
Chapter 1
General Phenomenology of the Quantum
World and Elementary Formalism

We quickly review in this chapter the most relevant common features of quantum
systems. Readers interested in a concise introduction to the physics of Quantum
Mechanics (QM) will profit from [SaTu94]: putting aside the mathematical rigour,
it discusses Dirac’s formulation of QM from a modern and smart perspective. Here
the intention is to formalize in a simple way the ideas that will be developed in full
in the subsequent chapters, after introducing the appropriate tools.

1.1 The Physics of Quantum Systems

This first section focuses on phenomenological aspects of quantum systems: in
particular, when a physical system can be said to have a quantum nature and what
are the basic features of this quantum nature.

1.1.1 When Is a Physical System a Quantum System?

QuantumMechanics can be roughly defined as the physics of the microscopic world
(elementary particles, atoms, molecules). This realm is characterized by a universal
constant known as Planck’s constant h. An associated constant—nowadays of
more frequent use—is the reduced Planck constant

h̄ := h

2π
= 1.054571726× 10−34 J s .

The physical dimensions of h (or h̄) are those of an action, i.e. energy ×
time. A simple but effective check on the appropriateness of a quantum physical
description of the physical system under consideration consists in comparing the
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2 1 General Phenomenology of the Quantum World and Elementary Formalism

value of a characteristic action of the system with h̄. Let us consider two examples.
First take a macroscopic pendulum (of length, say, ∼1m, mass ∼1 kg, maximum
speed ∼1ms−1). By multiplying the maximum kinetic energy by the period of the
oscillations we find a typical action of roughly 2 J s >> h. In this situation, quantum
physics is definitely inappropriate, an expectation that is matched by our day-to-day
experience. If instead we look at a hydrogen atom, the first ionization energy of the
electron orbiting its proton multiplied the orbital period of rotation gives (using the
classical formula with radius of order of 1Å) a typical action comparable to h. Here
Quantum Mechanics is necessary.

1.1.2 Basic Properties of Quantum Systems

A triple of features specific to Quantum Mechanics (QM), which seem to be
very different from properties of Classical Mechanics (CM), is listed below. These
remarkable general properties concern the physical quantities of physical systems.
In QM physical quantities are called observables.

(1) Randomness. If we measure an observable of a quantum system, the outcomes
appear to be stochastic: when measuring the same observable A on completely
identical systems prepared in the same physical state, one generally finds
different outcomes a, a′, a′′ . . ..

If we refer to the standard interpretation of the formalism of QM (see [SEP]
for a nice up-to-date account on the various interpretations), this randomness
of measurement outcome should not be ascribed to an incomplete knowledge
of the state of the system, as happens, for instance, in Classical Statistical
Mechanics. Randomness, rather than epistemic, is ontological, and as such it
is a fundamental property of quantum systems.

On the other hand, QM allows to compute the probability distribution of all
the outcomes of a given observable, once the state of the system is known.

Moreover, it is always possible to prepare a state ψa in which a certain
observable A is defined and where it takes the value a. That is, repeated
measurements of A give rise to the same value a with probability 1. (Note that
we can perform simultaneous measurements on identical systems all prepared
in state ψa , or we can perform different subsequent measurements on the
same system in state ψa . In the latter case these measurements have to be
performed in rapid succession to prevent the system’s state from evolving under
Schrödinger evolution, see (3) below.) States where observables take definite
values cannot be prepared for all observables simultaneously, as discussed
in (2).

(2) Compatible and Incompatible Observables. The second standout feature of
QM is the existence of incompatible observables. In contrast to CM, there are
physical quantities which cannot be measured simultaneously since there is no
physical instrument capable of such a task. If an observable A is defined in a
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given state ψ—i.e. it attains a precise value a with probability 1 if measured—
an observable B incompatible with A turns out to be not defined in the state
ψ: it may attain several different values b, b′, b′′ . . ., none with probability 1,
in case of measurement. So, if we measure B we generally obtain a spectrum
of values described by a distribution of frequencies, as mentioned in (1), by
identifying the frequencies with corresponding a priori probabilities.
Incompatibility is symmetric: A is incompatible with B if and only if B is
incompatible with A, though it is not transitive.
Compatible observables do exist and, by definition, they can be measured
simultaneously. The component x of the position of a particle and the com-
ponent y of its momentum are an example, if we refer to the rest space of a
given inertial reference frame.
A popular instance of incompatible observables are pairs of canonically
conjugate observables, like the position X and the momentum P of a particle
along the same fixed axis of a reference frame. There is a lower bound for the
product of the standard deviations—resp. �Xψ , �Pψ—for the outcomes of
the measurements of these observables in a given state ψ . These measurements
have to be performed on different identical systems all prepared in the same
state ψ . The lower bound is independent of the state, and is encoded in the
celebrated formula (a theorem in modern formulations)

�Xψ�Pψ ≥ h̄/2 , (1.1)

which contains the Planck constant.
(3) Collapse of the State. Measurements of QM usually change the state of the

system and give rise to a post-measurement state other that the state in which the
measurement is performed. (We are considering rather idealized measurement
procedures, which tend to be very often destructive.) Assuming ψ is the initial
state, immediately after the measurement of an observable A that returns value
a among a plethora of possible values a, a′, a′′, . . ., the state settles in state ψ ′,
in general different form ψ . Relative to ψ ′, the probabilities of the outcomes of
A change to 1 for value a and 0 for all other values. In this sense A becomes
defined in state ψ ′.
If we measure a pair of incompatible observables A, B in alternation and
repeatedly, the outcomes will interfere with each other: if the first outcome of
A is a, after a measurement of B a subsequent measurement of A gives a′ �= a

in general. Instead, if A and B are compatible, the outcomes of subsequent
measurements do not disturb one other.
Beside that, in CM there are measurements that, in practice, perturb and are
perturbed by the state of the system. It is however theoretically possible to tweak
this interference so to render it negligible. In QM this is not always possible, as
manifested by (1.1).
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Two types of time evolution of the state of a system exist in QM. One is due to
the dynamics and is encoded in the famous Schrödinger equationwe shall encounter
in a short while. It is nothing but a quantum version of the classical Hamiltonian
evolution [Erc15]. The other type is the sudden change of the state caused by the
measuring procedure of an observable, which we outlined in (3): the collapse of the
state (or of the wavefunction) of the system.

The physical nature of the second type of evolution remains, nowadays still,
a source of animated debate in the community of physicists and philosophers of
science. Several attempts have been made to reduce state collapse to a dynamical
evolution of the whole physical system, including the measuring instruments and
the environment by means of de-coherence processes [SEP, BGJ00]. None of these
approaches seem to be completely satisfactory, however, at least until now [Lan17].

1.2 Elementary Quantum Formalism: The
Finite-Dimensional Case

Remark 1.1 Unless said otherwise, we shall adopt a unit system where h̄ = 1
throughout the book. �

We include here a number of technical details to complete the picture. We intend
to show how (1)–(3) should be interpretedmathematically in practice (we shall swap
(2) and (3) for convenience). A good part of the chapter is meant to justify and
expand these ideas, and place them in a sound mathematical background.

In order to simplify, with the exception of Sect. 1.3 we shall indicate by H a
finite-dimensional complex vector space endowed with a Hermitian scalar product
〈·|·〉. The linear entry is the second one. Given H, B(H) is the complex algebra of
operators A : H → H. We remind that if A ∈ B(H), H finite-dimensional, the
adjoint operator A∗ ∈ B(H) is the unique linear operator satisfying

〈A∗x|y〉 = 〈x|Ay〉 for allx, y ∈ H. (1.2)

A is called selfadjoint when A = A∗. As a consequence,

〈Ax|y〉 = 〈x|Ay〉 for all x, y ∈ H. (1.3)

As 〈·|·〉 is linear in the second argument and anti-linear in the first, evidently all
eigenvalues of a selfadjoint operator A must be real.

The mathematical axioms describing quantum systems are:

1. a quantummechanical system S is associated with a (finite-dimensional, for now)
complex vector space H endowed with a Hermitian scalar product 〈·|·〉;

2. observables are described by selfadjoint operators A on H;
3. states are equivalence classes of unit vectors ψ ∈ H, with ψ ∼ ψ ′ iff ψ = eiaψ ′

for some a ∈ R.
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Remark 1.2

(a) States are therefore in one-to-one correspondence to elements of the complex
projective space PH. The states we consider in this introduction are actually
called pure states. A more general notion will be introduced later.

(b) H is a very simple instance of a complex Hilbert space: it is automatically
complete in view of its finite-dimensionality.

(c) Since dim(H) < +∞, every selfadjoint operator A ∈ B(H) admits a spectral
decomposition

A =
∑

a∈σ(A)

aP (A)
a , (1.4)

where σ(A) is the finite set of eigenvalues, which must be real as A is
selfadjoint, and P

(A)
a is the orthogonal projector onto the a-eigenspace. Note

that PaPa′ = 0 if a �= a′, for eigenvectors with different eigenvalues are
orthogonal. �
Let us see how assumptions 1–3 allow to phrase the physical properties of

quantum systems (1)–(3) in mathematically solid form.

(1) Randomness The eigenvalues of an observable A are interpreted physically as
the possible values of the outcomes of a measurement of A.

Given a state, represented by the unit vector ψ ∈ H, the probability to obtain
a ∈ σ(A) for A is

μ
(A)
ψ (a) := ||P (A)

a ψ||2 .

Going along with this interpretation, the expectation value of A in state ψ is

〈A〉ψ :=
∑

a∈σ(A)

aμ
(A)
ψ (a) = 〈ψ|Aψ〉 .

Hence

〈A〉ψ = 〈ψ|Aψ〉 . (1.5)

Similarly, the standard deviation �Aψ turns out to be

�A2
ψ :=

∑

a∈σ(A)

(a − 〈A〉ψ)2μ
(A)
ψ (a) = 〈ψ|A2ψ〉 − 〈ψ|Aψ〉2 . (1.6)
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Remark 1.3

(a) We emphasize that the phase of a unit vector ψ ∈ H (eiaψ and ψ represent the
same quantum state for every a ∈ R) is actually harmless.

(b) If A is an observable and f : R → R is a given map, f (A) is interpreted as an
observable whose values are f (a) if a ∈ σ(a): taking (1.4) into account,

f (A) :=
∑

a∈σ(A)

f (a)P (A)
a . (1.7)

For polynomials f (x) = ∑n
k=0 akx

k , we have f (A) = ∑n
k=0 akA

k, as
expected. The selfadjoint operator A2 can be interpreted in this way, as the
natural observable whose values are a2 when a ∈ σ(A). Then the last term in
(1.6) reads, by taking (1.5) into account,

�A2
ψ = 〈A2〉ψ −〈A〉2ψ = 〈(A−〈A〉ψI)2〉ψ = 〈ψ|(A−〈A〉ψI)2ψ〉 . (1.8)

�
(3) Collapse of the State Let a be the outcome of the (idealized) measurement of
A when the state is represented by ψ . The post-measurement state is given by the
unit vector

ψ ′ := P
(A)
a ψ

||P (A)
a ψ||

. (1.9)

Remark 1.4 The above formula is meaningless if μ
(A)
ψ (a) = 0, as it should. Yet, the

choice of phase in ψ does not cause trouble due to the linearity of P
(A)
a .

(2) Compatible and Incompatible Observables Two observables A and B are
compatible—i.e. they can bemeasured simultaneously—if and only if the associated
operators commute:

AB − BA = 0 .

SinceH has finite dimension,A andB are compatible if and only if the associated
spectral projectors commute as well (the proof is elementary):

P (A)
a P

(B)
b = P

(B)
b P (A)

a a ∈ σ(A) , b ∈ σ(B) .

In particular,

||P (A)
a P

(B)
b ψ||2 = ||P (B)

b P (A)
a ψ||2
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has the natural interpretation of the probability to obtain outcomes a and b for a
simultaneous measurement of A and B. If, conversely,A and B are incompatible, it
may happen that

||P (A)
a P

(B)
b ψ||2 �= ||P (B)

b P (A)
a ψ||2 .

Furthermore, by exploiting (1.9) one can understand

||P (A)
a P

(B)
b ψ||2 =

∣∣∣∣∣

∣∣∣∣∣P
(A)
a

P
(B)
b ψ

||P (B)
b ψ||

∣∣∣∣∣

∣∣∣∣∣

2

||P (B)
b ψ||2 (1.10)

as the probability of obtaining first b and then a in successive measurements of B

and A. �
Remark 1.5

(a) In general the role of A and B in (1.10) cannot be swapped, because
P

(A)
a P

(B)
b �= P

(B)
b P

(A)
a when A and B are incompatible. The measurement

procedures “interfere with each other”, as we saw earlier.
(b) The interpretation of (1.10) as probability of successive measurements is

consistent also if A and B are compatible. In that case the probability of
obtaining first b and then a in successive measurements of B and A is identical
to the probability of measuring a and b simultaneously. In turn, it coincides with
the probability of obtaining first a and then b in successive measurements of A

and B.
(c) A is always compatible with itself. Moreover P

(A)
a P

(A)
a = P

(A)
a , by definition

of projector. This fact has the immediate consequence that if we obtain a

measuring A so that the state immediately after the measurement is represented
by ψa = ||P (A)

a ψ||−1ψ , it will remain ψa even after other measurements of A,
and the outcome will always be a. Versions of this phenomenon, especially
in relationship to the decay of unstable particles, have been experimentally
confirmed and go under the name of quantum Zeno effect. �

Example 1.6 An electron admits a triple of internal observables Sx , Sy , Sz known
as the three components of the spin. Very roughly speaking, we can think of the spin
as the angular momentum of the particle in a moving frame always at rest with the
centre of the particle and keeping its axes parallel to the ones of the reference frame
of the laboratory where the electron moves. In view of its peculiar properties the spin
cannot actually have a complete classical analogue, and this naive interpretation is
eventually untenable. For instance, one cannot “stop” the spin of a particle or change
the constant value of S2 = S2

x + S2
y + S2

z : this quantity is a characteristic property
of the particle like the mass. The electron’s spin is described by an internal Hilbert
space Hs , which has dimension 2 so it can be identified with C

2. Up to a constant
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factor involving h̄ (depending on conventions), the spin observables

Sx = h̄

2
σx , Sy = h̄

2
σy , Sz = h̄

2
σz . (1.11)

correspond to the well-known Pauli matrices

σx =
[
0 1
1 0

]
, σy =

[
0 −i

i 0

]
, σz =

[
1 0
0 −1

]
. (1.12)

Observe that [Sa, Sb] �= 0 if a �= b, implying that the spin’s components are
incompatible observables. In fact, one has

[Sx, Sy ] = ih̄Sz

and the similar identities obtained by permuting cyclically the indices. These
commutation relations are the same as for the observables Lx ,Ly ,Lz describing the
angular momentum in the lab frame, which do possess classical analogues (we shall
return to these in Example 7.44). In contrast to CM, the observables describing the
angular momenta are incompatible and cannot be measured simultaneously. The
failure of compatibility is related to the appearance of h̄ in the right-hand side of

[Lx,Ly ] = ih̄Lz .

That number is extremely small when compared with macroscopic scales. This is
the ultimate reason why the incompatibility of Lx and Lz is practically undetectable
in macroscopic systems.

Direct inspection proves that σ(Sa) = {±h̄/2}, and similarly σ(La) = {nh̄ |
n ∈ Z}. Therefore the components of the angular momentum take discrete
values in QM, another difference with CM. Though since the gap between the
two nearest values is extremely small if compared to typical angular momenta of
macroscopic systems, in practice this discreteness becomes imperceptible and thus
disappears. �

1.2.1 Time Evolution

At this point a few words on time evolution are in order, while we reserve a broader
discussion for later.

Among the class of observables of a quantum system described in a given
inertial reference frame, the (quantum) Hamiltonian H plays a fundamental role.
We are assuming that the system interacts with a stationary physical environment
and everything refers to the rest space of an inertial system. The one-parameter
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group of unitary operators associated with H (see (1.7) for notation)

Ut := e−itH :=
∑

h∈σ(H)

e−ithP
(H)
h , t ∈ R (1.13)

describes the time evolution of quantum states, as follows. Let the state at time t = 0
be represented by the unit vector ψ ∈ H, so at time t the state is represented by

ψt = Utψ .

(The vector ψt has norm 1 since Ut is unitary and thus preserves norms.) Taking
(1.13) into account, this identity is equivalent to

i
dψt

dt
= Hψt . (1.14)

Equation (1.14) is nothing but a form of the celebrated Schrödinger equation. If the
environment is not stationary, a more complicated description can be given where
H is replaced by a family of (selfadjoint) Hamiltonian operators H(t) parametrised
by time t ∈ R. Time dependence accounts for the evolution in time of the external
system interacting with our quantum system. In that case, it is simply assumed that
the time evolution of states is again provided by the equation above where H is
replaced by H(t):

i
dψt

dt
= H(t)ψt . (1.15)

This equation permits one to define a two-parameter groupoid of unitary operators
U(t2, t1), where t2, t1 ∈ R, such that

ψt2 = U(t2, t1)ψt1 , t2, t1 ∈ R .

The groupoid structure arises from the following identities: U(t, t) = I ,
U(t3, t2)U(t2, t1) = U(t3, t2) and U(t2, t1)

−1 = U(t2, t1)
∗ = U(t1, t2).

In our elementary setup, where H is finite-dimensional,Dyson’s formula holds

U(t2, t1) =
+∞∑

n=0

(−i)n

n!
∫ t2

t1

· · ·
∫ t2

t1

T [H(τ1) · · ·H(τn)] dτ1 · · · dτn

with the simple hypothesis that the map R � t 
→ Ht ∈ B(H) is continuous (adopt-
ing any topology compatible with the vector-space structure of B(H)) [Mor18]. In
the above formula we set T [H(τ1) · · ·H(τn)] = H(τπ(1)) · · ·H(τπ(n)), where the
bijective function π : {1, . . . , n} → {1, . . . , n} is a permutation with τπ(1) ≥ · · · ≥
τπ(n).
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1.3 A First Look at the Infinite-Dimensional Case, CCRs
and Quantization Procedures

All the formalism introduced, excluding certain technicalities we shall examine at a
later stage, holds also for quantum systems whose complex vector space of states H
is infinite-dimensional.

To extend the ideas of Sect. 1.2 to the setup where finite-dimensionality is
relaxed, it only seems natural to assume that H is complete for the norm 〈·|·〉.
Hence H becomes a complex Hilbert space. In particular, completeness ensures the
existence of spectral decompositions generalizing (1.4), when referring to compact
selfadjoint operators.

Notation 1.7 Henceforth S (Rn) will denote the vector space of C∞ complex-
valued functions on R

n which, together with derivatives of all orders in any set
of coordinates, decay faster than negative powers of |x| as |x| → +∞.

From now on C∞
c (Rn) will indicate the vector space of C∞ complex-valued

maps on R
n with compact support. Finally, dnx will denote the Lebesgue measure

on Rn. �

1.3.1 The L2(R, dx)Model

The simplest example of a quantum system described in an infinite-dimensional
Hilbert space is a quantum particle confined to the real line R. In this case, the
Hilbert space is H := L2(R, dx), dx denoting the standard Lebesgue measure on
R. States are still represented by elements of PH, namely equivalence classes [ψ]
of measurable functions ψ : R → C with unit norm, ||[ψ]|| = ∫

R
|ψ(x)|2dx = 1.

Remark 1.8 Note how we have two distinct quotients: ψ and ψ ′ define the same
element [ψ] in L2(R, dx) iff ψ(x) − ψ ′(x) �= 0 on a set of zero Lebesgue measure.
Two unit vectors [ψ] and [φ] define the same state if [ψ] = eia[φ] for some
a ∈ R. �
Notation 1.9 In the sequel we shall adopt the standard convention of many
functional analysis textbooks and denote by ψ , instead of [ψ], the elements of
spaces L2. Tacitly we shall identify functions that differ at most on zero-measure
sets. �

The functions ψ defining states (up to zero-measure sets and phases) are called
wavefunctions. There is a pair of fundamental observables describing our quantum
particle moving in R. One is the position observable. The corresponding selfadjoint
operator X is the position operator defined by

(Xψ)(x) := xψ(x) , x ∈ R , ψ ∈ L2(R, dx) .
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The other observable is the momentum P . Restoring h̄ for the occasion, the
momentum operator is

(Pψ)(x) := −ih̄
dψ(x)

dx
, x ∈ R , ψ ∈ L2(R, dx) .

We are immediately confronted by a number of mathematical issues with these,
actually quite naive, definitions. Let us begin with X. First of all, in general Xψ �∈
L2(R, dx) even if ψ ∈ L2(R, dx). To fix the problem, one could simply restrict the
domain of X to the linear subspace

D(X) :=
{
ψ ∈ L2(R, dx)

∣∣∣∣
∫

R

|xψ(x)|2dx < +∞
}

. (1.16)

Even if

〈Xψ|φ〉 = 〈ψ|Xφ〉 for all ψ,φ ∈ D(X), (1.17)

holds, we cannot argue that X is properly selfadjoint because we have not yet given
the definition of adjoint to an operator defined on a non-maximal domain in an
infinite-dimensional Hilbert space. Identity (1.2) in an infinite-dimensional Hilbert
space does not define a (unique) operatorX∗ without further technical requirements.
(Readers need not hold their breath, for X is truly selfadjoint on some domain
(1.16) according to a general definition, see the next chapter.) From a very practical
viewpoint however, (1.17) implies that all the eigenvalues of X, if any, must be
real, which seems sufficient to adopt the standard interpretation of eigenvalues as
outcomes of measurements of the observable X. Unfortunately life is not as easy:
for every fixed x0 ∈ R there is no ψ ∈ L2(R, dx) with Xψ = x0ψ and ψ �= 0.
(A function ψ satisfying Xψ = x0ψ must also satisfy ψ(x) = 0 if x �= x0, due
to the definition of X. Hence ψ = 0 in L2(R, dx), simply because {x0} has zero
Lebesgue measure!)

All this seems to prevent the existence of a spectral decomposition of X like
(1.4), since X does not admit eigenvectors in L2(R, dx) (and a fortiori in D(X)).

The definition of P appears to suffer from even worse problems. Its domain
cannot be the whole L2(R, dx) but should be a subset of differentiable functions
with derivative in L2(R, dx). The weakest notion of differentiability we can assume
is weak differentiability, leading to this candidate for domain

D(P) :=
{

ψ ∈ L2(R, dx)

∣∣∣∣∣ ∃ w-
dψ(x)

dx
,

∫

R

∣∣∣∣w-
dψ(x)

dx

∣∣∣∣
2

dx < +∞
}

.

(1.18)
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Above w- dψ(x)
dx

denotes the weak derivative of ψ .1 As a matter of fact D(P)

coincides with the Sobolev space H 1(R).
Again, without a precise definition of adjoint on an infinite-dimensional Hilbert

space (with non-maximal domain) we cannot say anything more precise about the
selfadjointness of P with that domain. (As before P will turn out to be selfadjoint
under the general definition we shall give in the next chapter.)

Passing to the Fourier-Plancherel transform, one finds (some work is needed)

〈Pψ|φ〉 = 〈ψ|Pφ〉 for all ψ,φ ∈ D(P), (1.19)

so that eigenvalues are real provided they exist. Exactly as we saw for X, neither P

admits eigenvectors. The naive eigenvectors with eigenvalue p ∈ R are functions
proportional to the map R � x 
→ eipx/h̄, which does not belong to L2(R, dx) nor
D(P). We will tackle these issues in the next chapter in a very general fashion.

Remark 1.10

(a) The space of Schwartz functionsS (R) satisfies

S (R) ⊂ D(X) ∩ D(P),

and furthermore S (R) is dense in L2(R, dx) and invariant under X and P :
X(S (R)) ⊂ S (R) and P(S (R)) ⊂ S (R). This observation has many
technical consequences that will resurface elsewhere.

(b) Although we shall not pursue the following, we stress that X admits a set of
eigenvectors if we enlarge the domain of X to the space S ′(R) of Schwartz
distributions in a standard way, taking (a) into account. If T ∈ S ′(R),

〈X(T ), f 〉 := 〈T ,X(f )〉 for every f ∈ S (R).

Thus the eigenvectors in S ′(R) of X with eigenvalue x0 ∈ R are the
distributions cδ(x − x0). This class of eigenvectors can be exploited to build
a spectral decomposition of X similar to (1.4).

Using the same procedure P admits eigenvectors in S ′(R), which are just
the above exponential functions. As before, these eigenvectors allow to construct
a spectral decomposition of P akin to (1.4). This procedure’s core idea can be
traced back to Dirac [Dir30], and in fact some 10years later Schwartz established
the theory of distributions. The modern construction of spectral decompositions
of selfadjoint operators was developed by Gelfand using rigged Hilbert spaces
[GeVi64]. �

1f : R → C, defined up to zero-measure sets, is the weak derivative of g ∈ L2(R, dx) if∫
R

g dh
dx

dx = − ∫
R

f hdx for every h ∈ C∞
c (R). If g is differentiable, its standard derivative

coincides with the weak one.
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1.3.2 The L2(Rn, dnx)Model and Heisenberg’s Inequalities

Consider a quantum particle moving in R
n with Hilbert space L2(Rn, dnx).

Introduce observablesXk and Pk representing position and momentumwith respect
to the k-th axis, k = 1, 2, . . . , n. These operators, which are defined in analogy
to the case n = 1, have smaller domains than the full Hilbert space. We shall do
not recall the domains’ expressions (on which the operators turn out to be properly
selfadjoint, see the definition in the next chapter). Let us just mention that all admit
S (Rn) as a common invariant subspace of their domains. On it

(Xkψ)(x) = xkψ(x) , (Pkψ)(x) = −ih̄
∂ψ(x)

∂xk
, ψ ∈ S (Rn) (1.20)

and so

〈Xkψ|φ〉 = 〈ψ|Xkφ〉 , 〈Pkψ|φ〉 = 〈ψ|Pkφ〉 for all ψ,φ ∈ S (Rn), (1.21)

By direct inspection one easily proves that the canonical commutation relations
(CCRs)

[Xh,Pk] = ih̄δhkI , [Xh,Xk] = 0 , [Ph, Pk] = 0 (1.22)

hold provided the operators are restricted to S (Rn). If A and B have different
domains, the commutator [A,B] := AB − BA is intended defined where both AB

and BA make sense, S (Rn) in the case of concern. Assuming that (1.5) and (1.8)
are still valid for Xk and Pk and ψ ∈ S (Rn), (1.22) easily leads to the Heisenberg
uncertainty relations,

�Xkψ�Pkψ ≥ h̄

2
, for ψ ∈ S (Rn) , ||ψ|| = 1 , k = 1, 2, . . . , n . (1.23)

Exercise 1.11

(1) Derive inequality (1.23) from (1.22), using (1.5) and (1.8).

Solution Using (1.5), (1.8) and the Cauchy-Schwarz inequality, it is easy to show
(we omit the index k for simplicity)

�Xψ�Pψ = ||X′ψ||||P ′ψ|| ≥ |〈X′ψ|P ′ψ〉|

where X′ := X − 〈X〉ψI and P ′ := X − 〈X〉ψI . Next notice that

|〈X′ψ|P ′ψ〉| ≥ |Im〈X′ψ|P ′ψ〉| = 1

2
|〈X′ψ|P ′ψ〉 − 〈P ′ψ|X′ψ〉|.
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Taking advantage of (1.21) and the definitions of X′ and P ′, and exploiting (1.22),
we obtain

|〈X′ψ |P ′ψ〉−〈P ′ψ |X′ψ〉| = |〈ψ |(X′P ′−P ′X′)ψ〉| = |〈ψ |(XP−PX)ψ〉| = h̄|〈ψ |ψ〉|

Since 〈ψ|ψ〉 = ||ψ||2 = 1 by hypotheses, (1.23) is proved. Obviously we still have
to justify the validity of (1.5) and (1.8) in the infinite-dimensional case. �

(2) Prove that there exist no operators Xh,Pk , h, k = 1, 2, . . . , n, on a finite-
dimensional Hilbert space H �= {0} satisfying (1.22).

Solution Supposing such operators exist, we would have

iδhk dim(H) = tr([Xh,Pk]) = tr(XhPk)−tr(PkXh) = tr(PkXh)−tr(PkXh) = 0,

and this is not possible for h = k since dim(H) > 0. �

1.3.3 Failure of Dirac’s Quantization and Deformation
Quantization Procedure

A philosophically remarkable consequence of the CCRs (1.22) is that they resemble
the classical canonical commutation relations of the Hamiltonian variables qh, pk

for the standard Poisson bracket {·, ·}P ,

{qh, pk}P = δh
k , {qh, qk}P = 0 , {ph, pk}P = 0 . (1.24)

as soon as one identifies (ih̄)−1[·, ·] with {·, ·}P . This fact, initially noticed by Dirac
[Dir30], leads to the idea of “quantization” of a classical Hamiltonian theory [Erc15,
Lan17].

In modern language Dirac’s procedure goes like this. Start from a classical
system described on a symplectic manifold (
, ω), for instance 
 := R

2n and ω

the canonical symplectic form. The (real) Lie algebra g := (C∞(
,R), {·, ·}P )

with Lie bracket {f, g}P := ω(df, dg) gives a Poisson structure. To “quantize”
the system, one seeks a “quantization map” Q associating classical observables
f ∈ C∞(
,R) (or in a Lie subalgebra, e.g. a polynomial algebra if 
 = R

2n)
to quantum observables Q(f ), i.e. selfadjoint operators restricted2 to a common
invariant domainS in some Hilbert space H. The map Q : f 
→ Q(f ) is expected

2The restriction should be defined so that it admits a unique selfadjoint extension. A sufficient
requirement on S is that every Q(f ) is essentially selfadjoint on it, see the next chapter.
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to satisfy certain conditions, including

1. injectivity;
2. R-linearity;
3. Q(1) = I |S (1 being the constant map 1 on 
);
4. [Q(f ),Q(g)] = ih̄Q({f, g}P )

5. if (
, ω) is the standard R
2n, then Q(xk) = Xk|S and Q(pk) = Pk|S , k =

1, 2, . . . , n;
6. the image of Q is irreducible (the only operators commuting with all elements of

Q(g) are multiples of I ).

Requirements 1, 2 and 4 say that the map Q : f 
→ Q(f ) is an injective Lie-
algebra homomorphism transforming g in a real Lie algebra of operators with Lie
bracket proportional to i[Q(f ),Q(g)]. This apparently natural set of requirements
turns out to be mathematically contradictory in view of the various versions of the
Groenewold-van Hove theorem. See [GGT96] for a reasoned survey on the subject.
Alas the problem persists if we only take a subset of the conditions, and replace
C∞(
,R) with a smaller subalgebra, for instance polynomials onR2n. In summary,
no quantization map exists if we insist it agree strictly with Dirac’s original take.
The problem can be overcome within the paradigm of Deformation Quantization,
where requirement 4 is relaxed and one allows for additional higher powers of h̄

in the right-hand side. Everything relies upon an associative but non-commutative
quantum product ∗h̄ : C∞(
,R) × C∞(
,R) → C∞(
,R) encoding all quantum
properties already onC∞(
,R). Furthermore, the commutator associated with ∗h̄ is
supposed to coincide with the commutator of operators under the quantization map.
The latter does not add further quantum properties to the game, since everything is
already included in ∗h̄; it just identifies elements of the quantum (non-commutative)
structure (C∞(
,R), ∗h̄) with operators in a suitable (and in a sense unnecessary)
Hilbert space:

[Q(f ),Q(g)] = Q(f ∗h̄ g − g ∗h̄ f ) .

Assuming that ∗h̄ can be expanded in powers of h̄, the first-order approximation of
the ∗h̄-commutator is requested to equal { , }P , hence replacing requirement 4 above
with:

[Q(f ),Q(g)] = Q(f ∗h̄ g−g∗h̄f ) = Q(ih̄{f, g}P +O(h̄2)) = ih̄Q({f, g}P )+O(h̄2).

This modification proves to be feasible and fruitful. There are other remarkable
procedures of “quantization” in the literature, but we shall not insist on them [Erc15,
Lan17].
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Example 1.12 Consider a spinless particle in 3D with mass m > 0, whose potential
energy is a real function U ∈ C∞(R3) with polynomial growth and bounded below.
Classically, its Hamiltonian function reads

h :=
3∑

k=1

p2
k

2m
+ U(x) .

A brute-force quantization procedure in L2(R3, d3x) would consist in replacing
every classical object with operators. This may just about make sense when there
are no ordering ambiguities when translating functions like p2x, since classically
p2x = pxp = xp2. But the new identities would be false at the quantum level. In
our case these problems do not arise, so

H :=
3∑

k=1

P 2
k

2m
+ U , (1.25)

where (Uψ)(x) := U(x)ψ(x), could be accepted as a first quantum model of the
Hamiltonian function of our system. The operator is at least defined on S (R3),
where 〈Hψ|φ〉 = 〈ψ|Hφ〉. The existence of selfadjoint extensions is a delicate
issue (see [Mor18] and especially [Tes14]) that we shall not address. Taking (1.20)
into account, one immediately finds that onS (R3)

H := − h̄2

2m
� + U ,

where � is the standard Laplace operator on Rn (n = 3 at present)

� =
n∑

k=1

∂2

∂x2
k

. (1.26)

If we assume that the equation describing the evolution of the quantum system is
still3 (1.14), we find the known form of Schrödinger’s equation,

ih̄
dψt

dt
= − h̄2

2m
�ψt + Uψt ,

for ψτ ∈ S (R3) and τ varying in a neighbourhood of t (this requirement may be
relaxed). To be very accurate, the meaning of the derivative on the left should be
specified. We shall only say that it is computed with respect to the natural topology
of L2(R3, d3x). �

3The factor h̄ has to be added in the left-hand side of (1.14) if our unit system has h̄ �= 1.
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