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Preface

These proceedings contain the papers that were presented at the 6th International
Conference on Algorithms for Computational Biology (AlCoB 2019), held in
Berkeley, California, USA, during May 28–30, 2019.

The scope of AlCoB includes topics of either theoretical or applied interest, namely:

– Sequence analysis
– Sequence alignment
– Sequence assembly
– Genome rearrangement
– Regulatory motif finding
– Phylogeny reconstruction
– Phylogeny comparison
– Structure prediction
– Compressive genomics
– Proteomics: molecular pathways, interaction networks, mass spectrometry analysis
– Transcriptomics: splicing variants, isoform inference and quantification, differential

analysis
– Next-generation sequencing: population genomics, metagenomics, metatranscriptomics,

epigenomics
– Genome CD architecture
– Microbiome analysis
– Cancer computational biology
– Systems biology

AlCoB 2019 received 30 submissions. Most papers were reviewed by three Program
Committee members. There were also a few external reviewers consulted. After a
thorough and vivid discussion phase, the committee decided to accept 15 papers (which
represents an acceptance rate of about 50%). The conference program included five
invited talks and some poster presentations of work in progress.

The excellent facilities provided by the EasyChair conference management system
allowed us to deal with the submissions successfully and handle the preparation
of these proceedings in time.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the external reviewers for their cooperation, and Springer for
its very professional publishing work.

March 2019 Ian Holmes
Carlos Martín-Vide

Miguel A. Vega-Rodríguez
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Exploring Phenotypic Heterogeneity Across
Tissues and Conditions with Network-Based

Approaches

Teresa M. Przytycka

National Center of Biotechnology Information, National Library of Medicine,
NIH, Bethesda, MD 20894, USA

Phenotypic heterogeneity is assumed arise as the result of a combination of genetic,
epigenetic, and environmental factors and the stochastic nature of biochemical pro-
cesses, such as gene expression events, during the development. In the last few years,
my group has studied phenotypic heterogeneity in two different contexts: in the context
of cancer [2–5, 7, 8] and in the context of the model organism – Drosophila
melanogaster [10, 11].

Functional interaction networks, that is networks whose edges represent functional
relationships between genes, provide an important context for studies of organismal
phenotypes. A network-centric view of genotype-phenotype relation proposes that
perturbing functionally related genes is likely to lead to similar phenotypes. Indeed,
network-centric approaches have proven to be helpful for finding genotypic causes of
diseases, classifying disease into subtypes, and identifying drug targets [1, 5]. To
support such pathway-centric perspective, algorithms that leverage biological networks
to advance the understanding of phenotypic heterogeneity are necessary.

In our earlier study, building on the set cover approach, we have developed
network-based approaches to identify pathways dysregualted in cancer [4, 7]. In
contrast, focusing on uncovering pathways mediating the relation between somatic
mutations and dysregulated gene expression modules, we utilised a network flow
approach [6, 8]. Complementing these studies, our recently developed method,
BeWith, utilises Integer Linear Programming and an integrated analysis of mutual
exclusivity, co-occurrence and functional interaction networks to uncover the rela-
tionships between mutated gene modules. As expected such mutated gene modules
often underline specific cancer sub-types [3].

In addition to studies on dysregulated pathways in cancer and cancer subtypes,
network based approaches can also shed light on other phenotypes such as drug
response. Towards this end we have recently developed NETPHLIX - an algorithm to
identify mutated subnetworks that are associated with a continuous phenotype. Sub-
sequently, we utilised NETPHLIX to identify mutated gene networks that are associ-
ated with response to drugs. Another recently emerged phenotype in cancer studies is
the presence and strength of the so-called mutational signatures. Mutational signatures
are indicative of mutagenic processes that have been active in the given patient. Such
processes are often triggered by genetic causes such as a dysfunctional DNA repair
pathway. Understanding the mechanism behind the emergence of a particular



mutational signature is challenging since increased mutagenic activities leads to an
increased amount of passenger mutations making it difficult to untangle the cause from
the effect. Using NETPHLIX, we were able to identify mutated sub-networks associ-
ated with several mutational signatures in breast cancer [9].

In contrast to functional interaction networks, gene regulatory networks
(GRN) summarise regulatory relationships between transcription factors (TF) and the
gens that they regulate. GRN regulate maintenance of cell type specific states, response
to stress, and other cell functions. Thus phenotypic differences can be potentially
explained by differences in gene regulation. However methods to infer GRN are typ-
ically context-agnostic. To address this challenge, we have recently introduced a novel
computation method NetREX that given a context-agnostic network as a prior and
context specific expression data (for example data for a healthy and a disease tissue),
constructs context-specific GRNs by rewiring the prior network [11]. Comparative
analysis of such networks can provide yet another window to study phenotypic
differences.

We conclude that network based approaches, supported by a variety of algorithmic
approaches can provide important stepping stone towards understating phenotypic
heterogeneity.

Acknowledgements. I would like to acknowledge all the collaborators of the work discussed in
this talk. Particular thanks to the current and former members of my group: Yoo-Ah Kim, Yijie
Wang, Damian Wojtowicz, Phoung Dao, Jan Hoinka, Dang-Yon Cho, Raheleh Salari our visiting
group member Rebecca Sarto-Basso, and our many collaborators including Roded Sharan, Fabio
Vandin, Brian Oliver, Dorit S Hochbaum, Stefan Wuchty, Hang Noh Lee, Max Leiserson and all
the other collaborators listed in the bibliography of this talk. The research in Przytycka’s group is
supported by the Intramural Research Programs of the National Library of Medicine at National
Institutes of Health, USA.
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New Divide-and-Conquer Techniques
for Large-Scale Phylogenetic Estimation1

Tandy Warnow

Department of Computer Science, University of Illinois at
Urbana-Champaign, 201 N. Goodwin Ave, Urbana, IL, 61801, USA

warnow@illinois.edu

Over the last years, the availability of genomic sequence data from thousands of
different species has led to hopes that a phylogenetic tree of all life might be achievable.
Yet, the most accurate methods for estimating phylogenies are heuristics for NP-hard
optimization problems, many of which are too computationally intensive to use on
large datasets. Divide-and-conquer approaches have been proposed to address scala-
bility to large datasets that divide the species into subsets, construct trees on subsets,
and then merge the trees together. Prior approaches have divided species sets into
overlapping subsets and used supertree methods to merge the subset trees, but limi-
tations in supertree methods suggest this kind of divide-and-conquer approach is
unlikely to provide scalability to ultra-large datasets. Recently, a new approach has
been developed that divides the species dataset into disjoint subsets, computes trees on
subsets, and then combines the subset trees using auxiliary information (e.g., a distance
matrix). Here, we describe these strategies and their theoretical properties, present open
problems, and discuss opportunities for impact in large-scale phylogenetic estimation
using these and similar approaches.

Acknowledgements. This work was supported in part by NSF grant CCF-1535977.
I also wish to thank Erin Molloy and Thien Le for helpful comments on the manuscript.

1 Supported by the University of Illinois at Urbana-Champaign.
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New Divide-and-Conquer Techniques
for Large-Scale Phylogenetic Estimation

Tandy Warnow(B)

Department of Computer Science, University of Illinois at Urbana-Champaign,
201 N. Goodwin Ave, Urbana, IL 61801, USA

warnow@illinois.edu

Abstract. Over the last years, the availability of genomic sequence data
from thousands of different species has led to hopes that a phylogenetic
tree of all life might be achievable. Yet, the most accurate methods for
estimating phylogenies are heuristics for NP-hard optimization problems,
many of which are too computationally intensive to use on large datasets.
Divide-and-conquer approaches have been proposed to address scalability
to large datasets that divide the species into subsets, construct trees
on subsets, and then merge the trees together. Prior approaches have
divided species sets into overlapping subsets and used supertree methods
to merge the subset trees, but limitations in supertree methods suggest
this kind of divide-and-conquer approach is unlikely to provide scalability
to ultra-large datasets. Recently, a new approach has been developed
that divides the species dataset into disjoint subsets, computes trees on
subsets, and then combines the subset trees using auxiliary information
(e.g., a distance matrix). Here, we describe these strategies and their
theoretical properties, present open problems, and discuss opportunities
for impact in large-scale phylogenetic estimation using these and similar
approaches.

Keywords: Inferring the evolutionary phylogeny of species ·
Incomplete lineage sorting · Gene trees · Species trees ·
Divide-and-conquer · Absolute fast converging methods ·
Statistical consistency

1 Introduction

Phylogenies are graphical models for how a set S of species, genes, or other
“taxa” evolved from a common ancestor. In its most common. usage, a phylogeny
is assumed to be a rooted binary tree, with leaves labelled by the taxa in the
set S, and with internal nodes representing ancestral taxa. Phylogenetic trees
are used to provide insight into many biological research questions, including
how genes co-evolve, how organisms adapt to their environments, how humans

Supported by the University of Illinois at Urbana-Champaign.

c© Springer Nature Switzerland AG 2019
I. Holmes et al. (Eds.): AlCoB 2019, LNBI 11488, pp. 3–21, 2019.
https://doi.org/10.1007/978-3-030-18174-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18174-1_1&domain=pdf
http://orcid.org/0000-0001-7717-3514
https://doi.org/10.1007/978-3-030-18174-1_1


4 T. Warnow

migrated across the globe, etc. Because of these and other uses, the inference of
phylogenetic trees is a major step in many biological studies.

The inference of the phylogeny given the input set is generally approached as
a statistical estimation problem, where the objective is often to find the model
tree that is most likely to have generated the observed data. Since the maximum
likelihood problems are generally NP-hard, heuristics are used to search for good
solutions. However, standard heuristic search strategies do not scale well to large
datasets, with the result that phylogeny estimation on large datasets is very
computationally intensive.

Divide-and-conquer strategies have been developed to improve the scalability
of phylogeny estimation methods that have the following approach: the dataset is
divided into overlapping subsets, trees are constructed on the subsets, and then
the trees are combined into a tree on the full dataset using a supertree method
[34]. Despite the promising performance of these divide-and-conquer strategies,
limitations in currently available supertree methods suggest that these strategies
will not provide good scalability to the large and utlra-large datasets that are of
interest in biological research.

In this paper we describe a new type of divide-and-conquer strategy for
use with phylogeny estimation methods. Unlike prior strategies, the dataset is
divided into disjoint subsets, trees are computed on these subsets, and then the
trees are combined into a tree on the full set of species. Since the trees are dis-
joint, the merger of these disjoint trees requires auxiliary information, such as a
distance matrix relating the species to each other. Thus, the disjoint tree merger
(DTM) problem is of interest in its own right.

To date, only two methods have been developed with this strategy, each based
on a different DTM method. In this paper, we describe two DTM strategies,
NJMerge [31] and INC [60], and their use within divide-and-conquer strategies.
The results so far are promising, but much still needs to be done.

The rest of the paper is organized as follows. We begin with background about
phylogeny estimation in Sect. 2, including two different types of phylogeny esti-
mation problems, gene tree estimation and species tree estimation. We present
DTM methods and their theoretical results in Sect. 3. Results using DTM meth-
ods within divide-and-conquer pipelines are discussed in Sect. 4. Finally, we con-
clude with a discussion about future work and open problems in Sect. 5.

2 Phylogeny Estimation

2.1 Gene Tree Estimation

Phylogeny estimation is most typically performed on DNA sequences for a single
gene (or, more generally, a single locus) and assumes that the sequences evolved
down a common “model tree” under a stochastic model of sequence evolution
that includes substitutions of nucleotides by other nucleotides as well as inser-
tions and deletions (i.e., “indels”) of nucleotides. A simple example of such a
model is the Juke-Cantor (JC69, [15]) model for single site evolution, in which
the nucleotide at the root is selected uniformly at random and then evolves
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down the tree. Each edge e in the tree has a substitution probability p(e) with
0 < p(e) < 0.75, which specifies the probability that the site will change state on
the edge. If a site changes on edge e, then it selects its new state from the remain-
ing three nucleotides with equal probability. A JC69 model tree is thus defined
by the pair (T,Θ), where T represents the rooted binary tree with leaves labelled
by the taxa in S and Θ representing the numeric parameters on the tree (i.e., the
probabilities p(e) of change on the edges in T ). More complex models, such as
the Generalised Time Reversible (GTR) model [48], have also been developed, to
better model biological sequence evolution. The GTR model contains the JC69
model and is the most complex of the site evolution models used in practice; like
the JC69 model, it does not include indels, and instead assumes all evolution is
restricted to substitutions. Since biological datasets evolve with indels, a phy-
logenetic analysis under these models generally operates in two steps: (1) the
sequences are first aligned and (2) the computed multiple sequence alignment is
analyzed using the assumed model, treating the gaps as missing data.

The challenge is then to infer the true (or model) tree from the sequences that
it produced. For example, a maximum likelihood (ML) approach can be taken,
which seeks the model tree (i.e., rooted binary tree with numeric parameters of
evolution that specify the stochastic process) that has the highest probability
of generating the observed data [11]. Because ML is NP-hard [38], heuristics
(typically based on local search strategies, such as NNI (nearest neighbor inter-
changes) moves, are used to search for good solutions within tree space. However,
local search strategies are not that effective at finding good solutions to NP-hard
optimization problems, and the number of different binary rooted trees grows
exponentially with the number of leaves. Hence, it is not surprising that the
current leading ML heuristics, such as RAxML [44] and IQTree [35], are com-
putationally intensive on large datasets.

One alternative to heuristic search strategies are distance-based methods,
which operate as follows. First, distances are computed between the taxa using
the properties about the assumed model [46], and then trees can be computed
on these distances. For the standard models of sequence evolution, statistical
methods for calculating the matrix of pairwise distances have been developed
that are guaranteed to converge to additive matrices for the true tree, where D
is said to be additive on T if there is a way of assigning non-negative weights
to the edges of T so that Dij is the sum of the edge weights on the path in T
between taxa i and j. We provide this definition formally, so we can refer to it
later:

Definition 1. Let T be a binary tree on leafset 1, 2, . . . , n and with positive edge
weights defined by w : E(T ) → R

+. Then we define a matrix A of leaf-to-leaf
distances by setting A[i, j] to be the sum of the weights of the edges on the path
between leaves i and j. The matrix A is then said to be additive on T . More
generally, any matrix B that can be realized as path distances in T for some
positive edge-weighting of T is said to be additive on T .

Distance-based approaches are typically polynomial time, since the calcu-
lation of the matrix of pairwise distances requires only polynomial time and
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the calculation of a tree given the matrix also requires only polynomial time.
The best known method for calculating trees from distance matrices is neighbor
joining (NJ, [42]), which uses O(n3) time; however, other methods also exist,
including O(n2) algorithms within the FastME [21] package. These distance-
based methods are thus inherently faster than the heuristics for maximum like-
lihood.

When treating phylogeny construction as a statistical estimation problem,
a basic question is whether a given method is statistically consistent under the
model, which means that as the amount of data increases the tree returned by
the data will converge to the true tree (in an unrooted form). Since the models
we consider are time-reversible, we will attempt to infer the unrooted version of
T , which we refer to as Tu. As an example, for the JC69 model, a method M
would be said to be statistically consistent if, for all JC69 model trees (T,Θ)
and ε > 0, there is a sequence length K such that given set S of sequences of
length at least K the probability that M(S) = Tu is at least 1 − ε.

Many methods are known to be statistically consistent under the GTR model,
and hence under its submodels; for example, neighbor joining and many other
distance-based methods are statistically consistent, as is maximum likelihood
(and also Bayesian methods); see [1] for the proof for neighbor joining and
[12,56,58] for more about these issues. On the other hand, distance-based tree
estimation is generally not as accurate as maximum likelihood tree estimation
on simulated datasets [54], suggesting that computationally intensive heuristics
in ML codes may be necessary.

2.2 Species Tree Estimation

The discussion so far has assumed that all the sites evolve down a single model
tree. However, genomes evolve with processes, such as incomplete lineage sorting
and gene duplication and loss, that cause different parts of the genome to evolve
under different trees [26]. As a result, although the inference of the phylogenetic
tree for a single genomic region can be reasonably addressed under models that
assume that all the sites evolve down a single model tree, the same assumption is
not generally valid when working with genome-scale evolution. More generally,
multi-locus phylogeny estimation (which means the estimation of an evolutionary
tree using sites from different loci) requires different models of evolution and
different methods for estimating under these models. In other words, there is a
distinction between “gene trees”, which represent the evolution of a single gene
(or genomic region, also called a locus) and a “species tree”, which represents
the evolution of the species as reflected in their genomes.

Species tree estimation is thus more complicated than gene tree estimation.
One of the active research areas is the development of methods that can infer
species trees from multi-locus datasets fwhen gene trees can differ from the
species tree, and from each other, due to incomplete lineage sorting (ILS). In this
context, gene trees are seen as evolving within a species tree under the multi-
species coalescent (MSC) model [16], with “failure to coalesce” on a branch
(resulting from rapid speciation and/or very large effective population sizes)



Divide-and-Conquer Phylogenetic Estimation 7

making it possible for gene trees to differ from the species tree. Thus, sequence
evolution can be described by gene trees evolving within a species tree T under
the MSC model and sequences evolve down each gene tree under the GTR model.
Under this hierarchical MSC+GTR model, the task is to estimate Tu given the
multi-locus sequence dataset.

A phylogeny estimation method is said to be statistically consistent under
the MSC+GTR model if, for all MSC+GTR model species trees (T, θ) (where
θ provides the numeric parameters) as the number of sites per locus and the
number of loci both increase, the probability of recovering Tu converges to 1.
Methods that are statistically consistent under the MSC+GTR model have been
developed, including some that are polynomial time and reasonably computa-
tionally efficient in practice (e.g., ASTRAL [28,29,59], ASTRID [51], and NJst
[23]), others that are polynomial time but more computationally intensive (e.g.,
SVDquartets [7,8], SVDquest [53]), and others that use Bayesian MCMC and
so cannot be used on large numbers of species due to slow convergence rates
(e.g., *BEAST [13], see [62]). In contrast, standard maximum likelihood analy-
sis, which concatenates all the alignments into a single “super-alignment”, treats
all the sites as evolving down a single tree, and then seeks the model tree that
maximizes the probability of generating the observed data, is not statistically
consistent under the MSC+GTR model [39,40].

Furthermore, these “concatenation” analyses can have high error on simu-
lated datasets [18,32]. Nevertheless, even the best performing statistically con-
sistent methods, such as ASTRAL, can be less accurate than concatenation
analyses under some conditions [32]. Therefore, in practice evolutionary biol-
ogists use several types of methods (typically a concatenation analysis, often
based on RAxML, and ASTRAL or some other similarly fast coalescent-based
method) to estimate species trees.

RAxML and other ML heuristics are unable to find global optima in most
cases, and instead find local optima that may or may not be particularly good
solutions, and the time to converge to a local optimum can be very large; in
addition, ML heuristics often need a lot of memory (but this is a function of the
input). Fortunately, many of these heuristics record intermediate solutions, and
so can be stopped after some elapsed time and the best tree returned. ASTRAL
and other similar methods run in polynomial time, but even so can fail to return
any tree at all if their analysis does not complete (i.e., they do not perform a
heuristic search, and so do not produce any intermediate trees). In other words,
all of these methods can be challenging to run on large datasets.

2.3 Divide-and-Conquer Strategies

Divide-and-conquer is a standard algorithmic technique that has been used in
phylogeny estimation. For example, the “disk-covering methods” (see [14,19,34,
55,56]) divide a set of taxa, each given by a DNA sequence, into subsets that
are overlapping, then constructs trees on the subsets using a preferred “base
method”, and then combine the subset trees together using a supertree method.
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Supertree methods [36,41,56] take as input a set of unrooted trees, each leaf-
labelled by a subset of the species set S and returns an unrooted phylogenetic
tree T on the full set S. (Note that we assume here, as elsewhere in the paper,
that each tree has at most one leaf for each species in any input tree.) Supertree
construction can be addressed using optimization criteria (e.g., find a tree T
that minimizes the total Robinson-Foulds distance to the input trees [2,6,52]),
but since tree compatibility is NP-complete [45], all optimization problems are
NP-hard. This type of divide-and-conquer approach can produce high accuracy
under some conditions [3,34], but due to limitations in current supertree methods
[57], these divide-and-conquer approaches may not be helpful for scaling species
tree estimation to ultra-large datasets.

Decompose species set

Decompose tree
into pairwise disjoint
subsets of species.

into pairwise disjoint subsets.Full
species

set

Build a tree on each
subset.

Run DTM method.

Tree
on full

species set

Auxiliary
Info

(e.g., distance
matrix)

Fig. 1. Generic form of divide-and-conquer pipelines using Disjoint Tree Merger (DTM)
methods. The input is a set of species along with some auxiliary information (e.g., a
distance matrix, a multiple sequence alignment, etc.). In the first iteration, the species
set is divided into pairwise-disjoint subsets, trees are constructed on the subsets, and
then merged together using the selected DTM method and the auxiliary information.
All iterations after the first divide the species set into subsets using the tree produced
by the previous iteration, and otherwise use the same approach. The process ends
when a stopping rule is triggered, which can be the selected number of iterations,
obtaining a good score to some optimality criterion, etc. Note that the subsets that are
produced are pairwise-disjoint, which is why DTM methods must be used rather than
supertree methods. However, this approach is closely related to DACTAL [34], which
had the same overall format but produced overlapping subsets, and then merged the
trees together using supertree methods.

Figure 1 presents a new type of divide-and-conquer approach for phylogeny
estimation that gets around the challenges inherent in using supertree methods:
rather than dividing into overlapping subsets and then combining trees on the
subsets using supertree methods, the species set is divided into disjoint subsets
and then trees on the subsets are merged together using the input sequence data
for the species. If desired, this kind of approach can iterate, where each iteration
begins with the tree from the previous iteration, divides the species set into
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disjoint subsets using that tree, constructs trees on the subsets, and then merges
them together into a tree on the full dataset.

Thus, a key part of this approach is the step where a set of leaf-disjoint trees
are merged into a single tree on the full set of species, i.e., the Disjoint Tree
Merger (DTM) problem, defined below. NJMerge [30,31] and INC [60] are the
two methods that have been developed for the Disjoint Tree Merger Problem.

3 Disjoint Tree Merger

3.1 The DTM Problem

We will assume throughout this paper that every tree (other than model trees)
is an unrooted binary tree with leaves labelled bijectively by subsets of the
species set S (thus, each species labels at most one leaf in any given tree). We
will also assume that T is a set of trees. D will denote a dissimilarity matrix
on S, which means that D is symmetric and zero on the diagonal, but we do
not require that D satisfies the triangle inequality (because distances between
species in phylogenetics typically do not satisfy the triangle inequality). We let
L(t) denote the leafset of tree t and we let tX denote the homeomorphic subtree
of t induced by X (so that nodes of degree two are suppressed).

Definition 2. Let T be a set of unrooted binary trees, each on a subset of S
and let ∪t∈T L(t) = S. Then tree T with leafset S is said to be a compatibility
supertree for T if T |L(t) = t for all t ∈ T .

The Disjoint Tree Merger (DTM) Problem is defined as follows.

– Input: A pair (T ,D), where T is a set of leaf-disjoint unrooted binary trees,
∪t∈T L(t) = S, and D is a dissimilarity matrix on S

– Output: An unrooted binary tree T with leafset S that is a compatibility
supertree for T (see Definition 2).

Because the trees in T are leaf-disjoint, a compatibility supertree always
exists: create a node v and make it adjacent to some node in every tree in
T . Note that the trees in T define convex subtrees within the compatibility
supertree (i.e., given any two leaves x, y in a tree in T , the path between x, y
in the compatibility supertree does not pass through any vertex in any other
tree in T ). However, for every input T , other compatibility supertrees exist that
do not have this convexity property. For example, consider the caterpillar tree
(1, 2, 3, 4, . . . , 2n) constructed by taking the path v2, v3, . . . , v2n−1 and making
each node on the path adjacent to one or two leaves, as follows: vi is adjacent to
leaf i (for i = 3 to 2n−2), v2 is adjacent to leaves 1 and 2, and v2n−1 is adjacent
to leaves 2n − 1 and 2n. This caterpillar tree is a compatibility supertree for
caterpillar trees (1, 3, 5, 7, 9, . . . , 2n − 1) and (2, 4, 6, 8, . . . , 2n). Note that this
compatibility supertree does not have the convexity property, and instead blends
the trees in T together. Thus, we can distinguish between blended compatibility
supertrees and unblended compatibility supertrees.
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Recall that our objective is to find a compatibility supertree that is close
to the true tree. Since the true tree is unknown, we can address this objective
using simulation studies or through theory, but in each case we will assume that
the trees in T are species trees that we estimate using multi-locus sequence
data. However, the best empirical (and theoretical) accuracy requires the use of
blended compatibility supertrees.

3.2 NJMerge

NJMerge [30] is an algorithm for the DTM problem that is a modification of the
NJ algorithm from [42]. Thus, the input to NJMerge is a pair (T ,D), where T
is a set of leaf-disjoint constraint trees and D is an n × n dissimilarity matrix.
Here we briefly summarize the NJ algorithm, and then describe how NJMerge
modifies the algorithm to address the constraints in T .

NJ takes as input an n × n dissimilarity matrix D, and computes a second
n×n matrix Q using D (see [1,42,56] for details). It then finds the pair i, j that
minimizes Q[i, j], and makes i and j siblings. It replaces the pair i, j in D by a
new taxon x and calculates the distance from x to every other taxon k �= i, j;
as a result, D has now n − 1 rows and columns. Note that as the algorithm
progresses, each taxon represents a rooted binary tree on some of the original
set of leaves. The algorithm repeats until D has only two rows and columns,
at which point the two remaining taxa are made into a sibling pair, and the
algorithm returns the rooted tree on the original set of leaves. This rooted tree
is generally interpreted as an unrooted tree on the original set of leaves.

NJMerge follows the same approach, but with modifications so as to avoid
accepting siblinghood proposals that violate the current set of constraint trees
or might make the set of modified constraint trees incompatible. That is, the
consequence of making i and j siblings may be neutral (for example, i and j are
siblings in one of the constraint trees, and neither appears in any other constraint
tree) or it may potentially lead to incompatibility. For example, suppose that
a few iterations of NJMerge, the set T contains trees 12|34, 23|45, 34|56; note
that T is compatible and that the caterpillar tree (1, 2, 3, 4, 5, 6) is the unique
compatibility supertree for T . Now suppose that 1, 6 is the pair that minimizes
Q[i, j]. Making 1 and 6 siblings (and replacing them by a new leaf x) would
result in the set x2|34, 23|45, 34|5x, which is incompatible.

Therefore, NJMerge does not automatically accept siblinghood proposals,
since it has to check whether a given proposal creates a set of incompatible
trees. The problem is that checking whether a set of unrooted trees is compatible
is NP-complete [45]. As a result, NJMerge uses a polynomial time heuristic
that only has the following guarantee: if it returns NO, then the siblinghood
proposal definitely creates a set of incompatible trees. However, NJMerge may
accept a siblinghood proposal (and hence return YES) even when the set of
resulting trees would be incompatible. The problem is that NJMerge can (on
occasion) say YES even when the siblinghood proposal should be rejected. The
consequence to failing to detect incompatibility is that NJMerge will fail to
return a compatibility tree on such inputs. Finally, although the incidence of
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failure in [30] was less than 1%, our later analyses revealed that the failure rate
could be higher.

Despite having a potential to fail to return a tree (due to algorithm design,
not computational issues), NJMerge has several appealing theoretical proper-
ties. The most important of these properties are the ones that provide guaran-
tees about when NJMerge will not fail (Theorems 3) and that show that when
NJMerge returns a tree it is necessarily a compatibility supertree (Theorem 4).
These theorems do not assume that the set T contains leaf-disjoint trees. As
a result, their conclusions apply to iterative analyses using NJMerge (where
the initial input may be a set of leaf-disjoint trees, but subsequent steps in the
analysis could produce sets of trees that are no longer leaf-disjoint).

Theorem 3. Let T be a set of unrooted binary trees, leaf-labelled by elements
of S, and let D be a dissimilarity matrix on S. Suppose that T is an unrooted
binary tree on S with positive edge weights defining additive matrix A. Suppose
also that every tree in T agrees with T , and that maxij |D[i, j] − A[i, j]| ≤ f/2,
where f is the minimum weight on any edge in T . Then NJMerge will return T
on input (T ,D).

Theorem 4. Let T be a set of unrooted binary trees, leaf-labelled by elements of
S, and let D be a dissimilarity matrix on S. Suppose that NJMerge does not fail
on this input, and that NJMerge(T ,D) = T . Then T is a compatibility supertree
for T .

The proofs of these theorems are omitted but follow easily from similar
theoretical results proven in [31]. These theoretical properties will be useful
in Sect. 2.3, where we explore the use of NJMerge within divide-and-conquer
pipelines for computing phylogenetic trees, and examine whether the pipelines
are statistically consistent under different models of evolution. Finally, a big-O
running time analysis of NJMerge was not provided in [30], but it is easy to see
that it runs in polynomial time.

3.3 Constrained INC

Incremental Tree Building, or INC [60], is a method that was described for
constructing a tree given a dissimilarity matrix D. INC is designed to be absolute
fast converging (AFC) under the GTR mode (a technical term that means it
has polynomial sample complexity once the length of the longest and shortest
branches in the GTR model tree are bounded, as discussed in [9,10,55]). We
begin by describing INC, and then describe the variant called constrained INC,
where it can be used to build a tree given the matrix D and a set T of leaf-disjoint
constraint trees.

INC has the following algorithmic design. Given D, it constructs a taxon
addition ordering, s1, s2, . . . , sn. Then it builds a tree on the first four taxa
using the Four Point Method [9], which is a simple distance-based method for
constructing quartet trees. Each additional taxon is added into the growing tree
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t according to the taxon addition order. When si is added, a linear number of
quartet trees are computed (again, using the Four Point Method) and used to
vote for the placement of si into t, and si is added into t using the edge with
the largest number of votes. The total running time is O(n2).

Constrained INC is an extension of INC to allow the input to have the pair
T of leaf-disjoint unrooted binary trees and a dissimilarity matrix D. It has the
same basic structure as INC, modified to ensure that the constraints in T are
obeyed. Using the sequence addition ordering (computed just as for INC), it
computes a tree on the first four leaves. However, it first checks to see if all four
taxa s1, s2, s3, s4 are in one of the trees in T , and if so then it uses the induced
tree on these leaves for the initialization to t; otherwise, it uses D to compute
the quartet tree on s1, s2, s3, s4. Subsequent additions of taxa into the growing
tree t use the constraint trees to narrow down the part of t into which each
taxon can be inserted. Thus, when si is added into t, the edges into which si
can be added without violating any of the trees in T are identified, and voting is
restricted to this set. Note that it is always possible to add each subsequent taxon
into t without violating the input set T , and the final tree that is returned is
a compatibility supertree for T . A big-O running time analysis for constrained
INC was not provided in [60], but since INC is O(n2), it is easy to see that
constrained INC is also polynomial time. We summarize this discussion with
the following theorem.

Theorem 5 (From [60]). Let T be a set of unrooted binary trees, leaf-labelled
by elements of S, and let D be a dissimilarity matrix on S. Then constrained
INC on input (T ,D) returns a compatibility supertree for T , and does so in
polynomial time.

Finally, Le et al. [20] modified the algorithm design for INC to improve accuracy
(based on simulation studies), while maintaining the theoretical guarantees (i.e.,
the modification to INC is still AFC, and the modification to constrained INC
still satisfies the theorem above).

4 Pipelines Using DTM Methods

4.1 Overview

As seen in Fig. 1, DTM methods can be used within pipelines that use divide-
and-conquer (potentially also with iteration) to improve scalability for phyloge-
netic estimation methods. The main approach that has been studied using DTM
methods [20,31] uses guide trees to define the decomposition, and operates as
follows. The input is a set S of taxa, a method M for computing trees given
subsets of S, and a DTM method Φ, and the approach operates as follows:

1. Compute a dissimilarity matrix D on the set S.
2. Construct a starting tree T .
3. Use T to compute a decomposition of S into S1, S2, . . . , Sk where ∪iSi = S

and Si ∩ Sj = ∅ if i �= j.
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4. Let Ti = M(Si) (i.e., Ti is the tree computed on subset Si), i = 1, 2, . . . , k.
5. Combine the trees T1, T2, . . . , Tk using Φ and D (and potentially other infor-

mation about S).
6. If desired, the algorithm can repeat from Step 3, until some stopping rule is

triggered. The final tree, or a consensus of the trees that are computed during
the different iterations, is then returned.

Even when the phylogeny estimation method M (for computing trees on
subsets) and DTM method Φ are specified, there are two other algorithmic
parameters that also have to be specified: how the starting tree is computed
and how a tree is used to produce a division of the species set into disjoint sets.
Furthermore, if iteration is used, then other decisions also need to be made to
specify the algorithm. Iteration was used in [30], but even one run through the
pipeline (without any iteration) improved accuracy compared to the initial tree.
One challenge in using iteration is how to define the stopping rule, and also
whether to return the final tree, to select from the set of trees, or to return a
consensus of the trees. This is a topic for future research, and is not the focus of
this paper.

Centroid Edge Decomposition. The main tree-based decomposition strategy uses
the centroid edge decomposition, which was initially proposed in [22] and is used
in PASTA [27], a method for co-estimating alignments and trees under sequence
evolution models that include substitutions and indels (insertions and deletions).
This approach uses a given tree T and target maximum subset size B, and
operates as follows: Given T with leafset S, if the number of leaves in T is more
than B, then find an edge e in T where deleting e (but not its endpoints) splits
T into two subtrees that have close to the same number of leaves (e is called a
centroid edge). Recurse on each subtree. The result is a set of disjoint subtrees of
T , each with at most B leaves; the decomposition of S is obtained by returning
the leaf sets of the resulting subtrees.

Computing the Starting Tree. The calculation of the starting tree T is typically
done using some fast method, and prior research has shown that when iteration
is used, then the general approach is fairly robust to the starting tree (as long
as it is an estimated tree and not a random tree). One way of computing the
starting tree is to compute a neighbor joining tree on the dissimilarity matrix
D, but this initial tree can be computed in various ways, depending on the
type of data. However, when the input is a set of aligned sequences, then fast
maximum likelihood heuristics, such as FastTree2 [37], can be very fast and
provide good starting trees. The selection of the maximum subset size B depends
on the available computational resources and also on the method M , since some
phylogeny estimation methods degrade in accuracy on large datasets (or have
computational limitations that make analyses of large datasets infeasible).
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4.2 Theoretical Guarantees

We begin with some basic theoretical properties, stating them first in the context
of gene tree estimation and then in the context of species tree estimation. (Proofs
are omitted, but are easily derived from similar results in [31,60].)

Theorem 6. Suppose that (T,Θ) is a GTR model tree on leafset S, and that
D is the matrix of logdet distances. Let T0 be any arbitrary tree on S and let
S1, S2, . . . , Sk be pairwise-disjoint subsets of S with ∪iSi = S. Now let M be a
method that is statistically consistent under the GTR model, let M(Si) = Ti, and
let T = {T1, T2, . . . , Tk}. Then as the sequence length increases, NJMerge(T ,D)
and constrained INC(T ,D) converge to T . Hence the pipelines based on logdet
distances and NJMerge or constrained INC are statistically consistent under the
GTR model.

Note that this statistical consistency guarantee does not require any particular
starting tree nor particular decomposition strategy; those choices are made to
improve empirical performance (and perhaps sample complexity) but are not
needed for statistical guarantees.

A similar theorem can be established for multi-locus species tree estimation,
but is more complicated to express.

Theorem 7. Let S be a set of species, let (T ∗, Θ) be a model species tree, and
let gene trees T1, T2, . . . , Tm evolve within T under the MSC model. Suppose also
that sequences evolve down each gene tree under the GTR model, thus producing
multi-locus dataset A = {A1, A2, . . . , Am}, where Ai is a multiple sequence align-
ment for locus i. Let gene trees ti be estimated on each Ai, i = 1, 2, . . . ,m, using
a statistically consistent method (such as maximum likelihood) and let D be the
average internode distance matrix computed on the set of estimated gene trees.
The pipeline described above, with an arbitrary starting tree, arbitrary maximum
subset size, ASTRAL-III used to compute species trees on subsets, NJMerge or
constrained INC used to combine subset trees, and dissimilarity matrix D, is sta-
tistically consistent under the MSC+GTR model of evolution. In other words,
as the number of loci and the number of sites per locus both increase, the species
tree estimated by this pipeline will converge to T ∗.

More generally, other summary methods that are statistically consistent under
the MSC model (e.g., NJst and ASTRID) could also be used instead of ASTRAL-
III, and produce a statistically consistent pipeline.

One of the interesting points about this theorem is that although NJMerge
can fail on some inputs, under the conditions of the theorem (which is that the
number of sites per locus and number of loci both increase), with probability
converging to 1, NJMerge will not fail to return a tree when combining subset
trees.

4.3 Empirical Results

Species Tree Estimation Using Divide-and-Conquer and DTM Methods. Two
studies [30,31] explored species tree estimation using divide-and-conquer
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pipelines with NJMerge on datasets with up to 1000 species and 1000 genes
with two levels of ILS (high and low). The methods for computing species trees
on subsets included SVDquartets (as implemented in PAUP* [47]), ASTRAL-
III [59], and RAxML [44]. ASTRAL computes species trees from gene trees, and
so gene trees were computed for each locus using FastTree2. When used with
ASTRAL, D was set to be the average “internode distance matrix” (i.e., D[i, j]
is the average of the leaf-to-leaf topological distances in the gene trees between
species i and j), and the starting tree was the neighbor joining tree on D (i.e.,
the starting tree is the NJst [23] tree). For the other methods (SVDquartets and
RAxML), the distance matrix was the logdet distance matrix computed on the
concatenated alignment and the starting tree was the neighbor joining tree on
the logdet distance matrix. For the datasets with 1000 species, the maximum
subset size was 120.

The results of using the pipeline with each base method (SVDquartets,
ASTRAL, or RAxML) showed the following trends, compared to using the base
method de novo (i.e., on the full dataset with up to 1000 species and 1000 genes):

– Using the pipeline with SVDquartets to compute species trees on subsets
enabled it to run on 1000-species datasets (as SVDquartets cannot run de
novo on datasets of that size), reduced running time on the smaller datasets
(with 100 species), and improved accuracy compared to using SVDquartets
de novo.

– Using the pipeline with ASTRAL to compute species trees on subsets
improved running time had a minor impact on accuracy and enabled
ASTRAL to complete on some datasets with 1000 species, 1000 genes, and
high ILS, compared to using ASTRAL de novo.

– Using the pipeline with RAxML to compute species trees on subsets enabled
it to complete on all 1000-species datasets (in contrast, RAxML was unable
to complete on some datasets due to memory limitations when run de novo
on datasets of that size), reduced running time, and had a minor impact on
accuracy for the low ILS conditions and sometimes improved accuracy when
run on the high ILS conditions, compared to running RAxML de novo.

Thus, the divide-and-conquer pipeline improved speed for RAxML,
ASTRAL, and SVDquartets, and also enabled these methods to complete on
all 1000-taxon datasets. In comparison, each method was unable to complete
(either due to memory requirements or running time exceeding the limit) on
some datasets. Furthermore, the divide-and-conquer pipeline improved accuracy
for some methods (notably RAxML for the high ILS conditions) and otherwise
had minimal impact on accuracy. These trends show that NJMerge is a valu-
able tool within these divide-and-conquer pipelines. However, NJMerge failed on
some datasets (due to its heuristic strategy that is not guaranteed to correctly
detect that siblinghood proposals are unsafe).

Gene Tree Estimation Using Divide-and-Conquer Using DTM Methods.
Pipelines for gene tree estimation for use with DTM methods were explored
by Le et al. in [20]. These pipelines are essentially the same as those studied for
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NJMerge in [31], except that no iteration was explored. Thus, these pipelines
begin by computing a fast starting tree, decomposing based on the centroid
edge decomposition, computing trees on subsets, and then combining the trees
using DTM methods. Le et al. studied these pipelines using NJMerge and an
improvement to constrained INC they developed (as mentioned above) with
constraint trees computed using maximum likelihood (ML) heuristics (RAxML
and FastTree), and referred to this combination as INC-ML.

Le et al. explored INC-ML performance on simulated sequence datasets with
up to 10,000 sequences. They also compared INC-ML to NJMerge using the same
set of constraint trees on a subset of the model conditions, and observed that
both DTM methods produced essentially the same accuracy for those datasets.
The remaining findings, given below, were only established for INC-ML, but
based on the similarity in accuracy obtained for INC-ML and NJMerge, we
conjecture that these trends are likely to hold for NJMerge as well. The most
important other findings in [20] were these:

– Increasing the size of the subsets computed using ML heuristics improved
accuracy but increased running time; correspondingly, using INC alone (i.e.,
not within the divide-and-conquer pipeline) was much less accurate than
INC-ML.

– The starting tree had little impact on the final accuracy of INC-ML.
– The choice of ML heuristic (RAxML or FastTree) within INC-ML had an

impact on the final accuracy, but neither method clearly outperformed the
other.

– INC-ML was consistently more accurate than neighbor joining and less accu-
rate than RAxML, and usually (but not always) less accurate than FastTree.
Furthermore, often the differences were not small.

The last of these observations is obviously disappointing.

4.4 Discussion

Results for gene tree estimation are shown for divide-and-conquer pipelines
using two DTM methods (NJMerge and constrained INC), with trees computed
on subsets with two maximum likelihood heuristics, RAxML and FastTree2.
Notably, the trees computed using divide-and-conquer pipelines with these two
DTM methods had indistinguishable accuracy. However, results here are discour-
aging, as accuracy using the divide-and-conquer approach was reduced compared
to using the better of the two ML heuristics, RAxML, applied to the entire
dataset. The reduction in accuracy is likely to reflect both the outstanding suit-
ability of the ML criterion for gene tree estimation (since there is a perfect
fit between the model that generated the input sequence data and the model
assumed by the phylogeny estimation method) as well as the RAxML search
heuristic. If so, the only benefit of divide-and-conquer strategies for ML gene
tree estimation would be computational: enabling the better ML methods to
run on larger datasets or to complete in less time or using fewer resources.
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The results here for species tree estimation are limited to NJMerge, but
show that divide-and-conquer combined with NJMerge can provide large bene-
fits. Specifically, we showed that the centroid edge decomposition strategy used
with ASTRAL, a leading species tree estimation method, showed improvements
in speed but no significant change in accuracy. When used with RAxML (a con-
catenation analysis that is not statistically consistent for species tree estimation
as it does not take gene tree heterogeneity into account), the divide-and-conquer
strategy sometimes improved accuracy and otherwise had minimal impact on
accuracy; the pipeline also improved running time and enabled RAxML to run
on some datasets where it was unable to run de novo due to memory limitations.
Finally, SVDquartets was unable to run de novo on any 1000-taxon datasets but
the pipeline enabled it to run on all the datasets.

For both gene tree and species tree estimation, improvements in speed occur
when the methods used to construct trees on subsets are much more computa-
tionally intensive than the methods used to combine subset trees. However, the
divide-and-conquer strategy reduced accuracy in the case of gene tree estimation
but either improved accuracy or produced a very modest decrease in accuracy
for species tree estimation. Understanding why divide-and-conquer has a differ-
ence in impact is important in order to understand the conditions under which
this type of strategy should be helpful.

Recall that the gene tree estimation context involved constructing trees on
sequences that have evolved down GTR model trees, using maximum likelihood
heuristics that assume the GTR model. In other words, for the gene tree estima-
tion problem there is a perfect fit between the data generation model and the
tree estimation model. In contrast, for the species tree estimation problem the
methods used to estimate species trees are not as perfectly suited to the data
generation process. For example, RAxML assumes all sites evolve down a single
GTR model tree, which is not true in the multi-locus setting in the presence
of gene tree heterogeneity. ASTRAL is statistically consistent under the MSC
and so will converge to the true species tree as the number of true gene trees
increases; however, the input to ASTRAL is a set of estimated gene trees rather
than a set of true gene trees, so that even in this case there is model misspec-
ification. Finally, SVDquartets, despite its positive theoretical properties, has
not been shown to provide comparable accuracy to ASTRAL [32,53]. In other
words, all the species tree estimation methods we examined have properties that
suggest there is room for improvement in terms of accuracy.

5 Conclusions

This paper presented a simple divide-and-conquer strategy that can be used
with phylogeny estimation methods, towards the goal of improving scalability
to large datasets, reducing running time, and potentially improving empirical
accuracy. The results discussed here show improvements in speed and scala-
bility for species tree estimation but not for gene tree estimation, suggesting
some potential limitations for this approach. However, changes in the approach,
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including the development of new DTM methods or new approaches for divid-
ing a dataset into disjoint sets, might provide better empirical accuracy, as well
as maintaining theoretical guarantees. Thus, future research may result in new
divide-and-conquer methods that provide improvements in scalability, possibly
even when used with RAxML for gene tree estimation.

The established theory is also quite limited. For example, INC-NJ (which
used a different decomposition technique for defining the subsets for computing
constraint trees) is AFC for GTR gene tree estimation, but other divide-and-
conquer approaches based on DTM methods may also be provably AFC. Fur-
thermore, although INC-NJ had poor accuracy (compared to other methods) in
[20], we conjecture that new divide-and-conquer strategies could improve per-
formance on simulated data for base methods, much as DCM1 [55] improved
both the theoretical sample complexity and empirical performance for neighbor
joining and other exponentially converging methods [33]. Future research should
explore this, and should also explore the impact on sample complexity for species
tree estimation [43].

Finally, other types of phylogeny estimation problems could benefit from
these or future divide-and-conquer strategies, such as species tree estimation in
the presence of gene duplication and loss [4,5,50] or gene tree estimation in the
presence of heterotachy [17,24,25,49,61]. More generally, this paper is meant as
a starting point for future investigations, in the hope that subsequent research
will yield improved methods and software that can lead to methods capable of
reconstructing highly accurate trees on ultra-large datasets.
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References

1. Atteson, K.: The performance of neighbor-joining methods of phylogenetic recon-
struction. Algorithmica 25, 251–278 (1999)

2. Bansal, M., Burleigh, J., Eulenstein, O., Fernández-Baca, D.: Robinson-Foulds
supertrees. Algorithms Mol. Biol. 5, 18 (2010)

3. Bayzid, M.S., Hunt, T., Warnow, T.: Disk covering methods improve phylogenomic
analyses. BMC Genom. 15(Suppl. 6), S7 (2014)
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Abstract. We describe in this paper an approximation algorithm for
the scaffolding problem, which is part of genome inference in bioinfor-
matics. The aim of the problem is to find a maximum weighted collec-
tion of disjoint alternating cycles and paths covering a particular graph
called scaffold graph. The problem is known to be NP-complete, and we
describe further result concerning a special class of graphs aiming to be
close to real instances. The described algorithm is the first polynomial-
time approximation algorithm designed for this problem on non-complete
graphs.

Keywords: Genome scaffolding · Approximation ·
Dynamic programming

1 Introduction

Motivation. We are interested here in an algorithmic problem occurring in the
production of genomes. Genomes are usually obtained by sequencing, which pro-
duces a set of reads whose length and quality depend on the sequencing technol-
ogy. It is commonly known that short reads (typically hundreds of base pairs),
produced by second generation sequencing technology (Illumina), are of better
quality than long reads (thousands of base pairs), produced by third genera-
tion sequencing technologies (PacBio or Oxford Nanopore) [6]. Those reads are
then assembled using a variety of tools, the most recent integrating very efficient
hybrid strategies using both short and long reads [7]. However, databases are full
of “old genomes”, produced before the development of third generation sequenc-
ing, and “hard genomes” that escape sequencing in good conditions. In fact, most
of the genomes in databases consist as huge sets of chunks of sequences, called
contigs. These sets contain far more contigs than the real number of the chro-
mosomes of the corresponding organisms. Such fragmentation is observed even
for well-studied genomes. To the natural question “how to reduce this fragmen-
tation?”, technological progress and costly re-sequencing is not the only answer
and computational exploitation of already available sequencing data is possible.
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Scaffolding Problem. We focus here on the contig scaffolding problem which,
given a set of contigs, asks to infer the order and the orientation of the contigs
along the target genome, using a set of possibly inconsistent pairing information.
This information could be provided, for instance, by paired-end reads whose
two ends map to distinct contigs. Formally, it is possible to extract from this
information a set of relationships between the contigs, that may be inconsistent.
A survey on recent methods is available in [5]. The problem that we model
here is more general than those presented in the literature, and therefore allows
adaptation towards realistic modelization. We study the scaffolding problem as
an optimization problem in a graph called scaffold graph, obtained by mapping
of paired-end reads on de novo contigs. However, the present formulation is
not limited to this aspect, and may also consider other sources of information.
We consider that the scaffolding may obey genomic structural constraints, like
a fixed number of linear and circular chromosomes. In the past, we presented
preliminary results about the complexity of this problem and a first polynomial-
time approximation algorithm on cliques [1]. Those results were extended and
completed by another polynomial-time approximation algorithm [2], and by a
randomized approach [3]. Exact approaches have been explored [9], leading to
study sparse cases [10]. The contribution of the present paper is a continuation
of [4,8], where special classes of graphs has been studied, from sparse to very
dense. Real instances are very sparse, but show some dense regions. Hence, we
are interested in graphs built from cliques separated by bridges (i.e. edges whose
removal disconnects the graph).

In the following, most of the proofs has been omitted due to space constraints.
A full version including the proofs is available in https://hal-lirmm.ccsd.cnrs.fr/
lirmm-02047701.

2 Notation and Problem Description

In this section, we formally define the Scaffolding problem. For a graph G,
we denote by V (G) and E(G) the set of vertices and edges of G, respectively. A
scaffold graph (G∗,M∗, ω) is a simple loopless graph G∗ with a perfect matching
M∗ and a weight function ω on the non-matching edges. The matching M∗

represents the set of contigs and the function ω represents the confidence that
two contigs occur consecutively in the genomic sequence. An alternating path
(resp. alternating cycle) is a path (resp. cycle) such that its edges alternatively
belong to M∗ or not. The extremal edges of an alternating path must be in M∗.
The Scaffolding problem, whose decision version is NP-complete on general
graphs [2], is defined as follows:

(σp, σc)-Scaffolding (SCA)
Input: a scaffold graph (G∗,M∗, ω) and integers σp, σc.
Task: Find a collection S of σp alternating paths and σc alternating cycles

maximizing
∑

e∈S\M∗ ω(e)

The two integers σp and σc are used to model the genomic structure by
representing the number of linear and circular chromosomes, respectively. Let

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02047701
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02047701
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Algorithm 1. Polynomial-time approximation algorithm for (σp, σc)-
Scaffolding Problem.
Data: A scaffold graph (G∗, M∗, ω), two integers σp and σc.
Result: A collection of σp alternating paths and σc alternating cycles or

“False” if no such collection exists.
// Initialization step

1 S ← M∗;
2 E ← E \ M∗;
3 sort E by decreasing order of weight;
4 if not Feasibility((G∗, M∗), S, σp, σc) then return False;

// Main loop

5 while E �= ∅ do
6 Let e = {u, v} be the first element in the ordered-list E;
7 E ← E \ e;
8 if Feasiblity((G∗, M∗), S ∪ {e}, σp, σc) then
9 R ← set of edges of E incident to e;

10 S ← S ∪ {e};
11 E ← E \ R;

12 return S;

S be a partial solution of Scaffolding, the cardinality of S is the number of
alternating paths and cycles which compose S. We denote by σp(S) and σc(S)
the number of alternating paths and alternating cycles of S, respectively. The
approximation algorithm used in the following is described in Algorithm1. It
is known that this algorithm produces a solution for Scaffolding with an
approximation ratio of three in complete graphs [2].

To adapt Algorithm 1 for another class of graphs, we need to provide a ded-
icated feasibility function. This function, given a partial solution S, indicates if
it is possible to build a solution to Scaffolding with the remaining edges. In
this paper, we use Algorithm 1 on a particular class of graphs defined as follows:

Definition 1. A connected cluster graph G is a graph which admits a decom-
position of its edges E(G) = E′ ∪ B such that the subgraph induced by E′ is a
disjoint union of cliques and each edge e ∈ B is a bridge of G.

An example of a connected cluster graph is given in Fig. 1. Let G be a connected
cluster graph, for sake of simplicity, we designate by clique a connected component
of the subgraph induced by E′ and we denote by CC(G) the set of cliques of G.

As the structure of a connected cluster graph is close to a tree (that is,
shrinking each clique of G∗ into a single vertex leads to a tree), we use a similar
vocabulary: a rooted connected cluster graph is a connected cluster graph where
a clique r is designated as a root and in that case, the parent of a clique is
the clique connected to it on the path to r. A child of a clique c is the clique
of which c is the parent. A vertex v of a clique c is a door of c if a child of
c is adjacent to v. The upper door of c is the vertex adjacent to the parent
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of c. In the following, we will focus on scaffold graphs (G∗,M∗, ω) such that
G∗ is a connected cluster graph and M∗ ∩ B = ∅. Since the decision version of
Scaffolding is NP-complete on cliques [2], it is also NP-complete on connected
cluster graphs.

3 Feasibility

Fig. 1. Example of connected cluster
graph. The bridge edges are bold.

In this section, we present an algo-
rithm to determine if it is possible
to construct a solution of Scaffold-
ing in a connected cluster graph. Its
principle is to construct and assem-
ble some partial solutions in a bottom-
up traversal of the connected cluster
graph. Instead of storing the feasible
solutions, we store their cardinalities.

Operations. Let G1 and G2 be two edge-disjoint subgraphs. We can build a
solution in the graph induced by V (G1) ∪ V (G2), from a solution in G1 and a
solution in G2, using four operations.

Definition 2. Let G1 and G2 be edge-disjoint subgraphs of G∗. Let S1 and S2 be
solutions of G1 and G2, respectively. Let S be a solution of G∗[V (G1) ∪ V (G2)].
S is a composition of S1 and S2 if exactly one of the following operations occurs:

Merger: merge a path of S1 with a path of S2 in S.
Closing: close a path of S1 and a path of S2 into an alternating cycle in S.
Absorption: replace a non-matching edge vv′ of S2 by an alternating path of

S1, that is, S = S1 ∪ (S2 \ {vv′}) ∪ {uv, u′v′} where u and u′ are extremities
of a u-u′-path in S1. We call vv′ absorbent.

Juxtaposition: S is the disjoint union of S1 and S2 and none of the previous
operations are performed.

To implement these operations, we add edges of E(G∗) \ (E(G1) ∪ E(G2)) to S.

Note that a composition of two solutions does not always exist, except for the
juxtaposition operation. In the algorithm, we manipulate sets of solutions instead
of solutions. Thus, we can create a new set of solutions if all the solutions of the
two input sets are used in the resulting set.

Definition 3. Let G1 and G2 be two edge-disjoint subgraphs of G∗ and let S1

and S2 be sets of solutions of subgraphs G1 and G2, respectively. Then, we call
the set S = {S | ∃S1 ∈ S1,∃S2 ∈ S2 s.t. S is a composition of S1 and S2} the
complete composition of S1 and S2.

To ensure the possibility of building a complete composition from two sets of
solutions, it is useful to characterize a solution according to the operations we can
perform on it. Thus, given two subgraphs G1 and G2, we define four properties
on a solution S according to the operations on S.
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Definition 4. Let G and G′ be two vertex-disjoint subgraphs of G∗ and let S be
a feasible solution of Scaffolding for (G,M∗, ω).

1. We call S closeable if S contains an alternating u-v-path and there is an
alternating1 u-v-path in G′ ∪ {u, v}.

2. We call S extensible by G′ if S contains a vertex v such that v is an extremity
of an alternating path and v has a neighbor in G′ .

3. We call S frozen to G′ if S is not extensible.
4. We call S absorbent to G′ if S contains a non-matching edge uv and G′

contains a matching edge u′v′ such that uu′, vv′ ∈ E(G∗).

For simplicity, we sometimes omit to precise G′ and in this case G′ = G∗−V (G).
Note that all closeable solutions are also extensible. If a solution S is closeable
by a subgraph G′, then we can close an alternating path of S into an alternating
cycle by adding some edges of G′. If a solution S is extensible by a subgraph
G′, then we can add some edges of G′ in an extremity of an alternating path
of S without changing the cardinality of the solution. Finally, if a solution S is
absorbent to a subgraph G′, then we can replace an absorbent edge of S by a
path of length three without changing the cardinality of S. An example of the
different operations of Definition 4 is given in Fig. 2.

v1

v2 v3

v4

v5
v6

G1

x1

y1

G2

x2 y2

G3

x3

y3

G4

x4y4

Fig. 2. The solution S is composed of a single alternating path {v1, . . . , v6}. S is
closeable by subgraph G3 = {x3, y3}: we can close the alternating path of S into an
alternating cycle by adding the edges v1x3, x3y3 and y3v6. S is extensible by subgraph
G2 = {x2, y2}: we can extend the alternating path of S by adding the edges v6y2 and
y2x2 without changing the number of paths in S. S is absorbent to G4 = {x4, y4}: we
can replace the edge v2v3 of S by the edges v2y4, y4x4 and x4v3 without changing the
number of paths in S. S is frozen to G1 = {x1, y1}.

1 We use here “alternating” in an abusive manner, meaning alternating matching edges
and non-matching edges, beginning and ending with non-matching edges.
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Semantics. Since the number of possible solutions can be exponential, we just
store the possible cardinalities in the table entries, which is sufficient to answer
the question of feasibility. We recall that, if X,Y ⊆ N are two sets of integers,
then the sum of X and Y is defined as X + Y = {x + y | x ∈ X, y ∈ Y }. Note
that X + ∅ = ∅.

Definition 5. Let S be a set of solutions and i, j ∈ N. Then, j is called eligible
with respect to (S, i) if there is a solution S ∈ S containing i alternating cycles
and j alternating paths.

Our dynamic programming table has the following semantics.

Semantics. Let S be a set of solutions and i ∈ N. A table entry [S, i] is the
set of all integers eligible with respect to the tuple (S, i). More formally, letting
Si = {S | S ∈ S ∧ σc(S) = i}, we define [S, i] =

⋃

S∈Si

{σp(S)}.

Let us highlight three particular values of [S, i]. For S = {∅}, we have [{∅}, 0] =
0 and, for each i > 0, we have [{∅}, i] = ∅. For an alternating path p, we have
[{p}, 0] = 1 and [{p}, i] = ∅ for each i > 0. Finally, for an alternating cycle c,
we have [{c}, 1] = 0 and [{c}, i] = ∅ for each i �= 1. For simplicity, we denote by
[S] the vector ([S, 0], . . . , [S, σc]) and, for any operator 	 and any sets S1 and S2

of solutions, we define [S1] 	 [S2] as component-wise 	, that is, [S1, i] 	 [S2, i] for
each i ∈ [0, σc].

Lemma 6. Let G1 and G2 be two vertex-disjoint subgraphs of G∗ and let S1

and S2 be sets of solutions of subgraphs G1 and G2, respectively. Let S be a set
of solutions of G∗[V (G1) ∪ V (G2)] such that S is a complete composition of S1

and S2.

1. If S is the set of solutions composed with a merger operation, then
∀i, j,[S, i + j] = [S1, i] + [S2, j] + {−1}.

2. If S is the set of solutions composed with a closing operation, then
∀i, j,[S, i + j + 1] = [S1, i] + [S2, j] + {−2}.

3. If S is the set of solutions composed with an absorption operation, then
∀i, j,[S, i + j + 1] = [S1, i] + [S2, j] + {−1}.

4. If S is the set of solutions composed with a juxtaposition operation, then
∀i, j,[S, i + j + 1] = [S1, i] + [S2, j].

We use Lemma 6 to define four applications juxtapose, merget, absorb,
closet which provide table entries for complete compositions “composed” with
a juxtaposition, merger, absorption or closing operation, respectively. Although
Lemma 6 is defined for two sets, we use a generalized version which can take as
parameters more than two sets. The functions merget and closet have a parame-
ter t which indicates the number of paths merged or closed during the operation.
For example, if we have three sets S1, S2, and S3 and it is possible to construct
a single alternating path in the resulting composition by taking one alternating
path in each set, then we use the function merge3({S1}, {S2}, {S3}). In addition,
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it is sometimes possible to close a single alternating path into an alternating cycle
and in that case the function close1 is used. The four applications are defined in
Algorithms 7, 8 and Algorithm 9 (in appendix). However, we must ensure that
the associated operation is feasible before using one this application.

The Algorithm. We now present a method to provide the feasibility function
needed by Algorithm 1. We suppose that a partial solution S is given. Let c be
a clique of G∗ and let S′ be the intersection of S and c. An alternating element
of c is either an alternating cycle of S′ or an alternating path of S′. We traverse
different types of subgraphs defined in the following way:

– Let v ∈ V (G∗), let C(v) be the set of children adjacent to v (possibly empty).
The subgraph G∗(v) is the union of v and all branches incident to v. Formally,
G∗(v) = G∗[{v} ∪ ⋃

c∈C(v)

V (G∗(c))].

– Let e be an alternating element, the subgraph G∗(e) is the union of e and all
children incident to one of its vertices. Formally, G∗(e) = G∗[

⋃

v∈e
V (G∗(v))].

– Let c be a clique of G∗, and let dd′ be the matching edge of c incident to the
upper door of c. Let c′ = c \ dd′ be the subclique of c. For all x ∈ {c, c′}, the
subgraph G∗(x) is the union of x and all children incident to a vertex of x.
Formally, G∗(x) = G∗[

⋃

e∈M∗(x)
V (G∗(e))].

For each traversed subgraph G′, we use four different sets of solutions distin-
guishing solutions according to their properties.

Definition 7. Let S be a partial solution of G∗. Let x be a vertex, a partial
path, a subclique or clique of G∗ and let S′ be a solution of the subgraph G∗(x).

– S ∈ C(x) ⇔ S′ is closeable and S ∩ G∗(x) ∈ S′.
– S ∈ P(x) ⇔ S /∈ C(x) and S is extensible and S ∩ G∗(x) ∈ S′.
– S ∈ A(x) ⇔ S is frozen and absorbent and S ∩ G∗(x) ∈ S′.
– S ∈ F(x) ⇔ S /∈ A(x) and S is frozen and S ∩ G∗(x) ∈ S′.

The next paragraphs are dedicated to describing the algorithms to calculate the
table entries for the four types of subgraphs described above.

Vertex. Let v be a vertex of G∗. We show in this part how to compute the table
entries for the sets F(v) and P(v). Note that, since the edge between G∗(v)
and its parent is a bridge, the sets C(v) and A(v) are empty. Any solution S′

of G∗(v) can have at most one incident edge to v. If no edge of S ∩ G∗(v) is
incident to v, the idea is to construct the table entries by merging successively
the table entries of the children incident to v. For that, we use at each step an
intermediate graph Gi. Let Vi be the union of the i first children of v. Gi is the
subgraph of G∗ induced by v and all vertices in Vi. Otherwise, if one edge of
S ∩ G∗(v) is incident to v, then any solution containing S belongs to P(v).

Lemma 8. For any vertex v, the values of the table entries provided by Algo-
rithm2 are correct for the set F(v) and P(v).
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Algorithm 2. compute vertex

Data: A scaffold graph (G∗, M∗), a partial solution S and a vertex v.
1 [F(v)] ← ∅; [P(v)] ← ∅; [F(v), 0] ← {0};
2 C ← {c1, . . . , ck}: list of children linked to v;
3 foreach ct ∈ C(v) do
4 compute clique(ct);
5 [F ′] ← [F(v)];
6 [P ′] ← [P(v)];
7 if ∃uv ∈ E(G∗(v)) ∩ S then
8 if u ∈ ct then
9 [P(v)] ← juxtapose({P ′}, {P(ct)})

10 else
11 [P(v)] ← juxtapose({P ′}, {F(ct), P(ct)})

12 else
13 [F(v)] ← juxtapose({F ′}, {F(ct), P(ct)})
14 [P(v)] ←

∪
juxtapose({P ′}, {F(ct), P(ct)})
juxtapose({F ′}, {P(ct)})

Alternating Element. Let c be a clique of G∗ and e be an alternating element of
c such that e does not contain the upper door of c. We show in this part how to
compute the table entries for the sets C(e),F(e) and P(e). If e is a u − v-path,
then the idea is to merge the computed table entries of u and v and juxtapose
the frozen solutions of the inner vertices. If e is an alternating cycle, then there
is no choice to do and the only solution containing S is frozen.

Lemma 9. For any alternating element e, the values of the table entries pro-
vided by Algorithm3 are correct for the sets C(e),F(e) and P(e).

Note that the only possibility to obtain an absorbent solution of G∗(e) is when e
is a path and become closed into an alternating cycle. However, suppose that an
absorption operation is done in the function compute subclique. The resulting
solution can also be obtained by a closing operation with a solution in C(e).
Thus, to avoid recurrence, the value of [A(e)] is not provided.

Subclique. Let c′ be a subclique of G∗. We show in this part how to compute the
table entries for the sets C,F ,A and P. The idea is to construct the table entry by
merging successively each table entry of the alternating elements of c′. For that,
we use at each step an intermediate graph Gi and three intermediate sets F+,A+

and P+. Let Ei be the i first alternating element of c′ and Vi =
⋃

e∈Ei
V (G∗(e)).

Gi is the subgraph of G∗ induced by Vi. At step i, a solution S′ ∈ F+ if and only
if (1) S′ is a solution of Gi, (2) S′ contains a set C �= ∅ of closeable paths and
(3) S \C is frozen. The sets A+ and P+ are defined similarly (only the condition
(3) changes).
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Algorithm 3. compute alternating element
Data: A scaffold graph (G∗, M∗), a partial solution S and an alternating

element e with vertices {v0, v1, . . . , vk}.
1 foreach v ∈ p do compute vertex(v) ;
2 if e is an alternating cycle then
3 [F(e)] ← juxtapose({e}, {F(v0)}, . . . , {F(vk});
4 [C(e)] ← ∅;[A(e)] ← ∅; [P(e)] ← ∅;

5 else
6 [Ie] ← juxtapose({F(v1)}, . . . , {F(vk−1});
7 [C(e)] ← juxtapose({e}, {F(v0)}, {F(vk)}, {Ie});
8 [F(e)] ←

∪
merge3({e}, {P(v0)}, {Pv(vk)}, {Ie});
close1({e}, {F(v0)}, {F(vk)}, {Ie});

9 [P(e)] ←
∪

merge2({e}, {P(u)}, {F(v)}, {Ie});
merge2({e}, {F(u)}, {P(v)}, {Ie});

Lemma 10. For any subclique c′, the value of the table entries provided by
Algorithm4 are correct for the sets C(c′),F(c′),A(c′) and P(c′).

Clique. Let c be a clique of G∗ and d be the upper door of c. We show in this
part how to compute the table entries for the sets F(c) and P(c). Note that since
the edge between G∗(c) and its parent is a bridge, the sets C(c) and A(c) are
empty. Let e be the alternating element of c containing the upper door d. The
idea is to first compute the table entries for the graph G∗(e) and then merge the
obtained table entries to the table entries of the subclique. If e is an alternating
path and d is an extremity of e, we replace P(e) by two intermediate sets Pd

and Pd′ . Let S′ be a solution of G∗(e). S′ ∈ Pd if and only if S′ ∈ P(e) and
d is an extremity of an alternating path of S′. Likewise, S′ ∈ Pd′ if and only
if S′ ∈ P(e) and d is not an extremity of an alternating path of S′. Note that
P(e) = Pd ∪ Pd′ . In order to compute these two sets, we reuse the value of Ie,
computed in compute alternating element.

Lemma 11. For any clique c, the values of the table entries provided by Algo-
rithm5 are correct for the sets F(c) and P(d).

3.1 Feasability Function

Finally, we can now provide an answer to the feasibility of finding a solution for
Scaffolding problem by using Algorithm6.

Corollary 12. Given a partial solution S, Algorithm6 returns true if and only if
(G∗,M∗) can be decomposed into σp alternating paths and σc alternating cycles.
The time complexity of the algorithm is O(|V (G∗)| · σ2

c ).

Proof. Since G∗(root) = G∗, it exists a solution S with σp(S) = σp and
σc(S) = σc, if and only if S belongs to C(root) ∪ F(root),∪A(root) ∪ P(root).
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Algorithm 4. compute subclique

Data: A scaffold graph (G∗, M∗), a partial solution S and a subclique c′.
1 [F(c′)] ← ∅; [P(c′)] ← ∅; [A(c′)] ← ∅;
2 [F+] ← ∅; [P+] ← ∅; [A+] ← ∅;
3 [F(c′), 0] ← {0};
4 E ← {e1, . . . , ek} : list of alternating elements of c′;
5 foreach et ∈ E do
6 compute alternating element(et);
7 [F ′] ← [F(c′)]; [P ′] ← [P(c′)]; [A′] ← [A(c′)];
8 [F ′

+] ← [F+]; [P ′
+] ← [P+]; [A′

+] ← [A+];
9

10 [F(c′)] ← juxtapose({F ′}, {F(et)}
11

12 [F+] ←
∪

juxtapose({F ′
+}, {F(et)})

juxtapose({F ′, F+}, {C(et)})
13

14 [A(c′)] ←
∪
∪
∪

juxtapose({A′}, {F(et)})
merge2({P ′}, {P(et)})
absorb({A′}, {C(et)})
close2({F ′

+, A′
+}, {C(et)})

15

16 [A+] ←
∪
∪

juxtapose({A, A′
+}, {F(et), C(et)})

merge2({P ′
+}, {P(et)})

merge2({F ′
+, A′

+}, {C(et)})
17

18 [P(c′)] ←
∪
∪
∪
∪

juxtapose({P ′}, {F(et), P(et)})
juxtapose({F ′, A′}, {P(et)})
merge2({F ′

+}, {P(et)})
merge2({P ′}, {C(et)})
close2({P ′

+}, {C(et)})
19

20 [P+] ←
∪
∪

juxtapose({P ′
+}, {F(et), C(et)})

juxtapose({F ′
+, A′

+, }, {P(et)})
juxtapose({P ′}, {C(et)})

21

22 end
23 [C(c′)] ← [F+] ∪ [A+] ∪ [P+]

Thus the return of the function indicates if such a solution exists and then the
algorithm is correct. Concerning the time complexity, the composition opera-
tions are in (O)(σ2

c ). Thus, without taking in account the reccursive calls, the
time complexity of Algorithms 2, 3, 4, 5 in one iteration of a loop is O(σ2

c ).
In Algorithm 2, the number of iterations made by all calls of this function
depends on |CC(G∗)| G∗ and then the time complexity of all this iterations
is (O)(|CC(G∗)| ·σ2

c ). Similary we can show that the time complexity of the iter-
ations made by all calls of Algorithm 3, 4, 5 are (O)(|V | ·σ2

c ), (O)(|M∗| ·σ2
c ) and
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Algorithm 5. compute clique

Data: A scaffold graph (G∗, M∗), a partial solution S and a clique c.
1 d ← upper door of c; e ← alternating element of c containing d;
2 compute subclique(c′); compute alternating element(e);
3 if e is an alternating path and d is an extremity of e then
4 d′ ← other extremity of e;
5 [Pd] ← juxtapose({e}, {F(d)}, {P(d′)}, {Ie})
6 [Pd′ ] ← juxtapose({e}, {P(d)}, {F(d′)}, {Ie})
7

8 [F(c)] ←
∪
∪
∪

juxtapose({F(e), Pd′}, {F(c′), C(c′), A(c′), P(c′)})
merge2({C(e), Pd′}, {C(c′), P(c′)})
absorb({C(e)}, {A(c′)})
close2({C(e)}, {C(c′)})

9

10 [P(c)] ←
∪

juxtapose({C(e), Pd}, {F(c′), C(c′), A(c′), P(c′)})}
merge2({C(e)}, {C(c′), P(c′)})

11 end
12 else
13 [F(c)] ←

∪
∪
∪

juxtapose({C(c′), F(c′), A(c′), P(c′)}, {C(e), F(e), P(e)})
merge2({C(c′), P(c′)}, {C(e), P(e)})
absorb1({A(c′)}, {C(e)})
close({C(c′)}, {C(e)})

14 [P(c)] ← ∅

15 ;

16 end

Algorithm 6. Feasibility

Data: A scaffold graph (G∗, M∗) a partial solution S and two integers σp, σc

1 root ← root of G∗ ;
2 compute subclique(root);
3 return σp ∈ ([C(root), σc] ∪ [F(root), σc] ∪ [A(root), σc] ∪ [P(root), σc])

(O)(|CC(G∗)| · σ2
c ). Then, the time complexity of all iterations in all function

is (O)((|V )| + |M∗| + |CC(G∗)|) · σ2
c ) and since the number of matching edges

and the number of cliques is bounded by the number of vertices of G∗, we have
a time complexity in O(|V (G∗)| · σ2

c ).

4 Approximation Result

4.1 Notations and Definitions

The algorithm presented in this section is an adaptation of the one described
in [2]. The original algorithm works in complete graph and we adapt it so that
it works in connected cluster graph. Let (G∗,M∗, ω) be a scaffold connected
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cluster graph. The idea of the algorithm is to visit each non matching edge of
(G∗,M∗, ω) by decreasing order of weight and chose some of them to be part
of the solution S. We start by running Algorithm6 on (G∗,M∗, ω). This run
allows us to both verify if a solution is feasible and to initialize the different
table entries. When an edge uv is visited, it can be added in S or removed from
(G∗,M∗, ω). When an edge uv is chosen, then all non-matching edges incident
to u or v are removed from the list of sorted edges. At each step, we must ensure
that we can build a solution with the remaining edges, that is, uv is added in S
if and only if we can build σp alternating paths and σc alternating cycles with
the remaining edges.

4.2 Optimization

At each step, we must run the Algorithm 6 in order to check if it possible to
construct a solution. However, it is not necessary to update all the table entries
at each step. In fact, when an edge uv is tested, it is only necessary to update
the table entries of the cliques containing u or v and then, update all the table
entries of the ancestors of this cliques.

4.3 Algorithm

Lemma 13. Algorithm1 provides a solution for the (σp, σc)-Scaffolding in
path connected cluster graph with an approximation ratio of five and a time
complexity O(|V | · |E(G∗)| · σ2

c ). The approximation ratio is tight.

5 Conclusion

We presented in this paper the first polynomial-time algorithm approximating
the scaffolding problem on non-complete graphs. Using a dynamic programming
approach, we exploited the tree-like nature of connected cluster graph to extend
the feasibility function and the analysis of the approximation ratio. A natural
extension of this work would be to explore the practical aspects of this algorithm.
Since connected cluster graphs aim to model real instances, we intend to measure
in what extend this algorithm provides good results on them. We expect the ratio
on real instances to be close to one, as for the greedy algorithm on cliques [1].
We may also explore the possibility to exploit randomized algorithms framework
to improve this ratio.



New Polynomial-Time Algorithm Around the Scaffolding Problem 37

A Appendix

A.1 Algorithms

Algorithm 7. juxtapose

Data: S1 = {S1
1 ,S1

2 , . . . }, . . . ,Sk = {Sk
1 ,Sk

2 , . . . }: sets of sets of solutions.
1 if k = 0 then
2 [S] ← 0;
3 end
4 [I] ← juxtapose(S2, . . . , Sk);
5 forall i ∈ [0, σc] do
6 forall j ∈ [0, σc − i] do
7 [S, i + j] ← [S, i] +

⋃
S∈S1 [S, j]

8 end
9 end

10 return [S]

Algorithm 8. merget or absorb

Data: S1 = {S1
1 ,S1

2 , . . . }, . . . ,Sk = {Sk
1 ,Sk

2 , . . . }: sets of sets of solutions,
t: number of paths to merge (t = 2 in the absorb function).

1 forall i ∈ [0, σc] do
2 forall j ∈ [0, σc − i] do
3 [S, i + j] ← ⋃

S∈S1 [S, i] +
⋃

S′∈S2 [S′, j] + {−(t − 1)}
4 end
5 end
6 if k �= 2 then
7 [S] ← juxtapose({S}, S3, . . . , Sk);
8 end
9 return [S]

Algorithm 9. closet

Data: S1 = {S1
1 ,S1

2 , . . . }, . . . ,Sk = {Sk
1 ,Sk

2 , . . . }: sets of sets of solutions,
t: number of paths to close.

1 forall i ∈ [0, σc] do
2 forall j ∈ [0, σc − i] do
3 [S, i + j + 1] ← ⋃

S∈S1 [S, i] +
⋃

S′∈S2 [S′, j] + {−t}
4 end
5 end
6 if k �= 2 then
7 [S] ← juxtapose({S}, S3, . . . , Sk);
8 end
9 return [S]
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Abstract. Cells perceive and respond to their microenvironment as a
part of their functioning via networks of processes resulting from molec-
ular interactions. The complexity of such networks has been the subject
of studies that address their various aspects. Some of these include static
methods that focus on graph representations and their consequent prop-
erties, while others take a dynamical systems approach based on simu-
lations. Here, we address the problem of identifying dominant pathways
in biological networks that are represented as activation and repression
edges. For this purpose, we propose a hybrid method that combines static
graph properties with a dynamic quantification of information flow that
results from stochastic simulations. We first illustrate our method on a
simple example, and then apply it to the Escherichia coli transcription
network consisting of 4639 regulatory edges.
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1 Introduction

The complex biological processes dedicated to sustaining life are commonly rep-
resented by various kinds of networks for formal analysis. These representations
cover a broad spectrum from detailed rule-based models and chemical reaction
networks to other stoichiometric representations as well as graph models with
varying details. These different methods have their individual strengths in deliv-
ering new insights on a rich landscape of biological queries. However, more than
often, the availability of empirical data, or the lack thereof, poses a bottleneck
in the formal setting within the context of specific studies.

Despite the inherent complexity, experimental findings indicate that certain
aspects and patterns are common in many biological networks. Some of these
features resemble those in the networks that are observed outside the biochemi-
cal realm such as communication networks. By relying on these similarities, here
we work with the consideration of networks of biochemical entities as processes
that relay the incoming stimulus to response components. We aim at benefitting
c© Springer Nature Switzerland AG 2019
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from this notion especially when larger biological processes are considered and
kinetic data is scarce or difficult to apply. In particular, we address the problem
of identifying dominant pathways: within an organism, biological processes work
together to produce an overall global flux distribution by making the flow of
information accessible over different pathways [10,12,16,20]. Despite the pres-
ence of many pathways, some of the available pathways are more dominant in
terms of their information flow capacity.

In the light of the observations above, our method is based on the following
assumptions on biological systems. Firstly, information propagates by a series
of coupled biochemical reactions, whereby cellular signals are relayed predomi-
nantly through functional modules of highly connected nodes, see, e.g., [13]. In
particular, in the extreme case of scale-free networks, whose degree distribution
follows a power law [1], only a tiny fragment of hub nodes process a large frag-
ment of the information. Secondly, local signal transduction tends to be stochas-
tic, hence information propagation by individual components is subject to noise.
And finally, in the presence of multiple pathways for the signal, information flow
has a predilection for the pathway of least biochemical resistance.

Our analysis of biological systems combines methods from static graph theo-
retical considerations in the literature with those for dynamical systems based on
simulations. We work with biological systems that can be represented as directed
graphs with two kinds of edges, namely activation and repression. Many biologi-
cal systems can be represented in this form as well as gene transcription networks
that easily fit into this category. We map each edge of the network to a reaction
of a chemical reaction network (CRN). The idea here is that each activation edge
consumes the instance of the incoming signal at its source node to propagate the
information flow by producing an instance of the target node. The signal can
then be passed on to the next reaction. Each repression edge, on the other hand,
consumes the instance of the incoming signal together with an instance of its
target node if it is available. This way, it inhibits the further propagation of the
signal from its target node.

In accordance with the considerations above, we resort to the idea that cel-
lular signals are transmitted dominantly through pathways of highly connected
components. We implement our method by computing the reaction rates as prox-
ies of connectivity of the source and target nodes of the corresponding edge in
the network. We instantiate the rates by borrowing three topological measures
from the literature that are used to study the static properties of graphs. These
are the topological overlap measure (TOM) [18], the Randić index (RI) [17],
and the combined linkage index (CLI) [15]. For each network, we produce three
different CRNs using these measures to instantiate the reaction rates, together
with a control CRN that assigns 1.0 to all the rates.

The dynamic component of our method is realised by running stochastic
simulations on the CRNs by using the Gillespie algorithm that implements mass
action kinetics [5]. In previous work, we have developed a conservative extension
of this algorithm that traces species fluxes during simulation [8,9]. We compare
the results with TOM, RI, CLI models and the control model by quantifying the
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distance between their results. We quantify the flow of information in different
models in terms of their simulation fluxes on the mean of repeated simulations.
We then apply exhaustive breadth-first search on the resulting flux graphs to
enumerate the pathways and rank them.

In the following, we illustrate our method on a simple network. We then
apply it to the E. coli transcription network [4] with 4639 regulatory edges.1

2 Information Flow in Biological Networks

2.1 Network Implementation

We work with networks consisting of directed graphs with two kinds of edges.
Formally, an information flow network G = (V,A, I) is given with

– the set V of vertices representing the biochemical molecules or events;
– the set A of directed activation edges where the source activates the target;
– and the set I of directed inhibition edges where the source inhibits the target.

Example 1. The network depicted in Fig. 1 provides a description of a fragment
of the dopamine signalling network.

The degree of a node x, denoted with deg(x), is the number of edges incident
to the node, with loops counted twice. For two nodes, we define edge(x, y) as the
number of edges, be it activation or inhibition, from x to y. We define int(x, y)
as the number of nodes that are connected with a single edge to both x and y.

Example 2. In the network depicted in Fig. 1, deg(GBetaGamma)= 6 and
deg(PQCaCh)= 2. We have that edge(GBetaGama,PQCaCh) = 1. Because they
do not have any common neighbours, int(GBetaGamma,PQCaCh) = 0

At the first step, our algorithm for computing the information flow maps
the network to a chemical reaction network (CRN), whereby activation and
inhibition edges are given with two different kinds of reactions.

The activation edges of the form (x, y) are mapped to reactions

x
r−→ y,

which model the information flow from x to y, and r is the rate of the reaction. By
relying on the notion that cellular signals are transmitted dominantly through
pathways of highly connected components, we compute the reaction rates as
proxies of connectivity of the source and target nodes of the corresponding edge
in the network. For this, we employ three different measures from the literature.

1 All the data and scripts are available for download at: ozan-k.com/pathways.zip.

http://ozan-k.com/pathways.zip
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A = { (Dopamine,D1R),
(Dopamine,D2R),
(Dopamine,D3R),
(D1R,GBetaGamma),
(GBetaGamma,PI3K),
(GBetaGamma,PQCaCh),
(PI3K,PIP3),
(PIP3,PDK1),
(PDK1, S6K),
(S6K,Crem),
(NTYPECA,Calcium),
(Calcium,Calmodulin),
(Calmodulin,Camkiv),
(Camkiv,CREM),
(PQCaCh,Calcium),
(D2R,GBetaGamma),
(D3R,GBetaGamma) }

I = { (GBetaGamma,NTYPECA),
(Calmodulin,D2R) }

Fig. 1. The network given with G = (V,A, I), where V = {Dopamine, D1R,
GBetaGama, PI3K, PIP3, PDK1, S6K, CREM, NTYPECA, Calcium, Calmodulin, Camkiv,
PQCaCh, D2R, D3R}, together with its graphical representation, whereby inhibitory
edges are depicted in red and with round arrowheads. (Color figure online)

1. The topological overlap measure (TOM) [18], which was originally introduced
to study the relationship between the network structure and the functional
organisation of cellular metabolisms. We obtain the TOM rate value r as:

r = int(x,y)+1
min(deg(x), deg(y))

2. The Randić index (RI) [17] has been related to physical and chemical prop-
erties of organic molecules. We apply it to a single edge as follows:

r = 1√
deg(x).deg(y)

3. The combined linkage index (CLI) [15] extends RI with the aim of emphasising
the strongest links of each node.

r = edge(x,y)+edge(y,x)+2.int(x,y)√
(deg(x) + 1).(deg(y) +1)

,

The inhibitory edges of the form (x, y) are mapped to reactions of the form

x + y
r′

−→ ·.
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Such a reaction models the consumption of the information at x to inhibit the
further downstream flow from y to other components of the network. The reac-
tion rate is given by r′ = r.p, whereby r is defined as above and the constant p is
the inhibition constant, which factors for these second order reactions that can
have a much higher propensity in comparison to first-order activation reactions.
In our analysis, we first use a default value of 1.0 for p, and also evaluate the
effect of smaller values.

Example 3. By applying the definitions of TOM, RI and CLI to the network in
Fig. 1, we obtain the CRN with the reactions listed in Fig. 2 and together with
the rate values listed in Table 1.

2.2 Network Simulation

CRNs can be simulated stochastically by using Gillespie’s direct method, which
is also known as the stochastic simulation algorithm (SSA) [5]. Various exten-
sions of SSA in the literature address a variety of concerns such as increasing
efficiency of simulations, simulation of rare events or others, e.g., [3,6,11]. In
previous work [8,9], we have presented a method that extends SSA for stochas-
tic flux analysis of CRNs. The method, called fSSA, is a conservative extension
of SSA that monitors the distribution of the network resources during simula-
tion with respect to the causal interdependence of the reaction instances. This
consideration originates from non-interleaving models of concurrent computa-
tions used in computer science [7,14]. In such a setting, the dependencies are
observed in a manner that takes into account the propensity of each reaction in
terms of the resources available to that reaction. As a result of this, simulations

Table 1. The CRN obtained from the network depicted in Fig. 1, and its r values
according to TOM, RI and CLI. In the simulations, we have varied the inhibitory
constant p between 10−4 and 1.0. The resulting flux graph is depicted in Fig. 2 and
normalised flux values for different p values are listed in Table 6.

Reactions TOM RI CLI Reactions TOM RI CLI

1 0.5 0.41 0.29 11 0.5 0.5 0.33

2 0.33 0.33 0.25 12 0.5 0.41 0.29

3 0.5 0.41 0.29 13 0.33 0.33 0.25

4 0.5 0.29 0.22 14 0.5 0.41 0.29

5 0.5 0.29 0.22 15 0.33.p 0.33.p 0.25.p

6 0.22.p 0.29.p 0.44.p 16 0.5 0.5 0.33

7 0.5 0.29 0.22 17 0.5 0.41 0.29

8 0.5 0.5 0.33 18 0.33 0.24 0.19

9 0.5 0.5 0.33 19 0.5 0.29 0.22

10 0.5 0.5 0.33
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0 100000 Dopamine
1 Dopamine D1R
2 Dopamine D2R
3 Dopamine D3R
4 D1R GBetaGamma
5 GBetaGamma PI3K

6 GBetaGamma+ NTYPECA
7 GBetaGamma PQCaCh
8 PI3K PIP3
9 PIP3 PDK1
10 PDK1 S6K
11 S6K CREM
12 NTYPECA Calcium

13 Calcium Calmodulin
14 Calmodulin Camkiv
15 Calmodulin+ D2R
16 Camkiv CREM
17 PQCaCh Calcium
18 D2R GBetaGamma
19 D3R GBetaGamma

.

.

Fig. 2. The fluxes of the network in Fig. 1, delivered by the simulations with the
CRN above and the rates listed in Table 1. The simulations are initiated with 100000
Dopamine as the system input. The node numbers are the CRN reactions. The inhi-
bition reaction 15 is indicated with an underline. The complete flux data with TOM,
RI and CLI is given in Table 6. The numbers on the edges summarise the data: each
number denotes the maximum difference in normalised flux resulting from increasing
the inhibition constant from p = 10−4 to p = 1.0 in all cases.

resulting from our algorithm provide a quantitative view of the flow of informa-
tion in the network besides the usual time series information. The flux graphs,
that are output by the algorithm, reflect what fragment of system resources
flow through which pathways of the network. This kind of information becomes
particularly significant when a system resource is produced or consumed by mul-
tiple components. In this regard, flux graphs display which components produce
and consume such resources. For example, in the network above, GBetaGamma
production and consumption can follow many different pathways in the network.

We use the fSSA algorithm to run simulations on the CRNs. During these
simulations, flux graphs can be obtained for the whole simulation interval as
well as for arbitrary time intervals. In contrast to similar considerations with
ordinary differential equations, these time intervals can be transient intervals,
whereby the system has not yet reached its steady state levels, given by the
ordinary differential equation simulations. Because the flow of resources can take
different pathways at different intervals of the simulation, such a capability is
essential for analysing the system behaviour at different stages.

For the example network in Fig. 1, we have obtained the flux graph depicted
in Fig. 2. The measures described above, that is, TOM, RI and CLI, result in
different reaction rates, listed in Table 1, thus they result in different values for
the fluxes. However they all result in the same topology depicted in Figs. 2 and 3.
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Fig. 3. The fluxes in Fig. 2 with TOM (red), RI (blue) and CLI (green) measures.
(Color figure online)

Due to stochasticity, each simulation with the same CRN produces slightly differ-
ent fluxes. For a systematic comparison that takes into account these variations
as well as the effect of the different measures, we have first set a control network,
where all the reaction rates are set to 1.0. With the inclusion of this network, we
have obtained four different networks; three given by TOM, RI, and CLI, and
a control network. For each one of these four networks, we have run 10 simula-
tions. For each flux edge in a network, we computed the mean of 10 simulations,
and then normalised these mean fluxes according to the maximum flux of each
network.

Our simulations resulted in the normalised flux values listed in Table 6, where
we have considered a spectrum of inhibition constants. Figure 2 provides a sum-
mary of the data in Table 6 with respect to the effect of varying inhibition con-
stant from p = 10−4 to p = 1.0. We observe that the inhibition constant p does
not have a significant impact in general. More interestingly, the variations in p
affect the versions of CRN that are instantiated with different measures simi-
larly. Most of the fluxes are affected to an extent of 0.04% of maximum flux, and
the greatest effect is on the fluxes that feed reaction 15 or compete with these
fluxes, which however do not exceed 16% even with p = 10−4, and these greater
effects are pronounced at the lower end of the spectrum. Figure 3 displays the
fluxes with p = 10−2 for TOM, RI and CLI measures.

To compare the impact of the different measures on the simulations and the
resulting fluxes, we have computed the distance between the results with different
networks. We define this as the sum of squared distances between normalised
fluxes. That is, given that F1 and F2 are flux graphs as in Fig. 3, for each flux
edge from a reaction x to reaction y with w1 in F1 and w2 in F2, we compute
the sum of the values (w1 − w2)2. If a flux edge does not exist, its weight is 0.

∑

w1∈F1
w2∈F2

(w1 − w2)2

For this network, we observe in Table 2 that the inhibition constant does
not play a significant role in distinguishing the effect of different measures,
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Table 2. The distances between flux graphs for the Dopamine network with the mea-
sures TOM, RI, CLI and control, which assigns the rate r = 1.0 to all the reactions.

p TOM & 1.0 RI & 1.0 CLI & 1.0 TOM & RI TOM & CLI RI & CLI

10−4 0.24 0.76 0.14 0.19 0.65 1.42

10−2 0.24 0.78 0.15 0.2 0.66 1.47

1.0 0.24 0.8 0.14 0.21 0.64 1.46

Table 3. The ranking (#) of pathways delivered by measures RI, TOM, CLI and 1.0.

RI # Pathway RI flux TOM # CLI # 1.0 #

1 0 → 3 → 19 → 5 → 8 → 9 → 10 → 11 0.83 1 1 1

2 0 → 1 → 4 → 5 → 8 → 9 → 10 → 11 0.83 2 2 2

3 0 → 3 → 19 → 7 → 17 → 13 → 14 → 16 0.74 3 6 5

4 0 → 1 → 4 → 7 → 17 → 13 → 14 → 16 0.74 4 7 4

5 0 → 2 → 18 → 5 → 8 → 9 → 10 → 11 0.73 5 5 3

6 0 → 3 → 19 → 7 → 17 → 13 → 15 0.69 6 3 8

7 0 → 1 → 4 → 7 → 17 → 13 → 15 0.69 7 4 7

8 0 → 2 → 18 → 7 → 17 → 13 → 14 → 16 0.64 8 9 6

9 0 → 2 → 18 → 7 → 17 → 13 → 15 0.58 9 8 9

10 0 → 2 → 15 → 0.45 10 10 10

which confirms our observations above. We observe that RI measure provides
the greatest distinction from the control network and CLI provides the smallest
distinction. The much larger distance between CLI and RI confirms this obser-
vation. Moreover, RI and TOM appear similar. Based on these observations,
Table 3 enumerates the flux pathways by ranking them according to their mean
fluxes, where RI measure is used as reference. As indicated by the observations
in Table 2, all measures agree on the first two rankings and RI and TOM have
the same rankings, which are different from those with the control network.

3 A Case Study: Escherichia coli Transcription Network

We have applied our method to the Escherichia coli transcription network ver-
sion 10.5 reported in the RegulonDB [4] with the date 13 September 2018, which
is depicted in Fig. 4. In this network, the distribution of the nodes with respect
to their frequency in regulations follows a power-law, whereby 1610 of the 1886
proteins participate in not more than 5 regulations. As listed in Table 7, CRP
has the highest frequency as it participates in 585 regulations, followed by FNR
with 322, IHF with 259 and H-NS with 195 regulations.

We applied the four measures given by TOM, RI and CLI as well as the
control model with all the rates set to 1.0, and considered the inhibition constants



Enumerating Dominant Pathways in Biological Networks 47

Fig. 4. Escherichia coli transcription network as reported in [4], rendered by Cytoscape
[19]. The network consists of 1886 nodes, which are regulated by 4639 edges. The 2338
activation edges are denoted by green, whereas the 2301 repression edges are denoted
by red. 207 of the nodes are transcription factors and 63 are at the root position. The
graph in the corner displays the frequency of nodes in the edges. (Color figure online)

p = 10−2 and p = 1.0, and this way obtained 8 different versions of the model.
Each of these networks consist of 4639 reactions with 1886 species. We focused
our investigation on the pathways initiated by CRP as this transcription factor
has the highest frequency among all the 63. We performed 10 simulations with
an initial value of 10000 CRP molecules for all of the 8 cases. Each of these
simulations resulted in 1000 to 1500 flux edges. For each case, we took the mean
of each flux edge given by the 10 simulations. We then normalised each one of
the 8 flux graphs with the maximum flux in that graph.

For a comparison, we first computed the squared distance between the 8
flux graphs. To emphasise the effect of different measures, we have taken the
sum of the fluxes for each species in flux graphs and computed the squared
distance on these sums. The differences between TOM, RI, CLI and 1.0 model
for each of the p = 10−2 and p = 1.0 values are listed in Table 4. The differences
between p = 10−2 and p = 1.0 for each of TOM, RI and CLI and 1.0 are
listed in Table 5. We observe in Tables 4 and 5 that the inhibition constant does
not play a significant role in distinguishing the effect of different measures as
before with the exception of 1.0 network. This observation confirms that the
rates provided by the measures plays a more significant role in determining the
fluxes in comparison to the inhibition constant. However, in the control model,
the inhibition constant plays a greater role in determining the system behaviour.
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Table 4. The distances between flux graphs of the E. coli network with the measures
TOM, RI, CLI and control, which assigns the rate r = 1.0 to all the reactions.

p TOM & 1.0 RI & 1.0 CLI & 1.0 TOM & RI TOM & CLI RI & CLI

1.0 17620 21417 91637 191 28897 24470

10−2 19579 24360 104359 267 33543 27897

Table 5. The distances between flux graphs of the E. coli network with the inhibition
constants p = 1.0 and p = 10−2.

p TOM RI CLI 1.0

1.0 & 10−2 282 204 13 106662

Table 4 indicates that CLI measure provides the greatest distinction from the
control model and TOM provides the smallest distinction. The large distance
between TOM and CLI and the one between RI and CLI as well as the much
smaller distance between RI and TOM confirm this observation.

The different measures resulted in different numbers of pathways. With p =
0.01, CLI has generated 1388 pathways, whereas RI has generated 998, TOM has
generated 1340 and the control network has generated 1535. With p = 1.0, CLI
has generated 1285 pathways, whereas RI has generated 1210 pathways, TOM
has generated 1251, and the control network has generated 1535 pathways. The
resulting list of pathways for all the 8 cases can be downloaded together with all
the scripts that are used to apply the methods above.2

4 Discussion

We have proposed a method for enumerating dominant pathways in biological
networks that can be represented as directed graphs consisting of activation
and repression edges. Our analysis combines methods from static graph theo-
retical considerations in the literature with those for dynamical systems, based
on simulations. Our method emphasises the inherent stochasticity in biological
processes as well as the notion that cellular signals are relayed predominantly
through highly connected nodes and pathways of least biochemical resistance.

The stochastic simulations in our examples result in individual simulation
trajectories that expose the noise in the system. The notion of stochastic flux,
delivered by these simulations, provides a direct quantification of information
flow, for any time interval, including the transient states. However, averaging
over many simulations as in the examples above dampens the stochastic noise.
If a deterministic notion of information flow can be characterised, linear noise
approximation simulations [2] or deterministic ODE simulations can be con-
sidered for the analysis of the systems where the stochastic noise is less of a
concern.
2 ozan-k.com/pathways.zip.

http://ozan-k.com/pathways.zip
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Table 6. Mean normalised fluxes obtained from 10 simulations for each CRN in Table 1
instantiated with rates given by TOM, RI, CLI and 1.0, and with inhibition constants
of p = 10−4, p = 10−2 and 1.0. The table thus summarises 120 simulations.

TOM RI CLI 1.0

Fluxes /p 10−4 10−2 1.0 10−4 10−2 1.0 10−4 10−2 1.0 10−4 10−2 1.0

0 → 1 0.78 0.82 0.82 0.76 0.8 0.8 0.79 0.83 0.83 0.69 0.73 0.73

0 → 2 0.52 0.55 0.55 0.62 0.66 0.66 0.69 0.72 0.72 0.69 0.73 0.73

0 → 3 0.78 0.82 0.83 0.76 0.8 0.8 0.79 0.83 0.83 0.69 0.73 0.73

1 → 4 0.78 0.82 0.82 0.76 0.8 0.8 0.78 0.82 0.82 0.69 0.73 0.73

2 → 15 0.07 0.19 0.2 0.11 0.23 0.23 0.11 0.23 0.24 0.08 0.19 0.2

2 → 18 0.44 0.36 0.35 0.51 0.43 0.42 0.58 0.49 0.48 0.61 0.54 0.54

3 → 19 0.78 0.82 0.83 0.76 0.8 0.8 0.78 0.82 0.82 0.69 0.73 0.73

4 → 5 0.39 0.41 0.41 0.38 0.4 0.4 0.38 0.4 0.4 0.35 0.37 0.37

4 → 7 0.39 0.41 0.41 0.38 0.4 0.4 0.38 0.4 0.4 0.35 0.36 0.37

5 → 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

7 → 17 1.0 1.0 1.0 1.0 0.99 1.0 0.98 0.99 0.99 1.0 1.0 1.0

8 → 9 0.99 0.99 1.0 0.98 0.98 0.98 0.91 0.91 0.91 1.0 1.0 1.0

9 → 10 0.98 0.98 0.98 0.94 0.95 0.95 0.77 0.78 0.78 1.0 1.0 1.0

10 → 11 0.95 0.95 0.95 0.88 0.89 0.89 0.61 0.62 0.62 1.0 1.0 1.0

13 → 14 0.88 0.77 0.76 0.77 0.65 0.65 0.57 0.45 0.45 0.92 0.81 0.8

13 → 15 0.07 0.19 0.2 0.11 0.23 0.23 0.11 0.23 0.24 0.08 0.19 0.2

14 → 16 0.83 0.72 0.71 0.69 0.57 0.57 0.42 0.31 0.3 0.92 0.81 0.8

17 → 13 0.98 0.98 0.98 0.94 0.94 0.95 0.84 0.84 0.85 1.0 1.0 1.0

18 → 5 0.22 0.18 0.17 0.26 0.21 0.21 0.29 0.24 0.24 0.31 0.27 0.27

18 → 7 0.22 0.18 0.17 0.26 0.21 0.21 0.29 0.24 0.24 0.31 0.27 0.27

19 → 5 0.39 0.41 0.41 0.38 0.4 0.4 0.38 0.4 0.4 0.35 0.36 0.37

19 → 7 0.39 0.41 0.41 0.38 0.4 0.4 0.38 0.4 0.4 0.35 0.37 0.37

As evidenced by our case study on E. coli network, the measures, TOM, RI,
and CLI have a significant effect on determining the dominant pathways. In this
regard, a more extensive evaluation of these measures as well as others in the lit-
erature is a topic of further investigation. Moreover, the ranking of the pathways
is subject to parameters such as pathway length and flux strengths at various
segments, which can change the ranking. An evaluation of these parameters in
the context of biological evidence for the E. coli network and in applications to
other large networks are topics of future work.
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Table 7. The frequency of transcription factors (TF) in the E. coli network.

Freq. TF Freq. TF Freq. TF Freq. TF Freq. TF Freq. TF

585 CRP 259 IHF 84 NsrR 66 NarP 46 ModE 16 RcsAB

322 FNR 195 H-NS 82 FlhDC 56 NtrC 34 SlyA 16 rcsB-BglJ

13 HypT, 12 GntR 11 NanR 9 HU 9 AllR 8 MatA

13 BasR 12 HprR 9 NrdR 9 RcdA 9 GadE-RcsB 8 PgrR

8 DicA 7 UlaR 7 DeoR 6 GatR 6 Zur 5 AscG

7 TdcR 7 CueR 6 GlrR 6 SdiA 5 CsiR 5 MntR

5 HipAB 4 BluR 4 KdpE 4 NadR 3 DinJ-YafQ 3 MazE-MazF

5 BirA 4 McbR 4 AtoC 3 RclR 3 relB-RelE 2 RqhC

2 FabR 2 EnvR 2 KdgR 2 RtcR 2 XapR 1 YpdB

2 EnvY 2 EbgR 2 BCCP 2 HigB-HigA 2 YefM-YoeB 1 ZntR

1 UhpA 1 BtsR 1 YhaJ
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Abstract. The network structure of protein-protein interaction (PPI)
networks has been studied for over a decade. Many theoretical models
have been proposed to model PPI networks, but continuing noise and
incompleteness in these networks make conclusions difficult. Graphlet-
based measures are believed to be among the strongest, most discerning
and sensitive network comparison tools available. Several graphlet-based
measures have been proposed to measure topological agreement between
networks and models, with little work done to compare the measures
themselves. The last modeling attempt was 4 years ago; it is time for
an update. Using Sept. 2018 BioGRID, we fit eight theoretical models
to nine BioGRID networks using four different graphlet-based measures.
We find the following: (1) Graph Kernel is the best measure based on
ROC and AUPR curves; (2) most graphlet measures disagree on the
ordering of the data-model fits, although most agree on the top two
(STICKY and Hyperbolic Geometric) and bottom two (ER and GEO)
models, in direct contradiction to the 4-years-ago conclusion that GEO
models are best; (3) the STICKY model is overall the best fit for these
PPI networks but the Hyperbolic Geometric model is a better fit than
STICKY on 4 species; and (4) even the best models provide p-values for
BioGRID that are many orders of magnitude smaller than 1, thus failing
any reasonable hypothesis test. We conclude that in spite of STICKY
being the best fit, all BioGRID networks fail all hypothesis tests against
all existing models, using all existing graphlet-based measures. Further
work is needed to discover whether the data or the models are at fault.

Keywords: Protein interaction · Biological networks · Systems biology

1 Introduction

Networks have been used for decades to model biological processes and interac-
tions such as transcription [40] and gene regulatory networks [14], proteome-scale
interactions in human cells [20], and brain connectomes [24]. A protein-protein
interaction (PPI) network is a graph whose nodes are proteins and edges repre-
sent observed physical interactions between the proteins (nodes). Many network
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models have been suggested to better comprehend and describe the connection
patterns within PPI networks. Early work suggested that the degree distribu-
tion followed a scale-free law [3,39]. While evolution certainly must play a role in
structuring biological networks [4,46], different modules may show significantly
different structures [21,30]. In this paper, we follow up and update previous stud-
ies [9,13,33], primarily using graphlet measurements. Although graphlets have
been used previously to model PPIs, the amount of data available has increased
dramatically in recent years, and no comprehensive evaluation of the measures
themselves has been done. These together justify a revisit to the question of
which models best fit the current data.

1.1 Graphlets

Given a graph G(n,m) on n nodes and m edges, a k-graphlet is an induced
subgraph g on any set of k connected nodes from G, where k is typically between
2–5 [32]. Figure 1 shows all the graphlets on 2, 3, 4, and 5 nodes including their
automorphism orbits [37]. Automorphisms enumerate all the different ways of
drawing the same graph. For example, we can draw G15 as it is drawn in Fig. 1 or
as a star, but both drawings are cycles of length 5. The graphlet-orbit signature
of a node v is a vector of counts of each graphlet orbit to which v belongs [26].
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Fig. 1. All 2, 3, 4, and 5-node graphlets. The numbers in normal font represent the
graphlet ordering of [32]. Within each graphlet, automorphism orbits—nodes that are
topologically identical within the graphlet—have the same shade [37]. There are 73
distinct orbits, numbered 0 through 72, identified by italicized numbers next to one of
the nodes of each orbit.

Graphlets have become very popular as a way of quantifying local structure
within biological networks. Graphlets and their orbits have been used to (i) aid
global alignments [18,19,22,23,27,44], (ii) perform alignment-free comparison
of networks [9,15,32,36,48] and, (iii) recover both functional and phylogenetic
information [6,19].
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1.2 Graphlet-Based Network Comparison Measures

Graphlet-based network comparison measures can be categorized as distance
measures (smaller is better), and similarity measures (larger is better). Distance
measures include: Relative Graphlet Frequency Distance (RGFD), which com-
pares log counts of graphlets within two networks [32]; and Graphlet Correlation
Distance (GCD), which is the Euclidean distance between correlations of pairs
of graphlet orbits [47]. Similarity (or agreement) measures include: Graphlet
Degree Distribution Agreement (GDDA), which compares distributions of each
orbit within two networks [37]; and Graphlet Kernel (GK), which is the dot
product of normalized graphlet counts [41]. Complete formulae for RGFD, GCD,
GDDA and, GK are shown in Table 1.

Table 1. The formulae for computing RGFD, GCD, GK, and GDDA. The top two
measures are distance measures, so smaller is better; while the bottom two measures
are similarities, so larger is better. Consider networks G and H. For RGFD, the total
number of each type of graphlet for each network is counted and stored in vectors u
and v, which are used in the computation. For GCD, pairwise orbit correlations across
nodes are computed. Computing GDDA begins with finding the distribution of orbits
of type j, Dj

G(k) in each graph: count the number of nodes which belong to orbits of
type j exactly k times, for k ∈ Z≥0 and divide each Dj

G(k) by k, then normalize and
then finally, the norm. For GK, we use the same vectors as for RGFD.

Measure Input variables Formula

Relative Graphlet
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Graphlet counts u, v
∑
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Graphlet Correlation

Distance (GCD)

Correlation matrices of signatures, C1, C2
∑

i,j(C1[i, j] − C2[i, j])2

Graphlet Degree
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(k)
∑

k S
j
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(k)

1 − √
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j
G
(k) − N

j
H

(k))2)

Graphlet Kernel (GK) Graphlet counts u, v or unit vectors of the

graphlet counts

u·v
||u||.||v||

1.3 Models

Most network models are created with a particular application in mind. The 8
network models—ER, ERDD, GEO, GEOGD, SF, SFGD, STICKY, and HGG—
used in this study are described in Table 2. The original ER paper proves many
theorems about the graph model but makes no reference to a real physical system
[8]. The primary strength of the ER model remains that theorems are often more
easily proved in ER graphs than otherwise. GEO graphs can be used to describe
any system in which physical proximity plays a role, for example to describe
contact points in folded bio-molecules [45]. The phenomenon of self-similarity or
scale-free (SF) nature has been observed to describe many real systems, includ-
ing the distribution of asteroid sizes [29] and time between extinction events [42].
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Table 2. Models used in this study are presented below.

Model name Abbrev Description

Erdös-Rényi ER Every pair of nodes (u, v) are connected
with probability p [8]

Erdös-Rényi ERDD Nodes assigned stub counts according to
input degree distribution

Degree Distribution Edge placed between randomly selected
nodes with non-zero stub count [25]

Scale Free SF Degree distribution asympotically follows
power law [2]

Scale Free Gene SFGD New node is attached to parent node
with probability p

Duplication and Divergence New node is attached to parent’s
neighbors with probability q [43]

Geometric GEO Nodes are points in a metric space

Nodes are connected if within radius ε of
each other [28]

Geometric with Gene GEOGD Nodes are points in a metric space

Duplication and Mutation Nodes further than ε radius from each
other may be connected [34]

STICKY STICKY Nodes assigned stickiness index based on
relative degree according to input degree
distribution. Product of stickiness indices
between nodes determine their
probability of interaction [33]

Hyperbolic Geometric HGG Nodes are points on a hyperbolic disk.
Connection probability between two
nodes is a function of their distance in
hyperbolic space [17]

HGG models graphs which capture some notion of metric structure and have
a heterogeneous degree distribution [17]. To better model real systems, some-
times the above models were re-created under further constraints by adding
gene duplication (GD). The SFGD and GEOGD models were designed as null
models for PPI networks [34,43]. The STICKY model starts with the observa-
tion that proteins have binding domains, and the number of binding domains
increases with the size of the protein [33]. Thus larger proteins have more binding
domains—they are more “sticky”—and model proteins are deemed to interact
with a probability proportional to the product of their stickiness indices.
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1.4 Comparing Models to Data

Early work used the degree and k-hop distributions to argue that PPI networks
were SFGD [43]. Graphlet-based measures later showed using RGFD [32,33] and
GDDA [9,10,12,13,31,34,35] that yeast, fly, worm, and human were better fit
by the following models in order of goodness (best to worst): STICKY [9,12,
13,31,33], GEOGD [34], GEO [10,31,35], SFGD, SF, ERDD, ER [34]. Note in
particular that adding gene duplication to GEO and SF made both fit better
[9,31] though still not as well as STICKY [9]. In terms of measures, all graphlet-
based modeling has been tested using only RGFD and GDDA, while GK [41]
and GCD [47] were developed later and may be better. In addition, the HGG
model has never been tested against PPI networks.

In summary, it has been 4 years since the last PPI modeling study has been
done. During that time, the amount of network data has exploded; new measures
and models have been introduced; and no comprehensive study has been done
across all species, all available models, and all available measures. In this paper
we aim to rectify these deficiencies.

Table 3. BioGRID PPI networks [5] used in this study, ordered by edge density,
downloaded in Sept. 2018.

Species (Latin name) Code Common name Num nodes n Num edges m Density Mean degree

Saccharomyces cerevisiae SC Brewer’s Yeast 6879 104719 0.00443 30.44

Schizosaccharomyces pombe SP Fission Yeast 2951 8754 0.00201 6.09

Drosophila melanogaster DM Fruit fly 8836 46288 0.00119 10.48

Homo sapiens HS Human 22376 277940 0.00111 24.85

Caenorhabditis elegans CE Roundworm 3276 5638 0.00105 3.46

Arabidopsis thaliana AT Thale Cress 9571 35253 0.00077 7.37

Rattus norvegicus RN House Rat 3569 4952 0.00046 2.80

Mus musculus MM House Mouse 12817 37915 0.00046 5.91

Escherichia coli EC Bacteria 2044 12800 0.000025 12.52

1.5 Our Contribution

In this study, we use the 4 measures of Table 1 to re-evaluate the 8 models of
Table 2 on the newest data for the 9 largest species shown in Table 3 available
from BioGRID [5] downloaded September 2018, for 9 species. We reconfirm that
STICKY is still (usually) the overall best-fitting model for all 9 networks, but
the HGG model is a better fit than STICKY on 4 species, and SF is a good
second fit on other species. Surprisingly, we find that the GEO model, which
was previously found to be almost on par with the STICKY model [9,13,31,35],
is now roughly tied with ER as the worst-performing model. We further eval-
uate the network comparison measures of Table 1, and find that (1) they differ
substantially in their evaluations of model-data fits, and that (2) the Graphlet
Kernel significantly outperforms all other measures at classifying models based
on the area under a precision-recall curve (AUPR). The need for such a compari-
son is two-fold: first, such comparisons have not previously included the Graphlet
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Kernel; second, most previous graphlet-based studies utilized only RGFD and
GDDA measures to determine null models for biological networks, but not GK
or GCD. Hence, we provide a far more comprehensive analysis than previous
studies.

2 Methods

We created 500 synthetic versions of each of the 9 BioGRID PPI networks (see
Table 3) using each of the 8 models listed in Table 2. To generate ER, SF and
GEO networks, we set the relevant parameters (such as number of nodes, density,
radius, attachment index, etc) so that the resulting graphs matched the size and
density of each of the PPI networks. To generate HGG networks, we used the
implementation of [1] and set the number of nodes, average degree and expected
power-law exponent to match those of the PPI networks. We generated 9 sets
of SFGD networks for different values of p (see Table 2) ranging from 0.1 to 0.9
in increments of 0.1. Following [34], for each of these sets, we exactly matched
the number of nodes of the original PPI network, and did a binary search on the
corresponding q value (cf. Sect. 1.3) until the synthetic graph contained within
1% of the number of edges in the real network. We generated GEOGD synthetic
networks using both the expansion and probability cutoff methods described in
[34], incrementing the probability by 0.1 from 0.1 to 0.9. We thus created a total
of 112, 500 synthetic networks.

We ran ORCA [11] on all the above networks to count all of the graphlets of
size k = 2, 3, 4, and 5, and converted its graphlet orbit signature matrix output to
graphlet counts. We computed RGFD, GCD, GDDA, and GK measures between
the synthetic model networks and the original BioGRID networks. This enabled
us to observe which models fit best, and to compare the measures to each other.

3 Results

3.1 Assessing Quality of Each Measure

Before drawing conclusions from comparison with the PPI networks, we assess
how well each network comparison measure is able to distinguish between net-
works of different types. To do this, we employ standard Area Under the
Precision-Recall (AUPR) curves and Receiver Operating Characteristic (ROC)
curves. For various values of a threshold ε, if the distance (similarity) between two
networks is smaller (greater) than ε, we categorize those two networks together.
The area under these curves measure the quality of grouping according to the
network comparison measure used. Figure 2 shows that the GK measure has the
best AUPR and AUROC overall: (i) GK outperforms non-graphlet based mea-
sures, thereby corroborating previous studies that graphlet topology is important
in the study of network comparison [9], (ii) GK also outperforms other graphlet-
based measures, suggesting that amongst these measures, it is the one most
suitable for distinguishing between networks.
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Fig. 2. We computed the pairwise distances and similarities between 1500 randomly
selected networks from our synthetic network dataset, 300 each from 5 classes (ER,
ERDD, GEO, STICKY and, SF), using the graphlet-based measures of Table 1 and
some non-graphlet-based measures, namely clustering coefficient (CC), degree distribu-
tion (Deg Dist) and diameter. Then, we thresholded the distances (similarities) scores
in 0.1% increments of the range of pairwise distances (similarities), and computed
the AUPR and AUROC for each network comparison measure. Precision is defined
to be TP

TP+FP
, recall or sensitivity is TP

TP+FN
, and specificity is TN

TN+FP
, where TP =

true positives, FP = false positives, FN = false negatives and, TN = true negatives.
The AUPR curve may be more indicative of measure ordering because PR is known to
be more appropriate than ROC when there are many negative cases (in our case, there
are many more pairs of networks not belonging to the same class than there are pairs
in the same class of networks) [7]. Overall, the GK measure has by far the greatest
AUPR, surpassing that of GCD, while GDDA has the lowest. GK also has the greater
AUROC while GDDA and GCD have the lowest.

3.2 Assessment of Fits to PPIs by Graphlet-Based Measures

Figure 3 depicts the RGFD, GCD, GDDA, and GK scores between the model net-
works and real network of each species. According to the GK measure, HGG and
STICKY are by far the best fitting models but according to the RGFD measure,
the graphlet topology of the 9 networks is fit best by STICKY and then by the
SF and SFGD models. HGG performs mediocre on most measures but exhibits
high similarity with the PPI networks when assessed by the GK measure. Using
the GDDA and GCD measures, the best overall fits after STICKY are ERDD,
SF, SFGD and HGG. All measures unanimously assess GEO, GEOGD and ER
to be the worst fits. Older versions of all of these networks were already modeled
well by STICKY graphs and we make the same observation here. This demon-
strates further that the STICKY model is a plausible model for PPI networks
even as the data evolve. We find that under GDDA, the order of suitability in
modeling the structure of the species CE, DM, HS and SC networks has changed
since the study of [9]. The four species were modeled best by STICKY, SFGD
and GEOGD (in that order) but using the current data, in order of best fit,
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CE is best modeled by STICKY, ERDD and then SFGD; DM is best modeled
by STICKY, ERDD and then SF; HS is best modeled by STICKY, SFGD and
then SF; and SC by STICKY, SF and then SFGD. Both GDDA and GCD use
graphlet orbital information, and generally agree on the top three best-suited
models but often disagree on the ordering (agreeing in order only on HS).

Since the most recent similar study to ours is [13], it is worth performing
a direct comparison. Those authors concentrated on how the network struc-
ture changes according to interaction-screening technology; they studied only one
species—yeast, because that was the most complete PPI network at the time—and
used only GDDA as the comparison measure. One of their data sets was “BioGRID
Yeast”—their Fig. 1, “biogrid” column. Direct comparison of their biogrid column
to our SC column, using the GDDA sub-figure of our Fig. 3, we see that there is
actually broad agreement: STICKY is by far the best, ER is by far worst, and GEO
falls roughly between the two. All that has changed between their study and ours,
in this one column of overlap, is the ordering of the other models. Where we dis-
agree with [13] is in which measure is best to use: our Fig. 2 clearly demonstrates
that GDDA is not only a bad measure for judging model fit, it is theworstmeasure
among all the graphlet-based measures for this purpose.

Since Fig. 2 suggests GK is the best measure, we focus on its results in
Table 4. The high scores on most networks together with the overall best-fit results
(STICKY, HGG, SF, SFGD) may be suggesting that the PPI network structures
are exhibiting patterns of more than one network model. Note that, we do not
claim there is one model that fits all, but that STICKY is the best fit for 5 (DM,
EC, HS, MM, RN) of the 9 PPI networks used in this study, HGG is the best fit
for 4 (AT, CE, SC, SP) of the 9 PPI species, overall SF is also a good fit for all
models except SC and SFGD is a good fit for 3 species (CE, DM, EC).

3.3 Mixed Agreement Across Measures

One striking feature of all these network measures is that their behavioural
trends do not match each other, even though they all use the same graphlet or
orbit counts to quantify the similarity (or difference) in networks. For example,
the best fitting models under GDDA and GCD do not agree with GK and
RGFD, and the four measures often provide wildly different orderings of the
models from best-to-worst (other than putting STICKY on top and GEO on the
bottom). Table 5 attempts to quantify the relationships between these network
comparison measures with the Pearson correlation coefficients over all models
and all species for each pair of measures. Some of the disagreements between
different measures may be due to how they treat individual graphlets: the RGFD
and GK measures may be influenced most by the graphlets with the highest
counts, while graphlets with relatively lower counts have a smaller weight on the
overall score. However, small differences in orbit counts at each node may cause
a bigger GCD difference because orbit trends are compared with every other
orbit. In addition, [9] previously argued that GDDA is sensitive. Hence, GCD
and GDDA may respond more sensitively to graphlet (orbit) count differences
than the other measures.
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Fig. 3. The average computed score comparing species-vs-model networks for the dis-
tance measures RGFD and GCD (top), and the two similarity measures GDDA and
GK (bottom). Error bars along each curve depict 1σ standard deviations of the species-
vs-model scores across the 500 synthetic networks for that (species, model) pair. The
standard deviations are larger for HGG, SFGD and GEOGD possibly because there are
more random choices involved in matching the input parameters such as average degree
and number of edges. For each species, within the 10 GEOGD and 9 SFGD types, the
differences were very small (on order of magnitude 10−1). Hence, we have plotted only
the best performing GEOGD and SFGD models from among the GEOGD expansion
and GEOGD probabilistic (p ranging from 0.1 to 0.9) networks and the SFGD models
(p ranging from 0.1 to 0.9), respectively. Note that all measures appear to agree that
STICKY is one of the best models, often being among the lowest curve in the differ-
ence measures, and the highest curve in the similarity measures. HGG is on par with
STICKY on most species according to the GK measure. Interestingly, the curves in the
GK plot cross each other far less frequently than with the other measures, suggesting
that GK maintains monotonicity in model quality, across all species, much better than
the other measures; this property re-enforces, along with the PR and ROC curves, that
GK gives a clean and precise measure of model quality.

Since STICKY is the overall best fit of the PPI networks, we further examine
its fit to the BioGRID networks. Following the non-parametric test of [38] (see
also [9]), for each species, and for each graphlet type, we computed the mean
and standard deviation of the graphlet count across all 500 synthetic STICKY
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Table 4. On the assumption that GK is the best measure as depicted in Fig. 2, we
show its similarity scores below (score of 1 is best). The rows are ordered best-to-worst
according to the “Average” column. Within each column, the best value is boldfaced
and the second-best value is italicized, with up to two if there are close ties. The GK
scores indicate that STICKY is the best model for most PPI networks, followed by SF.
While HGG has the 3rd overall average GK score, it performs as well as STICKY on
HS, MM, and RN, and is a better match for AT, CE, SC and SP than the STICKY
model. The SFGD model is a good fit on some PPI networks. Contrary to previous
findings, GEOGD and GEO models are not good fits for any of these 9 PPI networks.

Model Species

AT CE DM EC HS MM RN SC SP Average

STICKY 0.991 0.923 0.981 0.996 0.990 0.998 0.999 0.995 0.948 0.980

SF 0.912 0.931 0.896 0.873 0.950 0.924 0.968 0.677 0.844 0.886

HGG 0.999 0.966 0.575 0.300 0.978 0.995 0.965 0.999 0.987 0.863

SFGD 0.441 0.953 0.964 0.993 0.717 0.650 0.388 0.262 0.500 0.652

ERDD 0.093 0.411 0.819 0.973 0.305 0.138 0.082 0.146 0.264 0.359

ER 0.098 0.339 0.869 0.933 0.240 0.091 0.087 0.096 0.215 0.330

GEOGD 0.024 0.169 0.633 0.747 0.129 0.018 0.011 0.026 0.113 0.208

GEO 0.014 0.122 0.543 0.651 0.097 0.007 0.001 0.014 0.084 0.170

Table 5. How the various graphlet measures agree with each other, measured by
the Pearson correlation ρ of their model-vs-data similarity (or difference) scores. The
magnitude of the correlation depicts “amount” of agreement; the sign is relevant only
in that it depicts whether the measures agree in direction (both similarities or both
differences), or are opposite types (difference vs. similarity). The p-value is the prob-
ability that the observed correlation is due to chance. Thus, RGFD and GK have the
greatest correlation, while GK and GCD have such a low correlation (−0.21) that the
p-value—just 7.1%—means their agreement is barely distinguishable from random.

Measures ρ p-value

RGFD and GK −0.668 1.5 × 10−10

GCD and GDDA −0.565 2.4 × 10−6

GK and GDDA 0.5 7.5 × 10−6

RGFD and GDDA −0.482 1.8 × 10−5

RGFD and GCD 0.460 4.7 × 10−5

GK and GCD −0.21 7.1 × 10−2

networks. BioGRID’s graphlet count is shown in Table 6 as a multiple of the
standard deviation away from the mean count in the synthetics. This factor is
small for graphlet 0 (the number of edges in the graph). However, the factors
grow very large on some graphlets in each species (more than 105σ as is the
case for DM), as shown in Table 6. This means that though STICKY is the best
amongst the models examined in this study, it is still far from an ideal match to
the current BioGRID networks.
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Table 6. The mean and standard deviation of each graphlet’s count in the STICKY
synthetic networks, together with the deviation of the true count from the synthetic
mean. For each species, the best-fitting and worst-fitting graphlets are shown; the
absolute worst offenders (thousands of standard deviations away) are highlighted in
bold. Though STICKY is generally the best structural match among all 7 models
explored, the last column demonstrates that it is still far from an ideal fit to the current
BioGRID networks. Note that graphlet G20 (cf. Fig. 1) is often the worst offender,
although the significance of this observation is unclear.

Species Graphlets

(best,worst)

Mean STICKY count σ of STICKY

count

BioGRID

count

BioGRID distance to

STICKY mean

CE 0 5619 74 5638 0.26σ

20 5572 886 21554 18σ

SP 27 33810 3057 32556 0.41σ

20 62298 5221 330540 51.4σ

SC 6 6.18 × 108 6.09 × 106 618385434 0.06σ

20 5.20 × 107 940839 1833805726 1900σ

EC 0 12784 110 12800 0.15σ

29 14.6 8.85 2727 306σ

RN 25 3188 334 2945 0.73σ

20 1405.2 218.206 53753 240σ

AT 21 2.87 × 107 912783 29801214 1.15σ

20 1.18 × 106 54516 256721361 4700σ

DM 0 46268 206 46288 0.09σ

29 4.29 3.79 1278120 337,000σ

HS 0 277199 514 277940 1.44σ

20 1.86 × 108 2.75 × 106 1369437894 430σ

MM 0 37650 188 38075 2.26σ

20 730868 34637 9773813 261σ

4 Fit of PPI Networks from the 2018 Update of the IID
Database

We also present fits to 9 PPI networks from the Integrated Interactions Database
(IID) [16], including 7 mammals which have not been studied before in the
context of modeling PPI networks (see Table 7). While all the BioGRID networks
described previously have edges derived solely from wet-lab experiments, it is
known that the edges they contain are both highly biased, and far from complete
[20]. The IID is a recent attempt to ameliorate these issues. IID networks contain
edges not just from BioGRID, but from all experimental efforts to date; and in
addition, edges predicted from sophisticated machine learning techniques. Thus,
although partly machine-generated, the IID networks are currently a best-effort
guess as to the approximate size and structure of true PPI networks. Thus, it is
appropriate to analyze them using our techniques.

Due to the large size of the IID networks, the time complexity of generating
HGG networks as well as other time constraints, we show the fits of these 9
species to STICKY, SF, GEO, ER and ERDD graph models, using GK to assess
the graphlet topology (see Fig. 4). As with the BioGRID PPI networks, the
STICKY model is all-round the best fit for the IID networks, with SF as a good
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second, even for the new mammalian species, while GEO and ER models are
the worst. It is left as future work to determine whether these networks are also
fit well by the HGG model.

Table 7. The 9 IID networks used in this study, in decreasing order of their average
degree.

Name Num nodes Num edges Density Average degree

Yeast 6317 194700 0.00976 30.8

Guinea pig 14189 288179 0.00286 20.3

Cow 14783 297734 0.00272 20.1

Cat 14427 290367 0.00279 20.1

Dog 14512 287265 0.00273 19.8

Chicken 11833 227721 0.00325 19.2

Duck 11498 215383 0.00326 18.7

Turkey 10886 196798 0.00332 18.1

Fly 10310 110062 0.00207 10.7

0.00

0.25

0.50

0.75

1.00

ca
t

ch
ick

en co
w do

g
du

ck fly

gu
ine

a p
ig

tur
ke

y
ye

as
t

Species

G
K

Model
Sticky
SF
ER
ERDD
GEO

Fig. 4. We created 50 synthetic networks for each of the 5 models used to test against
the IID PPI networks. The 9 PPI networks from IID have similar fits to the BioGRID
ones. The STICKY model followed by SF are overall best fits for all the species while
GEO and ER are the worst fits.

5 Discussion and Conclusion

We have performed a comprehensive evaluation of the fit of the largest BioGRID
networks to several network models across a wide range of graphlet measures, and
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extended the analysis to far larger, machine-learned IID PPI networks. While
there is significant disagreement between measures as to rank the models (as
explicitly shown by the range of Pearson correlations between measures tabu-
lated in Table 5), the gross conclusion is that the STICKY model is the overall
best-fitting model to BioGRID PPI networks and that the HGG model is a
good fit for all the PPI networks except DM and EC, and is a better model
than STICKY on some PPI networks. STICKY’s overall good performance is
not surprising since it was specifically created to model the affinity of protein
pairs to interact. The stickiness index is closely related not only to the degree-
distribution, but to the inter-node topology of the network. It preserves graphlet
structure better than pure theoretical models. STICKY has remained the best-
fitting model throughout 10 years of increasingly voluminous PPI network data.
However, while the STICKY model provides the best description of the net-
works, it provides little theoretical insight as to why they have the structure
that they do. For that, we turn to other models to gain additional insight into
the inter-connectivity and structure.

Previous studies [32] suggested that since yeast was geometric in structure (at
the time the study was conducted and using the measures available at the time),
the resulting network’s degree distribution would be Poisson and hence, would
have a peak at the mean degree. However, the current yeast network’s degree
distribution is far from Poisson, as the peak is at 1 (757 nodes with degree 1) but
only 85 nodes have the mean degree of 25. We find that it is not GEO, but the
HGG model and SF model that score well according to the best network measure
as shown by the AUPR and AUROC curves in Fig. 2, suggesting that current PPI
networks are partially scale-free and partially hyperbolic geometric in nature.
As seen in Fig. 3 and Table 5, the measures have significant disagreement on
the ordering of models from best to worst. The best-fitting models for PPI
networks have changed as PPI data have been updated. We have also observed
that the best-fitting model may depend on the comparison measure used for the
assessment. Further, the ‘best’ fit may not be the right fit as we have seen with
the graphlet count deviations in Table 6. It is plausible that STICKY or HGG is
the right model for PPIs and the low p-values of Table 6 can be blamed not on
the model, but on the noise and incompleteness of the data; this hypothesis will
need to wait several more years for the data to catch up and be more thoroughly
tested. Finally, the distinct disagreements between different graphlet measures
depicted in Figs. 2 and 3 and Tables 5, and 6 suggest at present, the Graphlet
Kernel may be the most reliable graphlet-based measure for network comparison
since it has the greatest precision-recall.
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35. Pržulj, N., Kuchaiev, O., Stevanović, A., Hayes, W.: Geometric evolutionary
dynamics of protein interaction networks. In: Proceedings of the 2010 Pacific Sym-
posium on Biocomputing (PSB), 4–8 January 2010, Big Island, Hawaii (2010)
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Abstract. Dual graphs have been applied to model RNA secondary
structures with pseudoknots, or intertwined base pairs. In a previ-
ous work, a linear-time algorithm was introduced to partition dual
graphs into maximal topological components called blocks and determine
whether each block contains a pseudoknot or not. This characterization
allowed us to efficiently isolate smaller RNA fragments and classify them
as pseudoknotted or pseudoknot-free regions, while keeping these sub-
structures intact. In this paper we extend the partitioning algorithm by
classifying a pseudoknot as either recursive or non-recursive. A pseudo-
knot is recursive if it contains independent regions or fragments. Each of
these regions can be also identified by the modified algorithm, continu-
ing with our current research in the development of a library of building
blocks for RNA design by fragment assembly. Partitioning and classifi-
cation of RNAs using dual graphs provide a systematic way for study of
RNA structure and prediction.

Keywords: Graph theory · RNA secondary structures · Partitioning ·
Bi-connectivity · Pseudoknots

1 Introduction

Let G = (V,E) be undirected graph composed of by a finite set of vertices V and
a set E of unordered pair of vertices called edges, where each edge represents a
relation between two vertices.

Our RNA analysis is based on dual graphs, introduced in 2003 by Gan
et al. [7], to model RNA secondary structures (2D). The 2D elements of RNA
molecules consist of double-stranded (stem) regions defined by base pairing such
as Adenine-Uracil, Guanine-Cytosine, Guanine-Uracil, and single stranded loops;
stems and loops are mapped to the vertices and edges of the corresponding dual
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graph, respectively (later we present an alternative definition of dual graphs).
Dual graphs can represent complex RNA structures called pseudoknots (PKs);
these structures involve an intertwining of two-base-paired regions of the RNA
and are common elements in many biologically relevant RNAs.

In [19,20] a linear-time partitioning algorithm was introduced based on the
dual graph representation of RNA 2D. This algorithm partitions a dual graph
into connected components called blocks and then determines whether each block
contains a pseudoknot or is a regular region. Thus our procedure provides a
systematic approach to partition an RNA 2D, into smaller classified regions,
while providing a topological perspective for the analysis of RNAs.

Pseudoknots can be classified into two main groups: recursive and non-
recursive pseudoknot [9,23]. The former is distinguished from the latter because
it contains an internal pseudoknotted or regular region that does not inter-
twine with external stems within the PK; in this work, the original algorithm is
extended to classify PKs into these two main categories. In addition, as a recur-
sive PK comprises independent regions or fragments, our modified algorithm
can also identify each of these regions, to be later cataloged and applied in the
analysis of RNAs with pseudoknots.

In the next section, we present background material and definitions relevant
to this paper, and we review the partitioning algorithm introduced in [19,20], as
well as its applications, as for example the development of a library of building
blocks for RNA design by fragment assembly [13]. Following this line of research,
in Sect. 3 it is shown how the partitioning approach can be extended so if a
block contains a pseudoknot, then it can be classified as either recursive or
non-recursive; in the case the PK is recursive, the algorithm can also identify
each independent region. We summarize the findings and outline new directions
in Sect. 4. An Appendix section includes computational tests performed by the
modified algorithm, on some RNA’s motifs.

2 Background

2.1 Biological and Topological Definitions

In 2003, Gan et al. [7] introduced tree and dual graph-theoretic representations
of RNA 2D motifs in a framework called RAG (RNA-As-Graphs) [5,8,12,16].
A pseudoknot is an intertwining of two-based-paired regions (stems) of an RNA
(see for example Fig. 1).

The partition algorithm is based on topological properties of graphs, suggests
an alternative way to look at the problem of detection and classification of PKs
and of general RNAs. As base pairing in PKs is not well-nested, making the
presence of PKs in RNA sequences more difficult to predict by the more classical
dynamic programming [3] and context-free grammars standard methods [2].

Following (Kravchenko [17]), we define our biological variables as follows.
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Definition 1. General terms:

a. RNA primary structure: a sequence of linearly ordered bases x1, x2, . . . , xr,
where xi ∈ {A,U, C,G}.

b. canonical base pair: a base pair (xi, xj) ∈ {(A,U), (U,A), (C,G), (G,C),
(G,U), (U,G)}.

c. RNA secondary structure without pseudoknot - or regular structure, encapsu-
lated in the region (i0, . . . , k0): an RNA 2D structure in which no two base
pairs (xi, xj), (xl, xm), satisfy i0 ≤ i < l < j < m ≤ m0 (i.e., no two base
pairs intertwined).

d. a base pair stem: a tuple (xi, xi+1, . . . , xi+r, xi+(r+1), . . . , xj−1, xj) in which
(xi, xj), (xi+1, xj−1), . . . , (xi+r, xi+(r+1)) form base pairs.

e. loop region: a tuple (x1, x2, . . . , xr) in which ∀i≤j≤r(xi, xj) does not form a
base pair.

f. a pseudoknot encapsulated in the region (i0, . . . , k0): if ∃l,m, (i0 < l < m <
k0) such that (xi0 , xm) and (xl, xk0) are base pairs (i.e., at least two base pairs
intertwined).

A graphical representation is a natural way to describe an RNA 2D struc-
ture (see Fig. 1(a), (b)), in which the x-axis is labeled according to the primary
linearly ordered sequence of bases (Definition 1a), and a stem (Definition 1d) is
represented by arcs connecting base pairs. A region on the x-axis between the
end-points of the arcs representing stems is called a segment.

A dual graph can be defined from the graphical representation of an RNA
2D structure as follows (Fig. 1).

Definition 2. The dual graph is defined by mapping stems and the segments
between stems (x-axis), of the graphical representation of an RNA 2D structure,
to the vertices and edges of the dual graph, respectively.

In the next section we present our partitioning approach as of a dual graph
G, into subgraphs G′ ⊆ G, called blocks.

2.2 Graph Partitioning Algorithm

The graph-theoretic partitioning algorithm is based on identifying articulation
points of the dual graph representation of an RNA 2D. An articulation point
is a vertex of a graph whose deletion disconnects a graph or an isolated vertex
remains.

We need to define the following.

Definition 3. Connectivity

a. A vertex v is an articulation point or cut-vertex if G − v results in a discon-
nected graph (i.e., at least two connected components remain) or an isolated
vertex remains.

b. A connected component is non-separable if it does not have an articulation
point (or cut-vertex). Please note that single edges or isolated points are non-
separable.
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Fig. 1. Graphical and dual graph representations of an RNA 2D structure. (a) graphical
representation of a pseudoknot-free RNA primary sequence and embedded stems or
base pairs; (a′) corresponding dual graph representation. (b) graphical representation
of a pseudoknotted RNA 2D structure; (b′) corresponding dual graph. This figure was
originally depicted in [20].

c. A block is a maximal (edge-wise) non-separable graph.
d. An edge-set X is an edge-disconnecting set if the removal of X from G results

in a disconnected graph. The edge-connectivity of a graph λ(G) is the size of
a minimum edge-disconnecting of G.

e. The degree of a vertex v of G is the number of dG(v) is the number of edges
incident at v.

Articulation points allow us to identify blocks (see Fig. 2); since a block is a
maximally non-separable component, a pseudoknot cannot be then contained in
two different blocks. Thus identification of these block components allows us to
isolate pseudoknots (as well as pseudoknot-free blocks), without breaking their
structural properties.

An algorithm for identifying (bi-connected) block components in a graph was
introduced by Hopcroft and Tarjan [11], and runs in linear computational time.

A hairpin loop occurs when two regions of the same strand, usually comple-
mentary in nucleotide sequence when read in opposite directions, base-pair to
form a double helix that ends in an unpaired loop. A self-loop in the dual graph,
i.e., an edge having the same vertex as the end-points, represents a hairpin, and
as it does not connect two different vertices (i.e., stems), it is formally deleted
from the dual graph.

From Definition 1c, an RNA 2D structure is a regular-region (pseudoknot-
free) and encapsulated in a region (i0, . . . , k0), if no two base pairs
(xi, xj), (xl, xm), satisfy i < l < j < m, i0 ≤ i, j, l,m ≤ m0, otherwise the
region is a pseudoknot; this definition yields the following main result.
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Fig. 2. Identification of (a) articulation points and (b) partitioning of a dual graph.

Corollary 4. [19,20] Given a dual graph representation of RNA 2D structure,
a block represents a pseudoknot if and only if the block has a vertex of degree
(Definition 3e) at least 3.

The partitioning algorithm performs the following steps.

1. Partition the dual graph into blocks by application of Hopcroft and Tarjan’s
algorithm.

2. Analyze each block to determine whether contains a vertex of degree at least
3. If that is the case then the block contains a pseudoknot, according to Corol-
lary 4. If not then the block represents a pseudoknot-free structure.

Consider as an example the dual graph shown in Fig. 2. This graph is decomposed
into 2 blocks. According to Corollary 4, block 1 is a pseudoknot as it has a vertex
of degree at least 3, while block 2, a cycle, corresponds to a regular region.

Our partitioning algorithm was applied recently [13] to analyze the modular
units of RNAs for a representative database of experimentally determined RNA
structures and to develop a library of building blocks for RNA design by frag-
ment assembly, as done recently for tree graphs, along with supporting chemical
mapping experiments [14]. Among the 22 frequently occurring motifs we found
for known RNAs up to 9 vertices, 15 contain pseudoknots [13]. Thus, further clas-
sification of the pseudoknotted RNAs could help in cataloging and applications
to RNA design. Another application of the partitioning algorithm to small and
large units of ribosomal RNAs of various prokaryotic and eukaryotic organisms
helped identify common subgraphs and ancestry relationships [13].

In the next section we extend our algorithm to classify PKs as either recursive
or non-recursive; the algorithm can also identify each recursive region.

3 Classification of Pseudoknots as Either Recursive or
Non-recursive and Identification of Each Recursive
Region

The RNA 2D dual graph and graphical representations depicted in this section
are based upon New York University’s RAG-database [12], and R-Chie visual-
ization software [18], respectively.
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no external base pair (or stem)

pseudoknot

Fig. 3. Recursive pseudoknot.

The definition of a recursive pseudoknot follows the one of Wong et al. [23].
Let A = x1x2...xm be a sequence of linearly ordered bases, and M be the 2D of
A. M is represented as a set of base pair positions, i.e., M = {(i, j)|1 ≤ i < j ≤
m, (xi, xj) is a base pair}. Let Mx,y ⊆ M be the set of base pairs within the sub-
sequence x1x2...xm, 1 ≤ x < y ≤ m, i.e., Mx,y = {(i, j) ∈ M |x ≤ i < j ≤ y},
with M = M1,m.

Definition 5. Mx,y is a recursive pseudoknot if Mx,y is a pseudoknot (see Def-
inition 1f), and ∃a1, b1, . . . , as, bs, (x < a1 < b1 < . . . < as < bs < y) that satisfy
the followings.
Each Mai,bi is called a recursive region.

– Mai,bi , for 1 ≤ i ≤ s, is a recursive pseudoknot.
– For each Mai,bi , 1 ≤ i ≤ s, there does not exist a base pair (i, j) ∈ M that

i ∈ [ai, bi] but j /∈ [ai, bi], or i /∈ [ai, bi] but j ∈ [ai, bi].
– Mx,y − ∪s

i=1Mai,bi is either a regular structure or a pseudoknot.

A recursive pseudoknot is a pseudoknot Mx,y that contains a pseudoknotted
or regular region Ma,b, and there does not exist a base pair (c, d), such that xd

is a base of Ma,b and xc is a base of M external to Ma,b (see Fig. 3). Here we
are assuming that Ma,b is contained in Mx,y, that is, x < a < b < y.

Wong et al. definitions [23] also incorporated the concepts of standard and
non-standard pseudoknots; however it is not within the scope of this work to
study them from the dual graph representation perspective.

A graph is Eulerian if there exist a trail with no repetition of edges from
a vertex v0 of G, ending at vertex vk, covering all the edges of the topology;
if v0 = vk then the graph is an Eulerian cycle (see [10], p. 64). Dual graph
representations of general RNA 2D structures, and specifically of PKs, can be
easily shown to be Eulerian graphs from Definition 2. By starting from the origin
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on the x-axis of the graphical representation and traversing to the right, a unique
trail in its dual graph can be described, where all edges are covered.

Lemma 6. [19,20] The dual graph representations of RNA 2D structures and
of PKs are Eulerian by following the primary sequence of bases.

As depicted in Fig. 1(b), the alternating sequence of stems and segments
{S1, I, S2, II, S4, III, S2, IV, S1, V, S3, V I, S4, V II, S3} of the graphical repre-
sentation (b) forms an Eulerian trail in its dual graph (b′).

A pseudoknotted block can be classified as recursive by just calculating the
edge-connectivity (see Definition 3d) of the block. As an example consider the
Hepatitis Delta Virus Ribozyme (see Fig. 4), necessary for viral replication. The
stem labeled 4 in the graphical representation (or vertex labeled 4 in the dual
graph) is attached to the pseudoknot by the segments a and b in its graphical
representation, or edges labeled a and b in the dual graph representation. It is
clear that if the PK is recursive then the edge-connectivity of the pseudoknotted
block must be 2. However it is not obvious that the converse is necessarily true,
that is, if the pseudoknotted block has edge-connectivity 2 then it is recursive.
The following Lemma settles this question.

0

1

2

34

a

b
0 1

2

3

4

a b

a) Graphical representation of RF00094 Secondary Structure b) Dual graph of RF00094 Secondary Structure

Fig. 4. Hepatitis Delta Virus Ribozyme secondary structure. (a) Graphical represen-
tation. (b) Dual graph representation.

Lemma 7. The dual graph representation of a pseudoknotted block is recursive
if and only if the block has edge-connectivity 2.

Proof. If the block Mx,y is a recursive pseudoknot then it contains an internal
region Ma,b with x < a < b < y according the aforementioned definition. As
there does not exist a base pair (c, d) in which xd is a base in the internal region
and xc is a base of the pseudoknot outside this internal region, then Ma,b must
be adjacent to the remaining of the PK in the graphical representation by two
segments, or equivalently, by two edges in the dual graph of the pseudoknot (see
Fig. 4).
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Conversely suppose that the dual graph of a PK, G = (V,E), has edge-
connectivity 2 and let E′ = {e1, e2} represent a minimum size disconnecting set.
As G is connected then deletion of E′ from G will result in exactly two connected
components, G1 = (V1, E1) and G2 = (V2, E2) (see Fig. 5a). From Lemma 6 one
knows that there exist an Eulerian path in G following the primary sequence in
linear order, starting from the origin on the x-axis of the graphical representation
and traversing to the right. Let the Eulerian path P = P1.e1.P2.e2.P3 where P1

starts at the initial base x1 (w.l.o.g. we assume that x1 is in G1) (see Fig. 5b). It
is the case that P2 must cover all the edges of G2 (following an ordered sequence
of bases) because when P reaches e2 to continue with P3, P can not go back
to G2 again as e1 and e2 were already used by the Eulerian path. Therefore
G2 is a region composed of all edges (and vertices) corresponding to an ordered
sequence of bases, that is, G2 is a well-defined region within the pseudoknotted
block G. �	

G1 G2

e1

e2

G1 G2

e1

e2

G pseudoknotted block

a) minimum edge-disonnecting set of size 2.

b) Eulerian path starting at location 1 of the primary sequence

initial base x1

P1

P2

P3

Fig. 5. Minimum disconnecting set of size 2. (a) Two connected subgraphs. (b) Eulerian
path covering all the edges of the dual graph and following the primary sequence.

The edge-connectivity of a graph G = (V,E) can be determined in polynomial
time in order (|V ||E|2) using the max-flow min-cut theorem of network flows by
Edmond and Karp [4], or Ford and Fulkerson [6].

As it is shown in the proof of by Lemma 7, we can also delete each pair of
edges and determine if the graph is disconnected using Depth-First-Search [10]
in time (|E|3); this variation allows us to find every internal recursive region of
the recursive pseudoknot if such pair of edges exist. For example if edges a and
b of Hepatitis Delta Virus Ribozyme 2D dual graph representation (Fig. 4) are
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deleted, then vertex labeled 4 corresponding to the stem labeled 4 of the graph-
ical representation will be isolated. Thus the disconnecting set {a, b} uniquely
identifies a recursive region (i.e., stem labeled 4).

Corollary 4 and Lemma 7 yield the following partitioning and classification
of pseudoknots algorithm.

Algorithm for Partitioning and Classification of PKs

i. Input dual graph G = (V,E) as the Adjacency Matrix, of a RNA 2D.
ii. Output partitioning of the RNA 2D into recursive PK, non-recursive PK, and

regular regions.
1. Partition the dual graph into blocks by application of Hopcroft and Tar-

jan’s algorithm;
2. Analyze each block to determine whether each contains a vertex of degree

at least 3;
3. IF the block has a vertex of degree ≥ 3 then the block is a pseudoknot;

• Apply max-flow min-cut theorem to determine edge-connectivity;
• if edge-connectivity = 2 then the block is a recursive pseudoknot;
else the pseudoknot is not recursive;

4. ELSE the block is a regular region;.

0 1 32 4 5 6a

a) Graphical representation of RF01084 Secondary Structure

b

cregular region

regular region

0

1 2

3

4
56

a

b

b) Dual graph representation of RF01084 Secondary Structure

c

Fig. 6. A tRNA-like-structure. (a) Graphical representation. (b) Dual graph repre-
sentation.

As another example consider a tRNA-like-structure [1], linked to regulation
of plant virus replication (see Fig. 6). Note that the vertex labeled 4 is an articu-
lation point, therefore this dual graph will be partitioned into two blocks, one is
a pseudoknot, because it contains a vertex of degree 3 or greater (self-loops are
deleted in the analysis), while the other block is a regular region. The pseudo-
knotted bock can be classified as recursive because it has edge-connectivity 2. In
addition every disconnecting set of size 2 represents a recursive internal region
of the PK.
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As an example of a non-recursive pseudoknot consider the Translational
repression of the Escherichia coli alpha operon mRNA [22], illustrated in Fig. 7.
The dual graph representation of this motif 2D has edge-connectivity 3, thus it
is not a recursive PK.

1

2

3

45

1 2 3 4 5

a)

b)

Fig. 7. Translational repression of the Escherichia coli alpha operon mRNA. (a) Graph-
ical representation; (b) Dual graph representation.

The Appendix illustrates the output generated by the modified algorithm
when is run on some of the aforementioned motifs. The algorithm is written in
C++ and is archived for public use [21].

4 Conclusions and Ongoing Work

We have extended our partitioning algorithm of the dual graph representation
of RNA 2D structures into maximal non-separable components called blocks,
to classify pseudoknots as either recursive or non-recursive. In [19,20] it was
shown that an RNA 2D contains a pseudoknot if and only if the dual graph
representation has a block in which one of the vertices is of degree 3 or larger.
This paper showed that a pseudoknotted block is recursive if and only if the block
has edge-connectivity 2. Moreover each disconnecting set of size 2 represents
an internal recursive region of the pseudoknot allowing further classification of
modular units for RNA design. These results also offer an alternative and simple
way to visualize and classify PKs based on graph theoretical properties, allowing
a systematic analysis of RNAs.

With our recent extension of our graph growing algorithm to generate dual
graph libraries of possible RNA motifs, thousands more potential graphs were
analyzed and classified [15]. The modified algorithm will be useful for these
motifs for further studies of RNA structure and design.
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Appendix

Let (a, b) represents an edge of a dual graph with end-vertices a and b.
We are next illustrating the output of the partitioning algorithm tested on

the tRNA-like-structure dual graph (see Fig. 6).
——————— Motif :RF01084 —————————–

===================== New Block =======
(4,5) - (4,5) -
—- this block represents a regular-region —-
===================== New Block =======
(4,0) - (3,4) - (1,3) - (6,0) - (2,6) - (1,2) - (1,2) - (0,1) -
removed edges (2,6) and (6,0), these two edges are a disconnecting set:
The block is a recursive PK.
———– Summary information for Motif :RF01084 ——————————–
———– Total number of blocks: 2
———– number of non-recursive PK blocks: 0
———– number of recursive PK blocks: 1
———– number of regular blocks : 1
————————————————————————————
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Abstract. Recently large databases containing profile Hidden Markov
Models (pHMMs) emerged. These pHMMs may represent the sequences
of antibiotic resistance genes, or allelic variations amongst highly con-
served housekeeping genes used for strain typing, etc. The typical appli-
cation of such a database includes the alignment of contigs to pHMM
hoping that the sequence of gene of interest is located within the single
contig. Such a condition is often violated for metagenomes preventing
the effective use of such databases.

We present PathRacer—a novel standalone tool that aligns profile
HMM directly to the assembly graph (performing the codon translation
on fly for amino acid pHMMs). The tool provides the set of most probable
paths traversed by a HMM through the whole assembly graph, regard-
less whether the sequence of interested is encoded on the single contig
or scattered across the set of edges, therefore significantly improving
the recovery of sequences of interest even from fragmented metagenome
assemblies.

Keywords: Profile HMM · Graph alignment ·
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1 Introduction

The recent advances of metagenomics quickly revealed scalability issues arising
from the amount of raw sequencing data necessary to describe complex micro-
bial communities. Even more, due to many inherit problems and challenges the
assembly of metagenomic data remains a non-trivial task, thus slowing down bio-
logical discoveries [13]. Still, in the majority of cases the interest of researchers
lies around the recovery of certain important genes this way the use of addi-
tional information about these genes might be crucial for the full gene sequence
recovery even from very fragmented assemblies.

The typical way to represent the sequence of the particular gene family is
via so-called profile Hidden Markov Models [5]. Recently large databases such
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as Pfam [8] or NCBIfam-AMR [1] containing thousands of pHMMs emerged.
These pHMMs may represent the sequences of antibiotic resistance genes, or
allelic variations amongst highly conserved housekeeping genes.

The recent releases of Xander [19] and MegaGTA [11] tools opened the
possibility of the gene-targeted metagenomics assemblies, where the trained Hid-
den Markov Model is used to guide the traversal of de Bruijn graph. Such an
approach gives obvious advantage over other assembly methods. Still, these tools
might be somehow non-trivial to use, for example, Xander forces a user to build
both forward and reverse HMMs and MegaGTA requires original sequences the
pHMM was built from. All these requirements makes the usage of these tools
non-straightforward as one cannot simply download the HMM from the database
and use it straight away. Even more, both tools includes their own genome assem-
bler engines essentially ignoring the recent progress made in the field of genome
and metagenome assemblies.

PathRacer is a novel standalone tool that aligns profile HMM directly to the
assembly graph produced by modern assemblers in standard GFA format1. This
way PathRacer could utilize all the features and improvements (e.g. hybrid or
mate-pair assemblies) provided by state-of-the-art assemblers. Below we describe
algorithmic approaches used in PathRacer and showcase them over several
datasets.

2 Methods

2.1 General Definitions

Let Sequence graph G be a directed graph where each vertex (called position) is
labelled by a letter from the given alphabet Σ. Thus, each path in G corresponds
to some string in Σ∗. Denote by V (G) and E(G) the sets of vertices and edges
of G correspondingly.

pHMM graph is a profile HMM in HMMER 3 Plan 7 format [5,6] on Σ.
Profile HMM can be viewed as weighted directed graph with vertices called
states and edges called transitions. A particular state could be of one of the
following types: I (insertion), M (match or mismatch), D (deletion); in addition
to this there are also two special states denoted by Start and End (see Fig. 1). I
and M states together are called emissive states or emitters. Each emissive state
E contains its own emission probabilities E = (E, ·) that define a probability
distributions on Σ. Edges weights denoted as T (·, ·) are transition probabilities;
in each vertex sum of its outgoing transitions equals to 1. Note that pHMM
graph is almost acyclic: the only allowed cycles are simple loops from each I
state to itself (I-loops). Therefore, pHMM states could be topologically sorted.

Background distribution B is a discrete probability distribution on Σ. This
distribution is an a priori distribution of letters in the model. See [6] for more
information about background distribution and its role.

1 So far only GFA from de Bruijn graph assemblers like SPAdes and MegaHit is
supported, but we will address this restriction in the next PathRacer versions.
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Fig. 1. Plan 7 profile hidden Markov model (pHMM) scheme

For string (L1, . . . , Ln) ∈ Σ∗ HMM alignment is a path in the pHMM graph
that contains exactly n emitters. If the path begins from Start and ends with
End the alignment is called global, otherwise the alignment is called local. For the
sake of simplicity we will consider only the problem of global alignment search.
Note that the local alignments could be turned into the global ones by a simple
transformation of pHMM graph [6]: insert additional transitions from Start to
all emitters and from all emitters to End.

Furthermore, the global alignment is fully defined by the series of its emitters
(E1, . . . , En). Indeed, the “missed” intermediate D states in the alignment path
could be unambiguously reconstructed due to a particular structure of pHMM.

For the given pHMM graph, background distribution B, string L = (L1, . . .
Ln), and its global alignment A = (E1, . . . , En) alignment score Score(L,A) is
defined as:

Score(L,A) = log(T (Start, E1)) + log(E(E1, L1) − log(B(L1))
+ log(T (E1, E2)) + · · · + log(E(En, Ln) − log(B(Ln)) + log(T (En,End)),

where T (Ei, Ei+1) may include intermediate D states D
(1)
i ,D

(2)
i , . . . , D

(T )
i :

log(T (Ei, Ei+1)) = log(T (Ei,D
(1)
i )) + · · · + log(T (D(T )

i , Ei+1)).

This score is essentially

log
Prob(“string produced by this sequence of HMM states”)

Prob(“string is randomly obtained from the background distribution”)

and is known as log-odds score [6].
For given HMM graph and background define the alignment score Score(L)

for the string L = (L1, . . . , Ln) as the best score along all its possible global
alignments A = (E1, . . . , En).

We consider the following problem of graph alignment to profile HMM: for
given sequence graph G, profile HMM pHMM, background distribution B, and
integer k > 0, among all the paths in G obtain k different paths with the highest
possible scores. We will call this problem Top(k) path problem throughout the
article.

It is well known that for the one string the best score alignment could be
found by Viterbi dynamic programming algorithm [18]. Here we seek for the
generic solution of the alignment problem: (1) among all paths in the sequence
graph, and (2) obtaining k best paths instead of just one.
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2.2 Event Graph

We present the solution of Top(k) path problem via the special data structure
called event graph.

First, define the expanded sequence graph Ḡ as graph G with added special
Empty vertex with no letter on it. Connect Empty to all other vertices by
bidirectional edges.

Each vertex (or event) of an event graph is a pair (E,P ) of an emissive (I
or M) HMM state E and a non-empty position P of Ḡ or one of two special
vertices: Source= (Start, Empty) and Sink= (End, Empty).

A directed edge from event (E1, P1) to event (E2, P2) exists only if and only
if: there is an edge from P1 to P2 in Ḡ; emitters are consequent, i.e., there is a
path in HMM from E1 to E2, that does not contain other emitters. Due to the
used pHMM structure there could be only one such path between the states.

The weight of vertex (E,P ) equals to log(E(E,Letter(P )))
− log(B(Letter(P ))). Edge weight is a sum of logarithms of the probabilities
of transitions on the edge. Since these probabilities are always less or equal to 1,
edge weights are always non-positive, while vertices could have positive weights
due to the presence of background distribution.

One can easily see that each path from Source to Sink corresponds to a
global alignment of the pHMM against some path in G whereas path weight
(sum of weights of edges and vertices along the path) is equal to the alignment
score.

2.3 Top(1) Path Problem via Event Graph

Event graph allows one to construct the solution of Top(1) problem straight
from the definition.

Algorithm 1. Top(1) path finding
Input: sequence graph G, profile HMM pHMM, background distribution

Background
1 Construct event graph from G, pHMM, and Background
2 Find the best (highest scored) event path from Source to Sink
3 Extract sequence path (series of positions) and the correspondent string from

the best event path

One could easily see that the problem of finding the best event path in general
does not have a finite solution. Indeed, if the event graph is acyclic or at least has
no cycles of positive weight, then the solution will certainly exist. In the general
case event graph could have cycles due to the presence of I-loops in pHMM
and depending to a particular background distribution some of these cycles may
positive weight. If there is a path from Start to End that contains one of such
cycles, then one can roll on it endlessly increasing the score and therefore the
proper solution would not exist.
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Fortunately, this problem is more theoretical than practical. In our imple-
mentation we use a simple heuristic to deal with it. We find all I-loops of positive
weight in pHMM and unroll them into C (default: 10) sequential I states. This
procedure is equivalent to restricting the total number of emissions. Typically
there is only small fraction of such I-loops (not exceeding 2.5% for all considered
HMMs and therefore the size of pHMM graph increases negligibly.

2.4 Dynamic Programming Algorithm for Best Path Extraction

For each vertex and each edge of the event graph find the best (having largest
score) path from Source. Denote those best score values as DIST (vertex) and
DIST (edge). Note that due to absence of positive-weighted cycles those DIST s
always exist and are finite.

The values of DIST s could be calculated via the Bellman-Ford algo-
rithm [4]. However, the computational complexity of this approach is
O(|V (EventGraph)| × |E(EventGraph)|), that is completely impractical. Still,
due to special layered event graph structure, DIST s could be computed signif-
icantly faster level-by-level. One possible approach to this is described in Algo-
rithm2.

The only non-straightforward step in Algorithm2 is I-loop relaxation. Due
to negativity of all I-loop edges we can sequentially update I-loop events DIST
using a priority queue as in classical Dijkstra algorithm [4]. Overall algorithm
complexity is O(|pHMM | × |E(G)| log |V (G)|), where log comes from priority
queue push/pop costs.

For sequence graphs |E(G)| ∼ |V (G)| since vertex degrees are bounded by
above (e.g. by 4 for de Bruijn graphs), therefore, we will count them together
denoting |G| = |V (G)| + |E(G)|. Thus, the overall complexity is O(|pHMM | ×
|G| log |G|).

Having DIST (Sink) calculated we can easily reconstruct the best path by
backtracking: start from Sink vertex and go backwards into each vertex taking
incoming edge with the highest DIST until we reach Source. k best paths
could be found iteratively using the observation that the i-th shortest path in
the sequence must branch from one of the i− 1 shortest paths already identified
(so-called Eppstein algorithm, [7]).

2.5 From Top(1) to Top(k)

Though there is a simple solution for the extraction of the best k paths from the
event graph, the problem of finding top sequence graph paths is still non-trivial
and could not be easily solved by extracting k best paths from Source to Sink.

The first problem here is that top k alignments are not equal to top k
sequences. Indeed, full event graph represents all possible alignments of the
pHMM against all sequence graph paths. Each sequence path has a combinatorial
number of alignments against the pHMM. And each alignment corresponds to
its own path in the event graph. The highest scored path in the full event graph
indeed corresponds to the best alignment of the best sequence path. However,
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Algorithm 2. Level-by-level DIST computation (optimized Bellman-Ford
algorithm)
Input: Event graph (along with sequence graph G and pHMM with unrolled

positive I-loops)
Output: DIST values for graph vertices and edges

1 DIST (Source) := 0
2 foreach edge ∈ Outgoing(Source) do
3 DIST (edge) := weight(edge)
4 end
5 foreach emissive state E ∈ pHMM sorted in a topological order do
6 // Initialization from preceding levels
7 foreach position P ∈ G do
8 Let vertex v = (E, P )
9 DIST (v) := weight(v) + maxe DIST (e), where e ∈ Ingoing(v) and not

an I-loop edge
10 end
11 if emissive state E is I-loop (not unrolled) then
12 // I-loop relaxation
13 Q := empty priority queue
14 foreach position P ∈ G do
15 Push vertex v = (E, P ) to Q with current DIST (v) as a priority

value
16 end
17

18 while Q is not empty do
19 Extract vertex v with the highest priority from Q
20 for edge e ∈ Outgoing I-loop edges(v) do
21 Consider vertex v′ = End(e)
22 if DIST (v′) < DIST (v) + weight(e) + weight(v′) then
23 DIST (v′) := DIST (v) + weight(e) + weight(v′)
24 Increase vertex v′ priority in Q

25 end

26 end

27 end

28 end
29 // Outgoing edges setup
30 foreach position P ∈ G do
31 Let vertex v = (E, P )
32 foreach edge e ∈ Outgoing(v) do
33 DIST (e) := DIST (v) + weight(e)
34 end

35 end

36 end
37 DIST (Sink)) := maxe DIST (e), where edge e ∈ Ingoing(Sink)

the second best alignment usually corresponds to the second best alignment of
the same sequence path and not of some other sequence path.
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The second issue is driven by particular applications. Among top k paths
we would like to see really different paths rather than paths that differ only
by adding/trimming a small number of letters at the beginning/end. Typi-
cally extending/trimming the sequence in such way changes the final score only
slightly and variations of the best path displace all other paths from the top list.

The third issue is that the number of different sequence paths with the proper
score could also be combinatorial. For the string with d single-letter variations
(corresponding to a path with d bubbles) the number of different paths would be
2d. All the paths would be slightly different and would probably have the same
or almost the same score. Without additional information we could not prefer
one path to another and report an answer of a reasonable (non-combinatorial)
size.

This way the proper Top(k) problem statement might look like as follows:
find k sufficiently (in the terms of the second issue) different paths in the ini-
tial sequence graph that maximize alignment score, but such problem seems to
be very hard to solve. The only solution we know is increasing the number of
extracted top alignments and further result filtering, but this approach is imprac-
tical for large k since the number of paths to extract is not known in advance.
Also, the construction, storage and operations on full event graph (consisting of
|pHMM| × |G| vertices) is time and memory consuming.

To deal with these issues we propose an heuristic solution that could signifi-
cantly speed up Top(k) paths extraction making it possible even for very large k
(say, k > 100000) that could be useful for complicated metagenome graphs where
the number of candidate paths could be really large. This approach introduces
a new structure representing alignment of the whole sequence graph against the
pHMM that could be also interesting and useful by itself. Particularly, it helps
to overcome the third issue, allowing one to consider relatively compact object
rather than an endless number of slightly different paths.

2.6 Collapsing Event Graph

Let us consider a subgraph of the full event graph called collapsed and trimmed
event graph.

Collapsed event graph is a subgraph of an event graph where for each vertex
(E,P ) (including Source and Sink) all its ingoing and outgoing neighbours
(vertices linked by ingoing and outgoing edges respectfully) have different posi-
tions. This way different Start-to-End paths in collapsed event graph corre-
spond to different paths in the initial sequence graph.

Trimmed event graph is a subgraph where each vertex does not have ingoing
edge from Source and ingoing edge(s) from non-Source vertex at the same
time. The same property is ensured for outgoing edges and Sink.

All the different Source-to-Sink paths in collapsed and trimmed event graph
correspond to the paths in the initial sequence graph that are not substring or
superstring of each other and do not have a perfect overlap, i.e. any prefix of
one path cannot not be a suffix of another.
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If we perform k best paths finding algorithm on collapsed and trimmed event
graph, we extract k non-trivially different sequence paths. There are multiple
ways how event graph could be trimmed and collapsed. Algorithms 3 and 4 make
an arbitrary subgraph of an event graph collapsed and trimmed but still keeping
the best scored paths intact.

Algorithm 3. Event graph collapsing
Input: Event graph or its arbitrary subgraph

1 For each vertex and each edge calculate the DIST (vertex) and DIST (edge)
values using the same DP procedure as in best path finding algorithm
(Section 2.4)

2 For each vertex, group all incoming edges by position of an incident vertex. In
each group find the edge with the highest score and remove other edges from
the graph

3 Do steps 1 and 2 on the graph backwards: with all the edges reversed and going
from Sink to Source

Algorithm 4. Event graph trimming
Input: Event graph or its arbitrary subgraph

1 Compute DIST (edge) for each edge as in the previous algorithm
2 For each vertex incident to Source: remove all incoming edges worse than the

incoming edge from Source. If there are still other incoming edges, remove the
edge that goes from the Source vertex

3 Do steps 1 and 2 on the graph with all the edges reversed considering edges
going to Sink

After collapsing and trimming we perform graph cleanup by removing all
vertices unreachable from Source or Sink.

Algorithm Discussion and Analysis. Both algorithms preserve the best path
intact since for each vertex that belongs to the best path incoming and outgoing
edges with maximum DIST value belong to the best path as well.

Collapsing procedure preserves existing sequence paths, but may reduce their
scores. For each Source-to-Sink path that got broken during the collapsing
step there still exists another event path with the same corresponding sequence
path. Note that collapsing removes edges, but it leaves one edge going to each
position, in other words: for each sequence path P1, . . . , Pn collapsing procedure
will preserve at least one corresponding event path.

Collapsing procedure can reduce score of a path therefore yielding suboptimal
alignment. If the sequence path shares prefix with another path with better score,
the prefix alignment will be inherited from the other path. The same goes for
the suffix. Our experiments show that this phenomenon is usually not a big
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problem for the real graphs. Even more, in order to address this problem one
could re-align the extracted sequence paths against pHMM.

Trimming procedure could break existing sequence path but if it does so,
then there does exist a path slightly different from this one with better score.

Full event graph represents all possible alignments of all graph paths against
the pHMM. Collapsed and trimmed event graph represents an alignment (prob-
ably suboptimal, but still reasonable) of the whole graph against the pHMM.
It could be viewed as an analogue of partial order graph alignment [10] but for
graph paths rather than separate homologous sequences.

2.7 Alignment Algorithm: Collapsed Event Graph Construction

Collapsed trimmed event graph takes sufficiently less space and could be con-
structed on-fly, therefore we do not need to construct full graph and then collapse
it. Algorithm 5 represents such an approach.

Algorithm 5. pHMM alignment against sequence graph
Input: Sequence graph G, profile HMM pHMM with unrolled positive I-loops,

k — the number of best paths to be extracted
1 Start with vertex Source = (Start, Empty)
2 Iterate over pHMM emissive states in a topological order
3 foreach state E do
4 Construct new event vertices (E, P ) along with ingoing edges for all

positions P ∈ G
5 For all new edges and vertices compute DIST (edge) and DIST (vertex) and

perform a step of collapsing and trimming as in Algorithms 3 and 4
6 Remove all vertices that definitely could not be reached from Sink

7 end
8 Add final vertex Sink = (End, Empty)
9 Perform backward collapsing and backward trimming (forward collapsing and

trimming are already performed on-line)
10 Extract best k paths going from Source using score values computed during

backward collapsing using Eppstein algorithm [7]
11 Report best paths along with the collapsed trimming event graph

Two parts contribute to the algorithm complexity: collapsed event graph
construction and extraction of best paths. The first part has the computa-
tional complexity of O(|pHMM |× |G| log |G|), the same as general Top(1) algo-
rithm (see Sect. 2.4). The second part (Eppstein algorithm [7]) has complexity
O(kN log(kN)), where N is average path length and log is from priority queue
overhead. Note that in collapsed event graph incoming vertex degree is bounded
like in sequence graph (usually by 4 for nucleotide graphs), therefore there is no
additional term in the complexity equation.
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2.8 Implementation and Heuristics

We implemented the described approximate Top(k) algorithm solution in the
PathRacer tool. PathRacer takes as input de Bruijn graph in GFA for-
mat (only SPAdes or SPAdes-compatible graphs are currently supported) and
nucleotide pHMM. For amino acids HMMs we perform on-fly translation that
allows us to consider the initial graph as a sequence graph over extended (20
amino acids and stop codon) amino acid alphabet.

The Algorithm 5 has overall complexity O(|pHMM | × |G| log |G| +
kN log(kN)), however, the first component in the sum might be intractable
for large graphs. In order reduce the computation complexity we implemented
several heuristics:

1. We run hmmalign algorithm from HMMER 3 [6] on the edges of the input
sequence graph and consider only the neighborhood of suitable size of matched
edges: we walk forward and backward from each matched edge not far than
the length of the corresponding pHMM overhang and then join all visited
positions and extract sequence subgraph. HMMER options (e.g. domain E-
value thresholds) are available to control the size of seed set.

2. During the event graph construction after each step new vertices are filtered
out:

– if the continuation of alignment through this vertex will always reach a
dead-end before reaching Sink vertex;

– if the continuation of alignment through this vertex will produce stop
codon before reaching Sink vertex (for amino acid HMM);

– all vertices with the score lower than a threshold parameter (default:
−250);

– all vertices except T top score vertices. The number T is reducing while
moving along the pHMM.

This heuristic improves both the running time and memory consumption
drastically (see Table 1) with no significant changes in the results.

3 Results

In order to demonstrate the viability of our solution we conducted four experi-
ments using the variety of datasets and pHMMs.

3.1 23S Search in E. coli str. K12 Assembly

E. coli genome contains seven ribosomal RNA (rRNA) operons. Each operon
contains a 16S rRNA gene, a 23S rRNA gene, and a 5S rRNA gene (except for
one operon, which contains two 5S rRNA genes) interspersed with various tRNA
genes.
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We considered the E. coli str. K12 dataset from [3]. The Illumina reads were
of length 100 bp with mean insert length 270 bp. SPAdes 3.12 [13] assembly
was performed in the normal multi-cell isolate mode with default settings and
the resulting assembly graph in GFA format was obtained. Quick check of the
results revealed that SPAdes assembled the 16S gene on the single contig, but
was unable to derive the whole sequence of 23S gene. Probably the reason is that
among seven copies of 23S gene, six were inexact, still 3 variants of 23S gene were
scattered over 3, 3 and 2 edges correspondingly. Other variants were absent in
the assembly graph and probably were collapsed during the graph simplification
procedures.

We aligned final assembly graph to prokaryotic rRNA pHMM models
from [16] and all 3 variants of 23S gene were the top paths extracted by
PathRacer (see Fig. 2). No other (false) paths were produced.

Fig. 2. E. coli str. K12 : extracted 23S paths (yellow-violet-red, green-violet-red and
blue-red) and their neighborhood (Color figure online)

3.2 16S Components of SYNTH Mock Metagenome Dataset

To showcase the ability of PathRacer to deal with complex metagenomic
data we considered 16S genes contained in SYNTH mock metagenome dataset
from [17].

Synthetic community data set (SYNTH) is a set of reads from the genomic
DNA mixture of 64 diverse bacterial and archaeal species (SRA acc. no.
SRX200676) that was used for benchmarking the Omega assembler [9]. The
dataset contains 109 million Illumina HiSeq 100-bp paired-end reads with mean
insert size of 206 bp. The reference genomes for all 64 species forming the SYNTH
dataset are known.

The assembly was performed by metaSPAdes 3.12 [13] with default param-
eters. To increase the sensitivity we considered strain (rather then the final con-
sensus) assembly graph. We aligned the graph against 16S profile HMM from [16]
and analyzed paths reported. PathRacer reported 1088577 paths. It is a rea-
sonable number since the corresponding graph component is very complicated
(see Fig. 3) and therefore many chimeric alignments are expected.

From SILVA [15] we obtained 179 16S sequences (most of the species have
several variants of this gene), constructed BLAST database from all reported
paths and performed a search in this database of all 16S gene sequences from
SYNTH. For 55 out of 64 species all the 16S sequences were found with >95%
BLAST identity. For 22 species at least one of 16S sequences was found with
100% BLAST identity (some variations were missing).
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Fig. 3. SYNTH: 16S matches of known sequences and their neighborhood. Different
species are colored differently (Color figure online)

3.3 Urban Wastewater Metagenome

In [12] comparative metagenomics was used to investigate the occurrence of
antibiotic resistant genes in wastewater and urban surface water environments
in Singapore. For this experiment we took H1 (clinical isolation ward, SRA acc.
no SRR5997548) dataset and performed assembly by metaSPAdes 3.12 with
default settings. As with SYNTH dataset we used strain assembly graph to
increase the sensitivity of the search.

Fig. 4. blaCTX-M paths and their neighborhood. Green path corresponds to CTX-M-
15 family; blue and red corresponds to CTX-M-9 and CTX-M-14 respectively (Color
figure online)

The assembly graph was aligned by PathRacer against selected beta-
lactamase gene pHMMs obtained from NCBIfam-AMR database [1]: blaCTX-M,
blaIMP and blaTEM among the others. The resulting paths consisting of several
graph edges could be seen on Figs. 4, 5 and 6.

Different non-overlapping paths on the Fig. 4 represents several different fam-
ilies of blaCTX-M gene: green corresponds to CTX-M-15 family, while blue and red
corresponds to CTX-M-9 and CTX-M-14 respectively (differs from each other
only by 2 SNPs). Note that Table S5 in [12] mentions the presence of CTX-M-15
and CTX-M-18 beta-lactamase families in this dataset, however we found that
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Fig. 5. blaIMP paths and their neigh-
borhood. Red path corresponds to
IMP-1 family (Color figure online)

Fig. 6. blaTEM paths and their neigh-
borhood. Red path corresponds to
TEM-1 family (Color figure online)

the extracted graph path that corresponds to CTX-M-9 aligned to the refer-
ence with 100% identity. Since the amino acid sequence of the CTX-M-18 beta-
lactamase differs from that of the CTX-M-9 beta-lactamase by an Ala-to-Val
change at position 231 [14], the additional checking of the results of [12] might
be necessary (in [12] different gene sequences were searched in reads rather than
assemblies and therefore might be prone to sequencing errors).

3.4 PathRacer and MegaGTA Running Time and Memory
Consumption

We compared PathRacer performance with MegaGTA using 16 threads on
urban dataset on all 159 beta-lactamase pHMMs obtained from NCBIfam-AMR
database [1]. The memory consumption and running times are presented in
Table 1.

We need to note that along with the input profile HMM files MegaGTA
also requires original gene sequences and a set of gene sequences for FrameBot
tool [20] that is used inside Xander/MegaGTA pipeline. Contrary to this,
PathRacer needs input graph and pHMM file only. We have not included
Xander into the benchmarking since MegaGTA is its improved version and it
outperforms Xander as it shown in [11] (Table 2).

Table 1. PathRacer and MegaGTA benchmark: running time and peak memory
consumption. urban dataset, 159 beta-lactamase HMMs, 16 threads. PathRacer per-
formance with disabled event graph online filtering is also shown

Tool Graph assembly pHMM alignment

MegaGTA 30min/30 GiB 11 h/30 GiB

metaSPAdes+ PathRacer 1 h 50min/20 GiB 50min/7 GiB

metaSPAdes+ PathRacer (no filtering) 1 h 50min/20 GiB 2 h 20min/11 GiB
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Table 2. PathRacer and MegaGTA results for urban data. blaCTX-M, blaIMP,
blaTEM beta-lactamase gene families. Annotation performed by online NCBI BLAST
[2], only results with 100% coverage and identity included

Gene family As shown
in [12]

MegaGTA PathRacer

blaCTX-M blaCTX-M-15;
blaCTX-M-18

OXY-1-1/2/3 (177aa);
CTX-M-15 (291aa);
CTX-M-3 (291aa);
CTX-M-9 (291aa);
SFO-1 (295aa);
CTX-M-14 (291aa);
+ 4 chimeric sequences
(247aa, 203aa, 295aa,
242aa)

CTX-M-15 (291aa);
CTX-M-14 (291aa);
CTX-M-9 (291aa);
SFO-1 (295aa)

blaIMP blaIMP-1 IMP-1 precursor
+ 8 chimeric sequences
(245aa × 8)

IMP-1 precursor

blaTEM blaTEM;
blaTEM-157;
blaTEM-163;
blaTEM-211

TEM-1 (286aa);
+ 43 chimeric and
fragmented sequences

TEM-1 (286aa)

blaKPC blaKPC2 KPC-2 (293aa);
+ 113 chimeric and
fragmented sequences

KPC-2 (293aa)

4 Conclusion

PathRacer utilizes both the assembly graph topology and the information
about the known genes encoded in profile HMM during its operation. This way
the putative gene sequences could be reconstructed even from the fragmented
metagenomic assemblies; it does not matter whether the gene sequence is located
within the single contig or scattered across several edges of an assembly graph.

Currently PathRacer could be viewed as a standalone tool that might be
integrated into analysis pipeline. Though we anticipate that deeper integration
into assembler pipeline might be possible, e.g. one could utilize the information
from paired-end reads to filter out more paths in the even graph, or, use pHMM
alignment to supplement repeat resolution and scaffolding.
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Abstract. One of the key computational problems in comparative
genomics is the reconstruction of genomes of ancestral species based
on genomes of extant species. Since most dramatic changes in genomic
architectures are caused by genome rearrangements, this problem is often
posed as minimization of the number of genome rearrangements between
extant and ancestral genomes. The basic case of three given genomes
is known as the genome median problem. Whole genome duplications
(WGDs) represent yet another type of dramatic evolutionary events and
inspire the reconstruction of pre-duplicated ancestral genomes, referred
to as the genome halving problem. Generalization of WGDs to whole
genome multiplication events leads to the genome aliquoting problem.

In the present study, we generalize the adequate subgraphs approach
previously proposed for the genome median problem to the genome halv-
ing and aliquoting problems. Our study lays a theoretical foundation for
practical algorithms for the reconstruction of pre-duplicated ancestral
genomes.

Keywords: Genome rearrangement · Breakpoint graph ·
Adequate subgraph · Whole genome duplication · Genome halving ·
Genome aliquoting · Genome median

1 Introduction

Genome rearrangements are rare large-scale evolutionary events that shuffle
genomic architectures. Under the maximum parsimony assumption, the mini-
mum number of rearrangements (known as the rearrangement distance) between
genomes provides a good estimate for their evolutionary remoteness. This
assumption further enables to address the ancestral genome reconstruction prob-
lem by minimizing the total distance between the ancestral and extant genomes
along the branches of the evolutionary tree. The basic case of this problem with
just three extant genomes is called the genome median problem (GMP), which
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asks to reconstruct a single ancestral genome (median genome) at the minimum
total distance from the given genomes.

Since genome rearrangements preserve the gene content, the GMP is con-
sidered for genomes with a uniform gene content. To account for genes present
in varying number of copies in different genomes, one needs to consider other
types of evolutionary events. One of the important sources of duplicated genes in
genomes is the whole genome duplication (WGD) events, which simultaneously
duplicate each chromosome of a genome. WGD events are known to happen in
the evolution of yeasts [13], fishes [14], plants [12], and even mammals [8].

We distinguish between ordinary and 2-duplicated genomes, where each gene
is present in 1 and 2 copies, respectively. A WGD duplication of an ordinary
genome R results in a perfect 2-duplicated genome 2R, where not only each gene
but also each gene adjacency is present in 2 copies. The genome halving problem
(GHP) asks to reconstruct an ancestral genome R from the given descendant
A of the genome 2R by minimizing the distance between A and 2R. The GHP
solution space is typically huge [4], making it hard to distinguish biologically
relevant solutions. The guided genome halving problem (GGHP) improves the
biological relevance by using an additional ordinary genome B and asking for
an ordinary genome R that minimizes the total distance between the ordinary
genomes B and R and between the 2-duplicated genome A and the perfect
2-duplicated genome 2R. While the former distance is easy to compute (for a
known genome R), computing the latter distance (called the double distance [17])
represents a much harder problem.

The WGD can be viewed as a particular case of a whole genome multiplication
(WGM), which simultaneously creates m ≥ 2 copies of each chromosome. For
m = 3, WGM corresponds to a whole genome triplication, known to happen the
evolution of eudicots. Correspondingly, the GHP and GGHP are generalized to
the genome aliquoting problem (GAP) and the guided genome aliquoting problem
(GGAP) [18].

Under the convenient model of Double-Cut-and-Join (DCJ) rearrange-
ments [22], the GMP and GGHP are known to be NP-hard [7,17]. The GMP
is the most studied problem among them, for which there exists a number of
exact [5,7,19,20,23] and heuristic [5,10,15,16] algorithmic solutions. Among
them the best performance is demonstrated by the software tool ASMedian,
which iteratively searches for so-called adequate subgraphs and decomposes the
GMP into smaller subproblems [15,19–21]. This strategy dramatically reduces
the search space and enables ASMedian to efficiently solve the GMP for genomes
with a large number of genes.

For the GGHP, there exists a number of heuristic algorithms [5,11,24,25] as
well as a recent exact algorithm [5], which is based on integer linear programming
and applicable only for genomes with a small number of genes. There is also a
heuristic algorithm for the GGHP [11], which uses subgraphs similar to adequate
but without rigorous justification.

The present study lays a theoretical foundation for the generalization of
adequate subgraphs to other problems including the GAP and GGAP. Similarly
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Fig. 1. A shortest DCJ scenario transforming the genome graph G(P ) into the genome
graph G(Q), where P = (+d − c − b + a) and Q = (+d + c + a − b) are ordinary
unichromosomal circular genome.

to [19,21], our initial analysis is restricted to genomes with circular chromosomes
only, while its extension to linear chromosomes will be published elsewhere. We
identify all simple adequate subgraphs of small orders. For the GGHP, we found
13 adequate subgraphs of order at most 4. It turns out that 3 of these subgraphs
were used in [11], and thus our results provide a justification and generalization
of their approach.

2 Background

2.1 Breakpoint Graphs and DCJ Distance

Let P be an ordinary genome consisting of circular chromosomes. We represent
a circular chromosome consisting of n genes as a graph cycle with n directed
edges encoding genes and their strands, which alternate with n undirected edges
connecting the extremities of adjacent genes. We label each directed edge with
the corresponding gene x, and further label its tail and head endpoints with xt

and xh, respectively. A collection of such cycles representing the chromosomes
of P forms the genome graph G(P ) (Fig. 1). The undirected edges in G(P ) are
called P -edges and form a matching in G(P ), called P -matching.

A Double-Cut-and-Join (DCJ) operation, also known as 2-break, breaks a
genome at two positions and glues the resulting fragments in a new order, which
model common types of genome rearrangements [3,22]. A DCJ in genome P
corresponds in G(P ) to the replacement of a pair of P -edges with a different
pair of P -edges1 on the same set of four vertices (Fig. 1).

For ordinary genomes P and Q composed of the same genes, the breakpoint
graph G(P,Q) is defined as the superposition of the genome graphs G(P ) and
G(Q) (Fig. 1). In other words, G(P,Q) can be constructed by gluing the identi-
cally labeled directed edges in G(P ) and G(Q). Similarly, the breakpoint graph
G(P1, . . . , Pk) can be defined for three or more (k ≥ 3) genomes P1, . . . , Pk [6].
From now on, we will ignore directed edges and assume that the breakpoint graph
G(P,Q) consists only of (undirected) P -edges and Q-edges, forming P -matching
and Q-matching, respectively. Then the connected components of G(P,Q) rep-
resent cycles formed by alternating P -edges and Q-edges, called PQ-cycles.

1 Here we view genome P as being transformed and P -edges as changing.
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A DCJ scenario between genomes P and Q is a sequence of DCJs trans-
forming P into Q (Fig. 1). The DCJ distance (i.e., the length of a shortest DCJ
scenario) between two genomes on the same genes can be computed with the
following formula [3,22]:

dDCJ(P,Q) = |P | − c(P,Q), (1)

where c(P,Q) is the number of PQ-cycles in the breakpoint graph G(P,Q) and
|P | is the number of genes in P .

Let us formulate the genome median problem under the DCJ model, which
we generalize to an arbitrary number of genomes:2

Genome Median Problem (GMP). For given ordinary genomes B1, . . . , Bn

on the same genes, find an ordinary genome R minimizing the total distance∑n
i=1 dDCJ(Bi, R).

2.2 Contracted Breakpoint Graphs and Aliquoting Problems

We adopt the model of WGDs, where a WGD simultaneously duplicates each
circular chromosome into either a single 2-duplicated circular chromosome or two
identical circular chromosomes [1]. Similarly, we assume that a WGM can either
create m ≥ 2 identical copies of a circular chromosome or possibly combine
some of these copies into single chromosomes. Hence, a WGM of an ordinary
genome R can multiply each circular chromosome of R in p(m) ways, where
p(m) is the number of integer partitions of m (with p(2) = 2, p(3) = 3, p(4) = 5,
. . . ). Let Ωm(R) be the set of perfect m-duplicated genomes mR (i.e., genomes
immediately resulted from a WGM). It follows that |Ωm(R)| = p(m)cchr(R),
where cchr(R) is the number of circular chromosomes in R.

Let A be an m-duplicated genome. We remark that in the genome graph
G(A), the directed edges appear in m identically labeled copies (Fig. 2a). By
gluing all directed edges with identical labels into single edges, we obtain the
contracted genome graph Ĝ(A) (Fig. 2b). We define A-components in Ĝ(A) as the
connected components formed by A-edges. We remark that in the case m = 2,
A-components form cycles (called A-cycles).

For an ordinary genome R and integer m ≥ 2, it can be easily seen that
the contracted genome graph Ĝ(mR) does not depend on a particular choice of
mR ∈ Ωm(R), and its R-edges form multi-edges composed of m parallel edges
each. We refer to such multi-edges as mR-edges. It is clear that the mR-edges
form a matching in Ĝ(mR). Replacing each mR-edge with an R-edge in Ĝ(mR)
transforms it into the genome graph G(R).

For an m-duplicated genome A and an ordinary genome R composed of the
same genes (present in m and 1 copies in A and R, respectively), the contracted
breakpoint graph Ĝ(A,R) is defined as the superposition of Ĝ(A) and G(R), and
can be constructed in the same way as breakpoint graphs (Fig. 2b, c, d). The

2 The classic formulation of the GMP corresponds to n = 3.
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Fig. 2. For a 2-duplicated genome A = (−a−b+g+d+f+g+e)(−a+c−f−c−b−d−e)
and an ordinary genome R = (−a − b − d − g + f − c − e), (a) the genome graph G(A);
(b) the contracted genome graph Ĝ(A); (c) the genome graph G(R); (d) the contracted
breakpoint graph Ĝ(A, R); (e) a maximal AR-cycle decomposition C of Ĝ(A, 2R); and
(f) the breakpoint graph G(A, X) having the same cycle structure as C, for some
genome X ∈ Ω2(R) and some labeling of gene copies of A and X.

A-edges and the R-edges in Ĝ(A,R) form A-components (A-cycles if m = 2) and
R-matching, respectively. Similarly, the contracted breakpoint graph Ĝ(A,mR)
of an m-duplicated genome A and a perfect m-duplicated genome mR is defined
as the superposition of the contracted genome graphs Ĝ(A) and Ĝ(mR). The
graph Ĝ(A,mR) can also be obtained from Ĝ(A,R) by replacing each R-edge
with an mR-edge.

Since multiplication of a circular chromosome can happen in p(m) ways,
the DCJ distance between an m-duplicated genome and a perfect m-duplicated
genome (called the aliquoting DCJ distance) can be computed with the following
formula [5]:

dm
DCJ(A,R) = min

mR∈Ωm(R)
dDCJ(A,mR).

Since each vertex in Ĝ(A,mR) is incident to m A-edges and m R-edges,
Ĝ(A,mR) can be decomposed into a collection of AR-cycles. We refer to the
graph composed of these cycles (each forming its own connected component)
as a decomposition of Ĝ(A,mR) (Fig. 2e). For a decomposition D, we define
cD(A,R) as the number of AR-cycles in D. Let D(A,R) be the set of all decom-
positions of Ĝ(A,mR). The following theorem establishes a link between the
aliquoting DCJ distance and the decompositions of Ĝ(A,mR):

Theorem 1 ([2,5]). Let A be an m-duplicated genome and R be an ordinary
genome composed of the same genes. For any decomposition D of Ĝ(A,mR),
there exists a genome X ∈ Ωm(R) and a labeling of gene copies in A and X
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(turning A and X into ordinary genomes with mn genes) such that G(A,X) has
the same structure as D.

Theorem 1 implies that computing the aliquoting DCJ distance reduces to
finding an optimal decomposition of Ĝ(A,mR) that maximizes cD(A,R). That
is,

dm
DCJ(A,R) = m|R| − max

D∈D(A,R)
cD(A,R). (2)

Now, let us recall the genome aliquoting problem [18], which generalizes the
genome halving problem:

Genome Aliquoting Problem (GAP). For a given m-duplicated genome A,
find an ordinary genome R minimizing dm

DCJ(A,R).

From (2), it follows that the GAP is equivalent to finding an ordinary genome
R that maximizes maxD∈D(A,R) cD(A,R). While the GAP has a polynomial-time
solution for m = 2 [1,9], its computational complexity for m ≥ 3 is unknown.

The GAP solution space is typically huge [4], which makes it hard to distin-
guish biologically relevant solutions. This issue can be addressed by taking into
account additional ordinary genomes and posing the following problem:

Guided Genome Aliquoting Problem (GGAP). Given an m-duplicated
genome A and ordinary genomes B1, . . . , Bn on the same genes, find an ordi-
nary genome R minimizing the total distance to genomes A,B1, . . . , Bn, i.e.,
dm
DCJ(A,R) +

∑n
i=1 dDCJ(R,Bi).

The guided genome halving problem (GGHP) [17] represents a particular
case of the GGAP with m = 2, n = 1.

3 Methods

3.1 Family of Alternating Graphs

We start with defining an abstraction of breakpoint graphs and contracted break-
point graphs. Let V (G) and E(G) be the set of vertices and the (multi)set of
edges of a (multi)graph G, respectively. For a subset of vertices U ⊂ V (G), we
denote by GU the induced subgraph of G on the vertex set U , and U c := V (G)\U .

Alternating Graphs. We call a graph cycle or path alternating if its edges are
colored into two distinct colors and alternate between them (in particular, each
alternating cycle has an even length).

Let P and Q be distinct colors. We say that a graph cycle C is a labeled
PQ-colored cycle if each vertex in C has a label, each edge in C is colored into
P or Q, and C is alternating. The labels, say x and y, at the endpoints of each
edge of C induce the multiset {x, y} as a label of this edge.

For positive integer m, a vertex-disjoint union of labeled PQ-cycles C =
C1 � · · · � Cn forms a simple (Pm, Qm)-alternating graph if



A Uniform Theory of Adequate Subgraphs 103

(i) every vertex label in C is present in m copies (in other words, each element
of the multiset of the vertex labels in C has multiplicity m);

(ii) every edge label {x, y} of a Q-colored edge appears as such in C exactly m
times (in other words, each element of the multiset of the Q-colored edge
labels in C has multiplicity m).

For a simple (Pm, Qm)-alternating graph G, we denote by c(G) and L(G)
the number of PQ-colored cycles and the set of vertex labels in G, respectively.
We will omit the upper index m when m = 1.

It is easy to see that the breakpoint graph of two ordinary genomes P and
Q forms a simple (P,Q)-alternating graph as well as a simple (Q,P )-alternating
graph. More generally, by Theorem1, any decomposition of the contracted break-
point graph for an m-duplicated genome A and a perfect m-duplicated genome
mR forms a simple (Am, Rm)-alternating graph, but not a simple (Rm, Am)-
alternating graph unless A is also perfect. However, in general we do not require
the vertex labels in simple (Pm, Qm)-alternating graphs to correspond to gene
extremities, and therefore we can consider such graphs outside the context of
genomes.3

Similarly to breakpoint graphs, the simple alternating graphs can be gen-
eralized to more than two colors as follows. Let n be a positive integer and
B1, B2, . . . , Bn, R be distinct colors. For positive integers m1, m2, . . . ,mn, and
q = m1 + · · · + mn, a (Bm1

1 , . . . , Bmn
n , Rq)-alternating graph G is the vertex-

disjoint union of graphs G1�· · ·�Gn, where Gi is a simple (Bmi
i , Rmi)-alternating

graph, and every edge label {x, y} of the R-colored edge appears as such in G
exactly q times. It follows that L(G1) = L(G2) = · · · = L(Gn), and we define
L(G) := L(G1). Moreover, for any subset J ⊆ L(G), we define V (J) ⊆ V (G) as
the subset of vertices with labels from J . We further define c(G) :=

∑n
i=1 c(Gi).

We will also refer to G as an alternating graph if its parameters are clear from
the context.
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Fig. 3. (a) An (A2, B, R3)-alternating graph G with L(G) = {1, 2, 3, 4, 5, 6}; (b) the
contracted (A3, B, R3)-alternating graph Ĝ; and (c) the stripped (A3, B)-alternating

graph Ḡ =
˜̂
G, where A, B, and R are solid gray, dashed gray, and solid black colors,

respectively.

3 This enables us to use transformations of alternating graphs, where intermediate
graphs do not have genomic interpretations.
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Contracted Alternating Graphs. Let n be a positive integer and B1, . . . , Bn, R
be distinct colors. For positive integers m1, m2, . . . ,mn, and q = m1 + · · ·+mn,
a contracted (Bm1

1 , . . . , Bmn
n , Rq)-alternating graph Y is a graph such that

(i) each edge of Y is colored into a color from {B1, . . . , Bn, R};
(ii) each vertex of Y has a unique label and is incident to m1 B1-colored edges,

m2 B2-colored edges, . . . , mn Bn-colored edges, and q R-colored edges;
(iii) the R-colored edges of Y form multi-edges composed of q parallel edges

each.

It follows that R-colored multi-edges form a perfect matching in Y (Fig. 3b).
Since each vertex in Y is incident to q R-colored edges and mi Bi-colored

edges for each i ∈ [n], Y can be decomposed into a collection of graphs
{G1, . . . , Gn}, where each Gi is a simple (Bmi

i , Rmi)-alternating graph. In other
words, Y can be decomposed into an (Bm1

1 , . . . , Bmn
n , Rq)-alternating graph

G1 � · · · � Gn. We denote by D(Y ) the set of all possible alternating graphs
forming decompositions of Y . Let cmax(Y ) be the maximum number of cycles in
such an alternating graph, i.e.,

cmax(Y ) := max
G∈D(Y )

c(G). (3)

More generally, for any induced subgraph H of Y and any G ∈ D(Y ), the
induced subgraph GV (L(H)) forms a decomposition of H into alternating cycles
and paths (Fig. 4b, c). Let D(H) be the set of all such decompositions (notice
that this definition of D(H) for H = Y is consistent with the earlier definition of
D(Y )). Among the decompositions in D(H), we distinguish maximal decomposi-
tions with the maximum possible number of alternating cycles, denoted cmax(H)
(Fig. 4c). We remark that the definition of cmax(H) is consistent with the earlier
definition of cmax(Y ) (i.e., cmax(H) = cmax(Y ) if H = Y ).

a) b) c)

Fig. 4. A transformation of (a) an induced subgraph Z′ of a stripped (A2, B)-
alternating graph (with maxH∈A(Z′) c(H) = 3) into (b) a subgraph Y ′ of a contracted
(A2, B, R3)-alternating graph, and then into (c) a subgraph G′ of an (A2, B, R3)-
alternating graph with c(G′) = 3. Here edges of colors A, B, R are shown as black,
gray, and dashed, respectively.

Let G be a (Bm1
1 , . . . , Bmn

n , Rq)-alternating graph. For any subgraph H of G,
we define Ĥ as the result of gluing vertices of H with the same labels together. It
is clear that Ĝ forms a contracted (Bm1

1 , . . . , Bmn
n , Rq)-alternating graph. More-

over, it follows that for any G ∈ D(Y ), Ĝ = Y .
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Stripped Alternating Graphs. Let n be a positive integer and B1, . . . , Bn be
distinct colors. For positive integers m1, m2, . . . ,mn, a stripped (Bm1

1 , . . . , Bmn
n )-

alternating graph (or simply a stripped alternating graph if the parameters are
clear from the context) Z is a graph such that

(i) each edge of Z is colored into a color from {B1, . . . , Bn};
(ii) each vertex of Z has a unique label and is incident to m1 B1-colored edges,

m2 B2-colored edges, . . . , mn Bn-colored edges.

For a given color R different from B1, . . . , Bn and an element of M(Z), adding
R-colored multi-edges of multiplicity q = m1 + · · · + mn connecting vertices in
the pairs to Z results in a contracted (Bm1

1 , . . . , Bmn
n , Rq)-alternating graph.

Let C(Z) be the set of all such contracted alternating graphs, and A(Z) :=⋃
Y ∈C(Z) D(Y ).

For any induced subgraph H of Z with an even number of vertices, we
define M(H) as the set of all partitions of V (H) into disjoint pairs. For a given
color R different from B1, . . . , Bn and an element of M(H), adding R-colored
multi-edges of multiplicity q = m1 + · · · + mn connecting vertices in the pairs
to H results in an induced subgraph of some contracted (Bm1

1 , . . . , Bmn
n , Rq)-

alternating graph (Fig. 4a, b). Let C(H) be the set of all such subgraphs and
A(H) :=

⋃
W∈C(H) D(W ). If H = Z, then the resulting graph forms a contracted

(Bm1
1 , . . . , Bmn

n , Rq)-alternating graph, C(Z) is the set of all such contracted
alternating graphs, and elements of A(Z) form (Bm1

1 , . . . , Bmn
n , Rq)-alternating

graphs.
Let Y be a contracted (Bm1

1 , . . . , Bmn
n , Rq)-alternating graph. For any

induced subgraph H of Y , we define H̃ as the result of removing the R-colored
edges from H. It is clear that Ỹ is a stripped (Bm1

1 , . . . , Bmn
n )-alternating graph.

Moreover, it follows that for any Y ∈ C(Z), Ỹ = Z.
Let G be a (Bm1

1 , . . . , Bmn
n , Rq)-alternating graph. For any induced subgraph

H of G, we define H̄ := ˜̂
H, where H̄ is stripped (Bm1

1 , . . . , Bmn
n , Rq)-alternating

graph. It follows that for any G ∈ A(Z), Ḡ = Z.

3.2 Alternating Graph Decomposition Problem

We pose the following problem that generalizes the GMP, GAP, GGAP.

Alternating Graph Decomposition Problem (AGDP). For a given
stripped alternating graph Z, find G = argmaxG′∈A(Z) c(G′) (such G is called
optimal).

Theorem 2.

(i) For an integer n ≥ 3, the GMP for ordinary genomes B1, . . . , Bn on
the same genes is equivalent to the AGDP for the breakpoint graph
G(B1, . . . , Bn);

(ii) For an integer m ≥ 3, the GAP for an m-duplicated genome A is equivalent
to the AGDP for the contracted genome graph Ĝ(A);
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(iii) For integers m ≥ 2 and n ≥ 1, the GGAP for ordinary genomes B1, . . . , Bn

and an m-duplicated genome A on the same genes is equivalent to the
AGDP for the contracted breakpoint graph Ĝ(A,B1, . . . , Bn).

Proof. (i) For given ordinary genomes B1, . . . , Bn on the same l genes, the break-
point graph Z = G(B1, . . . , Bn) forms a stripped (B1, . . . , Bn)-alternating graph.
Recall that the GMP asks for an ordinary genome R that minimizes the total
distance

∑n
i=1 dDCJ(R,Bi). By formula (1), we have

n∑

i=1

dDCJ(R,Bi) = n · l −
n∑

i=1

c(R,Bi).

Hence, the GMP asks for an ordinary genome R (viewed as an element of M(Z))
such that

R = argmax
R′∈M(Z)

n∑

i=1

c(R′, Bi).

In other words, R corresponds to argmaxY ∈C(Z) cmax(Y ). Since for each i ∈ [n],
G(Bi, R) is a simple alternating graph, we have |D(Z)| = 1. By (3), cmax(Y ) =∑n

i=1 c(R,Bi). Thus, the GMP for B1, . . . , Bn is equivalent to the AGDP for Z.
(ii) For a given m-duplicated genome A on l unique genes, the contracted

genome graph Z = Ĝ(A) forms a stripped (Am)-alternating graph. Recall that
the GAP asks for an ordinary genome R that minimizes dm

DCJ(A,R). By formula
(2), we have

dm
DCJ(A,R) = m · l − max

D∈D(A,R)
cD(A,R).

Hence, the GAP asks for an ordinary genome R (viewed as an element of M(Z))
such that

R = argmax
R′∈M(Z)

max
D∈D(A,R′)

cD(A,R′).

In other words, R corresponds to argmaxY ∈C(Z) cmax(Y ). Since by Theorem1,
any decomposition is a simple (Am, Rm)-alternating graph, elements from D(Y )
correspond to elements from D(A,R). By (3), cmax(Y ) = maxG∈D(Y ) c(G) =
maxD∈D(A,R) cD(A,R). Thus, the GAP for A is equivalent to the AGDP for Z.

(iii) For a given m-duplicated genome A and ordinary genomes B1, . . . , Bn on
the same l unique genes, the contracted breakpoint graph Z = Ĝ(A,B1, . . . , Bn)
forms a stripped (Am, B1, . . . , Bn)-alternating graph (Fig. 3c). Recall that the
GGAP asks for an ordinary genome R that minimizes the total distance
dm
DCJ(A,R) +

∑n
i=1 dDCJ(R,Bi). By formulas (1) and (2), we have

dm
DCJ(A,R) +

n∑

i=1

dDCJ(R,Bi) = (m + n) · l − max
D∈D(A,R)

cD(A,R) −
n∑

i=1

c(R,Bi).

Hence, the GGAP asks for an ordinary genome R (viewed as an element of
M(Z)) such that

R = argmax
R′

(
n∑

i=1

c(R′, Bi) + max
D∈D(A,R′)

cD(A,R′)

)

.
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Again, R corresponds to argmaxY ∈C(Z) cmax(Y ). Similarly to (1) and (2), the
elements of D(Y ) correspond to the elements of D(A,R) that have simple
(Bi, R)-alternating graphs for each i ∈ [n]. Since by (3) we have cmax(Y ) =∑n

i=1 c(R,Bi) + maxD∈D(A,R) cD(A,R), the GGAP for A,B1, . . . , Bn is equiva-
lent to the AGDP for Z. ��

Let Z be a stripped alternating graph and U be a proper subset V (Z) of even
size. If there exist optimal H ′ ∈ A(ZU ) and H ′′ ∈ A(ZUc) such that the union
H ′ ∪ H ′′ ∈ A(Z) is optimal, then one can reduce finding an optimal element in
A(Z) to finding those independently in A(ZU ) and A(ZUc). In the next section we
provide a characterization of U � V (Z), for which there exist such H ′ and H ′′.
The ability to identify such vertex subsets U in the given graph Z enables design
of a divide-and-conquer algorithm for the AGDP (to be described elsewhere).

3.3 Decomposers and Adequate Subgraphs

Let Y be a contracted (Bm1
1 , . . . , Bmn

n , Rq)-alternating graph, and U � V (Y ).
We call an R-colored edge {u, v} in Y U -crossing if |{u, v} ∩ U | = 1. Corre-
spondingly, the graph Y is U -crossing if it has at least one U -crossing edge.

Definition 3. For a stripped alternating graph Z and U � V (Z), the subgraph
ZU is called

• a strong decomposer if for any optimal alternating graph G ∈ A(Z), Ĝ is not
U -crossing;

• a decomposer if for some optimal alternating graph G ∈ A(Z), Ĝ is not
U -crossing.

It easy to see that if the subgraph ZU is a (strong) decomposer, then there
exist H ′ ∈ A(ZU ) and H ′′ ∈ A(ZUc) such that H ′ ∪ H ′′ ∈ A(Z) is optimal.
However, while Definition 3 describes induced subgraphs that can be used for
dividing the AGDP into subproblems, it remains unclear how to identify such
subgraphs. The following definition and theorem establish an important class of
such subgraphs, which can be efficiently identified.

Definition 4. Let Z be a stripped (Bm1
1 , . . . , Bmn

n )-alternating graph, and U �

V (Z) such that |U | is even.

• If maxH∈A(ZU ) c(H) ≥ |U |
4

∑n
i=1 mi, then ZU is called adequate subgraph;

• If maxH∈A(ZU ) c(H) > |U |
4

∑n
i=1 mi, then ZU is called strongly adequate sub-

graph.

A (strongly) adequate subgraph ZU is called simple if for any W � U , ZW is not
(strongly) adequate.

Theorem 5. Let Z be a stripped alternating graph, and U � V (Z) such that
|U | is even. If ZU is (strongly) adequate, then ZU is a (strong) decomposer.

The proof of Theorem5 will be published elsewhere in a full-length paper.
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)b)a

order 2:

order 4:

order 2:

order 4:

Fig. 5. Simple adequate subgraphs of order 2 and 4 that may appear in (a) stripped
(A2, B)-alternating graphs and (b) stripped (A3, B)-alternating graphs, where A is a
black color and B is a gray color.

4 Results

Adequate subgraphs were initially introduced in a branch-and-bound algorithm
for the GMP for three ordinary genomes [19]. The algorithm relies on simple
adequate subgraphs of small orders (listed in [21, Fig. 7]), searches them in the
breakpoint graph of the given genomes, and uses the known subsolutions to
reduce the problem size. It is shown that this approach works quite well for
many real GMP instances.

In the present study, we generalize the theory of adequate subgraphs to
other ancestral genome reconstruction problems. In particular, the definition
of (strongly) adequate subgraphs in [21] represents a particular case of our Def-
inition 4 with A(Z) = C(Z). Furthermore, Theorem 2 in [21] is a particular case
of our Theorem 5.

While there exist simple adequate subgraphs of an arbitrarily large order [19],
the order of detected adequate subgraphs represents a trade-off between the
complexity of detecting adequate subgraphs and that of the brute-force solution.
Indeed, simple adequate subgraphs of small orders occur with a much higher
probability than those of larger orders in random graphs [19]. Furthermore, since
the number of different simple adequate subgraphs grows dramatically as the
order increases, the complexity of their detection in a given graph also increases
accordingly. We therefore focus on enumeration of the simple adequate subgraphs
of only small orders for the GGHP (addressing reconstruction of ancestral pre-
duplicated genomes) as well as for the GAP and GGAP for m = 3 (addressing
reconstruction of ancestral pre-triplicated genomes).

Guided Genome Halving Problem. By Theorem 2, the GGHP corresponds to the
AGDP for the contracted breakpoint graph for a given 2-duplicate genome A
and ordinary genome B. We identified all simple adequate subgraphs of order 2
and 4 of a stripped (A2, B)-alternating graph (Fig. 5a).

Genome Aliquoting Problem. By Theorem 2, the GAP for a given 3-duplicate
genome A corresponds to the AGDP for the contracted genome graph of A.
We identified all simple adequate subgraphs of order 2, 4, and 8 of a stripped
(A3)-alternating graph (Fig. 6).
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Guided Genome Aliquoting Problem. By Theorem 2, the GGAP with m = 3
corresponds to the AGDP for the contracted breakpoint graph for a given 3-
duplicate genome A and ordinary genome B. We identified all simple adequate
subgraphs of order 2, 4 of order 2, 4 of a stripped (A3, B)-alternating graph
(Fig. 5b).

order 2:

order 4: ‘

order 8:

Fig. 6. Simple adequate subgraphs of orders 2, 4, and 8 that may appear in a stripped
(A3)-alternating graphs, where A is a black color.

5 Discussion

Among the existing approaches for the genome median problem, the best
performance is demonstrated by the one based on searching adequate sub-
graphs [15,19–21]. The present study lays theoretical foundation for the gener-
alization of adequate subgraphs to the genome aliquoting and halving problems.
We remark that the main result of [21] follows from this extension as a corollary.

Using the generalized theory, we identified and reported all simple adequate
subgraphs of small order. In particular, for the guided genome halving problem
we discovered 13 adequate subgraphs of small order, out of which only 3 were
earlier reported without a justification in [11]. We further reported adequate sub-
graphs of small order for aliquoting of triplicated genomes, which are applicable
for analysis of whole genome triplication events in the plan evolution.

In future work, we will use our theoretical framework to develop branch-
and-bound and heuristic algorithms for the GGHP, GGAP, and GAP (similarly
to those for the GMP proposed in [15,21]) and extend them to genomes with
linear chromosomes. We also plan to release a user-friendly software tool that
implements these algorithms.

Acknowledgements. The work of Maria Atamanova was supported by the Govern-
ment of the Russian Federation (Grant 08-08) and JetBrains Research.
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Abstract. The development of Next Generation Sequencing has had a
major impact on the study of genetic sequences, and in particular, on
the advancement of metagenomics, whose aim is to identify the microor-
ganisms that are present in a sample collected directly from the environ-
ment. In this paper, we describe a new lightweight alignment-free and
assembly-free framework for metagenomic classification that compares
each unknown sequence in the sample to a collection of known genomes.
We take advantage of the combinatorial properties of an extension of the
Burrows-Wheeler transform, and we sequentially scan the required data
structures, so that we can analyze unknown sequences of large collec-
tions using little internal memory. For the best of our knowledge, this is
the first approach that is assembly- and alignment-free, and is not based
on k-mers. We show that our experiments confirm the effectiveness of
our approach and the high accuracy even in negative control samples.
Indeed we only classify 1 short read on 5,726,358 random shuffle reads.
Finally, the results are comparable with those achieved by read-mapping
classifiers and by k-mer based classifiers.

Keywords: Metagenomics · Next-generation sequencing ·
Classification · Alignment-free · Assembly-free · eBWT · Lcp array

1 Introduction

The advent of “next-generation” DNA sequencing (NGS) technologies has meant
that collections of hundreds of millions of DNA sequences are now common-
place in bioinformatics. One research field that has grown extraordinarily in
recent years is metagenomics [26]. The problem of comparing sequences is of
fundamental importance in this field: indeed, the metagenomic studies require
computational tools that are able to analyze large datasets and to extract cor-
rect information about the community under investigation. There exist many
metagenomics statistical/computational tools (among them [11,22,25,30]) and
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recent surveys (for instance [13,21]) that offer a thorough benchmarking analysis
by comparing the majority of the state-of-the-art tools.

We propose a new alignment-free and assembly-free method for comparing
sequences (cf. [20,29]), which is combinatorial by nature and allows us to use lit-
tle internal memory with respect to other approaches, such as those k-mer based.
Our method is based on an extension of the Burrows-Wheeler Transform (shortly
eBWT) to a collection of sequences. The eBWT has been used in several appli-
cation contexts as the circular pattern matching (cf. [9]) and the alignment-free
methods for comparing sequences (cf. [14,17,18,31]). Different distance measures
have been defined and successfully applied to several biological datasets, as for
instance mitochondrial DNA genomes [17,18], expressed sequence tags [23] and
proteins [31]. Usually, when the eBWT is applied to a collection S of sequences,
its output string ebwt(S) is enriched by another data structure: the document
array da(S), i.e. a different color can be assigned to each element of S and each
symbol of ebwt(S) is associated with a color in da(S). In other words, the array
da(S) contains a sequence of colors that depends on how the suffixes of the
sequences in S are mixed in the sorted list. In [17,18], the authors define a class
of dissimilarity measures that, by using the eBWT, formalize the intuitive idea
that the greater is the number of substrings shared by two sequences u and v,
the smaller is the “distance” between u and v.

In this paper, inspired by the same intuitive idea, we define a new similarity
measure that is based on an important property of the eBWT (the clustering
effect [19,28] of the input symbols) together with the information on the length
of the contexts that follow them. Then we describe how to apply this notion of
similarity to perform metagenomic classifications.

Finally, in the last section, we describe the results of preliminary experiments
on simulated metagenome collections: we obtain similar or better precision than
CLARK-S [24] (a k-mer based approach), yet using a smaller memory footprint.

We show, moreover, that the sensitivity and precision obtained are similar
to those achieved by Centrifuge [11], a read-mapping classifier. Nevertheless,
our method gets better results than Centrifuge on the negative control datasets
comprising random shuffled reads that do not belong to any known genome.
Indeed, in metagenomic samples, a large number of reads are from “unknown”
organisms whose genomes are not present in any reference database, and thus
they cannot be given a taxonomic assignment. To mimic these reads, negative
control datasets have been designed as to test the reliability of a method [13].

2 Preliminaries and Materials

Let S be a string (or sequence), n its length, and Σ its alphabet set, with σ = |Σ|.
We denote the i-th symbol of S by S[i]. We denote by S = {S1, S2, . . . , Sm} a
collection of m strings. We assume that each string Si ∈ S of length ni is followed
by a special symbol Si[ni + 1] = $i, which is lexicographically smaller than any
other characters in S, and do not appear in S elsewhere—for implementation
purposes, we may simply use a unique end-marker $ for all strings in S. A
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substring of any S ∈ S is denoted as S[i, j] = S[i] · · · S[j], with S[1, j] being
called a prefix and S[i, n + 1] a suffix of S. A range is delimited by a square
bracket if the correspondent endpoint is included.

The Burrows-Wheeler Transform (BWT) [4] is a well known reversible string
transformation widely used that can be extended to a collection of strings. Such
an extension, known as eBWT or multi-string BWT, is a reversible transforma-
tion that produces a string (denoted by ebwt(S)) that is a permutation of the
symbols of all strings in S [17] (see also [2,6,7,16]). The length of ebwt(S) is
denoted by N =

∑m
i=1 ni + m and ebwt(S)[i] = x, with 1≤ i≤N , if x circularly

precedes the i-th suffix Sj [k, nj + 1] (for some 1 ≤ j ≤ m and 1 ≤ k ≤ nj +1),
according to the lexicographic sorting of the suffixes of all strings in S. In this
case we say that the suffix Sj [k, nj+1] is associated with the position i in ebwt(S)
and with the color j ∈ {1, 2, . . . ,m}. The output string ebwt(S) is enhanced with
the array da(S) of length N where da(S)[i] = j, with 1 ≤ j ≤ m and 1 ≤ i ≤ N ,
if ebwt(S)[i] is a symbol of the string Sj ∈ S. See Fig. 1 for an example.

The longest common prefix (LCP) array of S is the array lcp(S) of length
N + 1, such that lcp(S)[i], with 2 ≤ i ≤ N , is the length of the longest common
prefix between the suffixes associated with the positions i and i − 1 in ebwt(S),
and lcp(S)[1] = lcp(S)[N + 1] = 0 by default.

The set S will be omitted if it is clear from the context. Moreover, for clarity
of description, we denote by L(S) the sorted list of the suffixes in S, although
we do not need it for our computation.

We call u-occurrence any substring u that occurs in any sequence of S.

Remark 1. Recall that ebwt(S) is implicitly associated with L(S) and all the
suffixes in S starting with the same substring u, with |u| = k, must be consecutive
entries in L(S) in the range [h, j]. Moreover, lcp[i] ≥ k for i = h + 1, . . . , j and
the symbols of S that are followed by u-occurrences coincide with ebwt[h, j].

Remark 2. Let � be the total number of u-occurrences in S, with |u| = k, there
exist k − 1 substrings (i.e. all suffixes of u that are not equal to u) which appear
at least � times in S.

Example 3 (running example). Let S = {S1 = ACGTCGCATTAA,S2 =
CGTCACATNA}. The substring CGT appears exactly once in both sequences.
The two suffixes of S1 and S2 starting with CGT -occurrences occupy consecutive
positions, precisely 14 and 15 in Fig. 1, and lcp[15] = 4. Moreover, according to
Remark 2 the number of GT -occurrences is 2 and the one of T -occurrences is 5.

3 Method

In this section, we introduce a new strategy to tackle the problem of metagenomic
classification that is assembly- and alignment-free, not based on k-mer, and uses
a little amount of memory.

We suppose that S = {S1, . . . , Sm} is a collection of biological sequences
comprising r reads and g genomes, where m = r + g. More in details, Si ∈ S is
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index da(S) lcp(S) ebwt(S) L(S)
1 1 0 A $1
2 2 0 A $2
3 1 0 A A$1
4 2 1 N A$2
5 1 1 T AA$1
6 2 1 C ACATNA$2
7 1 2 $1 ACGTCGCATTAA$1
8 2 1 C ATNA$2
9 1 2 C ATTAA$1
10 2 0 T CACATNA$2
11 2 2 A CATNA$2
12 1 3 G CATTAA$1
13 1 1 T CGCATTAA$1
14 2 2 $2 CGTCACATNA$2
15 1 4 A CGTCGCATTAA$1
16 1 0 C GCATTAA$1
17 2 1 C GTCACATNA$2
18 1 3 C GTCGCATTAA$1
19 2 0 T NA$2
20 1 0 T TAA$1
21 2 1 G TCACATNA$2
22 1 2 G TCGCATTAA$1
23 2 1 A TNA$2
24 1 1 T TTAA$1

Fig. 1. The required data structures for our running example, where S is the set
{S1 = ACGTCGCATTAA,S2 = CGTCACATNA}

a read if 1 ≤ i ≤ r and Sj ∈ S is a genome if r + 1 ≤ j ≤ m. For simplicity, we
denote by R the subset of reads and by G the subset of genomes. Assume that
Σ is the biological alphabet of these sequences.

We introduce a method that classifies any read Si in R by assigning it to
a unique genome Sj ∈ G through reading in sequential way ebwt(S), da(S) and
lcp(S).

We define a notion of similarity between sequences that exploits the under-
lying properties of the eBWT: the clustering effect, i.e. the fact that this trans-
formation tends to group together symbols that occur in similar contexts in
the input string collection. Indeed, when applying eBWT to a collection, if a
substring u occurs in one or more sequences, then the suffixes of the collection
starting with u are likely to be close in the sorted list of suffixes. This implies
that the greater the number of substrings shared by two sequences is, the more
they are similar. Roughly speaking, we consider the symbols of S followed by a
same substring (i.e. context) that are clustered together in ebwt(S) and match
one-to-one the symbols belonging to R to the symbols belonging to G.

Our method works in three steps: (1) we detect and keep some blocks of
ebwt(S) in which the suffixes in L(S) share a common context of a minimum
length α, and to which sequences both in R and G belong; (2) we analyze these
interesting blocks in order to evaluate a degree of similarity between any read
and any genome in S; (3) we perform the read assignment: for every read in R,
either we retrieve the unique genome of belonging, or we report that it is not
possible to identify it.
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Build α-Clusters Collection—In step (1), inspired by Remark 1, we build a col-
lection Cα of blocks in ebwt(S), which are delimited by pairs of indices called
α-clusters, that are associated with LCP-values exceeding a threshold value α.

Definition 4. Let α be a positive integer, lcp[1, N + 1] be the LCP-array and
da[1, N ] the document array associated with ebwt[1, N ]. An α-cluster of ebwt(S)
of size pE − pS + 1 is any pair of indices (pS, pE) in [1, N ] such that

• lcp[pS] < α, and lcp[pE + 1] < α,
• lcp[i] ≥ α, for every pS < i ≤ pE,
• there exist two indices s, t, pS ≤ s, t ≤ pE, such that da[s] ≤ r and da[t] > r,
where r is the total number of reads in S.

Example 5 (running example). For α = 2, the set C2 of 2-clusters of the ebwt(S)
in Fig. 1 is C2 = {(6, 7), (8, 9), (10, 12), (13, 15), (17, 18), (21, 22)}.

In other words, we discard the blocks of ebwt(S) whose associated suffixes
do not share a prefix of length at least α. This step requires a sequential scan of
lcp(S) and da(S) allowing us to use only a small amount of memory to detect
α-clusters.

Remark 6. It is easy to see that we are computing the similarity between a read
Sj ∈ R and a genome Sk ∈ G by analyzing the entire set of sequences S, not only
the two sequences Sj and Sk. Indeed, let (pS, pE) be an α-cluster of ebwt(S) that
contains at least a symbol of Sj and at least a symbol of Sk. Other symbols that
belong to sequences in S apart from Sj and Sk may also appear in ebwt[pS, pE].
Nevertheless, we can implicitly get a new cluster (pS′, pE′) by deleting from the
ebwt(S) all symbols not belonging to Sj and Sk, and for the properties of the
LCP array, it is easy to verify that (pS′, pE′) forms an α-cluster.

Build Similarity Arrays—During the second step, we refine each α-cluster of the
ebwt(S) by splitting it according to its symbols, and then we measure the degree
of similarity between the sequences in R and the genomes in G.

We split the alphabet Σ of S in two subsets. We include the DNA bases in
Σ′ = {A,C,G, T} and the end-marker symbols, the (rare) occurrences of N and
other degenerate base symbols (see IUPAC nomenclature) in Σ′′ = Σ \Σ′ ∪{$}.

Definition 7. Let a be any symbol in Σ′. The a-refinement of an α-cluster
(pS, pE) of ebwt(S) is the set of indices {j1, . . . , jq} in the range [pS, pE], such
that ebwt[j�] = a, for any 1 ≤ � ≤ q.

Example 8 (running example). The C-refinement of the cluster (6, 7) ∈ C2 is
the singleton {6}, while the a-refinement, for any a ∈ {A,G, T}, is the empty
set, since neither A nor G nor T appear in ebwt[8, 9]. On the other hand, the
C-refinement of the cluster (8, 9) ∈ C2 is the set {8, 9}.

Now, we define a similarity between two sequences Sj , Sk ∈ S by using the
notion of α-cluster and a-refinement.
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Definition 9. Let Cα be the set of all the α-clusters associated with ebwt(S).
We define the α-similarity between two sequences Sj ∈ R and Sk ∈ G as the
quantity Sα(Sj , Sk) =

∑
x∈Cα

Qj,k(x), where

Qj,k(x) =
∑

a∈Σ′
min

(
n(j,x,a), n(k,x,a)

)
, (1)

with n(j,x,a) (resp. n(k,x,a)) being the number of symbols belonging to Sj (resp.
Sk) in the a-refinement of the α-cluster x.

Intuitively, during the computation of our measure, we count the symbols of
each read that we can associate with the same symbols of each genome in the α-
cluster, or vice versa. In particular, if the symbol belongs to Σ′, we associate the
nucleotide of a read in R with the exact nucleotide of a genome in G. Whereas
if the symbol belongs to Σ′′, we consider it as placeholder, in the sense that we
associate it with any nucleotide of the sequence of the other collection in order
to maximize the quantity Qi,j(x) in Eq. (1) (see Example 10 below).

More precisely, let m(j,x) (resp. m(k,x)) be the number of Σ′′-symbols belong-
ing to Sj (resp. Sk) and appearing in an α-cluster x. For any a ∈ Σ′, if
|n(j,x,a) − n(k,x,a)| > 0 (i.e. the minimum between the number of a-symbols
of Sj appearing in x and the number of a-symbols of Sk appearing in x can be
increased), then we convert some placeholders to a-symbols and decrease the
quantities m(j,x) and m(k,x) accordingly. Note that the symbol a ∈ Σ′ to which
we convert any placeholder symbol appearing in x is unique.

Furthermore, if nj (resp. nk) is the length of Sj (resp. Sk), then the quantity
Sα(Sj , Sk) ranges between 0 and min(nj , nk)+1−α. We can normalize dividing
by min(nj , nk) + 1 − α, as to obtain a similarity value within the range [0, 1].

Example 10 (running example). The 2-similarity between S1 and S2 is given by
S2(S1, S2) = 1 + 1 + 0 + 1 + 1 + 1 = 5, by setting $1 = C and $2 = T , and by
normalizing S2(S1, S2)/9 = 0, 56. On the other hand, for α = 3, the normalized
similarity S3(S1, S2) is equal to 0, 25 if and only if $2 = A.

Concerning the metagenome analysis and the set S, we build a set of similar-
ity arrays {Sim1, . . . , Simg}. More precisely, for each genome Sk ∈ G, we define
the array Simk−r of length r, whose entry Simk−r[j] stores the normalized
similarity value Sα(Sj , Sk), for every Sj ∈ R.

In order to use only a sequential scan of ebwt(S) and da(S), we analyze
the α-clusters in Cα one by one through |Cα| iterations. At each iteration, we
consider an α-cluster x and we evaluate the quantities Qj,k(x) of Eq. (1), for
every index j ≤ r and k > r appearing in x, maximizing them by means of
placeholder symbols (if there are any). Then, we update each corresponding
entry Simk−r[j] by adding the quantity Qj,k(x).

Finally, once all the α-clusters in Cα have been examined, we normalize each
entry of {Sim1, . . . , Simg} completing the construction of the similarity arrays.

Classification—The last step consists in assigning a unique provenance to any
read Sj (j ≤ r) with respect to the normalized values Sα(Sj , Sk), r < k ≤ r +g.
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For every j ≤ r, we compute the set I of indices q such that the nor-
malized similarity Sα(Sj , Sq) is close to the maximum normalized similarity
M = maxi Sα(Sj , Si), i.e.

Sα(Sj , Sq) ∼ M, for all q ∈ I. (2)

Moreover, in order to control the assessment score, we set a threshold value β
(0 ≤ β < 1) that the maximum value M of Eq. (2) has to exceed in order to
classify the read Sj with respect to I.

We assign the read Sj (or its reverse complement) to Sq if q ∈ I, |I| = 1
and Sα(Sj , Sq) > β. Whereas, the read Sj is said to be not classified if
maxi Sα(Sj , Si) ≤ β. Finally, the read classification of Sj is said to be ambigu-
ous if Sα(Sj , Sq) > β and |I| > 1. In the last case, if our strategy is used for the
analysis of a paired-end collection, we use the sum of the assignment scores of
the individual mates and assign the read to the genome that obtains the maxi-
mum score. Note that if more than one genome obtains the maximum score, we
could classify the read at higher taxonomic ranks.

4 Results

In this section we evaluate our alignment-free strategy against other tools. We
choose two tools: the first is alignment-free and is based on the use of k-mers,
and the second is based on a read-mapping strategy. To assess the performance
of our sequence analysis method, we have implemented a prototype C++ tool,
named LightMetaEbwt1.

A recent evaluation of the state-of-the-art tools for metagenome classifica-
tion [13] presents the most widely used tools tested on complex and realistic
datasets which have been designed ad hoc for this analysis2. According to this
benchmarking analysis, kraken [30] and CLARK [25] result to be top-performing
tools in terms of both similarity to the correct answer and the fraction of reads
classified [13]. Note that both tools are k-mer based. However, for our evalua-
tion, we selected the new version of CLARK, called CLARK-S [24], that uses
spaced k-mers rather than simple k-mers, and achieves higher sensitivity than
both CLARK and kraken, while maintaining high precision. Nevertheless, the
tool CLARK-S, as well as CLARK and kraken, is extremely memory-consuming,
and the results obtained by running its lightweight version CLARK-l are indi-
cated to be a “draft, or first order approximation” of those obtained by running
CLARK or CLARK-S.

We also compare our results with a recent metagenomics classifier, named
Centrifuge [11]. It adapts the data structures of read-mapping algorithms based
on the BWT and the FM-index [8], such as Bowtie [12], which provide very fast
alignment with a relatively small memory footprint. We observe that Light-
MetaEbwt, unlike Centrifuge, processes all reads at the same time.

1 https://github.com/veronicaguerrini/LightMetaEbwt.
2 http://www.gardner-binflab.org/our research/.

https://github.com/veronicaguerrini/LightMetaEbwt
http://www.gardner-binflab.org/our_research/
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In order to guarantee a fair evaluation, we use the custom reference database
for the three tools. Notice that a like-for-like comparison on the time-consuming
between LightMetaEbwt, CLARK-S and Cenfrifuge is not possible, since
CLARK-S and Centrifuge are multi-thread and our tool is currently able to
use one core only. In order to run CLARK-S, we use a machine with 128 GB
of RAM. All tests were done on a DELL PowerEdge R630 machine, 24-core
machine with Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40 GHz, with 128 GB of
shared memory, used in not exclusive mode. The system is Ubuntu 14.04.2 LTS.

Dataset Description. The reference database G we use for our experiments com-
prises 930 genomes from 686 species belonging to 17 phyla as indicated in [13].

We perform validation of our approach by using two sets of metagenomes
among those provided by Lindgreen et al. [13]: the two datasets of paired end
reads setA2 and setB2 reproduce the size, complexity and characteristics of real
metagenomic samples containing around 20 millions of sequences of length 100
belonging to R. Some phyla are included in equal proportions, whereas some
others vary more substantially between the two sets.

Moreover, as to test the reliability of the tools, each dataset includes a sub-
set of simulated negative control sequences to mimic sequences from “unknown”
organisms (i.e. their genomes are not present in the reference database) that are
likely to appear in metagenome samples – see [13] for further details. Each of
these negative control datasets, called setA2 Ran and setB2 Ran in our experi-
ments, includes around 5 million of random shuffled reads.

We precise that the original datasets, downloadable from [13], are not exactly
the datasets setA2 and setB2 we use for our evaluations3. In fact, we first removed
a group of reads associated with the phylum of Eukaryotes whose species prove-
nance was not specified in [13]. Second, since we use a custom database and
CLARK-S downloads up-to-date taxonomy data (such as taxonomy id, or acces-
sion numbers) from the NCBI website ignoring expiring entries, we preferred not
to include in sets setA2 and setB2 a group of reads associated with 3 genomes
whose entries in the NCBI database have been indicated as obsolete.

Preprocessing Step. This task for our tool can be achieved using, for example,
BCR [5], Egsa [16], gsacak [15], GAP [7] or eGAP [6]. As the set G of genomes is
the same for each experiment, we can build the data structures of G only once,
by using GAP4. Then we can use BCR5 (it is a tool for very large collection of
short reads) for building the data structures for R and use eGAP6 for merging
them obtaining the data structures for the entire collection S. On the other hand,
exploiting the mathematical properties of the permutation associated with the
eBWT and LCP array, by using BCR [2, Remark 3.6], [5], we can update the
data structures of G (without constructing the BWT from scratch) in order to
obtain the data structures for S. To find the best method for building our data
structures is a non-trivial problem and it is not in the aim of this paper.
3 https://github.com/veronicaguerrini/LightMetaEbwt/tree/master/Datasets.
4 http://people.unipmn.it/manzini/gap.
5 https://github.com/giovannarosone/BCR LCP GSA.
6 https://github.com/felipelouza/egap.

https://github.com/veronicaguerrini/LightMetaEbwt/tree/master/Datasets
http://people.unipmn.it/manzini/gap
https://github.com/giovannarosone/BCR_LCP_GSA
https://github.com/felipelouza/egap
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Table 1. Results of metagenome analysis at species level of setA2 and setB2 for positive
control, and setA2 Ran and setB2 Ran for negative control. Best scores are in bold

REAL CLARK-S

highconfidence

LightMetaEbwt

α 16 β 0.25

LightMetaEbwt

α 16 β 0.35

Centrifuge

min-hitlen 16

Centrifuge

min-hitlen 22

setA2

TP 21,461,160 19,789,944 19,908,394 19,815,751 20,062,940 19,897,787

FP 0 187,386 37,232 34,408 485,353 68,722

FN 0 1,483,830 1,515,534 1,611,001 912,867 1,494,651

SEN (%) 100.000 93.025 92.926 92.481 95.648 93.013

PREC (%) 100.000 99.062 99.813 99.827 97.638 99.656

F1 (%) 100.000 95.949 96.247 96.014 96.633 96.220

setB2

TP 20,249,373 18,644,316 18,922,266 18,819,348 18,913,373 18,766,021

FP 0 167,709 73,208 68,154 450,209 58,766

FN 0 1,437,348 1,253,899 1,361,871 885,791 1,424,586

SEN (%) 100.000 92.842 93.785 93.251 95.526 92.944

PREC (%) 100.000 99.109 99.615 99.639 97.675 99.688

F1 (%) 100.000 95.873 96.612 96.340 96.589 96.198

setA2 Ran

TN 5,726,358 5,726,336 5,726,294 5,726,357 150,971 5,712,085

FP 0 22 64 1 5,575,387 14,273

SPEC (%) 100.00 99.99 99.99 100.00 2.64 99.75

setB2 Ran

TN 5,406,659 5,406,642 5,406,601 5,406,658 141,994 5,393,260

FP 0 17 58 1 5,264,665 13,399

SPEC (%) 100.00 99.99 99.99 100.00 2.63 99.75

Validation Step. As the provenance of simulated reads is known, we can set TP as
the number of reads correctly classified (i.e. assigned to their right provenance),
FP as the number of reads erroneously classified, and FN as the number of reads
unassigned, from which we can calculate the quality metrics: sensitivity SEN =

TP
TP+FN , precision PREC = TP

TP+FP , and F1 score F1 = 2TP
2TP+FP+FN . In these

experiments, we do not handle the reads classified as ambiguous or assigned to
taxonomic level higher than species (i.e. more species could be assigned to them),
and we count them among unclassified reads in FN . For simulated negative
control sequences that do not exist in any known species, we can set TN as
the number of random reads that are not mapped to any genome and FP as
the number of random reads that are erroneously mapped to some genome, and
calculate the specificity SPEC = TN

TN+FP .

Experiments. Our tool is able to classify the reads to several taxonomic levels
such as genomes, species or phylum. For the experiments reported in Table 1, we
choose a deep taxonomic level, i.e. we classify each read to the species level.

CLARK-S runs with default values and the results are filtered by using the
recommended option --highconfidence (e.g., assignment with confidence score
<0.75 and gamma score <0.03 are discarded).

For LightMetaEbwt, we set the minimum length of the common context
α = 16, since the length of each paired end read is 100, and provide results for
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minimum similarity scores β = 0.25 and β = 0.35. Our similarity score ranges
between 0 and 1: clearly the greater the value is, the higher the read similarity is.
Thus, for β = 0.25 the sensitivity increases and the precision slightly decreases.

Centrifuge begins with a short exact match (16-bp minimum) and extends
the match as far as possible. Based on the exact matches found in the read and
its reverse complement, Centrifuge classifies each read using only those mappings
with at least one match of k bases. This parameter k (named --min-hitlen) is
comparable with α used in our tool. Hence, we perform a first experiment where
we set it to 16 and a second experiment to 22 (default value). For both setA2 and
setB2, the highest sensitivity achieved is given by choosing --min-hitlen=16.
Nevertheless, for --min-hitlen=16 such a higher sensitivity alters the correct
metagenomic classification as the percentage of random shuffled reads classified
(i.e. the specificity) dramatically decreases up to 2.63%. The higher sensitiv-
ity for --min-hitlen=16 increases the F1 score, which is the harmonic mean
of precision and sensitivity. In fact, for setA2 the best F1 score is obtained by
Centrifuge for --min-hitlen=16 followed by LightMetaEbwt with β =0.25.
Further experiments with β = 0.1 show that the F1 score obtained by Light-
MetaEbwt increases to 97.1% at the cost of a slightly low specificity (98.4%).

Without considering the pre-processing steps, we observe that the RAM
usage of our tool (by using a semi-external memory approach) is about 17–
18 GB for setA2 and setB2 and about 9–10 GB for setA2 Ran and setB2 Ran.
CLARK-S uses about 120 GB for any dataset, whereas Centrifuge uses less than
2 GB. Moreover, we observe that our method scans sequentially the required
data structures, so that we could analyze unknown sequences of large collections
in external memory by reducing the internal memory usage to a minimum. We
have also observed that our tool is slower than the other two tools, but a more
engineered implementation of our algorithm would improve our performance in
terms of time and space, that we leave as further work.

Overall accuracy for the three tools was very similar, but the highest precision
(keeping high sensitivity) values are obtained by our tool even in the random
shuffled samples (setA2 Ran and setB2 Ran).

5 Conclusions and Discussion

In this paper, we present a versatile, alignment-free, lightweight method that by
sequentially scanning some data structures eBWT, LCP and DA array allows
us to identify the genome to which each read belongs. We focused the attention
on species level classifications, but LightMetaEbwt can also work at higher
taxonomic levels such as genus, family, class or phylum. Preliminary experiments
show that the relative phylum abundance estimated meets the real dataset com-
position with very high precision. For instance, we obtain only 31, 666 ambiguous
reads and 868, 456 not classified reads and we correctly classify 19, 349, 193 in
setB2.

Furthermore, we have considered the sequences classified as ambiguous as
those not classified, but we leave a more in-depth analysis of the ambiguous
reads for a further work, for instance using our tool with stronger parameters.



122 V. Guerrini and G. Rosone

The idea of building the clusters of the eBWT with/without LCP is not new
(see [17,18]). However, we want to specify that our notion differs from the notion
of LCP-interval in the literature [1]: indeed, a LCP-interval is a particular α-
cluster (pS, pE) in which at least an index i, pS < i ≤ pE, is equal to α. It is well
worth mentioning also the difference with the strategies used in [10,27], where the
partitions of ebwt(S) determined by LCP-values are filtered according to their
size. Here, we do not impose any constraint on the α-cluster size. Moreover, to
the best of our knowledge, it is the first time that the notion of cluster is used
on metagenomic classification problems.

Furthermore, it is interesting to note that the data structures used by our
strategy are intrinsically dynamic: the collection S can be modified by inserting
or removing sequences [2, Remark 3.6], [5] exploiting the mathematical properties
of the permutation associated with the eBWT and LCP array (for instance by
using BCR), allowing us to modify α-clusters accordingly. On the other hand,
one can build and store the data structures for the genome database and then,
for each new experiment, build the data structures for the read collection. To
merge them and obtain ebwt(S), da(S) and lcp(S), one could use eGAP.

Finally, note that LightMetaEbwt allows a certain degree of paralleliza-
tion. The analysis of the clusters is independent of each other and is thus easily
parallelizable. This allows us to use multiple processors on multi-core servers
that are commonplace nowadays while keeping the computational requirements
low. Moreover, we note that in the recent literature there are several papers with
the aim of introducing new lightweight and parallel computational strategies for
building the data structures we use in our tool, for instance see [3].

In conclusion, we believe that our tool can be useful in a variety of applica-
tions in metagenomics and genomics.
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Abstract. This work shows how to parallelize multi K de Bruijn graph
genome assembly simultaneously, removing the bottleneck of iterative
multi K assembly. The expected execution time on a single node with 40
cores is variable, with the average execution time for the entire pipeline
over 16 datasets tested being 1613 s for SPAdes vs. 1581 s for MULKSG,
with the MULKSG graph creation and traversal averaging 15% faster
than SPAdes. We implement a multi-node implementation for the graph
creation and traversal portions of the assembly, showing the speedups in
Fig. 4. We show that when implemented correctly with correction phases
performed per graph in parallel, the expected outcome is very close to
the original method, in some cases having less errors while keeping the
same NGA50 and genome coverage %. We show this works in practice,
implementing with the popular genome assembler SPAdes. Further, this
algorithmic change gets rid of the single node sequential bottleneck on
multi K genome assembly, allowing for the use of parallel error correction,
graph building, graph correction, and graph traversal. We implement a
parallel version of the assembly and show the statistics are the same as
when run on a single node. The code is open source and can be found at
https://github.com/cwright7101/mulksg.

Keywords: Genome assembly · Iterative assembly ·
Parallel de Bruijn graph · Multi K assembly

1 Introduction

Genome assembly is a widely studied field in bioinformatics, with algorithms and
techniques evolving and changing as sequencing technology changes. Sequencing
will produce raw strings of characters (base pairs or bp) called sequences or reads.
These sequences range from hundreds of base pairs per sequence, to thousands or
millions of bp per sequence. Genome assembly attempts to put these sequences
in the right order, overlapping them to generate the “real” genome sequence.
There is still no optimal algorithm or tool to assemble every genome.

Even small changes in assembly and error correction algorithms can have
an enormous impact on the final output data. Making the data more accurate,
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even if only correcting a few bases in every sequence in a database would be a
huge win for current and future research. This leads to the motivation for the
paper—where errors are and how to get rid of them while maintaining execution
time. The most popular techniques for genome assembly include Overlap Layout
Consensus (OLC) [26,29,34] and de Bruijn Graph(DBG) [25,30,31,33,35–37].
Both of these techniques will build a graph from the sequences, but their effi-
ciency and accuracy are used in different situations. Both of these techniques
are discussed in Sect. 2.

During first generation sequencing, OLC was the major assembly technique.
In the mid 2000s, Next Generation Sequencing (NGS), commonly referred to
as second generation sequencing, emerged. This technology produces sequences
of 100–300 bp long, with millions or billions of reads for the entire genome.
Because of space and time complexity of OLC, the DBG algorithm catapulted
to popularity.

The DBG approach is faster and uses much less memory than the OLC app-
roach. The problem is it is not as accurate. This motivated iteratively building
different sized DBG, using smaller DBGs to build more accurate larger DBGs by
combining the results [35]. Unfortunately, as more sizes of DBG are used during
assembly, there is a linear increase in the amount of time taken for assembly. This
limited the number of DBGs used, and hence the ultimate accuracy, irrespective
of the amount of resources available.

The main insight of this work is that we show how to get rid of the sequential
bottleneck that is inherent in iterative DBG assembly. Traditional DBGs take the
input reads and split them into overlapping Kmers, or K-length keys/sub-strings.
These keys are inserted into a graph as nodes, where Kmers are paired with their
reverse complement in a single node. Each node inserted also keeps track of which
nodes it is paired with in the paired end reads. Edges connect nodes when the
two node keys are sequential in an input read, meaning k− 1 characters are the
same in the two keys with the k + 1 characters spanning the two reads existing
in the input read. For iterative assembly a first graph, with small k1, is built,
traversed to generate higher-quality k2-mers (with k2 > k1) than would have
existed in the original input. Then another graph is built from these derived
k2-mers, and traversed to produce new, larger Kmers. This process continues for
increasing values of k until the desired final DBG is built. Our algorithm removes
this iteration and instead performs a 2 phase building/traversal. We build k− 1
graphs in parallel, do the error correction and graph traversal to generate contigs.
These contigs are passed to a final stage of building and traversal.

This is useful for accurate and fast assembly as the amount of genomic data
generated is increasing at an exponential rate. With some sequencing centers
generating 10–30 TB of data each day, the algorithms and stages of bioinformat-
ics need to be parallel, efficient, and accurate. For a large portion of research
areas, assembly gives the final sequences that are used downstream, and hence is
the focus of this work. The paper first gives some background on genome assem-
bly and techniques followed by a description of the implementation. Evaluation,
related work and future work are presented before the conclusion.
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2 Background

Current assembly tools can be categorized in a myriad of different ways. The tools
could be categorized by the input data length (short read, long read, hybrid), the
number of Kmer (K) values used during assembly (a single K value, or multiple
K values), the algorithm type (overlap layout consensus, de Bruijn graph), or
they can be categorize by the level of parallelism (single-thread, multi-thread,
multi-node).

2.1 Overlap Layout Consensus

OLC will build an overlap graph, comparing all the different reads to each other
and “overlap” the reads – pairing similar parts of different reads together. Dif-
ferent techniques of overlap might use suffix trees, dynamic programming, FM
index, or inverted sub-string indexes. Common techniques to cut down on the
time for this step include pruning the comparison space by only looking for over-
laps where the reads have one or more sub-strings of some k length in common.

After building the overlap graph, OLC will then “layout” the graph, bundling
the overlaps together and send these bundles to the “consensus” or error correc-
tion stage of assembly. The error correction or consensus then will pick the most
likely sequence for each bundle, generating the output contigs. To pick these
“most likely” sequences, usually a count or coverage statistic will be used.

While OLC is an accurate and matured technique, other approaches were
searched for because of the long execution time and the large amount of memory
needed during the overlap stage of assembly.

2.2 de Bruijn Graph Assembly

In de Bruijn Graph Assembly, the input reads are usually corrected (base cor-
rection and/or trimming). Next the graph is built using Kmers as mentioned in
Sect. 1. In the DBG, a given node has a constant finite limit to the number of
nodes that it has edges to. This graph then goes through simple error correction,
usually based on frequency counts of the keys for each node. Next, paths in the
graph that are unambiguous (in and out degree of the node are both equal to 1),
are merged into a single node. Next, more error correction is done, usually tip
clipping and bulge removal/co-removal. Finally, the graph is traversed to create
contiguous sequences, or contigs.

During traversal, paired-end information is used to help determine which
path to traverse in the graph. Some algorithms will stop at some ambiguities,
where others are more aggressive and join the sequences together. Once the
contigs are generated, a scaffolding phase is employed, where libraries of mate-
pair reads are used to put the contigs into the right order and orientation. Some
algorithms then do a post processing stage where polishing and error correction
is done again.

In current multiple K value algorithms, the algorithm is iterative, starting
at the lowest value of K, and increasing to the highest K. The process begins in
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the same manner as the single K value case, but after generating contigs for the
lowest value K, instead of scaffolding, the algorithm takes the contigs and uses
those as inputs to build the next biggest K value graph along with the input
reads. The algorithm continues iteratively until it reaches the highest value K,
then the algorithm continues with scaffolding as in the single K value case.

Popular multi K iterative algorithms include SPAdes [25], SOAPdenovo2
[31], IDBA-UD [35], MEGAHIT [30], and ScalaDBG [33]. SPAdes, IDBA-UD,
SOAPdenovo2, and MEGAHIT are single node solutions, parallelized onto mul-
tiple cores on a single machine, with MEGAHIT available to use a GPU (CUDA)
if available on the machine. ScalaDBG is either a single node or multi-node solu-
tion. The accuracy of ScalaDBG is similar to IDBA-UD as that is the backbone
of the program. The ScalaDBG solution still has a serial bottleneck, as there are
at least Log(K) levels of patching required in their algorithm, with the accuracy
being hit or miss depending on the genome assembled.

With de Bruijn graph algorithms being prominent for second generation
sequencing because of the accuracy, speed and memory usage, this work focuses
on algorithms that use de Bruijn graph techniques, and further categorizes by
algorithms that use a single K value versus multiple K values. As seen in SPAdes
[25] and IDBA-UD [35], using multiple K values usually gives better accuracy
than other techniques. This is intuitive, as one would expect that as more infor-
mation is used, there would be a better assembly.

2.3 Existing Solutions

In de Bruijn graph algorithms, to improve on accuracy means improving the
correction phase and how this data propagates. For IDBA-UD, MEGAHIT, and
ScalaDBG, they use correction after the graph creation, assuming that read
correction has already been performed. For SOAPdenovo2 and SPAdes, there is
a pre-graph correction of the reads, even if the reads have been pre-processed,
followed by graph creation and more error correction.

In preliminary discovery, using the newest available version of QUAST
(v5.0.2) [28] to compare the multi-K assemblers on the GAGE-B [32] datasets,
SPAdes was almost always the best in terms of genome fraction, N50, NG50, and
NGA50, and all tools were relatively close in terms of miss-assemblies. SPAdes
is also more well documented, has more recent development work, and seems
to be the most widely used tool of the above mentioned. MEGAHIT focuses on
metagenomes, whereas the others work on regular or metagenomes, hence this
work focused on how SPAdes worked and reduced errors.

In SPAdes, the iterative procedure of building the de Bruijn/assembly graphs,
is to start at the lowest K value, generate contigs, then use those contigs along
with the reads to generate the next highest K value de Bruijn graph. They set
the coverage for the contigs to be 1, so that the contigs in the next phase can
be corrected with high coverage reads. With this approach there is a chance you
could possibly add some contigs that were not connected in the reads, adding
more errors, or perhaps they make the right connection giving you the correct
contig. But, if there is an error, this error is propagated through each K value de
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Bruijn graph, exacerbating the errors and propagating the error through mul-
tiple portions of the assembly process. For example, if there are two connected
components in a higher K value graph that are connected and merged using the
lower K value graph without creating any other branches, the component merg-
ing will be propagated through each subsequent K value. However, by using all of
the information at the same time, it is possible that the mistake will be avoided
because there will be multiple contigs that generate a branching point between
the connected components and the algorithm will not merge the components
together.

3 Algorithm and Implementation

Instead of iteratively building each K value graph, our approach builds all lower
value K graphs simultaneously in parallel, then does correction on each of those
graphs in parallel before generating contigs for each of the K graphs. This ensures
that any error that would occur will not propagate through K different de Bruijn
graphs/phases. Then the final de Bruijn graph is built with the highest value K
from the reads adding in the corrected contigs from the lower value K.

If an error would be caught in the original SPAdes pipeline, it should still be
caught in this pipeline, but now the algorithm is parallel. In our implementation
we reuse the backbone code for assembly using reads and extra contigs. It is
important to note that error correction must be performed for each K graph’s
contigs prior to using the contigs, as when we did not perform this step the
quality degraded as K increased.

We implement the idea using SPAdes as a backbone. SPAdes is written in
Python and C++. The C++ is used for most of the compute intensive oper-
ations, using Python as a wrapper to call different functions that are highly
optimized for speed and memory written in C++. Given the existing code, the
easiest solution was to use mpi4py [27] for multi node parallelization, as the
main logic of iterating multi K values is in the Python portion of SPAdes. We
note that read error correction, scaffolding and polishing have been parallelized,
hence we focus on the multi-K graph creation, traversal, and contig generation
phase, reusing a single node solution for read correction, scaffolding and pol-
ishing. In our evaluation we show numbers for the entire pipeline rather than
just for the assembly portion, even though we are comparing the effectiveness of
the assembly technique. For graph creation and traversal execution times alone,
they can be seen in Fig. 3.

Using mpi4py, we take out the iterative portion of the code, instead paral-
lelizing all the graph building, either on a single node or if available on multiple
nodes. Our initial guess was that this approach would use a lot more memory,
but in reality this portion takes much less memory than the error correction, so
even on a single node the max RAM usage is almost identical to the original
code (within 2 MB of memory usage on datasets tested).

Given that more K values lead to a better assembly, when the program is
using multiple nodes, we try to maximize the usage of the resources for a given
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run, adding more K values if a node is idle so that during the first parallel
graph building there aren’t idle nodes. SPAdes will automatically decide the K
values during assembly if a user does not specify specific values. If the program
is run with 5 nodes, but the default SPAdes would only use 3 K values, we would
increase the number of K values used, utilizing all 5 nodes to build a K graph.
This allows for more utilization of the compute resources while improving the
accuracy of the final assembly.

4 Evaluation

Datasets used are shown in Tables 1 and 2. Table 1 shows the datasets that were
used in the GAGE-B experiments [32]. Table 2 has other datasets from NCBI
where there is a published reference to compare against when using QUAST
v5.0.2. Each table specifies the organism name, the type of technology used to
sequence the organism, the website where the raw reads and reference genome
were downloaded from, the read length in base pairs, the reference genome length
in base pairs, the coverage, and library type. In Table 2, for the source dataset we
show the run number from the NCBI SRA database. While we have experiments
from single read libraries and mate pair libraries, we do not see a significant
difference in the difference for execution time or quality when comparing to
SPAdes v3.13.0 in the same scenario.

Experiments were run on a desktop computer, a single server node and on a
multi-node cluster. The desktop has a 1 TB hard disk drive, 16 GB of RAM and
an Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50 GHz, which has 4 cores. The single
node has 750 GB of RAM, 2 NUMA cores with 20 cores each using the Intel(R)
Xeon(R) CPU E5-2698 v4 @ 2.20 GHz. The multi-node setup has 244 GB hard
disk drive per node, 2 eight-core sockets for a total of 16 Intel Xeon cores per
node with 128 GB of memory yielding 8 GB of memory per core.

Experiments were run using the ‘-t’ option specifying the number of threads
to be used when executing SPAdes version 3.13.0. We used 16, 32, and 40 threads
on the single server node, 4, 8, and 16 threads on the desktop node, and 16
threads on the multi-node. The lowest execution time among all options were
used for the figures. On the single node server, SPAdes ran faster with 32 threads
than 40 threads, presumably because of the parallel overhead vs. the amount of
available parallel work. MULKSG used all available threads for each architecture.

There are various tools that have parallelized read error correction and scaf-
folding, but SPAdes only has these phases able to utilize multiple threads on a
single node. To ensure that our QUAST statistics did not compare error cor-
rection techniques, but rather the assembly technique, MULKSG kept the error
correction, scaffolding and polishing that SPAdes implements. This means that
we do not use a multi-node parallel solution for these phases when we report
our timings, and the timing that is reported includes the execution time for
the entire pipeline. We would therefore expect that our parallel implementation
would not scale linearly because of Amdahl’s law, but would scale only for the
graph building and contig generation portions. Figure 1 shows execution time on
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Table 1. GAGE-B datasets

Dataset Sequence

technology

Dataset

source

Reference

source

Read

length (bp)

Reference

length (bp)

Coverage Library

Aeromonas hydrophila HiSeq [1] [2] 101 4744448 250X Single read

Bacillus cereus HiSeq [3] [4] 101 5224283 250X Single read

Bacillus cereus MiSeq [5] [4] 250 5224283 100X Single read

Bacteroides fragilis HiSeq [6] [7] 101 5373121 250X Single read

Myobacterium abscessus HiSeq [8] [9] 100 23319 115X Single read

Myobacterium abscessus MiSeq [10] [9] 251 23319 100X Single read

Rhodobacter sphaeroides HiSeq [11] [12] 101 114179 210X Single read

Rhodobacter sphaeroides MiSeq [13] [12] 251 114179 100X Single read

Staphylococcus aureus HiSeq [14] [15] 101 27041 250X Single read

Vibrio cholerae HiSeq [16] [17] 100 2961149 110X Single read

Vibrio cholerae MiSeq [18] [17] 251 2961149 100X Single read

Xanthomonas axonopodix HiSeq [19] [20] 100 4967469 250X Single read

a single server node, and Fig. 4 shows execution times on a multi-node system.
We report the graph creation and traversal execution times in Fig. 3.

As can be seen in Fig. 1, MULKSG is faster than SPAdes on the server node
for 11 of the 16 datasets, very close on 3 of the datasets, and significantly slower
on 2 of the datasets. On a small desktop computer with only 4 cores, MULKSG
is slower than SPAdes as can be seen in Fig. 2. Memory usage is not reported
here as MULKSG and SPAdes on both the single server node and the desktop
experiments were within a few MB of memory usage at their peak usage. This
is because the memory usage is the highest when performing the read error
correction, not the graph creation or traversal.

We ran QUAST version 5.0.2 on the datasets, comparing the contigs and
scaffolds generated by both SPAdes and MULKSG. We would expect the results
to be very similar, as we use the same backbone for read error correction, traver-
sal and post traversal polishing. We do in fact see in Table 3 that the results are
almost identical, with there being a small amount of variation between SPAdes
and MULKSG. The datasets that saw the most variation were Rhodobacter
Sphaeroides MiSeq and Vibrio cholerae MiSeq. For Rhodobacter Sphaeroides,
MULKSG and SPAdes had the same value for largest contig, NG50, NG75,
but the largest alignment and NGA50 for MULKSG was 112704 versus 58318
for SPAdes, with MULKSG being a 93% improvement. For Vibrio cholerae,
MULKSG had a max contig length of 552381 vs. SPAdes where the max contig
length was 359056 (higher is better). This also affected the NGA50 and NGA75
(higher is better), with MULKSG being 33% higher when comparing scaffolds.
The LGAX statistics are also lower for MULKSG (lower is better for LGAX)
with other statistics being almost identical. For more statistics see Table 3.
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Table 2. Other test datasets

Dataset Sequence

technology

Dataset

source

Reference

source

Read length

(bp)

Reference

length (bp)

Coverage Library

Escherichia coli HiSeq 2500 SRR8405059 [21] 100 5437407 80X Mate

pair

Pseudomonas

aeruginosa

HiSeq X Ten SRR8377271 [22] 150 6264404 200X Mate

pair

Salmonella

enterica

MiSeq SRR8420088 [23] 251 4951383 150X Mate

pair

Staphylococcus

aureus

HiSeq 4000 SRR7748090 [24] 151 2821361 70X Mate

pair

Fig. 1. Execution time for SPAdes vs.
MULKSG for the entire pipeline run
time when running on 1 server node.

Fig. 2. Execution time for SPAdes and
MULKSG for the entire pipeline run on
a desktop computer.

Fig. 3. Execution time for SPAdes vs.
MULKSG for just the graph building
and traversal time when running on 1
server node.

Fig. 4. Execution time for SPAdes (1
node), MULKSG (1, 2, and 6 node).
Execution time includes the entire
pipeline.
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Table 3. Selected QUAST statistics

Assembly Largest contig NG50 NG75 LG50 LG75 # misassemblies Misassembled contigs length Genome fraction (%) Largest alignment NGA50 NGA75 LGA50 LGA75
A hydrophila HiSeq

spades ctg 1079605 656974 189819 3 7 6 366493 38.755 61358
mulksg ctg 1079605 656974 189819 3 7 6 366493 38.753 61358
spades scf 1079605 656974 491389 3 5 6 366493 38.682 61358
mulksg scf 1079605 656974 491389 3 5 6 366493 38.677 61358

B cereus HiSeq
spades ctg 605742 136462 68074 10 25 3 4422 5.06 30865
mulksg ctg 605742 136462 68074 10 25 3 4403 5.059 30865
spades scf 638900 136462 69136 9 23 3 4422 5.065 30865
mulksg scf 639472 136462 69136 9 23 3 4403 5.062 30865

B cereus MiSeq
spades ctg 676503 270560 136515 7 13 0 0 98.813 676503 270560 136515 7 13
mulksg ctg 676503 270560 136515 7 13 0 0 98.813 676503 270560 136515 7 13
spades scf 1202231 275327 196834 4 9 0 0 98.81 1202022 275327 196834 4 9
mulksg scf 1202231 275327 196834 4 9 0 0 98.81 1202022 275327 196834 4 9

B fragilis HiSeq
spades ctg 639080 157629 86927 9 20 98 4146068 80.292 189113 44793 13436 35 86
mulksg ctg 639080 157629 86927 9 20 98 4146068 80.292 189113 44793 13436 35 86
spades scf 639080 157629 89451 9 20 99 4276309 80.292 189113 44793 13436 35 86
mulksg scf 639080 157629 89451 9 20 99 4276309 80.292 189113 44793 13436 35 86

R sphaeroides HiSeq
spades ctg 292708 292708 292708 1 1 0 0 100 58318 58318 36015 1 2
mulksg ctg 292708 292708 292708 1 1 0 0 100 112704 112704 112704 1 1
spades scf 292708 292708 292708 1 1 0 0 100 58318 58318 36015 1 2
mulksg scf 292708 292708 292708 1 1 0 0 100 112704 112704 112704 1 1

R sphaeroides MiSeq
spades ctg 465389 465389 465389 1 1 0 0 100 112703 112703 112703 1 1
mulksg ctg 465389 465389 465389 1 1 0 0 100 112703 112703 112703 1 1
spades scf 510758 510758 510758 1 1 0 0 100 112703 112703 112703 1 1
mulksg scf 510758 510758 510758 1 1 0 0 100 112703 112703 112703 1 1

S aureus HiSeq
spades ctg 381434 381434 381434 1 1 0 0 31.897 4181
mulksg ctg 381434 381434 381434 1 1 0 0 31.897 4181
spades scf 381434 381434 381434 1 1 0 0 31.897 4181
mulksg scf 381434 381434 381434 1 1 0 0 31.897 4181

V cholerae HiSeq
spades ctg 382053 260649 192074 5 8 3 522287 98.282 382053 192074 110108 6 11
mulksg ctg 382053 260649 192074 5 8 2 516808 98.292 382053 192074 126528 6 11
spades scf 382053 260649 192074 5 8 3 523776 98.286 382053 192074 110108 6 11
mulksg scf 382053 260649 192074 5 8 2 516808 98.292 382053 192074 126528 6 11

V cholerae MiSeq
spades ctg 359056 220074 157031 6 10 1 155353 98.289 359056 215940 115075 6 11
mulksg ctg 552381 344139 229841 4 6 1 155353 98.29 536021 246267 151655 4 8
spades scf 384004 262473 216166 5 8 1 166802 98.284 383873 262398 115075 5 9
mulksg scf 573239 508069 350399 3 5 1 166802 98.288 573239 350300 229773 4 6

X axonopodis HiSeq
spades ctg 312314 117399 63515 15 29 36 2455242 53.67 93507 1733 192
mulksg ctg 312314 117399 63515 15 29 37 2496606 53.67 93507 1820 185
spades scf 353048 117399 63515 14 28 36 2455313 53.67 111601 1733 191
mulksg scf 353048 117399 63515 14 28 37 2496677 53.67 111601 1820 184

Escherichia coli
spades ctg 373767 135151 69187 12 26 69 3861998 82.008 237170 59215 19275 25 66
mulksg ctg 373767 135074 69187 12 26 69 3834370 82.013 237206 58620 19275 25 67
spades scf 373767 135151 69187 12 26 69 3862256 82.018 237170 59215 19275 25 65
mulksg scf 373767 135074 69187 12 26 69 3834628 82.017 237206 58620 19275 25 66

Pseudomonas aeruginosa
spades ctg 1090886 667609 503646 4 7 40 5316041 96.306 425815 116772 70078 16 32
mulksg ctg 1090886 667609 503646 4 7 40 5316041 96.307 425815 116772 70078 16 32
spades scf 1090886 836250 652214 4 6 40 5316075 96.309 425815 135454 78337 14 29
mulksg scf 1090886 836250 652214 4 6 40 5316075 96.311 425815 135454 78337 14 29

Salmonella enterica
spades ctg 705817 246935 124257 6 13 53 4233325 90.489 310029 89573 41866 16 36
mulksg ctg 705817 310911 124257 5 12 53 4232979 90.491 310029 95230 41866 15 35
spades scf 705817 433838 167721 5 10 53 4555297 90.496 405332 107332 43685 14 32
mulksg scf 705817 433838 167721 5 10 53 4554941 90.496 405330 107332 43685 14 32

Staphylococcus aureus
spades ctg 330561 147704 77668 7 14 52 2424627 87.995 162138 70097 21795 15 34
mulksg ctg 330561 147704 77668 7 14 52 2424627 87.995 162138 70097 21795 15 34
spades scf 362472 157943 90405 6 12 51 2390006 87.986 162138 72762 22092 14 31
mulksg scf 362472 157943 90405 6 12 51 2390006 87.986 162138 72762 22092 14 31

5 Related and Future Work

To our knowledge, the only multi K, multi-node de Bruijn graph assembly algo-
rithm is ScalaDBG, which uses IDBA-UD as a backbone. ScalaDBG algorithm
allows for parallel graph building, meaning the different K de Bruijn graphs are
created in parallel, but then there is a serial bottleneck portion where traversal
must be done on one graph (the lowest K value graph). The contigs generated
from this traversal is then passed to the next highest K value de Bruijn graph,
where the contigs are added in before the graph is traversed. The process con-
tinues until all K values have been used. When the contigs from one graph are
added to another graph, those contigs are treated as though they have high cov-
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erage, whereas this work gives the contigs generated from a traversal a coverage
of only 1, allowing for easier correction when there are errors.

IDBA-UD usually works by doing a local alignment and correction before
each new K value, but for ScalaDBG this was removed because of threading
dependencies that existed in IDBA-UD. This led to the need for the sequential
bottleneck mentioned which was used for a type of correction to achieve the same
amount of accuracy as the original IDBA-UD. When they patch existing graphs
with contigs using a binary tree log(K) patching approach, the accuracy was
worse, with the reasoning being there was no error correction performed between
patches. ScalaDBG at best has log(K) patching phases, whereas MULKSG has
2 graph building/traversal phases.

We realize that our solution would not quite be used as an end to end solution
at the moment, as we did not implement parallel read correction, scaffolding or
polishing. We also do not do a load balancing depending on the resources for a
single node, which is why with a small amount of resources on a single node our
algorithm is slower than SPAdes. The number of context switches is very large
when the amount of resources is scarce, hence the context switching increases
the execution time. We see this is potential for future work, either modifying
the SPAdes code for multi-node or taking an existing multi-node solution and
substituting those chunks of functionality in the SPAdes pipeline.

6 Conclusion

To keep up with the expanding amount of data generated, bioinformatics tools
are always trying to improve accuracy and speed. MULKSG is a new way to
assemble a genome, clearing the sequential bottleneck that occurs in iterative
multi K assembly. MULKSG breaks dependencies and allows for multi-node
parallel graph creation and traversal. We implement the algorithm using SPAdes
as a backbone, and show that run time can be decreased while keeping the same
assembly quality, in some cases improving quality while reducing errors.
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Abstract. An important problem in genome comparison is the genome
sorting problem, that is, the problem of finding a sequence of basic oper-
ations that transforms one genome into another whose length (possibly
weighted) equals the distance between them. These sequences are called
optimal sorting scenarios. However, there is usually a large number of
such scenarios, and a näıve algorithm is very likely to be biased towards
a specific type of scenario, impairing its usefulness in real-world appli-
cations. One way to go beyond the traditional sorting algorithms is to
explore all possible solutions, looking at all the optimal sorting scenarios
instead of just an arbitrary one. Another related approach is to analyze
all the intermediate genomes, that is, all the genomes that can occur
in an optimal sorting scenario. In this paper, we show how to count
the number of optimal sorting scenarios and the number of intermediate
genomes between any two given genomes, under the rank distance.
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1 Introduction

At a high level of abstraction, genomes can be represented as a list of blocks (that
can be genes, markers, or other syntenic regions), and their evolution can be
modeled by large-scale mutation events we call genome rearrangements. Differ-
ent genome rearrangement models define different events and costs (weights) for
them, and their most basic application is to determine the lowest cost required
to transform one genome into another. This is the genome distance problem.
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Although this definition does not require it, in this paper we make the assump-
tion that the genomes being considered have the same gene content. Conse-
quently, as the rearrangement events modeled here do not alter the content of
genomes, we do not model loss or duplication of blocks. Although there are mod-
els that include insertion and deletion events [3,5] and duplications [8], we do
not include them here, instead focusing only on events that alter the order of
the blocks.

Another fundamental problem that applies to a genome distance is to find
sequences of rearrangement operations with minimum cost. We call this the
genome sorting problem. However, a single arbitrary sequence of events among
many optimal ones is hardly representative of the evolutionary process, especially
considering that sorting algorithms might be biased towards certain kinds of
sorting sequences. On the other hand, listing all possible optimal scenarios is
not practical, because their number is simply too large.

A first step towards exploring the solution space of the genome sorting prob-
lem as a whole is to count the number of optimal sorting scenarios between two
given genomes. This can reveal helpful patterns in the optimal solutions. The
sorting scenario as a sequence of operations taking one genome into another is
not the only way to represent a solution to the sorting problem. Shao, Lin, and
Moret suggested a structure called the trajectory graph, which groups together
scenarios with commuting or non-interfering operations [20].

Larget, Kadane, and Simon enumerated possible inversion scenarios in cir-
cular unichromosomal genomes in order to compute probability distributions of
ancestral genome rearrangements [14]. For multi-chromosomal genomes, to the
best of our knowledge, the studies of the solution space of genome sorting have
been limited to the Double-Cut-and-Join (DCJ) [23] and the Single-Cut-or-Join
(SCJ) [9] distances. For the latter model, Miklós, Kiss, and Tannier showed how
to count optimal SCJ scenarios between two genomes [16]. In the DCJ model,
the problem becomes more complex due to the possibility of recombinations.
Braga and Stoye showed how to count optimal DCJ scenarios, with and with-
out recombination [4]. Ouangraoua and Bergeron also counted optimal scenarios
without recombination, and established bijections between these scenarios and
known combinatorial objects [17]. Feijão took these results one step further, and
showed how to count the intermediate genomes between two genomes and how
to use those to reconstruct ancestral genomes [7]. Here, we produce an analogous
set of results for the rank distance model [24] instead of the DCJ model.

The rank distance, introduced by Zanetti, Biller, and Meidanis [24] is based
on a representation of genomes using matrices. The rank distance is twice the
algebraic distance [10], and very close to the DCJ distance [10,23]. By using
the rank distance, we can add linear algebra tools to the traditional breakpoint
graph analysis techniques usually employed in rearrangement studies. The rank
distance is equivalent to the DCJ for genomes with the same free ends. One
advantage of the rank distance is that it ensures that there is no recombina-
tion while sorting. On the other hand, since the basic operations have different
weights, the scenarios have variable lengths, and this represents a challenge when
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counting all possible scenarios. Fortunately, we were able to overcome this diffi-
culty by adding an extra parameter in the recurrence relationship for the counts.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground concepts we use: the rank distance, its basic operations, and the multi-
genome breakpoint graph. In Sect. 3 we show how to count the number of opti-
mal scenarios between two genomes in the rank distance. In Sect. 4 we count the
number of intermediate genomes. In Sect. 5 we discuss our experiments on real
genomic data. Finally, we summarize our work in Sect. 6. Most proofs, details,
and extra material are contained in the Appendix (http://www.ic.unicamp.br/
%7Emeidanis/research/rear/).

2 Background

In this section we give the theoretical background needed to explore the solution
space in the next sections. First, we present the basic concepts of the rank dis-
tance model for comparing genomes. Next, we discuss the breakpoint graph and
how it relates to the rank distance. Finally, we show the three basic operations
necessary and sufficient for sorting genomes under the rank distance.

2.1 Genomes as Matrices and the Rank Distance

In this subsection we introduce our representation of genomes as matrices, the
rank distance, and its basic operations.

We define genomes as a collection of chromosomes, each of them a linear or
circular sequence of genes. A gene is a linear segment with two extremities: a tail
and a head. When two genes appear consecutively in a chromosome, we indicate
this fact by linking their closest extremities with an adjacency. Adjacencies are
thus unordered pairs of extremities. An extremity may not be involved in more
than one adjacency. If an extremity is not in any adjacency, it is called a free end.
A genome is completely characterized by its adjacencies and free ends. Figure 1
shows an example of a genome with three genes.

We can encode this representation of a genome into a matrix [24]. In this
paper we focus on comparing genomes with the same gene content. To represent
genomes with matrices, we first fix an ordering of all the extremities, and use this
ordering for the rows and the columns of a matrix. For instance, in Fig. 1, there
are three genes, a, b, and c, and the ordering is at, ah, bt, bh, ct, ch. After fixing
the order of the extremities (and hence the meaning of the rows and columns of
a matrix), we define the corresponding genome matrix as follows:

Aij =

{
1 if i �= j and i, j are adjacent inG, or i = j and i is a free end in G

0 otherwise

An example of a genome matrix can be seen in Fig. 1. These matrices have
the following properties: they are symmetric, that is, AT = A, orthogonal, that
is, AT = A−1, and binary, that is, A ∈ {0, 1}2n×2n, where n is the number of

http://www.ic.unicamp.br/%7Emeidanis/research/rear/
http://www.ic.unicamp.br/%7Emeidanis/research/rear/
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genes. In particular, this implies that they are involutions, i.e. permutations of
order 1 or 2. These matrices are therefore sparse, and can be stored efficiently.

If A and B are genomes over the same genes, the distance d(A,B) between
A and B is defined as

d(A,B) = r(B − A),

where r is the rank of a matrix.

at ah

a

bh bt

−b

ct ch

c

(a)

at ah bt bh ct ch
at 1 0 0 0 0 0
ah 0 0 0 1 0 0
bt 0 0 0 0 1 0
bh 0 1 0 0 0 0
ct 0 0 1 0 0 0
ch 0 0 0 0 0 1

(b)

Fig. 1. (a) Genome with one linear chromosome, and adjacencies {ah, bh} and {bt, ct}.
The extremities at and ch are free ends. (b) Matrix representation of the same genome.

Although the rank distance is defined in terms of matrices, it is also possible
to characterize it as the weight of an optimal series of operations transforming
A into B. We say that a matrix X is applicable to a genome A if A + X is also
a genome. A matrix applicable to at least one genome is called an operation.

An operation is basic if it is a cut of an adjacency {x, y} → {x}{y}, a join of
two free ends {x}{y} → {x, y}, or a double swap of two adjacencies into two new
ones using the same four extremities, for example {x, y}{a, b} → {x, a}{y, b}.
Any other rearrangement operation can be decomposed as a sum of these three
kinds of operations, as we show in Sect. 2.3. We are thus able to narrow down
the list of operations to just three, without loss of generality. In the context of
this work, the most important information about the basic operations is that
cuts and joins are rank 1 matrices, while double swaps have rank 2.

2.2 Breakpoint Graph

Genomes, as we describe here, are matchings over the set of gene extremities.
We can graphically represent two genomes A and B as matchings, using one
color (or line style) for A and another for B, as shown in Fig. 2.

The graph we use, called breakpoint graph [22] is based on the original break-
point graph introduced by Hannenhalli and Pevzner in 1995 [11]. The difference
is that we do not use caps at chromosome ends. Our free ends are simply extrem-
ities that are not adjacent to any other extremity. We believe that this makes
the presentation simpler and clearer.

Given two genomes A and B of equal gene content, we build the two-genome
breakpoint graph BG(A,B) as follows. Its vertices are the extremities of the
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Fig. 2. Example breakpoint graph BG(A,B). Genome A has adjacencies ahbh, ctdt,
etft, ehgt, atih, ghhh, and chdh, drawn as dashed edges, and free ends bt, fh, ht, and
it. Genome B has adjacencies aheh, bhct, dtet, ftgt, fhih, atht, chhh, and btdh, drawn
as solid edges, and free ends gh and it.

genomes, and there are two sets of edges: dashed edges, which connect pairs
of extremities that are adjacent in A, and solid edges, which connect pairs of
extremities that are adjacent in B.

Every node in the breakpoint graph has degree 0, 1, or 2. Because of this,
the connected components of the graph are disjoint cycles and paths. The paths
can be further classified into two types: paths with an even or odd number of
edges. The breakpoint graph is very similar to another structure widely used in
rearrangement analysis, the adjacency graph [1]. In fact, the breakpoint graph is
the line graph of the adjacency graph [22]. Furthermore, as the adjacency graph
has no isolated vertices, both graphs have the same number of paths and cycles.

The process of sorting consists of the application of basic operations to
genome A until we get genome B. When sorting from A to obtain B, we call A
the source genome, and B the target genome. In the graph BG(A,B), we draw
the edges from the source genome A with dashed lines, and the edges from the
target genome B with solid edges.

Paths with an even number of edges are called balanced, because they have
the same number of edges of each type. Odd paths are called unbalanced ; they
begin and end with edges from the same genome. Unbalanced paths can be
further classified into two types, dashed paths, and solid paths, according to
which genome accounts for more edges.

Note that when both genomes are equal, the edges of both colors coincide,
leaving only two types of components, cycles with two edges (shared adjacencies),
and isolated vertices (shared free ends). Therefore, considering BG(A,B), sorting
A into B can be seen as the process of applying basic operations to the dashed
edges until they all coincide with the solid edges.

A cut either transforms a cycle into a path, or splits one path into two. A join
does the reverse: it either transforms a path into a cycle, or joins two paths into
one. A double swap can extract a cycle from any type of component or reverse a
part of a component. When acting on two separate components, a double swap
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can also insert a circular component into another (linear or circular) one or swap
the end segments of two paths.

We call cycles with four or more edges big cycles and paths with at least one
edge big paths. When we refer to a component that is either a big cycle or a big
path, we call it a big component. These components need to be worked on in
order to sort the source genome into the target one. Cycles with two edges and
paths of length zero (isolated vertices) will be called small components. The next
result shows how to compute the rank distance using the breakpoint graph.

Theorem 1. Given two genomes A and B over the same set of extremities, the
rank distance between them is given by

d(A,B) = 2n − 2c − p,

where n is the number of genes, and c and p are respectively the number of cycles
and paths in BG(A,B)

Proof. Feijão and Meidanis in 2013 showed that the algebraic distance dalg(A,B)
between two genomes A and B is given by dalg(A,B) = n − nC − nP

2 , where n
is the number of genes, and nC and nP are respectively the number of cycles
and paths in the adjacency graph of A and B [10, Theorem 3.11]. Since the
breakpoint graph and the adjacency graph have the same number of cycles and
paths, we have c = nC and p = nP . Later, Zanetti, Biller and Meidanis showed
that d(A,B) = 2dalg(A,B) [24], and, therefore, d(A,B) = 2n − 2c − p. ��

2.3 Sorting

In this subsection we show that is possible to sort genome A into genome B
using only the three basic operations: cut, join, and double swap.

Let X = (X1,X2, . . . , Xk) be a sequence of operations such that, for every
1 ≤ i ≤ k, the operation Xi is applicable to A + X1 + . . . + Xi−1, and A + X1 +
. . . + Xk = B. We say that X is a sorting scenario from A to B. The weight of
X is the sum of the weights of its operations, that is,

w(X ) =
k∑

i=1

r(Xi).

We denote w(A,B) the minimum weight of a sorting scenario from A to B.
When a scenario X from A to B has w(X ) = w(A,B), we say X is optimal. Any
operation in an optimal scenario is called a sorting operation.

A series of lemmas leads to the desired results. We only state the main
conclusion here. All the supporting proofs can be found in the appendix.

Theorem 2. Given two genomes A and B,

d(A,B) = w(A,B).



Counting Sorting Scenarios, etc. for the Rank Distance 143

3 Counting the Number of Scenarios

An optimal solution for sorting genome A into genome B is a sequence of genomes
separated by basic operations, going from A to B with minimum cost. Some
authors call such a sequence a geodesic between A and B, or a geodesic patch
when the basic operations have different weights [12]. Braga and Stoye present a
similar definition for sorting scenarios in their work, as a sequence of operations
involved in sorting A into B. We define an operation scenario from A to B as a
list of matrices L = [X1, . . . , X�] such that A+X1+X2+ . . .+X� = B, and each
matrix Xi is one of the basic operations and applicable to A+X1+X2+. . .+Xi−1.
The total weight of a scenario, denoted by w(L), is the sum of the weights of
all its operations. Such a scenario is optimal if and only if w(L) = d(A,B). An
optimal operation is any basic operation that is the first in an optimal scenario. In
the context of the rank distance, optimal scenarios are geodesic patches, because
basic operations can have weight 1 or 2.

In this section, we show how to count the number of optimal rank sorting
scenarios between two genomes, with the aid of the breakpoint graph. First, we
show that no optimal operation acts on different components of the breakpoint
graph. Therefore, we can solve each component separately. We then recall a
formula from Braga and Stoye [4] to count DCJ sorting scenarios, which also
applies to rank sorting scenarios for cycles, and a recurrence to count rank sorting
scenarios for paths. Finally, we show how to get the count for the whole graph.

3.1 Recombination

As a first step to count the number of sorting scenarios, we want to prove a useful
property, namely, that no optimal rearrangement recombines the components of
the breakpoint graph. In other words, we show that no optimal operation acts
on the extremities of more than one component at the same time.

Lemma 3. No optimal operation in sorting from A to B involves extremities in
different components of BG(A,B).

Proof. To prove this, we list every possible operation recombining two compo-
nents C1 and C2 of BG(A,B) and show that they do not change the graph in a
way that reduces the distance.

A double swap can be applied to two cycles, generating one cycle; it can be
applied to a cycle and a path, generating a path; or it can be applied to two paths,
resulting in two paths. All of these moves reduce the number of components or
keep their number unchanged, and are therefore not optimal.

The other option of a basic operation on two separate components is a join
of two paths; however, this results in a single path, reducing the number of
components, and is therefore also not optimal.

A cut is not considered here, because it only acts on two connected extrem-
ities. Therefore, it never affects more than one component. ��
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According to Braga and Stoye, under the DCJ model the only operation
that recombines different components of the graph is a double swap between
two unbalanced paths resulting in two balanced ones [4]. With regard to the
breakpoint graph, the difference between the DCJ and the rank distances is
that, under the rank distance, every path counts towards reducing the distance,
not just balanced ones. Because of this difference, recombining two unbalanced
paths into two balanced ones is not an optimal move in a rank sorting scenario.

With this result, we conclude that it is possible to count the optimal scenarios
for each component in the breakpoint graph independently. Now we determine
how to obtain sorting scenarios for the whole graph from the separate solutions
for each component.

Let s1 and s2 be scenarios for the components C1 and C2 respectively, with
respective lengths �1 and �2. From Lemma 3, the number of scenarios resulting
in the combination of s1 and s2 is the number of sequences that have both as
subsequences, and this is the shuffle product of s1 and s2, whose size is given by
the binomial coefficient

(
�1+�2
�1,�2

)
= (�1+�2)!

�1!�2!
. In general, the number of sequences

obtained by shuffling k subsequences is given by the multinomial coefficient(
�1+�2+...+�k

�1,�2,...,�k

)
= (�1+�2+...+�k)!

�1!�2!...�k!
, where �i is the length of the ith subsequence.

3.2 Cycles

Given a cycle in BG(A,B), the only optimal operation that can be applied to
it is a double swap that splits the cycle into two smaller ones, as illustrated in
Fig. 3. This is a rank-two operation that increases the number of cycles by one,
therefore (by Theorem 1) decreasing the distance by two.

Fig. 3. One example of optimal rearrangement for a cycle. A double swap splits the
cycle into two smaller ones. Here, an 8-cycle is decomposed into a 6-cycle, which will
require two more double swaps to complete the sorting, and a 2-cycle, already sorted.

In this case, the sorting moves are equivalent to the ones for the DCJ distance.
We can use the same formula for DCJ to compute the number Sc(2� + 2) of
scenarios to solve a cycle of length 2� + 2 [4, Theorem 3]:

Sc(2� + 2) = (� + 1)(�−1)
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Each of these Sc(2�+2) scenarios has length �, and total weight 2�. When A
and B are co-tailed genomes (that is, A and B have the same free ends), the only
big components in BG(A,B) are cycles, and we can compute the total number
Sct of optimal sorting scenarios from A to B [4, Theorem 4] as follows:

Sct =
(�1 + �2 + . . . + �p)!

�1!�2! . . . �p!

p∏
i=1

(�i + 1)�i−1,

where p is the number of big cycles in BG(A,B).

3.3 Paths

We have shown a simple formula to compute the number of scenarios for the
cyclic components in BG(A,B). For paths the computation is less straightfor-
ward. The obstacle that arises when sorting paths is that, because cuts and joins
have rank 1, while double swaps have rank 2, scenarios have variable length, and
information on the length of the sub-solutions is necessary for the shuffling. Thus,
we need a recurrence with two variables: the length of the path, and the length
of the scenario.

For a path, three optimal operations are possible. First, a cut of any dashed
edge, provided there is at least one dashed edge in the path. Such a cut results
in two smaller paths that are solved separately. A second option is to execute a
double swap on any two dashed edges, resulting in a cycle and a path, provided
there are at least two dashed edges. Here again, both new components have
independent scenarios that are then shuffled. The last option is to join the ends
of a path, if both ends are incident to solid edges. This leads to a single cycle,
that we already know how to process. These possibilities are illustrated in Fig. 4.

Fig. 4. Examples of the three options of optimal moves from a solid path. The first
one, from the top, is a cut, splitting the 5-path into two paths with 3 and 1 edges,
respectively. The second is a double swap extracting a cycle from the path. The last
option, only possible in this kind of path, is to join the ends, forming a cycle.
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Given a path with length k, the sizes of the optimal scenarios fall in a limited
range. The longest operation scenarios for a k-path are the ones with only cuts
and joins, making up a total of k operations. Since the double swaps have twice
the weight of a cut or join, scenarios with more double swaps are shorter.

With this set of optimal operations, and the range for the length of a scenario,
we arrive at three recurrences, one for each type of path. Since the cuts and
double swaps are only applied to dashed edges, the indices are different according
to the type of the path, and the paths obtained after splitting also have different
types. The details are left for an appendix, for lack of space. The following
theorem summarizes our results.

Theorem 4. If the graph BG(A,B) has q big paths with lengths k1, . . . , kq, and
p big cycles with lengths 2�1 +2, . . . , 2�p +2, the total number of optimal sorting
scenarios from A to B is given by the product:

Cycles(�1, . . . , �p)ShufflePaths(k1, . . . , kq; �1, . . . , �p),

where ShufflePaths(k1, . . . , kq; �1, . . . , �p) is given by

k1∑
�′
1=�k1/2�+1

· · ·
kq∑

�′
q=�kq/2�+1

(�1 + . . . + �p + �′
1 + . . . + �′

q)!
�1! . . . �p!�′

1! . . . �′
q!

q∏
j=1

Sp(kj , �
′
j)

and

Cycles(�1, . . . , �p) =
p∏

i=1

Sc(2�i + 2).

4 Intermediate Genomes

We say a genome B is an intermediate genome between genomes A and C when

d(A,C) = d(A,B) + d(B,C).

We have already shown that there is never recombination of different com-
ponents in the rank distance. Therefore, we can get all possible intermediates by
looking separately at each component of BG(A,C). If the graph BG(A,C) has p
big cycles with lengths k1, k2, . . . , kp, and q big paths with lengths k′

1, k
′
2, . . . , k

′
q,

the total number I(A,C) of intermediate genomes between A and C is

I(A,C) =
p∏

i=1

Ic(ki)
q∏

j=1

Ip(k′
j),

where Ic(k) is the number of intermediates for a k-cycle, and Ip(k) is the number
of intermediates for a k-path.

For cycles of length 2k, with k ≥ 1, rank optimal operations are the same as
DCJ optimal operations, so we can use the known result for the DCJ distance [7]:

Ic(2k) =
1

k + 1

(
2k

k

)
.
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For paths, we derive in the appendix a similar formula for Ip(k), the number
of intermediate genomes for a path of length k ≥ 0:

Ip(k) =
(

k + 1
	(k + 1)/2


)
.

The following theorem summarizes the intermediate counts.

Theorem 5. If the graph BG(A,B) has p big cycles with lengths 2�1, . . . , 2�p,
and q big paths with lengths k1, . . . , kq, the total number of intermediate genomes
between A and B is given by:

p∏
i=1

Ic(2�i)
q∏

j=1

Ip(kj) =
p∏

i=1

1
�i + 1

(
2�i

�i

) q∏
j=1

(
kj + 1

	(kj + 1)/2

)

.

4.1 Relationship with Sperner Families

The number Ip(k) is equivalent to the number of 	(k + 1)/2
-element subsets of
a set with (k + 1) elements. According to Sperner’s Theorem [15,21], this is the
maximum number of subsets of a set with k + 1 elements where no set contains
another. Such a family of sets is called a Sperner family. Building on this idea,
we provide a bijection between the intermediates of a k-path, and the Sperner
family of all 	(k + 1)/2
-element subsets of a k + 1-set in the Appendix.

5 Experiments

We implemented our formulas and tested our method for counting the scenarios
and the intermediates between pairs of a number of genomes from the literature.

5.1 Data Sets

We used four data sets from different sources. The first and simplest data set is
from the work of Palmer and Hebron on plants of the Brassica genus [18]. It con-
sists of two pairs of circular mitochondrial DNA, comparing Brassica campestris
against B. oleracea and B. napus. Both instances have 5 synteny blocks. Other
comparisons in this work have insertions or deletions and were not considered.

Another data set is the human and mouse X chromosome, from Pevzner and
Tesler [19]. This pair of linear, single-chromosome, inputs has 11 synteny blocks.

The third data set is composed of 13 chloroplast genomes, of which 12 are
from the Campanulaceae family, and 1 from tobacco as an outgroup, with 105
synteny blocks, taken from Cosner, Raubeson and Jansen [6], and also used by
Bourque and Pevzner [2]. These created 78 pairs of inputs to the sorting problem.

The fourth and largest data set contains genomes used by Kim et al. to
test their reconstruction algorithm DESCHRAMBLER [13]. It consists of 20
instances comparing the human genome against the genome from other animals,
namely, 18 Eutherian mammals, plus opossum and chicken as outgroups. These
pairs have between 101 and 621 synteny blocks.
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5.2 Code

The code to run our experiments was implemented in Python, and executed on
a virtual machine using a single 2.3 GHz processor core and 2 GB of memory.
Building the breakpoint graph of our tests instances, with up to 1242 extremities,
is not a computationally intensive task, and neither is computing the number of
intermediates, a simple product of binomial coefficients. The most demanding
task is to compute the number of scenarios, especially when the breakpoint graph
has a large number of paths. This is a consequence of the fact that each path
adds an extra summation in the expression for the number of scenarios.

5.3 Results and Discussion

The two Brassica instances have the same rank distance of 6 (in this case three
double swaps), and the same results: 9 scenarios and 10 intermediate genomes.

For the pair of X chromosomes, with a rank distance of 14, we get 237440
scenarios and 560 intermediates.

With the chloroplast genome pairs, we get varying results. Some pairs, like
Trachelium and Campanula are only one double swap apart, and therefore have
only one optimal scenario and two intermediates (the input genomes). The pair
of genomes that are farthest apart is Merciera and Platycodon, with a distance of
48. They have 1.4×1032 optimal scenarios, and 4.9×1012 intermediate genomes.

With the Eutherian data set, due to the large number of terms in the summa-
tion in Theorem 4 for the number of scenarios between distantly related species,
we developed a scheme that is always guaranteed to use a specified amount
of memory, but sometimes ends up producing upper and lower bounds on the
number of scenarios instead of the exact values. This scheme produced the exact
result for 5 out of the 20 instances, namely, the primates (chimpanzee, marmoset,
orangutan, and rhesus) and the horse. For the other instances, we obtained upper
and lower bounds on the number of optimal scenarios, using the monotonicity of
Sp(k, l) and multinomial coefficients containing l with respect to the l variable,
and utilizing up to N = 109 memory cells, as described in the Appendix. On
the other hand, computing the number of intermediates proved easy even for
the farthest pairs of genomes. In Table 1 we list the number of scenarios (or an
interval containing it) and the number of intermediates for all the instances.

Comparing the larger instances of the chloroplast data set with the ones
from the human, cat and mouse genomes, we note that linear, multichromosomal
genomes tend to have more scenarios than circular, unichromosomal ones. This
may be due to the fact that each path in the breakpoint graph adds another
summation in the scenario formula, consisting of many products. In contrast,
each cycle only adds one product to existing terms. The number of intermediates,
on the other hand, is likely to be less variable between instances with the same
distance, since the formulas for intermediates in paths and cycles are very similar.
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Table 1. Rank distance, number of scenarios, and number of intermediates between the
human genome and the genomes of 20 Eutherian animals, listed in order of distance.

Genome d Scenarios Intermediates

Chimpanzee 27 6.54 × 1011 2.46 × 104

Orangutan 53 6.03 × 1038 1.29 × 1010

Rhesus 150 1.21 × 10138 1.45 × 1028

Marmoset 204 3.99 × 10250 3.13 × 1043

Horse 225 1.63 × 10135 1.31 × 1051

Dog 304 [10432, 10471] 6.37 × 1070

Pig 318 [10463, 10479] 1.61 × 1073

White rhino 328 [10546, 10588] 1.36 × 1084

Elephant 336 [10583, 10609] 8.56 × 1086

Cattle 383 [10537, 10579] 7.39 × 1083

Pika 385 [10647, 10710] 2.89 × 1098

Goat 393 [10548, 10588] 5.30 × 1085

Tenrec 407 [10700, 10778] 1.71 × 10105

Shrew 487 [10876, 10999] 1.02 × 10128

Mouse 509 [10830, 10980] 2.44 × 10131

Manatee 519 [101050, 101101] 3.12 × 10142

Guinea pig 640 [101130, 101360] 5.85 × 10166

Chicken 736 [101217, 101550] 6.38 × 10193

Opossum 778 [101295, 101590] 4.01 × 10204

Rat 788 [101251, 101476] 2.30 × 10189

6 Conclusion

In this paper we opened the doors for the exploration of the solution space of the
rank distance problem. We demonstrated that there is no recombination between
components of the breakpoint graph in any optimal rank sorting scenario. We
then gave a formula for the number of optimal sorting scenarios for co-tailed
genomes, and presented a general algorithm for counting the number of scenarios.

We also presented a formula for the number of intermediates between two
genomes. In addition, we constructed a bijection that provides a simple way to
uniformly sample intermediates. Sampling intermediate genomes is the next step
in the study of the solution space and can be very helpful in future applications.
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Abstract. The rank distance model, introduced by Zanetti et al. in
2016, represents genome rearrangements in multi-chromosomal genomes
looking at them as matrices. So far, this model only supported compar-
isons between genomes with the same gene content. We seek to generalize
it, allowing for genomes with different gene content. In this paper, we
approach such generalization from two different angles, both using the
same representation of genomes, and leading to simple distance formu-
las and sorting algorithms for genomes with different gene contents, but
without duplications.
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1 Introduction

In the context of genome comparison, one can view a genome as a collection of
contiguous, conserved segments arranged in linear and/or circular chromosomes.
These segments can be genes or more general markers. Using this abstraction, we
pay no attention to smaller mutations affecting just a few nucleotides, and focus
instead on bigger mutations that move larger portions of the genome, changing
the order of segments with respect to one another. We call these bigger mutations
genome rearrangements.

In simpler models of genome rearrangement, the operations only move
genomic segments around, without creating or destroying markers. However, to
better reflect genome evolution, it is desirable to include operations that alter the
content of the genome. For example, we may consider operations that add con-
tiguous segments to the genome, called insertions, and operations that remove
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contiguous segments from the genome, called deletions. In general, we call these
two types of operation indels.

To the best of our knowledge, the work on including indels in genome rear-
rangement models has so far been limited to the inversion distance [8] for unichro-
mosomal genomes, and the Double-Cut-and-Join (DCJ) distance [14] on multi-
chromosomal genomes [3,11].

In 2001, El-Mabrouk first studied the problem of sorting by inversions and
indels, developing an exact algorithm for the cases where there were only inser-
tions or deletions, but not both [6]. In 2008, Yancopoulos and Friedberg pro-
posed extending the DCJ model to account for insertions and deletions [15],
and in 2010 Braga et al. presented a linear time algorithm for the DCJ-Indel
problem [4]. Later, Compeau used a different approach, looking at indels as DCJ
operations themselves, and arrived at a simpler DCJ-Indel distance formula and
sorting algorithm [5]. Another extension of the DCJ model by Braga et al. comes
from adding a more powerful operation: a substitution of a genome segment for
another [2]. The development of DCJ-Indel also led to advancements on the
inversion-indel distance, by Willing et al. in 2013 [13].

In this paper, we explore the addition of indels to the rank distance model,
which was initially developed for same-content genomes [16]. In this model,
genomes are represented as matrices, and the distance between two genomes
is the rank of their difference. We expect this model to have a natural extension
to genomes with unequal content, leading to simple formulas and algorithms.

The rest of this paper is organized as follows. Section 2 presents the back-
ground on the rank distance and defines the representation of genomes that do
not necessarily have all the markers being considered. In Sect. 3 we expand the
rank distance to encompass genomes with different genomic content. In Sect. 4
we present a different approach for adding indels to the rank distance model.
Section 5 describes our experiments, and Sect. 6 presents our conclusions. Most
proofs, details, and extra material are contained in the Appendix (http://www.
ic.unicamp.br/%7Emeidanis/research/rear/).

2 Definitions

2.1 Markers, Genomes, and Matrices

We begin our definitions with the notion of a marker, which is a contiguous
DNA stretch that is conserved in all genomes where it appears. This will be our
building block in constructing genomes.

Let G be a set of markers. Each marker g ∈ G has two extremities: a head
gh, and a tail gt. The set

V (G) = {gh, gt|g ∈ G}

contains all extremities associated to G. We will fix a 1–1 mapping identifying
V (G) with the canonical basis {e1, e2, . . . , e2n} of R2n, where n = |G| and ei is
the 2n × 1 column vector whose ith entry is 1 and all others are 0. Since this

http://www.ic.unicamp.br/%7Emeidanis/research/rear/
http://www.ic.unicamp.br/%7Emeidanis/research/rear/
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mapping is fixed, we will use the same letter and type font to denote both an
extremity x and its corresponding column vector.

A genome A over G consists of a set V (A) ⊆ V (G) of extremities and a
set E(A) of adjacencies, which are unordered pairs of distinct extremities from
V (A), with the extra restriction that each extremity in V (A) can belong to at
most one adjacency. Note that a genome does not necessarily contain all the
extremities from all the markers in G. We do not even require that gt ∈ V (A) if
gh ∈ V (A), and vice versa. The reason for that will become clear in Sect. 3.

If a pair {x, y} belongs to E(A), we say that x and y are adjacent in genome
A. From the definitions, we see that each extremity x ∈ V (A) has to either be
adjacent to exactly one other extremity, or be a free end, that is, an extremity
not adjacent to any other (e.g. near the end of a linear chromosome). In addition,
extremities from V (G) that do not belong to V (A) will be called A-null, because
they will correspond to null rows and columns in the matrix for A, as we will
see shortly.

For example, let G = {a, b, c, d}, and let A be a genome with V (A) =
{ah, bh, dh, at, bt, dt}, and E(A) = {{ah, bt}, {bh, dh}}. Genome A is illustrated
in Fig. 1.

at ah

a

bt bh

b

dh dt

−d

Fig. 1. Genome A with V (A) = {ah, bh, dh, at, bt, dt}, and E(A) = {{ah, bt}, {bh, dh}}.

Given that extremities are identified with column vectors of R
2n, we may

view genomes as matrices as follows. Using the same letter and typeface A to
represent the matrix associated to the genome A, we will define:

Ax =

⎧
⎨

⎩

y, when {x, y} ∈ E(A),
x, when x is a free end in V (A),
0, when x �∈ V (A).

This formula unambiguously define A, since it specifies the image under A
of a basis of R2n. As an example, the matrix representation for the genome A in
Fig. 1 is:

at ah bt bh ct ch dt dh
at
ah
bt
bh
ct
ch
dt
dh

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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where at = e1, ah = e2, . . . , dh = e8. A matrix that can be obtained from a
genome in this fashion will be called a genomic matrix. It is easy to see that a
square binary matrix A ∈ {0, 1}2n×2n is genomic if and only if AT = A and A2

is a diagonal matrix with 0’s and 1’s on the diagonal; indeed, the 1 entries on
the diagonal of A2 correspond to the extremities present in V (A).

2.2 Rank Distance

Let A and B be two genomic matrices. We can define a distance between them
as follows:

dr(A,B) = r(B − A),

where r(X) denotes the rank of matrix X. For invertible genome matrices A
and B, which do not have zero rows or columns and therefore include all the
extremities, this definition generalizes the rank distance of Zanetti et al. [16].
This distance satisfies the required properties for a metric:

– dr(A,B) = 0 ⇐⇒ A = B
– dr(A,B) = dr(B,A)
– dr(A,C) ≤ dr(A,B) + dr(B,C)

For example, consider the genome A defined above, and let B be the following
genome, illustrated in Fig. 2:

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

bt bh

b

ct ch

c

dt dh

d

Fig. 2. Matrix and chromosomal representations of a genome B with V (B) =
{bh, ch, dh, bt, ct, dt}, and adjacencies {{bh, ct}, {ch, dt}}.
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Having matrices for both A and B on hand, we can compute their difference:

B − A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 0 0 1 0 0 −1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 −1 0
0 0 0 −1 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

And, finally, we have the distance dr(A,B) = r(B − A) = 8. However, com-
puting the rank of the matrix B − A directly is not the most computationally
efficient way to compute the rank distance. In Sect. 3.1 we will see how to do
that in O(n) time.

2.3 Augmented Breakpoint Graph

To prepare for the addition of indels to the rank distance model, we defined
genomes so that they do not necessarily have the same gene content. We use a
structure called the augmented breakpoint graph, analogous to the regular break-
point graph, but, following Compeau [5], with labels at the ends of each path.

The nodes of the augmented breakpoint graph BG(A,B) of A and B are the
extremities of the set V (G) ⊇ V (A)∪V (B), and two nodes x and y are adjacent
in BG(A,B) if they are adjacent in either A or B. As in the regular breakpoint
graph, all components are either paths or cycles. Sometimes we refer to them as
a k-path or a k-cycle when we want to emphasize that k is the number of edges
in the path or the cycle.

In the augmented breakpoint graph, all nodes with degree 2 are necessarily
in the intersection V (A) ∩ V (B), because they are parts of adjacencies in both
genomes. On the other hand, nodes x with degree 1 are path endpoints, and at
least one of the following cases applies:

– x is a free end in A: Ax = x,
– x is a free end in B: Bx = x,
– x is A-null: Ax = 0,
– x is B-null: Bx = 0.

When a path has at least one edge, then it has exactly two distinct end nodes.
For each of these two nodes at the ends of the path, exactly one of the cases
above apply. When both endpoints are free ends, we call the path proper. We
say a path is A-null (B-null) when one of its ends is a free end, and the other is
an A-null (B-null) node. When a path has two distinct A-null (B-null) ends, we
call the path AA-null (BB-null). In the case where one end is A-null and the
other is B-null, the path is called AB-null.

Finally, when a node x has degree zero in BG(A,B), exactly two of the
previous cases apply, leading to four possibilities:
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– When x is a free end in both A and B, it forms a proper path;
– When x is a free end in A and B-null, it forms a B-null path;
– When x is A-null and a free end in B, it forms an A-null path;
– Finally, when x is null in both A and B, the “natural” definition would be

to consider it an AB-null path. However, as we will see in Sect. 4, for the
rank-indel distance it makes more sense to consider this path a proper path.
For the rank distance, it makes no difference to consider it as either a proper
path or as an AB-null path. We choose to adopt the convention that it is a
proper path, to accommodate both versions of the distance.

As an example, Fig. 3 is the augmented breakpoint graph BG(A,B) of the
genomes A and B seen earlier.

Fig. 3. Augmented breakpoint graph BG(A,B). Black solid edges are adjacencies from
A, gray dashed edges are from B. White nodes are extremities in both V (A) and V (B).
Black nodes are either A-null or B-null, as specified besides them. The components are
two A-null paths and two B-null paths.

Given two genomes A and B, we will define some statistics for BG(A,B). We
will use c(A,B) and p(A,B) to denote, respectively, the number of cycles and
paths in BG(A,B). The number of paths is the sum of the number of paths of
each type: p0(A,B) is the number of proper paths in BG(A,B), while pA(A,B),
pB(A,B), pAA(A,B), pBB(A,B) and pAB(A,B) are the number of A-null, B-
null, AA-null, BB-null and AB-null paths, respectively.

3 Rank Distance in the Presence of Indels

In this section we discuss the rank distance of genomes with possibly different
marker content. First, in Sect. 3.1, we provide an efficient algorithm to compute
the rank distance. Then, in Sect. 3.2, we define the most concise set of operations
needed to transform one genome into another. Finally, in Sect. 3.3, we show how
to use these operations to optimally sort genomes.

3.1 Efficient Computation of the Rank Distance

Given two genomes A and B, we prove the following theorem in the appendix:
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Theorem 1.

dr(A,B) = 2n − 2c(A,B) − p0(A,B) − pAB(A,B).

Algorithm 1 (page 7) implements these ideas and runs in O(n) time, effi-
ciently computing dr(A,B) = r(A − B). It is a Breadth-First Search traversing
BG(A,B) that in addition computes a score s for each component, equal to the
difference between the number of A-null and B-null extremities in it. Notice that
extremities i such that A[i] > 0 and B[i] > 0 contribute zero to the score. A
score of zero means the component has the same number of A-null and B-null
extremities, so we decrease d by 1 for a path, or by 2 for a cycle. Since the initial
value of d is 2n, we end up with d = dr(A,B).

Algorithm 1. Algorithm to compute the distance between genomes A and
B. Genome A is given as a list of length 2n, where A[i] = j if Aei = ej , and
A[i] = 0 if Aei = 0; similarly for B. The algorithm scores each component
in BG(A,B) by comparing the numbers of A-null and B-null extremities.
Equal numbers mean the component decreases the distance, by 1 for a path,
or by 2 for a cycle.
d ← |A|
while ∃x not visited do

Q ← {x}
s ← 0
mark x as visited
while Q �= ∅ do

take i from Q
if both A[i] and B[i] are > 0, �= i, and visited then

d ← d − 1
if A[i] > 0 then

s ← s + 1
if A[i] not visited then

mark A[i] as visited
add A[i] to Q

if B[i] > 0 then
s ← s − 1
if B[i] not visited then

mark B[i] as visited
add B[i] to Q

if s = 0 then
d ← d − 1

return d

3.2 Basic Operations

A matrix X is an operation when there is a genome A such that A + X is a
genome. In this case we say that X is applicable to A. The weight of an operation
X is the rank of X.
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When the genomes considered have the same marker content, only three
types of operations are needed to sort any genome into another: cuts, joins and
double swaps [10]. Cuts and joins have weight 1, while double swaps have weight
2. In this paper, we seek to add to our model operations that deal with unequal
gene content. This turns out to be a highly non-trivial task, as we explain in
more detail in the appendix. Here we summarize our final model.

As expected, we need to consider the insertion or the deletion of an entire
chromosome. Insertions and deletions of parts of chromosomes are not needed,
as we show in the appendix. The matrix for the insertion or deletion of a chromo-
some with k markers is, up to the sign, equivalent to a genome with k markers,
and always has weight 2k. Therefore, the weight of such an operation is 2k.

In addition, we consider a new kind of operation that takes advantage of our
relaxed definition of genomes. Recall that, when we defined genomes in Sect. 2,
we mentioned that, given a genome A, we do not require that gt ∈ V (A) if
gh ∈ V (A), or vice-versa. This relaxed definition now comes into play. We define
an operation that substitutes a single extremity for an extremity that does not
exist in the genome; due to its rank, we assign such an operation a weight of 2.

Introducing this kind of operation implies that the concept of chromosomes
also has to be relaxed. In a genome where, for every g ∈ G, the extremities gh
and gt are either both present or both absent, a chromosome is a sequence of
markers that can be either circular, having no free ends, or linear, with exactly
two free ends. In the case of a genome with only one extremity of a marker,
there are semi-chromosomes that, instead of ending at a free end, end with an
unpaired extremity, that is, a head extremity whose corresponding tail is not in
the genome, or vice versa. As a result, now an insertion or a deletion can be of a
whole chromosome, or of a whole semi-chromosome, always with a weight equal
to the number of extremities being inserted or deleted.

With the introduction of extremity substitutions, we now have six types of
basic operations:

– Cut, with cost 1.
– Join, with cost 1.
– Double swap, with cost 2.
– Deletion of whole chromosomes or semi-chromosomes, costing the number of

extremities deleted.
– Insertion of whole chromosomes or semi-chromosomes, costing the number of

extremities inserted.
– Substitution of one extremity, with cost 2.

From here to the end of Sect. 3, we call these the basic operations to transform
one genome into another when they do not share the same set of markers. We
will see how the basic operations suffice to carry out such transformations.
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3.3 Sorting

Let X = (X1,X2, . . . , Xk) be a sequence of operations such that, for every
1 ≤ i ≤ k, the operation Xi is applicable to A+X1 + . . .+Xi−1, and A+X1 +
. . . + Xk = B. We say that X is a sorting scenario from A to B. The weight of
X is the sum of the weights of its operations, that is,

w(X ) =
k∑

i=1

r(Xi).

We denote by w(A,B) the minimum weight of a sorting scenario from A to
B. When a scenario X from A to B satisfies w(X ) = w(A,B), we call X optimal.

In the appendix we show that the rank distance d(A,B) is equal to the
optimum weight of a scenario going from A to B using the basic operations
described in Sect. 3.2. The main result proved there is the following theorem:

Theorem 2. Given two genomes A and B,

dr(A,B) = w(A,B).

Triangle Inequality. One of our main concerns with the addition of indel oper-
ations to a genomic distance is respecting the triangle inequality. When indels
have a constant cost, the triangle inequality is easily violated. Consider the three
genomes in Fig. 4. Only one deletion is needed to transform either A or B into
C, but rearranging A into B takes more operations.

at ah

a

xt xh

x

yt yh

y

zt zh

z

bt bh

b

at ah

a

zt zh

z

yh yt

−y

xt xh

x

bt bh

b

at ah

a

bt bh

b

Fig. 4. Example of genomes A,B,C that can violate the triangle inequality.

Yancopoulos and Friedberg call this violation “the free lunch problem” [15].
Their suggestion to deal with this problem is to add a surcharge to the cost of
an indel, based on the adjacency graph.
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Braga et al. dealt with the violation of the triangle inequality by adding a
simpler surcharge after the computation of their DCJ-indel distance [4]. The
surcharge to the distance between A and B is equal to ku(A,B), where k is a
constant, and u(A,B) is the number of unique markers between genomes A and
B. At first they showed the triangle inequality holds when k ≥ 3/2, but later
work showed that k ≥ 1 is a tight bound [1].

Braga et al. also defined a framework to assign variable costs to indels, a
linear function of the number of markers inserted or deleted, and showed that it
is equivalent to the a posteriori surcharge [1].

Unlike the DCJ distance, the rank distance, with the proposed extension to
the matrix representation of genomes, naturally offers an indel mechanism with
weights that avoid the free lunch problem.

4 An Alternative: The Rank-Indel Distance

In order to avoid general extremity substitutions and genomes without both
extremities of a marker, a different approach to the addition of indels to the
rank distance is to define a genomic distance that includes the basic operations
of the rank distance for genomes with the same content, plus insertions and
deletions, all with the same weight as in the rank distance model. This way, we
define the rank-indel distance di(A,B) of A and B as the minimum cost of an
operation sequence sorting A into B, using the basic operations cited above:

– Cuts/joins, with cost 1.
– Double swaps, with cost 2.
– Insertions/deletions of linear or circular chromosomes with k markers, costing

2k.

We already know that di(A,B) ≥ r(B − A). This inequality can sometimes
be strict. In fact, we prove the following theorem in the Appendix:

Theorem 3. di(A,B) = 2n − 2c(A,B) − p0(A,B) + pAB(A,B).

5 Experiments

We performed an experiment to assess how much evolutionary signal the rank
and rank-indel distances are capable of capturing. We used fungal genomes from
13 species: the causal agent of rice blast, Magnaporthe oryzae, plus 12 isolates
of Magnaporthe grisea, a related pathogen, collected from infected wheat plants.
The data was kindly made available by A. Nhani Jr, N. Talbot, and D. Soanes.

The 12 isolates were sequenced, assembled, annotated, and mapped onto the
complete genome of M. oryzae. The annotated genes of M. oryzae then provided
a gene set containing all the genes in the annotated genomes of the isolates, and
serve as our comprehensive marker set G in this analysis. The resulting .gff
files were used to determine gene position and orientation of each gene in each



162 J. P. P. Zanetti et al.

genome. We realize that this procedure leaves out genes unique to the isolates,
not present in M. oryzae, but, even with this bias, the results were encouraging.

Each .gff file contains genes assembled in 7 chromosomes, plus an extra
chromosome numbered “8” where small pieces that could not be placed anywhere
else during assembly were kept. In our analysis, we decided to only consider
the first 7 chromosomes, as they correspond to genes that could be effectively
placed onto a real chromosome. In addition, the mapping process produces a
similarity coefficient, varying from 0.0 to 1.0, that tells how similar the isolate
and M. oryzae genes are. In our analysis, we only kept the genes for which this
coefficient is 1.0, meaning very high similarity. With this, we lost about 7% or all
the genes. Finally, we filtered out any coding sequence (CDS) properly contained
in a larger CDS, as these are likely annotation artifacts.

With the position and orientation of all genes, we built the adjacencies in each
genome and input the results to our rank and rank-indel distance calculating
algorithms. Table 1 contains the pairwise distances obtained. It is interesting
to observe that for all pairs, the rank distance coincided with the rank-indel
distance, meaning that there are no AB-paths between any pair. We built a
phylogenetic tree with these distances using the neighbor-joining method [12],
as implemented in the Mega software package [9].

Table 1. Pairwise rank and rank-indel distances (they are equal) between 13 fungal
genomes. M. oryzae is denoted by M; other isolates by their numeric ID. Notice that
the distances involving M are much larger, consistent with the fact that it infects rice
while all others infect wheat.

5033 0925 36 5003 6047 86 25 35 6017 5010 M 6045 5035

5033 0 239 332 285 378 429 361 344 185 436 13111 299 170
0925 239 0 277 323 414 444 342 307 264 417 13083 270 245
36 332 277 0 451 282 553 285 126 357 508 13126 211 316
5003 285 323 451 0 369 566 436 413 305 549 13167 419 273
6047 378 414 282 369 0 649 307 230 370 618 13215 322 348
86 429 444 553 566 649 0 499 587 452 321 13038 538 461
25 361 342 285 436 307 499 0 313 338 418 13093 242 333
35 344 307 126 413 230 587 313 0 375 558 13150 229 326
6017 185 264 357 305 370 452 338 375 0 463 13108 272 143
5010 436 417 508 549 618 321 418 558 463 0 13101 483 460
M 13111 13083 13126 13167 13215 13038 13093 13150 13108 13101 0 13115 13111
6045 299 270 211 419 322 538 242 229 272 483 13115 0 249
5035 170 245 316 273 348 461 333 326 143 460 13111 249 0

A larger set of blast pathogens was analysed by Gladieux et al. in a recent
article [7], where phylogenetic trees were constructed based on several factors,
including maximum likelihood on almost 3,000 orthologous CDS, maximum like-
lihood on 9 loci, and pairwise BLAST distances between repeat-masked genomes.
Restricting the trees to just the common genomes, we verify that our trees only
differ in the positioning of the PY6045-PY36 subtree (Fig. 5).
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PY5003

PY6017

PY5033

PY6045

PY36

PY0925

PY86

PY5010

PY5003

PY6017

PY5033

PY0925

PY6045

PY36

PY86

PY5010

Fig. 5. Phylogenetic trees for the same genome set constructed with our distances and
neighbor-joining (left) and with more traditional methods (right). Notice that the trees
only differ by the placement of the PY6045-PY36 subtree.

6 Conclusion

In this paper, we expanded the rank distance to account for genomes with dif-
ferent gene content, but still without duplications. The first step, in Sect. 2, was
to define genomes that do not necessarily contain all markers of G. This allows
for the representation of genomes with different markers from each other, and
is done very naturally, by using zeros in the rows/columns corresponding to the
missing markers. We then developed ways to compare these genomes.

The first approach simply extends the rank distance, keeping the distance
dr(A,B) between two genomes A and B equal to the rank r(A − B) of their
difference. We showed how to efficiently compute dr, and how to transform A into
B using only basic operations, adding insertions, deletions, and the substitution
of a single extremity to the cast of basic operations of the rank distance of
genome with the same markers.

The substitution of single extremities leads to genomes with incomplete
markers. To avoid this, we also present an alternative rank-indel distance that
changes the content of a genome only through insertions and deletions of chro-
mosomes. We note that both distances have very simple formulas, and are closely
related, with di(A,B) = dr(A,B) + 2pAB(A,B).

Phylogenetic trees constructed with our distances turn out to be very close
to trees built with other, more traditional methods, showing that there is enough
phylogenetic signal in the order and orientation of genes alone. Further studies
will be conducted to better assess the usefulness of these distances in phyloge-
netics.
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Abstract. In a recent paper (Zhang, Rao, and Warnow, Algorithms for
Molecular Biology 2019), the INC (incremental tree building) algorithm
was presented and proven to be absolute fast converging under standard
sequence evolution models. A variant of INC which allows a set of dis-
joint constraint trees to be provided and then uses INC to merge the
constraint trees was also presented (i.e., Constrained INC). We report
on a study evaluating INC on a range of simulated datasets, and show
that it has very poor accuracy in comparison to standard methods. We
also explore the design space for divide-and-conquer strategies for phy-
logeny estimation that use Constrained INC, and show modifications
that provide improved accuracy. In particular, we present INC-ML, a
divide-and-conquer approach to maximum likelihood (ML) estimation
that comes close to the leading ML heuristics in terms of accuracy, and
is more accurate than the current best distance-based methods.
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is generally formulated as a statistical inference problem in which the sequences

Supported by the University of Illinois at Urbana-Champaign and NSF grants DGE-
1144245, CCF-1535977, and CCF-1535989. Computational experiments were per-
formed on Blue Waters, supported by NSF grants OCI-0725070 and ACI-1238993 and
by the State of Illinois.

c© Springer Nature Switzerland AG 2019
I. Holmes et al. (Eds.): AlCoB 2019, LNBI 11488, pp. 167–178, 2019.
https://doi.org/10.1007/978-3-030-18174-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18174-1_12&domain=pdf
http://orcid.org/0000-0001-5476-8451
http://orcid.org/0000-0001-5553-3312
http://orcid.org/0000-0001-7717-3514
https://doi.org/10.1007/978-3-030-18174-1_12


168 T. Le et al.

given as input are assumed to have been generated on an unknown (but fixed)
model tree, equipped with a stochastic model of evolution. One of the interesting
questions in phylogeny estimation is whether a method is guaranteed to converge
to the model tree as the sequence length goes to infinity; methods that have this
property are said to be “statistically consistent”.

Although statistical consistency is important, the “sample complexity”
(which evaluates the amount of data that a method needs to return the true
tree with high probability) is perhaps more important than statistical consis-
tency, since datasets are of finite length. We describe this issue in the context of
the well known Jukes-Cantor model [8], and say that the phylogeny estimation
method Φ is absolute fast converging (AFC) for the Jukes-Cantor (JC) model if
there is a polynomial p(n) such that for all ε, f, g the probability of recovering
the true tree T given sequences of length p(n) is at least 1 − ε for all JC model
trees (T,Θ) where T has n leaves and all edges e satisfy f ≤ le ≤ g (where
le is the expected number of times a random site will change on edge e). The
first provably AFC methods were presented in [5,6], and were distance-based
methods that operated by computing quartet trees and then combining them.
By restricting the quartet trees that were used to a subset (called the “short
quartets”) of the full set of quartet trees, it was shown that the true tree could
be constructed with high probability from polynomial length sequences. Since
then, many other methods have been established to be AFC, including maximum
likelihood [22].

Recently, a new polynomial time AFC method, INC, was presented by Zhang
et al. [29]. Zhang et al. also presented a variant of the method called INC-NJ
that uses NJ on small subsets, and proved that INC-NJ is AFC and has low
degree polynomial time. Finally, Zhang et al. presented a generic technique called
constrained-INC that allows the user to provide a set of disjoint constraint trees,
and then uses INC to combine the constraint trees into a tree on the full dataset.
However, no implementation of INC was developed, and so INC and its variants
were not explored with respect to empirical accuracy on data.

Our study presents an extensive study of INC and its variants, as described
in [29], and also explores modifications to INC to improve accuracy. We explore
the design space of divide-and-conquer strategies using INC, and compare the
best of these methods to standard phylogeny estimation methods on simulated
data. Finally, we conclude with a discussion of future work. Our open-source
implementation, as well as all commands necessary to reproduce the study, are
available at [10]. All datasets generated for this study are available at [11].

2 The Incremental Tree Building (INC) Method

The input to INC is a set of sequences S in an alignment A, and a distance
matrix d computed on the alignment. An ordering on the sequences is computed
from the input matrix d: first a minimum spanning tree is computed, and the
taxa (i.e., sequences) are ordered so that each added sequence is adjacent within
the spanning tree to one sequence that precedes it in the ordering. The taxa
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are added into a growing tree t, which begins with the first three taxa in the
ordering and then adds each new taxon into t. To add a new taxon q into t,
a set of quartet trees is computed, and these quartet trees vote on where to
place q into t. The approach in [29] uses the Four Point Method (FPM) [3,4] to
compute quartet trees and then allows only “valid quartets” (which are quartets
with sufficiently low interleaf distances, according to the input matrix d) to vote.
Furthermore, all quartet trees have the same voting power. When all the taxa
have been inserted, the final tree is returned. Because of the incremental nature
of the approach, the algorithm is called Incremental Tree Building, or INC.

We compare INC and INC-NJ, both of which are AFC, to two ML heuris-
tics (FastTree2 [21] and RAxML [24]) and two distance-based methods (BME,
balanced minimum evolution, within FastME [12] and Neighbor Joining within
PAUP* [25]). Maximum likelihood, if solved exactly, is also absolute fast con-
verging [22], but it is unlikely that the two heuristics are AFC. We explore their
relative performance in terms of FN error rate (i.e., missing branch rate), which
is the fraction of the bipartitions defined by internal branches in the true tree
that are missing from the estimated tree, on 20 datasets with 1000 sequences
that evolve under a high rate of evolution (the 1000L1 model from [16]). Fast-
Tree2 and RAxML are run with default settings under the Generalized Time
Reversible (GTR) model of sequence evolution [26], BME (balanced minimum
evolution) is run within FastME2 [12] using NNI and SPR moves, and NJ is run
in default settings within PAUP*, both given logdet distance matrices computed
by PAUP*.

All analyses were limited to 48 h on Blue Waters (a supercomputer at the
University of Illinois); RAxML was run on multiple threads, but even so some
RAxML analyses did not complete within that time. We report the best ML
solution found within the 48 h time limit in such cases.

Table 1. Tree error rates on 20 replicates of the 1000L1 model condition.

Method INC INC-NJ FastTree2 NJ FastME RAxML

Tree error rate 0.910 0.707 0.109 0.434 0.307 0.117

INC and INC-NJ both have very high error rates of 91% and 70.7%, respec-
tively, and the other methods have much lower error rates (Table 1). The best
accuracy is obtained using the two maximum likelihood heuristics (error rates
under 12%), and the two distance-based methods have moderate error rates
(43.4% for NJ and 30.7% for FastME). Thus, INC is much less accurate than
INC-NJ and NJ is much better than INC-NJ. Since NJ is not AFC [9] and both
INC and INC-NJ are AFC, this result is disappointing (to say the least). How-
ever, this experiment does not address whether using ML heuristics to compute
constraint trees would result in improved accuracy compared to other methods.
Exploring this question is the purpose of the next section.
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3 Exploring the Design Space for Constrained-INC

Zhang et al. [29] showed that INC can be used to combine a given set of disjoint
trees (i.e., constraint trees). This approach, called Constrained-INC, can be
used within a divide-and-conquer strategy for tree construction: the input set of
sequences is divided into disjoint subsets, trees are constructed on subsets (using
a preferred method), and then the subset trees are combined using INC into a
tree on the full dataset.

Prior divide-and-conquer strategies [27] have been helpful in terms of improv-
ing scalability of phylogeny estimation methods to large datasets [1,20,28], but
have produced trees on overlapping subsets, which cannot be analyzed using
constrained-INC. Instead, we use the centroid edge decomposition strategy in
SATé-II [13] and PASTA [16] (methods for co-estimating alignments and trees)
that operates as follows: an initial tree is computed, then the tree is decomposed
into two subtrees of (roughly) the same size (by pulling out a “centroid edge”),
and the process recurses until all the subsets are small enough.

We explore this design space, evaluating the impact of the following algorith-
mic parameters: (a) initial tree and decomposition size, (b) how constraint trees
are computed, (c) how quartet trees (for merging constraint trees) are computed,
and (d) the weight of the votes (i.e., identical weights for all quartets, or weights
that depend on the specific quartet tree). Details about how we generated the
datasets and performed the analyses are available at the github site for INC.

We use four different collections of simulated datasets ranging from 101 taxa
to 10,000 taxa, using the missing branch error rate. The first experiment explores
the design space of constrained INC on 20 replicates of the 1000L1 datasets. We
include a comparison to INC-NJ, which uses a specific decomposition strategy
and then computes constraint trees using neighbor joining (NJ), as described in
[29]. The result of this experiment produced two divide-and-conquer strategies
that use INC to combine constraint trees. In our second experiment, we compare
these two strategies to NJ, RAxML, and FastTree2.

Datasets. We analyzed several collections of sequence alignments from different
model conditions that varied in terms of number of sequences, sequence length,
degree of deviation from a clock, the substitution model, branch lengths, and
whether or not the sequence evolution model has insertions and deletions (only
the 1000L1 datasets have indels; all the others are gap-free). The datasets we
explore vary in difficulty, with the most difficult datasets having high rates of
evolution, as reflected in the average and maximum p-distances (i.e., normalized
Hamming distances, see Table 2).

101-taxon datasets. The model tree has very short internal branches, reflect-
ing a rapid radiation, and evolve under the GTR model without indels (20 repli-
cates). These are not ultrametric. The sequence datasets were generated for [23].

500-taxon Kuhner-Felsenstein (KF) datasets. The model trees for these
datasets were produced by a random process developed by Kuhner and Felsen-
stein, designed to produce tree topologies and branch lengths similar to those
seen in biological datasets. The initial tree taken from [2] has average branch



Using INC Within Divide-and-Conquer Phylogeny Estimation 171

length of 1, and we rescaled it to produce varying rates of evolution. These trees
are far from ultrametric. Sequences evolve under the Jukes-Cantor model [8].

1000L1 datasets. We use the true alignments from 20 replicates from the
1000L1 datasets studied in [16]. These datasets have a high rate of evolution with
both substitutions and long insertions and deletions (indels), with average gap
length 13.6, and do not have short branches. The model tree is not ultrametric.
The average percentage of the true alignment that is gapped (i.e., gappiness) is
73.2%.

1000-taxon (SB) datasets. These date were generated by taking a single model
gene tree from [19] with very short branches (SB), representing a rapid radiation,
and is not ultrametric. We then varied the rate of evolution by rescalling branch
lengths, and generated 20 replicate datasets for each rescaled model tree using
INDELible [7] with the same GTR+gamma model parameters as in [19].

10K datasets. This model tree has 10,000 leaves and the topology and branch
lengths have a strict molecular clock with have many short branches. We gener-
ated this model tree by first generating a species tree using SimPhy [15] (with
parameters consistent with a rapid radiation, similar to the 1000-taxon short
branch datasets) and then evolving a single gene within the species tree. Finally,
we varied branch lengths by rescaling the gene tree and evolved sequences under
the GTR+gamma model using INDELible; 10 replicate datasets were generated
for each scaling factor.

Table 2. Average and maximum p-distances (max = 1.0) are given for each model
condition.

Datasets 1000L1 500 101 1000(SB) 10K

Average p-distance 0.70 0.72 0.13 0.21 0.19

Maximum p-distance 0.77 0.81 0.33 0.32 0.30

3.1 Results for Experiment 1

In our first experiment, we compare divide-and-conquer strategies that use INC.
We use the centroid edge decomposition (but changing the target subset size)
to define the subsets, construct trees on the subsets using different techniques,
and then combine the subset (constraint) trees using different ways of running
constrained-INC, including specific changes to its algorithm design. We explore
these variants on the 20 replicates of the 1000L1 datasets. Unless specified other-
wise, we use the following settings for all methods: INC-ML uses FastTree2 as a
starting tree, uses a centroid edge decomposition, constructs the constraint trees
using FastTree under the GTR model, and employs unweighted voting restricted
to the valid quartets. Neighbor joining (NJ) is run using PAUP*, BME is run
using FastME2 [12] with NNI and SPR searches, and FastTree2 and RAxML are
run in default mode under the GTR model.
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Impact of subset size. We began by evaluating the impact of size of the sub-
sets produced by the centroid edge decomposition strategy, using FastTree2 to
compute the constraint trees on the disjoint subsets. As shown in Table 3, the
largest subsets produce the best accuracy. Since the largest subsets also have the
highest running time, we explore results using maximum subset size of 200 for
the remaining studies in Experiment 1.

Table 3. Results for Experiment 1: impact of maximum subset size on tree error rates
(maximum 1.0) for INC-ML. Results shown are mean error rates over 20 replicates of
the 1000L1 model condition.

Maximum subset size 20 50 100 200 500

Tree error rate for variants of INC-ML 0.70 0.50 0.37 0.26 0.17

Table 4. Results for Experiment 1: table showing impact on final tree error rate for
INC-ML of the choice of starting tree (maximum 1.0); results shown are averages over
20 replicates of the 1000L1 model condition.

Starting tree FastTree2 FastMe NJ

Tree error rate for variants of INC-ML 0.261 0.272 0.277

Impact of the choice of the initial tree. Next we study the impact of the
choice of the initial tree. The result of this experiment (Table 4) shows that using
FastTree2 to compute the initial tree gives the overall best accuracy; hence, we
use FastTree2 for the initial tree in our remaining experiments.

Impact of voting scheme. The original voting scheme, presented in [29] allows
only valid quartets to vote, and each vote has the same weight. Given the new
taxon q to add and growing tree tg, each internal node i defines a quartet
Qi = {u1, u2, u3, q} and all valid quartets (as defined in [29]) have unit weight.
Furthermore, given a valid quartet tree u1u2|u3q, this identifies a subtree of the
growing tree into which q can be added. The quartet tree adds one vote to each
edge in that subtree. The implementation of this voting scheme is performed
with a straightforward breadth-first-search [29].

We modify this strategy by changing which quartets are allowed to vote
and redefining the weight of their votes; we also consider schemes that have
two phases. Since increases in the diameter of a quartet (which is defined by
the distance matrix d) are known to increase the error rate in the estimated
quartet tree [4], we consider weighting schemes that depend on the diameter of
the quartet. Overall, we evaluate the following five protocols.

Voting protocol 1 (VP1): The valid quartets are used without weights to
identify a set of edges that have the maximum total support. If there is more
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than one edge with maximum total support, the first edge encountered with that
maximum support is selected.

Voting protocol 2 (VP2): This protocol uses two phases. The first phase is as
with the first protocol in that the valid quartets without weights vote to identify
a set E∗ of edges that have the maximum total support. Then, the valid quartets
are used with weights to select from among the set E∗ of identified edges. If there
is still a tie, the first edge encountered with that maximum support is selected.
The weight of a quartet tree with diameter (maximum length between any 2
leaves) dQ is set to either 1

dQ
(VP2.1) or 1

d2
Q

(VP2.2).

Voting protocol 3 (VP3): This protocol uses one phase. All valid quartets vote
with weights (see below), and the set of edges that have maximum total support
is identified. If there is a tie, the first edge encountered with that maximum
support is selected. The weight of a quartet tree with diameter dQ is set to 1

d2
Q

.

Voting protocol 4 (VP4): This protocol uses two phases. In the first phase,
all valid quartets vote with weights (see below), and the set E∗ of edges that
have maximum total support is identified. If there is a tie, then all quartets are
allowed to vote (but only on the set E∗) with weights; this produces a subset of
E∗ that has the maximum total support. If there is still a tie, then the first edge
encountered with that maximum support is selected. The weight of a quartet
tree with diameter dQ is set to 1

d2
Q

in both rounds.

Voting protocol 5 (VP5): This protocol uses one phase. All quartets vote
with weights (see below) and the set of edges that have maximum total support
is identified. If there is a tie, the first edge encountered with that maximum
support is selected. The weight of a quartet tree with diameter dQ is set to 1

d2
Q

.
As shown in Table 5, VP3-VP5 produced slightly better accuracy than VP1,

VP2.1, and VP2.2. Of the three better voting schemes, VP3 and VP5 have
the advantage of using only one phase, and VP3 has a (slight) running time
advantage over VP5 in that it only allows valid quartets to vote. Therefore, in
subsequent analyses we used VP3.

Table 5. Results for Experiment 1: the impact of voting schemes on tree error rates
(means over 20 replicates) for INC-ML on the 1000L1 datasets.

Voting scheme VP1 VP2.1 VP2.2 VP3 VP4 VP5

Tree error rate for variants of INC-ML 0.266 0.269 0.269 0.249 0.249 0.249

Impact of how constraint trees are computed. We examine three ways of com-
puting constraint trees: RAxML used to estimate the constraint tree for each
subset, FastTree2 used to estimate the constraint tree for each subset, and the
induced tree on the specified subset of the FastTree2 tree on the full set of taxa.
As shown in Table 6, using the induced trees on each subset computed by Fast-
Tree2 (i.e., FastTree2-induced) produced the best accuracy; hence, we use this
approach in subsequent studies.
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Table 6. Results for Experiment 1: the impact on tree error rates of how constraint
trees are computed: RAxML, FastTree2, or the induced subtree of the FastTree2 tree
on the full set of taxa (i.e., “FastTree2-induced”). Results shown are averages over 20
replicate datasets from the 1000L1 model condition.

Constraint tree method FastTree2 FastTree2-induced RAxML

Tree error rates for variants of INC-ML 0.249 0.247 0.255

Impact of how quartet trees are computed. We then explored how the quartet
trees are computed. We explored three techniques: the Four Point Method (FPM,
the default in [29]), RAxML on each quartet, and using the induced quartet tree
from the FastTree2 tree on the full dataset. The best result was obtained using
the induced tree from FastTree2 (Table 7). Hence, for subsequent experiments,
we compute quartet trees by restricting the FastTree2 tree to each quartet.

Table 7. Results for Experiment 1: impact of methods on INC-ML of methods used
to compute quartet trees.

Quartet tree method FPM FastTree2-induced FastTree2

Tree error rate for variants of INC-ML 0.247 0.109 0.137

Summary of Experiment 1. Experiment 1 showed that changes to the
Constrained-INC design could result in improved accuracy, with some algorith-
mic parameters having large impacts. In particular: the size of the constraint
trees was important (with larger subsets better), how quartet trees are computed
was important (with the Four Point Method much less accurate than FastTree2-
induced quartet trees), and other parameters providing a small improvement. In
Experiment 2, we maintained the settings selected in Experiment 1.

3.2 Results for Experiment 2

In our second experiment, we explore two variants of INC-ML: one (INC-ML
(fast)) that is designed for speed and the other (INC-ML (slow)) that is slower
and designed for improved accuracy. Both variants use the same divide-and-
conquer strategy, differing only in the ML heuristic they use to construct trees
on subsets (RAxML for the slow variant and FastTree2 for the fast variant).
Each method uses FastTree2 to compute an initial tree, divides the dataset into
subsets with at most n/5 taxa (where n is the number of taxa in the input set)
using the centroid edge decomposition, and constructs ML trees on each subset.
Each method uses induced quartet trees from the FastTree2 starting tree for the
quartet trees (only on the valid quartets) and voting scheme VP3.

Overall results for the basic model conditions are shown in Table 8. We also
show results as we scale the branch lengths in each model tree for the 10K-taxon
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Table 8. Tree error rates of two variants of INC-ML, two ML heuristics, and NJ
under different model conditions (over 10 replicates for the 10K-taxon condition and
10 replicates for each other model condition).

Datasets 101 1000L1 1000(SB) 10K

INC-ML (Fast) 0.453 0.266 0.170 0.130

INC-ML (Slow) 0.453 0.253 0.212 0.155

FastTree2 0.453 0.109 0.180 0.131

NJ 0.500 0.434 0.421 0.271

RAxML 0.375 0.117 0.123 0.096

datasets in Fig. 1; results for the 1000-taxon datasets with short branches show
the same trends and are omitted due to space constraints. Results are quite
consistent: both variants of INC-ML are more accurate than NJ, come close
to FastTree2 in terms of accuracy (and are sometimes more accurate), but are
generally less accurate than RAxML.

Table 9. Average runtime (seconds) over 10 replicates of 10K model condition and 20
replicates on the other model conditions. The asterisk (*) indicates that RAxML could
not complete on any of the 10 replicates within 48 h on the 10K datasets.

Datasets 101 1000L1 1000(SB) 10K

INC-ML (Fast) 26 376 182 4182

INC-ML (Slow) 29 1121 750 48385

FastTree2 7 233 75 4071

NJ 0 2 3 2212

RAxML 32 4187 2827 (*)172800

Runtimes are shown in Table 9. Unsurprisingly, NJ is the fastest of the meth-
ods, completing in less time than the other methods, and FastTree2 is the next
fastest method. The slowest method by far is RAxML, which does not complete
on any of the 10K datasets within 48 h. Finally, as expected, INC-ML (Slow) is
slower than INC-ML (Fast), reflecting that the slow version uses RAxML and
the fast version uses FastTree2.

3.3 Comparison Between Constrained-INC and NJMerge

To the best of our knowledge, the only other method that combines disjoint trees
is NJMerge [18,19], which was explored for multi-locus species tree estimation
in which gene tree heterogeneity due to ILS is present [14]. As shown in [18,19],
NJMerge provided substantial advantages for coalescent-based species tree esti-
mation, and in particular it maintained accuracy but reduced running time for
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Fig. 1. Tree error rates on the 10K datasets for two variants of INC-ML, two ML
heuristics, and NJ, as the model tree is scaled from a low rate of evolution (scaling
factor 1) to a high rate of evolution (scaling factor 50).

ASTRAL [17], which is the current leading coalescent-based method. However,
NJMerge was not explored in the context of GTR phylogeny estimation, where
there has been several decades of substantial effort in developing highly accurate
maximum likelihood codes. We compare constrained-INC and NJMerge on the
same 1000-taxon datasets studied in this paper, using the same constraint trees,
to evaluate the impact of choice of merger technique (i.e., NJMerge or INC). As
shown in Table 10, the two methods have essentially identical accuracy.

Table 10. Tree error rates on the 1000-taxa short branch datasets for INC-ML and
NJMerge [18] on RAxML constraint trees, as a function of the scaling factor.

Scaling factor 0.2 0.5 1 2 5 10 20 50

Tree error rate for INC-ML (slow) 0.16 0.18 0.21 0.19 0.20 0.22 0.23 0.26

Tree error rate for NJMerge (slow) 0.16 0.18 0.19 0.20 0.20 0.22 0.23 0.26

4 Conclusions

This study has shown that the original design for INC and INC-NJ, despite the
excellent theoretical guarantee of being absolute fast converging (AFC) under
standard sequence evolution models, does not provide very good accuracy com-
pared to even simple distance-based methods. However, the specifics of the algo-
rithm design mattered: changing how quartet trees are computed and allowing
quartet trees to vote improved accuracy. These modifications in algorithm design
enabled INC-ML to produce trees that came close to the accuracy of the best
maximum likelihood methods and that were more accurate than the leading
distance-based methods.
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Despite the somewhat disappointing performance of INC-ML, the results
shown here are limited to just one divide-and-conquer strategy, and it is pos-
sible that other divide-and-conquer strategies might provide better accuracy.
However, it seems likely that the best that divide-and-conquer approaches can
provide is a speed-up rather than an improvement in accuracy over RAxML,
which is regarded as one of the best maximum likelihood heuristics.

Finally, the similarity in performance between INC and NJMerge strongly
suggests that INC should be useful in other settings, such as multi-locus species
tree estimation, where this type of divide-and-conquer strategy does provide
improvements in running time—without sacrificing accuracy. Further research
is needed to explore the design space and the different application domains for
divide-and-conquer strategies.
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Abstract. DNA methylation has been extensively linked to alterations
in gene expression, playing a key role in the manifestation of multiple
diseases, especially cancer. Hence, the sequence determinants of methyla-
tion and the relationship between methylation and expression are of great
interest from a molecular biology perspective. Several models have been
suggested to support the prediction of methylation status. These mod-
els, however, have two main limitations: (a) they are limited to specific
CpG loci; and (b) they are not easily interpretable. We address these
limitations using deep learning with attention. We produce a general
model that predicts DNA methylation for a given sample in any CpG
position based solely on the sample’s gene expression profile and the
sequence surrounding the CpG. Depending on gene-CpG proximity, our
model attains a Spearman correlation of up to 0.84 for thousands of CpG
sites on two separate test sets of CpG positions and subjects (cancer and
healthy samples). Importantly, our approach, especially the use of atten-
tion, offers a novel framework with which to extract valuable insights
from gene expression data when combined with sequence information.
We demonstrate this by linking several motifs and genes to methylation
activity, including Nodal and Hand1. The code and trained weights are
available at: https://github.com/YakhiniGroup/Methylation.

Keywords: Genomics · Methylation · Deep learning · Attention

1 Introduction

DNA methylation is a chemical process that modifies DNA in living organisms
and can significantly affect gene expression, mostly through the inhibition of
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transcription. In humans, DNA methylation refers to the presence of a methyl
group at a defined position of a cytosine and occurs mostly in CpG dinucleotides.
It has been particularly shown to affect gene expression in gene promoter regions
with relatively dense CpGs, known as CpG islands (CGI). When a large number
of proximal CpGs are methylated, the transcription of nearby downstream genes
may be inhibited.

DNA methylation plays a key role in disease development. Specifically, hyper-
methylation can lead to stable silencing of tumor suppressor genes [13]. This
process has therefore been extensively observed and studied in the context of
cancer [9,19]. While various forms of cancer are central to the discussion on
DNA methylation, it has also been linked to other diseases and biological pro-
cesses such as cardiovascular disease [8] and Alzheimer’s Disease [12].

Currently, there are several methods available for measuring DNA methyla-
tion [15]. Some of these methods, however, require specialized protocols or a rel-
atively large DNA sample size. Hence, depending on the required task, the costs
could be significant and the data collection may be impractical. In addition, and
perhaps more importantly, the link between gene expression and methylation is
still an open-ended question and predictive analyses could provide insight into
this relationship. In this work we set out to address both aspects of methylation.

This work includes the following contributions: (1) A practical tool that
enables users to input any CpG position along with the sample’s gene-expression
profile, and obtain a prediction. (2) From a theoretical perspective, our results
provide proof for a sharp link between sequence and expression and between local
methylation events. We also unveil motifs and genes that the model identified
as significant contributors to the prediction, specifically linking HAND1 and
NODAL to methylation activity in the cohort analyzed. (3) We provide a novel
model design and framework that support the combination of gene-expression
data with genomic sequences to extract valuable molecular-level insights.

1.1 Related Work

Over the past decade, researchers have been investigating the use of machine
learning for the prediction of methylation. In [1] and [5] the authors used classi-
fiers such as Support Vector Machines (SVMs) and decision trees to determine
the status of a given CpG using both structural and sequence-specific features.
Similarly, [25] suggested a random forest classifier that uses features such as
genomic position and neighbor methylation levels. The latter were noted as sig-
nificant contributors but clearly require collecting partial methylation data. Oth-
ers [17], have used a regression approach to predict continuous methylation levels
across tissues, also using SVMs. While the use of regression is indeed more appro-
priate in the context of continuous methylation measurements, this approach
requires extensive data collection from a source tissue. More recently, [23] used
a deep learning model to predict whether a CpG was hypo-or hyper-methylated
by using DNA patterns and topological features. The latter are human engi-
neered features taken as input by the network model. Like previous methods,



Predicting Methylation from Sequence and Gene Expression 181

this model is limited to binary classification, and is specifically constrained to
hypo-/hyper-methylation.

To conclude, the main limitations posed by previous models include: (1) The
need to measure methylation in some (or all, in the case of learning between
tissues) CpG sites. (2) Extensive use of human-engineered features. This not
only incorporates human biases, but also prevents the model from unveiling
novel representations. (3) Use of binary classifiers when in reality methylation
levels are measured continuously, representing fractions of cells with any given
status.

2 Approach

To address the limitations posed by the aforementioned methods, we suggest a
deep learning model that does not require measuring methylation levels to obtain
a prediction, provides continuous predictions rather than binary and uses atten-
tion mechanisms that enable us to uncover important representations learned
by the model. Specifically, we predict methylation levels at a given CpG in a
given sample based on three factors: (1) The sequence surrounding the CpG; (2)
The sample’s gene expression profile; and (3) The distance between the profiled
genes and the CpG.

We use a generalized approach that can be applied to any set of CpGs. We
avoid incorporating human-engineered features derived from the DNA sequence
by using a Convolutional Neural Network (CNN) as a motif detector. We also
do not manually select genes to include in the model, but rather incorporate the
gene-expression profile by using three attention mechanisms that take the input
context into consideration. That is - the attention mechanism is determined
by the sequence around the CpG of interest, the distance between the CpG of
interest to each of the genes and the gene-expression profile as a whole. We test
our model on completely separate sets of CpG positions and subjects to ensure
that our model can indeed generalize beyond the training data. Our method is
fully available online1.

2.1 Datasets

We used data from two cancer cohorts: (1) 782 breast cancer patients and (2)
498 prostate cancer patients. For each patient, we obtained two types of data:
(a) gene expression data in RSEM normalized count for 17,997 genes (RNA-seq)
and (b) methylation levels at 360,531 CpG sites (450K Illumina array).

In addition to the patient-specific data, we also use data specific to any CpG
locus: (a) the ambient sequence - 399 base-pairs upstream of the CpG and 399
downstream, for a total of 800 base-pairs and (b) the genomic distance between
each gene in the profile considered and the CpG of interest.

1 https://github.com/YakhiniGroup/Methylation.

https://github.com/YakhiniGroup/Methylation
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2.2 Constructing the Model

Our task is to predict the methylation level at a CpG site in a given sample using
the samples’s gene expression profile and the ambient sequence at the CpG site.
To do so, we created a multi-modal neural network (Fig. 1) comprised of four sub-
networks: one CNN, which acts as a motif detector for the surrounding sequence
and three attention components which act as gene amplifiers, each based on
the input provided. These sub-networks are then combined into a single fully-
connected network to produce the final prediction.

We define a single training example to represent one subject (or sample) and
one CpG. It contains the following components:

1. The subject’s gene expression vector e, where each entry, ei , represents the
expression level of a gene gi .

2. The sequence surrounding the CpG of interest, represented as a matrix S of
one-hot vectors as shown in (Fig. 1).

3. A vector d, where di is computed based on the distance, in base-pairs, between
gi and the CpG of interest. Specifically, a gene residing within the first 2,000
base-pairs receives a value of 1, the next 2,000 a value of 0.5 and so on until
the last bucket of 2,000 was given a value of 0.59. Beyond this point, and for
genes residing on a different chromosome, this value was 0.

2.3 Attention Mechanism for Gene-Expression

To incorporate the gene-expression profile, we use attention mechanisms. An
attention mechanism is essentially a vector of probabilities usually obtained by
employing softmax on the final output layer of a neural network. This vector in
turn is used as a filter for another vector, often via an element-wise product.

In our case, we created three attention vectors, each of which is derived
from the output vector of a different neural network. We then multiplied each
of them element-wise by the gene-expression profile vector e as seen in Fig. 1.
Specifically, we created the following three neural networks to generate three
attention vectors:

1. A second CNN that operates on S, with output layer aseq . This is in addition
to the CNN described earlier. The two allow the model to separate between
motifs that are gene-specific (via attention) and general motifs (e.g. CG).

2. A fully-connected neural network based on the distance vector d with output
layer adist .

3. A fully-connected neural network based on the gene-expression vector e with
output layer aexp .

These attention mechanisms enable the model to select which genes are
important given any input context and provide a form of conditional impor-
tance to all measured expression levels. For example, the first attention vector
might detect the presence of a transcription factor binding site (TFBS) proxi-
mal to the CpG via motifs learned by the CNN, indicating it may be related to
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methylation activity. The second attention mechanism might learn that a gene
that is in close proximity to the given CpG has more predictive value than a
gene residing on a separate chromosome. The third might detect that a certain
combination of co-expressed genes is informative of the expression level of some
other gene.

Each of the three attention vectors is multiplied element-wise by the gene-
expression profile e to produce three vectors of the following form:

ai � e (1)

where � is the element-wise product and ai is one of the three attention vectors.
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Fig. 1. The full multi-modal neural network, combining a CNN motif-detector (top)
with three attention components applied on gene-expression levels (based on sequence,
gene-expression and distance). The final layers of these sub-networks are combined
via concatenation and fed into a final neural network. Input layers are in orange and
the final output layer, representing the predicted level of methylation at the CpG of
interest and in the sample of interest, is in green. (Color figure online)

2.4 The Combined Multi-modal Neural Network

We combine the output layers of the first CNN and the three attention mech-
anisms via concatenation and feed the concatenated representation into a final
fully-connected neural network. More formally, denoting the output layer repre-
senting the surrounding sequence as s, we form the following input to the final
fully-connected network (described in Fig. 1):

[s, aseq � e, adist � e, aexp � e] (2)
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2.5 Training

We create a unified model by training three different sub-models designed to
address three close, but not identical, prediction tasks: Model 1 - focuses on
CpGs with a gene that is in close proximity, specifically within a window of
2,000 base-pairs on either side; Model 2 - focuses on CpGs with a gene that is
in medium-proximity of 10,000 base-pairs; and Model 3 - applicable to all CpGs
regardless of gene proximity. To ensure that our model learns to generalize across
different samples, we created a unified dataset that includes both the breast
cancer and prostate cancer cohorts, as described in Sect. 2.1.

For each model we created a new dataset that matched the task’s criteria. For
the first two models we took all CpGs from the combined dataset that satisfied
the relevant window criteria, resulting in 10K CpGs for Model 1 and 74K CpGs
for Model 2. For the third model we randomly sampled 100K CpGs out of the
total 360K available (using all CpGs would require a significantly larger gene-
CpG distance matrix). Each of the resulting three datasets were randomly split
into training, validation and test sets (65% of CpGs and 80% of subjects were
train and the rest split randomly between validation and test). Importantly, the
held-out test sets contain only subjects and CpGs that did not participate in the
training phase.

The purpose of generating these three sub-models is twofold: (1) it enables
us to provide more accurate predictions under certain proximity conditions and
(2) having a model specialize solely on proximity data (as opposed to generic
CpG data), especially in the case of Model 2 where many CpGs satisfy the
10,000 window condition, will enable it to learn more effectively those gene-CpG
representations we sought out to discover.

Our models were trained using the Adam Optimizer [14]. We use the mean-
absolute error (MAE) as the loss function. Training to convergence on the vali-
dation set took roughly 4 h on a Tesla K80 GPU.

3 Results

3.1 Predicting Methylation Levels

We evaluated each model on its respective held-out test sets, as described earlier.
Model 1, for gene-proximal CpGs, achieves an MAE of 0.13 and 0.84 Spearman
correlation (− log p > 100). Model 2, for gene-neighboring CpGs, achieves an
MAE of 0.16 and 0.75 Spearman correlation (− log p > 100). Model 3, trained
on general CpGs, attains 0.2 MAE and 0.65 Spearman correlation (− log p >
100). These results demonstrate that the model better utilizes the attention
mechanisms when provided with relevant data. Furthermore, these results also
show that the models are capable of generalizing to new CpGs and subjects
in the context of cancer (recall that the test sets do not include any CpGs or
subjects from the training sets).

While our models were trained on two cancer cohorts, we also tested its
performance on healthy tissue measurements (without any training on this data).
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This would provide further indication of the ability of our model to generalize.
For this purpose, we tested Model 1 on the corresponding healthy tissue samples
available for the breast cancer cohort (n = 85). Out of the available 85 subjects,
we kept only those that did not appear in the model’s train or validation set. We
did the same for CpGs, removing any that appeared in the train or validation
sets. This resulted in 21 subjects out of the available 85 and 956 CpGs. Our
model obtained 0.84 Spearman correlation (− log p > 100) on this test set.

3.2 Comparison to Previous Work

We compare our model to two representative methods - a deep learning approach
used for classification [23] and a feature-based approach used for regression [17].
The first method used a fully-connected neural network to classify hypo- and
hyper- methylated CpGs. While the model obtains an accuracy of 80%–90% on
this task, the approach is limited to extreme methylation levels. Furthermore,
higher accuracy was obtained using methylation levels at neighboring CpGs,
requiring pre-measuring methylation levels at those sites. In this case, it may be
more practical to measure methylation levels directly at the CpGs of interest.

The second model used regression SVM to predict methylation levels at a
target tissue based on a source tissue. Depending on which tissues were used for
the task, they obtained R2 of 0.73–0.99. The downside of this approach is the
need to collect methylation data from a specific source tissue at specific CpGs.

Our model does not require collecting any prior measurements of methyla-
tion. It is also not limited to any specific range of prediction values. We demon-
strated our model’s ability to generalize by testing it on a completely separate
and randomly selected set of CpGs and subjects, as well as on a separate test
set obtained from healthy tissue. Most importantly, our model introduces the
use of CNNs and attention to this task, both of which enable to extract insights
from the learned representations using our proposed framework.

Fig. 2. Actual (x-axis) vs predicted methylation values for Model 1 (3,000 randomly
selected instances from its held-out test set).

3.3 Gene-Expression Attention Learned by the Model

In this section we analyze the attention components, and demonstrate that they
can provide valuable insights into the learned representations. For this purpose
we used Model 2.
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Fig. 3. Attention probabilities per gene (columns) and CpG (rows). Each gene’s CpGs
were sorted from high (blue) to low (yellow) attention scores. The first 100 CpGs per
gene are shown. (a) Sequence-based attention - genes with at least one attention score
>0.1. (b) Distance-based attention - genes with a median attention score >0.1. (Color
figure online)

Sequence-Based Attention. In this section, we set out to analyze the genes
that were attended to by the sequence-based attention mechanism. To do so, we
first identified those genes that were relevant across multiple CpGs (i.e. attended
to by multiple sequences). Specifically, we gathered all attention vector outcomes
for each of the unique sequences in the test set, resulting in a single attention
vector per CpG. We then sliced across CpGs and gathered all attention scores
attributed to a gene (from all CpGs), resulting in one vector per gene. We sorted
each of the gene’s attention values in descending order so that the top of its list
corresponds to those CpGs for which the gene received the highest attention
score (importance). Finally, we removed all genes that did not have at least one
attention score >0.1. The top 100 CpGs from each of the remaining sorted lists
are the columns seen in Fig. 3(a). Note that each gene was sorted separately,
hence the top CpGs in one gene’s column may differ from those of another.

Fig. 4. The most significantly enriched motifs in sequences with high sequence-based
attention scores for HAND1 (a) and NODAL (b). The HAND1 motif is near-identical
to its known binding site motif GTCTGG.

The most notable gene is HAND1. To assess the possible relationship between
HAND1 and DNA methylation in our dataset, we retrieved the sequences sur-
rounding the top CpGs for HAND1 (recall that attention is determined based on
the CpG’s ambient sequence, in this case), and tested whether they are signifi-
cantly enriched with the HAND1 binding site motif - GTCTGG [10] as compared
to the lower ranked CpGs. Such a case would indicate that the CpGs proximal to
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this motif produce higher attention scores for HAND1, linking their methylation
level to HAND1 binding. We performed this analysis using DRIMUST [16], a
tool which analyzes motifs enriched at the top of ranked lists. We took the top
20 CpGs for HAND1, with an average attention value of 0.32, along with the
bottom 20 CpGs, with an average attention value of 0.07, and inserted them
in ranked order. The top significantly enriched motif - GTCTGA - was indeed
nearly identical to the known HAND1 binding motif (p-value < e−6), as can
be seen in Fig. 4(a). Furthermore, only the top 18 CpGs contained this motif
and the top 10 contained it more than once. None of the bottom 20 sequences
contained this motif. To the best of our knowledge, the HAND1 gene has not
been previously associated directly with the process of methylation at or near
HAND1 binding sites, yet our findings show that this may be the case.

Another prominent gene, which was given a high attention score by multiple
CpGs, is NODAL. NODAL plays a crucial part in the Nodal Signaling Pathway
(NSP), in which it is responsible for instigating the transcription of multiple
target genes. This is likely part of the reason why the model attributed NODAL
with a high attention value for multiple CpGs. According to a recent experi-
ment conducted on mouse embryos, elevated NODAL levels may be linked with
increased DNA methylation [4]. Combining this finding with the outcome of our
model indicates this may also be the case in humans, and specifically in cancer
tissues. Performing motif analysis here, we discover a single significantly enriched
motif - CGGCGGC (p-value < e−10) as seen in Fig. 4(b). Here too, the motif
appears only in the top 20 sequences, and multiple times in the vast majority of
them (the top 8 alone contain 37 occurrences).

Distance-Based Attention. For the distance-based analysis, we obtained each
gene’s attention vector in a similar fashion to that described in the sequence-
based section. This resulted in thousands of genes with at least one distance-
based attention score larger than 0.1. Hence, for display purposes, we further
refined the list of genes to include those for which the top 50 CpGs were larger
than 0.1. This resulted in 36 genes for which the top 100 CpGs are shown in
Fig. 3(b).

We hypothesized that the high attention scores may be explained by two
main mechanisms: (1) in-cis effect: the CpGs reside within the 10,000 base-pair
window of that gene and are therefore directly associated with it; or (2) in-trans
effect: the gene is associated with multiple CpGs in different genomic locations.
To examine the first hypothesis, we tested for a significant enrichment of nearby
CpGs at the top of the attention list of each gene g in Fig. 3(b). This was
accomplished using the minimum hypergeometric (mHG) test [6]. The analysis
yielded 7 genes for which the high attention values were significantly enriched
with CpGs residing within the window limit (p-value < 0.05). These genes are
marked with (*) in Fig. 3(b). Specifically, RABIF had a p-value < 0.003 and is
marked with (**).

To further explain the second hypothesis (in-trans), we will use FOXO3B
as a simple example. Notice that FOXO3B is not marked with (*), implying
that its high attention scores are not associated with nearby CpGs. Instead,
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the model might have learned that the expression level of FOXO3B is associated
with methylation levels of a distant set of CpGs. Indeed, FOXO3B’s top 20 CpGs
(p-value < 0.0001) reside on 8 different chromosomes. This is consistent with the
fact that it is a member of the forkhead family of DNA binding proteins [2].

3.4 Motifs Learned by the CNN

In this section we analyzed the representations learned by the first CNN (top of
Fig. 1). Specifically, we took each learned CNN filter, and 0–1 scaled each row
(representing a single nucleotide) to obtain the position probability matrix used
for generating sequence logos. Figure 5 described six motifs detected by the CNN.
One representation that stands out (Fig. 5(b)) indicates the importance of both
the individual CpGs within the surrounding sequence, as well as the existence of
multiple, consecutive combinations of Cs and Gs, most likely representing dense
CpG occurrences - a hallmark of CpG islands.

Another prominent outcome is the CA-motif in Fig. 5(a). This motif has been
shown to modulate alternative splicing of mRNA [11], which is also thought to
be regulated by methylation [18]. CpA repeats (TpG repeats) are also hallmarks
of past methylation activity due to conversion of CpG to TpG when deamination
follows methylation [3].

We also identified the TATA motif (or TATA box), a core promoter element
[24] seen in Fig. 5(c). Previous studies have shown that promoters residing in
CpG-islands, and CG-dense regions in general, often lack this motif [24]. Hence,
the model seems to distinguish between CpGs residing in CpG-dense regions and
CpGs that are relatively isolated.

Also worth mentioning, is the SP1 motif (Fig. 5(e)) which is especially known
for its consensus sequence: GGGCGG and its reverse complement [22].

4 Conclusions

DNA methylation is strongly related to disease development and is therefore
the focus of much research. Models that provide methylation predictions could
speed up future research and improve our understanding on how epigenetics
may be involved in physiopathology. In this paper, we provided a general model
that supplies such predictions based on the ambient sequence at the CpG of
interest and the sample’s gene expression profile. Our model is comprised of
three sub-models that enable us to provide more accurate predictions under
certain gene-CpG proximity conditions. We demonstrated the model’s capability
of generalizing across both CpGs and samples by testing on completely separate
sets of CpGs and subjects, as well as on healthy tissue. Our model is highly
interpretable, avoids incorporating prior knowledge by using CNNs and attention
as feature extractors, provides continuous predictions and is not limited to any
subset of CpGs, unlike previous models.

Most importantly, we demonstrate the power of using an attention mecha-
nism on gene-expression data by analyzing its learned representations. Specif-
ically, this enabled us to link HAND1 and NODAL to methylation activity.



Predicting Methylation from Sequence and Gene Expression 189

Our attention-based model, along with its analysis, provide a novel framework
for future research that seeks to combine gene-expression data with genomic
sequences and extract valuable insights from both. This framework could also be
extended beyond gene-expression data to include other genomic measurements.

Fig. 5. Motifs identified by the CNN. (a) CA-repeat - a hallmark of methylation activ-
ity [20]; (b) CpG-dense regions; (c) TATA motif - a core promoter element [24]; (d), (e)
SP1 motif, known for the consensus sequence: GGGCGG and its reverse complement
[22] and for consecutive Cs or Ts [21]; (f) DNA repeats, also linked to methylation [7].
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Abstract. Cell differentiation and development are for a great part
steered by cell type specific enhancers. Transcription factor (TF) binding
to an enhancer together with DNA looping result in transcription initi-
ation. In addition to binding motifs for TFs, enhancer regions typically
contain specific histone modifications. This information has been used to
detect enhancer regions and classify them into different subgroups. How-
ever, it is poorly understood how TF binding and histone modifications
are causally connected and what kind of molecular dynamics steer the
activation process.

Contrary to previous studies, we do not treat the activation events as
static epigenetic marks but consider the enhancer activation as a dynamic
process. We develop a mathematical model to describe the dynamic
mechanisms between TF binding and histone modifications known to
characterize an active enhancer. We estimate model parameters from
time-course data and infer the causal relationships between TF binding
and different histone modifications. We benchmark the performance of
this framework using simulated data and survey the ability of our method
to identify the correct model structures for a variety of system dynamics,
noise levels and the number of measurement time points.

Keywords: Dynamic modeling · Enhancer activation ·
Cell differentiation

1 Introduction

Cell differentiation is steered by highly complex molecular machinery which
controls the execution of cell type specific transcriptional programs. Transcrip-
tional programs are typically initiated by external signaling molecules which
bind receptors on the cell surface and activate downstream signaling pathways.
Signaling cascades in turn activate lineage determining transcription factors that
bind selected regions in the genome and control the regulatory functions of
these regions, for instance, by modifying the structure of chromatin. An impor-
tant class of genomic regions bound by lineage specifying transcriptions factors
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are so-called enhancer regions which facilitate DNA looping, and as a conse-
quence, enable interaction between enhancer and promoter sequences leading
to the initiation of transcription [7,23]. Systematic activation of these selected
regulatory regions is an important part of lineage determine supervision, but
the detailed molecular kinetics behind these epigenetic mechanisms are poorly
understood [15]. Modern high-throughput measurement techniques, such as chro-
matin immunoprecipitation sequencing, provide practical means to observe the
epigenetic states in different cell types. Such methods have vigorously been used
to determine global chromatin markings across different cell types. Further, new
insights on the molecular mechanisms can be gained by analyzing these data
using computational approaches.

Computational methods that have been used to study epigenetic mechanisms
include, for instance, Bayesian networks, sparse partial correlation networks and
maximum entropy framework [12,13,17,25]. Yu et al. [24] have also combined
gene expression data analysis with histone modification networks and theoreti-
cal investigations of histone modification networks have also been proposed in
[9]. Even though these existing approaches provide invaluable information about
the structure of epigenetic signaling networks, the approaches are limited in the
sense that they provide only a static view on the network structure and do not
account for dynamic causative relationships between epigenetic modifications.
In other words, these approaches provide information about statistical depen-
dencies between measured quantities but are incapable of capturing mechanistic
features of the underlying system. Dynamic view on epigenetic signaling is espe-
cially important when considering cell differentiation processes which depend on
enhancer activity.

During cell differentiation processes, the state of an enhancer typically
changes transiently from an inactive state to an active state. The activation
process is steered by enzymatic signals (readers and writers of histone modifi-
cations) accompanied with appropriate transcription factor activities [2]. Con-
sequently, in order to learn dynamic behavior leading to active enhancer state,
it is necessary to quantify the dynamic and causative relationships between the
key components of this complex molecular system.

In this study, we take the first steps towards mechanistic analysis of epigenetic
signaling events that lead to the enhancer activation. We construct a mechanis-
tic ordinary differential equation model to describe central histone modification
and transcription factor dynamics leading to active enhancer state. Our model
is designed to capture the dynamics of histone H3 lysine 4 monomethylation
(H3K4me1), histone H3 lysine 27 acetylation (H3K27ac), and an activating TF.
Highly enriched levels of histone modifications H3K4me1 [10] and H3K27ac [3]
are known to characterize the active enhancer state e.g. in Th2 cells and known
TFs drive the differentiation into Th2 lineage [16]. To carry out the analysis in
a data driven manner, we embed the causal model into a statistical framework
which makes it possible to infer the model structure as well as parameters from
experimental data. Our result show that experimental data from as few as five
time point is sufficient to distinguish cascade of enhancer activation events.
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2 Methods

2.1 Mathematical Model

Lineage determining transcription factors, such as STAT family, play a crucial
role in the enhancer activation as well as in the differentiation of Th cells in
general [22]. One such scenario leading to enhancer activation is illustrated in
Fig. 1. Initially, there are no TFs bound to the enhancer site and the enhancer
associated histone modifications are absent (Fig. 1, initial state 1). As the first
step, enhancer activation is initiated by TF that binds the enhancer (Fig. 1, state
2) and, in the considered scenario, TF binding is first followed by H3K4me1
(Fig. 1, state 3) and then finally by the third activation event H3K27ac (Fig. 1,
state 4). This chain of three causative activation steps leads to active enhancer
state and if the underlying assumptions of the causal relationships between the
key components are correct, we can build a dynamic model for the activation
process by using ODEs that describe the key components.

Fig. 1. A possible pathway model of chromatin changes during enhancer activation
that are reflected by the abundance data.

Because TF activation is driven by T cell activation as well as inducing
cytokine signals, we can simply assume that there is a persistent input signal
affecting TF. Thus, TF dynamics can be described by the ordinary differential
equation

d [TF]
dt

= αTF − δTF[TF], (1)

where αTF and δTF are unknown association and dissociation rate constants of
TF and [TF] represent the TF abundance at the enhancer site. Further, if we
assume that enzymatic signals that cause the methylation of the histone tail
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H3K4me1 result from TF binding, we can model H3K4me1 enrichment at the
enhancer cite by means of the equation

d[H3K4me1]
dt

= αme[TF] − δme[H3K4me1], (2)

where αme and δme are unknown methylation and demethylation rate constants
and [H3K4me1] represent the H3K4me1 abundance at the enhancer site. Simi-
larly, if H3K27ac is driven by H3K4me1 driven enzymatic signals, its enrichment
[H3K27ac] at the site can be modeled using the differential equation

d[H3K27ac]
dt

= αac[H4K3me1] − δac[H3K27ac], (3)

where αac and δac are unknown acetylation and deacetylation rate constants.
If the causative relationships between the key component TF, H3K4me1, and
H3K27ac are correct, the resulting ODE system can be used to approximate
the complex molecular kinetics consisting, for example, of TF binding events,
enzymatic signals, methylation, acetylation etc.

The approximative model that we derive above indicates that the TF signal
drives H3K4me1 which, in turn, drives H3K27ac. In other words, we have a
cascade of causative events leading to the active enhancer state and this can be
denoted by writing

TF binding → H3K4me1 → H3K27ac.

However, because the detailed kinetics remain unknown, we cannot be sure if
the causative relationships are correct. In other words, the true order of the
activation events in the cascade can be, for instance,

H3K4me1 → TF binding → H3K27ac.

Additionally, some of the activating events can also be synergistic in nature.
For example, TF binding and H3K4me1 can drive H3K27ac in a manner which
is either additive or multiplicative. These synergistic models can be defined for-
mally using the following equations

d[H3K27ac]
dt

= αac1[TF] + αac2[H3K4me1] − δac[H3K27ac], (4)

and
d[H3K27ac]

dt
= αac[TF][H3K4me1] − δac[H3K27ac]. (5)

All different scenarios that can be derived by altering the order or the type of
the activation steps can be modeled using the rate equations given in Eqs. 1–
5. Altogether there are 13 effectively different alternative models (see Table 1).
Importantly, all these alternative scenarios result in different dynamics of the
model output. Further, the dynamics of the model output can be directly linked
to observed time-course data and, by means of quantitative statistical methods,
it is possible to infer the most likely causative relationships between the key
components leading to enhancer activation.
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Table 1. A ⊥⊥B denotes that events A and B are independent; A → B denotes that
A regulates B; (A ∨ B) denotes A or B; (A ∧ B) denotes A and B.

Index Type of interaction Order of events

0 Independent H3K4me1 ⊥⊥H3K27ac ⊥⊥TF binding

1 Cascade H3K27ac → H3K4me1 → TF binding

2 Cascade H3K27ac → TF binding → H3K4me1

3 Cascade H3K4me1 → H3K27ac → TF binding

4 Cascade H3K4me1 → TF binding → H3K27ac

5 Cascade TF binding → H3K27ac → H3K4me1

6 Cascade TF binding → H3K4me1 → H3K27ac

7 Multiplicative synergy (H3K4me1 ∧ H3K27ac) → TF binding

8 Multiplicative synergy (H3K4me1 ∧ TF binding) → H3K27ac

9 Multiplicative synergy (H3K27ac ∧ TF binding) → H3K4me1

10 Additive (H3K4me1 ∨ H3K27ac) → TF binding

11 Additive (H3K4me1 ∨ TF binding) → H3K27ac

12 Additive (H3K27ac ∨ TF binding) → H3K4me1

2.2 Statistical Framework

We combine the dynamic ODE models with time-course data by means of statis-
tical modeling. More specifically, we set up a statistical framework for the ODE
models by using Bayesian methodology as outlined in [8] and carry out poste-
rior inference for the parameters and for the most likely causative relationships
between the key components steering enhancer activation [6] (alternative models
are listed in Table 1). In the following, we describe the details of our statistical
framework.

Let us denote the output of the model Mk by φMk
(θk, t) ∈ R

N where N is
the number of components in the model, θk is the vector of parameters of the
model and t is the time point. Further, θkl is the l’th element of θk . Also, let
D = (y11, . . . , yNT ) be the experimental data which consists of measurements
yij of the components i = 1, . . . , N at the time points t = 1, . . . , T . Accordingly,
φik(θk , tj) is the is i’th element at j’th time point of the model output. By
assuming normal errors, we define likelihood as

p(D | Mk,θk) =
N∏

i=1

T∏

j=1

N (yij | φik(θk , tj), σ2
k)

where N is the normal probability density function with mean φik(θk , tj) and
variance σ2

k. Posterior distribution of the model Mk is

p(Mk | D) ∝ p(D | Mk)π(Mk)

or
log(p(Mk | D)) = log(p(D | Mk)) + log(π(Mk)) + C
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where π(Mk) is the prior distribution for the model Mk and C is constant. The
marginal likelihoods

p(D | Mk) =
∫

p(D | Mk,θk)π(θk | Mk)dθk

is used to compare models with respect to each other. It can be approximated in
many ways [4]. In this study, we apply Laplace approximations (as described e.g.
[1]). Assuming uniform prior distribution for the models, i.e. prior probabilities
π(Mk) are equal, for all k = 0, . . . , 12, we obtain Bayesian information criterion
[20] defined by

BIC = log(p(D | θ̂k,Mk)) − 1
2
k0 log(n),

where p(D | θ̂k, Mk) is the maximum likelihood for model Mk, k0 is the number
of parameters and n is the number of observations.

2.3 Computational Implementation

In this work, we applied tools and methods reported being successful in dynam-
ical modeling in systems biology. The ODE models and the model selection
were implemented in Matlab (The MathWorks Inc., Natick, MA, USA) by using
PESTO toolbox [21] for parameter optimization and AMICI toolbox [5] for solv-
ing the ODE systems numerically. Maximum likelihood estimates for parame-
ters were obtained by employing the sensitivity equations in combination with a
multi-start strategy based on latin hypercube sampling as suggested in [18,19].
We optimized the parameters by maximizing the log-likelihood function from
100 starting points with interior-point algorithm in Matlab’s fmincon function.

3 Results

3.1 Evaluation of Model Identifiability and Discrimination

In practice, time-course measurements for histone modifications and TF binding
can be carried out only at a few time points. Being aware of the limited size of
real data sets, we use a small number of time-points also in our experiments with
simulated data. In these experiments, we consider three different scenarios for
measurements time-point selection, in the first one the samples are collected at
three time points (0, 4 and 72 h), in the second one the samples are collected at
four time points (0, 4, 8, and 72 h), and in the third samples are collected at five
time points (0, 4, 8, 12 and 72 h). For each scenario we considered eight levels
of measurement noise. The ladder was used to estimate the upper limit of het-
erogeneity in enhancer activation signals supporting this approach. In addition,
we introduced additional variability between the data sets by drawing the model
parameters from normal distributions with fixed means shown in Table 2 and
five percent coefficient of variation. This leads to heterogeneous data containing



Modeling Enhancer Activation Dynamics 197

dynamics of varying rates. In total, we created independently 4800 different data
sets.

We evaluated the model selection in two settings. First one was designed
to be as flexible as possible. Model parameters, initial values and measurement
noise variance were all inferred from simulated data. The rate parameters were
constrained to the range [10−3, 100], initial values at range [0.05, 0, 5] and stan-
dard deviations [0.05, 3]. Model selection is shown in Fig. 2. Not surprisingly
model selection is relatively unreliable with three times points. Yet, with four
time points cascade model starts to become recognizable, when measurement
noise is reasonable small (standard deviation less than, say, 1), Using five mea-
surement times enables reliable model selection for cascade and additive models.
However, it is difficult for this framework to identify the correct model from very
limited amounts of data when synergistic model is used to generate the data.
Moreover, the framework with this amount of flexibility, seems to favour models
with some dependencies between the enhancer activation signals even when data
is created from models consisting independent variables.
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Fig. 2. Y axis shows the percentages of successful model selections, meaning that the
correct model has the top rank (i.e. the highest marginal likelihood) for a given data.
X axis shows tested measurement noise variances. 50 data sets are analyzed for each
model and noise variance value. Model parameters, initial values and measurement
noise variance were all inferred from simulated data.

The other setting is more rigid. In this scenario, only rate parameters are
inferred from the data while initial values and values for measurements noise are
fixed to the correct values. In experimental work, it may be difficult to fix these
parameters to exactly correct values, but it increases the number of data points
relative to the number of inferred parameters making model ranking theoretically
more sound. Model selection results are shown in Fig. 3. The pattern is similar to
the previous case where data from three or four time points were not sufficient to
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trace the correct model whereas model ranking starts to become more accurate
when data is available from five time points.
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Fig. 3. Y axis shows the percentages of successful model selections, meaning that the
correct model has the top rank (i.e. the highest marginal likelihood) for a given data.
X axis shows tested measurement noise variances. 50 data sets are analyzed for each
model and noise variance value. Model parameters were inferred from simulated data
while initial values and measurement noise variance were set to correct value.

We assessed the uncertainties in the estimated parameter values of the models
with parameter identifiability analysis by using the profile likelihood method [11].
The parameter profile likelihood for lth parameter of model Mk is defined by
maximum likelihood

PLθkl
(c) = max

θk∈{θk|θkl=c}
log p (D|θk,Mk) . (6)

The profile likelihood determines confidence intervals for estimated parameter
values given a fixed confidence level [11,14]. Profile qualifies whether the param-
eter is identifiable or not. There are three basic categories for parameter iden-
tifiability. Clean, smooth profile with obvious maximum which furthermore has
reasonably constrained confidence interval is clearly identifiable. A flat profile
leads to an infinite confidence interval indicating structural non-identifiability
whereas a confidence interval constrained only at one end is practically non-
identifiable.

As a likelihood based method identifiability analysis clearly depends on both
data and measurement noise. We applied profile likelihoods to simulated data
containing five time points where measurement noise has standard deviation
0.15. With this kind of data, parameters were generally identifiable for all mod-
els except for synergistic model family. Figure 4 illustrates this case. Even then
most of the parameters were identifiable. Surprisingly, parameters of a synergis-
tic model calibrated to data derived from cascade model were all identifiable.
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Moreover, the same model calibration applied to additive model resulted in one
practically non-identifiable parameter while others were indentifiable. Together,
the results indicate that the inference framework performs well and model rank-
ing is promisingly powerful.

Fig. 4. The red curves represent the profile likelihoods of the kinetic parameters θ7 rep-
resented in base 10 logarithmic scale. The dashed lines show the 95% confidence interval
thresholds. The synergistic multiplicative model (model 7, Table 1.) was calibrated to
data generated with the same model. Basal activation rate θ71 and deactivation rate
θ72 define independent dynamics for the first activation signal x. Similarly, θ73 and θ74
control the dynamics of the second signal y. Signals x and y together drive the dynam-
ics of z multiplicatively using parameter θ75 whereas θ76 is the deactivation rate of
z. While other parameters are indentifiable, θ73 and θ74 are practically unidentifiable.
(Color figure online)

4 Discussion

We propose a new computational framework which is based on network inference,
representative systems of ODEs, parameter estimation and model ranking to
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infer and predict enhancer activation dynamics mechanistically. We verify that
a feasible amount of data is able to distinguish different models by creating
synthetic data that describes different kinds of dynamics and sample data points
to simulate data from wet-lab experiments. When the data is sampled in time
points that reflect well the dynamic changes in enhancer activation, the correct
model family can be found with only five time points.

In this work, we concern the dynamics of an enhancer activation. The net-
works involved consist only the best known histone modifications and one TF
factor binding. The networks can be easily expanded to contain other histone
modifications, TF binding or other molecules as well. In that case, it is impor-
tant to have sufficient amount of abundance data from the new components and
consider the possible mechanisms the components can impact to the system. It
may be that new terms representing for example repressive effect to the sys-
tems needs to be introduced to the ODEs. For all expansions detailed attention
should be paid to the experimental design and to the time scale of the studied
phenomenon.

Unlike previous methods used to infer mechanistic relations between
molecules engaged in enhancer activation, the suggested method utilizes more
effectively time evolution of abundance data. Instead of snapshots or series of
snapshots the occasional relations captured by for example (dynamic) Bayesian
networks, the proposed approach combines all information into a single complete
dynamical model of relations between the molecules. In addition, mechanistic
modeling enables us to predict the (relative) abundances of the molecules.

5 Conclusion

We have represented the first mathematical model to assess dynamic and mech-
anistic dependencies between key molecular components during cell type specific
enhancer activation. This approach enables both predictions of the dynamics and
model structure inference between the activation events going beyond previously
available methods detecting only static features. The introduced method works
well with data from a few time points and hence is applicable in both designing
time course experiments and analyzing experimental data studies.
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Appendix

Table 2. The simulated models and the means of the parameters used in data simu-
lations. One representative from each model family were selected for generating data.
Index k ∈ {0, 1, 7, 11} specifies the model structure as described in Table 1. A sam-
pled parameter vector θk consists of kinetic parameters θkl, initial values for three
ordered enhancer activation signals denoted by x0, y0 and z0 and the simulation spe-
cific measurement noise σs which was 0.15, 0.25, 0.5, 0.75, 1, 1.25 1.5 or 2.0. Indepen-
dent, cascade and synergistic models have six kinetic parameters. Consecutive odd and
even elements are the activation rates and the corresponding deactivation rates of the
enhancer activation signal, respectively. Additive models have seven kinetic parame-
ters. First four of them are the basal activation and the deactivation rates of enhancer
activity signal x and y mediating dynamics independent from other variables while
θk5 and θk6 are the activation rates of z activation caused by x and y and θk7 is the
deactivation rate of z.

Model k θk1 θk2 θk3 θk4 θk5 θk6 θk7 x0 y0 z0 σ

Independent 0 3.1 .3 3.1 .3 3.1 .3 – 0.03 0.02 0.04 σs

Cascade 1 3.1 .3 .3 .25 .9 1 – 0.03 0.02 0.04 σs

Synergistic 7 2.4 .4 2 1 0.05 .05 – 0.03 0.02 0.04 σs

Additive 11 3.1 .3 .2 0.01 .9 0.7 1 0.03 0.02 0.04 σs
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Abstract. The expectation-maximization (EM) algorithm, or a stream-
ing version of it, is widely used to resolve ambiguity during transcript
abundance estimation from RNA-seq reads. The streaming algorithm is
fast and memory efficient but its accuracy can depend on the order of the
reads, which can be stabilized if a tree can be constructed to capture the
ambiguity structure. Motivated by this, the laminar packing problem is
introduced, which is proved to be NP-hard. Hardness of approximation
and approximability results are also provided. Finally, an integer lin-
ear programming (ILP) formulation and a greedy approach are applied
to real data from the human transcriptome to demonstrate that large
instances can be solved in practice.

Keywords: Laminar packing · Set packing · Independent set ·
Transcript abundance estimation · RNA-seq

1 Introduction

Transcript abundance estimation is the process of estimating relative quantities
of transcripts in a cell or a set of cells from RNA-seq data. RNA-seq reads
are first assigned to transcripts using a short read aligner as in [9,13], in an
alignment free manner using k-mers [11], or through a process called pseudo-
alignment [1,10]. A key issue is inferring the origin of ambiguously mapping
sequenced reads. This is usually addressed using the expectation-maximization
(EM) algorithm [1,9,11,13] or a streaming (online) version of it [10,12].

The online algorithm has the advantage that it is linear in the number of
reads, is memory efficient, and can estimate abundance in real time without
storing the reads. However, the accuracy of the estimates it provides can depend
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on the order of the reads. For example, if numerous reads align to a transcript
early during the online algorithm, later reads which are ambiguous with other
transcripts may be preferentially assigned to the initial transcript just because
it received reads first.

Motivated by this problem, we considered a stabilization procedure in the
form of identifying a tree structure that can represent the ambiguity structure
of transcripts (see Sect. 2 for details). In this tree, internal nodes correspond to
sets of transcripts and ambiguous reads can be assigned to them so that final
assignment to individual transcripts can be delayed. However, the ambiguity
structure of transcripts may not be in the form of a tree. To address this issue
we formulate the laminar packing problem which is the problem of constructing a
tree of maximum weight given a weighted collection of subsets of some universal
set. Here, the weights may indicate lengths of sequences shared among sets of
transcripts and the sets that do not share sequences of significant length are
assigned zero weights.

Even though the laminar packing problem was motivated by the RNA-seq
quantification application described above, it has applications in many other set-
tings. Similar problems have been studied in the context of phylogeny construc-
tion where, e.g., Bryant [2] considered the problem of finding a sub-collection
of maximum weight given a collection of weighted subsets of a given set, and
described a polynomial time algorithm. However, the formulation requires all
subsets corresponding to nodes in the tree to be in the collection of subsets
whereas the laminar packing problem allows for subsets not in the collection
to be included (although the weights will be zero or equivalently we allow the
collection of subsets to form a forest).

Day and Sankoff [3] addressed problems of inferring phylogenies by character
compatibility where, given a character by object matrix describing a collection
of characters, the goal was to find a compatible sub-collection of maximum size.
They proved that decision versions of the problems are NP-complete. We note
that the Binary Cladistic Compatibility (BCC) problem discussed in their paper
reduces to the laminar packing problem.

Here we prove that the laminar packing problem is NP-hard and provide a
hardness-to-approximate result. We also give an approximation algorithm as well
as an ILP formulation and a greedy algorithm applicable to practical data sets.
Finally, we apply our methods to a real data set from the human transcriptome
demonstrating solvability of large instances.

2 Preliminaries

In this section, we formally introduce the laminar packing problem. The moti-
vation is to construct a rooted tree or a set of rooted trees (forest) from a set of
transcripts where

– The leaves correspond to individual transcripts
– Internal nodes correspond to subsets of transcripts
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– Internal nodes have weights reflecting the amount of sequence shared among
the subset of transcripts they correspond to

First, for each subset of transcripts, that share sequences with length greater
than a threshold, a weight is calculated. This may be done using alignment or
using the number of k-mers shared among transcripts. The subsets, with lengths
of shared sequence below the threshold, are assigned zero weights implicitly. The
goal then is to construct a rooted X-forest with maximum weight.

Definition 1 (Rooted X-Forest). Let X be a set. A rooted X-forest T is:

1. A collection of rooted trees.
2. A function φ : X → V (T ) providing a partial labeling of (non-root) vertices

such that every unlabeled vertex has degree > 2.

A related concept is that of laminar families.

Definition 2 (Laminar Family). A family, F of subsets of X is called laminar
if and only if for any Si, Sj ∈ F , either Si ∩ Sj = ∅ or Si ⊂ Sj or Sj ⊂ Si.

Edmonds and Giles established the following connection between laminar
families and rooted forests.

Theorem 3 (Edmonds-Giles 1977 [4]). There is a bijection between laminar
families for X and rooted X-forests.

The laminar packing problem is then defined as follows.

Definition 4 (Laminar Packing Problem). Given a set X of m items, a
collection C of n subsets of X and a weighting function w : C → R+, the
laminar packing problem is to find a laminar family of maximum weight for X
(or equivalently a rooted X-forest of maximum weight).

Fig. 1. Three transcripts and reads that map to them are shown on the left. Some
reads map uniquely to transcripts while some others map ambiguously. A tree for the
three transcripts is shown on the right with uniquely mapped reads assigned to leaves
and ambiguously mapped reads to internal nodes



206 A. Rahman and L. Pachter

The forest thus constructed may be used for transcript abundance estimation
using a streaming EM algorithm where the reads mapping to a set of transcripts
can be assigned to the corresponding set instead of a single transcript at the
time of processing (Fig. 1). Once all the reads have been processed, the set of
trees may be used to get estimates of abundances of transcripts. We note that a
forest may not exactly capture the ambiguity structure of transcripts as shown
in Fig. 2.

Fig. 2. Figure shows three transcripts whose ambiguity structure is not properly cap-
tured by a tree since each of the three pairs has shared segments

3 Complexity of Laminar Packing

The following theorem shows that laminar packing is NP-hard. We reduce the
weighted version of the set packing problem to laminar packing. Set packing was
proved to be NP-complete by Karp [8].

Theorem 5. Laminar packing is NP-hard.

Proof. We will reduce weighted set packing to laminar packing. Given a universe,
U = {e1, e2, . . . , em} and a family F = {S1, S2, . . . , Sn} of subsets of U with
weights wi = w(Si), the weighted set packing problem is to find a subfamily F ′

so as to maximize
∑

Si∈F ′ wi such that all sets in F ′ are pairwise disjoint.
Given an instance I of weighted set packing, U = {e1, e2, . . . , em}, F =

{S1, S2, . . . , Sn} with weights wi = w(Si), we define an instance I ′ of laminar
packing as follows.

• X = {e1, e2, . . . , em, t1, t2, . . . , tn}
• C = {S′

1, S
′
2, . . . , S

′
n} where S′

i = Si ∪ {ti}
• w(S′

i) = w(Si)

It can be seen that I has a set packing of weight W if and only if I ′ has
a laminar packing of weight W . Since each S′

i contains an element ti which is
present in none of the other sets, none of the sets in C is a subset of another in
C. Therefore, for any S′

i, S′
j in a laminar packing C ′ we have S′

i ∩ S′
j = ∅. This

implies that corresponding sets in F constitute a set packing.
Conversely, we have for any Si, Sj in a set packing F ′, Si ∩ Sj = ∅. This

along with the fact that all ti’s are distinct implies that S′
i ∩ S′

j = ∅. Therefore,
corresponding S′

i’s is a laminar packing. �	
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An example of a reduction from an instance of set packing to an instance of
laminar packing is shown in Fig. 3.

Fig. 3. An example of a reduction from set packing to laminar packing

Set packing is known to be hard to approximate within n(1−ε) and m(1/2−ε)

for any ε > 0 unless NP = ZPP [6,7]. The above reduction is approximation pre-
serving and the number of sets n remains unchanged in the reduction. Therefore,
we have the following corollary.

Corollary 6. Laminar packing is hard to approximate within n(1−ε) for any
ε > 0 assuming NP 
= ZPP .

However, the inapproximability result in terms of the number of elements
in the universe m does not apply, since the number of elements in the universe
increases from m to m + n in the reduction from an instance of set packing to
an instance of laminar packing, where n is the number of sets in the family F .

4 Algorithms

The complexity results in Sect. 3 indicate that exact or constant factor approx-
imation algorithms for laminar packing are unlikely. In this section, we show
that there is an O(n/ log2 n) approximation algorithm for the problem and then
explore various approaches to solving practical instances of it.

4.1 An Approximation Algorithm

The weighted independent set problem is, given a graph G = (V,E) and weights
on vertices, to find a subset V ′ ∈ V of maximum weight such that no two vertices
in V ′ are joined by an edge in E. Weighted independent set can be approximated
within O(n/ log2 n) [5].

Theorem 7. Laminar packing can be approximated within O(n/ log2 n).

Proof. An instance of laminar packing I can be transformed into a weighted
independent set instance I ′ as follows. We have a vertex vi for each set Si ∈ C
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with the weight of vi equal to the weight of Si. Two vertices corresponding to sets
Si and Sj are adjacent iff none is a proper subset of the other and Si ∩ Sj 
= ∅.

We observe that if I has a laminar packing of weight W , I ′ has a weighted
independent set of weight W . If two sets Si and Sj are in a laminar packing, they
are either disjoint or one is a proper subset of the other. This implies that there
is no edge between vi and vj , and they can be in an independent set. Moreover,
the weight of the independent set must equal the weight of the laminar packing.

Conversely, there is no edge between any pair of vertices in an independent
set in I ′. This implies that corresponding sets in I are either disjoint or one is a
proper subset of the other. Therefore, these sets are a laminar family. �	

Figure 4 shows an example of a reduction from an instance of the laminar
packing problem to an instance of the independent set problem.

Fig. 4. An example of a reduction from laminar packing to independent set

4.2 An ILP Formulation

The reduction from laminar packing to weighted independent set (WIS), as
illustrated in Fig. 4, enables us to solve instances of the laminar packing problem
using an integer linear program (ILP) formulation of WIS. There are ILP solvers
available that can solve large instances of many NP-hard problems. Given an
instance of weighted independent set, G = (V,E) and wi = w(vi) for each
vi ∈ V , an ILP formulation is as follows:

Maximize w1x1 + w2x2 + · · · + wnxn

Such that xi + xj ≤ 1 for each (vi, vj) ∈ E

xi ∈ {0, 1} for i = 1, 2, . . . , n

4.3 A Greedy Algorithm

We also consider a greedy approach to solve instances of the laminar packing
problem without converting them to instances of the weighted independent set
problem. First, we sort the sets in descending order of weights. We then select
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sets in sorted order eliminating any set in conflict with the set selected until all
sets have been selected or removed. The algorithm is summarized in Algorithm 1.
The algorithm runs in O(n2m) time, where m is the number of elements in the
universe set and n is the number of subsets in the instance.

Algorithm 1. Greedy Laminar Packing (collection of sets C, weights W )
Sort sets in C in descending order of weights
C′ = ∅
while C is not empty do

Si ← Set of the highest weight in C
Add Si to C′ and remove Si from C
for each Sj ∈ C do

if Sj �⊆ Si and Si �⊆ Sj and Si ∩ Sj �= ∅ then
Remove Sj from C

end if
end for

end while
return C′

5 Experimental Results

We used the human transcriptome (cDNA) downloaded from Ensembl containing
187,626 transcripts as our data set. The sets and their weights are then computed
using a combination of C++ and Python codes as follows:

– For each k-mer (contiguous sequence of length k) present in any of the tran-
scripts, we determine the set of transcripts containing the k-mer. We use
k = 31.

– The weight of a set is then assigned by counting the number of k-mers that
appear in that particular set of transcripts.

Table 1 shows some properties of the instance of laminar packing thus con-
structed and the corresponding instance of the independent set problem. We
note that there is one large connected component which makes the strategy of
running independent set algorithms on each connected component separately
ineffective.

The instance of laminar packing thus obtained was solved using two
approaches. The first approach is to convert it to an instance of the weighted
independent set problem and then solve an ILP formulation of it using IBM
ILOG CPLEX Optimization Studio.

We also apply the greedy algorithm described in Algorithm1. The greedy
algorithm has been implemented in C++. In the implementation, to speed up
the search for conflicting sets, we maintain auxiliary lists containing, for each
element, the sets that include the element. While searching for conflicts with
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Table 1. Properties of laminar packing and corresponding independent set instances

Number of transcripts 187,626

Number of sets (vertices) excluding singletons 546,755

Maximum weight 67,331

Average weight 100.2

Number of edges 101,819,351

Number of connected components 15,471

Size of the largest connected component 444,672

Average size of connected components 35.3

Maximum degree of vertices 59176

Average degree 372.45

some set, it is sufficient to search the lists corresponding to elements in that set,
since all other sets are disjoint with the set in question.

A comparison of results obtained through the two approaches is shown in
Table 2. Here, solution value refers to the sum of weights of sets of transcripts
selected by the ILP and the greedy algorithm. We observe that the greedy algo-
rithm is quite fast and can achieve around 90% of the optimal value.

Table 2. Comparison of results obtained through ILP solver and the greedy algorithm

Approach Solution value (total weight) Time

Solving ILP using CPLEX 38,020,248 7 h 39 min 57 s∗

Greedy algorithm 34,062,330 4 s
∗ Excluding time for the conversion to the independent set instance

6 Conclusions

In this paper, we introduced the laminar packing problem, the motivation of
which is to stabilize transcript abundance estimates by streaming EM algo-
rithms. We prove that the problem is NP-hard and hard to approximate within
n(1−ε) for any ε > 0 assuming NP 
= ZPP . We also provide an O(n/ log2 n)
approximation algorithm.

We have also explored approaches based on ILP and a greedy strategy to solve
large practical instances of the problem and applied our methods to real human
transcriptome data set. It can be observed that the greedy algorithm is quite fast
and its output is approximately 90% of the optimal value. In the future, other
greedy strategies, such as sorting based on weight per degree, may be considered.
Finally, it may be incorporated in a tool using the online EM algorithm for
transcript abundance estimation to analyze the stability in accuracy provided
and the speed-up achieved due to the reduced number of iterations in the online
EM algorithm compared to tools employing the offline version.
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Abstract. Motif mining is a classical data mining problem which aims
to extract relevant information and discover knowledge from volumi-
nous datasets in a variety of domains. Specifically, for the temporal data
containing real numbers, it is formulated as time series motif mining
(TSMM) problem. If the input is alphabetical and edit-distance is con-
sidered, this is called Edit-distance Motif Search (EMS). In EMS, the
problem of interest is to find a pattern of length l which occurs with an
edit-distance of at most d in each of the input sequences.

There exists some algorithms proposed in the literature to solve EMS
problem. However, in terms of challenging instances and large datasets,
they are still not efficient. In this paper, EMS3, a motif mining algo-
rithm, that advances the state-of-the-art EMS solvers by exploiting the
idea of projection is proposed. Solid theoretical analyses and extensive
experiments on commonly used benchmark datasets show that EMS3 is
efficient and outperforms the existing state-of-the-art algorithm (EMS2).

Keywords: Sequence analysis · Edit-distance motif · Projection

1 Introduction

Effective data mining algorithms when applied on biological data can reveal cru-
cial information that could lead to accurate diagnosis, drug development, and
disease treatment. One set of such mining algorithms are referred to as motif
mining (or motif search) algorithm. These algorithms look for information that
is closely preserved across species. For example, a piece of gene segment may
appear exactly or with minor differences across different species. Extracting such
information is very meaningful in numerous applications, such as the determina-
tion of open reading frames, identification of gene promoter elements, location
of RNA degradation signals, and the identification of alternative splicing sites.
Many motif mining models have been proposed.

This paper focuses on the Edit-distance based Motif Search (EMS) model.
EMS is defined as follows: Inputs are two integers l and d, and n biological strings
over the alphabet Σ of a finite size. Each string is of length m. The problem is
to find all the strings of length l that appear in each of the n input strings with
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the Levenshtein distance (or edit-distance) of at most d. Biologists may also be
interested in motifs that occur in a fraction of the input strings. The problem of
identifying such motifs is known as quorum Edit-distance Motif Search (qEMS).
In this case, an extra input parameter q is provided. The problem is to identify
all the (l, d, q)-motifs, that is, all (l, d)-motifs that occur in at least qn of the
input strings. The standard EMS problem becomes a special case of qEMS when
q = 1.

In EMS, the edit-distance is used to bound the variability of the pattern
across the biological sequences. It can include substitution, insertion and dele-
tion. If only substitution is allowed (i.e., the aim is to find the strings of length l
with a Hamming distance of at most d in each of the input sequences), this sim-
plified version of the problem is named as Planted Motif Search (PMS). There
are many studies on PMS problems (see e.g., [7,8,16]). EMS is more challenging
than PMS because EMS is more general.

It is known that there is a polynomial time reduction from the Closest Sub-
string problem to PMS [8]. Since the Closest Substring problem is NP-Hard
[3,4,6], PMS problem is also NP-Hard. EMS is also NP-hard since PMS is a
special case of EMS. Therefore, it is of pressing need to develop efficient exact
algorithms for EMS problems.

EMS and its variations have been studied since a long time ago. Back in
1998, the authors in [13] proposed an algorithm to find approximate repeats
from a long DNA sequence, allowing general insertions and deletions. This is
an approximate algorithm. Suffix tree based algorithms are also developed to
find approximate repeated or common motifs [14]. The algorithms proposed in
[14] can be extended to deal with gaps but the authors did not implement it
for edit-distance but only for Hamming distance. The authors in [1] proposed
a new algorithm to extract common motifs using the techniques for extracting
approximate non-tandem repeats and they also implemented Sagot’s algorithm
in [14] and did a comparison. The result shows that their algorithm has less false
positive motifs and is also more efficient for finding moderately long motifs.

Algorithms proposed in the literature above are part of the early stage stud-
ies of the EMS problem. However, the first formal definition of EMS is given
in [11] although the authors did not explicitly name it as EMS. They also
proposed a deterministic (DMS) algorithm that runs in time O(n2mPD|Σ|D)
using O(nmD + PD|Σ|D) space (P and D are motif length and maximum
allowed edit-distance, respectively). A Monte Carlo algorithm with a run time
of O(((n2m2 log n)/q)D + gmnD) is also proposed where g is the number of P -
mers that occur in q or more sequences in the database. Following this definition,
Pathak et al. [10] proposed EMS1 which naturally extends the data structure of
d-neighborhood tree from the PMS problem and they evaluated this algorithm
on synthetic datasets as well as real datasets. However, one drawback of EMS1
is that it generates too many repeated neighborhoods which takes up a huge
memory and also the (l, d) instances it can solve are very limited. To alleviate
this problem, Pal et al. [9] proposed EMS2. They used wildcard characters to
compactly represent the neighborhood tree and also proposed 9 rules to avoid
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duplications of candidate motifs. EMS2P, which is a parallel algorithm, was also
developed and tested on a multi-core machine. Experimental results showed that
EMS2 is faster than EMS1 and the parallel version has a good scaling perfor-
mance.

In this paper, an improved algorithm, EMS3, is proposed to further advance
the state-of-the-art EMS solvers. Theoretical study and extensive experimental
tests are performed. The rest of the paper is organized as follows. Section 2
presents the proposed algorithm. In Sects. 3 and 4, theoretical analyses and
empirical studies of EMS3 are provided. Finally, a brief summary concludes the
paper in Sect. 5.

2 EMS3: An Improved Algorithm

2.1 Overview of the Algorithm

EMS3 has 5 steps as follows.

Step 1: Divide Choose an appropriate value of ε1 ∈ (0, 1]. Let n′ = n ∗ ε1.
Randomly select n′ sequences from the input I. Let this set be I1. Let I2 =
I − I1.

Step 2: Compress Choose an appropriate value of ε2 ∈ (0, 1]. Let |Σ′| = |Σ| ∗
ε2. Compress I2 by projecting Σ to Σ′. Specifically, every 1/ε2 characters in Σ
will be projected to a single character in Σ′. For example, if Σ = {A,C,G, T}
and ε2 = 1/2, A,C will be projected to A while G,T will be projected to C.
Σ′ = {A,C}. This process is also called as encoding.

Step 3: Solve the subproblems Run existing EMS solver on I1 and I2. Let
the outputs be C1 and C2, respectively. Note that the strings from C2 are in
the domain of Σ′. Both C1 and C2 are sorted.

Step 4: Merge One idea is to expand the strings in C2. Let the resultant string
set be C ′

2. C ′
2 is in the domain of Σ. The intersection of C1 and C ′

2, denoted
as C, will be the final candidate set. However, this solution, to a great extent,
wipes out the advantage of reducing the alphabet size in the second step
because the size of C ′

2 will be too large. Moreover, C ′
2 is not sorted any more.

Another round of radix sort needs to be performed on C ′
2 to merge these two

sets. A better idea to salvage the execution time is to encode the strings in
C1 in the same way as discussed above. For an l-mer u ∈ C1, the encoded
string is u′. Check if it is in C2. If it is, add u to C. Note that since C2 is
sorted, a binary search can be performed.

Step 5: Verify Let the output of EMS3 be O. For every l-mer v ∈ C, check
if it is an (l, d) edit-distance motif in the remaining sequences, i.e., I2. If so,
add v to O. Three algorithms are proposed for this step.

VerifyMotif 1, VerifyMotif 2 and VerifyMotif 3 are the pseudocodes. For all
these three algorithms, the inputs are two integers l and d, a set of sequences
{Si} (i = 1, 2, . . . , n), and an l-mer v. The output is a boolean flag indicating
whether v is the target (l, d)-motif.
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Algorithm 1. VerifyMotif 1(l, d, v, {Si})
i ← 1; isMotifSeq ← False; isMotifSeqs ← True;
while i � |{Si}| do

for k ← l − d to l + d do
subSi ← the collection of all substrings of length k in Si;

for every x ∈ subSi do
e(v, x) ← EditDistance(v, x); // Dynamic programming to compute

edit-distance between v and x
if e(v, x) � d then

isMotifSeq ← True;
i ← i + 1; Break;

if isMotifSeq = False then
isMotifSeqs ← False;
Break;

return isMotifSeqs;

Algorithm 2. VerifyMotif 2(l, d, v, {Si})
i ← 1; isMotifSeq ← False; isMotifSeqs ← True;
T ← v’s d-neighborhood; // Call GenerateNeighborhoodTree in [9]

while i � |{Si}| do
for every w ∈ T do

isMotifSeq ← ExactPatternMatch(w, Si); // KMP algorithm [5] to

check if w appears exactly in Si

if isMotifSeq = True then
i ← i + 1; Break;

if isMotifSeq = False then
isMotifSeqs ← False;
Break;

return isMotifSeqs;

Algorithm 3. VerifyMotif 3(l, d, v, {Si})
i ← 1; isMotifSeq ← False; isMotifSeqs ← True;
T ← v’s d-neighborhood; // Call GenerateNeighborhoodTree in [9]

while i � |{Si}| do
for k ← l − d to l + d do

subSi ← a collection of substrings of length k in Si;
for every x ∈ subSi do

if x ∈ T then // Perform binary search

isMotifSeq ← True;
i ← i + 1; Break;

if isMotifSeq = False then
isMotifSeqs ← False;
Break;

return isMotifSeqs;
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2.2 Why Project the Alphabet

It is desirable to reduce the size of the input while maintaining the accuracy of
the algorithm. One way is to project the high dimensional space of the input
data into a low dimensional one. The authors in [2] use this technique to find
the planted motifs in PMS problems. They randomly choose k selected positions
of each l-mer x as a hash function h(x). In other words, they project the motif
length from l to k. In [12,16,17], the authors use the idea of random sampling.
They randomly select n′ out of n sequences and run PMS solvers on the sample
dataset. This can be considered as a projection of the number of biological
sequences from n to n′.

To the best of the authors’ knowledge, the idea of alphabet projection has
not been employed before to solve motif mining problems. It is believed that the
alphabet size has a great impact on the time complexity of EMS algorithms. For
example, in [11], the authors proposed an algorithm to solve the qEMS problem
that runs in O(n2mld|Σ|d). In [10], the authors proposed EMS1 which has a
time complexity of O(mn(4l|Σ|)d + |Σ|l). Compared to sampling n, projecting
the alphabet to a smaller size will greatly reduce the running time.

2.3 Correctness of the Algorithm

It is easy to see that EMS3 is a deterministic algorithm that always output the
correct motifs. An important question is whether EMS3 misses any true motifs.
The answer is no. Assume that the set of true motifs is G. It can be proved that
after the merge step, the candidate motif set C is a superset of the true motif
set G, i.e., G ⊆ C.

Please note due to page limit, from this point, proof of the lemmas and
theorems are omitted. Interested readers can ask the authors for details.

Lemma 1. Let l1 and l2 be strings on Σ and let the edit-distance between l1
and l2 be d. Let l′1 and l′2 be compressed strings of l1 and l2 using the projection
technique discussed above from Σ to Σ′ (|Σ′| � |Σ|). The edit-distance between
l′1 and l′2, denoted as d′, is no more than d.

Theorem 2. G ⊆ C.

3 Analysis of EMS3

3.1 Time Complexity Analysis

Expected Number of Candidate Motifs. The expected number E of can-
didate motifs is a function of m,n, l, d, |Σ|, and is derived in [9], to which the
interested reader is referred for details. In that paper, the Eqs. 1, 2 and 3 below,
with δ, β, α, and q acting as dummy variables, lead to an expression for E in
Eq. 4.

N(δ, β, α, l, |Σ|, q) =
(

l+q

δ

)(
l+q−δ

β

)(
l+q−δ+α

α

)
|Σ|α(|Σ|−1)β . (1)
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P (l, |Σ|, d, q) =

d+q
2∑

δ=max{0,q}

N(δ, d + q − 2δ, δ − q, l, |Σ|, q)
|Σ|l+q

. (2)

R(m, l, d, |Σ|) = Πd
q=−d(1 − P )m−l−q+1. (3)

E(m,n, l, d, |Σ|) = |Σ|l(1 − R)n. (4)

The expected sizes of C1 and C2 can be written as:

E(|C1|) = E(m,n′, l, d, |Σ|). (5)

E(|C2|) = E(m, (n − n′), l, d, |Σ′|). (6)

An l-mer has a probability of p1 = (1 − R(m, l, d, |Σ|))n′
to be in C1. If it

is encoded, it has a probability of p2 = (1 − R(m, l, d, |Σ′|))n−n′
to be in C2.

Every (1/ε2)l l-mers in Σ will be projected to a single l-mer in Σ′. Therefore,
the expected number of l-mers in C is:

E(|C|) = |Σ|lp1p2/εl
2. (7)

In order to make sure that the expected number of candidate motifs is
reduced, it is desirable to have:

p2/εl
2 < 1. (8)

However, it does not mean that p2/εl
2 should be as small as possible. When

ε2 is large, the size of the candidate motif set is small thus reducing the running
time in Step 5 of EMS3. However, the running time of Step 3 increases because
of a relatively large alphabet size.

Time Complexity of EMS2. Time complexity of EMS2 is not given in its
original paper [9]. It can be shown that the overall time complexity of EMS2 is:

TEMS2 = O(mndld+1|Σ|d). (9)

Note that this may be larger than the time complexity in [10,11]. This is
because unlike [10,11], in EMS2 and EMS3, assumption that the motifs of inter-
est should come exactly from one of the input sequences is removed to make this
problem more general. However, this only represents the worst time complexity.
A lot of branches of the neighborhood tree can be pruned because of the rules
proposed in [9]. Therefore, the actual running time is much less. But it is hard
to estimate how many branches will be pruned.
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Time Complexity of Verifying Candidate Motifs. There are three algo-
rithms to verify the candidate motifs. The first algorithm uses dynamic program-
ming to compute the edit-distance between an l′-mer (l − d � l′ � l + d) and an
l-mer. Therefore the time taken is:

Tverify 1 = |C|n
l+d∑

l′=l−d

O(l′l(m − l′ + 1)) = O(|C|mndl2).

|C| is the size of the candidate motif set. An expected number of the candidate
motifs E(|C|) can be found in Eq. 7.

The second algorithm will generate the d-neighborhood tree and use a lin-
ear time complexity algorithm to locate the neighborhoods within the input
sequence. It is known that the number of d-neighborhoods of an l-mer is
O(ld|Σ|d). Thus, time taken in this algorithm is (assuming d < l < m):

Tverify 2 = |C|nO(ld|Σ|d(m + l)) = O(|C|mnld|Σ|d).
The third algorithm also generates d-neighborhood tree but tries to locate the

k-mer (l − d � k � l + d) from the input sequences in the tree. Time complexity
for this algorithm is:

Tverify 3 = |C|nO(
l+d∑

k=l−d

(m − k + 1) log(ld|Σ|d)) = O(|C|mnd2(log l + log |Σ|)).

These are only upper bounds of the time taken in each algorithm. It looks
like that the second algorithm takes the longest time. However, in generating
the neighborhood tree, a lot of branches are pruned. The neighborhoods are also
sorted and duplications are removed. Therefore the actual number of neighbor-
hoods is far less than ld|Σ|d.

Time Complexity of EMS3. Step 1 and 2 take time that is negligible.
Time complexities of Step 3 and 5 are already analyzed. Step 4 takes time
O(l|C1| log |C2|). An expected number of E(|C1|) and E(|C2|) can be found in
Eqs. 5 and 6. Therefore, assuming using VerifyMotif 1 in the final step to verify
the candidate motifs, the time complexity of EMS3 is:

TEMS3 = O(mdld+1(n′|Σ|d + (n − n′)|Σ′|d) + l|C1| log |C2| + |C|mndl2). (10)

where n′ = n ∗ ε1, |Σ′| = |Σ| ∗ ε2.

3.2 How to Choose ε1 and ε2

Equation 8 shows the first guideline to choose ε1 and ε2. Generally, in a divide
and conquer algorithm, it is desirable to split the input into nearly equal halves
so that the performance of the algorithm is the best. However, in EMS3, in order
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to balance the run times of the two subproblems, their running times should be in
the same scale. Therefore, ε1 is smaller than 1/2. Solve n′|Σ|d = Θ((n−n′)|Σ′|d):

ε1 = Θ((1 − ε1)εd
2). (11)

It is also noteworthy to point out that in conventional notion of divide and
conquer, the same algorithm is applied recursively to the subproblems whereas
in EMS3, the subproblems are solved non-recursively using EMS2 solver.

3.3 A Discussion on qEMS and Approximate EMS3

EMS3 can be extended to qEMS problems as well. Under such circumstances,
besides ε1 and ε2, another parameter ε3 (0 < ε3 � 1) is needed.

Theorem 3. If an l-mer x is an (l, d, q) edit-distance motif on Σ, then the
encoded l-mer x′ is also an (l, d, q) edit-distance motif on Σ′ using the projection
technique as discussed, with |Σ′| � |Σ|.
Theorem 4. If an l-mer x is an (l, d, q) edit-distance motif on n sequences,
then it is also an (l, d, qε3) edit-distance motif on nε1 (0 < ε1 � 1) sequences as
long as the following condition is satisfied: ε1(1 − ε3q) � 1 − q.

Theorem 5. If an l-mer x is an (l, d, q) edit-distance motif on n sequences,
then it is also an (l, d, qε3) edit-distance motif on nε1 (0 < ε1 � 1) sequences
with a high probability as long as: (1 − ε3)2ε1 � 2β ln(n)

nq . β is a constant. A high
probability means that the probability is higher than 1 − n−β.

When n is small, ε1 and ε3 can be chosen according to Theorem 4 to make
sure the algorithm can always output the correct answer. When n is large, ε1
and ε3 can be chosen according to Theorem 5. In this case, EMS3 becomes a
randomized algorithm.

If Step 5 of EMS3 is removed, EMS3 becomes an approximate algorithm. It
is known that the candidate motifs set C is a superset of the true motifs set G.

Theorem 6. If Step 5 of EMS3 is removed, then it becomes an approximate
algorithm with an expected approximation ratio of E(|C|)/E(m,n, l, d, |Σ|).
E(|C|) and E(m,n, l, d, |Σ|) can be found in Eqs. 7 and 4, respectively.

4 Experimental Evaluations of EMS3

Extensive experiments on existing standard benchmark datasets are performed
to evaluate EMS3. All the algorithms are evaluated on a Dell Precisions Work-
station T7910 running RHEL 7.0 on two sockets each containing 8 Dual Intel
Xeon Processors E5-2667 (8C HT, 20 MB Cache, 3.2 GHz) and 256 GB RAM.
VerifyMotif 1 is used as the algorithm to verify the candidate motifs.
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Table 1. Size of candidate motif sets with different n′ and |Σ|′

(a) (l, d) = (8, 1)

n′ |C1| |C|
|Σ|′ = 2 |Σ|′ = 3

2 6762 6762 4549
4 667 667 503
6 74 74 58
8 7 7 5
10 2 2 1

(b) (l, d) = (12, 2)

n′ |C1| |C|
|Σ|′ = 2 |Σ|′ = 3

2 72763 72749 21157
4 389 389 99
6 9 9 5
8 1 1 1
10 1 1 1

(c) (l, d) = (16, 3)

n′ |C1| |C|
|Σ|′ = 2 |Σ|′ = 3

2 721497 719577 18794
4 203 203 7
6 1 1 1
8 1 1 1
10 1 1 1

4.1 Synthetic Datasets

Following the tradition, n (= 20) DNA sequences of length m (= 600) each
are generated, where each character is independent and identically distributed
(i.i.d.) over the alphabet under concern (Σ = {A,C,G, T}). A random string M
of length l is randomly generated as the target motif. Besides, a d-neighborhood
string is planted in each of the n sequences. In addition to the motif planted,
there could be other motifs that occur by random chance. Challenging instances
of (l, d) = (8, 1), (12, 2), (16, 3) are tested. (l, d) = (20, 4) is not tested because
EMS2 cannot complete it within stipulated 72 h.

n′ varies from 2 to 10. |Σ|′ = 2 and 3. From Table 1, it can be seen that
when |Σ|′ = 2, the size of candidate motif set |C| is not reduced. In fact, it is
almost exactly the same as |C1|. Therefore, as discussed before, it does not mean
a large compression ratio is necessarily better. However, when |Σ|′ = 3, |C| is
much smaller than |C1|. It concurs with the analysis in Sect. 3. It is wise to pick
a relatively small value of ε1 and a relatively large value of ε2. For example, when
(l, d) = (16, 3), setting |Σ|′ = 3 and n′ = 4 will reduce the size of candidate set
from 203 to 7.

The running time of EMS2 for (l, d) = (8, 1), (12, 2), (16, 3) are 0.14 s, 14.86 s
and 21.18 m, respectively. Table 2 shows that generally EMS3 has a good speedup
over EMS2. The best speedups for (l, d) = (8, 1), (12, 2), (16, 3) are 1.75, 1.68 and
1.84 when n′ = 8 (or 10), 4, 2. Figure 1 shows the speedups of EMS3 over EMS2
with different n′ on the challenging instances. When n′ is chosen appropriately,
EMS3 is expected to have around 70% or 80% improvement in speed. When
the alphabet size or the number of sequences is larger, EMS3 is expected to
perform much better than EMS2. There will also be more choices for picking the
parameters.

4.2 Real Biological Datasets

EMS3 is also compared against EMS2 on the real biological DNA datasets (Σ =
{A,C,G, T}) discussed in [7,15]. The datasets can be downloaded from http://
bio.cs.washington.edu/assessment/download.html.

http://bio.cs.washington.edu/assessment/download.html
http://bio.cs.washington.edu/assessment/download.html
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Table 2. Running time of EMS3 with dif-
ferent n′ (|Σ|′ = 3)

n′ (l, d)
(8, 1) (12, 2) (16, 3)

2 5.83 s 1.24 m 11.54m

4 0.72 s 8.83 s 12.70 m

6 0.15 s 10.15 s 14.61 m

8 0.08 s 11.67 s 17.22 m

10 0.08 s 13.45 s 19.87 m
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Fig. 1. Speedups of EMS3 over EMS2 with
different (l, d) and n′

The “real” benchmark datasets (file names with suffix r) which have the
binding sites in their real genomic promoter sequences are chosen as the test
files. Datasets with less than 8 input sequences are excluded because they are
not very challenging. For each dataset, d is set to 2 and 3. l is chosen on a dataset
basis to ensure that the number of reported motifs is not excessive but the
instance is challenging as well. When running the experiment of EMS3, instead
of exhaustedly varying the parameters of ε1 and ε2, only one combination of ε1
and ε2 is tested. However, in the real datasets, no assumption should be made on
the statistical distribution. Therefore, the second guideline can be utilized here
to choose the parameters. For example, manually set ε2 = 3/4 and ε1 = (1−ε1)εd

2

and solve it for ε1 = 9/25 when d = 2 and ε1 = 27/91 when d = 3.
In Table 3, the dataset name, the total number of sequences, the total number

of bases in each dataset, the l and d combination, size of candidate motif set
when running EMS3, the runtimes of the two algorithms and the speedup of
EMS3 over EMS2 are reported. From this table, it is obvious that size of the
candidate motif set is generally greatly reduced (i.e., |C| < |C1|). This shows the
necessity and effectiveness of pruning |C1| by checking if the pattern in |C1|, after
encoding, can survive in |C2|. When d = 2, the improvement in speed is around
30% to 60%, but in rare cases, it only performs slightly better than EMS2. It
may be because for some small instances, the overhead brought by EMS3 more or
less balances out its advantage. However, when d = 3, the improvement in speed
is generally over 50% with the maximum speedup of 2.1 when (l, d) = (17, 3) on
mus11r dataset.

4.3 Summary of Experimental Evaluation

EMS3 outperforms EMS2 on both synthetic and real datasets. EMS3 works well
with challenging instances. This is because the size of the candidate motif set is
relatively small thus it will not take much time to verify the candidate motifs.
If there is only one motif found which is the planted motif, then EMS3 is very
good at capturing this one. EMS3 works better for large datasets and instances.
It is expected EMS3 will perform better on protein data and datasets with more
input sequences. This is proved in the time complexity analysis above. However,
the corresponding experiments are not carried out because EMS2 consumes more
than 500 GB memory for protein data even when d = 3.
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Table 3. Running time of EMS3 over EMS2 on real datasets

Dataset n No. bases l d |C1| |C| TEMS3 (s) TEMS2 (s) Speedup

hm01r 18 36000 14 2 1 0 65.63 89.93 1.37

18 3 0 0 5774.66 9104.86 1.58

hm02r 9 9000 15 2 68 7 19.44 23.58 1.21

19 3 266059 1974 1260.21 2065.53 1.64

hm03r 10 15000 15 2 219 18 32.41 42.56 1.31

19 3 196662 2079 2288.51 3931.03 1.72

hm04r 13 26000 14 2 349 102 44.45 61.27 1.38

18 3 14938 2338 3232.39 6280.58 1.94

hm08r 15 7500 13 2 5 0 8.07 12.16 1.51

17 3 1 0 570.29 1107.60 1.94

hm20r 35 70000 13 2 10 7 82.63 132.36 1.60

17 3 0 0 8809.21 12406.11 1.41

hm26r 9 9000 15 2 220 51 17.32 23.60 1.36

19 3 105908 579 1121.93 2152.78 1.92

mus02r 9 9000 15 2 178 75 17.40 23.85 1.37

19 3 230537 3285 1455.39 2026.11 1.39

mus11r 12 6000 13 2 639 15 6.14 9.75 1.59

17 3 3443 27 417.52 878.54 2.10

yst01r 9 9000 15 2 154 9 17.03 23.62 1.39

19 3 213654 3920 1278.39 1969.11 1.54

yst03r 8 4000 14 2 8462 421 6.92 7.28 1.05

19 3 30398 5 441.78 830.92 1.88

yst08r 11 11000 14 2 3603 510 20.91 23.96 1.15

18 3 20359 831 1432.57 2093.48 1.46

yst09r 169 16000 13 2 96 66 17.17 27.89 1.62

17 3 784 215 1560.99 2483.25 1.59

5 Conclusions and Future Work

In this paper, EMS3, an improved algorithm is proposed to efficiently solve the
EMS problem. EMS3 is a non-recursive divide and conquer algorithm and uses
the idea of projection. Theoretical analysis shows that EMS3 is even more com-
petitive for large datasets and challenging instances. The experimental results
reveal that EMS3 outperforms EMS2 which is the state-of-the-art algorithm.

In future the authors plan to improve the performance of EMS solvers by
reducing the memory usage and focusing on larger datasets. Quorum support
can be added to the existing EMS solver. How to project l, d or m in EMS
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problems is worth considering as well. Besides, developing efficient approximate
and randomized algorithms for the EMS problem is also interesting.
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1743418, and 1843025.
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