
Chapter 18
Machine Learning at the Edge

Marian Verhelst and Boris Murmann

18.1 The Need for Machine Learning at the Edge

Over the last decade, electronic devices have started to ubiquitously populate our
environment. Billions of connected electronic devices such as drones, smart watches,
wearable health patches, smart speakers, together form the Internet-of-Things (IoT)
[1]. These devices are typically equipped with around a dozen of sensors, to continu-
ously observe the environment and act accordingly. Similarly, also in smartphones the
number of integrated sensors keeps rising, to feed the devices with more information
about the user and the environmental context [2].

These data collection devices, often denoted as “edge devices,” capture raw sen-
sory data streams for further processing. Recent developments resulted in algorithms
capable of extracting more accurate information from such sensory data than ever
before, through the usage of neural networks and other machine learning models
[3]. Yet, this comes at the expense of more computationally complex algorithms,
requiring many billions of computations per second, with gigabytes of storage needs
[4].

Increasing computational needs are, however, in strong conflict with the limited
resource budgets of edge devices: As typically powered by batteries, their energy
budget is highly constrained. Furthermore, size and cost constraints limit the amount
of affordable memory space and compute power. As a result, until recently, the
edge devices were mainly responsible for sensory data capture, with some light
preprocessing for data reduction. The compressed data could subsequently be sent to
a data center, where ample compute power and memory resources are available. The

M. Verhelst (B)
KU Leuven, Leuven, Belgium
e-mail: marian.verhelst@kuleuven.be

B. Murmann
Stanford University, Stanford, USA
e-mail: murmann@stanford.edu

© Springer Nature Switzerland AG 2020
B. Murmann and B. Hoefflinger (eds.), NANO-CHIPS 2030,
The Frontiers Collection, https://doi.org/10.1007/978-3-030-18338-7_18

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18338-7_18&domain=pdf
mailto:marian.verhelst@kuleuven.be
mailto:murmann@stanford.edu
https://doi.org/10.1007/978-3-030-18338-7_18

294 M. Verhelst and B. Murmann

Fig. 18.1 Deep learning chip revenue for edge and data center applications. Source Tractica [7]

recent rise of data center activity and investments in machine learning equipment
within the data centers is the consequence of this operating scheme [5, 6].

However, increasingly, users and applications shy away from such cloud-centric
deployment. The desire to keep sensory data of edge devices private, as well as
the energy and latency cost to send all data to the cloud, pushes for device-centric
solutions, in which data is kept and processed locally as much as possible [2]. This
requires edge devices to become intelligent devices that can autonomously process
and interpret data in real time. This emerging operational paradigm will cause a shift
in machine learning focus from the data center to the edge. As Tractica predicts (see
Fig. 18.1 [7]), edge-basedAI chipsets formobile phones, smart speakers, cars, drones,
AR/VR headsets, surveillance cameras and other devices will by 2025 account for
more than $50 billion in revenue, or 3.5× larger than in the data center.

To serve this emerging market, heterogeneous compute platforms are required.
Special purpose processors help the traditional CPU and GPU compute platforms
deployed in the edge towards resource-constrained ML processing of large vol-
umes of sensory data. The market of such machine learning accelerators, ASIPs or
ASICs, is hence expected to see the fastest growth (see Fig. 18.2 [7]), with currently
already more than 70 specialty AI companies working on some sort of chip-related
AI technology [8].

Up until now, this recent evolution has already resulted in a very broad landscape
of customized machine learning processors, covering a wide performance space.
Figure 18.3 depicts the performance of a range of state-of-the-art neural network
processors [9]. State-of-the-art solutions are capable of achieving processing effi-
ciencies of 1–100 TOPS/Watt, enabling processing at several TOPs/second within
the edge devices’ power budget. Yet, it is important to note that these different state-
of-the-art solutions rely on very different algorithmic, architectural and technology
assumptions, and cannot be fairly compared purely at the hardware level without
considering other system aspects.

In this chapter, we argue and demonstrate the importance of considering the
whole stack in a machine learning edge solution (see Fig. 18.4): From algorithm

18 Machine Learning at the Edge 295

Fig. 18.2 Deep learning chip revenue by type. Source Tractica [7]

Fig. 18.3 Neural network processor comparison, highlighting the power region <100 mW,
interesting for edge devices. Adapted from [9]

and dataflows (Sect. 18.2), over architectures (Sect. 18.3), to circuits and technology
options (Sect. 18.4). Only such a vertically integrated approach allows to fairly
benchmark different solutions relative to each other (Sect. 18.5) and perform true
system optimizations towards efficient deployment of edge intelligence (Sect. 18.6).
Throughout these sections, we will mostly focus on neural networks as the main
machine learning model. We conclude the chapter with an outlook towards recently
emerging trends, such as training at the edge, and newly emerging machine learning
models (Sect. 18.7).

296 M. Verhelst and B. Murmann

Fig. 18.4 Efficient edge solutions should not be optimized from a sole algorithmic perspective
(minimal MB/network), nor from a sole hardware perspective (maximal TOPS/Watt), yet should
jointly consider the complete design stack to come to efficient system level solutions

18.2 The Rich Algorithmic Landscape of ML at the Edge

Machine learning models are currently in high flux. In the field of deep neural net-
works, a wide range of model topologies is currently under exploration. Each model
is carefully built out of a sequence of neural network layers. The most generic neural
network topology element is a convolutional layer. Such a layer takes in a three-
dimensional data tensor and produces a three-dimensional output data tensor through
convolving the input tensor with a series of 3D weight kernels [10]. This is illus-
trated with the relevant data dimensions highlighted in Fig. 18.5. The convolutional
operation of one neural network layer can be captured in eight nested for-loops, with
a multiply-accumulate operation at the core (see Fig. 18.5). Since in edge devices
real time operation requires every input data item to be processed as soon as it comes

Fig. 18.5 For each item in a batch, each convolutional layer represents six nested for-loops per
inference

18 Machine Learning at the Edge 297

in, batching is not tolerated and a batch size of one is typically used, making B = 1.
As processing efficiency is of such crucial importance in edge devices, research
here is focused on algorithmic transformations that impact model size and execution
cost without affecting model accuracy. We briefly survey model compaction, model
quantization and model pruning techniques, and give an outlook to the future in this
area.

Model topology and model compaction: The index ranges of the aforementioned
for-loops are determined by the layer and network topology and (as we show later)
strongly influence the network’s execution efficiency in hardware.Network designers
hence use these dimensions in a quest to construct the most compact or efficient
models which can fit in small sized embedded memories. Such model compaction
research led for instance to the introduction of bottleneck layers [11]. Here, a three-
dimensional convolutional layer is replaced by a stack of three layers in which the
first and last layer only perform a one-dimensional convolution (FX = FY = 1) to
reduce the number of channels (see Fig. 18.6a). Experiments have proven that such
structures maintain good modeling capabilities while drastically reducing model
computations and coefficients in the three-dimensional convolution (middle layer),
thus lowering compute and memory needs. This technique is often combined with
the usage of parallel network layers, which are concatenated further in the network,
as in the Inception module in Fig. 18.6c [11].

Fig. 18.6 Evolution toward reduced-dimension neural network layers: (a) bottleneck layers and
(b) depth-wise/point-wise layers. These techniques are combined with parallel layers that are
subsequently fused, such as in (c) the inception and (d) Xception modules

298 M. Verhelst and B. Murmann

To further reduce the computational load of the remaining three-dimensional
convolution, the middle layer of this stack was subsequently replaced by a two-
dimensional convolution, which only convolves within one channel (removing the
for-loop across C, Fig. 18.6b). The resulting “depthwise-pointwise” technique [12]
was successfully used in the creation of MobileNet [13], a lightweight network to
perform object recognition on mobile phones. In a next generation, MobileNetV2,
this technique was further combined with feedforward connections across network
layers [14].

Recently, a new paradigm shift emerges: Network topologies are no longer opti-
mized by hand, but are the result of automated neural network search, also denoted
by AutoML. Here, reinforcement learning, evolutionary algorithms and/or random
sampling strategies are used to find more compact and better performing networks
[15–21]. The focus in this field of research is on finding the best performing networks
from an accuracy point of view, while minimizing the amount of GPU compute time
required for the network search. Very few works [22–24], however, take the neural
networks execution efficiency on edge devices into account in the cost function when
searching for the most optimal networks. This is discussed further in Sect. 18.6.

From previous discussion, it should be clear that a wide variety of convolutional
topologies exists for neural network layers, which are often combined, concatenated
and interconnected in many different and irregular ways.When developing hardware
architectures, we hence must ensure sufficient flexibility to support the mapping of
all these different topologies and dataflows (see also Sect. 18.6).

Beyond convolutional layers, other types of neural network and non-neural net-
work models must also be supported. Yet, interestingly enough, they can often be
rewritten in the form of the generic convolutional model in Fig. 18.5. For example,
the fully connected neural network layer [10], often found at the end of classification
networks, can be rewritten in the same form of the convolutional layer with X = Y
= FX= FY= 1, as indicated in Fig. 18.7. Likewise, other machine learning kernels,
such as the support vector machine (SVM) [25] and one-class SVMs (often used in

Fig. 18.7 For each item in a batch, each fully connected neural network layer represents two nested
loops. Similarly, each support vector machine evaluation represents two nested loops per inference

18 Machine Learning at the Edge 299

anomaly detection), demonstrate similar matrix-vector multiplication kernels, fitting
the same framework. This is good news, as it simplifies the development of a generic
hardware platform for such machine learning workloads (see Sect. 18.3). Yet, these
computational layers have fewer effective nested for-loops, which results in fewer
opportunities for efficient hardware mapping, as seen later in this chapter.

Model quantization: Researchers have found that neural network models carry
some redundancy, making them to a certain extent robust to perturbations. This
enables further model efficiency and storage reduction techniques that exploit spar-
sity and reduced precision operation. Regarding computational precision, limited-
precisionfixedpoint data representations for bothweights and activationswere shown
to be sufficient for nearly all inference tasks, drastically cuttingmodelmemoryweight
storage and MAC complexity [26–28]. Operation down to 8, 4 or even fewer bits
has been demonstrated for many machine learning benchmarks, with ternary (−1,
0, 1) and binary (−1, 1) neural networks as the extremes [29]. The best results are
achievedwhen using the dynamic fixed point format [30], and quantizing the network
during the training process [31, 32], instead of first training a floating point network
and quantizing it afterwards, or smartly unifying the dynamic range of all weights
during training [33, 34]. Active research tries to find efficient ways to determine the
minimum bit width representation necessary to achieve a target accuracy level for
a given task, which at the moment is still relying largely on inefficient exhaustive
searches. It is important to realize that this optimum is heavily interwoven with the
selected network topology and cannot be looked at in isolation [35].

Model pruning: Instead of just quantizing the weights of a network, one can
also remove some weights completely, which is called “pruning the network.” Many
pruning techniques exist, ranging from after-training techniques that just remove
smallest weights of a network [36–38], to during-training regularization techniques
that try to force as many coefficients as possible to become approximately zero [39].
This results in sparse neural network models, whose zero values can be exploited
to further reduce the model’s storage and computational footprint. Several model
compression formats have been proposed, such as the Compressed Sparse Column
(CSC) format, which encodes the sparse matrices and vectors into fewer words by
skipping zero-valued data [36]. The processor must of course be equipped with the
corresponding decoding logic to be able to interpret this data [40].

Interdependencies: It is important to realize that all aforementioned optimiza-
tions, such as model compaction, model quantization andmodel pruning are strongly
interwoven. It is observed that compact models tend to be less sparse, and less toler-
ant to quantization [35]. Finding the most efficient model hence requires balancing
all three techniques. As this results in an enormous algorithmic search space, cur-
rent research is strongly invested in exploring this space as efficiently as possible.
Breakthroughs have been achieved using automated machine learning (AutoML)
techniques exploiting Bayesian optimization, evolutionary algorithms and reinforce-
ment learning [15–21]. Yet, quantization and hardware inference cost has received
limited attention in this field.

Processor consequences and outlook: The optimization techniques adopted for
networks strongly influence the execution efficiency on the processor hardware. As

300 M. Verhelst and B. Murmann

an example, model compaction techniques typically result in models with smaller
(FX, FY) filter kernels or (X, Y) activation sizes, causing a drop in data reuse oppor-
tunity [41]. Similarly, pruning breaks the processing regularity that made traditional
deep learning processors so efficient. As a result, the smallest model is not neces-
sarily the most efficient one for execution at the edge [35]. This gives rise to new,
more hardware-aware algorithmic techniques, such as structured sparsity or dynamic
neural networks. To understand this better, let’s take a closer look at edge processing
architectures.

18.3 The Rich Architectural Landscape of ML at the Edge

From CPU to GPU to NPU: As neural networks are characterized by massively
parallel MAC operations, their processing requires widely parallel execution. On
traditional Von Neumann CPUs this is achieved by exploiting vector processing
instructions for parallel MAC execution [42] (Fig. 18.8). Recently, CPUs have been
equipped with additional fused (integer) multiply add (FMA) instructions, which
allow to also efficiently accumulate multiplication results. Yet, these processors lack
sufficient computational resources to achievemore than 100× parallelization factors,
limiting performance to a few hundred GOPs per processing core.

For this reason, GPUs have been extensively used as the main neural network
inference platform. They are equipped with many parallel execution units and can
achieve 1000× or more parallel MAC operations. Moreover, over the last few years,
GPUs have moreover a rapid evolution to serve neural network inference workloads
even better. First of all, recent implementations support small word length fixed-point
data types instead of only supporting floating point operations. Secondly, traditional
GPU architectures did not support efficient spatial and temporal reuse of data across
processing elements (see also below). The recent inclusion of tensor cores, which
spatially unroll the multiplication of two 4 × 4 matrices in one timestep, alleviates
this issue for certain layer topologies [43]. Still, flexibility and efficiency across
kernel sizes and models remains an issue, and (embedded) GPU power consumption
exceeds the power budget of many edge solutions.

Fig. 18.8 Traditional vector processing units can be used to achieve parallelization for neural
network processing. Yet, they are not fully exploiting the neural network data flow properties

18 Machine Learning at the Edge 301

Fig. 18.9 NPU architectural template, which is parametrized across many design dimensions,
ranging from the number of parallel MACs and their interconnectivity, to the levels of memory and
their sizes and interconnectivity

For this reason, more andmore specialized, custom processor cores are appearing,
optimized towards neural network inference in resource constrained devices [44].
These class of processors is often denoted as “NPU,” or Neural Processing Unit.
NPUs consist of a widely parallel datapath equipped with MACs with or without
local storage, togetherwith a hierarchy of several optimizedmemory layers, as shown
in Fig. 18.9. Several efficiency techniques are exploited across NPU designs, which
we shall discuss in more detail: (1) Spatial and temporal data reuse; (2) hierarchical
memories and local storage; (3) sparse or dense processing; (4) reduced precision
processing.

Spatial and temporal data reuse: A large fraction of NPU power consumption
is spent on data fetches. Good NPU designs therefore try to maximize not only the
number of parallel MACs that can be executed in every single clock cycle, but also
minimize the average number of data fetches per usefully executedMAC. This can be
achieved through spatial or temporal data reuse across different layers of granularity
(see Table 18.1). Spatial data reuse exploits the use of multi-dimensional data paths
to reuse fetched weights and/or activations across many parallel MAC operations
within a processing element (PE) array. Figure 18.10 shows the architecture of the
Envision processor [45], inwhich everyweight ismultipliedwith 16 input activations
in parallel, while every input activation is multiplied with 16 weights (of different
output channels) in parallel. Also, the number of data stores can be reduced spatially,

Table 18.1 Data reuse opportunities classified across granularity and their spatial/temporal nature

Intra-PE Inter-PE (Intra-PE array) Inter-PE array

Spatial reuse – Multi-dimensional datapaths
Accumulation trees

Broad-/multi-casting
networks

Temporal reuse Stationarity Systolic arrays Systolic/streaming processors

302 M. Verhelst and B. Murmann

Fig. 18.10 Envision processing architecture, exploiting spatial reuse of input activation data (red)
and weight data (blue). Chip photo on the right

by introducing summation trees that accumulate results across PEs before sending
them back to memory.

Besides purely reusing data spatially within a single clock cycle, data can also be
reused temporally, across clock cycles. Here, a distinction can be made between pro-
cessing architectures that reuse data across subsequent clock cycles within the same
processing element (stationary techniques), and architectures that reuse data across
subsequent clock cycles within neighboring processing elements or datapaths (sys-
tolic processing architectures). A very common stationarity approach is to keep the
MACoutput locally and accumulatewithin a PE in subsequent clock cycles. Envision
[45] is an example of such an “output-stationary” approach. Other implementations
keep the weights local within a PE across cycles (“weight stationary”), such as the
weight stationary TPU processor of Google [46], or the BinarEye processor [47].

Systolic architectures, on the other hand, exploit the fact that it is cheaper to
exchange data between neighboring processing elements, instead of sending them to
a larger remote memory. Also, systolic principles can be applied at different levels
of granularity: At the lowest level, neighboring PEs can pass partial accumulation
results and/or weights to each other, as for example done in the aforementioned TPU
processor [46] and the Eyeriss chip [48]. But, also across larger clusters, data can be
forwarded fromprocessor to processor, with only small streaming buffers in between,
avoiding data transfers in and out of large memories. This is done e.g. in [49]. These
processor architectures break with the traditional Von Neumann architecture and
tightly intertwine processing elements and memory blocks.

Hierarchical memories: To further reduce energy spent on memory fetches and
stores, the memory hierarchy is further optimized. Instead of using one large central
memory, data is stored as close as possible to the place where it is generated and
consumed, while using a memory block that is as small as possible. This results
in hierarchical memory structures, while small local memories, complemented with
several layers of larger shared memories further up in the hierarchy, as shown in
Fig. 18.11. The challenge here is to determine the optimal memory sizes at each
level in the hierarchy, not for a single network topology, but across many network
topologies (see further discussion below).

18 Machine Learning at the Edge 303

Fig. 18.11 Hierarchical
processor memory hierarchy

Sparse or dense: As discussed in Sect. 18.2, neural network models typically
exhibit a certain degree of sparsity, which can be exploited in the processing hard-
ware. Indeed, when doing a multiply accumulate operation with one of the multi-
plication inputs being zero, the accumulation result remains unchanged. The most
straightforward way to exploit such sparsity, is to maintain the regular dense pro-
cessing grid, yet simply clock and data-gate all units that encounter a zero-valued
input. Processors such as Envision [45], or Eyeriss [48] support this approach. The
operating scheme allows saving power when executing sparse networks, and only
comes with very little overhead logic to support the clock and data gating. Yet, the
approach only brings (modest) power savings, and does not lead to increased through-
put for sparse workloads. Indeed, all idle MAC units are wasting useful processing
resources.

This is overcome in sparse NPU processors, which target skipping all zero-valued
operations and assign their computational resources only to useful computations.
Such an approach allows to automatically speed up processing when the networks
are very sparse. Yet, the approach is penalized by large architectural overhead for
data decoders, scheduling logic, and irregular data routing. Moreover, data reuse
opportunities drop drastically in such processors, often limiting the amount of effec-
tive parallel operations that can take place. As a result, such processors prove to be
beneficial only when the sparsity is large enough. Parashar et al. [50], have shown
this break-even point to lie around 40% sparsity (60% density) for both weights and
activations (see Fig. 18.12). While older networks had very high sparsity (e.g., 80%
or more for AlexNet), newer networks exhibit different characteristics. The recent
network compaction techniques result lower sparsity, ranging between 10 and 70%
for networks like GoogleNet, 10–50% for MobileNet and only 10% for MobileNet
[51].

304 M. Verhelst and B. Murmann

Fig. 18.12 GoogLeNet performance and energy as a function of density for a non-sparsity-aware
processor (DCNN), a sparsity-aware processor with datapath gating (DCNN-opt) and a sparse
execution processor (SCNN) (from [50], ©IEEE 2017)

Reduced precision: Another algorithmic property that can be exploited at the
hardware level is the robustness to reduced computational precision. As discussed in
Sect. 18.2, neural networks can be trained to operate with low-resolution fixed-point
number representations. Figure 18.13 illustrates this, assuming m-bit integer activa-
tion values and n-bit integer weights, drastically reducing the multiplier complexity,
area and power consumption. Precision scaling can be done symmetrically (m = n)
or asymmetrically (m �= n) [52]. Data types used in inference accelerators are often
INT8, and more and more frequently also INT4, or even ternary or binary (INT1)
values. As can be seen fromFig. 18.14, reduced precision processing typically results
in both performance and efficiency boosts.

It is important to realize that different neural networks have different optimal
fixed-point word lengths [51]. Even between layers of the same network, optimal
quantization values might differ, typically requiring more bits for full resolution
input layers for image processing. As a result, a widely deployable NPU processor
needs internalMAC units that can operate at different precision settings. The settings
should be easily configured, e.g. through a simple processor instruction. Moreover,
the overhead of this configurability at the MAC level should be limited to maintain

Fig. 18.13 Operating with low-resolution fixed-point number representations

18 Machine Learning at the Edge 305

Fig. 18.14 Sample of recent NPU implementations, indicating the precision of the internal MAC
units. Source [9, 53]

good efficiency across all precision levels. Many precision-scalable MAC designs
have been proposed in the literature, each of which coming with their own merits
and downsides [52, 54, 55]. Table 18.2 summarizes the main precision scalability
architectures in a taxonomy introduced in [55]. 1D scalable designs demonstrate
good scalability at weight-only asymmetric scaling, while 2D scalable designs per-
form well when one wants to scale both activations and weights. 2D scaling can
be performed symmetrically across weight and activations, or asymmetrically. This
scaling, however, always comes at the expense of increased memory bandwidth in
low precision modes, with increased bandwidth pressure on the memory stores when
using sum apart techniques, and pressure on the memory loads for the sum together
techniques. Across all operating modes, bit serial techniques do not seem to pay off,
based on this comparative study. A more elaborate survey can be found in [55].

Table 18.2 Variable precision MAC taxonomy (from [55]) and reported implementations
exploiting the various techniques

Architecture types 1D scalable
(weight only)

2D asymmetric
scalable

2D symmetric
scalable

Spatial Sum apart [56] (DNPU) [57] (DVAFS)

Sum together [58] (BitFusion) [54]

Temporal Serial [59] (UNPU) [60] (LOOM)

Multi-bit serial [52] [60] (LOOM)

306 M. Verhelst and B. Murmann

Challenges and outlook: The break from traditional Von Neumann processing
architectures, and inclusion of support for multi-dimensional data reuse, sparse pro-
cessing and reduced precision operation, have pushed the efficiency of NPU process-
ing to 1–2 orders of magnitude beyond CPU and GPU solutions (see Figs. 18.3 and
18.14). Going forward, the challenge is to ensure support for a wide range of new
and upcoming neural network paradigms, such as dynamic networks [61], dilated
networks [62], shiftnets [63], wavenets [64], etc. These networks are characterized by
(sometimes even dynamically) varying kernel sizes, low data reuse factors, and com-
plex layer interconnectivities.Making processors that are flexible enough tomaintain
good execution efficiency across the complete set of workloads, while keeping con-
figuration overhead low, is the main research challenge at the moment. To achieve
these properties, the importance of early processor modeling, and lean dataflow
optimizations is rapidly rising, leading to a new class of schedulers, mappers, and
compilers that are discussed in Sect. 18.6.

In the future, we’ll see these architectures evolve further towards more distributed
processing, with small, yet flexible buffers between precision-scalable processing
elements. As thememory access remains themain bottleneck, emerging technologies
that integrate the memory and computations are rapidly gaining importance and are
thus discussed in the next section.

18.4 The Rich Circuit/Technology Landscape of ML
at the Edge

The previous sections looked at efficient neural network computationmainly from the
perspective of algorithms and architecture, corresponding to the upper three layers
of Fig. 18.4. However, a wide range of options are also available at the circuit and
technology level, which complicates the search for an optimal implementation even
further. In this section, we briefly review the most common innovation vectors.

Analog and mixed-signal computing: There is a rich history of research that
promotes the purely analog implementation of neural networks and other machine
learning algorithms. This path typically follows neuromorphic principles [65, 66],
which build on our (very limited) understanding of the human brain and its “integrate
and fire” neurons that are amenable to an analog circuit implementation. While the
resulting neurons represent an intriguing and biologically plausible emulation of
the units found in the human brain, the networks constructed with them tend to lack
scalability. It is fundamentally difficult to array and cascade a large number of analog
building blocks and deal with the accumulation of noise and component mismatch.
Additionally, and perhaps more significantly, it is challenging to build the required
analog memory cells [67]. For this reason, present explorations in neuromorphic
design are dominated by digital emulations, such as IBM’s TrueNorth processor
[68]. A more detailed discussion of such efforts is found in Chap. 22 of this book.

18 Machine Learning at the Edge 307

Since purely analog implementations are difficult to scale, could one instead
assemble a processor that uses purely digital storage and adds in analog/mixed-signal
compute for potential efficiency gains? As shown in [69], mixed-signal computing
can indeed be lower energy than digital for low resolutions, typically below8bits. The
most straightforward way to exploit this would be to embed mixed-signal compute
macros into the PE blocks of a mainly digital processor. This was considered in [70,
71], which point to the conclusion that the idea will in practice lead to diminishing
returns. In an optimized digital design that conforms to the template of Fig. 18.11,
most of the energy is spent on memory access and data movement [72] making even
large improvements in the arithmetic units nearly irrelevant. To fully harvest the ben-
efits of mixed-signal processing, one must consider customized architectures. One
possible direction is to employ analog and mixed-signal circuits as feature extrac-
tors that are placed in front of a digital neural network. This approach is discussed
further in Chap. 17 of this book. Another opportunity is to exploit mixed-signal cir-
cuits through memory-like processing elements and in-memory computing, which
we discuss next.

Memory-like processing elements: Is it possible to re-architect a digital ML pro-
cessor architecture to benefit more strongly from a mixed-signal compute fabric?
This question was the baseline for the research described in [73], which exercises
two of the re-use principles stated in Table 18.1 with a mixed-signal mindset: Intra-
PE temporal re-use of weights (weight stationarity) and Inter-PE accumulation. The
main observation here was that the latter can be done in a particularly efficient way
using charge sharing on a wire, instead of a digital accumulation tree. The resulting
switched-capacitor PE cell is shown in Fig. 18.15. The overall network that was
designed to use this PE is based on the BinaryNet topology from [29], which makes
multiplication trivial (XNOR). This enabled a cell size that allowed the on-chip inte-
gration of a 64 × 1024 PE array that computes 64 output activations in one shot. We
term this approach “memory-like” since the PE locally stores one bit and otherwise
contains only simple add-on-circuits.

Figure 18.16 compares the total neuron energy of a custom digital design with
the described mixed-signal approach. The latter shows an improvement of about
4.2×. However, when accounting for other energy consumers (including weight

Fig. 18.15 aConventional processing element (PE) versusbmemory-likemixed-signal PE (single-
bit implementation, from [73] ©IEEE 2019)

308 M. Verhelst and B. Murmann

Fig. 18.16 Comparison of
total neuron energy (digital
versus mixed signal) (from
[73] ©IEEE 2019)

and activation memory access), the system-level savings reduce to approximately
1.8×. While this benefit is still significant, this exercise makes it clear that order-of
magnitude improvements are hard to come by, unless an even more radical approach
is pursued. This brings us to the topic of in-memory computing, which aims to
minimize the overhead that diminished the returns from the mixed-signal compute
fabric in the example above.

In-Memory Computing: In-memory computing is a relatively old idea [74] that
aims to co-integrate memory and compute into a single dense fabric. Conceptually,
one could view the memory-like PE in Fig. 18.15 as a compute-in-memory cell.
However, its size is relatively large, so that a denser piece of memory is required
in its periphery to store the weights and activations of a modern neural network. To
overcome this issue, denser cells can be designed as illustrated in Fig. 18.17. The
most obvious way to increase density is to handle the memory bit with a standard 6-T
SRAM cell (see Fig. 18.17b) as done in [75]. In addition, the logic can be simplified
and single-ended signaling can be explored to further reduce the area. While the
differential memory-like cell measures 24,000 F2 (where F is the half pitch the
process technology), the SRAM-based cell has an area of only 290 F2. Further cell
size reductions are possible by migrating to emerging memory technologies (see
Fig. 18.17c), as discussed in the next sub-section.

At present, SRAM-based in-memory computing is receiving significant attention
in the research community [76] andmany circuit and network architecture options are
being explored. In [77], a complete processor with in-memory compute acceleration

Fig. 18.17 a Memory-like PE (from [73] ©IEEE 2019), b in-memory computing cell based on
SRAM(from [75]©IEEE2019), c in-memory computing cell based on resistivememory technology

18 Machine Learning at the Edge 309

Fig. 18.18 Streaming architecture for neural network processing with emerging memory

is presented. While this design achieves high efficiency within its compute tiles,
the overall system efficiency is held back by memory reads from external DRAM,
which is typically required for models that exceed several megabytes in size. A
promising remedy for this issue lies in embracing emerging memory technologies
for in-memory compute.

Emerging Memory: A wide variety of emerging memory technologies are cur-
rently under investigation (see Chap. 19 of this book). For instance, Resistive Ran-
dom Access Memory (RRAM) technology promises to deliver densities that are
comparable to DRAM, while being non-volatile and potentially offer multi-level
storage. This could open up a future where relatively large machine learning mod-
els (>10 MB) can be stored on a single chip to eliminate costly DRAM access. In
addition, these memory types are compatible with in-memory-computing by exploit-
ing current summation on the bitlines [78]. While there are many possible ways to
incorporate emerging nonvolatile memory into a machine learning processor [79],
one attractive option is a streaming topology as shown in Fig. 18.18. Here, large in-
memory compute tiles are pipelined between small SRAM line buffers that hold only
the current input working set [80]. This scheme can thereby avoid the energy penalty
of reading from large SRAMs, which represents a significant energy overhead in the
above-discussed processor with memory-like PEs.

Presently, the art of designing of machine learning processors using emerging
memory is still in its infancy. Key issues include access to process technology as
well as challenges with the relatively poor retention and endurance of emerging
memory technologies (see e.g., [81]). Consequently, most existing demonstrators
are only sub-systems and use relatively small arrays (see e.g., [82]). However, one
important aspect that has already become clear from these investigations is that the
D/A and A/D interfaces required at the array boundaries can be a significant show-
stopper. For example, a state-of-the-art ADC consumes about 1 pJ per conversion at
approximately 4–8 bits of resolution [83]. If amortized across 100 memory rows, the
energy overhead is 10 fJ per MAC operation, a number that is close to a relatively
straightforward digital MAC implementation in 16 nm CMOS [84]. The solution is
to work with taller arrays and to push for innovations in the interface and array circuit
design (see e.g. [85]), which can lead us to single-digit fJ per MAC.

310 M. Verhelst and B. Murmann

3D Integration: Given the above-discussed problems of datamovement andmem-
ory access in large neural networks, it is clear that 3D integration has the potential to
play a major role in making NPUs significantly more efficient. The reader is referred
to an in-depth discussion of this subject in Chaps. 9 and 10.

Challenges and outlook: While using analog and mixed-signal computing in
neural networks is attractive in principle, it is not straightforward to realize large
performance gains (e.g., order of magnitude) at the system level. This is simply
because a complete NPU has many components and improving only a subset leads
to diminishing returns. At present, the most promising option is to pursue mixed-
signal processing within in-memory compute tiles and to rely on standard digital
processing on the outside. Future work must assess how flexible and programmable
such a processor can be, and how much efficiency it may lose due to data sparsity,
which can presumably be better managed with a fully digital fabric. Just as with fully
digital NPUs, the research on alternative architectures must be guided by a solid
system-level benchmarking strategy that will systematically uncover such efficiency
losses during the conception of the architecture. The next section therefore looks at
this particular aspect.

18.5 Evaluating ML Processors

As discussed in the previous sections, over the past decades, hundreds of custom
NPU processing schemes, architectures and technological enhancements have been
proposed. It is good practice to benchmark the different solutions relative to one
another, and identify which innovations bring actual value. Yet, the main challenge
is to determine the right benchmarking metrics.

System-level benchmarks: The only metrics that really matter to an edge device
user are: (1) the energy per inference; (2) the latency or throughput per inference; and
(3) the cost per inference (determined by chip area and external memory size). To be
able to compare different systems, these must be compared on a known standardized
benchmarking task, achieving a given target accuracy. Recently, there has been a lot
of effort from the MLperf community [86] to pull off such benchmarking. While
the current focus is mostly on training tasks in the cloud, it is expanding towards
inference benchmarks, also for the edge.

These system-level benchmarks can be improved through different algorithmic,
architecture and circuit level techniques. Designers working at these levels tend to
use benchmarking metrics focusing at lower level aspects, for instance:

• The number of MACs/inference or model coefficients at algorithmic level
• The number of MACs/second or the number of MACs/Watt at architectural level
• The number picojoules per memory fetch of per MAC at the circuit/technology
level.

18 Machine Learning at the Edge 311

Fig. 18.19 Typical benchmarking metrics at system level, algorithmic level and hardware level (in
black), complemented with performance-influencing metrics (blue) and constraints (green) that are
often forgotten

Figure 18.19 summarizes some frequently used benchmarks (in black) at these
different levels. The figure also highlights important parameters (in blue), and con-
straints (in green) that are often forgotten at these different levels. It is of crucial
importance to see that benchmarks at different levels strongly depend on each other
and are often conflicting. For example, one can achieve a very low number of model
weights by going to high precision, highly sparse model kernels. Yet, at the hardware
level, this will result in very low MAC utilization and high energy per MAC. Simi-
larly, good hardware benchmarks can be achieved by going to very low precision, and
highly regular large in-memory compute arrays. Yet, this will result in models that
are requiring more MACs and larger model sizes to achieve the same benchmarking
accuracy [87].

CIFAR10 example of cross-layer implications: To illustrate this, we compare
different solutions for the CIFAR10 benchmark. Table 18.3 shows benchmarking
performance across different design levels for three different solutions:

• A high accuracy, 4-bit algorithm running on the Envision chip [45]
• A medium accuracy 4-bit model running on the Envision chip [45]
• A medium accuracy 1-bit model running on the BinarEye chip [88].

It is interesting to observe that at the hardware level, the BinarEye chip [88]
seems to beat all performance metrics, showing highest peak performance, at best
energy efficiency and with most embedded memory available. At algorithmic level,
however, the network capable of execution on the Envision platform show to require
less MACs and exhibit more sparsity. However, as their topology cannot be perfectly
mapped to the flexible Envision datapath, it cannot achieve maximum utilization of
the processor. The network trained for BinarEye on the other hand, was matched to
the datapath to achieve 100% utilization. The result of this trade-off shows that for
equal accuracy, two solutions consume roughly the same amount of energy to run one
CIFAR10 inference. At the system level, also taking external memory accesses into
account, BinarEye wins due to the larger embedded memory of BinarEye and the
smaller model size of the mapped CIFAR10 model. The table also clearly shows that
large energy savings can be achieved if one wants to give in a bit of task accuracy, e.g.

312 M. Verhelst and B. Murmann

Ta
bl
e
18
.3

B
en
ch
m
ar
ki
ng

pe
rf
or
m
an
ce

of
C
IF
A
R
10

ta
sk

ac
ro
ss

pl
at
fo
rm

s.
N
um

be
rs
ex
tr
ap
ol
at
ed

fr
om

m
ea
su
re
m
en
ts

Pl
at
fo
rm

an
d
ta
sk

Sy
st
em

le
ve
l

A
lg
or
ith

m
le
ve
l

H
ar
dw

ar
e
le
ve
l

In
fe
re
nc
e/
s

Sy
st
em

en
er
gy

/in
f

(u
J)

C
hi
p

en
er
gy

/in
f

(u
J)

K
er
ne
l

to
po

lo
gy

Pr
ec
is
io
n

(b
it)

M
A
C
/in

fe
re
nc
e

Sp
ar
si
ty

(%
)

M
od

el
si
ze

(M
B
)

T
M
A
C
/W

at
t

Pe
ak

G
M
A
C
/s

M
ea
n

ut
ili
za
tio

n
(%

)

M
em

si
ze

(k
B
)

E
nv
is
io
n,

C
IF
A
R
10

,
90

%

90
40

0
23

0
3

×
3

×
C

4
6.
00

E
+

08
30

–6
0

12
2.
6

10
2

53
14

4

E
nv
is
io
n,

C
IF
A
R
10

,
86

%

13
50

25
15

3
×

3
×

C
4

4.
00

E
+

07
30

–6
0

1.
2

2.
6

10
2

53
14

4

B
in
ar
E
ye
,

C
IF
A
R
10

,
86

%

12
0

14
13

2
×

2
×

C
1

2.
00

E
+

09
0

0.
25

9
11

5
28

00
10

0
32

8

18 Machine Learning at the Edge 313

comparing the system level benchmarks for CIFAR10 90% and 86% in Table 18.3.
It is hence of crucial importance to always compare data points achieving similar
accuracies on known benchmarks to be able to make a fair comparison.

Challenges and outlook: The previous example should make it clear that it is
impossible to judge hardware platforms, resp. algorithmic innovations based on
hardware-centric, resp. algorithm-centric performancemetrics. There is a very strong
influence between design decision across different layers. The challenge is hence on
being able to report system-level benchmarking improvements for newly proposed
algorithmic or hardware innovations, without having to go through the complete
optimization across all layers every time. This requires a new set of cross-layer tools
and frameworks, as discussed in Sect. 18.6.

18.6 Cross Domain Optimizations, Mapping
and Deployment Frameworks

Neural network mapping: When one wants to assess the performance of a specific
neural network model on a specific hardware topology, it is necessary to schedule the
model’s execution on consecutive processing cycles using a mapping supported by
the platform. Only the detailed schedule reveals how many data transfers are needed
to execute the algorithm, and which layers of the memory hierarchy are involved.
For a specific neural network layer, such scheduling starts from the layer’s six nested
loops, shown in Fig. 18.5. These nested for-loops can be manipulated using loop
splitting and loop reordering, denoted as dataflow transformations [89, 90]. Finally,
each resulting for-loop should be characterized as a spatial or temporal enrolled loop
(in line with what the hardware supported), and its internal data variables should
be allocated to a specific level in the hardware’s memory hierarchy. Figure 18.20
illustrates this operation for an algorithm mapped on the Envision processor, which
supports two-dimensional parallelism along the X and K dimension.

Fig. 18.20 Data transformation and hardware mapping example, targeting the Envision hardware
configuration

314 M. Verhelst and B. Murmann

Yet, this specific set of dataflow transformations is not the only possible option.
Many possible loop orderings, loop splitting and loop unrolling options could have
been exercised to map the specific network layer on the hardware platform. For real-
istic networks, there can easily be millions of different valid solutions. While all
these mappings would be functionally identical, their resulting system level perfor-
mance and efficiency benchmark won’t be. The challenge is hence to try all possible
dataflow transformation, quickly assess their impact at the system level, and pick
the best one. It is needless to say that this cannot be done by hand, and automated
frameworks are required to support such mapping.

At the moment, several frameworks start to emerge to automate such explorations
[90–93]. As shown in Fig. 18.21 (top), these frameworks typically take in a neural
network layer representation, together with the constraints imposed by the hardware
platform. Based on this information, they are capable of efficiently finding all func-
tionally equivalent data transformations supported by the hardware, and computing
the resulting number of compute cycles, and memory accesses required within the
platform. This information can then be fed to a high-level processor performance
model to find the resulting system level performance of the selected mapping. By
repeating this for all possible mappings, the framework can derive a Pareto-optimal
set of algorithmic mappings or find the best mapping subject to an application level
constraint, such as maximum latency. The selected mapping can subsequently be
compiled into micro code to be executed on the platform, as for example integrated
in the TVM framework [92].

Challenges and outlook: While these frameworks start to emerge, they are still
immature, and many challenges remain. Next, the three most critical challenges are
discussed: (1) cross-layer mappings; (2) model-HW co-optimization; (3) exploration
space bounding.

Fig. 18.21 Automated mapping and performance estimation framework assuming a given network
model and HW configuration (top), which can be extended with automated neural network model
search and optimal hardware topology search (bottom)

18 Machine Learning at the Edge 315

1. Cross-layer mappings: Current frameworks focus on mapping and scheduling
a single neural network layer. This, however, limits the degrees of freedom the
mapper has, and excludes interesting solutions such as depth-first network exe-
cution, which iterates across layers before executing all tiles of a specific layer
[94]. Yet, it is hard to include this into the exploration framework, as it blows up
the exploration space.

2. Model-HW co-optimization: The framework discussed earlier (Fig. 18.21 (top))
assumes a given network topology, and hardware constellation. Yet, during the
design phase, the designer can modify the neural network model, and its com-
putational precision. As shown earlier, many different neural networks can be
constructed for the same task achieving the same task accuracy, yet with widely
varying hardware mapping consequences. Exploring neural network models,
with the hardware mapping tradeoffs in the loop allows to find the optimal neu-
ral network topology given the system level benchmarks, instead of just the
best algorithmic level benchmarks. This is partially pursued in studies such as
MNASnet [23], and the minimum energy QNN study [87], yet still with very
crude energy models. Truly integrating this with more realistic hardware models
will undoubtedly bring more breakthroughs in the near future.

When the hardware platform is not decided yet, or the target chip has not yet
been taped out, also the hardware configuration can be modified in this iterative
exploration loop. As such, the best hardware-model-mapping combination can
be found to serve a given task within its application constraints. This is pursued
in the Maestro framework [93] and the EyerissV2 studies [41]. Of course, these
additional exploration options again increase the search space drastically.

3. Exploration space bounding: All aforementioned improvements of the automated
exploration, mapping and compilation framework result in yet another increase
of the possible exploration space. When only looking at hardware configuration
modifications, while keeping the model fixed, the Maestro framework already
has to assess millions of design points. On the other hand, also many millions of
options have to be searched when only assessing model transformations without
considering hardware modifications. It is clear that exhaustively searching this
complete design space is simply infeasible. Research towards smart sampling
techniques, exploiting Bayesian optimization, or reinforcement learning have
been successfully applied to model explorations. It is expected that in the near
future they will also start to be successfully applied on joint hardware-model-
mapping optimizations. This will undoubtedly give rise to an even more inter-
esting interplay in which novel processor architectures fuel these new dataflow
mappings and models, which in turn lead to new processing paradigms.

316 M. Verhelst and B. Murmann

18.7 Outlook: Towards True Autonomous Intelligence

Looking further out into the future, edge devices will increasingly evolve into
truly autonomous intelligent devices: Devices which can not only execute a pre-
trained inference model, but can also increase their own knowledge, can reason, and
synergistically collaborate with other devices.

Learning at the edge: Several application use cases envision the edge devices
to be more than a pure inference engine. The next step is to make the edge NPU
also capable of performing update learning on the deployed network model. This
capabilitywould allow the edge device to learn for example a user-customized speech
interface that works better and better the more it is being used by a specific person.
Or, an anomaly detector would be able to use this online training capability to better
distinguish anomalies within its specific environment. Many challenges are related
to online, in-device learning:

• At the algorithmic level, researchers are exploring learning methods that prevent
the network to forget previously acquired knowledge [95]. Moreover, researchers
are actively exploring whether learning can also be done without the need for full
floating-point data types and compute intensive backpropagation steps, e.g. using
techniques such as direct feedback alignment [96, 97].

• At the hardware level, the support for edge training will require the additional
support for higher precision data types within the NPU, and higher precision
weight storage. Since the weight matrices have to be read out in transposed form
during back-propagation, several recent designs are experimenting with transpose
memories, which can be efficiently read out in in a column-parallel manner as well
as in a row-parallel scheme [98, 99].

• At the circuit level, researchers are looking at ways to embrace emerging resistive
memory cells for in-device learning [100]. One direction is to perform standard
memory R/W access and to minimize writes to overcome hard endurance limits
[101]. Another approach that makes more direct use of the device’s physics and
treat each device as a “nanokernel” with local feedback during training [102].

Reasoning: Neural networks have shown excellent results in patternmatching and
regression tasks, yet they are insufficient towards achieving all intelligence needs of
our envisioned future autonomous edge devices. Their main shortcomings are their
lack of explainability, their difficulty to integrate expert knowledge or constraints and
their inability to support probabilistic reasoning tasks. Other machine learning mod-
els, such as Bayesian reasoning, logic reasoning and probabilistic graphical models
(PGM, [103]) do possess these features, but come with their own shortcomings, such
as their high dataflow irregularity, their inability to efficiently deal with raw data and
long training times. Yet, more and more it becomes clear that these two machine
learning formalisms form an interesting tandem, in which neural networks can be
used as pattern matching layers operating on raw sensor data. The network outputs
are then forwarded to reasoning layers on top, which based on these observations
make complex decisions in a transparent way. On the algorithmic side, researchers

18 Machine Learning at the Edge 317

have started to actively explore this using for example Logic Tensor Network models
[104], Bayesian Deep Learning models [105] and frameworks such as deep problog
[106]. On the hardware side, more challenges are also coming, as the reasoning
models are characterized by very different dataflow patterns compared to neural net-
works, which do not execute efficiently on an NPU, nor CPU or GPU. A new type
of processor might yet again have to be invented [107].

Synergistic collaboration: Finally, edge devices are equipped with wireless con-
nections, and hence do not have to operate in isolation. They can exchange data
and models among each other, and as such smartly collaborate to perform training
and inference on the most suited device at that moment. This will again increase
the mapping exploration space discussed in Sect. 18.6 and will now also require
incorporating latency and energy complications of sharing data between devices
into account into the system cost models. Interestingly, the optimal assignment can
change dynamically over time depending on each device’s energy availability and
current workload, giving rise to real-time scheduling and optimization opportunities.
From the hardware side, this will spark an exciting integration of machine learning
processors and security hardware, as all models and data that will be exchanged are
privacy- and authentication-sensitive.

18.8 Conclusions

Innovations towards more efficient processing of machine learning workloads in
edge devices are arriving at a high pace, mostly focused around neural network-
based inference. Breakthroughs are realized at the algorithmic level, hardware level
and circuit/technology level. Yet, it also becomes increasingly clear that innovations
at one level have significant implications at the other levels. As a result, bench-
marking initiatives push for system level benchmarks, which jointly consider all
levels in an integrated way. To further optimize the complete system stack, inte-
grated frameworks enable to find the most efficient mapping of a neural network
model on a given hardware platform. Even one step further, these frameworks can be
used to actively explore the algorithmic and hardware design space towards optimal
algorithm-hardware co-design. Moreover, new emerging technology options will
give rise to very different processor and memory configuration options, and hence
new classes of optimal model topologies.

Many challenges remain to effectively enable such cross-layer optimization that
covers the complete exploration space, and integrate this in an automated model
development, model mapping, and compilation framework. Moreover, workloads
will in the future no longer be limited to plain neural network inference but will be
expanded with on device learning and the integration with logic and probabilistic
reasoning. This will undoubtedly give rise to many more exciting innovations at the
algorithmic, architecture and circuit levels.

318 M. Verhelst and B. Murmann

References

1. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of things: a
survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials
17(4), 2347–2376 (2015)

2. M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu, B. Amos, Edge
analytics in the internet of things. IEEE Pervasive Comput. 14(2), 24–31 (2015)

3. H. Li, K. Ota, M. Dong, Learning IoT in edge: deep learning for the Internet of Things with
edge computing. IEEE Netw. 32(1), 96–101 (2018)

4. A. Canziani, A. Paszke, E. Culurciello, An Analysis of Deep Neural Network Models for
Practical Applications. arXiv preprint arXiv:1605.07

5. Caulfield, A.M., Chung, E.S., Putnam, A., Angepat, H., Fowers, J., Haselman, M., Lo, D.
et al., A cloud-scale acceleration architecture, in The 49th Annual IEEE/ACM International
Symposium on Microarchitecture (IEEE Press, 2016), p. 7

6. N. Strom, Scalable distributed DNN training using commodity GPU cloud computing, in
Sixteenth Annual Conference of the International Speech Communication Association (2015)

7. Tractica report, Deep Learning Chipsets (2018). https://www.tractica.com/research/deep-
learning-chipsets/

8. Semiconductor Engineering, AI Chip Architectures Race To The Edge (2018). https://
semiengineering.com/ai-chip-architectures-race-to-the-edge/

9. K. Guo, W. Li, K. Zhong, Z. Zhu, S. Zeng, S. Han, Y. Xie, P. Debacker, M. Verhelst, Y.
Wang, Neural Network Accelerator Comparison. [Online]. https://nicsefc.ee.tsinghua.edu.
cn/projects/neural-network-accelerator/

10. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT press, Cambridge, 2016)
11. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z.Wojna, Rethinking the inception architecture

for computer vision (2015). arXiv preprint arXiv:1512.00567
12. F. Chollet, Xception: Deep Learning with Depthwise Separable Convolutions (2016). arXiv

preprint arXiv:1610.02357
13. A. Howard et al., MobileNets: Efficient Convolutional Neural Networks for Mobile Vision

Applications (2017). arXiv:1704.04861
14. M. Sandler et al.,MobileNetV2: InvertedResiduals andLinearBottlenecks. arXiv:1801.04381
15. C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, K.

Murphy, Progressive neural architecture search, in ECCV2018
16. E. Real, A. Aggarwal, Y. Huang, Q.V. Le, Regularized evolution for image classifier

architecture search, in The Thirty-Third AAAI Conference on Artificial Intelligence (2019)
17. S. Xie, A. Kirillov, R. Girshick, K. He,Exploring RandomlyWired Neural Networks for Image

Recognition (2019). arXiv:1904.01569
18. X. Chu, B. Zhang, J. Li, Q. Li, R. Xu, ScarletNAS: Bridging the Gap Between Scalability

and Fairness in Neural Architecture Search (2019). arXiv:1908.06022
19. X. Zhang, Z. Li, C. Change Loy, D. Lin, PolyNet: A Pursuit of Structural Diversity in Very

Deep Networks (2019). arXiv:1611.05725
20. Google’s AutoML, https://research.googleblog.com/2017/11/automl-for-large-scale-image.

html?m=1
21. Q. Yao et al., Taking the Human out of Learning Applications: A Survey on Automated

Machine Learning. arXiv: 1810.13306
22. Y. He, J. Lin, Z. Liu, H. Wang, L.J. Li, S. Han, Amc: Automl for model compression and

acceleration on mobile devices, in Proceedings of the European Conference on Computer
Vision (ECCV) (2018), pp. 784–800

23. M.Tan,B.Chen,R. Pang,V.Vasudevan,Q.V.Le,Mnasnet: Platform-aware neural architecture
search for mobile (2018). arXiv preprint arXiv:1807.11626

24. T.-J. Yang, et al., Netadapt: platform-aware neural network adaptation formobile applications,
in ECCV (2018)

25. J.A. Suykens, J. Vandewalle, Least squares support vectormachine classifiers. Neural Process.
Lett. 9(3), 293–300 (1999)

http://arxiv.org/abs/1605.07
https://www.tractica.com/research/deep-learning-chipsets/
https://semiengineering.com/ai-chip-architectures-race-to-the-edge/
https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1904.01569
http://arxiv.org/abs/1908.06022
http://arxiv.org/abs/1611.05725
https://research.googleblog.com/2017/11/automl-for-large-scale-image.html%3fm%3d1
http://arxiv.org/abs/1807.11626

18 Machine Learning at the Edge 319

26. S.Gupta,A.Agrawal,K.Gopalakrishnan, P.Narayanan,Deep learningwith limited numerical
precision, in CoRR, vol. abs/1502.02551 (2015)

27. M. Courbariaux, Y. Bengio, J.-P. David, Training deep neural networks with low precision
multiplications (2014). arXiv preprint arXiv:1412.7024

28. R. Krishnamoorthi, Quantizing deep convolutional networks for efficient inference: a
whitepaper. arXiv:1806.08342

29. M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized neural networks:
training deep neural networks with weights and activations constrained to +1 or −1 (2016).
arXiv preprint arXiv:1602.02830

30. N. Mellempudi, A. Kundu, D. Das, D. Mudigere, B. Kaul, Mixed low-precision deep learning
inference using dynamic fixed point (2017). arXiv preprint arXiv:1701.08978

31. I. Hubara et al., Quantized neural networks: training neural networks with low precision
weights and activations. ArXiv1609.07061

32. B. Jacob et al., Quantization and training of neural networks for efficient integer-arithmetic-
only inference, in CVPR (2018)

33. M. Nagel, M. van Baalen, T. Blankevoort, M. Welling, Data-free quantization (DFQ) through
weight equalization and bias correction (2019). arXiv:1906.04721v1

34. E. Meller, A. Finkelstein, U. Almog, M. Grobman, Same, same but different—recovering
neural network quantization error through weight factorization (2019). arxiv:1902.01917

35. B. Moons, K. Goetschalckx, N. Van Berckelaer, M. Verhelst, Minimum energy quantized
neural networks (2017). arXiv preprint arXiv:1711.00215

36. S. Han, J. Pool, J. Tran, W. Dally, Learning both weights and connections for efficient neural
network, in Advances in Neural Information Processing Systems (2015), pp. 1135–1143

37. J. Xue, J. Li, Y. Gong, Restructuring of deep neural network acoustic models with singular
value decomposition, in INTERSPEECH (2013)

38. T.-J.Yang,Y.-H.Chen,V.Sze,Designing energy-efficient convolutional neural networks using
energy-aware pruning, in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2017)

39. W. Wei, Learning structured sparsity in deep neural networks, in NIPS2016
40. S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M.A. Horowitz, W.J. Dally, EIE: efficient inference

engine on compressed deep neural network (2016). arXiv preprint arXiv:1602.01528
41. Y.-H. Chen et al., Eyeriss v2: a flexible accelerator for emerging deep neural networks on

mobile devices, in JETCAS (2019)
42. Y. Liu, Y. Wang, R. Yu, M. Li, V. Sharma, Y. Wang, Optimizing CNN model inference on

CPUs (2018). arXiv: 1809.02697
43. S.Markidis, S.W.DerChien,E.Laure, I.B. Peng, J.S.Vetter,Nvidia tensor core programmabil-

ity, performance& precision, in 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW) (IEEE, May 2018), pp. 522–531

44. B. Moons, D. Bankman, M. Verhelst, Embedded Deep Learning: Algorithms, Architectures
and Circuits for Always-on Neural Network Processing (Springer, 2019). ISBN 978-3-319-
99223-5

45. B.Moons,R.Uytterhoeven,W.Dehaene,M.Verhelst, Envision:A0.26-to-10tops/w subword-
parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network proces-
sor in 28 nm fdsoi, in 2017 IEEE International Solid-State Circuits Conference (ISSCC)
(IEEE, 2017), pp. 246–247

46. N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N.
Boden, A. Borchers, R. Boyle, In-datacenter performance analysis of a tensor processing unit,
in 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA)
(IEEE), June 2017, pp. 1–12

47. B. Moons, D. Bankman, L. Yang, B. Murmann, M. Verhelst, BinarEye: an always-on energy-
accuracy-scalable binary CNN processor with all memory on chip in 28 nm CMOS, in IEEE
Custom Integrated Circuits Conference (CICC) (2018), pp. 1–4

48. Y.H. Chen, T. Krishna, J.S. Emer, V. Sze, Eyeriss: an energy-efficient reconfigurable accel-
erator for deep convolutional neural networks. IEEE J. Solid-State Circ. 52(1), 127–138
(2016)

http://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1701.08978
http://arxiv.org/abs/1906.04721v1
http://arxiv.org/abs/1711.00215
http://arxiv.org/abs/1602.01528

320 M. Verhelst and B. Murmann

49. G. Desoli, N. Chawla, T. Boesch, S. Singh, E. Guidetti, F. De Ambroggi, T.Majo, P. Zambotti,
M. Ayodhyawasi, H. Singh, N. Aggarwal, A 2.9 TOPS/W deep convolutional neural network
SoC in FD-SOI 28 nm for intelligent embedded systems

50. A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer,
S.W. Keckler, W.J. Dally, SCNN: an accelerator for compressed-sparse convolutional neural
networks, in Proceedings of ISCA ’17, Toronto, ON, Canada, 24–28 June 2017

51. M. Nikolić, M. Mahmoud, A. Moshovos, Y. Zhao, R. Mullins, Characterizing sources of
ineffectual computations in deep learning networks, in 2019 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS) (IEEE, 2019), pp. 165–176

52. V. Camus, C. Enz, M. Verhelst, Survey of precision-scalable multiply-accumulate units
for neural-network processing, in 2019 IEEE 1st International Conference on Artificial
Intelligence Circuits and Systems (AICAS), Mar 2019

53. S. Cosemans, Advanced memory, logic and 3D technologies for in-memory computing and
machine learning, in ISSCC2019 Forum Talk

54. L.Mei,M. Dandekar, D. Rodopoulos, J. Constantin, P. Debacker, R. Lauwereins,M. Verhelst,
Sub-word parallel precision-scalableMAC engines for efficient embedded DNN inference, in
2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)
(IEEE, 2019), pp. 6–10

55. L. Mei, V. Camus, C. Enz, M. Verhelst, Review and benchmarking of precision-scalable
multiply-accumulate unit architectures for embedded neural-network processing, in 2020
IEEE Journal on Emerging and Selected Topics in Circuits and Systems (2020)

56. D. Shin, J. Lee, J. Lee, H.-J. Yoo, DNPU: An 8.1 TOPS/W Reconfigurable CNN-RNN
Processor for General-Purpose Deep Neural Networks

57. B. Moons, R. Uytterhoeven, W. Dehaene, M. Verhelst, DVAFS: trading computational accu-
racy for energy through dynamic-voltage-accuracy-frequency-scaling, inDesign, Automation
& Test in Europe Conference & Exhibition (DATE) (IEEE, 2017), pp. 488–493

58. Sharma et al., BitFusion: bit-level dynamically composable architecture for accelerating deep
neural networks, in ISCA18

59. J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, H.J. Yoo, UNPU: A 50.6TOPS/W unified deep
neural network accelerator with 1b-to-16b fully-variable weight bit-precision, in 2018 IEEE
International Solid-State Circuits Conference (ISSCC) (2018), pp. 218–220

60. S. Sharifymoghaddam et al., Loom: exploiting weight and activation precisions to accelerate
convolutional neural networks, in DAC Conference (2018)

61. L. Liu, J. Deng,Dynamic Deep Neural Networks: Optimizing Accuracy-Efficiency Trade-offs
by Selective Execution (2017). arXiv preprint arXiv:1701.00299

62. A. Coucke, M. Chlieh, T. Gisselbrecht, D. Leroy, M. Poumeyrol, T. Lavril, Efficient keyword
spotting using dilated convolutions and gating, in ICASSP 2019–2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2019), pp. 6351–
6355

63. Z. Yan, X. Li, M. Li, W. Zuo, S. Shan, Shift-net: image inpainting via deep feature rear-
rangement, in Proceedings of the European Conference on Computer Vision (ECCV) (2018),
pp. 1–17

64. A.V.D. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A.
Senior, K. Kavukcuoglu, Wavenet: a generative model for raw audio (2016). arXiv preprint
arXiv:1609.03499

65. R.A. Nawrocki, R.M. Voyles, S.E. Shaheen, A mini review of neuromorphic architectures
and implementations. IEEE Trans. Electron Devices 63(10), 3819–3829 (2016)

66. C. Mead, Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990)
67. E.A. Vittoz, Future of analog in the VLSI environment, in IEEE International Symposium on

Circuits and Systems (1990), pp. 1372–1375
68. P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada, F. Akopyan, B.L. Jack-

son, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S.K. Esser, R. Appuswamy, B. Taba,
A. Amir, M.D. Flickner, W.P. Risk, R. Manohar, D.S. Modha, A million spiking-neuron
integrated circuit with a scalable communication network and interface. Science 345(6197),
668–673 (2014)

http://arxiv.org/abs/1701.00299
http://arxiv.org/abs/1609.03499

18 Machine Learning at the Edge 321

69. B. Murmann, D. Bankman, E. Chai, D. Miyashita, L. Yang, Mixed-signal circuits for
embedded machine-learning applications, in Asilomar Conference on Signals, Systems and
Computers (Nov 2015), Asilomar, CA

70. D. Bankman, B.Murmann,An 8-bit, 16 input, 3.2 pJ/op switched-capacitor dot product circuit
in 28-nm FDSOI CMOS, in Proceedings of IEEE Asian Solid-State Circuits Conference (Nov
2016), Toyama, Japan, pp. 21–24

71. A.S. Rekhi, B. Zimmer, N. Nedovic, N. Liu, R. Venkatesan, M. Wang, B. Khailany, W.J.
Dally, C.T. Gray, Analog/mixed-signal hardware error modeling for deep learning inference,
in Proceedings of Design Automation Conference (2019), pp. 1–6

72. V. Sze, Y. Chen, J. Emer, A. Suleiman, Z. Zhang, Hardware for machine learning: challenges
and opportunities,in IEEE Custom Integrated Circuits Conference (CICC) (2017), Austin,
TX, pp. 1–8

73. D.Bankman, L.Yang,B.Moons,M.Verhelst, B.Murmann,An always-on 3.8 uJ/86%CIFAR-
10 mixed-signal binary CNN processor with all memory on chip in 28-nm CMOS. IEEE J.
Solid-State Circ. 54(1), 158–172 (2019)

74. W.H.Kautz, Cellular logic-in-memory arrays. IEEETrans. Comput.C-18(8), 719–727 (1969)
75. H. Valavi, P.J. Ramadge, E. Nestler, N. Verma, A 64-tile 2.4-Mb in-memory-computing CNN

accelerator employing charge-domain compute. IEEE J. Solid-State Circ. 54(6), 1789–1799
(2019)

76. N. Verma et al., In-memory computing: advances and prospects. IEEE Solid-State Circ. Mag.
11(3), 43–55 (2019)

77. H. Jia,Y. Tang,H.Valavi, J. Zhang,N.Verma,Amicroprocessor implemented in 65 nmCMOS
with configurable and bit-scalable accelerator for programmable in-memory computing
(2018). arXiv preprint, arXiv:1811.04047

78. H. Tsai, S. Ambrogio, P. Narayanan, R.M. Shelby, G.W. Burr, Recent progress in analog
memory-based accelerators for deep learning. J. Phys. D Appl. Phys. 51(28), 283001 (2018)

79. S. Mittal, A survey of ReRAM-based architectures for processing-in-memory and neural
networks, in Machine Learning & Knowledge Extraction (2018)

80. M. Dazzi, A. Sebastian, P.A. Francese, T. Parnell, L. Benini, E. Eleftheriou, 5 parallel prism: a
topology for pipelined implementations of convolutional neural networks using computational
memory (2019). arXiv preprint, arXiv:1906.03474

81. Y. Lin et al., Performance impacts of analog ReRAM Non-ideality on neuromorphic
computing. IEEE Trans. Electron Devices 66(3), 1289–1295 (2019)

82. S. Yin, X. Sun, S. Yu, J.S. Seo, High-throughput in-memory computing for binary deep neural
networks with monolithically integrated RRAM and 90 nm CMOS (2019). arXiv preprint
arXiv:1909.07514

83. B. Murmann, ADC performance survey 1997–2019, [Online]. http://web.stanford.edu/
~murmann/adcsurvey.html

84. W.J. Dally et al., Hardware-enabled artificial intelligence, in Symposium on VLSI Circuits
(2018), pp. 1–2

85. D. Bankman, J. Messner, A. Gural, B. Murmann, RRAM-based in-memory computing for
embedded deep neural networks, inAsilomar Conference on Signals, Systems and Computers,
Asilomar, CA, Nov 2019

86. https://mlperf.org/
87. B. Moons, K. Goetschalckx, N. Van Berckelaer, M. Verhelst, Minimum energy quantized

neural networks. arXiv preprint arXiv:1711.00215
88. B. Moons, D. Bankman, L. Yang, B. Murmann, M. Verhelst, BinarEye: an always-on energy-

accuracy-scalable binary CNNprocessor with all memory on chip in 28 nmCMOS, inCustom
Integrated Circuits Conference (CICC) (IEEE, 2018), pp. 1–4

89. A. Stoutchinin, F. Conti, L. Benini, Optimally scheduling CNN convolutions for efficient
memory access (2019). arXiv preprint arXiv:1902.01492

90. X. Yang, M. Gao, J. Pu, A. Nayak, A. Liu, S.E. Bell, J.O. Setter, K. Cao, H. Ha, C. Kozyrakis,
M. Horowitz, DNN dataflow choice is overrated (2018). arXiv preprint arXiv:1809.04070

http://arxiv.org/abs/1811.04047
http://arxiv.org/abs/1906.03474
http://arxiv.org/abs/1909.07514
http://web.stanford.edu/%7emurmann/adcsurvey.html
https://mlperf.org/
http://arxiv.org/abs/1711.00215
http://arxiv.org/abs/1902.01492
http://arxiv.org/abs/1809.04070

322 M. Verhelst and B. Murmann

91. A. Parashar, P. Raina, Y.S. Shao, Y.H. Chen, V.A. Ying, A. Mukkara, R. Venkatesan, B.
Khailany, S.W. Keckler, J. Emer, Timeloop: a systematic approach to DNN accelerator eval-
uation, in 2019 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS) (IEEE, 2019), pp. 304–315

92. https://tvm.ai/
93. H. Kwon, M. Pellauer, T. Krishna, Maestro: an open-source infrastructure for modeling

dataflows within deep learning accelerators (2018). arXiv preprint arXiv:1805.02566
94. K. Goetschalckx, M. Verhelst, Breaking high resolution CNN bandwidth barriers with

enhanced depth-first execution, in JETCAS 2019
95. R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, T. Tuytelaars, Memory aware synapses:

learning what (not) to forget, in Proceedings of the European Conference on Computer Vision
(ECCV) (2018), pp. 139–154

96. A. Nøkland, Direct feedback alignment provides learning in deep neural networks, in
Advances in Neural Information Processing Systems (2016), pp. 1037–1045

97. C. Frenkel, M. Lefebvre, D. Bol, Learning without feedback: direct random target projection
as a feedback-alignment algorithmwith layerwise feedforward training (2019). arXiv preprint
arXiv:1909.01311

98. J. Yue, R. Liu, W. Sun, Z. Yuan, Z. Wang, Y.N. Tu, Y.-J. Chen, A. Ren, Y. Wang, M.-F.
Chang, X. Li, H. Yang, Y. Liu, 7.5 A 65 nm 0.39-to-140.3 TOPS/W 1-to-12b unified neural
network processor using block-circulant-enabled transpose-domain acceleration with 8.1 ×
Higher TOPS/mm 2 and 6T HBST-TRAM-based 2D data-reuse architecture, in 2019 IEEE
International Solid-State Circuits Conference-(ISSCC) (IEEE, 2019), pp. 138–140

99. D. Han, J. Lee, J. Lee, H.J. Yoo, A low-power deep neural network online learning processor
for real-time object tracking application. IEEE Trans. Circuits Syst. I Regul. Pap. 66(5),
1794–1804 (2018)

100. S. Yu, Neuro-inspired computing with emerging nonvolatile memory. Proc. IEEE 106, 260–
285 (2018)

101. A. Gural et al., Low-rank training of deep neural networks for emerging memory technology,
unpublished work

102. H. Li, P. Raina, H.-S. P. Wong, Neuro-inspired computing with emerging memories: where
device physics meets learning algorithms, in Proceedings of SPIE 11090, Spintronics XII,
110903L, Sep 2019

103. L.E. Sucar, Probabilistic graphical models, in Advances in Computer Vision and Pattern
Recognition (Springer London, London, 2015)

104. L. Serafini, A.D.A. Garcez, Logic tensor networks: deep learning and logical reasoning from
data and knowledge (2016). arXiv preprint arXiv:1606.04422

105. H. Wang, D.Y. Yeung, Towards Bayesian deep learning: a framework and some existing
methods. IEEE Trans. Knowl. Data Eng. 28(12), 3395–3408 (2016)

106. R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, L. De Raedt, Deepproblog: neural
probabilistic logic programming, in Advances in Neural Information Processing Systems
(2018), pp. 3749–3759

107. N. Shah, L. Galindez, W. Meert, M. Verhelst, Acceleration of probabilistic reasoning through
custom processor architecture and compiler, in Design and Test Conference Europe (DATE)
(2020)

https://tvm.ai/
http://arxiv.org/abs/1805.02566
http://arxiv.org/abs/1909.01311
http://arxiv.org/abs/1606.04422

	18 Machine Learning at the Edge
	18.1 The Need for Machine Learning at the Edge
	18.2 The Rich Algorithmic Landscape of ML at the Edge
	18.3 The Rich Architectural Landscape of ML at the Edge
	18.4 The Rich Circuit/Technology Landscape of ML at the Edge
	18.5 Evaluating ML Processors
	18.6 Cross Domain Optimizations, Mapping and Deployment Frameworks
	18.7 Outlook: Towards True Autonomous Intelligence
	18.8 Conclusions
	References

