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Abstract. Dual graphs have been applied to model RNA secondary
structures with pseudoknots, or intertwined base pairs. In a previ-
ous work, a linear-time algorithm was introduced to partition dual
graphs into maximal topological components called blocks and determine
whether each block contains a pseudoknot or not. This characterization
allowed us to efficiently isolate smaller RNA fragments and classify them
as pseudoknotted or pseudoknot-free regions, while keeping these sub-
structures intact. In this paper we extend the partitioning algorithm by
classifying a pseudoknot as either recursive or non-recursive. A pseudo-
knot is recursive if it contains independent regions or fragments. Each of
these regions can be also identified by the modified algorithm, continu-
ing with our current research in the development of a library of building
blocks for RNA design by fragment assembly. Partitioning and classifi-
cation of RNAs using dual graphs provide a systematic way for study of
RNA structure and prediction.

Keywords: Graph theory · RNA secondary structures · Partitioning ·
Bi-connectivity · Pseudoknots

1 Introduction

Let G = (V,E) be undirected graph composed of by a finite set of vertices V and
a set E of unordered pair of vertices called edges, where each edge represents a
relation between two vertices.

Our RNA analysis is based on dual graphs, introduced in 2003 by Gan
et al. [7], to model RNA secondary structures (2D). The 2D elements of RNA
molecules consist of double-stranded (stem) regions defined by base pairing such
as Adenine-Uracil, Guanine-Cytosine, Guanine-Uracil, and single stranded loops;
stems and loops are mapped to the vertices and edges of the corresponding dual
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graph, respectively (later we present an alternative definition of dual graphs).
Dual graphs can represent complex RNA structures called pseudoknots (PKs);
these structures involve an intertwining of two-base-paired regions of the RNA
and are common elements in many biologically relevant RNAs.

In [19,20] a linear-time partitioning algorithm was introduced based on the
dual graph representation of RNA 2D. This algorithm partitions a dual graph
into connected components called blocks and then determines whether each block
contains a pseudoknot or is a regular region. Thus our procedure provides a
systematic approach to partition an RNA 2D, into smaller classified regions,
while providing a topological perspective for the analysis of RNAs.

Pseudoknots can be classified into two main groups: recursive and non-
recursive pseudoknot [9,23]. The former is distinguished from the latter because
it contains an internal pseudoknotted or regular region that does not inter-
twine with external stems within the PK; in this work, the original algorithm is
extended to classify PKs into these two main categories. In addition, as a recur-
sive PK comprises independent regions or fragments, our modified algorithm
can also identify each of these regions, to be later cataloged and applied in the
analysis of RNAs with pseudoknots.

In the next section, we present background material and definitions relevant
to this paper, and we review the partitioning algorithm introduced in [19,20], as
well as its applications, as for example the development of a library of building
blocks for RNA design by fragment assembly [13]. Following this line of research,
in Sect. 3 it is shown how the partitioning approach can be extended so if a
block contains a pseudoknot, then it can be classified as either recursive or
non-recursive; in the case the PK is recursive, the algorithm can also identify
each independent region. We summarize the findings and outline new directions
in Sect. 4. An Appendix section includes computational tests performed by the
modified algorithm, on some RNA’s motifs.

2 Background

2.1 Biological and Topological Definitions

In 2003, Gan et al. [7] introduced tree and dual graph-theoretic representations
of RNA 2D motifs in a framework called RAG (RNA-As-Graphs) [5,8,12,16].
A pseudoknot is an intertwining of two-based-paired regions (stems) of an RNA
(see for example Fig. 1).

The partition algorithm is based on topological properties of graphs, suggests
an alternative way to look at the problem of detection and classification of PKs
and of general RNAs. As base pairing in PKs is not well-nested, making the
presence of PKs in RNA sequences more difficult to predict by the more classical
dynamic programming [3] and context-free grammars standard methods [2].

Following (Kravchenko [17]), we define our biological variables as follows.
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Definition 1. General terms:

a. RNA primary structure: a sequence of linearly ordered bases x1, x2, . . . , xr,
where xi ∈ {A,U, C,G}.

b. canonical base pair: a base pair (xi, xj) ∈ {(A,U), (U,A), (C,G), (G,C),
(G,U), (U,G)}.

c. RNA secondary structure without pseudoknot - or regular structure, encapsu-
lated in the region (i0, . . . , k0): an RNA 2D structure in which no two base
pairs (xi, xj), (xl, xm), satisfy i0 ≤ i < l < j < m ≤ m0 (i.e., no two base
pairs intertwined).

d. a base pair stem: a tuple (xi, xi+1, . . . , xi+r, xi+(r+1), . . . , xj−1, xj) in which
(xi, xj), (xi+1, xj−1), . . . , (xi+r, xi+(r+1)) form base pairs.

e. loop region: a tuple (x1, x2, . . . , xr) in which ∀i≤j≤r(xi, xj) does not form a
base pair.

f. a pseudoknot encapsulated in the region (i0, . . . , k0): if ∃l,m, (i0 < l < m <
k0) such that (xi0 , xm) and (xl, xk0) are base pairs (i.e., at least two base pairs
intertwined).

A graphical representation is a natural way to describe an RNA 2D struc-
ture (see Fig. 1(a), (b)), in which the x-axis is labeled according to the primary
linearly ordered sequence of bases (Definition 1a), and a stem (Definition 1d) is
represented by arcs connecting base pairs. A region on the x-axis between the
end-points of the arcs representing stems is called a segment.

A dual graph can be defined from the graphical representation of an RNA
2D structure as follows (Fig. 1).

Definition 2. The dual graph is defined by mapping stems and the segments
between stems (x-axis), of the graphical representation of an RNA 2D structure,
to the vertices and edges of the dual graph, respectively.

In the next section we present our partitioning approach as of a dual graph
G, into subgraphs G′ ⊆ G, called blocks.

2.2 Graph Partitioning Algorithm

The graph-theoretic partitioning algorithm is based on identifying articulation
points of the dual graph representation of an RNA 2D. An articulation point
is a vertex of a graph whose deletion disconnects a graph or an isolated vertex
remains.

We need to define the following.

Definition 3. Connectivity

a. A vertex v is an articulation point or cut-vertex if G − v results in a discon-
nected graph (i.e., at least two connected components remain) or an isolated
vertex remains.

b. A connected component is non-separable if it does not have an articulation
point (or cut-vertex). Please note that single edges or isolated points are non-
separable.



Graph-Theoretic Partitioning of RNAs and Classification of Pseudoknots 71

a)

S1

S2

S3

I
II

III
IV

V
a’)

1 10 20 30 40 50 60 70

Stem or spurious base pairs

S1
S2

S3

I II III IV V

b) I II III

(pseudoknot)

IV V VI VII
1 10 20 30 40 50 60 70

primary sequence

Stem or spurious base pairs

S1
S2

S3S4

S1

S2

S3

S4

I II
IIIIV

V

VI
VII

dual graph

dual graph

primary sequence

b’)

Fig. 1. Graphical and dual graph representations of an RNA 2D structure. (a) graphical
representation of a pseudoknot-free RNA primary sequence and embedded stems or
base pairs; (a′) corresponding dual graph representation. (b) graphical representation
of a pseudoknotted RNA 2D structure; (b′) corresponding dual graph. This figure was
originally depicted in [20].

c. A block is a maximal (edge-wise) non-separable graph.
d. An edge-set X is an edge-disconnecting set if the removal of X from G results

in a disconnected graph. The edge-connectivity of a graph λ(G) is the size of
a minimum edge-disconnecting of G.

e. The degree of a vertex v of G is the number of dG(v) is the number of edges
incident at v.

Articulation points allow us to identify blocks (see Fig. 2); since a block is a
maximally non-separable component, a pseudoknot cannot be then contained in
two different blocks. Thus identification of these block components allows us to
isolate pseudoknots (as well as pseudoknot-free blocks), without breaking their
structural properties.

An algorithm for identifying (bi-connected) block components in a graph was
introduced by Hopcroft and Tarjan [11], and runs in linear computational time.

A hairpin loop occurs when two regions of the same strand, usually comple-
mentary in nucleotide sequence when read in opposite directions, base-pair to
form a double helix that ends in an unpaired loop. A self-loop in the dual graph,
i.e., an edge having the same vertex as the end-points, represents a hairpin, and
as it does not connect two different vertices (i.e., stems), it is formally deleted
from the dual graph.

From Definition 1c, an RNA 2D structure is a regular-region (pseudoknot-
free) and encapsulated in a region (i0, . . . , k0), if no two base pairs
(xi, xj), (xl, xm), satisfy i < l < j < m, i0 ≤ i, j, l,m ≤ m0, otherwise the
region is a pseudoknot; this definition yields the following main result.
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Fig. 2. Identification of (a) articulation points and (b) partitioning of a dual graph.

Corollary 4. [19,20] Given a dual graph representation of RNA 2D structure,
a block represents a pseudoknot if and only if the block has a vertex of degree
(Definition 3e) at least 3.

The partitioning algorithm performs the following steps.

1. Partition the dual graph into blocks by application of Hopcroft and Tarjan’s
algorithm.

2. Analyze each block to determine whether contains a vertex of degree at least
3. If that is the case then the block contains a pseudoknot, according to Corol-
lary 4. If not then the block represents a pseudoknot-free structure.

Consider as an example the dual graph shown in Fig. 2. This graph is decomposed
into 2 blocks. According to Corollary 4, block 1 is a pseudoknot as it has a vertex
of degree at least 3, while block 2, a cycle, corresponds to a regular region.

Our partitioning algorithm was applied recently [13] to analyze the modular
units of RNAs for a representative database of experimentally determined RNA
structures and to develop a library of building blocks for RNA design by frag-
ment assembly, as done recently for tree graphs, along with supporting chemical
mapping experiments [14]. Among the 22 frequently occurring motifs we found
for known RNAs up to 9 vertices, 15 contain pseudoknots [13]. Thus, further clas-
sification of the pseudoknotted RNAs could help in cataloging and applications
to RNA design. Another application of the partitioning algorithm to small and
large units of ribosomal RNAs of various prokaryotic and eukaryotic organisms
helped identify common subgraphs and ancestry relationships [13].

In the next section we extend our algorithm to classify PKs as either recursive
or non-recursive; the algorithm can also identify each recursive region.

3 Classification of Pseudoknots as Either Recursive or
Non-recursive and Identification of Each Recursive
Region

The RNA 2D dual graph and graphical representations depicted in this section
are based upon New York University’s RAG-database [12], and R-Chie visual-
ization software [18], respectively.
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Fig. 3. Recursive pseudoknot.

The definition of a recursive pseudoknot follows the one of Wong et al. [23].
Let A = x1x2...xm be a sequence of linearly ordered bases, and M be the 2D of
A. M is represented as a set of base pair positions, i.e., M = {(i, j)|1 ≤ i < j ≤
m, (xi, xj) is a base pair}. Let Mx,y ⊆ M be the set of base pairs within the sub-
sequence x1x2...xm, 1 ≤ x < y ≤ m, i.e., Mx,y = {(i, j) ∈ M |x ≤ i < j ≤ y},
with M = M1,m.

Definition 5. Mx,y is a recursive pseudoknot if Mx,y is a pseudoknot (see Def-
inition 1f), and ∃a1, b1, . . . , as, bs, (x < a1 < b1 < . . . < as < bs < y) that satisfy
the followings.
Each Mai,bi is called a recursive region.

– Mai,bi , for 1 ≤ i ≤ s, is a recursive pseudoknot.
– For each Mai,bi , 1 ≤ i ≤ s, there does not exist a base pair (i, j) ∈ M that

i ∈ [ai, bi] but j /∈ [ai, bi], or i /∈ [ai, bi] but j ∈ [ai, bi].
– Mx,y − ∪s

i=1Mai,bi is either a regular structure or a pseudoknot.

A recursive pseudoknot is a pseudoknot Mx,y that contains a pseudoknotted
or regular region Ma,b, and there does not exist a base pair (c, d), such that xd

is a base of Ma,b and xc is a base of M external to Ma,b (see Fig. 3). Here we
are assuming that Ma,b is contained in Mx,y, that is, x < a < b < y.

Wong et al. definitions [23] also incorporated the concepts of standard and
non-standard pseudoknots; however it is not within the scope of this work to
study them from the dual graph representation perspective.

A graph is Eulerian if there exist a trail with no repetition of edges from
a vertex v0 of G, ending at vertex vk, covering all the edges of the topology;
if v0 = vk then the graph is an Eulerian cycle (see [10], p. 64). Dual graph
representations of general RNA 2D structures, and specifically of PKs, can be
easily shown to be Eulerian graphs from Definition 2. By starting from the origin
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on the x-axis of the graphical representation and traversing to the right, a unique
trail in its dual graph can be described, where all edges are covered.

Lemma 6. [19,20] The dual graph representations of RNA 2D structures and
of PKs are Eulerian by following the primary sequence of bases.

As depicted in Fig. 1(b), the alternating sequence of stems and segments
{S1, I, S2, II, S4, III, S2, IV, S1, V, S3, V I, S4, V II, S3} of the graphical repre-
sentation (b) forms an Eulerian trail in its dual graph (b′).

A pseudoknotted block can be classified as recursive by just calculating the
edge-connectivity (see Definition 3d) of the block. As an example consider the
Hepatitis Delta Virus Ribozyme (see Fig. 4), necessary for viral replication. The
stem labeled 4 in the graphical representation (or vertex labeled 4 in the dual
graph) is attached to the pseudoknot by the segments a and b in its graphical
representation, or edges labeled a and b in the dual graph representation. It is
clear that if the PK is recursive then the edge-connectivity of the pseudoknotted
block must be 2. However it is not obvious that the converse is necessarily true,
that is, if the pseudoknotted block has edge-connectivity 2 then it is recursive.
The following Lemma settles this question.

0

1

2

34

a

b
0 1

2

3

4

a b

a) Graphical representation of RF00094 Secondary Structure b) Dual graph of RF00094 Secondary Structure

Fig. 4. Hepatitis Delta Virus Ribozyme secondary structure. (a) Graphical represen-
tation. (b) Dual graph representation.

Lemma 7. The dual graph representation of a pseudoknotted block is recursive
if and only if the block has edge-connectivity 2.

Proof. If the block Mx,y is a recursive pseudoknot then it contains an internal
region Ma,b with x < a < b < y according the aforementioned definition. As
there does not exist a base pair (c, d) in which xd is a base in the internal region
and xc is a base of the pseudoknot outside this internal region, then Ma,b must
be adjacent to the remaining of the PK in the graphical representation by two
segments, or equivalently, by two edges in the dual graph of the pseudoknot (see
Fig. 4).
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Conversely suppose that the dual graph of a PK, G = (V,E), has edge-
connectivity 2 and let E′ = {e1, e2} represent a minimum size disconnecting set.
As G is connected then deletion of E′ from G will result in exactly two connected
components, G1 = (V1, E1) and G2 = (V2, E2) (see Fig. 5a). From Lemma 6 one
knows that there exist an Eulerian path in G following the primary sequence in
linear order, starting from the origin on the x-axis of the graphical representation
and traversing to the right. Let the Eulerian path P = P1.e1.P2.e2.P3 where P1

starts at the initial base x1 (w.l.o.g. we assume that x1 is in G1) (see Fig. 5b). It
is the case that P2 must cover all the edges of G2 (following an ordered sequence
of bases) because when P reaches e2 to continue with P3, P can not go back
to G2 again as e1 and e2 were already used by the Eulerian path. Therefore
G2 is a region composed of all edges (and vertices) corresponding to an ordered
sequence of bases, that is, G2 is a well-defined region within the pseudoknotted
block G. �	

G1 G2

e1

e2

G1 G2

e1

e2

G pseudoknotted block

a) minimum edge-disonnecting set of size 2.

b) Eulerian path starting at location 1 of the primary sequence

initial base x1

P1

P2

P3

Fig. 5. Minimum disconnecting set of size 2. (a) Two connected subgraphs. (b) Eulerian
path covering all the edges of the dual graph and following the primary sequence.

The edge-connectivity of a graph G = (V,E) can be determined in polynomial
time in order (|V ||E|2) using the max-flow min-cut theorem of network flows by
Edmond and Karp [4], or Ford and Fulkerson [6].

As it is shown in the proof of by Lemma 7, we can also delete each pair of
edges and determine if the graph is disconnected using Depth-First-Search [10]
in time (|E|3); this variation allows us to find every internal recursive region of
the recursive pseudoknot if such pair of edges exist. For example if edges a and
b of Hepatitis Delta Virus Ribozyme 2D dual graph representation (Fig. 4) are
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deleted, then vertex labeled 4 corresponding to the stem labeled 4 of the graph-
ical representation will be isolated. Thus the disconnecting set {a, b} uniquely
identifies a recursive region (i.e., stem labeled 4).

Corollary 4 and Lemma 7 yield the following partitioning and classification
of pseudoknots algorithm.

Algorithm for Partitioning and Classification of PKs

i. Input dual graph G = (V,E) as the Adjacency Matrix, of a RNA 2D.
ii. Output partitioning of the RNA 2D into recursive PK, non-recursive PK, and

regular regions.
1. Partition the dual graph into blocks by application of Hopcroft and Tar-

jan’s algorithm;
2. Analyze each block to determine whether each contains a vertex of degree

at least 3;
3. IF the block has a vertex of degree ≥ 3 then the block is a pseudoknot;

• Apply max-flow min-cut theorem to determine edge-connectivity;
• if edge-connectivity = 2 then the block is a recursive pseudoknot;
else the pseudoknot is not recursive;

4. ELSE the block is a regular region;.

0 1 32 4 5 6a

a) Graphical representation of RF01084 Secondary Structure

b

cregular region

regular region

0

1 2

3

4
56

a

b

b) Dual graph representation of RF01084 Secondary Structure

c

Fig. 6. A tRNA-like-structure. (a) Graphical representation. (b) Dual graph repre-
sentation.

As another example consider a tRNA-like-structure [1], linked to regulation
of plant virus replication (see Fig. 6). Note that the vertex labeled 4 is an articu-
lation point, therefore this dual graph will be partitioned into two blocks, one is
a pseudoknot, because it contains a vertex of degree 3 or greater (self-loops are
deleted in the analysis), while the other block is a regular region. The pseudo-
knotted bock can be classified as recursive because it has edge-connectivity 2. In
addition every disconnecting set of size 2 represents a recursive internal region
of the PK.
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As an example of a non-recursive pseudoknot consider the Translational
repression of the Escherichia coli alpha operon mRNA [22], illustrated in Fig. 7.
The dual graph representation of this motif 2D has edge-connectivity 3, thus it
is not a recursive PK.

1

2

3

45

1 2 3 4 5

a)

b)

Fig. 7. Translational repression of the Escherichia coli alpha operon mRNA. (a) Graph-
ical representation; (b) Dual graph representation.

The Appendix illustrates the output generated by the modified algorithm
when is run on some of the aforementioned motifs. The algorithm is written in
C++ and is archived for public use [21].

4 Conclusions and Ongoing Work

We have extended our partitioning algorithm of the dual graph representation
of RNA 2D structures into maximal non-separable components called blocks,
to classify pseudoknots as either recursive or non-recursive. In [19,20] it was
shown that an RNA 2D contains a pseudoknot if and only if the dual graph
representation has a block in which one of the vertices is of degree 3 or larger.
This paper showed that a pseudoknotted block is recursive if and only if the block
has edge-connectivity 2. Moreover each disconnecting set of size 2 represents
an internal recursive region of the pseudoknot allowing further classification of
modular units for RNA design. These results also offer an alternative and simple
way to visualize and classify PKs based on graph theoretical properties, allowing
a systematic analysis of RNAs.

With our recent extension of our graph growing algorithm to generate dual
graph libraries of possible RNA motifs, thousands more potential graphs were
analyzed and classified [15]. The modified algorithm will be useful for these
motifs for further studies of RNA structure and design.
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Appendix

Let (a, b) represents an edge of a dual graph with end-vertices a and b.
We are next illustrating the output of the partitioning algorithm tested on

the tRNA-like-structure dual graph (see Fig. 6).
——————— Motif :RF01084 —————————–

===================== New Block =======
(4,5) - (4,5) -
—- this block represents a regular-region —-
===================== New Block =======
(4,0) - (3,4) - (1,3) - (6,0) - (2,6) - (1,2) - (1,2) - (0,1) -
removed edges (2,6) and (6,0), these two edges are a disconnecting set:
The block is a recursive PK.
———– Summary information for Motif :RF01084 ——————————–
———– Total number of blocks: 2
———– number of non-recursive PK blocks: 0
———– number of recursive PK blocks: 1
———– number of regular blocks : 1
————————————————————————————
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