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Chapter 1
The New Era of Nano-chips: Green
and Intelligent

Boris Murmann and Bernd Hoefflinger

Since their invention in 1959 by Robert Noyce, silicon integrated circuits have fol-
lowed a unique history of steep exponential progress.Moore’s Law,whichwas articu-
lated by Noyce’s friend and partner GordonMoore in 1964, drove the semiconductor
industry into a widely agreed upon roadmap of doubling the number of transistors
per chip every 18 months. Guided by the “International Technology Roadmap for
Semiconductors (ITRS),” this strategy worked well until about 2010, and was driven
by mass-produced memory chips and von-Neumann computing architectures rang-
ing from microcontrollers to microcomputers and supercomputers. The dynamics
that shaped this epoque and how it changed from bipolar to CMOS technology lead-
ership was described in the 2012 edition of “CHIPS 2020—AGuide to the Future of
Nanoelectronics” [1]. Here, it was also predicted that the ITRS would end in 2016
(at 10 nm) and that future progress would be driven by

• The need for entirely new levels of energy efficiency,
• Ultra- low voltage Fully Depleted Silicon-on-Insulator (SOI) CMOS,
• 3D Integration,
• Intelligent, neuromorphic architectures,
• Human-Visual-System (HVS)-inspired video.

Shortly after the ITRS program ended in 2015, “CHIPS 2020, Vol. 2—New Vis-
tas in Nanoelectronics” was published [2] and delivered a broad range of contribu-
tions focusing on the above-listed topics. Since then, the continuing global wave
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2 B. Murmann and B. Hoefflinger

toward innovative, sustainable, energy-efficient and intelligent nano-chip systems
has inspired us to compile this book on a vision for 2030 and beyond. As shown in
Table 1.1, we identified five major thrust areas that are covered by 28 chapter contri-
butions from world-leading experts. Different from previous versions of this book, a
larger fraction of the presented material is application focused, aiming to highlight
the challenges that new applications will define for the semiconductor industry (see
e.g., Chap. 25, “Augmented and Virtual Reality”). For the remainder of this introduc-
tion, we briefly discuss the positioning and interplay of these contributions within
each thrust.

1.1 Robust and Energy-Efficient Silicon

The International Technology Roadmap for Semiconductors (ITRS) had been criti-
cally evaluated in 2012 in CHIPS 2020 [1] and in 2014 in CHIPS 2020 Vol. 2 [2],
leading to the prediction that it would end in 2016 at the 10 nm node. And indeed, the
ITRS program ended in 2015 with a forecast limit of 10 nm, and the birth of the “In-
ternational Roadmap for Devices and Systems” (IRDS) [3]. The IRDS inherited rich
know-how and data from the ITRS and is now being continuously updated under the
umbrella of the IEEE. Important focus areas of the IRDS are highlighted in Chap. 2,
including the unique and sustained importance of silicon, as well as the need for
more 3D Integration. These topics were already at the core of [1, 2] and continue to
be the main technology underpinning for this book. The ITRS ended mainly because
of diminishing gains in speed and in energy efficiency of von-Neumann computer
architectures. This perceived wall increased the interest in “Rebooting Computing,”
a program that is reviewed in Chap. 2. Rebooting Computing started in 2012 and
focuses on long-term research such as quantum computing, which gets special atten-
tion in Chaps. 26 and 27. In addition, Chap. 16 provides an update on trends in more
conventional supercomputing platforms.

The IEEE conference S3S (“Silicon-on Insulator, 3D Integration and Sub-
Threshold MOS”) also gets a special mention in Chap. 2, because it reflects the
technology base of [1, 2], which is substantially expanded in the present book, par-
ticularly in Chaps. 4, 6–11, 13–15, 19, 20, and 23. The unique and fundamental
importance of the Silico/Silicon-Dioxide system is emphasized again in Chap. 4
for its lasting significance over the coming decades. Its optimum incorporation for
processing functions in complementary MOS (CMOS) is highlighted in Chap. 4. Its
optimum downscaling for process complexity, stability, speed, voltage and energy
is presented in Chap. 6 for the most advanced realization of fully depleted CMOS
Silicon-on-Insulator (SOI). Such low-power technologies are propelling a variety of
applications, such as energy-autonomous microcontrollers for the IoT (Internet of
Things). A critical aspect here is robustness, as the underlying circuits are typically
operated in subthreshold and at very low supply voltages. Chapter 7 takes a look at
this problem in the context of robust and energy-optimal design using differential-
transmission-gate logic. Finally, manufacturing at the advanced nodes continues to
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Table 1.1 Overview of chapter contributions

Chapter Robust
and
Efficient
Silicon

Real-World
Electronics

Neuromorphic
Architectures

AI
On-Chip
and 3D
Integration

Man-Machine
Cooperation

2 IRDS—International
Roadmap for Devices
and Systems, Rebooting
Computing, S3S

✓ ✓ ✓

3 Real-World Electronics ✓ ✓ ✓ ✓ ✓

4 Silicon Complementary
MOS in its 7th Decade

✓ ✓ ✓

5 Nanolithography ✓

6 The Future of
Ultra-Low-Power SOTB
CMOS

✓ ✓

7 Dealing with the Energy
versus Performance
Tradeoff in Future
CMOS Digital Circuit
Design

✓ ✓ ✓

8 Monolithic 3D
Integration—An Update

✓ ✓

9 Heterogeneous
Monolithic 3D
Nano-Systems: The
N3XT Approach

✓ ✓

10 High-Speed 3D
Memories Enabling AI
Future

✓ ✓

11 3D for Efficient FPGA ✓ ✓

12 Digital Neural Networks ✓ ✓ ✓ ✓ ✓

13 Enabling
Domain-specific
Architectures with
Programmable Devices

✓ ✓

14 Coarse-Grained
Reconfigurable
Architectures

✓ ✓

15 A 1000x Improvement of
the Processor-Memory
Gap

✓ ✓ ✓

16 High-Performance
Computing Trends

✓ ✓ ✓

17 Analog-to-Information
Conversion

✓ ✓ ✓

18 Machine Learning at the
Edge

✓ ✓ ✓ ✓

(continued)
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Table 1.1 (continued)

Chapter Robust
and
Efficient
Silicon

Real-World
Electronics

Neuromorphic
Architectures

AI
On-Chip
and 3D
Integration

Man-Machine
Cooperation

19 The Memory Challenge
in Ultra-Low Power
Deep Learning

✓ ✓ ✓ ✓

20 Multi-Sensor, Intelligent
Microsystems

✓ ✓ ✓

21 High-Dynamic-Range
and Wide-Color-Gamut
Video

✓ ✓ ✓ ✓

22 Update on
Brain-Inspired Systems

✓ ✓ ✓ ✓

23 Energy-Autonomous
Chip-Systems

✓ ✓ ✓

24 Artificial Retina: A
Future
Cellular-Resolution
Brain-Machine Interface

✓ ✓ ✓

25 Augmented and Virtual
Reality

✓ ✓ ✓

26 Cryogenic-CMOS for
Quantum Computing

✓ ✓

27 Quantum
Computing—Large-scale
Quantum Systems based
on Superconducting
Qubits

✓ ✓

28 Man-Machine
Cooperation and
Cognitronics

✓ ✓ ✓ ✓ ✓

29 Efficient
System-on-Chip (SOC)
for Autonomous Driving
with High Safety

✓ ✓ ✓ ✓ ✓

be challenging. The most expensive part, nanolithography, is handled by one of the
Focus Teams in the IRDS structure, and it is reviewed in Chap. 5.

TheCMOS technologybase described inChaps. 4, 6 and7 is essential andvirtually
un-contested for providing continuous future growth, if combined with sustained
efforts in 3D integration for sensing, memory and actuating, all aimed at realizing
intelligent, energy-efficient architectures for real-world electronics.
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1.2 Real-World Electronics

As electronic systems increase their interaction with the real world and strive to
become significantly more power efficient, many of the traditional “brute force”
data acquisition and signal processing approaches are being called into question.
Chapter 3 of this book motivates this general trend and underlines the importance of
log-domain perception, which is further underpinned in Chap. 21 on high dynamic
range video. Chapter 17 advocates the concept of “Analog-to-Information” (A-to-
I) conversion along similar lines as a replacement to conventional analog-to-digital
conversion interfaces, which are bound to hit fundamental efficiency limits in the
coming decade. An instantiation of A-to-I concepts is also found in Chap. 24, which
details a massively parallel and data-compressive interface for cell mapping in the
human retina. Finally, as many modern sensor interfaces to the real world take on
the shape of large arrays, new ways to interface and integrate these with silicon must
be found. Chapter 21 presents a cutting-edge example on a 3D-integrated photonic
system for LIDAR and thereby builds bridges to Chap. 11 on 3D ASICS, as well as
Chap. 29 on autonomous driving.

1.3 Neuromorphic Architectures and the Human Visual
System

Reverse engineering and mimicking the brain has been an intriguing research direc-
tion in our long-standing quest on achieving the ultimate compute efficiency for
intelligent systems. Recently, renewed interest in this topic has been fueled in part
by large investments into the European Human Brain Project as well commercial
activities such as Intel’s Lohi development. Chapters 12 and 22 provide an overview
of these activities and review the state of the art in brain-inspired architectures.

Ultimately, neuromorphic design is linked to our knowledge base in neuroscience,
which nowadays is tightly coupled to progress in brain-machine interfaces and arti-
ficial intelligence research [4]. The dynamics between these fields are as exciting as
ever and are beginning to inform the design of devices that would have been deemed
science fiction not too long ago. An example covered in this book pertains to the
next generation of artificial retina devices as described in Chap. 24. This applica-
tion pushes our silicon capabilities to the limit and may enable the first high-fidelity
prosthesis for restoring sight for age-related blindness. Another strong technology
pull is expected to come from the processing needs for augmented and virtual real-
ity (see Chap. 25), which will potentially redefine how we communicate, collabo-
rate and learn. Chapter 28 expands on this trend with a more general discussion of
man-machine collaboration and cognitronics and its technological needs.
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1.4 AI on-Chip and 3D Integration

The past decade has brought renewed interest in deep neural networks as a corner-
stone in our quest toward artificial intelligence (AI).While some of the core concepts
behind these networks have been established decades ago, they are only now becom-
ing mainstream with substantial application pull. The main factors behind this trend
are the availability of immense amounts of data for training, as well as powerful
computer hardware that can handle these data at high computational throughput.
Figure 1.1 provides a simple, yet insightful cartoon that explains the success of deep
learning. While older algorithms, often based on “hand-crafted” machine learning
features, appeared to be superior with limited amounts of training data, deep learning
approaches have shown unprecedented learning and classification abilities in today’s
environment with nearly unlimited data. Here, it is worth noting that the blue line in
Fig. 1.1 is still sloping upward as of 2020, i.e. the algorithms continue to improve as
we collect and use more training data.

A grand challenge that arises from the aforementioned trend is the insatiable
demand for memory and computing power, which persists across the various imple-
mentation scales of deep learning (servers, gateway systems, edge computing units,
and tiny embedded systems). This book contains a number of contributions that dis-
cuss the underlying challenges and opportunities. Chapters 13 and 14 look at domain
specific and coarse grain reconfigurable architectures (CGRAs) as ameans to provide
the required compute power while retaining a high degree of programmability that
is needed in light of ever-changing algorithms and network topologies. Chapters 18
and 19 zoom in on relevant aspects for low-power edge systems, where the industry
is already actively engaged in the developing custom deep learning processors.

A common denominator across all implementation scales is the challenge of
memory access and data movement. These are discussed in detail in Chaps. 8–11,

Fig. 1.1 The success story of deep learning. Adopted from Andrew Ng, Stanford University



1 The New Era of Nano-chips: Green and Intelligent 7

15, 18 and 19. In conventional 2D chips, designers are currently trying to tackle the
issue using various forms of in-memory computing (see e.g., Chap. 18). For the long
term, however, there is a growing consensus that wemust explore the third dimension
to couple memory and compute more closely. Through Chaps. 8–11 and 15, this
book provides a comprehensive overview of the various competing approaches to
3D integration from chip stacking to monolithic integration.

1.5 Man-Machine Cooperation and Safe Control

The nano-electronic realization of artificial intelligence towards 2030 and beyond is
among the key topics of this book, as already discussed. Inmost application scenarios,
these chip systems are part of a “machine,” as for instance a navigator, a surgery
support system, a prosthesis, a robot, a “carebot” or a vehicle.As all of thesemachines
are trending toward increasingly autonomous actions, effective communication and
cooperation with them becomes essential and critical. Cognitive actions and special
features on both sides, humans and machines, as well as within their class, must be
planned, interpreted and understood in real time. A special overview on this subject
is presented in Chap. 28, while virtually all chapters contain contributions that are
relevant to the construction of such complex and intelligent systems. A leading
system-on-chip for autonomous driving at level 4, which entails avoiding collisions
with other vehicles and pedestrians, is described in Chap. 29. A recurring theme here
is to devise safe architectures that can autonomously adapt to failures and operate in
an error-resilient manner and with robust performance within dynamically changing
and uncertain environments.

To realize the ultimate vision of effective man-machine cooperation, order-of-
magnitude improvements in all aspects within the process technology, circuit and
system stack are needed. We hope that the pathfinding discussions in this book will
help the community to drive the next decade of great opportunities and benefits from
the application and continuing development of nano-chips.
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Chapter 2
IRDS—International Roadmap
for Devices and Systems, Rebooting
Computing, S3S

Bernd Hoefflinger

2.1 International Roadmap for Devices and Systems (IRDS)

The International Technology Roadmap for Semiconductors (ITRS) had been
founded by the Semiconductor Industry Association (SIA) in 1992. This unique,
quantitative strategy of an industry was presented and analyzed in its 20th year in
CHIPS 2020, Chap. 7 [1]. A critical review followed in CHIPS 2020 Vol. 2 [2].
At virtually the same time in 2015, the work of the ITRS groups was terminated.
The hundreds of experts and thousands of trend documents were re-organized in
a new program, managed by IEEE organizations [3]: The International Roadmap
for Devices and Systems (IRDS). It is organized in 12 International Focus Teams
(IFT’s):

• Application Benchmarking
• Systems and Architectures
• Outside Systems Connectivity
• More Moore
• Lithograpy
• Factory Integration
• Yield
• Beyond CMOS
• Cryogenic Electronics and Quantum Information Processing
• Packaging Integration
• Metrology
• Environment, Safety, Health, and Sustainability.

Several of the key IFT’s will be treated in the following sub-sections. Lithography
is addressed in Chap. 5.
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The Executive Summary of 2018 shows a focus on gate-all-around (GAA) MOS
transistors with vertical channels. This has had remarkable success in vertical NAND
FLASH_RAM, where channel quality is not so critical. And it is of interest as an
active vertical 3D interconnect, in particular between memory and logic. For a long-
term 3D strategy 2030–2035, a multiple-transistor-layer topography is proposed,
as shown in Fig. 2.1 [4]. This topography is basically attractive, particularly for
logic because of its short-interconnect lengths, both laterally and vertically. An early
version of this 3D integration was presented in 1985 for the high-density layout of
the NMOS logic for a full-adder (Fig. 2.2) with 12 transistors in three transistor
layers, requiring just 10 pitch-unit squares [5, 6]. This workshop in 1985 in Shujenji,
Japan, remains as a historic highlight with its title: “Future Electron Devices: SOI
and 3D Integration”. These focus areas have remained as top areas, and they make
up two of the three in the S3S Program (Sect. 2.3). The technology-of-choice in 1985
for achieving high-quality vertical growth was selective silicon epitaxy with lateral
overgrowth [6], even more attractive today with lateral overgrowth scaled down to
~25 nm, compared with the published 3D logic of 1992 built with 20 µm lateral
overgrowth [7].

3D integration received significant coverage in CHIPS 2020 Vol. 2 [8], and it is
emphasized further in Chaps. 8–11, 13 and 15 of this book. By contrast, the 2018
Executive Summary expects the dominance of 3D in VLSI logic in 2030 and later
(Fig. 2.1).

Fig. 2.1 3D integration in
the IRDS executive summary
for manufacturing >2030 [4].
© IEEE 2018
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Fig. 2.2 1985 concept for the NMOS logic of a full-adder with 12 transistors on 10 pitch-unit
squares, the equivalent of the footprint of 4 lateral transistors

2.1.1 More Moore

“MoreMoore” means a creative continuation of transistor- and on-chip-interconnect
scaling. As a lesson from the ending of ITRS, the rate of changes has been adjusted,
as is evident in Fig. 2.3.

The data in this figure is related to logic. HP: High-performance logic.
These lateral geometries are dramatic, conservative corrections. Thephysical gate-

length limit of 12 nm confirms the arguments from 2012 [1] and from the review in
[2]. The projected gate pitch, from 54 nm to 40 nm in 2034, reflects the new interest
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Fig. 2.3 IRDS 2018 projected scaling of key ground rules [12]. © IEEE 2019

in lateral gate-all-around (LGAA), vertical GAA transistors (VGAA), as well as
multiple transistor layers. In all these topographies, the transistor bodies and their
interconnects have significant space requirements. These dimensions deliver serious
arguments for

• 10x investments into 3D integration,

in order to achieve sustained progress in performance and energy efficiency. One
example is sketched in Fig. 2.1, projected for 2030 manufacturing. This must happen
earlier.

The performance estimates are concentrated onmulti-core central-processor units
(CPU) as an 80 mm2 System-on-chip (SOC). Figure 2.4 shows the trend towards
hundreds of floating-point units per chip. Integrated liquid cooling is assumed for
maximum throughput of several Tera (1012) floating-point operations per second
(TFLOPS = TFLOP’s/s), and the alternative mode would run with limited power
density, as projected in Fig. 2.5.

Fig. 2.4 Number of
floating-point processing
cores on-chip [12]. © IEEE
2019
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Fig. 2.5 Throughput (TFPO’s/s) of multi-core CPU’s in an SOC [12]. © IEEE 2019

Fig. 2.6 Cross-section and transistor diagram of a 3D 6TCMOSSRAMcell with dual-gate PMOS.
Implementation with selective epitaxy and lateral overgrowth [7]. © IEEE1992

The memory part of the More-Moore report lists all varieties of memory
options, mostly with scaling parameters. Technology solutions, architectures and
AI applications are treated extensively in Chaps. 8–11, 13, 15, and 19 of this book.

The Static RAM (SRAM) is listed as a major challenge in size, energy, and speed
as the standard cache memory in direct co-operation with the processing units. The
6-transistor CMOSSRAM is the highest-speed,most robust, ultra-low-voltagewrite-
readmemory cell. Themost efficient, high-quality 3D implementationwas published
in 1992 [7] and shown in Fig. 2.6. This exemplary memory cell received detailed
treatment in [6], and it is central in Chap. 4 of this book.

Finally, the MM report points to the IFT “Beyond CMOS” for perspectives.

2.1.2 IRDS 2017 Report “Beyond CMOS (BC)”

This report [9] is an elaborate listing, with over one thousand references, of virtually
all enhancements of and alternatives to CMOS for realizations of processing and
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memory. Inputs and outputs should be a voltage, a current or a charge. Inside, a wide
spectrum of solid-state phenomena is considered:

III-V Compound Semiconductors
Tunneling (TFET)
2D layers like Graphene
Carbon Nano Tubes (CNT)
Ferroelectric
Thermal Phase Changes
Superconducting Electronics (SCE), Cryogenic Electronics
Magnetism
Spin
Quantum Effects
MEMS Switches.

Among these, cryogenic electronics and quantum comp computing are covered
in Chaps. 26 and 27 of this book.

In storage tasks, beyondDRAMandMulti-Level, Vertical FlashNVRAM, there is
a larger spectrum of technology alternatives for specific applications. Processing has
some specific applications, where sensing and analog processing are particularly effi-
cient like some IOT’s, wearables and medical (Chap. 24). Digital processing remains
as the biggest challenge, both in von-Neumann and in neural-network architectures.
Here, the report compares many results focused on energy-per-operation and delay.
Figure 2.7 shows these results for a 32-bit Arithmetic-Logic Unit (ALU) (Fig. 2.7).

The ultimate performance target is the lower left corner with a throughput figure-
of-merit (FOM) of 100 TOPS/pJ. The 45-degree lines mean a constant throughput
FOM. CMOS HP, High-Performance = speed-maximized, and Enhanced-CMOS
with various Tunneling-FET technologies show the best results, like the thin TFET
processing unit with an FOM of 1 TOPS/pJ. To calibrate these results, we can refer
to CHIPS 2020 [6], where we identified a potential 16b multiplier with 600 MOPS
(a delay of 1.6 ns) and an energy of 1fJ/operation with key innovations like

• A Leading-Ones-First (LOF) multiplier
• Ultra-Low-Voltage, Differential Transmission-Gate (ULVDTG) Logic,

which offer a 10x improvement in the throughput FOM, as treated in Chaps. 3 and
7. The Thin-TFET results emphasize the attention, which they received in CHIPS
2020, Vol. 2 [2].

The key digital alternatives to standard arithmetic-logic processing units are cel-
lular neural networks (CNN), as shown in the IRDS overview Fig. 2.8. Their more-
up-to-date performance overview is presented in Fig. 3.5, in Chap. 3 of this book,
concentrated on real products with typically 1024 multipliers-accumulators.

As far as processing is concerned, the “Beyond CMOS” Report has the following
assessment of requirements (quote) (Table 2.1).

These criteria make up a strong vote for “Enhanced CMOS”, and the report
concludes (quote):
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Fig. 2.7 Energy/operation (fJ) versus delay (ps) for 32b Arithmetic Logic Units (ALU’s) [9]. ©
IEEE 2018

Fig. 2.8 Energy per CNN (MAC) operation (fJ) versus delay (ns) for cellular neural networks [9].
© IEEE 2018
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Table 2.1 Requirements for “beyond CMOS” technologies, from [9]

• Inversion and flexibility (can form an infinite number of logic functions)

• Isolation (output does not affect input)

• Logic gain (output may drive more than one following gate and provides a high Ion/Ioff ratio)

• Logical completeness (the device is capable of realizing any arbitrary logic function)

• Self restoring/stable (signal quality restored in each gate)

• Low cost manufacturability (acceptable process tolerance)

• Reliability (aging, wear-out, radiation immunity)

• Performance (transaction throughput improvement)

Based on the current data and observations, it is clear that CMOS will remain the primary
basis for IC chips for the coming years. While it is unlikely that any of the current emerging
devices could entirely replace CMOS, several do seem to offer advantages such as ultra-low
power or non-volatility….

These topics are central in all chapters of this boo. Enhancing CMOS gets an extra
treatment in Chaps. 4 and 6.

2.2 Rebooting Computing

The annual International Conference for Rebooting Computing (ICRC) started in
2016. The highlights in November 2018 were [10]:

• Stochastic Computing
• Fault-Tolerant Computing with Interconnect Crosstalk
• Superconducting Optoelectronic Neuromorphic
• Large Fan-In Optical Logic Circuits
• Modular Multiplication with Fourier Optics
• Optical Parallel Multiplier Exploiting Approximate Logarithms
• Image Recognition with Resistive Coupled Vanadium-Dioxide Oscillators
• Molecular Quantum-Dot Cellular Automata
• Hardware-Software Co-Design for an Analog-Digital Accelerator.

These subjects show the longer-term research structure of Rebooting Computing
with practical implications beyond2030.At least one paper addresses the exploitation
of logarithms for multiplication (see Chap. 3).

2.3 S3S—Silicon-on-Insulator, 3D, Sub-threshold MOS

S3S is a working group within IEEE, which started in 2014 with its own annual
conference held in Monterey, California, and producing its own proceedings [11].
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The three columns of S3S are a perfect match with key subjects in our books
CHIPS 2020 and CHIPS 2020, Vol. 2, and they are central in the present book:

• Silicon-on-Insulator: Chapters 3,4,6,7 and 19,
• 3D: Chapters 3, 4, 8–11, 13, 15, 19 and 23,
• Sub-Threshold Operation: [6] and Chaps. 3, 4, 6, 7, 17, 24 and 30.

2.4 Conclusion

The IRDS is a major correction of the ITRS. It is fundamental in projecting a
minimum physical gate length of 12 nm towards the late 20s, and it is realistic
in lateral densities. Important details regarding the nm-meaning in the so-called
“industry logic node” are listed in Chap. 5 on Nanolithography. Rebooting Com-
puting concerns long-term research on alternative technologies. The S3S subjects
Silicon-on-Insulator, 3D, and Subthreshold are treated extensively in this book.
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Chapter 3
Real-World Electronics

Bernd Hoefflinger

3.1 Introduction

Face-to-face with the challenges and opportunities of intelligent systems, electronic
circuits should finally be driven by their real-wold relevance, after a century of
numbers- and math-driven computing including the accident of linear CCD imaging
(after 150 years of logarithmic quality photography and film).

The fundamentally logarithmic real world (Weber’s Law) is leveraged perfectly
in the logarithmic slide-rule, invented 1622 in Cambridge, which reduces multipli-
cations into simple additions. Multipliers are very transistor- and energy-hungry, as
well as time-consuming. It is incredible that world-wide multiplication starts with
the irrelevant least-significant bits (LSB)-first, while human intelligence has looked,
for thousands of years, for the leading numbers first on the Abacus, to immedi-
ately get the order-of-magnitude of a multiplication. Transistor-count, energy and
speed can be improved by an order-of-magnitude each with leading-ones-first (LOF)
multiplication, and we have demonstrated such circuits since the 1990s.

The most multiplier-hungry circuits are multi-layer perceptrons, the dominant
form of digital neural networks. Every synapse multiplies its signal with a weight,
and it is here that the LOF-first multiplier delivers the biggest gains.

The present explosion of digital neural networks presents major challenges
for robust ultra-low-voltage, high-speed, low-energy, scalable digital circuits. We
showed in the year 2000 that ultra-low-voltage, differential transmission-gate
(LVDTG) logic is the most resilient and efficient logic. Wim Dehaene shows in
Chap. 7, how LVDTG continues to hold this leadership.
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3.2 Efficient Electronic Processing of Real-World
Information

The Morse communication, the telephone, radio and television have been an analog-
electronics art for about 100 years into the 1950s, driven by vacuum tubes and
finally by early transistors. Dealing with real-world issues, the quality of signals and
results is determined by our perception of the real world. The technical and scientific
evaluation, control and improvement of this analog world led to the development of
analog computers.

A totally different world evolved with the human need for number crunching,
mostly for trade and money. The support of mathematics has seen endless inventions
ofmathematical systemswithmechanical accelerators. TheMorse zero-one relay led
the number crunchers to the binary digit, which, together with the silicon transistor,
has enabled an unprecedented economic growth and data explosion for 60 years,
based on a one-dimensional Micrometer- and then Nanometer-Roadmap.

This unparalleled growth was described and analyzed in CHIPS 2020, published
in 2012 [1], with clear arguments, why this roadmap would come to halt in 2016. In
the same year, CHIPS 2020, Vol. 2, was published [2], expanding the 2012 quest for
orders-of-magnitude improvements of energy efficiency and intelligent processing
to sustain the growth of an information- and communication-dependent world. These
new priorities have picked up remarkably over the past five years, and they are central
for the present book.

Under the inertia and the dominance of the digital number crunchers, it pays off
to start with the fundamentals of the real world.

3.3 The Perception of the Real World: The Weber
and Fechner Law

The 19th century saw the widest expansion of measuring, perceiving, analyzing,
modelling and mathematically describing our real world. A very central finding
was that our perception and measurement of real-world quantities is governed and
limited by a logarithmic response. On a distance, a weight, a sound or a brightness
of magnitude N, the just noticeable difference dN is a constant fraction of N, say a:

dN/N = a.

If our measured value is y(N), y(N) = a ln(N) + c.

This logarithmic metric of our world has a very long history: Instead of linear
scaling ofmoney, the 1-2-5-10 scaling has been common aswell as the 1-3-12 scaling
of length and the very broad log2 scaling 1-2-4-8-16 and, on the big scale, the decimal
system. In all practical cases of real-world quantities, the knowledge of its magnitude
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(= the leading number) and its relative accuracy are of biggest interest. And the log
or approximate-log system has had its biggest effect over thousands of years in the
task of multiplying two quantities like the weight of something and its unit price.
Inventive manual calculators like the “Abacus”, were designed to get the product
of the leading numbers immediately and then, step-by-step, improve the accuracy
depending on demand. Logarithmic multiplication tables became a big must-have
in the 19th century The biggest jump was achieved with the logarithmic slide rule,
invented in 1622 in Cambridge, which has one bar with a high-quality log scale for
the multiplicand and an identical sliding bar for the multiplicator, which allow the
direct visual addition of the logarithms to read the value of the product.

The twomost important real-world sensing quantities are sound and vision.When
telephony became economic for efficient and robust digital coding, quasi-logarithmic
conversion was invented, and it benefitted directly from logarithmic compression,
more natural listening and better sensitivity at low voice levels. With the A-law or
µ-law standards, the converters (encoders) convert a continuous analog audio signal
with 12-bit dynamic range into 8-bit data [3].

The most significant and essential logarithmic sensing system is the human visual
system (HVS). It converts light intensity (the photon current) with an instantaneous
dynamic range of close to 1Mio./1 into a logarithmic response with just noticeable
differences of 1% over six decades of brightness [4] (measured in cd/m2 or lumen).

TheHVS receives further attention in several chapters of this book. In Fig. 3.1, you
also find the response curve of the High-Dynamic-Range CMOS (HDRC®) sensor
with its instantaneous eye-like response curve over seven orders of magnitude, first
published in 1993 [4–6]. The eye’s real-world-logarithmic response has been adopted
for centuries in the log scaling of aperture and brightness: f = 1.4, 2, 4, 8, 16, ….
And it has been the core in the invention and in the improvement of chemical photo
material to achieve a logarithmic response with a dynamic range of at least 4 orders
of magnitude.

Fig. 3.1 Contrast sensitivity, the derivative of a photoreceptor signal: The HDRC® sensor [4–6]
shows a natural response over seven orders of magnitude (© Springer 2006). Below 1 cd/m2, the
eye achieves sensitivity with long-term adaptation
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The historic consequences of the linear response of the charge-coupled-device
(CCD) imager in 1970 with a dynamic range of less than 3 orders-of-magnitude
(60 db) have been dramatic: The loss of image quality with poor contrast resolu-
tion in shaded regions and quick white saturation in bright regions require multiple
exposures to get a valid frame and, for faster response, parallel sub-pixels for differ-
ent brightness regions. In any event, the seemingly cheap linear CMOS pixels need
at least 3 exposures or 3 parallel sub-pixels to achieve the 7 orders-of-magnitude
dynamic range of the HDRC® sensor or the human eye. Linear electronic vision
not only needs at least 3-times more bits for a valid pixel information. Its response
is also fundamentally alien to any image processing like contour detection. That is
why logarithmic conversion of linear (or piece-wise linear) sensor data has received
attention in logarithmic, perception- or HVS-inspired, efficient image processing [7].
A monograph on Logarithmic IMAGE processing appeared in 2016 [8], and a 2019
example of efficient log data compression was presented in [9], where log gradients
make object detection independent of luminance effects, due to the fundamental that
Log Lightness intensity = Log Luminance + Log Reflectance/Chrominance.

High-Dynamic-Range vision will receive further treatment in Sect. 3.6 and in
Chap. 21.

Besides continuous analog signals, other types of signals merit efficient acquisi-
tion and processing for intelligent understanding and action:

Real-world pulseswith their shapes, amplitudes, frequencies and densities contain
essential information, and they are central in neural systems. Large gains in efficiency
and intelligence are possible in this domain [10–13]. These signals have become an
essential driving force for neuromorphic and brain-inspired processing [14–16].

3.4 Silicon Electronics for the Real World

Our mimicking of the real world—and our efforts to out-perform it—again and
again have led to exploring alternatives to the electron and to silicon. Electrochem-
istry, Ionics, molecular electronics, photonics, and magnetism have received reviews
again, fueled by the end of the nanometer roadmap. In addition to their fundamental
compatibility problems with the real world, these alternatives would need another
50 years to achieve the world ranking andmarket of silicon electronics. Its maturity is
considered by many to be a handicap for further significant and sustainable growth.
Contrary to S-curve economics, this book shows that further quantum jumps and
orders-of-magnitude improvements are on their way and realistic in the 2020s, since

• Intelligent Data have become more important than Bits,
• Neuromorphic Architectures have taken the lead from Von-Neumann Architec-
tures,

• The resulting gains in energy efficiency and performance enable autonomous
systems.
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The unique features of siliconmicroelectronics, their development and their future
were pursued in this chapter of [1] and in Chap. 2 of [2]. The fundamentals are listed
here to check, if they are still un-contested:

• The silicon—silicon-dioxide (and nitride) system of semiconductor and insulator
• This system provides non-volatile data storage
• Practical temperature range −50 °C to +200 °C
• Complementary Transistors (unique history in Chap. 4)
• Photodiode and Solar Cell
• Electromechanical sensing and actuating
• Selective epitaxial growth and overgrowth (no lithography need)
• Power Devices
• Si Substrate for heterogeneous systems (photonics and chip carriers)
• Flexible Chips
• Robustness for 3D integration
• Poly-Si Large Arrays = Displays
• The Si-SiO2 system has been the base for scaling and for the nanometer-roadmap,
and its efficient and creative use enables further sustainable progress.

3.5 From Number-Crunching to Real-World
Multiply-Accumulate

In Sect. 3.2, we pointed out, how efficient real-world multiplication of two numbers
has occupied mankind, and that the Weber-Fechner-law characterizes real quantities
with their relative (percent) accuracy. They are handled most effectively with the
ABACUS in its leading-numbers-first multiply mode or by the slide-rule because of
its log scale. The electronic analog computer, by nature, followed these accuracy laws.
But school arithmetic and its computerized acceleration start with least-significant
numbers (or bits) first, and the result is a multiplier with a complexity that grows
with the product of the word-lengths and a result word-length equal to the sum of the
two. This result is irrelevant in a real-world problem, where the resulting accuracy
is only that of the less accurate factor. Thus conventional multipliers have become a
tremendous waste of resources, energy, calculation-times and chip area.

Multipliers andmulti-input accumulators have become a central problem in digital
neural networks (DNN’s). The early example of a DNN for a lane-keeping assistant
of 1993 [17] with 5 inputs, one inner layer with 15 neurons, and the steering angle
as output needed already 90 multipliers (Fig. 3.2), which motivated the development
of an efficient and high-throughput real-world digital multiplier. The most efficient
logic for this real-world task is the leading-ones-first (LOF)multiplier [18, 19] shown
in Table 3.1.

In a practical DNN, b would represent the instantaneous data, and a would repre-
sent the weight, which changes slowly, in learning or repair, or not at all in certified
operation.
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Fig. 3.2 Digital steering assistant with 21 neurons [17]. All lines mean synapses, multiplying
instantaneous input with weight factors resulting from learning the task. © IEEE 1993

Table 3.1 Leading-Ones-First (LOF) Integer Multiplier with 6b Accuracy. The list of adder
inputs for leading aj = 1 and bk = 1. The complexity is of the order O(62/2), and the adder has a
carry-look-ahead length of 6b, both independent of the data- or weight-word lengths

Integer index j + k −1 −2 −3 −4 −5

aj = 1, bk = 1 1 bk−1 bk−2 bk−3 bk−4 bk−5

If aj−1 = 1a (1) (bk−1) (bk−2) (bk−3) (bk−4)

If aj−2 = 1a (1) (bk−1) (bk−2) (bk−3)

If aj−3 = 1a (1) (bk−1) (bk−2)

If aj−4 = 1a (1) (bk−1)

If aj−5 = 1a (1)

aOtherwise the inputs from this line are 0

The CMOS transistor count and the energy of this LOF multiplier would be 6-
times less than a Booth-Wallace multiplier for a 16 b× 16 b multiplication with 6 b
accuracy (Table 3.2). And the speed would be three times higher. The straight integer
processing is effective for the multi-input accumulators in DNN’s.

• For real-world digital multipliers/accumulators, an order-of-magnitude improve-
ment is possible in transistor count and energy with the LOF architecture.

The benefits of logarithmic computing were presented by the LOGNET results,
based on (log2 4 b) weights in a neural network [20]. (Log2 4 b) weights were also
used in a log computing neural net with highly effective 3D-stacked, low-latency 96
MB SRAM, inductively connected [21]. It should be pointed out that the attractive
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Table 3.2 Transistor counts for standard multipliers and for the precision-oriented Leading-Ones-
First (LOF) “reality” multipliers [18]

Word length n 8 b 16 b 24 b

Standard Booth-Wallace 1600 6400 14,400

LOF 6b precision (1.6%) 10 b precision (0.1%) 540 1030
2100

1620
2700

addition in the log multipliers still needs output decoding for the following accumu-
lators, while the LOFmultiplier uses and produces signals in the standard compatible
form so that no encoding and decoding will be needed.

Further significant gains in energy, throughput and robustness are possible with
ultra-low-voltage, sub-threshold differential transmission-gate logic, as published in
[22–24] and well described in Chap. 7 of this book.

3.6 From 200 EV/Bit in One NVRAM Transistor to 30 Giga
EV Per Long-Dist. Internet Bit

One essence of the energy-efficiency focus in CHIPS 2020, [1, 2], is that the remark-
able progress in electron-volts (eV) per bit in a multilevel one-transistor memory cell
is tough to realize off-chip, and the long-distance Internet bit continues to be very
expensive energy-wise, even with photonics progress. 2018 estimates are shown in
Table 3.3.

The CISCO forecast for mobile and total Internet traffic [25] continues to predict
very large further growth, as shown in Fig. 3.3 for mobile traffic.

The mobile traffic reaches 20% of the total Internet traffic in 2020, and its share
keeps growing. Furthermore, 80%of themobile traffic is videowith an annual growth
of >65%, strongly driven by 5G, which will produce 10-times more traffic than a 4G
phone [26]. Autonomous vehicles are video-driven, enhancing the video challenge.
We quote in Chap. 16 that the Internet needs about 300 GW in 2020, heading towards
>900 GW in 2030, which would then be 21% of the total global electric power. This

Table 3.3 Energy per bit in
electron-volts (eV). 1 eV =
1.6 × 10−19 J (Ws)

Distance Task Electron volt (eV)

100 nm 1 bit SRAM cell 1.000

1 cm Length on-chip 100.000

Brain synapse 60.000

10 cm Circuit board 6M

1 m Computer-rack 50M

1 km Com cell 1G

1000 km Cell-server 30G
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Fig. 3.3 CISCO forecast 2017 for mobile internet Traffic [25]

would mean an extra 100 GW every 3 years, the equivalent of 100 nuclear plants or
100 super wind farms with 200 wheels each or 5000 km2. Considering the energy of
the Internet bit in Table 3.3 and its limited scaling potential over longer distances, we
have to reduce by orders of magnitude the numbers of bits per job or product, which
we send into or request from the Internet. Given the overwhelming video challenge,
we introduced, in Chap. 20 of [2], the energy per video frame as a figure-of-merit.

3.7 From Energy Per Operation to Energy Per Video
Frame

Bits and operations are means to produce a result. In bits- and operations-hungry
video, a quality video frame is such a result. That is, whywe introduced energy/frame
as a figure-of-merit in Chap. 20 of [2]. And we identified six innovations, which are
most critical and which have the largest potential for orders-of-magnitude improve-
ment, as illustrated in Fig. 3.4. These six special efforts are treated in the chapters of
this book, and their progress since 2015 is rated here.

3.8 Efficient, High-Throughput Digital Neural
Nets—a Giant Step for Real-World Electronic
Intelligence

Heterogeneous Mega- to Giga-input information units are the central challenge for
real-world perception and action. Again, vision is the dominant example where a
multi-layer neural net needs Tera-(1012) to Peta-(1015) multiply-accumulate (MAC)
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Fig. 3.4 Illustration (schematic) of potential improvements in energy per video frame with six
special innovation efforts [29] (© Springer 2016)

operations per second to enable satisfactory perception and action. Technology nodes
proceeding to 16 nm have enabled ultra-large-scale integration levels of thousands of
processing units/chip and further towafer-scale integration to realize these processing
nets. Parallelism, an original means to achieve throughput, has become a natural
architecture in DNN’s plus the processing power of the depth of the network. Typical
2019 state-of-the-art performance data is listed in Table 3.4. Awide overview is given
in Fig. 3.5.

Basic conclusions are that

• Arrays of 1024 MAC’s have reached Throughputs of >1 TOPS at efficiency levels
of <1 pJ per operation on 16 b word lengths.

• The word length enters with a quadratic effect into the energy efficiency because
of the area needed for standard multipliers. Going from 8b to 16b means a 4-times
drop in energy efficiency.

• As the figure-of-merit lines in Fig. 3.5 indicate, the area penalty still has a
strong effect: Increasing the number of MAC’s (= throughput) by three orders
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Table 3.4 2020 MAC projection of 2012 [1] and 2019 State-of-the-Art 1000 MAC’s DNN’s

Source Tech.
(nm)

Volt
(V)

MAC’s Word
bit

Acc.
bit

Throughput
TOPS

Efficiency
fJ/operation

FOM
POPS/nJ

Song et al.
[27]

8 0.5 1024 8 b 1.9 86 fJ 13.9

Yamada
et al. [30]
ch.29

16 0.4 1024 16 b IEEE 1.6 1 pJ 1.6

Hoefflinger
[1]

10 0.4 1 16 b 6 b 0.0007 1 fJ 0.7

Fig. 3.5 Throughput and Energy Efficiency of Digital Neural Networks [16]. © IEEE 2019

of magnitude, raises the energy needed per operation by estimated two orders of
magnitude.

In spite of or just because of the remarkable progress and development inten-
sity since 2016, the state-of-the art provides strong arguments for the innovations
emphasized in this chapter and central in other chapters of this book:

• Reduce word lengths in video with HVS-driven log image acquisition and
processing.

• Use real-world LOF multipliers with 10x less transistors and area and 3x higher
speed.

• Use ultra-low-voltage, sub-threshold, robust differential-transmission-gate CMOS
design with highest efficiency and speed.

• Push 3D integration for drastically reducing signal paths.

Table 3.4 shows the projection for 2020 of a 16b LOF-multiplier needing just
1 fJ for a throughput of close to 1 GOPS (Sect. 3.6 in [1]). In chips like [27], the
individual 8 b MAC has to run at ~1 fJ to enable 86 fJ in the 1024-MAC-system.
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The implementation of all the innovations just listed, enables
Two orders-of-magnitude improvement in energy efficiency and 10-times

higher throughput in the 2020s for 1024 MAC’s Digital Neural Networks.

3.9 Conclusion

The progress in the design and realization of learning DNN accelerators, typically
with 1024 MAC-type processors, has been so strong that neural-network-inspired
architectures have taken over the lead in solving real-world problems from math-
model-based, number-crunching von-Neumann computers.

This has been one big step: Real-world-inspired intelligent electronic process-
ing. Other well-known fundamentals of real-world perception and their electronic
Implementation have also been demonstrated in the 1990s: The logarithmic metric
of real-world information is overwhelmingly alive in human vision. The log HDRC®

CMOS sensor [4] surpasses the human eye in dynamic range and in robustness. The
benefits of log imaging are manifold [4, 8], and three orders-of-magnitude improve-
ments in energy-per-video frame can be identified.One further benefit of log imaging,
which naturally creates the additive superposition of log luminance and log chromi-
nance, is the high-dynamic-range (HDR) display, effectively used in the invention of
the two-layer HDR display with the LED luminance panel and the LCD chrominance
panel [28], the basis of DolbyVisionTM.

The other log invention to be re-vitalized in digital electronics, is the slide-rule,
invented in 1622, best implemented in the binary integer leading-ones-first (LOF)
multiplier.

Finally, more emphasis on 3D integration of the memory-processor system allows
dramatic improvements.
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Chapter 4
Silicon Complementary MOS into Its 7th
Decade

Bernd Hoefflinger

4.1 The Complementary NMOS/PMOS Transistor Pair
and the Quad

The magic behind the digital world is the binary on-off switch in computer science.
The electronic engineers concentrated on the voltage control of an ideal inverter with
a perfect ONE, a perfect ZERO, a transitionwith infinite voltage gain, offering a noise
margin of 50% of the supply voltage, infinite current gain with both a high pull-up
and pull-down current, for charging and discharging the following gates (Fig. 4.1).

The original patent directly shows the pair of complementary NMOS and PMOS
transistors connected for the inverter function:

Input = #100 = VI, Output = #101 = VO.

Fig. 4.1 The original patent of 1963 by Frank Wanlass for a planar integration of NMOS and
PMOS transistors with junction isolation [12]. © USPTO
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Fig. 4.2 Simplified transfer characteristics of aCMOS inverter [4]with transistor threshold voltages
VTN and VTP, not considering the essence of the more-and-more important sub-threshold operation
for the optimum energy efficiency. © Springer 2012

The classical modelling of the transfer characteristic of this inverter is shown in
Fig. 4.2 with the threshold voltages VTN and VTP and a minimum operating voltage
VTN + VTP and a transition region with infinite voltage gain.

It is good to remember this ideal characteristic, because it was behind the invention
of the CMOS inverter in 1963. CMOS technology advanced quickly into digital
watches because of their low supply voltages and minimum currents of logic gates,
outside their switching moments. Robust, readily computerized, effective design of
fully complementary logic gates enabled a niche industrywith the reputation of being
expensive because of the number of processing steps, starting with 20 µm in the late
60s. Nevertheless, two specialties were promoted early [15]:

Silicon-on-Sapphire:

Perfect isolation of the PMOS and NMOS transistors, minimum parasitics because
of the sapphire insulator as well as radiation hardness because of minimum transistor
volumes [1]. The predecessor of today’s SOI-CMOS [3] and Chap. 6.

The CMOS Static Random-Access Memory (SRAM):

The cross-coupled CMOS transistor pair is the most robust binary memory cell
with perfect full-swing differential data levels, minimum standby power, maximum
drive capability for lowest latency. The 6-transistor cell including the differential
access transistors is shown in Fig. 4.3. The first 64 b chips were presented in 1968,
and it has kept its performance lead ever since because of its scalability and low-
voltage compatibility. The quad of 4 transistors is also the core of the differential
output drivers in the ultra-low-voltage differential transmission-gate (LVGTG) logic
(Sect. 4.3 and Chap. 7).
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Fig. 4.3 6-transistor CMOS SRAM memory cell [4]. © Springer 2012

Because of the high transistor count of standard CMOS logic, it had a slow pene-
tration against the leading NMOS technologies, until voltage down-scaling for tran-
sistor scaling and power reduction became a serious issue in the 80s, as shown in
Fig. 4.4, where CMOS standard cells became convenient and effective for CAD.

Fig. 4.4 MOS technology nodes and supply voltages [7]. © Springer 2016
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For scaled-down CMOS standard-cells, the supply-voltage range 2018 has
become 0.7–1.2 Vwith losses in circuit speed so that new, efficient circuit techniques
have become a challenge, which is addressed comprehensively in Chap. 7.

4.2 Fully Depleted Silicon-on-Insulator (FD-SOI) CMOS

The cost of a silicon-on-sapphire wafer made this 1964 invention of SOI-CMOS an
expensive specialty. The Si-SiO2-Si system became the technology direction because
its interfaces received sustained, sophisticated research and development since the
early 70s, exemplified by the Silicon Interface Specialists Conference, the origin of
today’s S3S program [2]. One key for efficient Si-on SiO2-on Si wafer production
became the Smart-Cut process of 1995 [1], developed in Grenoble, France, which
had already been a center of the sapphire era, and which is a leading SOI center today
[3].

The ideal MOS transistor would have its Gate All Around (GAA) its channel.
For Ultra-Large-Scale Integration (ULSI), this transistor topology has been realized
in regular memory structures like Vertical NMOS NAND Flash-RAM. For general-
purpose and complementary MOS ULSI circuits, with

• Optimum gate—hi-k oxide—channel quality,
• Minimum lateral parasitics,
• Minimum substrate leakage,
• Highest lateral density,
• Maximum frequency, equivalent to the ratio of transconductance (drain current
over gate voltage), divided by the transistor capacitance,

• Minimum switching energy,

the fully oxide-isolated, thin fully-depleted-channel MOS transistor with buried-
oxide (BOX) bias is the optimumMOS transistor for down-scaling and low-Voltage,
high intrinsic-speed operation. This transistor type is the reference transistor in [4],
including the highly critical variance of nm-size n- and p-channels with only a few
doping atoms inside the channel for threshold control. The state-of-the-art of FD-
SOI nano-circuits with typically 5 nm channel thickness and physical gate lengths
of 10–20 nm has been covered in the tutorial [3] (Fig. 4.5).

Fig. 4.5 Schematic cross-section of a FD-SOI CMOS technology with body-bias [3]. Black:
oxide isolations. VBN: back-bias voltage for NMOS transistor, VBP: back-bias voltage for PMOS
transistor. © IEEE 2018
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The bandwidth capability of 22 nm FD-SOI transistors is shown in Fig. 4.6 with
a maximum frequency of 330 GHz in a comparison with a 14 nm FinFET reaching
220 GHz, which, by construction, has a higher intrinsic capacitance in spite of a
shorter channel length.

Furthermore, a comparison of a bulk CMOS microprocessor with an FD-SOI
microprocessor in CHIPS 2020, Vol. 2, of 2016 [5] shows that the more ideal SOI
transistors deliver a factor two in energy efficiency per operation together with a two-
times higher frequency (Fig. 4.7). The future of this Japanese FD-SOI technology,
CMOS on Thin Buried Oxide (SOTB), is treated further in Chap. 6 of this book.

The increase in energy below 0.35 V shows the limits of on-off current control in
the sub-threshold operation of multi-input MOS gates, where gate voltage changes

Fig. 4.6 The maximum
frequency of a 22 nm
FD-SOI transistor in
comparison with a 14 nm
FinFET [3, 13]. © IEEE
2018

Fig. 4.7 The
energy-per-operation of a
microprocessor as a function
of the supply voltage [5]
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of typically 150 mV are needed to change the drain currents by a decade (Chap. 3 in
[4]). This limit provides motivation for

• Other types of CMOS logic (the following section and Chap. 7),
• High-k gate insulators
• Lower temperatures (cooled CMOS)
• Tunneling FET’s
• Enhance Si.

Other low-voltage limits of CMOS standard-cell logic are the variance of nano-
transistors (Sect. 3.2.1 in [4]), zero noise margins, no rail-to-rail outputs, and, most
seriously, drastic reductions in switching speeds of high fan-in gates. As a conse-
quence, efficient and robust ultra-low-voltage CMOS design became an issue in
the 80s with a major breakthrough published in 2000 [6], with an overview in the
following section.

4.3 Ultra-Low-Voltage Differential Transmission—Gate
(ULVDTG) CMOS Logic

The ULVDTG CMOS logic, [4, 7] and Chap. 7, has the specific features of

• Minimum robust supply voltage
• Rail-to-rail output voltages
• Highest noise margin
• Highest drive capability
• Highest speed
• Minimum energy per operation
• Best figure-of-merit: Ratio of Speed over (Energy/Operation).

An exemplary gate from the 2000 publication [6] is shown in Fig. 4.8.

Fig. 4.8 A differential transmission gate logic element from a manchester-carry chain with
differential inputs and outputs [6]. Quad = cross-coupled CMOS inverter pair. © IEEE 2000
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Fig. 4.9 The energy/pixel in a 16 b JPEG encoder with ULVDTG CMOS logic in 40 nm SOI
technology [8]. Still the world’s leading result, status 2019. © IEEE 2014

The “Quad” is the cross-coupled CMOS transistor pair, which is also the heart of
theSRAMmemory cell, for rail-to-rail output signalswithmaximumdrive capability,
independent of gate fan-in [4, 6, 7].

The most remarkable results for this logic were presented in 2014 for a JPEG
coder [8].

In a 40 nm SOI technology, a minimum supply voltage of 210 mV, with minimum
energy/pixel at 330mVwas achieved in a production-style test of 20wafers (Fig. 4.9).
Typical of the ULVDTG CMOS minimum transistor sizes and robust gate-output
drive capabilities, the speed penalty at very low supply voltages is less serious than
in standard-cell CMOS logic, where it is heavy [9].

A strategic overview of ULVDTG CMOS logic is presented in Chap. 7 of this
book.

4.4 The CMOS SRAM Cell and 3D CMOS

The cross-coupled pair of complementary MOS transistors, which we called the
“Quad” in CHIPS 2020 [4], the heart of the SRAM cell (Fig. 4.3) (and the output
of the ULVDT Gate, Fig. 4.8), has been identified as a key benchmark item in the
IRDS Report “More Moore” [10] (Fig. 4.10).

High-density SRAM’s have been realized since 1980 with poly-silicon transistor
layers on top of a high-quality NMOS base layer. The poly-Si PMOS transistors,
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Fig. 4.10 Cross-section and transistor diagram of a 3D 6T CMOS SRAM cell with dual-gate
PMOS. Implementation with selective epitaxy and lateral overgrowth [14]. © IEEE 1992

with their reduced conductance, still enabled the “active pull-up”, and in a further
layer, poly-Si NMOS transfer transistors played the cell-selection role.

The epi-grown, monolithic, high-quality cell has been projected to the 10 nm node
for 2020 [11] with

• A footprint of 120 F2 = 12 mm2/Gb
• Access time 0.6 ns
• Supply voltage 0.3 V (standby 0.1 V)
• Dynamic energy 7 eV/bit.

This energy of 7 eV/bit continues to be the lowest realistic energy for a memory
cell with write- and read-capability.With a write- and read-voltage of 300mV, sub-ns
write and read, it is perfectly compatible with ULVDTG 300 mV logic for a local
memory. This most energy-efficient combination of logic and memory would benefit
significantly from the optimum 3D building block of four transistors, the “Quad”,
identified as a benchmark in in the IRDS IFT “More Moore” [10].

4.5 Conclusions

Nano-CMOS technology with fully depleted transistor channels and a body back-
bias delivers robust low-voltage operation with the best energy efficiency and highest
speed. Ultra- low voltage differential transmission-gate logic in 3D communication
with local 3DCMOSSRAM, both at 300mV, provide orders-of-magnitude improve-
ments in intelligent operations/s/W. The transistor bandwidth >300 GHz enables
transceiver integration.
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Chapter 5
Nanolithography

Bernd Hoefflinger

5.1 IRDS Lithography Roadmap

One of the International Focus Teams (IFT’s) of the International Roadmap for
Devices and Systems (IRDS) [1] is the one for “Lithography” [2]. In its 2017 Report,
it gives a summary on the presently valid critical dimensions for lithographic realiza-
tion on wafers. A comparison of this data with the ITRS (International Technology
Roadmap for Semiconductors) [3, 4], shows the major shift and corrections, which
had to be made since 2009. They indicate also many of the challenges. Some of the
aggressive items of the ITRS roadmap of 2009 are evident in Table 5.1, in particular
the physical gate lengths below 10 nm. The arguments against this scaling were a
fundamental issue in CHIPS 2020 [3, 4]. The corrections are now clearly visible
in Table 5.2, representing the data valid in 2019, where physical gate lengths are
16 nm in 2021 and settling at 12 nm. The density of transistors and interconnects is
represented by the half-pitch = (line-width + space)/2.

Regarding the half-pitches, the goals have been shifted by three to five years, and
a settling is noticeable in the mid 20s for

Table 5.1 Short Overview of the ITRS 2009

Long-term years 2018 2020 2022 2024

Flash poly Si ½ pitch [nm] 12.6 10.0 8.0 6.3

MPU/ASIC first metal ½ pitch [nm] 15.0 11.9 9.5 7.5

MPU physical gate length [nm] 12.8 10.7 8.9 7.4

From CHIPS 2020 [3]. © Springer 2012 [1]
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Table 5.2 Short overview of the 2017 LITHOGRAPHY REPORT of the IRDS [2]

Year of production 2021 2024 2027 2030

Logic industry node labeling (nm) “5 nm” “3 nm” “2.1 nm” “1.5 nm”

DRAM minimum half-pitch (nm) 17.0 14.0 11.0 8.4

2D flash half-pitch (nm) 15 15 15 15

Flash 3D channel half-pitch (nm) 80 <80 <80 <80

MPU/ASIC metal half-pitch (nm) 12 10 7.0 7.0

Physical gate length HP logic (nm) 16 14 12 12

Contact CD after etch (nm) 12 10.5 7.0 7.0

• Min. physical gate length 12 nm,
• Min. metal half-pitch 7 nm (not contacted),
• Min. contact CD 7 nm.

The most confusing new quantity is the Logic Industry Node in nm.
Its specifications are shown in Fig. 5.1.
The “7 nm” Logic Node, for production in 2019, correlates with a min. physical

gate length of 16 nm and with a high-performance (HP)-logic metal half-pitch of
14 nm. So product announcements need careful reading of which nano-meters are
meant. The lithography options in Fig. 5.1 are

• 193 nm QP: Deep UV Immersion Quadruple Projection,
• NIL: Nano-Imprint Lithography,
• EUV SP: Extreme UV (13.5 nm) single-projection,
• EUV DP: EUV Double projection,
• DSA: Directed Self-Assembly.

EUV has been introduced into volume manufacturing, after reported 2Mio. pro-
cessed wafers [5] until then, in 2018 by one supplier (ASML, ZEISS) and three
customers, serving the “7 nm” industry node with 18 delivered systems and 40
planned for 2019.

5.2 EUV Lithography

Extreme ultra-violet (13.5 nm) lithography has had a unique, dramatic R&D and
investment history with several critical reviews, among them one in [6], and with
a comprehensive coverage in “EUV Lithography 2nd Edition” [5], published in
2018. A schematic graph of an EUV exposure system with reflective-mirror optics
is presented in Fig. 5.2 [5].

The source needs a high-power (>100 W) CO2 laser. It is focused on Tin (Sn)
droplets, falling at a rate of 50,000/s, producing a plasma, which sends 13.5 nm radi-
ation to the illumination. The 4x mask has a numerical aperture of 0.0835, enabling
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Fig. 5.1 Industry product nodes, typical half-pitches and lithography options [2]. © IEEE 2017

an aperture of 0.33 at the wafer-level. The system has many serious challenges, cov-
ered in the >600 pages of [5]. We select two state-of-the-art results for the optics to
illustrate requirements:

The precision of themirrors is illustrated in Fig. 5.3 [7]. Themirror diameters have
reached >1 m in 2018, and their surface root-means-square (rms) non-uniformities
have advanced from 0.3 nmin 2012 to <0.1 nm in 2018. The EUV reflecting mask
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Fig. 5.2 Schematic of an EUV lithography system [5]. © SPIE 2018

Fig. 5.3 EUV mirror uniformity, generations from 2012 to 2018 [7]. © SPIE 2018

is precision-etched at 4x magnification into a multilayer MoSi2/Si surface of 50 bi-
layers with an individual thickness variation of 0.03 nm (see Fig. 5.4), delivering a
peak reflectance of 70%.

EUV lithography manufacturing systems for the “5 nm” Industry Node” have
been under construction since 2018 for manufacturing of minimum structures of
12 nm in 2021.

Besides the exciting optical system, EUV has several other essential subjects,
treated in [5]:

• Metrology
• Mask Making
• Pellicles
• Contamination
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Fig. 5.4 Reflectance of a multi-MoSi2/Si bi-layer mask [7]. © SPIE 2018

• Photoresist
• EUV Scanners.

All of these subjects make this lithography the core of selected manufacturers for
aggressively down-scaled, high-volume and highly valued chip products.

5.3 Conclusion

The IRDS Lithography roadmap of 2017 has introduced an ambitious, but more real-
istic roadmap for minimum physical gate lengths of 12 nm and minimum contact
holes of 7 nm in 2030. In any event, 2018 saw the introduction of volume manufac-
turing with EUV lithography for the leading industry “7 nm” node with a minimum
half-pith of 14 nm by three leading chip makers. These leaders, together with the
EUV providers ASML + ZEISS, will implement the roadmap. The major drive
towards 3D integration (Chaps. 8–11, 13 and 15) will introduce new patterning and
alignment techniques as well as self-assembly.
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Chapter 6
The Future of Ultra-Low Power SOTB
CMOS Technology and Applications

Nobuyuki Sugii, Shiro Kamohara and Makoto Ikeda

6.1 Ultra-Low-Power CMOS in IoT Front-End Devices

The numbers of Internet-of-Things (IoT)1 connected devices are reported to be about
15 billion in 2015 and continuously increasing with a high CAGR (compound annual
growth rate) of ~10% or more [2–4] as shown in Fig. 6.1. The major functions of
the IoT frond-end devices are sensing data and actuating something from/to the real
physical world in the cyber-physical systems [5]. The actuating part may employ
various types of devices such as displays and mechanical assemblies. The sensing
part is usually comprised of sensors, analog front-end circuits, analog-to-digital con-
vertors, edge processors, and data-transmission circuits. The data transmission often
uses wireless communication to avoid any wiring, and for the same reason, the sens-
ing part is better working without outer power supply, by using batteries or energy
harvesters (EH). Since thewireless communication consumes relativelymuch power,
in the operation with a standalone (battery or EH) power source, decreasing the data
transmission rate is an effective way to reduce the power consumption of each IoT
connected device. The use of the edge processing with ultra-low-power consumption
has thus drawn much attention in recent years as well as decreasing latency for the
data communication like the 5G technology.

1The term “Internet of Things” was firstly used by Kevin Ashton in 1999 [1], while the term has
become widely known in the early 2010s.
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Fig. 6.1 Annual growth forecast of number of connected devices [2–4]

Continuous progress of semiconductor devices, especially, CMOS integrated cir-
cuits (ICs) with an aggressive miniaturization, has enabled both the performance
improvement and decreasing the power consumption. It is well known, however, in
the recent generations, the increase in the performance-per-power efficiency has been
slowed down as the article named “The Free Lunch Is Over” [6] clearly depicted. As
seen in Fig. 6.2 on the power and power-performance efficiency of top-class super-
computers [7], the maximum performance is dominated by available power: about
20MW, thismaximumpower level has been unchanged in recent years. This situation
(power-limited performance) is common from a large-scale supercomputer system
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to a tiny IoT sensor-node device. In the large system, the performance is dominated
by the available power from the power grid and also by the cooling capability, and
in the standalone wireless sensor node, the performance is determined simply by the
battery life or the maximum generating power of EH. The only way to increase the
performance for each system, regardless of its size or capacity, is thus to improve
the performance-per-power efficiency.

6.2 Available Power for a Standalone Sensor Node
and Power Requirement for a Micro Controller Unit

In the battery-operated system, in general, life of the battery (or interval of charging
cycle for the rechargeable battery) is determined by the average current.2 Figure 6.3
depicts the life of popular small-size batteries as a function of average current. Con-
sidering the battery life (or charging interval) of about one year, the average current
of about 100 μA will be required. For the devices powered by EH, the situation is
similar. The available power of popular EH sources is on the order of 100 μW [8].
Note that the photovoltaic cells are most powerful among the EH sources, however,
the available power by indoor light stays on the same level.

In order to decrease the average current consumption to the above mentioned
level, it is useful to reduce the working duration of wireless communication since the
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Fig. 6.3 Battery life as a function of average current

2In the general system with a series regulator connected to a power source, the power due to the
difference between supply and operating voltages is consumed in the series regulator, and thus
the total power consumption is proportional to the current consumption. On the other hand, in the
system with a power management using a dc-dc converter, the battery life is determined by the
average power consumption of the system.
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power consumption of wireless communication is in general tenth or hundredth of
mW level. For most of the sensing nodes, the required data are not continuous, and
thus intermittent operation of sensing and data transmission is a realistic solution.
Reducing the power for the data processing at the sensing node (edge) is important
as well, and this is the main topic of this chapter. In the standalone sensor node, a
micro controller-unit (MCU) is usually used.

Let us consider the required power consumption level of an MCU for this pur-
pose. The power efficiency metrics for MCU are in general active current per clock
frequency (μA/MHz) and standby current (μA). Considering the target power con-
sumption level of 100 μW to 1 mW, operation voltage at or less than 1 V, and clock
frequency of 10 MHz or more, that is, the typical operation conditions of an MCU
for the IoT sensor-node application, the active current level of 10–100 μA/MHz is
required. Since the power consumption of the sensing node does not drop to zero due
to the leakage current even for the intermittent operation, the standby current ofMCU
should be considerably low. Although most of MCUs have multiple sleep modes to
reduce the standby current, it is essential to reduce the leakage of CMOS circuits
themselves, and thus the low-leakage CMOS device technology is important. In the
next section, the factors to reduce both the active and standby powers (currents) of
the CMOS unit circuit are briefly reviewed.

6.3 Energy Efficient CMOS Operation

The power consumed by the CMOS circuit has two components, that is, active
(dynamic, or switching) and leakage (or static) power. The power consumption of
CMOS inverters, as a representative of CMOS circuits, can be expressed as

P = n
(
αCloadV

2
dd f + IleakageVdd

)
, (6.1)

where n is the number of transistors, α is an activity factor (including time averaged
active ratio of transistors), Cload is the load capacitance, V dd is the operation (or
supply) voltage, f is the clock frequency, and I leakage is the leakage current. Note
that the power due to the short-circuit current

(
Isc ∝ (Vdd/2 − Vth)

2
)
is omitted for

simplicity. The energy consumed by a logic (switching) operation is more important
than the power because it directly reflects the efficiency of the information processing.
Divided by αf, the energy per a single switching operation (energy per cycle) is thus
written as,

E = n
(
CloadV

2
dd + IleakageVdd/α f

)
. (6.2)

The first and second terms correspond to active and leakage energies, respectively.
In the same technology node (feature size of CMOS integrated circuits), Cload is
constant and thus decreasing the V dd is effective for decreasing the active energy. On
the other hand, to minimize the leakage energy, the operation frequency should be
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taken into account. Let us consider the operation at themaximumoperating frequency
here that is determined by the propagation delay time tpd of CMOS circuits,

tpd ∝ CloadVdd/(Vdd − Vth)
m, (6.3)

where V th is the threshold voltage assuming a symmetrical CMOS operation: V th =
V thp = −V thn where V thp and V thn are threshold voltages of p- and n-typeMOSFETs,
respectively, and m is a factor taking the velocity saturation into account. For the
recent CMOS technologies, the m value is about 1.2.

The energy E in (6.2) is thus determined by V dd, V th, and f where Cload and α

are assumed to be constant. Although f can be arbitrarily set, in order to minimize
E, f should be maximized within the range satisfying (6.3). As an example, E as a
function of V dd and V th behaves as shown in Fig. 6.4 [9]. As indicated by the energy
contours and a dashed line, the optimal combination of V dd and V th is determined
according to the required frequency. The absolute minimum energy point (MEP) is
also shown in the graph, however, this point lies at near the condition where V dd is
slightly less than V th (so called sub-threshold operation), and its frequency is very
slow.Apractically useful approach is thus to follow the dashed line to increase f at the
expense of the increase in E. This means that V th should be controlled together with
V dd. The only way to control V th within the conventional CMOS circuit operation
scheme is applying back bias.

Fig. 6.4 Minimum energy point and energy contours © 2005 IEEE [9]
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6.4 Suitable CMOS Technology Node for IoT Front-End
Devices

The miniaturization of the CMOS technology has enabled to decrease Cload, and
together with decreasing V dd, the active energy has significantly reduced. The leak-
age energy, however, has been rather increased for the recent highly scaled gener-
ations due to tunnel leakage around the gate electrode, short-channel-effect related
subthreshold leakage, and so on. By taking the required frequency and the acceptable
leakage-current level into account, one can determine the optimum CMOS technol-
ogy node and its technology flavor such as general purpose or low standby power.
There are many reports on the energy minimizing in various technology generations,
for example, following the conventional scaling model, the energy at MEP decreases
with decreasing the technology node from 65 to 22 nm [10], whereas in the low-
energy dedicated design (subthreshold logic), the energy at MEP hits the bottom at
90 nm [11]. The change of the MEP behavior with different technology nodes is
schematically shown in Fig. 6.5 as another example. In this calculation, the typical
65 and 28 nm processes of relatively high performance and relatively low leakage
processes, respectively, are assumed. The typical parameters are: relative Cload of 1
and 0.25, V th of 0.25 and 0.15 V, and subthreshold swing of 75 and 85 mV/decade,
respectively. For the performance-dedicated applications, it is preferred to use more
advanced process, 28 nm in this figure, and the energy at MEP is higher and also the
voltage of MEP is higher (at 0.6 V). On the other hand, for the low-energy dedicated
applications, the voltage of MEP is about 0.4 V or less. The minimum energy can
decrease whereas the clock frequency is not so high. For the IoT front-end device
applications, the low-energy dedicated option will be preferred.

In addition to the above energy-performance trade-off, the production cost is
another factor to choose the adequate CMOS technology. In the past generations,
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the most advanced process, that is, most miniaturized process, was the most cost-
effective option. In the recent few generations, the situation has been different. There
is a report that the lowest cost for an IC diewith a high-volume production is achieved
in the 65 nm process [12]. Although the situation may change by the maturity of the
advanced CMOS processes and circuit design technologies, staying on at 65–40 nm
nodes is currently the preferred option for the IoT front-end device applications.

6.5 The Variability Issue that Hinders Low-Voltage
Operation

As discussed in the previous section, decreasing the operation voltage V dd to that of
the MEP condition is an important approach for the energy efficient CMOS ICs. The
CMOS scaling, however, has brought another important issue: statistical character-
istic variability of transistors. In the ultra-large-scale ICs with the most advanced
process, the number of transistors exceeds billions. Decreasing the characteristic
variability of transistors is thus crucial problem to operate the ICs without any func-
tional errors, especially for low-voltage operation since the voltage margin should
be minimized. There are many reports on the lowest operating voltage taking the
variability into account. The lowest voltages of both logic and static random-access
memory (SRAM) circuits have rather increased in the recent CMOS technologies
[10]. Among many types of CMOS transistor characteristics, variability of V th is
most important. It is well-known that the V th variability is defined as [13]

σ Vth = AVT /
√
LW , (6.4)

and in the conventional bulk MOS transistor, it can be written as

σ Vth ∝ tox N
1/4
imp/

√
LW , (6.5)

where σV th is the standard deviation of V th, AVT is the Pelgrom coefficient, L is the
channel length, W is the channel width, tox is the gate-oxide thickness, and N imp is
the impurity density of the channel region.

If we follow the ideal scaling rule [14], tox, L, andW decrease and N imp increases
at a constant rate by generation. This device scaling strategy inherently increases
σV th slightly by generation [15]. Moreover, in the recent generations, tox has not
been scaled down sufficiently due to the increase of gate leakage current. This fur-
ther increases the σV th. It is thus very difficult to decrease the V th variability with
the conventional bulk MOS transistors. Using the transistor structures with a fully-
depleted (FD) channel is a possible solution because, in these structures, the transistor
characteristic can be controlledwithout increasing the channel impurity densityN imp,
and thus σV th can be significantly decreased as indicated by (6.5).
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6.6 SOTB Technology

It is a long history to commercialize the FD transistors. There were several impor-
tant proposals regarding the transistor structures of FD or a reduced impurity-density
channel in the late 1980s–early 1990s: for example, the intrinsic-channel (epitaxi-
ally grown channel) structure of the bulk MOSFETs [16], the planar double-gate
structure [17], and the DELTA structure [18]. Note that the DELTA structure is the
original name that is now well-known as FinFET with three-dimensional channels.
As a family of the planar FD transistors using an SOI (silicon on insulator) wafer
with a very thin BOX (buried oxide) layer, and adding new features of a high V th

controllability and a high compatibility with the existing bulk CMOS technology,
the SOTB (Silicon on Thin Buried Oxide) transistor was proposed in 2004 [19]. The
schematic cross section of the SOTB structure is shown in Fig. 6.6.

The advantages of SOTB transistors are listed as follows:

1. Excellent short-channel-effect (SCE) immunity due to better electrostatic control
enabled by thin SOI and BOX layers and a underlying ground plane (GP).

2. Small V th variability and low sensitivity to SOI-thickness variation due to a low
N imp SOI channel.

3. Flexible V th control by N imp and depth profile of the GP region.
4. Back-gate-bias control by applying voltages to the GP regions of p- and n-

type transistors through the V bp and V bn terminals. Deep n-well region secures
separation between the two GP regions if proper back-gate bias voltages are
applied.

5. A hybrid bulk transistor can be integrated on the same wafer by removing the
SOI andBOX layers. Patterning the gate electrode and shallow-trench isolation of
bothSOTBandhybrid bulk transistors can be done because step-height difference
between the SOTB and hybrid bulk regions is small due to thin SOI and BOX
layers.

Fig. 6.6 Schematic cross section of SOTB transistors. Hybrid bulk transistors are shown. SOTB
transistors are used in low-voltage (< ~1.5 V) logic and analog circuits including SRAMs. Bulk
transistors are used in peripheral, ESD-protection, high-voltage analog and power circuits, on-chip,
flash memory, and reuse of legacy circuits
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6. The planar layout of transistors and logic cells is the same as that of the existing
bulk technology.

7. High soft-error (single-event-upset) immunity against a high-energy-particle irra-
diation such as alpha particles and neutrons due to the thin active (channel) layer
separated from the substrate by the BOX layer.

Proper V th control is important to solve the performance and power trade-offs as
described in Sect. 6.3. In the SOTB technology, the V ths of different flavors such as
those suitable for ultra-low-voltage (V dd down to 0.4 V) or ultra-low leakage (off-
current down to pA/μm level) operations are controlled by selecting proper high-k
gate-stack materials and changing the impurity density of the GP region [20].

Back-gate-bias controllability is an important point of the SOTB transistor design.
In the SOTB structure, the GP layers act as back-gate electrodes. To achieve high
back-gate bias controllability, it is important to thin down the BOX-layer as well as
decreasing the depletion-layer thickness in the GP layer under the whole range of
the bias voltages because the depletion layer also acts as a dielectric layer between
the channel and the back gate. In the typical SOTB transistor design, for example,
the back-gate-bias coefficient (γ )3 is about 0.16 for the design with 10-nm BOX
thickness and nearly uniform impurity-density profile of 1 × 1018 cm−3 in the GP
region just below the BOX layer [15].

The range of back-gate-bias voltage is limited by the leakage current between
the two GP layers through the deep n-well. The voltage difference, V bp − V bn (see
Fig. 6.6), depends on back-bias voltage (V bb) and operation voltage (V dd), where
V bp = V dd − V bb and V bn = V bb. In the reverse back biasing to increase V th (V bb

< 0), V bp is positive, and V bn is negative. In such a case, the junction between the
nGP and pGP is reversely biased. In the forward biasing condition, V bn > V bp, that
is, V bb > V dd/2, the junction is positively biased. The maximum applicable positive
back-bias voltage is thus limited to the condition V bn − V bp < 0.5 (built in potential
of pn junction); that is, V bb < 0.25 + V dd/2. A significant amount of leakage current
flows from the pGP to the nGP when this condition is not satisfied. To apply higher
forwardV bb, The flip-well structure (the conduction types of the GP layers in Fig. 6.6
are swapped each other) was proposed [21]. The forward V bb significantly increases
the maximum clock frequency of circuits, but also increase the static leakage current.
The flip-well technology is thus suitable for high-performance applications. In the
SOTB technology in this section, the normal conduction types of the GP layer are
preferred since the static leakage reduction by the reverse back biasing is important
for the IoT device applications.

3γ is defined as ∂V th/∂Vbb. at around Vbb = 0.
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6.7 Reduction of V th Variation and Ultra-Low-Voltage
SRAM Operation

The V th variation of SOTB transistors was demonstrated to be about half of the bulk
transistors of the same size both for p- and n-types [22]. Recent results [23] with the
effect of back biasing are shown in Fig. 6.7. It should be noted that the V th variation
under reverse back biasing at V bb = −2 V, that is effective for the static leakage
reduction of a few orders of magnitude, is the same as that at V bb = 0 V.

It is known that the low-voltage operation of SRAM is more difficult than the
general CMOS logic circuits as indicated in [10]. It is thus important to investigate
the lowest operation voltage (Vmin) of SRAM to verify the effect of the characteristic
variability reduction. For the SOTB SRAM of 0.54 μm2 area of the conventional
6-transistor layout, the Vmin of 0.37 V was reported [22]. It was demonstrated that
thisVmin can be achieved by controllingV bb regardless of temperature variation from
−30° to 80 °C. Figure 6.8 shows the Vmin of SOTB SRAMswith different V th flavors
(high speed or low leakage). Lower Vmin even at higher V th than bulk SRAM was
demonstrated.

It should be noted that the SOTB SRAM can store the data at very small leakage
current level (cell leakage about 1.2 pA [22]) by applying a proper reverseV bb. Taking
advantage of this feature, the SOTB SRAM can be used as a pseudo-nonvolatile
memory in the specific applications.

Fig. 6.7 V th distribution of
one-million n-type SOTB
transistors compared with
bulk transistors of the same
size © 2017 IEEE [23]
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Fig. 6.8 Vmin (VDDmin) of SOTB SRAMs compared with bulk SRAMs © 2017 IEEE [23]

6.8 Circuit Design Environment and Open Shuttle Activity

The design flow of the SOTB ICs can be built based on that for the bulk CMOS
technology of the same technology node. The electronic design automation (EDA)
tools and their file formats are completely the same as the existing ones from the
register transfer level (RTL) to the layout (graphic database system: GDS). The
circuits including both the SOTB and the hybrid bulk transistors can be designed at
a time.

The design (mask) layer, layout rules and their verification files (including the
antenna effect) should be revised or added to match the characteristics of SOTB.
There are a few additional points to be specially considered related to the back-gate
biasing. The location and distance of the back-gate-bias voltage taps are important
design points for compromising the back-gate voltage stability and the integration
density. These are generally embedded in the layout rule file and the standard-cell
layouts. In some applications using different back-bias voltages in fine grained back-
bias domains (that will be shown in Sect. 6.11), the spacing between the deep-n-well
islands is preferably decreased, and it is also a trade off among the size, the leakage
current, and the range of the back-bias voltage [24].

The compact model of transistors is indispensable for the circuit design with high
accuracy of both timing and power estimation. Currently available transistor mod-
els for bulk transistors cannot be used accurately for the SOTB technology because
the transistor characteristics under various back-bias voltages cannot be reproduced.
New SPICE (Simulation Program with Integrated Circuit Emphasis) models for
the SOTB and related thin-BOX FDSOI transistors with back biasing, namely,
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HiSIM-SOTB [25] and BSIM-IMG [26], have thus been developed. Both models
are based on a surface-potential expression and they represent well the behavior of
transistor characteristics with varying back-bias voltages.

Detailed studies on circuit design such as body-biasing schemes, delay variability
reduction, signal voltage design on ultra-low-voltage macros, energy minimization
have been reported [27–31]. Moreover, various types of circuit designs have been
implemented using the SOTB shuttle service operated by the University of Tokyo
in collaboration with Renesas Electronics Corp. from FY 2015 [32]. About 12 chip
designs per shuttle run were fabricated in FY 2018. This shuttle is not restricted
to academia, but can be used for the commercial proto typing. Most of the circuit
design examples that will be mentioned in the later sections are demonstrated using
this shuttle service.

6.9 MCU with Back-Gate Bias Control

A low-energy-consumption central processing unit (CPU) core for theMCU applica-
tion was demonstrated using the 65-nm SOTB process [33]. The CPU core consists
of an in-order 5-stage pipeline, and 4 blocks of 32 kword × 9 data memory. The
scale of integration for this 32-bit CPU core is 50.1 kgate logic and 144 kB SRAM
arrays and the area is 2.1 mm2. As shown in Fig. 6.9, the core is functional down
to V dd = 0.22 V at 1 MHz clock frequency, whereas the same core fabricated by
the conventional bulk process operates down to 0.5 V. The MEP of the SOTB core
is 13.4 pJ/cycle at V dd = 0.35 V as shown in Fig. 6.10, which corresponds to 38
μA/MHz. This is a good number for the IoT application chip (see Sect. 6.2). The
optimization of the energy is done by controlling the back-gate bias V bb. The sleep
current is only 0.14μA at V dd and V bb of 0.35 and−2.5 V, respectively. Considering
the intermittent operation, the average current consumptions for the activity (ratio

Fig. 6.9 Maximum
operating frequency of 32-bit
CPU core fabricated by
SOTB and bulk technologies
[33] © 2014 IEEE (same
figure as Fig. 2.10 (a) in
CHIPS 2020 Vol. 2)
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Fig. 6.10 Energy per cycle of 32-bit CPU core fabricated by SOTB and bulk technologies [33] ©
2014 IEEE (same figure as Fig. 2.10 (b) in CHIPS 2020 Vol. 2)

of wakeup time) of 0.1, 1, and 10% are 0.52, 3.94, and 38.1 μA, respectively, and
these are suited for both the battery- or EH-powered operations. Note that the current
consumption of the V bb generator circuit should be taken into account for this type
of operation, because the generator should work throughout in the standby state.
It was reported that the current consumption can be less than 1 μA [34], and thus
this current consumption level is negligibly small. These data, low energy and sleep
current, proves that the SOTB technology is a suitable for the energy-efficient MCU
in the IoT applications.

The advanced MCU chip design equipped with an on-chip V bb generator and
various peripheral circuits was demonstrated [23]. Assuming the application with
the EH power source and rf communication, the process and operating conditions
of SOTB is slightly modified (with higher V th) from those of [33]. The scale of
integration for this MCU chip is 64 kgate 32-bit CPU logic and 64 kB SRAM.
The maximum operation frequency can be controlled by V dd and V bb as shown in
Fig. 6.11. At V dd and V bb of 0.75 and 0 V, respectively, the maximum frequency
is 75 MHz and the active current is 37 μA/MHz. The leakage currents at V bb = 0
and −1.5 V are 4.3 μA and 45 nA, respectively. In this design, due to higher V dd

and frequency than the design of the previous paragraph [33], the energy per cycle
might be higher than MEP, nevertheless, it provides a practically useful option (the
active current is the same level), as far as the available supply voltage matches the
requiredV dd (for example, using the dry cell of 0.8 V end voltage). In the aboveMCU
designs, the nonvolatile memory macro, usually used to store the program code, are
not implemented. In these chips, however, the code can be fetched from the SRAM
and it can be stored taking advantage of a very small leakage current by applying the
reverse V bb.
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Fig. 6.11 Maximum clock
frequency of MCU chip as a
function of Vdd and Vbb ©
2017 IEEE [23]

Table 6.1 Comparison of energy and current consumption of various 32-bit CPU cores

Technology 65 nm SOTB 32 nm bulk 180 nm bulk

SRAM (kByte) 128 64 16 16 3 3

E (pJ/cycle) 13.4 27.8 170 347 28.9 37.4

f clock (MHz) 14 70 60 500 0.073 1

Vdd (V) 0.35 0.75 0.45 0.8 0.4 0.5

Active current (μA/MHz) 38.3 37.01 377.8 433.8 72.3 74.8

Standby current (μA) 0.14 0.045 9330 25,000 0.00025 0.00092

REF [33] [23] [35] [36]

The energy and current consumption of the CPU cores are compared in Table 6.1.
It is remarkable that both the active and standby currents for the SOTB CPUs are
small.

6.10 MCU with Embedded Memory

In many applications using MCUs, the embedded nonvolatile memory is useful for
storing the program code, parameters and the various data, from the sensors for
example. Taking advantage of the hybrid bulk integration capability of the SOTB
technology, the conventional embedded flash-memory macro can be integrated with
the SOTB MCU core. The integration of a two-transistor type metal-oxide-nitride-
oxide-silicon (MONOS) flash memory macro was demonstrated [37]. A new sense
amplifier and a data transmission circuit were designed to utilize the SOTB’s low-
energy and low-voltage capability. The memory operates at 64 MHz, and its read
energy and current are 0.22 pJ/bit and 6.32 μA/MHz (32 bit bus).

There are various types of embedded memory candidates, among them, the code
memory using the atom switch of lower energy than the conventional flash was
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Table 6.2 Comparison of various MPUs with embedded flash memories

Technology 65 nm SOTB 130 nm bulk 180 nm bulk

Memory type MONOS Atom switch FeRAMb ReRAM

ROM capacity (kByte) 1500 16 16 64

Read energy (pJ/bit) 0.22 0.14 – –

CPU (bit) 32 32 16 8

Vdd (V) 0.75 0.39 1.8 1.8

f clock (MHz) 64 25 24 10

Total energy (pJ) 35.8 18.3 147.6 378

CPU energy (pJ) 27.8 13.8 – –

Active current (μA/MHz) 43.32 46.8 82 210

Standby power (μW) 0.034 0.63 4.8 0.11

Standby current (μA) 0.045 1.57 2.67 0.06

REF [23, 37]a [38] [40] [41]

aCurrent consumption and energy were simply added to the data of [23, 37] by the author and not
the reported values
bFeRAM: Ferroelectric RAM

demonstrated [38]. The atom switch is a family of the resistive random-access mem-
ory (ReRAM) utilizing the polymer electrolyte and metal (copper and ruthenium)
electrodes. The advantages are a low writing voltage as low as 2 V and a high on-off
ratio. The 32-bit MCU test chip with the atom-switch code memory was fabricated.
The chip can operate at 25 MHz at V dd = 0.39 V. The energies per cycle for memory
and total (memory and logic) are 4.48 pJ (0.14 pJ/bit) and 18.26 pJ, respectively. The
latter corresponds to the active current of 46.82 μA/MHz. Moreover, the nonvolatile
programmable-logic circuits can be embedded with the atom-switch technology on
the SOTB CMOS platform [39]. This circuit acts as an off-loader to improve the
total energy efficiency (the same processing with less clock cycle) compared with
the CPU-only circuits. Table 6.2 and Fig. 6.12 compare the performances of various
MPU chips with different technologies and types of the embedded flash memory.

Finally in this section, the features and properties of the first commercial MCU
chip of the SOTB technology are briefly described [42]. The CPU core is the Cortex
M0+ (32 bit, two-stage pipeline) with a 1.5 MByte flash memory and 256 kByte
SRAM. It operates up to 64 MHz, and the active and the standby currents are
20μA/MHz and 200 nA, respectively. The energy performance seems to be improved
from [23]. Various peripheral IP (intellectual property) cores are also embedded in
the chip: analog-digital converters (ADCs), digital-analog converters (DACs), a tem-
perature sensor, timers, serial interfaces, display interfaces, and security functions,
as shown in Fig. 6.13. The unique feature of the chip is the embedded EH controller.
Various types of harvesters and an energy-storage capacitor can be controlled by this
chip. Due to the outstanding low-power performance, this chip seems to be a very
suitable option to be used in the IoT front-end devices.
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Fig. 6.12 Benchmark of active and standby currents for various MCUs [23, 32, 42]

Fig. 6.13 Block diagram of commercial MCU chip on SOTB technology [42] (SRAM: Static
Random-AccessMemory, ADC:Analog-Digital Converter, Vref: ReferenceVoltage, DAC:Digital-
Analog Converter, GPT: General PWM Timer, PWM: Pulse Width Modulation, LED: Light Emit-
ting Diode, FIFO: First-In First-Out, SPI: Serial Peripheral Interface, IIC: Inter-Integrated Circuit,
QSPI: Quad SPI, USB: Universal Serial Bus, DMA: Direct Memory Access, CRC: Cyclic Redun-
dancy Check, IWDT: Independent Watchdog Timer, WDT: Watchdog Timer, TSIP: Trusted Secure
IP, TRNG: True RandomNumber Generator, AES: Advanced Encryption Standard, MPU:Memory
Protection Unit)
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6.11 Reconfigurable Circuits

In this section, the circuits are described, where the back-bias control has a strong
effect for the optimization of performance and power (especially, static power).
The reconfigurable circuits, such as the field-programmable gate array (FPGA), are
widely used. It is well known that the flexibility and the power-performance effi-
ciency are a trade-off relationship. For example, the hard-wired logic circuits such as
the application-specific integrated circuit (ASIC) are overwhelmingly efficient com-
pared to the software-defined circuits such as the microprocessor. However, there
is no flexibility of changing the function of the circuits. Moreover, high required
number of production for the custom ICs like ASIC is another obstacle for the small-
volume products. The FPGA is a good compromise for this tradeoff and it is thus
widely used. To optimize the power efficiency in the reconfigurable circuits, how-
ever, there is a problem to solve. In the design of the hard wired logic circuits, the
designer can select the technology options, that is, V th flavors, in each specific part of
the circuits. In general, the critical paths are found through the timing analysis, and
the low-V th transistors are used only in these critical paths. By selecting proper V th

options, the performance and power of the circuits can be optimized. In the reconfig-
urable circuits, however, the speed requirement in each processing element (PE) is
not determined at the time of the circuit design. In the conventional FPGA, therefore,
all the PEs need to set to have the highest speed: low V th. Since not all the PEs need
to work with full activity in most of applications, there is a huge power loss in the
conventional FPGA.

The independent back-biasing in each PE is thus a strong way to reduce the power
consumption of the reconfigurable circuits. The important insight of the back-biasing
for these circuits is that only the performance of the PEs in the bottle-neck process
is needed to speed-up, and at the same time, the other PEs are better to a slow-
down (with reverse back biasing) to reduce leakage power while securing the total
performance (clock frequency).

The significant improvement of the power efficiency for FPGAswas demonstrated
with independent back biasing for each PE in the FPGA, named Flex-Power FPGA
[43] using the 65 nm SOTB process. The schematic architecture of the Flex-Power
FPGA is shown in Fig. 6.14. Each PE has a body bias (back bias) selector connected
to the body bias voltage lines for p- and n-type SOTBs (V bp and V bn). By using the
specially designed mapping tool for the Flex-Power FPGA, the circuit is mapped on
the look-up table of the FPGA. At the same time, the critical paths are found and
the proper body-bias-selector information is also mapped. As an example, the result
for the 32-bit binary counter is shown in Figs. 6.15 and 6.16. The counter operates
from 14 to 72 MHz at V dd from 0.5 to 1.2 V, respectively. It should be noted that
the frequency does not change with the reverse back-bias voltages (VRBB). This
is because the above mapping software sets the reverse-bias flags only for the non-
critical paths. The static power can be reduced by the reverse bias by from 59 to 80%
for V dd of 1.2 and 0.5 V, respectively, as shown in Fig. 6.14. The detailed analyses
on performance and power of the Flex-Power FPGA are described in [44].
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Fig. 6.14 Schematic FPGA architecture with independent back-biasing © 2016 IEICE [43]

Fig. 6.15 Operation frequency of Flex-Power FPGA with different back-bias voltages © 2016
IEICE [43]
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Fig. 6.16 Static power reduction by back biasing in Flex-Power FPGA © 2016 IEICE [43]

Another significant power saving, regarding the reconfigurable circuits with the
back-biasing,was demonstrated on the reconfigurable accelerator circuits namedcool
mega array (CMA) [45]. There are various types of the reconfigurable circuits: FPGA,
dynamic reconfigurable processor array (DRPA), etc.,with different time scales of the
reconfiguration action. The CMA is designed as an off-loading processor of various
image or sensing data dedicated for the low-power battery operating applications
by reducing the power from those of the existing DRPAs (but without dynamic
reconfigurability). The block diagram of CMA is shown in Fig. 6.17. It has a large
PE array without memory elements for mapping the data flow of the application
program, and has a small programmable micro controller for the data management.
Results for the typical image processing (alpha blender, sepia filter, and gray-scale
filter) are shown in Fig. 6.18. The maximum performance of 743 MOPS/mW, which
corresponds to 1.35 pJ per operation cycle, is achieved at V dd = 0.5 V with the
optimized back-bias voltage application. Note that the curve in this graph is similar
to the behavior of energy per cycle versus V dd as shown in Figs. 6.5 and 6.10. The
image processing on an evaluation board was demonstrated using lemon batteries
[45] or indoor solar cells.

In the back-bias operation of these reconfigurable circuits, the granularity of the
back-bias domains is an important design point. Considering the effect of the back-
biasing, it is ideal that all the domains should be independently controlled, however,
this has a high area penalty. The optimization of the domain division size is inves-
tigated for CMA [46]. The sizes are selected from 1 × 1 to 4 × 4, where their
area penalties varied from 12 to 1%. Figure 6.19 shows the power reduction ratio
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Fig. 6.17 Block diagram of a CMA © 2015 IEEE [45] (ALU: arithmetic and logic unit, SEL:
switching element)

Fig. 6.18 Performance of the CMA for various image processing with and without back-biasing
© 2015 IEEE [45]

compared to the case that all the PEs operate under zero back-bias voltage for var-
ious image processing algorithms. The back-bias voltages are optimized for each
algorithm and each power domain. Although the results are slightly different for the
algorithms, where the usage of PEs is different, they clearly depict that there are
optimum domain sizes for different algorithms with both low power and small area
penalty.



6 The Future of Ultra-Low Power SOTB CMOS Technology … 67

Fig. 6.19 Power reduction ratios under optimal back bias compared to zero back bias for CMA
of various domain division sizes © 2016 IEEE [46] (alpha: 8-bit alpha blender and af: 24-bit RGB
alpha blender)

6.12 Data Processing Circuits

Low-power data processors for data query, pattern matching, database operation,
signal processing, etc. are important building blocks in the IoT edge processing. As
well as the parallel operation by general-purpose computing on graphics processing
units (GPGPU) and FPGA, dedicated data processing units are useful in terms of
higher energy efficiency. In this section, the data processing circuits based on the
content-addressable memory (CAM) and the coordinate-rotation digital computer
(CORDIC) algorithm are described.

The CAM-based pattern matching system for two-dimensional image search is
implemented on the SOTB technology [47]. The system consists of a CAM block, a
shift circuit, multiplexers, anAND logic, and a finite-statemachine (FSM) controller.
The CAMmemory block is designed by using the two-port SRAMmacro of the 65-
nm SOTB technology library. Back-bias flexibly controls the active performance
under the operation state, and a reverse bias of −1.2 V reduces the leakage current
down to 2μA (0.2mAwith zero bias) under the standby state. Table 6.3 compares the
performance of the system with that of the bulk 65-nm process. Significant increase
of energy efficiency (more than ×5) with comparable search-time performance is
achieved by the SOTB technology.

The bitmap indexing is a kind of database index that is used for improving the
speed of database retrieval, and is useful for various data analytics. The bitmap index
creator (BIC) chip with high energy efficiency was demonstrated [49]. The block
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Table 6.3 Performance comparison of CAM-based pattern matching systems

Technology 65-nm SOTB 65-nm bulk

Vdd 0.4 V 1.2 V

System size 256 word × 8 bit 128 word × 512 bit

Area 1.6 mm2 1.62 mm2

Search time 520 ns (256 patterns) 283 ns (128 patterns)

260 ns (128 patterns, est.)

Power 0.59 mW (12 pJ/search) 3.39 mW

Reference [47] [48]

diagram of the BIC core is shown in Fig. 6.20. This core is used to index N records
by M given keys. The record R1 is fed into the CAM with all M keys. If R1 contains
some keys, bit flags turns on (one by one for all the M keys) at the specific positions
of M × N bit matrix that is finally stored in the BI memory. The chip fabricated
by the 65-nm SOTB technology operates at 41 MHz (at V dd = 1.2 V) and 10 MHz
(at V dd = 0.4 V) where energy consumptions are 163 and 19 pJ/cycle, respectively.
Remarkably small standby power of 2.64 nW (0.31 pW/bit) is achieved at V dd =
0.4 V with reverse back bias of −2 V.

An adaptive CORDIC-based FFT (fast Fourier transformation) macro was imple-
mented on the 65-nm SOTB technology [50]. By utilizing both forward and reverse
back biasing, the active energy performance and the leakage can be optimized. The
clock frequency is 43 MHz at V dd = 1.0 V with zero back bias where the energy is
10.27 pJ/cycle. The energy can be decreased to about 3 pJ/cycle by decreasing V dd

down to 0.5 V and controlling V bb to satisfy the required delay. Table 6.4 compares

Fig. 6.20 Block diagram of the BIC core (TM: transpose matrix, CU: control unit, TU: transpose
unit) © 2019 Elsevier [49]
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Table 6.4 Performance comparison of FFT macros [50]

Technology Bulka Bulka SOTB

Architecture Look-up Table Look-up Table Adaptive CORDIC

Area (μm2) 203,013 211,379 86,721

Delay (ns) 5.70 6.06 23.25

Vdd (V) 1.1 1.1 0.75

Power (mW) 173.63 194.92 1.03

Energy (pJ/cycle) 1736 1949 10.3

Reference [51] [51] [50]

aThe data scaled to match the 65-nm bulk technology

performances of the FFT macros. A remarkable reduction in energy is demonstrated
by both the Adaptive CORDIC architecture and the SOTB technology.

6.13 Security Circuits

It is widely accepted that the IoT devices should be robust in terms of security against
any attack via the network or outside of the device physically. There are various
studies on the circuits regarding the security. This section describes typical circuits
such as encryption and physically unclonable function (PUF) of ultra-low-power
consumption suited for the IoT devices.

The advanced encryption standard (AES) is widely used as an encryption method
[52]. Area penalty, encryption speed, and low power are main issues on the AES
encryptionmacros. TheAESencryption circuitswith a simple clock-gating technique
were implemented by using the 65 nm SOTB process [53, 54]. The performances
of the 8-bit AES encryption circuits are compared in Table 6.5. Significant energy
reduction is achieved by the 65 nm SOTB technology while keeping the frequency
relatively high.

Table 6.5 Comparison of performances of 8-bit AES encryption circuits

Technology Number of
gates (kgates)

Vdd (V) Frequency
(MHz)

Energy
(μW/MHz)

Reference

65 nm SOTB 2.6 0.55 130.9 0.40 [53]

130 nm bulk 3.2 1.2 130.0 30 [55]

22 nm tri-gate 2.0 0.9 1133 11.8 [56]

65 nm bulk (0.012 mm2)a 0.5 11.0 1.33 [57]

aThe number of gates might be the same as [53] because the area is similar
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Fig. 6.21 Signature generation time, operating frequency, power and energy consumptions for
ECC circuits implemented on 65-nm SOTB technology © 2016 IEEE [58]

The generation circuits of elliptic-curve cryptography (ECC), with smaller key
size than the conventional RSA that is widely used for digital signatures, were devel-
oped as a suitable candidate for the small IoT devices [58, 59]. By the improvement
of the signature generation architecture and the optimization of V dd and V bb utilizing
the 65-nm SOTB technology, smaller energy and faster signature generation time
(T sig) is demonstrated. Figure 6.21 plots signature generation time, operating fre-
quency, power consumption, and energy consumption per one-signature generation
as a function of V dd for the ECC circuits [58]. The minimum energy is 1.68 μJ at
V dd = 0.3 V and T sig = 2.3 ms. On the process with higher V dd flavor [59], the
signature generation speed increased about 10 times higher while the energy twice.
The performances of the ECC circuits with Galois field of 256 bits are compared in
Table 6.6. Among the circuits of the state-of-the-art technologies, the ECC circuits
with the SOTB process are advantageous for both the generation time and energy.

The physically unclonable functions (PUFs) can be used for IC authentication like
a fingerprint preventing from counterfeit. Among various types of PUFs, the PUF
using the silicon technology, in general, generates the individual identification data
extracting from the characteristic variability of each chip, such as the power-on initial
value of SRAMs or the delays of gates. The low-power PUF macro is implemented
on the 65-nm SOTB technology [63]. The circuit consists of two chains of selectors
generating a delay variation and a flip flop acting as an arbiter, as shown in Fig. 6.22.
A concern arises on implementing the PUF on SOTB, that is, the SOTB’s small
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Table 6.6 Performance comparison of ECC circuits with a Galois field of 256 bits

Technology Number of
gates
(kgates)

Vdd (V) Frequency
(MHz)

T sig (μs) Energy (μJ) Reference

65 nm
SOTBa

1575 0.75 98.0 76.0 9.32 [59]

65 nm
SOTBa

1575 0.45 76.0 210 3.28 [59]

65 nm
SOTB

2493 1.1 105 325 13.9 [58]

65 nm
SOTB

2493 0.3 14 2300 1.68 [58]

90 nm bulk NAb NA 157.2 320 NA [60]

90 nm bulk 168 1.2 256 1890 80.0 [61]

90 nm bulk 168c 1.2 256 740 20.0 [61]

90 nm bulk 342c 1.2 214 0.29 57.0 [62]

aSOTB technology for low-standby-power application (with higher V th and nominal Vdd)
bImplemented on Stratix II FPGA
cGalois field of 160 bits

Fig. 6.22 Block diagram of PUF circuit © 2017 IEEE [63]

variability can deteriorate the uniqueness of the PUF. The result shows that the
identification error rate is rather high in the voltage range as the conventional bulk-
CMOS, however, by applying the reverse back-bias or decreasing the V dd, the error-
rate decreases due to increasing the delay variability. This means that the SOTB PUF
can be used under the condition of lower voltage and lower power consumption than
the conventional bulk PUF. The USB stick sized PUF module is also implemented
by using this technology [64].
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6.14 Analog and Rf Circuits

In this section, various analog and rf circuit implementations are described.
ADCs (analog-digital converters) are indispensable parts in MCUs, and

successive-approximation-register (SAR) type or �-� type ADCs are frequently
used. A very low power �-� modulator circuit was demonstrated [65]. Figure 6.23
shows the block diagram. By adequately controlling the back-bias voltages, the mid
rail is tuned to half V dd with the symmetrical operation of inverters that drive the
switched capacitors, and this enables very low V dd operation. The modulator oper-
ates at V dd = 0.5 V and achieves 910 nW power consumption (0.07 μW/MHz) and
the conversion figure of merit (FoM) of 46 fJ/conversion.

A voltage-controlled oscillator (VCO) with back-bias control was implemented
on the 65-nm SOTB technology [66]. As shown in Fig. 6.24, the VCO consists of
a ring oscillator. Figure 6.25 shows oscillation frequency and current consumption.
They are controlled by the back-bias voltage, where V c,dif = V bp − V bn and V c,com

= (V bp + V bn)/2 = V dd/2. The oscillator operates at V dd = 0.55 V with the tuning
range from 377 to 556 MHzand achieves FoM = −158 dBc/Hz. This FoM value is
the best among the CMOS ring-type VCO operating less than 1.0 V.

An ultra-low-power rf receiver and transmitter for wireless sensor node are
described. The on-off-keying (OOK) modulation is a simple modulation scheme and
suitable for low-power applications. A 312–315 MHz receiver circuit was designed

Fig. 6.23 Block diagram of the �-� modulator. Two integrators, 1 bit DAC, and a comparator are
composed of back-gate controlled inverters without differential amplifiers © 2017 IEEE [65]
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Fig. 6.24 Block diagram of a ring-type VCO © 2017 IEEE [66]

Fig. 6.25 Oscillation
frequency and current
consumption controlled by
back-bias voltage © 2017
IEEE [66]
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Fig. 6.26 Block diagram of a CMS-OOK transmitter © 2018 IEICE [68]

on the 65 nm SOTB technology [67]. Post-layout simulation showed −58.5 dBm
sensitivity with 1.36 and 8.39 μW power consumption corresponding to 10 kbps
and 100 kbps data rate, respectively. The code-modulated synchronized (CMS)-
OOK modulation transmitter with a normally-off intermittent operation scheme is
implemented using the 65-nm SOTB technology to significantly reduce the power
consumption of the transmitter [68]. The digital part is implemented on FPGA. By
employing the CMS scheme as shown in Fig. 6.26, a ring-oscillator type internal
carrier oscillator with relatively high jitter can be used. This enables to turn the car-
rier generator on quickly (reducing the on duration of rf transmission) and to reduce
the power consumption in the intermittent operation. Also, the peak output power
can be reduced by diffusing the carrier frequency with the back-bias of triangular
waveform. A signal modulation via back-bias terminals is a unique feature of SOTB
for analog application. As a result, −62 dBm/MHz peak power spectrum density at
15 MHz bandwidth is achieved. The chip consumes 83 μW in average according
to 83 nJ/bit at 1 kbps data transmission. (The analog part of the power amplifier
operates at 1.0 V, and 0.75 V for the rest of the part.)

The dynamic thresholdMOSFET (DTMOS) operation can be donewith the SOTB
technology by applying the same signal as the front gates to the back gates. The rf
energy-harvesting circuit is implemented by using the SOTB DTMOS [69]. This
harvester consists of three-stage cross-couple rectifiers as shown in Fig. 6.27 con-
nected in series. The rf signals collected from an antenna are fed into V IN terminals
and the rectifier outputs a dc voltage from the VDC terminal. The nodes (N1, N2,
P1, and P2) are boosted by additional two floating nodes (not shown) of the similar
structure as in Fig. 6.27 to improve the rectifying operation in a small input power
range. The experimental result shows that the output dc voltage exceeds 1000 mV at
input 954-MHz power of −9 dBm. With the 18-cm dipole antenna collecting rf in
the laboratory environment, the output voltage is 130 mV.

The low-frequency noise characteristics of SOTB have been extensively studied
[70]. Figure 6.28 shows distribution of the drain-current normalized current noise
intensity for bulk and SOTB MOSFETs. Due to the low impurity density of the
channel region, the variation in the noise characteristics is smaller than in bulkCMOS.
Although the median value of noise is higher than in the bulk due to an additional
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Fig. 6.27 Circuit schematic of cross-couple rectifier © 2019 IEEE [69]

Fig. 6.28 Cumulative frequency distribution of drain-current normalized current noise intensity
(Sid/I2d) in bulk and SOTB MOSFET. a Weak inversion state and b strong inversion state © 2018
JSAP [70]

interface between channel and the BOX layer, considering the variability tail, the
noise characteristics of the SOTB is better.

6.15 Soft-Error Reliability

There are various reliability issues on silicon CMOS. In the FDSOI structure like
SOTB, there are additional reliability issues such as, the bias temperature instability
related to different electric field in the SOTB transistor from that of the bulk CMOS
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[71, 72], the antenna effect (plasma damage during the fabrication process) [73, 74],
and the gate-oxide reliability of the hybrid bulk CMOS fabricated on the exposed
surface by removing the SOI and BOX layers [75]. In addition to these transistor pro-
cess related issues, the soft error, especially, the single event upset (SEU) of SRAMs
and logic circuits is a serious reliability problem for ICs. The SOI CMOS transistors
have inherently a higher soft-error immunity than the bulk CMOS transistors because
of its structure with the BOX insulating layer that prevents most of the charges gener-
ated by the ion incidence from flowing to the channel. In this section, the soft error of
SRAMs, logic circuits, and combined effects for the chip-level soft-error immunity
are described below.

The SEU caused by alpha and neutron irradiation on the SOTB SRAM is thor-
oughly studied in comparison with the bulk SRAM of the same footprint [76]. The
SOTB SRAM can operate at low voltage down to ~0.4 V [22], however, this can
increase the risk of a soft error versus the conventional bulk SRAM operating at
higher V dd such as 1.0 V. The measurement results for both alpha and neutron irra-
diation show that the soft-error immunity of the SOTB device is superior to that of
the bulk SRAM. In the SRAMs that require high reliability, the error correction code
(ECC) is implemented. If multiple memory cells in a row are attacked at a time by
a single particle incidence, however, there is some possibility that the ECC cannot
completely work. The multiple cell upset (MCU: not the micro controller unit in
this section) is thus a significant point to be considered for the SRAM reliability. As
shown in Fig. 6.29, theMCU rate (FIT: failure in time) for the SOTB SRAM is lower
than that of the bulk SRAM. Complete dielectric separation between transistors by
both the shallow trench isolation (STI) and the BOX layer in the FDSOI transistor
contributes to reduce the risk of MCU. This result suggest that the SOTB SRAM
is more robust even at 0.4 V compared to the bulk SRAM at 1.0 V. Moreover, the
soft-error rate under the reverse back-bias condition is significantly reduced.

Recently, the soft error due to muon irradiation draws much attention, especially
for the SRAMs fabricated by the highly scaled process. The muon soft-error rate

Fig. 6.29 Measured neutron-induced SEU and MCU as a function of supply voltage © 2015 IEEE
[76]
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for both the bulk and the SOTB SRAMs was studied [77]. The experimental results
reveal that the effect of muons is not significant compared to neutron effects for the
65-nm technologies and the SOTB is less sensitive to the muon irradiation than the
bulk.

A new type of soft error was found on the SOTB SRAM [78]. In contrast to the
above mentioned superior results on the SOTB‘s soft error immunity, a 100-fold
increase is observed under the reverse back-bias compared to the zero back-bias.
A remarkable phenomenon is that the multiple-bit error occurs along the bit line
direction. In this direction, the p-well (p GP in Fig. 6.6) is common in an array of
the SOTB SRAM. As schematically depicted in Fig. 6.30, electrons generated by the
incident ions can modulate the potential of the p-well (p GP) layer, and this effect is
significant if this layer is in the reverse bias state. Although this phenomenon is not a
favorable characteristic in terms of the low-power circuit operation that tends to use
the reverse biasing, the modeling of this soft error [79] can contribute to optimize
the triple-well structure and the BOX thickness, and its reliability will be improved
further.

The soft error caused in the logic circuits can seriously affect the operation,
because there is generally no way of salvation like the ECC for SRAMs, other than
using the redundant circuits with majority logic. Especially, it is known that the flip-
flop (FF) circuit is relatively weak among various logic circuits. The experimental
results for alpha and neutron irradiation were reported [80]. Figure 6.31 shows the
neutron results for D-type FF as a function of back-bias voltage. It is remarkable
that the soft-error immunity of SOTB D-FF is about 20 times better than the bulk
D-FF, and the immunity of the SOTBD-FF becomes stronger with reverse back-bias
whereas that of the bulk D-FF slightly increases.

There are various FF structures for radiation hardening such as the dual interlocked
storage cell (DICE) latch [81]. In the FDSOI structures, with the same reason as the

Fig. 6.30 Schematic
illustration to explain
multiple cell upset through a
p-well layer underneath the
BOX layer © 2018 IEEE [78]
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Fig. 6.31 Soft-error rate by neutron irradiation for bulk and SOTB D-FFs © 2014 IEEE [80]

robustness over multiple cell upset in SRAMs, the impact of the single event in
one transistor to the adjacent transistor is weaker for the SOTB transistor than the
bulk one. A series connection of two transistors is thus effective way to improve
the soft error immunity like the stacked inverter structure [82]. There are trade-
off relationships between the soft-error immunity of the circuit and its size and
delay because the soft error immune circuit tends to require additional transistors.
The study to solve these trade-offs was reported on the SOTB circuits with various
circuit topologies [83–85]. Figures 6.32 and 6.33 show the circuit schematics of the
conventional transmission-gate FF (TGFF) and the feedback recovery FF (FRFF),

Fig. 6.32 Circuit schematic of conventional transmission-gate FF (TGFF) ©2019 Prof. Kobayashi
[85]
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Fig. 6.33 Circuit schematic of feedback recovery FF (FRFF) ©2019 Prof. Kobayashi [85]

respectively. The latter one is considered to be a superior structure in terms of the
above trade-offs among the SOI FFs, and its feature is additional feedback lines
indicated byN2with only two additional transistors. The area, delay, and power of the
latter increase only by 6%, 6%, and 3%, respectively, from the former (conventional
TGFF), and the average soft-error rate by neutrons is 1/3 of that for the TGFF. The
average cross section over heavy ions (Ar and Kr) is also 1/2 of the TGFF.

By combining the results of SRAMandFF, the chip-level soft-error rate (SER)was
estimated [86]. Assuming two types of typical processor chips: a high-performance
processor of 6 × 6 mm2 size with 50% SRAM area and an embedded (open RISC)
processor of 1 × 1 mm2 size with 91% SRAM area, the chip-level SERs for the
bulk and SOTB chips operated at 0.5 and 1.0 V were calculated. Most of (>95%)
the errors occur in the SRAM area when ECC is turned off. By applying ECC, the
error-rates of the SOTB and bulk chips were drastically reduce by two orders and
one order of magnitude, respectively. The smaller risk of MCU for SOTB enhances
the effect of ECC. The results with ECC are shown in Fig. 6.34. Significant decrease
in the chip-level SER for SOTB was demonstrated. By applying ECC, the majority
of errors occur in the FF area. Note that the data of the conventional D-FF are used in
this estimation. By using highly immune FF structures as described in the previous
paragraph, the chip-level SER is anticipated to be improved further.

6.16 Summary of SOTB Chip Implementation

The various examples of the SOTB chip implementation described in this chapter
are summarized in this section.
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Fig. 6.34 Comparison of chip-level SER with ECC © 2019 IEEE [86]

• Low-voltage SRAM of minimum V dd down to 0.37 V in 6.6:

– ReverseV bb (back bias) enables to store the datawith very small leakage current.

• MCU (microcontroller unit) in Sects. 6.9 and 6.10:

– MEP (minimum energy point) operation at V dd around 0.4 V with both small
active and leakage currents.

– MCU chip with embedded flash memory.
– Commercial MCU chip with various IPs and embedded EH (energy harvesting)
controller.

• Reconfigurable circuits in Sect. 6.11:

– FPGA (field-programmable gate array) with drastically reduced leakage current
due to independent V bb control on each processing element.

– Reconfigurable accelerator circuit, CMA (cool mega array), with optimized V bb

and optimized domain size.

• Data processing circuits in Sect. 6.12:

– CAM(content-addressablememory) for pattern-matching systems and database
operation.

– FFT (fast Fourier transformation) macro using the coordinate rotation digital
computer (CORDIC) algorithm.

• Security circuits in Sect. 6.13

– AES encryption circuits with enhanced performance and energy efficiency.
– PUF (physically unclonable function) circuits, using small variability transis-
tors.
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• Analog and rf circuits in Sect. 6.14

– �-� modulator with high conversion figure of merit.
– VCO (voltage-controlled oscillator) with V bb control.
– OOK (on-off keying) receiver and transmitter for the IoT node.
– RF energy harvester by using the SOTB as a dynamic threshold MOSFET.
– Small noise variability of the SOTB transistors.

• Soft-error immune SRAM and logic circuits in Sect. 6.15

– SRAMs with significantly reduced single-event as well as multiple-cell upsets.
– Reduced soft-error rate for FF (flip-flop) circuits and circuit topologies to obtain
further robustness.

6.17 Future Perspective

A drastic decrease of connectivity cost for IoT devices and a popularization of pro-
totyping tools such as 3D printers with various easy-to-use 3D-CAD tools and tiny
development boardswithmicrocontrollers likeArduino andRaspberry Pi have accel-
erated the democratization of manufacturing, and they have opened a door of the
makers movement [87, 88] with the open-source hardware. This will significantly
accelerate the production of a wide variety of applications bridging the cyber and
physicalworlds through sensing, processing, networking, and actuating.Note that the
opensource hardware is not restricted to the education and the hobby. For example,
the industry-grade Raspberry Pi is already a strong candidate to be used in various
control devices in the industry because of both low hardware and development costs.

In this context, the ultra-low-power electronic devices including microcontrollers
and various accelerating engines will be more important in the future. With increas-
ing the number of IoT connecting devices, the required specifications of ICs will be
upgraded to satisfy the needs of increasing the performance of the edge processing.
Considering the limited power for most of the IoT devices, improving the energy
efficiency is still important as described in the first section. Let us quote the insightful
words by Mark Horowitz, “Unfortunately, many of the magic bullets for decreas-
ing energy without affecting performance have already been found and exploited.
While there are no quick fixes, power growth must be addressed by application spe-
cific system level optimization, increasing use of specialized functional units and
parallelism, and more adaptive control.” [89]. The authors consider that the highly
optimized combination of dedicated functional logic engines, reconfigurable proces-
sors, and central processing units (microcontrollers), all with the adaptive control,
will be a gold solution. The adaptive control function and low-voltage operation
capability of the SOTB technology should contribute to each processing part work-
ingwith the best energy efficiency. Some indications are believed to have been shown
in Sects. 6.11–6.13.
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On the logic engines andmicrocontrollers, the important factor is that the hardware
should be released with an easy development environment to be a defacto standard.
In the Arduino family, for example, the integrated development environment (IDE) is
ultra easy to use, and this leads to a positive feedback of increasing its users, growing
user communities, and further improving its environment. It is known that developing
the systemworking on FPGA is not easy because it usually needs to use the hardware
description language such as VHDL or Verilog HDL. The Arduino family, however,
already released the development environment integrated with the Arduino IDE [90].
This will accelerate the users to take advantage of the higher-performance hardware.
Therefore, highly sophisticated design environments also contribute to the highly
energy-efficient logic engines to become popular.

Another important trend to be considered is novel computing architectures such as
neuromorphic computing andquantumcomputing.Let us goback to “TheFreeLunch
Is Over” [6], it was shown that the increase of the clock frequency has already slowed
down (currently, maximum frequency as high as 5 GHz). Furthermore, considering
the MEP in Sects. 6.3 and 6.4, rather lower frequencies are preferred to improve the
energy efficiency in the current logic-circuit framework with CMOS transistors. It
is known that the human brain processing speed is, however, about 60 Hz [91] and
the structure with massive and reconfigurable wiring might be another significant
difference. A combination of the neuromorphic computing architecture and the 3D
integration technology with moderate clock frequencies thus can be a new paradigm
of high-efficiency computing. The quantumcomputing can be another newparadigm.
The inherent parallel computing architecture enables high-performance computing
with slower clock frequencies.4 In the quantum computing with superconducting
qubits, the cryogenic interface with the conventional electronic devices is important
[93]. The FDSOI transistors can work at cryogenic temperatures (with a proper
design) [94] and operation with minimum heat dissipation by theMEP operation will
be an important design issue. These novel computing schemes, mean new scenarios,
in which the SOTB technology can contribute to energy efficient computing.
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Chapter 7
Dealing with the Energy Versus
Performance Tradeoff in Future CMOS
Digital Circuit Design

Wim Dehaene, Roel Uytterhoeven, Clara Nieto Taladriz Moreno
and Bob Vanhoof

List of Symbols

VDD Supply voltage
VT Threshold voltage
B Current factor in MOSFET model
I0 Reference current in leakage model
Ion On current of a transistor
Ioff Off current of a transistor (~leakage)
td Delay time of a switching operation
C General switching capacitance
kT/q Thermal voltage where k is the Boltzmann constant, T the absolute

temperature and q the charge of an electron
SNMhold Static Noise Margin of the SRAM memory cell in hold mode
SNMtran Transient Noise Margin of the SRAM memory cell during read
SNMread Static Noise Margin of the SRAM memory cell during read

7.1 Introduction

Classic IC technology scaling laws show that transistor performance and dynamic
energy consumption improve with reduced dimensions and scaling voltages. Ideal
scaling is called constant electric field scaling or Dennard scaling [1]. Thus, for a few
decades, technology evolution has brought “more for less”. For a given functionality
less area and less energy per operation was required with each new technology
generation. This led us to the smartphone, GPS, (almost) self-driving car, Internet of
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Things, era we live today. However, advanced scaling puts an end to the fairy tale:
increased leakage and increased technological variability complicates the “more
for less” paradigm. Today, and in the foreseeable future, we must deal with the
energy performance trade off in a much more active and deliberate way. For digital
design, this means that for physical design the circuit level is back from never fully
gone. Careful library design, optimal choice of supply voltages, plural and advanced
architectural techniques to deal with timing variability impose themselves. In this
chapter an overview of this scenery is given. We start by describing the energy
versus performance trade off, also introducing active energy reduction. Section 7.3
deals with leakage. In Sect. 7.4, ultimate supply voltage reduction, leading to near
threshold logic is discussed. The following section addresses timingmargin reduction
with in situ timing detection. This is required to deal with the enhanced variability of
advanced CMOS technology. Section 7.6 gives a brief introduction on how to deal
with energy versus performance in SRAM design.

7.2 Setting the Scene: Energy, Performance, Supply
Voltage, Threshold Voltages

The performance of a digital gate is governed by the time it takes to charge and
discharge the parasitic capacitance on its output node. The delay is given in first
order by the ratio of the charge to the available on current:

td = aCVdd

Ion
(7.1)

The model conveniently used in this context for the current is the Sakurai-Newton
model [2]:

Ion = β(Vdd − VT )α with 1 ≤ α ≤ 2 (7.2)

Combining both equations shows that a reduction in Vdd also implies a reduced
threshold voltage VT, otherwise no current would be left:

td = Vdd

β(Vdd − VT )α
(7.3)

When reaching the 130 nm node, scaling has led to a no longer negligible amount
of leakage current given by the equation below:

Ileak = I0e
−VT
nkT/q (7.4)

The energy and power consumed when operating a digital circuit is also related
to switching and leakage. The dynamic, switching energy per operation is given by:
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Edyn/op = CV 2
dd (7.5)

The static, leakage energy per operation is given by:

Estat/op = Vdd Ileak td (7.6)

For completeness, it should be mentioned that there is a third kind of energy
consumption: short circuit energy. This is caused by the fact that during switching
there is a short period of time during which both the pull up and the pull-down
network of a standard CMOS gate is on, typically when the input signal is around
half the power supply voltage. However, due to the ever-increasing switching speed,
and the more aggressive scaling on Vdd than on VT, the short circuit energy can be
neglected in modern digital circuits.

It was already stated that according to (7.3) a decrease in Vdd should be followed
by a decrease in VT to keep the delay performance constant. At first, a decrease in Vdd

looks advantageous because in that case the active energy and the leakage energy are
also reduced. However, the delay should also be considered. If VT is left untouched,
the delay will increase leading to increased leakage energy per operation according
to (7.6). If VT is decreased as well, to keep delay performance constant, the leakage
energy will also augment due to an exponential increase in leakage current according
to (7.4). This is a clear indication that unbridled voltage reduction is not a meaningful
energy optimisation strategy. Vdd reduction is mainly a means to combat dynamic
energy consumption. It comes at the cost of increased leakage energy. Therefore, a
minimum energy point (MEP) exists. This is shown in Fig. 7.1. The supply voltage at

Note: fclock ~ Vdd 

Fig. 7.1 Theoretical graph showing active versus dynamic energy trade off and the existence of a
MEP
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which thisMEP occurs is dependent on the circuit activity. For an increase in activity,
the MEP moves to lower voltages, again demonstrating that low voltage operation is
a countermeasure for dynamic energy consumption.

It can thus be concluded that the higher the activity in a circuit the lower theMEP-
voltage will be. The MEP voltage of a standalone MAC unit will thus be lower than
that of a complete data path. A data path in its turn will have a lower MEP-voltage
than a complete microprocessor. Most memory circuits have a very low activity.
Therefore, it is a very relevant question whether low voltage operation, a low Vmin

as it is called in classic SRAM specifications e.g., is a good idea after all. This will
be discussed in Sect. 7.6 of this chapter.

It should be noted that in the above discussion leakage was only considered when
the circuit is active. This implies that the circuit is power gated when it is not in
use. If state retention is needed this is not possible. In that case, either non-volatile
registers [3] must be used or the state must first be saved to a non-volatile memory.
Using non-volatile storage introduces an energy overhead. Thus, it limits the duty
cycle at which the circuit can be power gated. This is not further discussed here.

In the by now iconic paper [4] the authors showed that increased parallelism in a
DSP architecture can reduce the dynamic energy per operation if the power supply
is also reduced. This is explained in Fig. 7.2. The paper cited above only mentions
dynamic energy as it dates from the pre-leakage era. Leakage again introduces a
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dynamic versus static energy trade off, this time in the architectural choice for par-
allelism. Increased parallelism also means increased leakage. This is also explained
in Fig. 7.2.

7.3 Leakage Reduction Techniques

From the discussion in the previous paragraph, it is clear that reducing the power
supply voltage also requires a strategy for leakage reduction. Reducing the static
energy will shift the minimal energy point to a lower supply voltage, especially
when lower threshold voltages are introduced to maintain speed performance. It
should be noted here that supply voltage reduction also reduces static power. Yet
voltage reduction leads to additional delay. Integrating the power over this delay
thus leads to an increased static energy beyond a certain, optimal, decrease in supply
voltage. Therefore, additional leakage power reduction techniques are needed to shift
the minimum energy point to a lower power supply voltage.

Several options exist to combat leakage current. A first class of techniques uses the
backgate terminal of the transistors to adjust the threshold voltages. This technique
becomes less effective when scaling continues as the sensitivity of the threshold
voltage to the backgate voltage reduces. The technique comes in twovariants.Reverse
body bias is used to reduce leakage compared to a nominal point at the cost of speed.
The second variant is forward body bias. Here the source and drain junction diodes
are more forward biased. This leads to an increase in leakage but also in speed
performance compared to the reference point. Forward body bias is even harder
to control than reverse body bias especially for elevated temperatures [5]. For all
these reasons, backgate biasing is not a very popular technique when bulk CMOS
technology is used. Thismight changewith the advent of ultra-thin box, fully depleted
SOI technologies (UTB-FDSOI) [6]. In these technologies, good modulation of the
threshold voltage in both directions is possible leading to a large, tuneable range of
speed performance for the same design. See [6–9], for examples. More research is
required to determine whether FDSOI technologies are really a game changer for
energy efficient digital circuit design. That includes also economical and strategical
aspects that come with the technology choice.

A technique that is more suited is the use of multiple libraries during logic syn-
thesis. In that case, each cell is implemented twice: once in a slow, low leakage
version and once in a fast but leakier version. The synthesis tool will only use the
fast, leaky cells on the critical paths as required for speed performance. Introduction
of a second library shifts the MEP from 440 to 370 mV for an ARM cortex M0
processor as shown in [10]. To create both libraries two viable options exist. The first
option is to make use of the different threshold voltages that are available in modern
technologies. Each cell gets two variants in that case: one with a low VT and another
one with a higher VT. The problem with this technique lies in the large difference in
speed between the two VT variants. This is shown in Fig. 7.3. This implies that the
slower cells are not often used during synthesis and consequently the reduction in
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Fig. 7.3 Normalized leakage power and propagation delay of an nMOS stacked invertor with 40
and 60 nm length a, low VT (LVT) and regular VT (RVT) [10]

leakage is limited. A more effective technique is the use of different lengths for the
transistors, also shown in Fig. 7.3. An increase of the length from 40 to 60 nm gives
rise to a small but effective increase in VT. The consequence is a leakage current
divided by 5 at the cost of a delay increase of only 35%. The area impact of this
technique is almost negligible, as the area of a standard cell is no longer dominated
by the length of the transistors. This technique was used to create the libraries used
in [10].

The invertor used in Fig. 7.3 is actually a variant with two stacked nMOS transis-
tors, see Fig. 7.4. This type is used in technologies where the difference in current
between a pMOS and an nMOS in weak inversion is almost an order of magnitude.

Fig. 7.4 Stacked nMOS
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This is the case in 40 nm, general purpose, technology. The effect of stacking is also
explained in Fig. 7.4. The build-up of voltage on the intermediary node reversely
biases the upper transistor in the stack. On top of that, the effect is enhanced by the
bulk effect on the upper transistor and the reduced drain induced barrier lowering
(DIBL) on both transistors.

7.4 Near-Threshold Logic for Low Power DSP

In the previous sections, it has become clear that, provided the leakage current can
be reduced, aggressive downscaling of the power supply voltage makes sense. This
statement is even more true for applications that require low speed performance like
IoT nodes or processors for medical implants. An example of this is given in [11].
In that paper, a processor for medical signals is described, running at 1 MHz with a
power supply voltage of 400 mV. The processor has been demonstrated with several
medical signal processing algorithms such as EEG or ECG.

When the power supply voltage is reduced below ca. 400 mV, the transistors will
mostly work in weak inversion. In that case, the relation between drain current and
gate-source voltage is exponential:

IDrain = I0e
VGS−VT
nkT/q (7.7)

Logic operating in this regime is called sub- or near-threshold logic in literature.
Thedifferencebetween sub- andnear-threshold is not important. Itmainly depends on
the definition of the threshold voltage, which is usually taken in modern technologies
as the gate-source voltage at which the current has an arbitrary, small value, e.g.
500 nA. In this text, near-threshold (NT) logic is used.

TodesignNTcircuits, careful selection of the technology is required.Mostmodern
technologies have variants that are labelled “Low Power (LP)”. With this label, the
vendor usually means optimized for low leakage, typically at the cost of some speed
performance. This implies that the weak inversion current of the devices in such a
technology will be low. For NT design, this has a direct impact on the available on
current in the exponential regime. This means that the speed performance of NT
circuits in an LP technology is usually limited to the sub 1 MHz range. This is only
feasible for a limited amount of niche applications. The circuits that are discussed
here target a speed performance range from1up to 50MHz. 20–30MHz is considered
the sweet spot.

The first challenge in designing NT logic is of course to guarantee nominal func-
tionality of the gates at the envisaged low voltages. However, our previous analysis
has shown that a MEP exists. It does not make sense to reduce the supply voltage
beyond that point. Evenworse, when logic gates are (over)sized or special techniques
[12] are used to work at extreme low voltages, in the order of 100 mV or lower, they
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Fig. 7.5 Delay variation of TG based NOR gate compared to a standard CMOS NOR gate relative
to the mean delay [13]

become suboptimal for operation at the MEP. For optimized designs, the MEP is
often situated between 300 and 400 mV, but this depends on logic family and circuit
architecture.

The second main challenge is how to deal with the increased sensitivity to varia-
tions of the design when operated in the NT region. In [13] it was demonstrated in
detail that transmission gate (TG) logic is a favourable countermeasure. Transmis-
sion gates consist of a pMOS and nMOS switched in parallel to each other. Both
transistors are active during the better part of digital transition. This implies that
TG logic is less sensitive to variations because the variation on its on current is the
combined variation of both n and pMOS. In other words, the on current of the TG is
only compromised when both transistors are compromised. This is statistically less
likely than for a single transistor. This is more quantitatively illustrated in Fig. 7.5.

TG logic requires for each signal also the complementary signal at its input.
This makes it possible to design differential logic circuits without too much area
overhead: only the number of local wires is increased. Furthermore, many local
inverters can be saved because every gate now also produces complementary outputs.
Differential logic is also more resilient against variations. However, differential logic
synthesis is not available in a typical digital design flow. In [8] a solution for this
was proposed. First, a standard cell library with differential logic cells is created and
characterised. This differential library is accompanied with a pseudo single ended
library. It contains a single ended version of each cell in the differential library,
but the timing given for these single ended cells is the worst-case transition for the
corresponding differential cell. Timing driven synthesis is now performed with the
pseudo single ended library. After synthesis, the resulting netlist is transformed into
a differential netlist by replacing the cells with their differential counterpart and
introducing the necessary complementary signals. Because the worst-case timing
of the differential was already taken into account, the timing closure problem for
the differential netlist remains feasible. It stands to reason that the creation of the
pseudo single ended library and the transformation of the single ended netlist into a
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differential one is automated. This is done with python scripts that enhance the flow
with the necessarymanipulations. The same script also removes superfluous invertors
from the pseudo single ended netlist. As all signals need to be complementary anyway
in the differential netlist, not every TG based logic cell needs local inverters to
generate complementary signals.

Tomake this discussionmore concrete wewill discuss a few of the designs that we
performedwithNT, TG logic.We started froma relatively smallmultiply-accumulate
block (MAC). Based on the learnings from this design, we designed a computation
intensive data path for a JPEG encoder. The final designs were a couple of ARM
cortex M0 processors. Ordered like that the designs start from high activity to low
activity. This also means that the urge for leakage reduction is most prominent in the
ARM cores.

The MAC blocks were designed both in 90 nm and in 40 nm general pur-
pose technologies. Their properties are summarized in Fig. 7.6. This clearly shows
that, depending on the required performance, technology scaling is not necessarily
favourable for energy efficient design. Actually, the 90 nm MAC outperforms the

90 nm MAC 40 nm MAC

CMOS technology 90nm 40nm Δ

# measured dies 34 20

Ac ve area [μm²] 225x310 153x 153 -66%

Vdd,min [mV] 150 180 +20%

Clock freq. [MHz]

@ Vdd,min
@ 190mV
@ 250mV
σ/μ @ 190-290mV

5.0
10.48
31.88

16.77%

12.0
17.06
53.48

11.93%

+63%
+68%
-29%

Energy/oper. [pJ]

@ Vdd,min
@ 190mV
@ 250mV
σ/μ @ 190-290mV

0.97
0.87
1.10

7.94%

1.43
1.32
1.61

6.10%

+51%
+46%
-23%

Fig. 7.6 Summary of the ultra-low energy MAC designs [13]
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40 nm block in terms of energy delay product (EDP). However, the 40 nmMAC has
a better speed performance than the 90 nm Block. Needless to say that the area of
the 40 nm block is also smaller.

As a next step, the data path of JPEG encoder was designed. The requiredmemory
was designed as a serial in, parallel out shift register. This is suboptimal in terms of
energy consumption. This choice was made because in the corresponding research
set up there was no room for SRAM design. The pipeline of the data path is latch
based with a two phase, non-overlapping clock. This proved to be power hungry
but allowed for time borrowing between the pipeline stages, thus enhancing the
variability robustness of the design. The properties of the ultra-low power JPEG
encoder are summarized in Fig. 7.7. These designs clearly show that low speed,
energy efficient digital signal processing is feasible with NT TG logic. State of the
art comparison is difficult for such a data path but to our opinion, the presented JPEG
encoder outperforms the encoder published in [14].

The designs until now were mainly crafted at the circuit level. For the JPEG
encoder, a data path generator tool was used [15]. However, for NT TG based design
to be industrially viable, NT TG logic must be incorporated in the standard cell
based digital design flow . This was realised for the ARM Cortex M0 cores. The

MEP: Vdd = 330mV, 
Etot=29 pJ/pixel, f=41MHz

Variation resilience: Frequency σ /μ = 8.6 % | Energy σ /μ = 5.4 %

Fig. 7.7 Summary of the ultra-low energy JPEG encoder [13]



7 Dealing with the Energy Versus Performance Tradeoff … 99

enhancements to the digital design flow are dealing with the differential nature of
the logic as already discussed above. The properties of the ARM cortex M0 cores
are summarized in Fig. 7.8. These designs outperform the state of the art at the time
of this writing.

Summarizing this section, it can be stated that NT logic is a viable, feasible option
for ultra-low energy digital signal processing. Design and demonstration of several
blocks operating in the near-threshold logic proof this. The used logic family is based
on differential transmission gates. It remains subject to future research how this will
evolve in more advanced technology nodes. Do we still need stacking with finfet
transistors in 16 nm and beyond?Will the improved subthreshold swing live up to its
promises or will enhanced variability ruin the picture? Required design margins in
NT operation remain painfully large even in established nodes like 40 nm or 28 nm.
In situ timing detection can mitigate that to some extent.

7.5 In Situ Timing Detection to Deal with Variability
and Margins

Almost all digital systems are designed to operate in a synchronous way. This basi-
cally means that all events in the system are related to a clock signal. This is the most
feasible and probably only efficient way to guarantee timing correctness. However,
the timing of a signal path is influenced by all kind of variations the circuit suffers
from. These variations can be divided into global and local variations. Global varia-
tions affect all transistors on a die equally and thus consider the variations from one
die to another, i.e. inter-die variations. Typical sources of global variations are, volt-
age drops, temperature fluctuations, aging effects and inter-die process variations.
Their resulting effects on the transistor circuit behaviour are generally modelled with
corners in which worst-case deviations are considered. Local variations affect each
transistor on a die individually and thus consider so-called intra-die effects. Themain
source behind local variations is randommismatch governed by Pelgrom’s law. Their
impact is modelled through normal or Gaussian statistical distributions accounting
for the randomness of these variations.

In digital circuits, designers have to make sure that the correct data is captured
by the sequential elements (i.e. flip-flops or latches) at each rising (falling) edge of
the clock signal. Therefore, they have to employ two types of timing checks; one for
setup timing and one for hold timing as depicted in Fig. 7.9. The former checks that
data arrives at the sequential element before the rising (falling) edge of the clock.
This means setup timing mainly deals with late arriving data signals on critical paths
of the circuit. The latter checks that data is captured in the sequential element before
it is overwritten by new data of the next clock edge. Hold timing thus deals with fast
propagating paths between registers with significant clock skew. Note that violation
of any timing check in the system can lead to unexpected behaviour. Therefore,
timing violations cannot be tolerated in most systems.
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Fig. 7.8 Summary of the ARM cortex M0 designs [10]
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Fig. 7.9 Illustration of setup and hold timing

The uncertainty introduced by the aforementioned variations has a strong impact
on the timing checks. These checks have to guarantee correct behaviour under all
conditions, which means that they typically have to account for the worst-case over
all variations. This leads to significantly larger design/safety margins that enforce
an over designed system that does not operate at its maximum capabilities since
the likelihood of a worst-case sample is rather slim. Hence, the uncertainty from
variations degrades both performance and energy-efficiency for all but some samples.

As stated in the previous section, using ultra-low supply voltages increases the
circuit sensitivity to variations resulting in large design margins. This is caused by
the transition from a quadratic current relation in strong inversion to an exponential
relation in weak inversion given by (7.7). The exponential function enhances the
variations of the parameters that it encloses, which includesVT. In advanced nm scale
technologies VT suffers strongly from local variations. As a result, the relative impact
of local variations increases strongly at low voltages. Hence the large designmargins.
This leads to significant additional overhead and thus losses in performance, energy,
area, and cost that overthrow the advantages of near-threshold designs. In otherwords,
the in super-threshold logic widely used worst-case guard band timing mechanism
becomes extremely inefficient for NT circuits due to large design margins.

7.5.1 Design Margin Reduction Techniques

Over the past decade, two categories of techniques that reclaim design margins have
emerged in research. Both of them track the critical paths and apply dynamic voltage
and/or frequency scaling (DVFS) to optimize energy-efficiency. On the one hand,
replica or canary techniques try to track the behaviour of the critical paths as close
as possible and allow diminishing margins against global variations. On the other
hand, in situ timing monitoring techniques go in search of the point-of-first failure
(PoFF) and by doing so, bypass the margins taken to deal with both global and local
variations. Both techniques have been applied numerous times in super-threshold
designs, but only few near-threshold implementations exist. This is in contrast with
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the fact that lowvoltage circuits can benefit themost for these techniques and leverage
them to their full potential. Below, both techniques are discussed in detail.

7.5.2 Replica Monitoring or Canary Circuit

A replica of the critical paths is integrated on the same die and its performance is
continuously monitored. The replica path shares process corner, global voltage and
global temperature with the actual critical paths, becoming the reference to predict
actual circuit performance. To provide an always-correct monitoring scheme, some
margins are added to the replica to ensure that it fails before any of the actual critical
paths. The performance can then be tuned using DVFS.

A typical method to implement such a replica path is with a ring oscillator. The
number of inverter stages is chosen so that the oscillation period matches as close as
possible with the critical timing of the circuit’s critical paths. Often, the output of the
ring oscillator is directly used as a clock signal for the system. This avoids having
to tune the system’s clock period towards the replica period. Rather it immediately
generates a clock that tracks changes in supply voltage, temperature, aging and other
global variation effects.

To improve thematching between the replica and the actual critical paths, the exact
timing of the replica can often be fine-tuned during testing of the sample. This tuning
allows removing some of the margin that would otherwise be required to guarantee
that the replica is slower than all critical paths over all samples. However, even with
tunability, some margin remains as the matching between replica and critical path
will drift with PVT variations.

Furthermore, the replica can track neither intra-die variations, nor local fluctua-
tions in temperature, supply voltage and aging. This results in an additionalmismatch
between the replica and the actual critical path. As this mismatch is created by local
variations, no amount of tuning can alleviate it and safety margins remain required
to resolve it.

The replica technique has been integrated in super-threshold designs with success
because of the dominant impact of global variations. However, it lacks effectiveness
in NT threshold designs, where the local mismatch becomes equally or even more
important than global effects. See [16] for an example of a processor using replica
monitoring.

7.5.3 In Situ Monitoring

In contrast with the previous mechanism, this strategy monitors each critical path
to eliminate the local on-chip variation uncertainty. They key idea relies on the fact
that the data path takes a finite amount of time to complete its operations. On this
premise, the flip-flops of each critical path are equipped with an extra sequential
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Fig. 7.10 Double sampling principle overview and timing diagram [10]

element (flip-flop, latch) to perform the additional sample, as depicted in Fig. 7.10.
Any difference between the outputs of Q1 and Q2 means that the path made a last-
minute change, indicating that the circuit operates at or close to the point of first
failure (PoFF). Such a difference is flagged as a timing-error and is communicated
to the error-processor.

The error processor continuouslymonitors error rates and adjusts frequency and/or
voltage accordingly. This enables the tracking of the PoFF over all possible PVT
variations. This is particularly convenient in conditions where it is hard to predict
critical paths and their performance due to high variation sensitivity, as it is the
case in NT operation. Furthermore, thanks to the locality of the error detection, the
tracking can overcome margins against local variations making this technique even
more interesting in NT designs.

Based on the double sampling with the two sequential elements from Fig. 7.10,
two strategies can be considered.

• Error prediction (Fig. 7.11a): the additional sequential element samples the data
first, while the original element samples the data a time �t later. Thus, �t works
as a margin to predict the PoFF for a die and to tune system parameters to operate
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Fig. 7.11 Schematic overview of a error prediction, b detection and cmaskingwith timing diagram
implemented with double sampling [10]

near this predicted point. In the comparison, the prediction assumes the output
sample Q1 to be correct, so this value is propagated and no errors are introduced
in the data path.

• Error detection (Fig. 7.11b): the original sequential element samples first i.e. at the
rising edge of the system’s clock. The extra elements samples �t later, capturing
potentially late arriving data. In case of an error, a data correction strategy is
required to feed the Q2 output value into the pipeline instead of the Q1 value. The
inherent benefit is that no margins are introduced. Only actual incorrect data is
flagged.
The main drawback lies in the endorsement of strict and large hold constraints
on all monitored paths. These constraints ensure that the value of a monitored
path remains fixed after the rising edge of the clock so that it can be resampled
�t later. Without such a constraint, data from a new clock cycle could arrive
so fast that it looks like late arriving data from the previous cycle triggering a
false error. Depending on the system architecture and the chosen �t, meeting the
hold constraints can require a significant amount of delay cells and thus energy
overhead.

In case of error detection, a recovery mechanism must be applied. Current cor-
rection strategies avail the fact that with the previous detection technique the correct
data is readily available:

• Replay: the error signal selects the correct data through aMUXin case of error. This
way, the flip-flop reinserts and feeds forward the correct data the next clock cycle.
However, it requires stalling the entire pipeline for a single cycle. By consequence,
the error signal needs to notify the entire pipeline of this stall before the next clock
edge.

• Masking (Fig. 7.11c): is the straightforward mechanism. The available correct
value is tunneled to the output immediately, despite arriving after the clock edge.
The reinsertion of the data can be explicit via a MUX after the main sequential
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Fig. 7.12 Timing diagram of the timing error masking operation

element or implicit via time borrowing to reduce timing penalty, as depicted in
Fig. 7.12. It requires using modified flip-flops or latches so that the �t delay of
the master clock edge defines a transparency window instead of a hard boundary
for capturing the data. Therefore, data arriving after the slave clock rising edge
but before the master clock rising edge can instantly propagate to the output.
The window inherently allows borrowing time from subsequent pipeline stages to
correct the data and propagate the correct value. Therefore, it is crucial to guarantee
that the following stage has enough slack to perform a normal operation despite
the stolen time.

A common practice lies in the combination of both detection and correction tech-
niques, known as an error and correction (EDAC) system. Different combinations are
possible, depending on the target circuit and its requirements. A real implementation
of an EDAC system is discussed next.

7.5.4 EDAC System Example

The solution proposed in [8] presents an example of an in situ error detection and
correction technique implemented in an ARM Cortex M0 microcontroller system
in 40 nm CMOS. The EDAC system combines error detection and time borrowing
correction. The architecture of the monitors is shown in Fig. 7.13. It combines a
timing control block, a soft-edge flip-flop (SEFF), a transition detector (TD), and an
error latch to detect and inherently correct data, which arrives late.

The SEFF is the main element as it holds the master and slave latch. The timing
control is responsible for delaying the master clock �t timing units regarding the
slave clock. By doing so, it creates and specifies the size of the transparency window.
The contribution of the window is twofold. First, it enables double sampling to detect
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Fig. 7.13 Diagram of the proposed EDAC architecture [10]

late data arrival that otherwisewould result in faulty operation. Secondly, it inherently
allows borrowing time from subsequent pipeline stage to correct the error.

The transition detector is responsible for flagging the late arriving data. The TD
compares data before and after the master latch. Since the latter is transparent at this
moment, incoming data transitions result in a detectable delay. When both samples
differ, the TD triggers a set dominant error latch, rising the associated error signal.
The error processor evaluates the incoming error signal so an autonomous dynamic
voltage scaling (DVS) loop can run.

While the additional logic is necessary to flag a timing error event, the timing error
correction is inherent to the system. Because the SEFF allows data to propagate after
the clock edge (during the transparency window), normally wrong data is propagated
correctly because of time borrowing (Fig. 7.12). This allows operation at or close to
the PoFF.

This technique was evaluated in several dies to average results. The results,
depicted in Fig. 7.14, show a core energy consumption of 11–18 pJ/cycle for a fre-
quency range of 5–30 MHz, and timing error detection is realized down to 290 mV
and 5 MHz. The MEP is achieved at 7.5 MHz, 11.12 pJ/cycle and 310 mV.

The slow-slow corner static timing analysis sign-off points were 1 MHz at
350 mV and 5 MHz at 500 mV and the energy consumption are 75.80 pJ/cycle
and 51.72 pJ/cycle respectively. When running both at 5 MHz the EDAC energy
consumption is 75% lower.
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Fig. 7.14 Measurement of the PoFF curve for a wide frequency range, showing required energy
consumption for the achieved target frequency [10]

The replica technique achieves better energy performance at high target frequen-
cies (higher Vdd). At the lowest target frequencies (lowest Vdd) intra-die variation
results in a high margin. Here, the EDAC approach allows working close to the ideal
baseline design without margin.

7.5.5 Digital Flow Integration

Tools that automate the implementation process from an RTL level architectural
description to an actual physical layout are indispensable. They map the architecture
to the available logic cells, they ensure that the design meets the desired timing, they
do a DRC clean placement and routing and they allow simulating the design along
all steps of the implementation flow. Making today’s complex architectures without
this tool flow is simply impossible. Therefore, any novel technique must somehow
fit into this flow.

Conventionally, the flowuses aworst-case based approach to dealwith both global
and local variations. This neglects the averaging effect that is present with local vari-
ations (i.e. Pelgrom’s Law) over different cells. As a result, the tools provide an
extremely conservative amount of design margin to account for these local varia-
tions. Yet, in super-threshold designs, this does not infer a large overhead, as global
variations are the dominant source of design margins. However, in near-threshold
designs this approach leads to excessive design margins as they suffer more from
local variations. To overcome this, some tools offer statistical timing calculations on
top of the typical worst-case approach. This allows putting in place design margins
based on a targeted yield number and results in smaller and more realistic design
margins for NT designs.
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In their current state, the implementation tools do not have dedicated commands
or procedures to implement the design margin reduction techniques discussed in the
previous sections. Yet, integration of the aforementioned techniques into these tools
is of vital importance to make them useful in an industrial context. Depending on the
technique, several options exist to automate their implementation. In general, these
options rely on the insertion of black boxes, the engineering change of order (eco)
capabilities of the tool and the scripting language that allows interfacing with the
tool.

For the design of the replica, the simplest option would be an implementation as
analogmacro. This gives the designer full control over the tuning andmatching of the
replica path to the circuit’s critical timing. The timing itself is available in the tools
timing reports. Once designed the macro, it can be simply added to the rest of the
design as a black box. The downside of this approach is that the designer must repeat
the manual matching procedure each time the critical timing changes. To avoid this,
a more complex approach could leverage the tools timing optimization capabilities
to implement a dummy path with a desired set of cells and the same timing constraint
as the actual data path. The disadvantages of this more complex approach are a less
fine control over the replica path (e.g. no custom layout) and the additional scripting.

In situ timing detection requires the insertion of individual sequential cells at
specific locations. In order to be practical this process should be automated, meaning
the automatic selection of the system’s paths that require monitoring. This could
be achieved by post-processing the tools timing reports. Second, the engineering
change of order (ECO) flow of the tools could be used to place and connect the cells.
Using the ECO flow ensures that little to no modification will be made to the existing
design. Finally, the part that remains a challenge is providing a valid system wide
simulation and testing of such an implementation. The creation of EDAC enabled
design tools is subject to research at the moment of this writing.

7.5.6 Future Work

As of today, several error detection and correction (EDAC) tools have emerged in
research. These approaches manifest and evidence the viability of its integration
in NT logic, showing energy savings close to the 30% [8]. Nevertheless, several
research questions still need an answer before these techniques can be applied on
a wide scale in commercial systems. The most important remaining questions are
briefly discussed below.

How to select the minimal set of paths to monitor so that detection is still guaran-
teed but overhead is minimized? This is a trade-off between the ability to guarantee
detection of all possible errors and the overhead introduced by the error-detection
circuits.
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How to determine the size of the timing window �t? A large window provides
better detection but also requires larger hold constraints. This also links back to
the previous question, as smaller windows tend to require a larger insertion rate to
maintain good error visibility.

How does the activity, i.e. which paths are actually used by the program that runs
on the processor, influence the visibility of timing errors? Will we always be able
to see the PoFF or is it possible to write a program that ‘circumvents’ all monitored
paths?

Finally, using time borrowing as a correction methodology further increases the
complexity of the timing closure as the late arrival of one path has a ripple effect
towards the available slack of another path in the next clock cycle. This could lead
to unobservable errors or loops in which correction becomes impossible.

7.6 Multiple Supply Voltages for Energy Efficient SRAMs

Addressing the low energy design of SRAM is of a different nature than the design
of low energy logic. Decreasing the power supply voltage is mainly an answer to
dynamic energy, mostly helped by the quadratic dependency on that voltage. In
the meantime, it must be avoided that leakage becomes the dominant contribution.
However, in low power memory design in general and SRAM design in particular,
leakage power is the dominant contribution. Therefore, another energy reduction
strategy is more appropriate. Before diving into this strategy, it should be noted
that the SRAMmemories under consideration here only have moderate performance
specifications. Read and write access times should be well below 1 ns. Using faster
memories in a low energy system is a contradiction. 1GHz clock frequency is already
rather high for a low energy system after all.

SRAM memory design is split in two parts: cell matrix design and periphery
design. The periphery includes all devices to access the memory cells for read or
write, for example the address decoder and the sense amplifiers. The periphery design
can rely on the same techniques as low energy logic design. These are summarized
in Table 7.1.

Table 7.1 Overview of
energy reduction techniques
giving their influence on
dynamic and/or static energy

Technique Active energy Leakage

Voltage scaling ✔ ✔

Transmission gate logic ✔

Pipelining and parallelism ✔

Low swing signaling ✔

Power gating ✔

Vt modulation ✔

Transistor stacking ✔
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The problem of cell matrix design is again twofold. The cell as such must be
designed but also the architecture of the matrix is critical. The general idea behind
the SRAM cell design is as follows. First, select a relatively high threshold voltage
for the SRAM cells. This reduces the leakage power of the cell but compromises
its speed performance. The speed performance of an SRAM cell depends on the
read current. This current depends on (Vdd − VT)α. Consequently, a supply voltage
needs to be chosen that is sufficiently above the chosen threshold voltage to enable
the required speed performance. If the resulting supply voltage is higher than what
is technologically feasible, either the threshold voltage choice must be revisited, or
the architecture of the memory could be reconsidered in order to reduce the bit line
capacitance. Of course, this reasoning is insufficient to complete the design. Still
circuit and architectural design choices will influence the energy consumption of
the memory. In principle, the leakage reduction techniques of Table 7.1 are also
applicable to SRAM circuits except for power gating. The use of transmission gates
or transistor stacking can be very effective but leads to larger cells than the classical
6T cell. Commercially this is mostly avoided for area cost reasons.

7.6.1 Cell Design

Design of the cell comes with an extra set of constraints. First, the area of the cell
is extremely critical. For SRAM cells, organized in a regular matrix, the lithography
is pushed to its limits to minimize the area. The circuit topology choices are limited
due to area constraints. Using transmission gates or upsizing transistors to improve
matching is therefore not feasible. Also increasing transistor count beyond the classic
6T cell (see Fig. 7.15a) is not very popular in commercial SRAM for area reasons.

The stability of an SRAM cell is characterised by its static noise margin in hold
(SNMhold) as introduced by Seevinck et al. [17]. The typical butterfly curves (see

(a)
(b)

Fig. 7.15 a Schematic of a classic 6T SRAM cell and b the butterfly curves showing the SNMhold
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Fig. 7.15b) are used for this purpose. When the power supply of the cell is scaled, the
eye opening of the butterfly curve reduces, showing that the stability of the SRAM
reduces. This is quantified by inserting a square into the eye. The size of the square
is the SNMhold. In practice, the SNMhold is the maximum allowed offset voltage
caused by variation between the cross-coupled invertor pair for the cell to remain
stable. A minimum SNMhold of e.g. 50 mV is required for robust data retention.
In addition, the read upset problem limits voltage reduction in SRAM cells. When
the pass transistors of the cell are enabled, the internal node that is low is pulled
up. The large charge on the parasitic capacitor of the precharged bit lines can thus
upset the internal nodes since the cross-coupled inverter pair cannot sink that charge
instantly. If the voltage rise on node Q becomes too large, the cell may flip and its
content is destroyed. The voltage rise of the internal node can be incorporated in the
noise margin. This leads to a static read noise margin SNMread, which is smaller than
SNMhold. However, reading is dynamic behaviour especially for short bit lines with
smaller bit line capacitance. Consequently, SNMread is a too conservative metric in
that case. Therefore, a transient noise margin, SNMtran, is defined [18]. SNMtran is
the maximum offset voltage between the two cross-coupled inverters for which the
cell content is not destroyed during transient read operations. Similar to SNMhold,
SNMtran also decreases with decreased supply voltage. In practice, SNMtran thus also
limits voltage scaling.

Forwriting, write buffersmust be able to overpower the drive strength of the cross-
coupled inverter pair, to ensure the bit cell holds the correct state. Here, a trade-off
rises: The inverter pair must be stable enough to survive reading and weak enough to
enable correct writing. Another way of modulating the readability and writability is
to look at the strength of the pass transistors: Increasing its strengthmakes themmore
suitable for writing, since the overpowering current is larger. Reducing its strength
makes the voltage rise of the internal nodes less severe, increasing readability.

Increasing the strength of a transistor in a RAM cell can only be achieved by
boosting its gate-source voltage. Upsizing of the transistor is not really an option
for area reasons. For the inverter pair, this requires a boost of the supply voltage or
a lowering of the ground voltage. Increasing the pass transistor strength requires a
boost of the word line voltage or a reduction of the bit line voltage. Moving these
voltages in the opposite directions leads a decrease in transistor strength. Table 7.2
provides a summary. This again shows that supply reduction for SRAM severely has
its limits, since SRAM is more prone to readability issues.

Table 7.2 Voltage boosting techniques summary

Readability increase

Inverter pair strength increase Supply boost, ground reduction

Pass transistor strength reduction WL reduction, BL reduction

Writability increase

Inverter pair strength reduction supply reduction, ground boost

Pass transistor strength increase WL boost, negative BL
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7.6.2 Architectural Techniques

The bit lines in SRAM are inherently long and depend on the size of the memory.
Thus, bit lines have a large parasitic capacitance, which results in long discharge
times during read. However, bit lines can be divided into short local bit lines (LBL),
connecting only a limited number of cells and global bit lines (GBL), which transfer
the data of the LBL to the side of the memory, where the interface with other blocks
is located. This is shown in Fig. 7.16. See [18] for an example of an SRAM using
this hierarchy.

Now that division between LBL and GBL is present, further optimization is pos-
sible by using low-swing signalling on the GBL in order to save active energy. Then,
a read buffer translates the full-swing LBL information to a low-swing GBL. A write
buffer senses the low swing GBL information and drives the LBLs to the appropriate
state. Since the buffer circuits are shared for all cells on the LBL, a higher leakage
can be tolerated and can hence be implemented with lower VT transistors, speeding
up the memory.

Similar to BL division, a division on word lines is possible as well. Splitting up
word lines in local word lines (LWL) and global word lines (GWL) lowers the fan-out
on the WL, reducing the capacitive load. An additional advantage occurs when the
LWL size is equal to the word size: the half-select read upset and dynamic power

Fig. 7.16 Hierarchical bit line architecture
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consumption of non-accessed words is avoided. However, WL division comes at a
cost. The last decoder stage is pushed into the memory array, resulting in an area and
leakage power increase.

When designing SRAMusing advanced architectures with low-swing techniques,
the leakage of the assist circuits needs to be monitored very carefully. Some of the
assist circuits can be power gated when not in use. However, for low speed memories
with a very low activity factor, it might be more beneficial to tolerate the higher
dynamic power consumption of the signalling itself, since the leakage of the assist
circuits would dominate.

An increasedmemory supply voltage, compared to the logic, can lead to an energy
efficient SRAM, but level shifting between the logic supply domain and thememory-
core supply domain is required. Careful design of the level shifters is mandatory. The
challenge in level shifter design is to realize a large shift in voltage range both up and
down while maintaining energy efficiency. This is best taken care of at the memory
side. In that case, the digital design flow is agnostic to this level shift because the
memory looks like low voltage on the interface towards the digital designer. From
that point of view, only an additional, relatively high, supply voltagemust be provided
to the memory.

7.6.3 Summary

Power supply reduction in SRAM is an even more subtle story than for logic. The
dominance of leakage energy in the matrix combined with reduced read and hold
stability for lower voltage supplies dictates a higher power supply. The increased
active energy that comeswith this can be tackledwith advanced architectures and low
swing signalling. Low swing signalling is also advantageous for speed performance.
An energy efficient system will thus end up with two power supply voltages: a low,
near-threshold supply voltage for the logic and a higher voltage for the memory
cells. The fact that this moves cell operation away from the near-threshold regime
will definitely increase the variability resilience.

7.7 Conclusion

In this chapter, we have shown that designing for energy efficiency holds multiple
challenges. A careful approach is needed to deal with the energy versus performance
trade off. Simply relying on technology scaling is not possible long before scaling
ends. Just reducing the power supplywhile ensuring functionality is not good enough.
It will lead to suboptimal designs in terms of trading leakage versus active energy.
Given the different relative importance of leakage and dynamic energy in logic and
memory, different approaches are needed for both types of circuits. For logic, drastic
supply reduction is appropriate, but not beyond the point where leakage starts to
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dominate. There is a minimum energy point! For memory, leakage is conspicuously
more dominant. Therefore, it is wise to start from higher threshold voltages. This
implies an increased power supply voltage due to performance requirements. Active
energy in memory must be tackled at the architectural level.

Having dealt with leakage, variability is even a larger threat for energy efficient
design at low supply voltage because the sensitivity to technology variations. If this
is not handled, the required design margins will thus increase to the point where the
energy benefits of lowvoltage design are overruled by the energy loss due to enhanced
design margins. Current research focusses on more advanced ways of dealing with
the margins. This can e.g. be realised by extending the circuits with in situ timing
detection. This way, timing errors are avoided before they can happen and/or eventual
timing are corrected so that any influence on circuit performance is avoided. Several
strategies are under study at the time of this writing, but more research is required to
turn in situ timing into a standard, automated, design strategy for digital circuits.

We have shown that further reduction of the energy consumption ofmodern digital
electronic systems is still possible. It is also mandatory if we want to realise our
dreams in an ever more connected and intelligent world in a sustainable way.
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Chapter 8
Monolithic 3D Integration—An Update

Zvi Or-Bach

8.1 Precise Bonder Enables Monolithic 3D Integration

The 3D IC space is considered to have two main branches—Through Silicon Via—
“TSV” and Monolithic 3D. Some call the first branch ‘3D Parallel’ and the second
branch ‘3D Sequential.’ The key differentiating aspect is the vertical connectivity
density or pitch as is illustrated in Fig. 8.1, taken from a recent article [1] entitled
“CoolCube™: More than a True 3D VLSI Alternative to Scaling.”

Now that advanced precision bonders such as EVG-GEMINI® FB XT [2] and
TEL-Synapse™ Si [3] are at the 50 nm (3σ) alignment precision range, a 3D Par-
allel integration flow could enable 50 nm like vertical pitch, which represents the

Fig. 8.1 Two 3D VLSE complementary approaches by CEA-Leti
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Monolithic (or Sequential) 3D level of vertical connectivity. Such bonding precision
could be assisted and enhanced by other technologies such as “Smart Alignment”
[4, Chap. 3.3.2], Staggering [5, 6, Fig. 21A–C] and “Electronic Alignment” [7,
Figs. 1–3].

8.2 Thinning the Transferred Layer—“Cut-Layer”

A second enabling technology for monolithic 3D using precision bonders is wafer
thinning technology, especially for applications of more than two levels. To achieve
high-density vertical connectivity, one needs to have a through silicon via with a
diameter far less than 1 μm, compared to the >5 μm diameter of the common TSV
technologies. For small diameter through silicon vias, the silicon layer needs to be
very thin, as the aspect ratio for etching and filling such a via needs to be less than 1–
10. In common TSV technologies, the transfer wafer is first thinned by backgrinding
to a thickness of about 50 μm. It was found that thinning below 50 μm makes
handling of the wafer unpractical—hence the >5 μm via diameter of common TSV
technologies.

However, for the monolithic 3D application the thinning would take place after
the transferred wafer has been bonded to the target wafer, thus achieving mechanical
stability from the target wafer. In many applications, the desired thinning could be
to 50 nm or even less. Such aggressive thinning would require a built-in control
to avoid over thinning. Currently, without a built-in control, manufacturers avoid
thinning below 10 μm. We can call such a built-in control a ‘Cut-Layer.’ One such
built-in control is the BOX (Buried Oxide) of SOI wafer as was invented by IBM [8]
and been used for many years by MIT Lincoln Lab [9] (Fig. 8.2).

SOI wafers are widely available these days at multiple technology nodes and
wafer fabs, which could encourage a smooth adoption of precision wafer bonders
for monolithic 3D applications.

One disadvantage of SOI wafers is the relative high price of SOI substrates. A few
innovative alternatives for the BOX as a ‘cut-layer’ are presented in the following.

8.2.1 SiGe

SiliconGermanium—“SiGe” iswell-knownmaterial in silicon-based semiconductor
devices. It has been used over the years for multiple applications including as an
alternative channel material or as a way to form stress. It is a well characterized
material which can be epitaxially grown. Additionally, there are well-known etch
process both wet and dry to allow a selective etch of SiGe versus Silicon. The use of
SiGe as an etch stop layer for 3D using layer transfer has been proposed many years
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Fermilab -31
CLK 2/28/2007

• Invert, align, and bond Wafer-2 to Wafer-1

• Remove handle silicon from Wafer-2, etch 3D vias, deposit 
and CMP damascene tungsten interconnect metal

Concentric 3D Via

3-D Circuit Integration Flow-2

IC2

Wafer-1 Handle Silicon

Tier-1

Tier-2

Wafer-1

Wafer-2

Wafer bond

Handle Silicon
Buried Oxide

“Back Metal(s)”

MIT Lincoln Laboratory

Fig. 8.2 Slide illustrating the use of SOI wafers, having the BOX as a ‘Cut-Layer’

ego [10]. Recently, SiGe has been used for next generation device Nanowire/Nano-
sheet for which SiGe could be selectively dry etched in amultilayer structure to allow
a gate-all-around structure to be formed (Fig. 8.3).

Fig. 8.3 SEM cross-section showing excellent etch of SiGe within alternating Si/SiGe layers, as
will be needed for gate-all-around (GAA) horizontal nanowire (NW) transistor formation. Source
Applied Materials



120 Z. Or-Bach

8.2.2 Doped Layer

Doped silicon, such as a deep N+ well or deep P+ well, could be used as ‘cut-layer’.
Preparing such a substrate could be prepared by the substrate provider or the foundry.
The use of such a ‘cut-layer’ is simplewith awet etch or anodizingwet etch for which
good selectivity is available to use the ‘cut-layer’ as an etch stop.

8.2.3 Ion-Cut

While Ion-Cut is the preferred choice for fabricating SOI substrates, it is not attractive
for “3D Parallel” due to the damaging aspect of the Ion Implant as it passes through
active transistors. Performing the H+ implant prior to the transistor formation is not
effective due to the high temperature (>600 °C) activation process and other high
temperature processes associated with the transistor formation.

8.2.4 Substrate Re-use

Additional savings could be achieved if instead of grind and etch back all the way
to the ‘cut-layer’, a real cut could be used to achieve reuse of the substrate. Such a
“cut” with a re-useable substrate could be accomplished by the use of a Modified
ELTRAN® [11] process, the use of SiGe with a dry under-etch [12], or under-cut
special etc. converting the buried SiGe to tear-able porous layer [5]. These processes
are not standard with the current industry and accordingly might be adopted much
later, if at all (Fig. 8.4).

8.2.5 Early Adoption

The 3D NAND vendor YMTC (Yangtze Memory Technologies Co.) is one of the
early adopters of leveraging precision bonders for monolithic 3D volume applica-
tions. Many of the 3D NAND vendors are placing the periphery circuit at the periph-
ery of the 3D memory array. Micron and Intel were the first to place the memory
control circuit under the array calling it CuA (CMOS under Array) achieving about
90% array efficiency compared to about 70% for periphery next to the array. At the
2018 FlashMemory Summit YMTC introduce its Xtacking technology which places
the peripheral circuitry on top of the memory array instead of underneath it. YMTC
uses face-to-face wafer bonding as illustrated in Fig. 8.5.
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Fig. 8.4 Monolithic 3D integration flow using precise wafer bonder and wafers with built-in SiGe
“cut-layer”

Fig. 8.5 a The Xtacking flow. b SEM of Xtacking device

“Under Xtacking addressing and I/O circuits are made on a separate wafer (180
nm) to the vertically stacked NAND cells and then bonded to them face-to-face
through millions of vertical vias at the wafer-scale to complete the memory.”

• “YMTC pushed its “pitches at several microns” down to about 100 nm for use in
3D NAND.” [13]

• “YMTC has started delivering samples of its 64-layer 3DNAND chipwith volume
production likely to kick off in the third quarter of 2019, … Xtacking architecture
is already adopted in the company’s 64-layer 3D NAND engineering samples.
Xtacking enablesYMTC’s 64-layer 3DNAND to be competitivewith the available
96-layer 3DNANDsolutions,…company expects itsmonthly production capacity
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to hit 100,000 wafers after moving 64-layer 3D NAND technology to volume
production.” [14]

8.3 The Precision Bonder Based Monolithic 3D Advantages

The 3D Parallel using a precision bonder and ‘Cuttable’ wafer provides attrac-
tive advantages compared to Sequential 3D while keeping the equivalent vertical
connectivity.

• Standard Fab process for all levels—The nature of the parallel flow is that
each level is being processed by itself and accordingly its thermal budget is not
impacting the other levels in the stack. This is extremely important advantage as
the present IC fabrication complexity forces a vendor to resist any process change.

• Heterogeneous Integration—These days fabrication facilities are being designed
and constructed to support a specific type/class of products such as a specific
technology node, a specific type of circuit—logic, memory, analog, power, RF,
…, a specific type of substrate—Bulk Silicon, SOI, …. In parallel 3D mix and
match of different types of wafers in the stack provides an unparalleled advantage.
Some specific applications will be covered in Chaps. 11 and 15.

• Time to Market—In parallel 3D, all levels could be fabricated in parallel and
then stacked to form the 3D IC. With today’s complex processing advanced node
parallel processing could take 3months. For a 3D ICwith four levels the sequential
processing could take more than a year which might introduce an unacceptable
time to market challenge. While in 3D Parallel the fabrication of even a ten-level
3D IC stack could be done in less than five months.

• Per Level Testing—For parallel 3D, each level could be tested before being added
to the stack to reduce the risk of losing the 3D IC because of a defective level.
While random defects are still likely and should be managed by redundancy or
other techniques, a total level failure could be managed.

In short: Precision wafer bonders with a ‘Cuttable’ wafer provide a very attractive
technology forMonolithic 3D integration and could enable a broad industry adoption
of monolithic 3D IC technology.

8.4 Update on Sequential Monolithic 3D

The research activity for Sequential Monolithic 3D is ongoing by the world leading
semiconductor labs with good device demonstration as reported in IEDM 2018.
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8.4.1 CEA Leti

CEA Leti reported breakthrough progress [15] with their CoolCube™ program.
Implementing six major process changes “to limit the thermal budget of top tier pro-
cessing to low temperature (LT) (i.e. TTOP= 500 °C) in order to ensure the stability
of the bottom devices.” The technology provides top level transistor performance
compatible with the standard base level. Such thermal budget allows the use of tung-
sten for local interconnect in between top level and base level but would not allow
copper or aluminum type interconnect. Additional progress reported by CEA Leti
is the use of modified Smart Cut™ for the upper level silicon substrate. So instead
of bonding SOI wafer and then grind and etch it, CEA Leti could use the modified
Smart Cut™ process. So, wafers go through ion implant, then are bonded, cleaved
and annealedwithin the allowed thermal budget of 500 °C. Since the transferred layer
has no active device ion-cut could be used with the proper annealing steps and other
process adjustment reducing the overall cost of forming the upper layer substrate.

8.4.2 imec

The imec report [16] titled “First Demonstration of 3D stacked FinFETs at a 45 nm
fin pitch and 110 nm gate pitch technology on 300 mm wafers.” is a relatively new
entry to the monolithic 3D space. Like prior CoolCube™ work, imec use SOI wafer
bonding with grind and etch back to form the upper level silicon substrate, and
imec thermal budget is similar too (T < 525 °C), yet imec chose to use junction-
less transistors for the top level to comply with the thermal budget challenge, yet
reporting compatible performance with the base level transistors.

8.4.3 National Nano Device Laboratories (NDL)

National Nano Device Laboratories has been developing Sequential Monolithic
3D technologies utilizing laser re-crystallization for the upper level devices. Their
recent progress, with support of additional partners [17], was: “location-controlled-
grain technique is presented for fabricating BEOL monolithic 3D FinFET ICs
over SiO2. The grain-boundary free Si FinFETs thus fabricated exhibit steep sub-
threshold swing (<70mV/dec), highdriving currents (n-type: 363μA/μmandp-type:
385 μA/μm), and high Ion/Ioff (>106)”.
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8.5 Update on 3D Heterogeneous Integration

The old International Technology Roadmap for Semiconductors (ITRS) has ceased,
acknowledging the sunsetting of Moore’s law and ITRS issued in 2016 its final
roadmap. A new initiative for a more generalized semiconductor road-mapping was
started through the IEEE’s Rebooting Computing initiative, called the International
Roadmap for Devices and Systems (IRDS). One part of this new IRDS roadmap
under IEEE has been the Heterogeneous Integration Roadmap that recently released
its 2019Edition [18]. This new report references the opportunitieswith 3D integration
associated with heterogeneous integration similar to those covered in Chap. 15.

Additionally, many foundries have embarked on an effort to add wafer stacking
technologies, and specifically hybrid bonding, to their offering. GlobalFoundries
recently issued a press release about their collaboration with ARM to demonstrate
High-Density 3D Stack Test Chips for High Performance Compute Applications,
stating “the companies validated a 3D Design-for-Test (DFT) methodology, using
GF’s hybrid wafer-to-wafer bonding that can enable up to 1 million 3D connections
per mm2, extending the ability to scale 12 nm designs long into the future” [19].
This followed TSMC announcing a similar type of collaboration [20]. The TSMC
program, called SoIC for 3D Integration, is a part of TSMC’s advanced packaging
options as presented in Fig. 8.6.

Fig. 8.6 Comparison of multi-die integration technologies. 2.5D and 3D-IC use backend equip-
ment, SoICs frontend (wafer fab) technology. In SoIC, there is virtually no distance between
integrated chips. It achieves a very small bond-pad pitch of 9 μm for good scalability. Source
TSMC
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These new advances aremost effective for two-wafer face-to-face integration, as it
avoids the challenges associatedwith TSV formany applications.While limited, they
are an important step toward adoption of the 3D concept presented in this chapter.
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Chapter 9
Heterogeneous 3D Nano-systems: The
N3XT Approach?

Dennis Rich, Andrew Bartolo, Carlo Gilardo, Binh Le, Haitong Li,
Rebecca Park, Robert M. Radway, Mohamed M. Sabry Aly,
H.-S. Philip Wong and Subhasish Mitra

9.1 The N3XT Architecture for Abundant-Data
Applications

The future of computing is in crisis. Progress in abundant-data applications—includ-
ing those with massive memory footprints (such as deep learning, brain-inspired
computing, graph analytics, and natural language processing)—is demanding more
of hardware than ever before. At the same time, implementations of these applica-
tions on Si CMOS continue to encounter the memory wall, i.e., the time and energy
required to move data between memory and the relevant compute units is becom-
ing very significant [1]. Slowing progress in component technologies compounds
the problem as Dennard scaling of transistors meets fundamental limits. While 2D
miniaturization (Moore’s Law) continues, it, too, may soon hit fundamental limits
[2]. Thus, business as usual cannot address this crisis. Instead, new kinds of archi-
tectures enabled by their underlying nanotechnologies must lead the way. N3XT
(Nano-Engineered Computing Systems Technology) architectures [1, 3] embrace
this paradigm (Fig. 9.1).

Traditional 2D system architectures generally consist of separate computing and
memory chips connected by sparse chip-to-chip interconnects, resulting in expensive
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Fig. 9.1 Overview of N3XT architectures (taken from [3]). ©2015 IEEE

(in energy and time) off-chipmemory accesses. Some system architectures recognize
this problem and mitigate it with denser connections through 2.5D integration and
chip stacking using through-silicon vias (TSVs). However, the via density (about
0.2µm−1 [4, 5]) doesn’t provide the bandwidth required for manymemory-intensive
workloads [1, 6].

N3XT architectures finely integrate interleaved thin layers of logic and memory
in 3D with ultra-dense interlayer vias (ILVs), which gives rise to its hallmark fea-
ture: ultra-dense inter-layer connectivity. This advantage grants chip architects an
extremely wide, parallel interface for moving data between layers resulting in com-
putation immersed in memory (in addition to the fact that the number of logic and
memory elements is no longer constrained by the chip footprint). One use case for
this wide interface is connecting compute logic with memory; however, other use
cases exist for a wide range of application domains. For instance, a system using
ILVs to shuttle data from an upper layer of sensors into memory and compute layers
underneath was demonstrated in [7].

It should be noted that N3XT technologies do not preclude the use of the 2.5D
technologies discussed above; for instance, a “multi-N3XT” system comprised of
multiple N3XT chips could be interconnected together on an interposer.

9.2 Realizing the N3XT Architecture

N3XT can be implemented using many combinations of emerging technologies:
in this chapter, we focus on a specific N3XT implementation (described in [1],
outlined in Fig. 9.2) using Carbon Nanotube NFET (CNFET) transistors, Spin-
Transfer TorqueMagnetoresistiveRAM(STT-MRAM)andResistiveRAM(RRAM)



9 Heterogeneous 3D Nano-systems: The N3XT Approach? 129

Fig. 9.2 Envisioned architecture for first-generation N3XT [1]. ©2019 IEEE

memories. These component technologies, fabricated at temperatures under 400 °C,
together enablemonolithic (ultra-dense) 3D integration. Thus, the ILVs can be imple-
mented using back-end-of-line (BEOL) metal vias (that are already present today in
conventional integrated circuits for connecting interconnect layers). The component
technologies, as well as other potential candidates for fulfilling those roles in the
N3XT architecture, will be discussed in later sections. The first generation of N3XT
architectures, as shown in Fig. 9.2, uses CNFET logic for computation in lower layers
and for implementing memory access mechanisms on the upper layers. Computa-
tions occur on the bottom-most layer (near the heatsink) for thermal reasons. Upper
layers consist of STT-MRAM and RRAM memory arrays (and corresponding logic
circuits to access those memories). A later section addresses possible methods of
addressing the thermal challenge such that computations can be implemented using
logic on the upper layers (with interleaved memory layers).
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9.2.1 Benefits of N3XT

The high level of integration offered by N3XT makes it particularly attractive for
abundant-data applications (i.e., applications with large working sets that must be
shuttled back and forth to memory) resulting in significant benefits in application-
level energy and execution time. Workloads spanning graph analytics, conventional
machine learning, and deep learning all achieve large execution time and energy
benefits when running on N3XT architectures as compared to traditional 2D silicon
baseline architectures (Fig. 9.3).

Simulations are performed at a system level for a 2D baseline architecture and the
first-generationN3XT architecture. Both a general-purpose CPU and aDNNacceler-
ator are designedwith the samememory size and configuration, and technology node.
One part of the benefits, of course, results from more efficient component technolo-
gies (CNFETs and RRAM/STT-MRAM). However, more important in many cases is
the increased memory-compute bandwidth from ultra-dense (monolithic) intercon-
nects, which allows N3XT to overcome the memory wall. For example, in the graph
analytics simulation, the 2Dprocessor core spent 95.1%of its execution timeonmem-
ory access, while first-generation N3XT spent just 2.1% of the 2D core’s execution
time on the same. In compute-bound applications, the first-generation N3XT archi-
tecture achieves 13–16× EDP improvements since this latter advantage is negated.

Fig. 9.3 Benefits of first-generationN3XT (Fig. 9.2) against a 2D baseline systemwith breakdowns
for classes of abundant-data applications on a CPU-based architecture and a Deep Neural Network
(DNN) accelerator. Details of how these benefits are achieved are discussed in [1]
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Thermal analysis also shows approximately the same temperature between 2D and
first-generation N3XT for both architectures (61–63 °C for the CPU architecture and
35–36 °C for the DNN).

Since the main hallmark of N3XT is ultra-dense 3D connectivity, any compatible
component technology could be used in place of the assumptions made in the simu-
lations for Fig. 9.3. Logic alternatives for the upper tiers can be any low-temperature
compatible FETs: CNFETS, 2-D materials, thin-film transistors [8], or alternative
fabrication methods for traditional silicon [9]. Furthermore, there is a wide suite of
compatible memory technologies explored in Sect. 9.3.

The rest of this chapter will discuss the various components of N3XT systems,
their challenges, and recent work to overcome these challenges.

9.3 Memory Technologies for Monolithic 3D Integration

The N3XT approach enables Nano-Systems with compute immersed in memory.
These systems, as explained in the previous section, can give substantial system-level
energy and execution time benefits across a wide range of abundant-data applica-
tions. However, this architecture requires highly capable memory technologies to
achieve such benefits. Monolithically integrated 3D systems require that the mem-
ory technology is low temperature fabricable (<400 °C). While this integration tech-
nique greatly reduces memory access time and energy, the memory itself should also
have low latency and low-energy access to achieve maximal benefits (e.g., avoid the
pitfalls of Amdahl’s Law). The enormously increased interconnectivity of N3XT
also means that we can access substantially more memory at higher bandwidths
than previously achievable. Memory must therefore be extremely dense to provide
the capacity to solve abundant data problems that benefit from such bandwidths.
To achieve this density, simple lithographic scaling will be insufficient—vertical
integration schemes with multiple layers of memory cells are required to provide
increased density. Memory technologies that are difficult to stack and scale up ver-
tically (e.g., magnetic RAM, due to fabrication challenges) therefore have limited
benefits. Embedded Flash (eFlash) was used for low-cost, on-chip data storage, but
is not scalable both in terms of density and energy beyond 40-nm technology nodes.
Finally, memory non-volatility (e.g. data retention without external power) is desired
from various perspectives: storing and processing abundant data might otherwise
mean abundant static/refresh power unless the memory is non-volatile. In particular,
for embedded systems and applications non-volatility is critical to achieve systems
with useable battery life. Moreover, on-chip non-volatile memory provides the abil-
ity to power gate the system in a temporally fine-grained fashion [10], providing
substantial energy savings (and system battery life) over traditional off-chip NVMs.
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Fig. 9.4 Write energy and speed trends of various emerging non-volatile memory technologies
that can be integrated on chip. Data from [12]

9.3.1 Emerging Technologies to Pave the Way

Several non-volatile memory (NVM) technologies are emerging to serve as high-
capacity on-chipmemories that overcome the limitations of conventional DRAMand
Flash [11], while being compatible with the N3XT paradigm. Promising candidates
include resistive RAM (RRAM), magnetic RAM (including spin-torque-transfer
(STT), spin-orbit-torque (SOT), and voltage-controlled MRAM), ferroelectric RAM
(FeRAM), and phase change memory (PCM). These memory technologies have
different material systems and device structures than conventional silicon devices.
Because of different switching mechanisms coupled with a variety of material sys-
tems, a wide spectrum of energy and speed characteristics have been demonstrated at
device level for RRAM, PCM, and STT-MRAM, as summarized in Fig. 9.4. NVMs
have asymmetric read and write properties, where read operations are typically faster
and consume less energy than write operations.

Next, we will discuss the status of NVM technologies with an emphasis on their
integration capabilities and reliability.

9.3.2 Summary of Emerging Memory Technologies

Metal-oxide RRAM. A typical RRAM device consists of a metal-oxide switch-
ing layer (e.g., HfOx, TaOx, TiOx, AlOx by atomic layer deposition) sandwiched
by top and bottom metal electrodes, forming a two-terminal metal-insulator-metal
(MIM) structure. As a CMOS-compatible NVM device, RRAM can be directly
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fabricated in the back-end-of-line (BEOL) process without impacting the front-
end-of-line (FEOL) portion of a silicon chip. Leading foundries have successfully
demonstratedRRAMmacros integratedwith Si CMOS logic process [13, 14]. Unlike
charge-based volatile memories, information is encoded by high (‘0’) and low (‘1’)
resistance states in RRAM and is held during the whole retention time (typically
10 years under 85 °C). In addition to low energy (<pJ/bit), RRAM is promising for
high-capacity on-chip data storage due to good scalability and large-scale monolithic
integration capability. RRAM enables high cell density (<12 F2), with a compact 1T-
1R structure with a transistor as the selection device, or a crossbar structure with
integrated two-terminal selectors. Sub-20-nm and sub-10-nm RRAM devices have
been reported with good memory performance and reliability [15–17]. Full RRAM
memory chips have been reported, with capacities ranging from Mbit scale to Gbit
scale [12]. Notable high-capacity demonstrations include a 16-Gbit chip [18] and a
32-Gbit chip [19].

Monolithic 3D integration can further enable higher density by stacking memory
layers and scaling in the third dimension. There are two viable 3D architectures
for RRAM: 3D vertical structure [20] and stacked cross-point structure [19]. 3D
vertical RRAM (VRRAM), similar to vertical-channel 3D NAND Flash, has multi-
layer RRAMcells sandwiched between horizontal plane electrodes and vertical pillar
electrodes. Vertical pillars and multi-layer RRAM cells can be individually accessed
and modulated by select transistors underneath, as demonstrated by experiments on
four-layer 3D VRRAM integrated with select transistors [21, 22]. The key design
considerations targeting ultra-high density (>Gbit/mm2) are the driving capabilities
of select transistors for reliable write operations [22] and the non-linearity of bit cells
for reliable read operations.

STT-MRAM. A STT-MRAMcell typically consists of amagnetic tunnel junction
and a select transistor, as a 1T-1MTJ structure. STT-MRAM is being pursued as a fast
(~ns) and low-energy (<pJ/bit) cache-like memory. The scalability of STT-MRAM
depends on the MTJ and the select transistor. MTJ diameters have been shown to
be down-scalable to 11 nm [23]. However, the overall cell size is typically bounded
by the select transistor, which needs to be sized properly to provide enough write
current (10s of µA) for stable subsequent read operations (correlated with retention
time as well). For chip prototypes, a 65 nm silicon-CMOS chip with STT-MRAM
cache has been reported. The last-level cache (LLC) was 4 Mbit with 3.3-ns read
speed [24]. A 7-Mbit embedded STT-MRAM chip has been recently integrated with
a 22-nm FinFET process [25]. The effective memory density is mainly limited by
two factors: planar scaling limitation (the need for high write current) and vertical
scaling limitation. Vertical integration capabilities of STT-MRAM haven’t yet been
explored and reported, potentially due to complex material stacks used in today’s
STT-MRAM technologies.

PCM. PCM materials and device technologies have been extensively studied for
decades. PCM cells can be made in 1T-1R structures similar to planar RRAM cells.
As PCM programming relies on current-induced Joule heating, the major scaling
consideration is write current (typically 10s to 100s µA), which is provided by the
select transistor. Scaling below 10 nm is feasible for PCM cells for low-current
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operations [12]. Gbit-scale PCM chips have been reported for standalone memory
applications [26, 27].

FeRAM. Traditional FeRAM with a PZT-based ferroelectric capacitor has been
hard to scale (in terms of thickness) and suffers from high voltage and latency.
Recently, ferroelectricity in ultra-thin HfO2 layers leads to a more scalable, single-
transistor FeRAM (or FeFET) technology. While it is still in early phase of explo-
rations, integrationwith 22-nmFDSOICMOS logicwithmeasurements on a 32-Mbit
prototype array has been demonstrated [28].

3D NVM. Stacking memory layers and scaling in the third dimension make 3D
NVM a key technology enabler for realizing N3XT architectures that requires high
memory capacity and bandwidth. There are two viable 3D NVM architectures: 3D
vertical structure for RRAM [17] and stacked cross-point structure for both PCM
and RRAM [16]. 3D vertical RRAM (VRRAM), like vertical-channel 3D NAND
Flash, cost-effectively achieves the full potential of vertical scaling. Vertical pillars
and multi-layer RRAM cells can be individually accessed and modulated by select
transistors underneath, as demonstrated by experiments on four-layer 3D VRRAM
integrated with select transistors [18, 19]. The key design considerations target-
ing ultra-high density (>Gbit/mm2) are the driving capability of select transistors
for reliable write operations [19] and the non-linearity of bit cells for reliable read
operations.

9.3.3 Challenges of Emerging Memory Technologies

Endurance. STT-MRAM excels at high endurance due to magnetic switching. At
the same time, the energy barrier for magnetic switching also leads to an important
tradeoff between retention time and write energy. Hence, retention statistics at an
array level becomes a key reliability optimization goal for STT-MRAM. RRAM
and PCM studies primarily focus on the endurance aspect instead. 1012 endurance
cycles have been reported for RRAM at cell level [29, 30]. The improvement over
typical endurance cycles of RRAM (106–109) is attributed to interface and device
stack optimization. However, few endurance studies are done at array or system level;
these studies are key to understanding the impact of cell-to-cell variability and its
impact on overall system lifetime. Recently, array-level and system-level endurance
results have been reported, including array-level statistics for up to 107 cycles [31].
While substantially better than Flash endurance (104–105), such endurance levels at
first appear insufficient to operate as a general-use RAM (vs. purely as a ROM for
model parameters or instructions).Aswill be discussed in Sect. 9.3.4 these challenges
are ripe for cross-layer solutions. Understanding abundant data applications and
their write patterns can allow for better endurance resilience techniques to mitigate
endurance-related failures.

Variability. In addition to endurance, cell-to-cell variability is an oft-cited chal-
lenge of RRAM, PCM, and STT-MRAM [11, 32–38]. Due to the material-dependent
switching (e.g. of magnetic field, material phase, or ionic density) these technologies
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can be especially sensitive to manufacturing variation and defects across the memory
array, which yield variations in the resistive values of different cells for each state
[39]. These variations must be understood to develop effective circuit-level tech-
niques to manage variability and enable effective use of the memory technology.
Moreover, understanding the sensitivity of abundant data applications to bit errors in
these technologies will allow for effective cross-layer optimization of the algorithm,
memory controller and cell design.

9.3.4 Cross-Layer Solutions for Emerging Memory
Technologies Across Device, Circuit, Architecture
and Application Layers

RRAMvariations, originating fromdevice-to-device non-uniformity and the stochas-
tic nature of resistive switching process, need to be properly managed in memory
circuits. This becomes even more critical for exploiting RRAM’s capability of pro-
gramming and storing multiple bits per cell, where resistance distributions need to
fall under distinct ranges to represent multiple levels that can be correctly read out.
While there has been some work on multiple bits-per-cell RRAM mostly at the cell
level [40–43], much of this work did not take a systematic approach to programming
in light of cell-to cell variations. Recently, 3-bit-per-cell at a full array level has been
reported on 4 kbit 1T-1R RRAM arrays [44]. Leveraging the knowledge of array-
level statistical distributions for RRAM resistance values, sigma-based allocation
and bitline voltage allocation techniques are developed and coordinated to enable
successful sensing of 3 bits with iterative write-verify programming as shown in
Fig. 9.5. Multi-bit per cell effectively enables higher bit density and overall memory
capacity.

A similar approach was used in [10] where 2.3-bits-per-cell (e.g. 5 levels) were
achieved at the full system level, operating on 4-kBytes of 1T-1R RRAM. Even
more recently, a 1T-4R 1 Mbit RRAM array was demonstrated (where 4 RRAM
cells are driven by a single select transistor) with 2-bits-per-cell demonstrated on a
1 kbit sub-array [45]; a single select transistor accesses up to a byte of data. This
work used a novel gradual SET/RESET scheme to allow for precise control of each
of the RRAM cells in the 1T4R structure (to account for disturb induced during
neighboring same-transistor cell writes). The gradual SET/RESET scheme enabled
such substantial control over the cell resistance that 128 levels (7-bits-per-cell) were
demonstrated on a single-cell. By combining the refined control achievable through
the methods in [45] and the variation-aware range definition schemes in [10, 44]
multiple bits-per-cell capabilities can be achieved with low bit-error rates (BERs)
across large arrays.

A critical insight in the multiple bits-per-cell work has been in how such capacity
is used. With emerging memories, the technologies bit-error rate can be quite high,
especially when pushing the boundary with what is achievable in terms of write
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Fig. 9.5 a Sigma-based allocation concept, where wider ranges are allocated for higher resistance
levels. bMeasurement result on 4-kbit 1T-1R RRAM array [44]. ©2019 IEEE

speed, energy, and storage density. For many abundant data applications, bit-error
is tolerable [10, 45]. Thus, increased bits-per-cell storage at the cost of increased
bit-error rates can be tolerated. Wu et al. [10] demonstrate a 2.3× increase in a deep
neural network model accuracy that can be achieved by using increased bits-per-cell
storage, even though bit-error rates are quite high (2.24%). Hsieh et al. [45] show
that even with bit-error rates of 1.56% for 2-bits-per-cell 1T-4R RRAM, the model
inference accuracy is expected to be within 0.01% of ideal (no BER). Critically, for
[45] a unique encoding scheme was used in weight storage to minimize error—as
shown in Fig. 9.6, by co-optimizing the workload, substantial errors in the multi-bit
storage can be tolerated and the benefits of increased storage capacity (larger models
with improved inference accuracy) can be realized.

Similar cross-layer optimizations have been developed to manage the endurance
challenges of RRAM, e.g., ENDURER—an endurance resilience technique utiliz-
ing address remapping and write redistributions with small SRAM buffers (Fig. 9.7).
The SRAM write-back buffer reduces wear by filtering frequently written addresses
in memory, while the random address remapping simultaneously distributes wear
to all words in the memory at the word level. Such a combination is proven to
bound (with high probability) the number of writes to any word in the memory
[1]. Simulation results [31] across a wide range of deep neural network applica-
tions indicate that such a method can guarantee years of operating resiliency. More-
over, flash-inspired endurance resilience methods are insufficient, providing less
than a year of operating lifetime [31]. Hardware results running continuous machine
learning inference on an RRAM-based microcontroller [10] demonstrated 10-year
lifetime through measurement. Finally, the unique physics and characteristics, such
as inherent stochasticity, analog programmability, and ultra-dense (monolithic) con-
nectivity, can be collectively exploited with circuit, architecture, and application
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Fig. 9.6 Co-optimizing both network weight encoding and network size achieved the biggest
increase in inference accuracy while maintaining model size within the same number of RRAM
cells [10]. ©2019 IEEE

layers to produce computation results natively inside memories [46]. Together with
the aforementioned cross-layer solutions, when operations are properly orchestrated,
the massive memories on chip can be further exploited with less data movement and
“denser” functionalities for additional energy and area efficiency benefits.

9.4 CNFETs as Logic for Monolithic 3D Integration

The CNFET (Fig. 9.8a) is an essential component to enabling monolithic 3D inte-
gration. Although the CNT growth itself requires high temperature (865 °C), the
transfer of CNTs to any layer or substrate separates the temperature requirement for
the material growth and the transistor fabrication, allowing CNFETs to be processed
at very low temperatures (<200 °C) [49].

CNFETs are projected to offer an order of magnitude improvement compared
to SiFETs in the Energy Delay Product (EDP) at the processor scale, as shown in
Fig. 9.8b [48]. One key advantage of CNFETs comes from CNTs’ inherently high
mobility (>2,500 cm2/V s) [50] and injection velocity (4.1 × 107 cm/s) [51] even
at very thin TBODY (1–2 nm). This results in a superior drive strength that enables
CNFETs to reach higher effective current at a reduced supply voltage, compared to
SiFET [52, 53]. The CNFET short electrostatic scale length, resulting from the very
small TBODY, allows to scale the gate length (LG) of the devices preserving steep
sub-threshold slope [52] and hence low leakage current. This, coupled with the low
parasitic capacitances of a planar geometry, enables even further benefits, given the
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Fig. 9.7 Measurement results for ENDURER. Without ENDURER, RRAMwrites are centralized
to few cells, which fail quickly (top), rapidly degrading neural network inference performance (bot-
tom). With ENDURER, writes are distributed to the whole array, reducing failures and improving
system lifetime to 10 years [10]. ©2019 IEEE

Fig. 9.8 a Schematic of a CNFET [47]. CNTs are used as channel material in place of silicon.
b Projected CNFET offers 9.0× EDP benefit versus experimental Si/SiGe FinFET for the same
IOFF density (100 nA/µm) and power density (~65 W/cm2); experimental Si/SiGe NWFET offers
<30% EDP benefit [48]
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reduction of the total circuit capacitance. CNFETs can hence operate at a 3.0× higher
clock frequency dissipating 3.0× less energy per clock cycle, giving a total of 9.0×
EDP benefit at the processor level.

Despite major projected benefits, CNFETs have been characterized by device
imperfections and variations, such as mispositioned CNTs, metallic CNTs (m-
CNTs), and variability in the CNT count, that impose major hurdles to practical
implementations of CNFET-based VLSI logic circuits. In the following section, we
will review the process and design techniques that have been developed to overcome
these challenges, making CNFETs a viable alternative to replace and outperform
SiFETs.

9.4.1 Misaligned and Mispositioned CNTs [54]

One of the main challenges in CNT manufacturing is the accurate placement and
positioning of all theCNTs atVLSI scale. In particular, bothmisalignedCNTs (CNTs
that deviate from the crystal orientation of the single crystal quartz substrate during
the growth process) and mispositioned CNTs (CNTs that lie outside the gate region)
may cause incorrect logic functionality. Figure 9.9 shows an example of a misaligned
CNT causing incorrect functionality. To address the challenges of imperfections of
CNT synthesis, algorithms to determine vulnerability to—and to implement CNFET
logic circuits immune to—CNT imperfections have been developed. CNFET logic
circuits have been designed and experimentally demonstrated to implement correct
logic function even in the presence of large numbers ofmisaligned andmispositioned
CNTs without any die-specific customization.

Fig. 9.9 Misaligned CNT causing short in NAND logic gate [55]. ©2008 IEEE
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9.4.2 Density Enhancement of CNTs for Faster Speed

Producing wafer-scale high CNT density is crucial as it improves the speed of the
CNFET, which corresponds to the current-drive per unit layout width (ION). To
improve upon the transfer procedure [49], a multiple transfer technique called Con-
trolled IDC Density Enhancement by Repeated transfers (CIDER) has been devel-
oped. Density above 100 CNTs/µm has been achieved, yielding CNFETs with high
current-drive (>100 µA/µm at 400 nm channel length and 1 V VDS) and high on-
off ratio (>5,000) [56]. CIDER can be repeatedly implemented to increase the CNT
density to any arbitrary density value required for a given application.

9.4.3 Removal of Metallic CNTs

Current CNT growth process yields approximately 1/3metallic CNTs (m-CNTs) and
2/3 semiconducting CNTs (s-CNTs) [57], and there are no known CNT synthesis
techniques that exclusively grow s-CNTs as of today. The presence of m-CNTs
results in high CNFET off-state leakage current (IOFF), leading to degraded noise
margins and incorrect functionalities. A VLSI-compatible m-CNT Removal (VMR)
technique [58] is performed by applying a high voltage across inter-digitated VMR
electrodes, while applying a back-gate bias to turn off the s-CNTs (Fig. 9.10). As
the s-CNTs are turned off, large current can only flow through and electrically break
down the m-CNTs. Improving upon VMR, a Scalable m-CNT Removal (SMR) [59]
technique has been demonstrated with high selectivity (≥99.99% ofm-CNT removal
with ≤1% of s-CNT removal) and high scalability (applicable to any arbitrary CPP).

Fig. 9.10 a Schematic (left) and SEM images (right) of VMR electrodes with CNTs. b Increase
in ION/IOFF after several iterations of VMR [58]. ©2009 IEEE
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9.4.4 DREAM: Designing Resiliency Against m-CNTs

The requirements on s-CNT purity to ensure low leakage and acceptable noise immu-
nity in VLSI digital circuits can be further reduced by a factor of 10,000 leveraging
DREAM, a wafer-scale and VLSI compatible design technique that does not involve
any additional process steps [60]. At the logical synthesis, the DREAM technique
maps the original circuit to another one with the same logical functionality but avoid-
ing the logic gates pairs in which the noise margin is below a certain acceptance
threshold. Fully functional circuits can thus be manufactured with only a 99.99%
s-CNT purity requirement (a purity level already available today) and with only
minimal decrease in energy efficiency and increase in overall area of the realized
circuit.

9.4.5 System-Level Experimental Demonstrations

In addition to the imperfection-immune system-design techniques, significant
progress has been made in device-level challenges. These include solution-based
CNT purification [61–63], hysteresis reduction [64], control of doping [65–68], con-
tact resistance studies [69–71], investigation of threshold voltage variation [72, 73],
etc.

Due to the combined efforts from system designers and device engineers, CNT
technology is the first and only nanotechnology to demonstrate large-scale appli-
cations and enable novel architectures. Recently, a 16-bit microprocessor, RV16X-
NANO built entirely with CNFETs has been demonstrated [60]. RV16X-NANO
comprises more than ten thousand CMOS CNFETs and leverages unique process
and design techniques that are able to overcome the defects and variability issues
inherent to CNFET technology. Most importantly, the microprocessor is fully com-
patible with commercial silicon CMOSmanufacturing and is designed with standard
EDA tools. CNFETs have also been successfully integrated to realize 1 kbit 6 transis-
tors static random-access memory (SRAM) arrays [74] that leverage the CNFET low
temperature fabrication process to enable small area SRAM, e.g., placing the cell on
top of a logic layer. New design techniques, exploiting emerging memories, such as
RRAM, have been developed to realize fully functional analog circuits [75], where
the constraints on s-CNT purity are more stringent and new techniques are hence
necessary. Lastly, monolithic 3D integration of CNFET logic devices and memory
has already been demonstrated in practice many times. One such demonstration is
the 3D nanosystems shown in Fig. 9.11. It consists of four monolithically integrated
vertical layers, connected through dense vertical inter-connects. From top to bottom:
CNFET sensors and logic (including more than one million CNFET inverters, which
operate as gas sensors), 1 Mbit RRAM, CNFET logic (the CNFET row decoders
and CNFET classification accelerator), and SiFET logic [7]. Another demonstration
is a brain-inspired hyperdimensional computing nanosystem entirely realized with
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Fig. 9.11 Illustration of a nanosystem: 4 vertically stacked layers of logic, memory and sensors,
comprising more than two million CNFETs and more than one million memory cells and fully
compatible with silicon technology [7]. ©2017 Springer Nature

RRAM and CNFETs [76], able to perform language recognition with an accuracy
of 98%.

9.5 The Thermal Challenge

Heat dissipation remains a bottleneck even for high-performance single-layer CPUs
[77], which produce power on the order of 100 W/cm2. In a 3D integrated stack, this
footprint power density scales with the number of layers. Furthermore, each layer is
separated from bottom-mounted heatsinks by the preceding layers, adding vertical
thermal resistance that pushes junction temperatures still higher.

Monolithic 3D architectures face an additional thermal challenge in their unique
form factor which impedes the horizontal heat dissipation [78] critical for quashing
hotspots that decrease device lifetimes. Furthermore, layers of SiO2 thinner than
100 nm have thermal resistivity twice that of bulk layers [79].

Current monolithic 3D implementations alleviate this problem by stacking power-
intensive computation layers at the bottomof thedevice, leavinghigher layers for low-
power memory [1]. Although this decreases vertical thermal resistance to the chip
floor for each computation layer, it results in increased latency between data in mem-
ory and the computation layers that need it. A more efficient structure intersperses
layers of processing and memory, despite the thermal cost [80]. While CNFETs and
RRAM reduce the total power dissipation (being more efficient technologies than
Si), the thermal limits of such structures are still unknown.

Several avenues remain ripe for exploration to widen the thermal bottleneck. One
approach is to increase horizontal thermal conductivity, reducing hotspots, and ver-
tical conductivity, allowing external heatsinks to better cool every layer in the stack.
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Fig. 9.12 A sample test structure to probe aggregate interlayer via conductivity [81]. ©2017 Taylor
& Francis

For example, the uniquely high interlayer via densities promised by monolithic 3D
ICs could achieve additional vertical conductivity. Park et al. [81] show this exper-
imentally, finding that denser, smaller vias with high aspect ratio increase vertical
conductivity even when metal density is held constant (Fig. 9.12). Continued efforts
to better understand the thermal effects of vias and interconnects on the system level
[82, 83] will further designers’ ability to and achieve optimal thermal structures.

Modifying the materials that make up the system could also result in increased
thermal conductivity. For instance, conventional oxide-based interlayer dielectrics
(ILDs) that separate layers of compute and memory have low thermal conductivity
[84]. Instead, they are designed for low dielectric response, preserving interconnect
bandwidth and reducing overall parasitic capacitance. They must also resist expo-
sure to water and heat (up to 400 °C), which are common process components,
as well as exhibit a high Young’s modulus for mechanical stability. Any candidate
for a replacement ILD must maintain these advantages as well as increase thermal
conductivity. Dielectric response and thermal conductivity are known to be strongly
correlated [85], but creative solutions such as heterogeneous material construction,
porous layers, or 2D materials [86] could decouple these parameters.

More ambitiously, active cooling that scales with height, and not just footprint
like mounted heatsinks, could have a place in future monolithic 3D devices. Inter-
layer microfluidic channels meet this requirement: each added layer adds space for
more channels. Furthermore, encapsulated phase-change materials offer potential
for dense thermal energy storage [87], further improving the thermal capacity of
each channel. Unfortunately, current microfluidic channels, even under ideal con-
ditions, can only reach pitches of 4 µm [88]. This is an order of magnitude larger
than monolithic 3D layers, posing two problems. First, interlayer vias would need
to traverse additional distance to be routed properly around the channels, increas-
ing aspect ratios and reducing their density. These routing issues could effectively
eliminate the bandwidth gains from monolithic 3D integration. Second, the material
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that surrounds the microchannels would add resistance in the thermal path to either
a channel or the bottom-mounted heatsink.

Testing any of these methods in transient simulation remains a challenge for
monolithic 3D as well. They require high resolution (to capture the effect of dense
via structures and component-level activity), large area (to generalize to the system
level), and speed (for designers to iteratively test and adjust their layouts). For speedy,
large-area simulation, analytical models have been devised, as in [89, 90]. More
accuracy can be gained, however, by incorporating higher-precision models into
these analytics. For example, Wei et al. [82] perform FEA analysis on individual
interconnect layers and incorporates those results into the analytical model given by
Kemper et al. [91].

There has been significant focus on the development and use of thermal resistor
networks for modeling monolithic 3D systems and cooling solutions for the same.
These networks seem to provide a good compromise between resolution, area, and
speed. HotSpot, one such network solver, has added easy modeling of large vias
[92], although monolithic 3D ILVs are too small to accurately describe and model
in its framework. A more recent network solver, 3D-ICE, was designed to model
the thermal effects of microfluidic channels on 3D systems [93]. Generation and
analysis of thermal resistor networks that consider individual interconnects, vias,
and components remains an open problem.

Further investigation into both passive and active cooling methods will allow
monolithic 3D technology to achieve tolerance for more layers of computation and
the ability to intersperse themwithmemory. These improvements, alongwith scaling
to smaller nodes, would increase interconnectivity and lead to monolithic 3D devices
with unprecedented efficiency.

9.6 Conclusion

Deep learning, brain-inspired computing, and other abundant-data applications
require radically newNanoSystems built using next-generation component technolo-
gies. The N3XT approach leverages these emerging logic and memory technologies
for their individual system benefits as well as their amenability to ultra-dense 3D
integration. One first-generation N3XT architecture overcomes the ‘memory wall’
bottleneck with increased memory capacity and dramatically improved memory-
compute bandwidth stemming from monolithic 3D integration. This implementa-
tion could yield system-level energy × execution time benefits of 1000× over 2D Si
CMOS [1].

In addition to specific technologies used in our first-generation N3XT architec-
ture (CNTs, STT-MRAM, RRAM, monolithic 3D), other technologies for realiz-
ing N3XT must also be explored. There are many avenues open to achieving still
larger benefits in future generations of N3XT. So far, N3XT simulated benefits have
been demonstrated using existing software designed for existing 2D systems, absent
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any N3XT-specific optimizations. Even greater benefits could be realized by co-
optimizing the entire application-software-hardware stack for N3XT (e.g., using
domain-specific languages, and appropriate workload partitioning, data placement,
and scheduling [94]). Yield, reliability, and cost aspects of N3XT are addressed
through technology-, circuit-, architecture- and application-level techniques [95–97].

As two-dimensional miniaturization reaches fundamental limits, realizing N3XT
becomes evenmore critical with fully interspersed compute andmemory (beyond the
first-generation N3XT architecture where the bulk of computation occurs in lower
tiers, close to the heatsink, and logic on the upper layers is mostly used for sup-
porting memory accesses). Mitigation of the corresponding thermal effects requires
architecture-driven thermal solutions co-optimized across technology, architecture,
and software layers.

Meanwhile, N3XT technologies have already been demonstrated in commercial
fabrication facilities [98]. Although further work is necessary to demonstrate the sim-
ulated 1000× benefits on an experimental system, intermediate hardware prototypes
demonstrate the practicality and potential of N3XT.
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Chapter 10
High-Speed 3D Memories Enabling
the AI Future

Zvi Or-Bach

10.1 Stacked Capacitor DRAM

For the last two decades, Stacked Capacitor DRAM has been the technology of
choice for high speed (<100 ns), high endurance (>1012), and low cost (<$0.5/Gb)
memory.Thus far, no alternative technologyhas beenpositioned to challengeDRAM.
Figure 10.1 was presented by John Hennessy in multiple events during 2018 stating:
“For many years we were achieving increases of about 50 percent a year that is going
up slightly faster than Moore’s law. Then we began a period of slowdown and if you
look at what’s happened in the last seven years, this technology we were used to
seeing increased the number of megabits per chip more than doubling every two
years but is now going up at about 10% a year and it’s going to take about seven
years to double now.” Capacitor based DRAM technology needs a minimum size
capacitor to keep enough charge so that the refresh rate would be kept, while scaling
with reduced size make it harder to keep the charge leakage under control. It is now
clear that capacitor-based DRAM scaling has leveled off.

During the last decade, it was observed that the need for DRAM in computing
systems is limited,while the need for storage has kept growing.Accordingly, industry
analysts were expecting the NAND market will become far larger than the DRAM
market by now. But the re-birth of AI technology has reversed that trend in the
recent years and DRAM demand has seen a rapid growth resulting in dramatic price
increases for DRAM devices (Fig. 10.2).

The diminishing effectiveness of conventional scaling, at a time of accelerating
AI-driven use, presents a tough challenge for the industry. However, at nearly the
same time, the NAND industry was facing a scaling challenge. But then the industry
was able to change course and adopt 3D scaling (Fig. 10.3).
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Fig. 10.1 Moore’s law for DRAM—J. Hennessy 2018

Fig. 10.2 Recent years DRAM device price appreciation
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Fig. 10.3 DRAM versus flash ASP (average selling price). Source IDC

Early 3D NAND products used 24 layers in the 3D stack, and then the indus-
try released 32, 64, 72, and recently 96 layers to production. This 3D-stack driven
roadmap suggests continuing the 3D scaling towards a few hundred layers, thus
keeping the scaling of NAND memory products to increase the memory capacity
with the corresponding reduction in cost per bit.

Capacitor based DRAM would not allow such 3D scaling and no alternative has
been proposed so far to do so for DRAM.

10.2 Alternative Memory Technologies

Over the past decades, a significant R&D effort has been devoted to developing
alternative memory technologies. The leading alternative technologies are based on:
Phase Change Materials (PCM), Resistive Memory (R-RAM) or Magnetic Mem-
ory (M-RAM). These alternative memory technologies have many variations and
derivatives with other name branding as well. None of these alternative memory
technologies seems to challenge the mainstream technologies—DRAM and NAND.
And none of these technologies has been considered as a potential alternative to
DRAM.

10.2.1 PCM—3D XPoint

Intel and Micron collaborated in releasing to the market a product named Optane™
as a Storage Class Memory (SCM) to bridge the growing gap between DRAM and
3D NAND. Also, it is considered a 3D memory as it is designed as a cross-point
architecture and would not fit the low-cost 3D Scaling in which many memory
layers are processed together following the same lithography step. 3D XPoint is
not considered as a potential DRAM alternative due to access speed and endurance
limitations.
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10.2.2 R-RAM

R-RAM has been a very popular memory candidate with many alternative material
and configurations. So far it seems that most of the effort is to position R-RAM
as an attractive alternative for embedded non-volatile memory. R-RAM is not been
proposed as a DRAM alternative mostly due to endurance limitations.

10.2.3 M-RAM

M-RAM has recently made good progress and is now being offered as a qualified
non-volatile embedded memory by multiple vendors including TSMC, Samsung,
and Intel. M-RAM has not been proposed as a DRAM alternative mostly due to the
much larger memory cell size and concerns with the challenge of scaling to smaller
technology nodes.

10.2.4 F-RAM

Ferro-Electric memory (F-RAM) is an established high-speed non-volatile specialty
memory technology currently offered by Fujitsu and Cypress. It was considered a
low-density memory due to the prohibitive thickness of the special Ferro-Electric
materials. Recently, it was discovered that doped hafnium oxide (HfO2) exhibits
ferro-electric properties and could enable a high-density F-RAM [1, 2]. The tech-
nology was proposed to support capacitor-based DRAM or single transistor memory
cells. So far, the endurance of single transistor FRAMmemory cell has been at about
106 cycle, which is too low to be considered as a DRAM alternative.

10.3 Charge-Trap DRAM

Charge-Trap is the dominating technology for 3D NANDwhich is considered a slow
Non-Volatile memory technology. In CT 3DNAND, the charge is trapped in a nitride
layer of about 5–8 nm thick. A high-quality tunneling oxide is placed as a barrier
between the trapping layer and the channel to keep the charge trapped for about
10 years. In a landmark paper by Wann and Hu in 1995 [3] it was presented that
thinning the tunneling oxide to about 1 nm provides a memory with performance
attractive for DRAM applications from all aspects (endurance, access time, size). So,
by accepting the concept of refreshing the CT NAND memory cells, a Charge-Trap
memory of thin tunneling oxide will give up a 10-year retention for few seconds of
retention, but in return possess fast write times in the tens of ns and an endurance
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higher than 1012 cycles. A similar concept was published by IBM [4]. This work
was confirmed and improved on by work such as Fujitsu’s [5] and covered in patents
filed by Macronix [6] and Micron [7]. It seems that the thin tunneling concept was
proposed at a time floating gate rather than charge-trap was the Non-Volatile indus-
try’s technology of choice. Moreover, at that time DRAM scaling was in-step with
the rest of the industry and a thin tunneling charge-trap did not offer enough of an
advantage to be pursued by the memory industry.

In theFlashmarket for storage applications,NANDarchitecture became the indus-
try choice as it provides a significantly higher density (lower cost) than a NOR archi-
tecture. As illustrated in Fig. 10.4 a NAND architecture with only two diffusion
contacts could provide access to a long NAND string, thus reducing the effective
size of a memory cell to 4F2 [8]. In the NOR architecture, the one diffusion contact
per cell increases the cell size to 8F2, thus a higher memory cost. The NOR architec-
ture does provide direct access to the selected cell which result in much faster read
access time, consequently making it attractive for applications such as program code
storage. An alternative architecture shown in Fig. 10.4 as AND architecture provides
direct access with a better density than conventional NOR. This architecture often is
also called NOR and could be attractive for 3D random access memory structures.

The success of the NAND industry with 3DNAND scaling could now be followed
by adopting Charge-Trap for DRAM and changing the memory architecture from a
NAND to a NOR (AND) architecture. Such a 3D architecture has been first proposed
by Macronix [9], later by MonolithIC 3D Inc. with single crystal channel option
[10], and then by Eli Harari [11] and his new company Sunrise Memory Corp (Eli
Harari was the founder of SanDisk and won the National Medal of Technology and
Innovation from President Barack Obama for his innovations and contributions to
flash memory storage solutions). These proposals could be grouped into those with
horizontal bit-line orientation and vertical bit-line orientation. In the following, the
details of 3D NOR with a vertical bit-line orientation are presented. An important
advantage of these structures is the similarity to the common 3D NAND ‘Punch and
Plug’ process and accordingly the advantage in sharing the industry accumulated
know-how and manufacturing infrastructure.

10.4 Charge-Trap 3D NOR (AND)

Just like in 3D NAND, the foundation fabric is a multi-layer fabric such as oxide
layers with poly-silicon in-between. The number of poly-silicon layers is a linear
relation to the number of memory cells in the 3D memory structure. And just as in
3D NAND the memory process is done for the full multi-layer fabric affecting all
the levels together—hence 3D scaling (Fig. 10.5).

Figure 10.6 illustrates a side cut-view of the structure overlaying the structure
transistor schematic. It represents an aggressive 3D NOR (AND) structure in which
the bit-lines (B0–B4), in blue, serves as Source and Drain to cells on their right side
and on their left side. These bit lines could be formed by filling the punch holes with
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Fig. 10.4 a NOR versus NAND flash architecture. b NOR versus NAND flash architecture
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Fig. 10.5 Multilayer fabric as foundation for 3D NAND and 3D NOR

Fig. 10.6 Transistor schematic overlaid by punch and fill source/drain (bit-lines) in the odd holes
and channel in the even holes

N+ silicon, or through a combination of N+ layers on the holes’ walls and core of
metal or even just metal for a Schottky-based structure. The channel holes in between
are filled with un-doped polysilicon.

The structure looks like a 3D NAND with N+ holes punched between channel
holes. Figure 10.7 illustrates a top view of the structure.
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Fig. 10.7 Top-view, source/drain (bit-lines) in the odd holes and channel in the even holes

Figure 10.8 illustrates an alternative for the 3D NOR structure in which no addi-
tional holes are ‘punched’ for the channel but rather forming the channels by use of
etch and deposition through the S/D holes.

Additional details for the 3DNOR structures and alternative process flows to form
them could be found in the referenced patents and applications [9–12].

Fig. 10.8 Some alternatives for 3D memory structures
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10.5 Schottky Barrier and Dopant Segregated Schottky
Barrier (“DSSB”)

In flash devices there are a few writing mechanisms that are frequently used. One
is Fowler–Nordheim (FN) tunneling commonly used in NAND flash devices and
another is Hot Carrier Injection (HCI), also called Hot Electron, often used in NOR
flash devices. Flash cell writing using FN tunneling is orders of magnitudes more
efficient than HCI as in FN most of the current is the tunneling current while in HCI
only a small fraction of the current through the channel is actually the hot carriers
being driven over the quantum barrier thus to be trapped.

In a paper [13] titled “Performance breakthrough in NOR flash memory with
dopant-segregated Schottky-barrier (DSSB) SONOS devices” a few orders of mag-
nitude improvements were reported by the use of Schottky Barrier devices, as is
illustrated in Fig. 10.9 (Fig. 3 of the paper [13]).

This improvement in hot carrier write time and efficiency was reported in other
papers including devices without dopant segregation, and devices utilizing poly sil-
icon channels [14–16]. Using metalized Source/Drain lines in the 3D NOR device
improves the bit-line conductivity and thus enhances the device P/E efficiency and
speed.

Comparing such a 3D NOR technology to Stacked Capacitor DRAM suggests
many advantages such as: higher density, 3D scaling, lower power, reduced rate of
refresh, non-destructive read. Yet Charge-Trap 3D NOR is expected to have much
longer erase time. Proper design of a 3D NOR device could support a full segment
erase scheme, which combined with proper system design and support software,
could compensate for the erase time deficiency.

Fig. 10.9 Program/erase
characteristics for NOR flash
memory cell (double gate),
DSSB and conventional
SONOS devices
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10.6 Periphery Under Cell (“PUC”) or Over Cell (“POC”)

To further enhance the 3D NOR structure to support DRAM applications, it useful
to have the memory control circuits, often called periphery circuits, either under
the memory array or on top of it. Some of the 3D NAND products in the market
use periphery under cell, also called CMOS under Array (‘CUA’), currently being
produced by Micron and Intel. And as discussed in Chap. 8, YMTC use Xtaking to
form the periphery over the memory array. For DRAM applications the 3D NOR
structure could utilize these ideas further to break the array to hundreds or even
thousands of small arrays, each with its own control circuits, to keep the memory
control lines short and accordingly support very high-speed access.

10.7 Further Applications

3D NOR high speed memory could be an attractive architecture to many memory
applications such as Storage Class Memory (SCM) and AI applications such as
Neuromorphic Computing [17, 18]. The NOR (AND) architecture provides direct
access to the selected cell, the 3D structure allows high density packing and reduce
costs with 3D scaling. Supporting it, with periphery under the cell or over the cell,
further enables high speed access and partitioning the memory into small arrays
helps keep the memory access lines short. In summary, 3D integration technology
is already a part of memory scaling and it is positioned to support the full range of
memory applications required to keep advancing device integration to drive the AI
era.
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Chapter 11
3D for Efficient FPGA

Zvi Or-Bach

11.1 Historical Prospective

Logic devices have amounted to about two thirds of the IC industry for many years.
In logic devices, there has always been a tradeoff between the costs of developing
the logic device in time and money, versus the cost of the end product in terms of
performance, power, and cost (“PPC”) as illustrated in Fig. 11.1.

In a fundamental work at the Berkeley Wireless Research Center and followed
work at many other technology centers [1–3] this tradeoff has been characterized
over two decades of designs and benchmarks (Fig. 11.2).

At the early days of the FPGAmarket, two programming technologies were com-
peting—SRAM based Look Up Table (LUT), and Anti-Fuse. LUT eventually won
because it allows easy technology scaling and unlimited reprogramming iterations.
Yet, due to the severe PPC penalties of FPGA technology [4], the adoption of the
FPGA technology remains limited (Fig. 11.3).

Adapting 3D technology to FPGAdesign could be cost-effective andmight greatly
reduce those PPC penalties.

11.2 Early Work on 3D FPGA

Early work on 3D FPGA considered that forming the SRAMof the LUT on top of the
FPGA logic would be technologically possible and far less demanding than forming
two levels of logic one on top of the other. Tier Logic collaborated with Toshiba [5]
to build SRAM using Thin Film Transistors (TFT) for the FPGA LUT on top of the
rest of the FPGA circuit. It believed it could have reduced the FPGA device area by
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Fig. 11.1 Logic device tradeoff

Fig. 11.2 Characterization of logic device tradeoff

about 20%, yet the effort failed, and the project was shut down. A similar concept
using RRAM [6] on top of the logic instead of TFT reported potential 40% reduction
compared to 2D FPGA but was not pursued commercially.
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Fig. 11.3 The FPGA penalties

CEA Leti has been developing sequential monolithic 3D calling it CoolCube™.
As a benchmark, they evaluated [7] applying their technology for FPGAputting logic
over memory with the expectation to achieve 55% area reduction compared to 2D
FPGA [9].

11.3 3D for Multi-configurations

Tabula, a recently failed start-up, had developed a unique type of FPGA—a real time
reconfigurable FPGA. The concept tries to leverage FPGA reconfigurability through
storing multiple configurations on-chip and swapping them as needed. It effectively
attempted to compensate for the limited area efficiency of the FPGA by reusing the
same chip’s real estate for multiple purposes on the fly. The company even called its
product a 3D FPGA, time being the 3rd dimension. Tabula had raised about $200M
but eventually went out of business. An interesting concept that could be added
to Tabula structure has been suggested [8] to leverage monolithic 3D technology
for multi-stack to hold the multi configuration of the FPGA. Having more than
one configuration of a device stack in 3D could allow switching between device
configurations within just a few clock cycles and would not increase the device
footprint.
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11.4 3D for FPGA-ASIC Dual Mode Concept

An interesting alternative to FPGA was developed by eASIC [10], recently acquired
by Intel. The original concept pioneered by eASIC was that the key deficiency of
FPGA is its Programmable Interconnect (“PIC”) rather than logic. Consequently,
eASIC’s early product used programmable LUT-4 (SRAMbased) withmask-defined
via interconnection. Figure 11.4 illustrates the advantage of via defined interconnect
versus PIC at the 45 nm node.

It should be noted that PIC requires sharing some of the base silicon fabric and
consumes additional routing resources by going down from the interconnect levels
(metal layers 3–6) to the base silicon and up again.

Figure 11.5 illustrates the effectiveness of via-defined interconnect logic. It could
potentially provide logic that has only a factor of 2–4 area penalty versus ASICs,
with a power-speed penalty of 2–3.

Leveraging monolithic 3D technology could enable effective replacement of
eASIC’s via with electrically programmable anti-fuse, thus enabling FPGA devices
with better than 10× improvement to PPC.

3D heterogeneous integration could help overcome some of the known limitations
of anti-fuse technology. First, it allows using a standard fab and process for the base
FPGA fabric. Second, it allows saving on the anti-fuse high voltage programming
circuits overhead by moving them to an upper level.

Fig. 11.4 Programmable interconnect versus masked defined interconnect
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Fig. 11.5 eASIC versus FPGA and versus ASIC. Source eASIC web site

Replacing via-defined interconnect fabric with programmable anti-fuse intercon-
nect fabric could be done with relatively low overhead (<20%) as is illustrated by
Fig. 11.6.

Fig. 11.6 Anti-fuse M × N fully populated crossbar interconnect structure
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Fig. 11.7 Dual mode: FPGA for prototype and low volume, and mask-defined via for low cost

An additional advantage in which 3D heterogeneous integration could be applied
is supporting dual mode of the custom logic: using field programmable device for
prototypes and low volume, and form a low-cost compatible volume replacement
device, in which the anti-fuses are replaced by a mask-defined via layer (Fig. 11.7).

Removing the anti-fuse and programming circuitry could reduce costs of the
high-volume part for the relatively low cost of a single via mask.

11.5 Utilizing 3D Memory Fabric for FPGA Fabric

The breakthrough which was introduced with 3D NAND technology was the intro-
duction of a new form of scaling—3DScaling. In 3D scaling technology,more device
transistors (or memory cells) are being produced for about the same manufacturing
effort by having more layers in the substrate starting wafer. In Chap. 10 we presented
a variation called 3DNORwhich could be used to replace Stacked Capacitor DRAM
technology. Here, a technology concept is presented to leverage 3D scaling for FPGA
fabric. The technology has also been detailed in MonolithIC 3D, Inc. patent applica-
tions [11, 12]. The first structure [11] is leveraging 3D NOR memory fabric having
a single crystal channel and vertically oriented word-lines for FPGA fabric. The sec-
ond structure [12] leverages 3DNORmemory fabric having poly-crystalline channel
and horizontally oriented word-lines for FPGA fabric. The following description is
based on the first structure. First, a generic structure is constructed using shared
lithography and processing, which later on could be programmed to function as an
FPGA.
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11.5.1 The Fabric

A key concept leveraging 3D NOR memory structure for FPGA application is using
a flash memory for programmable logic applications [13–15] (Fig. 11.8).

A variation of the 3D NOR structure presented in Chap. 10 could include first
epitaxial growth of multilayer SiGe over silicon for single crystal channel, or con-
ventional multilayer deposition of polysilicon over oxide as common for 3D NAND.
Then, etching the structure, forming rims and valleys takes place (Fig. 11.9).

Fig. 11.8 Flash cell is a programmable logic function

Fig. 11.9 Multilayer
substrate after etching
forming ridges and valleys
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Next, depositing Oxide-Nitride-Oxide (O/N/O) makes the structure ready for
charge trapmemory function. Next, forming gates and a staircasemakes the structure
illustrated in Fig. 11.10.

The transistor schematic of one ridge is illustrated in Fig. 11.11.

Fig. 11.10 Adding O/N/O, gates, and staircase access

Fig. 11.11 Transistor
schematic along a ridge



11 3D for Efficient FPGA 173

Fig. 11.12 LUT-2 could be formed in section of a 3D NOR structure

11.5.2 Programmable LUT-n Memory

The above structure could be used to form logic functions such as Look-Up-Table
and programmable interconnect for FPGA applications. Figure 11.12 illustrates a
LUT-2 formed in two layers of such a ridge.

TheLUT-2gates (A,AN,B,BN) are theWL0–WL3 (Fig. 11.11). TheX represents
an additional variation in which an in the bit-line junction-less-transistors (“JLT”)
is being formed. The details for such in bit-line JLT processing are detailed in PCT
application WO 2017/053329. Such in bit-line JLT enable horizontal segmentation
of the 3D NOR structure. The truth table of this LUT-2 structure is presented in
Fig. 11.13 (Fig. 11.14).

The 3D NOR structure is a 3Dmatrix of n-type transistors. Accordingly, the logic
functions formed in it utilize only n-type transistors. A transferred layer on top could
be used to add full CMOS circuitry to complement the n-only programmable logic
underneath. Logic circuits that utilize mainly n-type transistors had been proposed
in the past [16]. One approach to reconstruct full swing signals from n-type only
circuits is to use two complementing logic functions. Figure 11.15a, b illustrates the
use of complementing LUT and LUT-N with top CMOS circuit to reconstruct full
swing logic output.

For higher performance, a differential amplifier circuit could be used instead of
the logic half-latch.

11.5.3 Programmable Interconnect in Memory

Differential logic could be extended to differential signaling throughout the FPGA.
It could help reduce power and improve speed but, far more importantly, it allows
using the 3D NOR fabric for programmable routing. Differential interconnects offer
lower voltage swings with better noise immunity resulting in lower power. For years,
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Fig. 11.13 Truth table of the programmable memory for LUT-2 function

interconnect delay has increased with scaling, while gate delay has decreased as has
been illustrated in Fig. 15.2a, b. Yet, the interconnect effect on chip power had been
managed by chip operating voltage scaling known as Dennard scaling (Fig. 11.16).

The end of Dennard Scaling made power the limiting factor. The constant
charge and discharge of the interconnect capacitance now dominates chip power
and performance (Fig. 11.17).

Yet, the industry has not adapted differential interconnect because it requires
double the routing resources and additional support circuits. However, as power
becomes a dominant problem, perhaps it is time for differential interconnects to take
center role in new chip architectures.

3D scaling for configurable logic using shared litho and shared processing opens
an iterating opportunity for new type of interconnect technology. In 3D scaling, many
layers are processing together, allowing the effective processing of many layers of
interconnect together as a generic 3D matrix, and later program them for specific
interconnect functions.
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Fig. 11.14 LUT-4 could be formed in section of a 3D NOR ridge structure, having four LUT-2
vertically stacked within a ridge and adjacent 4 to 1 selector

For example, in a 3D fabric of 32 levels the top 10 could be used for the LUT-4 as is
illustrated in Fig. 11.14 and the bottom 22 could be used for interconnect. The unused
bit-lines of these 22 layers could function as horizontal (“X” direction) segments of
the interconnect fabric. Vertical segment could be formed by depositing vertical
(“Z” direction) conductive segments in-between the word-lines the structure—see
Figs. 11.11 and 11.18a, b.

The programmable connectivity structure could use RRAM technology or anti-
fuse (One Time Programmable—“OTP”) technology. The connectivity segments in
the horizontal direction vertical to the bit-line (“Y” direction), could add in using
technology concept know as word-line replacement in 3D NAND (Fig. 11.19).

The support circuit on top could support the differential interconnect just like the
differential logic.

The FPGA in memory fabric enables the formation of a multilayer (96–128)
memory, such as 3D NOR, with the top 32 layers used for programmable logic while
the rest for memory. Recently, logic in memory has become a popular concept as it
fits very well many AI type applications. The 3D NOR with built-in FPGA could fit
very well in this emerging space.
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Fig. 11.15 a Two complementing LUT-4 with top lower control and reconstruction. b Optional
differential amplifier top level reconstruction circuit

As a standalone FPGA product, 3D-NOR base FPGA could compete well
with mask-defined standard cell designs. The LUT-4 footprint could be about (10
× 100 nm) × (2 × 100 nm) = 0.2 µm2 which represents a logic density of
about 70 MGate/mm2. The forecast for standard cells at the 7 nm node is about
20 MGate/mm.
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Fig. 11.16 End of Dennard scaling [17]

Fig. 11.17 Interconnect chip power [18]
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Fig. 11.18 a Preparing the structure for Z segments, b Z segments with anti-fusses

11.6 Summary

A few alternative concepts have been presented for use of 3D integration in FPGA
applications. These alternatives offer different uses of 3D technologies resulting in
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Fig. 11.19 3D structure with programmable logic and X-Y-Z programmable connectivity

different PPC, spanning the spectrum from 2× better FPGA, to about 0.4× of ASIC
PPC, and to the 3D NOR FPGA, while having better PPC than ASICs.
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Chapter 12
Digital Neural Network Accelerators

Ulrich Rueckert

12.1 Introduction

Compared to other machine learning algorithms, Deep Neural Networks (DNNs)
have achieved exciting accuracy improvements over the past decade. Hence, DNNs
become a standard Artificial Neural Network (ANN) model today. Its underlying
models and algorithms are still evolving, and hardware is trying to catch up with new
architectures to accelerate the learning and inference phase of DNNs. The majority
of learning is done on Graphics Processor Units (GPUs) in floating point on large
server systems. However, further acceleration of the learning phase is needed which
is the topic of another chapter in this book. In this chapter we focus on accelerators
for the inference phase of already trained DNNs.

ADNNis composedofmultiple convolutional layers, intermediate data operations
(e.g. nonlinearity, pooling, normalization), and fully connected layers at the end of
the processing chain. For example, Fig. 12.1 shows the VGG-16 DNN architecture
[1]. It is a pre-trained model with 13 convolution and 3 fully connected layers (two
with 4096 nodes, the output layer with 1000 nodes and softmax activation, model
size about 528 MiB, about 138 M parameters). All convolutions use 3× 3 filters and
max pooling operations with 2× 2 receptive fields. Basic operations in the inference
phase are matrix-matrix- and vector-matrix-operations. Hence, multiply-accumulate
(MAC) operations have by far the highest share in computation. For VGG-16 we
come up with about 15 G (109) MAC, 20M (106) compare, 29 M activation, and 1 K
(103) for addition, division, exponential operations each [2]. Because of the large
memory requirements the data transfer from memory to processing units and back
is more costly in respect to time and energy than the computational cost. Hence, the
reduction of the data transfer is the key to improving the resource-efficiency of DNN
accelerators. For an introduction to efficient processing of DNNs see [3].
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Fig. 12.1 Layer-architecture of the VGG-16 DNN [5]

VGG-16 showed good results (about 70% top-1 and 90% top-5 accuracy [1])
on the ImageNet dataset [4]. Executing the 1000-class ImageNet task requires
about 31 GOPs/cl [109 operations per classification, 32-bit floating-point (FP32)]
for VGG-16 [2]. “Deeper” networks, e.g. the SE-ResNet with 152 layers (winner
in 2017, Fig. 12.2), achieve better results at considerably higher computational
costs. In this chapter, VGG-16 serves as a representative example for comparing
different hardware implementation approaches. It has a comprehensive structure and
all characteristic aspects of DNN inference acceleration can be studied based on
VGG-16.

In order to make DNNs more “hardware-friendly” approximations are applied.
For DNN inference, approximation contributes to increases in throughput in three
ways: increased parallelism, memory transfer reductions and workload reductions.
Approximation algorithms can be classified into two broad categories: quantisation
and weight reduction. Quantisation methods reduce the precision of weights, activa-
tions (neuron outputs) or both, whileweight reduction removes redundant parameters
throughpruning and structural simplification leading to reductions in numbers of acti-
vations per network as well [6, 7]. When memory bound, the arithmetic performance
of a platform does not scale with any increase in parallelism. When compute bound,
all available processing resources are saturated.

As tasks increase in complexity, inference architectures become deeper (more
layers) and more computationally expensive, and so methods for hardware oriented
approximation have become a hot topic [6, 7]. The development of algorithms for
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Fig. 12.2 DNN implementations winning the ILSVRC challenge based on the ImageNet dataset
with 1000 object classes, 1.2 million training images (224 × 224), and 50,000 validation images
[4]

reducing the computational and storage costs of DNN inference is therefore essential
for resource-efficient processing of DNNs. Common evaluation criteria of DNN
performance are:

Throughput: classifications produced per second (cl/s) (classification rate);
Latency: end-to-end processing time for one classification, in seconds

(s);
Energy efficiency: throughput obtained per unit power, expressed in cl/J;
Compression ratio: the network’s weight storage requirement vs. that of a baseline

[0 < cr < 1];
Testing accuracy: proportion of correct classifications over testing dataset [0 < cr

< 1];

Other criteria are robustness, parameter tuning time, and design flexibility. Top-n
accuracy, reported as percentages, captures the proportion of testing data for which
any of the n highest-probability predictions match the correct result. Where compar-
isons are drawn against baselines, these are uncompressed implementations of the
same network, trained and tested using identical datasets, with all data in IEEE-754
single-precision floating-point format (FP32) [4].

The increasing availability of parallel standard hardware such as Field-
Programmable Gate Arrays (FPGAs), GPUs, and Multi-Core Processors (MCPs)
offer new scopes and challenges in respect to resource-efficient implementation and
real-time applications of DNNs. Because these devices are inexpensive and avail-
able, we can take the first step in accelerating DNNs with such standard devices.
DNNs are inherently parallel, and hence it is obvious that MCPs are an attractive
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implementation platform for them. To improve the resource-efficiency, application
specific hardware implementations are trying to take over the lead. However, as
benchmarking of DNN accelerators is still in its infancy, there is no clear consensus
about the right balance of computing power, memory capacity, and internal as well as
external communication bandwidth for DNN accelerators. In the following, general
aspects of DNN inference acceleration will be summarized and selected hardware
implementations compared. Wherever performance data are available, we base our
comparison on the VGG-16 network (batch size 1 = inference time for one image).

12.2 Graphics Processing Units

Graphics ProcessingUnits are suited for single-instruction andmultiple-data (SIMD)
parallel processing. A GPU is a specialized integrated circuit designed to rapidly
process floating-point-intensive calculations, related to graphics and rendering at
interactive frame rates. The rapid evolution of GPU architectures from a config-
urable graphics processor to a programmable massively parallel co-processor makes
them an attractive computing platform for graphics as well as other high perfor-
mance computing domains having substantial inherent parallelism such as DNNs.
The demand for faster and higher definition graphics continues to drive the develop-
ment of increasingly parallel GPUs with more than 1000 processing cores and larger
embedded memory at a power consumption of several watts. At the same time, GPU
architectures will be extended to further increase the range of other applications such
as DNNs. Specialized programming systems for GPUs evolved (e.g., CUDA [8] and
OpenCL [9]) enabling the development of highly scalable parallel programs that
can run across tens of thousands of concurrent threads and hundreds of processor
cores. However, even with these programming systems, the design of efficient par-
allel algorithms on GPUs for other applications than graphics is not straightforward.
Re-structuring of the algorithms is required in order to achieve high performance on
GPUs. Furthermore, it is difficult to feed theGPUs fast enoughwith data to keep them
busy. Nevertheless, an increasing number of papers on this topic shows that GPUs
are currently the predominant implementation platform for simulating large DNNs
[10]. The GPU´s SIMD architecture turned out to be a decent fit for DNNworkloads.
Hence, almost all GPU manufactures are active in developing ANN accelerators for
data centres and scaled-down versions for edge devices as well as smart sensors.

In data server environments, high-end devices are employed in order to maximize
throughput at the penalty of substantial power consumption. A representative exam-
ple is the NVIDIA Tesla V100 accelerator based on the NVIDIA Volta GV100 GPU
(Fig. 12.3). The GV100 GPU employs the Volta architecture and is fabricated in a
12 nm production process at TSMC [11]. With a die size of 815 mm2 and a transistor
count of 21.1 billion (25.9 million/mm2) it features 5120 shading units, 320 texture
mapping units and 640 tensor cores which help improve the speed of machine learn-
ing applications. Tensor cores are specialized execution units designed specifically
for performing the tensor/matrix operations that are the core compute function used
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Fig. 12.3 NVIDIA Tesla V100 SXM2 Module (a) with Volta GV100 GPU (b) [11]

in DNNs. The module comes with 16 GB GPU memory, 900 GB/s memory band-
width, and a maximum of 300 W power consumption (1.3 GHz base clock, 1.5 GHz
boost clock). Peak computation rates are 7.8 TFLOPS (Tera (1012) Floating point
Operations per Second) of double precision floating-point (FP64) performance, 15.7
TFLOPS of single precision (FP32) performance, and 125 Tensor TFLOPS (FP16)
[11]. Running VGG-16 on V100 yields from 821 (batch size 1) up to 2067 (batch
size 128) cl/s [12].

NVIDIAs Turing GPUs include a new version of the Tensor core design that has
been enhanced with INT8 and INT4 precision modes for inference workloads that
can tolerate quantization and don’t require FP16 precision. The TU104 graphics
processor [13] includes 320 such Tensor cores, and is built on the 12 nm TSMC
process with a die area of 545 mm2 and 13.6 billion transistors (25 million/mm2).
TheGPU is operating at a frequencyof 585MHz,which canbeboosted up to 1.6GHz.
NVIDIA has placed 16 GBGDDR6memory on the Tesla T4 graphics card. The card
measures 168 mm in length, and features a single-slot cooling solution for a 70 W
power consumption maximum [13]. Running VGG-16 on Tesla T4 with 726 (batch
size 1) up to 1956 cl/s (batch size 128) is a bit slower compared to Tesla V100, but
more power efficient: 10 (batch size 1) to 28 (batch size 128) cl/s/W instead of 4
(batch size 1) to 10 (batch size 128) cl/s/W [12].

NVIDIA T4 data servers deliver more than 10,000 TOPS (Trillion Operations per
Second) for real-time speech recognition and other real-time AI tasks. NVIDIA also
targets low-latency edge AI (Artificial Intelligence) with the scalable EGX platform
[14], an accelerated computing platform that enables to perceive, understand and act
in real time on continuous streaming data. NVIDIA EGX was created to meet the
growing demand for instantaneous, high-throughput AI at the edge—where data is
created—with guaranteed response times, while reducing the amount of data that
must be sent to the cloud. EGX starts with the tiny NVIDIA Jetson Nano™, which in
a few watts can provide 0.5 TOPS for tasks such as image classification, and it spans
all the way to a full rack of NVIDIAT4 servers. NVIDIA supports programmers with
its TensorRT™ platform for high-performance deep learning inference. It includes
a deep learning inference optimizer delivering low latency and high-throughput for
DNN inference applications. TensorRT™ is built on CUDA, NVIDIA’s parallel pro-
gramming model, and optimizes neural network models trained in all major frame-
works. Reduced precision inference significantly reduces application latency, which
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Fig. 12.4 Chip micrograph
of AMDs Vega GPU (7 nm
CMOS, 1.6 GHz) [16]

is a requirement for many real-time services in embedded applications. For exam-
ple, optimizing VGG-16 with TensorRT™ for Jetson TX2 yield about 26 (FP16) or
13 cl/s (FP32) resulting in 3.4 or 1.7 cl/s/W, respectively (7.5 W) [15].

Currently,GPUs are the dominant hardware platforms forDNN learning and infer-
ence. Other GPU manufacturer (e.g. AMD, ARM, INTEL, Qualcomm) are offering
powerful chips and programming frameworks for mapping DNNs on their GPUs as
well. For example, Fig. 12.4 shows theAMD’s first 7 nmVegaGPUdesign improving
performance per watt over previous generation products. It offers ultra-fast double
precision performance with up to 7.4 TOPS (FP64) on the AMD Radeon Instinct™
MI60 Compute GPU. Optimized DNN operations with mixed FP16, FP32 and INT8
data representation support efficient learning and inference of DNNs. Two Infinity
Fabric™ Links per GPU for high speed directly connected GPU clusters deliver up
to 92 GB/s peer-to-peer bandwidth. Programmers are assisted by the ROCm open
ecosystem that includes optimized libraries supporting frameworks like TensorFlow,
PyTorch and Caffe 2 [16]. As benchmarking of inference accelerators is still in its
infancy, a fair comparison of available GPUs is hard. Nevertheless, any of them can
get the job efficiently done.

GPUs offer powerful and scalable solutions for DNN acceleration. For uncom-
pressed DNN models, layer operations are mapped with the help of frameworks to
dense floating-point or integer matrix multiplications, which can be processed effi-
ciently in parallel by GPUs. However, GPUs may perform poorly when operating on
sparse data and compressed DNNs via fine-grained weight reduction [6, 7]. Hence,
there is still room for architectural improvements and alternative solutions.

12.3 Field-Programmable Gate Arrays

Field-Programmable Gate Arrays have amodular and regular architecture containing
mainly programmable logic blocks, embedded memory, and a hierarchy of recon-
figurable interconnects for wiring the logic blocks. Furthermore, they may contain
digital signal-processing blocks and embedded processor cores.Aftermanufacturing,
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they can be configured before and during runtime by the customer. Today, system-
on-chip designs with a complexity of about several billion logic gates and several
megabytes of internal SRAM (Static Random Access Memory) can be mapped on
state-of-the-art FPGAs. Clock rates approach the GHz range boosting the chip-
computational power in the order of GOPS (billion operations per second) at a power
consumption of several watts. Hence, FPGAs offer an interesting alternative for par-
allel implementation of DNNs providing a high degree of flexibility and a minimal
time to market. The time for the development of an FPGA or application specific
integrated circuit (ASIC) design is comparable. A big advantage of FPGAs is that
no time for fabrication is needed. A new design can be tested directly after synthesis
for which efficient CAD tools are available. A disadvantage of FPGAs is the slower
speed, bigger area, and higher power consumption compared to ASICs. Compared
to software implementations, FPGAs offer a higher and a more specialized degree of
parallelization. Vendors of FPGAs, which have long been used to accelerate signal
processing algorithms, are refining their products to suit DNN acceleration.

The implementation of DNNs on FPGAs makes it possible to realize powerful
designs that are optimized for dedicated algorithms [18]. Another great advantage is
the feature of reconfigurability that enables the change to a more efficient algorithm
whenever possible. Using a lower precision allows to set up an optimized architecture
that can be faster, smaller, ormore energy-efficient than a high-precision architecture.
For fine-tuning of DNNs, the FPGA can be reconfigured to implement high-precision
elements. Additionally, the implemented algorithms can be adapted to the network
size that is required for a certain problem. Thus, always the most suitable algorithms
and architectures can be used. Furthermore, dynamic (or runtime) reconfiguration
enables to change the implementation on the FPGA during runtime [19]. Dynamic
reconfiguration is used to execute different algorithms on the same resources. Thus,
limited hardware resources can be used to implement a wide range of different algo-
rithms. In DNN simulations, we are often interested in providing as much computing
power as possible to the simulation of the algorithm. But pre- and post-processing of
the input and output data often also requires quite a lot of calculations. In this case,
dynamic reconfiguration offers the opportunity to implement special pre-processing
algorithms in the beginning, switch to the DNN simulation and in the end reconfigure
the system for post-processing [20].

There are different approaches to implement DNNs on FPGAs, either the network
itself is implemented on the FPGA or a DNN processing engine is developed for the
FPGA onto which the target network is mapped at run-time. The advantage of the
first approach is that it is possible to fully optimize the network for the target FPGA
and achieve the best possible performance and energy efficiency. However, at the
same time, this removes most forms of flexibility, as the design only works for
one specific network and any changes to the network or the integration of a new
network will result in several weeks of changing the design or require a complete
redevelopment of the design.On the other hand, theDNNprocessing engine approach
allows for any DNNmodel to be accelerated on the FPGA, as only the most common
and performance critical layers are calculated on the FPGA and everything else
on the CPU or on a different accelerator. Because the network is not calculated
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on the FPGA entirely, there will be at least some communication overhead which
reduces the overall performance. Additionally, as this is a rather generic approach,
the performance will be below that of a fully optimized implementation of the target
network.

In many cases the DNN processing engine is the most suitable approach as it
provides a high degree of flexibility. However, in situations where energy efficiency
is of importance or when the FPGA needs to operate stand-alone, i.e., without a
dedicated CPU, manually implementing the network on the FPGA will be the better
choice.

One example of a hand optimized FPGA implementation, based on a Hardware
Description Language (HDL), is presented in [22]. The authors developed an FPGA
design of the VGG-16 network using a binary neuronal network (BNN). BNNs store
their weights as either 0 or 1, which, even though a BNN requires a modification
of the original VGG-16 architecture, significantly reduces the amount of weight
storage required for the network. The developed design achieved a performance of
40.8 TOPS which equals to about 115 cl/s on an Intel Arria 10 GX1150 FPGA.
Energy efficiency reaches 849.38 GOPS/W.

Other examples that fully implement the network on FPGA like [23, 24] aimed
to design templates for High Level Synthesis (HLS). Convolutional layers usually
have the highest computational cost in DNNs. In [23] Winograd and Fast Fourier

Fig. 12.5 Xilinx generic xDNN engine architecture for DNN inference [21]
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Transformation (FFT) are implemented in processing elements (PEs) separately.
Reuse of feature map data, pipelining and parallelization are applied as well. The
authors are stating a performance of 2.5 TOPS for VGG-16 on the Xilinx ZC706
platform. In [24] also the Winograd optimization is applied to convolutional layers.
Multiplications are simplified through the use of simple addition, subtraction or bit-
shift operations, where possible. The implemented PEs areworking in a systolic array
and are organized in parallel working units. For VGG-16 a throughput of 3.8 TOPS
on the Xilinx VCU118 is stated. A C3S network (3D CNN) is also implemented with
the same HLS templates and achieves a 5× energy efficiency gain, compared to a
GTX1080 GPU [24].

Convenient frameworks for high-level design support are an essential require-
ment for using FPGAs. High-level implementation tools, including Intel’s OpenCL
Software Development Kit and Xilinx Vivado High-Level Synthesis, and Python-
to-netlist neural network frameworks, such as DNN Weaver [25], make the DNN
hardware design process for both FPGAs and ASICs faster and simpler. The Open-
VINO toolkit developed by Intel [26] allows DNNs to be accelerated using MCPs,
GPUs, FPGAs, and VPUs (Vector Processing Units), meaning that it is possible to
determine and use the best possible accelerator for a given DNN or even for specific
layers of that DNN. Out of the box, OpenVINO supports a large amount of different
networks for execution on FPGAs, such as AlexNet, GoogleNet, VGG-16, ResNet,
Yolo andmanymore.Additional networks can bemanually implemented usingCaffe,
MXNet, TensorFlow, Kaldi or ONNX models. While Intel provides FPGA imple-
mentations for most of the commonly used layers, some layers are not available on
FPGAs either because they are rarely used special layers, layers that do not signifi-
cantly affect the performance or are new/custom developed layers. For those layers
it is possible to either specify a fall-back implementation, e.g., on CPU/GPU, or to
provide a custom implementation.

Xilinx develops two frameworks for DNN processing on FPGAs. One is the
generic xDNN accelerator (Fig. 12.5) in the ML-Suite [21], which can in general be
compared to IntelsOpenVINO toolkit. The other is the FINNFramework fromXilinx
Research Labs [27], which targets DNN inference specifically for quantized neural
networks. Such frameworks allowsDNNarchitects tomigrate their designs to custom
hardware with relative ease. Reconfigurability enables rapid design iteration, making
FPGAs ideal prototyping and deployment devices for future DNNs developments.

12.4 Application-Specific Hardware

Application-specific integrated circuits (ASICs) have the highest potential for major
improvements in resource-efficient performance for DNN inference. Many various
special-purpose hardware implementations for DNN inference have been proposed
and the number of proposals is still increasing. Advances in technology have suc-
cessively increased the ability to emulate neural networks with speed and accuracy.
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Practically every processor vendor has specialized custom hardware for DNN accel-
eration. For digital ASICs, efficient software tools for a fast, reliable and implemen-
tation are available. Digital circuits can use standard technologies with the highest
density in devices down to the lowest available structure sizes. Their time-consuming
and resource-demanding fabrication processes, however, make it hard for them to
keep up with the fast development of DNN algorithms.

One of the first custom ASICs for accelerating the inference phase of DNNs
is Google’s Tensor Processing Unit (TPU) [30]. The TPU was designed as a co-
processor on a standard PCIe bus, so that it can be plugged into a server like a GPU
card (Fig. 12.6). The TPU chip is programmed in the TensorFlow framework to drive
many important applications in Google data centres, including image recognition,
language translation, search, andgameplaying.Afirst generationTPUchip is capable
of performing 92 TOPS. The die size in 28 nmCMOS is below 330mm2 and includes
28MiB on-chipmemory (29% of chip area), mainly for buffering neuron activations.
The main logic block is the matrix multiply unit (24% chip area) with 256 × 256
8 Bit MAC operators. Clock speed is 700 MHz leading to 40 W measured power
consumption when busy (28 W idle) [30]. As this first generation TPU was limited
by memory bandwidth, the second generation design has an increased bandwidth of
600 GB/s. The second-generation TPUs can also calculate in floating point making
them useful for both training and inference of DNNs. A third-generation TPU eight
times as powerful as the second-generation TPUs is in use today (up to 100 Peta
FLOPS) [30]. With its new Edge TPU Google offers an ASIC designed to offer
DNN inference (INT8) for edge computing. The chip is much smaller and consumes
far less power compared to the server TPUs. It is capable of performing 4 TOPS
using 2 W resulting in about 130 cl/s for the VGG-16 DNN [31].

Besides application in data centres, DNNaccelerators holdmuch promise for edge
computing. Embedded Machine Learning (ML) at the edge can be applied to almost
every electronic appliance, from production lines (industry 4.0) over house hold
devices (smart home) to hand-held devices (smartphones). Applications that require
resource-efficient implementations with respect to latency, power, and cost. Mobile
devices are more and more equipped with sensors and embedded data processing
(e.g. face detection, voice and gesture recognition, activity tracking, …). For data
processingMLmethods asDNNs takeover the lead and canbe found in almost all new
smartphones today. Hence, any smartphone vendor includesML accelerators in their
mobile SoC devices nowadays; e.g., Qualcomm in Snapdragon [33], HiSilicon in
Kirin [34], Samsung inExynos [35], orMediaTek inHelio [36].A detailed analysis of
DNN accelerators in smartphone SoCs can be found on the regularly updated official
project website maintained by Andrey Ignatov (ETH Zurich, Computer Vision Lab,
[37]).
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Fig. 12.6 a 1st generation TPU printed circuit board [32]; b floor plan of the TPU die [30]

For example, the Neural Processing Unit (NPU) from Samsung for their Exynos
SoCs [35] features an energy-efficient butterfly-structure dual-core accelerator offer-
ing 1024 MAC operations (INT8) and three-fold parallelism in computing DNNs.
The NPUs are optimized for DNN inference. The overall architecture of one NPU
core is shown in Fig. 12.7. Each core has 16 arrays of dual-MAC units, performing
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Fig. 12.7 Chip micrograph [35] (a) and overall architecture (b) of Samsung deep learning
accelerator for Exynos chips [38]

512 MAC operations in total. The NPU in Exynos occupies 5.5 mm2 (8 nm CMOS
technology) and operates at 0.5 to 0.8 V supply voltage, 67 to 933-MHz clock fre-
quency [35]. The NPU is able to support compressed DNNs (sparsity in weights and
activations). The NPU controller (NPUC) automatically configures the two cores
and traverses the DNN. A DMA unit manages the compressed weights and feature
maps in each of the scratchpads of the cores. Skipping zero weights and activations
increases throughput. The measured performance is 6.9 TOPS and 3.5 TOPS (with
75% zero-weights) for 5 × 5 and 3 × 3 convolutional kernels, respectively. The
energy efficiency is 11.5 and 8.4 TOPS/W for 5 × 5 and 3 × 3 kernels, respec-
tively [33]. Running an Inception-v3 network (similar model size as VGG-16) the
energy efficieny is measured as 3.4 TOPS/W. At 933 MHz the two NPUs add up to
nearly 1 TMAC/s or 2 TOPS resulting in about 65 cl/s and 43 cl/s/W of the VGG-16
implementation for ImageNet data.

Besides processor vendors, many IP vendors (ARM, Synopsis, Imagination,
Cadence, VeriSilicon,…) offer IP-blocks for DNN inference acceleration. For exam-
ple, Cadence offers the Tensilica DNA processor IP (Intellectual Property) for AI
inference [39]. The architecture incorporates a hardware engine and a Tensilica DSP
(Vision C5). Heart of the hardware engine is a 4 K MAC array configuration with
up to 3.4 TMAC/s/W in 16 nm. A single DNA 100 processor scales from 0.5 to 12
TMACs (INT8). Multiple processors can be stacked to achieve hundreds of TMACs.
A Tensilica Neural Network Compiler maps a trained ANN into executable and opti-
mized code. A SystemC model is provided for cycle-accurate system simulations
[39]. Based on the estimated 3.4 TMAC/s/W a VGG-16 implementation on a DNN
100 may achieve about 110 cl/s/W.
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Many startups come up with special architectures for DNN acceleration as well.
They range from processor-in-memory computing (Mythic, Syntiant, Gyrfalcon) to
processor-near-memory (Hailo): from programmable logic (Flex Logix) to RISC-V
cores (Esperanto, GreenWaves); and from the tiny (Eta Compute) to the hyper-scale
(Cerebas, Graphcore). Most of them aim for ML at the edge. For example, the
Goya™ HL-1000 chip is an inference chip being developed by startup Habana Labs
[40]. The scalable Goya platform architecture has been designed from the ground
up for deep learning inference workloads. It comprises a fully programmable Tensor
Processing Core (TPC™) along with its associated development tools, libraries and
compiler. The platform is capable of massive data crunching with low latency and
high accuracy. The TPC™ was designed to support deep learning workloads. It
is a VLIW SIMD vector processor with ISA and hardware that was tailored to
serve deep learning workloads efficiently. The HL-1000 chip uses a cluster of eight
TPC™ cores and further dedicated hardware. The TPC™ natively supports several
mixed-precision data types (FP32, INT32, INT16, INT8,UINT32,UINT16,UINT8).
The performance achieved on VGG-16 inference is 1447 cl/s (batch size 1) with
1.1 ms latency [40]. More detailed Information on the architecture or about power
consumption are currently not unavailable.

The Graphcore wafer-scale approach from Cerebas is another start-up example
at the extreme end of the large spectrum of approaches [41]. The company claim to
have built the largest chip ever with 1.2 trillion transistors on a 46,225 mm2 silicon
wafer (TSMC 16 nm process, Fig. 12.8). It contains 400,000 ML optimized cores,
18 GB on-chip memory, and 9 PetaByte/s memory bandwidth. The programmable
cores with local memory are optimized for ML primitives and equipped with high-
bandwidth and low latency connections. DNNapproximations are incorporated, such
as fine grained sparsity. The 2D mesh topology is a fully configurable fabric with
hardware supported communication. The entire wafer operates on a single DNN
and supports learning. Common ML-frameworks (e.g. Tensorflow, PyTorch) can be

Fig. 12.8 Graphcore wafer from Cerebas: 400,000 ML-Cores on 46,225 mm2 [41, 42]
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used for programming the wafer engine, Cerebas tools map, place, and route the
network layers onto the wafer. Redundancy for cores and links can be incorporated
to replace defective elements [41]. The company announced that the system is run-
ning customers workload, but more detailed information on the architecture and
performance data are not published yet.

Last but not least, academia is very active in the DNN chip landscape as well.
Examples are the Eyeriss architecture from MIT [43], ENVISON from KU Leuven
[44], STICKER-T fromTsinghua [45], orDNPU fromKAIST [46]. The architectures
have in common a 2d-array of special processing elements and controllers for an
efficient data flow from and to the memory. For example, the ENVISION chip from
KULeuven is equippedwith 2D- (for convolutions) and 1D-SIMD arrays (for ReLU,
max-pooling), and a scalar unit (Fig. 12.9). An on-chip memory (DM) consists of
64 × 2 kB single-port SRAM macros which can be read or written in parallel [44].
The processor has a 16 bit SIMD instruction set extended with custom instructions.
The chip is divided into three power- and body-bias domains to enable granular
dynamic voltage scaling. Implemented in a 28 nm FDSOI technology on 1.87 mm2,
the chip runs at 200 MHz at 1 V and room temperature. Energy-efficiency is further
improved by modulating the body bias in an FDSOI technology. This permits tuning
of the dynamic versus leakage power balance while considering the computational
precision. Efficiency is 2 TOPS/W on average for VGG-16 (about 13 cl/s/W) and up
to 10 TOPS/W peak (about 64 cl/s/W).

In conclusion, the DNN accelerator development is progressing fast with a steady
stream of new architectures coming up. At first, the acceleration of the data flow had
the highest priority. A range of customized blocks of large parallel arrays multiply-
add units for efficient and flexible computation of the many convolutions and fully
connected layers were proposed. As DNNs got larger, the circuit designers realized

Fig. 12.9 Top level architecture of theENVISONDNNaccelerator (a) and chipmicrograph (b) [44]
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that memory access and data movement are more critical than arithmetic. Additional
circuitry like buffers, transpose logic, nonlinearity logic must be employed to keep
the MAC units busy while utilizing the memory bandwidth efficiently. With even
larger networks DNN approximation and compression is used in order to match the
application requirements for throughput, latency and energy efficiency. Counterin-
tuitively with the growth of model size and complexity, it has been shown that out
of the millions of parameters used in common DNN architectures, many of these
can be removed with insignificant reductions in accuracy, leading to a much lower
memory footprint for storing the model as well as less computations and signifi-
cantly lower energy usage. This process is referred to as pruning and can be applied
to both connection weights and neurons and there are various methods proposed in
the literature [6, 7]. Another popular method to increase the efficiency reduces the
numerical precision of weights and activations. This method is called quantization.
Typically, single precision floating point numbers are used to represent weights and
activations. However, networks with ternary weights (+1, 0, and −1) show in some
cases only low performance loss when compared to the floating-point counterparts.
In addition to pruning and quantization, there are many other methods that can be
used to make DNN accelerators more efficient. However, combining these, in some
cases contradictive methods, in an optimal way, as well as optimising a model to
meet system requirements, is still an unsolved problem. Hence, system designers
should jointly consider hardware/software issues for finding optimal compromises,
so called pareto-optimal architectures for efficient and flexible implementation of
DNN accelerators. The “AI chip landscape” [47] is not settled yet.

12.5 Benchmarking

There is a tremendous surge of innovation in DNN hardware, making it a very chal-
lenging task choosing the best hardware offering for a given application. Hardware
vendors have yet no incentive to provide unbiased comparison and benchmarking.
Hence, there is a high demand for benchmarking, the objective performance mea-
suring based on specific indicators, of such systems. Though benchmarking of DNN
accelerators is still in its infancy, there are first approaches to fill this gap. Baidu
and Google together with researchers from several universities launched the MLPerf
benchmark suite inMay2018 in part to create a fairway tomeasure the chips expected
from “dozens and dozens” of startups. The MLPerf approach is supported by over
50 companies and researchers from 7 universities [48]. Hence, it has a chance to
become for AI accelerators what SPEC benchmark is for CPUs. The suite itself con-
sists of two major subparts: training and inference benchmarks. At time of writing,
the suite is still in beta stadium (v0.6) and inference results are available only for a
previous version of the suite. Training results can be found on their webpage [48].
Main metric of all benchmarks is the wallclock time to reach a pre-defined goal using
a pre-defined network model (e.g. a certain accuracy on a machine learning task).
The set of benchmarks comes together with a set of rules for submitting results, and
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most importantly, results have to be submitted together with the source code. This
allows to reproduce the results to some extent if the respective hardware is at your
disposal.

For smartphones based on Google’s Android operating system and Mobile SoCs
in general there is the AI-Benchmark [49]. Since 2019, the suite is also capable of
benchmarking CPUs, GPUs and TPUs based on Tensorflow, allowing to compare
workstation hardware with mobile hardware. The suite is focusing on inference and
consists of 21 tests distributed over 11 benchmark sections. The overall rules are not
that strict compared to the MLPerf approach. However, in this case benchmarking is
strongly coupled to the implementation of the networks, relying on frameworks and
drivers to efficiently map individual networks to the hardware. Results in the form
of a ranking can be found online [50]. A similar approach is applied by the EEMBC
MLMark benchmark library [51]. Instead of using the measured wallclock time as
a benchmark metric, MLMark measures throughput, latency and accuracy targeting
requirements of embedded applications. Currently, the suite consists of three models
only: MobileNet [52], MobileNet-SSD and ResNet-50. The results are visible to
registered members only.

One major point, when it comes to embedding DNN accelerators, is not only the
wallclock timeper inference or latency,which is constrained by e.g. real-time require-
ments of your application, but also the resource-efficiency. Mobile applications,
like autonomous driving, robot control or everyday tasks on a smartphone, require
resource-efficient implementations for DNN inference. Despite these demands, this
benchmark measure is not served by any of the discussed benchmark approaches.
The cost of employing a system of multiple GPUs/TPUs is also a very restricting
factor in training deep networks, which is also not considered by any of the suites.

DNNs are a field with rapid development. This complicates representative and
up-to-date benchmarking of hardware accelerators, which is reflected in the state
of all machine learning benchmark suites. The performance of a DNN platform
depends on many aspects, such as computational accuracy or tool assistance. A
special architecture may perform well on a DNN of type A, but worse on another
of type B. At present, a fair comparison is almost impossible. Only few chips have
been fully described and benchmarked (e.g. Google’s TPU) but the pipeline of new
implementations is full.

In Fig. 12.10 the performance values of the introduced DNN accelerators
(Tables 12.1, 12.2, 12.3) implementing VGG-16 have been merged. The expected
clustering from low end edge devices over FPGA implementations to high endASICs
and GPUs can roughly be seen. The effect of the batch size is clearly visible [e.g.
V100: 821 cl/s (batch size 1) up to 2845 cl/s (batch size 128)] as well. However, such
figures have to be considered with caution. First of all, most of the data have been
taken directly from the publications and are not a result of an objective benchmark
measurement. In most cases it is unclear how these data are obtained. Especially,
power data are in most cases missing. Second, though the comparison is based on
a fixed DNN model (VGG-16) and data set (ImageNet) there are many additional
architectural and technological attributes influencing the performance data. Obvi-
ously, the numeric precision for weights and activations plays an important role (e.g.
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Fig. 12.10 Comparison of VGG-16 implementation results of selected accelerators

Table 12.1 VGG-16 inference performance data (batch size 1) of selected CPUs and GPUs
(batch size 1, * estimated)

Ref. Type (GOPS/s) (GOPS/s/W) cl/s cl/s/W Power (W) Precision

[17] Intel Xeon 215 2,5* 9 0,11* 85 FP32

[12] GV100 125,800 419* 821 24 300 FP16

[12] TU104 178,000 774* 726 10 230 INT8

[15] Jetson TX2 810 54* 26* 1,75* 15 FP16

[15] Jetson TX2 391 26* 12,6* 0,84* 15 FP32

Table 12.2 VGG-16 inference performance data (batch size 1) of selected FPGA accelerators
(all in 20 nm CMOS, * estimated)

Ref. FPGA GOPS/s GOPS/s/W cl/s cl/s/W Power (W) Precision

[22] Arria 10
GX1150

40,770 849,38 114,8 2,39 48 1-bit fix

[23] Xilinx
ZCU102

2940.7 124,6 95,05* *4,03 23,6 INT16

[24] Xilinx
VCU118

3772 117,88 121,91* 3,81* 32 INT16

[28] Arria 10
GX1150

1790 47,78 57,85* *1,54 37,5 INT16

[29] Xilinx
KU060

1171.7 46,87 39,53* 1,58 25 INT8
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Table 12.3 VGG-16 inference performance data (batch size 1) of ASIC DNN accelerators (*
estimated)

Ref. ASIC (GOPS/s) (GOPS/s/W) cl/s (cl/s/W) Power
(W)

Precision

[29] TPU V1 92,000 2300 2968* 74.2* 40 INT8

[30] TPU Edge 4000 2000 130* 65* 2 INT8

[33] Exynos 2000 1333 65* 43* 1.5 INT8

[35] DNA 100 3400 3400 110* 110* 1 INT8

[40] ENVISON 2500 2000 16* 13* 0.8 INT6

Jetson TX2 about 13 cl/s for FP32 and 26 cl/s for FP16) as well as the data flowman-
agement. The size and the utilization of the implementedMAC arrays are essential as
well. Utilization in this context is the percentage of the raw compute capabilities of
the system that can be effectively used for a real workload (DNNmodel). Utilization
varies with the DNN model, but utilization figures are rarely published. A high peak
performance of an accelerator is no guarantee for a high inference performance. Last
but not least, the framework used for DNN implementation has a high impact on
inference performance (e.g. Jetson TX2 FP32 6 cl/s using TensorFlow and 13 cl/s
using TensorRT).

12.6 Outlook

Parallel standard hardware likemulti-coreMPCs,GPUs, or FPGAs are cost effective,
available, and benefit from market-driven development improvements in the future.
They have the highest flexibility and are manufactured in standard technologies with
highest device densities. They set the base-line with respect to cost and performance
for DNN implementation. ASICs have the highest potential for major improvements
in resource-efficient performance for DNNs. Currently, product developers and users
have few real choices for hardware supporting efficientDNNimplementation.Almost
all major IT and chip companies are aggressively entering the market. However, the
increased competition doesn’t necessarily mean better choices, as customers still
don’t have the means to evaluate these different chipset platforms for the optimal
integration with their AI-driven system and application demands.

Due to their highly regular and modular structure, inherent fault-tolerance, and
learning ability, ANNs offer an attractive alternative for ultra-large-scale integration
and the development of resource-efficient systems with minimal total energy con-
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sumption combined with a small size and fault-tolerant behaviour. Among the many
different ANN models discussed in literature (see e.g. “The Neural network Zoo”
[53]) DNNs serve in this chapter as a representative example architecture. Despite the
impressive development of nanoelectronics during the last decades, there is still no
clear consensus on how to exploit this technological potential for massively-parallel
ANN implementations. Hence, it is currently quite difficult to determine the best
way to perform DNN calculations for any given application. This is one reason for
the huge variety of approaches to DNN hardware implementation known today.

DNNs look promising but have many variations, and the algorithms are still in
development, so it is not clear how they may influence hardware development in
the future. Implementations are still incomplete and immature. There is a lack of
standardization, e.g. for model data formats, file formats to transfer models and
data sets between frameworks, or interfaces to build engineering tools that work
together. A first step in this direction is the specification of the Brain Floating Point
(BFLOAT16) half-precision data format for DNN learning [54]. Its dynamic range
is the same as that of FP32, making conversion between both straightforward, and
training results are almost the sameaswithFP32. Industry-wide adoption ofBFLOAT
is expected.

Another challenge lies in mastering the design complexity and achieving eco-
nomic viability for integrated systems with more than a billion devices per square
centimetre. This requires system concepts that both exhaust the possibilities of future
technologies and reduce the design- as well as the test-complexity. These arguments
were already a strong motivation for ANN hardware in the 80s [55]. Flexibility is
another important factor as researchers are coming up with ANN concepts all the
time. While DNNs are the dominant model especially for image processing today,
other types of ANN models are more suited to other applications, such as speech
recognition or controlling tasks. Hence, today´s accelerators may be too specialized
to accelerate future ANN models. The challenge is to find the right balance of flex-
ibility, performance, and price for as many applications as possible. This should go
hand in hand with efficient software frameworks for developers and users of ANN
hardware in this rapidly evolving sector.

In conclusion, as the increase in processor speed slows down alternative architec-
tures get a second chance today. The hunt for the right architecture is just beginning.
As in the late 80s [56], within the second neural network hype, analogue comput-
ing, wafer-scale integration, 3D-integration, in-memory computing, massively par-
allelism, and even optical approaches are being explored again. Radically new ideas
for circuit designs or system architectures are not in sight. At present, know-how
from digital signal processing and data flow management from massively parallel
computing architectures are combined in different ways. An obvious approach is
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to bring the memory closer to the arithmetic devices to mitigate the memory bot-
tleneck and reduce power consumption. In-Memory-Computing (IMC) exploiting
dense 2D memory arrays and matrix-vector multiplication offer an interesting alter-
native approach to achieve high throughput with low power requirements for DNN
accelerators [57–59]. However, model sizes of today’s DNNs are generally too large
to fit into on-die memory resources. On-die memory can be used to mitigate the
memory bandwidth problem, but deciding what stays on-die versus off-die requires
careful memory management to achieve high performance. Even more computa-
tional power may be obtained by emerging technologies like quantum computing,
molecular electronics, or novel nano-scale devices (memristors, spintronics, nan-
otubes (CMOL)), but these technologies will not be available on broad basis in the
next decade. Today, we are still early in the efficient use of nanoelectronics, and we
are keenly awaiting the technology we can use tomorrow.
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Chapter 13
Enabling Domain-Specific Architectures
with Programmable Devices

Alireza Kaviani

13.1 Introduction and Background

Advances in process technology and Moore’s law have enabled programmable
devices to grow more than four orders of magnitude in capacity. The performance of
these devices has skyrocketed by a factor of 100, while cost and energy per operation
have decreased by more than a factor of 1000 (see Fig. 13.1). Field Programmable
GateArrays (FPGAs)were introduced inmid-80s, and later proved to be the dominant
form of the programmable devices [1]. Today’s FPGAmarket is more than $5 Billion
and still growing three and a half decades after introduction. These advances have
been fueled by process technology scaling, but the FPGA success story is also about
architecture and software choices made in the industry.

The first wave of success for FPGAs came from replacing custom logic designs
and Application-Specific Integrated Circuits (ASICs). In the 1980s, ASIC compa-
nies introduced the built-to-order custom integrated circuit to the electronics market
with a powerful product. ASIC companies began fiercely competing to sell on the
market; the winning attributes were low cost, high capacity and speed. At the time,
FPGAs compared poorly on those measures, but they thrived by the virtue of pro-
grammability. At those early days transistors were of high value and FPGAs were
disregarded and deemed the worst wastage of transistors. Additional transistors were
utilized for accommodating field programmability by allowing the user to implement
the designs on the manufactured devices off the shelf. Time has proven that such pro-
grammability and availability at the time of market need is highly valuable, which
led to growth of FPGAs through the first wave.
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Fig. 13.1 Xilinx FPGA evolution since mid-80s (from [1], ©IEEE 2015). Capacity is logic cell
count. Speed is same-function performance in programmable fabric. Price and Power are per logic
cell and scaled by 10,000

After the first wave of replacing the custom logic, FPGAs were common compo-
nents of digital systems. Moore’s Law helped the capacity of FPGAs grow beyond
a collection of LUTs, flip-flops, I/O and programmable routing. They included mul-
tipliers, RAM blocks, multiple microprocessors, and high speed transceivers. This
enabled FPGAs to penetrate a huge market in the data communications industry. The
FPGA business grew not from general ASIC replacement, but from adoption by the
communications infrastructure. Companies such as Cisco Systems used FPGAs to
make custom data paths for steering huge volumes of internet and packetized voice
traffic through their switches and routers [2]. New network routing architectures and
algorithms could quickly be implemented in FPGAs and updated in the field. Sales
to the communications industry segment grew rapidly to well over half the total
FPGA business during this 2nd wave of growth. The increasing cost and complex-
ity of silicon manufacturing eliminated “casual” ASIC users. ASICs expanded by
adding programmability in the form of application specific standard product (ASSP)
and system-on-chip (SoC) devices. An SoC combines a collection of fixed function
blocks along with a microprocessor subsystem. The function blocks are typically
chosen for a specific application domain, such as image processing or networking.
The SoC gave a structure to the hardware solution, and programming the micro-
processors was easier than designing hardware. Leveraging the FPGA advantages,
programmable ASSP devices served a broader market, amortizing their development
costs more broadly. Companies building ASSP SoCs became fabless semiconductor
vendors in their own right, able to meet sales targets required by high development
costs.



13 Enabling Domain-Specific Architectures with Programmable Devices 205

The FPGA industry is currently at its early stage of riding a third wave, which is
serving the computingmarket. Programmable devices have kept their key advantages
of the first two waves for customized logic and communication and preparing for the
compute and acceleration opportunities in the data centers. Confirming this trend,
Intel acquired the 2nd largest FPGA company in 2015 at approximately $16.7 bil-
lion. The combination with FPGA technology is expected to enable new classes of
products that meet customer needs in the data center and Internet of Things (IoT)
market segments. In the words of Brian Krzanich, the CEO of Intel in 2015, “With
this acquisition, we will harness the power of Moore’s Law to make the next gener-
ation of solutions not just better, but able to do more. Whether to enable new growth
in the network, large cloud data centers or IoT segments, our customers expect better
performance at lower costs.”

A fundamental early insight in the programmable logic business was that Moore’s
Law would eventually propel FPGA capability to cover ASIC requirements. Today,
transistors are abundant, and their number is no longer a cost driver in the “FPGA
versus ASIC” decision. Many ASIC customers use older process technology, lower-
ing their NRE cost, but reducing the per-chip cost advantage. Instead, performance,
time-to-market, power consumption, I/O features and other capabilities are the key
factors. Solving transistor-level design problems such as testing, signal integrity,
crosstalk, I/O design and clock distribution along with eliminating the up-front
masking charges helped the FPGAs grow and have a prominent footprint in the
semiconductor industry. Advances in process technology have enabled FPGAs to
grow in capacity and implement large heterogenous systems in a device. The emerg-
ing devices are highly adaptable—making them the candidate of choice for a wide
range of emerging domains from compute to networking. In the next section we
will have a deeper dive to introduce various aspects of these devices that will be
introduced to the market in the next few years with a special interest to address the
compute domain.

13.2 Highly Integrated Emerging Programmable Devices

Xilinx is introducing the latest FPGAs in 7 nm process technology; a new heteroge-
neous compute family, called the Adaptive Compute Acceleration Platform (ACAP).
In addition to the next generation Programmable Logic (PL), this monolithic plat-
form includes vector and scalar processing elements tightly coupled together with
a high-bandwidth network-on-chip (NoC), which provides memory-mapped access
to all three processing element types. This tightly coupled hybrid architecture, is
called VersalTM and is conceptually depicted in Fig. 13.2. It allows more dramatic
customization and performance increase than any previous programmable device.
This is an architecture solution for the computing and communication needs of mod-
ern applications. The scaler ARM processors and platform management controller
occupy the lower left region of the chip. The adjacency of the Processor Subsystem
(PS) to Gigabit Transceivers (GTs), memory controllers, and the NoC enables those
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Fig. 13.2 Xilinx ACAP devices will include a number of heterogenous blocks to enable the new
wave of customized compute

blocks to be used together without any of the fabric being programmed. GTs can
occupy the left and right edges of the fabric regions. High speed IOs also run along
the bottom edge of the die, which include hardened memory controllers to interface
with off-chip memory such as DDR and HBM. Across the top of this example Versal
architecture based floorplan is an array of AI Engines designed to accelerate math
intensive functions for applications includingmachine learning andwireless. Finally,
a hardened network-on-chip (NoC) augments the traditional fabric interconnect and
enables a new class of high speed, system level communication between the various
heterogeneous features, including the PS, DDR, AI Engines and FPGA fabric (in
blue). In this section, we provide more detailed information on each heterogenous
block, providing an overall understanding for the upcoming FPGAs in the next few
years [3].

13.2.1 Programmable Fabric

Traditionally, the core architecture of an FPGA consists of an array of Configurable
Logic Blocks (CLBs) and an interconnect with programmable switches, as simpli-
fied in Fig. 13.3a. This fabric, which is the core differentiation of FPGAs with other
semiconductors, has benefited the most from Moore’s law. In this subsection, we
introduce the latest programmable fabric, highlighting the vast evolution compared
to early FPGAs. In Fig. 13.3b, a representative device floorplan for upcoming Xil-
inx Versal architecture is depicted. The fabric portion of the simplified floorplan
in Fig. 13.3b (in blue) is conceptually similar to a traditional FPGA; it includes
resources such as LUTs, flip-flops, and a rich interconnect to connect them. Every
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Fig. 13.3 a Conceptual 4× 4 array of PL with three wiring tracks and switches at the intersection
circles ([1], ©IEEE 2015). b Xilinx Versal representative device floorplan ([4], ©ACM 2019)

CLB contains 32 look-up tables (LUTs) and 64 flip-flops. The LUTs can be config-
ured as either one 6-input LUTwith one output, or as two 5-input LUTswith separate
outputs but common inputs. Each LUT can optionally be registered in a flip-flop [3].

CLBs in early FPGAs contained a single LUT and register with 3 or 4 inputs.
The CLB in the Versal architecture contains more than 60 times the amount of logic
and registers in comparison with early FPGAs. By enlarging the CLB to include
more logical elements, a significant fraction of local nets is subsumed internally,
thereby reducing global track and wiring demand. A dedicated local interconnect
structure resides within each CLB to support more versatile intra-CLB connectivity
as shown in Fig. 13.4a. This is a clear architectural response to the technology scaling
dynamics. Wire distances shrunk with scaling, but the cross-sectional area shrunk
quadratically, resulting in a net increase in resistance for each generation. Despite
the physical distance shrink and transistor delay speed up, total delay would have

Fig. 13.4 a Versal CLB, b Internal routing structure in course-grained CLB ([4], ©ACM 2019)
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increased with more advanced process nodes. Hence, the designers were forced to
use thicker metal with lower resistance to reduce wire delays. As technology scales,
metal resources became more expensive and architectural changes such as coarser
CLBs were a necessity for more efficiency.

Empirical experiments show that a significant fraction of nets have very localized
sources and destinations. Since local routes are shorter and can be squeezed with
tighter pitches onto fewer, lower level metal layers, the implementation cost of local
routes is substantially less than global routes. On average, 18% of all pin to pin
connections are intra-CLB connections, in contrast to 7% within the smaller CLB in
previous 16 nmUltrascaleTM architecture. Figure 13.4b denotes this as “Total Internal
Connections.” In practice, roughly 83% of those connections are routed in Versal
due to limitations such as tools. This is noted as “Internally Satisfied Connections”
in the figure and compared to only 28% of UltraScale theoretical connections. As the
figure shows, only 2% of all nets in UltraScale are successfully routed within a CLB
compared to 15% in Versal, increasing internal net routing by a factor of almost 8X
while only modestly increasing the cost of the CLB.

In addition to the LUTs and flip-flops, the CLB contains dedicated circuitry such
as arithmetic carry logic and multiplexers to create wider logic functions. Internals
of the CLB, such as wide function muxes, carry chain, and internal connectivity
are designed to increase total device capacity by reducing area per utilized logic
function. Within each CLB, 16 LUTs can be configured as 64-bit RAM, 32-bit shift
registers (SRL32), or two SRL16s. For every group of 64 flip-flops, there are four
clocks signals, four set/reset signals, and 16 clock enables. There are dedicated local
interconnect paths for connecting LUTs together without having to exit and re-enter
a CLB. This enables a flexible carry logic structure that allows a carry chain to start
at any bit in the chain [3].

Another interesting new feature for the fabric is called the Imux Register Inter-
face (IRI), which aims to provide an easier implementation of high-performance
designs. These are flexible registers on the input side of all blocks that can optionally
be bypassed. Such architectural features will enable time borrowing or additional
pipelining to improve the performance of designs. Adding additional pipeline reg-
isters to interconnect, with an approach where registers exist on every interconnect
resource, is presented in Intel Statix10, claiming that overall performance would
not be affected significantly when registers are not used [5]. The authors in [3],
however, state that Imux Registers are a more cost-effective solution for increas-
ing design speed while requiring less design adaptation, compared to “registers-
everywhere approach” in [5]. Both these approaches are architectural decisions that
lend themselves to emerging design that are highly pipelined.

Today’s fabric portion of the device also contains hardened DSP and memory
blocks, all arranged in a columnar topology. These generic hard blocks will enable
the fabric to be customized for a large number of applications. This comes down to
more than 20 MB of customizable on-chip memory and near 2000 DSP engines for
the higher end devices. The largest Versal PL will contain close to 900K LUTs; more
details of the CLB and the number of memory and DSP blocks can be found in [6].
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13.2.2 Hardened Domain-Specific Features

Features in PL are often ubiquitous enough to be used for all domains, but the same
trend that started in the last decade to support communication market will continue
for other domains. ACAP will hardens all the necessary platform management func-
tions and separates them from the FPGA core logic. The processor and platform
management controller occupy the lower left region of the chip as s depicted in
Fig. 13.3b. The example floorplan shows hardened scalar processor systems (PS),
memory controllers andGTs. Versal architecture comprises a framework that enables
swapping new domain-specific blocks that are market-driven and not always nec-
essary. For example, some devices may have A-to-D converters replacing GTs. A
variety of smaller domain hard IP blocks such as forward error correction, MAC
blocks, Interlaken, or PCIE can occupy slots within the fabric array. In this respect,
the Versal architecture enables a platform that continues the trend towards enabling
families of domain specific devices.

Xilinx FPGAs have had columnar IOs over the last decade. There are several
advantages to columnar IOs, including tight integration with the fabric and area
efficiency. However, IO cells don’t tend to shrink with Moore’s Law and the cost of
using long metal wires has increased. As a result, the interconnect delays and clock
skew incurredbymetal increasewhile crossingover large IOcolumns.The timing and
spatial discontinuities in fabric have led to additional complexity for software tools
mapping designs across those boundaries. Moreover, IO package trace breakouts
from the die interior can be challenging and performance limitingwith additional IOs
required. Therefore, the implementation of perimeter IOs enables higher performance
IOs and less fabric disruption. These high speed IOs at the bottom of Fig. 13.3b and
their adjacent hardened memory controllers are often used for domains that require
significant bandwidth for external memory access.

The Platform Management Controller (PMC) is another hard block that brings
the platform to life and keeps it safe and secure. It boots and configures all of the
blocks in the ACAP in milliseconds. All security, safety and reliability features are
managed through this block. It cryptographically protects images for both hardware
and software, while safely providing enhanced diagnostics, system monitoring and
anti-tamper. All debug and system monitoring happen through PMC and high-speed
chip-wide debug. A number of the application domains for FPGAs have been relying
on partial reconfiguration of the blocks. Versal architecture offers an 8x configuration
speed boost over previous generations by increasing the internal configuration bus
width by 4x and a faster configuration clock. Leveraging the same configuration path
speedups and rearranging CLB flop data into minimal number of frames enables up
to 300X readback enhancements. Faster readback helps faster and more efficient
debug of the designs.
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13.2.3 Hardened Data Movement on Chip

Future cloud and high-performance computing (HPC) will be data-centric and lead-
ership in data movement is critical to success. The consensus is that workloads in
data centers will become more data-intensive and they need to manage three orders
of magnitude of new data from 5G. New interconnect technologies to connect and
communicate the data on and off the chip will be essential to accommodate the need
for lower latency, while maintaining energy efficiency. FPGAs have been very suc-
cessful in providing users with a bit level configurable interconnect. FPGA capacity
has grown rapidly, and emerging applications comprise a large number of com-
pute modules. The communication among these modules and external memory will
cause routing congestion in fabric interconnect. This problem is more pronounced
with process scaling since the technology is not improving wire resistance. Sys-
tem performance at high frequencies will require efficient global data movement
across the chip from/to an external memory. Therefore, it makes sense to organize
data movement into wide standardized bussed interfaces. A general technique to
reduce interconnect burden is sharing the resources and Network-on-Chip (NoC)
is a systematic method for sharing wires. The higher speed for the data movement
makes possible the higher sharing level for valuable wire resources. ASICs and SoCs
addressed a similar problem of moving many high bandwidth data streams by adding
hardenedNoCs. In packet switchedNoCs, the same physical resource is used to route
communication between multiple ports, thus increasing area efficiency.

For FPGAs, researchers have similarly proposed various techniques to improve
on the efficiency of bit level interconnect. These include requiring users to reason
at the word level rather than at bit level [7, 8], to implementing NoCs as hardened
interconnect resources on the FPGA [9]. In the Versal architecture, a hardened NoC
is a hardened layer of interconnect augmenting the traditional FPGA interconnect.
Adding hard blocks for domains such as storage or compute is not new for FPGAs,
but hardening data movement is a first in the industry. The traditional soft FPGA
interconnect continues to provide bit level flexibility, but the NoC can absorb a
significant portion of the interconnect demand. This separates system level com-
munication implementation from compute portion. Consider the concrete case of a
compute IP requiring access to some memory controller. In order to close timing at
high frequencies (required to support high bandwidths), the compute would have to
be placed close to the memory controller. Alternately, the physical implementation
tools would have to be smart enough to insert on-demand pipelining. On the other
hand, with NoC, it is possible for the compute to be implemented anywhere on the
FPGA. All it needs to do is hook up to the nearest NoC port for communication to
occur at a guaranteed bandwidth. This eases the timing closure for a large variety of
the designs.

Mesh is a common topology for NoCs, but this is neither necessary nor useful
in the FPGA case. Figure 13.3 shows a view of how the NoC integrates with the
rest of the device. There are multiple Vertical NoC (VNoC) columns in the fabric
and each master or slave clients simply connects to the nearest one. The figure also



13 Enabling Domain-Specific Architectures with Programmable Devices 211

shows twomore Horizontal NoC (HNoC) rows at the top and bottom of the floorplan.
Adding more horizontal connections would not significantly improve access to the
NoC, but significantly disrupt the fabric connectivity. Columnar integration with the
fabric is natural in the context of FPGAs, because VNoCs will be added similar
to any other columnar compute block within an FPGA. HNoCs are sized to have
more physical channels than the VNoCs. This provides enough horizontal bandwidth
for fabric clients attached to a particular VNoC to access memory controllers at all
horizontal locations in the device—a key feature enabling a uniform view of memory
across the entire device for all clients [10]. Versal NoC is a packet switched network
that implements a deterministic routing flow with wormhole switches. It supports
multiple Virtual Channels (VCs) to help avoid deadlock and head-of-line blocking.
It also supports multiple Quality-of-Service (QoS) classes, the details of which are
described in [10]. The Versal NoC is not a replacement for fabric interconnect; it
provides a persistent interconnect that implements switching and routing functions
that would previously have consumed fabric resources.

One key driver of theNoC requirements is to effectivelymanage access to external
memory through DDR channels. The NoC bandwidth and resources scale both in
terms of the device memory bandwidth and fabric size. The number of fabric ports
on each VNoC scales with the height of the device and the number of VNoC columns
scales with device memory bandwidth. This enables the NoC to support the entire
memory bandwidth and at the same time allow for enough fabric access to consume
it. Each horizontal and vertical line represents a full-duplex link of 128 bits wide and
operating at 1 GHz. The upper bound of throughput of each unidirectional physical
link is over 16 GB/s in each direction. Each VNoC contains two physical lanes,
which sums up to 64 GB/s bidirectional bandwidth. HNoCs will have either 2 or 4
physical links depending on device size, which provides up to 128 GB/s horizontal
bandwidth. The NoC provides unified, physically addressed access to all hard and
soft components on the device. The NoC has programmable routing tables that must
be initially programmed at boot time.

SoCs and ASICs have been using NoCs for many years. The requirement for such
devices is different from those of a programmable device. In a programmable device
NoC topology, bandwidth and QoS requirements depend on a mixture of fixed and
programmable functionswhose behavior varies substantially based on the application
being mapped. This requires a high degree of programmability from the NoC. The
VersalNoCarchitecture has to permit all possible point to point communication. Each
egress port must be reachable from every ingress port. In a traditional NoC based
system, one could have multiple instances of NoCs optimized for different needs.
Within a programmable NoC platform, the compilers have to manage all the flows
within the constraints of the hardened NoC architecture. This requires some level of
over provisioning of the NoC resources and a high degree of programmability. For
example, in the Versal NoC we provision for more VCs (8) and QoS classes (3) than
would be required for typical applications. The entire topology of the NoC also needs
to be designed using repeatable blocks. This permits easy integration and design of a
family of devices with different communication and compute needs using the same
blocks.
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13.2.4 AI Engines

We mentioned in Sect. 13.1 that programmable devices will ride a prominent wave
of compute-intensive applications such as 5G cellular and machine learning. 5G
requires between five to 10 times higher compute density when compared with prior
generations. The emergence of machine learning in many products also dramatically
increases the compute-density requirements. Xilinx products started addressing com-
putationally intense applications, by adding hardened multipliers developed with the
Virtex®-II series of FPGAs in 2001. Today, there are over 12000 DSP slices in cur-
rent devices—an increase of 3 orders of magnitude in compute resources over last 2
decades. The ACAP devices include a new type of programmable compute engine,
called AI engine, as shown in the top of Fig. 13.3b. AI Engines are an array of VLIW
SIMD processors that deliver up to 8X silicon compute density at 50% the power
consumption of traditional programmable logic solutions [11]. AI Engines have been
optimized for signal processing, meeting both the throughput and compute require-
ments to deliver the high bandwidth and accelerated speed required for wireless
connectivity. AI Engine arrays offer a leap into computational applications. They
can also be viewed as a commercial realization of Coarse Grained Reconfigurable
Arrays (CGRAs). Chapter 14 provides a broader academic perspective on CGRAs
and their advantages with a more in-depth look in some of the architectural and com-
pilation aspects. In the remaining portion of this subsection we focus on describing
the AI Engine architecture.

Figure 13.5 shows a 9 × 9 array of AI Engine tiles with detailed accounting of
the resources in each tile. Engine core includes 16 KB instruction memory, 32 KB
of RAM, 32b RISC scalar processor, and both 512b fixed-point and floating-point
SIMD vector processor. AI Engines are interconnected using a combination of ded-
icated AXI bus routing and direct connection to neighboring engine tiles. For data
movement, dedicated DMA engines and locks connect directly to dedicated AXI
bus connectivity, data movement, and synchronization. The vector processors are
composed of both integer and floating-point units. Operands of 8-bit, 16-bit, 32-
bit, and single-precision floating point are supported. Two key architectural features

Fig. 13.5 AI Engines ([11], ©Xilinx 2019)
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ensure deterministic timing: (1) Dedicated instruction and data memories and (2)
Dedicated connectivity paired with DMA engines for scheduled data movement.
The simplest form of inter-tile data movement is via the shared memory between
immediate neighboring Tiles. This implies up to 128 KB addressable shared memo-
ries with neighbors. However, when the tiles are further away, then the AI Engine tile
needs to use the AXI-Streaming dataflow. AXI-Streaming connectivity is predefined
and programmed by the AI Engine complier tools based on the data flow graph.
These streaming interfaces can also be used to interface directly to the PL and the
NoC.

The architecture is modular and scalable; some of the devices will contain up
to 400 of these tiles. One of the highest value propositions of this CGRA is the
connectivity with adjacent fabric. Figure 13.6 illustrates the connectivity between
the AI Engine array and the programmable logic. AXI-Streaming connectivity exists
on each side of the AI Engine array interface, and extends connectivity into the
programmable logic and separately into the network on chip (NoC). Leveraging NoC
connectivity, AI engines communicates to the externalmemory. Processor subsystem
(or scalar processors) on the device also manage configuration, debug and tracing of
AI engines through HNoC. AI Engines are programmed using a C/C++ paradigm
familiar to many programmers as will be explained in the following sections. AI
Engines are integrated with Xilinx’s Adaptable and Scalar Engines (PL and PS)

Fig. 13.6 AI Engines and connectivity with fabric
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to provide a highly flexibly and capable overall solution. The key difference of
an AI Engine array with traditional multicore computing engine is the dedicated
not-blocking deterministic interconnect. Xilinx has provided results indicating 10X
higher compute for ML inference, 5X higher 5G wireless bandwidth, and 40% less
power compared to an earlier 16 nm FPGA devices [11].

13.3 Disaggregation Trend for Cost and Market Agility

Silicon transistors and wires are not providing much area or speed benefits due to the
slowdown of Moore’s Law, and the power per chip area is increasing (reflecting the
end of Dennard scaling). Advances in process technology have enabled FPGAs to
grow in capacity and implement large heterogenous systems in a monolithic device.
The emerging ACAP devices explained in the previous section are highly adapt-
able—making them the candidate of choice for a wide range of emerging domains
from compute to networking. However, performance or power improvements are no
longer readily available from process technology and it is no longer trivial to build
cost-efficient devices. A prominent trend to respond to rising fabrication cost is dis-
aggregation of architecture components, since only parts of the system on the chip
require expensive leading-edge process nodes. Disaggregation ofmonolithic systems
means implementing the required connectivity needs at the wafer or package level.
Disruptive technologies such as wafer level connectivity or advanced packaging are
expected to evolve over the next decade. ACAP unique position is that it includes
many heterogenous blocks. This provides an opportunity for cost reduction by selec-
tive disaggregation per domain of interest. The significant drivers for this trend are
claimed to be:

• Improving yield by silicon split into smaller dies.
• It’s the only way to get enough memory or a heterogenous technology such as
photonics into the system.

• Only some parts of the system require expensive leading-edge nodes.
• It’s a way to use the same silicon to address different configurations/markets.

13.3.1 FPGA Products with Multiple Dice

The first driver mentioned above (for improving yield of large devices) led Xilinx
to develop a new approach for building high-capacity FPGAs for emulation market
in early 2010s [12]. The new solution enables high-bandwidth connectivity between
multiple dice by providing high density package connectivity. Combining several
large dice in a single device is the only way to exceed the capacity and bandwidth
offered by the largest monolithic devices. Figure 13.7 shows a side view of four large
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Fig. 13.7 Virtex®-7 2000T FPGA enabled by advanced packaging technology

FPGA dice along with a passive interposer that provides tens of thousands of die-
to-die connections in the same package, responding to cost pressures of monolithic
integration. The key to this enabling technology was combining Through-Silicon Via
(TSV) and micro bump technology. The passive silicon interposer was a low-risk,
high-yield 65 nm process that provided four layers of metallization for building the
tens of thousands of traces that connect the logic regions of multiple FPGA die.
C4 solder bumps connect interposer stack-up on a package substrate using flip-chip
assembly techniques. This technology provided multi-Terabit-per-second die-to-die
bandwidth throughmore than 10,000 device-scale connections—enough for themost
complex multi-die FPGA product at 28 nm process technology (XC7V2000T).

Later on, the same technologywas used for the integration of different types of die.
Virtex-7 H870T FPGA, announced in 2012, ties together three homogeneous dice
and a separate 28G transceiver chiplet via the silicon interposer. This was the world’s
first heterogeneous FPGA architecture—an FPGA consisting of heterogeneous die
placed side-by-side to operate as one integrated device. While this product didn’t
have the market success of 2000T device for a number of reasons beyond the scope
of this chapter, it was an important technology turning point for many more devices
with heterogenous integration at present and future.

FPGA High Bandwidth Memory (HBM) devices, introduced in 2017, integrated
16 nm UltraScale+ FPGA fabric with HBM controller and memory stacks from
Xilinx supply partners [13]. The HBM is integrated using a similar interposer-based
stacking technology explained above and is depicted in Fig. 13.8. Such heterogenous
integration enables more than 20X external memory bandwidth on the same device
compared to that of PCB. Low power and high bandwidth memory access are essen-
tial requirements for emerging compute and data center domains. The AXI Interface
in the HBMmemory controller needs to be hardened to accommodate the aggregate
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Fig. 13.8 Vitex Ultrascale+ FPGA with High Bandwidth Memory (HBM) ([13], ©Hot Chips,
2017)

high bandwidth between the local programmable routing and the HBMmodule. This
structure significantly increases the user’s AXI interface bandwidth, allowing for up
to 3.7 Tb/s operation [14]. Recently, Xilinx introduces the Virtex® UltraScale+™
VU19P, the world’s largest FPGA with the highest logic density and I/O count on a
single device ever built, addressing new emulation market. The devices boast more
than 4M LUTs in the same package, which would not have been possible without
disaggregating the whole system into multiple dice.

Versal ACAP with highly integrated monolithic features was introduced in the
previous section. However, the new fabric has a unique feature that can be leveraged
for adding connectivity using silicon interposer technology. Current generation of
interposer technology for HBMdevices or VU19p only use the wires on interposer at
the edge of die and in the vertical direction. In this case micro bumps are distributed
in channels along the edge by displacing the CLBs. Versal ACAP fabric architecture
embeds a number of these micro bumps in each CLB allowing them to be distributed
evenly across the die. This enables the architecture to utilize more wiring on the
interposer and in both directions. In this new routing architecture, interposer wires
serve two purposes: (1) inter-chiplet connectivity, and (2) additional regular intra-
chiplet long range routing. These wires on the interposer are 30% faster for the same
distance and ideal for long reach die connectivity. This enables ultra-large ACAP
devices with multiple active silicon dice stacked on a passive interposer and with
ample routing wires on interposer that may be introduced to the market in the next
few years. This architecture will reduce delays and routing congestion at the die
boundaries and will consequently ease the software burden of partitioning the design
to be mapped to multiple dice. The key enabler for this form of chiplet connectivity
is 4X CLB granularity that was explained earlier. Further details and quantitative
benefits can be found in [4].
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Intel’s recent 10-nm Intel® Agilex™ FPGAs are also built using a disaggre-
gated chiplet architecture, which integrates heterogeneous technology elements in
a System-in-Package (SiP). Leveraging a packaging technology, called Embedded
Multi-Die Interconnect Bridge (EMIB), Intel uses the chiplet approach to combine a
traditional FPGA die with purpose-built semiconductor die, creating devices that are
uniquely optimized for target applications. EMIB silicon bridges are positioned as an
alternative to 2.5D packages using silicon interposers. They often provide a similar
connectivity density as interposers but take less area on the interposer. The attractive-
ness of EMIB is that silicon is used only in the areas where two dies connect. Since
the main cost of such advanced packaging is assembly, it is not clear if any of these
twomethods have superiority, and hence both approaches are expected to stay around
for the time being (Fig. 13.9). Intel is also using this technology to add advanced
analog functions such as 112 Gbps PAM-4 transceivers to the programmable device,
as shown in Fig. 13.10 [15]. Xilinx provides a similar GT functionality with a key
differentiation that monolithic integration is used to add analog high-speed function-
ality in contrast with Intel disaggregation strategy. This ideally exemplifies how the
old trend of monolithic die integration will continuously be considered and evalu-
ated against disaggregated package integration in the next decade. The merit of each
solution will depend on a number of factors including expertise in the company and
agility to market, as will be discussed further in the next subsection.

EMIB: source Intel

Interposer & HBM: source Xilinx

Fig. 13.9 EMIB or interposer 2.5D advanced package connectivity
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Fig. 13.10 Intel AgileX FPGA with EMIB package connectivity ([15], ©Intel, 2019)

13.3.2 Upcoming Heterogenous Integration Trends
and Programmable Devices

Integration in the package is not new;OEMs have usedMulti-ChipModules (MCMs)
in systems to integrate several chips in amodule for years. There are two new dynam-
ics, however, that raise the importance of SiP devices: rising fabrication costs and
advancements in packaging technology. In this subsection we identify some of these
trends in the context of programmable logic. Heterogeneous Integration refers to
the integration of separately manufactured components into a higher-level System
in Package (SiP) assembly that provides enhanced functionality and improved oper-
ating characteristics in the aggregate. There are many examples of Heterogenous
Integration through SiP today as explained in the previous subsection. Heteroge-
neous Integration is initiating a new era of technological and scientific advances
to continue and complement the progression of Moore’s Law Scaling into the dis-
tant future. Packaging—from system packaging to device packaging—will form the
vanguard to this enormous advance.

There is a wide range of heterogeneous integration technologies for both serial
and parallel connectivitywithin the chiplets.We anticipate standards evolving around
both Ultra-Short Reach (USR) serial and parallel (e.g. HBM-like) die-to-die interfac-
ing. In addition to PHY layer standards, there are higher level data protocols, such as
AMBA AXI, essential to any application. The key enabling metrics include energy
efficiency and aggregate throughput delivery for data movement between chiplets.
Figure 13.11 shows the energy efficiency of existing and emerging solutions, approx-
imated in oval areas. There is a two orders of magnitude power gap between today’s
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Fig. 13.11 SiP connectivity landscape for energy efficiency

existing PCB solutions (such as Xilinx GTY or HMC) and monolithic implemen-
tations of data movement, as noted by gray ovals. The blue oval areas in the figure
show the emerging packaging connectivity based on recent published work. Some of
these emerging SiP solutions are reducing the power gap by more than one order of
magnitude. On the other hand, monolithic implementation of global data movement
between heterogeneous blocks will require additional overhead such as shims or syn-
chronization modules, leading to the energy increase. This provides an opportunity
for reaching near-monolithic energy efficiency, especially with leveraging domain
optimizations at the software level. Another take-away from Fig. 13.11 is that we
need to be on the right side of the chart in terms of wire throughput in order to
use MCM packaging technology with coarse wire pitch. In contrast, interposer fine
micro bump pitch (such as that of HBM or EMIB) enables larger counts of interface
wires to run at lower frequency as shown on the left side of the figure.

Aggregating multiple existing serial interfaces to amortize PLL power reduces
energy consumption. Removing the Clock Data Recovery (CDR) blocks, often used
in serial interfaces in lieu of a source synchronous data transmission, offers another
degree of potential power reduction. This is a reasonable decision since distance
within a package between the chiplets is short. Assuming a bump pitch of 130–
150 µm for the substrate, we can fit around 44–59 bumps in 1 mm2 of silicon
area. By reserving about 10 bumps for power and source synchronous clocking,
we can deliver 1 Tb/s bandwidth if each wire carries data at a rate above 20 Gb/s.
This approach translates to differential Gigabit Transceivers (GTs) running in the
range of 40–56 Gb/s. Fortunately, GT blocks are emerging to offer these ranges.
Published literature introduces a USR IP in 28 nm, demonstrating less than 1 pJ/bit
using a test chip [16]. This USR interfacing approach uses the CNRZ-5 coding layer
that is added on top of aggregating bunch of GTs together. They claim that the
coding may contribute to 2X of the power reduction. There is also a recent JESD247
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standard, which is based on this IP [17]. A group of other low power GT efforts circle
around extensions of OIF standard, which is mostly focused on optical and photonic
connectivity. There are test chips published that claim a bit more than 2 pJ/bit for
such interfacing without any special coding [18].

Both parallel and serial interfacing are viable technology trends that will enable
inter-die connectivity in the coming years. The key enabling factor will be an ecosys-
tem or market place to have those chiplets, which would be after standardization of
those interfaces. There are a number of initiatives such as DARPA CHIPS program
and Open Compute Platform (OCP) OSDA efforts to push in this new direction.
FPGAs can provide an important role in this new paradigm. Moore’s law has sig-
nificantly reduced the traditional overhead of programmability in FPGAs, which is
attributed to using LUTs and interconnect. Modern FPGAs include a number of het-
erogeneous blocks such as processors, memory, and high speed I/O, as explained
in previous section. The new programming overhead will be the unused blocks on
highly integrated FPGAs. A programmable fabric chiplet along with specific domain
chiplets in an SiP enables a wide range of applications, expanding the fast time to
market and customization benefits of FPGAs to this new paradigm. The future pack-
age connectivity was classified by power targets in a recent keynote at Hot Intercon-
nect 2019. For 2.5 D technologies, he envisioned 1 pJ/bit for organic substrate (which
is achievable today) and 0.3 pJ/bit for interposer or EMIB connectivity. Moreover,
he estimated 0.15 pJ/bit for an SiP connectivity to which he referred as 3D [19]. This
is getting close to the power for long distance wires within a chip with monolithic
integration. Hierarchical Integration Roadmap [20] anticipates 3D interconnect with
micro bump density of less than 10um to be available in 10–15 years. FPGAs will
significantly benefit from such technology as regular repeatable patterns in fabric
can leverage such dense connectivity.

13.4 Software Implication and Trends

Discussing programmable devices would not be complete without understanding of
the software designflow.Traditional design process for FPGAs involves transforming
the design from a preferred design entry to a configuration bitstream that can be
downloaded into the device. This process consists of a sequence of major steps:

(1) synthesizing the design into the fundamental architecture blocks such as LUTs
and flip-flops,

(2) place and route those blocks under the given timing and area constraints, and
(3) generating a configuration bitstream to program the device.

The goal of this section is not an in-depth discussion of these tools. Instead, we
highlight a few meta-level trends in the recent years with a look into the future.
FPGA devices started capturing market share by replacing ASICs as explained in
Sect. 13.1. Therefore, the CAD tools started being EDA-like with one significant
difference: reduced cost. FPGA companies started building their own CAD tools for
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configuring devices and offered it to the customers at a highly subsidized price. This
was in contrast with the ASIC tools that were from 3rd party and often at higher cost.

FPGA capacity and complexity grew rapidly and as a response, the design
entry abstraction was raised to mitigate productivity. This trend, which is shown in
Fig. 13.12, occurred with a combination of organic growth and acquisition of third-
party tool providers. The figure shows how the design entry abstraction is raised from
schematic design entry in 1990s to RTL design entry in the last decade. Today, it is
possible to use high-level programming languages such as C and Python as a method
of design entry for FPGAs. The most recent Xilinx announcement is a unified soft-
ware platform, called Vitis [21], that enables the development of embedded software
and accelerated applications on heterogeneous Xilinx platforms including FPGAs,
SoCs, and Versal ACAPs. Vitis enables integration with high-level frameworks and
development in C, C++, or Python and is available free of charge.

The key trend that is prominent for programmable devices is going in the direc-
tion of catering to software programmers. The programming aspect of these devices
uniquely positions them somewhere between ASIC hardware platforms (with spatial
design) and CPUs (with temporal programming). Software programming models
have closely tracked the evolution of processor architecture, evolving from a focus
on single-core, central memorymachines towards multi-core, domain-specific accel-
erators. As a result, the FPGA tools need to move towards what software developers
expect, with improving productivity. One clear architectural attempt in this direc-
tion is adding the new CGRA-like components as explained in subsection 13.2.4.
These AI engines can be programmed using C/C++ similar to other software pro-
gramming platforms. AI Engine simulation can be functional or cycle accurate using
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Fig. 13.12 Raising the abstraction of design entry for programmable devices
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an x86-based simulation environment. For system-level simulation, a System-C vir-
tual platform is available that supports both AI engines and traditional arm-based
processor (scalar engines) integrated on the chip.

In addition to adding new components that are software friendly, it is expected
that software for the fabric moves in the same direction. Today’s barrier of entry
to new markets such as HPC and compute is not the hardware limitations of pro-
grammable devices, but the software productivity and efficiency with new methods
of design entry. Software developers expect better user experience such as faster
compile time for the backend (see Fig. 13.12) and higher flexibility for building their
own flows. The tools for programmable devices are likely to address these issues
by two approaches: domain specific overlays and open source. Post-bitstream, pro-
grammable domain-specific soft overlays and pre-implemented shells enable fast
compilation to the fabric. FPGA designers familiar with hardware will design these
overlays; this enables domain programmers to leverage customized memory and
interconnect architectures without the need to be an FPGA design expert. Overlays
offer user programmability within a given domain. However, scaling this concept to
more domains requires new tools and an active ecosystem of new domain experts.

An efficient way to enable an ecosystem of FPGA domain compilers is tapping
into open source dynamics in software community. The open source movement
relies on free software to stimulate innovation and progress. Software development
has become significantly more complex than hardware design and open source is
analogous to Moore’s law (of technology scaling) for software. FPGA tools are also
expected tomove towards open source in the next decade. For example, RapidWright,
an open source platform, was introduced recently to provide a gateway to Xilinx’s
back-end implementation tools [22]. The goal is to raise the implementation abstrac-
tion similar to the way the design entry abstractions are raised, while maintaining the
full potential of advanced FPGA silicon. Such framework can help building domain-
specific backend tools in two ways: (1) creating highly optimized overlay and shells,
and (2) domain-specific compilers. The best opportunity for domain design tasks
lies with domain application architects and the path to automation would require a
domain-specific front-end compiler. This compiler may be an LLVMdata flow graph
parser that can automatically identify domain operators with high replication. This
concept is depicted in Fig. 13.13 by application examples in domains 1 and 2. Open
domain data flow and HLS compilers may be built by the community or will be
available as more of free Vitis framework will be open. We anticipate great interest
to maximize existing FPGA silicon performance for the age of domain-specific com-
pute. RapidWright or similar open source frameworks are likely to be the enabler for
a significant part of that journey in the next decade.
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13.5 Concluding Remarks

Field programmable devices (FPGAs) are integrated circuits designed to be config-
ured by the customer after manufacturing. Initially they contained an array of pro-
grammable logic blocks and a hierarchy of reconfigurable interconnects that allow the
blocks to communicate. Reconfiguration and hardware customization were the key
differentiating attributes of FPGAs that facilitated the market expansion by replac-
ing custom logic ASICs. Riding Moore’s law, FPGAs grew more than four orders of
magnitude in capacity and captured a significant portion of communication domain
in addition to ASIC replacement. Today, the FPGA market is more than $5 billion
and still growing by penetrating in domains such as machine learning and datacenter
networking.

We highlighted some of the key features that enable programmable devices to
enter the compute domain as accelerators. We summarized how Xilinx will address
current semiconductor technological, economical, and scalability challenges with
the new 7 nm ACAP compute platform. The Versal architecture tightly integrates
programmable fabric, CPUs, and software-programmable acceleration engines into
a single device that enables higher levels of software abstraction, enabling more
rapid development of hardware accelerators that solve next generation problems.
Such high-level integration is a direct result of process technology advancements;
these new complex products introduced to the market in the next few years will be a
testament to the success of such a trend.

The slow-down of Moore’s law and fabrication cost pressures will also set a dis-
aggregation trend for semiconductor industry. Programmable devices with multiple
dice in the package are already introduced to the market for yield improvement or
heterogenous integration. We believe this approach will continue and we provided
some guidelines and insight for how programmable devices will add value to SiP



224 A. Kaviani

devices of the next decade. Finally, we summarized the automation software trends
and the steps required to prepare programmable spatial compute devices for software
programmers. FPGAs are likely to be one of the most pivotal components in the age
of domain specific compute. Open source and efficient tools for these devices will be
developed to enable software-friendly customer experience despite the high complex
functionality of the latest devices.
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Chapter 14
Coarse-Grained Reconfigurable
Architectures

Raghu Prabhakar, Yaqi Zhang and Kunle Olukotun

14.1 Introduction

Rapid algorithmic and technological innovations in fields such as genome sequenc-
ing, data analytics, machine learning, and software-defined networking have placed
greater compute and memory demands on the underlying computing systems. At
the same time, technology scaling challenges with the slowdown of Moore’s law
and the end of Dennard scaling has made it increasingly difficult to scale processor
performance in an area and energy-efficient manner. Consequently, the computer
architecture community has ushered in the era of specialized accelerators [1–4].
Accelerators implement customized data and control paths to suit a domain of appli-
cations, thereby avoiding many of the overheads of flexibility in general-purpose
processors. However, specialization in the form of dedicated ASICs is expensive due
to the high NRE costs for design and fabrication, as well as the high deployment
and iteration times. Furthermore, applications and algorithms evolve at a rapid pace;
for example, the number of machine learning articles posted on arXiv.org has grown
faster thanMoore’s law in the past decade [5]. An ASIC designed to accelerate a spe-
cific set of algorithms can immediately be rendered obsolete when ASIC design time
is considered along with the rate of algorithmic innovation [6]. This makes ASIC
accelerators impractical for all but the most common and unchanging applications.
Achieving a balance between specialization and flexibility in the underlying system
is thus a critical task.

Flexibility in architecture can be achieved in multiple ways. General-purpose
CPUs and GPGPUs achieve flexibility by implementing a well-defined Instruction
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Set Architecture (ISA). Applications can be executed on such architectures by com-
piling them to a sequence of instructions in the ISA, which are then executed using
one or more threads. ISA-based processors and thread-based execution models are
ubiquitous today. However, instruction pipelines incur a nontrivial amount of hard-
ware area and power overheads [7]; events such as instruction fetch, decode, and
register file access account for about 40% of the data path energy on the CPU [8],
and about 30% [9] of the total dynamic power on the GPU. Furthermore, studies have
shown that using a reconfigurable data path in place of a conventional instruction
pipeline in a GPU reduces energy consumption by about 57% [10]. Techniques like
SIMD execution [11] amortize the overheads to some extent by performing more
useful work per instruction and can achieve energy efficiency improvements of 4%
to 1.9× [12]. However, applications often contain parallelism at multiple levels of
nesting [13]. ISAs typically offer limited support to exploit such nested parallelism
even with SIMD, as costly synchronization mechanisms in software would be neces-
sary to orchestrate execution. Architectures that allow a finer degree of customization
can better exploit nested parallelism without incurring the overhead of instructions.

On the other hand, reconfigurable architectures like Field Programmable Gate
Arrays (FPGAs) achieve energy efficiency by providing statically reconfigurable
compute elements and on-chip memories in a programmable interconnect that can
be configured to implement customized data paths. In FPGAs, these custom data
paths are configurable at the bit level, allowing users to prototype arbitrary digital
logic and take advantage of architectural support for arbitrary precision compu-
tation. However, FPGAs have long suffered from programming inefficiencies due
to low-level programming models and long compile times. Furthermore, architec-
tural inefficiencies due to bit-level reconfigurability in computation and interconnect
resources result in significant area and power overheads. For example, over 60%
of the chip area and power in an FPGA is spent in the programmable interconnect
[14–17]. In contrast, a study on an AMDGPU reports that up to 14% of the dynamic
power is consumed in the interconnect [18].

To mitigate programming and architectural inefficiencies, architects from indus-
try and academia alike have attempted to raise the hardware abstraction level by
introducing coarser-grained building blocks such as ALUs, register files, and mem-
ory controllers. These architectures are referred to as Coarse-GrainedReconfigurable
Architectures (CGRAs).More generally, CGRAs are characterized by reconfigurable
compute andmemory elements in a programmable interconnection network. CGRAs
have been shown to achieve higher performance and energy efficiency compared to
conventional instruction-based architectures by avoiding instruction overheads with
reconfigurable data and control paths. CGRAs also avoid the hardware and program-
ming overheads incurred by fine-grained alternatives such as FPGAs by providing
dense compute resources, power efficiency, and clock frequencies up to an order
of magnitude higher than FPGAs. Furthermore, although symmetry is not always
a strict design goal, most CGRAs tend to be inherently symmetrical, with repeated
patterns of reused components. From a practical standpoint, such symmetry lowers
design and verification complexity. Symmetry also simplifies the hardware-software
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interface and increases flexibility, which allows the developing of aggressive opti-
mizing compilers and higher-level programming models. Several surveys [19–21]
provide a broad overview of prior work on CGRAs.

Harnessing the full potential of CGRAs requires co-designing the architectural
primitives with the programming model and compilation flow. Choosing the right
granularity for a CGRA requires navigating a large multidimensional design space
and depends on common patterns of computation for which the CGRA is being built
for. This choice, in turn, impacts the programming model, and the complexity and
efficiency of the compiler.

This chapter reviews some fundamental concepts in CGRAs. A canonical way
to quantitatively reason about CGRA granularity is presented in terms of compute,
memory, and interconnect. An automatic compilation flow is then described that
maps applications, which are described as arbitrary hierarchies of loop controllers,
into parallelized, nested pipelines on the target CGRA. The chapter concludes with
a case study using the Plasticine CGRA [22].

14.2 Key Elements of CGRAs: Compute, Memory,
and Interconnect

CGRAs can differ widely based on the granularity of reconfigurable elements that
compose them. This choice of granularity presents a fundamental architectural trade-
off between flexibility, programmability, and efficiency. Consider the following
example, where sixteen functional units (FUs) are used to compose two different
CGRA architectures.

Figure 14.1 shows an example of two CGRA designs. Figure 14.1a organizes the
sixteen functional units as a 4 × 4 mesh, connected by 20 interconnect switches. In
this CGRA, each FU consumes inputs and produces outputs directly to the intercon-
nect switches. Figure 14.1b organizes the same FUs in a hierarchy, where four FUs
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Fig. 14.1 Two example CGRA designs with 16 functional units. a shows a 4 × 4 topology, where
eachFUconnects to amesh interconnect directly.b shows a 2× 2 topology,where 4 FUs are grouped
together into clusters to implement a 2-stage SIMD pipeline, with 2 SIMD lanes per pipeline stage
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are combined to create a two-stage SIMD pipeline with two lanes per pipeline stage.
In this design, only the first two FUs can consume inputs from the interconnect, and
only the last two FUs produce outputs into the interconnect. The four FU clusters
are organized as a 2 × 2 mesh, connected together by 6 interconnect switches.

The contrived designs in Fig. 14.1 illustrate a fundamental tradeoff between flexi-
bility, efficiency, and programmability, and underscores the importance of granularity
selection. The design in Fig. 14.1a is more flexible than the design in Fig. 14.1b to
map arbitrary data flow graphs, as each operation can be independently mapped to an
FU in Fig. 14.1a. Figure 14.1b requires making the choice ofmapping an operation to
an FU within a cluster as opposed to across clusters, and manage data dependencies
accordingly. On the other hand, Fig. 14.1b has greater compute density, which would
translate to greater performance-per-area than Fig. 14.1a, if the FUs are utilizable.

Primitive elements that compose a CGRA can be grouped into the following three
categories:

1. Compute: Primitive resources used to perform compute operations such as mul-
tipliers, ALUs, DSP blocks, etc. are referred to as “compute primitives”. The
compute primitives in a CGRA are grouped hierarchically into larger blocks
called “compute units” (CUs). Each CU consists of one or more compute prim-
itives organized into pipeline stages and SIMD lanes. In the example above,
Fig. 14.1a has 16 CUs, where each CU has just a single compute primitive.
Figure 14.1b has 4 CUs, where each CU has 4 compute primitives organized as a
2-stage SIMD pipeline. Additional supporting pipeline resources such as register
files are considered to be part of compute resources.

2. Memory: In addition to compute resources, many CGRAs also contain on-chip
memory resources such as caches, FIFOs, and/or programmer-managed scratch-
pad memories. Memory is characterized in terms of capacity and bandwidth and
is influenced by the organization of compute resources.

3. Interconnect: The topology, the programmable switch fabric connecting com-
pute and memory resources, and the routing policies is collectively referred to
as the interconnect. A CGRA may have one or more interconnects between its
resources to carry different types of data. In addition, each interconnect may have
different routing characteristics, such as statically routed vs. circuit-switched ver-
sus packet-switched routing, bus width, number of virtual channels, and buffer
depths.

14.3 Compiling to CGRAs

Modern processors and GPUs pack more compute power with wider vector instruc-
tions and more cores. However, efficiently utilizing these resources is often a
challenge, as applications often contain parallelizable tasks interleaved with non-
parallelizable tasks. Furthermore, communication and synchronization overheads in
multi-threaded programming models increase with more parallelism and creates a
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performance plateau. In contrast, spatial architectures such as CGRAs present an
alternative solution to improve application throughput. Hardware resources can be
allocated proportional to the amount of compute at various stages in the program.
Data and task parallelism in applications is exploited by spatially mapping the appli-
cation as hierarchical pipelines. Intermediate results in the pipeline are allocated
on-chip to avoid main memory access. Recent studies have shown up to 30–50×
speedup over a general-purpose GPU (GPGPU) on single-batch Recurrent Neural
Network Serving (RNN) [23, 24] using a spatial architecture due to better utilization
of compute resources.

The pipelined execution model raises new requirements on on-chip interconnect
andmemory bandwidth.Multithreaded executionmodels rely on the processor’s abil-
ity to interleave independent operations from one or more instruction streams such
that long latency operations such as memory accesses are interleaved with computa-
tion. With pipelined execution models, several CUs can simultaneously produce and
consume intermediate results every clock cycle.Managing these parallel data streams
requires managing on-chip interconnect and memory resources carefully, such that
bottlenecks are avoided. Specifically, partitioning and allocating data structures in
a program to on-chip resources to match the bandwidth requirements of all parallel
CUs is critical to sustain compute throughput.

A common technique to improve memory bandwidth is to modify the data layout
such that all parallel accesses hit different memory banks. A compiler can statically
analyze various access patterns in the program and remap address space automati-
cally, which is a technique called static banking. To perform such analysis, a compiler
must have a global view of all access to a data structure. Such information can be
acquired from analyzing a high-level program or domain-specific language. Instead
of modeling the memory as a global address space like on CPUs, the high-level
language should capture access patterns of all parallel CUs to individual data struc-
tures with disjoint address space. These individual memories can be mapped onto
distributed memory resources without synchronization. In addition to static banking,
the memory needs to be buffered such that pipelined readers and writers can access
different copies of the data from different iterations. Finally, the imbalanced data path
in the program needs to be retimed with sufficient buffers to maintain full pipelining
throughput.

While hierarchy in CGRAs improves the scalability and compute density of
the architecture, it also introduces fragmentation in mapping, which can poten-
tially underutilize hardware resources. The compiler needs to decompose compu-
tation and memories into smaller fragments that satisfy hardware constraints. When
memory is distributed, the compiler also needs to allocate synchronization logic to
preserve coherent view of the memory. The coherence protocol for global address
space can introduce large overhead in both performance and energy. A combined
software-hardware codesign approach can dramatically reduce such cost by allocat-
ing synchronization logic per data structure between all parallel readers and writers.
Figure 14.2a shows how a large compute graph can be partitioned to multiple sub-
graphs, where each subgraph satisfies a set of hardware constraints, such as operation
types, number of operations and I/Os, etc. Figure 14.2b shows one logical memory is
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Fig. 14.2 Partitioning of compute and memory

mapped to multiple physical memory blocks; each contains one or more banks. The
compiler preschedules the address generation (AG) to an independent CU, broad-
casting requests to all memories, and responses are pipelined to all consumers. With
static banking, it is guaranteed that only one request will hit each bank per cycle.
In cases where banks accessed by each AG can be statically resolved, the compiler
can optimize away all unnecessary data paths between memory and compute to a
partial crossbar or one-to-one communication. The high fan-in in the crossbar can
be partitioned to a tree across CUs to scale in network bandwidth with large par-
allelization. This allows the performance to scale linearly with parallelization in
spatial architectures, at the cost of an exponential increase in interconnect resource
consumption.

Once the program graph is decomposed in subgraphs that can fit in hardware,
a place and route (PaR) tool can map the application onto the network array. This
process is similar to the FPGA PaR process with lesser complexity. A prior study
[25] has shown that compiler can improve PaR quality with static program analysis
in a tightly integrated system.

14.4 Case Study: The Plasticine CGRA

Plasticine is a CGRA from Stanford University [22] consisting of reconfigurable
Pattern Compute Units (PCUs) and Pattern Memory Units (PMUs), which we refer
to collectively simply as “CUs”. Figure 14.3 shows the chip-level architecture. CUs
communicate with three kinds of interconnect: word-level scalar, multi-word-level
vector, and bit-level control interconnects. Plasticine’s array of CUs interfaces with
DRAM through multiple DDR channels. Each channel has an associated coalescing
unit that arbitrates betweenmultiple address streams and consists of buffers to support
multiple outstanding memory requests and address coalescing to minimize DRAM
accesses. Each Plasticine component is used to map specific parts of applications:
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Fig. 14.3 Plasticine chip-level architecture (actual organization 16 × 8) [22]. All three networks
have the same structure. PCU Pattern Compute Unit, PMU Pattern Memory Unit, AG Address
Generator, S Switch Box. ©ACM 2017

local address calculation is done in PMUs, DRAM address computation happens
in the DRAM address generation (AG) units, and the remaining data computation
happens in PCUs.

14.4.1 Pattern Compute Unit (PCU)

The PCU is designed to exploit the fine-grained data and pipeline parallelism in a
single, innermost parallel pattern in an application. Figure 14.4 shows the architecture
of a PCU.

The PCU data path is organized as a multi-stage, reconfigurable SIMD pipeline.
Each stage consists of several functional units (FUs) operating in SIMD fashion,
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Fig. 14.4 Pattern Compute Unit (PCU) architecture [22].We show only 4 stages and 4 SIMD lanes,
and omit some control signals. ©ACM 2017
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and associated pipeline registers (PR). FUs perform 32-bit word-level arithmetic
and binary operations, including support for floating-point and integer operations.
Reductions and slidingwindowoperations are supported across lanes using dedicated
intra-PCUnetworks. PCUs interfacewith the global interconnect using three kinds of
inputs and outputs (IO): scalar, vector, and control. Scalar IO is used to communicate
singlewords of data, such as the result of reductions.Vector IOallows communicating
multiple words, such as reading and writing to scratchpads in PMUs and transmitting
intermediate data betweenmultiple PCUs. Control IO is used to coordinate execution
with other PCUs and PMUs. A reconfigurable control block and a counter chain
generate the necessary control signals and loop iterators, respectively, to begin PCU
execution.

14.4.2 Pattern Memory Unit (PMU)

PMUs contain the on-chipmemory as programmermanaged scratchpads. Figure 14.5
shows the architecture of a PMU.

Scratchpads are built with multiple SRAM banks matching the number of PCU
lanes. Address decoding logic around the scratchpad can be configured to operate
in several banking modes to support various access patterns. Strided banking mode
supports linear access patterns often found on dense data structures. FIFO mode
supports streaming accesses. Line buffer mode captures access patterns resembling
a sliding window. Duplication mode duplicates contents across all memory banks
to support parallel indirect reads. In addition to banking, the scratchpad address
space can be partitioned to implement generalized double buffering, or N-buffering,
to support hierarchical pipelines. Each PMU contains a reconfigurable scalar data
path intended for address calculation, which better utilizes PCU resources. A pro-
grammable counter chain and control block triggers PMU execution similar to the
PCU.
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14.4.3 Pipelined Switches

Plasticine is designed with three interconnects of different granularities; a bus-level
vector network, a word-level scalar network, and a bit-level control network. All
network switches are statically configured, and switches include pipeline registers
to avoid long wire delays. Scalar and control switches share a reconfigurable control
block and counters to efficientlymapouter pipeline logic and increasePCUutilization
and reduce routing hotspots.

14.4.4 Static-Dynamic Hybrid Interconnect

In an extended network study [25], a dynamic network is introduced in addition to
the pipelined static network in Plasticine. The dynamic network only has a single
vector network with support to partially clock gate buffers when transmitting scalar
data. To optimize for multicast communication, a common communication pattern
in spatial architectures, the router only duplicates packets where routes branch off
for different destinations. The router contains a parameterizable number of virtual
channel (VC) buffers to prevent deadlock. A static PaR tool decides which network
the logical flows from the program get mapped to, and routes links for both static
and dynamic network. The router dynamically looks up the statically assigned routes
with packet headers. Unlike a static network that provides dedicated bandwidth to a
logical flow, the dynamic network can share physical link resources across multiple
flows.

14.4.5 Off-Chip Memory Access

Memory requests to external DRAM are generated in specialized reconfigurable
scalar data paths called address generators (AG).A coalescing unit arbitrates between
multipleAGs sharing a singleDRAMchannel. AGs can generatememory commands
that are either dense or sparse. Dense requests are converted to multiple DRAMburst
requests in the coalescing unit, while sparse requests engage the scatter-gather engine
within the coalescing unit to minimize issuing DRAM requests to the same burst.

14.4.6 CU Granularity Selection

Section 14.2 outlined some key concepts around CGRA element granularity and
identified the impact of granularity on the tradeoff between flexibility, efficiency, and
programmability. This section uses the PlasticineCGRAas an example and discusses
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various sensitivity analysis experiments performed to select the granularity of each
PCU and PMU.

Empirical selection of CGRA granularity requires representative benchmarks that
stress the key patterns of computation. For Plasticine, a variety of compute-bound
and memory-bound benchmarks from various domains were chosen to study the
organization of various compute primitives within a PCU. Specifically, the study
focused on area overheads of a PCU for various numbers of stages, registers, scalar
and vector inputs and outputs to the PCU. Figure 14.6 heatmap shows the result of
the experiments performed.

To drive the above study, benchmark-normalized area overhead is used as a cost
metric for useful PCUarea. First, the area of a single PCU ismodeled as the sumof the
area of its control box, FUs, pipeline registers, input FIFOs, and output crossbars. A
sweep is performed for each parameter of interest. For each proposed value, a sweep
is performed on the remaining parameter space to find the minimum possible PCU
Area (AreaPCU). This area is then normalized based on their minimum (MinPCU)
and report the overhead of each possible parameter value.

Figure 14.6a and b show that 6 stages and 6 pipeline registers per stage achieves the
best area/op for the selected benchmarks. Four scalar and vector inputs and outputs

(a) Stages (b) Registers (c) ScalarIns

(d) ScalarOuts (e) VectorIns (f) VectorOuts

Fig. 14.6 Heatmap [22] (lighter is better) of PCU area overhead while sweeping various CU
parameters for a subset of benchmarks from a variety of domains. ‘X’s mark invalid parameters for
a given benchmark. ©ACM 2017
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Table 14.1 Final CU
granularities in Plasticine

Component Range Final value

PCU Lanes
Stages
Registers/stage
Scalar inputs
Scalar outputs
Vector inputs
Vector outputs

4, 8, 16, 32
1–16
2–16
1–16
1–6
1–10
1–6

16
6
6
6
5
3
3

PMU Bank size
Scratchpad
Banks
Total scratchpad
Stages
Registers/stage
Scalar inputs
Scalar outputs
Vector inputs
Vector outputs

4, 8, 16, 32,
64 KB
= PCU lanes
Bank size *
banks
1–16
2–16
1–16
0–6
1–10
1–6

16 KB
16
256 KB
4
6
4
0
3
1

Plasticine PCUs
PMUs

–
–

64
64

are similarly shown to have the best area efficiency. Based on these experiments, the
final CU granularity chosen for Plasticine is summarized in Table 14.1.

Similar to compute and memory granularity selection, interconnect parameters
are chosen empirically by performing a parameter sweep to characterize the area,
energy, and power overheads of interconnect switches. The graphs in Fig. 14.7 show
the results of this study.

Figure 14.7 shows the characterization of area and energy for various parameters
in the static-dynamic hybrid network. Figure 14.7d–f present the energy necessary to
transmit a single bit through a switch or router. Figure 14.7a demonstrates the roughly
quadratic scaling of switch area with the number of links between adjacent switches.
Figure 14.8 shows the power consumption of one design point of switch and router
with varying testbench duty cycles. Figure 14.7 shows that the router design point
with lower throughput and power than the switch design point in Fig. 14.8 consumes
more energy to transmit the same amount of data. This is due to heavy buffering
and logics for VC and switch allocations required in the router. Figure 14.7 further
suggests the switch consumes a significant amount of power when inactive. The zero-
load dynamic power attributes to high fan-out clock tree in the switch. In summary,
the study suggests that scaling network bandwidth is more efficient with a static
network, and network throughput is critical for system performance on a pipelined
spatial architecture.However, overprovisioning in the static network canbe expensive
in power because the switch cannot be effectively clock-gated when they are not
used. Therefore, using a low-bandwidth dynamic network for infrequent traffic and
a high-bandwidth static network for bandwidth-sensitive traffic can achieve the best
system-level efficiency. The study further shows that the PaR converges to less overall
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Fig. 14.8 Switch and router power with varying testbench duty cycle [25]. The switch corresponds
to design point f512-db with static bandwidth equals to 2. The router corresponds to f512-b4 with
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routing distance when using the dynamic network as an escape path, which reduces
data movement and improves network energy efficiency. The end-to-end evaluation
with a variety of benchmarks shows that a hybrid network matches the performance
and area of a pure static network with slightly higher bandwidth while providing
1.8× improvement in network energy efficiency.

14.4.7 Compiling to Plasticine

The programming language for Plasticine is Spatial [26], a hardware-centric DSL
expresses applications with nested loops and parallel patterns. Figure 14.9 describes
the compilation flow at a high level, along with various analyses and transformations
performed.

Spatial exposes several built-in memory types such as DRAM, SRAM, FIFO,
along with explicit on/off-chip memory transfer operations to allow users to have
explicit control over the memory hierarchy. Data structures are declared explic-
itly using these types, where memory variables indicate non-overlapping regions
in the address space. Users describe applications with untimed, unparalleled loops,
branch statements, and FSMs. The language exposes loop parallelization factors,
loop scheduling, and tiling factors as parameters in applications. The compiler auto-
matically banks and buffers the memories when the user chooses to parallelize and
pipeline loop nests in the application.

To map applications described in Spatial to Plasticine, the Plasticine compiler
converts the controller hierarchy in Spatial to a distributed control and data flowgraph
(CDFG) that gets lowered to hardware configuration in a series of transformations.
Figure 14.10 shows an example of the key steps involved.

Figure 14.10a shows a controller hierarchy in Spatial, which is transformed auto-
matically into a virtual CU data-flow graph shown in Fig. 14.10c. To do so, the
compiler assigns each innermost controller, which corresponds to a basic block in
the program, into a virtual CU. The data-flow graph inside the basic block is mapped
across stages of the SIMD pipeline, and a parallelized innermost loop is vectorized

Spatial

Plasticine

Nested Loop + Branch
Parallel Pattern

On/off-chip Transfer
On-chip Memory Banking

Hierarchical + Distributed
Streaming Data-Flow

Explicitly-Managed Scratchpad

Streaming Data-flow
Transformation:
 - On/off-chip consistency
Partitioning+Merging:
 - Compute
 - Memory (Coherency)
 - I/O bandwidth
Mapping:
- Place and Route
- Register Allocation

Fig. 14.9 Compilation flow to target plasticine
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Fig. 14.10 Mapping hierarchical control-flow to distributed execution

across SIMD lanes. The compiler duplicates the outer controllers for each innermost
controller into their assigned CUs, as shown in Fig. 14.10b. These controllers are
mapped to the control block of the CU and used to synchronize incoming and outing
streams between CUs. Outer controllers that are not used to synchronize streams can
be eliminated from the graph. To maintain memory consistency in a data flow fash-
ion, the compiler introduces additional control tokens between multiple accessors of
a memory to synchronize their access orders. After allocating the CU data flow, the
compiler partitions the program graph based on a Plasticine specification that limits
compute and memory resources in each physical CU type. After the program is par-
titioned, a PaR tool maps the program graph onto the network array. The PaR also
allocates VCs to each link in the program graph to avoid deadlock in the dynamic
network.

Evaluation over several benchmarks [23, 25, 22] has shown that Plasticine pro-
vides up to a 95× improvement in performance and up to 77× improvement in
performance/watt over a Stratix V FPGA, a geometric mean speedup of 30× com-
pared to the Tesla V100 GPU, and 2× compared with Microsoft’s BrainWave due
to better utilization of compute and memory resources.

14.5 Related Work

Several researchers [19–21, 27–31] and industry practitioners [32, 33] alike have
explored various flavors of coarse-grained building blocks to build reconfigurable
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architectures. Several surveys [19–21] provide a broad overview of prior work on
CGRAs. We discuss a few relevant bodies of work under the following categories:

14.5.1 CGRAs with Reconfigurable Scratchpads

ADRES [34], DySER [27], Garp [28], and Tartan [29] closely couple a reconfig-
urable fabric with a CPU. These architectures access main memory through the
cache hierarchy shared with the host CPU. ADRES and DySER tightly integrate the
reconfigurable fabric into the execution stage of the processor pipeline, and hence
depend on the processor’s load/store unit for memory accesses. ADRES consists of a
network of functional units, reconfigurable elements with register files, and a shared
multi-ported register file. DySER is a reconfigurable array with a statically config-
ured interconnect designed to execute innermost loop bodies in a pipelined fashion.
Garp consists of a MIPS CPU core and an FPGA-like coprocessor. Piperench [30]
consists of a pipelined sequence of “stripes” of functional units (FUs). A word-
level crossbar separates each stripe. Each FU has an associated register file that
holds temporary results. Tartan [29] consists of a RISC core and an asynchronous,
coarse-grained reconfigurable fabric (RF). The RF architecture is hierarchical with
a dynamic interconnect at the topmost level, and a static interconnect in the inner
level. The architecture of the innermost RF core is modeled after Piperench [30].

14.5.2 Architectures with Reconfigurable Data Paths

TRIPS [31] is a tiled architecturewhere execution proceeds dynamically in a dataflow
fashion, while instructions are statically issued within a block. TRIPS does not have
a static interconnect, but contains two dynamic interconnect ion networks [35]: an
operand network (OPN) to route operands between tiles, and an on-chip network
(OCN) to communicate with cache banks. The Raw microprocessor [36] is a tiled
architecture where each tile consists of a single-issue in-order processor, a floating-
point unit, a data cache, and a software-managed instruction cache. Tiles commu-
nicate with their nearest neighbors using pipelined, word-level static and dynamic
networks. Plasticine does not incur the overheads of dynamic networks and general-
purpose processors mentioned above. Using hardware managed caches in place of
reconfigurable scratchpads reduces power and area efficiency in favor of generality.

14.5.3 Dense Data Paths and Hierarchical Pipelines

RaPiD [37] is a one-dimensional array of ALUs, registers, and memories with hard-
ware support for static and dynamic control. A subsequent research project called
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Mosaic [38] includes a static hybrid interconnect along with hardware support to
switch between multiple interconnect configurations. HRL [39] combines coarse-
grained and fine-grained logic blocks with a hybrid static interconnect. While a
centralized scratchpad enables some on-chip buffering, the architecture is primarily
designed for memory-intensive applications with little locality and nested paral-
lelism. Triggered instructions [40] is an architecture consisting of coarse-grained
processing elements (PEs) of ALUs and registers in a static interconnect. Each
PE contains a scheduler and a predicate register to implement dataflow execution
using triggers and guarded actions. The control flow mechanism used in Plasticine
has some similarities with Triggered instructions. Wavescalar [41] is another tiled
dynamic dataflow architecture with four levels of hierarchy, connected by dynamic
interconnects that vary in topology and bandwidth at each level. While execution is
dataflow driven, the data path is not reconfigurable, and broadcast and dynamic inter-
connects are used for communication. Coarse-grained parallelism can be exploited
using multi-threaded support and barriers to achieve synchronization. However, the
lack of a distributed scratchpad means that parallel memory accesses are serialized
at the memory interface.

14.5.4 Statically Scheduled Interconnects

Some architectures allow interconnect configurations to change periodically based
on a statically determined schedule, to allow for greater interconnect link utilization
compared to a fully static network [38, 42, 43]. Such interconnects typically require
the compiler to provide a valid static schedule using modulo scheduling. While this
approach is effective for inner loops with predictable latencies and fixed Initiation
Interval (II), variable latency operations and hierarchical loop nests complicates the
compiler by creating scheduling complexities to arrive at a single module schedule.
HyCube [44] has a similar statically scheduled network with the added ability to
bypass intermediate switches in the same cycle. This approach allows operands to
travel multiple hops in a single cycle, but creates long wires and combinational paths,
which adversely affects the clock period and scalability.

14.6 Summary and Conclusions

Coarse-Grained Reconfigurable Architectures are a class of architectures charac-
terized by reconfigurable compute and memory elements in a programmable inter-
connection network. CGRAs have been shown to achieve higher performance and
energy efficiency compared to conventional instruction-based architectures by avoid-
ing instruction overheads with reconfigurable data and control paths. CGRAs also
avoid the hardware and programming overheads of fine-grained alternatives such as
FPGAs by raising the hardware abstraction.



14 Coarse-Grained Reconfigurable Architectures 243

Harnessing the full potential of CGRAs requires co-designing the architectural
primitives with the programming model and compilation flow. Choosing the right
granularity for a CGRA requires navigating a large multidimensional design space
and depends on common patterns of computation for which the CGRA is being built
for. This choice, in turn, impacts the programming model, and the complexity and
efficiency of the compiler.

Using the Plasticine CGRA as a case study, a canonical way to quantitatively rea-
son about CGRA granularity is presented in terms of compute, memory, and inter-
connect. Compute is characterized in terms of the number of ALUs in a compute
element, and their organization into pipeline stages and lanes. Memory is character-
ized in terms of capacity and bandwidth. Interconnect is characterized in terms of
topology, bus width, and routing flexibility with static and dynamic routing.

An automatic compilation flow is described that maps applications, which are
described as arbitrary hierarchies of loop controllers, into parallelized, nested
pipelines on the target CGRA. Compiling an arbitrary loop nest on to a distributed
architecture like a CGRA requires lowering the program from a monolithic loop-
centric representation into a control and data flow graph (CDFG) with distributed
data and control flow.

In the wake of technology scaling challenges and the ever-increasing appetite for
greater compute, CGRAs show a promising path to design the next generation of chip
architectures. Given that a large fraction of modern ASIC development costs goes
towards software development [45], co-designing the hardware architecture with the
programming model can provide a huge practical advantage; applications can be
written using high-level constructs and compiled to the desired architecture several
generations ahead of the actual hardware. This approach also provides necessary
feedback between hardware and software early on in the design process, which helps
making more informed hardware and software design decisions.
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Chapter 15
A 1000× Improvement
of the Processor-Memory Gap

Zvi Or-Bach

15.1 Historical Prospective

Over more than 50 years, the Integrated Circuit (IC) industry has grown from noth-
ing to over $500 B/year. The driving force was the ability to scale down, known as
Moore’s Law, where with each new node the number of integrated elements doubles
at about the same overall cost and with better speed and lower power. In the deep
sub-micron regime such scaling has come at an exponentially higher development
and infrastructure cost, usually consisting of many $B. From over 50 IC companies
pursuing scaling just 20 years ago, we now have merely three committed to the 7 nm
node. Additionally, these handful of companies are integrating just few flavors of
logic circuits. Memory circuits are being produced separately by special fabs ded-
icated to memory. These are DRAM fabs, which at advanced nodes are currently
produced by only three vendors, and storage fabs such as 3D NAND. The full sys-
tem is typically achieved by integrating logic and memory using a Printed Circuits
Board (PCB) or 2.5D (chip-on-substrate) packaging. The overall systemperformance
is limited by the off-chip interconnection that lags way behind IC interconnection
(Figs. 15.1 and 15.2).

While on-chip interconnects have improved faster than off chip interconnects,
they are still far worse than the transistor performance improvement with scaling.
And the performance gap between logic gate delay and the on-chip interconnect
delay is getting exponentially worse with scaling.

The combination of these effects has been the source ofwhat was called by John L.
Hennessy and David A. Patterson the “Memory Wall” [1] or the Processor-Memory
Gap. This performance gap has grown by about 50% per year. Figure 15.3a and b
shed some more light on this gap.

Z. Or-Bach (B)
MonolithlC 3D Inc., 3555 Woodford Dr, San Jose, CA 95124, USA
e-mail: Zvi@MonolithlC3D.com; or_bach@yahoo.com

© Springer Nature Switzerland AG 2020
B. Murmann and B. Hoefflinger (eds.), NANO-CHIPS 2030,
The Frontiers Collection, https://doi.org/10.1007/978-3-030-18338-7_15

247

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18338-7_15&domain=pdf
mailto:Zvi@MonolithlC3D.com
mailto:or_bach@yahoo.com
https://doi.org/10.1007/978-3-030-18338-7_15


248 Z. Or-Bach

Fig. 15.1 Gap between on-chip interconnect and off-chip interconnect. Source VLSI 2013, Dr.
Jack Sun, CTO of TSMC

In a report named “Why we need Exascale and why we won’t get there by 2020”
[3] the problem with the wires has been nicely articulated (see Fig. 15.4).

3D integration leveraging the concepts presented in Chaps. 8 and 10 could help
overcoming the memory wall and the tyranny of interconnects to enhance computer
systems by orders of magnitude.

The use of Monolithic 3D integration for 1000× improvement in computer per-
formance has been reported [4–6], work on it is now supported in DARPA’s 3DSoC
program and is also detailed in Chap. 9 of this book (Fig. 15.5).

15.2 Precise Wafer Bonding to Overcome the Memory Wall

The advantage of 3D integration using precise wafer bonders, as detailed in
Chap. 8, is the ability to keep using existing wafer processing fabs and processes
while allowing 3D heterogeneous integration. Such 3D heterogeneous integration
enables overcoming the “Memory Wall” just as suggested in the work by Stanford
[4–6].

In a following work [7] the concept of 3D integration has been further advanced
to enable first aggregating memory layers, such as conventional DRAM, to create
a 3D array of memory with enough capacity and then integrating it with logic to
complete the 1000× improved computing system. This concept has been designed
to keep the 3D integration as simple as Place-Bond-Thin (“cut”)-and Place again.
Such simplified 3D integration can leverage Hybrid Bonding [8–11] in which the
boding process allows for oxide to oxide and metal to metal bonding, thus achieving
both mechanical bonding of the two wafers and formation of electrical connections
between the landing pads of the bottom wafer and the connection pins of the top
wafers. This could be further enhanced using a technology called “Fusion Hybrid
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Fig. 15.2 a Gap between on chip interconnect and logic gate delay. b Another look at the gap
between on-chip interconnect and logic gate delay. Source ITRS

Bonding” [12] which would work well for precise wafer bonding as discussed in
Chap. 8, possibly including a “check and correct” step. It starts with both wafers
precisely placed one on top of the other. The wafers are then lightly bonded at
about room temperature. The bond surface might be pre-treated such as with plasma
to enable nearly contact bonding. Once the initial bond has been established and
alignment has been verified, an elevated temperature (100–200 °C) is used to finalize
the bonding, achieving a permanent strong bonding between the two wafers.
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Fig. 15.3 a Yearly improvement of processor and DRAM memory speeds over three decades
(Source [2]). b Embedded memory performance gap (Source semiwiki.com)

Fig. 15.4 The problem with
wires

https://semiwiki.com/
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Fig. 15.5 1000× improvement in energy × time by Monolithic 3D SoC

15.3 The Memory Stack

As presented in Chap. 8, it is desirable to have a ‘cut layer’ built in the base wafer
used for thememory stack. Such could be a SiGe layer or an oxide layer or other etch-
selective layer. For DRAM wafers the use of the N+ deep well which is common
for DRAM wafers could be a convenient option. The use of SOI wafers is also
attractive as it allows the use of advanced fab lines such as the GlobalFoundries
or Samsung. An additional advantage in the use of SOI, such as GlobalFoundries’
22FDX process, is having a substrate contact as part of the PDK to provide for back-
bias. Such substrate contacts could be used as part of the ‘nano-TSV,’ also called
through-layer-via, as illustrated in Figs. 15.6 and 15.7. Vertical pillars are formed
with stacking of nano-TSVs.

Use of a ‘cuttable’ wafer enables a controlled removal of the substrate, after its
flipping and bonding, by grinding and etching, using the BOX (the ‘cut-layer’) as
an etch stop. Accordingly, the ‘nano-TSV’ is made similar to inter-metal via of the
corresponding process, which allows about 10,000× higher vertical connectivity
[~(5μ/50n)2]. It should be noted that ‘nano-TSV’ process needs to be all the way to
the cut layer, so it could be easily turn into pin or landing pad after flipping, bonding,
and cut process, as is illustrated in Fig. 15.7a, b.

Fig. 15.6 Bit-cell array on SOI wafers with vertical pillar
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Fig. 15.7 a Two memory strata, vertical pillar marked. b Illustrating formation flow of three
memory strata

The other element enabling fine grain vertical connectivity relates to the stacking
misalignment. Until recently, bonder misalignment was on the order of 1 μm, which
severely impacted the effective vertical connectivity. To combat that MonolithIC 3D
has developed an innovative alignment technique called ‘Smart Alignment’ [13, 14].

As detailed inChap. 8 herein, precise bonders are nowcapable of better than 50 nm
(3σ) alignment precision, which removes some of the need for Smart Alignment.

15.4 The Architecture

The suggested computer architecture includes the following strata: Bit-cell array,
Memory control, processor, and I/O. Figure 15.5a, b illustrate two optional
configurations.
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Fig. 15.8 a Single side configuration. b Dual side configuration

The configuration of Fig. 15.8a is built on a ‘cuttable’ substrate allowing the use
of the illustrated structure as a transferable structure for further 3D integration. The
bit-cell memory stack is built by stacking memory strata as will be detailed later.
A memory control stratum provides the peripheral circuits for each of the memory
units using per unit vertical pillars of global bit-lines and global word-lines. These
pillars are formed by stacks of nano-TSVs as illustrated in Figs. 15.6, 15.7. The
memory control is interfaced to the processor stratum through a thermal isolation
layer designed to isolate the heat generated at the processor stratum from thememory
stack underneath it. The processor stratum could include the 3D SoC I/O circuits,
or the I/O could occupy its own stratum. Figure 15.8b illustrates an alternative 3D
SoC. The base wafer could be any 2D wafer including the most advanced process
node for the first processor stratum. Through thermal isolation layer it is connected
with the first memory control stratum, which provides bottom peripheral circuits to
the memory strata. The memory strata include feed-throughs to allow the bottom
side and the top side (2nd memory control) to synchronize their memory access.
Overlaying the memory strata is the 2nd memory control stratum, connecting with
the 2nd processor stratum built on a ‘cuttable’ wafer, such as a standard foundry SOI
wafer. An I/O stratum overlays the structure, thus providing system connections to
the external devices. Such an I/O stratum could be built on a design-rule relaxed SOI
process, such as RF-SOI, and could include a wireless communication channel or be
built on a wafer supporting optical communication channels.

15.5 Details of the Memory Stack

The memory stack is built by stacking wafers structured as units of bit-cell array
[13].

Figure 15.9 illustrates a small 3 × 3 region of an array of units forming the bit-
cell array stratum. The unit size is about 200 μm × 200 μm while the connectivity
lane between units, intended for inter-stratum connections, is about 1 μm wide (the
drawing is not to scale). Each unit is a mini array of tightly packed bit-cells. The
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Fig. 15.9 Exemplary 3 × 3 units region of the bit-cell array stratum

bit-lines and the perpendicularly-oriented word-lines allow control of the individual
bit-cells within a unit. These memory control lines extend across units, yet as part
of a connectivity lane they have a connectivity control, called layer select, as illus-
trated in Fig. 15.10a, b. The local bit-line of line j (L-BLj) will be connected to the
corresponding global bit-line j pillar (G-BLj) through a select transistor controlled
by layer select i (SLi). The connection lane between units, carry the corresponding
layer select per unit per control line, controlling the connection, to the global pillar
of that control line (bit-lines, word-lines).

Fig. 15.10 a Bit-line layer
select. bWord-line layer
select
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Fig. 15.11 a Side shift structure per stratum. b 4 strata with ripple

The overlaying (or underlying) memory control stratum will provide decode con-
trol to each of the bit-line and word-line pillars to be selectively connected to one of
the underlying bit-cell units. Dedicated layer-select pillars provide the signals select-
ing the target stratum within the memory stack. A technique to route an individual
layer select signal from the memory control stratum to each of the memory strata
uses a ‘shift to the right’ concept as is illustrated in Fig. 15.11a, b. Figure 15.11a
illustrates a side view of the per-stratum side shift structure and Fig. 15.11b illus-
trates 4 strata stack allowing top layer memory control access to ripple down the
per-stratum select.

Alternative techniques for forming layer select could be the use of vertical shift
registers or per layer decoding circuits. These techniques require small active circuits
in the memory strata.

The technical concepts described here support high yield and low cost 3D hetero-
geneous integration by keeping the process at the stacking fab simple, while using
existing high yielding complex semiconductor standard processes for all the individ-
ual strata forming the 3D computing structure. The use of face-to-face hybrid fusion
bonding achieving high yield and dense vertical connectivity as part of the stacking
process is combined with a very simple 3D system integration. Furthermore, the
alternative presented here of using FDSOI substrate contacts, the ‘nano-TSV’, could
be formed as part of the standard foundry process. In such a flow the stacking fab
job is quite simple:

1. Flip and bond (preferably using a precise bonder with <100 nm misalignment)
2. Remove the ‘top’ layer substrate by grind and etch, using the BOX as an etch

stop
3. Build landing pads from the now exposed substrate contacts
4. Repeat with subsequent strata.

The following describes an alternative approach using a precise bonder.
In advanced memories the bit-line and the word-line pitch can be 80 nm or even

smaller. With 50 nm bonding misalignment the vertical connectivity pad could to be
about 200nm×200nm. It is suggested staggering the vertical pillars to accommodate
the misalignment, while keeping a high memory control line pitch as illustrated for a
small connection lane region in Fig. 15.12a–c. The vertical connections between the
‘Pad’ and the ‘Pin’ forms the ‘nano-TSV’, and through the stacking process forming
the Global bit-line and word-line.
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Fig. 15.12 a Staggering 3 rows, b via to control lines, c via to pins

Fig. 15.13 Side view of memory strata formed by successive stacking

Figure 15.13 illustrates a side view of a region of memory stack having 10 strata.
Such would allow for generic memory strata, which could be sized for the actually
desiredmemory capacity by choice of thenumber of strata in the stack.Using the layer
select concept of Fig. 15.11a, b requires up-front accommodation for the maximum
number of strata in the memory stack.

Figure 15.14 illustrates a 3D view of a 3Dmemory stack with a row decoder being
fed from the logic level using a scheme similar to the one illustrated in Fig. 15.11a/b.

An alternative layer-select could be formed by a vertical shift registerwhichwould
remove the need for up-front maximum stack-size decision and the associated need
for per-layer pads. A combination of these techniques or adding per-stratum layer
decoding functions could be integrated in some versions.

An additional advantage of the presented technical approach is the option to
mix memory technologies, provided they all obey the same word-line and bit-line
pitch and are designed to the same unit and connectivity lane sizes. Accordingly,
the memory stack could include a top stratum of high speed memory while the
bottom stratum could be low power, high density memories. The memory control
could include multiple control strata dedicated to the specific memory in the memory
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Fig. 15.14 3D illustration of memory strata formed by successive stacking

stack. Additionally, a parallel high speed, data transfer between strata in the stack
can be facilitated using the proposed architecture.

The memory stack design also includes pass-through pillars, which allow trans-
ferring signals through it such as to allow synchronization of the memory control
strata for the case in which one is under the memory strata and another is overlying
it. The pass-through pillars could be used also for I/O when a processor stratum
is placed underneath the memory strata as the base wafer, while the I/O stratum is
placed at the top of the SoC stack. Thermal vias could be included to help thermal
management.

Additional power delivery pillars can be included in the memory stack both for
supplying memory power needs and to deliver power through the memory stack to
strata underneath it.

An important advantage of this proposed architecture is the ability to form a
per-unit redundancy. By having a redundancy stratum and proper circuitry in the
memory controller, the layer select decoding circuit could include a mapping table
to skip a ‘bad’ unit stratum and replace it with a unit in the redundancy stratum.
Having thousands of units per die allows repair even in memory strata with tens
of defects. This concept could also be used for field repair, providing a valuable
advantage of this architecture.
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15.6 3D Heterogeneous Integration Enables
Electromagnetic Waves Interconnects

Amodular 3D IC system, as suggested here, that utilizes arrays of units each with its
unit 3D memory cell block, memory control circuit block, processing logic block,
and I/O block, needs good in-plane (X-Y) lateral interconnect with high throughput
and low power consumption for system level functionality. While the out-of-plane
(Z) vertical interconnects are formed having vertical vias with nano-meter and up to
micron sizes and relatively short heights, the interconnect length in the horizontal
in-plane direction (X-Y) remains at millimeter sizes, from die level (3–16 mm, for
X and Y sides), reticle level (20–30 mm), to multi reticles, and up to wafer sizes
(60–300 mm). Clearly the interconnect challenge is greater for the X-Y intercon-
nect and the propagation delay and power dissipation using low-resistance metals
such as copper and low-k dielectric material will end up impeding the 3D system
performance.

As presented in Figs. 15.1–15.2b, today’s interconnects are the limiting factor of
computing electronics. The simple voltage representation of a logic signal is very
sensitive to the interconnect RC. The most effective path to overcome this funda-
mental physical limitation is to shift from voltage logic representation to modulated
electromagnetic (EM) wave of signal representation [15, 16] (Fig. 15.15).

The spectrum of the EM wave could be selected to fit the average target dis-
tance and the access to the appropriate technology. 3D heterogeneous structures
could open the door to EM interconnects by adding strata of RF or Optical drivers,
receivers, modulators and waveguides. In conventional 2D devices the cost of new
nodes development and infrastructure drove vendors to focus their development to
the most critical functions of logic and SRAM. Accordingly, any design targeting
advanced manufacturing nodes must exclude anything other than what leading fabs
include in their technology offering, which would be logic gates, SRAM and some
I/O and basic support for analog function. The implication is that in advanced nodes
RF or optical functions are not available and X-Y interconnects would be limited
to RC Repeaters. Adapting 3D heterogeneous integration enables adding strata that
could be built in other types of fab, such as RF-SOI lines, enabling the use of them

Fig. 15.15 RF-I will
crossover the energy efficient
curve of the RC repeater and
become more energy
efficient above a 1 mm
interconnect distance at a
16 nm CMOS process [15,
16]
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for the global X-Y interconnects. Within some technology parameters, the cross over
from RF to Optical could be at over 30 cm [15, 16] (Fig. 15.16).

Wafer availability and cost could have a strong impact upon such choice. It is
our assessment that the adoption of the 5G wireless communication standard and the
increased use of wafers for RF applications wouldmake RF-I the preferred choice for
many applications. Figure 15.17 provides some benchmarks for these interconnect
options [17].

Fig. 15.16 RF-interconnect (RF-I) versus optical interconnect [16]

Fig. 15.17 Benchmarks for 2 cm interconnects [17]
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An important aspect of the monolithic 3D technologies as presented in Chap. 8 is
the enablement of heterogeneous integration, in which one level (wafer) is produced
using processes and materials to fabricate logic devices while another level (wafer)
is produced using different processes and different materials to fabricate on-chip RF
or optical interconnect devices. Furthermore, these levels (wafers) would likely be
made in different fabs. Then, using a layer transfer process, one level is transferred
over the other enabling fine vertical (3D) integration between the two.

The on-chip RF or optical interconnect level could include more than one sub-
level, for example, such as a passive photonic device level(s) for signal routing such
as wave guides, photonic crystals, and resonators, and an active device level(s) such
as a photo-detectors and a light sources (example e.g., lasers). The photo-detectors
and light sources can each reside in its own different levels or they can be in the same
level but with the two made with different substrates knitted together side by side.
For example, the photodetector may be based on germanium, the light source may
be based on a III–V semiconductor, and the passive devices may be based on silicon
(core)-silica (cladding) structures.

15.7 Ultra Scale Integration (>1000 mm2)

The key challenge of large reticle size or wafer level integration is yield. 3D integra-
tion may include multiple redundancy structures and repair techniques [13, 18–20]
which could be used for robust RF and optical interconnected 3D system. Another
alternative is to leverage the fact that RF transmission lines and optical interconnect
waveguides are relatively large structures that have a very high yield with today pro-
cess capabilities. The benchmarks of Fig. 15.17 were based on transmission lines
having a 6 μm pitch, compared to advanced semiconductor process having less than
60 nm pitch. Optical waveguides use larger than a micron pitch lines as well. These
large structures could be processed at very high yield while the drive electronics
could be structured with redundancy for yield robustness (Fig. 15.18).

To allow ultra-scale integration of structures larger than a single reticle, the con-
nectivity structure should extend over more than single reticle (>30mm). Techniques
to use optical lithography to pattern large areas greater than the full reticle field
by ‘stitching’ multiple reticle patterns that had been projected independently are
known in the industry, and are currently used for Interposer lithography and other
applications. Alternatively some lithography tools are designed to support large area
projections [21, 22].

Additionally, some prior work suggests integrating systems using an interposer
with optical waveguides [23]. An additional alternative is to pre-test the RF or the
optical interconnect components allowing the use of the concept of Known-Good-
Die to wafer level die-to-wafer 3D integration by pretesting the RF or the optical
interconnect fabric before transfer over to the 3D system. This could be efficiently
implemented with the use of a generic RF or optical interconnect which could be
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Fig. 15.18 Transmission line example

produced in volume and pretested before use for the specific application. Another
option is to avoid the physical interconnects and use wireless interconnects [24, 25].

The use of RF could include the use of differential signaling, which would help
reduce the cross talk and interference effects, thus allowing lower supply voltages,
and other advantages. The previous concepts for interconnection fabrics could be
adapted to use differential transmission lines [26, 27].

Figure 15.19a, b illustrate a 3D system which include X-Y horizontal intercon-
nection fabrics at relatively the upper level of the structure. In general, the horizontal
interconnection fabric could be engineered in the middle level of the 3D system or
at any other level. Placing it in the center could be advantageous in some systems by
having a compute structure on both sides (under it and overlying it) thus allowing
shorter vertical paths from the computing structures to the X-Y horizontal intercon-
nection fabric. Figure 15.19a illustrates the structure as a generic continuous array of

Fig. 15.19 a 3D heterogeneous integration. b 3D structure diced to smaller devices
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cores, each with its own memories on top, and X-Y connectivity structure allowing
data transfer between cores. Figure 15.19b illustrates the structure after being diced
to smaller devices. There is a commercial value in building a generic computing plat-
form to be produced in high volumes, which could be later used to specific market
needs by dicing the generic structure according to the computing power needed for
the target application.

A 3D system could include X-Y waveguides or transmission lines with config-
urable connectivity such as Single Write Multiple Read (SWMR), Multiple Write
Single Read (MWSR), or even Multiple Write Multiple Read (MWMR). Connectiv-
ity fabrics where waveguides/transmission lines are designed for MWMR [28–30]
simplify the configuration of its resources by adapting who gets to ‘write’ into a
specific waveguide and who gets to read based on considerations such as yield and
sizing (customization) (Figs. 15.20 and 15.21).

The concept of MWMR allows flexible use of the interconnection fabric in which
compute units can sign in and sign out into the system’s overall computing fabric.

Fig. 15.20 RF interconnect with MWMR

Fig. 15.21 Optical interconnect with MWMR
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Fig. 15.22 a Waferscale GPU with 42 GPM unit (2 redundant). b Overall structure [34]

Such an architecturewould be very tolerant to yield loss and to system reconfiguration
based on yield or field customization.

The concept of wafer scale integration (“WSI”) has been considered and explored
over many years. It was never adopted due to the challenge of defects and due to
the success of scaling. There is more interest these days as conventional scaling
has slowed and with the growing interest in Artificial Intelligence (AI) and brain
inspired architectures [31–33]. Recent work [34] demonstrated over 100× Energy
Delay Product (EDP) for such wafer scale integration of GPU even without the use
of EM interconnect. Figure 15.22a, b illustrate such wafer-scale demo.

The concept of leveraging 3D integration for wafer scale integration, or for multi
reticles or multi die integration is extending the idea commonly used for memory
repair. Memory repair utilizes the availability of redundant similar function memory
cells designed with similar access time. Use of EM interconnect with arrays of com-
puting units each with its own memory is similar. The functional units are equivalent
and the X-Y EM connectivity is generally dominated by the delay converting a volt-
age to or from the EM signal, and is far less dependent on the location of the unit
within the array. Accordingly redundancy would work well just as it is commonly
used for memory repair (Fig. 15.23).

This enables wafer-scale integration and resolves the fundamental limit behind
Moore’s Law—yield.

It was yield that was driving the cost of integration up beyond some level of
integration due to defect density. Once redundancy can be effectively used, defects
do not limit the device size, allowing wafer-scale integration with an additional
1000× potential Energy-Delay product advantage.

15.8 Cooling

3D Systems such as those presented herein commonly generate heat while in oper-
ation, which must be managed to protect the system from heating up and affecting
its operation. Figure 15.22b illustrates air cooling techniques for wafer scale system
[34]. The next level of heat removal is the use of Microfluidic Cooling [35–37].
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Fig. 15.23 The famous chart resulting in Moore’s Law

MC has been proposed and is now used with some 3D devices at the device level
(Fig. 15.24).

An additional advantage of the 3Dwafer level heterogeneous integration of wafer-
scale systems is the option to naturally form a micro-fluid cooling fabric in the
substrate. Instead of forming micro-fluidic channels at the individual device level

Fig. 15.24 a Diagrams of microchannel cooling, b fluidic chamber with 3D-printing package
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Fig. 15.25 a Wafer level microchannel cooling. b Horizontal cut view of (a)

and connecting them for the system level, the micro-fluidic cooling system could be
formed at the wafer substrate and provide effective cooling system to the wafer scale
system.

Figure 15.25a illustrates an X-Z cut view of such large scale 3D device integration
with a substrate constructed to support fluid cooling. The illustration includes four
computing units each with its own memories and connectivity (MWMR) to an EM
connectivity fabric. The channeled silicon substrate could include micro-channels
designed with fluid in-take and out-take. The substrate could be preprocessed to
include themicro-channels at thewafer level, or bonded afterward to amicro-channel
structure, for example with silicon to silicon bonding. Figure 15.25b is an X-Y cut-
view through amicro-channel structure of the cooled 3D device. The micro-channels
could be formed by etching trenches using conventional semiconductor processes
into the micro-channel structure and then bonded to the wafer substrate. The micro-
channel structure and a thinned wafer substrate could be slightly oxidized to enable
a silicon dioxide to silicon dioxide bond if required by engineering and production
constraints. Alternatively, the inner surface of the micro-channel may be further
protected by silicon nitride or other desired film in order to protect the device from the
cooling fluid. The wafer substrate could be thinned down by conventional techniques
such as grinding and etch prior to the bonding. Thinning the substrate post device
processing down to 50 μm is common in the industry.

15.9 Summary

3D heterogonous Integration with modern high-precision aligners allows the system
designer to utilize wafers sourced from different fabs to form a 3D system. Using
such integration technology allows constructing a computing system that could be
many orders of magnitude better than today’s 2D PCB–based integration technology.

By integrating memory on top of the processor logic, the memory wall can be
overcome, resulting in a 1000× better computing unit.
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Integratingmany computing units withX-YEMconnectivity fabric allows overall
system integration with orders of magnitude better data flow.

Forming a large array of computing units with full redundancy allows wafer scale
integration with, again, orders of magnitude better computing system.

Finally, integrating micro channels at the wafer level allows effective cooling of
such ultra-scale integrated computing platforms.

Accordingly, the road ahead for device and system integration with effectively
unlimited upside potential is wide open.
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Chapter 16
High-Performance Computing Trends

Bernd Hoefflinger

16.1 Supercomputers

The supercomputerswith complexities of oneMillion computing cores continue to be
the benchmark for technology progress. The performance of the top 500 is recorded
by TOP500.org [1] with annual updates. The status of 2014 was summarized and
evaluated in [2], and we consider the 5-year development 2014–2019, using the 2019
data in Table 16.1.

The start into the 2010–2020 decadewasmarked by the 1000-times improvement-
per-decade belief in computer performance, supported by the ITRS roadmap. In
CHIPS 2020 of 2012 [3], this was corrected already to a 100-times improvement,
considering the immanent end of the nanometer roadmap. The rapid introduction of
graphics accelerators into supercomputers with hundreds-of-thousands of cores, run-
ning at reduced voltages to improve the energy efficiency, helped to report remarkable
results in 2014. The projections for 2020 were, that the no. 1 supercomputer would
perform 1018 Floating-Point Operations per Second (Exa-FLOPS) in 2020 and that
the energy per FLOP would improve by a factor of 7× in 5 years.

The 5-years development for the Top-10 supercomputers is summarized in
Table 16.2.

In the TOP500 June-2019 Report [1], the no.1 supercomputer achieved 149
PFLOPS, about 5-times higher than the no. 1 of 2014. The Top-10 together achieved
a 5× improvement in thruput, ans, what is really significant:

• From 2014–2019, the Top-10 supercomputers improved their energy effi-
ciency by a factor of 5 so that with 5× higher throughput, their total wall-plug
electric power consumption stayed the same.

As is shown at the bottom of Table 16.1, the latest milestone, reported in August
2019 [4], is that the top US supercomputer to go into operation in 2023, will have
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Table 16.1 The top-10 supercomputers in the June 2019 report of the TOP500 [1]

Name Source Cores
thousands

Thruput
PFLOPS

Power
MW

Efficiency
GFLOPS/W
(nJ/FLOP)

Thruput
FOM
PFLOPS/nJ

1 Summit IBM
Power9

USA 2414 149 10.1 14.8
(0.067)

2223 (1)

2 Sierra IBM
Power9

USA 1572 94.6 7.4 13.8
0.073

1295 (2)

3 Sunway
Taihu
Light

Sunway China 10,650 93.0 15.4 6.1
(0.160)

581 (3)

4 Tianhe
2A

China 4982 61.4 18.5 3.3
(0.300)

205 (6)

5 Frontera Dell USA 448 23.5 ?

6 Piz
Daint

Cray Suisse 388 21.2 2.3 9.1
(0.096)

226 (5)

7 Trinity Cray USA 979 20.1 7.6 2.6
(0.384)

53

8 AI
bridging

Primary Japan 302 19.9 1.6 12.9
(0.077)

246 (4)

9 Super
MUC

Think Germany 306 19.5

10 Lassen IBM
Power9

USA 288 18.2

Top 10
Sum

20,100 516.4 63 8.5
(0.172)

295

No. 1
2023

Cray USA 1500 30 50
(0.020)

75,000

Thruput in the table = Throughput

Table 16.2 5-years progress no. 1 supercomputer (left) and top 10 sum (right)

Thruput
(PFLOS)

Power
(MW)

Efficiency
(GFOPS/W)

Thruput
(PFLOPS)

Power
(MW)

Efficiency
(GFLOPS/W)

2014 33.9 17.8 1.9 105 56 2.1

2019 149 10.1 14.8 516.4 63 8.5

X 4.8 X 0.57 X 7.8 X 5.0 X 1.1 X 4.8

a throughput of 1.5 EFLOPS and an energy efficiency of 50 GFLOPS/W. This will
mean a 10× improvement in thruput and 3.3× in energy efficiency. This progress
requires sustained investment in

• 3D integration (Chaps. 8–11 and 13)
• Bridging the processor-memory gap (Chaps. 15 and 19)
• New Ultra-low voltage, efficient CMOS logic (Chaps. 6 and 7)
• AI-inspired accelerators (Chaps. 10, 14, 18 and 19).
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Table 16.3 Energy efficiency 2014–2030

2014 2019 2024 2030

CPU 4 GOPS/W 20 GOPS/W 100 GOPS/W 300 GOPS/W

GPU 80 GOPS/W 400 GOPS/W 2 TOPS/W 10 TOPS/W

No.1
supercomputer

2 GFLOPS/W 14.8 GFLOPS/W 50 GFLOPS/W 150 GFLOPS/W

DNN (1 k
MAC’s)

1.9 TOPS/W 11.5 TOPS/W 100 TOPS/W 1 POPS/W

In such a scenario, a 10× improvement in energy efficiency and a throughput of
10 EFLOPS should be possible by 2030 (Table 16.3).

A special supercomputer ranking has been introduced with the GREEN 500 [5].
Their ranking is governed by their energy efficiency. Here, most of the leaders are
much smaller systems, where 10-times fewer cores mean less energy overhead, and
voltages = clock-rates = thruput are reduced to reduce energy and cooling require-
ments. While such systems dominated the GREEN list in 2014 and only one of them
(the Swiss Piz Daint) made it into the overall Top 10, it is remarkable that three of
the overall TOP 10 in 2019 made it to positions 2, 3 and 7 in the 2019 GREEN list.
The almost 8-times improvement of the energy efficiency of the Top-10 2019 vs. the
2014 list was better than the 2014 forecast in [2].

The ultimate Figure-of-Merit (FOM), emphazised in [2], is the

• Throughput over Energy-per-Operation

Shown as PFLOPS/nJ in Table 16.1, it is evident, that the 2019 leader reaches
an FOM 10-times higher than many others on the Top-10 throughput list. And the
projected 2023 leader would offer another 30-times improvement in this ultimate
performance measure.

Overall, supercomputers with basically Von-Neumann architectures will continue
to benefit fromAI-inspired graphics, video and neural-network accelerators, and new
benchmarks will evolve to assess their performance.

16.2 Overview Processor Trends Towards 2030

The three-orders-of-magnitude spread in energy efficiency-per-operation was pre-
sented in Ref. [2] with its 2014 status, and remarkable developments took place
among the just presented supercomputers and the digital neural networks covered in
Chaps. 3, 12, 18 and 22.

In Table 16.3, we summarize results since 2014 and projected developments
towards 2030. The multi-core CPU’s will benefit from new low-voltage CMOS
design, new processor-memory communication with 3D integration to enable a 15×
improvement of their efficiency over 10 years. This will help supercomputers and
servers.
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A disruptive development manifested itself in DNN’s (Digital Neural Networks),
proceeding from 1.9 TOPS/W in 2014 to 11.5 TOPS/Win 2019 with an accelerating
global innovation effort, as it is detailed in Chap. 12. A 100× improvement over
10 years in energy efficiency can be quite likely. This level of progress is essential
to alleviate the immanent energy crisis in Internet video, autonomous mobility and
in the IOT.

16.3 INTERNET Energy Forecast

The exploding INTERNET traffic with annual growth rates of mobile traffic of 48%
continues to be the major energy challenge in the information and communication
economy and, by now, in the global energy balance. Servers received particular
attention in CHIPS 2020 of 2012 [6], and a full overview [7], based on 2014 data,
with

• Servers
• Mobile phones and PC
• Infrastructure = networks
• Embodied energy= production, installation, environment control, repair, disposal.

The projection for 2020 for wall-plug electric power was 526 GW with 240 GW
for data centers.

A representative article by the magazine NATURE appeared in 2018 [8], and it
contains a 2030 forecast of 928 GW, shown in Fig. 16.1.

Fig. 16.1 Forecast Electric Energy for Information and Communication. 2030 Total 8 PWh/year
equivalent to 928 GW or 20.9% of projected global electric power demand [8]



16 High-Performance Computing Trends 273

Table 16.4 Electricity
demand (GW) of information
and communication

2020 (GW) %/10a 2030

CHIPS 2020 [7] 526

Nature [8] 298 X 3.28 928 GW

The graph in NATURE arrived at a total of 8 Peta-Watt-hours per year (PWh/a)
in2030, more than 3-times the demand of 2020 and 20.9% of the projected global
electric energy of 40 PWh provided per year in 2030, an increase of 14% over the
global electric energy of 2020.

NATURE addresses the total ICT energy. Its non-INTERNET component shows
up at 150 GW in 2010, probably decreasing since then due to the INTERNET take-
over (e.g. TV and IP-Phone).

A comparison of the NATURE data with those in CHIPS 2020 [7] is shown in
Table 16.4.

The 2020 estimate in CHIPS 2020 of 2014 would be reached 5 years later in 2025
according to the graph in NATURE, which continues to leave the progress in energy
efficiency as the dominant issue for sustainable growth of the IC economy.

16.4 Conclusion

The decade towards 2030 faces significant challenges and opportunities in high-
performance computing. The continuing data explosion of the INTERNET must be
managed by making machines learn to provide and to store intelligent data instead
of big data and perform such tasks with new architectures. The broad exploration of
neural networks may enable a 100× improvement of their energy per operation in
the next 10 years, reaching 1015 operations/s per Watt by 2030.
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Chapter 17
Analog-to-Information Conversion

Boris Murmann, Marian Verhelst and Yiannos Manoli

17.1 Introduction

Analog-to-digital converters (ADCs) are irreplaceable interface components, resid-
ing at the boundary between the physical analog world and the digital backbone of
modern electronic systems. As shown in Fig. 17.1, a complete analog-to-digital inter-
face typically involves signal amplification, frequency translation (where needed) and
filtering to condition the analog signal. The function of the ADC block is to sample
and quantize the conditioned analog signal for subsequent information processing in
the digital domain. In many applications, the ADC’s attainable speed, resolution and
power dissipation have a significant impact on the overall system architecture and
its specifications. Thus, it is not surprising that a tremendous amount of effort has
been dedicated to improving this building block over the past several decades [1].
However, as we have already pointed out in CHIPS 2020 [2, 3], we are approaching
performance asymptotes that will be difficult (if not impossible) to overcome with
classical and application agnostic ADC architectures.

As we enter the next decade of innovation, it has become increasingly clear
that further improvements must come from a more holistic and application-centric
approach in analog-to-digital interface design. Insteadof viewing the interfacemerely
as a (nearly) “lossless” mapper between a waveform’s continuous and discrete rep-
resentations, one can exploit knowledge about the signal’s information content to
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Fig. 17.1 Classical analog-to-digital interface

devise a customized and presumably more efficient “information-centric” digitiza-
tion approach. For example, it may be possible to sample a signal below its Nyquist
rate, or employ a simplified nonlinear quantizer using insight on the requirements for
preserving the desired information.We refer to such concepts using the umbrella term
of Analog-to-Information (A-to-I) conversion.While this expressionwas established
in 2008 by Dennis Healy in the context of compressive sampling [4], it is now under-
stood to refer to a broader variety of information-centric interface design techniques
[5].

The purpose of this chapter is twofold. First, we review recent performance trends
of ADCs in Sect. 17.2 as an update to our previous treatments in CHIPS 2020 [2, 3].
Then, in Sects. 17.3 and 17.4, we discuss the A-to-I framework in more detail and
provide several state-of-the-art examples. These include an audio signal classifier,
a sub-Nyquist observation receiver for digital power amplifier predistortion (DPD),
as well as an image sensor for object detection and a machine learning based tactile
sensor.

17.2 Performance Trends of Conventional ADCs

As explained in [3], one way to enumerate the progress in ADC design is to track the
so-called Schreier Figure of Merit (FoMS) [6, 7]. This metric considers the power
dissipation, signal-to-noise-and-distortion ratio (SNDR) and effective Nyquist sam-
pling rate (fs) of an ADC to compute a number in dB (or dB/Joule, to be precise)
that represents its efficiency. This FoM is constructed such that adding one bit of
resolution (6.02 dB increase in SNDR) warrants a power increase of 4×. This is
consistent with the fundamental tradeoff in noise-limited analog circuits. The reader
is referred to [2, 3] for a more detailed discussion.

Figure 17.2 shows a scatter plot of FoMS for data converters published between
2000 and 2019 (data from [8]). We can see that ADCs have generally become more
efficient over time. Also, for a given efficiency (FoMS), it has become possible to
operate at higher sampling speeds. Given this qualitative observation, it is interesting
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Fig. 17.2 Schreier Figure of Merit (FoMS) versus ADC sampling rate. The arrows indicate the
direction of improvement over time

to extract the “velocities” of the drawn envelope curve in the x and y directions (shown
as arrows in Fig. 17.2).

Figure 17.3 plots the progress in the x-direction (using the fs value at FOMS =
150 dB for the fitted envelope curve in each year). The rate of improvement has
been remarkably stable over the years and corresponds to a doubling every 1.6 years
(dashed line). In [3] (published in 2015), we reported doubling every 1.8 years, which
implies that the last four years have not led to a significant change in the overall trend.

The ability to build a faster ADC at the same efficiency (FoMS) is tied to improve-
ments in transistor speed and circuit design. Transistors have become faster (higher
transit frequency, fT), and the design community has found ways to benefit from par-
allelism (e.g., massively time-interleaved successive approximation register (SAR)

Fig. 17.3 Sampling rate (fs), at a fixed efficiency of FoMS = 150 dB, versus time
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Fig. 17.4 Schreier Figure of Merit (FoMS) at low sampling rates versus time

ADCs [9]). However, it has become clear that this trend will not continue indefi-
nitely; the temporary “plateau” seen between 2016 and 2018 in Fig. 17.3 could be
a first confirmation of this conjecture. First, there has been no major architectural
innovation in high-speed ADCs for the past several years. Second, transistor speed
improvements have come to an end below the 22 nm CMOS node. FinFET technol-
ogy at 16 nm and below offers higher integration density but is plagued by extrinsic
RC parasitics that significantly load down fT performance. It will be interesting to
track future developments on the shown chart.

Figure 17.4 shows the progress in the y-direction of Fig. 17.2 (FoMS). Again, the
rate of improvement has been remarkably stable at about 1.2 dB increments per year
(dashed line). Our 2015 analysis had suggested about 1 dB per year [3]. However,
just like for the above-discussed speed improvements, we know that this trend will
ultimately come to an end. A relatively hard limit to surpass is the red line drawn at
192 dB, which corresponds to the well-known minimum energy for analog class-B
gain stages, given by 8kT × SNR [10]. As we have already argued in [3], it is in fact
quite difficult to surpass values of even 186 dB in conventional ADC realizations
due to overheads in biasing, clocking, reference generation, etc. On the other hand,
it is actually possible to overcome the stated limit of 192 dB with alternative circuit
topologies [11]. Once again, it will be interesting to see how the battle for each
extra decibel per year will play out in the future. However, it is clear that order-of-
magnitude improvements are not easy to come by anymore, with only incremental
improvements in circuit design and transistor technology.
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17.3 Basic Considerations for Analog-to-Information
Converters

A-to-I conversion interfaces have the potential to sidestep the trend toward dimin-
ishing returns discussed in the previous section. To understand this, let’s begin by
considering the following basic equation for the power dissipation of an ADC:

PADC = energy

conversion
· conversions

second
= EADC · fs (17.1)

Conventional ADCs are typically designed for a given sinusoidal signal fidelity
(SNDR) and sampling rate (fs), where the latter is imposed by the Nyquist criterion
and/or anti-aliasing considerations. With these two quantities fixed, the task of the
ADC designer merely boils down to minimizing the conversion energy (EADC) for
the given rate and fidelity.Most of the designer’s degrees of freedom from here on are
related to how the circuit is implemented and which process technology is chosen.
On the other hand, the designer of A-to-I converters aims to lower the requirements
on fs and SNDR (simpler conversion, less energy) by challenging the naïvewaveform
mapping paradigm that often underpins the derivation of these specifications. The
salient aspect in this task is to understand what constitutes wanted information versus
unwanted data in the processed signal.

In modern electronic systems, the signals of interest usually have a complex
structure (as opposed to being simple sinusoids) and span a wide frequency band.
We can assign a dimensionality to such signals per the Nyquist-Shannon sampling
theorem. This theorem states that for a physical bandwidth W over a period of
T, the minimum number of samples required for perfect digital reconstruction is
2WT. However, it is often the case that the wanted information after digitization has
much lower dimensionality. As an example, consider a device that is designed to
detect the sound of a crying baby. One way to perform this detection is to digitize
thousands of signal samples per second to obey the Nyquist-Shannon theorem and
then run a digital-domain algorithm to produce exactly one bit of information: baby is
crying/not crying. This situation is illustrated further in Fig. 17.5. A clear issue with
this approach is that we require theADC to run at a relatively high rate andwe expend
energy on digitizing many samples. Furthermore, we expend additional energy in
the digital domain on what essentially amounts to a dimensionality reduction of the
signal. Is there a way to avoid digitizing all this data at high fidelity? In other words,
can we perform at least some of the dimensionality reduction before the ADC? The
designer of an A-to-I interface attacks this question by assessing the signal structure
and typically by devising an ADC pre-processing circuit that exploits this structure
for dimensionality reduction.

Many innovative sampling strategies have emerged in the quest for pre-ADC
dimensionality reduction. Figure 17.6 contrasts classical Nyquist-rate sampling
approaches with approaches that leverage a priori knowledge of the signal structure
and the desired information content. Techniques like compressed sensing (Fig. 17.6b)
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Fig. 17.5 Illustration of the typical dimensionality reduction that occurs after the A/D interface

[12] and innovation rate sampling (Fig. 17.6c) [13] aim to reduce the ADC sam-
pling bandwidth, bringing it as closely as possible to the signal’s true information
rate. Then, after digitization, the wanted signal is reconstructed using a digital algo-
rithm. In contrast, feature-sampling ADCs (Fig. 17.6d) reduce the dimensionality
of the waveform through feature-enhancing filters to retain only decision-relevant
signal components. In other words, the goal is to classify the obtained features in a
machine-learning setting instead of reconstructing the original waveform. The reader
is referred to [5] for an in-depth discussion of these concepts.

Common to all schemes in Fig. 17.6 is that the analog preprocessing blocks are
linear. However, there also exists a multitude of opportunities to leverage nonlinear
processing for A-to-I interfaces. For instance, the work of [14] uses nonlinearly com-
pressed data for heartbeat detection from muscle noise corrupted ECG signals. It is
shown that the nonlinear compression reduces the rms error in heartbeat detection by
2×, while also reducing the required digitalword-length by 50% for significant power
savings the digital backend circuits. Similarly, the feature-extracting image sensor of
[15] (see next section) uses logarithmic gradients to reduce its output data by up to
25×, enabling significant power savings in the proceeding digital classifier. Another
relevant example is the data-compressive, wired-OR array digitizer described in
[16], which leverages amplitude sparsity in biological neurons to achieve a 40× data
reduction (see Chap. 24 for more details). In addition to highlighting the benefits
of nonlinear processing, these examples also show that A-to-I converter design is
not only beneficial for alleviating the ADC requirements, but also for reducing the
storage and processing burden placed on the digital backend.

Most of the above-discussed schemes require additional analog preprocessing
circuitry in front of the ADC. In order to achieve a system-level benefit, these added
circuits must be efficient and consume significantly less power than the original
combination of a Nyquist ADC and its backend processor. This brings up the age-
old question about analog versus digital signal processing efficiency [10, 17]. As
shown in Fig. 17.7, digital power tends to scale with the logarithm of SNR, while
thermal noise limited analog processing power is approximately linear in SNR. This
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Fig. 17.6 Architecture comparison: a Nyquist rate sampling, b Compressed sensing sampling,
c Innovation rate sampling, and d Feature sampling using analog analytics. e Evolution of the
physical bandwidth along the signal chain for the architectures in a–d (from [5] © IEEE 2015)

leads to a cross-over point that natively shifts with technology scaling, but typically
retains an advantage for analog at low SNR. In addition, since the preprocessing
circuitry may benefit from reduced bandwidth and SNR, the analog overhead is
usually amortizable.

As A-to-I interface design pushes for a tighter coupling between the analog and
digital worlds, it also opens up new opportunities for mitigating circuit imperfections
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Fig. 17.7 Analog and digital power consumption trends in relation to the required SNR (from [5]
© IEEE 2015)

in the spirit of “digital assist” [18]. For example, as shown in Fig. 17.8a, error terms
for compensating the analog front-end can be derived from the classification metrics
of a machine learning system. These classification error terms can either be obtained
based on training sequence inputs or test signal injections. Another option is to take
the front-end errors into account during training containedwithin the digital backend,
as illustrated in Fig. 17.8b. Thereby, nonlinearity, offsets, frequency shifts, and as
such other distortions can be absorbed in the trained classifier without feedback to
the analog front-end and will have limited impact on system performance.

Fig. 17.8 Impairment mitigation with: a Digital calibration and b Classifier learning (from [5] ©
IEEE 2015)
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In the above context, one should distinguish systematic and relatively constant
errors (such as the imperfect N-path filter shape used in [19]) and random errors
that may also drift over time. To address random errors, it is typically impractical to
perform per-device training during module assembly. However, with the increasing
trend toward on-device training, it may ultimately be possible for each chip to “learn”
and suppress its own imperfections during normal operation in the field. This would
constitute a more sophisticated and system-centric extension to the well-known self-
calibration approach that is widely used in conventional analog circuits.

17.4 Examples

The previous section has laid out the general mindset and framework for A-to-
I interface design. In this section, we review a number of examples to illustrate
the wide range of ideas that are pursued in this field. It is important to note that
this survey is not comprehensive, but simply meant to make the case for A-to-I-
inspired design more concrete. Many additional examples, dealing for instance with
radio transceivers [20] and several other omitted topics can be found in the current
literature.

Audio signal classification. Voice control has become a ubiquitous feature in a
variety of interactive electronic systems. In most use cases, the employed classifi-
cation system must be always on and may only have a small battery as its energy
supply. To achieve ultra-low power dissipation, such systems can benefit from the
analog analytics feature sampling approach shown in Fig. 17.6d. Figure 17.9 shows

Fig. 17.9 Schematic and design parameters of the analog feature extraction block for a voice
activity detector (from [21] © IEEE 2016)
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Fig. 17.10 Concept of
power-proportional sensing
in contrast to state-of-the-art
sensing systems (from [21]
© IEEE 2016)

an example front-end implementation from the voice activity detector chip detailed in
[21]. The ADC that samples the sub-band filters operates at only 640 Hz, as opposed
to the much higher rate that would be needed to sample the full audio signal. In
this particular work, the filters are implemented with gm-C circuits. An alternative
implementation using switched capacitor N-path filters was recently proposed in
[19].

As shown in Fig. 17.10, the overall system of [21] heavily relies on dynamic
power gating/scaling and employs cascaded classifiers. Thefirst is a simple always-on
wake-up detector that consumes only 700 nW. This detector wakes up amixed-signal
classifier to decide if the signal is speech or non-speech (without using the ADC).
If the signal is classified as speech, the system uses the ADC and a microcontroller
for more advanced processing. In addition to cascading, the system makes use of
the fact that not all computed analog features carry information under all audio
contexts, and dynamically disables the computation of features that do not assist
in the classification process. In the end result, the acoustic frontend dissipates only
6 µW on average for speech/non-speech classification. This corresponds to a power
consumption advantage of about 10× compared to a more conventional system.

Sub-Nyquist observation receiver for DPD systems. System identification is
another classical case where the information rate of the involved signal may be
much lower than its physical bandwidth. A specific modern instance where this is
relevant is digital predistortion for power amplifiers (PAs). As shown in the system
diagram of Fig. 17.11, the PA output signal bandwidth can be as large as 7× the
input signal bandwidth due to spectral regrowth. For example, with a signal band-
width of 100 MHz in Long Term Evolution (LTE) systems, the PA’s output spectrum
spans about 700 MHz. Digitizing the full output spectrum without aliasing requires
power-hungry ADCs that are undesired in today’s cost-efficient systems. In addi-
tion, the aggregate data rate between the ADC and the model extraction block that
determines the predistorter coefficients is typically excessively high (20 Gb/s in the
shown example).

The A-to-I based approach described in [22] builds on the observation that there
are only relatively few degrees of freedom in the desired information, i.e. the pre-
distorter coefficients (100 in the shown example). We can investigate this further by
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Fig. 17.11 Wireless transmitter system with digital power amplifier predistortion and observation
receiver for parameter extraction

considering a basic equation for this setup:

y[n] =
P∑

p=1

Q∑

q=0

cpq · x[n − p]p (17.2)

Here, y(n) are the Nyquist-rate ADC output samples, and x(n) is the known signal
before the power amplifier. What is unknown are the coefficients cpq that model the
PA’s nonlinearity. Indeed, as long as we have at least P × Q Nyquist samples, we
can solve the system of equations (which is linear in cpq) for the desired coefficients.
However, this approach uses high-speed Nyquist samples, which is undesired. The
basic idea of [22] is to work with the Fourier transform of (17.2) instead:

Y ( jΩ) =
P∑

p=1

Q∑

q=0

cpq · X p( jΩ) · e− jΩTs (17.3)

Now, what this equation implies is that we only need to measure the signal’s
Fourier coefficients at P × Q different frequencies to invert the system of equations.
Figure 17.12 shows the modified approach that results from this idea. Instead of
a fixed-frequency mixer and a Nyquist ADC, it employs a frequency-agile mixer
that can move across the output spectrum. The mixer is followed by an integrate-
and-dump circuit that measures the Fourier bin of the signal at the mixer frequency.
Note that the operation of the integrate and dump circuit corresponds to the exact
definition of the Fourier transform for a periodic signal. However, as shown in [22],
an extension for practical non-periodic signals merely requires a correction matrix
to the applied in the digital domain. The resulting system is shown to lower the
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Fig. 17.12 DPD system with sub-Nyquist observation path

ADC sampling rate requirement in an orthogonal frequency-division multiplexing
(OFDM) system setting by approximately 30–40× in lab measurements [22].

Imager with analog feature extraction. Machine learning based object detection is
a classical application where high-dimensional data (pixels of an image) is processed
to produce a relatively low-dimensional output (location of objects belonging to a
certain class, e.g. cars). Figure 17.13a shows a typical processing pipeline with a
conventional A/D interface, which faithfully digitizes each pixel value and pushes all
information processing into the digital domain. The problemwith this approach is that
a substantial amount of energy is needed for digitization, data movement and storage
before even any mathematical operations are applied to the data. An alternative
approach was explored in [15], where the imager performs analog gradient feature
extraction before A/D conversion (see Fig. 17.13b). The gradients are computed
via ratios of pixel values and are logarithmically digitized with 1.5 or 2.75 bits
of resolution (see Chap. 3 for a related discussion about logarithmic processing).
Working with ratios eliminates unnecessary illumination-related data and allows the
features to be compressed by up to 25× relative to a conventional 8-bit readout. As a
result, the digital backend-detector, which typically limits system efficiency, incurs
less data movement and computation, leading to an estimated 3.3× energy reduction.

Figure 17.14 takes a look at the inner workings of the feature extraction imager.
To compute the vertical component of the image gradient (GV), the scheme requires
access to three rows of pixels at a time. Because the pixels are read out in a rolling
shutter mode as in a normal image sensor, switched-capacitor-based analog memory
cells are employed to circularly store the rows of pixels. Similarly, for the horizontal
component of the gradient (GH), every pixel column needs access to the columns on
its left and right, which is provided through an analog multiplexer. The signals are
then fed to ratio-to-digital converters (RDCs), which read two voltages sequentially
from the cyclic row buffers.While this readout scheme does not achieve lower power
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Fig. 17.13 a Object detection pipeline producing high-resolution image and extracting low-
dimensional features.bAlternative approachwith analog feature extraction, enabling low-resolution
features to be digitized and compressed (from [15] © IEEE 2019)

Fig. 17.14 Chip architecture of the imager with log-gradient feature extraction (from [15] © IEEE
2019)
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Fig. 17.15 Photograph of the tactile sensor. The sensor chip is visible under the surface of the
silicone body (from [25] © IEEE 2019)

dissipation than a standard imager sensor signal chain, the main advantage is that
this imager produces highly compressed output data (25×) that lowers the energy
consumption of the digital backend processor. At the same time, the log-digitization
does not lead to a noticeable performance degradation (compared to a standard 9-bit
implementation) for the custom RAW image data set that was used in this study [23].

Tactile sensor. Tactile sensing is widely used for prosthetic and robotic hands to
control the grasping force or to detect slip. State-of-the-art sensors achieve a very
small form factor (see Fig. 17.15) by employing on-chip, transistor-based transducers
[24, 25]. It is thus desirable to simplify the signal processing backend as much as
possible to retain this size advantage for a complete platform that communicates only
abstract information (e.g., contact/no-contact, slip forward/backward, etc.) to a top-
level control unit. In this spirit, the authors of [25] devised a “sensor-to-information
processing” approach for tactile sensing.

Conventional signal processing for tactile sensors typically uses frequency-based
slip detection using a Fourier transform or frequency-domain filters. The spectral
power of a certain frequency range is compared to a threshold to decide if slip is
happening.Machine learning is often used in such approaches as opposed to selecting
the thresholds by hand. For example, an FFT is computed over a time-series sampled
at Nyquist rate and fed into a machine learning algorithm to classify the occurrence
of slip. However, this is quite inefficient as it requires a spectral analysis based on a
large number of ADC samples. The concept proposed in [25] employs a machine-
learning-based processing scheme that detects slip without a spectral analysis and
performs one classification per sample from the array of sensor elements. While this
scheme does not use A-to-I pre-processing circuits as the general schemes depicted
in Fig. 17.6, it uses the selectivity of nonlinear machine learning post-processing to
minimize the number of samples that must be taken.

The stress sensing chip used in this work integrates 32 sensor elements that are
serially digitized using a single ADC. The digital samples are fed into a supervised
machine learning algorithm (random forest classifier). In order to learn how to predict
the output for a given sensor array sample, the algorithm takes examples of recorded
sensor data, as seen in Fig. 17.16. These sensor examples are labeled according to the
abstract information that the data represents. The classifier considers all 32 sensor
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Fig. 17.16 Scatter plot of a
slip measurement for two
sensor elements. Each point
in the scatter plot represents
one sensor sample and is
color-coded according to the
load class (from [25] © IEEE
2019)

elements and finds patterns in the data to reliably classify all loads at a rate of 30 Hz
with 99.6% accuracy.

A time-domain measurement with some of the sensor elements is shown in
Fig. 17.17, which plots the output of four channels during the following test pat-
tern: pure normal force→ static forward force→ sliding forward→ stop→ sliding
forward again. The plot also shows the classification result for each sample. The

Fig. 17.17 Time behavior of
four sensor elements during
the slip validation
measurement. The tactile
sensor is loaded with a pure
normal force in the
beginning and a forward
directed tangential force
after 2.5 s. At 4.7 s the finger
slips, stops at 6.8 s and slips
again at 9.5 s (from [25] ©
IEEE 2019)
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classification is mostly correct and reacts very fast to the changing load. The only
misclassification happens during the second static phase, in which the random forest
wrongly predicts slip. Such corner cases should be analyzed carefully and included as
examples into the training set. Another possible approach is to filter the classification
output which is much easier than filtering the sensor outputs.

Overall, just like the discussed audio and image classifier systems, this tactile
sensor system advocates for a much tighter coupling and integration of the sensing
elements and the classification algorithm. This is expected to become a popular theme
in many other applications, and it opens up the opportunity of new interactions
between these two domains for sensor and circuit imperfection management, as
already discussed above in the context of Fig. 17.8.

17.5 Summary and Conclusions

This chapter presented an overview of the emerging field of analog-to-information
processing as a holistic framework for circuit-system co-design. We motivated the
need for this new direction by looking at the performance trajectories of conventional
A/D converters. First, given that CMOS transistor speed has already saturated, it
is unlikely that the future will bring substantially faster ADCs at a given energy
efficiency. Second, since we are approaching absolute theoretical efficiency limits
even for slow ADCs, the main option that remains is to make the analog-to-digital
interface “more intelligent,” and “customized to the application.” Thus, we should
refrain fromdigitizing data that is deemed irrelevant by a subsequent digital algorithm
or system task.

The justification for this departure is not only motivated by process technology
limitations, but also by the fact that many modern systems, most notably in the
area of machine learning, do not rely on perfect signal reconstruction or exact wave
shapes. On the other hand, it is foreseeable that there will remain a good number
of applications where signal reconstruction is required, as for instance multimedia
applications. These applications will continue to be served by more classical A/D
interfaces.

In system scenarios where A-to-I thinking is applicable, it may enable ultralow-
power, always-on electronics that can break traditional performance boundaries and
fuel new applications. This is what motivates many of the A-to-I demonstrators that
we have seen in the literature over the past decade. For most of these emerging
concepts, we are now waiting for adoption in mainstream products. In this endeavor,
an important question that remains is whether we can generalize these ideas from
point solutions toward broadly applicable methodologies.
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Chapter 18
Machine Learning at the Edge

Marian Verhelst and Boris Murmann

18.1 The Need for Machine Learning at the Edge

Over the last decade, electronic devices have started to ubiquitously populate our
environment. Billions of connected electronic devices such as drones, smart watches,
wearable health patches, smart speakers, together form the Internet-of-Things (IoT)
[1]. These devices are typically equipped with around a dozen of sensors, to continu-
ously observe the environment and act accordingly. Similarly, also in smartphones the
number of integrated sensors keeps rising, to feed the devices with more information
about the user and the environmental context [2].

These data collection devices, often denoted as “edge devices,” capture raw sen-
sory data streams for further processing. Recent developments resulted in algorithms
capable of extracting more accurate information from such sensory data than ever
before, through the usage of neural networks and other machine learning models
[3]. Yet, this comes at the expense of more computationally complex algorithms,
requiring many billions of computations per second, with gigabytes of storage needs
[4].

Increasing computational needs are, however, in strong conflict with the limited
resource budgets of edge devices: As typically powered by batteries, their energy
budget is highly constrained. Furthermore, size and cost constraints limit the amount
of affordable memory space and compute power. As a result, until recently, the
edge devices were mainly responsible for sensory data capture, with some light
preprocessing for data reduction. The compressed data could subsequently be sent to
a data center, where ample compute power and memory resources are available. The
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Fig. 18.1 Deep learning chip revenue for edge and data center applications. Source Tractica [7]

recent rise of data center activity and investments in machine learning equipment
within the data centers is the consequence of this operating scheme [5, 6].

However, increasingly, users and applications shy away from such cloud-centric
deployment. The desire to keep sensory data of edge devices private, as well as
the energy and latency cost to send all data to the cloud, pushes for device-centric
solutions, in which data is kept and processed locally as much as possible [2]. This
requires edge devices to become intelligent devices that can autonomously process
and interpret data in real time. This emerging operational paradigm will cause a shift
in machine learning focus from the data center to the edge. As Tractica predicts (see
Fig. 18.1 [7]), edge-basedAI chipsets formobile phones, smart speakers, cars, drones,
AR/VR headsets, surveillance cameras and other devices will by 2025 account for
more than $50 billion in revenue, or 3.5× larger than in the data center.

To serve this emerging market, heterogeneous compute platforms are required.
Special purpose processors help the traditional CPU and GPU compute platforms
deployed in the edge towards resource-constrained ML processing of large vol-
umes of sensory data. The market of such machine learning accelerators, ASIPs or
ASICs, is hence expected to see the fastest growth (see Fig. 18.2 [7]), with currently
already more than 70 specialty AI companies working on some sort of chip-related
AI technology [8].

Up until now, this recent evolution has already resulted in a very broad landscape
of customized machine learning processors, covering a wide performance space.
Figure 18.3 depicts the performance of a range of state-of-the-art neural network
processors [9]. State-of-the-art solutions are capable of achieving processing effi-
ciencies of 1–100 TOPS/Watt, enabling processing at several TOPs/second within
the edge devices’ power budget. Yet, it is important to note that these different state-
of-the-art solutions rely on very different algorithmic, architectural and technology
assumptions, and cannot be fairly compared purely at the hardware level without
considering other system aspects.

In this chapter, we argue and demonstrate the importance of considering the
whole stack in a machine learning edge solution (see Fig. 18.4): From algorithm
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Fig. 18.2 Deep learning chip revenue by type. Source Tractica [7]

Fig. 18.3 Neural network processor comparison, highlighting the power region <100 mW,
interesting for edge devices. Adapted from [9]

and dataflows (Sect. 18.2), over architectures (Sect. 18.3), to circuits and technology
options (Sect. 18.4). Only such a vertically integrated approach allows to fairly
benchmark different solutions relative to each other (Sect. 18.5) and perform true
system optimizations towards efficient deployment of edge intelligence (Sect. 18.6).
Throughout these sections, we will mostly focus on neural networks as the main
machine learning model. We conclude the chapter with an outlook towards recently
emerging trends, such as training at the edge, and newly emerging machine learning
models (Sect. 18.7).
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Fig. 18.4 Efficient edge solutions should not be optimized from a sole algorithmic perspective
(minimal MB/network), nor from a sole hardware perspective (maximal TOPS/Watt), yet should
jointly consider the complete design stack to come to efficient system level solutions

18.2 The Rich Algorithmic Landscape of ML at the Edge

Machine learning models are currently in high flux. In the field of deep neural net-
works, a wide range of model topologies is currently under exploration. Each model
is carefully built out of a sequence of neural network layers. The most generic neural
network topology element is a convolutional layer. Such a layer takes in a three-
dimensional data tensor and produces a three-dimensional output data tensor through
convolving the input tensor with a series of 3D weight kernels [10]. This is illus-
trated with the relevant data dimensions highlighted in Fig. 18.5. The convolutional
operation of one neural network layer can be captured in eight nested for-loops, with
a multiply-accumulate operation at the core (see Fig. 18.5). Since in edge devices
real time operation requires every input data item to be processed as soon as it comes

Fig. 18.5 For each item in a batch, each convolutional layer represents six nested for-loops per
inference
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in, batching is not tolerated and a batch size of one is typically used, making B = 1.
As processing efficiency is of such crucial importance in edge devices, research
here is focused on algorithmic transformations that impact model size and execution
cost without affecting model accuracy. We briefly survey model compaction, model
quantization and model pruning techniques, and give an outlook to the future in this
area.

Model topology and model compaction: The index ranges of the aforementioned
for-loops are determined by the layer and network topology and (as we show later)
strongly influence the network’s execution efficiency in hardware.Network designers
hence use these dimensions in a quest to construct the most compact or efficient
models which can fit in small sized embedded memories. Such model compaction
research led for instance to the introduction of bottleneck layers [11]. Here, a three-
dimensional convolutional layer is replaced by a stack of three layers in which the
first and last layer only perform a one-dimensional convolution (FX = FY = 1) to
reduce the number of channels (see Fig. 18.6a). Experiments have proven that such
structures maintain good modeling capabilities while drastically reducing model
computations and coefficients in the three-dimensional convolution (middle layer),
thus lowering compute and memory needs. This technique is often combined with
the usage of parallel network layers, which are concatenated further in the network,
as in the Inception module in Fig. 18.6c [11].

Fig. 18.6 Evolution toward reduced-dimension neural network layers: (a) bottleneck layers and
(b) depth-wise/point-wise layers. These techniques are combined with parallel layers that are
subsequently fused, such as in (c) the inception and (d) Xception modules
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To further reduce the computational load of the remaining three-dimensional
convolution, the middle layer of this stack was subsequently replaced by a two-
dimensional convolution, which only convolves within one channel (removing the
for-loop across C, Fig. 18.6b). The resulting “depthwise-pointwise” technique [12]
was successfully used in the creation of MobileNet [13], a lightweight network to
perform object recognition on mobile phones. In a next generation, MobileNetV2,
this technique was further combined with feedforward connections across network
layers [14].

Recently, a new paradigm shift emerges: Network topologies are no longer opti-
mized by hand, but are the result of automated neural network search, also denoted
by AutoML. Here, reinforcement learning, evolutionary algorithms and/or random
sampling strategies are used to find more compact and better performing networks
[15–21]. The focus in this field of research is on finding the best performing networks
from an accuracy point of view, while minimizing the amount of GPU compute time
required for the network search. Very few works [22–24], however, take the neural
networks execution efficiency on edge devices into account in the cost function when
searching for the most optimal networks. This is discussed further in Sect. 18.6.

From previous discussion, it should be clear that a wide variety of convolutional
topologies exists for neural network layers, which are often combined, concatenated
and interconnected in many different and irregular ways.When developing hardware
architectures, we hence must ensure sufficient flexibility to support the mapping of
all these different topologies and dataflows (see also Sect. 18.6).

Beyond convolutional layers, other types of neural network and non-neural net-
work models must also be supported. Yet, interestingly enough, they can often be
rewritten in the form of the generic convolutional model in Fig. 18.5. For example,
the fully connected neural network layer [10], often found at the end of classification
networks, can be rewritten in the same form of the convolutional layer with X = Y
= FX= FY= 1, as indicated in Fig. 18.7. Likewise, other machine learning kernels,
such as the support vector machine (SVM) [25] and one-class SVMs (often used in

Fig. 18.7 For each item in a batch, each fully connected neural network layer represents two nested
loops. Similarly, each support vector machine evaluation represents two nested loops per inference
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anomaly detection), demonstrate similar matrix-vector multiplication kernels, fitting
the same framework. This is good news, as it simplifies the development of a generic
hardware platform for such machine learning workloads (see Sect. 18.3). Yet, these
computational layers have fewer effective nested for-loops, which results in fewer
opportunities for efficient hardware mapping, as seen later in this chapter.

Model quantization: Researchers have found that neural network models carry
some redundancy, making them to a certain extent robust to perturbations. This
enables further model efficiency and storage reduction techniques that exploit spar-
sity and reduced precision operation. Regarding computational precision, limited-
precisionfixedpoint data representations for bothweights and activationswere shown
to be sufficient for nearly all inference tasks, drastically cuttingmodelmemoryweight
storage and MAC complexity [26–28]. Operation down to 8, 4 or even fewer bits
has been demonstrated for many machine learning benchmarks, with ternary (−1,
0, 1) and binary (−1, 1) neural networks as the extremes [29]. The best results are
achievedwhen using the dynamic fixed point format [30], and quantizing the network
during the training process [31, 32], instead of first training a floating point network
and quantizing it afterwards, or smartly unifying the dynamic range of all weights
during training [33, 34]. Active research tries to find efficient ways to determine the
minimum bit width representation necessary to achieve a target accuracy level for
a given task, which at the moment is still relying largely on inefficient exhaustive
searches. It is important to realize that this optimum is heavily interwoven with the
selected network topology and cannot be looked at in isolation [35].

Model pruning: Instead of just quantizing the weights of a network, one can
also remove some weights completely, which is called “pruning the network.” Many
pruning techniques exist, ranging from after-training techniques that just remove
smallest weights of a network [36–38], to during-training regularization techniques
that try to force as many coefficients as possible to become approximately zero [39].
This results in sparse neural network models, whose zero values can be exploited
to further reduce the model’s storage and computational footprint. Several model
compression formats have been proposed, such as the Compressed Sparse Column
(CSC) format, which encodes the sparse matrices and vectors into fewer words by
skipping zero-valued data [36]. The processor must of course be equipped with the
corresponding decoding logic to be able to interpret this data [40].

Interdependencies: It is important to realize that all aforementioned optimiza-
tions, such as model compaction, model quantization andmodel pruning are strongly
interwoven. It is observed that compact models tend to be less sparse, and less toler-
ant to quantization [35]. Finding the most efficient model hence requires balancing
all three techniques. As this results in an enormous algorithmic search space, cur-
rent research is strongly invested in exploring this space as efficiently as possible.
Breakthroughs have been achieved using automated machine learning (AutoML)
techniques exploiting Bayesian optimization, evolutionary algorithms and reinforce-
ment learning [15–21]. Yet, quantization and hardware inference cost has received
limited attention in this field.

Processor consequences and outlook: The optimization techniques adopted for
networks strongly influence the execution efficiency on the processor hardware. As
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an example, model compaction techniques typically result in models with smaller
(FX, FY) filter kernels or (X, Y) activation sizes, causing a drop in data reuse oppor-
tunity [41]. Similarly, pruning breaks the processing regularity that made traditional
deep learning processors so efficient. As a result, the smallest model is not neces-
sarily the most efficient one for execution at the edge [35]. This gives rise to new,
more hardware-aware algorithmic techniques, such as structured sparsity or dynamic
neural networks. To understand this better, let’s take a closer look at edge processing
architectures.

18.3 The Rich Architectural Landscape of ML at the Edge

From CPU to GPU to NPU: As neural networks are characterized by massively
parallel MAC operations, their processing requires widely parallel execution. On
traditional Von Neumann CPUs this is achieved by exploiting vector processing
instructions for parallel MAC execution [42] (Fig. 18.8). Recently, CPUs have been
equipped with additional fused (integer) multiply add (FMA) instructions, which
allow to also efficiently accumulate multiplication results. Yet, these processors lack
sufficient computational resources to achievemore than 100× parallelization factors,
limiting performance to a few hundred GOPs per processing core.

For this reason, GPUs have been extensively used as the main neural network
inference platform. They are equipped with many parallel execution units and can
achieve 1000× or more parallel MAC operations. Moreover, over the last few years,
GPUs have moreover a rapid evolution to serve neural network inference workloads
even better. First of all, recent implementations support small word length fixed-point
data types instead of only supporting floating point operations. Secondly, traditional
GPU architectures did not support efficient spatial and temporal reuse of data across
processing elements (see also below). The recent inclusion of tensor cores, which
spatially unroll the multiplication of two 4 × 4 matrices in one timestep, alleviates
this issue for certain layer topologies [43]. Still, flexibility and efficiency across
kernel sizes and models remains an issue, and (embedded) GPU power consumption
exceeds the power budget of many edge solutions.

Fig. 18.8 Traditional vector processing units can be used to achieve parallelization for neural
network processing. Yet, they are not fully exploiting the neural network data flow properties
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Fig. 18.9 NPU architectural template, which is parametrized across many design dimensions,
ranging from the number of parallel MACs and their interconnectivity, to the levels of memory and
their sizes and interconnectivity

For this reason, more andmore specialized, custom processor cores are appearing,
optimized towards neural network inference in resource constrained devices [44].
These class of processors is often denoted as “NPU,” or Neural Processing Unit.
NPUs consist of a widely parallel datapath equipped with MACs with or without
local storage, togetherwith a hierarchy of several optimizedmemory layers, as shown
in Fig. 18.9. Several efficiency techniques are exploited across NPU designs, which
we shall discuss in more detail: (1) Spatial and temporal data reuse; (2) hierarchical
memories and local storage; (3) sparse or dense processing; (4) reduced precision
processing.

Spatial and temporal data reuse: A large fraction of NPU power consumption
is spent on data fetches. Good NPU designs therefore try to maximize not only the
number of parallel MACs that can be executed in every single clock cycle, but also
minimize the average number of data fetches per usefully executedMAC. This can be
achieved through spatial or temporal data reuse across different layers of granularity
(see Table 18.1). Spatial data reuse exploits the use of multi-dimensional data paths
to reuse fetched weights and/or activations across many parallel MAC operations
within a processing element (PE) array. Figure 18.10 shows the architecture of the
Envision processor [45], inwhich everyweight ismultipliedwith 16 input activations
in parallel, while every input activation is multiplied with 16 weights (of different
output channels) in parallel. Also, the number of data stores can be reduced spatially,

Table 18.1 Data reuse opportunities classified across granularity and their spatial/temporal nature

Intra-PE Inter-PE (Intra-PE array) Inter-PE array

Spatial reuse – Multi-dimensional datapaths
Accumulation trees

Broad-/multi-casting
networks

Temporal reuse Stationarity Systolic arrays Systolic/streaming processors
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Fig. 18.10 Envision processing architecture, exploiting spatial reuse of input activation data (red)
and weight data (blue). Chip photo on the right

by introducing summation trees that accumulate results across PEs before sending
them back to memory.

Besides purely reusing data spatially within a single clock cycle, data can also be
reused temporally, across clock cycles. Here, a distinction can be made between pro-
cessing architectures that reuse data across subsequent clock cycles within the same
processing element (stationary techniques), and architectures that reuse data across
subsequent clock cycles within neighboring processing elements or datapaths (sys-
tolic processing architectures). A very common stationarity approach is to keep the
MACoutput locally and accumulatewithin a PE in subsequent clock cycles. Envision
[45] is an example of such an “output-stationary” approach. Other implementations
keep the weights local within a PE across cycles (“weight stationary”), such as the
weight stationary TPU processor of Google [46], or the BinarEye processor [47].

Systolic architectures, on the other hand, exploit the fact that it is cheaper to
exchange data between neighboring processing elements, instead of sending them to
a larger remote memory. Also, systolic principles can be applied at different levels
of granularity: At the lowest level, neighboring PEs can pass partial accumulation
results and/or weights to each other, as for example done in the aforementioned TPU
processor [46] and the Eyeriss chip [48]. But, also across larger clusters, data can be
forwarded fromprocessor to processor, with only small streaming buffers in between,
avoiding data transfers in and out of large memories. This is done e.g. in [49]. These
processor architectures break with the traditional Von Neumann architecture and
tightly intertwine processing elements and memory blocks.

Hierarchical memories: To further reduce energy spent on memory fetches and
stores, the memory hierarchy is further optimized. Instead of using one large central
memory, data is stored as close as possible to the place where it is generated and
consumed, while using a memory block that is as small as possible. This results
in hierarchical memory structures, while small local memories, complemented with
several layers of larger shared memories further up in the hierarchy, as shown in
Fig. 18.11. The challenge here is to determine the optimal memory sizes at each
level in the hierarchy, not for a single network topology, but across many network
topologies (see further discussion below).



18 Machine Learning at the Edge 303

Fig. 18.11 Hierarchical
processor memory hierarchy

Sparse or dense: As discussed in Sect. 18.2, neural network models typically
exhibit a certain degree of sparsity, which can be exploited in the processing hard-
ware. Indeed, when doing a multiply accumulate operation with one of the multi-
plication inputs being zero, the accumulation result remains unchanged. The most
straightforward way to exploit such sparsity, is to maintain the regular dense pro-
cessing grid, yet simply clock and data-gate all units that encounter a zero-valued
input. Processors such as Envision [45], or Eyeriss [48] support this approach. The
operating scheme allows saving power when executing sparse networks, and only
comes with very little overhead logic to support the clock and data gating. Yet, the
approach only brings (modest) power savings, and does not lead to increased through-
put for sparse workloads. Indeed, all idle MAC units are wasting useful processing
resources.

This is overcome in sparse NPU processors, which target skipping all zero-valued
operations and assign their computational resources only to useful computations.
Such an approach allows to automatically speed up processing when the networks
are very sparse. Yet, the approach is penalized by large architectural overhead for
data decoders, scheduling logic, and irregular data routing. Moreover, data reuse
opportunities drop drastically in such processors, often limiting the amount of effec-
tive parallel operations that can take place. As a result, such processors prove to be
beneficial only when the sparsity is large enough. Parashar et al. [50], have shown
this break-even point to lie around 40% sparsity (60% density) for both weights and
activations (see Fig. 18.12). While older networks had very high sparsity (e.g., 80%
or more for AlexNet), newer networks exhibit different characteristics. The recent
network compaction techniques result lower sparsity, ranging between 10 and 70%
for networks like GoogleNet, 10–50% for MobileNet and only 10% for MobileNet
[51].
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Fig. 18.12 GoogLeNet performance and energy as a function of density for a non-sparsity-aware
processor (DCNN), a sparsity-aware processor with datapath gating (DCNN-opt) and a sparse
execution processor (SCNN) (from [50], ©IEEE 2017)

Reduced precision: Another algorithmic property that can be exploited at the
hardware level is the robustness to reduced computational precision. As discussed in
Sect. 18.2, neural networks can be trained to operate with low-resolution fixed-point
number representations. Figure 18.13 illustrates this, assuming m-bit integer activa-
tion values and n-bit integer weights, drastically reducing the multiplier complexity,
area and power consumption. Precision scaling can be done symmetrically (m = n)
or asymmetrically (m �= n) [52]. Data types used in inference accelerators are often
INT8, and more and more frequently also INT4, or even ternary or binary (INT1)
values. As can be seen fromFig. 18.14, reduced precision processing typically results
in both performance and efficiency boosts.

It is important to realize that different neural networks have different optimal
fixed-point word lengths [51]. Even between layers of the same network, optimal
quantization values might differ, typically requiring more bits for full resolution
input layers for image processing. As a result, a widely deployable NPU processor
needs internalMAC units that can operate at different precision settings. The settings
should be easily configured, e.g. through a simple processor instruction. Moreover,
the overhead of this configurability at the MAC level should be limited to maintain

Fig. 18.13 Operating with low-resolution fixed-point number representations
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Fig. 18.14 Sample of recent NPU implementations, indicating the precision of the internal MAC
units. Source [9, 53]

good efficiency across all precision levels. Many precision-scalable MAC designs
have been proposed in the literature, each of which coming with their own merits
and downsides [52, 54, 55]. Table 18.2 summarizes the main precision scalability
architectures in a taxonomy introduced in [55]. 1D scalable designs demonstrate
good scalability at weight-only asymmetric scaling, while 2D scalable designs per-
form well when one wants to scale both activations and weights. 2D scaling can
be performed symmetrically across weight and activations, or asymmetrically. This
scaling, however, always comes at the expense of increased memory bandwidth in
low precision modes, with increased bandwidth pressure on the memory stores when
using sum apart techniques, and pressure on the memory loads for the sum together
techniques. Across all operating modes, bit serial techniques do not seem to pay off,
based on this comparative study. A more elaborate survey can be found in [55].

Table 18.2 Variable precision MAC taxonomy (from [55]) and reported implementations
exploiting the various techniques

Architecture types 1D scalable
(weight only)

2D asymmetric
scalable

2D symmetric
scalable

Spatial Sum apart [56] (DNPU) [57] (DVAFS)

Sum together [58] (BitFusion) [54]

Temporal Serial [59] (UNPU) [60] (LOOM)

Multi-bit serial [52] [60] (LOOM)
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Challenges and outlook: The break from traditional Von Neumann processing
architectures, and inclusion of support for multi-dimensional data reuse, sparse pro-
cessing and reduced precision operation, have pushed the efficiency of NPU process-
ing to 1–2 orders of magnitude beyond CPU and GPU solutions (see Figs. 18.3 and
18.14). Going forward, the challenge is to ensure support for a wide range of new
and upcoming neural network paradigms, such as dynamic networks [61], dilated
networks [62], shiftnets [63], wavenets [64], etc. These networks are characterized by
(sometimes even dynamically) varying kernel sizes, low data reuse factors, and com-
plex layer interconnectivities.Making processors that are flexible enough tomaintain
good execution efficiency across the complete set of workloads, while keeping con-
figuration overhead low, is the main research challenge at the moment. To achieve
these properties, the importance of early processor modeling, and lean dataflow
optimizations is rapidly rising, leading to a new class of schedulers, mappers, and
compilers that are discussed in Sect. 18.6.

In the future, we’ll see these architectures evolve further towards more distributed
processing, with small, yet flexible buffers between precision-scalable processing
elements. As thememory access remains themain bottleneck, emerging technologies
that integrate the memory and computations are rapidly gaining importance and are
thus discussed in the next section.

18.4 The Rich Circuit/Technology Landscape of ML
at the Edge

The previous sections looked at efficient neural network computationmainly from the
perspective of algorithms and architecture, corresponding to the upper three layers
of Fig. 18.4. However, a wide range of options are also available at the circuit and
technology level, which complicates the search for an optimal implementation even
further. In this section, we briefly review the most common innovation vectors.

Analog and mixed-signal computing: There is a rich history of research that
promotes the purely analog implementation of neural networks and other machine
learning algorithms. This path typically follows neuromorphic principles [65, 66],
which build on our (very limited) understanding of the human brain and its “integrate
and fire” neurons that are amenable to an analog circuit implementation. While the
resulting neurons represent an intriguing and biologically plausible emulation of
the units found in the human brain, the networks constructed with them tend to lack
scalability. It is fundamentally difficult to array and cascade a large number of analog
building blocks and deal with the accumulation of noise and component mismatch.
Additionally, and perhaps more significantly, it is challenging to build the required
analog memory cells [67]. For this reason, present explorations in neuromorphic
design are dominated by digital emulations, such as IBM’s TrueNorth processor
[68]. A more detailed discussion of such efforts is found in Chap. 22 of this book.
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Since purely analog implementations are difficult to scale, could one instead
assemble a processor that uses purely digital storage and adds in analog/mixed-signal
compute for potential efficiency gains? As shown in [69], mixed-signal computing
can indeed be lower energy than digital for low resolutions, typically below8bits. The
most straightforward way to exploit this would be to embed mixed-signal compute
macros into the PE blocks of a mainly digital processor. This was considered in [70,
71], which point to the conclusion that the idea will in practice lead to diminishing
returns. In an optimized digital design that conforms to the template of Fig. 18.11,
most of the energy is spent on memory access and data movement [72] making even
large improvements in the arithmetic units nearly irrelevant. To fully harvest the ben-
efits of mixed-signal processing, one must consider customized architectures. One
possible direction is to employ analog and mixed-signal circuits as feature extrac-
tors that are placed in front of a digital neural network. This approach is discussed
further in Chap. 17 of this book. Another opportunity is to exploit mixed-signal cir-
cuits through memory-like processing elements and in-memory computing, which
we discuss next.

Memory-like processing elements: Is it possible to re-architect a digital ML pro-
cessor architecture to benefit more strongly from a mixed-signal compute fabric?
This question was the baseline for the research described in [73], which exercises
two of the re-use principles stated in Table 18.1 with a mixed-signal mindset: Intra-
PE temporal re-use of weights (weight stationarity) and Inter-PE accumulation. The
main observation here was that the latter can be done in a particularly efficient way
using charge sharing on a wire, instead of a digital accumulation tree. The resulting
switched-capacitor PE cell is shown in Fig. 18.15. The overall network that was
designed to use this PE is based on the BinaryNet topology from [29], which makes
multiplication trivial (XNOR). This enabled a cell size that allowed the on-chip inte-
gration of a 64 × 1024 PE array that computes 64 output activations in one shot. We
term this approach “memory-like” since the PE locally stores one bit and otherwise
contains only simple add-on-circuits.

Figure 18.16 compares the total neuron energy of a custom digital design with
the described mixed-signal approach. The latter shows an improvement of about
4.2×. However, when accounting for other energy consumers (including weight

Fig. 18.15 aConventional processing element (PE) versusbmemory-likemixed-signal PE (single-
bit implementation, from [73] ©IEEE 2019)
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Fig. 18.16 Comparison of
total neuron energy (digital
versus mixed signal) (from
[73] ©IEEE 2019)

and activation memory access), the system-level savings reduce to approximately
1.8×. While this benefit is still significant, this exercise makes it clear that order-of
magnitude improvements are hard to come by, unless an even more radical approach
is pursued. This brings us to the topic of in-memory computing, which aims to
minimize the overhead that diminished the returns from the mixed-signal compute
fabric in the example above.

In-Memory Computing: In-memory computing is a relatively old idea [74] that
aims to co-integrate memory and compute into a single dense fabric. Conceptually,
one could view the memory-like PE in Fig. 18.15 as a compute-in-memory cell.
However, its size is relatively large, so that a denser piece of memory is required
in its periphery to store the weights and activations of a modern neural network. To
overcome this issue, denser cells can be designed as illustrated in Fig. 18.17. The
most obvious way to increase density is to handle the memory bit with a standard 6-T
SRAM cell (see Fig. 18.17b) as done in [75]. In addition, the logic can be simplified
and single-ended signaling can be explored to further reduce the area. While the
differential memory-like cell measures 24,000 F2 (where F is the half pitch the
process technology), the SRAM-based cell has an area of only 290 F2. Further cell
size reductions are possible by migrating to emerging memory technologies (see
Fig. 18.17c), as discussed in the next sub-section.

At present, SRAM-based in-memory computing is receiving significant attention
in the research community [76] andmany circuit and network architecture options are
being explored. In [77], a complete processor with in-memory compute acceleration

Fig. 18.17 a Memory-like PE (from [73] ©IEEE 2019), b in-memory computing cell based on
SRAM(from [75]©IEEE2019), c in-memory computing cell based on resistivememory technology
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Fig. 18.18 Streaming architecture for neural network processing with emerging memory

is presented. While this design achieves high efficiency within its compute tiles,
the overall system efficiency is held back by memory reads from external DRAM,
which is typically required for models that exceed several megabytes in size. A
promising remedy for this issue lies in embracing emerging memory technologies
for in-memory compute.

Emerging Memory: A wide variety of emerging memory technologies are cur-
rently under investigation (see Chap. 19 of this book). For instance, Resistive Ran-
dom Access Memory (RRAM) technology promises to deliver densities that are
comparable to DRAM, while being non-volatile and potentially offer multi-level
storage. This could open up a future where relatively large machine learning mod-
els (>10 MB) can be stored on a single chip to eliminate costly DRAM access. In
addition, these memory types are compatible with in-memory-computing by exploit-
ing current summation on the bitlines [78]. While there are many possible ways to
incorporate emerging nonvolatile memory into a machine learning processor [79],
one attractive option is a streaming topology as shown in Fig. 18.18. Here, large in-
memory compute tiles are pipelined between small SRAM line buffers that hold only
the current input working set [80]. This scheme can thereby avoid the energy penalty
of reading from large SRAMs, which represents a significant energy overhead in the
above-discussed processor with memory-like PEs.

Presently, the art of designing of machine learning processors using emerging
memory is still in its infancy. Key issues include access to process technology as
well as challenges with the relatively poor retention and endurance of emerging
memory technologies (see e.g., [81]). Consequently, most existing demonstrators
are only sub-systems and use relatively small arrays (see e.g., [82]). However, one
important aspect that has already become clear from these investigations is that the
D/A and A/D interfaces required at the array boundaries can be a significant show-
stopper. For example, a state-of-the-art ADC consumes about 1 pJ per conversion at
approximately 4–8 bits of resolution [83]. If amortized across 100 memory rows, the
energy overhead is 10 fJ per MAC operation, a number that is close to a relatively
straightforward digital MAC implementation in 16 nm CMOS [84]. The solution is
to work with taller arrays and to push for innovations in the interface and array circuit
design (see e.g. [85]), which can lead us to single-digit fJ per MAC.
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3D Integration: Given the above-discussed problems of datamovement andmem-
ory access in large neural networks, it is clear that 3D integration has the potential to
play a major role in making NPUs significantly more efficient. The reader is referred
to an in-depth discussion of this subject in Chaps. 9 and 10.

Challenges and outlook: While using analog and mixed-signal computing in
neural networks is attractive in principle, it is not straightforward to realize large
performance gains (e.g., order of magnitude) at the system level. This is simply
because a complete NPU has many components and improving only a subset leads
to diminishing returns. At present, the most promising option is to pursue mixed-
signal processing within in-memory compute tiles and to rely on standard digital
processing on the outside. Future work must assess how flexible and programmable
such a processor can be, and how much efficiency it may lose due to data sparsity,
which can presumably be better managed with a fully digital fabric. Just as with fully
digital NPUs, the research on alternative architectures must be guided by a solid
system-level benchmarking strategy that will systematically uncover such efficiency
losses during the conception of the architecture. The next section therefore looks at
this particular aspect.

18.5 Evaluating ML Processors

As discussed in the previous sections, over the past decades, hundreds of custom
NPU processing schemes, architectures and technological enhancements have been
proposed. It is good practice to benchmark the different solutions relative to one
another, and identify which innovations bring actual value. Yet, the main challenge
is to determine the right benchmarking metrics.

System-level benchmarks: The only metrics that really matter to an edge device
user are: (1) the energy per inference; (2) the latency or throughput per inference; and
(3) the cost per inference (determined by chip area and external memory size). To be
able to compare different systems, these must be compared on a known standardized
benchmarking task, achieving a given target accuracy. Recently, there has been a lot
of effort from the MLperf community [86] to pull off such benchmarking. While
the current focus is mostly on training tasks in the cloud, it is expanding towards
inference benchmarks, also for the edge.

These system-level benchmarks can be improved through different algorithmic,
architecture and circuit level techniques. Designers working at these levels tend to
use benchmarking metrics focusing at lower level aspects, for instance:

• The number of MACs/inference or model coefficients at algorithmic level
• The number of MACs/second or the number of MACs/Watt at architectural level
• The number picojoules per memory fetch of per MAC at the circuit/technology
level.
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Fig. 18.19 Typical benchmarking metrics at system level, algorithmic level and hardware level (in
black), complemented with performance-influencing metrics (blue) and constraints (green) that are
often forgotten

Figure 18.19 summarizes some frequently used benchmarks (in black) at these
different levels. The figure also highlights important parameters (in blue), and con-
straints (in green) that are often forgotten at these different levels. It is of crucial
importance to see that benchmarks at different levels strongly depend on each other
and are often conflicting. For example, one can achieve a very low number of model
weights by going to high precision, highly sparse model kernels. Yet, at the hardware
level, this will result in very low MAC utilization and high energy per MAC. Simi-
larly, good hardware benchmarks can be achieved by going to very low precision, and
highly regular large in-memory compute arrays. Yet, this will result in models that
are requiring more MACs and larger model sizes to achieve the same benchmarking
accuracy [87].

CIFAR10 example of cross-layer implications: To illustrate this, we compare
different solutions for the CIFAR10 benchmark. Table 18.3 shows benchmarking
performance across different design levels for three different solutions:

• A high accuracy, 4-bit algorithm running on the Envision chip [45]
• A medium accuracy 4-bit model running on the Envision chip [45]
• A medium accuracy 1-bit model running on the BinarEye chip [88].

It is interesting to observe that at the hardware level, the BinarEye chip [88]
seems to beat all performance metrics, showing highest peak performance, at best
energy efficiency and with most embedded memory available. At algorithmic level,
however, the network capable of execution on the Envision platform show to require
less MACs and exhibit more sparsity. However, as their topology cannot be perfectly
mapped to the flexible Envision datapath, it cannot achieve maximum utilization of
the processor. The network trained for BinarEye on the other hand, was matched to
the datapath to achieve 100% utilization. The result of this trade-off shows that for
equal accuracy, two solutions consume roughly the same amount of energy to run one
CIFAR10 inference. At the system level, also taking external memory accesses into
account, BinarEye wins due to the larger embedded memory of BinarEye and the
smaller model size of the mapped CIFAR10 model. The table also clearly shows that
large energy savings can be achieved if one wants to give in a bit of task accuracy, e.g.
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comparing the system level benchmarks for CIFAR10 90% and 86% in Table 18.3.
It is hence of crucial importance to always compare data points achieving similar
accuracies on known benchmarks to be able to make a fair comparison.

Challenges and outlook: The previous example should make it clear that it is
impossible to judge hardware platforms, resp. algorithmic innovations based on
hardware-centric, resp. algorithm-centric performancemetrics. There is a very strong
influence between design decision across different layers. The challenge is hence on
being able to report system-level benchmarking improvements for newly proposed
algorithmic or hardware innovations, without having to go through the complete
optimization across all layers every time. This requires a new set of cross-layer tools
and frameworks, as discussed in Sect. 18.6.

18.6 Cross Domain Optimizations, Mapping
and Deployment Frameworks

Neural network mapping: When one wants to assess the performance of a specific
neural network model on a specific hardware topology, it is necessary to schedule the
model’s execution on consecutive processing cycles using a mapping supported by
the platform. Only the detailed schedule reveals how many data transfers are needed
to execute the algorithm, and which layers of the memory hierarchy are involved.
For a specific neural network layer, such scheduling starts from the layer’s six nested
loops, shown in Fig. 18.5. These nested for-loops can be manipulated using loop
splitting and loop reordering, denoted as dataflow transformations [89, 90]. Finally,
each resulting for-loop should be characterized as a spatial or temporal enrolled loop
(in line with what the hardware supported), and its internal data variables should
be allocated to a specific level in the hardware’s memory hierarchy. Figure 18.20
illustrates this operation for an algorithm mapped on the Envision processor, which
supports two-dimensional parallelism along the X and K dimension.

Fig. 18.20 Data transformation and hardware mapping example, targeting the Envision hardware
configuration
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Yet, this specific set of dataflow transformations is not the only possible option.
Many possible loop orderings, loop splitting and loop unrolling options could have
been exercised to map the specific network layer on the hardware platform. For real-
istic networks, there can easily be millions of different valid solutions. While all
these mappings would be functionally identical, their resulting system level perfor-
mance and efficiency benchmark won’t be. The challenge is hence to try all possible
dataflow transformation, quickly assess their impact at the system level, and pick
the best one. It is needless to say that this cannot be done by hand, and automated
frameworks are required to support such mapping.

At the moment, several frameworks start to emerge to automate such explorations
[90–93]. As shown in Fig. 18.21 (top), these frameworks typically take in a neural
network layer representation, together with the constraints imposed by the hardware
platform. Based on this information, they are capable of efficiently finding all func-
tionally equivalent data transformations supported by the hardware, and computing
the resulting number of compute cycles, and memory accesses required within the
platform. This information can then be fed to a high-level processor performance
model to find the resulting system level performance of the selected mapping. By
repeating this for all possible mappings, the framework can derive a Pareto-optimal
set of algorithmic mappings or find the best mapping subject to an application level
constraint, such as maximum latency. The selected mapping can subsequently be
compiled into micro code to be executed on the platform, as for example integrated
in the TVM framework [92].

Challenges and outlook: While these frameworks start to emerge, they are still
immature, and many challenges remain. Next, the three most critical challenges are
discussed: (1) cross-layer mappings; (2) model-HW co-optimization; (3) exploration
space bounding.

Fig. 18.21 Automated mapping and performance estimation framework assuming a given network
model and HW configuration (top), which can be extended with automated neural network model
search and optimal hardware topology search (bottom)
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1. Cross-layer mappings: Current frameworks focus on mapping and scheduling
a single neural network layer. This, however, limits the degrees of freedom the
mapper has, and excludes interesting solutions such as depth-first network exe-
cution, which iterates across layers before executing all tiles of a specific layer
[94]. Yet, it is hard to include this into the exploration framework, as it blows up
the exploration space.

2. Model-HW co-optimization: The framework discussed earlier (Fig. 18.21 (top))
assumes a given network topology, and hardware constellation. Yet, during the
design phase, the designer can modify the neural network model, and its com-
putational precision. As shown earlier, many different neural networks can be
constructed for the same task achieving the same task accuracy, yet with widely
varying hardware mapping consequences. Exploring neural network models,
with the hardware mapping tradeoffs in the loop allows to find the optimal neu-
ral network topology given the system level benchmarks, instead of just the
best algorithmic level benchmarks. This is partially pursued in studies such as
MNASnet [23], and the minimum energy QNN study [87], yet still with very
crude energy models. Truly integrating this with more realistic hardware models
will undoubtedly bring more breakthroughs in the near future.

When the hardware platform is not decided yet, or the target chip has not yet
been taped out, also the hardware configuration can be modified in this iterative
exploration loop. As such, the best hardware-model-mapping combination can
be found to serve a given task within its application constraints. This is pursued
in the Maestro framework [93] and the EyerissV2 studies [41]. Of course, these
additional exploration options again increase the search space drastically.

3. Exploration space bounding: All aforementioned improvements of the automated
exploration, mapping and compilation framework result in yet another increase
of the possible exploration space. When only looking at hardware configuration
modifications, while keeping the model fixed, the Maestro framework already
has to assess millions of design points. On the other hand, also many millions of
options have to be searched when only assessing model transformations without
considering hardware modifications. It is clear that exhaustively searching this
complete design space is simply infeasible. Research towards smart sampling
techniques, exploiting Bayesian optimization, or reinforcement learning have
been successfully applied to model explorations. It is expected that in the near
future they will also start to be successfully applied on joint hardware-model-
mapping optimizations. This will undoubtedly give rise to an even more inter-
esting interplay in which novel processor architectures fuel these new dataflow
mappings and models, which in turn lead to new processing paradigms.
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18.7 Outlook: Towards True Autonomous Intelligence

Looking further out into the future, edge devices will increasingly evolve into
truly autonomous intelligent devices: Devices which can not only execute a pre-
trained inference model, but can also increase their own knowledge, can reason, and
synergistically collaborate with other devices.

Learning at the edge: Several application use cases envision the edge devices
to be more than a pure inference engine. The next step is to make the edge NPU
also capable of performing update learning on the deployed network model. This
capabilitywould allow the edge device to learn for example a user-customized speech
interface that works better and better the more it is being used by a specific person.
Or, an anomaly detector would be able to use this online training capability to better
distinguish anomalies within its specific environment. Many challenges are related
to online, in-device learning:

• At the algorithmic level, researchers are exploring learning methods that prevent
the network to forget previously acquired knowledge [95]. Moreover, researchers
are actively exploring whether learning can also be done without the need for full
floating-point data types and compute intensive backpropagation steps, e.g. using
techniques such as direct feedback alignment [96, 97].

• At the hardware level, the support for edge training will require the additional
support for higher precision data types within the NPU, and higher precision
weight storage. Since the weight matrices have to be read out in transposed form
during back-propagation, several recent designs are experimenting with transpose
memories, which can be efficiently read out in in a column-parallel manner as well
as in a row-parallel scheme [98, 99].

• At the circuit level, researchers are looking at ways to embrace emerging resistive
memory cells for in-device learning [100]. One direction is to perform standard
memory R/W access and to minimize writes to overcome hard endurance limits
[101]. Another approach that makes more direct use of the device’s physics and
treat each device as a “nanokernel” with local feedback during training [102].

Reasoning: Neural networks have shown excellent results in patternmatching and
regression tasks, yet they are insufficient towards achieving all intelligence needs of
our envisioned future autonomous edge devices. Their main shortcomings are their
lack of explainability, their difficulty to integrate expert knowledge or constraints and
their inability to support probabilistic reasoning tasks. Other machine learning mod-
els, such as Bayesian reasoning, logic reasoning and probabilistic graphical models
(PGM, [103]) do possess these features, but come with their own shortcomings, such
as their high dataflow irregularity, their inability to efficiently deal with raw data and
long training times. Yet, more and more it becomes clear that these two machine
learning formalisms form an interesting tandem, in which neural networks can be
used as pattern matching layers operating on raw sensor data. The network outputs
are then forwarded to reasoning layers on top, which based on these observations
make complex decisions in a transparent way. On the algorithmic side, researchers



18 Machine Learning at the Edge 317

have started to actively explore this using for example Logic Tensor Network models
[104], Bayesian Deep Learning models [105] and frameworks such as deep problog
[106]. On the hardware side, more challenges are also coming, as the reasoning
models are characterized by very different dataflow patterns compared to neural net-
works, which do not execute efficiently on an NPU, nor CPU or GPU. A new type
of processor might yet again have to be invented [107].

Synergistic collaboration: Finally, edge devices are equipped with wireless con-
nections, and hence do not have to operate in isolation. They can exchange data
and models among each other, and as such smartly collaborate to perform training
and inference on the most suited device at that moment. This will again increase
the mapping exploration space discussed in Sect. 18.6 and will now also require
incorporating latency and energy complications of sharing data between devices
into account into the system cost models. Interestingly, the optimal assignment can
change dynamically over time depending on each device’s energy availability and
current workload, giving rise to real-time scheduling and optimization opportunities.
From the hardware side, this will spark an exciting integration of machine learning
processors and security hardware, as all models and data that will be exchanged are
privacy- and authentication-sensitive.

18.8 Conclusions

Innovations towards more efficient processing of machine learning workloads in
edge devices are arriving at a high pace, mostly focused around neural network-
based inference. Breakthroughs are realized at the algorithmic level, hardware level
and circuit/technology level. Yet, it also becomes increasingly clear that innovations
at one level have significant implications at the other levels. As a result, bench-
marking initiatives push for system level benchmarks, which jointly consider all
levels in an integrated way. To further optimize the complete system stack, inte-
grated frameworks enable to find the most efficient mapping of a neural network
model on a given hardware platform. Even one step further, these frameworks can be
used to actively explore the algorithmic and hardware design space towards optimal
algorithm-hardware co-design. Moreover, new emerging technology options will
give rise to very different processor and memory configuration options, and hence
new classes of optimal model topologies.

Many challenges remain to effectively enable such cross-layer optimization that
covers the complete exploration space, and integrate this in an automated model
development, model mapping, and compilation framework. Moreover, workloads
will in the future no longer be limited to plain neural network inference but will be
expanded with on device learning and the integration with logic and probabilistic
reasoning. This will undoubtedly give rise to many more exciting innovations at the
algorithmic, architecture and circuit levels.
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Chapter 19
The Memory Challenge in Ultra-Low
Power Deep Learning

Francesco Conti, Manuele Rusci and Luca Benini

19.1 Introduction

Starting from circa 2012, the “viral” revolution of Deep Learning [1] has impacted
an ever-growing number of fields.Deep Neural Networks (DNNs), in particular, have
emerged as an almost universal algorithmic “Swiss-Army knife” for tasks related to
data analytics, artificial intelligence, and in general, where cognition-like function-
ality is sought. DNNs and derivative algorithms have been applied successfully to
vision [2], which is their de facto benchmark task; speech recognition [3]; big data
analytics and financial forecasts [4, 5]; medicine and biomedical engineering [6];
robot control [7]; autonomous driving just to name a few prominent applications.

Arguably, one of the most influential contributions to the development of Deep
Learning techniques has been the availability of GPUs capable of high-throughput
single-precision computation andwith fast and generously sized off-chipDDRmem-
ories, as well as a vast amount of on-chip SRAM.While GPU architectures have been
created to satisfy the requirements of gaming and computer graphics, their architec-
ture is well-suited for the kind of regular computation pattern embodied by DNNs,
dominated by linear algebra. In the last few years, the architecture of GPUs and
the development of DNN topologies have significantly influenced one another, as
GPU vendors consider Deep Learning one of the key target applications for their
products. Not only server- and desktop-class GPUs have been influenced by this
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trend, which has recently started also touching mobile GPUs. On the other hand,
many dedicated accelerators have been designed to provide higher performance than
GPUs in DNNs. These typically rely on some form of numerical approximation,
such as using integer numbers instead of floating-point ones, coupled with architec-
tural specialization techniques to minimize the energy spent for executing the domi-
nant multiply-accumulate operation. However even specialized accelerators have in
common a strong dependence on off- and on-chip memory.

In a highly constrained embedded system, accesses to off-chip memory are, rela-
tively speaking, extremely expensive and can potentially void the throughput, energy,
or cost advantages of an accelerator. One way to alleviate this issue is to use large
on-chip SRAM buffers (up to a few MBytes may be used) to capture the locality in
the feature map and filter weight accesses) to eliminate main memory traffic [8–10].

However, there are a lot of application targets for which the availability of large
amounts of memory, both on- and off-chip, cannot be taken for granted as a commod-
ity: intelligent implantable biomedical devices [6], completely autonomous nano-
vehicles [7, 11] for surveillance and search and rescue, cheap controllers that can be
“forgotten” in environments such as buildings [12], roads, and fields. These appli-
cations are characterized by very stringent constraints in terms of power, area, cost,
and durability: they have to work on battery-supplied systems with a peak power
envelope of less than 100 mW (and sometimes much less!) while guaranteeing a
lifetime of months or years, and they have to cost no more than a few dollars at most.
Reducing the memory footprint of Deep Neural Networks, or making memory less
expensive, could make the difference between being able to use Deep Learning at in
these fields. We call these challenges “the Deep Learning Memory Wall”.

Furthermore, enabling emerging artificial intelligence applications at the Very
Edge of the Internet-of-Things (IoT), such as time-series analysis and online learn-
ing of new capabilities, means coping with more sophisticated and higher-footprint
algorithms. In the next 10 years, the combined action of stricter constraints and
stronger performance and energy requirements from these applications will require
SoC architects to make intelligent and focused usage of emerging technologies to
overcome theDeepLearningMemoryWall. In this chapter, we delve into the problem
by analyzing the Deep Learning Memory Wall in detail, quantifying how it impacts
the design of an embedded system running at the Very Edge of the IoT. Then, we
discuss current trends in tailoring the architecture of embedded SoC’s to relax the
memory footprint of DNNs and how the algorithms can be on turn finely tuned to
maximize effectiveness on a given platform. Finally, we analyze how emerging tech-
nologies, techniques and algorithms can further help overcome the DL memory wall
in the next 10 years.
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19.2 The Deep Learning Memory Wall

19.2.1 Memory Footprint of Deep Neural Networks

The memory footprint of modern neural networks dedicated to vision (which is
currently their leading application domain) is staggering, considering the capac-
ity of on-chip memories that can be deployed in a low-power chip. The most effi-
cient among recent high-accuracy image classification networks, EfficientNet [13],
achieves 84.4% top-1 ImageNet but requires 66 million parameters. This network is
explicitly designed to reducememory footprint (ResNeXt, with similar performance,
requires ~10 more parameters [14]); however, considering 8-bit weights, it is still
two orders of magnitude beyond anything that can be stored on-chip on a low-power,
low-cost system-on-chip. Recent research has shown that while many networks are
over-designed, there is a limit to the amount ofmemory footprint reduction that can be
performed without dropping precision significantly. In Table 19.1, we showcase this
situation for two kinds of vision-based benchmarks (classification and object detec-
tion). We compare them with the memory available in a target current-generation
low-power IoT end-node, assuming that it can have at most 1 MB of on-chip SRAM
[15, 16], or up to 64 MB of off-chip DRAM [17].

Naturally, not all tasks have such major constraints, meaning there are already
applications where Deep Neural Networks fit entirely on-chip. For example,
autonomous navigation of a drone can be performed with a residual network using

Table 19.1 Memory footprint of representative DNNs

Task Algorithm Performance Memory
Footprint
@ 8b
(MB)

On-chip
(1 MB)

Off-chip
(64 MB)

Image
classification/ImageNet

ResNeXt-101 32 ×
32d [14]

85.1% top-1 466 X X

Image
classification/ImageNet

EfficientNet-B7 [13] 84.4% top-1 66 X Nearly

Image
classification/ImageNet

EfficientNet-B1 [13] 78.8% top-1 7.8 X V

Image
classification/ImageNet

1.0-MobileNet-224
[18]

70.6% top-1 4.2 X V

Image
classification/ImageNet

0.5-MobileNet-224
[18]

63.7% top-1 1.3 Nearly V

Image
classification/ImageNet

0.25-MobileNet-224
[18]

50.6% top-1 0.5 V V

Detection/COCO YOLOv3 [19] 0.606 mAP 59 X V

Detection/COCO YOLOv3-tiny [19] 0.331 mAP 8.5 X V

Detection/COCO Tiny YOLOv2 [20] 0.237 mAP 15 X V
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as little as 300 kB, assuming an 8-bit representation [11]. Also, the analytics of
time-series data, such as ExG, can be performed within a reasonable memory bud-
get for ultra-low-power systems. Moreover, some networks, such as MobileNets,
are explicitly designed to trade off part of their accuracy in exchange for a much
smaller footprint, and reduced versions can be effectively deployed on-chip (e.g., the
0.25-MobileNet-224).

However, looking “ahead of the curve,” it is clear that the development of new AI
algorithms is trending towards generally bigger architectures to perform more com-
plex and sophisticated tasks, also relying on automatic machine learning (autoML)
strategies such as Differentiable Neural Architecture Search [21]. Moreover, if the
network has to be re-trained on the field, current training strategies based on back-
propagation require keeping track of intermediate tensors in the neural network,
further increasing its footprint– possibly by more than one order of magnitude.
Therefore, it is clear that to support the expected growth in the next few years in
the complexity and functionality of AI-oriented embedded nodes, off-chip DRAM
will still play a crucial role.

19.2.2 Performance and Energy Cost of Memory Traffic

The previous discussion could lead to thinking that memory size is the only limiting
factor in the deployment of next-generation Deep Learning algorithms. However,
memory bandwidth constraints can play just as important a factor. To demonstrate
this, we analyzed one of the networks that appear in Table 19.1 (1.0-MobileNet-
224) to understand its memory access patterns and required bandwidth. We used the
model proposed by Stoutchinin et al. [22] to count the number of data accesses to
each vector touched within a typical Deep Neural Network layer (Fig. 19.1).

Using this memory hierarchy model, we assume that on-chip SRAM memory is
accessible with unlimited bandwidth (i.e., the data path is designed to maximize its
access efficiency to local memory) and it hosts a local copy of a portion (tile) of
each tensor touched by a DNN layer: weights, input activations, partial sums, and

Fig. 19.1 Memory
hierarchy model as proposed
by Stoutchinin et al. [22]
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LOF: for m in range(0, K_out):
LIF: for n in range(0, K_in):
LSY: for i in range(0, H_out):
LSX: for j in range(0, W_out):

psum = b[m]
LFY: for ui in range(0, F):
LFX: for uj in range(0, F):

psum += w[m,n,ui,uj] * x[n,i+ui,j+uj]
y[m,i,j] = act(psum)

Fig. 19.2 Canonical loops of a DNN layer (in pseudo-Python code)
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Fig. 19.3 Example of two layers executed in DF fashion; execution proceeds through all layers for
a single chain of tiles, then the process is repeated for the following chain of tiles. Tiles are purely
spatial and their dimensions are tied to each other

output activations. The off-chip DRAM, on the other hand, has a full copy of all
DNN weights, and if necessary, inputs and outputs of each layer.1

As a prototype DNN layer, we consider the canonical six-loops of a convolu-
tional layer, which can also represent a fully-connected layer by removing two loops
(Fig. 19.2).

In theory, execution of the DNN could optimally happen in a depth-first (DF)
fashion, i.e., executing sequentially all layers without storing any intermediate data
off-chip. In this case, DRAM traffic is limited exclusively to weights. Figure 19.3
visualizes theDF execution pattern for aDNNwith two layers, focusing on activation
tensors (off-chip memory traffic for weights is not shown). Unfortunately, this model
of execution is often not convenient, because it imposes strong constraints in terms
of tiling: in most convolutional and linear layers, activations cannot be tiled at all
input channels are needed to compute each output channel; moreover, the spatial
receptive field of each activation element in the original input of the DNN usually
increases along the network, constraining spatial tiling so that the chain of tiles

1For simplicity, we do not model the weights as resident in a separate off-chip Flash or non-volatile
memory.
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Fig. 19.4 Example of two layers executed in LW fashion; execution proceeds through all tiles for
a given layer, then switches to the following layer. Tile dimensions across different layers are not
necessarily correlated

always terminates with at least one activation element at the end of the network.With
such limitations to tiling, DF execution requires large on-chip buffering capacity.
Moreover, in networks with complicated topology such as EfficientNet [13], the
lifetime of activation tensors produced by a given layer is not limited to the following
layer, but is longer as tensors are utilized multiple times as inputs of layers far apart
from each other. This leads to a further increase in buffering requirements.

The alternative execution pattern is layer-wise (LW) execution,which is visualized
in Fig. 19.4: each layer consumes a full input tensor from off-chip DRAM and
produces a full output tensor into the same DRAM. Since the execution of each layer
is entirely decoupled from the perspective of on-chip memory, there is no need for
consecutive layers to use the same tile shapes: therefore, tiling can be applied much
more effectively than in the DF case. In LW execution, fully computed activations
constitute an essential part of the traffic to DRAM, but in exchange it is possible to
greatly relax on-chip memory requirements, fitting into a much tighter constraint.

The overall amount of DRAM traffic under a given on-chip memory constraint
depends chiefly on three factors: (1) the ordering of the six nested loops of Fig. 19.2;
(2) at the level of which loop each independent tensor (weights, inputs, outputs) is
tiled; (3) the size of each tile. To show how DRAM traffic impacts the maximum
performance of a low-power embedded accelerator for DNNs, we performed an
exploration in terms of tile size (from 8 to 512, in power-of-two increments) and
variety of buffered tiles (checking 180 different loop permutations—with the other
combinations equivalent to the ones tested, e.g., with swapped x/y spatial loops). We
targeted an on-chip buffer of size 64 or 512 kB to showcase the case of a very small
buffer and that of a typical-size one.

Figure 19.5 shows our results for 1.0-MobileNet-224, in terms of minimum
DRAM bandwidth to achieve a certain target throughput. Out of our exploration
space, we selected the best result for each configuration; each layer uses a different
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Fig. 19.5 1.0-MobileNet-224 required DRAM bandwidth

configuration and tile size. We also report ideal results obtained while considering
layer-wise (LW) and depth-first (DF) execution with unlimited on-chip SRAM (i.e.,
without tiling). We compare the minimum required DRAM bandwidth at a given
target throughput with the available bandwidth of representative DRAM interfaces
for the low-power embedded space: Cypress HyperRAM [17], LPSDR DRAM pro-
vided byWinbond [23], and aMicron LPDDR2 chip for the automotive market [24].
First of all, we note that the traffic cost of layer-wise execution compared against
depth-first is high (~3.3×) when the amount of on-chip SRAM is unlimited. On the
other hand, our practical results show that under the two explored constraint settings,
no depth-first solution can be run optimally. The best configuration achieved under
the 512 kB is practically equivalent to the ideal layer-wise solution, while under a
64 kB constraint, an additional 42% of traffic is required due to tiling. In both cases,
however, a low-power HyperRAM is sufficient to achieve ~10 frames per second,
enough to be considered real-time for inference, e.g., on a small robotic device.
As this network involves ~569 million multiply-accumulate (MAC) operations, 10
fps are equivalent to a workload of 5.7 GMAC/s: a state-of-the-art ultra-low-power
DNN accelerators targeting 20-100 GMAC/s [8] would risk being bottlenecked by
construction when used in a real-world DNN such as this, unless they can leverage
more complicated—and power-hungry—DRAM controllers.

The same dependence is shown when looking at power: to evaluate this, we used
power analysis results from a state-of-the-art convolution accelerator embedded in
a 22 nm chip [25], indicating an estimated average expense of 2 pJ/MAC. For the
HyperRAM, we assume consumption of 411 pJ/B from its datasheet, neglecting any
further (and probably significant) expense due to I/O. The result, shown in Fig. 19.6,



330 F. Conti et al.

0

2

4

6

8

10

12

Inf (DF) Inf (LW) 512 kB 64 kB

En
er

gy
 p

er
 In

fe
re

nc
e
[m

J]

On-Chip Memory [kB]

MobileNet-v1 Energy Estimation

computation memory

Fig. 19.6 Estimation of energy per inference of 1.0-MobileNet-224

clearly shows that inference energy, even for a relatively small network such as
1.0-MobileNet-224, is dominated by DRAM transfers.

While we have focused on a “reasonably implementable” network for today for
this implementation, the issue is exacerbated on bigger, higher-accuracy networks.
Taking, for example, EfficientNet-B7, designing a low-power DRAM capable of
hosting 66 MB of weights is not unreasonable even in the very near future. On the
other hand, its execution at 10 fps would require at least 1.54 GB/s of bandwidth,
which looks significantly more challenging to achieve within a low power budget.
Finally, even assuming the same energy cost of 411 pJ/B of the previous example,
execution at 10 fps would require 633 mW, and the majority of the power (87%)
would be spent on the interface. It is therefore clear that technological, architectural,
and algorithmic techniques concerning the usage of memory are necessary to enable
the next generation of DNNs to run within an ultra-low-power budget.

19.3 Mitigating the Wall

19.3.1 Tiling Techniques for Deployment in IoT-Dedicated
Architectures

Section 19.2 shows in which way memory limits the maximum theoretical perfor-
mance achievable by a DNN-dedicated ultra-low-power node: but can we actually
deploy such a network in practice so that its performance is optimal or near-optimal?
To answer this question, we focus on a real-world class of devices requiring ultra-
low power consumption as well as Deep Learning acceleration capabilities, that of
IoT-dedicated end-nodes. Many systems in this class couple a small and fast L1



19 The Memory Challenge in Ultra-Low Power Deep Learning 331

scratchpad memory, meant to be directly accessed at very high bandwidth by the
DNN compute units, with higher capacity and a lower bandwidth L2 background
memory, with both levels of the memory hierarchy resident on-chip. Systems of this
kind lack a coherent hardware cache to save energy at the cost of labor-intensive
explicit memory management, making it practically challenging to achieve high
bandwidth utilization rates. Therefore, before even targeting the reduction of the
Deep Learning memory wall, it is necessary to verify whether the available memory
and bandwidth in real-life systems such as these can be fully exploited.

One of the template architectures for this class of devices is the open-source
PULP2 architecture, constituted of a fabric controller single-core subsystem, an I/O
subsystem directly connected to it to enable smart and independent control of external
devices, and a cluster subsystem acting as a multi-core programmable accelerator.
Figure 19.7 shows the (simplified) architecture of a typical PULP-based system with
an L3 DRAM based on the 8-bit HyperBus protocol, a relatively large on-chip L2
SRAMof 512 kB and a smaller L1 of 64 kBdesigned to provide highly parallel access
to 8 RISC-V DSP-augmented cores [26]. Such a system is provided with libraries
(PULP-NN [27]) achieving more than 1 GMAC/s at 170 MHz on an 8-bit DNN
workload consuming ~65 mW; as we have seen in Sect. 19.2.2, this is well-matched
with the bandwidth with which the external HyperRAM can be accessed.

In many cases, ultra-low-power nodes with Deep Learning acceleration capabil-
ities couple a small and fast L1 scratchpad memory, meant to be directly accessed
at very high bandwidth by the DNN compute units, with higher capacity and lower
bandwidthL2backgroundmemory,with both levels of thememoryhierarchy resident
on-chip. These systems typically lack a coherent hardware cache to save energy at
the cost of labor-intensive explicit memory management, making it practically chal-
lenging to achieve high bandwidth utilization rates. Before even reducing the Deep
Learning memory wall, therefore, the first challenge is to maximize the usage of
available on-chip memory, computing resources, and—crucially—off-chip DRAM
and bandwidth to achieve the kind of optimal results described in Sect. 19.2.2.
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Fig. 19.8 L2/L1 tiling and data movement scheme [29] ©IEEE 2019

As detailed in the previous Section, however, actually delivering this level of per-
formance in practice requires removing memory-related bottlenecks by performing
two levels of tiling: from L3 to L2 via the off-chip connection, and from L2 to L1.
Tiling can be automatized by exploiting the regular graph-based structure of DNNs
to optimize tile sizes (minimizing traffic while keeping within given memory con-
straints) and automatically generating code to move data between the various layers
of the hierarchy [11, 28, 29]. Figure 19.8 shows the L2/L1 data movement scheme
targeted by DORY (Deployment ORiented to memorY) [29], a tool we developed to
perform this operation; a similar scheme operates between L3 and L2.

The optimization of tile sizes for each layer can be abstracted as an integer Con-
straint Programming problem. DORY receives as input a list of layers and targets
minimization of the overall layer-wise traffic, including that generated by over-
lapped parts of tiles due to the receptive field of convolutional filters. We subject
this minimization to several constraints:

• the combined size of all tiles, taking into account also double buffering schemes
if present, must be smaller than a given budget (e.g., 64 kB for the L1);

• the relationships between weight, input, and output tile dimensions are mandated
by the characteristics of the layer (convolutional vs. fully-connected, with or
without padding and stride, etc.);

• the tiles should be sized in such a way to provide a well-parallelizable input to the
backend PULP-NN library, maximizing its efficiency.
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DORYuses the open-sourceOR-tools constraint solver fromGoogleAI3 to derive
a solution (in terms of tile sizes) that is compatiblewith all constraints; then, it directly
generates the C code of the DNN running on PULP, including data movement and
double buffering, according to these tile sizes.

Figure 19.9 shows the L2/L1 tiling efficiency of the DNN code produced by
DORY in the case of a small (142 kB) network run on the PULP-based GAP8 chip.
Diamonds represent the optimal solutions chosen by DORY for each layer, while
crosses represent sub-optimal solutions. At the worst case, an L2/L1 tiling solution
achieves the same performance as operating directly onL2 data, incurring in a latency
penalty for every access; at the best case, conversely, it is equivalent to execution
directly in L1 without buffer size constraints, whose performance we can gather by
means of architectural simulation of the PULP platform. It can be seen from Fig. 19.9
that the DORY scheme can be used as a very specialized software cache to effectively
hide the fact that execution happens on L1 instead of L2 for convolutional layers.
In fully-connected layers, whose arithmetic intensity is 100× lower, the “caching”
mechanism is less efficient—however, performance is still ~2× that achieved with
direct execution on the L2memory. Overall, execution of this small network—which
does not fit the L1 of PULP—can run either directly on L2 or with the DORY tiling
scheme; in the latter case, it consumes 3.2× less time and 1.9× less energy than the
former.

To verify the applicability of this scheme for L3/L2 transfers, we implemented
a similar tiling loop between an external DRAM realized with a Cypress 8 MB
HyperRAM and the L2 on-chip memory; we can achieve a measured bandwidth of
180 MB/s, around 70% of the ideal one in the same operating point. Most of this
loss is due to nonidealities in the DRAM access patterns (e.g., shorter transfers pay a
higher penalty), while the loss directly due to the tiling loop overhead is below 1%.

Can such a system scale up to larger networks? The overhead of the tiling scheme
is due to the small, but not necessarily negligible, computational overhead introduced
by the tiling loops themselves. We measured this second effect to be less than 4% of
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the overall computation, even for tiny tiles: this leads to the conclusion that a tiling
scheme of this kind can be effectively used to unlock execution of relatively large
DNNs without incurring in the energy penalty of a data cache, while still hiding the
complexity and latency of the memory hierarchy.

19.3.2 Deep Neural Network Adaptation for Deeply
Embedded Targets

In addition to the previous strategy, the memory wall can be tackled by reducing the
memory footprint of a given DNN model. The amount of data transferred through-
out the different memory levels can be reduced by compressing either weights or
activations tensors. High compression ratios may eventually lead to dismiss off-chip
costly memories for a given DNN workload.

Two main strategies are typically adopted for DNN compression:

• Pruning, to cut less significant or redundant neural connections within a DNN
topology, hence discarding part of the weight parameters.

• Quantization, aiming at lowering the bit precision of either weight parameters and
activation maps with respect to the 32-bit size used on the server-side.

Both strategies apply, also in combination, at the cost of an accuracy penalty
when incrementing the compression ratio. Pruning strategies consists of cutting edge-
connections on a network graph based on importance metrics, typically the absolute
value of the weight parameter associated to edge. After pruning, a retraining step
results beneficial to learn the final values of the remaining sparse connections [30]. To
reduce the high computational complexity introduced by sparsity, a more structured
pruning has been explored by enforcing channel-level or filter-level sparsity, also
including retraining [31].

Despite reducing the memory footprint and in contrast to pruning, quantization
brings faster inference by enabling a high-degree of instruction parallelism thanks to
vectorizedSingle-Instruction-Multiple-Data (SIMD)operations that can be exploited
when operating with low-bitwidth (8/16 bits) data formats. Several quantization
techniques havebeenpresented—but still it is topic under investigation—toguarantee
a minimal accuracy degradation with respect to full precision models [32]. Besides
the employed strategy, the accuracy drop depends on themodel size, expressed by the
number of parameters, i.e. the model capacity: larger model can be quantized with
more ‘aggressive’ compression scaling factor, even using only few bits to represent
a parameter, due to the over-parametrization.

When considering a large-scale problem such as an image classification among
1000 classes (ImageNet dataset), an 8-bit quantization demonstrates nearly zero
accuracy drop even if applied to models already optimized for low number of param-
eters (e.g. MobileNet), even without retraining steps [38]. However, a quantization-
aware retraining of pretrained full-precision models is performed to recover a high-
accuracy level [39] in case of sub-byte compression. Table 19.2 reports the accuracy
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Table 19.2 Accuracy on Imagenet of low-bitwidth ResNet-18 quantized models

Method Act bits Weights bits Top1/Top5

Full-precision 32 32 69.6/89.2

ABC-Net [33] 5 5 65.0/85.9

PACT [34] 4 4 69.2/89.0

LQ-nets [35] 4 4 69.3/88.8

ABC-Net [33] 3 3 61.0/83.2

PACT [34] 3 3 68.1/88.2

LQ-nets [35] 3 3 68.2/87.9

PACT [34] 2 2 64.4/85.6

LQ-nets [35] 2 2 64.9/85.9

HWGQ [36] 2 1 59.6/82.2

PACT [34] 2 1 62.9/84.7

LQ-nets [35] 2 1 62.6/84.3

XNOR-Net [37] 1 1 51.2/73.2

of a low-bitwidth sub-byte ResNet-18 networks on ImageNet. The PACT approach
[34] demonstrated a negligible loss with 4-bit weights and activations to 4-bits by
learning the dynamic range through backpropagation. As an extreme corner case,
both weights and activations arrays can be compressed to 1 bit, i.e. taking 0 or 1 as
values. Doing so, convolutions reduce to bitwise logical operations. Unfortunately,
accuracy drops significantly with respect to full-precision (XNOR-NET [37]). To
recover accuracy, WRPN [40] proposed to increase the number of filter maps while
ABC-Net [33] approximates a full-precision values into a linear combination of
binary bases, hence decomposing a convolution of M-bit weight and N-bit activa-
tions into N×M binary convolutions. This latest approach demonstrated the lowest
accuracy degradation among the ones involving binary convolutions, but featuring
multi-bit memory requirements. Recently, LQ-Nets [35] showed superior accuracy
for sub-byte quantization by learning the quantization rule via backpropagation.

We investigated the impact of sub-byte quantization by running a quantized deep
learning workload on a STM32H7microcontroller device, featuring an ARMCortex
M7 core [41]. Figure 19.10 reports latency and energy consumption of convolution
kernels featuring weights and activation inputs and outputs compressed down to 8,
4, 2 and 1 bit (denoted as INT-8/4/2/1). All the parameters are stored in the internal
second-level RAM (L2). If not enabling any Data Cache, the execution time reduces
when decreasing the number of bits from 8 to 2 (green bars), because of the reduced
bandwidth—i.e. computation is memory-bounded. On the energy side, the energy
consumption slightly increases because of the higher average power costs related to
the higher memory access density. When enabling data cache (orange bars), memory
hierarchy effects are reduced and computation dominates: INT2 and INT4 kernels
result between 30 and 40% slower than INT8 due to unpack operations needed to cast
operands to feed the INT16 MAC vector unit. At the same time, power consumption
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Fig. 19.10 Latency and energy consumption of compressed CONV kernels on ARM Cortex-M7
[41] ©IEEE 2019

increases after enabling the data cache. Hence, the energy gain is lower than the
latency gain: the INT8 kernel presents −35% energy consumption with D-cache
enabled, while the INT2+D-cache faster execution than the case without D-cache
is compensated by the higher power consumption. However, when reducing to 2-
bit precision, memory requirements can now fit the smaller L1 memory (red bars).
This reflects into an energy reduction of 5% by disabling the D-cache. The INT1
case shows highest latency and energy efficiency, due to the inherent bitwise support
of the ISA for binary convolutions. Indeed, running binary kernels on the targeted
ARM Cortex M7 cores results 3.7× faster than INT8 convolutions and 4.3× less
energy demanding. Our analysis demonstrates that to achieve it full energy-efficiency
boosting potential, aggressive bit-width reduction in DNN computations required
coupling of data-path and memory hierarchy optimization.

19.3.3 Staged Inference and Heterogeneous on-Chip
Memory

Apart from numerical precision scaling, another relevant trend in the algorithmic
space of DNNs is to move towards smaller topologies that are as accurate as bigger
ones (possibly tolerating a small accuracy loss), with a much lower computational
burden and memory footprint. For example, SqueezeNet [42] and ShuffleNet [43]
obtain relatively high accuracy on the ImageNet dataset while being tens-to-hundreds
of times smaller than first large-but-accurate models, making it clear that relatively
small DNNs can be trained to achieve competitive precision. At the same time, many
artificial intelligence and data analytics tasks act in a cascaded fashion [29]—most of
the data they receive is irrelevant, and their first need is to filter this out, focusing on
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more interesting information. These techniques can be exploited to enable inference
at the edge at a much lower average power budget than would otherwise be possible,
by cascading a series of inference techniques and DNNs, each triggering a more
expensive, more accurate one—a staged inference paradigm.

In Fig. 19.11, we show a system architecture with three stages of inference
deployed on a PULP chip. In stage A, the chip is actually off, and only a smart
always-on sensor is active, acting as a triggering mechanism. These sensors typ-
ically produce pre-filtered data using always-on mixed-signal or digital front-end
stages [44], operating within a power budget ranging from a few hundred µW for a
fully digital vision sensor [45] down to a few µW for mixed-signal biosignal sensor
[46]. The smart camera system [47] is based on contrast-based binary visual sensor
with address-event readout that wakes up a PULP processing systems once motion
is detected on the camera field of view (Stage A), while just paying less than 20mW
of average power cost. The second stage B consists on a lightweight classifier fil-
ter (e.g. a small DNN model) running on the fabric controller subsystem (i.e. using
the on-chip L2 SRAM). The second-stage trainable classifier aims at activating the
more computationally intensive cluster sub-system for deep inference tasks after the
detection of relevant events. In our camera system, such a classifier is based on a
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clustering-based object detector, which wakes-up the cluster when tracked objects
enter a virtual loop of the image, corresponding to a relevant region within the exter-
nal environment (e.g. a door or a street). Finally, the cluster runs an inference task
based on binary model to identify the nature of object which causes the alert gen-
eration. Thanks to the hierarchical computational model—where the full system is
active only during a fraction of the overall operation time—the average power con-
sumption can be as low as 300 µW in case of unfrequent events, 8× lower than a
camera-based system running frame-by-frame analytics.

Naturally, thememory footprint of the second stageDNNclassifier can be reduced
both by topological transformations and by down-scaling numerical precision.More-
over, specialized hardware can be more effectively employed when running entirely
on-chip, i.e., in an operating condition where DRAM traffic is absent, and thus it is
not limiting energy efficiency. As a proof of this concept, we designed a hardware
accelerator mapped inside a PULP Fabric Controller to run Binary Neural Networks
(BNNs) [48] directly on the on-chip L2 memory, called the XNOR Neural Engine
(XNE). Figure 19.12 shows the architecture ofQuentin, a prototype SoC constituted
by a cluster-less PULP system accelerated with the XNE that was taped out in 22 nm
FDX technology.

The ultra-low-power requirements of the staged inference scheme in its second
stage highlight the need to take into account also the energy spent for on-chip memo-
ries. This is particularly true when the numerical precision of DNNs is scaled down
so much that products become simple XNOR operations: power consumed by com-
putation scales down superlinearly with the number of bits, while that devoted to
memory transfers scales down linearly. To further boost energy efficiency, there-
fore, the Quentin SoC features a heterogeneous memory scheme where the L2 banks
are divided in a large SRAM fraction, and a much smaller part realized with latch-
based standard-cell memory (SCM) [49], more parsimonious in terms of energy by
a factor of 10×. L2 is further divided into a word-interleaved section accessible
by the XNE (456 kB) and a privileged section with priority access from the core
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Fig. 19.13 mVGG-d BNN topology (left) and energy versus accuracy estimation on Quentin SoC
(right) [48] ©IEEE 2018

(64 kB). Figure 19.12 shows the architecture of the Quentin SoC and an annotated
microphotograph of the fabricated die in a multi-project chip.

Utilizing post-layout experiments, we characterized the total energy per inference
on a BNN calledmVGG-d targeting the CIFAR-10 dataset. By modifying the depth-
wise nature (i.e., the number of groups d) used within each convolutional layer, the
BNN can be downscaled to fit entirely within SCM execution or to require SCM
+ SRAM, or even to not fit within the on-chip memory. As the XNE has an inten-
sive access pattern over weight data, we also modeled the case in which this data is
marshaled from SRAM to SCM dynamically to have the XNE operate on the more
energy-efficient SCM memories. Figure 19.13 shows the results of this elaboration
in terms of accuracy vs energy, visualizing clearly that (unsurprisingly) on-chip exe-
cution is an order of magnitude more efficient than off-chip execution, while using
SCMs can lead to further savings (up to almost another order of magnitude) but with
significant accuracy loss due to the extreme memory constraints. The pure-SCM
network is significantly more efficient also thanks to the possibility of choosing a
lower operating voltage than that at which SRAMs are working (0.4 V down from
0.6 V), achieving higher overall energy efficiency.

19.4 Tearing Down the Wall—Perspectives for the Next
10 Years

19.4.1 Voltage Overscaling: Working with Unreliable
on-Chip Memory

As argued in Sect. 19.3.3, one of the key strategies to overcome the Deep Learning
memorywall in the next 10 years will actually be to use thememory less and organize
computation so that for most of the time off-chip memory access can be avoided,
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driving down the average power consumption to try and meet ultra-low power con-
straints. However, we have seen in the same section that on-chip SRAMs constitute
a significant constraint against running DNNs within an ultra-low power budget. In
particular, aggressive voltage scaling techniques [51],which bring quadratic dynamic
power savings, cannot be directly applied to conventional six-transistor SRAMs (6T-
SRAMs) that behave unreliably at low voltage. Alternative SRAM cells (e.g., [52])
and other memories with better low voltage operation characteristics have not been
usedwidely in the design of System-on-Chips up to nowdue to the penalty they inflict
to density and speed, metrics that are typically considered even more important than
energy efficiency.

Enabling aggressive voltage scaling of conventional 6T-SRAMs means letting
them work out of a safe operating region, i.e., having them work in a region where
run-time errors in both read and write operations are a probable event. In such a
region, design margins have to be guaranteed from the application side instead of the
hardware itself. Interestingly, there is a class of DNNs that potentially maps well to
operation with over-scaled memories: BNNs, where all bits are (potentially) equally
vulnerable, and information is spread so that only a high error rate can produce an
accuracy drop [53].

We used the fabricated prototype in 22 nm FDX technology of the Quentin SoC
discussed in Sect. 19.3.3 to test the resilience of small BNNs such as the mVGG-d
topology shown in Fig. 19.13 against increased Bit Error Rate (BER) values [54].We
first measured how the BER changes with operating voltage; the nominal voltage in
22FDX is 0.8V.Themeasurementwas performedby 1000 pseudo-randomwrite/read
iterations over the full SRAM arrays, performed directly by the embedded RISC-
V core with a small program running exclusively on the error-free SCM memory:
thanks to this setup, it was possible to measure the BER down to 0.375 V (the lowest
“safe” voltage is 0.6 V—this is the lowest voltage at which no SRAM error can be
detected). To map the BER measurement to an overall accuracy level, we trained
three BNNs on CIFAR-10: the one proposed by Yang et al. [53]; a slightly reduced
version of mVGG-1 entirely fitting in L2; and the network proposed by Hubara et al.
[55], which does not fit in the L2 memory. The effect of the varying BER on both
weights and activations was simulated in the training framework (PyTorch) to be
able to collect relevant statistics (100 experiments).

The results of this exploration, shown inFig. 19.14, validate the initial assumptions
regarding the resilience of BNNs compared to a highly unreliable memory (as long
as vulnerable data, such as partial results, is protected in a safe memory—SCMs
in this case). Virtually no accuracy loss is detectable with a BER as high as 10−4,
and the drop becomes significant only with a BER around 10−2, allowing voltage
over-scaling of SRAMs of ~200 mV.

Figure 19.15 shows how voltage over-scaling leads to much better scalability in
terms of performance and power. The maximum efficiency point lies at 0.49 V and
is accessible only by aggressive voltage scaling, achieving 14.4 Top/s/W. It is worth
to note that even with aggressive over-scaling, power in this region is dominated by
memory (with around 60% of the overall consumption) due to increased importance
of leakage. Without the innate error resilience of BNNs, it would be necessary to
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spend even more power in memory, to keep SRAMs at a higher voltage, implement
error correction mechanisms, or use wide voltage range SRAMs.

We believe that increased reliance on error resilience in DNNs will play a sig-
nificant role in enabling the next 10 years of ultra-low power deep learning. First
of all, it reduces the cost in terms of the power of on-chip memory, enabling real
ultra-low power (<1 mW active power) inference of small, but non-trivial DNNs. At
the same time, error resilience will also be essential in the actual exploitation of novel



342 F. Conti et al.

and emerging memory technologies suffering from real-world reliability issues: for
example, STT-MRAMreads have been shown to be destructivewith BER in the order
of 10−6 for 22 nm (projected up to 10−4 for 11 nm) [56]. This is very high for con-
ventional computing and requires expensive read-and-restore operations; however,
it is in the well-tolerable range of error-resilient BNNs, which could be practically
implemented without such a mechanism.

19.4.2 Emerging Memory, Interconnects and In-Memory
Computing

A significant amount of help for the deployment of DNNs on ultra-low power embed-
ded systems could come from the availability of new memory- and communication-
related technologies, removing or softening the hard constraints that have been dis-
cussed in the previous Sections. In this Section, we selected a set of techniques that
have already been shown to be potentially feasible and that we believe will achieve
maturity within the next 10 years; our target is the deployment of DNNs from the
future state-of-the-art on an inference system consuming 1 mW average power, or
less.

Non-volatile memory (NVM) has been proposed as a replacement for on-chip
SRAM as a last-level cache, as well as for use as off-chip memory. From the perspec-
tive of ultra-low-power DL, one of the main advantages of these techniques would
be in replacing (in part) on-chip SRAM, exploiting non-volatility to guarantee zero
power consumption in the off state in staged inference with full data retention. Tech-
nologies such as Spin-Transfer Torque Magnetic RAM (STT-MRAM) and Resistive
RAM (ReRAM) are nearingmaturity and have started being commercialized in some
markets (e.g., as a replacement for embedded Flash memory or as a cache for SSDs).
Volatilememory alternatives for SRAMs, such as embeddedDRAM(eDRAM), have
also attracted attention. Due to their tunability in terms of error rate, we expect this
technology to be a useful base technology to run error-tolerant algorithms.

Table 19.3 reports results of recent work on some of these memory technologies
compared with a conventional 6T-SRAM (on-chip, including our results from the
previous section) and order-of-magnitude parameters of a DRAM and a NOR Flash
for embedded applications (off-chip). What appears attractive is that non-volatile
memories sit in the position of providing an alternative to SRAM in terms of density,
but not in terms of energy/access. Conversely, they do not seem to be overly compet-
itive with DRAMs for what concerns density, but they achieve better energy/access,
and, naturally, they consume no power to retain data. eDRAM, on the other hand,
could guarantee incremental improvements in density and power compared to con-
ventional SRAM, particularly if used in nominal conditions. Most of the flavors of
emerging technology have been shown to be CMOS compatible or to require rela-
tively small changes in terms of process; on the other hand, SRAM and eDRAM are
entirely CMOS compatible.
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Table 19.3 Current-gen and emerging memory technologies

Technology
operating
condition

Density
(Mbit/mm2)

Energy per
access (pJ/bit)

Data retention
power
(nW/bit)

Bit error rate CMOS?

DRAM
(LP-DDR2)
[24]

~100a >5 >0.003 0 No

NOR Flash
[57]

n/a >50 0 0 No

6T-SRAM
22 nm [54]

<5 >0.13
(@0.8 V)
~ 0.06
(@0.5 V)

~100
(@0.8 V)b

~ 30
(@0.5 V)b

0 (@0.8 V)
<10−5

(@0.5 V)

Yes

STT-MRAM
28 nm [58]

4.67 0.7 (read)
4.5 (write)

0 0 In part

Re-RAM
22 nm
FinFET [59]

10.1 < 1 (read)
n/a (write)

0 < 10−5 In part

GC-eDRAM
28 nm [60]

~ 7 n/a 55 (lossless)b

10 (lossy)b
0 (lossless)
< 10−2

(lossy)

Yes

aData estimated from https://www.eetimes.com/author.asp?section_id=36&doc_id=1333289
bAt 85C

A strictly related emerging technology is computing in-memory (CIM), i.e., per-
forming part of the computation directly on the memory array, avoiding all cost due
to data movement from/to memory. CIM prototypes have been shown both building
upon conventional SRAM [61] as well as upon emerging memory technologies such
as ReRAM [62]. While architectures targeting larger-scale CIM on DRAMs have
also been proposed [63], no practical implementation of this idea has been shown
yet. Therefore, the current applicability of CIM is mainly related to (1) replacing
on-chip LOAD-MAC-STORE loops with operations running directly on memory,
therefore reducing data movement cost, (2) performing multiple computations in a
highly parallel fashion with high granularity, potentially achieving very high energy
efficiency on computation. However, this kind of CIM does not fundamentally affect
the memory footprint constraints: if a DNN does not fit on on-chip memory, external
DRAM is still required.

Technologies reducing the cost of storage or making it more efficient to apply
a staged inference scheme do not tackle the limitations in terms of memory traffic,
which still stand at least in the non-negligible cases in which it is not feasible to fit a
full network on-chip. Technologies such as full monolithic 3D integration have been
proposed as a solution to the cost of communicating with external memory [64];
however, their real-world feasibility is—for the time being—still unproven. More
practically applicable ideas on how to scale the off-die communication capabilities
of chips have been shown in the formofwafer-scale integration ormulti-chipmodules

https://www.eetimes.com/author.asp%3fsection_id%3d36%26doc_id%3d1333289
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integrated on-package or over a silicon interposer. Zimmer et al. [65], for example,
have recently demonstrated a 16 nmmulti-die prototype with chip-to-chip communi-
cation at a bandwidth of 11–25 Gbit/s/pin consuming 0.82–1.75 pJ/bit. Technology
such as this would enable not only systolic chip-to-chip communication but also high
speed and efficiency connection with off-chip memory, “tearing down” the memory
wall. For example, in Fig. 19.16, we go back to the 1.0-MobileNet-224 network ana-
lyzed in Sect. 19.2.2, updating the results considering a multi-chip-module (MCM)
with an in-package L3 memory connected with this technology.

The plot shows that, even without considering any of the other improvements
discussed in the chapter, the adoption of this technology alone would greatly relieve
the memory wall and significantly reduce the energy cost of off-chip memory, so
much that @ 10fps the overall power consumption would be in the order of ~20 mW.

To put it all together, in Fig. 19.17, we try to derive the scheme of a possible future
system based on the PULP paradigm dedicated to ULP DNN inference, making
extensive usage of the techniques discussed in this chapter to overcome the Deep

0,01

0,1

1

10

0 20 40 60 80 100

M
in

im
um

 D
RA

M
 b

an
dw

id
th

[G
By

te
s/
se
c.
]

Target Throughput [frames/s]

1.0-MobileNet-224 DRAM Requirements

MCM L3 x1
MCM L3 x8
HyperRAM x8
LPSDR x32
LPDDR-2 x32
512kB
Inf (LW)
Inf (DF)

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

HR /
Inf(DF)

HR /
Inf(LW)

HR /
512 kB

MCM /
512 kB

En
er

gy
 p

er
 In

fe
re

nc
e
[m

J]

L3 Tech / On-Chip Memory
[kB]

1.0-MobileNet-224
Energy Estimation

computation memory

Fig. 19.16 1.0-MobileNet-224 bandwidth requirements and energy estimation with MCM L3

PA
D

 M
U

X

L3 DRAM
64 MB

~ 5 mm2

40 pJ/B

m
ul

ti-
ch

ip
m

od
ul

e

8 pJ/B
1.25 GB/s

UART

HyperBus

Camera

SPI

I2C

I2S

FLL

MCU INTERCONNECT (< 8 GB/s)

GPIO

APB BUS

P
M

U

T
IM

E
R

D
E

B
U

G

C
LKUDMA

Engine

CFG

I$

RI5CY
FC

DBG FPU

DBG 
BRIDGE

HETEROGENEOUS L2 
~ 1.6 mm2

< 1 pJ/B

ROM

INTC

FABRIC CONTROLLER SUBSYSTEM

I/O SUBSYSTEM

NEURAL
ENGINE

CTRL

SRAM
64 KB STT-

MRAM
1 MBSCM

8 KB

SRAM
64 KB

SCM
8 KB

SRAM
64 KB

SCM
8 KB

SRAM
64 KB

SCM
8 KB

SRAM
64 KB

SCM
8 KB

SRAM
64 KB

SCM
8 KB

SRAM
64 KB

SCM
8 KB

SRAM
64 KB

SCM
8 KB

L2.5
~1.6 mm2

4-40 pJ/B

LOGARITHMIC INTERCONNECT (< 32 GB/s)

RI5CY
core 7DMA

EVENT
UNIT

SHARED INSTRUCTION CACHE

CLUSTER AXI BUS

HETEROGENEOUS L1
128 KB SRAM/eDRAM + 16KB SCM, ~0.5 mm2

< 1 pJ/B

RI5CY
core 6

RI5CY
core 5

RI5CY
core 4

RI5CY
core 3

RI5CY
core 2

RI5CY
core 1

RI5CY
core 0

CLUSTER SUBSYSTEM

NEURAL
ENGINE

CTRL

S
R

A
M

S
R

A
M

S
R

A
M

S
R

A
M

S
R

A
M

S
R

A
M

S
R

A
M

S
R

A
M

S
R

A
M

S
R

A
M

S
R

A
M

S
R

A
M

S
R

A
M

S
R

A
M

S
R

A
M

S
R

A
M

S
C

M

S
C

M

S
C

M

S
C

M

S
C

M

S
C

M

S
C

M

S
C

M

S
C

M

S
C

M

S
C

M

S
C

M

S
C

M

S
C

M

S
C

M

S
C

M

Fig. 19.17 A possible future PULP system for ultra-low power DNN inference



19 The Memory Challenge in Ultra-Low Power Deep Learning 345

LearningMemoryWall.We assumed the numbers from Table 19.3 and the capability
to integrate multiple small chips on an MCM so that the connection can guarantee
10 Gbit/s at 1 pJ/bit. We did not make assumptions on technology scaling, targeting
a current-generation process (22 nm). The memory hierarchy is organized into four
levels:

• L1: 128 KB of SRAM or eDRAM, plus 16 KB of SCM for “safe” data. Access to
this memory would happen at high bandwidth (up to 32 GB/s) consuming less than
1 pJ/B. It would be used similarly to the current L1 shown in Fig. 19.7, possibly
taking advantage of application-level error tolerance to reduce power. A further
improvement to this scheme could be realized, with more architectural changes,
by replacing the compound L1 + compute units with a CIM array, potentially
saving the cost of communication and achieving higher efficiency on the compute
side.

• L2: 512 kB of SRAM or eDRAM, plus 64 kB of SCM. Access to this memory
would happen at up to 8 GB/s consuming less than 1 pJ/B.

• L2.5: 1 MB of STT-MRAM, accessible at up to 8 GB/s and consuming 4 pJ/B in
reads and 40 pJ/B in writes. This would be used as on-chip storage for relatively
small/precision-reduced neural network weights. Thanks to its non-volatility, it
could be used in a staged inference scheme where the PULP chip is fully power-
gated, with no need to reload weights.

• L3: 64MB of off-chip DRAM integrated in the same fashion as Zimmer et al. [65].
This would require the design of new DRAM chips dedicated to embedded appli-
cations, similar to the HyperRAM and SPI DRAM used in current-generation sys-
tems; however, using tight integration the available bandwidth would be 1.25 GB/s
for a single pin, paying 48 pJ/B or less (~60 mW at full bandwidth usage).

Putting together these small assumptions, it is clear that the access barrier for ultra-
lowpower deep learningwould lower very significantly.High-bandwidth access toL3
would, alone, guarantee a 10–20× improvement in the capability to support memory
traffic related toweights and activations. Hardware-aware quantization could achieve
further 2–4× improvement. The other changes, notably the addition of 1MB of L2.5
non-volatile memory, could lead to a dramatic improvement in the capability to use
staged inference schemes: at 100 MHz, STT-MRAM bursts would consume ~7 mW
and, using voltage-overscaling, SRAM/eDRAM access would consume 10× less
power. This means that even a staged-inference scheme characterized by a 90–10%
duty cycle between fully-on-chip and off-chip operation will consume, on average,
less than 1.3 mW for memory.

19.5 Conclusion

As discussed within the chapter, the memory footprint and traffic generated by deep
learning algorithms is proving a significant challenge for the design of ultra-low-
power systems—but, thanks to many orthogonal techniques, it is a challenge that
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can be overcome to provide the next generation of on-chip intelligence. Specifically,
we believe that to support future DNN workloads in systems consuming ~1 mW on
average, it will be necessary to deploy a combination of:

• staged inference (supported by emerging non-volatile memory technology)
• memory-aware quantization and hardware-aware DNNs
• emerging chip-to-chip interconnect technology
• memory voltage overscaling and algorithmic error tolerance.

We estimate that the combination of these techniques could lead to an improve-
ment of two orders of magnitude in terms of complexity of supported models and
the related behavior, without any specific assumption on technological scaling in the
post-Moore era.

Moreover, as thememory footprint and traffic become less and less of a bottleneck,
emerging applications such as on-device DNN training at the extreme edge become
achievable, opening the road for artificial intelligence adaptable on the field.
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Chapter 20
Multi-sensor Scenarios for Intelligent
SOCs

Bernd Hoefflinger

20.1 Introduction

All real-world electronics systems are only as intelligent as their capability of sensing
the real world. With the accelerating growth of intelligent Silicon processing, the
demand on relevant and possibly Silicon-compatible world sensing increases rapidly.

Silicon sensing, particularly microelectromechanical systems (MEMS), has been
a specialty since 1980, promoted to a More-than-MOORE Strategy, and described
in Chap. 14 in CHIPS 2020 and updated in Chap. 15 of CHIPS 2020, Volume 2 [1].
The largest monolith effort and market grew out of photo-sensors, treated extra in
[1, 2] and again in the present book with the special focus on optimal visual-system
image acquisition in Chap. 21. MEMS have been a special challenge for monolithic
and heterogeneous 3D integration, now with a gigantic interest because of the broad
parallel sensing inputs to deep-learning neural networks with real-time results.

20.2 Compatible Silicon MEMS Systems

Silicon-compatible sensors for acceleration and Coriolis forces with on-site conver-
sion and coding, and cost-effectiveness for automotive were the launch of MEMS
mass-production [2], which enabled the introduction into mobile consumer applica-
tions. This has pushed the MEMS roadmap forward to a scaling strategy including
3D integration and packaging [1], with a broad spectrum of innovative applications
[1], see Fig. 20.1, and meeting the requirements of the IOT (Internet of Things).

MEMS gyroscope systems for consumer devices like smartphones or wearables
are often implemented using micromachined sensors with a small area and open loop
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Fig. 20.1 Applications of multi-degrees-of-freedom silicon MEMS (courtesy BOSCH)

readout circuits. This results in low current consumptions of less than 1 mA for three
gyroscope axes, while moderate angular rate noise densities (7 mdps/sqrt(Hz)) as
well as bias stabilities (10°/h) can be achieved [3, 4].

Automotive or inertial navigation applications require a higher accuracy with
lower noise performance. This can be achieved by employing closed loop, mode-
matched sensors and by using more sophisticated additional error compensa-
tion circuits like active quadrature compensation [5]. Thus, a noise density of
3.9 mdps/sqrt(Hz) in combination with 1.2°/h bias instability was realized [5].
Also larger sensor elements produced using silicon-on-insulator technologies
have shown to improve the sensitivity and achieve noise performances down to
0.18 mdps/sqrt(Hz) with a bias instability of 0.08°/h [6]. However, the power con-
sumption for high performance systems is typically strongly increased, e.g., up to
more than 2.5 mA for a single gyroscope axis in [6] and 8.8 mA for a triaxial
gyroscope in [5].

Gyroscope systems implementing various techniques for active error compen-
sation, low noise performance and at the same time low power consumption are
reported in [7, 8]. With a current consumption of about 0.5 mA for one gyroscope
axis a noise density of 2 mdps/sqrt(Hz) and a bias instability of 0.9°/h are achieved
[7].

Besides mechanical quantities, many others have to be identified like gas, fluids,
chemicals, magnetism, and radiation. A general overview will be found in [9].

20.3 CMOS Image Sensors

Silicon image sensors started in 1970, when photons generated electrons in the
potential bucket of a silicon pixel, which were then transferred into series-coupled
MOS charged-coupled devices. As MOS integrated circuits were scaled down, it
became feasible in the late 1980s, to put an MOS source-follower transistor and a
select transistor into each pixel for reading out the photo-charge bucket and building
“active pixels” MOS image sensors. This evolution perpetuated the linear-response
characteristic

• pixel output voltage ~ photons collected.
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Fig. 20.2 Circuit diagram of a global-shutter HDRC® pixel for high-speed, random-access with a
dynamic range of >1.000.000:1

With practical limits on photodiode area and on integration time, this linear-
response has limited CCD and MOS sensors to a dynamic range from Dark charge
to “white saturation” to <1.000:1. The Human Visual System (HVS) has an instan-
taneous dynamic range of >200.000:1, with adaptation to 1.000.000:1 (see Fig. 3.1,
in Chap. 3 on Real-World Electronics). The very insufficient Low-Dynamic Range
(LDR) of CCD and standard CMOS sensors has led to a waste of multiple expo-
sures or multiple sub-pixels per pixel, described in the introduction to the following
Chap. 21 on High-Dynamic-Range (HDR) Video.

It was the invention of a veryminor change ofwiring the source-follower transistor
in the standard CMOS pixel, which led to the “Silicon Wonder” of

• a sensor characteristic with the logarithmic characteristic of the Human Visual
System (HVS) and exceeding it in speed, dynamic range (dark and white) and in
spectral range, including IR and UV.

As shown on the left in the circuit diagram of Fig. 20.2, the transistor is diode-
connected, VDS =VGS. Here, the drain-current ID = photodiode-current flows in the
sub-threshold region of the MOS transistor, so that the source voltage is ~log ID over
more than seven orders-of-magnitude of the ühoto-current.

First results of this HDRC® sensor [10] were published as a 64× 64 pixels video
sensor in 1993 [11]. The sensor is at the core of a book on HDR Vision [12], and
its more recent mega-pixel version with 1.296 parallel 12b-output was covered in
Chap. 13 of [1]. Its HVS features like log response, offering color constancy, are the
basis of the following Chap. 21.

20.4 LIDAR Arrays

In order to identify objects and their distance, pulses of ultra-sound, light, lasers and
microwaves are being transmitted, and their return signals have to be sensed. These
techniques of acquiring information on our 3D world, not only in real-time but with
updates in micro- and milliseconds, and in sufficient spatial resolution, have become
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Fig. 20.3 Schematic set-up of sensors for an autonomous vehicle (from Chap. 29). RADAR and
LIDAR (laser detection and range-finding) are phased arrays of sensors with 3D detection capability

Fig. 20.4 Photonics-electronics wafer-level integration [13]. © IEEE 2019

essential, particularly for autonomous vehicles and robots. A representative set-up
for an autonomous vehicle is shown in Fig. 20.3.

Energy-efficient, high-speed, high-resolution, and long-range phased-arrays of
sensors need 3D integration with high-performance CMOS steering and processing
planes. A leading 3D-integrated SOC realization is shown in Fig. 20.4 [13].

It is the first single-chip Optical Phased Array (OPA) [13]. It has 32× 32 transmit
elements enabling a 0.15° resolution with a steering range of 18.5° and a remarkable
energy efficiency. Relevant data is shown in Table 20.1. The data means a resolution
of 0.25 m × 1 m at a distance of 100 m, where the lateral steering width would be
30 m. A micrograph is shown in Fig. 20.5.

This single-chip phased-array LIDAR demonstrates the potential for intelligent,
Silicon-supported mobility.
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Table 20.1 Data on a single-chip 3D-integrated optical phased-array. From Kim et al. [13]

Technology Silicon photonics + 65 nm CMOS

Steering dim. 2D (λ/θ)

Beamwidth (�/8) 0.15°/0.6° 0.15°/0.25°

Aperture 500 μm × 130 μm 500 μm × 500 μm

Steering range (�/8) 18.5°/16° 18.5°/–

Sidelobe suppression 8.5 dB 7.4 dB

# of elements/independent ctrls 32/32 125/125

Phase shifter Thermal

Efficiency 20 mW/π

Fig. 20.5 Micrograph of the phased-array LIDAR SOC [13]. © IEEE 2019

20.5 Mobile-System-to-System Communication

Multi-vehicle scenarios like cars, robots, drones et al., need installed-infrastructure
control, infrastructure and environment recognition, and high-speed, energy-efficient
vehicle-to-vehicle communication, as shown in Fig. 20.6.

Gb/s high-sensitivity, low-energy communication is a major challenge. Opti-
cal communication with high-fidelity bandwidth would be a candidate, and GaN

Fig. 20.6 Multi-vehicle
control and communication
scenario. Efficient
vehicle-to-vehicle
communication serves the
Internet-of-Things (IOT)
challenge [14]. ©IEEE 2019



356 B. Hoefflinger

laser diodes with >5 GHz bandwidth at, e.g., 450 nm are such transmitter candi-
dates. CMOS receiver chips use special diodes or diode arrays: Photodiodes (PD),
Avalanche Photodiodes (APD) or Single-Photon Avalanche Diodes (SPAD), and the
leading realization is a receiver chip with 64 × 64 SPAD elements in a 21 μm pitch
in a 130 nm process [14]. Its micrograph is shown in Fig. 20.7 with a chip-size
of 2.6 mm × 3.6 mm. It achieves a sensitivity of −46 dBm (0.25 μW) at a rate
of 500 Mb/s [13]. This data is listed in a comparison with other reported chips in
Table 20.2. The most informative performance diagram shows the sensitivities ver-
sus the bit rates in Fig. 20.8. This figure includes the line for the quantum-limit.
It shows that the best are about a factor of 40 away from this limit. The table also
shows the energy per bit. It shows that the high-sensitivity chips need about 240 pJ/b,
which means that high-speed wireless communication, even for a short distance, is
not cheap energy-wise.

Fig. 20.7 Micrograph of a 2.6× 3.6 mm2 CMOS optical receiver chip with 64× 64 single-photon
avalanche-diode receiver elements [14]. © IEEE 2019
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Table 20.2 Performance comparison of laser-light receiver-chips [14]. ©IEEE 2019

Ref. Fahs O’Brien Jukic Fisher Zhang Steindl This work

Type PD APD APD SPAD SPAD SPAD SPAD

Technology 0.35 μm N/A 0.35 μm 130 nm 180 nm 0.35 μm 130 nm

Elements 1 1 1 1024 60 4 4096

Fill factor N/A N/A N/A 2.42% 3.2% 48% 43%

Sensitivity
(dBm)

−23 −38 −34.6 −31.7 −53 −43.8 −46.1

Modulation
type

OOK OOK OOK OOK OOK RZ-OOK 4PAM,
OFDM

Bit rate 2.5 Gb/s 280 Mb/s 1 Gb/s 100 Mb/s 100 Mb/s 200 Mb/s 500 Mb/s,
350 Mb/s

BER 10−3 10−9 10−9 10−9 10−3 6.5 ×
10−3

2 × 10−3

Consumption
(pJ/bit)

86 N/A 244 800 N/A 248 230

Fig. 20.8 Sensitivity and bit-rate of laser-light receiver chips [14]. See Reference [14] for authors
and modulation details. The leader is far down on the far right. © IEEE 2019

20.6 Conclusion

Nano-scale miniaturization, large-scale- and 3D-integration have enabled multi-
sensor arrays with gigantic data rates. Their processing towards essential information
and inference is a major challenge for deep-learning neural-networks. The focus on
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optical sensing and receiving in this chapter points out its data-rate challenge. Sens-
ing is an issue in anything, physical or chemical, which makes it a handbook issue
as referenced in [9].
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Chapter 21
High-Dynamic-Range and Wide Color
Gamut Video

Zhichun Lei, Xin Yu and Markus Strobel

21.1 Introduction

The still or video camera nowadays usually provides Low Dynamic Range (LDR)
images. The LDR images contain maximally 256 (28 − 1) linear levels, in practical
terms even less because some levels are for instance reserved for the synchronization
purpose in case of video transmission. As a result, sometimes the images appear
either too dark or white-saturated.

Illumination levels of real-world scenes can vary from 0.001 lx at clear night sky
to 100,000 lx at direct sunlight [1] comprising a ratio of eight decades (1:108 or
160 dB). This poses a tough challenge on the dynamic range of cameras and image
sensors attempting to acquire the scene information as video sequences.Although this
change from very dark to very bright illumination happens gradually over the day
(inter-scene), outdoor day- or night-time scenes can exhibit different illumination
levels up to four or five decades (80–100 dB intra-scene) easily. The intensities
projected by the lens onto the sensor pixels result as the product of the illumination
and the object reflectance. The typical range of object reflectance between 5 and
95% (1:19) extends the sensed dynamic range by more than an additional decade
(+26 dB). Therefore image sensor technologies capable of acquiring an intra-scene
High Dynamic Range (HDR) of at least 100–120 dB are mandatory. The latter value
is needed when bright active light sources are in the field of view, visible directly or
reflected e.g. on metallic surfaces, for a robust image acquisition.

There are numerous publications pointing out the necessity of HDR images, e.g.
[1, 2]. In the European New Car Assessment Program (Euro NCAP) new tests in

Z. Lei (B) · X. Yu
Tianjin University, School of Microelectronics, 92 Weijin Road, Tianjin 300072,
People’s Republic of China
e-mail: zclei@tju.edu.cn

M. Strobel
IMS CHIPS, Allmandring 30a, 70569 Stuttgart, Germany

© Springer Nature Switzerland AG 2020
B. Murmann and B. Hoefflinger (eds.), NANO-CHIPS 2030,
The Frontiers Collection, https://doi.org/10.1007/978-3-030-18338-7_21

359

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18338-7_21&domain=pdf
mailto:zclei@tju.edu.cn
https://doi.org/10.1007/978-3-030-18338-7_21


360 Z. Lei et al.

the car-safety rating are included for vehicles to avoid collisions with bicycles and
pedestrians andwill be expanded for testing the night-time performance. Other appli-
cations are traffic monitoring, security and surveillance, industrial vision, robotics
as well as welding inspection having the highest demand on sensor dynamic range.
While Ultra HD displays become more prominent, HDR is a key element [3] besides
high pixel resolution and wide color gamut. For HDR-enabled flat-panel displays,
video content acquired with HDR cameras is needed to make full use of its feature.

HDR is also important for theWCGpurpose, because less pixel gray levels lead to
less color combination possibility. Furthermore, the display color gamut is strongly
influenced by the brightness. With the increasing display brightness, the color gamut
will shrink. At the maximum display brightness, only white color points are dis-
played. This problem can be well avoided by HDR because the HDR display is usu-
ally of much higher peak brightness than the LDR display. However, HDR display of
high brightness often faces an overheating problem. Four-primary-color WCG can
reduce display’s power consumption, and in turn mitigate the overheating problem
of HDR display.

WCG is currently another most acute topic of video technology development.
WCG development is driven by the high color-fidelity application requirements, e.g.
telemedicine, e-commerce. However, the popular video system using red (R), green
(G) and blue (B) primaries, specified by ITU BT.709 standard, only cover 33.24% of
the visual locus on the CIE 1931 chromaticity diagram [4]. ITU BT.2020 specified
pure RGB three-primary colors, which can cover 63.3% of the visual locus. However,
63.3% coverage will certainly not be the ultimate goal of the WCG technology
development. Besides, BT.2020 is so demanding with respect to the purity of the
RGB three primaries that until now there is no imaging technique, which can meet
its requirement, even though there are standards supporting it, e.g. HDR10, Dolby
Vision, HDMI2.0, Display Port1.4, H.265/HEVC. More than RGB three-primary
colors can mitigate the above problems.

The remainder of this chapter is organized as follows. Section 21.2 addresses
the HDR and WCG imaging techniques with emphasis on the logarithmic HDR
imaging technique, which matches the human visual system. Its extension to the
WCG imaging is straightforward. Section 21.3 deals with the display techniques of
HDR and WCG contents. Section 21.4 talks about the heat dissipation problem of
HDR display and the display power saving by the WCG technique. Section 21.5
discusses the delivering of HDR and WCG video contents. Since the delivering
technique for HDR video contents is well-established, this section emphasizes the
delivery of four-primary-color WCG video contents by means of the state-of-the-art
data compression methods and the available YUV bandwidth. It will state that it is
possible to deliver four-primary-color WCG video by means of the state-of-the-art
image/video coding standards and the available YUV bandwidth. Finally, the authors
will summarize this chapter.
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21.2 HDR and WCG Imaging Techniques

This section will at first give an introduction to principles achieving HDR video
acquisition with linear and non-linear opto-electronic conversion functions (OECF)
and show state-of-the-art implementations with signal-to-noise and data processing
properties. The HDR techniques for CMOS imagers should fulfill the following
properties in order to be useful for the above mentioned applications:

• Dynamic Range >100–120 dB at video speed, i.e. frame rates >30 fps
• Balanced Signal-to-Noise Ratio (SNR) and contrast resolution over the dynamic
range with low-light sensitivity

• No or less motion artifacts of moving objects due to HDR processing
• HDR image data processing on imager chip (if needed)
• Possible use of standard image post-processing (image processing pipeline, color,
etc.)

• CMOS imager sensor (CIS) implementation in reasonable small pixel size for
possible high resolution (Full HD, 4 K)

• Possibility to employ global shutter (snap shot) instead of rolling shutter
• Low imager and system complexity/cost.

These properties can be fulfilled by IMSCHIPS’s logarithmic image sensor,which
will be described in detail in this section.

After describing the HDR imaging techniques, the WCG imaging techniques are
addressed, and the authors will focus on themulti-primary-color imaging techniques.

21.2.1 HDR Imaging

In Sect. 21.2.1, one at first introduces the HDR imaging methods which are suitable
for video application. Then, the logarithmic image sensor is compared to other HDR
imaging methods.

21.2.1.1 HDR Video Imaging

To obtain an HDR image, one can capture several LDR images under different
exposures. These LDR images are then fused into a single HDR image. Because
scenes to be imaged can move, e.g. cars move in a motorway, acquiring HDR video
by means of sequentially capturing multiple LDR images faces the motion problem.
There are many approaches to bypass the motion problem. In the following, several
methods will be selected and briefly introduced.

For real-time HDR imaging, one can apply beam splitters to duplicate the optical
image of a scene in question. These duplicated optical images are simultaneously
detected by image sensors with different exposures [5, 6]. Since all the LDR images
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Fig. 21.1 Spatially varying pixel exposure pattern [8]

are detected simultaneously, there is nomovement among the LDR images. However,
the HDR imaging system is bulky and expensive.

In order to capture videos in real-time, Guthier et al. capture the LDR images
with partial re-exposures to save the acquisition time [7]. Nayar et al. use an optical
mask with different transparencies in different CMOS sensor areas [8]. As depicted
by Fig. 21.1, every four pixels with different transparency are used to form an HDR
pixel. The different transparency plays the role of different exposures. Because all
LDR pixels are captured at the same time, the motion blur problem is avoided.
However, the resolution of each resulting HDR image is reduced by a factor of four.
This method is also disadvantageous with respect to color HDR image capturing.

Nayar et al. use the radiance value of the corresponding scene point to adapt the
exposure of each pixel on the image detector [9]. The pixel brightness of the image
captured before is used to perform the exposure adaptation. The captured image
and the exposure adaptation amount are together used to compute the HDR image.
Because the image captured before is used to control the exposure of the current
scene, it may encounter problem in case of fast object moving or scene change.

Hoefflinger et al. make use of the “leakage” or “parasitic” part of the MOS tran-
sistor’s characteristic curve for developing an HDR CMOS image sensor, which is
branded as HDRC [1]. Figure 21.2 gives a typical characteristic curve between the

Fig. 21.2 Typical characteristic curve of NMOS transistor and a HDRC imaging cell [1]
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Fig. 21.3 (Left) Digital output of the logarithmic HDRC image sensor versus illumination; (Right)
Corresponding Signal-to-Noise ratio of the HDRC image sensor OECF

drain current ID and the gate-source voltage VGS of NMOS transistor in case of
VGS=VDS and VBS= 3.0 V. It is clear that the drain-source voltage VDS (=VGS)
is the precise logarithm of the drain current ID at least over eight orders of magnitude
[1]. Therefore, one can realize a logarithmic imaging and achieve a dynamic range
of more than 20 · log 108 = 160 dB in principle. The right drawing of Fig. 21.2
illustrates a HDRC imaging cell.

The HDRC image sensor output versus illumination intensity has been measured
and is reportedly shown in Fig. 21.3 [10] employing the subthreshold transistor
characteristic of Fig. 21.2. In addition, [11, 12] include optoelectronic conversion
functions (OECF) ofHDRC imagerswith global shutter feature. In [13], a logarithmic
imager using the solar cell mode of the photodiode is reported. In the OECF of
Fig. 21.3 (left), one can observe the clear relationship between the output in digits
converted with a 10 Bit analog-to-digital converter (ADC) and the incident light level
in Lux. Because the abscissa of this figure is logarithmically arranged, whereas the
ordinate is plotted linearly, Fig. 21.3 (left) clearly illustrates the logarithmic imaging
feature of the HDRC image sensor.

An important figure of merit of the performance of an image sensor or system is
the signal-to-noise ratio (SNR). Figure 21.3 (right) shows the measured SNR versus
illumination intensity corresponding to the HDRC imager OECF of Fig. 21.3 (left).
It increases from a SNR of 1 at 2 mlx low light sensitivity to reach a nearly constant
maximum SNR level around 35 (31 dB) above 0.1 lx. The dynamic range of the
logarithmicHDRC image sensor is greater than134dB ranging fromapproximatively
2 mlx (SNR of 1) up to more than 10,000 lx (limited by the light source of the
measurement setup).

Due to the logarithmic nature of the OECF, the SNR is given as the incremental
signal-to-noise ratio (iSNR) as defined by the ISO 15739:2017 standard [14]. ISO
15739:2017 specifies methods for measuring and reporting noise versus signal level
and dynamic range of cameras including non-linear characteristics whereas EMVA
1288 standard [15] for machine vision applications uses a linear sensor model but
will be extended for HDR cameras in a future release.
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21.2.1.2 Logarithmic Image Sensor in Comparison to Other Image
Sensors

Comparison with other kinds of HDR image sensors
To compare the logarithmic image sensor with other concepts introduced in the above
paragraph A, HDR Video Imaging, the basic underlying principle of the dynamic-
range extension of those concepts is briefly described. To obtain an HDR response
from a saturation-limited LDR pixel, multi exposure LDR captures can be fused
together resulting in a linear or piecewise linear OECF with HDR. It is legitimately
assumed, that the pixels of these concepts follow the camera model according to
EMVA 1288 [15] with an output signals S linear to the exposure H, S ∝ H. The
exposure is proportional to the total quantum efficiency η, the irradiance E and the
exposure (integration) time T, which results in S ∝ H ∝ η · E · T. In the regime of
LDR fusion (light intensities above first saturation having already a reasonable SNR),
a further assumption is that the temporal random noise N (N denotes the standard
deviation of S) is dominated by the shot noise of the photo generated electrons.
Therefore N is proportional to the square root of the exposure and signal [15], N ∝√
H ∝ √

S, resulting in a SNR also proportional to the square root of the exposure,
SNR = S/N ∝ √

S ∝ √
H.

Different exposures Hi (i = 1, 2, 3, …) of a pixel or a pixel cluster are achieved
by (a) multiple integration times Ti (Hi ∝ η · E · Ti) or (b) using beams splitter,
optical masks (Fig. 21.1) or different sized photodiodes effecting ηi (Hi ∝ ηi · E · T).
Both have equal effects on the resulting total OECF in respect to the SNR behavior.
As described in paragraph A for omitting motion artifacts method (b) with constant
time T is preferred. A special but similar case is represented by dual conversion gain
sensors employing a lateral over-flow integration capacitor (LOFIC), e.g. [16].

In the following example, three different exposures are obtained by three subse-
quent exposure times T1 (longest, for low intensity), T2 and T3 (shortest, for high
intensity) during which the photo-generated electrons are integrated in the pixel pho-
todiode. This results in different slopes of the three partial OECF curves (blue, green
and yellow) in Fig. 21.4, each digitized by a e.g. 12 Bit ADC, spanning an extended
range of the light intensity axis. The dynamic range extension (DRE) to the sensor’s
base dynamic range is then given by the ratio T1/T3 = T1/T2 · T2/T3. For a given
light intensity, the highest digital signal level of a non-saturated partial OECF is
taken since it exhibits the highest SNR.

Following this to obtain a complete OECF, the partial OECF curves of T2 and T3

are multiplied digitally in post-processing (either on chip or on system) by a constant
factor to exhibit the same slope. Therefore, they can be continually fitted together in
a linear HDR signal as depicted in Fig. 21.5 with the dashed lines. The linearization
step is important for color image processing to prevent false color reproduction at
the transition points. After that a piecewise compression can be applied to reduce the
necessary wide bit depth of the linear HDR signal, e.g. 20 Bit, for the output data
bus. In a rough sense, this approximates a logarithmic characteristic as can be seen
with the fitted solid lines in Fig. 21.5.



21 High-Dynamic-Range and Wide Color Gamut Video 365

Fig. 21.4 Multiple exposure captures using three different exposure times [17]

Fig. 21.5 Resulting linear internal HDR signal (dashed) as well as compressed piecewise linear
output signal (solid) derived from the 3 captures with different exposure times [17]
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If the ratios T2/T1 and T3/T2 of the exposure times are 2n a power of two, typically
24 = 16, the multiplication is done by bit shifts of the digitized ADC value by n and
2n Bit for the OEFC T2 and T3, respectively.

Thewish for a highDREwith high ratios of T1/T3, T1/T2 andT2/T3 respectively, is
compromised by the SNR drop at the transition points when the partial OECF curve
with the longer exposure time saturates. The factor by which the SNR decreases,
is proportional to the square root of the time ratios giving SN Rdrop = √

T1/T2 =√
T2/T3 since SNR is assumed proportional to the square root of the exposures in

the regime of LDR fusion.
To give an example: With a sensor base dynamic range of 12 Bit (72 dB) and

exposure times of T1 = 32 ms, T2 = 2 ms and T3 = 0.125 ms, ratios T1/T2 = T2/T3

= 24 = 16, the dynamic range extension equals to DRE= T1/T3 = 256 (48 dB) and a
total HDR= (72+ 48) dB= 120 dB is achieved. This comes with the disadvantages
of performing three times ADC conversion plus memory for storing intermediate
results and a 20 Bit (12 + 2 · 4) wide linear data bus for image post processing or at
least 14 Bit piecewise compressed for chip-to-chip data transmission. Also the SNR
decreases at the transition points by a factor of

√
16 = 4 (−12 dB) which will be

shown by measurements in the next paragraph.

Triple Exposure HDR sensor compared with logarithmic HDRC image sensor
With the understanding of the previous passage, the measured data of the HDRC
imager (left and right figure of Fig. 21.3) will be compared with a Triple Exposure
HDR sensor [18] with a focus on the SNR performance.

The total (fused) OECF of the triple exposure sensor is plotted in Fig. 21.6 (red
curve) having a linear signal range of 1–300,000 digital numbers (DN) in the ordi-
nate. Since the scale for the abscissa is given as exposure values (lx.s) in [18] the
illumination (lx) is calculated assuming a repetitive framerate of 40 fps (video speed)
with a reciprocal exposure time of 25 ms. This equals a factor of 40 lx/(lx.s) for the
illumination scale in Figs. 21.6 and 21.7.

The measured SNR behavior of the Triple Exposure sensor is shown in Fig. 21.7.
The drops of SNR with increasing illumination at the transition points due to the
switch of exposure time are clearly seen in the SNR curve. The SNR drop is around
−13 dB from 40 dB peak SNR down to 27 dB. The ratio T2/T1 can be read by the
illumination levels at max. SNR peaks to be a factor of 16, which means a theoretical
SNR drop of −12 dB. The ratio T3/T2 should be 16 too, since it has the same SNR
drop. The Dynamic Range Extension (DRE) is up to 48 dB if the SNR curve is
extrapolated to a SNRmax of 40 dB at maximum illumination (saturation level). With
a base DR of around 62 dB the overall DR of the linear Triple Exposure HDR sensor
is 110 dB ranging from approx. 10 mlx (SNR of 1) to 3000 lx.

In Table 21.1 the measurement results in respect to OECF and SNR behavior of
the logarithmic HDRC imager are compared to the Triple Exposure HDR sensor.

The Triple Exposure sensor serves as a representative of other kinds of HDR
sensor concepts showing similar characteristics due to the same underlying principle
of extending the dynamic range by multiple exposures. An exposure ratio of Hi: Hi+1

= 24 = 16 is a practical compromise achieving a DRE of +24 dB per additional
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Fig. 21.6 Digital output (red curve) of the linear Triple Exposure HDR sensor versus exposure
[18]

SNRmax

SNRmin

SNRdrop

DR Extension

Illumination (lx) @ Texp= 25 ms
0.004         0.04        0.4           4               40            400           4000

Base DR 

Fig. 21.7 Signal-to-noise ratio of the linear Triple Exposure HDR sensor versus exposure
corresponding to Fig. 21.6 [18]
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Table 21.1 Comparison of logarithmic HDRC sensor to Triple Exposure HDR sensor

Parameter Unit HDRC Triple Exposure Remark

OECF type – Logarithmic Linear

Exposures times – – T1 = 16 · T2 = 256 ·
T3

ADC resolution Bit 10 12

OECF bit depth Bit 10 20 (14) (Compressed
pw-linear)

Dynamic range dB ≥134 110

Max. illumination lx ≥10,000 ≈3000 Compared at 40 fps

Sensitivity (SNR = 1) mlx 2 10 Compared at 40 fps

SNR behavior of DR – Balanced Exhibiting drops

SNRmax dB 31 40

SNRdrop dB – −13 At transition points

SNRmin dB – 27 In LDR fusion regime

exposure with a limited SNRdrop of −12 dB maintaining a reasonable minimum
SNRmin in the regime of LDR fusion. This means that, with a sensor base DR up to
72 dB (12 Bit), for an HDR up to 96 dB (16 Bit) dual exposures and for up to 120 dB
(20 Bit) triple exposures are required. Exposure ratios of a power of two permit
data fusion by bit shifting which can be realized exactly using digitally generated
exposure times Ti. Whereas changes of technological parameter affecting the total
quantum efficiency ηi (Hi ∝ ηi · E · T) can suffer from process variations.

As a summary, one can say, that the HDRC sensor achieves its very high dynamic
range of more than 134 dB by a logarithmic OECF requiring only a 10 Bit dig-
ital output. This is already addressed in Chap. 3 Real-Word Electronics in terms
of efficient electronic processing of real-world information. It has a well-balanced
nearly constant SNR over the illumination range above 0.1 lx where the photo current
dominates over photodiode dark current. Other kinds of HDR sensors with a linear
OECF, as introduced in previous paragraph A, need a high bit depth of approx. 20
Bit for on-chip or on-system image processing when reaching a dynamic range up
to 120 dB. As mentioned they have disadvantages related to circuit complexity, like
necessary multiple read operations with ADC conversions per pixel including stor-
age of intermediate values or reduction of spatial resolution and a SNR characteristic
with drops reducing their potentially higher peak SNR.

The comparison demonstrates the necessity of HDR acquisition, as the introduc-
tion part of Chap. 21 already stated. There are many applications requiring HDR
imagers [1, 19] especially in automotive imaging systems including autonomous
driving as presented in the road scene in Fig. 21.8 having direct sun in the camera’s
view (right image). The images were taken with the logarithmic HDRC image sensor
clearly demonstrating the capability of robust HDR acquisition and color rendering
under such tough conditions.
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Fig. 21.8 Two images of a video sequence taken with the HDRC sensor of a road scene
demonstrating the need for high dynamic range acquisition with direct sun in view (right)

21.2.2 WCG Imaging

Although the RGB three image components of a color image can be captured by three
image sensors covered by red, green and blue color filters, most of the color image
sensors consist of only a single image sensor covered by a color filter array (CFA).
Each sub-pixel can be captured by the HDRC imaging cell described above. Color
imaging with a single image sensor is advantageous for e.g. low cost, low power
consumption and compactness. Thus, Chap. 21 only deals with the single image
sensor case. In Sect. 21.2.2, the authors first discuss imaging colors of standard color
gamut. Then, the WCG imaging approaches will be addresses, which include both
the three-, four- and six-primary-color cases.

21.2.2.1 Imaging of Standard Color Gamut

The CFA applied to a single color image sensor usually adopts the Bayern pattern,
which arranges 50% green, 25% red and 25% blue color filters on a square grid of
photo sensors. Although the saturation of the color filters has a strong influence on
the purity of the RGB primaries and in turn on the color gamut, the resulting color
gamut is usually limited, it is classified as standard color gamut, i.e. the color gamut
specified by BT.709, also called sRGB. The high-definition television video signal
has the BT.709 color gamut. As alreadymentioned, only 33.24% of the visible colors
can be represented by the RGB primaries. All other colors, in particular colors with
high saturation, lose fidelity.

International organizations have made specifications to extend the standard color
gamut. One of the efforts is to exploit the quantization levels reserved to allow for
some undershoot and overshoot (taught asGipp’s phenomenon) in the image process-
ing chain without necessitating undesirable clipping. These quantization levels are
used to transmit the negative intensityRGBcolors of theCIE1931RGBcolormixture
curve, referring to Fig. 21.9. ITU-R BT.1361 [20] takes the Pointer gamut [21], the
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Fig. 21.9 CIE 1931 RGB
color matching functions (λ
in nm)

gamut of real surface colors, as the target gamut and adopts a non-centrosymmetric
gamma correction curve to impose a larger compression on the negative signal part.
It should be mentioned that the recommendation ITU-R BT.1361 was suppressed in
2015 [22] and there has been a standard IEC 61966-2-4 [23] on using negative inten-
sity RGB colors to extend color gamut, i.e. the xvYCC color space. However, IEC
61966-2-4 needs to compress the negative color signals. The compression affects
the signal fidelity and causes color reproduction errors, in particular for the negative
intensity red color because its absolute amplitude is much larger than those of green
and blue colors as reportedly shown in Fig. 21.9. Besides, the color gamut extension
by means of additional quantization levels is quite limited. The coverage ratio of
color gamut is limited to 37.15% [24].

21.2.2.2 Imaging of Wide Color Gamut

ITU-R BT.2020 [25] specifies a wide color gamut to be reached by pure RGB pri-
maries and provides a reasonably good coverage of the Pointer gamut. However,
the current imaging technique is not able to meet its requirement and, as a result,
no BT.2020 contents can be delivered, at least at the time of this writing. With the
application of quantum dot technology to imaging devices [26, 27], in future, one
may capture much purer primaries than the CFA, in addition to an efficiency much
higher than silicon.

Three-primary colors only form a triangle area on the CIE chromaticity diagram,
which represents all the visible colors of the human visual system and is of horseshoe-
shape. Four-primary colors form a quadrilateral and can more closely approximate
the horseshoe shape than a triangle. The application of four-primary colors is a
practicableway to achieveWCG.There are different four-primary-color imageCFAs,
as illustrated in Fig. 21.10.
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Fig. 21.10 Two examples of four-primary-color CFA compared to Bayern CFA

In Fig. 21.10, the left figure gives the popular Bayern CFA pattern using RGB
color filters, whereas the middle figure illustrates the RGBE (Red, Green, Blue, and
Emerald) CFA pattern developed by the company Sony [28], and the right figure
shows the CYGM (Cyan, Yellow, Green, Magenta) CFA pattern [29]. CMOS image
sensors of RGBE four-primary colors was commercialized as early as in 2003.

The E color is the complementary color of the R color, whose negative intensity
is the largest among the RGB negative intensities as depicted in Fig. 21.9 and whose
compression after IEC 61966-2-4 affects the signal fidelity the most, as mentioned
before. According to [28], the characteristics of the RGBE color filter come much
closer to those of the human visual system, achieving a dramatic reduction in the color
reproduction error. The E image component here actually stands for cyan. There are
many occasions that require high saturated cyan, e.g. it is the color of shallow water
over a sandy beach and the color of clouds of methane gas in the planet Uranus’s
atmosphere, it is widely used in architecture in Turkey andCentral Asia, and surgeons
and nurses in some countries oftenwear gowns colored cyan, and operating rooms are
often painted in this color to reduce the emotional response to blood red. Therefore,
cyan is used in various aspects such as nature, aviation, architecture and medical
care etc. However, the current color gamut standards cannot effectively cover the
cyan region in the spectral locus representing the visible gamut of the human vision.
RGBE four-primary colors can well cover this region.

The RGB color filters have a narrow-band and thus are able to keep color fidelity.
However, the narrow-band RGB color filters will result in low SNR, which one wants
to avoid particularly in case of insufficient illumination scenes. On the contrary, the
CMY color filters, which are widely applied in the printing industry, are of broad-
band and thus are able to achieve a high SNR, which is particularly desired in case
of low-illumination scenes, for instance at night. Because in a low-illumination case,
the color does not play any important role in the human visual system, e.g. the human
eye cannot perceive any color in darkness, the color distortion caused by the broad-
band CMY color filters is irrelevant. In case of insufficient illumination scenes, a
high SNR is much more important than color fidelity. For this reason, Sajadi et al.
presented shiftable layers of CFAs. With them, one camera can capture sets of color
primaries, namely RGB, CMY and RGBCMY [30]. It works in the following way:
Without shifting the top CFA, one gets the CFA of the CMY pattern; Shifting the
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top CFA by one tile in the horizontal direction, it results in the CFA of the popular
RGB pattern; Shifting the top CFA by one tile in the vertical direction, the RGBCMY
pattern CFA is formed.

21.2.2.3 Color Gamut Comparison

Figure 21.11 depicts three color gamuts reached by RGB three primaries and the
Pointer gamut.Whereas the Pointer gamut is of irregular shape, whose color gamut is
depicted as the blue color curve on the uniform chromaticity diagram, dubbed theCIE
1976 UCS (Uniform Chromaticity Scale) diagram, the color gamuts achievable by
using three-primary colors are of a triangle shape. The BT.709 color space, depicted
as the cyan triangle on the CIE 1976 UCS, is quite limited as mentioned in the
introduction section of this chapter. The BT.2020 color space, depicted as the yellow
triangle in Fig. 21.11, becomes much larger than that of BT.709. However, BT.2020
requires pure RGB primaries, and this requirement challenges the current CFA color
imaging method.

The BT.2020 color space is not the largest color gamut that is achievable by
means of three-primary colors. From Fig. 21.11 one can clearly see that the red

Fig. 21.11 Color gamut of RGB primaries
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triangle, which stands for the maximum gamut achievable by three primaries, covers
a much larger color space than BT.2020 on the CIE 1976 UCS. In consideration of
the representation of the yellow color, however, one cannot adopt the RGB primaries,
which can achieve the maximal color gamut. As is well-known, the human visual
system can bemodelledmore precisely by the opponent channel model than the RGB
color model [31], e.g. because the popular RGB color system theory cannot explain
the color-vision deficiency phenomenon of human being. The opponent channels
consist of the black-white (luminance) channel, the red-green channel and the yellow-
blue channel.Red andgreen are twoopponent colors and theirmixing cannot generate
the yellow color, which has its own peculiarity, for instance, even monochromatic
yellow/gold color can also be very bright in nature. On the contrary, other colors of
high saturation can only exhibit a very low brightness level [32]. In order to represent
the yellow color in the RGB color system, one had to replace such red primary by
a smaller wavelength color and such green primary by the yellowish green color.
Bangert shares a similar view [33]. Moreover, the human eyes are insensitive to the
brightness of the red color, in particular the red colorwith a longwavelength, referring
to the photopic luminosity efficiency function curve, which will be discussed later in
this chapter. Therefore, the color reproduction using long-wavelength red color will
need much power.

The problems discussed above can bewell solved bymulti-primary-color imaging
techniques. Figure 21.12 illustrates the gamuts achieved by four-, five- and six-
primary colors. The left figure gives the gamuts achieved by three-, four-, five- and
six-primary colors, whose RGB colors are specified by BT.709. One can see that,
under the BT.709 color space, even the color gamut of six primaries cannot fully
cover the Pointer gamut. The right figure illustrates the gamuts achieved by three-,
four-, five- and six-primary colors, whose RGB colors are specified by BT.2020. The
last case can cover beyond the Pointer gamut. Pure primary colors are important for
the WCG purpose.

Fig. 21.12 Three-, four-, five- and six-primary-color gamuts and Pointer gamut
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21.3 HDR and WCG Display Techniques

The display dynamic range is specified as the ratio between the maximal brightness
and the minimal brightness that the display in question can reach, i.e. the ratio
between the brightest white value and the darkest black value. One usually applies
the ANSI contrast as the display dynamic range. For the measurement, a pattern of
16 alternating black and white rectangles is displayed. The ANSI contrast equals
the ratio between the average light output from the white rectangles and the average
light output of the black rectangles.

The minimal brightness states the display’s performance of black reproduction,
i.e. how well a pixel can be turned off. OLED exhibits good black performance
and can switch each pixel completely off. As a result, OLED can reach the HDR
purpose. For instance, OLED BVM-X300 from Sony is often used as HDR display.
However, nowadays the lifetime of OLED operating at high brightness will decrease
significantly [34]. OLEDs on the market usually have a low brightness. Ambient
light, e.g. room lighting, sunshine through a window, may affect its application.
Sometimes, one cannot reduce the ambient light level too much, for instance, in
case of hospital operations the physicians need sufficient lighting. Therefore, a high
display peak brightness is desired. According to the experiments done by Dolby, a
dynamic range of 0:10,000 cd/m2 can satisfy 90% of the viewers [35]. Thus, the
HDR standard Dolby Vision specifies a maximum brightness of 10,000 cd/m2. To
measure the maximum display brightness, usually the screen should display a white
rectangle pattern, e.g. at the top-left corner of the screen, with an area of 2% of the
whole screen area, whereas the rest of the screen area should be left black. Then, the
display is set to its maximal brightness. Using a luminance meter, one can measures
the display peak brightness.

If only the reachable maximal brightness is large, but the reachable minimal
brightness is not small enough, the display dynamic range will be very limited.
This explains why one cannot achieve HDR performance only by increasing the
backlight illuminance value of the LCD, although the LCD can reach a much higher
peak brightness than the OLED. There exists light leakage from the liquid crystals.
Alone increasing the illuminance value of the LCD’s backlight, usually LEDs, would
wash out the dark tones. If the screen should render dark scenes, only grey scenes
occur. Consequently, such a display is unable to precisely reproduce black. In order
to increase the dynamic range of the LCD, local dimming is used. Both the LC and
the local dimming contribute to the total dynamic range, which is the product of these
two subsystem dynamic ranges [36]. For local dimming, the direct-lit backlighting
technique is used. The backlight LEDs are divided into many segments, and the
brightness of the LEDs in each segment is controlled by the corresponding image-
region luminance value. In case of dark image scenes, for instance, the corresponding
LEDs are turned off so that the light leakage of the LCD can be strongly reduced.
HDR LCD Display HDR47ES6MB from the company SIM2 uses 2202 white LEDs
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for local dimming, each is individually controlled. It is of more than 6000 cd/m2

peak brightness and exhibits a dynamic range of up to 1:17.5 f/stops or about 1:1.85
× 105 (=217.5).

There are researchers that use monochromatic RGB LEDs for local dimming
[37]. Besides HDR, the monochromatic backlighting technique is advantageous with
respect toWCGpurpose, because the colors generated by RGBLEDs aremuch purer
or much more saturated than that generated by CFA filtering white light. Nowa-
days, monochromatic backlighting technique is only used for high-end displays,
e.g. Qualia of Sony and DreamColor of HP. The emerging microLED display also
uses monochromatic RGB LEDs to emit lights. The monochromatic backlighting
technique is also beneficial to reduce the HDR display power consumption. If, for
example, only green color scenes are to be reproduced, the red and blue LEDs can be
turned off, and thus energy can be saved. This is not the case for white LED, because
the white LED has to remain on so that the CFA generates the green light, whereas
the blue and red light generated by the CFA are useless. Monochromatic backlight-
ing technique can save display energy. This is also due to the Helmholtz–Kohlrausch
effect, stating that a display with a more saturated color is perceived to be brighter
[38].

Laser techniques can be used to realize an HDR and in particular WCG display,
because the laser color is pure, and the laser technique can realize the BT.2020
color space. However, the energy consumption and cost of laser display may pose
a challenge to its wide spreading. Many studies point out that local dimming can
significantly reduce display power consumption, e.g. [32]. Local dimming needs
many backlight units, which can be inexpensively realized by LEDs, but could be
very expensive in case of laser realization. On the contrary, the emerging microLED
display technique may provide a good alternative. MicroLED can generate much
purer colors than the current widespread RGB color generation, in which CFA is
used to filter the white light. Moreover, the microLED display technique does not
need liquid crystals any more, which cause the most power of a display. Companies,
like Sony and Samsung, have already exhibited microLED displays [39, 40].

21.4 Heat Dissipation of HDR Display and Power Saving
by Four-Primary-Color WCG

An HDR display of high peak brightness consumes much electricity and is con-
fronted with problem of heat dissipation. The world’s first HDR display DR37-P
fromBrightSide Technologies, called Sunnybrook Technologies back then and taken
over by Dolby, needs water-cooling system [41]! HDR displays often face overheat-
ing problems. The overheating problem limits the widespread deployment of HDR
display. On the market 2019, there is no HDR display capable of generating peak
brightness of 10,000 cd/m2, which is required by the Dolby Vision HDR standard,
although at IBC 2016 the company SIM2 exhibited the world’s first HDR display
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of 10,000 cd/m2 peak brightness [42]. Among all the display components, the panel
makes up the largest proportion of the total display power consumption, e.g. for
living room TVs (≥80 cm/32′′) more than 85% of the consumed power is caused by
the LCD backlight [32].

An HDR display not only faces the technical problem of heat dissipation, but
also faces the legislative regulation. According to the United States Environmental
Protection Agency, any display manufactured as of January 28, 2020, must meet Ver-
sion 8.0 requirements to bear the ENERGYSTARmark. Display power consumption
reduction becomes more and more prominent and urgent.

Luckily, the four-primary-color WCG, which is essential for the color reproduc-
tion of high fidelity, can significantly save the display panel power. RGBW (W:
White) four-primary-color pixel format OLED was reported by several studies, e.g.
[43, 44]. Besides RGB subpixels, a white subpixel is used so that white light can
pass unfiltered through, i.e. with high efficiency. Because white color is the most
important color and almost all the composite colors contain white color, high effi-
ciency white color generation will lead to energy saving of RGBW OLED. Since
white pixel does not change the hue, strictly saying the RGBW pixel pattern is a
three-primary-color format.

In addition to RGBW subpixel format, the RGBY subpixel structure has attracted
attention. The Japanese Semiconductor Energy Laboratory developed anOLEDwith
a microcavity structure combined with a blue/yellow tandem structure [45]. The
tandem OLED with red, green, blue and yellow subpixels can significantly reduce
OLED’s power consumption [45]. AU Optronics Corporation developed worldwide
the first RGBY format high-definition OLED [46]. It can reduce OLED’s power
consumption compared to the conventional three-primary-color OLED panel, since
the human visual system is very sensitive to the yellow color and for the same bright-
ness lower energy suffices. Thanks to four-primary colors, the color gamut can be
widened too, which is essential for high fidelity color reproduction. The color mixing
is unique under three-primary-color system. There are myriad color mixing possi-
bilities under an RGBY four-primary-color system. To solve the ambiguous color
mixing problem, Yoshiyama suggested to maximize the luminance function resulted
from the RGBY four-primary colors [47]. In the course of the luminance function
maximization, however, the human visual characteristics is not taken into account.
The human eye exhibits a very different sensitivity to the different wavelength light.
For instance, the human eye cannot perceive the existence of the infrared light, no
matter how strong it is. The human eye is also insensitive to the red and blue light,
as reportedly shown by the luminosity efficiency function curves in Fig. 21.13 (left).
In fact, there exists the scotopic luminosity efficiency function curve. The scotopic
luminosity efficiency function is irrelevant for HDR display of high peak bright-
ness and irrelevant to WCG as well, because the human eye cannot perceive color in
case of scotopic vision. To avoid possible misdirecting from themainmessage of this
section, the scotopic luminosity efficiency function curve is removed from Fig. 21.13
(left). The photopic luminosity function curves include the CIE 1931 standard data
(solid), the modified data by Judd–Vos (dashed), and the Sharpe, Stockman, Jagla &
Jägle data (dotted) [48].
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Fig. 21.13 Luminosity efficiency function curves [48] (left) and WPE [49] (right)

Making use of the human visual characteristics, one can significantly reduce the
display panel power consumption [50]. The display panel power can be saved by
diminishing the usage of that color, to whose brightness the human eyes are not
sensitive. From Fig. 21.13 (left), one can see that the human eyes are insensitive to
the brightness of the blue and red color. Although for the reproduction of a composite
color three primaries are needed, one uses the fourth color, i.e. yellow, of the RGBY
four-primary-color OLED WCG display to diminish the usage of the blue or red
primary, as illustrated by the left drawing in Fig. 21.14. From this figure, it is obvious
that one can diminish the usage of the red color, because colors falling within the
�YGB triangle can be mixed by YGB three primaries.

Nowadays, the display market is dominated by LCDs, which use LEDs as back-
light. As mentioned before, monochromatic LED backlighting technique is widely
used in high-endLCDs.After Sony introduced theworld’s first commercial full-array

Fig. 21.14 Possible color mixing by YGB (left) and by XGB (right)
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monochromatic RGB LED-backlit LCD TV Qualia 005 in 2004, many companies
have adopted the monochromatic backlighting technique in their high-end products,
e.g. HP, Dell, Eizo, Hazro, LG and NEC [4]. Some Sony’s LCDs even use four-
primary-colormonochromatic LEDs, but one red, one blue and two green LEDs [51].
The emerging microLED display technique uses monochromatic LEDs to generate
red, green and blue lights. Energy saving means cost reduction during the operation
time. In addition to energy saving, RGBY four-primary-colors WCG can improve
the color reproduction performance. Therefore, the authors hope that this chapter
can contribute to the spread of the RGBY four-primary-color WCG technique.

The blue LED has amuch higher wall-plug efficiency (WPE) than the red LED, as
shown by the right drawing in Fig. 21.13. Therefore, one should diminish the usage
of red color instead of blue color, although the human eyes are even less sensitive to
the blue light brightness than to the red light, in particular to the red color specified by
BT.2020, whose wavelength is larger than that of the red color specified by BT.709.

The LED’s so-called green gap phenomenon precisely should be called yellow
gap, because the WPE value of yellow LEDs is low, which is obvious from the right
drawing in Fig. 21.13. Although researchers have made a breakthrough in increasing
the efficiency of the yellow LEDs [52], efficient yellow LEDs are not yet available on
the market. Therefore, instead of yellow LED, the orange LED is used here. Then,
one divides the �RGB triangle into �RXB and �XGB triangles to diminish the
usage of red color, as illustrated by the right drawing in Fig. 21.14, where X stands
for orange currently, and for yellow in the future. Colors falling within �XGB will
be mixed by XGB. This way, the usage of the red color is diminished.

Experiments have been conducted to compare the energy consumption by means
of the conventional RGB color mixing scheme and the RGBX color mixing scheme
described above. To exclude the influence of the blue color, six colors on the GX
line are used to conduct the comparison, as depicted in Fig. 21.15 (left). The power
consumption for the RGB and XGB case is given in Fig. 21.15 (right). It is clear that

Fig. 21.15 Colors on GX line (left) and their energy consumption comparison (right)
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Fig. 21.16 Random colors (left) and their energy consumption comparison (right)

the XGB color-mixing scheme can significantly save energy in comparison to the
RGB color-mixing method.

To avoid possible coincidence, 12 other colors are randomly chosen for further
power-consumption comparison experiment, as depicted in Fig. 21.16 (left). For
mixing the 12 composite colors, the blue color is needed. The power consumed by
the RGB color mixing and the XGB color mixing is given in Fig. 21.16 (right). This
experiment again proved that the OGB color mixing can significantly reduce the
power consumption, compared to the conventional RGB color-mixing method.

Evaluating the results given by Figs. 21.15 and 21.16, on average more than
20% display panel power consumption can be saved. The panel power consumption
method can mitigate the overheating problem of HDR displays, on the premise of a
wide color gamut.

If one takes into account the fact that most of the pixels of natural images fall
within the�OGB (O for orange) triangle, the energy-saving effect achieved by using
the 4th color is significant. Li et al. have evaluated the ratio of pixels falling within
the �OGB under BT.709 and BT.2020 color space, respectively [50]. The ratio is
beyond 80% for 19 of the 20 test images. The exception image also has a ratio of
more than 60%. Image pixels will undergo gamma-correction before display. Li et al.
also evaluated the ratio after gamma-correction. The ratio after gamma-correction
becomes even higher.
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21.5 Delivering Four-Primary-Color Video Using
the State-of-the-Art Data Compression Method
and YUV Bandwidth

In this chapter, the authors only discuss the delivery issue related to the four-primary-
color video signal. Methods to deliver HDR video signals have been addressed by
other researchers, e.g. Mantiuk and Myszkowski in Chap. 14 of [11].

The introduction part of this chapter mentioned that the current RGB color system
can only cover a part of the visual locus. Multi-primary-colors are an efficient way
to widen the color gamut. The emergence of RGBY four-primary-color displays
will inevitably demand the corresponding contents, i.e. the delivery of RGBY four-
primary-color videos. Besides Semiconductor Energy Laboratory and AUOptronics
Corporation, which developed RGBY four-primary-color OLEDs, as mentioned in
Sect. 21.4, there are also companies producing four-primary-color LCDs. Sharp has
produced severalmodels ofRGBYfour-primary-colorLCDTV,branded asQuattron,
for instance LCD-80XU35A. Actually, Quattron is not the first four-primary-color
technique, because as early as in the 1970s, Panasonic developed the Quatrecolor
display technique with yellow as the 4th color and put it on the market. It is expected
that there will bemoremanufactures producing four-primary-color displays, because
in comparison to the conventional RGB display, the power consumption of a display
panel can be reduced by adopting the yellow color as the 4th color. This is due
to the fact that the human eye is very sensitive to the yellow color light, as the
luminosity efficiency function states. RGBY four-primary-color displays need the
corresponding four-primary-color contents to be delivered.

There is another important reason necessitating the delivery of RGBY four-
primary-color contents. The human visual system can bemore precisely modelled by
the opponent channels as mentioned before, for which the yellow color in addition to
RGB colors is essential. By delivering the yellow color besides RGB one can realize
the theory of opponent channels.

The above reasons state that RGBY four-primary-color videos should be deliv-
ered. However, four-primary-color video will cause much more data than the current
RGB video, and due to the valuable bandwidth, there is no affordable means to
deliver RGB+Yellow video contents until now. This section will solve the dilemma
between the demand on four-primary-color video contents and the available YUV
bandwidth.

This section proposes a four-primary-color video coding scheme that is compati-
blewith the current three-primary-color video system. It aims at enabling the delivery
of red, green blue and yellow four-primary-color video by means of the state-of-the-
art data compression method and the available YUV bandwidth. As a result, it can
efficiently widen the color gamut and match the opponent-channel theory, that more
precisely models the human visual system than the popular RGB color space.

The proposed technique will encode the image colors beyond the RGB color
gamut in a different way to the image colors within the color gamut covered by the
RGB three primaries. More precisely, the image regions, whose colors are within the
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RGB color gamut, will be further encoded as the popular YCbCr format, whereas
the image regions, whose color gamuts are outside the RGB color gamut, will be
encoded differently, i.e. as a pseudo YCbCr format, which can be distinguished from
the real YCbCr format at the decoder side without any metadata. If a pixel that is
encoded as the pseudo YCbCr format at the deliver side is decoded by means of the
real YCbCr format, negative YCbCr values will occur. In this way, the decoder can
blindly identify the source of YCbCr signals, i.e. from which three-primary-color
the color pixel in question is represented.

The proposed coding scheme does not need to modify the state-of-the-art data
compression methods. It also does not need more bandwidth than the available YUV
one. One only needs to specify a scheme to encode image contents whose colors are
beyond the RGB color gamut so that the receiver can decode them correctly.

The four-primary-color video delivery method is not limited to RGBY four-
primary colors. BecauseYu et al. addressed the delivery of RGBY image components
by means of the state-of-the-art data compression method and the available YUV
bandwidth [53], furthermore, until now, RGBY image sensors and cameras are com-
mercially not yet available, this section only discusses the delivery of RGBE image
components without necessitating modifying the state-of-the-art coding standards
and increasing the bandwidth. Because the 4th primary color can be yellow or emer-
ald, it is denoted as X in the following. In this section, the authors will at first discuss
the decomposition of the quadrilateral connecting the red, green, blue and emer-
ald colors into two triangles. Then, the coding scheme for colors falling within the
�XGB triangle is described that enables the decoder to blindly differentiate between
the YCbCr signal encoded from RGB and the pseudo YCbCr signal encoded from
XGB.

21.5.1 Decomposing Quadrilateral into Two Triangles

RGB and the fourth primary color ‘E’ constitute a quadri-lateral. As mentioned
above, the 4th primary color that can be transmitted by the method herein is not
only emerald, it can be yellow. In fact, the 4th color can be even another color that
lies outside the �RGB triangle on the CIE chromaticiy diagram. Taking the emerald
color as the 4th primary color, denoted as ‘X’, ‘X’ is located to the left side of the
straight line BG as illustrated in Fig. 21.17.

For the current three-primary color image system, the representation of a color
covered by the �RGB triangle is unique. In case of four-primary colors, the rep-
resentation of a color is ambiguous, like the composite color C1, C2, C3 and C4 of
Fig. 21.17. Such composite colors can be mixed from R, G, B and E. However, the
mixing ratios of R, G, B and X are not unique. In particular, colors represented by
four colors will challenge the image transmission due to the high data amount. If one
wants to reduce the data amount, the data compression of the emerald color image
component will be not efficient, because it is not correlated to the RGB three color
image components.
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Fig. 21.17 Quadrilateral constituted by R, G, B, X—RGB is BT.709 primaries

To solve the above problems, one decomposes the quadrilateral constructed by
R, G, B and X into two triangles �RGB and �XGB, as schematically shown in
Fig. 21.17. In particular, when ‘X’ is within the cyan area of Fig. 21.17, the RGBX
four-primary colors can significantly extend the color gamut.

Colors like color C1 in Fig. 21.17 is inside the �RGB triangle and can be com-
puted from red, green and blue color. Such colors are within the color gamut of
conventional displays and can be reproduced correctly by the conventional display
devices. Therefore, YUV signals representing colors like color C1 will be computed
from R, G and B. Although colors like color C1 is also inside triangle �RGX and
can be computed from R, G and X, its transmission is not compatible with the cur-
rent RGB image system and one cannot fully make use of the conventional display
devices. For the same reason, colors like color C2 in Fig. 21.17, which lie within
both the �RGB triangle and the �RXB triangle, shall be represented by R, G and
B.

On the contrary, colors like color C3 do not lie within the triangle �RGB and
cannot be mixed by RGB three colors. Conventional display devices cannot correctly
render colors like color C3. However, colors like color C3 lies within the �XGB
triangle and thus can be mixed using X, G and B colors. For transmitting composite
colors like color C3, one must also build Y, U and V components to make use of the
available YUV delivery means, as in the RGB case. However, their meanings are
different to those of the RGB case.

Colors like C4 lie on the segment BG can be either represented by RGB or XGB,
and will not cause a reproduction problem, because in both cases R and X are zero,
only G and B colors contribute to mixing them.



21 High-Dynamic-Range and Wide Color Gamut Video 383

21.5.2 Encoding Scheme for Blind Identification

Once the triangle is selected, the Y and the two color difference signals U and V
are calculated for delivery purpose. The remaining problem is how to encode the
YCbCr signal mixed by XGB primaries so that the decoder can blindly differentiate
between the pseudo YCbCr triplex mixed by XGB and the real YCbCr triplex mixed
by the conventional RGB. One method to realize the blind identification is to change
the luminance signal Y in case of XGB mixing [53]. The nominal range of the Y
signal in case of RGB mixing is between 0 and 1, i.e. YRGB ∈ [0, 1], and there is
no offset. If one changes the nominal range of Y in case of XGB mixing to −1
and 0, i.e. YXGB ∈ [−1 0], the corresponding YCbCr signals from RGB and XGB
can be differentiated. To get digital format like YCbCr format an offset has to be
added to YXGB, which will lead to change in the formula of UXGB and UXGB, too.
Besides, one reserves some quantization levels at the upper and at the lower end to
deal with the Gipp’s phenomenon, as already mentioned in Sect. 21.2.2, as well as
the quantization level 0 and 255 for synchronization purpose, which are specified for
n = 8 bit digital image signals. Taking all these into account, through maximizing
the cost function representing the probability of negative YCbCr values that occur
with all the possible combinations of the n bit image signals, one gets the formula
for digital image signal Y′

XGB, U
′
XGB and V′

XGB, which stand for the quantized YXGB,
UXGB and VXGB signals respectively:

⎡
⎣
Y′

XGB

U′
XGB

V′
XGB

⎤
⎦ =

⎡
⎣

−0.1063 −0.3576 −0.0361
−0.0539 −0.1813 0.2352
0.1347 −0.1223 −0.0124

⎤
⎦

⎡
⎣
X′

G′

B′

⎤
⎦ +

⎡
⎣
134 × 2n−8

67 × 2n−8

45 × 2n−8

⎤
⎦ (21.1)

where X′, G′ and B′ respectively represent the quantized XGB signals, and n denotes
the bit depth of digital image signals and n = 8 in case of LDR images of BT.709
color gamut. For other kind of images, n may take another value, e.g. n = 10 for
HDR10 format HDR images.

At the decoder side, one gets:

⎡
⎣
X′

G′

B′

⎤
⎦ =

⎡
⎣

−2 0 5.8456
−2 −0.3983 −1.7377
−2 3.9454 0

⎤
⎦

⎡
⎣
Y′

XGB − 134 × 2n−8

U′
XGB − 67 × 2n−8

V′
XGB − 45 × 2n−8

⎤
⎦. (21.2)

By inverse operation of the reserved quantization levels, the XGB three-primary-
color signals are recovered by:

⎡
⎣
X′

G′

B′

⎤
⎦ =

⎡
⎣

−2.3288 0 6.8065
−2.3288 −0.4638 −2.0233
−2.3288 4.5940 0

⎤
⎦

⎡
⎣
Y′

XGB − 126 × 2n−8

U′
XGB − 67 × 2n−8

V′
XGB − 45 × 2n−8

⎤
⎦. (21.3)
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Yu et al. have tested the encoding scheme for the XGB case using the state-of-
the-art image coding standards without the necessity of any modification. The state-
of-the-art coding methods can compress more efficiently the XGB format image
data than the popular RGB format image data, which means that four-primary-color
images can be deliveredwithout additional bandwidth to the currently availableYUV
transmission bandwidth.

21.6 Conclusion

This section discussed the HDR andWCG imaging, display and delivery techniques.
They are related to each other. With respect to imaging, the HDRC image sensor can
be applied to capture the four-primary-colorWCG image video, only a different CFA
is needed. A CFA different to the popular Bayern pattern can for instance contribute
to improve the SNR of HDR images at dark scenes. The HDR and WCG display
techniques benefit from each other as well. Not only HDR display is important to
WCG, four-primary-color WCG display can mitigate the heat dissipation problem
encountered by the HDR display nowadays. A four-primary-color image coding
scheme is described, and it enables to deliver videos of four-primary colors without
demanding additional bandwidth.
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Chapter 22
Update on Brain-Inspired Systems

Ulrich Rueckert

22.1 Introduction

Advances in technology have successively increased our ability to emulate artificial
neural networks (ANNs) with speed and accuracy. At the same time, our understand-
ing of neurons in the brain has increased substantially, with improved imaging meth-
ods and sophisticated microprobes contributing significantly to our understanding
of neural physiology. These advances in both technology and neuroscience stimu-
lated international research projects with the ultimate goal to emulate entire (human)
brains. These new approaches are more brain-inspired than the ANN hardware from
the nineties. They emulate neural networks on the basis of spiking integrate-and-fire
neurons [1] with differences in emphasis. Some approaches aim at a more-detailed
and, hence, more computationally-expensive model of neural behaviour, while oth-
ers use simpler models of neurons but larger networks. In the following, we will
consider projects intended to scale up towards millions of neurons, fabricated and
tested with currently available technologies.

The majority of larger more bio-realistic simulations of brain areas are done on
High Performance Supercomputer (HPS). For example, the Blue Brain Project [2] at
EPFL in Switzerland deploys just from the beginning HPSs for digital reconstruction
and simulations of themammalian brain. The Blue Brain project is unusual in its goal
to simulate the ion channels and processes of neurons at this fine-grained compart-
mental level. These models attempt to account for the 3Dmorphology of the neurons
and cortical column, using about 1 billion triangular compartments for the mesh of
10,000 neurons using Hodgkin-Huxley equations [3], resulting in gigabytes of data
for each neuron, and presumably a high level of bio-realism based on floating-point
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arithmetic. The time needed to simulate brain areas is about two orders of magni-
tude larger than biological time scales. Based on a simpler (point) neuron model, the
simulation could have orders of magnitude lower computational workload.

The network size and the used neuron model mainly determine the computa-
tional complexity of the simulation. The implementation cost of the Hodgkin-Huxley
model [2] with a high biological plausibility (22 parameters) is orders of magnitude
higher (about 1200 FLOPS) than the cost for a simple integrate-and-fire-model ([1],
3 parameters, about 5 FLOPS) (simulation of 1 ms biological time) [4]. At present,
the most powerful commercially available HPS on the TOP500 supercomputer list
(June 2019) is the Summit IBM Power System AC922 [5]. It has about 2.5 million
IBM Power 9 processors (3 GHz), about 2 Peta Byte (PB, 1015 Bytes) of memory, 10
Mega Watt (MW) power consumption, and a theoretical peak performance of about
200 PFLOPS (20 GFLOPS/Watt). In principle, this system is able to store all synapse
values (if restricted to one byte) of a human brain. The update rate could be 100 Hz,
comparable to biology, and energy per synaptic operation of about 50 Pico Joule (pJ,
10−12), orders of magnitude higher compared to biology (about 4 fJ). Though this
is a naïve view, it gives an upper limit of what can be theoretically achieved with
current HPS technology.

Software emulation of SpikingNeural Networks (SNNs) onHPS is widely used in
computational neuroscience laboratories worldwide [6]. Applying HPS for abstract
brain simulations is a convenient way but incurs some disadvantages. It does only
support batch processing, interactions during simulation are restricted, simulations
are in practice by far slower than biological real-time, and getting access to the
whole machine for one user is difficult as well. Dedicated brain simulation machines
(Neurocomputer) try to overcome these disadvantages.

22.2 Digital Neuromorphic Hardware Systems

The SpiNNaker (Spiking Neural Network Architecture) project at Manchester Uni-
versity [7] aims at a massively parallel multi-core computing system. The basic
computing node of the current version has one SpiNNaker multi-core chip with 18
low-powerARM968 processor cores (200MHz), eachwith 96KBof tightly-coupled
local on-chip-memory for instructions and data, and a 128MB SDRAM chip used to
store synapticweights and other information shared by all 18 cores. 16-bit fixed-point
arithmetic is used for most of the computation, to avoid the need for a floating-point
unit and to reduce energy, computational costs and chip area. A single SpiNNaker
chip is able to simulate 16 K neurons with 1000 synapses each within a power budget
of 1 W (energy per synaptic event 10 nJ) [7]. The SpiNNaker chip was fabricated in
a 130 nmCMOS technology. Both chips are integrated as a System-in-Package (SiP)
with the SDRAM wire-bounded on top of the SpiNNaker chip (3D packaging). 48
of these nodes are mounted on a PCB, which can be scaled up to 1200 boards for
a full SpiNNaker system with more than 1 million of ARM9 cores and 7.2 TB of
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distributed RAM. This full system is in operation since 2018 and consumes at most
90 kW of electrical power [7].

The goal of the SpiNNaker system was to simulate SNNs with up to a billion neu-
rons in biological real time (1 ms). A growing number of users worldwide are now
using the system for various tasks, including Computational Neuroscience, Neuro-
robotics and general parallel computing tasks [8]. The software suite SpiNNTools
supports users inmapping their computational problem on themassively parallel sys-
tem [8]. One of the largest SNNs simulated so far is a scalable cortical-like network
of micro-columns with about 3.5 million neurons and 380 million synapses. This
SNN runs on 98 boards, 75,264 cores, and 74.3 GB of host memory. It utilizes less
than 10% of system resources. Data generation, network creation, and data loading
sums up to about 7 h [8].

Within the European Human Brain Project [9] the SpiNNaker2 system is under
development. It aims at enhancing brain size simulation in biological real-time at
10 × better efficiency. The SpiNNaker2 chip is designed for a 22 nm FDX CMOS
technology (GLOBALFOUNDRIES), integrating 144 ARM M4F cores (500 MHz,
1W)with 128KB local SRAM,floating-point support, improved powermanagement
(dynamic voltage and frequency scaling, adaptive body biasing), energy efficient
inter-chip links, and external 8 GB shared memory. Furthermore, the chip provides a
dedicated pseudo random number generator, an exponential function accelerator and
a Multiply-Accumulate (MAC) array (16 × 48 Bit multiplier) with Direct Memory
Access (DMA) for rate based ANN computation. The various processing elements
are inter-connected via aNetwork-on-Chip (NoC) and theSpiNNaker2 router handles
on-chip and off-chip spike communication. Chip architecture and amicrophotograph
of a test chip are shown in Fig. 22.1. The tape-out for the full SpiNNaker2 chip is

Fig. 22.1 SpiNNaker2 architecture (left), block architecture of one PE (bottom right) and chip
photograph of the Santos28 test chip (28 nm CMOS, 4 ARM M4F cores) [11]
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Fig. 22.2 A multi-chip board (left) of 16 IBM TrueNorth chips (die in the middle) integrating 64
× 64 digital neurosynaptic cores. Each core implements 256 neurons with 1024 spike-inputs (right)
[12]. ©IEEE 2014

scheduled for 2020. The full 10 million core machine is expected to have 5 PFLOPS
and an energy per synaptic spike-based update of 300 pJ (rate-based 300 fJ) [10].

The IBM TrueNorth chip (Fig. 22.2) integrates a two-dimensional on-chip net-
work of 4096 digital application-specific cores (64 × 64) and over 400 Mio. bits
of local on-chip memory (~100 KB SRAM per core) to store synapses and neuron
parameters as well as 256 Mio. individually programmable synapses on-chip [12].
One million individually programmable neurons can be simulated time-multiplexed
per chip, sixteen-times more than the current largest neuromorphic chip. The chip
with about 5.4 billion transistors is fabricated in a 28 nm CMOS process (4.3 cm2

die size, 240µm× 390µm per core). By device count, TrueNorth is the largest IBM
chip ever fabricated and the second largest (CMOS) chip in the world. The routing
network extends across chip boundaries through peripheral merge- and split-blocks.
The total power, while running a typical recurrent network in biological real-time,
is about 70 mW resulting in a power density of about 20 mW/cm2 (about 26 pJ)
which is in turn comparable to the cortex but three to four orders-of magnitude lower
compared to 50–100 W/cm2 for a conventional CPU [13].

IBM laid out an ecosystem for TrueNorth user support which is in use at many
universities and government/corporate labs. Single-chip boards and a scaled-up sys-
tem of tightly integrated 16 chips in a 4× 4 configuration are in use for a spectrum of
applications from mobile and embedded to cloud and high performance computing
[14, 15]. However, TrueNorth is still a proof-of-concept research prototype and plans
for future generations of such processors are not known yet.

In 2017, Intel presented its self-learning neuromorphic Loihi chip (Fig. 22.3).
It integrates 2.07 billion transistors in a 60 mm2 die fabricated in Intel’s 14 nm
CMOS FinFET process. The first iteration of the Loihi houses 128 clusters of 1024
artificial neurons each for a total of 131,072 simulated neurons, up to 128 million
(1-bit) synapses (16 MB), three Lakefield (Intel Quark) CPU cores, and an off-chip
communication network [16]. An asynchronous NoC manages the communication
of packetized messages between clusters. Intel supplies chips in a one- or two-chip
USB stick called Kapoho Bay, as well as on printed circuit boards (with four up to
64 chips per boards).
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Fig. 22.3 Loihi chip
micrograph [17]. ©INTEL
2017

Intel’s Loihi is completely digital employing asynchronous processing and sup-
porting inference and learning (Fig. 22.4). It runs SNNs without external memory.
Each core has a 256KB localmemory to store configuration and state variables.Asyn-
chronous processing is coordinated by distributed barrier-synchronization. Loihi’s
most distinctive feature is its ability to learn. A set of learning rules can be pro-
grammed through 4-bit microcode operations for modifying synapses with a weight
precision between 1 and 9 bits. Learning is local to a single neuron considering
pre- and post-synaptic activity from spike trains using long and short time constants.
Loihi’s performancemeasurements (pre-silicon) yield a minimal energy per synaptic
spike of 23.6 pJ, energy per synaptic update of 120 pJ, maximum time per synaptic
update of 6.1 ns, energy per neuron update of 81 pJ (active)/52 pJ (inactive), and
time per neuron update of 8.4 ns (active)/5.3 ns (inactive).

Loihi is not a product, but available for research purposes among academic
research groups organized in the Intel Neuromorphic Research Community (INRC).
Within the community a steadily increasing number of applications for the Loihi sys-
tem are implemented and benchmarked [17]. In theory, Loihi can scale all the way up
to 4096 on-chip cores and 16,384 chips, though Intel has no plans to commercialize
a design this large yet.

22.3 Mixed-Signal Neuromorphic Hardware Systems

The European funded research project BrainScaleS (Brain-inspired multiscale com-
putation in neuromorphic hybrid systems) aimed at understanding and emulating
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Fig. 22.4 Loihi computing core top-level microarchitecture [16]. ©IEEE 2014

Fig. 22.5 Photograph of the BrainScales wafer (left) and view of the BrainScales system with 20
wafer modules (right) [20]. (Creative Commons Attribution-NoDerivatives CC BY-ND 4.0)

functions and interactions ofmultiple spatial and temporal scales in brain-information
processing [18]. Within this project the basis for the BrainScales hardware was laid
and further developed in the HBP. The aim is a neuromorphic hardware of a very-
large-scale, mixed-signal implementation of a highly connected, adaptive network of
analog neurons. The basic element is the HICANN (High Input Count Analog Neu-
ral Network) chip hosting one analog network core (ANC) and necessary support
circuitry for communication as well as controlling. The ANC was implemented in a
180 nmCMOS technology and has a total of 112 K synapses and 512 neuron circuits.
The area of the analog neuron circuit is 1500 µm2. The synapse weight is stored in
a 4-bit SRAM and is represented as a current generated by a 4-bit multiplying DAC.
The synapse area is 150 µm2. Two synapse columns of the ANC can be combined
to realize a weight resolution of 8 bit at the expense of bisecting the number of
available synapses for the ANC neuron circuits [19]. A special feature of the Brain-
ScaleS hardware system is wafer-scale integration of the HICANN chips. A total of
384 HICANN chips can be interconnected on an 8-inch silicon wafer (Fig. 22.5),
implementing 196,608 neurons and 44 Mio. synapses. One key target of the Brain-
ScaleS hardware is a 104-fold speed-up of the natural neuron-firing rate of 10 Hz.
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Fig. 22.6 Chip micrograph of the HICANN-DLS test chip [21] (left) and the full size prototype
chip (right) [22]

The HICANN analog neurons communicate with each other digitally. The backbone
of the communication on the wafer is a grid of horizontal and vertical buses which
are placed on top of the manufactured wafer. The wafer is organized into 384 chips
with a maximum of 196,608 neurons with 224 inputs (synapses) resulting in about
2 × 109 events/s and 64 Gb/s per wafer.

The second generation of the BrainScales hardware is under development within
the HBP. The new mixed-signal neuromorphic computing core integrates a custom
Single Instruction Multiple Data (SIMD) processor (32-bit, 128-bit wide vectors)
with an Analog Network Core (ANC). TheHICANN-DLS (High Input Count Ana-
log Neural Network with Digital Learning System) chip is designed for a 65 nm
CMOS technology aiming at a better precision of the neuron-(10 bit resolution)
and synapse-circuits (6-bit SRAM) and an improved communication system [21].
The chip is operating 1000 times faster than biological real-time. Each analog neu-
ron is configured by 14 current and 4 voltage biases. Plasticity is implemented
software-controlled on the embedded processor. A first prototype chip with 32 neu-
rons (200 µm × 11.76 µm per neuron) has been successfully fabricated (Fig. 22.6)
and tested [21]. The full size-prototype chip with 128 K synapses, 512 neural com-
partments, two SIMD plasticity processing units and 1024 ADC channels for plastic-
ity input variables is in fabrication (65 nmCMOS). The estimated power consumption
is about 10 pJ/synaptic event.

The Neurogrid project at Stanford University uses programmable analog “neu-
rocore” chips [23]. Each 12 × 14 mm2 CMOS chip (180 nm CMOS) can emulate
over 65,000 neurons, and 16 chips are assembled on a circuit board to emulate over
a million neurons. The entire 1 M-neuron system consumes about 3.1 W. The Neu-
rogrid neuron circuit consists of about 300 transistors modelling the components of
the cell, with a total of 61 graded and 18 binary programmable parameters. Neu-
rogrid uses local analog wiring to minimize the need for digitization for on-chip
communication. Like the other systems, Neurogrid uses an AER packet network to
communicate spikes between chips. Like SpiNNaker, the Neurogrid neuron array is
designed to run in biological real-time.
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Fig. 22.7 Layout of the Braindrop core (left): inset shows the detail of a 16-neuron tile (red outline).
A: 4096-neuron array, B: digital datapath, C: weight memory, D: activation memory, E: pool action
table, F: FIFO, G: tag action table, H: AER tree logic, I: AER leaf logic, J: CM, K: neuron, L:
synaptic filter, M: 12 DACs and two ADCs, and N: routing between neuron array, data path, and
IO pads; Test board with one Braindrop core for embedding into the Nengo framework (right) [24].
©IEEE 2018

The informal successor of the Neurogrid project is the Braindrop mixed-signal
neuromorphic system [24]. The neuromorphic core is fabricated in a 28-nm FDSOI
process, integrating 4096 neurons and 64 K synapses (8-bit) in 0.65 mm2 (Fig. 22.7).
Braindrop’s computations are specified as coupled nonlinear dynamical systems
implemented by subthreshold analog circuits as dynamic computational primitives.
Special care is given to device mismatch and temperature sensitivity compensation
at the network level. Different techniques are applied to achieve robustness, e.g.
reverse body bias, sparse encoding, and deep subthreshold operation. The energy per
synaptic operation comes down to 381 fJ for typical network configurations [24].
The Braindrop processor is connected to the neural Engineering framework Nengo
[25] for mapping high-level network abstractions to the neuromorphic chip.

The DYNAP-SEL is a novel multi-core neuromorphic processor from the lab of
Giacomo Indiveri (University of Zurich, Switzerland) [26]. The processors is fabri-
cated in a standard 0.18 µm CMOS process and an advanced 28 nm Fully-Depleted
Silicon on Insulator (FDSOI) process [27]. The chip has four neural processing cores,
each with 16× 16 analog neurons and 64 4-bit programmable synapses per neuron,
and a fifth corewith 1× 64 analog neuron circuits, 64× 128 plastic synapseswith on-
chip learning circuits, and 64× 64 programmable synapses (Fig. 22.8). All synaptic
inputs of all cores are triggered by incoming address events, which are routed among
cores and across chips by asynchronousAddress-Event Representation (AER) digital
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Fig. 22.8 Dynap-SEL chip with four non-plastic cores and one plastic core fabricated using a
28 nm FDSOI process [28]

router circuits. The DYNAP-SEL routing architecture is optimized for AER commu-
nication and composed of a hierarchy of routers at three different levels that use both
source-address and destination-address routing. Most of the silicon area is occupied
by digital SRAM and special content addressable memory cells. The neuromorphic
processors support 1088 integrate-and-fire neurons with 78,080 synapses. The chip
area is 7.28 mm2, the area of a neuron is 20µm2, and the energy per synaptic event is
2.8 pJ [28].

22.4 Other SNN Accelerator Approaches

The number of digital SNN implementations is constantly increasing, but not as
fast as hardware accelerators for non-spiking ANNs. Most of them are research
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Fig. 22.9 Architecture (left) and die photo (right) of the SNU digital neuromorphic processor [29]

prototypes, only few with a clear application in mind. The Seoul National University
(SNU, Korea) designed an on-chip trainable neuromorphic SNN processor for fast
pattern classification [29]. The SNU processor is fabricated in 65 nm LP CMOS,
has a core area of about 10 mm2, consumes about 24 mW at 0.8 V, and operates at
20 MHz. It has a fixed structure of two hidden layers and an output layer with 10
target neurons (Fig. 22.9).

Beijing’s Tsinghua University Center for Brain Inspired Computing Research
designed a hybrid architecture that can concurrently run Convolutional Deep Neural
Networks (CDNNs), Recurrent Neural Networks (RNNs), as well as biologically
inspired SNNs [30]. The chip, called Tianjic, is manufactured in a 28 nm CMOS
technology with a die area of 14.4 mm2 (Fig. 22.10). Running at 300 MHz, the total
chip power is less than 1.0 W. Tianjic implements about 40,000 neurons (256 neu-
rons per core× 156 Fcores) and 10 million synapses. Each Fcore (unified functional
core) includes 16 single-cycle 8-bit multipliers and 24-bit accumulators. “Because
each neuron has 256 synapses, the 24-bit accumulators allow up to 256 sequential
MAC operations per neuron without overflow. To model 256 neurons per Fcore,
the chip repeats that process 16 times. Each Fcore has a 22 KB memory, yielding
a total of 3.4 MB for the entire Tianjic chip. At its 300 MHz clock speed, Tian-
jic’s peak performance is 1.5 trillion operations per second (TOPS), but the effective
performance is 1.2 TOPS owing to the extra processing time for axon-input organi-
zation and transformation, inter-neuron communications, and soma activities” [30].
The Tianjic chip is used for an embedded autonomous-bicycle experiment where
it handles balance control, decision-making, object detection, obstacle avoidance,
tracking, and voice-command recognition.

Several SNN implementations on FPGAs have been presented as well. Examples
are NeuroFlow (Virtex 6, different neuron models [31]), the Neuromorphic Cor-
tex Simulator [32], or the AKIDA accelerator [33]. The company BrainChip sells
the AKIDA’s core architecture as a configurable intellectual property (IP) core and
announced a chip version in 28 nm CMOS for 2020 [34]. FPGA implementations
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Fig. 22.10 Tianjic hybrid neural-network processor chip with 156 programmable cores, which
can run CDNNs as well as biologically inspired SNNs [30]

offer flexibility on custom devices fabricated with state-of-the-art digital technolo-
gies. They suffer from thememorybottle-neck and the reduced computation precision
(1–8-bit in general).

22.5 Comparison

The projects focused on in this chapter follow different technological approaches
for the implementation of SNNs. The Blue Brain project and the SpiNNaker system
simulate ANNs in software on general-purpose processors. Whereas the Blue Brain
Project employs high-performance computers (HPC) without bio-inspired architec-
tural hardware adaptations, SpiNNaker relies on embedded low-power processor
cores from the mobile world, distributed private memory per core, and a commu-
nication network optimized for transmitting “spikes” asynchronously utilizing the
address-event-representation (AER). Both approachesmake use of the concept of the
virtualization that many “neurons” can be simulated time-multiplexed on the same
digital core. TrueNorth and Loihi are based on a digital application-specific core,
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local on-chip-memory for the synapses, and a specialized routing network extending
across chip boundaries. TrueNorth andLoihi can employ timemultiplexing of several
neurons per core. BrainScaleS, DYNAP-SEL and Braindrop use a “neuromorphic”
approach, with dedicated, adjustable analog circuitry for every neuron in the ANN,
adaptive on-chip synapses, and a configurable interconnection network.

The approaches have their specific pros and cons. The neuromorphic ASICs avoid
the substantial computational overhead of software simulation and may produce a
more biologically-accurate result in less time. On the other hand, for digital imple-
mentations, there is no A/D conversion and the cost of the network routing logic
is amortized over 1000 emulated neurons per CPU (virtualization). All approaches
face the problem of spike networking. Routing AER packets [35] in real-time from
tens of billions of neurons is a challenge. The logic circuitry required for decoding
and routing may be much larger than the neuron emulation circuit itself. Another
issue with AER networking is the timing of spikes. Neurons adapt to premature and
delayed signals over time, and some signal-timing tuning is performed by the axons.
According to the routing network, the timing of spikes originating from the same
neuron varies (jitter) in the proposed network implementations. Proper synchroniza-
tion can be achieved by inserting delays or reserving communication bandwidth, as
proposed in [36].

Synaptic plasticity and learning present the biggest challenges to artificial brain
projects. On the one hand, our knowledge about plasticity, learning, and memory is
incomplete [37]. On the other hand, our technologies are far less plastic and compact
than neural tissue. Experimental evidence for some basic synaptic plasticity mecha-
nisms exist. There is also evidence for neurons growing new dendrites and synapses
to create new connections (structural plasticity) as well as changing the “weight” of
existing synapses by increasing or decreasing the number of neurotransmitter vesi-
cles or receptors for the neurotransmitters. Today, the efficient implementation of
a writable and non-volatile synapse weight is a hot research topic. Within the dis-
cussed projects, the synapses are implemented digitally: 1 bit (TrueNorth), 1–9 bit
(Loihi), 4 bit (DYNAP-SEL), 6 bit (HICANN-DLS), 8 bit (Braindrop), 13 bit shared
(Neurogrid, off-chip), and 16 Bit (SpiNNaker, off-chip). Whereas TrueNorth and
Neurogrid do not support learning, the HICANN chips (hardware-based learning)
and SpiNNaker (software) include learning.

Independent of the technological approach, the projects differ in the level of bio-
realism and computational sophistication in their emulation of neurons and synapses.
SpiNNaker and TrueNorthmainlyworkwith a point-neuronmodel, as recommended
by Izhikevich [4]. A multi-compartment analog model such as Neurogrid’s two-
compartment circuits, or the BrainScaleS HICANN-DLS chip’s separate dendritic
membrane circuits, allows more sophisticated neural emulations, depending on the
complexity of the compartment emulations. The most bio-realistic approach among
the projects is the fully compartmentalized model of the neuron of the Blue Brain
Project, representing a biological neuron as hundreds of independent compartments,
each producing an output based on adjacent ion-channels and regions, and using the
computationally expensive Hodgkin-Huxley equations [37] to compute the potential
bio-realistically in each compartment.
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Table 22.1 Comparison of neuro-ASICs

Neuro-ASICS Feature
size
(nm)

Die size Neurons Synapses Bit/synapse ESE

SpiNNaker I 130 1.02 cm2 1600 a128 ×
106

8 10−8 J

SpiNNaker II 22 N/A 8–16 10−10 J

IBM
TrueNorth

28 4.30 cm2 106 256 ×
106

1 10−11 J

Intel Loihi 14 60 mm2 131,072 128 ×
106

1–9 10−11 J

HICANN 180 0.50 cm2 8-512 114,688 4–8 10−10 J

HICANN-DLS 65 32 mm2 512 131,072 6 10−11 J

Neurogrid 180 1.68 cm2 65,536 a16 ×
106

b13 10−10 J

Braindrop 28 0.65 mm2 4096 a16 ×
106

8 10−13 J

DYNAP-SEL 28 7.28 mm2 1088 78,080 4 10−12

Numbers per
chip

aOff-chip bShared ESE:
energy/synaptic
event

With the increasing number of neuromorphic hardware systems for SNNs there is
a demand for objective platform comparison and performance estimation of such sys-
tems.At present only few approaches for systematic benchmarking are published [38,
39]. Hence, an objective comparison is not possible yet. Table 22.1 summarizes chip
characteristics of the basic building block (Neuro-ASIC) of the discussed approaches
as published in the literature. For the energy demand per synaptic event (ESE) only
a rough estimation of the expected magnitude is given. The exact determination of
the ESE is difficult and not standardized yet.

There is clearly room for scaling for all projects, and it will be interesting to
follow the digital-versus-analog strategy, considering the alternative of digital 8b ×
8b multipliers with 1 fJ and 100 µm2 per multiplication [40]. With respect to system
scaling, the power efficiency of chip/wafer-level interconnects is relevant. With the
optimum efficiency of 1 mW/(Gb/s) [40], the resulting 74 W could be handled. The
more likely level at a less advanced technology nodewould be 1 kW [40]. Scaling this
up to mega-neurons clearly shows that power efficiency is the number one concern
for these complex systems.

3D integration is the further challenge for any silicon brain. The memory silicon
layer on top of the mixed-signal silicon layer can be achieved with a through-silicon-
via (TSV) technology [40], and it is only one level in the task of building the whole
system, because the global programmable digital control could be added on top. In
the BrainScaleS and Neurogrid architecture, the digital control is implemented with
FPGA (field-programmable gate array) chips on a printed-circuit board.
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22.6 Outlook

The building blocks for ICs and for the Brain are the same at nanoscale level: elec-
trons, atoms, and molecules, but their evolutions have been radically different. The
fact that reliability, low-power, reconfigurability, as well as asynchronicity have been
brought up so many times in recent conferences and articles makes it compelling
that the Brain should be an inspiration (at many different levels), suggesting that
future nano-architectures could be neural-inspired. The fascination associated with
an electronic replication of the human brain has grown with the persistent expo-
nential progress of chip technology. The last decade 2010–2020 has also made the
electronic implementation more feasible, because electronic circuits now perform
synaptic operations such as multiplication and signal communication at energy lev-
els of 10 fJ, comparable to biological synapses. Nevertheless, an all-out assembly
of 1014 synapses will remain a matter of a few exploratory systems for the next two
decades because of several challenges.

Currently, it is almost impossible to determine the best way to perform SNN cal-
culations for any given application. This is one reason for the variety of approaches
to SNN hardware implementation known in literature. For digital ICs, we can call
on efficient software tools for a fast, reliable and even complex design. We can use
many process-lines to manufacture the chips down to structure sizes of 7 nm. Dig-
ital concepts can use standard technologies with the highest density in devices. On
the contrary, the design of analog circuits demands much more design-time, good
theoretical knowledge about transistor physics, and a heuristic experience of lay-
out design. Only a few process-lines are characterized by analog circuits. In their
favour, we point out that, with integrated analog circuits, some neuron functions
are quite simple to implement. For example, summation of the dendritic input sig-
nals as a current summing is a fairly convenient electronic analog circuit operation
and smarter than with common digital accumulators, or a two-quadrant multiplier
demands only five transistors. Nonlinearity or parasitic effects of the devices allow
us to realize complex functions, like an exponential or a square-root function [41].
Note however, that analog circuits are not as densely integrated as it may seem at first
glance. They demand large-area transistors to assure an acceptable precision and to
provide good matching of functional transistor pairs, as used in current-mirrors or
differential stages. It is very unclear whether analog implementations provide any
power dissipation advantages over digital, and current evidence seems to point in
the opposite direction. The problem of benchmarking and an adequate metric for
performance evaluation is still open, too.

The systems presented in this chapter are advocating architectures with spiking
neurons. SNNs represent an attempt to mimic aspects of the brain’s architecture and
dynamics with the aim of replicating some functional capabilities in terms of compu-
tational power, robust learning and energy efficiency. In some cases an advantage of
neuromorphic computation can be shown [42]. In general, the performance of spiking
neuron circuits seems considerably inferior to that of traditional digital architectures
for realistic convolutional deep neural networks [43]. Current learning algorithms
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for SNNs do not take advantage of the peculiarities of spiking networks, and no
spiking-neuron learning algorithm has been shown to come close to the accuracy of
the backpropagation learning algorithm with continuous representations.

In 2009, the US DARPA launched the SyNAPSE program: Systems of Neuro-
morphic Adaptive Plastic Scalable Electronics [44]. It says in its description: “As
compared to biological systems…., today’s programmable machines are less effi-
cient by a factor of 1 million to 1 billion in complex, real-world environments”.
And it continues: “The vision… is the enabling of electronic neuromorphic machine
technology that is scalable to biological levels.” SyNAPSE is a programwith explicit
specifications. It requires an existing system-simulation background (like the Blue
Brain Project [1]) to assess the likelihood of realizing specified milestones. The last
one for 2018 was specified as “Fabricate a multi-chip neural system of ~108 neurons
and instantiate into a robotic platformperforming at “cat” level (hunting a “mouse”)”.
Today, we have to realize that this ambitious milestone has not been reached. Nev-
ertheless, we do have much to learn from brains from the computational standpoint
and about the implementation of resource-efficient technical systems. The hardware
realization of neural networks should not aim for an exact reproduction of nervous
systems, but simply for an efficient use of available technologies for solving practical
problems.
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Chapter 23
Energy-Harvesting Applications
and Efficient Power Processing

Thorsten Hehn, Alexander Bleitner, Jacob Goeppert, Daniel Hoffmann,
Daniel Schillinger, Daniel A. Sanchez and Yiannos Manoli

23.1 Systems and Applications

The field of energy harvesting has drawn a lot of attention in recent years and research
groups across the globe are working in this field. The extraction of energy from the
surrounding environment can be beneficial to a large variety of applications ranging
from industrial condition monitoring systems all the way to consumer products in
everyday life.

23.1.1 Wearables

The ever-increasing number of portable devices in ourmodern society face onemajor
issue, which is battery lifetime. Energy harvesting technologies offer the opportu-
nity to prolong the device lifetime or replace batteries altogether. The operation of
body-worn or textile-integrated systems in particular becomes significantly more
comfortable for the end user when the need for battery replacement or recharging
and maintenance is minimized or even eliminated. When considering the human
body as an energy source, body heat [1, 2] and body motion first come to mind. In
terms of human motion, kinetic energy harvesting devices working as knee braces
[3, 4], backpacks [5, 6] and devices to be mounted at the ankle [7] or within the shoe
[8–11] have been presented in literature. The focus in the next section is on energy
harvesting devices for integration into shoes.
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23.1.1.1 Swing-Motion Energy Harvesting

The acceleration of the foot due to the leg swing during walking is one of the major
kinetic energy sources of the human gait. With increasing motion speed the accel-
eration of the foot increases from about 3 g (slow walking) to 15 g and more (fast
jogging). In contrast, the step frequency of a leg varies only between 0.8 and 1.2 Hz
[12]. Due to the low excitation frequency, a potential harvesting device cannot be
continuously operated in resonance mode as it is typically possible with machine
vibrations of higher frequencies. Therefore, non-resonant approaches seem to be a
promising solution. In this respect a number of linear devices have been developed
for integration into shoes [11–13]. Carroll et al. [11] presented a device based on a
magnet-in-channel structure. The average output power of a device with optimized
parameters was 14 mW at a walking speed of two steps per second. Another magnet-
in-channel structure was presented by Wang et al. [13]. The device incorporates a
multi-pole magnet and several coils arranged along the channel. The induced voltage
output was up to 1 V.

In [12] Ylli et al. introduced six different energy harvesting architectures (HAC1–
HAC6), each occupying an active volume VA of 71 mm by 37.5 mm by 12.5 mm.
Numerical analysis revealed architectureHAC5 (Fig. 23.1a) to be themost promising
structure with the highest power output. Architecture HAC5 incorporates a movable
closedmagnetic circuit with an air gap of 2.4mmand a linear coil array. Themagnetic
circuit consists of four magnets with alternating polarity and two back iron parts.
The coil array is made of 5 coils arranged in a linear manner and connected in series.
The magnetic structure is placed within a 3D-printed housing (Fig. 23.1b). The outer
device size is 77 mm in length, 41.5 mm in width and 15.75 mm in height, which
allows the device to be integrated into a shoe sole. Rubber end stops effectively
reduce the motion range to 69 mm. Experimental characterization was carried out
on a treadmill. A 390 � load resistance equal to the total internal coil resistance was
connected to the coil terminal.

The voltage at the load resistance reaches up to 30 V at a motion speed of 4 km/h
(Fig. 23.2a). The corresponding power peaks reach 2.5 W (Fig. 23.2b). An average

Fig. 23.1 Swing-motion energy harvester for powering wearable devices. a Schematic diagram of
architecture HAC5 [14], b prototype device with optimized system parameters
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Fig. 23.2 Output parameters for HAC5 measured on a treadmill at a motion speed of 4 km/h.
a Voltage output across an ohmic load of 390 �, b calculated power output

Table 23.1 Power output of HAC5 at different walking speeds, the power was measured at a load
resistor of 390 � connected to the coil terminal

Walking speed 4 km/h 6 km/h 8 km/h 10 km/h

Average power (mW) Simulation 21.42 – – –

Experiment person 1 26.02 40.62 18.72 42.1

Experiment person 2 20.84 29.62 11.87 29.59

power output of 26 mW is obtained at a speed of 4 km/h. The experimental results
were compared with simulations using the system models presented in [12]. The
results are in good agreement with the simulations, in particularly at low motion
speeds.

In Table 23.1 the power output of the prototype device is summarized for two test
persons walking at different walking speeds. The highest power output wasmeasured
at 6 and 10 km/h. This result corresponds to the higher acceleration values to be found
at these walking speeds [9]. In conclusion, at walking speeds as low as 4 km/h an
average power output of up to 23 mW can be expected for powering smart wearable
devices.

23.1.2 Condition Monitoring

Modern technical assets such as production facilities and construction machines
become more and more complex. Therefore, the risk of breakdown of a complete
system due to the possible failure of crucial components increases. Therefore, a
smart maintenance approach with intelligent devices is essential in order to obtain
maximum economic efficiency and safety of the technical system.

The process of continuous or periodic monitoring of system components provides
vital information about the physical condition of the system enabling early detec-
tion of developing failures. The knowledge about prospective failures allows to turn
away from the concept of preventive maintenance towards the smarter approach of
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predictive maintenance. In this manner subsequent damage and a total breakdown of
the system can be avoided leading to a maximum of system availability and safety.
However, the installation and operation of condition monitoring systems involves
some investment. For instance, the cabling for power supply and signal transmission
appears to be a cost-intensive factor, in particular if technical systems are retrofitted.
The use of batteries may be an attractive alternative. However, regular replacement
of the batteries may implicate high maintenance costs, in particular for technical sys-
tems with limited access. Condition monitoring systems become more practical and
acceptable if these systems are easy to install and free of maintenance. A key tech-
nology for facilitating a self-sustaining operation is based on the process of energy
harvesting in which specific devices convert ambient energy into electrical energy.

23.1.2.1 Frequency-Tunable Devices

In most industrial environments kinetic energy is available in form of mechanical
vibrations and rotations providing a usable energy source [15–17]. Physical reasons
of mechanical vibrations are rotational motion of components (e.g. drive shaft, gear
wheel, clutch), contact between parts (e.g. gearing, bearing), machining processes
(e.g. milling, turning, grinding, drilling) as well as cavitation (e.g. pumps, compres-
sor, pipe system) [17]. Vibrations are usually predominant at the complete structure
of a technical system and exhibit one or more dominant frequencies (Fig. 23.3a).
These circumstances make them suitable for energy harvesting purposes. However,
the position of dominant frequencies in the vibration spectrum is dependent on the
operational state of the technical system and thus changes over time (Fig. 23.3a). As
a result, the Eigen-frequency of the vibration energy harvester is not always matched
to a dominant frequency and the effectiveness of the power conversion declines sig-
nificantly (Fig. 23.3b). Therefore, the development of devices with active frequency-
adaptation methods is of high interest. The conducted research on these devices
aims to increase the effectiveness (maximum power output at minimum size) and to
broaden the frequency bandwidth considerably.
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Fig. 23.3 Vibration energy harvesting. a Vibration spectrum of a drive component: dominant fre-
quencies (yellow lines) vary over time. b Power output of a conventional vibration energy harvester
as a function of excitation frequency: the bandwidth of effective power generation is rather narrow
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Table 23.2 Mechanical methods for altering the Eigen-frequency of a cantilever structure

Inducing external forces Variation of cantilever geometry

Axial Radial Length Width Height

68–78 Hz [18] 13–18 Hz [21] 23–32 Hz [23] – –

4.7–9 Hz [19] 85–149 Hz [24]

25–50 Hz [20] 21–48 Hz [25]

150–190 Hz [22]

In general, there are two main concepts possible for altering the Eigen-frequency
of cantilever-based energy harvester (Table 23.2): (i) inducing external forces and
(ii) varying the geometry of the cantilever. External forces, axial or radial, applied
to a cantilever will change the overall stiffness and thus the Eigen-frequency of the
system. A preferred method for inducing axial or radial forces is the application of
magnetic fields [18–21]. In case of axial forces, a coupling magnet is attached to
the free end of the cantilever. A second magnet, the tuning magnet, is mounted on a
movable structure. Translational or rotational motion of the tuning magnet changes
the magnetic field interaction and thus the resulting force between the two magnets.
Ayala-Garcia et al. [18] and Aboulfotoh et al. [19] demonstrated a system with a
translationalmoving tuningmagnet and achieved a frequencybandwidth of 10Hz and
4.3Hz, respectively. Hoffmann et al. [20] presented a systemwith a cylindrical tuning
magnet based on a rotary motion. Within a rotation angle of only 180° attractive and
repulsive coupling modes between the two magnets can be utilized resulting in a
broader frequency bandwidth of 25 Hz. A system with radial force coupling using
two coupling magnets and two tuning magnets was demonstrated by Challa et al.
[21]. A frequency bandwidth of 9 Hz was achieved. Beside magnetic fields, axial
forces can also be applied by direct force coupling using a linear actuator and a
mechanical structure. Eichhorn et al. [22] used a piezoelectric actuator, in order to
induce axial forces onto two parallel arranged cantilevers. He demonstrated a tunable
frequency bandwidth of 40 Hz.

Based on the Euler-Bernoulli beam theory, the Eigen-frequency of a cantilever
can be altered by the variation of the cantilever geometry (length, width and height).
A favored method is to vary the free length of a cantilever structure. Lee et al. [23]
demonstrated a system with a planar coil spring. By rotation of the coil spring the
anchor points shift leading to a change in length. A frequency bandwidth of 9 Hz was
achieved. A further method was presented by Huang et al. [24]. He used a movable
anchor to alter the length of a cantilever beam. Using a total displacement of 30 mm
for the movable anchor, a frequency bandwidth of 64 Hz was obtained. Esch et al.
[25] followed a similar approach using a U-shaped spring element and a gear spindle
(Fig. 23.4a). Both beams of the U-shaped spring element have an effective beam
width of 20 mm. To achieve a minimum of mechanical friction between the spring
element and the anchor, the material PPS HPV from the company techtron was used.
The beam length was varied between 5 and 30 mm resulting in 25 mm displacement
range. By careful design of the system parameters a frequency resolution of less
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Fig. 23.4 Frequency adaptive energy harvester [25]. a Motorized demonstrator with a movable
anchor based on a sliding block clamping mechanism. The upper housing and circuit board is
removed. b Frequency response of the demonstrator with a cantilever beam thickness of 0.4 mm

than 1 Hz was achieved. The frequency response of the demonstrator is shown in
Fig. 23.4b. The tuning range of the demonstrator with a beam thickness of 0.4 mm
is 21–48 Hz.

23.1.2.2 Self-adaptive Devices with Self-sufficiency

The practical purpose of an energy harvesting system is to ensure the supply of
electrical power to a specific electronic system. Therefore, the power demand for
frequency adaption should be kept at a minimum. In order to keep the power con-
sumption of a self-adaptive energy harvester low in the first place, it is first necessary
to choose a tuning mechanism, which only requires energy at the time of tuning. Sec-
ond, the energy effort for tuning should be as low as possible requiring a minimum
of actuation power. Hoffmann et al. [26] presented a self-adaptive energy harvesting
system based on an axial pre-stressed cantilever. A circular tuning magnet, attached
to a stepper motor, was used to induce compressive or tensile forces onto a cantilever
with a coupling magnet (Fig. 23.5a). The tuning magnet is required to rotate only a
half turn (180°) in order to cover thewhole tuning bandwidth. Amaximumof 12 steps
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Fig. 23.5 Self-adaptive energy harvesting system [26]. a Mechanical structure of the self-tunable
energy harvester. b Eigen-frequency as a function of the angular position of the tuning magnet
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Fig. 23.6 Voltage progression at the energy storage and regulated output port [27]. A 4500 �

resistor is connected to the regulated output port. The adaption interval is 70 s. aWithout frequency
adaption. bWith frequency adaption

is required to tune the Eigen-frequency of the energy harvesting system from about
30 to 50 Hz (Fig. 23.5b). The self-adaptive energy harvesting system also included
a power management circuit with energy storage in order to power a consumer load
and the stepper motor. The execution of one motor step requires an energy portion of
124 mJ. A 4500� load resistance was connected to the regulated output port (3.3 V)
of the power management withdrawing a continuous power of 2 mW. On the basis
of a specific vibration profile it is demonstrated, that the self-adaptive energy har-
vesting system is capable of self-sufficient operation while providing a continuous
power output of 2 mW for an application.

Figure 23.6 shows the voltage progression at the energy storage and the regu-
lated output port for two different experiments. The first experiment was carried out
without frequency adaption while in the second experiment the Eigen-frequency was
adapted to the excitation frequency every 70 s. In case of no tuning (Fig. 23.6a) the
voltage at the energy storage decreases rapidly due to the power draw at the regulated
output port. Although, the voltage level increases temporarily during phase 4 (during
phase 4 the energy harvester operates in resonance), the voltage falls below 1.9 V
after less than 12 min and the regulated output port is disabled. From there on it
requires 30 min to recharge the energy storage to a level of 2.9 V at which the regu-
lated output port is enabled again. During that time, there is no energy available at the
output port. If the process of frequency adaption is utilized (Fig. 23.6b), the regulated
output port is always in an enabled state considering the same period of time. By
adapting the Eigen-frequency of the energy harvester with a rate of 1/70 Hz sufficient
energy is generated for both, frequency tuning and application. Certainly, in order
to increase the adaption frequency, the power demand for frequency tuning must be
further reduced and the system efficiency needs to be improved by implementing
smart decision-making algorithms for the adaption process.

23.1.2.3 Linear Devices

In many production environments pneumatic pistons are used as actuators for induc-
ing linear motion. Currently, pneumatic pistons have only a proximity switch to
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detect the end position after a forward or backward motion. The proximity switch is
triggered by means of a magnet, which is attached at the piston rod inside the piston
case. However, there is a need to measure the position and the speed of the piston
during motion for precise determination of the system state. Hall sensors placed
outside at the case of the piston are a possible solution to capture the required infor-
mation (Fig. 23.7a). For powering such a sensor system, Esch et al. [27] developed
an energy harvesting system based on an array of flat and flexible coils. Due to the
moving magnet inside the piston (Fig. 23.7b), a voltage is induced in each of the
coils, allowing to charge an energy storage.

The energy harvesting system includes 10 coil structuresmounted at the outside of
the piston (Fig. 23.8b). The folded coil structure is fabricated from a flexible substrate
with two copper layers, one at the bottom and one top, each 28 μm in thickness. The
flexible substrate contains up to 10 coil elements. By folding the substrate, a multi-
layer coil with up to 20 coil layers is generated (Fig. 23.8a). The coil elements are
designedwith a diameter of 18mm. The linewidth of copper and the spacing between
the copper lines is varied. The original magnet (NdFeB N35) in the pneumatic piston
was replaced by a slightly larger magnet with a higher magnetization (NdFeB N50).

Fig. 23.7 Schematic diagrams of a pneumatic piston (© Festo SE & Co. KG). a System-on-a-foil
including sensor system and energy harvesting system. bMagnetic flux lines from themagnet inside
the piston

Fig. 23.8 Prototype device of energy harvesting system. a Photograph of a folded coil structure
[28]. b Photograph of the pneumatic piston with mounted coil structures and power management
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Fig. 23.9 Output parameters of the linear energy harvester. a Induced voltage of each coil for
one piston motion with the modified magnet and 10-layer coil structure with circular design [28].
b Energy comparison for different coil structures including circular and rectangular designs (120/80
means 120 μm copper line width and 80 μm spacing between copper lines)

For characterization, a load resistor was connected to each coil structure, which is
equal to the respective coil resistance. The voltage at each load resistor wasmeasured
simultaneously. An example is shown in Fig. 23.9a for a circular coil design with 10
folded layers. The induced voltage in the first and the last coil is very low because the
magnet starts and stops moving at these positions with a low motion speed. When
comparing the data of voltage and speed measurement, a direct correlation between
the magnitude of the voltage peaks and the moving speed is evident.

The generated energy for each coil and one motion cycle (one back-and-forth
motion) is shown in Fig. 23.9b. The energy is very low for coils at the end positions
(position 1, 2, 9 and 10). This is due to the reduced motion speed of the piston when
approaching the end position. Figure 23.9b also shows a comparison between square
and circular coil designs and different copper line widths. The square designs show
larger internal resistance values caused by the fabrication process, where the copper
line became unexpectedly narrow in the corners of each winding. When comparing
the circular coil designs, experimental data indicates, that a small coil resistance
combined with a large number of windings leads to more power output. Therefore,
the quality of the fabrication process has a large impact on the power output. The
total energy that can be harvested within a complete motion cycle is about 1.18 mJ
for a circular coil design with 8 folded layers and a copper line width of 100μm. This
corresponds to 1.18 mW when considering a cycle time of 1 s. This power output is
sufficient to power a small sensor system with wireless communication (e.g. BLE).
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23.2 Circuit Components for Energy Harvesting
Applications

23.2.1 Interfaces for Vibration-Based Energy Harvesting

Vibrations can occur in many environments like industrial environments [28, 29] or
railroad tracks [30]. The most popular vibration-based energy harvesting approaches
that have been documented are magnetic [31], piezoelectric [32, 33], and capacitive
[34].

Piezoelectric energy harvesters (PEH) are popular because of their high power
density [35], ease of scaling, and their relative high output voltage [36]. They convert
vibration induced mechanical strain into electrical charge by means of the direct
piezoelectric effect [37]. Commonly PEHs are cantilever based, in which one or
multiple layers of piezoelectric material are mounted on a beam carrier made of e.g.
glass fiber, steel, etc. A deflection at the tip of the cantilever, as shown in Fig. 23.10,
produces mechanical strain at the top and bottom surfaces, thus the PEH generates
charge that can be extracted to power applications or store energy.

The energy extraction is optimized mechanically when the PEH is excited contin-
uously in resonance.However, this is rarely achieved using ambient vibrations, where
changes in excitation frequencies and magnitudes are common, or shock excitations
occur [9, 26, 28, 33, 39].

Cantilever-beam-based PEHs can be modeled by a spring–mass–damper system
(Fig. 23.10), in which the interaction with the piezoelectric layer is also considered
by means of the constitutive equations for a linear piezoelectric material [36]. The
resulting system of equations can be conveniently used to model both the mechanical
and the electrical portions of the PEH as circuit elements.With the electromechanical
coupling Γ included in the mechanical parameters, the complete system can be
modeled as shown in Fig. 23.11. The resistor RM = d/Γ 2 accounts for the damping,

Fig. 23.10 Cantilever beam based piezoelectric energy harvester and its equivalent spring-mass-
damper system [38]
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Fig. 23.11 Electrical equivalent circuit model of a piezoelectric harvester with a resistor load RL

the inductor LM = m/Γ 2 is associated with the effective mass, the capacitor CM
= Γ 2/KE includes the reciprocal of the spring stiffness, the voltage source VM =
maex/Γ relates to the excitation force, and Cp is the piezoelectric capacitance.

23.2.1.1 Enhancement Schemes for Piezoelectric Generators

Full wave rectifiers are suited as interface circuits for piezoelectric harvesters. How-
ever, their performance is dependent on the rectified-output voltage as well as limited
by the piezoelectric capacitance for low-coupled piezoelectric energy harvesters [40].
In order to overcome the output voltage dependence, Shim et al. [41] presented a
full-wave rectifier circuit in combination with a maximum power point tracking to
control the output voltage Vbuf allowing for optimal output power for a full wave
rectifier. It has a speed of only 9.09 ms/V for tracking the maximum power point
when the input voltage of the switching converter is changed from 3.4 to 1.2 V.

To overcome the limitations of the piezoelectric capacitance, Sanchez et. al. [40]
proposed a circuit implementation based on a parallel-Synchronized Switch Har-
vesting on Inductor (SSHI). To avoid the charge loss caused by the discharge-charge
phase typical in full wave rectifiers (Fig. 23.12), the SSHI scheme flips the piezo-
electric voltage when the piezoelectric current is null, every half-wave cycle. This is
done by briefly connecting an inductor in parallel to the output terminals of the piezo-
electric harvester. This creates an LC circuit, which by properly sizing the inductor,
the piezoelectric voltage Vp can be rapidly inverted. This increases the conduction
angle, and thus the energy harvesting is significantly increased.

However, the voltage inversion is not perfect due to parasitic losses in the flip
switch and the inductor as well as intrinsic losses in the piezoelectric generator.
Therefore, the piezoelectric capacitor has to be charged, but for a significant lower
time when compared to the full-wave rectifier. The quality of inversion is defined as
the flipping efficiencyηF, and a quasi-exponential relationwas demonstrated between
the flipping efficiency and output power (Fig. 23.13).

The complete circuit implementation, shown in Fig. 23.14, includes an input-
voltage control DC/DC converter, which sets the rectified voltage to a configurable
value, which in turn can be configured so that it matches the maximum power point
(which can be set externally). Additionally, the circuit implementation includes an
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Fig. 23.12 Full-wave rectifier and parallel-SSHI schematics, as well as his operation waveforms
[38]

Fig. 23.13 Parameterized calculated harvested power with respect to the flipping efficiency
(modified based on [38])

inductor sharing circuit to allow for a single inductor use. A low-dropout regulator
as well as over voltage protection are also included, so that the circuit can directly
power a device.

The piezoelectric energy harvesting circuit is implemented in a 0.35-μm CMOS
technology. Figure 23.15 shows the diemicrograph. The total active area is 1.17mm2.

The measurement results showed that the implemented chip was able to obtain
a flipping efficiency of 0.94 and the complete system is able to harvest up to 6.8
times more energy from a piezoelectric harvester, compared to an ideal full-wave
rectifier at its maximum power point. Furthermore, it has the capability to work
for both periodic and shock excitations. The chip operates autonomously with high
efficiency, powered directly by the harvested energy. It is able to achieve cold startup
when the storage capacitors are empty, even for input voltages as low as 670 mV. It
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Fig. 23.14 Block diagram of the presented interface [38]. The inductor, capacitors, and resistors
are off-chip, whereas all the shaded blocks are on-chip

Fig. 23.15 Die micrograph [38]

achieved chip efficiencies up to 95.4% and can harvest from a few μW up to 1 mW
of energy (Fig. 23.16).

23.2.1.2 A Piezoelectric Energy-Harvesting Interface Circuit
with Fully Autonomous Conjugate Impedance Matching

Piezoelectric generators can be used to convert kinetic energy into electrical energy.
Due to their resonant characteristics, piezoelectric generators generate an AC voltage
when they are excited by a vibration. The highest output power can be achieved



418 T. Hehn et al.

Fig. 23.16 Performance measurement results [38]

when the excitation frequency matches the generator’s resonant frequency. In order
to extract the energy and store it in a battery or a buffer capacitor, an interface circuit
is required. There are mainly two categories of interface circuits: Whereas simple
AC/DC rectifiers are considered as passive since they do not require a separate
power supply, active interface circuit concepts such as the Synchronous Electric
Charge Extraction (SECE) technique are able to significantly increase the harvested
energy [38]. This concept periodically extracts the energy stored in the piezoelectric
generator within a very short amount of time when its voltage has reached a peak.

In [42], a piezoelectric energy-harvesting interface circuit with fully autonomous
conjugate impedance matching and extended bandwidth is proposed. The conjugate
impedancematching is achievedby introducing time-delays into theSECE technique.
Figure 23.17a shows the block diagram of the proposed circuit, and Fig. 23.17b
explains its operating principle: The peak detector senses when the output voltage of
the transducer (VPEH) reaches its maximum. Whereas SECE would start the energy
extraction process immediately (upper waveform), the proposed technique waits a
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Fig. 23.17 a Block diagram of the proposed circuit (modified based on [43]) with b corresponding
waveform (only for positive half-cycle) [44]
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Fig. 23.18 Principle of unbalanced-switching [44] (modified based on [43])

time interval t1 after having detected the voltage peak before extracting the energy
stored in the piezoelectric generator into an inductor L by closing switch S1 for a time
interval t2 (lower waveform). The duration of t2 depends on the polarity of VPEH: If
VPEH < 0 before S1 is closed (negative half-cycle), then t2 is chosen such that all the
extracted energy is sent back to the transducer, just switching the polarity of VPEH

in order to increase the damping force. If VPEH > 0 (positive half-cycle), then t2 is
shorter so that a part of the energy stored in L is transferred to the buffer capacitor
Cbuf.

By choosing different values of t2 for the negative half-cycle and the positive half-
cycle, a DC offset VOS is introduced in the piezoelectric generator’s output voltage
waveform (see Fig. 23.18). It can be shown mathematically that the offset does not
affect the extracted energy. However, by using this method of unbalanced switching,
there is no need for an AC/DC rectifier or a voltage doubler, in contrast to other
implementations, e.g. [44]. This reduces cost, complexity and energy consumption.

In practical implementations, it is difficult to automatically and accurately gener-
ate the optimal t1/t2 for maximum power output. Hence, [42] proposes a technique
which reduces the number of different t1/t2 settings to 6 for a frequency range 84.5–
95.5 Hz. A custom-designed ramp generator automatically measures the excitation
frequency and chooses the appropriate t1/t2 setting for extracting a large part of the
power compared to the power which can be extracted by manual tuning. Details
about the automatic tuning mechanism can be found in [42].

This interface circuit has been manufactured in a 0.35 μm CMOS technology
and tested with a MIDE V21 piezoelectric transducer mounted to a shaker, with its
resonant frequency tuned to 90.5 Hz by adding a tip mass. As shown in Fig. 23.19a,
the proposed system extends the 3 dB bandwidth by 110% over the conventional
SECE or 156% over the natural bandwidth (3.2 Hz) of the unloaded transducer.
Regarding the extracted power, there is an improvement of 29% at the resonant
frequency and even 96% considering the average power from 85 to 96 Hz. Hence,
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Fig. 23.19 a Measured output power over frequency (modified based on [43]) and b measured
output power at resonant frequency over k2Qm (upper waveform: proposed circuit, lower waveform:
SECE) [43]

the proposed circuit can be very useful to compensate for frequency drifts in real
applications. SECEonly reaches itsmaximumefficiencywhen the electromechanical
coupling coefficient k2Qm of the transducer equals π/4. For a lower k2Qm, which is
common for transducers with smaller sizes, this gap becomes even larger, as shown
in Fig. 23.19b.

The conventional SECE/SSHI methods [38, 45] show no or little bandwidth
improvement over the natural bandwidth as shown in Table 23.3. Compared to sim-
ilar techniques [44, 46], the presented chip is able to run fully autonomously with
better figure of merit (FOM), as well as lower chip area and power consumption.

The chip micrograph is shown in Fig. 23.20.

23.2.1.3 Extraction Circuit for Non-periodic Waveforms

While most state of the art circuits work with a sinusoidal input of fixed or slow
changing amplitude, this circuit is designed to hold the piezoelectric harvester in the
maximum power point at any arbitrary input waveform [47].

Best efficiencies in state of the art are actually reached with circuits based on
synchronized switch harvesting. If the energy transfer from generator to storage
capacitor is obtained by an inductor, the circuit topology is called SSHI, while using
a capacitor array it is called SSHC.

These circuits can nearly extract the maximum possible power which would be
extracted with a conjugate complex matching. The drawback of this circuit type is
that near maximum power can only be extracted if the voltage of the internal storage
capacitor is in a certain relation to the amplitude of the excitation signal [48]. If
the amplitude of the excitation signal is continuously changing, also the voltage of
the storage capacitor would need to be continuously changed. This is not feasible,
due to the high storage capacitance making this circuit type not suited for arbitrary
waveforms at the harvester.
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Table 23.3 Comparison to other interface circuits (modified based on [43])

This work Hsieh, ITPE
2015

Cai,
ESSCIRC
2017

Hehn,
JSSC 2012

Sanchez,
ISSCC
2016

Process
technology

0.35 μm Discrete
components

0.35 μm 0.35 μm 0.35 μm

Transducer V21B V22B V22B V22B V22B

Scheme Broadband
SECE

Broadband
SSHI

Broadband
SECE

SECE SSHI

Load-independent Yes No Yes Yes No

Extra mechanical
components

No Accelerometer No No No

Fully-autonomous Yes No No Yes No

Power
consumption
(μW)

0.38 NA 0.85 4.4 NA

Resonant
frequency (Hz)

90.5 425.5 175.4 174 224

FOMa +156% +23% +71% <+40%** <0**

Chip area (mm2) 0.8/0.27
(active)

NA 3.57 1.25 1.17
(active)

aBandwidth of the output power over the natural bandwidth of the transducer
bCalculated from the paper

Fig. 23.20 Chip micrograph (modified based on [43])
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Fig. 23.21 Upper part: the generator voltageVp following themaximumpower point. The generator
current Ip is in phase with the maximum power point voltage. Lower part: zoom in the generator
voltage Vp. The ripple is a result of a phase wise activation of the switch-converter [48]

Other circuit types like energy pile-up resonant circuits [49] or circuits based on
synchronous electric charge extraction (SECE) [50] are in principle better suited to
deal with arbitrary waveforms, but even in theory these circuits are not able to extract
the maximum possible power.

To overcome these limitations, the circuit described in [48] includes a process-
ing unit which is able to calculate the maximum power point from the generators
voltage-curve shape. The circuit adjusts the generator’s output voltage stepwise to
the Maximum Power Point (VMPP), as can be seen in Fig. 23.21 and is thus in theory
able to extract the maximum possible power at any arbitrary waveform.

Each step has a sampling phase and a set phase. In the sampling phase the voltage
shape of the generator is detected to calculate the actual value of VMPP. More specif-
ically, sampling the voltage-curve shape means measuring the generator voltage at
two different time points that differ by a fixed time difference �t.

In the set phase a bidirectional switch-converter is used to adjust the generators
output voltage to the calculated VMPP. If the generator voltage is higher than VMPP

the switch-converter extracts energy from the generator and transfers it to a storage
capacitor. If the generator’s voltage is lower than VMPP the switch-converter delivers
energy from the storage capacitor back to the generator in order to load the generator’s
intrinsic capacitor to VMPP.

The circuit’s behaviour is equal to a conjugate complex matching if exited with a
sinosoidal input.

The drawback of the system is its efficiency which is usually below 50% due
to the high losses of the switch-converter. Like in a conjugate complex matched
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Fig. 23.22 Bidirectional switch converter [48]. a Shows the energy transfer the generator to the
storage capacitor. b Shows the energy transfer from the storage capacitor back to the generator

circuit where currents oscillate between the reactive parts, high currents oscillate here
between the generator’s intrinsic capacitor and the storage capacitor of the switch-
converter as can be seen in Fig. 23.22. These high currents lead to high resistive
losses in the switch-converter.

23.2.2 Thermoelectric Energy Harvesting

Thermoelectric generators have proven to be one of the most productive and appli-
cable energy harvesting sources to date due to the nearly ubiquitous availability of
temperature gradients. Moreover, their nature as a perfect solid-state device enables
very compact and flexible implementations where the device dimensions are basi-
cally defined only by the power requirements of the application and the corresponding
thermal flow and thermal insulation of the device.

As the bandwidth of any thermal signal is extremely limited and orders of mag-
nitude below the internal mechanisms of a solid-state device like a thermoelectric
generator, the device essentially acts as a DC voltage source. As such, it can be mod-
elled as a Thevenin equivalent circuit consisting of an ideal DC voltage source and
an internal resistor, and load-matching and maximum power point tracking (MPPT)
can be comparatively easily achieved by controlling the output voltage to ½ VOC.
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Fig. 23.23 STREAMS proof of concept [52]

The following section explores two interesting use cases of thermoelectric genera-
tors: Extremely low temperature gradients, as encountered for example when human
body heat is used as an energy source, and multi generator systems.

23.2.2.1 STREAMS—Multi Power Source System

The STREAMS project [51]. was a collaboration of several research institutions,
namely CEA in Grenoble, France, the University of Lleida, Spain, the Univer-
sity of Sherbrooke, Canada, Hahn-Schickard, Villingen-Schwenningen, Germany,
and the University of Freiburg, Germany and received funding from the European
Union’s Horizons 2020 research and innovation programme under grant agreement
No. 688564. The main goals were the implementation of liquid cooling directly into
silicon via microfluidic techniques and to include thermoelectric functionality for
both energy extraction and temperature measurement.

System Overview and Key Challenges

Figure 23.23 shows the system that serves as proof-of-concept for the project: Four
heater-chips that emulate the power dissipation of active devices like data proces-
sors in an actual application are put on a silicon interposer that provides electrical
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Fig. 23.24 STREAMS system abstraction

interconnectivity and the microfluidic and thermoelectric functionality. Figure 23.24
depicts a schematical representation of the system and highlights the electrically
relevant properties and components. The four heat sources are encircled by thermal
flow sensors to determine the thermal state of the system, while thermoelectric gen-
erators between the microfluidic heat sink and the heaters extract a percentage of the
thermal power flow as electrical power. All these devices interact only with a central
control chip, whose purpose is to autonomously read out the sensors and transmit
the gathered data using only the power extracted from the four generators.

The cooling solution is designed to allow a maximum thermal gradient of 100 K
across the generators at the intended heat source activity. In turn, a thermoelectric
device with a Seebeck coefficient that leads to an open circuit voltage of 3–5 V at
this excitation has an internal resistance of 2–5 k� and can provide an output power
of 1.5 mW. The maximum input power budget is thus limited to 6 mW, while the
sensor interface representing the load is designed for a power demand of 1.5 mW
at a stable supply voltage of 3.3 V. In contrast, both the output voltage and power
levels of the generators will fluctuate with the actual temperature gradient across the
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Fig. 23.25 Architecture of the power management unit [52]

respective devices. The primary task of the designed power management unit lies
thus in arbitrating between these needs.

Maximizing the power that is actually extracted from the generators towards
the theoretical maximum is the key challenge in this energy harvesting system. In
this particular case, a power management unit (PMU) has to control individually
stimulated generators independently, as the voltage gradient across each device is
defined by the activity of its heat source, while the heat sink can be assumed to be
at a similar temperature for all devices. Moreover, it can also be assumed that the
characteristic parameters of the four generators, namely the Seebeck coefficient and
the internal resistance, differ from one generator to the other. The final challenge
of this application lies in the extremely limited area for the complete system of
roughly 4 by 4 mm2. This includes the control ASIC consisting of both the power
management unit and the sensor read-out system as well as any external component.
The power management unit discussed in this section was published at the 2019
European Solid-State Circuits Conference [53].

Power Management Unit Architecture

As previously discussed, in order to maximize the output power of a DC source, its
output voltage has to be driven to ½ its actual open circuit voltage. The nominal volt-
age levels of the PMU’s four input nodes are thus well defined at any given moment,
as is the output voltage level of 3.3V. To solve these contradictory demands, the PMU
features a two-converter architecture depicted in Fig. 23.25. In this particular system,
a primary capacitive voltage converter controls the four generator voltage nodes to
their individual maximum power point (MPP) and transfers the extracted energy to
an intermediate voltage node connected to a buffer capacitor, which functions as an
energy reservoir to arbitrate between differing input- and output power levels.

From this voltage, a secondary converter implemented as a low dropout (LDO)
regulator generates the stable 3.3 V output voltage that is also used to supply the
internal components of the PMU itself. These are a control unit for the primary
converter that implements an MPP-tracking scheme, a voltage monitoring circuit
that provides the required information regarding the current state of the system and
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(a)

(b)

Fig. 23.26 Hysteretic control [52]: a single input, b four inputs

an output control unit that protects the operation of the PMU against excessive load
power levels. A capacitive converter and an LDO were chosen primarily to meet the
tight area constraints, as both of these devices can be completely integrated on the
ASIC without the need for additional external components, while larger alternative
solutions like an inductive voltage converter may have offered superior performance.
However, four input filter capacitors and the aforementioned buffer capacitor cannot
be eliminated.

The two primary challenges of the MPP-tracking and thus the generator voltage
control lies in controllingmultiple input nodes simultaneously.Averypopular control
scheme in the energy-harvesting field is a hysteretic control (Fig. 23.26) because of
its low complexity and inherent stability.

In this case, the primary voltage converter has to be able to extract more power
from the input node than the generator in question provides to reduce the input node
voltage. Once a certain lower hysteresis voltage has been reached, the converter is
deactivated and the input power canpush the input voltage to anupper hysteresis level.
Due to the inherent dead time of this approach, it is perfectly suited for controlling
multiple nodes: While the primary converter is discharging one node, the remaining
nodes have time to reach the upper voltage level and the converter simply cycles
through the different input nodes.

Only the mean value of the controlled node lies at the required voltage level using
this control scheme. The losses caused by the deviating waveform as a function of
the hysteresis amplitude are depicted in Fig. 23.27. As shown, a hysteresis level
of ±10% VOC leads to a tracking loss of 1.34% and has thus been chosen for this
system. The hysteretic control itself can also be easily implemented: The open circuit
voltage has to be sampled at some point in time. In this particular implementation
this is done once at the beginning of observing the charging phase and additionally
at the beginning of the discharging phase to compensate for potential leakage from
the sampling capacitors. Actually stored in this case are the resulting upper and
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Fig. 23.27 Tracking loss due to the hysteresis amplitude

Fig. 23.28 Voltage monitoring circuit [52]

lower hysteresis thresholds generated by a resistive divider (Fig. 23.28), and a single
comparator is sufficient to implement the entire MPP control scheme.

Moreover, the constraints imposed on the waveform by the control scheme also
simplify controlling the capacitive voltage converter. Such a converter canonly imple-
ment discrete voltage conversion ratios, and consequently the optimal setting remains
constant over a certain range. Since the input voltage of the converter is monoton-
ically falling during the discharging phase, the voltage ratio from input to output
will monotonically rise when the converter is active. It is thus sufficient to switch
only to an adjacent setting once the ratio crosses a certain threshold. This can be
implemented via a single comparator, two sets of resistive voltage dividers, and a
set of switches to select the appropriate voltages for the currently prevailing voltage
state (Fig. 23.28). In turn, the traditionally relatively complex and demanding analog
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Table 23.4 Performance at different input power scenarios [52]

Power scenario μTEG setup Pin (mW) Tracking loss (%) ηete (%)

Min. input 3.7 V 10 k� 1.33 1.50 11.2

Max. input 4 V 3.5 k� 4.44 2.88 37.7

0.56 Max. input 3.2 V 4 k� 2.50 2.30 21.3

0.59 Max. input
{
2.8V to 4V

4 k� to 6 k�

}
2.61 2.71 24.1

control circuitry can be reduced to a couple of low power voltage dividers and com-
parators, while the control itself can be implemented via a low speed and thus low
power digital state machine. In turn, the efficiency of the system is defined by the
performance of the LDO and the capacitive primary converter. The characteristics of
the primary converter, however, are defined by the available chip area, which limits
the total switching capacitance to roughly 1.6 pF. This in turn defines the required
switching frequency of 6 MHz and in turn the achievable efficiency of about 70%.

System Performance

Asdiscussed previously, the average primary converter’s efficiencyover the operating
range of roughly 70% together with the quiescent power of the LDO and its drop
out losses define the performance of the PMU. Table 23.4 summarizes the achieved
efficiencies and tracking losses for severalTEGexcitation scenarios.Here, the highest
efficiency can be achieved at the maximum input power scenario, as the constant
quiescent losses have aminimal impact in this case, while the dynamic losses become
dominant, as they scale with the input power level. Moreover, the low tracking loss
of 2.5% for heavily deviating TEG properties confirm the efficacy of the control
scheme.

23.2.2.2 Human Body Heat Harvesting—Low Voltage Challenge

In contrast, to the relatively complex system discussed in the last section with high
temperature gradients, the very popular application of harvesting power from the
human body poses a very different challenge: The human body offers only a very
low temperature gradient from its surface to the environment in the single digit Kelvin
range [52]. From these low gradients, only specialized harvesters are able to generate
a somewhat usable output voltage on the range of tens of millivolts. In turn, such
low voltage levels require specific circuit techniques and architectures to provide
power to electrical systems. Moreover, such systems need to be comfortable to wear
in order to find acceptance by any user, and are thus heavily restricted in terms of
physical size.
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Table 23.5 State of the art regarding low voltage DC-DC converters

[55] [56] [57] [58] [54]

Process 130 nm 65 nm 65 nm 350 nm PCB

Output voltage 1.25 V 1 V 1.2 V 1.8 V Unregulated

Start-up voltage 70 mV 95 mV 50 mV 35 mV 69 mV

Peak efficiency @
start-up voltage

58% NA 65% 58% NA

Auxiliary power
source

No No No Mechanical
vibration

No

PCB Inductors 1 1 3 3 Piezoelectric
transformer

Low Voltage Start-Up Strategies

Table 23.5 documents the state of the art regarding low-voltage DC converter opera-
tion. One approach to overcome the low voltage issue are start-up oscillator circuits
based on relatively bulky transformers [54]. This solution runs contradictory to the
aforementioned requirement of being easy and comfortable to wear. Moreover, it
attempts to achieve both low voltage start-up and optimal operation under nominal
conditions, and the achieved efficiency is quite low as a result.

In contrast, two stage voltage converter architectures [55, 56, 58, 57] are able
to distribute these contradictory requirements and solve them with different system
components, where each can be heavily optimized for its assigned task. The achieved
minimum start-up voltage, the efficiency during nominal operation, and the required
system complexity can classify these solutions. As can be seen, theminimum start-up
voltage can be improved by more complex systems, either in terms of number of off-
chip components [57] or even auxiliary energy sources like mechanical vibrations. In
contrast, systems that are integrated to the highest degree with the minimum external
complexity of a single inductor only achieve slightly higher start-up voltage levels at
a comparable nominal efficiency. The following section will thus take a closer look
at the best performing fully integrated start-up solution [55].

System Architecture

This system (Fig. 23.29) is an example of a two-stage architecture. During nominal
operation, a primary boost converter generates a 1.25 V output voltage from the
low voltage input node. With a minimum open circuit startup voltage of 70 mV, the
maximum power point lies at an input voltage level of 35 mV and the converter has
to implement a voltage conversion ratio of 35. This value is only achievable using
inductive converter techniques. In this state, the primary converter supplies itself
via its own output voltage, which is connected to an output filter capacitor with a
relatively high capacitance of 100 μF. As long as this voltage level is kept above
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Fig. 23.29 Low voltage start-up architecture [55]

a certain value of about 600 mV, the system will remain operational. The major
challenge thus lies in charging this large output capacitor to this voltage level from
an energy source with extremely low output power.

This source is implemented as a variation of a low voltage linear charge pump
that can generate an output power in the picowatt range. This value is limited by
the low voltage operation itself limiting this secondary converters efficiency, and the
need not to draw any appreciable power from the source during the start-up phase.
Doing so would cause a significant voltage drop across the internal resistance of the
generator and in turn increase the minimum start-up open circuit voltage. The low
output power in turn is used to accumulate energy on a small fully integrated storage
capacitor with a total capacitance of roughly 1 nF. In turn, switching from operation
on only the low capacitance storage device to the high capacitance output filter
requires an additional transfer phase in order to retain the accumulated voltage level
(Fig. 23.30). During this phase, the primary inductive boost converter operates only
on the storage capacitor, while the buffer output capacitor gets charged via a diode to
transfer any excessive power not needed for operation. Once a sufficient voltage level
has been reached on the high value capacitor, the actual power switch connecting it
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Fig. 23.30 Start-up sequence [55]

to the primary converter output is closed and nominal operation starts. The circuit
techniques that enable the low voltage operation of the secondary converter itself
and the control of the start-up sequence are discussed in the following.

Ultra Low Voltage Circuits

The basic technique that allows extremely low voltage operation are Schmitt-Trigger
(ST) logic gates and libraries discussed in Sect. 23.2.3.1 that can operate at sup-
ply voltage levels as low as 62 mV. For the performant functionality of a Dickson
style charge pump, however, driving capacitive loads is critical in terms of speed,
output power and efficiency. The feedback structure of ST logic (see Fig. 23.33
in Sect. 23.2.3) inhibits this capability by steering the needed active current out
of the signal path at the beginning of a signal transition. A feed-forward struc-
ture (Fig. 23.31) that disables the feedback and thus the current steering directly at
the beginning of a transition can improve the dynamic characteristics of deep sub-
threshold ST-logic and enables capacitor driving chains with fan-out values greater
than 1 per stage. This is the most critical improvement for operating a charge pump
at ultra-low input voltage levels.

Controlling start-up sequence comprises to distinct challenges, namely to deter-
mine the end of the initial energy accumulation phase on the storage capacitor, and in
turn the transition to nominal operation. Both these functionalities have to be imple-
mented in the ultra-low voltage input domain and have to draw minimal power from
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Fig. 23.31 Modified Schmitt-Trigger inverter [55]

the storage node in order to not significantly increase the start-up time. The simplest
way to achieve this goal is by using a PMOS device with a positive gate source volt-
age to pinch off the leakage current in the off state (Fig. 23.32). The control voltage
can be generated by an additional charge pump operating from the storage voltage.
As this circuit has to supply only the low leakage of a gate current, it poses only a
negligible load.

Up to now, the gate voltage only achieves to pinch off the leakage current, but is
not actually controllable from the low input voltage domain, in which any controller
determining the end of the accumulation phase has to operate. An additional NMOS
device pulls the gate voltage of the actual power switch to ground. This auxiliary
switch needs to offer a sufficiently high ratio of on-to-off current to both not impede
the current pinching during the accumulation phase and to force its gate voltage
actually to ground during the transfer phase. This is achieved via an additional set
of charge pumps whose activity can be controlled in the low voltage domain and
that generate a control voltage of±125 mV during the accumulation and the transfer
phase respectively.

Regarding the controller, not a precise determination but only an estimation of
the end of the accumulation phase is feasible. A simple digital counter can achieve
this functionality, as the total charge transferred through a charge pump and thus the
resulting voltage on the storage capacitor is dependent on the total number of clock
cycles. Counting clocks thus allows for a rough estimation of the voltage level on the
storage capacitor. Once the counter reaches a value that indicates that the primary
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Fig. 23.32 Low voltage low leakage switch [55]

converter should be operational at the accumulated voltage level, the controller ter-
minates the accumulation phase and initiates the transfer phase by controlling the
activity of the complementary charge pumps.

23.2.3 Digital Ultra-Low Voltage (ULV) and Ultra-Low
Power (ULP) Circuits

Designing startup and control circuits for harvesting interfaces as well as down-
stream voltage converters constitutes a substantial challenge [59]. The strict limits
on the available energy and the ultra-low output voltage of some harvesting princi-
ples make it difficult to implement working and reliable circuits. Especially thermo-
electric generators running on body heat supply only a few tens of millivolts [59,
60]. This entails the need to design for feasibility, functionality, and absolute power
consumption rather than throughput and efficiency.

Given the ultra-low supply voltages, transistors operate in the deep subthreshold
region with the following equation for the drain-source current ID:

ID = I0e(VGS−Vth)/nVT
(
1 − e−VDS/VT

)
(23.2.3.1)

With the constant

I0 = W/Lμp,nCO X (n − 1)V 2
T (23.2.3.2)
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consisting of device geometry W/L , charge carrier mobility μp,n , unit area oxide
capacitance CO X , subthreshold factor n, and the thermal voltage VT = kT/q which
is about 26 mV at room temperature. The threshold voltage is given by

Vth = Vth0 − λDS VDS − λBS VBS (23.2.3.3)

where Vth0 is the zero-bias threshold voltage, λDS the drain induced barrier lowering
coefficient and λBS the body-effect coefficient.

Bringing the supply voltage down to its minimum leads to some major draw-
backs for electronic circuits: Due to the exponential dependence of ID on the thresh-
old voltage Vth , device variation increases significantly. Especially with decreasing
physical dimensions in the race to ever shrinking process nodes, effects like random-
dopant-fluctuation [61] and reverse-short-channel-effect—due to non-uniform dop-
ing profiles [62, 63]—increase variability in threshold voltage. While advanced pro-
cess technologies like FD-SOI have inherent advantages over bulk processes due to
the absence of doping atoms in the channel [61, 64] further challenges need to be
addressed. As the signal swing of VGS scales with the supply voltage, the on current
IO N of transistors approach the same order of magnitude as the leakage current IO F F

in the off-state of the devices in the deep subthreshold region [65]. This results in poor
digital signal output levels and gain for logic gates as well as very slow operation
frequencies. Moreover, P/N mismatch as well as small-channel effects like DIBL
[61] have a negative influence on the transfer function of transistors and circuits. It is
therefore vital to have circuit techniques that allow building systems that can reliably
generate clocks and control the harvesting interface.

23.2.3.1 Schmitt Trigger (ST) Logic

One way to tackle variation and signal level degradation is to use Schmitt Trigger
structures for the implementation of digital logic gates. The general structure of a
Schmitt Trigger inverter is shown in Fig. 23.33. As demonstrated in [66] the ST
structure can easily be extended to NAND, NOR and other types of logic gates.
The state of the transistors in Fig. 23.33 is depicted for the example input value of
‘0’ and corresponding output of ‘1’. Devices N1, N2 and P3 are off while P1, P2
and N3 are conducting. The main idea behind this technique for ULV applications
is to increase the gain or steepness and the output levels of the voltage-transfer-
curve by reducing the off-current in the currently non-active branch (NMOS in this
case) of the gate. This is achieved by splitting each of the transistors of a regular
inverter into a stack of two (N1, N2) and introducing the feedback transistor N3

which acts as a source follower. It pulls node LN up which reduces VDS and more
importantly introduces a negative VGS in N2. The channel therefore exhibits greatly
reduced leakage currents and the on-to-off current ratio is significantly improved
[66]. Additionally the feedback structure mitigates P/N mismatch [66, 67] while the
higher gain reduces the impact of threshold voltage variation [65].
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Fig. 23.33 Schematic of ST inverter in input low, output high configuration

It has been shown that ST gates achieve lowerminimal supply voltage than regular
CMOS implementations both theoretically (31.5 mV vs. 36 mV for an ideal inverter)
[68] and practically by reaching VDDmin = 40 mV for single inverters [68] and
62 mV for an 8 × 8 bit multiplier consisting of NAND, NOR and Inverter gates
[66]. This leads to lower leakage currents and power consumption [65, 66] or to
less area and higher efficiency [67] than comparable CMOS gates. Consequently, ST
circuits are better suited for always-on blocks or wake-up circuits for IoT and for
startup circuits in ULV and ULP harvester interfaces. As an example, the charge-
pump based controller presented in the previous section [59] starts at VDDmin =
70 mV. There, the dynamic power consumption of the ST is reduced by switching
the feedback path through N3 or P3 off by an additional switch.

It is noteworthy that not only digital but also analog Schmitt Trigger circuits have
been proposed recently [68] paving a way to the implementation of analog amplifiers
and control loops in the sub-100 mV range. While conventional analog subthreshold
circuits are becoming more common they require a few hundred millivolts to operate
in (subthreshold-)saturation and to achieve sufficient gain [69, 70] rendering them
non-functional for ULV startup controllers.

Operation at ultra-low supply voltages—as is feasible with ST logic—may be
necessary for startup of an interface and a DC-DC converter and might result in the
lowest power. However, a more efficient operating point for a particular computation
load might exist at supply voltages closer to the threshold voltage.
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23.2.3.2 Body Biasing

Adifferent interesting lowpower technique is body biasing. There a voltage is applied
to the bulk terminal of transistors. The bulk-source voltage VBS is then used to tune
the threshold voltage of the transistors according to Eq. (23.2.3.3). This directly
corresponds to a change in the transistor currents and circuit speed.

There exist different approaches to set the bias voltage. The simplest method is to
statically apply a fixed voltage e.g. a positive/forward voltage to lower the threshold
voltage. A more advanced measure is regulating the bias voltage according to the
given situation. This adaptive body biasing (ABB) can be used to adjust the frequency
and power consumption of a circuit to the available power from the harvester, to
mitigate variation in order to lower the minimum supply voltage of logic gates [62]
and SRAM cells [71], or to extend the lifetime by reacting to aging effects [72].

Since the load capacitance of the logic gates stays constant despite the increase
in current drive capability with forward biasing, the power-delay-product reduces
and circuit efficiency can be increased. This effect can be utilized in duty-cycled
systems where stored harvested energy is used to efficiently process data within a
short timeframe and otherwise leakage current is reduced by reverse biasing and/or
power-gating [73, 74]. In memory cells, where power-gating is not an option, reverse
body bias can save energy during the idle period of a duty-cycle [71, 74, 75] or prevent
data loss when insufficient excitation of the harvester diminishes the power budget.
This method allows the 6T SRAM cells in [76] or the 8T cells in [71] to achieve a
frequency of 200 MHz with an access energy of 20.4 fJ/bit while in sleep the power
consumption is only 7.4 pW/bit, which is 5.5× lower than in the active state. Various
biasing options for the transistors in a 6T SRAM are analyzed and compared in [76]
resulting in 1/5th the read power compared to a zero-bias cell. The microprocessor
in [77] is fitted with a purely digitally controlled ABB generator allowing the chip
to run at 0.35 V with minimal area and power overhead due to analog circuitry.

Another more granular option called dynamic threshold MOS (DTMOS) or also
back-gating uses the bulk terminal as an additional logic-controlled gate for small
sub-circuits or individual transistors. By altering the transistors threshold voltage
depending on the state of logic signals, the switching speed of a gate or its power
consumption in a specific state can be improved. Some prominent examples for this
approach are improving static noise margin and energy efficiency in SRAM [76, 75,
78] and reducing on-resistance and leakage of transistors in the critical path [79] or
for power-gating [73]. Using this in precharge-evaluate logic results in a 16–19%
faster adder with 10–15% less active energy per cycle [79]. In [80], the back gate
is used for temporary current boosting during the switching operation gaining a
super-linear speed-up of 10%. However, it should be noted that fine-grained body-
biasing will introduce a noticeable area overhead due to additional wells/tubs and
their corresponding contacts. For a modified 6T SRAM cell, where the bulk of the
PMOS devices is switched, 78% more circuit area is occupied [78].

Using body biasing is especially interesting for SOI processes where the drain
and source terminals are isolated from the bulk silicon so there is no parasitic diode
between them. In bulk processes, this would result in significant leakage currents
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for forward biased transistors [61]. Further benefits are that no triple-well process is
required for biasing individual NMOS devices [76] and the much higher body effect
coefficient λBS (85 mV/V in FD-SOI vs. 25 mV/V in Bulk) [61]. With specialized
deeply-depleted channel processes, even λBS = 375mV/V can be achieved [81].

23.3 Conclusion

In this chapter, the possible application scenarios making use of Energy Harvesting
have been presented. It has been shown that in the area of wearable devices and
condition monitoring, significant progress has been achieved in the past, pushing
this topic towards practical applications in the industrial and consumer environment.
After optimization efforts towards higher power generation from swing harvesters,
it is foreseeable that the power harvested from human walking could supply a wide
variety of wearable devices, such as used for health monitoring as well as wearable
consumer electronics. Conditionmonitoring and predictivemaintenance are possible
applications where batteries can be omitted or complemented by energy harvesting
devices, resulting in reduced maintenance effort.

In the past few years, significant attention has been paid to the electronic circuit
interfacing the energy harvesting generators. Recent publications have been able to
push the energy harvested out of piezoelectric generators close to the theoretical limit
by using enhancement techniques like the parallel-SSHI. Furthermore, advancements
in enhancement techniques, like the broadband SECE, allows to expand the energy
extraction capabilities, when the generators excitation frequency is not exactly the
resonance frequency. Circuits tracking themaximum power point for generators with
continuously changing excitation conditions have been proposed recently, but this
principle seems to be impractical due to a low efficiency.

Thermoelectric generators have proven to be one of the most productive and
applicable energy harvesting sources to date due to the nearly ubiquitous availability
of temperature gradients.Moreover, their nature as a perfect solid-state device enables
very compact andflexible implementationswhere the device dimensions are basically
defined only by the power requirements of the application and the corresponding
thermal flow and thermal insulation of the device. Particularly in applications with
low temperature gradient, these devices require ultra- low voltage and ultra-low
power circuits in order to ensure robust and flawless operation.
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Chapter 24
Artificial Retina: A Future
Cellular-Resolution Brain-Machine
Interface

Dante G. Muratore and E. J. Chichilnisky

24.1 Brain-Machine Interfaces of the Future

A brain-machine interface (BMI) is a device capable of providing a direct commu-
nication path between the nervous system and an external device. BMIs can be used
in research to better understand the brain, and are increasingly intended for clinical
applications, including treating hearing and vision loss, paralysis, and other conse-
quences of degeneration and injury [1, 2]. In the future, BMIs will likely be used to
augment human capabilities, including sensory acuity, control of complex devices,
memory, attention and more. However, to realize this futuristic promise requires
major advances in the design of circuits and systems for interfacing to the brain.

A BMI usually consists of a neural interface capable of sensing and/or eliciting
neural activity, and a computing device that controls its operation. The neural inter-
face can operate in anyof severalmodalities—e.g. optical, electrical,magnetic—each
with advantages and disadvantages [3]. In this chapter, we will focus on electrical
neural interfaces; typically, arrays of electrodes for stimulating and recording neural
activity. Thus, the performance of the interface is determined by the channel count
and density, the signal-to-noise ratio (SNR) of recording and stimulation, and the
bandwidth of wireless transmission of data to and from the device. However, the
specifications for a neural interface that attempts to approach or exceed the capa-
bility of the neural circuitry can pose major challenges in terms of size and power
consumption for an implanted device.
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What exactly are the specifications for an effective neural interface? Ideally, one
would like to independently access each neuron in a region of the nervous system.
Obviously, this is often not feasible: systems that communicate with many neurons
usually do not achieve single-cell resolution, while high-resolution systems can only
record from a limited number of neurons. The optimal trade-off of resolution and
scale may depend on the specific application; thus, the design of future BMIs should
be guided by a deep understanding of how information is encoded in the targeted
part of the nervous system.

For example, accumulating evidence in intracortical motor BMIs shows that, for
current devices, spike sorting (distinguishing electrical impulses, or spikes, recorded
from different neurons) does not produce a substantial increase in decoding perfor-
mance [4–8]. Instead, if only threshold detection is performed on the recorded data,
the specifications on the neural interface can be relaxed and the power consumption
per channel can be drastically decreased, allowing more channels to be implanted
[9]. However, as a better understanding of the neural circuitry in the motor cortex
develops and recording devices with greater capabilities become available, systems
that are capable of resolving individual cells could be valuable.

This evolution of design tradeoffs is already evident in the retina, likely because
its function is better understood than other parts of the nervous system. Decades
of research on the retina and visual system indicate that an effective interface that
can replace retinal function lost to disease should reproduce the natural pattern of
activation of the cells that transmit visual signals to the brain [10]. Because diverse
cell types are intermixed in the retinal circuitry, such a device will need to sort spikes
coming from different cells and sort the recorded cells into different cell types. This
in turn will permit the device to stimulate each cell and cell type in a way that
matches natural function. No BMI has ever been developed that can achieve these
goals; however, advances in circuit design as well as in our understanding of the
retina now bring this goal within reach.

In this chapter, we describe how the retina transduces light into a neural code that
then is processed by the brain, and why this architecture implies that a high-fidelity
retinal implant should operate at cellular and cell-type resolution.We then discuss the
limited performance of first-generation retinal prostheses, which were not designed
with this goal in mind. Finally, we describe a project at Stanford University aimed
at developing an artificial retina that takes into consideration cell-type specificity of
retinal signals and aims to reproduce the neural code at its natural resolution. Finally,
we comment briefly on the possible implications for future BMIs.

24.2 Neuroscience of the Retina and Vision

The retina is a multi-layer structure at the rear of the eye containing neural circuitry
that transduces the visual image into electrical signals, processes those signals, then
transmits the results to the brain so that a visual image of the external world can be
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Fig. 24.1 Left: retina cross-section (from [12], © Abrams 2010). Right: schematic of retina lay-
ers and cell classes: (R)od and (C)one photoreceptors; (H)orizontal, (B)ipolar, and (A)macrine
interneurons; (G)anglion cells

formed [11]. A cross-section of the retina highlights three different layers: photore-
ceptors, interneurons, and retinal ganglion cells (RGCs) (Fig. 24.1). The incoming
light passes through the retina, which is mostly transparent, and arrives at the pho-
toreceptors, where it is transduced into electrical signals. The signals coming from
photoreceptors are integrated by interneurons, which in turn synapse onto RGCs,
the output cells of the retina. As with most neurons, RGCs consist of a cell body
(or soma), and a long nerve fiber (or axon) that transmits its all-or-none electrical
impulses (or spikes) to target neurons in the brain. The axons of RGCs form the
optic nerve, which routes visual information to many different parts of the brain for
subsequent processing. Vision is the result of this fascinating distributed biological
system.

The retina has several gross structural features that are important for neural inter-
face design. In an en face view of the primate retina (Fig. 24.2; [13]) bundles of axons
are visible, traveling from RGCs towards the optic nerve. Interestingly, axon bundles
avoid passing through an area in the central retina called the fovea, presumably to

Fig. 24.2 Photograph of a flattened macaque retina, with landmarks and locations relevant for
epiretinal implants shown (from [13], © APS 2017)
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preserve optical clarity in this high-resolution region at the center of the visual field.
In the center of the fovea, interneurons and RGCs are displaced laterally, providing
a direct light path to the photoreceptors. As a result, the RGC layer is several cells
thick, as opposed to the rest of the retina, where RGCs form a single layer. The high-
resolution fovea occupies a small part of the retina, while the remainder of the visual
scene is captured at low resolution by the peripheral retina. In fact, at approximately
15° outside the fovea, the visual acuity of a healthy person is equal to that of a legally
blind patient.

The reason we can look at the Colosseum in Rome or the Golden Gate Bridge in
San Francisco and reconstruct a high-resolution image, in spite of the small size of
the fovea, is that our eyes constantly explore the scene in a series of active fixations
connected by rapid eye movements. The eye focuses the fovea on certain features of
the visual image, and moves quickly between them (Fig. 24.3; [14]). These different
views are then integrated by the brain to produce a coherent representation of the
visual scene.

Certain kinds of vision loss, such as macular degeneration and retinitis pigmen-
tosa, arise from the loss of photoreceptors which normally transduce light. How-
ever, many other neurons, notably the RGCs, remain in large numbers. Therefore, a
potential way to treat this kind of blindness is a device that uses an implanted neural
interface to electrically stimulate RGCs (Fig. 24.4), causing them to fire spikes that
are transmitted to the brain. In addition to a neural interface, such a device requires
a camera to capture the image, and a processing unit to determine the appropriate
patterns of electrical stimulation. First-generation devices with this general design
have been shown to produce visual perception in profoundly blind patients, though
performance has been limited (see Sect. 24.4).

Fig. 24.3 Pattern of eye movements over an image during 3 minutes of free viewing by a human
subject (from [14], © Springer 1967)



24 Artificial Retina: A Future Cellular-Resolution … 447

Fig. 24.4 Schematic of retina with degenerated photoreceptors, and epi-retinal prosthesis. The
prosthesis consists of a camera, a processing unit, and a neural interface to electrically stimulate
RGCs

A major obstacle to restoring high-fidelity vision with such devices, and arguably
a key reason for the limited performance of first generation devices, is that there
are many types of RGCs in the retina that deliver distinct visual signals to different
targets in the brain (see [15–18]). For example, simultaneous activation of so-called
ON and OFF type cells at a given location sends conflicting “messages” to the brain,
indicating both a light increase, and a light decrease, at the same retinal location at the
same time. Present-day retinal prosthesesmake no attempt to distinguish distinct cells
or cell types, and therefore produce a non-specific, and thus profoundly scrambled,
retinal signal of exactly this kind (see Sect. 24.4). These considerations suggest that
to re-create the naturalistic neural code, and to produce high-fidelity artificial vision,
requires that the distinct cell types be addressed independently. Because the different
cell types are intermixed in the neural circuitry of the retina, this requires cellular
resolution interfaces, with high channel count to recreate complex patterns in the
neural network. Neural interfaces that operate this way—at the natural resolution of
the neural circuitry—do not currently exist.

Note that, in principle, highly plastic neural circuits in the brain could adjust over
time to accommodate scrambled retinal signals. Although a thorough treatment of
visual plasticity and learning is out of the scope of this chapter, two major consid-
erations argue against a major role for plasticity in artificial vision. First, plasticity
is costly and complex to implement and regulate in any circuit, be it neural or elec-
tronic, and it is unlikely that evolutionary pressures would favor a visual brain with
the ability to adjust itself to the highly non-biological stimulation provided by cur-
rent prostheses. Second, a substantial rewiring of the distinct projections of different
RGC types into the brain after prosthesis implantation is highly unlikely in adults,
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and existing studies suggest that visual perception with prostheses changes little with
experience [19].

Assuming that a retinal implant must reproduce the neural code at cellular and
cell-type resolution in order to provide high-fidelity artificial vision, what are the
specific scientific and engineering requirements? From an engineering point of view,
we require the ability to control the spiking activity of each cell and cell type inde-
pendently. From a scientific point of view, we must understand the natural pattern
of activation of RGCs for a given image in order to reproduce it faithfully. Several
decades of basic neuroscience research have accumulated a great deal of knowl-
edge about the pattern of activation of RGCs; indeed, the retina is one of the best
understood parts of the nervous system. Thus, at the moment, the limiting factor is
engineering a device capable of cellular and cell type resolution over a large area of
the retina.

24.3 Neurophysiology and Electrical Stimulation
of Neurons

To understand how such a device might work and the state of the art, we will describe
extracellular recording and stimulation of neural activity. Information in most neu-
rons (including RGCs) is encoded in spikes, which are brief electrical impulses, i.e.
perturbations in the voltage across the cell membrane. Because spikes are stereo-
typed all-or-none signals, information is conveyed only by the temporal pattern of
spikes, not by the spike shape.

Understanding how spikes are generated in the cell sets the context for thinking
about how electrical recording and stimulation can be used to monitor and control
neural activity. The cell’s membrane potential is controlled by a wide variety of ion
channels, proteins that control the flow of ions [predominantly sodium (Na+) and
potassium (K+)] across the cell membrane by opening and closing in response to
voltage changes and binding of neurotransmitters [20]. Under resting conditions,
the cell potential is ≈ −70 mV with respect to the extracellular medium, due to the
different ionic concentrations inside and outside of the cell that are maintained by
cellular pumps. If a signal from another neuron, or an external stimulus, depolar-
izes the cell above a certain threshold level (≈ −50 mV), then positive feedback
from voltage-gated channels will cause the neuron to generate a spike—a stereo-
typed depolarization to about +30 mV that lasts about 1 ms. During the spike, the
Na+ permeability initially increases rapidly, bringing in positive charge and further
increasing the membrane potential (positive feedback). Then, the slower K+ chan-
nels are activated, allowing positive charges to flow out of the cell, and returning the
intracellular potential to its resting state (negative feedback). Note that because ion
channels open in response to voltage changes, spikes can be generated artificially by
applying electric fields outside the cell. Furthermore, because these ionic currents are
large, the polarization during a spike can be monitored outside the cell by recording
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the extracellular potential using a microelectrode. The dispersive medium between
the cell and the microelectrode introduces a signal attenuation, so that, typical extra-
cellularly recorded spikes are ≈100 μV in amplitude, as opposed to the ≈100 mV
change in the membrane potential.

Thus, neurons are de facto electrical processing units: they signal information
with electrical impulses, and these impulses can be recorded and elicited by an
electrical device outside the cell. Hence, the electrical domain is a natural one for
the development of neural interfaces.

The way neurons produce spikes is crucial for identifying the origin of spikes
recorded extracellularly (spike sorting; [21–23]) and for achieving single-cell reso-
lution. The extracellularly-recorded spike waveform for any given cell is consistent
over time and reflects the distribution of ion channels on the cell and spatial rela-
tionship between the cell and the recording electrode. Thus, if an electrode records
spikes from two cells, their waveforms will typically be different, making it possible
to distinguish the signals from the two cells. If an array of electrodes is used, the
same cell can be recorded on multiple electrodes, increasing the spatial information
for spike sorting.

The way neurons produce spikes can also inform the design of electrical stimula-
tion for neural interfaces. An electrical model of RGCs can be used to simulate the
membrane potential as a response to an external stimulus [24]. This simulation can
inform the specifications on the stimulation pulse (i.e. duration and amplitude)—for
example, results in [25] present numerical and analytical models of strength-duration
curves for eliciting a spike.

In summary, interfacing with the nervous system in the electrical domain is a
natural choice, given that neurons communicate with electrical signals. In particular,
neurons encode information in spikes, which are comparatively easy to record and
elicit without manipulating the internals of the cell.

24.4 First-Generation Epiretinal Prostheses

The first generation of retinal prostheses used electrical stimulation to elicit neural
activity and artificial vision in blind human patients [10]. This technology develop-
ment produced striking advances and an exciting proof of concept, but also fell short
of the goal of restoring high-quality vision. Here, we focus on epiretinal devices,
which are implanted on the surface of the retina to directly stimulate RGCs (see [10,
26–30] for a more complete review). The Argus devices developed by Second Sight
constituted the first and largest commercial effort. Argus I was a first-generation
prototype approved for a clinical trial aimed at establishing safety. Positive results
of this trial on 6 patients motivated the development of Argus II, the only epiretinal
device approved (in 2013) by the U.S. Food and Drug Administration (FDA) for
clinical use. Argus II was initially implanted on 30 patients between 2007 and 2009,
and in more than 150 additional patients since FDA approval [31]. However, in 2019,
Second Sight stopped selling the device.



450 D. G. Muratore and E. J. Chichilnisky

First-generation epiretinal prostheses provided a wealth of useful information.
Most notably, stimulation ofRGCs in profoundly blind patientswith retinal degenera-
tion elicits artificial visual perception (phosphenes). Phosphenes have been described
by patients as being large, elongated and irregular [32, 33]. Their brightness and size
were modulated with variations in the stimulation parameters (amplitude and fre-
quency) [34]. Stimulation thresholds for light perception were well below the safety
limits for electroporation [35, 36] and charge injection for most common electrode
materials [37–39]. Notably, stimulation thresholds were highly dependent on the
distance between the implant and the retinal surface, making obvious the need for
keeping the array in close proximity to the retina [40].

However, the current state of the art of epiretinal prostheses, including the Argus
II, can be summed up as such: no blind patient would trade their cane or guide dog
for one. The artificial vision achieved with these devices is coarse, irregular, and
difficult to relate to the objects in the visual scene [10]. A feature of first-generation
devices that may play a role in their limited function is the small number of channels
(e.g., 60 electrodes in Argus II), which is arguably insufficient to recreate a high-
resolution image. One way to gain intuition about the required number of channels is
to examine an image rendered with different numbers of pixels (Fig. 24.5; [41]). In
the example reported below, the content of the image becomes clear when using a few
thousand pixels. Because retinal neurons are not mere pixel detectors, the number of
channels in a retinal implant and the effective number of pixels in perception are not
directly comparable quantities. However, it seems clear that high-resolution visual
restoration will require more independent stimulating channels.

Another issue with existing epiretinal devices is that they simultaneously activate
many ganglion cell types due to the size of the stimulating electrodes (typically 50–
500 μm in diameter). As discussed above, different cell types encode very different
types of information, and failing to respect this specificity will likely lead to poor
visual restoration. Increasing the spatial resolution of electrodes will also help with
another problem faced by epiretinal devices: activation of unwanted axon bundles,
which reside between the target ganglion cells and themicroelectrode array and carry
spikes from distant RGCs to the brain (Fig. 24.6). Activating axon bundles is almost

Fig. 24.5 Image of a stapler rendered with different numbers of pixels (from [41], © Elsevier 2015)
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Fig. 24.6 Primate retinal ganglion cells, axon bundles, and overlying electrode array [13]

certain to degrade the image, because the originating cells and thus the location and
nature of the visual signal they convey are varied and unknown. High-density arrays
of small electrodes can increase the probability of being able to stimulate neurons
without also activating axon bundles [13].

Axon activation can also be avoided by subretinal prostheses, which activate
retinal interneurons rather than RGCs ([42, 43]; see [10]). These devices can be
relatively simple and modular and show greater promise for vision restoration in the
near future. However, the technical advantages of axon avoidance and interfacing to
neurons at an earlier level of retinal processing are accompanied by severe limitations:
limited scientific information about the neural code of the interneuron cell types, and
the inability to record and precisely control their activity—both limitations arising
because retinal interneurons are among the few cell groups in the central nervous
system that signal with graded voltages rather than spikes. Hence, subretinal implants
have little promise for accurately reproducing the neural code of the retina with
cellular and cell-type resolution, and no path for extension to brain interfaces, and
will not be discussed further.

In summary, first-generation prostheses demonstrate the possibility of vision
restoration, but lack the ability to stimulate many cells with cellular and cell-type
resolution. As a result, the neural code that is transmitted to the brain is severely
distorted, limiting sight restoration.

24.5 The Stanford Artificial Retina

To improve on the state of the art, we propose a novel architecture for retinal
implants—an artificial retina designed to adapt itself to the particular cells and cell
types in the host circuitry, in order to faithfully reproduce the naturalistic neural code.
Specifically, the device will have larger and denser electrode arrays to interface with
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many cells at their native spatial resolution, and the ability to record spikes in order
to calibrate the device to the underlying biological circuit. We make a distinction
between retinal prostheses of the past, and artificial retinas of the future, to highlight
that the goal of an artificial retina is to actually replace the natural function of the
neural circuitry of the retina.

Our approach is based on an extensive set of neurophysiological experiments in
isolated retina, which serve as a laboratory prototype for a future clinical device. This
work builds on a long history of experiments using various technologies and animal
models; here, we focus specifically on high-density large-scale electrical recording
and stimulation in the monkey retina, the most relevant animal model for human
vision. The results reveal that it is possible to reproduce the natural retinal signal
with high fidelity [13, 44–46]. In the experiments, electrical activity in the peripheral
macaque retina is recorded on a 512-electrode array with 30–60 μm pitch, and spike
sorting is performed to identify distinct RGCs [47, 48]. To distinguish different cell
types, the spatial and temporal light response properties of each cell are measured
by correlating the images focused on the retina with the spiking activity of the cell,
yielding functionally distinct clusters of cells [47, 48]. The accuracy of this cell type
classification is confirmed by the fact that the spatial sensitivity profiles, or receptive
fields, of each cell type form a mosaic covering the region of retina recorded [48–50]
(Fig. 24.7). Electrical stimulation is then calibrated by passing varying amounts of
current through each electrode on the array, while recording the elicited activity,
exploiting the fact that the spike waveforms of different cells have already been
learned during recording [13, 44–46]. Finally, electrical stimulation is tailored to the
recorded cells and cell types in a manner that most accurately reproduces the natural

Fig. 24.7 Mosaics of receptive fields of the four major primate RGC types, obtained in a single
multi-electrode recording from an isolated retina. The different RGC types overlap, but here, have
been displaced for visibility (adapted from [53], © Cell Press 2019)
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retinal activity (Fig. 24.8; [13, 44]). Spatial patterns of electrical stimulation through
multiple electrodes simultaneously can also be used to fine-tune the activation of
RGCs [51, 52].

The experimental approach described above informs the design of the future
clinical device, and serves as a rapid prototyping platform for circuit-algorithm co-
design and optimization. The proposed device [54] will operate bi-directionally, in
three modes: cell calibration (recording only), dictionary calibration (stimulating
and recording), and runtime (stimulating only) (Fig. 24.9). During cell calibration,
the interface identifies the cells and cell types in close proximity to the electrode array,
by recording spontaneous neural activity and sorting spikes from different RGCs.
During dictionary calibration, the device determines how the different electrodes
activate these cells, by recording and stimulating simultaneously. During runtime,

Fig. 24.8 Spatiotemporal visual and electrical activation of a local population of retinal ganglion
cells. Left: A moving bar light stimulus is shown while recording from a population of six RGCs,
with receptive fields indicated by ellipses, to determine the natural visual signal. Right: For each
numbered cell, times are indicated for: spikes recorded during the moving bar light stimulus (black
dots), applied current pulses during electrical stimulation (black triangles), and spikes evoked by
electrical stimulation (grey dots). The alignment indicates that natural responses to light can be
replicated by electrical stimulation with sub-millisecond temporal precision (from [44], © Cell
Press 2014)

Fig. 24.9 System-level diagram of the proposed bi-directional neural interface with three operating
modes
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the interface stimulates the available cells to best approximate the correct neural
signal based on the visual image captured by a camera. To produce meaningful
visual signals (Fig. 24.5), the electrode array will have >104 channels, covering a
relatively small part of the visual field, but one that is sufficient for useful vision. To
interface at a resolution that roughly matches the neural circuitry, the electrode pitch
will be ~30 μm or less. To faithfully encode a wide variety of visual images, the IC
will have the ability to record and stimulate every channel independently.

24.5.1 Cell Calibration

Cell calibration (Fig. 24.10a) involves recording spontaneous activity to characterize
the location and cell type of RGCs near the microelectrode array. Spikes generated
by neurons are recorded by the interface and digitally processed to distinguish the
spikes originating in different cells (spike sorting), requiring substantial computation
to make sense of the large amount of data captured at the interface. We then leverage
the fact that cell type classification can be performed solely based on electrical
features of neurons [55].A critical feature for this classification is the electrical image
(EI) [47], which is the average spatiotemporal voltage waveform produced by the
spike on the electrode array, a unique signature for each recorded cell (Fig. 24.11a).
Another feature that helps distinguish different types of RGCs is the autocorrelation
function of their spike trains (Fig. 24.11b). Typically, a neural network is trained to
perform cell classification using these features (classification). Finally, the receptive
field of each cell can be inferred from the EI, and its normal light response properties
inferred from existing data.
Challenges: Although electrical features of RGCs can be very useful in classifica-
tion, it is uncertain how completely classification can be accomplished, particularly
given the variability between retinas, and the potential effect of retinal degeneration
on the electrical properties of cells. Current work focuses on the use of very large
data sets to improve classification. Also, to perform classification, the interface must
record frommany or all channels simultaneously in order to track the spatiotemporal
evolution of spikes, resulting in data rates that are prohibitive in terms of energy
and transmission bandwidth: e.g., 10,000 channels with 10-bit resolution at 20,000
samples per second generate 2 Gbps of recorded data. Without a radical change
in the way neural interfaces are designed, the power dissipation during calibration
will exceed the target for clinically viable devices by more than an order of mag-
nitude. Fortunately, the signal of interest requires much less bandwidth, because a
collection of neurons on the electrode array produce temporally and spatially sparse
signals—thus, a continuous voltage recording on all channels is not needed. Such an
observation about the statistics of neural spiking provides an opportunity to design
a very efficient neural interface. This data explosion problem relates to most BMI
applications and researchers have investigated a wide range of options to address
it, such as on-chip spike sorting [56], on-chip compression [57–59], compressive
sensing [60], and active analog multiplexing [61–63].
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Fig. 24.11 Electrical features of neurons to be used for cell-type classification in blind retina.
a Electrical image (EI) for an ON parasol and an ON midget cell from a primate retina. Each circle
represents an electrode in the array, with radius indicating the average amplitude of the recorded
spike, and color indicating its arrival time. Parasol EIs are usually larger and exhibit faster spike
propagation than midget EIs. b Autocorrelation function of the spike train for a population of ON
parasol cells and a population of OFF parasol cells in the primate retina

The electrical recording approach we propose performs lossy compression in the
mixed-signal domain (i.e. before full digitization), exploiting two principles [64].
First, spikes are sparse in space and time, therefore we need only record spikes,
and not voltage samples between spikes. Second, it is necessary only to identify
and distinguish the spikes produced by different cells, therefore, spike waveforms
need not be perfectly recorded. A scheme that exploits these facts is one in which
the digitized voltage on a given electrode is retained only if it is different from the
values on other electrodes. This can be accomplished efficiently with a ramp analog-
to-digital converter (ADC) coupled with a wired-OR readout and a unique-signal
decoder. During each sample, the ramp ADC indicates the input voltage with a brief
pulse at a discrete time step proportional to the quantized voltage (the number of
distinct time steps sets the ADC resolution and the ramp voltage range sets the ADC
full-scale range). This is achieved by comparing the input signal to a rampvoltage that
steps through the entire input range (Fig. 24.12a). The time of the pulse is captured
using a counter that keeps track of the ramp steps. This is an efficient algorithm for
digitizing many channels in an array because the ramp and the counter can be shared
between all channels. Then, instead of reading the output pulses from each channel
individually, channels are combined with an OR logic, across the rows and across
the columns (Fig. 24.12b), to achieve the desired compression. Consequently, if only
a single channel produces a pulse at a given time step (i.e., it is the only channel
with a quantized voltage corresponding to the time step), then the channel location
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is indicated by a uniquely decoded row and column (pulse at t = 1 in Fig. 24.12c).
On the other hand, if multiple pulses from different channels occur at the same time
step (i.e., the quantized voltages on many channels are equal) multiple rows and/or
columns are activated, and no uniquely decoded channel is indicated (pulse at t = 5
in Fig. 24.12c). Only the uniquely decoded samples are stored, leading to substantial
compression (output in Fig. 24.12c).

Direct measurements from large collections of RGCs indicate that this com-
pression approach is effective for reconstructing real neural spikes. The probabil-
ity distribution of the input signal reveals that spikes primarily inhabit the tails
(Fig. 24.13a), which implies that voltages associated with spikes tend to be unique.
Consequently, spike samples are typically retained while other samples are typically
discarded (Fig. 24.13b). The result is an accurate reconstruction of spike waveforms
(Fig. 24.13c) accompanied by substantial compression (~40x). Most importantly,
these approximately reconstructed waveforms are sufficient to distinguish spikes

Fig. 24.13 Neural signal characteristics and compressive readout results. a Probability mass func-
tion of 100,000 samples from512-electrode recording, after offset removal.bProbability of channels
having the same digitized voltage for spike and baseline samples—here, baseline samples refer to
samples that are within ±4σn (standard deviation of noise in the recording channel) and spike sam-
ples refer to samples outside the ±4σn band. Results from data recorded in isolated primate retina.
c, d Example of a reconstructed spike (c) and a reconstructed OFF parasol mosaic (d) in the primate
retina using the described readout strategy
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from different cells, allowing recordings from nearly complete collections of neurons
(~95%; Fig. 24.13d and [64]).

24.5.2 Dictionary Calibration

Dictionary calibration involves learning how current passed through the stimulating
electrodes activates RGCs (Fig. 24.10b). The dictionary consists of elements that
indicate the probability of generating a spike in each of the recorded RGCs, given
a particular set of stimulating electrode(s) and current(s) [65]. Typically, for each
dictionary entry, one or a few electrodes are used and a small number of cells are
activated (but more complex dictionary entries are also possible). The generation of
this dictionary is critical to obtain single-cell resolution. For each possible electrode
and current level on that electrode, stimulation is applied, and the neural response
is recorded on the entire array. The evoked response is compared against all the
recorded EIs to identify which cell(s), if any, were activated (response ID). This step
is performed repeatedly to estimate the probability of response of each RGC. The
combined information about electrical stimulation and cellular activation probability
constitutes one element in the dictionary.Note that dictionary elementswhich include
axon bundle activation are typically not used (see Sect. 24.4 and [13]).
Challenges: A serious technical challenge for the above calibration is removing
the stimulation artifact resulted from injecting a current into the high electrode
impedance. Stimulation artifacts are large recorded waveforms that can obscure the
neural response of interest, and are thus a severe problem for bi-directional neural
interfaces. Typically, a combination of front-end mitigation techniques and back-end
cancellation methods have to be implemented to overcome this issue [66]. Another
challenge is the size of the dictionary: it is impractical to characterize the responses
of all cells to all possible patterns of stimulation through a large electrode array.
Approaches to this problem currently being explored include adaptive methods for
developing models of electrically-evoked response [67], the use of prior information
obtained from recording to predict the results of stimulation [67], and modeling
interactions between electrodes in producing electrical stimulation [52].

24.5.3 Runtime

Runtime operation involves stimulating the available cells based on the incoming
image, using the dictionary calibration (Fig. 24.10c). An external camera captures
the visual scene, and the eye position is used to extract a focal image, i.e. the region
of visual space that the interface should be encoding. Given the focal image, the
goal is to optimize the stimulation pattern in real time such that the elicited cell
responses lead to a faithful perception of the focal image (dictionary approximation).
An obvious approach is to approximately mimic the normal RGC responses that
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would be produced by the focal image, using existing understanding of natural image
coding by the various RGC types, and the available dictionaryelements. A different
approach is to assume a model for how the brain interprets the visual information
transmitted by the retina, and tune the evokedRGC responses accordingly to optimize
perception. These two approaches have benefits and drawbacks that depend on both
the richness of the dictionary and the degree of our understanding of how the brain
interprets visual signals. In either case, the calibrated dictionary is leveraged to
efficiently determine the desired electrical activation of RGCs.
Challenges: In general, a large collection of RGCs must be activated to produce use-
ful vision. This usually requires passing current through many electrodes. However,
as described above, a dictionary that specifies RGC responses to all possible patterns
of current through many electrodes would be prohibitively large to create and store
on an implantable chip. To avoid this problem, temporal dithering of simpler (e.g.
single-electrode) stimulation patterns has been proposed [65], with stimulation pat-
terns from the dictionary interleaved at sub-millisecond time resolution—faster than
the integration time of the brain. Results from ex vivo experiments show that greedily
selecting the stimulation sequence from a simple dictionary to most rapidly reduce
the expected error between the target image and a linear image reconstruction from
the neural responses (as a surrogate for perception) leads to an efficient encoding of
the image. However, future algorithms could improve upon the strong assumptions of
this approach—such as integration times, independence of dictionary elements, lin-
earity of perception, measures of perceptual error, the role of eye movements—while
allowing for efficient runtime implementation in portable hardware.

24.5.4 System Architecture

To accomplish the above goals, we envision a system with a minimalist device
implanted at the back of the eye that maximizes the number of channels within the
tight power budget, while the more complex system components are implemented
elsewhere (Fig. 24.14). The interface communicates wirelessly with a relay on the
outside of the eye, which in turn communicates with a digital signal processing (DSP)
chip outside the body. Finally, a camera and an eye tracker provide the desired image
to the DSP. In this system, the data for calibration can be sent out to be processed by
experts in the clinic, while the patient keeps using the device. During runtime oper-
ation, the DSP processes the data from the camera and the eye sensor and transmits
the stimulation control signals appropriate for the focal image to the interface, via
the relay.
Challenges: Novel circuits and systems are required to implement the bi-directional
neural interface, the data-power relay, and the runtime DSP chip. The interface needs
to maximize the number of channels, while maintaining low power, data bandwidth,
and area for implantation. The implanted relay chip will optimize the wireless power
and data link for efficiency, helping to overcome the difficulties introduced by eye
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Fig. 24.14 Conceptual sketch of the Stanford Artificial Retina

movements and the different wireless communication environments inside and out-
side the eye.While the DSP chipwill not be implanted and thus will havemore power
available, it will also have to implement compute-intensive algorithms that operate
in real time with short latencies. Finally, other system challenges need to be faced,
such as high precision eye movement tracking, encapsulation of active devices for
long term implantation, CMOS-MEA integration, and surgical procedures. All these
challenges will promote innovation in IC design and system integration.

24.6 Conclusion

Future retinal implants for restoring vision will need to achieve cell and cell-type
resolution over a large area of the central retina to overcome the limitations of current
devices. To do so requires novel circuits and systems coupled to bi-directional neural
interfaces that interact efficiently with the neural circuitry via large and dense elec-
trode arrays. The retina is an ideal target for pioneering this kind of high-fidelity, adap-
tive neuroengineering, as it is relatively accessible andwell-understood. The Stanford
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Artificial Retina is the first attempt at such an architecture, exploiting data-driven
algorithm-circuit co-design for high-fidelity artificial vision.

In addition to treating incurable blindness, such a device may open other doors
as well. Once the device is developed and able to interface specifically and con-
figurably to many distinct RGC types, various scientific, medical, and commercial
applications become possible. Scientifically, one may be able to modify the neural
code of the retina in diverse ways to test how subtle and targeted alterations of the
natural visual signal, such as changes in spike timing or cell type signaling diversity,
influence visual acuity in experimental animals, and perhaps in humans that have
already been implanted. Medically, it may be possible to encode visual scenes in
abstracted or augmented ways in order to provide an artificial visual signal that is of
even greater utility to the patient. Commercially, diverse applications of augmented
artificial vision may also become possible, if implantation of the retina becomes safe
and routine.

These technology developments may also have important implications for a wide
range of BMIs. Many neural circuits in the brain share the essential architecture
of the retinal circuitry: many cell types, intermixed, transmitting distinct signals to
distinct targets for distinct functions. Thus, as our understanding of other areas of
the nervous system increases, interfaces capable of reproducing the natural pattern
of activation of neurons of different types may provide much higher performance in
a range of BMI applications. The circuits and systems we propose for the artificial
retina may be adaptable to future high-fidelity interfaces to the brain.
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Chapter 25
Augmented and Virtual Reality

Gordon Wetzstein

Immersive computer graphics systems, such as virtual and augmented reality
(VR/AR) displays, aim at synthesizing perceptually realistic user experiences. To
achieve this goal, several components are required: interactive, photorealistic render-
ing; a high-resolution, low-persistence, stereoscopic display; and low-latency head
tracking. Modern VR/AR systems provide all of these capabilities and create expe-
riences that support many, but not all, of the depth cues of the human visual system.
They fall short of passing a “visual Turing test for displays”. Imagine a person
using a wearable computing system and that system delivering user experiences that
are indistinguishable from the real world. That is, the user would not be able to tell
whether an image is computer generated or real.While the field of computer graphics
has been developing algorithms to generate photorealistic images, to pass the visual
Turing test for displays, a VR/AR system must deliver perceptually realistic experi-
ences. This challenge requires displays with high resolution, color fidelity, dynamic
range, and adequate support of all the depth cues of human vision. Moreover, for
such a system to be practical, device form factor, weight, power, heat, battery life,
limited compute power, and bandwidth have to optimized as well and set physical
constraints on the capabilities of a wearable computing system.

A second, equally important goal of AR/VR systems is that they are wearable,
operating at low power to provide sufficiently long battery life, and that the thermal
management works well enough to prevent overheating. After all, users will only
adopt wearable computing systems if they are comfortable, functional, and in many
but not all cases also fashionable.Application-specific integrated circuits dedicated to
solving the computationally demanding tasks of these systems, including rendering,
display, and tracking, are therefore crucial to the success of AR/VR systems.

Although significant research and engineering efforts have focused on reducing
the size, weight, and power (SWaP) characteristics and also the user experiences
of AR/VR displays, we are far from being able to deliver experiences that pass the
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Fig. 25.1 Overview of components of AR/VR systems. From dedicated, application-specific
processors to microdisplays, photonic waveguides, 360° cameras, novel cloud services to new
approaches to computer vision and human-computer interaction, AR/VR system design includes a
plethora of aspects that all together define the user experience. Parts of this image are reproduced
from Microsoft and Facebook promotional material

aforementioned visual Turing test for displays with wearable form factors. In the
following sections, we outline challenges and solutions for rendering and percep-
tion, near-eye displays, tracking, and capturing and editing cinematic VR content.
Figure 25.1 shows an illustration outlining the many components that need to be
considered for engineering a VR/AR system.

25.1 Near-Eye Displays

25.1.1 Foveated Rendering and Display

Each of our eyes has a field of vision of about 150 × 135 degrees horizontal and
vertical, respectively. Designing a display that provides retinal resolution, i.e. about
60 pixelsper degree of visual angle, would thus require about 9000 × 8100 pixels
per eye to achieve 20/20 vision. Rendering this massive amount of visual data at
90–120 frames per second is a major challenge for any graphics processing unit
(GPU). Moreover, this data also has to be transmitted to the head-mounted display
and shown there. To address some of the challenges associated with high-resolution
rendering in AR/VR, we can exploit some of the limitations of the human visual
system (HVS). We know that the visual acuity of the HVS is higher in the fovea than
in the periphery of the visual field. Using eye tracking technology, we can easily
determine where the user is fixating and adaptively rendering images of varying
resolution, a technique know as foveated rendering. Due to the large field-of-view
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ganglion cells (RGCs) varying with eccentricity. There is a strong preference for central vision as
compared to peripheral vision. Data measured by Curcio and Allen [28] and Curcio et al. [29]

of near-eye displays, we observe a large majority of VR/AR pixels through our
peripheral vision (see Fig. 25.2, left). Combined with the fact that visual acuity
of peripheral vision is significantly lower than foveal or central vision, adaptively
and dynamically distributing image quality and detail across the visual field is an
important class of perceptual optimizations for near-eye displays. In this section we
discuss the physiological and perceptual bases for foveation, as well as the relevant
rendering and display technologies proposed in recent literature.

Human visual perception starts at the optical components (the lens, pupil, etc.),
followed by retinal cells like rods, cones, and ganglion cells, and finally by higher
level neural processing. Each of these optical, retinal, and neural components exhibit
a strong preference for the central area of the visual field. On the retina this region
is also called the fovea, and is marked by high density of retinal cells (see Fig. 25.2,
right). As a consequence of the variation in processing density across the pathway,
our foveal vision has a much higher acuity than our peripheral vision. Hence, it is
better for near-eye displays to provide more detail in the foveal region than in the
peripheral region.

The degradation in visual acuity from foveal to peripheral vision is also known to
be highly non-uniform [189]. For instance, while we cannot perceive fine details in
images through our peripheral vision, we are extremely sensitive tomoving and flick-
ering images. Researchers have identified several such non-uniformities in peripheral
visual acuity, e.g. in color perception [54, 147], in existence of a peripheral alias-
ing zone [199], and the anisotropy of peripheral perception [167]. While designing
foveated rendering and display applications, we should be aware of this peculiar-
ity. On the other hand, these effects can create additional opportunities to improve
rendering performance or image quality.

Many researchers have proposed foveated rendering techniques to improve ren-
dering performance for gaze-contingent displays. The most prominent class of tech-
niques work by reallocating image pixels such that the density is highest at the
fovea, and lowest in the periphery. There are can be done in two main ways (also see
Fig. 25.3):
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Fig. 25.3 Illustrations of two prominent techniques for foveated rendering. Left: We can render
multiple views of a scene with varying resolution, and blend the resulting buffers to obtain the final
foveated image. Right: We can render the scene into a distorted buffer that prioritizes foveal pixels,
and after rendering undistort it into the final foveated image

• By rendering the fovea, periphery, and zero or more intermediate regions into
different framebuffers of varying size and resolution, and blending them together
to produce the final foveated image [52].

• By rendering the image into a distorted framebuffer that oversamples the fovea,
but undersamples the periphery [26, 27, 45, 133].

Other techniques for foveated rendering work by reducing expensive computa-
tions like pixel shading operations [133, 155, 186, 202] and geometric evaluation
[194].

While foveated rendering solutions seek to improve performance by reducing
pixel computations in the periphery, a recent class of techniques moves the foveal-
peripheral adaptivity directly to the display. Such novel display systemdesignsmatch
the nature of human vision. One example in VR is to expand the 2D foveated to 4D
light field display [192]. The system is shown to offer both foveation (performance)
and accommodation (comfort). More recently, the idea of foveating display has been
advanced to augmented reality as well [89]. Whereas foveated rendering algorithms
reduce the rendering and bandwidth requirements, foveated displays use clever com-
binations of optically foveated (i.e. steered) microdisplays to create a perceived
resolution of a display that exceeds the actually pixel count.

Overall, foveated rendering and display techniques can help address the compu-
tational challenges of rendering and displaying computer-generated images at retinal
resolution over a wide field of view. However, accurate and low-latency eye tracking
are required for this technique as are GPUs, rendering algorithms, and microdisplay
backplanes that support these display modes.

25.1.2 Enabling Focus Cues in VR/AR

Human depth perception relies on a variety of cues [68, 152]. Many of these cues are
pictorial and can be synthesized using photorealistic rendering techniques, includ-
ing occlusions, perspective foreshortening, texture and shading gradients, as well as
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relative and familiar object size. Compared with conventional 2D displays, head-
mounted displays (HMDs) use stereoscopic displays and head tracking and can thus
support several additional depth cues: binocular disparity, motion parallax, and ver-
gence (see Fig. 25.4) as well as ocular parallax [93]. All of these cues are important
for human depth perception to varying degrees, depending on the fixation distance
[31]. In this section, we review an area of active research and development: emerging
near-eye displays that support focus cues, i.e. retinal blur, accommodation, and chro-
matic aberrations. For a more detailed survey of 3D displays and perceptual related
issues, the interested reader is referred to [6].

Current near-eye displays cannot reproduce the changes in focus that accompany
natural vision, and they cannot support users with uncorrected refractive errors. For
users with normal vision, this asymmetry creates an unnatural condition known as the
vergence–accommodation conflict [97, 102]. Symptoms associated with this conflict
include double vision (diplopia), compromised visual clarity, visual discomfort, and
fatigue [97, 177]. Moreover, a lack of accurate focus also removes a cue that is
important for depth perception [31, 63, 66, 206]. Note that adequate reproduction of
focus cues in VR/AR is most important for younger users, while older users tend to
be presbyopic, i.e. they lost the ability to accommodate their eyes [149].

In the following, we outline several approaches to enabling focus cues in VR/AR
and to mitigating the vergence–accommodation conflict. For a more comprehensive
review of this topic, we refer the interested reader to the survey papers by Kramida
[101] and Hua [71].
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Gaze-contingent focus cue rendering is a software-only approach that tries to
mimic focus cues by changing the way 2D images are being rendered. This includes
gaze-contingent depth-of-field rendering [40, 64, 84, 123, 131] and rendering the
chromatic aberrations of the human eye [24]. Although depth-of-field rendering
may improve perceived realism, several recent studies have demonstrated that this
approach alone does not drive accommodation [83, 94], therefore it does not reduce
the vergence–accommodation conflict. Rendering chromatic aberrations can drive a
user’s accommodation in a monocular display setup [24] and also improve perceived
realism. However, driving the user’s accommodation away from the focal plane of
the display may result in degradation of perceived image sharpness.
Varifocal displays present a single image plane to the observer, the focus distance of
which can be dynamically adjusted. This is typically done by estimating the distance
of the user’s fixation point with eye tracking and then optically driving the display’s
focal plane to this distance. Two approaches for optical focus adjustment have been
proposed: physically actuating the screen [149, 191] or dynamically adjusting the
focal length of the lens via focus-tunable optics (programmable liquid lenses or
reflectors) [41, 56, 83, 94, 100, 117, 149, 187, 188]. Several such systems have been
incorporated into the form factor of a near-eye display [94, 117, 149]. Figure 25.5
shows both benchtop and wearable varifocal display prototypes along with data
measured for users of all ages demonstrating that varifocal displays effectively drive
accommodation for non-presbyopic users.
Multifocal displaysare probably the most common approach to focus-supporting
displays by approximate the 3D space in front of the eye using a fewvirtual planes that
are generated by beam splitters [2, 38, 134], time-multiplexed focus-tunable optics
[20, 70, 117, 118, 121, 142, 160, 166, 204, 219], or phase-modulating spatial light
modulators [130]. Naïve implementations with beam splitters seem impractical for
wearable displays because they compromise the device form factor, but this concept is
promising, especially for see-through AR displays, when implemented with stacked
diffractive optical elements [110] or waveguides, such as in the Magic Leap ML1.
One of the biggest challenges with time-multiplexed multi-plane displays is that they
require high-speed displays and may thus introduce perceived flicker. Specifically,
an N-plane display requires a refresh rate of N× 60–120 Hz. Digital micromirror
devices (DMDs) are of the fastest available microdisplay technologies and seem
particularly promising for this direction, as also realized by recent research [20, 160]
as well as Avegant’s commercial AR Video Headset. Content-adaptive multifocal
displays [130, 219] seem particularly interesting, because they have the capability of
minimizing the number of required focal planes based on the saliency of the content.
However, optically generating non-planar or adaptive focal planes is challenging.
Near-eye light field displays aim to synthesize the full 4D light field in front of
each eye [105, 107, 126, 213, 214]. Conceptually, this approach allows for parallax
over the entire eyebox to be accurately reproduced, including monocular occlusions,
specular highlights, ocular parallax, and other effects that cannot be reproduced by
varifocal or multifocal displays. However, current-generation near-eye light field
displays provide limited resolution due to the spatio-angular resolution tradeoff of
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Fig. 25.5 Varifocal display prototypes and user experiments. a A typical near eye display uses
a fixed-focus lens to show a magnified virtual image of a microdisplay to each eye. The focal
length of the lens, f, and the distance to the microdisplay, d′, determine the distance of the virtual
image, d. Dynamic focus can be implemented using either a focus-tunable lens (green arrows) or
a fixed-focus lens and a mechanically actuated display (red arrows), so that the virtual image can
be moved to different distances. b A benchtop setup designed to incorporate dynamic focus via
focus-tunable lenses, and an autorefractor to record accommodation. c The use of a fixed-focus
lens in conventional near-eye displays means that the magnified virtual image appears at a constant
distance (orange planes). However, by presenting different images to the two eyes, objects can
be simulated at arbitrary stereoscopic distances. To experience clear and single vision in VR, the
user’s eyes have to rotate to verge at the correct stereoscopic distance (red lines), but the eyes must
maintain accommodation at the virtual image distance (gray areas). d In a dynamic focus display, the
virtual image distance (green planes) is constantly updated to match the stereoscopic distance of the
target. Thus, the vergenceand accommodation distances can be matched. e These accommodative
gains plotted against the user’s age show a clear downward trend with age, and a higher response
in dynamic. Inset shows mean and standard error of the gains for users grouped into younger and
older cohorts relative to forty-five years old. f A wearable varifocal prototype using a conventional
near-eye display (Samsung Gear VR) that is augmented by a gaze tracker and amotor that is capable
of adjusting the physical distance between screen and lenses. Figures reproduced from [149]
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microlens-based systems [72, 106] or the diffraction limit of dual layer liquid crystal
displays (LCDs) [73].

Renewed interest in holographic near-eye displays for applications in virtual
and augmented reality has emerged. Recently, much progress has been made both
on hardware implementations and efficient algorithms. For example, several recent
near-eye displays combine a holographic projector with various see-through eye-
pieces in innovative ways: holographic optical elements [113], waveguides [221],
and lenses with beamsplitters [23, 50, 138]. Moreover, algorithms for computer-
generated holography have significantly advances at the same time [125, 151, 176].
Although holographic near-eye displays are one of the most promising directions of
near-eye display research, they also face significant challenges. Holographic displays
may suffer from speckle and have extreme requirements on pixel sizes that are not
afforded by near-eye displays also providing a large field of view.

Near-eye display systems that remove the accommodation-dependent change in
retinal blur, also known asMaxwellian-view displays [96, 101, 209], allow accom-
modation to remain coupled to the vergence distance of the eyes, and thus allow
for accommodating freely in a scene and mitigating the vergence–accommodation
conflict. Conceptually, the idea of accommodation invariance can be illustrated by
imagining that a user views a display through pinholes—the depth of focus becomes
effectively infinite and the eyes see a sharp image nomatterwhere they accommodate.

Vision is one of the primary modes of interaction with which humans understand
and navigate the everyday world, so it is natural to ask whether vision-correcting
displays could also correct for visual aberrations like myopia or hyperopia. In addi-
tion to these refractive errors, the aging process is accompanied by a hardening of
the eye’s crystalline lens; the end result is that by their late 40s or 50s, most peo-
ple struggle to view objects that are within arm’s reach in sharp focus [39]. This
reduction in range of accommodation, known as presbyopia, affects more than a
billion people [67] and will become more prevalent as the population ages. While
several types of eyeglasses and contacts exist to correct myopia, hyperopia, and also
presbyopia, corrective eyewear could be directly integrated into AR/VR displays.
For example, Padmanaban et al. studied age-related effects of accommodation in
VR/AR and showed that varifocal displays drive accommodation in a natural way
for non-presbyopes [149]; they also demonstrated vision-correcting capabilities for
myopia and hyperopia. Varifocal display technology can also correct for presbyopia
in see-through AR systems [18] or, integrated into electronic eyeglasses, for pres-
byopes viewing the real world [55, 114, 150]. Finally, light field display technology
has been demonstrated to enable vision-correction for myopia, hyperopia, and higher
order aberrations [75, 153].

25.1.3 Occlusion-Capable Optical See-Through AR Displays

Optical see-through augmented reality (AR) systems are a next-generation comput-
ing platform that offer unprecedented user experiences by seamlessly combining
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physical and digital content. Many of the traditional challenges of these displays
have been significantly improved over the last few years, but AR experiences offered
by today’s systems are far from seamless and perceptually realistic. One of the
most important image characteristics for improved seamlessness between digital
and physical content is mutually consistent occlusions between physical and digital
content in optical see-through augmented reality. When digital content is located in
front of physical objects, the former usually appear semi-transparent and unrealistic
(Fig. 25.6). To adequately render these objects, the light reflected off of the physical
object toward the user has to be blocked by the display before impinging on their
retina. This occlusion mechanism needs to be programmable to support dynamic
scenes and it needs to be perceptually realistic to be effective. The latter implies
that occlusion layers are correctly rendered at the distances of the physical objects,
allowing for pixel-precise, or hard-edge, control of the transmitted light rays. In
the following, we discuss several recent approaches to enabling mutually consistent
occlusions in AR.

Projection-based lighting can be used to control the lighting of a scene in a
spatially varying manner. Using such controlled illumination, mutually consistent
occlusions, shading effects, and shadows in projector-based AR systems can be
synthesized [4, 11, 12, 127]. However, it may not always be possible to use a projector
to control the illumination of a physical scene, for example due to device form factor
constraints or in the presence of strong ambient illumination.

Commercial AR displays (e.g., Microsoft HoloLens, Magic Leap) often use a
neutral density filter placed on the outside of the display module to reduce ambient
light uniformly across the entire field of view. An adaptive version of such a global

Fig. 25.6 Occlusion-capable optical see-thoughARdisplay (left). The display includes relay optics
and spatial light modulators that allow for hard-edge per-pixel control of the observed scene before
it hits the user’s retina. The right panel shows views through the display with a no occlusion control,
i.e. digital and physical image are simply superimposed, b occlusion enabled to block light from the
physical scene everywhere where there is digital content, c occlusion disabled but depth considered,
i.e. physical objects can occlude digital objects but selectively rendering the latter, d occlusion
enabled and depth considered, i.e. both physical and digital objects can correctly occlude the other
one. Figure reproduced from [90] © IEEE 2003
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dimming approach was recently proposed by Mori et al. [139], where the amount
of dimming is controlled by a single liquid crystal cell and responsive to its physical
environment. While these approaches may be useful in some scenarios, they do not
provide spatial control of the occlusion layer.

The physical scene can be focused onto an occlusion spatial light modulator
(SLM) which selectively blocks its transmission in a spatially varying manner before
it reaches the user’s eye. Known as soft-edge or hard-edge occlusion, depending
on whether the SLM is in focus or out of focus, this idea was first proposed by the
seminal work of Kiyokawa et al. [90–92] (see Fig. 25.6). Improvements of related
systems were later demonstrated [16, 17, 48, 49, 53, 69, 80, 124, 161, 211, 216, 228].
Although all of these approaches are successful in providing mutually consistent
occlusions in AR systems, miniaturizing these capabilities into a wearable device
form factor remains one of the primary challenges of optical see-through AR today.

25.1.4 Optimizing Other Display Characteristics

Spatial AR systems and optical see-through AR display often aim at providing radio-
metrically consistent, color-corrected or even color-stylized imagery (e.g., [13, 81,
103, 104, 210, 211]). Some of the most important display characteristics that deter-
mine how well a digital visual experience could match a physical one are resolution,
dynamic range/ brightness, and color.We briefly review computational display strate-
gies to address these display characteristics. A comprehensive survey of these topics
can be found in [129, 212].

Examples of superresolution displays include optical configurations that com-
bine the contribution of multiple overlapping devices [34] or single devices with
either two stacked LCDs [168] or one LCD and a double-lens system [169]. Super-
resolution display with monitors, as opposed to projectors, can be achieved by fast
mechanical motion of the screen [10] or using two stacked LCDs [61, 62]. Finally,
Hirsch et al. [65] proposed a light field and HDR projector using stacked spatial
light modulators. They used formal optimization to derive optimal pixel states in the
display and demonstrate superresolution on a diffuse projection screen rather than a
monitor.
High dynamic range displays overcome the limited contrast of LCDs. In their semi-
nal work, Seetzen et al. [173] introduced the concept of dual-layer modulation where
a low-resolution LED backlight is modulated by a high-resolution LCD. While the
LED array has low resolution, it offers ultra-large dynamic range. An image decom-
position algorithm is applied to decompose a target HDR image into the pixel states
of the two display layers. This technical approach has become standard practice
in industry and is now marketed using the terms “micro dimming” or “local dim-
ming” in consumer products. Extensions to more than two display layers have been
discussed [213] and high dynamic range projectors have also been proposed [33].
These typically build on light steering using phase-only spatial light modulators [5],
dual layer modulation [65], or adaptive control of the peak brightness over time [19].
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A large color gamut can be achieved bymulti-primary displays [137, 163, 198]
that extend the set of reproducible colors by using more than three primaries. Related
algorithmic problems include selecting the optimal color primaries [8, 74, 86, 115,
120] as well as gamut mapping (e.g., [7]), where pixels of an image are processed to
fit within the fixed gamut provided by a display.

25.2 Tracking Headsets, Controllers, and Hands

Oneof the core challenges of anyAR/VRsystem is tracking headsets, controllers, and
the user’s hands. Tracking a headset is crucial if we want to render digital 3D content
from the user’s perspective and update this perspective in the computer-generated
content as they move. While this capability may not be as important for information
displays that simply show text, email, or other content that is independent of the
physical environment, any virtual or augmented reality experience requires the user’s
head to be tracked at low latency. Head tracking enables us to move through a virtual
environment and always see it from the correct perspective, but it does not necessarily
allow us to interact with this environment. For this reason, most commercial VR/AR
system offer additional controllers that act as a prop for various digital interfaces in
VR/AR. For example, one could imagine overlaying a digital wand, sword, remote
control, or another object that the user sees in the virtual environment but that they
physically interact with through the controller. Finally, as AR systems become more
ubiquitous, controller-free interaction paradigms are desired. The most natural way
for humans to interactwith their environment is using their hands. Therefore, tracking
mechanisms for capturing the precise motion of hands and fingers are a sought-after
goal for AR/VR systems.

Tracking a headset or controller is a slightly different problem from tracking
hands, because the former are rigid bodies whereas the latter are deformable bodies.
And although headset and controller tracking are slightly different problems, tech-
nological approaches to both share many similarities. Broadly speaking, headset and
controller tracking approaches can be classified as either “outside in” or “inside out”.
The outside-in approach refers to technologies that use cameras, special light sources,
WiFi routers or other infrastructure external to the device for tracking. Imagine an
array of cameras spread out on the ceiling or walls of a room, all looking towards the
headset or controller. The challenge with this approach is obviously that the area in
which tracking is supported is confined to the physical space that is covered by the
cameras. The inside-out approach aims to provide a fully integrated system that does
not rely on external tracking hardware. A gyroscope, accelerometer, camera, or other
sensors are mounted on the headset that track its position and orientation relative to
the world around them are examples of inside-out systems. As it is not confined
in space, this is certainly the preferred approach, but the camera-based inside-out
approach can be computationally costly, power hungry, and introduce additional
latency. The next two sections outline a number of outside-in and inside-out tracking
technologies, respectively.
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What makes rigid body tracking easier than tracking deformable objects, like
hands, is that rigid bodies only have six degrees of freedom: position and orientation
in 3D space. Together, position and orientation are typically referred to as pose in the
computer vision community and there are 3-DOF (i.e., either position or orientation)
or 6-DOF (i.e., both position and orientation) pose tracking systems that track either
three or all six degrees of freedom. A deformable object, such as a hand, can have
many more degrees of freedom, for example one may be interested in 6-DOF pose
of the hand as well as the joint angles of the fingers. We review approaches to hand
tracking in Sect. 25.2.3.

25.2.1 Outside-In Pose Tracking

Pose tracking can be implemented with a variety of technologies. Commercially-
available systems includemechanical trackers,magnetic trackers, ultrasonic trackers,
and GPS or WiFi-based tracking [132]. The most widely used technology, however,
is optical pose tracking. In the following, we briefly review these technological
approaches and discuss their relative benefits and disadvantages.
Mechanical tracking is probably the most intuitive tracking approach. Mechanical
linkages are physically attached to a headset or controller and encoders read out
the joint angles between linkages. Examples of mechanical trackers in VR include
the system used in Ivan Sutherland’s “Ultimate Display” [193], which is widely
recognized as the first head-mounted display, and also Fakespace Labs’ BOOM
(Binocular Omni-Orientation Monitor). The advantages of mechanical tracking are
low latency and high accuracy while disadvantages include the limited range of user
motion and device form factors.
Ultra-sonic tracking can be offered by light-wight, small, and inexpensive trans-
ducer systems. For example, one or more transmitters can be mounted on the headset
or controller and emit pulses that are being triangulated by three or more receivers
based on their relative time of flight of the pulses. These types of trackers are sus-
ceptible to acoustic interference, they may have low update rates, and they are sub-
ject to line-of-sight constraints, i.e. the direct line of sight between transmitter and
received should not be blocked. In addition to amechanical tracker, Ivan Sutherland’s
“Ultimate Display” for example also used an ultra-sonic tracker [193].
Magnetic tracking has been widely used for pose tracking throughout the last few
decades. These systems typically comprise a magnetic field generator along with one
or more magnetometer sensors. The generator is usually capable of re-orienting the
magnetic poles of the field along the three axis in rapid succession. Synchronizing
the oscillating magnetic field with the magnetometers allows the sensors to estimate
their own position and orientationwithin the field. An example of amagnetic tracking
system is Polhemus’ Fastrak. Generally, magnetic tracking offers reasonably good
accuracy and latency for 6-DOF pose tracking, small and low cost sensors, and it does
not suffer from line-of-sight constraints. However, the strength of the magnetic field
determines the working volume, which is typically somewhat limited and the system
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is susceptible to distortions of the magnetic field, for example caused by electronic
devices or metal. Wireless magnetic trackers exist but the clocks of sensors and
magnetic field generator need to be synchronized.

Althoughmagnetic trackers have been largely replaced by optical trackers inmany
VR/AR applications, they have found a niche in tracking controllers. For example,
the Magic Leap ML1 controller uses a miniaturized magnetic field generator with
the magnetometer sensors being integrated in the headset [78]. This would allow the
controller to be tracked relative to the headset without being subject to line-of-sight
constraints, which is crucial when the direct line of sight between controller and
headset is blocked, for example by the user’s body.
Optical tracking is probably the most widely used tracking system for headsets
today and several different flavors of optical tracking are available. In a multi-camera
configuration, several calibrated cameras observe the target from different perspec-
tives. After being detected in the individual 2D images, the target is triangulated
from several cameras to estimate its pose. This approach is similar to motion capture
systems in the visual effects industry, where actors wear suits with retroreflective
markers or light emitting diodes (LEDs) that are being tracked by a set of cameras.
In a single-camera configuration, multiple markers with a known relative orientation
to each other are tracked in the 2D image of a single camera. The inverse problem of
estimating the 6-DOF pose of a target from the 2D projections of a set of markers is
known as the perspective-n-point problem, which can be solved efficiently as long
as at least four markers are visible to the camera [85, 162].

Many commercial VR/AR systems use optical tracking with infrared LEDs or
actively illuminated retroreflective markers mounted on a VR controller or a headset
(e.g., Oculus Rift and Sony’s Playstation VR headset; see Fig. 25.7). The system
ships with an additional camera that estimates the 6-DOF pose from the measured
2D locations of the LEDs or markers. The arrangement of the markers on the tracked
device is usually known from its design or calibrated by the manufacturer. Typically,
these systems do not solely rely on optical data but use a sensor fusion approach
between the optical data and inertial measurement units.

Fig. 25.7 Examples of optical tracking in VR. Left: near-infrared (NIR) LEDs of the Oculus Rift
recorded with a camera that is sensitive to NIR (image reproduced from ifixit.com). Center: HTC
Vive headset and controllers with exposed photodiodes (image reproduced from roadtovr.com).
Right: disassembledHTCLighthouse base station showing two rotating drums that create horizontal
and vertical laser sweeps as well as several LEDs that emit the sync pulse (image reproduced from
roadtovr.com)

https://www.ifixit.com
https://www.roadtovr.com
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The HTC Vive also uses an optical tracking system, but rather than using a cam-
era to observe LEDs on the headset, the Vive uses a slightly different approach
where the camera is replaced by a projector and instead of LEDs, photodiodes are
mounted on the device. The projector emits structured illumination to help the pho-
todiodes determine their own 2D location in the reference frame of the projector.
An early paper on this technology was published by Raskar et al. [159], who used
spatially-structured illumination. HTC calls their technology Lighthouse and it uses
temporally-structured illumination. Specifically, the Lighthouse projector or base
station sweeps horizontal and vertical laser stripes across the room (hence the name
Lighthouse). It does that very fast—60 times per second for a full horizontal and
vertical sweep with sync pulses in between. The photodiodes are fast enough to time
stamp when the laser sweeps hit them relative to the last sync pulse. Using these
measurements, one of several optimization techniques can be employed to estimate
the 6-DOF pose of the tracked device with respect to the base station. Sensor fusion
between an inertial measurement unit (i.e., gyroscopes and accelerometers) and the
photodiodes allow for low-latency tracking.

Other tracking approaches include the global position system (GPS) or WiFi
positioning, but these systems are not as common in VR/AR.

25.2.2 Inside-Out Pose Tracking

Inside-out tracking systems represent the ideal-case scenario for VR/AR because
they enable a device, such as a headset or controller, to track itself within a phys-
ical environment without the need for external tracking infrastructure. The most
intuitive inside-out systems are inertial measurement units (IMUs) that typically
include gyroscopes and accelerometers, often also magnetometers. IMUs are micro-
electromechanical systems (MEMS) that offer low cost, extremely low latency (up
to thousands of samples per second), they require little power, and they are readily
available, for example in all cellphones. Although gyroscopes suffer from drift and
accelerometers from noise, sensor fusion between these sensors enables robust orien-
tation tracking with low latency in VR/AR [108]. Unfortunately, positional tracking
is not easily possible with IMUs alone, because of two challenges. First, separating
the effects of gravity and linear acceleration from potentially noisy accelerometer
measurements is very difficult. Second, the double integration required to turn linear
acceleration measured by an accelerometer into relative position introduces integra-
tion errors and thus drift. Even with high sampling rates, i.e. small time steps, the
estimated position will quickly diverge from the true position.

One of the most popular inside-out tracking approaches that does not suffer from
these limitations is optical tracking, where the images of a single or multiple moving
cameras are analyzed to determine the relative 6-DOF pose of the camera. This is
known as simultaneous localization and mapping (SLAM) [42] or visual odometry
[146] in the literature. Generally speaking, an image is analyzed to find 2D features
that can be tracked in subsequent frames of a video, these features are matched
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between successive frames, and an inverse problem known as bundle adjustment
then determines the relative poses of the cameras in each frame. This is now the
standard approach for tracking standalone headsets, like Microsoft Hololens, Magic
Leap ML1, or Oculus Quest. All of these systems likely use a hybrid, visual-inertial
odometry approach, which uses sensor fusion between camera data and an IMU for
6-DOF tracking. While the benefits of camera-based inside-out tracking are clear,
this is a computationally challenging problem that requires substantial computa-
tional resources, which in turn creates challenges in thermal management, power
consumption, and latency.

25.2.3 Hand Tracking

Early VR/AR systems supporting hand tracking typically used data gloves. A data
glove is a wired or wireless electronic glove-like device that the user wears [190].
Conventional outside-in or inside-out tracking systems, as discussed above, can be
used to track the 6-DOF pose of the hand. Additional flex sensors also track the
amount of finger bending. Commercial flex sensors use fiber optics, conductive ink,
or capacitance to estimate the amount of bending. Examples of commercial data
gloves include Nintendo’s Power Glove, Virtual Technology’s CyberGlove, or VPL’s
DataGlove. Gloves are less common in modern hand tracking systems, which often
use camera-based input along with optimization or neural network-based algorithms
that fit some parametric representation, for example a skeleton, of a hand to the input
data [111, 141, 183, 184, 205]. Some of the most successful commercial products
offering hand tracking for VR/AR are LeapMotion andMicrosoft’s Hololens, which
includes an integrated gesture recognition system.

25.3 Cinematic VR

Capturing the real world for rendering in virtual reality [164] is closely related to
work on 3D reconstruction [30] and particularly image-based rendering (IBR) [37,
179]. These are active, long-running fields of research that have produced a large
variety or techniques and systems towards the goal of capturing the real world in all
its visual fidelity. Many of the proposed systems share a similar structure, which is
embodied by the VR capture pipeline:

Capture → Reconstruction → Represenation → Compression → Rendering

The goal of this section is to look at each stage of this pipeline, and to provide
an overview of the range of techniques used by existing VR capture approaches as
well as their trade-offs. For any particular approach or system, the most important
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design choice is the data representation to be used, as this constrains many of the
other pipeline stages, in particular reconstruction, compression and rendering.

25.3.1 Capture

Most virtual reality capture approaches rely on one or more color cameras to capture
the visual appearance and dynamics of a scene. Sometimes, special cameras are used,
such as RGBD cameras which capture a depth maps in addition to color footage, or
special attachments like mirrors.
One static camera can only capture a limited view of a larger scene due to its
limited field of view. The content captured in this fashion can still be compelling,
as demonstrated by Facebook’s 3D photos [98], which are captured by dual-lens
cameras on commoditymobile phones to provide depth in addition to color. However,
wider views requirewider camera optics, such asfisheye lenses or catadioptic systems
[1] for omnidirectional video.
One moving camera can capture a more complete picture of a scene by sweeping
it over time. Traditional panorama stitching approaches [14, 197] assume a camera
that rotates on the spot, so that it essentially captures all light rays converging at a
single point in space, the center of the panorama. By moving the camera in space,
even more light rays can be captured, for instance for omnidirectional stereo [9, 156,
165], layered depth panoramas [225] or 3D photography [57]. Towards the extreme
end, a camera can also be moved along the surface of a plane or sphere, to capture a
more complete light field [122, 136, 148].
One moving RGBD camera makes it easier to reconstruct the geometry of the
scene from the captured depth maps. A pioneer in this category is KinectFusion
[143], which reconstructs a global truncated signed distance field representation of a
scene from registered input depth maps alone. There are many more recent variants
that improve on the scale and robustness of this kind of scene reconstruction [32,
145, 215]. Instant 3D photography [58] aligns multiple RGBD images captured with
a dual-lens camera into a consistent, textured 3D panoramic surface.
Multi-camera rigs are required for video capture and to capture multiple viewing
directions simultaneously. Consumer 360° cameras are now commercially available
as commodity devices that stitch two or more video streams into one 360° video
[109, 158, 208]. Stereo cameras capture two viewpoints side by side, and their base-
line can be magnified in post [226]. Multiple viewpoints can also be interpolated
and manipulated in a post-process after video capture [116]. A ring of video cam-
eras captures sufficient information for compelling omnidirectional stereo video [3,
43, 172], while a rotating camera rig can even capture live omnidirectional stereo
video [95] (see Fig. 25.8). Light fields [44, 51, 112] are based on a dense sampling
of viewpoints, which requires many co-located cameras. A different camera setup
distributes cameras on a dome or around a capture volume, for example to capture
objects and people in a light stage [36] or as volumetric video [25].
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Fig. 25.8 SpinVR: a rotating camera with two line sensors directly captures omnidirectional stereo
panoramas

25.3.2 Reconstruction

Reconstruction is all about interpreting and combining the information contained in
the captured imagery and depth maps, if available.

The first step is often camera calibration and structure from motion, i.e., charac-
terizing the imaging devices used, including their lens distortion, and determining
which views of a scene they captured. Multiple structure-from-motion implementa-
tions are publicly available, including Bundler [182], VisualSFM [218], AliceVision
[82, 140], MVE [46], Theia [195] and COLMAP [170], with the latter currently
enjoying the widest use. However, general-purpose structure-from-motion tools do
not perform well for the kind of inside-out capture commonly used for environment
capture [9, 57]. This has led to the development of specifically tailored structure-
from-motion solutions that assume camera motion on a spherical surface [196, 203],
which is a good match for handheld [9, 57, 165] or spherical [122, 148] capture
approaches. One of the outputs of structure from motion is also a sparse 3D point
cloud of feature points in the scene, which can be useful for image alignment [109]
or view warping [76].

Once the viewpoints are reconstructed, the next step is generally to combine all
the captured information into a single model of the scene. In classical panorama
stitching, this is achieved by aligning and blending the individual input views on
a spherical or cylindrical image surface [14, 197]. While still panoramas can hide
alignment artifact to some degree using clever blending approaches [57, 223, 224],
this becomes much harder for panoramic videos, as the visual content, and hence
any artifacts, keep changing over time. To address this, the stitching needs to vary
over time in accordance with the scene [109, 158, 208]. To achieve more complex
projections, such as the multi-perspective omnidirectional stereo (ODS) projection
[79, 156], requires dense correspondence between input views so that intermediate
views can be synthesized [3, 15, 165, 172]. Most approaches use optical flow for this
purpose, as it provides useful flexibility in case of calibration errors or scene motion.

The reconstruction of 3D geometry goes beyond the purely image-based
approaches discussed before by recovering the 3D structure of a scene or object.
Most approaches start by estimating per-view depth maps using multi-view stereo
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(MVS) techniques [47, 77, 171, 174], unless depth maps are directly available from
RGBD cameras. In theory, these per-view depth maps can be integrated into a global
geometry model of the scene [22, 57, 175] if the camera poses and depth maps
are estimated sufficiently accurately. Approaches such as KinectFusion [143] and
BundleFusion [32] integrate noisy depth maps over time to improve the accuracy of
the surface reconstruction. Having a large number of views also leads to a cleaner
geometry reconstruction [25]. Hedman et al. [58] introduce a locally varying depth
map alignment step to integrate differently normalized depth maps from mobile
phones into a globally consistent depth map. However, because of calibration and
depth estimation errors, better view synthesis results can often be obtained with per-
view geometry [21, 60, 148] that is smoothly blended across the synthesized novel
view.

25.3.3 Representation

Over the years, various approaches have been proposed for representing captured
scenes or objects. To provide an overview, Shum et al. [178, 179] organized
approaches along a continuum according to how much geometry is being used:
no geometry, implicit geometry or explicit geometry. ‘No geometry’ refers to purely
image-based approaches, such as panoramas or 360° video. ‘Implicit’ geometry com-
prises approaches using posed images and/or relying on 2D image correspondences,
such as optical flow. And ‘explicit’ geometry includes textured meshes with actual
3D geometry. Figure 25.9 contains an updated version of Shum et al.’s continuum
of representations.

There is no universally best representation—all have their advantages and dis-
advantages and provide different trade-offs. There is also often no hard boundary
between representations, so there is some overlap and hybrids are possible. In the
limit, i.e., with infinite resolution, the representations are theoretically interchange-
able. However, any conversion always requires resampling, which is an inherently
lossy process that reduces overall accuracy and fidelity. There are usually also practi-
cal limits, for example the physical size of cameras that limits the maximum camera
density achievable for light field approaches.
Images and Panoramas provide the most basic snapshot of what a scene or object
looked like. They represent a photographic likeness that captures visual appearance

No geometry Implicit geometry Explicit geometry

Images and
panoramas

Light Omnidirectional
stereo (ODS)

Posed
images

Layered
representations

Point
clouds

Textured
geometryfields

Fig. 25.9 The continuum of image-based rendering representations, inspired by Shum et al. [178,
179]
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of a scene or object from a single point of view with a fixed field of view. Panoramas
[14, 197] and 360 videos [109, 158] capture a wide or even complete field of view.
Images and panoramas enjoy great popularity as they are easy to capture withmodern
mobile phones and straightforward to share. However, their main limitation is that
they only provide information for a single point of view and no depth perception,
and thus do not support any transnational change of viewpoint.
Light Fields represent a dense spatio-angular sampling of a scene [112], generally
using a regular 2D grid of camera viewpoints. More general camera configurations
are supported by the Lumigraph [51], a closely related variant of light fields. As the
comprehensive coverage of an object in a scene is challenging to obtain in practice,
Davis et al. [35] proposed a guidance approach that helps users in capturing missing
viewpoints. Videos captured with a moving camera can also be considered to be a
densely light field along the camera path, which can be exploited for particularly
accurate scene reconstruction [87, 220].
Omnidirectional Stereo (ODS) is a multi-perspective, circular projection [79, 156]
that has become a popular medium for stereoscopic and 360° VR photos and videos
[3, 15, 165, 172]. ODS encodes two panoramic view, one for the left eye and one
for the right eye. This has the advantage that there is binocular disparity, and hence
a feeling of depth, in all viewing directions along the equation. Furthermore, the
format is an excellent fit for existing video processing, compression and transmission
pipelines, as both views are encoded in a single top-bottom configuration.
Posed Images have known camera geometry (camera position and orientation) in
addition to the image data. This enables scene reconstruction in the form of point
clouds using multi-view stereo. Even sparse point clouds are sufficient for and an
overview of community photo collections as demonstrated by the seminal Photo-
Tourismwork by Snavely et al. [182]. Correspondences between adjacent viewpoints
can be used for interpolating novel views from existing ones. Novel views can be
interpolated from existing ones by establishing correspondences between adjacent
viewpoints. In practice, optical flow is often used for flow-based blending [9, 122,
165], which significantly reduces blurry ghosting artifacts and produces results with
high visual fidelity.
Layered Representations consist of multiple semi-transparent layers that encapsu-
late the appearance of a scene or objectwithout any explicit geometry. The underlying
core idea goes back to Disney’s multi-plane camera (1937), in which multiple trans-
parent cel sheets are positioned at different depths from the camera. This allows each
cel sheet to be moved independently and creates the effect of motion parallax over
time. Early approaches by Wetzstein et al. computed layered representations using
custom-tailored optimization frameworks [213, 214].
Textured Geometry makes it easy to render novel views in real time with existing
3D graphics pipelines, even on mobile devices. Mesh geometry is good at modeling
hard occlusion boundaries, but it needs to be reconstructed from depth maps. For
the highest quality depth maps, many observations from different viewpoints need
to be combined, for example for volumetric video [25] or Google’s light fields [148].
One consumer-facing example are Facebook’s 3D Photos [98], which are based on
an image and lower-resolution depth map from an off-the-shelf mobile phone. The
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final 3D photo can be looked at from different directions by tilting the phone. Several
approaches separate foreground and background objects in a scene into multiple tex-
tured layers [57, 58, 175, 225], to preserve clean occlusion boundaries. This generally
requires some kind of inpainting to fill the areas behind foreground objects. In the
real world, the appearance of objects also often depends on the viewing direction, e.g.
when objects are shiny. This effect can be modeled using surface light fields [217]
or view-dependent blending [59]. In general, modeling and editing favors geometric
approaches, as there are better software tools available for textured meshes.
Point Clouds represent a scene as an unordered collection of points, which may or
may not have colors and/or surface normals. They are readily obtained from structure-
from-motion and multi-view stereo tools, or Lidar scans of a scenes. However, they
are inherently sparse, tend to be noisy and non-uniformly distributed, and contain
gaps that make them impractical for render high-quality novel views (although this
is slowly changing thanks to neural re-rendering [135]). Nevertheless, they are often
useful intermediate representation or debugging tool.
Neural Scene Representations have emerged as a new representation that is cou-
pled with machine learning. The idea behind these algorithms is similar to classical
approaches: given a set of input views, distill these into an intermediate representa-
tion, and then render the scene fromnovel viewpoints using the intermediate represen-
tation. However, a neural representation differs from a classical scene representation
in being differentiable with respect to its parameters. In combination with a differen-
tiable renderer that takes the neural scene representation as well as a camera position
and orientation, i.e. a pose, as input and computes a 2D image from the camera’s
perspective, neural scene representations allow for end-to-end optimization of the
representation supervised only on the images.

Several different types of neural scene representations have been proposed. For
example, building on differentiable proxy geometries and neural textures [88, 200,
227], multiplane image representations [44, 136, 157, 185, 201, 226], voxel grids
[119, 144, 180, 207], point clouds [128, 222], or continuous differentiable functions
[154, 181].

25.3.4 Compression

Raw scene representations can become very large. This can make it difficult to
store them given limited space on disk or in memory, to transmit over networks in a
reasonable time, or even to render them in real time. Compression and decompression
are therefore indispensable for practical scene capture and rendering systems.

The light fields introducedbyLevoyandHanrahan [112] in 1996were up to 1.6GB
in size. This would easily fill a large hard drive at the time, but thus would not fit
in memory. However, light fields are highly redundant within images and between
images, so they are highly compressible. Levoy and Hanrahan designed a custom
light-field compression scheme that combines vector quantization of 2D or 4D tiles
(24:1 compression) with gzip entropy encoding (another 5:1 compression) for a
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total compression of 120:1. This scheme allowed fast random-access decompression
entirely in software, so that real-time rendering became feasible.

Recently, image compression techniques such as JPEG have become compu-
tationally affordable, even in real-time applications. Existing video codecs, such
as h.264 and h.265, can also often be used directly for compressing video-based
representations, such as 360° video [109, 158] or omnidirectional stereo videos
[3, 172].

Collet et al. [25] encode their volumetric free-viewpoint videos in a standard
MPEG-DASH file. Thanks to mesh tracking, their geometry has a temporally con-
sistent parameterization. Therefore, the resulting texture atlases are unwrapped con-
sistently and can be compressed effectively using the standard h.264 video codec.
The mesh geometry is encoded as a custom unit inside the video stream and com-
pressed using linear motion prediction, 16-bit quantization of vertex positions and
UV coordinates, and Golomb coding.

Google’s panoramic light fields require 46 GB of image data each [148] and thus
also need significant compression. Like for the original light fields [112], fast random
access is required for rendering novel views of the light field. Overbeck et al. [148]
build on the open-source VP9 codec and encode most light-field images relative to
a sparse set of reference views, which are like key frames in standard videos. In
practice, they decode all reference images when loading the light field from disk
and keep them in memory. They also contribute an extension to VP9 that enables
random access to individual image tiles. This allows them to decode any tile from
any other image immediately. Most light fields can be compressed at high quality by
40×–200×.

25.3.5 Rendering

The final step of the VR capture pipeline is to render the novel views corresponding
to the user’s location, so that they see the right views of the captured scene as they
move. Most rendering approaches adopt the standard graphics pipeline, which has
the benefit of efficient hardware implementations across a large range of devices,
from mobile to desktop setups. This efficient rendering hardware enables rendering
in real time, and even hitting the high frame rates of 80–120 Hz required to feed
state-of-the-art VR head-mounted displays [99].

Panoramas and omnidirectional stereo content only require a change of projection,
to perspective projection, to be viewed by users. This does not require any explicit
geometry and can be implemented in 2D, or, equivalently, using textured spheres
viewed from virtual perspective cameras. Many other approaches also use textured
geometry directly [32, 57, 58, 143, 175]. Evenmulti-plane images [44, 136, 185, 226]
can be rendered using textured geometry, by texturing the semi-transparent layers
on parallel planes that are appropriately spaced, and using alpha compositing in the
z-buffer during rendering.
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Modern graphics pipelines are also programmable using shaders, which provides
an opportunity to influence the rendering more locally depending on the viewing
direction, for example. Flow-based blending has been used to interpolate novel views
on the fly [122] and per pixel or light ray [165], also in a view-dependent fashion [9].
When many input views are combined to synthesize novel views, they also require
spatial blending to ensure smooth transitions [148]. Ultimately, the decision of how
to blend multiple observations of a single surface point can even be optimized using
a deep neural network [59]. However, evaluating the neural network per frame at run
time noticeably impacts the overall frame rate that is achievable with this approach.

25.4 Conclusion

In summary, wearable computing systems, such as virtual and augmented reality
displays, have made significant progress over the last few years. By exploiting
the specific characteristics of human vision, researchers have developed techniques
that overcome many previous challenges for these types of displays. For example,
foveated rendering and display minimize computational resources and bandwidth
requirements whereas varifocal display modes can support focus cues, improving
perceptual realismandvisual comfort.However, all of these and alsomanyother tech-
niques rely on eye tracking. To date, accurate and low-latency eye tracking remains
out of reach with consumer AR/VR systems. In contrast to the developments on the
research side, commercial head-mounted displays often provide only limited resolu-
tion and field of view, they do not support focus cues or mutual occlusion in optical
see-through AR settings, and they are restricted in many other ways.

To bridge the gap between research on AR/VR and the engineering reality of
wearable computing, low-power and low-latency application-specific integrated cir-
cuits are necessary for these tasks. Microsoft’s Hololens andMagic LeapsML1 pave
the way for dedicated processing with wearable computing, supporting inside-out
tracking, real-time rendering, and many other capabilities for untethered headsets.
However, eye tracking needs to improve and these accelerators should become easier
to re-purpose so that the research community can help push the frontier of VR/AR
systems.
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Chapter 26
Cryogenic-CMOS for Quantum
Computing

Edoardo Charbon, Fabio Sebastiano, Masoud Babaie
and Andrei Vladimirescu

26.1 Introduction to Quantum Processors and Qubits

In the 2010s quantum technologies have emerged as a compelling complement to
classical technologies for a number of applications, including quantum sensing,
metrology, imaging, communications, security, and computing. In particular, quan-
tum computing is a promising alternative to von Neumann machines and it holds the
promise for solving today’s intractable problems [1]. Quantum processors, the core
of a quantum computer, comprise an array of quantum bits (qubits), the fundamental
computational unit. Unlike conventional bits, qubits can take a coherent state ranging
from |0〉 to |1〉 on a continuous sphere, known as the Bloch sphere (Fig. 26.1).

When in superposition, qubits can take multiple states simultaneously and thus,
in principle, multiple computations can be performed at the same time, whereas the
number of possible states of a quantum processor is 2N ,N being the number of qubits.
The entanglement of qubits is the second important quantum mechanical property in
qubit states, so that knowing the state of one would imply knowing the state of the
other.

Qubits are however fragile and their fragility arises from the fact that a qubit needs
to be coherent at all times. As qubits tend to lose coherency, they need to be constantly
monitored and, if necessary, corrected. Figure 26.2 shows a quantum processor and
its classical control, with a bidirectional interface that is generally electrical but that
could also have optical or opto-electrical components.
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Fig. 26.1 Bloch sphere

Fig. 26.2 Classical control
of a quantum processor. ©
IEEE 2016

The general operating temperature of qubits is in the milli-Kelvin domain. How-
ever, higher temperatures can be achieved, while still retaining the main properties
of entanglement and superposition, with reasonably long coherence times. As of
today (2019), qubits are still interfaced with a classical controller operating at room
temperature. A recent trend however has been to bring part or all of this control to
temperatures that are closer than those of qubits for a more compact arrangement,
potentially enabling a scalable machine with thousands or millions of qubits operat-
ing in a relatively small volume. This trend poses a problem to the electronics, that
needs to be designed to match stringent specifications both in terms of noise and
frequency. In addition, linearity and, in the case of mixed-signal systems, quantiza-
tion granularity need to be achieved at a reasonable power, typically in the order of
milliwatts and even microwatts per qubit.

This chapter describes the challenges and opportunities encountered in designing
the electronic interface for quantum processors. We will specifically focus on the use
of standard CMOS technology to design and fabricate integrated circuits operating
at cryogenic temperatures. The chapter is organized as follows. In Sect. 26.2, an
example of state-of-the-art quantum processor and the electronic interface currently
employed for its control are presented, with emphasis on the current limitations.
Section 26.3 explains our proposal of a generic classical controller based on cryo-
CMOS technology. Cryo-CMOS device behavior is briefly covered in Sect. 26.4,
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while examples of the circuits necessary to achieve qubit control are presented in
Sect. 26.5 and their verification in Sect. 26.6. Finally, a perspective of the proposed
approach is outlined in Sect. 26.7, along with concluding remarks in Sect. 26.8.

26.2 Quantum Processors and Their Control Interface

A. State-of-the-art in spin qubit controller and readout

Several qubit technologies have been proposed but today there is not yet a clear
winner. Qubits based on solid-state fabrication technology are often considered a
favorable alternative, as they promise a scaled approach by exploiting fabrication
techniques borrowed from 60 years of experience in the semiconductor industry.
Figure 26.3 shows an illustration of some solid-state qubit technologies [2–10].
Although many more exist, a complete overview is however beyond the scope of
this chapter. What is most common for solid-state qubits is a deep-cryogenic tem-
perature of operation (�1 K) and the need for continuous monitoring and control
for proper operation. In the reminder of the chapter we will focus on spin qubits
possibly operated in the high milli-Kelvin or even in the low Kelvin domain [11, 12].
Among solid-state qubits, spin qubits are characterized by relatively long coherence
time (above 100 μs) and the extremely low pitch (~100 nm), which would in prin-
ciple allow the integration of the millions of qubits required in a practical quantum
computer on a silicon die of few mm2. Furthermore, as spin qubits are fabricated on
a semiconductor substrate, they can be in principle be co-integrated on the same die
with standard microelectronic circuits to be used for control and readout. However,
although large efforts are currently devoted to this research field, state-of-the-art spin
qubit processors comprise only up to 2 qubits.

Semiconductor quantum dots 

Superconducting circuits
Impurities in diamond or silicon 

Semiconductor-superconductor hybrids

Fig. 26.3 A few candidates of solid-state qubits available today. Clockwise from top, a spin qubit,
a topological qubit, NV-centers, and a superconductive qubit. © IEEE 2019
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To realize a spin qubit, a single electron is isolated in an extremely small site, i.e. a
quantum dot, on the surface of a semiconductor die. A large magnetic field is applied
to ensure that the spin-up and spin-down state of the electron corresponds to distinct
energy levels. Those two states are then used to encode the qubit quantum states |1〉
and |0〉. Figure 26.4 illustrates the block diagram of the state-of-the-art system for
readout and control of a two-qubit single-electron spin-qubit chip [13]. The qubit
chip is placed into a dilution refrigerator at a base temperature of 20 mK to ensure
that the thermal energy is much smaller than the energy scales of the qubits. Room
temperature digital-to-analog converters (not shown in Fig. 26.4) are used to provide
proper DC voltages to isolate electrons in neighboring quantum dots separated by
tunnel barriers.

Single-qubit operations can be achieved by applying a microwave magnetic field
at a frequency corresponding to the energy difference between the spin-up and the
spin down state

[
f = (

Espin,up − Espin,down
)
/h

]
. Since a magnetic-field gradient

is applied on-chip by a micromagnet, a microwave excitation applied to the qubit
gate (e.g., P3 terminal for qubit-1 in Fig. 26.4) causes the electron to oscillate in
the magnetic gradient, thus applying a magnetic excitation and hence a quantum

Fig. 26.4 Control and readout circuit for single-electron spin qubits in quantum dots (image taken
from [13]). © Nature Publishing Corp. 2018
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operation. In the experimental setup of Fig. 26.4, the microwave signals required for
the single-qubit gates are generated by two vector source generators (VSG, Keysight
E8267D), whose phase, frequency, amplitude, and modulation time are controlled
by an arbitrary wave generator (AWG, Tektronix 5014C). The required microwave
frequency is typically in the range of 10–40 GHz (e.g., 18.4 GHz for qubit-1, and
19.7 GHz for qubit-2 in Fig. 26.4) with modulation time of 0.1–2 μs for a π-rotation
(e.g., 125 nsec in Fig. 26.4). The microwave signals pass through DC blocks, high-
pass filters, and attenuators at different stages of the fridge to isolate the qubits from
the noise of the room temperature instruments. At the base temperature, the incoming
microwave signals added to the required gates DC voltage through bias tees.

For the two-qubit operation, the wave functions of the two electrons encoding the
qubits must overlap, so that they can entangle and influence each other state. This is
accomplished by tuning the energy of the two qubits and/or by lowering the potential
of the tunnel barrier separating the quantum dots hosting the electrons. The required
voltage pulses are applied to the proper gates (e.g., P1 and P2 in Fig. 26.4) with a
duration of ~100 ns and are generated by anAWG(e.g., Tektronix 5014C in Fig. 26.4)
with 1 GHz clock rate connected to the gate via a low-pass filter and a bias-tee. For
proper control, the instruments used for both single- and two-qubit operation are
synchronized by an external trigger provided by the master (e.g., Tektronix 5014C).

Read-out is typically performed by converting the electron spin information into
the position of the electron and sensing its charge. In the figure, the spin-to-charge
conversion is performed by spin-selective tunneling to a reservoir [14], and a single-
electron transistor (SET) is then used for sensing the charge through measuring its
electrical impedance. The SET input resistance changes by a few percent due to the
movement of the electron (e.g., ~100 k� ± 1%). This impedance modulation can be
directly read by measuring the device current when biased at a fixed voltage [15, 16].
Before the digitalization, the SET current is converted to a voltage signal by a tran-
simpedance amplifier and then filtered by a 20-kHz low-pass filter. Unfortunately, the
bandwidth and thus the speed of the current sensing readout is limited by the parasitic
capacitance of the long wire connecting the SET to the amplifiers. To increase the
readout bandwidth, RF reflectometry is usually used [17–19]. In this approach, the
input resistance of the charge sensor is matched to 50-� by an LCmatching network
closely connected to the SET. Consequently, by sending an RF pulse and measuring
the reflected power steered by a directional coupler, SET impedance variations, and
thus the qubit state can be monitored.

B. Need for Cryo-CMOS Control and Readout Circuits

As mentioned earlier, classical control is generally operated at room temperature.
While this is convenient for small qubit numbers, large arrays, typically in the hun-
dreds, may pose a problem of feasibility and reliability due to the large temperature
gradient and the complex interconnect between classical and quantum devices. We
thus believe ensuring the scalability of future quantum computers will be a necessary
condition for the development of this field so as to lead to a practical realization.

To address scalability, in 2016 we have proposed cryogenic electronics, and in
particular, cryogenic CMOS, or cryo-CMOS, as the key technology will enable large
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numbers of qubits [20]. Classical cryo-CMOS control electronics will generate the
signals necessary to control qubits at amplitudes that are far smaller than today at
room temperature, since no thermalization will be required. Low temperatures will
also be advantageous to reduce thermal noise in front-ends, to reach levels far lower
than achievable at room temperature. The proximity in space and temperature of
cryo-CMOS circuits and qubits will drastically reduce the complexity of the cabling,
and possibly enable superconductive interconnect, thus optimizing thermal isolation
with virtually zero electrical losses.

Given that cryo-CMOS circuits and systems will operate at temperatures close,
ideally equal, to those of the qubits, the main limitation is the power dissipation of
classical circuits. This will need to be budgeted to be within the limits of thermal
absorption by the refrigeration system used. Up until a few years ago, non-CMOS
devices were proposed, such as high-electron-mobility transistors (HEMTs), SiGe
heterojunction bipolar transistors (HBTs), GaAs logic, and rapid single-flux quantum
(RSFQ) circuits [21–23].However, none of these technologies, except perhapsHBTs,
can take advantage of over 60 years of innovation and optimization at industrial
levels, as CMOS. Only CMOS technology can offer the integration of billions of
transistors on a single chip, while ensuring low-power consumption and sub-Kelvin
functionality, thus representing the ideal choice for integrating complex electronic
systems, potentially extending into single-digit Kelvin regimes [24–26].

26.3 Our Control Paradigm and Trade-Offs

As described in the previous section, the electronic interface for a typical spin-qubit
quantum processor must be able to provide the following functionalities:

• Generate accurate DC voltages to properly bias the quantum dots
• Generate microwave pulses to perform single qubit operations
• Generate fast baseband pulses to perform two-qubit operations (and activate the
read-out sequence)

• Detect (at DC or RF) the signals from the quantum processors to perform qubit
read-out.

Similar features are required for quantum processors employing different qubit
technologies, such as superconducting qubits and multi-electron spin qubits. While
those functionalities are currently implemented using room-temperature equipment,
moving to a fully cryo-CMOS implementation is beneficial to facilitate the progress
towards future large-scale quantum computers. The architecture of such generic clas-
sical control system is shown in Fig. 26.5. For generality, the system also includes an
optical link, which may be required for specific types of qubits. The block diagram in
Fig. 26.5 closely resembles a radio-frequency transceiver, including a receiving path
and a transmitting path, and comprises typical functions found in standard radios,
including an RF section (amplifiers, down/up-converters, frequency generators) and
a mixed-signal/digital section (analog-to-digital and digital-to-analog converters and
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Fig. 26.5 Generic classical control system for quantum processors. The system includes conven-
tional radio-frequency components found in most radio transceivers, along with optical detectors,
useful in certain qubits. © IEEE 2016

a digital signal processor). As in state-of-the-art radio, we envision the fabrication
of such system in an advanced nanometer CMOS node to take advantage of the
high-frequency capabilities of the transistors to efficiently implement both RF and
digital circuit blocks. As in standard radio, the power dissipation of such “quantum
transceiver” must be minimized. While in typical radios such constraint is imposed
by the limited capacity of the batteries in portable electronics, the power dissipation
electronics in quantum computers is limited by the cooling capabilities of the cryo-
genic infrastructure. For this reason, most researchers anticipate that the majority of
the control system in Fig. 26.5 will operates at the 4-K stage of typically employed
cryostats, for which several watts of thermal absorption capability is available. How-
ever, some circuitry must be designed to operate in direct contact with qubits, typ-
ically housed in another cryogenic stage at sub-1-K temperature, which has much
more limited cooling capabilities, well below 1 mW. For instance, multiplexing and
demultiplexing (both in time and in frequency) are used to reduce the number of inter-
connects between qubits and the classical control [20]. Since these circuits require
only a few transistors, it is conceivable that they be implemented in cryo-CMOS
technology too, whereas the power dissipation could be kept under a few μW, thus
ensuring compatibility with milli-Kelvin environments. For those reasons, designing
qubits that can operate at amore practical temperature between 1 and 4K is attracting
significant research effort, as it would allow qubits and electronics all operating in
close proximity and, eventually, on the same chip.

Unlike a room-temperature RF transceiver used for 4/5G or WiFi, the specifi-
cations for the cryo-CMOS control interface are not enumerated in any standard.
Today’s standard approach in quantum-computing labs is using the top-notch room-
temperature equipment to ensure that qubit performance is not limited by the electri-
cal control and read-out. Qubit performance are measured in terms of their fidelity.
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In practice, fidelity describe the reliability of the qubits and can be used in a sim-
ilar way as Bit Error Rate (BER) is used in classical digital systems. Although the
fidelity that should be as close as possible to 100%, a target fidelity above 99.9%
is usually assumed as the threshold to enter the so-called fault-tolerant quantum
computation regime, in which practical quantum algorithm can be reliably executed.
While over-designing the electronic controller is allowed when employing room-
temperature electronics, this approach is not viable in a cryo-CMOS implementation
as better specifications are paid in terms of higher power consumption, which is
a scares resource in a cryogenic environment. It is then important to design cryo-
CMOS circuits just meeting the necessary specifications. Thus, significant effort has
been devoted in our consortium to system-level simulators, emulators, and verifica-
tion tools capable of deriving such specifications from high level requirements, such
as fidelity and power consumption. SPIN Emulator (SPINE) is one such approach,
capable of solving Schrödinger equations associated to one or more single-electron
spin qubits and translating qubit fidelity into specifications related to the control
signals that must be applied to the qubit(s) [27, 28].

Figure 26.6 showan example of such simulations usingSPINE,while inTable 26.1
we report the results of an example study we conducted on the impact of amplitude,
phase and timing errors for a microwave pulse used for a single-qubit rotation on a
spin qubit. Increasingly, researchers are using these types of specifications to design
complex systems for qubit control [29, 30]. Themain challenge for those designers is
providing those required specifications while achieving high power efficiency, so as
to be able to drive and read-out the largest possible number of qubits in the allowed
power budget.

Fig. 26.6 Simulation via the SPINE software platform of a qubit driven by a microwave excitation
(top). The qubit evolution on the Bloch sphere (bottom left) shows a transition from |0〉 (North
pole) to |1〉 (South pole) and through a maximum superposition state (equator). The probability of
measuring the state |0〉 is also shown (bottom right). © IEEE 2019
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Table 26.1 Example specifications for a π-rotation on a single-electron spin qubit for a fidelity
of 99.9%

Frequency inaccuracy 11 kHz

Phase noise −106 dBc/Hz at 1 MHz offset, −20 dB/dec slope

Wideband additive noise 7.1 nV/Hz

Phase inaccuracy 0.64°

Amplitude inaccuracy 14 μV on 2.0 mV amplitude

Amplitude noise SNR = −40 dB

Duration inaccuracy 3.6 ns on 500 ns nominal duration

Timing jitter 3.6 nsrms

26.4 Cryo-CMOS Device Behavior

Asupplementary, but not negligible, challenge for cryo-CMOSdesigners is operating
CMOS devices at cryogenic temperatures. Unlike traditional CMOS designers that
can rely on standard CMOS models provided by the CMOS foundry, no device
models are readily available for temperatures below −55 °C, and even more so for
cryogenic temperatures down to 4 K. It is not possible to make use of CMOS model
parameters tuned to room temperature and compact models qualified for the standard
temperature range, since, although CMOS transistors behave properly even at sub-1-
K temperatures, new physical effects come into play and device parameters for both
active and passive devices are dramatically different when cooling them from 300 to
4 K. Figure 26.7 shows a sample of measurements of 40-nm CMOS transistor Id-Vds

and Id-Vgs characteristics.
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*The transistors measured at 4K are different from those measured at 1K and 100mK

Fig. 26.7 CMOS Id-Vds and Id-Vgs characteristics at various deep-cryogenic temperatures and
W/L combinations. © IEEE 2019
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A first noticeable difference is the larger Id current at 4 K (solid lines) compared
to 300 K (dotted lines), see first upper-left plot for a long and wide NMOS device;
this is due to the temperature dependence of physical quantities such as the increase
in mobility (≈2×), which is countered by an increase of threshold voltage (≈30%).
The former is dominant and is due to an overall decrease in electron scattering, while
the latter is due to an increase in required ionization energy. Another important
difference at 4 K is the reduction of the velocity saturation leading to Id curves to
be equally spaced compared to those at 300 K where saturation occurs due to pinch-
off. The following two Id-Vds characteristics of a short and wide device show the
good matching of simulated characteristics with matched parameters compared to
measurements for both 1 K and 100 mK.

The second row of Fig. 26.7 shows the characteristics of a PMOS long and wide
device at the same three temperatures. The first row displays the difference between
4 and 300 K, while the other two point to the matching between model and measure-
ment. The improvement in subthreshold slope (SS) when cooling down the devices
as can be seen from Fig. 26.7, was expected due to its intrinsic dependence on
temperature,

SS(T ) =
[
∂ log(ID)

∂VGS

]−1

= ln(10)
nkT

q
.

However, the measured SS improvement is only around 3.4× and not equal to the
ratio of temperatures; this can be explained by the incomplete ionization of impurity
atoms at cryogenic temperatures leading to an important increase in the non-ideality
factor n(T ). Another physical phenomenon observed at 4 K is carrier freeze-out
in the substrate. This can lead to a kink effect in some older processes due to the
increase of the substrate potential caused by impact ionization generating electron-
hole pairs with holes flowing through the substrate ultimately forward biasing the
source-substrate junction.

The additional physical effects observed at cryogenic temperatures lead to differ-
ent behaviors of MOSFETs depending on the process they are fabricated in; thus,
FDSOI MOSFETs and FinFETs will show different behavior at 4 K than standard
Bulk-CMOS process; however, they all will show correct transistor operation.

From a circuit design point of view the important differences at cryogenic temper-
atures are the reduction in leakage and the increase in the transconductance efficiency
(gm/ID) by up to 3.4× in weak inversion [31, 32]. Device mismatch however is gen-
erally higher at cryogenic temperatures and, while thermal noise is lower, flicker
noise can be significant, thus especially impacting analog and mixed-signal circuits
[33, 34]. While physics-based models are emerging [31], model fitting based on
experiments has been the technique of choice thus far [32]. Digital modeling fol-
lows a similar path, though electronic design automation (EDA) tools have yet to
reach the necessary level of maturity to automate the design of large systems in
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design flows modified and optimized for deep-cryogenic temperatures [35]. Never-
theless, successful attempts have been made, as we will see later, to automate the
place-and-route process of digital circuits.

26.5 Components Required and Some Examples

Several cryo-CMOS components have already been successfully designed and test
from Fig. 26.5 [36]. After verifying our cryo-CMOS models by means of so-called
farms of active and passive components, voltage regulators were built for various
scenarios. Bandgap references are generally the solution of choice to create well con-
trolled, stable voltage and current sources. At cryogenic temperatures, these solutions
cannot be used, since they are based on traditional BJTs that suffer from a strong
increase in base resistance and a strong decrease of current gain at temperatures below
100 K [37]. As an alternative, one can use HBTs fabricated in SiGe technologies
or MOS and dynamic-threshold MOS (DTMOS) transistors biased in weak inver-
sion. Figure 26.8 shows a schematic of a conventional bandgap reference compared
to a DTMOS reference, along with the voltage stability plot from room tempera-
ture down to 4 K. Current research [38] is focused on understanding which device
(among NMOS, PMOS and DTMOS) can ensure the best performance both in terms
of minimum temperature coefficient and statistical variations due to process spread
and mismatch.

Low-dropout (LDO) circuits can be used in combination with voltage references
to drive the necessary currents at the wanted voltage levels. Several LDOs have been
designed and successfully tested but only a few components have been shown to
operate correctly at 4 K. Figure 26.9 shows an example of such design implemented
in discrete technology [39].

Next, let us consider the front-end electronics that is in direct contact with the
qubits.

Figure 26.10 shows two configurations often used while interfacing with qubits
andqubit arrays. The challenge is to build these circuitries in such away that the power

Fig. 26.8 Schematics of a conventional bandgap reference based on BJTs (a) and a reference based
on DTMOS transistors (b); photomicrograph of DTMOS reference and its voltage stability over a
wide temperature range after trimming, compared to BJT based bandgaps (from [37]) © IEEE 2018
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Fig. 26.9 Discrete low top-out (LDO) voltage regulator. Clockwise from top left: schematics of
the LDO; I-O behavior as a function of temperature; PSRR measurement [39]; implementation of
the LDO in a printed circuit board. © IEEE 2018

Fig. 26.10 Front-end
electronics: multiplexer and
low-noise amplifier (top, in
red). Circulator and
low-noise amplifier (bottom,
in red)
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consumption is sufficiently low for mixing chambers operating at deep-submilli-
Kelvin regimes. A simple multiplexer based on MOS pass-transistors was proposed
in [20] and implemented in [40].With a voltage drop of only a fewmillivolts and neg-
ligible current, this circuit can dissipate only a fewmicrowatts of power, nevertheless
scalability to thousands of qubits is questionable.

Configurations for reading out (and controlling) qubit states organized in 2D
arrays have been proposed by several authors, notably [40, 41]. In Fig. 26.11 (left),
the selection of quantum dot is exposed by means of column and row lines (CL,
RL) and qubit lines (QL), thus enabling the transfer of electrons between dots, so
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Fig. 26.11 2D crossbar readout configuration proposed in [41]. Left: artist’s rendering and 3D
construction of the array, dielectrics are not shown. Right: column/row lines (CL, RL) and qubit
lines (QL) are used to select the qubit to control or read out. The quantum dots in the array have
50% electron occupancy, whereas the electron spin encodes the state of the qubit. Electron transfer
occurs between quantum dots through this means to achieve two-qubit gates (for nearest neighbors)
and long-range entanglement for non-adjacent quantum dots

as to enable two-qubit gates for neighboring dots and long-range entanglement for
non-adjacent quantum dots. The spin of these electrons, encoding the state of the
corresponding qubit, is read out by peripheral electronics, shown in Fig. 26.11 (right)
placed to the exterior of the array and organized in R + C channels, with R and C
being the number of rows and columns, respectively. This configuration is preferable
to using one channel per qubit, which would result in RC channels. A circulator is
indispensable in many of these classical controllers. Usually circulators are bulky,
often requiring a large footprint. In [42] for instance, a passive cryo-CMOS circulator
was proposed, capable of achieving isolation better than 10.5 dB (port 2/3) and
16.5 dB (port 1) and attenuation less than 1.5 dB (port 2/3) and 4.5 dB (port 1) in the
6.5–7 GHz frequency range.

Next, let us consider the front-end used to read out the state of the qubits, imple-
mented as a low-noise amplifier (LNA). The most stringent specifications are input-
referred noise (NET < 10 K) and power dissipation (<1mW/qubit). The bandwidth
is determined by the number of qubits the LNAwill be able to read out. For instance,
assuming a power dissipation of 100mW, the LNAneeds to serve 150 qubits. Assum-
ing aFDMAschemeand3.3MHz separation per qubit, a 3-dBbandwidth of 500MHz
is required. In our implementation (Fig. 26.12), we could achieve this requirement
dissipating a power of 91 mW, thus resulting in 0.61mW/qubits.

To satisfy the noise specification, we chose a noise-canceling architecture, pro-
posed in [43]. The IC was fabricated in 160 nm CMOS technology with a gain (S21)
of 57 dB, an input matching (S11) of −8 dB, and a noise figure better than 0.3 dB at
4 K. IIP2 was measured at −5 dBm and IIP3 at −47 dBm. However, given that the
input signal is expected to be weaker than −110 dBm, linearity is not of concern in
this application.
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Fig. 26.12 Clockwise from top: low-noise amplifier (LNA). IBIAS1 and IBIAS2 determine the best
possible noise figure at any temperature. Photomicrograph of the IC fabricated in 160-nm CMOS
technology. Noise figure, S11, and S21 as a function of frequency. The measured 3 dB bandwidth
is 500 MHz. © IEEE 2018

Finally, let us consider logic circuits. The obvious choice is a field-programmable
gate-array (FPGA). Virtually all functions of commercially available FPGAs have
been successfully tested at 4 K [44, 45]. See Table 26.2 for a list of tested functions.

These tests have enabled us to design all digital components required by the
classical control and even A/D converters (ADCs) with up to 2.4 GSa/s conversion
rate and 8 bits of resolution [46]. The principle of operation of the ADC is shown
in Fig. 26.13. A square wave is generated in the MMCM block and converted to a
shark fin wave through external resistor RREF and parasitic capacitor CINT.

A time-to-digital converter (TDC) measures the time from the rising edge of
the clock to the crossing point of the input signal to the fin, which is detected by a
comparator in a standard LVDS (see Fig. 26.13). Figure 26.13 also shows the spectral
purity of the reconstructed signals with two frequencies at 15 K and a sampling rate
of 1.2 GSa/s. The TDC’s block diagram is shown in Fig. 26.14; it consists of a delay
line implemented by a carry chain, so as to enable high uniformity, and thus low
INL/DNL, a set of latches, and a thermometer decoder. The IO delay is necessary to
use the TDC in parallel with other TDCs, so as to achieve up to 2.4 GSa/s sampling.

C. Cryogenic Frequency Generation

In order not to degrade the fidelity of a single qubit gate, the integrated frequency
noise (FN) of the control signal should be <1.9 kHzrms from a 6GHz carrier frequency
[27]. The lower integration bound of the phase noise (PN) profile of phase-locked
loops (PLL) is set by the quantum operation cycle (worst case: 1/T* ≈ 8.3 kHz)
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Table 26.2 Functions of a Xilinx Artix-7 FPGA verified at 4 K

Module Usable Test Performance w.r.t. RT

IOs ✓ Output swing versus
frequency

Drive strength increases

LVDS ✓ Differential clocks from RT

LUTs ✓ LUTs connected as oscillator
in full columns

Propagation delay decreases
<3%, jitter increases <78%
(151–270 ps)

CARRY4 ✓ Carry chains connected as
oscillator in full columns

Propagation delay decreases
<3%, jitter increases <16%
(18.6–21.5 ps)

DFF ✓ n-bit counters + comparators Maximum operating
frequency reduces

BRAM ✓ Transfers of 8 kB (write and
read)

No corruption in 100 test sets
of 8 kB

MMCM ✓ 100 MHz differential input
clock multiplied by 12 and
divided by various values,
single ended output

Jitter decreases on average
52% (13.6–6.5 ps)

PLL ✓ 100 MHz differential input
clock multiplied by 12 and
divided by various values,
single ended output

Jitter decreases on average
54% (13.7–6.4 ps)

IDELAYE2 IDELAYE2 elements
connected as tunable
oscillator (output frequency
variable 13–70 MHz)

Delay decreases <30%, jitter
increases <50%

DSP48E1 ✓ Random calculations
(additions, subtractions and
multiplications)

No corruption in 400
calculations

Temperature diode ✓ Operating range 4–300 K

and the qubit operation speed determines the higher limit (e.g., ~10 MHz) [36].
By considering a PLL bandwidth of 300 kHz, the required FN, and the integration
bandwidth, an in-band PN of −115 dBc/Hz and an out-of-band PN of −147 dBc/Hz
at a 10 MHz offset from a 6 GHz carrier are required [36]. Since the phase detector
and oscillator respectively dominate the in-band and out-of-band PN profile of the
PLL, we investigate the performance of those blocks at cryogenic temperatures next.

(1) Performance of Cryo-CMOS Phase Detectors

The in-band PN of an all-digital PLL is usually determined by a time resolution of a
TDC [47]. To achieve the target in-band PN, the TDC resolution has to be finer than
2 ps evenwhen considering a reference frequency as high as 100MHz. The TDC core
is usually based on a digital delay line, whose time resolution is equal to an inverter
propagation delay (10 ps in 40-nm CMOS at RT). Figure 26.15 shows the measured
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Fig. 26.13 A/D converter implemented with an FPGA. Top: block diagram of the ADC in the
FPGA; sinusoidal wave sampled through a sequence of shark fin waves, the 100 MHz clock and
LVDS response are also shown. Middle: reconstruction at 15 K of 2 and 40 MHz sinusoidal waves
sampled at 1.2 GSa/s. Bottom: FFT of the reconstructed signals at 15 K. The achieved effective
number of bit (ENOB) were 8 and 5.6 bits, respectively. © IEEE 2016

Fig. 26.14 TDC implementation in an Artix-7 FPGA. 6 TDCs operating in parallel with a delay
enable an ADC sampling rate of up to 2.4 GSa/s. In the inset: measured differential non-linearity
(DNL) and integral non-linearity (INL). © IEEE 2016
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Supply Voltage [V]

Fig. 26.15 Measured frequency of a ring oscillator versus supply voltage taken from [32]. © IEEE
2018

oscillation frequency of a ring oscillator versus different supply voltages for both 300
and 4 K [32]. The oscillation frequency increases by 36% due to the higher current
driving capability of the transistors at 4 K, resulting in 6–7 ps for the inverter delay.
Despite this improvement in time resolution, to satisfy the in-band PN requirement,
there is a need for sub-gate-delay resolution for TDCs. Furthermore, the current
mismatch of CMOS transistors also increases by 20% at cryogenic temperatures,
as shown in [33]. As a result, the TDC nonlinearity becomes much severer at 4 K,
thus degrading PLL’s jitter and spurious tone emissions. Therefore, innovative PLL
architectures (i.e., injection-locked structure in [48, 49]) associated with intensive
digital calibration techniques are highly desirable at cryogenic temperatures to tackle
the challenges mentioned above [50].

(2) Performance of Cryo-CMOS RF Oscillators

To investigate the performance of RF oscillators over a wide range of temperature
(i.e., 4–300 K), a 1:2 step-up transformer-based oscillator is designed and prototyped
in a 40-nm 1P7M CMOS process with an ultra-thick metal layer [36]. The oscillator
schematic, and its chip micrograph are shown in Fig. 26.16a, b, respectively. At the
bottom of the core transistors (M1,2), a 5-bit binary-weighted switchable resistor is
implemented to roughly control the oscillator current. The single-ended primary and
differential secondary capacitor banks are realized using two 6-bit switchable metal-
oxide-metal (MoM) capacitors. Figure 26.16c shows that the oscillation frequency
shifts up ~7% at the same tank configuration from 300 to 4 K, mainly because of the
reduction of the tank single-ended parasitic capacitance due to carrier freeze-out in
the substrate.

The measured PN plot of the oscillator is shown in Fig. 26.16d for different tem-
peratures at the same power consumption [36]. To better understand the measured
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Fig. 26.16 a Oscillator schematic and b chip micrograph; c oscillation frequency versus tempera-
ture; d measured PN at 6.3 GHz at various temperatures; e oscillator PN at 30 MHz and f 1/f3 PN
corner versus temperature for a carrier frequency of 6.3 GHz. © IEEE 2018

PN, the oscillator PN at 30 MHz offset frequency due to white noise upconversion is
drawn inFig. 26.16e. From300 to 170K, thePN improves in thewhite noise region by
30 dB/decade over temperature, out of which 10 dB/decade is attributed to the white
noise decrease due to temperature reduction, while the tank’s Q-factor enhancement
realizes the remaining 20 dB/decade. At room temperature, magnetically induced
image currents from the tank flow in the low-resistive substrate, reducing the quality
factor. Due to the carrier freeze-out at cryogenic temperatures, the substrate becomes
highly resistive, hence lowering substrate losses considerably. Moreover, the induc-
tor’s series resistance also decreases at lower temperatures, thus further improving
the tank’s Q-factor [36]. Interestingly, the oscillator PN improvement reduces to
~10 dB/dec from 170 to 77 K and a negligible PN reduction is observed by further
reducing the temperature to 4 K. This phenomenon can be justified by the following
reasons. First, the resistivity of the metals, and hence the quality factor of passives
does not improve by further reducing the temperature due to the impurities and crys-
tallographic defects inmetal layers [51]. Second, the quality factor of an LC tank also
depends on the loss of switched capacitors used for frequency tuning. Unfortunately,
the transistor’s on-resistance and thus the quality factor of switched capacitors just
improves by 2× and limits the tank Q-factor below a certain temperature [36]. Third,
white noise in nanoscale CMOS devices is limited by temperature-independent shot
noise at cryogenic temperatures and just scales 10× from 300 to 4 K [52–54].

The oscillator’s 1/f3 PN corner increases dramatically at lower temperatures, as
shown in Fig. 26.16f, thus indicating in a larger 1/f noise corner forMOS transistors at
cryogenic temperatures [55, 56]. At cryogenic temperatures, it appears that the oscil-
lator PN is dominated by the 30 dB/dec region, and the 1/f3 corner of RF oscillators
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can go beyond the PLL bandwidth, significantly degrading PLL’s jitter and integrated
FN [36]. In order to mitigate the effect of the increase in the 1/f3 corner, one needs to
resort to oscillator topologies with low flicker noise upconversion. It is well-known
that the flicker noise upconversion in an LC oscillator significantly reduces if the
common-mode of the circuit also resonates at twice the oscillation frequency [57,
58]. However, it is not trivial to adapt this technique for cryogenic oscillators where
the value of single-ended capacitance significantly varies due to carrier freeze-out in
the substrate [50]. Consequently, this issue calls for a new digital calibration loop to
automatically adjust the common-mode resonance of the oscillator at its optimum
point [59].

26.6 Design Verification of the Complete Quantum-CMOS
System

Once all the circuit blocks of the CMOS controller are in place a final verification of
the performance and fidelity of operating the qubits can be achieved simulating the
complete system in SPINE. As an example, a full system containing a controller tar-
getingmultiple qubits is simulated. A fidelity of 99.9% is targetedwhile performing a
π-rotation in 50 ns (Table 26.1). Figure 26.17 shows the system under consideration,
containing a high-level description of the quantum computer’s controller, Verilog-A
models of the digital-to-analog converters (DACs) and an analog mixer circuit at
transistor-level integrated together with SPINE.

The performance was verified by simulating a small quantum algorithm executed
by the controller and consisting of 4 gates: a π-rotation around the X-axis in 50 ns
followed by three additional π/2-rotations in 25 ns around the X- and Y-axis, also
shown in Fig. 26.17. It can be seen that in response to the controller, the DACs
generate the required in-phase and quadrature-phase signals for the mixer, and the
analog mixer circuit performs the required upconversion. In response to the gener-
ated RF-signal Vout, the qubit performs the expected rotations as evident from the
simulated spin-up probability, finally achieving a 99.98% chance of success meeting
the required system performance.

26.7 Vision for the Future, Trends

The classical control schemes presented here for qubits require smart interfaces to
quantum algorithms. What is usually referred to as quantum stack is the ensem-
ble of architectural components designed to translate such algorithms to quantum
circuits and finally to quantum control via assembly languages, like QASM. Such
architectures are complex and significant development is ongoing [60].
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Fig. 26.17 From top to bottom: schematic of a full system containing the controller and the quantum
circuit in SPINE; result of the full system simulation, including the voltage at the output of theDACs,
the I- and Q-signals driving the mixer and the quantum gate, the voltage at the output of the mixer,
driving the qubit, and the qubit spin-up probability. © IEEE 2018

While most solid-state qubits operate around 20 mK today, there has been an
important general trend to increase such temperature to one Kelvin or higher [26].
This could enable even more compact setups and, in the short to medium term,
fully integrated solutions. Moreover, an operating temperature close to 4 K could
enable pure liquid helium (LHe) refrigeration, thus significantly reducing system
complexity and cost.

Furthermore, with the overall increase of temperatures, the power budget of cryo-
CMOS circuits and systems could drastically increase, thus enabling an even higher
acceleration of quantum processor sizes and, with that, the computational power of
the machines.
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Fig. 26.18 MOS transistor IDS-VGS characteristics for minimum-size devices at room temperature
and 4 K (left). Cryo-CMOS library element implemented in 40 nm CMOS technology. The com-
ponent is designed to minimize the risk of latchup and to reduce threshold voltage increases due to
low temperatures. We took several measures (A–E) described in the text. © IEEE 2019

ASIC implementations of logic circuits are preferable, as they don’t require over-
head circuits as in FPGAs, this results in significant less power, which is critical
in cryo-CMOS applications, where every milliwatt counts. For this purpose, we
developed a library, ‘cooLib’, specifically designed to operate at deep-cryogenic
temperatures. An example of a cell designed using these principles is shown in
Fig. 26.18.

Wedesigned integratedwell taps on cell boundary (A) for tight biasingof thewells,
so as to prevent latchup at low temperatures. Back-biasing and, when possible, back-
gate biasing were used via secondary power rails (C) to reduce voltage threshold
increases due to low temperatures. Moreover, inverse-narrow-width effect (B) and
increased mismatch (D, E) aware sizing were adopted. Preliminary results show that
ultra-low-power cryo-CMOS logic is feasible and easy to design.

26.8 Conclusions

Quantum computing is a completely new paradigm that holds the promise of large
speedup over conventional von Neumann machines. However, controlling qubits
using classical electronics is a necessary but daunting task.We have proposed to bring
classical electronics closer to the qubits in space and temperature, ultimately enabling
full integration in a not so distant future. This goal requires new qubits operating at
higher temperatures and electronics operating at deep-cryogenic temperatures. We
believe that this can be achieved by means of cryo-CMOS circuits and systems
implemented in advanced technological nodes with strict power budgets at multi-
gigahertz bandwidths. This trendmay lead to larger quantumprocessors, lower power
requirements, and ultimately lower cost.
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Chapter 27
Quantum Computing

Large-Scale Quantum Systems Based on
Superconducting Qubits

Albert Frisch, Harry S. Barowski, Markus Brink and Peter Hans Roth

27.1 Introduction

QuantumComputing emerged from the study of how little energywas required to per-
form a computational operation. It was realized that the laws of quantum mechanics
allow for a richer approach to computation that would enable more efficient informa-
tion processing for certain types of problems. As Richard Feynman noted in 1981:
“If you want to make a simulation of nature, you’d better make it quantum mechan-
ical.” In other words, quantum systems map straight-forwardly onto other quantum
mechanical systems, but mapping them onto a classical system requires significant
overhead.

Early theoretical work on quantum algorithms and quantum information science
showed that a speed-up in the runtime compared to classical algorithms can be
expected for specific problems. Furthermore, fundamental research in atomic and
condensed-matter physics has developed the coherent control, manipulation, and
readout possibilities of many different quantum mechanical systems to a mature
level suitable for quantum computing. Advances in increasing coherence times of
quantum systems by many orders of magnitude propelled the field further, and the
first small-scale quantum computing devices consisting of only a few quantum bits
(qubits) became accessible. Technical developments in system control and improved
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error rates of quantum gates allowed to grow the number of qubits constantly, and
the field of noisy intermediate-scale quantum devices appeared on the horizon [1].

In 2019, IBM introduced IBM Q System One, the world’s first integrated univer-
sal approximate quantum computing system for commercial use, see Fig. 27.1a, and
opened the first quantum computation center [2]. At this point, a total of 13 quan-
tum computing devices have become available for enterprise users, researchers, and
developers within the IBM Q Network, which consists of six 5-, one 14-, five 20-,
and one 53-qubit device(s), see Fig. 27.1b, c and [3] for an industry-wide overview
of quantum processors.

In this chapter, we will first give a general overview on current physical imple-
mentations of quantumprocessors suitable for quantum computing in Sect. 27.2, then
discuss superconducting circuits in more detail in Sect. 27.3, introduce methods for
performance benchmarking in Sect. 27.4, present open-source software tools avail-
able for a complete quantum computing ecosystem and infrastructure in Sect. 27.5,
and give an outlook on future near-term developments in quantum computing in
Sect. 27.6.

27.2 Quantum Processors

David DiVincenzo introduced a set of five requirements for the implementation of
a quantum computer [4]. They are known as the DiVincenzo criteria and provide
practical conditions that a quantum system must meet to be useful for quantum
computation purposes. In an abbreviated format, these criteria are:

1. A scalable physical system with well characterized two-level systems that can
act as qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state. In
practice, this often is the ground state |000 . . . 0〉 of the system.

3. Long relevant decoherence times of the qubits. While longer coherence is
advantageous, this condition requires coherence times to be much longer than
the gate operation time.

4. A “universal” set of quantum gates.
5. A qubit-specific measurement capability, i.e. the ability to readout the state of

each qubit. A quantum non-demolition measurement scheme, which preserves
the projected state of the qubit at the end of the readout, is preferable.

Ultimately, a universal quantum computer supports the execution of arbitrary
sequences of quantum gates, i.e. a gate-based quantum computer, which is fully
quantum error corrected.



27 Quantum Computing 529

Fig. 27.1 a IBM Q System One, the first commercially available quantum computing system
from IBM, contains a 20-qubit chip with a layout similar to the Poughkeepsie device. b Overview
of currently available devices via the IBM Q Experience, see Sect. 27.5. c The 53-qubit device
Rochester offers a larger lattice of qubits for advanced quantum algorithms. Device layouts from
[2]
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27.2.1 Physical Implementations

Early implementation of qubits relied onmicroscopic systems that naturally behaved
quantum-mechanically. Examples include single molecules addressed by nuclear-
magnetic resonance (NMR) techniques and trapped ions that can be manipulated by
lasers.

Today, there are a number of demonstrated implementations of qubits, some of
which are touched upon below. Interestingly, the challenges for scaling them to a
useful quantum processor are often specific for the particular implementation [5].

• Trapped Ions [6, 7]
• Neutral Atoms [8, 9]
• Spin Qubits

– Quantum Dots [10–12]
– Lattice Defects: Nitrogen-Vacancy Centers in Diamond [13, 14]
– Impurities: Phosphorus donors in isotopically pure Silicon (Si:P) [15, 16]

• Photonic Computing [17, 18]
• Topological Qubits

– Majorana Fermions [19, 20], e.g., in Nanowires [21]

• Superconducting Circuits

From the above list, trapped ions, superconducting circuits, and quantum dots
are, due to their favorable scaling behavior compared to other implementations, most
promising for future large-scale quantum computing platforms, see [22] for an exper-
imental comparison of two platforms, trapped ions and superconducting circuits. In
the following, wewill discuss superconducting circuits based on Josephson junctions
in more detail. Qubits from superconducting circuits are sometimes referred to as
macroscopic qubits, due to the large dimensions of such circuits compared to the
size of qubits from other implementations.

27.3 Superconducting Circuits

27.3.1 Historic Development

Superconducting quantum circuits based on Josephson junctions arrived as a later
addition to qubit implementations. Nakamura [23] first demonstrated driven coherent
oscillations in a Cooper-pair box, the superconducting analog of a single electron
transistor. While the coherence times were short, it proved that more macroscopic,
larger structures such as superconducting circuits can exhibit quantum coherence.

Early implementations of superconducting qubits generally fell into three canon-
ical structures, see Fig. 27.2:
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Fig. 27.2 Schematic
diagrams for early
Josephson-junction-based
qubits. a Charge qubit based
on the Cooper-pair box,
b flux qubit, and c phase
qubit

• charge qubit: based on the Cooper-pair box. The Cooper-pair box is sensitive to
offset charges (charge noise).

• flux qubit: consisting of superconducting loops interrupted by three (or more)
Josephson junctions [24]. The two qubit states can be thought of as clockwise
versus counterclockwise persistent currents in the loop. The energy landscape
depends on the flux threading the superconducting loop. The flux qubit is sensitive
to flux noise.

• phase qubit: current-biased large junction, with a finite bias current less than the
junction critical current (zero-voltage state), which shows a washboard energy
potential [25]. The energy levels in a local minimum of the washboard potential
can be used for computation.

The Quantronium [26] was a hybrid qubit circuit design that showed a significant
boost in coherence times. It also demonstrated that clever design of the circuit can
have a significant impact on qubit performance.

Another notable development was the invention of cavity quantum electrodynam-
ics (cavity QED) as well as circuit QED and the dispersive readout, where a qubit is
coupled to a superconducting microwave resonator, which can assess the state of the
qubit [27].

Early experiments in combining superconducting circuits with other physical
systems to hybrid quantum circuits have been carried out recently to gain advantages
over simple circuits and harness the best properties of different systems, see [28] for
an overview.

27.3.2 Current Implementations

A major invention for superconducting qubits was the Transmon qubit [29]: The
Transmon realized that the charge dispersion of low energy levels of the Cooper-pair
box can be practically eliminated by increasing the ratio of inductive (Josephson)
energy to capacitive (charging) energy, EJ/EC . The only drawback is that the Trans-
mon qubit becomesmore harmonic, making it harder to isolate (the lowest) two states
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Fig. 27.3 a Schematic of two coupled Transmon qubits with coupling bus resonator in the center
and readout resonators on the sides. b 4-qubit chip layout with resonators as coplanar waveguides
and Transmon qubits, which are visible as square-like shapes, each containing a single Josephson
junction and a large shunt capacitor, from [30]

for computation. But the charge dispersion of the lowest levels vanishes exponen-
tially as EJ/EC increases, while the anharmonicity decreases polynomially, opening
an operational sweet spot around EJ/EC ≈ 50 (Fig. 27.3).

Many flavors of Transmon qubits have been made since, including X-mon, Star-
mon, Pacmon, to name a few.While the ideas of the Transmon qubit have taken super-
conducting qubits by storm, there have been several other noteworthy developments
since.

The Fluxonium qubit [31] shunts the qubit junction by a large inductor (instead
of a large capacitor in a Transmon qubit), which is typically implemented as a chain
of Josephson junctions. A simple way of thinking of the inductive shunt is as a short
at low frequencies, which eliminates charge noise across the qubit junction, and an
open at microwave frequencies, which permits the operation as a qubit. By design,
the Fluxonium contains a closed superconducting loop, and a flux threading the loop
changes the potential energy landscape of the Fluxonium qubit. Consequently, the
Fluxonium is sensitive to flux noise, which limits its coherence times.

Similar to the large shunt capacitor of a Transmon qubit, the capacitively shunted
flux qubit (CSFQ) uses a large shunt capacitor in parallel with the superconducting
loop of the flux qubit. The CSFQ contains three Josephson junctions of two different
sizes in the loop. Both the ratio of Josephson critical currents and the magnetic flux
through the superconducting loop determine the energy levels of the CSFQ.

The Quarton qubit arose from a classification of existing Josephson qubits and
uses four Josephson junctions in total. The goal of the Quarton design was to increase
qubit coherence and anharmonicity.

With relaxation times in the milliseconds, superconducting three-dimensional
(3D) cavities have been coupled to a Transmon qubit. As the 3D cavity is strictly
harmonic, the Transmon lends its non-linearity to the resulting hybrid qubit, while
the cavity provides a significant boost in lifetime. Instead of single photon states, so-
called cat states (i.e. superposition of two coherent states with opposite phase) have
been used for the computational basis, and their parity for error correction schemes.

Another interesting development for superconducting quantum circuits are topo-
logically protected qubits, such as the 0−π qubit. The topological protection has to
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be turned off for computational operations and coupling between such qubits is still
under development.

27.3.3 Current Status and Trends

While it is difficult to compare all the flavors of superconducting qubits on an equal
footing, it is fair to say that their quality has improved continually over the years, the
size of superconducting quantum circuits (as measured by the number of qubits) has
scaled significantly, and the performance of quantum processors (as measured by the
Quantum Volume, see Sect. 27.4) has likewise increased steadily. As an example,
see Fig. 27.4 for the improvement of the controlled NOT gate errors for various IBM
devices over time and a full error map for the IBM device named ‘Boeblingen’.

Comparing the implementations of larger quantum chips, most rely on a ver-
sion of the Transmon qubit. A notable distinction between these implementations is
fixed-frequency versus tunable versus hybrid fixed and tunable approaches (where
some qubits have fixed frequencies and others are tunable). Fixed-frequency qubits
offer higher coherence times, but suffer from so-called frequency collisions, as the
frequencies of coupled qubits have to obey certain conditions for specific two-qubit
gates, such as the all-microwave cross-resonance gate. Tunable qubits on the other
hand provide much flexibility, as their resonance frequencies can be tuned on the fly.
Thereby their interaction strength can be turned on and off, resulting in fast two-qubit
gates. Because magnetic flux threading a loop is typically used as the tuning knob,
tunable qubits are susceptible to flux noise.

Fig. 27.4 aControlled-NOT(CNOT)gate error distributions for different IBMdevices.The average
gate errors have been steadily improved over time from top to bottom. The number of qubits (Q)
available in the system and the Quantum Volume (QV) of the system is given next to the device
name. b Error map for 20-qubit IBM device named ‘Boeblingen’. Hadamard (H) gate errors and
CNOT gate errors are shown using a color code for individual qubits (circles) and the couplings
between two qubits (edges), respectively. Additionally, the readout error is given for every qubit,
the average readout error is shown by the dashed line. Both figures from [32]
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Given the size of existing quantum chips, some useful algorithms and circuit
demonstrations have successfully been implemented on currently available (i.e. not
error-corrected) systems. These include ab-initio chemistry simulations of small
molecules, optimization codes andmachine learning, and implementations of classic
quantum algorithms [33]. Today, quantum processors stand at the edge of showing
quantum supremacy—the point where a quantum processor outperforms any existing
classical (super)computer for some computational problem [34, 35].

Error-correcting codes havebeendemonstrated,where a number of physical qubits
combine to form a logical qubit with extended effective coherence times [36]. But
one has to consider that, first, improvements of effective coherence times have been
small so far and only over a range of operation times [37], and second, the overhead
on hardware requirements is high, i.e. a significant number of qubits have to combine
to form a logical qubit that can correct higherweight errors. Consequently, the quality
of qubits and qubit operations (as measured by their gate fidelity) needs to improve,
and quantum processors have to scale much further in size before error correcting
codes are adopted for practical applications.

27.4 Performance Benchmarking

For qualifying and measuring the performance of a quantum computer, terms like
quantum supremacy and quantum advantage were used in recent years. Quantum
supremacy describes the dominant power of a quantum computer assuming that, with
a given number of qubits, it can perform tasks which are not feasible with classical
computers. More recently, the quantum advantage has been used to describe the
point, when a quantum computer outperforms classical computers for a practically
relevant (e.g., business) problem, such as an optimization.

27.4.1 Performance Metrics

To classify and characterize the computational power of quantum computers, vari-
ous metrics have been proposed. Similar to classical computers where benchmarks
characterize the computational power in various aspects like LinPack or SpecInt or
instructions per second (MIPS), metrics for quantum computers can characterize
several quantum gates or focus on quantum algorithms.

Since performancemetrics allow to determine the computational performance of a
quantumcomputing system, they alsomeasure howclose current quantumprocessors
are to reaching quantum advantage, where quantum computers outperform existing
technologies (classical computers and neural networks) and achieve commercial
advantage.
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Thefirst proposed benchmarkswere based on tiny implementations ofwell-known
quantum algorithms like Shor’s and Grover’s algorithm [38, 39]. Random quan-
tum gate operations directly lead to randomized benchmarking, eventually based on
Clifford gates [40]. Randomized benchmarking is a popular technique, because it
is easy to implement and gives a single number to characterize the (average) gate
performance, but it does not provide much detail of what is limiting the performance.

Quantum tomography requires repeated measurements until tomographical com-
pleteness to reconstruct the quantum state. The statistical state is described by a
density matrix which allows to calculate the probability of measurement outcomes
of a quantum system.

The quantum gate performance is targeted by gate-set tomography, the char-
acteristics of individual qubits by quantum-state tomography. Both give extensive
characterization information, but are complex tasks. They can easily be extended to
multiple qubits, but the number of parameters to measure scales exponentially and
is not feasible for large systems [41].

Alternative approaches are direct fidelity estimation, to determine the gate errors,
and robust phase estimation, to target the characterization of qubits.

Furthermore, the preparation of multi-qubit entangled states, so-called GHZ
states, can be used as another performance metric by verifying the presence of
multipartite entanglement [40].

At present there is no accepted best practice in performance metrics for the field
of quantum computing. Each performance metric only allows to compare the per-
formance for certain aspects and not necessarily to determine quantum advantage.
For example, gate set tomography targets and emphasizes different properties from
randomized benchmarking. IBM’s proposal of the Quantum Volume (QV) as a met-
ric aims to assess the overall systems performance. It includes all properties of a
quantum computer system like qubit characteristics, qubit topology, quantum errors,
and readout errors. However, it allows optimization at all levels of a quantum system
and can also leverage the quantum transpiler.

27.4.2 Benchmarking

Randomized benchmarking is a concept to specify the capability of a quantum com-
puting system by executing long sequences of random quantum gate operations that
allow to determine the average error rates by measurements. The original theory of
randomized benchmarking assumed pseudo-random quantum gates to validate the
quantum operators. The result is a fidelity metric, which describes the noisy oper-
ations of a quantum system. However, the original concept suffered from practical
limitations—there was no well-defined metric—which led to a more efficient ver-
sion of randomized benchmarking based on uniformly-distributed random Clifford
operations.
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Fig. 27.5 CNOT gate (2Q) error rates (green) measured by randomized benchmarking (RB) and
the contribution by the coherence limit (gray) of all possible two-qubit gates in the IBM Q System
One, from [42]

Randomized benchmarking allows to identify various features, like type and
strength of errors affecting quantum gates, and thus allows to validate and qualify
the quantum operations of a quantum system, e.g. see Fig. 27.5.

A challenge in improving a quantum computer is the characterization of the noise
affecting the qubits and quantumgates. A full noise characterizationwould be helpful
for noisemitigation or error correction schemes. Full process tomography in principle
allows this characterization, but it grows exponentially with the number of qubits
and thus requires exponential resources. Thus, this method becomes impractical for
large systems.

A proposal for randomized benchmarking over a full n-qubit space constructs gate
sequences from the n-qubit Clifford group. If characterizing the n-qubit space still
requires too much effort, the n-qubit space is divided into smaller sets of ni qubits
and the randomized benchmarking for the ni -qubit subdivided space is executed in
parallel. Either way, a metric of fidelity of the n-qubit space can be derived.

A proposal [43] for a protocol for Clifford gates overcomes problems for real
systems where noise is not independent of the chosen quantum gate or even not
understood for multiple-qubit systems. The main idea is to construct a m-length
sequence of random n-qubit Clifford gates, and add as last gate the inverse of the
sequence, which can be efficiently calculated (according to the Gottesman-Knill
theorem).

The protocol involves starting in the initialized state |0〉⊗n , applying the sequence
of Clifford gates repeated l-times for different random sequences [43]. In the limit for
large l the error map is twirled into a depolarization error map. From measurements
of the population on |0〉 versus the sequence length, an average error over the Clifford
gates can be determined.
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This average gate error determines the average gate fidelity for a set of opera-
tions (Clifford group). This can be understood as making stronger assumption of the
operations to achieve a more reliable noise characterization of the quantum gates.

A further method, by interleaving random Clifford gates between the gates of
interest, allows for a specific quantum gate to characterize its noise individually, by
so-called interleaved randomized benchmarking a specific gate fidelity is derived
[44].

27.4.3 Quantum Volume

Since the usefulness and power of a quantum computer is not only dependent on the
number of qubits, n, but also relies on the connectivity of the qubits, as well as on the
supported set of quantum gates, and the error rates of quantum gates, IBM suggested
to introduce a new metric called the Quantum Volume (QV) [40].

In this metric, different aspects are included like the number of qubits, which
describes the possible width of a quantum circuit, the topology, which describes
the interconnectivity and thus possible two-qubit gates, the set of quantum gates
supported by a certain quantum architecture, and the quantum gate error rates. A
given system with a specific QV will indicate the width and depth of the quantum
circuit, which can be executed with sufficiently high fidelity, and thus the QV must
be considered by the circuit compiler.

Therefore, QV as a metric is spanned by the maximum width and maximum
length of the quantum circuit before decoherence occurs and the quantum state col-
lapses into a classical state. In this sense, IBM’s metric of a QV is considered as a
general approach to measure the ability of a quantum computer to perform complex
algorithms on the passkey to quantum advantage.

The ability of a quantum computer to solve complex quantum algorithms is
directly linked to the quantum circuit width, for which the accumulated error rates
need to be below a certain acceptable overall error rate for the full quantum algo-
rithm, and the quantum circuit depth, for which the execution time is well within the
range of the coherence times of the qubits.

Since the topology and the error rates of a set of quantum gates varies with the
architecture of a quantum computer, circuit compilers may optimize the quantum
algorithm.Thewidth anddepth of the optimized quantumalgorithm thus is dependent
on the architecture andmaybe system-specific.Optimization should aim tomaximize
quantum-gate parallelism to increase the efficiency of quantum computation. Since
the QV is derived as the maximum achievable area of number of qubits and circuit
depth. It is also highly dependent on the optimization quality of the circuit compiler
[40].

The model circuit used to determine the QV is built up by several layers of quan-
tum operations of random permutations and random two-qubit gates, see Fig. 27.6.
As stated in [40], any quantum algorithm may be regarded as polynomially-sized
circuits of two-qubit unitary gates. Random circuits in general are a base proposal
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Fig. 27.6 Model circuit to
measure QV using
d iterations of layers
consisting of random
permutations of qubits
followed by random
two-qubit gates generated
from SU(4) unitary matrices,
from [40]

to demonstrate quantum advantage and are the underlying concept of randomized
benchmarking.

In detail, the proposed model circuit has a width, m, spanned by the number of
qubits and a depth, d, counting the number of layers of random permutations of
qubits and random two-qubit gates generated from SU(4) unitary matrices. Thus, the
sequence U = U (d) . . .U (2)U (1) with d layers given by

U (t) = U (t)
πt (m ′−1),πt (m ′) ⊗ · · · ⊗U (t)

πt (1),πt (2)

and labeled with time t is acting on m ′ = 2�n/2� qubits, which covers the cases of
even and odd number of qubits.

The circuit has to be adopted to the specifics of each quantum system. It may
depend on the gate set that was implemented and the qubit topology, which could
require additional operations like SWAP gates to satisfy the two-qubit operations in
each layer, even if the qubit connectivity does not allow a two-qubit gate directly
between them. To optimize across all aspects, like qubit placement, the determination
of m-qubit unitaries, U ′, may take a great computational effort.

The QV is derived using a concrete protocol to check whether a generated circuit
is heavy, see Fig. 27.7, and hence is not tailored to any particular system, but can be
implemented on any quantum computer. The only system requirement is the ability
to implement a universal set of quantum gates.

Fig. 27.7 Pseudocode for
testing whether the output of
a random model circuit of
width m and depth
d executed on real hardware
is heavy, from [40]
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Noisy intermediate-scale quantumdevices,which currently exhibit non-negligible
gate error rates, will need to start with small model circuits and continue to larger
model circuits where the confidence of the executed model circuit with a given width
m and depth d(m) with m ∈ [n] for the largest possible d will satisfy hd > 2/3 with
h1, h2, . . . , hd(m) > 2/3 and hd(m)+1 ≤ 2/3.

Over repeated executions while sweeping the parameters m and d the largest
square of d and m allows to derive the QV, VQ , defined as

log2VQ = argmaxmmin(m, d(m)).

The QV accomplishes the complexity of a classical quantum circuit simulation.
This implies a heuristic that the width of a classical tree of random circuits has a
width scaling roughly with the depth d. See Fig. 27.8 for an experimental evaluation
of the QV of a real quantum computing device.

As stated above, the QV is strongly related to the gate error rates. Thus, the
achievable QV scales like 1/ε, with ε the two-qubit error rate, as single qubit gates
tend to have smaller error rates than two-qubit gates.

The QV for different systems is dependent on the qubit topology, which defines
the coupling maps of the qubits, as well as performance parameters like coherence
times, calibration errors, crosstalk, fidelity of initialization, gate fidelity, and readout
fidelity.

As shown in Fig. 27.9, the achievable QV is expected to double every year,
comparable to Moore’s law in the semiconductor industry, which predicted doubling
of the number of transistors about every two years.

Fig. 27.8 Experimental data and ideal simulation results for the 20-qubit IBMdevice ‘ibmq_tokyo’
with the heavy output probability threshold of 2/3 (dotted) and the ideal asymptotic heavy output
probability (dashed). For the experimental data up to m = d = 3 the heavy output probability is
above the threshold and thus the system is being characterized as a system with a QV of 8, from
[40]
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Fig. 27.9 Exponential forecast of the QV depicting an exponential growth of quantum processing
power by doubling the QV every year for the next few years, from [45]

27.5 Software Ecosystem

To make quantum computing successful in solving real-world applications with an
improvement over current classical computing, the right ecosystemandprogramming
infrastructure is a key requirement. Such an ecosystem spans from integration of the
quantum processor into the quantum computing system, over classical electronic
hardware for controlling and reading-out qubits without limitations to the quantum
circuit, to the software stack that allows rapid development and in-depth optimization
of quantum algorithms.

For the development of quantum processors with superconducting circuits, two
open-source Python frameworks are publicly available, QuTiP [46] and QuCAT
[47]. QuCAT allows the definition of a quantum circuit either via a graphical user
interface or programmatically, and it creates a netlist, that can then be used by QuTiP
to simulate the dynamics of the quantum system. Important system parameters, like
resonance frequencies, loss-rate, anharmonicities, or cross-Kerr coupling, can be
easily extracted and analyzed further as design parameters. See [48] for a review on
engineering concepts and challenges in superconducting quantum circuits.

For programming quantum systems, several open-source quantum programming
platforms have been developed by different organizations in recent years, including
Forest, ProjectQ, Q#, Cirq with OpenFermion, and Qiskit, see [49] for an overview.
Most platforms offer methods and functions to create and manipulate quantum cir-
cuits with gate-level control, and they execute them on real hardware backends or
simulators. Translators between different platforms are available in some cases. In
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the following, we will focus on Qiskit as an example for an actively developed plat-
form that has one of the largest quantum programming communities and is notable
for its large number of tutorials on various topics [49].

27.5.1 Qiskit

Qiskit [50] is anopen-source software frameworkdesigned forworkingwith quantum
computers at multiple levels. The scope of Qiskit ranges from the level of pulses [51]
and open quantum assembly language (QASM) [52], over quantum circuits and
quantum algorithms, to applications. Thus, it supports various users with expertise
in different topics, from researchers to engineers and developers.

A central goal of Qiskit is to provide a software stack, see Fig. 27.10, that makes
it easy for anyone to use quantum computers requiring only basic knowledge. Addi-
tionally, Qiskit is also designed to support quantum computing research on today’s
most important open questions.

Qiskit is divided into four major parts with distinct functions and features, which
can be used as a flexible set of tools for quantum programming. Qiskit consists of
the following four elements:

• Terra: Composing quantum programs at the level of circuits and pulses.

Fig. 27.10 Qiskit software stack for each of its elements, from [50]
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• Aer: Optimizing quantum programs with simulators, emulators, and debuggers.
• Ignis: Characterizing and mitigating noise and errors.
• Aqua: Building quantum algorithms and applications.

27.5.1.1 Qiskit Terra

Terra, the ‘earth’ element, is the foundation, which supports the other elements of
Qiskit. Terra provides tools for composing quantum programs at the level of circuits
and pulses. Circuit optimization, e.g. for the constraints of a particular device and
for error rates and decoherence, is carried out after compilation in a dedicated tran-
spilation step, which offers different degrees of optimization. Terra also manages
the execution of batches of experiments on remote-access devices, so-called back-
ends, and it communicates via an application programming interface (API) with the
provider for a specific backend. Terra defines the interfaces exposed to the end-user.
A Python code example of running a simple quantum circuit on a real hardware
backend is given in Fig. 27.11.

27.5.1.2 Qiskit Aer

Aer, the ‘air’ element, permeates all other Qiskit elements as a universal tool. It
consists of simulators, emulators, and debuggers for speeding-up the development
of quantum programs and quantum computers. It helps to understand the limits of
classical processors by demonstrating to what extent they can mimic quantum com-
putation. Furthermore, Aer can be used to verify that current and near-future quantum
computers function correctly by simulating the effects of specific noise models on
the computation. This kind of verification is very important to build sufficient trust in
quantum computing systems, and it will be a major topic in the transition from small-
scale to large-scale quantum computers, for which full simulations are classically
not tractable anymore.

27.5.1.3 Qiskit Ignis

Ignis, the ‘fire’ element, is dedicated to fighting system-immanent noise and errors
from non-perfect gate operations on qubits. This includes tools for a better charac-
terization of errors, and for improving gates, and for computing in the presence of
noise. Ignis is meant for those who want to develop and optimize quantum error
correction codes, or who wish to study ways to characterize errors through methods
such as quantum-state tomography. Furthermore, Ignis will help to find a better way
for using gates by exploring dynamic decoupling and optimal control.



27 Quantum Computing 543

from qiskit import QuantumCircuit, execute, IBMQ

IBMQ.load_account()
provider = IBMQ.get_provider()
simulator = provider.get_backend('ibmq_boeblingen')
circuit = QuantumCircuit(2, 2)

circuit.h(0)
circuit.cx(0, 1)
circuit.measure([0, 1], [0, 1])

job = execute(circuit, simulator, shots=1000)
result = job.result()
counts = result.get_counts(circuit)

print("Total counts are:", counts)
print(circuit)

Total counts are: {'00': 348, '10': 46, '01': 46, '11': 560}
┌───┐ ┌─┐

q_0: |0>┤ H ├──■──┤M├───
└───┘┌─┴─┐└╥┘┌─┐

q_1: |0>─────┤ X ├─╫─┤M├
└───┘ ║ └╥┘

c_0: 0 ═══════════╩══╬═
║

c_1: 0 ══════════════╩═

Fig. 27.11 Complete Qiskit Terra software example (dark box with output below) that creates
an entanglement of two qubits and runs the quantum circuit on the real hardware backend called
‘ibmq_boeblingen’ for the IBM device ‘Boeblingen’. The result shows the counts for a total number
of shots of 1000 and the corresponding quantum circuit visualized as text output. The inset shows
the counts converted into measurement probabilities and visualized as a histogram

27.5.1.4 Qiskit Aqua

Aqua, the ‘water’ element, is the element of life within Qiskit. To make quantum
computing live up to its expectations, we need to find real-world applications and
solutions for practical problems. Aqua is the place where algorithms for quantum
computers are developed. These algorithms can then be used to build applications
for quantum computing by connecting the quantum algorithm with the data from the
problem to solve. In this sense, Aqua is accessible to domain experts in chemistry,
optimization, finance and artificial intelligence, who want to explore the benefits of
using quantum computers as accelerators for specific computational tasks. A Python
code example, solving a simple linear system of equations, is given in Fig. 27.12.
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 from qiskit.aqua import run_algorithm
from qiskit.aqua.algorithms.classical import ExactLSsolver
import numpy as np

params = { 
'problem': {'name': 'linear_system'},
'algorithm': {'name': 'HHL'},
'eigs': {'name': 'EigsQPE'},
'reciprocal': {'name': 'Lookup'},
'backend': { 

'provider': 'qiskit.BasicAer', 
'name': 'statevector_simulator'

} 
 } 

matrix = [[1, 0], [0, 2]]
vector = [1, 4] 
params['input'] = { 

'name': 'LinearSystemInput', 
'matrix': matrix, 
'vector': vector

 } 

result = run_algorithm(params) 
print("solution ", np.round(result['solution'], 5))

result_ref = ExactLSsolver(matrix, vector).run()
print("classical solution ", np.round(result_ref['solution'], 5))

solution  [1.02398+0.j 1.99696+0.j]
classical solution  [1. 2.]

Fig. 27.12 Complete Qiskit Aqua software example (dark box with output below) that runs the
HHL algorithm [53] to solve a system of linear equations of size 2 on a simulator backend called
‘statevector_simulator’. The result from the quantum algorithm is compared with the result from a
classical linear algebra solver, which corresponds to an overall fidelity of 99.9897%

27.5.2 IBM Q Experience

The IBM Q Experience [54] is an online platform for cloud-based quantum com-
puting. It provides access to IBM’s quantum processors for the public as well as for
members within the IBM Q Network. The platform features multiple ways to con-
struct and execute a quantum circuit: Users can employ a circuit composer, which
is a graphical user interface for drag-and-drop quantum gates onto a score, a circuit
editor, which allows editing QASM code and importing a pre-defined QASM file.
Alternatively, they can execute programs via Qiskit by running Jupyter notebooks
on the cloud platform or via connecting to IBM Q backends via an API.

Furthermore, the IBM Q Experience lets the user manage the results generated
by previous executions of quantum circuits on the backends available via the IBM
Q provider. Various run details as well as the result data are stored on the platform
and can be accessed at a later time.
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Administrators or members within the IBM Q Network use the platform to con-
figure available backends, make system reservations in case of planned high loads,
and manage users by group- and project-based access controls.

Since the launch of the IBM Q Experience in May 2016, its primary focus of
attention lies on the education and enablement of the quantumcomputing community.
Topics include various guides for beginners with exercises [55], which are closely
connected to the circuit composer and real hardware backends, as well as advanced
tutorials [56], which are written as Jupyter notebooks and which can be executed
online. This infrastructure supports an interactive way to learn the basics of quantum
computing and to run simple demonstrators of quantum algorithms for further study.

In addition, in [57], an open-source online textbook is being published called
“Learn Quantum Computation Using Qiskit”, which guides self-learners and educa-
tors to become quantum developers and to teach others. The textbook is maintained
by the Qiskit community.

27.6 Outlook

Algorithms and methods for verifying quantum programs will become a very impor-
tant aspect inmoving beyond the point of classically simulatable quantumalgorithms,
especially for problems where the correctness of an answer cannot easily be verified.
This will help in building trust in the operating principles of a quantum computer
and its applications.Making quantum algorithms tractable is of key importancewhen
entering the era of quantum advantage.

As one of the major next steps, quantum algorithms will be benchmarked and
compared to classical algorithms in great depth regarding runtime, performance,
quality of results, and resource requirements. As examples, comparisons are shown
in [58, 59] for the results of simple quantum chemistry problems between the quan-
tum method, including error mitigation running on current noisy hardware, and the
well-established classical method, regarded as the exact result running on classical
computers.

The increase of the QV of future quantum computing systems will give users and
researchers the ability to solve larger and more complex problems across different
fields and disciplines. It will enable the exploration of new algorithms for quantum
chemistry, finance, protein folding, optimization, among others, and bring quantum
computing to the next level with prospects on commercial values in solving real-
world problems. Major challenges to the quantum hardware will be the growth of the
number of qubits in such systems to hundreds or thousands and evenmore importantly
the reduction of error rates.

The opening of quantum computation centers will provide more systems with
larger QV via cloud access. Highly integrated quantum computing systems will be
the first on-premise systems delivered to and operated by the customer.
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Trademarks

The following are trademarks of the International Business Machines Corporation
(“IBM”) in the United States and/or other countries:

IBM, IBM Q, IBM Q Experience, IBM Q Network, IBM Q System One, Qiskit.
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Chapter 28
Human-Machine Interaction
and Cognitronics

Ulrich Rueckert

28.1 Introduction

Our society is on its way into a truly hybrid society of natural and artificial agents.
Digital assistants such as Amazon’s Alexa, autonomous cars, drones, mobile robots,
and humanoid robots such as Aldebaran’s Pepper becoming more and more part of
our lives in our homes, at work as well as in public areas. With ever-more smart
technological capabilities opportunities exist for advancing the mechanisms that we
employ for intuitive human-machine interaction. Interaction will take many different
forms from immersive virtual worlds to direct and precise physical interaction with
everyday appliances, production machines, or robots. It is imperative that the inter-
action is safe, smooth, ergonomically well designed, and easy to operate for human
users. Future technology should be easy to handle and adapt to human preferences
through individualized information, processing, and behaviour. “Cognitive Interac-
tion Technology” [1] is a major step forward in all application domains: at home, at
work and in leisure time.

Man-machine interaction requires a resource-efficient Cognitive System Archi-
tecture (CSA). Cognitive psychology and Artificial Intelligence (AI) have a long
history of building cognitive architectures [2]. Some work focuses on modelling the
invariant aspects of human cognition, whereas other efforts view architectures as an
effective path to building intelligent agents. Important basic capabilities of CSAs
are perception, situation assessment, prediction, planning, decision making, action,
communication, and learning (Fig. 28.1). Basic properties are the representation,
organization, utilization, acquisition and refinement of knowledge. Evaluation crite-
ria for CSA are for example generality, versatility, rationality, reactivity, persistence,
efficiency, improvability, and scalability [2].

U. Rueckert (B)
Bielefeld University, Bielefeld, Germany
e-mail: rueckert@cit-ec.uni-bielefeld.de

© Springer Nature Switzerland AG 2020
B. Murmann and B. Hoefflinger (eds.), NANO-CHIPS 2030,
The Frontiers Collection, https://doi.org/10.1007/978-3-030-18338-7_28

549

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18338-7_28&domain=pdf
mailto:rueckert@cit-ec.uni-bielefeld.de
https://doi.org/10.1007/978-3-030-18338-7_28


550 U. Rueckert

Fig. 28.1 Building blocks of a simplified cognitive system architecture

There is still a steady flow of new research on cognitive architectures, but only
few considering system level approaches for integrated systems. Physical agents
have limited resources for perceiving the world and affecting it, yet few architec-
tures address this issue. Required are approaches for the management of an agent’s
resources to selectively focus its perceptual attention, its effectors, and the tasks it pur-
sues. Although many architectures interface with complex environments, they rarely
confront the interactions between body and mind that arise with real embodiment.
For instance, to examine the manner in which physical embodiment impacts thinking
and consider the origin of an agent´s primary goals in terms of internal drives. This
demand can be met by an increased focus on system-level architectures that support
complex cognitive behaviour and the CSA specifies the underlying infrastructure for
an intelligent system. However, with no clear definition and no general theory of
cognition, each architecture is based on a different set of premises and assumptions,
making comparison and evaluation difficult [2].

In the following, technical issues of embedded CSAs for human-machine interac-
tion are considered. Today, there are three main application areas of embedded CAS:
smartphones, robotics, and automotive systems.
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28.2 Human-Machine Interaction

Humans interactwithmachines invadingour daily andprofessional life inmanyways.
With the increasing application of information technology in almost all areas of life,
human-machine interaction has become a key technology of our modern information
society. With the advancing integration of information and automation technology,
technical objects increasingly become more independent, more flexible and capable
of autonomous acting. The enormous functional expansion of the individual devices
goes hand in hand with the availability of cheap communication technology, which
facilitates the ubiquitous and spontaneous networking of everyday objects of all
kinds. The result is a consistent but heterogeneous infrastructure that enables an
unforeseen variety of new applications, services, and products.

All kind of technical objects can be enriched with computing and communication
power aswell as newuser interfaces. This can be integrated almost inconspicuously in
our professional andprivate environment for the peoples’ benefit. Technical objects of
all kinds become active nodes in complex networks and thus turn into a cooperative
medium in our environment. The situation-oriented integration of technical prod-
ucts and services into open dynamic systems requires the combination of different
aspects, which range from technological product features, questions of spontaneous
networking, the development and configuration of services to user interfaces and
safety mechanisms [3].

For human-machine interaction real-time operation is crucial. Human reaction
and interaction times are between 1 ms and 1 s depending on the involved modalities
(sight, hearing, touch, smell, and taste) [4]. The response time of human tactile to
visual feedback control is approximately 1 ms. The development of the fifth gen-
eration wireless communication systems (5G [5]) promises 1000-fold performance
gains with very low latency on the order of 1 ms or less and ultra-high reliability.
Potential 5G applications range from industry, robots and drones, and virtual and
augmented reality, to healthcare, road traffic, and smart grid. This perspective ini-
tiated the emergence of the Tactile Internet enabling real-time control and physical
tactile experiences remotely [6]. Obviously, requiring a 1 ms round-trip latency and
ultra-reliable as well as ultra-responsive network connectivity are huge challenges
effecting all communication layers. The vision of the Tactile Internet and its potential
impact on society is expected to add a new dimension to human-machine interaction
as it opens up the access to knowledge available in huge databases in the cloud. The
progress in wireless networking and the ubiquitous presence of Internet resources are
the sources for the emergence of Cloud Robotics [7]. Cloud computing empowers
robots by offering them more powerful computational capabilities and higher data
storage facilities in the cloud.

The more natural approach is to have the CSA embedded in the mechanical body
of the physical agent. All living creatures have their nervous system on board. As an
alternative to conventional approaches for mobile robotics the field of Neurorobotics
emerged recently [8]. Since brains are so closely coupled to the body, Neurorobots
aim at studying neural functions in a holistic fashion. A key feature of brains is their
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resource-efficient ability to process crossmodal information frommultisensory input
providing a robust perceptual experience and behavioural responses. Hence, the pro-
cessing and integration of multisensory information streams such as vision, audio,
haptics, and proprioception play a crucial role in the development of cognitive robots,
yielding a situated interaction with the environment also under conditions of sen-
sory uncertainty. The perception, integration, and segregation of multisensory cues
improve the capability to physically interact with objects and persons with higher
levels of autonomy in the real world. However, multisensory inputs must be repre-
sented and integrated in an appropriate way so that they result in a reliable perceptual
experience aimed to trigger adequate behavioural responses. The modelling of cross
modal processing in robots is of crucial interest for learning, memory, cognition, and
behaviour, and particularly in the case of uncertain and ambiguous or incongruent
multisensory input.

At present, CSAs are implemented mainly on standard hardware. The technology
push for cognitive technical systems coming from nanotechnology is still impressive.
Anticipating this technology means to shape system architectures for an increasing
number of processors, memory capacity and embedded sensors. However, having
this massive parallelism on board does not mean that we have to use these resources
constantly in a massively parallel way. More likely, concurrent as well as sequential
processes have to be coordinated on different abstraction levels in order to meet
task requirements and resource efficiency. Application specific integrated circuits
and intellectual property blocks for embedded intelligence are entering the market
of cognitive devices. These chips are improving conventional symbolic AI and bio-
inspired algorithms (see Chaps. 12 and 22).

28.3 Cognitronics

The term Cognitronics is a coinage, the combination of Cognition and Electronics. It
was created by myself in 1989 after an inspiring discussion with Eduardo Caianiello,
an Italian Professor of Theoretical Physics. The topic was “Is there a silicon way to
intelligence?”. His main conclusion, which anyone can certainly agree with, was:
“Until fundamental concepts become better understood, the many advantages of
silicon should not blind us to alternative neural network design” [9]. However, up to
now we only have this technology available for making systems smarter: either by
software or alternative hardware architectures or a combination of both.

The recent shift in computation towards massive parallelism is not a result based
on breakthroughs in novel software or architectures for parallelism; instead, this shift
is actually a technology push based on the progress in nanoelectronics offering 1000
cores on a chip today. The basic idea is to exploit themassive parallelism of current IC
technologies for ultra-low power and fault-tolerant information-processing systems.
Aiming at overcoming the big challenges of deep-submicron CMOS technology
(power wall, reliability, and design complexity), bio-inspiration offers alternative
ways to (embedded) artificial intelligence. The challenge is to understand, design,
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Fig. 28.2 Cognitronics: interplay of bio-inspired and nano-inspired information processing

build, and use new architectures for nanoelectronic systems, which unify the best of
brain-inspired information processing concepts, conventional signal processing, and
of nanotechnology hardware, including both algorithms and architectures (Fig. 28.2).
The goal of Cognitronics is the implementation of such embedded resource-efficient
architectures for cognitive technical systems; similar to neuromorphic systems intro-
duced by Carver Mead [10]. The focus is on embedded massively parallel and recon-
figurable system architectures, which are characterized by a decentralized organiza-
tion utilizing architectures that autonomously adapt their system resources to chang-
ing task requirements in order to increase resilient and robust performance within
complex, dynamic, and uncertain environments.

There are interesting ‘engineering’ aspects of biological neural networks from the
computational standpoint and about the implementation of resource-efficient techni-
cal systems. The hundred billion neurons have on the order of 1015 connections, each
coupling an action potential at a mean rate of not more than a few hertz. This amounts
to a total computational rate of about 1016 complex operations per second.With struc-
ture sizes smaller than 0.1 µm, semiconductor technology starts falling below the
level of biological structures forming the brain. However, the brain efficiently uses all
three dimensions, whereas nanoelectronics mainly use the two physical dimensions
of the silicon die surface and a restricted number of wiring layers. Nevertheless,
taking an area of one square-millimetre-roughly the square dimension of a Purkinje
cell (a type of neuron) in the cerebellar cortex, shown in Fig. 28.3 (right), we can
use 10-nm CMOS technology to implement a digital neuron processor (Fig. 28.3,
left) with one million 32-bit weight synapses and a 32-bit microprocessor as a neural
processing unit. Weights are the practical implementation (in hardware, software,
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Fig. 28.3 Area comparison of a digital neuron in 40 nm standard CMOS technology (left) and a
biological neuron (purkinje cell, right)

theory) of (biological) synapses (contacts between nerve cells). Such a processing
unit is in general memory bound and can emulate several hundred artificial neurons.

An even greater challenge is the issue of power efficiency. The power efficiency
of neurons (measured as the energy required for a given computation) exceeds that of
computer technology, possibly because the neuron itself is a relatively slow compo-
nent. While computer engineers measure gate speeds in picoseconds, neurons have
time constants measured in milliseconds. While computer engineers worry about
speed-of-light limitations and the number of clock cycles it takes to get a signal
across a chip, neurons communicate directly at a few meters per second. This very
relaxed performance at the technology level is, of course, compensated by the very
high levels of parallelism and connectivity of the biological system. Finally, neural
systems display levels of fault-tolerance and adaptive learning that artificial systems
have yet to approach [11].

Out of the empire of acquired knowledge, some biological data are summarized
in Table 28.1 as a performance guide to the human brain, which is interesting to
compare with technical data from biomorphic silicon brains. The basis of this charge
model is a charge density of 2 x 10−7 As cm−2 per neuron firing, fairly common
to biological brains [12] and a geometric mean for axon cross sections, which vary
from 0.1 to 100 µm2.

We are still a long way from fully comprehending the functional mechanisms of
the brain, far from any accepted description of the principles of information process-
ing in brains and from the reconstruction of its capabilities. Nevertheless, we do have
much to learn from brains from the computational standpoint and about the imple-
mentation of resource-efficient technical systems. Despite the revolutionary devel-
opment of nanotechnology in the last decades, there is still an impressive difference
between the resource efficiency of biological and technical systems.Hence, engineers
are eager to learn how nature achieves such resource efficient implementations of
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Table 28.1 Charge and
energy model of the human
brain[13]

Parameter Human brain

Number of neurons 1011

Synapses/neuron 103–105

Ionic charges per neuron
firing

6 × 10−11 As

Mean cross section synaptic
gap

30 µm2

Charge/synaptic gap 6 × 10−14 As = 4 × 105

ions

Action potential 70 mV

Energy per synapse operation 4 fJ = 2.5 × 104 eV

Energy per neuron firing 4 pJ

Average frequency of neuron
firing

10 Hz

Average brain power (2 × 1011) × (4 × 10−12) ×
10 = 8 W

complex and flexible behaviour. For cognitive systems, wemust also involve the inte-
gration of the innumerable sensors and actuators (motors) enabling living creatures
to survive in nature. In this outside-of-electronics domain, that of MEMS (Micro-
Electromechanical Systems), remarkable progress has beenmade and continues with
high growth [14].

This leads to the challenging question, of how to generate complex real-time
behaviour in the limits of restricted resources. More precisely, how much cognition
can be implemented in the limits of 100 Watts, one Terabyte of memory and one
Tera-operations per second within a volume of one litre? These are limits relevant
for embedding a cognitive architecture into a head of a mobile robot (Fig. 28.1]. For
example, in the head of the robot Pepper from Aldebaran Robotics (having a volume
of about one litre) we find actually one quad-core processor, 4 GByte of memory,
about a dozen integrated sensors, motors and a battery pack of 795 Wh [15], only.

We are still a long way from fully comprehending the functional mechanisms of
the brain. Nevertheless, we do havemuch to learn frombrains from the computational
standpoint and about the implementation of resource-efficient technical systems. The
hardware realization of neural networks should not aim for an exact reproduction of
nervous systems, but simply for an efficient use of available technologies for solving
practical problems. Furthermore, as the research on CSAmodels is still ongoing, the
system architecture should be flexible to support different approaches. But what are
interesting guiding principles for resource-efficient embedded CSA?

We know from systems engineering that there is close interdependence between
the main three system views (function, architecture, technology) for the develop-
ment of resource-efficient technical systems (Fig. 28.4). The very high levels of
parallelism and connectivity of brains have already been mentioned. Parallelism
serves as a compensation for the slow speed of the processing elements (neurons)
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Fig. 28.4 Integrated design
view on resource-efficient
systems engineering

and as a source for redundancy resulting in low power consumption and higher
robustness. Despite the massively parallel organization, not all processing elements
are active at the same time. Brains employ sparse data representations in the form
of activated cell assemblies [16]. Only a small number of neurons are active at the
same time. As a consequence, the input of each neuron is sparse as well. Sparse
codes and activities simplify internal computations and external communication of
the processing elements, which has a positive effect on power consumption as well.
It is assumed that neurons operate asynchronously as long as they are not loosely
coupled in cell assemblies. Continuous self-organization based on local rules lead
to stable and robust global behaviour. These three bio-inspired mechanisms should
be taken as higher-level design guidelines for embedded, massively parallel system
architectures for cognitive technical systems.

28.4 The Generic CoreVA-MPSoC

A flexible approach for emulating large CSAs is a Multiprocessor System-on-Chip
(MPSoC) with an appropriate trade-off between performance, energy consumption
and chip area. MPSoCs are defined by a very high number of small-sized CPU cores,
which are able to run applications with high resource efficiency. In our research
group, we developed the CoreVA-MPSoC [17] featuring a hierarchical intercon-
nect architecture and scalable number of reconfigurable clustered processing cores
(Fig. 28.5). The employed CoreVA CPUs can be easily extended by application
specific instructions and dedicated hardware accelerators, as discussed in [18]. Gen-
erally, a CoreVA CPU can be used for general purpose applications, so that all kinds
of application domains can be addressed. However, currently our CoreVA-MPSoC
and especially our automatic partitioning tool focuses on streaming applications, like
signal processing.

The CPU core used in our MPSoC is the 32-bit VLIW processor architecture
CoreVA, which is designed to provide a high resource efficiency [19]. It features
a six-stage pipeline. VLIW-architectures omit complex hardware schedulers and
leave the scheduling task to the compiler. The CoreVA architecture allows to con-
figure the number of VLIW slots, their functional units, as well as the number of
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Fig. 28.5 Generic CoreVA-MPSoC architecture [17]

load/store units (LD/ST) at design-time. Functional units are arithmetic-logic-units
(ALUs), dedicated units formultiply-accumulate (MAC) and division (DIV). Almost
all instructions have a latency of one cycle, excluding memory loads, multiplications
and MAC operations, which have a latency of two cycles. Additionally, both, ALU
and MAC units, support a 16-bit single instruction multiple data (SIMD) mode. Due
to the highly configurable architecture, it is possible to tailor the processors’ per-
formance to match the needs of a given application domain. As a typical Harvard
architecture, the CPU features separated instruction and data memories. To verify
our physical implementation flow, performance and power models, two chip proto-
types based on the CoreVA CPU architecture have been manufactured in a 65 nm
process using a conventional low power standard-cell library from ST Microelec-
tronics [20]. This chip consumes about 100 mW at an operating clock frequency
of 300 MHz. Additionally, an ultra-low power version, the CoreVA-ULP, is build
using a custom standard cell library that was designed for sub-threshold operation
using a multi-objective approach to optimize noise margins, switching energy, and
propagation delay simultaneously (Fig. 28.6) [21, 22]. Operation voltage range from
1.2 V down to 200 mV and frequency from 94 MHz down to 10 kHz. The CPU´s
lowest energy consumption per clock cycle of 9.94 pJ is observed at 325 mV and
a clock frequency of 133 kHz. At this point the CPU core consumes only 1.3 mW.
A performance and power management subsystem provides dynamic voltage and
frequency scaling (DVFS) combined with an adaptive supply voltage generation for
dynamic process and temperature variation (PVT) compensation.

To couple hundreds or thousands of CPUs, the CoreVA-MPSoC features a hier-
archical interconnect architecture with a NoC interconnect that couples several CPU
clusters. Each CPU cluster tightly couples several VLIW CPU cores via a bus-
based interconnect using a common address space. Different interconnect topolo-
gies (shared bus, crossbar) and bus standards (AMBA AXI, OpenCores Wishbone)
for use within CPU clusters are compared in [23]. This hierarchical interconnect
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Fig. 28.6 Block diagram (left) and die photograph of the implemented CoreVA test chip in 65 nm
CMOS [20]

allows for different memory architectures as discussed in [24, 25]. The efficient
coupling of a cluster’s shared memory to the network interface for highly efficient
NoC communication is discussed in [17]. Physical implementation results utilizing
a 28 nm FD-SOI standard cell technology (Fig. 28.7) show only minor differences
in area and energy requirements between the use of tightly coupled shared and local
data memory architectures.

To allow for large-scale MPSoCs with thousands of CPU cores, a Network-on-
Chip (NoC) is used to connect multiple CPU clusters. The NoC features packet
switching andwormhole routing. Packets are segmented into small flits each contain-
ing 64-bit payload data. Routers forward the flits along a path of network links. Each
router has a configurable number of ports to allow for the implementation of different
network topologies at design-time. An asynchronous router design, which indicates

Fig. 28.7 3 × 3 2D-Mesh
MPSoC layout and cluster
node with 4 CPU macros
(16 KB local data memory
each, 64 kB shared data
memory 0.817 mm2, 28 nm
FD-SOI CMOS) [17]
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a lower area and power consumption compared to the synchronous NoC, is employed
[26]. Additionally, this asynchronous NoC allows for a Globally-Asynchronous
Locally-Synchronous chip design.

The CoreVA-MPSoC platform particularly targets streaming applications.
Streaming applications consist of many different tasks which are connected via a
directed data flow graph. An efficient communication model is required to allow
communication between the tasks executed on different CPUs. Within the CoreVA-
MPSoC a communication model with unidirectional communication channels is
used. This approach promises more scalability and efficiency compared to shared
memory concepts where the memory access can become the performance bottle-
neck. The parallelizing CoreVA-MPSoC compiler for streaming applications assists
in programming the CoreVA-MPSoC [27, 28].

The CoreVA MPSoC is a scalable architecture for flexible, yet resource-efficient
implementation of CSAs. Conventional AI approaches can be combined with ANN
and neuromorphic systems. The hierarchical network topology supports sparse data
communication with low latency and real-time guarantees. The GALS approach
simplifies system design and increases power efficiency. DVFS and PVT enable
self-organization on the circuit level. On the system level, self-organization can be
achieved by reconfiguration on the architecture and adaptation on the algorithmic
level. Fault-tolerance and robustness are achieved by redundancy within the mas-
sively parallel system architecture. In conclusion, the generic CoreVA-MPSoC is a
versatile platform for design space exploration of embedded CSAs. A prototype is
available on our FPGA rapid prototyping system RAPTOR [29].

28.5 Outlook

Modern application areas, like mobile robotics, require high computational power
combined with low energy and manufacturing costs in embedded systems. Future
technology should be easy to handle and adapt to human preferences through indi-
vidualized information, processing, and behaviour. A major step forward for human-
machine interaction are Cognitive Interaction Technologies [1], which require
resource-efficient Cognitive SystemArchitectures.Models of cognitive systems have
evolved in nature in the course of biological evolution in large numbers. Therefore,
it makes sense to transfer biological information processing principles to technical
systems.

Biology has taken its own way through evolution based on its own special tech-
nology (real wet tissue). Exact brain emulation in software or implementation in dry
solid-state circuitry may guide us the wrong way to artificial machine intelligence
as we do not adequately account for the influence of the technology on function
(behaviour) and system architecture. Probably there are many technological arte-
facts in brain measurements, which are irrelevant for systems behaviour and hence
for system emulation. For example, the impressive brain simulations on supercom-
puters with neuron numbers comparable to the brains of a mouse or cat are still not
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able to perform some simple tasks within a natural environment. In 2009, the US
DARPA launched the SyNAPSE program: Systems of Neuromorphic Adaptive Plas-
tic Scalable Electronics [30]. It says in its description: “As compared to biological
systems…, today’s programmable machines are less efficient by a factor of 1 million
to 1 billion in complex, real-world environments”. And it continues: “The vision
… is the enabling of electronic neuromorphic machine technology that is scalable
to biological levels.” SyNAPSE is a program with explicit specifications and five
milestones into four phases of ~2 years each. For example, the fourth milestone for
2016, was to fabricate a single-chip neural system of ~106 neurons packaged into a
fully functional system, and to design and simulate a neural system of ~108 neurons
and ~1012 synapses performing at “cat”-level environment. The last milestone for
2018 was to fabricate a multi-chip neural system of ~108 neurons and instantiate into
a robotic platform performing at “cat” level (hunting a “mouse”). Today, we have
to realize that these ambitious milestones have not been reached. Consequently, we
are far from any accepted description of the principles of information processing in
brains and from the reconstruction of its capabilities.

Despite the many success stories of DNNs, which have spurred a wave of public
and corporate interest in AI, there are still many unsolved issues. One of these is how
tomakeDNNarchitecturesmore efficient, especially to be used in embedded devices.
The trend in deep learning research is that the models get larger and more complex.
Consider e.g. AlphaGo, Google’s famous AI powered Go program that beat the
world champion Lee Sedol. AlphaGo has a power consumption of 1 MW compared
to about 30 W for a human brain. Furthermore, AI is not real intelligence, because it
doesn´t have the ability to react comprehensible to unknown situations. The typical
AImodel uses lots of data and computing power, but it is just a complex black box that
can´t explain how it came to a specific recommendation or decision. As AI models
are increasingly used to support human decision making, explainability becomes
a key feature for future AI systems. Hence, DAPRA started the program Lifelong
Learning Machines (L2M) for the “third-wave AI system”, which would understand
the context and environment in which they operate and, over time, build underlying
explanatorymodels that allow them to characterize real-world phenomena [31]. L2M
are developing systems that can learn continuously during execution and become
increasingly expert while performing tasks.

Nature offers a fascinating source of inspiration for engineers. These solutions
that the slow biological hardware of our brains can implement are by their very
nature entirely different from technological solutions. Biological wetware is difficult
or impossible to scale up and its networking with other brains has to go through the
bottlenecks of language and shared perception. Hence, the technical realization of
bio-inspired information processing should not aim for an exact reproduction of the
biological model, but simply for an efficient use of available technologies for solving
practical problems. Remember that creating human life had fascinated researchers
for centuries, and every technological epoch had its view on how to do this (e.g.
mechanical automata of the eighteenth century). And yet it is very early in the evo-
lution of CSAs, so that all practical systems will be focused, application-specific
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solutions, certainly with growing intelligence, but with confined features of biolog-
ical cognition. An outstanding example of an intelligent vision sensor system based
on an efficient combination of classical computer vision and brain-inspired hard-
ware architecture was developed by Ulrich Ramacher from Infineon Technologies
in the course of several research projects funded by the German Federal Ministry of
Education and Research (BMBF) [32].

Companies and research institutions are now starting to come up with devices for
embedded AI that will stream continuous data needing to be processed in real-time
from an increasing number of sensors. This technological development progressively
driven by commercial interests will be accompanied by unknown impacts on our
privacy, our social life, our means of communication and our own self-image. It will
take a major, globally consolidated effort involving many disciplines from reliability
and ethics to social science to achieve broad acceptance of brain-inspired hardware
for demanding applications as human-machine interaction. The advancement of care-
bots in variousworld regionswill be a good test-ground for this evolution of cognitive
systems. Particularly attractive is the application of CSAs in those domains where, at
present, humans outperform any currently available high-performance computer, e.g.
in areas like vision, auditory perception, or sensorymotor control.Neural information
processing is expected to have wide applicability in areas that require a high degree
of flexibility and the ability to operate in uncertain environments where information
usually is partial, fuzzy, or even contradictory. Nonetheless, the ability of human and
animal brains to generalise is unparalleled and new machine learning methods are
only just starting to get close in a few domains, such as object recognition based on
sensory data.
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Chapter 29
Efficient System-on-Chip (SOC)
for Automated Driving with High Safety

Yutaka Yamada and Katsuyuki Kimura

29.1 Introduction

Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems
(ADS) are drawing attention as ways of reducing traffic accidents and improving
vehicle usefulness.

As shown in Fig. 29.1, according to theWorld Health Organization (WHO), traffic
accidents rank as the eighth leading cause of deaths worldwide with a total of 1.6
million fatalities in 2016 [1]. Reducing traffic accidents is therefore crucial for the
improvement of the public health. According to NHTSA, 94% of serious traffic
accidents are caused by human errors [2]. Therefore, to avoid traffic accidents, it is
important to reduce such driver errors.

The conventional approach to collision safety was to reduce the damage caused
by traffic accidents. An example of this is the airbag feature to reduce damage to
passengers in the event of a vehicle collision. Although it may be able to reduce the
damage caused by the collision, the airbag cannot prevent the collision itself. Thus,
it was not helpful in preventing accidents from happening.

In recent years, an approach called Preventive Safety has been drawing attention
as a way to reduce the number of vehicular accidents. To support this approach,
vehicles equipped with ADAS features, such as emergency braking, are emerging.
In fact, current evaluation standards by car safety assessment agencies such as Euro
NCAP now include preventive safety features, not just the conventional collision
safety measures [3].
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Fig. 29.1 Top 10 global causes of deaths, 2016. Source [1]

Vehicles are widely used for transportation all over the world. It is common to
encounter problems such as traffic congestion in urban areas, environmental pollu-
tion, and transportation issues for some people in rural areas. With an aging popula-
tion worldwide, travel by vehicle is increasingly important as a means for the elderly
to move easily and safely.

Recently, MaaS [4] and other ride-sharing services have become popular as a
way to improve vehicle usage efficiency and convenience. These services provide
users with suitable and timely transportation by registered transportation services.
Currently, public transport, taxis, and registered personal vehicles are the standard
modes of transportation. However, the disparity in services between urban and sub-
urban areas is a problem. This gap can be addressed by adding automated driving
vehicles to provide those services. Logistically, labor shortage is a problem due to
the growing number of e-commerce businesses. Labor shortage can be resolved with
the introduction of automated driving into logistics.

Based on these premises, ADAS and ADS can be considered as highly promising
technologies for accident reduction and convenience.

29.2 ADAS and ADS

ADASandADSare vital technologies for improving the convenience of automobiles.
Vehicles equipped with ADAS are widely used in today’s market. The original

ADAS capability was limited to simple vehicle controls, such as warning signals
during lane departures and speed controls for emergency brakes. In recent years,
advances in technologies have led to more complex controls for performing both
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Fig. 29.2 Adaptive cruise control

steering and speed controls, such as Adaptive Cruise Control (Fig. 29.2) and Intel-
ligent Parking Assist. The current operation of these features is restricted to limited
environments such as highways and parking lots. However, it is expected that more
varied environments will be supported in the future.

Table 29.1 shows the commonly used automated driving levels as defined by SAE
[5]. A brief description of each is below. Levels 0, 1, and 2 are classified under ADAS
since the driver is responsible for controlling the vehicle. An example for each level
is described below.

• LV0 No Automation
The vehicle does not have driving-support features for vehicle control.
This includes warnings when an obstacle is detected during parking or the vehicle
is exiting a lane.

• LV1 Driver Assistance
This level supports drivingwith a single function of either steering or speed control.
This applies to emergency braking and cruise control only with speed control.

• LV2 Partial Automation
This level supports driving with both steering and speed control functions.
An example is cruise control that helps the moving vehicle stay in its lane.

Level 3 and higher levels are automated driving systems in which the system is
responsible for controlling the vehicle. In certain conditions when it is difficult to
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Table 29.1 Levels of driving automation

Level Driving System request to
take over driving

Assistance

0 No automation Human – Warnings and
momentary assistance

1 Driver assistance Human – Steering or
brake/acceleration

2 Partial automation Human – Steering and
brake/acceleration

3 Conditional
automation

System/Human Yes Driving the vehicle
under limited
conditions

4 High automation System No Driving the vehicle
under limited
conditions

5 Full automation System No Driving the vehicle
under all conditions

drive in Level 3 mode, the driver takes over control of the vehicle. For example, in
Level 3 mode, drivers control the vehicle on ordinary roads, and automated driving
can only be used on expressways. Levels 4 and up have more advanced automated
driving operations and there is no handover for human control. In Level 4, automated
driving is only supported in predetermined areas. In Level 5, the areas allowing
automated driving are not restricted.

Based on these definitions, most vehicles currently available on the market are
classified at Level 2 or below. Various companies and organizations are conducting
research and development of advanced automated driving systems for practical use
at Level 4 or higher [6]. Some organizations even have open-source frameworks for
automated driving and are actively working toward the practical uses of automated
driving vehicles [7, 8].

Figure 29.3 shows an example of ADAS and automated driving applications. The
outline of each process is explained below.

• Sensing
Acquire external information using various sensors such as camera, radar, LiDAR,
millimeter wave, and sonar.

Sensing Perception Planning Control

Camera
Radar
Lidar

Detec on
Localiza on
Predic on

Mo on 
Planning

Path 
Planning

Steering
Accelera on

Brake

Fig. 29.3 A simple example of ADAS/ADS application
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• Perception
Using acquired information by Sensing, the vehicle recognizes itself and the sur-
rounding environment by detecting and identifying objects, estimating its own
position, creating peripheral maps, and predicting themovement of nearby objects.

• Planning
Determine the route and movement of the vehicle based on the Perception result.

• Control
Control the vehicle’s steering, acceleration, and braking according to the route and
operation determined by Planning.

Sensing and Perception processing recognize the surrounding situation, and it is
important for both ADAS and ADS. Although, there is a difference between ADAS
and ADS as to whether the vehicle is controlled by the driver or the system, the
objects to be detected are almost the same.

Figure 29.4 shows an example of the sensor configuration for ADAS and ADS
vehicles. Sensing processing obtains the image and object distance information using
various sensors such as cameras, radar, LiDAR, and sonars mounted on the front,
rear, left, and right sides of the vehicle. Each sensor has different characteristics.
Cameras are effective in identifying objects because they can capture high-definition
images, but it is difficult to capture images at night or through dense fog. Radar and
LiDAR, on the other hand, can detect objects at night or through dense fog. In addi-
tion, the object detection range is different for telephoto and wide-angle lenses even
when the same camera is used. Therefore, combining multiple sensors can improve
detection accuracy and situational performance. Perception detects obstacles such as
pedestrians and vehicles through image/signal processing of sensor information.

On the other hand, Planning and Control processing is highly involved in vehicle
control, and it is very different between ADAS and ADS. The driver is mainly
responsible for data processing in ADAS. In ADS, however, the system is in charge
of this processing. In ADS, an overall route to the destination must first be selected.
The vehicle can then be controlled according to local road conditions. In dangerous
situations, how the vehicle is controlled, is also different between ADAS and ADS.

Fig. 29.4 An example of sensors for ADAS/ADS system
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Since ADAS is not responsible for vehicle control, it is the driver’s responsibility
to avoid danger. However, when a dangerous situation is detected, ADAS notifies
the driver with a warning and, in some cases, takes over control of the vehicle to do
emergency braking. ADS, on the other hand, avoids dangerous situations by taking
control of the vehicle and, if possible, operates continuously until the vehicle reaches
its destination.

ADAS/ADS safety and reliability are important to avoid serious accidents that
could be caused by systemmalfunctions. Current vehicle systems are becomingmore
and more complex, so it is crucial to ensure safety on the assumption that malfunc-
tions may occur. Functional safety standards are widely enforced to improve safety
and reliability. In 2012, ISO 26262, the international standard for functional safety of
automotive electrical and/or electronic systems, was established. A revised version
was released in 2018 [9] to include important specific requirements for semiconduc-
tors. This trend shows increasing awareness of the need for greater functional safety
of automobile systems.

29.3 SoC Requirements for ADAS/ADS

Aside from sensor modules for sensing, an SoC is required to control Perception,
Planning, and Control processing to implement ADAS and ADS functions. This
section describes these SoC requirements.

29.3.1 High Performance

As explained in Sect. 29.2, Perception processing is important for both ADAS and
ADS. Tomeet higher safety measures, improvements of recognition accuracy, detec-
tion and tracking of more objects, and support for higher-definition sensors are all
necessary. Figure 29.5 shows the detection and recognition targets inADAS/ADS.As
shown in this figure, perception processing requires optimal signal and recognition
processing to detect and identify various objects.

Improving recognition accuracy and increasing the variations of recognition tar-
gets are important factors that directly affect safety and that are crucial for automotive
systems. By increasing the variations of recognition targets, dangers in more diverse
conditions can be detected. For example, in Euro NCAP, the emergency braking
target only considers vehicles and pedestrians. However, this target has expanded to
other objects such as motorcycles, bicycles, and irregularly shaped objects. In the
past, algorithms based on feature descriptor were used in image recognition. In recent
years however, deep learning algorithms show higher image recognition accuracy
[10–14]. This shows how applications for the automotive field are expanding and
several SoCs including deep-learning accelerators are recently developed [15–17].
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Fig. 29.5 Detection and recognition targets of ADAS/ADS application

By supporting sensors with better performance, it is possible to accurately recog-
nize a greater variety of objects. For example, objects in the distance can be detected
in a wider range by increasing camera resolution. Moreover, since the dynamic range
is widened, an object can be detected accurately even in varying brightness condi-
tions such as inside and outside a tunnel or at night. Since the image captured by
the camera has much more data as a result of a higher resolution and wider dynamic
range, higher signal processing performance is required.

ADS also requires processing performance for Planning and Control. Planning
selects the optimal route based on the surrounding situation, and it controls the
vehicle. For example, it controls the speed in relation to the vehicle’s distance from the
vehicle in front of it, and it selects a routematching the lane curvature. Furthermore, it
controls the operation of the vehicle so that it can move towards the route determined
by Control. If more route options are available, Planning can select the most suitable
route to take.

29.3.2 High Power-Performance Efficiency

For stable operation in a vehicle, the SoC on vehicle should have low heat generation
and low power consumption. Since a vehicle often operates at a high temperature,
performance should be stable even at such temperatures. In addition, the ADAS/ADS
module is often located behind the frontmirror. In this case, providing cooling devices
such as a fan may be difficult. Therefore, the module should only generate low heat
even in a room temperature environment.
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Table 29.2 Target failure metrics of ISO26262

ASIL-A ASIL-B ASIL-C ASIL-D

Failure rate <1000FIT <100FIT <100FIT <10FIT

SPFM – >90% >97% >99%

LFM – >60% >80% >90%

FIT Failure In Time; SPFM Single Point Failure Metrics; LFM Latent Failure Metrics

29.3.3 Functional Safety

To avoid serious accidents caused by automated driving-system malfunctions, it is
important to comply with functional safety standards at the SoC level. The functional
safety approach is to reduce risks by limiting the severity and frequency of failures
to an acceptable level. Risk mitigation is implemented by introducing safety mech-
anisms that reduce fault incidence or its severity of the result of a failure. The main
roles of safetymechanisms aremalfunction detection, notification of themalfunction
to people or systems outside of the malfunctioning system, and the prevention of a
malfunction from propagating to other elements.

ISO26262 describes the safety risk level called Automotive Safety Integrity Level
(ASIL). The levels are classified as ASIL A to ASIL D according to risk assessment.
As shown in Table 29.2, target failure metrics are defined for each ASIL. The SoC
must satisfy the target failure metrics of ASIL corresponding to the vehicle system.

29.3.4 Connectivity

The connection with other systems is essential to constructing a complex vehicle
system.

An SoC for ADAS/ADS requires sensors such as camera, radar, and GPS/GNSS,
storage for map information, log and etc., a monitor providing situation update to
the driver, and interfaces that connect to other modules of the vehicle system.

29.4 SoC Architecture for ADAS/ADS Application

This section describes the architecture of the SoC. The following discusses what is
required to implement ADAS/ADS functions and the safety mechanisms required
for functional safety.
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29.4.1 Elements for ADAS/AD Features

Figure 29.6 shows an example of an ADAS/ADS SoC.
The components of the SoC in this example are as follows:

• General Purpose Processors
In an ADAS/ADS system, processes such as image recognition, signal processing,
path determination, and vehicle control operate in parallel. The processor cooper-
ates with other computing units to perform these processes. With a multiprocessor
configuration, a number of processes can be processed efficiently. Also, recog-
nition processing of Perception includes a large proportion of signal processing
having high parallelism. Therefore, it is possible to offload these processes to DSP,
GPU and accelerators. On the other hand, Planning and Control involve complex
control processing, requiring processors of higher performance. Thus, the SoC for
ADS system needs processors of higher performance.
In addition, processors perform functional safety processing such as failure
diagnosis control and error handling. Higher reliability is required for such
processors.

• DSP and/or GPU
DSP and GPU, having high parallelism, can perform signal processing and
image processing more efficiently than processors. As these computing units are
programmable, they can adapt to the progress of the algorithm.

High 
Performance
Processors

Safety/Control
ProcessorDSPs GPUs

Signal Processing
Accelerators

Image Signal 
Processors

Encrypt
Decrypt

DRAM I/F
Video In I/F

Video Out I/F MISC
I/O

Image Processing
Accelerators

Recognition
Accelerators

DNN
Accelerators

Interconnect

Fig. 29.6 An example of an ADAS/ADS SoC [15]
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• Hardware dedicated accelerator
This is a computing unit that performs the signal processing and image processing
as with DSP and GPU. Unlike DSP and GPU, it can perform only certain pro-
cesses; however it can achieve higher processing performance and power efficiency
than DSP and GPU by optimizing parallelism configuration for each algorithm.
Thus, the computing unit is suitable for efficient processing of mature algorithms,
including signal processing such as filtering, image processing such as geometry
transformation, image recognition such as template matching, and standardized
algorithms such as codec and encryption/decryption.

• Image Signal Processor
This is a type of hardware dedicated accelerator that processes images received
from the camera module. In general, it has a very deep pipeline structure and
can perform image processing such as noise reduction, demosaic processing, and
quality enhancement. It has very high parallelism and can perform real-time signal
processing of data from a high resolution camera, which is difficult to process with
DSP and GPU.

• DNN Accelerator
This is a hardware dedicated accelerator that specializes in DNN processing. It
has a large number of MAC calculators to perform DNN processing efficiently.
In general, DNN accelerators can process various neural network operations on
a single accelerator and are programmable after the hardware is mounted. In that
way, they are similar to processors.

• Various Interfaces
These are the interfaces to connect with sensors (such as MIPI) and other mod-
ules in a vehicle (such as CAN, Flex-ray, and Ethernet). They include extended
interfaces such as PCI express to consider the connection with coprocessors.

These computing units are complementary and a different computing unit may
be used for the same processing.

The SoC for ADAS mainly supports Perception, so the computing units for Plan-
ning and Control may be fewer than that of ADS. Since ADS requires Planning and
Control processing, high-performance computing units (processor, DSP, etc.) that
support complex control processing are required.

29.4.2 Elements for Functional Safety

To meet the SoC functional safety standards, a safety mechanism should be imple-
mented. If a failure occurs inside the SoC, this failure may lead to more serious
problems if left uncontrolled. For example, failure of an ordinary component may
affect other more important components, which may eventually lead to an accident.
This is why a safety mechanism is an important quality factor in functional safety.
It detects failures promptly, issues notifications, and prevents failures from affecting
other components.
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Table 29.3 An example of safety mechanisms

Low coverage Middle coverage High coverage

Random logic Software test Runtime logic BIST Duplicated logic

Memory Parity ECC

Interconnect Parity ECC Duplicated logic

Clock and Voltage Monitor Duplicated monitor

Table 29.3 shows an example of a safety mechanism used in SoC. Systems with
higher ASIL require a more robust safety mechanism.

29.5 Future Trends in ADAS/ADS

This section describes future ADAS/ADS trends and predictions for the functions
required for SoC’s.

• Enhanced functionality
Most ADAS-equipped vehicles currently on the market only monitor the front
while driving and left/right/rear sidemonitoring is limited to parking. In the future,
it will be possible to react to left/right and rear monitoring while driving, such as
assisting with lane changes. Since camera monitoring on the left/right and rear is
also required during high-speed driving, it is expected that camera resolution will
continue to increase. In addition, to respond to various environmental conditions,
the trend towards combining sensors not only with cameras but with LiDAR and
radar will continue as well.
SoCs are also required to improve the performances of signal and DNN processing
so they can process more data.

• Improvement of automated driving levels
In the future, the level of automated driving is expected to improve so that the
usefulness of vehicles canbe enhanced.As the level of automateddriving increases,
the demands for system safety and reliability will also increase. For example, when
a failure occurs in a Level 4 automated driving system, the system must not only
notify the driver, but it must also also automatically move the vehicle to a safe
place.
To achieve this, SoCs for advanced automated driving systems are required to
be highly reliable. Reliability is ensured by providing not just a single SoC but
multiple SoCs working together.

• Development of connected cars
Tobuild a safer vehicle system, amechanism for communicatingwith the surround-
ing environment, such as Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I), is being studied. For example, sharing information with a vehicle in front
canmake it easier to check for blind spots. Sharing traffic and accident information
via the internet or other means can also improve traffic efficiency.
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Consequently, security becomes more important as these vehicles connect via
external networks.

29.6 Conclusion

This chapter discussed the trends in ADAS/ADS, SoC requirements, and the cor-
responding SoC architecture. An introduction to the prospects of ADAS/ADS and
SoC advancement are also discussed.

ADAS/ADS need to perform multiple signal processing and image recognition
processing simultaneously. To achieve this, SoCs should have both high performance
and low power consumption. High safety standards are also required to avoid serious
accidents due to malfunctions. An SoC for ADAS/ADS can achieve high perfor-
mance and low power consumption by combing a variety of computing units such as
processors, DSPs, GPUs, and DNN accelerators. Additionally, it can ensure safety
by introducing various safety mechanisms.

In the future, ADAS/ADSwill require higher safety standards and higher levels of
automated driving. Further improvements in computing performance will be needed
to achieve this. To effectively manage a variety of environmental conditions, various
sensors should be supported. Moving forward, vehicles are expected to be connected
externally, via the Internet or other means, which means that the security of vehicle
systems will also become increasingly important.
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Chapter 30
The Thirties

Boris Murmann and Bernd Hoefflinger

As expressed in a famous Danish proverb, “making predictions is difficult, especially
about the future.” Nonetheless, the preceding 28 chapters have put us in a position to
make some predictions about the future of nano chips beyond the horizon of 2030. In
the following sections, we extrapolate upon the key points presented by our authors
and speculate about the most significant trends and asymptotes that we expect to pass
the test of time. We begin with a big-picture overview, followed by an inspection of
the following major themes that have coalesced throughout this book:

• The grand challenge: Intelligent machines for man-machine cooperation and
navigation

• Artificial intelligence as an application enabler and new driver for the chip industry
• The challenge of flexible and efficient computing at all complexity scales
• The challenge of moving bits at all length scales and 3D integration
• Interfacing with the physical world and the human nervous system.

30.1 The Big Picture

Since the very beginning of the semiconductor era, innovation has relied on applica-
tion drivers that warrant large investments in process technology and make us dream
about future possibilities. However, especially over the last decade, the weight and
significance of application pull has dramatically increased and tends to dwarf the
strong technology push that marked the big bang of our industry. The statement “data
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Fig. 30.1 Symbiotic interplay between the physical and virtual worlds. Top photo from [1]. Bottom
chart showing Gordon Moore’s famous prediction [2]

is the new oil,” which was made by Intel’s CEO Brian Krzanich in 2016, exemplifies
this trend. It is important to understand that our reliance on symbiotic interplay with
application developers (who may not be semiconductor experts) will only continue
to grow (see Fig. 30.1). Within this context, our “big picture” ecosystem predictions
for the 2030s are summarized as follows:

• Differentiation among competitors has transitioned from fab-level to design-level
in the last two decades. Differentiation will further rise to the application and
domain level.

• An increasing number of large corporations that define and drive new applications
will have chip design teams. The onset of this trend is already marked by chip
releases from Tesla, Amazon and others.

• The industry will continue to change from vendors following ITRS-like scal-
ing roadmaps, to an ecosystem filled with corporation- and application-specific
roadmaps.

• Systemdesign has becomeandwill continue to be evenmore democratized through
the Internet. Makers will enjoy increased access to easy-to-use compute platforms,
3D printers and design software. This community will play an important role in
designing the future.

• The abundance of learning chips and machines in the data-driven world will fuel
a totally new discipline of Industrial Control.
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30.2 The Grand Challenge: Intelligent Machines
for Man-Machine Cooperation and Navigation

The cross-cutting grand challenge that will continue to drive a significant portion of
semiconductor applications lies in improving man-machine interaction and enabling
intelligent machines that can perform highly complex tasks without human interven-
tion. In this book, we outlined some of the possibilities in Chaps. 18, 20, 24, 25, 28
and 29. Establishing these capabilities has the potential to revolutionize healthcare,
transportation, and entertainment. While improving chips and electronic systems
will be a necessary ingredient, many of the most significant breakthroughs are due at
higher levels of abstraction. Most significantly, research into what constitutes intel-
ligence and how an intelligent machine should behave is still at its infancy. At the
same time, the electronic systems that are built with our current understanding are
already immensely complex and difficult to build, debug and operate reliably.Within
this context, our predictions for the 2030s are summarized as follows:

• Virtual and augmented reality will be mainstream.
• These systems will be able to pass a “visual Turing test for displays,” where a user
would not be able to discern digital from physical content.

• The community will define new standards for levels of machine autonomy.
• Managing complexity in electronic systems is an ongoing challenge that could
become a significant showstopper in the thirties. System and chip design must be
become even more automated, modular, and debug friendly.

30.3 Artificial Intelligence as an Application Enabler
and Driver for the Chip Industry

A typical question for the semiconductor community is to ask “what is the next
killer application?” Since the introduction of the smartphone, we have been patiently
waiting for a new answer. However, from today’s perspective, it may very well be
that there is no new killer application in form of a concrete new device, but it instead
comes in form a of a new capability in our data-driven environment. We believe that
this capability is machine learning (ML) and its ultimate manifestation as artificial
intelligence (AI). As enumerated in [3], there are currently more than 100 papers per
day published on this subject, with a rate of doubling in less than two years. This
signifies the immense potential of this technology for a wide range of applications,
including the ones highlighted in the previous section. Chaps. 9, 10, 12–14, 18, 19
and 22 of this book have provided a closer look at various aspects of the ML/AI
landscape and its foundations. With this background, our predictions for the 2030s
are summarized as follows:

• AI and AI-enabled applications will be the key drivers for the semiconductor
industry and related new businesses.
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• While we differentiate today between “neuromorphic” and more generic deep
learning approaches, the thirties will bring a unified perspective that is based on
improved understanding in how the physical world is constructed (see e.g. [4]).

• In contrast to the majority of today’s systems, which are trained “offline,” AI
systems of the thirties will learn continuously in the field. This will not only
require algorithmic innovations, but also improvements in non-volatile memory
technology, real-time self-test and self-repair.

30.4 The Challenge of Flexible and Efficient Computing
at All Complexity Scales

Our needs for ubiquitous computing have continued to grow exponentially. The com-
plexity scale of today’s computing systems ranges from tiny platforms running on
harvested energy, through battery powered handheld devices, desktop computers,
all the way to super computers and data centers. The needs across this space have
become considerablymore heterogenous and have followed a trend of increasing spe-
cialization. Specialized computing helps us offset the dramatic slowdown in progress
from CMOS scaling alone and has led to new directions in computer architecture
[5]. However, while specialization can boost performance, it can adversely affect
programmability and compatibility with new and emerging algorithms. This trade-
off is felt particularly strongly in hardware design for ML and AI [3] and Chaps. 11,
13, 14, 18, 19 have looked at some of the relevant aspects. At the other end of the
spectrum, we find traditional supercomputers (see Chap. 16) and emerging systems
for quantum computing (see Chaps. 26 and 27), which come with their own unique
challenges. Within this context, our predictions for the 2030s are summarized as
follows:

• The rising cost of complex monolithic devices will lead to a wide spectrum of
disaggregated programmable devices with multiple dice connected at the package
or at wafer level.

• Field programmable and coarse-grained reconfigurable architectures will play a
critical role in designing computing systems for the next generation of applications.

• The software experience for field-programmable devices will change to temporal
models instead of today’s largely spatial approach. Their role moves further from
customizing logic to customizing applications and systems.

• As predicted in CHIPS 2020 [6], synaptic operations (multiply & add) in custom
chips for ML and AI have already reached the single digit femtojoule range (see
Chap. 18). It is unlikely that this number will reduce significantly in the thirties.
Instead, the challenge is shifted to moving bits instead of computing (see next
section), naturally leading to 3D integration.

• AI processors will be more dynamic and contain processing structures that are
normally off, fire up to perform bursts of computation, and go back to “dark” after
storing the results in their 3D fabric.
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• AI processors will natively support staged inference (supported by emerging non-
volatile memory technology), memory-aware quantization, memory voltage over-
scaling and algorithmic error tolerance.

• As already discussed in CHIPS 2020 Vol. 2 [7], providing electric power to expo-
nentially growing large-scale computing systems will remain a key challenge in
the thirties.

• Quantum computers may help mitigate the energy problem and could become as
ubiquitous as conventional microprocessors if we find a way to operate qubits at
higher temperatures.

• Algorithms and methods for verifying quantum programs will become a very
important aspect in moving beyond the point of classically-simulatable quantum
algorithms.

30.5 The Challenge of Moving Bits at All Length Scales
and 3D Integration

As already highlighted in CHIPS 2020 Vol. 2 [7], the energy cost of moving a bit
across the Internet is relatively large and continues to be a potential showstopper
for the future growth of data traffic. Similar concerns hold for moving bits even
across much smaller length scales, e.g. from chip-to-chip and within a large chip.
The associated energies are summarized in Table 30.1 (from [8]) and are seen to be
significantly larger than for typical on-chip compute operations. The recent devel-
opment of data-intensive AI chips has once again highlighted this fact and provides
fuel for the development of 3D chips that minimize the physical distance between

Table 30.1 Energies for
Communications and
computations. From [8]
©IEEE 2017

Operation Energy per bit

Wireless data 10–30 µJ

Internet: access 40–80 nJ

Internet: routing 20 nJ

Internet: optical WDM links 3 nJ

Reading DRAM 5 pJ

Communicating off chip 1–20 pJ

Data link multiplexing and timing circuits ~2 pJ

Communicating across chip 600 fJ

Floating point operation 100 fJ

Energy in DRAM cell 10 fJ

Switching CMOS gate ~50 aJ–3 fJ

1 electron at 1 V, or 0.16 aJ

1 photon @ 1 eV 160 zJ
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compute and memory functions. This topic was extensively discussed in this book
through Chaps. 8–11, 15, 18–20. Extrapolating further, we anticipate the following
trends for the adoption of 3D technologies in the 2030s:

• AI chips and other data-intensive applications will embrace monolithic 3D
integration in conjunction with in-memory computing across their chip layers.

• Storage class memory (SCM) will use 3D cross point technology.
• High-speed memory (DRAM) will use 3D cube technology.
• Logic foundries will use 3D Stacking with hybrid bonding for heterogeneous
integration.

• Ultra-low voltage differential transmission-gate logic in 3D communication with
local 3DCMOSSRAM(both at 300mV)will be used to improve the logic/memory
interface.

• 3D-integration will enable new multi-sensor arrays with gigantic data rates.

30.6 Interfacing with the Physical World and the Human
Nervous System

The physical world remains stubbornly analog. No matter how sophisticated our
compute systems will become, they must ultimately rely on analog interfaces to dig-
itize real-word information. We have closely tracked the progress in A/D interfaces
in both CHIPS 2020 [6] and CHIPS 2020 Vol. 2. The update in the present book
(see Chap. 17) concludes that energy scaling of generic A/D interfaces will come
to an end in the 2020s. Going forward, innovation will be driven by specialized
architectures, very similar to the way this is already happening in digital comput-
ing. Neural interfaces are an example of a futuristic application that is amenable to
application-specific optimizations (see Chap. 24). Generally, a key requirement for
further efficiency gains is to consider the proper “domain” in which the informa-
tion should be interpreted, digitized and presented (see Chaps. 3 and 21). Example
domains are logarithmic versus linear, time domain versus frequency domain, etc.
In this area, our predictions for the 2030s are summarized as follows:

• Generic A/D interfaces will operate at ~200 fJ per conversion for an effective num-
ber of bits of 10 (FOMS ≈186 dB, see Chap. 17). This energy number scales 4×
per bit, and improvements beyond this limit must be realized through application
customization.

• HDR vision and display systems that embrace the logarithmic scale will become
mainstream.

• Semi-intelligent A/D interfaces that act as feature extractors for ML and AI back-
ends will become mainstream. They will play a critical role in mitigating the data
deluge at the physical edge of AI systems.
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• The number of electrodes used in interfaces to the human nervous system will
continue to grow exponentially (see Chap. 24 and [9]), reaching millions in the
thirties.

• We will know how to design electronic circuits that learn how to “talk” to neural
circuits, instead of assuming the reverse.
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