
superluminal propagation of physical information [Bell75, Ghi07].

(b) Incidentally, 2
√

2 is the maximum value attainable for a quantum state T ∈
S (H) violating the BCHSH inequality [Tsi80], and is known as Tsirelson’s
bound. �

5.3.2 BCHSH Inequality and Factorized States

Let us examine what happens to the BCHSH inequality if T = 〈�| 〉� is not
entangled, i.e., if

� := ψ1 ⊗ ψ2 (5.12)

is a product of unit vectors ψi . We need at technical proposition.

Proposition 5.23 Let f : R4 → R be the map f (x1, x2, x3, x4) = x1x3 + x2x3 +
x2x4 − x1x4. Then |f (x1, x2, x3, x4)| ≤ 2 if (x1, x2, x3, x4) ∈ [−1, 1]4.

Proof The map f is continuous on [−1, 1]4 and satisfies �f = 0 on the interior of
[−1, 1]4, so the maximum principle implies it is extremized on the boundary. The
latter is the union of the eight sets Q±

i := {(x1, x2, x3, x4) ∈ [−1, 1]4 | xi = ±1}.
It is evident that the restriction of f to each Q±

i is still continuous and harmonic
on the interior of Q±

i ⊂ R
3. Iterating the argument we eventually find that the

extreme values of f are achieved on D := {(x1, x2, x3, x4) ∈ [−1, 1]4 | xi =
±1, i = 1, 2, 3, 4}. Since f (x1, x2, x3, x4) = x1(x3 − x4) + x2(x3 + x4),
when x3, x4 = ±1 only one of the summands is non-zero. Further imposing
x1, x2 = ±1 tells f (x1, x2, x3, x4) = ±2 for every (x1, x2, x3, x4) ∈ D. Since
max{|f (z1, z2, z3, z4)| | (z1, z2, z3, z4) ∈ [−1, 1]4} = |f (x1, x2, x3, x4)| for some
(x1, x2, x3, x4) ∈ D, the claim is proved. ��
Given � as in (5.12) and T = 〈�| 〉� , a trivial computation proves that

ET (a,b) + ET (a′,b) + ET (a′,b′) − ET (a,b′)

= 〈ψ1|a · σψ1〉〈ψ2|b · σψ2〉 + 〈ψ1|a′ · σψ1〉〈ψ2|b · σψ2〉
+ 〈ψ1|a′ · σψ1〉〈ψ2|b′ · σψ2〉 − 〈ψ1|a · σψ1〉〈ψ2|b′ · σψ2〉 . (5.13)

But ||a · σ || = sup{|ν| | ν ∈ σ(a · σ)} = 1, so |〈ψ1|a · σψ1〉| ≤ ||a · σ ||||ψ1||2 = 1,
and then 〈ψ1|a · σψ1〉, 〈ψ1|a′ · σψ1〉, 〈ψ2|b · σψ2〉, 〈ψ2|b′ · σψ2〉 ∈ [−1, 1]. In
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summary, in view of Proposition 5.23, the absolute value of the right-hand side
of (5.13) is bounded by 2. Therefore

−2 ≤ ET (a,b)+ET (a′,b)+ET (a′,b′)−ET (a,b′) ≤ 2 for every a, a′,b,b′ ∈ S
2.

Hence, factorized pure states satisfy the BCHSH inequality. An incoherent super-
position of factorized pure states gives rise to the same result by construction. The
lesson this story teaches us is:

Factorized pure states, and incoherent superpositions of them, do not violate the
BCHSH inequality.

In a sense, they are more classical than entangled states.

Remark 5.24

(a) The natural question arising from our discovery is whether or not there exist
pure entangled states satisfying the BCHSH inequality. As a matter of fact they
do exist, and there also exist pure entangled states which violate the BCHSH
inequality without reaching the maximum value 2

√
2 [GaCh08, BeZe17].

(b) As a byproduct, the violation of the BCHSH inequality can be used to detect
entanglement, paying attention that it only gives sufficient but not necessary
conditions. �

5.3.3 BCHSH Inequality from Relativistic Local Causality
and Realism

In order to derive the BCHSH inequality, Bell presented [Bell75] the very general
approach5 we set out to introduce now (see also [Jar84] and [Shi90]).

We remind the reader that in a time-oriented spacetime M , such as Minkowski’s
spacetime, the causal past J−(O) (resp.causal future J

+
(O)) of O ⊂ M is

the set of points p ∈ M which admit a curve from p to O whose tangent vector
is either timelike or lightlike, and future-directed (resp. past-directed). Since these
curves represent causal interactions (at the macroscopic level at least), O cannot be
influenced by anything that happens outside J−(O). Two subsets O,O ′ ⊂ M are
causally separated if J±(O)∩O ′ = ∅ (which is equivalent to J±(O ′)∩O = ∅):
no causal relation can exist between them.

In Bell’s view, a general relativistic physical system is described in terms of
physical quantities, named beables by Bell in opposition to observables. These
objects are supposed to always exist independently of our measurements, they ought
to have objective properties and satisfy locality, local causality to be precise, in the

5The author is grateful to S.Mazzucchi for many clarifications and discussions on subtleties related
to the content of this section.
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sense we shall discuss below. Every physical description ought to be based on them.
This is the strongest form of realism and locality.

In a typically stochastic description of a physical system S, a beable is a random
variable X : � → RX defined on a probability measure space (�,	(�),P)

common to all beables, where RX is any measurable space characteristic of X,
typically a subset of some R

n. The overall stochastic state of the system is
represented by the probability measure P over �.

Remark 5.25

(a) Included in this are deterministic descriptions where (some) beables have
definite values, simply by assuming that P is such that the physically relevant
random variable attains the chosen value with probability 1.

(b) It is clear that this description is completely classic, as it relies on Kolmogorov’s
notion of probability and not on the quantum notion used in Gleason’s
theorem. �

Beables are also localized in spacetime regions (Fig. 5.1) where they satisfy
causal locality requirements, as we proceed to explain. We are interested in systems
made of two parts S1 and S2, whose beables are localized in two causally separated
regions O1,O2 of spacetime. In the following P := J−(O1) ∩ J−(O2) denotes
the common causal past of the regions. As in the specific case of the EPR

Fig. 5.1 Causally separated
regions O1 and O2
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phenomenology, where S consists of two entangled particles S1 and S2 localized in
causally separated regions O1 and O2, we assume that beables are of three types:

(a) s1 is a random variable localized at O1 and taking values in V1, and s2 is a
random variables localized at O2 and taking values in V2. We also assume that
V1 and V2 are discrete subsets of [−1, 1];

(b) n1 is a random variable localized at J−(O1) \ P taking values in N1, and n2 is
a random variable localized at J−(O2) \ P taking values in N2;

(c) λ is a random variable localized in the common causal past P taking values in
some measurable space �.

The physical interpretation (not the only one) goes as follows:

1. s1 is the (normalized) value of the component of the spin of S1 along the direction
n1, s2 is the (normalized) value of the spin of S2 along the direction n2. The value
of s1 cannot have any influence on the value of s2, for O1 and O2 are causally
separated.

2. The random variables n1 and n2 represent the choice we made of the components
of the spin we intend to measure on S1 in O1 and on S2 in O2. The possible
directions of the spins are taken in subsets N1, N2 of S2.

These choices are made in the causal past of O1 and O2 respectively. We also
assumed that the choice of n1 cannot have any influence on what happens in O2
and vice versa, since both beables are localized outside P .

(The ni appear here as stochastic variables—in real measurements of EPR
correlations the components of the spin to be measured are actually chosen
randomly—but non-random choices are subsumed by assuming that the prob-
ability of a certain choice is 1, see Remark 5.25.)

3. The role of the beable λ as a hidden variable is less precise than in the previous
section: it lives in the common causal past P and represents a potential common
cause responsible for possible correlations of the beables localized at O1 and
O2, since no direct causal relations are permitted between them as O1 and
O2 are causally separated. The measure μ introduced in the previous sections,
which betrays our ignorance about the precise value of λ, can be defined here as
μ(L) := P(λ−1(L)), where L ⊂ � is any measurable set.

Remark 5.26 Let us emphasize that we are not assuming that the particles have
spin 1/2, and the following reasoning would go through, with trivial adjustments,
even if s2 and s2 were continuous on [−1, 1]. The rest of the argument is actually
valid provided (a), (b), (c) are true regardless of the particle-spin interpretation when
assuming the statistical interpretation of local causality (5.15)–(5.17) below. �

By assuming (a), (b) and (c) the discussion goes on in terms of conditional
probabilities. We want to prove an inequality about the expectation value

E(λ0, a,b) := E(s1s2|λ = λ0,n1 = a,n2 = b)
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of the product s1 · s2 under the conditions λ = λ0,n1 = a,n2 = b, where

E(s1s2|λ = λ0,n1 = a,n2 = b)

:=
∑

α∈V1 , β∈V2

αβ P(s1 = α, s2 = β|λ = λ0,n1 = a,n2 = b) . (5.14)

We start from the observation that, in a locally causal theory as the one presented
above, the following relations declaring statistical independence of the two subsys-
tems must be true:

P(s1 = α|λ = λ0,n1 = a,n2 = b, s2 = β) = P(s1 = α|λ = λ0,n1 = a) , (5.15)

P(s1 = α|λ = λ0,n1 = a,n2 = b) = P(s1 = α|λ = λ0,n1 = a) , (5.16)

P(s1 = α|λ = λ0,n1 = a, s2 = β) = P(s1 = α|λ = λ0,n1 = a) . (5.17)

This is because the values of n2 and s2 cannot have any influence on what happens
in O1, see (1) and (2) above. The same holds if we swap the beables of S1 and S2.
Let us therefore consider the joint conditional probability

P(s1 = α, s2 = β|λ = λ0,n1 = a,n2 = b)

= P(s1 = α|λ = λ0,n1 = a,n2 = b, s2 = β)P(s2 = β|λ = λ0,n1 = a,n2 = b) .

Using (5.15)–(5.17) and the analogous formulas with subsystems interchanged, we
finally have

P(s1 = α, s2 = β|λ = λ0,n1 = a,n2 = b)

= P(s1 = α|λ = λ0,n1 = a)P(s2 = β|λ = λ0,n2 = b) .

Inserting the result in (5.14) gives

E(λ0, a,b) = E(s1|λ = λ0,n1 = a)E(s2|λ = λ0,n2 = b) . (5.18)

Since the values of s1 and s2 are bounded by 1 in absolute value, we also have

− 1 ≤ E(s1|λ = λ0,n1 = a) ≤ 1 and − 1 ≤ E(s2|λ = λ0,n2 = b) ≤ 1 . (5.19)

As a consequence, using Proposition 5.23, we conclude that no matter how we fix
a, a′ ∈ N1 and b,b′ ∈ N2, the absolute value of

E(s1|λ = λ0,n1 = a)E(s2|λ = λ0,n2 = b) + E(s1|λ = λ0,n1 = a)E(s2|λ = λ0,n2 = b′)

+E(s1|λ = λ0,n1 = a′)E(s2|λ = λ0,n2 = b) − E(s1|λ = λ0,n1 = a′)E(s2|λ = λ0,n2 = b′)
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is bounded by 2. In other words, from (5.18),

− 2 ≤ E(λ0, a,b) + E(λ0, a,b′) + E(λ0, a′,b) − E(λ0, a′,b′) ≤ 2 . (5.20)

We can get rid of λ0 ∈ � by taking the expectation value with respect to the
probability measure μ over � introduced in (3) above:

E(a,b) :=
∫

�

E(λ, a,b)dμ(λ) .

Using this definition in (5.20), the linearity of the integral and the fact that the total
integral is 1, we eventually obtain the BCHSH inequality:

−2 ≤ E(a,b) + E(a,b′) + E(a′,b) − E(a′,b′) ≤ 2

under the hypotheses (a), (b), (c) and the natural interpretation of local causal-
ity (5.15)–(5.17).

5.3.4 BCHSH Inequality from Realism and Non-Contextuality

We do not wish to insist again on the interplay between entanglement, realism and
locality, so we switch to the relationship between entanglement, realism, and non-
contextuality instead.

Let us consider again a quantum system S made of two independent parts S1
and S2 which are not necessarily spatially separated. A physical example of such
a system is a spin-1/2 massive particle, or a photon, where the polarization’s two
degrees of freedom are exploited in place of the two degrees of freedom of the
spin. In principle, according to Sect. 4.4.8, the Hilbert space of this system is the
Hilbert tensor product L2(R3, d3k) ⊗ C

2 (momentum picture). However, we can
restrict the possibilities in the momentum space L2(R3, d3k) to a 2-dimensional
subspace. In practice, through a suitable experimental filter only the span of two
states labelled by two momenta k1, k2 ∈ R

3 is accessible to the system. These
two pure states are defined by a pair of unit-norm vectors ψk1 and ψk1 . In terms
of L2 functions, these vectors are wavefunctions typically living in S (R3), whose
support in momentum space is strictly concentrated around k1 and k2 respectively.
Since k1 �= k2, it is reasonable to assume 〈ψk1 |ψk1〉 = 0. In this way the span of the
vectors is isomorphic to C

2, the effective Hilbert space of the system is

H = C
2
momentum ⊗ C

2
polarization/spin ,

and observables corresponding to real linear combinations of σ1, σ2, σ3 can be
introduced also on the first factor. From the experimental point of view all
these observables correspond to devices like beam-splitters, mirrors, polarization
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analyzers and so on. A typical apparatus dealing with photons whose momentum
states are confined to the C2 space is the Mach–Zehnder interferometer [GaCh08].

In contrast to Bell’s analysis, we know a priori that the observables of S1 are
compatible with the observables of S2, and this fact has nothing to do with locality.

We want to show that, in this context, the BCHSH inequality can be used to
distinguish between the hidden-variable descriptions assuming realism and non-
contextuality and the ones that do not. The difference with the similar discussion
of Sect. 5.2.3 is that here we will obtain distinct results depending on the states
used. In particular, entangled states will play a crucial role even if locality does not
enter the game.

Referring again to notation (5.7), we define spin-like observables for each side
of the system (whose meaning is not that of spin components in general):

A(a) := a · σ ∈ B(H1)sa and B(b) := b · σ ∈ B(H2)sa

so that σ(A(a)) = σ(B(b)) = {±1} in particular.
Let us now suppose that a quantum state T ∈ S (H) is given. If we believe in

a realistic non-contextual hidden-variable theory, exactly as in Sect. 5.2.3, we must
first assume that this state corresponds to a probability measure μ over the space �

of hidden variables λ ∈ �. Realism and non-contextuality act as follows.

1. Realism prescribes that all observables A(a), B(b), for every a,b ∈ S
2, attain a

definite value vλ(A(a)) ∈ {±1} and vλ(B(b)) ∈ {±1}, for λ ∈ �.
2. Non-contextuality demands that the value vλ(A(a)) does not depend on the

choice of observables B(b) and B(b′) which can be measured simultaneously
with A(a), when b′ �= b are such that B(b) and B(b′) are not compatible.

In the previous discussion, when we were considering a pair of entangled particles,
this independence was due to locality; here, instead, locality cannot be imposed any
longer.

As in Bell’s analysis of entangled particles, it is convenient to introduce the
quantity

χ(a, a′,b,b′|λ) = vλ(A(a))vλ(B(b)) + vλ(A(a′))vλ(B(b)) + vλ(A(a′))vλ(B(b′))

−vλ(A(a))vλ(B(b′)) . (5.21)

If we take the expectation value of χ(a, a′,b,b′|λ) when λ varies in � according
with its probability distribution μ,

Eμ(χ) :=
∫

�

χ(a, a′,b,b′|λ)dμ(λ) ,
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with the same reasoning as in the previous section we find again −2 ≤ Eμ(χ) ≤ 2.
Defining

Eμ(a,b) :=
∫

�

vλ(A(a))vλ(B(b))dμ(λ) a,b ∈ S
2 ,

produces the BCHSH inequality

− 2 ≤ Eμ(a,b) + Eμ(a,b′) + Eμ(a′,b′) − Eμ(a,b′) ≤ 2 for every a, a′,b,b′ ∈ S
2. (5.22)

This inequality regarding correlations of measurements of the spin-like components
of a bipartite system must be satisfied by every realistic non-contextual theory.

Passing to the quantum side, we can proceed exactly as in the previous section:
restrict to entangled pure Bell states (5.9), take T± = 〈�±| · 〉�± and fix axes
a, a′,b,b′ as in (5.10). Then we find (5.11) again:

ET±(a,b) + ET±(a,b′) + ET±(a′,b′) − ET±(a,b′) = ±2
√

2 .

Remark 5.27 The type of entanglement we are considering here is called intra-
particle entanglement, as it is built with a unique particle entangling the orbital
degrees of freedom described on Corbital and the spin/polarization freedom degrees
described on C

2
polarization/spin. �

Since 2
√

2 > 2, we conclude that the result predicted by Quantum Theory,
with the given choices of observables and Bell’s intraparticle entangled states, is
incompatible with non-contextual realism.
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