
C H A P T E R 11

Regression: Choosing and
Managing Models

This chapter generalizes our understanding of regression in a number of ways.
The previous chapter showed we could at least reduce training error, and quite likely
improve predictions, by inserting new independent variables into a regression. The
difficulty was knowing when to stop. In Sect. 11.1, I will describe some methods to
search a family of models (equivalently, a set of subsets of independent variables) to
find a good model. In the previous chapter, we saw how to find outlying points and
remove them. In Sect. 11.2, I will describe methods to compute a regression that
is largely unaffected by outliers. The resulting methods are powerful, but fairly
intricate.

To date, we have used regression to predict a number. With a linear model, it
is difficult to predict a probability—because linear models can predict negative num-
bers or numbers bigger than one—or a count—because linear models can predict
non-integers. A very clever trick (Sect. 11.3) uses regression to predict the parame-
ter of a carefully chosen probability distribution, and so probabilities, counts, and
so on.

Finally, Sect. 11.4 describes methods to force regression models to choose a
small set of predictors from a large set, and so produce sparse models. These meth-
ods allow us to fit regressions to data where we have more predictors than examples,
and often result in significantly improved predictions. Most of the methods in this
chapter can be used together to build sophisticated and accurate regressions in
quite surprising circumstances.

11.1 Model Selection: Which Model Is Best?

It is usually quite easy to have many explanatory variables in a regression problem.
Even if you have only one measurement, you could always compute a variety of
non-linear functions of that measurement. As we have seen, inserting variables into
a model will reduce the fitting cost, but that doesn’t mean that better predictions
will result (Sect. 10.4.1). We need to choose which explanatory variables we will use.
A linear model with few explanatory variables may make poor predictions because
the model itself is incapable of representing the independent variable accurately. A
linear model with many explanatory variables may make poor predictions because
we can’t estimate the coefficients well. Choosing which explanatory variables we
will use (and so which model we will use) requires that we balance these effects.
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11.1.1 Bias and Variance

We now look at the process of finding a model in a fairly abstract way. Doing
so makes plain three distinct and important effects that cause models to make
predictions that are wrong. One is irreducible error. Even a perfect choice of
model can make mistaken predictions, because more than one prediction could be
correct for the same x. Another way to think about this is that there could be
many future data items, all of which have the same x, but each of which has a
different y. In this case some of our predictions must be wrong, and the effect is
unavoidable.

A second effect is bias. We must use some collection of models. Even the
best model in the collection may not be capable of predicting all the effects that
occur in the data. Errors that are caused by the best model still not being able to
predict the data accurately are attributed to bias.

The third effect is variance. We must choose our model from the collection
of models. The model we choose is unlikely to be the best model. This might occur,
for example, because our estimates of the parameters aren’t exact because we have
a limited amount of data. Errors that are caused by our choosing a model that is
not the best in the family are attributed to variance.

All this can be written out in symbols. We have a vector of predictors x, and
a random variable Y . At any given point x, we have

Y = f(x) + ξ

where ξ is noise and f is an unknown function. We have

E[ξ] = 0 and E
[
ξ2
]
= var ({ξ}) = σ2

ξ .

The noise ξ is independent of X. We have some procedure that takes a selection of
training data, consisting of pairs (xi, yi), and selects a model f̂ . We will use this

model to predict values for future x. It is highly unlikely that f̂ is the same as f ;
assuming that it is involves assuming that we can perfectly estimate the best model
with a finite dataset, which doesn’t happen.

We need to understand the error that will occur when we use f̂ to predict
for some data item that isn’t in the training set. This is the error that we will
encounter in practice. The error at any point x is

E

[
(Y − f̂(x))2

]

where the expectation is taken over P (Y, training data|x). But the new query point
x does not depend on the training data and the value Y does not depend on the
training data either, so the distribution is P (Y |x)× P (training data).

The expectation can be written in an extremely useful form. Recall var[U ] =

E
[
U2

]− E[U ]
2
. This means we have

E

[
(Y − f̂(x))2

]
= E

[
Y 2

]− 2E
[
Y f̂

]
+ E

[
f̂2

]

= var[Y ] + E[Y ]
2 − 2E

[
Y f̂

]
+ var

[
f̂
]
+ E

[
f̂
]2
.



11.1. Model Selection: Which Model Is Best? 247

Now Y = f(X) + ξ, E[ξ] = 0, and ξ is independent of X so we have E[Y ] = E[f ],

E

[
Y f̂

]
= E

[
(f + ξ)f̂

]
= E

[
ff̂

]
, and var[Y ] = var[ξ] = σ2

ξ . This yields

E

[
(Y − f̂(x))2

]
= var[Y ] + E[f ]

2 − 2E
[
ff̂

]
+ var

[
f̂
]
+ E

[
f̂
]2

= var[Y ] + f2 − 2fE
[
f̂
]
+ var

[
f̂
]
+ E

[
f̂
]2
(f isn’t random)

= σ2
ξ + (f − E

[
f̂
]
)2 + var

[
f̂
]

The expected error on all future data is the sum of three terms.

• The irreducible error is σ2
ξ ; even the true model must produce this error, on

average. There is nothing we can do about this error.

• The bias is (f −E

[
f̂
]
)2. This term reflects the fact that even the best choice

of model (E
[
f̂
]
) may not be the same as the true source of data (f).

• The variance is var
[
f̂
]
= E

[
(f̂ − E

[
f̂
]
)2
]
. To interpret this term, notice

the best model to choose would be E

[
f̂
]
(remember, the expectation is over

choices of training data; this model would be the one that best represented
all possible attempts to train). Then the variance represents the fact that the

model we chose (f̂) is different from the best model (E
[
f̂
]
). The difference

arises because our training data is a subset of all data, and our model is chosen
to be good on the training data, rather than on every possible training set.

Irreducible error is easily dealt with; nothing we do will improve this error, so there
is no need to do anything. But there is an important practical trade-off between
bias and variance. Generally, when a model comes from a “small” or “simple”
family, we expect that (a) we can estimate the best model in the family reasonably
accurately (so the variance will be low) but (b) the model may have real difficulty
reproducing the data (meaning the bias is large). Similarly, if the model comes
from a “large” or “complex” family, the variance is likely to be high (because it
will be hard to estimate the best model in the family accurately) but the bias will
be low (because the model can more accurately reproduce the data). All modelling
involves managing this trade-off between bias and variance. I am avoiding being
precise about the complexity of a model because it can be tricky to do. One
reasonable proxy is the number of parameters we have to estimate to determine the
model.

You can see a crude version of this trade-off in the perch example of Sect. 10.4.1
and Fig. 10.11. Recall that, as I added monomials to the regression of weight
against length, the fitting error went down; but the model that uses length10 as
an explanatory variable makes very odd predictions away from the training data.
When I use low degree monomials, the dominant source of error is bias; and when
I use high degree monomials, the dominant source of error is variance. A common
mistake is to feel that the major difficulty is bias, and so to use extremely complex
models. Usually the result is poor estimates of model parameters, leading to huge
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errors from variance. Experienced modellers fear variance far more than they fear
bias.

The bias–variance discussion suggests it isn’t a good idea simply to use all
the explanatory variables that you can obtain (or think of). Doing so might lead
to a model with serious variance problems. Instead, we must choose a model that
uses a subset of the explanatory variables that is small enough to control variance,
and large enough that the bias isn’t a problem. We need some strategy to choose
explanatory variables. The simplest (but by no means the best; we’ll see better in
this chapter) approach is to search sets of explanatory variables for a good set. The
main difficulty is knowing when you have a good set.

Remember This: There are three kinds of error. Nothing can be done
about irreducible error. Bias is the result of a family of models none of
which can fit the data exactly. Variance is the result of difficulty estimating
which model in the family to use. Generally, there is a payoff between
bias and variance—using simpler model families causes more bias and less
variance, and so on.

11.1.2 Choosing a Model Using Penalties: AIC and BIC

We would like to choose one of a set of models. We cannot do so using just the
training error, because more complex models will tend to have lower training error,
and so the model with the lowest training error will tend to be the most complex
model. Training error is a poor guide to test error, because lower training error is
evidence of lower bias on the models part; but with lower bias, we expect to see
greater variance, and the training error doesn’t take that into account.

One strategy is to penalize the model for complexity. We add some penalty,
reflecting the complexity of the model, to the training error. We then expect to see
the general behavior of Fig. 11.1. The training error goes down, and the penalty
goes up as the model gets more complex, so we expect to see a point where the sum
is at a minimum.

There are a variety of ways of constructing penalties. AIC (short for an
information criterion) is a method due originally to H. Akaike, described in “A
new look at the statistical model identification,” IEEE Transactions on Automatic
Control, 1974. Rather than using the training error, AIC uses the maximum value
of the log-likelihood of the model. Write L for this value. Write k for the number
of parameters estimated to fit the model. Then the AIC is

2k − 2L
and a better model has a smaller value of AIC (remember this by remembering
that a larger log-likelihood corresponds to a better model). Estimating AIC is
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Figure 11.1: This is a standard abstract picture of a family of models. As we add
explanatory variables (and so parameters) to produce a more complex model, the
value of the negative log-likelihood of the best model can’t go up, and usually goes
down. This means that we cannot use the value as a guide to how many explanatory
variables there should be. Instead, we add a penalty that increases as a function
of the complexity of the model, and search for the model that minimizes the sum
of negative log-likelihood and penalty. AIC and BIC penalize complexity with a
penalty that is linear in the number of parameters, but there are other possible
penalties. In this figure, I am following the usual convention of plotting the penalty
as a curve rather than a straight line

straightforward for regression models if you assume that the noise is a zero mean
normal random variable. You estimate the mean-squared error, which gives the
variance of the noise, and so the log-likelihood of the model. You do have to keep
track of two points. First, k is the total number of parameters estimated to fit the
model. For example, in a linear regression model, where you model y as xTβ + ξ,
you need to estimate d parameters to estimate β̂ and the variance of ξ (to get
the log-likelihood). So in this case k = d + 1. Second, log-likelihood is usually
only known up to a constant, so that different software implementations often use
different constants. This is wildly confusing when you don’t know about it (why
would AIC and extractAIC produce different numbers on the same model?) but
of no real significance—you’re looking for the smallest value of the number, and
the actual value doesn’t mean anything. Just be careful to compare only numbers
computed with the same routine.

An alternative is BIC (Bayes’ information criterion), given by

2k logN − 2L

(where N is the size of the training dataset). You will often see this written as
2L − 2k logN ; I have given the form above so that one always wants the smaller
value as with AIC. There is a considerable literature comparing AIC and BIC. AIC
has a mild reputation for overestimating the number of parameters required, but is
often argued to have firmer theoretical foundations.
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Worked Example 11.1 AIC and BIC

Write Md for the model that predicts weight from length for the perch dataset
as

∑j=d
j=0 βj length

j . Choose an appropriate value of d ∈ [1, 10] using AIC and
BIC.

Solution: I used the R functions AIC and BIC, and got the table below.
1 2 3 4 5 6 7 8 9 10

AIC 677 617 617 613 615 617 617 612 613 614
BIC 683 625 627 625 629 633 635 633 635 638

The best model by AIC has (rather startlingly!) d = 8. One should not take
small differences in AIC too seriously, so models with d = 4 and d = 9 are fairly
plausible, too. BIC suggests d = 2.

Remember This: AIC and BIC are methods for computing a penalty
that increases as the complexity of the model increases. We choose a model
that gets a low value of penalized negative log-likelihood.

11.1.3 Choosing a Model Using Cross-Validation

AIC and BIC are estimates of error on future data. An alternative is to measure
this error on held-out data, using a cross-validation strategy (as in Sect. 1.1.3). One
splits the training data into F folds, where each data item lies in exactly one fold.
The case F = N is sometimes called “leave-one-out” cross-validation. One then
sets aside one fold in turn, fitting the model to the remaining data, and evaluating
the model error on the left-out fold. The model error is then averaged. This process
gives us an estimate of the performance of a model on held-out data. Numerous
variants are available, particularly when lots of computation and lots of data are
available. For example, one might not average over all folds; one might use fewer
or more folds; and so on.
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Worked Example 11.2 Cross-Validation

Write Md for the model that predicts weight from length for the perch dataset
as

∑j=d
j=0 βj length

j . Choose an appropriate value of d ∈ [1, 10] using leave-one-
out cross-validation.

Solution: I used the R functions CVlm, which takes a bit of getting used to. I
found:

1 2 3 4 5 6 7 8 9 10
1.9e4 4.0e3 7.2e3 4.5e3 6.0e3 5.6e4 1.2e6 4.0e6 3.9e6 1.9e8

where the best model is d = 2.

11.1.4 Greedy Search with Stagewise Regression

Assume we have a set of explanatory variables and we wish to build a model,
choosing some of those variables for our model. Our explanatory variables could
be many distinct measurements, or they could be different non-linear functions of
the same measurement, or a combination of both. We can evaluate models relative
to one another fairly easily (AIC, BIC, or cross-validation, your choice). However,
choosing which set of explanatory variables to use can be quite difficult, because
there are so many sets. The problem is that you cannot predict easily what adding
or removing an explanatory variable will do. Instead, when you add (or remove) an
explanatory variable, the errors that the model makes change, and so the usefulness
of all other variables changes too. This means that (at least in principle) you have
to look at every subset of the explanatory variables. Imagine you start with a
set of F possible explanatory variables (including the original measurement, and
a constant). You don’t know how many to use, so you might have to try every
different group, of each size, and there are far too many groups to try. There are
two useful alternatives.

In forward stagewise regression, you start with an empty working set
of explanatory variables. You then iterate the following process. For each of the
explanatory variables not in the working set, you construct a new model using
the working set and that explanatory variable, and compute the model evaluation
score. If the best of these models has a better score than the model based on the
working set, you insert the appropriate variable into the working set and iterate.
If no variable improves the working set, you decide you have the best model and
stop. This is fairly obviously a greedy algorithm.

Backward stagewise regression is pretty similar, but you start with a
working set containing all the variables, and remove variables one-by-one and greed-
ily. As usual, greedy algorithms are very helpful but not capable of exact optimiza-
tion. Each of these strategies can produce rather good models, but neither is
guaranteed to produce the best model.



11.1. Model Selection: Which Model Is Best? 252

Remember This: Forward and backward stagewise regression are
greedy searches for sets of independent variables that predict effectively. In
forward stagewise regression, one adds variables to a regression; in back-
ward, one removes variables from the regression. Success can be checked
with AIC, BIC, or cross-validation. The search stops when adding (resp.
removing) a variable makes the regression worse.

11.1.5 What Variables Are Important?

Imagine you regress some measure of risk of death against blood pressure, whether
someone smokes or not, and the length of their thumb. Because high blood pressure
and smoking tend to increase risk of death, you would expect to see “large” coeffi-
cients for these explanatory variables. Since changes in the thumb length have no
effect, you would expect to see “small” coefficients for these explanatory variables.
You might think that this suggests a regression can be used to determine what
effects are important in building a model. It can, but doing so correctly involves
serious difficulties that I will not deal with in detail. Instead, I will sketch what
can go wrong so that you’re discouraged from doing this without learning quite a
lot more.

One difficulty is the result of variable scale. If you measure thumb length in
kilometers, the coefficient is likely small; if you measure thumb length in microm-
eters, the coefficient is likely large. But this change has nothing to do with how
important the variable is for prediction. This means that interpreting the coefficient
is tricky.

Another difficulty is the result of sampling variance. Imagine that we have an
explanatory variable that has absolutely no relationship to the dependent variable.
If we had an arbitrarily large amount of data, and could exactly identify the correct
model, we’d find that, in the correct model, the coefficient of that variable was zero.
But we don’t have an arbitrarily large amount of data. Instead, we have a sample
of data. Hopefully, our sample is random so that (with some work) our estimate of
the coefficient is the value of a random variable whose expected value is zero, but
whose variance isn’t. This means we are very unlikely to see a zero, but should see a
value which is a small number of standard deviations away from zero. Dealing with
this requires a way to tell whether the difference between a coefficient and zero is
meaningful, or is just the result of random effects. There is a theory of statistical
significance for regression coefficients, but we have other things to do.

Yet another difficulty has to do with practical significance, and is rather
harder. We could have explanatory variables that are genuinely linked to the inde-
pendent variable, but might not matter very much. This is a common phenomenon,
particularly in medical statistics. It requires considerable care to disentangle some
of these issues. Here is an example. Bowel cancer is a nasty disease, which could
kill you. Being screened for bowel cancer is at best embarrassing and unpleasant,
and involves some startling risks. There is considerable doubt, from reasonable
sources, about whether screening has value and if so, how much (as a start point,
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you could look at Ransohoff DF. “How Much Does Colonoscopy Reduce Colon
Cancer Mortality?” which appears in Ann. Intern. Med. 2009). There is some
evidence linking eating red or processed meat to incidence of bowel cancer. A good
practical question is: should one abstain from eating red or processed meat based
on increased bowel cancer risk?

Coming to an answer is tough; the coefficient in any regression is clearly not
zero, but it’s pretty small. Here are some numbers. The UK population in 2012 was
63.7 million (this is a summary figure from Google, using World Bank data; there’s
no reason to believe that it’s significantly wrong). I obtained the following figures
from the UK cancer research institute website, at http://www.cancerresearchuk.org/
health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer. There
were 41,900 new cases of bowel cancer in the UK in 2012. Of these cases, 43%
occurred in people aged 75 or over. Fifty-seven percent of people diagnosed with
bowel cancer survive for 10 years or more after diagnosis. Of diagnosed cases, an
estimated 21% is linked to eating red or processed meat, and the best current es-
timate is that the risk of incidence is between 17 and 30% higher per 100 g of red
meat eaten per day (i.e., if you eat 100 g of red meat per day, your risk increases
by some number between 17 and 30%; 200 g a day gets you twice that number;
and—rather roughly—so on). These numbers are enough to confirm that there is a
non-zero coefficient linking the amount of red or processed meat in your diet with
your risk of bowel cancer (though you’d have a tough time estimating the exact
value of that coefficient from the information here). If you eat more red meat,
your risk of dying of bowel cancer really will go up. But the numbers I gave above
suggest that (a) it won’t go up much and (b) you might well die rather late in life,
where the chances of dying of something are quite strong. The coefficient linking
eating red meat and bowel cancer is clearly pretty small, because the incidence of
the disease is about 1 in 1500 per year. Does the effect of this link matter enough
to (say) stop eating red or processed meat? you get to choose, and your choice has
consequences.

Remember This: There are serious pitfalls in trying to interpret the
coefficients of a regression. A small coefficient might come from a choice of
scale for the associated variable. A large coefficient might still be the result
of random effects, and assessing whether it requires a model of statistical
significance. Worse, a coefficient might be clearly non-zero, but have little
practical significance. It’s tempting to look at the coefficients and try and
come to conclusions, but you should not do this without much more theory.

11.2 Robust Regression

We have seen that outlying data points can result in a poor model. This is caused by
the squared error cost function: squaring a large error yields an enormous number.
One way to resolve this problem is to identify and remove outliers before fitting a

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer
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model. This can be difficult, because it can be hard to specify precisely when a
point is an outlier. Worse, in high dimensions most points will look somewhat like
outliers, and we may end up removing almost all the data. The alternative solution
I offer here is to come up with a cost function that is less susceptible to problems
with outliers. The general term for a regression that can ignore some outliers is a
robust regression.

11.2.1 M-Estimators and Iteratively Reweighted Least Squares

One way to reduce the effect of outliers on a least squares solution would be to
weight each point in the cost function. We need some method to estimate an
appropriate set of weights. This would use a large weight for errors at points that
are “trustworthy,” and a low weight for errors at “suspicious” points.

We can obtain such weights using an M-estimator, which estimates param-
eters by replacing the negative log-likelihood with a term that is better behaved.
In our examples, the negative log-likelihood has always been squared error. Write
β for the parameters of the model being fitted, and ri(xi, β) for the residual error
of the model on the ith data point. For us, ri will always be yi − xT

i β. So rather
than minimizing ∑

i

(ri(xi, β))
2

as a function of β, we will minimize an expression of the form

∑

i

ρ(ri(xi, β);σ),

for some appropriately chosen function ρ. Clearly, our negative log-likelihood is
one such estimator (use ρ(u;σ) = u2). The trick to M-estimators is to make ρ(u;σ)
look like u2 for smaller values of u, but ensure that it grows more slowly than u2

for larger values of u (Fig. 11.2).
The Huber loss is one important M-estimator. We use

ρ(u;σ) =

{
u2

2 |u | < σ

σ|u | − σ2

2

which is the same as u2 for −σ ≤ u ≤ σ, and then switches to |u | for larger (or
smaller) σ. The Huber loss is convex (meaning that there will be a unique minimum
for our models) and differentiable, but its derivative is not continuous. The choice
of the parameter σ (which is known as scale) has an effect on the estimate. You
should interpret this parameter as the distance that a point can lie from the fitted
function while still being seen as an inlier (anything that isn’t even partially an
outlier) (Fig. 11.3).

Generally, M-estimators are discussed in terms of their influence function.
This is

∂ρ

∂u
.

Its importance becomes evidence when we consider algorithms to fit β̂ using an
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Figure 11.2: Comparing three different linear regression strategies on the bodyfat
data, regressing weight against height. Notice that using an M-estimator gives an
answer very like that obtained by rejecting outliers by hand. The answer may well
be “better” because it isn’t certain that each of the four points rejected is an outlier,
and the robust method may benefit from some of the information in these points.
I tried a range of scales for the Huber loss (the “k2” parameter), but found no
difference in the line resulting over scales varying by a factor of 1e4, which is why
I plot only one scale

M-estimator. Our minimization criterion is

∇β

(
∑

i

ρ(yi − xT
i β;σ)

)

=
∑

i

[
∂ρ

∂u

]
(−xi)

= 0.

Here the derivative ∂ρ
∂u is evaluated at yi − xT

i β, so it is a function of β. Now write
wi(β) for

∂ρ
∂u

yi − xT
i β

(again, where the derivative is evaluated at yi −xT
i β, and so wi is a function of β).

We can write the minimization criterion as
∑

i

[wi(β)]
[
yi − xT

i β
]
[−xi] = 0.

Now write W(β) for the diagonal matrix whose i’th diagonal entry is wi(β). Then
our fitting criterion is equivalent to

X T [W(β)]y = X T [W(β)]Xβ.

The difficulty in solving this is that wi(β) depend on β, so we can’t just solve a

linear system in β. We could use the following strategy. Find some initial β̂(1).
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Figure 11.3: A robust linear regression of weight against all variables for the bodyfat
dataset, using the Huber loss and all data points. On the left, residual plotted
against fitted value (the residual is not standardized). Notice that there are some
points with very large residual, but most have much smaller residual; this wouldn’t
happen with a squared error. On the right, a histogram of the residual. If one
ignores the extreme residual values, this looks normal. The robust process has been
able to discount the effect of the outliers, without us needing to identify and reject
outliers by hand

Now evaluate W using that estimate, and re-estimate by solving the linear system.
Iterate this until it settles down. This process uses W to downweight points that
are suspiciously inconsistent with our current estimate of β, then update β using
those weights. The strategy is known as iteratively reweighted least squares,
and is very effective.

We assume we have an estimate of the correct parameters β̂(n), and consider
updating it to β̂(n+1). We compute

w
(n)
i = wi(β̂

(n)) =
∂ρ
∂u (yi − xT

i β
(n);σ)

yi − xT
i β̂

(n)
.

We then estimate β̂(n+1) by solving

X TW(n)y = X TW(n)X β̂(n+1).

The key to this algorithm is finding good start points for the iteration. One
strategy is randomized search. We select a small subset of points uniformly at
random, and fit some β̂ to these points, then use the result as a start point. If
we do this often enough, one of the start points will be an estimate that is not
contaminated by outliers.



11.2. Robust Regression 257

Procedure: 11.1 Fitting a Regression with Iteratively Reweighted Least
Squares

Write ri for the residual at the i’th point, yi − xT
i β. Choose an M-

estimator ρ, likely the Huber loss; write wi(β) for

∂ρ
∂u

yi − xT
i β

.

We will minimize ∑

i

ρ(ri(xi, β);σ)

by repeatedly

• finding some initial β̂(1) by selecting a small subset of points uni-
formly at random and fitting a regression to those points;

• iterating the following procedure until the update is very small

1. compute W(n) = diag(wi(β̂
(n)));

2. solve
X TW(n)y = X TW(n)X β̂(n+1)

for β̂(n+1);

• keep the resulting β̂ if
∑

i ρ(ri(xi, β̂);σ) is smaller than any seen
so far.

11.2.2 Scale for M-Estimators

The estimators require a sensible estimate of σ, which is often referred to as scale.
Typically, the scale estimate is supplied at each iteration of the solution method.
One reasonable estimate is the MAD or median absolute deviation, given by

σ(n) = 1.4826 mediani|r(n)i (xi; β̂
(n−1)) |.

Another popular estimate of scale is obtained with Huber’s proposal 2 (that
is what everyone calls it!). Choose some constant k1 > 0, and define Ξ(u) =

min (|u |, k1)2. Now solve the following equation for σ:

∑

i

Ξ

(
r
(n)
i (xi; β̂

(n−1))

σ

)

= Nk2

where k2 is another constant, usually chosen so that the estimator gives the right
answer for a normal distribution (exercises). This equation needs to be solved with
an iterative method; the MAD estimate is the usual start point. R provides hubers,
which will compute this estimate of scale (and figures out k2 for itself). The choice
of k1 depends somewhat on how contaminated you expect your data to be. As
k1 → ∞, this estimate becomes more like the standard deviation of the data.
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11.3 Generalized Linear Models

We have used a linear regression to predict a value from a feature vector, but
implicitly have assumed that this value is a real number. Other cases are important,
and some of them can be dealt with using quite simple generalizations of linear
regression. When we derived linear regression, I said one way to think about the
model was

y = xTβ + ξ

where ξ was a normal random variable with zero mean and variance σ2
ξ . Another

way to write this is to think of y as the value of a random variable Y . In this case,
Y has mean xTβ and variance σ2

ξ . This can be written as

Y ∼ N(xTβ, σ2
ξ ).

This offers a fruitful way to generalize: we replace the normal distribution with
some other parametric distribution, and predict the parameter of that distribution
using xTβ. This is a generalized linear model or GLM. Three examples are
particularly important.

11.3.1 Logistic Regression

Assume the y values can be either 0 or 1. You could think of this as a two-class clas-
sification problem, and deal with it using an SVM. There are sometimes advantages
to seeing it as a regression problem. One is that we get to see a new classification
method that explicitly models class posteriors, which an SVM doesn’t do.

We build the model by asserting that the y values represent a draw from a
Bernoulli random variable (definition below, for those who have forgotten). The
parameter of this random variable is θ, the probability of getting a one. But
0 ≤ θ ≤ 1, so we can’t just model θ as xTβ. We will choose some link function
g so that we can model g(θ) as xTβ. This means that, in this case, g must map
the interval between 0 and 1 to the whole line, and must be 1–1. The link function
maps θ to xTβ; the direction of the map is chosen by convention. We build our
model by asserting that g(θ) = xTβ.

Remember This: A generalized linear model predicts the parameter
of a probability distribution from a regression. The link function ensures
that the prediction of the regression meets the constraints required by the
distribution.

Useful Fact: 11.1 Definition: Bernoulli Random Variable

A Bernoulli random variable with parameter θ takes the value 1 with
probability θ and 0 with probability 1 − θ. This is a model for a coin
toss, among other things.
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Notice that, for a Bernoulli random variable, we have that

log

[
P (y = 1|θ)
P (y = 0|θ)

]
= log

[
θ

1− θ

]

and the logit function g(u) = log
[

u
1−u

]
meets our needs for a link function (it

maps the interval between 0 and 1 to the whole line, and is 1–1). This means we
can build our model by asserting that

log

[
P (y = 1|x)
P (y = 0|x)

]
= xTβ

then solving for the β that maximizes the log-likelihood of the data. Simple ma-
nipulation yields

P (y = 1|x) = ex
T β

1 + exT β
and P (y = 0|x) = 1

1 + exT β
.

In turn, this means the log-likelihood of a dataset will be

L(β) =
∑

i

[
I[y=1](yi)x

T
i β − log

(
1 + ex

T
i β

)]
.

You can obtain β from this log-likelihood by gradient ascent (or rather a lot faster
by Newton’s method, if you know that).

A regression of this form is known as a logistic regression. It has the
attractive property that it produces estimates of posterior probabilities. Another
interesting property is that a logistic regression is a lot like an SVM. To see this,
we replace the labels with new ones. Write ŷi = 2yi − 1; this means that ŷi takes
the values −1 and 1, rather than 0 and 1. Now I[y=1](yi) =

ŷi+1
2 , so we can write

−L(β) = −
∑

i

[
ŷi + 1

2
xT
i β − log

(
1 + ex

T
i β

)]

=
∑

i

[
−
(
ŷi + 1

2
xT
i β

)
+ log

(
1 + ex

T
i β

)]

=
∑

i

[

log

(
1 + ex

T
i β

e
ŷi+1

2 xT
i
β

)]

=
∑

i

[
log

(
e

−(ŷi+1)

2 xT
i β + e

1−ŷi
2 xT

i β
)]

and we can interpret the term in square brackets as a loss function. If you plot
it, you will notice that it behaves rather like the hinge loss. When ŷi = 1, if xTβ
is positive, the loss is very small, but if xTβ is strongly negative, the loss grows
linearly in xTβ. There is similar behavior when ŷi = −1. The transition is smooth,
unlike the hinge loss. Logistic regression should (and does) behave well for the same
reasons the SVM behaves well.
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Be aware that logistic regression has one annoying quirk. When the data
are linearly separable (i.e., there exists some β such that yix

T
i β > 0 for all data

items), logistic regression will behave badly. To see the problem, choose the β that
separates the data. Now it is easy to show that increasing the magnitude of β will
increase the log-likelihood of the data; there isn’t any limit. These situations arise
fairly seldom in practical data.

Remember This: Logistic regression predicts the probability that a
Bernoulli random variable is one using a logit link function. The result is
a binary classifier whose loss is very similar to a hinge loss.

11.3.2 Multiclass Logistic Regression

Imagine y ∈ [0, 1, . . . , C − 1]. Then it is natural to model p(y|x) with a dis-
crete probability distribution on these values. This can be specified by choosing
(θ0, θ1, . . . , θC−1) where each term is between 0 and 1 and

∑
i θi = 1. Our link

function will need to map this constrained vector of θ values to a �C−1. We can
do this with a fairly straightforward variant of the logit function, too. Notice that
there are C−1 probabilities we need to model (the C’th comes from the constraint∑

i θi = 1). We choose one vector β for each probability, and write βi for the vector
used to model θi. Then we can write

xTβi = log

(
θi

1−∑
u θu

)

and this yields the model

P (y = 0|x, β) =
ex

T β0

1 +
∑

i e
xT βi

P (y = 1|x, β) =
ex

T β1

1 +
∑

i e
xT βi

. . .

P (y = C − 1|x, β) =
1

1 +
∑

i e
xT βi

and we would fit this model using maximum likelihood. The likelihood is easy to
write out, and gradient descent is a good strategy for actually fitting models.

Remember This: Multiclass logistic regression predicts a multinomial
distribution using a logit link function. The result is an important multiclass
classifier.
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11.3.3 Regressing Count Data

Now imagine that the yi values are counts. For example, yi might have the count
of the number of animals caught in a small square centered on xi in a study region.
As another example, xi might be a set of features that represent a customer, and
yi might be the number of times that customer bought a particular product. The
natural model for count data is a Poisson model, with parameter θ representing the
intensity (reminder below).

Useful Fact: 11.2 Definition: Poisson Distribution

A non-negative, integer valued random variable X has a Poisson distri-
bution when its probability distribution takes the form

P ({X = k}) = θke−θ

k!
,

where θ > 0 is a parameter often known as the intensity of the distri-
bution.

Now we need θ > 0. A natural link function is to use

xTβ = log θ

yielding a model

P ({X = k}) = ekx
T βe−ex

T β

k!
.

Now assume we have a dataset. The negative log-likelihood can be written as

−L(β) = −
∑

i

log

⎛

⎝eyix
T
i βe−e

xT
i

β

yi!

⎞

⎠

= −
∑

i

(
yix

T
i β − ex

T
i β − log(yi!)

)
.

There isn’t a closed form minimum available, but the log-likelihood is convex, and
gradient descent (or Newton’s method) is enough to find a minimum. Notice that
the log(yi!) term isn’t relevant to the minimization, and is usually dropped.

Remember This: You can predict count data with a GLM by predicting
the parameter of a Poisson distribution with an exponential link function.



11.4. L1 Regularization and Sparse Models 262

11.3.4 Deviance

Cross-validating a model is done by repeatedly splitting a dataset into two pieces,
training on one, evaluating some score on the other, and averaging the score. But
we need to keep track of what to score. For earlier linear regression models (e.g.,
Sect. 11.1), we have used the squared error of predictions. This doesn’t really make
sense for a generalized linear model, because predictions are of quite different form.
It is usual to use the deviance of the model. Write yt for the true prediction at
a point, xp for the independent variables we want to obtain a prediction for, β̂ for

our estimated parameters; a generalized linear model yields P (y|xp, β̂). For our
purposes, you should think of the deviance as

−2 logP (yt|xp, β̂)

(this expression is sometimes adjusted in software to deal with extreme cases, etc.).
Notice that this is quite like the least squares error for the linear regression case,
because there

−2 logP (y|xp, β̂) = (xT
p β̂ − yt)

2/σ2 +K

for K some constant.

Remember This: Evaluate a GLM with the model’s deviance.

11.4 L1 Regularization and Sparse Models

Forward and backward stagewise regression were strategies for adding independent
variables to, or removing independent variables from, a model. An alternative, and
very powerful, strategy is to construct a model with a method that forces some
coefficients to be zero. The resulting model ignores the corresponding independent
variables. Models built this way are often called sparse models, because (one
hopes) that many independent variables will have zero coefficients, and so the model
is using a sparse subset of the possible predictors.

In some situations, we are forced to use a sparse model. For example, imagine
there are more independent variables than there are examples. In this case, the
matrix X TX will be rank deficient. We could use a ridge regression (Sect. 10.4.2)
and the rank deficiency problem will go away, but it would be hard to trust the
resulting model, because it will likely use all the predictors (more detail below).
We really want a model that uses a small subset of the predictors. Then, because
the model ignores the other predictors, there will be more examples than there are
predictors that we use.

There is now quite a strong belief among practitioners that using sparse mod-
els is the best way to deal with high dimensional problems (although there are lively
debates about which sparse model to use, etc.). This is sometimes called the “bet
on sparsity” principle: use a sparse model for high dimensional data, because dense
models don’t work well for such problems.
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11.4.1 Dropping Variables with L1 Regularization

We have a large set of explanatory variables, and we would like to choose a small
set that explains most of the variance in the independent variable. We could do
this by encouraging β to have many zero entries. In Sect. 10.4.2, we saw we could
regularize a regression by adding a term to the cost function that discouraged large
values of β. Instead of solving for the value of β that minimized

∑
i(yi − xT

i β)
2 =

(y −Xβ)T (y −Xβ) (which I shall call the error cost), we minimized

∑

i

(yi − xT
i β)

2 +
λ

2
βTβ = (y −Xβ)T (y −Xβ) +

λ

2
βTβ

(which I shall call the L2 regularized error). Here λ > 0 was a constant chosen
by cross-validation. Larger values of λ encourage entries of β to be small, but do
not force them to be zero. The reason is worth understanding.

Write βk for the kth component of β, and write β−k for all the other compo-
nents. Now we can write the L2 regularized error as a function of βk:

(a+ λ)β2
k − 2b(β−k)βk + c(β−k)

where a is a function of the data and b and c are functions of the data and of β−k.
Now notice that the best value of βk will be

βk =
b(β−k)

(a+ λ)
.

Notice that λ doesn’t appear in the numerator. This means that, to force βk to
zero by increasing λ, we may have to make λ arbitrarily large. This is because
the improvement in the penalty obtained by going from a small βk to βk = 0 is
tiny—the penalty is proportional to β2

k.
To force some components of β to zero, we need a penalty that grows linearly

around zero rather than quadratically. This means we should use the L1 norm of
β, given by

||β ||1 =
∑

k

|βk |.

To choose β, we must now solve

(y −Xβ)T (y −Xβ) + λ||β ||1
for an appropriate choice of λ. An equivalent problem is to solve a constrained
minimization problem, where one minimizes

(y −Xβ)T (y −Xβ) subject to ||β ||1 ≤ t

where t is some value chosen to get a good result, typically by cross-validation.
There is a relationship between the choice of t and the choice of λ (with some
thought, a smaller t will correspond to a bigger λ) but it isn’t worth investigating
in any detail.

Actually solving this system is quite involved, because the cost function is not
differentiable. You should not attempt to use stochastic gradient descent, because
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this will not compel zeros to appear in β̂. There are several methods, which are
beyond our scope. As the value of λ increases, the number of zeros in β̂ will increase
too. We can choose λ in the same way we used for classification; split the training
set into a training piece and a validation piece, train for different values of λ, and
test the resulting regressions on the validation piece. The family of solutions β̂(λ)
for all values of λ ≥ 0 is known as the regularization path. One consequence
of modern methods is that we can generate a very good approximation to the
regularization path about as easily as we can get a solution for a single value of
λ. As a result, cross-validation procedures for choosing λ are efficient.

Remember This: An L1 regularization penalty encourages models to
have zero coefficients. The optimization problem that results is quite spe-
cialized. A strong approximation to the regularization path can be produced
relatively easily, so cross-validation to choose λ is efficient.
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Figure 11.4: Plots of mean-squared error as a function of log regularization parameter
(i.e., log λ) for a regression of weight against all variables for the bodyfat dataset
using an L1 regularizer (i.e., a lasso). These plots show mean-squared error averaged
over cross-validation folds with a vertical one standard deviation bar. On the left,
the plot for the dataset with the six outliers identified in Fig. 10.15 removed. On
the right, the plot for the whole dataset. Notice how the outliers increase the
variability of the error, and the best error. The top row of numbers gives the
number of non-zero components in β̂. Notice how as λ increases, this number falls
(there are 15 explanatory variables, so the largest model would have 15 variables).
The penalty ensures that explanatory variables with small coefficients are dropped
as λ gets bigger
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One way to understand the models that result is to look at the behavior
of cross-validated error as λ changes. The error is a random variable, random
because of the random split. It is a fair model of the error that would occur on
a randomly chosen test example (assuming that the training set is “like” the test
set, in a way that I do not wish to make precise yet). We could use multiple splits,
and average over the splits. Doing so yields both an average error for each value
of λ and an estimate of the standard deviation of error. Figure 11.4 shows the
result of doing so for two datasets. Again, there is no λ that yields the smallest
validation error, because the value of error depends on the random split cross-
validation. A reasonable choice of λ lies between the one that yields the smallest
error encountered (one vertical line in the plot) and the largest value whose mean
error is within one standard deviation of the minimum (the other vertical line in

the plot). It is informative to keep track of the number of zeros in β̂ as a function
of λ, and this is shown in Fig. 11.4.

Worked Example 11.3 Building an L1 Regularized Regression

Fit a linear regression to the bodyfat dataset, predicting weight as a function of
all variables, and using the lasso to regularize. How good are the predictions?
Do outliers affect the predictions?

Solution: I used the glmnet package, and I benefited a lot from example
code by Trevor Hastie and Junyang Qian and published at https://web.stanford.
edu/∼hastie/glmnet/glmnet alpha.html. I particularly like the R version; on my
computer, the Matlab version occasionally dumps core, which is annoying. You
can see from Fig. 11.4 that (a) for the case of outliers removed, the predictions
are very good and (b) the outliers create problems. Note the magnitude of the
error, and the low variance, for good cross-validated choices.

Another way to understand the models is to look at how β̂ changes as λ
changes. We expect that, as λ gets smaller, more and more coefficients become
non-zero. Figure 11.5 shows plots of coefficient values as a function of log λ for a
regression of weight against all variables for the bodyfat dataset, penalized using
the L1 norm. For different values of λ, one gets different solutions for β̂. When
λ is very large, the penalty dominates, and so the norm of β̂ must be small. In
turn, most components of β̂ are zero. As λ gets smaller, the norm of β̂ falls
and some components of become non-zero. At first glance, the variable whose
coefficient grows very large seems important. Look more carefully, this is the last
component introduced into the model. But Fig. 11.4 implies that the right model
has 7 components. This means that the right model has log λ ≈ 1.3, the vertical
line shown in the detailed figure. In the best model, that coefficient is in fact zero.

The L1 norm can sometimes produce an impressively small model from a
large number of variables. In the UC Irvine Machine Learning repository, there is
a dataset to do with the geographical origin of music (https://archive.ics.uci.edu/

https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
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Figure 11.5: Plots of coefficient values as a function of log λ for a regression of weight
against all variables for the bodyfat dataset, penalized using the L1 norm. In each
case, the six outliers identified in Fig. 10.15 were removed. On the left, the plot of
the whole path for each coefficient (each curve is one coefficient). On the right, a
detailed version of the plot. The vertical line shows the value of log λ that produces
the model with smallest cross-validated error (look at Fig. 11.4). Notice that the
variable that appears to be important, because it would have a large weight with
λ = 0, does not appear in this model.

ml/datasets/Geographical+Original+of+Music). The dataset was prepared by Fang
Zhou, and donors were Fang Zhou, Claire Q, and Ross D. King. Further details
appear on that webpage, and in the paper: “Predicting the Geographical Origin
of Music” by Fang Zhou, Claire Q, and Ross D. King, which appeared at ICDM
in 2014. There are two versions of the dataset. One has 116 explanatory variables
(which are various features representing music), and 2 independent variables (the
latitude and longitude of the location where the music was collected). Figure 11.6
shows the results of a regression of latitude against the independent variables using
L1 regularization. Notice that the model that achieves the lowest cross-validated
prediction error uses only 38 of the 116 variables.

Regularizing a regression with the L1 norm is sometimes known as a lasso. A
nuisance feature of the lasso is that, if several explanatory variables are correlated,
it will tend to choose one for the model and omit the others (example in exercises).
This can lead to models that have worse predictive error than models chosen using
the L2 penalty. One nice feature of good minimization algorithms for the lasso is
that it is easy to use both an L1 penalty and an L2 penalty together. One can form

(
1

N

)(
∑

i

(yi − xT
i β)

2

)

+ λ

(
(1− α)

2
||β ||22 + α||β ||1

)

Error + Regularizer

where one usually chooses 0 ≤ α ≤ 1 by hand. Doing so can both discourage large
values in β and encourage zeros. Penalizing a regression with a mixed norm like this

https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
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Figure 11.6: Mean-squared error as a function of log regularization parame-
ter (i.e., log λ) for a regression of latitude against features describing mu-
sic (details in text), using the dataset at https://archive.ics.uci.edu/ml/datasets/
Geographical+Original+of+Music and penalized with the L1 norm. The plot on the
left shows mean-squared error averaged over cross-validation folds with a vertical
one standard deviation bar. The top row of numbers gives the number of non-zero
components in β̂. Notice how as λ increases, this number falls. The penalty ensures
that explanatory variables with small coefficients are dropped as λ gets bigger. On
the right, a plot of the coefficient values as a function of log λ for the same re-
gression. The vertical line shows the value of log λ that produces the model with
smallest cross-validated error. Only 38 of 116 explanatory variables are used by
this model

is sometimes known as elastic net. It can be shown that regressions penalized with
elastic net tend to produce models with many zero coefficients, while not omitting
correlated explanatory variables. All the computation can be done by the glmnet

package in R (see exercises for details).

11.4.2 Wide Datasets

Now imagine we have more independent variables than examples (this is some-
times referred to as a “wide” dataset). This occurs quite often for a wide range
of datasets; it’s particularly common for biological datasets and natural language
datasets. Unregularized linear regression must fail, because X TX must be rank
deficient. Using an L2 (ridge) regularizer will produce an answer that should seem
untrustworthy. The estimate of β is constrained by the data in some directions,
but in other directions it is constrained only by the regularizer.

An estimate produced by L1 (lasso) regularization should look more reliable to
you. Zeros in the estimate of β mean that the corresponding independent variables

https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
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Figure 11.7: On the left, a comparison between three values of α in a glmnet

regression predicting octane from NIR spectra (see Example 11.4). The plots show
cross-validated error against log regularization coefficient for α = 1 (lasso) and two
elastic net cases, α = 0.5 and α = 0.1. I have plotted these curves separately,
with error bars, and on top of each other but without error bars. The values on
top of each separate plot show the number of independent variables with non-zero
coefficients in the best model with that regularization parameter. On the right, a
ridge regression for comparison. Notice that the error is considerably larger, even
at the best value of the regularization parameter

are ignored. Now if there are many zeros in the estimate of β, the model is being
fit with a small subset of the independent variables. If this subset is small enough,
then the number of independent variables that are actually being used is smaller
than the number of examples. If the model gives low enough error, it should seem
trustworthy in this case. There are some hard questions to face here (e.g., does the
model choose the “right” set of variables?) that we can’t deal with.

Remember This: The lasso can produce impressively small models,
and handles wide datasets very well.
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Worked Example 11.4 L1 Regularized Regression for a “Wide” Dataset

The gasoline dataset has 60 examples of near infrared spectra for gasoline of
different octane ratings. The dataset is due to John H. Kalivas, and was orig-
inally described in the article “Two Data Sets of Near Infrared Spectra,” in
the journal Chemometrics and Intelligent Laboratory Systems, vol. 37, pp.
255–259, 1997. Each example has measurements at 401 wavelengths. I found
this dataset in the R library pls. Fit a regression of octane against infrared
spectrum using L1 regularized logistic regression.

Solution: I used the glmnet package, and I benefited a lot from example code
by Trevor Hastie and Junyang Qian and published at https://web.stanford.edu/
∼hastie/glmnet/glmnet alpha.html. The package will do ridge, lasso, and elastic
net regressions. One adjusts a parameter in the function call, α, that balances
the terms; α = 0 is ridge and α = 1 is lasso. Not surprisingly, the ridge isn’t
great. I tried α = 0.1, α = 0.5, and α = 1. Results in Fig. 11.7 suggest fairly
strongly that very good predictions should be available with the lasso using
quite a small regularization constant; there’s no reason to believe that the best
ridge models are better than the best elastic net models, or vice versa. The
models are very sparse (look at the number of variables with non-zero weights,
plotted on the top).
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Figure 11.8: Multiclass logistic regression on the MNIST dataset, using a lasso and
elastic net regularizers. On the left, deviance of held-out data on the digit dataset
(Worked Example 11.5), for different values of the log regularization parameter
in the lasso case. On the right, deviance of held-out data on the digit dataset
(Worked Example 11.5), for different values of the log regularization parameter in
the elastic net case, α = 0.5

https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
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11.4.3 Using Sparsity Penalties with Other Models

A really nice feature of using an L1 penalty to enforce sparsity in a model is that
it applies to a very wide range of models. For example, we can obtain a sparse
SVM by replacing the L2 regularizer with an L1 regularizer. Most SVM packages
will do this for you, although I’m not aware of any compelling evidence that this
produces an improvement in most cases. All of the generalized linear models I
described can be regularized with an L1 regularizer. For these cases, glmnet will
do the computation required. The worked example shows using a multinomial (i.e.,
multiclass) logistic regression with an L1 regularizer.

Worked Example 11.5 Multiclass Logistic Regression with an L1 Regu-
larizer

The MNIST dataset consists of a collection of handwritten digits, which must
be classified into 10 classes (0, . . . , 9). There is a standard train/test split.
This dataset is often called the zip code dataset because the digits come from
zip codes, and has been quite widely studied. Yann LeCun keeps a record
of the performance of different methods on this dataset at http://yann.lecun.
com/exdb/mnist/. Obtain the Zip code dataset from http://statweb.stanford.
edu/∼tibs/ElemStatLearn/, and use a multiclass logistic regression with an L1
regularizer to classify it.

Solution: The dataset is rather large, and on my computer the fitting process
takes a little time. Figure 11.8 shows what happens with the lasso, and with
elastic net with α = 0.5 on the training set, using glmnet to predict and
cross-validation to select λ values. For the lasso, I found an error rate on the
held-out data of 8.5%, which is OK, but not great compared to other methods.
For elastic net, I found a slightly better error rate (8.2%); I believe even lower
error rates are possible with these codes.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
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Problems

Programming Exercises

11.1. This is an extension of the previous exercise. At https://archive.ics.uci.edu/
ml/machine-learning-databases/housing/housing.data, you will find the famous
Boston Housing dataset. This consists of 506 data items. Each is 13 mea-
surements, and a house price. The data was collected by Harrison, D. and
Rubinfeld, D.L in the 1970s (a date which explains the very low house prices).
The dataset has been widely used in regression exercises, but seems to be
waning in popularity. At least one of the independent variables measures the
fraction of population nearby that is “Black” (their word, not mine). This
variable appears to have had a significant effect on house prices then (and,
sadly, may still now). Hint: you really shouldn’t write your own code; I used
rlm and boxcox in R for this.
(a) Use Huber’s robust loss and iteratively reweighted least squares to regress

the house price against all other variables. How well does this regression
compare to the regression obtained by removing outliers and Box-Coxing,
above?

(b) As you should have noticed, the Box-Cox transformation can be quite
strongly affected by outliers. Remove up to six outliers from this dataset
using a diagnostic plot, then estimate the Box-Cox transformation. Now
transform the dependent variable, and use Huber’s robust loss and itera-
tively reweighted least squares to regress the transformed variable against
all others using all data (i.e., put the outliers you removed to compute
a Box-Cox transformation back into the regression). How does this re-
gression compare to the regression in the previous subexercise, and to the
regression obtained by removing outliers and Box-Coxing, above?

11.2. UC Irvine hosts a dataset of blog posts at https://archive.ics.uci.edu/ml/datasets/
BlogFeedback. There are 280 independent features which measure various
properties of the blog post. The dependent variable is the number of com-
ments that the blog post received in the 24 h after a base time. The zip file
that you download will have training data in blogData train.csv, and test
data in a variety of files named blogData test-*.csv.
(a) Predict the dependent variable using all features, a generalized linear

model (I’d use a Poisson model, because these are count variables), and
the lasso. For this exercise, you really should use glmnet in R. Produce
a plot of the cross-validated deviance of the model against the regular-
ization variable (cv.glmnet and plot will do this for you). Use only the
data in blogData train.csv.

(b) Your cross-validated plot of deviance likely doesn’t mean all that much to
you, because the deviance of a Poisson model takes a bit of getting used to.
Choose a value of the regularization constant that yields a strong model,
at least by the deviance criterion. Now produce a scatterplot of true values
vs predicted values for data in blogData train.csv. How well does this
regression work? keep in mind that you are looking at predictions on the
training set.

(c) Choose a value of the regularization constant that yields a strong model,
at least by the deviance criterion. Now produce a scatterplot of true values
vs predicted values for data in blogData test-*.csv. How well does this
regression work?

(d) Why is this regression difficult?

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data
https://archive.ics.uci.edu/ml/datasets/BlogFeedback
https://archive.ics.uci.edu/ml/datasets/BlogFeedback
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11.3. At http://genomics-pubs.princeton.edu/oncology/affydata/index.html, you will
find a dataset giving the expression of 2000 genes in tumor and normal colon
tissues. Build a logistic regression of the label (normal vs tumor) against the
expression levels for those genes. There are a total of 62 tissue samples, so
this is a wide regression. For this exercise, you really should use glmnet in
R. Produce a plot of the classification error of the model against the regular-
ization variable (cv.glmnet—look at the type.measure argument—and plot

will do this for you). Compare the prediction of this model with the baseline
of predicting the most common class.

11.4. The Jackson lab publishes numerous datasets to do with genetics and phe-
notypes of mice. At https://phenome.jax.org/projects/Crusio1, you can find a
dataset giving the strain of a mouse, its gender, and various observations (click
on the “Downloads” button). These observations are of body properties like
mass, behavior, and various properties of the mouse’s brain.
(a) We will predict the gender of a mouse from the body properties and the

behavior. The variables you want are columns 4 through 41 of the dataset
(or bw to visit time d3 d5; you shouldn’t use the id of the mouse). Read
the description; I’ve omitted the later behavioral measurements because
there are many N/A’s. Drop rows with N/A’s (there are relatively few).
How accurately can you predict gender using these measurements, using
a logistic regression and the lasso? For this exercise, you really should
use glmnet in R. Produce a plot of the classification error of the model
against the regularization variable (cv.glmnet—look at the type.measure
argument—and plot will do this for you). Compare the prediction of this
model with the baseline of predicting the most common gender for all
mice.

(b) We will predict the strain of a mouse from the body properties and the
behavior. The variables you want are columns 4 through 41 of the dataset
(or bw to visit time d3 d5; you shouldn’t use the id of the mouse). Read
the description; I’ve omitted the later behavioral measurements because
there are many N/A’s. Drop rows with N/A’s (there are relatively few).
This exercise is considerably more elaborate than the previous, because
multinomial logistic regression does not like classes with few examples.
You should drop strains with fewer than 10 rows. How accurately can you
predict strain using these measurements, using multinomial logistic regres-
sion and the lasso? For this exercise, you really should use glmnet in R.
Produce a plot of the classification error of the model against the regular-
ization variable (cv.glmnet—look at the type.measure argument—and
plot will do this for you). Compare the prediction of this model with the
baseline of predicting a strain at random.

This data was described in a set of papers produced by this laboratory, and
they like users to cite the papers. Papers are

• Delprato A, Bonheur B, Algéo MP, Rosay P, Lu L, Williams RW, Crusio
WE. Systems genetic analysis of hippocampal neuroanatomy and spatial
learning in mice. Genes Brain Behav. 2015 Nov;14(8):591–606.

• Delprato A, Algéo MP, Bonheur B, Bubier JA, Lu L, Williams RW,
Chesler EJ, Crusio WE. QTL and systems genetics analysis of mouse
grooming and behavioral responses to novelty in an open field. Genes
Brain Behav. 2017 Nov;16(8):790–799.

• Delprato A, Bonheur B, Algéo MP, Murillo A, Dhawan E, Lu L, Williams
RW, Crusio WE. A QTL on chromosome 1 modulates inter-male aggres-
sion in mice. Genes Brain Behav. 2018 Feb 19.

http://genomics-pubs.princeton.edu/oncology/affydata/index.html
https://phenome.jax.org/projects/Crusio1
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