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Preface

The food and beverage industries are widely searching for novel-innovative tech-
nologies to provide safe and healthy foods for the consumers. Although safe food 
products can be provided using thermal pasteurization and sterilization, heating the 
foods at high temperatures beyond a safety factor results in an unacceptable quality 
and nutrient retention. Thus, the application of alternative methods to minimize 
undesirable reactions such as thermal decomposition or degradation is highly desir-
able. Emerging processing technologies are promising methods to minimize heat-
induced alterations in foods, and their applications have provided unprecedented 
opportunities for the food industry to make safe and high-quality health-promoting 
foodstuffs. These methods are useful not only for microorganisms and enzymes 
inactivation but also for improving the yield and development of ingredients and 
marketable foods with higher-quality and nutritional characteristics. Several studies 
have evaluated the effect of emerging processing methods such as high-pressure 
processing, pulsed electric fields, ultraviolet, pulsed light, irradiation, and ultra-
sounds on food quality. Many of these studies have reported a positive effect of 
using these techniques in food systems (e.g., fruits and vegetables, meat products, 
and dairy products). However, in spite of the positive effects, some researches 
showed the negative impacts of using these methods on different food quality 
aspects such as nutritional, textural, and sensorial properties. We have devoted our 
attention in this book not only on the advantages of using innovative processing 
methods but also on the disadvantages and challenges of using these techniques on 
food quality. This book is designed to assist food scientists as well as those working 
in the food, nutraceutical, pharmaceutical, and beverage industries. The topics cov-
ered in this book are suitable for teaching in courses such as food processing, food 
chemistry, food biochemistry, sensory science, and new product development. We 
gratefully appreciate the contribution of all colleagues from all around the world. 
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Chapter 1
Impact of Ohmic Processing on Food 
Quality and Composition

Mehrdad Niakousari, Sara Hedayati, Hadi Hashemi Gahruie, Ralf Greiner, 
and Shahin Roohinejad

1.1  �Introduction

One of the novel promising technologies to pasteurize, sterilize, or cook a wide 
range of food products (e.g. fruits and vegetables, dairy products, and meat prod-
ucts) is ohmic heating, which usually helps to obtain a high product quality 
(Fig.  1.1). Ohmic heating is literally an electric resistance heating method, in 
which an alternating current (50 Hz to 100 kHz) is passed through the food mate-
rial. In a flow through the unit, several electrode arrangements such as a parallel 
plate, colinear, parallel rod, and staggered rod electrodes are used depending on 
the required operation. However, alternative electrode arrangements could also be 
applied. Similar to other volumetric heating methods, the elimination of heating 
surfaces in contact with foodstuff in ohmic heating helps to reduce thermal degra-
dation and consequently an enhancement in product quality.

Conventional heating methods provide heating from a hot surface via conductive 
and convective heat transfer (Damyeh, Niakousari, Saharkhiz, & Golmakani, 2016; 
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Seidi Damyeh & Niakousari, 2016). A hot medium (e.g. steam) in a heat exchanger 
(e.g. tube, shell, or plate type) or a vessel with a heated jacket can provide heat. 
These hot surfaces should be at a considerably higher temperature than the food 
material in order to reach the proper temperature gradient to transfer heat to the food 
material. As a consequence, thermally degradation or even burning effects could 
occur, which in turn leads to a reduction in product quality. Furthermore, limited 
heat transfer, when processing highly viscous fluids and fluids with particulates, 
causes a very slow process and non-uniform temperature profiles. However, with 
the aid of mechanical agitation, the required heat transfer and uniformity would be 
obtained, which may cause physical damages to the product (Niakousari, Hashemi 
Gahruie, Razmjooei, Roohinejad, & Greiner, 2018).

Application of ohmic heating overcomes the aforementioned downsides of con-
ventional heating via direct heat generation inside the food material (Seidi Damyeh 
& Niakousari, 2017). Therefore, enhanced product quality (i.e. color, flavor, nutri-
ent retention) is obtained owing to the absence of thermal degradation. Low flow 
rates or high viscosity fluids would not contribute to the performance decline in 
ohmic heating, which is because of not being dependent on turbulence effects. 
Ohmic heating also obviates the need for mechanical shear in particulate food 
material, which may cause damage to the product that is obviously due to its uni-
form heating.

In order to be successfully processed via ohmic heating, the food material 
should be pumpable with appropriate electrical conductivity (0.01–10 S/m). High 
process efficiency is obtained by ohmic heaters, in which over 95% of electrical 
energy is transformed to heat within the food material (in 50 Hz systems) (Damyeh, 
Niakousari, Golmakani, & Saharkhiz, 2016). This technique offers the ability to 
efficiently control the process and to have a rapid start-up due to its electrical 
nature. Nevertheless, the cost of electrical energy can be considered as a limitation 
to ohmic heating.

Fig. 1.1  Schematic representation of Ohmic heating equipment for food applications. (Reprinted 
with permission from Koubaa, Roselló-Soto, Barba-Orellana, and Barba (2016))

M. Niakousari et al.
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Milk pasteurization was the very first application of ohmic heating developed 
in the early twentieth century (Anderson & Finkelstein, 1919). This process was 
formerly known as “electropure process” and was stopped using due to lack of 
appropriate electrode material. By development of sterilization process of food 
materials having large particulates at the United Kingdom Electricity Council 
Research Center, more research into ohmic heating was recommended in the 
1980s (Simpson, 1983; Simpson & Stirling, 1995; Stirling & Coombes, 1990). An 
enhancement in quality regarding particulate identity of food’s color, and vitamin 
retention and longer shelf life for pasteurized food products by the industrial appli-
cation of ohmic heating (compared to conventional heating) has been globally 
observed since the 1980s (Anderson, 2008; Castro, Teixeira, Salengke, Sastry, & 
Vicente, 2004; Leizerson & Shimoni, 2005a). A high-quality product with mini-
mal structural, organoleptic and nutritional changes was produced by Rahman 
(2007) in a short operating time using ohmic heating. In this chapter, the influence 
of ohmic heating on the nutritional, textural and sensorial attributes of different 
foodstuffs such as fruits and vegetables, dairy, and meat products were highlighted 
and the advantageous and disadvantageous of using this technology on food qual-
ity were discussed.

1.2  �Nutritional Properties

The time required to increase the cold point temperature in conventional heating 
may over process other parts of the food, which decreases the nutritional and sen-
sory properties of food products. Emerging thermal treatments such as ohmic heat-
ing can be used to overcome this drawback of conventional heating operations by 
homogenous heating distribution throughout the products. The influence of ohmic 
processing on nutritional properties of different food products is discussed below.

1.2.1  �Fruits and Vegetables

The nutritional interest of fruits and vegetables is due to the presence of high levels 
of fibers, vitamins, minerals, phenolic compounds and bioactive peptides 
(Septembre-Malaterre, Remize, & Poucheret, 2018). The degree of these compo-
nents in fruits and vegetables depends on their variety, maturity, agronomical prac-
tices, postharvest operations and processing conditions such as heating operations. 
Vitamin C (ascorbic acid) is essential for the synthesis of collagen and its deficiency 
causes scurvy. Moreover, ascorbic acid is a natural antioxidant applied in the food 
industry to impede browning, discoloring and to improve the shelf life of food prod-
ucts. However, it is considered a heat-sensitive vitamin. The degradation of ascorbic 
acid in foods is influenced by factors such as oxygen concentration, light, tempera-
ture, pH, aw (water activity) and the presence of metallic ions (Damodaran, Parkin, 
& Fennema, 2008). Several studies have evaluated the thermal degradation of 

1  Impact of Ohmic Processing on Food Quality and Composition
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vitamin C under different heating conditions including emerging technologies such 
as ohmic heating. The results of some of these studies are listed in Table 1.1.

Based on these results the influence of ohmic heating on vitamin C degradation 
depends on process conditions such as the voltage gradient and duration of ohmic 
heating. However, contradictory results have been reported for different products. 
These differences may be due to the dissimilarities in electrochemical reactions in 
these products. Nevertheless, in frequencies above 100 Hz, the occurrence of these 
reactions decreased, and degradation kinetics of ascorbic acid was not influenced by 
high electric field frequency. This shows that hydrogen donation tendency of the 
ascorbic acid molecule in redox reactions is not influenced by the rapid changes in 
the electric field (Mercali et al., 2014). In addition to the voltage gradient, the type 
of electrode has been proven to have significant effects on vitamin C degradation. 
Athmaselvi et al. (2017) determined the effect of titanium and stainless steel elec-
trodes on ascorbic acid degradation in the tropical fruits (papaya, sapota, and guava) 
under ohmic heating and found that samples heated with titanium electrode exhib-
ited better ascorbic acid retention. Louarme and Billaud (2012) studied the impact 
of conventional heating and ohmic heating on the degradation of vitamin C in apple 
and peach desserts. The results showed that in contrast to conventional heating, the 
ohmic heating had very little effect on oxidative degradation of ascorbic acid. In 
another study, Jaeschke, Marczak, and Mercali (2016) evaluated the influence of the 

Table 1.1  Influence of ohmic heating on ascorbic acid degradation of fruits

Product 
type Process condition Result Reference

Aonla pulp Samples heated for 1 min at 90 °C 
at 11, 13, 15 or 17 V/cm

Low voltage gradients 
brought more ascorbic 
acid degradation

Singh et al. (2013)

Guava 
juice

Samples heated for 1, 3 and 5 min 
at 95 °C at 13.33, 16.66, 20 and 
23.33 V/cm voltage gradient at 
50 Hz frequency

High voltage gradients 
induced more ascorbic 
acid degradation

Chakraborty and 
Athmaselvi (2014)

Sweet lime 
juice

Samples heated with a temperature 
range of 27.4 °C to 85.4 °C at 30, 
40 and 50 60 V/cm voltage 
gradient at 50 Hz frequency

High voltage gradients 
induced greater 
ascorbic acid 
degradation

Parmar, Tripathi, 
Tiwari, and Singh 
(2016)

Papaya, 
sapota, and 
guava

– High voltage gradients 
induced greater 
ascorbic acid 
degradation

Athmaselvi, Kumar, 
and Poojitha (2017)

Acerola 
pulp

Samples heated for 3 min at 85 °C 
at a heating voltage of 120–200 V

High voltage gradients 
induced greater 
ascorbic acid 
degradation

Mercali, Jaeschke, 
Tessaro, and 
Marczak (2012)

Samples were heated for 0, 20, 40, 
60, 80, 100 and 120 min at 10, 102, 
103, 104 and 105 Hz

Low voltage gradients 
induced greater 
ascorbic acid 
degradation

Mercali, Schwartz, 
Marczak, Tessaro, 
and Sastry (2014)

M. Niakousari et al.
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electric field on the degradation of carotenoid and ascorbic acid in acerola pulp at 
different temperatures (80, 85, 90 and 95  °C) during 60  min of heat treatment 
(ohmic or conventional heating). Different temperatures exhibited the same effects 
on degradation rates and the degradation process was similar in both heating meth-
ods, indicating that the electric field did not affect the mechanisms and rates of 
ascorbic acid and carotenoid degradation.

When a sample is exposed to an electric field, its molecules align with the oscil-
lating electric field in a process known as polarization (Mercali et  al., 2014). In 
acerola fruit, the polarization process did not influence the rate of ascorbic acid 
degradation in ohmic heating. This technology was performed under atmospheres 
with low or high oxygen contents at 90 °C in order to explore the impact of oxygen 
on the ascorbic acid and carotenoid degradation. They found that the degradation of 
carotenoid was greater under a rich oxygen atmosphere (Mercali et  al., 2012). 
Similarly, Mercali et  al. (2014) studied the effect of electric field frequencies 
(between 10 and 105 Hz) on the degradation of ascorbic acid in acerola pulp during 
ohmic heating and compared the results with conventional heating. Low frequency 
caused greater ascorbic acid degradation possibly because of the incidence of elec-
trochemical reactions. However, these reactions were minimized at frequencies 
above 100 Hz and degradation rates of ascorbic acid were the same as for conven-
tional heating.

Carotenoids are great antioxidants and some of them (e.g. carotene) have been 
proven to offer provitamin A activity. Carotenoid degradation occurring by isomeri-
zation or oxidation is the main reaction to its degradation, which depends on carot-
enoid structure (Rodriguez-Amaya, 2001). Achir et al. (2016) explored the influence 
of ohmic and conventional pasteurization on carotenoid protection in grapefruit and 
blood orange. The results revealed that xanthophyll losses reached 70% for epoxyx-
anthophylls and 40% for hydroxyxanthophylls in conventional heating, while losses 
were below 30% and 20% in ohmic pasteurization, respectively. Lycopene and 
β-carotene (carotene species) were stable in both heating treatments. Thus, ohmic 
pasteurization was suggested as a promising option for the preservation of xantho-
phylls. In another study, the vitamin degradation kinetics and changes in the carot-
enoid contents of orange juice samples heated by four different methods were 
investigated and better vitamin retention at all temperatures was reported using 
ohmic heating (Vikram, Ramesh, & Prapulla, 2005).

Mercali, Gurak, Schmitz, and Marczak (2015) studied the non-thermal impacts 
of electricity on the degradation of anthocyanin, in ohmic heating of jaboticaba 
juice and found that electric field did not influence the degradation rate of anthocya-
nins. Sarkis, Jaeschke, Tessaro, and Marczak (2013) compared the influence of con-
ventional and ohmic heating of blueberry pulp on its anthocyanin degradation. They 
found that the degree of anthocyanin degradation under lower voltages was lower or 
comparable to those obtained during conventional heating. However, ohmic heating 
under high electric fields exhibited higher anthocyanin degradation. In the research 
conducted by Guida et  al. (2013), the nutritional properties of conventional and 
ohmic heated artichokes were compared. The conventional cooking (boiling) or 
blanching of artichokes resulted in the loss of nutritional properties and reduction of 
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antioxidant compounds owing to thermal degradation, oxidation, and leaching 
(Lutz, Henríquez, & Escobar, 2011). They also found that the rate of peroxidase and 
polyphenol oxidase inactivation in conventional heating was slower and phenolic 
compounds were degraded during heating. However, after ohmic heating, the total 
phenolic content was increased which might be due to the release of bound pheno-
lics and also the breakdown of artichoke cells that increased the accessibility of the 
antioxidant compounds. With the increase of electric field strength (from 25 to 30 
and 40 V/cm), the retention of total phenolic content was higher due to the faster 
polyphenol oxidase inactivation. Castro, Macedo, Teixeira, and Vicente (2004) 
determined the inactivation kinetics of pectinase, lipoxygenase, alkaline phospha-
tase, polyphenoloxidase, and β-galactosidase under ohmic and conventional heat-
ing. The thermal history in both heating techniques was made equal to investigate 
the enzyme inactivation caused by the electric field. The results showed that all of 
the enzymes in both heating operations followed first-order inactivation kinetics. 
They also found that the electric field did not influence the inactivation rate of 
β-galactosidase, pectinase, and alkaline phosphatase. However, the inactivation of 
polyphenoloxidase and lipoxygenase were accelerated in ohmic heating. The elec-
tric field removed the metallic prosthetic groups in lipoxygenase and polypheno-
loxidase, changed the molecular spacing and increased the interchain reactions and 
facilitates the inactivation of these enzymes. Therefore, the ohmic-treated samples 
were demonstrated to present higher levels of antioxidants and phenolic compounds 
compared with conventional-heated ones.

Several studies have investigated the changes occurred in proteins and amino 
acids of fruits and vegetables during ohmic heating. For instance, Mesías, Wagner, 
George, and Morales (2016) assessed the impact of ohmic and conventional retort 
sterilization on protein quality and amino acid content of sterilized vegetable baby 
foods. The outcomes showed that heating did not influence the total content in pro-
teins. Nevertheless, after retort sterilization, the degree of total essential and non-
essential amino acids was decreased significantly. On the contrary, ohmic heating 
did not show a significant impact on the extent of amino acid and can be used 
instead of conventional sterilization in vegetable baby foods in order to preserve the 
nutritional quality of proteins. Moreno et al. (2017) enriched apples with L-arginine 
under ohmic heating, vacuum impregnation/ohmic heating or conventional heating. 
The greater L-arginine addition was obtained in vacuum impregnation/ohmic heat-
ing followed by ohmic treatment and in conventional treatment, less addition of 
L-arginine was observed. This behavior was suggested to be associated with the 
acceleration of mass transfer in apple particles due to osmotic diffusion and hydro-
dynamic mechanisms. In another study, the protein content of canned artichokes 
blanched with conventional and ohmic heating was measured by Guida et al. (2013). 
They reported that protein content was decreased with storage time in ohmic and 
conventional cooked samples, but a higher rate protein loss was observed in 
conventionally cooked samples. After three-month storage, the proteins loss in con-
ventional and ohmic blanched samples was 74.1% and 41.3%, respectively.

Apart from the preservation of nutrients, ohmic heating has shown to prevent 
the formation of carcinogenic compounds such as furan. Hradecky, Kludska, 
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Belkova, Wagner, and Hajslova (2017) investigated the furan formation in ohmic 
and conventional retort sterilization of baby foods (vegetable and vegetable/meat). 
Furan was significantly decreased (70–90%) in ohmic-heated samples due to 
decreased degradation of furan precursor in ohmic heating. The fatty acids oxida-
tion and Maillard reaction products were greater in samples sterilized by conven-
tional heating compared to ohmic-heated samples.

1.2.2  �Meat Products

Meat is a substantial part of our diet and provides protein, minerals, vitamins, fatty 
acids, and energy (Hashemi Gahruie et al., 2017; Toldrá, 2017). The proteins of 
meat have high biological value due to the similarity of amino acid (types and pro-
portions) to those in human muscles. Moreover, meat contains all of the eight 
essential amino acids (lysine, leucine, isoleucine, methionine, phenylalanine, 
valine, threonine, and tryptophan), which are not synthesized in the human body 
(Purchas, Wilkinson, Carruthers, & Jackson, 2014). Oxidation of amino acids 
results in the development of carbonyl groups, which react with free amines of 
proteins to form amide bonds. These reactions negatively affect the nutritional 
quality and digestibility of meat proteins (Gatellier, Kondjoyan, Portanguen, & 
Santé-Lhoutellier, 2010).

Dai et al. (2014) measured the carbonyl contents of ohmic and water bath cooked 
pork meat under refrigerated storage. No significant differences were observed 
between ohmic and water bath cooked meat and all of the samples contained the 
same levels of carbonyls. Protein oxidation was also attributed to the reduction of 
free thiol groups, which were changed into disulfide bonds. The formation of disul-
fides promoted protein aggregation and negatively affected the nutritional quality of 
meat (Gatellier et  al., 2010; Lund, Lametsch, Hviid, Jensen, & Skibsted, 2007; 
Santé-Lhoutellier, Astruc, Marinova, Greve, & Gatellier, 2008).

Cooking has remarkable effects on nutritive values of meat due to the occurrence 
of physicochemical reactions. One of the most important factors affected by heating 
is the oxidation of lipids, which negatively affects the quality and acceptability of 
meat products (Fuentes, Ventanas, Morcuende, Estévez, & Ventanas, 2010). Lipid 
oxidation promotes the formation of free radicals that are responsible for myoglo-
bin oxidation (Kim, Huff-Lonergan, Sebranek, & Lonergan, 2010). Moreover, oxi-
dation of fatty acids leads to the formation of a variety of low aroma threshold 
products such as aldehydes and ketones. These volatile compounds lead to off-fla-
vor in cooked meat (Toldrá, 2017). Dai et al. (2014) determined the thiobarbituric 
acid reactive substances (TBARS)-values of ohmic and water bath cooked meat 
samples. The ohmic heated samples showed lower levels of lipid oxidation and a 
slower rate of increase in oxidation during storage. Non-heme iron, one of the main 
catalysts of lipid oxidation, was also lower in ohmic-cooked samples. Zell, Lyng, 
Cronin, and Morgan (2010a) reported similar findings for turkey samples after 
cooking by ohmic and conventional heating processes. Their results showed that 

1  Impact of Ohmic Processing on Food Quality and Composition



8

ohmic-treated samples had lower lipid oxidation and sulfur-flavor-compound  
compared to conventional-heated samples. This might be due to the prolonged 
exposure of the outer layers of turkey meat to high temperature, denaturation of 
myofibrillar proteins and thermal degradation of membrane phospholipids under 
conventional cooking. In another study, δ-tocopherol was incorporated into beef 
patties cooked with impingement and ohmic heating. To control lipid oxidation, 
samples were assessed using an ethanolic carrier (Wills, Dewitt, Sigfusson, & 
Bellmer, 2006). The results revealed that ohmic-cooked samples contained signifi-
cantly higher TBARS than impingement-cooked samples. Patyukov and Pacinovski 
(2015) applied conventional and ohmic heating on polyunsaturated fatty acids 
(PUFA) fortified cooked sausages. The results showed that conventional cooking 
led to an obvious deterioration of fat in sausages. Triglycerides were hydrolyzed 
and PUFA were oxidized during conventional heating. However, short heating time 
using ohmic technology decreased the deterioration of fatty acids and ohmic-treated 
samples showed significantly lower oxidation. The settings of the ohmic heater dur-
ing heating had significant influences on the oxidation of lipids. In a study per-
formed by Kim, Hong, Park, Spiess, and Min (2006), frozen pork patties were 
ohmically thawed under different power intensities and found that the TBARS 
increased proportionally to the power intensity, and induced lipid oxidation in pork 
patties.

Thawing is a critical stage to guarantee the microbial and nutritional value of 
food products. Several studies have confirmed that this operation must be carried 
out rapidly to prevent microbial growth and nutritional losses caused by leaching of 
soluble proteins (Roberts, Balaban, Zimmerman, & Luzuriaga, 1998). Duygu and 
Ümit (2015) compared the quality of meat samples thawed in a refrigerator, at room 
temperature or ohmic heating. The fastest thawing was obtained in the samples 
treated with ohmic heating. An increase in pH value and a decrease in aw were 
observed with all thawing methods. However, the ohmic-thawed samples had the 
highest aw value. Water activity depends on water loss and ohmic heating resulted in 
the least weight loss. Since the loss of water-soluble vitamins and proteins were in 
coincidence with water loss, ohmic thawing could preserve the nutritional quality of 
thawed foods. Thus, ohmic heating was suggested as an efficient technique in thaw-
ing. The influence of ohmic heating on heavy metals has also shown promising 
results. Bastías et al. (2015) assessed the influence of ohmic heating and blanching 
at different temperatures (50, 70 and 90 °C) on lead (Pb) and cadmium (cd) content 
in Chilean blue mussel (Mytilus chilensis). The results showed that Pb and Cd con-
tent in fresh mussels were reduced by ohmic heating and the greatest reduction was 
observed in ohmic-treated samples at 90 °C.

1.2.3  �Dairy Products

Dairy products are great sources of beneficial nutrients such as minerals and vita-
mins, which improve bone health, prevent dental cavities and osteoporosis. They 
also reduce the blood pressure and risk of colon cancer (Wells, 2001). These 
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nutritional benefits make milk an important food item in our daily diet. The  
composition of fatty acid in milk, predominantly polyunsaturated fatty acids 
(PUFA) have also significant effects on nutritional properties of dairy products 
(Hurtaud & Peyraud, 2007). Heating conditions may have substantial influences 
on the extent of these components. Similarly, the findings of Pereira, Martins, and 
Vicente (2008) revealed that the profile of short-chain and medium-chain free 
fatty acid was not affected by heating operation and no significant variations were 
observed between raw, conventional and ohmic pasteurized milk. Pereira et  al. 
(2016) determined the effects of ohmic heating on unfolding, denaturation and 
aggregation kinetics of WPI proteins. Their results showed that ohmic heating 
increased the formation of linear structured protein aggregates and their size was 
impacted by the electric field intensity. They also found that these aggregates 
could be used for the encapsulation of bioactive compounds. In another study, 
Roux et  al. (2016) used steam injection and ohmic heating for sterilization of 
liquid infant formula and compared their effects on soluble proteins and vitamin 
C. The degree of soluble protein denaturation was similar for both heating meth-
ods, while ohmic heating better-preserved vitamin C. Irudayaraj, McMahon, and 
Reznik (2000) stated that the extent of protein denaturation in the ohmic-steril-
ized milk was significantly lower than commercial UHT milk. Castro, Macedo, 
et al. (2004) examined the influence of conventional and ohmic heating on milk 
proteins using polyacrylamide gel electrophoresis (PAGE). The results showed 
that raw, conventional and ohmic treated samples presented the same electropho-
resis pattern. Roux, Courel, Ait-Ameur, Birlouez-Aragon, and Pain (2009) inves-
tigated the occurrence of Maillard reaction in a model infant formula under 
ultra-high temperature (UHT) by ohmic heating. Five heating temperatures 
(100−140 °C) were selected and samples were taken during the operation (heat-
ing and holding) and examined for early Maillard reaction products (MRPs), such 
as furosine, advanced products such as advanced glycated end products (AGEs) 
and carboxymethyllysine (CML) and final products such as melanoidins. The 
results showed that Maillard reactions in model infant formula were highly depen-
dent on time-temperature treatment and the amount was increased with ohmic 
heating temperature and time.

1.3  �Textural Properties

The texture is one of the most significant quality characteristics of foods. The 
textural parameters of food products such as fruits, vegetables, meat and meat 
products, cereal-based foods, and cheeses are determinant in palatability of these 
food materials. They have also remarkable influences on their price. Hence, reach-
ing the desired textural quality of food products has major financial importance. 
Usually, the food processing operations are designed to change the textural prop-
erties of food products and dominantly these changes are directed to weaken the 
food structure and make it easier to masticate. However, sometimes the textural 
changes are inadvertent and usually undesirable (Bourne, 2002). Ohmic heating 

1  Impact of Ohmic Processing on Food Quality and Composition



10

technology has been extensively investigated and used in a variety of food  
processing operations and the results have revealed that it can modify the textural 
properties of food products.

1.3.1  �Fruits and Vegetables

The structural integrity and textural quality of fruits and vegetables are mostly 
related to the middle lamella, cell wall and the turgor within cells (Waldron, 
Parker, & Smith, 2003). Among these parameters, plant cell walls play an impor-
tant role in the textural properties of plant-based foodstuff (Van Buren, 1979). The 
plant cell wall consists of three major polysaccharides namely cellulose, hemicel-
lulose, and pectin. There are also varying levels of structural proteins and pheno-
lic compounds in the cell wall. The cellulose provides the microfibrillar component 
of the cell wall, while hemicelluloses are bound to cellulose and pectin by hydro-
gen linkages. Postharvest operations and storage have dramatic influences on 
structural integrity and biochemical composition of plant cells. During most of 
the food processing operations, the texture firmness and structural integrity of 
cells are lost and lead to loss of turgor and crispiness. Generally, processing or 
storage does not notably influence the firmness caused by the cellulose and hemi-
cellulose. However, pectin could be influenced by the enzyme-catalyzed reactions 
during thermal treatment, which causes remarkable changes in fruit and vegetable 
products.

Ohmic heating leads to obvious damage to the cell membranes and enhances the 
mass transfer processes. Moreover, membrane rupture significantly increases the 
electrical conductivity of plant tissues and influences the heating process. 
Shynkaryk, Ji, Alvarez, and Sastry (2010) investigated the ohmic heating of 
peaches at an electric field strength of 60 V/cm and frequencies between 50 Hz and 
1 MHz. The textural measurements of samples heated at lower frequencies showed 
a significant loss of textural strength. They stated that the application of a low-
frequency electric field causes the cell membrane electroporation, increases the 
electrical conductivity of the product, and increases the texture-softening rate. 
Generally, the texture relaxation data showed even higher stages of tissue damage 
at low frequency. Thus, high-frequency ohmic heating would minimize the texture 
degradation of peach tissue. They reported that combination of operation parame-
ters (200  kHz at 60  V/cm to 65  °C for 8  s) minimized the textural damage of 
peaches during the thermal preservation. The study carried out by Olivera, 
Salvadori, and Marra (2013) focused on the influences of ohmic heating on textural 
properties of fresh potatoes, carrots and apples under 1100, 2200, and 3300 V/m 
electrical field gradient. The authors compared the results with the raw untreated 
samples. They cut the samples into cylinders (h = 9.0 mm, d = 30 mm) and ohmi-
cally heated them for 60, 120, 180 or 240 s. The compression test of the samples 
treated by ohmic heating differed from raw samples for all cooking conditions and 
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firmness was reduced with the heating time. The electric field intensity had also a 
great influence on the textural properties. In potato and carrot, significant firmness 
disintegration was observed only for the electric field strength of 2200 V/m and 
higher. However, apple samples were more sensitive and exhibited an obvious 
firmness-decreasing trend with the electric field strength. The differences in texture 
softening of these products can be described by the differences in their tissue struc-
ture, cell size and the amount of air cavities.

The utilization of ohmic heating for blanching of artichokes was investigated 
by Guida et al. (2013) and compared with conventional heating. The authors con-
cluded that the texture of the artichokes blanched by the conventional method was 
not homogenous. The core areas showed lower texture softening but the outer part 
was over-processed and excessively softened. This could be attributed to the non-
uniform heating of artichokes due to low heat transfer by conduction in conven-
tional blanching. They also found that the samples treated by ohmic heating 
offered lower hardness compared to those processed by conventional heating due 
to higher heating rate in ohmic treatment compared to conventional heating. 
Kamali and Farahnaky (2015) compared the textural properties of ohmic, micro-
wave and conventionally cooked radish, cabbage, potato and turnip by texture 
profile analysis. The ohmic heating was performed at 220 and 380 volts. Ohmic 
heating at 380 V had greater texture softening effects for all of the studied vegeta-
bles in the order of radish > turnip > potato > cabbage. In contrast to microwave 
and conventional cooking, the cohesiveness of samples was increased in ohmic 
heating with cooking time. Cooking regardless of heating method increased the 
springiness. However, ohmic heating had greater effects on this parameter, which 
could be due to limited structural damage Chiavaro, Barbanti, Vittadini, and 
Massini (2006). Ohmic-cooked turnips presented a more compact structure with 
smaller pores compared to other heating methods. However, conventional and 
microwave cooking caused structural damage and wall thinning. In another study 
by Farahnaky, Azizi, and Gavahian (2012), the effects of ohmic, conventional and 
microwave heating on the textural parameters of red beet, carrot, and golden carrot 
were examined by texture profile analysis (TPA) at different heating times. They 
found that ohmic heating not only caused more texture softening rates but also the 
final hardness, gradient and compression energy of ohmic-heated samples were 
significantly lower than those of other treatments. Jittanit et al. (2017) found the 
same results for rice samples. They compared the ohmic cooking of rice with the 
conventional heating in an electric rice cooker. They used four types of rice sam-
ples including two varieties of white rice (KDML105 and Sao Hai), brown rice, 
and germinated brown rice (KDML105). They found that it is possible to ohmi-
cally cook all types of rice by using salt solution (0.1 M) in the mixtures to increase 
the electrical conductivity. The electrical energy consumption in ohmic cooking 
was approximately 73–90% of energy consumed in the electrical rice cooker. The 
texture of the samples cooked by ohmic heating was meaningfully softer than the 
samples cooked by electric rice cooker and the extent of difference was dependent 
on the rice type.
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1.3.2  �Meat Products

The texture is one of the most important quality characteristics of meat and meat 
products and depends on some factors such as the properties of myofibrils and 
connective tissues, the pH, and the fat content and its distribution. The textural 
properties of meat can be modified significantly by changing the conditions of 
refrigeration, storage or cooking (Mathoniere, Mioche, Dransfield, & Culioli, 
2000). Most heating operations applied in meat processing are based on convec-
tive, conductive, and/or radiative mechanisms from a heated medium (e.g. water, 
air, oil, etc.) to the meat product. However, it may take a long time to conduct 
enough heat into the core of meat products and it causes over-processing in most 
of the parts of the product, which negatively affects the quality (Wills et al., 2006). 
Therefore, during the past few years, alternative heating techniques such as ohmic 
heating have gained importance in meat processing and several research projects 
have been performed to evaluate the suitability of ohmic heating for meat and meat 
products processing. Some of these studies are summarized in Table 1.2. Most of 
these findings revealed that the ohmic-cooked samples had a firmer texture than 
the conventional-cooked ones.

The generation of high temperature in ohmic cooking results in more collagen 
shrinking and toughening of meat (Dai et  al., 2014). Greater water release and 
more extensive protein denaturation in ohmic heating have been reported to 
increase the firmness of meat products (Zell et al., 2010a). Moreover, ohmic treated 
samples had more uniform structure compared to the conventional-cooked sam-
ples. The main reason for this behavior is that in ohmic heating, the heat is gener-
ated throughout the samples homogeneously and a uniform protein network is 
formed within the product, which results in a firm and uniform microstructure. On 
the contrary, during conventional cooking of meatballs in hot water, the heat was 
not transferred to all parts of the sample simultaneously; hence, a temperature gra-
dient was formed within the sample and led to a heterogeneous structure. Engchuan 
et al. (2014) reported that conventionally cooked pork meatballs had a heteroge-
neous structure with cracks inside its matrix. Ohmic heating has also been applied 
for seafood processing and has increased their firmness due to the rapid inactiva-
tion of endogenous proteinases, which lead to further retention of undamaged 
myofibrillar proteins and improves the gel network structure. Also, the uniform 
unfolding of myofibrillar proteins in ohmic heating improved the textural proper-
ties of ohmic-heated seafood (Chai & Park, 2007; Tumpanuvatr & Jittanit, 2012). 
However, samples treated with lower voltage gradient showed higher breaking 
force. Apparently, proteinase inactivation is not the only factor affecting the gel 
structure and gel network also depend on the aggregation of proteins. When high 
voltages are applied, the heating time is very short, and the gel network will not 
develop properly, as a result, the textural parameters would decrease (Foegeding, 
Allen, & Dayton, 1986). In another study, Özkan et al. (2004) studied the cooking 
of hamburgers with a combination of ohmic and conventional heating as well as 
conventional heating and observed no significant differences in the quality and the 
mechanical properties of the obtained samples.

M. Niakousari et al.



Ta
bl

e 
1.

2 
In

flu
en

ce
 o

f 
oh

m
ic

 h
ea

tin
g 

on
 te

xt
ur

al
 p

ro
pe

rt
ie

s 
of

 m
ea

t p
ro

du
ct

s

Pr
od

uc
t 

ty
pe

Pr
oc

es
s 

co
nd

iti
on

Te
xt

ur
al

 te
st

 
ty

pe
R

es
ul

t
R

ef
er

en
ce

Fr
an

kf
ur

te
rs

In
 o

hm
ic

 h
ea

tin
g,

 th
e 

vo
lta

ge
 g

ra
di

en
t w

as
 3

 a
nd

 5
 V

/
cm

 a
t 5

0 
H

z 
su

pp
ly

. T
he

 c
on

ve
nt

io
na

l s
te

am
 c

oo
ki

ng
 

w
as

 p
er

fo
rm

ed
 a

t 8
0 

°C
 f

or
 2

 m
in

Te
xt

ur
e 

pr
ofi

le
 

an
al

ys
is

 (
T

PA
)

N
o 

si
gn

ifi
ca

nt
 d

if
fe

re
nc

e 
oc

cu
rr

ed
 b

et
w

ee
n 

sa
m

pl
es

 c
oo

ke
d 

by
 s

te
am

 o
r 

oh
m

ic
 m

et
ho

ds
 in

 
ha

rd
ne

ss
, e

ne
rg

y,
 c

oh
es

io
n,

 g
um

m
in

es
s,

 a
nd

 
ch

ew
in

es
s

Sh
ir

sa
t, 

B
ru

nt
on

, L
yn

g,
 

M
cK

en
na

, a
nd

 S
ca

nn
el

l 
(2

00
4)

H
am

bu
rg

er
 

pa
tti

es
In

 o
hm

ic
 h

ea
tin

g,
 v

ol
ta

ge
 w

as
 r

em
ai

ne
d 

co
ns

ta
nt

 a
t 

50
 V

 a
nd

 c
ur

re
nt

 s
ta

rt
ed

 f
ro

m
 z

er
o 

an
d 

re
ac

he
d 

13
 

A
. W

hi
le

 in
 c

on
ve

nt
io

na
l c

oo
ki

ng
 s

am
pl

es
 w

er
e 

pl
ac

ed
 

be
tw

ee
n 

th
e 

he
at

ed
 p

la
te

s 
of

 th
e 

gr
ill

 a
t 1

80
 °

C

C
om

pr
es

si
on

 
te

st
T

he
 m

ec
ha

ni
ca

l p
ro

pe
rt

ie
s 

of
 th

e 
sa

m
pl

es
 c

oo
ke

d 
by

 o
hm

ic
 o

r 
co

nv
en

tio
na

l h
ea

tin
g 

ar
e 

ve
ry

 s
im

ila
r

Ö
zk

an
, H

o,
 a

nd
 F

ar
id

 
(2

00
4)

G
ro

un
d 

be
ef

G
ro

un
d 

be
ef

 s
am

pl
es

 w
ith

 d
if

fe
re

nt
 f

at
 c

on
te

nt
s 

(2
%

, 
9%

, a
nd

 1
5%

) 
w

er
e 

oh
m

ic
al

ly
 (

20
, 3

0 
an

d 
40

 V
/c

m
) 

an
d 

co
nv

en
tio

na
l h

ea
tin

g 
w

as
 p

er
fo

rm
ed

 o
n 

th
e 

gr
ill

 
(9

0 
°C

) 
fo

r 
18

 c
on

st
an

t p
er

io
ds

 (
90

 s
) 

un
til

 r
ea

ch
in

g 
a 

ce
nt

er
 te

m
pe

ra
tu

re
 o

f 
70

 °
C

W
ar

ne
r–

B
ra

tz
le

r 
sh

ea
r 

fo
rc

e
O

hm
ic

al
ly

 c
oo

ke
d 

gr
ou

nd
 b

ee
f 

cy
lin

de
rs

 w
er

e 
fir

m
er

 th
an

 c
on

ve
nt

io
na

lly
 c

oo
ke

d 
sa

m
pl

es
 a

nd
 

th
e 

vo
lta

ge
 g

ra
di

en
t d

id
 n

ot
 a

ff
ec

t t
he

 q
ua

lit
y 

of
 

co
ok

ed
 m

ea
t. 

T
he

 o
hm

ic
 c

oo
ki

ng
 ti

m
e 

w
as

 
in

cr
ea

se
d 

as
 th

e 
fa

t c
on

te
nt

 in
cr

ea
se

d 
du

e 
to

 th
e 

po
or

 e
le

ct
ri

ca
l c

on
du

ct
iv

ity
 o

f 
fa

t

B
oz

ku
rt

 a
nd

 I
ci

er
 (

20
10

)

B
ee

f 
cu

ts
Sa

m
pl

es
 w

er
e 

th
aw

ed
 f

ro
m

 1
0 

to
 1

8 
°C

 b
y 

ap
pl

yi
ng

 
di

ff
er

en
t v

ol
ta

ge
 g

ra
di

en
ts

 (
10

, 2
0 

an
d 

30
 V

/c
m

) 
du

ri
ng

 
oh

m
ic

 tr
ea

tm
en

t w
he

re
as

 c
on

ve
nt

io
na

l t
ha

w
in

g 
w

as
 

ap
pl

ie
d 

at
 c

on
st

an
t t

em
pe

ra
tu

re
 (

25
 °

C
, 9

5%
 R

H
)

Te
xt

ur
e 

pr
ofi

le
 

an
al

ys
is

O
hm

ic
 th

aw
in

g 
re

su
lte

d 
to

 o
bt

ai
n 

ha
rd

er
 th

aw
ed

 
be

ef
 c

ut
s 

th
an

 c
on

ve
nt

io
na

lly
 th

aw
ed

 o
ne

s
Ic

ie
r, 

Iz
ze

to
gl

u,
 B

oz
ku

rt
, 

an
d 

O
be

r 
(2

01
0)

T
ur

ke
y 

m
ea

t
In

ta
ct

 tu
rk

ey
 m

ea
t w

as
 c

oo
ke

d 
us

in
g 

lo
w

-t
em

pe
ra

tu
re

 
lo

ng
 ti

m
e 

(L
T

LT
) 

an
d 

hi
gh

-t
em

pe
ra

tu
re

 s
ho

rt
 ti

m
e 

(H
T

ST
) 

pr
ot

oc
ol

s 
in

 a
 c

om
bi

ne
d 

oh
m

ic
/c

on
ve

ct
io

n 
sy

st
em

 a
nd

 c
om

pa
re

d 
to

 c
on

ve
nt

io
na

l s
te

am
 c

oo
ki

ng

Te
xt

ur
e 

pr
ofi

le
 

an
al

ys
is

 (
T

PA
)

N
o 

si
gn

ifi
ca

nt
 d

if
fe

re
nc

es
 b

et
w

ee
n 

oh
m

ic
 L

T
LT

 
an

d 
m

ea
n 

va
lu

es
 o

f 
co

nv
en

tio
na

l t
re

at
m

en
ts

 w
er

e 
fo

un
d,

 h
ow

ev
er

, t
he

 o
hm

ic
al

ly
 c

oo
ke

d 
H

T
ST

 
di

sp
la

ye
d 

a 
si

gn
ifi

ca
nt

ly
 fi

rm
er

 te
xt

ur
e

Z
el

l e
t a

l. 
(2

01
0a

)

W
ho

le
 b

ee
f 

m
us

cl
e

Sa
m

pl
es

 w
er

e 
co

ok
ed

 in
 a

 c
om

bi
ne

d 
oh

m
ic

/c
on

ve
ct

io
n 

he
at

in
g 

sy
st

em
 to

 lo
w

 (
72

 °
C

, L
T

LT
) 

an
d 

hi
gh

 (
95

 °
C

, 
H

T
ST

) 
ta

rg
et

 e
nd

-p
oi

nt
 te

m
pe

ra
tu

re
s.

 A
 c

on
tr

ol
 w

as
 

al
so

 c
oo

ke
d 

to
 a

n 
en

d-
po

in
t t

em
pe

ra
tu

re
 o

f 
72

 °
C

 a
t t

he
 

co
ld

es
t p

oi
nt

W
ar

ne
r-

B
ra

tz
le

r 
sh

ea
r 

fo
rc

e
W

ar
ne

r-
B

ra
tz

le
r 

sh
ea

r 
fo

rc
e 

va
lu

es
 s

ho
w

ed
 n

o 
si

gn
ifi

ca
nt

 d
if

fe
re

nc
es

 b
et

w
ee

n 
tr

ea
tm

en
ts

 
in

di
ca

tin
g 

a 
si

m
ila

r 
le

ve
l o

f 
te

nd
er

ne
ss

 a
m

on
gs

t 
th

e 
pr

od
uc

ts

Z
el

l, 
Ly

ng
, C

ro
ni

n,
 a

nd
 

M
or

ga
n 

(2
01

0b
)

(c
on

tin
ue

d)



Ta
bl

e 
1.

2 
(c

on
tin

ue
d)

Pr
od

uc
t 

ty
pe

Pr
oc

es
s 

co
nd

iti
on

Te
xt

ur
al

 te
st

 
ty

pe
R

es
ul

t
R

ef
er

en
ce

Su
ri

m
i

Fo
r 

oh
m

ic
 h

ea
tin

g,
 th

e 
sa

m
pl

es
 w

er
e 

he
at

ed
 to

 9
0 

°C
 a

t 
a 

fr
eq

ue
nc

y 
of

 1
0 

kH
z 

at
 v

ol
ta

ge
 le

ve
ls

 o
f 

10
0 

an
d 

25
0 

V
, c

or
re

sp
on

di
ng

 to
 a

 v
ol

ta
ge

 g
ra

di
en

t o
f 

6.
7 

an
d 

16
.7

 V
/c

m
 r

es
pe

ct
iv

el
y.

 F
or

 w
at

er
 b

at
h 

he
at

in
g.

 
Sa

m
pl

es
 w

er
e 

he
at

ed
 a

t 9
0 

°C
 f

or
 3

0 
m

in

Pe
ne

tr
at

io
n 

te
st

O
hm

ic
 h

ea
tin

g 
w

ith
 a

 v
ol

ta
ge

 g
ra

di
en

t o
f 

6.
7 

re
su

lte
d 

in
 fi

rm
er

 g
el

s 
co

m
pa

re
d 

to
 1

6.
7 

V
/c

m
 a

nd
 

th
e 

br
ea

ki
ng

 f
or

ce
 a

nd
 d

ef
or

m
at

io
n 

of
 o

hm
ic

 
he

at
ed

 s
am

pl
es

 w
er

e 
hi

gh
er

 th
an

 th
os

e 
he

at
ed

 in
 a

 
w

at
er

 b
at

h

Ta
dp

itc
ha

ya
ng

ko
on

, 
Pa

rk
, a

nd
 

Y
on

gs
aw

at
di

gu
l (

20
12

)

Po
rk

 
m

ea
tb

al
l

H
ea

tin
g 

un
til

 th
e 

ce
nt

er
 te

m
pe

ra
tu

re
 r

ea
ch

ed
 7

4 
°C

 in
 a

 
bo

ili
ng

 w
at

er
 b

at
h 

at
 a

 r
at

e 
of

 4
.9

 °
C

/m
in

 a
nd

 4
.9

 °
C

/
m

in
 o

r 
24

.5
 °

C
/m

in
 in

 o
hm

ic
 h

ea
tin

g 
at

 7
2 

V

Y
ie

ld
 s

tr
en

gt
h

T
he

 te
xt

ur
e 

of
 o

hm
ic

al
ly

-h
ea

te
d 

m
ea

tb
al

l (
at

 th
e 

he
at

in
g 

ra
te

 o
f 

4.
9 

°C
/m

in
) 

w
as

 s
tr

on
ge

r 
th

an
 th

at
 

of
 o

hm
ic

al
ly

-h
ea

te
d 

(a
t a

 h
ea

tin
g 

ra
te

 o
f 

24
.5

 °
C

/
m

in
) 

an
d 

co
nv

en
tio

na
lly

-h
ea

te
d 

m
ea

tb
al

ls
 a

nd
 th

e 
co

nv
en

tio
na

lly
-c

oo
ke

d 
m

ea
tb

al
ls

 h
ad

 th
e 

so
ft

er
 

te
xt

ur
e

E
ng

ch
ua

n,
 J

itt
an

it,
 a

nd
 

G
ar

nj
an

ag
oo

nc
ho

rn
 

(2
01

4)

Po
rk

 m
ea

t
T

he
 p

or
k 

m
ea

t s
am

pl
es

 w
er

e 
oh

m
ic

al
ly

-c
oo

ke
d 

to
 a

 
m

in
im

um
 e

nd
-p

oi
nt

 te
m

pe
ra

tu
re

 o
f 

95
 °

C
 a

t t
he

 c
ol

d 
sp

ot
 b

y 
ap

pl
yi

ng
 a

 1
0 

V
 c

m
−

1  v
ol

ta
ge

 g
ra

di
en

t. 
W

hi
le

 
th

e 
co

nv
en

tio
na

l c
oo

ki
ng

 ti
m

e 
w

as
 a

pp
ro

xi
m

at
el

y 
83

 m
in

 a
t 9

5 
°C

T
PA

 a
na

ly
si

s
oh

m
ic

al
ly

-c
oo

ke
d 

sa
m

pl
es

 h
ad

 s
ig

ni
fic

an
tly

 
hi

gh
er

 h
ar

dn
es

s,
 c

he
w

in
es

s,
 a

nd
 g

um
m

in
es

s 
bu

t 
sa

m
e 

va
lu

es
 o

f 
sp

ri
ng

in
es

s

D
ai

 e
t a

l. 
(2

01
4)

Sh
ri

m
p

Sh
ri

m
ps

 w
er

e 
co

ok
ed

 u
nt

il 
th

e 
co

ld
-s

po
t r

ea
ch

ed
 7

2 
°C

 
ei

th
er

 b
y 

st
ea

m
in

g 
in

 a
 c

on
ve

nt
io

na
l s

te
am

er
 o

r 
in

 a
n 

oh
m

ic
 h

ea
tin

g 
ce

ll 
of

 5
0 

H
z 

at
 1

20
 V

 a
nd

 1
5A

W
ar

ne
r-

B
ra

tz
le

r 
sh

ea
r 

fo
rc

e 
(W

B
SF

) 
an

d 
K

ra
m

er

T
he

 a
pp

lic
at

io
n 

of
 o

hm
ic

 h
ea

tin
g 

to
 s

hr
im

ps
 d

id
 

no
t a

ff
ec

t t
he

ir
 te

xt
ur

e 
w

he
n 

co
m

pa
re

d 
to

 
co

nv
en

tio
na

l c
oo

ki
ng

 m
et

ho
ds

L
as

co
rz

, T
or

el
la

, L
yn

g,
 

an
d 

A
rr

oy
o 

(2
01

6)

M
ax

im
al

ly
 s

up
pl

y 
a 

23
0-

vo
lta

ge
 u

si
ng

 a
lte

rn
at

in
g 

cu
rr

en
t (

60
 H

z,
 s

in
us

oi
da

l)
Te

xt
ur

e 
pr

ofi
le

 
an

al
ys

is
 (

T
PA

)
N

o 
si

gn
ifi

ca
nt

 c
ha

ng
es

 w
er

e 
se

en
 f

or
 th

e 
te

xt
ur

al
 

pa
ra

m
et

er
s 

of
 d

if
fe

re
nt

 s
am

pl
es

 a
nd

 s
hr

im
ps

 
ac

hi
ev

ed
 a

 c
om

pa
ra

bl
e 

qu
al

ity
 c

om
pa

re
d 

to
 

co
nv

en
tio

na
l h

ea
tin

g 
pr

oc
es

se
s 

re
po

rt
ed

 in
 th

e 
lit

er
at

ur
e

Pe
de

rs
en

, F
ey

is
sa

, 
B

rø
kn

er
 K

av
li,

 a
nd

 
Fr

os
ch

 (
20

16
)



15

Ohmic heating can be a promising option for thawing and has been proven to 
bring about fewer textural changes compared to conventional thawing. This behav-
ior can be attributed to the higher denaturation rate in the myofibrillar proteins using 
the conventional method, which causes softer thawed products (Icier et al., 2010). 
The histology of beef cuts proposed by Icier et  al. (2010) also confirmed these 
results and more deformation and loss of collagen fibrils were detected in beef cuts 
thawed by the conventional method. These changes occurred due to the contraction 
of myofibrils or denaturation of collagen fibril network.

1.3.3  �Dairy Products

The application of ohmic heating is expected to have remarkable effects on the tex-
tural properties of dairy products. However, only a few papers have explored the 
influence of this technique on the textural properties of dairy products. The findings 
of Pereira et al. (2016) showed that the application of ohmic heating on whey pro-
tein isolate (WPI) resulted in the formation of linear structured proteins that had the 
potential to form gels and to be used as a thickening or gelling agent. In another 
research, Icier (2009) used ohmic and water-bath techniques for the heating of 
reconstituted whey solutions. It was found that the consistency coefficients of whey 
solutions decreased by increasing the thermal treatment time in both heating opera-
tions. They also reported that fast heating caused a delay in some processes such as 
the degradation and the gelation. It was concluded that the electrochemical reactions 
occurring during ohmic heating might be responsible for these textural changes.

1.4  �Sensorial Properties

Heating operations such as ohmic heating may induce significant differences in the 
sensory attributes and acceptability of different food products. For instance, 
Christian and Leadley (2006) studied the impact of ohmic treatment on the quality 
of different products such as shelf-stable milk, soups, puddings, fruit juices, fruit 
concentrates, and liquid egg products. Rapid and uniform heating was observed 
with a decreased influence on the organoleptic properties of products. The effects of 
ohmic treatment on the sensorial properties of different food products are discussed 
in the following sections.

1.4.1  �Fruits and Vegetables

Color, flavor, and texture are important quality characteristics influencing the con-
sumer acceptance and sensory perception of fruits and vegetables (Oey, Lille, Van 
Loey, & Hendrickx, 2008). These parameters may be influenced by heat treatments 
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such as ohmic heating. Tumpanuvatr and Jittanit (2012) compared the sensory 
attributes of conventionally- heated and ohmic-heated pineapple and orange juices. 
The results demonstrated that both heating systems deteriorated the sensorial attri-
butes of fruit juices at the analogous level and the quality of processed juices was 
not dependent on the heating systems. In other words, the existence of an electric 
field in the ohmic system did not bring about an additional impact on the juice 
quality. In a research conducted by Dima, Istrati, Garnai, Serea, and Vizireanu 
(2015), a sensory evaluation by a group of seven panelists evaluated the appear-
ance, color, taste, odor, and mouthfeel of fresh, conventional pasteurized and 
ohmic pasteurized vegetable juices. Ohmic pasteurized juices obtained a higher 
score than conventionally pasteurized juices and concluded that ohmic pasteuriza-
tion has not a negative effect on the flavor of vegetable juices.

Color is one of the most important sensory attributes and has been extensively 
applied for quality evaluation of food products. Kim, Ryang, Lee, Kim, and Rhee 
(2017) exposed the apple juice samples to ohmic heating (frequency = 25 kHz, elec-
tric field strength = 26.7 V/cm) at 85–100 °C for 30–90 s and compared the results 
with the conventional heating. They found that the color values (L∗, a∗, and b∗) of 
apple juice remained almost unchanged in all treatments, but the lightness and yel-
lowness of ohmic-treated samples at 100 °C for 60 s were decreased. Kim et al. 
(2017) measured color parameters of L∗, a∗, and b∗ and lycopene content to assess 
the quality of tomato juice. The results showed no significant changes between the 
color parameters and lycopene content of the treated and untreated samples. Aamir 
and Jittanit (2017) compared the influence of ohmic heating and conventional heat-
ing on Gac aril oil extraction. They reported that the amount of lycopene and 
β-carotene of Gac aril oil were increased by the extraction with the ohmic heating 
method. The color parameters of the extracted oil and residue obtained by conven-
tional and ohmic heating were remarkably different from each other. The SEM 
images showed that ohmic heating caused more rupture on the cell wall of the Gac 
aril powder compared to conventional heating and the ohmically extracted oil was 
redder than that of the conventionally extracted one. This was reported to be due to 
the ability of the ohmic system to extract higher levels of red pigments (lycopene 
and β-carotene) from the Gac aril to the hexane solvent.

In a study by Jaeschke et al. (2016), the effect of ohmic heating on acerola pulp 
was studied. Fresh acerola pulp had an orange/red color, but the red color was lost 
and turned less intense during thermal treatment. The a∗ values were greater at 
lower heating temperatures (80 and 85 °C) which can be attributed to the anthocy-
anin contents. Anthocyanin and ascorbic acid interaction cause their degradation 
and the occurrence of nutritional and color changes (Choi, Kim, & Lee, 2002). A 
slight variation was observed in b∗ value after 60 min of conventional or ohmic heat-
ing, which was attributed to carotenoid concentration in acerola. The results revealed 
that the carotenoid content was not affected by heating. The L∗ values decreased 
during heating due to the ascorbic acid degradation and non-enzymatic browning 
reactions. Mercali et al. (2014) measured the effect of electric field frequency and 
heating time on color parameters of acerola and observed a decline over the time for 
all treatment conditions, which indicated color changes during heating. Higher 
color changes were observed at low electric field frequency (10 Hz), which might 
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be due to the incidence of electrochemical reactions. The color changes in ohmic 
blanched artichokes were measured by Guida et al. (2013) and the results showed 
that the brightness (L∗) of ohmic blanched artichokes was enhanced by increasing 
the blanching time. However, L∗ values were significantly decreased in convention-
ally blanched samples due to the incidence of browning reactions. Moreover, both 
blanching methods decreased hue angle and chroma and increased ∆E∗ values. The 
fresh-like color of ohmic-heated samples was due to the uniform and fast heating 
rate, which inactivated the enzymes in a short period of time. The color of artichoke 
was well preserved in ohmic heating, whereas hot water (conventional) blanching 
changed their color from yellow/green to brownish/green.

In addition to the effect of ohmic heating on the color of fruits and vegetables, 
several studies evaluated the effect of this processing on flavor. For instance, a better 
quality of strawberry jam in terms of color, flavor, and vitamin C content was 
reported using ohmic heating compared to microwave preservation technique, 
which was suggested to be due to the uniform and rapid heating and the absence of 
hot surfaces in ohmic heating apparatus (Avasoo & Johansson, 2011). Leizerson 
and Shimoni (2005a) investigated the impact of pasteurization of orange juice using 
ohmic heating in a very short time on its shelf life, which was compared to conven-
tional pasteurization. In order to evaluate the quality of the obtained orange juice, 
the following parameters were studied: pectinesterase (PE) activity (i.e. cloudiness), 
ascorbic acid concentration, color, and flavor compounds (namely octanal, pinene, 
decanal, limonene, and myrcene). No significant difference was noticed between 
the two heating methods regarding PE activity and vitamin C concentration, 
although orange juice treated by ohmic heating appeared less cloudy. Similar effect 
on microbial load was observed for both heating methods during 105 days of stor-
age. However, according to the sensory analysis, flavor in samples treated by ohmic 
heating was retained almost twice longer than the samples heated conventionally 
over a period of 100 days. The results showed that the characteristic flavor com-
pounds were considerably higher in ohmic heated samples compared to conventional-
treated juices (Leizerson & Shimoni, 2005b). Thanks to the presence of flavor 
compounds at similar levels, panelists were not able to differentiate between fresh 
and ohmic-treated juices. Similar results were observed by Anderson (2008) who 
demonstrated that the better flavor retention by ohmic heating was due to the shorter 
residence times and the absence of hot surfaces.

There are limited studies about the effects of ohmic cooking on other sensory 
attributes of plant-based products such as tenderness and crispiness. Hence, further 
studies need to be conducted to have a deeper understanding of the effect of this 
technique on the sensorial attributes of fruits and vegetables.

1.4.2  �Meat Products

Sensory characteristics such as flavor, color, tenderness, and succulence have sub-
stantial influences on the acceptability of meat and meat products and can be 
affected by the cooking method. In ohmic processing, heat is distributed more 
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rapidly and even throughout the product and result in improved flavor retention and 
structural integrity than the conventional heating methods. Shirsat et  al. (2004) 
stated that the sensory evaluation of meat emulsion batters cooked by steam and 
ohmic heating had no perceivable difference. However, the study conducted by Zell 
et al. (2010b) exhibited that the color of ohmic-treated high-temperature short time 
(HTST) beef samples were more acceptable than low-temperature long time (LTLT) 
and conventionally cooked beef samples for the panelists. The ohmic heating offered 
a more uniform appearance, which was appreciated by the panelists. Moreover, the 
HTST treated samples were less juicy and firmer than the other products. These 
results were attributed to the higher cooking loss and end-point temperature in 
HTST samples. Accordingly, color and succulence of LTLT ohmic-cooked turkey 
meat were preferred to conventionally steam cooked samples, whereas the HTST 
treated samples were slightly firmer and less succulent. The conventional and HTST 
ohmic-heated turkey meat samples had a stronger odor intensity compared to LTLT-
treated turkey meat samples (Zell et al., 2010a).

Generally, the color changes during cooking are due to myoglobin degradation 
through oxygenation, oxidation, and reduction reactions (Liu & Chen, 2001). 
Moreover, Maillard reaction has a significant role in surface color development in 
cooked meat products. In a study conducted by Engchuan et al. (2014), the influ-
ence of ohmic heating on color parameters of meatball was investigated. The hue 
angle and redness of conventional-cooked samples were higher than the ohmic-
cooked counterparts. Similar results were reported by Bozkurt and Icier (2010) and 
Zell, Lyng, Cronin, and Morgan (2009) in ohmically and conventionally cooked 
beef muscles. They suggested that more browning reactions took place in the 
conventional-cooked meatballs compared to the ohmic-cooked samples. In the 
conventional method, the heat was mainly transferred by conduction and the outer 
layer of the meatballs would be much hotter than the core area. Consequently, 
browning occurred at the surface of conventional-cooked meatballs due to the high 
temperatures of the outer layer. However, in ohmic heating, the uniform tempera-
ture distribution inside the sample led to the formation of more homogeneous color 
and prevented the surface browning. Thus, the samples cooked by ohmic heating 
did not present a cooked crust, which is one of the disadvantages of ohmic cook-
ing. Zell et al. (2009) also found that the samples heated at a slower heating rate 
had a slightly higher lightness and a∗ and b∗ values, which were lower than the 
samples heated at higher heating rates. These differences could be due to the dis-
similarities of protein gel in meatball developed during fast or slow heating.

Dai et  al. (2014) evaluated the color parameters of ohmic and water bath 
cooked pork and observed significantly lower a∗ values but higher L∗ and b∗ values 
in conventionally cooked meat. Longer cooking time and higher exposure to oxy-
gen in conventional cooking may induce increased oxidation of lipid and myoglo-
bin pigments and inducing discolorations in conventionally-cooked meat (Fuentes 
et al., 2010; Ganhão, Morcuende, & Estévez, 2010). Shirsat et al. (2004) com-
pared the color of ohmically and steam-cooked meat emulsion batter. Color 
assessments revealed that ohmic-cooked samples had lower hue angle and higher 
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a∗ values compared to the steam cooked samples, while the panelists did not 
perceive the differences in the sensory evaluation.

Chai and Park (2007) determined the characteristics of fish proteins cooked 
with protein additives or starches under ohmic heating at 55 and 200  V.  They 
found that surimi-starch gels that were ohmically cooked at 200 V were the most 
translucent samples after overnight refrigeration. This behavior might be due to 
the rapid heating time and reduced leaking of amylose chains into the gel system. 
Tadpitchayangkoon et al. (2012) reported substantial differences between ohmic 
and water-bath heated surimi gels. These changes could be attributed to rapid and 
short heating time in ohmic heating, which limited the browning reactions and 
preserved the whiteness of tropical surimi gels compared to water bath cooking. 
Moreover, the lightness depended on protein network structure and the differences 
in water-protein interactions under ohmic and water-bath heating resulted in 
changing the lightness of surimi gels.

Traditionally, meat emulsions are treated by water immersion or steam cooking. 
Lascorz et al. (2016) cooked shrimps by ohmic and steam cooking and found that 
all the color parameters (L∗, a∗ and b∗ values) of shrimp samples increased after 
cooking due to the release of astaxanthin from the carotenoproteins after denatur-
ation. However, ohmic cooking of shrimps exhibited fewer color changes compared 
to steam cooking. This was suggested to be due to the short cooking time under 
ohmic heating.

1.4.3  �Dairy Products

The flavor of milk is a key parameter of its quality and acceptance. Milk has a 
slightly salty and sweet taste owing to the presence of salts and lactose. Good 
quality milk has a bland but typical flavor with a nice mouthfeel (Thomas, 1981). 
Due to the bland flavor of milk, it can be the carrier of off-odors and flavors such 
as cooked, oxidized and rancid flavors (Azzara & Campbell, 1992). These unpleas-
ant changes may occur during heating operations. The disruption of the milk fat 
globule membrane increases the accumulation of free fatty acids in the milk and 
leads to the formation of rancid flavors. Ohmic heating minimizes the generation 
of off-flavor compounds in milk and milk products because it does not promote 
more release of free fatty acids (FFA) (Ramaswamy, Marcotte, Sastry, & 
Abdelrahim, 2014). Irudayaraj et al. (2000) explored the impact of ohmic heating 
at different temperatures (135, 145, and 155 °C) and holding times (0.5 and 4.0 s) 
on UHT milk. They performed sensory evaluations and identified the volatile fla-
vor compounds with gas chromatography (GC)-mass spectrometry (MS) to deter-
mine the influence of ohmic heating on organoleptic properties of UHT milk. They 
found significantly lower sour and stale flavors in the ohmic-heated samples com-
pared to commercial UHT milk. In a study conducted by Roux et al. (2009), the 
color changes of infant formula during ohmic heating were measured. The 
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lightness was decreased by temperature and heating time. However, increasing the 
temperature and heating time enhanced the a∗ and b∗ values, indicating that the 
redness and yellowness increased, which resulted in changing the color of the 
samples into brown. However, the results reported by Roux et al. (2016) revealed 
that the color of liquid infant formula remained unchanged with ohmic steriliza-
tion compared to that obtained after steam injection.

1.5  �Advantageous and Challenges of Using Ohmic 
Processing on Food Quality

Application of ohmic processing has been reported to have several advantages over 
conventional treatment (Biss, Coombes, & Skudder, 1989; Khajehei et al., 2017). 
The foods objected to ohmic heating are uniformly heated in a well-controllable and 
rapid started process with the least thermal degradation. The lack of hot surface and 
its associated disadvantageous such as caramelization, fouling, and discoloration 
are among other attracting aspects. For foods in a container, the temperature in con-
ventional heat processing must be high enough at the container walls to ensure suf-
ficient heating of cold point (e.g. the center of big particulates) and guarantee the 
appropriate shelf life. This high-temperature can cause over processing and quality 
loss of the fluid (food) in contact with the walls. Due to the similar heating rate of 
particulates and the surrounding liquid, ohmic heating has overcome this limitation 
of conventional processing (Mojtahed Zadeh Asl, Niakousari, Hashemi Gahruie, 
Saharkhiz, & Mousavi Khaneghah, 2018). Because of the electrical resistance of the 
food components, heat is generated within the food as the electricity passes through 
it and both the liquid and solid parts will be warmed-up at the same time. The 
energy consumption is lower in the ohmic system and most of the energy is con-
sumed at the control system and wires. The efficiency of ohmic heating is higher 
than 95% at most of the frequencies and using higher frequencies causes higher 
loss. Providing the high temperature using high-pressure steam (at a temperature of 
200 °C, to increase the temperature of the product up to 180 °C, needs a pressure of 
15 bar) in conventional processes is costly and limits its uses in the common pro-
cesses. The high temperature (160–300 °C) used for sterilizing and partial hydroly-
sis of food waste before performing anaerobic digestion could be provided by ohmic 
heating. Flash depressurization is another way that can partially hydrolyze the par-
ticulates and so increase the volume of produced gas and also increase the bioavail-
ability of nutrients after digestion.

The advantages of ohmic heating over conventional heating are summarized as:

•	 Rapid heating in short times for particulates and liquid, which can be usually 
achieved. This leads to protect vitamins and flavors compared with conventional 
heat exchangers.

•	 Low-temperature surfaces, resulting in a reduced risk of food damage from burn-
ing or over processing.
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•	 Processing particulates or high solids’ content. Low shear keeps particulate 
appearance and shape. Particulate products up to 3 cm are suitable for ohmic 
processing.

•	 High efficiency: 95% of the produced energy is transferred into the food.
•	 Highly controllable: suitable start-up and shutdown performance. Can be quickly 

joined with existing control systems.
•	 Robust/suitable resistance to fouling/good maintenance: automatic cleaning with 

standard clean in place operations effective due to minimal fouling of surfaces. 
Heaters can contain cooled surfaces for further mitigation into fouling with some 
foods.

•	 Suitable for foods with high viscosity.
•	 Suitable for high-temperature processing (e.g., working temperatures over 

150 °C).
•	 Low-pressure and low shear drop all over the heaters.
•	 Can reduce the inefficiencies and infrastructure associated with the steam 

system.

The application of ohmic heating has several limitations that are summarized as:

•	 It is only suitable for foods with good electrical conductivity.
•	 Usually applied for those foods, which are pumpable and so ensure sufficiently 

suitable current transfer to and from ohmic electrodes.
•	 Designed units are mainly suited for a specific food conductivity range, while the 

design is much more difficult for extreme working conditions.
•	 The electric nature of this heating system means that the sites considering ohmic 

systems will need a good electrical supply, and the electrical energy cost com-
pared with fuels must be taken into account when considering the ohmic 
system.

1.6  �Conclusions

The results of these studies showed that ohmic heating is faster, less aggressive, 
and may improve the overall quality of products compared to the conventional 
heating systems. The high quality in ohmic-heated food products is attributed to 
the uniform heat generation throughout the product, which minimizes the over-
cooked areas in foods and preserves their texture, color, taste, and nutrients such 
as fatty acids, vitamins, amino acids, and phenolic compounds. Hence ohmic heat-
ing can be an appropriate alternative to conventional heating allowing food manu-
facturers to acquire high-quality products. However, the process variables such as 
temperature, voltage gradients, electric field frequency, and heating time play a 
dominant role in the quality of ohmic-heated samples. Therefore, these parame-
ters should be selected cautiously to reach the desired quality in ohmic treated 
food products.
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Chapter 2
Effects of Pulsed Electric Fields on Food 
Constituents, Microstructure and Sensorial 
Attributes of Food Products

Shualing Yang, Guanchen Liu, Zihan Qin, Daniel Munk, Jeanette Otte, 
and Lilia Ahrné

2.1  �Introduction

To assess the tangible advantages of pulsed electric fields (PEF) as alternative pres-
ervation technology, or to explore its use for improvement of functionality and 
healthiness of foods and ingredients or creating novel food structures, knowledge is 
needed regarding their impact on key food constituents such as proteins, lipids, 
carbohydrates, bioactive and flavor compounds, as well as on product microstruc-
ture. The successful application of the technology requires also that sensorial attri-
butes of the PEF-treated food meet the consumer expectations and acceptance. In 
this chapter, studies on the impact of PEF on these key issues will be discussed, in 
both animal- and plant-based foods.

2.2  �On Food Constituents

2.2.1  �Proteins

Proteins are important nutritional and functional components of foods. Furthermore, 
they are polyelectrolytes, which are easily affected by chemical and physical treat-
ments. Therefore, a number of studies have been done to evaluate the effects of PEF 
on various food proteins and consequences for functionality.
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2.2.1.1  �Milk Proteins

Caseins and whey proteins constitute the major proteins of milk. Caseins consist of 
four different proteins, αs1-, αs2-, β-, and κ-casein, which are hydrophobic, phos-
phorylated proteins, and occur in milk as large colloidal structures, so-called casein 
micelles (Dalgleish, 2011; Walstra, Wouters, & Geurts, 2014). Each casein micelle 
consists of several thousands of individual casein protein molecules and the size 
varies from 80 to 400 nm, with an average size of about 200 nm (Dalgleish, 2011; 
McMahon & Oommen, 2013). The structure of the casein micelles has not been 
fully elucidated, but there is general agreement that they have a rather open porous 
structure containing a large amount of water molecules (McMahon & Oommen, 
2013), and also that the αs-casein and β-casein molecules are located primarily in 
the interior of the casein micelles, while κ-casein, which is negatively charged, has 
glycosylated C-terminal and only few phosphorylation sites, is located at the exte-
rior with the C-terminal part protruding out from the micelle into the surrounding 
medium. A recent model of a casein micelle is shown in Fig. 2.1. The caseins are 
held together in the micelle by both hydrophobic interactions between hydrophobic 
parts of the casein molecules and colloidal calcium phosphate interactions between 
phosphorylated parts of the casein molecules (Dalgleish, 2011; Horne, 1998; 
McMahon & Oommen, 2013; Walstra, 1990). Therefore, they are sensitive to treat-
ments (e.g. temperature, pH, and pressure) that affect these kinds of protein-protein 
interactions and the distribution of calcium in milk.

The studies published regarding the effects of PEF treatment on the caseins in 
milk are presented in the upper part of Table 2.1. All studies have been performed 
with skimmed milk and no study was found about the effect of PEF on caseins in 
whole milk or casein ingredients. The PEF treatment seems to have an effect on the 
size of casein micelles but inconsistent results have been reported. Floury et  al. 
(2006) showed that PEF processing at field levels of 45–55 kV/cm at a temperature 

Fig. 2.1  Schematic 
structure of the casein 
micelle, incorporating 
calcium phosphate 
nanoclusters (grey) with 
their attached casein (red) 
and the surface-located 
κ-casein (green). The 
“hydrophobically bound” 
mobile β-casein is shown 
in blue, within the water 
channels inside the 
micelle. (Reproduced with 
permission from Dalgleish 
(2011))
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below 50  °C (Europulse, Cressensac, France) with 2.1–3.5  μs treatment time 
reduced the size of casein micelles significantly in skim milk. However, no decrease 
in casein micelle size at a similar field level (45 kV/cm), but kept for longer time 
(20 μs up to 30 °C), has been reported by Hemar et al. (2011) and (35 kV/cm with 
188 μs up to 52 °C) by Michalac et al. (2003). Liu et al. (2015) also found that PEF 
treatment (49 kV/cm for about 20 μs up to 70 °C) did not change the size of the 
casein micelles in milk at the natural pH but reduced the size of the casein micelles 
at higher pH (pH 8). The varying results are probably due to different types of PEF 
equipment used, and different pre-treatments of milk before PEF (e.g. defatting and 
pasteurization).

The major whey proteins (WPs) in bovine milk are β-lactoglobulin (β-LG) and 
α-lactalbumin (α-LA), followed by bovine serum albumin (BSA), immunoglobulins 
(Ig), lactoferrin, and various other minor proteins and enzymes (Walstra et  al., 
2014). WPs, unlike caseins, are globular proteins with a compact tertiary structure 

Table 2.1  Effect of pulsed electric field treatments on dairy proteins

Protein Product Treatment intensity Effects Reference

Caseins Skim milk 45–55 kV/cm for 
2.1–3.5 μs; 
T < 50 °C

Reduced size of casein 
micelles

Floury et al. (2006)

45 kV/cm for 20 μs; 
Ti = 25 °C; 
To = 30 °C

No decrease in size of 
casein micelles

Hemar et al. (2011)

35 kV/cm for 
188 μs; Ti = 22 °C; 
To = 52 °C

No decrease in size of 
casein micelles

Michalac, Alvarez, 
Ji, and Zhang 
(2003)

49 kV/cm for 20 μs; 
T ≤ 70 °C

Reduced size of casein 
micelles at pH 8.0

Liu et al. (2015)

Whey 
proteins

β-LG solution 30 kV/cm for 1.3 μs; 
T ≤ 30 °C

No significant 
unfolding or 
aggregation of β-LG

Barsotti, Dumay, 
Mu, Fernandez 
Diaz, and Cheftel 
(2001)

IgG solution /
enriched soy 
milk

41.1 kV/cm for 
54 μs; T < 50 °C; 
Ti = 15 °C; 
To = 43.8 °C

No effects on secondary 
structure of IgG

Li, Zhang, Lee, and 
Pham (2003)

WPI solution 30 kV/cm for 19.2 
and 211 μs; T = 30, 
60, 65, 70, or 75 °C

No effect on 
physicochemical 
properties of whey 
proteins

Sui, Roginski, 
Williams, Versteeg, 
and Wan (2011)

Whole milk 35.5 kV/cm for 
1000 μs; T ≤ 40 °C

β-LG, α-LA, and BSA 
partially denatured 
(25–40%)

Odriozola-Serrano, 
Bendicho-Porta, 
and Martín-Belloso 
(2006)

WPI solution 12–20 kV/cm, 
10–20 pulses; 
To < 35 °C

Partial denaturation of 
WPI fractions

Xiang, Ngadi, 
Ochoa-Martinez, 
and Simpson (2011)

β-LG 
concentrate

12.5 kV/cm for 
2000 μs; T < 35 °C

Increased gelation 
properties of β-LG

Perez and Pilosof 
(2004)
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held together by disulfide bonds. The major WP, β-LG, furthermore, contains a free 
thiol group, which is buried in the hydrophobic interior of the native molecule. 
Upon partial denaturation of β-LG, this group will be exposed together with other 
hydrophobic parts of the molecule and can engage in thiol/disulfide interchange and 
other reactions with other milk proteins (e.g. WPs to form WP aggregates).

The studies regarding the effects of PEF on whey proteins in model single pro-
tein systems or milk are shown in the lower part of Table 2.1. Some studies reported 
that PEF processing does not cause notable protein unfolding or aggregation of 
β-LG and does not affect the concentration and antigen binding activity of immuno-
globulin G (IgG) in solution (Barsotti et al., 2001; Li et al., 2003; Li, Bomser, & 
Zhang, 2005). Barsotti et al. (2001) applied PEF (30 kV/cm for 1.3 μs) to β-LG 
solutions in sodium phosphate buffer (pH 7) and did not observe significant unfold-
ing or aggregation of β-LG. Similarly, Li et al. (2003) found no effects of PEF pro-
cessing (41.1 kV/cm for 54 μs up to 43.8 °C) on the secondary structure of IgG in 
enriched soy milk. The recent study by Sui et al. (2011), likewise, showed that PEF 
processing (30 kV/cm for 19.2 and 211 μs up to 75  °C) of whey protein isolate 
(WPI) in simulated milk ultrafiltrate (pH 6.5) did not change the physicochemical 
properties of the WPs, such as protein aggregation, surface hydrophobicity, contents 
of exposed and total sulphydryl groups and thermal stability. However, in whole 
milk and for longer treatment time (1000  μs), Odriozola-Serrano et  al. (2006) 
reported that β-LG, α-LA, and BSA were partially denatured (25–40%) after PEF 
treatment at 35.5 kV/cm. Similarly, Xiang, Ngadi, et al. (2011) found that PEF treat-
ment (12–20 kV/cm, 10–20 pulses, up to 35 °C) of WPI solutions in distilled water 
(pH  7) resulted in partial denaturation of WPI fractions and exposure of more 
hydrophobic regions. This is in line with the improved gelation properties of a β-LG 
concentrate (10% in water, pH 7) observed after PEF treatment at 12.5 kV/cm for a 
long treatment time (up to 2000 μs) (Perez & Pilosof, 2004).

The use of PEF-treated milk to produce cheese has been studied by Sepúlveda-
Ahumada, Ortega-Rivas, and Barbosa-Cánovas (2000). The results showed no sig-
nificant differences in the structure of milk proteins or texture of Cheddar cheese 
produced with PEF treated milk and that produced with HTST pasteurized milk.

The studies reported so far, thus, show that PEF processing for a long time can 
affect the whey proteins and expose the hydrophobic and thiol groups that were 
originally buried in the proteins, leading to whey protein aggregation and gelation 
through hydrophobic and thiol/disulfide interactions. However, it cannot be ruled 
out that these changes may be (partly) due to a temperature increase associated with 
the long PEF treatment time. More fundamental studies are needed to understand 
the protein modification due to PEF treatment alone.

2.2.1.2  �Egg Proteins

The major egg white proteins are ovalbumin (54%), conalbumin (12%), ovomucoid 
(11%), lysozyme (3.5%), and ovomucin (2–4%) (Mine, 2015). Ovalbumin is a 
phosphoglycoprotein that can be converted to s-ovalbumin during cold storage. It is 
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the most heat stable egg protein with a denaturation temperature of 84 °C, but it can 
be easily denatured and forms gels by physical treatments such as heating and high 
hydrostatic pressure processing. Conalbumin (also called ovotransferrin), ovomu-
coid, and ovomucin are glycoproteins. Conalbumin has the capacity to bind bi- and 
trivalent metal cations into a complex, making the protein more heat stable than in 
the native state. Ovomucoid occurs in various forms, which differ in the amount of 
carbohydrate bonded via asparagine. Nine disulfide bridges and a high content 
(<80%) of helical and β-pleated sheet structures confer upon ovomucoid such a 
stable spatial structure that it is not denatured even upon boiling. This protein is the 
major allergen found in egg and was found to be a trypsin inhibitor. Ovomucin is a 
relatively small protein (MW = 10 kDa) with a diversity of carbohydrate bound and 
a large portion of hydroxyl groups esterified with sulfuric acid. The ovomucin 
aggregates into filamentous and fibroid structures being responsible for the high 
viscosity of the egg white. Lysozyme is an enzyme that can lyse the wall of certain 
Gram-positive bacteria and is found at high levels in the chalaziferous layer and the 
chalazae, which anchor the yolk towards the middle of the egg.

Sampedro et al. (2006) reviewed the application of pulsed electric fields in egg 
and egg products, concluding that the high electric conductivity and the complex 
composition of whole eggs, having high protein and fat contents, is a challenge for 
the application of PEF as preservation technology. This high protein concentration 
may also be the reason why studies about the effects of PEF on egg white, have 
shown that PEF significantly influences the thiol group reactivity of egg proteins, 
depending on the number of pulses and the energy applied per pulse (Table 2.2). 
The egg white proteins were partially denatured and altered in terms of surface 
hydrophobicity, exposed SH groups and gelation properties, as well as, emulsifying 
capacity and stability in fresh egg white after PEF treatment at 12.5  kV/cm for 
2300 μs up to 35 °C, and 25–35 kV/cm for 400–800 μs up to 42 °C (Perez & Pilosof, 
2004; Zhao et al., 2007). However, the changes in surface hydrophobicity of egg 
white proteins have not been observed in earlier studies by Jeantet et al. (1999), who 

Table 2.2  Effect of pulsed electric field treatments on egg proteins

Protein Product Treatment intensity Effects Reference

Egg 
proteins

Egg white 12.5 kV/cm for 
2300 μs; T < 35 °C

Partially denatured egg 
white proteins

Perez and Pilosof 
(2004)

25–35 kV/cm for 
400–800 μs; 
T = 40 °C

Partially denatured egg 
white proteins

Zhao, Yang, Tang, 
and Lu (2007)

20–35 kV/cm, 2–8 
pulses; T = 4–30 °C

No increase in surface 
hydrophobicity of egg 
white proteins

Jeantet, Baron, Nau, 
Roignant, and Brulé 
(1999)

Liquid 
whole egg

19 and 32 kV/cm for 
30 μs and 37 kV/cm 
for 18 μs

No significant differences 
in the water-soluble 
protein fraction

Marco-Molés et al. 
(2011)

Ovalbumin 
solution

27–33 kV/cm for 
0.3–0.9 μs; 
T < 29 °C

No permanent 
modification of 
ovalbumin

Fernandez-Diaz, 
Barsotti, Dumay, 
and Cheftel (2000)
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found no change by applying 2–8 exponential pulses of 20–35 kV/cm. Fernandez-
Diaz et al. (2000) showed that the high voltage exponential decay pulses did not 
induce permanent modifications of ovalbumin in solution since the observed struc-
tural changes of ovalbumin were completely reversed after storage for 24  h at 
4 °C. These results indicate that at high voltage, like for the WPs, the duration of the 
PEF treatment is an important determinant for the influence on the structure and 
functional properties of the egg white proteins.

2.2.1.3  �Meat and Fish Proteins

Meat proteins consist of a large number of proteins that are usually clustered in 
three groups: (1) myofibrillar, (2) stromal, and (3) sarcoplasmic proteins having 
significant differences in structure and functional properties (Kang & Singh, 2015). 
Myofibrillar proteins are the most abundant proteins in the muscle (60%) and con-
sist mainly of actin (13%) and myosin (26%). These two proteins form during mus-
cle contraction a more complex protein known as actomyosin. Loss of myofibrillar 
integrity post-mortem has been associated with degradation of troponin-T and des-
min (Suwandy, Carne, van de Ven, Bekhit, & Hopkins, 2015a). Stromal proteins 
(e.g. collagen, elastin and reticulin) exist in the connective tissue. Collagen is con-
verted to gelatin during cooking, whereas elastin is not. Sarcoplasmic proteins 
include the hemoglobin and myoglobin pigments contributing to the red color of 
muscle.

The effects of PEF on meat and fish products have received some attention espe-
cially in the last years (Arroyo, Eslami, et al., 2015; Arroyo, Lascorz, et al., 2015; 
Bekhit, Suwandy, Carne, van de Ven, & Hopkins, 2016; Bhat, Morton, Mason, & 
Bekhit, 2018; Gudmundsson & Hafsteinsson, 2001; Khan et al., 2018; Ma et al., 
2016; O’Dowd, Arimi, Noci, Cronin, & Lyng, 2013; Suwandy et al. 2015a, b, c, d; 
Töpfl, 2006). Most of these studies focused on assessing the effect of PEF on the 
quality characteristics of different muscles and only a few evaluated the changes on 
individual proteins. Table 2.3 presents a summary of the studies performed in which 
proteins have been studied. No study was found on isolated meat or fish proteins. 
Initial studies using SDS-PAGE, by Faridnia et al. (2014) and Gudmundsson and 
Hafsteinsson (2001), showed that PEF treatment up to 18.6 kV/cm and 7 pulses did 
not affect the proteins, as the same protein bands were visible in the PEF-treated and 
control samples. However, more recent studies aiming to understand the improve-
ment in meat tenderness caused by PEF treatments, have reported changes in the 
troponin-T and desmin proteins in PEF treated beef muscles during aging (Bekhit 
et al., 2016; Suwandy et al., 2015a, b, c, d). Using SDS-PAGE and Western blotting 
to assess the impact of variable PEF conditions, aging time, and type of meat, these 
studies showed increased proteolysis of troponin-T and desmin (and improved ten-
derness) in PEF-treated beef compared with control. The changes in proteins are 
probably caused by permeabilization of cells and release of proteolytic enzymes.

S. Yang et al.
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2.2.1.4  �Plant-Based Proteins

Very little is known about the effect of PEF on the proteins of plant-based foods, 
even though a few studies have been performed with soy proteins. Soybean proteins 
consist mainly of storage globulins, which are divided into two subgroups: glycinin 
and β-conglycinin. These two proteins differ significantly with respect to their func-
tional properties, especially gelation. Gels made from glycinin are harder than gels 

Table 2.3  Effect of pulsed electric field treatments on meat and fish proteins

Protein Product Treatment intensity Effects Reference

Meat 
protein 
profile

Beef 0.2–0.6 kV/cm for 20 μs; 
T ≤ 33.20 ± 4.05 °C

No changes in protein 
profile

Faridnia, 
Bekhit, Niven, 
and Oey (2014)

Salmon 1.36 kV/cm, 40 pulses 
for 80 μs at room 
temperature

No denaturation of 
proteins

Gudmundsson 
and 
Hafsteinsson 
(2001)Cod 10.6–18.6 kV/cm, 7 

pulses (pulse time not 
provided)

Chicken 1.36 kV/cm, 40 pulses 
for 80 μs at room 
temperature

Lumpfish 
roes

12 kV/cm, 2–12 pulses 
(pulse time not provided)

Troponin-T 
and desmin

Beef 5 kV, 10 kV × 20, 50, 
90 Hz, T not provided

Increased proteolysis of 
troponin-T and desmin 
for PEF treatments at 
5 kV–90 Hz, 
10 kV–20 Hz and 
10 kV–50 Hz samples

Suwandy et al. 
(2015a)

Beef 5 kV, 10 kV × 20, 50, 
90 Hz, T not provided

Significant proteolysis 
of troponin-T and 
desmin for 
(5–10 kV)/20 Hz

Suwandy et al. 
(2015b)

Beef 10 kV, 90 Hz, 20 μs, T 
not provided

Higher increase in 
proteolysis in low-pH 
(5.5–5.8) than high-pH 
(>6.1) samples

Suwandy et al. 
(2015c)

Cold-
boned beef 
loins and 
topsides

Repeat PEF at (10 kV, 
90 Hz, 20 μs)

Increased proteolysis of 
troponin T and desmin 
after one treatment but 
decreased for 2 and 3 
repeated treatments

Suwandy et al. 
(2015d)

Hot-boned 
beef loins 
and 
topsides

Repeat PEF at (10 kV, 
90 Hz, 20 μs); T: 
24.8 ± 1.4 °C and 
24.5 ± 1.0 °C for loins 
and topsides, respectively

Decreased proteolysis 
of troponin T in 
repeated treatments

Bekhit et al. 
(2016)
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from β-conglycinin due to differences in the structure of these proteins. Glycinin is 
a hexamer with a molecular weight of 300–380 kDa while β-conglycinin is a glyco-
protein with a molecular weight of 150–200 kDa (Mojica, Dia, & Mejía, 2015).

Effects of PEF on the functional properties of soy protein isolate (SPI) reported 
by Li and Chen (2006) showed an increase in the degree of denaturation and aggre-
gation and, consequently, a decrease in protein solubility (above 40  kV/cm or 
432 μs), emulsifying capacity (above 30 kV/cm or 144 μs), foaming capacity (above 
35  kV/cm or 432 μs), and surface hydrophobicity (above 30  kV/cm or 288 μs). 
However, Li, Chen, and Mo (2007) showed that PEF treatment (0–40 kV/cm for 
0–547 μs) did not induce any significant changes to the secondary structure of soy-
bean proteins in SPI solutions in water at pH 8. In contrast, Liu, Zeng, Deng, Yu, and 
Yamasaki (2011), using Fourier transform infrared spectroscopy, reported that PEF 
treatment above 35 kV/cm induced bond vibration within amino acid side chains, 
anti-parallel β-sheets, β-turn, and β-sheets, suggesting unfolding of the secondary 
structure of proteins in SPI solutions in water at pH 7. Furthermore, complete dena-
turation of β-conglycinin and glycinin in SPI were also observed in the same study 
by differential scanning calorimetry. The difference in results may also be due to the 
lab procedures used for extraction and production of SPI that may also have an 
effect on the subsequent changes in proteins during PEF.

To conclude, studies performed regarding the effects of PEF on food proteins are 
limited and few have used advanced measurement techniques to understand protein 
modifications at the molecular level. A number of contradictory results have been 
published, that may be due, on one side, to differences in equipment and processing 
conditions used, that may have influenced the distribution of the electric field and 
temperature in the product, and on the other side, to product properties such as com-
position, pH, concentration of proteins, pre-treatments, and structure/food matrix 
that influence the extension of protein modifications and interaction with other com-
ponents. Studies so far, show that PEF, depending on the processing conditions 
(intensity of electric field, duration of treatment and product temperature), has the 
ability to alter the protein structure directly or through release of proteolytic 
enzymes ultimately affecting the functional properties and quality of the food prod-
uct, but the exact mechanisms have not been elucidated.

2.2.2  �Lipids and Oils

All plant- and animal-based foods contain lipids, with concentrations varying 
between 0.3% in most fruits and vegetables up to 65% in walnuts and from 1% in 
human milk to 15% in milk from the Black bear. Lipids play a major role in 
human nutrition, as source of energy and essential fatty acids and carrier of fat-
soluble vitamins, and they have also an important role in food structure contribut-
ing to attractive sensorial attributes of foods. During processing, lipids undergo 
oxidation, hydrolysis, and thermal decomposition, which have a negative effect 
on food quality.
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2.2.2.1  �Milk Fat

The fat in fresh bovine whole milk exists as fat globules (MFGs) encapsulated 
within a native stabilizing membrane known as the milk fat globule membrane 
(MFGM) (Fox, Uniacke-Lowe, McSweeney, & O’Mahony, 2016). These globules 
are composed mainly of triglycerides (≈98%) and have a diameter between 0.1 and 
15 μm depending on cow feed and other factors (Bermúdez-Aguirre, Fernández, 
Esquivel, Dunne, & Barbosa-Cánovas, 2011; Garcia-Amezquita, Primo-Mora, 
Barbosa-Cánovas, & Sepulveda, 2009; Walstra, 1983). The MFGM originates from 
the endoplasmatic reticulum membrane in the secretory cell, forming a small vesi-
cle that is surrounded by the outer cell membrane during secretion (Michalski, 
Michel, Sainmont, & Briard, 2002). The structure of the MFGM, as proposed by 
Lopez et al. (2011), is shown in Fig. 2.2. The outer double layer membrane is, simi-
larly to other biological cell membranes, primarily composed of proteins, glycopro-
teins, polar lipids, phospholipids, cholesterol, and other minor components (Sharma, 
Oey, & Everett, 2014). The MFGM provides stability to the fat globules suspended 
in the aqueous phase of milk by preventing flocculation of fat globules and by pro-
tecting the triglycerides from hydrolysis by indigenous or bacterial lipases (Keenan 
& Patton, 1993). Since PEF is known to affect biological membranes (Liu et al., 
2015), this technique is expected to affect the membranes surrounding the MFGs 
and thus various properties of the fat.

Up to now, only a limited number of studies have been published on PEF-induced 
effects on milk fat. The studies show that various properties of the milk fat can be 
affected by the PEF treatment, as summarized in Table 2.4.

Fig. 2.2  Schematic drawing of the milk fat globule membrane showing the trilayer structure with 
a lateral organization of polar lipids. (Reproduced with permission from Lopez et al. (2011)). The 
relative sizes are not to scale

2  Effects of Pulsed Electric Fields on Food Constituents, Microstructure and Sensorial…



36

Table 2.4  Summary of reported effects of the pulsed electric field (PEF) on milk fat

Product
PEF processing 
conditions Effects on milk fat Reference

Raw milk 20–80 kV/cm; 
1–10 μs; 2 μs width 
pulses; Tp: 55 °C

No change in fat integrity Dunn (1996)

β-lactoglobulin 
model emulsions 
with skim, whole 
milk, cream

21–36 kV/cm; 200 
pulses of 0.8–1.6 μs at 
1 Hz; To: <30 °C

MFG size did not change in 
skimmed milk & whole milk. In 
cream, larger MFG dissociated

Barsotti et al. 
(2001)

Beverage: 50% 
orange juice, 
20% UHT 
skimmed milk

35 & 40 kV/cm; 
40–180 μs; Flow rate: 
60 mL/min

Non-significant changes in the 
contents of SFA, MUFA or 
PUFA. A small reduction in fat 
content

Zulueta, Esteve, 
Frasquet, and 
Frígola (2007)

Whole milk 36 & 42 kV/cm with 
24–64 & 8–24; 2.6 μs; 
flow rate: 383.3 mL/
min; To: <25 °C

No significant effect on MFGs 
particle size distribution. MFG 
size changes were similar to 
LTLT

Garcia-Amezquita 
et al. (2009)

Skimmed (0.21% 
fat) and whole 
milk (3.94% fat)

30–54 kV/cm; 2 μs 
pulse width; pulses: 12 
to 30; Tp: 20–40 °C

Increase or decrease in the fat 
content of skim and whole milk 
depending on T and intensity of 
electric fields

Bermúdez-
Aguirre et al. 
(2011)

Skim milk 15–20 kV/cm; 
0.33 μF; 20–60 
exponentially 
decaying pulses at 
0.50 Hz; To: <35 °C

The apparent viscosity of 
sample increased caused by an 
increase in the surface area of 
MFGs

Xiang, Simpson, 
Ngadi, and 
Simpson (2011)

Fresh, whole 
milk (fat content 
3.85 ± 0.05 to 
4.20 ± 0.05%) 
with pre-heating 
at 55 °C- 24 s

16–26 kV/cm; 85 ms 
pulses of 20 μs at 
10–60 Hz; First Ti: 
55 °C, To: 12 °C; 
Second Ti: 12 °C, To: 
12 °C;

26 kV/cm for 34 μs at 55 °C 
reduced xanthine oxidase (32%) 
and lipolysable fat (82%) 
compared with raw milk

Sharma et al. 
(2014)

Fresh raw cream 
and pasteurized 
cream (40% fat, 
heated at 80 °C 
for 16 s)

37 kV/cm; 0.31 μF; 
pulses with 1.5 μs 
pulse width; total 
time: 1705 μs; flow 
rate: 25 mL/min; Tp: 
50 and 65 °C

At 65 °C: PEF induced 
interactions of β-lactoglobulin 
with MFGM proteins. 
Phospholipids were unchanged

Xu, Walkling-
Ribeiro, Griffiths, 
and Corredig 
(2015)

Whole milk 
(4.4 ± 0.1% fat)

20 and 26 kV/cm; 
34 μs; 20 μs pulse 
width at 20 Hz; Ti: 
55 °C; To: ~17–22 °C 
flow rate 4.2 mL/s

Decrease in MFG, increase in 
ζ-potential and specific surface 
area. Adsorption of plasma 
proteins onto the surface of 
MFGM occurred.

Sharma, Oey, and 
Everett (2015)

Raw milk was 
homogenized

30 kV/cm; 22 μs; 
1.5 μs pulse width at 
1176 Hz); flow rate: 
2.4 L/min; To: 63 °C

Fat content was not significantly 
changed; short chain FFA 
increased slower compared with 
raw milk samples during storage 
(4 °C)

McAuley, Singh, 
Haro-Maza, 
Williams, and 
Buckow (2016)

(continued)
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Varying results have been reported regarding the effect of PEF on MFG and 
the consequences for the determination of the fat content in milk and milk contain-
ing drinks. Zulueta et al. (2007) studied the effect of PEF processing (at 35 & 40 kV/
cm, 2.5 μs) of an orange juice-milk (20% UHT-milk) beverage, and found that the 
fat content in the juice-milk beverage was reduced (p < 0.05) after 60 min of treat-
ment, at both electrical field strengths, and they speculated that the reduction of the 
size of the MFGs was negatively influencing the extraction of the fat content. 
Bermúdez-Aguirre et  al. (2011) investigated the effect of PEF treatment with 
various voltages and number of pulses and also at various temperatures (20–40 °C) 
on the fat content in skimmed milk (0.21% fat) and whole milk (3.94% fat). After 
PEF treatment of whole milk, in most cases, the fat content was reduced. Likewise, 
for skimmed milk, PEF treatment at 31–46 kV/cm, during 2 μs, and at 20 °C also 
caused a decrease in the fat content. This decrease was explained by electrodeposi-
tion of milk constituents on the electrodes. On the other hand, PEF treatment of 
skimmed milk at 40 °C and high voltage caused a significant (p < 0.05) increase in 
the fat content. The authors speculated that this may be due to the breakdown or 
electroporation of the milk fat globule membrane (MFGM) releasing triacylglycer-
ols to the medium, which might cause a slightly higher quantification of fat 
(Bermúdez-Aguirre et al., 2011). At other PEF processing conditions, there was no 
specific trend in the fat content for the two types of milk. This is in line with a very 
recent study (McAuley et al., 2016) reporting that the fat content in whole milk was 
not significantly affected by PEF treatment (at 30 kV/cm, 22 μs), at either 53 or 
63 °C. The variation in the results regarding the impact of fat content is likely due 
to variations in the type of PEF equipment and processing conditions, as well as in 
fat extraction/analysis methods.

To our knowledge, no studies have been performed on the effect of PEF treat-
ment on the fatty acid composition in the milk; however, few studies have reported 

Table 2.4  (continued)

Product
PEF processing 
conditions Effects on milk fat Reference

Whole milk 20–26 kV/cm; 34 μs; 
(pulses 20 μs width at 
20 Hz;) Ti: 55 °C; To: 
~23.1 ± 1.6 °C flow 
rate of 4.2 mL/s

Whey proteins adsorbed onto 
the surface of MFGs; 
denaturation and surface 
hydrophobicity of proteins from 
MFGM surface increased with 
the PEF treatment intensity

Sharma, Oey, and 
Everett (2016)

Beverage (juices 
with a 
pasteurized 
whole (3.5% fat) 
or skim (0.3% 
fat) milk

35 kV/cm; 1800 μs; 
(pulses of 4 μs width 
at 200 Hz); Tp: <40 °C 
Flow rate of 60 mL/s

After PEF only linoleic acid 
increased (20%). Lower amount 
of palmitic, linoleic and 
linolenic acids (12–20%) were 
found at day 56

Salvia-Trujillo, 
Morales-de la 
Peña, Rojas-Graü, 
Welti-Chanes, 
and Martín-
Belloso (2017)

Ti inlet temperature, Tp processing temperature, To outlet temperature, LTLT low temperature long 
time, MFG milk fat globule, MFGM milk fat globule membrane, FFA free fatty acids, SFA satu-
rated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids
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the effects of PEF on fatty acids in milk containing beverages. Zulueta et al. (2007) 
reported no significant changes in the contents of saturated fatty acids, monounsatu-
rated fatty acids, or polyunsaturated fatty acids after PEF treatment of an orange 
juice-milk beverage. Neither peroxides nor intolerable levels of furfurals were 
detected. This is in line with the results obtained by Salvia-Trujillo et al. (2017) 
using a similar juice-milk beverage fortified with n-3 fatty acids and oleic acids. 
They found, however, an increase in some of the fatty acids after storage at 4 °C for 
56 days. Since PEF treatment partially inactivates enzymes and microorganisms in 
the milk, the differences in the content of free fatty acids during storage was 
explained by the residual enzymatic (e.g. lipase, or microbial) activity. The partial 
inactivation of lipase in bovine whole milk has also been reported by Sharma et al. 
(2014), who found that PEF treatments (up to 26 kV/cm for 34 μs up to 55 °C for 
24  s) reduced the activity of lipase detected by a reduction of lipolysable fat. 
Regarding microbial growth, McAuley et al. (2016) found that three volatile short 
chain fatty acids in homogenized and PEF-treated (30 kV/cm; 22 μs; at 63 °C) milk 
increased at a slower rate during refrigerated (4 °C) storage, compared to in raw 
milk, which was ascribed to the pasteurizing effect of PEF (i.e. inactivation of 
microorganisms producing the FFA).

PEF treatment of milk may also influence the size of the MFG, however, conflict-
ing results have been reported. In some studies, PEF treatment was found to decrease 
the MFG size, whereas, in a few others, the size of MFGs was unaltered or increased. 
This may be due to different processes taking place simultaneously, e.g. dissocia-
tion of fat globules and association of fat globules with other MFG or with proteins 
in milk, respectively. For example, Barsotti et al. (2001) reported that PEF treatment 
at 29 kV/cm did not induce any changes in MFG size of whole milk, whereas PEF 
treatment at 32 kV/cm tended to dissociate fat globule aggregates in cream. Also, 
when treated at even higher voltages (36 kV/cm and 42 kV/cm, up to 64 pulses), 
PEF processing did not modify the true mean diameter of MFG, since the ζ-potential 
values were unchanged, but it induced small globules to clump together rather than 
coalesce, causing an apparent increment in the population of larger milk-fat glob-
ules in whole milk (Garcia-Amezquita et al., 2009). This is also supported by other 
studies indicating no damage to the MFGM after various PEF treatments of milk 
(Dunn, 1996; Sharma et al., 2016; Xu et al., 2015).

However, the association of MFGs into larger clumps may also be caused by 
attachment of whey proteins and casein micelles onto the surface of MFG, suggesting 
that some alterations in the MFGM may take place after all. For example, Xiang, 
Simpson, et al. (2011) reported that the apparent viscosity of reconstituted skimmed 
milk increased with increasing electric field intensity (15, 18 and 20 kV/cm) and the 
number of pulses (20, 40 and 60), which was ascribed to the intermolecular interac-
tions as a result of the attractions between adjacent denatured milk protein and MFGs, 
leading to an increase in the fat globule size. The adsorption of both casein micelles 
and whey proteins to the MFGM in PEF-treated milk or cream has been confirmed by 
several studies using different methods (e.g. by confocal microscopy and DSC mea-
surements) (Sharma et al., 2014, 2016; Xu et al., 2015). Sharma et al. (2015) also 
found adsorption of WP and caseins onto the surface of the MFGM during pre-heating 
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and PEF treatments. However, in their study, PEF treatment caused an increase in the 
ζ-potential and specific surface area, and a decrease in the size of the MFGs, which 
they ascribed to the shear forces generated during pumping in their PEF equipment. 
Anyway, the authors considered that the PEF treatment (20 or 26 kV/cm for 34 ms, 
4.2 mL/s) caused less damage to MFG surfaces than thermal treatment and suggested 
that these processes are slightly different (Fig. 2.3). PEF treatment may induce con-
formational changes in the globular proteins exposing hydrophobic sites through 
which adsorption onto the MFGM surface may occur through hydrophobic associa-
tion, and like after thermal treatments, whey proteins may also be covalently bound 
onto the surface of MFGMs through disulphide linkages formed with cysteine-con-
taining MFGM proteins (Sharma et al., 2016).

2.2.2.2  �Egg and Meat Lipids

Unlike milk lipids, no studies were found regarding the effect of PEF on lipids in 
eggs. With respect to meat, the consequences of PEF on meat oxidation have been 
reported in turkey breast meat by Arroyo, Eslami, et al. (2015) and Arroyo, Lascorz, 
et al. (2015) using 300 pulses of 20 μs at 7.5–12.5 kV (fresh meat), 14–25 kV (fro-
zen meat) and in lamb by Ma et al. (2016) using 1–1.4 kV/cm, 90 Hz, 20 ms. In 
these studies, lipid oxidation was determined by measuring the thiobarbituric acid-
reactive substances and no information was provided about changes in fatty acids. 
No studies were found on lipids in fish treated by PEF.

Fig. 2.3  Milk fat globules (MFGs) in: (i) raw milk, (ii) native MFG, (iii) disruption by mechanical 
or heat treatment; (iv) disruption due to pulsed electric fields. (Reproduced with permission from 
Sharma et al. (2014))
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2.2.2.3  �Plant-Based Oils

The application of PEF for treatment of plant-based lipids or plant oils have 
received very little attention. Zeng, Han, and Zi (2010) assessed the effect of dif-
ferent PEF treatments (20–50 kV/cm) on the physicochemical properties of peanut 
oil during storage up to 100 days at 40 °C. The GC/MS analysis showed no signifi-
cant changes in peanut oil composition directly after PEF treatment, however, dur-
ing the 100 days storage, slight differences in unsaturated and saturated fatty acids 
were observed between PEF-treated and untreated oils. The authors suggested that 
PEF treatment might reduce the rate of lipid oxidation and improve the shelf life of 
the oil-rich product.

Most of the studies reporting on effect of PEF treatment on lipids concern studies 
where this technology was used to improve the extraction of oils from maize, soy-
beans, or rapeseeds (Guderjan, Elez-Martínez, & Knorr, 2007; Guderjan, Töpfl, 
Angersbach, & Knorr, 2005), olives (Abenoza et al., 2013; Andreou et al., 2017; 
Puértolas & Martínez de Marañón, 2015) and algae (Silve et al., 2018). For exam-
ple, Guderjan et al. (2005) showed that pulsed electric fields (0.6–1.3 kV/cm, 20–50 
pulses) applied to hulled and dehulled rapeseed increased the yield and the concen-
trations of total tocopherols and phytosterols in the oil. No effects on unsaturated 
lipids and saponification values were determined, but more free fatty acids were 
obtained after pressing of the PEF-treated dehulled rapeseed. Abenoza et al. (2013) 
studying the impact of PEF treatments on olive paste (0–2  kV/cm) at different 
malaxation times (0, 15, and 30 min) and temperatures (15 and 26 °C) showed no 
differences in fatty acid composition or content of saturated, unsaturated and poly-
unsaturated fatty acids. A further study by Puértolas and Martínez de Marañón 
(2015) showed an increase of phytosterol composition between 9% and 20% in 
olive oil obtained by the application of PEF to olive paste (2 kV/cm; 11.25 kJ/kg), 
in relation to control, especially regarding 24-methylenecholesterol, campestanol, 
β-sitosterol, and D-5-avenasterol. In the same study, a significant increase in tocoph-
erols (15%) was observed in olive oil from PEF-assisted extraction. A later study by 
Andreou et al. (2017) applying PEF to olive fruits (1.8 kV/cm, 1.6 kJ/kg) showed 
similar results and pointed out that the olive oil yield and oil quality depend on the 
variety of olive fruit. PEF has also been applied as pre-treatment on microalgae 
(Auxenochlorella protothecoides) prior to organic solvent extraction of lipids (Silve 
et  al., 2018) showing, by gas chromatography analyses of extracted lipids after 
transesterification, that PEF-treatment did not alter their fatty acid composition.

In conclusion, PEF treatment might have an impact on structured or charged 
lipids (e.g. when organized in biological membranes), leading to exposure of cell/
organelle content to the outer environment. In milk, the rupture of the fat globule 
membrane by PEF releases enzymes acting on various lipids, resulting in an indirect 
effect on the fatty acids, but also facilitates the interaction with proteins present in 
the milk serum phase. However, the effects of enzymes have not been addressed in 
most of the studies. The use of PEF as pre-treatment of oilseeds has shown no nega-
tive effects on the quality and functionality of oils at field intensities required for 
permeabilization of cellular structures.
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2.2.3  �Carbohydrates

PEF treatment may not directly affect carbohydrates since most of them are non-
charged. Accordingly, only a few studies have focused on the effect of PEF on proper-
ties of carbohydrates. Regarding disaccharides, Garde-Cerdán, Arias-Gil, 
Marsellés-Fontanet, Ancín-Azpilicueta, and Martín-Belloso (2007) found no signifi-
cant reduction in sugar content of grape juice after applying PEF (12 kV /cm for 20 μs).

Nevertheless, recent studies with polysaccharides have shown that PEF treat-
ment has an effect on starch, causing damage to the starch granules and their crys-
talline structure. Studies have been performed with corn (Han, Zeng, Zhang, & Yu, 
2009), potato (Han, Zeng, Yu, Zhang, & Chen, 2009), tapioca (Han et al., 2012), 
maize (Han et al., 2012), and rice (Zeng, Gao, Han, Zeng, & Yu, 2016) starch in 
water suspensions showing some differences depending on the type of starch. Han, 
Zeng, Zhang, et al. (2009) showed that PEF treatment (up to 50 kV/cm) caused dis-
sociation, denaturation, and damage of starch granules, which lead to a decrease of 
gelatinization temperature and enthalpy with the increase of electric field strength. 
Further studies with maize starch using thermogravimetric analysis (TGA) and 
Nuclear Magnetic Resonance (NMR) analysis showed no significant difference 
between native and PEF-treated starch indicating that PEF treatments may not affect 
the chemical structure of maize starch (Han, Yu, et al., 2012). More recently, Zeng 
et al. (2016) using small angle X-ray scattering observed that the relative crystallin-
ity of PEF-treated rice starches (up to 50 kV/cm) decreased with an increase of 
electric field intensity, thus increasing the amount of rapidly digestible starch and 
decreasing the slowly digestible starch. Reduction of molecular weight of amylo-
pectin has also been observed in tapioca (Han, Zeng, et al., 2012) and rice starch 
(Zeng et al., 2016). BeMiller (2018) discussed the physical processes for modifica-
tion of starch and concluded that the limited information available indicates that the 
damage of starch granules and their crystalline structure by PEF makes the starch 
more susceptible to enzymatic hydrolysis.

In conclusion, further studies are needed to clarify the mechanisms of modifica-
tion of starch by PEF. The permeabilization of amyloplast membrane by PEF or 
heat-induced effects on proteins naturally associated with starch granules are likely 
to influence the overall properties of starch.

2.2.4  �Bioactive Compounds

Foods not only supply macronutrients such as lipids, proteins, and carbohydrates; 
they are also important sources of vitamins, antioxidants and other compounds (e.g. 
secondary metabolites and peptides) with an important health impact. Vitamins, 
especially water-soluble vitamins are sensitive to heat treatment (Rechcigl, 1984), 
but likely to be better preserved by PEF. When PEF applied to foods is not accom-
panied by extensive heat treatment, vitamins and other health-promoting com-
pounds are not expected to be affected to a great extent by the treatment.
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2.2.4.1  �Milk Components

Bovine milk contains all the nutrients and vitamins needed for the growth of the 
calf. Milk and dairy products contribute a large part of the human intake of ribofla-
vin (vitamin B2), cobalamin (vitamin B12) and vitamin A, but also contain other 
vitamins such as water-soluble thiamine (vitamin B1), ascorbic acid (vitamin C), 
fat-soluble cholecalciferol (vitamin D), and tocopherol (vitamin E). Actually, there 
is a lot of provitamin A, which contributes to the yellow color of these products.

Despite the potential advantages of PEF in preserving vitamins, studies are 
scarce. Bendicho, Espachs, Arántegui, and Martín (2002) reported that no changes 
were observed in either water-soluble (riboflavin, thiamine) or fat-soluble vitamins 
(cholecalciferol and tocopherol) in milk after applying PEF treatments (22.6 kV/cm 
for 400 μs). However, a slight decrease in ascorbic acid was observed. Riener, Noci, 
Cronin, Morgan, and Lyng (2009) did not find any changes in thiamine, riboflavin, 
and retinol in skimmed milk. More studies are needed regarding the effect of PEF 
processing conditions in preserving the vitamins in animal-based products.

2.2.4.2  �Plant Compounds

Apart from vitamins, plants contain glycosides and polyphenolic compounds which 
act as antioxidants and may help to improve health. When producing juice from 
plants (e.g. tomatoes or berries), PEF can help extracting such compounds to the 
juice. Table 2.5. presents a summary of studies on the effect of PEF treatments on 
ascorbic acid, phenolic compounds, as well as on other compounds such as carot-
enoids and chlorophyll.

Studies published so far have shown that PEF-treated products have higher reten-
tion of vitamins than heat-treated products. For example, Cortés et  al. (2006) 
reported a decrease of 7.5% in vitamin A in PEF-treated (30 kV/cm for 100 μs) 
orange juice, which is lower than the loss of 15.6% after heat treatment (90 °C for 
20 s). Torregrosa, Cortés, Esteve, and Frígola (2005) also found that PEF-treated 
orange-carrot juice (25–30 kV/cm 30–340 μs) had a higher vitamin A concentration 
than that found in the heat pasteurized juice.

The contents of ascorbic acid in orange and grape juices are almost not affected 
by PEF treatment when combining  the treatments at 80  kV/cm with bacteriocin 
(Hodgins et al., 2002; Wu et al., 2005). Several research groups have found that 
changes in ascorbic acid content of heat-pasteurized liquid plant-based products 
(orange juice, strawberry juice, apple cider and “gazpacho” soup) are between 2 and 
3 times higher than those of PEF-processed products (Elez-Martínez & Martín-
Belloso, 2007; Elez-Martínez, Soliva-Fortuny, & Martín-Belloso, 2005; Evrendilek 
et al., 2000; Odriozola-Serrano et al., 2008a, 2008b; Qiu, Sharma, Tuhela, Jia, & 
Zhang, 1998). Elez-Martínez and Martín-Belloso (2007) reported that pulses 
applied in a bipolar mode, as well as lowering field strength, treatment time, pulse 
frequency and width, lead to higher levels of ascorbic acid retention in both orange 
juice and “gazpacho” soup. Vallverdú-Queralt et al. (2012) and Odriozola-Serrano 
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Table 2.5  Effect of pulsed electric field treatments on bioactive compounds in plant-based 
systems

Compound Product Treatment intensity Effects Reference

Ascorbic acid Tomato fruit 5–30 pulses at 
0.4–2.0 kV/cm

98.3 % retention Vallverdú-
Queralt et al. 
(2012)

Tomato 
juice

35 kV/cm for 1500 μs; 
T ≤40 °C

86.5 % retention Odriozola-
Serrano et al. 
(2008b)

Orange juice 20 pulses at 80 kV/cm; 
T = 42–44 °C

97.5 % retention Hodgins et al. 
(2002)

15–35 kV/cm for 
100–1000 μs; T ≤35 °C

87.5–98.2 % retention Elez-Martínez 
and Martín-
Belloso (2007)

Strawberry 
juice

35 kV/cm for 1700 μs; 
T ≤40 °C

98 % retention Odriozola-
Serrano et al. 
(2008a)

Grape juice 20 pulses at 65–80 kV/
cm
T increase negligible

No change Wu et al. 
(2005)

Apple juice 
and cider

22–35 kV/cm for 
94–166 μs; T = 26–27 
°C

No change Evrendilek 
et al. (2000)

‘Gazpacho’ 
soup

15–35 kV/cm for 
100–1000 μs; T ≤35 °C

84.3–97.1 % retention Elez-Martinez 
and Martin-
Belloso (2007)

Carotenoids Orange juice 25–40 kV/cm for 
30–340 μs; 
T = 37–72 °C

No significant changes 
in overall content. 
Better stability of 
individual compounds 
compared to thermal 
treatment

Cortés et al. 
(2006)

Tomato 
juice

35 kV/cm for 1500 μs; 
T ≤20 °C

Higher overall content. 
Better stability of 
individual compounds 
compared to thermal 
treatment

Odriozola-
Serrano et al. 
(2009)

Lycopene Tomato fruit 5–30 pulses at 
0.4–2.0 kV/cm

7–45% increase in 
content

Vallverdú-
Queralt et al. 
(2012)

Tomato 
juice

35 kV/cm for 1500 μs; 
T ≤40 °C

110% retention Odriozola-
Serrano et al. 
(2008b)

40 kV/cm for 57 μs; 
T = 45 °C, To = 25 °C

No significant 
difference

Min et al. 
(2003)

Flavonoids Orange juice 35 kV/cm for 750 μs; T 
≤50 °C

No changes in either 
individual flavanones 
nor in total content

Sánchez-
Moreno et al. 
(2005)

(continued)
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et al. (2008a) also showed that high retention of ascorbic acid is found for PEF-
treated tomato fruit or juice.

Vallverdú-Queralt et al. (2012) found that a 44.6% increase in total polyphenol 
content of tomato fruit was achieved under moderate intensity pulsed electric fields 
(1 kV/cm, 4 μs). However, studies on individual phenolic compounds did not show 
a significant effect. For example, Sánchez-Moreno et al. (2005) reported that neither 
changes in the total flavanones were observed, nor in the individual flavanone gly-
cosides and their aglycons hesperetin and naringenin in orange juice by PEF treat-
ment at 35  kV/cm for 750  μs. Likewise, PEF treatment of cranberry juice or 
strawberry juice did not cause any noticeable changes in anthocyanins and ellagic 
acid although they are particularly sensitive to heat treatments and oxidations 
(Evrendilek et al., 2001; Jin & Zhang, 1999; Odriozola-Serrano et al., 2008b).

Dietary chlorophyll derivatives in spinach puree, which have been identified as 
potential chemopreventative agents with antioxidant and antimutagenic activities, 
have been treated by a combination of PEF treatments (20–100 kV/cm) and the 
addition of water-soluble Zn2+ concentrations (20–200 ppm). Electric field strengths 
above 60 kV/cm showed to be detrimental to the color of spinach puree, but a satis-
factory color in the juice was obtained with zinc concentrations below 75  ppm 
without significantly affecting flavor (Soliva-Fortuny, Balasa, Knorr, & Martín-
Belloso, 2009; Yin et  al., 2007). The mechanisms underlying these changes are 
however not fully understood.

In conclusion, as shown in the examples mentioned above, the use of PEF for 
pasteurization has the advantage over heat treatment to preserve vitamins and other 
health-promoting compounds. Most studies have been performed in juices, and 
studies in other products are needed. The use of PEF at low intensity to enhance the 

Table 2.5  (continued)

Compound Product Treatment intensity Effects Reference

Anthocyanins Cranberry 
juice

20–40 kV/cm for 
50–150 μs; 
T = 15–25 °C in Jin & 
Zhang (1999); 
T = 26–27 °C in 
Evrendilek et al. (2001).

no noticeable changes Jin & Zhang 
(1999) and 
Evrendilek 
et al. (2001)

Strawberry 
juice

35 kV/cm for 1700 μs; 
T ≤40 °C

96.5 % retention Odriozola-
Serrano et al. 
(2008a)

Ellagic acid Strawberry 
juice

35 kV/cm for 1700 μs; 
T ≤40 °C

97.8 % retention Odriozola-
Serrano et al. 
(2008a)

Polyphenol Tomato fruit 5–30 pulses at 
0.4–2.0 kV/cm, No T 
information

0.6–32 % increase in 
content

Vallverdú-
Queralt et al. 
(2012)

Chlorophyll Spinach 
puree

20–100 kV/cm for 
50–150 μs, No T 
information

Increased stability by 
increasing electric 
fields adding zinc ion 
and stabilizers

Yin et al. 
(2007)

S. Yang et al.
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production of bioactive compounds in plants by stress response is limited but could 
be a relevant technology to enhance the nutritional value in foods. Further studies 
are still needed to elucidate the mechanisms underlying the preservation or enhance-
ment of bioactive components, specifically in more complex food matrices where 
interaction with the other components is likely to occur.

2.2.5  �Flavor Compounds

2.2.5.1  �Milk

The effects of PEF treatment on volatile compounds are usually dependent on the 
type of compound and the limited information available does not provide an under-
standing of the changes reported. Zhang et al. (2011), using GC-MS, observed that 
PEF-treated milk (30 kV/cm) had a higher content of pentanal, hexanal, and nonanal, 
while methyl ketones, heptanal, and decanal contents were lower than in heat pas-
teurized milk. On the other hand, PEF-treated milk showed no significant differences 
from pasteurized milk with respect to contents of acids (e.g. acetic acid, butanoic 
acid, hexanoic acid, octanoic acid, and decanoic acid), lactones and alcohols, whereas 
2(5H)-furanone was only detected in the PEF-treated milk. Although GC-MS 
detected differences between pasteurized and PEF-treated milk, GC-olfactometry 
showed no significant difference between the two milk samples. It cannot be excluded 
that the differences in microbial inactivation between PEF and heat pasteurized milk 
may be the reason for the changes in flavor compounds observed.

2.2.5.2  �Plant-Based Foods

In plant-based product, flavor has great importance for the consumers’ acceptability, 
especially for juice. Several studies have compared the PEF-treated juice with ther-
mally treated juice with respect to loss of flavor components. However, little is 
known about the effects of the intensity of PEF treatment on the release of flavor 
compounds from the food matrix, and the mechanism and factors that take part in 
the release of these compounds (Soliva-Fortuny et al., 2009).

For example, the flavor of orange juice consists of more than 200 aroma com-
pounds of different chemical nature. The contents of some hydrophobic compounds 
(e.g. limonene, myrcene, valencene, and α-pinene) involved in the flavor were found 
to remain similar or even higher (18–32%) after PEF processing (35  kV/cm for 
59 μs), due to a release of these components from their hydrophobic environment by 
the treatment (Ayhan, Zhang, & Min, 2002). More polar compounds such as octanal, 
decanal, linalool, and ethyl butyrate remain unchanged or with just a little loss 
(Ayhan et al., 2002; Jin & Zhang, 1999).

In general, a loss of 3–9% is found in juices after PEF-treatment whereas a 
reduction of 22% of the volatile compounds has been reported for heat pasteuriza-
tion (Soliva-Fortuny et al., 2009). The losses from PEF treatment could probably be 
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minimized through better control of treatment temperature, which occasionally 
reaches values close to 60 °C in continuous-flow pilot plant equipment (Mañas & 
Vercet, 2006).

Regarding orange juice, Min, Jin, Min, Yeom, and Zhang (2003) and Yeom, 
Streaker, Zhang, and Min (2000) reported a higher content of flavor components 
(α-pinene, myrcene, octanal, limonene, and decanal) in PEF-treated orange juice 
(35–40  kV/cm for 59–97  μs) than in heat-pasteurized juice (94.6  °C for 30  s). 
Consistently, the flavor components of other citrus juices (e.g. orange, lemon, 
grapefruit, and tangerine) are not lost to a significant degree due to PEF treatments 
(Cserhalmi, Sass-Kiss, Tóth-Markus, & Lechner, 2006).

Similarly to what has been described for orange juice, PEF-treated tomato juice 
retain the characteristic flavor-related compounds (e.g. trans-2-hexenal, 
2-isobutylthiazole, cis-3-hexanol) compared with thermal processing (Min, Jin, 
Min, et al., 2003). Likewise, for cranberry juice, which is characterized by its spe-
cial flavor, PEF-treated juices could not be distinguished from untreated juices in 
terms of retention of volatile compounds, indicating that PEF treatment did not alter 
the flavor or aroma profile of cranberry juice (Jin & Zhang, 1999).

In conclusion, studies so far have shown that PEF technology preserves the flavor 
compounds in liquids (juices) to a higher extent than conventionally applied heat 
treatments. Although, kinetic data at different PEF processing conditions is still 
limited and few studies have focused on changes during storage. The formation or 
degradation of some flavor compounds observed in different juices are now well 
understood and may be associated with the microbial or enzymatic activity.

2.3  �Food Microstructure

A number of studies have reported on permeabilization and disintegration of cell 
membranes in plant and animal tissues by the application of PEF treatment 
(Angersbach, Heinz, & Knorr, 2000; Fincan & Dejmek, 2002; Fincan, DeVito, & 
Dejmek, 2004; Gudmundsson & Hafsteinsson, 2001; Knorr & Angersbach, 1998; 
Lebovka, Bazhal, & Vorobiev, 2001; Lebovka, Praporscic, & Vorobiev, 2004). 
When the transmembrane potential conferred by PEF on the cell exceeds the critical 
value, rupture of the cell membrane occurs, and the inner contents of the cell are 
released, producing an osmotic imbalance between the internal and external sur-
roundings of the cell which leads to swelling and eventually death. Depending on 
the intensity of the electric field applied, cell electroporation or rupture can be either 
reversible or irreversible (Vorobiev & Lebovka, 2009). Living cells have repair 
mechanisms, which enable them to recover after PEF treatment, but these mecha-
nisms are still not fully understood. Levine and Vernier (2010) performed molecular 
dynamic simulations to explain the formation and annihilation of pores in a mixture 
of water and phospholipid bilayers by electric fields, but no study has been done in 
biological membranes.

S. Yang et al.



47

2.3.1  �Animal-Based Foods

A number of studies have demonstrated physical changes in meat structure caused 
by PEF (Arroyo, Lascorz, et al., 2015; Bekhit et al., 2016; Faridnia et al., 2014; 
Gudmundsson & Hafsteinsson, 2001). Application of PEF to meat permeabilizes 
the cells of the muscle fibers, which as consequence improves or in turn improves 
the efficiency of meat processing, as well as the quality and the functional attributes, 
such as tenderness, color, and water-holding capacity. As described in previous sec-
tions, the disruption of cell structures by PEF accelerates meat maturation, water 
removal during drying and marinating/curing processes. However, the intensity of 
the PEF treatment needed to accomplish the acceleration of such processes should 
not cause negative effects on the microstructure of foods that are strongly associated 
with sensorial attributes of foods.

For example, extensive microscopy characterization performed by Gudmundsson 
and Hafsteinsson (2001) showed that PEF treatment (1.36 kV/cm and 40 pulses 
each pulse is 2 μs) caused a size reduction of 39% in chicken muscle cell but with-
out causing a visible change in the appearance. Compared with chicken, salmon was 
more affected by PEF treatment. Treatment of salmon with 1.36  kV/cm and 40 
pulses caused leakage of collagen from the extracellular space. Cryo-SEM images 
of PEF-treated beef (M. longissimus thoracis) (0.3–0.6  kV/cm, 8.5–34  kJ/kg) 
showed that the meat became more porous as the electric field strength increased 
(Faridnia et al., 2014). According to Töpfl (2006), PEF treatment can reduce the 
drying time of salted pork shoulder by 80% (from 300 to 60 h) dependent on treat-
ment intensity and salting procedure. Töpfl and Heinz (2007) showed that a PEF 
treatment (3 kV/cm, 5 kJ/kg) prior to immersion in brine (0.08 kg/kg nitrite salt) 
could improve the diffusion of salt and nitrate in pork haunches.

2.3.2  �Plant-Based Foods

Permeabilization of the cell membranes by application of PEF to cellular plant-
based foods, like fruits and vegetables, causes softening of the tissue and, as previ-
ously discussed in this chapter, it improves the extraction ability of bioactive 
compounds and oils and enhances mass transfer (Shynkaryk et al., 2009). As shown 
in Fig. 2.4, Töpfl (2006) reported that the cell disintegration of apple tissue is highly 
related to the intensity of the electric field and the number of pulses. The energy 
required for cell permeabilization is dependent on the type of plant material, and it 
has been reported to be 6.4–16.2 kJ/kg for potatoes (Angesbach & Knorr, 1997), 
0.4–6.7 kJ/kg for grape skins (López, Puértolas, Condón, Álvarez, & Raso, 2008), 
2.5 kJ/kg for red beetroot and 3.9–7 kJ/kg for sugar beet (López, Puértolas, Condón, 
Raso, & Alvarez, 2009; López, Puértolas, Condón, Raso, & Álvarez, 2009).

The softening of plant-based foods caused by PEF treatments have been industri-
ally explored in cutting and/or slicing operations since it significantly reduced the 
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Fig. 2.4  Permeabilization of apple cells as function of electric field intensity. (With permission of 
Töpfl (2006))

Fig. 2.5  Effects of PEF on cutting force of potato tissue compared with untreated tissue. 
(Reproduced with permission from Töpfl (2006))

energy required and extended operation time of knives used for cutting. Töpfl (2006) 
reported a German study performed by Kraus showing an improvement of cut qual-
ity and reduction of approx. 50% cutting force in sugar beet. Further studies by 
Töpfl (2006) reported similar results for potatoes (Fig. 2.5). In addition, to a reduc-
tion in cutting force, PEF pre-treatment before slicing produced smooth and flat 
cutting surfaces, which led to a decrease in oil uptake in frying (Janositz, Noack, & 
Knorr, 2011).

S. Yang et al.
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Although PEF has obvious effects on cell permeabilization, there are few studies 
dedicated to understanding their consequences on the microstructure of plants tis-
sues. Faridnia, Burritt, Bremer, and Oey (2015) performed a comprehensive study 
to gain an in-depth understanding of the effect of PEF (0.2–1.1  kV/cm, 50  Hz, 
1–10 kJ/kg) on the microstructure of potato tubers. Cell viability, leakage of ions, 
and microstructure damages were assessed using tetrazolium salt staining, atomic 
absorption spectrophotometry, field emission scanning electron microscopy and 
energy scattering spectrometer (FESEM-EDS) analysis, and Cryo-SEM, respec-
tively. The results showed that PEF caused an uneven distribution of cell damage 
due to the differences in cellular structures within the potato tuber. Wiktor et al. 
(2016) showed that small cavities, a compact structure, and a high density charac-
terized the microstructure of dried carrots not treated by PEF, while carrots treated 
with PEF (0–5 kV/cm, pulses 0–100, 0–80 kJ/kg) had larger cavities, especially 
when a higher intensity of the electric field was applied.

In conclusion, PEF has a well-documented effect on the permeabilization of 
membranes that surround animal and plant cells and their organelles. The permea-
bilization of membranes causes in efflux of metabolites from the cell contents/
organelles to the outer environment, modifying the ionic strength/pH, facilitating 
many enzymatic reactions and promoting interactions between components that in 
natural structures are separated. These changes may have a positive, negative or 
neutral effect on the final quality of the product, depending on the specific product 
and further processing. Reported studies have determined the critical electric field 
intensity for a number of food matrices.

In plant foods, permeabilization of the cell membrane causes loss of turgor pres-
sure leading to softening of plant tissues. This effect is the base for successful com-
mercial application of PEF for softening of plant tissues (e.g. before potatoes slicing 
for production of chips). In general, limited fundamental studies have been per-
formed to understand structural changes at the microstructural level and their con-
sequences for the release of enzymes or substrates that may enhance quality 
degradation reactions.

2.4  �Sensorial Attributes and Consumer Acceptance

A major advantage of pulsed electric fields over conventional heat treatment is the 
possibility to extend the shelf life of food or increase extraction yield without the 
development of undesirable changes in nutritional and sensorial quality as caused 
by conventional heat treatments. Sensorial attributes of foods, such as color, odor, 
texture, and flavor are important for consumer acceptance and successful industrial 
implementation of PEF.

Despite initial concerns regarding the safety of PEF-treated products, since 2002, 
and especially in the last 5 years, a significant number of studies have reported on sen-
sorial evaluation by human panels of PEF-treated products and overall better accep-
tance of the products in comparison with thermal-treated ones. Table 2.6 presents a 
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summary of the studies performed. Most commonly, a 9-point hedonic scale test has 
been used with untrained assessors, but recently triangle tests and use of trained panels 
have also been used. Juices, nectars, and beverages are by far the type of food products 
most evaluated by sensorial panels. Tests performed with apple juice and apple cider 
showed enhanced flavor of PEF-treated juices compared with heat-treated juice (Azhu 
Valappil et al., 2009; Lee et al., 2017; Sulaiman et al., 2017), but the results depend on 
the processing conditions used in the PEF treatment (Azhu Valappil et  al., 2009; 
Caminiti, Noci, et al., 2011; Caminiti, Palgan, et al., 2011).

Regarding orange juice, the sensorial advantages of PEF compared to thermal 
treatment are less evident. Although Agcam et al. (2014), Ayhan et al. (2002), and 
Min, Jin, Min, et al. (2003) reported that orange juice had higher sensorial scores 
than pasteurized juice, the differences were relatively small. Compared with fresh 
juice, Walkling-Ribeiro, Noci, Cronin, Lyng, and Morgan (2009) observed no 
significant differences from juices treated with PEF combined with sonication. 
Furthermore, as reported by Buckow, Ng, and Toepfl (2013), orange juice thermally 
treated at 98 °C for 11 s did not show significant flavor changes compared to fresh 
orange juice, therefore tangible advantages may be largely dependent on the quality 
of the fresh juice. Two studies with pomegranate juice showed no statistical differ-
ences between PEF-treated and fresh juices, and consumers preferred fresh and PEF 
treated to the thermally processed ones (Evrendilek, 2017; Guo et al., 2014).

The same trend is observed for the other juices, i.e. depending on the processing 
conditions used, the sensory characteristics of the PEF-treated juices are similar to 
fresh juices and better or equivalent to pasteurized ones. Although it is likely that 
PEF has clear advantages in keeping the aroma and flavor compounds of juices, it is 
important to note that, in many studies, the microbial inactivation of thermally-
treated juices and PEF-treated  ones is not equivalent and therefore, the tangible 
advantages cannot be fully assessed.

Moreover, recent studies on the application of PEF to alcoholic beverages, like 
wine (Abca & Evrendilek, 2015; González-Arenzana et al., 2018) and beer (Milani 
et al., 2015) have shown the potential of this technology in controlling the microbial 
activity without affecting the sensorial aspects.

The application of PEF to meat products is more complex due to the different 
types of meat products, and the limited number of studies available does not allow 
extrapolating conclusions. Arroyo, Eslami, et al. (2015) observed that PEF treat-
ment of beef has no impact on consumer’s sensory acceptance (no differences on 
odor) and 60% of panelists scored PEF-treated samples as tender in comparison 
with 27.5% for untreated samples. Further studies, by the same authors (Arroyo, 
Lascorz, et al., 2015) with turkey breast meat, and by Ma et al. (2016) with lamb, 
showed only slight differences in texture and odor between the PEF-treated and 
untreated, except for an increase in oxidation taste in the PEF-treated samples. 
However, treatment of eggs by PEF (in combination with the addition of antimicro-
bials) produced omelets and sponge cakes with acceptable sensorial quality (Espina 
et al., 2014).

The remaining studies reported in the literature were focused on sensorial evalu-
ation of products where PEF has been used as a pre-treatment before the production 
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of apple juice or cider (Schilling et  al., 2008; Turk, Billaud, et  al., 2012; Turk, 
Vorobiev, & Baron, 2012), wine (Luengo et al., 2014; Puértolas, Hernández-Orte, 
et al., 2010; Puértolas, Saldaña, et al., 2010; Vicaş et al., 2017), or olive oil (Abenoza 
et al., 2013; Puértolas & Martínez de Marañón, 2015). In all these studies, no sig-
nificant differences or improvement of the sensory attributes were observed due to 
the use of PEF. Worth noting is that the application of PEF to grapes before wine 
production seems to be a promising technology to improve the quality of wines in 
terms of color, taste and high phenolic content in oak-aged red wines (Luengo et al., 
2014; Puértolas, Saldaña, et al., 2010; Vicaş et al., 2017).

In conclusion, sensorial evaluation of PEF-treated foods by trained panels is 
essential to assess the acceptability of the PEF technology. A number of studies 
have been performed showing a very good potential of this technology for pasteuri-
zation of juices and extraction of oils, wine, and some juices.

2.5  �Conclusions and Outlook

Understanding the effects of pulsed electric fields at the molecular level is still an 
emerging research area. Relatively few studies have focused on the effects of PEF 
on proteins, lipids or polysaccharides with the purpose to explore molecular or 
microstructural modifications of these macromolecules. Contradictory results are 
often reported in the literature, due to differences in PEF equipment used, electric 
fields applied and probably due to more or less associated thermal effects. A better 
understanding of electric field distributions in foods and differentiation between 
thermal and electric fields effects is necessary to get mechanistic insights into the 
effect of PEF on macromolecules. It is necessary also the use advanced in situ meth-
ods for characterization of dynamic changes in these macromolecules, and the 
reversibility of such reactions.

Reported studies have demonstrated the impact of PEF on permeabilization of 
cell membranes and the critical electric field intensity has been determined for a 
number of food matrices. Thus, there is evidence about the effects of PEF on dis-
turbing phospholipid bilayers causing the formation and further development of a 
pore, that can be reversible or not. Modification of the fat globule membrane in milk 
is another example where PEF may influence the adsorption of proteins on the sur-
face of the fat globules, leading to changes in the functionality of dairy products.

Softening of plant tissues before slicing and application of PEF as pre-treatment 
to enhance extraction before the production of wine and olive oil are two successful 
examples where permeabilization of plant cell membranes provides tangible advan-
tages in terms of product quality and process efficiency.

Modification of proteins by PEF is much less understood. Reported studies have 
shown modifications in the secondary structure that are strongly dependent on the 
intensity and duration of electric field strength. However, the temperature increases 
during PEF treatment or the characteristics of the protein solution or protein ingre-
dients such as conductivity, pH, concentration or thermal stability, is often not 
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considered. More fundamental studies are still needed using the advanced method-
ology for protein characterization to understand how PEF can initiate modification 
in proteins and the consequences for protein functionality. In complex food matri-
ces, the effect of proteolytic enzymes needs to be considered, as they will contrib-
ute to such protein modifications.

Modification of polysaccharides (i.e. starch) by PEF has been the focus of a 
number of recent studies that have shown that dissociation, denaturation, and dam-
age of starch granules lead to a decrease of gelatinization temperature and enthalpy. 
Full understanding of these changes has not been achieved.

Regarding minor compounds, such as flavor compounds, vitamins, and other 
bioactive compounds, studies so far showed that for some products, PEF provides 
clear advantages in comparison to thermal processing. However, with exception of 
juices, very limited studies are available to provide the required evidence.

Sensorial attributes of PEF-treated foods evaluated by trained panels has pro-
vided new insight on the consumer acceptance and tangible advantages of PEF 
compared with alternative technologies, and further studies are needed for success-
ful commercialization of this technology.

In conclusion, PEF has the potential for modification of macromolecules and 
microstructures creating a new base for development of ingredients or food prod-
ucts with tailored functionalities. Further research is needed to elucidate the mecha-
nism of PEF-induced modifications in macromolecules, food microstructures and 
consequence for functional properties. Studies with a model or single molecule sys-
tem, as well as with complex formulations or real foods are needed to understand 
the relationships between macromolecules and structure formation.
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Chapter 3
Impact of Ultrasound on Food 
Constituents

Mladen Brnčić and Jana Šic Žlabur

3.1  �Introduction

Ultrasound is one of the non-invasive technologies, which successfully find wide-
spread use in numerous processes in food technology. It represents one of the novel 
technologies that in a very short time rapidly found evolution and implementation 
in various food industry processes and commercial products. Some of the men-
tioned food processes in which ultrasound finds its application include drying, 
freezing, homogenization, sterilization, extraction, bleaching, crystallization, emul-
sification, and filtration. Specific equipment required in mentioned food industry 
applications is constructed to fit ultrasound principles and nowadays successfully 
applied even at the level of larger capacity and industrial scale. All mentioned prove 
that ultrasound is successfully implemented and commercialized in the food indus-
try and for the food products such as fruits and vegetables (dried, juices), meat, and 
dairy products (milk, cheese, chocolate) (Chemat, Zill-e-Huma, & Khan, 2011; 
Kiani, Sun, & Zhang, 2013; Tao, García, & Sun, 2014; Zinoviadou et al., 2015).
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3.2  �Advantageous and Challenges of Using Ultrasound 
on Food Quality

Ultrasound technology shows a significant positive impact on the physicochemical 
and nutritional characteristics of various foods and following numerous advantages 
in its application: significantly shortened duration of the process. Full food process 
can be completed in a very short time (seconds or minutes) compared to the conven-
tional methods with easy and safe use. In addition, the equipment is mostly con-
structed without moving parts and without any danger for the operator. Furthermore, 
for example, in extraction processes, ultrasound treatment significantly enhances 
the yield of various chemical compounds. Compared with traditional technologies, 
it preserves food ingredients such as vitamins, pigments, phenols, and most of the 
thermo-labile compounds. Moreover, ultrasound represents environmentally 
friendly technology coupled with the significant energy savings and also avoidance 
of hazardous organic solvents usage (Table 3.1) (Chemat et al., 2011).

Table 3.1  Possibilities and advantages of ultrasound application in food processing compared to 
conventional methods (Chemat et al., 2011)

Product type Application Conventional method Ultrasound advantages

Meat
Fruits and vegetables, 
dairy products

Freezing/
crystallization

Cooling, freezing by 
contact, by immersion

Less time
Small crystals
Improving diffusion
Rapid temperature 
decreasing

Meat
Vegetables

Cooking Stove, fryer Less time
Improving heat transfer
Organoleptic quality

Fruits and vegetables Drying Atomization, hot gas 
stream, freezing, 
pulverization

Less time
Improving organoleptic 
quality
Improving heat transfer

Juices (liquids) Filtration Filters (membranes 
semi-permeable)

Less time
Improving the filtration 
rate

Food emulsions 
(ketchup, mayonnaise)

Emulsification Mechanical treatment Less time
Emulsion stability 
increased

Alcoholic beverages 
(wine)

Oxidation Contact with air Less time
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3.2.1  �Nutritional Properties

3.2.1.1  �Fruits and Vegetables

Ultrasound is categorized as a non-thermal method with an average increase of tem-
perature between 1 and 2 °C/min (directly immersed sonotrode). This represents 
one of the main ultrasound advantages in preserving various nutritional properties in 
the processing of food and vegetables. Thermo-labile compounds such as vitamins, 
pigments, phenols, and in general, bioactive compounds are sensitive even to a mild 
temperature increase, which is by using ultrasound significantly reduced (Aadil, 
Zeng, Han, & Sun, 2013; Pérez-Grijalba et  al., 2017; Sulaiman, Farid, & Silva, 
2017). Aadil et al. (2013) investigated the influence of sonication on some physico-
chemical parameters of grapefruit juice: acidity and total soluble solids content. 
Sonication treatments were performed immediately after juice extraction in an ultra-
sonic bath at 28 kHz frequency, a power of device set at 70% and a temperature of 
20 °C. Sonication of juices lasted for 30, 60, and 90 min. Compared to the control 
sample of grapefruit juice, pH value, acidity and total soluble solids did not change, 
even after sonication treatments for 60 and 90 min. Similar results of sonication 
effect on some physicochemical parameters (e.g. acidity and total soluble solids) 
were obtained by various research studies (Adekunte, Tiwari, Cullen, Scannell, & 
O’Donnell, 2010; Bhat, Kamaruddin, Min-Tze, & Karim, 2011; Tiwari, 
Muthukumarappan, O’Donnell, & Cullen, 2008; Zou, Hou, Zou, & Hou, 2017; Zou, 
Jiang, Zou, & Jiang, 2016). Opposite results were obtained by Šic Žlabur et  al. 
(2017) in whose research some changes in the content of total acids and total soluble 
solids were determined during the sonication of apple juice with added chokeberry 
powder. Compared to the juice samples conventionally treated and sonicated ones, 
it can be concluded that major changes in the mentioned physicochemical parame-
ters did not occur. The main mechanism of high-intensity ultrasound is the phenom-
enon of transient cavitation, which results in a mild temperature increase of the 
system. The temperature increase affects some physical properties of the liquid, 
primarily in systems where the applied ultrasound power (amplitude) is higher, for 
example in systems with direct immerse ultrasound probe (Knorr, Zenker, Heinz, & 
Lee, 2004; Šic Žlabur et al., 2015). Except for the described parameters, some stud-
ies researched the effect of sonication on some physical parameters of liquid sam-
ples, such as electrical conductivity, density, and viscosity. Aadil et  al. (2015) 
investigated the influence of power ultrasound on the electrical conductivity of 
grapefruit juice. In general, liquid foods such as fruit and vegetable juices are good 
electrical conductors due to the presence of water, vitamins, minerals, and proteins, 
which are good conductors (Aadil et al., 2015; Abid et al., 2013; Zinoviadou et al., 
2015). Therefore, higher values of electrical conductivity suggest a greater content 
of mentioned compounds. Some studies proved a positive impact of sonication on 
electrical conductivity values. Aadil et al. (2015) reported an increase of electrical 
conductivity in samples treated by ultrasound during 90 min for 11% compared to 
the control (untreated) sample. In addition, a slight increase was determined during 
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sonication of blueberry juice and carrot juice, in research works conducted by Zou 
et al. (2017) and Zou et al. (2016), respectively. A positive effect of sonication on the 
electrical conductivity of liquids could be related to the ultrasound possibility to 
break up the cell walls and release (isolation) of cell nutrients (e.g., vitamins, miner-
als, proteins, etc.) in solution. Another physical characteristic of fluid under the 
influence of ultrasound is viscosity, whereby sonication can affect its increase or 
decrease, depending on the fluid type. In liquids, such as fruit juices, the sugar con-
tent is relatively high which ultimately can influence the viscosity during sonication. 
Sonication influenced the isolation, permeation of sugar molecules from cell mem-
branes into solution, which resulted in an increase of viscosity of blueberry juice, 
first of all, because of sugar concentration in the colloidal solution is correlated to 
viscosity (Suárez-Jacobo et  al., 2011). Ultrasound treatment also shows positive 
effects on various biologically active compounds specifically on the nutritional 
composition of fruits and vegetables such as vitamins, minerals, phenols, and pig-
ments. A significant increase in vitamin C content for even 28.45% in grapefruit 
juice was reported (Aadil et  al., 2013). Šic Žlabur et  al. (2017) showed also an 
increase in the content of vitamin C during sonication treatment. In the mentioned 
research, apple juice with added chokeberry powder was sonicated in an ultrasonic 
bath (35 kHz frequency, 140 W) for 5, 10, 15, 20, 25, and 30 min, which signifi-
cantly contributed to the increase of the vitamin C yield. Increase for even 49% in 
vitamin C content was recorded compared to the sample classically treated for the 
same period of time. Vitamin C increase was also recorded in orange juice treated 
by ultrasound in a system with an ultrasonic processor of 1500 W and 20 kHz, and 
a probe of 19 mm diameter (Tiwari, O’Donnell, & Cullen, 2009). Moreover, Abid 
et al. (2013) reported an increase in vitamin C content for 34% during sonication of 
apple juice in an ultrasonic bath for 90 min. Some research studies noticed a possi-
bility of slight decrease of vitamin C content during sonication treatment that can be 
caused by cavitation mechanism (Adekunte et al., 2010; Dias et al., 2015; Ordóñez-
Santos, Martínez-Girón, & Arias-Jaramillo, 2017). During the sonolysis (action of 
ultrasonic waves that act to break down or decompose a substance) of water mole-
cules present in juice sample, hydrogen ions (H+), free radicals (O−, OH−, HO2

−) and 
hydrogen peroxide (H2O2) are formed (Pétrier, Combet, & Mason, 2007). Interactions 
of free radicals promoted during sonication are related to the occurrence of the oxi-
dation process, which can be caused by vitamin C degradation. Compounds such as 
flavonoids, phenolic acids, flavones, flavonols, and in general antioxidants, show a 
positive impact during sonication treatment mainly due to the formation of OH− 
radicals, which can improve the functionality of the mentioned compounds. In other 
words, phenol activity in foods depends, among other factors, on the hydroxylation 
degree, so as the hydroxylation degree is higher, the functionality of antioxidants 
will be improved (Ashokkumar et al., 2008). Various scientific studies proved that 
sonication is correlated with the increase of phenolic compounds in different fruit 
and vegetable samples. Bhat et al. (2011) noted an increase of total phenol com-
pounds in sonicated lime juice for 28% compared to the control sample, while Aadil 
et al. (2013) noticed an increase of 9% in grapefruit juice. Furthermore, Alighourchi, 
Barzegar, Sahari, and Abbasi (2013) noted an increase of total phenolic compounds 
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content during sonication of pomegranate juice during different applied ultrasonic 
powers for 17%. Similarly, Abid et al. (2013) showed an increase in total phenol 
content of sonicated apple juice for 9.5%, total flavonoid content for 30% and total 
flavonols for 44% compared to the control sample. Moreover, Zou et  al. (2017) 
observed the same behavior in sonicated blueberry juice as an increase of 11%, 
whereas Šic Žlabur et al. (2017) observed an increase in total phenol content for 
12% in apple juice with added chokeberry powder. In addition, a significant increase 
of total phenol content, even up to 31%, was determined in sonication of different 
stevia (Stevia rebaudina Bertoni) extracts (Šic Žlabur et al., 2015) and during extrac-
tion of phenolic compounds from Chilean papaya fruits for 11% (Uribe, Delgadillo, 
Giovagnoli-Vicuña, Quispe-Fuentes, & Zura-Bravo, 2015). Sonication treatment 
and precisely cavitation mechanism cause the cell wall disruption that facilitates the 
release of bound and free phenolic compounds. Except mentioned, the second pos-
sible reason for the enhancement of phenolic compounds content during sonication 
might be an increase of polyphenol oxidase (PPO) enzyme activity (Bhat et  al., 
2011). In Table 3.2, some examples of polyphenol extraction possibilities by ultra-
sound from various vegetable sources are presented. From the group of polyphe-
nols, it is important to emphasize the effect of sonication treatment on anthocyanin 
level, since some research studies suggested a negative impact on anthocyanin con-
tent (Tiwari, O’Donnell, Muthukumarappan, & Cullen, 2008; Tiwari, O’Donnell, 
Patras, & Cullen, 2008). On the other hand, Šic Žlabur et al. (2017) noted a positive 
impact of sonication on anthocyanin content in apple juice with added chokeberry 
powder. In the mentioned research, sonication has contributed to an increase in 
anthocyanin yield for even 72%. Also, a positive effect of sonication treatment is 
recorded for the extraction of anthocyanins from “Purple Majesty” potato (Mane 
et al., 2015) and from dried black chokeberry (Galvan d’Alessandro, Kriaa, Nikov, 
& Dimitrov, 2012). In a similar work, Zou et  al. (2017) recorded an increase of 

Table 3.2  Ultrasound possibilities of polyphenol extraction from various fruit and vegetable 
sources (Medina-Torres, Ayora-Talavera, Espinosa-Andrews, Sánchez-Contreras, & Pacheco, 
2017)

Vegetable source Compounds Advantages Reference

Pomegranate 
(peel)

Total 
polyphenols

Increased yield 
(24%)

Pan, Qu, Ma, Atungulu, and McHugh 
(2011)

Grapes (seeds) Phenols Enhanced 
extraction yield

Soria and Villamiel (2010)

Grapes (fruit) Resveratrol Increased yield 
(24–28%)

Barba, Zhu, Koubaa, Sant’Ana, and 
Orlien (2016)

Grapes 
by-products

Polyphenols Increased yield 
(50%)

Barba et al. (2016)

Garlic, wild Bioactive 
compounds

Better extraction Tomšik et al. (2016)

Grape, pomace Polyphenols Increased 
extraction

Drosou, Kyriakopoulou, Bimpilas, 
Tsimogiannis, and Krokida (2015)

Purple Majesty 
potato

Anthocyanins Increased 
extraction

Mane, Bremner, Tziboula-Clarke, and 
Lemos (2015)
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anthocyanidin content in sonicated blueberry juice for 17%. In a research conducted 
by Alighourchi et al. (2013), a slight increase (4%) of total monomeric anthocyanins 
in pomegranate juice was recorded while lower ultrasonic power (50%) was applied, 
however, when higher ultrasonic powers (75% and 100%) were applied, a decrease 
of anthocyanins was observed. Anthocyanins are thermolabile compounds, which 
the content strongly depends on various environmental factors such as light, tem-
perature, pH value, oxygen presence, etc. During sonication, the optimization of 
process factors is crucial for anthocyanin preservation (Tiwari, Patras, Brunton, 
Cullen, & O’Donnell, 2010), mainly because ultrasound factors such as higher 
ultrasonic power or longer time period of sonication can strongly affect the anthocy-
anin degradation.

Besides polyphenols, yet other important nutritional constituents of fruits and 
vegetables are plant pigments, which give fruits, vegetables, and their products 
characteristic colors. In fruits, vegetables and their products, the most common pig-
ments are chlorophylls, carotenoids, betalains, and anthocyanins. Mentioned pig-
ments are extremely sensitive compounds especially in terms of food processing. 
Food processing operations, which mostly involve the use of heat, cause significant 
degradation and loss of plant pigments (Ngamwonglumlert, Devahastin, & 
Chiewchan, 2017). Different research studies show a positive impact of sonication 
on plant pigments content. From the carotenoids, an increase of the total carotenoid 
content has been published by Ordóñez-Santos et al. (2017) in sonication of Cape 
gooseberry (Physalis peruviana L.) juice; for 14% in sonication of carrot juice (Zou 
et al., 2016), while an increase of 13% in β-carotene content was recorded in soni-
cated pomegranate juice (Alighourchi et al., 2013). Moreover, Lianfu and Zelong 
(2008) have proven an increase of lycopene yield in the application of ultrasound 
combined with microwave-assisted extraction from tomato paste. Rosu, Nistor, 
Miron, Popa, and Cojocaru (2017) studied the influence of ultrasound-assisted 
extraction of photosynthetic pigments, among others on the content of chlorophyll 
a and b from a dried drill. Ultrasound-assisted extraction was significantly more 
efficient compared to the conventional technique, with an increase of chlorophyll a 
yield by 10%, and chlorophyll b by 20%.

Since sonication is extremely effective in increasing the yield of different poly-
phenolic compounds, antioxidant activity is also under its strong influence. In gen-
eral, antioxidant activity is in positive correlation with the content of vitamins, 
minerals, phenolic compounds, pigments, and in general bioactive compounds. 
Therefore, samples with higher content of bioactive compounds will exhibit a stron-
ger and higher antioxidant activity (Carbonell-Capella, Barba, Esteve, & Frígola, 
2014; Šic Žlabur et al., 2015). In addition, different research studies proved the posi-
tive effect of ultrasound on the antioxidant activity of different fruit and vegetable 
samples. Sulaiman et al. (2017), in the thermosonication of apple juice, showed 20% 
higher values of antioxidant activity compared to the untreated juice, Aadil et al. 
(2015) showed about 11% increase of antioxidant activity in sonicated grapefruit 
juice, while Bhat et al. (2011) showed an increase in the antioxidant activity of soni-
cated lime juice for 35%. In addition, Abid et al. (2013) observed an increase of 21% 
in antioxidant activity of sonicated apple juice, whereas Zou et al. (2017) noticed an 
increase of antioxidant activity in sonicated blueberry juice for even 38%.
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3.2.1.2  �Meat Products

One of the most widespread procedures in meat processing is brining, which is 
primarily used to maintain the juiciness, tenderness, flavors and shelf life of meat 
products (Ozuna, Puig, García-Pérez, Mulet, & Cárcel, 2013). Brine represents a 
mixture of salt and water in which meat is marinated for a certain time period. 
Nowadays, we are faced with many chronic illnesses associated with excessive salt 
intake, including most of all high blood pressure and the risk of coronary diseases 
(Aburto et  al., 2013). Precisely, because of the higher rates of chronic diseases 
associated with excessive salt intake. World Health Organization in 2012 recom-
mended a reduction of salt intake for adults from 5 g/day to 2 g/day (Lim et al., 
2012). At the same time, different consumer habits from Europe, North America, 
and Australia suggest that even 20% salt in the diet come from meat products 
(Ruusunen & Puolanne, 2005). Therefore, one of the biggest challenges facing the 
meat processing industry is to create products with less salt. Ultrasound technology 
is successfully implemented to reduce salt content but simultaneously speeding up 
salting and curing processes in meat production (Inguglia, Zhang, Tiwari, Kerry, & 
Burgess, 2017). Different research studies proved significantly faster NaCl increase 
in meat treated by ultrasound (Cárcel, Benedito, Bon, & Mulet, 2007; Siró et al., 
2009). The cavitation phenomenon consequently affecting the mass transfer 
between the liquid and solid matrices, which is the base for further processes devel-
oping on the tissue level and influencing in general salt reduction. In the process of 
meat brining, ultrasound helps better salt distribution causing increased salt gain 
rate, which ultimately results in a lower need of NaCl used in the brine solution 
(Alarcon-Rojo, Janacua, Rodriguez, Paniwnyk, & Mason, 2015; Tao & Sun, 2015). 
Except for brining, one of the most used procedures in the preparation of various 
meat products in the meat industry is marination. Similar to brining, marination 
process includes incorporation of an aqueous or oily solution, which contains dif-
ferent ingredients and/or additives usually salt, polyphosphates, flavorings, etc., in 
different types of meat muscle (e.g., pork, beef, chicken, turkey, lamb, etc.) 
(Tapasco, Restrepo, & Suarez, 2011). Besides extension of the shelf life of such 
prepared meat product, one of the most important functions of marination is to 
increase the meat juiciness and to positively affect the meat texture by increasing 
the water retention capacity in myofibrillar tissue (Xargayó, Lagares, Fernández, 
Borrell, & Juncá, 2004). Several techniques for marination are often in use (e.g., 
injection, immersion and massaging) (Alvarado & McKee, 2007) while beside 
mentioned traditional/conventional techniques, alternative/non-thermal ones such 
as ultrasound-assisted marination technology, are increasingly developed (Chemat 
et  al., 2011). One of the successful applications of ultrasound in the marination 
process was demonstrated in the research from the group of authors González-
González et al. (2017). From bovine muscle (Longissimus dorsi) samples prior to 
treatments, bone, fat, and connective tissue were removed and meat samples were 
cut into pieces having dimensions of 2  ×  2  ×  2.5  cm. Such meat samples were 
placed in polypropylene bags and brine solution prepared from a mixture of 
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different ingredients and additives (sodium chloride, monosodium glutamate, gar-
lic, onion, black pepper, dextrose, citric acid, silicon dioxide, and yellow 5 (tartra-
zine)) and water was added. Sonication treatments were performed in an ultrasonic 
bath at a frequency of 40 kHz and an intensity of 11 W/cm2 while the total time for 
marination was 20, 40 and 60 min. Based on the obtained results, the authors con-
cluded that ultrasonic treatment can be a good alternative to traditional marination 
process due to the better distribution of brine solutes in the meat. However, the 
results of the sensorial analysis showed that ultrasound-assisted marination did not 
significantly affect the sensory properties of beef. Triglycerides, fats, and more 
specifically fatty acids are an important part of daily diet, especially in the term of 
energetic value. However, lately, more and more foods with increased fat content 
are consumed, which ultimately result in increased blood fat and consequently in 
the development of various chronic diseases (e.g., cardiovascular diseases) (Troy, 
Tiwari, & Joo, 2016). Among others, pork is a very popular meat type in daily con-
sumption, which besides valuable compounds such as proteins, fibers, vitamins, 
and minerals, contains high lipid levels (Ojha et al., 2017). Many authors suggest 
that the nutritional value of meat and meat products can be increased by reducing 
the total fat content and energetic value, and by enhancing the fatty acid content 
(Jiménez-Colmenero, 2013; Olmedilla-Alonso, Jiménez-Colmenero, & Sánchez-
Muniz, 2013). In the context of nutritive value, it is not enough to increase the total 
amount of fatty acids but to reduce the content of saturated fatty acids and at the 
same time to increase the content of unsaturated fatty acids, which shows numerous 
health benefits (Mapiye et al., 2015). One of the possibilities to enhance the fatty 
acid profile of meat type with a high content of saturated fatty acids (i.e., pork) is 
the encapsulation of omega-3 fatty acids (unsaturated) into the meat. From previ-
ous research studies, fish oil, rich in omega-3 fatty acids were successfully micro-
encapsulated in order to enhance the profile of fatty acids. So far, several techniques 
have been successfully implemented for needs of fatty acids encapsulation. 
However, ultrasound has shown a number of beneficial effects, especially in the 
terms of assisted diffusion of various ingredients, among others, fatty acids, 
between food matrices (Cárcel et al., 2007; Ozuna et al., 2013). Ojha et al. (2017) 
investigated ultrasonic-assisted incorporation of nano-encapsulated omega-3 fatty 
acids in pork meat. More precisely, for research purposes, porcine meat of M. semi-
tendinosus was sliced into meat cubes (dimensions 4 × 4 × 4 mm) while all visible 
fat from each muscle was manually removed. Such prepared pork meat cubes were 
immersed in a suspension of nanovesicles where fish oil was used and placed in an 
ultrasonic bath (frequency 25 kHz) for 30 and 60 min. Mentioned authors proved 
significant positive impact of ultrasound in combination with nanoencapsulation on 
increase of beneficial fatty acids in pork meat, primarily the increase of eicosapen-
taenoic acid (EPA) and docosahexaenoic acid (DHA). In addition, it is important to 
emphasize that the authors highlighted that the atherogenic index (AI) remained 
constant after treatment, while the thrombogenic index (TI) and omega-3/omega-6 
ratio were beneficially modified.
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3.2.1.3  �Dairy Products

High power ultrasound has been used in various milk processing applications such 
as acceleration of mass transport processes in mixing, degassing of liquid foods, 
filtration, polysaccharide depolymerization, viscosity modification, induction of 
oxidation/reduction reactions, extraction of proteins, microbial and enzyme inacti-
vation, induction of nucleation for crystallization and preparation of submicron 
emulsions (Arzeni et al., 2012). It may cause two different effects: physical and 
chemical effects. Ultrasound could be used in liquid and gaseous media. In liquid 
medium, ultrasound mechanism is based on the cavitational phenomenon. High-
intensity ultrasound is characterized by low frequencies within ultrasonic spectra of 
sound and range from 18 to 100 kHz. Well coupled with strong nominal output 
power (W), it can cause a huge release of energy, making both splitting of intermo-
lecular and intramolecular bonds. During such activity in the liquid medium, cavita-
tion bubbles are formed in microscale size filled with gasses. Bubble collapses once 
reaching a critical size, spreading energy into surrounding liquid medium. 
Consequences of such ultrasonic mechanism could lead to temperatures up to 
5500 K and pressure up to 100 MPa (Dujmić et al., 2013). The functional properties 
of starch, proteins and other food constituents have been significantly affected by 
the physical and chemical effects generated by acoustic cavitation, shear, micro-jet 
and acoustic streaming (Chandrapala, Oliver, Kentish, & Ashokkumar, 2012). 
Pasteurized homogenized milk (PHSM) was the issue of the work of Shanmugam, 
Chandrapala, and Ashokkumar (2012) where samples were treated with ultrasound 
of 20 kHz frequency, 20 and 41 W of actual dispersed device power levels, and 
varied times of treatment. They concluded that whey proteins, as well as whey-
whey aggregates that were present in PHSM as constituents during aggressive treat-
ment of high-intensity ultrasound, were denatured from their original form and 
shape, which results in the formation of whey-whey/whey-casein aggregates. 
Native-PAGE has shown that ultrasound treatment significantly increases κ-casein 
content from whey protein when applying up to 45 min of treatment for both actual 
power levels propagated within the samples (20/41 W). Further treatment (up to 
60 min) led to decrease the κ-casein content. Changes in size of fat globules and 
casein micelles were significant for both power levels of ultrasonic propagation, 
while milk viscosity did not show any change after ultrasound treatment under any 
applied conditions. Chandrapala, Zisu, Kentish, and Ashokkumar (2012) evaluated 
the changes in the secondary and tertiary structure of α-lactalbumin, β-lactoglobulin, 
and their mixtures after high-intensity ultrasound (HIU) treatment. Sonication of 
β-lactoglobulin showed a slight increase in the reactive thiol content and surface 
hydrophobicity due to the time of treatment and unfolding of the dimer structure. 
Only minor changes in the secondary and tertiary structures occurred for individual 
β-lactoglobulin. α-Lactalbumin was more influenced by HIU treatment. Mixtures of 
α-lactalbumin/β-lactoglobulin upon sonication have shown an increase of hydro-
phobicity, but only up to the first 10 min of treatment, while prolonged ultrasonic 
treatment led to decrease the hydrophobicity followed by a significant increase of 
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the aggregate particle size. This fact probably occurred due to exposed thiol in the 
β-lactoglobulin ability to create interactions with α-lactalbumin disulfide bonds. 
Chandrapala, Zisu, Palmer, Kentish, and Ashokkumar (2011) also examined the 
structural changes in milk globular proteins, α-lactalbumin and β-lactoglobulin in 
whey protein concentrate. Whey proteins and whey protein concentrates are impor-
tant ingredients of dairy industry, primarily due to their valuable nutritional compo-
sition (Brnčić, Ježek, Rimac Brnčić, Bosiljkov, & Tripalo, 2008; Brnčić, Tripalo, 
Brncic, et al., 2009; Brnčić, Tripalo, Penava, et al., 2009; Brnčić, et al., 2011). Since 
one of the necessary steps in the dairy industry for the production of different prod-
ucts are processes assuming the use of heat, one of the biggest challenges of the 
dairy industry is the reduction of the processes involving the application of tem-
peratures higher than 70 °C. Denaturation of proteins, as well as the exposure of 
internal thiol groups, begins at temperatures greater than 70 °C (Bernal & Jelen, 
1985). The main consequence of whey protein denaturation is the formation of 
large aggregates composed of complexes formed from denaturated whey proteins 
themselves and casein micelles, which ultimately reflects on excessive thickening 
or gelling during thermal processing (Paulsson & Dejmek, 1990). Because of all 
mentioned, greater development of methods that do not assume the use of high 
temperatures is necessary. Chandrapala et al. (2011) investigated the effect of soni-
cation on reconstituted whey protein concentrate solutions. Precisely, whey protein 
concentrate solutions were sonicated in a system with an ultrasonic probe of 19 mm 
diameter, a frequency of 20 kHz, a nominal output power of 450 W (31 W was the 
power delivered to the solution), an amplitude of 50%, and for 1, 5, 10, 20, 30, and 
60 min. Thermal analysis of whey proteins, surface hydrophobicity, and thiol group 
determination was examined. Based on the conducted research, the authors con-
cluded that sonication resulted in small changes in the thermal behavior of proteins, 
during which denaturation temperatures of proteins did not change. In sonicated 
whey protein concentrate sample solutions, changes occurred in thiol group con-
tent, and only minor changes were observed in protein secondary structures and 
surface hydrophobicity. Changes in protein conformation could be related to the 
functional properties of proteins such as solubility, foaming capacity, and flexibil-
ity. Significant changes in viscosity of protein solutions were determined during 
sonication treatment, where viscosity is significantly reduced (Ashokkumar, 
Kentish, et  al., 2009; Ashokkumar, Lee, et  al., 2009; Hu et  al., 2013; Zisu, 
Bhaskaracharya, Kentish, & Ashokkumar, 2010). Reduction of viscosity during 
sonication is a direct consequence of cavitation, which causes a reduction in aggre-
gate size. A significant effect of ultrasound was also observed for casein proteins. 
Liu, Juliano, Williams, Niere, and Augustin (2014a), Madadlou, Mousavi, Emam-
djomeh, Ehsani, and Sheehan (2009) and Nguyen and Anema (2010) concluded 
that the average size of casein micelles was significantly reduced during sonication, 
which can affect its functionality. Opposite, other authors observed that sonication 
did not affect casein micelle size or composition, however, controlled application of 
ultrasonic energy can break up large casein aggregates, which influences some 
physical properties (e.g., viscosity) (Chandrapala, Martin, Zisu, Kentish, & 
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Ashokkumar, 2012). It has been shown that disruption of casein micelles is under a 
strong influence of sonication at high pH values (Liu et al., 2014a). In the men-
tioned research, reconstituted skim milk was sonicated at an energy input of 286 kJ/
kg using 20 kHz at pH values ranging from 6.7 to 8. The authors concluded that at 
higher pH values, ultrasound caused greater disruption of casein micelles causing 
the release of proteins from the micellar to the serum phase.

3.2.2  �Textural Properties

3.2.2.1  �Fruits and Vegetables

Textural properties are a critical quality attribute of fresh fruits, vegetables, and their 
products in the consumer demands. For example, some fruit and vegetable species 
are characterized by soft texture and low firmness (high water content) and are 
mostly exposed during storage to a rapid loss of firmness. The direct consequence 
is a significant shortening of the postharvest life. Some researchers investigated the 
effect of ultrasound on fruit firmness (Brnčić et  al., 2010). Cao et  al. (2010) 
immersed freshly harvested strawberries in an ultrasonic water bath and treated it 
with different ultrasonic frequencies, at a power of 350 W, and for 10 min. Ultrasonic 
treatment significantly inhibited fruit softening and maintained high levels of fruit 
firmness during storage. Thus, it can be concluded that ultrasound positively influ-
enced the maintaining of fruit firmness and prolonged the shelf life. Similarly, 
Alexandre, Brandão, and Silva (2012) observed that ultrasound significantly influ-
enced the firmness retention of strawberry samples.

Besides, in a fresh state, fruits and vegetables are often processed, while one of 
the most common processes is drying. Ultrasound finds its successful application as 
a pre-treatment in the drying process of different fruits and vegetables. The main 
ultrasound advantage in the drying process is the increase of mass transfer rate 
between the cell and its extracellular surroundings, which results in significantly 
shortened drying time but also in the preservation of nutritionally valuable com-
pounds (Fernandes & Rodrigues, 2007; Nowacka, Wiktor, Śledź, Jurek, & Witrowa-
Rajchert, 2012). The changes of textural properties during ultrasound application 
are unavoidable since sonication causes the creation of microscopic channels in 
plant tissue that reduce the diffusion boundary layer and increase the convective 
mass transfer (Fernandes & Rodrigues, 2007; Mieszczakowska-Frąc, Dyki, & 
Konopacka, 2016). Nowacka et al. (2012) investigated the application of ultrasound 
as a pre-treatment of apple drying and its influence of some physical properties of 
dried material. Ultrasonic-treated apple cubes showed approximately 10% higher 
shrinkage, 6−20% lower density, and even of 9−14% higher porosity compared to 
the untreated samples. Moreover, in a study conducted by Dujmić et  al. (2013), 
significant changes in the textural properties, specifically firmness and elasticity, of 
dried pear were noted while pre-treated by high-intensity ultrasound.
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3.2.2.2  �Meat Products

One of the greatest demands to maintain the meat quality is improving the meat 
tenderness. For instance, proteases, which are responsible for proteolysis (hydroly-
sis of peptide bonds) of myofibrillar and cytoskeletal proteins and the loss of col-
lagen (connective tissue compound), are the main factors that affect meat tenderness 
(Lawrie & Ledward, 2006). In the meat processing industry, several methods (e.g., 
mechanical, biochemical, enzymatic, chemical, etc.) are focused on increasing the 
meat quality in term of achieving the satisfactory tenderness (Istrati, 2008). One of 
the most applicable methods to achieve the desired tenderness of the meat is enzyme 
(e.g., papain, bromelain, and ficin) use. However, ultrasound development signifi-
cantly influenced the possibilities of improving meat quality. As a non-thermal 
method, ultrasound finds its application in the meat industry in terms of improving 
some of the most important meat properties. The main mechanism of high-intensity 
ultrasound action is related to the cavitation phenomenon, which causes physical 
disruption of the muscular tissue and results in increased release of cathepsin, cal-
cium, and in general, results in the migration of proteins, minerals, and other com-
ponents associated to meat tenderness (Turantaş, Kılıç, & Kılıç, 2015). Barekat and 
Soltanizadeh (2017) investigated the impact of high-intensity ultrasound and papain 
application on meat tenderness on samples of Longissimus lumborum muscles. 
Ultrasound treatment involved the application of ultrasonic radiation applied using 
a probe with the following operation conditions: frequency of 20 kHz, powers of 
100 and 300 W, a constant amplitude of 100%, and time periods of 10, 20, and 
30 min. Results from the mentioned research proved exceptional efficiency of ultra-
sound at 100  W for 20  min in combination with papain on the beef tenderness. 
Furthermore, other scientific studies related to the impact of ultrasonic treatment on 
the meat tenderness have published many results mainly related to the fact that 
ultrasound effects are directly correlated to the acoustic parameters: intensity, fre-
quency, time and temperature (Stagni & De Bernard, 1968). For example, at low 
ultrasonic intensities (2 W/cm or 1.55 W/cm), no changes on the histological struc-
ture of muscle, and on tenderization of meat were reported (Pohlman, Dikeman, & 
Kropf, 1997; Zayatas, 1971). Similarly, in another research conducted by Pohlman 
et al. (1997), ultrasonic treatment did not significantly affect the meat properties; 
specifically, no improvement in aging, shear, sensory, and cooking characteristics of 
the beef Pectoralis muscle have been observed. Reported results suggested that low 
ultrasonic intensities do not have a significant influence on textural meat properties 
(not sufficient to cause myofibrillar or cellular disruption). Contrary, some other 
results proved an effective impact of sonication with a significant improvement of 
tenderness, collagen solubility, myofibrillar degradation and a significant decrease 
in shear force values (Dickens, Lyon, & Wilson, 1991; Nishihara & Doty, 1958; 
Roncalés, Ceña, Beltrán, & Jaime, 1993; Smith, Cannon, Novakofski, McKeith, & 
O’Brien, 1991; Stagni & De Bernard, 1968).

Collagen as a main structural protein in the extracellular space of the connective 
animal tissues is also under the strong influence of sonication phenomenon. 
Reduction in molecular weight of fibrous proteins such as collagen and keratin was 
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observed under the mechanical effects of ultrasonic cavitation, which caused 
mechanical cleavage of the mentioned proteins (Coakley & Nyborg, 1978). Also, 
other studies recorded significant fragmentation of collagen macromolecules during 
sonication (Lyng, Allen, & McKenna, 1997, 1998; Nishihara & Doty, 1958). Some 
other studies also investigated the effect of high-intensity ultrasound on some tex-
tural properties of meat, such as the influence of sonication on the stability of the 
connective tissues. Roberts (1991) applied high power ultrasound on beef 
Longissimus muscle at an intensity of 2 W/cm, a frequency of 40 kHz, and during 
2 h, which resulted in the improvement of the meat texture by reduction of intra-
muscular connective tissues level. Molecular degradation occurring during sonica-
tion and thus degradation of macromolecules such as proteins might also be the 
result of some sonochemical influences that occur when gas bubbles collapse and 
temperature in “hot spots” (localized heat increase) reaches approximately 
9700 °C. Temperature increase produces chemical changes such as the formation of 
free radicals, which cause further destructive changes (e.g., hydroxy radicals, which 
are breaking hydrogen bridges) (Alligar, 1975). Except for collagen, the ultrasound 
effect is also proved over the myofibrillar tissues through its influence on the struc-
ture of proteins (i.e., depolymerization). Roncalés et  al. (1993), Stagni and De 
Bernard (1968), and Zayas and Strokova (1972) in their studies proved the mechani-
cal and chemical effects of sonication on the degradation of myofibrillar tissues in 
different meat types, as well as changes in protein properties, such as structure and 
enzymatic activity. Except for tenderness, one of the most important meat attributes, 
which is also linked to the meat textural and sensorial characteristics during con-
sumption, is water-holding capacity (Huff-Lonergan & Lonergan, 2005). Water-
holding capacity is defined as the ability of meat (postmortem muscle) to retain 
inherent water. It’s an important property of fresh meat that affects the overall qual-
ity of the end product and influences the processing characteristics. For example, 
lower meat quality might result after processing in low water-holding capacity com-
pared to fresh meat (Huff-Lonergan, 2010). Water-holding capacity is significantly 
affected by changes in myofibrils followed by degradation of mentioned muscle 
fibers during postmortem period. In addition, different biochemical and biophysical 
processes during postmortem period contribute to the development of the water-
holding capacity of meat products (Dolatowski & Stadnik, 2007; Huff-Lonergan, 
2010). Water-holding capacity of meat can be affected and improved by some tech-
nological processes such as curing, which is a very important process for meat prod-
ucts, primarily in term of enhanced extraction of myosin proteins that reduce 
hardness of meat via increasing of water holding capacity (Kang, Gao, Ge, Zhou, & 
Zhang, 2017). Different curing methods, among others, assume that salt injection or 
tumbling ensure rapid penetration of brine into muscles (Casiraghi, Alamprese, & 
Pompei, 2007), and very often ends with a significant mechanical damage of meat. 
This mechanical damage can cause further undesirable changes such as microbial 
contamination and lose of salt-soluble proteins (Wang, Xu, Kang, Shen, & Zhang, 
2016). Another major drawback of the commonly mentioned methods is prolonged 
time since long duration for example in salt tumbling is required for the effective-
ness of the process, which may result in increased heat and affect the product’s 
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quality (Siró et al., 2009). Considering all of the above mentioned, ultrasound is an 
emerging technology with very successful features in accelerating the mass trans-
port phenomenon and inducing textural changes in meat products (Kuijpers, 
Kemmere, & Keurentjes, 2002). Dolatowski and Stadnik (2007) proved that ultra-
sound positively affected the water-holding capacity during aging of muscle sam-
ples (M. semimembranosus) of young bulls treated with a frequency of 45 kHz and 
low-intensity ultrasound (2 W/cm) for 120 s. Kang et al. (2017) investigated the 
influence of ultrasound during curing of beef. According to the obtained results, the 
authors revealed that ultrasound-assisted curing results in significant improvement 
in the water-holding capacity and tenderness of the meat. The samples treated by 
ultrasound during curing showed increased water-holding capacity values. Similar 
results were obtained by Stadnik, Dolatowski, and Baranowska (2008) on beef 
samples.

3.2.2.3  �Dairy Products

Liu, Juliano, Williams, Niere, and Augustin (2014b) evaluated the gelation proper-
ties of rennet gels made from milk sonicated at different pH values (6.7 and 8.0). 
The results of the study showed that the gelation properties were significantly modi-
fied. Gelation was faster in rennet gels made from sonicated milk at pH 8.0 and re-
adjusted back to pH 6.7, compared with milk sonicated at pH 6.7. However, at the 
same time, rennet gels sonicated at pH 6.7 were firmer compared to non-sonicated 
milk. Similar results of renneting behavior during sonication at different pH values 
were also determined in the works described by Chandrapala, Zisu, Kentish, and 
Ashokkumar (2013) and Chandrapala et al. (2013). Finally, many scientific reports 
mentioned that sonication exhibits major impact on milk gel properties (Chandrapala 
et  al., 2013; Riener, Noci, Cronin, Morgan, & Lyng, 2009, 2010; Vercet, Oria, 
Marquina, Crelier, & Lopez-Buesa, 2002). In yogurt production, one of the main 
challenges is satisfactory, shown through characteristic textural properties in terms 
of soft and viscous product with a creamy texture, reduction of whey and slightly 
acidic taste. Basic steps in yogurt production gather acidification, fermentation and 
heat treatment. During fermentation, a textural defect of yogurt called graininess, 
which has a major impact on the sensorial properties of the final product, especially 
visual assessment, and in-mouth perception, often occurs. The main cause of graini-
ness occurrence is particles of larger dimension, which besides visual appearance 
also affect the rheological properties, viscosity, and firmness (Sonne, Busch-
Stockfisch, Weiss, & Hinrichs, 2014; van Marle, van den Ende, de Kruif, & Mellema, 
1999). Nöbel, Protte, Körzendörfer, Hitzmann, and Hinrichs (2016) produced 26 
stirred samples of yogurt and sonicated them with a frequency of 35 kHz for 5 min. 
The authors concluded that sonication resulted in the apparition of larger particles, 
while the increase of dry matter content affected the rheological properties of 
yogurt. Two important processes in the dairy industry, where ultrasound finds a 
significant implementation, are emulsification and homogenization (Brnčić et al., 
2008). In both processes, ultrasound shows several crucial advantages that are 
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reflected in significant energy savings (energy efficiency), higher emulsion stability, 
a significant reduction of surfactants uses as well as controllable size distributions. 
All mentioned advantages give many benefits of using ultrasound over conventional 
methods such as mechanical shaking, high- or ultra-high-pressure homogenizing 
and microfluidizing (Abismaïl, Canselier, Wilhelm, Delmas, & Gourdon, 1999; 
Juang & Lin, 2004). Cavitation that develops during sonication causes bubble col-
lapse near or at the oil-water interface, resulting in disruption and mixing of two 
phases forming a fine emulsion (Thompson & Doraiswamy, 1999). One of the 
application possibilities of ultrasonic emulsification was demonstrated by 
Shanmugam and Ashokkumar (2014) through the incorporation of food oils in milk 
systems. The authors used ultrasound for the incorporation of flaxseed oil in skim 
milk. For emulsification of flaxseed oil in skim milk, 20 kHz system with an ultra-
sonic probe was used without any need for surfactants. Treated samples showed 
sufficient stability for even 9 days. Similar to the described ones, other scientific 
studies proved successful sonication applications of emulsification in milk systems 
with improved stability (Jafari, Assadpoor, He, & Bhandari, 2008; Jafari, He, & 
Bhandari, 2007; Jincai, Shaoying, & Rixian, 2013; Lad & Murthy, 2012; O’Sullivan, 
Murray, Flynn, & Norton, 2016; Yanjun et al., 2014). Some dairy products (e.g., 
milk, yogurt, ice cream, etc.) require first for their production, a homogenization 
step, allowing the improvement of stability against creaming during storage. 
Ultrasound technology finds its application in homogenization with similar advan-
tages such as in emulsification. Number of scientific researches proved exceptional 
efficiency of sonication in homogenization of milk as well as on some physical 
properties of milk that is homogenized (Behrend & Schubert, 2001; Bosiljkov et al., 
2011; Ertugay, Sengül, & Sengül, 2004; Koh et al., 2014; Sfakianakis, Topakas, & 
Tzia, 2015; Villamiel & de Jong, 2000; Wu, Hulbert, & Mount, 2000). Besides men-
tioned, the crystallization process is of great importance in the dairy industry, pri-
marily for some procedures such as lactose removal. Except for the conventional 
methods in which the main disadvantages are long induction time and slow crystal-
lization rate, ultrasound technology found a significant possibility to control crystal-
lization in a process commonly known as sonocrystallization. During this process, 
crystal structure (shape and rate of crystallization) is controlled, crystallization pro-
cess is significantly faster with higher efficacy and the whole process leads to cost-
effectiveness in regards to conventional methods (Deora et al., 2013; Frydenberg, 
Hammershøj, Andersen, & Wiking, 2013). In some research studies, a rapid recov-
ery of lactose by ultrasound-assisted crystallization was proved (Bund and Pandit, 
2007a, 2007b; Patel and Murthy, 2009, 2011). For example, Patel and Murthy 
obtained lactose recovery yields in the range of 80–92% within 4 min of sonication 
(Patel & Murthy, 2009, 2011). Similarly, Zamanipoor, Dincer, Zisu, and Jayasena 
(2013) even found 5.6 times higher lactose yields in a system with an ultrasonic 
probe at a frequency of 20 kHz, without using solvents. One of the crucial benefits 
of sonocrystallization is also a significant reduction of induction times, proved by 
Dincer et al. (2014), where sonication decreased the induction time up to 3 min. 
Moreover, sonication shows considerable influence in the process of fat crystalliza-
tion, which ultimately reflects on the structure and texture of product with the main 
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claim to size and shape of crystals formed during crystallization (Hartel, 2013; 
Suzuki, Lee, Padilla, & Martini, 2010). Martini, Suzuki, and Hartel (2008) showed 
an application of ultrasound in crystallization of anhydrous milk fat that ultrasound 
reduces the induction time and simultaneously generates smaller crystals and higher 
viscosities. The process of fat crystallization is of great importance in the produc-
tion of chocolate, especially in order to avoid undesirable fat bloom of chocolate, 
which may occur during the first cooling step of traditional tempering as a result of 
crystallized unstable polymorphic forms of cocoa butter (Afoakwa, Paterson, & 
Fowler, 2007). In order to obtain a stable product, Higaki, Ueno, Koyano, and Sato 
(2001) conducted sonocrystallization of cocoa butter at a frequency of 20 kHz in the 
range of 100–300 W powers for 3 s and concluded that the stable form of butter is 
directly crystallized without the formation of subsequent unstable forms, which 
leads to the conclusion that ultrasound is effective in controlling polymorphic crys-
tallization of fats.

3.2.3  �Sensorial Properties

3.2.3.1  �Fruits and Vegetables

The sensorial quality of fruits, vegetables, and their products is based on several 
properties of which the most important are: texture, color, and flavor. During tech-
nological processing, the mentioned properties are strongly influenced by some 
factors (e.g., pH, oxygen presence, temperature, light, etc.). Non-invasive process-
ing techniques have a positive effect on the preservation of the organoleptic prop-
erties of a product. One of the most common problems in the storage and processing 
of fruits and vegetables is browning, caused by the activity of endogenous enzyme 
PPO (polyphenoloxidase). Ultrasound is effective in the inactivation of enzymes, 
related to the color changes, but also in inactivating microorganisms, which cause 
food spoilage. Sulaiman et al. (2017) studied the sensory attributes of apple juice 
processed by thermosonication compared to the thermal processing and concluded 
that thermosonicated apple juices are long-stable, PPO inactivation was satisfac-
tory and also the overall taste of such treated juices was acceptable for consumers. 
In sonication of grapefruit juice, in research conducted by Aadil et al. (2015), color 
values, cloud value and non-enzymatic browning (NEB) were evaluated as the 
main organoleptic characteristics. Cloud stability is an important quality parame-
ter, which plays a significant role in color and flavor of fruit juices. Cloud value is 
related to the amount of particles composed of proteins, pectin, cellulose, etc. 
Cloud values of sonication grapefruit juices increased after processing as a result 
of the breakdown of bigger molecules into smaller due to the cavitation process. In 
the same research, the analyzed color values (L∗ (whiteness), a∗ (redness) and b∗ 
(yellowness)) decreased during sonication. Related to the color change, NEB val-
ues increased during sonication. Similar results were reported by Tiwari, 
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Muthukumarappan, O’Donnell, and Cullen (2008) for orange juice samples. Color 
degradation (L∗, a∗, b∗ values decreased) was also observed during sonication of 
tomato juice (Adekunte et al., 2010). Šimunek et al. (2013) analyzed the aroma 
profile and sensory parameters (organoleptic assaying) of sonicated apple juice 
and revealed that sonication significantly influences the aroma profile, sensory 
properties, and color parameters from which the best results from sensory evalua-
tion had ultrasonically-treated juice. Furthermore, many other research studies 
cited significant color changes of sonicated fruit and vegetable samples that can be 
attributed to the oxidation reactions occurring as a result of free radicals interac-
tion, induced by cavitation (Aadil et al., 2013; Abid et al., 2013; Alexandre et al., 
2012; Bhat et al., 2011; Dias et al., 2015; Pérez-Grijalba et al., 2017; Zou et al., 
2016, 2017). For the mentioned reason, color stability of different fruit and vege-
table samples during sonication can be significantly affected by key ultrasound 
factors: amplitude (power) and time. Its optimization is crucial to obtain a stable 
product of acceptable organoleptic properties, microbiological safety, and nutri-
tional quality.

3.2.3.2  �Meat Products

In recent times, scientific studies are still being conducted for the improvement of 
meat quality, especially texture and sensorial properties. Sonication strongly affects 
the meat quality properties, considering that thermal stability and texture attributes of 
collagen are directly associated with its influence on the connective meat tissues. 
Chang, Xu, Zhou, Li, and Huang (2012) treated beef semitendinosus muscle samples 
with high power ultrasound at the frequency of 40 kHz, a power of 1500 W, and for 
10, 20, 30, 40, 50, and 60 min in an ultrasonic bath in order to investigate the effect 
of high-power ultrasound on the thermal characteristics of collagen and to evaluate 
the characteristics of collagen changes on meat quality (color) and texture properties. 
The main results from the presented study suggested that ultrasound did not signifi-
cantly influence the L∗ and a∗ chromaticity values but significantly decreased the b∗ 
value when applied for 30 min. Changes were observed for fiber diameter and filter-
ing residues, which values were reduced by ultrasound use. A significant decrease in 
enzyme activity (β-galactosidase and β-glucuronidase) was indicated when muscle 
samples were sonicated for 10 min. In addition, the authors of the conducted experi-
ment confirmed sensitivity and decrease of collagen stability in sonicated samples. 
By Scanning Electron Microscopy (SEM) technique, denaturing, granulation, and 
aggregation of collagen fiber was observed in extracellular space. Cichoski et  al. 
(2015) evaluated chromaticity parameters (overall color) of sonicated hot dog sau-
sages. The results showed no significant differences of measured L, a∗ and b∗ values 
for inner and outer parts of sausages. However, slight decreases of a∗ and b∗ param-
eters were observed during storage in all treatments (conventional and ultrasound). 
Besides color evaluation, the authors evaluated the effect of ultrasound on some tex-
tural properties: hardness (N), elasticity (cm), cohesiveness and chewiness (N/cm) 
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during which no significant changes were observed for samples treated by ultra-
sound. Similar results were obtained by Dolatowski and Stadnik (2007) who con-
cluded that ultrasound treatment did not affect the meat lightness.

3.2.3.3  �Dairy Products

It is important to emphasize that during sonocrystallization of systems with fats and 
oils, oxidation occurs forming thus free radicals which may cause further negative 
effects (Riener et al., 2009). Besides the formation of free radicals, oxidation pro-
cess in systems with fats and oils often cause the formation of undesirable off-
flavors, which formation is avoided by using ultrasound (Patrick, Blindt, & Janssen, 
2004). Increased ultrasound intensity and duration of the treatment are key factors 
affecting the occurrence of undesirable burnt off-flavor, therefore the optimization 
of the mentioned factors is crucial to avoid adverse sensorial properties (Marchesini 
et al., 2012). Juliano et al. (2014) studied the effect of sonication on lipid oxidation 
in various types of milk at different ultrasound frequencies (20, 400, 1000, 1600 and 
2000 kHz), using different temperatures (4, 20, 45, 63 °C), sonication times, and 
ultrasound energy inputs. Results of the study showed that lipid oxidation in milk 
can be optimized by controlling the ultrasound processing factors, including the 
frequency, the power levels, the processing time, the temperature of the system, and 
the fat content. Another dairy product, which during production assumes crystalli-
zation and in which ultrasound found desirable application, is ice cream. One of the 
main quality characteristics of ice cream is texture and taste directly influenced by 
ice crystal size. Mortazavi and Tabatabai (2008) managed to obtain sonicated ice 
cream with flavor and texture better than the control sample. More literature data 
also present a positive influence of sonication on sensorial and textural qualities of 
ice cream (Chow, Blindt, Chivers, & Povey, 2003; Mortazavi & Tabatabai, 2008).

3.3  �Conclusions

There are many reasons for the comprehensive usage of ultrasound as an innovative 
technology in the processing of fruits and vegetables, meat and dairy products. 
Widely recognized as non-thermal and environmentally friendly, ultrasound has 
many benefits such as improved yield, better emulsification, shortened treatment 
time, lower energy consumption and less or no waste generation. It can influence 
more acceptable textural and sensory properties on vegetables and fruits as attri-
butes but also can result in improved tenderization of meat products. Furthermore, 
ultrasound could in both batch and continuous modes lead towards more uniform 
homogenization of milk with smaller fat globules. Easy to handle and acceptable as 
a primary investment, ultrasound is not only able to be introduced in SME-s and 
large industry as separate technology, but also to improve existing technologies.
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Chapter 4
Impact of High-Pressure Processing 
on Food Quality

Mauro D. Santos, Rita S. Inácio, Liliana G. Fidalgo, Rui P. Queirós, 
Silvia A. Moreira, Ricardo V. Duarte, Ana M. P. Gomes, Ivonne Delgadillo, 
and Jorge A. Saraiva

4.1  �Introduction

High-Pressure Processing (HPP) application is increasing at food industries as a 
possible alternative to heat treatments for food preservation and processing. It is 
being mainly applied to inactivate microorganisms and enzymes, with lower degra-
dation of flavors and nutrients, minimizing the losses of beneficial ingredients, 
resulting in distinctive organoleptic properties of foods (Huppertz, Kelly, & Fox, 
2002; Pasha, Saeed, Sultan, Khan, & Rohi, 2014). Since HPP acts on volume com-
pression, due to the low change in volume on low-molecular compounds, such as 
vitamins and other functional compounds, the effects of this technology are expected 
to be minimum on these compounds unlike thermal treatment (Wang, Huang, Hsu, 
& Yang, 2016). Alike, HPP has also a lower effect on flavor and color compounds of 
food products, compared to the color changes and formation of off-flavors caused 
by thermal pasteurization (Wang, Huang, et al. 2016).

As the overall nutritional properties of foods can be better preserved by HPP, 
food texture can also be better maintained by this technology, affecting to a lesser 
extent the quality and acceptance of the products by the consumer, unlike thermal 
treatments that are more prone to affect texture and structure (i.e., due to loss of 
instrumental firmness by membrane disruption on vegetable/fruit products).
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Thus, in this chapter, HPP application on different food products will be 
addressed, i.e., fruits, vegetables, fish and meat products, milk and cheese, and its 
effects on the nutritional, textural and sensorial properties will be discussed. In each 
sub-section, tables are presented to summarize the most important studies; being 
highlighted in the text the most pertinent results therein.

4.2  �Advantageous and Challenges of Using High-Pressure 
Processing on Food Quality

4.2.1  �Nutritional Properties

4.2.1.1  �Fruits and Vegetables

Fruits

Fruit is normally associated with great nutritional properties due to its high content 
of vitamins, carotenoids or polyphenols. HPP has appeared as a promising tool to 
process fruit products retaining most of its nutrients. For instance, both ascorbic 
acid (Tewari, Sehrawat, Nema, & Kaur, 2017) and phenolic compounds (Zhao, 
Zhang, & Zhang, 2017) have been shown to present higher stability after HPP and 
during storage of many fruit products, comparatively to those processed by tradi-
tional heat treatments. It is generally accepted that HPP has small effects on low 
molecular weight compounds such as vitamins C.  In general, vitamin C is unaf-
fected by HPP as most studies reported a retention above 80% after processing 
(Barrett & Lloyd, 2012), which can be maintained during 1–3 months at refrigerated 
storage (Tewari et  al., 2017). For example, pressures between 350 and 600 MPa 
almost did not affect the vitamin C content of strawberry, blackberry (Patras, 
Brunton, Da Pieve, & Butler, 2009), tomato purées (Patras, Brunton, Da Pieve, 
Butler, & Downey, 2009), and orange juice (Sánchez-Moreno, Plaza, De Ancos, & 
Cano, 2003). However, there are still some exceptions, particularly at more severe 
conditions, both after processing and during storage. For instance, Landl, Abadias, 
Sárraga, Viñas, and Picouet (2010) reported higher losses of vitamin C at 600 MPa 
comparatively to 400 MPa after processing, and Valdramidis et al. (2009) reported 
losses during storage up to 36 days. There may be several reasons for different deg-
radation rates, such as type of cultivar (Wolbang, Fitos, & Treeby, 2008), packaging 
and storage conditions, oxygen present and enzymatic activity (Valdramidis et al., 
2009), however the most probable reason is due to oxidation (Oey, Van der Plancken, 
Van Loey, & Hendrickx, 2008). There are fewer studies regarding other vitamins, 
mainly vitamin B group, which are very stable under pressure and no major losses 
are reported after HPP (Barrett & Lloyd, 2012).

Similar to vitamins, carotenoids in fruits are not much affected by HPP and 
sometimes their availability even increases most likely due to the rupture of the cells 
of the fruit and leaking its content to the extracellular medium (Chen et al., 2013; 
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Sánchez-Moreno, de Ancos, Plaza, Elez-Martínez, & Cano, 2009). This effect was 
reported in several fruit products, for instance in tomato purée (600 MPa/15 min) 
(Patras, Brunton, Da Pieve, Butler, & Downey, 2009) and orange juice 
(400  MPa/1  min) (Plaza et  al., 2011). In another study, Sánchez-Moreno et  al. 
(2005) reported an increase in the availability of both total and individual carot-
enoids (β-cryptoxanthin, zeaxanthin, lutein, β-carotene and α-carotene). 
Nonetheless, there are some few contradictory results, such as those reported by 
Gupta, Kopec, Schwartz, and Balasubramaniam (2011), where a decrease of 25% in 
the availability of carotenoids in tomato juice after HPP was reported.

Similarly to vitamins and carotenoids, phenolic compounds on fruit products are 
minimally affected by HPP (Marszałek, Woźniak, Kruszewski, & Skąpska, 2017; 
Zhao et al., 2017). For instance, Chen et al. (2013) found that the availability of total 
phenols present in pomegranate juice increased after HPP, however the content of 
anthocyanins decreased from 68.54 mg/100 g before processing to 61.11 mg/100 g 
after processing. However, the impact was smaller than the traditional thermal pro-
cessing, which decreased the content of anthocyanins to 59.51 mg/100 g of pome-
granate juice. Similar results were obtained by Patras, Brunton, Da Pieve, and Butler 
(2009) in blackberry and strawberry purées. The authors reported an increase in the 
total phenols with increasing pressure (400–500 MPa) and an increase in anthocya-
nins at different HPP conditions except in the strawberry purée samples treated at 
400 MPa. Overall, the general nutritional content of fruit-based products is well 
preserved by HPP and, in some cases, even improved.

Vegetables

HPP is mainly used to inactivate microorganisms and enzymes without degrading 
flavors/nutrients and minimizing the losses of beneficial ingredients in fruit and 
vegetable commodities (Pasha et al., 2014). Since HPP acts on volume compres-
sion, due to the low change in volume on low-molecular compounds, such as vita-
mins and functional content, the effects of this technology are expected to be 
minimum in these compounds (Wang, Huang, et al. 2016). The secondary metabo-
lites produced by horticultural crops when they are subjected to environmental 
stresses are commonly known as bioactive compounds due to their health-promoting 
properties (Jacobo-Velázquez et al., 2017). When these stresses are applied during 
the postharvest phase, the biosynthesis and accumulation of these compounds can 
be enhanced by using HPP treatment (Dörnenburg & Knorr, 1998). HPP can also 
act as an extraction technique, enhancing the extractability of important compounds. 
For example, Paciulli, Medina-Meza, Chiavaro, and Barbosa-Cánovas (2016) have 
demonstrated that HPP applied at 650 MPa and room temperature (Table 4.1) can 
effectively increase the content of total phenolic compounds of beetroot, obtaining 
higher yields after longer extraction times (from 3 to 30 min), when compared to the 
raw vegetable. Similar results were obtained for red sweet pepper, another example 
of a nutritious food, being demonstrated that high pressures (above 500 MPa) can 
enhance the extractability of fiber (Hernández-Carrión et  al., 2014). Analogous 
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results were found after HPP treatment of carrot and spinach (Jung et al., 2013) 
since the total phenolic contents and flavonoids were the highest in HPP treated 
samples at 500 MPa, followed by thermal processing and HPP treated samples at 
300  MPa, respectively. Total phenol and flavonoid contents were enhanced by 
increasing the pressure levels, which may be due to the enhanced membrane perme-
ability (Jung et al., 2013).

Chlorophylls and chlorophyll-protein complexes are key factor quality in vege-
table products. Wang, Ding, Hu, Liao, and Zhang (2016) showed that HPP under 
100, 250 and 500 MPa (for 5 min at room temperature) allowed better retention of 
chlorophylls a and b of spinach leaves (Table 4.1), and the treatment at 100 MPa 

Table 4.1  Examples of the main effects of HPP on the nutritional properties of vegetables

Vegetable 
products HPP conditions Nutritional effects Reference

Beetroot slices 650 MPa/3–30 min/RT Good retention of ascorbic 
acid after HPP when 
compared to thermal 
treatment. Higher 
extractability of total phenolic 
compounds after HPP 
treatment

Paciulli et al. 
(2016)

Spinach leaves 100, 250, 500, and 
600 MPa/5 min/RT

HPP maintained the content of 
chlorophylls a and b

Wang, Ding et al. 
(2016)

Spinach, 
parsley, dill, 
kale

200, 400, 600 MPa/5, 10, 
40 min/RT

HPP did not reduce the 
content in xanthophylls and 
chlorophylls; HPP allowed a 
higher extractability of these 
compounds in spinach purée

Arnold, 
Schwarzenbolz, 
and Böhm (2014)

Carrot, tomato, 
red pepper, 
broccoli, 
spinach, green 
pepper

625 MPa/5 min
HPP: 20 °C
HPHT: 70, 117 °C

While HPP treatment did not 
cause degradation on 
carotenoids and chlorophylls, 
HPHT process led to both 
chlorophylls’ degradation

Sánchez, Baranda, 
and Martínez de 
Marañón (2014)

Onion, potato, 
pumpkin, red 
beet

600 MPa/15 min/117 °C HPHT seems to reduce the 
formation of Maillard reaction 
and Strecker degradation 
products and enhance 
oxidative reaction products

Kebede et al. 
(2014)

Red sweet 
pepper

100–500 MPa/15 min/RT Higher extractability of 
dietary fiber after HPP 
treatment at 500 MPa

Hernández-Carrión, 
Hernando, and 
Quiles (2014)

Carrot and 
spinach

100–
500 MPa/20 min/20 °C

Good retention of ascorbic 
acid after HPP when 
compared to thermal treatment 
for both vegetables. Higher 
extractability of total phenols 
and flavonoids after HPP 
treatment

Jung, Lee, Kim, 
and Ahn (2013)
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was reported to be most effective. Contrasting results were obtained for the 
thermal-treated samples at 100 °C for 60 s, where was found a significant (p < 0.05) 
decrease of the chlorophylls content, since the high temperature induced the disrup-
tion of the thylakoid membrane, while HPP was able to maintain a compact and 
stacked structure, similar to the untreated samples (Wang, Ding et al. 2016). Similar 
results were found by Arnold et al. (2014) who studied the effect of HPP at 200, 
400, and 600 MPa, for 5, 10, and 40 min at room temperature on the bioactive com-
pounds of spinach, parsley, dill, and kale (Table 4.1), and concluded that HPP main-
tained the concentration of xanthophylls (e.g. lutein and zeaxanthin) and carotenoids, 
compared to the samples subjected to heat for 5–20 min at 121 °C. In addition, HPP 
led to a significant higher extractability of these compounds regardless of the pres-
sure level or the holding time, when compared to untreated spinach purée (Arnold 
et al., 2014).

Ascorbic acid is known for being easily degraded at high temperatures. After 
thermal treatment of carrot and spinach, it was found a decrease of 15% and 24% of 
ascorbic acid compared to the controls, respectively (Jung et al., 2013). Nevertheless, 
when the samples were treated by HPP (100–500 MPa, 20 min, 20 °C), good reten-
tion of ascorbic acid was reported when compared to the thermal treatment and 
control for both samples (Jung et al., 2013). Similar results were obtained by Paciulli 
et al. (2016), who reported better retention of ascorbic acid using HPP (650 MPa at 
room temperature) compared to thermal blanching.

4.2.1.2  �Meat Products

Fish and Fish-Based Products

Fish has high nutritional value, especially high biological value proteins and lipids, 
being marketed and consumed worldwide. Additionally, fatty fish has a high con-
centration of n-3 fatty acids, which is often recognized by consumers as beneficial 
for human health (Ruxton, Calder, Reed, & Simpson, 2005). The effects of HPP on 
the fatty acid profile of HPP-treated fish were evaluated and no changes in the com-
position of this lipid fraction in turbot (Chevalier, Le Bail, & Ghoul, 2001) and coho 
salmon muscles (Ortea, Rodríguez, Tabilo-Munizaga, Pérez-Won, & Aubourg, 
2010) were reported (Table 4.2). In another study, salmon processed by pressure 
resulted in the stable saturated, monounsaturated and polyunsaturated fatty acids, 
only with a decrease of n-6 fatty acids in samples treated at 300 MPa/15 min and 
consequent reduction of the n-6/n-3 ratio (Yagiz et al., 2009). On the other hand, 
Sequeira-Munoz et al. (2006) reported an increase of the free fatty acids content in 
carp muscle when compared to the untreated samples, using a pressure level between 
140 and 200 MPa (for 15–30 min at 4 °C). In contrast, the formation of free fatty 
acids after processing was reduced at 150–450 MPa at 20 °C for 0–5 min (Aubourg 
et al., 2013). Furthermore, HPP seems to not induce any effect on lipase enzyme, 
being observed a similar activity to untreated samples in most of the HPP-treated 
samples (Teixeira et al., 2013).
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Medina-Meza, Barnaba, and Barbosa-Cánovas (2014) observed a stronger cata-
lytic oxidation power using pressure levels up to 300 MPa, although higher oxida-
tion levels were observed in other studies at lower pressures between 150 and 
300  MPa (Amanatidou et  al., 2000; Lakshmanan, Patterson, & Piggott, 2005; 
Sequeira-Munoz et al., 2006; Teixeira et al., 2014). However, the effects of HPP on 
lipid oxidation of fish muscles also varied significantly depending on many factors, 
such as applied pressure level/pressure holding time, fish species and the type of 
muscle (dark or white). For example, a treatment lower than 400 MPa for 20 min at 
room temperature showed a slight effect on lipid oxidation in cod muscle compared 
to untreated muscle (Angsupanich & Ledward, 1998), whereas carp and turbot mus-
cles were more susceptible to lipid oxidation after HPP-treatment of 100 MPa for 
30 min at 4  °C (Sequeira-Munoz et  al., 2006) and 100 MPa for 15 min at 4  °C 
(Chevalier et al., 2001), respectively.

There are a few research studies evaluating the cholesterol oxide formation in fish 
after HPP treatment. Although the cholesterol concentration did not change in mack-
erel and herring muscles after HPP treatment at 600 MPa for 10 min, higher choles-
terol oxidation was observed in mackerel muscles (Figueirêdo, Bragagnolo, Skibsted, 
& Orlien, 2015). The cholesterol oxidation might be due to the breakage of cell 
structures and exposure of phospholipids membrane (Medina-Meza et al., 2014).

Meat and Meat-Based Products

HPP has been described as a powerful tool for the development of new/improved 
food products (Huang, Wu, Lu, Shyu, & Wang, 2017). However, some issues have 
been found on fresh meat products when processed by high pressure. One of the 
concerns, behind color losses, is the possible nutritional value decrease of the prod-
ucts processed by this technology.

Table 4.2  Some publications with the main effects of HPP on free fatty acids of fish

Fish 
products HPP conditions Nutritional effects Reference

Atlantic 
salmon

150 and 300 MPa/ 
15 min/room  
temperature

Stable total saturated, 
monounsaturated, and n-3 and 
n-6 polyunsaturated fatty acids 
profiles

Yagiz et al. (2009)

Carp 140–200 MPa/ 
15–30 min/4 °C

Increase in free fatty acids 
levels

Sequeira-Munoz, Chevalier, 
LeBail, Ramaswamy, and 
Simpson (2006)

Coho 
salmon

135–200 MPa/ 
30 s/15 °C

No significant changes Ortea et al. (2010)

Mackerel 150–450 MPa/ 
0–5 min/20 °C

Reduction of the formation of 
free fatty acids

Aubourg, Torres, Saraiva, 
Guerra-Rodríguez, and 
Vázquez (2013)

Turbot 100–200 MPa/ 
15–30 min/4 °C

No significant changes Chevalier et al. (2001)
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It is known that a pressure level between 300 and 600 MPa led to the lipid oxida-
tion of several meat products, being its lipid content and fatty acid composition of 
phospholipids and free fatty acids modified (Sazonova, Galoburda, & Gramatina, 
2017). As the minimization of saturated fat intake with a concomitant increase of 
polyunsaturated fats is currently recommended, the oxidation of the unsaturated 
fatty acids may lead to a decrease in the nutritional value of the product (Ma & 
Ledward, 2004). Thus, some researchers have applied antioxidant active packaging 
and/or used different antioxidants to inhibit lipid oxidation (Sazonova et al., 2017).

Several studies have reported the possible fresh meat nutritional changes pro-
moted by HPP and the oxidation process. In fact, in McArdle, Marcos, Kerry, and 
Mullen (2010) work, some differences were observed in specific fatty acids of 
bovine (M. pectoralis profundus) meat, not being found an overall HPP effect on 
polyunsaturated/saturated fatty acids (PUFA/SFA) or omega 6/omega 3 (n-6/n-3) 
ratio; however, the processing temperature influenced the sum of SFA, monounsatu-
rated (MUFA) and PUFA fatty acids, being 40 °C the processing temperature that 
led to a higher SFA and PUFA and lower MUFA compared to HPP at 20 °C.

Nonetheless, in He et al. (2012) work, the authors found that a pressure level 
above 350 MPa in pork muscle caused marked lipolysis of the intramuscular phos-
pholipids with a corresponding increase in free fatty acids. Over storage (at 4 °C) on 
HPP samples (350 and 500 MPa), the phospholipid breakdown increased with time 
with an increase of the free fatty acids and TBAR values. Thus, when the fatty acid 
composition of phospholipids was studied it was verified that SFA and MUFA 
increased with time, the result of palmitic and oleic acid contents while the PUFA 
content decreased, mainly due to losses of linoleic, linolenic and arachidonic acids 
(He et al., 2012). In what concerns HPP effect on fatty acid composition of intra-
muscular total lipids, some minor but not significant differences in fatty acid com-
position were observed between non-treated and treated samples, and for fatty acid 
composition of triglycerides, no significant differences in the percentage of every 
single fatty acid or SFA, MUFA and PUFA between non-treated and pressurized 
samples were observed, with the exception of linoleic acid (C18:2) (He et al., 2012). 
In another study performed by Wang et al. (2013), a loss of PUFA on HPP samples 
of yak body fat was detected, resulting in less favorable fatty acid profiles over stor-
age. In this case, cold storage (20 days) of samples treated at 400 and 600 MPa led 
to an increase of TBAR values and a decrease in the sensory quality with a decrease 
in the PUFA/SFA and n-6/n-3 ratios.

In what concerns ultrastructure and in vitro protein digestion, Kaur et al. (2016) 
studied it on bovine longissimus dorsi muscle meat and verified that HPP meats 
(pepsin-digested, 60 min) presented fewer proteins or peptides of high molecular 
weight than on untreated meat, probably due to the breakdown proteins, mainly at 
600 MPa pressure.

Nonetheless, some concerns regarding migration of compounds from plastic 
packages into the meat product have been addressed since HPP is applied to the 
final product already packaged. As an example, the study of Rivas-Cañedo, 
Fernández-García, and Nuñez (2009) allowed to observe both HPP and plastic 
packaging material effects on fresh meats, being concluded that as most of the 
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compounds in the plastic were lipophilic, the migration of compounds into the meat 
could occur, being potentially harmful for the human health. In Table 4.3 are listed 
some works where the HPP effect on meat-based products was studied concerning 
its nutritional properties.

4.2.1.3  �Dairy Products

Milk

High-pressure processing (HPP), as a cold alternative process to thermal pasteuriza-
tion, has been applied in dairy food with mainly the advantage of shelf-life exten-
sion (2–3 times) relativity to non-pasteurized products (Dhineshkumar, Ramasamy, 
& Siddharth, 2016).

In dairy food, HPP has been applied in milk, fresh cheese, ripened cheese, whey 
cheese, yogurt, ice cream, and butter. However, the application on milk for subse-
quent cheese making and the application directly to the pressed curd and/or during 
cheese ripening have been the main areas in a study conducted by Martínez-
Rodríguez et al. (2012). The effects of HPP are related to the pressure intensity, the 
holding time under pressure and the ripening stage when applied in cheese.

Table 4.3  Examples of HPP effects on the nutritional properties of different meat-based products

Meat 
products HPP conditions Nutritional effects Reference

Cooked 
ham

100, 300 and 
600 MPa/ 5 min/RT

45% salt reduction on cooked ham (salt 
content reduced to a level of 1.1% NaCl by 
the replacement of 0.2% of NaCl with KCl 
and combined HPP at 100 MPa after 
tumbling)

Tamm, 
Bolumar, 
Bajovic, and 
Toepfl 
(2016)

Serrano 
ham

600 MPa/6 min/21 °C Only 8 volatile compounds presented to be 
HPP affected (higher levels of methanethiol 
and sulfur dioxide in HPP-treated samples 
and higher levels of ethyl acetate, ethyl 
butanoate, ethyl 2-methylbutanoate, ethyl 
3-methylbutanoate, dimethyl disulfide and 
dimethyl trisulfide in untreated samples)

Martínez-
Onandi et al. 
(2017)

Sliced skin 
vacuum 
packed 
dry-cured 
ham

600 MPa/6 min/15–
32 °C

HPP did not produce changes in fatty acids 
content, protein content nor antioxidant 
enzyme activities
HPP did not inhibit lipases and 
phospholipases action over storage 
(50 days with light) since treated and 
non-treated samples presented losses of 
fatty acids from phospholipid fraction 
while fatty acids increased from the free 
fatty acid fraction

Clariana 
et al. (2011)
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The use of HPP in the food industry has been of great interest as a possible alter-
native to heat treatments for food preservation and processing. HPP eliminates or 
reduces the use of heating, and so avoiding thermal degradation of food compo-
nents, and the retention of natural flavors, colors, and nutritional value (Huppertz 
et al., 2002). HPP has been applied to various food products, and several studies 
have been conducted for better knowledge on dairy foods, such as milk, cheese and 
yogurt (Ye, Anema, & Singh, 2004).

It has been reported that, among other effects, the application of high pressures 
to milk reduces its light-scattering properties, leading to a change in its appearance, 
and this was attributed to casein micelles disintegration into smaller structures 
(López-Fandiño, Fuente, Ramos, & Olano, 1998). In this study where bovine, cap-
rine and ewe’s milk were processed using 100–400 MPa for 5–30 min (Table 4.4), 

Table 4.4  Examples of the main effects of HPP on the nutritional properties of milk

Dairy 
products HPP conditions Nutritional properties Reference

Milk 
(bovine)

100, 200, 300 and 
400 MPa/5–
30 min/20 °C

Ca, P and Mg solubilization 
increased with pressurization up to 
300 MPa, and then decreased slightly 
to 400 MPa. Maximum micelle 
dissociation was observed in milk 
treated at 300 MPa

López-Fandiño 
et al. (1998)

Milk 
(ovine)

100, 200, 300 and 
400 MPa/5–
30 min/20 °C

Soluble Ca, P and Mg increased with 
pressure but were smaller than those 
found in bovine milk. Milk 
dissociation increased with pressure 
up to 400 MPa

Milk 
(caprine)

100, 200, 300 and 
400 MPa/5–
30 min/20 °C

Soluble Ca, P and Mg increment 
were more pronounced than those in 
the milk from the other two species. 
Micelle dissociation was observed at 
a maximum at 300 MPa

Milk 
(bovine)

100–800 MPa/Up to 
60 min/20 °C

A slight increase in fat globule size 
was observed with increasing 
pressure up to 700 MPa
Association of β-LG with the milk fat 
globule occurred at pressures 
>100 MPa, while associations of 
α-LA and κ-casein occurred only at 
pressures ≥700 and 500 MPa, 
respectively

Ye et al. (2004)

Milk 
(ovine)

100–500 MPa/10 and 
30 min/25 and 50 °C

Pressurization showed a tendency to 
increase milk fat globules in the 
range 1–2 μm

Gervilla, Ferragut, 
and Guamis 
(2001)

Milk 
(human)

400, 500, and 
600 MPa/5 min/12 °C

HPP allowed better maintenance of 
the vitamin C and the same levels of 
preservation of fatty acid proportions 
and tocopherols when compared to 
thermal pasteurization

Moltó-Puigmartí, 
Permanyer, 
Castellote, and 
López-Sabater 
(2011)
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the release of micellar Ca, P, and Mg into the serum was observed (López-Fandiño 
et  al., 1998). Changes in the content of soluble Ca, P, and Mg were more pro-
nounced in ewe’s milk processed by HP when compared to bovine and caprine milk. 
Unlike bovine and caprine milk, pressurization at 400 MPa increased the levels of 
these three elements in the serum over the treatment at 300 MPa. In the case of 
bovine and caprine milk, solubilization increased with pressurization up to 300 MPa 
and then decreased slightly to 400 MPa. This can be related to micelle dissociation, 
since in the case of bovine and caprine milk, maximum dissociation from the micelle 
was found in milk treated at 300 MPa, while in ewes’ milk, dissociation increased 
with pressure up to 400 MPa (López-Fandiño et al., 1998). Ye et al. (2004) observed 
that, in general, micelle size is not affected by treatments at 100 or 200 MPa for 
20 min at 20 °C, while treatment at 250 MPa increases micellar size by 20%, and 
higher pressures (300–800 MPa) decrease it by 50%. The associations of α-LA and 
κ-casein occurred at pressures ≥700  MPa and 500  MPa, respectively, but the 
amounts are lower than that observed for β-LG. α-LA has a more rigid molecular 
structure, being much more resistant than β-LG to denaturation during high-pressure 
treatment.

Moltó-Puigmartí et al. (2011) suggested the possibility to process human milk 
using HPP, since fatty acid proportions in milk, δ-, γ-, and α-tocopherols, total vita-
min C and ascorbic acid levels where preserved, while on the other hand, thermal 
pasteurization lead to a reduction in the nutritional content of human milk.

Fresh Cheese

Fresh cheese is a dairy product that has a short shelf life due to its pH near to neutral 
(no starter is added), high moisture and high-water activity (>0.99), which allows a 
fast growth of spoilage microorganisms. HPP could be a solution for minimal pro-
cessing this highly nutritious and perishable food product while restraining micro-
bial growth.

Overall, HPP resulted in fresh cheeses whey loss, which contributed to a reduc-
tion in moisture content (Table  4.5). For example, Evert-Arriagada et  al. (2012) 
reported a reduction on microbial growth and no changes in fat and total protein 
contents or pH values, but significant whey loss occurred at 400 MPa for 5 min. 
Similar results were observed by the same authors using a higher pressure (500 MPa 
for 5 min), with a significant increase (p < 0.05) in whey loss from day 14 and the 
highest measure of free whey at day 21, with the highest amount of total solids 
observed at the same sampling day (Evert-Arriagada et  al., 2014). On the other 
hand, Okpala et al. (2010) reported that moisture content did not vary from treat-
ments using pressure up to 150 MPa, but dropped more when the pressure increased 
over 150 MPa.
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Table 4.5  Examples of the main effects of HPP on the nutritional properties of fresh cheese

Dairy 
products HPP conditions Nutritional properties References

Fresh 
Cheese 
(cow)

200, 400, and 600 MPa/3–
20 min/20 and 40 °C

A small decrease in the 
protein content
HPP resulted in moisture 
content reduction, as pressure 
increased (up to 2%)

Van Hekken, Tunick, 
Farkye, and Tomasula 
(2013)

Fresh 
Cheese 
(cow)

500 MPa/5 min/16 °C The total solids content 
increased (p < 0.05) within 
the last 7 days of storage for 
pressurized samples
No statistical variations were 
observed on whey loss after 
pressurization

Evert-Arriagada, 
Hernández-Herrero, 
Guamis, and Trujillo 
(2014) and Van 
Hekken et al. (2013)

Fresh 
Cheese 
(cow)

400 MPa/20 min/20 °C HP cheese presented pH 
values higher than the control 
cheese

Sandra, Stanford, and 
Goddik (2004)

Fresh 
Cheese 
(cow)

300 or 400 MPa/5 min/6 °C The total solid content of HP 
cheeses was higher than 
control cheeses, with no 
changes on fat and total 
protein contents, or pH values
Significant whey loss was 
observed on cheeses treated 
at 400 MPa

Evert-Arriagada, 
Hernández-Herrero, 
Juan, Guamis, and 
Trujillo (2012)

Fresh 
Cheese 
(cow)

9, 50, 150, 250, and 
291 MPa/1, 5, 15, 25, and 
29 min/25 °C

Treatments over 150 MPa 
resulted in a more significant 
reduction in moisture content, 
and an increment of fat 
content
The protein content of HPP 
fresh cheese in all treatments 
remained lower than the 
control
pH and TBA value (lipid 
oxidation) decreased with 
increasing pressure

Okpala, Piggott, and 
Schaschke (2010)

Fresh 
Cheese 
(goat)

500 MPa/5, 15 and 
30 min/10 or 25 °C

Non-protein nitrogen of 
pressurized cheeses was 
lower than that of control 
cheeses
Pressure-treated cheeses 
expelled significantly more 
whey than control cheeses

Capellas, Mor-Mur, 
Sendra, and Guamis 
(2001)
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Cheese

HPP has been applied to cheese in order to increase the preservation and/or the 
modification of the ripening process (deceleration/acceleration) (Martínez-
Rodríguez et  al., 2012; O’Reilly, Kelly, Murphy, & Beresford, 2001; Trujillo, 
Capellas, Saldo, Gervilla, & Guamis, 2002). However, in any HPP application, it is 
important to analyze the effect on nutritional properties. As shown in Table 4.6, HPP 
may cause or not lower effect on moisture, protein and fat content when applied in 
cheese with some days of ripening (Calzada, del Olmo, Picon, Gaya, & Nuñez, 
2014a; Delgado et  al., 2012, 2015; Voigt et  al., 2010). When the treatment was 
applied in cheese curd (Calzada, del Olmo, Picon, Gaya, et al., 2014b, c; Delgado 
et al., 2012; Saldo et al., 2002; Voigt et al., 2010), major differences in nutritional 
composition occurred after HPP and during its ripening. In cheese, a relevant nutri-
tional property is a proteolysis, which indicates the age of the cheese. In general, 
some studies revealed proteolysis acceleration when cheeses were treated by HPP 
with few days of ripening (Garde et al., 2007; Saldo et al., 2003; Voigt et al., 2010). 
Other researchers observed a deceleration or same proteolytic indexes of ripened 
cheeses treated by HPP (Calzada, del Olmo, Picon, Gaya, & Nuñez, 2014a; Garde 
et  al., 2007). The lipolysis of short-chain (SC-), medium chain (MC-) and long-
chain free fatty acids (LC-FFA) showed no significant changes after HPP treatment 
(Calzada et al., 2015; Calzada, del Olmo, Picon, Gaya, et al., 2014c; Voigt et al., 
2010).

4.2.2  �Textural Properties

4.2.2.1  �Fruits and Vegetables

Fruits

The texture of fruit products is of paramount importance for the consumer accept-
ability. In a general way, HPP may decrease the hardness and chewiness in fruits. 
An example is the work of Denoya, Vaudagna, and Polenta (2015) who studied 
vacuum packed fresh-cut peaches subjected to HPP (500 MPa/5 min/20 °C) and 
their texture profile, that was analyzed for hardness, cohesiveness, and chewiness. 
The authors reported a decrease in hardness and chewiness after HPP. Furthermore, 
according to Miguel-Pintado et al. (2013), the intensity of HPP is also significant in 
what concerns texture modification, since nectarine halves subjected to 200–
300  MPa presented fewer firmness changes than those subjected to 600  MPa. 
Likewise, hardness was reduced in a number of fruits following HPP, such as per-
simmons (Vázquez-Gutiérrez, Quiles, Hernando, & Pérez-Munuera, 2011), pump-
kin (Zhou et al., 2014), and strawberry (Gao et al., 2016). The observed changes in 
the textural properties reported in these studies are most likely the result of the 
effects of HPP on the microstructure of fruits, namely the destruction of cell walls 
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Table 4.6  Effect of HPP on nutritional properties of different cheeses

Dairy products HPP conditions Textural effects Reference

Casar Cheese
(raw ewe milk)

200 or 600 MPa/5 or 
20 min/10 °C

Moisture content: HPP causing 
no changes (at 60 days of 
ripening)

Delgado, 
Rodríguez-Pinilla, 
Márquez, Roa, 
and Ramírez 
(2015)

Ibores Cheese
(raw goat milk)

400 or 
600 MPa/7 min/10 °C

Fat content: HPP causing no 
changes (at 2 and 31 days of 
ripening)
Protein content: HPP causing no 
changes (at 2 and 31 days of 
ripening), except to HPP at 
600 MPa/7 min treated cheeses 
(at 50 days of ripening) with 
lower content

Delgado, 
González-Crespo, 
Cava, and 
Ramírez (2012)

Garrotxa 
cheese 
(pasteurized 
goat milk)

400 MPa/5 min/14 °C Moisture content: higher for 
HHP cheeses (at 4 days of 
ripening)

Saldo, 
McSweeney, 
Sendra, Kelly, and 
Guamis (2002)

Proteolytic indexes: higher for 
HPP cheeses (at 4 days of 
ripening)

Saldo et al. (2003)

Brie cheese 
(pasteurized 
cow milk)

400 or 
600 MPa/5 min/9–14 °C

Moisture content: did not vary 
immediately after HPP (at 
21 days of ripening)

Calzada, del 
Olmo, Picon, 
Gaya, et al. 
(2014b)

SC.FFA: higher on HPP
MC- and LC-FFA: HPP cheeses 
showed equal content when 
treated at 14 days and higher 
content were treated at 21 days

Calzada, del 
Olmo, Picon, and 
Nuñez (2014c)

NA
(raw cow milk)

400 or 
600 MPa/5 min/14 °C

SC-, MC-, LC-FFA: HPP 
cheeses showed similar 
concentration to control cheeses 
(21 days or ripening)

Calzada, del 
Olmo, Picon, and 
Nuñez (2015)

La Serena
(raw ewe milk)

300 or 
400 MPa/10 min/10 °C

Proteolysis: higher when HHP 
treatments were applied at 
400 MPa on d 2 compared to 
other treatments

Garde, Arqués, 
Gaya, Medina, 
and Nuñez (2007)

Irish blue-
veined cheese

400 or 
600 MPa/10 min/20 °C

  Moisture, fat and protein 
content: small differences 
between HPP and control 
cheeses
  Proteolytic indexes: higher for 
HHP cheeses treated
  Lipolysis/FAA: no significant 
effect of HPP (at 42 days of 
ripening)

Voigt, Chevalier, 
Qian, and Kelly 
(2010)
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and the dispersion of intracellular component throughout the tissue (Vázquez-
Gutiérrez et al., 2011), as well as due to the activity of the pectin methylesterase, 
facilitated by the release of the cell-wall-bonded enzyme and the contact with its 
substrate, which causes the de-esterification of pectin thus changing the fruit texture 
(Basak & Ramaswamy, 1998). Therefore, it is expected a decrease in hardness dur-
ing storage due to enzymatic and non-enzymatic depolymerization of pectins, as 
seen, for example, in the work of Gao et al. (2016), and Zhou et al. (2014), who 
reported a decrease in hardness after storage at 4 °C for 45 and 60 days, respec-
tively. Still, HPP retains textural properties at acceptable levels.

Zhang et al. (2012) reported that the hardness of yellow peach was preserved by 
69.5% after 3  months of refrigerated storage after HPP (600  MPa/5  min). 
Furthermore, HPP seems to better retain textural properties than thermal process-
ing. Gao et al. (2016) described a higher hardness of the flesh of strawberries after 
HHP (400 MPa/5 min) than after thermal processing (75 °C/20 min). Similar results 
were described in yellow peaches, most likely due to the higher structural damages 
caused by thermal processing comparatively to HPP Zhang et al. (2012).

Vegetables

Food texture can change after processing and affect the quality and acceptance of the 
product by the consumer. Thermal treatment is known to affect vegetable texture and 
structure, mainly due to loss of instrumental firmness by membrane disruption.

After HPP treatment (650 MPa at room temperature, for 3–30 min) of beetroot, 
it was demonstrated that high pressure allowed maintaining the vegetable’s cut 
hardness similar to the raw untreated samples after 30 min of processing (Paciulli 
et al. 2016). It was also noteworthy that after long processing times, a higher recov-
ery of consistency was found  compared to short-time processed samples, being 
these results explained by the possible tissue recovery during the holding time by 
fortification of intercellular adhesion, since formation of new ionic linkages occurs 
in cell wall pectic polysaccharides (Paciulli et al., 2016; Trejo Araya et al., 2007). 
Other parameters such as hardness, chewiness, and cohesiveness were studied, 
being the results consistent with the previous, since the samples pressurized for 15 
and 30 min presented similar characteristics to the raw sample, while the beetroot 
processed for 3 and 7 min presented lower values (Paciulli et al., 2016). Similar 
results were presented by Hernández-Carrión et  al. (2014) who showed that the 
higher the pressure used (100–500 MPa, for 15 min, at room temperature), the least 
impact on the microstructure was found on red sweet pepper tissue (Table 4.7).

Turgor is an important textural characteristic since it has a direct impact on the 
fresh appearance of the vegetables. The effect of HPP on cell turgor of red cabbage 
was studied by Rux et  al. (2017) at pressures between 150 and 250  MPa, for 
5–20 min, at 35–55 °C (Table 4.7). The main results focused on the fact that cell 
turgor can be recovered within hours if the pressure treatment was not too strong 
(150 MPa up to 10 min). Nonetheless, when the pressure level was above 175 MPa, 
and the temperature above 45 °C, the cells were irreversibly damaged (Rux et al., 
2017).
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Contrasting results were reported by de Oliveira et al. (2015) after HPP process-
ing of cocoyam, Peruvian carrot, and sweet potato. These authors reported that HPP 
has reduced the maximum cutting force and lower rigidity (up to 25%) compared to 
the control sample, when high pressures (600 MPa) and longer holding periods (up 
to 30 min) were used, being these results attributed to the partial starch gelatiniza-
tion that occurs in these vegetables (de Oliveira et al., 2015).

4.2.2.2  �Meat Products

Fish and Fish-Based Products

In fish texture profile analysis, the hardness, and springiness were mainly investi-
gated, but cohesiveness, gumminess, adhesiveness, and chewiness were also stud-
ied. Table 4.8 presents some publications with the main results of the HPP application 
in fish texture.

An increase of muscle hardness was observed in HPP-treated cod (Montiel et al., 
2012), trout and mahi-mahi (Yagiz et al., 2007), salmon (Yagiz et al., 2009), and 
tuna (Ramirez-Suarez & Morrissey, 2006). Despite HPP-treated sea bass (100 and 
300 MPa for 5 min at 10 °C) exhibits lower hardness than the control, similar values 
were observed when the samples were subjected to 400 and 500 MPa for 5 min at 
10 °C (Chéret et al., 2005).

Table 4.7  Examples of the main effects of HPP on the textural properties of vegetables

Vegetable 
products HPP conditions Textural effects Reference

Red cabbage 
leaves

150–250 MPa/5–
20 min/35–55 °C

Cell turgor affected by HPP 
above 150 MPa and 
temperature above 
45 °C. Above these thresholds 
occur irreversible turgor losses

Rux, Schlüter, Geyer, and 
Herppich (2017)

Beetroot 
slices

650 MPa/3–
30 min/RT

Higher cut hardness, recovery 
of consistency, chewiness, and 
cohesiveness for the samples 
treated by HPP for longer times 
(15 and 30 min)

Paciulli et al. (2016)

Asparagus 
spears

10–600 MPa/0.5–
30 min/RT

HPP resulted in a decreased 
firmness

Yi et al. (2016)

Cocoyam, 
carrot, sweet 
potato

600 MPa/5, 
30 min/RT

Reduced maximum cutting 
force and lower rigidity for 
HPP samples

de Oliveira, Tribst, Leite 
Júnior, de Oliveira, and 
Cristianini (de Oliveira, 
Tribst, Leite, de Oliveira, 
& Cristianini, 2015)

Red sweet 
pepper

100–
500 MPa/15 min/
RT

Low effect on cell’s 
microstructure after HPP 
treatment at 500 MPa

Hernández-Carrión et al. 
(2014)
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Several possible explanations were suggested for the increase in fish muscles 
hardness under HPP. According to Angsupanich and Ledward (1998), the unfolding 
of actin and sarcoplasmic proteins and the formation of new hydrogen-bonded net-
works could contribute to the increase in hardness and springiness of pressurized 
fish muscles.

These changes in fish texture under HPP are linked with protein modifications, 
mainly the interactions between actin and myosin, the release of α-actinin, and the 
denaturation of myofibrillar proteins. Collagen is very stable at high pressure 
(Guyon, Meynier, & de Lamballerie, 2016).

Meat and Meat-Based Products

Although HPP could be an interesting food processing technology for food preser-
vation, in what concerns to meat products it is capable to modify its properties, for 
instance, changing meat texture as a free-additive and physical process to tenderize 

Table 4.8  Some publications with the main effects of HPP on the texture properties of fish

Fish 
products HPP conditions Textural effects Reference

Cod 400–600 MPa/5  
and 10 min

The increase in hardness and 
shear strength

Montiel, De Alba, Bravo, 
Gaya, and Medina (2012)

Mahi 
mahi

150–600 MPa/ 
15 min/RT

The lowest hardness was observed 
on control samples
The increase of chewiness and 
gumminess with the increase of 
pressure

Yagiz, Kristinsson, 
Balaban, and Marshall 
(2007)

Rainbow 
trout

150–600 MPa/ 
15 min/RT

The increase of hardness at 450 
and 600 MPa, compared to 0.1 
and 150 MPa
The increase of cohesiveness after 
HPP

Yagiz et al. (2007)

Salmon 150 and 300 MPa/ 
15 min

The increase of hardness, 
gumminess, and chewiness, and a 
decrease in adhesiveness

Yagiz et al. (2009)

100–200 MPa/ 
10–60 min/ 
1 and 5 °C

The increase of cutting strength at 
150 and 200 MPa for 30 min or 
200 MPa for 60 min

Amanatidou et al. (2000)

Sea bass 100–500 
MPa/5 min/10 °C

The decrease of hardness at 
100–300 MPa, and no changes at 
400 and 500 MPa
No changes of cohesiveness, 
springiness, and resilience
The decrease of gumminess and 
chewiness at 100–300 MPa and 
the increase at 400 and 500 MPa

Chéret, Chapleau, 
Delbarre-Ladrat, 
Verrez-Bagnis, and de 
Lamballerie (2005)

Tuna 275 and 310 MPa/  
2, 4 and 6 min

The increase of hardness with 
pressure and holding time 
increase

Ramirez-Suarez and 
Morrissey (2006)
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and soften meat and meat products. In fact, although dependent on pressure level, 
temperature, pH, and ionic strength, HPP effect on sarcoplasmic proteins (mainly 
enzymes and heme pigments) can lead to the denaturation (mainly pressures above 
200  MPa) promoting changes on water holding capacity, color, and myofibrillar 
proteins, being the latter’s strongly related to the meat structure, and unfolded above 
300 MPa (Marcos, Kerry, & Mullen, 2010; Sazonova et al., 2017; Sun & Holley, 
2010). On the other hand, as the triple helix of collagen is predominantly stabilized 
by hydrogen bonds, it is expected to be inert to pressure in normal conditions, being 
this crucial for meat texture since connective tissue (mainly collagen) and contrac-
tile systems (mainly actomyosin) play an important role (Ma & Ledward, 2013).

Several studies have been carried out concerning the effect of HPP on meat tex-
ture, for instance, Morton et al. (2017) concluded that when two levels of pressure 
were applied (to longissimus thoracis (strip loin) steaks) within 1 h of slaughter and 
chilled for 1 day before freezing, HPP allowed to obtain meat after 1 day of storage 
with 60% lower shear force and higher sensory eating quality scores when com-
pared to the non-processed product. It was also observed that HPP increased the 
final pH and decreased cooking loss (Morton et al., 2017).

In fact, since 1973, HPP (<138 MPa) is reported as a technology capable to pro-
duce substantial improvements in pre-rigor meat tenderness (Macfarlane, 1973). 
Since then, several works allowed to conclude, for instance, that pressure could 
cause a shortening of ≥30% but on cooking little further shortening occurred com-
pared to unprocessed samples, weep and cooking losses could be similar but when 
HPP samples were cooked presented slightly higher moisture contents, cooked HPP 
samples were significantly more tender than unprocessed samples as judged by taste 
panels and Warner Bratzler Shear values, and taste panels rated pressure-treated 
samples more acceptable than the untreated ones (Ma & Ledward, 2013).

Although HPP effect on pre-rigor is highly dependent on several conditions, as 
muscle temperature, pressure level, processing time, among others, it can be used to 
improve water holding capacity of meat (and meat-based products) replacing the 
need to use additives (salt/phosphates) or non-meat ingredients (polysaccharides/
non meat proteins) (Ma & Ledward, 2013). For instance, in Souza et  al. (2011) 
study regarding HPP of pork pre-rigor carcasses, it was concluded that this technol-
ogy partially inhibited the post-mortem metabolism leading to better water-holding 
capacity parameters (drip loss and cook loss), being observed that HPP improved 
pork palatability parameters, where Warner-Bratlzer shear force values indicated an 
increase of mechanical tenderness (also confirmed by sensory evaluation of tender-
ness), and also no changes promoted by HPP on collagen were detected (Souza 
et al., 2011).

In what concerns to post rigor fresh meat, it was already observed that a pressure 
treatment (20 min) at room temperature promoted myofibrillar proteins denaturation, 
leading to the toughness of the meat, mainly up to 400 MPa. However, when HPP 
was applied at 60–70 °C up to 200 MPa, significant decreases in hardness, gummi-
ness, and chewiness were detected (Ma & Ledward, 2004). In this study, as expected, 
collagen showed an inert behavior to pressure (unfolded only at temperatures of 
60–70  °C), and myosin revealed to be easily unfolded by both pressure and 

4  Impact of High-Pressure Processing on Food Quality



112

temperature, being formed new and modified structures of low thermal stability 
when pressure denature the initial structures (Ma & Ledward, 2004).

It has to be noted that enzymes are also important on meat texture properties, and 
for so, HPP effect on enzymes activity must be carefully analyzed since it can be 
catalyzed or inhibited by pressure in the majority of cases with its denaturation (Ma 
& Ledward, 2013). In their work, Ma and Ledward (2004) suggested that probably 
the application of 200 MPa at high temperature accelerated proteolysis, being this 
fact the major cause for the hardness decrease. Other studies performed at moderate 
pressure and high temperatures revealed similar results on meat hardness (Beilken, 
Macfarlane, & Jones, 1990; Zamri, Ledward, & Frazier, 2006). One possible expla-
nation for this behavior could be explained by the temperature increase up to the set 
temperature (including the adiabatic heating induced by HPP) where enzymes still 
active and the pressure combined with slowly rising temperature could increase 
their reaction rate, inducing protein structure modification, so that marked proteoly-
sis can occur (Ma & Ledward, 2013).

Concerning specific enzymes, it was also shown that HPP can increase cathepsin 
activity and decrease calpastatin, an important inhibitor of calpains, being also the 
calpains pressure sensitive and their activity decreased, for instance at 250 MPa 
(over 10 min at room temperature) (Sikes, Tornberg, & Tume, 2010; Sikes & Warner, 
2016). Regarding cathepsins (pressure resistant up to 500 MPa), as they are located 
in the lysosomes, and these rupture around 200  MPa, they are released into the 
cytoplasm at these pressures (Homma, Ikeuchi, & Suzuki, 1994). Thus, Sikes et al. 
(2010) suggested that the catheptic degradation at the Z-line (where the actin has 
been depolymerized) is a necessary precursor for the establishment of a strength-
ened but brittle myofibrillar network on meat. Some works regarding the effect of 
HPP on textural properties of meat-based products are presented in Table 4.9.

Table 4.9  Examples of HPP effects on the textural properties of different meat-based products

Meat products HPP conditions Textural effects Reference

Meat batters 
and reduced-
fat sausages

200 MPa/ 
2 min/10 °C

Textural and rheological properties 
improvement. HPP sausages with 20% 
fat presented similar cooking losses 
and texture results when compared to 
AP sausages with 30% of fat

Yang et al. (2016)

Pork sausages 
containing 
carrot dietary 
fiber

500 and 600 MPa/ 
1 s, 3, 6, and 9 min/ 
40, 50, and 60 °C

Young’s Modulus increased with HPP 
treatments and affected Hencky strain 
values. HPP and carrot dietary fiber 
improved emulsion strength resulting 
in firm sausages

Grossi, Søltoft-
Jensen, Knudsen, 
Christensen, and 
Orlien (2011)

Low-acid 
fermented 
sausages

400 MPa/ 
10 min/17 °C

No differences were detected between 
non-treated and HPP treated sausages 
with the exception of an increase in 
textural properties (higher 
cohesiveness, chewiness, and 
springiness)

Marcos, 
Aymerich, Dolors 
Guardia, and 
Garriga (2007)
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Table 4.10  Examples of the main effects of HPP on the textural properties of fresh milk

Dairy 
products HPP conditions Textural effects Reference

Milk
(bovine)

100 to 600 MPa/Up to 
60 min/20 °C

The viscosity of skimmed milk 
increased with, up to a value of 2.5 
as pressure and treatment time 
increased

Huppertz et al. 
(2002)

Milk
(bovine)

310 MPa/0.3 s Continuous high-pressure throttling 
increased the viscosity

Adapa, 
Schmidt, and 
Toledo (1997)

Colostrum
(caprine)

400 and 
500 MPa/10 min/20 °C

Samples processed with 500 MPa, 
presented higher visual viscosity

Trujillo et al. 
(2007)

Milk
(bovine)

300, 400, 500, and 
676 MPa/5 min/4 °C

An increase in milk viscosity after 
HPP was observed

Harte et al. 
(2003)

4.2.2.3  �Dairy Products

Milk

HPP of milk resulted in some cases in the increase of milk viscosity as pressure 
increases (Harte, Luedecke, Swanson, & Barbosa-Cánovas, 2003; Huppertz et al., 
2002; Trujillo et al., 2007) as detailed in Table 4.10. Increase in the viscosity could 
be related to the disintegration of the casein micelles into smaller structures and 
the denaturation of β-LG, which could produce large protein aggregates leading to 
increasing the milk viscosity (Trujillo et al., 2007). Also, changes in viscosity could 
be related to the liberation of colloidal calcium phosphate and individual caseins 
concentrating in the serum in which submicelles are suspended (Harte et al., 2003).

Fresh Cheese

Fresh cheeses processed by HPP resulted in several textural changes, which were 
pressure intensity dependent (Table 4.11). Van Hekken et al. (2013) reported that 
heating fresh cheese prior to HPP affected fresh cheese texture (40 °C/400 MPa for 
20 min or at 600 MPa for 5, 10, or 20 min) resulting in the highest fracture rigidity 
(p < 0.05), while fresh cheeses processed at 20 °C had less variation among treat-
ments and were closest to the non-processed ones. Evert-Arriagada et  al. (2012) 
observed that HPP fresh cheeses were significantly firmer than the control ones, and 
it could be related to lower water content compared to control cheeses. Similar 
results were described in other studies, where pressurized cheeses were more resis-
tant to deformation (higher modulus values), and less fracturable and deformable 
than the control cheeses (Capellas et al., 2001; Evert-Arriagada et al., 2012; Sandra 
et al., 2004).
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Cheese

In general, HPP ripened cheeses revealed lower values of hardness, adhesiveness, 
firmness, elasticity, gumminess, and chewiness compared to control cheeses 
(Calzada, del Olmo, Picon, Gaya, et al., 2014b; Calzada, del Olmo, Picon, & Nuñez, 
2014c; Delgado et al., 2012). However, after some days of storage, HPP cheeses 
recovered the textural properties to values closer to control cheeses (Calzada, del 
Olmo, Picon, Gaya, et al., 2014b) (Table 4.12).

4.2.3  �Sensorial Properties

4.2.3.1  �Fruits and Vegetables

Fruits

The nutritional compounds mentioned above play an important role in the general 
sensorial properties of food products, and since most of these compounds are mini-
mally affected by HPP, also the sensorial properties are minimally affected.

One of the most studied sensorial parameters is the color; usually using the CIE 
1976 (L∗, a∗, b∗) color space parameters. Overall the color of fruit products is not 

Table 4.11  Examples of the main effects of HPP on the textural properties of fresh cheese

Dairy 
products HPP conditions Textural effects Reference

Fresh Cheese 
(cow)

200, 400, 600 MPa/3–
20 min/20 and 40 °C

HPP cheeses tended to present 
higher values for hardness, 
chewiness, cohesiveness, fracture 
stress, and fracture rigidity

Van Hekken 
et al. (2013)

Fresh Cheese 
(cow)

500 MPa/5 min/16 °C Pressurized cheeses were more 
resistant to deformation, less 
fracturable and deformable, than 
control cheeses

Evert-
Arriagada 
et al. (2014)

Fresh Cheese 
(cow)

400 MPa/20 min/20 °C HP cheese had higher firmness, 
gumminess, and chewiness than the 
control ones

Sandra et al. 
(2004)

Fresh Cheese 
(cow)

300 or 400 MPa/5 min/6 °C In general, HP cheeses were 
significantly firmer than control 
cheeses

Evert-
Arriagada 
et al. (2012)

Fresh Cheese 
(cow)

9, 50, 150, 250, and 
291 MPa/1, 5, 15, 25 and 
29 min/25 °C

Increased pressures led to increased 
hardness, but decreased 
adhesiveness of the HP-treated 
fresh cheese

Okpala et al. 
(2010)

Fresh Cheese 
(goat)

500 MPa/5, 15 and 
30 min/10 or 25 °C

Fracture stress values were 
significantly higher when 
compared to control cheeses

Capellas et al. 
(2001)
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much affected by HPP rendering ΔE values generally below 4 (Koutchma, Popović, 
Ros-Polski, & Popielarz, 2016). Some recent examples are: i) the work of Chang, 
Wu, Chen, Huang, and Wang (2017) with grape juice where HPP, using 300 and 
600 MPa for 3 min at 20 °C, resulted in a ΔE below 1 after treatment and up to 
20 days of storage; ii) the work of Yi et al. (2017) that studied apple juice from 3 
varieties and where HPP (600 MPa/3 min/10 °C) resulted in ΔE values below 2.5 
(Pink Lady = 2; Granny Smith = 0.8; Jonagold = 2.5). Still, there are some cases in 
which the color changes were more noticeable. Among them, some studies stand-
out, for example, studies with blood orange, watermelon, and orange juices, with 
ΔE values of 4.5, 8.0 and 9.3, respectively. It is noteworthy to mention that these 
juices were processed at severe conditions (600 MPa), particularly the watermelon 
juice that was processed at more extreme conditions than most fruit products usu-
ally are, namely 900 MPa for 60 min at 60 °C (Hartyáni et al., 2011; Torres et al., 
2011; Zhang et al., 2011).

HPP has proven to also maintain other sensorial properties, considering several 
descriptors for acceptability such as odor and taste. Picouet et al. (2016) studied the 
effects of 350 MPa for 5 min on a multi-fruit smoothie containing apples, strawber-
ries, oranges, and bananas. The authors compared the effect of HPP and thermal 
processing on odor, general appearance, and mouthfeel, and concluded that the HPP 
samples were similar in the overall sensory analysis to the untreated smoothies. 
However, the HPP-treated juices presented lower stability during storage, most 
likely due to the inefficacy of the process to considerably reduce the activity of 

Table 4.12  Effect of HPP on textural properties of different cheeses

Dairy products HPP conditions Textural effects Reference

Casar Cheese
(raw ewe milk)

400 or 600 MPa/ 
5 min/14 °C

Firmness and elasticity: higher values 
for the 600 MPa cheese and lower 
values for the 400 MPa cheeses in 
comparison to control cheeses (at 
35 days of ripening)

Calzada, del 
Olmo, Picon, 
and Nuñez 
(2014a)

Brie cheese 
(pasteurized 
cow milk)

400 or 600 MPa/ 
5 min/9–14 °C

Fracturability, elasticity, and firmness: 
decreased immediately after HPP (at 
21 days of ripening), then HPP cheese 
revealed similar or higher texture 
characteristics than control

Calzada, del 
Olmo, Picon, 
Gaya, et al. 
(2014b)

Ibores Cheese
(raw goat milk)

400 or 600 MPa/ 
7 min/10 °C

Hardness, adhesiveness, gumminess, 
and chewiness: decreased after HPP (at 
1, 30 and 50 days of ripening)
Cohesiveness and springiness: was 
kept after HPP (at 1 and 30 days of 
ripening)

Delgado et al. 
(2012)

Commercial 
cheese 
(pasteurized 
ewe milk)

300 MPa/10 min Fracture stress: increased immediately 
after HPP at 1 day of ripening and 
decreased when treated after 25 d of 
ripening
Fracture strain: increased immediately 
after HPP

Juan, Ferragut, 
Guamis, and 
Trujillo (2008)
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oxidative enzymes. In another study with red fruit-based smoothies, similar results 
were obtained. Several parameters were evaluated, namely appearance, odor, flavor, 
and mouthfeel. According to the authors, moderate HPP conditions 
(350 MPa/10 °C/5 min) resulted in “fresh-like” smoothies, both after processing 
and during storage at 4 °C up to 14 days, presenting a non-altered sensory quality 
(Hurtado et  al., 2017). Baxter, Easton, Schneebeli, and Whitfield (2005) studied 
several sensory properties of navel orange juice processed by HPP 
(600 MPa/1 min/20 °C) and its general consumer acceptability. The authors reported 
that the HPP juice had an odor and flavor that was acceptable by consumers, both 
after processing and up to 12  weeks of storage. Furthermore, the 20 key aroma 
components were analyzed by gas chromatography-mass spectrometry and it was 
concluded that the results of the HPP juice were similar to the untreated juice. Most 
studies available in the literature point to HPP as a good alternative for the stabiliza-
tion of fruit-based products, since it is an effective technology maintaining good 
sensory qualities.

Vegetables

As HPP has a limited effect on the covalent bonds of low molecular weight com-
pounds, such as flavor and color compounds of food products, it is expected that this 
technology will help to minimize the color changes and formation of off-flavors 
caused by thermal pasteurization (Wang, Huang et al. 2016).

A study on the color changes on cocoyam and carrot showed that HPP at 
600  MPa, for only 5  min at room temperature, allowed to maintain the color 
unchanged, mainly due to enzyme inactivation, such as polyphenoloxidase (PPO) 
and peroxidase (Tribst, Leite, de Oliveira, & Cristianini, 2016). Also in cucumber 
juice, HPP treatment (at 500 MPa, for 5 min, at room temperature) seems to not 
have an immediate effect on juice color, since the CIE Lab parameters remained 
unchanged (Liu, Zhang, Zhao, Wang, & Liao, 2016) (Table  4.13). Nevertheless, 
after 20 days of storage, some clear changes were perceived, with high values of 
∆E, but still, about 3.4-fold lower than the samples treated by high temperature (Liu 
et al., 2016). Similar results were described by Contador et al. (2014) who found 
that pumpkin purée treated at 400 MPa showed the same coloration parameters as 
non-processed purée, presenting an increase of about nine-folds of the ∆E param-
eter also after storage at refrigeration for 20 days (Contador et al., 2014). Contrasting 
results were reported by García-Parra et al. (2016), who related the instrumental 
color and PPO enzyme activity, after HPP treatment of pumpkin purée (Table 4.13). 
The authors have found that the purée lightness (CIE L∗) was significantly higher 
after high pressure/mild temperature (600  MPa/60  °C) treatment. Also, the ∆E 
parameter was around 3–4, indicating a color difference perceptible by most con-
sumers, even though that those conditions were the most effective to reduce PPO 
activity (García-Parra et al., 2016).
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Flavor is one of the food properties most used by consumers to understand a 
product as consumable. Nevertheless, this kind of compounds is degraded by ther-
mal processing, producing other compounds, such as volatile aldehydes, responsi-
ble for off-flavors development in vegetable products. Kebede et al. (2017) studied 
the effect of HPP (600 MPa/118 °C) on carrot purée and compared the formation of 
off-flavors compounds to a thermal-treated sample (Table  4.13). The authors 
reported a formation rate of that volatiles under high pressure ten times slower than 
at 0.1 MPa, indicating the importance of the processing conditions (temperature and 
time) on food quality (Kebede et al., 2017). Many similar results were reported by 
Kebede et al. (2014) after high-pressure/high-temperature treatment (600 MPa for 
15 min at 117 °C) of onion, potato, pumpkin, and red beet.

In cruciferous vegetables, such as broccoli, glucosinolates are products respon-
sible for their odor and taste. Some treatments of HPP can maintain a high level of 
intact glucosinolates in broccoli florets, mainly due to myrosinase inactivation at 
700 MPa, 10 min, 20 °C, allowing preserving the quality of these vegetables (Blok 
Frandsen et al., 2014).

Table 4.13  Examples of the main effects of HPP on the sensorial properties of vegetables

Vegetable 
products HPP conditions Sensorial effects Reference

Cocoyam and 
carrot

600 MPa/5 min/RT Color parameters unchanged 
after HPP

Tribst et al. (2016)

Cucumber 
juice

500 MPa/5 min/RT Color parameters unchanged 
after HPP

Liu et al. (2016)

Pumpkin 
purée

400, 600 MPa/ 
5 min/10 °C

Treated samples (400 MPa) with 
same coloration parameters as 
non-processed purée

Contador, González-
Cebrino, García-
Parra, Lozano, and 
Ramírez (2014)

Pumpkin 
purée

300–900 MPa/ 
1 min/60–80 °C

Higher lightness for samples 
treated by HPP at 600 MPa and 
60 °C

García-Parra, 
González-Cebrino, 
Delgado, Cava, and 
Ramírez (2016)

Carrot purée 600 MPa/up to 
180 min/118 °C

The formation rate of off-flavors 
was ten times slower than heated 
samples at 0.1 MPa

Kebede et al. (2017)

Onion, potato, 
pumpkin, red 
beet

600 MPa/ 
15 min/117 °C

HPHT seems to reduce the 
degradation of Strecker products

Kebede et al. (2014)

Broccoli 
florets

300, 700 MPa/ 
10 min/20, 82 °C

HPP can maintain a high level of 
intact glucosinolates in broccoli 
florets

Blok Frandsen et al. 
(2014)

Beetroot slices 650 MPa/ 
3–30 min/RT

Great color instability, with high 
values for total color difference 
parameters (above 10)

Paciulli et al. (2016)
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4.2.3.2  �Meat Products

Fish and Fish-Based Products

For consumer’s perception, color is one of the most important sensory characteris-
tics of fish muscles in determining their acceptability. For color measurements in 
fish processed by HPP is normally to use the CIE LAB system, obtaining values of 
L∗ (lightness scale from 0 (black) to 100 (white)), a∗ (scale ranging from −a (green) 
and +a (red)), and b∗ (scale ranging from −b (blue) and +b (yellow)). From these 
parameters, it is possible to calculate the ∆E value, which is used to predict the dif-
ferences in perception capacity (∆E > 3.0 = very distinctive, 1.5 < ∆E < 3.0 = dis-
tinct, and ∆E  <  1.5  =  slightly distinct) (Adekunte, Tiwari, Cullen, Scannell, & 
O’Donnell, 2010). Normally, L∗ value increases in HPP-treated fish, which shows 
more clear, gray, typical of cooked meat aspect after application of pressure levels 
between 150 and 300 MPa (Erkan, Üretener, & Alpas, 2010; Ramirez-Suarez & 
Morrissey, 2006; Sequeira-Munoz et al., 2006). Regarding a∗ and b∗ values, there 
are some differences in different published studies, but most of them have shown a 
decrease in a∗ value (loss of red) (Erkan et al., 2010; Yagiz et al., 2007), and an 
increase in b∗ value (up yellow) (Ramirez-Suarez & Morrissey, 2006; Sequeira-
Munoz et al., 2006), which depends with the species and the pressure conditions.

The possible effects of HPP detected by instrumental methods are less noticeable 
during sensory evaluation. Few sensory studies assessed HPP-treated fish, but in 
general, the changes discretely influence the sensory attributes, most often posi-
tively (Table 4.14).

According to Hurtado et  al. (2000), HPP-treated hake showed slightly higher 
scores for overall appearance and odor, as a function of pressure levels, compared 
to control samples. In addition, lower scores were observed within the pressure 

Table 4.14  Some publications with the main effects of HPP on the sensory properties of fish

Fish 
products HPP conditions Samples Sensorial effects Reference

Hake 200 and 400 MPa/ 
5 min/7 °C

Samples 
cooked in 
boiling water 
for 5 min

General appearance and odor 
similar or slightly higher than 
control samples
Higher flavor scores when 
compared to the control and a 
decrease with the pressure 
levels increase

Hurtado, 
Montero, and 
Borderias 
(2000)

Red 
mullet

220 and 330 MPa/ 
5 and 3 min/25 °C

Raw fillets No influence on appearance 
and odor

Erkan et al. 
(2010)

Sea bass 250 and 400 MPa/ 
5 min/6 °C

Raw sea bass 
fillets

Color whitening (cooked fish 
appearance)
Intensified brightness at 
400 MPa (firmer fillets)
No influence on the fresh 
odor
High sensory acceptance

Teixeira et al. 
(2014)
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levels at 200 and 400 MPa. It is recognized that HPP increases whiteness index 
(instrumental measurement), giving opaque appearance typical of cooked product. 
Considering that hake is a white fish, whitening may have contributed to its better 
appearance. In the same way, Teixeira et al. (2014) verified that HPP caused the loss 
of red color on sea bass and increased whitening, which was correlated to color 
instrumental analyses. In addition, the same panel observed an increase in firmness 
with increasing pressure levels. The pressure levels did not influence fresh odor, 
although an increase in oxidation products was observed.

HPP has a significant effect on the elimination of microorganisms, inhibiting the 
production of biogenic amines, volatile nitrogen, and trimethylamine (Murchie et al., 
2005), which contribute to improving the sensory quality, and ensure the safety of fish.

Meat and Meat-Based Products

Consumers request for fresh-like/high-quality food products have been increasing, 
and HPP as a novel non-thermal food processing technology has demonstrated to 
fulfill these requirements.

One of the most important attributes for consumers regarding meat products is its 
color. Shortly, it can be said that this parameter is related to the amount and chemi-
cal state of the hemoproteins and meat’s structure, and its changes are related to 
ferrous myoglobin oxidation into ferric metmyoglobin. Although changes in several 
cured/processed meat products are acceptable by the consumers (depending on 
water content and water activity), HPP applied to fresh meat induces severe changes 
on this parameter (Sazonova et al., 2017).

Usually, color differences on fresh red meat occur when a pressure level above 
200 MPa is applied over a few minutes at low temperatures. Briefly, the lightness 
(L∗) parameter can change at a pressure level between 200 and 350 MPa (red into a 
paler pink), usually redness (a∗) decreases resulting in a cooked-like appearance of 
the product at pressures of 400–500 MPa, and yellowness (b∗) could increase or is 
not affected (Sazonova et al., 2017).

As myosin is sensitive to pressure it can denature between 180–300 MPa giving 
an opaque appearance similar to cooked meat. However, in the literature, it is stated 
that besides myosin unfolding on pressure treatment, some hydrogen bonded struc-
ture remains or is formed, being these destroyed by further heat treatment (Ma & 
Ledward, 2004; Ma & Ledward, 2013).

On the other hand, although myoglobin in pure solution at the same pH values 
found in meat is relatively stable to heat and pressure, on the product, the pigment 
is less stable to heat probably due to a pre-denaturation and conformational changes 
leading to more exposed/available haem to other denatured or denaturing proteins, 
so that it co-precipitates with them, being the final complex a brown denatured fer-
ric haem pigment at normal pH (Ma & Ledward, 2013). The same is verified for 
pressure treatments, wherein solution myoglobin denaturation is reversible at all pH 
values except from those around its isoelectric point, however, in meat, it seems less 
stable than in solution, probably due to co-precipitation with other proteins and the 
complexes formed.
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Some studies regarding color stability on high-pressure treatments concluded 
that this kind of technology could increase color stability over storage if a pressure 
treatment of 80–100 MPa after 2 days post-slaughter is applied. The same did not 
happen when the same pressure treatment was applied after 7 or 9  days post-
slaughter, being this difference probably related to the destruction of the catalytic 
system responsible for the oxidation of myoglobin to metmyoglobin (Cheah & 
Ledward, 1997b).

Concerning meat flavor, it is not expected that HPP has a great impact on meat 
organoleptic characteristics, however as lipids and their oxidation products influ-
ence meat flavor and the enzymes responsible for the products formed over chill 
storage are susceptible to pressure, HPP can be responsible for meat flavor adultera-
tions (Ma & Ledward, 2013).

By the years, it has been concluded that HPP turns polyunsaturated fatty acids in 
fresh meat more susceptible to oxidation, mainly above 400 MPa, being this impact 
detected by sensorial analyses (Cheah & Ledward, 1996; Ma, Ledward, Zamri, 
Frazier, & Zhou, 2007; Wang et al., 2013). This behavior has been explained by the 
release of metal ions (primarily iron) from the transition metal complexes present in 
meat, as well as by membrane disruption induced by pressure (Bolumar, Skibsted, 
& Orlien, 2012; Cheah & Ledward, 1997a; Orlien, Hansen, & Skibsted, 2000). It 
was also verified that supplementation with EDTA or vitamin E could lead to the 
lipid oxidation inhibition after pressure treatment, mainly for the former (Ma & 
Ledward, 2013). In Table 4.15, some works are listed regarding the HPP effect on 
the sensorial properties of meat-based products.

Table 4.15  Some studies regarding HPP effect on the sensorial properties of different meat-based 
products

Meat products HPP conditions Textural effects Reference

Meat batters and 
reduced-fat 
sausages

200 MPa/ 
2 min/10 °C

HPP sausages with 20% fat presented 
similar sensorial results when compared to 
AP sausages with 30% of fat

Yang et al. 
(2016)

Serrano 
dry-cured ham 
(30 different 
samples)

600 MPa/ 
6 min/21 °C

Only 8 volatile compounds presented to be 
HPP affected (higher levels of methanethiol 
and sulfur dioxide in HPP-treated samples 
and higher levels of ethyl acetate, ethyl 
butanoate, ethyl 2-methylbutanoate, ethyl 
3-methylbutanoate, dimethyl disulfide and 
dimethyl trisulfide in untreated samples)

Martínez-
Onandi, 
Rivas-
Cañedo, 
Nuñez, and 
Picon (2016)

“Lácon”
(cured–cooked
pork meat 
product)

500 and 
600 MPa/ 
5 min/≤16 °C

HPP did not show a considerable effect on 
the sensory characteristics of sliced “lacón”, 
resulting in its stability over 120 days (at 
4 °C), independently of HPP treatment

del Olmo, 
Calzada, and 
Nuñez 
(2014)

Ready-to-eat 
low-fat pastrami, 
Strassburg beef, 
export sausage, 
and Cajun beef

600 MPa/ 
3 min/20 °C

Hedonic ratings revealed no difference in 
consumer acceptability between HPP and 
non-treated samples. There was no evidence 
of sensory quality deterioration over the 
study (98 days of refrigerated storage)

Hayman, 
Baxter, 
O’Riordan, 
and Stewart 
(2004)
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4.2.3.3  �Dairy Products

Milk

Lightness value (L∗) was the main color parameter affected, contributing overall to 
the color losses in milk after HPP (Table 4.16). Gervilla et al. (2001) observed a 
decrease in L∗ and an increase (p < 0.05) of greenness (a∗) and yellowness (b∗) 
when the pressure increased. Similar results were obtained by Adapa et al. (1997), 
producing HPP darker (lower L∗ value), greener (lower a∗ value), and bluer (lower 
b∗ value) colors in milk. Casein micelles play an important role in light scattering 
and when HPP is applied, non-covalent forces (hydrogen bonds, ionic interactions, 
and hydrophobic forces) are disrupted, leading to casein micelles disintegration into 
small fragments that increase the translucence of the milk (Harte et  al., 2003; 
Trujillo et al., 2007).

Fresh Cheese

After HPP, overall, fresh cheeses presented a more yellow color on the outside but 
without changes on the off-flavor parameters, when compared to non-processed 
ones (Table 4.17). Sandra et al. (2004) reported that HPP cheese was not signifi-
cantly different for most attributes, however, HPP cheeses were slightly less crum-
bly than the control, but HPP cheeses were different from the control for all 
attributes, except color. In another study, HPP cheese obtained similar flavor scores 
to non-pressurized ones, with panelists familiar with fresh cheese more accepting of 
the texture than those not familiar fresh cheese (Van Hekken et al., 2013).

Panelists in the Evert-Arriagada et  al. (2012) study, identified the pressurized 
fresh cheeses (300–400 MPa, 5 min) as more yellow, firmer, and less watery, but 
without off-flavors or great differences in flavor and aroma. When a higher pressure 
was applied (500 MPa for 5 min), an increase in firmness in high pressure-treated 
cheeses was noticeable, while flavor, aroma, elasticity and off-flavor parameters 
remained unchanged with HPP treatment of fresh cheese did not affect panelists’ 
preference (Evert-Arriagada et al., 2014).

Table 4.16  Examples of the main effects of HPP on the sensorial properties of milk

Dairy 
products HPP conditions Sensorial properties Reference

Milk 
(bovine)

310 MPa/0.3 s Continuous high-pressure throttling 
treatment changed milk color, producing 
lower L∗, a∗, and b∗ values

Adapa et al. 
(1997)

Milk 
(bovine)

300, 400, 500, and 
676 MPa/5 min/4 °C

After HPP milk color became more 
yellow

Harte et al. 
(2003)

Milk 
(ovine)

100 to 500 MPa/
10 and 30 min/25 and 
50 °C

ΔE rates increased with pressure, with a 
maximum at 500 MPa, resulted from L∗ 
value reduction

Gervilla 
et al. (2001)
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Table 4.17  Examples of the main effects of HPP on the sensorial properties of fresh cheese

Dairy 
products HPP conditions Sensorial properties Reference

Fresh 
Cheese 
(cow)

600 MPa/3 or 
10 min/20 °C

Panelists were able to distinguish the 
control from HPP cheeses, scoring around 
3.4 “moderately liked”

Van Hekken 
et al. (2013)

Fresh 
Cheese 
(cow)

500 MPa/5 min/16 °C Panelist equally preferred pressurized to 
non-treated cheeses, although HPP 
increased firmness in high pressure-treated 
cheeses

Evert-
Arriagada 
et al. (2014)

Fresh 
Cheese 
(cow)

400 MPa/20 min/20 °C HP cheese was slightly less crumbly than 
the control
Stickiness and sticky residuals of HP 
cheese increased during storage

Sandra et al. 
(2004)

Fresh 
Cheese 
(cow)

300 or 
400 MPa/5 min/6 °C

Panelists classified pressurized cheeses as 
more yellow, firmer, and less watery, but 
without off-flavors or great differences in 
flavor and aroma when compared with the 
reference cheeses

Evert-
Arriagada 
et al. (2014)

Table 4.18  Effect of HPP on the sensorial properties of different cheeses

Dairy products HPP conditions Sensorial effects Reference

Brie cheese 
(pasteurized 
cow milk)

400 or 
600 MPa/5 min/9–
14 °C

Flavor quality, intensity, and 
bitterness: did not vary 
immediately after HPP (at 21 days 
of ripening)

Calzada, del 
Olmo, Picon, 
Gaya, et al. 
(2014c)

Blue-veined 
cheese 
(pasteurized 
ewe milk)

400 or 
600 MPa/5 min/13 °C

Flavor intensity and quality: scores 
of HPP cheeses did not differ from 
those of control cheese (exception 
of Cheeses HPP at 600 MPa at 
21 days of ripening, with lower 
scores)

Calzada, Del 
Olmo, Picon, 
Gaya, and 
Nuñez (2013)

NA
(raw cow milk)

400 or 
600 MPa/5 min/14 °C

Odor intensity: did not differ 
significantly among HPP and 
control cheeses

Calzada et al. 
(2015)

Ibores Cheese
(raw goat milk)

400 or 
600 MPa/7 min/10 °C

Odor intensity, flavor intensity, and 
taste: higher scores for HPP 
cheeses (better when were HPP at 
30 days of ripening)

Delgado et al. 
(2012)

Casar Cheese
(raw ewe milk)

400 or 
600 MPa/5 min/14 °C

Flavor intensity and quality: 
similar scores of HPP cheeses and 
control cheese (at 60 days of 
ripening); with time HPP win 
flavor quality

Calzada, del 
Olmo, Picon, 
Gaya, and 
Nuñez (2014a)
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Cheese

In ripened cheese, interesting sensorial results were obtained after cheese HPP. In 
general, immediately after treatment, the flavor quality and intensity scores were 
closer to control cheese (Calzada et  al., 2015; Calzada, del Olmo, Picon, Gaya, 
et al., 2014a; Calzada, del Olmo, Picon, & Nuñez, 2014c), but after some days of 
storage, an increase of these sensorial attributes were verified (Delgado et al., 2012) 
(Table 4.18).

4.3  �Conclusion

The consumers’ demand for new and healthier food products with distinctive organ-
oleptic characteristics led to the application of novel food technologies to fulfill 
their requests. Currently, HPP is one of such novel technologies and has been 
applied, for instance, on the production of fruit juices and ready-to-eat meals, where 
higher nutritional foods with exceptional sensory quality are attained. This non-
thermal food processing technology not only is capable to guarantee food safety, 
increasing food products shelf lives and the reduction/avoidance of chemical preser-
vatives, but also can result in fresher-tasting foods. Along with this chapter, the HPP 
impact on different foods such as fruits, vegetables, meat, and dairy products, was 
revised and discussed. In the end, it was possible to perceive that HPP, when applied 
at optimal conditions for a specific product, allows obtaining several benefits 
depending on the product. It is expected that research regarding HPP effect on foods 
will continue since its application for new food products’ development has been 
increasing due to novel organoleptic characteristics’ achievement, for instance, tex-
ture properties’ modification. Thus, it is very likely that in a few years the knowl-
edge concerning HPP of different foods not yet studied and, on its constituents, will 
increase, as well HPP combined to other food technologies could be a reality.
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Chapter 5
Impact of Pulsed Light on Food 
Constituents

Peng Peng, Paul Chen, Dongjie Chen, Min Addy, Yanling Cheng,  
Nan Zhou, Charles Schiappacasse, Yaning Zhang, Erik Anderson,  
Juer Liu, Yiwei Ma, and Roger Ruan

5.1  �Introduction

As one of the emerging non-thermal food treatment technologies, pulsed light (PL) 
has been intensively studied since the twenty first century. PL technology uses inter-
mittent light pulses to treat food products without leaving any residues. The current 
use of PL technology is for decontamination purposes. The decontamination effects 
of PL treatment rely on primarily light with the different wavelength and the pulsed 
energy. Therefore, this chapter starts by explaining the disinfection mechanism of 
PL technology, where analysis of the UV disinfection mechanism would be helpful. 
Unlike electron beam, X-rays, and gamma rays, UV light is non-ionizing irradiation 
and does not break molecular bonds. The UV light can be emitted either as a con-
tinuous wave (continuous light) or in short duration pulses of 1–20 per second as in 
the case of pulsed light. Continuous UV light may be categorized into three types 
according to the emission spectrum: (1) short-wave UV (UV-C) with wavelengths 
from 200 to 280 nm, (2) medium-wave UV (UV-B) with wavelengths from 280 to 
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320 nm, and (3) long-wave UV (UV-A) with wavelengths from 320 to 400 nm. 
UV-C has been used for disinfection of air, surface, water, and liquid foods (Bintsis, 
Litopoulou-Tzanetaki, & Robinson, 2000). The mechanisms responsible for micro-
bial inactivation by UV light are believed to be due to the photochemical, photother-
mal and photophysical effects on microbes exposed to UV light (Oms-Oliu, 
Martín-Belloso, & Soliva-Fortuny, 2010).

Continuous UV light has a shallow penetration depth and is suitable for disinfec-
tion of transparent liquid such as water. For liquid foods such as juice and milk, the 
penetration depth is less, depending on the type of liquid. UV light has been used to 
treat fresh fruits and vegetables to reduce the initial count of microorganisms on the 
surface of the product and to induce host resistance to the microorganisms through 
a mechanism termed “hormesis” (Guerrero-Beltrán & Barbosa-Cánovas, 2004). 
UV-C has also been used to treat meat, poultry, fish, chocolate, and eggs to reduce 
microbial loads and extend shelf life without negatively affecting the quality 
(Djenane, Sánchez-Escalante, Beltrán, & Roncalés, 2001; Huang & Toledo, 1982; 
Kuo, Carey, & Ricke, 1997; Lee, Kermasha, & Baker, 1989; Wallner-Pendleton, 
Sumner, Froning, & Stetson, 1994).

Despite the demonstration of its apparent efficacy under laboratory conditions, 
UV disinfection technology in the food processing industries has seen few practical 
applications. Gardner and Shama (2000) attributed the phenomenon to two major 
reasons. First, there may be wrongly perceived undesirable changes to both the 
appearance and nutritional value of UV-treated foods, which may have deterred 
some potential users, despite the fact that most deleterious effects previously 
reported tending to be significant only at high UV fluencies. Second, the range of 
commercially available equipment for disinfecting solid foods is limited.

PL shares the same germicidal mechanisms as UV light. However, to a certain 
extent, PL overcomes the two major disadvantages of UV light over ionizing irra-
diation. First, PL has much greater penetration depth than UV light. Second, PL 
releases a peak power distribution during a pulse as high as 35 MW compared with 
100–1,000  W for continuous UV light (Oms-Oliu, Martín-Belloso, & Soliva-
Fortuny, 2010). The high penetration and energy level makes PL an excellent alter-
native to continuous UV light for effective inactivation of pathogens in foods 
(Birmpa, Vantarakis, Paparrodopoulos, Whyte, & Lyng, 2014). Cheigh, Park, 
Chung, Shin, and Park (2012) compared the effect of UV-C and PL on the viability 
and cell damage of Listeria monocytogenes and Escherichia coli O157:H7. UV-C 
irradiation for 1200 s resulted in a 4-log reduction of L. monocytogenes and a 5-log 
reduction of E. coli O157:H7 while PL treatments at energy densities of 376 and 
455 W/m2 for 60–180 s caused an approximately 7-log reduction in L. monocyto-
genes and E. coli O157:H7. The transmission electron microscopy study indicates 
that bacterial cell structures were destroyed by intense pulsed light (IPL) treatment 
but not by UV-C treatment. This was also observed in a study involving L. monocy-
togenes inoculated on solid medium and seafood (Cheigh, Hwang, & Chung, 2013). 
The mechanism of IPL on killing microbes was concluded as follows, (1) 
Photochemical damage: the UV light portion of the PL damages the DNA of bacte-
ria by forming thymine dimers. Upon dimer formation, bacterial DNA cannot be 
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unzipped for replication, and thus bacteria cannot reproduce. (2) Photothermal 
damage: localized heating of bacteria can be generated by PL treatment based on 
different thermal properties within the food-bacteria system. The thermal stress 
caused by this irregular heating would damage the cell via cell wall rupture and 
membrane decomposition (Keener & Krishnamurthy, 2014). (3) Photo-physical 
damage: PL is also expected to induce some physical disruption on microbial cel-
lular structures due to the intermittent, high-intensity pulses.

Furthermore, PL not only kills vegetative bacteria but also inactivates spores 
(Nicorescu et al., 2013), which is usually difficult even with thermal processes. Fine 
and Gervais (2004) reported that during PL processing, oxidative reactions were 
limited because of the short pulse duration, typically 300 ns to 1 ms, compared with 
>10  min for continuous UV light. Finally, PL treatment does not leave residual 
compounds or use external chemical disinfectants and preservatives. Application of 
IPL in the food industry has been approved by the FDA under the code 21CFR179.41 
(FDA, 1996).

5.2  �Influences of Pulsed Light on Foods’ Qualities

The primary purpose of using PL to treat food products is to inactivate microbes, 
and the most commonly researched food process involving PL treatment is shelf life 
extension. In this section, the effects of PL treatment in microbial disinfection and 
shelf life extension of fresh produces, meat products, and dairy products will be 
discussed. Furthermore, due to the photochemical, photothermal, and photophysical 
treatments by the PL, the changes in other foods’ qualities may occur, which will 
also be reviewed in this section. In particular, the food qualities that will be dis-
cussed in this section are flavor, texture, color, nutrient contents, and sensory attri-
butes. These qualities are crucial to the commercial applications of this technology 
and are critical factors in its scale-up evaluations.

5.2.1  �Fruits and Vegetables

Several of the most important consumer expectations for the quality of fruits and 
vegetables are the appearance, texture, nutritional value, and shelf life stability. For 
fresh produce, especially the minimally processed foods, the greatest limitations for 
the extended shelf life is yeast proliferation (Gorny, 2003). Therefore, relevant stud-
ies used the yeast population as one critical method to determine the shelf life 
enhancement of the PL treatment. Studies prior to the year of 2010 demonstrated a 
maximum storage time of 9 days for PL-treated fresh produce, with 3 days being the 
time where obvious textual changes were observed (Gómez-López, Devlieghere, 
Bonduelle, & Debevere, 2005). One representative study was conducted by Oms-
Oliu, Aguiló-Aguayo, Martín-Belloso, and Soliva-Fortuny (2010) who used 
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fresh-cut mushrooms as an example to demonstrate the influence of PL treatment on 
the shelf life and antioxidant levels to fresh produces. The yeast populations on the 
treated mushrooms were analyzed compared with the untreated samples. Subjected 
to PL treatments between 4.8 and 28 J/cm2, the yeast proliferation rate was reduced 
by over 1 log during storage. This study concluded that the PL treatment of fresh cut 
mushrooms led to an increase in the shelf life of the mushroom for 2 to 3 days. 
While this was a significant improvement compared with previous studies, this 
research also showed a decrease in nutrients including vitamins and antioxidants, 
which agreed with other later studies.

Table 5.1 summarizes the representative studies that reported the quality changes 
to PL-treated fruits and vegetables after the year of 2010. For the changes reported 
in the studies listed in Table 5.1, it was obvious that the nutritional quality changes 
caused by the PL treatment varied between different fruits and vegetables. Overall, 
the changes in the nutritional properties under PL treatment are not significant. The 
slight reduction in the content of phenolic compounds could be due to the break of 
the membrane cell walls; leading to higher activities of polyphenol oxidase resulted 
from  the  tissue damage and the  loss of the  functional cell compartmentalization 
(Gómez et al., 2012). From Table 5.1, it could be also observed that the effect of PL 
treatment on the textural quality changes was more obvious for fresh produces with 
smooth surfaces, such as apples and tomatoes. The increases in brownness dehydra-
tion of apples subjected to the PL treatment were repeatedly reported in the related 
studies (Gómez et al., 2012; Ignat et al., 2014; Moreira, Álvarez, Martín-Belloso, & 
Soliva-Fortuny, 2017). On the other hand, the fruits with rough surface experienced 
fewer changes in color and firmness when subjected to PL treatments. The literature 
reported the protective effects of the rough surfaces on microbes during the PL 
treatment (Maftei, Ramos-Villarroel, Nicolau, Martín-Belloso, & Soliva-Fortuny, 
2014; Nicorescu et al., 2013). Therefore, it was reasonable to propose that the hin-
drance effects caused by the rough surface of the fruits and vegetables could provide 
protection to the textural properties as well. The shielding effect from the rough 
surfaces was a double-sided sword for the PL treatment as it could limit the decon-
tamination performance while preserving the textural properties. Additionally, it 
could also be determined from these studies that the textural changes were more 
likely due to the dehydration effect caused by the visible and inferred portion of the 
PL treatment. For studies that implement solely the pulsed UV treatments, the fruits 
experienced no to little textual changes (Luksiene et al. 2013).

Although PL is considered as a non-thermal food treatment technology, it still 
causes temperature rise due to the energy dissipation in the process. Although in 
most of the cases, the temperature during PL treatment does not exceed 60 °C, cer-
tain destruction of nutritional (e.g. vitamins) and sensory attributes would still occur 
due to the thermal effects (Oms-Oliu, Aguiló-Aguayo, et  al., 2010). Therefore, 
researchers have developed an innovative modification to the technology, called 
water-assisted PL or wet PL, to reduce the thermal damage of PL and preserve the 
foods’ qualities, especially for fruits and vegetables that are sensitive to temperature 
rise (Bhavya & Umesh Hebbar, 2017).

This developed a novel modification that has been used in the laboratory scale to 
treat various fruit products such as blueberries and raspberries (Huang & Chen, 2014, 
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2015; Huang, Sido, Huang, & Chen, 2015). In these studies, there have been no 
changes in the fruits’ appearance and the surface heating has been greatly reduced. 
Therefore, wet PL treatment, or water-assisted PL treatment, could be one of the 
promising PL processes used in the fruit and vegetable industry in the future.

5.2.2  �Meat Products

While there were many studies related to the treatment of fruits and vegetables 
using PL technology, investigations on the use of PL for meat treatment were not as 
thorough. However, similar to the studies on fruits and vegetables, the primary 
application of PL treatment remained to be the surface decontamination and exten-
sion of shelf lives. Related studies targeted the treatment of two meat products, raw 
meat, and ready-to-eat meat. For the investigations on the fresh meat, one of the 
early studies conducted by Ozer and Demirci (2006) reported the inactivation of E. 
coli and L. monocytogenes. In this study, the reduction achieved for both microbes 
were slightly less than or equal to 1-log, which was not as sufficient as the ones 
achieved for fruits and vegetables (Gómez et al., 2012; Ignat et al., 2014). In a later 
study conducted by Hierro, Ganan, Barroso, and Fernández (2012), a comprehen-
sive inactivation of various microbes on beef and tuna by PL, including L. monocy-
togenes, E. coli, S. Typhimurium and V. parahaemolyticus was reported. In this 
study, approximately 1-log reduction was achieved for the above-mentioned con-
taminants. Although improvements on the disinfection performances were shown in 
this study compared with Ozer and Demirci (2006), the authors stated that for fresh 
meat products, the results still required improvements to completely reduce cross-
contamination within the production facilities. Overall, although in the field of meat 
treatment with the PL technology, the studies on the treatment of fish products were 
reported more intensively than other products, the studies on products such as beef, 
pork, and chicken were reported. For the PL treatments on beef, a similar log-
reduction result was obtained as the treatment for tuna (Hierro et al., 2012). The 
results for the decontamination of beef were less effective than the treatment of 
pulsed UV light on chicken meat (Paškevičiūtė & Lukšienė, 2009). Also, the differ-
ence in UV doses might contribute to the changes in the disinfection results and the 
different surface textural properties of these two types of meat could be the primary 
reason why the results varied. Furthermore, the decontamination of S. aureus on 
fermented salami, together with the reported L. monocytogenes, E. coli, S. 
Typhimurium and V. parahaemolyticus was recently reported (Rajkovic, Tomasevic, 
De Meulenaer, & Devlieghere, 2017). The authors found that the inactivation of 
these contaminants led to over 1-log additional reduction for tuna (Hierro et  al., 
2012), with higher energy doses (15 J/cm2 for salami and 11.2 J/cm2 for tuna).

For the sensory and nutritional qualities, the changes caused by PL treatment on 
meats were reported. For instance, for the fermented salami, PL treatment caused a 
notable increase in protein oxidation and carbonyl content (Rajkovic et al., 2017). It 
was not surprising to see this finding as the negative effects of PL treatment on meat 
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products have been reported (Nicorescu, Nguyen, Chevalier, & Orange, 2014; 
Tomašević, 2015). Nicorescu et al. (2014) pointed out in their study that the 30 J/cm2 
of PL dose was the value that led to significant color and sensory quality changes. At 
this PL dose, malondialdehyde content in the roasted pork increased by up to 39.3%.

On the other hand, one study concluded that PL treatment caused less damage to 
the dry cured meat than the cooked or raw meat (Tomašević & Rajković, 2015). 
This result agreed with a previous study on the use of PL to decontaminate dry-
cured meat products. For the cooked and ready-to-eat meat used in this study, almost 
no significant changes in the sensory qualities of the meat were observed after the 
products were treated by a PL dose of 11.9 J/cm2 (Ganan, Hierro, Hospital, Barroso, 
& Fernández, 2013). The study reported that the small changes in sensory qualities 
disappeared during storage and did not affect the overall evaluation scores by the 
consumer panelists for these ready-to-eat meats.

To conclude, the studies on using PL to treat meat products were scattered. 
Although the effect of PL treatment on different meat products was reported, they 
were not intensively studied as the fruits and vegetables. Furthermore, the extension 
of the shelf lives of the meat products was also less than those of fresh produces. To 
examine this, more studies should be conducted with regards to meat surface and 
microbial characterizations. PL treatment led to negative impacts on the quality and 
sensory properties of raw meat but negligible effect on those of cooked and dry 
cured meat, and the difference of the changes became less significant after storage.

5.2.3  �Dairy Products

Research on applying PL technology to dairy products began in the late 1990s and 
early 2000s when the decontamination effects of PL treatment to Pseudomonas, E. 
coli, and Salmonella were tested on cottage cheese and milk (Dunn, 1995; Smith, 
Lagunas-Solar, & Cullor, 2002). Overall, studies on PL treatment of dairy products 
were not performed as much as fruits and vegetables. During the past ten years, the 
studies related to the PL treatment of dairy products remained to focus on cheese 
and milk. However, other than the decontamination effects, recent studies started to 
investigate the nutritional quality changes of the milk and cheese.

For milk products, the use of PL treatment was effective in terms of shelf life 
extension (Rysstad & Kolstad, 2006). PL treatment demonstrated promising disin-
fection performances for various bacteria in different kinds of milk such as concen-
trated milk, regular milk, and goat milk (Kasahara, Carrasco, & Aguilar, 2015; 
Miller, Sauer, & Moraru, 2012). On the other hand, the inactivation of spores in 
milk by PL treatment was sparsely reported. On the nutritional quality point of view, 
the effects of the PL treatment on the protein and lipid contents in milk were also 
investigated. Elmnasser et al. (2008) stated in their publication that PL and UV-PL 
treatment caused no significant change to the protein and lipid contents. For sensory 
properties, Kasahara et al. (2015) found no differences between the PL-treated and 
the original goat milk samples. However, negative flavor and aroma changes were 
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only observed repeatedly for the ones treated by continuous or pulsed UV treat-
ments (Orlowska et al., 2012; van Aardt et al., 2005). Therefore, it was reasonable 
to propose that the photochemical effects from the UV irradiation were the main 
causes of the changes in the proteinogenic amino acids, and in lipids, which further 
led to the deterioration in the sensory properties.

For cheese products, the disinfection performances of the P. roqueforti and L. 
monocytogenes were evaluated in addition to the previously mentioned E. coli strain 
(Can, Demirci, Puri, & Gourama, 2014). In this study, the greatest log reductions 
observed for P. roqueforti and L. monocytogenes were 1.24 and 2.9 logs, respec-
tively. Although the results were not as efficient as E. coli, PL treatment did not 
cause significant changes to the color and chemical properties of the cheese. Note 
that in this study, a slight decrease in the elastic modulus was observed in the 
PL-treated cheese. Yet the changes were not sufficient enough to affect the overall 
mechanical properties of the cheese. A later study carried out by Fernández, Ganan, 
Guerra, and Hierro (2014) pointed out that the PL treatment with less than 4.8 J/cm2 
did not change the qualities while treatments greater than 8.4 J/cm2 led to a moder-
ate or significant increase in the protein oxidation. Moreover, the sensory evaluation 
of the PL-treated cheese was conducted in another study by Fernández, Hospital, 
Arias, and Hierro (2016). The results from this study confirmed the upper treatment 
limit of around 4–5 J/cm2 to avoid the significant quality changes. However, the 
changes in the sulfur volatiles and the related sensory changes gradually disap-
peared during cold storage. Therefore, PL treatment could be a potential useful 
decontamination tool in the cheese industry for the products that would be subjected 
to cold storage after the treatment.

In addition to cheese and milk, the PL technology was recently applied to the 
whey protein extract (Siddique, Maresca, Pataro, & Ferrari, 2016). Application of 
PL treatment was reported to improve the foaming and solubility of the whey pro-
tein extracts via dissociation and partial unfolding of the protein isolate. This study 
was important to the PL technology since it proved the feasibility of using PL tech-
nology to improve the properties of functional dairy products and led to an avenue 
of future applications of PL technology in functional foods.

5.3  �Challenges

5.3.1  �Challenges as a Surface Treatment Technology

Like other surface treatment technologies, one of the major challenges faced by PL 
technology is the lack of deep penetration. Although the penetration depth of the PL 
treatment is greater compared with continuous UV due to the enhancement in the 
pulse energy, the penetration is still lower than the conventional thermal treatment 
or other types of irradiations. The shielding effects caused by the complex surfaces 
limits the disinfection power of PL treatment on many food matrices. Furthermore, 
PL treatment might not be sufficient enough to inactivate bacteria that are hidden 
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inside the cavities and irregular surfaces of different foods (Elmnasser et al., 2007). 
Within the same food particles, the different surface textural properties might lead 
to various inactivation susceptibilities. Because PL is a surface treatment technol-
ogy, it would also be less effective when used to kill the microorganisms absorbed 
within the complex structure of certain foods, such as fat in meat products, and fail 
to extend the shelf life of these foods.

For foods with larger particle sizes, the incomplete exposure of the entire food to 
PL is another challenge. Water-assisted PL treatment could potentially reduce this 
problem by submerging the food into the water to enhance light exposure (Huang, 
Sido, Huang, & Chen, 2015). However, the water-assisted apparatus still requires 
further improvements for it to become more efficient and commercially feasible. 
Lastly, for PL treatments, the fluidized bed types of conveying systems can lead to 
more complete and uniform treatment of food products. Therefore, the competency 
of the other food transport systems, such as the conveyor belt, is another challenge 
for the commercial application of PL technology from the penetration and exposure 
problems.

5.3.2  �Effect on the Photochemical and Photothermal 
Compounds

The quality changes described in Sect. 5.2 are mostly due to the photochemical and 
photothermal effects of PL treatment. The photochemical effects lead to chemical 
reactions that could cause oxidation and reduce the nutrients of the food ingredients. 
Therefore, the industrial applications of PL technology in food products might need 
to be conducted in nitrogen (or other inert gases) environment. Photothermal effects 
of the PL treatment can also reduce the nutrient content and sensory qualities of the 
foods (Bhavya & Umesh Hebbar, 2017). Although PL technology is considered as 
a non-thermal technology, the temperature rises in the food being treated must be 
controlled by adjusting the process parameters (exposure time, pulse energy, fre-
quency, particle size, distance to the light, etc.). Due to this complexity, the com-
mercial application of PL technology is challenging to certain foods, especially 
solid foods with irregular shape, chemical, and physical properties. Not only the 
non-uniformity of the food will cause uncertainty in microbial inactivation, but the 
quality and sensory changes in certain parts of the food might also be lowered to 
unacceptable levels.

5.4  �Future Opportunities

For decontamination and shelf life extension purposes, one of the major opportuni-
ties for the PL treatment will be for the powdered foods. Powdered foods are widely 
used as the ingredients in manufacturing processed foods or consumed directly by 
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humans and animals for their energy and nutrient contents. The popularity of pow-
dered foods is rising due to the convenience and versatility of their use in food 
preparation. Inappropriate and insufficient decontamination has led to numerous 
outbreaks of foodborne diseases in recent years due to the existence of pathogenic 
microbes in dry milk powder, infant formula, spices, bread crust, etc., or through the 
cross-contamination when inappropriately pasteurized food ingredients such as 
spices were added into meat, pasta and pizza products. In recent years, there have 
been several major disease outbreaks in powdered foods around the world (Brandt, 
Serrano Oria, Kallon, & Bazzano, 2017; Jourdan-da Silva et  al., 2018; Mullen, 
2017). Due to their low water activity (aw), powdered foods pose a unique challenge 
for disinfection. Many spores forming-microbes, including Clostridium spp. and 
Bacillus spp. adapt to the low aw hostile environment by becoming physiologically 
dormant and metabolically quiescent, rendering them less susceptible to bacteri-
cidal interventions.

Different physical and chemical processes have been used to decontaminate 
powdered foods. Thermal treatments are commonly used, as they are easier to 
implement than others. Dry/powdered foods are commonly pasteurized thermally in 
the liquid state, for example, 72 °C for 15 s is used for milk disinfection before 
evaporation for making milk powder products. Thermal treatments are commonly 
used, as they are easier to implement than others. To prevent post-packaging recon-
tamination, thermal treatment is often applied to pre-packaged foods. As a result, 
the treatment has to be so severe that the outer portion of the food is overheated 
while the center is still cold. For example, dry powdered foods are usually packed 
in 30–40 lb cartons. A pallet of 20 cartons is heat-treated in a chamber at 90 °C 
(195 °F). After a 20–30 min treatment, the center of the stack cannot reach the inac-
tivation temperature. This will adversely affect the quality and safety of the treated 
products. Furthermore, microbes exhibit greater thermal resistance in dry environ-
ments than in more humid conditions. The high-temperature steam treatment was 
found to decrease volatile oil content, degrade color, and increase the moisture con-
tent of the dried spices, which leads to a decreased shelf life (Lilie, Hein, Wilhelm, 
& Mueller, 2007).

Inactivation of dry foods by ionizing irradiation using energy such as electron 
beam, X-rays, and gamma rays has been reported (Niemira, 2014). The electron 
beam has a much shorter penetration depth than X-rays and gamma rays and there-
fore the latter two techniques are more suitable for processing of pallet/crate loads 
of foods. Irradiation of dry herbs and spices is very common in the US, with 78% of 
103,000 tons herbs and spices that are irradiated annually. Many defects of these 
processes have been identified, including the lack of efficiency, difficulty to per-
form, and production of undesirable side products (the formation of potential 
mutagens and carcinogens in chemical methods) (Steenland, Whelan, Deddens, 
Stayner, & Ward, 2003).

The PL technology is also suitable for foods with small particle sizes. As men-
tioned in Sect. 5.3.1, the two major challenges for PL technology are the low 
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penetration depth and uniform treatment to large solid foods. Powdered foods cir-
cumvent these challenges due to their small particle size and greatly reduce the 
shielding effect caused by large solid foods. By using a fluidized conveying system, 
they could be continuously and uniformly treated by PL technology, and most 
importantly, without introducing moisture or heat. Similar to powdered foods, fluid 
foods can reduce the shielding effects and enhance the penetration of the PL treat-
ment. Furthermore, for most functional fluid foods, the physical and chemical prop-
erties are uniform at the final stages of the production line. Therefore, the dosage of 
PL treatment could be adjusted according to the compositions to reach certain 
desired function changes.

5.5  �Conclusions

In this chapter, the effects of PL treatment on the microbial, physicochemical, nutri-
tional, and sensorial properties of fruits and vegetables, meat products, and dairy 
products were introduced. Among the three products, the applications of PL tech-
nology on fruits and vegetables have been extensively investigated, whereas the 
study of the meat and dairy products were relatively less documented. PL treatment 
was successful in extending the shelf life of all three kinds of food products. In 
general, the microbial inactivation and shelf life extension performances were better 
demonstrated in the products with smooth surfaces. For nutritional and sensory 
qualities, the most common effects caused by PL on fresh produces were the dehy-
dration and color changes, while no significant sensory changes occurred. For fresh 
meat products, the increase in protein oxidation and carbonyl content were the main 
factors that led to the negative impacts of PL treatment on sensory and nutrient 
qualities. However, the impacts were significantly less for cooked meat and had a 
tendency to disappear during storage. Similarly, for dairy products such as milk, the 
low dose PL treatments (below 4 to 5 J/cm2) led to no significant changes in protein 
and lipid content and sensory qualities. Furthermore, the changes would also disap-
pear during cold storage. The two challenges identified for PL treatment were the 
relatively short penetration depth and the potentially negative impacts caused by 
PL’s photochemical and photothermal effects. These challenges can be overcome by 
controlling the process parameters such as exposure time and pulse energy. Based 
on the challenges, PL technology has the potential to play a key role in treating 
powdered foods and functional fluid foods in the future. These two products circum-
vent the challenges of PL. The small particle size of the powdered food and the 
greater transparency of the functional drinks allow full exposure of the products 
once they are fluidized. The fluidization of these products is also easier to achieve 
than large solid foods. Lastly, the uniformity of these foods avoids the partial over-
heat during PL treatment, which is the main limitation for foods with complex sur-
faces and large particle sizes.
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Chapter 6
Impact of Microwave Irradiation on Food 
Composition

Giancarlo Cravotto and Arianna Binello

6.1  �Introduction

The use of high-frequency radio waves to heat and cook food dates back to the 
1920s and the invention of vacuum tube radio transmitters. Microwaves (MW) fall 
between radio frequencies and infrared (IR) radiation frequencies in the electro-
magnetic spectrum and range between 0.3 GHz and 300 GHz with wavelengths rang-
ing between 1 m and 1 cm. MW is an innocuous radiation type, when used with 
standard oven protection, and exert low vibrational energy that does not interact at 
atomic or molecular levels (Cravotto & Carnaroglio, 2017). In the early 1930s, the 
American magazine for radio experimenters published a popular editorial entitled 
“Cooking by ultrashort waves” (Gensback, 1933). This new and faster way of cook-
ing was a great invention, which heated food without direct contact with hot sur-
faces, but only via irradiation across the path of the radio transmitter’s power. In the 
late 1930s, two leading American companies; Westinghouse and Bell Laboratories, 
released several patent applications demonstrating the efficient cooking of foods by 
dielectric heating at ca. 60 MHz. The food industry rapidly recognized the huge 
potential that MW showed as a food processing technique (Puligundla et al., 2013), 
while physicists and engineers developed different versions of magnetrons that 
were used in military defense as radars. One of those researchers was Percy 
L. Spencer who, inspired by a serendipitous finding, attempted to heat all types of 
food with his device, leading to his company, Raytheon, filing the first patent to 
describe MW oven prototype a few years later (1945). Only at the end of the 1960s, 
domestic ovens became available for American families at an affordable price (less 
than 500 USD). Industrial applications of MW technology for food processing and 
drying have grown steadily since then and the frequencies of 2.45 GHz and 915 MHz 
became more common (Puligundla et  al., 2013). Dielectric heating has several 
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advantages over conventional heating methods, especially with regards to energy 
efficiency. The peculiar type of volumetric heating that it provides dramatically 
reduces the temperature gradient between the outside and inside of food (Witkiewicz 
& Nastaj, 2010).

Although the development of robust theoretical and empirical models for process 
optimization is of paramount importance, the complex and variable composition of 
raw and pre-packaged foods makes this goal particularly challenging. Water, polar 
compounds and charged ions in food interact with MW electromagnetic fields 
intensely, causing the dipolar rotation and molecular friction that generate heat. 
MW heating and the dielectric properties of foods are influenced by temperature, 
moisture, salt content and radiation frequency (Buffler, 1993). Applications of MW 
for food processing typically include drying, tempering, sterilization, baking, and 
freezing, among others (Chizoba Ekezie, Sun, Han, & Cheng, 2017).

6.2  �Advantages and Challenges of Using Microwave 
Radiation: Nutritional, Textural and Sensorial Properties

Several books, reviews, and articles have reported the use of MW technology in 
food processing, especially in drying, heating, cooking and sterilizing processes. A 
great deal of attention has very recently been paid to the existence of any changes in 
the quality of the food product after MW processing (Guo, Sun, Cheng, & Han, 
2017).

6.2.1  �Microwave Drying

Drying is a procedure that can be applied to food products for their preservation, 
storage, and transport. Physical changes and chemical modifications are often found 
to occur following this kind of treatment; alterations in color, flavor, textural proper-
ties, and nutritional value may affect the quality of the final product. For example, 
water removal leads to inevitable nutrient losses during the drying of vegetables 
(Oliveira, Brandão, & Silva, 2016). However, food safety must be preserved in all 
production stages and is the priority (Vadivambal & Jayas, 2007). The last decade 
has seen MW drying become a viable alternative to conventional hot air drying for 
a wide variety of food and agricultural products, as it allows drying time to be 
greatly reduced and quality degradation to be therefore limited.

This faster process, where high-frequency electromagnetic energy is converted 
into heat and intense liquid evaporation occurs, means that smaller floor spaces are 
required, making it possible to design more compact equipment (Li, Wang, & 
Kudra, 2011). Moreover, operational costs are reduced as heating occurs principally 
within the product and energy is not wasted in heating the walls of the oven. 
Avoiding heat loss means that fast start-up and shut-down are feasible using MW 
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and that drying effects are more uniform (Sorour & El-Mesery, 2014), while the 
time saved over the total drying process can be reduced by up to 90% (Alibas, 
2007). Maximum process efficiency occurs when the product to be dried presents 
low moisture content (less than 20%), as volumetric heating with MW then makes 
moisture removal quicker than it would be under hot air. However, at higher mois-
ture content levels, MW drying can quickly give up its economic advantages 
(Mullin, 1994). Furthermore, the removal of moisture from food during MW drying 
can occur without case hardening occurring, while product quality is generally 
improved, even if foods can sometimes exhibit a more porous structure after treat-
ment. There have been positive reports of MW drying leading to improvements in 
flexibility, color, flavor, nutritional and functional capacities, microbial stability, 
enzyme inactivation, and rehydration capacity (Dehnad, Jafari, & Afrasiabi, 2016; 
Nijhuis et  al., 1998). While a number of results have shown that the quality of 
MW-treated products, such as grains, fruits, and vegetables, is either better or equal 
to that of conventionally dried products. Non-uniform heat distribution and higher 
equipment costs, however, may still present difficulties. A noteworthy improvement 
in β-carotene content was found during the dehydration of grated carrots when com-
binations of MW and vacuum, and drying under two-stage MW power (Arikan, 
Ayhan, Soysal, & Esturk, 2012). Vitamin C degradation when vegetables are dried 
is higher under hot-air drying (24–71%) than under MW-assisted processes, as the 
drying periods for the MW process are much shorter. As regards to flavor degrada-
tion, it is clear that any drying process will affect volatiles and flavor intensity and 
notes. Both convective and MW drying cause volatile losses especially in the early 
stages of drying when high temperatures are applied, at high drying temperatures 
and in foods with low moisture content (Oliveira et al., 2016). Vacuum MW drying 
was found to be an effective berry dehydration method as the absence of air acceler-
ated evaporation and protected polyphenols from oxidative degradation (Li, Chen, 
Zhang, & Fu, 2017). The drying of spices and herbs under higher power MW energy 
has been found to give excellent product quality when very short treatment times 
were used (Kubra, Kumar, & Rao, 2016). Carefully designing the drying method, 
according to the nature, geometry and dielectric properties of the food matrix 
involved, is fundamental to guarantee minimum nutrient losses and either preserv-
ing or improving food quality. Although the use of MW-based drying systems in the 
food industry shows a great deal of potential, their limited penetration depth means 
that attention must be paid to scale up if this food-production potential is to be 
realized.

A novel approach to improving the functional properties of drying-process prod-
ucts can be found in combining MW, ultrasound, and conventional techniques. In 
fact, better quality, a lack of detrimental mechanical stresses in the products, and a 
maximum drying time reduction of up to 79% have all been achieved when this 
combined technique was used on raspberries (convective drying at 55 °C, MW dry-
ing at 100  W for 10 min, and ultrasound at 200  W) (Kowalski, Pawłowski, 
Szadzińska, Łechtańska, & Stasiak, 2016). Another novel technology in this field 
involves both MW freeze-drying and pulse-spouted bed drying. While the former 
allows drying time and energy consumption to be reduced, the spouted bed drying 
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system compensates limitation as annulus aeration and slow solids turnover of con-
ventional spouted bed. More highly transparent gels, higher foam stability, and 
higher emulsifying indices have been found in egg white powders prepared using 
this system (Wang, Zhang, Adhikari, Mujumdar, & Zhou, 2013). The authors 
reported that shorter drying times and lower product temperatures were able to min-
imize egg white protein denaturation and loss when compared to the conventional 
freeze-drying technique.

It has been reported that better total sugar content preservation has been achieved 
by combining vacuum MW with spouted bed drying in a carrot drying process. The 
benefits were reportedly caused by higher dehydration rates, shorter drying times 
and the use of lower temperatures (Oliveira et al., 2016).

6.2.2  �Microwave Freezing

Freezing is a long-established food preservation process that provides foods with a 
long storage life and high nutritional quality. We must, however, consider the fact 
that the formation of ice crystals during treatment can often cause undesirable phys-
ical changes to food structure. Fast freezing and the formation of small ice crystals 
can offer some advantages in terms of quality, reduction in energy consumption, and 
yields improvement. MW-assisted freezing is still in an early research and develop-
ment phase. Although the real advantages of this technology are not yet fully clear, 
MW radiation may reduce damage to meat tissue and consequently provide frozen 
meat with a better texture (Xanthakis, Havet, Chevallier, Abadie, & Le-Bail, 2013). 
Although the oscillated temperature decreases caused by the use of MW during 
cooling lead to longer freezing times, the average ice crystal size decreases when 
meat samples are frozen under MW field, as compared to the conventional freezing 
process. This is probably due to the limited temperature oscillation that occurs dur-
ing the genesis of ice nuclei and crystal growth.

6.2.3  �Microwave Heating and Cooking

MW heating is based on volumetric heating, which causes foods to heat instanta-
neously. MW electromagnetic fields induce dipole rotation in foods and the conse-
quent friction between molecules generates heat. Electromagnetic waves penetrate 
the food through its surface and spread inside, while energy is absorbed and trans-
formed into thermal energy. Lowering the water content of a food may result in the 
reduction of MW absorption and an increase in MW penetration depth. Salt con-
tent must also be assessed, as increasing it corresponds to an improvement in 
dielectric loss, therefore reducing MW penetration. Fat can also play a major role 
because its thermal properties lead to an increase in the MW heating rate and 
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heating uniformity, allowing higher maximum temperatures to be reached 
(Stratakos & Koidis, 2015). Furthermore, the presence of bones in meat affects 
dielectric heating as they can shield it from MW in some cases, thus resulting in 
reduced quality and safety. The presence of the free ions contained in additives can 
also influence the dielectric properties of foods (Marra, Zhang, & Lyng, 2009). The 
problem of microwave heating uniformity may be managed by using a feedback 
control loop system in combination with a thermo-camera to monitor temperature 
distribution (Guo et al., 2017).

MW heating can affect the antioxidant activity of bioactive components and the 
anti-nutritional effects (i.e. trypsin inhibition) of haemagglutinin activity, tannins, 
saponins, and phytate. No crust is formed when meat is cooked with MW and total 
cooking loss is higher than with other common cooking methods, such as grilling, 
roasting or braising (Domínguez, Gómez, Fonseca, & Lorenzo, 2014). On the 
other hand, vegetables processed with MW maintain higher bioactive component 
contents than those processed by other cooking methods due to the shorter heating 
time. In fact, antioxidant activity and bioactive components were retained better 
when cooking was carried out both with and without a small amount of water. 
However, a significant reduction in polyphenol content was found when vegeta-
bles, such as kale, green beans, and tomato, underwent MW cooking with water 
(Dolinsky et al., 2016), as it led to the softening and rupturing of the lignocellu-
losic structure and soluble bioactive compounds were released from the food 
matrix. The effectiveness of MW cooking in reducing anti-nutritional factors and 
increasing protein digestibility in foods has been demonstrated in lentils (Hefnawy, 
2011). After MW cooking, a 93.3% drop in the contents of trypsin inhibitor, a 
34.4% drop in tannins and a 39.2% drop in phytate content was found, while an 
improved protein efficiency ratio and in vitro protein digestibility were reported 
for these legumes. While MW heating can lead to changes in the sensory attributes, 
such as texture and color properties, of food products, it must be stressed that both 
food type and heating conditions can significantly influence the final effects, which 
can vary wildly. For example, whereas tougher texture and a higher shrinkage rate 
can often occur when red meat is cooked by MW, as compared to roasting with 
traditional heating (Jouquand et al., 2015), the hardness of chicken steak can actu-
ally be lower than when it is boiled or grilled (Choi et al., 2016). A significant 
decrease in shear force is found after microwaving potato tubers as the cohesive 
forces between cells decrease. Furthermore, protein denaturation can affect food 
color, such as when the thermal denaturation of myoglobin and other proteins 
causes a reduction in redness in meat. The exposure time of foods is generally 
reduced by an increase in MW power, thus limiting the denaturation of proteins 
and lowering the effects of color change. Lowered lightness, higher redness, and 
lowered yellowness can all be achieved by increasing MW power levels (Guo 
et al., 2017).

While frying is a means of processing foods that, on the one hand, is appreciated 
because it imparts flavor, taste, color, and crispness, on the other, the danger of 
excessive consumption of fats is well known. However, pre-treatment techniques 
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have been successfully applied, prior to frying, to reduce oil uptake and improve the 
quality parameters of fried foods. MW technology is one of the recent and novel 
processes to be used for this purpose and to improve the quality of fried foods. Two 
main paths can be pursued to this aim; either the frying process can be directly 
performed inside the MW device, which generates the heat for frying, or the food 
material can be pre-cooked using MW before deep fat frying is carried out. A com-
parison between the MW frying and conventional frying of chicken breast meat at 
180 °C showed that MW frying required shorter processing times and generated a 
higher heat transfer coefficient, which was probably due to the higher turbulence 
experienced during MW frying that led to lower oil absorption by food (Sensoy, 
Sahin, & Sumnu, 2013). MW-fried potato strips (400 W for 1 min) showed an acryl-
amide content reduction of 88% when compared to samples that were convention-
ally fried at 170 °C for 4.5 min (Sahin, Sumnu, & Oztop, 2007). Su, Zhang, Zhang, 
Adhikari, and Yang (2016) have observed that potato chips fried by MW-assisted 
vacuum frying (vacuum degree of 0.065, 0.075 and 0.085 MPa) offered better qual-
ity in terms of lower oil content, faster moisture evaporation rates, crispier chips and 
less color change, as compared to conventional vacuum frying. The significant 
effects on moisture loss and oil uptake were related to the MW pre-treatment of 
frozen coated chicken nuggets during deep-fat frying (Ngadi, Wang, Adedeji, & 
Raghavan, 2009). Interactions with polar molecules and charged food particles 
mean that MW generate heat via a mechanism that is different to that of conven-
tional heating and that shows advantages in terms of energy and time savings and 
the improved nutritional quality of some foods. However, MW baking does entail 
some problems including a lack of volume, tough or firm textures, a lack of brown-
ing and flavor development, in cakes and bread baking, for example. One must also 
consider that the physicochemical changes and interactions with major ingredients 
that normally occur over a lengthy baking period cannot always be completed under 
MW (Sumnu, 2001). The problem of low volume is a result of the incomplete gela-
tinization of starch. The use of pre-gelatinized starches or starches with high dielec-
tric properties and low gelatinization enthalpy may be a means to combat this issue. 
Hydrocolloids can limit the high moisture loss in MW-baked cakes, while the prob-
lem of the firmness and toughness of baked products can be resolved by the use of 
additives. An increase in the surface temperature of the dough is helpful for the 
browning reaction; susceptors and commercial coatings can be used for this pur-
pose. Nevertheless, improving the quality of MW-baked products is still a challeng-
ing topic for the food industry.

Some further examples of MW use in food preparation can be found in doughnut 
proofing and frying, the drying of pasta products and meat tempering. When tem-
pering food, it is most important that the product enters the MW tunnel at a uniform 
temperature, without any incipient thawing. Moreover, the puffing and drying of 
snack foods is another widespread application that can boast of products being spe-
cifically developed for MW processing. One of the advantages of this technology is 
the treatment of packaged food due to the use of plastic packaging materials that are 
transparent to MW radiation.
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6.2.4  �Microwave Sterilization

During sterilization, all vegetative microorganisms and their spores are inactivated 
via the application of physical and chemical processes. The food industry com-
monly ensures food safety using thermal processing, which can affect organoleptic 
properties, nutritional values, and texture, while also generating by-products. The 
growing attention that consumers pay to food and health has driven the attention of 
the food industry and scientists towards electromagnetic field-based, non-thermal 
processing technologies that can improve food shelf-life, and have a minimal impact 
on nutritional value and sensory characteristics (Pan, Sun, & Han, 2017). Selective 
heating, electroporation, cell membrane rupture, and magnetic field coupling are 
among several mechanisms that are related to MW pasteurization and sterilization. 
The destruction of pathogens can occur when the temperature of microbial bodies is 
higher than that of the surrounding fluid, as occurs during MW heating. Furthermore, 
cellular material can leak from cells after the opening of their pores by an electrical 
potential applied across the cell membrane (electroporation phenomenon), while 
magnetic field coupling can denature proteins and break nucleic acids (Guo et al., 
2017). Sterilization effectiveness may be correlated to the power applied and the 
temperature-increasing radiation dose, depending on the type of food. While the 
thermal effect is obviously well understood, it is believed that non-thermal effects 
result from direct interaction between the electric field and specific molecules, in a 
way that is not related to a macroscopic temperature effect. The existence of some 
non-thermal MW effects has been proven by the reversible leakage of cellular cyto-
solic fluids and a visual representation of the morphological changes that occur in 
E. coli cells (Shamis et al., 2011), MW-assisted pasteurization has been effectively 
applied to both fluid and solid food materials, such as fresh juices, milk and in-shell 
eggs (Chandrasekaran, Ramanathan, & Basak, 2013). The short exposure time 
means that MW sterilization has a mild effect on bioactive substances and antioxi-
dants, while causing enzyme inactivation, thus maintaining the quality of the prod-
uct. Furthermore, the textural and color properties of food were generally less 
influenced by MW sterilization, as compared to conventional methods, but lengthy 
treatment could still affect these properties. Packaging material components might 
degrade and migrate into food materials during the sterilization of packed food 
products and the degradation of polymer chains, additives or adhesive layers can 
produce unwanted by-products during high-temperature MW heating. Therefore, 
glass, paper, and ceramics are the preferred packaging types for MW treatment 
(Guillard, Mauricio-Iglesias, & Gontard, 2010).

In conclusion, MW sterilization has the capacity to completely inactivate micro-
organisms and effectively destroy enzyme activity, while only having a mild effect 
on the antioxidant activity, texture, and color of food products, as compared to con-
ventional pasteurization.
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6.3  �Flavoring and Food Component Extraction

MW strongly promotes extraction from vegetal matrices, both when used alone and 
when combined with other techniques. Microwave-assisted extraction (MAE) has 
gained enormous popularity as a preferred method for the recovery of various active 
compounds from food materials. As food flavorings strongly influence food evalua-
tion and consumer satisfaction, they have always received a lot of attention from the 
food industry, although it is only over recent decades that enabling technologies 
have revolutionized classic extraction procedures. The MW heating of fresh plant 
material is a simple way to achieve the direct distillation of essential oils (Lucchesi, 
Chemat, & Smadja, 2004), while the use of MAE in the large-scale recovery of food 
components should be carried out to translate laboratory procedures into industrial 
applications.

Among the major benefits that MAE can offer, we find shorter extraction times 
and the preservation of thermally susceptible compounds (e.g. natural antioxidants) 
as well as the fact that it is carried out under environmentally friendly conditions. 
MAE’s superiority over conventional methods, when it comes to extracting food 
target components, is principally related to its volumetric heating and high penetra-
tion power. The process works by heating the moisture inside cells, which evapo-
rates and produces high pressure within the cell wall. The consequent pressure that 
grows inside the biomaterial modifies its physical properties and increases its poros-
ity. It follows that extracting solvents thus penetrate matrices, providing improved 
compound yields and significant decreases in extraction times and solvent require-
ments in an environmentally benign approach. Moreover, MAE can be operated 
both under pressure and at atmospheric pressure (Gil-Chávez et al., 2013).

Solvent choice is one of the most important factors to consider here; higher 
dielectric constants generally correspond to a higher capacity to absorb MW energy, 
which will then be heated faster than the matrix being extracted. Solvent properties 
and selectivity can be modified by combining different solvents. In the case of ther-
molabile compounds, a solvent system with relatively lower dielectric properties 
can be recommended as it will ensure that the solvent temperature will remain 
lower, thus cooling off solutes once they are liberated into the solvent. Obviously, 
solvent polarity must be evaluated according to the type of compound to be extracted; 
less polar solvents can be used for the extraction of flavonoid aglycones and more 
polar solvents are used for extraction of flavonoid glycosides and anthocyanin. 
Although extractant choice has generally been between organic solvents or water, 
various hydrotropic liquids, two-phase and micellar solutions can nowadays be used 
to minimize solvent usage and toxicity, waste production and energy consumption, 
thus providing a greener implementation strategy (Ekezie, Sun, & Cheng, 2017).

While extraction yields are certainly related to extraction time, the prolonged 
application of MW may lead to target compound degradation if the solute/solvent 
system is overheated. A multiple step method that provides consecutive extraction 
cycles can also be used to improve extraction yields and prevent prolonged heating 
in the same volume of solvent. The saturation of the solvent with the solute is 
avoided by the use of fresh batches of solvent, thus increasing mass transfer and 
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extraction kinetics. MW power, temperature, moisture content, sample matrix par-
ticle size, and the solid/liquid ratio can all affect extraction kinetics, and the right 
conditions must be adapted for specific matrices if yields are to be maximized and 
product quality preserved.

In order to further promote extraction efficacy, MW systems can be synergisti-
cally coupled with other technologies, such as ultrasound, supercritical or subcriti-
cal fluid extractors, enzyme-assisted extraction, hydrodiffusion and so on.

Consumer demand for safe and minimally processed foods with high-quality 
attributes have stimulated the search to find innovative food-processing techniques 
that can limit changes in food products. For example, MW heating can be used in 
fruit-juice extraction. In particular, MW hydrodiffusion has been used in plum, apri-
cot and grape juice extraction processes giving rapid extractions from fresh and 
frozen samples. The highest yields were obtained from frozen fruit and at low 
power, producing juices characterized by very bright colors, high acidity in plums 
and apricots and fresh fruit flavors (Cendres, Chemat, Maingonnat, & Renard, 
2011). Polysaccharide extraction process enhancement has been obtained in a num-
ber of matrices, including apple and grape pomace, wheat bran and dragon fruit peel 
(Tejada-Ortigoza, Garcia-Amezquita, Serna-Saldívar, & Welti-Chanes, 2016).

Solvent-free MW extraction is a green technology, which works thanks to a com-
bination of MW heating and dry distillation, performed at atmospheric pressure and 
without the addition of solvents or water, is a good alternative technique for the 
extraction of essential oils from aromatic plants and spices. Furthermore, the fast 
extraction of aromatic and non-volatile compounds from spices and aromatic plants 
(e.g. terpenes, capsaicinoids, paprika red pigment, piperine, curcumin etc.) can be 
achieved using MW-assisted techniques (Kubra et al., 2016). MAE is also gaining 
interest as an alternative means for the extraction of both water- and oil-based bio-
active plant pigments, such as β-carotene from carrots, aloin A from Aloe vera and 
curcuminoids from turmeric (Ngamwonglumlert, Devahastin, & Chiewchan, 2017).

6.4  �Combined Hybrid MW Technologies

Combined MW and ultrasound (e.g. drying, extraction, enzyme activity, etc.), 
MW-assisted infrared heating, MW-assisted osmotic dehydration, MW-powered 
plasma, combined MW-Ohmic heating can all offer great advantages (Cravotto 
et al., 2008). MW-assisted food processing technologies are a hybrid combination 
that can enhance both conventional and non-conventional food processes with MW 
radiation and overcome the shortcomings of traditional techniques. The advantages 
offered to translate into energy conservation, better product quality, reduced time 
and lower operational costs for food processing (Chizoba Ekezie et al., 2017).

Adding MW energy to vacuum processing helps to preserve important sensory 
features, including flavor, appearance, and texture, due to the absence of air, and 
also furnishes higher production output and lower running costs. Vacuum drying 
and vacuum frying can be effectively assisted by MW heating. In the first case, the 
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principal effect of this coupling is the rapid evaporation of moisture, which is also 
useful in enhancing the survival rate and metabolic activity of probiotic and starter 
cultures during dehydration (Ambros, Bauer, Shylkina, Foerst, & Kulozik, 2016). 
Vacuum frying lowers the boiling point of frying oil and the moisture in fried foods, 
which reduces acrylamide content and adverse oil quality effects while preserving 
natural color and flavors. The combination of MW vacuum frying, after either pre-
frying or pulsed-spouted MW vacuum drying followed by vacuum pre-frying, 
enhances the quality of fried products and gives texture and color attributes that are 
comparable to those given by traditional methods (Quan et al., 2016; Stratakos & 
Koidis, 2015).

The coupling of convective drying and MW radiation is a feasible hybrid tech-
nology, but is best carried out in a pulsed manner, namely by applying MW at 
pulsed rates (intermittent MW-convective drying), because product quality can be 
affected by the overheating caused by continuous MW radiation (Kumar, Joardder, 
Farrell, Millar, & Karim, 2016).

Freeze-drying is a method that is commonly used for the removal of moisture 
from heat-sensitive foods, but it can face the drawbacks of long drying times, low 
productivity and high-energy costs. MW-assisted freeze-drying can lead to better 
process efficiency because of its shorter processing times, rapid energy dissipation 
throughout materials, high-energy savings, and retention of volatiles (Duan, Liu, 
Ren, Liu, & Liu, 2016). During freezing, large ice crystals can generate irreversible 
tissue damage as they induce mechanical and biochemical stress on the structure of 
food materials. MW-energy assisted freezing can reduce the size of the ice crystals 
formed and reduce microstructure damage in food products (Xanthakis, Le-Bail, & 
Ramaswamy, 2014).

MW energy can be combined with osmotic dehydration to generate rapid and 
uniform heating and optimize drying times while making changes in dielectric char-
acteristics can lead to enhancements in solute uptake. Moreover, high food quality 
and low moisture content can be obtained using pulsed-MW-vacuum osmotic dry-
ing (Patel & Sutar, 2016).

Emerging food processing technologies can also be assisted by MW.  Infrared 
baking, drying, roasting, and tempering are technologies with weak penetrating 
power and thus only generate surface heating. The greater penetration depth of MW 
provides volumetric heating and minimal temperature differences between the sur-
face and the interior of food materials; properties that can prevent food swelling and 
the fracturing generated by prolonged exposure to infrared radiation. Combining 
food browning and crust formation, produced by infrared heating on the one hand, 
with time savings and efficient temperature distribution inside the product, fur-
nished by MW on the other, can significantly improve the quality of bakery products 
(Ozge, Sumnu, & Meda, 2006). Moreover, MW-infrared heating can be useful in 
protecting the desirable properties of food products after tempering treatment, while 
also optimizing process times (Seyhun, Ramaswamy, Sumnu, Sahin, & Ahmed, 
2009). The moisture loss and firmness of food products baked using this coupled 
technique were found to improve with increases in the power of both systems, 
although increasing MW power was more effective due to high internal pressure 
and concentration gradients.
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The advantages provided to food processing by the use of ultrasound are well 
known nowadays. However, the physicochemical effects of ultrasonication can 
affect product quality parameters, such as adding off-flavors, changing physical 
parameters and causing degradation phenomena. The combined MW and ultrasound-
assisted extraction technique is an efficient extraction method that has previously 
been described (Chemat & Cravotto, 2011). MW energy destabilizes weak hydro-
gen bonds by enhancing the rotation of molecular dipoles and this, together with 
dissolved ion movement, increases solvent penetration into the matrix and solva-
tion. Ultrasound, however, enhances extraction efficiency, through cavitation, 
mechanical function, and thermal effects, by disrupting cell walls and facilitating 
solvent access to cell content. Moreover, matrix fragmentation can improve the 
hydration process without leading to any considerable chemical degradation. The 
MW-ultrasound hybrid technique can also enhance drying processes and reduce the 
risk of oxidation and degradation. The volumetric heating of the vapors generated 
inside food material leads to the development of an internal pressure gradient that 
forces the water outside, while product shrinkage is prevented by using shorter dry-
ing times and lower temperatures than traditional methods (Kowalski et al., 2016).

The use of MW-ultrasound to assist enzyme-based reactions is a new approach 
that has shown the potential to increase the efficiency and specificity of enzymes 
during reactions, including in starch and dextran hydrolysis (Bashari, Jin, Wang, & 
Zhan, 2016).

Microbial decontamination is among the applications of cold plasma in the food 
industry. This non-thermal technology is able to damage DNA and inactivate 
microbes via the reactive species that it produces. Within this context, MW can 
enhance decontamination processes by inducing plasma formation and increasing 
electron density. For example, microbial spores were found to be more easily attacked 
by excited molecules due to the cleavage of disulfide bonds in the protein coat of 
their cells (Kim, Oh, Won, Lee, & Min, 2017). Sterilization can also be obtained 
using electronic pasteurization, which makes use of high-energy electrons. While 
this electron-beam irradiation is able to damage the DNA and RNA chains of patho-
gens, the high electron dose required can have a negative effect on food. Synergistic 
action is ascribed to the combination of this kind of irradiation with MW energy 
volumetric heating and this action may be able to alter the sensitivity of microorgan-
isms to electrons and enhance food shelf life (Mulmule et al., 2017). Finally, enhanced 
food particle heating uniformity has been observed when ohmic and MW heating 
was combined and the problems caused by the differing electrical conductivities of 
various food components were limited (Choi, Nguyen, Lee, & Jun, 2011).

6.5  �Conclusions

MW energy has proven itself to be one of the best modern techniques with which to 
enhance current industrial food processing and minimize changes to food quality, 
while also comparing favorably to traditional methods. The most successful appli-
cations, thawing/tempering, blanching, roasting, frying, and freezing, generally 

6  Impact of Microwave Irradiation on Food Composition



158

display improved nutritional and sensory profile retention. Energy savings, higher 
extraction efficiency, and a greener approach, due to reduced solvent use, are fore-
most among the many advantages that the technique offers, while MW drying, heat-
ing, and sterilization play a significant role in food quality and safety control. The 
main limitation of the technique is the high investment cost required in the design 
and assembly of dedicated MW systems, on both large and pilot scales. However, 
other emerging food processing technologies, such as high-pressure processing, 
radio frequency heating and ultraviolet light, can be combined with MW energy, 
making further investigations into these potential hybrid technologies, their feasibil-
ity and effects on food interesting prospects for the future. Despite the advantages 
provided by MW heating, its non-uniform temperature distribution is its major dis-
advantage, as this can lead to hot and cold spots forming in foods. Keeping the 
heated material in constant motion and the proper selection of packaging materials 
are among the proposed solutions, which aim to optimize processing parameters, 
ensure uniform MW power absorption and therefore prevent the formation of cold/
hot regions. Recent research into MW equipment design, MW/material interactions, 
dielectric property measurement, and materials processing continues to expand 
interest in MW techniques.
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Chapter 7
Cold Plasma Effects on the Nutritional, 
Textural and Sensory Characteristics 
of Fruits and Vegetables, Meat, and Dairy 
Products

George Amponsah Annor

7.1  �Introduction

The non-thermal nature of cold plasma processing has brought it to the spotlight in 
recent times as an alternative food processing technology, especially for foods sen-
sitive to heat. Simply defined as the generation of short-lived reactive species by the 
application of electricity to gas, non-thermal plasma has become an important food 
processing technology. Figure 7.1 shows a schematic presentation of atmospheric 
cold plasma processing of food products. Depending on the plasma technique used 
(i.e. corona discharge, dielectric barrier discharge, gliding arch, plasma jets, and 
radio frequency discharges (Scholtz, Pazlarova, Souskova, Khun, & Julak, 2015)), 
different reactive species are produced, usually from vibrationally and electroni-
cally excited nitrogen and oxygen. The type of reactive species produced largely 
depends on the type of gas used. The gases mostly used are but not limited to oxy-
gen, nitrogen, argon, hydrogen, air and their mixtures. These reactive species react 
with surfaces, they come into contact with resulting in modifications. The effects of 
cold plasma on the various food components such as proteins (Bahrami et al., 2016; 
Dong, Gao, Xu, & Chen, 2017; Misra et al., 2015; Takai et al., 2014; Yasuda, Miura, 
Kurita, Takashima, & Mizuno, 2010), starch (Bastos, Santos, & Simao, 2014; Kim 
& Min, 2017; Thirumdas, Trimukhe, Deshmukh, & Annapure, 2017), lipids 
(Bahrami et al., 2016; Sarangapani, Ryan Keogh, Dunne, Bourke, & Cullen, 2017), 
and phenolics (Amini & Ghoranneviss, 2016; Grzegorzewski, Ehlbeck, Schlüter, 
Kroh, & Rohn, 2011) have been previously reported. One of the main applications 
of cold plasma in food processing is for the sterilization of food products (Los, 
Ziuzina, Boehm, Cullen, & Bourke, 2017; Misra & Jo, 2017; Selcuk, Oksuz, & 
Basaran, 2008). Other applications such as food quality improvement, packaging 
applications, surface modifications, and the degradation of toxins in foods have 
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been reported (Akocak, 2016; Han et al., 2016; Shi, Cooper, Stroshine, Ileleji, & 
Keener, 2017). In this chapter, the advantages and challenges of using cold plasma 
on the quality of fruits, vegetables, meat and dairy products are highlighted. The 
discussion is focused on the effects of cold plasma on the nutritional, textural and 
sensory properties of fruits and vegetables, meat and dairy products.

7.2  �Advantageous and Challenges of Using Cold Plasma 
on Food Quality

7.2.1  �Nutritional Properties

7.2.1.1  �Fruits and Vegetables

The reactive species produced by cold plasma may affect the bioactive compounds 
in fruits and vegetables leading to changes in their nutritional composition and func-
tional properties. Previous studies have reported that the application of this technol-
ogy might affect the stability of some nutrients. For instance, Bursać Kovačević 
et al. (2016) investigated the effect of cold plasma on the stability of anthocyanins 
in pomegranate juice. In this study, the application of different treatment times, 
juice volume and gas flow were evaluated. The authors observed an increase in 
anthocyanin content after treating the juice with cold plasma. The increase in antho-
cyanin contents in the juice was attributed to the disruption of the fruit cell walls. 
The application of this technology not only increased the anthocyanins’ content in 
the juice but also improved the stability.

Elez Garofulić et al. (2015) have reported the degradation of anthocyanins and 
phenolic compounds treated with cold plasma for longer periods of time. The deg-
radation of anthocyanins and phenolic compounds were observed in the sour cherry 
Marasca juice samples treated with cold plasma. The extent of degradation posi-
tively correlated with an increase in plasma exposure. The degradation of anthocya-
nins and phenolic compounds, when exposed to plasma for extended periods of 

Fig. 7.1  Schematic presentation of atmospheric cold plasma processing of food products
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time, could be attributed to the reaction of these compounds with the reactive radi-
cals or oxygen spices such as hydroxyl radicals, peroxyl radicals, atomic and singlet 
oxygen (Brandenburg et al., 2007).

In another study, Grzegorzewski et  al. (2011) investigated the effect of cold 
plasma treatment on the phenolic profile of lamb’s lettuce. The authors observed 
different degradation rates in various phenolic compounds. All phenolic acids in the 
fresh lettuce leaves decreased by increasing the plasma exposure. The rate of degra-
dation of phenolic acids, when exposed to plasma, was slower than flavonoids. 
Luteolin was unaffected by plasma exposure, whereas a significant increase was 
observed for diosmetin. A significant decrease in the anthocyanin content of blue-
berries was observed after 90 s atmospheric cold plasma treatment.

A few studies also reported the effect of cold plasma on the ascorbic acid con-
tents of fruits. For instance, Misra et al. (2015) investigated the effect of cold plasma 
on the chemical quality and ascorbic acid contents of strawberries. In their study, 
strawberries packaged in polymeric films were exposed to the non-thermal plasma 
produced from a dielectric barrier discharge. The ascorbic acid content was signifi-
cantly reduced when the samples were exposed to 80 kV for 1 min. It is interesting 
to note that the anthocyanin content in the strawberries treated samples was not 
significantly affected. In another study, the application of cold plasma was reported 
to affect the degradation of chlorophyll (Ramazzina et al., 2015). A 15% reduction 
in the chlorophyll content in kiwi  fruit was observed after treatment with cold 
plasma. Chlorophyll degradation by plasma could be mediated by the presence of 
oxygen produced by cold plasma. In the kiwi fruit, plasma treatment did not affect 
the ascorbic acid content immediately after plasma treatment, while a significant 
decrease in the ascorbic acid content observed after storage. Moreover, plasma 
treatment did not affect the antioxidant content and antioxidant activity of fresh 
kiwi fruit after cold plasma treatment.

7.2.1.2  �Meat Products

Information about the effect of cold plasma on the meat products is very limited. In 
the meat products, the effects of cold plasma on proteins and lipids is very impor-
tant. Any changes in the structure of proteins and lipids in meat products directly 
affect the nutritional and sensorial properties of these products. The free radicals 
and reactive oxygen species (ROS), including ozone, has the ability to react with 
fatty acids, oxidizing them to by-products that will affect the nutrient profile of meat 
products. Plasma has been reported to oxidize lipids by the Criegee mechanism 
resulting in the production of aldehydes and carboxylic acids in beef (Sarangapani 
et al., 2017). The extent of lipid oxidation by plasma was reported to be the function 
of time and applied voltage/energy. Sarangapani et al. (2017) found that the cold 
plasma treatment of beef significantly decreased the amount of unsaturated fatty 
acids. This was reported to be due to the cleavage of the double bonds of the unsatu-
rated fatty acids, especially oleic, palmitoleic and linoleic acids by hydroxyl radi-
cals. Oleic acid was reported to be the most susceptible to oxidation by plasma.
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In another study, Jayasena et al. (2015) investigated the effect of cold plasma on 
the quality of pork butt and beef loins. A time-dependent effect of plasma exposure 
on the extent of lipid oxidation was reported. The lipid oxidation in the pork butt 
and beef loins was not significantly increased up to a treatment time of 7.5 min. 
However, a significant increase in the lipid oxidation was observed when the pork 
butt and beef loins were treated with plasma for 10 min. Kim, Yong, Park, Choe, and 
Jo (2013) also reported an increase in the lipid oxidation of pork loins treated with 
plasma produced by a dielectric barrier discharge. Rød, Hansen, Leipold, and 
Knøchel (2012) observed an increase in the thiobatbituric acid reactive substances 
(TBARS) of ready-to-eat bresaola treated with cold plasma as a function of plasma 
power, time and storage.

7.2.1.3  �Dairy Products

The effect of plasma on fresh milk was studied by Korachi et al. (2015). In this 
study, two tungsten electrodes with a 9 kV AC power supply were used. No changes 
in the fatty acid concentration of the fresh milk compared to the plasma-treated one 
were observed. After 3 min of plasma treatment, a decrease in the content of unsatu-
rated fatty acids was reported and further decreasing was observed by extending the 
treatment time. Moreover, slight reductions in stearic acid content were observed 
after 20 min of plasma treatment. In another study, Korachi et al. (2015) observed 
an increase in the short-chain length fatty acids of milk after plasma treatment and 
vice versa for long chain fatty acids. Application of cold plasma up to 20 min did 
not significantly affect on the fatty acid composition of raw milk. After treating 
sliced cheddar cheese with flexible thin layer dielectric barrier plasma discharge, 
Yong et al. (2015), observed a significant increase in TBARS values when the sliced 
cheddar cheese was exposed to the plasma for 5- and 10-min. The values of 0.132 
and 0.183 mg malondialdehyde/kg was reported for untreated and plasma-treated 
cheddar cheese, respectively.

7.2.2  �Textural Properties

7.2.2.1  �Fruits and Vegetables

The textural properties of fruits and vegetables are important determinants of their 
acceptability. Mainly affected by polymeric materials such as pectin and cellulose, 
in addition to interactions with other components, fruit and vegetable texture can be 
affected by chemicals, enzymes, storage, and heat. Up to now, only a few studies 
have reported the effect of cold plasma treatment on the textural properties of fruits 
and vegetables. Ramazzina et al. (2015) have reported that the cold plasma treat-
ment of kiwi  fruit slices did not significantly affect the hardness and the energy 
needed to rupture the fruit. The penetration tests for the kiwi fruit slices were done 
at two different points of the pericarp using the texture analyzer.
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7.2.2.2  �Meat Products

Exposure of meat products to cold plasma does not seem to significantly affect the 
textural profile. For instance, Jayasena et al. (2015) did not observe any changes in 
the cohesiveness and springiness of pork butts and beef loins after plasma treatment. 
Similarly, the hardness, chewiness, and gumminess of the samples did not change, 
though these parameters have responded more to plasma exposure than springiness 
and cohesiveness. Kim et al. (2013) also reported that the texture of the pork loins 
did not significantly change after plasma treatment generated from a flexible thin 
layer dielectric barrier discharges. More studies are needed to accurately confirm 
the effects of plasma on the texture of meat products.

7.2.2.3  �Dairy Products

There is very little information available on the textural effects of cold plasma on 
the dairy products. Most of the reports on the use of cold plasma on dairy products 
have been focused on the decontamination. Thus, more studies need to be con-
ducted to evaluate the effect of cold plasma treatment on the textural properties of 
dairy products and its feasibility to modify these products.

7.2.3  �Sensorial Properties

7.2.3.1  �Fruits and Vegetables

Niemira and Sites (2008) did not observe any discoloration, blistering, pitting, 
unpleasant aroma or any sensory damage after treating golden delicious apples 
with cold plasma up to 2 min and 40 L/min using a gliding arc cold plasma sys-
tem. This was reported to be due to the short exposure time of the apples to the 
plasma discharge. Misra et al. (2014) also found that the color of plasma-treated 
strawberries was not significantly affected when treated with atmospheric cold 
plasma. Though reductions were observed in the L, a∗ and b∗ values of the 
plasma-treated strawberries versus the untreated samples, the difference was not 
statistically different. In another study, Shi et al. (2011) observed that the turbidity 
and pH of freshly squeezed orange juice treated with low-temperature plasma 
were not significantly affected. Vleugels et  al. (2005) measured the effects of 
atmospheric cold plasma on the color of cold peppers. Red green and yellow pep-
pers were cut into 1-cm portions and exposed to cold plasma up to 20 min. After 
measuring the extent of discoloration of the samples with a reflectance spectro-
photometer, they reported no significant changes in the color of the peppers. Their 
chroma-hue plots suggested a larger color difference in the green peppers than the 
other samples.
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7.2.3.2  �Meat Products

Application of cold plasma has reported affecting the color of meat products. The 
effect of cold plasma on the color of meat products seems to be related to the time 
and energy of exposure. Jayasena et al. (2015) reported significant changes in the 
color parameters (L a∗ and b∗) of pork butts and beef loins after treatment with cold 
plasma using flexible thin layer dielectric barrier discharge system. The effect of 
cold plasma on the color was depended on the type of meat product, energy and time 
of exposure. While the b∗-values of the plasma-treated pork butt was not signifi-
cantly different from the untreated sample, the b∗-value of the plasma-treated beef 
loin was significantly higher than the untreated sample. It was also observed that 
prolonged exposure times led to a decrease in the redness of the pork and an increase 
in greenness. This decrease in redness of the meat samples could negatively affect 
the consumer acceptance of plasma-treated meat products, as consumers generally 
use meat surface color as an indicator of freshness. The increase in the greenness of 
the meat samples may be due to the reaction of myoglobin with hydrogen peroxide 
forming choleglobin. A similar observation was made by Fröhling, Baier, Ehlbeck, 
Knorr, and Schlüter (2012) when fresh pork was treated with cold plasma. The 
higher b∗-values observed when fresh meat products were treated with cold plasma 
might be due to the oxidation of deoxymyoglobin or myoglobin, which leads to the 
formation of metmyoglobin (Jayasena et al., 2015; Mancini & Hunt, 2005). Several 
studies have reported that the plasma treated fresh pork loins were significantly 
darker than the non-treated samples (Cheng et al., 2010; Kim et al., 2011; 2013). 
They reported no difference in the redness and greenness of the meat samples. A 
reduction in the lightness of the pork loin was attributed to the drying of the surface 
of the sample due to moisture loss. Ulbin-Figlewicz, Brychcy, and Jarmoluk (2015) 
and Dirks et al. (2012) did not observe any changes in the color of chicken breast 
samples treated with cold plasma. The chicken breast samples were treated with 
plasma up to 3 min. Kim et al. (2013) did not find any significant difference in the 
consumer acceptability of plasma treated fresh pork sample compared to control. 
However, Jayasena et al. (2015) reported a negative effect of plasma treatment on 
the cooked pork butt and beef loins taste. The color, overall acceptability, appear-
ance, and off-odor were not significantly affected. This unacceptable taste percep-
tion was observed when cooked pork butts and beef loins were treated for at least 
10 min. The negative sensory properties of the cold plasma treated samples could be 
due to the oxidation of lipids. Lee et al. (2012) reported that the plasma treatment 
negatively influenced the flavor, taste and overall acceptability of cooked egg yolk 
but not the egg whites.

7.2.3.3  �Dairy Products

Several studies have reported the application of cold plasma treatment on the senso-
rial properties of dairy products. For instance, Gurol, Ekinci, Aslan, and Korachi 
(2012) and Kim et al. (2015) did not observe any significant changes in the L and 
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b∗- values of commercial whole milk treated with plasma. Even though they 
observed a decrease in the a∗-values of the samples, the decreases were not signifi-
cant. Cheddar cheese treated with cold plasma resulted in a decrease in the lightness 
and redness of the samples but was unaffected with respect to the sensory appear-
ance, color, and total color difference. Cold plasma treatment of milk was reported 
to enhance the lipid oxidation leading to the generation of off-flavors as observed in 
cheddar cheese (Lee et al., 2012). Yong et al. (2015) reported significant negative 
effects on the flavor and overall acceptability of sliced cheddar cheese when exposed 
to the flexible thin-layer dielectric barrier plasma discharge. The off-flavors in the 
cheese slices could be due to the oxidation of the high fats available in the product, 
resulting in the production of a variety of lipid oxidation products.

7.3  �Conclusions

The effect of cold plasma on the nutritional, texture and sensory characteristics of 
food products depends on the time and energy of exposure. In the case of fruits and 
vegetables, cold plasma has significant effects on their bioactive components, espe-
cially on the vitamins and anthocyanins. Lipids and proteins are the main nutritional 
components affected by cold plasma in meat products. The plasma effects on lipids 
in meat and dairy products lead to the development of off-flavors, affecting the 
acceptability of these products. The texture was not affected when plasma was 
applied to fruits, vegetables, and dairy products. It is important to mention that very 
limited information currently exists in the use of cold plasma for the modification of 
the nutritional, texture and sensory characteristics of food and hence these conclu-
sions may change in the near future when more information becomes available.
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Chapter 8
Impact of Ultraviolet Processing on Food 
Composition

María Lavilla, Amaia Lasagabaster, and Iñigo Martínez-de-Marañón

8.1  �Introduction

Ultraviolet (UV) radiation comprises the wavelength from 100 to 400 nm in the 
spectrum of electromagnetic waves. Likewise, the ultraviolet spectrum can be dis-
tinguished between UV-A (400-315  nm), UV-B (315-280  nm), and UV-C (280-
100 nm) (Fig. 8.1). Among the complete UV range, the UV-C radiation, and more 
specifically, the wavelength at 254 nm, has been demonstrated to achieve the high-
est germicidal effect (Ma, Zhang, Bhandari, & Gao, 2017). Indeed, UV-C radiation 
has been confirmed to be a useful tool to inactivate bacteria (including spores), 
viruses, yeast, molds, and parasites (Gayán, Condón, & Álvarez, 2014; Gómez-
López, Koutchma, & Linden, 2012). This high effectivity is due to the absorption of 
this radiation by DNA/RNA (Gayán et  al., 2014) and proteins (Díaz, Candia, & 
Cobos, 2017; Kuan, Bhat, Patras, & Karim, 2013; Pellicer & Gómez-López, 2017), 
which provokes a loss of structure and subsequent malfunction. In this chapter, the 
impact of ultraviolet processing on food constituents was reviewed.

However, the efficiency of the microbial inactivation by UV radiation is influ-
enced by many parameters, principally related to the transmitted energy form and to 
the specifications of the treated product. More specifically, regarding the transmit-
ted energy form, the crucial parameters are the power, the wavelength, the mode of 
irradiation (continuous or pulsed), and the treatment time. Regarding the treated 
matrix, the most important factors are the state (solid or fluid), the dimensions 
(shape and thickness), the physical properties (e.g., density and viscosity, transpar-
ency to UV-light, etc.), and the product’s composition (Fan, Huang, & Chen, 2017; 
Koutchma, 2008, 2009). Moreover, microbial species and their characteristics, are 
also actors to be considered, since the UV-C dosage extremely differs for inhibiting 
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different microorganisms (Guerrero-Beltrán & Barbosa-Cánovas, 2004; Koutchma, 
2009). Consequently, although UV-C treatment has the potential to eliminate unde-
sirable microorganisms in foods, all these influencing parameters make it difficult 
to achieve full control of the variables associated with process operations, bringing 
limitations on the applications of UV for further disinfection processes.

In the food industry, UV-C has been usually used for the decontamination of 
water supplies to obtain water with high-microbiological quality as raw material 
and for cleaning air particle filters, equipment, and other food contact surfaces 
(Ohlsson, 2002). In fact, the use of UV-C disinfection in drinking and wastewater as 
an alternative to chlorination has experienced a great increase over the last few 
years. Indeed, this technology is currently very common in drinking water supplies 
in North America and Europe (Pereira & Vicente, 2010), and it is expected to inces-
sant growth with the development of more efficient units. Apart from that, UV-C 
light is also one of the technologies frequently used for sterilization of food pack-
ages under aseptic conditions (Ozen & Floros, 2001).

Moreover, UV-C radiation can be considered as a promising non-thermal tech-
nology for further applications in high-quality food preservation (Guerrero-Beltrán 
& Barbosa-Cánovas, 2004). This technology was approved by the US Food and 
Drug Administration for the processing of juices and solid foods (USFDA, 2000). 
The European Food Safety Authority (EFSA) has recently given the green light to 
treat milk and bread by UV-C radiation, in order to boost vitamin D and extend 
shelf-life, respectively (EFSA, 2015, 2016). For further food applications in Europe, 
however, the European novel food regulation (1997) must be followed (European 
Commission, 1997). This legislation specifies that “a food should be considered a 
novel food where it results from a production process not used for food production 
within the Union before 15 May 1997, which gives rise to significant changes in the 
composition or structure of food affecting its nutritional value, metabolism or level 
of undesirable substances”. Consequently, each specific food or food ingredients 
treated with UV light would be reviewed to decide if it falls under the remit of the 
novel food legislation.

Fig. 8.1  The electromagnetic radiation spectrum subdivision and characteristics of UV radiation
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In conclusion, UV technology shows promising advantages when applied to 
food processing for reducing microbial risks, while theoretically minimizing the 
loss of quality in terms of flavor, color, and nutritional value compared to thermal 
treatment. In this chapter, the main objective is to review and summarize the use of 
UV light in foods, focus on its advantages and effects in food quality, and retention 
of nutrients and sensory attributes. In addition, the potential negative effects, limita-
tions and outstanding challenges for commercial application of this innovative tech-
nology, including valuable opportunities for increasing its implementation in the 
food industry, are comprised.

8.2  �Advantageous and Challenge of Using Ultraviolet 
on Food Quality

UV-C light has been widely studied in terms of microbial inactivation efficiency. 
Taking into account the aforementioned parameters influencing effectivity and the 
low penetration depth of the UV light, it has been traditionally limited to the appli-
cations to fluid food surfaces: liquids with high concentration of color compounds, 
organic solutes and suspended matter tend to absorb and scatter UV photons limit-
ing the penetrating power of the radiation in the surface (Koutchma, 2008, 2009). 
In the case of solid foods, an irregular surface may form shadow areas in the prod-
uct that may protect microorganisms from the radiation (Manzocco & Nicoli, 
2015).

Nevertheless, thanks to some research, UV-based technology has successfully 
demonstrated its potential as a feasible and safe processing method for a wider vari-
ety of foods. Moreover, it has been checked that most of the physicochemical prop-
erties and sensory attributes of food products remain almost without changes after 
UV processing at reasonable doses (Guerrero-Beltrán & Barbosa-Cánovas, 2004). 
Accordingly, the application of UV-C processing has been tested in liquid foods, 
such as milk, liquid egg, wine, beer, and animal blood. Other factual applications 
are the treatment of sugar syrups for inactivation of dormant spores and to recycle 
brines saving production costs (Kershner, 2015). For solids, UV-C systems are 
already available to decontaminate eggs and eggshells, fresh and frozen vegetables, 
meat, hamburger patties, seafood, bread, refrigerated pasta, cheese, and other ready-
to-eat products (EFSA, 2005, 2015; Koutchma, Forney, & Moraru, 2009).

With these data, it looks that the traditional restriction of the use of UV-C tech-
nology to surface treatment and clear and low-turbid foods can be overcome. 
Consequently, the decontamination of turbid products has been also checked, mostly 
using the combination of UV-C light with other technologies (García Carrillo, 
Ferrario, & Guerrero, 2017; Gouma, Álvarez, Condón, & Gayán, 2015). In addition, 
powdered and granular products (e.g., powdered infant formula or cacao powder) 
have been proposed by UV-C, despite the encountered difficulties (Arroyo et al., 
2017; Stoops, Jansen, Claes, & Van Campenhout, 2013).

8  Impact of Ultraviolet Processing on Food Composition



176

Furthermore, consumers demand emerging technologies to tend to the develop-
ment of new shelf-stable products with minimal product quality deterioration. 
Although UV-C light might inactivate bacterial spores, a higher dosage is needed to 
reach an acceptable inactivation compared to vegetative cells. Consequently, and 
together with the low UV light transmission in food products, studies about the 
combination of UV-C technology with other strategies (hurdle technology) in order 
to reduce the total treatment intensity and product damage, as well as to improve 
microbial control, are also increasing. The use of UV-C combined with soft thermal 
processing (García Carrillo et al., 2017; Marquenie, Michiels, Van Impe, Schrevens, 
& Nicolaï, 2003), hydrogen peroxide spraying (Birmpa, Sfika, & Vantarakis, 2013), 
organic acids (Chen, Hu, He, Jiang, & Zhang, 2016; Nogales-Delgado, Fernández-
León, Delgado-Adámez, Hernández-Méndez, & Bohoyo-Gil, 2014; Raybaudi-
Massilia, Calderón-Gabaldón, Mosqueda-Melgar, & Tapia, 2013), modified 
atmosphere packaging (Choi, Yoo, & Kang, 2015), gaseous ozone (Gutiérrez, 
Chaves, & Rodríguez, 2017) and electrolyzed water (Martínez-Hernández et  al., 
2015; Santo, Graça, Nunes, & Quintas, 2016), among others, have been studied. In 
these studies, an improvement in microbial inactivation due to the synergy between 
UV and the other applied antimicrobials has been confirmed.

As seen, there is increasing knowledge about UV-light effects in bacterial inacti-
vation. However, there are still many research needs for ultraviolet radiation, such 
as more comprehensive information about inactivation kinetics for pathogens and 
spoilage microorganisms, develop new methods to measure dose-response behavior 
of microorganisms in viscous and absorptive products and develop validation meth-
ods (Koutchma, 2008; Koutchma & Parisi, 2004).

Nevertheless, the applications of UV light in food go beyond microbial decon-
tamination. This technology can also be used to degrade chemical contaminants in 
foods without residues, such as aflatoxins, mycotoxins, dioxins and some pesticides 
by direct photolysis due to their potential to absorb light (Baron, Børresen, & 
Jacobsen, 2005; Diao et  al., 2015; Misra, 2015; Tripathi & Mishra, 2010; Zhu, 
Koutchma, Warriner, & Zhou, 2014). Furthermore, UV-C can effectively inactivate 
spoilage enzymes of different food matrices (Aguilar, Ibarz, Garvín, & Ibarz, 2016; 
Augusto, Ibarz, Garvín, & Ibarz, 2015). However, as in the case of microbial inac-
tivation, the effectiveness of UV light to reduce chemicals and enzymatic spoilage 
are lower in turbid environments than in clear solutions, and these could be one of 
the main reasons for the limited application of UV in the food field. Consequently, 
further research about this technology is still necessary to guarantee an accurate 
uniform treatment in all the locations of the product.

Apart from these cited advantages and challenges, the environmental footprint of 
technology is also an important issue for the food industry. From a technological 
point of view, continuous UV-C radiation is distinctive for a lower cost of equip-
ment and lower energy consumption in comparison to high-temperature short-time 
(HTST), PEF, and HHP treatments (Basaran, Quintero-Ramos, Moake, Churey, & 
Worobo, 2004; Rodriguez-Gonzalez, Buckow, Koutchma, & Balasubramaniam, 
2015). Furthermore, as far as it is known, it neither generates toxic by-products or 
effects nor detrimental residues for the environment (Guerrero-Beltrán & 
Barbosa-Cánovas, 2004). Another advantage of this procedure is the relatively 
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inexpensive and easy-to-use equipment needed (Bintsis, Litopoulou-Tzanetaki, & 
Robinson, 2000). In this line, UV-light emitting diodes (LEDs) have been developed 
increasing advantages such as low cost, energy-efficient and long-life expectation. 
Also, contrarily to low-pressure mercury vapor lamps (emitting continuous UV 
radiation at 185 and 254  nm) currently allowed for juice processing (USFDA, 
2001), LEDs cause no harm for human eyes and skin and do not create mercury 
waste (Mori et al., 2007). Finally, as a preservation method, UV-based technologies 
have a positive consumer image because of their multiple cited advantages (Lavilla 
& Gayán, 2018).

Consequently, food specialists consider UV light/radiation processing on the top 
innovative technologies with most potential, and anticipate an increase of commer-
cial application of UV treatment in the next 5–10 years, especially in the drink and 
beverage and fresh produce sectors (Jermann, Koutchma, Margas, Leadley, & Ros-
Polski, 2015), together with other technologies as high-pressure processing (HPP), 
microwave (MW) pasteurization/sterilization, and Pulsed Electric Fields (PEFs).

In conclusion, there is an increasing interest in using UV-C light in food industry 
applications. However, besides its desirable antimicrobial and technical properties, 
the impact of this technology in food characteristics must be carefully revised, 
regarding the high variability in results depending on the food type and UV dosage. 
The influence of UV-light in nutritional, textural and sensory characteristics of 
fruits, vegetables, meat, poultry, fish and dairy products are addressed in the follow-
ing sections.

8.2.1  �Nutritional Properties

As previously reported, in general, processing of foods with UV light technology 
has demonstrated its potential to preserve most of the physicochemical attributes of 
products (Caminiti et al., 2012; Taze, Unluturk, Buzrul, & Alpas, 2015). However, 
UV irradiation is absorbed by UV-sensitive food components, and this absorption 
initiates chemical reactions by inducing changes in the molecular bonds or by pho-
tosensitizing the molecules (Koutchma et al., 2009). Therefore, there are obvious 
changes in the chemical (and nutritional) composition of food components and 
product quality deterioration after a UV-light treatment, especially if it is applied in 
high doses. The most sensitive molecules are nucleic acids, proteins with aromatic 
amino acids (phenylalanine, tryptophan and tyrosine), proteins with disulfide bonds 
(cystine) and nutrients such as vitamins (A, B2, B9, B12, C, D, E, K) and unsaturated 
fatty acids and phospholipids (Koutchma, 2009; Spikes, 1981). A brief summary of 
this potential, and sometimes contradictory effects of UV light in nutritional com-
ponents of foods are listed in Table 8.1. However, the photosensitivity of molecules 
highly varies depending on the molecule itself and the wavelength they absorb but 
also depending on food composition (e.g. presence of some food pigments or other 
photoreactive groups) (Koutchma et al., 2009). Thus, each food group is considered 
below, evaluating UV light effects in their nutritional characteristics.
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8.2.1.1  �Fruits and Vegetables

Fruit juice processing is one of the most common applications of UV technologies 
in the food industry. This technology offers a safe product with extended shelf life 
and, compared to thermally pasteurized juice, a superior organoleptic and nutri-
tional quality. UV-C radiation is used for the treatment of apple juice and cider since 
UV-processing units are more affordable than heat pasteurizers (Basaran et  al., 
2004). In the field of solid foods, UV-C is particularly suitable for surface decon-
tamination of fruits and vegetables in both whole and fresh-cut formats (Fan et al., 
2017; Fonseca & Rushing, 2006).

Apart from microbial inactivation and subsequent prolonged shelf life, nutri-
tional changes may be obtained from the application of UV treatment in fruits and 
vegetables since, due to its nature, fruits and vegetables contain a high content in 
health-promoting but light-sensitive compounds (Koutchma, Popović, Ros-Polski, 
& Popielarz, 2016).

By one hand, nutritional benefits have been reported by several works as the 
increase of antioxidant capacity and the better extractability of bioactive compounds 
(e.g., carotenoids, lycopene, and phenols) in juice and plant tissues (Bravo et al., 
2013; Santhirasegaram, Razali, George, & Somasundram, 2015).

More specifically, exposure to UV induces the synthesis of health-promoting 
compounds such as resveratrol in grapes (Cantos, Espín, & Tomás-Barberán, 2001), 
and total soluble phenolics in sliced parsnip and fresh-cut lettuce (Du, Avena-
Bustillos, Breksa, & McHugh, 2014). Similarly, UV also contributed to significant 
increases in total soluble phenolics, total phenolics, and total antioxidant capacity of 
fresh-cut carrot (Du, Avena-Bustillos, Breksa, & McHugh, 2012; Formica-Oliveira, 
Martínez-Hernández, Díaz-López, Artés, & Artés-Hernández, 2017) and tomatoes 
(Vunnam et al., 2014). Furthermore, UV-C was also successful in increasing anti-
oxidants (total flavonoid, reducing power and ABTS scavenging activity) in man-
goes and pineapples (George, Razali, Santhirasegaram, & Somasundram, 2015, 

Table 8.1  Potential positive and negative effects of UV-light on the nutritional quality of foods

Positive effects Undesirable effects

Increase synthesis of vitamin D
Increase antioxidant capacity and 
bioactive compounds concentration
Destruction of allergens and 
reduction of IgE immunoreactivity
Increase extractability of bioactive 
compounds
Destruction of chemical 
contaminants (mycotoxins, 
dioxins…)
Increase protein digestibility
Increase of antioxidant and 
antihypertensive activities of the 
α-casein

Destruction of light-sensitive vitamins.
Possible production of furan and free radicals in foods 
rich in fructose (application requires chemical and 
toxicological evaluation)
Increase allergenic potential
Destruction of unsaturated fatty acids (peroxidation)
Increased acid values and peroxide values
Cross linking in carbohydrate and protein
Potential formation of furan and/or hydroxyalkyl and acyl 
radicals
Increase of biogenic amines
Formation of radiolytic products in lipid –containing 
foods
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2016), and total anthocyanin, phenolic compounds, L-ascorbic acid content, and 
volatile compounds in strawberries (Severo, de Oliveira, Tiecher, Chaves, & 
Rombaldi, 2015). On the other hand, UV-A-LED has been demonstrated to contrib-
ute to the increase in quercetin glycoside content of watercress (Kanazawa, 
Hashimoto, Yoshida, Sungwon, & Fukuda, 2012), and in anthocyanin, vitamin C, 
and total phenolics of strawberry (Kim, Bae, & Chun, 2011). In conclusion, UV-C 
treatment is able to induce a variety of positive changes in the nutritional composi-
tion of some fruits, resulting in higher levels of bioactive molecules. In other cases, 
maintenance of beneficial nutrients has been reported when fruit and vegetable 
products are treated by UV-C, which reflects one of the potential benefits of this 
technology compared to thermal treatments: UV radiation does not significantly 
degrade neither polyphenols in apple juice (Islam et al., 2016), nor total phenolic 
compounds and vitamin C contents in fresh-cut paprika (Choi et  al., 2015), and 
mandarin (Shen et al., 2013).

Regarding the extractability of these valuable compounds, authors have also 
found an increase in nutrients: for instance, trans-resveratrol, trans-piceid, p-
coumaric-, caffeic-, ferulic- acids, and total phenolic content in peanuts achieved 
their greatest extractability when a combination of ultrasounds and UV radiation 
treatment was applied (Sales & Resurreccion, 2010). The use of continuous UV-C 
light also favored the extraction of anthocyanins, tannins, and aromatic compounds 
from fox grapes (Fava et al., 2011), although in this case, extraction may be favored 
by micro-damage in skin cells by UV-C irradiation.

Further “nutritional” benefits of UV-light technologies include the decrease of 
IgE-binding by several important fruit/vegetable allergens, such as in peanuts 
(Chung, Yang, & Krishnamurthy, 2008; Zhao et al., 2014), soybean (Yang et al., 
2010) and mango (George et al., 2016), which opens the opportunity to develop 
hypoallergenic fruit products.

All of these results demonstrate the effects of UV-C treatment for maintaining or 
increasing the nutritional quality of certain fruits as well as the potential of this 
treatment in shelf life extension. However, in contrast to these benefits, other works 
have concluded that photosensitive components could be destroyed. For instance, in 
orange juice vitamins B1 (thiamine), B2 (riboflavin) and β-carotene are partially 
destroyed by UV treatment (Koutchma et  al., 2009). Vitamin C is also a light-
sensitive vitamin in fruit and vegetable juices and can be degraded by UV irradia-
tion (Koutchma, 2008; Koutchma, Keller, Chirtel, & Parisi, 2004; Pan & Zu, 2012). 
Although vitamin retention depends on the composition of the food matrix, UV 
source, and dose, similar retention of ascorbic acid compared to that of thermal 
pasteurization can be obtained, and consequently, regarding only this nutritional 
parameter, UV technologies do not provide an advantage (Orlowska et al., 2012; 
Santhirasegaram et al., 2015). Similarly, UV-radiation induced significant losses of 
ascorbic acid and carotene content in red chili powder (Tripathi & Mishra, 2010) 
and small losses of anthocyanins in grapes (Pala & Toklucu, 2013), but less than 
those observed by heat treatment. In apple juice, although polyphenols seem to be 
preserved, significant decreases in several important vitamin concentrations were 
observed (Islam et al., 2016).
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Apart from vitamins, other nutrients such as oleuropein, an antioxidant from 
olives, may loss its stability under UV-C light, suffering a series of fast decomposi-
tion reactions leading to hydroxytyrosol (one of the main phenolic components of 
olive oil) and elenolic acid (a marker for maturation of olives) (Longo, Morozova, 
& Scampicchio, 2017). Also, in other vegetable oils, UV irradiation can slightly 
increase the acid and peroxide values of the treated samples, and also destroy the 
unsaturated fatty acids in various degrees (Shen et al., 2014). Apart from nutrient 
degradation, in fruits, high UV-C doses also cause other negative nutritional disad-
vantages, as they may induce fructose photolysis which can lead to the formation of 
furan and/or hydroxyalkyl and acyl radicals (Orlowska et al., 2012). Also, UV-C 
treatment seems to induce accumulation of the allergenic protein Fra a1 (straw-
berry) (Severo et al., 2015).

8.2.1.2  �Meat Products

UV treatments have been also applied for surface decontamination of meat prod-
ucts, although these applications have not been so broadly considered (Heinrich, 
Zunabovic, Varzakas, Bergmair, & Kneifel, 2016; Koutchma & Orlowska, 2012). In 
general, the studies have concluded that UV light can be successfully applied to 
meats, poultry, and fish products, preserving their quality and nutritional attributes. 
However, when considered more specifically, UV-C radiation possibly affects the 
physicochemical properties of meat products, and several undesirable effects may 
be observed in nutritional characteristics, concerning the expected changes of pho-
tosensitive components.

Studies on chicken breasts showed that UV-C radiated products exhibited an 
increase in tyramine, cadaverine, and putrescine contents (Lázaro et  al., 2014). 
Similar results, as well as an increase in histamine content, have been found in 
hybrid “cachamay” fish filets (de Oliveira Bottino, Rodrigues, de Nunes Ribeiro, 
Lázaro, & Conte-Junior, 2016). As UV-light reduces the number of microorganisms 
in both products, this increase on the biogenic amines content should be considered 
as an effect of the UV processing and not as an indicator of bacterial growth (Lázaro 
et al., 2014).

An important and shocking issue is the recent findings of the formation of 
2-alkylcyclobutanones (2-ACBs) by UV-light. These chemical compounds are con-
sidered as unique radiolytic products in lipid-containing foods that could only be 
formed through exposure to ionizing radiation and consequently are currently the 
marker molecules required by the European Committee for Standardization to be 
used for the identification of foods irradiated with ionizing irradiation. However, the 
generation of 2-ACBs is also possible when fatty acids and triglycerides are exposed 
to UV-C light source in corn oil and pork samples (Meng & Chan, 2017).

Concerning the lipid stability, results show that alterations are dose-dependent. 
Park and Ha (2015) found that UV-C radiation at intensities between 1800–3600 
mWs/cm2 can cause an increase in the lipid peroxidation of the chicken breast meat. 
However, other authors have recently found no significant difference between 
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non-treated and UV-C treated samples up to 2400 mWs/cm2 (Yang, Sadekuzzaman, 
& Ha, 2017).

In addition, a low UV-C dose is suggested for tilapia fish fillets as an alternative 
processing method to control the formation of biogenic amines (Monteiro et  al., 
2017). According to these authors, although the UV-C treatment increased protein 
oxidation, lipid oxidation was not influenced, and positive improvement in the total 
polyunsaturated fatty acid quantity and greater overall nutritional quality was 
noticed.

In other protein-rich products, such as in egg, vitamins (B2, B5, and E) are 
UV-light stable. However, as occurred in some fruits, retinal, vitamin C and carot-
enoids are degraded, showing losses up to 80%, 66% and 61%, respectively (de 
Souza et al., 2015). Also in eggs, ultraviolet light has demonstrated other benefits 
such as reduction of the potential allergenicity of egg proteins (Anugu, Yang, 
Shriver, Chung, & Percival, 2010).

8.2.1.3  �Dairy Products

UV-based processing of milk has been recently approved by the European Union 
following European Commission novel food legislation (EFSA, 2016). In this line, 
UV has largely shown its potential to improve milk’s microbiological quality (Datta, 
Harimurugan, & Palombo, 2015) while no negative or toxigenic effects have been 
elucidated. Also, in the nutritional field, EFSA experts’ dossier highlights that UV 
radiation has an important benefit, by increasing vitamin D levels in milk. In more 
recent studies, other nutritional benefits such an increase of antioxidant and antihy-
pertensive activities of α-casein have been also assessed after UV-light treatment 
(Hu et al., 2017).

Nonetheless, although approved, the application of UV pasteurization in the 
dairy industry is still a major challenge due to several reasons. By one hand, the 
high-intensity treatment needed to compensate low milk’s UV penetration capacity 
may have the consequent appearance of sensorial defects, which will be described 
in the following section of this chapter. On the other hand, contradictory results 
regarding nutritional aspects are still found in the literature. Contrarily to cited 
advantages, several studies have shown that vitamins C, E, A, B2, and even vitamin 
D are sensitive to UV-light in milk matrices, and their content can decrease due to 
intense treatments (Cappozzo, Koutchma, & Barnes, 2015; Guneser & Karagul 
Yuceer, 2012). However, the content of riboflavin (B2) and vitamin B12 contents are 
similar in UV-treated and heat-pasteurized milk (EFSA, 2016). Moreover, oxida-
tions of proteins and unsaturated lipids have been observed (Rossitto et al., 2012) 
although these effects may not be statistically significant (Cappozzo et al., 2015). 
Consequently, in general, this novel food processing has not been considered as 
nutritionally disadvantageous by the expert panel, when treated at the proper 
UV-dose (1000–2000 J/L).

Milk from other species, such as goat milk, has also been treated by UV-light 
with similar results in milk nutritional modifications, such as increased oxidation 
and hydrolytic rancidity (Guneser & Karagul Yuceer, 2012; Matak et al., 2007).
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Additionally, taking into account that cow’s milk allergy is one of the most 
important and most frequent allergy worldwide (Fiocchi et al., 2010), it deserves 
special attention the fact that several studies have found a significant reduction in 
IgE binding values compared to control samples, indicating reduction in allergenic-
ity of milk proteins (Hu et al., 2017; Tammineedi, Choudhary, Perez-Alvarado, & 
Watson, 2013). This decreased allergenicity is the consequence of a modification in 
the structure of proteins by UV-C light, which also leads to an improved digestibil-
ity (Hu et al., 2017). However, all of these results have been demonstrated in vitro 
and additional research studies using in vivo clinical trials must be carried out in 
order to confirm these promising results.

8.2.2  �Textural Properties

The application of UV-light to foods may have an impact on all photosensitive com-
ponents, which also include proteins and other structures of the cells, as mentioned 
previously. Although UV-light-sensitive proteins represent only 10% of the total 
proteins in foods (Koutchma et  al., 2009), changes and aggregation caused by 
UV-light may have an important effect on the texture, flavor, and appearance. 
Although not directly related to food texture, it is worth noting at this point that the 
well-known UV-induced protein cross-linking leads to another important applica-
tion of UV-light for industry beyond decontamination, as this technology may be 
extensively applied on the production of protein films. Several authors have reported 
the production of improved film structures with a wide-ranging of food-origin pro-
teins: whey proteins, soy, gluten, or albumin protein films, among others, have 
shown better barrier properties after exposure to UV irradiation (Díaz et al., 2017; 
Park, Cho, & Rhee, 2003; Rhim, Gennadios, Fu, Weller, & Hanna, 1999).

Furthermore, the impact on the structure of the cell wall by UV-light has been 
evidenced in several works to also impact the surface texture of treated products. 
Contrarily, the inhibition of microbial growth and delay of other degradation path-
ways (e.g., inhibition of enzymes affecting texture) may have an indirect positive 
effect, by maintaining the texture of the treated products. These potential effects are 
thoroughly reviewed in the subsequent sections.

8.2.2.1  �Fruits and Vegetables

In the case of fruits and vegetables, the maintenance of firmness is highly desired 
because a crunchy texture is commonly associated with freshness. Reported results 
about the effect of UV light in the texture of fruits and vegetables are very variable, 
although in most cases, UV-light technology shows to have neither negative nor 
positive direct effect in this characteristic of fruits, showing the advantage of this 
technology over thermal treatment. However, UV tends to positively influence the 
texture of fruits and vegetables indirectly. In these cases, the application of ultravio-
let light delayed the softening of the treated fruits, resulting in a firmer texture for a 
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longer period compared to the untreated fruits. For instance, in strawberries, UV 
applied at high doses had a positive influence on both fruit and flesh firmness 
(Marquenie et al., 2002; Severo et al., 2015). This effect has been also evidenced in 
other fruits such as melon and mango, where instrumental texture measurements 
confirmed a better firmness retention in fruit treated under UV-C radiation, leading 
to an extended shelf life when compared to control (untreated) samples (Lamikanra, 
Kueneman, Ukuku, & Bett-Garber, 2005; Promyou & Supapvanich, 2016). 
Regarding vegetables, UV-treated lettuce and peppers are not adversely affected by 
the treatment and maintain their texture quality during the studied storage period at 
refrigeration temperatures (Kim et al., 2013; Nogales-Delgado et al., 2014; Rodoni, 
Zaro, Hasperué, Concellón, & Vicente, 2015).

Additionally, UV has shown to be a viable alternative in highly perishable fresh 
shiitake mushrooms, resulting in a reduced decrease in firmness during shelf life 
storage, and even maintenance of a high level of firmness during 15 days at low 
temperatures (Jiang, Jahangir, Jiang, Lu, & Ying, 2010). Tomato fruit has been sys-
tematically studied in numerous studies, confirming again a better resistance to 
decay and a slower ripening upon light exposure (Liu et al., 1993; Mukhopadhyay, 
Ukuku, Juneja, & Fan, 2014; Pinheiro, Alegria, Abreu, Gonçalves, & Silva, 2016). 
However, it is important to mention that these positive effects are seen with specific 
soft treatments, while high UV doses may have negative effects on texture, color 
and nutritional characteristics.

Similarly, these higher doses in some cases may affect somehow the texture of 
the products, since the treatment affects the food structure and cell integrity. In 
grapes, the presence of nano fractures in skin cells and alteration of cellulose aggre-
gates pattern by UV-C irradiation have been proven (Fava et al., 2011). Also, cell 
and tissue damage in pods of green bean have been seen (Kasım & Kasım, 2008). 
In fresh-cut apples, the surface exposed to UV-light showed lost cell integrity (e.g., 
rupture of the membranes, a decrease in intracellular volume, and loss of turgidity). 
However, these structural changes have been assessed mainly by optical microscopy 
observations, and when assessed by instrumental measurements, mechanical prop-
erty changes were not significant (Gómez, Alzamora, Castro, & Salvatori, 2010; 
Manzocco et al., 2011) and consumers did not perceive potential changes in texture. 
Contrarily, in pears, the evidenced changes in structure were detected by consumers 
and described as a significant loss of hardness and fracturability (Garcia Loredo, 
Guerrero, & Alzamora, 2013; Schenk, Loredo, Raffellini, Alzamora, & Guerrero, 
2012). Surprisingly, these changes did not affect juiciness perception and consum-
ers found treated fruits agreeable.

Lastly, only in scarce studies, the UV-light has been revealed to negatively impact 
the texture of treated vegetables. For instance, it has been recently assessed that 
ultraviolet light influences the sensory quality of ginseng roots, resulting in an 
undesirable softer texture when compared with other preservation treatments 
(Jin, Huang, Niemira, & Cheng, 2017), although the mechanism of this loss of con-
sistency has not been studied yet. As reported above, UV-light treatments generally 
help to prolong the fresh firmness of fruits and vegetables. However, observed 
effects are clearly dose- and product-dependent, confirming that UV treatment must 
be optimized for each considered food application.
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8.2.2.2  �Meat Products

The treatment of meat, poultry and fish products by UV light has been mainly stud-
ied for surface microbial inactivation and prolonged shelf life of the foods. However, 
measurements of UV-C effects in texture are less frequent, although several suitable 
examples can be found in the literature. In this line, also very variable results are 
reported, depending on the evaluated product.

According to the results published by Oh and coworkers, the combined treatment 
with UV and chlorine is able to effectively inhibit Listeria monocytogenes growth 
but do not change the texture of chicken breast after one week of storage at 4 °C 
(Oh, Kang, Oh, & Ha, 2014). Similarly, the texture presented no significant varia-
tions between treated and untreated samples also in the case of fresh salmon fillets 
(Mikš-Krajnik, James Feng, Bang, & Yuk, 2017), processed and cooked meat prod-
ucts (Ha & Kang, 2015; Sommers, Geveke, Pulsfus, & Lemmenes, 2009; Sommers, 
Scullen, & Sites, 2010), and dried filefish fillets (Park et al., 2014).

However, as it has been mentioned in the previous sections for other products, 
the optimization of the treatment for each application is crucial here, since very 
intense UV-light treatments may indirectly alter the texture parameters. These tex-
ture damages could be caused by uncontrolled temperature increases in food surface 
that contribute to moisture loss (Heinrich et al., 2016; Manzocco & Nicoli, 2015).

Contrarily, with proper treatment, the effects of UV-C light in product proteins 
can be targeted to obtain improvements in texture. Within this context, it has been 
observed that UV may protect myofibrillar proteins from proteolysis and slow down 
water holding capacity decrease along the shelf life of sea bass fillets, resulting in a 
higher hardness and improvement of other textural parameters (Molina, Sáez, 
Martínez, Guil-Guerrero, & Suárez, 2014), although parallel negative effects were 
also observed (e.g., decreased collagen content and increased lipid oxidation in 
fillets).

Also, as previously stated, it is well known that UV irradiation causes the dena-
turation and cross-linking of certain proteins. This circumstance can be accordingly 
used for the improvement of strength and elasticity of both meat and fish muscle 
gels (Ishizaki, Hamada, Iso, & Taguchi, 1993), which present a denser and less 
porous structure than the untreated samples. Also in fish-gelatin gels, it has been 
demonstrated by many studies that irradiated samples exhibit significant improve-
ment in the gel texture parameters (Bhat & Karim, 2009; Otoni et al., 2012; Wu, 
Tsai, & Sung, 2015). Besides, although not directly related to product texture, the 
functional properties of egg proteins may be also positively impacted by UV light. 
In this line, foamability and foam stability are improved, and it has been observed 
an increase on the emulsifying activity in ultraviolet-treated proteins compared to 
thermal pasteurized samples (de Souza et al., 2015; Kuan, Bhat, & Karim, 2011). In 
conclusion, taken all these results together, it can be confirmed the potential of 
employing UV radiation as an alternative method over conventional alternatives for 
maintaining or improving some of the quality attributes of food products.
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8.2.2.3  �Dairy Products

As occurs with previously evaluated food products, UV treatment may affect dairy 
products in such different ways depending on the product and intensity of the 
treatment.

In milk, UV may cause color and texture changes and other sensorial defects 
such as off-odors, due to the oxidation of proteins and unsaturated lipids (Orlowska 
et al., 2012; Rossitto et al., 2012). However, this modification of milk proteins has 
been demonstrated not to have a negative impact in their coagulation properties and 
rennet formation (Scheidegger, Pecora, Radici, & Kivatinitz, 2010), and conse-
quently, the resulting cheese made with UV-pasteurized milk should not be affected 
in terms of texture.

In a positive sense, regarding other properties of milk proteins, UV radiation may 
lead to enhanced emulsifying and foaming properties of high valued milk-derived 
ingredients, such as caseins (Kuan et al., 2011, 2013), as also occurred with other 
food proteins. In solid dairy products, UV light has been studied for surface micro-
bial decontamination and to prolong cheese shelf life. In this case, due to the low 
transmittance of UV-C light inside the product, this treatment does not induce 
changes in texture and surface appearance (Lacivita et al., 2016).

8.2.3  �Sensorial Properties

Evidence in the compiled scientific literature has perfectly demonstrated that UV 
light is a promising and viable alternative to thermal pasteurization from a micro-
biological point of view (Koutchma, 2009). Apart for consideration of UV impact in 
food safety and nutritional quality, the sensory aspects of treated products must be 
also evaluated, since consumers’ subjective perception of freshness and quality is a 
key aspect for the purchase decision, and consequently, for the industrial acceptance 
and implementation of a novel technology.

8.2.3.1  �Fruits and Vegetables

In general, UV light preserves the original color and natural properties of a wide 
variety of fruit juices (Gautam et al., 2017; Taze et al., 2015) and produce minimal 
or no changes in flavor, essential nutrients and vitamins (Aguilar et  al., 2016; 
Gómez-López et al., 2012). However, as happen with other quality aspects already 
revisited, high UV doses required in translucent or opaque products to reach an 
acceptable microbial reduction can adversely change the product’s attributes, espe-
cially regarding color and the appearance of oxidized flavor, resulting in significant 
quality changes and reduced consumer’s acceptability (Bermúdez-Aguirre & 
Barbosa-Cánovas, 2013; Caminiti et al., 2012; Santhirasegaram et al., 2015). These 
changes in color are sometimes useful by degrading undesirable brown colors 
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formed in the fruit derivatives (Ibarz, Pagán, Panadés, & Garza, 2005). Also, in a 
positive way, the treatment by UV light can be beneficial, regarding the inhibition 
of enzymatic activity whose reactions can lead to quality losses during storage: UV 
light has been proved to inactivate oxidases and pectin methylesterase responsible 
for browning and clarification of fruit juices and other fruit derivatives (Aguilar 
et  al., 2016; Falguera, Pagán, & Ibarz, 2011; Manzocco, Dri, & Quarta, 2009; 
Manzocco, Quarta, & Dri, 2009; Müller, Noack, Greiner, Stahl, & Posten, 2014; 
Tran & Farid, 2004).

In solid fruits, some differences are noted between whole or cut fruits. In this 
line, in whole fruits, no positive or negative influence of UV-C treatment quality can 
be generally found (Marquenie, 2002; Marquenie et  al., 2002), except for slight 
changes in color (Birmpa et al., 2013) or even a positive influence by delaying rip-
ening (Pinheiro et al., 2016).

Regarding fresh-cut fruits, UV light may produce slight direct degradation of 
fruit color (Romero, Colivet, Aron, & Ramosvillarroel, 2017). These color changes 
are observed also in other vegetal products such as a significant increase in the light-
ness of peanut oil (Shen et al., 2014). However, this treatment can be also used for 
controlling enzymatic browning (Lante, Tinello, & Nicoletto, 2016; Moreno et al., 
2017; Şakiroğlu, Birdal, Başlar, & Öztürk, 2016). Apart from enzymatic inactiva-
tion, it has been evidenced the formation of a thin, dried film on the surface of the 
products due to the UV treatment, that seem to protect cut fruit from oxidation, 
allowing the retention of fresh-like appearance and flavor during storage (Manzocco 
et al., 2011). However, as cited in previous sections, this damage in the structure of 
cells due to intensive ultraviolet exposure can also produce the contrary effects to 
those positive ones previously mentioned (Koutchma & Orlowska, 2012). Thus, 
although these changes were not significant in global texture, surface and color 
changes may occur, such as accelerated peel and surface browning in citrus and 
pineapples (Ben-Yehoshua, Rodov, Kim, & Carmeli, 1992; Pan & Zu, 2012) and 
moisture loss (Manzocco & Nicoli, 2015). Nevertheless, the potential appearance of 
negative effects at high doses opens to the possibility of decreasing the treatment 
intensity by combining two or more treatments in order to preserve the fruit and 
vegetable quality without decreasing the microbial and enzymatic inactivation prop-
erties (Marquenie, 2002; Şakiroğlu et al., 2016; Sampedro & Fan, 2014).

8.2.3.2  �Meat Products

Meat color is considered one of the most influential factors in consumer purchasing 
decisions. Although references in the literature are less numerous than in fruit prod-
ucts, the use of UV light to reduce surface microbial contamination has been nor-
mally reported not to have significant detrimental effect in the color of meat and 
meat products, mainly at moderate dosage or in combined treatments (Ha & Kang, 
2015; Koutchma et al., 2009; Lázaro et al., 2014; Yang et al., 2017).

However, concerning products containing sensitive pigments such as salmon fil-
lets, sensory results showed that the treatments involving UV irradiation gave sig-
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nificantly lower color scores (Mikš-Krajnik et al., 2017). Once again, higher doses 
of UV light may jeopardize sensory characteristics of treated products: color altera-
tions and fat oxidation are the most remarkable changes caused by intense treat-
ments, decreasing overall acceptability (Cooper et al., 2016; Park et al., 2014; Park 
& Ha, 2015). Indirectly, the potential excessive temperature increase in food surface 
can also contribute to quality changes in the surface of meat and fish (Heinrich 
et al., 2016; Ozer & Demirci, 2006).

In egg products, UV-C treatment has been shown to be effective in reducing 
microbial load in white egg, also improving its properties. Contrarily, in egg yolk 
and whole egg, it may cause browning and lipid oxidation, reducing their sensory 
quality (de Souza & Fernández, 2011; Manzocco, Panozzo, & Nicoli, 2012).

8.2.3.3  �Dairy Products

The dairy industry is the fastest growing agricultural sector in the world, so there is 
a need to develop novel processing techniques, an alternative to thermal processes 
to meet this global demand, and offer consumers high-quality milk and dairy prod-
ucts (Datta et al., 2015).

As said before, UV treatment causes sensory defects such as color changes and 
presence of off-odors in milk that are caused by oxidation of proteins and lipids 
(Rossitto et al., 2012; Scheidegger et al., 2010). In addition, although an increase in 
vitamin D can be obtained at short UV wavelength, the reduction in the content of 
other important vitamins can lead to an overall decrease of milk quality (Guneser & 
Karagul Yuceer, 2012). These sensory changes have also been observed in goat milk 
(Matak et al., 2007), deducing that milk components are extremely light-sensitive 
products (Koutchma, 2009). However, these organoleptic changes have not been 
considered as a safety concern by European administration regarding the approval 
of UV-light for milk treatment (EFSA, 2016). Anyway, trying to minimize the 
appearance of sensory defects in UV-light treated milk products means a major 
challenge for future research and UV application in the dairy industry. In solid dairy 
products, scarce studies have been published, but in general, the application of UV 
light in cheese do not promote changes in terms of color, texture and surface appear-
ance (Lacivita et al., 2016).

8.3  �Conclusions

As the global food supply moves toward fresh and minimally processed products, 
the industry continues to seek new technologies to control possible microbiological 
hazards while maintaining food quality characteristics. In this context, UV-light has 
been stipulated as a promising technology to provide the quality attributes demanded 
by consumers and to ensure the expected food safety.
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The major advantages of UV are mainly summarized as the extensive applicabil-
ity to most types of microorganisms, the lower cost, and the convenient manipula-
tion. Also, the exposure to UV-light could be an advantage regarding food quality in 
most cases. However, the most significant and critical challenges to the commercial 
application of UV-C technology are its limited penetration power and the need for 
achieving dose uniformity in food products. Also, more intense studies of the effect 
of UV radiation on the structure and functional properties of light-sensitive food 
components, as well as protecting certain nutrients from photodegradation is still a 
major challenge to take over by food scientist in order to impulse its application in 
food industry. The development of combined processes with conventional and other 
emerging preservation methods at a moderate intensity that potentate UV lethal 
effect, seem to be an interesting solution to this threat. In any case, the loss of nutri-
ents by UV light seems to be lower than with thermal treatment, so regarding other 
parameters (e.g., safety issues, food characteristics, economic issues, etc.) and the 
continuous development of improved UV sources and processing systems for spe-
cific foods, it is clear that UV- radiation still shows a great potential: As seen in this 
chapter, fruit and vegetable applications seem to be still a majority, but novel appli-
cations in opaque and solid foods are also being studied and are on the rise, and will 
contribute to a more extended commercial use of UV-based treatment for pasteuri-
zation foods.
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