
Mutual Visibility by Robots
with Persistent Memory

Subhash Bhagat and Krishnendu Mukhopadhyaya(B)

Advanced Computing and Microelectronics Unit, Indian Statistical Institute,
Kolkata, India

subhash.bhagat.math@gmail.com, krishnendu@isical.ac.in

Abstract. This paper addresses one of the fundamental geometric for-
mation problems, namely the mutual visibility problem, for a set of semi-
synchronous, opaque robots occupying distinct positions in the Euclidean
plane. Since robots are opaque, if three robots lie on a line, the middle
robot obstructs the visions of the two other robots. The mutual visibil-
ity problem requires the robots to coordinate their movements to form
a configuration, within finite time and without collision, in which no
three robots are collinear. We assume that robots are endowed with con-
stant bits of persistent memory. We consider the FSTATE computational
model [4] in which the persistent memory is used by the robots only to
remember their previous internal states. This piece of information is not
communicated or visible to the other robots. Except from this persis-
tent memory, robots are oblivious i.e., they do not carry forward any
other information from their previous computational cycles. The paper
presents a distributed algorithm to solve the mutual visibility problem
for a set of semi-synchronous robots using only 1 bit of persistent mem-
ory. The proposed algorithm also provides a self-stabilizing solution to
the problem. The algorithm does not impose any other restriction on the
capability of the robots and guarantees collision-free movements for the
robots.

Keywords: Swarm robots · Mutual visibility problem ·
Semi-synchronous · Persistent memory · Self-stabilizing

1 Introduction

A swarm of robots is a multi-robot system consisting of autonomous, homoge-
neous, small mobile robots which are capable of carrying out some task in a coop-
erative environment. The robots are modelled as points on the two-dimensional
plane. The robots are indistinguishable by their appearances. All of them have
identical capabilities and execute same algorithm. They do not share a global
coordinate system; each robot has its own local coordinate system. The direc-
tions and orientations of the local coordinate axes may vary. Each robot executes
the computational cycles consisting of three phases Look-Compute-Move. In Look

c© Springer Nature Switzerland AG 2019
Y. Chen et al. (Eds.): FAW 2019, LNCS 11458, pp. 144–155, 2019.
https://doi.org/10.1007/978-3-030-18126-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18126-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-18126-0_13

Mutual Visibility by Robots with Persistent Memory 145

phase, a robot takes the snapshot of its surroundings and maps the locations of
the other robots w.r.t. its local coordinate system. In Compute phase, a robot
uses the information gathered in the Look phase to compute a destination point.
In Move phase, it moves towards the computed destination point.

In persistent memory model, robots are endowed with constant amount of
persistent memory (the robots are otherwise oblivious) [1]. This persistent mem-
ory can be used in three different ways: (i) the robots can set limited commu-
nications between themselves using visible lights which can assume a constant
number of predefined colors to represent their different states and also to retain
some constant amount of information about their previous states or (ii) only to
remember information about their last states (FSTATE model) or (iii) the robots
can use visible lights only to communicate with other robots in the system and
they do not remember the colors of the lights of their last computational cycle
(FCOMM model) [4]. Thus, the persistent memory can be used for communi-
cation or for internal memory or for both. In this work, robots use persistent
memory only for internal memory.

The mutual visibility problem is defined as follows: for a set of robots initially
occupying distinct positions in the two dimensional plane, the mutual visibility
problem asks the robots to form a configuration, within finite time and without
collision, in which no three robots are collinear.

1.1 Earlier Works

The mutual visibility problem was first studied by Di Luna et al. [13]. They pre-
sented a distributed algorithm to solve the problem for a set of semi-synchronous
oblivious robots. Their approach assumes that the robots have the knowledge of
total number of robots in the system. Later, their algorithm was analysed and
modified by Sharma et al. [11] to improve the round complexity of the algorithm
for fully synchronous robots. Di Luna et al. [12] were the first to study the mutual
visibility problem for the robots with persistent memory. They solved the prob-
lem for the semi-synchronous robots with 3 colors and for asynchronous robots
with 3 colors under one axis agreement. Later, Sharma et al. [10] proved that the
mutual visibility problem is solvable using only 2 colors for semi-synchronous
robots and using 2 colors for asynchronous robots under one-axis agreement.
Sharma et al. [8] proposed a solution to the problem which runs in constant
time for a set of asynchronous robots using 47 colors. Bhagat and Mukhopad-
hyay [9] solved the problem for a set of asynchronous robots using 7 colors. In
their solution, each robot moves exactly once. The mutual visibility problem has
also been considered under different fault models [5,6,14] and also for fat robots
[7].

The only solution to the mutual visibility problem for oblivious asynchronous
robots has been proposed in [2] under the assumption that the robots have an
agreement in one coordinate axis and knowledge of total number of robots in
the system. Thus, all the existing algorithms for the mutual visibility problem
assumes either persistent memory for both communication and internal memory
purpose or axis agreement or the knowledge of total number of robots.

146 S. Bhagat and K. Mukhopadhyaya

1.2 Our Contribution

This paper studies the mutual visibility problem for a set of n semi-synchronous
robots in the Euclidean plane. A simple but elegant distributed algorithm has
been proposed to solve the problem for a set of robots endowed with a constant
amount of persistent memory. The proposed algorithm considers FSTATE model
which does not have communication overhead of FCOMM model. The persistent
memory is used only to remember information about their previous states. The
proposed algorithm does not assume any other extra assumptions like agreement
on the coordinate axes or chirality, knowledge of n, rigidity of movements. In
spite of these weak assumptions, it is shown that the mutual visibility problem
is solvable for a set of semi-synchronous robots using only 1 bit of persistent
internal memory. The contribution of this paper has following significance.

– While all the existing solutions of the mutual visibility problem for semi-
synchronous robots have considered either knowledge of n or persistent mem-
ory for both communication and internal memory purposes (combination of
FSTATE and FCOMM model), our approach assumes FSTATE model without
knowledge of n (this makes system easily scalable).

– In all the existing solutions for the mutual visibility problem, the convex hull
of the initial positions of the robots does not remain invariant. The solution
of this work maintains the convex hull of the initial robot positions if all the
robots initially do not lie on a single line. Furthermore, in all the works with
persistent memory, the robots move even if the robots are completely visible
to each other. In our algorithm, if the robots are completely visible to each
robot, they do not move.

– In our approach, not all robots move. Only the robots which block the vision
of the other robots move. Again, the distances they traverse during their
movements are kept as small as needed. These help to provide an energy
efficient solution to the problem.

– The proposed algorithm is self-stabilizing. Even if robots start with different
states, the algorithm achieves its final goal.

– The solution also provides collision free movements for the robots.
– To the best of our knowledge, this paper is the first attempt to study the

mutual visibility problem under FSTATE model.

2 Assumptions and Notations

This paper considers a set of n semi-synchronous point robots in the Euclidean
plane. The robots are opaque. However, the visibility range of a robot is unlim-
ited. The robots have no knowledge about the total number of robots in the
system. The movements of the robots are non-rigid. The robots do not have
any explicit communication power. Each robot has 1 bit of internal persistent
memory. The 1 bit memory stores information about predefined specific states
of the robot. This internal bit does not change automatically and it is persistent.
Let si(t) be the binary variable which denotes the value stored in the internal

Mutual Visibility by Robots with Persistent Memory 147

memory of the robot ri at time t ∈ N. Except for this persistent memory, the
robots are oblivious i.e., they do not remember any other data of their previous
computational cycles. Initially all the robots occupy distinct locations and they
are stationary.

– Configurations of the robots: Let R = {r1, r2, . . . , rn} denote the set of n
robots. The position of robot ri at time t is denoted by ri(t). A configuration
of robots, R(t) = {r1(t), . . . , rn(t)}, is the set of positions occupied by the
robots at time t. ˜C is the set of all such robot configurations.
We partition ˜C into two classes: ˜CL and ˜CNL, where ˜CL is the collection of
configurations in which all the robots in R lie on a straight line and ˜CNL

consists of configurations in which there exist at least three non-collinear
robot positions occupied by the robots in R. We say that a robot configuration
R(t) is in general position if no three robot positions in R(t) are collinear.
By ˜CGP , we denote the set of all configurations of R which are in general
position. Clearly ˜CGP ⊂ ˜CNL.

– Measurement of angles: By an angle between two line segments, if not
stated otherwise, we mean the angle which is less than or equal to π.

– Vision of a robot: If three robots ri, rj and rk are collinear with rj lying in
between ri and rk, then ri and rk are not visible to each other. We define the
vision, Vi(t), of robot ri at time t to be the set of robot positions visible to ri
(excluding ri). The visibility polygon of ri at time t, denoted by STR(ri(t)), is
defined as follows: sort the points in Vi(t) angularly in anti clockwise direction
w.r.t. ri(t), starting from any robot position in Vi(t). Then connect them in
that order to generate the polygon STR(ri(t)).

– A straight line L is called a line of collinearity if it contains more than two dis-
tinct robot positions. A robot occupying a position on L is termed a collinear
robot. For a robot ri, let Bi(t) denote the set of all lines of collinearity on
which ri is a collinear robot at time t ∈ N.

– Consider a line of collinearity L at time t. A robot ri on L is called a non-
terminal robot if ri(t) is a point between two other robot positions on L. A
robot which is not a non-terminal robot is called a terminal robot.

– A non-terminal robot position ri(t) on a line of collinearity L is called a
junction robot position if there is another line of collinearity L1 such that
ri(t) lies at the intersection point between L and L1.

– By pq, we denote the closed line segment joining two points p and q, including
the end points p and q. Let (p, q) denote the open line segment joining the
points p and q, excluding the two end points p and q. Let |pq| denote the
length of pq.

– dk
ij(t): Let Lij(t) denote the straight line joining ri(t) and rj(t). The perpen-

dicular distance of the line Lij(t) from the point rk(t) is denoted by dkij(t).
– Di(t): Di(t) is the minimum distance of any two robot positions in {ri(t)} ∪

Vi(t).

148 S. Bhagat and K. Mukhopadhyaya

3 Algorithm for the Mutual Visibility Problem

Consider an initial configuration R(t0) of robots. If R(t0) contains no non-
terminal robot, then R(t0) ∈ ˜CGP i.e., all the robots in the system are visible to
each other. On the contrary, if R(t0) contains at least one non-terminal robot,
then there are at least two robots which are not visible to each other. In this sce-
nario, to achieve complete visibility, robots need to coordinate their movements.
In this process one has to decide two main things; (i) which are the robots to
move: terminals or non-terminals? (ii) what should be their destination point to
move? First, we try to give an intuitive idea to resolve these issues and then we
describe our algorithm in details.

3.1 Eligible Robots for Movements

Non-terminal robots block the vision of the other robots. In our approach, we
choose non-terminal robots for movements. Since one of our main objectives is to
maintain the convex hull of the initial robot positions and the robots lying at the
vertices of the convex hull are terminal robots, we do not move terminal robots.
A robot can easily determine whether it is a terminal robot or non-terminal
robot.

3.2 Different Types of Movements

A robot uses its 1 bit of internal memory to remember the information about
its last movement. It uses 0 and 1 in its persistent memory for this purpose.
Initially all robots have 0 in their respective persistent memory. If the internal
bit is 0, a robot moves not along any line of collinearity and this move is called
a type-0 move. If internal bit is 1, a robot moves along a line of collinearity and
this move is called a type-1 move.

3.3 States of a Robot

A robot uses its persistent 1 bit memory to remember information about its last
movement. Initially all robots have 0 in their persistent memory.

– If a robot is terminal and its internal bit is 0, it is a terminal robot since the
initial configuration.

– If a robot is terminal and its internal bit is 1, it was a non-terminal robot in
the initial configuration and has become terminal during the execution of the
algorithm.

– If a robot is non-terminal and its internal bit is 0, it is a non-terminal robot
since the initial configuration and either it has made no move or has made a
type-1 move.

– If a robot is non-terminal and its internal bit is 1, it is a non-terminal robot
since the initial configuration and it has made a type-0 move.

Mutual Visibility by Robots with Persistent Memory 149

3.4 Computation of Destination Point

Destination points of the robots are computed in such way that (i) they do
not create new collinearities by moving to these positions and (ii) the total
number of collinear robots in the system should decrease within finite number
of movements. The algorithm terminates when system contains no non-terminal
robot. Let ri be an arbitrary non-terminal robot at time t ≥ t0. To find the new
position of ri, we first decide on the direction of movement and then the amount
of displacement along this direction. While computing the new destination point
of ri, two things should be taken care of. The new position of ri should not
block the visibility of the other robots. The movements of the robots should be
collision free. Depending on the current configuration R(t), the destination point
for ri is computed as follows.

– Case-1: R(t) ∈ ˜CNL

Consider the set of angles Γi(t) defined as follows:

Γi(t) = {∠rjrirk : rj , rk are two consecutive vertices on STR(ri(t))}

• The direction of movement: Let αi(t) denote the angle in Γi(t) having
the maximum value if the maximum value is less than π, otherwise the
2nd maximum value (tie, if any, is broken arbitrarily). The bisector of
αi(t) is denoted by Biseci(t). It is a ray from ri(t). If persistent bit is 0,
ri makes a type-0 move and its direction of movement is along Biseci(t).
Before starting its movement, ri changes its persistent bit to 1. It may be
noted that any other suitable direction for type-0 move would work fine
for robot ri. If persistent bit is 1, ri makes a type-1 move. ri arbitrarily
chooses a line of collinearity from Bi(t) and moves along this line. Before
starting a type-1 move, ri changes its persistent bit to 0.

• The amount of displacement: Let di(t) = minimum{dkij(t), d
j
ik(t),

dijk(t) : ∀rj , rk ∈ Vi(t))}. The amount of displacement of ri at time t is
denoted by σi(t) and it is defined as follows,

σi(t) =
U

34vi(t)

where U = minimum{di(t),Di(t)} and vi(t) = |Vi(t))|.
Three non-collinear robots become collinear when the triangle formed by
their positions collapses to a line. The amount σi(t) is chosen to be a
small fraction of dkij(t) for all rj(t), rk(t) ∈ Vi(t)) in order to guarantee
that no new collinearity is generated during the movements of the robots.
Other suitable values will also work.

• The destination point: Let r̂i(t) be the point on Biseci(t) at distance
σi(t) from ri(t) if si(t) = 0. Otherwise, r̂i(t) is a point on a line L ∈
Bi(t) at distance σi(t) from ri(t) (choose arbitrarily any one of the two
directions along L). The destination point of ri(t) is r̂i(t).

150 S. Bhagat and K. Mukhopadhyaya

– Case-2: R(t) ∈ ˜CL

There is only one line of collinearity, say L̂, in the system. Only two robots
are terminal. Once one of them moves, the present configuration is converted
into a configuration in ˜CNL.

• The direction of movement: Let L∗ be the line perpendicular to L̂ at
the point ri(t). The robot ri arbitrarily chooses a direction along L∗ and
moves along that direction. Let L∗

d denote the direction of movement of
ri. Since all robots are collinear, this movement is a type-0 move. Before
starting this move, ri changes its persistent bit to 1.

• The amount of displacement: In this, the amount of displacement
σ̂i(t) is defined as follows:

σ̂i(t) =
Di(t)

34

• The destination point: Let r̄i(t) be the point on L∗
d at the distance

σ̂i(t) from ri(t). The destination point of ri is r̄i(t).

3.5 Termination

A robot terminates the execution of algorithm MutualV isibility() when it finds
itself as a terminal robot. Thus, an initially terminal robot terminates just in
one round.

Robots use the algorithm ComputeDestination() to compute its destination
point and use algorithm MutualV isibility() to obtain complete visibility.

3.6 Correctness

To prove the correctness of our algorithm, we need to prove the following for
any configuration: (i) three non-collinear robots in a particular round do not
become collinear in any of the succeeding rounds (ii) within finite number of
rounds at least one non-terminal robot becomes terminal and (iii) movements
of the robots are collision free. If three non-collinear robots become collinear,
then the triangle formed by their positions should collapse into either a line or a
point. For arbitrary three non-collinear robots ri, rj and rk, we prove that none
of dkij(t), djik(t) and dijk(t) becomes zero. Without loss of generality, we prove
that dkij(t) will never vanish, during the execution of our algorithm. We estimate
the maximum decrement in the value of dkij(t) in a particular round, due to the
movements of the robots.

Lemma 1. Let ri, rj and rk be three arbitrary robots, which are not collinear at
time t ∈ N. During the rest of execution of algorithm MutualV isibility(), they
do not become collinear.

Proof. Maximum decrement in the value of dkij(t) occurs when all the three
robots move simultaneously in a round. Thus, we suppose the three robots move
at time t. Depending upon the positions of the robots, we have the following
cases.

Mutual Visibility by Robots with Persistent Memory 151

– Case-1: ri, rj and rk are mutually visible at t0
According to our approach, the displacement of a robot, in a single movement,

is bounded above by dk
ij(t)

34 (since |Vi(t)| ≥ 1). Since all the three robots
move simultaneously in a round, the total decrement in the value of dkij(t) is
bounded above by 3

34 dkij(t). It is easy to see that this bound also holds for all
other scheduling of the actions of the robots. Thus, we have,

dkij(t + 1) > (1 − 3
34

)dkij(t) (1)

Equation (1) implies that the triangle �ijk(t) does not collapses into a line
due to the movements of the robots. Since robots are semi-synchronous and
t is arbitrary, these three robots never become collinear during the whole
execution of the algorithm.

– Case-2: ri, rj and rk are not mutually visible at t0
In this case the triangle �ijk(t) contains a triangle �xyz(t) such that the
robots lying at three vertices rx, ry and rz are mutually visible to each other.
Case-1 above implies that the triangle �xyz(t) does not vanish during the
movements of the robots and so does �ijk(t). �	

Lemma 2. Let ri be an initially non-terminal robot. During the execution of
algorithm MutualV isibility(), ∃ a time t ∈ N such that ri becomes a termi-
nal robot at time t and it remains terminal for the rest of the execution of the
algorithm.

Proof. Let L1(t′) be a line of collinearity in Bi(t′).

– Case-1: L1(t′) does not contain a junction robot position
In this case, ri is a non-terminal robot on exactly one line. Since both the
end robot positions on L1(t′) are terminal, it takes at most 2k − 1 number of
movements for the non-terminal robots on L1(t′) to become terminal, where
k is number of non-terminal robots on L1(t′) (Fig. 1).

– Case-2: L1(t′) contains a junction robot position
We consider different possible configurations of the robot positions on the
line L1(t′) and show that in each case ri becomes a terminal robot. Different
scenarios are as follows:

• We first consider a basic scenario in which (i) L1(t′) contains exactly
one junction robot position rk(t′) and (i) rk lies exactly on two lines of
collinearity. Let L2(t′)(�= L1(t′)) be the other line of collinearity of rk.
* Suppose rk(t′) is the only junction robot position on L2(t′). Then, as

in case-1, within finite number of rounds rk becomes a terminal robot
(Fig. 2). Once rk becomes terminal, again by case-1, the collinearity
among the robots initially on L1(t′) are broken within finite number of
rounds and ri becomes terminal.

* Suppose L2(t′) contains another junction robot rm and rk and rm
are the only two robots which occupy junction position on L2(t′). Let
L3(t′)(�= L2(t′)) be the line of collinearity on which rm lies. If rm lies

152 S. Bhagat and K. Mukhopadhyaya

Fig. 1. An illustration of case-1 of Lemma 2: non-terminal robots on a line of collinear-
ity L1(t

′), containing no junction robot position, become terminal within finite number
of movements: dark circles are current positions of the robots and white circles are old
positions of the robots, the arrows show the directions of movements of the robots

on exactly two lines of collinearity L2(t′) and L3(t′) and L3(t′) does
not contain any other junction robot position, by the same arguments
as above, within finite number of rounds ri becomes terminal.

* Suppose L3(t′) contains another junction robot position. Continuing our
arguments as above, we get a sequence S of lines of collinearity. Since
there are finite number of robots, this sequence either ends with a line of
collinearity Lk(t′) containing exactly one junction robot position or it
contains a cycle. If former is true, as above, all the non-terminal robots
in this sequence become terminal within finite time. When S contains
a cycle, then a type-1 move breaks this cycle and ri becomes terminal
within finite time.

Thus, in these basic scenarios within finite number of rounds, ri becomes
terminal.

• Now consider the general scenario, in which a line of collinearity may
contain more than two junction robot positions. Starting from L1(t′), we
can get many such sequences of lines of collinearity as described above.
Let ˜S denote the set of all these sequence. Since the sequences in ˜S may
have common lines, breaking of collinearities from one line may depend
on breaking of collinearities from another line.
* If no sequence in ˜S contains a cycle, then type-0 movements i.e., move-

ments not along the lines of collinearity will break all the collinearities
in ˜S.

* Suppose a sequence in ˜S contains a cycle, say C. Let rx be a robot at
a critical robot position on a line Lu in C. If rx makes a type-1 move
along Lu, then rx does not remain a robot at critical position and cycle
C is broken. Suppose rx makes a type-1 move along another line of
collinearity Lv. If Lv does not belong to a cycle, by case-1, within finite
rounds, rx does not remain non-terminal with the robots on Lv and
when rx makes a type-1 move along Lu, it breaks the cycle C. If Lv

Mutual Visibility by Robots with Persistent Memory 153

Fig. 2. An illustration of case-2 of Lemma 2: (a) L1(t
′) and L2(t

′) contain exactly one
junction robot position rk(t

′), (b)-(d) demonstrate a sequence of type-0 movements
for the robots to show that ri becomes terminal within finite number of rounds: dark
circles are current positions of the robots and white circles are old positions of the
robots, the arrows show the directions of movements of the robots

belongs to a cycle, rx is a robot at a critical robot position on Lv and
a type-1 movement of rx along Lv breaks this cycle. Thus, within finite
time all the cycles in ˜S is broken.

Hence, within finite time, ri becomes a terminal robot. Since robots are semi-
synchronous, by Lemma 1, ri remains as terminal once it becomes so.

Lemma 3. The movements of the robots are collision-free.

Proof. Let ri and rj be two arbitrary robots and at least one of them moves.
Consider a robot rk visible to at least one of ri and rj . If ri and rj collide,
then ri, rj and rk would become collinear or remain collinear which contradicts
Lemmas 1 and 2. This implies that the movements of the robots are collision
free during the whole execution of MutualV isibility().

Lemma 4. If R(t0) /∈ ˜CL, during the whole execution of algorithm
MutualV isibility(), the convex hull of the robot positions in R(t0) remains
invariant in size and shape.

Proof. Let CH(t0) denote the convex hull of R(t0). The robots occupy-
ing the vertices of CH(t0) are terminal robots. According to algorithm
MutualV isibility(), these robots do not move. The robots on the edges of CH(t0)
move inside the convex hull CH(t0) and no robot, lying inside the hull, crosses

154 S. Bhagat and K. Mukhopadhyaya

any edge of the convex hull (as per definitions of directions of movements and
amount of displacement in case-1 of subsection D). Hence, CH(t0) remains invari-
ant in size and shape.

Lemma 5. Algorithm MutualV isibility() is self-stabilizing.

Proof. Robots use type-1 movements to break the cycles. The type-0 move-
ments are used to break the other type of collinearities. In our approach, robots
start with type-0 movements. If a robot is not a critical robot and starts with a
type-1 movement, it would take at most one additional round to become a termi-
nal robot. On the other hand, if a critical robot starts with a type-1 movement,
it breaks the cycle and would take one round less to become a terminal robot.
Thus, our approach works even if robots start with any value in their internal.

From the above lemmas, we have the following theorem:

Theorem 1. Algorithm MutualV isibility() provides a self-Stabilization solu-
tion to the mutual visibility problem without any collision for a set of semi-
synchronous, communication-less robots, placed in distinct location, with 1 bit of
persistent memory.

4 Conclusion

This paper presents a self-stabilizing distributed algorithm to solve the mutual
visibility problem in finite time for a set of communication-less semi-synchronous
robots endowed with a constant amount of persistent memory. The proposed
algorithm uses only 1 bit of persistent memory. The robots use their persistent
memories only to remember information about their last movements. There is
no explicit communication between the robots. The algorithm also guarantees
collision-free movements for the robots. The proposed algorithm also maintains
the convex hull of the initial robot positions. The results of this paper leave
many open questions. How does the internal persistent memory can help to
reduce the communication overheads in the existing solutions for the mutual
visibility problem, where external lights are used for communicating the internal
states of the robots? How to solve the mutual visibility problem for asynchronous
robots in this setting? What would be the impact of internal persistent memory
in the solutions of other geometric problems?

References

1. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of
lights: synchronizing asynchronous robots using visible bits. In: Proceedings of
32nd International Conference on Distributed Computing Systems (ICDCS), pp.
506–515 (2012)

2. Bhagat, S., Chaudhuri, S.G., Mukhopadhyaya, K.: Formation of general posi-
tion by asynchronous mobile robots under one-axis agreement. In: Kaykobad, M.,
Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 80–91. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30139-6 7

https://doi.org/10.1007/978-3-319-30139-6_7

Mutual Visibility by Robots with Persistent Memory 155

3. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Morgan & Claypool, San Rafael (2012)

4. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous of two robots
with constant memory. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013.
LNCS, vol. 8179, pp. 189–200. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-03578-9 16

5. Aljohani, A., Sharma, G.: Complete visibility for mobile robots with lights toler-
ating faults. Int. J. Netw. Comput. 8(1), 32–52 (2018)

6. Aljohani, A., Poudel, P., Sharma, G.: Fault-tolerant complete visibility for asyn-
chronous robots with lights under one-axis agreement. In: Rahman, M.S., Sung,
W.-K., Uehara, R. (eds.) WALCOM 2018. LNCS, vol. 10755, pp. 169–182. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-75172-6 15

7. Sharma, G., Alsaedi, R., Busch, C., Mukhopadhyay, S.: The complete visibility
problem for fat robots with lights. In: Proceedings of 19th International Conference
on Distributed Computing and Networking (ICDCN 2018), p. 21 (2018)

8. Sharma, G., Vaidyanathan, R., Trahan, J.L.: Constant-time complete visibility
for asynchronous robots with lights. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017.
LNCS, vol. 10616, pp. 265–281. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69084-1 18

9. Bhagat, S., Mukhopadhyaya, K.: Optimum algorithm for mutual visibility among
asynchronous robots with lights. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS,
vol. 10616, pp. 341–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69084-1 24

10. Sharma, G., Busch, C., Mukhopadhyay, S.: Mutual visibility with an optimal num-
ber of colors. In: Bose, P., G ↪asieniec, L.A., Römer, K., Wattenhofer, R. (eds.)
ALGOSENSORS 2015. LNCS, vol. 9536, pp. 196–210. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28472-9 15

11. Sharma, G., Busch, C., Mukhopadhyay, S.: Bounds on mutual visibility algorithms.
In: Proceedings of 27th Canadian Conference on Computational Geometry (CCCG
2015) (2015)

12. Di Luna, G.A., Flocchini, P., Gan Chaudhuri, S., Poloni, F., Santoro, N., Viglietta,
G.: Mutual visibility by luminous robots without collisions. In: Information and
Computation, vol. 254, pp. 392–418 (2017)

13. Di Luna, G.A., Flocchini, P., Poloni, F., Santoro, N., Viglietta, G.: The mutual vis-
ibility problem for oblivious robots. In: Proceedings of 26th Canadian Conference
on Computational Geometry (CCCG 2014) (2014)

14. Sharma, G.: Mutual visibility for robots with lights tolerating light faults. In:
Proceedings of IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp. 829–836 (2018)

https://doi.org/10.1007/978-3-319-03578-9_16
https://doi.org/10.1007/978-3-319-03578-9_16
https://doi.org/10.1007/978-3-319-75172-6_15
https://doi.org/10.1007/978-3-319-69084-1_18
https://doi.org/10.1007/978-3-319-69084-1_18
https://doi.org/10.1007/978-3-319-69084-1_24
https://doi.org/10.1007/978-3-319-69084-1_24
https://doi.org/10.1007/978-3-319-28472-9_15

	Mutual Visibility by Robots with Persistent Memory
	1 Introduction
	1.1 Earlier Works
	1.2 Our Contribution

	2 Assumptions and Notations
	3 Algorithm for the Mutual Visibility Problem
	3.1 Eligible Robots for Movements
	3.2 Different Types of Movements
	3.3 States of a Robot
	3.4 Computation of Destination Point
	3.5 Termination
	3.6 Correctness

	4 Conclusion
	References

