
Chapter 3
Observables and States in General
Hilbert Spaces: Spectral Theory

The overall goal of this chapter is to extend the elementary decomposition of a
Hermitian operator (1.4) on a finite-dimensional Hilbert space seen in Chap. 1 to a
formula valid in the infinite-dimensional case. We do this to make rigorous sense of
the spectral decompositions of (generally unbounded) selfadjoint operators repre-
senting observables, such as momentum and position. What we need is called Spec-
tral Theory on Hilbert spaces, which will be the subject of this chapter. After stating
and proving the theory’s major theorems, we shall apply them to the elementary
presentation of quantum theory introduced in the first chapter to produce a mathe-
matically sound formulation. The proofs to certain technical results are relegated to
the last section. Reference books are [Ped89, Rud91, Schm12, Tes14, Mor18].

3.1 Basics on Spectral Theory

As we shall see in a short while, when we pass to infinite dimensions sums are
replaced by integrals and σ(A) must be enlarged to encompass more than just the
eigenvalues of A. This is because, as already noticed in the first chapter, there exist
operators playing crucial roles in QM that should be decomposed as prescribed by
(1.4) yet do not have eigenvalues.

Notation 3.1 If A : D(A) → H is injective, A−1 indicates its inverse when the
codomain of A is restricted to Ran(A). In other words, A−1 : Ran(A) → D(A). �

3.1.1 Resolvent and Spectrum

The definition of spectrum of the operator A : D(A) → H extends the notion
eigenvalue. The eigenvalues of A are numbers λ ∈ C such that (A − λI)−1 is not
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defined. A naive generalization to infinite dimensions is not viable due to a number
of topological issues. As a matter of fact, even if (A − λI)−1 does exist it may be
bounded or unbounded, and its domain Ran(A − λI) may or not be dense. These
features permit us to define a suitable extension of the notion of eigenvalue.

Definition 3.2 Let A be an operator on the Hilbert space H. The resolvent set of A

is the subset of C

ρ(A) := {λ ∈ C|(A−λI) is injective, Ran(A − λI) = H, (A−λI)−1is bounded}.

The spectrum of A is the complement σ(A) := C \ ρ(A) and consists of the union
of the following pairwise-disjoint three parts:

(i) the point spectrum, σp(A), for which A − λI is not injective (its elements are
the eigenvalues of A),

(ii) the continuous spectrum, σc(A), for which A − λI is injective,
Ran(A − λI) = H and (A − λI)−1 is not bounded,

(iii) the residual spectrum, σr(A), where A− λI is injective and Ran(A − λI) �=
H.

If λ ∈ ρ(A), the operator

Rλ(A) := (A − λI)−1 : Ran(A − λI) → D(A)

is called the resolvent operator of A. �
The following technically elementary fact defines approximate eigenvector an
element of the continuous spectrum. Even if proper eigenvectors do not exist, they
can be approximated arbitrarily well.

Proposition 3.3 Let A : D(A) → H be an operator on the Hilbert space H and
take λ ∈ σc(A). For every ε > 0 there exists xε ∈ D(A) with ||xε|| = 1 such that
||Axε − λxε || < ε.

Proof Since λ ∈ σc(A), we have that (A − λI)−1 : Ran(A − λI) → D(A) is not
bounded. Therefore, for every ε > 0 there is yε ∈ Ran(A − λI) with yε �= 0 such
that

||(A − λI)−1yε || > ε−1||yε|| .

By construction, we may write yε = (A − λI)zε for some zε ∈ D(A) \ {0}, so that

||(A − λI)−1(A − λI)zε || > ε−1||(A − λI)zε || .

In other words, ε||zε || > ||Azε −λzε ||. It is now evident that xε := ||zε||−1zε fulfils
the claim. ��
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The property is also valid (a) if λ ∈ σp(A), simply by choosing xε as a λ-eigenvector
irrespective of ε, and also (b) if λ ∈ σr(A) in case (A − λI)−1 is not bounded.
For this reason, it is sometimes convenient to decompose σ(A) in a different way
when we deal with operators admitting residual spectrum (this is not the case
for normal operators, as we shall see shortly). The approximate point spectrum
σap(A) consists of λ ∈ σ(A) such that, for every ε > 0, there exists xε ∈ D(A)

with ||Axε −λxε|| < ε and ||xε|| = 1 (including the case Ker(A−λI) = {0}). The
residual pure spectrum σrp(A) is just σ(A) \ σap(A).

In Hilbert spaces the spectrum and the resolvent are invariant under unitary
operators and, more generally, under isomorphisms or anti-isomorphisms. The
following elementary result, proven by using basic properties of surjective linear
isometries, confirms this.

Proposition 3.4 If U : H → H′ is an isometric surjective linear (or anti-linear)
map between Hilbert spaces and A is any operator on H, then σ(UAU−1) = σ(A).
In particular,

σp(UAU∗) = σp(A) , σc(UAU−1) = σc(A) , σr (UAU−1) = σr(A) .

(3.1)

The next technically important proposition is concerned with resolvents and spectra
of closed operators, where things simplify quite a lot.

Proposition 3.5 Let A : D(A) → H be a closed operator on the Hilbert space H
(for instance A ∈ B(H)). Then λ ∈ ρ(A) if and only if the inverse to A − λI exists
and belongs inB(H). In particular Ran(A − λI) = H.

Proof If (A − λI)−1 ∈ B(H), then Ran(A − λI) = Ran(A − λI) = H and
(A − λI)−1 is bounded, so that λ ∈ ρ(A) by definition. Let us prove the converse,
and suppose that λ ∈ ρ(A). We know that (A−λI)−1 is defined on the dense domain
Ran(A−λI) and is bounded. To conclude, it is therefore enough to prove that y ∈ H
implies y ∈ Ran(A − λI). To this end, notice that if y ∈ H = Ran(A − λI), then
y = limn→+∞(A − λI)xn for some xn ∈ D(A − λI). The sequence of elements
xn converges. Indeed, H is complete and {xn}n∈N is Cauchy because (1) xn = (A −
λI)−1yn, (2) ||xn − xm|| ≤ ||(A − λI)−1|| ||yn − ym||, and (3) yn → y. To finish
the proof, we observe that A − λI is closed since A is closed (Remark 2.31 (b)).
Consequently (Remark 2.31 (c)) x = limn→+∞ xn ∈ D(A − λI) and y = (A −
λI)x ∈ Ran(A − λI). ��
Remark 3.6

(a) As a consequence of this result, if A : D(A) → H is closed or A ∈ B(H) the
definition of resolvent simplifies:

ρ(A) := {λ ∈ C | ∃(A − λI)−1 ∈ B(H)} .
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Some textbooks give this definition from the very beginning. In these cases,
since the operators (A − λI)−1 have the same domain H when λ ∈ ρ(A),
Rμ(A) − Rλ(A) is defined everywhere.

(b) The conclusion of Proposition 3.5 can actually be stated in an even stronger
form. Since A is closed, A − λI and its inverse (A − λI)−1 are closed as
well (they have the same graph). So if A is defined everywhere on H, it is
automatically bounded by the closed graph theorem. So we have an alternative
version of Proposition 3.5. �

Proposition 3.7 Let A : D(A) → H be a closed operator on the Hilbert space H
(for example, A ∈ B(H)). Then λ ∈ ρ(A) if and only if A − λI : D(A) → H is a
bijection.

The definitions of resolvent and spectrum can be extended as they stand to the
case where H is replaced by a complex Banach space [Rud91, Mor18]. Even more
generally, they adapt to abstract unital Banach algebras if we interpret operators as
elements of the algebra.

Definition 3.8 If A is a unital Banach algebra, the resolvent of an element a ∈ A
is made of all λ ∈ C such that a − λ1 admits inverse, written Rλ(a), in A. The
spectrum of a ∈ A is σ(a) := C \ ρ(a). �
No finer spectral decompositions are made in this context.

A closed operator A satisfies the resolvent identity, which is evidently valid also
for unital Banach algebras (replacing Rz(A) by Rz(a)).

Proposition 3.9 Let A : D(A) → H be a closed operator (or, more strongly, A ∈
B(H)) on the Hilbert space H and take μ, λ ∈ ρ(A). Then

Rμ(A) − Rλ(A) = (μ − λ)Rμ(A)Rλ(A) , (3.2)

called the resolvent identity.

Proof First of all Rλ(A)(A − λI) = I �D(A) and (A − μI)Rμ(A) = I . As a
consequence,Rλ(A)(A−λI)Rμ(A) = Rμ(A) andRλ(A)(A−μI)Rμ(A) = Rλ(A).
Taking the difference produces (3.2). ��
We shall prove that if A ∈ B(H) then ρ(A) �= ∅. The same applies to unital Banach
algebras.

Proposition 3.10 Let H be a Hilbert space and A ∈ B(H). Then λ ∈ ρ(A) if
|λ| > ||A||, so σ(A) is bounded by ||A||.
Proof The series Sλ := −∑+∞

n=0 λ−(n+1)An (where A0 := I ) converges in the
operator norm of B(H) when |λ| > ||A|| since it is dominated by the complex
series

∑+∞
n=0 |λ|−(n+1)||A||n andB(H) is a Banach space. Furthermore

Sλ(A − λI) = (A − λI)Sλ =
+∞∑

n=0

(
−λ−(n+1)An+1 + λ−nAn

)
= I ,
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so Sλ = Rλ(A) and λ ∈ ρ(A). ��
A few general properties of the spectrum and the resolvent set deserve special
attention because they crop up in QM. The most important are encapsulated in the
following proposition.

Proposition 3.11 Let A : D(A) → H be a closed operator on the Hilbert space H.
Then

(a) ρ(A) is open, σ(A) is closed and ρ(A) � λ 
→ 〈x|Rλ(A)y〉 ∈ C is holomorphic
for every x, y ∈ H if ρ(A) �= ∅.

(b) If A ∈ B(H), then

(i) σ(A) �= ∅,
(ii) ρ(A) �= ∅.
(iii) σ(A) is compact.

If A is a unital Banach algebra and a ∈ A, then ρ(a) is open, σ(a) is closed and
part (b) holds with a replacing A.

Proof Let us start from (b). Statement (ii) has already been proved in Proposi-
tion 3.10, and this proves (iii) provided (i) holds. (i) is established by studying
the function ρ(A) � λ 
→ fxy(λ) := 〈y|(A − λI)−1x〉 ∈ C for every given
x, y ∈ H. Using the expansion in the proof of Proposition 3.10, we have fxy(λ) =
−∑+∞

n=0 λ−(n+1)〈y|Anx〉. The series, for |λ| > |λ0|, is dominated by the numerical

series
∑+∞

n=0 λ
−(n+1)
0 ||A||n||x||||y||, which converges as |λ0| > ||A||. Therefore the

series of fxy converges absolutely and uniformly on {λ ∈ C | |λ| > |λ0|}. Exploiting
the dominated convergence theorem we conclude that fxy(λ) → 0 as |λ| → +∞.
But fxy is holomorphic because it is a uniform limit of holomorphic maps (use
Morera’s theorem). Now, if ρ(A) = C Liouville’s theorem would imply that fxy

is constant for every y, x ∈ H, so fxy(λ) = 0 everywhere because of the limit
we computed. It would follow (A − λI)−1 = 0, a contradiction. We conclude that
ρ(A) �= C, so σ(A) �= ∅.

If we look at the Banach algebra picture and take a ∈ A, the function fxy has to
be replaced by F(λ) = f ((a − λ1)−1) for every element f of the topological dual
A∗, but the proof proceeds similarly.

(a) Assume λ0 ∈ ρ(A) and consider λ ∈ C with |λ − λ0| < ||Rλ0(A)||−1. We
therefore have

A − λI = [(λ0 − λ)I + (A − λ0I)] = (A − λ0I)[(λ − λ0)Rλ0(A) + I ]
= Rλ0(A)−1[(λ − λ0)Rλ0(A) + I ] ,

so that

(A − λI)−1 = [(λ − λ0)Rλ0(A) + I ]−1Rλ0(A)
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provided [(λ − λ0I)Rλ0(A) + I ]−1 exists. With the same argument used for
Proposition 3.10, when |λ − λ0| < ||Rλ0(A)||−1 we have

[(λ − λ0)Rλ0(A) + I ]−1 =
+∞∑

n=0

(λ0 − λ)nRλ0(A)n . (3.3)

We have demonstrated that every point λ0 ∈ ρ(A) admits an open neigh-
bourhood where Rλ(A) exists. We can therefore say that ρ(A) ⊂ C is open
and its complement σ(A) is closed. If ρ(A) �= ∅ the map ρ(A) � λ 
→
〈x|(A − λI)−1y〉 admits Taylor expansion around every λ ∈ ρ(A), constructed
trivially out of (3.3). Hence the function is holomorphic.

The same proof works for unital Banach algebras A, by simply replacing
〈x|Rλ(A)y〉 with f (Rλ(a)), where f ∈ A∗.

��
Remark 3.12

(a) If A ∈ B(H) is normal, the spectral radius formula holds

sup{|λ| | λ ∈ σ(A)} = ||A|| . (3.4)

The spectral radius of A is the expression on left. We shall derive this formula
for selfadjoint operators as an immediate consequence of the spectral theorem.
However, Proposition 3.80 provides a general version for normal operators
whose proof is independent of the spectral theorem. This formula holds also
in abstract unital C∗-algebras: replacing A is a normal element a: a∗a = aa∗.

(b) Item (i) in Proposition 3.11 (b) for unital Banach algebras implies the well-
knownGelfand–Mazur theorem, whereby a Banach algebra whose every non-
zero element is invertible is isomorphic to C. Indeed a − λa1 must be non-
invertible for some λa ∈ σ(a) ⊂ C, and hence a = λa1. �

3.1.2 Spectra of Special Operator Types

We are ready to state and prove general properties of the spectra of selfadjoint and
unitary operators.

Proposition 3.13 Let A : D(A) → H be a densely-defined operator on the Hilbert
space H. Then

(a) if A is selfadjoint, then σ(A) ⊂ R.
(b) If A is unitary, then σ(A) ⊂ T := {z ∈ C | |z| = 1}.
(c) If A is normal, in particular selfadjoint or unitary, the following hold (where

the bar denotes complex conjugation of the single elements):
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(i) σr (A) = σr(A
∗) = ∅,

(ii) σp(A) = σp(A∗); in particular if x �= 0, Ax = λx if and only if A∗x =
λx,

(iii) σc(A) = σc(A∗).

(d) If A is normal (in particular selfadjoint or unitary), then eigenvectors with
distinct eigenvalues are orthogonal.

Proof

(a) Suppose λ = μ + iν with ν �= 0 and let us prove λ ∈ ρ(A). If x ∈ D(A),

〈(A − λI)x|(A − λI)x〉 = 〈(A − μI)x|(A − μI)x〉 + ν2〈x|x〉 + iν[〈Ax|x〉 − 〈x|Ax〉] .

The last summand vanishes as A is selfadjoint. Hence ||(A − λI)x|| ≥ |ν| ||x||.
With a similar argument we obtain ||(A − λI)x|| ≥ |ν| ||x||. The operators
A−λI andA−λI are injective, and ||(A−λI)−1|| ≤ |ν|−1, where (A−λI)−1 :
Ran(A − λI) → D(A). Notice that, from (2.21),

Ran(A − λI)
⊥ = [Ran(A − λI)]⊥ = Ker(A∗ − λI) = Ker(A − λI) = {0} ,

where the last equality makes use of the injectivity ofA−λI . Summarising:A−
λI in injective, (A − λI)−1 bounded and Ran(A − λI)

⊥ = {0}, i.e. Ran(A −
λI) is dense in H; therefore λ ∈ ρ(A), by definition of resolvent set.

(b) Suppose that λ ∈ C and |λ| �= 1, and we want to prove λ ∈ ρ(A). If x ∈ H =
D(A) we have

〈(A − λI)x|(A − λI)x〉 = 〈Ax|Ax〉 + |λ|2〈x|x〉 − 2Re(λ〈Ax|x〉) .

In other words, using 〈Ax|Ax〉 = 〈x|x〉 = ||x||2 and |〈Ax|x〉| ≤ ||x||2||A|| =
||x||2,

||(A − λI)x||2 ≥ (1 + |λ|2)||x||2 − 2|λ|||x||2 = (1 + |λ|2 − 2|λ|)||x||2 .

Summing up, we have proved that ||(A − λI)x||2 ≥ (1 − |λ|)2||x||2.
As in (a), since (1−|λ|)2 �= 0, the previous inequality implies that Ker(A−

λI) = {0}, that ||(A − λI)−1|| ≤ (1 − |λ|)−1, and that Ran(A − λI) is dense

because Ran(A − λI)
⊥ = Ker(A∗ − λI) = {0} (A∗ is unitary as A is unitary

and |λ| = |λ| �= 1, so the previous argument applies).
(c) First of all observe that A normal implies Ker(A) = Ker(A∗). Indeed, if

x ∈ Ker(A), then Ax = 0 and hence A∗Ax = A∗0 = 0, so by definition
of normal operator AA∗x = A∗Ax = 0. In particular x ∈ D(A∗) and therefore
〈x|AA∗x〉 = 0. As a consequence, ||A∗x||2 = 〈A∗x|A∗x〉 = 〈x|AA∗x〉 = 0
and then x ∈ Ker(A∗). Suppose, conversely, that x ∈ Ker(A∗). Then A∗x = 0
and AA∗x = A0 = 0. Using normality, A∗Ax = AA∗x = 0. In particular,
since normal operators are closed by definition, x ∈ D(A) = D(A) =
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D((A∗)∗) and therefore 〈x|A∗Ax〉 = 0 means 〈(A∗)∗x|Ax〉 = 〈Ax|Ax〉 = 0,
which is nothing but ||Ax||2 = 0, i.e. x ∈ Ker(A).

Let us prove (i) σr(A) = ∅. Suppose λ ∈ σ(A), but λ �∈ σp(A). Then
A−λI must be injective, that is Ker(A−λI) = {0}. Since A−λI is normal if
A is normal (in particular closed Remark 2.31 (b)), we conclude that Ker(A∗ −
λI) = Ker(A−λI) = {0}. Therefore [Ran(A−λI)]⊥ = Ker(A∗−λI) = {0}
due to (2.21), andRan(A − λI) = H. Consequently λ ∈ σc(A) and no complex
number in σ(A) is allowed to belong in σr(A). Observing that A∗ is normal if
A is normal, we conclude that σr(A

∗) = ∅ as well. Statement (ii) σp(A) =
σp(A∗) immediately descends from Ker(A − λI) = Ker(A∗ − λI), using
(2.20) and noticing that the operators are closed. Let us apply the argument
used above to show that Ker(A) = Ker(A∗) on A − λI and A∗ − λI : then
||(A − λI)x|| = 0 if and only if ||(A∗ − λI)x|| = 0, furnishing (ii). The proof
of (iii) σc(A) = σc(A∗) is more involved. Suppose λ ∈ σc(A), so Ker(A − λI)

is trivial—also Ker(A∗−λI) is trivial and (A∗−λI)−1 exists—and the inverse
(A−λI)−1 is an element ofB(H) due to Proposition 3.5 since normal operators
are closed by definition. From (A − λI)−1(A − λI) = I |D(A), using (2.8),
we have (A∗ − λI)(A − λI)−1∗ = I |∗D(A) = I . In particular (A∗ − λI)(A −
λI)−1∗|Ran(A∗−λI) = I |Ran(A∗−λI). Since we know that (A∗−λI) is a bijection

from D(A∗) to Ran(A∗ − λI), we conclude

(A − λI)−1∗|Ran(A∗−λI) = (A∗ − λI)−1

because inverses are unique. In particular, the right-hand side is bounded since
the left-hand side is bounded. Hence λ ∈ σc(A) implies λ ∈ σc(A

∗). We may
replicate the argument starting from A∗ and observe that (A∗ − λI)∗ = A − λI

to conclude that λ ∈ σc(A
∗) implies λ = λ ∈ σc(A). This ends the proof of

(iii).
(d) If λ �= μ and Au = λu, Av = μv, then μ〈u|v〉 = 〈u|Av〉 = 〈A∗u|v〉 = λ〈u|v〉,

so (μ−λ)〈u|v〉 = 0. The latter is only possible for 〈u|v〉 = 0 becauseμ−λ �= 0.
��

Example 3.14 The m-axis position operator Xm on L2(Rn, dnx), introduced in
Example 2.59 (1), satisfies

σ(Xm) = σc(Xm) = R . (3.5)

The arguments is as follows. First observe that σ(Xm) ⊂ R since the operator is
selfadjoint (Proposition 3.13). However we saw in Sect. 1.3 that σp(Xm) = ∅, and
σr(Xm) = ∅ again by selfadjointness (Proposition 3.13). Let us examine when a
number r ∈ R belongs to ρ(Xm). If no r ∈ R belongs to ρ(Xm), we must conclude
that σ(Xm) = σc(Xm) = R.

Suppose that, for some r ∈ R, (Xm − rI)−1 exists and is bounded. If ψ ∈
D(Xm − rI) = D(Xm) with ||ψ|| = 1 then ||ψ|| = ||(Xm − rI)−1(Xm − rI)ψ||,
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and hence ||ψ|| ≤ ||(Xm − rI)−1|| ||(Xm − rI)ψ||. Therefore ||(Xm − rI)−1|| ≥
||(Xm − rI)ψ||−1. For every given ε > 0, it is easy to manufacture ψ ∈ D(Xm)

with ||ψ|| = 1 and ||(Xm − rI)ψ|| < ε. Assuming m = 1, it suffices to consider
sets of the form [r − 1/k, r + 1/k] × R

n−1 and functions ψk ∈ C∞
c (Rn,C) such

that supp(ψk) ⊂ [r − 1/k, r + 1/k] × R
n−1 and

∫
Rn |ψk|2dnx = 1. As k → +∞

0 ≤ ||(Xm−rI)ψ||2 ≤
∫

Rn

|x1−r|2|ψ(x)|2dnx ≤ 4

k2

∫

Rn

|ψ(x)|2dnx = 4

k2
→ 0.

Therefore (Xm − rI)−1 cannot be bounded and r ∈ σ(Xm). More precisely r ∈
σc(Xm), since no other possibility is allowed.

By Proposition 3.4 we also conclude that

σ(Pm) = σc(Pm) = R , (3.6)

simply because the momentum operator Pm is related to the position operator
by means of a unitary operator, namely the Fourier-Plancherel operator F̂ of
Example 2.59 (2). �

3.2 Integration of Projector-Valued Measures

We introduce in this section the most important technical tool in spectral theory,
the notion of projector-valued measure, whose repercussions in the interpretation of
quantum theories are paramount. Before we do it, let us prove a few important and
elementary facts concerning orthogonal projectors.

3.2.1 Orthogonal Projectors

Definition 3.15 Let H be a Hilbert space. An operator P ∈ B(H) is called an
orthogonal projectorwhenPP = P andP ∗ = P . The set of orthogonal projectors
of H is denoted byL (H). �
A well-known relation exists between orthogonal projectors and closed subspaces.

Proposition 3.16 Let H be a Hilbert space with orthogonal projectors L (H).
Then

(a) if P ∈ L (H), then P(H) is a closed subspace.
(b) If P ∈ L (H), then Q := I − P ∈ L (H) and Q(H) = P(H)⊥.
(c) There is an orthogonal sum H = P(H) ⊕ Q(H), so any z ∈ H decomposes

uniquely as z = x + y with x = P(z) ∈ P(H), y = Q(z) ∈ Q(H).
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(d) IfH0 ⊂ H is a closed subspace, there exists exactly one P ∈ L (H) that projects
H onto H0, i.e. P(H) = H0.

Proof

(a) It is clear that P(H) is a subspace. It is also closed because, if x =
limn→+∞ Pxn, then x = Px. Indeed, Px = P limn→+∞ P(xn) =
limn→+∞ PPxn = limn→+∞ Pxn = x since P is continuous.

(b) We have (I − P)∗ = I∗ − P ∗ = I − P and (I − P)(I − P) = I − 2P +
PP = I − 2P + P = I − P , so Q := I − P ∈ L (H). Let us prove that
Q(H) = P(H)⊥. First of all, observe that y ∈ Q(H) and x ∈ P(H) yield
〈y|x〉 = 〈(I−P)y|Px〉 = 〈y|(I−P)Px〉 = 〈y|(P −PP)x〉 = 〈y|(P −P)x〉 =
0. Therefore Q(H) ⊂ P(H)⊥. To conclude, we have to prove that Q(H) ⊃
P(H)⊥. If y ∈ P(H)⊥ we have 〈Py|u〉 = 〈y|Pu〉 = 0 for u ∈ H and therefore
Py = 0. As a consequence, if we define z = y + x with x ∈ P(H), we obtain
Qz = (I −P)y+(I −P)x = x+y−Py−Px = z−Py−Px = z−0−x = y.
In other words, if y ∈ P(H)⊥, then y ∈ Q(H), proving Q(H) ⊃ P(H)⊥.

(d) and (c). Consider a closed subspace H0. It is a Hilbert space in its own
right since it contains the limits of its Cauchy sequences (which converge in H
since H is Hilbert). Therefore H0 admits a Hilbert basis N . It is easy to prove
that if N ′ is a Hilbert basis of H⊥

0 , then N ∪ N ′ is a Hilbert basis of H. By
taking M = H0, so that span M = H0, in (2.3) we obtain the orthogonal sum
H = H0 ⊕ H⊥

0 . Consider the operator Px := ∑
z∈N 〈z|x〉z for x ∈ H. Using

the Hilbert decomposition u = ∑
z∈N∪N ′ 〈z|u〉z, one immediately proves that

||P || ≤ 1, PP = P , 〈Px|y〉 = 〈x|Py〉 and hence P = P ∗, so P ∈ L (H).
Finally, P(H) = H0 since N is a Hilbert basis of H0.

Let us demonstrate that the orthogonal projector P satisfying P(H) = H0 is
uniquely determined by H0. The same proof also establishes (c). Since P(H) ∩
Q(H) = {0}, because the subspaces are mutually orthogonal and I = P +Q, we
conclude that z ∈ H can be decomposed uniquely as z = x + y with x ∈ P(H)

and y ∈ Q(H) and x = Pz, y = Qz. This fact proves that a P with P(H) = H0
is unique: if P ′(H) = H0, we would have that Q′ := I − P ′ projects onto H⊥

0
and z ∈ H is uniquely decomposed as z = x + y with x ∈ H0, y ∈ H⊥

0 where
x = Pz = P ′z and y = Qz = Q′z. Hence P ′z = Pz for all z ∈ H.

��
If P ∈ L (H), then P and Q := I − P project onto mutually orthogonal subspaces,
and PQ = QP = 0. This fact is rather general, according to the next elementary
result.

Proposition 3.17 Let H be a Hilbert space. Two projectors P,Q ∈ L (H) project
onto orthogonal subspaces if and only if PQ = 0. In this case QP = 0 as well.

Proof If P(H) ⊥ Q(H) then for every x, y ∈ H we have 0 = 〈Px|Qy〉 =
〈x|PQy〉. Therefore PQ = 0. Taking adjoints we obtain QP = 0. If conversely
PQ = 0, from the identity above we have 〈Px|Qy〉 = 0 for every x, y ∈ H, so that
P(H) ⊥ Q(H). ��
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Let us prove further properties of orthogonal projectors related with a natural order
relation, which will play a crucial role in the next chapter.

Notation 3.18 Referring to Proposition 3.16, if P,Q ∈ L (H) we write P ≥ Q

whenever P(H) ⊃ Q(H). �
Proposition 3.19 If H is a Hilbert space and P,Q ∈ L (H),

(a) P ≥ Q is equivalent to PQ = Q. In this case QP = Q too.
(b) P ≥ Q is equivalent to 〈x|Px〉 ≥ 〈x|Qx〉 for every x ∈ H.

Proof

(a) If P(H) ⊃ Q(H), there exists a Hilbert basis NP = NQ ∪ N ′
Q of P(H)

whereNQ,N ′
Q are a Hilbert bases ofQ(H),Q(H)⊥P (orthogonality referring to

P(H)). From Q = ∑
z∈NQ

〈z|·〉z and P = Q+∑z∈N ′
Q
〈z|·〉z we have PQ = Q.

The converse implication is obvious. Assume PQ = Q. If x ∈ Q(H) then
Qx = x. Therefore Px = PQx = Qx = x, hence x ∈ P(H) and then
Q(H) ⊂ P(H) as wanted. Finally, taking adjoints on PQ = Q we obtain
QP = Q since P and Q are selfadjoint.

(b) Assume P ≥ Q, i.e. Q(H) ⊂ P(H). If x ∈ H, the vector Px ∈ P(H)

decomposes as y + z where y := QPx ∈ Q(H) and z ∈ P(H) is orthogonal to
y. Therefore ||Px||2 = ||QPx||2 + ||z||2. From (a), ||Px||2 = ||Qx||2 + ||z||2
which implies ||Px||2 ≥ ||Qx||2, namely 〈x|Px〉 ≥ 〈x|Qx〉 for every x ∈ H.
Conversely, if 〈x|Px〉 ≥ 〈x|Qx〉 for every x ∈ H, then ||Px||2 ≥ ||Qx||2 for
every x ∈ H, so that Px = 0 implies Qx = 0 for every x ∈ H. In other words
P(H)⊥ ⊂ Q(H)⊥. Applying ⊥ again, we eventually get P(H) ⊃ Q(H).

��
Proposition 3.20 If H is a Hilbert space and {Pn}n∈N ∈ L (H) is a sequence such
that either (i) Pn ≤ Pn+1 for all n ∈ N or (ii) Pn ≥ Pn+1 for all n ∈ N, then
Pnx → Px, for every x ∈ H and some P ∈ L (H), as n → +∞.

Proof Assume Pn ≤ Pn+1 for all n ∈ N. For any x ∈ H, the sequence {Pnx}n∈N
is Cauchy. Indeed, for n > m and using Proposition 3.19 (a) alongside the
selfadjointness and idempotence of orthogonal projectors, ||Pnx − Pmx||2 equals

〈x|(Pn − Pm)(Pn − Pm)x〉 = 〈x|(Pn − Pm − Pm + Pm)x〉 = ||Pnx||2 − ||Pmx||2 .

Since the sequence of numbers ||Pnx||2 = 〈x|Pnx〉 is non-decreasing and bounded
by ||x||2, it converges to some real number and hence it is a Cauchy sequence. This
implies that {Pnx}n∈N is Cauchy as well. The map P : H � x 
→ limn→+∞ Pnx ∈
H is linear by construction. Furthermore, 〈Px|y〉 = 〈x|Py〉 for every x, y ∈ H by
continuity of the inner product, so P = P ∗. Finally, for every x, y ∈ H we also have
〈Px|Py〉 = limn→+∞〈Pnx|Pny〉 = limn→+∞〈x|Pny〉 = 〈x|Py〉, so that PP = P

and therefore P ∈ L (H). The other case’s proof is identical up to trivial changes.
��
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3.2.2 Projector-Valued Measures (PVMs)

At this juncture we can state one of the most important definitions in spectral theory.

Definition 3.21 LetH be a Hilbert space and �(X) a σ -algebra on X. A projector-
valued measure (PVM) on X is a map P : �(X) � E 
→ PE ∈ L (H) such that

(i) PX = I ,
(ii) PEPF = PE∩F ,
(iii) if N ⊂ N and {Ek}k∈N ⊂ �(X) satisfies Ej ∩ Ek = ∅ for k �= j , then

∑

j∈N

PEj x = P∪j∈N Ej x for every x ∈ H.

We say that P is concentrated on S ∈ σ(X) if PE = PE∩S for every E ∈ �(X). �
Remark 3.22

(a) Taking N = {1, 2} in (i) and (iii) tells that P∅ = 0, using E1 = X and E2 = ∅.
Property (ii) entails that PEPF = 0 if E ∩ F = ∅ from Proposition 3.17.
In particular, the vectors PEj x in (iii) are orthogonal. Therefore a series (for
N = N)

∑

j∈N
PEj x , (3.7)

where Ej ∩ Ek = ∅ for k �= j , always converges. An alternative argument
for convergence is to invoke Proposition 3.20, since the operators

∑n
j=0 PEj

are orthogonal projectors and
∑n

j=0 PEj ≤ ∑n+1
j=0 PEj . (Series (3.7) can be

rearranged because by Bessel’s inequality (2.1.2) we have

∑

j∈N
||PEj x||2 ≤

∑

j∈N

∑

u∈Mj

|〈u|x〉|2 < +∞,

where Mj ⊂ PEj (H) is a Hilbert basis of PEj (H). Now Lemma 2.8 guarantees
(3.7) converges and can be rearranged.) Proving explicitly that the series
converges is nonetheless a useful exercise. For a given ε > 0, we use the inner
product’s continuity and the fact that PEj x ⊥ PEk x if j �= k, to compute, for
m > n > Nε ,

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

m∑

j=0

PEj
x −

n−1∑

j=0

PEj
x

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

=
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

j=m∑

j=n

PEj
x

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

=
〈j=m∑

j=n

PEj
x

∣
∣
∣
∣
∣
∣

k=m∑

k=n

PEk
x

〉

=
j=m∑

j=n

〈

PEj
x

∣
∣
∣
∣
∣
∣

k=m∑

k=n

PEk
x

〉
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=
j=m∑

j=n

〈

x

∣
∣
∣
∣
∣
∣
PEj

k=m∑

k=n

PEk
x

〉

=
j=m∑

j=n

〈

x

∣
∣
∣
∣
∣
∣

k=m∑

k=n

PEj
PEk

x

〉

=
j=m∑

j=n

〈

x

∣
∣
∣
∣
∣
∣

k=m∑

k=n

δjkPEk
x

〉

=
j=m∑

j=n

〈
x

∣
∣
∣PEj

x
〉
=

j=m∑

j=n

〈
x

∣
∣
∣PEj

PEj
x
〉
=

j=m∑

j=n

〈
PEj

x

∣
∣
∣PEj

x
〉
=

j=m∑

j=n

||PEj
x||2 < ε.

Hence (3.7) converges, as truncated sums form a Cauchy sequence.
In summary, (iii) can be viewed as a condition on the value of the sum of the

series and not an assumption about its convergence.
(b) If x, y ∈ H, �(X) � E 
→ 〈x|PEy〉 =: μ

(P)
xy (E) is a complex measure whose

(finite) total variation [Rud91] will be denoted by |μ(P)
xy |. This follows from

the definition of PVM, in particular the inner product’s continuity implying σ -
additivity: if the setsEn ⊂ �(X), n ∈ N ⊂ N, are pairwise disjoint (En∩Em =
∅ for n �= m),

μ(P)
xy (∪n∈NEn) = 〈

x
∣
∣P∪n∈NEny

〉 =
〈

x

∣
∣
∣
∣
∣

∑

n∈N

PEny

〉

=
∑

n∈N

〈
x
∣
∣PEny

〉 =
∑

n∈N

μ(P)
xy (En) .

The definition of μxy gives us immediately three important facts.

(i) μ
(P)
xy (X) = 〈x|y〉.

(ii) μ
(P)
xx is always positive and finite, and μ

(P)
xx (X) = ||x||2.

(iii) Consider a simple function [Rud91] s = ∑n
k=1 skχEk , where sk ∈ C and

the sets Ek ∈ �(X), k = 1, . . . , n, are pairwise disjoint, and χE is the
characteristic function of the set E, i.e. the map χE(x) = 0 if x �∈ E and
χE(x) = 1 if x ∈ E. If h denotes the Radon–Nikodym derivative of μxy

with respect to its total variation |μxy | (see, e.g., [Mor18]), we have

∫

X

sdμxy =
∫

X

shd|μxy | =
n∑

k=1

sk

∫

Ek

hd|μxy | =
n∑

k=1

skμxy(Ek)

=
〈

x

∣
∣
∣
∣
∣

n∑

k=1

skPEky

〉

.

If we define

∫

X

s(λ)dP (λ) :=
n∑

k=1

skPEk
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we may then write

∫

X

sdμxy =
〈

x

∣
∣
∣
∣

∫

X

s(λ)dP (λ) y

〉

. (3.8)

The entire machinery of Spectral Theory and Measurable Functional Calculus
is contingent on formula (3.8) (extended from simple functions s to general
measurable functions f ). �

Example 3.23

(1) The simplest example of a PVM arises from a Hilbert basis N in a Hilbert space
H. Let �(N) be the power set of N . For E ∈ �(N) and z ∈ H we define

PEz :=
∑

x∈E

〈x|z〉x

and P∅ := 0. It is easy to prove that the collection of PE thus defined forms
a PVM on N . (This definition works even if H is not separable and N is
uncountable, since for every y ∈ H at most countably many elements x ∈ E

satisfy 〈x|y〉 �= 0). Observe that PNx = ∑
u∈N 〈u|x〉u = x for every x ∈ H, so

that PN = I as required.
In particular μ

(P)
xy (E) = 〈x|PEy〉 = ∑

z∈E〈x|z〉〈z|y〉 and μ
(P)
xx (E) =

∑
z∈E |〈x|z〉|2.

(2) A more sophisticated version of (1) is built out of the Hilbert sum of a family
of non-trivial, pairwise-orthogonal closed subspaces {Hj }j∈J of a Hilbert space
H = ⊕

j∈J Hj . Defining once again �(J ) as the family of subsets of J , for
E ∈ �(J ) and z ∈ H we set P∅ = 0 and

PEz :=
∑

j∈E

Qjz ,

where Qj is the orthogonal projector onto Hj . It is easy to prove that the PE

form a PVM on N. Since
⊕

j∈J Hj = H we have
∑

j∈J Qjx = x for every
x ∈ H, so PJ = I as requested.

In particular μ
(P)
xy (E) = 〈x|PEy〉 = ∑

j∈E〈x|Qjy〉 and μ
(P)
xx (E) =

∑
j∈E ||Qjx||2.
The reader can prove without difficulty that

∫

J

f (j)dμxx(j) =
∑

j∈J

f (j)||Qjx||2 (3.9)

if f is μxx-integrable. This formula is trivial for simple functions, and extends
easily to general maps using dominated convergence.
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(3) Here is a PVM of a completely different sort, this time on L2(Rn, dnx). To
every E in the Borel σ -algebraB(Rn) associate the orthonormal projector

(PEψ)(x) := χE(x)ψ(x) ∀ψ ∈ L2(Rn, dnx) .

Note P∅ := 0. It is easy to prove that the collection of PE is a PVM.
In particular μ

(P)
fg (E) = 〈f |PEg〉 = ∫

E
f (x)g(x)dnx and μ

(P)
ff (E) =

∫
E

|f (x)|2dnx.
The reader can easily check that

∫

Rn

f (x)dμgg(x) =
∫

Rn

f (x)|g(x)|2dnx (3.10)

if f is μgg-integrable. This is trivial for simple functions, and can be gener-
alized easily to measurable functions using the theorem of dominated conver-
gence. �

The following pivotal result [Rud91,Mor18, Schm12] generalizes (3.8) from simple
functions to measurable functions of a suitable type.

Theorem 3.24 Let H be a Hilbert space, P : �(X) → L (H) a PVM, and f :
X → C a measurable function. Define

�f :=
{

x ∈ H

∣
∣
∣
∣

∫

X

|f (λ)|2μ(P)
xx (λ) < +∞

}

.

The following facts hold.

(a) �f is a dense subspace in H and there exists a unique operator

∫

X

f (λ)dP (λ) : �f → H (3.11)

such that
〈

x

∣
∣
∣
∣

∫

X

f (λ)dP (λ)y

〉

=
∫

X

f (λ)dμ(P)
xy (λ) ∀x ∈ H ,∀y ∈ �f . (3.12)

(b) The operator in (3.11) is closed and normal.
(c) The adjoint operator to (3.11) satisfies

(∫

X

f (λ) dP (λ)

)∗
=
∫

X

f (λ) dP (λ) . (3.13)
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(d) The operator in (3.11) satisfies

∣
∣
∣
∣

∣
∣
∣
∣

∫

X

f (λ) dP (λ)x

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

X

|f (λ)|2dμ(P)
xx (λ) ∀x ∈ �f . (3.14)

Proof (I. Existence and Uniqueness) We start by proving that if �f is subspace of
H, then there is a unique operator denoted by

∫
X

f (λ)dP (λ) satisfying (3.12). The
proof of this fact relies on this preliminary lemma.

Lemma 3.25 If f : X → C is measurable, then

∫

X

|f (λ)| d|μ(P)
xy |(λ) ≤ ||x||

√∫

X

|f (λ)|2dμ
(P)
yy (λ) ∀y ∈ �f ,∀x ∈ H .

(3.15)

Proof We henceforth write μxy in place of μ
(P)
xy for the sake of shortness. The idea

is initially to establish the inequality for simple functions and then pass to arbitrary
functions. Take x ∈ H and y ∈ �f . Let s : X → C be a simple function,h : X → C

the Radon–Nikodym derivative of μxy with respect to |μxy |, so that |h(x)| = 1 and
μxy(E) = ∫

E hd|μxy |. For an increasing sequence of simple functions zn such
that zn → h−1 pointwise, with |zn| ≤ |h−1| = 1, by the dominated convergence
theorem we have

∫

X

|s|d|μxy | =
∫

X

|s|h−1dμxy = lim
n→+∞

∫

X

|s|zndμxy = lim
n→+∞

〈

x

∣
∣
∣
∣
∣

Nn∑

k=1

zn,kPEn,k
y

〉

.

In the last step we used part (iii) in Remark 3.22 (b) for the simple function

|s|zn =
Nn∑

k=1

zn,kχEn,k

and we have supposed that, for fixed n, the sets En,k are disjoint from one another.
The Cauchy–Schwartz inequality immediately yields

∫

X

|s|d|μxy | ≤ ||x|| lim
n→+∞

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Nn∑

k=1

zn,kPEn,k y

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
= ||x|| lim

n→+∞

√∫

X

|szn|2dμyy ,

where, in computing the norm, we used P ∗
En,k

PEn,k′ = PEn,k PEn,k′ = δkk′PEn,k since

En,k ∩ En,k′ = ∅ for k �= k′. Next observe that as |szn|2 → |sh−1|2 = |s|2,
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dominated convergence yields

∫

X

|s|d|μxy | ≤ ||x||
√∫

X

|s|2dμyy .

At last, replace s above by a sequence of simple functions sn → f ∈ L2(X, dμyy)

pointwise, with |sn| ≤ |sn+1| ≤ |f |. The monotone convergence theorem and the
dominated convergence theorem, applied respectively to the left- and right-hand side
of the previous inequality, eventually produce (3.15). ��
To proceed with the main proof we notice that inequality (3.15) also proves that
f ∈ L2(X, dμ

(P)
yy ) implies f ∈ L1(X, d|μ(P)

xy |) for x ∈ H, hence the right-hand
side of (3.12) makes sense. General measure theory guarantees that

∣
∣
∣
∣

∫

X

f (λ) dμ(P)
xy (λ)

∣
∣
∣
∣ ≤

∫

X

|f (λ)| d|μ(P)
xy |(λ) ,

whence (3.15) implies that H � x 
→ ∫
X

f (λ) dμ
(P)
xy (λ) is continuous at x = 0.

This map is also anti-linear if f is simple, as follows from the definition of μxy

and the left anti-linearity of the inner product. Anti-linearity extends to measurable
functions f via the usual approximation procedure of measurable functions by
simple functions. We conclude that, for y ∈ �f , the map

H � x 
→
∫

X

f (λ) dμ
(P)
xy (λ)

is linear and continuous. Riesz’s Lemma guarantees the existence of a unique vector,
indicated by

∫
X

f (λ)dP (λ)y, satisfying

∫

X

f (λ) dμ
(P)
xy (λ) =

〈∫

X

f (λ)dP (λ)y

∣
∣
∣
∣ x

〉

.

Conjugating both sides we obtain (3.12). As we have assumed �f is a subspace, the
map

�f � y 
→
∫

X

f (λ) dμ(P)
xy (λ)

is linear when f is simple, as immediately follows from the definition of μ
(P)
xy and

the right linearity of the inner product. As before, linearity extends to measurable
functions f by approximating measurable functions with simple maps. As a
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consequence of (3.12)

�f � y 
→
∫

X

f (λ)dP (λ)y

is linear as well. The uniqueness of this operator is an immediate consequence of
the uniqueness in Riesz’s Lemma.

(II. �f is a Dense Subspace) Let us show that �f is a subspace first. It contains 0
so it is not empty. Moreover, directly by definition of �f , it is clear that if x ∈ �f ,

then ax ∈ �f for every a ∈ C, because μ
(P)
ax,ax(E) = |a|2μ(P)

xx (E) independently
of E and so

∫

X

|f |2dμ(P)
ax,ax = |a|2

∫

X

|f |2dμ(P)
x,x < +∞ .

Next suppose that x, y ∈ �f . We therefore have ||PE(x + y)||2 ≤ (||PEx|| +
||PEy||)2 ≤ 2||PEx||2 + 2||PEy||2. As a consequence μ

(P)
x+y,x+y(E) = ||PE(x +

y)||2 ≤ 2μ(P)
xx (E) + 2μ(P)

yy (E). Therefore

∫

X

|f |2dμ
(P)
x+y,x+y ≤ 2

∫

X

|f |2dμ(P)
xx +

∫

X

|f |2dμ(P)
yy < +∞ ,

and hence x + y ∈ �f . Let us pass to the density of �f . Consider the countable
partition of X made by measurable sets Fn := {λ ∈ X | n ≤ |f (λ)|2 < n + 1}, for
n = 0, 1, 2, . . . . By the σ -additivity of P , if z ∈ H then z = PXz = ∑+∞

n=0 PFnz.
Therefore the span of the unions of closed subspaces Hn := PFn(H) is dense in H.
If we prove that Hn ⊂ �f for every n, since �f is a subspace, we immediately
infer that it is dense. Let us prove it. If x ∈ Hn, then x = PFnx and therefore

μ
(P)
xx (E) = 〈PFnx|PEPFnx〉 = 〈x|PE∩Fnx〉 = μ

(P)
xx (E ∩ Fn). Since

∫

X

|f |2dμ(P)
xx =

∫

Fn

|f |2dμ(P)
xx ≤

∫

Fn

(n + 1)dμ(P )
xx ≤ (n + 1)||x||2 < +∞

we have x ∈ �f , as wanted.

(III. Proof of Eq. (3.14)) For x ∈ �f , using (3.12), we obtain

∣
∣
∣
∣

∣
∣
∣
∣

∫

X

f dPx

∣
∣
∣
∣

∣
∣
∣
∣

2

=
〈∫

X

f dPx

∣
∣
∣
∣

∫

X

f dPx

〉

=
∫

X

f dν (3.16)

where

ν(E) = μ
(P)∫
X f dPx,x

(E) =
〈∫

X

f dPx

∣
∣
∣
∣PEx

〉

=
∫

X

f dμ
(P)
PEx,x .
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Since μ
(P)
PEx,x(F ) = 〈PEx|PFx〉 = 〈x|PE∩F x〉, we have

ν(E) =
∫

E

f dμ(P)
xx .

Using the definition of integral (of a complex measure), it immediately follows

∫

X

sdν =
∫

X

s · f dμ(P)
xx

for a simple function s. A standard argument based of dominated convergence (take
a sequence of simple maps sn tending to f pointwise, with |sn| ≤ |f |) allows to
establish

∫

X

f dν =
∫

X

|f |2dμ(P)
xx

as |f |2 is μxx-integrable. Inserting this result in (3.16) we obtain (3.14), as claimed.

(IV. Proof of Eq. (3.13) and the Closure of
∫
X f dP ) Since the adjoint is always

closed, Eq. (3.13) and
∫
X

f dP = (
∫
X

f dP)∗ would imply
∫
X

f dP is closed. So
let us prove Eq. (3.13). From (3.12) it is easy to see that

∫
X f dP ⊂ (

∫
X f dP)∗:

noticing that μ(P)
yx (E) = μ

(P)
xy (E), namely, if x, y ∈ �f then

〈

y

∣
∣
∣
∣

∫

X

f dPx

〉

=
∫

X

f dμ(P)
yx =

∫

X

f dμ
(P)
xy =

〈

x

∣
∣
∣
∣

∫

X

f dPy

〉

=
〈∫

X

f dPy
∣
∣ x

〉

. (3.17)

Therefore we only have to prove that
∫
X f dP ⊃ (

∫
X f dP)∗. This is equivalent to

show that if y ∈ D((
∫
X

f dP)∗) then y ∈ �f = �f . So let us prove this then, for
which we need an intermediate result.

Lemma 3.26 Under the assumptions of Theorem 3.24

(i)
∫
X χEdP = PE for every E ∈ �(X)

(ii)
∫
X f dPPE = ∫

X f · χEdP for every E ∈ �(X)

(iii) if f is bounded on E ∈ �(X) then (
∫
X

f · χEdP)∗ = ∫
X

f · χEdP .

Proof (i) is true since 〈x|PEy〉 = μxy(E) = ∫
E 1dμ

(P)
xy , and so (3.12) holds and

uniquely determines
∫
X χEdP .

Concerning (ii), the domain of
∫
X f dPPE consists of the x ∈ H such that PEx ∈

�f , that is
∫
X

|f |2dμ
(P)
PEx,PEx < +∞. Since μ

(P)
PEx,PEx(F ) = 〈PEx|PF PEx〉 =

〈x|PE∩F x〉 = μ
(P)
xx (E ∩F), the condition can be rephrased as

∫
X χE · |f |2dμ

(P)
xx <

+∞, or
∫
X |χE · f |2dμ

(P)
xx < +∞. Therefore

∫
X f dPPE and

∫
X χE · f dP have

the same domain. If x ∈ H and y ∈ �χ ·f , 〈x| ∫
X

f dPPEy〉 = ∫
X

f dμ
(P)
x,PEy =
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∫
X f dμ

(P)
PEx,PEy = ∫

E f dμ
(P)
x,y = ∫

E f · χEdμ
(P)
x,y , which implies

∫
X f dPPE =

∫
X f · χEdP again by (3.12).
(iii) is true because �f ·χE = H and

∫
X

f · χEdP ∈ B(H) from (3.14). Hence
replacing f with f · χE in (3.17) ensures that

∫
X f · χEdP = ∫

X f · χEdP is the
adjoint of

∫
X f · χEdP . ��

To resume part IV of the main theorem, we claim (i), (ii), and (iii) imply y ∈ �f if

y ∈ D((
∫
X f dP)∗). We start by defining En := {λ ∈ X | |f (λ)| < n}. Then from

(i)–(iii) we have

PEn

(∫

X

f dP

)∗
= P ∗

En

(∫

X

f dP

)∗
⊂
(∫

X

f dPPEn

)∗
=
(∫

X

f · χEndP

)∗

=
∫

X

f · χEndP .

Hence if y ∈ D((
∫
X

f dP)∗) we infer

∫

X

f · χEndPy = PEn

(∫

X

f dP

)∗
y ,

and so

∣
∣
∣
∣

∣
∣
∣
∣

∫

X

f · χEndPy

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∣
∣
∣
∣

∣
∣
∣
∣PEn

(∫

X

f dP

)∗
y

∣
∣
∣
∣

∣
∣
∣
∣

2

≤
∣
∣
∣
∣

∣
∣
∣
∣

(∫

X

f dP

)∗
y

∣
∣
∣
∣

∣
∣
∣
∣

2

.

Using (3.14),

∫

X

|f · χEn |2dμ(P)
yy ≤

∣
∣
∣
∣

∣
∣
∣
∣

(∫

X

f dP

)∗
y

∣
∣
∣
∣

∣
∣
∣
∣

2

.

Since |f · χEn |2 ≤ |f · χEn+1 |2 → |f |2 as n → +∞, the monotone convergence
theorem implies

∫

X

|f |2dμ(P)
yy ≤

∣
∣
∣
∣

∣
∣
∣
∣

(∫

X

f dP

)∗
y

∣
∣
∣
∣

∣
∣
∣
∣

2

< +∞ ,

that is to say y ∈ �f , as wanted.

(V. Proof that
∫
X

f dP is Normal) The same argument used in the previous lemma
to establish (ii) givesPE

∫
X

f dPx = ∫
X

χE ·f dPx if x ∈ �f . Consider the domain
of
∫
X f dP

∫
X f dP . It consists of vectors x ∈ �f such that

∫

X

|f |2dμ
(P)∫
X f dPx,

∫
X f dPx

< +∞ . (3.18)
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Let us write this condition in a simpler way. First observe that

μ
(P)∫
X f dPx,

∫
X f dPx

(E) =
〈∫

X
f dPx

∣
∣
∣
∣PE

∫

X
f dPx

〉

=
〈

PE

∫

X
f dPx

∣
∣
∣
∣PE

∫

X
fdPx

〉

=
〈∫

X

χE · f dPx

∣
∣
∣
∣

∫

X

χE · f dPx

〉

=
∫

E

|f |2dμ(P)
xx .

Starting from simple functions and generalizing to measurable functions, it is
therefore easy to prove that

∫

X

gdμ
(P)∫
X f dPx,

∫
X f dPx

=
∫

X

|f |2gdμ(P)
xx .

In summary, (3.18) reads

D

(∫

X

f dP

∫

X

f dP

)

= �|f |2 .

Now replace f by |f |2 in the first statement of the theorem we are proving: that
domain is dense and D(

∫
X f dP

∫
X f dP) = D(

∫
X f dP

∫
X f dP). To finish the

proof consider x ∈ D(
∫
X

f dP
∫
X

f dP) = D(
∫
X

f dP
∫
X

f dP). We have

〈

x

∣
∣
∣
∣

∫

X

f dP

∫

X

f dP x

〉

=
〈∫

X

f dP x

∣
∣
∣
∣

∫

X

f dPx

〉

=
∫

X

|f |2dμ(P )
xx =

〈∫

X

f dP x

∣
∣
∣
∣

∫

X

f dP x

〉

=
〈

x

∣
∣
∣
∣

∫

X

fdP

∫

X

f dP x

〉

.

In other words
〈

x

∣
∣
∣
∣

(∫

X

f dP

∫

X

f dP −
∫

X

f dP

∫

X

f dP

)

x

〉

= 0 .

By polarization we finally obtain

〈

y

∣
∣
∣
∣

(∫

X

f dP

∫

X

f dP −
∫

X

f dP

∫

X

f dP

)

x

〉

= 0 ,

for every x, y ∈ D(
∫
X

f dP
∫
X

f dP) = D(
∫
X

f dP
∫
X

f dP). Since this domain is
dense,

∫
X f dP

∫
X f dP − ∫

X f dP
∫
X f dP = 0, and the proof ends.

��
The theorem just proved has technically important consequences, which we list in
the following corollary and the subsequent proposition.
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Corollary 3.27 Under the hypotheses of Theorem 3.24, the following hold.

(a) If f : X → C only assumes non-negative real values, then

〈

x

∣
∣
∣
∣

∫

X

f dPx

〉

≥ 0 ∀x ∈ �f .

(b) If T is an operator on H with D(T ) = �f such that

〈x |T x 〉 =
∫

X

f (λ) dμ(P)
xx (λ) ∀x ∈ �f , (3.19)

then

T =
∫

X

f (λ)dP (λ) .

Proof

(a) The proof is evident from (3.12), taking y = x and noticing thatμ(P)
xx is positive.

(b) From the definition ofμxy we easily have (for simplicity we omit the superscript
(P ))

4μxy(E) = μx+y,x+y(E)−μx−y,x−y(E)− iμx+iy,x+iy(E)+ iμx−iy,x−iy(E) .

This identity implies, by the definition of integral, that for a simple function

4
∫

X

sdμxy =
∫

X

sdμx+y,x+y −
∫

X

sdμx−y,x−y − i

∫

X

sdμx+iy.x+iy + i

∫

X

sdμx−iy,x−iy

if x, y ∈ �s . The customary approximation of measurable functions f by
simple functions (via dominated convergence) gives

4
∫

X

f dμxy =
∫

X

f dμx+y,x+y −
∫

X

f dμx−y,x−y − i

∫

X

f dμx+iy.x+iy

+ i

∫

X

f dμx−iy,x−iy

for x, y ∈ �f . Similarly, by the elementary properties of the inner product

4〈x|Ty〉 = 〈x+y|T (x+y)〉−〈x−y|T (x−y)〉−i〈x+iy|T (x+iy)〉+i〈x−iy|T (x−iy)〉

when x, y ∈ D(T ). Collecting everything, it is now obvious that (3.19) implies

〈x |Ty 〉 =
∫

X

f (λ)μ(P )
xy (λ) ∀x, y ∈ �f ,
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so
〈

x

∣
∣
∣
∣

(

T −
∫

X

f (λ)dP (λ)

)

y

〉

= 0 ∀x, y ∈ �f .

Since x varies in a dense set �f , we have that Ty − ∫
X

f (λ)dP (λ)y = 0 for
every y ∈ �f , which is the claim.

��
Example 3.28

(1) Consider the PVM of Example 3.23 (2). Using Corollary 3.27 (b) and (3.9) we
have

∫

J

f (λ)dP (λ)z =
∑

n∈J

f (j)Qj z

for every f : J → C (which is necessarily measurable with our definition of
�(J )). Correspondingly, the domain of

∫
J

f (λ)dP (λ) is

�f :=
⎧
⎨

⎩
z ∈ H

∣
∣
∣
∣
∣
∣

∑

j∈J

|f (j)|2||Qjz||2 < +∞
⎫
⎬

⎭
.

According to Corollary 3.27 (b) in fact, from (3.10) we have
〈

z

∣
∣
∣
∣

∫

J

f (j)dP (j)z

〉

=
∑

j∈J

f (j)||Qjz||2 =
∫

R

f (j)dμzz

for every z ∈ �f .
(2) Now take to PVM in Example 3.23 (3). By Corollary 3.27 (b) and (3.10)

(∫

Rn

f (λ)dP (λ)ψ

)

(x) = f (x)ψ(x) , x ∈ R
n .

Correspondingly, the domain of
∫
Rn f (λ)dP (λ) turns out to be

�f :=
{

ψ ∈ L2(Rn, dnx)

∣
∣
∣
∣

∫

Rn

|f (x)|2|ψ(x)|2dnx < +∞
}

.

In fact, for every ψ ∈ �f , Corollary 3.27 (b) and (3.10) give

〈

ψ

∣
∣
∣
∣

∫

Rn

f (λ)dP (λ)ψ

〉

=
∫

Rn

f (x)|ψ(x)|2dnx =
∫

Rn

f dμψψ .

�
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3.2.3 PVM-Integration of Bounded Functions

We now state and prove a proposition about the most important properties of∫
X

f dP when f : X → C is bounded or, more weakly, P -essentially bounded.
Some of these have already been exploited in the proof of Theorem 3.24; however,
they turn out to be so useful in the practice that they deserve a separate presentation.

If μ is a σ -additive positive measure on a σ -algebra �(X),

||f ||(μ)∞ := inf {r ≥ 0 | μ({x ∈ X | |f (x)| > r}) = 0} .

Since the integral sees only non-zero measure sets in �(X), for instance,

∫

X

|f |dμ ≤ ||f ||(μ)∞
∫

X

1dμ .

The same definition can be extended to PVMs:

||f ||(P )∞ := inf {r ≥ 0 | P({x ∈ X | |f (x)| > r}) = 0}

and f is said to be P -essentially bounded if ||f ||(P )∞ < +∞.
Note that if PE = 0, then μ

(P)
xy (E) = 0 for E ∈ �(X). Therefore a P -essentially

bounded map f is also μ
(P)
xx -essentially bounded for every x ∈ �f . In particular,

since zero-measure sets for P evidently have zero measure for μ
(P)
xx as well,

0 ≤ ||f ||(μ(P)
xx )∞ ≤ ||f ||(P )∞ ≤ ||f ||∞ ≤ +∞ . (3.20)

A seminorm p : X → R on a complex vector space X by definition satisfies
p(x) ≥ 0, p(ax) = |a|p(x) and p(x + y) ≤ p(x) + p(y) for all x, y ∈ X and
a ∈ C.

It is easy to prove that || ||(P )∞ is a seminorm on the vector space of P -essentially
bounded, measurable, complex-valued functions on X. Moreover, |f | ≤ |g|
pointwise implies ||f ||(P )∞ ≤ ||g||(P )∞ and ||f · g||(P )∞ ≤ ||f ||(P )∞ ||g||(P )∞ , where f · g
is the pointwise product (f · g)(x) = f (x)g(x) for x ∈ X.

Proposition 3.29 Let P : �(X) → L (H) be a PVM.

(a) A map f is P -essentially bounded if and only if

∫

X

f (λ) dP (λ) ∈ B(H) .

In this case
∣
∣
∣
∣

∣
∣
∣
∣

∫

X

f (λ) dP (λ)

∣
∣
∣
∣

∣
∣
∣
∣ ≤ ||f ||(P )∞ ≤ ||f ||∞ . (3.21)
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(b) We have

∫

X

χE dP = PE , if E ∈ �(X). (3.22)

In particular,

∫

X

1 dP = I . (3.23)

For a simple function s = ∑n
k=1 skχEk , where sk ∈ C and Ek ∈ �(X), k =

1, . . . , n,

∫

X

n∑

k=1

skχEkdP =
n∑

k=1

skPEk . (3.24)

(c) Let f, fn : X → R be measurable functions such that ||f ||(P )∞ , ||fn||(P )∞ ≤ K <

+∞ for some K ∈ R and every n ∈ N. If fn → f pointwise as n → +∞, then

∫

X

fndPx →
∫

X

f dPx as n → +∞, for every x ∈ H . (3.25)

(d) If f, g : X → C are P -essentially bounded and a, b ∈ C, then

∫

X

(af + bg) dP = a

∫

X

f dP + b

∫

X

gdP , (3.26)

∫

X

f dP

∫

X

gdP =
∫

X

f · g dP . (3.27)

Proof

(a) Assume f is P -essentially bounded. Since μxx(X) = ||x||2 < +∞ for every
x ∈ H,
∫

X

|f (λ)|2dμ(P )
xx (λ) ≤ (||f ||(μ(P )

xx )∞ )2
∫

X

1dμ(P )
xx ≤ (||f ||(P )∞ )2

∫

X

1dμ(P )
xx = ||x||2 (|f ||(P )∞ )2 ,

so that �f = H. Next, dividing by ||x||2 and taking the sup over the elements
x �= 0, (3.14) implies (3.21). If, instead, f is not P -essentially bounded, then
for every n ∈ N, there is En ∈ �(X) with PEn �= 0 and |f (λ)| ≥ n if λ ∈ En.
Pick xn ∈ PEn(H) with ||xn|| = 1 for every n ∈ N. If xn �∈ �f for some n, then∫
X f dP �∈ B(H) because the domain of the operator is smaller than the entire
H and the proof ends. If xn ∈ �f for every n ∈ N, from Theorem 3.24 (d),
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we have || ∫X f dPxn||2 = ∫
X |f |2dμ

(P)
xnxn = ∫

En
|f |2dμ

(P)
xnxn , where we have

used that μ
(P)
xnxn(F ) = 〈xn|PF xn〉 = 〈PEnxn|PF PEnxn〉 = 〈xn|PF∩Enxn〉 =

μ
(P)
xnxn(F ∩En). Therefore || ∫X f dPxn||2 ≥ ∫

En
n2dμ

(P)
xnxn = n2

∫
En

1dμxnxn =
n2
∫
X
1dμ

(P)
xnxn

= n2||xn||2 = n2. Hence || ∫
X

f dP || cannot be finite and∫
X

f dP �∈ B(H).
(b) By direct inspection

〈y |PEx 〉 = μ(P)
yx (E) =

∫

E

1dμ(P)
yx (λ) =

∫

X

χE(λ)dμ(P)
yx (λ) ∀x, y ∈ �χE

= H .

This proves (3.22), which also implies (3.23) for E = X, since PX = I . The
proof of (3.24) is a trivial extension of this argument by linearity of the integral
in μ

(P)
yx and linearity of the inner product.

(c) Under the given hypotheses,

∣
∣
∣
∣

∣
∣
∣
∣

(∫

X

f dP −
∫

X

fndP

)

x

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∣
∣
∣
∣

∣
∣
∣
∣

∫

X

f − fn dPx

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

X

|f − fn|2dμ(P)
xx .

The first equality comes from (3.26), whose proof is independent of the present
argument. Note that |f −fn|2 ≤ 4K2 almost everywhere with respect to P , and
hence also with respect to μ

(P)
xx . In addition,

∫ |K2|dμ
(P)
xx = ||x||2K2 < +∞,

so the dominated convergence theorem implies
∫
X |f − fn|2dμ

(P)
xx → 0 as

n → +∞, proving our assertion.
(d) (i) First observe that �af+bg,�f ,�g = H because f, g, af + bg are P -

essentially bounded (||af + bg||(P )∞ ≤ |a|||f ||(P )∞ + |b|||g||(P )∞ ), so both sides
of (c)(i) are defined everywhere. Next, from standard properties of the integral,
for every x ∈ H

∫

X

af + bg dμ(P)
yx = a

∫

X

f dμ(P)
yx + b

∫

X

gdμ(P)
yx .

Using (3.12) we find

〈

y

∣
∣
∣
∣

∫

X

af + bg dPx

〉

= a

〈

y

∣
∣
∣
∣

∫

X

f dPx

〉

+ b

〈

y

∣
∣
∣
∣

∫

X

g dPx

〉

=
〈

y

∣
∣
∣
∣

(

a

∫

X

f dP + b

∫

X

g dP

)

x

〉

.

The proof ends since x, y ∈ H are arbitrary.
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Let us prove (3.27). First consider a pair of simple functions s = ∑n
k=1 skχEk

and t = ∑m
h=1 thχFh . The pointwise product s · t is simple. Indeed,

s · t =
n∑

k=1

skχEk

m∑

h=1

thχFh =
∑

k,h

skthχEkχFh =
∑

(k,h)∈In×Im

skthχEk∩Fh

=
∑

(k,h)∈In×Im

(s · t)(k,h)PG(k,h)
,

where Il := {1, 2, . . . , l} and G(k,h) := Ek ∩ Fh. Exploiting (3.24), we
immediately find

∫

X

sdP

∫

X

tdP =
n∑

k=1

skPEk

m∑

h=1

thPFh =
∑

h,k

skthPEkPFh

=
∑

(k,h)∈In×Im

skthPEk∩Fh =
∑

(k,h)∈In×Im

(s · t)(k,h)PG(k,h)
=
∫

X

s · tdP .

We have proved the claim for simple functions f, g. Taking arbitrary P -
essentially bounded functions f, g, consider two sequences of simple maps
sn → f and tn → g pointwise, such that |sn| ≤ |sn+1| ≤ |f | and |tn| ≤
|tn+1| ≤ |g| for all n ∈ N. Evidently sn·tn → f ·g, |sn·tn| ≤ |sn+1·tn+1| ≤ |f ·g|
plus ||sn||(P )∞ ≤ ||f ||(P )∞ , ||tn||(P )∞ ≤ ||g||(P )∞ and ||sn · tn||(P )∞ ≤ ||f · g||(P )∞ ≤
||f ||(P )∞ ||g||(P )∞ . We can apply (c) to obtain, for every x, y ∈ H,

〈∫

X

sndPx

∣
∣
∣
∣

∫

X

tndPy

〉

=
〈

x

∣
∣
∣
∣

∫

X

sndP

∫

X

tndPy

〉

=
〈

x

∣
∣
∣
∣

∫

X

sn · tndPy

〉

→
〈

x

∣
∣
∣
∣

∫

X

f · gdPy

〉

as n → +∞. On the other hand, using (c) again and exploiting the inner
product’s continuity, we also have

〈∫

X

sndPx

∣
∣
∣
∣

∫

X

tndPy

〉

→
〈∫

X

f dPx

∣
∣
∣
∣

∫

X

gdPy

〉

as n → +∞. Summarizing,

〈∫

X

f dPx

∣
∣
∣
∣

∫

X

gdPy

〉

=
〈

x

∣
∣
∣
∣

∫

X

f · gdPy

〉

,
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which, from (3.13) and using that the domain of
∫
X f dP is H, implies

〈

x

∣
∣
∣
∣

∫

X

f dP

∫

X

gdPy

〉

=
〈

x

∣
∣
∣
∣

∫

X

f · g dPy

〉

.

Since x, y ∈ H are arbitrary, (3.27) indeed holds.
��

Remark 3.30

(a) Consider f : X → C measurable and P -essentially bounded. We may redefine
it so that it maps complex numbers z ∈ C with |z| > ||f ||(P )∞ to 0. We thus
obtain a measurable function f ′ ∈ Mb(X) such that

∫
X

f ′dP = ∫
X

f dP . With
regard to the integration of measurable functions in a PVM, therefore, bounded
functions carry the same information as P -essentially bounded functions.

(b) The first inequality in Proposition 3.29 (a) is actually an equality [Rud91,
Mor18],

∣
∣
∣
∣

∣
∣
∣
∣

∫

X

f (λ) dP (λ)

∣
∣
∣
∣

∣
∣
∣
∣ = ||f ||(P )∞ . (3.28)

See the solution of Exercise 3.35 for a proof.
(c) Consider a set X equipped with a σ -algebra �(X). The set

Mb(X) := {f : X → C | f is measurable and ||f ||∞ < +∞}

is a commutative C∗-algebra with unit. The norm making Mb(X) a complete
vector space is || · ||∞, the involution the standard complex conjugation of func-
tions f ∗(x) = f (x) for x ∈ X, the algebra multiplication is the commutative
pointwise product of maps (f · g)(x) = f (x)g(x), and the complex vector
space structure is the standard one: (af + bg)(x) := af (x) + bg(x) if x ∈ X,
a, b ∈ C, and f, g ∈ Mb(X). The algebra’s unit is the constant map 1(x) = 1 if
x ∈ X. The C∗-property ||f ∗ · f ||2 = ||f ||2 is nothing but |||f |2||∞ = ||f ||2∞.

Suppose now a PVM P : �(X) → L (H) is also given. The map

πP : Mb(X) � f 
→
∫

X

f dP ∈ B(H)

preserves the structure of ∗-algebra and the unit, and hence is a representation. It
is further continuous and norm-decreasing because of (3.21). This representa-
tion is neither injective nor isometric in general; however it enjoys a topological
property unrelated to the continuity in the norms of Mb(X) and B(H). The
feature descends immediately from (3.14), by using μ

(P)
xx (X) < +∞.
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Proposition 3.31 Retaining the above notation, ifMb(X) � fn → f pointwise
as n → +∞, and there is a constant K ≥ 0 such that |fn| ≤ K , then
πP (fn)x → πP (f )x for every x ∈ H.

(d) Consider a topological space X and take its Borel σ -algebra B(X) as
�(X). Then the observation made in (c) holds provided we replace
Mb(X) with the commutative unital C∗-algebra Cb(X) := {f : X →
C | f is continuous and ||f ||∞ < +∞}. Recall that if X is compact, then
Cb(X) = C(X) := {f : X → C | f is continuous}. An important result in the
theory of C∗-algebras (see [Mor18]) establishes that

Theorem 3.32 (Commutative Gelfand–Najmark Theorem) A commutative
unital C∗-algebra is isometrically ∗-isomorphic to the unital C∗-algebra C(X)

for some compact Hausdorff space X. �

3.2.4 PVM-Integration of Unbounded Functions

To conclude, we state a proposition concerning the most important and general
properties of the integral in a PVM of a measurable, possibly unbounded, function.

Proposition 3.33 Consider a PVM P : �(X) → H, measurable functions f, g :
X → C and let af , f ·g, and f + g, with a ∈ C, indicate the pointwise operations.
Then

(a) For a ∈ C

a

∫

X

f dP =
∫

X

af dP .

(b) D(
∫
X

f dP + ∫
X

gdP) = �f ∩ �g and

∫

X

f dP +
∫

X

gdP ⊂
∫

X

(f + g)dP ,

with equality if and only if �f+g = �f ∩ �g.
(c) D(

∫
X

f dP
∫
X

gdP) = �f ·g ∩ �g and

∫

X

f dP

∫

X

gdP ⊂
∫

X

(f · g)dP

with equality if and only if �f ·g ⊂ �g .
(d) D

(
(
∫
X f dP)∗

∫
X f dP

) = D
(∫

X f dP(
∫
X f dP)∗

) = �|f |2 and

(∫

X

f dP

)∗ ∫

X

f dP =
∫

X

|f |2dP =
∫

X

f dP

(∫

X

f dP

)∗
.
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(e) If U : H → H′ is a surjective linear (or anti-linear) isometry, �(X) � E 
→
P ′

E := UPEU−1 is a PVM on H′ and

U

(∫

X

f dP

)

U−1 =
∫

X

f dP ′ .

In particular, D
(∫

X f dP ′) = UD(
∫
X f dP) = U(�f ).

(f) If φ : X → X′ is measurable for the σ -algebras �(X),�′(X′) and f : X′ →
C is measurable, then

(i) �′(X′) � E′ 
→ P ′(E′) := P(φ−1(E′)) is a PVM on X′.
(ii) we have

∫

X′
f dP ′ =

∫

X

f ◦ φ dP .

Furthermore

�′
f = �f ◦φ ,

where �′
f is the domain of

∫
X′ f dP ′.

Proof Items (a), (e), and (f) are proved straightforwardly by checking the def-
initions. (d) is a trivial consequence of (c) and Theorem 3.24 (b)–(c). Part (b)
can be proved in �f ∩ �g with the same argument used for the first identity in
Proposition 3.29 (d). Besides, D(

∫
X

f dP + ∫
X

gdP) = �f ∩ �g is the very
definition of domain of a sum of operatorsA+B. By this relation the last statement
is obvious. Similarly, (c) can be proved as the second identity in Proposition 3.29 (d),
by working in D(

∫
X

f dP
∫
X

gdP) and using D(
∫
X

f dP
∫
X

gdP) = �f ·g ∩ �g.
The latter is established as follows. D(

∫
X

f dP
∫
X

gdP) is made of vectors x ∈ H
such that both x ∈ �g and

∫

X

|f |2dμ
(P)∫
X gdPx,

∫
X gdPx

< +∞ .

By the definition of μ
(P)
zz it is easy to prove that

∫

X

|f |2dμ
(P)∫
X gdPx,

∫
X gdPx

=
∫

X

|f |2|g|2dμ(P)
xx ,

hence D(
∫
X

f dP
∫
X

gdP) = �f ·g ∩ �g. With this the last statement is now
obvious. ��
Remark 3.34 It is moreover possible to prove [Mor18] that if P : �(X) → H is a
PVM and f, g : X → C are measurable functions, then

∫

X

f dP

∫

X

gdP =
∫

X

(f · g)dP ,
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and

∫

X

f dP +
∫

X

gdP =
∫

X

(f + g)dP ,

the bar denoting the closure.

Exercise 3.35 Prove formula (3.28) when f : X → C is measurable and P -
essentially bounded.

Solution We already know that || ∫
X

f dP || ≤ ||f ||(P )∞ . In particular if ||f ||(P )∞ = 0

the claim is obvious. Assume then ||f ||(P )∞ > 0. Exactly as in the proof of
Proposition 3.29 (a), for n > 0 there exists En ∈ �(X) such that PE �= 0 and
|f (λ)| ≥ ||f ||(P )∞ − 1/n > 0 if λ ∈ En and n is sufficiently large. Choosing
xn ∈ PEn(H) with ||xn|| = 1, we have

∣
∣
∣
∣

∣
∣
∣
∣

∫

X

f dP xn

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

X

|f |2dμ(P )
xnxn

≥
(
||f ||(P )∞ − 1/n

)2
∫

En

1dμ(P )
xnxn

=
(
||f ||(P )∞ − 1/n

)2
,

that is

||f ||(P )∞ ≤
∣
∣
∣
∣

∣
∣
∣
∣

∫

X

f dPxn

∣
∣
∣
∣

∣
∣
∣
∣+ 1/n .

Since we know that || ∫
X

f dPxn|| ≤ ||f ||(P )∞ (note ||xn|| = 1), this proves that there

is a sequence of unit vectors xn such that || ∫
X

f dPxn|| → ||f ||(P )∞ as n → +∞,
demonstrating the assertion.

Exercise 3.36 Suppose fn → f pointiwise as n → +∞, where fn : X → C are
measurable and |fn| ≤ |f |. Show that

∫

X

fndPx →
∫

X

f dPx if n → +∞, for every x ∈ �f .

Solution Evidently �fn ⊂ �f , so x ∈ �fn if x ∈ �f . Next, using Proposi-
tion 3.33 (b) and (3.14), dominated convergence implies directly || ∫

X
fndPx −

∫
X

f dPx||2 = ∫
X

|f − fn|2dμ
(P)
xx → 0 as n → +∞. �

3.3 Spectral Decomposition of Selfadjoint Operators

We are ready to state the fundamental result in the spectral theory of selfadjoint
operators, which extends expansion (1.4) to an integral formula befitting infinite
dimensions. The eigenvalue set is replaced by the full spectrum of the selfadjoint
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operator. After this we shall focus on some relevant consequences in quantum
physics.

Notation 3.37 From now onB(T ) will denote the Borel σ -algebra of the topolog-
ical space T . �
Definition 3.38 Given a PVM P : B(X) → L (H) on the Borel σ -algebra of
a topological space X, the support supp(P ) of P is the complement in X of the
union of all open sets O ⊂ X with PO = 0. �
Remark 3.39 If X is second countable, P is necessarily concentrated on supp(P ),
i.e.,

PE = PE∩supp(P ) if E ⊂ X.

In fact, D := X \ supp(P ) is the union of a number of open sets O with PO = 0.
As the topology is second countable, we can extract a countable subcovering. By
subadditivity of μ

(P)
xx we have μ

(P)
xx (D) = 0 for every x ∈ H. This can be rephrased

as ||PDx|| = 0 for every x ∈ H. Hence PD = 0. If E ∈ B(X), we therefore have
PE = PE∩supp(P ) + PE∩D = PE∩supp(P ). �

3.3.1 Spectral Theorem for Selfadjoint, Possibly Unbounded,
Operators

Prior to stating the theorem, note that (3.13) implies
∫

f (λ)dP (λ) is selfadjoint
when f is real. The idea of the theorem is that every selfadjoint operator looks like
that for a certain map f and a PVM on R associated with the operator itself.

Theorem 3.40 (Spectral Theorem for Selfadjoint Operators) Let A be a selfad-
joint operator on the complex Hilbert space H.

(a) There exists a unique PVM P (A) : B(R) → L (H), called the spectral measure
of A, such that

A =
∫

R

λdP (A)(λ) .

In particular D(A) = �ı , where ı : R � λ 
→ λ.
(b) We have

supp(P (A)) = σ(A)

so that P (A) is concentrated on σ(A) (as the standard R is second countable):

P (A)(E) = P (A)(E ∩ σ(A)) , ∀E ∈ B(R) . (3.29)
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(c) λ ∈ σp(A) if and only if P (A)({λ}) �= 0. This happens in particular when λ

is an isolated point of σ(A). At last, P
(A)
{λ} is the orthogonal projector onto the

λ-eigenspace.
(d) λ ∈ σc(A) if and only if P (A)({λ}) = 0, but P (A)(E) �= 0 if E � λ is an open

set in R.

Proof

(a) The existence part of the proof is involved and we postpone it to Sect. 3.6:
Theorem 3.84 for the bounded case and Theorem 3.86 for the unbounded case
(see also [Rud91, Mor18, Schm12]). Let us pass to the issue of uniqueness.
Suppose there are two PVMs P1 and P2 onB(R) satisfying

A =
∫

R

λdPk(λ) k = 1, 2 .

Consider the bounded normal operators

Tk :=
∫

R

1

r − i
dPk(r) .

As we shall see below, either Tk coincides with the resolvent operator Ri(A)

of A for λ = i, so these operators are actually identical and we shall write
simply T .

Using Proposition 3.33 (f) we define new PVMs on the image �′ ⊂ C of
the continuous, injective map φ : R � r 
→ 1

r−i
∈ � (which turns out to be

a homeomorphism on the image equipped with the topology induced by C).
We also assume �(�′) := B(�) so that φ : R → �′ is measurable. So we
set

Q′
k(E) := Pk(φ

−1(E)) , E ∈ B(�′) , k = 1, 2 .

With this choices,

T =
∫

�′
zdQ′

k(z, z) , k = 1, 2 .

In Cartesian coordinates,

� =
{

x + iy ∈ C \ {0}
∣
∣
∣
∣
∣
x2 +

(

y − 1

2

)2

= 1

4

}

is a circle—centred at i/2 with radius 1/2—without a point (the origin). If
oriented in anti-clockwise manner, the ‘initial’ point 0− formally corresponds
to r = −∞, and the ‘end’ point 0+ is reached when r = +∞.
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It is certainly more practical to consider its compactification � := �′ =
� ∪ {0}, again assuming �(�) = B(�), and extend the PVMs in a trivial way

Qk(F) := Q′
k(F \ {0}) , F ∈ B(�) , k = 1, 2 .

The reader can easily prove that this extension does define well-behaved PVMs
on B(�). In this way the added point satisfies Qk({0}) = 0, even if it belongs
to the supports of the measures (defined as we did for P (A)). For this reason we
also have

T =
∫

�

zdQk(z, z) , k = 1, 2 .

It is also convenient to have at hand the adjoint of T ,

T ∗ =
∫

�

zdQk(z, z) , k = 1, 2 .

These operators are bounded and therefore we can apply Proposition 3.29 (d)
to obtain that, for p ∈ C[z, z],

p(T , T ∗) =
∫

�

p(z, z)dQk(z, z) ,

where the polynomial on the left is defined thinking of the product of operators
as their composition. We also have, for x, y ∈ H,

∫

�

p(z, z)dμ(Q1)
xy = 〈x|p(T , T ∗)y〉 =

∫

�

p(z, z)dμ(Q2)
xy . (3.30)

Since � is Hausdorff and compact, and C[z, z] (i) contains the constant
polynomial 1, (ii) is closed under complex conjugation and (iii) separates points
inC and hence in � (i.e. if γ �= γ ′ ∈ � there exists a polynomialp with p(γ ) �=
p(γ ′)), the Stone–Weierstrass theorem implies that these polynomials are
||·||∞-dense in the Banach space C(�) of continuous complex-valued functions
on �. Using a continuity argument coming from (3.21) and approximating
continuous functions on � in terms of the above polynomials, Eq. (3.30) implies

∫

�

f (z, z)dμ(Q1)
xx =

∫

�

f (z, z)dμ(Q2)
xx for every f ∈ C(�).

Since in the locally compact Hausdorff space � an open set is a countable union
of compact sets with finite μ

(Q2)
xx -measure, these Borel measures are regular

[Rud86]. Hence, the uniqueness in Riesz’s theorem for positive Borel measures
[Rud86] implies that μ(Q1)

xx (E) = μ
(Q2)
xx (E) for every E ∈ B(�). In particular,
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for every E ∈ B(�) and every x ∈ H,

〈x|(Q1(E) − Q2(E))x〉 =
∫

�

χEdμ(Q1)
xx −

∫

�

χEdμ(Q2)
xx = 0 ,

proving that Q1(E) = Q2(E) for every E ∈ B(�). Let us return to the initial
PVMs: noting that φ : R → �′ is a homeomorphism, so φ−1 : �′ → R is
measurable and φ(F) ∈ B(�′) if F ∈ B(R), we have

P1(F ) = Q′
1(φ(F )) = Q1(φ(F )) = Q2(φ(F )) = Q′

2(φ(F )) = P2(F ) , F ∈ B(R) .

We have established that P (A) is uniquely determined by A.
(b) If λ �∈ supp(P (A)), the map C � r 
→ 1

r−λ
= g(r) is P -essentially bounded, so

∫
R

1
r−λ

dP (r) ∈ B(H) and �g = H. According to Proposition 3.33 (c),

(A − λI)

∫

R

1

r − λ
dP(r) =

∫

R

r − λ

r − λ
dP (A)(r) =

∫

R

1dP (A)(r) = I

and
∫

R

1

r − λ
dP (r)(A −λI)x =

∫

R

r − λ

r − λ
dP (A)(r)x =

∫

R

1dP (A)x = x if x ∈ D(A) .

We conclude that
∫
R

1
r−λ

dP (r) = Rλ(A) and λ �∈ σ(A). Suppose conversely
that λ �∈ σ(A), and so Rλ(A) := (A − λI)−1 ∈ B(H) exists. Then for
x ∈ D(A) we have x = Rλ(A)(A − λI)x and ||x|| ≤ ||Rλ(A)|| ||(A − λ)x||,
so ||(A − λ)x||2 ≥ ||x||2/||Rλ(A)||2. According to (3.14), taking ||x|| = 1,

∫

R

|r − λ|2dμ(P (A))
xx (r) ≥ 1

||Rλ(A)||2 > 0 . (3.31)

If λ ∈ supp(P (A)), we would have P
(A)
(λ−1/n,λ+1/n) �= 0 and consequently we

would be able to pick out a sequence xn ∈ P
(A)
(λ−1/n,λ+1/n)(H) with ||xn|| = 1,

finding
∫
R

|r − λ|2dμ
(P (A))
xx (r) ≤ 4||xn||/n2 = 4/n2 → 0 as n → +∞. As

(3.31) prevents this from happening, λ �∈ supp(P (A)). This concludes the proof
of (b).

(c) If P
(A)
{λ} �= 0, let 0 �= x ∈ P

(A)
{λ} (H). We have, from (3.22) and Proposition 3.33

(c),

Ax = AP
(A)
{λ} x =

∫

R

rdP (A)(r)

∫

R

χ{λ}(r)dP (r)x =
∫

R

rχ{λ}(r)dP (A)x

=
∫

R

λχ{λ}(r)dP (A)x = λP
(A)
{λ} x = λx .
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Hence λ ∈ σp(A). If conversely λ ∈ σp(A), then Ax = λx for some
eigenvector x ∈ D(A) with ||x|| = 1, so that (A − iI )x = (1 − i)x and
(A − iI )−1x = (λ − i)−1x. Similarly, (A + iI )−1x = (λ + i)−1x. Exploiting
the same argument we used in proving the uniqueness of P (A), and writing Q

in place of Q1 = Q2, the relations found read

T x =
∫

�

zdQ(z, z)x = 1

λ − i
x and T ∗x =

∫

�

zdQ(z, z)x = 1

λ + i
x .

By considering polynomial compositions of the operators T and T ∗ these
relations can be extended: for instance

∫

�

(az + bzz)dQ(z, z)x = aT ∗ + bT T x = a
1

λ − i
x + b

1

λ + i
T x

=
[

a
1

λ − i
+ b

(
1

λ + i

)2
]

x ,

and so on. In complete generality, defining t := 1
λ−i

, we have

∫

�

p(z, z)dQ(z, z)x = p(T , T ∗)x = p(t, t)x

for every polynomial p in the variables z and z. As before, we can extend
to continuous functions f : � → C via the Stone–Weierstrass theorem and
uniformly approximating a continuous functions f = f (z, z) on the compact
set � by means of a sequence of polynomials pn = pn(z, z) restricted to �. As
||f − pn �� ||∞ → 0 as n → +∞, (3.21) implies in particular

pn(t, t)x =
∫

�

pn(z, z)dQ(z, z)x →
∫

�

f (z, z)dQ(z, z)x if n → +∞ .

Since pn(t, t) → f (t, t), we eventually obtain

∫

�

f (z, z)dQ(z, z)x = f (t, t)x . (3.32)

Now it is not hard to construct a sequence of continuous maps on � such that
fn → χ{t} pointwise on � as n → +∞ and |fn(z, z)| < K < +∞ for some
K > 0 and every (z, z) ∈ �. (c) and (b) in Proposition 3.29 imply, from (3.32),

Q{t}x =
∫

�

χ{t}(z, z)dQ(z, z)x = lim
n→+∞

∫

�

fn(z, z)dQ(z, z)x

= lim
n→+∞ fn(t, t)x = χ{t}(t, t)x = x .
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Since t ∈ �′ by construction, Q{t} = Q′{t} = P
(A)

{φ−1(t)} = P
(A)
{λ} . We have

discovered that P
(A)
{λ} x = x. Since x �= 0, we also have P

(A)
{λ} �= 0, which

concludes the proof.
It is clear that if λ ∈ σ(A) = supp(P (A)) is isolated, so that there is

an open set O � λ such that O \ {λ} is contained in R \ supp(P (A)), then
P

(A)
{λ} �= 0. For otherwise by additivity we would have P

(A)
O = 0 for some open

set O � λ, forbidding λ ∈ supp(P (A)). Let us prove the last statement in (c):
P

(A)
{λ} (H) = Hλ, where Hλ is the eigenspace of λ ∈ σp(A). We established that

if P
(A)
{λ} �= 0 (or equivalently, λ ∈ σp(A)), x ∈ P

(A)
{λ} (H) satisfies Ax = λx.

ThereforeP
(A)
{λ} (H) ⊂ Hλ. We have also proved that x ∈ Hλ implies P

(A)
{λ} x = x,

that is Hλ ⊂ P
(A)
{λ} (H). In summary, P (A)

{λ} (H) = Hλ.

(d) Assuming λ ∈ σc(A), due to (c), necessarily P
(A)
{λ} = 0, because otherwise λ ∈

σp(A), which is disjoint from σc(A). On the other hand, since λ ∈ supp(P (A)),

for every open set O containing λ, P
(A)
O �= 0. Suppose P

(A)
O �= 0 for every

open neighbourhoodO of λ. This fact forces λ ∈ supp(P (A)) = σ(A), and the
further requirement P (A)

{λ} = 0 yields λ ∈ σc(A) due to (c).
��

Remark 3.41

(a) If P is a PVM on R and f : R → C is measurable, we can always write

∫

R

f (λ)dP (λ) = f (A),

for the selfadjoint operator A obtained as

A =
∫

R

ı(λ)dP (λ) , (3.33)

due to (3.13), where ı : R � λ → λ. By virtue of the uniqueness statement
in the spectral theorem P (A) = P , which leads us to the conclusion that on a
Hilbert space H, projector-valued measures onB(R) correspond one-to-one to
selfadjoint operators on H.

(b) Theorem 3.40 is a particular case of a more general theorem (see [Rud91,
Mor18] and especially [Schm12]) that is valid when A is a (densely-defined
closed) normal operator. The statement is identical, with the proviso of replacing
R with C. A special case is that in which A is unitary. The spectral theorem for
normal operators onB(H) will show up in Sect. 3.6 disguised as Theorem 3.85.

�
Notation 3.42 Suppose f : σ(A) → C is measurable for the σ -algebra obtained
by restricting the elements of B(R) to σ(A), which coincides with B(σ (A)) when
σ(A) has the induced topology. In view of Theorem 3.40, part (b) in particular, we
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will indifferently use the notations

f (A) :=
∫

σ(A)

f (λ)dP (A)(λ) :=
∫

R

g(λ)dP (A)(λ) =: g(A) . (3.34)

where g : R → C is the extension of f to zero outside σ(A), or any other
measurable function equal to f on supp(P (A)) = σ(A). Obviously g(A) = g′(A)

if g, g′ : R → C coincide on supp(P (A)) = σ(A). �
Example 3.43

(1) Consider the m-axis position operator Xm on L2(Rn, dnx) introduced in
Example 2.59 (1). We know that σ(Xm) = σc(Xm) = R from Example 3.14.
We are interested in the PVM P (Xm) of Xm defined on R = σ(Xm). Let us fix
m = 1, for the other cases are analogous. The PVM associated to X1 is

(P
(X1)
E ψ)(x) = χE×Rn−1(x)ψ(x) ψ ∈ L2(Rn, dnx) , (3.35)

where E ∈ B(R) is a subset of the first factor of R × Rn−1 = Rn. Indeed,
indicating by Pψ the right-hand side of (3.35), one easily verifies that �x1 =
D(X1). Furthermore, approximating the function Rn � x 
→ x1 ∈ R with
simple maps,1

∫

Rn

x1|ψ(x)|2dnx =
∫

R

x1μ
(P)
ψ,ψ (x1) =

∫

R

λμ
(P)
ψ,ψ (λ) ∀ψ ∈ D(X1) = �x1

where μ
(P)
ψ,ψ (E) = 〈ψ|PEψ〉 = ∫

E×Rn−1 |ψ(x)|2dnx. Since the left-hand side
is nothing but 〈ψ|X1ψ〉, Corollary 3.27 (b) confirms (3.35) holds.

(2) Take the m-axis momentum operator Pm on L2(Rn, dnx), introduced in
Example 2.59(2). Taking (2.23) into account, where F̂ (and thus F̂ ∗) is unitary,
by Proposition 3.60 (i) the PVM of Pm is

Q
(Pm)
E := F̂ ∗P (Km)

E F̂ .

The operator Km is Xm represented in L2(Rn, dnk), see Example 2.59 (1).
(3) By a similar argument the PVM of the operator H = H0 relative to the

harmonic oscillator of Example (2.59) (4) is, for E ∈ B(R),

PE =
∑

λ∈E∩h̄ω(N+1/2)

〈ψλ|·〉ψλ

1More generally:
∫
R

∫
Rn−1 g(x1)|ψ(x)|2dxdn−1x = ∫

R
g(x1)dμ

(P )
ψ,ψ (x1) is patently valid for

simple functions. It extends to arbitrary measurable functions, provided both sides make sense,
in view of, for instance, Lebesgue’s dominated convergence theorem for positive measures.
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where

H =
∑

λ∈h̄ω(N+1/2)

λ〈ψλ|·〉ψλ =
∑

n∈N
h̄ω(n + 1/2)〈ψn|·〉ψn . (3.36)

has domain

D(H) =
{

ψ ∈ L2(R, dx)

∣
∣
∣
∣
∣

+∞∑

n=0

(n + 1/2)2|〈ψn|ψ〉|2 < +∞
}

.

Indeed, since {ψn}n∈N is a Hilbert basis of L2(R, dx), the right-hand side of
(3.36) is selfadjoint as integral of the (real) function ı : R � λ 
→ λ ∈ R of
the said PVM (notice that D(H) = �ı). Therefore the right-hand side of (3.36)
is a selfadjoint extension of the H0 in Example (2.59) (4), which is essentially
selfadjoint, so H = H0. We will show that the spectrum of the Hamiltonian H

of the harmonic oscillator is

σ(H) = σp(H) = {h̄ω(n + 1/2) | n = 0, 1, . . .} .

Evidently σ(H) contains the closed set of eigenvalues h̄ω(n + 1/2). We claim
it cannot contain any point λ other than these numbers. Indeed, suppose that
there is a further λ in σp(H), so that P (H)

{λ} �= 0. If x ∈ P
(H)
{λ} (H), we would have

〈x|ψn〉 = 〈P (H)
{λ} x|P (H)

{h̄ω(n+1/2)}ψn〉 = 〈x|P (H)
{λ}∩{h̄ω(n+1/2)}ψn〉 = 〈x|P (H)

∅
ψn〉 =

0. Therefore x must vanish because it is orthogonal to a Hilbert basis, and
P

(H)
{λ} = 0 contrarily to the hypothesis. There only remains the possibility that

λ ∈ σc(H). Since {h̄ω(n + 1/2) | n = 0, 1, . . .} is closed and λ does not
belong to that set, it cannot be an accumulation point. We can therefore find
δ > 0 such that (λ − δ, λ + δ) ∩ {h̄ω(n + 1/2) | n = 0, 1, . . .} = ∅. With the
same argument as before we can prove that x ∈ P

(H)
(λ−δ,λ+δ)(H) forces x = 0,

and thus P
(H)
(λ−δ,λ+δ) = 0. This violates Theorem 3.40 (d), so we conclude that

σ(H) = σp(H) = {h̄ω(n + 1/2) | n = 0, 1, . . .}.
(4) An argument similar to that of (2) and (3) applies to the symmetric momentum

operator in a box P ′, introduced in Example (2.59) (5). The selfadjoint
extensions Pα , α ∈ [0, 2π) of P ′ are

Pα =
∑

n∈Z
(α + 2nπ)〈uα,n| · 〉 uα,n ,

so in particular

σ(Pα) = σp(Pα) = {α + 2πn | n ∈ Z} .
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Replacing α with α + 2kπ , k ∈ Z, leaves Pα invariant since it merely relabels
the same eigenvectors coherently with their eigenvalues.

(5) In general it is false that if a selfadjoint operator A admits a Hilbert basis
of eigenvectors then its spectrum only contains eigenvalues. Since σ(A) is
closed, but σp(A) is not always closed, points of σp(A) might accumulate in
the continuous spectrum.

Using the Hilbert basis {ψn}n∈N of the previous example, consider the
selfadjoint bounded operator

A =
∑

λ∈Q∩[0,1]
λ〈ψnλ |·〉ψnλ : L2(R, dx) → L2(R, dx)

where Q ∩ [0, 1] � q 
→ nq ∈ N a bijection. We may define A equivalently as

A =
∫

R

λdP(λ)

where, for every E ∈ B(R),

PE =
∑

λ∈E∩Q∩[0,1]
λ〈ψnλ |·〉ψnλ .

The operator A is evidently bounded and it is easy to prove that ||A|| = 1. The
domain of A is therefore the whole L2(R, dx) = �ı . By the same argument
of the previous example, Q ∩ [0, 1] = σp(A) because {ψn}n∈N is a Hilbert
basis of L2(R, dx). As σp(A) ⊂ σ(A) = σ(A), we have Q ∩ [0, 1] =
[0, 1] = σp(A) ⊂ σ(A). It is easy to prove from (3.37) that σ(A) ⊂ [0, 1]
because ||A|| = 1. We conclude that σ(A) = [0, 1] and [0, 1] \ Q must lie in
σc(A).

(6) More complicated situations exist. Consider an operator of Schrödinger
form

H := 1

2m

n∑

k=1

P 2
k + U(x) = − 1

2m
� + U(x)

where � is the Laplacian on Rn, Pk is the momentum operator on
L2(Rk, dkx) associated to the k-th coordinate, m > 0 is a constant and U

is a real-valued function on R acting as multiplication operator. Suppose
U = U1 + U2 where U1 ∈ L2(Rk, dkx) and U2 ∈ L∞(Rk, dkx),
k = 1, 2, 3, are real-valued and D(H) = C∞(R). Then H turns out to
be (trivially) symmetric but also essentially selfadjoint [ReSi80, Mor18]
as a consequence of a well-known result (the Kato–Rellich theorem). The
unique selfadjoint extension H = (H ∗)∗ of H physically represents the
Hamiltonian operator of a quantum particle living in Rn with potential
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energy described by U . (This in particular applies to the Hamiltonian of an
electron with attractive Coulomb potential: this is proportional to −1/||x||
in R3 and decomposes as a sum of functions exactly as above.) In general
σ(H) has both point and continuous parts. If Pλ denotes the orthogonal
projector onto the λ-eigenspace of H , then

∫
σp(H)

λdP (H)(λ) takes this
form

∫

σp(H)

λdP (H)(λ) =
∑

λ∈σp(H)

λP
(H)
λ .

On the contrary,
∫
σc(H)

λdP (H)(λ) has a much more complicated expres-

sion. Under a unitary transformation,
∫
σc(H) λdP (H)(λ) decomposes spec-

trally in analogy to the position operator X, which acts by multiplication
on L2(R, dx); the difference is that now several copies of L2-spaces may

appear. If Hp := P
(H)

σp(H)
(H) is the closed subspace spanned by the eigenspaces

of H and Hc := P
(H)

σc(H)
(H), we have an orthogonal decomposition H =

Hc ⊕ Hp. The operator Hp := ∫
σp(H) λdP (H)(λ) leaves invariant the sub-

space

D(Hp) :=

⎧
⎪⎨

⎪⎩
ψ ∈ Hp

∣
∣
∣
∣
∣
∣
∣

∑

E∈σp(H)

E2||P (H)
E ψ||2 < +∞

⎫
⎪⎬

⎪⎭
,

whereas Hc := ∫
σc(H)

λdP (H)(λ) fixes

D(Hc) :=
{

ψ ∈ Hp

∣
∣
∣
∣

∫

σc(H)

E2dμP(H)

ψ,ψ (E) < +∞
}

.

In this sense, H = Hc ⊕ Hp. A possible situation (not the only one)
is that Hc is isomorphic to a direct sum ⊕N

n=1L
2(σc(H), dE), and Hc :

(ψ1, . . . , ψN) 
→ (ı · ψ1, . . . , ı · ψN) acts as a multiple of the identity in
each slot: (ı · ψk)(E) := Eψk(E) . �

Definition 3.44 Selfadjoint operators admitting a Hilbert basis of eigenvectors are
said to have a pure point spectrum. �
Remark 3.45 Having a pure point spectrum does not automatically mean that
σp(A) = σ(A), as illustrated in example (4) above. However it implies that σc(A)

cannot have interior points (this is forbidden by Theorem 3.40 (d)). �
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3.3.2 Some Technically Relevant Consequences of the Spectral
Theorem

The spectral theorem has repercussions pointing in several directions. We shall
mention just a few which have a relevant impact on quantum theory. The first result
concerns the positivity of selfadjoint operators.

Proposition 3.46 If A is a selfadjoint operator on the Hilbert space H, A is
positive, that is 〈x|Ax〉 ≥ 0 for every x ∈ D(A) (also written A ≥ 0) if and
only if σ(A) ⊂ [0,+∞).

Proof Suppose σ(A) ⊂ [0,+∞). If x ∈ D(A) we have 〈x|Ax〉 = ∫
σ(A) λdμx,x ≥

0 by (3.12) (where μ stands for μ(P (A))), since μx,x is a positive measure ad σ(A) ∈
[0,+∞).

Conversely, we shall prove that A is not positive if σ(A) contains a λ0 < 0.
Using parts (c) and (d) of Theorem 3.40, one finds an interval [a, b] ⊂ σ(A) with
[a, b] ⊂ (−∞, 0) and P

(A)
[a,b] �= 0 (possibly a = b = λ0). If x ∈ P

(A)
[a,b](H) with

x �= 0, then μxx(E) = 〈x|PEx〉 = 〈x|P ∗[a,b]PExP[a,b]〉 = 〈x|P[a,b]PEP[a,b]x〉 =
〈x|P[a,b]∩Ex〉 = 0 if [a, b] ∩ E = ∅. Therefore, 〈x|Ax〉 = ∫

σ(A) λdμx,x =
∫
[a,b] λdμx,x ≤ ∫

[a,b] bμx,x < b||x||2 < 0. ��
Another remarkable result, about bounds on the extended spectrum, holds for
normal operators as well, and is independent of the spectral theorem (it can be used
to prove the spectral theorem, actually). We shall follow a much more elementary
route in Proposition 3.80.

Proposition 3.47 A selfadjoint operator is bounded (and its domain is the entire
H) if and only if σ(A) is bounded. In this case

||A|| = sup{|λ| | λ ∈ σ(A)} .

Proof From Proposition 3.10 we have that if A ∈ B(H) then ||A|| ≥ sup{|λ| | λ ∈
σ(A)}. If, conversely, σ(A) is bounded and hence compact (it is closed), by
restricting the integration domain to X = σ(A) the continuous map ı : σ(A) �
λ → λ is bounded. Then (3.14) implies that A = ∫

σ(A)
ıdP (A) is bounded and the

following inequality holds

||Ax||2 =
∫

σ(A)

|λ|2dμ(P (A))

xx (λ) ≤ (sup{|λ| | λ ∈ σ(A)})2
∫

σ(A)

1dμ(P (A))

xx (λ)

= (sup{|λ| | λ ∈ σ(A)})2 ||x||2 .

Hence ||A|| ≤ sup{|λ| | λ ∈ σ(A)}, so

||A|| = sup{|λ| | λ ∈ σ(A)} . (3.37)
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In this case, furthermore, D(A) = �ı = H. ��
Remark 3.48 Proposition 3.47 explains the reason why observables A in QM are
very often represented by unbounded selfadjoint operators. The spectrum σ(A) is
the set of values of the observableA. When, as it frequently happens, an observable
is allowed to take arbitrarily large values (think of X or P ), it cannot be represented
by a bounded selfadjoint operator simply because its spectrum is not bounded. �
Concerning the covariance of a selfadjoint operator and its PVM under unitary
transformations (or surjective linear isometries), another simple yet technically
important result is the following.

Proposition 3.49 Let A : D(A) → H be a selfadjoint operator on the Hilbert
space H and U : H → H′ an isometric, surjective linear (or anti-linear) map.
Then UAU−1, with domain D(UAU−1) = U(D(A)), is selfadjoint as well
(Proposition 2.41 and the subsequent remark) and

P
(UAU−1)
E = UP

(A)
E U−1 for every E ∈ B(R).

Proof If x ∈ D(A),

∫

R

ı dμ(P (A))
xx = 〈x|Ax〉 = 〈Ux|UAU−1Ux〉 =

∫

R

ı dμ
(P (UAU−1))
Ux,Ux =

∫

R

ı dμ(U−1P (UAU−1 )U)
x,x .

In the last passage we used

μ
(P (UAU−1 ))
Ux,Ux (E)=〈Ux|P (UAU−1)

E Ux〉 = 〈x|U−1P
(UAU−1)
E Ux〉 = μ

(U−1P (UAU−1 )U)
x,x (E) .

Applying Corollary 3.27 (b), we conclude that

A =
∫

R

ı d U−1P (UAU−1)U .

The uniqueness of the PVM of A implies

P
(A)
E = U−1P

(UAU−1)
E U , if E ∈ B(R),

which is the claim we wanted to prove. ��
The notion of function of a selfadjoint operator (3.34) is just a generalization of
the analogous (1.7) that was introduced for the finite-dimensional case, and may
be used in QM applications. In finite dimensions the eigenvalue set of f (A) is the
image under f of the eigenvalue set of A: σ(f (A)) = f (σ(A)). But what about the
infinite-dimensional case?

If f : R → C is Borel measurable (we could equivalently use an f : σ(A) → C

Borel measurable forB(σ (A))) andA : D(A) → H is selfadjoint, it is quite evident
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that

f (σp(A)) ⊂ σp(f (A)) . (3.38)

In fact, if λ ∈ σp(A) there is x = P
(A)
{λ} x �= 0 by the spectral theorem. Therefore

∫

R

f dP (A)x =
∫

R

f dP (A)P
(A)
{λ} x =

∫

R

f dP (A)

∫

R

χ{λ}dP (A)x =
∫

R

f · χ{λ}dP (A)x

=
∫

R

f (λ)χ{λ}dP (A)x = f (λ)

∫

R

χ{λ}dP (A)x = f (λ)x ,

hence f (λ) ∈ σp(f (A)). In the infinite-dimensional case there exist simple
counterexamples disproving the converse inclusion f (σp(A)) ⊃ σp(f (A)). The

simples instance is χE(A) = P
(A)
E . This operator is an orthogonal projector and as

such it only has point spectrum, given by a non-empty subset of {0, 1}, even in case
σ(A) = σc(A) so χE(σp(A)) = ∅.

Pressing on, let us introduce a new notion to the purpose.

Definition 3.50 Let P : B(X) → L (H) be a PVM on a topological space X. If
f : X → C is measurable, we call P -essential rank the set

essrank(f ) := {z ∈ C | Pf −1(O) �= 0 if O is open and O � z} .

�
Since f is Borel measurable and O (open) belongs to B(C), f −1(O) ∈ B(X)

and therefore the essential rank is well defined. Here is an almost immediate
consequence of the definition.

Proposition 3.51 Let P : B(X) → L (H) be a PVM on a topological space X. If
f : X → C is measurable, then

σ

(∫

X

f dP

)

= essrank(f ) .

Proof If z �∈ essrank(f ) there exists an open set B � z in C with Pf −1(B) = 0.
If Br(z) is an open ball of radius r centred at z and contained in B, by additivity
Pf −1(Br (z))

= 0 (and Pf −1(B\Br(z))
= 0). The map X � λ 
→ g(λ) := 1

f (λ)−z
is

therefore P -essentially bounded with ||g||(P )∞ ≤ 1/r , since P{λ∈X | |g(λ)|>1/r} =
0. Hence

∫
X

1
f (λ)−z

dP (λ) ∈ B(H) from Proposition 3.29 (a). In addition, by
Propositions 3.33 (c) and 3.29 (a)

∫

X

1

f (λ) − z
dP (λ)

∫

X
(f (λ)−z)dP (λ)x =

∫

X

f (λ) − z

f (λ) − z
dP (λ)x = x if x ∈ D(

∫

x
f dP )
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so that z ∈ ρ
(∫

X
f dP

)
, i.e. z �∈ σ

(∫
X

f dP
)
.

If z ∈ essrank(f ), then Pf −1(O) �= 0 for every open set O containing z. This
holds for every ball B1/n(z) of radius 1/n, n = 1, 2, . . ., centred at z. (In particular
f −1(B1/2(z)) �= ∅, otherwise Pf −1(B1/2(z))

= 0.) We claim that if R := (
∫
X
(f −

zI)dP )−1 exists it cannot be bounded, and hence z ∈ σc

(∫
X

f dP
)
. Indeed, ||x|| =

||R ∫
X
(f − zI)dPx|| would imply, taking ||x|| = 1,

||R||2 ≥ 1

|| ∫
X
(f − zI)dPx||2 = 1

∫
X

|f − zI |2dμ
(P)
xx

≥ 1

supf (λ)∈B1/n(z)
|f (λ) − z|2 ∫X 1dμ

(P)
xx

= n2 ,

which is not bounded as n = 1, 2, . . .. If R := (
∫
X
(f − zI)dP )−1 is not defined,

then z ∈ σp

(∫
X

f dP
)
. Since the residual spectrum is empty, as

∫
X
(f − zI)dP

is normal, we have established that z ∈ essrank(f ) implies z ∈ σ
(∫

X
f dP

)
,

concluding the proof. ��
Remark 3.52 A subtler argument [Rud91, Mor18] proves that z ∈ essrank(f )

belongs to σp

(∫
X f dP

)
if and only if Pf −1({z}) �= 0. �

The relevant corollary of Proposition 3.51 and the spectral theorem is the following
one.

Corollary 3.53 Let A be a selfadjoint operator on the Hilbert space H and f :
σ(A) → C a continuous map. Then

σ(f (A)) = f (σ(A)) . (3.39)

The closure above is unnecessary if A is bounded.

Proof In view of Proposition 3.51 and Theorem 3.40, we just need to prove
essrank(f ) = f (supp(P (A))). If z = f (r) for some r ∈ supp(P (A)) and
O � z is open, then f −1(O) is open since f is continuous and it contains r .
Hence Pf −1(O) �= 0 by the very definition of support. This proves essrank(f ) ⊂
f (supp(P (A))). As essrank(f ) is closed by definition (its complement is open),
we have essrank(f ) = essrank(f ) ⊂ f (supp(P (A))). To conclude, suppose
z ∈ f (supp(P (A))). If O � z is open, it must have non-empty intersection with
f (supp(P (A)). Hence f −1(O) is open, non-empty and f −1(O)∩ supp(P (A)) �= ∅.
From the definition of support, P

(A)

f −1(O)
�= 0. By definition z ∈ essrank(f ). We

established that essrank(f ) ⊃ f (supp(P (A))) and hence concluded the proof.
Regarding the last statement, if A is bounded σ(A) is compact by Proposition 3.11
(b). Since f is continuous, f (σ(A)) is compact, and closed because C is Hausdorff,
so that f (σ(A)) = f (σ(A)). ��
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Remark 3.54 It is fundamental to stress that in QM (3.39) permits us to adopt the
standard operational approach to interpret the observable f (A): it is the observable
whose set of possible values is (the closure of) the set of real numbers f (a) where
a is a value of A. �
A final result which will be useful later in many contexts is the following
proposition.

Proposition 3.55 If H is a Hilbert space and B ∈ B(H), then B is a linear
combination of unitary operators.

Proof As we know, B can be written as complex linear combination of selfadjoint
operators B = 1

2 (B + B∗) + i 1
2i (B − B∗), so it is sufficient to prove the claim

for selfadjoint operators. Consider A∗ = A ∈ B(H). If ||A|| = 0 the thesis is
trivial, so we assume ||A|| > 0. Then A′ := 1

||A||A satisfies ||A′|| ≤ 1, so σ(A′) ⊂
[−1, 1] by Proposition 3.47. Moreover, A′± := A′ ± i

√
I − A′2 ∈ B(H) are well

defined via spectral theory (integrating the corresponding functions on σ(A′)). It is
easy to prove that A′± are unitary, for Theorem 3.24 and Proposition 3.29 guarantee
A′±

∗
A′± = A′±A′±

∗ = I . By construction, A′ = 1
2A+ + 1

2A−. ��

3.3.3 Joint Spectral Measures

The last spectral tool we need to introduce are joint spectral measures (see, e.g.,
[ReSi80, Mor18]). Everything is stated in the following theorem, whose proof is
long and technical in most books. In Sect. 3.6 we shall present an original argument,
which by character befits our presentation of the spectral machinery.

Theorem 3.56 (Joint Spectral Measure) Let A := {A1, A2, . . . , An} be a set of
selfadjoint operators on the Hilbert space H. Suppose that their spectral measures
commute:

P
(Ak)
Ek

P
(Ah)
Eh

= P
(Ah)
Eh

P
(Ak)
Ek

∀k, h ∈ {1, . . . , n} ,∀Ek,Eh ∈ B(R) .

Then there exists a unique PV M P(A) on Rn such that

P
(A)
E1×···×En

= P
(A1)
E1

· · · P (An)
En

, ∀E1, . . . , En ∈ B(R) .

For every f : R → C measurable,

∫

Rn

f (xk)dP (A)(x) = f (Ak) , k = 1, . . . , n (3.40)

where x = (x1, . . . , xk, . . . , xn) and f (Ak) := ∫
R

f (λ)dP (Ak).
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Finally, B ∈ B(H) commutes with P (A) if and only if it commutes with all P (Ak),
k = 1, 2, . . . , n.

Proof See Sect. 3.6. ��
Definition 3.57 The PVM P (A) in Theorem 3.56 is called the joint spectral
measure of A1, A2, . . . , An, and its support supp(P (A)), i.e. the complement in
Rn of the largest open set O with P

(A)
O = 0, is called the joint spectrum of

A1, A2, . . . , An. �
Example 3.58 The simplest example is provided by considering the n position
operators Xm on L2(Rn, dnx). It should be clear that the n spectral measures
commute because the operator P

(Xk)
E , for E ∈ B(R), acts as multiplication by

χR×···×R×E×R×···×R, where E is in the k-th position. The joint spectrum of the n

operators Xm coincides with Rn itself.
A completely analogous situation holds for the n momentum operators Pk , since

they are related to the position operators by means of the unitary Fourier-Plancherel
operator, as already seen several times. Again, the joint spectrum of the n operators
Pm coincides with Rn itself. �
Here is a useful fact proved by von Neumann (see [RiNa90] for a proof).

Theorem 3.59 Let A,B be (possibly unbounded) selfadjoint operators on the
Hilbert space H. If the spectral measures of A and B commute, then there is a
third (possibly unbounded) selfadjoint operator C on H such that A = f (C) and
B = g(C) for some Borel measurable functions f, g : R → R.

3.3.4 Measurable Functional Calculus

The following proposition provides useful features of f (A), where A is selfadjoint
and f : R → C is Borel measurable. These properties constitute the so-called
measurable functional calculus. We suppose here that A = A∗, but statements can
be reformulated for normal operators too [Mor18].

Proposition 3.60 Let A be a selfadjoint operator on the complex Hilbert space H
and let f, g : σ(A) → C be measurable functions. Let af , f · g, f + g indicate the
pointwise operations (a ∈ C). The following facts hold.

(a) If f (λ) = pn(λ) := ∑n
k=0 akλ

k with an �= 0, then

pn(A) =
n∑

k=0

akA
k with D(pn(A)) = �pn = D(An),

where the right-hand side is defined on its standard domain, and A0 := I ,
A1 := A, A2 := AA, and so forth.
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(b) If f = χE is the characteristic function of E ∈ B(σ (A)), then

f (A) = P (A)(E) .

(c) Using bar to denote complex conjugation,

f (A)∗ = f (A) .

(d) For a ∈ C,

af (A) = (af )(A) .

(e) D(f (A) + g(A)) = �f ∩ �g and

f (A) + g(A) ⊂ (f + g)(A) .

There is equality above if and only if �f+g = �f ∩ �g.
(f) D(f (A)g(A)) = �f ·g ∩ �g and

f (A)g(A) ⊂ (f · g)(A) ,

with equality if and only if �f ·g ⊂ �g .
(g) We have D(f (A)∗f (A)) = �|f |2 and

f (A)∗f (A) = |f |2(A) .

(h) If f ≥ 0 then

〈x|f (A)x〉 ≥ 0 for x ∈ �f .

(i) If x ∈ �f ,

||f (A)x||2 =
∫

σ(A)

|f (λ)|2dμ(P (A))
xx (λ) .

In particular, if f is bounded or P (A)-essentially bounded on σ(A), f (A) ∈
B(H) and

||f (A)|| ≤ ||f ||(P (A))∞ ≤ ||f ||∞ .

(j) If U : H → H′ is a linear (or anti-linear) surjective isometry, then

Uf (A)U−1 = f (UAU−1)
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and, in particular, D(f (UAU−1)) = UD(f (A)) = U(�f ).
(k) If φ : R → R is measurable, thenB(R) � E 
→ P ′(E) := P (A)(φ−1(E)) is a

PVM on R. Defining the selfadjoint operator

A′ =
∫

R

λ′dP ′(λ′)

such that P (A′) = P ′, we have

A′ = φ(A)

and

f (A′) = (f ◦ φ)(A) and �′
f = �f ◦φ

for every f : R → C measurable.

Proof Everything but (a), (b), (c) and (i) are trivial reformulations of the corre-
sponding statements in Proposition 3.33. As a matter of fact, (b), (c), (h) and (i)
are nothing but (3.22), (3.13), (a) in Corollary 3.27 and (3.14) respectively. Item (a)
is easy to prove. Let us initially focus on the case pn(λ) = λn. Observe that A =∫
σ(A)

λdP (A)λ = p1(A). Let us prove claim for a given n knowing it is true for n−1:

An = AAn−1 = ∫
R

λdP (A)(λ)
∫
R

λn−1dP (A)(λ) = ∫
R

λndP (A)(λ) = pn(A). In
the penultimate equality we used Proposition 3.33 (c): the condition �f ·g ⊂ �g

is satisfied for f = ı and g = ın−1 because the measure μ
(P)
xx is finite and hence∫

R
|λ|2ndμxx(λ) < +∞ implies

∫
R

|λ|2(n−1)dμxx(λ) < +∞.
Let us pass to polynomials. For every polynomial pm(λ) = ∑m

k=0 akλ
k of

degree m (i.e. am �= 0) set pm(A) := ∑m
k=0 akA

k . For m = 0 it is clear
that p1(A) = ∫

a0dP (A)(λ) = a0I . Suppose inductively that pn−1(A) =∫
σ(A) pn−1(λ)dP (A)(λ). From Proposition 3.33 (b), if an �= 0 then anA

n +
pn−1(A) = ∫

R
anλ

n + pn−1(λ)dP (A)(λ). This is because the condition �f+g =
�f ∩ �g in Proposition 3.33 (b) is satisfied for f = an ın and g = pn−1 since

�an ın+pn−1 = �ın , again from the finiteness of μ
(P)
xx . Putting everything together,

we have
∑n

k=0 akA
k = ∫

σ(A) p(λ)dλ for every polynomial p(λ) = ∑n
k=0 akλ

k of
degree n. It is obvious that D(pn(A)) = D(An) (if an �= 0) by the definition of
standard domain. ��

3.3.5 A First Glance at One-Parameter Groups of Unitary
Operators

Let us start with an elementary result based on Proposition 3.60.
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Proposition 3.61 If A : D(A) → H is a selfadjoint operator on the Hilbert space
H, then

R � t 
→ Ut := eitA

is a one-parameter group of unitary operators, i.e.

(i) Ut is unitary for t ∈ R,
(ii) U0 = I and UtUs = Ut+s for every t, s ∈ R.

As a consequence of (i) and (ii), U∗
t = (Ut )

−1 = U−t for t ∈ R.

Proof Ut = ∫
R

eitλdP (A)(λ) is an element of B(H) because the function in
the integral is bounded due to Proposition 3.60 (i). Then the conclusion follows
immediately from (b), (c) and (f) in Proposition 3.60, since ei0 = 1, eitλeisλ =
ei(t+s)λ and eitλ = e−itλ. ��
We have a pair of important technical facts about the one-parameter group of unitary
operators introduced above.

Proposition 3.62 If A : D(A) → H is a selfadjoint operator on the Hilbert space
H, the one-parameter group of unitary operators

R � t 
→ Ut := eitA

is strongly continuous, i.e. Utx → Usx if t → s for every fixed x ∈ H.
Furthermore

Ut(D(A)) = D(A) and UtA = AUt for t ∈ R.

Proof Since Uu is isometric, ||Utx − Usx|| = ||Us(Ut−sx − x)|| = ||Ut−sx −
x||. Therefore continuity at any s ∈ R is equivalent to continuity at 0. Next,
Proposition 3.60 (i) entails that

||Utx − x||2 =
∫

R

|eitλ − 1|2dμ(P (A))
xx → 0 for t → 0,

where we used dominated convergence theorem and noticed that μ
(P (A))
xx is finite

and |eitλ − 1|2 ≤ 4. Regarding the second statement, observe that

UtP
(A)
E =

∫

R

eitλdP (A)

∫

R

χEdP (A) =
∫

R

χEeitλdP (A)

=
∫

R

χEdP (A)

∫

R

eitλdP (A) = P
(A)
E Ut ,
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by (i), (b) and (f) in Proposition 3.60. As a consequence, μ
(P (A))
Utx,Utx

(E) =
||P (A)

E Utx||2 = ||UtP
(A)
E x||2 = ||P (A)

E x||2 = μ
(P (A))
xx (E). Therefore

∫
R

|λ|2dμ
(P (A))
xx = ∫

R
|λ|2dμ

(P (A))
Utx,Utx

, meaning Ut (D(A)) = D(A). Now

Proposition 3.60 (f) proves that UtA = ∫
R

eitλλdP (A) = AUt if we write these
operators in terms of integrals and observing that the condition on the domains
necessary and sufficient to write = in place of ⊂ is here satisfied. ��
Proposition 3.63 If A : D(A) → H is a selfadjoint operator on the Hilbert space
H and x ∈ D(A), then

−i
d

dt

∣
∣
∣
∣
t=s

eitAx = eisAAx = AeisAx .

Proof Let us start with s = 0. Notice that if x ∈ D(A), Proposition 3.60 (i) yields

∣
∣
∣
∣

∣
∣
∣
∣
1

h
(eihAx − x) − iAx

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

R

∣
∣
∣
∣
1

h
(eihr − 1) − ir

∣
∣
∣
∣

2

dμ(P (A))
xx (r) . (3.41)

The integrand tends to 0 pointwise as h → 0. On the other hand the mean value
theorem, applied to real and imaginary parts of the argument of the absolute value,
says that

∣
∣
∣
∣
1

h
(eihr − 1) − ir

∣
∣
∣
∣

2

= ∣
∣−r sin(h0r) + ir cos(h′

0r) − ir
∣
∣2

= ∣
∣− sin(h0r) + i cos(h′

0r) − i
∣
∣2 r2 ≤ 9r2

for some h0, h
′
0 ∈ [−|H |, |H |]. The map R � r 
→ r2 is μ

(P (A))
xx -integrable since

x ∈ D(A) = �ı2 . Finally, dominated convergence theorem proves that the limit of
the left-hand side of (3.41) vanishes when h → 0. This establishes the claim for
s = 0. The case s �= 0 can be proved by observing that

∣
∣
∣
∣

∣
∣
∣
∣
1

h
(ei(s+h)Ax − eisAx) − ieisAAx

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∣
∣
∣
∣

∣
∣
∣
∣e

isA

[
1

h
(eihAx − x) − iAx

]∣
∣
∣
∣

∣
∣
∣
∣

2

=
∣
∣
∣
∣

∣
∣
∣
∣
1

h
(eihAx − x) − iAx

∣
∣
∣
∣

∣
∣
∣
∣

2

and applying the previous proposition. ��
Exercise 3.64 Prove that if A ∈ B(H) is selfadjoint on the Hilbert space H, then

eitA =
+∞∑

n=0

(it)n

n! An
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for every t ∈ R, where the series converges in operator norm.

Solution By Proposition 3.60 (i), using the fact that eitA − ∑N
n=0

(it )n

n! An is
bounded,

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
eitA −

N∑

n=0

(it)n

n! An

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫

σ(A)

eitr −
N∑

n=0

(it)n

n! rn dP (A)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ sup

r∈σ(A)

∣
∣
∣
∣
∣
eitr −

N∑

n=0

(itr)n

n!

∣
∣
∣
∣
∣

.

For a fixed t ∈ R, the limit as N → +∞ of the right-most term vanishes, proving
the thesis. This is because the power series ez = ∑+∞

n=0
zn

n! has convergence radius+∞, hence it converges uniformly in every closed disc centred at the origin with
finite radius. Therefore the convergence is uniform on any compact set of C. In
particular on σ(A), which is compact by Proposition 3.47) since A is bounded. �.

3.4 Elementary Quantum Formalism: A Rigorous Approach

We return to the discussion started in the introduction to show how, in practice,
the physical hypotheses on quantum systems (1)–(3) must be interpreted mathe-
matically on infinite-dimensional Hilbert spaces. (For convenience we reversed the
order of (2) and (3).)

3.4.1 Elementary Formalism for the Infinite-Dimensional Case

Let us begin by listing the general assumptions for a mathematical description of
quantum systems.

1. A quantummechanical system S is always associated to a Hilbert spaceH, either
finite- or infinite-dimensional;

2. observables are represented in terms of (generally unbounded) selfadjoint oper-
ators A on H,

3. states are equivalence classes

[ψ] = {eiαψ | α ∈ R}

of unit vectors ψ ∈ H (the equivalence relation being ψ ∼ ψ ′ iff ψ = eiaψ ′ for
some a ∈ R).

We set out to show how the above mathematical assumptions enable us to set the
physical properties of quantum systems (1)–(3) of Sect. 1.1.2 in a mathematically
nice form for infinite-dimensional Hilbert spaces H.
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(1) Randomness The Borel subset E ⊂ σ(A) represents the outcomes of
measurement procedures of the observable associated with the selfadjoint operator
A. (In case of continuous spectrum the outcome of a measurement is at least an
interval in view of the experimental errors.) Given a state represented by the unit
vector ψ ∈ H, the probability to obtain outcome E ⊂ σ(A) when measuring A is

μ
(P (A))
ψ,ψ (E) := ||P (A)

E ψ||2 , (3.42)

where we have used the PVM P (A) of the operator A.
Pursuing this interpretation, the expectation value 〈A〉ψ of A, when the state is

represented by the unit vector ψ ∈ H, turns out to be

〈A〉ψ :=
∫

σ(A)

λ dμ
(P (A))
ψ,ψ (λ) . (3.43)

This relation makes sense provided ı : σ(A) � λ → λ belongs to L1(σ (A),μ
(P (A))
ψ,ψ )

(which is equivalent to say that ψ ∈ �|ı|1/2 and, in turn, ψ ∈ D(|A|1/2)). Otherwise
the expectation value is not defined. Since

L2(σ (A),μ
(P (A))
ψ,ψ ) ⊂ L1(σ (A),μ

(P (A))
ψ,ψ )

because μ
(P (A))
ψ,ψ is finite, we have the popular formula, derived from (3.12):

〈A〉ψ = 〈ψ|Aψ〉 if ψ ∈ D(A) . (3.44)

The associated standard deviation �Aψ is

�Aψ :=
√∫

σ(A)

(λ − 〈A〉ψ)2 dμ
(P (A))
ψ,ψ (λ) . (3.45)

This definition makes sense provided ı ∈ L2(σ (A),μ
(P (A))
ψ,ψ ) (i.e. ψ ∈ �ı , or ψ ∈

D(A)).
As before, functional calculus permits us to write the other famed formula

�Aψ =
√

〈ψ|A2ψ〉 − 〈ψ|Aψ〉2 if ψ ∈ D(A2) ⊂ D(A) . (3.46)

We stress that the Heisenberg inequalities, established in Exercise 1.11(1), are now
completely justified, as the reader can easily check.

(3) Collapse of the State If the Borel setE ⊂ σ(A) is the outcome of an (idealized)
measurement of A when the state is represented by the unit vector ψ ∈ H, the new
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state immediately after the measurement is represented by the unit vector

ψ ′ := P
(A)
E ψ

||P (A)
E ψ||

. (3.47)

Remark 3.65 Lo and behold this formula does not make sense if μ
(P (A))
ψ,ψ (E) = 0.

Moreover the arbitrary phase affecting ψ does not really matter due to the linearity
of P

(A)
E . �

(2) Compatible and Incompatible Observables Two observables A, B are
compatible—i.e. they can be measured simultaneously—if and only if their spectral
measures commute, which means

P
(A)
E P

(B)
F = P

(B)
F P

(A)
E , E ∈ B(σ (A)) , F ∈ B(σ (B)) . (3.48)

In this case

||P (A)
E P

(B)
F ψ||2 = ||P (B)

F P
(A)
E ψ||2 = ||P (A,B)

E×F ψ||2 ,

where P (A,B) is the joint spectral measure of A and B, has the natural interpretation
of the probability to obtain outcomes E and F for a simultaneous measurement of
A and B. If instead A and B are incompatible, it may happen that

||P (A)
E P

(B)
F ψ||2 �= ||P (B)

F P
(A)
E ψ||2 .

Sticking to A,B incompatible, (3.47) gives

||P (A)
E P

(B)
F ψ||2 =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
P

(A)
E

P
(B)
F ψ

||P (B)
F ψ||

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

||P (B)
F ψ||2 . (3.49)

The meaning is the probability of obtaining first F and then E in subsequent
measurements of B and A.

Remark 3.66 It is worth stressing that the notion of probability we are using here
cannot be the classical one, because of the presence of incompatible observables.
The theory of conditional probability cannot follow the standard rules. The proba-
bility Pψ(EA|FB), that (in a state defined by a unit vector ψ) a certain observable
A takes value EA when the observable B has value FB , cannot be computed by the
standard procedure

Pψ(EA|FB) = Pψ(EA AND FB)

Pψ(FB)
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if A and B are incompatible: in general, there is nothing which can be interpreted as
the event “EA AND FB” if P

(A)
E and P

(B)
F do not commute! The correct formula is

Pψ(EA|FB) = 〈ψ|P (B)
F P

(A)
E P

(B)
F ψ〉

||P (B)
F ψ||2

,

which leads to well-known properties that depart from the classical theory, the so-
called combination of “probability amplitudes” in particular. As a matter of fact, to
the day we still do not have a clear notion of (quantum) probability. This issue will
be clarified in the next chapter. �

3.4.2 Commuting Spectral Measures

The reason to pass from operators to their spectral measures to define compatible
observables is that, if A ad B are selfadjoint and defined on distinct domains, AB =
BA does not make sense in general. Moreover, there are counterexamples (due to
Nelson) where the commutativity of selfadjoint operators A and B on a common
dense invariant subspace, which is a core for A and B, does not imply that their
spectral measures commute. Nevertheless, general results again due to Nelson give
us the following nice result, which we shall prove later (see Exercise 7.43).

Proposition 3.67 If selfadjoint operators A and B on a Hilbert space H commute
on a common dense invariant domain D where A2 + B2 is essentially selfadjoint,
then the spectral measures of A and B commute.

Definition 3.68 When the spectral measures of two selfadjoint operators A,B

commute, i.e., (3.48) holds, one says that A and B commute strongly. �
In addition to the aforementioned direct result by Nelson, there are several other
technical facts providing necessary and sufficient conditions for the commutativity
of the spectral measures of pairs of selfadjoint operators. The most elementary and
perhaps useful is the following one.

Proposition 3.69 Let A, B be selfadjoint operators on the complex Hilbert space
H. The following facts are equivalent:

(i) A and B strongly commute,
(ii) eitAeisB = eisBeitA for every s, t ∈ R,
(iii) eitAP

(B)
E = P

(B)
E eitA for every t ∈ R and E ∈ B(R),

(iv) eitAB ⊂ BeitA for all t ∈ R, or equivalently eitAB = BeitA for all t ∈ R.

Under any of the above statements: eitA(D(B)) = D(B) for all t ∈ R.

Proof Evidently (i) implies (ii) since
∫
R

sdP (A)
∫
R

tdP (B) = ∫
R

tdP (B)
∫
R

sdP (A)

if s and t are complex simple functions, due to (3.24); the result extends to the
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exponentials by Proposition (3.29) (c) with suitable sequences of bounded simple
functions tending to the exponential functions. Let us prove that (ii) implies (iii).
From (ii) and for x, y ∈ H, we have 〈x|e−itAeisBeitAy〉 = 〈x|eisBy〉, which may be
rephrased as

∫

R

eisrdμ
(P (B))
Utx,Uty

(r) =
∫

R

eisrdμ(P (B))
xy (r) ,

where Ut := eitA. If f ∈ S (R), since both μ
(P (B))
xy and μ

(P (B))
Ut x,Uty

are complex
measures (so their absolute variations are finite measures) we have

∫

R

|f (s)|
∫

R

|eisr |d|μ(P (B))
Ut x,Uty

|(r)ds < +∞,

∫

R

|f (s)|
∫

R

|eisr |d|μ(P (B))
x,y |(r)ds < +∞.

The very definition of integral in a complex measure and the Fubini-Tonelli theorem
imply that

∫

R

(∫

R

f (s)eisrds

)

dμ
(P (B))
Utx,Uty

(r) =
∫

R

(∫

R

f (s)eisreisrds

)

dμ(P (B))
xy (r) .

Since the Fourier transform is a bijection from S (R) onto S (R), the previous
relation reads

∫

R

g(r)dμ
(P (B))
Utx,Uty

(r) =
∫

R

g(r)dμ(P (B))
xy (r) , (3.50)

for every g ∈ S (R). Using the Stone–Weierstrass theorem and a smoothing pro-
cedure, it is possible to prove that if f is a complex, continuous map with compact
support inR, say supp(f ) ∈ [−a, a], there exists a sequence of smooth functions fn

with compact support contained in [−2a, 2a] (obtained by approximating truncated
polynomials outside [−2a, 2a], and then smoothing), such that ||f − fn||∞ → 0
when n → +∞. Since the measures in (3.50) are finite, this fact immediately
implies that (3.50) holds also when g is continuous and compactly supported. Both
Borel measures are regular because, being finite, open sets are countable unions of
compact sets with finite measure [Rud86]. Riesz’s theorem for positive (regular)

Borel measures [Rud86] implies that μ(P (B))
xy (E) = μ

(P (B))
Utx,Uty

(E) for every Borel set

E ∈ B(R). In other words 〈x|(U∗
t P

(B)
E Ut −P

(B)
E )y〉 = 0 for every x, y ∈ H, which

in turn means UtP
(B)
E = P

(B)
E Ut , namely (iii). In order to prove that (iii) implies

the measures P (A), P (B) commute, we proceed as above. Begin by observing that
for x, y ∈ H we have 〈x|eitAP

(B)
E y〉 = 〈x|P (B)

E eitAy〉. The argument used earlier

leads to μ
(A)

P
(B)
E x,y

(F ) = μ
(A)

x,P
(B)
E y

(F ), namely 〈x|P (B)
E P

(A)
F y〉 = 〈x|P (A)

F P
(B)
E y〉 for

all x, y ∈ H and E,F ∈ B(R). This is equivalent to (i).
Finally, assuming eitAB ⊂ BeitA for all t ∈ R, applying e−itA to the right of

both sides and using the fact that t is arbitrary, proves BeitA ⊂ eitAB for all t ∈ R,
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so eitAB = BeitA t ∈ R. This fact is equivalent to eitABe−itA = B. In turn, the
latter is the same as saying that (iii) holds, eitAP

(B)
E e−itA = P

(B)
E for all t ∈ R and

E ∈ B(R), in view of Proposition 3.49. The last statement is immediate from the
second assertion in (iv), by the fact that eitA is bijective. ��
With similar arguments one can proved straightforwardly the following proposition
regarding a special case A ∈ B(H).

Proposition 3.70 Let A, B be selfadjoint operators on the complex Hilbert space
H. If A ∈ B(H) the following facts are equivalent:

(i) A and B strongly commute,
(ii) AB ⊂ BA (with equality if, additionally, B ∈ B(H)) ,
(iii) Af (B) ⊂ f (B)A if f : σ(B) → R is Borel measurable ,
(iv) P

(B)
E A = AP

(B)
E if E ∈ B(σ (B)) .

Proof (i) implies (iv) just using the definition of integral in a PVM that integrates
the function ı with respect to P (A). Integrating again f with respect to P (B) we

obtain (iii) from (iv): observe thatμ(P (B))
Ax,Ax(E) ≤ ||A||2μ(P (B))

x,x (E) (since P (B) andA

commute), so Ax ∈ D(f (B)) if x ∈ D(f (B)). The special choice f = ı produces
(ii) from (iii). Finally (ii) implies AnB ⊂ BAn and also, by Exercise 3.64 and
because our B is closed as selfadjoint, we have eitAB ⊂ BeitA for every t ∈ R.
Proposition 3.69 now gives (i). ��
Another useful result directed toward the converse statement is the following.

Proposition 3.71 Let A, B be selfadjoint operators on the complex Hilbert space
H whose spectral measures commute. Then

(a) ABx = BAx if x ∈ D(AB) ∩ D(BA) .
(b) 〈Ax|By〉 = 〈Bx|Ay〉 if x, y ∈ D(A) ∩ D(B).

Proof

(a) Take y ∈ D(B) and x ∈ D(AB). Since eitBeisA = eisAeitB , we have
〈e−itBy|eisAx〉 = 〈y|eisAeitBx〉. Computing the t-derivative at t = 0 with
Proposition 3.63 and using the continuity of eisA, we obtain 〈By|eisAx〉 =
〈y|eisABx〉. By the definition of adjoint we have eisAx ∈ D(B∗) = D(B)

and eisABx = B∗eisAx = BeisAx. Assuming x ∈ D(BA) and exploiting
Proposition 3.63 once more, we can finally differentiate eisABx = BeisAx

in s and evaluate at s = 0, using the fact that B is closed. This produces
ABx = BAx.

(b) It suffices to differentiate 〈e−itBy|eisAx〉 = 〈e−isAy|eitBx〉 and use Proposi-
tion 3.63.

��
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3.4.3 A First Look at the Time Evolution of Quantum States

We have already mentioned that for quantum systems in an inertial frame subject to
temporal homogeneity, the time evolution of states is described in terms of a strongly

continuous one-parameter group of unitary operators of the form Ut := e− it
h̄ H ,

t ∈ R, where the selfadjoint operator H is called the Hamiltonian operator of
the quantum system (it depends on the reference frame). The observable H has
the physical meaning of the energy of the quantum system in the frame of reference
considered. If a quantum state is represented at time t = 0 by the unit vector ψ ∈ H,
where H is the Hilbert space of the system, the evolved state ψt at a generic time
instant t is therefore

ψt = Utψ . (3.51)

We shall not discuss here the motivations of this description of time evolution, but
only make a few observations.

Remark 3.72

(a) If we represent the state ψ at t = 0 by another vector ψ ′ := eiαψ , the evolved
state is represented, coherently, by ψ ′

t = Utψ
′ = eiαUtψ in view of linearity

of Ut . This ensures that the description of time evolution is phase-independent
as expected: it preserves equivalence classes

[ψ] = {eiαψ | α ∈ R}

of unit vectors, i.e. states. As a consequence, we can define an action of time
evolution on states unambiguously:Ut [ψ] := [Utψ].

(b) Since Ut is isometric, the unit normalization of ψt is preserved by time

evolution, in agreement with the interpretation of the measuresμ
(P (A))
ψt ,ψt

, whereby

μ
(P (A))
ψt ,ψt

(R) = 1 (they are probability measures). �
According to Propositions 3.62 and 3.63, if ψ ∈ D(H), from (3.51) we have

d

dt
ψt = d

dt
e
−i t

h̄
H

ψ = −i
1

h̄
He

−i t
h̄
H

ψ = −i
1

h̄
Hψt .

We have thus recovered the celebrated Schrödinger equation:

ih̄
dψt

dt
= Hψt . (3.52)

It is worth stressing that the correct topology to calculate the derivative is the
topology of the Hilbert space. In other words, the Schrödinger equation is not a
standard PDE in the simplest situation in standard QM, namely H = L2(R3, d3x):
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there

H := H0 and H0 = − h̄2

2m
� + V

for some real function V : Rn → R, and H0 is defined on a suitable dense
linear domain D(H0) ⊂ H of smooth functions, where furthermore it is essentially
selfadjoint. Nevertheless, it is possible to prove that under suitable hypotheses
jointly regular solutions ψ : R × R3 → C of the PDE interpretation of (3.52),

ih̄
∂ψ(t, x)

∂t
+ h̄2

2m
�xψ(t, x) − V (x)ψ(t, x) = 0

define proper solutions of (3.52).
A very particular class of physically interesting solutions are the so-called

stationary states of a given Hamiltonian operator H . They are defined when
σp(H) �= ∅. If E ∈ σp(H) and ψE ∈ D(H) is a corresponding eigenstate, so
that HψE = EψE , its time evolution is trivial

e−i t
h̄H ψE = e−i t

h̄ EψE .

The quantum state [ψE] associated to ψE is a stationary statewith energyE. Notice
that this state is fixed under time evolution, since states are (normalized) vectors up

to phase, and e−i t
h̄ E is such.

Consider a non-relativistic spinless particle described on H = L2(R3, d3x),
where the position operators along the Cartesian axes of the inertial reference
frame are the multiplication operators Xj of Example 2.59. For a stationary state
ψE ∈ L2(R3, dx) the probability density |ψEt (x)|2 = |ψE(x)|2 of finding the
particle at x ∈ R3 is constant. For example, look at the electron in the hydrogen
atom (with mass m and electrical charge e, and assuming the proton is located at
the origin and generates the Coulomb force as a geometric point of the matter).
Stationary states with energy levels corresponding to the spectrum of the Coulomb
Hamiltonian H0, where

H0 := − h̄2

2m
� − e2

||x|| : S (R3) → L2(R3, d3x) ,

define the orbitals of the atom.

Remark 3.73 Roughly speaking stationary states are stable states of matter, and all
relatively stable structures of physical objects are described in terms of stationary
quantum states of the Hamiltonian operator of the system. These states may cease to
be stable when the Hamiltonian changes because of interactions with some external
quantum system. For instance, the stationary states of the electron of the hydrogen
atom are stationary as soon as the system is kept isolated. When interacting with
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other systems (especially photons), these states become non-stationary because they
are not represented by eigenvectors of the complete Hamiltonian operator of the
overall system. Even in an isolated hydrogen atom the proton should be treated
quantistically, and the complete system is made of a pair of quantum particles
described on an overall Hilbert spaceL2(R3

e×R3
p, d3xe⊗d3xp). Usually the motion

of the proton is neglected and is treated classically. This is because its mass is around
2000 times that of the electron, and in many applications where one is essentially
interested in the motion of the electron, it may as well be considered as a fixed
classical particle. �
Example 3.74 Let us consider a free spinless particle of mass m > 0. In
orthonormal Cartesian coordinates of an inertial reference frame, its Hilbert space
is L2(R3, d3x). This explicit representation of the Hilbert space of a non-relativistic
particle, where the position operators are multiplication operators, is called position
picture (or position representation). The Hamiltonian operator H is the unique
selfadjoint extension of the essentially selfadjoint operator

H0 := 1

2m

3∑

k=1

P 2
k : S (R3) → L2(R3, d3x) .

It is evident that it includes only the kinetic part of the energy. In this sense the
particle is free. Now, it is easier to represent the Hilbert space as an L2 space where
the momentum operators are described by multiplication operators. As we know
from the content of Example 2.59 (2) (use Eq. (2.24) in particular), this realisation
of the Hilbert space is related to the position representation by means of the Fourier-
Plancherel operator

F̂ : L2(R3, d3x) � ψ 
→ ψ̂ ∈ L2(R3, d3k) .

This Hilbert space isomorphism reduces to the standard integral Fourier transform
onS (R3), and transforms this subspace into itself bijectively (changing the variable
of the functions from x to k). The representation L2(R3, d3k) of the Hilbert space,
where momenta are multiplication operators, is popularly known as themomentum
picture (or momentum representation). The corresponding Hamiltonian operator
H = H0 is represented by the selfadjoint operator

H ′ := F̂H F̂−1 .

Since it is the square of the momentum operator up to the constant factor (2m)−1, it
must act as

(
H ′ψ̂

)
(k) = k2

2m
ψ̂(k) (3.53)
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where k2 := ∑3
j=1 k2j , and

D(H ′) :=
{
ψ̂ ∈ L2(R3, d3k)

∣
∣
∣ k2ψ̂ ∈ L2(R3, d3k)

}
.

The spectrum of H is continuous and it is not difficult to prove that σ(H) =
σc(H) = [0,+∞) as a byproduct of (3.53). This is expected from physical
considerations, since the energy is purely kinetic.

Time evolution has a direct representation here:

(
e−itH ′

ψ̂
)

(k) := e−it k2
2m ψ̂(k) . (3.54)

Notice that the right-hand side belongs toS (R3) at every time t if it does at t = 0.
Time evolution has a corresponding representation in the space L2(R3, d3x),

obtained through the action of the Fourier-Plancherel isomorphism

e−itH = F̂−1e−itH ′
F̂ .

If ψ ∈ S (R3), we can use the standard integral Fourier transform

ψ̂(k) = 1

(2π)3/2

∫

R3
e−ikxψ(x)d3x and ψ(x) = 1

(2π)3/2

∫

R3
eikxψ̂(k)d3k .

(3.55)

Composing these transformations with (3.54) we find

(
e−itHψ

)
(x) = 1

(2π)3/2

∫

R3
ei(kx− k2t

2m )ψ̂(k)d3k for ψ ∈ S (R3) .

Note in particular that the time evolution leaves fixed the spaceS (R3). �

3.4.4 A First Look at (Continuous) Symmetries and Conserved
Quantities

As we shall discuss better later, physical operations changing the states of a
given quantum system are pictured in terms of either unitary or anti-unitary
transformations U : H → H, called (quantum) symmetries.

Symmetries U transform vectors ψ 
→ ψU := Uψ but preserve norms (U is
isometric by hypothesis) and do not depend on the phase (eiαψ maps to eiαψU ).
We may therefore pass to the quotient, to the effect that the action of a symmetry is
well defined on equivalence classes of vectors, i.e., on pure states: U [ψ] := [Uψ].
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A particular subclass of symmetries are continuous symmetries. These are
strongly continuous one-parameter groups of unitary operators {eisA}s∈R generated
by some selfadjoint operator A : D(A) → H. This A is interpreted as an observable
somehow related to the continuous symmetry, and is called the generator of the
symmetry.

When a continuous symmetry commutes with time evolution, i.e. (always
assuming h̄ = 1)

eisBe−itH = e−itH eisB for all t, s ∈ R , (3.56)

the symmetry is said to be a dynamical symmetry. This feature has a fundamental
consequence. The generator B becomes a constant of motion, in the sense that all
statistical properties of the outcomes of measurements of B on a given state ψ ∈ H
turn out to be independent of the time evolution of ψ . Applying Proposition 3.69, if
E ∈ B(R) the probability that the outcome of measuring B at time t belongs to E

is

μP(B)

Utψ,Utψ
(E) = ||P (B)

E Utψt ||2 = ||UtP
(B)
E ψ||2 = ||P (B)

E ψ||2 = μP(B)

ψ,ψ (E) ,

which coincides to the probability of obtaining E at time t = 0 when measuring B.
The crucial passage above is the swap P

(B)
E Ut = UtP

(B)
E , which is consequence of

(3.56) and Proposition 3.69 for A = H .

Remark 3.75 If B is a constant of motion as defined above, the expectation value
of B and its standard deviation are constant in time, just by definition of expectation
value and standard deviation.

These two facts, albeit immediate from the definition of expectation value and
standard deviation, are usually derived by physicists using Eqs. (3.44) and (3.45)
(when the requirements on the domains are fulfilled) and Proposition 3.69:

〈B〉ψt = 〈Utψ|BUtψ〉 = 〈ψ|U∗
t BUtψ〉 = 〈ψ|BU∗

t Utψ〉 = 〈ψ|Bψ〉 = 〈B〉ψ ,

and

�Bψt
= 〈Utψ |B2Utψ〉 − 〈B〉2ψt

= 〈ψ |U∗
t B2Utψ〉 − 〈B〉2ψ = 〈ψ |B2U∗

t Utψ〉 − 〈B〉2ψ = �Bψ .

�
Example 3.76 Consider the momentum operator Pj along the j -th axis in R3.
We want to examine the strongly continuous one-parameter group of unitary
operators Va := e−iaPj with a ∈ R. It is convenient to deal with the momentum
representation. As we know, here Pj is nothing but the multiplication operator(
P ′

j ψ̂
)

(k) = kj ψ̂(k), for every ψ ∈ L2(R3, d3k). As in Example 3.74, we adopt

the notation A′ := F̂AF̂−1 to write down the momentum representation A′ of
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operators given by A in position representation. It is easy to prove that

(
V ′

aψ̂
)
(k) = e−ikj aψ̂ for every ψ ∈ L2(R3, d3k) .

Using (3.55), if ψ ∈ S (R3) then ψ̂ ∈ S (R3) and vice versa, so

(Vaψ) (x) = 1

(2π)3/2

∫

R3
eikx e−ikj aψ̂(k)d3k = 1

(2π)3/2

∫

R3
eikx−kj aψ̂(k)d3k = ψ(x − aej ) .

In other words, Va shift wavefunctions in S (R3) along the coordinate unit vector
ej by the length a. Note that S (R3) is dense in L2(R3, d3x) and Va is continuous.
Moreover, if S (R3) � ψn → ψ ∈ L2(R3, d3x) as n → +∞, then S (R3) �
ψn(· − aej ) → ψ(· − aej ) ∈ L2(R3, d3x) as n → +∞ by the translational
invariance of the Lebesgue measure d3x. Summing up,

e−iaPj ψ = e−iaPj lim
n→+∞ ψn = lim

n→+∞ e−iaPj ψn = lim
n→+∞ ψn(· − aej ) = ψ(· − aej ) .

In other words,

(
e−iaPj ψ

)
(x) = ψ(x − aej ) for every ψ ∈ L2(R3, d3x) . (3.57)

In the language of physicists, the momentum along the j -th direction is the
generator of physical spatial translations of the quantum system along the j -th axis.

This is not the whole story if we also assume that the Hamiltonian of the particle
is the free Hamiltonian (3.53) in momentum representation. If so, time evolution is
represented by (3.54) again in momentum representation. It is therefore evident that

e−itH e−iaPj = e−iaPj e−itH for every t, a ∈ R.

We conclude that with the above free Hamiltonian the momentum operator along
the j -th direction is a constant of motion. Therefore the statistical features of the
measurements of Pj are invariant along the temporal evolution of the state of the
system. �

3.5 Round-Up of Operator Topologies

There are at least 7 to 9 relevant topologies [KaRi97, BrRo02] in Quantum Theory
which enter the game when one discusses sequences of operators. We shall limit
ourselves to illustrate quickly a few of the most important ones [Mor18]. We shall
work in a Hilbert space H, even though some of our examples adapt to more general
ambient spaces.



110 3 Observables and States in General Hilbert Spaces: Spectral Theory

(a) The finest (strongest) topology of all is the uniform operator topology on
B(H). It is the Hausdorff topology induced by the operator norm || || defined
in (2.8).

As a consequence of the definition, a sequence of elements An ∈ B(H) is
said to converge uniformly to A ∈ B(H) when ||An − A|| → 0 as n → +∞.

We already know that B(H) is a Banach algebra for that norm, and a unital
C∗-algebra too.

(b) Take a subspace D ⊂ H and the complex vector space L(D;H) of operators
A : D → H. The strong operator topology on L(D;H) is the Hausdorff
topology induced by the seminorms px where x ∈ D and px(A) := ||Ax||
for A ∈ L(D;H). By definition of topology induced by a family of seminorms,
the open sets are the empty set and (arbitrary) unions of intersections of a finite
number n of open balls B

(x1,...,xn)
r1,...,rn (A0) associated to the seminorms pxi with

xi ∈ D distinct, of arbitrary finite radii ri > 0 and common fixed centre A0 ∈
L(D;H):

B(x1,...,xn)
r1,...,rn

(A0) := {A ∈ L(D;H) | pxi (A − A0) ≤ ri , i = 1, . . . , n} .

Therefore a sequence of elements An ∈ L(D;H) converges strongly to A ∈
L(D;H) when ||(An − A)x|| → 0 as n → +∞ for every x ∈ D.

It should be evident that, if we restrict ourselves to work in B(H), the
uniform operator topology is finer (larger) than the strong operator topology.

(c) The weak operator topology on L(D;H) is the Hausdorff topology induced
by the seminorms px,y with x ∈ H, y ∈ D and px,y(A) := |〈x|Ay〉| if A ∈
L(D;H). In other words, its open sets are the empty set and (arbitrary) unions
of intersections of a finite number n of open ballsB

(x1,y1,...,xn,yn)
r1,...,rn (A0) associated

to the seminorms pxi,yi with xi ∈ H and yi ∈ D distinct, of arbitrary finite radii
ri > 0 and a common fixed centre A0 ∈ L(D;H):

B
(x1,y1,...,xn,yn)
r1,...,rn (A0) := {A ∈ L(D;H) | pxi,yi (A − A0) ≤ ri , i = 1, . . . , n} .

A sequence of elements An ∈ L(D;H) is said to converge weakly to A ∈
L(D;H) when |〈x|(An − A)y〉|| → 0 as n → +∞ for every x ∈ H and y ∈ D.
The weak operator topology lies at the opposite end to the uniform operator
topology, for it is the coarsest (smallest) of all.

We present two more intermediate topologies which depend on the space
B1(H) of trace-class operators we will discuss later.

(d) The ultrastrong topology (also known as σ -strong topology) on B(H) is the
Hausdorff topology associated as above to seminorms pT , with T ∈ B1(H) and
T ≥ 0, where pT (A) := √

tr(T A∗A) if A ∈ B(H). In spite of the name, it is
weaker than the uniform operator topology.

(e) The ultraweak topology (or σ -weak topology) on B(H) is the Hausdorff
topology induced as above by seminorms qT , T ∈ B1(H), defined as qT (A) :=
|√tr(T A)| if A ∈ B(H). It is finer than the weak operator topology.
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The topological dual ofB(H) possesses a special topology of its own.
(f) Any normed spaceB(H) induces a significant weak topology on its topological

dual

B(H)∗ := {f : B(H) → C | f linear and continuous} .

The ∗-weak topology on B(H)∗ is associated as above to the family of
seminorms {pA}A∈B(H) defined as pA(f ) := |f (A)| for every f ∈ B(H)′.
The definition is general, and valid for normed spaces B and their duals B∗
(replacingB(H) andB(H)∗). The Hahn–Banach theorem says that the ∗-weak
topology is Hausdorff because the functionals inB′ separate the elements ofB.
Notice thatB′ is also a normed Banach space for the standard operator norm

||f || = sup
0 �=A∈B

|f (A)|
||A||B .

This topology is stronger than the ∗-weak one. The relevance of the ∗-weak
topology is due in particular to the Banach–Alaoglu theorem, whereby the
closed unit ball inB(H)∗ is compact in the ∗-weak topology.

Example 3.77

(1) If f : R → C is Borel measurable, and A a selfadjoint operator on H, consider
the sets

Rn := {r ∈ R | |f (r)| < n} for n ∈ N .

It is clear that χRnf → f pointwise as n → +∞ and |χRnf |2 ≤ |f |2. As a
consequence, if we restrict to �f the operators appearing below on the left,

∫

σ(A)

χRnf dP (A)

∣
∣
∣
∣
�f

→ f (A) strongly, as n → +∞,

as an immediate consequence of Lebesgue’s dominated convergence theorem
and the first part of Proposition 3.60 (i). (See also exercise 3.36.)

(2) If in the previous example f is bounded on σ(A), and fn → f uniformly on

σ(A) (or ||f − fn||(P
(A))∞ → 0 P -essentially uniformly), then

fn(A) → f (A) uniformly, as n → +∞,

again by the second part of Proposition 3.60 (i). �
Exercise 3.78 Prove that a selfadjoint operator A on the Hilbert H admits a dense
set of analytic vectors in its domain.
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Solution Consider the family of functions fn = χ[−n,n] where n ∈ N. As in
Example 3.77 (1), we have ψn := fn(A)ψ = ∫

[−n,n] 1dP (A)ψ → ∫
R
1dP (A)ψ =

P
(A)
R

ψ = ψ when n → +∞. Therefore the set D := {ψn | ψ ∈ H , n ∈
N} is dense in H. The elements of D are analytic vectors for A as we go on

to prove. Clearly ψn ∈ D(Ak) since μ
(P (A))
ψn,ψn

(E) = μ
(P (A))
ψ,ψ (E ∩ [−n, n]) by

definition of μ
(P (A))
x,y . Therefore

∫
R

|λk|2dμ
(P (A))
ψn,ψn

(λ) = ∫
[−n,n] |λ|2kdμ

(P (A))
ψ,ψ (λ) ≤

∫
[−n,n] |n|2kdμ

(P (A))
ψ,ψ (λ) ≤ |n|2k ∫

R
dμ

(P (A))
ψ,ψ (λ) = |n|2k||ψ||2 < +∞. Similarly

||Akψn||2 = 〈Akψn|Akψn〉 = 〈ψn|A2kψn〉 = ∫
R

λ2kdμ
(P (A))
ψn,ψn

(λ) ≤ |n|2k||ψ||2. We

conclude that
∑+∞

k=0
(it )k

k! ||Akψn|| converges for every t ∈ C because it is dominated

by
∑+∞

k=0
|t |k
k! |n|2k||ψ||2 = e|t | |n|2 ||ψ||2. �

3.6 Existence Theorems of Spectral Measures

This final section is devoted to proving the existence of a PVM P (A) : B(R) →
L (H) for a selfadjoint operator A : D(A) → H on a Hilbert space H, which was
announced in Theorem 3.40 (a). The remaining statements of that theorem have
been already established. As an intermediate result we shall demonstrate the spectral
theorem for normal operators on B(H). We will furnish a proof of Theorem 3.56
on joint spectral measures.

3.6.1 Continuous Functional Calculus

Let us start by establishing general properties of the spectral theory of bounded
operators and unital C∗-algebras.

Proposition 3.79 Take A ∈ B(H) for some Hilbert space H and let p : C → C be
a complex polynomial of fixed degree n = 0, 1, . . .. Then

σ(p(A)) = p(σ(A)) , (3.58)

where p(A) is understood as in Proposition 3.60 (a). Furthermore

σ(A∗) = {λ | λ ∈ σ(A)} .

All this holds also if we replace A ∈ B(H) by a ∈ A, where A is any unital C∗-
algebra.

Proof We use explicitly Proposition 3.7: for any A ∈ B(H), λ ∈ σ(A) iff A − λI :
H → H is bijective.
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First of all we factor polynomials irreducibly with help of the fundamental
theorem of algebra: p(z) = c(z − λ1)

n1 · · · (z − λk)
nr , where the complex

roots λ1, . . . , λr have multiplicity n1, . . . , nr > 0,
∑

l nk = n and c �= 0. A
corresponding decomposition holds for p(A) = c(A − λ1I)n1 · · · (A − λkI)nk .
Define μ := p(λ). As the polynomial C � z 
→ p′(z) := p(z) − μ has a zero
at z = λ, its factorization contains the term (z − λ), whence p(A) − μI has
(A − λI) as a factor. If λ ∈ σ(A), the operator (A − λI) is not bijective and
therefore p′(A) := p(A) − μI (factored as (A − λ′

kI )n
′
k ) cannot be a bijection

from H to H: indeed, if (A − λI) is not injective, we can swap it over to the
end in the product p′(A) (factors commute), whence p′(A) cannot be injective.
If (A − λI) is not surjective, we can move it in front of p′(A) (as first factor), so
p′(A) cannot be surjective. All in all, λ ∈ σ(A) implies μ = p(λ) ∈ σ(p(A)), i.e.
p(σ(A)) ⊂ σ(p(A)). Let us prove the opposite inclusion. Suppose μ ∈ σ(p(A)).
We know that p(z) − μ = c(z − α1)

n′
1 · · · (z − αk′)n

′
r′ . If all αk′ belonged to

ρ(A), the operator p(A) : H → H would be bijective with left and right inverse
c−1(A − α1I)−n′

1 · · · (A − αk′I)
−n′

r′ , an absurd. So at least one of the αk′ must
belong to σ(A), and p(αk′) − μ = 0. In other words μ ∈ p(σ(A)), which proves
σ(p(A)) ⊂ p(σ(A)).

The second statement is quite obvious by observing that if T ∈ B(H), then T ∗ is
bijective if and only if T is (Exercise 2.29). In this case (T ∗)−1 = (T −1)∗. Applying
this to A−λI proves the claim. With obvious modifications the argument still holds
whenB(H) is replaced by a unital C∗-algebra A. ��
We pass now to an important consequence, whose proof holds for any unital C∗-
algebra in place of B(H). The first assertion extends Proposition 3.47 and proves
that it is actually independent of the spectral theorem.

Proposition 3.80 If A ∈ B(H) is normal (A∗A = AA∗) then

sup{|λ| | λ ∈ σ(A)} = ||A|| . (3.59)

If A = A∗ and p : R → C is a polynomial, then

||p(A)|| = ||p�σ(A) ||∞ . (3.60)

The results are valid also by replacing A with a in a unital C∗-algebra A.

Proof Let us prove (3.59). We need a preliminary, and quite interesting, lemma.

Lemma 3.81 (Gelfand’s Formula for the Spectral Radius) If A ∈ B(H) for
some Hilbert space H, then

sup{|λ| | λ ∈ σ(A)} = lim
n→+∞ ||An||1/n . (3.61)

The formula is valid for elements a ∈ A in a unital C∗-algebra as well.
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Proof Define rA := sup{|λ| | λ ∈ σ(A)}. If |λ| > rA, then the resolvent Rλ(A) is
well defined. The Banach-space-valued map ρ(A) � λ 
→ Rλ(A) is holomorphic,
and its Taylor expansion reads

Rλ(A) = −
+∞∑

n=0

ζ n+1T n

where ζ = 1/λ. It converges at least for |ζ | < 1/||A|| (Proposition 3.10). The
renowned Hadamard theorem (very easily generalizable to holomorphic maps with
values in Banach spaces) guarantees that the convergence radius is determined by
the first singularity, which necessarily belongs to σ(A). The series −∑+∞

n=0 ζ n+1T n

therefore converges for |ζ | < 1/rA and has convergence radius R ≥ 1/rA.
Hadamard’s formula for R then reads

1/R = lim sup
n

||T n||1/n ≤ rA .

On the other hand (3.58) implies σ(An) = {μn | μ ∈ σ(A)}, so by Proposition 3.10
we have

rn
A = rAn ≤ ||An||

and hence rA ≤ lim infn ||An||1/n. In summary rA ≤ lim infn ||An||1/n ≤
lim supn ||An||1/n = rA, which is what we claimed. ��
Let us take up the proof of Proposition 3.80 and suppose A = A∗. Then ||A2|| =
||A∗A|| = ||A||2 and, similarly, ||(A2)2|| = ||A2||2 = ||A||4, ||(A4)2|| = ||A4||2 =
||A||8 and so on. In general ||A2n|| = ||A||2n

. Applying (3.61), we find

sup{|λ| | λ ∈ σ(A)} = lim
n→+∞ ||An||1/n = lim

n→+∞ ||A2n ||1/2n = lim
n→+∞ ||A||2n/2n = ||A|| .

Now consider A ∈ B(H), so ||An|| = ||(An)∗An||1/2 = ||(A∗)nAn||1/2. If A is
normal, all operators commute and ||An|| = ||(A∗A)n||1/2. SinceA∗A is selfadjoint,
we can implement the result above:

sup{|λ| | λ ∈ σ(A)} = lim
n→+∞ ||An||1/n = lim

n→+∞ ||(A∗A)n||1/(2n) =
(

lim
n→+∞ ||(A∗A)n||1/n

)1/2

= ||A∗A||1/2 = ||A|| .

At last, let us prove (3.60). Since A is selfadjoint, p(A) is normal. Therefore

||p(A)|| = sup{|λ| | λ ∈ σ(p(A))} = sup{|λ| | λ ∈ p(σ(A))} = ||p�σ (A)||∞ ,

where we exploited (3.58) in the last passage. ��
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The utmost consequence of these propositions is the following theorem, which
establishes the existence and continuity of the so-called continuous functional
calculus for bounded selfadjoint operators. The theorem holds as it stands for unital
C∗-algebras.

Theorem 3.82 Let A ∈ B(H) be a selfadjoint operator on the Hilbert space H.
There exists a unique representation of unital ∗-algebras (Definition 2.27), called
continuous functional calculus,

� : C(σ(A)) � f → f (A) ∈ B(H)

that is continuous (with respect to || · ||∞ on the domain and the operator norm
on the codomain) and such that �(ı) = A (where ı : σ(A) � x 
→ x ∈ R).
Furthermore

(a) � is isometric and hence injective,
(b) B ∈ B(H) commutes with every f (A) if B commutes with A.

The theorem holds replacingB(H) by a unitalC∗-algebraA and A by a selfadjoint
element a ∈ A.

Proof If f ∈ C(σ(A)), there exist complex polynomials pn → f uniformly
on σ(A) as n → +∞ by the Stone–Weierstrass theorem. Define f (A) :=
limn→+∞ pn(A). Due to (3.60), the sequence pn(A) is Cauchy. Hence there
is a limit element in B(H) because this space is complete (Theorem 2.20).
It is evident that the limit point does not depend on the sequence, since a
different sequence would satisfy ||p′

n(A) − pn(A)|| = ||p′
n �σ(A) −pn �σ(A)

||∞ → 0. The map f 
→ f (A) is evidently isometric. Next observe that,
if we only consider polynomials, f 
→ f (A) is linear, it preserves the prod-
uct, and f 
→ f (A)∗. These features are preserved under the limiting pro-
cess when f ∈ C(σ(A)) is a general map. By construction f (1) = I and
f (ı) = A. If B commutes with A, it commutes with all polynomials p(A).
Hence

Bf (A) = B lim
n→+∞ pn(A) = lim

n→+∞ Bpn(A) = lim
n→+∞ pn(A)B = f (A)B .

To conclude, we prove that a continuous representation of unital ∗-algebras � :
C(σ(A)) → B(H) coincides with � if we impose �(ı) = A. In fact, �(ı) =
�(ı) = A and �(1) = �(1) = I , therefore �(p) = �(p) for every polynomial
p. By continuity, if pn → f as n → +∞ in the norm || · ||∞ on σ(A), we have
�(f ) = �(f ). All arguments carry through if we take a unitalC∗-algebraA instead
ofB(H) and an element a = a∗ ∈ A instead of A.

��
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3.6.2 Existence of Spectral Measures for Bounded Selfadjoint
Operators

A cardinal consequence of Theorem 3.82 is the following proposition, which goes
in the direction of the spectral theorem. Recall that Mb(σ(A)) indicates the unital
C∗-algebra of complex, bounded and Borel-measurable functions on σ(A), with
norm || · ||∞. We point out that in order to formulate this result the Hilbert
structure is essential, so no straightforward generalizations exist for abstract C∗-
algebras.

Proposition 3.83 Let A ∈ B(H) be a bounded selfadjoint operator on the Hilbert
spaceH. There exists a norm-decreasing (hence continuous) representation of unital
∗-algebras (Definition 2.27) � ′ : Mb(σ(A)) → B(H) such that � ′(ı) = A . The
representation also satisfies:

(a) � ′�C(σ(A))= � ,
(b) B ∈ B(H) commutes with � ′(f ) for every f ∈ Mb(σ(A)) if B commutes with

A,
(c) Suppose Mb(σ(A)) � fn → f pointwise as n → +∞ and |fn| ≤ K for some

K ∈ [0,+∞) and all n. Then

� ′(fn)x → � ′(f )x for every x ∈ H.

Proof Taking x, y ∈ H, the linear map C(σ(A)) � f 
→ Fx,y(f ) := 〈x|�(A)y〉
satisfies |Fx,y(f )| ≤ ||x|| ||y|| ||f ||∞. Riesz’s theorem for complex measures
[Rud91] implies that there exists a unique complex, regular Borel measure μxy :
B(σ (A)) → C such that

〈x|�(f )y〉 =
∫

σ(A)

f dμxy ∀f ∈ C(σ(A)) , (3.62)

and also ||Fxy || = |μxy |(σ (A)) ≤ ||x|| ||y||. Actually, all complex Borel measures
on B(σ (A)) are regular since the open sets of σ(A) are unions of countably
many compact sets [Rud91]. Since �(f ) = �(f )∗ and by standard inner product
properties the complex measuresμxy(E),μyx(E) produce the same result when we
integrate continuous functions. In view of uniqueness, therefore,μxy(E) = μyx(E).
Using Riesz’s Lemma, if f ∈ Mb(σ(A)) there exists a unique operator � ′(f ) ∈
B(H) such that

〈x|� ′(f )y〉 =
∫

σ(A)

f dμxy ∀x, y ∈ H , (3.63)

and |〈x|� ′(f )y〉| ≤ ||f ||∞|μxy |(σ (A)) ≤ ||f ||∞||x|| ||y||, so ||� ′(f )|| ≤ ||f ||∞.
By construction � ′(1) = I and � ′(ı) = A. Furthermore Mb(σ(A)) � f 
→ � ′(f )

is linear and therefore it coincides with � on polynomials. Continuity implies
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that it coincides with � on C(σ(A)), proving (a). � ′ satisfies � ′(f )∗ = � ′(f )

as a consequence of (3.63), the fact that the inner product is Hermitian, and
μxy(E) = μyx(E). To conclude the proof of the first statement it is enough to prove
� ′(f )� ′(g) = � ′(f · g). Take f, g ∈ C(σ(A)). Since �(f · g) = �(f )�(g) and
� ′ extends �:
∫

σ(A)

f · gdμx,y = 〈x|� ′(f · g)y〉 = 〈x|� ′(f )� ′(g)y〉 =
∫

σ(A)

f dμx,�′(g)y .

Riesz’s theorem implies that μx,�′(g)y equals the complex, regular Borel measure λ

such that

λ(E) =
∫

σ(A)

gdμxy .

Therefore
∫

σ(A)

f · gdμxy =
∫

σ(A)

f dλ =
∫

σ(A)

f dμx,� ′(g)y if f ∈ Mb(σ(A)) and g ∈ C(σ(A)).

As a consequence

∫

σ(A)

f · gdμxy =
∫

σ(A)

f dμx,�′(g)y = 〈x|� ′(f )� ′(g)y〉 = 〈� ′(f )∗x|� ′(g)y〉

=
∫

σ(A)

gdμ�′(f )∗x,y

for x, y ∈ H, f ∈ Mb(σ(A)), g ∈ C(σ(A)). By a similar reasoning

∫

σ(A)

f · gdμxy =
∫

σ(A)

gdμ�′(f )∗x,y

must hold also if g ∈ Mb(σ(A)). Summing up, for x, y ∈ H, f, g ∈ Mb(σ(A)), we
have

〈x|� ′(f · g)y〉 =
∫

σ(A)

f · gμxy =
∫

σ(A)

gμ�′(f )∗x,y = 〈� ′(f )∗x|� ′(g)y〉

= 〈x|� ′(f )� ′(g)y〉

whence � ′(f · g) = � ′(f )� ′(g) as required.
The proof of (b) is analogous: if B ∈ B(H) commutes with A, it also commutes

with every polynomial p(A) and hence with every � ′(f ) with f ∈ C(σ(A)) by
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continuity. Therefore, for every f ∈ C(σ(A)).

∫

σ(A)

f dμx,By = 〈x|� ′(f )By〉 = 〈x|B� ′(f )y〉 = 〈B∗x|� ′(f )y〉

=
∫

σ(A)

f dμB∗x,y .

Riesz’s theorem implies that μx,By = μBx,y . The definition of � ′ immediately
entails that 〈x|� ′(f )By〉 = 〈B∗x|� ′(f )y〉 = 〈x|B� ′(f )y〉 for every f ∈
Mb(σ(A)). But this is the thesis, since x, y ∈ H are arbitrary.

Let us prove (c). Since � ′ is a representation of unital ∗-algebras we immediately
have

||� ′(fn)x −� ′(f )x||2 = ||� ′(f −fn)x||2 = 〈� ′(f −fn)x|� ′(f −fn)x〉 = 〈x|� ′(|f −fn|2)x〉 .

By (3.63)

||� ′(fn)x − � ′(f )x||2 =
∫

σ(A)

|f − fn|2dμxy → 0

when n → +∞ by dominated convergence, since |μxy | is finite. ��
We are ready to prove the existence claim in the Spectral Theorem (Theorem 3.40)
for bounded selfadjoint operators.

Theorem 3.84 If A ∈ B(H) is selfadjoint on the Hilbert space H, there exists a
PVM P (A) : B(R) → L (H) such that

A :=
∫

R

ı dP (A) .

More generally, if � ′ : Mb(σ(A)) → B(H) is defined as in Proposition 3.83,

� ′(f ) =
∫

σ(A)

f dP (A)

for every f ∈ Mb(σ(A)).

Proof Refer to Proposition 3.83. The required PVM is nothing but P
(A)
E :=

� ′(χE∩σ(A)) for every E ∈ B(R), P
(A)
∅

:= 0. Indeed, suppose P (A) is a

PVM. If s = ∑N
j=1 sj χEj is a simple function, the linearity of � ′ immediately

shows � ′(s) = ∑N
j=1 sj�

′(χEj ) = ∫
R

s dP (A). Now consider a sequence of
simple functions sn such that |sn| ≤ |sn+1| ≤ |ı| on the compact set σ(A),
vanishing outside σ(A), and converging pointwise to ı on σ(A). As the PVM
is concentrated on σ(A) by construction, Propositions 3.83 (a)–(c) and 3.29
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(c) imply

∫

R

ı dP (A)x =
∫

σ(A)

ı dP (A)x = lim
n→+∞

∫

σ(A)

sn dP (A)x = lim
n→+∞ � ′(sn) = � ′(ı)x = Ax .

Since x ∈ H is arbitrary, we get A = ∫
R

ı dP (A), as we wanted. The same argument
(using a sequence of simple functions sn converging to f ∈ Mb(σ(A)) pointwise
and such that |sn| ≤ |sn+1| ≤ |f |) returns the second claim.

To end the proof, there remains to prove that P
(A)
E := � ′(χE∩σ(A)) with

E ∈ B(R) (and obviously P
(A)
∅

:= 0) defines a PVM. But P
(A)
R

= I ,

P
(A)
E P

(A)
F = P

(A)
E∩F , (P

(A)
E )∗ = P

(A)
E (in particular P

(A)
E ∈ L (H)) are immediate

consequences of the fact that � ′ is a representation of unital ∗-algebras, together
with trivial properties of characteristic functions χE , plus � ′(1) = � ′(χσ(A)) = I .
Finally, σ -additivity follows from Proposition 3.83 (c): taking a countable collection
of disjoint sets Ek ∈ B(R), we have

N∑

k=1

χEk∩σ(A) → χσ(A)∩∪N
k=1Ek

pointwise as n → +∞

(all functions are bounded by the constant 1). ��

3.6.3 Spectral Theorem for Normal Operators inB(H)

The functional calculus developed in the previous section permits us to prove the
spectral theorem for normal operators on B(H). In particular it handles selfadjoint
operators onB(H) and unitary operators.

Theorem 3.85 (Spectral Theorem for Normal Operators on B(H)) Let T ∈
B(H) be a normal operator on the complex Hilbert space H.

(a) There exists a unique PVM P (A) : B(C) → L (H), called the spectral measure
of T , such that

T =
∫

C

zdP (T )(z, z) .

In particular D(T ) = �ı , where ı : C � z 
→ z.
(b) We have

supp(P (T )) = σ(T ).
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As the standard topology of C is second-countable, P (T ) is concentrated on
σ(T ):

P (T )(E) = P (T )(E ∩ σ(T )) , ∀E ∈ B(C) . (3.64)

(c) z ∈ σp(T ) if and only if P (T )({z}) �= 0; in particular this happens if z is

an isolated point of σ(T ). Finally P
(T )
{z} is the orthogonal projector onto the

eigenspace of z ∈ σp(A).
(d) z ∈ σc(T ) if and only if P (T )({λ}) = 0, but P (T )(E) �= 0 if E � λ is an open

set of C.

Proof (a) Let us prove that there exists a PVM on C with T = ∫
C

zdP (T )(z).
Decompose T = A+iB whereA = 1

2 (T +T ∗) andA = 1
2i (T −T ∗) are selfadjoint,

belong to B(H), and commute because T and T ∗ commute by hypothesis. Notice
that, as a consequence of Proposition 3.83 (b) the spectral measure P (A) of A,
which exists by Theorem 3.84 and satisfies P

(A)
E = � ′

A(χE), commutes with B.
By the same argument the spectral measure P (B) of B commutes with the spectral
measure of A.

Next consider step functions on the compact set K = [−||A||, ||A||] ×
[−||B||, ||B||] ⊂ R2 ≡ C. A step function is a simple function of the form

s(x, y) =
N∑

i=1

M∑

j=1

sij χIi (x)χJj (y) , z = x + iy ∈ K (3.65)

where sij ∈ C are fixed numbers, I1 := [−||A||, a2], J1 := [−||B||, b2], Ii :=
(ai, ai+1], Jj := (bj , bj+1] for i, j > 1, and aN+1 = ||A||, bn+1 = ||B||. The
decomposition of s ∈ S(K) in (3.65) is not unique, since every such expression can
be refined by adding points ai or bj . It is easy to prove that the set S(K) of step
functions on K is closed under linear combinations and products. Since it evidently
contains the constant function 1 and it is invariant under conjugation, S(K) is a uni-
tal ∗-subalgebra ofMb(K). Referring to (3.65), let us define�0 : S(K) → B(H) by

�0(s) :=
N∑

i=1

M∑

j=1

sij P
(A)
Ii

P
(B)
Jj

=
N∑

i=1

M∑

j=1

sij P
(B)
Jj

P
(A)
Ii

. (3.66)

The definition is well-posed irrespective of the various expansions (3.65) that s

possesses. By direct inspection, one sees that �0 is a homomorphism of unital
∗-algebras and also that

||�0(s)ψ||2 =
N∑

i=1

M∑

j=1

|sij |2||P (A)
Ii

P
(B)
Jj

ψ||2 ≤ sup
i,j

|sij |2
N∑

i=1

M∑

j=1

||P (A)
Ii

P
(B)
Jj

ψ||2

= sup
ij

|sij |2||ψ||2 ,
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using that the sets Ii × Jj are pairwise disjoint and
∑

i,j P
(A)
Ii

P
(B)
Jj

= I because
∪i.j Ii × Jj = K . As a consequence

||�0(s)|| ≤ ||s||∞ if s ∈ S(K).

Since S(K) is dense in C(K) in norm || · ||∞ (a continuous function on a compact
set is uniformly continuous), the same proof as for Theorem 3.82 ensures that
the continuous unital ∗-homomorphism �0 generates a norm-decreasing unital
∗-homomorphism � : C(K) → B(H). Notice that � is not an extension of
�0, since its domain contains continuous maps only, whereas the domain of �0
contains discontinuous functions as well. By definition �(1) = I , and by setting
ı1 : K � (x, y) 
→ x and ı2 : K � (x, y) 
→ y we have

�(ı1) = A and �(ı2) = B .

Indeed, let sn : [−||A||, ||A||]×[−||B||, ||B||] → R be a sequence of step functions,
constant in the variable y ∈ [−||B||, ||B||] and converging uniformly to the map ı1.
Applying (3.66) gives, with obvious notation,

�0(sn) =
∫

R

sndP (A) → �(ı1) =
∫

R

ı1dP (A) = A, in the uniform topology as n → +∞,

where we exploited (3.21). The story for ı2 is identical.
As last step, and proceeding as in the proof of Proposition 3.83, we may extend�

to a unital ∗-algebra homomorphism �′ : Mb(K) → B(H) completely determined
by the requirement

〈ψ|�′(f )φ〉 =
∫

K

f dνψ,φ ψ, φ ∈ H , f ∈ Mb(K) ,

where νψ.φ : B(K) → C is the unique complex regular Borel measure
satisfying the above relation for f ∈ C(K). An argument that essentially
replicates Proposition 3.83 shows that the homomorphism of unital ∗-algebras
�′ : Mb(K) → B(H) is norm-decreasing (||�′(f )|| ≤ ||f ||∞), satisfies

�′(ı1) = A and �′(ı2) = B , (3.67)

and finally

�′(fn)ψ → �′(f )ψ for every ψ ∈ H, (3.68)

if Mb(K) � fn → f pointwise as n → +∞ and |fn| ≤ M for some M ∈ [0,+∞)

and all n.
The last convergence property in particular implies, along the same lines of

Theorem 3.84, that P
(T )
E := �′(χE∩K) (with P

(T )
∅

:= 0) is a PVM on C ≡ R2
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when E varies inB(C). By (3.67) moreover,

∫

C

ı1dP (T ) = �′(ı1) = A ,

∫

C

ı2dP (T ) = �′(ı2) = B . (3.69)

Since T = A + iB and T ∗ = A − iB, these relations read

∫

C

zdP (T )(z, z) = T ,

∫

C

zdP (T )(z, z) = T ∗ . (3.70)

Let us pass to the uniqueness issue. First of all observe that if T = ∫
C

zdP (z, z) then
P must have bounded support: if not, for every n ∈ N, we could find En ∈ B(C)

outside the disc of radius n at the origin of C such that PEn �= 0. Hence we could

pick xn ∈ PEn(H) with ||xn|| = 1. As a consequence ||T xn||2 ≥ |n|2 ∫
C
1dμ

(P)
xnxn

=
|n|2 → +∞ as n → +∞, contradicting ||T || < +∞. We conclude that there
exists a sufficiently large compact rectangle K := [a, b] × [c, d] ⊂ R2 ≡ C

(we can always assume it to be larger than [−||A||, ||A||] × [−||B||, ||B||]),
so that supp(P ) ⊂ K . Hence it suffices to work in K . Taking adjoints of∫
K zdP(z, z) = T = ∫

K zdP (T )(z, z) produces
∫
K zdP(z, z) = T ∗ =

∫
K

zdP (T )(z, z). Using standard properties of bounded PVMs, we immediately
have that

∫
K

p(z, z)dP (z, z) = ∫
K

p(z, z)dP (T )(z, z) for every polynomial p

defined on K . But polynomials are || · ||∞-dense in C(K) (Stone–Weierstrass
theorem), so (3.21) implies

∫
K

f (z, z)dP (z, z) = ∫
K

f (z, z)dP (T )(z, z) for every
f ∈ C(K). Applying now the Riesz theorem for positive Borel measures to

∫

K
f dμ

(P )
ψψ =

〈

ψ

∣
∣
∣
∣

∫

K
f dP ψ

〉

=
〈

ψ

∣
∣
∣
∣

∫

K
f dP (T ) ψ

〉

=
∫

K
f dμ

(P (T ))
ψψ ∀f ∈ C(K)

we conclude μ
(P (T ))
ψψ (E) = μ

(P)
ψψ(E) for every E ∈ B(K). Since the supports of the

two measures stay in K , the relation we have found reads μ
(P (T ))
ψψ (E) = μ

(P)
ψψ(E)

for every E ∈ B(C), i.e. 〈ψ|(P (T )
E − PE)ψ〉 = 0 for every ψ ∈ H. This result

immediately leads to the thesis, P (T )
E = PE for every E ∈ B(C).

The proofs of (b), (c) and (d) are identical to those of the corresponding state-
ments in Theorem 3.40, up to trivial changes (R becomes C and λ becomes z). ��

3.6.4 Existence of Spectral Measures for Unbounded
Selfadjoint Operators

At the end of this long detour, we are finally ready to justify the existence of PVMs
for unbounded selfadjoint operators (the Spectral Theorem, 3.40).
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Theorem 3.86 If A is a (generally unbounded) selfadjoint operator on the Hilbert
space H, there exists a PVM P (A) : B(R) → L (H) such that

A :=
∫

R

ı dP (A) .

Proof First of all observe that, if A is normal, its resolvent satisfies Rλ(A)∗ =
Rλ(A

∗). Indeed, we know that λ ∈ ρ(A) iff λ ∈ ρ(A∗) by Proposition 3.13 (c).
In this case Rλ(A)(A − iλI) = I�D(A) implies (A − iλI)∗Rλ(A)∗ = I�∗D(A)= I ,
namely (A∗ + iλI)Rλ(A)∗ = I . Since we also have (A∗ + iλI)Rλ(A

∗) = I and the
inverse is unique, necessarily Rλ(A)∗ = Rλ(A

∗). This results is in particular true
when A = A∗. Next, assuming A = A∗, consider the operator

U := I − 2iR−i (A) ,

called the Cayley transform of A. By the resolvent identity (3.2) and Rλ(A)∗ =
Rλ(A), one immediately proves that UU∗ = U∗U = I . Hence U is unitary and
σ(U) is a closed subset of T = {z ∈ C | |z| = 1} in the topology induced by C due
to Proposition 3.13. Finally,

U =
∫

σ(U)

zdP (U)(z, z)

by Theorem 3.85. We claim that the statement’s selfadjoint operator A coincides
with the selfadjoint operator

A′ :=
∫

σ(U)

i
1 + z

1 − z
dP (U)(z, z) (3.71)

(the integrand is real since z = 1/z as z ∈ T). In fact, since R−i (A) = i
2 (U − I)

and taking Proposition 3.33 (c) into account,

(A′ + iI )R−i (A) =
∫

σ(U)

[

i
1 + z

1 − z
+ i

]

dP (U)(z, z)

∫

σ(U)

i

2
(z − 1)dP (U)(z, z)

=
∫

σ(U)

[

i
1 + z

1 − z
+ i

]
i

2
(z − 1)dP (U)(z, z) =

∫

σ(U)

1dP (U)(z, z) = I .

We conclude thatA′+iI is defined on a domain that containsRan(R−iA) = D(A),
on which it coincides with the unique left inverse of R−i (A). In other words A′ + iI

is an extension of A + iI , so A′ ⊃ A. Since A′ and A are selfadjoint, A′ = A by
Proposition 2.39 (b). To conclude, we shall prove that (3.71) can be decomposed
spectrally on R. As

φ : T � z 
→ i
1 + z

1 − z
∈ R ∪ {∞}
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is a homeomorphism (R ∪ {∞} is the standard 1-point compactification), then

A = A′ :=
∫

T

i
1 + z

1 − z
dP (U)(z, z) =

∫

R∪{∞}
rdP (r) ,

where we have defined the PVM PE = P
(T )

φ−1(E)
for E ∈ B(R ∪ {+∞}) following

Proposition 3.33 (f). Let us explain why ∞ is reached by φ only for z = 1 and
P

(U)
{1} = 0. If P

(U)
{1} �= 0 we would have Ux = x for some x ∈ P

(U)
{1} (H) \ {0}.

Since U := I − 2iR−i (A), then R−i (A)x = 0, contradicting the fact that R−i (A) is
invertible since A is selfadjoint and so −i ∈ ρ(A). We can rewrite the equation as

A =
∫

T\{1}
i
1 + z

1 − z
dP (U)(z, z) =

∫

R

rdP (r) .

It is easy to check that the restriction P ′ of P to B(R) is still a PVM on R and the
integral above can be thought of as

A =
∫

R

rdP ′(r) .

The proof is over once we take P (A) := P ′. ��

3.6.5 Existence of Joint Spectral Measures

We shall provide a proof for Theorem 3.56. The argument differs from that
appearing in [Mor18] in view of the distinct presentation of the spectral technology
we have chosen here. In particular, the current proof does not require that the Hilbert
space be separable.

Theorem 3.56 (Joint Spectral Measure) Let A := {A1, A2, . . . , An} be a set of
selfadjoint operators on the Hilbert space H with commuting spectral measures:

P
(Ak)
Ek

P
(Ah)
Eh

= P
(Ah)
Eh

P
(Ak)
Ek

∀k, h ∈ {1, . . . , n} ,∀Ek,Eh ∈ B(R) .

Then there exists a unique PV M P(A) on Rn such that

P
(A)
E1×···×En

= P
(A1)
E1

· · ·P (An)
En

, ∀E1, . . . , En ∈ B(R) . (3.72)

For every f : R → C measurable, furthermore,

∫

Rn

f (xk)dP (A)(x) = f (Ak) , k = 1, . . . , n (3.73)
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where x = (x1, . . . , xk, . . . , xn) and f (Ak) := ∫
R

f (λ)dP (Ak).
Finally, B ∈ B(H) commutes with P (A) if and only if it commutes with all P (Ak),

k = 1, 2, . . . , n.

Proof (Existence) We start by assuming Ak ∈ B(H) for k = 1, . . . , n. Then we
may replicate the initial part of the proof of Theorem 3.85, only replacing the
two commuting selfadjoint operators in A,B ∈ B(H) by n commuting selfadjoint
operators Ak ∈ B(H). In this way if K := [−a, a]n ⊂ Rn is sufficiently large and
K ⊃ ×n

k=1σ(Ak), there exists a map �′ : Mb(K) → B(H) with the following
features. It is a norm-decreasing ∗-homomorphism of unital ∗-algebras, it satisfies

�′(ık) = Ak for k = 1, . . . , n (3.74)

where ık : Rn � (x1, . . . , xn) 
→ xk ∈ R, and finally

�′(fn)ψ → �′(f )ψ for every ψ ∈ H, (3.75)

if Mb(K) � fn → f pointwise as n → +∞ and |fn| ≤ M for some M ∈ [0,+∞)

and all n.
Invoking the proof of Theorem 3.84, the last convergence property implies that

P
(A)
E := �′(χE∩K) (3.76)

(with P
(A)
∅

:= 0) defines a PVM on Rn when E varies inB(Rn) and

∫

Rn

ıkdP (A) = �′(ık) = Ak , k = 1, . . . , n (3.77)

by (3.74). Now observe that asE ∈ B(R) varies, the family of orthogonal projectors
PE := P

(A)

E×Rn−1 defines a PVM on R. Take a sequence of simple functions sn on K ,
constant in the variables x2, . . . , xn and such that sn → ı1 pointwise with |sn| ≤ |ı1|
(which is bounded onK). Equation (3.75) and Proposition 3.29 (c) allow to rephrase
(3.77) for k = 1 as

∫

R

ı dP = A1 . (3.78)

The uniqueness of the spectral measure of A1 (Theorem 3.40) implies that

P
(A)

E×Rn−1 = PE = P
(A1)
E ∀E ∈ B(R) .

By the same argument,

P
(A)

Rk−1×E×Rn−k = P
(Ak)
E , E ∈ B(R) , k = 1, 2, . . . , n .



126 3 Observables and States in General Hilbert Spaces: Spectral Theory

This relation implies, together with (3.76) and the fact that �′ preserves products,

P
(A)
E1×···×En

= �′(χE1×Rn−1 · · · χRn−1×En
) = �′(χE1×Rn−1) · · · �′(χRn−1×En

)

= P
(A)

E1×Rn−1 · · · P (A)

Rn−1×En
= P

(A1)
E1

· · · P (An)
En

.

Hence (3.72) is true. Let us pass to unbounded selfadjoint operators Ak . We shall
reduce this to the case of bounded operators. To this end, define a family B :=
{B1, . . . , Bn},

Bk :=
∫

R

xk
√
1 + x2

k

dP (Ak)(xk)

for every k = 1, 2, . . . , n. It is clear that B∗
k = Bk ∈ B(H) due to Theorem 3.24

(c) and Proposition 3.29 (a). Moreover, by Corollary 3.53 σ(Bk) ⊂ [−1, 1], but
±1 �∈ σp(Bk). By contradiction, in fact, if ±1 ∈ σp(Bk) and ψ± ∈ H were a
corresponding eigenvector, then (Bk ± I)ψ± = 0, and so

0 = ||(Bk ± I)2ψ±||2 =
∫

R

⎛

⎝ xk
√
1 + x2

k

± 1

⎞

⎠

2

dμ
(Pk)
ψ±ψ± .

Since the positive measure μ
(Pk)
ψ±ψ± does not vanish (ψ± �= 0 because it is an

eigenvector), the integrand would be zero almost everywhere. This is not possible
because

⎛

⎝ xk
√
1 + x2

k

± 1

⎞

⎠

2

> 0 for every xk ∈ R.

Let us now focus on the map

φ : R � x 
→ x√
1 + x2

∈ [−1, 1] ,

where R = R ∪ {±∞} is the compactification and [−1, 1] is standard. Note that
φ(R) = (−1, 1) and φ(±∞) = ±1. It is easy to see that φ is an homeomorphism,
so φ and φ−1 are Borel measurable.

In view of these properties of φ it is preferable to extend the spectral measures
P (Ak) to new PVMs P̃ (Ak) defined on the Borel algebraB(R), by simply declaring
that P̃

(Ak)+∞ = P̃
(Ak)−∞ = 0 and P̃

(Ak)
E = P

(Ak)
E when E ∩ {+∞} = E ∩ {−∞} = ∅
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for E ∈ B(R). Now it is safe to write

Bk :=
∫

R

xk
√
1 + x2

k

dP̃ (Ak)(xk) .

Using the extension, Proposition 3.33 (f) tells

Bk =
∫

[−1,1]
ykdP (Bk)(yk) ,

where

P (Bk)(F ) = P̃ (Ak)(φ−1(F )) for F ∈ B([−1, 1]) . (3.79)

We could extend P (Bk) to the whole B(R) by setting P
(Bk)
1 (F ) := P

(Bk)
1 (F ∩

[−1, 1]) for F ∈ B(R) trivially; we shall however stick to the first choice for
the sake of simplicity, and allow ourselves to interpret the relevant PVM as their
extensions where necessary.

Observe that the spectral measures P (Bk) commute with each other due to (3.79)
and the fact that the PVMs P̃ (Ak) do (the added points ±∞ are harmless). We can
therefore apply the previous proof, construct a PV M P(B) onB(Rn), with support
in [−1, 1]n, which satisfies

P
(B)
F1×···×Fn

= P
(B1)
F1

· · · P (Bn)
Fn

if Fk ∈ B(R) for k = 1, . . . , n. (3.80)

Let us go back to the unbounded operators Ak , define the homeomorphism

� : Rn � (x1, . . . , xn) 
→ (φ(x1), . . . , φ(xn)) ∈ [−1, 1]n

and the PVM on R
n

PE := P
(B)
�(E) E ∈ B(R

n
) .

This is allowed by Proposition 3.33 (f) (� = (�−1)−1 and �−1 is Borel measurable
since � is an homeomorphism). With this definition, (3.80) implies

PE1×···×En = P̃
(A1)
E1

· · · P̃ (An)
En

, ∀E1, . . . , En ∈ B(R) . (3.81)

To conclude the proof of existence, it is enough to rid ourselves of the ‘annoying’
points ±∞. The boundary of R

n
is the union of the 2n sets

F
(k)
± := Rk−1 × {±∞} × Rn−k .
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Every such set has zero P -measure: exploiting (3.81), in fact,

P
F

(1)
+

= P̃
(A1)
{+∞} · · · P̃ (An)

R
= 0

because P̃
(A1){+∞} = P

(B1)
+1 = 0 since +1 �∈ σp(B1) and by Theorem 3.40 (c)–(d).

Hence the boundary of R
n
has zero measure for P . This means that, restricting to

the interior Rn of R
n
, the map P

(A)
E := PE with E ∈ B(Rn), still defines a PVM,

in particular P
(A)
Rn = I . By construction, P (A) satisfies (3.73) since (3.80) holds,

and that ends the existence part of the proof.

(Uniqueness) Let us show uniqueness. We have the following known result of
general measure theory [Coh80, Corollary 1.6.3].

Lemma 3.57 Let �(X) be a σ -algebra on X and P ⊂ �(X) such that

(i) P is closed under finite intersections;
(ii) the σ -algebra generated by P is �(X) itself;
(iii) there is an increasing sequence {Cm}m∈N ⊂ P such that ∪m∈NCm = X.

If μ and ν are positive σ -additive measures on �(X) such that μ(Cm) = ν(Cm) <

+∞ for every m ∈ N, then μ = ν.

Returning to our proof, define �(X) := B(Rn) and let P be the collection of sets
E1×· · ·×En for Ek ∈ B(R). It it known that (R is a separable metric space) the σ -
algebra generated by P is justB(Rn). Now set Cm = (−r, r)m with m ∈ N. Finally,
fix x ∈ H and define μ(F) := 〈x|PF x〉 and ν(F ) := 〈x|P ′

F x〉 for F ∈ B(Rn),
where both P and P ′ satisfy (3.72) in place of P (A). These measures are finite, as
μ(F) = ν(F ) = ||x||2 by definition of PVM, and satisfy μ(Cn) = ν(Cn) < +∞
because of (3.72). Lemma 3.57 proves that 〈x|PF x〉 = 〈x|P ′

F x〉, so that 〈x|(PF −
P ′

F )x〉 = 0. The arbitrariness of x ∈ H and the usual polarization formula imply
PF = P ′

F for every F ∈ B(R).

(Equation (3.73)) The proof is easy. Consider k = 1 for instance. There
exists a sequence of simple functions sm on R converging pointwise to the
measurable function f : R → C, as m → +∞, and such that |sm| ≤
|sm+1| ≤ |f |. Let us write sm(x1) := ∑N

r=1 crχEr and define s′
m(x1, . . . , xn) :=

∑N
r=1 crχEr×Rn−1(x1, . . . , xn) (so that s′

m is constant in x1, . . . , xn and equals sm

in the remaining variable). If ψ ∈ �
(A1)
f , by Theorem 3.24 (d) and dominated

convergence we have

f (A1) =
∫

R

f (x1)dP (A1)ψ = lim
m→+∞

∫

R

smdP (A1)ψ

= lim
m→+∞

∫

Rn

s′
mdP (A)ψ =

∫

Rn

f (x1)dP (A)ψ , (3.82)
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where the penultimate equality is justified by (3.72). The same argument, using

monotone convergence and the identity
∫
R

|sm|2dμ
(P (A1))
ψψ = ∫

R
|s′

m|2dμ
(P (A))
ψψ , also

proves that ψ ∈ �
(A)
f with obvious notation. Therefore

∫
Rn f (x1)dP (A)ψ is well

defined.

(Last Statement) If B ∈ B(H) commutes with P (A) it evidently commutes with
every P (Ak), k = 1, 2, . . . , n due to (3.72) by just taking all Ek = R but one.
Suppose conversely that U ∈ B(H) is unitary and commutes with every P (Ak). The
PVM defined by the projectors UP

(A)
E U−1, for E ∈ B(Rn), therefore coincides

with P (A) whenE = E1×· · ·×En with Ek ∈ B(R). By the established uniqueness
property, we immediately have UP

(A)
E U−1 = P

(A)
E for every E ∈ B(Rn). In other

words UP
(A)
E = P

(A)
E U for every E ∈ B(Rn). In order to pass from U to a general

B ∈ B(H), it suffices to invoke Proposition 3.55 (whose proof relies only upon the
spectral theorem of selfadjoint operators), write B = aU + bU ′ as complex linear
combination of unitary operators, and finally use the composition’s linearity in the
relation above.
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