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Abstract. It is established that secure computation can be achieved by
using a deck of physical cards. Almost all existing card-based protocols
are based on a specific deck of cards. In this study, we design card-based
protocols that are executable using any deck of cards (e.g., playing cards,
UNO, and trading cards). Specifically, we construct a card-based protocol
for any Boolean function based on any deck of cards. As corollaries of our
result, a standard deck of playing cards (having 52 cards) enables secure
computation of any 22-variable Boolean function, and UNO (having 112
cards) enables secure computation of any 53-variable Boolean function.

Keywords: Secure computation · Card-based protocols ·
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1 Introduction

Secure computation enables parties having secret inputs to compute a joint func-
tion of their inputs without revealing information about the inputs that is not
trivially revealed by knowing the output. It is established that secure computa-
tion can be achieved by using a deck of physical cards; this is known as card-based
cryptography (e.g., [1,2,5]). Card-based protocols enable participants, including
those unfamiliar with mathematics, to be convinced about the correctness and
security of their computations. In this study, we design card-based protocols
based on general decks of cards; almost all the existing protocols are based on a
specific deck of cards such as a two-colored deck consisting of two types of cards:
♣ and ♥ . We refer to this two-colored deck as a deck of binary cards.

1.1 A Deck of Binary Cards

A deck of binary cards consists of a finite number of cards whose faces display
either ♣ or ♥ and the backs display an identical symbol ? . All cards with an
identical symbol are indistinguishable. The following encoding rule is used:
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♣ ♥ = 0 , ♥ ♣ = 1.

Two face-down cards ? ? representing a bit x ∈ {0, 1} is referred to as a
commitment to x. Given a collection of input commitments to x1, x2, · · · , xn ∈
{0, 1}, a card-based protocol for a function f : {0, 1}n → {0, 1} generates a
commitment to the output value f(x1, x2, · · · , xn) as follows:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x3

· · · ? ?
︸ ︷︷ ︸

xn

→ ? ?
︸ ︷︷ ︸

f(x1,x2,··· ,xn)

.

The first card-based protocol is the five-card trick proposed by den Boer
[2]. It is an AND protocol using a deck of five cards ♣ ♣ ♥ ♥ ♥ ; it reveals
the output value directly1 rather than generating a commitment to the output
value. Mizuki and Sone [5] showed that every Boolean function can be securely
computed in a finite runtime by using a deck of binary cards; they constructed
a six-card AND, a four-card XOR, and a six-card COPY protocols; these are
state-of-the-art finite-runtime protocols under the condition that shuffles used
in a protocol are random cut and/or random bisection cut ; these shuffles are
known to be physically implementable [8]. Whereas they did not consider the
actual number of cards, Nishida et al. [7] showed that any n-variable Boolean
function can be securely computed by using a deck of 2n + 6 binary cards.

1.2 A Deck of Playing Cards

Whereas almost all existing protocols are based on a deck of binary cards, there
are certain exceptions [4,6]. Niemi and Renvall [6] and Mizuki [4] constructed
card-based protocols based on a standard deck of playing cards, where all the
cards are distinguishable while their backs display an identical symbol ? . By
creating a total order on the set of 52 cards, we can assume that a standard deck
of playing cards is of the following form: 1 2 3 4 5 6 · · · 52. The encoding
rule is as follows: i j = 0 , j i = 1 , where i, j are integers such that i < j.
A commitment to x is defined by a pair of face-down cards with the encoding
rule and denoted by [x]{i,j}; here, {i, j} is called the base of the commitment.
Following the encoding rule, Niemi and Renvall [6] showed that any Boolean
function can be securely computed by a Las-Vegas protocol. Mizuki [4] showed
that it can be achieved by a finite-runtime protocol. Specifically, Mizuki [4] con-
structed an eight-card AND, a four-card XOR, and a six-card COPY protocols.
Note that the eight-card AND protocol requires two more cards than the binary
card protocol.

1.3 This Work: Any Deck of Cards

In this study, we design card-based protocols based on various decks of cards.
Specifically, our protocols are operable on all decks in a certain class of decks:
majority-free decks. Majority-free decks satisfy the following properties:
1 This type of protocols is called non-committed format. Meanwhile, the other type of

protocols, where the output is not revealed, is called committed format. We focus on
committed format protocols throughout this paper.
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1. It consists of a finite number of cards.
2. The backs of all the cards in the deck have an identical symbol.
3. For each symbol on the faces, the number of cards having the symbol does

not exceed half of the total number of cards in the deck.

The third condition is necessary in order to use the two-cards-per-bit encoding. It
excludes the following type of decks: 1 2 1 1 1 1 . In the above-mentioned
deck, whereas a commitment whose base is {1, 2} can be created, the remaining
four cards are ineffective. The third condition guarantees that we can create k
commitments for 2k cards.

We then classify the class of majority-free decks into the following three types
according to the symbols on the faces:

Type-0 A deck in which all the symbols are distinct.
Type-1 A deck in which all the symbols are distinct except for a single symbol,

wherein two or more cards display this symbol.
Type-2 A deck that is neither type-0 nor type-1, i.e., a deck in which there exist

two or more symbols, each of which are displayed by two or more cards.

A majority-free deck of binary cards, whose number of cards is at least four,
is a type-2 deck because ♣ and ♥ are two such symbols. A standard deck
of playing cards is a type-0 deck because all the cards are distinct. A deck of
playing cards with two jokers whose faces are identical is a canonical example of
a type-1 deck because two jokers are the exception. A deck of UNO is a type-2
deck because 1 with green and 2 with green are two such symbols. A deck of
trading cards (e.g., “Pokémon Trading Card Game”) might be any type of deck
of cards.

1.4 Our Result

In this study, we construct a card-based protocol for any Boolean function based
on any majority-free deck of cards. Our result is summarized by Theorem 1:

Theorem 1. Let f be any n-variable Boolean function. Then, for any i ∈
{0, 1, 2}, we can securely compute f using a type-i majority-free deck of 2n+8−i
cards.

Table 1 presents a comparison between the previous work by Nishida et al. [7] and
our work. It is noteworthy that our result shows that any type-2 deck provides
a protocol for any function as efficient (in terms of the number of cards) as the
deck of binary cards.

Our result also implies the following corollaries:

– The standard deck of playing cards (having 52 cards), which is a type-0 deck,
enables secure computation of any 22-variable Boolean function.

– A deck of playing cards with a pair of jokers and a spare card (55 cards
in total), which is a type-1 deck, enables secure computation of any 24-variable
Boolean function.

– A deck of UNO (having 112 cards), which is a type-2 deck, enables secure
computation of any 53-variable Boolean function.
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Table 1. A comparison between our work and the existing work

Type of deck # of cards

Nishida et al. [7] binary (type-2) 2n + 6

Nishida et al. [7] & Mizuki [4] type-0 2n + 8

Ours type-1 2n + 7

Ours type-2 2n + 6

1.5 Related Works

Koch et al. [3] showed the effectiveness of non-uniform and/or non-closed shuf-
fles by constructing a four-card Las-Vegas AND protocol and a five-card finite-
runtime AND protocol using them. In contrast, we focus on constructing proto-
cols using uniform and closed shuffles, specifically, a random bisection cut. This
is because it can be conveniently implemented manually [8].

2 Preliminaries

In this section, we review a few existing protocols and define fundamental nota-
tions. In Sect. 2.1, we introduce a random bisection cut, which is a shuffle oper-
ation used in existing and our protocols. In Sects. 2.2 and 2.3, we introduce an
XOR protocol [5] and an input-preserving AND protocol [7]. Although they are
assumed to be used with a deck of binary cards, we will use them for various
decks of cards in our protocols. In Sect. 2.4, we define a few notations for various
decks of cards.

2.1 Random Bisection Cut

A random bisection cut is a shuffle operation, which can be applied to a sequence
of 2k cards for any integer k. Given 2k cards, it first bisects the sequence of 2k
cards into two sequences of k cards: A and B:

1

?
2

?
3

?
4

? · · ·
2k−1

?
2k

? →
1

?
2

? · · ·
k

?
︸ ︷︷ ︸

A

k+1

?
k+2

? · · ·
2k

?
︸ ︷︷ ︸

B

,

and then switches them randomly. Each case occurs with a probability of 1/2:

1

?
2

? · · ·
k

?
︸ ︷︷ ︸

A

k+1

?
k+2

? · · ·
2k

?
︸ ︷︷ ︸

B

or
k+1

?
k+2

? · · ·
2k

?
︸ ︷︷ ︸

B

1

?
2

? · · ·
k

?
︸ ︷︷ ︸

A

.

We require that nobody can learn which case will occur. Ueda et al. [8] demon-
strated that a random bisection cut is implementable physically.



Secure Computation of Any Boolean Function Based on Any Deck of Cards 67

2.2 Existing XOR Protocol

Using a deck of binary cards, Mizuki and Sone [5] constructed a four-card XOR
protocol and a six-card AND protocol. The four-card XOR protocol accepts two
commitments to x1, x2 ∈ {0, 1} as inputs and outputs a commitment to the
XOR value x1 ⊕ x2 as follows:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

→ ♣ ♥
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

x1⊕x2

.

We use a modified version of the protocol: a six-card XOR protocol; it accepts
three commitments to x1, x2, x3 ∈ {0, 1} as inputs and outputs two commitments
to x1 ⊕ x2 and x1 ⊕ x3 as follows:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x3

→ ♣ ♥
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

x1⊕x2

? ?
︸ ︷︷ ︸

x1⊕x3

.

The four-card XOR protocol is immediately obtained from the six-card XOR
protocol by omitting the rightmost two cards. The construction of the XOR
protocol is omitted due to the page limitation.

2.3 Existing Input-Preserving and Protocol

Using a deck of binary cards, Mizuki and Sone [5] constructed a six-card AND
protocol; it accepts two commitments to x1, x2 ∈ {0, 1} as inputs and outputs a
commitment to the AND value x1x2. Nishida et al. [7] improved it to a six-card
input-preserving AND (hereafter, IP-AND) protocol; it outputs a commitment
to the AND value x1x2 together with the input commitment to x2 as follows:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

0

→ ♣ ♥ ? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x1x2

.

The construction of the IP-AND protocol is omitted due to the page limitation.

2.4 Notations for Various Decks of Cards

Without loss of generality, we can assume that each card has a natural number
on the face as follows:

1 2 3 4 5 6 · · · n .

As in [4], a commitment to x ∈ {0, 1} of base {i, j} is denoted by

? ?
︸ ︷︷ ︸

[x]{i,j}

.
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When we do not consider the base of the commitment, we denote it by

? ?
︸ ︷︷ ︸

x

.

For any type-2 deck of cards, we assume that each of the numbers of 1 and 2
is at least 2 and call the base {1, 2} a special base of type-2. Similarly, for any
type-1 deck of cards, we assume that the number of 1 is at least 2 and call
the base containing 1 a special base of type-1. Unlike the type-2 case, the other
card of a special base of type-1 is arbitrary. For any type-i deck, i ∈ {1, 2}, a
commitment having a special base is denoted by

? ?
︸ ︷︷ ︸

[x]†

.

We note that we can create at least two commitments having a special base
because type-2 decks contain two pairs of 1 2 , and type-1 decks contain two
1 . Although the dagger † is inconsequential for a type-0 deck, we use the
notation [·]† even for a type-0 deck in order to express type-0/1/2 commitments
simultaneously.

We denote a face-up card by ∗ when we do not care about the face-up
symbol of the card. For example, a sequence of face-up cards 1 3 4 5 can be
denoted by

1 ∗ ∗ ∗ .

Here, the special card 1 is explicitly written.

3 Our Input-Preserving and Protocol

In this section, our IP-AND protocol is presented. The key primitive is an opaque
commitment pair (OC pair) introduced by Mizuki [4]. In Sect. 3.1, an OC pair is
introduced. In Sect. 3.2, we present a new technique for producing an OC pair.
In Sect. 3.3, we present our construction.

3.1 Opaque Commitment Pair

We first explain why a straight-forward application of the existing IP-AND pro-
tocol is ineffective for a general deck of cards. Suppose that the following sequence
is input to the existing IP-AND protocol:

? ?
︸ ︷︷ ︸

[x1]{1,2}

? ?
︸ ︷︷ ︸

[x2]{3,4}

? ?
︸ ︷︷ ︸

[0]{5,6}

.

In the last step of the protocol [7] (Sect. 2.1: Improved AND Protocol), the
commitment to x1x2 is turned over, and it reveals whether the base of the
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commitment is {3, 4} or {5, 6}. The former case implies that x1x2 = x2, and
the latter case implies that x1x2 = 0; these imply that x1 = 1 and x1 = 0,
respectively. Therefore, the secret input x1 is revealed publicly.

Mizuki [4] solved the above problem by producing an OC pair, which is a pair
of commitments of two bases such that it is unknown as to which commitment
is of which base. For example, we apply a random bisection cut to a pair of two
commitments of bases {1, 2} and {3, 4} as follows:

? ?
︸ ︷︷ ︸

[x]{1,2}

? ?
︸ ︷︷ ︸

[x]{3,4}

→
[

? ?
∣

∣

∣ ? ?
]

→ ? ?
︸ ︷︷ ︸

x

? ?
︸ ︷︷ ︸

x

;

Then, the pair becomes an OC pair because it is unknown as to which com-
mitment is of base {1, 2}. We denote the above commitment by [x]{1,2},{3,4}.
Mizuki’s technical idea is to use an OC pair [x2]{3,4},{5,6} and [0]{3,4},{5,6} rather
than [x2]{3,4} and [0]{5,6}. Now, the existing IP-AND protocol is effective because
the (revealed) base of the commitment to x1x2 is independent of the secret
input x1.

We call a protocol for producing an OC pair of (x, 0) from a commitment to
x an OC pair generation. Mizuki’s OC pair generation for type-0 decks proceeds
as follows:

1. Place six cards as follows:

? ?
︸ ︷︷ ︸

[x]{5,6}

1 2 3 4 → ? ?
︸ ︷︷ ︸

[x]{5,6}

? ?
︸ ︷︷ ︸

[0]{1,2}

? ?
︸ ︷︷ ︸

[0]{3,4}

.

2. Apply a random bisection cut to the rightmost four cards; then, we have an
opaque commitment pair to two 0s as follows:

? ?
︸ ︷︷ ︸

[x]{5,6}

? ?
︸ ︷︷ ︸

[0]{1,2},{3,4}

? ?
︸ ︷︷ ︸

[0]{1,2},{3,4}

.

3. Apply the four-card XOR protocol (Sect. 2.2); then, we have an OC pair of
(x, 0):

5 6 ? ?
︸ ︷︷ ︸

[x]{1,2},{3,4}

? ?
︸ ︷︷ ︸

[0]{1,2},{3,4}

.

For type-2 decks, an OC pair is not required when the input commitment
has the special base {1, 2} and two cards 1 2 are free. We regard the following
trivial protocol as an OC pair generation for type-2 decks:

1. Place four cards as follows:

? ?
︸ ︷︷ ︸

[x]{1,2}

1 2 .
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2. Turning over the face-up cards, we have

? ?
︸ ︷︷ ︸

[x]{1,2}

? ?
︸ ︷︷ ︸

[0]{1,2}

.

Now, we have OC pair generations for type-0 and type-2 decks. In the next
section, we present a new technique of OC pair generation for type-1 decks.

3.2 New Technique of Opaque Commitment Pair Generation

In this section, we present a new technique of OC pair generation for type-
1 decks. It produces an opaque commitment pair [x]{1,2},{1,3} and [0]{1,2},{1,3}

from a commitment [x]{1,∗} with three free cards 1 2 3 . The key observation
is that the left card of the commitment [0]{1,2},{1,3} is always 1 . It proceeds as
follows:

1. Place a commitment to x with three cards as follows:

? ?
︸ ︷︷ ︸

[x]{1,∗}

1 2 3 .

2. Turn over all the face-up cards; then, apply a random bisection cut to the
rightmost two cards:

? ?
︸ ︷︷ ︸

[x]{1,∗}

?
[

?
∣

∣

∣ ?
]

.

3. Apply the four-card XOR protocol (Sect. 2.2) to the first and second commit-
ments; then, we have

1 ∗ ? ?
︸ ︷︷ ︸

[x]{1,2},{1,3}

? .

4. Rearrange the order of the sequence according to a permutation (1 3)(2 5 4):

1 ∗ ? ?
︸ ︷︷ ︸

[x]{1,2},{1,3}

? → ? ?
︸ ︷︷ ︸

[x]{1,2},{1,3}

1 ? ∗ .

5. Turn over 1 ; then, we have an opaque commitment pair:

? ?
︸ ︷︷ ︸

[x]{1,2},{1,3}

? ?
︸ ︷︷ ︸

[0]{1,2},{1,3}

∗ .

We denote an OC pair by [x]OC and [0]OC. For type-0 decks, it comprises
[x]{1,2},{3,4} and [0]{1,2},{3,4}. For type-1 decks, it comprises [x]{1,2},{1,3} and
[0]{1,2},{1,3}. For type-2 decks, it comprises [x]{1,2} and [0]{1,2}.
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3.3 Description of Our Input-Preserving AND protocol

In this section, we construct a new IP-AND protocol by our OC pair generation
technique. It proceeds as follows:

1. Place two commitments to x1, x2 with free cards as follows:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

[x2]†

∗ · · · ∗
︸ ︷︷ ︸

free cards

,

where the free cards are as follows:

type-2 : 1 2 type-1 : 1 ∗ ∗ type-0 : ∗ ∗ ∗ ∗ .

2. Apply the OC pair generation technique to the commitment to x2 with the
free cards; then, we have

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

[x2]OC

? ?
︸ ︷︷ ︸

[0]OC

∗ · · · ∗
︸ ︷︷ ︸

free cards

,

where the OC pair is as follows:
– type-2 : {1, 2}
– type-1 : {1, 2}, {1, 3}
– type-0 : {1, 2}, {3, 4}

and the free cards are as follows:

type-2 : none type-1 : ∗ type-0 : ∗ ∗ .

3. Apply the existing IP-AND protocol to the leftmost six cards; then, we have

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

[x1x2]†

∗ · · · ∗
︸ ︷︷ ︸

free cards

,

where the free cards are as follows:

type-2 : 1 2 type-1 : 1 ∗ ∗ type-0 : ∗ ∗ ∗ ∗ .

4 Our Protocol for Any Boolean Function

In this section, we construct a protocol for any n-variable Boolean function using
any type-i deck of 2n+8−i cards. This establishes Theorem 1. In Sect. 4.1, a swap
protocol, which is a subprotocol of our AND–XOR protocol, is constructed. In
Sect. 4.2, the AND–XOR protocol, which is a subprotocol of our main protocol,
is constructed. In Sect. 4.3, the main protocol is constructed.
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4.1 Swap Protocol

It appears that a general-purpose protocol could be immediately obtained by
plugging our IP-AND protocol into Nishida’s AND–XOR protocol. However,
this is not true for type-2 and type-1 decks. This is because the number of
duplicate cards such as 1 is limited. Therefore, we have to reuse the duplicate
cards a number of times. It is feasible to reuse them by constructing a swap
protocol, which exchanges the bases of two commitments. It proceeds as follows:

1. Place the two commitments [x1]{1,2}, [x2]{3,4} with two free cards 5 6 as
follows:

? ?
︸ ︷︷ ︸

[x1]{1,2}

? ?
︸ ︷︷ ︸

[x2]{3,4}

5 6 → ? ?
︸ ︷︷ ︸

[x1]{1,2}

? ?
︸ ︷︷ ︸

[x2]{3,4}

? ?
︸ ︷︷ ︸

[0]{5,6}

.

2. Apply the four-card XOR protocol (Sect. 2.2) to the first and third commit-
ments; then, we have

1 2 ? ?
︸ ︷︷ ︸

[x2]{3,4}

? ?
︸ ︷︷ ︸

[x1]{5,6}

.

3. Turn over the face-up cards, and apply the four-card XOR protocol to the
second and first commitments; then, we have

? ?
︸ ︷︷ ︸

[x2]{1,2}

3 4 ? ?
︸ ︷︷ ︸

[x1]{5,6}

.

4. Turn over the face-up cards, and apply the four-card XOR protocol to the
third and second commitments; then, we have

? ?
︸ ︷︷ ︸

[x2]{1,2}

? ?
︸ ︷︷ ︸

[x1]{3,4}

5 6 .

4.2 AND–XOR Protocol

In this subsection, we present our AND–XOR protocol based on various decks of
cards. Given a collection of n + 1 commitments to x1, x2, · · · , xn, w ∈ {0, 1}, an
AND–XOR protocol produces a commitment to w ⊕ x1x2 · · · xn by preserving a
collection of n commitments to x1, x2, · · · , xn.

Our AND–XOR protocol uses 2n + 8 − i cards for type-i decks as follows:

1. Place 2n + 8 − i cards as follows:

? ?
︸ ︷︷ ︸

[x1]†

? ?
︸ ︷︷ ︸

[x2]†

? ?
︸ ︷︷ ︸

x3

· · · ? ?
︸ ︷︷ ︸

xn

? ?
︸ ︷︷ ︸

w

? ?
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

0

∗ · · · ∗
︸ ︷︷ ︸

free cards

,

where the free cards are as follows:

type-2 : no cards. type-1 : ∗ type-0 : ∗ ∗



Secure Computation of Any Boolean Function Based on Any Deck of Cards 73

2. Apply the six-card XOR protocol (Sect. 2.2) to the commitments to x1, 0, and
0; then, we have

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

[x2]†

? ?
︸ ︷︷ ︸

x3

· · · ? ?
︸ ︷︷ ︸

xn

? ?
︸ ︷︷ ︸

w

∗ · · · ∗
︸ ︷︷ ︸

free cards

.

with the following free cards:

type-2 : 1 2 type-1 : 1 ∗ ∗ type-0 : ∗ ∗ ∗ ∗ .

3. For j = 1 to n − 1, adopt the following procedure:
(a) Apply our IP-AND protocol (Sect. 3.3) to the commitment to x1 · · · xj

and the commitment [xj+1]† with free cards; then, we have

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x3

· · · ? ?
︸ ︷︷ ︸

xn

? ?
︸ ︷︷ ︸

[x1···xj+1]†

? ?
︸ ︷︷ ︸

w

∗ · · · ∗
︸ ︷︷ ︸

free cards

,

with the following free cards:

type-2 : 1 2 type-1 : 1 ∗ ∗ type-0 : ∗ ∗ ∗ ∗ .

If j = n − 1, skip Step 3-(b), and go to Step 4.
(b) If the deck is type-0, do not take action. Otherwise, apply the swap pro-

tocol to the commitment [x1 · · · xj+1]† and the commitment to xj+2.
4. Apply the four-card XOR protocol (Sect. 2.2) to the commitment [x1 · · · xn]†

and the commitment to w; then, we have

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x3

· · · ? ?
︸ ︷︷ ︸

xn

? ?
︸ ︷︷ ︸

w⊕x1···xn

∗ · · · ∗
︸ ︷︷ ︸

free cards

,

where the free cards are as follows:

type-2 : 1 2 1 2 type-1 : 1 ∗ 1 ∗ ∗ type-0 : ∗ ∗ ∗ ∗ ∗ ∗ .

4.3 Description of Our Protocol for Any Boolean Function

In this subsection, we prove Theorem 1 by constructing a protocol for any n-
variable Boolean function f based on various decks of cards.

Similar to Nishida et al.’s construction, our construction is based on the
fact that any n-variable function f(x1, x2, x3, · · · , xn) can be expressed as the
Shannon expansion:

f(x1, x2, x3, · · · , xn) = x̄1x̄2x̄3 · · · x̄nf(0, 0, 0, · · · , 0) ⊕ x1x̄2x̄3 · · · x̄nf(1, 0, 0, · · · , 0)

⊕ x̄1x2x̄3 · · · x̄nf(0, 1, 0, · · · , 0) ⊕ x1x2x̄3 · · · x̄nf(1, 1, 0, · · · , 0)

⊕ · · · ⊕ x1x2x3 · · ·xnf(1, 1, 1, · · · , 1).
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That is, the function f can be expressed as

f(x1, x2, x3, · · · , xn) = T1 ⊕ T2 ⊕ · · · ⊕ T�,

where each Ti is the AND value of n literals such as x̄1x2x̄3 · · · xn.
It proceeds as follows:

1. Place 2n + 8 − i cards as follows:

? ?
︸ ︷︷ ︸

[x1]†

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x3

· · · ? ?
︸ ︷︷ ︸

xn

? ?
︸ ︷︷ ︸

0

∗ · · · ∗
︸ ︷︷ ︸

free cards

,

where the free cards are as follows:

type-2 : 1 2 ∗ ∗ type-1 : 1 ∗ ∗ ∗ ∗ type-0 : ∗ ∗ ∗ ∗ ∗ ∗ .

2. Let T1 ⊕T2 ⊕· · ·⊕T� be the Shannon expansion of f . For i = 1, 2, · · · , �, add
Ti to the rightmost commitment by using our AND–XOR protocol2.

3. Output the rightmost commitment.

Note that the numbers of cards used in the above construction are identical
to that of our AND–XOR protocols. Thus, we obtain Theorem 1.

5 Conclusion

In this study, we showed that any n-variable Boolean function can be securely
computed by using a type-i majority-free deck of 2n+8−i cards for i ∈ {0, 1, 2}.
An important open problem is to determine whether 2n+8−i cards are necessary
or not. Another noteworthy open problem is to show a similar result without
majority-freeness.
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