
Solving Influence Diagrams with Simple
Propagation

Anders L. Madsen1,2(B), Cory J. Butz3, Jhonatan Oliveira3,
and André E. dos Santos3

1 HUGIN EXPERT A/S, Aalborg, Denmark
anders@hugin.com

2 Department of Computer Science, Aalborg University, Aalborg, Denmark
3 Department of Computer Science, University of Regina, Regina, Canada

Abstract. Recently, Simple Propagation was introduced as an algo-
rithm for belief update in Bayesian networks using message passing
in a junction tree. The algorithm differs from other message pass-
ing algorithms such as Lazy Propagation in the message construc-
tion process. The message construction process in Simple Propagation
identifies relevant potentials and variables to eliminate using the one-in,
one-out-principle. This paper introduces Simple Propagation as a solu-
tion algorithm for influence diagrams with discrete variables. The one-in,
one-out-principle is not directly applicable to influence diagrams. Hence,
the principle is extended to cope with decision variables, utility functions,
and precedence constraints to solve influence diagrams. Simple Propa-
gation is demonstrated on an extensive example and a number of useful
and interesting properties of the algorithm are described.

Keywords: Influence diagrams · Simple propagation ·
Discrete variables

1 Introduction

An influence diagram [1] is a natural representation of a decision problem where
a single decision maker has to make a sequence of decisions under uncertainty. An
influence diagram is essentially a Bayesian network [2,3] augmented with facili-
ties (decision variables, utility functions and precedence constraints) to support
decision making under uncertainty. In essence, the solution to a decision problem
represented as an influence diagram consists of an optimal strategy specifying
which decision option the decision maker should take at each decision depending
on the information known to her at that point in time.

Various extensions of traditional influence diagrams have been introduced.
These include limited-memory influence diagrams [4], unconstrained influence
diagrams [5], and influence diagrams with mixed variables [6]. The focus of this
paper is on traditional influence diagrams with discrete variables. The solution of
an influence diagram is extended to consist of the optimal strategy, the expected
c© Springer Nature Switzerland AG 2019
M.-J. Meurs and F. Rudzicz (Eds.): Canadian AI 2019, LNAI 11489, pp. 68–79, 2019.
https://doi.org/10.1007/978-3-030-18305-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18305-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-18305-9_6

Solving Influence Diagrams with Simple Propagation 69

utility of adhering to the optimal strategy and the probability of future decisions.
The probability of future decisions under a (optimal) strategy can be determined
by encoding the decision policy for each decision as a conditional probability dis-
tribution (CPD) [7]. We consider this part of the process of solving an influence
diagram.

Some of the popular algorithms for solving the traditional influence diagram
include [8–13]. One of the first methods for solving influence diagrams was based
on Cooper’s technique [14] of transforming the influence diagram into a Bayesian
network and using a Bayesian network inference algorithm to solve the influence
diagram. Other methods include message passing in a tree and approximation
algorithms based on sampling. A recent review of methods for solving influence
diagrams can be found here [15] and a survey of probabilistic decision graphs can
be found in this paper [16]. Recent work on solving influence diagrams include
finding bounds for influence diagrams using join graph decomposition [17] and
an improved method for solving hybrid influence diagrams [18].

Simple Propagation [19] is a new algorithm for belief update in Bayesian
networks. It proceeds by message passing in a junction tree representation of the
Bayesian network taking advantage of a decomposition of clique and separator
potentials. In Simple Propagation, message construction is based on a one-in,
one-out-principle meaning that a potential relevant for a message has at least one
non-evidence variable in the separator and at least one non-evidence variable not
in the separator. The advantage of Simple Propagation is its simplicity compared
to, for instance, Lazy Propagation [20]. This paper extends Simple Propagation
to the solution of traditional influence diagrams, where the solution consists of
an optimal strategy, the expected utility of adhering to this strategy and the
probability of future decisions under the strategy.

Simple Propagation is extended to cover solutions of traditional influence dia-
grams by identifying an optimal strategy computing the expected utility, which
involves computing the probability of future decisions under the optimal strat-
egy. To achieve this, the one-in, one-out-principle is extended such that it consid-
ers both probability and utility potentials. Our approach supports exploitation
of probabilistic barren variables [9] and the decomposition of utility potentials
reducing the number of calculation operations.

2 Background

A traditional influence diagram over discrete variables is a triple N = (G,Φ, Ψ)
where G = (V,E) is a DAG (directed, acyclic graph) over vertices V and edges
E ⊆ V × V . Each vertex v ∈ V represents a random (or chance) variable, a
decision variable, or a utility function. Let D = {D1, . . . , Dn} be the set of
decision variables and let X be the set of random variables and U be the set
of utility nodes. Each random variable X ∈ X has a CPD P (X |pa(X)), where
pa(X) are the parent vertices of X in G, and each utility node u ∈ U represents a
utility function u(pa(u)) (we use u to denote both the utility node and the utility
function). Finally, we denote Φ = {P (X |pa(X)) ∈ X}, Ψ = {u(pa(u)) |u ∈ U},
and dom(φ) (or dom(ψ)) the domain of φ (ψ).

70 A. L. Madsen et al.

The influence diagram N = (G,Φ, Ψ) is an efficient representation of a joint
expected utility function:

EU(X ,D) =
∏

X∈X
P (X |pa(X)) ×

∑

u∈U
u(pa(u)). (1)

The regularity constraints of the traditional influence diagram state that there
must be a total order on the decisions and that the decision maker has perfect
recall. Assuming decisions are ordered according to index, the random variables
can be partitioned into information sets using a partial precedence ordering ≺:
I0 ≺ D1 ≺ I1 ≺ · · · ≺ In−1 ≺ Dn ≺ In. The set Ii is the set of random
variables observed (by the decision maker) after making decision Di and before
decision Ii+1, i.e., I0 is the random variables initially observed and In is the set
of random variables never observed or observed after the last decision.

In a Bayesian network, a variable X is a barren node when X is never
observed, P (X) is of no interest, and the same holds true for each of X’s descen-
dants (if any) [9]. A variable X in an influence diagram is a probabilistic barren
node when X is a barren node if only the set of probability potentials are con-
sidered [9,21].

2.1 Strategies, Decision Policies and Future Decisions

A decision policy δDi
(rel(Di)) is a mapping from rel(Di) to Di where rel(Di) ⊆⋃

j<i Ij ∪ {Dj} is defined below. A strategy is a collection of decision policies
Δ = {δD |D ∈ D}, one for each decision. A decision policy δD(rel(D)) is encoded
as a CPD P (D |rel(D)) as follows:

PΔ(D = d |rel(D) = z) =

{
1 if δD(rel(D) = z) = d

0 otherwise.
(2)

The strategy Δ induces a joint probability distribution:

PΔ(X ∪ D) =
∏

X∈X
P (X |pa(X)) ×

∏

D∈D
PΔ(D |rel(D)). (3)

This factorization can be used to compute the probability of future decisions [7].
Notice that the probability of future decisions can be computed under any strat-
egy D.

The expected utility EU(Δ) of a strategy Δ is the expectation of the
total utility U(

⋃
u∈U pa(u)) =

∑
u∈U u(pa(u)) under the probability distribu-

tion PΔ(X ∪ D),
∑

Y ∈X∪D U(
⋃

u∈U pa(u)) × PΔ(X ∪ D) [22]. A strategy that
maximizes the expected utility is an optimal strategy, denoted Δ̂, and has the
property EU(Δ̂) ≥ EU(Δ), for all Δ.

An optimal strategy Δ̂ and its expected utility of EU(Δ̂) can be computed
as:

EU(Δ̂) =
∑

I0

max
D1

∑

I1

· · ·
∑

In−1

max
Dn

∑

In

EU(X ,D). (4)

Solving Influence Diagrams with Simple Propagation 71

Under the regularity constraints, the decision policy δDi
for decision variable

Di can, in principle, be a mapping from all past observations and decisions⋃
j<i Ij ∪ {Dj} onto Di making the policy exponentially large in the number

of observations. Luckily, this is often not the case though. That is, not every
past observation or decision variable is requisite for a decision, i.e., not all past
observations may impact the choice of the decision maker at a decision D. A
variable Y ∈ pa(D) ⊆ X ∪ D, D ∈ Δ is non-requisite, if (U ∩ de(D)) ⊥ {Y } |
(fa(D) \ {Y }) [4,23,24]. This condition states that Y is non-requisite, if it is
separated from the utility nodes that are descendents of D given the family of
D except Y , i.e., the value of Y does not affect the optimal choice at D. If
a variable is not non-requisite, then it is requisite and belongs to the relevant
past [7], denoted rel(D).

2.2 Strong Junction Tree Construction

Simple propagation is performed in a strong junction tree representation. The
strong junction tree ensures that variables are eliminated in the reverse order of
≺ during evaluation. In addition, it serves as a caching structure through the
message passing process.

The construction of a strong junction tree representation T = (C,S) with
cliques C and separators S of influence diagram N = (G,Φ, Ψ) proceeds in four
steps [12]:

Minimalization where information arcs from non-requisite parents of decision
nodes are removed.

Moralization where each pair of parents Xi and Xj with a common child
(representing either a random variable or a utility function) are connected
by an undirected edge, all edges are made undirected and utility nodes are
removed to produce GM .

Strong Triangulation where GM is triangulated to produce GT using an elim-
ination order σ such that σ(Ii+1) < σ(Di+1) < σ(Ii), for all i ∈ [0, n − 1].

Strong Junction Tree Structure where the cliques C are connected by sep-
arators S producing a tree T = (C,S) with strong root R ∈ C.

Initialization of Junction Tree is the process of assigning φ ∈ Φ and ψ ∈ Ψ
to cliques such that dom(φ) ⊆ C and dom(ψ) ⊆ C.

Notice that in the last step, the initial clique potential πA = (ΦA, ΨA) consists
of the set of probability distributions ΦA = {P1, . . . , Pl} and the set of utility
functions ΨA = {u1, . . . , um} assigned to A. Simple Propagation proceeds by
message passing between neighboring cliques of T . The message from clique B
to clique A is denoted πB→A = (ΦB→A, ΨB→A). The combination of a clique
potential πA = {ΦA, ΨA} and the message πB→A = (ΦB→A, ΨB→A) is denoted
⊗ and simply amounts to set union, i.e., πA⊗πB→A = (ΦA∪ΦB→A, ΨA∪ΨB→A).

If C ∈ C, then X (C) denotes the variables of C and adj(C) denotes the
cliques adjacent to C. Let A ∈ adj(B) with A closer to R, then pa(B) = A
denotes the parent clique and S = A ∩ B is denoted the parent separator.

72 A. L. Madsen et al.

3 Simple Propagation

Simple Propagation was introduced by [19] as a message passing algorithm
for belief update in Bayesian networks. In this section, Simple Propagation is
extended to cover solutions of traditional influence diagrams by identifying an
optimal strategy Δ̂, computing EU(Δ̂), and computing PΔ̂(D), for each D ∈ D
under Δ̂.

When constructing the message πA→B from clique A to clique B over sep-
arator S, Simple Propagation uses the one-in, one-out-principle to order the
computations. This means that Simple Propagation is not driven by identifying
an elimination order. Instead the elimination order is induced by the order in
which potentials satisfying the one-in, one-out-principle are processed. The next
potential to consider is selected randomly among the potentials satisfying the
principle. In the case of influence diagrams, the induced elimination order must
satisfy the partial order ≺. This is achieved by applying an extended one-in,
one-out-principle relative to the decision variables in clique A, not in clique B,
in reverse order of ≺ when computing a message up the junction tree.

Let A and B be adjacent cliques with B = pa(A) and πA ⊗C∈adj(A)\{B}
πC→A = (Φ, Ψ). The one-in, one-out-principle is extended such that it considers
both probability and utility potentials, i.e., Φ ∪ Ψ , when selecting a potential.
When constructing the message πA→B , the principle is applied relative to each
decision variable D ∈ A\B in reverse order of ≺. For decision variable Di ∈ A\B
any potential ω with Di ∈ dom(ω) such that ω has a Y ∈ dom(ω) ∩ Ii is
selected. If, for decision variable Di ∈ D, there is no potential ω such that
Di ∈ dom(ω), then D has no descendants and any policy can be assigned to D.
Each time a variable must be eliminated, Variable Elimination is applied as the
marginalization operation (see Algorithm 3).

Let D(A) = {DA1 , . . . , DAm
} ⊆ D be the set of decision variables in clique

A. The variables X (A) of clique A can be partitioned according to the partial
precedence ordering ≺ and must be processed in reverse order to produce correct
results. However, when sending a message from clique A to B, we only have to
consider the order of decisions in A\B that must be eliminated when constructing
the message πA→B . Once the decisions A \ B have been eliminated, the one-in,
one-out-principle is applied on the result relative to parent separator S = A∩B
between A and B.

Algorithm 1 shows the general Simple Propagation algorithm for influence
diagrams. It solves the influence diagram to identify Δ̂ and computes EU(Δ̂)
as well as constructs a Bayesian network N∗ to compute {PΔ̂(D) | D ∈ D}.
The Bayesian network N∗ is constructed from N by changing decision variables
to random variables, removing utility functions, and keeping the structure of
G induced by the random and decision variables. The algorithm performs a
collect operation where messages are passed from the leaf cliques towards R.
Next, a Bayesian network is constructed where each decision policy δD(rel(D))
is encoded as a CPD PΔ̂(D | rel(D)). This is followed by a distribute operation
where messages are passed from R towards the leaf cliques. This operation only

Solving Influence Diagrams with Simple Propagation 73

Procedure SP-ID(N = (G, P, U), T)

1 Perform a collect operation on the strong root R of T to identify Δ̂ using
Algorithm 2

2 Compute EU(Δ̂) at R
3 Create BBN N∗ from N

for D ∈ D represented in N∗ do
Encode decision policy δD(rel(D)) as P (D |rel(D))

end
4 Perform a distribute operation on R in N∗

5 for D ∈ D represented in N do
Compute PΔ̂(D)

end

6 return Δ̂ and {PΔ̂(D) |D ∈ D}
Algorithm 1. The Simple Propagation algorithm for Influence Diagrams.

involves elimination of random variables and proceeds as in Simple Propagation
for Bayesian networks [19].

All probability and utility potentials satisfying the one-in, one-out-principle
have variables to be eliminated. In addition, any potential φ (or ψ) with
dom(φ) ⊆ S (or dom(ψ) ⊆ S) must be included in the message.

Algorithm 2 is the Simple Message Computation algorithm applied during the
collect operation (SMC-CE). It applies the extended one-in, one-out-principle
when processing D(A) in reverse order of ≺.

To complete the collect operation, the potential πR ⊗ ⊗
A∈adj(R) πA→R of

the strong root R of T is marginalized to ∅ to determine EU(Δ̂). After the last
decision variable to consider in the solution process, i.e., D1, is eliminated, the
remaining potentials are processed to compute EU(Δ̂).

Algorithm 2 applies Algorithm 3 to eliminate a variable (decision or chance)
in the message construction process. It is essentially Variable Elimination.

In Algorithm 3, Φ↓−Y denotes marginalization of Y over the set Φ using
∑

for random variables, i.e., Y ∈ X and max for decision variables, i.e., Y ∈ D.
In the process of performing a max-marginalization of D ∈ D, the maximizing
alternatives for each parent configuration are recorded as the optimal decision
rule for D.

Theorem 1. Simple Propagation in an Influence Diagram N computes:

1. an optimal strategy Δ̂ for the decision problem represented as N ,
2. the expected utility EU(Δ̂) of Δ̂, and
3. the probability of future decisions {PΔ̂(D) |D ∈ D} under Δ̂.

Proof. Simple Propagation processes the variables in reverse order of ≺. Each
variable (random or decision) is eliminated using Algorithm 3, which is equiva-
lent to Variable Elimination. Message passing proceeds as in Lazy Propagation.
Hence, the calculations performed during the collect operation correspond to solv-
ing the influence diagram with Lazy Propagation using the induced elimination

74 A. L. Madsen et al.

Procedure SMC-CE(A, B, (Φ, Ψ) = πA ⊗ ⊗
C �=B πC→A)

1 for Di ∈ D(A) \ B in reverse ≺-order do
2 while ∃ω ∈ Φ ∪ Ψ satisfying the extended one-in, one-out-principle

relative to Di do
3 Select variable Y ∈ dom(ω) such that Y ∈ Ii

4 Φ∗, Ψ∗ = Marginalization(Y, Φ, Ψ)
5 Set Φ = Φ∗ and Ψ = Ψ∗

end
6 Φ∗, Ψ∗ = Marginalization(Di, Φ, Ψ)
7 Set Φ = Φ∗ and Ψ = Ψ∗

end
8 while ∃ω ∈ Φ ∪ Ψ satisfying the extended one-in, one-out-principle relative

to parent separator S do
9 Select variable Y ∈ dom(ω) such that Y ∈ A �∈ B

10 Φ∗, Ψ∗ = Marginalization(Y, Φ, Ψ)
11 Set Φ = Φ∗ and Ψ = Ψ∗

end
12 Set Φ = Φ∗ and Ψ = Ψ∗

13 return πA→B = (Φ, Ψ)

Algorithm 2. The Simple Message Computation algorithm under collect.

Procedure Marginalization(Y , Φ, Ψ)
1 Set ΦY = {φ |Y ∈ dom(φ)}
2 Set ΨY = {ψ |Y ∈ dom(ψ)}
3 Compute φY = (

∏
φ∈ΦY

φ)↓−Y

4 Compute ψY = (
∏

φ∈ΦY
φ × ∑

ψ∈ΨY
ψ)↓−Y

5 Set Φ∗ = {φY } ∪ Φ \ ΦY

6 Set Ψ∗ = {ψY
φY

} ∪ Ψ \ ΨY

7 return Φ∗, Ψ∗

Algorithm 3. The Marginalization algorithm.

ordering [20]. The Bayesian network for computing the probability of future deci-
sions is constructed as described by [7]. The distribute operation proceeds as
Simple Propagation in a Bayesian network [19].

4 Analysis

This section considers solving two different influence diagrams with Simple Prop-
agation illustrating the process and the properties of the algorithm.

4.1 Influence Diagram with Four Decisions

Figure 1 shows a commonly used example of an influence diagram NJJD with
four decisions introduced by [12]. The figure does not include non-forgetting
information links in order to reduce the clutter to a minimum.

Solving Influence Diagrams with Simple Propagation 75

u1

D1

B

A

C

D

E

F

G

D2

D3

H

I

D4

u2

K

J

L u3

u4

Fig. 1. An influence diagram NJJD with four decisions [12].

Figure 2 shows a strong junction tree representation TJJD of NJJD with
strong root R = BD1ACDEF . This is not an optimal junction tree in terms of,
for instance, total clique weight, but it serves to illustrate important properties
of Simple Propagation for solving influence diagrams. For simplicity, we refer
to the two leaf cliques as A and B as indicated in the subscripts of the clique
potentials πA and πB in the figure.

Fig. 2. A junction tree representation TJJD of NJJD.

Collect Operation. Simple Propagation solves NJJD by first performing a
collect operation on R passing messages πA→R and πB→R from the leaf cliques
A and B, respectively. The message πA→R is computed from πA = ({P (G |
E), P (I | G,D2), P (L | I,D4)}, {u3(L)}), while the message is computed from
πB = ({P (H |F), P (J |H), P (K |H,D3)}, {u2(D3), u4(J,K)}).

Consider the construction of the message πA→R passed from A to R dur-
ing the collect operation. As D2,D4 ∈ D(A) \ R and D2 ≺ D4, the process
of constructing πA→R starts with D4. In this case, the potential including D4

satisfying the one-in, one-out-principle is P (L |D4, I), where I, L ∈ I4 must be
eliminated. The vanilla version of Simple Propagation selects randomly between
I, L ∈ I4.

76 A. L. Madsen et al.

Assume L is selected first. The elimination of L (Algorithm 3) produces
φ(· | D4, I) =

∑
L P (L | D4, I) = 1D4,I and ψX(D4, I) =

∑
L P (L | D4, I)u3(L),

where 1D4,I is the unity potential indexed by D4, I, i.e., L is probabilistic barren
and we do not need to compute this potential nor the division in Algorithm 3.
Hence, π↓−L

A = ({P (G | E), P (I | G,D2)}, {ψ(D4, I)}). The next set of poten-
tials satisfying the one-in, one-out-principle is {P (I |G,D2), ψ(D4, I)}. Here, I

is the only out-variable and must be eliminated producing π
↓−{L,I}
A = ({P (G |

E)}, {ψ(D4, G,D2)}) as I is probabilistic barren. Now, the variables I4 have been
eliminated. Decision variables D4 is eliminated from ψ(D4, G,D2) and the deci-
sion policy δD4(G,D2) is identified producing ({P (G |E)}, {ψ(G,D2)}). Finally,
variables G and D2 are eliminated to produce the message πA→R = π↓E

A =
({}, {ψ(E)}). The induced elimination order is σ = (L, I,D4, G,D2).

Now assume I is selected first. The elimination of I (Algorithm 3) produces
φ(L |D2, G,D4) =

∑
I P (I |G,D2)P (L |I,D4). That is, π↓−I

A = ({P (G |E), P (L |
D2, G,D4)}, {ψ(L)}). The elimination of I is followed by the elimination of L
as P (L |D2, G,D4) is the only potential satisfying the one-in, one-out-principle
and L ∈ I4. The process continues as above producing the message πA→R =
π↓E

A = ({}, {ψ(E)}) with the induced elimination order σ = (I, L,D4, G,D2).
For the message πA→R the only random element is the selection of the variable
to eliminate from P (L |D4, I).

Next, the construction of the message πB→R passed from B to R during the
collect operation is constructed. The message is πB→R = ({}, {ψ(F)}). Following
the collect operation, the root R is processed to identify δD1(B) and compute
EU(Δ) for Δ = {δD1(B), δD2(E), δD3(F), δD4(D2, G)}).

The root node is processed similarly.

Distribute Operation. The purpose of the distribute operation is to compute
the probability of future decisions under the optimal strategy Δ̂, i.e., PΔ̂(D),
for each D ∈ D. Following the collect operation, the Bayesian network N∗

JJD is
constructed over X ∪ D, where each decision policy δD(rel(D)) of the optimal
strategy Δ̂ is encoded as a CPD P (D | rel(D)) and D is turned into a random
variable. Subsequently, the distribute operation is performed to compute P (D)
for each D ∈ D. This process proceeds as the distribute operation in a Bayesian
network using Simple Propagation [19].

4.2 Distributive Law

Figure 3(a) shows the structure of a simple influence diagram N with one decision
D = {D}, three random variables X = {C1, C2, C3} and two utility functions
Y = {u1(C1, C3), u2(D,C2)} and Fig. 3(b) shows a strong junction tree T with
root R = C1DC3.

Solving Influence Diagrams with Simple Propagation 77

Fig. 3. An influence diagram and its junction tree representation.

Simple Propagation solves N by first performing a collect operation on R
passing the message from clique DC2C3 to clique C1DC3. The collect message
πDC2C3→C1DC3 from clique DC2C3 to clique C1DC3 is computed as:

πDC2C3→C1DC3 = (∅, {
∑

C2

P (C2 |D,C3)u2(D,C2)})

= (∅, {ψ(D,C3)}),

where C2 is probabilistic barren making ΦDC2C3→C1DC3 = ∅. At the root, we
need to determine the policy δD of D and process all potentials to compute
EU(Δ̂). The identification of δD starts from ψ(D,C3) as this is the only proba-
bility or utility potential associated with R and incoming messages that contains
D, i.e., πR ⊗ πDC2C3→C1DC3 .

The decomposition of clique probability and utility potentials gives a number
of advantages. One advantage is the option to exploit the distributive law of
algebra when eliminating variables [20,21]. The distributive law can be exploited
when eliminating C3:

P (C1) × (ψ(C1) + ψ(C1,D))

=
∑

C3

P (C3)P (C1 |C3)(u1(C1, C3) + ψ(D,C3))

=
∑

C3

(P (C3)P (C1 |C3)u1(C1, C3)) +
∑

C3

(P (C3)P (C1 |C3)ψ(D,C3)).

This approach supports exploitation of probabilistic barren variables and
the decomposition of utility potentials reducing the number of calculation
operations.

5 Conclusion

This paper has introduced Simple Propagation as a method for solving influence
diagrams with discrete variables exactly and with optimality. The main advan-
tage of Simple Propagation over other methods for finding an optimal strategy

78 A. L. Madsen et al.

and computing the probability of future decisions under an optimal strategy is its
simplicity through the absence of the need for graph theoretical considerations
to identify the potentials relevant for a message.

The paper has extended the one-in, one-out-principle to cope with decision
variables and utility functions to solve influence diagrams. It has also illustrated
and described properties of solving influence diagrams with Simple Propagation.

Future work includes considering other algorithms than VE as the variable
elimination algorithm as well as solving limited-memory and mixed influence dia-
grams using Simple Propagation. It also includes considered other computational
structures than the strong junction tree as well as any-time approximation.

References

1. Howard, R.A., Matheson, J.E.: Influence diagrams. In: Readings in Decision Anal-
ysis, pp. 763–771. Strategic Decisions Group, Menlo Park (1981)

2. Kjærulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, 2nd edn. Springer, New York (2013). https://doi.
org/10.1007/978-0-387-74101-7

3. Koller, D., Friedman, N.: Probabilistic Graphical Models — Principles and Tech-
niques. MIT Press, Cambridge (2009)

4. Lauritzen, S.L., Nilsson, D.: Representing and solving decision problems with lim-
ited information. Manage. Sci. 47, 1238–1251 (2001)

5. Jensen, F.V., Vomlelova, M.: Unconstrained influence diagrams. In: Proceedings
of Uncertainty in Artificial Intelligence Conference, pp. 234–241 (2002)

6. Madsen, A.L., Jensen, F.: Mixed influence diagrams. In: Nielsen, T.D., Zhang, N.L.
(eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 208–219. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45062-7 17

7. Nilsson, D., Jensen, F.V.: Probabilities of future decisions. In: Bouchon-Meunier,
B., Yager, R.R., Zadeh, L.A. (eds.) Information, Uncertainty and Fusion. The
Springer International Series in Engineering and Computer Science, vol. 516, pp.
161–171. Springer, Boston (2000). https://doi.org/10.1007/978-1-4615-5209-3 12

8. Olmsted, S.M.: On representing and solving decision problems. Ph.D. thesis,
Department of Engineering-Economic Systems, Stanford University, Stanford, CA
(1983)

9. Shachter, R.D.: Evaluating influence diagrams. Oper. Res. 34(6), 871–882 (1986)
10. Shachter, R.D., Peot, M.A.: Decision making using probabilistic inference methods.

In: Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence,
pp. 276–283. Morgan Kaufmann Publishers, San Mateo (1992)

11. Shenoy, P.P.: Valuation-based systems for Bayesian decision analysis. Oper. Res.
40(3), 463–484 (1992)

12. Jensen, F., Jensen, F.V., Dittmer, S.: From influence diagrams to junction trees.
In: Proceedings of Uncertainty in Artificial Intelligence Conference, pp. 367–373.
Morgan Kaufmann Publishers, San Francisco (1994)

13. Madsen, A.L., Jensen, F.V.: Lazy evaluation of symmetric Bayesian decision prob-
lems. In: Proceedings of Uncertainty in Artificial Intelligence Conference, pp. 382–
390 (1999)

14. Cooper, G.F.: A method for using belief networks as influence diagrams. In: Pro-
ceedings of Uncertainty in Artificial Intelligence Conference, pp. 55–63 (1988)

https://doi.org/10.1007/978-0-387-74101-7
https://doi.org/10.1007/978-0-387-74101-7
https://doi.org/10.1007/978-3-540-45062-7_17
https://doi.org/10.1007/978-1-4615-5209-3_12

Solving Influence Diagrams with Simple Propagation 79

15. Yang, M., Zhou, L., Ruan, H.: The methods for solving influence diagrams: a
review. In: International Conference on Information Technology and Applications,
pp. 427–431 (2013)

16. Jensen, F.V., Nielsen, T.D.: Probabilistic decision graphs for optimization under
uncertainty. 4OR-Q J. Oper. Res. 9(1), 1–28 (2011)

17. Lee, J., Ihler, A., Dechter, R.: Join graph decomposition bounds for influence
diagrams. In: Proceedings of Uncertainty in Artificial Intelligence Conference, pp.
1053–1062 (2018)

18. Yet, B., Neil, M., Fenton, N., Constantinou, A., Demetiev, E.: An improved method
for solving hybrid influence diagrams. IJAR 95, 93–112 (2018)

19. Butz, C.J., de Oliveira, J.S., dos Santos, A.E., Madsen, A.L.: Bayesian network
inference with simple propagation. In: Proceedings of Florida Artificial Intelligence
Research Society Conference, pp. 650–655 (2016)

20. Madsen, A.L., Jensen, F.V.: Lazy propagation: a junction tree inference algorithm
based on lazy evaluation. Artif. Intell. 113(1–2), 203–245 (1999)

21. Cabañas, R., Cano, A., Gómez-Olmedo, M., Madsen, A.L.: On SPI-lazy evaluation
of influence diagrams. In: van der Gaag, L.C., Feelders, A.J. (eds.) PGM 2014.
LNCS (LNAI), vol. 8754, pp. 97–112. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11433-0 7

22. Madsen, A.L., Nilsson, D.: Solving influence diagrams using HUGIN, Shafer-
Shenoy and lazy propagation. In: Proceedings of Uncertainty in Artificial Intel-
ligence Conference, pp. 337–345 (2001)

23. Nielsen, T.D., Jensen, F.V.: Welldefined decision scenarios. In: Proceedings of
Uncertainty in Artificial Intelligence Conference, pp. 502–511 (1999)

24. Nielsen, T.D.: Decomposition of influence diagrams. In: Benferhat, S., Besnard, P.
(eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 144–155. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44652-4 14

https://doi.org/10.1007/978-3-319-11433-0_7
https://doi.org/10.1007/978-3-319-11433-0_7
https://doi.org/10.1007/3-540-44652-4_14

	Solving Influence Diagrams with Simple Propagation
	1 Introduction
	2 Background
	2.1 Strategies, Decision Policies and Future Decisions
	2.2 Strong Junction Tree Construction

	3 Simple Propagation
	4 Analysis
	4.1 Influence Diagram with Four Decisions
	4.2 Distributive Law

	5 Conclusion
	References

