Chapter 3 )
Observables and States in General fleckir
Hilbert Spaces: Spectral Theory

The overall goal of this chapter is to extend the elementary decomposition of a
Hermitian operator (1.4) on a finite-dimensional Hilbert space seen in Chap. 1 to a
formula valid in the infinite-dimensional case. We do this to make rigorous sense of
the spectral decompositions of (generally unbounded) selfadjoint operators repre-
senting observables, such as momentum and position. What we need is called Spec-
tral Theory on Hilbert spaces, which will be the subject of this chapter. After stating
and proving the theory’s major theorems, we shall apply them to the elementary
presentation of quantum theory introduced in the first chapter to produce a mathe-
matically sound formulation. The proofs to certain technical results are relegated to
the last section. Reference books are [Ped89, Rud91, Schm12, Tes14, Mor18].

3.1 Basics on Spectral Theory

As we shall see in a short while, when we pass to infinite dimensions sums are
replaced by integrals and o (A) must be enlarged to encompass more than just the
eigenvalues of A. This is because, as already noticed in the first chapter, there exist
operators playing crucial roles in QM that should be decomposed as prescribed by
(1.4) yet do not have eigenvalues.

Notation 3.1 If A : D(A) — H is injective, A~! indicates its inverse when the
codomain of A is restricted to Ran(A). In other words, Al Ran(A) — D(A). 1

3.1.1 Resolvent and Spectrum

The definition of spectrum of the operator A : D(A) — H extends the notion
eigenvalue. The eigenvalues of A are numbers A € C such that (A — AJ)~! is not
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48 3 Observables and States in General Hilbert Spaces: Spectral Theory

defined. A naive generalization to infinite dimensions is not viable due to a number
of topological issues. As a matter of fact, even if (A — A1)~ does exist it may be
bounded or unbounded, and its domain Ran(A — AI) may or not be dense. These
features permit us to define a suitable extension of the notion of eigenvalue.

Definition 3.2 Let A be an operator on the Hilbert space H. The resolvent set of A
is the subset of C

p(A) :={r € C|(A—AI) is injective, Ran(A — A1) = H, (A—)J)‘lis bounded}.
The spectrum of A is the complement o (A) := C\ p(A) and consists of the union

of the following pairwise-disjoint three parts:

(i) the point spectrum, o, (A), for which A — A/ is not injective (its elements are
the eigenvalues of A),
(ii) the continuous spectrum, o.(A), for which A — Al is injective,
Ran(A — AI) = Hand (A4 — A1)~ is not bounded,
(iii) the residual spectrum, o, (A), where A — A[ is injective and Ran(A — A1) #
H.

If » € p(A), the operator
Ry (A) .= (A — )»1)71 :Ran(A — AI) — D(A)

is called the resolvent operator of A. |

The following technically elementary fact defines approximate eigenvector an
element of the continuous spectrum. Even if proper eigenvectors do not exist, they
can be approximated arbitrarily well.

Proposition 3.3 Let A : D(A) — H be an operator on the Hilbert space H and
take ). € o.(A). For every € > 0 there exists xc € D(A) with ||xc|| = 1 such that
[|Axe — Axel| < e.

Proof Since A € 0.(A), we have that (A — AD~L: Ran(A — AI) — D(A) is not
bounded. Therefore, for every € > O there is y. € Ran(A — LI) with y. # 0 such
that

A = 2D yell > € lyell -
By construction, we may write y. = (A — Al)z. for some z. € D(A) \ {0}, so that

(A =AD" A = ADzell > € (A = ADzel| -

In other words, €||z¢|| > ||Aze — Aze||. It is now evident that x¢ := ||z¢||~'ze fulfils
the claim. O
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The property is also valid (a) if A € 0,(A), simply by choosing x. as a A-eigenvector
irrespective of €, and also (b) if . € 0,(A) in case (A — Al )~ ! is not bounded.
For this reason, it is sometimes convenient to decompose o (A) in a different way
when we deal with operators admitting residual spectrum (this is not the case
for normal operators, as we shall see shortly). The approximate point spectrum
04p(A) consists of A € o(A) such that, for every € > 0, there exists xe € D(A)
with ||Axe — Ax¢|| < € and ||x¢|| = 1 (including the case Ker(A — A1) = {0}). The
residual pure spectrum o;,(A) is just 6 (A) \ o4p(A).

In Hilbert spaces the spectrum and the resolvent are invariant under unitary
operators and, more generally, under isomorphisms or anti-isomorphisms. The
following elementary result, proven by using basic properties of surjective linear
isometries, confirms this.

Proposition 3.4 If U : H — H’ is an isometric surjective linear (or anti-linear)
map between Hilbert spaces and A is any operator on H, then o (UAU 1) = o (A).
In particular,

op(UAU*) = 0,(A), o(UAU™") =0.(4), o, (UAU™") =0,(A).
(3.1)

The next technically important proposition is concerned with resolvents and spectra
of closed operators, where things simplify quite a lot.

Proposition 3.5 Let A : D(A) — H be a closed operator on the Hilbert space H
(for instance A € B(H)). Then 1 € p(A) if and only if the inverse to A — Al exists
and belongs in B(H). In particular Ran(A — A1) = H.

Proof If (A — AI)™' € B(H), then Ran(A —AI) = Ran(A — AI) = H and
(A—AMI )71 is bounded, so that A € p(A) by definition. Let us prove the converse,
and suppose that A € p(A). We know that (A—A1 )71 is defined on the dense domain
Ran(A—AI) and is bounded. To conclude, it is therefore enough to prove that y € H
implies y € Ran(A — AI). To this end, notice thatif y € H = Ran(A — AI), then
y = lim,_ 450 (A — AI)x, for some x, € D(A — AI). The sequence of elements
xp converges. Indeed, H is complete and {x,},cy is Cauchy because (1) x, = (A —
)\1)71}’717 @) l1xn — xmll < [I(A — )\1)71” llyn — ymll, and (3) yp — y. To finish
the proof, we observe that A — A[ is closed since A is closed (Remark 2.31 (b)).
Consequently (Remark 2.31 (¢)) x = limp— 400X, € D(A—Al)andy = (A —
M)x € Ran(A — AI). O

Remark 3.6
(a) As a consequence of this result, if A : D(A) — His closed or A € *B(H) the

definition of resolvent simplifies:

p(A):={1eC|IA—-r1D)""'eBH).
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Some textbooks give this definition from the very beginning. In these cases,
since the operators (A — Al )~! have the same domain H when 1 € p(A),
R,,(A) — R;.(A) is defined everywhere.

(b) The conclusion of Proposition 3.5 can actually be stated in an even stronger
form. Since A is closed, A — A and its inverse (A — AI)~! are closed as
well (they have the same graph). So if A is defined everywhere on H, it is
automatically bounded by the closed graph theorem. So we have an alternative
version of Proposition 3.5. ]

Proposition 3.7 Let A : D(A) — H be a closed operator on the Hilbert space H
(for example, A € B(H)). Then A € p(A) ifand onlyif A — Al : D(A) — Hisa
bijection.

The definitions of resolvent and spectrum can be extended as they stand to the
case where H is replaced by a complex Banach space [Rud91, Morl18]. Even more
generally, they adapt to abstract unital Banach algebras if we interpret operators as
elements of the algebra.

Definition 3.8 If A is a unital Banach algebra, the resolvent of an elementa € A
is made of all A € C such that a — A1 admits inverse, written R) (a), in 2. The
spectrum of a € Ais o(a) := C\ p(a). |

No finer spectral decompositions are made in this context.
A closed operator A satisfies the resolvent identity, which is evidently valid also
for unital Banach algebras (replacing R;(A) by R;(a)).

Proposition 3.9 Let A : D(A) — H be a closed operator (or, more strongly, A €
B(H)) on the Hilbert space H and take ., ). € p(A). Then

R (A) = R (A) = (u = MR (A)R; (A) (3.2)

called the resolvent identity.

Proof First of all Ry (A)(A — AI) = I [pa) and (A — nl)R(A) = I. As a
consequence, Ry (A)(A—AI)R,(A) = R, (A) and Ry (A)(A—ul)R, (A) = R,.(A).
Taking the difference produces (3.2). O

We shall prove that if A € B(H) then p(A) # &. The same applies to unital Banach
algebras.

Proposition 3.10 Ler H be a Hilbert space and A € B(H). Then A € p(A) if
[A] > ||A]l], so o (A) is bounded by ||A]|.

Proof The series S, = — Y 120 A~"+*D A" (where A? := I) converges in the

operator norm of B(H) when |A| > ||A]| since it is dominated by the complex
series Y20 |A| 7+ D||A||" and B(H) is a Banach space. Furthermore

+o00
SUA—A) = (A= ADS, =Y (—ﬂ"“)A"“ n )»’"A") —1,
n=0
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s0 Sy = Ry(A) and A € p(A). |

A few general properties of the spectrum and the resolvent set deserve special
attention because they crop up in QM. The most important are encapsulated in the
following proposition.

Proposition 3.11 Ler A : D(A) — H be a closed operator on the Hilbert space H.
Then

(a) p(A)isopen, o(A)isclosedand p(A) 2 A +— (x|Ry(A)y) € Cis holomorphic

foreveryx,y e Hif p(A) # @.
(b) If A € B(H), then

(i) 0(A) # 2,
(ii) p(A) # 2.

(iii) o (A) is compact.

If A is a unital Banach algebra and a € 2, then p(a) is open, o (a) is closed and
part (b) holds with a replacing A.

Proof Let us start from (b). Statement (ii) has already been proved in Proposi-
tion 3.10, and this proves (iii) provided (i) holds. (i) is established by studying
the function p(A) 3 A = fi,(A) = (Y[(A — AI)_lx) € C for every given
x,y € H. Using the expansion in the proof of Proposition 3.10, we have fy(A) =
— Z:ﬁg A~ (H+D(y| A" x). The series, for [A| > |Ag|, is dominated by the numerical
series Z:ﬁg AS(HD [IA]I*|x][||¥]], which converges as |Ag| > ||A||. Therefore the
series of fy, converges absolutely and uniformly on {A € C||A| > |Ao|}. Exploiting
the dominated convergence theorem we conclude that fy,(1) — 0 as |A| — +o0.
But fyy is holomorphic because it is a uniform limit of holomorphic maps (use
Morera’s theorem). Now, if p(A) = C Liouville’s theorem would imply that f,
is constant for every y,x € H, so f,,(1) = 0 everywhere because of the limit
we computed. It would follow (A — A1 )~1 = 0, a contradiction. We conclude that
p(A) #C,s00(A) # 2.

If we look at the Banach algebra picture and take a € %, the function fy, has to
be replaced by F(A) = f((a — A1)~ for every element f of the topological dual
2*, but the proof proceeds similarly.

(a) Assume Ay € p(A) and consider . € C with |A — Ag| < ||R,\0(A)||’1. We
therefore have

A=l =[(o -+ (A—=2D]= (A =2t — ko) Riy(A) + I
= Ry, (A) [ — o) Rug(A) + 11,

so that

(A= AD7V=[(h = ko) Riy(A) 4+ 1171 Ry, (A)
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provided [(A — AoI)R;,(A) + I ]*1 exists. With the same argument used for
Proposition 3.10, when |A — Ag| < || Ry, (A)||~! we have

+00
[ = 20)Rag(A) + 1171 =D " (ho = 1) Ry (A)" . (3.3)
n=0

We have demonstrated that every point Ap € p(A) admits an open neigh-
bourhood where R) (A) exists. We can therefore say that p(A) C C is open
and its complement o (A) is closed. If p(A) # & the map p(A) > A —
(x|(A — AI)~!y) admits Taylor expansion around every A € p(A), constructed
trivially out of (3.3). Hence the function is holomorphic.
The same proof works for unital Banach algebras 2(, by simply replacing
(x|Ry(A)y) with f(R;(a)), where f € 2*.
O

Remark 3.12

()

(b)

If A € B(H) is normal, the spectral radius formula holds
sup{[A| | A € o (A)} = [|A]l . (3.4)

The spectral radius of A is the expression on left. We shall derive this formula
for selfadjoint operators as an immediate consequence of the spectral theorem.
However, Proposition 3.80 provides a general version for normal operators
whose proof is independent of the spectral theorem. This formula holds also
in abstract unital C*-algebras: replacing A is a normal element a: a*a = aa®.

Item (i) in Proposition 3.11 (b) for unital Banach algebras implies the well-
known Gelfand-Mazur theorem, whereby a Banach algebra whose every non-
zero element is invertible is isomorphic to C. Indeed a — A,1 must be non-
invertible for some A, € o(a) C C, and hence a = A,1. |

3.1.2 Spectra of Special Operator Types

We are ready to state and prove general properties of the spectra of selfadjoint and
unitary operators.

Proposition 3.13 Ler A : D(A) — H be a densely-defined operator on the Hilbert
space H. Then

(a)
(b)
(@)

if A is selfadjoint, then o (A) C R.

If A is unitary, theno(A) C T:={ze€ C||z| = 1}.

If A is normal, in particular selfadjoint or unitary, the following hold (where
the bar denotes complex conjugation of the single elements):
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(i) 0r(A) =0,(A%) = 2,
(ii) 0p(A) = 0,(A*); in particular if x # 0, Ax = Ax if and only if A*x =
AX,
(iii) 0c(A) = 0c(A¥).

(d) If A is normal (in particular selfadjoint or unitary), then eigenvectors with

distinct eigenvalues are orthogonal.

Proof

(a)

(b)

()

Suppose A = p + iv with v 7 0 and let us prove A € p(A). If x € D(A),
(A= ADx|(A = AD)x) = (A — pDx|(A — pDx) + v (x|x) + iv[{Ax|x) — (x|Ax)].

The last summand vanishes as A is selfadjoint. Hence ||(A — A1)x|| = |v] ||x]].
With a similar argument we obtain |[(A — Al)x|| > |v| ||x||. The operators
A—XI and A—AT areinjective, and ||[(A—A1) || < |v|~!, where (A—AT)~! :
Ran(A — A1) — D(A). Notice that, from (2.21),

Ran(A — )\I)J_ = [Ran(A — AI)]* = Ker(A* —AI) = Ker(A — Al) = {0},

where the last equality makes use of the injectivity of A—A/. Summarising: A —
Ml in injective, (A — )J)f1 bounded and Ran(A — AI)J' = {0}, i.e. Ran(A —
AT) is dense in H; therefore A € p(A), by definition of resolvent set.

Suppose that & € C and |A| # 1, and we want to prove A € p(A). Ifx e H =
D(A) we have

((A = 2Dx|(A = AD)x) = (Ax|Ax) + |A|*(x|x) — 2Re(A{Ax|x)) .

In other words, using (Ax|Ax) = (x|x) = ||x||2 and |[{(Ax|x)| < ||x||2||A|| =
lIx] 12,

(A = ADx|* = (1+ A x]* = 2l|x[12 = (14 A2 = 202D [1x 1%

Summing up, we have proved that |[(A — AD)x||> > (1 — |A])?||x]|>.

As in (a), since (1 — |1|)? # 0, the previous inequality implies that K er (A —
L) = {0}, that |[(A — D)~ < (1 — |A])~!, and that Ran(A — AI) is dense
because Ran(A — )\I)J' = Ker(A* — AI) = {0} (A* is unitary as A is unitary
and |A| = |A| # 1, so the previous argument applies).

First of all observe that A normal implies Ker(A) = Ker(A*). Indeed, if
x € Ker(A), then Ax = 0 and hence A*Ax = A*0 = 0, so by definition
of normal operator AA*x = A*Ax = 0. In particular x € D(A*) and therefore
(x]|AA*x) = 0. As a consequence, ||A*x||> = (A*x|A*x) = (x|AA*x) =0
and then x € Ker(A™*). Suppose, conversely, that x € Ker(A*). Then A*x =0
and AA*x = A0 = 0. Using normality, A*Ax = AA*x = 0. In particular,
since normal operators are closed by definition, x € D(A) = D(A) =
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D((A*)*) and therefore (x|A*Ax) = 0 means ((A*)*x|Ax) = (Ax|Ax) =0,
which is nothing but ||Ax||? = 0, i.e. x € Ker(A).

Let us prove (i) 0,(A) = @. Suppose A € o(A), but A & 0,(A). Then
A — Al must be injective, thatis Ker(A —AI) = {0}. Since A — A[ is normal if
A is normal (in particular closed Remark 2.31 (b)), we conclude that K er (A* —
A) = Ker(A—AI) = {0}. Therefore [Ran(A —AI)]+ = Ker(A*—AI) = {0}
due to (2.21), and Ran(A — A1) = H. Consequently A € o,(A) and no complex
number in o (A) is allowed to belong in o, (A). Observing that A* is normal if
A is normal, we conclude that 0, (A*) = @ as well. Statement (ii) 0,(A) =
o, (A*) immediately descends from Ker(A — AI) = Ker(A* — AI), using
(2.20) and noticing that the operators are closed. Let us apply the argument
used above to show that Ker(A) = Ker(A*) on A — Al and A* — AI: then
[|[(A — AD)x|| = 0if and only if ||(A* — AI)x|| = 0, furnishing (ii). The proof
of (iii) 0.(A) = 0.(A*) is more involved. Suppose A € o.(A), so Ker(A — Al)
is trivial—also K er (A* — A1) is trivial and (A* — A1)~ ! exists—and the inverse
(A—xI)~! is an element of B(H) due to Proposition 3.5 since normal operators
are closed by definition. From (A — AD"HA = AD = I|p(a), using (2.8),
we have (A* — A1)(A — A~ = Il*D(A) = I. In particular (A* — AI)(A —
)»I)’l*IR(m(AL“) = IlRan(At“). Since we know that (A* —AT) is a bijection
from D(A*) to Ran(A* — AI), we conclude

(A= 2D ™| ganiar_spy = (A* =AD"

because inverses are unique. In particular, the right-hand side is bounded since
the left-hand side is bounded. Hence A € o.(A) implies A € o.(A*). We may
replicate the argument starting from A* and observe that (A* — AI)* = A — Al

to conclude that A € o.(A*) implies A = A € o.(A). This ends the proof of
(iii).

(d) If A # wand Au = Au, Av = uv, then u(ulv) = (u|Av) = (A*ulv) = A{u|v),

so (u—A)(u|v) = 0. The latter is only possible for (u|v) = 0 because u—x # 0.

O

Example 3.14 The m-axis position operator X,, on L*>(R", d"x), introduced in
Example 2.59 (1), satisfies

0(Xm) =0c(Xm) =R. 3.5

The arguments is as follows. First observe that o (X,,) C R since the operator is
selfadjoint (Proposition 3.13). However we saw in Sect. 1.3 that 0,(X,;,) = &, and
o0-(Xm) = @ again by selfadjointness (Proposition 3.13). Let us examine when a
number r € R belongs to p(X;;). If no r € R belongs to p(X;,;), we must conclude
that o (X)) = 0.(X;) = R.

Suppose that, for some r € R, (X;; — rI)_l exists and is bounded. If ¢ €
DXy — 1) = D(X,p) with ||¢/]| = 1 then [|[y[| = [|(Xn — r D)™ (Xpn — r DY,
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and hence ||| < [|(Xn — rD) 7| [[(Xs — rD]. Therefore [|(X, — rD)7'|| >
(X — rDy||~!. For every given € > (), it is easy to manufacture ¥ € D(X,,;)
with [|Y|| = 1 and |[(X;, — r)¥|| < €. Assuming m = 1, it suffices to consider
sets of the form [r — 1/k,r + 1/k] x R*~! and functions Y € CX(R", C) such
that supp(Yx) C [r — 1/k,r + 1/k] x R"" ! and g, [Yx|*d"x = 1. Ask — +o0

2 2 2 gn 4 2 gn 4
0=<[|(Xn—rDylI” = | xi—rlflYy)"dx= , | WxIdx= , —>0.
R7 k R7 k2
Therefore (X,,, — rl )71 cannot be bounded and r € o(X,,). More precisely r €

o.(X,,), since no other possibility is allowed.
By Proposition 3.4 we also conclude that

0 (Pn) =0c(Pn) =R, (3.6)

simply because the momentum operator P, is related to the position operator

by means of a unitary operator, namely the Fourier-Plancherel operator .% of
Example 2.59 (2). |

3.2 Integration of Projector-Valued Measures

We introduce in this section the most important technical tool in spectral theory,
the notion of projector-valued measure, whose repercussions in the interpretation of
quantum theories are paramount. Before we do it, let us prove a few important and
elementary facts concerning orthogonal projectors.

3.2.1 Orthogonal Projectors

Definition 3.15 Let H be a Hilbert space. An operator P € B(H) is called an
orthogonal projector when PP = P and P* = P. The set of orthogonal projectors
of H is denoted by .Z(H). |

A well-known relation exists between orthogonal projectors and closed subspaces.

Proposition 3.16 Let H be a Hilbert space with orthogonal projectors £ (H).
Then

(@) if P € Z(H), then P(H) is a closed subspace.

(b) If P € L(H), then Q :=1 — P € Z(H) and Q(H) = P(H)*.

(¢) There is an orthogonal sum H = P(H) & Q(H), so any z € H decomposes
uniquely as 7z = x + y withx = P(z) € P(H), y = Q(z) € Q(H).
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(d) IfHo C Hisa closed subspace, there exists exactly one P € £ (H) that projects
H onto Hy, i.e. P(H) = Hy.

Proof

(a) It is clear that P(H) is a subspace. It is also closed because, if x
lim,— 4y Px,, then x = Px. Indeed, Px = Plim,— 4 P(xy)
lim;,—, 4 oo PPx; = lim,_, 1~ Px, = x since P is continuous.

(b)y Wehave (/| — P)*=1*—P*=]—-Pand (I — P)I{ —P)=1-2P +
PP=1—-2P+P=1-P,s0Q :=1—P € Z(H). Let us prove that
Q(H) = P(H)'L. First of all, observe that y € Q(H) and x € P(H) yield
(y[x) = (1= P)y|Px) = (y|(I—P)Px) = (y|(P—PP)x) = (y|(P—P)x) =
0. Therefore Q(H) < P(H)*L. To conclude, we have to prove that Q(H) D
P(H)L. If y € P(H)* we have (Py|u) = (y|Pu) = 0 for u € H and therefore
Py = 0. As a consequence, if we define z = y + x with x € P(H), we obtain
Qz=U—-P)y+(U—P)x =x4+y—Py—Px=7—Py—Px=7—-0—x=1y.
In other words, if y € P(H)*, then y € Q(H), proving Q(H) D P(H) .

(d) and (c). Consider a closed subspace Hy. It is a Hilbert space in its own
right since it contains the limits of its Cauchy sequences (which converge in H
since H is Hilbert). Therefore Hy admits a Hilbert basis N. It is easy to prove
that if N’ is a Hilbert basis of H(J)-, then N U N’ is a Hilbert basis of H. By
taking M = Hy, so that span M = Hy, in (2.3) we obtain the orthogonal sum
H=Hy® H(J)-. Consider the operator Px := ) __y(zlx)z for x € H. Using
the Hilbert decomposition u = ) __. v (z|u)z, one immediately proves that
[IP|| <1, PP = P, (Px|y) = (x|Py) and hence P = P*,so P € .Z(H).
Finally, P(H) = Hp since N is a Hilbert basis of Hy.

Let us demonstrate that the orthogonal projector P satisfying P(H) = Hp is
uniquely determined by Hg. The same proof also establishes (c). Since P(H) N
Q(H) = {0}, because the subspaces are mutually orthogonaland I = P+ Q, we
conclude that z € H can be decomposed uniquely as 7 = x + y with x € P(H)
andy € Q(H) and x = Pz, y = Qz. This fact proves that a P with P(H) = Hp
is unique: if P'(H) = Ho, we would have that Q' := I — P’ projects onto Hi
and z € H is uniquely decomposed as z = x + y withx € Hop, y € H(J)- where
x=Pz=Pzandy = Qz = Q'z. Hence P’z = Pz forall z € H.

O

If P € Z(H), then P and Q := I — P project onto mutually orthogonal subspaces,
and PQ = QP = 0. This fact is rather general, according to the next elementary
result.

Proposition 3.17 Let H be a Hilbert space. Two projectors P, Q € £ (H) project
onto orthogonal subspaces if and only if PQ = 0. In this case QP = 0 as well.

Proof If P(H) L Q(H) then for every x,y € H we have 0 = (Px|Qy) =
(x| PQy). Therefore PQ = 0. Taking adjoints we obtain QP = 0. If conversely
P Q = 0, from the identity above we have (Px|Qy) = 0 for every x, y € H, so that
PH) L O(H). O
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Let us prove further properties of orthogonal projectors related with a natural order
relation, which will play a crucial role in the next chapter.

Notation 3.18 Referring to Proposition 3.16, if P, Q € Z(H) we write P > Q
whenever P(H) D Q(H). |

Proposition 3.19 IfH is a Hilbert space and P, Q € £ (H),

(a) P > Q isequivalentto PQ = Q. In this case QP = Q too.
(b) P > Q is equivalent to (x| Px) > {x|Qx) for every x € H.

Proof

(a) If P(H) D Q(H), there exists a Hilbert basis Np. = Ng U N’Q of P(H)
where Ng, N /Q are a Hilbert bases of Q(H), Q(H)*? (orthogonality referring to
P(H)). From Q = ZzeNQ (z|]Yzand P = Q—i—ZZeN/Q (z|-Yz wehave PQ = Q.
The converse implication is obvious. Assume PQ = Q. If x € Q(H) then
Ox = x. Therefore Px = PQx = Qx = x, hence x € P(H) and then
Q(H) c P(H) as wanted. Finally, taking adjoints on PQ = Q we obtain
QP = Q since P and Q are selfadjoint.

(b) Assume P > Q, ie. Q(H) ¢ P(H). If x € H, the vector Px € P(H)
decomposes as y + z where y := QPx € Q(H) and z € P(H) is orthogonal to
y. Therefore || Px||> = [|Q Px||> +|z]|*. From (a), || Px||* = || Qx|I* + [|zI?
which implies || Px||> > ||Qx||%, namely (x|Px) > (x|Qx) for every x € H.
Conversely, if (x| Px) > (x|Qx) for every x € H, then || Px||> > ||Qx||? for
every x € H, so that Px = 0 implies Qx = O for every x € H. In other words
P(H)t c Q(H)*. Applying * again, we eventually get P(H) D Q(H).

O

Proposition 3.20 IfH is a Hilbert space and { P, },en € £ (H) is a sequence such
that either (i) P, < P41 for alln € N or (ii) P, > Py41 foralln € N, then

Pyx — Px, for every x € H and some P € £ (H), asn — +o0.

Proof Assume P, < P,y forall n € N. For any x € H, the sequence {P,x},eN
is Cauchy. Indeed, for n > m and using Proposition 3.19 (a) alongside the
selfadjointness and idempotence of orthogonal projectors, || P,x — P,x||* equals

(X|(Py = P)(Py — Pu)x) = (X|(Py — P — P + Pu)x) = || Pux||? — || Pux]? .

Since the sequence of numbers || P,x||> = (x| P,x) is non-decreasing and bounded
by ||x[]?, it converges to some real number and hence it is a Cauchy sequence. This
implies that { P,x},en is Cauchy as well. The map P : H 3 x — lim,— 40 Prx €
H is linear by construction. Furthermore, (Px|y) = (x| Py) for every x, y € H by
continuity of the inner product, so P = P*. Finally, for every x, y € H we also have
(Px|Py) = limy— 4 oo (Pyx| Ppy) = limy— 4 5 (x| Pyy) = (x| Py), sothat PP = P
and therefore P € .Z(H). The other case’s proof is identical up to trivial changes.
O
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3.2.2 Projector-Valued Measures (PVMs)

At this juncture we can state one of the most important definitions in spectral theory.

Definition 3.21 Let H be a Hilbert space and X (X) a o-algebraon X. A projector-
valued measure (PVM) on X isamap P : X(X) 2 E — Pg € Z(H) such that

i) Px =1,

(i) PePr = Pgnr,
(iii) if N C Nand {Eg}jreny C Z(X) satisfies E; N Ey = I for k # j, then

Z Pg;x = Py, .yg;x foreveryx € H.
JEN

We say that P is concentrated on S € o (X) if Pr = Pgns forevery E € (X). l
Remark 3.22

(a) Taking N = {1, 2} in (i) and (iii) tells that Pz = 0, using E1 = X and E» = @.
Property (ii) entails that PePr = 0 if EN F = @ from Proposition 3.17.
In particular, the vectors Pr X in (iii) are orthogonal. Therefore a series (for
N =N)

Z Pg;x, (3.7)

jeN
where E; N Ey = @ for k # j, always converges. An alternative argument
for convergence is to invoke Proposition 3.20, since the operators Z';:O PE;

are orthogonal projectors and Z?:o Pg; < Z;li(l) Pg;. (Series (3.7) can be
rearranged because by Bessel’s inequality (2.1.2) we have

D oPexIP <> D ulx)l* < +oo,

jeN JEN ueM;

where M; C Pg; (H) is a Hilbert basis of Pg; (H). Now Lemma 2.8 guarantees
(3.7) converges and can be rearranged.) Proving explicitly that the series
converges is nonetheless a useful exercise. For a given € > 0, we use the inner
product’s continuity and the fact that Pg,x L Pg,x if j # k, to compute, for
m >n > Ng,

2

2 iem
j=n

m n—1
Z Pij — Z Pij
j=0 j=0

j=m
> Pg;x
j=n

k=m
> res)
k=n

Jj=m k=m
= Z <Pij Z PEkx>
j=n k=n
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j=m k=m
x> = <x jkPEkx>
j=n k=n

k=m j=m k=m
PEJ' Z PEkx> = Z <x
k=n =

j=n
j=m j=m j=m j=m 5

= (x’Pij> < ‘PE PE x> Z(PEJ.X‘PEJ.)C>= Z ||PEJ'X|| < €.
j=n Jj=n Jj=n j=n

Hence (3.7) converges, as truncated sums form a Cauchy sequence.
In summary, (iii) can be viewed as a condition on the value of the sum of the
series and not an assumption about its convergence.

) Ifx,y e H, 2(X) 2 E— (x|Pgy) = ,uxy)(E) is a complex measure whose
(finite) total variation [Rud91] will be denoted by |M)(cy)|- This follows from
the definition of PVM, in particular the inner product’s continuity implying o -
additivity: if the sets E,, C X(X),n € N C N, are pairwise disjoint (E,NE,, =
& for n # m),

lJ«xy) (UnenEn) = ( ‘PUIIENEH <

Z PE" > Z ‘PEn Z /J“xy (En)

neN neN neN

The definition of i,y gives us immediately three important facts.

() X)) = (xly).

i) 'R is always positive and finite, and 5 (X) = ||x||2.

(iii)) Consider a simple function [Rud91] s = Zzzl Sk XE,» where s; € C and
the sets Ey € X(X), k = 1,...,n, are pairwise disjoint, and xg is the
characteristic function of the set E, i.e. the map xg(x) =0ifx ¢ E and
xe(x) = 1if x € E.If h denotes the Radon—Nikodym derivative of [y,
with respect to its total variation |y | (see, e.g., [Mor18]), we have

n

n
/ sdpyy = / shd|pxy| = Zsk/ hd|pxy| = Zskﬂxy(Ek)
X X = JE

k=1
= <_x

n
zskaky> .
k=1
If we define

/s(k)dP(A) —ZskPEk

k=1
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we may then write

/ sdpyy = <x
X

The entire machinery of Spectral Theory and Measurable Functional Calculus
is contingent on formula (3.8) (extended from simple functions s to general
measurable functions f). |

Example 3.23

/ s(MAP () y> . (3.8)
X

(1) The simplest example of a PVM arises from a Hilbert basis N in a Hilbert space
H. Let X (N) be the power set of N. For E € X(N) and z € H we define

Prz = Z(xlz)x

xeE

and Py := 0. It is easy to prove that the collection of Pg thus defined forms
a PVM on N. (This definition works even if H is not separable and N is
uncountable, since for every y € H at most countably many elements x € E
satisfy (x|y) # 0). Observe that Pyx = ), (u|x)u = x for every x € H, so
that Py = I as required.

In particular ;{3 (E) = (x|Ppy) = Y ,cpixlz)(zly) and pi(E) =
Y er lxl2)2.

(2) A more sophisticated version of (1) is built out of the Hilbert sum of a family
of non-trivial, pairwise-orthogonal closed subspaces {H} j<; of a Hilbert space
H = ., H;. Defining once again X(J) as the family of subsets of J, for
E € X(J)and z € Hwe set P = 0 and

Pz := Z Qjz,

JjEE

where Q; is the orthogonal projector onto H;. It is easy to prove that the Pg
form a PVM on N. Since B, H; = H we have 3, Q;jx = x for every
x € H, so Py = I as requested.

(P)

In particular 1) (E) = (x|Pry) = X cxlx|Q;y) and u(E) =

Y jer 10117
The reader can prove without difficulty that

/ fDduyxx(j) = Zf(j)||ij||2 (3.9)
J jed

if f is py,-integrable. This formula is trivial for simple functions, and extends
easily to general maps using dominated convergence.
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(3) Here is a PVM of a completely different sort, this time on Lz(R", d"x). To
every E in the Borel o-algebra Z(R") associate the orthonormal projector

(Pey)(x) = xe() Y (x) Vi € L*(R",d"x).

Note Pz := 0. It is easy to prove that the collection of Pg is a PVM.
In particular M;‘;)(E) = (flPeg) = [y f(x)g(x)d"x and MSZ;)(E) -
Je 1 f@)Pd"x.

The reader can easily check that

/R @) = /R T@)lgd"x (3.10)

if f is ugg-integrable. This is trivial for simple functions, and can be gener-
alized easily to measurable functions using the theorem of dominated conver-
gence. |

The following pivotal result [Rud91, Mor18, Schm12] generalizes (3.8) from simple
functions to measurable functions of a suitable type.

Theorem 3.24 Let H be a Hilbert space, P : X(X) — Z(H) a PVM, and f :
X — C a measurable function. Define

Af:i= {x eH U LfF PP o) < +oo} :
X

The following facts hold.

(a) Ay is adense subspace in H and there exists a unique operator

f fQ)dPQ) : Ay —H (3.11)
X

such that

<x
(b) The operatorin (3.11) is closed and normal.
(c) The adjoint operator to (3.11) satisfies

</ f(A)dP(A)) =/f(k)dP(A). (3.13)
X X

ff(x)dp()\)y>=/ fOdp () VxeH. VyeAs. (3.12)
X X
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(d) The operator in (3.11) satisfies

2
H[ F)dP(W)x =/|f(x)|2dM;§>(x) VxeAr. (314
X X

Proof (I. Existence and Uniqueness) We start by proving that if A ¢ is subspace of
H, then there is a unique operator denoted by [ x f()d P () satisfying (3.12). The
proof of this fact relies on this preliminary lemma.

Lemma 3.25 If f : X — C is measurable, then

/X IF WPl < ||x||\//x |fGRdusy () YyeAp VxeH.
(3.15)

Proof We henceforth write 1xy in place of ui‘;’) for the sake of shortness. The idea
is initially to establish the inequality for simple functions and then pass to arbitrary
functions. Take x € Hand y € Ar.Lets : X — Cbe asimple function, s : X — C
the Radon—-Nikodym derivative of ji,y with respect to |ty |, so that |2 (x)| = 1 and
Hxy(E) = f g hd|pxy]. For an increasing sequence of simple functions z, such
that z, — h~! pointwise, with |z,| < |h_1| = 1, by the dominated convergence
theorem we have

Nn
Zzn,kPEn'k y)-
k=1

/lsld“w‘«xyl:/ |s|h_1dﬂxy: lim /lslzndﬂxy: lim <x
X X n—>+oo [y n—+00

In the last step we used part (iii) in Remark 3.22 (b) for the simple function

N
Is|zn = Zzn,kXEn,k
k=1

and we have supposed that, for fixed n, the sets E,, ; are disjoint from one another.
The Cauchy—Schwartz inequality immediately yields

=||x|| lim szn|%d
Il ||n_)+oo\//x| Znl*dinyy ,

where, in computing the norm, we used Pk’fn . PE'1 v = Pg, . PE'1 v = Sk PE, , since
E,x N E, v = @ for k # k'. Next observe that as Isza|> = Ish™ 12 = |s|?,

Ny

sld <||x|| lim Z P
/Xl d|pxyl <1l ”,H+oo : 1Zn,k EniY
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dominated convergence yields

/ Is|dlpey| < ||x||\/f Is|2djuyy .
X X

At last, replace s above by a sequence of simple functions s, — f € L*(X,d Hyy)
pointwise, with |s,;| < [sy+1| < |f|. The monotone convergence theorem and the
dominated convergence theorem, applied respectively to the left- and right-hand side
of the previous inequality, eventually produce (3.15). O

To proceed with the main proof we notice that inequality (3.15) also proves that
f e L*(X, dug)) implies f € Ll(X,dm)(CIyJ)l) for x € H, hence the right-hand
side of (3.12) makes sense. General measure theory guarantees that

fOdu®mw| < | 1rmdin®io),
X X

whence (3.15) implies that H 5 x fX f) dug)(k) is continuous at x = 0.
This map is also anti-linear if f is simple, as follows from the definition of piyy
and the left anti-linearity of the inner product. Anti-linearity extends to measurable
functions f via the usual approximation procedure of measurable functions by
simple functions. We conclude that, for y € A ¢, the map

Ho x> f F0)duly ()
X

is linear and continuous. Riesz’s Lemma guarantees the existence of a unique vector,
indicated by [y, f(A)d P (})y, satisfying

Conjugating both sides we obtain (3.12). As we have assumed A ¢ is a subspace, the
map

f Fydul o) = < / FAP(L)y
X X

Apayr f FO)du o)
X

is linear when f is simple, as immediately follows from the definition of ui‘;’) and
the right linearity of the inner product. As before, linearity extends to measurable
functions f by approximating measurable functions with simple maps. As a
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consequence of (3.12)

Arsyr /Xf(?»)dP()»)y

is linear as well. The uniqueness of this operator is an immediate consequence of
the uniqueness in Riesz’s Lemma.

(II. Ay is a Dense Subspace) Let us show that A ¢ is a subspace first. It contains 0
so it is not empty. Moreover, directly by definition of A ¢, it is clear thatif x € Ay,

then ax € Ay for every a € C, because ,ugz,)ax(E) = |a|2,u”)(E) independently
of E and so

/ |f1Pdull),, = la)? / |fPdulP) < +o0.
X

Next suppose that x,y € Ay. We therefore have || Pg(x + WIZ < (|Pex|| +
1PEyIN? < 2||Pex||> + 2|| Peyl|®. As a consequence 11"}, ., (E) = || Pe(x +
IR <26 (E) + 218 (E). Therefore

fX FPAp) oy <2 / |f1Pdu + / R < oo,

and hence x +y € Ay. Let us pass to the density of A ¢. Consider the countable
partition of X made by measurable sets F,, :={A € X |n < | f(W)? < n+ 1}, for
n=20,1,2,.... By the o-additivity of P, if z € H then z = Pxz = Z:ﬁg Pr,z.
Therefore the span of the unions of closed subspaces H,, := Pf, (H) is dense in H.
If we prove that H, C A for every n, since Ay is a subspace, we immediately
infer that it is dense. Let us prove it. If x € H,, then x = Ppg,x and therefore

W (E) = (P, x| Pg Pr,x) = (x| Penr,x) = ui5) (E N Fy). Since

/ |f|2du“">—fF | f1Pdu® s/F(n+1>du§£> <+ D]lx]]* < o0

we have x € Ay, as wanted.

(LII. Proof of Eq. (3.14)) For x € A, using (3.12), we obtain

/dePx 2=</dePx /dePx>=/dev (3.16)

where

v(E) = u(/’)fd,,”w>=< /X fdPx pEx>: /X fauld) .
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Since ,uP X, x(F) (PEx|Prx) = (x| PEnFx), we have

vw(E) = / fdu'd

Using the definition of integral (of a complex measure), it immediately follows

/sdv:/s fdu(P)
X X

for a simple function s. A standard argument based of dominated convergence (take
a sequence of simple maps s, tending to f pointwise, with |s,| < | f|) allows to

establish
/ fdv = f F1Pdp®)

as | f|%is Wxx-integrable. Inserting this result in (3.16) we obtain (3.14), as claimed.

(1V. Proof of Eq. (3.13) and the Closure of fX fdP) Since the adjoint is always
closed, Eq.(3.13) and [y, fdP = (fy fdP)* would imply [, fdP is closed. So
let us prove Eq. (3.13). From (3.12) it is easy to see that fX fdP C (fX fdP)*:

noticing that /Lyx)(E) ux),)(E) namely, if x, y € Ay then

<y dePx> /fdu(P) /fduﬁf;):<x/dePy>:</X fdPy|x>. (3.17)

Therefore we only have to prove that |’ x JdP D ( f x fdP)*. This is equivalent to

show that if y € D((fX fdP)*) then y € Af = Ay. So let us prove this then, for
which we need an intermediate result.

Lemma 3.26 Under the assumptions of Theorem 3.24

(i) [x xedP = P for every E € £(X)
(ii) [y fAPPg = [y f - xedP forevery E € £(X)
(iii) if f is bounded on E € X (X) then (fo - xgdP)* = fo-XEdP.

Proof (1) is true since (x|Pgy) = pyy(E) = fE 1d,uxy , and so (3.12) holds and
uniquely determines f x XEAP.
Concerning (ii), the domain of f x JdP Pg consists of the x € H such that Pgx €

Ay, thatis [y |f12duls), , . < +oo. Since uly) p (F) = (Ppx|PpPgx) =
(P)

(x| PEnFX) = Mxx)(EﬂF) the condition can be rephrased as fX XE -1 fIPdupyy <
400, or [y |XE FlPau'?) < +oo. Therefore [x fdPPg and [y xg - fdP have

the same domain. If x € Hand y € A,.r, (x| [y fdPPpy) = [y fdui{?,” =
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P P P . . .
Ix fdug,E)x’PEy = [ fdu)(c,y) =[x f- XEdM)(c,y), which implies [y fdPPg =
[x [+ xedP again by (3.12).
(iii) is true because A ., = H and fx f - xgdP € B(H) from (3.14). Hence
replacing f with f - xg in (3.17) ensures that [, f - xgdP = [y f - xed P is the
adjoint of [y f - xgd P. m

To resume part IV of the main theorem, we claim (i), (ii), and (iii) imply y € A f if

y € D((fX fdP)*). We start by defining E,, := {A € X | |f(X)| < n}. Then from
(1)—(iii) we have

() = ) (e = )

=/f~)(EndP.
X

Hence if y € D(([y fdP)*) we infer

| £ xnary=rpe, (/dePfy,
P, (/deP)*y 2 (/deP)*y

=
2

and so

H/ f - xe, dPy
X

Using (3.14),

2 ‘ 2

fX |f - xe, Pdull) <

(forer)

Since | f - xE,|° < |f - XE,.,|* = |fI*> as n — +00, the monotone convergence
theorem implies
*
X

(V. Proof that |- x fdP is Normal) The same argument used in the previous lemma
to establish (ii) gives Pg [y fdPx = [y xg-fdPxifx € Ay.Consider the domain
of [y fdP [y fdP.Itconsists of vectors x € A s such that

2
< 400,

2g.,(P)
/X|f| ) <

thatis tosay y € Af, as wanted.

2, (P)
/X|f| i yp o gape < 00 (3.18)
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Let us write this condition in a simpler way. First observe that

(P) _ _
MfodPx,fodPx(E)_<_/;(fdpx PE/dePx>—<PE/dePx PE-/;(fdPx>

:</XXE-fdPx AXE-fdPx>=ﬁlfI2dM§§)-

Starting from simple functions and generalizing to measurable functions, it is
therefore easy to prove that

(P) _ 2 (P)
\/ngufxfdpxﬁ,/’xfd})x _Llfl ngxx .

In summary, (3.18) reads

D(/X fdP/deP> = Ay -

Now replace f by | f|? in the first statement of the theorem we are proving: that
domain is dense and D([y fdP [, fdP) = D([y fdP [y fdP). To finish the
proof consider x € D([y, fdP [y fdP) = D(fy fdP [, fdP). We have

<x /deP/dePx>:</X fdPx /depx>=/X\f\2dui’;)=</dePx /dePx>
:<x /deP/dePx>.

(o - o )

By polarization we finally obtain

bl o f s e f )0

foreveryx,y € D(fy fdP [y fdP) = D(fy fdP [y fdP).Since this domain is
dense, [ fdP [y fdP — [y fdP [y fdP =0, and the proof ends.

In other words

O

The theorem just proved has technically important consequences, which we list in
the following corollary and the subsequent proposition.
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Corollary 3.27 Under the hypotheses of Theorem 3.24, the following hold.

(@) If f : X — C only assumes non-negative real values, then

(s

(b) If T is an operator on H with D(T) = Ay such that

/dePx> >0 VxeAy.

(x|Tx) :/ Foy Py vxeay, (3.19)
X
then
T:/ F)APQ) .
X

Proof

(a) The proofis evident from (3.12), taking y = x and noticing that ,LL)(CI;) is positive.

(b) From the definition of 11,y we easily have (for simplicity we omit the superscript
)y

4Mxy(E) = Mx+y,x+y(E) - Mx—y,x—y(E) - iMx+iy,x+iy(E) ‘|‘iMx—iy,x—iy(E) .

This identity implies, by the definition of integral, that for a simple function

4/ sdpiyy :/Sdﬂx+}*,x+y_/ Sdll«x—y,x—y_i/ Sd“’x+iy.x+iy+i/ sdiy—iy x—iy
X X X X X

if x,y € Aj. The customary approximation of measurable functions f by
simple functions (via dominated convergence) gives

4/ fdpxy :/ Sfdxty x+y _/ Sdpy—yx—y— i/ Sfdxtiyxtiy
X X X X
0 -
X
for x, y € Ay. Similarly, by the elementary properties of the inner product

A4x|Ty) = (x+yIT(x+y)) —{(x —y|T(x —y)) —i{x+iy|T(x+iy)) +i{x—iy|T(x —iy))

when x, y € D(T). Collecting everything, it is now obvious that (3.19) implies

<x|Ty>=fo(x)u§’;>(x) Vx,y € Ag,
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(s

Since x varies in a dense set A ¢, we have that Ty — fx fQ)dP)y = 0 for
every y € Ay, which is the claim.

SO

<T —f f()\)dP(A)) y> =0 Vx,yeAs.
X

O
Example 3.28
(1) Consider the PVM of Example 3.23 (2). Using Corollary 3.27 (b) and (3.9) we
have

/J fOAPz =Y f()Qjz

neJ

for every f : J — C (which is necessarily measurable with our definition of
¥ (J)). Correspondingly, the domain of f J S)APR) is

Api={zeH | D IFDOPIQ I < +oo
jelJ

According to Corollary 3.27 (b) in fact, from (3.10) we have

(

foreveryz € Ay.
(2) Now take to PVM in Example 3.23 (3). By Corollary 3.27 (b) and (3.10)

/J f(j)dP(j)z>=Zf<j>||Q,~z||2= /R FG)du:

jeJ

( /R ,, f(MdP(A)w) () = f@VE), xeR".
Correspondingly, the domain of fR" f(A)d P(A) turns out to be
Af = {yf € L2(R", d"x) ‘/ Lf )y (x)|2d"x < +oo} )
Rf’l

In fact, for every ¥ € Ay, Corollary 3.27 (b) and (3.10) give

M / f(A)dP()\)Ilf>= / FOOIY@)2d"x = / fdiyy .
RV! R}’l RV!
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3.2.3 PVM-Integration of Bounded Functions

We now state and prove a proposition about the most important properties of

/ x fdP when f : X — C is bounded or, more weakly, P-essentially bounded.

Some of these have already been exploited in the proof of Theorem 3.24; however,

they turn out to be so useful in the practice that they deserve a separate presentation.
If 1 is a o -additive positive measure on a o-algebra X (X),

AN :=inf{r >0 ux € X | |f(x)] > r}) =0} .

Since the integral sees only non-zero measure sets in > (X), for instance,

f Sl < ||f||é’é>/ L.
X X

The same definition can be extended to PVMs:
AL :=inf{r > 0] P({x € X | |f(x)| > r}) =0}
and f is said to be P-essentially bounded if || f II(()g ) < too.
Note that if Pr = 0, then Mg)(E) = 0for E € X(X). Therefore a P-essentially

bounded map f is also uiI;)-essentially bounded for every x € Ay. In particular,

. . P
since zero-measure sets for P evidently have zero measure for /'L)(c x) as well,

(P)
0 < 1AL < 1F1L < 11 fllos < 400 (3.20)

A seminorm p : X — R on a complex vector space X by definition satisfies
p(x) = 0, plax) = la|p(x) and p(x +y) < p(x) + p(y) forall x, y € X and
a eC.

It is easy to prove that || ||((£ ) is a seminorm on the vector space of P-essentially

bounded, measurable, complex-valued functions on X. Moreover, |f| < |g|

S P P P P P
pointwise implies || 115 < [Igl1% and |1 £ - glISe” < 11 £1155 118115, where £ - g

is the pointwise product (f - g)(x) = f(x)g(x) forx € X.
Proposition 3.29 Ler P : X(X) - Z(H) be a PVM.
(@) Amap f is P-essentially bounded if and only if

/ fQ)dPX) e BH).
X

In this case

<AL < 1 flloo - (3.21)

Hf f@A)ydpP@)
X
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(b) We have
/ XedP = Pg, IifE e X(X). (3.22)
X
In particular,

/ 1dP=1. (3.23)
X

For a simple function s = 22:1 SkXE,, where sp € Cand Ey € £(X), k =
1,...,n,

n n
/ Y sixpdP =) scPr . (3.24)
X k=1 k=1

() Let f, fu : X — R be measurable functions such that || f||S5, 1| full ) < K <
+o00 for some K € Randeveryn € N. If f,, — f pointwise as n — +00, then

/ fndPx — / fdPx asn — 400, foreveryx € H. (3.25)
X X

(d) If f, g : X = Care P-essentially bounded and a, b € C, then

/(af+bg)dP=a/ fdP+b/gdP, (3.26)
X X X
/fdP/gdP:/f-gdP. (3.27)
X X X
Proof
(a) Assume f is P-essentially bounded. Since p,(X) = l1x]]?> < +oo for every
x eH,

(P)
/le(k)\zdui’;)(k)s(Hfll(o’é” ))2/}(1du§’;)S(Hfllég))zfxlduyp:Hx||2(|f||gg>)2,

so that A s = H. Next, dividing by ||x||?> and taking the sup over the elements
x # 0, (3.14) implies (3.21). If, instead, f is not P-essentially bounded, then
forevery n € N, thereis E, € X(X) with Pg, # 0and |f(A)| > nif A € E,.
Pick x,, € Pg,(H) with ||x,|| = 1 for every n € N. If x, & Ay for some n, then
/ x fdP & B(H) because the domain of the operator is smaller than the entire
H and the proof ends. If x, € Ay for every n € N, from Theorem 3.24 (d),
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we have || [y fdPxa|® = [y |f1PduSi, = [ |f1?duiis,. where we have
used that p{ ), (F) = (xu|Prxn) = (Pp,xn|PFPE,Xn) = (tnl PR, xn) =
1on, (FNEy). Therefore || [y fdPxal* > [ n2dpses, =n? [ 1dpiy,y, =
n? [ 1dut) = n?|lx.l> = n? Hence || [, fdP|| cannot be finite and
[y fdP & BH).

By direct inspection
(v IPpx) = u{(E) = / 1dpS () = f XeWAPP () Vx.y e Ay, =H.

This proves (3.22), which also implies (3.23) for E = X, since Py = I. The
proof of (3.24) is a trivial extension of this argument by linearity of the integral
in ,ug,x) and linearity of the inner product.

Under the given hypotheses,

[(fram= [ or)o -

The first equality comes from (3.26), whose proof is independent of the present
argument. Note that | f — f,,|> < 4K? almost everywhere with respect to P, and

hence also with respect to ,u”) In addition, [ |K2|du(P) = ||x||?K? < 400,
(P)

/Xf—fndPx

/ If — fulPdpl) .

so the dominated convergence theorem implies f x| f = fulPdpyy’ — 0 as

n — 400, proving our assertion.
(i) First observe that Agfripe, Ar, Ay = H because f, g,af + bg are P-

essentially bounded ([|af + bgl|E < |alll F1IE + 16111g11E), so both sides
of (c)(i) are defined everywhere. Next, from standard properties of the integral,
forevery x € H

/af—i—bgdu(P)—a/fdu(P)—i-b/gd,u(P).

Using (3.12) we find

>

af~|—bgdPx>=a<y /fdPx>~|—b<y gdPx>
X X X

:<y (a/deP—i-b/ngP>x>.

The proof ends since x, y € H are arbitrary.
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Let us prove (3.27). First consider a pair of simple functions s = Y y_ sk XE,
and7 = Y ', 1 xF,- The pointwise product s - 7 is simple. Indeed,

n m
st = ZstEk ZthXFh = ZskthXEkXFh = Z skthXEkﬂFh
k=1 h=1 k,h (k,h)el, x Iy,

= Z (s - Dk.ny PG gy »

(k.hyel, x1y

where I; = {1,2,...,1} and Gk := Er N Fp. Exploiting (3.24), we
immediately find

n m
/ sdP/ tdP = sPg. Y twPr, =Y sityPg, P,
X X k=1 h=1 h.k

= Z Skth PEynF, = Z (s - t)(k,h)PG(k,h) = / s-tdP .
X

(k,h)el, x1 (k,hyel, x1y

We have proved the claim for simple functions f, g. Taking arbitrary P-
essentially bounded functions f, g, consider two sequences of simple maps
sp — f and t, — g pointwise, such that |s,| < |s,+1| < |f] and |t,]| <
1] < |g| foralln € N. Evidently s,-t, — f8, Isn-tn| < |Snt1-tnt1] < | /-8l
plus [[sal16s” < I1/11&, inlI&e) < llgllss” and llsi - tallss’ < 11/ - gllts” <
||f||f£)||g||(£). We can apply (c) to obtain, for every x, y € H,

stndpx /thdPy>=<x /XsndethdPy>
=<x /Xs,,-tndPy>—><x /Xf-gdPy>

as n — 4o00. On the other hand, using (c) again and exploiting the inner
product’s continuity, we also have
fran)
X

</XsndPx /thdPy>—></dePx

as n — +00. Summarizing,
f gdPy> =<x / f~gdPy> ;
X X

UX fdPx
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which, from (3.13) and using that the domain of f x fdP is H, implies

<x/deP/ngPy>=<x/Xf-gdPy>.

Since x, y € H are arbitrary, (3.27) indeed holds.

Remark 3.30

(a)

(b)

()

Consider f : X — C measurable and P-essentially bounded. We may redefine
it so that it maps complex numbers z € C with |z| > ||f||g§) to 0. We thus
obtain a measurable function f" € My,(X) such that [}, f'dP = [, fdP. With
regard to the integration of measurable functions in a PVM, therefore, bounded
functions carry the same information as P-essentially bounded functions.

The first inequality in Proposition 3.29 (a) is actually an equality [Rud9l,
Mor18],

H[Xf(MdP(A)H =111 (3.28)

See the solution of Exercise 3.35 for a proof.
Consider a set X equipped with a o-algebra X (X). The set

Mp(X) :={f : X - C| f is measurable and || f||oo < +00}

is a commutative C*-algebra with unit. The norm making Mp(X) a complete
vector space is || - ||oo0, the involution the standard complex conjugation of func-
tions f*(x) = f(x) for x € X, the algebra multiplication is the commutative
pointwise product of maps (f - g)(x) = f(x)g(x), and the complex vector
space structure is the standard one: (af + bg)(x) := af(x) + bg(x) if x € X,
a,beC,and f, g € Mp(X). The algebra’s unit is the constant map 1(x) = 1 if
x € X. The C*-property || f* - f|* = || f1|? is nothing but ||| f*||cc = || f113-
Suppose now a PVM P : ¥ (X) — Z(H) is also given. The map

wp i Mp(X)> f +—>/ fdP € BH)
X

preserves the structure of *-algebra and the unit, and hence is a representation. It
is further continuous and norm-decreasing because of (3.21). This representa-
tion is neither injective nor isometric in general; however it enjoys a topological
property unrelated to the continuity in the norms of Mp(X) and B(H). The

feature descends immediately from (3.14), by using ug)(X ) < +o00.
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Proposition 3.31 Retaining the above notation, if Mp(X) > f, — f pointwise
as n — —+o00o, and there is a constant K > 0 such that |f,| < K, then
wp(fu)x = mwp(f)x forevery x € H.

Consider a topological space X and take its Borel o-algebra ZA(X) as
3(X). Then the observation made in (c) holds provided we replace
Mp(X) with the commutative unital C*-algebra Cp(X) := {f

C | f iscontinuous and || f|lcc < 4o00}. Recall that if X is compact, then
Cp(X) = C(X) :={f : X — C| f is continuous}. An important result in the
theory of C*-algebras (see [Mor18]) establishes that

Theorem 3.32 (Commutative Gelfand-Najmark Theorem) A commutative
unital C*-algebra is isometrically *-isomorphic to the unital C*-algebra C(X)
for some compact Hausdorff space X. |

3.2.4 PVM-Integration of Unbounded Functions

To conclude, we state a proposition concerning the most important and general
properties of the integral in a PVM of a measurable, possibly unbounded, function.

Proposition 3.33 Consider a PVM P : (X)) — H, measurable functions f, g :
X — Candletaf, f-g and f + g, with a € C, indicate the pointwise operations.
Then

(a)

(b)

©

(d)

Fora € C

a/}(fdP:/XafdP.

D(fy fdP + [y gdP) = Ay N Ay and

/fdP—i—/gdPC/(f—i—g)dP,
b'¢ X b'¢

with equality if and only if Ayrq = Ay N Ag.
D([y fdP [, gdP) = Af.gN Agand

/deP/ngPC/X(f-g)dP

with equality if and only if Ay, C Ag.
D ((fy fdP)* [y fdP) =D ([y fdP([y fdP)*) = A g and

() f 0=t e (] sr)
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(e) IfU : H — H’ is a surjective linear (or anti-linear) isometry, ©(X) > E +>
P, :=UPgU"isa PVMonH and

U(/deP)U1=fodP/.

In particular, D (fy fdP') = UD([y fdP) =U(Ay).
() If p : X — X' is measurable for the o-algebras £(X), ¥’ (XY and f : X' —
C is measurable, then
(i) ' (X'Y> E'+— P'(E') := P(¢""(E")) isaPVM on X'.
(ii) we have

fdP’:/ fogdP.
X’ X
Furthermore

A/f = Afop,
where A’f is the domain of [y, f dP'.

Proof Ttems (a), (e), and (f) are proved straightforwardly by checking the def-
initions. (d) is a trivial consequence of (c) and Theorem 3.24 (b)—(c). Part (b)
can be proved in Ay N A, with the same argument used for the first identity in
Proposition 3.29 (d). Besides, D(fX fdP + fX gdP) = Ay N A, is the very
definition of domain of a sum of operators A + B. By this relation the last statement
is obvious. Similarly, (c) can be proved as the second identity in Proposition 3.29 (d),
by working in D(fy fdP [y gdP) and using D([y, fdP [y gdP) = Af.g N Ag.
The latter is established as follows. D( [, fdP [y gd P) is made of vectors x € H
such that both x € A, and

24,,(P)
f |f| d“f gdPx,[ gdPx < +00.

By the definition of ,ug) it is easy to prove that

2 4,.(P) 20 12 P
/lel iy s [, g /lel lglPduly)

hence D(fy fdP [y gdP) = Ajg N Ag. With this the last statement is now
obvious. O

Remark 3.34 Tt is moreover possible to prove [Mor18] that if P : £(X) — Hisa
PVM and f, g : X — C are measurable functions, then

/dePfngP=/X<f-g)dP,



3.3 Spectral Decomposition of Selfadjoint Operators 77

and

ffdP+/gdP:/<f+g>dP,
X X X

the bar denoting the closure.

Exercise 3.35 Prove formula (3.28) when f : X — C is measurable and P-
essentially bounded.
Solution We already know that || fx fdP|| < ||f|| ") n particular if ||f||(P) =

the claim is obvious. Assume then ||f ||(P) > 0. Exactly as in the proof of
Proposition 3.29 (a), for n > 0 there exists E, € X(X) such that P # 0 and
[f(A)] = ||f||gg) —1/n > 0if A € E, and n is sufficiently large. Choosing
x, € Pg,(H) with ||x,|| = 1, we have

/X fdPx,

that is

2 2
/\f\zduﬁf;,,z (12 = 1/m)” [ 1l = (1712 = 17m)

n

AN < +1/n.

/X fdPx,

Since we know that || fx fdPxy,l| < ||f||(P) (note ||x,|| = 1), this proves that there

is a sequence of unit vectors x, such that || fx fdPx,l|| — ||f||OQ asn — +o0o,
demonstrating the assertion.

Exercise 3.36 Suppose f,, — f pointiwise as n — 400, where f,, : X — C are
measurable and | f;,| < | f|. Show that

/ fndPx — / fdPx ifn — +oo, forevery x € Ay.
X X
Solution Evidently Ay, C Ag,sox € Ay if x € Ay. Next, using Proposi-

tion 3.33 (b) and (3.14), dominated convergence implies directly || | x JndPx —
Jx FaPxIP = [y 1f = fPduly — Oasn — +oo. =

3.3 Spectral Decomposition of Selfadjoint Operators

We are ready to state the fundamental result in the spectral theory of selfadjoint
operators, which extends expansion (1.4) to an integral formula befitting infinite
dimensions. The eigenvalue set is replaced by the full spectrum of the selfadjoint
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operator. After this we shall focus on some relevant consequences in quantum
physics.

Notation 3.37 From now on Z(T') will denote the Borel o -algebra of the topolog-
ical space T. ]

Definition 3.38 Given a PVM P : #(X) — Z(H) on the Borel o-algebra of
a topological space X, the support supp(P) of P is the complement in X of the
union of all open sets O C X with Pg = 0. ]

Remark 3.39 1If X is second countable, P is necessarily concentrated on supp(P),
ie.,

Pg = Pengupppy I E C X.

In fact, D := X \ supp(P) is the union of a number of open sets O with Pp = 0.
As the topology is second countable, we can extract a countable subcovering. By

subadditivity of uff;) we have ,uy;) (D) = 0 for every x € H. This can be rephrased
as ||Ppx|| = 0 for every x € H. Hence Pp = 0. If E € #(X), we therefore have
Pg = Pensupp(p) + PEnp = Pensupp(p)- u

3.3.1 Spectral Theorem for Selfadjoint, Possibly Unbounded,
Operators

Prior to stating the theorem, note that (3.13) implies f F()dP(X) is selfadjoint
when f is real. The idea of the theorem is that every selfadjoint operator looks like
that for a certain map f and a PVM on R associated with the operator itself.

Theorem 3.40 (Spectral Theorem for Selfadjoint Operators) Letr A be a selfad-
Jjoint operator on the complex Hilbert space H.

(a) There exists a uniqgue PVM PX) : B(R) — £ (H), called the spectral measure
of A, such that

A:/AdP(A)(A).
R

In particular D(A) = A,, where1 : R > A +— A.
(b) We have

supp(PV) = o (A)
so that P™) is concentrated on o (A) (as the standard R is second countable):

PYYE)= PYENG(A), VEeBR). (3.29)
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() A € o,(A) if and only if PW (LY # 0. This happens in particular when A
is an isolated point of o (A). At last, P{()ﬁ) is the orthogonal projector onto the
A-eigenspace.

(d) A € o.(A) if and only if P ({A}) = 0, but PY(E) # 0 if E 5 X is an open
set in R.

Proof

(a) The existence part of the proof is involved and we postpone it to Sect.3.6:
Theorem 3.84 for the bounded case and Theorem 3.86 for the unbounded case
(see also [Rud91, Morl8, Schm12]). Let us pass to the issue of uniqueness.
Suppose there are two PVMs Py and P> on #(R) satisfying

A=f)\dpk()\) k=1,2.
R

Consider the bounded normal operators

1
Tx :=/ dPr(r) .
RV —1

As we shall see below, either T} coincides with the resolvent operator R;(A)
of A for A = i, so these operators are actually identical and we shall write
simply 7.

Using Proposition 3.33 (f) we define new PVMs on the image I C C of
the continuous, injective map ¢ : R 3 r — | t ; € ' (which turns out to be
a homeomorphism on the image equipped with the topology induced by C).
We also assume Z(I'’) := Z(T') so that ¢ : R — I is measurable. So we

set
QL(E) =P~ (E)), EeBT) k=1.2.

With this choices,

T=/ 2dQ(z,2), k=12,
F/

In Cartesian coordinates,

F:{x—l—iye@\{O}

2. 1\ 1
X —_ =
Y7 4
is a circle—centred at i /2 with radius 1/2—without a point (the origin). If

oriented in anti-clockwise manner, the ‘initial’ point O~ formally corresponds
to r = —o0, and the ‘end’ point 07 is reached when r = +o0.
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It is certainly more practical to consider its compactification I' := I =
I' U {0}, again assuming X (I") = #(I"), and extend the PVMs in a trivial way

Qi(F):= Q(F\{0), FezBI), k=12.

The reader can easily prove that this extension does define well-behaved PVMs
on Z(I"). In this way the added point satisfies Qx({0}) = 0, even if it belongs
to the supports of the measures (defined as we did for P(1). For this reason we
also have

T:/Zko(z,z), k=1,2.
r

It is also convenient to have at hand the adjoint of T,

T*=/dek(z,z), k=1,2.
r

These operators are bounded and therefore we can apply Proposition 3.29 (d)
to obtain that, for p € Clz, z],

p(T, T = /F p(z,2)d Qk(z, 2) ,

where the polynomial on the left is defined thinking of the product of operators
as their composition. We also have, for x, y € H,

/ P du@ = (x|p(T, T*y) = / P 0du@) . (330)

Since I' is Hausdorff and compact, and C[z,z] (i) contains the constant
polynomial 1, (ii) is closed under complex conjugation and (iii) separates points
inCand henceinT (i.e.if y # y’ € T there exists a polynomial p with p(y) #
p(¥"), the Stone—Weierstrass theorem implies that these polynomials are
|| ||co-dense in the Banach space C(I") of continuous complex-valued functions
on I'. Using a continuity argument coming from (3.21) and approximating
continuous functions on I' in terms of the above polynomials, Eq. (3.30) implies

/f(z z)d,u(Ql) —/f(z z)d,u(Qz) for every f € C(I).

Since in the locally compact Hausdorff space I" an open set is a countable union

of compact sets with finite ,u(QZ)-measure, these Borel measures are regular
[Rud86]. Hence, the uniqueness in Riesz’s theorem for positive Borel measures

[Rud86] implies that 1) = 199 (E) for every E € #(T). In particular,
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forevery E € #(I") and every x € H,

1Q1(E) = 02BN = [ xwdi® ~ [ xeant@? <o,

proving that Q1 (E) = Q(E) for every E € Z(I"). Let us return to the initial
PVMs: noting that ¢ : R — I is a homeomorphism, so ¢~' : I — R is
measurable and ¢ (F) € B() if F € Z(R), we have

PI(F) = Q1(@(F)) = Q1(@(F)) = Q2(¢(F)) = Q5(¢(F)) = P(F), Fe%®R).

We have established that P4 is uniquely determined by A.
It §Z supp(P), the map C 3 r > . )L = g(r) is P-essentially bounded, so

R e )LdP(r) € B(H) and A, = H. According to Proposition 3.33 (c),

1 -
(A—u)f dP(r) =[ TR AP () =/ 1dPYM ) =1
RF— A RTF— A R
and

1 —a .
f dP(r)(A—AD)x = f " aPW oy = f 1dPDx =x ifx € D(A).
RT —A RT —A R

We conclude that fR rlAdP(r) = R)(A) and A ¢ o (A). Suppose conversely
that A ¢ o(A), and so R, (A) := (A — A)~! e B(H) exists. Then for
x € D(A) we have x = R (A)(A — Al)x and [|x|| < [[Rx(A)I] [I(A — 2)x]],
5o [[(A — Vx> = [|x]1?/]| R, (A)]|>. According to (3.14), taking ||x|| = 1,

/lr AP ) > Lo, (3.31)
IR (A)]?

If » € supp(P™), we would have P(()nA—)l/n,)n—i-l/n) # 0 and consequently we
would be able to pick out a sequence x, € P(&A)l/n Hrl/n)(H) with [|x,|| = 1,

finding f]R lr — A|2du )(r) < 4||x,||/n* = 4/n*> - Oasn — +00. As
(3.31) prevents this from happening, A ¢ supp(P ). This concludes the proof

If P} # 0.1et 0 # x € P{) (H). We have, from (3.22) and Proposition 3.33
(©),

Ax = AP{)x =/rdP(A)(r)/ X6y (A P(r)x =/rx{“(r)dP<A>x
R R R

= / X (dPPx = AP x = ax .
R
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Hence A € o0,(A). If conversely A € o,(A), then Ax = Ax for some
eigenvector x € D(A) with ||x]] = 1, so that (A — il)x = (1 —i)x and
(A—iD~'x = (x —i)"'x. Similarly, (A 4+ iI)"'x = (A 4+ i)~'x. Exploiting
the same argument we used in proving the uniqueness of P, and writing Q
in place of Q1 = Q», the relations found read

1
T = d N = d T* = d N = .
X /Fz 0z, 2)x A—ix an x /Fz 0z, 2)x A~|—ix

By considering polynomial compositions of the operators 7 and T* these
relations can be extended: for instance

1 1
/(az+bzz)dQ(z,z)x =aT*+bTTx =a x+b Tx
r A—1 At

! +b ! ’
= |a X
A—1 A+

and so on. In complete generality, defining ¢ := we have

1
A—i’
/ p(z,2)dQ(z, 2)x = p(T, T*)x = p(t, t)x

r

for every polynomial p in the variables z and z. As before, we can extend
to continuous functions f : I' — C via the Stone—Weierstrass theorem and
uniformly approximating a continuous functions f = f(z, z) on the compact
set I' by means of a sequence of polynomials p, = p,(z, z) restricted to I". As
[1f = Pn IT lloo = 0asn — +o0, (3.21) implies in particular

pu(t,)x = / pn(z,2)d0(z, 2)x — / f(z,2)d0Q(z, 2)x ifn — 4oc0.
r r
Since p, (t,t) — f(t,t), we eventually obtain
/ f(z,2)dQ(z,2)x = f(t,t)x . (3.32)
r

Now it is not hard to construct a sequence of continuous maps on I such that
fn = Xy pointwise on I" as n — +o0 and | f,(z, z)| < K < o0 for some
K > 0 andevery (z, z) € T". (c) and (b) in Proposition 3.29 imply, from (3.32),

Oyx /X{z}(z,z)dQ(z,z)x= lim /fn(Z,Z)dQ(Z,Z)x
r n—+00 r

lim f,(t, 0)x = xn(t, H)x =x .
n—+00
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Since t € IV by construction, Qy;} = Q’{t} = P{((f’)l(t)} = P{()\A}). We have

discovered that P{()LA})x = x. Since x # 0, we also have P{(ﬁ) # 0, which
concludes the proof.

It is clear that if A € o(A) = supp(P(A)) is isolated, so that there is

an open set O > A such that O \ {}} is contained in R \ supp(P‘4)), then
P{(ﬂ‘) # 0. For otherwise by additivity we would have P(OA) = 0 for some open
set O > A, forbidding A € supp(P4)). Let us prove the last statement in (c):
P{(I\/?)(H) = H,, where H;, is the eigenspace of A € 0,,(A). We established that
if P{({;) # 0 (or equivalently, A € 0,(A)), x € P{(I\/?)(H) satisfies Ax = Ax.
Therefore P{({;)(H) C H,. We have also proved that x € H, implies P{(ﬂ)x =x,
thatis H; C P{%)(H). In summary, P{({;)(H) =H,.
Assuming A € o.(A), due to (c), necessarily P{(ﬁ) = 0, because otherwise A €
o, (A), which is disjoint from o, (A). On the other hand, since A € supp(PY),
for every open set O containing A, PéA) # 0. Suppose PéA) # 0 for every
open neighbourhood O of . This fact forces A € supp(P4)) = o(A), and the
further requirement P{()ﬁ) = 0O yields A € 0.(A) due to (c).

O
Remark 3.41
(a) If PisaPVMonRand f : R — Cis measurable, we can always write
/Rf()»)dP(?») = f(A),
for the selfadjoint operator A obtained as
A= / t(MdP), (3.33)
R

(b)

due to (3.13), where 1 : R 5 A — A. By virtue of the uniqueness statement
in the spectral theorem P4) = P, which leads us to the conclusion that on a
Hilbert space H, projector-valued measures on Z(R) correspond one-to-one to
selfadjoint operators on H.
Theorem 3.40 is a particular case of a more general theorem (see [Rud9l,
Mor18] and especially [Schm12]) that is valid when A is a (densely-defined
closed) normal operator. The statement is identical, with the proviso of replacing
R with C. A special case is that in which A is unitary. The spectral theorem for
normal operators on ‘B (H) will show up in Sect. 3.6 disguised as Theorem 3.85.
]

Notation 3.42 Suppose f : 0(A) — C is measurable for the o-algebra obtained
by restricting the elements of Z(R) to o (A), which coincides with (o (A)) when
0 (A) has the induced topology. In view of Theorem 3.40, part (b) in particular, we
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will indifferently use the notations
f(A) = / FR)APM Q) = / gWAPY () = g(A). (334
a(A) R

where ¢ : R — C is the extension of f to zero outside o (A), or any other
measurable function equal to f on supp(P(A)) = o(A). Obviously g(A) = ¢g'(A)
if g, ¢’ : R — C coincide on supp(PY) = o (A). |

Example 3.43

(1) Consider the m-axis position operator X,; on L*(R", d"x) introduced in
Example 2.59 (1). We know that o (X;;) = 0.(X;;) = R from Example 3.14.
We are interested in the PVM PXm) of X,, defined on R = o (X,,). Let us fix
m = 1, for the other cases are analogous. The PVM associated to X is

(PEVYVID) = xp 1 V@) Y e LR d),  (3.39)

where E € Z(R) is a subset of the first factor of R x R"~! = R”. Indeed,
indicating by P the right-hand side of (3.35), one easily verifies that A, =
D(X1). Furthermore, approximating the function R” > x — x; € R with
simple maps,'

[ aweras = [l on= [0 v epon=a,

where 1), (E) = (Y| Pey) = [y oot [¥(x)]%d"x. Since the left-hand side
is nothing but (¥ | X 1), Corollary 3.27 (b) confirms (3.35) holds.

(2) Take the m-axis momentum operator P, on L2(R", d"x), introduced in
Example 2.59(2). Taking (2.23) into account, where F (and thus F *) is unitary,
by Proposition 3.60 (i) the PVM of P, is

QU i G+ plkn 3

The operator K, is X, represented in L*(R", d"k), see Example 2.59 (1).
(3) By a similar argument the PVM of the operator H = Hj relative to the
harmonic oscillator of Example (2.59) (4) is, for E € Z(R),

PE= Y (Wl

AeENhw(N+1/2)

'More generally: [p [pu-i gD () 2dxd™1x = j@g(xl)dufppl)p(xl) is patently valid for
simple functions. It extends to arbitrary measurable functions, provided both sides make sense,
in view of, for instance, Lebesgue’s dominated convergence theorem for positive measures.
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where

H= Y Wl Wa=Y ho+ 1/l ).  (336)

rcho(N+1/2) neN

has domain

D(H) = :w e L*(R, dx)

400
D o+ 1727l < +oo} :

n=0

Indeed, since {1, },en is a Hilbert basis of L?(R, dx), the right-hand side of
(3.36) is selfadjoint as integral of the (real) function: : R 5 A > A € R of
the said PVM (notice that D(H) = A,). Therefore the right-hand side of (3.36)
is a selfadjoint extension of the Hy in Example (2.59) (4), which is essentially
selfadjoint, so H = Hy. We will show that the spectrum of the Hamiltonian H
of the harmonic oscillator is

o(H)=0p(H)={iw(n+1/2)|n=0,1,...}.

Evidently o (H) contains the closed set of eigenvalues fiw(n + 1/2). We claim
it cannot contain any point A other than these numbers. Indeed, suppose that

there is a further A in o, (H), so that P{()\I}{) #0.Ifx € P{(AI}{ (H), we would have

(H) (H) (H)
(x[¥m) = <P{A} x|P{hw(n+1/2)}‘/fn> = (xlp{x}m ha,(n+1/2)}1/fn> (x| Py "Am) =
0. Therefore x must vanish because it is orthogonal to a Hilbert basis, and

P(I\H) = 0 contrarily to the hypothesis. There only remains the possibility that
A € o.(H). Since {iw(n + 1/2) | n = 0,1,...} is closed and A does not
belong to that set, it cannot be an accumulation point. We can therefore find
8 > Osuchthat (A — 8, A +6) N{hw(n +1/2) |n = 0,1, ...} = &. With the
same argument as before we can prove that x € P((AH )5 o 5)(H) forces x = 0,
and thus P/ O 5 ) = = 0. This violates Theorem 3.40 (d), so we conclude that
O'(H)—O'p(H) {hwo(n+1/2)|n=0,1,...}.

An argument similar to that of (2) and (3) applies to the symmetric momentum
operator in a box P’, introduced in Example (2.59) (5). The selfadjoint
extensions Py, o € [0, 27) of P’ are

Py =) (@ +2n7){uanl ) e -

nez

so in particular

0(Py) =0p(Py) ={a+2mn|nel}.
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Replacing « with o + 2km, k € Z, leaves P, invariant since it merely relabels
the same eigenvectors coherently with their eigenvalues.
In general it is false that if a selfadjoint operator A admits a Hilbert basis
of eigenvectors then its spectrum only contains eigenvalues. Since o (A) is
closed, but o, (A) is not always closed, points of o,(A) might accumulate in
the continuous spectrum.

Using the Hilbert basis {y,},en of the previous example, consider the
selfadjoint bounded operator

A= Y AW, : L*(R,dx) > L*(R, dx)
2eQN[0,1]

where QN [0, 1] > g — ny € N a bijection. We may define A equivalently as

A= / Ad P (M)
R
where, for every E € A(R),

PE= > My )W, -

A€ENQNI0,1]

The operator A is evidently bounded and it is easy to prove that ||A|| = 1. The
domain of A is therefore the whole L?>(R, dx) = A,. By the same argument
of the previous example, Q@ N [0, 1] = o,(A) because {{,},en is a Hilbert
basis of L*(R,dx). As 0p(A) C o(A) = o(A), we have QN[0,1] =
[0,1] = 0,(A) C o(A). It is easy to prove from (3.37) that 0 (A) C [0, 1]
because ||A|| = 1. We conclude that o (A) = [0, 1] and [0, 1] \ Q must lie in
oc(A).

More complicated situations exist. Consider an operator of Schrodinger
form

n

1 s 1
H = zm];Pk +HUW == A+UQE)

where A is the Laplacian on R", Py is the momentum operator on
Lz(Rk , d"x) associated to the k-th coordinate, m > 0 is a constant and U
is a real-valued function on R acting as multiplication operator. Suppose
U = U + U where Uy € L*@RF,d*x) and Us e L®(Rk, dkx),
k = 1,2,3, are real-valued and D(H) = C°(R). Then H turns out to
be (trivially) symmetric but also essentially selfadjoint [ReSi80, Morl8]
as a consequence of a well-known result (the Kato—Rellich theorem). The
unique selfadjoint extension H = (H*)* of H physically represents the
Hamiltonian operator of a quantum particle living in R" with potential
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energy described by U. (This in particular applies to the Hamiltonian of an
electron with attractive Coulomb potential: this is proportional to —1/||x||
in R? and decomposes as a sum of functions exactly as above.) In general
o (H) has both point and continuous parts. If P, denotes the orthogonal

projector onto the A-eigenspace of H, then fa,,(H) Ad P () takes this
form

/ 2Py = Y A
U]J(H)

reo,(H)

On the contrary, [, AdP") (%) has a much more complicated expres-

sion. Under a unitary transformation, f oo (H) Ad P (1) decomposes spec-
trally in analogy to the position operator X, which acts by multiplication
on L*(R,dx); the difference is that now several copies of L’-spaces may

appear. If H), := PG(H()H)(H) is the closed subspace spanned by the eigenspaces
p

of H and H, := ng;_l)(H), we have an orthogonal decomposition H =

H. & H,. The operator H, := fap(H) Ad P ()) leaves invariant the sub-

space

DHy) =1y eH, | Y E}P{yI? <400t ,
Eco,(H)

whereas He == [ 4, Ad P () fixes

D(H,) := {w €H,

E2dMP(H)(E) < +OO} )
/m:(H) vy

In this sense, H = H. ® Hp. A possible situation (not the only one)
is that H. is isomorphic to a direct sum @,]lv:le(ac(H),dE), and H,

W1, ..., ¥N) = (@ - Y1,...,1 - Yy) acts as a multiple of the identity in
each slot: (1 - Yx)(E) := Ey(E) . |

Definition 3.44 Selfadjoint operators admitting a Hilbert basis of eigenvectors are
said to have a pure point spectrum. |

Remark 3.45 Having a pure point spectrum does not automatically mean that
0p(A) = 0(A), as illustrated in example (4) above. However it implies that o.(A)
cannot have interior points (this is forbidden by Theorem 3.40 (d)). |
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3.3.2 Some Technically Relevant Consequences of the Spectral
Theorem

The spectral theorem has repercussions pointing in several directions. We shall
mention just a few which have a relevant impact on quantum theory. The first result
concerns the positivity of selfadjoint operators.

Proposition 3.46 If A is a selfadjoint operator on the Hilbert space H, A is
positive, that is (x|Ax) > 0 for every x € D(A) (also written A > 0) if and
only if o (A) C [0, +00).
Proof Suppose o (A) C [0, 400). If x € D(A) we have (x|Ax) = fJ(A) Adpy x >
0 by (3.12) (where u stands for M(P(A))), since [Ly x is a positive measure ad o (A) €
[0, +00).

Conversely, we shall prove that A is not positive if o (A) contains a Ag < O.
Using parts (c) and (d) of Theorem 3.40, one finds an interval [a, b] C o (A) with

[a.b] C (=00,0) and P} # 0 (possibly a = b = ko). If x € P (H) with
x # 0, then uyx(E) = (x|Pgx) = (xlpfz,b]PEXP[a,b]) = (x| Pa,b) PE Pla,p1X) =
(x| Pig.pjnex) = 0if [a,b] N E = @. Therefore, (x|Ax) = fU(A) My, =
Jtan Mtxx = fig gy bitex < bllx|? < 0. 0
Another remarkable result, about bounds on the extended spectrum, holds for
normal operators as well, and is independent of the spectral theorem (it can be used

to prove the spectral theorem, actually). We shall follow a much more elementary
route in Proposition 3.80.

Proposition 3.47 A selfadjoint operator is bounded (and its domain is the entire
H) if and only if o (A) is bounded. In this case

[IA]l = sup{|A| | 2 € 0 (A)}.
Proof From Proposition 3.10 we have that if A € B(H) then ||A|| > sup{|A] | 1 €
o(A)}. If, conversely, o0 (A) is bounded and hence compact (it is closed), by
restricting the integration domain to X = o (A) the continuous map ¢ : o(A) >

A — A is bounded. Then (3.14) implies that A = fa( 4 1d P is bounded and the
following inequality holds

(A)) (A))
|Ax|)> = / IAPdpE (1) < (sup{|Al | € o (A))? f 1du™ ()
o(A) o(A)

= (sup{|A] | & € o (AN [Ix]*.
Hence ||A|| < sup{|A| | A € 0 (A)}, so

[IA]l = sup{[A| | A € o (A)}. (3.37)
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In this case, furthermore, D(A) = A, = H. m]

Remark 3.48 Proposition 3.47 explains the reason why observables A in QM are
very often represented by unbounded selfadjoint operators. The spectrum o (A) is
the set of values of the observable A. When, as it frequently happens, an observable
is allowed to take arbitrarily large values (think of X or P), it cannot be represented
by a bounded selfadjoint operator simply because its spectrum is not bounded. H

Concerning the covariance of a selfadjoint operator and its PVM under unitary
transformations (or surjective linear isometries), another simple yet technically
important result is the following.

Proposition 3.49 Let A : D(A) — H be a selfadjoint operator on the Hilbert
space H and U : H — H' an isometric, surjective linear (or anti-linear) map.
Then UAU™", with domain D(UAU*I) = U(D(A)), is selfadjoint as well
(Proposition 2.41 and the subsequent remark) and

-1
PUAYD) —ypMU~! forevery E € BR).
Proof If x € D(A),

wav~h - -1
/zdufj“’)zumx):(Ux|UAU*1Ux>:/zd,L§}; . ):/zdquUXIP(UAU Uy
R R ’ R ’

In the last passage we used

(p(UAU*l)

UAU™! —1 ,(UAU! u-1pwarhy
wih e E=wx PP AU D uxy = wu T PYAY Dy = Y )(E) .

Applying Corollary 3.27 (b), we conclude that
A= / 1d U~ PUAVTOY
R
The uniqueness of the PVM of A implies

PO =UT P OU L i E e 2@,

which is the claim we wanted to prove. O

The notion of function of a selfadjoint operator (3.34) is just a generalization of
the analogous (1.7) that was introduced for the finite-dimensional case, and may
be used in QM applications. In finite dimensions the eigenvalue set of f(A) is the
image under f of the eigenvalue set of A: o (f(A)) = f(o(A)). But what about the
infinite-dimensional case?

If f: R — Cis Borel measurable (we could equivalently use an f : 6(A) — C
Borel measurable for (o (A))) and A : D(A) — His selfadjoint, it is quite evident
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that
f(op(A)) Cop(f(A). (3.38)
In fact, if A € 0, (A) thereis x = P{(ﬂ)x # 0 by the spectral theorem. Therefore

f fdPPWx =/ FaPMpiDx =/ fdP(A)/ Xpyd P x =/ £ xpydPPx
R R R R R

= /R FOIxpydPPx = () /R xpydPPx = fOox,

hence f(A) € o,(f(A)). In the infinite-dimensional case there exist simple
counterexamples disproving the converse inclusion f(o,(A)) D o,(f(A)). The

simples instance is xg(A) = PéA). This operator is an orthogonal projector and as
such it only has point spectrum, given by a non-empty subset of {0, 1}, even in case
0(A) =0c(A)s0 xg(op(A) =@

Pressing on, let us introduce a new notion to the purpose.

Definition 3.50 Let P : A(X) — Z(H) be a PVM on a topological space X. If
f : X — Cis measurable, we call P-essential rank the set

essrank(f) :={z € C| P19y #0 if Oisopenand O > z}.

Since f is Borel measurable and O (open) belongs to #(C), f_l(O) € AB(X)
and therefore the essential rank is well defined. Here is an almost immediate
consequence of the definition.

Proposition 3.51 Let P : B(X) — £ (H) be a PVM on a topological space X. If
f: X — Cis measurable, then

o (/X fdP) = essrank(f) .

Proof 1f z ¢ essrank(f) there exists an open set B > z in C with Proig = 0.
If B,(z) is an open ball of radius r centred at z and contained in B, by add1t1v1ty
Pf I(B @) — 0 (and Pf I(B\B @) = 0) The map X > )\, = g()\,) = f()n) z

therefore P-essentially bounded with ||g||gg) < 1/r, since Ppex||jg>1/r) =
0. Hence fX f(xl)—zd P() € B(H) from Proposition 3.29 (a). In addition, by
Propositions 3.33 (¢) and 3.29 (a)

f) -z

1
d —2)d = d =x if d
/xf(k)—z P(A)/X(f(k) 2)dP()x POy -z Px=x 1 xeD(/xf P)
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sothatz € p (fy fdP),ie.z &0 ([y fdP).

If z € essrank(f), then P;-1 ) # 0 for every open set O containing z. This
holds for every ball B/, (z) of radius 1/n,n = 1,2, .., centred at z. (In particular
f~Y(B12(2)) # @, otherwise Pr-1(g, () = 0.) We claim that if R := ([ (f —
zI)d P)~! exists it cannot be bounded, and hence z € o, (fx fdP). Indeed, ||x|| =
[IR fX(f — zI)d Px|| would imply, taking ||x|| = 1,

1 1
IR = NPl = -
I [x(f —zDdPxI> [ |f —z112dulh
1 2

T

>
Supf()n)EBl/,,(z) |f()") - Z|2 -[X ld,u“

which is not boundedasn = 1,2,....If R := (fX(f — zI)d P)~! is not defined,
then z € o, (fy fdP). Since the residual spectrum is empty, as [y (f — z/)d P
is normal, we have established that z € essrank(f) implies z € o (fX fdP),
concluding the proof. O

Remark 3.52 A subtler argument [Rud91, Morl8] proves that z € essrank(f)
belongs to o, ([ fdP) if and only if Pp—1 () # 0. [ |

The relevant corollary of Proposition 3.51 and the spectral theorem is the following
one.

Corollary 3.53 Let A be a selfadjoint operator on the Hilbert space H and f :
o (A) — C a continuous map. Then

o (f(A) = f(a(A)). (3.39)

The closure above is unnecessary if A is bounded.

Proof In view of Proposition 3.51 and Theorem 3.40, we just need to prove
essrank(f) = f(supp(PM)). If z = f(r) for some r € supp(PY) and
O > z is open, then f~1(0) is open since f is continuous and it contains .
Hence P-1(oy # 0 by the very definition of support. This proves essrank(f) C
f(supp(P(A))). As essrank(f) is closed by definition (its complement is open),
we have essrank(f) = essrank(f) C f(supp(P4)). To conclude, suppose
7z € f(supp(P@)). If O > z is open, it must have non-empty intersection with
f(supp(P). Hence f~'(0) is open, non-empty and f~!(0) Nsupp(PD) # .
From the definition of support, # 0. By definition z € essrank(f). We

established that essrank(f) D f(supp(P?)) and hence concluded the proof.
Regarding the last statement, if A is bounded o (A) is compact by Proposition 3.11
(b). Since f is continuous, f (o (A)) is compact, and closed because C is Hausdorff,
so that f(o(A)) = f(o(A)). O
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Remark 3.54 Tt is fundamental to stress that in QM (3.39) permits us to adopt the
standard operational approach to interpret the observable f(A): it is the observable
whose set of possible values is (the closure of) the set of real numbers f(a) where
a is a value of A. |

A final result which will be useful later in many contexts is the following
proposition.

Proposition 3.55 If H is a Hilbert space and B € B(H), then B is a linear
combination of unitary operators.

Proof As we know, B can be written as complex linear combination of selfadjoint
operators B = é(B + B*) + izll. (B — B*), so it is sufficient to prove the claim
for selfadjoint operators. Consider A* = A € B(H). If ||A|| = O the thesis is
trivial, so we assume ||A|| > 0. Then A’ := ”}x”A satisfies ||A’|] < 1,s0 0 (A") C
[—1, 1] by Proposition 3.47. Moreover, A/, := A’ + ivI — A € B(H) are well
defined via spectral theory (integrating the corresponding functions on o (A")). It is
easy to prove that A/, are unitary, for Theorem 3.24 and Proposition 3.29 guarantee

A*AL = A/, A" = I. By construction, A’ = 1A, + éA_. o

3.3.3 Joint Spectral Measures

The last spectral tool we need to introduce are joint spectral measures (see, e.g.,
[ReSi80, Mor18]). Everything is stated in the following theorem, whose proof is
long and technical in most books. In Sect. 3.6 we shall present an original argument,
which by character befits our presentation of the spectral machinery.

Theorem 3.56 (Joint Spectral Measure) Let 2 := {A(, A, ..., A,} be a set of
selfadjoint operators on the Hilbert space H. Suppose that their spectral measures
commute:

Ap) p(Ap Ap) p(A
PP = P P Yk he(1,... n} VEi Ey € BR).
Then there exists a unique PV M P®) on R" such that
2) (A1) (An)
PR g, = PE PO VEL L E, € BR).

For every f : R — C measurable,

ff(xk)dP@‘)(x):f(Ak), k=1,...,n (3.40)
RV!

where x = (X1, ..., Xk, ..., xy) and f(Ag) == [p fF()dPAO.
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Finally, B € B(H) commutes with P if and only if it commutes with all PA%),
k=1,2,...,n.

Proof See Sect. 3.6. O

Definition 3.57 The PVM P®™) in Theorem 3.56 is called the joint spectral
measure of Ay, Ay, ..., A, and its support supp(P(Ql)), i.e. the complement in

R” of the largest open set O with Pém) = 0, is called the joint spectrum of
A, Aa, ..., Ay |

Example 3.58 The simplest example is provided by considering the n position
operators X,, on L*(R", d"x). It should be clear that the n spectral measures
commute because the operator P]E-Xk), for E € #(R), acts as multiplication by
XRx--xRxExRx--xR, Where E is in the k-th position. The joint spectrum of the n
operators X, coincides with R”" itself.

A completely analogous situation holds for the » momentum operators Py, since
they are related to the position operators by means of the unitary Fourier-Plancherel
operator, as already seen several times. Again, the joint spectrum of the n operators
P,, coincides with R" itself. |

Here is a useful fact proved by von Neumann (see [RiNa90] for a proof).

Theorem 3.59 Let A, B be (possibly unbounded) selfadjoint operators on the
Hilbert space H. If the spectral measures of A and B commute, then there is a
third (possibly unbounded) selfadjoint operator C on H such that A = f(C) and
B = g(C) for some Borel measurable functions f, g : R — R.

3.3.4 Measurable Functional Calculus

The following proposition provides useful features of f(A), where A is selfadjoint
and f : R — C is Borel measurable. These properties constitute the so-called
measurable functional calculus. We suppose here that A = A*, but statements can
be reformulated for normal operators too [Mor18].

Proposition 3.60 Ler A be a selfadjoint operator on the complex Hilbert space H
andlet f, g : 0(A) — C be measurable functions. Let af, f - g, f + g indicate the
pointwise operations (a € C). The following facts hold.

@) If fA) = pu(A) := D 4_g axrk with a, # 0, then

n

pa(A) =Y " axA* with D(pa(A)) = A, = D(A"),
k=0

where the right-hand side is defined on its standard domain, and A0 = |,
Al := A, A2 := AA, and so forth.
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(b) If f = g is the characteristic function of E € %B(o (A)), then

fA)=PYE).
(¢) Using bar to denote complex conjugation,

fA* = f(A).

(d) Fora €C,

af (A) = (af)(A).
(e) D(f(A)+g(A)) = AfNAgand

F(A)+g(A) C (f +8)(A).

There is equality above if and only if Ay 1o = Ay N Ag.
(®) D(f(A)g(A) = Asy N Ay and

F(A)g(A) C (f-8)(A),

with equality if and only if A ., C Ag.
(g) We have D(f(A)* f(A)) = Airp and

FA*FA) = |fI*(A).
(h) If f > O then
(x| f(A)x) =0 forx e Ay.

() Ifx e Ay,

I (A)x | = / £ 02 Gy

o(A)

In particular, if f is bounded or PY-essentially bounded on o (A), f(A) €
B(H) and

AN < IAIE™ <11 flloo -

() IfU : H — H'is a linear (or anti-linear) surjective isometry, then

Uf(AU™ = fFuAU™Y
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and, in particular, D(f(UAUfl)) =UD(f(A) =U(Ay).
(k) Ifp : R — R is measurable, then B(R) 5> E +— P'(E) := PY (¢~ (E))isa
PVM on R. Defining the selfadjoint operator

A= / NdP'(\)
R
such that PA) = P’ we have
A= ¢(A)

and

FAY=(fop)(A) and A= Aoy

for every f : R — C measurable.

Proof Everything but (a), (b), (c) and (i) are trivial reformulations of the corre-
sponding statements in Proposition 3.33. As a matter of fact, (b), (c), (h) and (i)
are nothing but (3.22), (3.13), (a) in Corollary 3.27 and (3.14) respectively. Item (a)
is easy to prove. Let us initially focus on the case p,(A) = A". Observe that A =
fa(A) Ad P ) = pi(A). Letus prove claim for a given n knowing it is true for n—1:
A" = AA" = [ AdPA Q) [ AT AP = [ A"d P (L) = pu(A). In
the penultimate equality we used Proposition 3.33 (c): the condition Ay, C Ag
is satisfied for f = 1 and g = 1"~! because the measure ,LL)(CI;) is finite and hence
Jg A" dprx (M) < +oo implies [ (A2 Dd (1) < +o0.

Let us pass to polynomials. For every polynomial p, (1) = > ., ai)k of
degree m (i.e. a,, # 0) set pyu(A) = ZZLO agA¥. For m = 0 it is clear
that p1(A) = [apdP™ () = apl. Suppose inductively that p,_1(A) =
Joay Pu_1(M)d P (X). From Proposition 3.33 (b), if a, # O then a,A" +
Pn-1(A) = [panA"™ + pup—1(M)dP™ (). This is because the condition Ay, =
Ay N Ag in Proposition 3.33 (b) is satisfied for f = a, " and g = p,_ since
Ag, 14 p,_, = A, again from the finiteness of /L)(f;). Putting everything together,
we have ) }_qaxA* = [ (4) P for every polynomial p(A) = 3 j_, ap)k of
degree n. It is obvious that D(p,(A)) = D(A") (if a, # 0) by the definition of
standard domain. |

3.3.5 A First Glance at One-Parameter Groups of Unitary
Operators

Let us start with an elementary result based on Proposition 3.60.
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Proposition 3.61 If A : D(A) — H is a selfadjoint operator on the Hilbert space
H, then

Rt U :=e'4

is a one-parameter group of unitary operators, i.e.

(i) Uy is unitary fort € R,
(ii) Uy =1 and U;Ug = U, 4 for everyt,s € R.

As a consequence of (i) and (ii), U} = U~ = U_; fort e R

Proof U; = f]R e*dPA (1) is an element of B(H) because the function in
the integral is bounded due to Proposition 3.60 (i). Then the conclusion follows
immediately from (b), (c) and (f) in Proposition 3.60, since eV = 1, ¢ihelsh =
e U)X and pith — p—ith, .

We have a pair of important technical facts about the one-parameter group of unitary
operators introduced above.

Proposition 3.62 If A : D(A) — H is a selfadjoint operator on the Hilbert space
H, the one-parameter group of unitary operators
R>t U :=¢'

is strongly continuous, i.e. Ux — Usx if t — s for every fixed x € H.
Furthermore

U/ (D(A)) = D(A) and UA= AU, forteR.
Proof Since U, is isometric, ||Usx — Usx|| = ||Us(Ui—sx — x)|| = ||Up—sx —

x||. Therefore continuity at any s € R is equivalent to continuity at 0. Next,
Proposition 3.60 (i) entails that

. A
IIUtx—x||2=/|e”)‘—1|2dug( D 50 fort— 0,
R

. . Ay . .
where we used dominated convergence theorem and noticed that ,LL)(CI; ) is finite

and |e/"* — 1|? < 4. Regarding the second statement, observe that

i . .
U P =/Re”*dP(A>/RXEdP(A)=/RXEe”*dP(A>

=/XEdP(A>/ ap® = PV,
R R
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by (i), (b) and (f) in Proposition 3.60. As a consequence, MU,x U,x(E) =

(A)
1PUP = W0 PPxP = 1P =l (E). Therefore
(A)
Jo W2dpE™ = [ aPdu {,fox, meaning U;(D(A)) = D(A). Now

Proposition 3.60 (f) proves that U;A = [ "™ Ad P = AU, if we write these
operators in terms of integrals and observing that the condition on the domains
necessary and sufficient to write = in place of C is here satisfied. O

Proposition 3.63 If A : D(A) — H is a selfadjoint operator on the Hilbert space
Hand x € D(A), then

o d
dt |,

eltAx — elsAAx — AetsAx

Proof Let us start with s = 0. Notice that if x € D(A), Proposition 3.60 (i) yields

/‘ " —1) —ir

The integrand tends to O pointwise as 7 — 0. On the other hand the mean value
theorem, applied to real and imaginary parts of the argument of the absolute value,
says that

1 .
Hh(e'hAx—x)—iAx du(P( Dry. (341

2

1 .
‘h(e’hr — 1) —ir| =|—rsinthor) +ircosthyr) — ir|*

= |—sin(hor) + i cos(hyr) — i|*r* < 9r2

for some Ay, h6 e [—|H|, |H|]. Themap R > r > r? is Mgm))-integrable since
x € D(A) = A,2. Finally, dominated convergence theorem proves that the limit of
the left-hand side of (3.41) vanishes when 2 — 0. This establishes the claim for
s = 0. The case s # 0 can be proved by observing that

2

2
1 . . o
H (ez(s+h)Ax _ e”Ax) _ lezsAAx

. 1 .
elSA [h(elhAx _x) _ le}

1 ihA : 2
= h(e X —x)—iAx

and applying the previous proposition. O

Exercise 3.64 Prove that if A € B(H) is selfadjoint on the Hilbert space H, then

+00 . .\n
itA _ @" .,
e - Z n! A

n=0
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for every ¢ € R, where the series converges in operator norm.

Solution By Proposition 3.60 (i), using the fact that e/’4 — Zflvzo ('Z?n A" is
bounded,

N

/ eitr _ Z @n" P dP(A)
o(A) n!

n=0

N .
i @n"
ettA_ ' A" < sup
n.

rec(A)

N .
; itr)"
el — Z (itr)
n!
n=0

n=0

For a fixed ¢ € R, the limit as N — 400 of the right-most term vanishes, proving
the thesis. This is because the power series e? = Y120 fl", has convergence radius
+o00, hence it converges uniformly in every closed disc centred at the origin with
finite radius. Therefore the convergence is uniform on any compact set of C. In

particular on o (A), which is compact by Proposition 3.47) since A is bounded. O.

3.4 Elementary Quantum Formalism: A Rigorous Approach

We return to the discussion started in the introduction to show how, in practice,
the physical hypotheses on quantum systems (1)—(3) must be interpreted mathe-
matically on infinite-dimensional Hilbert spaces. (For convenience we reversed the
order of (2) and (3).)

3.4.1 Elementary Formalism for the Infinite-Dimensional Case

Let us begin by listing the general assumptions for a mathematical description of
quantum systems.

1. A quantum mechanical system S is always associated to a Hilbert space H, either
finite- or infinite-dimensional;

2. observables are represented in terms of (generally unbounded) selfadjoint oper-
ators A on H,

3. states are equivalence classes

[¥]={“V | eR)
of unit vectors ¥ € H (the equivalence relation being ¥ ~ v iff ¢ = e/®y’ for

some a € R).

We set out to show how the above mathematical assumptions enable us to set the
physical properties of quantum systems (1)—(3) of Sect. 1.1.2 in a mathematically
nice form for infinite-dimensional Hilbert spaces H.
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(1) Randomness The Borel subset £ C o (A) represents the outcomes of
measurement procedures of the observable associated with the selfadjoint operator
A. (In case of continuous spectrum the outcome of a measurement is at least an
interval in view of the experimental errors.) Given a state represented by the unit
vector ¥ € H, the probability to obtain outcome E C o (A) when measuring A is

(A)
wyy (E) = 1Py (3.42)

where we have used the PVM P of the operator A.
Pursuing this interpretation, the expectation value (A)y of A, when the state is
represented by the unit vector ¥ € H, turns out to be

(P)
(A)y = Ay 4 (). (3.43)
o(A)

This relation makes sense provided: : 0 (A) > . — A belongs to L' (o (A), ufpiiff)))

(which is equivalent to say that Yy € A}, ;12 and, in turn, ¥ € D(|A|'/?)). Otherwise
the expectation value is not defined. Since

pA P&
LYo (A). nf ) € LYo (A ulfy )

because ,uif?ff g is finite, we have the popular formula, derived from (3.12):

(Ayy = (Y|Ay) ify € D(A). (3.44)

The associated standard deviation AAy, is
(A)
AAy = \// = (A))2dpl (). (3.45)
o (A)

(
This definition makes sense provided : € L?(o(A), “1(//}:;))) (ie. ¥ € Aj,orf €
D(A)).

As before, functional calculus permits us to write the other famed formula

AAy = \/(1/f|A21/f) — (Y|AY)? ify e D(Az) Cc D(A). (3.46)
We stress that the Heisenberg inequalities, established in Exercise 1.11(1), are now
completely justified, as the reader can easily check.

(3) Collapse of the State If the Borel set E C o (A) is the outcome of an (idealized)
measurement of A when the state is represented by the unit vector ¥ € H, the new
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state immediately after the measurement is represented by the unit vector

o Py
v = PO (3.47)

A
Remark 3.65 Lo and behold this formula does not make sense if ,uf/f;/ ))(E ) = 0.
Moreover the arbitrary phase affecting ¥ does not really matter due to the linearity
(4)
of Py ]

(2) Compatible and Incompatible Observables Two observables A, B are
compatible—i.e. they can be measured simultaneously—if and only if their spectral
measures commute, which means
A) p(B B) p(A

PVPY = PP P EeB0(A), FeBoB). (348

In this case
A) (B B) p(A A,B
1P PRI = 1P POWIP = 1P R v,

where P4-B) is the joint spectral measure of A and B, has the natural interpretation

of the probability to obtain outcomes E and F' for a simultaneous measurement of
A and B. If instead A and B are incompatible, it may happen that

A B B A
1P PRI £ 1P Py

Sticking to A, B incompatible, (3.47) gives

(B) 2
Py
A B A B
1PV PP = || P 1Py (3.49)
1Pyl

The meaning is the probability of obtaining first F and then E in subsequent
measurements of B and A.

Remark 3.66 1t is worth stressing that the notion of probability we are using here
cannot be the classical one, because of the presence of incompatible observables.
The theory of conditional probability cannot follow the standard rules. The proba-
bility Py, (E4|Fg), that (in a state defined by a unit vector ) a certain observable
A takes value E4 when the observable B has value Fp, cannot be computed by the
standard procedure

Py (E4 AND Fg)

Py (EalFp) = Py (Fp)
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if A and B are incompatible: in general, there is nothing which can be interpreted as
the event “E 4 AND Fp” if PéA) and PI(VB) do not commute! The correct formula is

B A B
(wip P Py

Py(EalFB) =
PPy 2

which leads to well-known properties that depart from the classical theory, the so-
called combination of “probability amplitudes” in particular. As a matter of fact, to
the day we still do not have a clear notion of (quantum) probability. This issue will
be clarified in the next chapter. |

3.4.2 Commuting Spectral Measures

The reason to pass from operators to their spectral measures to define compatible
observables is that, if A ad B are selfadjoint and defined on distinct domains, AB =
B A does not make sense in general. Moreover, there are counterexamples (due to
Nelson) where the commutativity of selfadjoint operators A and B on a common
dense invariant subspace, which is a core for A and B, does not imply that their
spectral measures commute. Nevertheless, general results again due to Nelson give
us the following nice result, which we shall prove later (see Exercise 7.43).

Proposition 3.67 If selfadjoint operators A and B on a Hilbert space H commute
on a common dense invariant domain D where A*> + B is essentially selfadjoint,
then the spectral measures of A and B commute.

Definition 3.68 When the spectral measures of two selfadjoint operators A, B
commute, i.e., (3.48) holds, one says that A and B commute strongly. ]

In addition to the aforementioned direct result by Nelson, there are several other
technical facts providing necessary and sufficient conditions for the commutativity
of the spectral measures of pairs of selfadjoint operators. The most elementary and
perhaps useful is the following one.

Proposition 3.69 Ler A, B be selfadjoint operators on the complex Hilbert space
H. The following facts are equivalent:

(i) A and B strongly commute,
(ii) et4esB = e9Bel'A for every s, t € R,
(iii) e’:’APéB) = _P(B)e”Afor everyt € Rand E € Z(R),
(iv) "B C Be''A forallt € R, or equivalently ¢"AB = Be''4 forall t € R.
Under any of the above statements: ¢'*(D(B)) = D(B) forallt € R.

Proof Evidently (i) implies (ii) since [ sd PN [ tdP®) = [, 1d P® [ sd P
if s and ¢ are complex simple functions, due to (3.24); the result extends to the
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exponentials by Proposition (3.29) (c) with suitable sequences of bounded simple
functions tending to the exponential functions. Let us prove that (ii) implies (iii).
From (ii) and for x, y € H, we have (x|e " 4¢iBeitAy) = (x|e9By), which may be
rephrased as

pB : )
/]R zvrd g]tx l},y(r)Z/Re”rd'u)(cl; )(r)’

) . (B) ®
where U; = " If f € .Z(R), since both /xg ) and ,u(UI:X liy are complex

measures (so their absolute variations are finite measures) we have

/ If(S)I/ Ie’”IdIMU,X Utyl(r)ds < o0, / If(v)l_/ Iel”ldlﬂ )I(r)dv < Ho0.

The very definition of integral in a complex measure and the Fubini-Tonelli theorem
imply that

/ (/ f(S)eisrdS> d“g:f;},y(r) =/ </ f(s)eisreisrds) d'uxp( ))( )
R R R R

Since the Fourier transform is a bijection from .’(R) onto .¥(R), the previous
relation reads

/ (Nl ), () = f gdu ™, (3.50)

for every g € .(R). Using the Stone—Weierstrass theorem and a smoothing pro-
cedure, it is possible to prove that if f is a complex, continuous map with compact
supportin R, say supp(f) € [—a, a], there exists a sequence of smooth functions f,
with compact support contained in [—2a, 2a] (obtained by approximating truncated
polynomials outside [—2a, 2a], and then smoothing), such that || f — f;|lcc = O
when n — 4-o00. Since the measures in (3.50) are finite, this fact immediately
implies that (3.50) holds also when g is continuous and compactly supported. Both
Borel measures are regular because, being finite, open sets are countable unions of
compact sets with finite measure [Rud86] Riesz’s theorem for positive (regular)

Borel measures [Rud86] implies that ,u )(E )= MU, . U,y(E ) for every Borel set

E € A(R). In other words (x|(Ut*PéB)Ut — P]E-B))y) = O forevery x, y € H, which
in turn means Uy P]E-B) = P]E-B) U;, namely (iii). In order to prove that (iii) implies
the measures P, P(B) commute, we proceed as above. Begin by observing that
for x, y € H we have (xlei’AP(B)y) = (x|P(B) itAy) The argument used earlier
leads to M(A(L) (P = M(A;(B) (F), namely (le(B)P(A)y) = (x|PV PP y) for
allx,y € H and E,F e %’(R) This is equivalent to (i).

Finally, assuming e/'4AB C Be''4 for all t € R, applying e~/'4 to the right of
both sides and using the fact that 7 is arbitrary, proves Be!'4 C ¢/’AB forall 7 € R,
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s0 ¢!"AB = Be''A t € R. This fact is equivalent to ¢4 Be™"4 = B. In turn, the
latter is the same as saying that (iii) holds, e”APfEB)e_”A = PéB) forallt € R and
E € A(R), in view of Proposition 3.49. The last statement is immediate from the
second assertion in (iv), by the fact that ¢/'4 is bijective. O

With similar arguments one can proved straightforwardly the following proposition
regarding a special case A € B(H).

Proposition 3.70 Let A, B be selfadjoint operators on the complex Hilbert space
H. If A € B(H) the following facts are equivalent:

(i) A and B strongly commute,

(ii) AB C BA (with equality if, additionally, B € B(H)),
(iii) Af(B) C f(B)Aif f:0(B) — Ris Borel measurable,
(iv) PPA=APP ifE € Bo(B)).

Proof (i) implies (iv) just using the definition of integral in a PVM that integrates

the function : with respect to P4 Integrating again f with respect to P®) we

B) B)
obtain (iii) from (iv): observe that /LE{;Ai (E) < |1AI12u5 7 (E) (since P® and A

commute), so Ax € D(f(B)) if x € D(f(B)). The special choice f =1 produces
(i) from (iii). Finally (ii) implies A”B C BA" and also, by Exercise 3.64 and
because our B is closed as selfadjoint, we have ¢/’AB C Be''4 for every ¢t € R.
Proposition 3.69 now gives (i). O

Another useful result directed toward the converse statement is the following.

Proposition 3.71 Let A, B be selfadjoint operators on the complex Hilbert space
H whose spectral measures commute. Then

(a) ABx = BAx ifx € D(AB) N D(BA).
(b) (Ax|By) = (Bx|Ay) ifx,y € D(A) N D(B).

Proof
(a) Take y € D(B) and x € D(AB). Since ¢''Beis4 = ¢i54¢/1B we have
(e7BylelsAx) = (yle!s4ei'Bx). Computing the t-derivative at 1 = 0 with

Proposition 3.63 and using the continuity of ¢/*4, we obtain (By|e’s4x) =

(yle!*ABx). By the definition of adjoint we have ¢!*4x € D(B*) = D(B)
and ¢*ABx = B*¢!4x = Be'*4x. Assuming x € D(BA) and exploiting

Proposition 3.63 once more, we can finally differentiate ¢’*ABx = Be'S4x
in s and evaluate at s = 0, using the fact that B is closed. This produces
ABx = BAx.

(b) It suffices to differentiate (e *By|e!s4x) = (e7"*4y|e!’Bx) and use Proposi-
tion 3.63.
O
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3.4.3 A First Look at the Time Evolution of Quantum States

We have already mentioned that for quantum systems in an inertial frame subject to
temporal homogeneity, the time evolution of states is described in terms of a strongly
continuous one-parameter group of unitary operators of the form U; := el ,
t € R, where the selfadjoint operator H is called the Hamiltonian operator of
the quantum system (it depends on the reference frame). The observable H has
the physical meaning of the energy of the quantum system in the frame of reference
considered. If a quantum state is represented at time r = 0 by the unit vector ¥ € H,
where H is the Hilbert space of the system, the evolved state v; at a generic time
instant ¢ is therefore

Y =Urr . (3.51)

We shall not discuss here the motivations of this description of time evolution, but
only make a few observations.

Remark 3.72

(a) If we represent the state i at r = 0 by another vector ¥ := ¢!“1, the evolved
state is represented, coherently, by ¥, = Uy’ = €U, in view of linearity
of U;. This ensures that the description of time evolution is phase-independent
as expected: it preserves equivalence classes

(Y] ={"“Y |« e R}

of unit vectors, i.e. states. As a consequence, we can define an action of time
evolution on states unambiguously: U;[{] := [Us¥].
(b) Since U, is isometric, the unit normalization of ¥, is preserved by time

. . . . . (PW)
evol(ljflon, in agreement with the interpretation of the measures Mgy > whereby
/,Ll(;: Wr) (R) = 1 (they are probability measures). |

According to Propositions 3.62 and 3.63, if ¥ € D(H), from (3.51) we have

d d _;jty 1 _itH 1
= h = — H h = — H .
dt‘/ft dte 4 lh e 14 lh (2

We have thus recovered the celebrated Schrodinger equation:
dy
i fi =Hy, . 3.52
l dt 1z ( )
It is worth stressing that the correct topology to calculate the derivative is the

topology of the Hilbert space. In other words, the Schrodinger equation is not a
standard PDE in the simplest situation in standard QM, namely H = L2(R3, d3x):
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there

2
H = Hy and Hoz—h A+V
2m
for some real function V : R" — R, and Hy is defined on a suitable dense
linear domain D(Hp) C H of smooth functions, where furthermore it is essentially
selfadjoint. Nevertheless, it is possible to prove that under suitable hypotheses
jointly regular solutions ¥ : R x R> — C of the PDE interpretation of (3.52),

o (e, K2
i VR

9t oy 2V (X)) = V@)Y (2, x) =0

define proper solutions of (3.52).

A very particular class of physically interesting solutions are the so-called
stationary states of a given Hamiltonian operator H. They are defined when
op(H) # . If E € 0,(H) and ¥ € D(H) is a corresponding eigenstate, so
that Hy g = Ey g, its time evolution is trivial

y y
e ifyp = e Fyp

The quantum state [ g] associated to Y is a stationary state with energy E. Notice
that this state is fixed under time evolution, since states are (normalized) vectors up
to phase, and ¢~ E is such.

Consider a non-relativistic spinless particle described on H = L?*(R3, d3x),
where the position operators along the Cartesian axes of the inertial reference
frame are the multiplication operators X ; of Example 2.59. For a stationary state
Ve € L*(R3, dx) the probability density |z, (x)|> = |¥E(x)|? of finding the
particle at x € R3 is constant. For example, look at the electron in the hydrogen
atom (with mass m and electrical charge e, and assuming the proton is located at
the origin and generates the Coulomb force as a geometric point of the matter).
Stationary states with energy levels corresponding to the spectrum of the Coulomb
Hamiltonian Hj, where

K2 &2

— SR > L2R3, dx),
2m [lx]]

Hy = —

define the orbitals of the atom.

Remark 3.73 Roughly speaking stationary states are stable states of matter, and all
relatively stable structures of physical objects are described in terms of stationary
quantum states of the Hamiltonian operator of the system. These states may cease to
be stable when the Hamiltonian changes because of interactions with some external
quantum system. For instance, the stationary states of the electron of the hydrogen
atom are stationary as soon as the system is kept isolated. When interacting with
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other systems (especially photons), these states become non-stationary because they
are not represented by eigenvectors of the complete Hamiltonian operator of the
overall system. Even in an isolated hydrogen atom the proton should be treated
quantistically, and the complete system is made of a pair of quantum particles
described on an overall Hilbert space L? (Rg X R;, d3x,@d>x p). Usually the motion
of the proton is neglected and is treated classically. This is because its mass is around
2000 times that of the electron, and in many applications where one is essentially
interested in the motion of the electron, it may as well be considered as a fixed
classical particle. ]

Example 3.74 Let us consider a free spinless particle of mass m > 0. In
orthonormal Cartesian coordinates of an inertial reference frame, its Hilbert space
is L?(R3, d3x). This explicit representation of the Hilbert space of a non-relativistic
particle, where the position operators are multiplication operators, is called position
picture (or position representation). The Hamiltonian operator H is the unique
selfadjoint extension of the essentially selfadjoint operator

3
. 1 2. 3 2m3 43
Ho.=2mkz_:lPk.5’(R)—>L(R,dx).

It is evident that it includes only the kinetic part of the energy. In this sense the
particle is free. Now, it is easier to represent the Hilbert space as an L? space where
the momentum operators are described by multiplication operators. As we know
from the content of Example 2.59 (2) (use Eq. (2.24) in particular), this realisation
of the Hilbert space is related to the position representation by means of the Fourier-
Plancherel operator

FLXR3, dx) > ¢ > ¥ € L2R3, k).

This Hilbert space isomorphism reduces to the standard integral Fourier transform
on . (IR?), and transforms this subspace into itself bijectively (changing the variable
of the functions from x to k). The representation L?(R3, d3k) of the Hilbert space,
where momenta are multiplication operators, is popularly known as the momentum
picture (or momentum representation). The corresponding Hamiltonian operator
H = Hj is represented by the selfadjoint operator

H =%HZ% .

Since it is the square of the momentum operator up to the constant factor (2m)~!, it
must act as

- k2
(H'Y) (k) = m Y (k) (3.53)
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2. 3 2
where k% := ijl kj, and
D(H') = {& e L2R3, &%) | k2P e LA(R3, d3k)} .

The spectrum of H is continuous and it is not difficult to prove that o (H) =
oc.(H) = [0,4+00) as a byproduct of (3.53). This is expected from physical
considerations, since the energy is purely kinetic.

Time evolution has a direct representation here:

(eﬂm'@) ) = e Tk | (3.54)

Notice that the right-hand side belongs to .7 (R?) at every time 7 if it does at 7 = 0.
Time evolution has a corresponding representation in the space L>(R3, d3x),
obtained through the action of the Fourier-Plancherel isomorphism

. A N
efltH nyleﬂtHy‘

If ¥ € .7 (R3), we can use the standard integral Fourier transform

—ikx 1 ikx 7 R
/RSe My dx and  Y(x) = I fR}ek Tk .

(3.55)

Composing these transformations with (3.54) we find
(e*”Hw) W= | / DT dk for y € S (RY)
@2m)32 Jgs ‘

Note in particular that the time evolution leaves fixed the space .7 (R3). ]

3.4.4 A First Look at (Continuous) Symmetries and Conserved
Quantities

As we shall discuss better later, physical operations changing the states of a
given quantum system are pictured in terms of either unitary or anti-unitary
transformations U : H — H, called (quantum) symmetries.

Symmetries U transform vectors ¥ +— Yy := Uy but preserve norms (U is
isometric by hypothesis) and do not depend on the phase (¢! maps to e!“yry).
We may therefore pass to the quotient, to the effect that the action of a symmetry is
well defined on equivalence classes of vectors, i.e., on pure states: U[y] := [Uy].
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A particular subclass of symmetries are continuous symmetries. These are
strongly continuous one-parameter groups of unitary operators {e*4};cr generated
by some selfadjoint operator A : D(A) — H. This A is interpreted as an observable
somehow related to the continuous symmetry, and is called the generator of the
symmetry.

When a continuous symmetry commutes with time evolution, i.e. (always
assuming i = 1)

eSBemitH _ —itH isB gt s € R, (3.56)

the symmetry is said to be a dynamical symmetry. This feature has a fundamental
consequence. The generator B becomes a constant of motion, in the sense that all
statistical properties of the outcomes of measurements of B on a given state Y € H
turn out to be independent of the time evolution of . Applying Proposition 3.69, if
E € Z(R) the probability that the outcome of measuring B at time ¢ belongs to E
is

(B) B B B (B)
wh v E) = 1P U1 = WU PP WP = 1P w11 = ul ) (B)

which coincides to the probability of obtaining E at time ¢+ = 0 when measuring B.

The crucial passage above is the swap P]E-B) U =0 PI(EB), which is consequence of
(3.56) and Proposition 3.69 for A = H.

Remark 3.75 If B is a constant of motion as defined above, the expectation value
of B and its standard deviation are constant in time, just by definition of expectation
value and standard deviation.

These two facts, albeit immediate from the definition of expectation value and
standard deviation, are usually derived by physicists using Eqgs. (3.44) and (3.45)
(when the requirements on the domains are fulfilled) and Proposition 3.69:

(B)y, = Uy |BUY) = (YU BUY) = (Y|BUSUpy) = (Y|BY) = (B)y .
and
ABy, = (Uy|B*Uy) — (B}, = (WIUB*Ur) — (B)y, = (VIB*USUry) — (B)y, = ABy .

Example 3.76 Consider the momentum operator P; along the j-th axis in R3.
We want to examine the strongly continuous one-parameter group of unitary
operators V, := e *“Pi with a € R. It is convenient to deal with the momentum
representation. As we know, here P; is nothing but the multiplication operator

(P]’. 12) (k) = k; ¥ (k), for every ¥ € L2(R?, d*k). As in Example 3.74, we adopt

the notation A’ := .#A.% ! to write down the momentum representation A’ of
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operators given by A in position representation. It is easy to prove that

(Vo) (k) = e %y forevery ¢ e L2(R3,d%k).
Using (3.55), if ¥ € .7 (R?) then ¥ € . (R3) and vice versa, so

1 ikx ,—ikja > 3 1 ikx—kja 3
Vo) ()= ) 3o /R}e" YLk = /D@e" S ()dk = Y (x — aej) .

In other words, V, shift wavefunctions in .# (R3) along the coordinate unit vector
e; by the length a. Note that . (R3) is dense in L?(R3, d3x) and V, is continuous.
Moreover, if Z(R?) > ¢, — ¢ € L>(R3,d?x) as n — 400, then .Z(R?) >
Yn(- —aej) — Y(- —aej) € L*(R3,dx) asn — o0 by the translational
invariance of the Lebesgue measure d°x. Summing up,

e Py = 7 19P 1im y, = lim e Piy, = lim ¥, (- —aej) = ¥ (- —ae;) .
n——+00 n—4+00 n—+00

In other words,
(e*iap.f¢> (x) =¥ (x —ae;) forevery ¢ e L*(R%, d%x).  (3.57)

In the language of physicists, the momentum along the j-th direction is the
generator of physical spatial translations of the quantum system along the j-th axis.

This is not the whole story if we also assume that the Hamiltonian of the particle
is the free Hamiltonian (3.53) in momentum representation. If so, time evolution is
represented by (3.54) again in momentum representation. It is therefore evident that

iaP

e itH p—ial ie "M foreveryt,a € R.

j — e
We conclude that with the above free Hamiltonian the momentum operator along
the j-th direction is a constant of motion. Therefore the statistical features of the
measurements of P; are invariant along the temporal evolution of the state of the
system. |

3.5 Round-Up of Operator Topologies

There are at least 7 to 9 relevant topologies [KaRi97, BrRo02] in Quantum Theory
which enter the game when one discusses sequences of operators. We shall limit
ourselves to illustrate quickly a few of the most important ones [Mor18]. We shall
work in a Hilbert space H, even though some of our examples adapt to more general
ambient spaces.
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(a)

(b)

(©)

(d)

(e)

3 Observables and States in General Hilbert Spaces: Spectral Theory

The finest (strongest) topology of all is the uniform operator topology on
$B(H). It is the Hausdorff topology induced by the operator norm || || defined
in (2.8).

As a consequence of the definition, a sequence of elements A, € B(H) is
said to converge uniformly to A € 6(H) when ||A,, — A|| - 0 asn — +o0.

We already know that B(H) is a Banach algebra for that norm, and a unital
C*-algebra too.
Take a subspace D C H and the complex vector space £(D; H) of operators
A : D — H. The strong operator topology on £(D; H) is the Hausdorff
topology induced by the seminorms p, where x € D and p,(A) := ||Ax||
for A € £(D; H). By definition of topology induced by a family of seminorms,
the open sets are the empty set and (arbitrary) unions of intersections of a finite
number n of open balls B,(f,l_i_‘;‘,’f")(Ao) associated to the seminorms p,, with
x; € D distinct, of arbitrary finite radii »; > 0 and common fixed centre Ag €
£(D; H):

B ) (Ag) :={A € £(D; H) | pu(A— Ag) <ri i=1,....n}.

Therefore a sequence of elements A, € £(D; H) converges strongly to A €
£(D; H) when ||(A, — A)x|| = 0 asn — 4oo forevery x € D.

It should be evident that, if we restrict ourselves to work in B(H), the
uniform operator topology is finer (larger) than the strong operator topology.
The weak operator topology on £(D; H) is the Hausdorff topology induced
by the seminorms p, , with x € H, y € D and p; y(A) := [(x|Ay)|if A €
£(D; H). In other words, its open sets are the empty set and (arbitrary) unions
of intersections of a finite number n of open balls B,(fclv };“"x" ) (Ag) associated
to the seminorms py, y, with x; € Hand y; € D distinct, of arbitrary finite radii
r; > 0 and a common fixed centre Ag € £(D; H):

BLIL ) (Ag) i= (A € £(D:H) | .y (A= Ag) <rii=1,....n}.
A sequence of elements A, € £(D;H) is said to converge weakly to A €
L£(D; H) when [(x|(A, — A)y)|| > Oasn — +oo foreveryx € Hand y € D.
The weak operator topology lies at the opposite end to the uniform operator
topology, for it is the coarsest (smallest) of all.

We present two more intermediate topologies which depend on the space
81 (H) of trace-class operators we will discuss later.
The ultrastrong topology (also known as o -strong topology) on B(H) is the
Hausdorff topology associated as above to seminorms pr, with 7' € B (H) and
T > 0, where pr(A) := /tr(TA*A) if A € B(H). In spite of the name, it is
weaker than the uniform operator topology.
The ultraweak topology (or o-weak topology) on *B(H) is the Hausdorff
topology induced as above by seminorms g7, T € 251 (H), defined as ¢g7(A) :=
|/tr(T A)| if A € B(H). Itis finer than the weak operator topology.
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The topological dual of ©8(H) possesses a special topology of its own.
Any normed space *B(H) induces a significant weak topology on its topological
dual

BH)* :={f : B(H) - C| f linear and continuous} .

The *-weak topology on B(H)* is associated as above to the family of
seminorms {pa}aenH) defined as pa(f) := |f(A)| for every f € B(H)".
The definition is general, and valid for normed spaces 95 and their duals ‘B*
(replacing B(H) and B(H)*). The Hahn—Banach theorem says that the *-weak
topology is Hausdorff because the functionals in 8’ separate the elements of B.
Notice that 9B’ is also a normed Banach space for the standard operator norm

~ I (A))
= e ANl

This topology is stronger than the *-weak one. The relevance of the *-weak
topology is due in particular to the Banach—Alaoglu theorem, whereby the
closed unit ball in B(H)* is compact in the *-weak topology.

Example 3.77

1)

)

If f : R — C is Borel measurable, and A a selfadjoint operator on H, consider
the sets

Ry:={reR||f(r)] <n} forneN.

It is clear that xr, f — f pointwise as n — 400 and |)(Rnf|2 <|f®. Asa
consequence, if we restrict to A ¢ the operators appearing below on the left,

/ Xg, fd P
o(A)

as an immediate consequence of Lebesgue’s dominated convergence theorem
and the first part of Proposition 3.60 (i). (See also exercise 3.36.)
If in the previous example f is bounded on o (A), and f;, — f uniformly on

(
a(A) (or||f — fn||gg ) — 0 P-essentially uniformly), then

— f(A) strongly, asn — 400,
Ay

fn(A) = f(A) uniformly,asn — +oo,

again by the second part of Proposition 3.60 (i). ]

Exercise 3.78 Prove that a selfadjoint operator A on the Hilbert H admits a dense
set of analytic vectors in its domain.
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Solution Consider the family of functions f, = x[—n,,] Where n € N. As in
Example 3.77 (1), we have ¥, := fu(A)¥ = [_, | 1dPDy — [ 1dPWy =

PH(QA)QD = ¢ when n — 4o00. Therefore the set D := {y,, | v € H,n €
N} is dense in H. The elements of D are analytic vectors for A as we go on

to prove. Clearly Yn € D(AF) since u! “;/))(E) = uE N [ n,nl) by
definition of,u ) Therefore Jg 1251 2d (P )(A) = f |A|2kd )(A) <
Sipm InPedu "Gy < P fr dulf, >(x> = |n|2"||w||2 < 4oo. Slmﬂarly
1A Yl = <Akwn|Akwn> <wn|A2’<wn = [p 225l () < n A1y We
conclude that Z,‘::OS ('l,ﬁ!) | ARy, || converges for every ¢ € C because it is dominated
by Y05 W n2X 112 = Py . n

3.6 Existence Theorems of Spectral Measures

This final section is devoted to proving the existence of a PVM P : Z(R) —
£ (H) for a selfadjoint operator A : D(A) — H on a Hilbert space H, which was
announced in Theorem 3.40 (a). The remaining statements of that theorem have
been already established. As an intermediate result we shall demonstrate the spectral
theorem for normal operators on B(H). We will furnish a proof of Theorem 3.56
on joint spectral measures.

3.6.1 Continuous Functional Calculus

Let us start by establishing general properties of the spectral theory of bounded
operators and unital C*-algebras.

Proposition 3.79 Tuke A € B(H) for some Hilbert space H and let p : C — C be
a complex polynomial of fixed degreen = 0, 1, .... Then

o(p(A) = pla(A)), (3.58)
where p(A) is understood as in Proposition 3.60 (a). Furthermore
o(A*) ={r| A €0(A)}.

All this holds also if we replace A € B(H) by a € 2, where U is any unital C*-
algebra.

Proof We use explicitly Proposition 3.7: forany A € B(H), L € 6 (A) iff A — Al :
H — H is bijective.
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First of all we factor polynomials irreducibly with help of the fundamental
theorem of algebra: p(z) = c(z — A)™ ---(z — Ax)", where the complex
roots Ai, ..., A, have multiplicity ny,...,n, > 0, > ;nx = nand ¢ # 0. A
corresponding decomposition holds for p(A) = c(A — A1) --- (A — A )"k,
Define i := p(A). As the polynomial C > z — p’(z) := p(z) — u has a zero
at z = A, its factorization contains the term (z — X), whence p(A) — wl has
(A — AI) as a factor. If A € o (A), the operator (A — A[) is not bijective and
therefore p’(A) := p(A) — ul (factored as (A — )\;CI)"/k) cannot be a bijection
from H to H: indeed, if (A — AI) is not injective, we can swap it over to the
end in the product p’(A) (factors commute), whence p’(A) cannot be injective.
If (A — A1) is not surjective, we can move it in front of p’(A) (as first factor), so
p'(A) cannot be surjective. All in all, A € o (A) implies u = p(L) € a(p(A)), i.e.
p(o(A)) C o(p(A)). Let us prove the opposite inclusion. Suppose i € o (p(A)).
We know that p(z) — u = c(z — al)"/l N cxk/)";’. If all ap belonged to
p(A), the operator p(A) : H — H would be bijective with left and right inverse
c A - oqI)_”ll - (A — ak/I)_";’, an absurd. So at least one of the ay must
belong to o (A), and p(ax) — n = 0. In other words . € p(o(A)), which proves
a(p(A)) C p(a(A)).

The second statement is quite obvious by observing thatif 7 € B(H), then 7* is
bijective if and only if T is (Exercise 2.29). In this case (T*)~! = (T~!)*. Applying
this to A — A1 proves the claim. With obvious modifications the argument still holds
when 2B (H) is replaced by a unital C*-algebra 2. |

We pass now to an important consequence, whose proof holds for any unital C*-
algebra in place of ‘B(H). The first assertion extends Proposition 3.47 and proves
that it is actually independent of the spectral theorem.

Proposition 3.80 If A € B(H) is normal (A*A = AA*) then
sup{[A| [ A € o (A)} = ||A]] . (3.59)
If A= A*and p : R — C is a polynomial, then
(I =11Ploa) lloo - (3.60)

The results are valid also by replacing A with a in a unital C*-algebra 2.
Proof Let us prove (3.59). We need a preliminary, and quite interesting, lemma.

Lemma 3.81 (Gelfand’s Formula for the Spectral Radius) If A € B(H) for
some Hilbert space H, then

sup{|Al | 4 € o (A)} = lim [|A"]|"/". (3.61)

The formula is valid for elements a € 2 in a unital C*-algebra as well.
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Proof Define rq := sup{|A| | A € o (A)}. If |A| > ry4, then the resolvent R; (A) is
well defined. The Banach-space-valued map p(A) > A — R;(A) is holomorphic,
and its Taylor expansion reads

400
Ri(A) == ¢"*'T”
n=0

where { = 1/A. It converges at least for |[{| < 1/||A|| (Proposition 3.10). The
renowned Hadamard theorem (very easily generalizable to holomorphic maps with
values in Banach spaces) guarantees that the convergence radius is determined by
the first singularity, which necessarily belongs to o (A). The series — :;’8 e
therefore converges for |{| < 1/r4 and has convergence radius R > 1/rq.
Hadamard’s formula for R then reads

1/R =limsup ||T"||"/" <ry .
n

On the other hand (3.58) implies o (A") = {u" | © € 0 (A)}, so by Proposition 3.10
we have

riy =ran < ||A"]]

1/n 1/n

and hence r4 < liminf, ||A"||"/". In summary rq < liminf, ||A"|| <
limsup,, [|A" [|'/" = r4, which is what we claimed. O
Let us take up the proof of Proposition 3.80 and suppose A = A*. Then ||A?|| =
||A*A]| = || A||* and, similarly, InI(AZ)ZII =n||142||2 = 1Al 11(AM?]] = 11A%))> =
[|A||® and so on. In general ||A%"|| = ||A||*". Applying (3.61), we find

sup(lAl |2 € o (M)} = Lim JIA"IY" = tim (]A% 1 = dlim ja® /= A1l

n——+00 n—+o00 n——+00

Now consider A € B(H), so ||A"|| = |[(A")*A"||/2 = ||[(A*)"A™||V/2. If A is
normal, all operators commute and || A”|| = ||(A*A)"||!/2. Since A* A is selfadjoint,

we can implement the result above:
1/2
sup{|A| | A € (A} = lim [JA"[|/" = 1lim ||(A*A)"||"/®" = ( lim H(A*A)”H‘/")
n—+00 n——+00 n—-+00

= |lA*All"2 = J|A]].
At last, let us prove (3.60). Since A is selfadjoint, p(A) is normal. Therefore

lIp(A)|l = sup{|A| |2 € o (p(A))} = sup{|A] | A € p(a(A)} = lIplo (Alloo

where we exploited (3.58) in the last passage. O
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The utmost consequence of these propositions is the following theorem, which
establishes the existence and continuity of the so-called continuous functional
calculus for bounded selfadjoint operators. The theorem holds as it stands for unital
C*-algebras.

Theorem 3.82 Let A € B(H) be a selfadjoint operator on the Hilbert space H.
There exists a unique representation of unital *-algebras (Definition 2.27), called
continuous functional calculus,

V:C(o(A) > f— f(A) e B(H)

that is continuous (with respect to || - ||co on the domain and the operator norm
on the codomain) and such that V(1) = A (wheret1 : 0(A) > x —» x € R).
Furthermore

(a) W is isometric and hence injective,
(b) B € B(H) commutes with every f(A) if B commutes with A.

The theorem holds replacing B(H) by a unital C*-algebra A and A by a selfadjoint
element a € 2.

Proof If f € C(o(A)), there exist complex polynomials p, — f uniformly
on 0(A) as n — +o0o by the Stone—Weierstrass theorem. Define f(A) :=
limy,—, {5 pn(A). Due to (3.60), the sequence p,(A) is Cauchy. Hence there
is a limit element in 2B(H) because this space is complete (Theorem 2.20).
It is evident that the limit point does not depend on the sequence, since a
different sequence would satisfy [|p),(A) — pa(AIl = 1P} o) —Pn loca)
|l — 0. The map f +— f(A) is evidently isometric. Next observe that,
if we only consider polynomials, f +— f(A) is linear, it preserves the prod-
uct, and f +— f(A)*. These features are preserved under the limiting pro-

cess when f € C(o(A)) is a general map. By construction f(1) = [ and
f@) = A.If B commutes with A, it commutes with all polynomials p(A).
Hence

Bf(A)=B lim py(A)= lim Bpy(A)= lim pu(A)B = f(A)B.
n—+00 n—+00 n——+00

To conclude, we prove that a continuous representation of unital *-algebras @ :
C(0(A)) — B(H) coincides with W if we impose ®(z) = A. In fact, W) =
D@1@) =Aand V(1) = (1) = I, therefore W(p) = P(p) for every polynomial
p. By continuity, if p, — f asn — 400 in the norm || - ||oc 0n 0 (A), we have
W (f) = &(f). All arguments carry through if we take a unital C*-algebra 2l instead
of B(H) and an element a = a* € 2A instead of A.

O
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3.6.2 Existence of Spectral Measures for Bounded Selfadjoint
Operators

A cardinal consequence of Theorem 3.82 is the following proposition, which goes
in the direction of the spectral theorem. Recall that My (o (A)) indicates the unital
C*-algebra of complex, bounded and Borel-measurable functions on o (A), with
norm || - ||co. We point out that in order to formulate this result the Hilbert
structure is essential, so no straightforward generalizations exist for abstract C*-
algebras.

Proposition 3.83 Ler A € *B(H) be a bounded selfadjoint operator on the Hilbert
space H. There exists a norm-decreasing (hence continuous) representation of unital
*_algebras (Definition 2.27) V' : My(c(A)) — B(H) such that V' (1) = A . The
representation also satisfies:

@ ¥ceuy=WY,

(b) B € B(H) commutes with V'( f) for every f € My(c(A)) if B commutes with
Ay

(c) Suppose My(co(A)) > f, — [ pointwise as n — +oo and | | < K for some
K € [0, +00) and all n. Then

V(f)x — W' (f)x foreveryx e H.

Proof Taking x, y € H, the linear map C(0(A)) > f = Fy ,(f) 1= (x|¥(A)y)
satisfies |Fy y(f)| =< [lxI| lIyll || flloo. Riesz’s theorem for complex measures
[Rud91] implies that there exists a unique complex, regular Borel measure fiyy :
PB(o(A)) — C such that

(W (f)y) =/ fduxy VfeC(o(A), (3.62)
a(A)
and also || Fyy|| = [pxyl(o(A)) < ||x]| ||y]l. Actually, all complex Borel measures

on HB(o(A)) are regular since the open sets of o(A) are unions of countably
many compact sets [Rud91]. Since W(f) = W(f)* and by standard inner product
properties the complex measures pyy (E), tyx (E) produce the same result when we
integrate continuous functions. In view of uniqueness, therefore, tiyy (E) = pyx (E).
Using Riesz’s Lemma, if f € Mp(o(A)) there exists a unique operator ¥/'(f) €
$B(H) such that

x|W'(fy) = /(A) fduxy Vx,yeH, (3.63)

and [(x [ W' (Y = 1 flloolptxyl(@(A)) < 11 flloollxI Y], s0 ¥ (O < f]loo-
By construction W/ (1) = I and /(1) = A. Furthermore Mp(o (A)) 3 f — V/'(f)

is linear and therefore it coincides with W on polynomials. Continuity implies
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that it coincides with ¥ on C(o(A)), proving (a). W’ satisfies ¥/'(f)* = W/'(f)
as a consequence of (3.63), the fact that the inner product is Hermitian, and
Mxy(E) = wyx(E). To conclude the proof of the first statement it is enough to prove
V()W (g) = W'(f - g). Take f, g € C(o(A)). Since W(f - g) = W(/)W(g) and
W’ extends W:

frgdps,y = (xX|¥'(f - ©)y) = x[W'()H¥'(g)y) =[

fd:ux,\[l’(g)y .
o(A) a(A)

Riesz’s theorem implies that (. y/(4), €quals the complex, regular Borel measure A
such that

ME) = f gd:uxy .
a(A)

Therefore
/ f - gdpiey = / fdr = / fdiswiey i f € My(o(A)) and g € C(o (A).
a(A) a(A) a(A)

Asa consequence

" f-gdixy = f(A) fdiwigy = W (HW(Q)y) = (¥'(f)*x¥'(g)y)

f gd:u\l”(f)*x,y
a(A)

forx,y e H, f € My(o(A)), g € C(c(A)). By a similar reasoning

7 sdus, = [

gd iy (fyrx,y
o(A) o(A)

must hold also if g € My (0 (A)). Summing up, for x, y € H, f, g € My(c(A)), we
have

(x|W'(f - g)y) =/ [ 8hxy =/ g (fyexy = (W' () x| (2)y)
o (A) o(A)
= (x|¥'(HY'(2)y)
whence W/ (f - g) = W'(f)W'(g) as required.

The proof of (b) is analogous: if B € B(H) commutes with A, it also commutes
with every polynomial p(A) and hence with every W/(f) with f € C(c(A)) by
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continuity. Therefore, for every f € C(o(A)).
/(A) fdux gy = (x|W'(f)By) = (x| BY'(f)y) = (B*x|W'(f)y)

= fd/fLB*x,y .
a(A)

Riesz’s theorem implies that wy gy = wpy,y. The definition of ¥’ immediately
entails that (x|W'(f)By) = (B*x|V'(f)y) = (x|BY'(f)y) for every f €
Mp(o (A)). But this is the thesis, since x, y € H are arbitrary.

Let us prove (c). Since W’ is a representation of unital *-algebras we immediately
have

1 (f)x =W (F)xl)? = 1V (f = f)xlP = (V' (f = x|V (f = f)x) = x|V (1 f = fulHx).

By (3.63)
IV (fi)x = W' (N)xl]* = / |f = ful’dpry — O
o(A)
when n — +00 by dominated convergence, since |iiyy| is finite. O

We are ready to prove the existence claim in the Spectral Theorem (Theorem 3.40)
for bounded selfadjoint operators.

Theorem 3.84 If A € B(H) is selfadjoint on the Hilbert space H, there exists a
PVM P : BR) — £ (H) such that

A::/ldP(A).
R

More generally, if V' : My(c(A)) — B(H) is defined as in Proposition 3.83,

vify=|[ fdP¥W
o(A)

forevery f € Mp(o(A)).
Proof Refer to Proposition 3.83. The required PVM is nothing but PéA) =

V' (xEne(a)) for every E € A[R), P,(zA) := 0. Indeed, suppose P@ s a
PVM. If s = Z?[:l sjXE; is a simple function, the linearity of ¥’ immediately

shows W/(s) = Z?’zl siV'(xe;) = Jz s dP™. Now consider a sequence of
simple functions s, such that |s,| < |s,+1] < |z] on the compact set o (A),

vanishing outside o (A), and converging pointwise to 1 on o(A). As the PVM
is concentrated on o(A) by construction, Propositions 3.83 (a)—(c) and 3.29
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(c) imply

/1dP(A)x:/ 1dPWx = lim sp dPWx = lim W(sp) = V' (1)x = Ax.
R o (4) n—-+00 o(A) n—-4o00

Since x € H is arbitrary, we get A = fR 1dP™, as we wanted. The same argument
(using a sequence of simple functions s, converging to f € Mp(c(A)) pointwise
and such that |s,| < |sy+1] < | f]) returns the second claim.

To end the proof, there remains to prove that PéA) = V'(xens(a)) With
E € #R) (and obviously PS" := 0) defines a PVM. But PV = 1,

PéA)P}A) = PIE%)F, (PIE-A))* = PéA) (in particular PIE-A) € Z(H)) are immediate
consequences of the fact that W’ is a representation of unital *-algebras, together
with trivial properties of characteristic functions xg, plus W' (1) = ¥/ (x4 (4)) = 1.
Finally, o -additivity follows from Proposition 3.83 (c): taking a countable collection
of disjoint sets Ex € ZA(R), we have

N

Z XENo(4) = Xo(A)nUY_ E; pointwise as n — 400
k=1

(all functions are bounded by the constant 1). O

3.6.3 Spectral Theorem for Normal Operators in 25 (H)

The functional calculus developed in the previous section permits us to prove the
spectral theorem for normal operators on 26(H). In particular it handles selfadjoint
operators on #(H) and unitary operators.

Theorem 3.85 (Spectral Theorem for Normal Operators on B(H)) Ler T €
$B(H) be a normal operator on the complex Hilbert space H.

(@) There exists a uniqgue PVM P™) : B(C) — £ (H), called the spectral measure
of T, such that

T=/zdP(T)(z,z).
C

In particular D(T) = A,, where1 : C 2 z +— z.
(b) We have

supp(P(T)) =o(T).
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As the standard topology of C is second-countable, P\ is concentrated on
o(T):

PTO(E)y=PTD(ENG(T), VEeRBCO). (3.64)

(©) z € op(T) if and only if PD({z}) # 0; in particular this happens if z is
an isolated point of o (T). Finally P{(ZT})
eigenspace of z € op(A).

(d) z € 0o(T) if and only if P ({A}) = 0, but P (E) # 0 if E > A is an open
set of C.

Proof (a) Let us prove that there exists a PVM on C with T = f(C zd P71 (7).
Decompose T = A+iB where A = ;(T—i—T*) and A = 21i (T —T*) are selfadjoint,
belong to *B(H), and commute because 7 and 7* commute by hypothesis. Notice
that, as a consequence of Proposition 3.83 (b) the spectral measure P4 of A,
which exists by Theorem 3.84 and satisfies P‘(EA) = \111’4 (xg), commutes with B.
By the same argument the spectral measure P®) of B commutes with the spectral
measure of A.

Next consider step functions on the compact set K = [—]||A]|l,||A]l]] x
[—1|B]l,||B]|] € R? = C. A step function is a simple function of the form

is the orthogonal projector onto the

N M
s =YY siix (DX, z=x+iyek (3.65)
i=1 j=1

where s;; € C are fixed numbers, I := [—||A]l, a2], J1 = [=|IBI|, b2], I; =
(@i ait1), Jj == (bj.bjy1] fori,j > 1, and any1 = ||All, buy1 = ||B]|. The
decomposition of s € S(K) in (3.65) is not unique, since every such expression can
be refined by adding points a; or b;. It is easy to prove that the set S(K) of step
functions on K is closed under linear combinations and products. Since it evidently
contains the constant function 1 and it is invariant under conjugation, S(K) is a uni-
tal *-subalgebra of M (K'). Referring to (3.65), let us define ®¢g : S(K) — B(H) by

N M

N M
®os) =y sy PPV PR =3 N sy PP P (3.66)

i=1 j=1 i=1 j=1

The definition is well-posed irrespective of the various expansions (3.65) that s
possesses. By direct inspection, one sees that ®¢ is a homomorphism of unital
*-algebras and also that

N M N M
A B A B
1Po@) I =Y D Isis PUPLY PIPwIP < suplsiy D Y 112 PPy
129

i=1 j=1 i=1 j=1

2 2
= sup [si;[“[[¥ 17,
ij
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using that the sets I; x J; are pairwise disjoint and Zi’j PI(iA)PJ(f) = [ because
UijI; x Jj = K . As a consequence ‘

[[Po)I < lIslleo  if s € S(K).

Since S(K) is dense in C(K) in norm || - || (a continuous function on a compact
set is uniformly continuous), the same proof as for Theorem 3.82 ensures that
the continuous unital *-homomorphism ®( generates a norm-decreasing unital
*-homomorphism & : C(K) — B(H). Notice that ® is nor an extension of
d, since its domain contains continuous maps only, whereas the domain of ®g
contains discontinuous functions as well. By definition ®(1) = I, and by setting
11: K>, y)—~>xandip: K 3 (x,y) — y we have

®G1)=A and D) =B.

Indeed, let s, : [—]||All, [|A||]]x[—[IB]l, ||B||]] = R be a sequence of step functions,
constant in the variable y € [—||B||, || B||] and converging uniformly to the map ;.
Applying (3.66) gives, with obvious notation,

@ (sp) = / spd P = ®(11) =/ 1dP™ = A, in the uniform topology as n — +oc,
R R

where we exploited (3.21). The story for 1, is identical.

As last step, and proceeding as in the proof of Proposition 3.83, we may extend &
to a unital *-algebra homomorphism @ : Mp(K) — B(H) completely determined
by the requirement

(W12'(NH¢) =/dew/,¢ v.peH, feMyK),

where vy g4 : B(K) — C is the unique complex regular Borel measure
satisfying the above relation for f € C(K). An argument that essentially
replicates Proposition 3.83 shows that the homomorphism of unital *-algebras
@’ : Mp(K) — B(H) is norm-decreasing (||D’(f)|| < || floo), satisfies

®'(1;)=A and ®'(1p) =B, (3.67)

and finally
D (f)y — @' (f)y forevery ¢ € H, (3.68)
if My(K) > f, — f pointwise as n — +o00 and | f;;| < M for some M € [0, +00)

and all n.
The last convergence property in particular implies, along the same lines of

Theorem 3.84, that P]E-T) = ®'(xgnk) (with Pg) = 0)isa PVM on C = R?2
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when E varies in #(C). By (3.67) moreover,
/ 1ndPM =d')=A, / 12dPT) = ®'(1n) = B. (3.69)
C C
Since T = A+ iBand T* = A — i B, these relations read
/ WdPP(z,2)=T, f 2dP D (z,2) =T*. (3.70)
C C

Let us pass to the uniqueness issue. First of all observe thatif T = f(C zd P(z, z) then
P must have bounded support: if not, for every n € N, we could find E, € #(C)
outside the disc of radius n at the origin of C such that Pg, # 0. Hence we could
pick x, € Pg, (H) with [|x,|| = 1. As a consequence || Tx,||> > [nl? [ 1du'l), =
[n|*> - 400 as n — +oo, contradicting ||T|| < +o0c. We conclude that there
exists a sufficiently large compact rectangle K := [a,b] x [c,d] € R*> = C
(we can always assume it to be larger than [—||All, ||A[|]] x [—||B]l, ||BII]),
so that supp(P) C K. Hence it suffices to work in K. Taking adjoints of
[xzdP(z,2) = T = [ezdPD(z,2) produces [ zdP(z,z) = T* =
f x 2d P (z, 7). Using standard properties of bounded PVMs, we immediately
have that [ p(z,2)dP(z,2) = [¢ p(z,2)dPT)(z, z) for every polynomial p
defined on K. But polynomials are || - ||so-dense in C(K) (Stone—Weierstrass
theorem), so (3.21) implies [ f(z,2)dP(z,2) = [} f(z,2)dPT)(z, z) for every
f € C(K). Applying now the Riesz theorem for positive Borel measures to

/fdu(P) M/ far w> M/ fap® > /fd P yf e ck)

(
we conclude Ml(//plpﬂ) (E) = (P) (E ) forevery E € B(K). Slnce the supports of the

two measures stay in K, the relatlon we have found reads ,u )(E ) = (P) (E )

for every E € #(C), i.e. (1//|(P(T) Pe)y) = 0 for every 1# € H. ThlS result

immediately leads to the thesis, Py (T) = Pg forevery E € #(C).
The proofs of (b), (c) and (d) are identical to those of the corresponding state-
ments in Theorem 3.40, up to trivial changes (R becomes C and A becomes z). O

3.6.4 Existence of Spectral Measures for Unbounded
Selfadjoint Operators

At the end of this long detour, we are finally ready to justify the existence of PVMs
for unbounded selfadjoint operators (the Spectral Theorem, 3.40).
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Theorem 3.86 If A is a (generally unbounded) selfadjoint operator on the Hilbert
space H, there exists a PVM P : B(R) — £ (H) such that

A::/zdP(A).
R

Proof First of all observe that, if A is normal, its resolvent satisfies Ry (A)* =
R, (A¥). Indeed, we know that A € p(A) iff A € p(A*) by Proposition 3.13 (c).
In this case Ry (A)(A —iAl) = I[p(a) implies (A — iLI)*R;, (A)* = I[*D(A)z 1,
namely (A* +iAI)R; (A)* = I. Since we also have (A* +iAI)R, (A*) = I and the
inverse is unique, necessarily R;(A)* = R, (A*). This results is in particular true
when A = A*. Next, assuming A = A*, consider the operator

U:=1-2iR_i(A),

called the Cayley transform of A. By the resolvent identity (3.2) and Ry (A)* =
R, (A), one immediately proves that UU* = U*U = I. Hence U is unitary and
o (U) is a closed subset of T = {z € C| |z| = 1} in the topology induced by C due
to Proposition 3.13. Finally,

U= f 2Pz, 2)
o(U)

by Theorem 3.85. We claim that the statement’s selfadjoint operator A coincides
with the selfadjoint operator

1
Al ;=/ i +ZdP(U)(z,z) (3.71)
a(U) 1—z

(the integrand is real since z = 1/z as z € T). In fact, since R_;(A) = é(U -1
and taking Proposition 3.33 (c) into account,

(A +iDR_;(A) = f

1+ . i
[ : +l}‘”’ W) (z, 7) @—1dPV(z,2)
o(U) 2

l
1—z o (U)

. .
=f [i te +l} ’(z—1>dP<U>(z,z>=f 1dPY(z,2)=1.
canlL 1—z 2 o (U)

We conclude that A’ +i I is defined on a domain that contains Ran(R_; A) = D(A),
on which it coincides with the unique left inverse of R_; (A). In other words A’ +i1
is an extension of A 4+ il,s0 A’ D A. Since A’ and A are selfadjoint, A’ = A by
Proposition 2.39 (b). To conclude, we shall prove that (3.71) can be decomposed
spectrally on R. As

1
¢:T5z|—>i1+ZeRU{oo}
—Z
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is a homeomorphism (R U {oo} is the standard 1-point compactification), then

1
Ao :=/i +ZdP(U)(Z,z)=/ rdP (),
T 1—2 RU{oo}

where we have defined the PVM Py = P(;Q (E) for E € (R U {4o00}) following

Proposition 3.33 (f). Let us explain why oo is reached by ¢ only for z = 1 and

P{(H) =0.If P{(H) # 0 we would have Ux = x for some x € P{(H)(H) \ {0}.

Since U := 1 —2iR_;(A), then R_; (A)x = 0, contradicting the fact that R_; (A) is
invertible since A is selfadjoint and so —i € p(A). We can rewrite the equation as

I
A:/ i +ZdP(U)(z,z)=/rdP(r).
Ty -2 R

It is easy to check that the restriction P’ of P to Z(R) is still a PVM on R and the
integral above can be thought of as

A= / rdP'(r).
R

The proof is over once we take P4 := P’. O

3.6.5 Existence of Joint Spectral Measures

We shall provide a proof for Theorem 3.56. The argument differs from that
appearing in [Mor18] in view of the distinct presentation of the spectral technology
we have chosen here. In particular, the current proof does not require that the Hilbert
space be separable.

Theorem 3.56 (Joint Spectral Measure) Ler 2 := {A1, Az, ..., Ay} be a set of
selfadjoint operators on the Hilbert space H with commuting spectral measures:

PP = PUW P vk he {1, ... n} VE, En € BR).
Then there exists a unique PV M P®) on R" such that
Ql n
PR g =PV P VE L E, € BR). (3.72)

For every f : R — C measurable, furthermore,

/f(xk)dP(Q[)(x)zf(Ak), k=1,....n (3.73)
RV!
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where x = (x1, ..., Xk, ..., xy) and f(Ag) == [p f(W)dPAD.
Finally, B € B(H) commutes with P if and only if it commutes with all PA%),
k=1,2,...,n.

Proof (Existence) We start by assuming Ay € B(H) for k = 1,...,n. Then we
may replicate the initial part of the proof of Theorem 3.85, only replacing the
two commuting selfadjoint operators in A, B € ‘B(H) by n commuting selfadjoint
operators Ax € *B(H). In this way if K := [—a, a]® C R" is sufficiently large and
K D x}_,0(Aj), there exists a map ®" : M;(K) — B(H) with the following
features. It is a norm-decreasing *-homomorphism of unital *-algebras, it satisfies

&' (1) = Ay fork=1,....n (3.74)
where 1y : R" 5 (xq, ..., x,) — x; € R, and finally
O (f)yr — D (f)v forevery ¥ € H, (3.75)

if Mp(K) > f, = f pointwise as n — +oo and | f,| < M for some M € [0, +00)
and all n.
Invoking the proof of Theorem 3.84, the last convergence property implies that

P = @' (xpnk) (3.76)

(with Pg[) := 0) defines a PVM on R” when E varies in Z(R") and
f udP® = ') = Ar, k=1,....n (3.77)

by (3.74). Now observe that as E € Z(R) varies, the family of orthogonal projectors
Pg = Pé%t)R"*I defines a PVM on R. Take a sequence of simple functions s, on K,
constant in the variables x», . . ., x, and such that s, — 1] pointwise with |s,| < |11]

(which is bounded on K). Equation (3.75) and Proposition 3.29 (c) allow to rephrase
(3.77) fork =1 as

/ldP:Al. (3.78)
R
The uniqueness of the spectral measure of A (Theorem 3.40) implies that

A A
P =Pp =P VEecB®).

By the same argument,

A A
P i =PSW . E€B®),k=12...n.
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This relation implies, together with (3.76) and the fact that ®' preserves products,

(20)
Pp g, = D' (X, xri-1 - XR-1xE,) = © (XE, xro-1) - P (-1 % E,)
_ p®H (20 _ p(Ap) (Ap)
- PE[X]R”71 ...P]Rnflen - PEI ...PEn :

Hence (3.72) is true. Let us pass to unbounded selfadjoint operators A;. We shall
reduce this to the case of bounded operators. To this end, define a family B :=
{B1,..., By},

By :=[ e apv ()
R \/1 ~|—x,%

for every k = 1,2, ...,n. Itis clear that B;‘ = B; € *B(H) due to Theorem 3.24
(c) and Proposition 3.29 (a). Moreover, by Corollary 3.53 o (Br) C [—1, 1], but
+1 ¢ 0,(Bk). By contradiction, in fact, if £1 € 0,(Bi) and ¥+ € H were a
corresponding eigenvector, then (B £ I)¥+ = 0, and so

2

:|: 1 dM(Pk)

_ 20 12 —
0=1[(Bx £ )Yl —/R Yata

Xk
\/1 + x,%
(Pr)

Since the positive measure Py does not vanish (¥+ # 0 because it is an
eigenvector), the integrand would be zero almost everywhere. This is not possible
because

2
o
\/l—i-x,%

Let us now focus on the map

>0 forevery x; € R.

qﬁ:Raxr—)«/lj— , € =111,
x

where R = R U {400} is the compactification and [—1, 1] is standard. Note that
d(R) = (—1, 1) and ¢ (Fo0) = *1. It is easy to see that ¢ is an homeomorphism,
so ¢ and ¢! are Borel measurable.

In view of these properties of ¢ it is preferable to extend the spectral measures
P40 to new PVMs P40 defined on the Borel algebra A(R), by simply declaring
that ﬁiﬁg) = ﬁfﬁé) = 0 and ﬁéAk) = PlgAk) when E N {400} = EN{—00} =@
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for E € #(R). Now it is safe to write

By ;=/ AP A0 () .
R\/1~|—x,3

Using the extension, Proposition 3.33 (f) tells

By = / yid PBO ()
[—1,1]

where

PBI(Fy = PAI (@I (F)) for F e B(—1,1]). (3.79)
We could extend PB%) to the whole AB[R) by setting Pl(Bk)(F) = PI(B")(F N
[—1,1]) for F € ZAB(R) trivially; we shall however stick to the first choice for
the sake of simplicity, and allow ourselves to interpret the relevant PVM as their
extensions where necessary.

Observe that the spectral measures PB%) commute with each other due to (3.79)
and the fact that the PVMs P(4%) do (the added points oo are harmless). We can
therefore apply the previous proof, constructa PV M P®) on Z(R"), with support
in [—1, 1], which satisfies

P g =PV PP i Fe BR) fork=1,....n.  (3.80)
Let us go back to the unbounded operators Ay, define the homeomorphism
O RS (1, ) 2 (G, ) € 1,11
and the PVM on R"
._ p(®B) n
Pp =Py Ec€ BR) .

This is allowed by Proposition 3.33 (f) (® = (®~1)~!and &~ ! is Borel measurable
since @ is an homeomorphism). With this definition, (3.80) implies

Prysxs, = Pe0 - BY | VE|, ... E, € B®). (3.81)

To conclude the proof of existence, it is enough to rid ourselves of the ‘annoying’
. n . .
points £00. The boundary of R is the union of the 2n sets

Fik) = Rk-1 % {400} x Rk |
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Every such set has zero P-measure: exploiting (3.81), in fact,

_ p(AD p(An) _
Pr = Filsgy - P =0
(A1) (B1) :
because P{+oo} = P = Osince +1 ¢ o0,(B1) and by Theorem 3.40 (c)—(d).

Hence the boundary of R" has zero measure for P. This means that, restricting to
the interior R” of Rn, the map P]E.Ql) = Pg with E € Z(R"), still defines a PVM,

in particular Pé&%) = [. By construction, P gatisfies (3.73) since (3.80) holds,
and that ends the existence part of the proof.

(Uniqueness) Let us show uniqueness. We have the following known result of
general measure theory [Coh80, Corollary 1.6.3].

Lemma 3.57 Let 3(X) be a o-algebraon X and P C X(X) such that

(i) P is closed under finite intersections;
(ii) the o-algebra generated by P is ¥(X) itself;
(iii) there is an increasing sequence {Cy;}meNn C P such that Uy, enCyy = X.

If w and v are positive o -additive measures on X(X) such that u(Cy,) = v(Cpy) <
~+o00 for everym € N, then . = v.

Returning to our proof, define X (X) := Z(R") and let P be the collection of sets
E| x---x E, for E; € Z(R).Ititknown that (R is a separable metric space) the o-
algebra generated by P is just Z(R"). Now set C, = (—r, r)™ with m € N. Finally,
fix x € H and define u(F) := (x|Prx) and v(F) := (x|Ppx) for F € ZR"),
where both P and P’ satisfy (3.72) in place of P, These measures are finite, as
W(F) = v(F) = ||x||2 by definition of PVM, and satisfy u(C,) = v(C,) < +00
because of (3.72). Lemma 3.57 proves that (x| Prx) = (x|P;,x), so that (x|(Pr —
Pp)x) = 0. The arbitrariness of x € H and the usual polarization formula imply
Pr = Pp forevery F € A(R).

(Equation (3.73)) The proof is easy. Consider k = 1 for instance. There
exists a sequence of simple functions s, on R converging pointwise to the
measurable function f : R — C, as m — 400, and such that |s,| <
lsma1l < |f|. Let us write s,,(x1) := Zf’zl ¢rxg, and define s/, (x1,...,x,) =
Zﬁvzl Cr XE, xRn—1 (x1,...,x) (so that s/, is constant in x1, ..., x, and equals s,
in the remaining variable). If i € ASCA'), by Theorem 3.24 (d) and dominated
convergence we have

f(Al)I/f(xl)dP(Al)w: lim /smdP(Al)w
R m—+o00 Jp

= lim s;”dP<9‘>w=f FnNdP®y | (3.82)
]Rn

m——+00 R
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where the penultimate equality is justified by (3.72). The same argument, using

(A]) ()
monotone convergence and the identity fR [Sm |2d,ugbpw "= fR |Sr/n|2d/‘§ypw ), also

proves that ¥ € AS?[) with obvious notation. Therefore fR” Fx1)d Py is well

defined.

(Last Statement) If B € 8(H) commutes with P OBt evidently commutes with
every PAD k= 1,2,...,n due to (3.72) by just taking all Ex = R but one.
Suppose conversely that U € B(H) is unitary and commutes with every P(4¥), The
PVM defined by the projectors U Pém)U —1, for E € B(R"), therefore coincides
with P when E = E; x - - - x E, with Ej, € A(R). By the established uniqueness
property, we immediately have U Pém) Ul = P‘(EQ[) for every E € ZA(R"). In other

words U P]E-Ql) = P]E-Ql) U forevery E € Z(R"). In order to pass from U to a general
B € ®B(H), it suffices to invoke Proposition 3.55 (whose proof relies only upon the
spectral theorem of selfadjoint operators), write B = aU + bU’ as complex linear
combination of unitary operators, and finally use the composition’s linearity in the
relation above.

0O
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