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Abstract. Cells perceive and respond to their microenvironment as a
part of their functioning via networks of processes resulting from molec-
ular interactions. The complexity of such networks has been the subject
of studies that address their various aspects. Some of these include static
methods that focus on graph representations and their consequent prop-
erties, while others take a dynamical systems approach based on simu-
lations. Here, we address the problem of identifying dominant pathways
in biological networks that are represented as activation and repression
edges. For this purpose, we propose a hybrid method that combines static
graph properties with a dynamic quantification of information flow that
results from stochastic simulations. We first illustrate our method on a
simple example, and then apply it to the Escherichia coli transcription
network consisting of 4639 regulatory edges.
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1 Introduction

The complex biological processes dedicated to sustaining life are commonly rep-
resented by various kinds of networks for formal analysis. These representations
cover a broad spectrum from detailed rule-based models and chemical reaction
networks to other stoichiometric representations as well as graph models with
varying details. These different methods have their individual strengths in deliv-
ering new insights on a rich landscape of biological queries. However, more than
often, the availability of empirical data, or the lack thereof, poses a bottleneck
in the formal setting within the context of specific studies.

Despite the inherent complexity, experimental findings indicate that certain
aspects and patterns are common in many biological networks. Some of these
features resemble those in the networks that are observed outside the biochemi-
cal realm such as communication networks. By relying on these similarities, here
we work with the consideration of networks of biochemical entities as processes
that relay the incoming stimulus to response components. We aim at benefitting
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from this notion especially when larger biological processes are considered and
kinetic data is scarce or difficult to apply. In particular, we address the problem
of identifying dominant pathways: within an organism, biological processes work
together to produce an overall global flux distribution by making the flow of
information accessible over different pathways [10,12,16,20]. Despite the pres-
ence of many pathways, some of the available pathways are more dominant in
terms of their information flow capacity.

In the light of the observations above, our method is based on the following
assumptions on biological systems. Firstly, information propagates by a series
of coupled biochemical reactions, whereby cellular signals are relayed predomi-
nantly through functional modules of highly connected nodes, see, e.g., [13]. In
particular, in the extreme case of scale-free networks, whose degree distribution
follows a power law [1], only a tiny fragment of hub nodes process a large frag-
ment of the information. Secondly, local signal transduction tends to be stochas-
tic, hence information propagation by individual components is subject to noise.
And finally, in the presence of multiple pathways for the signal, information flow
has a predilection for the pathway of least biochemical resistance.

Our analysis of biological systems combines methods from static graph theo-
retical considerations in the literature with those for dynamical systems based on
simulations. We work with biological systems that can be represented as directed
graphs with two kinds of edges, namely activation and repression. Many biologi-
cal systems can be represented in this form as well as gene transcription networks
that easily fit into this category. We map each edge of the network to a reaction
of a chemical reaction network (CRN). The idea here is that each activation edge
consumes the instance of the incoming signal at its source node to propagate the
information flow by producing an instance of the target node. The signal can
then be passed on to the next reaction. Each repression edge, on the other hand,
consumes the instance of the incoming signal together with an instance of its
target node if it is available. This way, it inhibits the further propagation of the
signal from its target node.

In accordance with the considerations above, we resort to the idea that cel-
lular signals are transmitted dominantly through pathways of highly connected
components. We implement our method by computing the reaction rates as prox-
ies of connectivity of the source and target nodes of the corresponding edge in
the network. We instantiate the rates by borrowing three topological measures
from the literature that are used to study the static properties of graphs. These
are the topological overlap measure (TOM) [18], the Randić index (RI) [17],
and the combined linkage index (CLI) [15]. For each network, we produce three
different CRNs using these measures to instantiate the reaction rates, together
with a control CRN that assigns 1.0 to all the rates.

The dynamic component of our method is realised by running stochastic
simulations on the CRNs by using the Gillespie algorithm that implements mass
action kinetics [5]. In previous work, we have developed a conservative extension
of this algorithm that traces species fluxes during simulation [8,9]. We compare
the results with TOM, RI, CLI models and the control model by quantifying the
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distance between their results. We quantify the flow of information in different
models in terms of their simulation fluxes on the mean of repeated simulations.
We then apply exhaustive breadth-first search on the resulting flux graphs to
enumerate the pathways and rank them.

In the following, we illustrate our method on a simple network. We then
apply it to the E. coli transcription network [4] with 4639 regulatory edges.1

2 Information Flow in Biological Networks

2.1 Network Implementation

We work with networks consisting of directed graphs with two kinds of edges.
Formally, an information flow network G = (V,A, I) is given with

– the set V of vertices representing the biochemical molecules or events;
– the set A of directed activation edges where the source activates the target;
– and the set I of directed inhibition edges where the source inhibits the target.

Example 1. The network depicted in Fig. 1 provides a description of a fragment
of the dopamine signalling network.

The degree of a node x, denoted with deg(x), is the number of edges incident
to the node, with loops counted twice. For two nodes, we define edge(x, y) as the
number of edges, be it activation or inhibition, from x to y. We define int(x, y)
as the number of nodes that are connected with a single edge to both x and y.

Example 2. In the network depicted in Fig. 1, deg(GBetaGamma)= 6 and
deg(PQCaCh)= 2. We have that edge(GBetaGama,PQCaCh) = 1. Because they
do not have any common neighbours, int(GBetaGamma,PQCaCh) = 0

At the first step, our algorithm for computing the information flow maps
the network to a chemical reaction network (CRN), whereby activation and
inhibition edges are given with two different kinds of reactions.

The activation edges of the form (x, y) are mapped to reactions

x
r−→ y,

which model the information flow from x to y, and r is the rate of the reaction. By
relying on the notion that cellular signals are transmitted dominantly through
pathways of highly connected components, we compute the reaction rates as
proxies of connectivity of the source and target nodes of the corresponding edge
in the network. For this, we employ three different measures from the literature.

1 All the data and scripts are available for download at: ozan-k.com/pathways.zip.

http://ozan-k.com/pathways.zip
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A = { (Dopamine,D1R),
(Dopamine,D2R),
(Dopamine,D3R),
(D1R,GBetaGamma),
(GBetaGamma,PI3K),
(GBetaGamma,PQCaCh),
(PI3K,PIP3),
(PIP3,PDK1),
(PDK1, S6K),
(S6K,Crem),
(NTYPECA,Calcium),
(Calcium,Calmodulin),
(Calmodulin,Camkiv),
(Camkiv,CREM),
(PQCaCh,Calcium),
(D2R,GBetaGamma),
(D3R,GBetaGamma) }

I = { (GBetaGamma,NTYPECA),
(Calmodulin,D2R) }

Fig. 1. The network given with G = (V,A, I), where V = {Dopamine, D1R,
GBetaGama, PI3K, PIP3, PDK1, S6K, CREM, NTYPECA, Calcium, Calmodulin, Camkiv,
PQCaCh, D2R, D3R}, together with its graphical representation, whereby inhibitory
edges are depicted in red and with round arrowheads. (Color figure online)

1. The topological overlap measure (TOM) [18], which was originally introduced
to study the relationship between the network structure and the functional
organisation of cellular metabolisms. We obtain the TOM rate value r as:

r = int(x,y)+1
min(deg(x), deg(y))

2. The Randić index (RI) [17] has been related to physical and chemical prop-
erties of organic molecules. We apply it to a single edge as follows:

r = 1√
deg(x).deg(y)

3. The combined linkage index (CLI) [15] extends RI with the aim of emphasising
the strongest links of each node.

r = edge(x,y)+edge(y,x)+2.int(x,y)√
(deg(x) + 1).(deg(y) +1)

,

The inhibitory edges of the form (x, y) are mapped to reactions of the form

x + y
r′

−→ ·.
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Such a reaction models the consumption of the information at x to inhibit the
further downstream flow from y to other components of the network. The reac-
tion rate is given by r′ = r.p, whereby r is defined as above and the constant p is
the inhibition constant, which factors for these second order reactions that can
have a much higher propensity in comparison to first-order activation reactions.
In our analysis, we first use a default value of 1.0 for p, and also evaluate the
effect of smaller values.

Example 3. By applying the definitions of TOM, RI and CLI to the network in
Fig. 1, we obtain the CRN with the reactions listed in Fig. 2 and together with
the rate values listed in Table 1.

2.2 Network Simulation

CRNs can be simulated stochastically by using Gillespie’s direct method, which
is also known as the stochastic simulation algorithm (SSA) [5]. Various exten-
sions of SSA in the literature address a variety of concerns such as increasing
efficiency of simulations, simulation of rare events or others, e.g., [3,6,11]. In
previous work [8,9], we have presented a method that extends SSA for stochas-
tic flux analysis of CRNs. The method, called fSSA, is a conservative extension
of SSA that monitors the distribution of the network resources during simula-
tion with respect to the causal interdependence of the reaction instances. This
consideration originates from non-interleaving models of concurrent computa-
tions used in computer science [7,14]. In such a setting, the dependencies are
observed in a manner that takes into account the propensity of each reaction in
terms of the resources available to that reaction. As a result of this, simulations

Table 1. The CRN obtained from the network depicted in Fig. 1, and its r values
according to TOM, RI and CLI. In the simulations, we have varied the inhibitory
constant p between 10−4 and 1.0. The resulting flux graph is depicted in Fig. 2 and
normalised flux values for different p values are listed in Table 6.

Reactions TOM RI CLI Reactions TOM RI CLI

1 0.5 0.41 0.29 11 0.5 0.5 0.33

2 0.33 0.33 0.25 12 0.5 0.41 0.29

3 0.5 0.41 0.29 13 0.33 0.33 0.25

4 0.5 0.29 0.22 14 0.5 0.41 0.29

5 0.5 0.29 0.22 15 0.33.p 0.33.p 0.25.p

6 0.22.p 0.29.p 0.44.p 16 0.5 0.5 0.33

7 0.5 0.29 0.22 17 0.5 0.41 0.29

8 0.5 0.5 0.33 18 0.33 0.24 0.19

9 0.5 0.5 0.33 19 0.5 0.29 0.22

10 0.5 0.5 0.33
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0 100000 Dopamine
1 Dopamine D1R
2 Dopamine D2R
3 Dopamine D3R
4 D1R GBetaGamma
5 GBetaGamma PI3K

6 GBetaGamma+ NTYPECA
7 GBetaGamma PQCaCh
8 PI3K PIP3
9 PIP3 PDK1
10 PDK1 S6K
11 S6K CREM
12 NTYPECA Calcium

13 Calcium Calmodulin
14 Calmodulin Camkiv
15 Calmodulin+ D2R
16 Camkiv CREM
17 PQCaCh Calcium
18 D2R GBetaGamma
19 D3R GBetaGamma

.

.

Fig. 2. The fluxes of the network in Fig. 1, delivered by the simulations with the
CRN above and the rates listed in Table 1. The simulations are initiated with 100000
Dopamine as the system input. The node numbers are the CRN reactions. The inhi-
bition reaction 15 is indicated with an underline. The complete flux data with TOM,
RI and CLI is given in Table 6. The numbers on the edges summarise the data: each
number denotes the maximum difference in normalised flux resulting from increasing
the inhibition constant from p = 10−4 to p = 1.0 in all cases.

resulting from our algorithm provide a quantitative view of the flow of informa-
tion in the network besides the usual time series information. The flux graphs,
that are output by the algorithm, reflect what fragment of system resources
flow through which pathways of the network. This kind of information becomes
particularly significant when a system resource is produced or consumed by mul-
tiple components. In this regard, flux graphs display which components produce
and consume such resources. For example, in the network above, GBetaGamma
production and consumption can follow many different pathways in the network.

We use the fSSA algorithm to run simulations on the CRNs. During these
simulations, flux graphs can be obtained for the whole simulation interval as
well as for arbitrary time intervals. In contrast to similar considerations with
ordinary differential equations, these time intervals can be transient intervals,
whereby the system has not yet reached its steady state levels, given by the
ordinary differential equation simulations. Because the flow of resources can take
different pathways at different intervals of the simulation, such a capability is
essential for analysing the system behaviour at different stages.

For the example network in Fig. 1, we have obtained the flux graph depicted
in Fig. 2. The measures described above, that is, TOM, RI and CLI, result in
different reaction rates, listed in Table 1, thus they result in different values for
the fluxes. However they all result in the same topology depicted in Figs. 2 and 3.



Enumerating Dominant Pathways in Biological Networks 45

Fig. 3. The fluxes in Fig. 2 with TOM (red), RI (blue) and CLI (green) measures.
(Color figure online)

Due to stochasticity, each simulation with the same CRN produces slightly differ-
ent fluxes. For a systematic comparison that takes into account these variations
as well as the effect of the different measures, we have first set a control network,
where all the reaction rates are set to 1.0. With the inclusion of this network, we
have obtained four different networks; three given by TOM, RI, and CLI, and
a control network. For each one of these four networks, we have run 10 simula-
tions. For each flux edge in a network, we computed the mean of 10 simulations,
and then normalised these mean fluxes according to the maximum flux of each
network.

Our simulations resulted in the normalised flux values listed in Table 6, where
we have considered a spectrum of inhibition constants. Figure 2 provides a sum-
mary of the data in Table 6 with respect to the effect of varying inhibition con-
stant from p = 10−4 to p = 1.0. We observe that the inhibition constant p does
not have a significant impact in general. More interestingly, the variations in p
affect the versions of CRN that are instantiated with different measures simi-
larly. Most of the fluxes are affected to an extent of 0.04% of maximum flux, and
the greatest effect is on the fluxes that feed reaction 15 or compete with these
fluxes, which however do not exceed 16% even with p = 10−4, and these greater
effects are pronounced at the lower end of the spectrum. Figure 3 displays the
fluxes with p = 10−2 for TOM, RI and CLI measures.

To compare the impact of the different measures on the simulations and the
resulting fluxes, we have computed the distance between the results with different
networks. We define this as the sum of squared distances between normalised
fluxes. That is, given that F1 and F2 are flux graphs as in Fig. 3, for each flux
edge from a reaction x to reaction y with w1 in F1 and w2 in F2, we compute
the sum of the values (w1 − w2)2. If a flux edge does not exist, its weight is 0.

∑

w1∈F1
w2∈F2

(w1 − w2)2

For this network, we observe in Table 2 that the inhibition constant does
not play a significant role in distinguishing the effect of different measures,
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Table 2. The distances between flux graphs for the Dopamine network with the mea-
sures TOM, RI, CLI and control, which assigns the rate r = 1.0 to all the reactions.

p TOM & 1.0 RI & 1.0 CLI & 1.0 TOM & RI TOM & CLI RI & CLI

10−4 0.24 0.76 0.14 0.19 0.65 1.42

10−2 0.24 0.78 0.15 0.2 0.66 1.47

1.0 0.24 0.8 0.14 0.21 0.64 1.46

Table 3. The ranking (#) of pathways delivered by measures RI, TOM, CLI and 1.0.

RI # Pathway RI flux TOM # CLI # 1.0 #

1 0 → 3 → 19 → 5 → 8 → 9 → 10 → 11 0.83 1 1 1

2 0 → 1 → 4 → 5 → 8 → 9 → 10 → 11 0.83 2 2 2

3 0 → 3 → 19 → 7 → 17 → 13 → 14 → 16 0.74 3 6 5

4 0 → 1 → 4 → 7 → 17 → 13 → 14 → 16 0.74 4 7 4

5 0 → 2 → 18 → 5 → 8 → 9 → 10 → 11 0.73 5 5 3

6 0 → 3 → 19 → 7 → 17 → 13 → 15 0.69 6 3 8

7 0 → 1 → 4 → 7 → 17 → 13 → 15 0.69 7 4 7

8 0 → 2 → 18 → 7 → 17 → 13 → 14 → 16 0.64 8 9 6

9 0 → 2 → 18 → 7 → 17 → 13 → 15 0.58 9 8 9

10 0 → 2 → 15 → 0.45 10 10 10

which confirms our observations above. We observe that RI measure provides
the greatest distinction from the control network and CLI provides the smallest
distinction. The much larger distance between CLI and RI confirms this obser-
vation. Moreover, RI and TOM appear similar. Based on these observations,
Table 3 enumerates the flux pathways by ranking them according to their mean
fluxes, where RI measure is used as reference. As indicated by the observations
in Table 2, all measures agree on the first two rankings and RI and TOM have
the same rankings, which are different from those with the control network.

3 A Case Study: Escherichia coli Transcription Network

We have applied our method to the Escherichia coli transcription network ver-
sion 10.5 reported in the RegulonDB [4] with the date 13 September 2018, which
is depicted in Fig. 4. In this network, the distribution of the nodes with respect
to their frequency in regulations follows a power-law, whereby 1610 of the 1886
proteins participate in not more than 5 regulations. As listed in Table 7, CRP
has the highest frequency as it participates in 585 regulations, followed by FNR
with 322, IHF with 259 and H-NS with 195 regulations.

We applied the four measures given by TOM, RI and CLI as well as the
control model with all the rates set to 1.0, and considered the inhibition constants
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Fig. 4. Escherichia coli transcription network as reported in [4], rendered by Cytoscape
[19]. The network consists of 1886 nodes, which are regulated by 4639 edges. The 2338
activation edges are denoted by green, whereas the 2301 repression edges are denoted
by red. 207 of the nodes are transcription factors and 63 are at the root position. The
graph in the corner displays the frequency of nodes in the edges. (Color figure online)

p = 10−2 and p = 1.0, and this way obtained 8 different versions of the model.
Each of these networks consist of 4639 reactions with 1886 species. We focused
our investigation on the pathways initiated by CRP as this transcription factor
has the highest frequency among all the 63. We performed 10 simulations with
an initial value of 10000 CRP molecules for all of the 8 cases. Each of these
simulations resulted in 1000 to 1500 flux edges. For each case, we took the mean
of each flux edge given by the 10 simulations. We then normalised each one of
the 8 flux graphs with the maximum flux in that graph.

For a comparison, we first computed the squared distance between the 8
flux graphs. To emphasise the effect of different measures, we have taken the
sum of the fluxes for each species in flux graphs and computed the squared
distance on these sums. The differences between TOM, RI, CLI and 1.0 model
for each of the p = 10−2 and p = 1.0 values are listed in Table 4. The differences
between p = 10−2 and p = 1.0 for each of TOM, RI and CLI and 1.0 are
listed in Table 5. We observe in Tables 4 and 5 that the inhibition constant does
not play a significant role in distinguishing the effect of different measures as
before with the exception of 1.0 network. This observation confirms that the
rates provided by the measures plays a more significant role in determining the
fluxes in comparison to the inhibition constant. However, in the control model,
the inhibition constant plays a greater role in determining the system behaviour.
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Table 4. The distances between flux graphs of the E. coli network with the measures
TOM, RI, CLI and control, which assigns the rate r = 1.0 to all the reactions.

p TOM & 1.0 RI & 1.0 CLI & 1.0 TOM & RI TOM & CLI RI & CLI

1.0 17620 21417 91637 191 28897 24470

10−2 19579 24360 104359 267 33543 27897

Table 5. The distances between flux graphs of the E. coli network with the inhibition
constants p = 1.0 and p = 10−2.

p TOM RI CLI 1.0

1.0 & 10−2 282 204 13 106662

Table 4 indicates that CLI measure provides the greatest distinction from the
control model and TOM provides the smallest distinction. The large distance
between TOM and CLI and the one between RI and CLI as well as the much
smaller distance between RI and TOM confirm this observation.

The different measures resulted in different numbers of pathways. With p =
0.01, CLI has generated 1388 pathways, whereas RI has generated 998, TOM has
generated 1340 and the control network has generated 1535. With p = 1.0, CLI
has generated 1285 pathways, whereas RI has generated 1210 pathways, TOM
has generated 1251, and the control network has generated 1535 pathways. The
resulting list of pathways for all the 8 cases can be downloaded together with all
the scripts that are used to apply the methods above.2

4 Discussion

We have proposed a method for enumerating dominant pathways in biological
networks that can be represented as directed graphs consisting of activation
and repression edges. Our analysis combines methods from static graph theo-
retical considerations in the literature with those for dynamical systems, based
on simulations. Our method emphasises the inherent stochasticity in biological
processes as well as the notion that cellular signals are relayed predominantly
through highly connected nodes and pathways of least biochemical resistance.

The stochastic simulations in our examples result in individual simulation
trajectories that expose the noise in the system. The notion of stochastic flux,
delivered by these simulations, provides a direct quantification of information
flow, for any time interval, including the transient states. However, averaging
over many simulations as in the examples above dampens the stochastic noise.
If a deterministic notion of information flow can be characterised, linear noise
approximation simulations [2] or deterministic ODE simulations can be con-
sidered for the analysis of the systems where the stochastic noise is less of a
concern.
2 ozan-k.com/pathways.zip.

http://ozan-k.com/pathways.zip
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Table 6. Mean normalised fluxes obtained from 10 simulations for each CRN in Table 1
instantiated with rates given by TOM, RI, CLI and 1.0, and with inhibition constants
of p = 10−4, p = 10−2 and 1.0. The table thus summarises 120 simulations.

TOM RI CLI 1.0

Fluxes /p 10−4 10−2 1.0 10−4 10−2 1.0 10−4 10−2 1.0 10−4 10−2 1.0

0 → 1 0.78 0.82 0.82 0.76 0.8 0.8 0.79 0.83 0.83 0.69 0.73 0.73

0 → 2 0.52 0.55 0.55 0.62 0.66 0.66 0.69 0.72 0.72 0.69 0.73 0.73

0 → 3 0.78 0.82 0.83 0.76 0.8 0.8 0.79 0.83 0.83 0.69 0.73 0.73

1 → 4 0.78 0.82 0.82 0.76 0.8 0.8 0.78 0.82 0.82 0.69 0.73 0.73

2 → 15 0.07 0.19 0.2 0.11 0.23 0.23 0.11 0.23 0.24 0.08 0.19 0.2

2 → 18 0.44 0.36 0.35 0.51 0.43 0.42 0.58 0.49 0.48 0.61 0.54 0.54

3 → 19 0.78 0.82 0.83 0.76 0.8 0.8 0.78 0.82 0.82 0.69 0.73 0.73

4 → 5 0.39 0.41 0.41 0.38 0.4 0.4 0.38 0.4 0.4 0.35 0.37 0.37

4 → 7 0.39 0.41 0.41 0.38 0.4 0.4 0.38 0.4 0.4 0.35 0.36 0.37

5 → 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

7 → 17 1.0 1.0 1.0 1.0 0.99 1.0 0.98 0.99 0.99 1.0 1.0 1.0

8 → 9 0.99 0.99 1.0 0.98 0.98 0.98 0.91 0.91 0.91 1.0 1.0 1.0

9 → 10 0.98 0.98 0.98 0.94 0.95 0.95 0.77 0.78 0.78 1.0 1.0 1.0

10 → 11 0.95 0.95 0.95 0.88 0.89 0.89 0.61 0.62 0.62 1.0 1.0 1.0

13 → 14 0.88 0.77 0.76 0.77 0.65 0.65 0.57 0.45 0.45 0.92 0.81 0.8

13 → 15 0.07 0.19 0.2 0.11 0.23 0.23 0.11 0.23 0.24 0.08 0.19 0.2

14 → 16 0.83 0.72 0.71 0.69 0.57 0.57 0.42 0.31 0.3 0.92 0.81 0.8

17 → 13 0.98 0.98 0.98 0.94 0.94 0.95 0.84 0.84 0.85 1.0 1.0 1.0

18 → 5 0.22 0.18 0.17 0.26 0.21 0.21 0.29 0.24 0.24 0.31 0.27 0.27

18 → 7 0.22 0.18 0.17 0.26 0.21 0.21 0.29 0.24 0.24 0.31 0.27 0.27

19 → 5 0.39 0.41 0.41 0.38 0.4 0.4 0.38 0.4 0.4 0.35 0.36 0.37

19 → 7 0.39 0.41 0.41 0.38 0.4 0.4 0.38 0.4 0.4 0.35 0.37 0.37

As evidenced by our case study on E. coli network, the measures, TOM, RI,
and CLI have a significant effect on determining the dominant pathways. In this
regard, a more extensive evaluation of these measures as well as others in the lit-
erature is a topic of further investigation. Moreover, the ranking of the pathways
is subject to parameters such as pathway length and flux strengths at various
segments, which can change the ranking. An evaluation of these parameters in
the context of biological evidence for the E. coli network and in applications to
other large networks are topics of future work.
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Table 7. The frequency of transcription factors (TF) in the E. coli network.

Freq. TF Freq. TF Freq. TF Freq. TF Freq. TF Freq. TF

585 CRP 259 IHF 84 NsrR 66 NarP 46 ModE 16 RcsAB

322 FNR 195 H-NS 82 FlhDC 56 NtrC 34 SlyA 16 rcsB-BglJ

13 HypT, 12 GntR 11 NanR 9 HU 9 AllR 8 MatA

13 BasR 12 HprR 9 NrdR 9 RcdA 9 GadE-RcsB 8 PgrR

8 DicA 7 UlaR 7 DeoR 6 GatR 6 Zur 5 AscG

7 TdcR 7 CueR 6 GlrR 6 SdiA 5 CsiR 5 MntR

5 HipAB 4 BluR 4 KdpE 4 NadR 3 DinJ-YafQ 3 MazE-MazF

5 BirA 4 McbR 4 AtoC 3 RclR 3 relB-RelE 2 RqhC

2 FabR 2 EnvR 2 KdgR 2 RtcR 2 XapR 1 YpdB

2 EnvY 2 EbgR 2 BCCP 2 HigB-HigA 2 YefM-YoeB 1 ZntR

1 UhpA 1 BtsR 1 YhaJ
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