
Chapter 2
Hilbert Spaces and Classes of Operators

The main goal of this and the next chapter is to lay out the mathematics sufficient
to extend to infinite dimensions the elementary formulation of QM of the first
chapter. As we saw in Sect. 1.3, the main issue concerns the fact that in the infinite-
dimensional case there exist operators representing observables, think X and P ,
which do not have proper eigenvalues and eigenvectors. So, naive expansions such
as (1.4) cannot be extended verbatim. They, together with eigenvalues viewed as
values of an observable associated with a selfadjoint operator, play a crucial role
in the mathematical interpretation of the quantum phenomenology of Sect. 1.1
discussed in Sect. 1.2. In particular we need a precise definition of selfadjoint
operator and something on spectral decompositions in infinite dimensions. These
tools are basic elements of the spectral theory of Hilbert spaces, which von
Neumann created in order to set up Quantum Mechanics rigorously and first saw
the light in his famous book [Neu32]. It was successively developed by various
scholars and has since branched out in many different directions in pure and
applied mathematics. As a matter of fact the notion of Hilbert space itself, as
we know it today, appeared in the second chapter of that book, and was born
out of earlier constructions by Hilbert and Riesz. Reference textbooks include
[Ped89, Rud91, Schm12, Tes14, Mor18].

2.1 Hilbert Spaces: A Round-Up

We shall assume the reader is well acquainted with the basic definitions of the
theory of normed, Banach and Hilbert spaces, including in particular orthogonality,
Hilbert bases (also called complete orthonormal systems), their properties and
use [Rud91, Mor18]. We shall nevertheless summarize a few results especially
concerning orthogonal sets and Hilbert bases.
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18 2 Hilbert Spaces and Classes of Operators

Remark 2.1 We shall only deal with complex Hilbert spaces, even if not mentioned
explicitly. �

2.1.1 Basic Properties

Definition 2.2 A Hermitian inner product on the complex vector space H is a
map 〈·|·〉 : H × H → C such that, for a, b ∈ C and x, y, z ∈ H,

(i) 〈x|y〉 = 〈y|x〉,
(ii) 〈x|ay + bz〉 = a〈x|y〉 + b〈x|z〉,
(iii) 〈x|x〉 ≥ 0, and x = 0 if 〈x|x〉 = 0.

The space H is a (complex)Hilbert space if it is complete for the norm ||x|| :=√〈x|x〉, x ∈ H. �
Remark 2.3 A closed subspace H0 in a Hilbert space H is a Hilbert space for the
restriction of the inner product, since it contains the limit points of its Cauchy
sequences. �

The mere (semi-)positivity of the inner product, regardless of completeness,
guarantees the Cauchy-Schwartz inequality

|〈x|y〉| ≤ ||x|| ||y|| , x, y ∈ H .

Another easy, and purely algebraic observation is the polarization identity of the
inner product (with H not necessarily complete)

4〈x|y〉 = ||x + y||2 − ||x − y||2 − i||x + iy||2 + i||x − iy||2 for of x, y ∈ H,

(2.1)

which immediately implies the following elementary fact.

Proposition 2.4 If H is a complex vector space with Hermitian inner product 〈 | 〉,
any linear isometry L : H → H (||Lx|| = ||x|| for all x ∈ H) preserves the inner
product: 〈Lx|Ly〉 = 〈x|y〉 for x, y ∈ H.

The converse is obviously true. Similarly to the above identity, we have another
useful formula for a linear map A : H → H, namely:

4〈x|Ay〉 = 〈x + y|A(x + y)〉 − 〈x − y|A(x − y)〉 − i〈x + iy|A(x + iy)〉

+ i〈x − iy|A(x − iy)〉 for of x, y ∈ H. (2.2)

From it one deduces the next fact in an easy way.
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Proposition 2.5 Let A : H → H be a linear map on the complex vector space H
with Hermitian inner product. If 〈x|Ax〉 = 0 for all x ∈ H, then A = 0.

This is not always true if H is a real vector space with a symmetric real inner
product.

Let us state another key result of the theory (e.g., see [Rud91, Mor18]):

Theorem 2.6 (Riesz’s Lemma) Let H be a Hilbert space. A functional φ : H → C

is linear and continuous if and only if it has the form φ = 〈x| 〉 for some x ∈ H. The
vector x is uniquely determined by φ.

2.1.2 Orthogonality and Hilbert Bases

Notation 2.7 Given M ⊂ H, the space M⊥ := {y ∈ H | 〈y|x〉 = 0 ∀x ∈ M}
denotes the orthogonal (complement) to M . When N ⊂ M⊥ (which is patently
equivalent to M ⊂ N⊥), we write N ⊥ M . �

Evidently M⊥ is a closed subspace of H because the inner product is continuous.
The operation ⊥ enjoys several nice properties, all quite easy to prove (e.g., see
[Rud91, Mor18]). In particular,

spanM = (M⊥)⊥ and H = spanM ⊕ M⊥ (2.3)

where spanM indicates the set of finite linear combinations of vectors in M , the
overline denotes the topological closure and ⊕ is the direct sum of (orthogonal)
subspaces. (We remind that a vector space X is the direct sum of subspacesX1,X2,
written X = X1 ⊕X2, if every x ∈ H can be decomposed as x = x1 + x2 for unique
elements x1 ∈ X1 and x2 ∈ X2.)

Here is an elementary but important technical lemma [Mor18].

Lemma 2.8 Let H be a Hilbert space. If {xn}n∈N ⊂ H is a sequence such that
〈xk|xh〉 = 0 for h 
= k, then the following facts are equivalent.

(a)
∑+∞

n=0 xn := limN→+∞
∑N

n=0 xn exists in H;
(b)

∑+∞
n=0 ||xn||2 < +∞.

If (a) and (b) hold, then

+∞∑

n=0

xn =
+∞∑

n=0

xf (n) ∈ H ,

for every bijective map f : N → N. In other words, the series in (a) can be
rearranged arbitrarily and the sum does not change.
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Definition 2.9 A Hilbert basis N of a Hilbert space H is a set of orthonormal
vectors (i.e. ||u|| = 1 and 〈u|v〉 = 0 for u, v ∈ N with u 
= v) such that if s ∈ H
satisfies 〈s|u〉 = 0 for every u ∈ H, then s = 0. �

Hilbert bases always exist as a consequence of Zorn’s lemma. (An explicit
example in L2(R, dx) is constructed in Example 2.59 (4) below.) As a consequence
of (2.3),

Proposition 2.10 A set of orthonormal vectors N ⊂ H is a Hilbert basis for H if
and only if span N = H.

If M ⊂ H is an orthonormal set, Bessel’s inequality

||x||2 ≥
∑

u∈M

|〈u|x〉|2 for every x ∈ H

can be proved in a straightforward way. Hilbert bases are exactly orthonormal sets
saturating the inequality. In fact, a generalized version of Pythagoras’ theorem
holds.

Proposition 2.11 A set of orthonormal vectors N ⊂ H is a Hilbert basis of H if
and only if

||x||2 =
∑

u∈N

|〈u|x〉|2 for every x ∈ H.

The above sum is understood as the supremum of
∑

u∈F |〈u|x〉|2 over finite sets
F ⊂ N .

Remark 2.12

(a) IfN is a Hilbert basis and x ∈ H, at most countablymany elements |〈u|x〉|2, u ∈
N , are non-zero: only a finite number of values |〈u|x〉|2 can belong in [1,+∞)

for otherwise the sum would diverge, and the same argument tells only a finite
number can belong in [1/2, 1), in [1/3, 1/2) and so on. Since these sets form
a countable partition of [0,+∞), the number of non-vanishing terms |〈u|x〉|2
is either finite or countable. The sum ||x||2 = ∑

u∈N |〈u|x〉|2 can therefore
be interpreted as a standard series by summing over non-zero elements only.
Furthermore, it may be rearranged without altering the sum because the series
converges absolutely.

(b) All Hilbert bases of H have the same cardinality and H is separable, i.e. it
admits a dense countable subset, if and only if H has a Hilbert basis that is
either finite or countable. �
As a consequence of Lemma 2.8 and remark (a) above, if N ⊂ H is a Hilbert

basis, any x ∈ H may be written as a sum

x =
∑

u∈N

〈u|x〉u . (2.4)
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More precisely, since only finitely or countably many 〈un|x〉 do not vanish, the
decomposition is either a finite sum or a series limm→+∞

∑m
n=0〈un|x〉un, computed

with respect to the norm of H, where the order of the un does not matter by
Lemma 2.8. For this reason the terms are not labelled.

Decomposition (2.4) and the continuity of the inner product immediately imply,
for every x, y ∈ H,

〈x|y〉 =
∑

u∈N

〈x|u〉〈u|y〉 (2.5)

The sum is absolutely convergent (by the Cauchy-Schwartz inequality), another
reason for why it can be rearranged.

2.1.3 Two Notions of Hilbert Orthogonal Direct Sum

Hilbert structures can be built by summing orthogonally a given family of Hilbert
spaces. There are two such constructions (see, e.g., [Mor18]).

(1) The first case is the Hilbert (orthogonal direct) sum of closed subspaces
{Hj }j∈J of a given Hilbert space H, with Hj 
= {0} for every j ∈ J . Here
J is a set with arbitrary cardinality and we suppose Hr ⊥ Hs when r 
= s. Let
span{Hj }j∈J denote the set of finite linear combinations of vectors in the Hj ,
j ∈ J . The Hilbert orthogonal direct sum of the Hj is the closed subspace
of H

⊕

j∈J

Hj := span{Hj }j∈J .

By Proposition 2.10 if Nj ⊂ Hj is a Hilbert basis of Hj , then ∪j∈J Nj is a
Hilbert basis of

⊕
j∈J Hj . Decomposing x ∈ ⊕

j∈J Hj over every Nj , we
have corresponding elements xj ∈ Hj such that

∀x ∈
⊕

j∈J

Hj , ||x||2 =
∑

j∈J

||xj ||2 .

Furthermore, by Lemma 2.8,

∀x ∈
⊕

j∈J

Hj , x =
∑

j∈J

xj , xj ∈ Hj for j ∈ J

where the sum is a series, since at most countably many xj do not vanish,
and the sum can be rearranged. The sum is direct in the sense that every
x ∈ ⊕

j∈J Hj can be decomposed uniquely as a sum of vectors xj ∈ Hj . If
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we take another decomposition, namely x = ∑
j∈J x ′

j with x ′
j ∈ Hj for j ∈ J ,

then 0 = x − x = ∑
j∈J (x ′

j − xj ). By computing the norm, and since for

different j we have orthogonal vectors, 0 = ∑
j∈J ||x ′

j − xj ||2 hence x ′
j = xj

for every j ∈ J .
(2) If {Hj }j∈J is a family of non-trivial Hilbert spaces, we can define a sec-

ond Hilbert space
⊕

j∈J Hj , called Hilbert (direct orthogonal) sum of the
{Hj }j∈J . To this end, consider the elements x = {xj }j∈J of the standard direct

sum of the complex vector spaces Hj whose norm ||x|| :=
√∑

j∈J ||xj ||2j
is finite. This defines a Hilbert-space structure for the inner product 〈x|x ′〉 =∑

j∈J 〈xj |x ′
j 〉j , with obvious notation.

The two definitions are manifestly interrelated. Indeed, according to the
second definition, (a) everyHj is a closed subspace of

⊕
j∈J Hj , (b)Hj ⊥ Hk if

j 
= k for the inner product 〈 | 〉, and (c) ⊕
j∈J Hj is also the Hilbert orthogonal

direct sum according to the first definition.

2.1.4 Tensor Product of Hilbert Spaces

If {Hj }j=1,2,...,N is a finite family of Hilbert spaces (which are not necessarily
subspaces of a larger Hilbert space), their Hilbert tensor product is constructed as
follows. First consider the standard ‘algebraic’ tensor productH1 ⊗alg · · · ⊗alg HN .
We can endow this space with the inner product that extends

〈x1 ⊗ · · · ⊗ xN |y1 ⊗ · · · ⊗ yN 〉 :=
N∏

j=1

〈xj |yj 〉j for xj , yj ∈ Hj , j = 1, . . . , N

(2.6)

(linearly in the first slot, anti-linearly in the second one). It is easy to prove [Mor18]
that there exists only one such Hermitian inner product on H1 ⊗alg · · · ⊗alg HN .
The Hilbert tensor product H1 ⊗ · · · ⊗ HN of the family {Hj }j=1,2,...,N is the
completion of H1 ⊗alg · · · ⊗alg HN with respect to the norm induced by the inner
product extending (2.6).

As a consequence, given Hilbert bases Nj ⊂ Hj , the orthonormal set

{u1 ⊗ · · · ⊗ uN | uj ∈ Nj , j = 1, . . . , N}

is a Hilbert basis of H1 ⊗ · · · ⊗ HN [Mor18].

Remark 2.13 Consider the Hilbert spaces L2(Xj , μj ), j = 1, . . . , N , where each
μj is σ -finite. The Hilbert space L2(X1 × · · · × XN,μ1 ⊗ · · · ⊗ μN) turns out to
be naturally isomorphic to L2(X1, μ1) ⊗ · · · ⊗ L2(XN,μN) [Mor18]. The Hilbert-
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space isomorphism is the unique continuous linear extension of

L2(X1, μ1) ⊗ · · · ⊗ L2(XN,μN) � f1 ⊗ · · · ⊗ fN �→ f1 · · · fN

∈ L2(X1 × · · · × XN,μ1 ⊗ · · · ⊗ μN) ,

where f1 · · · fN is the pointwise product:

(f1 · · · fN)(s1, . . . , sN ) := f1(s1) · · ·fn(sN) ,

if (s1, . . . , sn) ∈ X1 × · · · × XN . �

2.2 Classes of (Unbounded) Operators on Hilbert Spaces

Keeping in mind we are aiming for spectral analysis for its use in QM, we had better
introduce a number of preparatory notions on operator algebras.

2.2.1 Operators and Abstract Algebras

From now on an operator will be a linear map A : X → Y from a complex linear
space X to another linear space Y . In case Y = C, we say that A is a functional
on X.

As our interest lies in Hilbert spacesH, an operatorA onH will implicitly mean
a linear map A : D(A) → H, whose domain D(A) ⊂ H is a subspace of H. In
particular

I : H � x �→ x ∈ H

denotes the identity operator defined on the whole space (D(I) = H). If A is an
operator on H, Ran(A) := {Ax | x ∈ D(A)} is the image or range of A.

Notation 2.14 If A and B are operators on H

A ⊂ B means that D(A) ⊂ D(B) and B|D(A) = A,

where |S indicates restriction to S. We also adopt the usual conventions regarding
standard domains for combinations of A,B:

(i) D(AB) := {x ∈ D(B) | Bx ∈ D(A)} is the domain of AB,
(ii) D(A + B) := D(A) ∩ D(B) is the domain of A + B,
(ii) D(αA) = D(A) for α 
= 0 is the domain of αA. �
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With these definitions it is easy to prove that

(1) (A + B) + C = A + (B + C),
(2) A(BC) = (AB)C,
(3) A(B + C) = AB + BC,
(4) (B + C)A ⊃ BA + CA,
(5) A ⊂ B and B ⊂ C imply A ⊂ C,
(6) A ⊂ B and B ⊂ A imply A = B,
(7) AB ⊂ BA implies A(D(B)) ⊂ D(B) if D(A) = H,
(8) AB = BA implies D(B) = A−1(D(B)) if D(A) = H (so A(D(B)) = D(B)

if A is surjective).

In the next blockwe introduce abstract algebraic structureswhich describe spaces
of operators on a Hilbert space.

Definition 2.15 Let A be an associative algebra over C.

(1) A is a Banach algebra if it is a Banach space such that ||ab|| ≤ ||a|| ||b|| for
a, b ∈ A. A unital Banach algebra is a Banach algebra with multiplicative unit
1 satisfying ||1|| = 1.

(2) A is a (unital) ∗-algebra if it is an (unital) algebra equipped with an anti-linear
map A � a �→ a∗ ∈ A, called involution, such that (a∗)∗ = a and (ab)∗ =
b∗a∗ for a, b ∈ A. The ∗-algebra A is said to be positive if a∗a = 0 implies
a = 0.

(3) A is a (unital)C∗-algebra if it simultaneously is a (unital) Banach algebra and a
∗-algebra satisfying ||a∗a|| = ||a||2 for a ∈ A. (A C∗-algebra is automatically
positive.)

A ∗-homomorphism A → B of ∗-algebras is an algebra homomorphism
preserving involutions and units if present. A bijective ∗-homomorphism is called
∗-isomorphism.

A (unital C)∗-subalgebra is a subset B of a given (unital C)∗-algebra A that is
a (unitalC)∗-algebra for the restricted (unitalC)∗-algebra operations ofA, provided
they are well defined. If present, the unit ofB is the unit ofA. In caseB is a (unital)
C∗-subalgebra, the two norms agree. �
Exercise 2.16 Prove that 1∗ = 1 in a unital ∗-algebra, and ||a∗|| = ||a|| if a ∈ A
when A is a C∗-algebra.

Solution From 1a = a11 = a and the definition of ∗, we immediately have a∗11∗ =
11∗a∗ = a∗. Since (b∗)∗ = b, we have found that b11∗ = 11∗b = b for every
b ∈ A. The uniqueness of the unit implies 11∗ = 11. Regarding the second property,
||a||2 = ||a∗a|| ≤ ||a∗|| ||a|| so that ||a|| ≤ ||a∗||. Everywhere replacing a by a∗
and using (a∗)∗, we also obtain ||a∗|| ≤ ||a||, so that ||a∗|| = ||a||. �

We remind the reader that an operator A : X → Y , where X and Y are normed
complex vector spaces with respective norms || · ||X and || · ||Y , is said to be



2.2 Classes of (Unbounded) Operators on Hilbert Spaces 25

bounded if

||Ax||Y ≤ b||x||X for some b ∈ [0,+∞) and all x ∈ X. (2.7)

As is well known [Rud91, Mor18],

Proposition 2.17 An operator A : X → Y of normed spaces is continuous if and
only if it is bounded.

Proof It is evident that bounded implies continuous because, for x, x ′ ∈ X, ||Ax −
Ax ′||Y ≤ b||x −x ′||X. Conversely, if A is continuous then it is continuous at x = 0,
so ||Ax||y ≤ ε for ε > 0 if ||x||X < δ for δ > 0 sufficiently small. If ||x|| = δ/2
we therefore have ||Ax||Y < ε and hence, dividing by δ/2, we also find ||Ax ′||Y <

2ε/δ, where ||x ′||X = 1. Multiplying by λ > 0 gives ||Aλx ′||Y < 2λε/δ, which can
be rewritten ||Ax||Y < 2 ε

δ
||x|| for every x ∈ X, proving that A is bounded. ��

For bounded operators it is possible to define the operator norm,

||A|| := sup
0 
=x∈X

||Ax||Y
||x||X

(

= sup
x∈X, ||x||X=1

||Ax||Y
)

.

It is easy to prove that this is a norm on the complex vector space B(X, Y ) of
bounded operators T : X → Y , X,Y complex normed, with linear combinations
αA+βB ∈ B(X, Y ) for α, β ∈ C and A,B ∈ B(X, Y ) defined by (αA+βB)x :=
αAx + βBx for every x ∈ X.

An important, elementary technical result is stated in the following proposition.

Proposition 2.18 Let A : S → Y be a bounded operator defined on the subspace
S ⊂ X, where X,Y are normed spaces with Y complete. If S is dense in X, then A

can be extended to a unique continuous, bounded operator A1 : X → Y . Moreover
||A1|| = ||A||.
Proof Uniqueness is obvious from continuity: if S � xn → x ∈ X and A1, A

′
1 are

continuous extensions, A1x − A′
1x = limn→+∞ A1xn − A′

1xn = limn→+∞ 0 = 0.
Let us construct a linear continuous extension. If x ∈ X, there exists a sequence
S � xn → x ∈ X since S is dense. But {Axn}n∈N is Cauchy because {xn}n∈N is
Cauchy and ||Axn−Axm||Y ≤ ||A||||xn−xm||X, so the limitA1x := limn→+∞ Axn

exists because Y is complete. The limit does not depend on the sequence: if S �
x ′
n → x, then ||Axn − Ax ′

n|| ≤ ||A|| ||xn − x ′
n|| → 0, so A1 is well defined. It is

immediate to prove that A1 is linear from the linearity of A, henceA1 is an operator
which extendsA to the wholeX. By construction, ||A1x||Y = limn→+∞ ||Axn||Y ≤
limn→+∞ ||A||||xn||X ≤ ||A||||x||X, so ||A1|| ≤ ||A||, in particular A1 is bounded.
On the other hand

||A1|| = sup{||A1x|| ||x||−1 | x ∈ X \ {0}} ≥ sup{||A1x|| ||x||−1 | x ∈ S \ {0}}

= sup{||Ax|| ||x||−1 | x ∈ S \ {0}} = ||A|| ,



26 2 Hilbert Spaces and Classes of Operators

so that ||A1|| ≥ ||A|| as well, proving ||A1|| = ||A||. ��
Notation 2.19 From now on,B(H) := B(H,H) will denote the space of bounded
operators A : H → H on the Hilbert space H. �

B(H) acquires the structure of a unital Banach algebra: the complex vector space
structure is the standard one of operators, the algebra’s associative product is the
composition of operators with unit I , and the norm is the above operator norm,

||A|| := sup
0 
=x∈H

||Ax||
||x|| .

This definition of ||A|| holds also for bounded operatorsA : D(A) → H, if D(A) ⊂
H but D(A) 
= H. It immediately follows

||Ax|| ≤ ||A|| ||x|| if x ∈ D(A).

As we already know, || · || is a norm onB(H). Furthermore, it satisfies

||AB|| ≤ ||A|| ||B|| A,B ∈ B(H) .

It is also evident that ||I || = 1. ActuallyB(H) is a Banach space and hence a unital
Banach algebra, due to the following fundamental result:

Theorem 2.20 If H is a Hilbert space, B(H) is a Banach space for the operator
norm.

Proof The only non-trivial property is the completeness of B(H), so let us prove
it. Consider a Cauchy sequence {Tn}n∈N ⊂ B(H). We want to show that there
exists T ∈ B(H) which satisfies ||T − Tn|| → 0 as n → +∞. Define T x :=
limn→+∞ T x for every x ∈ H. The limit exists because {Tnx}n∈N is Cauchy from
||Tnx−Tmx|| ≤ ||Tn−Tm||||x||. The linearity of T is easy to prove from the linearity
of every Tn. Next observe that ||T x − Tmx|| = || limn Tnx − Tmx|| = limn ||Tnx −
Tmx|| ≤ ε||x|| if m is sufficiently large. Assuming that T ∈ B(H), dividing by ||x||
the inequality and taking the sup over ||x|| 
= 0 proves that ||T − Tm|| ≤ ε and
therefore ||T − Tm|| → 0 for m → +∞, as wanted. This ends the proof because
T ∈ B(H) since ||T x|| ≤ ||T x − Tmx|| + ||Tmx|| ≤ ε||x|| + ||Tm||||x||, and thus
||T || ≤ (ε + ||Tm||) < +∞. ��
Remark 2.21 The same proof is valid forB(X, Y ), provided the normed space Y is
|| · ||Y -complete. In particular the topological dual of the normed space X, denoted
by X∗ = B(X,C), is complete since C is complete. �
Exercise 2.22 Prove that on a Hilbert space H 
= {0} there are no operators
Xh,Pk ∈ B(H), h, k = 1, 2, . . . , n satisfying the CCRs (1.22).

Solution It is enough to consider n = 1. Suppose that [X,P ] = iI (where we
set h̄ = 1 without loss of generality) for X,P ∈ B(H). By induction [X,Pk] =
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kiP k−1 if k = 1, 2, . . .. Hence

k||Pk−1|| = ||[X,Pk]|| ≤ 2||X|| ||Pk || ≤ 2||X||||P ||||Pk−1|| .

Dividing by ||Pk−1|| (which cannot vanish, otherwise Pk−2 = 0 from [X,Pk−1] =
(k − 1)iP k−2, and then P = 0 by induction, which is forbidden since [X,P ] =
iI 
= 0), we have k ≤ 2||X|| ||P || for every k = 1, 2, . . .. But this is impossible
because X,P ∈ B(H). �

2.2.2 Adjoint Operators

By introducing the notion of adjoint operator we can show B(H) is a unital C∗-
algebra. To this end, we may consider, more generally, unbounded operators defined
on non-maximal domains.

Definition 2.23 Let A be a densely-defined operator on the Hilbert space H. Define
the subspace of H

D(A∗) := {
y ∈ H | ∃zy ∈ H s.t. 〈y|Ax〉 = 〈zy |x〉 ∀x ∈ D(A)

}
.

The linear map A∗ : D(A∗) � y �→ zy is called the adjoint operator to A. �
Let us explain why the definition is well posed. The element zy is uniquely

determined by y, since D(A) is dense. If zy, z
′
y satisfy 〈y|Ax〉 = 〈zy |x〉 and

〈y|Ax〉 = 〈z′
y |x〉, then 〈zy − z′

y |x〉 = 0 for every x ∈ D(A). By taking a sequence
D(A) � xn → zy − z′

y we conclude that ||zy − z′
y || = 0. Therefore zy = z′

y

and A∗ : D(A∗) � y �→ zy is a well-defined function. Next, by definition of
D(A∗) we have that azy + bzy ′ satisfies 〈ay + by ′|Ax〉 = 〈azy + bzy ′ |x〉 for
y, y ′ ∈ D(A∗) and a, b ∈ C, by the inner product’s (anti-)linearity, so eventually
A∗ : D(A∗) � u �→ zu is linear too.

Remark 2.24

(a) IfD(A) is not dense,A∗ cannot be defined in general. As an example, consider a
closed subspace M � H, so M⊥ 
= {0}. Define A : D(A) = M � x �→ x ∈ H.
If 0 
= y ∈ M⊥ we have 〈y|Ax〉 = 〈y|x〉 = 0, and hence y ∈ D(A∗) and
A∗y = y. But this is inconsistent, for 〈y|Ax〉 = 0 = 〈2y|x〉 implies A∗y = 2y.
In this context the alleged function A∗ would necessarily be multi-valued.

(b) By construction, we immediately have that

〈A∗y|x〉 = 〈y|Ax〉 for x ∈ D(A) and y ∈ D(A∗) .

�
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Exercise 2.25 Prove that D(A∗) can equivalently be defined as the set (subspace)
of y ∈ H such that the functional D(A) � x �→ 〈y|Ax〉 is continuous.
Solution This is a simple application of the Riesz lemma, after extending D(A) �
x �→ 〈y|Ax〉 to a continuous functional on D(A) = H by continuity. �

Remark 2.26

(a) If both A and A∗ are densely defined then A ⊂ (A∗)∗. The proof follows from
the definition of adjoint operator.

(b) If A is densely defined and A ⊂ B then B∗ ⊂ A∗. The proof is immediate from
the definition of adjoint.

(c) If A ∈ B(H) then A∗ ∈ B(H) and (A∗)∗ = A. Moreover

||A∗||2 = ||A||2 = ||A∗A|| = ||AA∗|| .

(See Exercise 2.28.)
(d) From the definition of adjoint one has, for densely defined operatorsA,B on H,

A∗ + B∗ ⊂ (A + B)∗ and A∗B∗ ⊂ (BA)∗ .

Furthermore

A∗ + B∗ = (A + B)∗ and A∗B∗ = (BA)∗ , (2.8)

whenever B ∈ B(H) and A is densely defined.
(e) By (c), and (2.8) in particular, it is clear that B(H) is a unital C∗-algebra with

involutionB(H) � A �→ A∗ ∈ B(H). �
Definition 2.27 If A is a (unital) ∗-algebra and H a Hilbert space, a representation
of A on H is a ∗-homomorphism π : A → B(H) for the natural (unital) ∗-algebra
structure ofB(H). The representation π is called faithful if it is injective.

Two representations π1 : A → B(H1) and π2 : A → B(H2) are said to be
unitarily equivalent if there exists a Hilbert space isomorphism U : H1 → H2
such that

Uπ1(a)U−1 = π2(a) for all a ∈ A.

�
Exercise 2.28 Prove that A∗ ∈ B(H) if A ∈ B(H) and that, in this case, (A∗)∗ =
A, ||A|| = ||A∗|| and ||A∗A|| = ||AA∗|| = ||A||2.
Solution IfA ∈ B(H), for every y ∈ H the linear mapH � x �→ 〈y|Ax〉 is continu-
ous (|〈y|Ax〉| ≤ ||y||||Ax|| ≤ ||y||||A||||x||), therefore Theorem 2.6 guarantees that
there exists a unique zy,A ∈ H with 〈y|Ax〉 = 〈zy,A|x〉 for all x, y ∈ H. The map
H � y �→ zy,A is linear because zy,A is unique and the inner product is anti-linear
on the left. The map H � y �→ zy,A fits the definition of A∗, so it coincides with
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A∗ and D(A∗) = H. Since 〈A∗x|y〉 = 〈x|Ay〉 for x, y ∈ H implies (conjugating)
〈y|A∗x〉 = 〈Ay|x〉 for x, y ∈ H, we have (A∗)∗ = A. To prove that A∗ is bounded
observe that ||A∗x||2 = 〈A∗x|A∗x〉 = 〈x|AA∗x〉 ≤ ||x|| ||A|| ||A∗x||, so that
||A∗x|| ≤ ||A|| ||x|| and ||A∗|| ≤ ||A||. Using (A∗)∗ = A, we have ||A∗|| = ||A||.
Regarding the last identity, it is evidently enough to prove that ||A∗A|| = ||A||2.
First of all, ||A∗A|| ≤ ||A∗|| ||A|| = ||A||2, so that ||A∗A|| ≤ ||A||2. On the
other hand ||A||2 = (sup||x||=1 ||Ax||)2 = sup||x||=1 ||Ax||2 = sup||x||=1〈Ax|Ax〉 =
sup||x||=1〈x|A∗Ax〉 ≤ sup||x||=1 ||x||||A∗Ax|| = sup||x||=1 ||A∗Ax|| = ||A∗A||. We
have found that ||A∗A|| ≤ ||A||2 ≤ ||A∗A||, so ||A∗A|| = ||A||2. �

Exercise 2.29 Prove that if A ∈ B(H), then A∗ is bijective if and only if A is
bijective. In this case (A−1)∗ = (A∗)−1.

Solution If A ∈ B(H) is bijective we have AA−1 = A−1A = I . Taking
adjoints, (A−1)∗A∗ = A∗(A−1)∗ = I∗ = I from Remark 2.26 (d), which implies
(A−1)∗ = (A∗)−1 by the uniqueness of inverses. IfA∗ is bijective, taking the adjoint
of (A∗)−1A∗ = A∗(A∗)−1 = I and using (A∗)∗ = A shows that A is bijective as
well. �

2.2.3 Closed and Closable Operators

Definition 2.30 Let A be an operator on the Hilbert space H.

(1) A is said to be closed if its graph

G(A) := {(x,Ax) ⊂ H × H | x ∈ D(A)}

is closed in the product topology of H × H.
(2) A is closable if it admits closed extensions. This is equivalent to saying that the

closure of the graph of A is the graph of an operator, denoted by A and called
the closure of A.

(3) If A is closable, a subspace S ⊂ D(A) is called a core for A if A|S = A. �
Referring to (2), given an operator A we can always define the closure of the

graph G(A) in H × H. In general this closure will not be the graph of an operator,
because there may exist sequences D(A) � xn → x and D(A) � x ′

n → x such
that T xn → y and T xn → y ′ with y 
= y ′. However, both pairs (x, y) and (x, y ′)
belong to G(A). If this is not the case—this is precisely condition (a) below—G(A)

is indeed the graph of an operator, written A, that is closed by definition. Therefore
A always admits closed extensions: at least there is A. If, conversely, A admits
extensions by closed operators, the intersectionG(A) of the (closed) graphs of these
extensions is still closed; furthermore,G(A) is the graph of an operator which must
coincide with A by definition.
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Remark 2.31

(a) Directly from the definition and using linearity, A is closable if and only if
there are no sequences of elements xn ∈ D(A) such that xn → 0 and Axn →
y 
= 0 as n → +∞. Since G(A) is on one hand the union of G(A) and its
accumulation points in H × H and on the other, if A is closable, it is also the
graph of the operator A, we conclude that

(i) D(A) consists of the elements x ∈ H such that xn → x and Axn → yx for
some sequence {xn}n∈N ⊂ D(A) and some yx ∈ D(A)

(ii) Ax = yx .

(b) As a consequence of (a), if A is closable then aA + bI is closable and
aA + bI = aA + bI for every a, b ∈ C.

Caution: this generally fails if we replace I with a closable operator B.
(c) Directly by definition A is closed if and only if D(A) � xn → x ∈ H and

Axn → y ∈ H imply x ∈ D(A) and y = Ax. �
A useful proposition is the following.

Proposition 2.32 Consider an operator A : D(A) → H, with D(A) dense, on the
Hilbert space H. The following facts hold.

(a) A∗ is closed.
(b) A is closable if and only if D(A∗) is dense, and in this case A = (A∗)∗.

Proof The Hermitian product ((x, y)|(x ′y ′)) := 〈x|x ′〉 + 〈y|y ′〉 makes the standard
direct sum H ⊕ H a Hilbert space. Now consider the operator

τ : H ⊕ H � (x, y) �→ (−y, x) ∈ H ⊕ H . (2.9)

It is easy to check that τ ∈ B(H ⊕ H) and

τ ∗ = τ−1 = −τ (2.10)

(adjoints inH⊕H). By direct computation one sees that τ and ⊥ (onH⊕H) commute

τ (F⊥) = (τ (F ))⊥ if F ⊂ H ⊕ H. (2.11)

Let us prove (a). The following noteworthy relation is true for every operator A :
D(A) → H with D(A) dense in H (so A∗ exists)

G(A∗) = τ (G(A))⊥ . (2.12)

Since the right-hand side is closed (it is the orthogonal space to a set), the graph of
A∗ is closed and A∗ is therefore closed by definition. To prove (2.12) observe that,
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by definition of τ , τ (G(A))⊥ = {(y, z) ∈ H ⊕ H | ((y, z)|(−Ax, x)) = 0 ,∀x ∈
D(A)} , that is

τ (G(A))⊥ = {(y, z) ∈ H ⊕ H | 〈y|Ax〉 = 〈z|x〉 ,∀x ∈ D(A)} .

Since A∗ exists, the pair (y, z) ∈ τ (G(A))⊥ can be written (y,A∗y) by definition
of A∗. Hence τ (G(A))⊥ = G(A∗), proving (a).

(b) From the properties of ⊥ we immediately have G(A) = (G(A)⊥)⊥. Since τ

and ⊥ commute by (2.11), and ττ = −I (2.10),

G(A) = −τ ◦τ ((G(A)⊥)⊥) = −τ (τ (G(A))⊥)⊥ = τ (τ (G(A))⊥)⊥ = τ (G(A∗))⊥ .

The minus sign disappeared since the subspace is closed under multiplication by
scalars and by (2.12). Now suppose that D(A∗) is dense, so that (A∗)∗ exists. Using
(2.12) again, we have G(A) = G((A∗)∗). The right-hand side is the graph of an
operator, so if D(A∗) is dense, then A is closable. By definition of closure, A =
(A∗)∗.

Vice versa, suppose that A is closable, so that A exists and G(A) = G(A).
Then τ (G(A∗))⊥ = G(A) is the graph of an operator and hence cannot contain
pairs (0, y) with y 
= 0, by linearity. In other words, if (0, y) ∈ τ (G(A∗))⊥, then
y = 0. This is the same as saying that ((0, y)|(−A∗x, x)) = 0 for all x ∈ D(A∗)
implies y = 0. Summing up, 〈y|x〉 = 0 for all x ∈ D(A∗) implies y = 0. As
H = D(A∗)⊥ ⊕ (D(A∗)⊥)⊥ = D(A∗)⊥ ⊕ D(A∗), we conclude that D(A∗) = H,
which proves the density. ��
Corollary 2.33 Let A : D(A) → H an operator on the Hilbert space H. If both
D(A) and D(A∗) are densely defined then

A∗ = A
∗ = A∗ = (((A∗)∗)∗ .

The Hilbert-space version of the closed graph theorem holds (e.g., see [Rud91,
Mor18]).

Theorem 2.34 (Closed Graph Theorem) Let A : H → H be an operator, H a
Hilbert space. Then A is closed if and only if A ∈ B(H).

An important corollary is the Hilbert version of the bounded inverse theorem of
Banach (e.g., see [Rud91, Mor18]).

Corollary 2.35 (Banach’s Bounded Inverse Theorem) Let A : H → H be an
operator, H a Hilbert space. If A is bijective and bounded its inverse is bounded.

Proof The graph of A−1 : H → H is closed because A is bounded and a fortiori
closed, and its graph is the same as that of A−1. Theorem 2.34 implies that A−1 is
bounded. ��
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Exercise 2.36 Consider B ∈ B(H) and a closed operator A on H such that
Ran(B) ⊂ D(A). Prove that AB ∈ B(H).

Solution AB is well defined by hypothesis and D(AB) = H. Exploiting
Remark 2.31 (c) and the continuity of B, one easily sees that AB is closed as
well. Theorem 2.34 eventually proves AB ∈ B(H). �

2.2.4 Types of Operators Relevant in Quantum Theory

Definition 2.37 An operator A on a Hilbert space H is called

(0) Hermitian if 〈Ax|y〉 = 〈x|Ay〉 for x, y ∈ D(A),
(1) symmetric if it is densely defined and Hermitian, which is equivalent to say

A ⊂ A∗.
(2) selfadjoint if it is symmetric and A = A∗,
(3) essentially selfadjoint if it is symmetric and (A∗)∗ = A∗.
(4) unitary if A∗A = AA∗ = I ,
(5) normal if it is closed, densely defined and AA∗ = A∗A. �
Remark 2.38

(a) If A is unitary then A,A∗ ∈ B(H). Furthermore an operator A : H → H
is unitary if and only if it is surjective and norm-preserving. (See Exercise
2.43). Unitary operators are the automorphisms of the Hilbert space. An
isomorphism of Hilbert spaces H,H′ is a surjective linear isometry T : H →
H′. Any such also preserves inner products by Proposition 2.1.2.

(b) A selfadjoint operator A does not admit proper symmetric extensions, and
essentially selfadjoint operators admit only one selfadjoint extension. (See
Proposition 2.39 below).

(c) A symmetric operator A is always closable because A ⊂ A∗ and A∗ is
closed (Proposition 2.32). In addition, by Proposition 2.32 and Corollary 2.33,
the reader will have no difficulty in proving the following are equivalent for
symmetric operators A:

(i) (A∗)∗ = A∗ (A is essentially selfadjoint),
(ii) A = A∗,
(iii) A = (A)∗.

(d) Unitary and selfadjoint operators are instances of normal operators. �
The elementary results on (essentially) selfadjoint operators stated in (b) are

worthy of a proof.

Proposition 2.39 Let A : D(A) → H be a densely-defined operator on the Hilbert
space H. Then
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(a) if A is selfadjoint, it does not admit proper symmetric extensions.
(b) If A is essentially selfadjoint, it admits a unique selfadjoint extension A∗ = A.

Proof

(a) Let B be a symmetric extension of A. By Remark 2.26 (b) A ⊂ B implies
B∗ ⊂ A∗. As A = A∗ we have B∗ ⊂ A ⊂ B. Since B ⊂ B∗, we conclude that
A = B.

(b) Let B be a selfadjoint extension of the essentially selfadjoint operatorA, so that
A ⊂ B. Therefore A∗ ⊃ B∗ = B and (A∗)∗ ⊂ B∗ = B. Since A is essentially
selfadjoint, we haveA∗ ⊂ B. HereA∗ is selfadjoint andB is symmetric because
selfadjoint, so (a) forces A∗ = B. That is, every selfadjoint extension of A

coincides with A∗. Finally, A∗ = A by Remark 2.38 (c).
��

Here is an elementary yet important result that helps to understand why in QM
observables are very often described by unbounded selfadjoint operators defined on
proper subspaces.

Theorem 2.40 (Hellinger-Toeplitz Theorem) A selfadjoint operator A on a
Hilbert space H is bounded if and only if D(A) = H (and hence A ∈ B(H)).

Proof Assume that D(A) = H. As A = A∗, we have D(A∗) = H. Since A∗
is closed, Theorem 2.34 implies A∗(= A) is bounded. Conversely, if A = A∗
is bounded, since D(A) is dense, we can extend it with continuity to a bounded
operator A1 : H → H. The extension, by continuity, trivially satisfies 〈A1x|y〉 =
〈x|A1y〉 for all x, y ∈ H, hence A1 is symmetric. Since A∗ = A ⊂ A1 ⊂ A∗

1,
Proposition 2.39 (a) implies A = A1. ��

Let us pass to unitary operators. The relevance of unitary operators is manifest
from the fact that the nature of an operator does not change under Hermitian
conjugation by a unitary operator.

Proposition 2.41 Let U : H → H be a unitary operator on the complex Hilbert
spaceH and A another operator on H. The operators UAU∗ and U∗AU (defined on
U(D(A)) and U∗(D(A))) are symmetric, selfadjoint, essentially selfadjoint, unitary
or normal if A is respectively symmetric, selfadjoint, essentially selfadjoint, unitary
or normal.

Proof SinceU∗ is unitary whenU is and (U∗)∗ = U , it is enough to prove the claim
for UAU∗. First of all notice that D(UAU∗) = U(D(A)) is dense if D(A) is dense
since U is bijective and isometric, and U(D(A)) = H if D(A) = H because U is
bijective. By direct inspection, applying the definition of adjoint operator, one sees
that (UAU∗)∗ = UA∗U∗ and D((UAU∗)∗) = U(D(A∗)). Now, if A is symmetric
A ⊂ A∗, then UAU∗ ⊂ UA∗U∗ = (UAU∗)∗, so that UAU∗ is symmetric as well.
If A is selfadjoint A = A∗, then UAU∗ = UA∗U∗ = (UAU∗)∗, so that UAU∗ is
selfadjoint as well. If A is essentially selfadjoint it is symmetric and (A∗)∗ = A∗,
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so UAU∗ is symmetric and U(A∗)∗U∗ = UA∗U∗, that is (UA∗U∗)∗ = UA∗U∗.
This means ((UAU∗)∗)∗ = (UAU∗)∗, and UA∗U∗ is essentially selfadjoint. If A

is unitary, we haveA∗A = AA∗ = I and henceUA∗AU∗ = UAA∗U∗ = UU∗. As
U∗U = I = UU∗, the latter is equivalent to UA∗U∗UAU∗ = UAU∗UA∗U∗ =
U∗U = I , that is (UA∗U∗)UAU∗ = (UAU∗)UA∗U∗ = I . Hence UAU∗ is
unitary as well. At last if A is normal, UAU∗ is normal too, by the same argument
of the unitary case.

��
Remark 2.42 The same proof goes through if U : H → H′ is an isometric and
surjective linear map. A minor change allows to adapt the proof to U : H → H′
isometric, surjective but anti-linear, that is U(αx +βy) = αUx +βUy if α, β ∈ C

and x, y ∈ H. We leave to the reader these straightforward generalizations. �
Exercise 2.43

(1) Prove that A,A∗ ∈ B(H) if A is unitary.

Solution Since D(A) = D(A∗) = D(I) = H and ||Ax||2 = 〈Ax|Ax〉 =
〈x|A∗Ax〉 = ||x||2 if x ∈ H, it follows that ||A|| = 1. Due to Remark 2.26 (c),
A∗ ∈ B(H). �

(2) Prove that an operator A : H → H is unitary iff it is surjective and norm-
preserving.

Solution IfA is unitary (Definition 2.37 (3)), it is manifestly bijective. AsD(A∗) =
H, moreover, ||Ax||2 = 〈Ax|Ax〉 = 〈x|A∗Ax〉 = 〈x|x〉 = ||x||2, so A is also
isometric. If A : H → H is isometric its norm is 1 and hence A ∈ B(H). Therefore
A∗ ∈ B(H). The condition ||Ax||2 = ||x||2 can be rewritten as 〈Ax|Ax〉 =
〈x|A∗Ax〉 = 〈x|x〉, and so 〈x|(A∗A − I)x〉 = 0 for x ∈ H. Writing x = y ± z

and x = y ± iz, the previous identity implies 〈z|(A∗A − I)y〉 = 0 for all y, z ∈ H.
By taking z = (A∗A − I)y we finally have ||(A∗A − I)y|| = 0 for all y ∈ H and
thus A∗A = I . In particular, A is injective for it admits left inverse A∗. Since A is
also surjective it is bijective, and its left inverse (A∗) is also a right inverse, that is
AA∗ = I .

(3) Suppose A : H → H satisfies 〈x|Ax〉 ∈ R for all x ∈ H (and in particular
if A ≥ 0, which means 〈x|Ax〉 ≥ 0 for all x ∈ H). Show that A∗ = A and
A ∈ B(H).

Solution We have 〈x|Ax〉 = 〈x|Ax〉 = 〈Ax|x〉 = 〈x|A∗x〉 where, as D(A) = H,
the adjointA∗ is well defined everywhere on H. Hence 〈x|(A−A∗)x〉 = 0 for every
x ∈ H. Writing x = y ± z and x = y ± iz we obtain 〈y|(A − A∗)z〉 = 0 for all
y, z ∈ H. We conclude that A = A∗ by choosing y = (A − A∗)z. Theorem 2.40
ends the proof. �
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Example 2.44 Recall the Fourier transform F : S (Rn) → S (Rn) of f ∈
S (Rn) is defined as1

(Ff )(k) := 1

(2π)n/2

∫

Rn

e−ik·xf (x)dnx, (2.13)

where k·x is the Euclidean inner product of k and x inRn, see, e.g. [Rud91,Mor18]).
It is a linear bijection with inverseF− : S (Rn) → S (Rn),

(F−g)(x) := 1

(2π)n/2

∫

Rn

eik·xg(k)dnk , (2.14)

so that

F ◦ F− = F− ◦ F = ıS (Rn) . (2.15)

It is known (e.g., [Rud91, Mor18]) thatF andF− preserve the inner product

〈Ff |Fg〉 = 〈f |g〉 , 〈F−f |F−g〉 = 〈f |g〉 ∀f, g ∈ S (Rn) (2.16)

and therefore they also preserve the L2(Rn, dnx)-norm. In particular, ||F || =
||F−|| = 1. As a consequence of Proposition 2.18, the density of S (Rn)

in L2(Rn, dnx) [Rud91] implies that F and F− extend to unique continuous
bounded operators F̂ : L2(Rn, dnx) → L2(Rn, dnk) and F̂− : L2(Rn, dnk) →
L2(Rn, dnx) such that F̂−1 = F̂−, because also (2.15) trivially extends to
L2(Rn, dnx) by continuity. Since the inner product is continuous, from (2.16) we
finally obtain

〈F̂f |F̂g〉 = 〈f |g〉 , 〈F̂−f |F̂−g〉 = 〈f |g〉 ∀f, g ∈ L2(Rn, dnx) . (2.17)

To summarize, F̂ is an isometric, surjective linear map from L2(Rn, dnx) to
L2(Rn, dnx), and therefore a unitary operator. The same properties are enjoyed by
the inverse F̂−. The unitary map F̂ is the Fourier-Plancherel operator. �
Remark 2.45 Let X be a topological space, and indicate the space of continuous
maps vanishing at infinity by

C0(X) := {f : X → C continuous | ∀ε > 0 ∃Kε ⊂ X compact with |f (x)| < ε if x 
∈ Kε}.

It is evident that the linear maps (2.13) and (2.14) are well defined if we allow
f ∈ L1(Rn, dnx), g ∈ L1(Rn, dnk). The ranges of these extensions are not

1In QM, k · x has to be replaced by k·x
h̄

and (2π)n/2 by (2πh̄)n/2 in unit systems where h̄ 
= 1.
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subsets of L1, however. They are called L1-Fourier transform and inverse L1-
Fourier transform respectively, and satisfy the following properties (see, e.g.,
[Rud91, Mor18])

(a) F (L1(Rn, dnx)) ⊂ C0(R
n), the latter being the Banach space of complex

continuous maps on Rn vanishing at infinity with norm || · ||∞;
(b) ||F (f )||∞ ≤ ||f ||1, and henceF : L1(Rn, dnx) → C0(R

n) is continuous;
(c) F : L1(Rn, dnx) → C0(R

n) is injective and F−(F (f )) = f if F (f ) ∈
L1(R, dnk) for any f ∈ L1(R, dnx).

Analogous properties hold by swappingF andF−. It is worth pointing out that
(a) implies the famed Riemann-Lebesgue lemma: F (f )(k) → 0 uniformly as
|k| → +∞ provided f ∈ L1(Rn, dnx). �

2.2.5 The Interplay of Ker , Ran, ∗, and ⊥

Pressing on, we establish two technical facts which will be useful several times in
the sequel.

Proposition 2.46 If A : D(A) → H is a densely-defined operator on the Hilbert
space H,

Ker(A∗) = Ran(A)⊥ , Ker(A) ⊂ Ran(A∗)⊥ . (2.18)

The inclusion becomes an equality if A ∈ B(H).

Proof By the definition of adjoint operator we know that

〈A∗y|x〉 = 〈y|Ax〉 , ∀x ∈ D(A) ,∀y ∈ D(A∗) . (2.19)

If y ∈ Ker(A∗), then 〈y|Ax〉 = 0 for all x ∈ D(A) due to (2.19), so that
y ∈ Ran(A)⊥. If, conversely, y ∈ Ran(A)⊥, then 〈y|Ax〉 = 0 for all x ∈
D(A). This means that y ∈ D(A∗), by definition of D(A∗), and A∗y = 0.
We have proved that Ker(A∗) = Ran(A)⊥. Regarding the second inclusion, if
x ∈ Ker(A), we have from (2.19) that 〈A∗y|x〉 = 0 for every y ∈ D(A∗) and
therefore x ∈ Ran(A∗)⊥. Hence Ker(A) ⊂ Ran(A∗)⊥. To conclude, observe
that the requirement x ∈ Ran(A∗)⊥ entails from (2.19) that 〈y|Ax〉 = 0 for
every y ∈ D(A∗) provided x ∈ D(A). If A ∈ B(H), then x ∈ H belongs to
D(A) = H, and 〈y|Ax〉 = 0 for every y ∈ D(A∗) = H. Therefore Ax = 0, and so
Ker(A) ⊃ Ran(A∗)⊥. ��

For densely-defined operatorsA the domainD(A∗) is dense, and the first relation
implies Ker(A∗∗) = Ran(A∗)⊥. By Proposition 2.32 we can strengthen (2.18),

Ker(A∗) = Ran(A)⊥ , Ker(A) = Ran(A∗)⊥ . (2.20)
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Replacing A with A − λI, λ ∈ C in (2.18) we find the following useful relations,

Ker(A∗ − λI) = [Ran(A − λI)]⊥ , Ker(A − λI) ⊂ [Ran(A∗ − λI)]⊥.

(2.21)

Once again, the inclusion becomes an equality if A ∈ B(H), or if A is closable and
A is replaced by A.

2.2.6 Criteria for (Essential) Selfadjointness

Let us review common tools for studying the (essential) selfadjointness of symmet-
ric operators, briefly. If A is a densely-defined symmetric operator on the Hilbert
space H, define the deficiency indices [ReSi80, Rud91, Schm12, Tes14, Mor18]

n± := dimH± (cardinal numbers in general), where H± := Ker(A∗ ± iI ).

Proposition 2.47 Let A be a symmetric operator on a Hilbert space H.

(a) The following are equivalent:

(i) A is selfadjoint,
(ii) n+ = n− = 0 and A is closed,
(iii) Ran(A ± iI ) = H.

(b) The following are equivalent as well:

(i) A is essentially selfadjoint,
(ii) n+ = n− = 0.
(iii) Ran(A ± iI ) = H.

Proof

(a) Assume (i) A = A∗. Then A is closed because A∗ is closed. Furthermore, if
A∗x± ± ix = 0 then 〈x|A∗x〉 = ±i||x±||2. But 〈x±|A∗x±〉 = 〈x±|Ax±〉 is real,
so the only possibility is ||x±|| = 0 and n± = 0. We have proved that (i) implies
(ii). Let us show that (ii) implies (iii). Suppose that A is symmetric, closed and
n± = 0. The latter condition explicitly reads Ker(A∗ ± iI ) = {0}, which in
turn means that Ran(A± iI ) is dense in H due to (2.21). Since A± iI is closed
becauseA is closed, we even have (iii) Ran(A± iI ) = H because Ran(A± iI )

is closed as well. Indeed, suppose that Axn + ixn → y. As A ⊂ A∗ we get
||xn||2 ≤ ||Axn||2 + ||xn||2 = ||Axn + ixn||2, and then {xn}n∈N is Cauchy,
xn → x ∈ H. Since A + iI is closed, x ∈ D(A + iI ) and y = (A + iI )x as
we wanted. The case of A − iI is identical. To conclude, let us prove that (iii)
implies (i) A∗ = A. Since A is symmetric it suffices to show D(A∗) ⊂ D(A).
Take y ∈ D(A∗). SinceRan(A±iI ) = H, we must haveA∗y±iy = Ax±±ix±
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for some x+, x− ∈ D(A). As A∗�D(A)= A, we have (A∗ ± iI )(y − x±) = 0.
But we know that Ker(A∗ ± iI ) = Ran(A ± iI )⊥ = {0}, so y = x± ∈ D(A),
concluding the proof of (a).

(b) If (i) holds then A∗ is selfadjoint: A∗∗ = A∗, so (ii) holds by (ii) in part (a).
Furthermore, (ii) is equivalent to (iii) by (2.21). To conclude, it is enough to
demonstrate that (ii) forces the closure A to be selfadjoint (A exists because
A∗ ⊃ A). But this is equivalent to claim (i) by Remark 2.38 (c). As A is
symmetric we can use (a). We know that A

∗ = A∗ from Corollary 2.33. Since
A∗ satisfies (ii) by hypothesis, A

∗
satisfies (a)(ii) and A is closed, hence it is

selfadjoint because (a)(ii) implies (a)(i).
��

When A ⊂ A∗ one has

D(A∗) = D(A) ⊕A∗ H− ⊕A∗ H+ ,

where the orthogonal sum is taken with respect to the inner product 〈ψ|φ〉A∗ :=
〈ψ|φ〉 + 〈A∗ψ|A∗φ〉 and the three subspaces are closed in the induced norm
topology. (This formula is proved in [ReSi75, p. 138], where A is also assumed
closed. Here we exploit the fact that A

∗ = A∗.) We are in a position to quote
a celebrated theorem of von Neumann that relies on the above decomposition
[ReSi75, Tes14, Mor18].

Theorem 2.48 A symmetric operator A : D(A) → H on a Hilbert space H admits
selfadjoint extensions if and only if n+ = n−. These extensions AU are restrictions
of A∗ and correspond one-to-one to surjective isometries U : Ker(A∗ − iI ) →
Ker(A∗ + iI ). In fact,

AU(x + y + Uy) := Ax + A∗(y + Uy) = Ax + iy − iUy ,

with D(AU) := {x + y + Uy | x ∈ D(A) , y ∈ H−}.
Remark 2.49

(a) It is easy to prove from the theorem that A′
U : x + y + Uy �→ Ax + iy − iUy,

x ∈ D(A), y ∈ H−, is symmetric, essentially selfadjoint and that AU is its
unique selfadjoint extension.

(b) The original version of Theorem 2.48 also assumed A closed. However, since:
A is symmetric if A is symmetric; the deficiency indices of A and A are
identical, as the reader easily proves; finally, A and A share the same selfadjoint
extensions, then closedness can be dropped from the hypotheses [Mor18]. �
In view of Theorem 2.48, there is a nice condition for symmetric operators to

admit selfadjoint extensions due to von Neumann. Recall that by a conjugation we
mean an isometric, surjective anti-linear map C with CC = I .

Proposition 2.50 If A : D(A) → H is a symmetric operator on a Hilbert space
H and there is a conjugation C : H → H such that CA ⊂ AC, then A admits
selfadjoint extensions.
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Proof Using the definition of A∗ and D(A∗) and observing that (from
the polarization formula (2.1)) 〈Cy|Cx〉 = 〈y|x〉, the condition AC ⊃
CA implies the condition CA∗ ⊂ A∗C . Therefore, remembering CC = I ,
we have that A∗x = ±ix if and only if A∗Cx = C(±ix) = ∓iCx. Since C

preserves orthogonality and norms, it transforms a Hilbert basis of H+ into a
Hilbert basis of H− and vice versa. We conclude that n+ = n−. The claim then
follows from Theorem 2.48. ��

If we take C to be the standard conjugation of functions in L2(Rn, dnx), this
result proves in particular that all operators in QM in Schrödinger form, such as
(1.25), admit selfadjoint extensions when defined on dense domains.

Exercise 2.51 Relying on Proposition 2.47 and Theorem 2.48, prove that a sym-
metric operator that admits a unique selfadjoint extension is necessarily essentially
selfadjoint.

Solution By Theorem 2.48, n+ = n− if the operator admits selfadjoint extensions.
Furthermore, if n± 
= 0 there are many selfadjoint extension, again by Theo-
rem 2.48. The only possibility to have uniqueness is n± = 0. Proposition 2.47
implies A is essentially selfadjoint. �

Useful criteria to establish the essential selfadjointness of a symmetric operator
are due to Nelson and Nussbaum. Both rely upon an important definition.

Definition 2.52 Let A be an operator on a Hilbert space H. A vector ψ ∈
∩n∈ND(An) such that

+∞∑

n=0

tn

n! ||A
nψ || < +∞ for some t > 0, or

+∞∑

n=0

tn

(2n)! ||A
nψ || < +∞ for some t > 0,

is respectively called analytic, or semi-analytic, for A. �
Let us then state the criteria of Nelson and Nussbaum [ReSi80, Mor18, Schm12].

Theorem 2.53 (Nelson’s Criterion) A symmetric operator A on a Hilbert space
H is essentially selfadjoint if D(A) contains a dense set of analytic vectors or,
equivalently, a set of analytic vectors whose finite span is dense in H.

The equivalence is due to the simple fact that a linear combination of analytic
vectors is analytic. Recall that the (finite) span of a Hilbert basis is dense, and if
Aψ = aψ then

+∞∑

n=0

tn

n! ||A
nψ|| =

+∞∑

n=0

antn

n! ||ψ|| = eat ||ψ|| < +∞ for some t ∈ R.

Then
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Corollary 2.54 If A is a symmetric operator admitting a Hilbert basis of eigenvec-
tors in D(A), then A is essentially selfadjoint.

Theorem 2.55 (Nussbaum’s Criterion) Let A be a symmetric operator on a
Hilbert space H such that 〈ψ|Aψ〉 ≥ c||ψ||2 for some constant c ∈ R and every
ψ ∈ D(A). Then A is essentially selfadjoint if D(A) contains a dense set of semi-
analytic vectors.

Another useful criterion to establish the essential selfadjointness of a symmetric
operator is due to Nussbaum and (independently) Masson and McClary. It relies
upon an important definition.

Definition 2.56 Let A be an operator on a Hilbert space H. A vector ψ ∈
∩n∈ND(An) such that

+∞∑

n=0

||Anψ||− 1
n = +∞ or

+∞∑

n=0

||Anψ||− 1
2n = +∞

are respectively called quasi-analytic, or Stieltjes, for A. �
Let us then state the criteria of Nussbaum and Masson-McClary [Sim71, ReSi80,

Schm12].

Theorem 2.57 (Nussbaum-Masson-McClary Criterion) Let A be a symmetric
operator on a Hilbert space H such that 〈ψ|Aψ〉 ≥ c||ψ||2 for some constant c ∈ R

and every ψ ∈ D(A). Then A is essentially selfadjoint if D(A) contains a dense set
of Stieltjes vectors.

Remark 2.58 The following implications hold

• analytic ⇒ quasi-analytic ⇒ Stieltjes;
• analytic ⇒ semi-analytic ⇒ Stieltjes.

2.2.7 Position and Momentum Operators and Other Physical
Examples

In this section we shall exhibit selfadjoint operators of great relevance in quantum
physics.

Example 2.59

(1) Take m ∈ {1, 2, . . . , n} and define operators X′
m and X′′

m in L2(Rn, dnx) with
dense domains D(X′

m) = C∞
c (Rn), D(X′′

m) = S (Rn) by

(X′
mψ)(x) := xmψ(x) , (X′′

mφ)(x) := xmφ(x) ,
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where xm is the m-th component of x ∈ Rn. Both are symmetric but not
selfadjoint. They admit selfadjoint extensions because they commute with the
standard complex conjugation of maps (see Proposition 2.50). It is possible to
show that both are essentially selfadjoint, as we set out to do. First define the
k-axis position operator Xm on L2(Rn, dnx) with domain

D(Xm) :=
{

ψ ∈ L2(Rn, dnx)

∣
∣
∣
∣

∫

Rn

|xmψ(x)|2dnx

}

and

(Xmψ)(x) := xmψ(x) , x ∈ R
n . (2.22)

Just by definition of adjoint X∗
m = Xm, so that Xm is selfadjoint [Mor18].

Similarly (see below)X′
m

∗ = X′′
m

∗ = Xm, where we know the last is selfadjoint.
Hence X′

m and X′′
m are essentially selfadjoint. By Proposition 2.39 (b), X′

m and
X′′

m admit a unique selfadjoint extension which must coincide with Xm itself.
We conclude that C∞

c (Rn) and S (Rn) are cores (see Definition 2.30) for the
m-axis position operator.

Let us prove that X′
m

∗ = Xm (the proof for X′′
m

∗ is identical). By direct
inspection one easily sees that X′

m
∗ ⊂ Xm. Let us prove the converse inclusion.

As φ ∈ D(X′
m

∗
) if and only if there exists ηφ ∈ L2(Rn, dnx) such that

∫
φ(x)xmψ(x)dx = ∫

ηφ(x)ψ(x)dx, that is
∫

(φ(x)xm − ηφ(x))ψ(x)dx = 0,
for every ψ ∈ C∞

c (Rn). Fix a compact set K ⊂ Rn of the form [a, b]n. The
function K � x �→ φ(x)xm − ηφ(x) clearly belongs in L2(K, dx) (the same
would not hold if K were Rn). Since we can L2(K)-approximate that function
with a sequence ψn ∈ C∞

c (Rn;C) such that supp(ψn) ⊂ K , we conclude that∫
K |φ(x)xm − ηφ(x)|2dx = 0, so that K � x �→ φ(x)xm − ηφ(x) is zero a.e.
Since K = [a, b]n was arbitrary, we infer that Rn � x �→ φ(x)xm = ηφ(x) a.e.
In particular, both φ and Rn � x �→ xmφ(x) are in L2(Rn, dx) (the latter
because it coincides a.e. with ηφ ∈ L2(Rn, dx)). Therefore D(X′

m
∗
) � φ

implies φ ∈ D(Xm), and consequently X′
m

∗ ⊂ Xm as required.
(2) Form ∈ {1, 2, . . . , n}, the k-axis momentum operatorPm is obtained from the

position operator using the unitary Fourier-Plancherel operator F̂ introduced in
Example 2.44. On

D(Pm) :=
{

ψ ∈ L2(Rn, dnx)

∣
∣
∣
∣

∫

Rn

|km(F̂ψ)(k)|2dnk

}

it is defined by

(Pmψ)(x) := (F̂−1KmF̂ψ)(x) , x ∈ R
n . (2.23)

Above, Km is the m-axis position operator written for functions (in
L2(Rn, dnk)) whose variable, for pure convenience, is called k instead of
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x. Indicating by ψ̂ these functions (as is customary in quantum physics’
textbooks) we have

(
Kmψ̂

)
(k) := kmψ̂(k) k ∈ R

n . (2.24)

Proposition 2.41, as a consequence of the fact that F̂ is unitary, guarantees that
Pm is selfadjoint since Km is. It is possible to describe Pm more explicitly if we
restrict the domain. Taking ψ ∈ C∞

c (Rn) ⊂ S (Rn) or directly ψ ∈ S (Rn),
F̂ reduces to the standard integral Fourier transform (2.13) with inverse (2.14).
Using these,

(Pmψ)(x) = (F̂−1KmF̂ψ)(x) = −i
∂

∂xm

ψ(x) (2.25)

because in S (Rn), which is invariant under the Fourier (and inverse Fourier)
transformation,

∫

Rn

eik·xkm(Fψ)(k)dnk = −i
∂

∂xm

∫

Rn

eik·x(Fψ)(k)dnk .

Hence we are led to consider the operators P ′
m and P ′′

m on L2(Rn, dnx) with

D(P ′
m) = C∞

c (Rn) , D(P ′′
m) = S (Rn)

(P ′
mψ)(x) := −i

∂

∂xm

ψ(x) , (P ′′
mφ)(x) := −i

∂

∂xm

φ(x)

for x ∈ Rn and ψ,φ in the respective domains. These two operators are
symmetric as one can easily prove by integrating by parts, but not selfadjoint.
They admit selfadjoint extensions because they commute with the conjugation
(Cψ)(x) = ψ(−x) (see Proposition 2.50). It is further possible to prove
that they are essentially selfadjoint using Proposition 2.47 [Mor18]. However
we already know that P ′′

m is essentially selfadjoint for it coincides with the
essentially selfadjoint operator F̂−1K ′′

mF̂ , because S (Rn) is invariant under
F̂ . The unique selfadjoint extension of both operators turns out to be Pm.
We conclude that C∞

c (Rn) and S (Rn) are cores for the m-axis momentum
operator.

S (Rn) is an invariant domain for the selfadjoint operators Xk and Pk , on
which the CCRs (1.22) hold.

As a final observation note that for n = 1 the domain D(P) coincides with
(1.18). On that domain P is (−i) times the weak derivative.

(3) The simplest manifestation of Nelson’s criterion occurs in L2([0, 1], dx).

Consider A = − d2

dx2
with domain D(A) given by the maps in C2([0, 1]) such

that ψ(0) = ψ(1) and dψ
dx

(0) = dψ
dx

(1). The operator A is symmetric (just
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integrate by parts), in particular its domain is dense since it contains the Hilbert
basis of exponential maps ei2πnx , n ∈ Z, which are eigenvectors ofA. Therefore
A is also essentially selfadjoint on D(A).

(4) A more interesting case is the Hamiltonian operator of the harmonic oscil-
lator H [SaTu94]. The classical Hamiltonian of a one-dimensional harmonic
oscillator of mass m > 0 and angular frequency ω > 0 is

h = p2

2m
+ mω2x2

2
where (x, p) ∈ R

2 .

In terms of the momentum and position operators defined on the common
invariant domain S (R), one obtains the symmetric—but not selfadjoint—
operator

H0 = 1

2m
P 2�S (R) +mω2

2
X2�S (R)= − 1

2m

d2

dx2 + mω2

2
x2

where P := P1 in the notation of Example (2), D(H0) := S (R) (evidently),
and both d

dx
and the multiplication by x2 act onS (R).

We claim H0 is essentially selfadjoint. It is convenient to define operators
A,A†,N : S (R) → L2(R, dx) by

A† :=
√

mω

2h̄

(

x − h̄

mω

d

dx

)

, A :=
√

mω

2h̄

(

x + h̄

mω

d

dx

)

, N := A†A .

(2.26)

These operators have common domainS (R) which is also invariant:

A(S (R)) ⊂ S (R) , A†(S (R)) ⊂ S (R) , N(S (R)) ⊂ S (R) .

Applying Definition 2.23 to the first two objects in (2.26) and integrating by
parts gives A† � A∗ and A � (A†)∗. The inclusion is strict because D(A∗)
and D((A†)∗) also contain, for instance, C1 maps with compact support which
do not belong to S (R). The operator N is Hermitian and symmetric because
S (R) is dense in L2(R, dx). By direct computation

H0 = h̄

(

A†A + 1

2
I

)

= h̄

(

N + 1

2
I

)

.

We have the commutation relation

[A,A†] = IS (R) (2.27)
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(both sides are viewed as operatorsS (R) → S (R)). Let us suppose that there
exists ψ0 ∈ S (R) such that

||ψ0|| = 1 , Aψ0 = 0 . (2.28)

Starting from (2.27) and using an inductive procedure on the vectors

ψn := 1√
n! (A

†)nψ0 ∈ S (R) , (2.29)

it is easy to prove that (e.g., see [SaTu94, Mor18] for elementary details)

Aψn = √
nψn−1 , A†ψn = √

n + 1ψn+1 , 〈ψn|ψm〉 = δnm (2.30)

for n,m = 0, 1, 2, . . .. Finally, the ψn are eigenvectors of H0 (and N) since

H0ψn = h̄ω

(

A†Aψn + 1

2
ψn

)

= h̄ω

(

A†√nψn−1 + 1

2
ψn

)

= h̄ω

(

n + 1

2

)

ψn . (2.31)

As a consequence, if we can find ψ0, {ψn}n∈N is an orthonormal set. It actually
is a Hilbert basis called the Hilbert basis of Hermite functions. To prove it,
by Definition 2.10 it suffices to demonstrate that the span of the ψn has trivial
orthogonal complement:

if f ∈ L2(R, dx),

∫

R

f (x)ψn(x)dx = 0 for every n ∈ N implies f = 0.

To this end, observe that (2.28) admits a unique solution inS (R) up to constant
unit factors, namely

ψ0(x) = 1

π1/4
√

s
e
− x2

2s2 , s :=
√

h̄

mω
.

From (2.29), by rescaling the argument of ψn,

ψn(x) = √
sHn(x/s), Hn(x) := 1√

2nπ1/2n!

(

x − d

dx

)n

e−x2/2 , n = 0, 1, . . . .

In particular ψn ∈ S (R). Furthermore, since Hn(x)e+ x2
2 is a polynomial of

degree n, the condition
∫
R

f ψndx = 0 for every n ∈ N implies by induction

∫

R

f (x)xne−x2/2dx = 0 for every n ∈ N.
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(Notice that the integrand is a product of L2 functions, and hence is L1). Hence,
∀k ∈ R,

∫

R

e−ikxf (x)e− x2
2 dx =

∫

R

lim
N→+∞

N∑

n=0

(−ik)n

n! xnf (x)e− x2
2 dx

= lim
N→+∞

N∑

n=0

(−ik)n

n!
∫

R

f (x)xne− x2
2 dx = 0 .

Integral and sum can be exchanged by dominated convergence, since

∣
∣
∣
∣
∣

N∑

n=0

(−ik)n

n! xnf (x)e− x2
2

∣
∣
∣
∣
∣
≤

N∑

n=0

|k|n
n! |x|n|f (x)|e− x2

2

=
+∞∑

n=0

|k|n
n! |x|n|f (x)|e− x2

2 = e|kx|− x2
2 |f (x)|

and the function R � x �→ e|kx|− x2
2 |f (x)| is L1.

We have shown that the L1-Fourier transform of R � x �→ f (x)e−x2/2

vanishes everywhere. Since the L1-Fourier transform is linear and injective (see
Remark 2.45), f (x)e−x2/2 = 0 a.e., and hence f = 0 in L2 as we wanted. We
have established that the set of eigenvectors {ψn}n∈N ⊂ S (R) ofH0 is a Hilbert
basis of L2(R, dx), as promised.

Using Nelson’s criterion the symmetric operatorH0 is essentially selfadjoint
in D(H0) = S (R), because H0 admits a Hilbert basis of eigenvectors with
corresponding eigenvalues h̄ω(n + 1

2 ). It is worth stressing that, physically
speaking, the Hamiltonian operator of the harmonic oscillator is the selfadjoint
operator H := H0 = H ∗

0 . This is however completely determined by the non-
selfadjoint operator H0.

(5) Assume as usual h̄ = 1. The operator

P ′ := −i
d

dx
acting on f ∈ D(P ′) := {f ∈ C2([0, 1]) | supp(f ) ⊂ (0, 1)}

is sometimes called, improperly, momentum operator in a box. (Evidently
at 0 and 1 only the right and the left derivatives are considered, and with
little effort one may define it on [a, b] instead of [0, 1]). D(P ′) is dense in
L2([0, 1], dx) and it is easy to prove that P ′ is symmetric using integration by

parts. Moreover P ′ commutes with the conjugation (Cψ)(x) := ψ
(
1
2 − x

)
,

so it admits selfadjoint extensions (n+ = n−) by Proposition 2.50. It is easy to
see that n± ≥ 1 because χ±(x) := e±x satisfies 〈χ±|P ′f 〉 = ±i〈χ±|f 〉 for
every f ∈ D(P ′), which means P ′∗χ± = ±iχ±. Actually a closer scrutiny



46 2 Hilbert Spaces and Classes of Operators

(exercise!) shows that n± = 1. In any case, Proposition 2.47 tells P ′ is not
essentially selfadjoint because n± > 0. It is possible to find various selfadjoint
extensions of P ′ (the only ones admitted, by Theorem 2.48) as we proceed to
illustrate. For α ∈ R, extend P ′ to

P ′
αf := −i

df

dx
for f ∈ D(P ′

α) := {f ∈ C2([0, 1]) | f (1) = eiαf (0)}
(2.32)

and observe that D(P ′
α) = D(P ′

α′) if α′ = α + 2kπ , k ∈ Z, so that we can
restrict α to [0, 2π). By direct inspection, it is also evident that P ′

α ⊂ P ′
α

∗,
i.e., P ′

α is symmetric: boundary terms cancel out in the inner product and
〈f |P ′

αg〉 = 〈P ′
αf |g〉 if f, g ∈ D(P ′

α). Actually P ′
α is essentially selfadjoint

because it admits the Hilbert basis of eigenvectors

uα,n(x) := ei2π(α+n)x , n ∈ Z .

That is indeed a Hilbert basis because uα,n = Uαu0,n where (Uαψ)(x) :=
eiαxψ(x), ψ ∈ L2([0, 1], dx), defines a unitary operator, and u0,n(x) =
ei2πnx , n ∈ Z, is a well-known Hilbert basis of L2([0, 1], dx). Thus we
have found a family of selfadjoint extensions of P ′ labelled by α ∈ [0, 2π):
Pα := P ′

α = P ′
α

∗. If α, α′ ∈ [0, 2π) and α 
= α′, then Pα 
= Pα′
since the eigenvalues are different: α + 2nπ and and α′ + 2nπ (n ∈ Z)
respectively. These selfadjoint extensions were constructed just by specializing
the boundary conditions defining the domain of the original symmetric operator
P ′ according to (2.32). Using Theorem 2.48 and Remark 2.49 (a) it is easy to
prove that (exercise!) P ′ has no further selfadjoint extensions (i.e., other than
the Pα , α ∈ [0, π)) [ReSi80, Tes14, Mor18]. In contrast to what happens for
the momentum operator defined on the entire L2(R, dx), Pα does not leave
invariant its core D(P ′

α) (think of the core S (R), which is invariant under the
action of the momentum operator onL2(R, dx)). Given these domain issues, Pα

fails in particular the Heisenberg commutation relations relatively to the natural
definition of the selfadjoint position operator X,

(Xf )(x) = xf (x) for f ∈ D(X) :=
{

f ∈ L2([0, 1], dx)

∣
∣
∣
∣

∫ 1

0
|xf (x)|2dx < +∞

}

,

restricted to the common core D(P ′
α). In fact, this space is a core for X as

well but, again, it is not invariant under it: in general PαXf will not make
sense if f ∈ D(P ′

α), so [X,Pα] cannot be computed on D(Pα), in contrast to
the position and momentum operators on R and referring to the common core
S (R). �
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