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Preface

This volume contains the papers presented at FAW 2019: the 13th International
Frontiers of Algorithmics Workshop, held during April 29 – May 3, 2019, at the
Tsinghua Sanya International Mathematics Forum, in Sanya, P. R. China. The work-
shop provides a focused forum on current trends in research on algorithms, discrete
structures, and their applications, and brings together international experts at the
research frontiers in these areas to exchange ideas and to present significant new
results.

The Program Committee, consisting of 28 top researchers from the field, reviewed
21 submissions and decided to accept 15 papers. Each paper had at least three reviews,
with additional reviews solicited as needed. The review process was conducted entirely
electronically via EasyChair. We are grateful to the EasyChair team for allowing us to
handle the submissions and the review process and to the Program Committee for their
insightful reviews and discussions, which made our job easier.

Besides the regular talks, the program also included three keynote talks by Yuqing
Kong (Peking University), Bundit Laekhanukit (Shanghai University of Finance and
Economics), and Jian Li (Tsinghua University).

We are very grateful to all the people who made this meeting possible: the authors
for submitting their papers, the Program Committee members and external reviewers
for their excellent work, and the three keynote speakers.

In particular, we would like to thank the Tsinghua Sanya International Mathematics
Forum (TSIMF) for hosting the conference and providing financial and organizational
support. In addition to the ordinary FAW conference talks, 20 participating Program
Committee members gave talks, organized in several sessions and research
mini-workshops on current frontiers of computer science theory and mathematical
foundations. In addition, FAW organized several special topic research sessions on
approximate algorithms, algorithmic game theory, and parameterized complexity,
which were aligned with the keynote speeches. TSIMF allowed FAW to organized a
rich event to bring together more than 50 active researchers for academic exchanges on
the current progress in algorithms and complexity.

Finally, we would like to thank the members of the Editorial Board of Lecture Notes
in Computer Science and the editors at Springer for their encouragement and coop-
eration throughout the preparation of this conference.

March 2019 Yijia Chen
Xiaotie Deng

Mei Lu
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A Polynomial Time Algorithm for Fair
Resource Allocation in Resource

Exchange

Xiang Yan1(B) and Wei Zhu2

1 Shanghai Jiao Tong University, Shanghai 200240, China
xyansjtu@163.com

2 China Academy of Aerospace Standardization and Product Assurance,
Beijing 100071, China
shakerswei@sina.com

Abstract. The rapid growth of wireless and mobile Internet has led to
wide applications of exchanging resources over network, in which how to
fairly allocate resources has become a critical challenge. To motivate
sharing, a BD Mechanism is proposed for resource allocation, which
is based on a combinatorial structure called bottleneck decomposition.
The mechanism has been shown with properties of fairness, economic
efficiency [17], and truthfulness against two kinds of strategic behav-
iors [2,3]. Unfortunately, the crux on how to compute a bottleneck
decomposition of any graph is remain untouched. In this paper, we focus
on the computation of bottleneck decomposition to fill the blanks and
prove that the bottleneck decomposition of a network G = (V, E; wv)
can be computed in O(n6 log(nU)), where n = |V | and U = maxv∈V wv.
Based on the bottleneck decomposition, a fair allocation in resource
exchange system can be obtained in polynomial time. In addition, our
work completes the computation of a market equilibrium and its rela-
tionship to two concepts of fairness in resource exchange.

Keywords: Polynomial algorithm · Fair allocation ·
Resource exchange · Bottleneck decomposition

1 Introduction

The Internet era has witnessed plenty of implementations of resource exchange
[10–14]. It embodies the essence of the sharing economy and captures the ideas
of collaborative consumption of resource (such as the bandwidth) to networks
with participants (or agents) [7], such that agents can benefit from exchanging
each own idle resource with others. In this paper, we study the resource exchange
problem over networks, which goes beyond the peer-to-peer (P2P) bandwidth

Supported by the National Nature Science Foundation of China (No. 11301475,
61632017, 61761146005).
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2 X. Yan and W. Zhu

sharing idea [17]. Peers in such networks act as both suppliers and customers
of resources, and make their resources directly available to other network peers
according to preset network rules [16].

The resource exchange problem can be formally modeled on an undirected
connected graph G = (V,E;w), where each vertex u ∈ V represents an agent
with wu units of divisible idle resources (or weight) to be distributed among
its neighbor set Γ (u). The utility Uu is determined by the total amount of the
resources obtained from its neighbors. Define xuv to be the fraction of resource
that agent u allocates to v and call the collection X = (xuv) an allocation. Then
the utility of agent u under allocation X is Uu =

∑
v∈Γ (u) xvuwv, subject to the

constraint of
∑

v∈Γ (u) xuv ≤ 1.
One critical issues for the resource exchange problem is how to design a

resource exchange protocol to maintain agents’ participation in a fair fashion.
Ideally, the resource each agent obtains can compensate its contribution, but
such a state may not exists due to the structure of the underlying networks.
Thus Georgiadis et al. [9] thought that an allocation is fair if it can balance the
exchange among all agents as much as possible. An exchange ratio of each agent
is defined then, to quantify the utility it receives per unit of resource it delivers
out, i.e. βu(X) = Uu∑

v∈Γ (u) xuvwu
for given allocation X. In [9], an allocation X is

said to be fair, if its exchange ratio vector β(X) = (βu(X))u∈V is lexicographic
optimal (lex-optimal for short). And a polynomial-time algorithm is designed to
find such a fair allocation by transforming it to a linear programming problem.

On the other hand, Wu and Zhang [17] pioneered the concept of “proportional
response” inspired by the idea of “tit-for-tat” for the consideration of fairness.
Under a proportional response allocation, each agent responses to the neighbors
who offer resource to it by allocating its resource in proportion to how much
it receives. Formally, the proportional response allocation is specified by xuv =

xvuwv∑
k∈Γ (u) xkuwk

. The authors showed the equivalence between such a fair allocation
and the market equilibrium of a pure exchange economy in which each agent sells
its own resource and uses the money earned through trading to buy its neighbors’
resource.

The algorithm to get a fair allocation in [17] includes two parts: computing a
combinatorial decomposition, called bottleneck decomposition, of a given graph;
and constructing a market equilibrium from the bottleneck decomposition. The
work in [17] only involved the latter. But how to compute the bottleneck decom-
position is remained untouched. In this paper, we design a polynomial time algo-
rithm to address the computation of the bottleneck decomposition. In addition,
we show the equilibrium allocation (i.e. the allocation of the market equilibrium)
from the bottleneck decomposition also is lex-optimal. Such a result establishes
the connection between the two concepts of fairness in [9] and [17].

Another contribution of this work is to complete the computation of the mar-
ket equilibrium in a special setting of a linear exchange market. The study of
market equilibrium has a long and distinguished history in economics, starting
with Arrow and Deberu’s solution [1] which proves the existence of the market
equilibrium under mild conditions. Much work has focused on the computational
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aspects of the market equilibrium. Specially for the linear exchange model, Eaves
[5] first presented an exact algorithm by reducing to a linear complementary
problem. Then Garg et al. [8] derived the first polynomial time algorithm through
a combinatorial interpretation and based on the characterization of equilibria as
the solution set of a convex program. Later Ye [18] showed that a market equi-
librium can be computed in O(n8 log2 U)-time with the interior point method.
Recently, Duan et al. [4] improved the running time to O(n7 log2(nU)) by a
combinatorial algorithm. Compared with the general linear exchange model, we
further assume that the resource of any agent is treated with equal preference
by all his neighbors. Based on it, Wu and Zhang [17] proposed the bottleneck
decomposition, which decomposes participants in the market into several com-
ponents, and showed that in a market equilibrium, trading only happens within
each component. Therefore, the problem of computing a market equilibrium is
reduced to one of computing the bottleneck decomposition. Our main task in
this paper is to design a polynomial time algorithm to compute the bottleneck
decomposition and to complete the computation of a market equilibrium in [17].
The time complexity of our algorithm is O(n6 log(nU)), which is better than the
algorithm of Duan et al. [4], because of further assumption in our setting.

In the rest of this paper, we introduce the concepts and properties of bot-
tleneck decomposition in Sect. 2 and provide a polynomial time algorithm for
computing the bottleneck decomposition in Sect. 3. In Sect. 4 we describe a mar-
ket equilibrium from the bottleneck decomposition and show the fairness of the
equilibrium allocation. At last we conclude this paper in Sect. 5.

2 Preliminary

We consider a resource exchange problem modeled on an undirected and con-
nected graph G = (V,E;w) with vertex set V and edge set E, respectively, and
w : V → R+ is the weight function on vertex set. Let Γ (i) = {j : (i, j) ∈ E} be
the set of vertices adjacent to i in G, i.e. the neighborhood of vertex i. For each
vertex subset S ⊆ V , define w(S) =

∑
i∈S wi and Γ (S) = ∪i∈SΓ (i). Note that

it is possible S ∩ Γ (S) �= ∅ and if S ∩ Γ (S) = ∅, then S must be independent.
For each S, define α(S) = w(Γ (S))

w(S) , referred to as the inclusive expansion ratio of
S, or the α-ratio of S for short. It is not hard to observe that the neighborhood
Γ (V ) is still V and its α-ratio is α(V ) = 1.

Definition 1 (Bottleneck and Maximal Bottleneck). A vertex subset B ⊆
V is called a bottleneck of G if α(B) = minS⊆V α(S). If bottleneck B is a
maximal bottleneck, then for any subset B̃ with B ⊂ B̃ ⊆ V , it must be α(B̃) >
α(B). We name (B,Γ (B)) as the maximal bottleneck pair of G.

From Definition 1, we can understand the maximal bottleneck as the bot-
tleneck whose size is maximal. Wu and Zhang [17] showed that the maximal
bottleneck of any graph is unique and proposed the following bottleneck decom-
position with the help of the uniqueness.



4 X. Yan and W. Zhu

Definition 2 (Bottleneck Decomposition). Given an undirected and con-
nected graph G = (V,E;w). Start with V1 = V , G1 = G and i = 1. Find the
maximal bottleneck Bi of Gi and let Gi+1 be the induced subgraph on the vertex
set Vi+1 = Vi − (Bi ∪ Ci), where Ci = Γ (Bi) ∩ Vi, the neighbor set of Bi in
the subgraph Gi. Repeat if Gi+1 �= ∅ and set k = i if Gi+1 = ∅. Then we call
B = {(B1, C1), · · · , (Bk, Ck)} the bottleneck decomposition of G, αi = w(Ci)

w(Bi)
the

i-th α-ratio and (αi)k
i=1 the α-ratio vector.

We propose an example in the following to show the bottleneck decomposition
of a graph. Consider the graph of Fig. 1 which has 6 vertices. The numbers in each
circle represents the weight of each vertex. At the first step, G1 = G, V1 = V
and the maximal bottleneck pair of G1 is (B1, C1) = ({v1, v2}, {v3, v4}) with
α1 = 1

2 . After removing B1 ∪ C1, V2 = {v5, v6}, G2 = G[V2] and the maximal
bottleneck pair of G2 is (B2, C2) = ({v5, v6}, {v5, v6}) with α2 = 1. Therefore
the bottleneck decomposition is B = {({v1, v2}, {v3, v4}), ({v5, v6}, {v5, v6})}.

Fig. 1. The figure illustrates bottleneck decomposition of a network.

The bottleneck decomposition has some combinatorial properties which are
very crucial to the study on the truthfulness of BD Mechanism in [2] and [3] and
to the discussion of the fairness of resource allocation. Although Wu and Zhang
mentioned these properties in [17], their proofs are not included. We explain
these properties here and present the proofs in full paper.

Proposition 1. Given an undirected and connected graph G = (V,E;w), the
bottleneck decomposition B of G satisfies

(1) 0 < α1 < α2 < · · · < αk ≤ 1;
(2) if αi = 1, then i = k and Bk = Ck; otherwise Bi is independent and

Bi ∩ Ci = ∅.

3 Computation of Bottleneck Decomposition

In this section, we propose a polynomial time algorithm to compute the bottle-
neck decomposition of any given network. Without loss of generality, we assume
that all weights of vertices are positive integers and are bounded by U > 0. From
Definition 2, it is not hard to see the key to the bottleneck decomposition is the
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computation of the maximal bottleneck of each subgraph. But how to find the
maximal bottleneck among all of 2|V | subsets efficiently is a big challenge. To
figure it out, our algorithm comprises two phases on each subgraph. In the first
phase, we shall compute the minimal α-ratio α∗ of the current subgraph and
find the maximal bottleneck with the minimal α-ratio in the second phase. In
the subsequent two subsections, we shall introduce the algorithms in each phase
detailedly and analyze them respectively.

3.1 Evaluating the Minimal α-ratio α∗

In this phase to evaluate the minimal α-ratio, the main idea of our algorithm is
to find the α-ratio by binary search approach iteratively. To reach the minimal
ratio, we construct a corresponding network with a parameter α and adjust α
by applying the maximum flow algorithm until a certain condition is satisfied.
Before proceeding the algorithm to compute the minimal α-ratio, some defini-
tions and lemmas are necessary.

Given a graph G = (V,E;w) and a parameter α, a network N(G,α) (as
shown in Fig. 2-(b)) based on G and α is constructed as:

• VN = {s, t} ∪ V ∪ Ṽ , where s is the source, t is the sink and Ṽ is the copy of
V ;

• the directed edge set EN comprises:
– a directed edge (s, v) ∈ EN from source s to v with capacity of αwv,

∀v ∈ V ;
– a directed edge (ṽ, t) ∈ EN from ṽ to sink t with capacity of wv, ∀ṽ ∈ Ṽ ;
– two directed edges (u, ṽ) ∈ EN and (v, ũ) ∈ EN with capacity of ∞,

∀(u, v) ∈ E.

Fig. 2. The illustration of network N(G, α).

In N(G,α), let B̃ = {ṽ|v ∈ B} and Γ (B̃) = {ũ|u ∈ Γ (B)}, where the latter
is called the neighborhood of B̃.
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Lemma 1. For any s-t cut (S, T ) in network N(G,α), the capacity of cut (S, T )
is finite if and only if S has the form as {s}∪B ∪Γ (B̃) (as shown in Fig. 2-(b))
for any subset B ⊆ V and its capacity is α(w(V ) − w(B)) + w(Γ (B)).

Proof. First, if S = {s} ∪ B ∪ Γ (B̃), then there are two kinds of directed edges
in cut (S, T ):

• edge (s, u) for any u �∈ B and the total capacity of these edges is α(w(V ) −
w(B));

• edge (ũ, t) for any ũ ∈ Γ (B̃) and the total capacity of these edges is w(Γ (B)).
So the capacity of cut (S, T ) with S = {s}∪B∪Γ (B̃) is finite and its capacity
is α(w(V ) − w(B)) + w(Γ (B)). Conversely, if S �= {s} ∪ B ∪ Γ (B̃), then cut
(S, T ) must contain at least one edge with infinite capacity in the form as
(v, ũ). At this time the capacity of cut (S, T ) is infinite. It completes this
claim. �

Lemma 1 tells that if a cut (S, T ) in N(G,α) has a finite capacity, set S must
has the form as S = {s} ∪ B ∪ Γ (B̃). It is not hard to see that such a finite cut
corresponds to a subset B ⊆ V . Thus we name B as the corresponding set of
cut (S, T ). Let cap(S, T ) be the capacity of cut (S, T ) and cap(G,α) denote the
minimum capacity of network N(G,α), that is cap(G,α) = min(S,T ) cap(S, T ).
To compute the minimal α-ratio, we are more interested in the relationship
between the current parameter α and the minimal ratio α∗.

Lemma 2. Given a graph G and a parameter α. Let α∗ be the minimal α-ratio
in G and cap(G,α) be the minimum cut capacity of network N(G,α). Then

(1) cap(G,α) < αw(V ), if and only if α > α∗;
(2) cap(G,α) = αw(V ), if and only if α = α∗;
(3) cap(G,α) > αw(V ), if and only if α < α∗.

Due to the space limit, we leave the proof in full paper. From Lemma2-(2),
the parameter α is equal to α∗, if and only if the corresponding set B of the
minimum cut (S, T ) in N(G,α) has its α-ratio equal to α, that is w(Γ (B))

w(B) = α =
α∗. Thus we have the following corollary.

Corollary 1. For the network N(G,α), if the minimum cut (S, T )’s correspond-
ing set B has its α-ratio equal to α, i.e., w(Γ (B))

w(B) = α, then α = α∗.

Based on Lemmas 1 and 2 and Corollary 1, following Algorithm A is derived
to compute the minimal α-ratio for any given graph G = (V,E;w) (Table 1).

The main idea of Algorithm A is to find α∗ by binary search approach. The
initial range of α∗ is set as [0, 1], since 0 < α∗ ≤ 1 by Proposition 1-(1). And in
each iteration, we split the range in half by comparing the minimum capacity
cap(G,α) and the value of αw(V ). Because all weights of vertices are positive
integers, each subset’s α-ratio is a rational number and the difference of any two
different α-ratios should be greater than 1

w2(V ) . So once
∣
∣
∣
w(Γ (B))

w(B) − α
∣
∣
∣ < 1

w2(V ) ,
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Table 1. Algorithm A: Compute the minimal α-ratio of G

Input: Graph G = (V, E;w)
Output: The minimal α-ratio α∗ of G.
1: Set a := 0, b := 1 and M := w2(V );
2: Set α := 1

2
(a + b);

3: Constrcut network N(G, α);
4: Compute minimum s-t cut (S, T ) with its capacity cap(G, α) by Edmonds-Karp

algorithm and obtain the corresponding subset B ⊆ V ;
5: If |w(Γ (B))

w(B)
− α| < 1

M

Output α∗ = w(Γ (B))
w(B)

;
6: Else
7: If cap(G, α) > αw(V )

Set a := α, b := b and turn to line 2;
8: If cap(G, α) < αw(V )

Set a := a, b := α and turn to line 2.

we can conclude w(Γ (B))
w(B) = α and Corollary 1 makes us get w(Γ (B))

w(B) = α = α∗.

Thus we set the terminal condition of of Algorithm A as
∣
∣
∣
w(Γ (B))

w(B) − α
∣
∣
∣ < 1

w2(V ) .
There is only one loop in Algorithm A. After each round, the length of the

search range [a, b] is cut in half. Thus the loop ends within O(log(M)) rounds,
that is O(log(w(V ))). In each round, the critical calculation is on line 4 to com-
pute the minimum s-t cut of a given network. Applying the famous max-flow
min-cut theorem [15], it is equivalent to compute the corresponding maximum
flow. There are several polynomial-time algorithms to find maximum flow, for
instance Edmonds-Karp algorithm [6] with time complexity O(|V ||E|2). In Algo-
rithm A, we call the Edmonds-Karp algorithm to compute the minimum capacity
and have the following theorem.

Theorem 1. The minimal α-ratio α∗ of G can be computed in O(|V ||E|2log
(w(V ))) time.

3.2 Finding the Maximal Bottleneck

In the previous phase, we compute the minimal α-ratio α∗ by Algorithm A and
the corresponding bottleneck B′ also can be obtained. But it is possible that the
bottleneck B′ may not be maximal. So in this phase, we continue to find the
maximal bottleneck given the minimal α-ratio of α∗.

Here we introduce another network, denoted by N(G,α∗, ε), for a given
parameter ε > 0. To obtain network N(G,α∗, ε), we first construct network
N(G,α∗), defined in Sect. 3.1, and then increase the capacity of edge (s, v), for
any v ∈ V , from α∗wv to α∗wv + ε. By similar proof for Lemma 1, we know a
cut (S, T ) in N(G,α∗, ε) has a finite capacity, if and only if S has the form as
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S = {s} ∪ B ∪ Γ (B̃), where B ⊆ V . And the corresponding capacity becomes

cap(S, T ) = α∗(w(V ) − w(B)) + (n − |B|) · ε + w(Γ (B))

= α∗w(V ) − w(B)(α∗ − w(Γ (B))
w(B)

) + (n − |B|) · ε. (1)

From (1), the capacity cap(S, T ) actually depends on its corresponding set B
and the parameter ε. Thus we can view it as a function of B and ε. To simplify
our discussion in this section, we use cap(B, ε), different from the notation in
the previous subsection, to represent the capacity function of cut (S, T ) where
S = {s} ∪ B ∪ Γ (B̃).

Lemma 3. Given a graph G, let B∗ be the maximal bottleneck of G. For any
ε > 0, the maximal bottleneck B∗ satisfies cap(B∗, ε) = minB:α(B)=α∗ cap(B, ε)
in network N(G,α∗, ε).

Proof. For any bottleneck B with α(B) = α∗, we know cap(B, ε) = α∗w(V ) +
n · ε − ε|B|. Thus cap(B∗, ε) = minα(B)=α∗ cap(B, ε) since B∗ is the maximal
bottleneck of G. �

In other word, if the minimum cut B̂ in N(G,α∗, ε), with proper parameter
ε, is a bottleneck, then cap(B̂, ε) = minB⊆V cap(B, ε) = minB:α(B)=α∗ cap(B, ε),
which means B̂ is the maximal bottleneck of G.

Corollary 2. Given a graph G. If there is an ε > 0 such that the corresponding
set B̂ of the minimum cut in N(G,α∗, ε) is a bottleneck, then B̂ is the maximal
bottleneck of G.

Furthermore, once the ε is small enough, the corresponding set of the min-
imum cut is the maximal bottleneck of G, shown in Lemma 4. (We leave the
proof in full paper due to space limit.)

Lemma 4. Given a graph G. If ε ≤ 1
w3(V ) , then the corresponding set B̂ of the

minimum cut in N(G,α∗, ε) is the maximal bottleneck of G.

Based on Lemma 4, we propose the following Algorithm B to find the maxi-
mal bottleneck of a graph G if its minimal α-ration is given beforehand (Table 2).

Lemma 4 guarantees Algorithm B outputs the maximal bottleneck B∗ of G
correctly. The main body of Algorithm B is to compute the minimum cut capac-
ity of network N(G,α∗, ε) which can be realized by Edmonds-Karp algorithm.
So the time complexity of Algorithm B is O(|V ||E|2).
Theorem 2. Algorithm B ouputs the maximal bottleneck of G in O(|V ||E|2)
time.

Applying Algorithm A and B, the maximal bottleneck of any given graph can
be computed. Thus by Definition 2, we can get the bottleneck decomposition of
G by iteratively calling Algorithm A and B on each subgraph. The main result
of this paper is:
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Table 2. Algorithm B: Find the maximal bottleneck of G

Input: Graph G and its minimal α-ratio α∗;
Output: The maximal bottleneck B∗ of G.
1: Set ε := 1

w3(V )
;

2: Construct network N(G, α∗, ε);
3: Compute the minimum cut capacity cap(B̂, ε) by Edmonds-Karp algorithm

and obtain the corresponding set B̂ ⊆ V ;
4: Output B∗ = B̂;

Theorem 3. Given a graph G = (V,E;w), the bottleneck decomposition of can
be computed in O(n6log(nU)) time, where n = |V | and U = maxv∈V wv.

Proof. To compute the bottleneck decomposition, Algorithm A and B are run
repeatedly. In each round we obtain the maximal bottleneck and its neighbor-
hood, then delete them and go to the next round. So the time complexity of
each round is O(|V ||E|2log(w(V ))). At the end of each round at least one vertex
is removed. Thus the bottleneck decomposition contains at most O(|V |) loops,
which means the total time complexity is O(|V |2|E|2log(w(V ))). Since |E| is at
most O(|V |2) and the weight of each vertex is bounded by U , the time complexity
can be written as O(|V |6log(|V |U)) = O(n6log(nU)), if |V | = n. �

4 Bottleneck Decomposition, Market Equilibrium and
Fair Allocation

To derive an allocation efficiently, Wu and Zhang [17] modeled the resource
exchange system as a pure exchange economy, and obtain the equilibrium allo-
cation by computing a market equilibrium. In this section, we shall present some
properties of it, and further prove the allocation of such a market equilibrium
not only has the property of proportional response, but also is lex-optimal.

Definition 3 (Market Equilibrium). Let pi be the price of agent i’s whole
resource, 1 ≤ i ≤ n. The price vector p = (p1, p2, · · · , pn), with the allocation
X = (xij) is called a market equilibrium if for each agent i ∈ V the following
holds:

1.
∑

j∈Γ (i) xij = 1 (market clearance);
2.

∑
j∈Γ (i) xjipj ≤ pi (budget constraint);

3. X = (xij) maximizes
∑

j∈Γ (i) xjiwj, s.t.
∑

j∈Γ (i) xjipj ≤ pi and xij ≥ 0 for
each vertex i (individual optimality).

Construction of a Market Equilibrium from Bottleneck Decomposition
Given the bottleneck decomposition B = {(B1, C1), · · · , (Bk, Ck))}, an allo-

cation can be computed by distinguishing three cases [17]. For convenience, such
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an allocation mechanism is named as BD Mechanism by Cheng et al. [2,3].
Figure 3 well illustrates it.

BD Mechanism:

– For αi < 1 (i.e., Bi ∩ Ci = ∅), consider the bipartite graph Ĝi = (Bi, Ci;Ei)
where Ei = (Bi × Ci) ∩ E. Construct a network by adding source s, sink t
and directed edge (s, u) with capacity wu for any u ∈ Bi, directed edge (v, t)
with capacity wv

αi
for any v ∈ Ci and directed edge (u, v) with capacity ∞ for

any (u, v) ∈ Ei. By the max-flow min-cut theorem, there exists flow fuv ≥ 0
for u ∈ Bi and v ∈ Ci such that

∑
v∈Γ (u)∩Ci

fuv = wu and
∑

u∈Γ (v)∩Bi
fuv =

wv

αi
. Let the allocation be xuv = fuv

wu
and xvu = αifuv

wv
which means that

∑
v∈Γ (u)∩Ci

xuv = 1 and
∑

u∈Γ (v)∩Bi
xvu =

∑
u∈Γ (v)∩Bi

αi·fvu

wv
= 1.

– For αk = 1 (i.e., Bk = Ck = Vk), construct a bipartite graph Ĝ = (Bk, B′
k;E′

k)
such that B′

k is a copy of Bk, there is an edge (u, v′) ∈ E′
k if and only if (u, v) ∈

E[Bk]. Construct a network by the above method and by Hall’s theorem, for
any edge (u, v′) ∈ E′

k, there exists flow fuv′ such that
∑

v′∈Γ (u)∩B′
k
fuv′ = wu.

Let the allocation be xuv = fuv′
wu

.
– For any other edge, (u, v) �∈ Bi × Ci, i = 1, 2, · · · , k, define xuv = 0.

Fig. 3. The illustration of BD Mechanism.

Wu and Zhang stated Proposition 2, saying that once the prices of resource
are set properly, such a price vector and the allocation from BD Mechanism
make up a market equilibrium, for which the proof is omitted in [17]. To make
readers understand clearly, we also propose the detailed proof in full paper.

Proposition 2 ([17]). Given B = {(B1, C1), · · · , (Bk, Ck))}. If the price to
each vertex is set as: for u ∈ Bi, let pu = αiwu; and for u ∈ Ci, let pu = wu,
then (p,X) is a market equilibrium, where X is the allocation from BD Mecha-
nism. Furthermore, each agent u’s utility is Uu = wu · αi, if u ∈ Bi; otherwise
Uu = wu/αi.



Polynomial Algorithm for Fair Resource Allocation 11

Motivated by P2P systems, such as BitTorrent, the concept of proportional
response for the consideration of fairness among all participating agents is put
forward to encourage the agents to join in the P2P system.

Definition 4 (Proportional Response). For each agent i, the allocation
(xuv : v ∈ Γ (u)) of his resource wu is proportional to what he receives from
his neighbors (wv · xvu : v ∈ Γ (u)), i.e., xuv = xvuwv∑

k∈Γ (u) xkuwk
= xvuwv

Uu
.

Proposition 3. The allocation X from BD Mechanism satisfies the property of
proportional response.

Proof. For the allocation from BD Mechanism, if u ∈ Bi and v ∈ Ci, then Uu =
wu ·αi, Uv = wv/αi and fuv = xuv ·wu = xvu·wv

αi
. So xuv = fuv

wu
= xvuwv

αiwu
= xvuwv

Uu

and xvu = αifuv

wv
= xuvwu

wv/αi
= xuvwu

Uv
. �

Clearly, the allocation X from BD Mechanism can be computed from the
maximum flow in each bottleneck pair (Bi, Ci), by Edmonds-Karp Algorithm.
So the total time complexity of BD Mechanism is O(n5). Combining Theorem 3
and Proposition 3, we have

Theorem 4. In the resource sharing system, an allocation with the property of
proportional response can be computed in O(n6 log(nU)).

Recently, Georgiadis et al. [9] discuss the fairness from the compensatory
point of view. They characterized the exchange performance of an allocation by
the concept of exchange ratio vector, in which the coordinate is the exchange
ratio βu(X) = Uu(X)/wu of each agent. In [9], an allocation is said to be fair,
if its exchange ratio vector is lex-optimal, and its properties are introduced in
the following. Here some notations shall be introduced in advance. Given an
allocation X, for a set S ⊆ V , N(S) = {v ∈ V : xuv > 0,∃u ∈ S} denotes
the set of agents who receive resource from agents in S. For the exchange ratio
vector β(X), the different values (level) of coordinates are denoted by l1 < l2 <
· · · < lM , M ≤ n. Let Li(X) = {v ∈ V : βv(X) = li} be the set in which each
agent’s exchange ratio is equal to li. Georgiadis et al. [9] proposed the following
characterization of a lex-optimal allocation.

Proposition 4 ([9]). 1. An allocation X with M ≥ 2 is lex-optimal, if and only
if

(1) Li is an independent set in G, i = 1, 2, · · · , �M
2 �;

(2) LM−i+1 = N(Li), i = 1, 2, · · · , �M
2 �;

(3) li · lM−i+1 = 1, i = 1, 2, · · · , �M
2 �;

(4)
∑

u∈Li
Uu =

∑
u∈LM−i+1

wu, i = 1, 2, · · · , �M
2 �.

2. An allocation X with M = 1 is lex-optimal if and only if l1 = 1.

Based on above proposition, we can continue to conclude that the allocation
X from BD Mechanism is also lex-optimal.
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Theorem 5. The allocation X from BD Mechanism is lex-optimal.

Proof. Given a bottleneck decomposition B = {(B1, C1), · · · , (Bk, Ck)}. By
Proposition 2, Uu = wu · αi if u ∈ Bi and Uu = wu/αi if u ∈ Ci. Thus each
agent’s exchange ratio can be written as: βu = αi if u ∈ Bi and Uu = 1/αi if
u ∈ Ci. If k = 1 and B1 = C1 = V , then all agents have the same exchange ratio
βu(X) = 1 = l1 with M = 1 and the second claim in Proposition 4 is satisfied for
this case. If k = 1 and αk < 1 or k > 1, then we know α1 < α2 < · · · < αk ≤ 1 by
Proposition 1. The relationship between α-ratio and exchange ratio makes the
different values of βu be ordered as: α1 < · · · < αk ≤ 1/αk < · · · < 1/α1, where
αk = 1/αk if and only if αk = 1 and Bk = Ck. So the number of different values
M = 2k if αk < 1 and M = 2k − 1 if αk = 1. By the definitions of li and Li,
we have Li = Bi with li = αi < 1 and LM−i+1 = Ci with lM−i+1 = 1/αi > 1
and Li = Bi is independent by Proposition 1, i = 1, · · · , �M/2�. In addition,
since all resource exchange only happens between Bi and Ci by BD Mechanism,
LM−i+1 = N(Li) and

∑
u∈Li

Uu =
∑

v∈LM−i+1
wv, i = 1, · · · , �M/2�. Until now

all statements of the first claim are satisfied for this case. It means the allocation
X from BD Mechanism is lex-optimal. �

5 Conclusion

This paper discusses the issue of the computation of a fair allocation in the
resource sharing system through a combinatorial bottleneck decomposition.
We design an algorithm to solve the bottleneck decomposition for any graph
G(V,E;wv) in O(n6 log(nU)) time, where n = |V | and U = maxv∈V wv. Our
work also completes the computation of a market equilibrium in the resource
exchange system for the consideration of economic efficiency in [17]. Further-
more, we show the equilibrium allocation from the bottleneck decomposition
not only is proportional response, but also is lex-optimal, which establishes a
connection between two concepts of fairness in [9] and [17]. Involving two dif-
ferent definitions of fairness for resource allocation, we hope to explore other
proper concepts of fairness and to design efficient algorithms to find such fair
allocations in the future.
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Abstract. Given a graph G = (V, E), the 3-path partition problem is to
find a minimum collection of vertex-disjoint paths each of order at most
3 to cover all the vertices of V . It is different from but closely related
to the well-known 3-set cover problem. The best known approximation
algorithm for the 3-path partition problem was proposed recently and
has a ratio 13/9. Here we present a local search algorithm and show, by
an amortized analysis, that it is a 4/3-approximation. This ratio matches
up to the best approximation ratio for the 3-set cover problem.

Keywords: k-path partition · Path cover · k-set cover ·
Approximation algorithms · Local search · Amortized analysis

1 Introduction

Motivated by the data integrity of communication in wireless sensor networks
and several other applications, the k-path partition (kPP) problem was first
considered by Yan et al. [14]. Given a simple graph G = (V,E) (we consider
only simple graphs), with n = |V | and m = |E|, the order of a simple path in G
is the number of vertices on the path and it is called a k-path if its order is k.
The kPP problem is to find a minimum collection of vertex-disjoint paths each
of order at most k such that every vertex is on some path in the collection.

Clearly, the 2PP problem is exactly the Maximum Matching problem,
which is solvable in O(m

√
n log(n2/m)/ log n)-time [7]. For each k ≥ 3, kPP is

NP-hard [6]. We point out the key phrase “at most k” in the definition, that
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ensures the existence of a feasible solution for any given graph; on the other hand,
if one asks for a path partition in which every path has an order exactly k, the
problem is called Pk-partitioning and is also NP-complete for any fixed constant
k ≥ 3 [6], even on bipartite graphs of maximum degree three [11]. To the best of
our knowledge, there is no approximation algorithm with proven performance for
the general kPP problem, except the trivial k-approximation using all 1-paths.
For 3PP, Monnot and Toulouse [11] proposed a 3/2-approximation, based on
two maximum matchings; recently, Chen et al. [2] presented an improved 13/9-
approximation.

The kPP problem is a generalization to the Path Cover problem [5] (also
called Path Partition), which is to find a minimum collection of vertex-disjoint
paths which together cover all the vertices in G. Path Cover contains the
Hamiltonian Path problem [6] as a special case, and thus it is NP-hard and
it is outside APX unless P = NP.

The kPP problem is also closely related to the well-known Set Cover prob-
lem. Given a collection of subsets C = {S1, S2, . . . , Sm} of a finite ground set
U = {x1, x2, . . . , xn}, an element xi ∈ Sj is said to be covered by the subset Sj ,
and a set cover is a collection of subsets which together cover all the elements of
the ground set U . The Set Cover problem asks to find a minimum set cover.
Set Cover is one of the first problems proven to be NP-hard [6], and is also
one of the most studied optimization problems for the approximability [8] and
inapproximability [4,12,13]. The variant of Set Cover in which every given
subset has size at most k is called k-Set Cover, which is APX-complete and
admits a 4/3-approximation for k = 3 [3] and an (Hk − 196

390 )-approximation for
k ≥ 4 [10].

To see the connection between kPP and k-Set Cover, we may take the
vertex set V of the given graph as the ground set, and an �-path with � ≤ k
as a subset; then the kPP problem is the same as asking for a minimum exact
set cover. That is, the kPP problem is a special case of the minimum Exact
Cover problem [9], for which unfortunately there is no approximation result
that we may borrow. Existing approximations for (non-exact) k-Set Cover
do not readily apply to kPP, because in a feasible set cover, an element of the
ground set could be covered by multiple subsets. There is a way to enforce the
exactness requirement in the Set Cover problem, by expanding C to include
all the proper subsets of each given subset Sj ∈ C. But in an instance graph
of kPP, not every subset of vertices on a path is traceable, and so such an
expanding technique does not apply. In summary, kPP and k-Set Cover share
some similarities, but none contains the other as a special case.

In this paper, we study the 3PP problem. The authors of the 13/9-approx-
imation [2] first presented an O(nm)-time algorithm to compute a k-path par-
tition with the least 1-paths, for any k ≥ 3; then they applied an O(n3)-time
greedy approach to merge three 2-paths into two 3-paths whenever possible. We
aim to design better approximations for 3PP with provable performance, and
we achieve a 4/3-approximation. Our algorithm starts with a 3-path partition
with the least 1-paths, then it applies a local search scheme to repeatedly search
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for an expected collection of 2- and 3-paths and replace it by a strictly smaller
replacement collection of new 2- and 3-paths.

The rest of the paper is organized as follows. In Sect. 2 we present the local
search scheme searching for all the expected collections of 2- and 3-paths. The
performance of the algorithm is proved through an amortized analysis in Sect. 3.
We conclude the paper in Sect. 4.

2 A Local Search Approximation Algorithm

The 13/9-approximation proposed by Chen et al. [2] applies only one replace-
ment operation which is to merge three 2-paths into two 3-paths. In order to
design approximation for 3PP with better performance, we examine four more
replacement operations each transfers three 2-paths to two 3-paths with the aid
of a few other 2- or 3-paths. Starting with a 3-path partition with the least
1-paths, our approximation algorithm repeatedly finds a certain expected col-
lection of 2- and 3-paths and replaces it by a replacement collection of one less
new 2- and 3-paths, in which the net gain is exactly one.

In Sect. 2.1 we present all the replacement operations to perform on the
3-path partition with the least 1-paths. The complete algorithm, denoted as
Approx, is summarized in Sect. 2.2.

2.1 Local Operations and Their Priorities

Throughout the local search, the 3-path partitions are maintained to have the
least 1-paths. Our four local operations are designed so not to touch the 1-
paths, ensuring that the final 3-path partition still contains the least 1-paths.
These operations are associated with different priorities, that is, one operation
applies only when all the other operations of higher priorities (labeled by smaller
numbers) fail to apply to the current 3-path partition. We remind the reader that
the local search algorithm is iterative, and every iteration ends after executing a
designed local operation. The algorithm terminates when none of the designed
local operations applies.

Definition 1. With respect to the current 3-path partition Q, a local Opera-
tion i1-i2-By-j1-j2, where j1 = i1 − 3 and j2 = i2 + 2, replaces an expected
collection of i1 2-paths and i2 3-paths of Q by a replacement collection of j1
2-paths and j2 3-paths on the same subset of 2i1 + 3i2 vertices.

Operation 3-0-By-0-2, highest priority 1: When three 2-paths of Q can
be connected into a 6-path in the graph G (see Fig. 1a for an illustration), they
form into an expected collection. By removing the middle edge on the 6-path, we
achieve two 3-paths on the same six vertices and they form the replacement col-
lection. This is the only local operation executed in the 13/9-approximation [2].

In each of the following operations, we need the aid of one or two 3-paths to
transfer three 2-paths to two 3-paths. We first note that for a 3-path u-w-v ∈ Q,
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if (u, v) ∈ E too, then if desired, we may rotate u-w-v into another 3-path with
w being an endpoint (see Fig. 1b for an illustration). In the following, any 3-path
in an expected collection can be either the exact one in Q or the one rotated
from a 3-path in Q.

Operation 3-1-By-0-3, priority 2: We identify two classes of configurations
for the expected collection in this operation. Consider an expected collection of
three 2-paths P1, P2, P3 and a 3-path P4 = u-w-v in Q.

In the first class, which has priority 2.1, u,w, v are adjacent to an endpoint
of P1, P2, P3 in G, respectively (see Fig. 1c for an illustration). The operation
breaks the 3-path u-w-v into three singletons and connects each of them to the
respective 2-path to form the replacement collection of three new 3-paths.

(a) The configuration of
the expected collection for
Operation 3-0-By-0-2.

u

w

v

u

w

v

u

w

v

(b) A 3-path u-w-v ∈ Q
can be rotated so that w is
an endpoint if (u, v) ∈ E.

u

w

v

P1

P2

P3

P4

(c) The first class of configura-
tion of the expected collection
for Operation 3-1-By-0-3.
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(d) The second class of configurations of the
expected collection in Operation 3-1-By-0-3.
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v

P1 P2

P3 P4

P5

(e) The configuration of the expected
collection for Operation 4-1-By-1-3.

Fig. 1. (a), (c–e) illustrate the configurations of the expected collections for the first
three operations, where solid edges are in Q and dashed edges are in E but outside of
Q. (b) illustrates a rotated 3-path in Q.

In the second class, which has priority 2.2, two of the three 2-paths, say
P1 and P2, are adjacent and thus they can be replaced by a new 3-path and a
singleton. We distinguish two configurations in this class (see Fig. 1d for illus-
trations). In the first configuration, the singleton is adjacent to the midpoint w
and P3 is adjacent to one of u and v; in the second configuration, the singleton
and P3 are adjacent to u and v, respectively. For an expected collection of either
configuration, the operation replaces it by three new 3-paths.

Operation 4-1-By-1-3, priority 3: Consider an expected collection of four
2-paths P1, P2, P3, P4 and a 3-path P5 = u-w-v in Q. These four 2-paths can
be separated into two pairs, each of which are adjacent in the graph G, thus
we can replace them by two new 3-paths while leaving two singletons. In the
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configuration for the expected collection in this operation, the two singletons
are adjacent to a common endpoint, say u, of P5 (see Fig. 1e for an illustration),
and they can be replaced by a new 2-path v-w and a new 3-path. Overall, the
operation replaces the expected collection by three new 3-paths and a new 2-
path.

Operation 4-2-By-1-4, lowest priority 4: Consider an expected collection
of four 2-paths P1, P2, P3, P4 and two 3-paths P5 = u-w-v, P6 = u′-w′-v′ in Q.
These four 2-paths can be separated into two pairs, each of which are adjacent
in the graph G, thus we can replace them by two new 3-paths while leaving
two singletons. Each of P5 and P6 should be adjacent to at least one of the
two singletons. We distinguish three classes of configurations for the expected
collection in this operation, for which the replacement collection consists of four
new 3-paths and a new 2-path.

In the first class, the two singletons are adjacent to P5 and P6 at endpoints,
say u and u′, respectively; additionally, one of the five edges (u, v′), (v, u′),
(w, v′), (v, w′), (v, v′) is in E (see Fig. 2a for an illustration).

u

w

v

u′

w′

v′

P1

P2

P3

P4

P5 P6

(a) The first class.

u

w

v

u′

w′

v′

P1

P2

P3

P4

P5

P6

(b) The second class.

u

w

v

u′

w′

v′

P1

P2

P3

P4
P5 P6

(c) The third class.

Fig. 2. The three classes of configurations of the expected collections for an Operation
4-2-By-1-4, where solid edges are in Q, dashed and dotted edges are in E but outside of
Q. In every class, each dotted edge between P5 and P6 corresponds to one configuration.

In the second class, one singleton is adjacent to an endpoint of a 3-path, say u
on P5, and the other singleton is adjacent to the midpoint w′ of P6; additionally,
one of the six edges (u, u′), (u, v′), (w, u′), (w, v′), (v, u′), (v, v′), is in E (see
Fig. 2b for an illustration).

In the third class, the two singletons are adjacent to the midpoints of the
two 3-paths, w and w′, respectively; additionally, one of the four edges (u, u′),
(u, v′), (v, u′), (v, v′) is in E (see Fig. 2c for an illustration).

In each of the above three classes of configurations, the operation replaces
P5, P6, and the two singletons by two new 3-paths and one new 2-path.

2.2 The Complete Local Search Algorithm Approx

A high-level description of the complete algorithm Approx is depicted in Fig. 3.
For the running time, Step 1 takes in O(nm) time [2]. Note that there are O(n)
2-paths and O(n) 3-paths in Q at the beginning of Step 2, and therefore there
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Algorithm Approx on G = (V,E):

Step 1. compute a 3-path partition Q with the least 1-paths in G;
Step 2. Iteratively perform:

2.1. if Operation 3-0-By-0-2 applies, update Q and break;
2.2. if Operation 3-1-By-0-3 with priority 2.1 applies, update Q and break;
2.3. if Operation 3-1-By-0-3 with priority 2.2 applies, update Q and break;
2.4. if Operation 4-1-By-1-3 applies, update Q and break;
2.5. if Operation 4-2-By-1-4 applies, update Q and break;

Step 3. Return Q.

Fig. 3. A high-level description of the algorithm Approx, where each “break” ends
the current iteration of Step 2.

are O(n6) original candidate collections to be examined, since a candidate col-
lection has a maximum size of 6. When a local operation applies, an iteration
ends and the 3-path partition Q reduces its size by 1, while introducing at most
5 new 2- and 3-paths. These new 2- and 3-paths give rise to O(n5) new candidate
collections to be examined in the subsequent iterations. Since there are at most
n iterations in Step 2, we conclude that the total number of original and new
candidate collections examined in Step 2 is O(n6). Determining whether a can-
didate collection is an expected collection, and if so, deciding the corresponding
replacement collection, can be done in O(1) time. We thus prove that the overall
running time of Step 2 is O(n6), and consequently prove the following theorem.

Theorem 1. The running time of the algorithm Approx is in O(n6).

3 Analysis of the Approximation Ratio 4/3

In this section, we show that our local search algorithm Approx is a 4/3-
approximation for 3PP. The performance analysis is done through amortization.

The 3-path partition produced by the algorithm Approx is denoted as Q;
let Qi denote the sub-collection of i-paths in Q, for i = 1, 2, 3, respectively. Let
Q∗ be an optimal 3-path partition, i.e., it achieves the minimum total number
of paths, and let Q∗

i denote the sub-collection of i-paths in Q∗, for i = 1, 2, 3,
respectively. Since our Q contains the least 1-paths among all 3-path partitions
for G, we have |Q1| ≤ |Q∗

1|. Since both Q and Q∗ cover all the vertices of V , we
have |Q1| + 2|Q2| + 3|Q3| = n = |Q∗

1| + 2|Q∗
2| + 3|Q∗

3|.
Next, we prove the following inequality which gives an upper bound on |Q2|,

through an amortized analysis:

|Q2| ≤ |Q∗
1| + 2|Q∗

2| + |Q∗
3|. (1)

It follows that 3|Q1| + 3|Q2| + 3|Q3| ≤ 4|Q∗
1| + 4|Q∗

2| + 4|Q∗
3|, that is, |Q| ≤

4
3 |Q∗|, and consequently the following theorem holds.
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Theorem 2. The algorithm Approx is an O(n6)-time 4/3-approximation for
the 3PP problem, and the performance ratio 4/3 is tight for Approx.

In the amortized analysis, each 2-path of Q2 has one token (i.e., |Q2| tokens
in total) to be distributed to the paths of Q∗. The upper bound in Eq. (1) will
immediately follow if we prove the following lemma.

Lemma 1. There is a distribution scheme in which

1. every 1-path of Q∗
1 receives at most 1 token;

2. every 2-path of Q∗
2 receives at most 2 tokens;

3. every 3-path of Q∗
3 receives at most 1 token.

In the rest of the section we present the distribution scheme that satisfies the
three requirements stated in Lemma 1.

Denote E(Q2), E(Q3), E(Q∗
2), E(Q∗

3) as the set of all the edges on the paths
of Q2, Q3, Q∗

2, Q∗
3, respectively, and E(Q∗) = E(Q∗

2) ∪ E(Q∗
3). In the subgraph

of G
(
V,E(Q2) ∪ E(Q∗)

)
, only the midpoint of a 3-path of Q∗

3 may have degree
3, i.e., incident with two edges of E(Q∗) and an edge of E(Q2), while all the
other vertices have degree at most 2 since each is incident with at most one edge
of E(Q2) and at most one edge of E(Q∗).

Our distribution scheme consists of two phases. We define two functions
τ1(P ) and τ2(P ) to denote the fractional amount of token received by a path
P ∈ Q∗ in Phase 1 and Phase 2, respectively; we also define the function τ(P ) =
τ1(P ) + τ2(P ) to denote the total amount of token received by the path P ∈ Q∗

at the end of our distribution process. Then, we have
∑

P∈Q∗ τ(P ) = |Q2|.

3.1 Token Distribution Phase 1

In Phase 1, we distribute all the |Q2| tokens to the paths of Q∗ (i.e.,∑
P∈Q∗ τ1(P ) = |Q2|) such that a path P ∈ Q∗ receives some token from a

2-path u-v ∈ Q2 only if u or v is (or both are) on P , and the following three
requirements are satisfied:

1. τ1(Pi) ≤ 1 for ∀Pi ∈ Q∗
1;

2. τ1(Pj) ≤ 2 for ∀Pj ∈ Q∗
2;

3. τ1(P�) ≤ 3/2 for ∀P� ∈ Q∗
3.

In this phase, the one token held by each 2-path of Q2 is breakable but can only
be broken into two halves. Thus for every path P ∈ Q∗, τ1(P ) is a multiple of
1/2.

For each 2-path u-v ∈ Q2, at most one of u and v can be a singleton of Q∗.
If P1 = v ∈ Q∗

1, then the whole 1 token of the path u-v is distributed to v, that
is, τ1(v) = 1 (see Fig. 4a for an illustration). This way, we have τ1(P ) ≤ 1 for
∀P ∈ Q∗

1.
For a 2-path u-v ∈ Q2, we consider the cases when both u and v are incident

with an edge of E(Q∗). If one of u and v, say v, is incident with an edge of
E(Q∗

2), that is, v is on a 2-path P1 = v-w ∈ Q∗
2, then the 1 token of the path u-v
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u
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1
P1

(a)

u

v w

1

P1

P2

(b)

v′′vv′

u

1
2 1

2
P1

P2

(c)

Fig. 4. Illustrations of the token distribution scheme in Phase 1, where solid edges are
in E(Q2) and dashed edges are in E(Q∗). In (c), u or v can be either an endpoint or
the midpoint of the corresponding 3-path of Q∗

3.

is given to the path P1 ∈ Q∗
2 (see Fig. 4b for an illustration). Note that if u is

also on a 2-path P2 ∈ Q∗
2 and P2 �= P1, then the path P2 receives no token from

the path u-v. The choice of which of the two vertices u and v comes first does
not matter. This way, we have τ1(P ) ≤ 2 for ∀P ∈ Q∗

2 since the 2-path P1 ∈ Q∗
2

might receive another token from a 2-path of Q2 incident at w.
Next, we consider the cases for a 2-path u-v ∈ Q2 in which each of u and

v is incident with an edge of E(Q∗
3). Consider a 3-path P1 ∈ Q∗

3: v′-v-v′′. We
distinguish two cases for a vertex of P1 to determine the amount of token received
by P1 (see Fig. 4c for an illustration). In the first case, either the vertex, say v′,
is not on any path of Q2 or it is on a path of Q2 with 0 token left, then P1

receives no token through vertex v′. In the second case, the vertex, say v (the
following argument also applies to the other two vertices v′ and v′′), is on a path
u-v ∈ Q2 holding 1 token, and consequently u must be on a 3-path P2 ∈ Q∗

3,
then the 1 token of u-v is broken into two halves, with 1/2 token distributed to
P1 through vertex v and the other 1/2 token distributed to P2 through vertex
u. This way, we have τ1(P ) ≤ 3/2 for ∀P ∈ Q∗

3 since the 3-path P1 ∈ Q∗
3 might

receive another 1/2 token through each of v′ and v′′.

3.2 Token Distribution Phase 2

In Phase 2, we will transfer the extra 1/2 token from every 3-path P ∈ Q∗
3 with

τ1(P ) = 3/2 to some other paths of Q∗ in order to satisfy the three requirements
of Lemma 1. In this phase, each 1/2 token can be broken into two quarters, thus
for a path P ∈ Q∗, τ2(P ) is a multiple of 1/4.

Consider a 3-path P1 = v′′-v′-v ∈ Q∗
3. We observe that if τ1(P1) = 3/2, then

each of v, v′, and v′′ must be incident with an edge of E(Q2), the other endpoint
of which must also be on a 3-path of Q∗

3. One of the three vertices, say v, on an
edge (u, v) ∈ E(Q2), must have its corresponding u outside of P1. Denote P2 as
the 3-path of Q∗

3 where u is on. Let w be a vertex adjacent to u on P2. We can
verify that due to Q being a partition with the least 1-paths and by Operation
3-0-By-0-2, w cannot be a singleton of Q1 or on any 2-path of Q2, and thus it
must be on a 3-path of Q3, being either an endpoint or the midpoint (see Fig. 5
for an illustration). We thus conclude that τ1(P2) ≤ 1, and we have the following
lemma.
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v′′ v′ v

u w

P1

P2

P3
u′′ u′

1
2

Fig. 5. An illustration of a 3-path P1 = v-v′-v′′ ∈ Q∗
3 with τ1(P1) = 3/2, where u-v,

u′-v′, u′′-v′′ ∈ E(Q2), P3 ∈ Q3, with w being either the midpoint or an endpoint of
P3, and P2 ∈ E(Q∗

3) is represented by dashed edges, on which w is adjacent to u.

Lemma 2. For any 3-path P1 ∈ Q∗
3 with τ1(P1) = 3/2, there must be another

3-path P2 ∈ Q∗
3 with τ1(P2) ≤ 1 such that

1. u-v is a 2-path of Q2, where v is on P1 and u is on P2, and
2. any vertex adjacent to u on P2 must be on a 3-path P3 of Q3.

The first step of Phase 2 is to transfer this extra 1/2 token back from P1 to
the 2-path u-v through vertex v (see Fig. 5 for an illustration). Thus, we have
τ2(P1) = −1/2 and τ(P1) = 3/2 − 1/2 = 1.

Using Lemma 2 and its notation, let x1 and y1 be the other two vertices on
P3 (P3 = w-x1-y1 or P3 = x1-w-y1). Denote P4 ∈ Q∗ (P5 ∈ Q∗, respectively) as
the path where x1 (y1, respectively) is on. Next, we will transfer the 1/2 token
from u-v to the paths P4 or/and P5 through some pipe or pipes.

We define a pipe r → s → t, where r is an endpoint of a 2-path of Q2 which
receives 1/2 token in the first step of Phase 2, (r, s) is an edge on a 3-path
P ′ ∈ Q∗

3 with τ1(P ′) ≤ 1 (P ′ = P2 here), s and t are both on a 3-path of Q3

(P3 here), and t is a vertex on our destination path of Q∗ (P4 or P5 here) which
will receive token from the 2-path of Q2. r and t are called the head and tail
of the pipe, respectively. For example, in Fig. 6a, there are four possible pipes
u → w → x1, u → w → y1, u′′ → w → x1, and u′′ → w → y1. We distinguish
the cases, in which the two paths P4 and P5 belong to different combinations of
Q∗

1, Q∗
2, Q∗

3, to determine how they receive more token through some pipe or
pipes.

Recall that u can be either an endpoint or the midpoint of P2. We discuss
the cases with u being an endpoint of P2 (the cases for u being the midpoint
can be discussed the same), that is, P2 = u-w-u′′. The following is a summary
of our discussion and results ([1] contains the full details).

Case 1. At least one of P4 and P5 is a singleton of Q∗
1, say P4 = x1 ∈ Q∗

1 (see
Fig. 6 for illustrations). In this case, τ1(P4) = 0, and we transfer the 1/2 token
from u-v to P4 through pipe u → w → x1. We prove in [1] that there are at
most two pipes with tail x1 through each of which could P4 receive 1/2 token,
due to Operation 3-1-By-0-3 and Operation 4-1-By-1-3. That is, we have
τ2(P4) ≤ 1/2 × 2 = 1, implying τ(P4) ≤ 0 + 1 = 1.

Case 2. Both P4 and P5 are paths of Q∗
2∪Q∗

3. In this case, if w is an endpoint of
P3 = w-x1-y1, with y1 on P5, we transfer the 1/2 token from u-v to P5 through
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Fig. 6. The cases when P4 is a singleton of Q∗
1, where solid edges are in E(Q2) or

E(Q3) and dashed edges are in E(Q∗). x1 is the tail of the pipe through which P4

could receive 1/2 token from the 2-path of u-v.

pipe u → w → y1 (see Fig. 7a for an illustration); if w is the midpoint of P3, we
transfer 1/4 token from u-v to P4 through pipe u → w → x1 and the other 1/4
token to P5 through pipe u → w → y1 (see Fig. 7b for an illustration). We prove
in [1] that for any P ∈ {P4, P5}, if τ2(P ) > 0, then we have τ1(P ) ≤ 1/2 and
τ2(P ) ≤ 1, and it falls into one of the following four cases:

1. If w is an endpoint of P3 and τ1(P ) = 0, then there are at most two pipes
through each of which could P receive 1/2 token. That is, τ2(P ) ≤ 1/2 × 2 =
1, implying τ(P ) ≤ 0 + 1 = 1.

2. If w is an endpoint of P3 and τ1(P ) = 1/2, then only through one pipe could P
receive the 1/2 token. That is, τ2(P ) ≤ 1/2, implying τ(P ) ≤ 1/2 + 1/2 = 1.

3. If w is the midpoint of P3 and τ1(P ) = 0, then there are at most four pipes
through each of which could P receive 1/4 token. That is, τ2(P ) ≤ 1/4 × 4 =
1, implying τ(P ) ≤ 0 + 1 = 1.

4. If w is the midpoint of P3 and τ1(P ) = 1/2, then there are at most two pipes
through each of which could P receive 1/4 token. That is, τ2(P ) ≤ 1/4 × 2 =
1/2, implying τ(P ) ≤ 1/2 + 1/2 = 1.
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1
4
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Fig. 7. The cases when both P4 and P5 are in Q∗
2 ∪Q∗

3, where solid edges are in E(Q2)
or E(Q3) and dashed edges are in E(Q∗). In (a), y1 is the tail of the pipe through which
P5 receives 1/2 token from the 2-path u-v; in (b), x1 is the tail of the pipe through
which P4 receives 1/4 token from the 2-path u-v and y1 is the tail of the pipe through
which P5 receives 1/4 token from the 2-path u-v.
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In summary, for any P1 ∈ Q∗ with τ1(P1) = 3/2, we have τ2(P1) = −1/2; for
any P ∈ Q∗ with τ2(P ) > 0, we have τ1(P ) = 0 if τ2(P ) ≤ 1, or τ1(P ) ≤ 1/2 if
τ2(P ) ≤ 1/2. Therefore, at the end of Phase 2, we have

1. τ(Pi) ≤ 1 for ∀Pi ∈ Q∗
1,

2. τ(Pj) ≤ 2 for ∀Pj ∈ Q∗
2,

3. τ(P�) ≤ 1 for ∀P� ∈ Q∗
3.

This proves Lemma 1.

3.3 A Tight Instance for Approx

Figure 8 illustrates a tight instance, in which our solution 3-path partition Q
contains nine 2-paths and three 3-paths (solid edges) and an optimal 3-path
partition Q∗ contains nine 3-paths (dashed edges). Each 3-path of Q∗ receives
1 token from the 2-paths in Q in our distribution process. This instance shows
that the performance ratio of 4/3 is tight for Approx.

v1 v2/u1 v3 u3

v4 v5/u4 v6 u6

u9 v9 v8/u7 v7

v10v11/u10v12u12

v13v14/u13

w1 w2 w3

x1 x2 x3

y1 y2 y3

Fig. 8. A tight instance of 27 vertices, where solid edges represent a 3-path partition
produced by Approx and dashed edges represent an optimal 3-path partition. The
edges (u3i+1, v3i+1), i = 0, 1, . . . , 4, are in E(Q2) ∩ E(Q∗), shown in both solid and
dashed. The vertex u3i+1 collides into v3i+2, i = 0, 1, . . . , 4. In our distribution process,
each of the nine 3-paths in Q∗ receives 1 token from the 2-paths in Q.

Lemma 1 and the tight instance shown above together prove Theorem 2.

4 Conclusions

We studied the 3PP problem and designed a 4/3-approximation algorithm
Approx. Approx first computes a 3-path partition Q with the least 1-paths
in O(nm)-time, then iteratively applies four local operations with different pri-
orities to reduce the total number of paths in Q. The overall running time of
Approx is O(n6). The performance ratio 4/3 of Approx is proved through
an amortization scheme, using the structure properties of the 3-path partition
returned by Approx. We also show that the performance ratio 4/3 is tight for
our algorithm.
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The 3PP problem is closely related to the 3-Set Cover problem, but none
is a special case of the other. The best 4/3-approximation for 3-Set Cover has
stood there for more than three decades; our algorithm Approx for 3PP has
the approximation ratio matches up to this best approximation ratio 4/3. We
leave it open to better approximate 3PP.

Acknowledgement. YC and AZ were supported by the NSFC Grants 11771114
and 11571252; YC was also supported by the China Scholarship Council Grant
201508330054. RG, GL and YX were supported by the NSERC Canada. LL was sup-
ported by the China Scholarship Council Grant No. 201706315073, and the Funda-
mental Research Funds for the Central Universities Grant No. 20720160035. WT was
supported in part by funds from the College of Engineering and Computing at the
Georgia Southern University.

References

1. Chen, Y., et al.: A local search 4/3-approximation algorithm for the minimum
3-path partition problem. arXiv:1812.09353 (2018)

2. Chen, Y., Goebel, R., Lin, G., Su, B., Xu, Y., Zhang, A.: An improved approx-
imation algorithm for the minimum 3-path partition problem. J. Comb. Optim.
(2018). https://doi.org/10.1007/s10878-018-00372-z
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Abstract. In this paper, we study the Efficient Guarding problem
- a variant of the well studied Art Gallery Problem in computational
geometry. A given polygon P is considered to be guarded efficiently by a
guard set G if every point in P is seen by exactly one guard in G. Here
we investigate the problem of efficient guarding of all the vertices of a
polygon using a vertex guard set of minimum size. We prove that it is NP-
complete even to check whether an efficient guard set exists for a polygon.
We then give a parameterized algorithm for the efficient guarding of a
1.5 dimensional terrain, when parameterized by a structural parameter
namely, the onion peeling number of the terrain i.e, the number of convex
layers of the terrain. We further give polynomial time algorithms to solve
the minimum efficient guarding problem for some special polygons.

Keywords: Art Gallery Problem · Efficient Guarding ·
FPT algorithms

1 Introduction

The Art Gallery problem is among the well studied problems in the field of
computational geometry. The first question to be studied in this field was the
following: Given a simple polygon P of n vertices, how many guards (points)
need to be placed inside P such that every point in P is seen by one of the
guards? Here, two points are said to see each other if the line segment connecting
them lies entirely inside P . It was proved that any polygon on n vertices can be
guarded using n

3 guards [9]. It can also be seen that for some polygons n
3 guards

become necessary.
Apart from the theoretical interest, the Art Gallery problem is also rele-

vant due to the large number of applications. A number of variants and special
cases of Art Gallery problem are studied. These are broadly defined by the
positions where guards can be placed, the properties of the polygon to be guarded
and the definition of visibility. See [29] for a detailed survey.

An important aspect of any variant of Art Gallery problem is the algo-
rithmic question of finding a guard set of minimum size. This was proved to be
NP-Hard [24] and later APX-Hard [12] for general polygons. The minimum Art
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Gallery problem is known to be NP-Hard even when the polygons are orthog-
onal [30], monotone [23] and 1.5 dimensional terrains [22]. Art Gallery Problem
is extensively studied in the context of approximation algorithms [17,18,21].

The minimum guarding problem is also studied in the area of fixed parame-
terized tractability and exact algorithms. Minimum guarding problem is shown
to be W-hard [7] and therefore no FPT algorithms are expected to exist under
standard parameterization i.e, when the parameter is solution size. Parameter-
ized algorithms are particularly well studied in the terrain guarding problem.
FPT algorithms for terrain guarding parameterized by the onion peeling num-
ber [19] and guard range [20] are known. Also, orthogonal terrain guarding is
FPT parameterized by the solution size [2].

Efficient Guarding Problem: In this paper, we study a variant of the Art
Gallery problem which is motivated by applications in wireless networks,
robotics etc. In particular, this restriction is meaningful in applications where
intersection of ranges of two guards leads to noise.

Definition 1. Let P be a polygon with n vertices. Let C ⊆ P represent a set of
points in P that needs to be guarded and G represent a set of points in P where
guards are allowed to be placed. We call a subset G′ ⊆ G an efficient guard set
for C if every point in C is seen by exactly one guard in G′. Equivalently, C is
said to be guarded efficiently by G′.

A minimum efficient guard set is an efficient guard set of minimum size possible.
The minimum Efficient Guarding problem is to find a minimum efficient
guard set. In the case where both C and G is the entire polygon P , then the
Efficient Guarding problem is same as testing whether P is a star polygon
i.e., checking whether there exists a point that can see the entire polygon. This
can be done in linear time [27]. Similarly if C = P and G = V , the problem
reduces to checking whether there exists a vertex of P that sees the entire polygon
which can be solved in polynomial time [29].
In this paper we consider the problem of efficient guarding of every vertex of the
polygon P using guards placed at vertices of P .

Efficient Guarding: Given a polygon P with vertex set V , |V | = n, find
G ⊂ V such that every vertex v ∈ V is seen by exactly one vertex in G.
This problem is not studied before, to the best of our knowledge.

Related Problems and Results: Efficient Guarding problem is closely
related to the Chromatic Art Gallery problem and the Conflict Free
Art Gallery problem. In the Chromatic Art Gallery problem, the poly-
gon needs to be guarded by G and there exists a k-coloring of G such that all
the guards that see a point p in the polygon are of different colors, for all p
that needs to be guarded. In the Conflict Free Art Gallery problem, the
polygon needs to be guarded by G and there exists a k-coloring of G such that
every point in P that needs to be guarded is seen by a guard of distinct color.
In both these problems, we are trying to minimize the number of colors needed.
In Efficient Guarding problem, we are trying to minimize the number of
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guards when the number of colors used in chromatic and conflict free art gallery
problems is fixed as one. Chromatic and conflict-free art gallery problems are
studied, with an emphasis on bounding the minimum number of colors required
in [4,5]. The algorithmic question of minimizing the number of colors for a given
polygon is also studied [13,15].

Guarding problems can also be linked to the area of visibility graphs. The
problem of guarding all vertices of a polygon using minimum number of vertex
guards is equivalent to the minimum dominating set problem in the polygon
visibility graphs. Similarly, the Efficient Guarding problem of vertices using
vertex guards is equivalent to the Efficient Domination problem.

Definition 2 [3]. Given a graph G(V,E), D ⊆ V is an efficient dominating set
if for every vertex v ∈ V , |N [V ] ∩ D| = 1.

The Efficient Domination problem has found applications in areas like coding
theory, facility location, graph embedding etc. The problem of finding an efficient
dominating set of minimum size is NP-hard. Hardness results and polynomial
time algorithms are studied for various graph classes [6,25,26].

2 Preliminaries

In this section, we discuss some concepts and results that will be used in the
subsequent sections.

Fixed-Parameter Tractability: Under standard complexity theoretical
assumptions, NP-hard and NP-complete problems are not expected to have
polynomial time algorithms. Here, we try to design algorithms which solve the
problem exactly and have exponential running time but the exponential factor
in the running time is restricted to a parameter which is assumed to be small.
A problem instance π, with a parameter k, is called Fixed Parameter Tractable
if there exists an algorithm that solves the problem in f(k) · |π|c, where c is a
constant and f(k) is a computable function independent of π. The parameter
k is a small positive integer which can be a structural property of either the
input or output of π. The running time of FPT algorithms turns out to be effi-
cient compared to exponential running time algorithms. FPT algorithms and
the various techniques can be studied from [10,11].

Visibility Graphs: Visibility graph of a polygon is constructed to capture the
visibility between different vertices of the polygon. The vertex set of the visibility
graph corresponds to the vertex set of the polygon and an edge is added between
two vertices in the visibility graph if the corresponding vertices in the polygon
see each other. Visibility graphs and visibility algorithms are well studied. For
details, see [16].

Treewidth: Tree decomposition of a graph G is a pair (T,X), where T is a tree,
and Xt ⊆ V (G) is a vertex subset, where t is a node in the tree T . Xt is called
bag of t, and the following three conditions hold:
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– Every vertex of the graph G is in at least one bag.
– For every edge uv ∈ E(G), there is at least one node t of tree T such that

both u and v belong to Xt.
– For every vertex v ∈ V (G), the set of nodes of T whose corresponding bags

contain v, induces a connected subtree of T .

The width of a tree decomposition is one less than the maximum size of any
bag, i.e., maxt |Xt| − 1. The treewidth of a graph G is the minimum possible
width of a tree decomposition of G, and it is denoted by τ(G).

Tree decomposition of a graph is very useful in solving problems. A well-
known approach is applying dynamic programming over the tree decomposition
of the graph while using the three properties to define the recursion. This tech-
nique gives an FPT algorithm for problems like dominating set, vertex cover
etc.

Nice Tree Decomposition: A tree decomposition with a distinguished root is
called a nice tree decomposition if:

– All the leaf nodes and the root node contain empty bags, i.e., Xl = Xr = φ,
where r is the root node and l is a leaf node.

– Every other node of the tree decomposition falls in one of the three categories:
– Introduce node: An introduce vertex node t has one child t′ such that

Xt = Xt′ ∪ {v} for some v �∈ Xt′ .
– Forget node: A forget node t has one child t′ such that Xt = Xt′ \ {w} for

some w ∈ Xt′ .
– Join node: A join node t has two children t1 and t2, such that Xt = Xt1 =

Xt2 .

3 NP-Hardness

We show that it is NP-complete even to check whether an efficient guard set
exists. Membership in NP is obvious. We reduce Positive Planar 1-in-3-
SAT to Efficient Guarding in polygons. Positive Planar 1-in-3-SAT was
introduced and shown to be NP-complete by Mulzer and Rote [28].

Definition 3. Positive Planar 1-in-3-SAT: A formula φ in 3-CNF is called
positive if and only if it does not contain any negation, i.e., if and only if all
occurring literals are positive. A formula φ with clause set C = {c1, ..., cl} and
variable set X = {x1, ..., xn} is called backbone planar if and only if its associated
graph G(φ) = (X ∪ C,E(φ)) is planar, where E(φ) is defined as

– xicj ∈ E(φ) for a clause cj ∈ C and variable xi ∈ X if and only if xi occurs
in cj.

– xixi+1 ∈ E(φ) for all 1 ≤ i < n.

A formula φ in 3-CNF is called positive planar if it is both positive and back-
bone planar. The problem of Positive Planar 1-in-3-SAT consists of deciding
whether a given positive planar 3-CNF formula allows a truth assignment such
that in each clause, exactly one literal is true.
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Theorem 1. It is NP-complete even to decide whether an efficient guard set
exists for a given polygon.

Proof. Let G(V,E) be a planar embedding of an instance of the Positive Pla-
nar 1-in-3-SAT problem. Corresponding to G(V,E), we construct a polygon P
such that an efficient guard set exists for P if and only if the instance of Postive
Planar 1-in-3-SAT is satisfiable.

Consider a formula φ = (C,X) with a planar embedding as shown in Fig. 1.

Fig. 1. Planar embedding of Positive
Planar1-in-3-SAT

Fig. 2. Connecting clauses and vari-
ables - the squares represent clauses
and the circles represent variables

Given a planar embedding, corresponding to each clause, we construct a poly-
gon of a specific type and corresponding to each variable we construct another
type of polygon. The edges that go from clauses to variables are also replaced
by zigzag polygons connecting the clause polygon to variable polygon. Figure 2
depicts the replacement of the edges. Figures 3 and 4 depict clause and variable
polygons.

Fig. 3. Variable polygon Fig. 4. Clause polygon

We first describe the variable and clause polygons. Let the joining of two
tube-like structures be called a junction, i.e., wherever there is a bend in the
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polygon. Each junction has a set of vertices. Note that the structure of the
polygon ensures the visibility regions of all the vertices belonging to any given
junction are the same. Hence, if a guard has to be placed at a junction, the guard
can be placed at any vertex belonging to the junction. For simplicity, one vertex
is marked in the figures.

As defined, each clause has three variables. And each variable occurs in at
least one clause. The polygon for a clause is fixed and is as shown in Fig. 4.
The three extensions at the bottom of the clause polygon, marked as x1, x2,
and x3, are the zigzag polygons which connect to the corresponding variable
polygons. Each of these zigzag polygons has a constant number of vertices. In
the latter part of the proof, we show how the variable polygons are connected to
clause polygons through these open tubes. The clause polygon has two additional
spikes, which also need to be guarded.

As already mentioned, a variable can belong to any number of clauses as
long as the planarity condition is satisfied. The structure of a variable polygon
is defined by the number of clauses the corresponding variable belongs to. If a
variable belongs to k number of clauses, a tube polygon with 3k sides is used as
a skeleton for the constructing the corresponding variable polygon, where every
third junction is a clause junction, i.e., a tube that connects to the corresponding
clause polygon emerges from this junction. Finally, one edge of the polygon is
removed and replaced with an L-shaped tube structure and a horizontal tube
structure as shown in Fig. 3. Suppose we have a Positive Planar 1-in-3-SAT
problem with n variables and m clauses. It is easy to see that the constructed
polygon P has O(n + m) vertices. The proof of Theorem 1 follows from the
following lemma.

Lemma 1. The constructed polygon P has an efficient guard set if and only if
the formula corresponding to G(V,E) is satisfiable.

4 FPT Algorithm for Terrains

In this section, we consider the Efficient Guarding problem for 1.5 dimen-
sional terrains. A 1.5 dimensional terrain is an x-monotone chain of line segments
i.e., if the set of n vertices in the order of their x-coordinates is {x1, . . . , xn},
then there exists an edge xixi+1 for all 1 ≤ i < n. Two vertices see each other if
the line segment connecting them lies completely above the polygonal chain.
Consider the visibility graph G of the terrain T . We have already mentioned
that the Efficient Guarding problem on T is equivalent to the Efficient
Domination problem on G.

Onion Peeling Number of a Terrain: Onion peeling number is the number
of convex layers of the polygon. For terrains, onion peeling number is defined as
the number of upper convex hulls of the terrain. Khodakarami et al. [19] have
proved the following result for terrains:

Lemma 2 ([19]). Let depth of the onion peeling be bounded by k, then the
treewidth of the 1.5D terrain visibility graph is bounded by 2k.
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We now present an FPT algorithm for Efficient Domination parameter-
ized by treewidth. By Lemma 2, this also proves that the Efficient Guarding
of terrains parameterized by the onion peeling number is in FPT. Moreover, this
gives an efficient algorithm for Efficient Guarding of polygons with bounded
treewidth visibility graph.

Our algorithm uses techniques similar to the algorithm for minimum domi-
nating set problem, given in [1]. We use a refined variant of the nice tree decompo-
sition. The nice tree decomposition includes a new type of node called introduce
edge node, which is labeled with an edge uv such that u, v ∈ Xt and with exactly
one child t′ such that Xt = Xt′ ; uv is said to be introduced at node t. This vari-
ant of tree decomposition still has O(τ ·n) nodes, where τ is the treewidth of the
graph G. With each node t of the tree decomposition we associate a subgraph Gt

of G defined as: Gt = (Vt, Et = {e : e is introduced in the subtree rooted at t}).
Here, Vt is the union of all bags present in the subtree rooted at t.

We define subproblems on t for the graph Gt. We consider a coloring of the
vertices in each bag Xt using colors from {black, white, grey}. Intuitively, the
meaning of each color is as follows:

Black: every black vertex is part of the dominating set and is also efficiently
dominated in the partial solution for Gt, i.e, it is dominated by itself.

White: a white vertex is not a part of the dominating set in the partial solution
for Gt, but is efficiently dominated in the partial solution by a black vertex.

Grey: a grey vertex is not a part of the dominating set and is not dominated in
the partial solution. It is dominated in the tree above the bag t.

The reason we introduce grey vertices is that some vertices of a bag can
be dominated by vertices or edges not introduced so far. Thus, we consider
subproblems where some vertices of the bag are not efficiently dominated in Gt

and will be efficiently dominated by vertices or edges introduced later. We stress
the fact that it is strictly forbidden to dominate a grey vertex in Gt.
For a node t, there are 3|Xt| colorings of Xt. A coloring f is valid if

– Every vertex v which is either black or white has exactly one neighbor belong-
ing to the dominating set, i.e., belonging to the black partition. Note that for
a black vertex, the neighbor dominating it is itself since we consider closed
neighborhood.

– No vertex v in the grey partition has a black neighbor in Gt.

For a given node t and a coloring f of Xt, we define by d[t, f ] of Gt as follows.
If f is valid then d[t, f ] = s where |f−1(black)| = s, otherwise d[t, f ] = ∞. Note
that the value of d[r, φ] where r is the root of the tree decomposition denotes the
minimum size of an efficient dominating set if it exists and ∞ otherwise. This is
the case where G = Gr and there is no corresponding partitioning for the root
node.

We introduce additional notations. For a subset X ⊆ V (G), consider a col-
oring f : X → {white, black, grey}. For a vertex v ∈ V (G) and a color α ∈



Efficient Guarding of Polygons and Terrains 33

{white, black, grey} we define a new coloring fv→α : X ∪ {v} →
{white, black, grey} as follows:

fv→α =

{
f(x) when x �= v

α when x = v
(1)

For a coloring f of X and Y ⊆ X, we use f |Y to denote the restriction of f
to Y .

We now proceed to define the recursive formulas for the values of d.

Leaf Node. For a leaf node t, we have Xt = φ. Hence, only the empty coloring
is possible, and hence d[t, φ] = 0.

Introduce Vertex Node. Let t be the introduce vertex node with a child t′

such that Xt = Xt′ ∪{v} for some v �∈ Xt′ . The vertex v is isolated in Gt since no
edges incident to v are introduced in this node. An isolated white vertex cannot
be introduced, since the coloring would then be invalid. Hence, the vertex v is
either added to the black or grey partitions by assigning colors accordingly. In
the case where the vertex is added to the dominating set, the vertex is efficiently
dominated by itself.

d[t, f ] =

⎧⎪⎨
⎪⎩

d[t′, f |X′ ] + 1 if f(v) = black

d[t′, f |X′ ] if f(v) = grey

∞ otherwise
(2)

Introduce Edge Node. Let t be an introduce edge node labeled with an edge
uv and let t′ be the child of it. The edge uv can help in efficiently dominating
vertices. However, if u was a black vertex before edge uv is introduced, then v
will be dominated by u when the edge uv is introduced, therefore the coloring
will not remain valid if v was black or white. If v was grey, it is now dominated
by u and hence the coloring is valid if v has color white.

d[t, f ] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d[t′, fv→grey] if (f(u), f(v)) = (black, white)

d[t′, fu→grey] if (f(u), f(v)) = (white, black)

∞ if (f(u), f(v)) ∈ {(grey, black), (black, grey), (black, black)}
d[t′, f ] otherwise

(3)

Forget Node. Let t be a forget node with child t′ such that Xt = Xt′ \ {w} for
some w ∈ Xt′ . Since the vertex w is not seen again in any node above t, if w is
to be efficiently dominated in Gt then w needs to be efficiently dominated in Gt′

and hence w must be in either black or white. This gives the following recursive
formula.

d[t, f ] = min(d[t′, fw→white], d[t′, fw→black]) (4)
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Join Node. Let t be the join node with children t1 and t2. We know that
Xt = Xt1 = Xt2 . We say that coloring f1 of Xt1 and f2 of Xt2 are consistent
with a coloring f of Xt if for every v ∈ Xt the following conditions hold:

– f(v) = grey if and only if f1(v) = f2(v) = grey.
– f(v) = black if and only if f1(v) = f2(v) = black.
– f(v) = white if and only if (f1(v), f2(v)) ∈ {(white, grey), (grey, white)}.

Other possible colorings of f1 and f2 are not consistent. Consider the case
where (f1(v), f2(v)) = (white, white). In this case, we can infer that the domi-
nating vertices of the vertex v are different in Gt1 and Gt2 . This stems from the
definition of introduce edge node. If the vertex v is dominated by a vertex u1 in
Gt1 , the vertex u1 must be forgotten in the subtree rooted at t1 because vertex
u1 can dominate vertex v through an introduce edge node only and the vertex u1

is forgotten after the introduce edge node. Hence, the vertex v cannot be domi-
nated by the same vertex u1 in Gt2 also, since the vertex u1 cannot be present in
Gt2 as per the definition of tree decomposition (all the nodes containing a vertex
u must form a connected subtree and the vertex u1 was forgotten in the subtree
rooted at t2). Furthermore, all the remaining cases where f1(v) ∈ {white, grey}
and f2(v) ∈ {black}, and the symmetric cases are not consistent since the vertex
v belongs to the dominating set in one child node and does not belong to the
dominating set in the other child node.

Now, considering all the colorings f1, f2 which are consistent, we define the
recursive formula for the join node.

d[t, f ] = min
f1,f2

(d[t1, f1] + d[t2, f2] − f−1(black)) (5)

where f1 and f2 are colorings consistent with f .
We have described the recursive formulas for the values of d. We analyze

the running time of the algorithm. Clearly, the time needed to process a leaf
node, introduce edge/vertex node or forget node is at most 3τ · τO(1), assuming
adjacency queries can be carried out in O(τ) time. However, computing the
values at a join node is more time-consuming. Note that if a pair f1, f2 is
consistent with f , then for every v ∈ Xt we have

(f(v), f2(v), f2(v)) ∈ {(grey, grey, grey), (white, grey, white), (white, white, grey),

(black, black, black)}
It follows that there are exactly 4|Xt| triples of colorings of (f, f2, f2) such

that f1 and f2 are consistent with f . We iterate through all the valid triples,
and for each configuration we check if f1 and f2 are both valid colorings in their
respective bags and update the value of d[t, f ] accordingly. It follows that the
total time spent at each join node is at most (4τ · τO(1)). Since the total number
of nodes in the modified variant of the nice tree decomposition is O(τ · n), we
derive the following theorem.

Theorem 2. Let G be an n vertex graph together with a nice tree decompo-
sition of treewidth τ . Efficient Domination problem on G is in FPT when
parameterized by τ , with a running time of 4τ · τO(1) · n.
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Corollary 1. Efficient Guarding on 1.5 dimensional terrains is fixed
parameter tractable when parameterized by the onion peeling number.

5 Polynomial Time Algorithms

In this section, we discuss polynomial time algorithms to solve Efficient
Guarding for two special type of polygons.

Tower Polygons: A tower polygon is a polygon with two reflex chains joined
together at a convex vertex and bounded below by an edge.

Without loss of generality, we use the term left (right) reflex chain to
denote the reflex chain that extend from the topmost point to the left-
most(rightmost) point. Let l1, l2, . . . , ln denote the vertices of the left reflex chain
and r1, r2, . . . , rm denote the vertices of the right reflex chain, in decreasing order
of y-co-ordinates. Note that l1 and r1 denote the same point and ln and rm form
an edge. Except for the angles at vertices l1, ln and rm, all other angles are reflex.
The following lemma states some properties of visibility in a tower polygon.

Lemma 3. 1. Any vertex except l1, ln and rm sees only two vertices (other than
itself) from the same chain. l1, ln and rm sees only one vertex from the same
chain.

2. For a vertex v, the vertices seen by v on the opposite chain are consecutive.

For a vertex v, let s(v) represent the first vertex in the opposite chain that
is seen by v and f(v) be the last vertex in the opposite chain that is seen by v.

Lemma 4. Let i < j and h < k. Then if li sees rk and rh sees lj, then li sees
rh.

If ln−1 sees rm add ln−1 to a set R. Similarly add rm−1 to R if it sees ln.

Lemma 5. Exactly one vertex from {ln, rm}∪R is part of the efficient guarding
set.

Now we show that the Efficient Guarding problem on tower polygons can
be solved using a dynamic programming algorithm. Let EG(v) denote the size
of the minimum sized efficient guard set that guards all the vertices upto v+1 in
the same chain and upto f(v) in the opposite chain and in addition, the guard set
also contains v. It is clear from Lemma 5 that the solution for minimum efficient
guarding of P is given by minv∈{ln,rm}∪R EG(v). We now give a recurrence
formula for EG(v).

For a given vertex li in the left chain, we define a set Ri as follows. Let
rj = s(li). Ri contains the vertex li−3 if f(li−3) = rj−1. Ri contains the vertex
rj−2 if f(rj−2) = li−2.

EG(li) =

{
∞, if Ri = ∅
minv∈Ri

EG(v) + 1, otherwise
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We now show the correctness of the recurrence formula. By the definition
of EG(li), li is part of the efficient guard set and hence li−1 is guarded by li.
The vertex li−2 is not seen by li and it cannot be guarded by itself because that
means li−1 is not efficiently guarded. Therefore, li−2 can be guarded only by li−3

if it is to be guarded by a vertex in the left chain. Similarly rj is guarded by li
and rj−1 is not. rj−1 can be guarded by rj−2 or some vertex in the left chain.
By Lemma 4, li−2 cannot be guarded by a vertex in the right chain and rj−1

cannot be guarded by a vertex in the left chain, simultaneously. Also, it is not
possible that li−2 is guarded by li−3 and rj−1 is uniquely guarded by some lk
where k < i − 3, since this implies f(li−3) lies above f(lk), which is not possible
by Lemma 4. Therefore, both li−2 and rj−1 should be guarded either by li−3 or
rj−2, if their visibility region contains both li−2 and rj−1 and no vertex which is
already seen by li. This proves the correctness of the recurrence. Observe that
the recurrence formula for EG(ri) is symmetrical.

For a given vertex v, EG(v) can be computed in constant time if the values
for vertices above v is already known. Since we compute the value for each vertex,
the algorithm runs in O(n) time.

Theorem 3. When the visibility graph is given, the minimum efficient guarding
problem for a tower polygon can be solved in O(n) time.

Spiral Polygons: Spiral polygons are polygons in which all the reflex vertices
occur consecutively along the boundary. The following result follows from results
proved in [8,14].

Theorem 4. The minimum efficient guarding problem on spiral polygons can
be solved in polynomial time.
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Abstract. The goal of an outdegree-constrained edge-modification prob-
lem is to find a spanning subgraph or supergraph H of an input undi-
rected graph G such that either: (Type I) the number of edges in H is
minimized or maximized and H can be oriented to satisfy some speci-
fied constraints on the vertices’ resulting outdegrees; or: (Type II) the
maximum or minimum outdegree of all vertices under an optimal orienta-
tion of H is minimum or maximum among all subgraphs or supergraphs
of G that can be constructed by deleting or inserting a fixed number
of edges. This paper introduces eight new outdegree-constrained edge-
modification problems related to load balancing called (Type I) MIN-
DEL-MAX, MIN-INS-MIN, MAX-INS-MAX, and MAX-DEL-MIN
and (Type II) p-DEL-MAX, p-INS-MIN, p-INS-MAX, and p-DEL-
MIN. We first present a framework that provides algorithms for solving
all eight problems in polynomial time on unweighted graphs. Next we
investigate the inapproximability of the edge-weighted versions of the
problems, and design polynomial-time algorithms for six of the problems
on edge-weighted trees.

Keywords: Graph orientation · Maximum flow ·
Computational complexity · Inapproximability · Greedy algorithm ·
Load balancing

1 Introduction

Graph modification problems are fundamental in graph theory and arise in
many theoretical and practical settings, including computational biology [15]
and machine learning [6]. Given a weighted or unweighted graph G = (V,E) and
a graph property Π, the general objective is to transform the graph G into a
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graph G′ satisfying property Π by applying a shortest sequence of graph mod-
ification operations. There are two main types of graph modification problems:
vertex-modification problems and edge-modification problems. In the former, one
is allowed to add or remove vertices from the graph, while in the latter, the goal is
typically to find a spanning subgraph or supergraph of G satisfying property Π.

A special case of edge-modification problems is when the property Π depends
on the vertices’ degrees. Such degree-constrained edge-modification problems
are very general and include many natural problems such as the Maximum
Weight Perfect Matching, Maximum r-Factor, Longest Cycle, and
General Factor problems. Indeed, one can regard Maximum Weight
Perfect Matching (or Maximum r-Factor) as the problem of finding a sub-
graph G′ of G such that: (i) the degree of every vertex in V (G′) is one (or r.);
and (ii) the total weight of the deleted edges is minimized. Similarly, Longest
Cycle is equivalent to the problem of finding a subgraph G′ such that: (i) the
degree of every vertex in V (G′) is two; (ii) G′ is connected; and (iii) the total
weight of the deleted edges is minimized. General Factor asks if it is possible
to delete edges from G so that the resulting graph G′ is connected and every
vertex v in G′ has degree equal to a number belonging to a specified set K(v).
Many of these problems are NP-hard; e.g., Longest Cycle as well as General
Factor are NP-hard even for unweighted graphs. Therefore, it is important to
identify special cases of them that can be solved efficiently. One such special case
of General Factor is the new problem MIN-DEL-MAX, introduced below.

An orientation of an undirected graph is an assignment of a direction to each
of its edges. By an outdegree-constrained edge-modification problem, we mean an
edge-modification problem where the solution is required to admit an orientation
in which the vertices’ outdegrees satisfy some specified constraints. This paper
introduces eight new outdegree-constrained edge-modification problems includ-
ing MIN-DEL-MAX. Besides the fact that MIN-DEL-MAX is a special case of
General Factor as mentioned in the above, MIN-DEL-MAX and the other
seven problems are related to load balancing which is also an important research
topic. Here we explain about the relation between MIN-DEL-MAX and a load
balancing problem as an example: Suppose there is a set of jobs to be completed,
each job can be processed by exactly one of two specified machines, assuming
that for any pair of machines at most one job is imposed, and we initially want
to assign each job to a machine while minimizing the maximum load on the
machines. This situation is represented by a graph with vertices interpreted as
machines and edges interpreted as jobs. An orientation of such a graph corre-
sponds to an assignment of jobs, where the start vertex (machine) of a directed
edge processes the edge (job). Unfortunately, after choosing one assignment, it
turns out that the maximum load is too high, so we have to give up trying to
complete all of the jobs. Instead, we compute the fewest jobs to abandon in order
to decrease the resulting maximum load to within some reasonable amount. This
procedure corresponds to finding a smallest set of deleting edges in the above
mentioned graph. The other seven problems have similar interpretations.

We first provide algorithms for solving all of the eight new problems in poly-
nomial time on unweighted graphs. We then prove that their generalizations to
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edge-weighted graphs cannot be approximated within a ratio of ρ(n), for instance,
in polynomial time unless P = NP, where n is the number of vertices in the input
graph and ρ(n) ≥ 1 is any polynomial-time computable function. This inapprox-
imability holds even for planar bipartite graphs. Finally, as a tractable subclass
of the planar bipartite graphs, we consider the problems on edge-weighted trees.

1.1 Problem Definitions

Let G = (V,E) be a simple, undirected graph, where V and E are the set of
vertices and the set of edges, respectively. For any u, v ∈ V , the undirected
edge with endpoints in u and v is denoted by {u, v}, and the directed edge
from u to v is denoted by (u, v). For G, its complement (V,E) is denoted by
Gc, where E = {{u, v} | u, v ∈ V, u �= v, {u, v} �∈ E}. An orientation Λ of G is
an assignment of a direction to each edge in E, i.e., every {u, v} ∈ E is set to
either (u, v) or (v, u). (Equivalently, Λ is a set of directed edges that consists of
exactly one of the two directed edges (u, v) and (v, u) for every {u, v} ∈ E.) Let
Λ(G) denote the directed graph (V,Λ). For any v ∈ V and a fixed orientation Λ
of G, define d+(v) as the outdegree of v under Λ. Finally, let Γ (G) be the set of
all orientations of G.

We now define the first four new graph orientation problems. Each of them
takes as input a simple, undirected graph G = (V,E) and a positive integer k′.

• MIN-DEL-MAX: (Assumes w.l.o.g. that k′ ≤ min
Λ∈Γ (G)

max
u∈V

d+(u).) Find

the minimum number of edges whose deletion results in a graph G′ with
min

Λ∈Γ (G′)
max
u∈V

d+(u) ≤ k′.

• MIN-INS-MIN: (Assumes w.l.o.g. that k′ ≥ max
Λ∈Γ (G)

min
u∈V

d+(u).) Find the

minimum number of edges whose addition results in a simple graph G′ with
max

Λ∈Γ (G′)
min
u∈V

d+(u) ≥ k′.

• MAX-INS-MAX: (Assumes w.l.o.g. that k′ ≥ min
Λ∈Γ (G)

max
u∈V

d+(u).) Find the

maximum number of edges whose addition results in a simple graph G′ with
min

Λ∈Γ (G′)
max
u∈V

d+(u) ≤ k′.

• MAX-DEL-MIN: (Assumes w.l.o.g. that k′ ≤ max
Λ∈Γ (G)

min
u∈V

d+(u).) Find

the maximum number of edges whose deletion results in a graph G′ with
max

Λ∈Γ (G′)
min
u∈V

d+(u) ≥ k′.

Observe that in the problems MIN-INS-MIN and MAX-INS-MAX, the
resulting graphs must be simple. The above four problems optimize the number
of edges to delete or insert; we also define four related problems that take as input
a simple, undirected graph G = (V,E) and whose objectives are to optimize the
maximum/minimum outdegree for a fixed integer p representing the number of
deleted/inserted edges:
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• p-DEL-MAX: Find the smallest possible value of min
Λ∈Γ (G(V,E\E′))

max
u∈V

d+(u)

taken over all E′ ⊆ E with |E′| = p.

• p-INS-MAX: Find the smallest possible value of min
Λ∈Γ (G(V,E∪E′))

max
u∈V

d+(u)

taken over all E′ ⊆ E(Gc) with |E′| = p.

• p-INS-MIN: Find the largest possible value of max
Λ∈Γ (G(V,E∪E′))

min
u∈V

d+(u)

taken over all E′ ⊆ E(Gc) with |E′| = p.

• p-DEL-MIN: Find the largest possible value of max
Λ∈Γ (G(V,E\E′))

min
u∈V

d+(u)

taken over all E′ ⊆ E with |E′| = p.

Throughout the paper, let n = |V | and m = |E| for any given
instance of the above eight problems. Δ is the (unweighted) maximum degree
taken over all vertices in the input G. Any algorithm ALG is called a σ-
approximation algorithm if the following inequality holds for every input
graph G: max

{
#ALG(G)
#OPT (G) ,

#OPT (G)
#ALG(G)

}
≤ σ, where #ALG(G) and #OPT (G) are

the number of deleted (or inserted) edges by ALG and an optimal algorithm,
respectively.

1.2 Related Work

To compute min
Λ∈Γ (G)

max
u∈V

d+(u) for an input undirected, unweighted graph G

is the Minimum Maximum Outdegree Problem (MinMaxO), previously
studied in [4,7,8,10,16]. MinMaxO can be solved in linear time for planar
graphs [10] and in polynomial time for general graphs [16]. The problem of com-
puting max

Λ∈Γ (G)
min
u∈V

d+(u), referred to as MaxMinO in [2], can also be solved

in polynomial time (Theorem 8 in [2]). (This is why the input k′ to MIN-
DEL-MAX, MIN-INS-MIN, MAX-INS-MAX, and MAX-DEL-MIN can be
assumed w.l.o.g. to satisfy k′ ≤ min

Λ∈Γ (G)
max
u∈V

d+(u) or k′ ≥ max
Λ∈Γ (G)

min
u∈V

d+(u).)

When generalized to edge-weighted graphs, both MinMaxO and MaxMinO
become NP-hard [2,4].

Theorem 8 in [2] states that MaxMinO is solvable in O(m3/2 log m log2 Δ)
time for unweighted graphs, which directly gives:

Theorem 1. MAX-DEL-MIN can be solved in O(nm3/2 log m log2 Δ) time.

Proof. First compute an orientation by which the minimum outdegree has value
max

Λ∈Γ (G)
min
u∈V

d+(u)(≥ k′) using the algorithm for MaxMinO from [2], and obtain a

directed graph. Then delete arbitrary d+(v)−k′ outgoing edges for each vertex v
in the directed graph to get a directed graph G′ with d+(v) = k′ for every v ∈ V .
This deletion of edges only needs linear time since we can delete arbitrary set
of outgoing edges for each vertex. The number of deleted edges is the maximum



42 Y. Asahiro et al.

Table 1. The computational complexity of the algorithms in Sect. 2 for unweighted
graphs. For edge-weighted graphs all these problems are intractable, shown in Sect. 3.

Problem Time complexity Reference

MIN-DEL-MAX O(m2 log n) Theorem3

MIN-INS-MIN O(n4 logn) Theorem4

MAX-INS-MAX O(n4 logn) Theorem4

MAX-DEL-MIN min{O(nm3/2 logm log2 Δ),
O(m2 log n)}

Theorems 1 and 3

p-DEL-MAX O(m2 log n) Theorem3

p-INS-MIN O(n4 logn) Theorem4

p-INS-MAX O(n4 logn) Theorem4

p-DEL-MIN O(m2 log n) Theorem3

possible: Since every vertex has outdegree k′, the number of the directed edges
is nk′ in the graph, and so deleting any more edges would result in some vertex
having outdegree strictly less than k′ by the pigeonhole principle. Thus MAX-
DEL-MIN can be solved in O(nm3/2 log m log2 Δ) time. ��

A variant of MinMaxO in which one may perform p split operations on the
vertices (corresponding to adding p extra machines in the load balancing setting
described above) before orienting the edges was studied in [1]. That problem
seems harder than the eight problems studied here, as it is NP-hard even for
unweighted graphs when p is unbounded [1].

1.3 Our Contributions and Organization of the Paper

Section 2 presents polynomial-time algorithms for the new problems on
unweighted graphs. See Table 1 for a summary of their computational complexity.
In Sect. 3 we develop polynomial-time algorithms for six of the eight problems on
edge-weighted trees, and prove the polynomial-time inapproximability for planar
bipartite edge-weighted graphs for all eight problems. Finally, we conclude the
paper in Sect. 4. Due to space constraints, some proofs are deferred to the full
version of this paper.

2 Unweighted Graphs

In this section, we present polynomial-time algorithms for the unweighted ver-
sions of the new problems. Rather than developing a separate algorithm for each
problem, our strategy is to give a unified framework from which each of the eight
algorithms follows as a special case. We take advantage of the problems’ struc-
tural similarities by encoding the input graph G in all eight cases as a directed
graph NG, augmenting NG with edge capacities as defined below to obtain a
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Fig. 1.A graph G and the directed graph NG constructed from G. All edges are directed
from left to right in NG. The part surrounded by the dashed lines represents NH .

flow network, and then using binary search together with a fast algorithm for
computing maximum flows. NG is the same for all problems; only the edge capac-
ities in the flow network depend on which of the problems is being solved. The
encoding used here is an extension of the one in [4]; to be precise, the definition
of NG follows the basic construction in [4] and then adds auxiliary vertices and
directed edges that can capture the deletion and insertion of edges in the input
graph.

The formal definition of NG is as follows. For any undirected graph G(V,E),
construct the directed graph NG = (VG, EG) with vertex set VG and edge set EG

by defining: E = {{u, v} | u, v ∈ V, u �= v, {u, v} �∈ E}, VG = V ∪ E ∪ E ∪
{x, y, r, s, t}, EG = {(s, v) | v ∈ V } ∪ {(vi, e), (vj , e) | e = {vi, vj} ∈ E ∪ E} ∪
{(r, e) | e ∈ E} ∪ {(e, x) | e ∈ E} ∪ {(e, y) | e ∈ E} ∪ {(s, r), (x, t), (y, t)}.
Note that if e = {u, v} ∈ E (or E), then NG contains two directed edges (u, e)
and (v, e) for e in the vertex subset E (or E) of NG. Note that the vertex r
and the set of vertices in E capture deletion and insertion of edges respectively,
mentioned in the previous paragraph. See Fig. 1 for an illustration. We remark
that maximum flows in suitably defined flow networks were previously used to
solve some other graph orientation problems in [1–4]. The definition of NG that
we present here is more general.

Section 2.1 below explains how to use NG to solve the problems MIN-DEL-
MAX and p-DEL-MAX. Due to the space limitation, discussions for the other
six problems are omitted. Then, Sect. 2.2 analyzes the time complexity of the
obtained algorithms. To solve MIN-INS-MIN, p-INS-MIN, MAX-INS-MAX,
and p-INS-MAX, we need to explicitly construct the entire directed graph NG.
However, for MIN-DEL-MAX, p-DEL-MAX, MAX-DEL-MIN, and p-DEL-
MIN, the algorithms will only need the induced subgraph NH = NG[V ∪ E ∪
{s, r, x, t}] = NG \ (E ∪ {y}) of NG, and so these algorithms’ running times will
be lower when G is sparse.
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2.1 Using NG to Solve the Problems

First we focus on the problem MIN-DEL-MAX. For an undirected graph
G(V,E) with k = min

Λ∈Γ (G)
max
u∈V

d+(u) and a positive integer k′ ≤ k, construct

the directed graph NH = NG[V ∪ E ∪ {s, r, x, t}]. For any positive integer p,
let NH(p) = (V (NH), E(NH), cap) be the flow network obtained by augmenting
NH with edge capacities cap, where:

cap(a) =

⎧
⎪⎪⎨
⎪⎪⎩

k′, if a = (s, v) for v ∈ V
p, if a = (s, r)
|E|, if a = (x, t)
1, otherwise

The following lemma relates the size of the maximum flow in NH(p) to the
number of deleted edges from G.

Lemma 2. For an input graph G(V,E) to MIN-DEL-MAX, there exists a
flow in NH(p) with value |E| if and only if there are exactly p edges in G whose
deletion leaves a graph G′ with min

Λ∈Γ (G′)
max
u∈V

d+(u) ≤ k′.

Proof. Suppose there exists a flow for the network NH(p) with value |E|. Since
the edge capacities are integers, we can assume that the flow has nonnegative
integral flows in each edge by the integrality theorem (see, e.g., [11]). Let j be
the size of the flow through the vertex r and j ≤ p. We consider those j edges
of the form (r, e), incident to r, through which the flow passes by. Let G′ be
the graph obtained by deleting those edges from G (If j < p, then delete p − j
arbitrary edges from G in order to ensure that exactly p edges are deleted from
G). Then, construct an orientation of G′ as follows. For every edge f = (v, e) in
NH(p) that contributes a unit of flow, where v ∈ V and e ∈ E, orient the edge e
away from v. Since every vertex v ∈ V can have at most k′ flow, max

u∈V
d+(u) ≤ k′

and hence min
Λ∈Γ (G′)

max
u∈V

d+(u) ≤ k′.

Conversely, if there are p edges whose deletion leaves a graph G′ with
min

Λ∈Γ (G′)
max
u∈V

d+(u) ≤ k′, then construct a flow with value |E| as follows. Let

S = E\E(G′) and let Λ be a fixed orientation of G′ that minimizes the maxi-
mum outdegree. For e ∈ S, send one unit of flow from s to r, r to e, e to x, and
then x to t, and the total flow is p. If e /∈ S, then send one unit of flow from
s to v, v to e, e to x, and then x to t, where e is oriented away from v in Λ.
For Λ, max

u∈V
d+(u) ≤ k′ and thus d+(u) ≤ k′, for every u ∈ V . Hence, through

every vertex v ∈ NH(p) that corresponds to v ∈ V , at most k′ units of flow pass,
which is the capacity of the vertex v. In that way, every edge in G contributes
one unit of flow and hence this particular flow of NH(p) has value |E|. ��

By Lemma 2, the minimum number of edges that can be deleted to get a
graph G′ with min

Λ∈Γ (G′)
max
u∈V

d+(u) ≤ k′ is the same as the smallest value of p
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1 pmin 0, pmax E|;
2 repeat
3 p

|

�(pmin + pmax)/2�;
4 Construct NH(p) and let f be the value of the maximum flow of NH(p) ;
5 if f = |E| then
6 pmax p;
7 else
8 pmin p;
9 end

10 until pmin ≥ pmax;
11 Output p and halt;

Fig. 2. The algorithm for MIN-DEL-MAX on unweighted graphs

such that there exists a flow in NH(p) of value |E|. A binary search on p will
give the minimum value of p for which there exists a flow of size |E| in NH(p).
The algorithm’s pseudocode is listed in Fig. 2.

As for p-DEL-MAX, given an undirected graph G(V,E) with k =
min

Λ∈Γ (G)
max
u∈V

d+(u), build the directed graph NH = NG[V ∪ E ∪ {s, r, x, t}]. For

any positive integer �, let NH(�) = (V (NH), E(NH), cap) be the flow network
obtained by augmenting NH with edge capacities cap, where:

cap(a) =

⎧
⎪⎪⎨
⎪⎪⎩

�, if a = (s, v) for v ∈ V
p, if a = (s, r)
|E|, if a = (x, t)
1, otherwise

By Lemma 2, the minimum value of the maximum outdegree is the same as
the minimum value of � such that there exists a flow of value |E| in NH(�). Hence,
by an algorithm similar to the one for MIN-DEL-MAX, for any �, 0 ≤ � ≤ k,
we can check whether there is a flow of value |E| and locate the smallest integer
� with this property by a binary search on �.

2.2 Time Complexity of the Algorithms

Let n = |V | and m = |E| for a given graph G = (V,E), and let N = |V (NH)|
and M = |E(NH)|. We note that for the directed graph NH , N = n + m + 4
and M = n + 4m + 2. For MIN-DEL-MAX, the search for p = O(m) can be
carried out using binary search, which takes O(log p) = O(log m) = O(log n)
time since m = O(n2). The maximum flow problem on NH(p) can be solved
in O(MN) time [14], so MIN-DEL-MAX can also be solved in O(m2 log n)
time. Since � = O(n), in a similar way, we can analyze the time complexity of
our algorithms for p-DEL-MAX, MAX-DEL-MIN, and p-DEL-MIN. Thus we
have:
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Theorem 3. For unweighted graphs, MIN-DEL-MAX, p-DEL-MAX, MAX-
DEL-MIN, and p-DEL-MIN can be solved in O(m2 log n) time.

As shown in Theorem 1, MAX-DEL-MIN can be solved in O(nm3/2

log m log2 Δ) time. The above algorithm is faster than it when m = Ω(n2) and
so Δ = Ω(n), that is, the input graph is very dense.

On a similar note, for the directed graph NG, N = |VG| = n(n+1)
2 + 5 and

M = |EG| = n(3n−1)
2 +m+3. For MIN-INS-MIN, the search for p = O(m) can

be carried out using binary search and therefore takes O(log p) = O(log m) =
O(log n) time. The maximum flow problem on NG(p) can be solved in O(MN)
time [14], so MIN-INS-MIN can also be solved in O(n4 log n) time. Using � =
O(m), we can bound the time complexity of our algorithms for p-INS-MIN,
MAX-INS-MAX, and p-INS-MAX in the same way. We obtain:

Theorem 4. For unweighted graphs, MIN-INS-MIN, p-INS-MIN, MAX-
INS-MAX, and p-INS-MAX can be solved in O(n4 log n) time.

3 Edge-Weighted Graphs

For the problems in this paper, we can define corresponding weighted versions.
For the weighted versions of the problems, d+(v) for every vertex v and a fixed
orientation represents the total weight of outgoing edges of v. Each of MIN-
DEL-MAX, MAX-DEL-MIN, MIN-INS-MIN, and MAX-INS-MAX takes
as input a simple undirected edge-weighted graph G = (V,E,w) and the target
maximum/minimum outdegree k′, where the function w assigns a positive integer
(weight) to each edge. Then the objective of these problems is still to optimize
the number of edges to delete/insert. (We do not optimize the total weight
of deleted/inserted edges.) p-DEL-MAX, p-DEL-MIN, p-INS-MIN, and p-
INS-MAX are similarly defined on edge-weighted graphs, where we need to
delete/insert p edges for the problems.

3.1 Polynomial-Time Algorithms for Edge-Weighted Trees

Assuming P �= NP , inapproximability of the weighted versions of the problems
on planar bipartite graphs will be shown in Sect. 3.2. In this section, we design
exact polynomial-time algorithms for some of the problems on weighted trees
which is a representative subclass of planar bipartite graphs.

The important thing here is that we know the optimal costs for MinMaxO
and MaxMinO on edge-weighted trees: For MinMaxO, the maximum outde-
gree of a vertex under any orientation is at least the maximum weight of the
edges. Then, for MaxMinO, the minimum outdegree of a vertex under any ori-
entation is 0, since there exist only n − 1 edges so that at least one of n vertices
cannot have outgoing edges under any orientation. From this observation, an
optimal orientation for edge-weighted trees is to orient all the edges towards
an arbitrarily selected root vertex. Based on these observations, straightforward
discussion gives the following lemma (the proof has been omitted here due to
space limitations):
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Lemma 5. For edge-weighted trees, MAX-DEL-MIN and p-DEL-MIN can be
solved in O(n) time.

In conjunction with the above lemma, we can show the next theorem.
Although the above lemma is obtained as a direct consequence of the known
results for MaxMinO, we need to design more complicated algorithms for MAX-
DEL-MIN, p-DEL-MIN, MIN-INS-MIN, and p-INS-MIN (the proof has been
omitted here due to space limitations).

Theorem 6. For edge-weighted trees, MIN-DEL-MAX, p-DEL-MAX,
MAX-DEL-MIN, p-DEL-MIN, and MIN-INS-MIN are solvable in O(n)
time. Also, p-INS-MIN is solvable in O(n log(wmaxΔ)) time, where wmax is
the maximum weight of edges and Δ is the maximum (unweighted) degree of
vertices.

3.2 Inapproximability for Edge-Weighted Planar Bipartite Graphs

MinMaxO is known to be NP-hard for edge-weighted planar bipartite graphs [5].
This implies the following inapproximability:

Theorem 7. There is no polynomial-time ρ(n)-approximation algorithm for
MIN-DEL-MAX on edge-weighted planar bipartite graphs unless P=NP, where
ρ(n) ≥ 1 is any polynomial-time computable function.

Proof. Suppose for the sake of obtaining a contradiction that there exists a
polynomial-time ρ(n)-approximation algorithm ALG for some polynomial-time
computable function ρ(n) > 1 for MIN-DEL-MAX on edge-weighted planar
bipartite graphs. Then, ALG can find an orientation in a given edge-weighted
graph G in polynomial time such that the objective value ALG(G) satisfies
OPT (G) ≤ ALG(G) ≤ ρ(n) · OPT (G). Therefore, one can distinguish either
OPT (G) > 0 or OPT (G) = 0 in polynomial time using ALG which admits the
approximation ratio of ρ(n), based on the observation that ALG(G) > 0 if and
only if OPT (G) > 0. If OPT (G) = 0, then there is no need to remove any edge to
make the outdegree of every vertex at most k, whereas if OPT (G) ≥ 1, we need
to remove at least one edge. This means that a decision version of MinMaxO
with target value k can be solved in polynomial time, which contradicts the
NP-hardness of MinMaxO on edge-weighted planar bipartite graphs. ��

The inapproximability bound 1.5 of MinMaxO for edge-weighted planar
bipartite graphs gives the next theorem.

Theorem 8. There is no polynomial-time 1.5-approximation algorithm for p-
DEL-MAX on edge-weighted planar bipartite graphs unless P=NP.

Proof. Consider an input planar bipartite graph G of MinMaxO. Add one new
vertex u and one edge {u, v} of weight n·wmax to G for arbitrary v ∈ V (G), where
wmax is the maximum weight of edges in G. Let this new graph be G′, where G′

is also a planar bipartite graph. Observe that for 1-DEL-MAX, this new edge
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should be deleted since otherwise the maximum outdegree is at least nwmax,
which is larger than the total weight of edges in G, and then we need to orient
the edges in G optimally. Namely, if we can approximate 1-DEL-MAX within
a ratio 1.5 for G′ in polynomial-time, it also gives the answer to MinMaxO for
G. This contradicts the inapproximability of MinMaxO, so that 1-DEL-MAX
cannot be approximated within a ratio of 1.5 in polynomial-time. This discussion
can be extended to the case p ≥ 2 by adding p new vertices and p new edges of
weight n · wmax to G. The theorem follows. ��

The NP-hardness and the inapproximability bounds of MaxMinO and Min-
MaxO for edge-weighted planar bipartite graphs [2,4] can be applied in the same
way as Theorems 7 and 8 to obtain the following theorem (the proof has been
omitted here due to space limitations):

Theorem 9. There is no polynomial-time ρ(n)(ρ(n), ρ(n), 2, 1.5, 2, resp.)-
approximation algorithm for MIN-INS-MIN(MAX-INS-MAX, MAX-DEL-
MIN, p-INS-MIN, p-INS-MAX, p-DEL-MIN, resp.) on edge-weighted planar
bipartite graphs unless P=NP, where ρ(n) ≥ 1 is any polynomial-time com-
putable function.

4 Concluding Remarks

We studied eight new graph orientation problems whose objective is to mini-
mize/maximize the outdegree of the vertices after inserting/deleting edges, and
presented polynomial-time algorithms for these problems on unweighted graphs.
Also we showed the polynomial-time inapproximability for those problems on
edge-weighted graphs, and polynomial-time algorithms for six of the problems
were designed on edge-weighted trees. One of the further research topics is to
study the complexity of MAX-INS-MAX and p-INS-MAX on edge-weighted
trees. A natural generalization of MIN-DEL-MAX can be defined as follows:

Input: An unweighted graph G = (V,E) and a mapping ρ that assigns to each
vertex v ∈ V an integer from {0, 1, . . . ,deg(v)}.

Goal: To find the minimum number of edges to delete to get a spanning subgraph
H of G such that d+(u) ≤ ρ(u) for every u ∈ V .

To solve this problem, we can first construct a directed graph NG in the same
way as in Sect. 2. Next, we augment edge capacities and costs to NG to get a flow
network by keeping the capacities and costs same as that of NG for k′ except
the capacities of the directed edges of the form {(s, u) | u ∈ V }. The capacity
of the directed edge (s, u) is defined to be ρ(u) instead of k′, for every u ∈ V .
Then we see that there exists a flow in NG with value |E| if and only if there
are p edges in G whose deletion leaves a graph d+(u) ≤ ρ(u), for every vertex
u ∈ V (G). In other words, the modified problem can be solved in polynomial
time. In fact, both the modified problem and the original MIN-DEL-MAX
have the same time complexity since the directed graphs that we construct in
both cases are the same. We can generalize MIN-INS-MIN, MAX-INS-MAX,
MAX-DEL-MIN in the same way and solve them in polynomial time as well.
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The above problem is a special case of General Factor introduced by
Lovász [12,13], which is defined as

Input: An unweighted graph G = (V,E) and a mapping K that assigns to each
vertex v ∈ V a set K(v) ⊆ {0, 1, . . . ,deg(v)} of integers.

Goal: To check if there is a subgraph H of G s.t. dH(v) ∈ K(v) for every v ∈ V .

General Factor is a generalization of the factor problem, and NP-hard even
for unweighted graphs [9]. Here the extension to the mapping from an integer to
a set of integers makes the problem harder. We conjecture that the analogous
generalizations to the problems in this paper are NP-hard as well.
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Abstract. A k-coloring of a graph is an assignment of integers between 1
and k to vertices in the graph such that the endpoints of each edge receive
different numbers. We study a local variation of the coloring problem,
which imposes further requirements on every set of three vertices: We
are not allowed to use two consecutive numbers for a path on three
vertices, or three consecutive numbers for a cycle on three vertices. Given
a graph G and a positive integer k, the local coloring problem asks for
whether G admits a local k-coloring. We show that it cannot be solved in
subexponential time, unless the Exponential Time Hypothesis fails, and
a new reduction for the NP-hardness of this problem. Our structural
observations behind these reductions are of independent interests. We
close the paper with a short remark on local colorings of perfect graphs.

1 Introduction

Graph coloring, in its original form, asks for an assignment of colors for vertices of
a graph, such that endpoints of every edge receive different colors. It is one of the
most classic and best-known problems in graph theory. Since it nicely formulates
the partition of objects (vertices) subject to conflict constraints (edges), it has
many variations. In the local coloring introduced by Chartrand et al. [1,2], there
are additional requirements on every set of three vertices: We are not allowed to
use two consecutive numbers for a path on three vertices, or three consecutive
numbers for a cycle on three vertices. As usual, we use positive integers for colors.
If all the integers are between 1 and k, then it is called a (local) k-coloring. The
(local) chromatic number of a graph is the smallest k such that it has a (local)
k-coloring.

Although it is an ostensibly naive extension of standard coloring, some sub-
tleties of local coloring deserve attention. First of all, we are not counting the
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number of colors actually assigned (as in standard coloring). A local coloring
usually leaves some gap in between; e.g., the local chromatic number for a trian-
gle is 4, with a local coloring 1, 2, 4 or 1, 3, 4. This even led Chartrand et al. [1] to
ask whether for all positive integer k, there are graphs of local chromatic number
k of which every minimum local coloring uses all the k colors; see also [2].

In standard coloring, a vertex of degree one seldom concerns us: We can
safely remove it, together with the edge incident to it, from the graph, unless it
is the only edge of the graph, when the problem is completely trivial. In general,
we can safely do away with all vertices of degree small than k when looking for
a k-coloring, but this is not the case for local coloring. As shown in Fig. 1, even
removing a vertex of degree-one from a graph may decrease its local chromatic
number.

Fig. 1. The local chromatic number of this graph is 4. But if we delete any of the
degree-one vertices, then its local chromatic number becomes 3, and the only degree-
two vertex has to be colored by 2 in any local 3-coloring. (See Proposition 1.) (Color
figure online)

It is well known that a graph is 2-colorable if and only if it is bipartite. But
we cannot expect such a nice characterization of 3-colorable graphs, at least not
one in the algorithmic sense, because it is NP-hard to decide whether a graph
is 3-colorable [3,6]. The situation is similar for the local coloring problem. By
definition, a graph admitting a local 2-coloring cannot have any path on three
vertices. In other words, its maximum degree is at most one. It is easy to verify
that this necessary condition is also sufficient. Very recently, Li et al. [4] proved
that for any fixed k = 4 or k = 2t − 1 (t ≥ 3), the local k-coloring problem
is NP-complete, and then, Shitov [8] completed the hardness result by showing
that it is NP-complete to decide whether a graph admits a local k-coloring for
any k ≥ 3.

A trivial fact on coloring is that if we add a new vertex to a graph and
make the new vertex adjacent to all the old vertices, then the chromatic number
increases by one. This is not true for local coloring: Such an operation may
increase local chromatic number by one or two. For example, the complete graph
on one, two, and three vertices have local chromatic number one, two, and four,
respectively. Indeed, it is easy to verify that the local chromatic number of a
complete graph on n vertices is � 3n−1

2 � [1].
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Theorem 1. If we add two new vertices to a graph and make them adjacent to
all the old vertices, but they are not adjacent themselves, then the local chromatic
number increases by precisely two.

This result subsumes the main result of Chartrand et al. [1], which gives a
formula on the chromatic number of complete multipartite graphs.

Another consequence of Theorem 1 is a linear reduction from sat to the local
k-coloring problem for any integer k ≥ 3, which implies a better lower bound for
the problem. (To see that the reduction of [8] is not linear, note that it needs
to introduce Θ(k) vertices for each clause—see step 2 of Theorem 12 of [8].)
The Exponential Time Hypothesis (eth) is the standard working hypothesis of
fine-grained complexity, which aims to understand the exact time complexity of
problems and to prove lower bounds. It postulates that the satisfiability problem
with at most three variables per clause (3sat) cannot be solved in 2o(p+q) time,
where p and q denote the number of clauses and variables respectively in the
Boolean formula [5].

Theorem 2. Assume eth, there is no algorithm running in 2o(|V (G)|)nO(1) time
that solves the local coloring problem.

We also present a new reduction for the NP-hardness of the local coloring
problem. Although the fact is already proved by Shitov [8], we believe our new
proof has its own structural interest.

2 Main Results

All graphs discussed in this paper are undirected and simple. The vertex set and
edge set of a graph G are denoted by V (G) and E(G) respectively. By G[S] we
denote the subgraph induced by vertex set S ⊆ V (G), whose vertex set is S, and
whose edge set consists of all edges with both endpoints in S. Given two disjoint
graphs G1 and G2, the join of G1 and G2, denoted by G1 ∨ G2, is obtained by
adding edges connecting every vertex of G1 to every vertex of G2. For a positive
integer t, let It denote the graph on t vertices and with no edges.

A coloring of a graph G is a function c : V (G) → N such that c(u) �= c(v) for
all edges uv ∈ E(G). A local coloring is a function c : V (G) → N such that

max
v∈S

c(v) − min
v∈S

c(v) ≥ |E(G[S])| for all S ⊆ V (G), |S| ≤ 3. (�)

Note that a local coloring is also a valid coloring: The requirement of coloring
corresponds to |S| = 2 in (�). The local chromatic number of a graph G is defined
as

χ�(G) = min
c:local colorings of G

max
v∈V (G)

c(v).

Though the definition bears striking resemblance with the chromatic number of
graphs, some care needs to be taken. In coloring we want to minimize the number
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of colors actually used, while for the local coloring we are concerned about the
largest number. (Therefore, it does not make much sense to talk about how
many colors a local coloring uses.) On the other hand, if the local chromatic
number of graph G is � and if c is a local �-coloring of G, then there must
be vertices receiving � and 1. (Otherwise decreasing every color by 1 gives a
smaller coloring.) Another way to see this is the following fact. Given any local
�-coloring c for G, the assignment c′(v) = � + 1 − c(v) for all v ∈ V (G) is also a
local �-coloring of G. We say that c and c′ are symmetric.

If there exists a vertex of degree two or more, we can find a three-vertex path
or a triangle, which forces us to use at least three colors. Therefore, χ�(G) = 2
if and only if the maximum degree of vertices in G is one (i.e., every component
of G is either an isolated vertex or a single edge). The following is the technical
version of Theorem 1.

Theorem 3. For any graph G and any integer t ≥ 2, we have χ�(G ∨ It) =
χ�(G) + 2.

Proof (Proof of Theorem 1). Any local k-coloring c for G can be extended to a
local (k+2)-coloring c′ for G∨It by setting c′(u) = k+2 for all u ∈ It. Therefore,
χ�(G ∨ It) ≤ χ�(G) + 2.

Now suppose that c′ is a local k′-coloring for G ∨ It. Let u1, u2 be any two
vertices in It and let G′ denote the subgraph of G∨It induced by V (G)∪{u1, u2}.
Clearly, c′, when restricted to this vertex set, is also a local k′-coloring of G′.
Let p1 = c′(u1) and p2 = c′(u2) and assume without loss of generality p1 ≤ p2.
Note that c′(v) �∈ {p1, p2} for all v ∈ V (G). We give a local (k′ − 2)-coloring c of
G as follows:

c(v) =

⎧
⎪⎨

⎪⎩

c′(v) − 2 if c′(v) > p2,

c′(v) − 1 if p1 < c′(v) < p2,

c′(v) if c′(v) < p1.

We now argue that c satisfies (�). Let X ⊆ V (G) and |X| ≤ 3. Denote by
V1 = {v ∈ V (G) : c′(v) < p1}, V2 = {v ∈ V (G) : p1 < c′(v) < p2}, and
V3 = {v ∈ V (G) : c′(v) > p2}, respectively. They form a partition of V (G), and
note that some of the three parts may be empty. If X ⊆ Vi for some i ∈ {1, 2, 3},
then maxv∈X c(v)−minv∈X c(v) = maxv∈X c′(v)−minv∈X c′(v). In the rest, we
may assume otherwise. In other words, at least one of the following is true:

min
v∈X

c′(v) < p1 < max
v∈X

c′(v), min
v∈X

c′(v) < p2 < max
v∈X

c′(v). (1)

Note that if p1 = p2, then |c′(v)−p1| ≥ 2 for all v ∈ v(G). Therefore, through
some simple calculations, we always have

c′(y) − c′(x) ≥

⎧
⎪⎨

⎪⎩

3 if x ∈ V1, y ∈ V3,

2 if x ∈ V1, y ∈ V2,

2 if x ∈ V2, y ∈ V3.
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As a result, c(x) = c(y) if and only if c′(x) = c′(y), for any two vertices x, y ∈
V (G). Hence, (�) is always satisfied if G[X] has only one edge, and it suffices
to consider set X with at least two edges in G[X]. Such a set necessarily has
three vertices; let them be v1, v2, v3. We may assume without loss of generality
c′(v1) ≤ c′(v2) ≤ c′(v3); note that c(v1) ≤ c(v2) ≤ c(v3) as well.

If c(v1) = c(v2), then v1v2 �∈ E(G), and G[X] is a path, namely v1v3v2. Since
both v1u1v2 and v1u2v2 are paths in G′, it can be inferred that c′(v1) ≤ p1 − 2
when v1, v2 ∈ V1, and c′(v1) ≤ p2 − 2 when v1, v2 ∈ V2. In either case, c(v3) ≥
c(v1) + 2. It is similar when c(v2) = c(v3).

In the rest we assume c(v1) < c(v2) < c(v3); now that c(v3) − c(v1) ≥ 2, it
suffices to consider that G[X] is a triangle.

In the first case, v1 ∈ V1 and v3 ∈ V3. If v2 ∈ V2, then c′(v3)−c′(v1) = c′(v3)−
c′(v2)+ c′(v2)− c′(v1) ≥ 3+3 = 6 because both v1u1v2 and v2u2v3 are triangles
of G′. If v2 ∈ V1, then c′(v3)−c′(v1) = c′(v3)−c′(u1)+c′(u1)−c′(v1) ≥ 2+3 = 5
because v1v2u1 is a triangle of G′. It is similar when v2 ∈ V3. Thus, we can always
conclude c(v3) − c(v1) = c′(v3) − c′(v1) − 2 ≥ 3.

In the final case, X ⊆ V1 ∪ V2 or X ⊆ V2 ∪ V3. Then V2 �= ∅ and p1 < p2. Let
u be the one in u1, u2 such that c′(v1) < c′(u) < c′(v3). Then c′(v3) − c′(v1) =
c′(v3) − c′(u) + c′(u) − c′(v1) ≥ 1 + 3 = 4 because v1v2u and v2v3u are triangles
of G′. Therefore, c(v3) − c(v1) = c′(v3) − c′(v1) − 1 ≥ 3.

This implies χ�(G) ≤ χ�(G ∨ It) − 2, or equivalently χ�(G ∨ It) ≥ χ�(G) + 2.
Therefore, they have to be equal, and the proof is now complete. �

As we have mentioned, χ�(G ∨ It) − χ�(G) may be one or two when t = 1.
Using Theorem 1 inductively, one can easily conclude the following corollary.

Corollary 1. Let H be a complete p-partite graph where each part consists of
at least 2 vertices. For each graph G, it holds χ�(G ∨ H) = χ�(G) + 2p.

Together with the fact that χ�(Kn) = � 3n−1
2 �, where Kn is the complete graph on

n vertices, Corollary 1 gives a simpler proof for the main theorem (Theorem 3.1)
of Chartrand et al. [1].

Proof (Proof of Theorem 2). Consider first k ≥ 3 being odd. We may assume
without loss of generality 3 ≤ k < 2n − 1. Given a nae-3sat [7] formula F ,
we can use the reduction of Shitov [8] to build a graph G such that G is local
3-colorable if and only if F is satisfiable. Let p = (k − 3)/2, and let H be a
complete p-partite graph with 2 vertices in each part. Then G ∨ H is local k-
colorable if and only if F is satisfiable. Note that the reduction of [8] is a linear
reduction, and H has O(|V (G)|) vertices. Therefore, the graph G∨H has a linear
number of vertices. If it can be solved in 2o(|V (G∨H)|)nO(1) time, then we can
use it to solve nae-3sat in 2o(a+b)aO(1) time, where a and b denote the number
of variables and clauses in F . However, this contradicts eth because of a trivial
linear reduction from 3sat to nae-3sat.

The reduction for even k ≥ 4 is similar: We may start from using the linear
reduction from nae-3sat to local 4-coloring by Shitov [8] and proceed similarly
as above with p = (k − 4)/2. Now the proof is finished. �
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The following Lemma shows a property of an optimal local coloring for a
complete p-partite graph, in which each part has size at least two.1

Lemma 1 ([1]). Let G be a complete p-partite graph where each part consists of
at least 2 vertices. Then χ�(G) = 2p − 1. Moreover, any local (2p − 1)-coloring
of G must assign the same color to all vertices in the same part.

One may ask whether a similar statement as the second part of Lemma 1
holds for Corollary 1. As shown by the simplest example, G being a single vertex
and p = 1, it does not. (See Fig. 2a for another example.) To have a similar
conclusion, we need to have at least three vertices in each part. Let Z(p, q)
denote the graph obtained from a complete p-partite graph, where each part has
q vertices, by adding an edge between two arbitrary vertices in the pth part. We
call the last part the anchor of Z(p, q), and the endpoints of the additional edge
its balancers. See Fig. 2 for Z(2, 2) and Z(3, 3).

41

2 3

(a)

b1 b2

(b)

Fig. 2. (a) Graph Z(2, 2), with a local 4-coloring in which vertices in the first part
receive different colors. (b) Graph Z(3, 3), with balancers b1 and b2, has local chromatic
number 6. If we remove the edge between b1 and b2, we obtain K3,3,3, whose local
chromatic number is 5. (Color figure online)

Lemma 2. Let p, q ≥ 2 be two integers. Then χ�(Z(p, q)) = 2p. Moreover, if
q ≥ 3, then in any local 2p-coloring of Z(p, q),

(1) all vertices in the last part receive colors 2i−1 or 2i for some 1 ≤ i ≤ p; and
(2) all vertices of each of the other parts receive the same color.

Proof. We show first χ� (Z(p, q)) > 2p − 1. Denote by x1, x2 the balancers of
Z(p, q). Note that removing the edge between them leaves a complete p-partite
graph, of which each part has size q; let G′ = Z(p, q) − x1x2. Suppose that
c is a local (2p − 1)-coloring of Z(p, q). Since local colorings are monotone, c
is also a local (2p − 1)-coloring of G′ as well. By Lemma 1, all vertices in the
anchor part of Z(p, q), including both balancers, receive the same color in c, i.e.,

1 Chartrand et al. [1] stated the first part as Theorem 2.4, and mentioned the second
part immediately after the proof of this theorem.
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c(x1) = c(x2), which is impossible. To furnish a local 2p-coloring for Z(p, q), it
suffices to take a local (2p − 3)-coloring for other vertices than the anchor, as
specified in Lemma 1, and then assign 2p to x1, and 2p − 1 to all other vertices
in the anchor (including x2).

We use induction to prove the second assertion of the lemma. It is easy to
verify that in the base case p = 2, we have essentially only two local 4-colorings.
Either assign 3 and 4 to vertices in the anchor and 1 to all other vertices, or the
symmetric way. The conditions hold true for both of them. Now suppose that
they hold true for p, we consider G = Z(p + 1, q). By the first assertion, there
must be a local (2p + 2)-coloring c for G. Note that c(x) = 2p + 2 for at least
one vertex x.

If x is not from the anchor, then there must be another vertex x′ �= x such
that c(x′) = 2p+2; otherwise G−x, which contains Z(p+1, q−1) as a subgraph,
can be locally colored by 2p + 1 colors, contradicting the first assertion. Since
there cannot be an edge between x and x′, they have to be from the same part;
let X denote all vertices from this part. As a result, no vertex from another
part, which is adjacent to both x and x′, can be colored 2p + 1 or 2p + 2. In
other words, the coloring c, restricted to V (G) \ X, is a local 2p-coloring for the
subgraph G−X, which is Z(p, q). By inductive hypothesis, this coloring satisfies
both conditions. Thus, it remains to show that all vertices in X receives 2p + 2.
Either (i) the two balancers receive 2p − 1 and 2p respectively; or (ii) vertices
in a whole part (different from X and the anchor) receive 2p. In either case,
vertices of X have to be colored 2p + 2.

Now that x is from the anchor, all vertices that receive 2p+2 are also from this
part. We argue first that one of the balancers receives color 2p + 2. Otherwise,
G−{v : c(v) = 2p+2} contains both balances and at least two vertices from each
other part, and hence contains Z(p + 1, 2) as a subgraph, but it admits a local
(2p + 1)-coloring, contradicting the first assertion. In the rest we may assume
that x is a balancer; note that c(y) �= 2p + 2, where y is the other balancer.

Case 1, two or more vertices in the anchor receive a color different from 2p+2.
Note that G − {v : c(v) = 2p + 2} contains a complete (p + 1)-partite graph of
which each part contains at least two vertices, and restricting c to it gives a local
(2p + 1)-coloring. By Lemma 1, vertices in each part have to receive the same
color. In particular, 2p+1 has to be assigned to the other vertices in the anchor,
because x is adjacent to all vertices not in this part.

Case 2, all vertices but y in the anchor receive 2p + 2. It remains to show that
c(y) = 2p+1. Suppose for contradiction that c(y) ≤ 2p. We can find a subgraph
Z(p, q) as follows. First, delete all other vertices in the anchor. Second, choose
an arbitrary part that is no the anchor, delete one vertex from this part, and let
X denote the rest vertices in this part. Third, delete all but one edge between
y and X. The remaining graph is a Z(p, q) with X ∪ {y} as the anchor. The
coloring c restricted to it is a local 2p-coloring for this subgraph, and it satisfy
condition (1) by inductive hypothesis; recall that 2p + 1 is forbidden to assign
to vertices not in the anchor. But then |c(y) − c(v)| ≤ 1 for all v ∈ X, which is
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4 4 4

4

4 4 4

4

4 4 4

3

1 2 3

2 2
1

2 2
1 1

2 2

Fig. 3. Illustration for the reduction used in Lemma 3. The graph G, with three vertices
and two edges, is shown at the bottom. The n copies of Z(2, 3) are in the middle, and
vertices x, y, and z at the top. The whole graph with all vertices is G′. The numbers,
which indicate the colors, are both a local 4-coloring for G′ and a valid local 3-coloring
for G. (Color figure online)

impossible. Therefore, we can conclude c(y) = 2p + 1, and condition (2) holds
following from Lemma 1, applied to G − {v : c(v) ≥ 2p + 1}. This concludes the
proof. �

Lemma 2 allows us, among others, to derive a linear reduction from the local
3-coloring problem to the local 4-coloring problem (Fig. 3).

Lemma 3. There is a linear reduction from the local 3-coloring problem to the
local 4-coloring problem.

3 Local 3-Coloring

We give an alternative reduction for the local 3-coloring problem, from the pos-
itive one-in-three sat problem. The input of the positive one-in-three sat prob-
lem consists of a set X of variables, and a cnf formula, of which each clause
contains exactly three positive literals. The task of the problem is to find an
assignment such that each clause has exactly one true literal, and two false liter-
als. The NP-hardness of positive one-in-three sat follows from the general result
of Schaefer [7].

We will need the following simple fact on local 3-coloring of graphs.

Proposition 1. Let c be a local 3-coloring of a graph G and v ∈ V (G). If
c(v) = 2, then d(v) ≤ 2.

Proof. Suppose for contradiction that c(v) = 2 but d(v) ≥ 3. Then c(u) ∈ {1, 3}
for all u ∈ N(v), and we can find two vertices from N(v) that both receive
1 or both receive 3. But these two vertices induce a path or cycle with v, a
contradiction to (�). �

We introduce two gadgets, H(x, y, z) and F (a); see Fig. 4. The first gadget
ensures that the three degree-four vertices cannot receive the same color in a
local 3-coloring.
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x

y z

vx,y,1
vx,y,2

vy,x,1
vy,x,2

(a)

c1

b1

c2

b2

c3

b3

a

(b)

Fig. 4. Gadgets (a) H(x, y, z) and (b) F (a). (Color figure online)

Proposition 2. The gadget H(x, y, z) is local 3-colorable, and any local 3-
coloring c of H(x, y, z) satisfies {c(x), c(y), c(z)} = {1, 3}.
Proof. Since Proposition 1, either of x, y and z can be colored by only 1 or
3. Denote by va,b,1 and va,b,2 the two neighbors of a on the paths from a to b
avoiding c, for distinct a, b, c ∈ {x, y, z}, where, va,b,ivb,a,i is an edge of H(x, y, z)
for i = 1, 2. For contrary, c(x), c(y) and c(z) are the same. Assume without loss
of generality, let c(x) = c(y) = c(z) = 1. Then one of vx,y,1 and vx,y,2 is colored
by 2: Otherwise, they are both colored by 3, and then the two neighbors vy,x,1

and vy,x,2 of y should be colored by 2, whereas {vy,x,1, vy,x,2, y} induces a P3

contradicting (�). For the same reason, one of vx,z,1 and vx,z,2 will be colored by
2. However, two neighbors of x are colored by 2, a contrary.

Now it is sufficient to give a local 3-colorable c for H(x, y, z). We first color
x, y, z by colors 1, 3, 3 respectively, and then color vx,y,1, vx,y,2, vx,z,1, vx,z,2 by
color 3, and vy,x,1, vy,x,2, vz,x,1, vz,x,2, vy,z,2, vz,y,1 by color 1. In the end, we color
vy,z,1 and vz,y,2 by color 2. It is easy to check that every edge of H(x, y, z) is
properly colored. Since there is no triangle in H(x, y, z), we have to consider
the coloring for P3’s in it. If all vertices in a P3 receive only colors 1 and 3,
then it trivially satisfies (�). Now some vertex in a P3 is colored by 2. As the
coloring above, the two vertices, which receive color 2, have distance at least
3 in H(x, y, z). Thus, no P3 can contain both of them. Therefore, by a quick
inspection on the P3’s receiving color 2, the other two vertices of any such a P3

are colored by 1 and 3. Now we have that H(x, y, z) is local 3-colorable. �
The second gadget, being bipartite, is trivially local 3-colorable. Here we are

interested in a special local 3-coloring.

Proposition 3. There is a local 3-coloring for F (a) such that (1) for each i =
1, 2, 3, the two degree-one neighbors of ci receive the same color; and (2) the
six degree-one vertices receive two different colors. Moreover, in such a local
3-coloring, precisely two of the six vertices receive the same color as vertex a.

Proof. To prove the statement, we only have to show such a local 3-coloring c
for F (a). By Proposition 1, either of c(a) and c(ci) is in {1, 3} for i = 1, 2, 3. Let
Di be the set of the two degree-one neighbors of ci. Then for p ∈ {1, 3}, we have
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c(v) =

⎧
⎪⎨

⎪⎩

p if v ∈ {a, c2, c3} ∪ D1,

4 − p if v ∈ {b2, b3, c1} ∪ D2 ∪ D3,

2 otherwise (i.e., v = b1).

Through a quick check on F (a), we know that every edge in F (a) is properly
colored. Since no triangle contains in F (a), considering the coloring of P3’s in
F (a) is sufficient. If a P3 receives only colors 1 and 3, then it trivially satisfies
(�). Hence, let X be a P3 containing a vertex colored by 2. By the coloring c,
X contains b1. If b1 is degree-one in X, then X contains an edge colored by p
and 4− p; otherwise, the two neighbors of b1 are colored by p and 4− p. In both
case, X satisfies (�). Thus, c is a local coloring.

For (1), it is trivially satisfied. For (2), the colors for D1,D2 and D3 are
p, 4 − p, 4 − p respectively, and only the two vertices in D1 receive the color of
a. Now, the proof is completed. �

1 1 1

3

3 1 1 13 1 1 13 1 1 13 1 1 1

aC1 aC2 aC3

bC1 bC2 dC2 dC3
cC1 cC3

1 3 3 1 3 3 1 3 3

Fig. 5. A reduction from (X, C) to (G, 3), where X = {a, b, c, d}, and C = {C1 =
(a, b, c), C2 = (a, b, d), C3 = (a, c, d)}. The whole graph is G, for which a local 3-coloring
is indicated by colors, where red, green and grey indicate colors 1, 3 and 2 respectively.
(Color figure online)

Let (X, C) be an instance of the positive one-in-three sat problem. An
instance G of the local 3-coloring problem is created as follows. (1) For each
clause C = (x, y, z) ∈ C, we make gadgets HC = H(xC , yC , zC) and F (vC). (2)
For each variable x ∈ X, we make a Jx = I2. (3) Let Vx denote the vertex set
containing all xC in G, for C ∈ C and x ∈ X. We join Jx and Vx, i.e., connect
every vertex in Jx to every vertex in Vx. (4) For every C = (x, y, z) ∈ C, let
D1,D2 and D3 denote a partition of degree-one vertices in F (vC), where for
i = 1, 2, 3, Di contains two degree-one vertices sharing a common neighbor, and
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Di is called a bottom of F (vC). We join D1 and Jx, D2 and Jy, and D3 and Jz.
(5) In the end, we make a new vertex g, and connect g to every vC for C ∈ C.
See Fig. 5 for example.

Let |X| = n and |C| = m. Since |V (F (a))| = 13 and |V (H(a, b, c))| = 9, we
have |V (G)| = 1 + (13 + 9) ∗ m + 2n = 21m + 2n + 1. Since |E(F (a))| = 12 and
|E(H(a, b, c))| = 18, we have |E(G)| = 3 + (12 + 18) ∗ m + 3 ∗ 2 ∗ 3m = 48m + 3.
Therefore, the reduction can be done in linear time.

Lemma 4. The instance (X, C) is yes if and only if G is local 3-colorable.

4 Concluding Remarks

Let χ(G) and ω(G) denote, respectively, the chromatic number and the size of
maximum cliques of a graph G. A trivial fact is

χ(G) ≥ ω(G) (2)

for all graphs G. Actually, the study of graphs on which they are equal led to the
fruitful perfect graph theory. Recall that a graph G is perfect if χ(H) = ω(H)
for all induced subgraphs H of G. A natural question can be raised on the local
chromatic number of perfect graphs. One can easily generalize (2) to

χ�(G) ≥ χ�(Kω(G)). (3)

However, they are not always equal on perfect graphs, e.g., consider the graph
obtained by deleting one edge from K5.

On the algorithmic aspect, the chromatic number of perfect graphs can be
computed in polynomial time. But we conjecture that the local chromatic num-
ber of perfect graphs is NP-hard. Actually, the computation of local chromatic
number of split graphs, one of the simplest subclass of perfect graphs, is already
nontrivial. Recall that a graph is a split graph if its vertices can be (not neces-
sarily uniquely) partitioned into a clique and an independent set. The following
is easy to verify.

Proposition 4. Let G be a split graph. Then χ�(G) = χ�(Kω(G)) or
χ�(Kω(G)) + 1.

But to decide which one is the case is equivalent to the following variation of the
hitting set problem: Notice that if a problem is NP-hard on split graphs, then it
is NP-hard on perfect graphs.

Given a family S1, . . . , Sp of subsets of U , is there a set of disjoint pairs in
U such that Si contains at least one of the pairs for all i = 1, . . . , p?
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Abstract. It is established that secure computation can be achieved by
using a deck of physical cards. Almost all existing card-based protocols
are based on a specific deck of cards. In this study, we design card-based
protocols that are executable using any deck of cards (e.g., playing cards,
UNO, and trading cards). Specifically, we construct a card-based protocol
for any Boolean function based on any deck of cards. As corollaries of our
result, a standard deck of playing cards (having 52 cards) enables secure
computation of any 22-variable Boolean function, and UNO (having 112
cards) enables secure computation of any 53-variable Boolean function.

Keywords: Secure computation · Card-based protocols ·
Playing cards

1 Introduction

Secure computation enables parties having secret inputs to compute a joint func-
tion of their inputs without revealing information about the inputs that is not
trivially revealed by knowing the output. It is established that secure computa-
tion can be achieved by using a deck of physical cards; this is known as card-based
cryptography (e.g., [1,2,5]). Card-based protocols enable participants, including
those unfamiliar with mathematics, to be convinced about the correctness and
security of their computations. In this study, we design card-based protocols
based on general decks of cards; almost all the existing protocols are based on a
specific deck of cards such as a two-colored deck consisting of two types of cards:
♣ and ♥ . We refer to this two-colored deck as a deck of binary cards.

1.1 A Deck of Binary Cards

A deck of binary cards consists of a finite number of cards whose faces display
either ♣ or ♥ and the backs display an identical symbol ? . All cards with an
identical symbol are indistinguishable. The following encoding rule is used:
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♣ ♥ = 0 , ♥ ♣ = 1.

Two face-down cards ? ? representing a bit x ∈ {0, 1} is referred to as a
commitment to x. Given a collection of input commitments to x1, x2, · · · , xn ∈
{0, 1}, a card-based protocol for a function f : {0, 1}n → {0, 1} generates a
commitment to the output value f(x1, x2, · · · , xn) as follows:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x3

· · · ? ?
︸ ︷︷ ︸

xn

→ ? ?
︸ ︷︷ ︸

f(x1,x2,··· ,xn)

.

The first card-based protocol is the five-card trick proposed by den Boer
[2]. It is an AND protocol using a deck of five cards ♣ ♣ ♥ ♥ ♥ ; it reveals
the output value directly1 rather than generating a commitment to the output
value. Mizuki and Sone [5] showed that every Boolean function can be securely
computed in a finite runtime by using a deck of binary cards; they constructed
a six-card AND, a four-card XOR, and a six-card COPY protocols; these are
state-of-the-art finite-runtime protocols under the condition that shuffles used
in a protocol are random cut and/or random bisection cut ; these shuffles are
known to be physically implementable [8]. Whereas they did not consider the
actual number of cards, Nishida et al. [7] showed that any n-variable Boolean
function can be securely computed by using a deck of 2n + 6 binary cards.

1.2 A Deck of Playing Cards

Whereas almost all existing protocols are based on a deck of binary cards, there
are certain exceptions [4,6]. Niemi and Renvall [6] and Mizuki [4] constructed
card-based protocols based on a standard deck of playing cards, where all the
cards are distinguishable while their backs display an identical symbol ? . By
creating a total order on the set of 52 cards, we can assume that a standard deck
of playing cards is of the following form: 1 2 3 4 5 6 · · · 52. The encoding
rule is as follows: i j = 0 , j i = 1 , where i, j are integers such that i < j.
A commitment to x is defined by a pair of face-down cards with the encoding
rule and denoted by [x]{i,j}; here, {i, j} is called the base of the commitment.
Following the encoding rule, Niemi and Renvall [6] showed that any Boolean
function can be securely computed by a Las-Vegas protocol. Mizuki [4] showed
that it can be achieved by a finite-runtime protocol. Specifically, Mizuki [4] con-
structed an eight-card AND, a four-card XOR, and a six-card COPY protocols.
Note that the eight-card AND protocol requires two more cards than the binary
card protocol.

1.3 This Work: Any Deck of Cards

In this study, we design card-based protocols based on various decks of cards.
Specifically, our protocols are operable on all decks in a certain class of decks:
majority-free decks. Majority-free decks satisfy the following properties:
1 This type of protocols is called non-committed format. Meanwhile, the other type of

protocols, where the output is not revealed, is called committed format. We focus on
committed format protocols throughout this paper.
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1. It consists of a finite number of cards.
2. The backs of all the cards in the deck have an identical symbol.
3. For each symbol on the faces, the number of cards having the symbol does

not exceed half of the total number of cards in the deck.

The third condition is necessary in order to use the two-cards-per-bit encoding. It
excludes the following type of decks: 1 2 1 1 1 1 . In the above-mentioned
deck, whereas a commitment whose base is {1, 2} can be created, the remaining
four cards are ineffective. The third condition guarantees that we can create k
commitments for 2k cards.

We then classify the class of majority-free decks into the following three types
according to the symbols on the faces:

Type-0 A deck in which all the symbols are distinct.
Type-1 A deck in which all the symbols are distinct except for a single symbol,

wherein two or more cards display this symbol.
Type-2 A deck that is neither type-0 nor type-1, i.e., a deck in which there exist

two or more symbols, each of which are displayed by two or more cards.

A majority-free deck of binary cards, whose number of cards is at least four,
is a type-2 deck because ♣ and ♥ are two such symbols. A standard deck
of playing cards is a type-0 deck because all the cards are distinct. A deck of
playing cards with two jokers whose faces are identical is a canonical example of
a type-1 deck because two jokers are the exception. A deck of UNO is a type-2
deck because 1 with green and 2 with green are two such symbols. A deck of
trading cards (e.g., “Pokémon Trading Card Game”) might be any type of deck
of cards.

1.4 Our Result

In this study, we construct a card-based protocol for any Boolean function based
on any majority-free deck of cards. Our result is summarized by Theorem 1:

Theorem 1. Let f be any n-variable Boolean function. Then, for any i ∈
{0, 1, 2}, we can securely compute f using a type-i majority-free deck of 2n+8−i
cards.

Table 1 presents a comparison between the previous work by Nishida et al. [7] and
our work. It is noteworthy that our result shows that any type-2 deck provides
a protocol for any function as efficient (in terms of the number of cards) as the
deck of binary cards.

Our result also implies the following corollaries:

– The standard deck of playing cards (having 52 cards), which is a type-0 deck,
enables secure computation of any 22-variable Boolean function.

– A deck of playing cards with a pair of jokers and a spare card (55 cards
in total), which is a type-1 deck, enables secure computation of any 24-variable
Boolean function.

– A deck of UNO (having 112 cards), which is a type-2 deck, enables secure
computation of any 53-variable Boolean function.
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Table 1. A comparison between our work and the existing work

Type of deck # of cards

Nishida et al. [7] binary (type-2) 2n + 6

Nishida et al. [7] & Mizuki [4] type-0 2n + 8

Ours type-1 2n + 7

Ours type-2 2n + 6

1.5 Related Works

Koch et al. [3] showed the effectiveness of non-uniform and/or non-closed shuf-
fles by constructing a four-card Las-Vegas AND protocol and a five-card finite-
runtime AND protocol using them. In contrast, we focus on constructing proto-
cols using uniform and closed shuffles, specifically, a random bisection cut. This
is because it can be conveniently implemented manually [8].

2 Preliminaries

In this section, we review a few existing protocols and define fundamental nota-
tions. In Sect. 2.1, we introduce a random bisection cut, which is a shuffle oper-
ation used in existing and our protocols. In Sects. 2.2 and 2.3, we introduce an
XOR protocol [5] and an input-preserving AND protocol [7]. Although they are
assumed to be used with a deck of binary cards, we will use them for various
decks of cards in our protocols. In Sect. 2.4, we define a few notations for various
decks of cards.

2.1 Random Bisection Cut

A random bisection cut is a shuffle operation, which can be applied to a sequence
of 2k cards for any integer k. Given 2k cards, it first bisects the sequence of 2k
cards into two sequences of k cards: A and B:

1

?
2

?
3

?
4

? · · ·
2k−1

?
2k

? →
1

?
2

? · · ·
k

?
︸ ︷︷ ︸

A

k+1

?
k+2

? · · ·
2k

?
︸ ︷︷ ︸

B

,

and then switches them randomly. Each case occurs with a probability of 1/2:

1

?
2

? · · ·
k

?
︸ ︷︷ ︸

A

k+1

?
k+2

? · · ·
2k

?
︸ ︷︷ ︸

B

or
k+1

?
k+2

? · · ·
2k

?
︸ ︷︷ ︸

B

1

?
2

? · · ·
k

?
︸ ︷︷ ︸

A

.

We require that nobody can learn which case will occur. Ueda et al. [8] demon-
strated that a random bisection cut is implementable physically.
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2.2 Existing XOR Protocol

Using a deck of binary cards, Mizuki and Sone [5] constructed a four-card XOR
protocol and a six-card AND protocol. The four-card XOR protocol accepts two
commitments to x1, x2 ∈ {0, 1} as inputs and outputs a commitment to the
XOR value x1 ⊕ x2 as follows:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

→ ♣ ♥
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

x1⊕x2

.

We use a modified version of the protocol: a six-card XOR protocol; it accepts
three commitments to x1, x2, x3 ∈ {0, 1} as inputs and outputs two commitments
to x1 ⊕ x2 and x1 ⊕ x3 as follows:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x3

→ ♣ ♥
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

x1⊕x2

? ?
︸ ︷︷ ︸

x1⊕x3

.

The four-card XOR protocol is immediately obtained from the six-card XOR
protocol by omitting the rightmost two cards. The construction of the XOR
protocol is omitted due to the page limitation.

2.3 Existing Input-Preserving and Protocol

Using a deck of binary cards, Mizuki and Sone [5] constructed a six-card AND
protocol; it accepts two commitments to x1, x2 ∈ {0, 1} as inputs and outputs a
commitment to the AND value x1x2. Nishida et al. [7] improved it to a six-card
input-preserving AND (hereafter, IP-AND) protocol; it outputs a commitment
to the AND value x1x2 together with the input commitment to x2 as follows:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

0

→ ♣ ♥ ? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x1x2

.

The construction of the IP-AND protocol is omitted due to the page limitation.

2.4 Notations for Various Decks of Cards

Without loss of generality, we can assume that each card has a natural number
on the face as follows:

1 2 3 4 5 6 · · · n .

As in [4], a commitment to x ∈ {0, 1} of base {i, j} is denoted by

? ?
︸ ︷︷ ︸

[x]{i,j}

.
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When we do not consider the base of the commitment, we denote it by

? ?
︸ ︷︷ ︸

x

.

For any type-2 deck of cards, we assume that each of the numbers of 1 and 2
is at least 2 and call the base {1, 2} a special base of type-2. Similarly, for any
type-1 deck of cards, we assume that the number of 1 is at least 2 and call
the base containing 1 a special base of type-1. Unlike the type-2 case, the other
card of a special base of type-1 is arbitrary. For any type-i deck, i ∈ {1, 2}, a
commitment having a special base is denoted by

? ?
︸ ︷︷ ︸

[x]†

.

We note that we can create at least two commitments having a special base
because type-2 decks contain two pairs of 1 2 , and type-1 decks contain two
1 . Although the dagger † is inconsequential for a type-0 deck, we use the
notation [·]† even for a type-0 deck in order to express type-0/1/2 commitments
simultaneously.

We denote a face-up card by ∗ when we do not care about the face-up
symbol of the card. For example, a sequence of face-up cards 1 3 4 5 can be
denoted by

1 ∗ ∗ ∗ .

Here, the special card 1 is explicitly written.

3 Our Input-Preserving and Protocol

In this section, our IP-AND protocol is presented. The key primitive is an opaque
commitment pair (OC pair) introduced by Mizuki [4]. In Sect. 3.1, an OC pair is
introduced. In Sect. 3.2, we present a new technique for producing an OC pair.
In Sect. 3.3, we present our construction.

3.1 Opaque Commitment Pair

We first explain why a straight-forward application of the existing IP-AND pro-
tocol is ineffective for a general deck of cards. Suppose that the following sequence
is input to the existing IP-AND protocol:

? ?
︸ ︷︷ ︸

[x1]{1,2}

? ?
︸ ︷︷ ︸

[x2]{3,4}

? ?
︸ ︷︷ ︸

[0]{5,6}

.

In the last step of the protocol [7] (Sect. 2.1: Improved AND Protocol), the
commitment to x1x2 is turned over, and it reveals whether the base of the
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commitment is {3, 4} or {5, 6}. The former case implies that x1x2 = x2, and
the latter case implies that x1x2 = 0; these imply that x1 = 1 and x1 = 0,
respectively. Therefore, the secret input x1 is revealed publicly.

Mizuki [4] solved the above problem by producing an OC pair, which is a pair
of commitments of two bases such that it is unknown as to which commitment
is of which base. For example, we apply a random bisection cut to a pair of two
commitments of bases {1, 2} and {3, 4} as follows:

? ?
︸ ︷︷ ︸

[x]{1,2}

? ?
︸ ︷︷ ︸

[x]{3,4}

→
[

? ?
∣

∣

∣ ? ?
]

→ ? ?
︸ ︷︷ ︸

x

? ?
︸ ︷︷ ︸

x

;

Then, the pair becomes an OC pair because it is unknown as to which com-
mitment is of base {1, 2}. We denote the above commitment by [x]{1,2},{3,4}.
Mizuki’s technical idea is to use an OC pair [x2]{3,4},{5,6} and [0]{3,4},{5,6} rather
than [x2]{3,4} and [0]{5,6}. Now, the existing IP-AND protocol is effective because
the (revealed) base of the commitment to x1x2 is independent of the secret
input x1.

We call a protocol for producing an OC pair of (x, 0) from a commitment to
x an OC pair generation. Mizuki’s OC pair generation for type-0 decks proceeds
as follows:

1. Place six cards as follows:

? ?
︸ ︷︷ ︸

[x]{5,6}

1 2 3 4 → ? ?
︸ ︷︷ ︸

[x]{5,6}

? ?
︸ ︷︷ ︸

[0]{1,2}

? ?
︸ ︷︷ ︸

[0]{3,4}

.

2. Apply a random bisection cut to the rightmost four cards; then, we have an
opaque commitment pair to two 0s as follows:

? ?
︸ ︷︷ ︸

[x]{5,6}

? ?
︸ ︷︷ ︸

[0]{1,2},{3,4}

? ?
︸ ︷︷ ︸

[0]{1,2},{3,4}

.

3. Apply the four-card XOR protocol (Sect. 2.2); then, we have an OC pair of
(x, 0):

5 6 ? ?
︸ ︷︷ ︸

[x]{1,2},{3,4}

? ?
︸ ︷︷ ︸

[0]{1,2},{3,4}

.

For type-2 decks, an OC pair is not required when the input commitment
has the special base {1, 2} and two cards 1 2 are free. We regard the following
trivial protocol as an OC pair generation for type-2 decks:

1. Place four cards as follows:

? ?
︸ ︷︷ ︸

[x]{1,2}

1 2 .
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2. Turning over the face-up cards, we have

? ?
︸ ︷︷ ︸

[x]{1,2}

? ?
︸ ︷︷ ︸

[0]{1,2}

.

Now, we have OC pair generations for type-0 and type-2 decks. In the next
section, we present a new technique of OC pair generation for type-1 decks.

3.2 New Technique of Opaque Commitment Pair Generation

In this section, we present a new technique of OC pair generation for type-
1 decks. It produces an opaque commitment pair [x]{1,2},{1,3} and [0]{1,2},{1,3}

from a commitment [x]{1,∗} with three free cards 1 2 3 . The key observation
is that the left card of the commitment [0]{1,2},{1,3} is always 1 . It proceeds as
follows:

1. Place a commitment to x with three cards as follows:

? ?
︸ ︷︷ ︸

[x]{1,∗}

1 2 3 .

2. Turn over all the face-up cards; then, apply a random bisection cut to the
rightmost two cards:

? ?
︸ ︷︷ ︸

[x]{1,∗}

?
[

?
∣

∣

∣ ?
]

.

3. Apply the four-card XOR protocol (Sect. 2.2) to the first and second commit-
ments; then, we have

1 ∗ ? ?
︸ ︷︷ ︸

[x]{1,2},{1,3}

? .

4. Rearrange the order of the sequence according to a permutation (1 3)(2 5 4):

1 ∗ ? ?
︸ ︷︷ ︸

[x]{1,2},{1,3}

? → ? ?
︸ ︷︷ ︸

[x]{1,2},{1,3}

1 ? ∗ .

5. Turn over 1 ; then, we have an opaque commitment pair:

? ?
︸ ︷︷ ︸

[x]{1,2},{1,3}

? ?
︸ ︷︷ ︸

[0]{1,2},{1,3}

∗ .

We denote an OC pair by [x]OC and [0]OC. For type-0 decks, it comprises
[x]{1,2},{3,4} and [0]{1,2},{3,4}. For type-1 decks, it comprises [x]{1,2},{1,3} and
[0]{1,2},{1,3}. For type-2 decks, it comprises [x]{1,2} and [0]{1,2}.
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3.3 Description of Our Input-Preserving AND protocol

In this section, we construct a new IP-AND protocol by our OC pair generation
technique. It proceeds as follows:

1. Place two commitments to x1, x2 with free cards as follows:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

[x2]†

∗ · · · ∗
︸ ︷︷ ︸

free cards

,

where the free cards are as follows:

type-2 : 1 2 type-1 : 1 ∗ ∗ type-0 : ∗ ∗ ∗ ∗ .

2. Apply the OC pair generation technique to the commitment to x2 with the
free cards; then, we have

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

[x2]OC

? ?
︸ ︷︷ ︸

[0]OC

∗ · · · ∗
︸ ︷︷ ︸

free cards

,

where the OC pair is as follows:
– type-2 : {1, 2}
– type-1 : {1, 2}, {1, 3}
– type-0 : {1, 2}, {3, 4}

and the free cards are as follows:

type-2 : none type-1 : ∗ type-0 : ∗ ∗ .

3. Apply the existing IP-AND protocol to the leftmost six cards; then, we have

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

[x1x2]†

∗ · · · ∗
︸ ︷︷ ︸

free cards

,

where the free cards are as follows:

type-2 : 1 2 type-1 : 1 ∗ ∗ type-0 : ∗ ∗ ∗ ∗ .

4 Our Protocol for Any Boolean Function

In this section, we construct a protocol for any n-variable Boolean function using
any type-i deck of 2n+8−i cards. This establishes Theorem 1. In Sect. 4.1, a swap
protocol, which is a subprotocol of our AND–XOR protocol, is constructed. In
Sect. 4.2, the AND–XOR protocol, which is a subprotocol of our main protocol,
is constructed. In Sect. 4.3, the main protocol is constructed.
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4.1 Swap Protocol

It appears that a general-purpose protocol could be immediately obtained by
plugging our IP-AND protocol into Nishida’s AND–XOR protocol. However,
this is not true for type-2 and type-1 decks. This is because the number of
duplicate cards such as 1 is limited. Therefore, we have to reuse the duplicate
cards a number of times. It is feasible to reuse them by constructing a swap
protocol, which exchanges the bases of two commitments. It proceeds as follows:

1. Place the two commitments [x1]{1,2}, [x2]{3,4} with two free cards 5 6 as
follows:

? ?
︸ ︷︷ ︸

[x1]{1,2}

? ?
︸ ︷︷ ︸

[x2]{3,4}

5 6 → ? ?
︸ ︷︷ ︸

[x1]{1,2}

? ?
︸ ︷︷ ︸

[x2]{3,4}

? ?
︸ ︷︷ ︸

[0]{5,6}

.

2. Apply the four-card XOR protocol (Sect. 2.2) to the first and third commit-
ments; then, we have

1 2 ? ?
︸ ︷︷ ︸

[x2]{3,4}

? ?
︸ ︷︷ ︸

[x1]{5,6}

.

3. Turn over the face-up cards, and apply the four-card XOR protocol to the
second and first commitments; then, we have

? ?
︸ ︷︷ ︸

[x2]{1,2}

3 4 ? ?
︸ ︷︷ ︸

[x1]{5,6}

.

4. Turn over the face-up cards, and apply the four-card XOR protocol to the
third and second commitments; then, we have

? ?
︸ ︷︷ ︸

[x2]{1,2}

? ?
︸ ︷︷ ︸

[x1]{3,4}

5 6 .

4.2 AND–XOR Protocol

In this subsection, we present our AND–XOR protocol based on various decks of
cards. Given a collection of n + 1 commitments to x1, x2, · · · , xn, w ∈ {0, 1}, an
AND–XOR protocol produces a commitment to w ⊕ x1x2 · · · xn by preserving a
collection of n commitments to x1, x2, · · · , xn.

Our AND–XOR protocol uses 2n + 8 − i cards for type-i decks as follows:

1. Place 2n + 8 − i cards as follows:

? ?
︸ ︷︷ ︸

[x1]†

? ?
︸ ︷︷ ︸

[x2]†

? ?
︸ ︷︷ ︸

x3

· · · ? ?
︸ ︷︷ ︸

xn

? ?
︸ ︷︷ ︸

w

? ?
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

0

∗ · · · ∗
︸ ︷︷ ︸

free cards

,

where the free cards are as follows:

type-2 : no cards. type-1 : ∗ type-0 : ∗ ∗
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2. Apply the six-card XOR protocol (Sect. 2.2) to the commitments to x1, 0, and
0; then, we have

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

[x2]†

? ?
︸ ︷︷ ︸

x3

· · · ? ?
︸ ︷︷ ︸

xn

? ?
︸ ︷︷ ︸

w

∗ · · · ∗
︸ ︷︷ ︸

free cards

.

with the following free cards:

type-2 : 1 2 type-1 : 1 ∗ ∗ type-0 : ∗ ∗ ∗ ∗ .

3. For j = 1 to n − 1, adopt the following procedure:
(a) Apply our IP-AND protocol (Sect. 3.3) to the commitment to x1 · · · xj

and the commitment [xj+1]† with free cards; then, we have

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x3

· · · ? ?
︸ ︷︷ ︸

xn

? ?
︸ ︷︷ ︸

[x1···xj+1]†

? ?
︸ ︷︷ ︸

w

∗ · · · ∗
︸ ︷︷ ︸

free cards

,

with the following free cards:

type-2 : 1 2 type-1 : 1 ∗ ∗ type-0 : ∗ ∗ ∗ ∗ .

If j = n − 1, skip Step 3-(b), and go to Step 4.
(b) If the deck is type-0, do not take action. Otherwise, apply the swap pro-

tocol to the commitment [x1 · · · xj+1]† and the commitment to xj+2.
4. Apply the four-card XOR protocol (Sect. 2.2) to the commitment [x1 · · · xn]†

and the commitment to w; then, we have

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x3

· · · ? ?
︸ ︷︷ ︸

xn

? ?
︸ ︷︷ ︸

w⊕x1···xn

∗ · · · ∗
︸ ︷︷ ︸

free cards

,

where the free cards are as follows:

type-2 : 1 2 1 2 type-1 : 1 ∗ 1 ∗ ∗ type-0 : ∗ ∗ ∗ ∗ ∗ ∗ .

4.3 Description of Our Protocol for Any Boolean Function

In this subsection, we prove Theorem 1 by constructing a protocol for any n-
variable Boolean function f based on various decks of cards.

Similar to Nishida et al.’s construction, our construction is based on the
fact that any n-variable function f(x1, x2, x3, · · · , xn) can be expressed as the
Shannon expansion:

f(x1, x2, x3, · · · , xn) = x̄1x̄2x̄3 · · · x̄nf(0, 0, 0, · · · , 0) ⊕ x1x̄2x̄3 · · · x̄nf(1, 0, 0, · · · , 0)

⊕ x̄1x2x̄3 · · · x̄nf(0, 1, 0, · · · , 0) ⊕ x1x2x̄3 · · · x̄nf(1, 1, 0, · · · , 0)

⊕ · · · ⊕ x1x2x3 · · ·xnf(1, 1, 1, · · · , 1).
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That is, the function f can be expressed as

f(x1, x2, x3, · · · , xn) = T1 ⊕ T2 ⊕ · · · ⊕ T�,

where each Ti is the AND value of n literals such as x̄1x2x̄3 · · · xn.
It proceeds as follows:

1. Place 2n + 8 − i cards as follows:

? ?
︸ ︷︷ ︸

[x1]†

? ?
︸ ︷︷ ︸

x2

? ?
︸ ︷︷ ︸

x3

· · · ? ?
︸ ︷︷ ︸

xn

? ?
︸ ︷︷ ︸

0

∗ · · · ∗
︸ ︷︷ ︸

free cards

,

where the free cards are as follows:

type-2 : 1 2 ∗ ∗ type-1 : 1 ∗ ∗ ∗ ∗ type-0 : ∗ ∗ ∗ ∗ ∗ ∗ .

2. Let T1 ⊕T2 ⊕· · ·⊕T� be the Shannon expansion of f . For i = 1, 2, · · · , �, add
Ti to the rightmost commitment by using our AND–XOR protocol2.

3. Output the rightmost commitment.

Note that the numbers of cards used in the above construction are identical
to that of our AND–XOR protocols. Thus, we obtain Theorem 1.

5 Conclusion

In this study, we showed that any n-variable Boolean function can be securely
computed by using a type-i majority-free deck of 2n+8−i cards for i ∈ {0, 1, 2}.
An important open problem is to determine whether 2n+8−i cards are necessary
or not. Another noteworthy open problem is to show a similar result without
majority-freeness.
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Abstract. Transportation sharing in goods (bike sharing) and services
(ride sharing) has been one of the most active sectors of the rising shar-
ing economy. Such a mobile platform, based on a business model, seeks
supplies in vehicles for their demands at matched times and rental loca-
tions. While its improved efficiency makes vehicle sharing popular over
the traditional taxi services, it has attracted more competitors that have
created redundancies in suppliers, which creates a new challenge in social
efficiency. The problem also becomes for car sharing and will be intensi-
fied by the increased competition among all operators. In this work, we
present a business solution by setting up a joint venture to provide shared
resources as a base for different competitors to operate on. These com-
petitors share the cost of the joint venture and then provide their own
differentiated service to their customers through their own mobile apps.
We formulate the number of users in the car sharing market as a S-shape
function with respect to time and discretize the time into infinite rounds.
In each round, we study this business model by formulating it as a two-
stage Stackelberg game and apply the backward induction to analyze the
equilibria of the leader and the followers in each round. Our results on
the equilibria can forecast the car sharing market reasonably and avoid
the redundancies in suppliers effectively. We also conduct numerical com-
putation to visualize our theoretical results about the influence of joint
venture decisions in the end.
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1 Introduction

The rising of the vehicle sharing business, propelled by techniques of mobile
communication, automatic locating and tracking identification, are changing our
traveling style. Among a variety of selections, including bicycle sharing and elec-
tric car sharing, vehicle-sharing industry had a phenomenal growth rate [8]. In
a short time, a large number of startup companies have entered this field, with
a user growth rate of 632.1% in Year 2017 alone [12].

However, the success of the few pioneers has not been sustained as the bike-
sharing gold rush because of the fierce competition to the market. Within 2018,
a large number of companies failed and withdrew from the market one after
another [1,2]. Even the pioneer and the past market favorite ofo has slipped into
a state of bankruptcy [4]. The market badly needs a solution to save the popular
bike-sharing industry from a start-up booming to a capital-suck collapsing.

Almost at the same time, electric car sharing is booming all over the world.
According to 2017 China Development Report for Time-sharing Rental of New
Energy Vehicle released by Roland Berger [13], the direct demand of car sharing
travel users in China is about 8.16 million times per day in 2015, and it is
expected to grow to 37 million times per day in 2018. The potential market
capacity is expected to reach 1.8 trillion yuan. More important, the Ministry of
Transport and the Ministry of Housing and Urban-Rural Development in China
jointly released “Guidance on promoting the healthy development of small and
micro car rental” [6], which greatly encouraged the development of the electric
car sharing industry. But compared with the bicycle sharing industry, the electric
car sharing industry has a higher threshold. The operators need to invest a lot
of money to produce or purchase, maintain vehicles, which makes them have a
higher investment risk. Now, the operators lose 50–120 yuan for each car per
day on average and most of them still rely on the government subsidies [13].

The crux of the difficulty of the car sharing industry is that most operators
take both of the fixed asset investment and market operations into consideration
at the same time. In addition, how to predict market demand precisely and avoid
the problems caused by the surplus due to oversupply, which has happened in
bicycle sharing market, is also a difficulty that each operator must face.

Facing above opportunities and challenges, we present a novel business model
for the electric car sharing market by establishing a joint venture. The joint
venture is shared by all operators and responsible for producing and renting the
cars to operators. By releasing from the burden of purchasing, producing and
maintaining the cars, the operators could pay more attention to their business for
the end users and the competition with the other opponents by concentrating on
the quality of service. Our idea is inspired by the establishment of a joint telecom
infrastructure venture, China Tower, in 2014. This joint venture is responsible for
building, maintaining and operating the telecom infrastructures. Three telecom
giants in China, i.e., China Mobile, China Unicom and China Telecom, agreed
to co-invest and share China Tower and rent infrastructure services from it [5].

In this paper, we aim to analyze the relationship between the joint venture
and the operators for the electric car sharing market in our business model.
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In addition to the operators, the joint venture is also assumed to be shared
by the government. This assumption makes sense, since Chinese government
greatly encourages the electric car sharing market by providing the subsidies to
operators at present. In our novel model, the government can also subsidize the
electric car sharing industry by another way, i.e., sharing the joint venture.

Inspired by [3], we form our business model into a game system, which con-
tains a joint venture and the competitive operators. The joint venture is shared
by the operators and leases its cars to the operators. The operators provide the
service to the end users by renting cars from the joint venture. Of course, all
participants in this game system have their own objectives. For each operator,
she tries to maximize her profit by charging the end users. For the joint venture,
its social goal is to maximize the aggregate profit of the whole market. Differ-
ent from the telecom market, the user scale in the electric car sharing market
changes over time, while the number of users is fixed in the telecom market [3].
Hence, we refer to the user scale in the bicycle sharing market and assume the
electric car sharing market also has the similar S-shape user scale [11]. Under
such a setting, we discretize the time into infinite time slots (or called rounds)
with the same length. And to study the interactions between the joint venture
and all operators in each round, we model the electric car sharing market with
the joint venture as a two-stage Stackelberg game [9]. At the first stage, the joint
venture, as a leader, decides the price of renting cars and the shares of all oper-
ators in the current round. At the second stage, the operators, as the followers,
set their own service prices to end users, based on the leader’s decisions of the
round. By applying the backward induction, we propose the closed forms of the
equilibria of the joint venture and each operator in each round. Our theoreti-
cal results reveal the important influence of the joint venture on the equilibria
and provide a new idea for the development of the electric car sharing market.
We also conduct several numerical studies, which show the presence of the joint
venture can significantly reduce the social resource consumption.

This paper is organized as follows. We will first introduce the models and
preliminaries in Sect. 2. Then we conduct the equilibrium analysis in Sect. 3. In
Sect. 4, we present computational experiments to verify our results and analysis.
Last section concludes our work and proposes the future work.

2 Preliminaries

2.1 System Model

In this paper, we consider a market with a set N = {1, · · · , n} of shared car
operators. They compete at the end user market for further profit. These n
operators invest to set up a joint venture together, which is specialized in design-
ing, producing and maintaining the shared electric cars. Operators rent electric
cars supplied by the joint venture and then provide service to their costumers
from their respective mobile apps. As the shareholders of the joint venture, these
operators also share the profit from it. Therefore, on the one hand, the operators
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compete with each other at the end user market as before. On the other hand,
they share the common benefit at the joint venture end.

2.2 User Scale Model

Since the electric car sharing market is an emerging market, people are not
familiar with it currently and the user scale of the whole market will change over
time. Therefore, we assume this change is similar to the one in the bicycle sharing
market. Figure 1(a) shows how the number of users of different participants in
the bicycle sharing industry changes over one year [11]. It is not hard to see that
they are roughly S-shaped except for YOUON, which announced to withdraw
from the competition in March 2017. Thus it’s reasonable to assume that the
user scale of the whole car sharing market also changes following a S shape over
time. In fact, S-shaped growth can be observed in a wide variety of phenomena,
such as the population growth, the spread of rumors, the cellular growth of a
plant, the body’s immune response and so on. As most of its applications are
based on nature, it has been considered as a natural law of growth. And it’s
really a popular model for describing the evolution of systems (technological,
economical, social and others) over time [7]. So we assume the total number of
users s(t) in the electric car sharing market is a S-shaped growth function on
time t, and has the form as

s(t) =
w

1 + ae−bt
, (1)

where w is the maximum value and w, a and b are constants. Figure 1(b) shows
an instance of function s(t).

Fig. 1. The user scale model.

For the sake of analysis, we discretize the time into infinite timeslots with
equal length Δt, denoted by R = {1, 2, · · · , r, · · · }. Each timeslot is called a
round. We use superscript r to denote the value of corresponding variable in the
r-th round.
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2.3 Demand Model

Since the demand of each operator i is closely related to the number of the users
belonging to operator i, we first propose a function to describe the number of
operator i’s users in the r-th round, denoted by Ur

i . Here Ur
i contains two parts:

one is the number of existing users who could flow among all operators in the
previous round; the other is the number of new coming users in this round.

In our new business system, the shared cars are the same, which promises
that the services from different operators are substitutes for all users. According
to the classic substitute demand model in [10], the price of one player has a
linear influence on the number of the users of other operators. So the first source
of users’ number is

Ur−1
i − mpr

i + m
∑

j∈N,j �=i

λijp
r
j ,

in which pr
i is the unit service price setting by operator i in the r-th round; m is

the conversion coefficient from price to user numbers, which means raising the
price by $1 results in losing m users and λij measures the influence of pr

j (j �= i)
on Ur

i . We assume
∑

j∈N,j �=i λij < 1, which prevents all operators from raising
price maliciously together.

The second source of users’ number is the new coming users in the r-th
round under the assumption that the user scale of the whole market follows the
S-Curve. We use wabe−bt

(1+ae−bt)2
, the first-order derivative of (1) at the middle time

of the r-th round, multiplying by the length of each round Δt to approximately
represent the number of new users in the r-th round. In addition, we also assume
that these new coming users select the operators randomly, which promises that
all operators share the new users equally in expected.

From the above, we define the user number function of operator i to be

Ur
i = Ur−1

i − mpr
i + m

∑

j∈N,j �=i

λijp
r
j +

1
n

wabe−bt

(1 + ae−bt)2
Δt (2)

where t = (r − 1)Δt + Δt
2 , the middle time of the r-th round. Specifically, U0

i

denotes the number of the existing users belonging to operator i before the joint
venture is set up. If operator i didn’t run the car-sharing business before, just
set U0

i as 0.
Next, we model the demand of operator i in the r-th round. For the electric

car sharing market, the demand is related to not only the user scale, but also
how much driving they do. Although the travelling habits vary from person to
person, statistical regularities behind it can be estimated by some statistical or
machine learning tools. Then we define the demand function as:

Dr
i = Ur

i θ. (3)

where θ is the average request times of each user for per unit service during one
round.
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2.4 Profit Model

In this subsection, we will propose the profit model of the joint venture and the
operators in our business model. For the joint venture, it produces the shared
electric cars, rents them to all operators at a same unit price p and keep the
routine maintenance. The unit cost is denoted by c, including the production
cost, parking cost, maintenance cost, recharge expense and so on. Then the
renting profit of the joint venture in the r-th round is given as

fr
0 = (pr − c)

∑

i∈N

Dr
i . (4)

The profit of each operator contains two parts. After renting the shared cars
from the joint venture, the operators make a profit from users by charging them
for service. As an investor, the operators can also share the profit from the joint
venture. We denote the share of operator i in the joint venture by αr

i (0 ≤ αr
i ≤ 1)

and αr =
∑

i∈N αr
i (if αr < 1, it means there exists an outside investor, e.g., the

government). The profit of operator i in the r-th round is

fr
i = (pr

i − pr)Dr
i + αr

i f
r
0 . (5)

Finally, we define the aggregate profit of the whole market as

AP r =
∑

i∈N

fr
i + (1 − αr)fr

0 . (6)

For the sake of simplicity, we shall omit the superscript r in the following
discuss if there is no confusion.

2.5 Game Model

As noted earlier, we discretize the time into infinite rounds. In each round, the
interaction between the joint venture and the operators is modeled as a two-
stage Stackelberg game. In brief, the leader (i.e., the joint venture) moves first
and then the followers (i.e., all operators) moves sequentially. Specifically, we
formulate the optimization problems for the leader and followers as follows.

Joint Venture’s Strategies in the First Stage. In the first stage, the joint
venture, as the leader, takes the current demand of the whole market as input
to determine the unit renting price p and each share αi,∀i ∈ N . In each round,
the joint venture aims to maximize the aggregate profit of the entire market AP .
Such a goal makes sense, because the joint venture is shared by the operators
and supported by the government.

Operators’ Strategies in the Second Stage. In the second stage, all opera-
tors, as the followers, take p and αi as the inputs and decide their unit service
price pi simultaneously. Operator i aims to maximize her own profit fi in each
round, ∀i ∈ N .

In each round, these two stages together form the Stackelberg game, and the
objective of this game is to find the Stackelberg equilibrium. The Stackelberg
equilibrium ensures that the aggregate profit AP is maximized when all operators
set their service price following the best response (i.e. the Nash equilibrium).
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3 Equilibrium Analysis

In this section, we conduct a backward induction to analyze the Stackelberg
game of the electric car sharing market with the joint venture in the r-th round.
In Subsect. 3.1, we first analyze the competition of all operators in the second
stage, under the assumption that they have observed the renting price and their
shares. After analyzing their optimal strategies in the second stage, we will come
back to explore the first stage of the Stackelberg game in Subsect. 3.2.

3.1 Second Stage: Operator’s Profit Maximization

In this section, we analyze the competition of all operators in the second stage
of the game. In order to facilitate our analysis, we first calculate the equilibrium
price under the simpler setting λij = λ,∀i, j ∈ N , i.e. the price of each operator
has the same influence on the number of each other’s user, and then extend this
result to general cases. In the following discuss, the superscript ne is used to
denote the equilibrium value of the corresponding variable. Given the renting
price p and the share αi, i ∈ N , the operator’s sub-game can be written as
maxpi

fi.
Using the previous definitions, we have

fi = (pi − p)(Ur−1
i − mpi + mλ

∑
j∈N,j �=i pj + 1

n
wabe−bt

(1+ae−bt)2
Δt)θ

+αi(p − c)(
∑

j∈N Ur−1
j − mλ′ ∑

j∈N pj + wabe−bt

(1+ae−bt)2
Δt)θ

where λ′ ≡ 1 − (n − 1)λ. At equilibrium, no operator could get more profit by
changing her own price individually. Thus, we have ∂fi

∂pi
= 0,∀i ∈ N , i.e.,

2pi − λ
∑

j �=i

pj =
Ur−1

i

m
+ p − λ′αi(p − c) +

1
mn

wabe−bt

(1 + ae−bt)2
Δt, ∀i ∈ N.

Summing up all of n equations, the equilibrium price of operator i in the r-th
round can be obtained:

pr,ne
i =

1
2 + λ

(λP +
Ur−1

i

m
+ p − λ′αi(p − c) +

1
mn

wabe−bt

(1 + ae−bt)2
Δt). (7)

We denote

P =
∑

i

pr,ne
i =

1
1 + λ′ (

∑
i∈N Ur−1

i

m
+ np − λ′α(p − c) +

1
m

wabe−bt

(1 + ae−bt)2
Δt).

For general cases with arbitrary λij , we claim that there also exists a unique
equilibrium with similar format as Eq. (7). By using the same approach as above
to solve ∂fi

∂pi
= 0,∀i ∈ N , we have
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2pi−
∑

j �=i

λijpj =
Ur−1

i

m
+cαi(1−

∑

j �=i

λji)+
1

mn

wabe−bt

(1 + ae−bt)2
Δt+p−pαi(1−

∑

j �=i

λji).

(8)

In addition, to obtain the equilibrium prices efficiently, some notations are
necessary to be introduced in advance. Let Bn×n = (bij)ij , where bij = 2 if
i = j, and bij = −λij otherwise. Let

un×1 = (
Ur−1

i

m
+ cαi(1 −

∑

j �=i

λji) +
1

mn

wabe−bt

(1 + ae−bt)2
Δt)i∈N ,

vn×1 = (1 − αi(1 −
∑

j �=i

λji))i∈N .

Meanwhile, let the equilibrium prices be a vector form Pne = (pr,ne
i )i∈N . Then

put Eq. (8) in matrix form, we get BPne = u + pv. Because
∑

j,j �=i λij < 1,
∀i ∈ N , we have bii = 2 > 1 > | − ∑

j �=i λij | = |∑j �=i bij |, i.e., each diagonal
element of B is larger than the sum of other elements in the same row. Thus, B
is invertible and the equilibrium prices can be efficiently computed by

Pne = B−1(u + pv).

Based on above analysis results, we propose the following implications of the
strategic behaviors of the operators in each round. For simplicity, we explain the
implications with the help of Eq. (7) to make the readers better understand each
operator’s equilibrium strategy.

(1) Because ∂pr,ne
i

∂p > 0,∀i ∈ N , the equilibrium price changes in the same
direction as the renting price does. It means if the joint venture raises (or
decreases) the unit renting price p in the r-th round, then all operators will
raise (or decrease) their unit service price simultaneously to promise their
own profits.

(2) Because ∂pr,ne
i

∂Ur−1
i

>
∂pr,ne

i

∂Ur−1
j

> 0,∀j �= i, the number of one operator’s users

has more influence on her own equilibrium price than the influence of other
operators does.

(3) Since ∂pr,ne
i

∂αi
∝ (c − p),∀i ∈ N , if c − p < 0 (i.e., p > c), the operator changes

her equilibrium price with her own share in the opposite direction. In this
situation, the joint venture could benefit from renting shared cars. Then if
the operator has more share, she will care more about the her profit from the
joint venture than the profit from users. So she will reduce the unit service
price pi to increase the quantity of demand, i.e., the renting times, for the
joint venture. On the contrary, under the condition that c − p > 0 (i.e.,
p < c), the joint venture will not benefit from renting the shared cars. In
fact, it is losing money for each renting. Then all operators only care about
their profit from the end user market. So if an operator shares more in the
joint venture, she will raise the unit service price to reduce the renting times
and gain more from her each service.
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(4) Since the equilibrium price (7) can be rewritten as

pr,ne
i =

1
2 + λ

(λP +
Ur−1

i

m
+ p − λ′αi(p − c) +

1
mn

ds(t)
dt

|t=(r−1)Δt+Δt
2

Δt),

we have ∂pr,ne
i

∂r = 1
2+λ

1
mn

d2s(t)
dt2 |t=(r−1)Δt+Δt

2
Δt2 = η d2s(t)

dt2 |t=(r−1)Δt+Δ
2
,

where η = 1
2+λ

1
mnΔt2 > 0. Because of the concavity and convexity of s(t),

we could obtain that there exists a critical round r∗ such that if r ≤ r∗,
then ∂pr,ne

i

∂r > 0 and if r ≥ r∗, then ∂pr,ne
i

∂r < 0. It changes after the explosive

growth of the total number of users. When ∂pr,ne
i

∂r > 0, the operators are
facing a flood of new users. They prefer to raise their unit service price and
don’t worry about losing a few users. On the contrary, when the user scale
of the whole market tends to be stable, the slow growth of the number of
new users forces the operators to reduce their service prices to retain their
own current users and attract other users.

3.2 First Stage: Aggregate Profit Maximization

In this section, we discuss the first stage of the Stackelberg game for the joint
venture in the r-th round. Here, we focus on the case with λij = λ,∀i, j ∈ N, j �=
i. The analysis of general cases with arbitrary λij is similar.

In each round, the joint venture decides the unit renting price p and the
share αi for each operator i based on the current demand in the market and
the equilibrium strategies of all operators. Different from the operators, the
joint venture aims to maximize the aggregate profit of the entire market in each
round. This profit is given by

AP =
∑

i∈N

(pi − c)(Ur−1
i − mpi + mλ

∑

j �=i

pj +
1
n

wabe−bt

(1 + ae−bt)2
Δt)θ.

By solving ∂AP
∂pi

= 0, the joint venture obtains the aggregate profit which is
maximized at

pr
i =

c

2
+

λ′Ur−1
i + λ

∑
j∈N Ur−1

j

(1 + λ)2mλ′ +
1

2mnλ′
wabe−bt

(1 + ae−bt)2
Δt (9)

In order to make sure that the equilibrium renting price leads to the max-
imal aggregate profit, we combine Eqs. (7) and (9) for all i ∈ N together with
condition of

∑
i∈N αi = α to calculate the value of p and αi under Stackelberg

equilibrium as follows:
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pr,ne = c +
(n − 1)λ(

∑
i∈N Ur−1

i + wabe−bt

(1+ae−bt)2
Δt − mnλ′c)

2mλ′(n − αλ′)
(10)

αr,ne
i =

α

n
+

(n − λ′α)(Un−1
i −

∑
i∈N Ur−1

i

n )

(n − 1)(1 + λ)(
∑

i∈N Ur−1
i + wabe−bt

(1+ae−bt)2
Δt − mnλ′c)

(11)

In other words, as long as the joint venture sets p and αi as Eqs. (10) and
(11), the total profit of all operators will coincide with the aggregate profit of
the whole market. From Eq. (11) we find that each operator’s share of the joint
venture is related to the number of her current users. Specifically, the difference
between one’s share and the average share is linear to the difference between the
number of her users and the average number of the total users.

4 Numerical Results

In this section, we conduct numerical experiments to verify our results and anal-
ysis. We conduct two sets of experiments with three operators. Without loss of
generality, we set the three parameters w, a, b in Eq. (1) as 10000, 500 and 0.13
respectively. The length of each round (i.e., Δt) is set as 1. In addition, we set
m = 3, c = 5, λij = 0.4,∀i, j ∈ {1, 2, 3}, j �= i.

Fig. 2. The influence of α1 on the unit service price p1 with different renting price p.

In the first experiment, we show the influence of the share of operator 1 (i.e.,
α1) on price p1 given different renting price p. We set the number of their current
users U1 = 28, U2 = 22, U3 = 40. The share of operator 1 α1 ranges from 0.2 to
0.6 with an increment of 0.01 while α2 and α3 are fixed at 0.2. Figure 2 shows the
change of operator 1’s unit service price under different α1 and different p at the
24th round. The solid line is corresponding to the left vertical axis and the dashed
line is corresponding to the right one. As we can see, when p = 7, i.e., the unit
renting price is larger than the unit cost, the service price of operator 1 decreases
as her share α1 increases. When p = 3, i.e., the unit renting price is lower than
the unit cost, p1 increases as α1 increases. It matches with what we discussed
before. That is, if the joint venture could benefit from renting the shared cars,
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operators would rather reduce their service price to increase the profit from the
joint venture. On the contrary, if the joint venture can not benefit from renting,
then operators prefer to raise price to reduce the renting times.

Fig. 3. The change of prices and shares over round 30 to round 60.

In the second experiment, we show the changes of renting price, service price
and share over time. Specifically, we set the number of these three operators’
users at the end of 29th round as 28, 22 and 40 respectively. Figure 3(a) shows
the changes of renting price p and operator 1’s unit service price p1 over the 30th
round to the 60th round. As we can see, p1 is always larger than p and these two
lines has the same trend of change, which is more related to the growth rate of
the number of users in Fig. 1(b). In the first half of the period, the whole market
is experiencing an explosive growth. As a result, the joint venture increases the
renting price for more profit and operator 1 raises her service price as well. Then
as the number of users grows slowly, they begin to reduce the price to keep users
for the long term profit. Figure 3(b) shows the changes of three operators’ shares
over time. As time goes by, three operators share the same profit from the joint
venture gradually. Because the share is related to the number of their own users,
the same share means they have almost the same user scale at the end. In other
words, they divide up the market equally.

5 Conclusion

In this paper, we present a novel business system by introducing a joint venture
to the electric car sharing market to reduce the competitive operators’ risk and
the social resource consumption. We model the number of the users has a S-
shaped growth over time, inspired from the bicycle sharing market, and then
discretize the time into infinite rounds to facilitate the analysis. In each round,
we apply the game theory approach to model the business system as a two-stage
Stackelberg game, in which the joint venture is the leader and the operators are
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the followers. Our main contributions propose the equilibrium strategies of the
leader and the followers in each round and reveal a possible way to solve some
sharp problems, such as the redundancies in suppliers, in bicycle sharing market.

In this paper, we assume that the joint venture rents the cars to all operators
at the same price. However, the renting price may be different to each operator.
Thus, we will study a model, in which the joint venture sets the different renting
prices to the operators based on their different reputations. In such a model,
how to design a protocol to compute each operator’s reputation is a crux. In
addition, we also find some users might stick with the operator they used to in
practice, even though the service price of this operator increases. So, choosing
an appropriate function, instead of the linear one, to characterize the relation
between the number of the users loss and the unit service price, is very important.
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Abstract. For the underlying graph G of a network, k spanning trees of
G are called completely independent spanning trees (CISTs for short) if
they are mutually inner-node-disjoint. It has been known that determin-
ing the existence of k CISTs in a graph is an NP-hard problem, even for
k = 2. Accordingly, researches focused on the problem of constructing
multiple CISTs in some famous networks. Pai and Chang [28] proposed a
unified approach to recursively construct two CISTs with diameter 2n−1
in several n-dimensional hypercube-variant networks for n � 4, including
locally twisted cubes LTQn. Later on, they provided a new construction
for LTQn and showed that the diameter of two CISTs can be reduced
to 2n − 2 if n = 4 (and thus is optimal) and 2n − 3 if n � 5. In this
paper, we intend to construct more CISTs of LTQn. We develop a novel
tree searching algorithm, called two-stages tree-searching algorithm, to
construct three CISTs of LTQ6 and show that the three CISTs of the
high-dimensional LTQn for n � 7 can be constructed by recursion. The
diameters of three CISTs for LTQn we constructed are 9, 12 and 14
when n = 6, and are 2n − 3, 2n − 1 and 2n+ 1 when n � 7.

Keywords: Completely independent spanning trees ·
Interconnection networks · Locally twisted cubes · Diameter

1 Introduction

Let k � 2 and T1, T2, . . . , Tk be spanning trees of a graph G = (V,E). A node is
a leaf in a tree Ti if it has degree 1, and an inner-node otherwise. Two spanning
trees Ti and Tj are edge-disjoint if they share no common edge, and are inner-
node-disjoint provided the paths joining any two nodes u, v ∈ V in both trees
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have no node in common except for u and v. The spanning trees T1, T2, . . . , Tk

are completely independent spanning trees (CISTs for short) if they are pairwise
inner-node-disjoint (and thus are edge-disjoint, see Theorem1).

Constructing CISTs in networks has applications on fault-tolerant routing
and secure message transmission. Hasunuma [13] showed that determining if
there exist k CISTs in a graph is NP-hard even for k = 2. Hence, finding suf-
ficient conditions for graphs that admit multiple CISTs has been investigated
in [1,2,9,14,19]. Especially, the degree-based condition such as Dirac’s condi-
tion [1] and Ore’s condition [9]. Péterfalvi [32] showed that, for any k � 2,
there exists a k-connected graph which does not possess two CISTs. This dis-
proved a conjecture posed by Hasunuma [13], which states that there exist k
CISTs in a 2k-connected graph (see also [31] for more counterexamples). Also,
it has been confirmed by construction that certain classes of graphs possess
two CISTs, e.g., 4-connected maximal planar graphs [13], the Cartesian prod-
uct of any 2-connected graphs [15], and 4-regular chordal rings [4,31]. Moinet
et al. [27] recently investigated the problem of constructing CISTs in ad-hoc net-
works under a practical approach and showed through simulation results that
more CISTs can be found when the network density is sufficiently high. In addi-
tion, graphs possessing more CISTs can be found in some regular graphs [8],
the underlying graphs of line digraphs [12], partial k trees [26], complete graphs,
complete bipartite graphs and complete tripartite graphs [30].

In particular, Pai and Chang [28] proposed a unified approach to recursively
construct two CISTs in several hypercube-variant networks, including hyper-
cubes, locally twisted cubes, crossed cubes, parity cubes, and Möbius cubes (see
also [7] for another constructing scheme of crossed cubes and a special bijec-
tion connection networks). The diameter of a graph G is the greatest distance
between any pair of nodes in G. Pai and Chang [28] showed that the diame-
ter of CISTs for their construction in hypercube-variant networks is 2n − 1 for
n � 4. Afterward, Pai and Chang [29] also provided a new construction scheme
for locally twisted cubes and showed that the diameter of two CISTs can be
reduced to 2n − 2 if n = 4 (and thus is optimal) and 2n − 3 if n � 5. In this
paper, we continue to explore the problem of constructing more CISTs on locally
twisted cubes. The following two characterizations are important for studying
CISTs.

Theorem 1 (See [12, Theorem 2.1]). A set of spanning trees T1, T2, . . . , Tk are
CISTs in a graph G = (V,E) if and only if they are edge-disjoint in G and for
any v ∈ V , there is at most one Ti such that v is an inner-node.

Theorem 2 (See [1, Theorem 2.3]). A graph G = (V,E) admits k CISTs if and
only if there is a partition of V into V1, V2, . . . , Vk, which is called a k-CIST-
partition, such that the following hold:

(i) for i ∈ {1, 2, . . . , k}, the subgraph of G induced by Vi, denoted by G[Vi], is
connected;

(ii) for distinct i, j ∈ {1, 2, . . . , k}, the bipartite graph with bipartition Vi ∪ Vj

and edge set {(x, y) ∈ E(G) : x ∈ Vi, y ∈ Vj}, denoted by B(Vi, Vj , G), has
no tree component.



90 K.-J. Pai et al.

Note that the later condition in Theorem2 is equivalent to the condition that
every connected component H = (VH , EH) of B(Vi, Vj , G) satisfies |EH | � |VH |.

For example, Fig. 1 shows two CISTs of the locally twisted cube LTQ4

(defined later in Sect. 2 for LTQn). It is easy to verify that both T1 and T2

are edge-disjoint, and every node of LTQ4 is a leaf either in T1 or T2. Thus, by
Theorem 1, the two spanning tree shown in Fig. 1 are indeed CISTs.
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Fig. 1. Two CISTs of LTQ4, where thick lines indicate edges of spanning trees.

In this paper, we develop a novel tree-searching algorithm to find a 3-CIST-
partition of nodes for locally twisted cube LTQ6. According to Theorem2, we
can obtain the desired three CISTs of LTQ6. Then, using the result as induction
base, we show that three CISTs for high-dimensional LTQn can be constructed
by recursion. Consequently, we acquire the following result.

Theorem 3. The locally twisted cube LTQn admits three CISTs with diameters
9, 12 and 14 when n = 6, and with diameters 2n−3, 2n−1 and 2n+1 when n � 7.

2 Locally Twisted Cubes

Let ⊕ denote the modulo 2 addition. For n � 2, a node v in a locally twisted cube
is labeled by using a binary string v = vn−1vn−2 · · · v0, where vi ∈ {0, 1} for 0 �
i � n − 1. For conciseness, the label of v is changed to its decimal representation
if it needs. Let Gx be the graph obtained from a labeled graph G by prefixing the
binary string of every node with x. The n-dimensional locally twisted cube LTQn

is the labeled graph with the following recursive fashion (see [38]):

(1) LTQ1 is the complete graph on two nodes labeled by 0 and 1. LTQ2 is a
graph consisting of four nodes with labels 00, 01, 10, 11 together with four
edges (00, 01), (01, 11), (11, 10), and (10, 00).

(2) For n � 3, LTQn is composed of two subcubes LTQ0
n−1 and LTQ1

n−1 such
that each node x = 0xn−2xn−3 · · ·x0 ∈ V (LTQ0

n−1) is connected with the
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node y = 1(xn−2 ⊕ x0)xn−3 · · ·x0 ∈ V (LTQ1
n−1) by an edge, where x and y

are called the (n − 1)-neighbors to each other, and denote as Nn−1(x) = y
or Nn−1(y) = x.

From the above definition, it is clear that LTQn is an n-regular graph, and
the binary strings of any two adjacent nodes in LTQn differ in at most two
successive bits. For the convenience of referring the adjacency of nodes in the
next section, we list all neighbors of nodes of LTQ6 in the following table.

Table 1. The neighbors of nodes in LTQ6

x N0(x) N1(x) N2(x) N3(x) N4(x) N5(x) x N0(x) N1(x) N2(x) N3(x) N4(x) N5(x)

0 000000 1 2 4 8 16 32 32 100000 33 34 36 40 48 0

1 000001 0 3 7 13 25 49 33 100001 32 35 39 45 57 17

2 000010 3 0 6 10 18 34 34 100010 35 32 38 42 50 2

3 000011 2 1 5 15 27 51 35 100011 34 33 37 47 59 19

4 000100 5 6 0 12 20 36 36 100100 37 38 32 44 52 4

5 000101 4 7 3 9 29 53 37 100101 36 39 35 41 61 21

6 000110 7 4 2 14 22 38 38 100110 39 36 34 46 54 6

7 000111 6 5 1 11 31 55 39 100111 38 37 33 43 63 23

8 001000 9 10 12 0 24 40 40 101000 41 42 44 32 56 8

9 001001 8 11 15 5 17 57 41 101001 40 43 47 37 49 25

10 001010 11 8 14 2 26 42 42 101010 43 40 46 34 58 10

11 001011 10 9 13 7 19 59 43 101011 42 41 45 39 51 27

12 001100 13 14 8 4 28 44 44 101100 45 46 40 36 60 12

13 001101 12 15 11 1 21 61 45 101101 44 47 43 33 53 29

14 001110 15 12 10 6 30 46 46 101110 47 44 42 38 62 14

15 001111 14 13 9 3 23 63 47 101111 46 45 41 35 55 31

16 010000 17 18 20 24 0 48 48 110000 49 50 52 56 32 16

17 010001 16 19 23 29 9 33 49 110001 48 51 55 61 41 1

18 010010 19 16 22 26 2 50 50 110010 51 48 54 58 34 18

19 010011 18 17 21 31 11 35 51 110011 50 49 53 63 43 3

20 010100 21 22 16 28 4 52 52 110100 53 54 48 60 36 20

21 010101 20 23 19 25 13 37 53 110101 52 55 51 57 45 5

22 010110 23 20 18 30 6 54 54 110110 55 52 50 62 38 22

23 010111 22 21 17 27 15 39 55 110111 54 53 49 59 47 7

24 011000 25 26 28 16 8 56 56 111000 57 58 60 48 40 24

25 011001 24 27 31 21 1 41 57 111001 56 59 63 53 33 9

26 011010 27 24 30 18 10 58 58 111010 59 56 62 50 42 26

27 011011 26 25 29 23 3 43 59 111011 58 57 61 55 35 11

28 011100 29 30 24 20 12 60 60 111100 61 62 56 52 44 28

29 011101 28 31 27 17 5 45 61 111101 60 63 59 49 37 13

30 011110 31 28 26 22 14 62 62 111110 63 60 58 54 46 30

31 011111 30 29 25 19 7 47 63 111111 62 61 57 51 39 15

As to locally twisted cubes, constructing rooted spanning trees has devoted
many kinds of research. Hsieh and Tu [17] proposed an algorithm to construct
n edge-disjoint spanning trees rooted at a particular node 0 in LTQn. Later on,
Lin et al. [22] proved that Hsieh and Tu’s spanning trees are indeed independent
spanning trees (ISTs for short), i.e., all spanning trees are rooted at the same
node r and for any other node v(�= r), all paths from v to r in these trees are
inner-node-disjoint. Shortly afterward, Liu et al. [23] pointed out that LTQn

fails to be node-transitive for n � 4 and proposed an algorithm for constructing
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n ISTs rooted at an arbitrary node in LTQn. Recently, Chang et al. [6] pro-
posed a fully parallelized scheme to construct n ISTs rooted at an arbitrary
node in LTQn. Except above, many results in the previous research on LTQn

can be found in the literature, e.g., the studies of fault-tolerant Hamiltonicity
and related problems [18,20,25,35,36], tree and mesh embeddings [3,11,21,24],
restricted connectivity [5,10,16], and diagnosability [33,34,37].

3 An Algorithm to Find Three CISTs of LTQ6

In this section, we develop a tree searching algorithm, called two-stages tree-
searching algorithm (abbreviated TS2), to find a 3-CIST-partition of V (LTQ6).
Clearly, |V (LTQ6)| = 26 = 64. We are looking forward to obtaining a near equal-
ized partition (even though this is not necessary). Let n = |V1| = |V2| = |V3|−1 =
� 64

3 � = 21. It is as the name suggested that TS2 has two stages for tree searching,
where the first stage attempts to find nodes of V1 such that LTQ6[V1] induces a
minimally connected subgraph (i.e., a tree) in LTQ6, and the second stage then
finds nodes of V2 such thatLTQ6[V2] also induces a tree. To avoid larger diameters
in the resulting trees, we employ the breadth-first search as the searching strategy
in each process of TS2. After the two candidate sets V1 and V2 being found out,
we need to check the connectedness of LTQ6[V3] and all the remaining conditions
between two of the sets (i.e., the condition (ii) in Theorem2).

For the convenience of description, we use arrays Vi[1..n] for i ∈ {1, 2, 3}
to represent the three sets in a 3-CIST-partition. Also, for flexibility, we allow
the use of set-related operations in Vj [1..i] for 1 � i � n and 1 � j � 3. The
following two procedures are the expansions for finding the next feasible node in
each stage of TS2. Initially, we set V1[1] = 0 and perform Expand-V1(1).

Procedure Expand-V1(i)
1 begin
2 if i < n then
3 for each v ∈ NLTQ6(V1[i]) do
4 if v /∈ V1[1..i − 1] and no node of V1[1..i − 1] is adjacent to v then
5 Enqueue(Q1, v);

6 while Q1 is not empty do
7 u ← Dequeue(Q1);
8 if there is only one node of V1[1..i] such that it is adjacent to u and

the maximum degree of LTQ6[V1[1..i] ∪ {u}] is no more than 4 then
9 V1[i+ 1] ← u;

10 call Expand-V1(i+ 1);

11 else

12 set V 1 ← V \ V1 and x be any node in V 1;
13 set V2[1] ← x;
14 call Expand-V2(1);
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Procedure Expand-V2(i)
1 begin
2 if i < n then
3 for each v ∈ NLTQ6[V 1]

(V2[i]) do

4 if v /∈ V2[1..i − 1] and no node of V2[1..i − 1] is adjacent to v then
5 Enqueue(Q2, v);

6 while Q2 is not empty do
7 u ← Dequeue(Q2);
8 if there is only one node of V2[1..i] such that it is adjacent to u and

the maximum degree of LTQ6[V2[1..i] ∪ {u}] is no more than 4 then
9 V2[i+ 1] ← u;

10 call Expand-V2(i+ 1);

11 else

12 V3 ← V 1 \ V2;
13 if LTQ6[V3] is a tree or unicyclic graph and |E(H)| � |V (H)| for each

component H in B(Vj , Vk, LTQ6) for j, k ∈ {1, 2, 3} with j �= k then
14 output V1, V2 and V3 as a 3-CIST-partition;

In the above two procedures, statements on lines 3–10 are similar and are
used to find the candidate sets V1 and V2, respectively. For j = 1, 2, the for-loop
in lines 3–5 filter the neighbors of the currently expanded node Vj [i] so that they
have a chance to become candidates waiting in the queue Qj to be expanded.
The statement of line 8 in the while-loop guarantees that the next expanded
node u must be a leaf in the current tree LTQ6[Vj [1..i] ∪ {u}]. Also, the sec-
ond condition requires that the maximum degree in the current tree is no more
than 4 because that LTQ6 is a regular graph of degree 6 and every subgraph
induced by Vi for i ∈ {1, 2, 3} must be connected. The statement of line 13 in the
procedure Expand-V2 checks the connectedness of LTQ6[V3], where a unicyclic
graph is defined to be a connected graph with exactly one cycle, which can be
recognized in linear time. In addition, checking the condition |E(H)| � |V (H)|
for each component H in B(Vj , Vk, LTQ6) can be done by a DFS or BFS search.
Therefore, by Theorem2, the algorithm TS2 consisting of the two procedures
described above can be used to obtain a 3-CIST-partition of V (LTQ6) if it exists.
Fortunately, we acquire the desired partition of V (LTQ6) generated by TS2 as
follows:

V1 = {0, 1, 2, 4, 7, 13, 10, 18, 20, 36, 31, 55, 15, 61, 42, 44, 43, 58, 56, 57, 33},
V2 = {3, 5, 29, 28, 45, 24, 30, 8, 22, 62, 40, 46, 41, 37, 49, 21, 48, 19, 50, 11, 59},
V3 = {6, 9, 12, 14, 16, 17, 23, 25, 26, 27, 32, 34, 35, 38, 39, 47, 51, 52, 53, 54, 60, 63},

where V1 and V2 are listed according to the order in the queues Q1 and Q2,
respectively. By a lengthy checking the adjacency described in Table 1, we can
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verify that each LTQ6[Vi] for i ∈ {1, 2, 3} is connected as shown in Fig. 2. As we
can see, LTQ6[V1] and LTQ6[V2] are trees and LTQ6[V3] is a unicyclic graph.
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Fig. 2. Three connected graphs LTQ6[Vi] for i ∈ {1, 2, 3}.

Figure 3 shows three bipartite graphs B(Vi, Vj , LTQ6) for i, j ∈ {1, 2, 3} with
i �= j. B(V1, V2, LTQ6) contains two components, one has cycle (55, 49, 61, 59, 55)
and the other has cycle (42, 40, 44, 46, 42). B(V2, V3, LTQ6) contains one com-
ponent with cycle (41, 25, 24, 26, 30, 14, 46, 47, 41). B(V1, V3, LTQ6) contains one
component with two cycles (15, 63, 57, 9, 15) and (0, 16, 20, 52, 36, 32, 0). Since
every bipartite graph has no tree component, by Theorem2, V1, V2 and V3 form
a 3-CIST-partition of V (LTQ6).

Based on the above partition, we can construct three CISTs of LTQ6 in
the following way. For each i ∈ {1, 2, 3}, we choose Vi as the inner-nodes of Ti,
such that LTQ6[Vi] forms a subtree of Ti, and particularly, we remove the edge
(52, 53) in LTQ6[V3] (see the dashed line in Fig. 2). Then, for each node u ∈ Vi,
we take nodes v ∈ Vj where j ∈ {1, 2, 3} \ {i} as leaves to join the inner-node
u in Ti if (u, v) is an edge of B(Vi, Vj , LTQ6) and its color is the same as u’s
color in Fig. 3. It is easy to inspect that every node v ∈ Vj is exactly joined
to an inner-node of Ti, and thus the resulting graph is a spanning tree. Since
|E(LTQ6)| = 192 and each spanning tree requires 63 edges, except the edge
(52, 53), another two unused edges are (22, 23) and (18, 26) (which are drawn
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Fig. 3. Bipartite graphs B(Vi, Vj , LTQ6) for i, j ∈ {1, 2, 3} with i �= j.

by dashed lines in Fig. 3). Consequently, the diameters of spanning trees T1, T2

and T3 we constructed are 12, 14 and 9, respectively. We summarize the above
construction in the following lemma.

Lemma 1. For LTQ6, it admits three CISTs with diameters 9, 12 and 14.

4 Constructing Three CISTs on High-Dimensional LTQn

In this section, we give a recursive construction of three CISTs in locally twisted
cubes LTQn for n � 7. Recall that G0 (resp. G1) denotes the labeled graph G
with a prefix symbol 0 (resp. 1) in every node. In [28], Pai and Chang proved
the following result.

Theorem 4 (See [28, Theorem 4]). Let Gn−1 be the (n−1)-dimensional variant
hypercube for n � 5 and suppose that T1 and T2 are two CISTs of Gn−1. For
i ∈ {1, 2}, let T̂i be a spanning tree of Gn constructed from T 0

i and T 1
i by adding

an edge (ui, vi) ∈ E(Gn) to connect two inner-nodes ui ∈ V (T 0
i ) and vi ∈ V (T 1

i ).
Then, T̂1 and T̂2 are two CISTs of Gn.

We can easily generalize the following property by using the same proof
technique of Theorem 4.

Corollary 1. Let Gn−1 be the (n− 1)-dimensional variant hypercube for n � 5
and suppose that Ti for 1 � i � k (where 2 � k < n) are k CISTs of Gn−1.
Let T̂i be a spanning tree of Gn constructed from T 0

i and T 1
i by adding an edge

(ui, vi) ∈ E(Gn) to connect two inner-nodes ui ∈ V (T 0
i ) and vi ∈ V (T 1

i ). Then,
T̂i for 1 � i � k are k CISTs of Gn.
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In the above property, two nodes ui ∈ V (T 0
i ) and vi ∈ V (T 1

i ) are called the
port nodes of the trees T 0

i and T 1
i , respectively. Also, the edge (ui, vi) ∈ E(Gn) is

called the bridge of T̂i for the construction. Obviously, choosing an appropriate
pair {ui, vi} as port nodes is important because it is the key factor in determining
the diameter of the resulting tree. The eccentricity of a node v in a graph G,
denote by eG(v), is defined to be the maximum distance between v and any other
node in G. Hence, the maximum eccentricity is the graph diameter, denoted as
diam(G). Also, a set of nodes with the minimum eccentricity is called the center.
A well-known result is that the center in a tree T consists of either a singleton if
diam(T ) is even or two adjacent nodes otherwise. Moreover, by Corollary 1, the
diameter of the resulting tree can be calculated as follows:

diam(T̂i) = eT 0
i
(ui) + eT 1

i
(vi) + 1 for i ∈ {1, 2, . . . , k} (1)

We are now in a position to prove the main result.

Proof of Theorem 3. By Lemma 1, there exist three CISTs in LTQ6 with the
diameters 9, 12 and 14, respectively. We now consider LTQn for n � 7. Suppose
that Ti for i ∈ {1, 2, 3} are CISTs of LTQn−1. Note that the (n−1)-dimensional
neighbor of a node x ∈ V (LTQn−1) in LTQn is defined to be Nn−1(x) = x+2n−1

when x is even (in this case, x is called an even node). Hence, for each i ∈ {1, 2, 3},
we can choose an even node x ∈ V (T 0

i ) and its neighbor Nn−1(x) ∈ V (T 1
i ) as

port nodes to construct CISTs of LTQn. For instance, to construct three CISTs
of LTQ7, we choose nodes 10, 40 and 38 as port nodes of T 0

1 , T 0
2 and T 0

3 ,
respectively (see the nodes drawn by thick lines in Fig. 2, where all leaves are
omitted in the drawing). Similarly, we choose nodes 74(= 10+26), 104(= 40+26)
and 102(= 38+26) as port nodes of T 1

1 , T 1
2 and T 1

3 , respectively. Then, by adding
the bridges (10, 74), (40, 104) and (38, 102), we yield the desired three CISTs in
LTQ7. Since eT1(10) = 6, eT2(40) = 7 and eT3(38) = 5, by Eq. (1), we have
diam(T̂1) = 13, diam(T̂2) = 15 and diam(T̂3) = 11.

In general, we can choose the pair {10, 10 + 2n−1}, {40, 40 + 2n−1} and
{38, 38+2n−1} as port nodes for building three CISTs of LTQn by using induc-
tion on n. Then, by Lemma 1, Corollary 1, and Eq. (1), the result follows. �

5 Concluding Remarks

In this paper, we construct three CISTs of LTQn. A novel tree searching algo-
rithm, called two-stages tree-searching algorithm, is developed for constructing
three CISTs of LTQ6. Moreover, we show that the three CISTs of the high-
dimensional LTQn for n � 7 can be constructed by recursion. Consequently, the
diameters of three CISTs we constructed are with diameters 9, 12 and 14 when
n = 6, and with diameters no more than 2n+ 1 when n � 7. In future work, we
will try to construct more CISTs for hypercube-variant networks.
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As aforementioned, there exists a parallelized scheme to construct ISTs
rooted at an arbitrary node in LTQn (see [6]). By contrast, all known existed
algorithms for constructing CISTs of hypercube-variant networks are developed
in a recursive fashion, and thus are hard to be parallelized. It seems very attrac-
tive to develop a parallelized and non-recursive algorithm for constructing CISTs
in hypercube-variant networks.
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Abstract. In this paper, we discuss the computational complexity of
Read-once resolution (ROR) with respect to Horn formulas. Recall that
a Horn formula is a boolean formula in conjunctive normal form (CNF),
such that each clause has at most one positive literal. Horn formulas find
applications in a number of domains such as program verification and
logic programming. It is well-known that deduction in ProLog is based on
unification, which in turn is based on resolution and instantiation. Res-
olution is a sound and complete procedure to check whether a boolean
formula in CNF is satisfiable. Although inefficient in general, resolution
has been used widely in theorem provers, on account of its simplicity and
ease of implementation. This paper focuses on two variants of resolution,
viz., Read-once resolution and Unit Read-once resolution (UROR). Both
these variants are sound, but incomplete. In this paper, the goal is to
check for the existence of proofs (refutations) of Horn formulas under
these variants. We also discuss the computational complexity of deter-
mining optimal length proofs where appropriate.

1 Introduction

This paper is concerned with analyzing Horn formulas from the perspectives of
Read-once resolution (ROR) and Unit Read-once resolution (UROR). A Horn
clause is a clause with at most one positive literal. A Horn formula is a conjunc-
tion of Horn clauses. These formulas find applications in a number of domains,
including but not limited to program verification [8,11], logic programming [4],
abstract interpretation [3] and econometrics [1]. Resolution is a sound and com-
plete proof system introduced by Robinson [10] for checking the satisfiability of
boolean formulas in conjunctive normal form (CNF). As an algorithmic strat-
egy, resolution is not particularly efficient. However, it continues to be used
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extensively in theorem provers on account of its simplicity and ease of imple-
mentation. A resolution proof system typically declares a CNF system to be
feasible, or (alternatively) finds a sequence of resolution steps which lead to the
derivation of a contradiction. Such a sequence of resolution steps is called a refu-
tation since it acts as a certificate, which certifies the infeasibility of the given
clausal system. There are a number of variants of resolution. Each variant puts
limitations on the type of resolution step that is permitted or how the resolution
steps are to be counted. Three variants which are particularly important from
the program verification perspective are tree-like resolution, dag-like resolution
and read-once resolution. In tree-like resolution refutations input clauses can be
used in multiple resolution steps, however each derived clause can only be used
once. If a resolution step requires the reuse of a derived clause then that clause
needs to be re-derived. Note that this re-derivation increases the length of the
refutation. In dag-like resolution refutations both input and derived clauses can
be used in multiple resolution steps. Finally, in read-once resolution refutations
each input and derived clause can be used by only one resolution step. Note that
clauses can be re-derived, and thus reused, if they can be derived from a different
set of input clauses. A complete exposition of different types of resolutions can
be found in [9] and [5].

Although the resolution proof system is both sound and complete (in gen-
eral), several of its variants are not. For instance, read-once resolution (ROR) is
incomplete, in that there exist unsatisfiable CNF formulas, which do not have
read-once resolutions.

Example 1. Consider the following 2CNF formula:

(x1 ∨ x2) (x3 ∨ x4) (¬x1 ∨ ¬x3)
(¬x1 ∨ ¬x4) (¬x2 ∨ ¬x3) (¬x2 ∨ ¬x4)

We now show that this formula does not have a read-once refutation.
To derive (x1) we need to derive (¬x2). Similarly, to derive (x2) we need to

derive (¬x1). However, the derivations of both (¬x1) and (¬x2) require the use
of the clause (x3 ∨ x4).

To derive (x3) we need to derive (¬x4). Similarly, to derive (x4) we need to
derive (¬x3). However, the derivations of both (¬x3) and (¬x4) require the use
of the clause (x1 ∨ x2).

Another variant of resolution is unit resolution. In unit resolution, for each
resolution step one of the two parent clauses must be a unit clause, i.e. a clause
of the form (xi) or (¬xi). Although unit resolution is incomplete in general, it
has been shown to be complete for Horn formulas [4]. In this paper, we study
the effect of combining read-once resolution with unit resolution with respect to
Horn formulas. We refer to this resolution system as Unit read-once resolution
(UROR).

A natural question to ask is: How many times should a given clause be
copied so that a read-once refutation can be extracted? This question was first
investigated by Iwama and Miyano in [6] and leads naturally to the notion of
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copy complexity (see Sect. 2). This paper investigates the copy complexity of
Horn formulas with respect to unit resolution.

The principal contributions of this paper are as follows:

1. A proof that the problem of finding the shortest read-once refutation for a
Horn formula is NP-hard (Sect. 3).

2. An algorithm that can determine if a Horn formula with m clauses and at
most two literals per clause has a read-once unit resolution refutation in
O(m2) time (Sect. 4).

3. Showing that the copy complexity of Horn formulas with respect to read-once
unit resolution is 2n−1 where n is the number of variables (Sect. 5).

The rest of the paper is organized as follows. Section 2 details the problems
under consideration. In Sect. 3 we cover the optimal length ROR problem for
Horn formulas. Section 4 describes our work on the UROR problem for 2-Horn
formulas. In Sect. 5, we examine the copy complexity of Horn formulas with
respect to read-once unit resolution. Finally, Sect. 6 summarizes our results.

2 Statement of Problems

In this section, we briefly discuss the terms used in this paper. We assume that
the reader is familiar with elementary propositional logic.

Definition 1. A literal is a variable x or its complement ¬x. x is called a
positive literal and ¬x is called a negative literal.

Definition 2. A CNF clause is a disjunction of literals. The empty clause,
which is always false, is denoted as �.

Definition 3. A k-CNF clause is a CNF clause with at most k literals.

Definition 4. A Horn clause is a CNF clause which contains at most one
positive literal.

For a single resolution step with parent clauses (α∨x) and (¬x∨β) and with
resolvent (α ∨ β), we write

(α ∨ x), (¬x ∨ β) | 1
RES

(α ∨ β).

The variable x is called the matching or resolution variable. If for initial clauses
α1, . . . , αn, a clause π can be generated by a sequence of resolution steps we
write

α1, . . . , αn |
RES

π.

If a resolution step involves a unit clause, a clause of the form (x) or (¬x),
then it is called a unit resolution step. If a resolution refutation consists of only
unit resolution steps, then it is called a unit resolution refutation.

We now formally define the types of resolution refutation discussed in this
paper.
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Definition 5. A Dag-like resolution refutation is a refutation in which each
clause, π, can be used in any number of resolution steps. This applies to clauses
present in the original formula and those derived as a result of previous resolution
steps.

Note that Dag-like refutations are unrestricted and thus are equivalent to
general resolution. We now introduce several restricted forms of resolution.

Definition 6. A Tree-like resolution refutation is a refutation in which each
derived clause, π, can be used in only one resolution step. However, clauses in
the original formula can be reused and clauses can be re-derived if necessary.

Definition 7. A Read-Once resolution refutation is a refutation in which each
clause, π, can be used in only one resolution step. This applies to clauses present
in the original formula and those derived as a result of previous resolution steps.

In a read-once refutation, a clause can be reused if can be re-derived from a
set of unused input clauses.

More formally, a resolution derivation Φ |
RES

π is a read-once resolution
derivation, if for all resolution steps π1 ∧ π2 | 1

RES
π, we delete one instance of

the clauses π1 and π2 from, and add a copy of the resolvent π to, the current
multi-set of clauses. In other words, if U is the current multi-set of clauses, we
obtain U = (U \ {π1, π2}) ∪ {π}.

It is important to note Read-Once resolution is an incomplete refutation
procedure.

We can similarly define read-once unit resolution.

Definition 8. A Read-Once Unit resolution refutation is a unit resolution
refutation in which each clause, π, can be used in only one unit resolution step.
This applies to clauses present in the original formula and those derived as a
result of previous unit resolution steps.

This lets us define the concept of copy complexity with respect to read-once
unit resolution.

Definition 9. A CNF formula Φ has copy complexity at most k, with respect
to unit resolution, if there exists a multi-set of CNF clauses, Φ′ such that:

1. Every clause in Φ appears at most k times in Φ′.
2. Every clause in Φ′ appears in Φ.
3. Φ′ has a read-once unit resolution refutation.

Let k-UROR denote the set of CNF formulas with copy complexity k with
respect to unit resolution.

For any type of resolution refutation, we can define the length of that refu-
tation in terms of the number of resolution steps.

Definition 10. The length of a resolution refutation R, is the number of reso-
lution steps in R.
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We now define the problems under consideration.
The Read-once Refutation (ROR) problem: Given a CNF formula
Φ, determine whether or not Φ has a read-once refutation.

The Optimal Length Read-once Refutation (OLROR) problem:
Given a CNF formula Φ, produce the read-once refutation of Φ that has
minimum length.

The Read-once Unit Resolution Refutation (UROR) problem:
Given a CNF formula Φ, determine whether or not Φ has a read-once
unit resolution refutation.

The Copy Complexity problem: Given a CNF formula Φ, determine
the copy complexity of Φ with respect to read-once unit resolution refu-
tation.

3 The OLROR Problem for Horn Formulas

In this section, we discuss the problem of finding the optimal read-once refutation
of a Horn formula.

Let Φ be an unsatisfiable Horn formula. We know that Φ has a read-once
refutation [12]. The question whether Φ has a read-once resolution of length less
than k is equivalent to the question whether Φ contains a minimal unsatisfiable
formula consisting of at most k clauses.

Theorem 1. Let R denote an OLROR of an unsatisfiable Horn formula Φ and
let ΦR ⊆ Φ be the set of clauses used by R. R is also an optimal tree-like refutation
of Φ and an optimal dag-like refutation of Φ. Additionally, ΦR is a minimum
unsatisfiable subset of Φ.

Proof. Since R is a read-once refutation of Φ, R is also a tree-like and a dag-like
refutation of Φ.

Assume that T is a tree like refutation of Φ such that |T | < |R|. Let ΦT ⊆ Φ
be the set of clauses used by T . It follows that |ΦT | ≤ |T | + 1 < |R| + 1.

ΦT must have a read-once refutation, RT [12]. However, |RT | ≤ |ΦT |−1 < |R|.
This contradicts the fact that R is the optimal read-once refutation of Φ. Thus,
R is also an optimal tree-like refutation of Φ. Similarly, R is an optimal dag-like
refutation of Φ.

Let Φ′ ⊆ Φ be an unsatisfiable Horn formula such that |Φ′| < |ΦR|. Φ′ must
have a read-once refutation, R′. However, |R′| ≤ |Φ′| − 1 < |ΦR| − 1 = |R|. This
contradicts the fact that R is the optimal read-once refutation of Φ. Thus, ΦR is
a minimum unsatisfiable subset of R. ��
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We conclude that, for unsatisfiable Horn formulas, the length of the shortest
resolution refutation equals the length of the shortest read-once refutation and
the shortest tree-like resolution. Moreover, if k is the number of clauses of a
minimal unsatisfiable subformula, then the shortest resolution refutation uses
(k − 1) resolution steps.

The following result is a corollary of Theorem 5.2 in [7]. However, it is
included here for completeness.

Theorem 2. The problem of deciding whether a Horn formula contains an
unsatisfiable sub-formula with at most k clauses is NP-complete.

Proof. We show this by a reduction from Vertex Cover. Let G = (V,E) be an
undirected graph where V = {v1, . . . , vn} and E = {e1, . . . , em}. We associate
with G the Horn formula:

(v1) ∧ . . . ∧ (vn) ∧ (¬e1 ∨ . . . ∨ ¬em) ∧
∧

1≤i≤m,ei=(vi1 ,vi2 )

((¬vi1 ∨ ei) ∧ (¬vi2 ∨ ei))

Then there exists a subset V ′ ⊆ V such that |V ′| ≤ r and V ′ ∩ ei is non-
empty for every 1 ≤ i ≤ m if and only if the associated formula contains an
unsatisfiable sub-formula with at most (1 +m + r) clauses. (the negative clause,
the clause (¬v ∨ ei) for each 1 ≤ i ≤ m, and r unit clauses).

Since the problem of finding a vertex cover of size at most r is NP-complete,
the problem of finding a read-once resolution refutation of length at most k =
(1 + m + r) is NP-complete for Horn formulas. ��

4 The UROR Problem for 2-Horn Formulas

In this section, we look at the UROR problem for 2-Horn formulas. In particular,
we show that checking whether a 2-Horn formula has a unit read-once refutation
is in P.

As in the case of Horn formulas, not every unsatisfiable 2-Horn formula has
a read-once unit resolution refutation.

Example 2. Consider the formula

(x1) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2).

This formula is an unsatisfiable Horn formula. However, the clause (x1) needs
to be used twice in any unit resolution refutation. Thus, this formula does not
have a read-once unit resolution refutation.

Let Φ be a 2-Horn formula with m clauses over n variables. We can divide
Φ into a set of positive unit clauses (PU), a set of implications (φ), a set of
negative unit clauses (NU), and a set of clauses with two negative literals (N).
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We write Φ = PU ∪ φ ∪ NU ∪ N . Note that any part (PU , φ, NU , or N) can
be empty.

For resolution or restricted resolution calculi we say a formula Φ is minimal
with respect to the calculus, if there exists a refutation for Φ and no proper
sub-formula of Φ has a refutation.

Let R be a read-once unit resolution of Φ. Let Φk = PUk ∪φk ∪NUk ∪Nk be
the set of clauses derived from Φ after k steps of R. Let us consider the (k +1)th

resolution step of R.
Note that this resolution step must resolve one of the following clause pairs:

1. A clause of the form (xi) ∈ PUk and a clause of the form (¬xi) ∈ NUk. In
this case, this resolution step produces the empty cause. Note that this is the
last step of the refutation.

2. A clause of the form (xi) ∈ PUk and a clause of the form (¬xi ∨ ¬xj) ∈ Nk.
In this case, the resolution produces the negative unit clause (¬xj). Thus,
PUk+1 = PUk \ {(xi)}, Nk+1 = Nk \ {(¬xi ∨ ¬xj)}, and NUk+1 = NUk ∪
{(¬x2)}. Note that |PUk+1 ∪ NUk+1| = |PUk ∪ NUk| and |NUk+1 ∪ Nk+1| =
|NUk ∪ Nk|.

3. A clause of the form (xi) ∈ PUk and a clause of the form (¬xi ∨ xj) ∈
φk. In this case, the resolution produces the positive unit clause (xj). Thus,
PUk+1 = (PUk \ {(xi)}) ∪ {(xj)}, Nk+1 = Nk, and NUk+1 = NUk. Note
that |PUk+1 ∪ NUk+1| = |PUk ∪ NUk| and |NUk+1 ∪ Nk+1| = |NUk ∪ Nk|.

4. A clause of the form (¬xi) ∈ NUk and a clause of the form (xi ∨ ¬xj) ∈ φk.
In this case, the resolution produces the negative unit clause (¬xj). Thus,
PUk+1 = PUk, Nk+1 = Nk, and NUk+1 = (NUk \ {(¬xi)}) ∪ {(¬xj)}. Note
that |PUk+1 ∪ NUk+1| = |PUk ∪ NUk| and |NUk+1 ∪ Nk+1| = |NUk ∪ Nk|.
Let Φ = PU ∪ φ ∪ NU ∪ N be minimal with respect to read-once unit

resolution. Let R be a read-once unit resolution refutation of Φ and let
(x1) ∧ (¬x1) | 1

RES
�, be the last resolution step of R. Based on the preced-

ing arguments, Φ must have the following properties:

1. |NU ∪ N | = 1. Note that every prior resolution step of R preserves the size
of NU ∪ N . Before the last resolution step of R, NU ∪ N = {(¬xi)}. Thus,
before the last resolution step |NU ∪N | = 1. This means that this must have
been true for the original formula.

2. |PU ∪ NU | = 2. Note that every prior resolution step of R preserves the size
of PU ∪ NU . Before the last resolution step of R, PU ∪ NU = {(xi), (¬xi)}.
Thus, before the last resolution step |PU ∪ NU | = 2. This means that this
must have been true for the original formula.

Thus, Φ must satisfy one of the following conditions:

1. |PU | = 1, |NU | = 1, and |N | = 0.
2. |PU | = 2, |NU | = 0, and |N | = 1.

This means that we only need to consider two types of read-once unit reso-
lution refutations.
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1. Refutations which use a single positive unit clause from PU and a single
negative unit clause from NU . We refer to this as a Type 1 refutation.

2. Refutations which use two positive unit clauses from PU and a single negative
clause from N . We refer to this as a Type 2 refutation.

From an arbitrary 2-Horn formula Φ = PU ∪ φ ∪ NU ∪ N , we can create a
directed graph G = 〈V,E〉 as follows:

1. For each variable xi in Φ, add the vertex vi to V.
2. For each clause (xi ∨ ¬xj), add the edge (vj , vi) to E.
3. Let S = {vi|(xi) ∈ PU} and T = {vj |(¬xj) ∈ NU}.

We utilize G to find read-once unit resolution refutations.

Lemma 1. The clause (xi) is derivable from Φ by a read-once unit resolution
if and only if vi is reachable in G from a vertex in S.

Proof. Assume that (xi) is derivable from Φ by a read-once unit resolution R.
We will show that vi is reachable from a vertex in S by induction based on the
number of resolution steps in R.

If R has no resolution steps then (xi) ∈ Φ. Thus, (xi) ∈ PU and, by con-
struction, vi ∈ S. Thus, vi is trivially reachable from a vertex in S.

Now suppose that this holds true of all resolutions with k steps. If R has (k+
1) steps, then the last resolution step of R must be (xj)∧(¬xj∨xi) | 1

RES
(xi) for

some clause (xj). This means that (xj) must be derivable from Φ by a read-once
unit resolution with k steps. Thus, by the induction hypothesis, vj is reachable
from a vertex in S. Thus, (¬xj ∨xi) ∈ Φ since non-unit clauses are not derivable
from 2-Horn clauses by unit resolution. This means that (¬xj ∨ xi) ∈ φ and, by
construction, the edge (vj , vi) is in E. Thus, vi is also reachable from a vertex
in S.

Now assume that vi is reachable from a vertex vj ∈ S. Thus, there must be
a simple path p in G from vj to vi. Let the edges in p be (vj , vp1), (vp1 , vp2), . . .,
(vpk

, vi). By construction of G, the clauses (xj), (¬xj ∨ xp1), (¬xp1 ∨ xp2), . . .,
(¬xpk

∨ xi) are all in Φ.
It is easy to see that these clauses can be used to derive (xi) through unit

resolution. Since p was simple no clause is used more than once. Thus, this is a
read-once unit resolution of (xi). ��
Theorem 3. Whether the formula Φ has a Type 1 refutation can be determined
in linear time.

Proof. Φ has a Type 1 refutation if and only if for some clause (¬xt) ∈ Φ, we
can derive the clause (xt) from Φ by a read-once unit resolution R. Thus, by
Lemma 1, some vertex vt ∈ T must be reachable from a vertex in S. This can
be checked by doing a depth-first search in G. ��
Theorem 4. Whether the formula Φ has a Type 2 refutation can be determined
in O(m2) time.
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Proof. Φ has a Type 2 refutation if and only if for some clause (¬xt1 ∨¬xt2) ∈ Φ,
we can derive the clauses (xt1) and (xt2) from Φ by read-once unit resolution
R. Thus, by Lemma 1, both vt1 and vt2 must be reachable from verticies in S.
Thus, there is a path p1 from a vertex in S to vt1 and there is a path p2 from
a vertex in S to vt2 . Since R is a read-once unit resolution, p1 and p2 cannot
share any edges and cannot have the same starting vertex.

If we are given verticies vt1 and vt2 , then we need to check if G has such a
pair of edge-disjoint paths.

From G, S, vt1 , and vt2 , we can construct flow network G′ as follows:

1. For each vertex vi in G, add the node vi to G′.
2. For each edge (vi, vj) in G add the edge (vi, vj) to G′ with capacity 1.
3. Add a source s and the edges (s, vi) for vi ∈ S to G′.
4. Add a sink t and the edges (vt1 , t), and (vt2 , t) to G′.

The desired paths exist if and only if a flow of 2 can be pushed from s to t
in G′.

Thus, Φ has a Type 2 refutation if and only if, for some clause (¬xt1 ∨¬xt2) ∈
Φ, the graph G′ has a max flow of 2.

Note that all edges in G′ have capacity 1, and that t has only two incoming
edges. This means that the maximum flow is at most 2. Thus, we can find the
max flow from s to t in G′ in O(m) time where m is the number of clauses in
Φ [2]. Since we need to find this flow for each clause of the form (¬xt1 ∨ ¬xt2),
determining if Φ has a Type 2 refutation can be accomplished in O(m2) time. ��

Thus, checking if Φ has a read-once unit resolution refutation can be accom-
plished by checking to see if it has either a Type 1 refutation or a Type 2
refutation. This can be accomplished in O(m2) time since checking for Type 2
refutations is the more time consuming process.

5 UROR Copy Complexity of Horn Formulas

We now examine the copy complexity of Horn formulas with respect to unit
resolution.

Theorem 5. The copy complexity of Horn formulas with respect to unit resolu-
tion is at most 2n−1 where n is the number of variables.

Proof. Suppose Φ is an unsatisfiable Horn formula. Note that adding clauses to
a system cannot increase the copy complexity. Thus, we can assume without
loss of generality that Φ is minimal unsatisfiable. Let CC(n) denote the copy
complexity of a minimal unsatisfiable Horn formula with n variables. We will
show that CC(n) ≤ 2n−1. For a clause φj of Φ let Nc(φj) be the number of
copies of φj needed for a read-once unit resolution refutation.

Let Φ be a minimal unsatisfiable Horn formula with n variables. Thus, Φ
has (n + 1) clauses. If n = 1, then Φ has the form (x) ∧ (¬x). This formula has
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a read-once unit resolution refutation. Thus CC(1) = 1 ≤ 20. Also note that∑
φj∈Φ Nc(φj) = 2 ≤ 21.
Now assume that CC(k) ≤ 2k−1, and that for each minimal unsatisfiable

formula Φ′ with k variables,
∑

φ′
j∈Φ′ Nc(φ′

j) ≤ 2k. If n = k + 1, then Φ has the
form (x)∧(¬x∨α1)∧ . . .∧(¬x∨αt)∧σt+1 . . .∧σk+1. A read-once unit resolution
refutation needs to use the clause (x) to eliminate each instance of ¬x. Thus, we
need a copy of the clause (x) for each copy of (¬x ∨ αi) for i = 1 . . . t. Let Φ′ be
the formula α1 ∧ . . . αt ∧ σt+1 . . . ∧ σk+1. Note that Φ′ is a minimal unsatisfiable
formula with n − 1 = k variables. Thus,

t∑

j=1

Nc(αi) ≤
∑

φ′
j∈Φ′

Nc(φ′
j) ≤ 2k.

This means that we need at most 2k copies of the clause (x). Thus, CC(k+1) ≤
2k and

∑
φj∈Φ Nc(φj) ≤ 2k + 2k = 2k+1. ��

Theorem 6. There exists a Horn formula with copy complexity 2n−1 where n
is the number of variables.

Proof. Consider the following clauses:

(¬x1 ∨ ¬x2 ∨ . . . ∨ ¬xn) (x1 ∨ ¬x2 ∨ . . . ∨ ¬xn) (x2 ∨ ¬x3 ∨ . . . ∨ ¬xn)
. . . (xn−1 ∨ ¬xn) (xn)

Let us consider the clause (¬x1 ∨ ¬x2 ∨ . . . ∨ ¬xn). To eliminate this clause
through unit resolution, we need to derive the clauses (x1), (x2), . . ., (xn).
We will prove by induction, that for each i = 1 . . . n, 2i−1 copies of the clause
(xi ∨ ¬xi+1 ∨ . . . ∨ ¬xn) are required.

To eliminate ¬x1 from the clause we only need one copy of the clause (x1),
thus we only need 1 = 20 copies of the clause (x1 ∨ ¬x2 ∨ . . . ∨ ¬xn).

Now assume that for each i < k, we need to use 2i−1 copies of the clause
(xi ∨ ¬xi+1 ∨ . . . ∨ ¬xn). Each of these clauses uses the literal ¬xk, as does the
clause (¬x1 ∨ ¬x2 ∨ . . . ∨ ¬xn). Thus, we need a total of 1 +

∑k−1
i=1 2i−1 = 2k−1

copies of the clause (xk) to cancel every instance of ¬xk. The only clause with
the literal xk is the clause (xk ∨ ¬xk+1 ∨ . . . ∨ ¬xn). Thus, we need to use 2k−1

copies of this clause, as desired.
This means that we need a total of 2n−1 copies of the clause (xn). Thus, the

copy complexity of this formula is 2n−1 with respect to unit resolution. ��
From these two results, it is easy to see that the copy complexity of Horn

formulas with respect to read-once unit resolution refutation is 2n−1.

6 Conclusion

In this paper, we studied two proof systems, viz., Read-once resolution (ROR)
and Unit read-once resolution (UROR) from the perspective of Horn clause sys-
tems. Our work is motivated by two important factors, viz., the ubiquitousness
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of the resolution proof system in SMT solvers and the wide applicability of Horn
formulas. As discussed before, the ROR and UROR proof systems are incom-
plete for general CNF formualas, although ROR is complete for Horn formulas.
Note that if an unsatisfiable formula has a read-once refutation or unit read-once
refutation, then this refutation is necessarily short. This is in contrast to gen-
eral resolution proofs, which could be exponentially large with respect to input
size. Our investigations established that the problem of checking whether a Horn
clause system has a read-once refutation of length at most k is NP-hard. We
also showed that the problem of finding a UROR for 2-Horn formulas is in P.
Finally, we discussed the copy complexity of Horn formulas with respect to unit
resolution and obtained an exponential lower bound.
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Abstract. Given two graphs H1 and H2, a graph is (H1, H2)-free if it
contains no induced subgraph isomorphic to H1 or H2. Let Pt and Ct be
the path and the cycle on t vertices, respectively. A banner is the graph
obtained from a C4 by adding a new vertex and making it adjacent to
exactly one vertex of the C4. For a fixed integer k ≥ 1, a graph G is said
to be k-vertex-critical if the chromatic number of G is k and the removal
of any vertex results in a graph with chromatic number less than k. The
study of k-vertex-critical graphs for graph classes is an important topic
in algorithmic graph theory because if the number of such graphs that
are in a given hereditary graph class is finite, then there is a polynomial-
time algorithm to decide if a graph in the class is (k − 1)-colorable. In
this paper, we show that there are finitely many 6-vertex-critical (P5,
banner)-free graphs. This is one of the few results on the finiteness of
k-vertex-critical graphs when k > 4. To prove our result, we use the
celebrated Strong Perfect Graph Theorem and well-known properties on
k-vertex-critical graphs in a creative way.

1 Introduction

All graphs in this paper are finite and simple. Let H be a set of graphs. A graph
G is H-free if it does not contain any member in H as an induced subgraph. In
case that H consists of a single graph H or two graphs H1 and H2, we write
H-free and (H1,H2)-free instead of {H}-free and {H1,H2}-free, respectively. A
class of graphs is said to be hereditary if every induced subgraph of a member
in the class is also in the class. It is easy to see that a graph class is hereditary
if and only if it is H-free for some set H of graphs. For instance, the class of
bipartite graphs coincides with the class of graphs that does not contain any
odd cycle as an induced subgraph.

A k-coloring of a graph G is a function φ : V (G) −→ {1, . . . , k} such that
φ(u) �= φ(v) whenever u and v are adjacent in G. Equivalently, a k-coloring of
G can be viewed as a partition of V (G) into k stable sets. We say that G is k-
colorable if it admits a k-coloring. The chromatic number of G, denoted by χ(G),
is the minimum number k such that G is k-colorable. A graph G is k-chromatic
if χ(G) = k. We say that G is k-critical if it is k-chromatic and χ(G−e) < χ(G)
for any edge e ∈ E(G). For instance, K2 is the only 2-critical graph and odd
cycles are the only 3-critical graphs. A graph is critical if it is k-critical for some
c© Springer Nature Switzerland AG 2019
Y. Chen et al. (Eds.): FAW 2019, LNCS 11458, pp. 111–120, 2019.
https://doi.org/10.1007/978-3-030-18126-0_10
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integer k ≥ 1. Critical graphs were first defined and studied by Dirac [7–9] in
the early 1950s, and then by Gallai and Ore [11,12,20] among many others, and
more recently by Kostochka and Yancey [19].

A weaker notion of criticality is the so-called vertex-critical graphs. A graph
G is k-vertex-critical if χ(G) = k and χ(G − v) < k for any v ∈ V (G). For a
set H of graphs and a graph G, we say that G is k H-vertex-critical -free if it
is k-vertex-critical and H-free. In this paper, we study k-vertex-critical H-free
graphs. We are mainly interested in the following question: given a set H of
graphs and an integer k ≥ 1, are there only finitely many k-vertex critical H-free
graphs? This question is important in the study of algorithmic graph theory
because of the following theorem.

Theorem 1 (Folklore). For a given set H of graphs and an integer k ≥ 1, if
the set of all k-vertex-critical H-free graphs is finite, then there is a polynomial-
time algorithm to determine whether an H-free graph is (k − 1)-colorable.

Proof. Suppose that {F1, . . . , Fr} is the set of all k-vertex-critical H-free graphs,
where r ≥ 1 is a constant and |V (Fi)| = ni for 1 ≤ i ≤ r. Let G be an H-free
graph with n vertices. Observe that G is (k − 1)-colorable if and only if G is
Fi-free for each 1 ≤ i ≤ r. We now brute-force on all ni-tuples of V (G) and
check whether or not the given tuple induces a subgraph isomorphic to Fi. Since
Fi has ni vertices, there are at most nni such tuples, and this implies that it
takes O(nni) time to decide if G is Fi-free. Therefore, it takes

∑
i O(nni) ≤

O(nmax{n1,...,nr}) time to determine if G is (k − 1)-colorable. Since r is finite,
the running time is a polynomial function in n. ��

Let Kn be the complete graph on n vertices. Let Pt and Ct denote the path
and the cycle on t vertices, respectively. We now review some known results in
the study of k-vertex-critical H-free graphs. The only k-vertex-critical perfect
graph (see the definition in Sect. 2) is the complete graph Kk, and there is no 5-
vertex-critical planar graphs by the Four Color Theorem. Another class of graphs
that has been extensively studied recently is the class of Pt-free graphs. In [2],
it was shown that there are finitely many 4-vertex-critical P5-free graphs. This
result was later generalized to P6-free graphs [4]: there are 80 4-vertex-critical
P6-free graphs. In the same paper, an infinite family of 4-vertex-critical P7-
free graphs was constructed. Randerath and Schiermeyer [21] have shown that
there are finitely many 4-vertex-critical (P6, C3)-free graphs. Hell and Huang
[14] determined all four 4-vertex-critical (P6, C4)-free graphs. Goedgebeur and
Schaudt [13] prove that there are finitely many 4-vertex-critical (Pt, C4)-free
graphs for t = 7, 8, and that there are finitely many 4-vertex-critical (P7, C5)-
free graphs. It was also known that there are finitely many 5-vertex-critical
(P5, C5)-free graphs [16] and (P6, banner)-free graphs [17].

For two graphs G and H, we use G+H to denote the disjoint union of G and
H. For a positive integer r, we use rG to denote the disjoint union of r copies
of G. For s, r ≥ 1, let Kr,s be the complete bipartite graph with one part of size
r and the other part of size s. For the class of H-free graphs, it was shown in
[3,4] that the set of 4-vertex-critical H-free graphs is finite if and only if H is a
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subgraph of P6, 2P3 or P4 + rP1 for some r ≥ 1. The finiteness for every fixed
k ≥ 1 was also shown for some other classes, e.g., for (P5, P5)-free graphs [6],
(P6, C4)-free graphs [14], (Pt,Ks,r)-free graphs [18] for any t, s, r ≥ 1.

Our Contributions. A banner is the graph obtained from a C4 by adding a new
vertex and making it adjacent to exactly one vertex of the C4. In this paper, we
prove that there are finitely many 6-vertex-critical (P5, banner)-free graphs. We
note that most known results are on 4-critical graphs, and that the larger k is, the
more difficult it is to prove finiteness of k-vertex-critical graphs. In addition, the
case k = 5 has been done in [17]. Our result is one of the few results for finiteness
of k-vertex-critical graphs when k > 4. Moreover, it follows from Theorem1 that
our result generalizes the previous result on the polynomial-time algorithm for
5-coloring P5-free graphs when restricted to banner-free graphs [15].

The remainder of the paper is organized as follows. We present some prelim-
inaries in Sect. 2 and give structural properties around an induced C5 in a (P5,
banner)-free graph in Sect. 3. We show that there are finitely many 6-vertex-
critical (P5, banner)-free graphs in Sect. 4. We conclude our paper in Sect. 5.

2 Preliminaries

For general graph theory notation we follow [1]. The complement of a graph G
is denoted by G. For k ≥ 4, an induced cycle of length k is also called a k-hole.
A k-hole is an odd hole (resp. even hole) if k is odd (resp. even). A k-antihole is
the complement of a k-hole. Odd and even antiholes are defined analogously.

Let G = (V,E) be a graph. The neighborhood of a vertex v, denoted by NG(v),
is the set of neighbors of v. For a set X ⊆ V (G), let NG(X) =

⋃
v∈X NG(v) \ X

and NG[X] = N(X)∪X. The degree of v, denoted by dG(v), is equal to |NG(v)|.
We shall omit the subscript G when the context is clear. The minimum degree
of G over all vertices in G is denoted by δ(G). For x ∈ V and S ⊆ V , we denote
by NS(x) the set of neighbors of x that are in S, i.e., NS(x) = NG(x) ∩ S. For
X,Y ⊆ V , we say that X is complete (resp. anti-complete) to Y if every vertex in
X is adjacent (resp. non-adjacent) to every vertex in Y . A vertex subset S ⊆ V
is stable if no two vertices in S are adjacent. A clique is the complement of a
stable set. A vertex subset K ⊆ V is a clique cutset if G−K has more connected
components than G and K is a clique. A vertex is universal in G if it is adjacent
to all other vertices in G. For S ⊆ V , the subgraph induced by S is denoted by
G[S]. We often write S for G[S] if the context is clear. We say that a vertex w
distinguishes two vertices u and v if w is adjacent to exactly one of u and v.
Two non-adjacent vertices u and v are said to be comparable if N(u) ⊆ N(v) or
N(v) ⊆ N(u).

The following lemma is well-known in the study of k-vertex-critical graphs.

Lemma 1 ([22]). Let G be a k-vertex-critical graph. Then the following holds:
(i) δ(G) ≥ k − 1; (ii) G contains no clique cutsets; (iii) G contains no pair of
comparable vertices.

Another useful result is the following lemma.



114 Q. Cai et al.

Lemma 2 ([10]). Let G be a connected bipartite graph. Then G is P5-free if and
only if G is 2P2-free.

The clique number of G, denoted by ω(G), is the size of a largest clique in
G. A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G.
Another result we use is the well-known Strong Perfect Graph Theorem.

Theorem 2 (The Strong Perfect Graph Theorem [5]). A graph is perfect
if and only if it does not contain any odd hole or odd antihole as an induced
subgraph.

Observe that the only k-vertex-critical perfect graphs is the complete graph
Kk. This can be seen as follows. Let G be a k-vertex-critical perfect graphs. Since
G is k-chromatic, it must contain Kk as an induced subgraph by the definition
of perfect graphs. Since G is k-vertex-critical, it follows that G is isomorphic to
Kk.

3 Structure Around a 5-Hole

Let G = (V,E) be a graph and H be an induced subgraph of G. We partition
V \V (H) into subsets with respect to H as follows: for any X ⊆ V (H), we denote
by S(X) the set of vertices in V \V (H) that have X as their neighborhood among
V (H), i.e.,

S(X) = {v ∈ V \ V (H) : NV (H)(v) = X}.

For 0 ≤ j ≤ |V (H)|, we denote by Sj the set of vertices in V \ V (H) that have
exactly j neighbors in V (H). Note that Sj =

⋃
X⊆V (H):|X|=j S(X). We say that

a vertex in Sj is a j-vertex.
Let G be a (P5, banner)-free graph and C = 1, 2, 3, 4, 5 be an induced C5

in G. We partition V \ V (C) with respect to C as above. All indices below are
modulo five. We now prove a number of useful properties of S(X) using the fact
that G is (P5, banner)-free. All properties are proved for i = 1 due to symmetry.

(1) S(i) = S(i, i + 1) = ∅.
S(1) ∪ S(1, 2) contains a vertex, then x, 1, 5, 4, 3 induces a P5. ��

(2) S(i, i + 2) = S(i, i + 2, i − 2) = ∅.
If S(1, 3)∪S(1, 3, 4) contains a vertex x, then {1, 2, 3, x, 5} induces a banner.

��
(3) S(i − 1, i, i + 1) and S(i − 1, i − 2, i + 2, i + 1) are cliques.

If S(5, 1, 2) contains two non-adjacent vertices x and y, then {x, y, 5, 2, 3}
induces a banner. Similarly, if S(2, 3, 4, 5) contains two non-adjacent vertices
x and y, then {x, y, 5, 1, 3} induces a banner. ��

(4) S0 is anti-complete to S3 ∪ S4.
Suppose that a ∈ S0 is adjacent to x ∈ S3 ∪ S4. By (2), x ∈ S(i, i + 1, i + 2)
or x ∈ S(i + 1, i + 2, i + 3, i + 4) for some i ∈ V (C). By symmetry, we
may assume that i = 1. If x ∈ S(1, 2, 3), then a, x, 1, 5, 4 induces a P5. If
x ∈ S(1, 2, 3, 4), then {1, x, 4, 5, a} induces a banner. ��
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(5) Let x, y ∈ S5 with xy /∈ E. Then every vertex in S3 ∪ S4 is adjacent to at
least one of x and y.

Assume that t ∈ S3 ∪ S4. Since t is adjacent to at least one but not all
vertices on C, there exists a vertex i ∈ C such that t is adjacent to i but
not to i + 2. If t is adjacent to neither x nor y, then {t, i, i + 2, x, y} induces
a banner. ��

4 The Main Result

In this section, we show that there are finitely many 6-vertex-critical (P5,
banner)-free graphs.

Theorem 3. There are finitely many 6-vertex-critical (P5, banner)-free graphs.

The proof of the theorem relies on the following three lemmas.

Lemma 3. Let G be a 6-vertex-critical (P5, banner)-free graph. If G contains
an induced C9, then G has a finite order.

Lemma 4. Let G be a 6-vertex-critical (P5, banner)-free graph. If G contains
an induced C7, then G has a finite order.

Lemma 5. Let G be a 6-vertex-critical (P5, banner)-free graph. If G contains
an induced C5, then G has a finite order.

We now prove the theorem using Lemmas 3, 4 and 5 and then prove the
lemmas in the following three subsections.

Proof (Proof of Theorem 3). Let G be a 6-vertex critical (P5, banner)-free graph.
It follows from Lemmas 3, 4 and 5 that if G contains an induced C9, C7 or
C5, then the order of G is finite. Therefore, we may assume that G is also
{C9, C7, C5}-free. Since G is 6-vertex-critical and χ(C11) = 6, it follows that
G = C11 if G contains an induced C11. Therefore, we may assume that G is
also C11-free. Since G is 6-chromatic and χ(C2t+1) ≥ 7 for any t ≥ 6, it follows
that G does not contain any odd antihole. Moreover, since G is P5-free, it does
not contain any odd hole. It then follows from Theorem2 that G is perfect.
Therefore, G is isomorphic to K6. Hence, the theorem follows. ��

We denote by G+ku the graph obtained from a graph G by adding a clique of
size k and adding an edge between every vertex in G and every vertex in the new
clique. Observe that C9 + 1u and C7 + 2u are 6-vertex-critical (P5, banner)-free
graphs.



116 Q. Cai et al.

4.1 Proof of Lemma 3

Proof. Let C = 1, 2, 3, 4, 5, 6, 7, 8, 9 be an induced C9 such that ij ∈ E if and
only if |i − j| > 1. All indices are modulo 9. We partition V (G) with respect to
C. If S9 �= ∅, then G contains (C9 + 1u), which is a 6-chromatic graph. Since G
is 6-vertex-critical, it follows that G is isomorphic to (C9 + 1u) and the lemma
holds. Therefore, we may assume that S9 = ∅.

Claim 1. Si = ∅ for 1 ≤ i ≤ 4.

Proof (Proof of Claim 1). Let x ∈ S(X) for some X ⊆ C with 1 ≤ |X| ≤ 4.
We show that there is an induced C4 ⊆ C containing exactly one neighbor
of x and this C4 together with x gives an induced banner in G. Let x ∈ Sk

for some 1 ≤ k ≤ 4. Since x has at most 4 neighbors on C, there exists an
index i such that x is adjacent to neither i − 4 nor i + 4 (since the vertex cover
number of C9 is 5). If x has a neighbor in {i − 2, i − 1, i, i + 1, i + 2}, then
there exist j, j + 1 ∈ {i − 2, i − 1, i, i + 1, i + 2} such that x distinguishes j
and j + 1. For otherwise x would be complete to {i − 2, i − 1, i, i + 1, i + 2},
which contradicts the assumption that x has at most 4 neighbors on C. Then
{j, j + 1, i − 4, i + 4, x} induces a banner. The remaining case is that x is anti-
complete to V (C) \ {i − 3, i + 3}. By symmetry, we assume that x is adjacent to
i + 3. Then {i − 2, i − 1, i + 2, i + 3, x} induces a banner. This shows that Si = ∅
for 1 ≤ i ≤ 4. ��
Claim 2. S0 = ∅.
Proof (Proof of Claim 2). Suppose not. Let A be a connected component of S0.
By Claim 2 and the connectivity of G, some vertex a ∈ A has a neighbor n ∈ Si

for some 5 ≤ i ≤ 8. It can be readily seen that there exists an index i such that
n is adjacent to i − 4 and i + 4 but not to some j where j ∈ {i − 2, i − 1, i, i + 1,
i + 2}. Now {i − 4, i + 4, j, n, a} induces a banner, a contradiction. This proves
that S0 = ∅. ��
Claim 3. For every X ⊆ C with 5 ≤ |X| ≤ 8, S(X) is a clique.

Proof (Proof of Claim 3). Let X ⊆ C be an arbitrary set with 5 ≤ |X| ≤ 8. Since
5 ≤ |X| ≤ 8, there exists an index i ∈ C such that i, i + 1 ∈ X but i + 2 /∈ X.
If S(X) contains two non-adjacent vertices x and y, then {i, i + 1, i + 2, x, y}
induces a banner. Therefore, S(X) is a clique. ��

Since G is 6-vertex-critical, G = K6 if G contains a K6. Therefore, we may
assume that G is K6-free. By Claim 3, it follows that |S(X)| ≤ 3 for every X ⊆ C
with 5 ≤ |X| ≤ 8. By Claims 1 and 2, V (G) = C ∪ S5 ∪ S6 ∪ S7 ∪ S8. Therefore,
|V (G)| ≤ 9 + 3(

(
9
5

)
+

(
9
6

)
+

(
9
7

)
+

(
9
8

)
) = 794. ��

4.2 Proof of Lemma 4

Proof. Let C = 1, 2, 3, 4, 5, 6, 7 be an induced C7 such that ij ∈ E if and only
if |i − j| > 1. All indices are modulo 7. We partition V (G) with respect to C.
If S7 is not stable, then G is isomorphic to (C7 + 2u) and so the lemma holds.
Therefore, we may assume that S7 is stable.
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Claim 4. Si = ∅ for 1 ≤ i ≤ 3.

Proof (Proof of Claim 4). Let x ∈ Si for some 1 ≤ i ≤ 3. Since x has at most
three neighbors on C, there exists a vertex i ∈ V (C) such that x is adjacent to
neither i − 3 nor i + 3 and x is adjacent to some vertex in {i − 1, i, i + 1}. If x is
complete to {i − 1, i, i + 1}, then {i + 2, i + 3, i − 1, i − 2, x} induces a banner.
If x is not adjacent to some vertex in {i − 1, i, i + 1}, then there exists a vertex
j ∈ {i−1, i} such that x distinguishes j and j +1, and so {i−3, i+3, j, j +1, x}
induces a banner. This proves that Si = ∅ for 1 ≤ i ≤ 3. ��
Claim 5. S0 = ∅.
Proof (Proof of Claim 5). Suppose not. Let A be a connected component of S0.
We first show that N(A) ⊆ S7. By Claim 4 and the connectivity of G, some
vertex a ∈ A has a neighbor n ∈ Si for some 4 ≤ i ≤ 7. If n ∈ S4 ∪ S5 ∪ S6, then
it can be readily seen that there exists an index i such that n is adjacent to i − 3
and i + 3 but not to some j where j ∈ {i − 1, i, i + 1}. Now {i − 3, i + 3, j, n, a}
induces a banner, a contradiction. This shows that N(A) ⊆ S7. Since N(A) is
not a clique cutset by Lemma 1, it follows that A has at least two non-adjacent
neighbors in S7. Let x, y ∈ N(A) be non-adjacent. If there exists a vertex a ∈ A
such that a distinguishes x and y, then {1, 2, x, y, a} induces a banner. Therefore,
each vertex in A is either complete or anti-complete to {x, y}. Let A′ be the set
of vertices in A that are complete to {x, y} and A′′ = A \A′. If A′′ is not empty,
then by the connectivity of A there exists an edge ab in A such that a ∈ A′

and b ∈ A′′. Then {1, x, y, a, b} induces a banner. Thus, A′′ = ∅. This proves
that {x, y} is complete to A. Note that χ(A) ≤ 4 for otherwise A ∪ {x, y} has
chromatic number at least 6. This contradicts that G is 6-vertex-critical. Since G
is 6-vertex-critical, G−V (A) admits a 5-coloring. Note that S7 is monochromatic
under this 5-coloring. Thus, one can extend this 5-coloring to G by assigning four
colors that are not used on S7 to A. This proves that S0 = ∅. ��
Claim 6. For every X ⊆ C with 4 ≤ |X| ≤ 6, S(X) is a clique.

Proof (Proof of Claim 6). Let X ⊆ C be an arbitrary set with 4 ≤ |X| ≤ 6. Since
4 ≤ |X| ≤ 6, there exists an index i ∈ C such that i, i + 1 ∈ X but i + 2 /∈ X.
If S(X) contains two non-adjacent vertices x and y, then {i, i + 1, i + 2, x, y}
induces a banner. Therefore, S(X) is a clique. ��

Since G is 6-vertex-critical, it follows that G = K6 if G contains a K6.
Therefore, we may assume that G is K6-free. By Claim 6, it follows that |S(X)| ≤
3 for every X ⊆ C with 4 ≤ |X| ≤ 6. Therefore, |S4 ∪ S5 ∪ S6| ≤ 3(

(
7
4

)
+

(
7
5

)
+

(
7
6

)
) = 189. By Claims 4 and 5, G = C ∪ S4 ∪ S5 ∪ S6 ∪ S7. Since G has no

comparable vertices by Lemma 1, it follows from the pigeonhole principle that
|S7| ≤ 2|S4∪S5∪S6| ≤ 2189. Therefore, the lemma holds. ��

4.3 Proof of Lemma 5

Proof. Let C = 1, 2, 3, 4, 5 be an induced C5. We partition V \C with respect to
C. By (1) and (2), S1 = S2 = ∅ and S(i − 2, i, i + 2) = ∅ for 1 ≤ i ≤ 5. By (3),
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S(i − 1, i, i + 1) and S(C \ {i}) are cliques. Since G is 6-vertex-critical, it follows
that G = K6 if G contains a K6. Therefore, we may assume that G is K6-free.
This implies that each such clique has size at most three. Therefore, |Si| ≤ 15
for i = 3, 4. If S5 is not bipartite, then S5 contains a triangle or a five-cycle.
This triangle or five-cycle together with C gives a 6-chromatic subgraph of G of
order at most 10 and so |V (G)| ≤ 10. Thus, we may assume that S5 is bipartite.

Claim 7. S0 = ∅.
Proof (Proof of Claim 7). Let A be a connected component of S0. By (4), A is
anti-complete to S3 ∪ S4. Therefore, N(A) ⊆ S5. We first show that for any
pair of non-adjacent vertices s and t in N(A), {s, t} is complete to A. Suppose
that a ∈ A is adjacent to s but not to t, then {1, 3, s, t, a} induces a banner.
Therefore, each vertex in A is either complete or anti-complete to {s, t}. If the
set of vertices in A that is anti-complete to {s, t} is not empty, then by the
connectivity of A there is an edge ab ∈ A such that a is anti-complete to {s, t}
and b is complete to {s, t}. Then {1, b, s, t, a} induces a banner. Thus, {s, t} is
complete to A. Since N(A) is not a clique by Lemma1, N(A) contains two non-
adjacent vertices x and y. Since x and y are not comparable by Lemma 1, there
exists a vertex d that distinguishes x and y, say d is adjacent to x but not to
y. If d ∈ N(A), then d is complete to A, since d and y are not adjacent. This
implies that χ(A) ≤ 3. Since G is 6-vertex-critical, G−V (A) admits a 5-coloring
φ. Note that only two colors are used on S5 under φ since χ(C5) = 3. Thus,
we can extend this coloring to G by coloring A with three colors that are not
used on S5, a contradiction. Therefore, d /∈ N(A). If d ∈ S5, then {y, d, 1, 3, a}
induces a banner, where a ∈ A. If d /∈ S5, then there exists an index i ∈ V (C)
such that d is not adjacent to i. Then {x, y, i, a, d} induces a banner. In either
case we get a contradiction. ��
Claim 8. |S5| ≤ 61 · 231.

Proof (Proof of Claim 8). Let Ti = (Xi, Yi) be the components of G[S5] for
1 ≤ i ≤ t, where Xi and Yi form the unique bipartition of Ti. By 3, each vertex
in S3∪S4 is adjacent to all but at most one vertex in any stable set of S5. By the
pigeonhole principle, if t ≥ 2|S3∪S4|+2 then there exist two components Ti and
Tj such that S3 ∪ S4 is complete to Ti ∪ Tj . Without loss of generality, we may
assume that |V (Ti)| ≤ |V (Tj)|. Since G is 6-vertex-critical, G − V (Ti) admits a
5-coloring φ. We then can extend φ to G by coloring Ti with at most two colors
that are used on Tj under φ. This shows that t ≤ 2|S3 ∪S4|+1 ≤ 61. It remains
to bound each Ti. By Lemma 2, each Ti is 2P2-free. Thus, we can order vertices
in Xi as x1, . . . , xk such that NTi

(x1) ⊆ · · · ⊆ NTi
(xk). By the pigeonhole

principle, if |Xi| > 2|S3∪S4|, then we can find two comparable vertices in Xi,
which contradicts Lemma 1. Thus, |Xi| ≤ 2|S3∪S4| and |Ti| ≤ 2|S3∪S4|+1 ≤ 231.
This proves the claim. ��

Recall that |S3| ≤ 15 and |S4| ≤ 15. Since |V (G)| = |V (C)| + |S0| + |S3| +
|S4| + |S5|, the lemma follows immediately from Claims 7 and 8. ��
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5 Conclusion

We have proved that there are finitely many 6-vertex-critical (P5, banner)-free
graphs. Our result is one of the few results for finiteness of k-vertex-critical
graphs when k > 4. Our result generalizes the previous result on the polynomial-
time algorithm for 5-coloring P5-free graphs when restricted to banner-free
graphs [15]. It is still open whether there are finitely many k-vertex-critical (P5,
banner)-free graphs for fixed k ≥ 7.
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2. Bruce, D., Hoàng, C.T., Sawada, J.: A certifying algorithm for 3-colorability of

P5-free graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS,
vol. 5878, pp. 594–604. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-10631-6 61

3. Chudnovsky, M., Goedgebeur, J., Schaudt, O., Zhong, M.: Obstructions for three-
coloring and list three-coloring H-free graphs. arXiv:1703.05684 [math.CO]

4. Chudnovsky, M., Goedgebeur, J., Schaudt, O., Zhong, M.: Obstructions for three-
coloring graphs with one forbidden induced subgraph. In: Proceedings of the
Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
1774–1783 (2016)

5. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect
graph theorem. Ann. Math. 164, 51–229 (2006)
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Abstract. In this paper, we study the stochastic unbounded min-
knapsack problem (Min-SUKP). The ordinary unbounded min-
knapsack problem states that: There are n types of items, and there
is an infinite number of items of each type. The items of the same type
have the same cost and weight. We want to choose a set of items such
that the total weight is at least W and the total cost is minimized. The
Min-SUKP generalizes the ordinary unbounded min-knapsack prob-
lem to the stochastic setting, where the weight of each item is a random
variable following a known distribution and the items of the same type
follow the same weight distribution. In Min-SUKP, different types of
items may have different cost and weight distributions. In this paper, we
provide an FPTAS for Min-SUKP, i.e., the approximate value our algo-
rithm computes is at most (1+ ε) times the optimum, and our algorithm
runs in poly(1/ε, n, log W ) time.

Keywords: Stochastic Knapsack · Renewal decision problem ·
Approximation algorithms

1 Introduction

In this paper, we study the stochastic unbounded min-knapsack problem (Min-
SUKP). The problem is motivated by the following renewal decision problems
introduced in [7]. A system (e.g., a motor vehicle) must operate for t units of
time. A particular component (e.g., a battery) is essential for its operation and
must be replaced each time it fails. There are n different types of replacement
components, and every kind of items has infinite supplies. A type i replacement
costs Ci and has a random lifetime with distribution depending on i. The problem
is to assign the initial component and subsequent replacements from among the
types to minimize the total expected cost of providing an operative component
for the t units of time. Formally, we would like to solve the following Min-SUKP
problem, defined as follows:

Problem 1 (stochastic unbounded min-knapsack). There are n types of items
a1, a2, . . . , an. For an item of type ai, the cost is a deterministic value ci, and
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Y. Chen et al. (Eds.): FAW 2019, LNCS 11458, pp. 121–132, 2019.
https://doi.org/10.1007/978-3-030-18126-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18126-0_11&domain=pdf
http://orcid.org/0000-0002-9682-2476
http://orcid.org/0000-0001-6775-1421
https://doi.org/10.1007/978-3-030-18126-0_11


122 Z. Jiang and H. Zhao

the weight is random value Xi which follows a known distribution Di with non-
negative integer support. Let Di(j) denote Pr{Xi ≤ j}. Each type has infinite
supplies, and the weight of each item is independent of the weight of the items
of other types and other items of the same type. Besides, there is a knapsack
with capacity W . Our objective is to insert items into the knapsack one by one
until the total weight of items in the knapsack is at least W . The realized weight
of an item is revealed to us as soon as it is inserted into the knapsack. What is
the expected cost of the strategy that minimizes the expected total cost of the
items we insert?

Remark 1. The above problem is the stochastic version of the ordinary
unbounded min-knapsack problem. Comparing to the ordinary knapsack prob-
lem, there is an infinite number of items of each type, and the objective is to
minimize the total cost (rather than maximize the total profit).

Remark 2. It can be shown that Min-SUKP is NP-hard. In [9], the authors
mentioned that the unbounded knapsack problem (UKP) is NP-hard, and it
can be easily shown that the unbounded min-knapsack is NP-hard, since there
is a polynomial reduction between these 2 problems. The problem Min-SUKP
is NP-hard since it is a generalization of unbounded min-knapsack.

Derman et al. [7] discussed Min-SUKP when the weight distributions of
items are exponential and provided an exact algorithm to compute the optimal
policy. Assaf [1] discussed Min-SUKP when the weight distributions of items
have a common matrix phase type representation.

In this paper, we present a fully polynomial time approximation scheme
(FPTAS) for this problem for general discrete distributions.

Roughly speaking, we borrow the idea of the FPTAS for the knapsack prob-
lem and the method for computing the distribution of the sum of random vari-
ables [16]. However, there are a few technical difficulties we need to handle. The
outline of our algorithm is as follows. We first compute a constant factor approx-
imation for the optimal cost (Sect. 2), and then we apply the discretization and
a dynamic program based on the approximation value (Sect. 3). However, the
dynamic program can only solve the problem in a restricted case where the cost
for any item is ‘not too small’ (the cost of each item is larger than a specific
value). To solve the whole problem, we consider a reduction from the general set-
ting to the restricted setting and show that the error of the reduction is negligible
(Sect. 4).

1.1 Related Work

The knapsack problem is a classical problem in combinatorial optimization. The
classical knapsack problem (max-knapsack problem) is the following problem:
Given a set of items with sizes and costs, and a knapsack with a capacity, our
goal is to select some items and maximize the total cost of selected items with
the constraint that the total size of selected items does not exceed the capacity
of the knapsack.



An FPTAS for Stochastic Unbounded Min-Knapsack Problem 123

The min-knapsack problem (Min-KP) [5] is a natural variant of the ordi-
nary knapsack problem. In the min-knapsack problem, the goal is to minimize
the total cost of the selected items such that the total size of the selected items
is not less than the capacity of the knapsack. Although the min-knapsack prob-
lem is similar to the max-knapsack problem, a polynomial-time approximation
scheme (PTAS) for the max-knapsack problem does not directly lead to a PTAS
for the min-knapsack problem. For the (deterministic) min-knapsack problem,
approximation algorithms with constant factors are given in [4,5,10]. Han and
Makino [12] considered an online version of min-knapsack, that is, the items are
given one-by-one over time.

There is also a line of work focusing on the FPTAS for unbounded knapsack
problem (UKP). UKP is similar to the original 0-1 knapsack problem, except
that there are infinite number of items of each type. The first FPTAS for UKP
is introduced by [13], and they show an FPTAS by extending their FPTAS
for 0-1 knapsack problem. Their algorithm runs in O(n + 1

ε4 log 1
ε ) time and

needs O(n + 1
ε3 ) space. Later, [15] showed an FPTAS with time complexity

O(n log n+ 1
ε2 (n+log 1

ε )) and space complexity O(n+ 1
ε2 ). In 2018, [14] presented

an FPTAS that runs in O(n 1
ε2

log3 1
ε ) time and requires O(n + 1

ε log2 1
ε ) space.

However, in some applications, precisely knowing the size of each item is not
realistic. In many real applications, we can only get the size distribution of a
type of item. This problem leads to the stochastic knapsack problem (SKP [19]),
which is a generalization of KP. In SKP, the cost of each item is deterministic,
but the sizes of items are random variables with known distributions, and we get
the realized size of an item as soon as it is inserted into the knapsack. The goal is
to compute a solution policy which indicates the item we insert into the knapsack
at a given remaining capacity. For the stochastic max-knapsack problem, an
approximation with a constant factor was provided in the seminal work [6]. The
current best approximation ratio for SKP is 2 [3,18]. An (1 + ε) approximation
with relaxed capacity (bi-criterion PTAS) is given in [2,17]. Besides, Deshpande
et al. [8] gave a constant-factor approximation algorithm for the stochastic min-
knapsack.

Gupta et al. [11] considered a generalization of SKP, where the cost of items
may be correlated, and we can cancel an item during its execution in the policy.
Cancelling an item means we can set a bounding size each time we want to
insert an item, we cancel the item if the realized size of the item is larger than
the bounding size. When we cancel an item, the size of the item is equal to the
bounding size, and the cost of the item is zero. This generalization is referred to
as Stochastic Knapsack with Correlated Rewards and Cancellations (SK-CC).
Gupta et al. [11] gave a constant-factor approximation for SK-CC based on LP
relaxation. A bicriterion PTAS for SK-CC is provided in [17].

1.2 Preliminary

Proposition 1. Without the loss of generality, we can assume that the support
of Di, which is the weight distribution of an item of type i, has positive integer
support.
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We skip the proof of Proposition 1. Please see the proof in Appendix B.
From now on, we can suppose that each type of item has weight distribution

with positive integer support.
In Min-SUKP, the optimal item added can be determined by the remaining

capacity. Let OPTw denote the expected cost of the optimal strategy when the
remaining size is w. We can assume that the support of Di is {0, 1, . . . ,W}.
Let OPT0 = OPT−1 = · · · = OPT−W+1 = 0. Define di(j) = Di(j) − Di(j −
1) = Pr{Xi = j}. From the dynamic program, we have pseudo-polynomial time
Algorithm 1 that can compute the exact optimal value.

Algorithm 1. Pseudo-polynomial Time Algorithm
1: OPTi ← 0 for −W + 1 ≤ i ≤ 0
2: for i = 1 → W do
3: OPTi = minn

j=1

(
cj +

∑W
k=1 dj(k) · OPTi−k

)

return OPTW

Algorithm 1 runs in poly(n,W ) time.
In this paper, we show an FPTAS to compute OPTW . Our algorithm runs in

poly( 1ε , n, log W ) time and return OPT ′
W , which is an approximation for OPTW ,

such that (1 − ε)OPTW ≤ OPT ′
W ≤ (1 + ε)OPTW . We assume that there is an

oracle A such that we can call A to get Di(j) = Pr{Xi ≤ j}. Since we require
that our algorithm runs in poly(1ε , n, log W ) time, our algorithm can call the
oracle for at most poly(1ε , n, log W ) times.

2 A Constant Factor Estimation

In this section, we show that there is a constant factor approximation for the
optimal value. This constant factor approximation serves to estimate the optimal
value roughly, and our FPTAS uses the standard discretization technique based
on this rough estimation.

Define bi = ci

E[Xi]
. When we insert an item of type i, the expected weight is

E[Xi], and the cost is ci = biE[Xi]. Suppose m = arg mini bi, and we will show
that 2bmW is a constant approximation for the optimal value OPTW . Formally,
we have the following lemma,

Lemma 1. For all −W + 1 ≤ w ≤ W, bmw ≤ OPTw ≤ bm(w + W ), where
m = arg mini bi.

This lemma can be proved by induction, and please see Appendix C for its
formal proof.

Specifically, when w = W , we get bmW ≤ OPTW ≤ 2bmW directly from the
above lemma. However, when computing bm, we need to enumerate the support.
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To avoid expensive enumeration, we can compute E[Xi] approximatively. We
round the realized weight xi into 2�log2 xi�. Just let

E[Xi] =
W∑

j=1

di(j)2�log2 j� = Di(1) +
�log W�∑

j=0

(
2j · (Di(2j+1) − Di(2j))

)
.

We have E[Xi]
2 ≤ E[Xi] ≤ E[Xi], since xi

2 ≤ 2�log2 xi� ≤ xi.
Let OPTW = 2W ·mini

ci

E[Xi]
. From the previous argument, we have 2bmW ≤

OPTW ≤ 4bmW , which means OPTW ≤ OPTW ≤ 4OPTW .
Let T = 1

4OPTW . We have 1
4OPTW ≤ T ≤ OPTW . T is the estimation of

OPTW .

3 FPTAS Under Certain Assumption

In this section, we discuss Min-SUKP under the following assumption.

Definition 1 (Cheap/Expensive type). Let θ = ε
10n . We call type i is an

expensive type if ci ≥ θT , otherwise we call type i is a cheap type.

Assumption 1. We assume all the types are expensive.

And we give an algorithm with approximation error at most εT in this section
under Assumption 1.

In general, our algorithm for Min-SUKP is inspired from the FPTAS of
the ordinary knapsack problem [20]. We define f̂c = max{w|OPTw ≤ c}, and
compute the approximation for f̂ . However, the support of f̂ is the set of real
numbers. So we discretize f̂ and only compute the approximation for f̂iδT for all
i ≤ � 1

δ �+1, where i is non-negative integer and δ = ε2

100n . In our algorithm, we use
dynamic programming to compute fi, which is the approximation for f̂iδT . Then
we use fi to get an approximate value of OPTW . Since f̂iδT is monotonically
increasing with respect to i, we can find the smallest i such that fi ≥ W and
return the value iδT as the approximate value of OPTW .

Now we show how to compute fi. First, suppose that f̂iδT = w∗, and from
the dynamic programming, we have

OPTw∗ = min
k

⎧
⎨

⎩ck +
W∑

j=1

dk(w∗ − j)OPTj

⎫
⎬

⎭ .

Since OPTw is non-decreasing while w is increasing, recall f̂c = max{w|OPTw ≤
c}, and we get,

w∗ = max

{
w′

∣∣∣∣∣∃k, ck +
W∑

j=1

dk(w′ − j)OPTj ≤ iδT

}

= max

{
w′

∣∣∣∣∣∃k, ck +
w′−1∑
j=1

dk(w′ − j)OPTj ≤ iδT

}
.
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Algorithm 2. The Dynamic Program for Computing approximate answer for
Min-SUKP under Assumption 1

1: Let δ = ε2

100n
.

2: f0 ← 0
3: for i = 1 → � 1

δ
� + 1 do

4: Compute fi using binary search according to Algorithm 3
5: if fi ≥ W then
6: return V̂ := iδT

Algorithm 3. Given w, judge whether fi ≥ w (whether gw ≤ iδT )
1: for j = 1 → n do
2: for m = 0 → i − 2 do
3: Pm = Pr [Xj ∈ [w − fm+1, w − fm)] � by Binary search from oracle

4: Pi−1 = Pr [Xj ∈ [1, w − fi−1)]
5: gw ← cj +

∑i−1
m=0 Pm(m + 1)δT � Equation (1)

6: if gw ≤ iδT then return true
return false

Define ĝw := jδT for all f̂j−1 < w ≤ f̂j . Then ĝw is the rounding up dis-
cretization value of OPTw, and we can approximately compute w∗ (let ŵ denote
the approximate value) by

ŵ = max

⎧
⎨

⎩w′
∣∣∣∣∣ ∃k,

⎛

⎝ck +
w′−1∑

j=1

dk(w′ − j)ĝj

⎞

⎠ ≤ iδT

⎫
⎬

⎭ .

However, we do not have ĝ during the computation. Instead, we use the following
quantity to approximate ĝ. Given f0, . . . , fi−1, define gw := jδT for all fj−1 <
w ≤ fj where j ≤ i − 1, and define gw = iδT for all w > fi−1. Then we have

fi = max

⎧
⎨

⎩w′
∣∣∣∣∣ ∃k,

⎛

⎝ck +
w′−1∑

j=1

dk(w′ − j)gj

⎞

⎠ ≤ iδT

⎫
⎬

⎭ . (1)

Remark 3. When we compute fi, we have already gotten f0, f1, . . . fi−1.

To compute fi, we use binary search to guess fi = w′ and accept the largest
w′ that satisfies the constraint in (1).

The pseudo-code of our algorithm is shown in Algorithm2. The detailed
version of the pseudo-codes is presented in Appendix A.

In details, we enumerate i and compute fi until fi reaches the weight lower
limit W . To compute fi, we use binary search starting with L = 0, R = W . In
each step of binary search, let w = (L + R)/2 and compute gw, and decide to
recur in which half according to the relation between gw and iδT , until L = R
which means fi = L = R.

To quantify the approximation error by Algorithm2, we have the following
theorem.
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Theorem 1. The output V̂ of Algorithm2 satisfies (1−δ)(1− ε
10 )V̂ ≤OPTW ≤ V̂ .

Generally speaking, this results can be shown in 2 steps: First, we will show
that the real optimal value is upper bounded by the value computed in our algo-
rithm, and next, we will show that under Assumption 1, the difference between
the value computed in Algorithm2 and the real optimal value is upper bounded
by a small value. Given these two results, we can prove Theorem 1. Please see
Appendix D for the formal proof of Theorem1.

From the above theorem, we know that the output V̂ of Algorithm 2 is a
(1 + ε)-approximation for OPTW .

4 FPTAS in the General Case

In the previous section, we show that there is an FPTAS of Min-SUKP under
Assumption 1 (when all the types are expensive). In this section, we remove
Assumption 1 and show that there is an FPTAS of Min-SUKP. We will first
present the general idea of our algorithm.

Our Ideas: If we use the algorithm in the last section to compute in general
case, the error will not be bounded. The key reason is that we may insert lots
of items of cheap types. One idea is, we can bundle lots of items in the same
cheap type p into bigger items (an induced type p′), such that p′ is expensive.
Then we replace type p by the new type p′. Now, we can use the algorithm in
the last section. However, we can only use bundled items even if we only want to
use one item of a certain cheap item. Luckily, using some extra items of cheap
items does not weaken the policy very much.

The remaining problem is, how to compute the distribution of many items
of type p? For example, we always use ep = 2k items of type p each time. We
discretize the weight distribution Xp, and use doubling trick to compute the
approximate distributions for Xp,1,

∑2
i=1 Xp,i,

∑4
i=1 Xp,i, . . . one by one, where

Xp,i are independent to each other and follow the same distribution of Xp. We
can show that, using the approximation distributions in the computation will
not lead to much error.

4.1 Adding Limitations to Strategy

For type p, if cp < θT (θ = ε
10n as defined in the previous section), then there

exists ep = 2kp , kp ∈ Z such that epcp ∈ [θT, 2θT ]. For convenience, if cp ≥ θT ,
we denote ep = 1. We have the following restriction to the strategy.

Definition 2 (Restricted strategy). A strategy is called restricted strategy,
if for all type p, the total number of items of type p we insert is always a multiple
of ep.
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If we know that for all type p, the total number of items of type p is always
a multiple of ep, we hope that each time we use an item of type p, we will use
ep of them together. This leads to the following definition.

Definition 3 (Block strategy). A strategy is called block strategy, if we always
insert a multiple of ep number of items of type p together.

The following theorem shows that, adding limitation to the strategy will not
affect the optimal value too much.

Theorem 2. Suppose the expected cost of the best block strategy is OPT
(b)
W , then

OPTW ≤ OPT
(b)
W ≤ OPTW + εT

5 .

Because of the space limitation, we will present the proof sketch below. For
the formal proof of Theorem 2, please see Appendix E.

Proof (Proof sketch). The proof Theorem 2 is divided into 2 parts. The first part
shows that the optimal value for the original problem does not differ much from
the optimal value with restricted strategy (see Definition 2), and the second part
shows that the optimal value with restricted strategy is the same as the optimal
value with block strategy (see Definition 3). The first part is simple since we can
add some item after following the optimal strategy in the original problem. The
second part follows from the intuition that if we must use an item in the future,
it is good to use it right now.

4.2 Computing the Summation Distribution of Many Items of the
Same Type

In the last part, we define block strategy by adding a constraint to the ordinary
strategy. And we find the expected cost of the optimal block strategy is close to
that of the optimal strategy.

The block strategies conform to Assumption 1 in Sect. 3. If we know the dis-
tribution of the total weight of ep items of type p, we can compute the approx-
imate optimal expected cost by Algorithm 2. In this part, we give an algorithm
which approximately computes the distribution of the total weight of ep items of
type p.

Due to the space limitation, we present our algorithm in this section, and
we put the analysis of our algorithm into the appendix (see Appendix F). To
present our idea, we need the following definitions.

Definition 4 (Distribution Array). For a random variable X with positive
integer support, we use X[i] to denote the probability that X ≥ i, i.e. X[i] =
Pr{X ≥ i}, and we use an array Dist(X) := (X[1],X[2], . . . ,X[W ]) to denote
the distribution. We call Dist(X) the distribution array of variable X.

Remark 4. From the definition, we know that Dist(X) is a non-increasing array.
Besides, in the definition, Dist(X) has only W elements since we only care X[i]
when i ≤ W .



An FPTAS for Stochastic Unbounded Min-Knapsack Problem 129

Definition 5. For any non-increasing array D = (D1,D2, . . . , DW ) of length
W , if D1 ≤ 1 and DW ≥ 0, there is a random variable X such that Dist(X) = D.
We say that X is the variable corresponding to distribution array D, denoted by
V ar(D) := X.

Suppose {Yi}i≥1 are identical independent random variables with distribu-
tion array Dist(Xp). Let Si denote

∑i
j=1 Yj and Dist(Si) denote the correspond-

ing distribution array. We want to compute the distribution array of Sep
and we

have the following equations,

Pr{S2i = w} =
w−1∑

j=1

(Pr{Si = j} · Pr{Si = w − j}) ,∀1 ≤ w ≤ W, (2)

S2i[w] = Pr{Si ≥ w} +
w−1∑

j=1

(Pr{Si = j} · Pr{Si ≥ w − j}) (3)

= Si[w] +
w−1∑

j=1

((Si[j] − Si[j + 1]) · Si[w − j]) . (4)

Note that S2i can be computed from Si, so we only need to compute
S1, S2, S4 . . . , Sep

successively (recall that ep = 2k
p where kp ∈ Z). Note that

S1 could be got from the oracle.
However, computing the exact distribution of S2j is slow (needs at least

poly(W ) time), so we compute an approximate value of Si. To introduce our
method which approximately computes the distribution, we need the following
definitions.

Definition 6 (η-Approximate Array). Given a positive real number η, for
distribution array A = (a1, a2, . . . , am), define A′ = (a′

1, a
′
2, . . . , a

′
m) as the η-

approximate array of A, where for all i ∈ [m],

a′
i = (1 + η)�log1+η ai	, ai > (1 + η)−ζ .

Definition 7 ((ζ, η)-Approximate Array). Given positive real numbers ζ, η,
for distribution array A = (a1, a2, . . . , am), define A′ = (a′

1, a
′
2, . . . , a

′
m) as the

(ζ, η)-approximate array of A, where for all i ∈ [m],

a′
i =

{
(1 + η)�log1+η ai	, ai > (1 + η)−ζ

(1 + η)−ζ , ai ≤ (1 + η)−ζ
.

Definition 8 ((ζ, η)-Approximation). For random variable X, suppose dis-
tribution array D is (ζ, η)-approximate array of Dist(X). Define V ar(D) as the
(ζ, η)-approximation of X.

Remark 5. The (ζ, η)-Approximation of a random variable is still a random vari-
able. And for any random variable X with integer support in [1,W ], the (ζ, η)-
approximation of X has at most �ζ� different possible values.



130 Z. Jiang and H. Zhao

Let η = ε
10 log W and ζ = log1+η

W
η , and our algorithm is shown as follow-

ing: We first compute (ζ, η)-approximation of S1 which is denoted by B1. Then
for all i ∈

[
�logep

�
]
, we compute the distribution array of B′

2i , which is the
summation of independent B2i−1 and B2i−1 . Then we compute B2i which is the
(ζ, η)-approximation for B′

2i . Finally, we can get Bep
which is an approximate

random variable of Sep
.

When we compute the summation of B2i−1 and B2i−1 , as there are at most
O(ζ) different values in Dist(B2i−1), there are at most O(ζ) values w such that
Pr{B2i−1 = w} > 0. Based on the previous argument, we can enumerate w1 and
w2 such that Pr{B2i−1 = w1} > 0 and Pr{B2i−1 = w2} > 0. In the end, we
sort each Pr{B2i−1 = w1} · Pr{B2i−1 = w2} by the value w1 + w2 and arrange
them to get the distribution array Dist(B′

2i). This shows that we can compute
the approximate distribution in O(ζ2 log ζ) time.

Formally, we have Algorithm4 to compute Bep
.

Algorithm 4. Computing Approximate Distribution of Sep

1: Let η = ε
10 log W

and ζ = log1+η
W
η

.
2: Let B1 be the (ζ, η)-approximation for S1. Compute Dist(B1) according to the

oracle
3: for i = 1 → log2 ep do
4: Let B′

2i be the summation of B2i−1 and B2i−1 . Compute Dist(B′
2i).

5: Compute Dist(B2i), which is the (ζ, η)-approximation for B2i .

6: return Dist(Bep)

Before we state the main theorem that bounds the approximation error of
our algorithm, we combine the full procedure and get our final Algorithm5 for
Min-SUKP.

Algorithm 5. Algorithm for Min-SUKP
1: For each type p, let Sp

ep
be the summation of ep i.i.d. variables with distribution

Xp. Compute approximate distribution Yp of Sp
ep

by Algorithm 4.
2: For each item type p, construct new type p′ with expected cost cpep and weight

distribution Yp.
3: Let W and all the new types be the input, and get return value V̂ of Algorithm 2.
4: return V̂ .

Then, we have our main theorem, which discusses the approximation error
of Algorithm 5.

Theorem 3. The output V̂ of Algorithm5 satisfies

(1 − ε)OPTW ≤ V̂ ≤ (1 + ε)OPTW .
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To prove this theorem, we first show Dist(Bep
) in Algorithm 4 is approxima-

tion of Dist(Aep
), by constructing another strategy Cep

which is strictly better
than Bep

and the expected cost of Cep
is closed to the expected cost of Aep

(induction is used). Then we combine all the errors in Algorithm5 and prove
that Algorithm 5 is FPTAS of Min-SUKP. For details, please see Appendix F.

4.3 Time Complexity

Our algorithm runs in poly(n, log W, 1
ε ). Combined with Theorem 3, Algorithm 5

is an FPTAS for Min-SUKP. The theorem for the time complexity of Algo-
rithm5 is stated as follow,

Theorem 4. Algorithm5 runs in polynomial time and thus is an FPTAS for
Min-SUKP. More specifically, Algorithm5 has time complexity

O

(
n log6 W

ε3
+

n3 log W

ε4

)
.

This theorem can be proved by recalling the parameters we have set, counting
for the number of each operation, and expanding the parameters as n, log W and
1
ε . Please see Appendix G for the formal proof.

5 Conclusions and Further Work

We obtain the first FPTAS for Min-SUKP in this paper. We focus on comput-
ing approximately the optimal value, but our algorithms and proofs immediately
imply how to construct an approximate strategy in polynomial time.

There are some other directions related to Min-SUKP which are still open.
It would be interesting to design a PTAS (or FPTAS) for the 0/1 stochastic min-
imization knapsack problem, the 0/1 stochastic (maximization) knapsack prob-
lem and the stochastic unbounded (maximization) knapsack problem. Hopefully,
our techniques can be helpful in solving these problem.

Acknowledgement. The authors would like to thank Jian Li for several useful dis-
cussions and the help with polishing the paper. The research is supported in part by the
National Basic Research Program of China Grant 2015CB358700, the National Natural
Science Foundation of China Grant 61822203, 61772297, 61632016, 61761146003, and
a grant from Microsoft Research Asia.

References

1. Assaf, D.: Renewal decisions when category life distributions are of phase-type.
Math. Oper. Res. 7(4), 557–567 (1982)

2. Bhalgat, A., Goel, A., Khanna, S.: Improved approximation results for stochastic
knapsack problems. In: Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, Philadelphia (2011)



132 Z. Jiang and H. Zhao

3. Bhalgat, A.: A (2 + ε)-approximation algorithm for the stochastic knapsack prob-
lem. Manuscript (2012)

4. Carnes, T., Shmoys, D.: Primal-dual schema for capacitated covering problems.
In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp.
288–302. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-
4 20

5. Csirik, J., Frenk, J.B.G., Labbe, M., Zhang, S.: Heuristics for the 0-1 min-knapsack
problem. Acta Cybern. 10(1–2), 15–20 (1991)

6. Dean, B.C., Goemans, M.X., Vondrak, J.: Approximating the stochastic knapsack
problem: the benefit of adaptivity. In: Annual IEEE Symposium on Foundations
of Computer Science, pp. 208–217. IEEE Computer Society, Los Alamitos (2004)

7. Derman, C., Lieberman, G.J., Ross, S.M.: A renewal decision problem. Manag.
Sci. 24(5), 554–561 (1978)

8. Deshpande, A., Hellerstein, L., Kletenik, D.: Approximation algorithms for stochas-
tic submodular set cover with applications to boolean function evaluation and
min-knapsack. ACM Trans. Algorithms 12(3), 28 (2016)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W. H. Freeman,
New York (2002)

10. Guntzer, M.M., Jungnickel, D.: Approximate minimization algorithms for the 0/1
knapsack and subset-sum problem. Oper. Res. Lett. 26(2), 55–66 (2000)

11. Gupta, A., Krishnaswamy, R., Molinaro, M., Ravi, R.: Approximation algorithms
for correlated knapsacks and non-martingale bandits. In: IEEE 52nd Annual Sym-
posium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA,
22–25 October 2011, pp. 827–836 (2011)

12. Han, X., Makino, K.: Online minimization knapsack problem. In: Bampis, E.,
Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 182–193. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12450-1 17

13. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM (JACM) 22(4), 463–468 (1975)

14. Jansen, K., Kraft, S.E.: A faster FPTAS for the unbounded knapsack problem.
Eur. J. Comb. 68, 148–174 (2018)

15. Kellerer, H., Pferschy, U., Pisinger, D.: Multidimensional knapsack problems. In:
Kellerer, H., Pferschy, U., Pisinger, D. (eds.) Knapsack Problems, pp. 235–283.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24777-7 9

16. Li, J., Shi, T.L.: A fully polynomial-time approximation scheme for approximating
a sum of random variables. Oper. Res. Lett. 42(3), 197–202 (2014)

17. Li, J., Yuan, W.: Stochastic combinatorial optimization via poisson approxima-
tion. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of
Computing, STOC 2013, pp. 971–980. ACM, New York (2013)

18. Ma, W.: Improvements and generalizations of stochastic knapsack and multi-armed
bandit approximation algorithms. In: Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms (2014)

19. Ross, K.W., Tsang, D.H.: The stochastic knapsack problem. IEEE Trans. Commun.
37(7), 740–747 (1989)

20. Sahni, S.: Approximate algorithms for 0/1 knapsack problem. J. ACM 22(1), 115–
124 (1975)

https://doi.org/10.1007/978-3-540-68891-4_20
https://doi.org/10.1007/978-3-540-68891-4_20
https://doi.org/10.1007/978-3-642-12450-1_17
https://doi.org/10.1007/978-3-540-24777-7_9


The Inapproximability
of k-DominatingSet

for Parameterized AC0 Circuits

Wenxing Lai(B)

Shanghai Key Laboratory of Intelligent Information Processing,
School of Computer Science, Fudan University, Shanghai, China

wenxing.lai@outlook.com

Abstract. In [4], Chen and Flum showed that any FPT-approximation
of the k-Clique problem is not in para-AC0 and the k-DominatingSet
(k-DomSet) problem could not be computed by para-AC0 circuits. It is
natural to ask whether f(k)-FPT-approximation of the k-DomSet prob-
lem is in para-AC0 for some computable function f .

Very recently [13,20] showed that assuming W[1] �= FPT, the k-
DomSet cannot be approximated by FPT algorithms. We observe that
the constructions in [13] can be carried out in para-AC0, and thus we
prove that para-AC0 circuits could not approximate this problem with
ratio f(k) for any computable function f . Moreover, under the hypothesis
that the 3-CNF-SAT problem cannot be computed by constant-depth
circuits of size 2εn for some ε > 0, we show that constant-depth circuits
of size no(k) cannot distinguish graphs whose dominating numbers are

either ≤ k or > k

√
log n

3 log log n
. However, we find that the hypothesis may

be hard to settle by showing that it implies NP �⊆ NC1.

Keywords: Parameterized AC0 · Dominating set · Inapproximability

1 Introduction

The dominating set problem, or equivalently the set cover problem, firstly shown
to be NP-complete in [12], is often regarded as one of the most classical and
important problems in computational complexity. Unless P = NP, we do not
expect to solve this problem and its optimization variant in polynomial time.
One way to handle NP-hard problems is to use approximation algorithms. One
key measurement of an approximation algorithm for dominating set problem is
by its approximation ratio, i.e., the ratio between the size of the solution output
by the algorithm and the size of the minimum dominating set. It is known that
greedy algorithms can achieve approximation ratio ≈ lnn [5,11,14,22,23]. After
a long line of works [2,8,15,16,18], this is matched by the lower bound by Dinur
and Steurer [6], who followed the construction in [8], showing that for every ε > 0,
we could obtain a (1 − ε) lnn-approximation for this problem unless P = NP.
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Besides approximation, another widely-considered technique to circumvent the
intractability of NP-hardness is parameterization. If we take the minimum solu-
tion size k as a parameter, then the brute-force algorithm can solve this problem
in nk+1 time. However, it is proved recently that, assuming FPT �= W[1], for any
computable function f , there is no f(k)-FPT-approximation algorithm, that is,
there is no approximation algorithm running in FPT-time and with ratio f(k)
[3,13,20].

Circuit complexity was thought to be a promising direction to solve P vs.
NP. Though it has been long known that some problems like Parity are not in
AC0 [1,9,10], proving non-uniform lower bounds for functions in nondeterministic
complexity classes such as NP, NQP = NTIME[nlogO(1)n] or NEXP is a well-
known challenge. After Williams proving that NEXP does not have nlogO(1)n-size
ACC ◦ THR (ACC composed with a layer of linear threshold gates at the bottom)
in [24,25], Murray and Williams showed that for every k, d and m there is an e

and a problem in NTIME[nloge n] which does not have depth-d nlogk n-size AC[m]
circuits with linear threshold gates at the bottom layer [17].

In [19], Rossman showed that the k-Clique problem has no bounded-depth
and unbounded fan-in circuits of size O(nk/4), which may be viewed as an AC0

version of FPT �= W[1]. Chen and Flum [4] showed that any FPT-approximation
of the k-Clique problem is not in para-AC0. The parameterized circuit com-
plexity class para-AC0 introduced in [7] as the AC0 analog of the class FPT, is
the class of parameterized problems computed by constant-depth circuits of size
f(k)poly(n) for some computable function f . In the same paper, based on Ross-
man’s result, they also showed that the k-DomSet problem could not be com-
puted in para-AC0. This brings us to the main question addressed in our work: Is
there a computable function f such that the f(k)-approximation of k-DomSet
is in para-AC0? Furthermore, since we could brute-forcely enumerate every k
tuple of vertices by depth-3 circuits of size O(nk+1), we might wonder whether
it is possible to have a computable function f such that the f(k)-approximation
of k-DomSet could be computed by constant-depth circuits of size no(k).

Our Work. In this paper, we show that any FPT-approximation of the k-
DomSet problem is not in para-AC0. Furthermore, under the hypothesis that
constant-depth circuits of size 2o(n) could not compute 3-CNF-SAT, the
constant-depth version of the Exponential Time Hypothesis (ETH), there is no
computable function f such that the f(k)-approximation of k-DomSet could be
computed by constant-depth circuits of size no(k). Theorems 1 and 2 are direct
consequences of Theorems 3 and 4, respectively.

Theorem 1. Given a graph G with n vertices, there is no constant-depth circuits
of size f(k)no(

√
k) for any computable function f which distinguish between

– the size of the minimum dominating set is at most k,
– the size of the minimum dominating set is greater than ( log n

log log n )
1/(k

2).

Note that this theorem implies the nonexistence of para-AC0 circuits which
f(k)-approximates the k-DomSet problem for any computable function f . This
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is because if there is an f(k)-approximation para-AC0 circuit Cn,k whose size
is g(k)poly(n), we could construct a constant-depth para-AC0 circuit C′

n,k to
distinguish the size of the minimum dominating set is at most k or greater than
( log n
log log n )

1/(k
2) as follows. Compare f(k) and ( log n

log log n )
1/(k

2)—if f(k) is smaller,

we let C′
n,k be Cn,k; otherwise, since f(k) ≥ ( log n

log log n )
1/(k

2), we let C′
n,k be the

circuit which brute-forcely computes the size of a minimum dominating set with
the depth-3 circuit of size nk+1 ≤ 2kf(k)k3

, which is still a para-AC0 circuit.

Hypothesis 1. There exists δ > 0 such that no constant-depth circuits of size
2δn can decide whether the 3-CNF-SAT instance ϕ is satisfiable, where n is the
number of variables of ϕ.

Theorem 2. Assuming Hypothesis 1, given a graph G with n vertices, there is
no constant-depth circuits of size f(k)no(k) for any computable function f which
distinguish between

– the size of the minimum dominating set is at most k,
– the size of the minimum dominating set is greater than k

√
log n

3 log log n .

Though Hypothesis 1 seems much weaker than ETH (ETH implies the nonex-
istence of uniform circuits of size 2δn and any depth which could compute 3-
CNF-SAT problem), we show that the hypothesis is hard to settle by prov-
ing that it implies NP �⊆ NC1, which, believed to be true, remains open for
decades and whether whose weaker version, NP �⊆ ACC ◦ THR, holds or not is
still unknown.

2 Preliminaries

We denote by N the set of nonnegative integers. For each n ∈ N, we define
[n] := {1, . . . , n}. For any set A and k ∈ N, we let

(
A
k

)
:= {B ⊆ A | |B| = k}

be the set of subsets with exactly k elements of A. For a sequence of bits b, we
let b[l] be the l-th bit of b.

For a graph G = (V,E), the set of vertices of G is denoted by VG and the
set of edges is denoted by EG; for a vertex v ∈ VG, we let NG(v) := {u ∈
VG|{u, v} ∈ EG} be the neighbors of v. Since a graph G is represented using a
binary string, we express the bit of the edge {u, v} by bitG{u, v}.

Problem Definitions. The decision problems studied in this paper are listed
below.

– In the k-DominatingSet (k-DomSet) problem, our goal is to decide if there
is a dominating set of size k in the given graph G.

– In the k-SetCover problem, we are given a bipartite graph I = (S,U,E)
and the goal is to decide whether there is a subset X of S with cardinality k
such that for each vertex v in U , there exists a vertex u in X covers v, i.e.,
{u, v} ∈ E.
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– In the k-Clique problem, our goal is to determine if there is a clique of size
k in the given graph G.

– In the k-CNF-SAT problem, we are given a propositional formula ϕ in which
every clause contains at most k literals and the goal is to decide whether ϕ
is satisfiable.

We say a set cover instance I = (S,U,E) has set cover number m if the size
of a minimum set X ⊆ S such that X could cover U is m. Similarly, we say a
graph G has dominating number m if the size of a minimum dominating set of
G is m.

Circuit Complexity. For n ∈ N, an n-input, m-output Boolean circuit C is a
directed acyclic graph with n vertices with no incoming edges and m vertices
with no outgoing edges. All nonsource vertices are called gates and are labeled
with one of ∨,∧ and ¬. The size of C, denoted by |C|, is the number of vertices in
it. The depth of C is the length of the longest directed path from an input node
to the output node. We often tacitly identify C with the function C : {0, 1}n →
{0, 1}m it computes.

All the circuits considered in this paper are non-uniform and with unbounded
fan-in ∧,∨ gates unless otherwise stated.

The classes of AC0, para-AC0 and NC1 are defined as follows.

– AC0 is the class of problems which can be computed by constant-depth cir-
cuit families (Cn)n∈N where every Cn has size poly(n), and whose gates have
unbounded fan-in.

– para-AC0 is the class of parameterized problems which can be computed by a
circuit family (Cn,k)n,k∈N satisfying that there exist d ∈ N and a computable
function f such that for every n ∈ N, k ∈ N, Cn,k has depth d and size
f(k)poly(n), and whose gates have unbounded fan-in.

– NC1 is the class of problems which can be computed by a circuit family
(Cn)n∈N where Cn has depth O(log n) and size poly(n), and whose gates have
fan-in 2.

Covering Arrays. A covering array CA(N ; t, p, v) is an N ×p array A whose cells
take values from a set V of size v and the set of rows of every N × t subarray
of A is the whole set V t. The smallest number N such that CA(N ; t, p, v) exists
is denoted by CAN(t, p, v). Covering arrays are discussed extensively since 1990s
for they play an important role in interaction testing in complex engineered
systems. The recent discussion about the upper bounds of the size of covering
arrays could be found in [21].

In this article, we always assume V = {0, 1}. It is noted that in [13], a
covering array CA(N ; k, n, 2) is also called an (n, k)-universal set.

Due to space limitations for some proofs we refer to the full version of the
paper. Logarithms have base 2. Fractions and irrational numbers are rounded
up if necessary.
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3 Introducing Gap to k-SetCover Problem

In this section, we use the gap-gadget presented in [13], which introduces a gap
for k-SetCover problem. Lemma 1 gives an upper bound for CAN(k, n, 2). The
next two lemmas also follow the idea from Lin’s work [13]. Lemma 2 allows us
to construct gap gadgets with h ≤ log n

log log n and k log log n ≤ log n. In Lemma 3,
we present the construction which introduces gaps to set cover instances.

Definition 1. A (k, n,m, �, h)-Gap-Gadget is a bipartite graph T = (A,B,E)
satisfying the following conditions.

(G1) A is partitioned into (A1, . . . , Am) where |Ai| = � for every i ∈ [m].
(G2) B is partitioned into (B1, . . . , Bk) where |Bj | = n for every j ∈ [k].
(G3) For each b1 ∈ B1, . . . , bk ∈ Bk, there exists a1 ∈ A1, . . . , am ∈ Am such

that ai is adjacent to bj for i ∈ [m], j ∈ [k].
(G4) For any X ⊆ B and a1 ∈ A1, . . . , am ∈ Am, if ai has k+1 neighbors in X

for i ∈ [m], then |X| > h.

Lemma 1. CAN(k, n, 2) ≤ k2k log n for n ≥ 5.

Lemma 2. There is a constant-depth circuit family (Ck,n,h)k,n,h∈N
which, for

sufficiently large n satisfying log n log log log n ≥ 3(log log n)2 and k, h ∈ N with
h ≤ log n

log log n and k log log n ≤ log n, given S = S1 ∪ · · · ∪ Sk with |Si| = n for
i ∈ [k], outputs a (k, n, n log h, hk, h)-Gap-Gadget. Furthermore, Ck,n,h has size
O(k2h2k+1n2).

Proof. Let m = n log h. Note that log((h log h)2h log h logm) ≤ log h+log log h+
h log h+log log log h+log log n ≤ (h+2) log h+log log n ≤ log n−( log n log log log n

log log n −
3 log log n) ≤ log n, that is, (h log h)2h log h logm ≤ n ≤ n log h; by Lemma 1, we
know that there exists a covering array CA(n log h; k, n, 2), denoted by S.

We partition every row of S into n = m
log h blocks so that each block has

length log h, interpreted as an integer in [h]. From the m × n numbers of S, we
could obtain an m × n matrix M by setting Mr,c to be the c-th integer of the
r-th row.

Claim. For any C ⊆ [n] with |C| ≤ h, there exists r ∈ [m] such that |{Mr,c |
c ∈ C}| = |C|.
This claim says that for any C = {i1, . . . , ij} ⊆ [n] for j ≤ h, there is a row
r such that the i1-th, . . . , ij-th numbers of r are distinct. This is because we
could choose the corresponding bits C ′ = ∪c∈C [c log h] \ [(c − 1) log h] (since for
each c ∈ [n], the c-th number of a row is from the ((c − 1) log h + 1)-th bit to
the (c log n)-th bit), with |C ′| ≤ h log h; by the property of a CA(n log h; k, n, 2)
covering array, there must be a row r such that for each ij′ ∈ C, Mr,ij′ = j′.

Now we construct a bipartite graph T = (A,B,E) as follows.

– A = ∪i∈[m]Ai with each Ai = {a | a = (a1, . . . , ak), aj ∈ [h] for j ∈ [k ]};
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– B = ∪i∈[k]Bi with Bi = Si for i ∈ [k];
– E = {{a, b} | a ∈ Ai, b ∈ Bj and Mi,b = a[j], for i ∈ [m], j ∈ [k ]}, that is, for

every i ∈ [m], j ∈ [k] and every a ∈ Ai, b ∈ Bj , if Mi,b = a[j] then we add an
edge between a and b.

We prove that T is a (k, n, n log h, hk, h)-Gap-Gadget. It is clear that (G1)
and (G2) hold for T . For (G3), given any b1 ∈ B1, . . . , bk ∈ Bk, we could know
that for each i ∈ [m], (Mi,b1 , . . . , Mi,bk

) ∈ Ai, which is adjacent to b1, . . . , bk.
If T does not satisfy (G4), then there exists X ⊆ B with |X| ≤ h such that

there is a1 ∈ A1, . . . ,am ∈ Am and ai has at least k+1 neighbors in X for each
i ∈ [m]. Since |X| ≤ h, we could know that there is a row r ∈ [m] such that
|{Mr,c|c ∈ X}| = X. For this r, there exist some j ∈ [k] such that ar has at
least 2 neighbors b1 �= b2 in Bj . However, {ar, b1} and {ar, b2} ∈ E means that
b1 = b2 = Mi,b1 . This implies |{Mr,c|c ∈ X}| < X, which is a contradiction.

The Ck,n,h outputs T with
(
kn+hkn log h

2

)
bits with each bit

bitT {a, b} =

{
1 if Mi,b = a[j]
0 otherwise

for a ∈ Ai, b ∈ Bj . Hence, Ck,n,h is with each output gate of constant depth and
of size O(k2h2k+1n2). �

Given a set cover instance I = (S,U,E), we construct the gap gadget T =
(A,B,ET ) with B = S. To use the gap gadget, we construct a new set cover
instance I ′ = (S′, U ′, E′) with S′ = S such that for every X ⊆ S′ which covers
U ′, there exists a1 ∈ A1, . . . , am ∈ Am witnessing that there is an X ′ ⊆ X which
covers U and each vertex of which is adjacent to ai for some i ∈ [m].

In the following lemma, the hypercube set system firstly presented in Feige’s
work [8] and is also used in [3,13,20]. The set XY = {f : Y → X} is considered
to be all the functions from Y to X with |XY | = |X||Y |.

Lemma 3. There is a constant-depth circuit family (Cn,k)n,k∈N which, for each
k ∈ N, given a set cover instance I = (S,U,E) where S = S1∪· · ·∪Sk and |Si| =
n for i ∈ [k] and a (k, n,m, �, h)-Gap-Gadget constructed with S as Lemma 2,
outputs a set cover instance I ′ = (S′, U ′, E) with S′ = S and U ′ = m|U |� such
that

– if there exist s1 ∈ S1, . . . , sk ∈ Sk that can cover U , then the set cover number
of I ′ is at most k;

– if the set cover number of I is larger than k, then the set cover number of I ′

is greater than h.

Furthermore, the circuit Cn,k has size at most �(kn + m|U |�)2.
Proof. Let T = (A,B,ET ) be the (k, n,m, �, h)-Gap-Gadget with Bi = Si for
i ∈ [k]. I ′ = (S′, U ′, E′) is defined as follows.

– S′ = S;
– U ′ = ∪i∈[m]U

Ai ;
– For every s ∈ S′ and f ∈ UAi for each i ∈ [m], {s, f} ∈ E′ if there is an

a ∈ Ai such that {s, f(a)} ∈ E and {a, s} ∈ ET .
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Completeness. If there exist s1 ∈ S1, . . . , sk ∈ Sk that can cover U , then we
show that for each f ∈ U ′, it is covered by some vertex in C = {s1, . . . , sk}.
Suppose f ∈ UAi . By (G3) we could know that, for s1 ∈ S1, . . . , sk ∈ Sk, there
exists a1 ∈ A1, . . . , am ∈ Am such that ap is adjacent to sq for p ∈ [m], q ∈ [k].
Since C covers U , there must be sj ∈ C for some j ∈ [k] covers f(ai). That is,
we have {f(ai), sj} ∈ E and {ai, sj} ∈ ET , which means sj covers f .

Soundness. If the set cover number of I is greater than k, we show that for every
X ⊆ S′ that covers U ′, we must have |X| > h.

Claim. For any X ⊆ S′ that covers U ′, there exist a1 ∈ A1, . . . , am ∈ Am that
|NT (ai) ∩ X| ≥ k + 1 for every i ∈ [m].

Otherwise, there is some i ∈ [m] such that for any a ∈ Ai, we have |NT (a)∩
X| ≤ k, which means there is some u ∈ U not covered by NT (a) ∩ X since the
covering number of I is greater than k. For f ∈ UAi such that f(a′) = u for any
a′ ∈ Ai, it is covered by S only if it is covered by some s ∈ S \ NT (a) since u
can only be covered by S \ NT (a). However, for any s ∈ S \ NT (a), s is not a
neighbor of a. That is, f is not adjacent to S \ NT (a), either. Hence, f is not
covered by X, a contradiction.

With the claim, we know that for any X ⊆ S′ that covers U ′, there exist
a1 ∈ A1, . . . , am ∈ Am that ai has k + 1 neighbors in X for every i ∈ [m].
With (G4), we must have |X| ≥ h.

The Cn,k outputs I ′ with
(
kn+m|U |�

2

)
bits with each bit

bitI′{s, f} =
∨

a∈Ai

bitT {s, a} ∧ bitI{s, f(a)}

for s ∈ S′, f ∈ UAi . Hence, Cn,k is with each output gate of depth at most 6 and
of size at most �(kn + m|U |�)2. �

4 Inapproximability of k-DominatingSet

In this section, we show the inapproximability of the dominating set problem
by proving Theorems 3 and 4. To show Theorem 3, we have Lemma 4 and
Lemma 5. Lemma 4 follows the idea in [13,20], presenting the circuits out-
put a

(
k
2

)
-SetCover instance when given a k-Clique instance as input. With

Lemma 4, Lemma 5 introduces circuits reducing k-Clique instances to set cover
instances with gaps. To prove Theorem 4, Lemma 6 is used to prove the inap-
proximability of set cover problem using constant-depth no(k) circuits, assuming
Hypothesis 1. At the end of this section, we show that Hypothesis 1 may be hard
to settle by showing that it implies NP �⊆ NC1, which remains open for decades.

Lemma 4. There is a (Cn,k)n,k∈N circuit family which, given a k-Clique
instance G with |VG| = n, outputs a set cover instance I = (S,U,E) with
|U | ≤ k3 log n and S ≤ (

k
2

)(
n
2

)
such that G contains a k-clique if and only if

the set cover number of I is at most
(
k
2

)
. Furthermore, Cn,k has constant depth

and size at most
(
kn+k3 log n

2

)
.
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Lemma 5. There is a (Cn,k)n,k∈N circuit family which, given a k-Clique
instance G with |VG| = n and k < 2 3

√
log n, outputs a set cover instance

I = (S,U,E) with |U | ≤ n6 and S ≤ (
n
2

)
such that

– if G contains a k-clique, then the set cover number of I is at most
(
k
2

)
;

– if G contains no k-clique, then the set cover number of I is greater than
( log n
log log n )

1/(k
2).

Furthermore, Cn,k has constant depth and size O(n12).

Theorem 3. Given a set cover instance I = (S,U,E) with n = |S| + |U |, for
48 < k < 2 3

√
log n, any constant-depth circuit of size O(n

√
k

48 ) cannot distinguish
between

– the set cover number of I is at most k, or
– the set cover number of I is greater than ( log n

log log n )
1/(k

2).

Proof. In [19], Rossman showed that for every k ∈ N, the k-Clique problem
on n-vertex graphs require constant-depth circuits of size ω(n

k
4 ). Now if there is

a constant-depth circuit Cn,k of size O(n
√

k
48 ) could distinguish between the set

cover number of I is at most k or greater than ( log n
log log n )

1/(k
2), then by Lemma 5,

given k ∈ N and a graph G with |VG| = n, we could construct a set cover instance
I with vertex number O(n6) satisfying that if G has a k-clique then the set cover
number of I is at most than

(
k
2

)
and otherwise it is greater than ( log n

log log n )
1/(k

2)—
we could use C(n6

2 ),(k
2)

to decide the set cover number of I is either ≤ (
k
2

)
or

> ( log n
log log n )

1/(k
2). The circuits are of size O(

(
n6

2

)√
(k
2)/48) + O(n12) = O(n

k
4 )

when k > 48, which contradicts the result in [19]. �
Note that Theorem 3 implies Theorem 1 since for every set cover instance

I = (S,U,E) we could construct a dominating set instance I ′ = (S ∪ U,E ∪
{{u, v}|u, v ∈ S}) simply by adding edges to S so that it becomes a clique. Then
the dominating number of I ′ is the same as the set cover number of I.

Next we show that the inapproximability of the set cover problem for
constant-depth circuits of size no(k) assuming Hypothesis 1.

Lemma 6. There is a circuit family (Cn,k)n,k∈N which for every k ∈ N, given a
CNF-SAT instance ϕ with n variables and Cn clauses where n is much larger
than k and C, outputs N ≤ 2

5n
2k a set cover instance I = (S,U,E) satisfying

– |S| + |U | ≤ N ;
– if ϕ is satisfiable, then the set cover number is at most k;
– if ϕ is not satisfiable, then the set cover number is greater than k

√
log N

3 log log N ;

Furthermore, Cn,k has constant depth and size at most 2
5n
2k .
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Theorem 4. Assuming Hypothesis 1, there is ε > 0 such that, given a set cover
instance I = (S,U,E) with n = |S| + |U |, any constant-depth Boolean circuit of
size nεk cannot distinguish between

– the set cover number of I is at most k, or
– the set cover number of I is greater than k

√
log n

3 log log n .

Proof. By Hypothesis 1, there exists δ > 0 such that no constant-depth circuits
of size 2δn can decide whether the 3-CNF-SAT instance ϕ is satisfiable where
n is the number of variables of ϕ. For every 3-CNF-SAT formula ϕ, there is
a constant-depth circuit Cn,k of size 2

5n
2k which, given ϕ, computes a set cover

instance I = (S,U,E) with |S| + |U | ≤ N for N ≤ 2
5n
2k whose set cover number

is either at most k or greater than k

√
log N

3 log log N by Lemma 4. Now take ε = δ/6.

If constant-depth circuit Cn of size nεk could distinguish between the set
cover number of I is either at most k or greater than k

√
log n

3 log log n where n is
the vertex number of the given set cover instance I, then we could use C(N

2 ) to
determine the set cover number of I is whether at most k, i.e., to decide if ϕ

is satisfiable. The used circuits have size at most 2
5n
2k + (N2)εk ≤ 26εn = 2δn,

which contradicts Hypothesis 1. �
Using the same trick for Theorem 1, we could know that Theorem 4 implies

Theorem 2.
Though Hypothesis 1 is much weaker than ETH, we find that it is still very

hard to settle by showing the following theorem.

Lemma 7. For every L ∈ NC1, i.e., there exists c ∈ N such that L could be
computed by a family of circuits (Cn)n∈N satisfying Cn has size at most nc and
depth at most c log n, there exists d ∈ N such that there is a family of circuits
(C′

n)n∈N
which satisfies

– s ∈ L if and only if C|s| = 1;
– Cn has depth d and size n3c/2(2n2c/d+1 + 1).

Theorem 5. Hypothesis 1 implies NP �⊆ NC1.

Proof. We show that Hypothesis 1 implies 3-CNF-SAT �∈ NC1. If there exists
c ∈ N such that 3-CNF-SAT could be computed by a family of circuits (Cn)n∈N

satisfying Cn has size at most nc and depth at most c log n. By Lemma 7, 3-
CNF-SAT could be computed by 5c-depth, size n3c/2(2n2/5+1 + 1) = O(2

√
n)

circuits for large n, which contradicts Hypothesis 1. �

5 Conclusions

We have presented that para-AC0 circuits could not approximate the k-DomSet
problem with ratio f(k) for any computable function f . With the hypothesis that
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3-CNF-SAT problem cannot be computed by constant-depth circuits of size 2δn

for some δ > 0, we could show that constant-depth circuits of size no(k) cannot
distinguish graphs whose dominating numbers are either ≤ k or > k

√
log n

3 log log n .
A natural question is to settle the hypothesis, which may be hard since we

show that it implies NP �⊆ NC1. Another question is to ask: Are constant-depth
circuits of size no(k) unable to distinguish graphs whose dominating numbers are
either ≤ k or > k

√
log n

3 log log n without assuming Hypothesis 1?
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Abstract. This paper addresses one of the fundamental geometric for-
mation problems, namely the mutual visibility problem, for a set of semi-
synchronous, opaque robots occupying distinct positions in the Euclidean
plane. Since robots are opaque, if three robots lie on a line, the middle
robot obstructs the visions of the two other robots. The mutual visibil-
ity problem requires the robots to coordinate their movements to form
a configuration, within finite time and without collision, in which no
three robots are collinear. We assume that robots are endowed with con-
stant bits of persistent memory. We consider the FSTATE computational
model [4] in which the persistent memory is used by the robots only to
remember their previous internal states. This piece of information is not
communicated or visible to the other robots. Except from this persis-
tent memory, robots are oblivious i.e., they do not carry forward any
other information from their previous computational cycles. The paper
presents a distributed algorithm to solve the mutual visibility problem
for a set of semi-synchronous robots using only 1 bit of persistent mem-
ory. The proposed algorithm also provides a self-stabilizing solution to
the problem. The algorithm does not impose any other restriction on the
capability of the robots and guarantees collision-free movements for the
robots.

Keywords: Swarm robots · Mutual visibility problem ·
Semi-synchronous · Persistent memory · Self-stabilizing

1 Introduction

A swarm of robots is a multi-robot system consisting of autonomous, homoge-
neous, small mobile robots which are capable of carrying out some task in a coop-
erative environment. The robots are modelled as points on the two-dimensional
plane. The robots are indistinguishable by their appearances. All of them have
identical capabilities and execute same algorithm. They do not share a global
coordinate system; each robot has its own local coordinate system. The direc-
tions and orientations of the local coordinate axes may vary. Each robot executes
the computational cycles consisting of three phases Look-Compute-Move. In Look
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phase, a robot takes the snapshot of its surroundings and maps the locations of
the other robots w.r.t. its local coordinate system. In Compute phase, a robot
uses the information gathered in the Look phase to compute a destination point.
In Move phase, it moves towards the computed destination point.

In persistent memory model, robots are endowed with constant amount of
persistent memory (the robots are otherwise oblivious) [1]. This persistent mem-
ory can be used in three different ways: (i) the robots can set limited commu-
nications between themselves using visible lights which can assume a constant
number of predefined colors to represent their different states and also to retain
some constant amount of information about their previous states or (ii) only to
remember information about their last states (FSTATE model) or (iii) the robots
can use visible lights only to communicate with other robots in the system and
they do not remember the colors of the lights of their last computational cycle
(FCOMM model) [4]. Thus, the persistent memory can be used for communi-
cation or for internal memory or for both. In this work, robots use persistent
memory only for internal memory.

The mutual visibility problem is defined as follows: for a set of robots initially
occupying distinct positions in the two dimensional plane, the mutual visibility
problem asks the robots to form a configuration, within finite time and without
collision, in which no three robots are collinear.

1.1 Earlier Works

The mutual visibility problem was first studied by Di Luna et al. [13]. They pre-
sented a distributed algorithm to solve the problem for a set of semi-synchronous
oblivious robots. Their approach assumes that the robots have the knowledge of
total number of robots in the system. Later, their algorithm was analysed and
modified by Sharma et al. [11] to improve the round complexity of the algorithm
for fully synchronous robots. Di Luna et al. [12] were the first to study the mutual
visibility problem for the robots with persistent memory. They solved the prob-
lem for the semi-synchronous robots with 3 colors and for asynchronous robots
with 3 colors under one axis agreement. Later, Sharma et al. [10] proved that the
mutual visibility problem is solvable using only 2 colors for semi-synchronous
robots and using 2 colors for asynchronous robots under one-axis agreement.
Sharma et al. [8] proposed a solution to the problem which runs in constant
time for a set of asynchronous robots using 47 colors. Bhagat and Mukhopad-
hyay [9] solved the problem for a set of asynchronous robots using 7 colors. In
their solution, each robot moves exactly once. The mutual visibility problem has
also been considered under different fault models [5,6,14] and also for fat robots
[7].

The only solution to the mutual visibility problem for oblivious asynchronous
robots has been proposed in [2] under the assumption that the robots have an
agreement in one coordinate axis and knowledge of total number of robots in
the system. Thus, all the existing algorithms for the mutual visibility problem
assumes either persistent memory for both communication and internal memory
purpose or axis agreement or the knowledge of total number of robots.
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1.2 Our Contribution

This paper studies the mutual visibility problem for a set of n semi-synchronous
robots in the Euclidean plane. A simple but elegant distributed algorithm has
been proposed to solve the problem for a set of robots endowed with a constant
amount of persistent memory. The proposed algorithm considers FSTATE model
which does not have communication overhead of FCOMM model. The persistent
memory is used only to remember information about their previous states. The
proposed algorithm does not assume any other extra assumptions like agreement
on the coordinate axes or chirality, knowledge of n, rigidity of movements. In
spite of these weak assumptions, it is shown that the mutual visibility problem
is solvable for a set of semi-synchronous robots using only 1 bit of persistent
internal memory. The contribution of this paper has following significance.

– While all the existing solutions of the mutual visibility problem for semi-
synchronous robots have considered either knowledge of n or persistent mem-
ory for both communication and internal memory purposes (combination of
FSTATE and FCOMM model), our approach assumes FSTATE model without
knowledge of n (this makes system easily scalable).

– In all the existing solutions for the mutual visibility problem, the convex hull
of the initial positions of the robots does not remain invariant. The solution
of this work maintains the convex hull of the initial robot positions if all the
robots initially do not lie on a single line. Furthermore, in all the works with
persistent memory, the robots move even if the robots are completely visible
to each other. In our algorithm, if the robots are completely visible to each
robot, they do not move.

– In our approach, not all robots move. Only the robots which block the vision
of the other robots move. Again, the distances they traverse during their
movements are kept as small as needed. These help to provide an energy
efficient solution to the problem.

– The proposed algorithm is self-stabilizing. Even if robots start with different
states, the algorithm achieves its final goal.

– The solution also provides collision free movements for the robots.
– To the best of our knowledge, this paper is the first attempt to study the

mutual visibility problem under FSTATE model.

2 Assumptions and Notations

This paper considers a set of n semi-synchronous point robots in the Euclidean
plane. The robots are opaque. However, the visibility range of a robot is unlim-
ited. The robots have no knowledge about the total number of robots in the
system. The movements of the robots are non-rigid. The robots do not have
any explicit communication power. Each robot has 1 bit of internal persistent
memory. The 1 bit memory stores information about predefined specific states
of the robot. This internal bit does not change automatically and it is persistent.
Let si(t) be the binary variable which denotes the value stored in the internal
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memory of the robot ri at time t ∈ N. Except for this persistent memory, the
robots are oblivious i.e., they do not remember any other data of their previous
computational cycles. Initially all the robots occupy distinct locations and they
are stationary.

– Configurations of the robots: Let R = {r1, r2, . . . , rn} denote the set of n
robots. The position of robot ri at time t is denoted by ri(t). A configuration
of robots, R(t) = {r1(t), . . . , rn(t)}, is the set of positions occupied by the
robots at time t. ˜C is the set of all such robot configurations.
We partition ˜C into two classes: ˜CL and ˜CNL, where ˜CL is the collection of
configurations in which all the robots in R lie on a straight line and ˜CNL

consists of configurations in which there exist at least three non-collinear
robot positions occupied by the robots in R. We say that a robot configuration
R(t) is in general position if no three robot positions in R(t) are collinear.
By ˜CGP , we denote the set of all configurations of R which are in general
position. Clearly ˜CGP ⊂ ˜CNL.

– Measurement of angles: By an angle between two line segments, if not
stated otherwise, we mean the angle which is less than or equal to π.

– Vision of a robot: If three robots ri, rj and rk are collinear with rj lying in
between ri and rk, then ri and rk are not visible to each other. We define the
vision, Vi(t), of robot ri at time t to be the set of robot positions visible to ri
(excluding ri). The visibility polygon of ri at time t, denoted by STR(ri(t)), is
defined as follows: sort the points in Vi(t) angularly in anti clockwise direction
w.r.t. ri(t), starting from any robot position in Vi(t). Then connect them in
that order to generate the polygon STR(ri(t)).

– A straight line L is called a line of collinearity if it contains more than two dis-
tinct robot positions. A robot occupying a position on L is termed a collinear
robot. For a robot ri, let Bi(t) denote the set of all lines of collinearity on
which ri is a collinear robot at time t ∈ N.

– Consider a line of collinearity L at time t. A robot ri on L is called a non-
terminal robot if ri(t) is a point between two other robot positions on L. A
robot which is not a non-terminal robot is called a terminal robot.

– A non-terminal robot position ri(t) on a line of collinearity L is called a
junction robot position if there is another line of collinearity L1 such that
ri(t) lies at the intersection point between L and L1.

– By pq, we denote the closed line segment joining two points p and q, including
the end points p and q. Let (p, q) denote the open line segment joining the
points p and q, excluding the two end points p and q. Let |pq| denote the
length of pq.

– dk
ij(t): Let Lij(t) denote the straight line joining ri(t) and rj(t). The perpen-

dicular distance of the line Lij(t) from the point rk(t) is denoted by dkij(t).
– Di(t): Di(t) is the minimum distance of any two robot positions in {ri(t)} ∪

Vi(t).
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3 Algorithm for the Mutual Visibility Problem

Consider an initial configuration R(t0) of robots. If R(t0) contains no non-
terminal robot, then R(t0) ∈ ˜CGP i.e., all the robots in the system are visible to
each other. On the contrary, if R(t0) contains at least one non-terminal robot,
then there are at least two robots which are not visible to each other. In this sce-
nario, to achieve complete visibility, robots need to coordinate their movements.
In this process one has to decide two main things; (i) which are the robots to
move: terminals or non-terminals? (ii) what should be their destination point to
move? First, we try to give an intuitive idea to resolve these issues and then we
describe our algorithm in details.

3.1 Eligible Robots for Movements

Non-terminal robots block the vision of the other robots. In our approach, we
choose non-terminal robots for movements. Since one of our main objectives is to
maintain the convex hull of the initial robot positions and the robots lying at the
vertices of the convex hull are terminal robots, we do not move terminal robots.
A robot can easily determine whether it is a terminal robot or non-terminal
robot.

3.2 Different Types of Movements

A robot uses its 1 bit of internal memory to remember the information about
its last movement. It uses 0 and 1 in its persistent memory for this purpose.
Initially all robots have 0 in their respective persistent memory. If the internal
bit is 0, a robot moves not along any line of collinearity and this move is called
a type-0 move. If internal bit is 1, a robot moves along a line of collinearity and
this move is called a type-1 move.

3.3 States of a Robot

A robot uses its persistent 1 bit memory to remember information about its last
movement. Initially all robots have 0 in their persistent memory.

– If a robot is terminal and its internal bit is 0, it is a terminal robot since the
initial configuration.

– If a robot is terminal and its internal bit is 1, it was a non-terminal robot in
the initial configuration and has become terminal during the execution of the
algorithm.

– If a robot is non-terminal and its internal bit is 0, it is a non-terminal robot
since the initial configuration and either it has made no move or has made a
type-1 move.

– If a robot is non-terminal and its internal bit is 1, it is a non-terminal robot
since the initial configuration and it has made a type-0 move.
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3.4 Computation of Destination Point

Destination points of the robots are computed in such way that (i) they do
not create new collinearities by moving to these positions and (ii) the total
number of collinear robots in the system should decrease within finite number
of movements. The algorithm terminates when system contains no non-terminal
robot. Let ri be an arbitrary non-terminal robot at time t ≥ t0. To find the new
position of ri, we first decide on the direction of movement and then the amount
of displacement along this direction. While computing the new destination point
of ri, two things should be taken care of. The new position of ri should not
block the visibility of the other robots. The movements of the robots should be
collision free. Depending on the current configuration R(t), the destination point
for ri is computed as follows.

– Case-1: R(t) ∈ ˜CNL

Consider the set of angles Γi(t) defined as follows:

Γi(t) = {∠rjrirk : rj , rk are two consecutive vertices on STR(ri(t))}

• The direction of movement: Let αi(t) denote the angle in Γi(t) having
the maximum value if the maximum value is less than π, otherwise the
2nd maximum value (tie, if any, is broken arbitrarily). The bisector of
αi(t) is denoted by Biseci(t). It is a ray from ri(t). If persistent bit is 0,
ri makes a type-0 move and its direction of movement is along Biseci(t).
Before starting its movement, ri changes its persistent bit to 1. It may be
noted that any other suitable direction for type-0 move would work fine
for robot ri. If persistent bit is 1, ri makes a type-1 move. ri arbitrarily
chooses a line of collinearity from Bi(t) and moves along this line. Before
starting a type-1 move, ri changes its persistent bit to 0.

• The amount of displacement: Let di(t) = minimum{dkij(t), d
j
ik(t),

dijk(t) : ∀rj , rk ∈ Vi(t))}. The amount of displacement of ri at time t is
denoted by σi(t) and it is defined as follows,

σi(t) =
U

34vi(t)

where U = minimum{di(t),Di(t)} and vi(t) = |Vi(t))|.
Three non-collinear robots become collinear when the triangle formed by
their positions collapses to a line. The amount σi(t) is chosen to be a
small fraction of dkij(t) for all rj(t), rk(t) ∈ Vi(t)) in order to guarantee
that no new collinearity is generated during the movements of the robots.
Other suitable values will also work.

• The destination point: Let r̂i(t) be the point on Biseci(t) at distance
σi(t) from ri(t) if si(t) = 0. Otherwise, r̂i(t) is a point on a line L ∈
Bi(t) at distance σi(t) from ri(t) (choose arbitrarily any one of the two
directions along L). The destination point of ri(t) is r̂i(t).
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– Case-2: R(t) ∈ ˜CL

There is only one line of collinearity, say L̂, in the system. Only two robots
are terminal. Once one of them moves, the present configuration is converted
into a configuration in ˜CNL.

• The direction of movement: Let L∗ be the line perpendicular to L̂ at
the point ri(t). The robot ri arbitrarily chooses a direction along L∗ and
moves along that direction. Let L∗

d denote the direction of movement of
ri. Since all robots are collinear, this movement is a type-0 move. Before
starting this move, ri changes its persistent bit to 1.

• The amount of displacement: In this, the amount of displacement
σ̂i(t) is defined as follows:

σ̂i(t) =
Di(t)

34

• The destination point: Let r̄i(t) be the point on L∗
d at the distance

σ̂i(t) from ri(t). The destination point of ri is r̄i(t).

3.5 Termination

A robot terminates the execution of algorithm MutualV isibility() when it finds
itself as a terminal robot. Thus, an initially terminal robot terminates just in
one round.

Robots use the algorithm ComputeDestination() to compute its destination
point and use algorithm MutualV isibility() to obtain complete visibility.

3.6 Correctness

To prove the correctness of our algorithm, we need to prove the following for
any configuration: (i) three non-collinear robots in a particular round do not
become collinear in any of the succeeding rounds (ii) within finite number of
rounds at least one non-terminal robot becomes terminal and (iii) movements
of the robots are collision free. If three non-collinear robots become collinear,
then the triangle formed by their positions should collapse into either a line or a
point. For arbitrary three non-collinear robots ri, rj and rk, we prove that none
of dkij(t), djik(t) and dijk(t) becomes zero. Without loss of generality, we prove
that dkij(t) will never vanish, during the execution of our algorithm. We estimate
the maximum decrement in the value of dkij(t) in a particular round, due to the
movements of the robots.

Lemma 1. Let ri, rj and rk be three arbitrary robots, which are not collinear at
time t ∈ N. During the rest of execution of algorithm MutualV isibility(), they
do not become collinear.

Proof. Maximum decrement in the value of dkij(t) occurs when all the three
robots move simultaneously in a round. Thus, we suppose the three robots move
at time t. Depending upon the positions of the robots, we have the following
cases.
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– Case-1: ri, rj and rk are mutually visible at t0
According to our approach, the displacement of a robot, in a single movement,

is bounded above by dk
ij(t)

34 (since |Vi(t)| ≥ 1). Since all the three robots
move simultaneously in a round, the total decrement in the value of dkij(t) is
bounded above by 3

34 dkij(t). It is easy to see that this bound also holds for all
other scheduling of the actions of the robots. Thus, we have,

dkij(t + 1) > (1 − 3
34

)dkij(t) (1)

Equation (1) implies that the triangle �ijk(t) does not collapses into a line
due to the movements of the robots. Since robots are semi-synchronous and
t is arbitrary, these three robots never become collinear during the whole
execution of the algorithm.

– Case-2: ri, rj and rk are not mutually visible at t0
In this case the triangle �ijk(t) contains a triangle �xyz(t) such that the
robots lying at three vertices rx, ry and rz are mutually visible to each other.
Case-1 above implies that the triangle �xyz(t) does not vanish during the
movements of the robots and so does �ijk(t). �	

Lemma 2. Let ri be an initially non-terminal robot. During the execution of
algorithm MutualV isibility(), ∃ a time t ∈ N such that ri becomes a termi-
nal robot at time t and it remains terminal for the rest of the execution of the
algorithm.

Proof. Let L1(t′) be a line of collinearity in Bi(t′).

– Case-1: L1(t′) does not contain a junction robot position
In this case, ri is a non-terminal robot on exactly one line. Since both the
end robot positions on L1(t′) are terminal, it takes at most 2k − 1 number of
movements for the non-terminal robots on L1(t′) to become terminal, where
k is number of non-terminal robots on L1(t′) (Fig. 1).

– Case-2: L1(t′) contains a junction robot position
We consider different possible configurations of the robot positions on the
line L1(t′) and show that in each case ri becomes a terminal robot. Different
scenarios are as follows:

• We first consider a basic scenario in which (i) L1(t′) contains exactly
one junction robot position rk(t′) and (i) rk lies exactly on two lines of
collinearity. Let L2(t′)(�= L1(t′)) be the other line of collinearity of rk.
* Suppose rk(t′) is the only junction robot position on L2(t′). Then, as

in case-1, within finite number of rounds rk becomes a terminal robot
(Fig. 2). Once rk becomes terminal, again by case-1, the collinearity
among the robots initially on L1(t′) are broken within finite number of
rounds and ri becomes terminal.

* Suppose L2(t′) contains another junction robot rm and rk and rm
are the only two robots which occupy junction position on L2(t′). Let
L3(t′)(�= L2(t′)) be the line of collinearity on which rm lies. If rm lies
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Fig. 1. An illustration of case-1 of Lemma 2: non-terminal robots on a line of collinear-
ity L1(t

′), containing no junction robot position, become terminal within finite number
of movements: dark circles are current positions of the robots and white circles are old
positions of the robots, the arrows show the directions of movements of the robots

on exactly two lines of collinearity L2(t′) and L3(t′) and L3(t′) does
not contain any other junction robot position, by the same arguments
as above, within finite number of rounds ri becomes terminal.

* Suppose L3(t′) contains another junction robot position. Continuing our
arguments as above, we get a sequence S of lines of collinearity. Since
there are finite number of robots, this sequence either ends with a line of
collinearity Lk(t′) containing exactly one junction robot position or it
contains a cycle. If former is true, as above, all the non-terminal robots
in this sequence become terminal within finite time. When S contains
a cycle, then a type-1 move breaks this cycle and ri becomes terminal
within finite time.

Thus, in these basic scenarios within finite number of rounds, ri becomes
terminal.

• Now consider the general scenario, in which a line of collinearity may
contain more than two junction robot positions. Starting from L1(t′), we
can get many such sequences of lines of collinearity as described above.
Let ˜S denote the set of all these sequence. Since the sequences in ˜S may
have common lines, breaking of collinearities from one line may depend
on breaking of collinearities from another line.
* If no sequence in ˜S contains a cycle, then type-0 movements i.e., move-

ments not along the lines of collinearity will break all the collinearities
in ˜S.

* Suppose a sequence in ˜S contains a cycle, say C. Let rx be a robot at
a critical robot position on a line Lu in C. If rx makes a type-1 move
along Lu, then rx does not remain a robot at critical position and cycle
C is broken. Suppose rx makes a type-1 move along another line of
collinearity Lv. If Lv does not belong to a cycle, by case-1, within finite
rounds, rx does not remain non-terminal with the robots on Lv and
when rx makes a type-1 move along Lu, it breaks the cycle C. If Lv
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Fig. 2. An illustration of case-2 of Lemma 2: (a) L1(t
′) and L2(t

′) contain exactly one
junction robot position rk(t

′), (b)-(d) demonstrate a sequence of type-0 movements
for the robots to show that ri becomes terminal within finite number of rounds: dark
circles are current positions of the robots and white circles are old positions of the
robots, the arrows show the directions of movements of the robots

belongs to a cycle, rx is a robot at a critical robot position on Lv and
a type-1 movement of rx along Lv breaks this cycle. Thus, within finite
time all the cycles in ˜S is broken.

Hence, within finite time, ri becomes a terminal robot. Since robots are semi-
synchronous, by Lemma 1, ri remains as terminal once it becomes so.

Lemma 3. The movements of the robots are collision-free.

Proof. Let ri and rj be two arbitrary robots and at least one of them moves.
Consider a robot rk visible to at least one of ri and rj . If ri and rj collide,
then ri, rj and rk would become collinear or remain collinear which contradicts
Lemmas 1 and 2. This implies that the movements of the robots are collision
free during the whole execution of MutualV isibility().

Lemma 4. If R(t0) /∈ ˜CL, during the whole execution of algorithm
MutualV isibility(), the convex hull of the robot positions in R(t0) remains
invariant in size and shape.

Proof. Let CH(t0) denote the convex hull of R(t0). The robots occupy-
ing the vertices of CH(t0) are terminal robots. According to algorithm
MutualV isibility(), these robots do not move. The robots on the edges of CH(t0)
move inside the convex hull CH(t0) and no robot, lying inside the hull, crosses
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any edge of the convex hull (as per definitions of directions of movements and
amount of displacement in case-1 of subsection D). Hence, CH(t0) remains invari-
ant in size and shape.

Lemma 5. Algorithm MutualV isibility() is self-stabilizing.

Proof. Robots use type-1 movements to break the cycles. The type-0 move-
ments are used to break the other type of collinearities. In our approach, robots
start with type-0 movements. If a robot is not a critical robot and starts with a
type-1 movement, it would take at most one additional round to become a termi-
nal robot. On the other hand, if a critical robot starts with a type-1 movement,
it breaks the cycle and would take one round less to become a terminal robot.
Thus, our approach works even if robots start with any value in their internal.

From the above lemmas, we have the following theorem:

Theorem 1. Algorithm MutualV isibility() provides a self-Stabilization solu-
tion to the mutual visibility problem without any collision for a set of semi-
synchronous, communication-less robots, placed in distinct location, with 1 bit of
persistent memory.

4 Conclusion

This paper presents a self-stabilizing distributed algorithm to solve the mutual
visibility problem in finite time for a set of communication-less semi-synchronous
robots endowed with a constant amount of persistent memory. The proposed
algorithm uses only 1 bit of persistent memory. The robots use their persistent
memories only to remember information about their last movements. There is
no explicit communication between the robots. The algorithm also guarantees
collision-free movements for the robots. The proposed algorithm also maintains
the convex hull of the initial robot positions. The results of this paper leave
many open questions. How does the internal persistent memory can help to
reduce the communication overheads in the existing solutions for the mutual
visibility problem, where external lights are used for communicating the internal
states of the robots? How to solve the mutual visibility problem for asynchronous
robots in this setting? What would be the impact of internal persistent memory
in the solutions of other geometric problems?
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Abstract. Henzinger et al. posed the so called Online Boolean Matrix-
vector Multiplication (OMv) conjecture and showed that it implies tight
hardness results for several basic partially dynamic or dynamic problems
[STOC’15].

We show that the OMv conjecture is implied by a simple off-line con-
jecture. If a not uniform (i.e., it might be different for different matrices)
polynomial-time preprocessing of the matrix in the OMv conjecture is
allowed then we can show such a variant of the OMv conjecture to be
equivalent to our off-line conjecture. On the other hand, we show that
the OMV conjecture does not hold in the restricted cases when the rows
of the matrix or the input vectors are clustered.

1 Introduction

Henzinger et al. considered the following Online Boolean Matrix-vector Multipli-
cation (OMv) problem in [8]. Initially, there are given an integer n and an n×n
Boolean matrix M. Then, for i = 1, ..., n, in the i-th round there is given an n-
dimensional Boolean column vector vi, and the task is to compute the product of
M with vi before the next round. The objective is to design a (possibly random-
ized) algorithm that solves the OMv problem, i.e., it computes all the n products
as quickly as possible. In [8], Henzinger et al. provided efficient reductions of the
OMv problem to several basic partially dynamic or dynamic problems includ-
ing subgraph connectivity, Pagh’s problem, d-failure connectivity, decremental
single-source shortest paths, and decremental transitive closure.
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They also stated the following OMv conjecture in [8].

Conjecture 1 OMv conjecture. For any constant ε > 0, there is no randomized
algorithm that solves the OMv problem in O(n3−ε) time with an error probability
of at most 1/3.

Their conjecture implies tight hardness results for the aforementioned par-
tially dynamic or dynamic problems [8]. It also implies the following off-line Mv
conjecture [8].

Conjecture 2 Mv conjecture. For any constant ε > 0 and any polynomial p(),
there is no randomized preprocessing and randomized algorithm such that any
n×n Boolean matrix M can be preprocessed in p(n) time so the Boolean product
of M with an arbitrary Boolean n-dimensional column vector can be computed
in O(n2−ε) time with an error probability of at most 1/3.

The fastest known algorithm for the OMv problem is due to Green Larsen
and Williams [7]. Their recent (not combinatorial) randomized algorithm runs in
O(n3/2Ω(

√
log n)) time. Williams has also shown in [10] that any n × n Boolean

matrix can be preprocessed in O(n2+ε) time so the Boolean product of the
matrix with an arbitrary n-dimensional Boolean vector can be computed in
O(n2/ log2 n) time. This implies that the Mv problem corresponding to the Mv
conjecture admits an O(n2/ log2 n)-time solution. Also recently, Chakraborty et
al. have established tight cell probe bounds for succinct Boolean matrix-vector
multiplication in [4].

Our Contributions. We show that the OMv conjecture is implied by the follow-
ing simple off-line MvP conjecture: For any constant ε > 0 and any polynomial
p there is an n × n Boolean matrix M that cannot be preprocessed in p(n) time
such that the Boolean product of M with an arbitrary n-dimensional column
vector v can be computed in O(n2−ε) time with an error probability of at most
1/3. There is a subtle but a substantial difference between our MvP conjecture
and the Mv conjecture, the latter stated and shown to be implied by the OMv
conjecture in [8]. In our conjecture the preprocessing is not uniform with respect
to the matrices while in the Mv conjecture in [8] one considers a uniform, univer-
sal preprocessing. It follows that the difficulty of proving the OMv conjecture lies
between the two aforementioned off-line conjectures: OMv is not more difficult
than MvP and it is not easier than Mv.

We also show that if we relax the OMv problem by allowing for a not uniform
polynomial-time preprocessing of the matrix M then the corresponding online
conjecture will be equivalent to our MvP conjecture.

Basically, the Combinatorial Boolean Matrix Multiplication conjecture
(CBMM conjecture) states that there is no combinatorial (randomized) algo-
rithm for the Boolean product of two n × n Boolean matrices that runs in sub-
stantially subcubic time [2,8]. Marginally, we also observe that if we strengthen
the CBMM conjecture by allowing for a polynomial-time uniform preprocessing
of one of the matrices, the resulting conjecture will be equivalent to the original
CBMM conjecture.



158 L. G ↪asieniec et al.

On the other hand, by adapting known algorithms for Boolean matrix prod-
uct of matrices with clustered data [3,5,6], we obtain a combinatorial random-
ized algorithm for the product of a Boolean n × n matrix M and an arbitrary
Boolean n-dimensional column vector v running in Õ(n + STM ) time after an
Õ(n2)-time preprocessing of M, where STM stands for the cost of a minimum
spanning tree of the rows of M under the extended Hamming distance (never
exceeding the Hamming distance). Consequently, we obtain a combinatorial ran-
domized algorithm for the OMv problem running in Õ(n(n + STM )) time. We
also show that OMv admits a combinatorial randomized algorithm running in
Õ(nmax{ST (V ), n1+o(1))) time, where ST (V ) stands for the cost of a minimum
spanning tree of the column vectors v1, ..., vn under the extended Hamming dis-
tance. The time analysis of the latter algorithm relies in part on our analysis of
an approximate nearest-neighbour online heuristic for the aforementioned mini-
mum spanning tree.

The overwhelming majority of the reductions of the OMv problem to other
partially dynamic or dynamic problems in [8] are unfortunately one-way reduc-
tions that do not yield applications of our algorithms for the OMv and Mv
problems. Following the applications of the Mv problem given in [2,10], we pro-
vide analogous applications of our algorithms to vertex subset queries (e.g., for
a given graph, such a query asks if a given subset of vertices is independent),
triangle membership queries and 2-CNF formula evaluation queries.

Organization of the Paper. Section 2 introduces three new conjectures and
it shows implications and equivalences between them and the OMv conjecture.
Section 3 presents our algorithms for the OMv and Mv problems whose time
complexity is expressed in terms of the minimum cost of a spanning tree of the
rows of the matrix or the input column vectors under the extended Hamming
distance. Section 4 presents applications of our algorithms. Section 5 concludes
with some final remarks. Because of space considerations, the proof of Lemma 3
as well as a marginal subsection of Sect. 2 on Combinatorial Boolean Matrix
Product, and an additional application are omitted in this extended abstract.

2 An Off-Line Conjecture

By the auxiliary Boolean Matrix-vector multiplication problem (AMv) we shall
mean the problem of efficiently computing the product of a fixed n × n Boolean
matrix M , that can be (not uniformly) preprocessed in O(n3−ε) time for some
fixed ε > 0, with an arbitrary n-dimensional Boolean column vector v. We state
the following conjecture related to the AMv problem.

Conjecture 3 AMv conjecture. For any constant ε > 0 and constants c1, c2,
there is an n×n Boolean matrix M that cannot be preprocessed in c1n

3−ε time
such that the Boolean product of M with an arbitrary n-dimensional Boolean
column vector v can be computed in c2n

2−ε time with an error probability of at
most 1/3.

We shall show the AMv conjecture to imply the OMv one.



Pushing the Online Matrix-Vector Conjecture Off-Line 159

Lemma 1. Let ε be a positive constant and let M be an n × n Boolean matrix.
If the OMv problem for M can be solved in O(n3−ε) time with an error prob-
ability of at most 1/3 then the matrix M can be (not uniformly) preprocessed
in O(n3−ε) time such that the Boolean product of M with an arbitrary input
n-dimensional Boolean column vector v can be computed in O(n2−ε) time with
an error probability of at most 1/3. Consequently, the AMv conjecture implies
the OMv conjecture.

Proof. Construct a sequence of n-dimensional Boolean vectors v1,....vn itera-
tively by picking as vi a vector that jointly with the preceding vectors maximizes
the total time of the assumed OMv solution for v1, ..., vi. Since the assumed OMv
solution for the whole sequence takes O(n3−ε) time, there must be i ∈ {1, ..., n}
such that the product of M with vi is computed in O(n2−ε) time after computing
the products of M with the preceding vectors in the sequence. The computation
of all the products clearly takes O(n3−ε) time and it has an error probability of
at most 1/3. By the definition of vi, if we compute instead of the product of M
with vi, the product of M with an arbitrary n-dimensional input vector v, the
computation will take only O(n2−ε) time after the products with the preceding
vectors have been computed. Again, the computation of all the products, and
hence in particular that of M with v, will have an error probability of at most
1/3. Since the vectors v1...vi−1 are fixed, the computation of the products of M
with the preceding vectors can be regarded as an O(n3−ε)-time preprocessing. ��

Unfortunately, we cannot show the reverse implication, i.e., that the OMv
conjecture implies the AMv one like it implies the Mv conjecture [8]. The reason
is that in the definition of the AMv problem, we do not require a universal
preprocessing that could work for any matrix M of size n × n, we only require
the existence of an individual preprocessing for a given M.

In the next lemma, we demonstrate that if we allow for an arbitrary (not
uniform) polynomial-time preprocessing instead of the substantially subcubic
one, we will obtain a problem equivalent to the AMv one. This lemma and its
proof idea of dividing the matrix and the vector into appropriate submatrices
and subvectors are similar to Lemma 2.3 and its proof idea in [8], respectively.

Lemma 2. Let δ and ε be positive constants. If for any n × n Boolean matrix
M there is an O(n3+δ)-time preprocessing such that the product of M with an
arbitrary n-dimensional Boolean column vector v can be computed in O(n2−ε)
time with an error probability of at most 1/3 then there is a positive constant
ε′ such that after an O(n3−ε′

)-time preprocessing the product of M with such a
vector v can be computed in O(n2−ε′

) time with an error probability of at most
1/3.

Proof. Divide M into n2α quadratic submatrices Mi,j of size n1−α × n1−α,
where i, j ∈ {1, ..., nα}. Preprocess all the submatrices in O(n2α × (n1−α)3+δ)
time. Then, the product of M with the vector v can be computed in O(n2α ×
(n1−α)2−ε + n1+α) time. The last term in the expression represents the cost of
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summing the results of the products of the submatrices with respective subvec-
tors of v of length n1−α. In order to obtain an exponent of the total prepro-
cessing time in the form 3 − ε′ and the exponent of computing the product in
the form 2 − ε′, it is sufficient to solve the inequalities 2α + (1 − α)(3 + δ) < 3,
2α + (1 − α)(2 − ε) < 2 and 1 + α < 2 with respect to α. Any α in the open
interval ( δ

1+δ , 1) satisfies these inequalities.
Following the proof of Lemma 2.3 in [8], we can keep the error probability

below 1/3 by repeating the computation of each of the products of a submatrix of
M with a respective vector O(log n) times, and picking the most frequent answer.
In order to tackle the additional logarithmic factor in the time complexity, we
can slightly decrease our ε′. ��

We shall call the problem and the conjecture resulting from the AMv problem
and the AMv conjecture by replacing an O(n3−ε) (not uniform) preprocessing
time with a polynomial (not uniform) preprocessing time, a Boolean Matrix-
vector multiplication with (polynomial-time not uniform) preprocessing problem
and a Boolean Matrix-vector multiplication with (polynomial-time not uniform)
preprocessing conjecture (MvP for short), respectively. Since the MvP conjecture
trivially implies the AMv conjecture, by Lemmata 1, 2, we obtain the following
theorem.

Theorem 1. The AMv and MvP conjectures are equivalent and they imply the
OMv conjecture.

Relaxing the OMv Problem. In order to obtain a version of OMv equivalent
to AMv and MvP, we shall consider generalized versions of the OMv problem and
the OMv conjecture allowing for a not uniform polynomial-time preprocessing of
the matrix. We shall term them, the OMvP problem and the OMvP conjecture,
respectively.

The proof of the following lemma is analogous to that of Lemma1.

Lemma 3. Let ε be a positive constant, and let M be an n×n Boolean matrix. If
the OMvP problem for M and any positive natural number n, after a polynomial-
time (not uniform) preprocessing of M can be solved in O(n3−ε) time with an
error probability of at most 1/3 then the matrix M can be (not uniformly) pre-
processed in polynomial time such that the Boolean product of M with an arbi-
trary input n-dimensional Boolean column vector v can be computed in O(n2−ε)
time with an error probability of at most 1/3. Consequently, the MvP conjecture
implies the OMvP conjecture.

Lemma 4. Let ε be a positive constant, and let M be an n×n Boolean matrix. If
the AMv problem for M can be solved in O(n2−ε) time with an error probability
of at most 1/3 after an O(n3−ε) not uniform preprocessing of M then the OMvP
problem for the matrix M and n Boolean column vectors can be solved in O(n3−ε)
time with an error probability of at most 1/3. Consequently, the OMvP conjecture
implies the AMv conjecture.
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Proof. Before computing the product of M with the first vector, perform the
appropriate not uniform O(n3−ε) time preprocessing of M . After that the prod-
uct of M with each consecutive vector can be computed in O(n2−ε) time, so
the total time for n vectors becomes O(n3−ε). We can keep the error probability
below 1/3 for the whole sequence of input vectors similarly as in the proof of
Lemma 2. ��

Since the conjectures AMv and MvP are equivalent (see Theorem 1), by Lem-
mata 3 and 4, we obtain the following extension of Theorem1.

Theorem 2. The MvP, AMv and OMvP conjectures are equivalent.

3 Easy Cases of Matrices and Vectors for the Conjectures

Björklund et al. [3] proposed a method of multiplying two Boolean matrices by
using a close approximation of the minimum spanning tree of the rows or columns
of one of the matrices under the Hamming distance. Subsequently, the method
has been generalized to include the so called extended Hamming distance [6] and
integer matrix multiplication [5]. In the first warming-up subsection, we present
an explicit adaptation of the aforementioned generalizations to the case of the
product of an n×n Boolean (or 0− 1) matrix M and an n-dimensional Boolean
(or 0 − 1) column vector v in the context of the OMv conjecture. Several results
presented in the first subsection can be regarded as implicit in [5,6]. This is not
the case in the second subsection handling the online scenario where the input
column vectors are clustered. Here, we have to develop a novel online approach
involving among other things an analysis of an approximate nearest-neighbour
online heuristic for minimum spanning tree of the vectors under the extended
Hamming distance. We shall use the following concepts in both subsections.

Definition 1. For two 0 − 1 strings s = s1s2....sm and u = u1u2...um, their
Hamming distance, i.e., the number of k ∈ {1, ...,m}, s.t., sk �= uk, is denoted
by H(s, u). An extended Hamming distance, EH(s, u), between the strings, is
defined by a recursive equation EH(s, u) = EH(sl+1...sm, ul+1...um) + (s1 + u1

mod 2), where l is the maximum number, s.t., sj = s1 and uj = u1 for j = 1, ..., l.
A differentiating block for the strings s, u is a maximal consecutive subse-

quence w of 1, 2, ...n, s.t., either for each i ∈ w si = 1 and ui = 0 or for each
i ∈ w si = 0 and ui = 1. In the first case, we set h(s) = −1 while in the second
case h(s) = 1.

3.1 Small Spanning Tree of the Rows of the Matrix (Warming Up)

For c ≥ 1 and a finite set S of points in a metric space, a c-approximate minimum
spanning tree for S is a spanning tree in the complete weighted graph on S, with
edge weights equal to the distances between the endpoints, whose total weight
is at most c times the minimum.



162 L. G ↪asieniec et al.

Fact 1 (Lemma 3 in [6]). For ε > 0, a 2 + ε-approximate minimum spanning
tree for a set of n 0 − 1 strings of length d under the extended Hamming metric
can be computed by a Monte Carlo algorithm in time O(dn1+1/(1+ε/2)).

By selecting ε = 2 log n, we obtain the following lemma.

Lemma 5. Let M be an n×n Boolean matrix. An O(log n)-approximation min-
imum spanning tree for the set of rows of M under the extended Hamming dis-
tance can be constructed by a Monte Carlo algorithm in Õ(n2) time.

We shall also use the following data structure, easily obtained by computing
all prefix sums:

Fact 2 (e.g., see [5]). For a sequence of integers a1, a2,. . . ,an, one can construct
a data structure that supports a query asking for reporting the sum

∑j
k=i ak for

1 ≤ i ≤ j ≤ n in O(1) time. The construction takes O(n) time.

By using Lemma 5 and Fact 2, we obtain the following algorithm which in fact
computes the arithmetic product of the input Boolean matrix M and Boolean
vector v interpreted as 0 − 1 ones. Observe that the aforementioned arithmetic
product immediately yields the corresponding Boolean one.

Algorithm 1
Input: An n×n Boolean matrix M and an n-dimensional Boolean column vector
v.
Output: The arithmetic product c = (c1, ..., cn) of M and v interpreted as a 0−1
matrix and a 0 − 1 vector, respectively.

1. Find an O(log n)-approximate spanning tree T for the rows rowi(M), i =
1, . . . , n, of M under the extended Hamming distance and a traversal (i.e., a
not necessarily simple path visiting all vertices) of T.

2. For any pair (rowi(M), rowl(M)), where the latter row follows the former
in the traversal, find the differentiating blocks s for rowi(M) and rowl(M)
and as well as the differences h(s) (1 or −1) between the common value of
each entry in Ml,min s, . . . ,Ml,max s and the common value of each entry in
Mi,min s, . . . ,Mi,max s.

3. Initialize a data structure D for counting partial sums of the values of coor-
dinates on continuous fragments of the vector v.

4. Iterate the following steps:
(a) Compute cq where q is the index of the row from which the traversal of

T starts.
(b) While following the traversal of T , iterate the following steps:

i. Set i, l to the indices of the previously traversed row and the currently
traversed row, respectively.

ii. Set cl to ci.
iii. For each differentiating block s for rowi(M) and rowl(M), compute∑

k∈s vk using D and set cl to cl + h(s)
∑

k∈s vk.
5. Output the vector (c1, c2, ..., cn).
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Definition 2. For an n × n Boolean matrix A, let STA stand for the minimum
cost of a spanning tree of rowi(A), i ∈ {1, ..., n}, under the extended Hamming
distance.

Lemma 6. Algorithm 1 runs in Õ(n2 + STM ) with high probability. If Steps 1,
2, 3 are treated as a preprocessing of the matrix M then it runs in Õ(n + STM )
time after an Õ(n2)-time preprocessing.

Proof. The approximate minimum spanning tree T in Step 1 can be constructed
by a Monte Carlo algorithm in Õ(n2) time by Lemma 5. Its traversal can be
easily found in O(n) time. Since the length of the traversal is linear in n, Step
2 can be easily implemented in O(n2) time. Step 3 takes O(n) time by Fact 2.
Finally, based on Step 2, Step 4 (b)-ii takes Õ(1 + EH(rowi(M), rowl(M)))
time. Let U stand for the set of directed edges forming the traversal of the
spanning tree T. It follows that Step 4 (b) can be implemented in Õ(n +∑

(i,l)∈U EH(rowi(M), rowl(M))) time, i.e., in Õ(n + STM ) time by Lemma 5.
Consequently, Step 4 takes Õ(n + STM ) time. ��

By Lemma 6, we obtain:

Theorem 3. The Boolean product c of an n × n Boolean matrix M and an n-
dimensional Boolean column vector v can be computed in Õ(n+STM ) time with
high probability after Õ(n2)–time preprocessing.

Proof. The correctness of Algorithm 1 follows from the observation that a dif-
ferentiating block s for rowi(M) and rowl(M) yields the difference h(s)

∑
k∈s vk

between cl and ci just on the fragment corresponding to Mi,min s, . . . ,Mi,max s

and Ml,min s, . . . ,Ml,max, respectively. Lemma 6 yields the upper bounds in terms
of STM . ��
Corollary 1. The OMv problem for an n × n Boolean matrix can be solved in
Õ(n(n + STM )) time while the Mv problem can be solved in Õ(n + STM ) time
after Õ(n2)-time preprocessing.

3.2 Small Spanning Tree of the Input Vectors

In this subsection, we assume an online scenario where besides the Boolean
matrix there is given a sequence of n-dimensional Boolean vectors received one
at a time. In order to specify and analyze our algorithm, we need the following
concepts and facts on them.

Definition 3. For a metric space P and a point q ∈ P, an c-approximate near-
est neighbour of q in P is a point p ∈ P different from q such that for all
p′ ∈ P, p′ �= q, dist(p, q) ≤ c × dist(p′, q). The ε-approximate nearest neighbour
search problem (ε-NNS) in P is to find for a query point q ∈ P a (1 + ε)-
approximate nearest neighbour of q in P.
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Fact 3 (See 3rd row in Table 4.3.1.1 in [1]). For ε > 0, there is a Monte Carlo
algorithm for the dynamic ε-NNS in {0, 1}d under the Hamming metric which
requires O(d�

1
1+2ε+o(1)) query time and O(d�

1
1+2ε+o(1)) update time, where � is

the maximum number of stored vectors in {0, 1}d.

Fact 4 [6]. There is a simple, linear-time, transformation of any 0 − 1 string
w into the string t(w) such that for any two 0 − 1 strings s and u, EH(s, u) =
�H(t(s),t(u))

2 	.
By combining Facts 3, 4. we obtain the following corollary.

Corollary 2. There is a randomized Monte Carlo algorithm for a dynamic
O(log �)-NNS in {0, 1}d under the extended Hamming metric which requires
O(d�o(1)) query time and O(d�o(1)) update time.

Our online algorithm is as follows.

Algorithm 2
Input: Given a priori an n × n Boolean matrix M and an online sequence of
n-dimensional Boolean vectors v1, v2, ..., v� received one at a time.
Output: For i = 1, ..., �, the arithmetic product ci = (ci

1, ..., c
i
n) = Mvi of M and

vi, treated as a 0-1 matrix and a 0-1 column vector, is output before receiving
vi+1.

1. For j = 2, . . . , n, initialize a data structure Dj that for any interval s ⊆
{1, ..., n} reports

∑
k∈s M [j, k] using Fact 2.

2. Receive the first vector v1 and compute the arithmetic product c1 =
(c11, ..., c

1
n) of M with v1 by the definition.

3. For i = 2, . . . , �, receive the i-th vector vi = (vi
i , ..., v

i
n) and iterate the follow-

ing steps:
(a) Find an O(log �)-approximate nearest neighbour vm of vi in the set

{v1, ..., vi−1}.
(b) Determine the differentiating blocks s and the differences h(s) for vm and

vi.
(c) For j = 1, . . . , n iterate the following steps.

i. Set ci
j to cm

j .
ii. For each differentiating block s of vm and vi iterate the following

steps.
A. Compute

∑
k∈s M [j, k] using Dj .

B. Set ci
j to ci

j + h(s)
∑

k∈s M [j, k].
(d) Output ci = (ci

1, ..., c
i
n)

In the following lemmata, we analyze the time complexity of Algorithm 2.
The first lemma is an immediate consequence of Corollary 2.
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Lemma 7. There is a randomized Monte Carlo algorithm for a dynamic
O(log �)-NNS in {0, 1}d under the extended Hamming metric such that:

– The insertions of the vectors v1 through v� in Algorithm 2 can be implemented
in O(n�1+o(1)) total time.

– The O(log �)-approximate nearest neighbours of vi, i = 2, ..., �, in {v1, ...,
vi−1}, in Step 3 (a) of Algorithm 2 can be found with high probability in
O(n�1+o(1)) total time.

Proof. By Corollary 2, the �−1 updates and �−2 O(log �)-approximate nearest
neighbour queries take O(n�1+o(1)) total time. ��
Lemma 8. The preprocessing of the matrix M in Step 1 and computing the
arithmetic product of M with v1 in Step 2 takes O(n2) time. After that, Algo-
rithm 2 for i = 2, ..., �, computes the arithmetic product ci of M and vi before
receiving vi+1 in Õ(n(1 + min{dist(vi, vj)|j < i})) + t(i) time, where t(i) is the
time taken by finding an O(log �)-approximate neighbour of vi in {v1, v2, ..., vi−1}
and inserting vi in the supporting data structure, with high probability. The total
time is Õ(n(� + ST (V ))) +

∑�
i=2 t(i), where ST (V ) is the minimum cost of the

spanning tree of the vectors in V = {v1, v2, ..., v�} under the extended Hamming
distance.

Proof. Step 1 can be implemented in O(n2) time by Fact 2 while Step 2 can
be easily done in O(n2) time by the definition. Step 3 (a) takes t(i) time by
our assumptions. The differentiating blocks s and the differences h(s) for vm

and vi can be easily determined in O(n) time in Step 3 (b). Finally, since
the number of the aforementioned blocks is within a polylogarithmic factor
of min{dist(vi, vj)|j < i}, the whole update of cm to ci in Step 3 (c) takes
Õ(n(1 + min{dist(vi, vj)|j < i})) time. ��

In order to pursue our time analysis of Algorithm 2, we need to specify
and analyze the following simple online approximation heuristic for minimum
spanning tree (MST).

Approximate Nearest-Neighbour Heuristic for MST
Input: an online sequence V of vectors v1, v2, .... received one at time.
Output: a sequence of spanning trees Ti’ of the vectors v1 through vi constructed
before receiving vi+1 for all i.
for each new vector vi do
find an f(i)-approximate nearest neighbour u of vi in the set of vectors received
so far;
expand the spanning tree built for the vectors received before v by {u, vi}.

Theorem 4. Assume that the function f is not decreasing and the input vectors
to the approximate nearest-neighbour heuristic for MST are drawn from a metric
space. The spanning tree constructed by the heuristic for the first t vectors has
cost not exceeding �log2 t	f(t) times the minimum.
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Proof. Assume first that t is a power of two. Let V = {v1, ..., vt} be the sequence
of t vectors received, where vi is the i-th vector received.

Consider a minimum cost perfect matching P of V. For each edge {vi, vj} in
P, where i < j, the cost of connecting vj to the current spanning tree Ti−1 of v1
through vj−1 does not exceed f(t)× dist(vi, vj). Thus, for t/2 vectors vl in V, the
cost of connecting them to the current spanning tree Tl−1 does not exceed the total
cost of P times f(t). It is well known that the total cost of P is not greater than
half the minimum cost TSP (V ) of the travelling salesperson tour of V.

In order to estimate from above the cost of connecting the remaining t/2
vectors to the current spanning trees, we iterate our argument.

Thus, let V1 denote the remaining set of vertices and let P1 be their minimum-
cost perfect matching. We can again estimate the cost of connecting half of the
t/2 vectors in V1 to the current spanning trees by the cost of P1 times f(t). On
the other hand, we can estimate the cost of P1 by 1

2TSP (V1) ≤ 1
2TSP (V ). We

handle analogously the remaining t/4 vectors and so on. After log2 t iterations,
we are left with the first vector, and can estimate the total cost of connecting
all other vectors to the current spanning trees by log2 tf(t)TSP (V )/2. On the
other hand, by the doubling MST heuristic, we know that TSP (V ) is at most
twice the cost ST (V ) of minimum-cost spanning tree of V. We conclude that the
cost of the spanning tree of V constructed by the approximate nearest-neighbour
heuristic does not exceed log2 tf(t)ST (V ).

If t is not a power of two, we have to consider minimum-cost maximum car-
dinality matchings instead of minimum-cost perfect matchings. Let t′ = 2�log2 t�.
Observe that the number of the remaining vectors after each iteration when we
start with a sequence of t vectors will be not greater than that when we start
with a sequence of t′ vectors having the sequence of t vectors as a prefix. This
completes the proof of the �log2 t	f(t)ST (V ) upper bound. ��

In the special case when f( ) ≡ 1, our online heuristic for MST in a way
coincides with the greedy one for incremental minimum Steiner tree from [9],
which on weighted graphs satisfying triangle inequality could be easily adapted
to consider only received vertices. Hence, in this case a logarithmic upper bound
on approximation factor could be also deduced from Theorem 3.2 in [9]. Putting
together our lemmata and theorem in this subsection, we obtain our main result
here.
Theorem 5. Let M be an n × n Boolean matrix. For an online sequence V
of n-dimensional Boolean vectors v1, v2, ..., v� received one at time, the Boolean
products Mvi of M and vi can be computed before receiving vi+1. in total time
Õ(n(�1+o(1) + ST (V ))) with high probability by a randomized algorithm, where
ST (V ) is the minimum cost of the spanning tree of the vectors in V under the
extended Hamming distance.

Proof. The correctness of Algorithm 2 follows from the observation that a differ-
entiating block s for vm and vi yields the difference h(s)

∑
k∈s M [j, k] between

cm
j and cu

j just on the fragments vm
min s, . . . , v

m
i,max s and vi

min s, . . . , v
i
max s, respec-

tively. Lemmata 7, 8 and Theorem 4 yield the upper bounds in terms of ST (V ).
��
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4 Applications to Graph Queries

Suppose that we are given a graph G = (V,E) on n vertices and a subset S
of V . In [10] Williams observed that the questions if S is a dominating set, an
independent set, or a vertex cover in G, can be easily answered by computing
the Boolean product of the adjacency matrix of G with appropriate Boolean
vectors. Hence, he could conclude (Corollary 3.1 in [10]) that these questions
can be answered in O(n2/(ε log n)2) time after an O(n2+ε) preprocessing of G
by using his method of multiplying n×n Boolean matrix with an n-dimensional
column vector in O(n2/(ε log n)2) time after an O(n2+ε)-time preprocessing of
the matrix. By plugging in our method of Boolean matrix-vector multiplication
(Theorem 3) instead, we obtain the following result.

Corollary 3. A graph G on n vertices can be preprocessed in Õ(n2) time such
that one can determine if a given subset of vertices in G is a dominating set,
an independent set, or a vertex cover of G in Õ(n + STG) time with high prob-
ability, where STG is the minimum cost of a spanning tree of the rows of the
adjacency matrix of G under the extended Hamming distance. Using the same
preprocessing, one can determine if a query vertex belongs to a triangle in G in
Õ(n + STG) time with high probability.

To obtain corresponding applications of the results from Subsect. 3.2, we need
to consider the online versions of the graph subset queries. Thus, we are given
a graph G on n vertices and an online sequence of subsets S1,...,S� of vertices
in G. The task is to preprocess G first and then to determine for i = 1, ..., �, if
Si is a dominating set, an independent set, or a vertex cover of G, respectively,
before Si+1 has been received.

Corollary 4. A graph G on n vertices can be preprocessed in O(n2) time such
that for an online sequence S of subsets S1,...,S� of vertices in G, for i = 1, ..., �,
one can determine if Si is a dominating set, an independent set, or a vertex
cover of G before receiving Si+1 (in i < � case) in Õ(n(�1+o(1)+STS)) total time
with high probability, where STS is the minimum cost of a spanning tree of the
characteristic vectors representing the subsets in S under the extended Hamming
distance. Using the same preprocessing, for an online sequence v1, ..., v� of query
vertices, for i = 1, ..., �, one can determine if vi belongs to a triangle in G
before receiving vi+1 (in case i < �) in Õ(n(�1+o(1) + STG)) total time with high
probability.

Proof. Recall that a subset Si of vertices in G can be easily represented by an
n-dimensional Boolean column vector wi with 1 on the j-th coordinate iff the
j-th vertex belongs to Si. Then, Si is independent in G iff the vector ui resulting
from multiplying the adjacency matrix of G with wi has zeros on the coordinates
corresponding to the vertices in Si. Next, Si is a dominating set of G iff each
vertex in V \ Si has a neighbour in Si, i.e., iff ui has ones on the coordinates
corresponding to vertices in V \ Si. Finally, Si is a vertex cover of G iff V \ Si

is an independent set of G, i.e., iff the vector resulting from multiplying the
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adjacency matrix of G with the complement of wi has zeros on the coordinates
corresponding to the vertices in V \ Si.

Hence, it is sufficient to plug in our solution given in Theorem5 to obtain the
theorem. The preprocessing of G consists just in the construction of its adjacency
matrix in O(n2) time. Note also that the extended Hamming distance between
two 0–1 strings is equal to the extended Hamming distance between between
the complements of these two strings. Thus, the upper bound in terms of STS

is also valid in case of vertex cover. ��

5 Final Remarks

Our results in Sect. 3 imply that to prove the conjectures OMv, AMv and MvP
it is sufficient to consider n×n Boolean matrices where STM is almost quadratic
in n.

Interestingly enough, our approximate nearest-neighbour heuristic for MST
combined with the standard MST doubling and shortcuttings techniques imme-
diately yields a corresponding online heuristic for TSP in metric spaces. By
Theorem 4, it provides TSP tours TSPs of length at most 2�log2 s	f(s) times
larger than the optimum, where s is the number of input vectors and f(s) is an
upper bound on the approximation factor in the approximate nearest neighbour
subroutine. The resulting TSP heuristic for i = 2, ... simply finds an f(i)-nearest
neighbour u of the new vector vi and replaces the edge between u and its pre-
decessor w by the path {w, vi}, {vi, u} in TSPi−1 in order to obtain TSPi.
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Abstract. The clustering problem has been paid lots of attention in
various fields of compute science. However, in many applications, the
existence of noisy data poses a big challenge for the clustering problem.
As one way to deal with clustering problem with noisy data, cluster-
ing with penalties has been studied extensively, such as the k-median
problem with penalties and the facility location problem with penal-
ties. As far as we know, there is only one approximation algorithm for
the k-means problem with penalties with ratio 25 + ε. All the previous
related results for the clustering with penalties problems were based on
the techniques of local search, LP-rounding, or primal-dual, which cannot
be applied directly to the k-means problem with penalties to get better
approximation ratio than 25 + ε. In this paper, we apply primal-dual
technique to solve the k-means problem with penalties by a different
rounding method, i.e., employing a deterministic rounding algorithm,
instead of using the randomized rounding algorithm used in the previous
approximation schemes. Based on the above method, an approximation
algorithm with ratio 19.849 + ε is presented for the k-means problem
with penalties.

Keywords: Approximation algorithm · k-means clustering ·
Primal-dual

1 Introduction

Clustering is a fundamental problem in computer science and has applications
in many fields. As one of the clustering problem, k-means has been studied
extensively from approximation algorithms point of view [1,3,7,10,17–19]. For
a given set D of n points in R

d, the k-means problem aims to find a set S of
k cluster centers in R

d such that the objective function
∑

j∈D mini∈S c(j, i) is
minimized, where c(j, i) denotes the squared Euclidean distance between j and
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i. This problem is known to be NP-hard even for k = 2 [2], and even in planar
space [23].

The clustering problem has an implicit assumption that all input points can
be naturally clustered into several distinct groups, which may not always hold in
real-world applications. Data from such applications are often contaminated with
various types of noises. Charikar et al. [5] introduced two clustering problems
dealing with noisy data: the clustering problem with outliers, and the clustering
problem with penalties. For the clustering problem with outliers, lots of attention
has been focused on the k-means with outliers problem [9,13,26], the k-median
with outliers problem [6,9,26], the facility location with outliers problem [9], dis-
tributed clustering with outliers [11,20], and coresets for clustering with outliers
[8,15].

For the clustering with penalties problem, each point is associated with a
penalty cost. The objective of the clustering with penalties problem is to find
a set S of clustering centers for a given set D of points in R

d, such that for
each point j in D, j is either assigned to a center of S with minimum dis-
tance to j, or discarded and the penalty cost is paid. In the past two decades,
considerable efforts have been paid on the problems of clustering with penal-
ties. For the facility location problem with penalties, Charikar et al. [5] gave
a (3 + ε)-approximation by using a primal-dual approach. Jain et al. [16] later
achieved a (2 + ε)-approximation based on a dual fitting technique. Xu and Xu
[29] gave a (1.853 + ε)-approximation algorithm by integrating the techniques
of primal-dual and local search. The approximation ratio was recently improved
to 1.5148 + ε via an LP-rounding algorithm [22]. Based on the assumption that
the penalty costs are all equal, Wu et al. [27] gave a (2.732 + ε)-approximation
for the k-median problem with penalties. Under no such assumption, Charikar
et al. [5] gave a (4 + ε)-approximation by using the Lagrangian relaxation tech-
nique. Hajiaghayi et al. [14] later showed that the local search algorithm yields
a (3 + ε)-approximation for the problem.

In this paper, we study the k-means problem with penalties (k-MPWP).

Definition 1 (k-means problem with penalties [30]). Given a set D ⊂ R
d

of n points, a penalty function p defined over the points of D, where p(j) ≥ 0
for each j ∈ D, and an integer k > 0, the task is to find a set S ⊂ R

d of
k centers that minimizes the objective function

∑
j∈D min{c(j,S), p(j)}, where

c(j,S) denotes the squared distance from j to its nearest point in S.

Zhang et al. [30] showed that the local search approach leads to constant
factor approximations for the k-MPWP. Specifically, they showed that the single-
swap local search algorithm induces a (81+ε)-approximation, and the algorithm
that swaps up to O( 1ε ) centers induces a (25 + ε)-approximation, which is the
current best ratio for the k-MPWP.

All the previous related results for the clustering with penalties problems
were based on the techniques of local search, LP-rounding, or primal-dual. We
briefly remark on the known techniques to illustrate the challenges in getting
better ratio for the k-MPWP.
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Remark 1. Local search has been applied to the k-MPWP in [30] to get the
ratio 25 + ε. However, it is unclear whether this result can be improved based
on more refined analysis of local search.

Remark 2. Xu and Xu [28] and Li et al. [22] applied LP-rounding to get approx-
imation algorithms for the facility location problem with penalties. To the best of
our knowledge, no related results based on LP-rounding for k-median with penal-
ties are known. On the other hand, it is known that the current LP-rounding
techniques yield quite large approximation ratio for the related problems of k-
means. Thus, it seems hard to use LP-rounding to improve the approximation
guarantee for the k-MPWP.

Remark 3. The techniques of primal-dual and Lagrangian relaxation outlined
in [17] have been widely applied for the related problems of k-median [4,6,12,
16,21]. In particular, Charikar et al. [5] gave a (4 + ε)-approximation for the k-
median problem with penalties based on the framework of Lagrangian relaxation
given in [17]. However, it can be seen that the same algorithm yields a much
larger approximation ratio for k-means and its related problems. The reason is
that it relies heavily on triangle inequality, which no longer holds in the squared
Euclidean setting.

In this paper, primal-dual technique is applied to solve the k-MPWP. Instead
of using the randomized rounding algorithm, we use a deterministic rounding
algorithm that exploits the properties of the squared Euclidean metric, which is
the major step to get the 19.849 + ε ratio.

1.1 Our Results

Theorem 1. Given an instance of the k-MPWP and a parameter ε > 0, there
is a (19.849 + ε)-approximation algorithm for the problem.

We now give the general idea of our approach to solve the k-MPWP. Given an
instance of the k-MPWP, we first convert it into an instance of a new problem,
called the discrete k-means problem with penalties, which is to select the k cen-
ters from a discrete set F ⊂ R

d of polynomial size, instead of k arbitrary points
in R

d. We can prove that this conversion can be implemented in polynomial
time, and induces an arbitrarily small loss in the approximation ratio.

We consider the discrete k-means problem with penalties based on the
Lagrangian relaxation technique given in [17]. We compute two solutions T1 and
T2 for the squared Euclidean facility location problem with penalties, which is a
Lagrangian relaxation of the discrete k-means problem with penalties. Assume
that T1 has k1 centers and T2 has k2 centers, where k1 < k < k2. We are able to
show that there exists a convex combination of the two solutions aT1 +(1−a)T2

(0 ≤ a ≤ 1), denoted by T ′, such that T ′ has exactly k centers, and has quite
low cost.

Based on T1 and T2, we get the ratio by mainly discussing how large is a,
and the difference between k and k1.
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(1) the value of a is close to 1. We show that T1 can be used as the final solution
and gives a desirable approximation.

(2) the value of a is relative small. We prefer to choosing centers from T2 to put
into the solution, since the cost of T1 might be quite expensive. The choice
is made depending on the difference between k and k1. If the difference is
upper-bounded by a small value, we show that a subset of T2 with size k can
be viewed as a solution, which can be found in polynomial time. Otherwise
we combine T1 and T2 into the solution based on a greedy strategy.

2 Preliminaries

Given two points j and i in R
d, let d(j, i) and c(j, i) denote the distance and

the squared distance between j and i respectively. Given a set A ⊂ R
d and a

point j ∈ R
d, let c(j,A) = mini∈A c(j, i) denote the squared distance from j

to its nearest point in A. Let Φ(A) = 1
|A|

∑
i∈A i denote the centroid of A. It

is known that Φ(A) is the optimal 1-mean solution for A [18]. The minimum
k-means clustering cost on A is denoted by Δk(A). For a point p in R

d, if p is
put into the solution of the k-MPWP, then it is called that point p is opened.

We will use the following two well-known properties of the squared Euclidean
metric.

Lemma 1 (weak triangle inequality). For any three points x, y, z in R
d,

we have c(x, y) ≤ 2c(x, z) + 2c(z, y).

Lemma 2 ([18]). Given a set A ⊂ R
d and a point i ∈ R

d, we have∑
j∈A c(j, i) =

∑
j∈A c(j, Φ(A)) + |A|c(Φ(A), i).

Matousěk et al. [25] gave the following concept of approximate centroid set.

Definition 2 (ε-approximate centroid set [25]). Given a set D ⊂ R
d and a

parameter ε > 0, a set F ⊂ R
d is an ε-approximate centroid set for D if for any

set A ⊆ D, we have mini∈F
∑

j∈A c(j, i) ≤ (1 + ε)mini∈Rd

∑
j∈A c(j, i).

It is known that an ε-approximate centroid set of polynomial size can be
obtained in polynomial time, for any ε > 0 [24]. This motivates us to consider
the following discrete k-means problem with penalties (discrete k-MPWP).

Definition 3 (discrete k-means problem with penalties). Given a set D ⊂
R

d of n points, a set F ⊂ R
d of m candidate centers, a penalty function p defined

over the points of D, where p(j) ≥ 0 for each j ∈ D, and an integer k > 0,
the goal is to find a set S ⊆ F of k centers such that the objective function∑

j∈D min{c(j,S), p(j)} is minimized.

We now show that a k-MPWP instance can be converted into a discrete
k-MPWP instance with an arbitrarily small loss in the approximation ratio.
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Lemma 3. Given an instance I1 = (D, p, k) of the k-MPWP and a parameter
ε > 0, we can convert it into an instance I2 = (D,F , p, k) of the discrete k-
MPWP, such that any λ-approximation solution to I2 is a λ(1+ε)-approximation
solution to I1.

Proof. Given an instance I1 = (D, p, k) of the k-MPWP, we compute an ε-
approximate centroid set F for D and consider an instance I2 = (D,F , p, k) of
the discrete k-MPWP. Let S∗

1 and P∗
1 denote the sets of the opened centers and

the penalized points in an optimal solution to I1 respectively. Let S∗
2 denote

the set of the opened centers in an optimal solution to I2. For each center
i ∈ S∗

1 , let Di = {j | j ∈ D\P∗
1 and arg mini′∈S∗

1
c(j, i′) = i}, and let τ(i) =

arg mini′∈F
∑

j∈Di
c(j, i′). Define S ′ = {τ(i) | i ∈ S∗

1}. Given a set S ⊆ F of k
centers that induces a λ-approximation to I2, we have

∑

j∈D
min{c(j,S), p(j)} ≤ λ

∑

j∈D
min{c(j,S∗

2 ), p(j)}

≤ λ
∑

j∈D
min{c(j,S ′), p(j)}

≤ λ(
∑

j∈D\P∗
1

c(j,S ′) +
∑

j∈P∗
1

p(j))

≤ λ(
∑

i∈S∗
1

∑

j∈Di

c(j, τ(i)) +
∑

j∈P∗
1

p(j))

≤ λ(1 + ε)(
∑

i∈S∗
1

∑

j∈Di

c(j, i) +
∑

j∈P∗
1

p(j))

= λ(1 + ε)
∑

j∈D
min{c(j,S∗

1 ), p(j)},

where the fifth step follows from the definition of the approximate centroid set.
��

Consider a discrete k-MPWP instance (D,F , p, k), we have the following
integer programming (IP) for the problem.

min
∑

i∈F,j∈D
xijc(j, i) +

∑

j∈D
p(j)zj (IP1)

s.t.
∑

i∈F
xij + zj = 1 ∀j ∈ D (1)

xij ≤ yi ∀j ∈ D, i ∈ F (2)
∑

i∈F
yi ≤ k (3)

xij , yi, zj ∈ {0, 1}. ∀j ∈ D, i ∈ F (4)
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IP1 has a variable yi for each i ∈ F that indicates whether i is opened in the
solution, a variable zj for each j ∈ D that indicates whether j is added to the
penalized set, and a variable xij for each center-point pair i ∈ F and j ∈ D that
indicates whether j is assigned to i. Constraint (1) enforces that each point must
be either assigned a cluster center or added to the penalized set. Constraint (2)
says that only the opened centers can be used to cluster the points. Constraint
(3) enforces that only k centers can be opened. The cost of an optimal solution
to IP1 is denoted by OPTi.

3 The Algorithm

3.1 A Fractional Solution for the Discrete k-MPWP

We consider the following linear programming (LP) relaxation of IP1 where the
integrality constraints on the variables are relaxed.

min
∑

i∈F,j∈D
xijc(j, i) +

∑

j∈D
p(j)zj (LP1)

s.t. (1), (2), and (3)
xij , yi, zj ≥ 0. ∀j ∈ D, i ∈ F (5)

The cost of an optimal solution to LP1 is denoted by OPTf . Since LP1 is a
relaxation of IP1, we have OPTf ≤ OPTi.

For the discrete k-MPWP, the constraint on the number of the selected cen-
ters given in LP1 is one of the main obstacles. A commonly used way for overcom-
ing such obstacle, as outlined in [17], is to consider the Lagrangian relaxation
where we rule out the constraint but add the penalty for its violation to the
objective function. This results in the following LP for any λ ≥ 0.

min
∑

i∈F,j∈D
xijc(j, i) +

∑

j∈D
p(j)zj + λ(

∑

i∈F
yi − k) (LP2(λ))

s.t. (1), (2), and (5).

We can get integer solutions to LP2(λ) based on the primal-dual techniques
introduced in [17] and [1]. Such solutions are almost feasible for LP1, except
that constraint (3) may be violated. Given a solution T ′ = (x′, y′, z′) that sat-
isfies constraints (1), (2), and (5), let S(T ′) =

∑
i∈F,j∈D x′

ijc(j, i) and P (T ′) =∑
j∈D p(j)z′

j . The cost of T ′ on LP1 can be denoted by V (T ′) = S(T ′)+P (T ′).
The following lemma shows that a convex combination of two integer solu-

tions to LP2(λ) is a feasible fractional solution to LP1, whose cost is within a
constant times OPTf . The essential ideas of the lemma are based on standard
techniques [1,17]. The only difference to the previous primal-dual process is that
we must deal with an additional constraint to enforce the points far from the
cluster centers to pay their penalty costs.
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Lemma 4. Given a parameter ε > 0, there is a polynomial time algorithm that
yields two integer solutions T1 = (x1, y1, z1) and T2 = (x2, y2, z2) for LP2(λ),
and the two solutions satisfy the following properties:

1.
∑

i∈F y1
i = k1 < k and

∑
i∈F y2

i = k2 > k;
2. Let a = k2−k

k2−k1
and b = 1 − a. We have aV (T1) + bV (T2) < (η + O(ε))OPTf ,

where η = 6.3575.

3.2 Rounding

In this section, we give a deterministic rounding procedure which yields an inte-
ger solution to the discrete k-MPWP. Given an instance (D,F , p, k) of the dis-
crete k-MPWP and a parameter ε > 0, we first use Lemma 4 to obtain two
solutions T1 and T2. Let S1 and S2 denote the sets of the opened centers in T1

and T2 respectively, where |S1| = k1 < k and |S2| = k2 > k. Given a point j ∈ D,
let i1(j) denote its nearest point in S1 and i2(j) denote its nearest point in S2.
We say that j is captured by i1(j) and i2(j). Moreover, let P1 and P2 denote
the penalized sets of the two solutions, i.e., P1 = {j | j ∈ D and z1j = 1} and
P2 = {j | j ∈ D and z2j = 1}.

We distinguish the analysis into the following two cases.
Case (1): a ∈ ( 2578 , 1) or V (T1) < 78

25V (T2). Recall that k1 < k and thus T1 is
feasible for LP1. In this case, we argue that V (T1) should be close to OPTi, and
we can directly return T1 as a solution.

Case (2): a ∈ (0, 25
78 ] and V (T1) ≥ 78

25V (T2). In this case, T1 might be quite
expensive compared to the optimal solution. Our algorithm prefers to select
the centers from S2. We give different algorithms on the basis of the difference
between k1 and k. Specifically, we have the following two subcases.

Case (2.1): k ≤ k1+ 1
εa . This captures the scenario that the difference between

k1 and k is upper-bounded by a small value. We argue that a subset of S2 of size
k can be used as a solution and gives the desirable approximation ratio. We are
able to show that such subset of S2 can be found in polynomial time.

Case (2.2): k > k1 + 1
εa . In this case, we start with using T1 as the solution

to LP1, and then reduce the cost by replacing a portion of the center set with
the centers from S2. We achieve this by considering a Knapsack-type LP that
maximizes the reduced cost, which is similar to the ones in [21] and [4] for the
k-median problem. Note that the Knapsack-type LP in [21] and [4] opens k + 2
centers to get the approximation ratio for k-median clustering, which cannot
be directly applied to solve the discrete k-MPWP. For the Knapsack-type LP
applied in this paper, we open at most k centers to approximate the discrete
k-MPWP, and the analysis given in [21] and [4] is not workable. Thus, we give
a different analysis for the ratio of the discrete k-MPWP.

Case (1): a ∈ (25
78 , 1) or V (T1) < 78

25V (T2).

In this case, we argue that T1 gives the desired approximation to the optimal
solution. We prove this by further considering the following three subcases.
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Case (1.1): V (T1) ≤ V (T2). Lemma 4 implies that

V (T1) ≤ aV (T1) + bV (T2) < (η + O(ε))OPTf ≤ (η + O(ε))OPTi,

where a = k2−k
k2−k1

, b = 1 − a, and η = 6.3575.

Case (1.2): V (T2) < V (T1) < 78
25V (T2). We have

V (T1) <
78
25

V (T2) <
78
25

(aV (T1) + bV (T2))

<
78
25

(η + O(ε))OPTf ≤ 78
25

(η + O(ε))OPTi.

Case (1.3): V (T1) ≥ 78
25V (T2) and a ∈ ( 2578 , 1). We have

V (T1) ≤ 1
a
(aV (T1) + bV (T2)) <

η + O(ε)
a

OPTf

≤ η + O(ε)
a

OPTi <
78
25

(η + O(ε))OPTi.

Putting together, we get that T1 gives a 78
25 (η + O(ε))-approximation for the

discrete k-MPWP.

Case (2.1): a ∈ (0, 25
78 ], V (T1) ≥ 78

25V (T2), and k ≤ k1 + 1
εa

.

In this subcase, we show that S2 contains k cluster centers that give a desired
approximation for the discrete k-MPWP. Our algorithm for this subcase enu-
merates all the subsets of S2 of size k and return the one with the minimum cost
on the problem. We first show that this enumeration can be completed quickly.
We achieve this by proving that the difference between |S2| and k is small.

Lemma 5. k2 − k ≤ 78
53ε .

Proof. Observe that k2 − k = (k − k1) a
1−a ≤ 1

ε(1−a) ≤ 78
53ε , where the first step

follows from the fact that a = k2−k
k2−k1

, the second step follows from the assumption
that k ≤ k1 + 1

εa , and the last step follows from the assumption that a ≤ 25
78 . ��

Lemma 5 implies that our algorithm considers at most kO(1/ε) subsets of S2.
Thus, the algorithm can be executed in time O(ndkO(1/ε)), where n = |D|. We
proceed by proving that the set of centers given by the algorithm achieves the
desired approximation ratio.

Lemma 6. There exists a set S ′ ⊂S2, such that |S ′| = k and
∑

j∈D min{c(j,S ′),
p(j)} < (3 + 2η + O(ε))OPTi.

Lemma 6 implies that our algorithm achieves a (3+2η+O(ε))-approximation
for the discrete k-MPWP in case (2.1).
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Case (2.2): a ∈ (0, 25
78 ], V (T1) ≥ 78

25V (T2), and k > k1 + 1
εa

.

In this subcase, we combine T1 and T2 into the required approximation solution.
We achieve this by considering T1 as the solution initially, and then reducing
the cost by replacing a portion of the center set with the centers from S2 by a
greedy strategy.

Our algorithm is based on a notion of stars. For each point i′ ∈ S2, let
π(i′) ∈ S1 be the nearest point of i′ in S1. For each i ∈ S1, we view i as the central
point of a star. Let Li = {i′ | i′ ∈ S2 and π(i′) = i}. This is the set of leaves of the
star with central point i. Given a point j ∈ D, let f1(j) = min{c(j, i1(j)), p(j)}
and f2(j) = min{c(j, i2(j)), p(j)}. We first show that min{c(j, π(i2(j))), p(j)} is
bounded by a combination of f1(j) and f2(j).

Lemma 7. For each point j ∈ D, min{c(j, π(i2(j))), p(j)} ≤ 8f2(j) + 2f1(j).

Proof. Given a point j ∈ D, if j is penalized in T1 or T2, then we have p(j) ≤
8f2(j) + 2f1(j), as desired. If j is not penalized in T1 or T2, we have

d(j, π(i2(j))) ≤ d(j, i2(j)) + d(i2(j), π(i2(j)))
≤ d(j, i2(j)) + d(i2(j), i1(j))
≤ d(j, i2(j)) + d(j, i2(j)) + d(j, i1(j))
= 2d(j, i2(j)) + d(j, i1(j)),

where the first and the third steps are due to triangle inequality, and the second
step follows from the fact that π(i2(j)) is the nearest point to i2(j) in S1. This
implies that

c(j, π(i2(j))) ≤ (2d(j, i2(j)) + d(j, i1(j)))2

≤ 8c(j, i2(j)) + 2c(j, i1(j))
= 8f2(j) + 2f1(j),

where the second step follows from the fact that for any two values u and v,
(u + v)2 = u2 + 2uv + v2 ≤ 2u2 + 2v2. This completes the proof of Lemma 7. ��

The idea of our algorithm is to ensure that for each star, either its central
point or all its leaves are opened in the final solution, such that each point j can
always be assigned to either π(i2(j)) or i2(j). This implies that the cost induced
by j is at most f2(j) if i2(j) is opened. Otherwise the cost induced by j is no
more than 8f2(j) + 2f1(j) by Lemma 7. Consider a simple solution that opens
the central points of all the stars. The cost of such solution is upper-bounded by∑

j∈D 8f2(j) + 2f1(j) = 8V (T2) + 2V (T1). We can reduce the cost via opening
the leaves of some stars. For a star with central point i, if we close i and open all
the leaves of the star, we can then reduce the cost by

∑
j∈σ(Li)

7f2(j) + 2f1(j),
where σ(Li) denotes the set of the points captured by a center in Li. We consider
the following LP that maximizes the reduction in the cost.

max
∑

i∈S1

∑

j∈σ(Li)

(7f2(j) + 2f1(j))xi (LP3)
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s.t.
∑

i∈S1

xi(|Li| − 1) ≤ k − k1 (6)

0 ≤ xi ≤ 1. ∀i ∈ S1 (7)

This LP has a variable xi for each i ∈ S1. We open all the centers in Li if xi = 1
and open i if xi = 0. xi taking value 1 increases the number of the opened centers
by |Li| − 1. Constraint (6) enforces that at most k centers can be opened.

Let X ∗ = (x∗
1, . . . , x

∗
k1

) denote an optimal solution to LP3. We know that
this solution has at most one fractional variable since LP3 is a Knapsack LP.
Let C1 denote the set of the center i ∈ S1 with x∗

i = 1 and C0 denote the set
of the center i ∈ S1 with x∗

i = 0. Let l denote the center associated with the
fractional variable. Define opt as the value of X ∗ on LP3. Our algorithm for case
(2.2) opens all the centers in C0 and the corresponding leaves of the centers in
C1. For center l, the algorithm opens l and a set of 
x∗

l |Ll|�−1 centers in Ll that
maximizes the reduction in the cost. Let S denote the set of the centers opened
by the algorithm.

We show that our algorithm opens at most k centers.

Lemma 8. |S| ≤ k.

Lemma 8 implies that the set S of centers is feasible for the discrete k-
MPWP. We now consider the approximation ratio S achieves. We first prove
that the reduction in the cost induced by S, called R, is close to opt.

Lemma 9. R > (1 − aε)opt.

Let cost(S) =
∑

j∈D min{c(j,S), p(j)} denote the cost of S on the discrete k-
MPWP. We now show that S achieves the desired approximation for the problem.

Lemma 10. cost(S) < (409131η + O(ε))OPTi.

Putting everything together, the approximation ratio of our algorithm on the
discrete k-MPWP is upper-bounded by max{78

25η, 3 + 2η, 409
131η} + O(ε), which is

no more than 19.849 + O(ε) by the fact that η = 6.3575. Using Lemma 3,
the algorithm also induces a (19.849 + O(ε))-approximation for the standard
k-MPWP.

References

1. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k-
means and Euclidean k-median by primal-dual algorithms. In: Proceedings of 58th
IEEE Symposium on Foundations of Computer Science, pp. 61–72 (2017)

2. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-
of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)

3. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
Proceedings of 18th ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–
1035 (2007)



180 Q. Feng et al.

4. Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approx-
imation for k-median and positive correlation in budgeted optimization. ACM
Trans. Algorithms 13(2), 23 (2017)

5. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: Proceedings of 12th ACM-SIAM Symposium
on Discrete Algorithms, pp. 642–651 (2001)

6. Chen, K.: A constant factor approximation algorithm for k-median clustering with
outliers. In: Proceedings of 19th ACM-SIAM Symposium on Discrete Algorithms,
pp. 826–835 (2008)

7. Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation
schemes for k-means and k-median in Euclidean and minor-free metrics. In: Pro-
ceedings of 57th IEEE Symposium on Foundations of Computer Science, pp. 353–
364 (2016)

8. Feldman, D., Schulman, L.J.: Data reduction for weighted and outlier-resistant
clustering. In: Proceedings of 23st ACM-SIAM Symposium on Discrete Algorithms,
pp. 1343–1354 (2012)

9. Friggstad, Z., Khodamoradi, K., Rezapour, M., Salavatipour, M.R.: Approximation
schemes for clustering with outliers. In: Proceedings of 28th ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 398–414 (2018)

10. Friggstad, Z., Rezapour, M., Salavatipour, M.R.: Local search yields a PTAS for
k-means in doubling metrics. In: Proceedings of 57th IEEE Symposium on Foun-
dations of Computer Science, pp. 365–374 (2016)

11. Guha, S., Li, Y., Zhang, Q.: Distributed partial clustering. In: Proceedings of 29th
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 143–152
(2017)

12. Gupta, A., Guruganesh, G., Schmidt, M.: Approximation algorithms for aversion
k-clustering via local k-median. In: Proceedings of 43rd International Colloquium
on Automata, Languages and Programming, pp. 1–13 (2016)

13. Gupta, S., Kumar, R., Lu, K., Moseley, B., Vassilvitskii, S.: Local search methods
for k-means with outliers. Proc. VLDB Endow. 10(7), 757–768 (2017)

14. Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-
blue median problem. Algorithmica 63(4), 795–814 (2012)

15. Huang, L., Jiang, S., Li, J., Wu, X.: ε-coresets for clustering (with outliers) in dou-
bling metrics. In: Proceedings of 50th ACM Symposium on Theory of Computing,
pp. 814–825 (2018)

16. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM
50(6), 795–824 (2003)

17. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and lagrangian relaxation. J.
ACM 48(2), 274–296 (2001)

18. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: A local search approximation algorithm for k-means clustering. Comput.
Geom. 28(2–3), 89–112 (2004)

19. Kumar, A., Sabharwal, Y., Sen, S.: Linear-time approximation schemes for clus-
tering problems in any dimensions. J. ACM 57(2), 1–32 (2010)

20. Li, S., Guo, X.: Distributed k-clustering for data with heavy noise. In: Proceedings
of 32nd Annual Conference on Neural Information Processing Systems, pp. 7849–
7857 (2018)

21. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. SIAM J.
Comput. 45(2), 530–547 (2016)



An Improved Approximation Algorithm for the k-Means Problem 181

22. Li, Y., Du, D., Xiu, N., Xu, D.: Improved approximation algorithms for the facility
location problems with linear/submodular penalties. Algorithmica 73(2), 460–482
(2015)

23. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is
NP-hard. Theoret. Comput. Sci. 442, 13–21 (2012)

24. Makarychev, K., Makarychev, Y., Sviridenko, M., Ward, J.: A bi-criteria approx-
imation algorithm for k-means. In: Proceedings of 19th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems and 20th
International Workshop on Randomization and Computation, pp. 1–20 (2016)

25. Matousek, J.: On approximate geometric k-clustering. Discrete Comput. Geom.
24(1), 61–84 (2000)

26. Ravishankar, K., Li, S., Sai, S.: Constant approximation for k-median and k-means
with outliers via iterative rounding. In: Proceedings of 50th ACM Symposium on
Theory of Computing, pp. 646–659 (2018)

27. Wu, C., Du, D., Xu, D.: An approximation algorithm for the k-median problem
with uniform penalties via pseudo-solution. Theoret. Comput. Sci. 749, 80–92
(2018)

28. Xu, G., Xu, J.: An LP rounding algorithm for approximating uncapacitated facility
location problem with penalties. Inf. Process. Lett. 94(3), 119–123 (2005)

29. Xu, G., Xu, J.: An improved approximation algorithm for uncapacitated facility
location problem with penalties. J. Comb. Optim. 17(4), 424–436 (2009)

30. Zhang, D., Hao, C., Wu, C., Xu, D., Zhang, Z.: A local search approximation
algorithm for the k -means problem with penalties. In: Cao, Y., Chen, J. (eds.)
COCOON 2017. LNCS, vol. 10392, pp. 568–574. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-62389-4 47

https://doi.org/10.1007/978-3-319-62389-4_47
https://doi.org/10.1007/978-3-319-62389-4_47


Author Index

Asahiro, Yuichi 38
Ashok, Pradeesha 26

Bhagat, Subhash 144

Cai, Qingqiong 111
Cao, Yixin 51
Chang, Jou-Ming 88
Chang, Ruay-Shiung 88
Chen, Yong 14
Cheng, Yukun 76

Deng, Xiaotie 76

Feng, Qilong 170

Gąsieniec, Leszek 156
Goebel, Randy 14

Huang, Shenwei 111

Jansson, Jesper 38, 156
Jiang, Zhihao 121

Kleine Büning, Hans 100

Lai, Wenxing 133
Levcopoulos, Christos 156
Li, Tao 111
Lin, Guohui 14
Lingas, Andrzej 156
Liu, Longcheng 14

Miyano, Eiji 38
Mizuki, Takaaki 63
Mukhopadhyaya, Krishnendu 144

Ono, Hirotaka 38

Pai, Kung-Jui 88
Persson, Mia 156

Reddy, Meghana M. 26

Shi, Feng 170
Shi, Yongtang 111
Shinagawa, Kazumasa 63
Su, Bing 14
Subramani, K. 100

T. P., Sandhya 38
Tong, Weitian 14

Wang, Jianxin 51, 170
Wojciechowski, P. 100
Wu, Ro-Yu 88

Xu, Yao 14

Yan, Xiang 1
You, Jie 51

Zhang, An 14
Zhang, Mengqian 76
Zhang, Zhen 170
Zhao, Haoyu 121
Zhu, Wei 1


	Preface
	Organization
	Contents
	A Polynomial Time Algorithm for Fair Resource Allocation in Resource Exchange
	1 Introduction
	2 Preliminary
	3 Computation of Bottleneck Decomposition
	3.1 Evaluating the Minimal -ratio *
	3.2 Finding the Maximal Bottleneck

	4 Bottleneck Decomposition, Market Equilibrium and Fair Allocation
	5 Conclusion
	References

	A Local Search 4/3-approximation Algorithm for the Minimum 3-path Partition Problem
	1 Introduction
	2 A Local Search Approximation Algorithm
	2.1 Local Operations and Their Priorities
	2.2 The Complete Local Search Algorithm Approx

	3 Analysis of the Approximation Ratio 4/3
	3.1 Token Distribution Phase 1
	3.2 Token Distribution Phase 2
	3.3 A Tight Instance for Approx

	4 Conclusions
	References

	Efficient Guarding of Polygons and Terrains
	1 Introduction
	2 Preliminaries
	3 NP-Hardness
	4 FPT Algorithm for Terrains
	5 Polynomial Time Algorithms
	References

	Graph Orientation with Edge Modifications
	1 Introduction
	1.1 Problem Definitions
	1.2 Related Work
	1.3 Our Contributions and Organization of the Paper

	2 Unweighted Graphs
	2.1 Using NG to Solve the Problems
	2.2 Time Complexity of the Algorithms

	3 Edge-Weighted Graphs
	3.1 Polynomial-Time Algorithms for Edge-Weighted Trees
	3.2 Inapproximability for Edge-Weighted Planar Bipartite Graphs

	4 Concluding Remarks
	References

	Local Coloring: New Observations and New Reductions
	1 Introduction
	2 Main Results
	3 Local 3-Coloring
	4 Concluding Remarks
	References

	Secure Computation of Any Boolean Function Based on Any Deck of Cards
	1 Introduction
	1.1 A Deck of Binary Cards
	1.2 A Deck of Playing Cards
	1.3 This Work: Any Deck of Cards
	1.4 Our Result
	1.5 Related Works

	2 Preliminaries
	2.1 Random Bisection Cut
	2.2 Existing XOR Protocol
	2.3 Existing Input-Preserving and Protocol
	2.4 Notations for Various Decks of Cards

	3 Our Input-Preserving and Protocol
	3.1 Opaque Commitment Pair
	3.2 New Technique of Opaque Commitment Pair Generation
	3.3 Description of Our Input-Preserving AND protocol

	4 Our Protocol for Any Boolean Function
	4.1 Swap Protocol
	4.2 AND–XOR Protocol
	4.3 Description of Our Protocol for Any Boolean Function

	5 Conclusion
	References

	A Novel Business Model for Electric Car Sharing
	1 Introduction
	2 Preliminaries
	2.1 System Model
	2.2 User Scale Model
	2.3 Demand Model
	2.4 Profit Model
	2.5 Game Model

	3 Equilibrium Analysis
	3.1 Second Stage: Operator's Profit Maximization
	3.2 First Stage: Aggregate Profit Maximization

	4 Numerical Results
	5 Conclusion
	References

	Constructing Three Completely Independent Spanning Trees in Locally Twisted Cubes
	1 Introduction
	2 Locally Twisted Cubes
	3 An Algorithm to Find Three CISTs of LTQ6
	4 Constructing Three CISTs on High-Dimensional LTQn
	5 Concluding Remarks
	References

	Read-Once Resolutions in Horn Formulas
	1 Introduction
	2 Statement of Problems
	3 The OLROR Problem for Horn Formulas
	4 The UROR Problem for 2-Horn Formulas
	5 UROR Copy Complexity of Horn Formulas
	6 Conclusion
	References

	Vertex-Critical (P5, banner)-Free Graphs
	1 Introduction
	2 Preliminaries
	3 Structure Around a 5-Hole
	4 The Main Result
	4.1 Proof of Lemma3
	4.2 Proof of Lemma4
	4.3 Proof of Lemma5

	5 Conclusion
	References

	An FPTAS for Stochastic Unbounded Min-Knapsack Problem
	1 Introduction
	1.1 Related Work
	1.2 Preliminary

	2 A Constant Factor Estimation
	3 FPTAS Under Certain Assumption
	4 FPTAS in the General Case
	4.1 Adding Limitations to Strategy
	4.2 Computing the Summation Distribution of Many Items of the Same Type
	4.3 Time Complexity

	5 Conclusions and Further Work
	References

	The Inapproximability of k-DominatingSet for Parameterized AC0 Circuits
	1 Introduction
	2 Preliminaries
	3 Introducing Gap to k-SetCover Problem
	4 Inapproximability of k-DominatingSet
	5 Conclusions
	References

	Mutual Visibility by Robots with Persistent Memory
	1 Introduction
	1.1 Earlier Works
	1.2 Our Contribution

	2 Assumptions and Notations
	3 Algorithm for the Mutual Visibility Problem
	3.1 Eligible Robots for Movements
	3.2 Different Types of Movements
	3.3 States of a Robot
	3.4 Computation of Destination Point
	3.5 Termination
	3.6 Correctness

	4 Conclusion
	References

	Pushing the Online Matrix-Vector Conjecture Off-Line and Identifying Its Easy Cases
	1 Introduction
	2 An Off-Line Conjecture
	3 Easy Cases of Matrices and Vectors for the Conjectures
	3.1 Small Spanning Tree of the Rows of the Matrix (Warming Up)
	3.2 Small Spanning Tree of the Input Vectors

	4 Applications to Graph Queries
	5 Final Remarks
	References

	An Improved Approximation Algorithm for the k-Means Problem with Penalties
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 The Algorithm
	3.1 A Fractional Solution for the Discrete k-MPWP
	3.2 Rounding

	References

	Author Index



