
C H A P T E R 9

Clustering Using Probability
Models

Clustering objects requires some notion of how similar they are. We have seen
how to cluster using distance in feature space, which is a natural way of thinking
about similarity. Another way to think about similarity is to ask whether two
objects have high probability under the same probability model. This can be a
convenient way of looking at things when it is easier to build probability models
than it is to measure distances. It turns out to be a natural way of obtaining soft
clustering weights (which emerge from the probability model). And it provides a
framework for our first encounter with an extremely powerful and general algorithm,
which you should see as a very aggressive generalization of k-means.

9.1 Mixture Models and Clustering

It is natural to think of clustering in the following way. The data was created by
a collection of distinct probability models (one per cluster). For each data item,
something (nature?) chose which model was to produce a point, and then an IID
sample of that model produces the point. We see the points: we’d like to know what
the models were, but (and this is crucial) we don’t know which model produced
which point. If we knew the models, it would be easy to decide which model
produced which point. Similarly, if we knew which point went to which model, we
could determine what the models were. One encounters this situation—or problems
that can be mapped to this situation—again and again. It is very deeply embedded
in clustering problems.

You should notice a resonance with k-means here. In k-means, if we knew the
centers, which point belongs to which center would be easy; if we knew which point
belongs to which center, the centers would be easy. We dealt with this situation
quite effectively by repeatedly fixing one, then estimating the other. It is pretty
clear that a natural algorithm for dealing with the probability models is to iterate
between estimating which model gets which point, and the model parameters. This
is the key to a standard, and very important, algorithm for estimation here, called
EM (or expectation maximization, if you want the long version). I will develop
this algorithm in two simple cases, and we will see it in a more general form later.

Notation: This topic lends itself to a glorious festival of indices, limits of
sums and products, etc. I will do one example in quite gory detail; the other
follows the same form, and for that we’ll proceed more expeditiously. Writing the
limits of sums or products explicitly is usually even more confusing than adopting
a compact notation. When I write

∑
i or

∏
i, I mean a sum (or product) over all

values of i. When I write
∑

i,ĵ or
∏

i,ĵ , I mean a sum (or product) over all values
of i except for the jth item. I will write vectors, as usual, as x; the ith such vector
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9.1. Mixture Models and Clustering 184

in a collection is xi, and the kth component of the ith vector in a collection is xik.
In what follows, I will construct a vector δi corresponding to the ith data item xi

(it will tell us what cluster that item belongs to). I will write δ to mean all the
δi (one for each data item). The jth component of δi is δij . When I write

∑
δu
, I

mean a sum over all values that δu can take. When I write
∑

δ, I mean a sum over
all values that each δ can take. When I write

∑
δ,δ̂v

, I mean a sum over all values
that all δ can take, omitting all cases for the vth vector δv.

9.1.1 A Finite Mixture of Blobs

A blob of data points is quite easily modelled with a single normal distribution.
Obtaining the parameters is straightforward (estimate the mean and covariance
matrix with the usual expressions). Now imagine I have t blobs of data, and I know
t. A normal distribution is likely a poor model, but I could think of the data as being
produced by t normal distributions. I will assume that each normal distribution has
a fixed, known covariance matrix Σ, but the mean of each is unknown. Because the
covariance matrix is fixed, and known, we can compute a factorization Σ = AAT .
The factors must have full rank, because the covariance matrix must be positive
definite. This means that we can apply A−1 to all the data, so that each blob
covariance matrix (and so each normal distribution) is the identity.

Write μj for the mean of the jth normal distribution. We can model a dis-
tribution that consists of t distinct blobs by forming a weighted sum of the blobs,
where the jth blob gets weight πj . We ensure that

∑
j πj = 1, so that we can think

of the overall model as a probability distribution. We can then model the data as
samples from the probability distribution

p(x|μ1, . . . , μk, π1, . . . , πk) =
∑

j

πj

[
1

√
(2π)d

exp

(

−1

2
(x− μj)

T (x− μj)

)]

.

The way to think about this probability distribution is that a point is generated
by first choosing one of the normal distributions (the jth is chosen with probability
πj), then generating a point from that distribution. This is a pretty natural model
of clustered data. Each mean is the center of a blob. Blobs with many points in
them have a high value of πj , and blobs with a few points have a low value of πj .
We must now use the data points to estimate the values of πj and μj (again, I
am assuming that the blobs—and the normal distribution modelling each—have
the identity as a covariance matrix). A distribution of this form is known as a
mixture of normal distributions, and the πj terms are usually called mixing
weights.

Writing out the likelihood will reveal a problem: we have a product of many
sums. The usual trick of taking the log will not work, because then you have a
sum of logs of sums, which is hard to differentiate and hard to work with. A much
more productive approach is to think about a set of hidden variables which tell us
which blob each data item comes from. For the ith data item, we construct a vector
δi. The jth component of this vector is δij , where δij = 1 if xi comes from blob
(equivalently, normal distribution) j and zero otherwise. Notice there is exactly
one 1 in δi, because each data item comes from one blob. I will write δ to mean all
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the δi (one for each data item). Assume we know the values of these terms. I will
write θ = (μ1, . . . , μk, π1, . . . , πk) for the unknown parameters. Then we can write

p(xi|δi, θ) =
∏

j

[
1

√
(2π)d

exp

(

−1

2
(xi − μj)

T (xi − μj)

)]δij

(because δij = 1 means that xi comes from blob j, so the terms in the product are
a collection of 1’s and the probability we want). We also have

p(δij = 1|θ) = πj

allowing us to write

p(δi|θ) =
∏

j

[πj ]
δij

(because this is the probability that we select blob j to produce a data item; again,
the terms in the product are a collection of 1’s and the probability we want). This
means that

p(xi, δi|θ) =
∏

j

{[
1

√
(2π)d

exp

(

−1

2
(xi − μj)

T (xi − μj)

)]

πj

}δij

and we can write a log-likelihood. The data are the observed values of x and δ
(remember, we pretend we know these; I’ll fix this in a moment), and the parameters
are the unknown values of μ1, . . . , μk and π1, . . . , πk. We have

L(μ1, . . . , μk, π1, . . . , πk;x, δ) = L(θ;x, δ)
=

∑

ij

{[(

−1

2
(xi − μj)

T (xi − μj)

)]

+ log πj

}

δij

+K,

where K is a constant that absorbs the normalizing constants for the normal dis-
tributions. You should check this expression. I have used the δij as a “switch”—for
one term, δij = 1 and the term in curly brackets is “on,” and for all others that
term is multiplied by zero. The problem with all this is that we don’t know δ. I
will deal with this when we have another example.

9.1.2 Topics and Topic Models

We have already seen that word counts expose similarities between documents
(Sect. 6.3). We now assume that documents with similar word counts will come
from the same topic (mostly, a term of art for cluster used in the natural language
processing community). A really useful model is to assume that words are condi-
tionally independent, conditioned on the topic. This means that, once you know
the topic, words are IID samples of a multinomial distribution that is given by the
topic (the word probabilities for that topic). If it helps, you can think of the
topic as multi-sided die with a different word on each face. Each document has one
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topic. If you know the topic, you make a document by rolling this die—which is
likely not a fair die—some number of times.

This model of documents has problems. Word order doesn’t matter in this
model nor does where a word appears in a document or what words are near in
the document and what others are far away. We’ve already seen that ignoring
word order, word position, and neighbors can still produce useful representations
(Sect. 6.3). Despite its problems, this model clusters documents rather well, is easy
to work with, and is the basis for more complex models.

A single document is a set of word counts that is obtained by (a) selecting
a topic then (b) drawing words as IID samples from that topic. We now have a
collection of documents, and we want to know (a) what topic each document came
from and (b) the word probabilities for each topic. Now imagine we know which
document comes from which topic. Then we could estimate the word probabilities
using the documents in each topic by simply counting. In turn, imagine we know
the word probabilities for each topic. Then we could tell (at least in principle) which
topic a document comes from by looking at the probability each topic generates
the document, and choosing the topic with the highest probability. This procedure
should strike you as being very like k-means, though the details have changed.

To construct a probabilistic model more formally, we will assume that a doc-
ument is generated in two steps. We will have t topics. First, we choose a topic,
choosing the jth topic with probability πj . Then we will obtain a set of words
by repeatedly drawing IID samples from that topic, and record the count of each
word in a count vector. Each topic is a multinomial probability distribution. The
vocabulary is d-dimensional. Write pj for the d-dimensional vector of word prob-
abilities for the jth topic. Now write xi for the ith vector of word counts (there
are N vectors in the collection). We assume that words are generated indepen-
dently, conditioned on the topic. Write xik for the kth component of xi, and so
on. Notice that xT

i 1 is the sum of entries in xi, and so the number of words in
document i. Then the probability of observing the counts in xi when the document
was generated by topic j is

p(xi|pj) =

(
(xT

i 1)!∏
v xiv!

)∏

u

pxiu
ju .

We can now write the probability of observing a document. Again, we write
θ = (p1, . . . ,pt, π1, . . . , πt) for the vector of unknown parameters. We have

p(xi|θ) =
∑

l

p(xi|topic is l)p(topic is l|θ)

=
∑

l

[( (
xT
i 1
)
!

∏
v xiv!

)
∏

u

pxiu

lu

]

πl.

This model is widely called a topic model; be aware that there are many kinds
of topic model, and this is a simple one. The expression should look unpromising,
in a familiar way. If you write out a likelihood, you will see a product of sums;
and if you write out a log-likelihood, you will see a sum of logs of sums. Neither
is enticing. We could use the same trick we used for a mixture of normals. Write
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δij = 1 if xi comes from topic j, and δij = 0 otherwise. Then we have

p(xi|δij = 1, θ) =

[( (
xT
i 1
)
!

∏
v xiv!

)
∏

u

pxiu
ju

]

(because δij = 1 means that xi comes from topic j). This means we can write

p(xi|δi, θ) =
∏

j

{[( (
xT
i 1
)
!

∏
v xiv!

)
∏

u

pxiu
ju

]}δij

(because δij = 1 means that xi comes from topic j, so the terms in the product are
a collection of 1’s and the probability we want). We also have

p(δij = 1|θ) = πj

(because this is the probability that we select topic j to produce a data item),
allowing us to write

p(δi|θ) =
∏

j

[πj ]
δij

(again, the terms in the product are a collection of 1’s and the probability we want).
This means that

p(xi, δi|θ) =
∏

j

[( (
xT
i 1
)
!

∏
v xiv!

)
∏

u

(
pxiu
ju

)
πj

]δij

and we can write a log-likelihood. The data are the observed values of x and δ
(remember, we pretend we know these for the moment), and the parameters are
the unknown values collected in θ. We have

L(θ;x, δ) =
∑

i

⎧
⎨

⎩

∑

j

[
∑

u

xiu log pju + log πj

]

δij

⎫
⎬

⎭
+K,

where K is a term that contains all the

log

( (
xT
i 1
)
!

∏
v xiv!

)

terms. This is of no interest to us, because it doesn’t depend on any of our pa-
rameters. It takes a fixed value for each dataset. You should check this expression,
noticing that, again, I have used the δij as a “switch”—for one term, δij = 1 and
the term in curly brackets is “on,” and for all others that term is multiplied by
zero. The problem with all this, as before, is that we don’t know δij . But there is
a recipe.
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9.2 The EM Algorithm

There is a straightforward, natural, and very powerful recipe for estimating θ for
both models. In essence, we will average out the things we don’t know. But this
average will depend on our estimate of the parameters, so we will average, then re-
estimate parameters, then re-average, and so on. If you lose track of what’s going
on here, think of the example of k-means with soft weights (Sect. 8.2.2; this is close
to what the equations for the case of a mixture of normals will boil down to). In
this analogy, the δ tell us which cluster center a data item came from. Because we
don’t know the values of the δ, we assume we have a set of cluster centers; these
allow us to make an estimate of the δ; then we use this estimate to re-estimate the
centers; and so on.

This is an instance of a general recipe. Recall we wrote θ for a vector of
parameters. In the mixture of normals case, θ contained the means and the mixing
weights; in the topic model case, it contained the topic distributions and the mixing
weights. Assume we have an estimate of the value of this vector, say θ(n). We could
then compute p(δ|θ(n),x). In the mixture of normals case, this is a guide to which
example goes to which cluster. In the topic case, it is a guide to which example
goes to which topic.

We could use this to compute the expected value of the likelihood with respect
to δ. We compute

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x) = Ep(δ|θ(n),x)[L(θ;x, δ)]

(where the sum is over all values of δ). Notice that Q(θ; θ(n)) is a function of θ
(because L was), but now does not have any unknown δ terms in it. This Q(θ; θ(n))
encodes what we know about δ.

For example, assume that p(δ|θ(n),x) has a single, narrow peak in it, at (say)
δ = δ0. In the mixture of normals case, this would mean that there is one allocation
of points to clusters that is significantly better than all others, given θ(n). For this
example, Q(θ; θ(n)) will be approximately L(θ;x, δ0).

Now assume that p(δ|θ(n),x) is about uniform. In the mixture of normals
case, this would mean that any particular allocation of points to clusters is about
as good as any other. For this example, Q(θ; θ(n)) will average L over all possible
δ values with about the same weight for each.

We obtain the next estimate of θ by computing

θ(n+1) =
argmax

θ
Q
(
θ; θ(n)

)

and iterate this procedure until it converges (which it does, though I shall not prove
that). The algorithm I have described is extremely general and powerful, and is
known as expectation maximization or (more usually) EM. The step where
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we compute Q(θ; θ(n)) is called the E-step; the step where we compute the new
estimate of θ is known as the M-step.

One trick to be aware of: it is quite usual to ignore additive constants in the
log-likelihood, because they have no effect. When you do the E-step, taking the
expectation of a constant gets you a constant; in the M-step, the constant can’t
change the outcome. As a result, additive constants may disappear without notice
(they do so regularly in the research literature). In the mixture of normals example,
below, I’ve tried to keep track of them; for the mixture of multinomials, I’ve been
looser.

9.2.1 Example: Mixture of Normals: The E-step

Now let us do the actual calculations for a mixture of normal distributions. The
E-step requires a little work. We have

Q
(
θ; θ(n)

)
=
∑

δ

L(θ;x, δ)p
(
δ|θ(n),x

)
.

If you look at this expression, it should strike you as deeply worrying. There are a
very large number of different possible values of δ. In this case, there are tN cases
(there is one δi for each data item, and each of these can have a one in each of t
locations). It isn’t obvious how we could compute this average.

But notice

p(δ|θ(n),x) = p(δ,x|θ(n))
p(x|θ(n))

and let us deal with numerator and denominator separately. For the numerator,
notice that the xi and the δi are independent, identically distributed samples, so
that

p(δ,x|θ(n)) =
∏

i

p(δi,xi|θ(n)).

The denominator is slightly more work. We have

p
(
x|θ(n)

)
=

∑

δ

p
(
δ,x|θ(n)

)

=
∑

δ

[
∏

i

p
(
δi,xi|θ(n)

)
]

=
∏

i

⎡

⎣
∑

δi

p
(
δi,xi|θ(n)

)
⎤

⎦ .

You should check the last step; one natural thing to do is check with N = 2 and



9.2. The EM Algorithm 190

t = 2. This means that we can write

p(δ|θ(n),x) =
p
(
δ,x|θ(n))

p
(
x|θ(n))

=

∏
i p
(
δi,xi|θ(n)

)

∏
i

[∑
δi p

(
δi,xi|θ(n)

)]

=
∏

i

p
(
δi,xi|θ(n)

)

∑
δi
p
(
δi,xi|θ(n)

)

=
∏

i

p
(
δi|xi, θ

(n)
)
.

Now we need to look at the log-likelihood. We have

L(θ;x, δ) =
∑

ij

{[(

−1

2
(xi − μj)

T (xi − μj)

)]

+ log πj

}

δij +K.

The K term is of no interest—it will result in a constant—but we will try to
keep track of it. To simplify the equations we need to write, I will construct a t
dimensional vector ci for the ith data point. The jth component of this vector will
be {[(

−1

2
(xi − μj)

T (xi − μj)

)]

+ log πj

}

so we can write
L(θ;x, δ) =

∑

i

cTi δi +K.

Now all this means that

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x)

=
∑

δ

(
∑

i

cTi δi +K

)

p(δ|θ(n),x)

=
∑

δ

(
∑

i

cTi δi +K

)
∏

u

p(δu|θ(n),x)

=
∑

δ

(

cT1 δ1
∏

u

p(δu|θ(n),x) + . . . cTNδN
∏

u

p(δu|θ(n),x)
)

.

We can simplify further. We have that
∑

δi p(δi|xi, θ
(n)) = 1, because this is a

probability distribution. Notice that, for any index v

∑

δ

(

cTv δv
∏

u

p(δu|θ(n),x)
)

=
∑

δv

(
cTv δvp(δv|θ(n),x)

)
⎡

⎢
⎣
∑

δ, δ̂v

∏

u,v̂

p(δu|θ(n),x)

⎤

⎥
⎦

=
∑

δv

(
cTv δvp(δv|θ(n),x)

)
.
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So we can write

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x)

=
∑

i

⎡

⎣
∑

δi

cTi δip(δi|θ(n),x)
⎤

⎦+K

=
∑

i

⎡

⎣

⎛

⎝
∑

j

{[(

−1

2
(xi − μj)

T (xi − μj)

)

+ log πj

]

wij

}
⎞

⎠

⎤

⎦+K,

where

wij = 1p(δij = 1|θ(n),x) + 0p(δij = 0|θ(n),x)
= p(δij = 1|θ(n),x).

Now

p(δij = 1|θ(n),x) =
p(x, δij = 1|θ(n))

p(x|θ(n))

=
p(x, δij = 1|θ(n))

∑
l p(x, δil = 1|θ(n))

=
p(xi, δij = 1|θ(n))∏u,̂i p(xu, δu|θ)

(∑
l p(x, δil = 1|θ(n)))∏u,̂i p(xu, δu|θ)

=
p(xi, δij = 1|θ(n))
∑

l p(x, δil = 1|θ(n)) .

If the last couple of steps puzzle you, remember we obtained p(x, δ|θ) =∏
i p(xi, δi|θ).

Also, look closely at the denominator; it expresses the fact that the data must have
come from somewhere. So the main question is to obtain p(xi, δij = 1|θ(n)). But

p(xi, δij = 1|θ(n)) = p(xi|δij = 1, θ(n))p(δij = 1|θ(n))

=

[
1

√
(2π)d

exp

(

−1

2
(xi − μj)

T (xi − μj)

)]

πj .

Substituting yields

p(δij = 1|θ(n),x) =
[
exp

(− 1
2 (xi − μj)

T (xi − μj)
)]

πj
∑

k

[
exp

(− 1
2 (xi − μk)T (xi − μk)

)]
πk

= wij .

9.2.2 Example: Mixture of Normals: The M-step

The M-step is more straightforward. Recall

Q(θ; θ(n)) =

⎛

⎝
∑

ij

{[(

−1

2
(xi − μj)

T (xi − μj)

)]

+ log πj

}

wij +K

⎞

⎠
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and we have to maximize this with respect to μ and π, and the terms wij are known.
This maximization is easy. We compute

μ
(n+1)
j =

∑
i xiwij∑
i wij

and

π
(n+1)
j =

∑
i wij

N
.

You should check these expressions. When you do so, remember that, because π is
a probability distribution,

∑
j πj = 1 (otherwise you’ll get the wrong answer). You

need to either use a Lagrange multiplier or set one probability to (1− all others).

9.2.3 Example: Topic Model: The E-step

We need to work out two steps. The E-step requires a little calculation. We have

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x)

=
∑

δ

⎛

⎝
∑

ij

{[
∑

u

xiu log pju

]

+ log πj

}

δij

⎞

⎠ p(δ|θ(n),x)

=

⎛

⎝
∑

ij

{[
∑

k

xi,k log pj,k

]

+ log πj

}

wij

⎞

⎠ .

Here the last two steps follow from the same considerations as in the mixture of
normals. The xi and δi are IID samples, and so the expectation simplifies as in
that case. If you’re uncertain, rewrite the steps of Sect. 9.2.1. The form of this Q
function is the same as that (a sum of cTi δi terms, but using a different expression
for ci). In this case, as above,

wij = 1p(δij = 1|θ(n),x) + 0p(δij = 0|θ(n),x)
= p(δij = 1|θ(n),x).

Again, we have

p(δij = 1|θ(n),x) =
p(xi, δij = 1|θ(n))

p(xi|θ(n))

=
p(xi, δij = 1|θ(n))

∑
l p(xi, δil = 1|θ(n))
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and so the main question is to obtain p(xi, δij = 1|θ(n)). But

p(xi, δij = 1|θ(n)) = p(xi|δij = 1, θ(n))p(δij = 1|θ(n))

= =

[
∏

k

pxk

j,k

]

πj .

Substituting yields

p(δij = 1|θ(n),x) =
[∏

k p
xk

j,k

]
πj

∑
l

[∏
k p

xk

l,k

]
πl

.

9.2.4 Example: Topic Model: The M-step

The M-step is more straightforward. Recall

Q(θ; θ(n)) =

⎛

⎝
∑

ij

{[
∑

k

xi,k log pj,k

]

+ log πj

}

wij

⎞

⎠

and we have to maximize this with respect to μ and π, and the terms wij are known.
This maximization is easy, but remember that the probabilities sum to one, so you
need to either use a Lagrange multiplier or set one probability to (1 − all others).
You should get

p
(n+1)
j =

∑
i xiwij

∑
i x

T
i 1wij

and

π
(n+1)
j =

∑
i wij

N
.

You should check these expressions by differentiating and setting to zero.

9.2.5 EM in Practice

The algorithm we have seen is amazingly powerful; I will use it again, ideally with
less notation. One could reasonably ask whether it produces a “good” answer.
Slightly surprisingly, the answer is yes. The algorithm produces a local maximum
of p(x|θ), the likelihood of the data conditioned on parameters. This is rather
surprising because we engaged in all the activity with δ to avoid directly dealing
with this likelihood (which in our cases was an unattractive product of sums). I
did not prove this, but it’s true anyway. I have summarized the general algorithm,
and the two instances we studied, in boxes below for reference. There are some
practical issues.
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Procedure: 9.1 EM

Given a model with parameters θ, data x, and missing data δ, which
gives rise to a log-likelihood L(θ;x, δ) = logP (x, δ|θ) and some initial
estimate of parameters θ(1), iterate

• The E-step: Obtain

Q(θ; θ(n)) = Ep(δ|θ(n),x)[L(θ;x, δ)].

• The M-step: Compute

θ(n+1) =
argmax

θ
Q(θ; θ(n)).

Diagnose convergence by testing the size of the update to θ.

Procedure: 9.2 EM for Mixtures of Normals: E-step

Assume θ(n) = (μ1, . . . , μt, π1, . . . , πt) is known. Compute weights wij

linking the ith data item to the jth cluster center, using

w
(n)
ij =

[

exp

(

− 1
2

(
xi − μ

(n)
j

)T (
xi − μ

(n)
j

))]

π
(n)
j

∑
k

[

exp

(

− 1
2

(
xi − μ

(n)
k

)T (
xi − μ

(n)
k

))]

π
(n)
k

.

Procedure: 9.3 EM for Mixtures of Normals: M-step

Assume θ(n) = (μ1, . . . , μt, π1, . . . , πt) and weights wij linking the ith
data item to the jth cluster center are known. Then estimate

μ
(n+1)
j =

∑
i xiw

(n)
ij

∑
i w

(n)
ij

and

π
(n+1)
j =

∑
i w

(n)
ij

N
.
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Procedure: 9.4 EM for Topic Models: E-step

Assume θ(n) = (p1, . . . ,pt, π1, . . . , πt) is known. Compute weights w
(n)
ij

linking the ith data item to the jth cluster center, using

w
(n)
ij =

[∏
k

(
p
(n)
j,k

)xk
]
π
(n)
j

∑
l

[∏
k

(
p
(n)
j,k

)xk
]
π
(n)
l

.

Procedure: 9.5 EM for Topic Models: M-step

Assume θ(n) = (p1, . . . ,pt, π1, . . . , πt) and weights w
(n)
ij linking the ith

data item to the jth cluster center are known. Then estimate

p
(n+1)
j =

∑
i xiw

(n)
ij

∑
i x

T
i 1w

(n)
ij

and

π
(n+1)
j =

∑
i w

(n)
ij

N
.

First, how many cluster centers should there be? Mostly, the answer is a
practical one. We are usually clustering data for a reason (vector quantization
is a really good reason), and then we search for a k that yields the best results.
Second, how should one start the iteration? This depends on the problem you want
to solve, but for the two cases I have described, a rough clustering using k-means
usually provides an excellent start. In the mixture of normals problem, you can
take the cluster centers as initial values for the means, and the fraction of points in
each cluster as initial values for the mixture weights. In the topic model problem,
you can cluster the count vectors with k-means, use the overall counts within a
cluster to get an initial estimate of the multinomial model probabilities, and use
the fraction of documents within a cluster to get mixture weights. You need to be
careful here, though. You really don’t want to initialize a topic probability with
a zero value for any word (otherwise no document containing that word can ever
go into the cluster, which is a bit extreme). For our purposes, it will be enough to
allocate a small value to each zero count, then adjust all the word probabilities to
be sure they sum to one. More complicated approaches are possible.

Third, we need to avoid numerical problems in the implementation. Notice
that you will be evaluating terms that look like

πke
−(xi−μk)

T (xi−μk)/2

∑
u πue−(xi−μu)T (xi−μu)/2

.
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Imagine you have a point that is far from all cluster means. If you just blithely
exponentiate the negative distances, you could find yourself dividing zero by zero,
or a tiny number by a tiny number. This can lead to trouble. There’s an easy
alternative. Find the center the point is closest to. Now subtract the square of this
distance (d2min for concreteness) from all the distances. Then evaluate

πke
−
[
(xi−μk)

T (xi−μk)−d2

min

]
/2

∑
u πue

−
[
(xi−μu)T (xi−μu)−d2

min

]
/2

which is a better way of estimating the same number (notice the e
−d2

min/2 terms
cancel top and bottom).

The last problem is more substantial. EM will get to a local minimum of
p(x|θ), but there might be more than one local minimum. For clustering problems,
the usual case is there are lots of them. One doesn’t really expect a clustering
problem to have a single best solution, as opposed to a lot of quite good solutions.
Points that are far from all clusters are a particular source of local minima; placing
these points in different clusters yields somewhat different sets of cluster centers,
each about as good as the other. It’s not usual to worry much about this point. A
natural strategy is to start the method in a variety of different places (use k-means
with different start points), and choose the one that has the best value of Q when
it has converged.

Remember This: You should use the same approach to choosing the
number of cluster centers with EM as you use with k-means (try a few dif-
ferent values, and see which yields the most useful clustering). You should
initialize an EM clusterer with k-means, but be careful of initial probabilities
that are zero when initializing a topic model. You should be careful when
computing weights, as it is easy to have numerical problems. Finally, it’s a
good idea to start EM clustering at multiple start points.

However, EM isn’t magic. There are problems where computing the expecta-
tion is hard, typically because you have to sum over a large number of cases which
don’t have the nice independence structure that helped in the examples I showed.
There are strategies for dealing with this problem—essentially, you can get away
with an approximate expectation—but they’re beyond our reach at present.

There is an important, rather embarrassing, secret about EM. In practice, it
isn’t usually that much better as a clustering algorithm than k-means. You can
only really expect improvements in performance if it is really important that many
points can make a contribution to multiple cluster centers, and this doesn’t happen
very often. For a dataset where this does apply, the data itself may not really be
an IID draw from a mixture of normal distributions, so the weights you compute
are only approximate. Usually, it is smart to start EM with k-means. Nonetheless,
EM is an algorithm you should know, because it is very widely applied in other
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situations, and because it can cluster data in situations where it isn’t obvious how
you compute distances.

Remember This: EM clusterers aren’t much better than k-means clus-
terers, but EM is very general. It is a procedure for estimating the parame-
ters of a probability model in the presence of missing data; this is a scenario
that occurs in many applications. In clustering, the missing data was which
data item belonged to which cluster.
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9.3 You Should

9.3.1 Remember These Terms

EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
expectation maximization . . . . . . . . . . . . . . . . . . . . . . . . 183
mixture of normal distributions . . . . . . . . . . . . . . . . . . . . . 184
mixing weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
word probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
topic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
expectation maximization . . . . . . . . . . . . . . . . . . . . . . . . 188
EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
E-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
M-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.3.2 Remember These Facts

Tips for using EM to cluster . . . . . . . . . . . . . . . . . . . . . . . 196
EM is a quite general algorithm . . . . . . . . . . . . . . . . . . . . . 197

9.3.3 Remember These Procedures

EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
EM for Mixtures of Normals: E-step . . . . . . . . . . . . . . . . . . 194
EM for Mixtures of Normals: M-step . . . . . . . . . . . . . . . . . . 194
EM for Topic Models: E-step . . . . . . . . . . . . . . . . . . . . . . 195
EM for Topic Models: M-step . . . . . . . . . . . . . . . . . . . . . . 195

9.3.4 Be Able to

• Use EM to cluster points using a mixture of normals model.
• Cluster documents using EM and a topic model.
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Problems

9.1. You will derive the expressions for the M-step for mixture of normal clustering.
Recall

Q(θ; θ(n)) =

⎛

⎝
∑

ij

{[(
−1

2
(xi − μj)

T (xi − μj)
)]

+ log πj

}
wij +K

⎞

⎠

and we have to maximize this with respect to μ and π, and the terms wij are
known. Show that

μ
(n+1)
j =

∑
i xiwij∑
i wij

and

π
(n+1)
j =

∑
i wij

N
maximize Q. When you do so, remember that, because π is a probability
distribution,

∑
j πj = 1 (otherwise you’ll get the wrong answer). You need to

either use a Lagrange multiplier or set one probability to (1− all others).
9.2. You will derive the expressions for the M-step for topic models. Recall

Q(θ; θ(n)) =

⎛

⎝
∑

ij

{[
∑

k

xi,k log pj,k

]

+ log πj

}

wij

⎞

⎠

and we have to maximize this with respect to μ and π, and the terms wij are
known. Show that

p
(n+1)
j =

∑
i xiwij

∑
i x

T
i 1wij

and

π
(n+1)
j =

∑
i wij

N
.

When you do so, remember that, because π is a probability distribution,∑
j πj = 1 (otherwise you’ll get the wrong answer). Furthermore, the pj

are all probability distributions. You need to either use Lagrange multipliers
or set one probability to (1− all others).

Programming Exercises

9.3. Image segmentation is an important application of clustering. One breaks an
image into k segments, determined by color, texture, etc. These segments are
obtained by clustering image pixels by some representation of the image around
the pixel (color, texture, etc.) into k clusters. Then each pixel is assigned to
the segment corresponding to its cluster center.
(a) Obtain a color image represented as three arrays (red, green, and blue).

You should look for an image where there are long scale color gradients
(a sunset is a good choice). Ensure that this image is represented so the
darkest pixel takes the value (0, 0, 0) and the lightest pixel takes the value
(1, 1, 1). Now assume the pixel values have covariance the identity matrix.
Cluster its pixels into 10, 20, and 50 clusters, modelling the pixel values
as a mixture of normal distributions and using EM. Display the image
obtained by replacing each pixel with the mean of its cluster center. What
do you see?
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(b) The weights linking an image to a cluster center can be visualized as an
image. For the case of 10 cluster centers, construct a figure showing the
weights linking each pixel to each cluster center (all 10 images). You
should notice that the weights linking a given pixel to each cluster center
do not vary very much. Why?

(c) Now repeat the previous two subexercises, but now using 0.1 × I as the
covariance matrix. Show the new set of weight maps. What has changed,
and why?

(d) Now estimate the covariance of pixel values by assuming that pixels are
normally distributed (this is somewhat in tension with assuming they’re
distributed as a mixture of normals, but it works). Again, cluster the
image’s pixels into 10, 20, and 50 clusters, modelling the pixel values as
a mixture of normal distributions and using EM, but now assuming that
each normal distribution has the covariance from your estimate. Display
the image obtained by replacing each pixel with the mean of its cluster
center. Compare this result from the result of the first exercise. What do
you see?

9.4. If you have a careful eye, or you chose a picture fortunately, you will have
noticed that the previous exercise can produce image segments that have many
connected components. For some applications, this is fine, but for others, we
want segments that are compact clumps of pixels. One way to achieve this is
to represent each pixel with 5D vector, consisting of its RG and B values and
its x and y coordinates. You then cluster these 5D vectors.
(a) Obtain a color image represented as three arrays (red, green, and blue).

You should look for an image where there are many distinct colored objects
(for example, a bowl of fruit). Ensure that this image is represented so the
darkest pixel takes the value (0, 0, 0) and the lightest pixel takes the value
(1, 1, 1). Represent the x and y coordinates of each pixel using the range 0
to 1 as well. Now assume the pixel RGB values have covariance 0.1 times
the identity matrix, there is zero covariance between position and color,
and the coordinates have covariance σ times the identity matrix where σ
is a parameter we will modify. Cluster your image’s pixels into 20, 50,
and 100 clusters, with σ = (0.01, 0.1, 1) (so 9 cases). Again, model the
pixel values as a mixture of normal distributions and using EM. For each
case, display the image obtained by replacing each pixel with the mean of
its cluster center. What do you see?

9.5. EM has applications that don’t look like clustering at first glance. Here is one.
We will use EM to reject points that don’t fit a line well (if you haven’t seen
least squares line fitting, this exercise isn’t for you).
(a) Construct a dataset of 10 2D points which are IID samples from the

following mixture distribution. Draw the x coordinate from the uniform
distribution on the range [0, 10]. With probability 0.8, draw ξ a normal
random variable with mean 0 and standard deviation 0.001 and form the
y coordinate as y = x + ξ. With probability 0.2, draw the y coordinate
from the uniform distribution on the range [0, 10]. Plot this dataset—you
should see about eight points on a line with about two scattered points.

(b) Fit a least squares line to your dataset, and plot the result. It should
be bad, because the scattered points may have a significant effect on the
line. If you were unlucky, and drew a sample where there were no scattered
points or where this line fits well, keep drawing datasets until you get one
where the fit is poor.
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(c) We will now use EM to fit a good line. Write N(μ, σ) for a normal
distribution with mean μ and standard deviation σ, and U(0, 10) for the
uniform distribution on the range 0 − 10. Model the y coordinate using
the mixture model P (y|a, b, π, x) = πN(ax + b, 0.001) + (1 − π)U(0, 10).
Now associate a variable δi with the ith data point, where δi = 1 if the
data point comes from the line model and δi = 0 otherwise. Write an
expression for P (yi, δi|a, b, π, x).

(d) Assume that a(n), b(n), and π(n) are known. Show that

Q
(
a, b, π; a(n), b(n), π(n)

)
= −

∑

i

wi
(axi + b− yi)

2

20.0012
+(1−wi)(1/10)+K

(where K is a constant). Here

wi = EP (δi|a(n),b(n),π(n),x)[δi].

(e) Show that

wi = P (δi|a(n), b(n), π(n), x) =
π(n)e

− (a(n)xi+b(n)−yi)
2

20.0012

π(n)e
− (a(n)xi+b(n)−yi)

2

20.0012 + (1− π(n)) 1
10

.

(f) Now implement an EM algorithm using this information, and estimate
the line for your data. You should try multiple start points. Do you get
a better line fit? Why?

9.6. This is a fairly ambitious exercise. We will use the document clustering method
of Sect. 9.1.2 to identify clusters of documents, which we will associate with
topics. The 20 newsgroups dataset is a famous text dataset. It consists of posts
collected from 20 different newsgroups. There are a variety of tricky data issues
that this presents (for example, what aspects of the header should one ignore?
should one reduce words to their stems, so “winning” goes to “win,” “hugely”
to “huge,” and so on?). We will ignore these issues, and deal with a cleaned up
version of the dataset. This consists of three items each for train and test: a
document-word matrix, a set of labels, and a map. You can find this cleaned up
version of the dataset at http://qwone.com/∼jason/20Newsgroups/. You should
look for the cleaned up version, identified as 20news-bydate-matlab.tgz on
that page. The usual task is to label a test article with which newsgroup
it came from. The document-word matrix is a table of counts of how many
times a particular word appears in a particular document. The collection of
words is very large (53,975 distinct words), and most words do not appear in
most documents, so most entries of this matrix are zero. The file train.data

contains this matrix for a collection of training data; each row represents a
distinct document (there are 11,269), and each column represents a distinct
word.
(a) Cluster the rows of this matrix, using the method of Sect. 9.1.2, to get a

set of cluster centers which we will identify as topics. Hint: Clustering all
these points is a bit of a performance; check your code on small subsets of
the data first, because the size of this dataset means that clustering the
whole thing will be slow.

http://qwone.com/~jason/20Newsgroups/


9.3. You Should 202

(b) You can now think of each cluster center as a document “type.” Assume
you have k clusters (topics). Represent each document by a k-dimensional
vector. Each entry of the vector should be the negative log probability
of the document under that cluster model. Now use this information to
build a classifier that identifies the newsgroup using the vector. You’ll
need to use the file train.label, which will tell you what newsgroup a
particular item comes from. I advise you to use a randomized decision
forest, but other choices are plausible. Evaluate your classifier using the
test data (test.data and test.label).
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