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Abstract. In this paper, we discuss the computational complexity of
Read-once resolution (ROR) with respect to Horn formulas. Recall that
a Horn formula is a boolean formula in conjunctive normal form (CNF),
such that each clause has at most one positive literal. Horn formulas find
applications in a number of domains such as program verification and
logic programming. It is well-known that deduction in ProLog is based on
unification, which in turn is based on resolution and instantiation. Res-
olution is a sound and complete procedure to check whether a boolean
formula in CNF is satisfiable. Although inefficient in general, resolution
has been used widely in theorem provers, on account of its simplicity and
ease of implementation. This paper focuses on two variants of resolution,
viz., Read-once resolution and Unit Read-once resolution (UROR). Both
these variants are sound, but incomplete. In this paper, the goal is to
check for the existence of proofs (refutations) of Horn formulas under
these variants. We also discuss the computational complexity of deter-
mining optimal length proofs where appropriate.

1 Introduction

This paper is concerned with analyzing Horn formulas from the perspectives of
Read-once resolution (ROR) and Unit Read-once resolution (UROR). A Horn
clause is a clause with at most one positive literal. A Horn formula is a conjunc-
tion of Horn clauses. These formulas find applications in a number of domains,
including but not limited to program verification [8,11], logic programming [4],
abstract interpretation [3] and econometrics [1]. Resolution is a sound and com-
plete proof system introduced by Robinson [10] for checking the satisfiability of
boolean formulas in conjunctive normal form (CNF). As an algorithmic strat-
egy, resolution is not particularly efficient. However, it continues to be used
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extensively in theorem provers on account of its simplicity and ease of imple-
mentation. A resolution proof system typically declares a CNF system to be
feasible, or (alternatively) finds a sequence of resolution steps which lead to the
derivation of a contradiction. Such a sequence of resolution steps is called a refu-
tation since it acts as a certificate, which certifies the infeasibility of the given
clausal system. There are a number of variants of resolution. Each variant puts
limitations on the type of resolution step that is permitted or how the resolution
steps are to be counted. Three variants which are particularly important from
the program verification perspective are tree-like resolution, dag-like resolution
and read-once resolution. In tree-like resolution refutations input clauses can be
used in multiple resolution steps, however each derived clause can only be used
once. If a resolution step requires the reuse of a derived clause then that clause
needs to be re-derived. Note that this re-derivation increases the length of the
refutation. In dag-like resolution refutations both input and derived clauses can
be used in multiple resolution steps. Finally, in read-once resolution refutations
each input and derived clause can be used by only one resolution step. Note that
clauses can be re-derived, and thus reused, if they can be derived from a different
set of input clauses. A complete exposition of different types of resolutions can
be found in [9] and [5].

Although the resolution proof system is both sound and complete (in gen-
eral), several of its variants are not. For instance, read-once resolution (ROR) is
incomplete, in that there exist unsatisfiable CNF formulas, which do not have
read-once resolutions.

Example 1. Consider the following 2CNF formula:

(x1 ∨ x2) (x3 ∨ x4) (¬x1 ∨ ¬x3)
(¬x1 ∨ ¬x4) (¬x2 ∨ ¬x3) (¬x2 ∨ ¬x4)

We now show that this formula does not have a read-once refutation.
To derive (x1) we need to derive (¬x2). Similarly, to derive (x2) we need to

derive (¬x1). However, the derivations of both (¬x1) and (¬x2) require the use
of the clause (x3 ∨ x4).

To derive (x3) we need to derive (¬x4). Similarly, to derive (x4) we need to
derive (¬x3). However, the derivations of both (¬x3) and (¬x4) require the use
of the clause (x1 ∨ x2).

Another variant of resolution is unit resolution. In unit resolution, for each
resolution step one of the two parent clauses must be a unit clause, i.e. a clause
of the form (xi) or (¬xi). Although unit resolution is incomplete in general, it
has been shown to be complete for Horn formulas [4]. In this paper, we study
the effect of combining read-once resolution with unit resolution with respect to
Horn formulas. We refer to this resolution system as Unit read-once resolution
(UROR).

A natural question to ask is: How many times should a given clause be
copied so that a read-once refutation can be extracted? This question was first
investigated by Iwama and Miyano in [6] and leads naturally to the notion of
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copy complexity (see Sect. 2). This paper investigates the copy complexity of
Horn formulas with respect to unit resolution.

The principal contributions of this paper are as follows:

1. A proof that the problem of finding the shortest read-once refutation for a
Horn formula is NP-hard (Sect. 3).

2. An algorithm that can determine if a Horn formula with m clauses and at
most two literals per clause has a read-once unit resolution refutation in
O(m2) time (Sect. 4).

3. Showing that the copy complexity of Horn formulas with respect to read-once
unit resolution is 2n−1 where n is the number of variables (Sect. 5).

The rest of the paper is organized as follows. Section 2 details the problems
under consideration. In Sect. 3 we cover the optimal length ROR problem for
Horn formulas. Section 4 describes our work on the UROR problem for 2-Horn
formulas. In Sect. 5, we examine the copy complexity of Horn formulas with
respect to read-once unit resolution. Finally, Sect. 6 summarizes our results.

2 Statement of Problems

In this section, we briefly discuss the terms used in this paper. We assume that
the reader is familiar with elementary propositional logic.

Definition 1. A literal is a variable x or its complement ¬x. x is called a
positive literal and ¬x is called a negative literal.

Definition 2. A CNF clause is a disjunction of literals. The empty clause,
which is always false, is denoted as �.

Definition 3. A k-CNF clause is a CNF clause with at most k literals.

Definition 4. A Horn clause is a CNF clause which contains at most one
positive literal.

For a single resolution step with parent clauses (α∨x) and (¬x∨β) and with
resolvent (α ∨ β), we write

(α ∨ x), (¬x ∨ β) | 1
RES

(α ∨ β).

The variable x is called the matching or resolution variable. If for initial clauses
α1, . . . , αn, a clause π can be generated by a sequence of resolution steps we
write

α1, . . . , αn |
RES

π.

If a resolution step involves a unit clause, a clause of the form (x) or (¬x),
then it is called a unit resolution step. If a resolution refutation consists of only
unit resolution steps, then it is called a unit resolution refutation.

We now formally define the types of resolution refutation discussed in this
paper.
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Definition 5. A Dag-like resolution refutation is a refutation in which each
clause, π, can be used in any number of resolution steps. This applies to clauses
present in the original formula and those derived as a result of previous resolution
steps.

Note that Dag-like refutations are unrestricted and thus are equivalent to
general resolution. We now introduce several restricted forms of resolution.

Definition 6. A Tree-like resolution refutation is a refutation in which each
derived clause, π, can be used in only one resolution step. However, clauses in
the original formula can be reused and clauses can be re-derived if necessary.

Definition 7. A Read-Once resolution refutation is a refutation in which each
clause, π, can be used in only one resolution step. This applies to clauses present
in the original formula and those derived as a result of previous resolution steps.

In a read-once refutation, a clause can be reused if can be re-derived from a
set of unused input clauses.

More formally, a resolution derivation Φ |
RES

π is a read-once resolution
derivation, if for all resolution steps π1 ∧ π2 | 1

RES
π, we delete one instance of

the clauses π1 and π2 from, and add a copy of the resolvent π to, the current
multi-set of clauses. In other words, if U is the current multi-set of clauses, we
obtain U = (U \ {π1, π2}) ∪ {π}.

It is important to note Read-Once resolution is an incomplete refutation
procedure.

We can similarly define read-once unit resolution.

Definition 8. A Read-Once Unit resolution refutation is a unit resolution
refutation in which each clause, π, can be used in only one unit resolution step.
This applies to clauses present in the original formula and those derived as a
result of previous unit resolution steps.

This lets us define the concept of copy complexity with respect to read-once
unit resolution.

Definition 9. A CNF formula Φ has copy complexity at most k, with respect
to unit resolution, if there exists a multi-set of CNF clauses, Φ′ such that:

1. Every clause in Φ appears at most k times in Φ′.
2. Every clause in Φ′ appears in Φ.
3. Φ′ has a read-once unit resolution refutation.

Let k-UROR denote the set of CNF formulas with copy complexity k with
respect to unit resolution.

For any type of resolution refutation, we can define the length of that refu-
tation in terms of the number of resolution steps.

Definition 10. The length of a resolution refutation R, is the number of reso-
lution steps in R.



104 H. Kleine Büning et al.

We now define the problems under consideration.
The Read-once Refutation (ROR) problem: Given a CNF formula
Φ, determine whether or not Φ has a read-once refutation.

The Optimal Length Read-once Refutation (OLROR) problem:
Given a CNF formula Φ, produce the read-once refutation of Φ that has
minimum length.

The Read-once Unit Resolution Refutation (UROR) problem:
Given a CNF formula Φ, determine whether or not Φ has a read-once
unit resolution refutation.

The Copy Complexity problem: Given a CNF formula Φ, determine
the copy complexity of Φ with respect to read-once unit resolution refu-
tation.

3 The OLROR Problem for Horn Formulas

In this section, we discuss the problem of finding the optimal read-once refutation
of a Horn formula.

Let Φ be an unsatisfiable Horn formula. We know that Φ has a read-once
refutation [12]. The question whether Φ has a read-once resolution of length less
than k is equivalent to the question whether Φ contains a minimal unsatisfiable
formula consisting of at most k clauses.

Theorem 1. Let R denote an OLROR of an unsatisfiable Horn formula Φ and
let ΦR ⊆ Φ be the set of clauses used by R. R is also an optimal tree-like refutation
of Φ and an optimal dag-like refutation of Φ. Additionally, ΦR is a minimum
unsatisfiable subset of Φ.

Proof. Since R is a read-once refutation of Φ, R is also a tree-like and a dag-like
refutation of Φ.

Assume that T is a tree like refutation of Φ such that |T | < |R|. Let ΦT ⊆ Φ
be the set of clauses used by T . It follows that |ΦT | ≤ |T | + 1 < |R| + 1.

ΦT must have a read-once refutation, RT [12]. However, |RT | ≤ |ΦT |−1 < |R|.
This contradicts the fact that R is the optimal read-once refutation of Φ. Thus,
R is also an optimal tree-like refutation of Φ. Similarly, R is an optimal dag-like
refutation of Φ.

Let Φ′ ⊆ Φ be an unsatisfiable Horn formula such that |Φ′| < |ΦR|. Φ′ must
have a read-once refutation, R′. However, |R′| ≤ |Φ′| − 1 < |ΦR| − 1 = |R|. This
contradicts the fact that R is the optimal read-once refutation of Φ. Thus, ΦR is
a minimum unsatisfiable subset of R. ��
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We conclude that, for unsatisfiable Horn formulas, the length of the shortest
resolution refutation equals the length of the shortest read-once refutation and
the shortest tree-like resolution. Moreover, if k is the number of clauses of a
minimal unsatisfiable subformula, then the shortest resolution refutation uses
(k − 1) resolution steps.

The following result is a corollary of Theorem 5.2 in [7]. However, it is
included here for completeness.

Theorem 2. The problem of deciding whether a Horn formula contains an
unsatisfiable sub-formula with at most k clauses is NP-complete.

Proof. We show this by a reduction from Vertex Cover. Let G = (V,E) be an
undirected graph where V = {v1, . . . , vn} and E = {e1, . . . , em}. We associate
with G the Horn formula:

(v1) ∧ . . . ∧ (vn) ∧ (¬e1 ∨ . . . ∨ ¬em) ∧
∧

1≤i≤m,ei=(vi1 ,vi2 )

((¬vi1 ∨ ei) ∧ (¬vi2 ∨ ei))

Then there exists a subset V ′ ⊆ V such that |V ′| ≤ r and V ′ ∩ ei is non-
empty for every 1 ≤ i ≤ m if and only if the associated formula contains an
unsatisfiable sub-formula with at most (1 +m + r) clauses. (the negative clause,
the clause (¬v ∨ ei) for each 1 ≤ i ≤ m, and r unit clauses).

Since the problem of finding a vertex cover of size at most r is NP-complete,
the problem of finding a read-once resolution refutation of length at most k =
(1 + m + r) is NP-complete for Horn formulas. ��

4 The UROR Problem for 2-Horn Formulas

In this section, we look at the UROR problem for 2-Horn formulas. In particular,
we show that checking whether a 2-Horn formula has a unit read-once refutation
is in P.

As in the case of Horn formulas, not every unsatisfiable 2-Horn formula has
a read-once unit resolution refutation.

Example 2. Consider the formula

(x1) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2).

This formula is an unsatisfiable Horn formula. However, the clause (x1) needs
to be used twice in any unit resolution refutation. Thus, this formula does not
have a read-once unit resolution refutation.

Let Φ be a 2-Horn formula with m clauses over n variables. We can divide
Φ into a set of positive unit clauses (PU), a set of implications (φ), a set of
negative unit clauses (NU), and a set of clauses with two negative literals (N).
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We write Φ = PU ∪ φ ∪ NU ∪ N . Note that any part (PU , φ, NU , or N) can
be empty.

For resolution or restricted resolution calculi we say a formula Φ is minimal
with respect to the calculus, if there exists a refutation for Φ and no proper
sub-formula of Φ has a refutation.

Let R be a read-once unit resolution of Φ. Let Φk = PUk ∪φk ∪NUk ∪Nk be
the set of clauses derived from Φ after k steps of R. Let us consider the (k +1)th

resolution step of R.
Note that this resolution step must resolve one of the following clause pairs:

1. A clause of the form (xi) ∈ PUk and a clause of the form (¬xi) ∈ NUk. In
this case, this resolution step produces the empty cause. Note that this is the
last step of the refutation.

2. A clause of the form (xi) ∈ PUk and a clause of the form (¬xi ∨ ¬xj) ∈ Nk.
In this case, the resolution produces the negative unit clause (¬xj). Thus,
PUk+1 = PUk \ {(xi)}, Nk+1 = Nk \ {(¬xi ∨ ¬xj)}, and NUk+1 = NUk ∪
{(¬x2)}. Note that |PUk+1 ∪ NUk+1| = |PUk ∪ NUk| and |NUk+1 ∪ Nk+1| =
|NUk ∪ Nk|.

3. A clause of the form (xi) ∈ PUk and a clause of the form (¬xi ∨ xj) ∈
φk. In this case, the resolution produces the positive unit clause (xj). Thus,
PUk+1 = (PUk \ {(xi)}) ∪ {(xj)}, Nk+1 = Nk, and NUk+1 = NUk. Note
that |PUk+1 ∪ NUk+1| = |PUk ∪ NUk| and |NUk+1 ∪ Nk+1| = |NUk ∪ Nk|.

4. A clause of the form (¬xi) ∈ NUk and a clause of the form (xi ∨ ¬xj) ∈ φk.
In this case, the resolution produces the negative unit clause (¬xj). Thus,
PUk+1 = PUk, Nk+1 = Nk, and NUk+1 = (NUk \ {(¬xi)}) ∪ {(¬xj)}. Note
that |PUk+1 ∪ NUk+1| = |PUk ∪ NUk| and |NUk+1 ∪ Nk+1| = |NUk ∪ Nk|.
Let Φ = PU ∪ φ ∪ NU ∪ N be minimal with respect to read-once unit

resolution. Let R be a read-once unit resolution refutation of Φ and let
(x1) ∧ (¬x1) | 1

RES
�, be the last resolution step of R. Based on the preced-

ing arguments, Φ must have the following properties:

1. |NU ∪ N | = 1. Note that every prior resolution step of R preserves the size
of NU ∪ N . Before the last resolution step of R, NU ∪ N = {(¬xi)}. Thus,
before the last resolution step |NU ∪N | = 1. This means that this must have
been true for the original formula.

2. |PU ∪ NU | = 2. Note that every prior resolution step of R preserves the size
of PU ∪ NU . Before the last resolution step of R, PU ∪ NU = {(xi), (¬xi)}.
Thus, before the last resolution step |PU ∪ NU | = 2. This means that this
must have been true for the original formula.

Thus, Φ must satisfy one of the following conditions:

1. |PU | = 1, |NU | = 1, and |N | = 0.
2. |PU | = 2, |NU | = 0, and |N | = 1.

This means that we only need to consider two types of read-once unit reso-
lution refutations.
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1. Refutations which use a single positive unit clause from PU and a single
negative unit clause from NU . We refer to this as a Type 1 refutation.

2. Refutations which use two positive unit clauses from PU and a single negative
clause from N . We refer to this as a Type 2 refutation.

From an arbitrary 2-Horn formula Φ = PU ∪ φ ∪ NU ∪ N , we can create a
directed graph G = 〈V,E〉 as follows:

1. For each variable xi in Φ, add the vertex vi to V.
2. For each clause (xi ∨ ¬xj), add the edge (vj , vi) to E.
3. Let S = {vi|(xi) ∈ PU} and T = {vj |(¬xj) ∈ NU}.

We utilize G to find read-once unit resolution refutations.

Lemma 1. The clause (xi) is derivable from Φ by a read-once unit resolution
if and only if vi is reachable in G from a vertex in S.

Proof. Assume that (xi) is derivable from Φ by a read-once unit resolution R.
We will show that vi is reachable from a vertex in S by induction based on the
number of resolution steps in R.

If R has no resolution steps then (xi) ∈ Φ. Thus, (xi) ∈ PU and, by con-
struction, vi ∈ S. Thus, vi is trivially reachable from a vertex in S.

Now suppose that this holds true of all resolutions with k steps. If R has (k+
1) steps, then the last resolution step of R must be (xj)∧(¬xj∨xi) | 1

RES
(xi) for

some clause (xj). This means that (xj) must be derivable from Φ by a read-once
unit resolution with k steps. Thus, by the induction hypothesis, vj is reachable
from a vertex in S. Thus, (¬xj ∨xi) ∈ Φ since non-unit clauses are not derivable
from 2-Horn clauses by unit resolution. This means that (¬xj ∨ xi) ∈ φ and, by
construction, the edge (vj , vi) is in E. Thus, vi is also reachable from a vertex
in S.

Now assume that vi is reachable from a vertex vj ∈ S. Thus, there must be
a simple path p in G from vj to vi. Let the edges in p be (vj , vp1), (vp1 , vp2), . . .,
(vpk

, vi). By construction of G, the clauses (xj), (¬xj ∨ xp1), (¬xp1 ∨ xp2), . . .,
(¬xpk

∨ xi) are all in Φ.
It is easy to see that these clauses can be used to derive (xi) through unit

resolution. Since p was simple no clause is used more than once. Thus, this is a
read-once unit resolution of (xi). ��
Theorem 3. Whether the formula Φ has a Type 1 refutation can be determined
in linear time.

Proof. Φ has a Type 1 refutation if and only if for some clause (¬xt) ∈ Φ, we
can derive the clause (xt) from Φ by a read-once unit resolution R. Thus, by
Lemma 1, some vertex vt ∈ T must be reachable from a vertex in S. This can
be checked by doing a depth-first search in G. ��
Theorem 4. Whether the formula Φ has a Type 2 refutation can be determined
in O(m2) time.
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Proof. Φ has a Type 2 refutation if and only if for some clause (¬xt1 ∨¬xt2) ∈ Φ,
we can derive the clauses (xt1) and (xt2) from Φ by read-once unit resolution
R. Thus, by Lemma 1, both vt1 and vt2 must be reachable from verticies in S.
Thus, there is a path p1 from a vertex in S to vt1 and there is a path p2 from
a vertex in S to vt2 . Since R is a read-once unit resolution, p1 and p2 cannot
share any edges and cannot have the same starting vertex.

If we are given verticies vt1 and vt2 , then we need to check if G has such a
pair of edge-disjoint paths.

From G, S, vt1 , and vt2 , we can construct flow network G′ as follows:

1. For each vertex vi in G, add the node vi to G′.
2. For each edge (vi, vj) in G add the edge (vi, vj) to G′ with capacity 1.
3. Add a source s and the edges (s, vi) for vi ∈ S to G′.
4. Add a sink t and the edges (vt1 , t), and (vt2 , t) to G′.

The desired paths exist if and only if a flow of 2 can be pushed from s to t
in G′.

Thus, Φ has a Type 2 refutation if and only if, for some clause (¬xt1 ∨¬xt2) ∈
Φ, the graph G′ has a max flow of 2.

Note that all edges in G′ have capacity 1, and that t has only two incoming
edges. This means that the maximum flow is at most 2. Thus, we can find the
max flow from s to t in G′ in O(m) time where m is the number of clauses in
Φ [2]. Since we need to find this flow for each clause of the form (¬xt1 ∨ ¬xt2),
determining if Φ has a Type 2 refutation can be accomplished in O(m2) time. ��

Thus, checking if Φ has a read-once unit resolution refutation can be accom-
plished by checking to see if it has either a Type 1 refutation or a Type 2
refutation. This can be accomplished in O(m2) time since checking for Type 2
refutations is the more time consuming process.

5 UROR Copy Complexity of Horn Formulas

We now examine the copy complexity of Horn formulas with respect to unit
resolution.

Theorem 5. The copy complexity of Horn formulas with respect to unit resolu-
tion is at most 2n−1 where n is the number of variables.

Proof. Suppose Φ is an unsatisfiable Horn formula. Note that adding clauses to
a system cannot increase the copy complexity. Thus, we can assume without
loss of generality that Φ is minimal unsatisfiable. Let CC(n) denote the copy
complexity of a minimal unsatisfiable Horn formula with n variables. We will
show that CC(n) ≤ 2n−1. For a clause φj of Φ let Nc(φj) be the number of
copies of φj needed for a read-once unit resolution refutation.

Let Φ be a minimal unsatisfiable Horn formula with n variables. Thus, Φ
has (n + 1) clauses. If n = 1, then Φ has the form (x) ∧ (¬x). This formula has
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a read-once unit resolution refutation. Thus CC(1) = 1 ≤ 20. Also note that∑
φj∈Φ Nc(φj) = 2 ≤ 21.
Now assume that CC(k) ≤ 2k−1, and that for each minimal unsatisfiable

formula Φ′ with k variables,
∑

φ′
j∈Φ′ Nc(φ′

j) ≤ 2k. If n = k + 1, then Φ has the
form (x)∧(¬x∨α1)∧ . . .∧(¬x∨αt)∧σt+1 . . .∧σk+1. A read-once unit resolution
refutation needs to use the clause (x) to eliminate each instance of ¬x. Thus, we
need a copy of the clause (x) for each copy of (¬x ∨ αi) for i = 1 . . . t. Let Φ′ be
the formula α1 ∧ . . . αt ∧ σt+1 . . . ∧ σk+1. Note that Φ′ is a minimal unsatisfiable
formula with n − 1 = k variables. Thus,

t∑

j=1

Nc(αi) ≤
∑

φ′
j∈Φ′

Nc(φ′
j) ≤ 2k.

This means that we need at most 2k copies of the clause (x). Thus, CC(k+1) ≤
2k and

∑
φj∈Φ Nc(φj) ≤ 2k + 2k = 2k+1. ��

Theorem 6. There exists a Horn formula with copy complexity 2n−1 where n
is the number of variables.

Proof. Consider the following clauses:

(¬x1 ∨ ¬x2 ∨ . . . ∨ ¬xn) (x1 ∨ ¬x2 ∨ . . . ∨ ¬xn) (x2 ∨ ¬x3 ∨ . . . ∨ ¬xn)
. . . (xn−1 ∨ ¬xn) (xn)

Let us consider the clause (¬x1 ∨ ¬x2 ∨ . . . ∨ ¬xn). To eliminate this clause
through unit resolution, we need to derive the clauses (x1), (x2), . . ., (xn).
We will prove by induction, that for each i = 1 . . . n, 2i−1 copies of the clause
(xi ∨ ¬xi+1 ∨ . . . ∨ ¬xn) are required.

To eliminate ¬x1 from the clause we only need one copy of the clause (x1),
thus we only need 1 = 20 copies of the clause (x1 ∨ ¬x2 ∨ . . . ∨ ¬xn).

Now assume that for each i < k, we need to use 2i−1 copies of the clause
(xi ∨ ¬xi+1 ∨ . . . ∨ ¬xn). Each of these clauses uses the literal ¬xk, as does the
clause (¬x1 ∨ ¬x2 ∨ . . . ∨ ¬xn). Thus, we need a total of 1 +

∑k−1
i=1 2i−1 = 2k−1

copies of the clause (xk) to cancel every instance of ¬xk. The only clause with
the literal xk is the clause (xk ∨ ¬xk+1 ∨ . . . ∨ ¬xn). Thus, we need to use 2k−1

copies of this clause, as desired.
This means that we need a total of 2n−1 copies of the clause (xn). Thus, the

copy complexity of this formula is 2n−1 with respect to unit resolution. ��
From these two results, it is easy to see that the copy complexity of Horn

formulas with respect to read-once unit resolution refutation is 2n−1.

6 Conclusion

In this paper, we studied two proof systems, viz., Read-once resolution (ROR)
and Unit read-once resolution (UROR) from the perspective of Horn clause sys-
tems. Our work is motivated by two important factors, viz., the ubiquitousness
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of the resolution proof system in SMT solvers and the wide applicability of Horn
formulas. As discussed before, the ROR and UROR proof systems are incom-
plete for general CNF formualas, although ROR is complete for Horn formulas.
Note that if an unsatisfiable formula has a read-once refutation or unit read-once
refutation, then this refutation is necessarily short. This is in contrast to gen-
eral resolution proofs, which could be exponentially large with respect to input
size. Our investigations established that the problem of checking whether a Horn
clause system has a read-once refutation of length at most k is NP-hard. We
also showed that the problem of finding a UROR for 2-Horn formulas is in P.
Finally, we discussed the copy complexity of Horn formulas with respect to unit
resolution and obtained an exponential lower bound.
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