
David Forsyth

Applied
Machine
Learning

Applied Machine Learning

David Forsyth

Applied Machine Learning

123

David Forsyth
Computer Science Department
University of Illinois Urbana Champaign
Urbana, IL, USA

ISBN 978-3-030-18113-0 ISBN 978-3-030-18114-7 (eBook)
https://doi.org/10.1007/978-3-030-18114-7

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher
nor the authors or the editors give a warranty, express or implied, with respect to the material
contained herein or for any errors or omissions that may have been made. The publisher remains
neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-18114-7

Preface

Machine learning methods are now an important tool for scientists, researchers,
engineers, and students in a wide range of areas. Many years ago, one could publish
papers introducing (say) classifiers to one of the many fields that hadn’t heard of
them. Now, you need to know what a classifier is to get started in most fields. This
book is written for people who want to adopt and use the main tools of machine
learning but aren’t necessarily going to want to be machine learning researchers—as
of writing, this seems like almost everyone. There is no new fact about machine
learning here, but the selection of topics is my own. I think it’s different from what
one sees in other books.

The book is revised and corrected from class notes written for a course I’ve
taught on numerous occasions to very broad audiences. Most students were at the
final year undergraduate/first year graduate student level in a US university. About
half of each class consisted of students who weren’t computer science students but
still needed a background in learning methods. The course stressed applying a wide
range of methods to real datasets, and the book does so, too.

The key principle in choosing what to write about was to cover the ideas in
machine learning that I thought everyone who was going to use learning tools should
have seen, whatever their chosen specialty or career. Although it’s never a good
thing to be ignorant of anything, an author must choose. Most people will find a
broad shallow grasp of this field more useful than a deep and narrow grasp, so this
book is broad, and coverage of many areas is shallow. I think that’s fine, because
my purpose is to ensure that all have seen enough to know that, say, firing up a
classification package will make many problems go away. So I’ve covered enough to
get you started and to get you to realize that it’s worth knowing more.

The notes I wrote have been useful to more experienced students as well. In
my experience, many learned some or all of this material without realizing how
useful it was and then forgot it. If this happened to you, I hope the book is a
stimulus to your memory. You really should have a grasp of all of this material.
You might need to know more, but you certainly shouldn’t know less.

This Book

I wrote this book to be taught, or read, by starting at the beginning and proceeding
to the end. In a 15-week semester, I cover a lot and usually set 12 assignments, al-
ways programming assignments. Different instructors or readers may have different
needs, and so I sketch some pointers to what can be omitted below.

What You Need to Know Before You Start

This book assumes you have a moderate background in probability and statistics
before you start. I wrote a companion book, Probability and Statistics for Com-
puter Science, which covers this background. There is a little overlap, because not
everyone will read both books cover to cover (a mistake—you should!). But I’ve

v

vi

kept the overlap small (about 40 pp.) and confined to material that is better re-
peated anyway. Here’s what you should know from that book (or some other, if
you insist):

• Various descriptive statistics (mean, standard deviation, variance) and visu-
alization methods for 1D datasets

• Scatter plots, correlation, and prediction for 2D datasets
• A little discrete probability
• A very little continuous probability (rough grasp of probability density func-
tions and how to interpret them)

• Random variables and expectations
• A little about samples and populations
• Maximum likelihood
• Simple Bayesian inference
• A selection of facts about an assortment of useful probability distributions,
or where to look them up

General Background: Your linear algebra should be reasonably fluent at
a practical level. Fairly soon, we will see matrices, vectors, orthonormal matrices,
eigenvalues, eigenvectors, and the singular value decomposition. All of these ideas
will be used without too much comment.

Programming Background: You should be able to pick up a practical
grasp of a programming environment without too much fuss. I use either R or
MATLAB for this sort of thing, depending on how reliable I think a particular
package is. You should, too. In some places, it’s a good idea to use Python.

Survival Skills: Most simple questions about programming can be answered
by searching. I usually use a web search to supply details of syntax, particular
packages, etc. which I forget easily. You should, too. When someone asks me, say,
“how do I write a loop in R?” in office hours, I very often answer by searching for
R loop (or whatever) and then pointing out that I’m not actually needed. The
questioner is often embarrassed at this point. You could save everyone trouble and
embarrassment by cutting out the middleman in this transaction.

Datasets and Broken Links

I think using real datasets is an important feature of this book. But real life is
messy, and datasets I refer to here may have been moved by the time you read
this. Generally, a little poking around using a web search engine will find datasets
or items that have been moved. I will also try to provide pointers to missing or
moved datasets on a webpage which will also depend from my home page. It’s easy
to find me on the Internet by searching for my name, and ignoring the soap opera
star (that’s really not me).

Citations

Generally, I have followed the natural style of a textbook and tried not to cite papers
in the text. I’m not up to providing a complete bibliography of modern machine
learning and didn’t want to provide an incomplete one. However, I have mentioned
papers in some places and have done so when it seemed very important for users

vii

to be aware of the paper or when I was using a dataset whose compilers asked for
a citation. I will try to correct errors or omissions in citation on a webpage, which
will depend from my home page.

What Has Been Omitted

A list of everything omitted would be impractically too long. There are three
topics I most regret omitting: kernel methods, reinforcement learning, and neural
sequence models like LSTM. I omitted each because I thought that, while each is
an important part of the toolbox of a practitioner, there are other topics with more
claim on space. I may well write additional chapters on these topics after I recover
from finishing this book. When they’re in a reasonable shape, I’ll put them on a
webpage that depends from my home page.

There is very little learning theory here. While learning theory is very impor-
tant (and I put in a brief chapter to sketch what’s there and give readers a flavor), it
doesn’t directly change what practitioners do. And there’s quite a lot of machinery
with weak theoretical underpinnings that is extremely useful.

Urbana, IL, USA David Forsyth

Acknowledgments

I acknowledge a wide range of intellectual debts, starting at kindergarten.
Important figures in the very long list of my creditors include Gerald Alanthwaite,
Mike Brady, Tom Fair, Margaret Fleck, Jitendra Malik, Joe Mundy, Jean Ponce,
Mike Rodd, Charlie Rothwell, and Andrew Zisserman.

I have benefited from looking at a variety of sources, though this work really
is my own. I particularly enjoyed the following books:

• The Nature of Statistical Learning Theory, V. Vapnik; Springer, 1999
• Machine Learning: A Probabilistic Perspective, K. P. Murphy; MIT Press,
2012

• Pattern Recognition and Machine Learning, C. M. Bishop; Springer, 2011
• The Elements of Statistical Learning: Data Mining, Inference, and Prediction,
Second Edition, T. Hastie, R. Tibshirani, and J. Friedman; Springer, 2016

• An Introduction to Statistical Learning: With Applications in R, G. James,
D. Witten, T. Hastie, and R. Tibshirani; Springer, 2013

• Deep Learning, I. Goodfellow, Y. Bengio, and A. Courville; MIT Press, 2016
• Probabilistic Graphical Models: Principles and Techniques, D. Koller and N.
Friedman; MIT Press, 2009

• Artificial Intelligence: A Modern Approach, Third Edition, S. J. Russell and
P. Norvig; Pearson, 2015

• Data Analysis and Graphics Using R: An Example-Based Approach, J. Main-
donald and W. J. Braun; Cambridge University Press, 2e, 2003

A wonderful feature of modern scientific life is the willingness of people to
share data on the Internet. I have roamed the Internet widely looking for datasets
and have tried to credit the makers and sharers of data accurately and fully when
I use the dataset. If, by some oversight, I have left you out, please tell me and I
will try and fix this. I have been particularly enthusiastic about using data from
the following repositories:

• The UC Irvine Machine Learning Repository, at http://archive.ics.uci.edu/ml/
• Dr. John Rasp’s Statistics Website, at http://www2.stetson.edu/∼jrasp/
• OzDasl: The Australasian Data and Story Library, at http://www.statsci.org/
data/

• The Center for Genome Dynamics, at the Jackson Laboratory, at http://cgd.
jax.org/ (which contains staggering amounts of information about mice) and
the datasets listed and described in Sects. 17.2 and 18.1

I looked at Wikipedia regularly when preparing this manuscript, and I’ve pointed
readers to neat stories there when they’re relevant. I don’t think one could learn
the material in this book by reading Wikipedia, but it’s been tremendously helpful
in restoring ideas that I have mislaid, mangled, or simply forgotten.

When I did the first version of this course, Alyosha Efros let me look at notes
for a learning course he taught, and these affected my choices of topic. Ben Recht
gave me advice on several choices of topic. I co-taught this class with Trevor Walker

ix

http://archive.ics.uci.edu/ml/
http://www2.stetson.edu/~jrasp/
http://www.statsci.org/data/
http://www.statsci.org/data/
http://cgd.jax.org/
http://cgd.jax.org/

x

for one semester, and his comments were extremely valuable. Eric Huber has made
numerous suggestions in his role as course lead for an offering that included an online
component. TA’s for various versions of this and related classes have also helped
improve the notes. Thanks to: Jyoti Aneja, Lavisha Aggarwal, Xiaoyang Bai,
Christopher Benson, Shruti Bhargava, Anand Bhattad, Daniel Calzada, Binglin
Chen, Taiyu Dong, Tanmay Gangwani, Sili Hui, Ayush Jain, Krishna Kothapalli,
Maghav Kumar, Ji Li, Qixuan Li, Jiajun Lu, Shreya Rajpal, Jason Rock, Daeyun
Shin, Mariya Vasileva, and Anirud Yadav. Typo’s were spotted by (at least!):
Johnny Chang, Yan Geng Niv Hadas, Vivian Hu, Eric Huber, Michael McCarrin,
Thai Duy Cuong Nguyen, Jian Peng, and Victor Sui.

Several people commented very helpfully on the deep network part of the
book, including Mani Golparvar Fard, Tanmay Gupta, Arun Mallya, Amin Sadeghi,
Sepehr Sameni, and Alex Schwing.

I have benefited hugely from reviews organized by the publisher. Reviewers
made many extremely helpful suggestions, which I have tried to adopt, by cutting
chapters, moving chapters around, and general re-engineering of topics. Reviewers
were anonymous to me at the time of review, but their names were later revealed
so I can thank them by name. Thanks to:
Xiaoming Huo, Georgia Institute of Technology
Georgios Lazarou, University of South Alabama
Ilias Tagkopoulos, University of California, Davis
Matthew Turk, University of California, Santa Barbara
George Tzanetakis, University of Victoria
Qin Wang, University of Alabama
Guanghui Wang, University of Kansas
Jie Yang, University of Illinois at Chicago
Lisa Zhang, University of Toronto, Mississauga

A long list of people have tried to help me make this book better, and I’m
very grateful for their efforts. But what remains is my fault, not theirs. Sorry.

Contents

I Classification 1

1 Learning to Classify 3
1.1 Classification: The Big Ideas . 4

1.1.1 The Error Rate and Other Summaries of Performance 4
1.1.2 More Detailed Evaluation . 5
1.1.3 Overfitting and Cross-Validation 6

1.2 Classifying with Nearest Neighbors 7
1.2.1 Practical Considerations for Nearest Neighbors 8

1.3 Naive Bayes . 10
1.3.1 Cross-Validation to Choose a Model 13
1.3.2 Missing Data . 15

1.4 You Should . 16
1.4.1 Remember These Terms . 16
1.4.2 Remember These Facts . 16
1.4.3 Remember These Procedures 17
1.4.4 Be Able to . 17

2 SVMs and Random Forests 21
2.1 The Support Vector Machine . 21

2.1.1 The Hinge Loss . 22
2.1.2 Regularization . 24
2.1.3 Finding a Classifier with Stochastic Gradient Descent 25
2.1.4 Searching for λ . 27
2.1.5 Summary: Training with Stochastic Gradient Descent 29
2.1.6 Example: Adult Income with an SVM 30
2.1.7 Multiclass Classification with SVMs 33

2.2 Classifying with Random Forests . 34
2.2.1 Building a Decision Tree . 35
2.2.2 Choosing a Split with Information Gain 38
2.2.3 Forests . 41
2.2.4 Building and Evaluating a Decision Forest 41
2.2.5 Classifying Data Items with a Decision Forest 42

2.3 You Should . 44
2.3.1 Remember These Terms . 44
2.3.2 Remember These Facts . 44
2.3.3 Use These Procedures . 45
2.3.4 Be Able to . 45

xi

xii

3 A Little Learning Theory 49
3.1 Held-Out Loss Predicts Test Loss . 49

3.1.1 Sample Means and Expectations 50
3.1.2 Using Chebyshev’s Inequality 52
3.1.3 A Generalization Bound . 52

3.2 Test and Training Error for a Classifier from a Finite Family 53
3.2.1 Hoeffding’s Inequality . 54
3.2.2 Test from Training for a Finite Family of Predictors 55
3.2.3 Number of Examples Required 56

3.3 An Infinite Collection of Predictors 57
3.3.1 Predictors and Binary Functions 57
3.3.2 Symmetrization . 61
3.3.3 Bounding the Generalization Error 62

3.4 You Should . 64
3.4.1 Remember These Terms . 64
3.4.2 Remember These Facts . 64
3.4.3 Be Able to . 65

II High Dimensional Data 67

4 High Dimensional Data 69
4.1 Summaries and Simple Plots . 69

4.1.1 The Mean . 70
4.1.2 Stem Plots and Scatterplot Matrices 70
4.1.3 Covariance . 73
4.1.4 The Covariance Matrix . 74

4.2 The Curse of Dimension . 77
4.2.1 The Curse: Data Isn’t Where You Think It Is 77
4.2.2 Minor Banes of Dimension . 78

4.3 Using Mean and Covariance to Understand High Dimensional Data . 79
4.3.1 Mean and Covariance Under Affine Transformations 80
4.3.2 Eigenvectors and Diagonalization 81
4.3.3 Diagonalizing Covariance by Rotating Blobs 82

4.4 The Multivariate Normal Distribution 83
4.4.1 Affine Transformations and Gaussians 84
4.4.2 Plotting a 2D Gaussian: Covariance Ellipses 85
4.4.3 Descriptive Statistics and Expectations 86
4.4.4 More from the Curse of Dimension 87

4.5 You Should . 88
4.5.1 Remember These Terms . 88
4.5.2 Remember These Facts . 88
4.5.3 Remember These Procedures 89

5 Principal Component Analysis 93
5.1 Representing Data on Principal Components 93

5.1.1 Approximating Blobs . 93
5.1.2 Example: Transforming the Height–Weight Blob 94

xiii

5.1.3 Representing Data on Principal Components 96
5.1.4 The Error in a Low Dimensional Representation 98
5.1.5 Extracting a Few Principal Components with NIPALS 99
5.1.6 Principal Components and Missing Values 101
5.1.7 PCA as Smoothing . 103

5.2 Example: Representing Colors with Principal Components 105
5.3 Example: Representing Faces with Principal Components 109
5.4 You Should . 111

5.4.1 Remember These Terms . 111
5.4.2 Remember These Facts . 111
5.4.3 Remember These Procedures 111
5.4.4 Be Able to . 111

6 Low Rank Approximations 117
6.1 The Singular Value Decomposition 117

6.1.1 SVD and PCA . 119
6.1.2 SVD and Low Rank Approximations 120
6.1.3 Smoothing with the SVD . 120

6.2 Multidimensional Scaling . 122
6.2.1 Choosing Low D Points Using High D Distances 122
6.2.2 Using a Low Rank Approximation to Factor 123
6.2.3 Example: Mapping with Multidimensional Scaling 124

6.3 Example: Text Models and Latent Semantic Analysis 126
6.3.1 The Cosine Distance . 127
6.3.2 Smoothing Word Counts . 128
6.3.3 Example: Mapping NIPS Documents 130
6.3.4 Obtaining the Meaning of Words 130
6.3.5 Example: Mapping NIPS Words 133
6.3.6 TF-IDF . 134

6.4 You Should . 136
6.4.1 Remember These Terms . 136
6.4.2 Remember These Facts . 136
6.4.3 Remember These Procedures 136
6.4.4 Be Able to . 136

7 Canonical Correlation Analysis 139
7.1 Canonical Correlation Analysis . 139
7.2 Example: CCA of Words and Pictures 142
7.3 Example: CCA of Albedo and Shading 144

7.3.1 Are Correlations Significant? 148
7.4 You Should . 150

7.4.1 Remember These Terms . 150
7.4.2 Remember These Facts . 150
7.4.3 Remember These Procedures 150
7.4.4 Be Able to . 150

xiv

III Clustering 153

8 Clustering 155
8.1 Agglomerative and Divisive Clustering 155

8.1.1 Clustering and Distance . 157
8.2 The k-Means Algorithm and Variants 159

8.2.1 How to Choose k . 163
8.2.2 Soft Assignment . 164
8.2.3 Efficient Clustering and Hierarchical k-Means 166
8.2.4 k-Medoids . 167
8.2.5 Example: Groceries in Portugal 167
8.2.6 General Comments on k-Means 170

8.3 Describing Repetition with Vector Quantization 171
8.3.1 Vector Quantization . 172
8.3.2 Example: Activity from Accelerometer Data 175

8.4 You Should . 178
8.4.1 Remember These Terms . 178
8.4.2 Remember These Facts . 178
8.4.3 Remember These Procedures 178

9 Clustering Using Probability Models 183
9.1 Mixture Models and Clustering . 183

9.1.1 A Finite Mixture of Blobs . 184
9.1.2 Topics and Topic Models . 185

9.2 The EM Algorithm . 188
9.2.1 Example: Mixture of Normals: The E-step 189
9.2.2 Example: Mixture of Normals: The M-step 191
9.2.3 Example: Topic Model: The E-step 192
9.2.4 Example: Topic Model: The M-step 193
9.2.5 EM in Practice . 193

9.3 You Should . 198
9.3.1 Remember These Terms . 198
9.3.2 Remember These Facts . 198
9.3.3 Remember These Procedures 198
9.3.4 Be Able to . 198

IV Regression 203

10 Regression 205
10.1 Overview . 205

10.1.1 Regression to Spot Trends . 206
10.2 Linear Regression and Least Squares 208

10.2.1 Linear Regression . 209
10.2.2 Choosing β . 210
10.2.3 Residuals . 212
10.2.4 R-squared . 212

xv

10.2.5 Transforming Variables . 214
10.2.6 Can You Trust Your Regression? 217

10.3 Visualizing Regressions to Find Problems 218
10.3.1 Problem Data Points Have Significant Impact 219
10.3.2 The Hat Matrix and Leverage 222
10.3.3 Cook’s Distance . 223
10.3.4 Standardized Residuals . 224

10.4 Many Explanatory Variables . 225
10.4.1 Functions of One Explanatory Variable 227
10.4.2 Regularizing Linear Regressions 227
10.4.3 Example: Weight Against Body Measurements 232

10.5 You Should . 236
10.5.1 Remember These Terms . 236
10.5.2 Remember These Facts . 236
10.5.3 Remember These Procedures 236
10.5.4 Be Able to . 237

11 Regression: Choosing and Managing Models 245
11.1 Model Selection: Which Model Is Best? 245

11.1.1 Bias and Variance . 246
11.1.2 Choosing a Model Using Penalties: AIC and BIC 248
11.1.3 Choosing a Model Using Cross-Validation 250
11.1.4 Greedy Search with Stagewise Regression 251
11.1.5 What Variables Are Important? 252

11.2 Robust Regression . 253
11.2.1 M-Estimators and Iteratively Reweighted Least Squares . . . 254
11.2.2 Scale for M-Estimators . 257

11.3 Generalized Linear Models . 258
11.3.1 Logistic Regression . 258
11.3.2 Multiclass Logistic Regression 260
11.3.3 Regressing Count Data . 261
11.3.4 Deviance . 262

11.4 L1 Regularization and Sparse Models 262
11.4.1 Dropping Variables with L1 Regularization 263
11.4.2 Wide Datasets . 267
11.4.3 Using Sparsity Penalties with Other Models 270

11.5 You Should . 271
11.5.1 Remember These Terms . 271
11.5.2 Remember These Facts . 271
11.5.3 Remember These Procedures 272

12 Boosting 275
12.1 Greedy and Stagewise Methods for Regression 276

12.1.1 Example: Greedy Stagewise Linear Regression 276
12.1.2 Regression Trees . 279
12.1.3 Greedy Stagewise Regression with Trees 279

xvi

12.2 Boosting a Classifier . 284
12.2.1 The Loss . 284
12.2.2 Recipe: Stagewise Reduction of Loss 286
12.2.3 Example: Boosting Decision Stumps 288
12.2.4 Gradient Boost with Decision Stumps 289
12.2.5 Gradient Boost with Other Predictors 290
12.2.6 Example: Is a Prescriber an Opiate Prescriber? 291
12.2.7 Pruning the Boosted Predictor with the Lasso 293
12.2.8 Gradient Boosting Software 294

12.3 You Should . 299
12.3.1 Remember These Definitions 299
12.3.2 Remember These Terms . 299
12.3.3 Remember These Facts . 299
12.3.4 Remember These Procedures 300
12.3.5 Be Able to . 300

V Graphical Models 303

13 Hidden Markov Models 305
13.1 Markov Chains . 305

13.1.1 Transition Probability Matrices 309
13.1.2 Stationary Distributions . 311
13.1.3 Example: Markov Chain Models of Text 313

13.2 Hidden Markov Models and Dynamic Programming 316
13.2.1 Hidden Markov Models . 316
13.2.2 Picturing Inference with a Trellis 317
13.2.3 Dynamic Programming for HMMs: Formalities 320
13.2.4 Example: Simple Communication Errors 321

13.3 Learning an HMM . 323
13.3.1 When the States Have Meaning 324
13.3.2 Learning an HMM with EM 324

13.4 You Should . 329
13.4.1 Remember These Terms . 329
13.4.2 Remember These Facts . 330
13.4.3 Be Able to . 330

14 Learning Sequence Models Discriminatively 333
14.1 Graphical Models . 333

14.1.1 Inference and Graphs . 334
14.1.2 Graphical Models . 336
14.1.3 Learning in Graphical Models 337

14.2 Conditional Random Field Models for Sequences 338
14.2.1 MEMMs and Label Bias . 339
14.2.2 Conditional Random Field Models 341
14.2.3 Learning a CRF Takes Care 342

xvii

14.3 Discriminative Learning of CRFs . 343
14.3.1 Representing the Model . 343
14.3.2 Example: Modelling a Sequence of Digits 344
14.3.3 Setting Up the Learning Problem 345
14.3.4 Evaluating the Gradient . 346

14.4 You Should . 348
14.4.1 Remember These Terms . 348
14.4.2 Remember These Procedures 348
14.4.3 Be Able to . 348

15 Mean Field Inference 351
15.1 Useful but Intractable Models . 351

15.1.1 Denoising Binary Images with Boltzmann Machines 352
15.1.2 A Discrete Markov Random Field 353
15.1.3 Denoising and Segmenting with Discrete MRFs 354
15.1.4 MAP Inference in Discrete MRFs Can Be Hard 357

15.2 Variational Inference . 358
15.2.1 The KL Divergence . 359
15.2.2 The Variational Free Energy 360

15.3 Example: Variational Inference for Boltzmann Machines 361
15.4 You Should . 364

15.4.1 Remember These Terms . 364
15.4.2 Remember These Facts . 364
15.4.3 Be Able to . 364

VI Deep Networks 365

16 Simple Neural Networks 367
16.1 Units and Classification . 367

16.1.1 Building a Classifier out of Units: The Cost Function 368
16.1.2 Building a Classifier out of Units: Strategy 369
16.1.3 Building a Classifier out of Units: Training 370

16.2 Example: Classifying Credit Card Accounts 372
16.3 Layers and Networks . 377

16.3.1 Stacking Layers . 377
16.3.2 Jacobians and the Gradient 379
16.3.3 Setting up Multiple Layers 380
16.3.4 Gradients and Backpropagation 381

16.4 Training Multilayer Networks . 383
16.4.1 Software Environments . 385
16.4.2 Dropout and Redundant Units 386
16.4.3 Example: Credit Card Accounts Revisited 387
16.4.4 Advanced Tricks: Gradient Scaling 390

16.5 You Should . 394
16.5.1 Remember These Terms . 394
16.5.2 Remember These Facts . 394
16.5.3 Remember These Procedures 394
16.5.4 Be Able to . 395

xviii

17 Simple Image Classifiers 399
17.1 Image Classification . 399

17.1.1 Pattern Detection by Convolution 401
17.1.2 Convolutional Layers upon Convolutional Layers 407

17.2 Two Practical Image Classifiers . 408
17.2.1 Example: Classifying MNIST 410
17.2.2 Example: Classifying CIFAR-10 412
17.2.3 Quirks: Adversarial Examples 418

17.3 You Should . 420
17.3.1 Remember These Definitions 420
17.3.2 Remember These Terms . 420
17.3.3 Remember These Facts . 420
17.3.4 Remember These Procedures 420
17.3.5 Be Able to . 420

18 Classifying Images and Detecting Objects 423
18.1 Image Classification . 423

18.1.1 Datasets for Classifying Images of Objects 424
18.1.2 Datasets for Classifying Images of Scenes 426
18.1.3 Augmentation and Ensembles 427
18.1.4 AlexNet . 428
18.1.5 VGGNet . 430
18.1.6 Batch Normalization . 432
18.1.7 Computation Graphs . 433
18.1.8 Inception Networks . 434
18.1.9 Residual Networks . 436

18.2 Object Detection . 438
18.2.1 How Object Detectors Work 438
18.2.2 Selective Search . 440
18.2.3 R-CNN, Fast R-CNN and Faster R-CNN 441
18.2.4 YOLO . 443
18.2.5 Evaluating Detectors . 445

18.3 Further Reading . 447
18.4 You Should . 449

18.4.1 Remember These Terms . 449
18.4.2 Remember These Facts . 449
18.4.3 Be Able to . 450

19 Small Codes for Big Signals 455
19.1 Better Low Dimensional Maps . 455

19.1.1 Sammon Mapping . 456
19.1.2 T-SNE . 457

19.2 Maps That Make Low-D Representations 460
19.2.1 Encoders, Decoders, and Autoencoders 461
19.2.2 Making Data Blocks Bigger 462
19.2.3 The Denoising Autoencoder 465

xix

19.3 Generating Images from Examples 469
19.3.1 Variational Autoencoders . 470
19.3.2 Adversarial Losses: Fooling a Classifier 471
19.3.3 Matching Distributions with Test Functions 473
19.3.4 Matching Distributions by Looking at Distances 474

19.4 You Should . 475
19.4.1 Remember These Terms . 475
19.4.2 Remember These Facts . 476
19.4.3 Be Able to . 476

Index 479

Index: Useful Facts 485

Index: Procedures 487

Index: Worked Examples 489

Index: Remember This 491

About the Author

David Forsyth grew up in Cape Town. He received his B.Sc. (Elec. Eng.)
and M.Sc. (Elec. Eng.) from the University of the Witwatersrand, Johannesburg,
in 1984 and in 1986, respectively and D.Phil. from Balliol College, Oxford, in 1989.
He spent 3 years on the Faculty at the University of Iowa and 10 years on the Fac-
ulty at the University of California at Berkeley and then moved to the University
of Illinois. He served as program co-chair for IEEE Computer Vision and Pattern
Recognition in 2000, 2011, 2018, and 2021; general co-chair for CVPR 2006 and
ICCV 2019, and program co-chair for the European Conference on Computer Vision
2008 and is a regular member of the program committee of all major international
conferences on computer vision. He has also served six terms on the SIGGRAPH
program committee. In 2006, he received an IEEE Technical Achievement Award
and in 2009 and 2014 he was named an IEEE Fellow and an ACM Fellow, respec-
tively; he served as editor in chief of IEEE TPAMI from 2014 to 2017; he is lead
coauthor of Computer Vision: A Modern Approach, a textbook of computer vi-
sion that ran to two editions and four languages; and is sole author of Probability
and Statistics for Computer Science, which provides the background for this book.
Among a variety of odd hobbies, he is a compulsive diver, certified up to normoxic
trimix level.

xxi

P A R T O N E

Classification

C H A P T E R 1

Learning to Classify

A classifier is a procedure that accepts a set of features and produces a class
label for them. Classifiers are immensely useful, and find wide application, because
many problems are naturally classification problems. For example, if you wish
to determine whether to place an advert on a webpage or not, you would use a
classifier (i.e., look at the page, and say yes or no according to some rule). As
another example, if you have a program that you found for free on the web, you
would use a classifier to decide whether it was safe to run it (i.e., look at the
program, and say yes or no according to some rule). As yet another example,
credit card companies must decide whether a transaction is good or fraudulent.

All these examples are two-class classifiers, but in many cases it is natural
to have more classes. You can think of sorting laundry as applying a multiclass
classifier. You can think of doctors as complex multiclass classifiers: a doctor
accepts a set of features (your complaints, answers to questions, and so on) and
then produces a response which we can describe as a class. The grading procedure
for any class is a multiclass classifier: it accepts a set of features—performance in
tests, homeworks, and so on—and produces a class label (the letter grade).

A classifier is usually trained by obtaining a set of labelled training exam-
ples and then searching for a classifier that optimizes some cost function which is
evaluated on the training data. What makes training classifiers interesting is that
performance on training data doesn’t really matter. What matters is performance
on run-time data, which may be extremely hard to evaluate because one often does
not know the correct answer for that data. For example, we wish to classify credit
card transactions as safe or fraudulent. We could obtain a set of transactions with
true labels, and train with those. But what we care about is new transactions,
where it would be very difficult to know whether the classifier’s answers are right.
To be able to do anything at all, the set of labelled examples must be representative
of future examples in some strong way. We will always assume that the labelled
examples are an IID sample from the set of all possible examples, though we never
use the assumption explicitly.

Remember This: A classifier is a procedure that accepts a set of fea-
tures and produces a label. Classifiers are trained on labelled examples, but
the goal is to get a classifier that performs well on data which is not seen
at the time of training. Training a classifier requires labelled data that is
representative of future data.

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_1

1.1. Classification: The Big Ideas 4

1.1 Classification: The Big Ideas

We will write the training dataset (xi, yi). For the i’th example, xi represents the
values taken by a collection of features. In the simplest case, xi would be a vector
of real numbers. In some cases, xi could contain categorical data or even unknown
values. Although xi isn’t guaranteed to be a vector, it’s usually referred to as a
feature vector. The yi are labels giving the type of the object that generated the
example. We must use these labelled examples to come up with a classifier.

1.1.1 The Error Rate and Other Summaries of Performance

We can summarize the performance of any particular classifier using the error or
total error rate (the percentage of classification attempts that gave the wrong
answer) and the accuracy (the percentage of classification attempts that gave the
right answer). For most practical cases, even the best choice of classifier will make
mistakes. For example, an alien tries to classify humans into male and female, using
only height as a feature. Whatever the alien’s classifier does with that feature, it
will make mistakes. This is because the classifier must choose, for each value of
height, whether to label the humans with that height male or female. But for the
vast majority of heights, there are some males and some females with that height,
and so the alien’s classifier must make some mistakes.

As the example suggests, a particular feature vector x may appear with dif-
ferent labels (so the alien will see six foot males and six foot females, quite possibly
in the training dataset and certainly in future data). Labels appear with some
probability conditioned on the observations, P (y|x). If there are parts of the fea-
ture space where P (x) is relatively large (so we expect to see observations of that
form) and where P (y|x) has relatively large values for more than one label, even
the best possible classifier will have a high error rate. If we knew P (y|x) (which is
seldom the case), we could identify the classifier with the smallest error rate and
compute its error rate. The minimum expected error rate obtained with the best
possible classifier applied to a particular problem is known as the Bayes risk for
that problem. In most cases, it is hard to know what the Bayes risk is, because to
compute it requires knowing P (y|x), which isn’t usually known.

The error rate of a classifier is not that meaningful on its own, because we don’t
usually know the Bayes risk for a problem. It is more helpful to compare a particular
classifier with some natural alternatives, sometimes called baselines. The choice
of baseline for a particular problem is almost always a matter of application logic.
The simplest general baseline is a know-nothing strategy. Imagine classifying the
data without using the feature vector at all—how well does this strategy do? If
each of the C classes occurs with the same frequency, then it’s enough to label
the data by choosing a label uniformly and at random, and the error rate for this
strategy is 1− 1/C. If one class is more common than the others, the lowest error
rate is obtained by labelling everything with that class. This comparison is often
known as comparing to chance.

It is very common to deal with data where there are only two labels. You
should keep in mind this means the highest possible error rate is 50%—if you have
a classifier with a higher error rate, you can improve it by switching the outputs. If
one class is much more common than the other, training becomes more complicated

1.1. Classification: The Big Ideas 5

because the best strategy—labelling everything with the common class—becomes
hard to beat.

Remember This: Classifier performance is summarized by either the
total error rate or the accuracy. You will very seldom know what the best
possible performance for a classifier on a problem is. You should always
compare performance to baselines. Chance is one baseline that can be sur-
prisingly strong.

1.1.2 More Detailed Evaluation

The error rate is a fairly crude summary of the classifier’s behavior. For a two-
class classifier and a 0-1 loss function, one can report the false positive rate
(the percentage of negative test data that was classified positive) and the false
negative rate (the percentage of positive test data that was classified negative).
Note that it is important to provide both, because a classifier with a low false
positive rate tends to have a high false negative rate, and vice versa. As a result, you
should be suspicious of reports that give one number but not the other. Alternative
numbers that are reported sometimes include the sensitivity (the percentage of
true positives that are classified positive) and the specificity (the percentage of
true negatives that are classified negative).

Predict

T
ru
e

0 1 2 3 4 Class error
0 151 7 2 3 1 7.9%
1 32 5 9 9 0 91%
2 10 9 7 9 1 81%
3 6 13 9 5 2 86%
4 2 3 2 6 0 100%

TABLE 1.1: The class-confusion matrix for a multiclass classifier. This is a table of
cells, where the i, j’th cell contains the count of cases where the true label was i
and the predicted label was j (some people show the fraction of cases rather than
the count). Further details about the dataset and this example appear in Worked
Example 2.1

The false positive and false negative rates of a two-class classifier can be
generalized to evaluate a multiclass classifier, yielding the class-confusion matrix.
This is a table of cells, where the i, j’th cell contains the count of cases where the
true label was i and the predicted label was j (some people show the fraction of
cases rather than the count). Table 1.1 gives an example. This is a class-confusion
matrix from a classifier built on a dataset where one tries to predict the degree of
heart disease from a collection of physiological and physical measurements. There

1.1. Classification: The Big Ideas 6

are five classes (0, . . . , 4). The i, j’th cell of the table shows the number of data
points of true class i that were classified to have class j. As I find it hard to recall
whether rows or columns represent true or predicted classes, I have marked this
on the table. For each row, there is a class error rate, which is the percentage
of data points of that class that were misclassified. The first thing to look at in a
table like this is the diagonal; if the largest values appear there, then the classifier
is working well. This clearly isn’t what is happening for Table 1.1. Instead, you
can see that the method is very good at telling whether a data point is in class 0 or
not (the class error rate is rather small), but cannot distinguish between the other
classes. This is a strong hint that the data can’t be used to draw the distinctions
that we want. It might be a lot better to work with a different set of classes.

Remember This: When more detailed evaluation of a classifier is
required, look at the false positive rate and the false negative rate. Always
look at both, because doing well at one number tends to result in doing poorly
on the other. The class-confusion matrix summarizes errors for multiclass
classification.

1.1.3 Overfitting and Cross-Validation

Choosing and evaluating a classifier takes some care. The goal is to get a classifier
that works well on future data for which we might never know the true label, using
a training set of labelled examples. This isn’t necessarily easy. For example, think
about the (silly) classifier that takes any data point and, if it is the same as a point
in the training set, emits the class of that point; otherwise, it chooses randomly
between the classes.

The training error of a classifier is the error rate on examples used to train
the classifier. In contrast, the test error is error on examples not used to train
the classifier. Classifiers that have small training error might not have small test
error, because the classification procedure is chosen to do well on the training data.
This effect is sometimes called overfitting. Other names include selection bias,
because the training data has been selected and so isn’t exactly like the test data,
and generalizing badly, because the classifier must generalize from the training
data to the test data. The effect occurs because the classifier has been chosen
to perform well on the training dataset. An efficient training procedure is quite
likely to find special properties of the training dataset that aren’t representative of
the test dataset, because the training dataset is not the same as the test dataset.
The training dataset is typically a sample of all the data one might like to have
classified, and so is quite likely a lot smaller than the test dataset. Because it is a
sample, it may have quirks that don’t appear in the test dataset. One consequence
of overfitting is that classifiers should always be evaluated on data that was not
used in training.

Now assume that we want to estimate the error rate of the classifier on test
data. We cannot estimate the error rate of the classifier using data that was used

1.2. Classifying with Nearest Neighbors 7

to train the classifier, because the classifier has been trained to do well on that
data, which will mean our error rate estimate will be too low. An alternative is
to separate out some training data to form a validation set (confusingly, this is
sometimes called a test set), then train the classifier on the rest of the data, and
evaluate on the validation set. The error estimate on the validation set is the value
of a random variable, because the validation set is a sample of all possible data you
might classify. But this error estimate is unbiased, meaning that the expected
value of the error estimate is the true value of the error (details in Sect. 3.1).

However, separating out some training data presents the difficulty that the
classifier will not be the best possible, because we left out some training data when
we trained it. This issue can become a significant nuisance when we are trying to tell
which of a set of classifiers to use—did the classifier perform poorly on validation
data because it is not suited to the problem representation or because it was trained
on too little data?

We can resolve this problem with cross-validation, which involves repeat-
edly: splitting data into training and validation sets uniformly and at random,
training a classifier on the training set, evaluating it on the validation set, and
then averaging the error over all splits. Each different split is usually called a
fold. This procedure yields an estimate of the likely future performance of a classi-
fier, at the expense of substantial computation. A common form of this algorithm
uses a single data item to form a validation set. This is known as leave-one-out
cross-validation.

Remember This: Classifiers usually perform better on training data
than on test data, because the classifier was chosen to do well on the training
data. This effect is known as overfitting. To get an accurate estimate of
future performance, classifiers should always be evaluated on data that was
not used in training.

1.2 Classifying with Nearest Neighbors

Assume we have a labelled dataset consisting of N pairs (xi, yi). Here xi is the i’th
feature vector, and yi is the i’th class label. We wish to predict the label y for any
new example x; this is often known as a query example or query. Here is a really
effective strategy: Find the labelled example xc that is closest to x, and report the
class of that example.

How well can we expect this strategy to work? A precise analysis would take
us way out of our way, but simple reasoning is informative. Assume there are two
classes, 1 and −1 (the reasoning will work for more, but the description is slightly
more involved). We expect that, if u and v are sufficiently close, then p(y|u) is
similar to p(y|v). This means that if a labelled example xi is close to x, then p(y|x)
is similar to p(y|xi). Furthermore, we expect that queries are “like” the labelled
dataset, in the sense that points that are common (resp. rare) in the labelled data
will appear often (resp. seldom) in the queries.

1.2. Classifying with Nearest Neighbors 8

Now imagine the query comes from a location where p(y = 1|x) is large.
The closest labelled example xc should be nearby (because queries are “like” the
labelled data) and should be labelled with 1 (because nearby examples have similar
label probabilities). So the method should produce the right answer with high
probability.

Alternatively, imagine the query comes from a location where p(y = 1|x) is
about the same as p(y = −1|x). The closest labelled example xc should be nearby
(because queries are “like” the labelled data). But think about a set of examples
that are about as close. The labels in this set should vary significantly (because
p(y = 1|x) is about the same as p(y = −1|x). This means that, if the query is
labelled 1 (resp. −1), a small change in the query will cause it to be labelled −1
(resp. 1). In these regions the classifier will tend to make mistakes more often, as
it should. Using a great deal more of this kind of reasoning, nearest neighbors can
be shown to produce an error that is no worse than twice the best error rate, if the
method has enough examples. There is no prospect of seeing enough examples in
practice for this result to apply.

One important generalization is to find the k nearest neighbors, then choose
a label from those. A (k, l) nearest neighbor classifier finds the k example points
closest to the point being considered, and classifies this point with the class that has
the highest number of votes, as long as this class has more than l votes (otherwise,
the point is classified as unknown). In practice, one seldom uses more than three
nearest neighbors.

Remember This: Classifying with nearest neighbors can be straightfor-
ward and accurate. With enough training data, there are theoretical guar-
antees that the error rate is no worse than twice the best possible error.
These usually don’t apply to practice.

1.2.1 Practical Considerations for Nearest Neighbors

One practical difficulty in using nearest neighbor classifiers is you need a lot of
labelled examples for the method to work. For some problems, this means you
can’t use the method. A second practical difficulty is you need to use a sensible
choice of distance. For features that are obviously of the same type, such as lengths,
the usual metric may be good enough. But what if one feature is a length, one is
a color, and one is an angle? It is almost always a good idea to scale each feature
independently so that the variance of each feature is the same, or at least consistent;
this prevents features with very large scales dominating those with very small scales.
Another possibility is to transform the features so that the covariance matrix is the
identity (this is sometimes known as whitening; the method follows from the ideas
of Chap. 4). This can be hard to do if the dimension is so large that the covariance
matrix is hard to estimate.

A third practical difficulty is you need to be able to find the nearest neighbors
for your query point. This is surprisingly difficult to do faster than simply checking

1.2. Classifying with Nearest Neighbors 9

the distance to each training example separately. If your intuition tells you to use
a tree and the difficulty will go away, your intuition isn’t right. It turns out that
nearest neighbor in high dimensions is one of those problems that is a lot harder
than it seems, because high dimensional spaces are quite hard to reason about
informally. There’s a long history of methods that appear to be efficient but, once
carefully investigated, turn out to be bad.

Fortunately, it is usually enough to use an approximate nearest neighbor.
This is an example that is, with high probability, almost as close to the query point
as the nearest neighbor is. Obtaining an approximate nearest neighbor is very much
easier than obtaining a nearest neighbor. We can’t go into the details here, but
there are several distinct methods for finding approximate nearest neighbors. Each
involves a series of tuning constants and so on, and, on different datasets, different
methods and different choices of tuning constant produce the best results. If you
want to use a nearest neighbor classifier on a lot of run-time data, it is usually worth
a careful search over methods and tuning constants to find an algorithm that yields
a very fast response to a query. It is known how to do this search, and there is
excellent software available (FLANN, http://www.cs.ubc.ca/∼mariusm/index.php/
FLANN/FLANN, by Marius Muja and David G. Lowe).

It is straightforward to use cross-validation to estimate the error rate of a near-
est neighbor classifier. Split the labelled training data into two pieces, a (typically
large) training set and a (typically small) validation set. Now take each element of
the validation set and label it with the label of the closest element of the training
set. Compute the fraction of these attempts that produce an error (the true label
and predicted labels differ). Now repeat this for a different split, and average the
errors over splits. With care, the code you’ll write is shorter than this description.

Worked Example 1.1 Classifying Using Nearest Neighbors

Build a nearest neighbor classifier to classify the MNIST digit data. This
dataset is very widely used to check simple methods. It was originally con-
structed by Yann Lecun, Corinna Cortes, and Christopher J.C. Burges. It has
been extensively studied. You can find this dataset in several places. The orig-
inal dataset is at http://yann.lecun.com/exdb/mnist/. The version I used was
used for a Kaggle competition (so I didn’t have to decompress Lecun’s original
format). I found it at http://www.kaggle.com/c/digit-recognizer.

Solution: I used R for this problem. As you’d expect, R has nearest neighbor
code that seems quite good (I haven’t had any real problems with it, at least).
There isn’t really all that much to say about the code. I used the R FNN
package. I trained on 1000 of the 42,000 examples in the Kaggle version, and
I tested on the next 200 examples. For this (rather small) case, I found the
following class-confusion matrix:

http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
http://yann.lecun.com/exdb/mnist/
http://www.kaggle.com/c/digit-recognizer

1.3. Naive Bayes 10

Predict

T
ru
e

0 1 2 3 4 5 6 7 8 9
0 12 0 0 0 0 0 0 0 0 0
1 0 20 4 1 0 1 0 2 2 1
2 0 0 20 1 0 0 0 0 0 0
3 0 0 0 12 0 0 0 0 4 0
4 0 0 0 0 18 0 0 0 1 1
5 0 0 0 0 0 19 0 0 1 0
6 1 0 0 0 0 0 18 0 0 0
7 0 0 1 0 0 0 0 19 0 2
8 0 0 1 0 0 0 0 0 16 0
9 0 0 0 2 3 1 0 1 1 14

There are no class error rates here, because I couldn’t recall the magic line of
R to get them. However, you can see the classifier works rather well for this
case. MNIST is comprehensively explored in the exercises.

Remember This: Nearest neighbor has good properties. With enough
training data and a low enough dimension, the error rate is guaranteed to be
no more than twice the best error rate. The method is wonderfully flexible
about the labels the classifier predicts. Nothing changes when you go from
a two-class classifier to a multiclass classifier.
There are important difficulties. You need a large training dataset. If you
don’t have a reliable measure of how far apart two things are, you shouldn’t
be doing nearest neighbors. And you need to be able to query a large dataset
of examples to find the nearest neighbor of a point.

1.3 Naive Bayes

One straightforward source of a classifier is a probability model. For the moment,
assume we know p(y|x) for our data. Assume also that all errors in classification
are equally important. Then the following rule produces smallest possible expected
classification error rate:

For a test example x, report the class y that has the highest value of
(p(y|x)). If the largest value is achieved by more than one class, choose
randomly from that set of classes.

1.3. Naive Bayes 11

Usually, we do not have p(y|x). If we have p(x|y) (often called either a
likelihood or class conditional probability) and p(y) (often called a prior),
then we can use Bayes’ rule to form

p(y|x) = p(x|y)p(y)
p(x)

(the posterior). This isn’t much help in this form, but write x(j) for the j’th com-
ponent of x. Now assume that features are conditionally independent conditioned
on the class of the data item. Our assumption is

p(x|y) =
∏

j

p(x(j)|y).

It is very seldom the case that this assumption is true, but it turns out to be fruitful
to pretend that it is. This assumption means that

p(y|x) =
p(x|y)p(y)

p(x)

=

(∏
j p(x

(j)|y)
)
p(y)

p(x)

∝

⎛

⎝
∏

j

p(x(j)|y)

⎞

⎠ p(y).

Now to make a decision, we need to choose the class that has the largest value
of p(y|x). In turn, this means we need only to know the posterior values up to scale
at x, so we don’t need to estimate p(x). In the case of where all errors have the
same cost, this yields the rule

choose y such that
[(∏

j p(x
(j)|y)

)
p(y)

]
is largest.

This rule suffers from a practical problem. You can’t actually multiply a large
number of probabilities and expect to get an answer that a floating point system
thinks is different from zero. Instead, you should add the log probabilities. Notice
that the logarithm function has one nice property: it is monotonic, meaning that
a > b is equivalent to log a > log b. This means the following, more practical, rule
is equivalent:

choose y such that
[(∑

j log p(x
(j)|y)

)
+ log p(y)

]
is largest.

To use this rule, we need models for p(y) and for p(x(j)|y) for each j. The usual
way to find a model of p(y) is to count the number of training examples in each
class, then divide by the number of classes.

1.3. Naive Bayes 12

It turns out that simple parametric models work really well for p(x(j)|y). For
example, one could use a normal distribution for each x(j) in turn, for each possible
value of y, using the training data. The parameters of this normal distribution are
chosen using maximum likelihood. The logic of the measurements might suggest
other distributions, too. If one of the x(j)’s was a count, we might fit a Poisson
distribution (again, using maximum likelihood). If it was a 0-1 variable, we might
fit a Bernoulli distribution. If it was a discrete variable, then we might use a
multinomial model. Even if the x(j) is continuous, we can use a multinomial model
by quantizing to some fixed set of values; this can be quite effective.

A naive Bayes classifier that has poorly fitting models for each feature could
classify data very well. This (reliably confusing) property occurs because classifi-
cation doesn’t require a good model of p(x|y), or even of p(y|x). All that needs
to happen is that, at any x, the score for the right class is higher than the score
for all other classes. Figure 1.1 shows an example where a normal model of the
class-conditional histograms is poor, but the normal model will result in a good
naive Bayes classifier. This works because a data item from (say) class one will
reliably have a larger probability under the normal model for class one than it will
for class two.

Figure 1.1: Naive Bayes can work well even if the class-conditional models are poor.
The figure shows class-conditional histograms of a feature x for two different classes.
The histograms have been normalized so that the counts sum to one, so you can
think of them as probability distributions. It should be fairly obvious that a normal
model (superimposed) doesn’t describe these histograms well. However, the normal
model will result in a good naive Bayes classifier

1.3. Naive Bayes 13

Worked Example 1.2 Classifying Breast Tissue Samples

The “breast tissue” dataset at https://archive.ics.uci.edu/ml/datasets/
Breast+Tissue contains measurements of a variety of properties of six different
classes of breast tissue. Build and evaluate a naive Bayes classifier to
distinguish between the classes automatically from the measurements.

Solution: I used R for this example, because I could then use packages easily.
The main difficulty here is finding appropriate packages, understanding their
documentation, and checking they’re right (unless you want to write the source
yourself, which really isn’t all that hard). I used the R package caret to do
train–test splits, cross-validation, etc. on the naive Bayes classifier in the R
package klaR. I separated out a test set randomly (approx 20% of the cases
for each class, chosen at random), then trained with cross-validation on the
remainder. I used a normal model for each feature. The class-confusion matrix
on the test set was

Predict

T
ru
e

adi car con fad gla mas
adi 2 0 0 0 0 0
car 0 3 0 0 0 1
con 2 0 2 0 0 0
fad 0 0 0 0 1 0
gla 0 0 0 0 2 1
mas 0 1 0 3 0 1

which is fairly good. The accuracy is 52%. In the training data, the classes are
nearly balanced and there are six classes, meaning that chance is about 17%.
These numbers, and the class-confusion matrix, will vary with test–train split.
I have not averaged over splits, which would give a somewhat more accurate
estimate of accuracy.

1.3.1 Cross-Validation to Choose a Model

Naive Bayes presents us with a new problem. We can choose from several different
types of model for p(x(j)|y) (e.g., normal models vs. Poisson models), and we need
to know which one produces the best classifier. We also need to know how well that
classifier will work. It is natural to use cross-validation to estimate how well each
type of model works. You can’t just look at every type of model for every variable,
because that would yield too many models. Instead, choose M types of model
that seem plausible (for example, by looking at histograms of feature components
conditioned on class and using your judgement). Now compute a cross-validated
error for each of M types of model, and choose the type of model with lowest cross-
validated error. Computing the cross-validated error involves repeatedly splitting
the training set into two pieces, fitting the model on one and computing the error on
the other, then averaging the errors. Notice this means the model you fit to each

https://archive.ics.uci.edu/ml/datasets/Breast+Tissue
https://archive.ics.uci.edu/ml/datasets/Breast+Tissue

1.3. Naive Bayes 14

fold will have slightly different parameter values, because each fold has slightly
different training data.

However, once we have chosen the type of model, we have two problems. First,
we do not know the correct values for the parameters of the best type of model. For
each fold in the cross-validation, we estimated slightly different parameters because
we trained on slightly different data, and we don’t know which estimate is right.
Second, we do not have a good estimate of how well the best model works. This is
because we chose the type of model with the smallest error estimate, which is likely
smaller than the true error estimate for that type of model.

This problem is easily dealt with if you have a reasonably sized dataset. Split
the labelled dataset into two pieces. One (call it the training set) is used for
training and for choosing a model type, the other (call it the test set) is used only
for evaluating the final model. Now for each type of model, compute the cross-
validated error on the training set.

Now use the cross-validated error to choose the type of model. Very often
this just means you choose the type that produces the lowest cross-validated error,
but there might be cases where two types produce about the same error and one is
a lot faster to evaluate, etc. Take the entire training set, and use this to estimate
the parameters for that type of model. This estimate should be (a little) better
than any of the estimates produced in the cross-validation, because it uses (slightly)
more data. Finally, evaluate the resulting model on the test set.

This procedure is rather harder to describe than to do (there’s a pretty natural
set of nested loops here). There are some strong advantages. First, the estimate
of how well a particular model type works is unbiased, because we evaluated on
data not used on training. Second, once you have chosen a type of model, the
parameter estimate you make is the best you can because you used all the training
set to obtain it. Finally, your estimate of how well that particular model works is
unbiased, too, because you obtained it using data that wasn’t used to train or to
select a model.

Procedure: 1.1 Cross-Validation to Choose a Model

Divide your dataset D into two parts at random: one is the training set
(R); and one the test set (E).
For each model in the collection that interests you:

• repeatedly

– split R into two parts at random, Rt and V;
– fit the model using Rt to train;
– compute an estimate of the error using that model with V.

• Now report the average of these errors as the error of the model.

Now use these average errors (and possibly other criteria like speed,
etc.) to choose a model. Compute an estimate of the error rate using
your chosen model on E .

1.3. Naive Bayes 15

1.3.2 Missing Data

Missing data occurs when some values in the training data are unknown. This can
happen in a variety of ways. Someone didn’t record the value; someone recorded
it incorrectly, and you know the value is wrong but you don’t know what the right
one is; the dataset was damaged in storage or transmission; instruments failed;
and so on. This is quite typical of data where the feature values are obtained by
measuring effects in the real world. It’s much less common where the feature values
are computed from signals—for example, when one tries to classify digital images,
or sound recordings.

Missing data can be a serious nuisance in classification problems, because
many methods cannot handle incomplete feature vectors. For example, nearest
neighbor has no real way of proceeding if some components of the feature vector
are unknown. If there are relatively few incomplete feature vectors, one could just
drop them from the dataset and proceed, but this should strike you as inefficient.

Naive Bayes is rather good at handling data where there are many incomplete
feature vectors in quite a simple way. For example, assume for some i, we wish to
fit p(xi|y) with a normal distribution. We need to estimate the mean and standard
deviation of that normal distribution (which we do with maximum likelihood, as
one should). If not every example has a known value of xi, this really doesn’t
matter; we simply omit the unknown number from the estimate. Write xi,j for the
value of xi for the j’th example. To estimate the mean, we form

∑
j∈cases with known values xi,j

number of cases with known values

and so on.
Dealing with missing data during classification is easy, too. We need to look

for the y that produces the largest value of
∑

i log p(xi|y). We can’t evaluate p(xi|y)
if the value of that feature is missing—but it is missing for each class. We can just
leave that term out of the sum, and proceed. This procedure is fine if data is
missing as a result of “noise” (meaning that the missing terms are independent
of class). If the missing terms depend on the class, there is much more we could
do—for example, we might build a model of the class-conditional density of missing
terms.

Notice that if some values of a discrete feature xi don’t appear for some class,
you could end up with a model of p(xi|y) that had zeros for some values. This almost
inevitably leads to serious trouble, because it means your model states you cannot
ever observe that value for a data item of that class. This isn’t a safe property:
it is hardly ever the case that not observing something means you cannot observe
it. A simple, but useful, fix is to add one to all small counts. More sophisticated
methods are available, but well beyond our scope.

1.4. You Should 16

Remember This: Naive Bayes classifiers are straightforward to build,
and very effective. Dealing with missing data is easy. Experience has shown
they are particularly effective at high dimensional data. A straightforward
variant of cross-validation helps select which particular model to use.

1.4 You Should

1.4.1 Remember These Terms

classifier . 3
feature vector . 4
error . 4
total error rate . 4
accuracy . 4
Bayes risk . 4
baselines . 4
comparing to chance . 4
false positive rate . 5
false negative rate . 5
sensitivity . 5
specificity . 5
class-confusion matrix . 5
class error rate . 6
training error . 6
test error . 6
overfitting . 6
selection bias . 6
generalizing badly . 6
validation set . 7
unbiased . 7
cross-validation . 7
fold . 7
leave-one-out cross-validation . 7
whitening . 8
approximate nearest neighbor . 9
likelihood . 11
class conditional probability . 11
prior . 11
posterior . 11

1.4.2 Remember These Facts

Classifier: definition . 3
Classifier performance is summarized by accuracy or error rate . . . 5
Look at false positive rate and false negative rate together 6

1.4. You Should 17

Do not evaluate a classifier on training data 7
Nearest neighbors has theoretical guarantees on the error rate 8
Good and bad properties of nearest neighbors 10
Naive Bayes is simple, and good for high dimensional data 16

1.4.3 Remember These Procedures

Cross-Validation to Choose a Model 14

1.4.4 Be Able to

• build a nearest neighbors classifier using your preferred software package, and
produce a cross-validated estimate of its error rate or its accuracy;

• build a naive Bayes classifier using your preferred software package, and pro-
duce a cross-validated estimate of its error rate or its accuracy.

Programming Exercises

1.1. The UC Irvine machine learning data repository hosts a famous collection of
data on whether a patient has diabetes (the Pima Indians dataset), originally
owned by the National Institute of Diabetes and Digestive and Kidney Diseases
and donated by Vincent Sigillito. This can be found at http://archive.ics.uci.
edu/ml/datasets/Pima+Indians+Diabetes. This data has a set of attributes of
patients, and a categorical variable telling whether the patient is diabetic or
not. This is an exercise oriented to users of R, because you can use some
packages to help.
(a) Build a simple naive Bayes classifier to classify this dataset. You should

hold out 20% of the data for evaluation, and use the other 80% for training.
You should use a normal distribution to model each of the class-conditional
distributions. You should write this classifier by yourself.

(b) Now use the caret and klaR packages to build a naive Bayes classifier
for this data. The caret package does cross-validation (look at train)
and can be used to hold out data. The klaR package can estimate class-
conditional densities using a density estimation procedure that I will de-
scribe much later in the course. Use the cross-validation mechanisms in
caret to estimate the accuracy of your classifier.

1.2. The UC Irvine machine learning data repository hosts a collection of data
on student performance in Portugal, donated by Paulo Cortez, University of
Minho, in Portugal. You can find this data at https://archive.ics.uci.edu/ml/
datasets/Student+Performance. It is described in P. Cortez and A. Silva. “Us-
ing Data Mining to Predict Secondary School Student Performance,” In A.
Brito and J. Teixeira Eds., Proceedings of 5th FUture BUsiness TEChnology
Conference (FUBUTEC 2008) pp. 5–12, Porto, Portugal, April, 2008,
There are two datasets (for grades in mathematics and for grades in Por-
tuguese). There are 30 attributes each for 649 students, and 3 values that can
be predicted (G1, G2, and G3). Of these, ignore G1 and G2.
(a) Use the mathematics dataset. Take the G3 attribute, and quantize this

into two classes, G3 > 12 and G3 ≤ 12. Build and evaluate a naive
Bayes classifier that predicts G3 from all attributes except G1 and G2.
You should build this classifier from scratch (i.e., DON’T use the pack-
ages described in the code snippets). For binary attributes, you should

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
https://archive.ics.uci.edu/ml/datasets/Student+Performance
https://archive.ics.uci.edu/ml/datasets/Student+Performance

1.4. You Should 18

use a binomial model. For the attributes described as “numeric,” which
take a small set of values, you should use a multinomial model. For the
attributes described as “nominal,” which take a small set of values, you
should again use a multinomial model. Ignore the “absence” attribute.
Estimate accuracy by cross-validation. You should use at least 10 folds,
excluding 15% of the data at random to serve as test data, and average
the accuracy over those folds. Report the mean and standard deviation
of the accuracy over the folds.

(b) Now revise your classifier of the previous part so that, for the attributes
described as “numeric,” which take a small set of values, you use a multi-
nomial model. For the attributes described as “nominal,” which take a
small set of values, you should still use a multinomial model. Ignore the
“absence” attribute. Estimate accuracy by cross-validation. You should
use at least 10 folds, excluding 15% of the data at random to serve as test
data, and average the accuracy over those folds. Report the mean and
standard deviation of the accuracy over the folds.

(c) Which classifier do you believe is more accurate and why?
1.3. The UC Irvine machine learning data repository hosts a collection of data on

heart disease. The data was collected and supplied by Andras Janosi, M.D., of
the Hungarian Institute of Cardiology, Budapest; William Steinbrunn, M.D.,
of the University Hospital, Zurich, Switzerland; Matthias Pfisterer, M.D., of
the University Hospital, Basel, Switzerland; and Robert Detrano, M.D., Ph.D.,
of the V.A. Medical Center, Long Beach and Cleveland Clinic Foundation. You
can find this data at https://archive.ics.uci.edu/ml/datasets/Heart+Disease.
Use the processed Cleveland dataset, where there are a total of 303 instances
with 14 attributes each. The irrelevant attributes described in the text have
been removed in these. The 14’th attribute is the disease diagnosis. There are
records with missing attributes, and you should drop these.
(a) Take the disease attribute, and quantize this into two classes, num = 0

and num > 0. Build and evaluate a naive Bayes classifier that predicts
the class from all other attributes Estimate accuracy by cross-validation.
You should use at least 10 folds, excluding 15% of the data at random to
serve as test data, and average the accuracy over those folds. Report the
mean and standard deviation of the accuracy over the folds.

(b) Now revise your classifier to predict each of the possible values of the
disease attribute (0–4 as I recall). Estimate accuracy by cross-validation.
You should use at least 10 folds, excluding 15% of the data at random to
serve as test data, and average the accuracy over those folds. Report the
mean and standard deviation of the accuracy over the folds.

1.4. The UC Irvine machine learning data repository hosts a collection of data
on breast cancer diagnostics, donated by Olvi Mangasarian, Nick Street, and
William H. Wolberg. You can find this data at http://archive.ics.uci.edu/ml/
datasets/Breast+Cancer+Wisconsin+(Diagnostic). For each record, there is an
id number, 10 continuous variables, and a class (benign or malignant). There
are 569 examples. Separate this dataset randomly into 100 validation, 100
test, and 369 training examples.
Write a program to train a support vector machine on this data using stochastic
gradient descent. You should not use a package to train the classifier (you don’t
really need one), but your own code. You should ignore the id number, and use
the continuous variables as a feature vector. You should scale these variables
so each has unit variance. You should search for an appropriate value of the

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

1.4. You Should 19

regularization constant, trying at least the values λ = [1e− 3, 1e− 2, 1e− 1, 1].
Use the validation set for this search.
You should use at least 50 epochs of at least 100 steps each. In each epoch,
you should separate out 50 training examples at random for evaluation. You
should compute the accuracy of the current classifier on the set held out for
the epoch every 10 steps. You should produce:
(a) A plot of the accuracy every 10 steps, for each value of the regularization

constant.
(b) Your estimate of the best value of the regularization constant, together

with a brief description of why you believe that is a good value.
(c) Your estimate of the accuracy of the best classifier on held-out data

C H A P T E R 2

SVMs and Random Forests

2.1 The Support Vector Machine

Assume we have a labelled dataset consisting of N pairs (xi, yi). Here xi is the
i’th feature vector, and yi is the i’th class label. We will assume that there are two
classes, and that yi is either 1 or −1. We wish to predict the sign of y for any point
x. We will use a linear classifier, so that for a new data item x, we will predict

sign
(
aTx+ b

)

and the particular classifier we use is given by our choice of a and b.
You should think of a and b as representing a hyperplane, given by the points

where aTx + b = 0. Notice that the magnitude of aTx + b grows as the point x
moves further away from the hyperplane. This hyperplane separates the positive
data from the negative data, and is an example of a decision boundary. When
a point crosses the decision boundary, the label predicted for that point changes.
All classifiers have decision boundaries. Searching for the decision boundary that
yields the best behavior is a fruitful strategy for building classifiers.

Example: 2.1 A Linear Model with a Single Feature

Assume we use a linear model with one feature. For an example with
feature value x, this predicts sign (ax+ b). Equivalently, the model tests
x against the threshold −b/a.

Example: 2.2 A Linear Model with Two Features

Assume we use a linear model with two features. For an example with
feature vector x, the model predicts sign

(
aTx+ b

)
. The sign changes

along the line aTx+b = 0. You should check that this is, indeed, a line.
On one side of this line, the model makes positive predictions; on the
other, negative. Which side is which can be swapped by multiplying a
and b by −1.

This family of classifiers may look bad to you, and it is easy to come up with
examples that it misclassifies badly. In fact, the family is extremely strong. First,
it is easy to estimate the best choice of rule for very large datasets. Second, linear

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_2

2.1. The Support Vector Machine 22

classifiers have a long history of working very well in practice on real data. Third,
linear classifiers are fast to evaluate.

In practice, examples that are classified badly by the linear rule usually are
classified badly because there are too few features. Remember the case of the
alien who classified humans into male and female by looking at their heights; if
that alien had looked at their chromosomes as well as height, the error rate would
have been smaller. In practical examples, experience shows that the error rate of
a poorly performing linear classifier can usually be improved by adding features to
the vector x.

We will choose a and b by choosing values that minimize a cost function. The
cost function must achieve two goals. First, the cost function needs a term that
ensures each training example should be on the right side of the decision boundary
(or, at least, not be too far on the wrong side). Second, the cost function needs a
term that should penalize errors on query examples. The appropriate cost function
has the form:

Training error cost + λ penalty term

where λ is an unknown weight that balances these two goals. We will eventually
set the value of λ by a search process.

2.1.1 The Hinge Loss

Write
γi = aTxi + b

for the value that the linear function takes on example i. Write C(γi, yi) for a
function that compares γi with yi. The training error cost will be of the form

(1/N)
N∑

i=1

C(γi, yi).

A good choice of C should have some important properties.

• If γi and yi have different signs, then C should be large, because the classifier
will make the wrong prediction for this training example. Furthermore, if γi
and yi have different signs and γi has large magnitude, then the classifier will
very likely make the wrong prediction for test examples that are close to xi.
This is because the magnitude of (aTx+ b) grows as x gets further from the
decision boundary. So C should get larger as the magnitude of γi gets larger
in this case.

• If γi and yi have the same signs, but γi has small magnitude, then the clas-
sifier will classify xi correctly, but might not classify points that are nearby
correctly. This is because a small magnitude of γi means that xi is close to
the decision boundary, so there will be points nearby that are on the other
side of the decision boundary. We want to discourage this, so C should not
be zero in this case.

• Finally, if γi and yi have the same signs and γi has large magnitude, then C
can be zero because xi is on the right side of the decision boundary and so
are all the points near to xi.

2.1. The Support Vector Machine 23

−4 −2 0 2 4
0

1

2

3

4

5
Hinge loss for a single example
with y=1

Lo
ss

γ

Figure 2.1: The hinge loss, plotted for the case yi = 1. The horizontal variable is
the γi = aTxi + b of the text. Notice that giving a strong negative response to this
positive example causes a loss that grows linearly as the magnitude of the response
grows. Notice also that giving an insufficiently positive response also causes a loss.
Giving a strongly positive response is free

The hinge loss (Fig. 2.1), which takes the form

C(yi, γi) = max(0, 1− yiγi),

has these properties.

• If γi and yi have different signs, then C will be large. Furthermore, the cost
grows linearly as xi moves further away from the boundary on the wrong side.

• If γi and yi have the same sign, but yiγi < 1 (which means that xi is close to
the decision boundary), there is some cost, which gets larger as xi gets closer
to the boundary.

• If yiγi > 1 (so the classifier predicts the sign correctly and xi is far from the
boundary) there is no cost.

A classifier trained to minimize this loss is encouraged to (a) make strong positive
(or negative) predictions for positive (or negative) examples and (b) for examples
it gets wrong, make predictions with the smallest magnitude that it can. A linear
classifier trained with the hinge loss is known as a support vector machine or
SVM.

Remember This: An SVM is a linear classifier trained with the hinge
loss. The hinge loss is a cost function that evaluates errors made by two-
class classifiers. If an example is classified with the right sign and a large
magnitude, the loss is zero; if the magnitude is small, the loss is larger; and
if the example has the wrong sign, the loss is larger still. When the loss is
zero, it grows linearly in the magnitude of the prediction.

2.1. The Support Vector Machine 24

2.1.2 Regularization

The penalty term is needed, because the hinge loss has one odd property. Assume
that the pair a, b correctly classifies all training examples, so that yi(a

Txi+ b) > 0.
Then we can always ensure that the hinge loss for the dataset is zero, by scaling a
and b, because you can choose a scale so that yj(a

Txj + b) > 1 for every example
index j. This scale hasn’t changed the result of the classification rule on the training
data. Now if a and b result in a hinge loss of zero, then so do 2a and 2b. This should
worry you, because it means we can’t choose the classifier parameters uniquely.

Now think about future examples. We don’t know what their feature values
will be, and we don’t know their labels. But we do know that the hinge loss for an
example with feature vector x and unknown label y will be max(0, 1−y

[
aTx+ b

]
).

Now imagine the hinge loss for this example isn’t zero. If the example is classified
correctly, then it is close to the decision boundary. We expect that there are fewer
of these examples than examples that are far from the decision boundary and on
the wrong side, so we concentrate on examples that are misclassified. For misclas-
sified examples, if ||a || is small, then at least the hinge loss will be small. By this
argument, we would like to achieve a small value of the hinge loss on the training
examples using an a that has small length, because that a will yield smaller hinge
loss on errors in test.

We can do so by adding a penalty term to the hinge loss to favor solutions
where ||a || is small. To obtain an a of small length, it is enough to ensure that
(1/2)aTa is small (the factor of 1/2 makes the gradient cleaner). This penalty term
will ensure that there is a unique choice of classifier parameters in the case the hinge
loss is zero. Experience (and some theory we can’t go into here) shows that having a
small ||a || helps even if there is no pair that classifies all training examples correctly.
Doing so improves the error on future examples. Adding a penalty term to improve
the solution of a learning problem is sometimes referred to as regularization. The
penalty term is often referred to as a regularizer, because it tends to discourage
solutions that are large (and so have possible high loss on future test data) but are
not strongly supported by the training data. The parameter λ is often referred to
as the regularization parameter.

Using the hinge loss to form the training cost, and regularizing with a penalty
term (1/2)aTa means our cost function is

S(a, b;λ) =

[
(1/N)

N∑

i=1

max(0, 1− yi
(
aTxi + b

)
)

]
+ λ

(
aTa

2

)
.

There are now two problems to solve. First, assume we know λ; we will need to
find a and b that minimize S(a, b;λ). Second, we have no theory that tells us how
to choose λ, so we will need to search for a good value.

Remember This: A regularization term is a penalty that discourages
a classifier from making large errors on future data. Because the future
data is unknown, the best available strategy is to force future examples that
are misclassified to have small hinge loss. This is achieved by discouraging
classifiers with large values of ||a ||.

2.1. The Support Vector Machine 25

2.1.3 Finding a Classifier with Stochastic Gradient Descent

The usual recipes for finding a minimum are ineffective for our cost function. First,
write u = [a, b] for the vector obtained by stacking the vector a together with b. We
have a function g(u), and we wish to obtain a value of u that achieves the minimum
for that function. Sometimes we can solve a problem like this by constructing the
gradient and finding a value of u that makes the gradient zero, but not this time
(try it; the max creates problems). We must use a numerical method.

Typical numerical methods take a point u(n), update it to u(n+1), then check
to see whether the result is a minimum. This process is started from a start point.
The choice of start point may or may not matter for general problems, but for our
problem a random start point is fine. The update is usually obtained by computing a
direction p(n) such that for small values of η, g(u(n)+ηp(n)) is smaller than g(u(n)).
Such a direction is known as a descent direction. We must then determine how
far to go along the descent direction, a process known as line search.

Obtaining a Descent Direction: One method to choose a descent direction
is gradient descent, which uses the negative gradient of the function. Recall our
notation that

u =

⎛

⎜⎜⎝

u1

u2

. . .
ud

⎞

⎟⎟⎠

and that

∇g =

⎛

⎜⎜⎜⎝

∂g
∂u1
∂g
∂u2

. . .
∂g
∂ud

⎞

⎟⎟⎟⎠ .

We can write a Taylor series expansion for the function g(u(n) + ηp(n)). We have
that

g(u(n) + ηp(n)) = g(u(n)) + η
[
(∇g)Tp(n)

]
+O(η2)

This means that we can expect that if

p(n) = −∇g(u(n)),

we expect that, at least for small values of h, g(u(n) + ηp(n)) will be less than
g(u(n)). This works (as long as g is differentiable, and quite often when it isn’t)
because g must go down for at least small steps in this direction.

But recall that our cost function is a sum of a penalty term and one error cost
per example. This means the cost function looks like

g(u) =

[
(1/N)

N∑

i=1

gi(u)

]
+ g0(u),

2.1. The Support Vector Machine 26

as a function of u. Gradient descent would require us to form

−∇g(u) = −
([

(1/N)

N∑

i=1

∇gi(u)

]
+∇g0(u)

)

and then take a small step in this direction. But if N is large, this is unattractive,
as we might have to sum a lot of terms. This happens a lot in building classifiers,
where you might quite reasonably expect to deal with millions (billions; perhaps
trillions) of examples. Touching each example at each step really is impractical.

Stochastic gradient descent is an algorithm that replaces the exact gra-
dient with an approximation that has a random error, but is simple and quick to
compute. The term

(
1

N

) N∑

i=1

∇gi(u).

is a population mean, and we know (or should know!) how to deal with those.
We can estimate this term by drawing a random sample (a batch) of Nb (the
batch size) examples, with replacement, from the population of N examples, then
computing the mean for that sample. We approximate the population mean by

(
1

Nb

) ∑

j∈batch
∇gj(u).

The batch size is usually determined using considerations of computer architecture
(how many examples fit neatly into cache?) or of database design (how many
examples are recovered in one disk cycle?). One common choice is Nb = 1, which
is the same as choosing one example uniformly and at random. We form

p
(n)
Nb

= −

⎛

⎝

⎡

⎣(1/Nb)
∑

j∈batch
∇gi(u)

⎤

⎦+∇g0(u)

⎞

⎠

and then take a small step along p
(n)
Nb

. Our new point becomes

u(n+1) = u(n) + ηp
(n)
Nb

,

where η is called the steplength (or sometimes stepsize or learning rate, even
though it isn’t the size or the length of the step we take, or a rate!).

Because the expected value of the sample mean is the population mean, if
we take many small steps along pNb

, they should average out to a step backwards
along the gradient. This approach is known as stochastic gradient descent because
we’re not going along the gradient, but along a random vector which is the gradient
only in expectation. It isn’t obvious that stochastic gradient descent is a good idea.
Although each step is easy to take, we may need to take more steps. The question
is then whether we gain in the increased speed of the step what we lose by having
to take more steps. Not much is known theoretically, but in practice the approach
is hugely successful for training classifiers.

2.1. The Support Vector Machine 27

Choosing a Steplength: Choosing a steplength η takes some work. We
can’t search for the step that gives us the best value of g, because we don’t want to
evaluate the function g (doing so involves looking at each of the gi terms). Instead,
we use an η that is large at the start—so that the method can explore large changes
in the values of the classifier parameters—and small steps later—so that it settles
down. The choice of how η gets smaller is often known as a steplength schedule
or learning schedule.

Here are useful examples of steplength schedules. Often, you can tell how
many steps are required to have seen the whole dataset; this is called an epoch. A
common steplength schedule sets the steplength in the e’th epoch to be

η(e) =
m

e+ n
,

wherem and n are constants chosen by experiment with small subsets of the dataset.
When there are a lot of examples, an epoch is a long time to fix the steplength, and
this approach can reduce the steplength too slowly. Instead, you can divide training
into what I shall call seasons (blocks of a fixed number of iterations, smaller than
epochs), and make the steplength a function of the season number.

There is no good test for whether stochastic gradient descent has converged
to the right answer, because natural tests involve evaluating the gradient and the
function, and doing so is expensive. More usual is to plot the error as a function
of iteration on the validation set, and interrupt or stop training when the error
has reached an acceptable level. The error (resp. accuracy) should vary randomly
(because the steps are taken in directions that only approximate the gradient) but
should decrease (resp. increase) overall as training proceeds (because the steps do
approximate the gradient). Figures 2.2 and 2.3 show examples of these curves,
which are sometimes known as learning curves.

Remember This: Stochastic gradient descent is the dominant training
paradigm for classifiers. Stochastic gradient descent uses a sample of the
training data to estimate the gradient. Doing so results in a fast but noisy
gradient estimate. This is particularly valuable when training sets are very
large (as they should be). Steplengths are chosen according to a steplength
schedule, and there is no test for convergence other than evaluating classifier
behavior on validation data.

2.1.4 Searching for λ

We do not know a good value for λ. We will obtain a value by choosing a set of
different values, fitting an SVM using each value, and taking the λ value that will
yield the best SVM. Experience has shown that the performance of a method is not
profoundly sensitive to the value of λ, so that we can look at values spaced quite far
apart. It is usual to take some small number (say, 1e− 4), then multiply by powers

2.1. The Support Vector Machine 28

of 10 (or 3, if you’re feeling fussy and have a fast computer). So, for example, we
might look at λ ∈ {1e− 4, 1e− 3, 1e− 2, 1e− 1}. We know how to fit an SVM to
a particular value of λ (Sect. 2.1.3). The problem is to choose the value that yields
the best SVM, and to use that to get the best classifier.

We have seen a version of this problem before (Sect. 1.3.1). There, we chose
from several different types of model to obtain the best naive Bayes classifier. The
recipe from that section is easily adapted to the current problem. We regard each
different λ value as representing a different model. We split the data into two pieces:
one is a training set, used for fitting and choosing models; the other is a test set,
used for evaluating the final chosen model.

Now for each value of λ, compute the cross-validated error of an SVM using
that λ on the training set. Do this by repeatedly splitting the training set into
two pieces (training and validation); fitting the SVM with that λ to the training
piece using stochastic gradient descent; evaluating the error on the validation piece;
and averaging these errors. Now use the cross-validated error to choose the best
λ value. Very often this just means you choose the value that produces the lowest
cross-validated error, but there might be cases where two values produce about the
same error and one is preferred for some other reason. Notice that you can compute
the standard deviation of the cross-validated error as well as the mean, so you can
tell whether differences between cross-validated errors are significant.

Now take the entire training set, and use this to fit an SVM for the chosen λ
value. This should be (a little) better than any of the SVMs obtained in the cross-
validation, because it uses (slightly) more data. Finally, evaluate the resulting SVM
on the test set.

This procedure is rather harder to describe than to do (there’s a pretty natural
set of nested loops here). There are some strong advantages. First, the estimate of
how well a particular SVM type works is unbiased, because we evaluated on data
not used on training. Second, once you have chosen the cross-validation parameter,
the SVM you fit is the best you can fit because you used all the training set to obtain
it. Finally, your estimate of how well that particular SVM works is unbiased, too,
because you obtained it using data that wasn’t used to train or to select a model.

Procedure: 2.1 Choosing a λ

Divide your dataset D into two parts at random: one is the training
set (R) and one the test set (E). Choose a set of λ values that you will
evaluate (typically, differing by factors of 10).
For each λ in the collection that interests you:

• repeatedly

– split R into two parts at random, Rt and V;
– fit the model using Rt to train;
– compute an estimate of the error using that model with V.

• Now report the average of these errors as the error of the model.

2.1. The Support Vector Machine 29

Now use these average errors (and possibly other criteria like speed,
etc.) to choose a value of λ. Compute an estimate of the error rate
using your chosen model on E .

2.1.5 Summary: Training with Stochastic Gradient Descent

I have summarized the SVM training procedure in a set of boxes, below. You should
be aware that the recipe there admits many useful variations, though. One useful
practical trick is to rescale the feature vector components so each has unit variance.
This doesn’t change anything conceptual as the best choice of decision boundary
for rescaled data is easily derived from the best choice for unscaled, and vice versa.
Rescaling very often makes stochastic gradient descent perform better because the
method takes steps that are even in each component.

It is quite usual to use packages to fit SVMs, and good packages may use a
variety of tricks which we can’t go into to make training more efficient. Nonetheless,
you should have a grasp of the overall process, because it follows a pattern that
is useful for training other models (among other things, most deep networks are
trained using this pattern).

Procedure: 2.2 Training an SVM: Overall

Start with a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label, either 1 or −1.
Optionally, rescale the xi so that each component has unit variance.
Choose a set of possible values of the regularization weight λ. Separate
the dataset into two sets: test and training. Reserve the test set. For
each value of the regularization weight, use the training set to estimate
the accuracy of an SVM with that λ value, using cross-validation as in
Procedure 2.3 and stochastic gradient descent. Use this information to
choose λ0, the best value of λ (usually, the one that yields the highest
accuracy). Now use the training set to fit the best SVM using λ0 as
the regularization constant. Finally, use the test set to compute the
accuracy or error rate of that SVM, and report that

Procedure: 2.3 Training an SVM: Estimating the Accuracy

Repeatedly: split the training dataset into two components (training
and validation), at random; use the training component to train an
SVM; and compute the accuracy on the validation component. Now
average the resulting accuracy values.

2.1. The Support Vector Machine 30

Procedure: 2.4 Training an SVM: Stochastic Gradient Descent

Obtain u = (a, b) by stochastic gradient descent on the cost function

g(u) =

[
(1/N)

N∑

i=1

gi(u)

]
+ g0(u)

where g0(u) = λ(aTa)/2 and gi(u) = max(0, 1− yi
(
aTxi + b

)
).

Do so by first choosing a fixed number of items per batch Nb, the
number of steps per season Ns, and the number of steps k to take
before evaluating the model (this is usually a lot smaller than Ns).
Choose a random start point. Now iterate:

• Update the stepsize. In the s’th season, the stepsize is typically
η(s) = m

s+n for constants m and n chosen by small-scale experi-
ments.

• Split the training dataset into a training part and a validation
part. This split changes each season. Use the validation set to
get an unbiased estimate of error during that season’s training.

• Now, until the end of the season (i.e., until you have taken Ns

steps):

– Take k steps. Each step is taken by selecting a batch of Nb

data items uniformly and at random from the training part
for that season. Write D for this set. Now compute

p(n) = − 1

Nb

(
∑

i∈D
∇gi(u

(n))

)
− λu(n),

and update the model by computing

u(n+1) = u(n) + ηp(n)

– Evaluate the current model u(n) by computing the accuracy
on the validation part for that season. Plot the accuracy as
a function of step number.

There are two ways to stop. You can choose a fixed number of seasons
(or of epochs) and stop when that is done. Alternatively, you can watch
the error plot and stop when the error reaches some level or meets some
criterion.

2.1.6 Example: Adult Income with an SVM

Here is an example in some detail. I downloaded the dataset at http://archive.
ics.uci.edu/ml/datasets/Adult. This dataset apparently contains 48,842 data items,
but I worked with only the first 32,000. Each consists of a set of numerical and

http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Adult

2.1. The Support Vector Machine 31

categorical features describing a person, together with whether their annual income
is larger than or smaller than 50K$. I ignored the categorical features to prepare
these figures. This isn’t wise if you want a good classifier, but it’s fine for an
example. I used these features to predict whether income is over or under 50K$. I
split the data into 5000 test examples and 27,000 training examples. It’s important
to do so at random. There are 6 numerical features.

Renormalizing the Data: I subtracted the mean (which doesn’t usually
make much difference) and rescaled each so that the variance was 1 (which is often
very important). You should try this example both ways; if you don’t renormalize
the data, it doesn’t work very well.

Setting up Stochastic Gradient Descent: We have estimates a(n) and
b(n) of the classifier parameters, and we want to improve the estimates. I used a
batch size of Nb = 1. Pick the r’th example at random. The gradient is

∇
(
max(0, 1− yr

(
aTxr + b

)
) +

λ

2
aTa

)
.

Assume that yk
(
aTxr + b

)
> 1. In this case, the classifier predicts a score with

the right sign, and a magnitude that is greater than one. Then the first term is
zero, and the gradient of the second term is easy. Now if yk

(
aTxr + b

)
< 1, we

can ignore the max, and the first term is 1 − yr
(
aTxr + b

)
; the gradient is again

easy. If yr
(
aTxr + b

)
= 1, there are two distinct values we could choose for the

gradient, because the max term isn’t differentiable. It does not matter which value
we choose because this situation hardly ever happens. We choose a steplength η,
and update our estimates using this gradient. This yields:

a(n+1) = a(n) − η

{
λa if yk

(
aTxk + b

)
≥ 1

λa− ykx otherwise

and

b(n+1) = b(n) − η

{
0 if yk

(
aTxk + b

)
≥ 1

−yk otherwise
.

Training: I used two different training regimes. In the first training regime,
there were 100 seasons. In each season, I applied 426 steps. For each step, I
selected one data item uniformly at random (sampling with replacement), then
stepped down the gradient. This means the method sees a total of 42,600 data
items. This means that there is a high probability it has touched each data item
once (27,000 isn’t enough, because we are sampling with replacement, so some items
get seen more than once). I chose 5 different values for the regularization parameter
and trained with a steplength of 1/(0.01∗s+50), where s is the season. At the end
of each season, I computed aTa and the accuracy (fraction of examples correctly
classified) of the current classifier on the held-out test examples. Figure 2.2 shows
the results. You should notice that the accuracy changes slightly each season; that
for larger regularizer values aTa is smaller; and that the accuracy settles down to
about 0.8 very quickly.

In the second training regime, there were 100 seasons. In each season, I applied
50 steps. For each step, I selected one data item uniformly at random (sampling

2.1. The Support Vector Machine 32

0 50 100
0

1

2

3

4

5

6

Epoch

Si
ze

 o
f a

1e−7
1e−5
1e−3
1e−1
1

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epoch

H
el

d
ou

t e
rr

or

Figure 2.2: On the left, the magnitude of the weight vector a at the end of each
season for the first training regime described in the text. On the right, the accu-
racy on held-out data at the end of each season. Notice how different choices of
regularization parameter lead to different magnitudes of a; how the method isn’t
particularly sensitive to choice of regularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy

with replacement), then stepped down the gradient. This means the method sees
a total of 5000 data items, and about 3000 unique data items—it hasn’t seen the
whole training set. I chose 5 different values for the regularization parameter and
trained with a steplength of 1/(0.01 ∗ s + 50), where s is the season. At the end
of each season, I computed aTa and the accuracy (fraction of examples correctly
classified) of the current classifier on the held-out test examples. Figure 2.3 shows
the results.

This is an easy classification example. Points worth noting are

• the accuracy makes large changes early, then settles down to make slight
changes each season;

• quite large changes in regularization constant have small effects on the out-
come, but there is a best choice;

• for larger values of the regularization constant, aTa is smaller;
• there isn’t much difference between the two training regimes;
• normalizing the data is important;
• and the method doesn’t need to see all the training data to produce a classifier
that is about as good as it would be if the method had seen all training data.

All of these points are relatively typical of SVMs trained using stochastic gradient
descent with very large datasets.

2.1. The Support Vector Machine 33

0 50 1000

1

2

3

4

5

6

Epoch

Si
ze

 o
f a

1e−7
1e−5
1e−3
1e−1
1

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Epoch

H
el

d
ou

t e
rr

or

Figure 2.3: On the left, the magnitude of the weight vector a at the end of each
season for the second training regime described in the text. On the right, the
accuracy on held-out data at the end of each season. Notice how different choices
of regularization parameter lead to different magnitudes of a; how the method isn’t
particularly sensitive to choice of regularization parameter (they change by factors
of 100); how the accuracy settles down fairly quickly; and how overlarge values of
the regularization parameter do lead to a loss of accuracy

Remember This: Linear SVMs are a go-to classifier. When you have
a binary classification problem, the first step should be to try a linear SVM.
Training with stochastic gradient descent is straightforward and extremely
effective. Finding an appropriate value of the regularization constant re-
quires an easy search. There is an immense quantity of good software
available.

2.1.7 Multiclass Classification with SVMs

I have shown how one trains a linear SVM to make a binary prediction (i.e., predict
one of two outcomes). But what if there are three, or more, labels? In principle,
you could write a binary code for each label, then use a different SVM to predict
each bit of the code. It turns out that this doesn’t work terribly well, because an
error by one of the SVMs is usually catastrophic.

There are two methods that are widely used. In the all-vs-all approach, we
train a binary classifier for each pair of classes. To classify an example, we present it
to each of these classifiers. Each classifier decides which of two classes the example
belongs to, then records a vote for that class. The example gets the class label with
the most votes. This approach is simple, but scales very badly with the number of
classes (you have to build O(N2) different SVMs for N classes).

In the one-vs-all approach, we build a binary classifier for each class. This
classifier must distinguish its class from all the other classes. We then take the class

2.2. Classifying with Random Forests 34

with the largest classifier score. One can think up quite good reasons this approach
shouldn’t work. For one thing, the classifier isn’t told that you intend to use the
score to tell similarity between classes. In practice, the approach works rather well
and is quite widely used. This approach scales a bit better with the number of
classes (O(N)).

Remember This: It is straightforward to build a multiclass classifier
out of binary classifiers. Any decent SVM package will do this for you.

2.2 Classifying with Random Forests

I described a classifier as a rule that takes a feature, and produces a class. One way
to build such a rule is with a sequence of simple tests, where each test is allowed
to use the results of all previous tests. This class of rule can be drawn as a tree
(Fig. 2.4), where each node represents a test, and the edges represent the possible
outcomes of the test. To classify a test item with such a tree, you present it to
the first node; the outcome of the test determines which node it goes to next; and
so on, until the example arrives at a leaf. When it does arrive at a leaf, we label
the test item with the most common label in the leaf. This object is known as a
decision tree. Notice one attractive feature of this decision tree: it deals with
multiple class labels quite easily, because you just label the test item with the most
common label in the leaf that it arrives at when you pass it down the tree.

Figure 2.5 shows a simple 2D dataset with four classes, next to a decision
tree that will correctly classify at least the training data. Actually classifying data
with a tree like this is straightforward. We take the data item, and pass it down
the tree. Notice it can’t go both left and right, because of the way the tests work.

cat

dogtoddler

chair leg

boxsofa

moves

bites

furry

big

cardboard

Figure 2.4: This—the household robot’s guide to obstacles—is a typical decision
tree. I have labelled only one of the outgoing branches, because the other is the
negation. So if the obstacle moves, bites, but isn’t furry, then it’s a toddler. In
general, an item is passed down the tree until it hits a leaf. It is then labelled with
the leaf’s label

2.2. Classifying with Random Forests 35

−5 0 5
−5

0

5

y>.32

x>1.06x>–0.58

*.o+

Figure 2.5: A straightforward decision tree, illustrated in two ways. On the left, I
have given the rules at each split; on the right, I have shown the data points in
two dimensions, and the structure that the tree produces in the feature space

This means each data item arrives at a single leaf. We take the most common label
at the leaf, and give that to the test item. In turn, this means we can build a
geometric structure on the feature space that corresponds to the decision tree. I
have illustrated that structure in Fig. 2.5, where the first decision splits the feature
space in half (which is why the term split is used so often), and then the next
decisions split each of those halves into two.

The important question is how to get the tree from data. It turns out that
the best approach for building a tree incorporates a great deal of randomness. As
a result, we will get a different tree each time we train a tree on a dataset. None of
the individual trees will be particularly good (they are often referred to as “weak
learners”). The natural thing to do is to produce many such trees (a decision
forest), and allow each to vote; the class that gets the most votes, wins. This
strategy is extremely effective.

2.2.1 Building a Decision Tree

There are many algorithms for building decision trees. We will use an approach
chosen for simplicity and effectiveness; be aware there are others. We will always
use a binary tree, because it’s easier to describe and because that’s usual (it doesn’t
change anything important, though). Each node has a decision function, which
takes data items and returns either 1 or −1.

We train the tree by thinking about its effect on the training data. We pass
the whole pool of training data into the root. Any node splits its incoming data
into two pools, left (all the data that the decision function labels 1) and right (ditto,
−1). Finally, each leaf contains a pool of data, which it can’t split because it is a
leaf.

2.2. Classifying with Random Forests 36

Training the tree uses a straightforward algorithm. First, we choose a class of
decision functions to use at each node. It turns out that a very effective algorithm
is to choose a single feature at random, then test whether its value is larger than, or
smaller than a threshold. For this approach to work, one needs to be quite careful
about the choice of threshold, which is what we describe in the next section. Some
minor adjustments, described below, are required if the feature chosen isn’t ordinal.
Surprisingly, being clever about the choice of feature doesn’t seem add a great deal
of value. We won’t spend more time on other kinds of decision function, though
there are lots.

Now assume we use a decision function as described, and we know how to
choose a threshold. We start with the root node, then recursively either split the
pool of data at that node, passing the left pool left and the right pool right, or stop
splitting and return. Splitting involves choosing a decision function from the class
to give the “best” split for a leaf. The main questions are how to choose the best
split (next section), and when to stop.

Stopping is relatively straightforward. Quite simple strategies for stopping
are very good. It is hard to choose a decision function with very little data, so we
must stop splitting when there is too little data at a node. We can tell this is the
case by testing the amount of data against a threshold, chosen by experiment. If all
the data at a node belongs to a single class, there is no point in splitting. Finally,
constructing a tree that is too deep tends to result in generalization problems, so
we usually allow no more than a fixed depth D of splits. Choosing the best splitting
threshold is more complicated.

Figure 2.6 shows two possible splits of a pool of training data. One is quite
obviously a lot better than the other. In the good case, the split separates the pool

o
o

o
o

o
oo

o
o

o

Informative split

x
x

x

x
x

x
x

x
x

x

o
o

o
o

o
oo

o
o

o

Less informative split

x
x

x

x
x

x
x

x
x

x

Figure 2.6: Two possible splits of a pool of training data. Positive data is represented
with an “x,” negative data with a “o.” Notice that if we split this pool with the
informative line, all the points on the left are “o”s, and all the points on the right are
“x”s. This is an excellent choice of split—once we have arrived in a leaf, everything
has the same label. Compare this with the less informative split. We started with
a node that was half “x” and half “o,” and now have two nodes each of which is
half “x” and half “o”—this isn’t an improvement, because we do not know more
about the label as a result of the split

2.2. Classifying with Random Forests 37

o
o

o
o

o
oo

o
o

o

o
o

Less informative splitInformative split
x

x
x

x
x

x
x

x
x

x
x

x

o
o

o
o

o
oo

o
o

o

o
o

x
x

x
x

x
x

x

x
x

x
x

x

x
x

x
x

x
x

x

x
x

x
x

x

o
o

o
o

o
oo

o
o

o

o
o

x
x

x
x

x
x

x

x
x

x
x

x

o
o

o
o

o
oo

o
o

o

o
o

x
x

x
x

x
x

x

x
x

x
x

x

x
x

x
x

x
x

x

x
x

x
x

x

Figure 2.7: Two possible splits of a pool of training data. Positive data is represented
with an “x,” negative data with a “o.” Notice that if we split this pool with the
informative line, all the points on the left are “x”s, and two-thirds of the points
on the right are “o”s. This means that knowing which side of the split a point lies
would give us a good basis for estimating the label. In the less informative case,
about two-thirds of the points on the left are “x”s and about half on the right are
“x”s—knowing which side of the split a point lies is much less useful in deciding
what the label is

into positives and negatives. In the bad case, each side of the split has the same
number of positives and negatives. We cannot usually produce splits as good as
the good case here. What we are looking for is a split that will make the proper
label more certain.

Figure 2.7 shows a more subtle case to illustrate this. The splits in this figure
are obtained by testing the horizontal feature against a threshold. In one case,
the left and the right pools contain about the same fraction of positive (“x”) and
negative (“o”) examples. In the other, the left pool is all positive, and the right
pool is mostly negative. This is the better choice of threshold. If we were to label
any item on the left side positive and any item on the right side negative, the error
rate would be fairly small. If you count, the best error rate for the informative
split is 20% on the training data, and for the uninformative split it is 40% on the
training data.

But we need some way to score the splits, so we can tell which threshold is
best. Notice that, in the uninformative case, knowing that a data item is on the
left (or the right) does not tell me much more about the data than I already knew.
We have that p(1|left pool, uninformative) = 2/3 ≈ 3/5 = p(1|parent pool) and
p(1|right pool, uninformative) = 1/2 ≈ 3/5 = p(1|parent pool). For the informa-
tive pool, knowing a data item is on the left classifies it completely, and knowing
that it is on the right allows us to classify it an error rate of 1/3. The informative
split means that my uncertainty about what class the data item belongs to is signif-
icantly reduced if I know whether it goes left or right. To choose a good threshold,
we need to keep track of how informative the split is.

2.2. Classifying with Random Forests 38

2.2.2 Choosing a Split with Information Gain

Write P for the set of all data at the node. Write Pl for the left pool, and Pr for
the right pool. The entropy of a pool C scores how many bits would be required to
represent the class of an item in that pool, on average. Write n(i; C) for the number
of items of class i in the pool, and N(C) for the number of items in the pool. Then
the entropy H(C) of the pool C is

−
∑

i

n(i; C)
N(C) log2

n(i; C)
N(C) .

It is straightforward that H(P) bits are required to classify an item in the parent
pool P. For an item in the left pool, we need H(Pl) bits; for an item in the right
pool, we need H(Pr) bits. If we split the parent pool, we expect to encounter items
in the left pool with probability

N(Pl)

N(P)

and items in the right pool with probability

N(Pr)

N(P)
.

This means that, on average, we must supply

N(Pl)

N(P)
H(Pl) +

N(Pr)

N(P)
H(Pr)

bits to classify data items if we split the parent pool. Now a good split is one that
results in left and right pools that are informative. In turn, we should need fewer
bits to classify once we have split than we need before the split. You can see the
difference

I(Pl,Pr;P) = H(P)−
(
N(Pl)

N(P)
H(Pl) +

N(Pr)

N(P)
H(Pr)

)

as the information gain caused by the split. This is the average number of bits
that you don’t have to supply if you know which side of the split an example lies.
Better splits have larger information gain.

Recall that our decision function is to choose a feature at random, then test
its value against a threshold. Any data point where the value is larger goes to the
left pool; where the value is smaller goes to the right. This may sound much too
simple to work, but it is actually effective and popular. Assume that we are at
a node, which we will label k. We have the pool of training examples that have
reached that node. The i’th example has a feature vector xi, and each of these
feature vectors is a d-dimensional vector.

We choose an integer j in the range 1, . . . , d uniformly and at random. We

will split on this feature, and we store j in the node. Recall we write x
(j)
i for the

value of the j’th component of the i’th feature vector. We will choose a threshold

tk, and split by testing the sign of x
(j)
i − tk. Choosing the value of tk is easy.

2.2. Classifying with Random Forests 39

ooo
o

x x
x

x

t t t t t t t

ooo
o

x x
x

x

t t t t t t t

o
o

oo
o

o
o

oo
o

o
o

oo
o x

x x
x x

x

x x
x x

x

x x
x x

x

x x
x x

Figure 2.8: We search for a good splitting threshold by looking at values of the
chosen component that yield different splits. On the left, I show a small dataset
and its projection onto the chosen splitting component (the horizontal axis). For
the 8 data points here, there are only 7 threshold values that produce interesting
splits, and these are shown as “t”s on the axis. On the right, I show a larger
dataset; in this case, I have projected only a subset of the data, which results in a
small set of thresholds to search

Assume there are Nk examples in the pool. Then there are Nk − 1 possible values
of tk that lead to different splits. To see this, sort the Nk examples by x(j), then
choose values of tk halfway between example values (Fig. 2.8). For each of these
values, we compute the information gain of the split. We then keep the threshold
with the best information gain.

We can elaborate this procedure in a useful way, by choosing m features at
random, finding the best split for each, then keeping the feature and threshold
value that is best. It is important that m is a lot smaller than the total number
of features—a usual root of thumb is that m is about the square root of the total
number of features. It is usual to choose a single m, and choose that for all the
splits.

Now assume we happen to have chosen to work with a feature that isn’t
ordinal, and so can’t be tested against a threshold. A natural, and effective, strategy
is as follows. We can split such a feature into two pools by flipping an unbiased
coin for each value—if the coin comes up H, any data point with that value goes
left, and if it comes up T , any data point with that value goes right. We chose this
split at random, so it might not be any good. We can come up with a good split by
repeating this procedure F times, computing the information gain for each split,
then keeping the one that has the best information gain. We choose F in advance,
and it usually depends on the number of values the categorical variable can take.

We now have a relatively straightforward blueprint for an algorithm, which I
have put in a box. It’s a blueprint, because there are a variety of ways in which it
can be revised and changed.

2.2. Classifying with Random Forests 40

Procedure: 2.5 Building a Decision Tree: Overall

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Call this dataset
a pool. Now recursively apply the following procedure:

• If the pool is too small, or if all items in the pool have the same
label, or if the depth of the recursion has reached a limit, stop.

• Otherwise, search the features for a good split that divides the
pool into two, then apply this procedure to each child.

We search for a good split by the following procedure:

• Choose a subset of the feature components at random. Typically,
one uses a subset whose size is about the square root of the feature
dimension.

• For each component of this subset, search for a good split. If
the component is ordinal, do so using the procedure of Box 2.6,
otherwise use the procedure of Box 2.7.

Procedure: 2.6 Splitting an Ordinal Feature

We search for a good split on a given ordinal feature by the following
procedure:

• Select a set of possible values for the threshold.
• For each value split the dataset (every data item with a value of
the component below the threshold goes left, others go right), and
compute the information gain for the split.

Keep the threshold that has the largest information gain.
A good set of possible values for the threshold will contain values that
separate the data “reasonably.” If the pool of data is small, you can
project the data onto the feature component (i.e., look at the values of
that component alone), then choose the N − 1 distinct values that lie
between two data points. If it is big, you can randomly select a subset
of the data, then project that subset on the feature component and
choose from the values between data points.

2.2. Classifying with Random Forests 41

Procedure: 2.7 Splitting a Non-ordinal Feature

Split the values this feature takes into sets by flipping an unbiased coin
for each value—if the coin comes up H, any data point with that value
goes left, and if it comes up T , any data point with that value goes
right. Repeat this procedure F times, compute the information gain
for each split, then keep the split that has the best information gain. We
choose F in advance, and it usually depends on the number of values
the categorical variable can take.

2.2.3 Forests

A single decision tree tends to yield poor classifications. One reason is because the
tree is not chosen to give the best classification of its training data. We used a
random selection of splitting variables at each node, so the tree can’t be the “best
possible.” Obtaining the best possible tree presents significant technical difficulties.
It turns out that the tree that gives the best possible results on the training data
can perform rather poorly on test data. The training data is a small subset of
possible examples, and so must differ from the test data. The best possible tree on
the training data might have a large number of small leaves, built using carefully
chosen splits. But the choices that are best for training data might not be best for
test data.

Rather than build the best possible tree, we have built a tree efficiently, but
with number of random choices. If we were to rebuild the tree, we would obtain
a different result. This suggests the following extremely effective strategy: build
many trees, and classify by merging their results.

2.2.4 Building and Evaluating a Decision Forest

There are two important strategies for building and evaluating decision forests. I
am not aware of evidence strongly favoring one over the other, but different software
packages use different strategies, and you should be aware of the options. In one
strategy, we separate labelled data into a training and a test set. We then build
multiple decision trees, training each using the whole training set. Finally, we
evaluate the forest on the test set. In this approach, the forest has not seen some
fraction of the available labelled data, because we used it to test. However, each
tree has seen every training data item.

Procedure: 2.8 Building a Decision Forest

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Separate the dataset
into a test set and a training set. Train multiple distinct decision trees
on the training set, recalling that the use of a random set of components
to find a good split means you will obtain a distinct tree each time.

2.2. Classifying with Random Forests 42

In the other strategy, sometimes called bagging, each time we train a tree we
randomly subsample the labelled data with replacement, to yield a training set the
same size as the original set of labelled data. Notice that there will be duplicates
in this training set, which is like a bootstrap replicate. This training set is often
called a bag. We keep a record of the examples that do not appear in the bag (the
“out of bag” examples). Now to evaluate the forest, we evaluate each tree on its
out of bag examples, and average these error terms. In this approach, the entire
forest has seen all labelled data, and we also get an estimate of error, but no tree
has seen all the training data.

Procedure: 2.9 Building a Decision Forest Using Bagging

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Now build k boot-
strap replicates of the training dataset. Train one decision tree on each
replicate.

2.2.5 Classifying Data Items with a Decision Forest

Once we have a forest, we must classify test data items. There are two major
strategies. The simplest is to classify the item with each tree in the forest, then
take the class with the most votes. This is effective, but discounts some evidence
that might be important. For example, imagine one of the trees in the forest has a
leaf with many data items with the same class label; another tree has a leaf with
exactly one data item in it. One might not want each leaf to have the same vote.

Procedure: 2.10 Classification with a Decision Forest

Given a test example x, pass it down each tree of the forest. Now choose
one of the following strategies.

• Each time the example arrives at a leaf, record one vote for the
label that occurs most often at the leaf. Now choose the label
with the most votes.

• Each time the example arrives at a leaf, record Nl votes for each of
the labels that occur at the leaf, where Nl is the number of times
the label appears in the training data at the leaf. Now choose the
label with the most votes.

An alternative strategy that takes this observation into account is to pass the
test data item down each tree. When it arrives at a leaf, we record one vote for each
of the training data items in that leaf. The vote goes to the class of the training
data item. Finally, we take the class with the most votes. This approach allows
big, accurate leaves to dominate the voting process. Both strategies are in use, and

2.2. Classifying with Random Forests 43

I am not aware of compelling evidence that one is always better than the other.
This may be because the randomness in the training process makes big, accurate
leaves uncommon in practice.

Worked Example 2.1 Classifying Heart Disease Data

Build a random forest classifier to classify the “heart” dataset from the UC
Irvine machine learning repository. The dataset is at http://archive.ics.uci.edu/
ml/datasets/Heart+Disease. There are several versions. You should look at the
processed Cleveland data, which is in the file “processed.cleveland.data.txt”.

Solution: I used the R random forest package. This uses a bagging strategy.
This package makes it quite simple to fit a random forest, as you can see. In
this dataset, variable 14 (V14) takes the value 0, 1, 2, 3, or 4 depending on
the severity of the narrowing of the arteries. Other variables are physiological
and physical measurements pertaining to the patient (read the details on the
website). I tried to predict all five levels of variable 14, using the random
forest as a multivariate classifier. This works rather poorly, as the out-of-bag
class-confusion matrix below shows. The total out-of-bag error rate was 45%.

Predict

T
ru
e

0 1 2 3 4 Class error
0 151 7 2 3 1 7.9%
1 32 5 9 9 0 91%
2 10 9 7 9 1 81%
3 6 13 9 5 2 86%
4 2 3 2 6 0 100%

This is the example of a class-confusion matrix from Table 1.1. Fairly clearly,
one can predict narrowing or no narrowing from the features, but not the
degree of narrowing (at least, not with a random forest). So it is natural to
quantize variable 14 to two levels, 0 (meaning no narrowing) and 1 (meaning
any narrowing, so the original value could have been 1, 2, or 3). I then built a
random forest to predict this quantized variable from the other variables. The
total out-of-bag error rate was 19%, and I obtained the following out-of-bag
class-confusion matrix

Predict

T
ru
e 0 1 Class error

0 138 26 16%
1 31 108 22%

Notice that the false positive rate (16%, from 26/164) is rather better than the
false negative rate (22%). You might wonder whether it is better to train on
and predict 0, . . . , 4, then quantize the predicted value. If you do this, you will
find you get a false positive rate of 7.9%, but a false negative rate that is much
higher (36%, from 50/139). In this application, a false negative is likely more
of a problem than a false positive, so the trade-off is unattractive.

http://archive.ics.uci.edu/ml/datasets/Heart+Disease
http://archive.ics.uci.edu/ml/datasets/Heart+Disease

2.3. You Should 44

Remember This: Random forests are straightforward to build and very
effective. They can predict any kind of label. Good software implementa-
tions are easily available.

2.3 You Should

2.3.1 Remember These Terms

decision boundary . 21
hinge loss . 23
support vector machine . 23
SVM . 23
regularization . 24
regularizer . 24
regularization parameter . 24
descent direction . 25
line search . 25
gradient descent . 25
Stochastic gradient descent . 26
batch . 26
batch size . 26
steplength . 26
stepsize . 26
learning rate . 26
steplength schedule . 27
learning schedule . 27
epoch . 27
learning curves . 27
all-vs-all . 33
one-vs-all . 33
decision tree . 34
decision forest . 35
decision function . 35
information gain . 38
bagging . 42
bag . 42

2.3.2 Remember These Facts

An SVM is a linear classifier trained with the hinge loss 24
Regularization discourages large errors on future data 25
Train linear SVM’s with stochastic gradient descent 27
Linear SVM’s are a go-to classifier 33
Any SVM package should build a multiclass classifier for you 34
Random forests are good and easy 44

2.3. You Should 45

2.3.3 Use These Procedures

Choosing a λ . 28
Training an SVM: Overall . 29
Training an SVM: Estimating the Accuracy 29
Training an SVM: Stochastic Gradient Descent 30
Building a Decision Tree: Overall . 40
Splitting an Ordinal Feature . 40
Splitting a Non-ordinal Feature . 41
Building a Decision Forest . 42
Building a Decision Forest Using Bagging 42
Classification with a Decision Forest 42

2.3.4 Be Able to

• build an SVM using your preferred software package, and produce a cross-
validated estimate of its error rate or its accuracy;

• write code to train an SVM using stochastic gradient descent, and produce a
cross-validated estimate of its error rate or its accuracy;

• and build a decision forest using your preferred software package, and produce
a cross-validated estimate of its error rate or its accuracy.

Programming Exercises

2.1. The UC Irvine machine learning data repository hosts a collection of data
on breast cancer diagnostics, donated by Olvi Mangasarian, Nick Street, and
William H. Wolberg. You can find this data at http://archive.ics.uci.edu/ml/
datasets/Breast+Cancer+Wisconsin+(Diagnostic). For each record, there is an
id number, 10 continuous variables, and a class (benign or malignant). There
are 569 examples. Separate this dataset randomly into 100 validation, 100
test, and 369 training examples.
Write a program to train a support vector machine on this data using stochastic
gradient descent. You should not use a package to train the classifier (you don’t
really need one), but your own code. You should ignore the id number, and use
the continuous variables as a feature vector. You should scale these variables
so each has unit variance. You should search for an appropriate value of the
regularization constant, trying at least the values λ = [1e− 3, 1e− 2, 1e− 1, 1].
Use the validation set for this search.
You should use at least 50 epochs of at least 100 steps each. In each epoch,
you should separate out 50 training examples at random for evaluation. You
should compute the accuracy of the current classifier on the set held out for
the epoch every 10 steps. You should produce:
(a) A plot of the accuracy every 10 steps, for each value of the regularization

constant.
(b) Your estimate of the best value of the regularization constant, together

with a brief description of why you believe that is a good value.
(c) Your estimate of the accuracy of the best classifier on held-out data

2.2. The UC Irvine machine learning data repository hosts a collection of data on
adult income, donated by Ronny Kohavi and Barry Becker. You can find this
data at https://archive.ics.uci.edu/ml/datasets/Adult. For each record, there is

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Adult

2.3. You Should 46

a set of continuous attributes, and a class ≥50K or <50K. There are 48,842 ex-
amples. You should use only the continuous attributes (see the description on
the web page) and drop examples where there are missing values of the contin-
uous attributes. Separate the resulting dataset randomly into 10% validation,
10% test, and 80% training examples.
Write a program to train a support vector machine on this data using stochastic
gradient descent. You should not use a package to train the classifier (you don’t
really need one), but your own code. You should ignore the id number, and use
the continuous variables as a feature vector. You should scale these variables so
that each has unit variance. You should search for an appropriate value of the
regularization constant, trying at least the values λ = [1e− 3, 1e− 2, 1e− 1, 1].
Use the validation set for this search
You should use at least 50 epochs of at least 300 steps each. In each epoch,
you should separate out 50 training examples at random for evaluation. You
should compute the accuracy of the current classifier on the set held out for
the epoch every 30 steps. You should produce:
(a) A plot of the accuracy every 30 steps, for each value of the regularization

constant.
(b) Your estimate of the best value of the regularization constant, together

with a brief description of why you believe that is a good value.
(c) Your estimate of the accuracy of the best classifier on held-out data

2.3. The UC Irvine machine learning data repository hosts a collection of data on
the whether p53 expression is active or inactive. You can find out what this
means, and more information about the dataset, by reading: Danziger, S.A.,
Baronio, R., Ho, L., Hall, L., Salmon, K., Hatfield, G.W., Kaiser, P., and
Lathrop, R.H. “Predicting Positive p53 Cancer Rescue Regions Using Most
Informative Positive (MIP) Active Learning,” PLOS Computational Biology,
5(9), 2009; Danziger, S.A., Zeng, J., Wang, Y., Brachmann, R.K. and Lathrop,
R.H. “Choosing where to look next in a mutation sequence space: Active
Learning of informative p53 cancer rescue mutants”, Bioinformatics, 23(13),
104–114, 2007; and Danziger, S.A., Swamidass, S.J., Zeng, J., Dearth, L.R.,
Lu, Q., Chen, J.H., Cheng, J., Hoang, V.P., Saigo, H., Luo, R., Baldi, P.,
Brachmann, R.K. and Lathrop, R.H. “Functional census of mutation sequence
spaces: the example of p53 cancer rescue mutants,” IEEE/ACM transactions
on computational biology and bioinformatics, 3, 114–125, 2006.
You can find this data at https://archive.ics.uci.edu/ml/datasets/p53+Mutants.
There are a total of 16,772 instances, with 5409 attributes per instance. At-
tribute 5409 is the class attribute, which is either active or inactive. There are
several versions of this dataset. You should use the version K8.data.
(a) Train an SVM to classify this data, using stochastic gradient descent. You

will need to drop data items with missing values. You should estimate a
regularization constant using cross-validation, trying at least three values.
Your training method should touch at least 50% of the training set data.
You should produce an estimate of the accuracy of this classifier on held-
out data consisting of 10% of the dataset, chosen at random.

(b) Now train a naive Bayes classifier to classify this data. You should produce
an estimate of the accuracy of this classifier on held-out data consisting
of 10% of the dataset, chosen at random.

(c) Compare your classifiers. Which one is better? why?
2.4. The UC Irvine machine learning data repository hosts a collection of data on

whether a mushroom is edible, donated by Jeff Schlimmer and to be found at

https://archive.ics.uci.edu/ml/datasets/p53+Mutants

2.3. You Should 47

http://archive.ics.uci.edu/ml/datasets/Mushroom. This data has a set of cat-
egorical attributes of the mushroom, together with two labels (poisonous or
edible). Use the R random forest package (as in the example in the chapter)
to build a random forest to classify a mushroom as edible or poisonous based
on its attributes.
(a) Produce a class-confusion matrix for this problem. If you eat a mushroom

based on your classifier’s prediction it is edible, what is the probability of
being poisoned?

MNIST Exercises

The following exercises are elaborate, but rewarding. The MNIST dataset is a dataset
of 60,000 training and 10,000 test examples of handwritten digits, originally constructed
by Yann Lecun, Corinna Cortes, and Christopher J.C. Burges. It is very widely used
to check simple methods. There are 10 classes in total (“0” to “9”). This dataset
has been extensively studied, and there is a history of methods and feature construc-
tions at https://en.wikipedia.org/wiki/MNIST database and at http://yann.lecun.com/exdb/
mnist/. You should notice that the best methods perform extremely well. The original
dataset is at http://yann.lecun.com/exdb/mnist/. It is stored in an unusual format, de-
scribed in detail on that website. Writing your own reader is pretty simple, but web
search yields readers for standard packages. There is reader code in matlab available
(at least) at http://ufldl.stanford.edu/wiki/index.php/Using the MNIST Dataset. There is
reader code for R available (at least) at https://stackoverflow.com/questions/21521571/
how-to-read-mnist-database-in-r.

The dataset consists of 28 × 28 images. These were originally binary images, but
appear to be grey level images as a result of some anti-aliasing. I will ignore mid grey
pixels (there aren’t many of them) and call dark pixels “ink pixels,” and light pixels “paper
pixels.” The digit has been centered in the image by centering the center of gravity of the
image pixels. Here are some options for re-centering the digits that I will refer to in the
exercises.

• Untouched: do not re-center the digits, but use the images as is.
• Bounding box: construct a b × b bounding box so that the horizontal (resp.

vertical) range of ink pixels is centered in the box.
• Stretched bounding box: construct an b× b bounding box so that the horizontal

(resp. vertical) range of ink pixels runs the full horizontal (resp. vertical) range of
the box. Obtaining this representation will involve rescaling image pixels: you find
the horizontal and vertical ink range, cut that out of the original image, then resize
the result to b× b.

Once the image has been re-centered, you can compute features. For this exercise, we will
use raw pixels as features.

2.5. Investigate classifying MNIST using naive Bayes. Use the procedures of Sect. 1.3.1
to compare four cases on raw pixel image features. These cases are obtained
by choosing either normal model or binomial model for every feature, and
untouched images or stretched bounding box images.
(a) Which is the best case?
(b) How accurate is the best case? (remember, the answer to this is not

obtained by taking the best accuracy from the previous subexercise—
check Sect. 1.3.1 if you’re vague on this point).

2.6. Investigate classifying MNIST using nearest neighbors. You will use approxi-
mate nearest neighbors. Obtain the FLANN package for approximate nearest

http://archive.ics.uci.edu/ml/datasets/Mushroom
https://en.wikipedia.org/wiki/MNIST_database
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/wiki/index.php/Using_the_MNIST_Dataset
https://stackoverflow.com/questions/21521571/how-to-read-mnist-database-in-r
https://stackoverflow.com/questions/21521571/how-to-read-mnist-database-in-r

2.3. You Should 48

neighbors from http://www.cs.ubc.ca/∼mariusm/index.php/FLANN/FLANN. To
use this package, you should consider first using a function that builds an in-
dex for the training dataset (flann build index(), or variants), then query-
ing with your test points (flann find nearest neighbors index(), or vari-
ants). The alternative (flann find nearest neighbors(), etc.) builds the
index then throws it away, which can be inefficient if you don’t use it correctly.

(a) Compare untouched raw pixels with bounding box raw pixels and with
stretched bounding box raw pixels. Which works better? Why? Is there
a difference in query times?

(b) Does rescaling each feature (i.e., each pixel value) so that it has unit
variance improve either classifier from the previous subexercise?

2.7. Investigate classifying MNIST using an SVM. Compare the following cases:
untouched raw pixels and stretched bounding box raw pixels. Which works
best? Why?

2.8. Investigate classifying MNIST using a decision forest. Using the same param-
eters for your forest construction (i.e., same depth of tree; same number of
trees; etc.), compare the following cases: untouched raw pixels and stretched
bounding box raw pixels. Which works best? Why?

2.9. If you’ve done all four previous exercises, you’re likely tired of MNIST, but
very well informed. Compare your methods to the table of methods at http://
yann.lecun.com/exdb/mnist/. What improvements could you make?

http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

C H A P T E R 3

A Little Learning Theory

The key thing to know about a classifier is how well it will work on future test
data. There are two cases to look at: how error on held-out training data predicts
test error, and how training error predicts test error. Error on held-out training
data is a very good predictor of test error. It’s worth knowing why this should be
true, and Sect. 3.1 deals with that. Our training procedures assume that a classifier
that achieves good training error is going to behave well on test—we need some
reason to be confident that this is the case. It is possible to bound test error from
training error. The bounds are all far too loose to have any practical significance,
but their presence is reassuring.

A classifier with a small gap between training error and test error is said to
generalize well. It is possible to bound test error from training error alone, but
the bounds are loose. The problem is that the training error for a given classifier
is a biased estimate of test error—the classifier was chosen to make the training
error small. If the classifier is chosen from a small finite family, it is relatively
straightforward to bound the test error using the training error. There are two
steps. First, we bound the probability that there is a large gap between test error
and observed error for a single classifier. Then, we bound the probability that any
of the classifiers in our family has a large gap. Equivalently, we can assert that
with high probability, the test error will be smaller than some value. Section 3.2
sketches (without proof) the reasoning.

This reasoning doesn’t deal with the most important case, which is a classifier
chosen from an infinite family. Doing so requires some technical cleverness. One
should think of a classifier as a map from a finite dataset to a string of labels (one
for each data item). We can now ask, for a given dataset, how many strings a
family of classifiers can produce. The key to reasoning about the gap is not the
number of classifiers in the family, but the number of strings it can produce on a
fixed dataset. It turns out that many families produce far fewer strings than you
would expect, and this leads to a bound on the held-out error. Section 3.3 sketches
(without proof) the reasoning.

3.1 Held-Out Loss Predicts Test Loss

It is helpful to generalize to a predictor—a function that accepts features and
reports something. If the report is a label, then the predictor is a classifier. We will
see predictors that produce other reports later. There are many kinds of predictor—
linear functions, trees, and so on. We now take the view that the kind of predictor
you use is just a matter of convenience (what package you have available, what
math you feel like doing, etc.). Once you know what kind of predictor you will use,
you must choose the parameters of that predictor, which you do by minimizing the
training loss (the cost function used to evaluate errors on training data).

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_3

3.1. Held-Out Loss Predicts Test Loss 50

We will work with losses that are on the average over the training data of a
pointwise loss—a function l that accepts three arguments: the true y-value that
the predictor should have produced, a feature vector x, and a prediction F (x). This
average is an estimate of the expected value of that pointwise loss over all data.
Currently, we have seen only one pointwise loss, for the linear SVM

lh(y,x, F) = max(0, 1− yF (x)).

We will see a number of others, with more examples on page 285. The material of
this section applies to all pointwise losses.

Here is the simplest setup. Assume we have used training data to construct
some predictor F . We have a pointwise loss l (y,x, F). We have N pairs (xi, yi) of
held-out data items. We assume that none of these were used in constructing the
predictor, and we assume that these pairs are IID samples from the distribution of
test data, which we write P (X,Y). We now evaluate the held-out loss

1

N

∑

i

l (yi,xi, F).

Under almost all circumstances, this is a rather good estimate of the true expected
loss on all possible test data, which is

EP (X,Y)[l].

In particular, quite simple methods yield bounds on how often the estimate will be
very different from the true value. In turn, this means that the held-out loss is a
good estimate of the test loss.

3.1.1 Sample Means and Expectations

Write L for the random variable whose value is obtained by drawing a sample (xi, yi)
from P (X,Y) and then evaluating l (yi,xi, F). We will study the relationship
between the expected value, E[L], and the approximation obtained by drawing N
IID samples from P (L) and computing 1

N

∑
i Li. The value of the approximation

is a random variable, because we would get a different value if we drew a different
set of samples. We write L(N) for this random variable. Now we are interested in
the mean of that random variable

E

[
L(N)

]

and its variance

var
[
L(N)

]
= E

[
(L(N))2

]
− E

[
L(N)

]2
.

We will assume that the variance is finite.
The Mean: Because expectations are linear, we have that

E

[
L(N)

]
=

1

N
E

[
L(1) + · · ·+ L(1)

]

(where there are N copies of L(1))

= E

[
L(1)

]

= E[L]

3.1. Held-Out Loss Predicts Test Loss 51

The Variance: Write Li for the i’th sample used in computing L(N). We
have L(N) = 1

N

∑
i Li, so

E

[
(L(N))2

]
=

1

N2
E

⎡

⎣
∑

i

L2
i +

∑

i

∑

j �=i

LiLj

⎤

⎦

but E
[
L2
i

]
= E

[
L2
]
. Furthermore, Li and Lj are independent, and E[Li] = E[L] so

we have

E

[
(L(N))2

]
=

(
NE

[
L2
]
+N(N − 1)E[L]

2
)

N2
=

(
E
[
L2
]
− E[L]

2
)

N
+ E

[
L2
]

In turn,

E

[
(L(N))2

]
− E

[
L(N)

]2
=

(
E
[
L2
]
− E[L]

2
)

N
.

There is an easier way to remember this. Write var[L] = E
[
L2
]
− E[L]

2
for the

variance of the random variable L. Then we have

var
[
L(N)

]
=

var[L]

N
.

This should be familiar. It is the standard error of the estimate of the mean. If it
isn’t, it’s worth remembering. The more samples you use in computing the estimate
of the mean, the better the estimate.

Useful Fact: 3.1 Mean and Variance of an Expectation Estimated from
Samples

Write X for some random variable. Write X(N) for the mean of N IID
samples of that random variable. We have that:

E

[
X(N)

]
= E[X]

var
[
X(N)

]
=

var[X]

N

Already, we have two useful facts. First, the held-out loss is the value of a
random variable whose expected value is the test loss. Second, the variance of this
random variable could be quite small, if we compute the held-out loss on enough
held-out examples. If a random variable has small variance, you should expect to
see values that are close to the mean with high probability (otherwise the variance
would be bigger). The next step is to determine how often the held-out loss will be
very different from the test loss. This works for held-out error, too.

3.1. Held-Out Loss Predicts Test Loss 52

3.1.2 Using Chebyshev’s Inequality

Chebyshev’s inequality links the observed value, the expected value, and the vari-
ance of a random variable. You should have seen this before (if you haven’t, look it
up, for example, in “Probability and Statistics for Computer Science”); it appears
in a box below.

Useful Fact: 3.2 Definition: Chebyshev’s Inequality

For a random variable X with finite variance, Chebyshev’s inequal-
ity states

P ({|X − E[X]| ≥ a}) ≤ var[X]

a2
.

Combining Chebyshev’s inequality and the remarks above about sample mean,
we have the result in the box below.

Useful Fact: 3.3 Held-Out Error Predicts Test Error, from Chebyshev

There is some constant C so that

P
({

|L(N) − E[L]| ≥ a
})

≤ C

a2N
.

3.1.3 A Generalization Bound

Most generalization bounds give a value of E[L] that will not be exceeded with
probability 1− δ. The usual form of bound states that, with probability 1− δ,

E[L] ≤ L(N) + g(δ,N, . . .).

Then one studies how g grows as δ shrinks or N grows. It is straightforward to
rearrange the Chebyshev inequality into this form. We have

P
({

|L(N) − E[L]| ≥ a
})

≤ C

a2N
= δ.

Now solve for a in terms of δ. This yields that, with probability 1− δ,

E[L] ≤ L(N) +

√
C
(
1
δ

)

N
.

Notice this bound is likely rather weak, because it makes the worst case assumption
that all of the probability occurs when E[L] is larger than L(N) + w. It does so

3.2. Test and Training Error for a Classifier from a Finite Family 53

because we don’t know where the probability is, and so have to assume it is in the
worst place. For almost every practical case, one does not know

C = EP (X,Y)

[
l 2
]
− (EP (X,Y)[l])2

and estimating C’s value is not usually helpful. I have put this bound in a box for
convenience.

Remember This: There is some constant C depending on the loss and
the data distribution so that with probability 1− δ,

E[L] ≤ L(N) +

√
C
(
1
δ

)

N
.

This result tells us roughly what we’d expect. The held-out error is a good
guide to the test error. Evaluating the held-out error on more data leads to a better
estimate of the test error. The bound is very general, and applies to almost any
form of pointwise loss. The “almost” here is because we must assume that the loss
leads to an L with finite variance, but I have never encountered a loss that does
not. This means the bound applies to both regression and classification problems,
and you can use any kind of classification loss.

There are two problems. First, the bound assumes we have held-out error,
but what we’d really like to do is think about test error in terms of training error.
Second, the bound is quite weak, and we will do better in the next section. But
our better bounds will apply only to a limited range of classification losses.

3.2 Test and Training Error for a Classifier from a Finite Family

The test error of many classifiers can be bounded using the training error. I have
never encountered a practical application for such bounds, but they are reassuring.
They suggest that our original approach (choose a classifier with small training
error) is legitimate, and they cast some light on the way that families of classifiers
behave. However, these bounds are harder to obtain than bounds based on test
error, because the predictor you selected minimizes the training error (at least
approximately). This means that you should expect the training error to be an
estimate of the test error that is too low—the classifier was chosen to achieve low
training error. Equivalently, the training error is a biased estimate of the test error.

The predictor you selected came from a family of predictors, and the bias
depends very strongly on the family you used. One example of a family of pre-
dictors is all linear SVMs. If you’re using a linear SVM, you chose a particular
set of parameter values that yields the SVM you fitted over all the other possible
parameter values. As another example, if you’re using a decision tree, you chose a
tree from the family of all decision trees that have the depth, etc. limits that you
imposed. Rather loosely, if you choose a predictor from a “big” family, then you

3.2. Test and Training Error for a Classifier from a Finite Family 54

should expect the bias is large. You are more likely to find a predictor with low
training error and high test error when you search a big family.

The problem is to distinguish in a sensible way between “big” and “small”
families of predictors. A natural first step is to consider only finite collections of
predictors—for example, you might choose one of 10 fixed linear SVMs. Although
this isn’t a realistic model of learning in practice, it sets us up to deal with more
difficult cases. Some rather clever tricks will then allow us to reason about contin-
uous families of predictors, but these families need to have important and delicate
properties exposed by the analysis.

From now on, we will consider only a 0-1 loss, because this will allow us to
obtain much tighter bounds. We will first construct a bound on the loss of a given
predictor, then consider what happens when that predictor is chosen from a finite
set.

3.2.1 Hoeffding’s Inequality

Chebyshev’s inequality is general, and holds for any random variable with finite
variance. If we assume stronger properties of the random variable, it is possible to
prove very much tighter bounds.

Useful Fact: 3.4 Definition: Hoeffding’s Inequality

Assume that X is a Bernoulli random variable that takes the value
1 with probability θ, and otherwise the value 0. Write X(N) for the
random variable obtained by averaging N IID samples of X. Then
Hoeffding’s inequality states

P
(
|θ −X(N) | ≥ ε

)
≤ 2e−2Nε2

The proof is more elaborate than is really tolerable here, though not hard.
Now assume that our loss is 0-1. This is fairly common for classifiers, where you
lose 1 if the answer is right, and 0 otherwise. The loss at any particular example is
then a Bernoulli random variable, with probability E[L] of taking the value 1. This
means we can use Hoeffding’s inequality to tighten the bound of page 53. Doing so
yields

Remember This: With probability 1− δ,

E[L] ≤ L(N) +

√
log

(
2
δ

)

2N
.

3.2. Test and Training Error for a Classifier from a Finite Family 55

This bound is tighter than the previous bound, because log
(
1
δ

)
≤
(
1
δ

)
. The

difference becomes very important when δ is small, which is the interesting case.

3.2.2 Test from Training for a Finite Family of Predictors

Assume we choose a predictor from a finite set P of M different predictors. We
will consider only a 0-1 loss. Write the expected loss of using predictor F as
EF = EP (X,Y)[l (y,x, F)]. One useful way of thinking of this loss is that it is the

probability that an example will be mislabelled. Write L
(N)
F for the estimate of this

loss obtained from the training set for predictor F . From the Hoeffding inequality,
we have

P
({

|EF − L
(N)
F | ≥ ε

})
≤ 2e−2Nε2

for any predictor F .
What we’d like to know is the generalization error for the predictor that we

pick. This will be difficult to get. Instead, we will consider the worst generalization
error in all the predictors—our predictor must be at least as good as this. Now
consider the event G that at least one predictor has generalization error greater
than ε. We have

G =
{
|EF1

− L
(N)
F1

| ≥ ε
}
∪

{
|EF2

− L
(N)
F2

| ≥ ε
}
∪

. . .{
|EFM

− L
(N)
FM

| ≥ ε
}
.

Recall that, for two events A and B, we have P (A∪B) ≤ P (A)+P (B) with equality
only if the events are disjoint (the events that make up G may not be). But we
have an upper bound on P (G). In particular,

P (G) ≤ P
({

|EF1
− L

(N)
F1

| ≥ ε
})

+

P
({

|EF2
− L

(N)
F2

| ≥ ε
})

+

. . .

P
({

|EFM
− L

(N)
FM

| ≥ ε
})

≤ 2Me−2Nε2

by Hoeffding’s inequality.

This is sometimes known as a union bound.
Now notice that P (G) is the probability that at least one predictor F in P

has |EF − L
(N)
F | ≥ ε. Equivalently, it is the probability that the largest value of

|EF − L
(N)
F | is greater than or equal to ε. So we have

P (G) = P ({at least one predictor has generalization error > ε})

= P

({
sup

F ∈ P
[
|EF − L

(N)
F |

]
≥ ε

})

≤ 2Me−2Nε2 .

3.2. Test and Training Error for a Classifier from a Finite Family 56

It is natural to rearrange this, yielding the bound in the box below. You should
notice this bound does not depend on the way that the predictor was chosen.

Remember This: Assume a 0-1 loss. Choose a predictor F from M
different predictors, write the expected loss of using predictor F as

EF = EP (X,Y)[l (y,x, F)],

and write L
(N)
F for the estimate of this loss obtained from the training set

for predictor F . With probability 1− δ,

EF ≤ L
(N)
F +

√
logM + log

(
2
δ

)

2N

for any predictor F chosen from a set of M predictors.

3.2.3 Number of Examples Required

Generally, we expect it is easier to find a predictor with good training error but
bad test error (a bad predictor) when we search a large family of predictors, and
the M in the bound reflects this. Similarly, if there are relatively few examples, it
should be easy to find such a predictor as well; and if there are many examples, it
should be hard to find one, so there is an N in the bound, too. We can reframe the
bound to ask how many examples we need to ensure that the probability of finding
a bad predictor is small.

A bad predictor F is one where EF − L
(N)
F > ε (we’re not anxious about a

future loss that is better than the observed loss). The probability that at least one

predictor in our collection of M predictors is bad is bounded above by Me−2Nε2 .
Now assume we wish to bound the failure probability above by δ. We can bound
the number of examples we need to use to achieve this, by rearranging expressions,
yielding the bound in the box.

Remember This: A predictor F is bad if EF − L
(N)
F > ε. Write

Pbad for the probability that at least one predictor in the collection (and
so perhaps the predictor we select) is bad. To ensure that Pbad ≤ δ, it is
enough to use

N ≥ 1

2ε2

(
logM + log

(
1

δ

))

examples.

3.3. An Infinite Collection of Predictors 57

3.3 An Infinite Collection of Predictors

Mostly, we’re not that interested in choosing a predictor from a small discrete set.
All the predictors we have looked at in previous chapters come from infinite families.
The bounds in the previous section are not very helpful in this case. With some
mathematical deviousness, we can obtain bounds for infinite sets of predictors, too.

We bounded the generalization error for a finite family of predictors by bound-
ing the worst generalization error in that family. This was straightforward, but it
meant the bound had a term in the number of elements in the family. If this is
infinite, we have a problem. There is an important trick we can use here. It turns
out that the issue to look at is not the number of predictors in the family. Instead,
we think about predictors as functions that produce binary strings (Sect. 3.3.1).
This is because, at each example, the predictor either gets the example right (0) or
wrong (1). Order the examples in some way; then you can think of the predictor as
producing an N element binary string of 0’s and 1’s, where there is one bit for each
of the N examples in the training set. Now if you were to use a different predictor
in the family, you might get a different string. What turns out to be important
is the number s of different possible strings that can appear when you try every
predictor in the family. This number must be finite—there are N examples, and
each is either right or wrong—but might still be as big as 2N .

There are two crucial facts that allow us to bound generalization error. First,
and surprisingly, there are families of predictors where s is small, and grows slowly
with N (Sect. 3.3.1). This means that, rather than worrying about infinite collec-
tions of predictors, we can attend to small finite sets of strings. Second, it turns
out that we can bound generalization error using the difference between errors for
some predictor given two different training datasets (Sect. 3.3.2). Because there
are relatively few strings of errors, it becomes relatively straightforward to reason
about this difference. These two facts yield a crucial bound on generalization error
(Sect. 3.3.3).

Most of the useful facts in this section are relatively straightforward to prove
(no heavy machinery is required), but the proofs take some time and trouble. Rel-
atively few readers will really need them, and I have omitted them.

3.3.1 Predictors and Binary Functions

A predictor is a function that takes an independent variable and produces a pre-
diction. Because we are using a 0-1 loss, choosing a predictor F is equivalent to
a choice of a binary function (i.e., a function that produces either 0 or 1). The
binary function is obtained by making a prediction using F , then scoring it with
the loss function. This means that the family of predictors yields a family of binary
functions.

We will study binary functions briefly. Assume we have some binary function
b in a family of binary functions B. Take some sample of N points xi. Our function
b will produce a binary string, with one bit for each point. We consider the set BN

which consists of all the different binary strings that are produced by functions in

3.3. An Infinite Collection of Predictors 58

B for our chosen set of sample points. Write #(BN) for the number of different
elements in this set. We could have #(BN) = 2N , because there are 2N strings in
BN .

In many cases, #(BN) is much smaller than 2N . This is a property of the
family of binary functions, rather than of (say) an odd choice of data points. The
thing to study is the growth function

s(B, N) =
sup

sets of N points
#(BN).

This is sometimes called the shattering number of B. For some interesting cases,
the growth function can be recovered with elementary methods.

Worked Example 3.1 s(B, 3) for a Simple Linear Classifier on the Line

Assume that we have a 1D independent variable x, and our family of classifiers
is sign(ax+ b) for parameters a, b. These classifiers are equivalent to a family
of binary functions B. What is s(B, 3)?

Solution: The predictor produces a sign at each point. Now think about the
sample. It should be clear that the largest set of strings isn’t going to occur
unless the three points are distinct. The predictor produces a string of signs
(one at each point), and the binary function is obtained by testing if the label
is equal to, or different from, the sign the predictor produces. This means that
the number of binary strings is the same as the number of distinct strings of
signs. In particular, the actual values of the labels don’t matter. Now order
the three points along the line so x1 < x2 < x3. Notice there is only one sign
change at s = −b/a; we can have s < x1, x1 < s < x2, x2 < s < x3, x3 < s
(we will deal with s lying on a point later). All this means the predictor can
produce only the following six sign patterns (at most):

−−−,−−+,−++,+++,++−,+−−

Now imagine that s lies on a data point; the rule is to choose a sign at random.
It is straightforward to check that this doesn’t increase the set of sign patterns
(and you should). So s(B, 3) = 6 < 23.

3.3. An Infinite Collection of Predictors 59

Worked Example 3.2 s(B, 4) for a Simple Linear Classifier on the Plane

Assume that we have a 2D independent variable x, and our family of classifiers
is sign(aTx+ b) for parameters a, b. These classifiers are equivalent to a family
of binary functions B. What is s(B, 4)?

Solution: The predictor produces a sign at each point. Now think about
the sample. The predictor produces a string of signs (one at each point), and
the binary function is obtained by testing if the label is equal to, or different
from, the sign the predictor produces. This means that the number of binary
strings is the same as the number of distinct strings of signs. It should be clear
that the largest set of strings isn’t going to occur unless the points points are
distinct. If they’re collinear, we know how to count (Example 3.1), and obtain
10. You can check the case where three points are collinear easily, to count 12.
There are two remaining cases. Either x4 is inside the convex hull of the other
three, or it is outside (Fig. 3.1). If x4 is inside, then you cannot see + + +−
or −−−+. If x4 is outside, a linear predictor cannot predict + for x1 and x3,
and − for points x2 and x4. This means there are 14 strings of signs possible.
So s(B, 4) = 14.

1

2
3

4

1

2
3

4

Figure 3.1: On the left, four points on the plane. Because point x4 is inside the
convex hull of x1, x2, and x3, a linear predictor cannot predict +++− or −−−+.
On the right, the other case: a linear predictor cannot predict + for x1 and x3,
and − for points x2 and x4 (try drawing the decision boundary if you’re uncertain)

The point of these examples is that an infinite family of predictors may yield
a small family of binary functions. But s(B, N) can be quite hard to determine for
arbitrary families of predictors. One strategy is to use what is known as the VC
dimension of P (after the inventors, Vapnik and Chervonenkis).

3.3. An Infinite Collection of Predictors 60

Useful Fact: 3.5 Definition: The VC Dimension

The VC dimension of a class of binary functions B is

VC (B) = sup
{
N : s(B, N) = 2N

}

Worked Example 3.3 The VC Dimension of the Binary Functions Pro-
duced by a Linear Classifier on the Line

Assume that we have a 1D independent variable x, and our family of classifiers
is sign(ax+ b) for parameters a, b. These classifiers are equivalent to a family
of binary functions B. What is VC (B)?

Solution: From Example 3.1 this number is less than three. It’s easy to show
that s(B, 2) = 4, so VC (B) = 2.

Worked Example 3.4 The VC Dimension of the Binary Functions Pro-
duced by a Linear Classifier on the Plane

Assume that we have a 2D independent variable x, and our family of classifiers
is sign(aTx+ b) for parameters a, b. These classifiers are equivalent to a family
of binary functions B. What is VC (B)?

Solution: From Example 3.1 this number is less than four. It’s easy to show
that s(B, 3) = 8, so VC (B) = 3.

Talking about the VC dimension of the binary functions produced by a family
of predictors is a bit long-winded. Instead, we will refer to the VC dimension of
the family of predictors. So the VC dimension of linear classifiers on the plane is
3, etc.

Remember This: Write P for the family of linear classifiers on d-
dimensional vectors, sign(aTx+ b). Then

VC (P) = d+ 1.

3.3. An Infinite Collection of Predictors 61

There are d+1 parameters in a linear classifier on d-dimensional vectors, and
the VC dimension is d + 1. Do not let this coincidence mislead you—you cannot
obtain VC dimension by counting parameters. There are examples of one parameter
families of predictors with infinite VC dimension. Instead, you should think of VC
dimension as measuring some form of “wiggliness.” For example, linear predictors
aren’t wiggly because if you prescribe a sign on a small set of points, you know the
sign on many others. But if a family of predictors has high VC dimension, then
you can take a large set of points at random, prescribe a sign at each point, and
find a member of the family that takes that sign at each point.

Useful Fact: 3.6 The Growth Number of a Family of Finite VC Dimen-
sion

Assume VC (B) = d, which is finite. Then for all N ≥ d, we have

s(B, N) ≤
(
N

d

)d

ed

3.3.2 Symmetrization

A bad predictor F is one where EF − L
(N)
F > ε. For a finite set of predictors, we

used Hoeffding’s inequality to bound the probability a particular predictor was bad.
We then argued that the probability that at least one predictor in our collection of
M predictors is bad is bounded above by M times that bound. This won’t work
for an infinite set of predictors.

Assume we have a family of predictors which has finite VC dimension. Now
draw a sample of N points. Associated with each predictor is a string of N binary
variables (whether the predictor is right or wrong on each point). Even though there
may be an infinite number of predictors, there is a finite number of distinct strings,
and we can bound that number. We need a result that bounds the generalization
error in terms of the behavior of these strings.

Now assume we have a second IID sample of N points, and compute the

average loss over that second sample. Write L̃
(N)
F for this new average loss. This

second sample is purely an abstraction (we won’t need a second training set) but it
allows us to use an extremely powerful trick called symmetrization to get a bound.
The result appears in two forms, in boxes, below.

Useful Fact: 3.7 The Largest Variation of Sample Means Yields a Bound

P

({
sup

F ∈ P
[
| L(N)

F − LF |
]
> ε

})
≤ 2P

({
sup

F ∈ P
[
| L(N)

F − L̃
(N)
F |

]
>

ε

2

})

3.3. An Infinite Collection of Predictors 62

The proof of this result is omitted. It isn’t particularly difficult, but it’ll be
easier to swallow with some sense of why the result is important. Notice that the
right-hand side,

P

({
sup

F ∈ P
[
| L(N)

F − L̃
(N)
F |

]
>

ε

2

})

is expressed entirely in terms of the values that predictors take on data. To see
why this is important, remember the example of the family of linear predictors for
1D independent variables. For N = 3 data points, an infinite family of predictors
could make only six distinct predictions. This means that the event

{
sup

F ∈ P
[
| L(N)

F − L̃
(N)
F |

]
>

ε

2

}

is quite easy to handle. Rather than worry about the supremum over an infinite
family of predictors, we can attend to a supremum over only 36 predictions (which

is six for L
(N)
F and another six for L̃

(N)
F).

3.3.3 Bounding the Generalization Error

Useful Fact: 3.8 Generalization Bound in Terms of VC Dimension

Let P be a family of predictors with VC dimension d. With probability
at least 1− ε, we have

L ≤ L(N) +

√
8

N

(
log

(
4

ε

)
+ d log

(
Ne

d

))

Proving this fact is straightforward with the tools at hand. We start by
proving

3.3. An Infinite Collection of Predictors 63

Quick statement: Generalization Bound for an Infinite Family of Predictors

Formal Proposition: Let P be a family of predictors, and t ≥
√

2
N . We have

P

({
sup

F ∈ P
[
| L(N)

F − LF |
]
> ε

})
≤ 4s(F , 2N)e−Nε2/8

Proof: Write b for a binary string obtained by computing the error for a predictor
p ∈ P at 2N sample points, and bi for it’s i’th element. Write B for the set of all

such strings. For a string b, write L
(N)
b = 1

N

∑N
i=1 bi and L̃

(N)
b = 1

N

∑2N
i=N+1 bi.

Now we have

P

({
sup

F ∈ P | L(N)
F − LF |> ε

})
≤ 2P

({
sup

F ∈ P | L(N)
F − L̃

(N)
F |> ε/2

})

using the symmetrization idea

= 2P

({
max
b ∈ B | L(N)

b − L̃
(N)
b |> ε/2

})

which is why symmetrization is useful

≤ 2s(B, 2N)P
({

| L(N)
b − L̃

(N)
b |> ε/2

})

union bound; s(B, 2N) is size of B

≤ 4s(B, 2N)e−Nε2/8

Hoeffding

This yields the next step, where we bound the loss of the worst predictor in
the family using VC dimension.

3.4. You Should 64

Quick statement: Generalization bound for family of predictors with finite VC
dimension

Formal Proposition: Let P be a family of predictors with VC dimension d.
With probability at least 1− ε, we have

sup
F ∈ P | L(N)

F − LF |≤
√

8

N

(
log

(
4

ε

)
+ d log

(
Ne

d

))

Proof: From above, we have

P

({
sup

F ∈ P | L(N)
F − LF |> ε

})
≤ 4s(B, 2N)e−Nε2/8

so with probability 1− ε,

LF ≤ LN +

√
8

N

(
log

(
4s(B, N)

ε

))
.

But we have that s(B, N) ≤
(
N
d

)d
ed, so

log
4s(B, N)

ε
≤ log

4

ε
+ d log

(
Ne

d

)
.

The original result follows by simply rearranging terms.

3.4 You Should

3.4.1 Remember These Terms

predictor . 49
training loss . 49
pointwise loss . 50
union bound . 55
growth function . 58
shattering number . 58
VC dimension . 59

3.4.2 Remember These Facts

Mean and Variance of an Expectation Estimated from Samples . . . 51
Definition: Chebyshev’s Inequality 52
Held-Out Error Predicts Test Error, from Chebyshev 52
Held-out error predicts test error (Chebyshev) 53
Definition: Hoeffding’s Inequality . 54
Held-out error predicts test error (Hoeffding) 55

3.4. You Should 65

Test error bounds from training error, finite set of predictors 56
Enough examples make a bad predictor unlikely 56
Definition: The VC Dimension . 60
VC dimension of linear classifiers . 61
The Growth Number of a Family of Finite VC Dimension 61
The Largest Variation of Sample Means Yields a Bound 62
Generalization Bound in Terms of VC Dimension 62

3.4.3 Be Able to

• Explain why held-out loss is a good predictor of test loss.
• Remember the main content of Chebyshev’s and Hoeffding’s inequalities.
• Explain why training loss is a poor predictor of test loss.
• Explain roughly how one bounds test loss using training loss.

P A R T T W O

High Dimensional Data

C H A P T E R 4

High Dimensional Data

We have a dataset that is a collection of d-dimensional vectors. This chapter
introduces the nasty tricks that such data can play. A dataset like this is hard
to plot, though Sect. 4.1 suggests some tricks that are helpful. Most readers will
already know the mean as a summary (it’s an easy generalization of the 1D mean).
The covariance matrix may be less familiar. This is a collection of all covariances
between pairs of components. We use covariances, rather than correlations, because
covariances can be represented in a matrix easily. High dimensional data has some
nasty properties (it’s usual to lump these under the name “the curse of dimension”).
The data isn’t where you think it is, and this can be a serious nuisance, making it
difficult to fit complex probability models.

Natural transformations of the dataset lead to easy transformations of mean
and the covariance matrix. This means we can construct a transformation that
produces a new dataset, whose covariance matrix has desirable properties, from
any dataset. We will exploit these methods aggressively in the next few chapters.

The main defence against the curse of dimension is to use extremely simple
representations of the data. The most powerful of these is to think of a dataset as a
collection of blobs of data. Each blob of data consists of points that are “reasonably
close” to each other and “rather far” from other blobs. A blob can be modelled with
a multivariate normal distribution. Our knowledge of what transformations do to
a dataset’s mean and covariance will reveal the main points about the multivariate
normal distribution.

4.1 Summaries and Simple Plots

In this part, we assume that our data items are vectors. This means that we can
add and subtract values and multiply values by a scalar without any distress.

For 1D data, mean and variance are a very helpful description of data that had
a unimodal histogram. If there is more than one mode, one needs to be somewhat
careful to interpret the mean and variance, because the mean doesn’t summarize
the modes particularly well, and the variance depends on how the modes are placed.
In higher dimensions, the analogue of a unimodal histogram is a “blob”—a group
of data points that clusters nicely together and should be understood together.

You might not believe that “blob” is a technical term, but it’s quite widely
used. This is because it is relatively easy to understand a single blob of data. There
are good summary representations (mean and covariance, which I describe below).
If a dataset forms multiple blobs, we can usually coerce it into a representation as
a collection of blobs (using the methods of Chap. 8). But many datasets really are
single blobs, and we concentrate on such data here. There are quite useful tricks
for understanding blobs of low dimension by plotting them, which I describe in
this part. To understand a high dimensional blob, we will need to think about the

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 4

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_4

4.1. Summaries and Simple Plots 70

coordinate transformations that places it into a particularly convenient form.
Notation: Our data items are vectors, and we write a vector as x. The data

items are d-dimensional, and there are N of them. The entire dataset is {x}. When
we need to refer to the i’th data item, we write xi. We write {xi} for a new dataset
made up of N items, where the i’th item is xi. If we need to refer to the j’th

component of a vector xi, we will write x
(j)
i (notice this isn’t in bold, because it

is a component not a vector, and the j is in parentheses because it isn’t a power).
Vectors are always column vectors.

4.1.1 The Mean

For one-dimensional data, we wrote

mean ({x}) =
∑

i xi

N
.

This expression is meaningful for vectors, too, because we can add vectors and
divide by scalars. We write

mean ({x}) =
∑

i xi

N

and call this the mean of the data. Notice that each component of mean ({x}) is the
mean of that component of the data. There is not an easy analogue of the median,
however (how do you order high dimensional data?) and this is a nuisance. Notice
that, just as for the one-dimensional mean, we have

mean ({x−mean ({x})}) = 0

(i.e., if you subtract the mean from a dataset, the resulting dataset has zero mean).

4.1.2 Stem Plots and Scatterplot Matrices

Plotting high dimensional data is tricky. If there are relatively few dimensions, you
could just choose two (or three) of them and produce a 2D (or 3D) scatterplot.
Figure 4.1 shows such a scatterplot, for data that was originally four dimensional.
This is the famous iris dataset (it has to do with the botanical classification of
irises), which was collected by Edgar Anderson in 1936, and made popular among
statisticians by Ronald Fisher in that year. I found a copy at the UC Irvine repos-
itory of datasets that are important in machine learning (at http://archive.ics.uci.
edu/ml/index.html). I will show several plots of this dataset.

Another simple but useful plotting mechanism is the stem plot. This can be a
useful way to plot a few high dimensional data points. One plots each component
of the vector as a vertical line, typically with a circle on the end (easier seen than
said; look at Fig. 4.2). The dataset I used for this is the wine dataset, from the UC
Irvine machine learning data repository. You can find this dataset at http://archive.
ics.uci.edu/ml/datasets/Wine. For each of three types of wine, the data records the
values of 13 different attributes. In the figure, I show the overall mean of the
dataset, and also the mean of each type of wine (also known as the class means, or
class-conditional means). A natural way to compare class means is to plot them on
top of one another in a stem plot (Fig. 4.2).

http://archive.ics.uci.edu/ml/index.html
http://archive.ics.uci.edu/ml/index.html
http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Wine

4.1. Summaries and Simple Plots 71

Sepal.Length

P
et

al
.L

en
gt

h

1

2

3

4

5

6

7

5 6 7 8

setosa versicolor virginica setosa versicolor virginica

Sepal.Length
Petal.Width

Petal.
Length

Figure 4.1: Left: a 2D scatterplot for the iris data. I have chosen two variables
from the four, and have plotted each species with a different marker. Right: a 3D
scatterplot for the same data. You can see from the plots that the species cluster
quite tightly, and are different from one another. If you compare the two plots, you
can see how suppressing a variable leads to a loss of structure. Notice that, on the
left, some “x”s lie on top of boxes; you can see that this is an effect of projection
by looking at the 3D picture (for each of these data points, the petal widths are
quite different). You should worry that leaving out the last variable might have
suppressed something important like this

Another strategy that is very useful when there aren’t too many dimensions
is to use a scatterplot matrix. To build one, you lay out scatterplots for each pair
of variables in a matrix. On the diagonal, you name the variable that is the vertical
axis for each plot in the row, and the horizontal axis in the column. This sounds
more complicated than it is; look at the example of Fig. 4.3, which shows both a
3D scatterplot and a scatterplot matrix for the same dataset.

Figure 4.4 shows a scatterplot matrix for four of the variables in the height
weight dataset of http://www2.stetson.edu/∼jrasp/data.htm; look for bodyfat.xls at
that URL). This is originally a 16-dimensional dataset, but a 16 by 16 scatterplot
matrix is squashed and hard to interpret. For Fig. 4.4, you can see that weight and
adiposity appear to show quite strong correlations, but weight and age are pretty
weakly correlated. Height and age seem to have a low correlation. It is also easy to
visualize unusual data points. Usually one has an interactive process to do so—you
can move a “brush” over the plot to change the color of data points under the
brush.

http://www2.stetson.edu/~jrasp/data.htm

4.1. Summaries and Simple Plots 72

0 2 4 6 8 10 12 14
0

200

400

600

800

1000

1200
Wine data overall mean

0 2 4 6 8 10 12 14
0

200

400

600

800

1000

1200
Wine data class means

Figure 4.2: On the left, a stem plot of the mean of all data items in the wine dataset,
from http://archive.ics.uci.edu/ml/datasets/Wine. On the right, I have overlaid
stem plots of each class mean from the wine dataset, from http://archive.ics.uci.
edu/ml/datasets/Wine, so that you can see the differences between class means

Scatter Plot Matrix

Sepal
Length

7

8
7 8

5

6

5 6

Sepal
Width

3.5

4.0

4.5
3.5 4.0 4.5

2.0

2.5

3.0

2.0 2.5 3.0

Petal
Length

4

5

6

7
4 5 6 7

1

2

3

4

1 2 3 4

Petal
Width

1.5

2.0

2.5
1.5 2.0 2.5

0.0

0.5

1.0

0.0 0.5 1.0

setosa versicolor virginica

Sepal.LengthPetal.Width

Petal.
Length

Figure 4.3: Left: the 3D scatterplot of the iris data of Fig. 4.1, for comparison.
Right: a scatterplot matrix for the iris data. There are four variables, measured
for each of three species of iris. I have plotted each species with a different marker.
You can see from the plot that the species cluster quite tightly, and are different
from one another

http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Wine

4.1. Summaries and Simple Plots 73

20 40
20

40

60

80

100

0 50
20

40

60

80

100

100 200 300 400
20

40

60

80

100

Age

20 40
100

200

300

400

0 50
100

200

300

400

Weight

50 100
100

200

300

400

20 40
0

20

40

60

80

Height

100 200 300 400
0

20

40

60

80

50 100
0

20

40

60

80

Adiposity

0 50
10

20

30

40

50

100 200 300 400
10

20

30

40

50

50 100
10

20

30

40

50

Figure 4.4: This is a scatterplot matrix for four of the variables in the height weight
dataset of http://www2.stetson.edu/∼jrasp/data.htm. Each plot is a scatterplot of
a pair of variables. The name of the variable for the horizontal axis is obtained by
running your eye down the column; for the vertical axis, along the row. Although
this plot is redundant (half of the plots are just flipped versions of the other half),
that redundancy makes it easier to follow points by eye. You can look at a column,
move down to a row, move across to a column, etc. Notice how you can spot
correlations between variables and outliers (the arrows)

4.1.3 Covariance

Variance, standard deviation, and correlation can each be seen as an instance of
a more general operation on data. Extract two components from each vector of a
dataset of vectors, yielding two 1D datasets of N items; write {x} for one and {y}
for the other. The i’th element of {x} corresponds to the i’th element of {y} (the
i’th element of {x} is one component of some bigger vector xi and the i’th element
of {y} is another component of this vector). We can define the covariance of {x}
and {y}.

http://www2.stetson.edu/~jrasp/data.htm

4.1. Summaries and Simple Plots 74

Useful Fact: 4.1 Definition: Covariance

Assume we have two sets of N data items, {x} and {y}. We compute
the covariance by

cov ({x} , {y}) =
∑

i(xi −mean ({x}))(yi −mean ({y}))
N

Covariance measures the tendency of corresponding elements of {x} and of
{y} to be larger than (resp. smaller than) the mean. The correspondence is defined
by the order of elements in the dataset, so that x1 corresponds to y1, x2 corresponds
to y2, and so on. If {x} tends to be larger (resp. smaller) than its mean for data
points where {y} is also larger (resp. smaller) than its mean, then the covariance
should be positive. If {x} tends to be larger (resp. smaller) than its mean for data
points where {y} is smaller (resp. larger) than its mean, then the covariance should
be negative. Notice that

std (x)2 = var ({x}) = cov ({x} , {x})

which you can prove by substituting the expressions. Recall that variance measures
the tendency of a dataset to be different from the mean, so the covariance of a
dataset with itself is a measure of its tendency not to be constant. More important
is the relationship between covariance and correlation, in the box below.

Remember This:

corr ({(x, y)}) = cov ({x} , {y})√
cov ({x} , {x})

√
cov ({y} , {y})

.

This is occasionally a useful way to think about correlation. It says that the
correlation measures the tendency of {x} and {y} to be larger (resp. smaller) than
their means for the same data points, compared to how much they change on their
own.

4.1.4 The Covariance Matrix

Working with covariance (rather than correlation) allows us to unify some ideas.
In particular, for data items which are d-dimensional vectors, it is straightfor-
ward to compute a single matrix that captures all covariances between all pairs of
components—this is the covariance matrix.

4.1. Summaries and Simple Plots 75

Useful Fact: 4.2 Definition: Covariance Matrix

The covariance matrix is:

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T
N

Notice that it is quite usual to write a covariance matrix as Σ, and we
will follow this convention.

Covariance matrices are often written as Σ, whatever the dataset (you get to
figure out precisely which dataset is intended, from context). Generally, when we
want to refer to the j, k’th entry of a matrix A, we will write Ajk, so Σjk is the
covariance between the j’th and k’th components of the data.

Useful Facts: 4.3 Properties of the Covariance Matrix

• The j, k’th entry of the covariance matrix is the covariance
of the j’th and the k’th components of x, which we write
cov

({
x(j)

}
,
{
x(k)

})
.

• The j, j’th entry of the covariance matrix is the variance of the
j’th component of x.

• The covariance matrix is symmetric.
• The covariance matrix is always positive semidefinite; it is pos-
itive definite, unless there is some vector a such that aT (xi −
mean ({xi}) = 0 for all i.

Proposition:

Covmat ({x})jk = cov
({

x(j)
}
,
{
x(k)

})

Proof: Recall

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T
N

and the j, k’th entry in this matrix will be

∑
i(x

(j)
i −mean

({
x(j)

})
)(x

(k)
i −mean

({
x(k)

})
)T

N

which is cov
({

x(j)
}
,
{
x(k)

})
.

4.1. Summaries and Simple Plots 76

Proposition:

Covmat ({x})jj = Σjj = var
({

x(j)
})

Proof:

Covmat ({x})jj = cov
({

x(j)
}
,
{
x(j)

})

= var
({

x(j)
})

Proposition:
Covmat ({x}) = Covmat ({x})T

Proof: We have

Covmat ({x})jk = cov
({

x(j)
}
,
{
x(k)

})

= cov
({

x(k)
}
,
{
x(j)

})

= Covmat ({x})kj

Proposition: Write Σ = Covmat ({x}). If there is no vector a such that
aT (xi−mean ({x})) = 0 for all i, then for any vector u, such that ||u || > 0,

uTΣu > 0.

If there is such a vector a, then

uTΣu ≥ 0.

Proof: We have

uTΣu =
1

N

∑

i

[
uT (xi −mean ({x}))

] [
(xi −mean ({x}))Tu

]

=
1

N

∑

i

[
uT (xi −mean ({x}))

]2
.

Now this is a sum of squares. If there is some a such that aT (xi −
mean ({x})) = 0 for every i, then the covariance matrix must be positive
semidefinite (because the sum of squares could be zero in this case).
Otherwise, it is positive definite, because the sum of squares will always
be positive.

4.2. The Curse of Dimension 77

4.2 The Curse of Dimension

High dimensional models display unintuitive behavior (or, rather, it can take years
to make your intuition see the true behavior of high dimensional models as natural).
In these models, most data lies in places you don’t expect. We will do several simple
calculations with an easy high dimensional distribution to build some intuition.

4.2.1 The Curse: Data Isn’t Where You Think It Is

Assume our data lies within a cube, with edge length two, centered on the origin.
This means that each component of xi lies in the range [−1, 1]. One simple model
for such data is to assume that each dimension has uniform probability density in
this range. In turn, this means that P (x) = 1

2d
. The mean of this model is at the

origin, which we write as 0.
The first surprising fact about high dimensional data is that most of the data

can lie quite far away from the mean. For example, we can divide our dataset into
two pieces. A(ε) consists of all data items where every component of the data has
a value in the range [−(1 − ε), (1 − ε)]. B(ε) consists of all the rest of the data. If
you think of the dataset as forming a cubical orange, then B(ε) is the rind (which
has thickness ε) and A(ε) is the fruit.

Your intuition will tell you that there is more fruit than rind. This is true,
for three-dimensional oranges but not true in high dimensions. The fact that the
orange is cubical simplifies the calculations, but has nothing to do with the real
problem.

We can compute P ({x ∈ A(ε)}) and P ({x ∈ A(ε)}). These probabilities tell
us the probability a data item lies in the fruit (resp. rind). P ({x ∈ A(ε)}) is easy
to compute as

P ({x ∈ A(ε)}) = (2(1− ε))
d

(
1

2d

)
= (1− ε)d

and
P ({x ∈ B(ε)}) = 1− P ({x ∈ A(ε)}) = 1− (1− ε)d.

But notice that, as d → ∞,

P ({x ∈ A(ε)}) → 0.

This means that, for large d, we expect most of the data to be in B(ε). Equivalently,
for large d, we expect that at least one component of each data item is close to
either 1 or −1.

This suggests (correctly) that much data is quite far from the origin. It is
easy to compute the average of the squared distance of data from the origin. We
want

E
[
xTx

]
=

∫

box

(
∑

i

x2
i

)
P (x)dx

but we can rearrange, so that

E
[
xTx

]
=
∑

i

E
[
x2
i

]
=
∑

i

∫

box
x2
iP (x)dx.

4.2. The Curse of Dimension 78

Now each component of x is independent, so that P (x) = P (x1)P (x2) . . . P (xd).
Now we substitute, to get

E
[
xTx

]
=
∑

i

E
[
x2
i

]
=
∑

i

∫ 1

−1

x2
iP (xi)dxi =

∑

i

1

2

∫ 1

−1

x2
i dxi =

d

3
,

so as d gets bigger, most data points will be further and further from the origin.
Worse, as d gets bigger, data points tend to get further and further from one
another. We can see this by computing the average of the squared distance of data
points from one another. Write u for one data point and v; we can compute

E
[
d(u,v)2

]
=

∫

box

∫

box

∑

i

(ui − vi)
2dudv = E

[
uTu

]
+ E

[
vTv

]
− 2E

[
uTv

]

but since u and v are independent, we have E
[
uTv

]
= E[u]

T
E[v] = 0. This yields

E
[
d(u,v)2

]
= 2

d

3
.

This means that, for large d, we expect our data points to be quite far apart.
The nasty facts—in high dimension, data tends to be on the “outside” of a

dataset, and data points tend to be unreasonably far apart—are usually true. I
chose to use a uniform distribution example because the integrals are easy. If you
remember how to look up integrals (or can do them yourself!), it’s straightforward
to reproduce these examples for a multivariate normal distribution (Sect. 4.4). One
very important caveat is that the data needs to actually occupy all the dimensions.
With that said, practical high dimensional data tends to allow very accurate low
dimensional representations (the subject of the next chapter), and this can improve
the situation somewhat.

4.2.2 Minor Banes of Dimension

High dimensional data presents a variety of important practical nuisances which
follow from the curse of dimension. It is hard to estimate covariance matrices, and
it is hard to build histograms.

Covariance matrices are hard to work with for two reasons. The number of
entries in the matrix grows as the square of the dimension, so the matrix can get
big and so difficult to store. More important, the amount of data we need to get an
accurate estimate of all the entries in the matrix grows fast. As we are estimating
more numbers, we need more data to be confident that our estimates are reasonable.
There are a variety of straightforward work-arounds for this effect. In some cases,
we have so much data there is no need to worry. In other cases, we assume that
the covariance matrix has a particular form, and just estimate those parameters.
There are two strategies that are usual. In one, we assume that the covariance
matrix is diagonal, and estimate only the diagonal entries. In the other, we assume
that the covariance matrix is a scaled version of the identity, and just estimate this
scale. You should see these strategies as acts of desperation, to be used only when
computing the full covariance matrix seems to produce more problems than using
these approaches.

4.3. Using Mean and Covariance to Understand High Dimensional Data 79

It is difficult to build histogram representations for high dimensional data.
The strategy of dividing the domain into boxes, then counting data into them, fails
miserably because there are too many boxes. In the case of our cube, imagine we
wish to divide each dimension in half (i.e., between [−1, 0] and between [0, 1]). Then
we must have 2d boxes. This presents two problems. First, we will have difficulty
representing this number of boxes. Second, unless we are exceptionally lucky, most
boxes must be empty because we will not have 2d data items.

Instead, high dimensional data is typically represented in terms of clusters—
coherent blobs of similar datapoints that could, under appropriate circumstances,
be regarded as the same. We could then represent the dataset by, for example, the
center of each cluster and the number of data items in each cluster. Since each
cluster is a blob, we could also report the covariance of each cluster, if we can
compute it. This representation is explored in Chaps. 8 and 9.

Remember This: High dimensional data does not behave in a way that
is consistent with most people’s intuition. Points are always close to the
boundary and further apart than you think. This property makes a nuisance
of itself in a variety of ways. The most important is that only the simplest
models work well in high dimensions.

4.3 Using Mean and Covariance to Understand High Dimensional Data

The trick to interpreting high dimensional data is to use the mean and covariance
to understand the blob. Figure 4.5 shows a two-dimensional dataset. Notice that
there is obviously some correlation between the x and y coordinates (it’s a diagonal
blob), and that neither x nor y has zero mean. We can easily compute the mean
and subtract it from the data points, and this translates the blob so that the origin
is at the mean (Fig. 4.5). The mean of the new, translated dataset is zero.

Notice this blob is diagonal. We know what that means from our study of
correlation—the two measurements are correlated. Now consider rotating the blob
of data about the origin. This doesn’t change the distance between any pair of
points, but it does change the overall appearance of the blob of data. We can
choose a rotation that means the blob looks (roughly!) like an axis aligned ellipse.
In these coordinates there is no correlation between the horizontal and vertical
components. But one direction has more variance than the other.

It turns out we can extend this approach to high dimensional blobs. We will
translate their mean to the origin, then rotate the blob so that there is no correlation
between any pair of distinct components (this turns out to be straightforward, which
may not be obvious to you). Now the blob looks like an axis aligned ellipsoid, and
we can reason about (a) what axes are “big” and (b) what that means about the
original dataset.

4.3. Using Mean and Covariance to Understand High Dimensional Data 80

Translate center to origin

Figure 4.5: On the left, a “blob” in two dimensions. This is a set of data points that
lie somewhat clustered around a single center, given by the mean. I have plotted
the mean of these data points with a hollow square (it’s easier to see when there is
a lot of data). To translate the blob to the origin, we just subtract the mean from
each datapoint, yielding the blob on the right

4.3.1 Mean and Covariance Under Affine Transformations

We have a d-dimensional dataset {x}. An affine transformation of this data is
obtained by choosing some matrix A and vector b, then forming a new dataset
{m}, where mi = Axi + b. Here A doesn’t have to be square, or symmetric, or
anything else; it just has to have second dimension d.

It is easy to compute the mean and covariance of {m}. We have

mean ({m}) = mean ({Ax+ b})
= Amean ({x}) + b,

so you get the new mean by multiplying the original mean by A and adding b;
equivalently, by transforming the old mean the same way you transformed the
points.

The new covariance matrix is easy to compute as well. We have

Covmat ({m}) = Covmat ({Ax+ b})

=

∑
i(mi −mean ({m}))(mi −mean ({m}))T

N

=

∑
i(Axi + b−Amean ({x})− b)(Axi + b−Amean ({x})− b)T

N

=
A
[∑

i(xi −mean ({x}))(xi −mean ({x}))T
]
AT

N

= ACovmat ({x})AT .

4.3. Using Mean and Covariance to Understand High Dimensional Data 81

All this means that we can try and choose affine transformations that yield
“good” means and covariance matrices. It is natural to choose b so that the mean of
the new dataset is zero. An appropriate choice of A can reveal a lot of information
about the dataset.

Remember This: Transform a dataset {x} into a new dataset {m},
where mi = Axi + b. Then

mean ({m}) = Amean ({x}) + b

Covmat ({m}) = ACovmat ({x})AT .

4.3.2 Eigenvectors and Diagonalization

Recall a matrix M is symmetric if M = MT . A symmetric matrix is necessarily
square. Assume S is a d×d symmetric matrix, u is a d×1 vector, and λ is a scalar.
If we have

Su = λu

then u is referred to as an eigenvector of S and λ is the corresponding eigenvalue.
Matrices don’t have to be symmetric to have eigenvectors and eigenvalues, but the
symmetric case is the only one of interest to us.

In the case of a symmetric matrix, the eigenvalues are real numbers, and there
are d distinct eigenvectors that are normal to one another, and can be scaled to
have unit length. They can be stacked into a matrix U = [u1, . . . ,ud]. This matrix
is orthonormal, meaning that UTU = I.

This means that there is a diagonal matrix Λ and an orthonormal matrix U
such that

SU = UΛ.
In fact, there is a large number of such matrices, because we can reorder the eigen-
vectors in the matrix U , and the equation still holds with a new Λ, obtained by
reordering the diagonal elements of the original Λ. There is no reason to keep track
of this complexity. Instead, we adopt the convention that the elements of U are
always ordered so that the elements of Λ are sorted along the diagonal, with the
largest value coming first. This gives us a particularly important procedure.

Procedure: 4.1 Diagonalizing a Symmetric Matrix

We can convert any symmetric matrix S to a diagonal form by com-
puting

UTSU = Λ.

Numerical and statistical programming environments have procedures
to compute U and Λ for you. We assume that the elements of U are
always ordered so that the elements of Λ are sorted along the diagonal,
with the largest value coming first.

4.3. Using Mean and Covariance to Understand High Dimensional Data 82

Useful Facts: 4.4 Orthonormal Matrices Are Rotations

You should think of orthonormal matrices as rotations, because they do
not change lengths or angles. For x a vector, R an orthonormal matrix,
and m = Rx, we have

uTu = xTRTRx = xTIx = xTx.

This means that R doesn’t change lengths. For y, z both unit vectors,
we have that the cosine of the angle between them is

yTx.

By the argument above, the inner product of Ry and Rx is the same
as yTx. This means that R doesn’t change angles, either.

4.3.3 Diagonalizing Covariance by Rotating Blobs

We start with a dataset of N d-dimensional vectors {x}. We can translate this
dataset to have zero mean, forming a new dataset {m} where mi = xi−mean ({x}).
Now recall that, if we were to form a new dataset {a} where

ai = Ami

the covariance matrix of {a} would be

Covmat ({a}) = ACovmat ({m})AT = ACovmat ({x})AT .

Recall also we can diagonalize Covmat ({m}) = Covmat ({x}) to get

UTCovmat ({x})U = Λ.

But this means we could form the dataset {r}, using the rule

ri = UTmi = UT (xi −mean ({x})).

The mean of this new dataset is clearly 0. The covariance of this dataset is

Covmat ({r}) = Covmat
({

UTx
})

= UTCovmat ({x})U
= Λ,

where Λ is a diagonal matrix of eigenvalues of Covmat ({x}) that we obtained by
diagonalization. We now have a very useful fact about {r}: its covariance matrix
is diagonal. This means that every pair of distinct components has covariance
zero, and so has correlation zero. Remember that, in describing diagonalization,
we adopted the convention that the eigenvectors of the matrix being diagonalized

4.4. The Multivariate Normal Distribution 83

Rotate to diagonalize
covariance

Figure 4.6: On the left, the translated blob of Fig. 4.5. This blob lies somewhat
diagonally, because the vertical and horizontal components are correlated. On
the right, that blob of data rotated so that there is no correlation between these
components. We can now describe the blob by the vertical and horizontal variances
alone, as long as we do so in the new coordinate system. In this coordinate system,
the vertical variance is significantly larger than the horizontal variance—the blob
is short and wide

were ordered so that the eigenvalues are sorted in the descending order along the
diagonal of Λ. Our choice of ordering means that the first component of r has the
highest variance, the second component has the second highest variance, and so on.

The transformation from {x} to {r} is a translation followed by a rotation
(remember U is orthonormal, and so a rotation). So this transformation is a high
dimensional version of what I showed in Figs. 4.5 and 4.6.

Useful Fact: 4.5 You Can Transform Data to Zero Mean and Diagonal
Covariance

We can translate and rotate any blob of data into a coordinate system
where it has (a) zero mean and (b) diagonal covariance matrix.

4.4 The Multivariate Normal Distribution

All the nasty facts about high dimensional data, above, suggest that we need to
use quite simple probability models. By far the most important model is the mul-
tivariate normal distribution, which is quite often known as the Gaussian
distribution. There are two sets of parameters in this model, the mean μ and
the covariance Σ. For a d-dimensional model, the mean is a d-dimensional column
vector and the covariance is a d× d-dimensional matrix. The covariance is a sym-

4.4. The Multivariate Normal Distribution 84

metric matrix. For our definitions to be meaningful, the covariance matrix must be
positive definite. The form of the distribution p(x|μ,Σ) is

p(x|μ,Σ) = 1√
(2π)ddet(Σ)

exp

(
−1

2
(x− μ)TΣ−1(x− μ)

)
.

The following facts explain the names of the parameters:

Useful Facts: 4.6 Parameters of a Multivariate Normal Distribution

Assuming a multivariate normal distribution, we have

• E[x] = μ, meaning that the mean of the distribution is μ.
• E

[
(x− μ)(x− μ)T

]
= Σ, meaning that the entries in Σ represent

covariances.

Assume I now have a dataset of items xi, where i runs from 1 to N , and we
wish to model this data with a multivariate normal distribution. The maximum
likelihood estimate of the mean, μ̂, is

μ̂ =

∑
i xi

N

(which is quite easy to show). The maximum likelihood estimate of the covariance,
Σ̂, is

Σ̂ =

∑
i(xi − μ̂)(xi − μ̂)T

N

(which is rather a nuisance to show, because you need to know how to differentiate
a determinant). These facts mean that we already know most of what is interesting
about multivariate normal distributions (or Gaussians).

4.4.1 Affine Transformations and Gaussians

Gaussians behave very well under affine transformations. In fact, we’ve already
worked out all the math. Assume I have a dataset xi. The mean of the maximum
likelihood Gaussian model is mean ({xi}), and the covariance is Covmat ({xi}). I
can now transform the data with an affine transformation, to get yi = Axi + b.
The mean of the maximum likelihood Gaussian model for the transformed dataset
is mean ({yi}), and we’ve dealt with this; similarly, the covariance is Covmat ({yi}),
and we’ve dealt with this, too.

A very important point follows in an obvious way. I can apply an affine trans-
formation to any multivariate Gaussian to obtain one with (a) zero mean and (b)
independent components. In turn, this means that, in the right coordinate sys-
tem, any Gaussian is a product of zero mean one-dimensional normal distributions.
This fact is quite useful. For example, it means that simulating multivariate nor-
mal distributions is quite straightforward—you could simulate a standard normal
distribution for each component, then apply an affine transformation.

4.4. The Multivariate Normal Distribution 85

4.4.2 Plotting a 2D Gaussian: Covariance Ellipses

There are some useful tricks for plotting a 2D Gaussian, which are worth knowing
both because they’re useful, and they help to understand Gaussians. Assume we
are working in 2D; we have a Gaussian with mean μ (which is a 2D vector) and
covariance Σ (which is a 2 × 2 matrix). We could plot the collection of points x
that has some fixed value of p(x|μ,Σ). This set of points is given by:

1

2

(
(x− μ)TΣ−1(x− μ)

)
= c2

where c is some constant. I will choose c2 = 1
2 , because the choice doesn’t matter,

and this choice simplifies some algebra. You might recall that a set of points x that
satisfies a quadratic like this is a conic section. Because Σ (and so Σ−1) is positive
definite, the curve is an ellipse. There is a useful relationship between the geometry
of this ellipse and the Gaussian.

This ellipse—like all ellipses—has a major axis and a minor axis. These are at
right angles, and meet at the center of the ellipse. We can determine the properties
of the ellipse in terms of the Gaussian quite easily. The geometry of the ellipse isn’t
affected by rotation or translation, so we will translate the ellipse so that μ = 0
(i.e., the mean is at the origin) and rotate it so that Σ−1 is diagonal. Writing
x = [x, y] we get that the set of points on the ellipse satisfies

1

2

(
1

k21
x2 +

1

k22
y2
)

=
1

2

where 1
k2
1
and 1

k2
2
are the diagonal elements of Σ−1. We will assume that the ellipse

has been rotated so that k1 > k2. The points (k1, 0) and (−k1, 0) lie on the ellipse,
as do the points (0, k2) and (0,−k2). The major axis of the ellipse, in this coordinate
system, is the x-axis, and the minor axis is the y-axis. In this coordinate system,
x and y are independent. If you do a little algebra, you will see that the standard
deviation of x is abs (k1) and the standard deviation of y is abs (k2). So the ellipse
is longer in the direction of largest standard deviation and shorter in the direction
of smallest standard deviation.

Now rotating the ellipse means we will pre- and post-multiply the covariance
matrix with some rotation matrix. Translating it will move the origin to the mean.
As a result, the ellipse has its center at the mean, its major axis is in the direction
of the eigenvector of the covariance with largest eigenvalue, and its minor axis is
in the direction of the eigenvector with smallest eigenvalue. A plot of this ellipse,
which can be coaxed out of most programming environments with relatively little
effort, gives us a great deal of information about the underlying Gaussian. These
ellipses are known as covariance ellipses.

4.4. The Multivariate Normal Distribution 86

Remember This: The multivariate normal distribution has the form

p(x|μ,Σ) = 1√
(2π)ddet(Σ)

exp

(
−1

2
(x− μ)TΣ−1(x− μ)

)
.

Assume you wish to model a dataset {x} with a multivariate normal distri-
bution. The maximum likelihood estimate of the mean is mean ({x}). The
maximum likelihood estimate of the covariance Σ is Covmat ({x}).

4.4.3 Descriptive Statistics and Expectations

You might have noticed a sleight of hand in the description above. I used each
of the terms mean, variance, covariance, and standard deviation in two slightly
different ways. This is quite usual. One sense of each term, as in the description
of covariance above, describes a property of a dataset. Terms used in this sense
are known as descriptive statistics. The other sense is a property of probability
distributions; so mean, for example, means E[X]; variance means E

[
(X − E[X])2

]
;

and so on. Terms used in this sense are known as expectations. The reason we
use one name for two notions is that the notions are not really all that different.

Here is a useful construction to illustrate the point. Imagine we have a dataset
{x} of N items, where the i’th item is xi. Build a random variable X using this
dataset by placing the same probability on each data item. This means that each
data item has probability 1/N . Write E[X] for the mean of this distribution. We
have

E[X] =
∑

i

xiP (xi) =
1

N

∑

i

xi = mean ({x})

and, by the same reasoning,

var[X] = var ({x}).
This construction works for standard deviation and covariance, too. For this partic-
ular distribution (sometimes called the empirical distribution), the expectations
have the same value as the descriptive statistics.

There is a form of converse to this fact, which you should have seen already,
and which we shall see on and off later. Imagine we have a dataset that consists of
independent, identically distributed samples from a probability distribution (i.e.,
we know that each data item was obtained independently from the distribution).
For example, we might have a count of heads in each of a number of coin flip
experiments. The weak law of large numbers says the descriptive statistics will
turn out to be accurate estimates of the expectations.

In particular, assume we have a random variable X with distribution P (X)
which has finite variance. We want to estimate E[X]. Now if we have a set of IID
samples of X, which we write xi, write

XN =

∑N
i=1 xi

N
.

4.4. The Multivariate Normal Distribution 87

This is a random variable (different sets of samples yield different values of XN),
and the weak law of large numbers gives that, for any positive number ε

lim
N→∞

P ({||XN − E[X] || > ε}) = 0.

You can interpret this as saying that, for a set of IID random samples xi, the
probability that ∑N

i=1 Xi

N

is very close to E[X] for large N

Useful Facts: 4.7 Weak Law of Large Numbers

Given a random variable X with distribution P (X) which has finite
variance, and a set of N IID samples xi from P (X), write

XN =

∑N
i=1 xi

N
.

Then for any positive number ε

lim
N→∞

P ({||XN − E[X] || > ε}) = 0.

Remember This: Mean, variance, covariance, and standard devia-
tion can refer either to properties of a dataset or to expectations. The
context usually tells you which. There is a strong relationship between
these senses. Given a dataset, you can construct an empirical distribu-
tion, whose mean, variance, and covariances (interpreted as expectations)
have the same values as the mean, variance, and covariances (interpreted
as descriptive statistics). If a dataset is an IID sample of a probability
distribution, the mean, Variance, and covariances (interpreted as descrip-
tive statistics) are usually very good estimates of the values of the mean,
variance, and covariances (interpreted as expectations).

4.4.4 More from the Curse of Dimension

It can be hard to get accurate estimates of the mean of a high dimensional normal
distribution (and so of any other). This is mostly a minor nuisance, but it’s worth
understanding what is happening. The data is a set of N IID samples of a normal
distribution with mean μ and covariance Σ in d- dimensional space. These points

4.5. You Should 88

will tend to lie far away from one another. But they may not be evenly spread
out, so there may be slightly more points on one side of the true mean than on the
other, and so the estimate of the mean is likely noisy. It’s tough to be crisp about
what it means to be on one side of the true mean in high dimensions, so I’ll do this
in algebra, too. The estimate of the mean is

XN =

∑
i xi

N

which is a random variable, because different draws of data will give different val-
ues of XN . In the exercises, you will show that E

[
XN

]
is μ (so the estimate is

reasonable). One reasonable measure of the total error in estimating the mean is
(XN − μ)T (XN − μ). In the exercises, you will show that the expected value of
this error is

Trace(Σ)

N

which may grow with d unless Σ has some strong properties. Likely, your estimate
of the mean for a high dimensional distribution is poor.

4.5 You Should

4.5.1 Remember These Terms

clusters . 79
affine transformation . 80
symmetric . 81
eigenvector . 81
eigenvalue . 81
multivariate normal distribution . 83
Gaussian distribution . 83
covariance ellipses . 85
descriptive statistics . 86
empirical distribution . 86
weak law of large numbers . 86

4.5.2 Remember These Facts

Definition: Covariance . 74
Correlation from covariance . 74
Definition: Covariance Matrix . 75
Properties of the Covariance Matrix 75
High dimensional data displays odd behavior 79
Mean and covariance of affine transformed dataset 81
Orthonormal Matrices Are Rotations 82
You Can Transform Data to Zero Mean and Diagonal Covariance . . 83
Parameters of a Multivariate Normal Distribution 84
The multivariate normal distribution 86
Weak Law of Large Numbers . 87
Mean, variance and covariance can be used in two senses 87

4.5. You Should 89

4.5.3 Remember These Procedures

Diagonalizing a Symmetric Matrix 81

Problems

Summaries

4.1. You have a dataset {x} of N vectors, xi, each of which is d-dimensional. We
will consider a linear function of this dataset. Write a for a constant vector;
then the value of this linear function evaluated on the i’th data item is aTxi.
Write fi = aTxi. We can make a new dataset {f} out of the values of this
linear function.
(a) Show that mean ({f}) = aTmean ({x}) (easy).
(b) Show that var ({f}) = aTCovmat ({x})a (harder, but just push it through

the definition).
(c) Assume the dataset has the special property that there exists some a so

that aTCovmat ({x})a. Show that this means that the dataset lies on a
hyperplane.

4.2. You have a dataset {x} of N vectors, xi, each of which is d-dimensional.
Assume that Covmat ({x}) has one non-zero eigenvalue. Assume that x1 and
x2 do not have the same value.
(a) Show that you can choose a set of ti so that you can represent every data

item xi exactly as
xi = x1 + ti(x2 − x1).

(b) Now consider the dataset of these t values. What is the relationship
between (a) std (t) and (b) the non-zero eigenvalue of Covmat ({x})? Why?

4.3. You have a dataset {x} of N vectors, xi, each of which is d-dimensional.
Assume mean ({x}) = 0. We will consider a linear function of this dataset.
Write a for some vector; then the value of this linear function evaluated on
the i’th data item is aTxi. Write fi(a) = aTxi. We can make a new dataset
{f(a)} out of these fi (the notation is to remind you that this dataset depends
on the choice of vector a).
(a) Show that var ({f(sa)}) = s2var ({f(a)}).
(b) The previous subexercise means that, to choose a to obtain a dataset with

large variance in any kind of sensible way, we need to insist that aT a is
kept constant. Show that

Maximize var ({f})(a) subject to aT a = 1

is solved by the eigenvector of Covmat ({x}) corresponding to the largest
eigenvalue. (You need to know Lagrange multipliers to do this, but you
should.)

4.4. You have a dataset {x} of N vectors, xi, each of which is d-dimensional. We
will consider two linear functions of this dataset, given by two vectors a, b.
(a) Show that cov

({
aTx

}
,
{
bTx

})
= aTCovmat ({x})b. This is easier to

do if you show that the mean has no effect on covariance, and then do the
math assuming x has zero mean.

(b) Show that the correlation between aTx and bTx is given by

aTCovmat ({x})b√
aTCovmat ({x})a

√
bTCovmat ({x})b

.

4.5. You Should 90

4.5. It is sometimes useful to map a dataset to have zero mean and unit covariance.
Doing so is known as whitening the data (for reasons I find obscure). This can
be a sensible thing to do when we don’t have a clear sense of the relative
scales of the components of each data vector or whiten the data might be that
we know relatively little about the meaning of each component. You have a
dataset {x} of N vectors, xi, each of which is d-dimensional. Write U , Λ for
the eigenvectors and eigenvalues of Covmat ({x}).
(a) Show that Λ ≥ 0
(b) Assume that some diagonal element of Λ is zero. How do you interpret

this?
(c) Assume that all diagonal elements of Λ are greater than zero. Write

Λ1/2 for the matrix whose diagonal is the non-negative square roots of
the diagonal of Λ. Write {y} for the dataset of vectors where yi =

(Λ1/2)−1UT (xi −mean ({x})). Show that Covmat ({y}) is the identity
matrix.

(d) Write O for some orthonormal matrix. Using the notation of the previous
subexercise, and writing zi = Oyi, show that Covmat ({z}) is the identity
matrix. Use this information to argue that there is not a unique version
of a whitened dataset.

The Multivariate Normal Distribution

4.6. A dataset of points (x, y) has zero mean and covariance

Σ =

(
k21 0

0 k22

)

with k1 > k2.
(a) Show that the standard deviation of the x coordinate is abs (k1) and of

the y coordinate is abs (k2).
(b) Show that the set of points that satisfies

1

2

(
1

k21
x2 +

1

k22
y2
)

=
1

2

is an ellipse.
(c) Show that the major axis of the ellipse is the x axis, the minor axis of the

ellipse is the y axis, and the center of the ellipse is at (0, 0).
(d) Show that the height of the ellipse is 2k1 and the width of the ellipse is

2k2.
4.7. For Σ a positive definite matrix, μ some two-dimensional vector, show that

the family of points that satisfies

1

2

(
(x− μ)TΣ−1(x− μ)

)
= c2

is an ellipse. An easy way to do this is to notice that ellipses remain ellipses
when rotated and translated, and exploit the previous exercise.

The Curse of Dimension

4.8. A dataset consists of N IID samples from a multivariate normal distribution
with dimension d. The mean of this distribution is zero, and its covariance

4.5. You Should 91

matrix is the identity. You compute

XN =
1

N

∑

i

xi.

The number you compute is a random variable, because you will compute
a slightly different number for each different sample you draw. It turns out
that the distribution of XN is normal because the sum of normally distributed
random variables is normal. You should remember (or, if you don’t, memorize)
the fact that

• a sample of a (1D) normal random variable is within one standard devi-
ation of its mean about 66% of the time;

• a sample of a (1D) normal random variable is within two standard devi-
ations of its mean about 95% of the time;

• a sample of a (1D) normal random variable is within three standard
deviations of its mean about 99% of the time.

(a) Show that each component of XN has expected value zero and variance
1/N .

(b) Argue that about d/3 of the components have absolute value greater than
1/N .

(c) Argue that about d/20 of the components have absolute value greater
than 2/N .

(d) Argue that about d/100 of the components have absolute value greater
than 3/N .

(e) What happens when d is very large compared to N?
4.9. For a dataset that consists of N IID samples xi from a multivariate normal

distribution with mean μ and covariance Σ, you compute

XN =
1

N

∑

i

xi.

The number you compute is a random variable, because you will compute a
slightly different number for each different sample you draw.
(a) Show that E

[
XN

]
= μ. You can do this by noticing that, if N = 1,

E
[
X1
]
= μ fairly obviously. Now use the fact that each of the samples is

independent.
(b) The random variable TN = (XN−μ)T (XN−μ) is one reasonable measure

of how well XN approximates μ. Show that

E

[
TN

]
=

Trace(Σ)

N
.

Do this by noticing that E
[
TN

]
is the sum of the variances of the compo-

nents of XN . This exercise is much easier if you notice that translating
the normal distribution to have zero mean doesn’t change anything (so
it’s enough to work out the case where μ = 0).

(c) Use the previous subexercise to identify situations where estimates of the
mean of a normal distribution might be poor.

C H A P T E R 5

Principal Component Analysis

We have seen that a blob of data can be translated so that it has zero mean,
then rotated so the covariance matrix is diagonal. In this coordinate system, we
can set some components to zero, and get a representation of the data that is still
accurate. The rotation and translation can be undone, yielding a dataset that is
in the same coordinates as the original, but lower dimensional. The new dataset
is a good approximation to the old dataset. All this yields a really powerful idea:
we can choose a small set of vectors, so that each item in the original dataset can
be represented as the mean vector plus a weighted sum of this set. This repre-
sentation means we can think of the dataset as lying on a low dimensional space
inside the original space. It’s an experimental fact that this model of a dataset is
usually accurate for real high dimensional data, and it is often an extremely con-
venient model. Furthermore, representing a dataset like this very often suppresses
noise—if the original measurements in your vectors are noisy, the low dimensional
representation may be closer to the true data than the measurements are.

5.1 Representing Data on Principal Components

We start with a dataset of N d-dimensional vectors {x}. We translate this dataset
to have zero mean, forming a new dataset {m} where mi = xi − mean ({x}). We
diagonalize Covmat ({m}) = Covmat ({x}) to get

UTCovmat ({x})U = Λ

and form the dataset {r}, using the rule

ri = UTmi = UT (xi −mean ({x})).

We saw the mean of this dataset is zero, and the covariance is diagonal. Most
high dimensional datasets display another important property: many, or most, of
the diagonal entries of the covariance matrix are very small. This means we can
build a low dimensional representation of the high dimensional dataset that is quite
accurate.

5.1.1 Approximating Blobs

The covariance matrix of {r} is diagonal, and the values on the diagonal are inter-
esting. It is quite usual for high dimensional datasets to have a small number of
large values on the diagonal, and a lot of small values. This means that the blob
of data is really a low dimensional blob in a high dimensional space. For example,
think about a line segment (a 1D blob) in 3D. As another example, look at Fig. 4.3;
the scatterplot matrix strongly suggests that the blob of data is flattened (e.g., look
at the petal width vs petal length plot).

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 5

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_5

5.1. Representing Data on Principal Components 94

Now assume that Covmat ({r}) has many small and few large diagonal entries.
In this case, the blob of data represented by {r} admits an accurate low dimensional
representation. The dataset {r} is d-dimensional. We will try to represent it with
an s-dimensional dataset, and see what error we incur. Choose some s<d. Now
take each data point ri and replace the last d − s components with 0. Call the
resulting data item pi. We should like to know the average error in representing ri
with pi.

This error is
1

N

∑

i

[
(ri − pi)

T
(ri − pi)

]
.

Write r
(j)
i for the j′ component of ri, and so on. Remember that pi is zero in the

last d− s components. The mean error is then

1

N

∑

i

⎡

⎣
j=d∑

j=s+1

(
r
(j)
i

)2
⎤

⎦ .

But we know this number, because we know that {r} has zero mean. The error is

j=d∑

j=s+1

[
1

N

∑

i

(
r
(j)
i

)2
]
=

j=d∑

j=s+1

var
({

r(j)
})

which is the sum of the diagonal elements of the covariance matrix from r, r to d, d.
Equivalently, writing λi for the ith eigenvalue of Covmat ({x}) and assuming the
eigenvalues are sorted in the descending order, the error is

j=d∑

j=s+1

λj

If this sum is small compared to the sum of the first s components, then dropping
the last d − s components results in a small error. In that case, we could think
about the data as being s-dimensional. Figure 5.1 shows the result of using this
approach to represent the blob I’ve used as a running example as a 1D dataset.

This is an observation of great practical importance. As a matter of experi-
mental fact, a great deal of high dimensional data produces relatively low dimen-
sional blobs. We can identify the main directions of variation in these blobs, and
use them to understand and to represent the dataset.

5.1.2 Example: Transforming the Height–Weight Blob

Translating a blob of data doesn’t change the scatterplot matrix in any interesting
way (the axes change, but the picture doesn’t). Rotating a blob produces really
interesting results, however. Figure 5.2 shows the dataset of Fig. 4.4, translated
to the origin and rotated to diagonalize it. Now we do not have names for each
component of the data (they’re linear combinations of the original components),
but each pair is now not correlated. This blob has some interesting shape features.
Figure 5.2 shows the gross shape of the blob best. Each panel of this figure has

5.1. Representing Data on Principal Components 95

Project to x-axis

Figure 5.1: On the left, the translated and rotated blob of Fig. 4.6. This blob is
stretched—one direction has more variance than another. Setting the y coordinate
to zero for each of these datapoints results in a representation that has relatively
low error, because there isn’t much variance in these values. This results in the
blob on the right. The text shows how the error that results from this projection
is computed

the same scale in each direction. You can see the blob extends about 80 units in
direction 1, but only about 15 units in direction 2, and much less in the other two
directions. You should think of this blob as being rather cigar-shaped; it’s long in
one direction, but there isn’t much in the others. The cigar metaphor isn’t perfect
(have you seen a four-dimensional cigar recently?), but it’s helpful. You can think
of each panel of this figure as showing views down each of the four axes of the cigar.

Now look at Fig. 5.3. This shows the same rotation of the same blob of data,
but now the scales on the axis have changed to get the best look at the detailed shape
of the blob. First, you can see that blob is a little curved (look at the projection
onto direction 2 and direction 4). There might be some effect here worth studying.
Second, you can see that some points seem to lie away from the main blob. I have
plotted each data point with a dot, and the interesting points with a number. These
points are clearly special in some way.

The problem with these figures is that the axes are meaningless. The com-
ponents are weighted combinations of components of the original data, so they
don’t have any units, etc. This is annoying, and often inconvenient. But I ob-
tained Fig. 5.2 by translating, rotating, and projecting data. It’s straightforward
to undo the rotation and the translation—this takes the projected blob (which
we know to be a good approximation of the rotated and translated blob) back to
where the original blob was. Rotation and translation don’t change distances, so
the result is a good approximation of the original blob, but now in the original
blob’s coordinates. Figure 5.4 shows what happens to the data of Fig. 4.4. This is

5.1. Representing Data on Principal Components 96

−100 0 100
−100

0

100

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 4

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 3

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 2

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 1

−100 0 100
−100

0

100

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Figure 5.2: A panel plot of the bodyfat dataset of Fig. 4.4, now rotated so that the
covariance between all pairs of distinct dimensions is zero. Now we do not know
names for the directions—they’re linear combinations of the original variables. Each
scatterplot is on the same set of axes, so you can see that the dataset extends more
in some directions than in others. You should notice that, in some directions, there
is very little variance. This suggests that replacing the coefficient in those directions
with zero (as in Fig. 5.1) should result in a representation of the data that has very
little error

a two-dimensional version of the original dataset, embedded like a thin pancake of
data in a four-dimensional space. Crucially, it represents the original dataset quite
accurately.

5.1.3 Representing Data on Principal Components

Now consider undoing the rotation and translation for our projected dataset {p}.
We would form a new dataset {x̂}, with the ith element given by

x̂i = Upi +mean ({x})

(you should check this expression). But this expression says that x̂i is constructed
by forming a weighted sum of the first s columns of U (because all the other
components of pi are zero), then adding mean ({x}). If we write uj for the jth
column of U and wij for a weight value, we have

5.1. Representing Data on Principal Components 97

x̂i =

s∑

j=1

wijuj +mean ({x}).

What is important about this sum is that s is usually a lot less than d. In turn, this
means that we are representing the dataset using a lower dimensional dataset. We
choose an s-dimensional flat subspace of d-dimensional space, and represent each
data item with a point that lies on in that subset. The uj are known as principal

components (sometimes loadings) of the dataset; the r
(j)
i are sometimes known

as scores, but are usually just called coefficients. Forming the representation is
called principal components analysis or PCA. The weights wij are actually
easy to evaluate. We have that

wij = r
(j)
i = (xi −mean ({x}))Tuj .

−100 0 100
−5

0

5

1

23
4 5

−50 0 50
−5

0

5

1

23
45

−20 0 20
−5

0

5

1

2 3
45 Direction 4

−100 0 100
−20

−10

0

10

1

2

34

5

−50 0 50
−20

−10

0

10

1

2

3 4

5 Direction 3

−5 0 5
−20

−10

0

10

1

2

3 4

5

−100 0 100
−50

0

50

1
23

4

5 Direction 2

−20 0 20
−50

0

50

1
2 3

4

5

−5 0 5
−50

0

50

1
23

4

5

Direction 1

−50 0 50
−100

0

100

1
2

3 4

5

−20 0 20
−100

0

100

1
2

34

5

−5 0 5
−100

0

100

1
2

3 4

5

Figure 5.3: A panel plot of the bodyfat dataset of Fig. 4.4, now rotated so that
the covariance between all pairs of distinct dimensions is zero. Now we do not
know names for the directions—they’re linear combinations of the original variables.
Compare this figure with Fig. 5.2; in that figure, the axes were the same, but in this
figure I have scaled the axes so you can see details. Notice that the blob is a little
curved, and there are several data points that seem to lie some way away from the
blob, which I have numbered

5.1. Representing Data on Principal Components 98

Remember This: Data items in a d-dimensional dataset can usually
be represented with good accuracy as a weighted sum of a small number s of
d-dimensional vectors, together with the mean. This means that the dataset
lies on an s-dimensional subspace of the d-dimensional space. The subspace
is spanned by the principal components of the data.

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

Age

100

200

300

400
0 50

0 50
100

200

300

400

Weight

100

200

300

400
20 40

20 40

20 40
0

20

40

60

80

Height

0

20

40

60

80

0

20

40

60

80

Adiposity

10

20

30

40

50

10

20

30

40

50

0 50 100 200 300 400

100 200 300 400

100 200 300 400

50 100

50 100

50 100

10

20

30

40

50

Figure 5.4: The data of Fig. 4.4, represented by translating and rotating so that
the covariance is diagonal, projecting off the two smallest directions, then undoing
the rotation and translation. This blob of data is two-dimensional (because we
projected off two dimensions—Fig. 5.2 suggested this was safe), but is represented
in a four-dimensional space. You can think of it as a thin two-dimensional pancake
of data in the four-dimensional space (you should compare to Fig. 4.4 on page 73). It
is a good representation of the original data. Notice that it looks slightly thickened
on edge, because it isn’t aligned with the coordinate system—think of a view of a
flat plate at a slight slant

5.1.4 The Error in a Low Dimensional Representation

We can easily determine the error in approximating {x} with {x̂}. The error in
representing {r} by {p} was easy to compute. We had

1

N

∑

i

[
(ri − pi)

T
(ri − pi)

]
=

j=d∑

j=s+1

var
({

r(j)
})

=

j=d∑

j=s+1

λj

5.1. Representing Data on Principal Components 99

If this sum is small compared to the sum of the first s components, then dropping
the last d− s components results in a small error.

The average error in representing {x} with {x̂} is now easy to get. Rotations
and translations do not change lengths. This means that

1

N

∑

i

||xi − x̂i ||2 =
1

N

∑

i

||ri − pi ||2 =

j=d∑

j=s+1

λj

which is easy to evaluate, because these are the values of the d − s eigenvalues of
Covmat ({x}) that we decided to ignore. Now we could choose s by identifying how
much error we can tolerate. More usual is to plot the eigenvalues of the covariance
matrix, and look for a “knee,” like that in Fig. 5.5. You can see that the sum of
remaining eigenvalues is small.

Procedure: 5.1 Principal Components Analysis

Assume we have a general dataset xi, consisting of N d-dimensional
vectors. Now write Σ = Covmat ({x}) for the covariance matrix.
Form U , Λ, such that

ΣU = UΛ
(these are the eigenvectors and eigenvalues of Σ). Ensure that the
entries of Λ are sorted in the decreasing order. Choose r, the number
of dimensions you wish to represent. Typically, we do this by plotting
the eigenvalues and looking for a “knee” (Fig. 5.5). It is quite usual to
do this by hand.
Constructing a Low Dimensional Representation: For 1 ≤ j ≤ s,
write ui for the ith column of U . Represent the data point xi as

x̂i = mean ({x}) +
s∑

j=1

[
uT
j (xi −mean ({x}))

]
uj

The error in this representation is

1

N

∑

i

||xi − x̂i ||2 =

j=d∑

j=s+1

λj

5.1.5 Extracting a Few Principal Components with NIPALS

If you remember the curse of dimension, you should have noticed something of a
problem in my account of PCA. When I described the curse, I said one consequence
was that forming a covariance matrix for high dimensional data is hard or impos-
sible. Then I described PCA as a method to understand the important dimensions
in high dimensional datasets. But PCA appears to rely on covariance, so I should

5.1. Representing Data on Principal Components 100

not be able to form the principal components in the first place. In fact, we can
form principal components without computing a covariance matrix.

I will now assume the dataset has zero mean, to simplify notation. This is
easily achieved. You subtract the mean from each data item at the start, and add
the mean back once you’ve finished. As usual, we have N data items, each a d-
dimensional column vector. We will now arrange these into a matrix,

X =

⎛

⎜⎜⎝

xT
1

xT
2

. . .
xT
N

⎞

⎟⎟⎠

where each row of the matrix is a data vector. Now assume we wish to recover
the first principal component. This means we are seeking a vector u and a set of
N numbers wi such that wiu is a good approximation to xi. Now we can stack
the wi into a column vector w. We are asking that the matrix wuT be a good
approximation to X , in the sense that wuT encodes as much of the variance of X
as possible.

The Frobenius norm is a term for the matrix norm obtained by summing
squared entries of the matrix. We write

||A||F 2
=
∑

i,j

a2ij .

In the exercises, you will show that the right choice of w and u minimizes the cost

||X −wuT ||F
2

which we can write as
C(w,u) =

∑

ij

(xij − wiuj)
2
.

Now we need to find the relevant w and u. Notice there is not a unique choice,
because the pair (sw, (1/s)u) works as well as the pair (w,u). We will choose u
such that ||u || = 1. There is still not a unique choice, because you can flip the signs
in u and w, but this doesn’t matter. At the right w and u, the gradient of the cost
function will be zero.

The gradient of the cost function is a set of partial derivatives with respect
to components of w and u. The partial with respect to wk is

∂C

∂wk
=
∑

j

(xkj − wkuj)uj

which can be written in matrix vector form as

∇wC =
(
X −wuT

)
u.

5.1. Representing Data on Principal Components 101

Similarly, the partial with respect to ul is

∂C

∂ul
=
∑

i

(xil − wiul)wi

which can be written in matrix vector form as

∇uC =
(
X T − uwT

)
w.

At the solution, these partial derivatives are zero. Notice that, if we know
the right u, then the equation ∇wC = 0 is linear in w. Similarly, if we know the
right w, then the equation ∇uC = 0 is linear in u. This suggests an algorithm.
First, assume we have an estimate of u, say u(n). Then we could choose the w that
makes the partial wrt w zero, so

ŵ =
Xu(n)

(
u(n)

)T
u(n)

.

Now we can update the estimate of u by choosing a value that makes the partial
wrt u zero, using our estimate ŵ, to get

û =
X T ŵ

(ŵ)T ŵ
.

We need to rescale to ensure that our estimate of u has unit length. Write s =√
(û)T û We get

u(n+1) =
û

s

and
w(n+1) = sŵ.

This iteration can be started by choosing some row of X as u(0). You can test for
convergence by checking ||u(n+1) − u(n) ||. If this is small enough, then the algorithm
has converged.

To obtain a second principal component, you form X (1) = X −wuT and apply
the algorithm to that. You can get many principal components like this, but it’s not
a good way to get all of them (eventually numerical issues mean the estimates are
poor). The algorithm is widely known as NIPALS (for non-linear iterative partial
least squares).

5.1.6 Principal Components and Missing Values

Now imagine our dataset has missing values. We assume that the values are not
missing in inconvenient patterns—if, for example, the kth component was missing
for every vector, then we’d have to drop it—but don’t go into what precise kind

5.1. Representing Data on Principal Components 102

of pattern is a problem. Your intuition should suggest that we can estimate a few
principal components of the dataset without particular problems. The argument
is as follows. Each entry of a covariance matrix is a form of average; estimating
averages in the presence of missing values is straightforward; and, when we estimate
a few principal components, we are estimating far fewer numbers than when we are
estimating a whole covariance matrix, so we should be able to make something
work. This argument is sound, if vague.

The whole point of NIPALS is that, if you want a few principal components,
you don’t need to use a covariance matrix. This simplifies thinking about missing
values. NIPALS is quite forgiving of missing values, though missing values make
it hard to use matrix notation. Recall I wrote the cost function as C(w,u) =∑

ij(xij−wiuj)
2. Notice that missing data occurs in X because there are xij whose

values we don’t know, but there is no missing data in w or u (we’re estimating the
values, and we always have some estimate). We change the sum so that it ranges
over only the known values, to get

C(w,u) =
∑

ij∈known values

(xij − wiuj)
2
.

Now we need a shorthand to ensure that sums run over only known values. Write
V(k) for the set of column (resp. row) indices of known values for a given row (resp.
column index) k. So i ∈ V(k) means all i such that xik is known or all i such that
xki is known (the context will tell you which). We have

∂C

∂wk
=

∑

j∈V(k)

(xkj − wkuj)uj

and
∂C

∂ul
=

∑

i∈V(l)

(xil − wiul)wi.

These partial derivatives must be zero at the solution. This means we can use u(n),
w(n) to estimate

ŵk =

∑
j∈V(k) xkju

(n)
j

∑
j u

(n)
j u

(n)
j

and

ûl =

∑
i∈V(l) xilŵl∑

i ŵiŵi

We then normalize as before to get u(n+1), w(n+1).

5.1. Representing Data on Principal Components 103

Procedure: 5.2 Obtaining Some Principal Components with NIPALS

We assume that X has zero mean. Each row is a data item. Start with
u0 as some row of X . Write V(k) for the set of indices of known values
for a given row or column index k. Now iterate

• compute

ŵk =

∑
j∈V(k) xkju

(n)j

∑
j u

(n)
j u

(n)
j

and

ûl =

∑
i∈V(l) xilŵl∑

i ŵiŵi
;

• compute s =
√

(û)T û, and

u(n+1) =
û

s

and
w(n+1) = sŵ;

• Check for convergence by checking that ||u(n+1) − u(n) || is small.

This procedure yields a single principal component representing the
highest variance in the dataset. To obtain the next principal compo-
nent, replace X with X −wuT and repeat the procedure. This process
will yield good estimates of the first few principal components, but as
you generate more principal components, numerical errors will become
more significant.

5.1.7 PCA as Smoothing

Assume that each data item xi is noisy. We use a simple noise model. Write x̃i for
the true underlying value of the data item, and ξi for the value of a normal random
variable with zero mean and covariance σ2I. Then we use the model

xi = x̃i + ξi

(so the noise in each component is independent, has zero mean, and has variance
σ2; this is known as additive, zero mean, independent Gaussian noise). You
should think of the measurement xi as an estimate of x̃i. A principal component
analysis of xi can produce an estimate of x̃i that is closer than the measurements
are.

There is a subtlety here, because the noise is random, but we see the values
of the noise. This means that Covmat ({ξ}) (i.e., the covariance of the observed
numbers) is the value of a random variable (because the noise is random) whose
mean is σ2I (because that’s the model). The subtlety is that mean ({ξ}) will not

5.1. Representing Data on Principal Components 104

necessarily be exactly 0 and Covmat ({ξ}) will not necessarily be exactly σ2I. The
weak law of large numbers tells us that Covmat ({ξ}) will be extremely close to its
expected value (which is σ2I) for a large enough dataset. We will assume that
mean ({ξ}) = 0 and Covmat ({ξ}) = σ2I.

The first step is to write Σ̃ for the covariance matrix of the true underlying
values of the data, and Covmat ({x}) for the covariance of the observed data. Then
it is straightforward that

Covmat ({x}) = Σ̃ + σ2I

because the noise is independent of the measurements. Notice that if U diagonalizes
Covmat ({x}), it will also diagonalize Σ̃. Write Λ̃ = UT Σ̃U . We have

UTCovmat ({x})U = Λ = Λ̃ + σ2I.

Now think about the diagonal entries of Λ. If they are large, then they are quite
close to the corresponding components of Λ̃, but if they are small, it is quite likely
they are the result of noise. But these eigenvalues are tightly linked to error in a
PCA representation.

In PCA (Procedure 5.1), the d-dimensional data point xi is represented by

x̂i = mean ({x}) +
s∑

j=1

[
uT
j (xi −mean ({x}))

]
uj

where uj are the principal components. This representation is obtained by setting
the coefficients of the d− s principal components with small variance to zero. The
error in representing {x} with {x̂} follows from Sect. 5.1.4 and is

1

N

∑

i

||xi − x̂i ||2 =

j=d∑

j=s+1

λj .

Now consider the error in representing x̃i (which we don’t know) by xi (which we
do). The average error over the whole dataset is

1

N

∑

i

||xi − x̃i ||2.

Because the variance of the noise is σ2I, this error must be dσ2. Alternatively, we
could represent x̃i by x̂i. The average error of this representation over the whole
dataset will be

1

N

∑

i

|| x̂i − x̃i ||2 = Error in components that are preserved

+Error in components that are zeroed

= sσ2 +

d∑

j=s+1

λ̃u.

5.2. Example: Representing Colors with Principal Components 105

Now if, for j>s, λ̃j < σ2, this error is smaller than dσ2. We don’t know which s

guarantees this unless we know σ2 and λ̃j which often doesn’t happen. But it’s
usually possible to make a safe choice, and so smooth the data by reducing noise.
This smoothing works because the components of the data are correlated. So the
best estimate of each component of a high dimensional data item is likely not the
measurement—it’s a prediction obtained from all measurements. The projection
onto principal components is such a prediction.

Remember This: Given a d-dimensional dataset where data items
have had independent random noise added to them, representing each data
item on s<d principal components can result in a representation which is
on average closer to the true underlying data than the original data items.
The choice of s is application dependent.

5.2 Example: Representing Colors with Principal Components

Diffuse surfaces reflect light uniformly in all directions. Examples of diffuse surfaces
include matte paint, many styles of cloth, many rough materials (bark, cement,
stone, etc.). One way to tell a diffuse surface is that it does not look brighter
(or darker) when you look at it along different directions. Diffuse surfaces can
be colored, because the surface reflects different fractions of the light falling on it
at different wavelengths. This effect can be represented by measuring the spectral
reflectance of a surface, which is the fraction of light the surface reflects as a function
of wavelength. This is usually measured in the visual range of wavelengths (about
380 nm to about 770 nm). Typical measurements are every few nm, depending on
the measurement device. I obtained data for 1995 different surfaces from http://
www.cs.sfu.ca/∼colour/data/ (there are a variety of great datasets here, from Kobus
Barnard).

Each spectrum has 101 measurements, which are spaced 4 nm apart. This
represents surface properties to far greater precision than is really useful. Phys-
ical properties of surfaces suggest that the reflectance can’t change too fast from
wavelength to wavelength. It turns out that very few principal components are
sufficient to describe almost any spectral reflectance function. Figure 5.5 shows the
mean spectral reflectance of this dataset, and Fig. 5.5 shows the eigenvalues of the
covariance matrix.

This is tremendously useful in practice. One should think of a spectral re-
flectance as a function, usually written ρ(λ). What the principal components anal-
ysis tells us is that we can represent this function rather accurately on a (really
small) finite dimensional basis. This basis is shown in Fig. 5.5. This means that
there is a mean function r(λ) and k functions φm(λ) such that, for any ρ(λ),

ρ(λ) = r(λ) +

k∑

i=1

ciφi(λ) + e(λ)

http://www.cs.sfu.ca/~colour/data/
http://www.cs.sfu.ca/~colour/data/

5.2. Example: Representing Colors with Principal Components 106

300 400 500 600 700 800
0.05

0.1

0.15

0.2

0.25

0.3
Mean spectral reflectance

Wavelength (nm)

R
ef

le
ct

an
ce

 v
al

ue

0 50 100 150
0

1

2

3

4
Sorted eigenvalues, 1995 spectra

Number of eigenvalue

Va
lu

e

200 400 600 800
−0.2

−0.15

−0.1

−0.05

0
First PC

Wavelength (nm)

R
ef

le
ct

an
ce

 v
al

ue

300 400 500 600 700 800
−0.2

−0.1

0

0.1

0.2
Second PC

Wavelength (nm)

R
ef

le
ct

an
ce

 v
al

ue

300 400 500 600 700 800
−0.3

−0.2

−0.1

0

0.1
Third PC

Wavelength (nm)

R
ef

le
ct

an
ce

 v
al

ue
Figure 5.5: On the top left, the mean spectral reflectance of a dataset of 1995
spectral reflectances, collected by Kobus Barnard (at http://www.cs.sfu.ca/∼colour/
data/). On the top right, eigenvalues of the covariance matrix of spectral re-
flectance data, from a dataset of 1995 spectral reflectances, collected by Kobus
Barnard (at http://www.cs.sfu.ca/∼colour/data/). Notice how the first few eigen-
values are large, but most are very small; this suggests that a good representation
using few principal components is available. The bottom row shows the first three
principal components. A linear combination of these, with appropriate weights,
added to the mean (top left), gives a good representation of the dataset

where e(λ) is the error of the representation, which we know is small (because it
consists of all the other principal components, which have tiny variance). In the
case of spectral reflectances, using a value of k around 3–5 works fine for most appli-
cations (Fig. 5.6). This is useful, because when we want to predict what a particular
object will look like under a particular light, we don’t need to use a detailed spectral
reflectance model; instead, it’s enough to know the ci for that object. This comes
in useful in a variety of rendering applications in computer graphics. It is also the
key step in an important computer vision problem, called color constancy. In
this problem, we see a picture of a world of colored objects under unknown colored
lights, and must determine what color the objects are. Modern color constancy sys-
tems are quite accurate, even though the problem sounds underconstrained. This
is because they are able to exploit the fact that relatively few ci are enough to
accurately describe a surface reflectance.

http://www.cs.sfu.ca/~colour/data/
http://www.cs.sfu.ca/~colour/data/
http://www.cs.sfu.ca/~colour/data/

5.2. Example: Representing Colors with Principal Components 107

400 450 500 550 600 650 700 750 400 450 500 550 600 650 700 750
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Approx with 0, 3, 5, 7 PCs

Ref.
0 PCs
3 PCs
5 PCs
7 PCs

–0.2

–0.1

0

0.1

0.2

0.3

0.4
Error with 0, 3, 5, 7 PCs

0 PCs
3 PCs
5 PCs
7 PCs

Figure 5.6: On the left, a spectral reflectance curve (dashed) and approximations
using the mean, the mean and 3 principal components, the mean and 5 princi-
pal components, and the mean and 7 principal components. Notice the mean is
a relatively poor approximation, but as the number of principal components goes
up, the mean-squared distance between measurements and principal component
representation falls rather quickly. On the right is this distance for these approxi-
mations. A projection onto very few principal components suppresses local wiggles
in the data unless very many data items have the same wiggle in the same place.
As the number of principal components increases, the representation follows the
measurements more closely. The best estimate of each component of a data item
is likely not the measurement—it’s a prediction obtained from all measurements.
The projection onto principal components is such a prediction, and you can see the
smoothing effects of principal components analysis in these plots. Figure plotted
from a dataset of 1995 spectral reflectances, collected by Kobus Barnard (at http://
www.cs.sfu.ca/∼colour/data/)

Figures 5.7 and 5.8 illustrate the smoothing process. I know neither the
noise process nor the true variances (this is quite usual), so I can’t say which
smoothed representation is best. Each figure shows four spectral reflectances and
their representation on a set of principal components. Notice how, as the number
of principal components goes up, the measurements and the representation get
closer together. This doesn’t necessarily mean that more principal components are
better—the measurement itself may be noisy. Notice also how representations on
few principal components tend to suppress small local “wiggles” in the spectral
reflectance. They are suppressed because these patterns tend not to appear in the
same place in all spectral reflectances, so the most important principal components
tend not to have them. The noise model tends to produce these patterns, so that the
representation on a small set of principal components may well be a more accurate
estimate of the spectral reflectance than the measurement is.

http://www.cs.sfu.ca/~colour/data/
http://www.cs.sfu.ca/~colour/data/

5.2. Example: Representing Colors with Principal Components 108

Wavelength (nm)

–0.2

0

0.2

0.4

0.6

0.8

1
R

ef
le

ct
an

ce
 v

al
ue

Smoothed spectral reflectance, 3 PCs
Measured
Smoothed

300 400 500 600 700 800300 400 500 600 700 800
Wavelength (nm)

–0.2

0

0.2

0.4

0.6

0.8

1

R
ef

le
ct

an
ce

 v
al

ue

Smoothed spectral reflectance, 6 PCs
Measured
Smoothed

Figure 5.7: The best estimate of each component of a data item is likely not
the measurement—it’s a prediction obtained from all measurements. The pro-
jection onto principal components is such a prediction, and these plots show the
smoothing effects of principal components analysis. Each figure shows four spectral
reflectances, together with the smoothed version computed using principal compo-
nents. A projection onto very few principal components suppresses local wiggles
in the data unless very many data items have the same wiggle in the same place.
As the number of principal components increases, the representation follows the
measurements more closely. Figure 5.8 shows representations on more principal
components

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ef

le
ct

an
ce

 v
al

ue

Smoothed spectral reflectance, 9 PCs

Measured
Smoothed

300 400 500 600 700 800300 400 500 600 700 800
Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ef

le
ct

an
ce

 v
al

ue

Smoothed spectral reflectance, 20 PCs

Measured
Smoothed

Figure 5.8: Each figure shows four spectral reflectances, together with the smoothed
version computed using principal components. Compare with Fig. 5.7, and notice
how few principal components are required to get a representation very close to the
measurements (compare the eigenvalue plot in Fig. 5.5, which makes this point less
directly). For some number of principal components, the smoothed representation
is better than the measurements, though it’s usually hard to be sure which number
without knowing more about the measurement noise. If the measurement noise is
very low, the wiggles are data; if it is high, the wiggles are likely noise

5.3. Example: Representing Faces with Principal Components 109

0 1000 2000 3000 40000

5

10

15

20
Eigenvalues, total of 213 images

Number of eigenvalue

Va
lu

e

0 5 10 15 20
0

5

10

15

20
Eigenvalues, total of 213 images

Number of eigenvalue

Va
lu

e

Figure 5.9: On the left,the eigenvalues of the covariance of the Japanese facial
expression dataset; there are 4096, so it’s hard to see the curve (which is packed to
the left). On the right, a zoomed version of the curve, showing how quickly the
values of the eigenvalues get small

5.3 Example: Representing Faces with Principal Components

An image is usually represented as an array of values. We will consider intensity
images, so there is a single intensity value in each cell. You can turn the image into
a vector by rearranging it, for example, stacking the columns onto one another.
This means you can take the principal components of a set of images. Doing so was
something of a fashionable pastime in computer vision for a while, though there
are some reasons that this is not a great representation of pictures. However, the
representation yields pictures that can give great intuition into a dataset.

Figure 5.10 shows the mean of a set of face images encoding facial expressions
of Japanese women (available at http://www.kasrl.org/jaffe.html; there are tons of
face datasets at http://www.face-rec.org/databases/). I reduced the images to 64
× 64, which gives a 4096 dimensional vector. The eigenvalues of the covariance
of this dataset are shown in Fig. 5.9; there are 4096 of them, so it’s hard to see a
trend, but the zoomed figure suggests that the first couple of hundred contain most
of the variance. Once we have constructed the principal components, they can be
rearranged into images; these images are shown in Fig. 5.10. Principal components
give quite good approximations to real images (Fig. 5.11).

The principal components sketch out the main kinds of variation in facial
expression. Notice how the mean face in Fig. 5.10 looks like a relaxed face, but
with fuzzy boundaries. This is because the faces can’t be precisely aligned, because
each face has a slightly different shape. The way to interpret the components is
to remember one adjusts the mean toward a data point by adding (or subtracting)
some scale times the component. So the first few principal components have to
do with the shape of the haircut; by the fourth, we are dealing with taller/shorter
faces; then several components have to do with the height of the eyebrows, the
shape of the chin, and the position of the mouth; and so on. These are all images of
women who are not wearing spectacles. In face pictures taken from a wider set of

http://www.kasrl.org/jaffe.html
http://www.face-rec.org/databases/

5.3. Example: Representing Faces with Principal Components 110

Figure 5.10: The mean and first 16 principal components of the Japanese facial
expression dataset

models, moustaches, beards, and spectacles all typically appear in the first couple
of dozen principal components.

A representation on enough principal components results in pixel values that
are closer to the true values than the measurements (this is one sense of the word
“smoothing”). Another sense of the word is blurring. Irritatingly, blurring reduces
noise, and some methods for reducing noise, like principal components, also blur
(Fig. 5.11). But this doesn’t mean the resulting images are better as images. In
fact, you don’t have to blur an image to smooth it. Producing images that are both
accurate estimates of the true values and look like sharp, realistic images require
quite substantial technology, beyond our current scope.

5.4. You Should 111

Figure 5.11: Approximating a face image by the mean and some principal compo-
nents; notice how good the approximation becomes with relatively few components

5.4 You Should

5.4.1 Remember These Terms

principal components . 97
loadings . 97
scores . 97
coefficients . 97
principal components analysis . 97
PCA . 97
Frobenius norm . 100
additive, zero mean, independent Gaussian noise 103
smooth . 105
color constancy . 106

5.4.2 Remember These Facts

A few principal components can represent a high-D dataset 98
PCA can significantly reduce noise 105

5.4.3 Remember These Procedures

Principal Components Analysis . 99
Obtaining Some Principal Components with NIPALS 103

5.4.4 Be Able to

• Create, plot, and interpret the first few principal components of a dataset.
• Compute the error resulting from ignoring some principal components.
• Interpret the principal components of a dataset.

5.4. You Should 112

Problems

5.1. Using the notation of the chapter, show that

wij = r
(j)
i = (xi −mean ({x}))Tuj .

5.2. We have N d-dimensional data items forming a dataset {x}. We translate this
dataset to have zero mean, compute

UTCovmat ({x})U = Λ

and form the dataset {r}, using the rule

ri = UTmi = UT (xi −mean ({x})).

Choose some s<d, take each data point ri, and replace the last d− s compo-
nents with 0. Call the resulting data item pi.
(a) Show that

1

N

∑

i

[
(ri − pi)

T (ri − pi)
]
=

j=d∑

j=s+1

var
({

r(j)
})

.

(b) Sort the eigenvalues of Covmat ({x}) in the descending order, and write
λi for the ith (so that λ1 ≥ λ2 · · · ≥ λN). Show that

1

N

∑

i

[
(ri − pi)

T (ri − pi)
]
=

j=d∑

j=s+1

λj .

5.3. You have a dataset of N vectors xi in d-dimensions, stacked into a matrix X .
This dataset has zero mean. You would like to determine the principal compo-
nent of this dataset corresponding to the largest eigenvalue of its covariance.
Write u for this principal component.
(a) The Frobenius norm is a term for the matrix norm obtained by summing

squared entries of the matrix. We write

||A||F 2 =
∑

i,j

a2ij .

Show that
||A||F 2 = Trace(AAT)

(b) Show that
Trace(AB) = Trace(BA).

I have found this fact worth remembering. It may help to remember the
trace is defined only for square matrices.

(c) Show that, if u and w together minimize

||X −wuT ||F
2

5.4. You Should 113

then

(
wTw

)
u = XTw

(
uTu

)
w = Xu

Do this by differentiating and setting to zero, the text of the NIPALS
section should help.

(d) u is a unit vector—why?
(e) Show that

XTXu =
(
wTw

)
u

and so that, if u minimizes the Frobenius norm as above, it must be some
eigenvector of Covmat ({x}).

(f) Show that, if u is a unit vector, then

Trace(uuT) = 1

(g) Assume that u, w satisfy the equations for a minimizer, above, then show

||X −wuT ||F
2

= Trace(XTX − u(wTw)uT)

= Trace(XTX)− (wTw)

(h) Use the information above to argue that if u and w together minimize

||X −wuT ||F
2

then u is the eigenvector of XTX corresponding to the largest eigenvalue.
5.4. You have a dataset of N vectors xi in d-dimensions, stacked into a matrix X .

This dataset has zero mean. You would like to determine the principal compo-
nent of this dataset corresponding to the largest eigenvalue of its covariance.
Write u for this principal component. Assume that each data item xi is noisy.
We use a simple noise model. Write x̃i for the true underlying value of the
data item, and ξi for the value of a normal random variable with zero mean
and covariance σ2I. Then we use the model

xi = x̃i + ξi

We will assume that mean ({ξ}) = 0 and Covmat ({ξ}) = σ2I.
(a) Notice that the noise is independent of the dataset. This means that

mean
({

xξT
})

= mean ({x})mean
({

ξT
})

= 0. Show that

Covmat ({x}) = Σ̃ + σ2I.

(b) Show that if U diagonalizes Covmat ({x}), it will also diagonalize Σ̃.

5.4. You Should 114

Programming Exercises

5.5. Obtain the iris dataset from the UC Irvine machine learning data repository at
http://https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data.
(a) Plot a scatterplot matrix of this dataset, showing each species with a

different marker.
(b) Now obtain the first two principal components of the data. Plot the

data on those two principal components alone, again showing each species
with a different marker. Has this plot introduced significant distortions?
Explain

5.6. Take the wine dataset from the UC Irvine machine learning data repository at
https://archive.ics.uci.edu/ml/datasets/Wine.
(a) Plot the eigenvalues of the covariance matrix in sorted order. How many

principal components should be used to represent this dataset? Why?
(b) Construct a stem plot of each of the first 3 principal components (i.e., the

eigenvectors of the covariance matrix with largest eigenvalues). What do
you see?

(c) Compute the first two principal components of this dataset, and project it
onto those components. Now produce a scatterplot of this two-dimensional
dataset, where data items of class 1 are plotted as a “1,” class 2 as a “2,”
and so on.

5.7. Take the wheat kernel dataset from the UC Irvine machine learning data repos-
itory at http://archive.ics.uci.edu/ml/datasets/seeds. Compute the first two
principal components of this dataset, and project it onto those components.
(a) Produce a scatterplot of this projection. Do you see any interesting phe-

nomena?
(b) Plot the eigenvalues of the covariance matrix in sorted order. How many

principal components should be used to represent this dataset? why?
5.8. The UC Irvine machine learning data repository hosts a collection of data

on breast cancer diagnostics, donated by Olvi Mangasarian, Nick Street, and
William H. Wolberg. You can find this data at http://archive.ics.uci.edu/ml/
datasets/Breast+Cancer+Wisconsin+(Diagnostic). For each record, there is an
id number, 10 continuous variables, and a class (benign or malignant). There
are 569 examples. Separate this dataset randomly into 100 validation, 100
test, and 369 training examples. Plot this dataset on the first three principal
components, using different markers for benign and malignant cases. What do
you see?

5.9. The UC Irvine Machine Learning data archive hosts a dataset of measure-
ments of abalone at http://archive.ics.uci.edu/ml/datasets/Abalone. Compute
the principal components of all variables except Sex. Now produce a scatter-
plot of the measurements projected onto the first two principal components,
plotting an “m” for male abalone, an “f” for female abalone, and an “i” for
infants. What do you see?

5.10. Obtain the iris dataset from the UC Irvine machine learning data repository at
http://https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data. We
will investigate the use of principal components to smooth data.
(a) Ignore the species names, so you should have 150 data items with four

measurements each. For each value in {0.1, 0.2, 0.5, 1}, form a dataset
by adding an independent sample from a normal distribution with this
standard deviation to each entry in the original dataset. Now for each
value, plot the mean-squared error between the original dataset and an
expansion onto 1, 2, 3, and 4 principal components. You should see that,

http://https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
https://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/seeds
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Abalone
http://https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data

5.4. You Should 115

as the noise gets larger, using fewer principal components gives a more
accurate estimate of the original dataset (i.e., the one without noise).

(b) We will now try the previous subexercise with a very much different noise
model. For each of w = {10, 20, 30, 40}, construct a mask matrix each of
whose entries is a sample of a binomial random variable with probability
p = 1 − w/600 of turning up 1. This matrix should have about w zeros
in it. Ignore the species names, so you should have 150 data items with
four measurements each. Now form a new dataset by multiplying each
location in the original dataset by the corresponding mask location (so
you are randomly setting a small set of measurements to zero). Now for
each value of w, plot the mean-squared error between the original dataset
and an expansion onto 1, 2, 3, and 4 principal components. You should
see that, as the noise gets larger, using fewer principal components gives
a more accurate estimate of the original dataset (i.e., the one without
noise).

C H A P T E R 6

Low Rank Approximations

A principal components analysis models high dimensional data points with an
accurate, low dimensional, model. Now form a data matrix from the approximate
points. This data matrix must have low rank (because the model is low dimensional)
and it must be close to the original data matrix (because the model is accurate).
This suggests modelling data with a low rank matrix.

Assume we have data in X , with rank d, and we wish to produce Xs such
that (a) the rank of Xs is s (which is less than d) and (b) such that ||X − Xs ||2 is
minimized. The resulting Xs is called a low rank approximation to X . Producing
a low rank approximation is a straightforward application of the singular value
decomposition (SVD).

We have already seen examples of useful low rank approximations. NIPALS—
which is actually a form of partial SVD—produces a rank one approximation to a
matrix (check this point if you’re uncertain). A new, and useful, application is to
use a low rank approximation to make a low dimensional map of a high dimensional
dataset (Sect. 6.2).

The link between principal components analysis and low rank approximation
suggests (correctly) that you can use a low rank approximation to smooth and sup-
press noise. Smoothing is extremely powerful, and Sect. 6.3 describes an important
application. The count of words in a document gives a rough representation of the
document’s meaning. But there are many different words an author could use for
the same idea (“spanner” or “wrench,” say), and this effect means that documents
with quite similar meaning could have quite different word counts. Word counts
can be smoothed very effectively with a low rank approximation to an appropriate
matrix. There are two quite useful applications. First, this low rank approximation
yields quite good measures of how similar documents are. Second, the approxima-
tion can yield a representation of the underlying meaning of a word which is useful
in dealing with unfamiliar words.

6.1 The Singular Value Decomposition

For any m× p matrix X , it is possible to obtain a decomposition

X = UΣVT

where U is m × m, V is p × p, and Σ is m × p and is diagonal. The diagonal
entries of Σ are non-negative. Both U and V are orthonormal (i.e., UUT = I and
VVT = I). This decomposition is known as the singular value decomposition,
almost always abbreviated to SVD.

If you don’t recall what a diagonal matrix looks like when the matrix isn’t
square, it’s simple. All entries are zero, except the i, i entries for i in the range 1 to

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 6

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_6

6.1. The Singular Value Decomposition 118

min(m, p). So if Σ is tall and thin, the top square is diagonal and everything else is
zero; if Σ is short and wide, the left square is diagonal and everything else is zero.
The terms on the diagonal of Σ are usually called the singular values. There is
a significant literature on methods to compute the SVD efficiently, accurately, and
at large scale, which we ignore: any decent computing environment should do this
for you if you find the right function. Read the manual for your environment.

Procedure: 6.1 Singular Value Decomposition

Given a matrix X , any halfway decent numerical linear algebra package
or computing environment will produce a decomposition

X = UΣVT

and U and V are both orthonormal, Σ is diagonal with non-negative
entries. Most environments that can do an SVD can be persuaded to
provide the columns of U and rows of VT corresponding to the k largest
singular values.

There are many SVDs for a given matrix, because you could reorder the
singular values and then reorder U and V. We will always assume that the diagonal
entries in Σ go from largest to smallest as one moves down the diagonal. In this
case, the columns of U and the rows of VT corresponding to non-zero diagonal
elements of Σ are unique.

Notice that there is a relationship between forming an SVD and diagonalizing
a matrix. In particular, X TX is symmetric, and it can be diagonalized as

X TX = VΣTΣVT .

Similarly, XX T is symmetric, and it can be diagonalized as

XX T = UΣΣTU .

Remember This: A singular value decomposition (SVD) decomposes
a matrix X as X = UΣVT where U is m×m, V is p× p, and Σ is m× p
and is diagonal. The diagonal entries of Σ are non-negative. Both U and
V are orthonormal. The SVD of X yields the diagonalization of X TX and
the diagonalization of XX T .

6.1. The Singular Value Decomposition 119

6.1.1 SVD and PCA

Now assume we have a dataset with zero mean. As usual, we have N data items,
each a d- dimensional column vector. We will now arrange these into a matrix,

X =

⎛

⎜⎜⎝

xT
1

xT
2

. . .
xT
N

⎞

⎟⎟⎠

where each row of the matrix is a data vector. The covariance matrix is

Covmat ({X}) = 1

N
X TX

(zero mean, remember). Form the SVD of X , to get

X = UΣVT .

But we have X TX = VΣTΣVT so that

Covmat ({X})V =
1

N

(
X TX

)
V = VΣTΣ

N

and ΣTΣ is diagonal. By pattern matching, the columns of V contain the principal
components of X , and

ΣTΣ

N

are the variances on each component. All this means we can read the principal
components of a dataset of the SVD of that dataset, without actually forming the
covariance matrix—we just form the SVD of X , and the columns of V are the
principal components. Remember, these are the columns of V—it’s easy to get
mixed up about V and VT here.

We have seen NIPALS as a way of extracting some principal components from
a data matrix. In fact, NIPALS is a method to recover a partial SVD of X . Recall
that NIPALS produces a vector u and a vector w so that wuT is as close as possible
to X , and u is a unit vector. By pattern matching, we have that

• uT is the row of VT corresponding to the largest singular value;
• w

||w || is the column of U corresponding to the largest singular value;

• ||w || is the largest singular value.

It is easy to show that if you use NIPALS to extract several principal components,
you will get several rows of VT , several columns of U , and several singular values.
Be careful, however: this isn’t an efficient or accurate way to extract many singular
values, because numerical errors accumulate. If you want a partial SVD with many
singular values, you should be searching for specialist packages, not making your
own.

6.1. The Singular Value Decomposition 120

Remember This: Assume X has zero mean. Then the SVD of X yields
the principal components of the dataset represented by this matrix. NIPALS
is a method to recover a partial SVD of X . There are other specialized
methods.

6.1.2 SVD and Low Rank Approximations

Assume we have X , with rank d, and we wish to produce Xs such that (a) the rank

of Xs is s (which is less than d) and (b) such that ||X − Xs ||2 is minimized. An
SVD will yield Xs. Take the SVD to get X = UΣVT . Now write Σs for the matrix
obtained by setting all but the s largest singular values in Σ to 0. We have that

Xs = UΣsVT .

It is obvious that Xs has rank s. You can show (exercises) that ||X − Xs ||2 is

minimized, by noticing that ||X − Xs ||2 = ||Σ− Σs ||2.
There is one potential point of confusion. There are a lot of zeros in Σs, and

they render most of the columns of U and rows of VT irrelevant. In particular,
write Us for the m× s matrix consisting of the first s columns of U , and so on; and

write Σ
(s)
s for the s× s submatrix of Σs with non-zero diagonal. Then we have

Xs = UΣsVT = UsΣ
(s)
s (Vs)

T

and it is quite usual to switch from one representation to the other without com-
ment. I try not to switch notation like this, but it’s quite common practice.

6.1.3 Smoothing with the SVD

As we have seen, principal components analysis can smooth noise in the data matrix
(Sect. 5.1.7). That argument was for one particular kind of noise, but experience
shows that PCA can smooth other kinds of noise (there is an example in the exer-
cises for Chap. 5). This means that the entries of a data matrix can be smoothed
by computing a low rank approximation of X .

I have already shown that PCA can smooth data. In PCA (Procedure 5.1),
the d-dimensional data point xi is represented by

x̂i = mean ({x}) +
s∑

j=1

[
uT
j (xi −mean ({x}))

]
uj

where uj are the principal components. A low rank approximation represents the
ith row of X (which is xT

i) as

x̂i
T =

r∑

j=1

wijv
T
j

6.1. The Singular Value Decomposition 121

where vT
j is a row of VT (obtained from the SVD) and where wij are weights that

can be computed from the SVD. In each case, the data point is represented by
a projection onto a low dimensional space, so it is fair to conclude the SVD can
smooth something.

Just like smoothing with a PCA, smoothing with an SVD works for a wide
range of noise processes. In one very useful example, each component of the data
might be a count. For concreteness, let the entries be counts of roadkill species
per mile of highway. Each row would correspond to a species, each column to a
particular mile. Counts like this would typically be noisy, because you see rare
species only occasionally. At least for rare species, the count for most miles would
be 0, but occasionally, you would count 1. The 0 is too low a per-mile estimate, and
the 1 is too high, but one doesn’t see a fraction of a roadkill (ideally!). Constructing
a low rank approximation tends to lead to better estimates of the counts.

Missing data is a particularly interesting form of noise—the noise process
deletes entries in the data matrix—and low rank approximations are quite effective
in dealing with this. Assume you know most, but not all, entries of X . You would
like to build an estimate of the whole matrix. If you expect that the true whole
matrix has low rank, you can compute a low rank approximation to the matrix. For
example, the entries in the data matrix are scores of how well a viewer liked a film.
Each row of the data matrix corresponds to one viewer; each column corresponds
to one film. At useful scales, most viewers haven’t seen most films, so most of
the data matrix is missing data. However, there is good reason to believe that
users are “like” each other—the rows are unlikely to be independent, because if two
viewers both like (say) horror movies they might very well also both dislike (say)
documentaries. Films are “like” each other, too. Two horror movies are quite likely
to be liked by viewers who like horror movies but dislike documentaries. All this
means that the rows (resp. columns) of the true data matrix are very likely to be
highly dependent. More formally, the true data matrix is likely to have low rank.
This suggests using an SVD to fill in the missing values.

Numerical and algorithmic questions get tricky here. If the rank is very low,
you could use NIPALS to manage the question of missing entries. If you are dealing
with a larger rank, or many missing values, you need to be careful about numerical
error, and you should be searching for specialist packages, not making your own
with NIPALS.

Remember This: Taking an SVD of a data matrix usually produces a
smoothed estimate of the data matrix. Smoothing is guaranteed to be effec-
tive if the entries are subject to additive, zero mean, independent Gaussian
noise, but often works very well if the entries are noisy counts. Smoothing
can be used to fill in missing values, too.

6.2. Multidimensional Scaling 122

6.2 Multidimensional Scaling

One way to get insight into a dataset is to plot it. But choosing what to plot for a
high dimensional dataset could be difficult. Assume we must plot the dataset in two
dimensions (by far the most common choice). We wish to build a scatterplot in two
dimensions—but where should we plot each data point? One natural requirement
is that the points be laid out in two dimensions in a way that reflects how they sit
in many dimensions. In particular, we would like points that are far apart in the
high dimensional space to be far apart in the plot, and points that are close in the
high dimensional space to be close in the plot.

6.2.1 Choosing Low D Points Using High D Distances

We will plot the high dimensional point xi at yi, which is an s-dimensional vector
(almost always, s will be 2 or 3). Now the squared distance between points i and
j in the high dimensional space is

D
(2)
ij (x) = (xi − xj)

T
(xi − xj)

(where the superscript is to remind you that this is a squared distance). We could
build an N × N matrix of squared distances, which we write D(2)(x). The i, jth

entry in this matrix is D
(2)
ij (x), and the x argument means that the distances are

between points in the high dimensional space. Now we could choose the yi to make

∑

ij

(
D

(2)
ij (x)−D

(2)
ij (y)

)2

as small as possible. Doing so should mean that points that are far apart in the
high dimensional space are far apart in the plot, and that points that are close in
the high dimensional space are close in the plot.

In its current form, the expression is difficult to deal with, but we can refine
it. Because translation does not change the distances between points, it cannot
change either of the D(2) matrices. So it is enough to solve the case when the mean
of the points xi is zero. We assume that the mean of the points is zero, so

1

N

∑

i

xi = 0.

Now write 1 for the n-dimensional vector containing all ones, and I for the identity
matrix. Notice that

D
(2)
ij = (xi − xj)

T
(xi − xj) = xi · xi − 2xi · xj + xj · xj .

Now write

A =

[
I − 1

N
11T

]
.

Now you can show that

−1

2
AD(2)(x)AT = XX T .

I now argue that, to make D(2)(y) is close to D(2)(x), it is enough to choose yi so
that YYT close to XX T . Proving this will take us out of our way unnecessarily, so
I omit a proof.

6.2. Multidimensional Scaling 123

6.2.2 Using a Low Rank Approximation to Factor

We need to find a set of yi so that (a) the yi are s-dimensional and (b) Y (the
matrix made by stacking the yi) minimizes the distance between YYT and XX T .
Notice that YYT must have rank s.

Now form an SVD of X , to get

X = UΣVT

Recall Σ
(s)
s is the s × s submatrix of Σs with non-zero diagonal, Us is the m × s

matrix consisting of the first s columns of U , and so on. Consider

Xs = UsΣsVT
s .

We have that XsX T
s is the closest rank s approximation to XX T . The rows of Xs

are d-dimensional, so it isn’t the matrix we seek. But

XsX T
s =

(
UsΣsVT

s

) (
VsΣsUT

s

)

and VT
s Vs is the s× s identity matrix. This means that

Y = UsΣs

is the matrix we seek. We can obtain Y even if we don’t know X . It is enough to
know XX T . This is because

XX T =
(
UΣVT

) (
VΣUT

)
= UΣ2UT

so diagonalizing XX T is enough. This method for constructing a plot is known as
principal coordinate analysis.

This plot might not be perfect, because reducing the dimension of the data
points should cause some distortions. In many cases, the distortions are tolerable.
In other cases, we might need to use a more sophisticated scoring system that
penalizes some kinds of distortion more strongly than others. There are many ways
to do this; the general problem is known as multidimensional scaling. I pick up
this theme in Sect. 19.1, which demonstrates more sophisticated methods for the
problem.

6.2. Multidimensional Scaling 124

Procedure: 6.2 Principal Coordinate Analysis

Assume we have a matrix D(2) consisting of the squared differences
between each pair of N points. We do not need to know the points. We
wish to compute a set of points in s dimensions, such that the distances
between these points are as similar as possible to the distances in D(2).

• Form A =
[
I − 1

N 11T
]
.

• Form W = 1
2AD(2)AT .

• Form U , Λ, such that WU = UΛ (these are the eigenvectors and
eigenvalues of W). Ensure that the entries of Λ are sorted in the
decreasing order. Notice that you need only the top s eigenval-
ues and their eigenvectors, and many packages can extract these
rather faster than constructing all.

• Choose s, the number of dimensions you wish to represent. Form

Λs, the top left s × s block of Λ. Form Λ
(1/2)
s , whose entries are

the positive square roots of Λs. Form Us, the matrix consisting
of the first s columns of U .

Then

Y = UsΣs =

⎡

⎣
y1

. . .
yN

⎤

⎦

is the set of points to plot.

6.2.3 Example: Mapping with Multidimensional Scaling

Multidimensional scaling gets positions (the Y of Sect. 6.2.1) from distances (the
D(2)(x) of Sect. 6.2.1). This means we can use the method to build maps from
distances alone. I collected distance information from the web (I used http://www.
distancefromto.net, but a Google search on “city distances” yields a wide range
of possible sources), then applied multidimensional scaling. I obtained distances
between the South African provincial capitals, in kilometers. I then used principal
coordinate analysis to find positions for each capital, and rotated, translated, and
scaled the resulting plot to check it against a real map (Fig. 6.1).

One natural use of principal coordinate analysis is to see if one can spot any
structure in a dataset. Does the dataset form a blob, or is it clumpy? This isn’t a
perfect test, but it’s a good way to look and see if anything interesting is happening.
In Fig. 6.2, I show a 3D plot of the spectral data, reduced to three dimensions using
principal coordinate analysis. The plot is quite interesting. You should notice that
the data points are spread out in 3D, but actually seem to lie on a complicated
curved surface—they very clearly don’t form a uniform blob. To me, the struc-
ture looks somewhat like a butterfly. I don’t know why this occurs (perhaps the
universe is doodling), but it certainly suggests that something worth investigating
is going on. Perhaps the choice of samples that were measured is funny; perhaps

http://www.distancefromto.net
http://www.distancefromto.net

6.2. Multidimensional Scaling 125

−800 −600 −400 −200 0 200 400
−1000

−800

−600

−400

−200

0

200

400

Cape Town

Kimberley

Mahikeng
Nelspruit

Polokwane

Pietermaritzburg

Johannesburg

Bloemfontein

Bhisho

Figure 6.1: On the left, a public domain map of South Africa, obtained from
http://commons.wikimedia.org/wiki/File:Map of South Africa.svg, and edited to re-
move surrounding countries. On the right, the locations of the cities inferred by
multidimensional scaling, rotated, translated, and scaled to allow a comparison to
the map by eye. The map doesn’t have all the provincial capitals on it, but it’s
easy to see that MDS has placed the ones that are there in the right places (use a
piece of ruled tracing paper to check)

−0.4

−0.2

0

0.2

0.4 −0.3−0.2−0.100.10.2

−0.2

−0.1

0

0.1

0.2

−0.4 −0.2 0 0.2 0.4
−0.3−0.2−0.100.10.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 6.2: Two views of the spectral data of Sect. 5.2, plotted as a scatterplot by
applying principal coordinate analysis to obtain a 3D set of points. Notice that
the data spreads out in 3D, but seems to lie on some structure; it certainly isn’t a
single blob. This suggests that further investigation would be fruitful

the measuring instrument doesn’t make certain kinds of measurement; or perhaps
there are physical processes that prevent the data from spreading out over the space
(Fig. 6.3).

Our algorithm has one really interesting property. In some cases, we do not
actually know the data points as vectors. Instead, we just know distances between
the data points. This happens often in the social sciences, but there are important
cases in computer science as well. As a rather contrived example, one could survey
people about breakfast foods (say, eggs, bacon, cereal, oatmeal, pancakes, toast,
muffins, kippers, and sausages for a total of nine items). We ask each person to
rate the similarity of each pair of distinct items on some scale. We advise people

http://commons.wikimedia.org/wiki/File:Map_of_South_Africa.svg

6.3. Example: Text Models and Latent Semantic Analysis 126

−600
−400

−200

−100−50050
−40

−20

0

20

40

−500
−400

−300
−200

−100
0

100
−50

0

50

Figure 6.3: Two views of a multidimensional scaling to three dimensions of the
height-weight dataset of Fig. 4.4. Notice how the data seems to lie in a flat structure
in 3D, with one outlying data point. This means that the distances between data
points can be (largely) explained by a 2D representation

that similar items are ones where, if they were offered both, they would have no
particular preference; but, for dissimilar items, they would have a strong preference
for one over the other. The scale might be “very similar,” “quite similar,” “similar,”
“quite dissimilar,” and “very dissimilar” (scales like this are often called Likert
scales). We collect these similarities from many people for each pair of distinct
items, and then average the similarity over all respondents. We compute distances
from the similarities in a way that makes very similar items close and very dissimilar
items distant. Now we have a table of distances between items, and can compute a
Y and produce a scatterplot. This plot is quite revealing, because items that most
people think are easily substituted appear close together, and items that are hard
to substitute are far apart. The neat trick here is that we did not start with a X ,
but with just a set of distances; but we were able to associate a vector with “eggs,”
and produce a meaningful plot.

6.3 Example: Text Models and Latent Semantic Analysis

It is really useful to be able to measure the similarity between two documents, but it
remains difficult to build programs that understand natural language. Experience
shows that very simple models can be used to measure similarity between documents
without going to the trouble of building a program that understands their content.
Here is a representation that has been successful. Choose a vocabulary (a list of
different words), then represent the document by a vector of word counts, where we
simply ignore every word outside the vocabulary. This is a viable representation for
many applications because quite often, most of the words people actually use come
from a relatively short list (typically 100s to 1000s, depending on the particular
application). The vector has one component for each word in the list, and that
component contains the number of times that particular word is used. This model
is sometimes known as a bag-of-words model.

Details of how you put the vocabulary together can be quite important. It
is not a good idea to count extremely common words, sometimes known as stop

6.3. Example: Text Models and Latent Semantic Analysis 127

words, because every document has lots of them and the counts don’t tell you
very much. Typical stop words include “and,” “the,” “he,” “she,” and so on.
These are left out of the vocabulary. Notice that the choice of stop words can be
quite important, and depends somewhat on the application. It’s often, but not
always, helpful to stem words—a process that takes “winning” to “win,” “hugely”
to “huge,” and so on. This isn’t always helpful, and can create confusion (for
example, a search for “stock” may be looking for quite different things than a
search for “stocking”). We will always use datasets that have been preprocessed to
produce word counts, but you should be aware that preprocessing this data is hard
and involves choices that can have significant effects on the application.

Assume we have a set of N documents we wish to deal with. We have removed
stop words, chosen a d-dimensional vocabulary, and counted the number of times
each word appears in each document. The result is a collection of N d- dimensional
vectors. Write the ith vector xi (these are usually called word vectors). There
is one minor irritation here; I have used d for the dimension of the vector xi for
consistency with the rest of the text, but d is the number of terms in the vocabulary
not the number of documents.

The distance between two word vectors is usually a poor guide to the similarity
of two documents. One reason is quite small, changes in word use might lead to
large differences between count vectors. For example, some authors might write
“car” when others write “auto.” In turn, two documents might have a large (resp.
small) count for “car” and a small (resp. large) count for “auto.” Just looking at
the counts would significantly overstate the difference between the vectors.

6.3.1 The Cosine Distance

The number of words in a document isn’t particularly informative. As an extreme
example, we could append a document to itself to produce a new document. The
new document would have twice as many copies of each word as the old one, so the
distance from the new document’s word vector to other word vectors would have
changed a lot. But the meaning of the new document wouldn’t have changed. One
way to overcome this nuisance is to normalize the vector of word counts in some
way. It is usual to normalize the word counts by the magnitude of the count vector.

The distance between two word count vectors, normalized to be unit vectors,
is ∥∥∥∥

xi

||xi ||
− xj

||xj ||

∥∥∥∥
2

= 2− 2
xT
i xj

||xi ||||xj ||
.

The expression

dij =
xT
i xj

||xi ||||xj ||
is often known as the cosine distance between documents. While this is widely
referred to as a distance, it isn’t really. If two documents are very similar, their
cosine distance will be close to 1; if they are really different, their cosine distance
will be close to −1. Experience has shown that their cosine distance is a very
effective measure of the similarity of documents i and j.

6.3. Example: Text Models and Latent Semantic Analysis 128

6.3.2 Smoothing Word Counts

Measuring the cosine distance for word counts has problems. We have seen one
important problem already: if one document uses “car” and the other “auto,”
the two might be quite similar and yet have cosine distance that is close to zero.
Remember, cosine distance close to zero suggests they’re far apart. This is because
the word counts are misleading. If you count, say, “car” once, you should have a
non-zero count for “auto” as well. You could regard the zero count for “auto” as
noise. This suggests smoothing word counts.

Arrange the word vectors into a matrix in the usual way, to obtain

X =

⎡

⎣
xT
1

. . .
xT
N

⎤

⎦ .

This matrix is widely called a document-term matrix (its transpose is called
a term-document matrix). This is because you can think of it as a table of
counts; each row represents a document, each column represents a term from the
vocabulary. We will use this object to produce a reduced dimension representation
of the words in each document; this will smooth the word counts. Take an SVD of
X , yielding

X = UΣVT .

Write Σr for the matrix obtained by setting all but the r largest singular values in
Σ to 0, and construct

X (r) = UΣrVT .

You should think of X (r) as a smoothing of X . The argument I used to justify
seeing principal components as a smoothing method (Sect. 5.1.7) doesn’t work here,
because the noise model doesn’t apply. But a qualitative argument supports the
idea that we are smoothing. Each document that contains the word “car” should
also have a non-zero count for the word “automobile” (and vice versa) because
the two words mean about the same thing. The original matrix of word counts
X doesn’t have this information, because it relies on counting actual words. The
counts in X (r) are better estimates of what true word counts should be than one
can obtain by simply counting words, because they take into account correlations
between words.

Here is one way to think about this. Because word vectors in X (r) are com-
pelled to occupy a low dimensional space, counts “leak” between words with similar
meanings. This happens because most documents that use “car” will tend to have
many other words in common with most documents that use “auto.” For example,
it’s highly unlikely that every document that uses “car” instead of “auto” also uses
“spanner” instead of “wrench,” and vice versa. A good low dimensional representa-
tion will place documents that use a large number of words with similar frequencies
close together, even if they use some words with different frequencies; in turn, a
document that uses “auto” will likely have the count for that word go down some-
what, and the count for “car” go up. Recovering information from the SVD of X
is referred to as latent semantic analysis.

6.3. Example: Text Models and Latent Semantic Analysis 129

We have that
(
x
(r)
i

)T
=

r∑

k=1

uikσkv
T
k =

r∑

k=1

aikv
T
k

so each x
(r)
i is a weighted sum of the first r rows of VT .

Forming a unit vector out of these smoothed word counts yields a natural
representation for the ith document as

di =
x
(r)
i

||x(r)
i ||

.

The distance between di and dj is a good representation of the differences in
meaning of document i and document j (it’s 2− cosine distance).

A key application for latent semantic analysis is in search. Assume you have
a few query words, and you need to find documents that are suggested by those
words. You can represent the query words as a word vector xq, which you can
think of as a very small document. We will find nearby documents by: computing
a low dimensional unit vector dq for the query word vector, then finding nearby
documents by an approximate nearest neighbor search on the document dataset.
Computing a dq for the query word vector is straightforward. We find the best
representation of xq on the space spanned by {v1, . . . ,vr}, then scale that to have
unit norm.

Now V is orthonormal, so vT
k vm is 1 for k = m, and zero otherwise. This

means that

(
x
(r)
i

)T (
x
(r)
j

)
=

(
r∑

k=1

aikv
T
k

)(
r∑

m=1

ajmvm

)
=

r∑

k=1

aikajk.

But all the terms we are interested are inner products between document vectors.
In turn, this means we could adopt a low dimensional representation for documents
explicitly, and so, for example, use

di =
[ai1, . . . , air]∑

k a
2
ik

.

This representation has a much lower dimension than the normalized smoothed
document vector, but contains exactly the same information.

Remember This: Documents can be represented by smoothed word
counts. The word counts are smoothed by constructing a low rank approxi-
mation to a document-word matrix. Each document is then represented by
a unit vector proportional to the smoothed counts. The distance between
these unit vectors yields the cosine distance. Documents can be retrieved by
forming a unit vector representing the smoothed word counts of the query,
then using nearest neighbors.

6.3. Example: Text Models and Latent Semantic Analysis 130

6.3.3 Example: Mapping NIPS Documents

At https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015, you
can find a dataset giving word counts for each word that appears at least 50 times
in the NIPS conference proceedings from 1987 to 2015, by paper. It’s big. There
are 11,463 distinct words in the vocabulary, and 5811 total documents. We will use
LSA to compute smoothed word counts in documents, and to map documents.

First, we need to deal with practicalities. Taking the SVD of a matrix this
size will present problems, and storing the result will present quite serious prob-
lems. Storing X is quite easy, because most of the entries are zero, and a sparse
matrix representation will work. But the whole point of the exercise is that X (r)

is not sparse, and this will have about 107 entries. Nonetheless, I was able to form
an SVD in R, though it took about 30min on my laptop. Figure 6.4 shows a
multidimensional scaling of distances between normalized smoothed word counts.
You should notice that documents are fairly evenly spread over the space. To give
some meaning to the space, I have plotted the 10 words most strongly correlated
with a document appearing in the corresponding grid block (highest correlation
at top left in block, lowest in bottom right). Notice how the word clusters shade
significantly across the coordinates. This is (rather rough) evidence that distances
between smoothed normalized word counts do capture aspects of meaning.

6.3.4 Obtaining the Meaning of Words

It is difficult to know what a word means by looking at it, unless you have seen it
before or it is an inflected version of a word you have seen before. A high percent-
age of readers won’t have seen “peridot,” “incarnadine,” “whilom,” or “numbat”
before. If any of these are unfamiliar, simply looking at the letters isn’t going to
tell you what they mean. This means that unfamiliar words are quite different from
unfamiliar pictures. If you look at a picture of something you haven’t seen before,
you’re likely to be able to make some sensible guesses as to what it is like (how
you do this remains very poorly understood; but that you can do this is everyday
experience).

We run into unfamiliar words all the time, but the words around them seem
to help us figure out what the unfamiliar words mean. As a demonstration, you
should find these texts, which I modified from sentences found on the internet,
helpful

• Peridot: “A sweet row of Peridot sit between golden round beads, strung from
a delicate plated chain” (suggesting some form of decorative stone).

• Incarnidine: “A spreading stain incarnadined the sea” (a color description of
some sort).

• Whilom: “Portions of the whilom fortifications have been converted into
promenades.” (a reference to the past).

• Numbat: “They fed the zoo numbats modified cat chow with crushed termite”
(some form of animal, likely not vegetarian, and perhaps a picky eater).

This is a demonstration of a general point. Words near a particular word give
strong and often very useful hints to that word’s meaning, an effect known as

https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015

6.3. Example: Text Models and Latent Semantic Analysis 131

−0.4 −0.2 0.0 0.2 0.4 −0.4 −0.2 0.0 0.2 0.4

−
0.

2
0.

0
0.

2
0.

4

−
0.

2
0.

0
0.

2
0.

4

network
input
networks
neural
output

units
architecture
unit
inputs
weights

visual
cells
spikes
system
cortex

stimulus
neurons
cell
temporal
stimuli

model
models
account
visual
simoncelli

responses
figure
image
fit
capture

reinforcement
actions
agent
state
singh

action
learning
watkins
kaelbling
policy

approach
descriptors
distance
descriptor
feature

training
computed
features
nodes
evaluate

models
model
likelihood
data
posterior

prior
latent
inference
distribution
ghahramani

algorithm
proof
theorem
algorithms
let

bound
following
convex
loss
lemma

siam
proof
section
solve
solving

problem
matrix
following
let
theorem

sample
matrix
liu
dimensional
gaussian

data
log
annals
statistics
wainwright

Figure 6.4: On the left, a multidimensional scaling mapping the NIPS documents
into 2D. The distances between points represent (as well as an MDS can) the
distances between normalized smoothed word counts. I have plotted every 10th
document, to avoid crowding the plot. Superimposed on the figure is a grid, dividing
each coordinate at the 33% (resp. 66%) quantile. On the right, I have plotted the
10 words most strongly correlated with a document appearing in the corresponding
grid block (highest correlation at top left in block, lowest in bottom right). Each
block has quite different sets of words, but there is evidence that: changes in the
coordinates result in changes in document content; the dataset still has proper
names in it, though insiders might notice the names are in sensible places; the
horizontal coordinate seems to represent a practical–conceptual axis; and increasing
values of the vertical coordinate seems to represent an increasingly statistical flavor.
This is (rather rough) evidence that distances between smoothed normalized word
counts do capture aspects of meaning

distributional semantics. Latent semantic analysis offers a way to exploit this
effect to estimate representations of word meaning (Fig. 6.4).

Each row of X (r) is a smoothed count of the number of times each word
appears in a single document (Fig. 6.5). In contrast, each column is a smoothed
count of the number of times a single word appears in each document. Imagine we
wish to know the similarity in meaning between two words. Represent the ith word
by the ith column of X (r), which I shall write as wi, so that

X (r) = [w1, . . . ,wd] .

Using a word more often (or less often) should likely not change its meaning. In
turn, this means we should represent the ith word by

ni =
wi

||wi ||
and the distance between the ith and jth words is the distance between ni and
nj . This distance gives quite a good representation of word meaning, because two

6.3. Example: Text Models and Latent Semantic Analysis 132

original
smoothed

Smoothed vs. unsmoothed word counts, D1

Frequency rank

C
ou

nt
0

10
20

30
40

50
60 original

smoothed

Smoothed vs. unsmoothed word counts, D2

Frequency rank

C
ou

nt
0

10
20

30
40

50
60

Figure 6.5: Unsmoothed and smoothed word counts for two different documents,
where smoothing is by LSA to 1000 intermediate dimensions. Each figure shows
one document; the blue bars are unsmoothed counts and the red bars are smoothed
counts. The figure shows the counts for the 100 words that appear most frequently
in the whole dataset, ordered by the rank of the word count (most common word
first, etc.) Notice that generally, large counts tend to go down, and small counts
tend to go up, as one would expect

words that are close in this distance will tend to appear in the same documents.
For example, “auto” and “car” should be close. As we saw above, the smoothing
will tend to reduce counts of “auto” and increase counts of “car” for documents
that have only “auto,” and so on. In turn, this means that “auto” will tend to
appear in the same documents as “car,” meaning that the distance between their
normalized smoothed counts should be small.

We have that (
w

(r)
i

)
=

r∑

k=1

(σkvki)uk =

r∑

k=1

bikuk

so each w
(r)
i is a weighted sum of the first r columns of U .

Now U is orthonormal, so uT
k um is 1 for k = m, and zero otherwise. This

means that

(
w

(r)
i

)T (
w

(r)
j

)
=

(
r∑

k=1

biku
T
k

)(
r∑

m=1

bjmum

)
=

r∑

k=1

bikbjk.

But all the terms we are interested are inner products between word vectors. In
turn, this means we could adopt a low dimensional representation for words explic-
itly, and so, for example, use

ni =
[bi1, . . . , bir]∑

k b
2
ik

.

6.3. Example: Text Models and Latent Semantic Analysis 133

This representation has a much lower dimension than the normalized smoothed
word vector, but contains exactly the same information. This representation of a
word is an example of aword embedding—a representation that maps a word to a
point in some high dimensional space, where embedded points have good properties.
In this case, we seek an embedding that places words with similar meanings near
one another.

Remember This: Words can be represented by smoothed counts of the
documents they appear in. This works because words with similar meanings
tend to appear in similar documents.

6.3.5 Example: Mapping NIPS Words

LSA does not give a particularly strong word embedding, as this example will show.
I used the dataset of Sect. 6.3.3, and computed a representation on 1000 dimensions.
Figure 6.6 shows a multidimensional scaling (using the method of Sect. 6.2.3) onto
two dimensions, where distances between points are given by distances between the
normalized vectors of Sect. 6.3.4. I have shown only the top 80 words, so that the
figures are not too cluttered to read.

Some results are natural. For example, “used” and “using” lie close to one
another, as do “algorithm” and “algorithms”; “network” and “networks”; and “fea-
tures” and “feature.” This suggests the data wasn’t stemmed or even preprocessed
to remove plurals. Most of the pairs that seem to make sense (and aren’t ex-
plained as plurals or inflections) seem to have more to do with phrases than with
meaning. For example, “work” and “well” are close (“work well”); “problem” and
“case” (“problem case”); “probability” and “distribution” (“probability distribu-
tion”). Some pairs are close because the words likely appear near one another in
common phrases. So “classification” and “feature” suggest “feature based classifi-
cation” or “classification by feature.”

This tendency can be seen in the k-nearest neighbors of embedded words,
too. Table 6.1 shows the six nearest neighbors for the 20 most frequent words.
But there is evidence that the embedding is catching some kind of semantics, too.
Notice that “network,”, “neural,” “units,” and “weights” are close, as they should
be. Similarly, “distribution,” “distributions,” and “probability” are close, and so
are “algorithm” and “problem.”

Embedding words in a way that captures semantics is a hard problem. Good
recent algorithms use finer measures of word similarity than the pattern of doc-
uments a word appears in. Strong recent methods, like Word2Vec or Glove, pay
most attention to the words that appear near the word of interest, and construct
embeddings that try to explain such similarity statistics. These methods tend to
be trained on very large datasets, too; much larger than this one.

6.3. Example: Text Models and Latent Semantic Analysis 134

model

learning

data

algorithm

set

function

using

time

figure

number

problem

models

used

training

given

also
results

distribution

network
based

matrix

neuralfirst

information

use

error

method
linear

input

state

different

case
probability

methods
space

algorithms

performance
approach

parameters networks

−0.4 −0.2 0.0 0.2 0.4

−0
.4

−0
.2

0.
0

0.
2

0.
4

−0
.4

−0
.2

0.
0

0.
2

0.
4

−0.4 −0.2 0.0 0.2 0.4

value

image

random

large

vector
section

let

order

functions
log

features

optimal

analysis

gaussian
following

example

seeshow
since

newmaywork values

kernel

feature

point

shown

well

bound

test

class

theorem

output

noisevariables

thus

points

classification
size

step

Figure 6.6: On the left, the 40 most frequent words in the NIPS dataset, plotted us-
ing a multidimensional scaling of the document frequencies, smoothed using latent
semantic analysis. On the right, the next 40 most frequent words, plotted in the
same way. I used 1000 dimensions for the smoothing. Words that have a similar
pattern of incidence in documents appear near one another

Remember This: Strong recent word embedding methods, like
Word2Vec or Glove, pay most attention to the words that appear near the
word of interest, and construct embeddings that try to explain such similar-
ity statistics.

6.3.6 TF-IDF

The raw count of the number of times a word appears in a document may not
be the best value to use in a term-document matrix. If a word is very common
in all documents, then the fact that it appears often in a given document isn’t
that informative about what the document means. If a word appears only in a few
documents, but is quite common in those documents, the number of times the word
appears may understate how important it is. For example, in a set of documents
about small pets, a word like “cat” is likely to appear often in each document; a
word like “tularemia” is unlikely to appear often in many documents, but will tend
to be repeated in a document if it appears. You can then argue that observing “cat”
five times is a lot less informative about the document than observing “tularemia”
five times is. Much time and trouble has been spent on making this very appealing
argument more rigorous, without significant benefits that I’m aware of.

All this suggests that you might use a modified word score. The standard is
known as TF-IDF (or, very occasionally, term frequency-inverse document
frequency). Write cij for the number of times the ith word appears in the jth
document, N for the number of documents, and Ni for the number of documents
that contain at least one instance of the ith word. Then one TF-IDF score is

6.3. Example: Text Models and Latent Semantic Analysis 135

Model Models Also Using Used Figure Parameters
Learning Also Used Using Machine Results Use
Data Using Also Used Use Results Set
Algorithm Algorithms Problem Also Set Following Number
Set Also Given Using Results Used Use
Function Functions Also Given Using Defined Paper
Using Used Use Also Results Given First
Time Also First Given Used University Figure
Figure Shown Shows Used Using Also Different
Number Also Results Set Given Using Used
Problem Problems Following Paper Also Set Algorithm
Models Model Using Also Used Parameters Use
Used Using Use Also Results First University
Training Used Set Using Test Use Results
Given Also Using Set Results University First
Also Results Using Use Used Well First
Results Also Using Used Paper Use Show
Distribution Distributions Given Probability Also University Using
Network Networks Neural Input Output Units Weights
Based Using Also Use Used Results Given

TABLE 6.1: The leftmost column gives the top 20 words, by frequency of use in the
NIPS dataset. Each row shows the seven closest words to each query word using
the cosine distance applied to document counts of the word smoothed using latent
semantic analysis. I used 1000 dimensions. Words that have similar patterns of
use across documents do have important similarities, but these are not restricted to
similarities of meaning. For example, “algorithm” is very similar to “algorithms,”
and also to “following” (likely because the phrase “following algorithm” is quite
common) and to “problem” (likely because it’s natural to have an algorithm to
solve a problem)

cij log
N

Ni

(where we exclude cases where Ni = 0 because the term then doesn’t appear in any
document). Notice that a term appears in most documents, the score is about the
same as the count; but if the term appears in few documents, the score is rather
larger than the count. Using this score, rather than a count, tends to produce
improved behavior from systems that use term-document matrices. There are a
variety of ingenious variants of this score—the Wikipedia page lists many—each of
which tends to produce changes in systems (typically, some things get better and
some get worse). Don’t forget the logarithm, which got dropped from the acronym
for no reason I know.

Remember This: Weighting word counts can produce significant im-
provements in document retrieval. Weights are chosen so that words that
are common are downweighted, and words that are rare but common in a
particular document are upweighted.

6.4. You Should 136

6.4 You Should

6.4.1 Remember These Terms

low rank approximation . 117
singular value decomposition . 117
SVD . 117
singular values . 118
principal coordinate analysis . 123
multidimensional scaling . 123
Likert scales . 126
bag-of-words . 126
stop words . 127
stem . 127
word vectors . 127
cosine distance . 127
document-term matrix . 128
term-document matrix . 128
latent semantic analysis . 128
distributional semantics . 131
word embedding . 133
TF-IDF . 134
term frequency-inverse document frequency 134

6.4.2 Remember These Facts

The SVD decomposes a matrix in a useful way 118
The SVD yields principal components 120
The SVD smoothes a data matrix . 121
Represent documents with smoothed word counts 129
Smoothed document counts are a clue to word meanings 133
Strong word embeddings require finer measures of word similarity . . 134
Reweight word counts with TF-IDF 135

6.4.3 Remember These Procedures

Singular Value Decomposition . 118
Principal Coordinate Analysis . 124

6.4.4 Be Able to

• Use a singular value decomposition to obtain principal components.
• Use a singular value decomposition to produce a principal coordinate analysis.

Problems

6.1. You have a dataset of N vectors xi in d-dimensions, stacked into a matrix X .
This dataset does not have zero mean. The data xi is noisy. We use a simple
noise model. Write x̃i for the true underlying value of the data item, and ξi

6.4. You Should 137

for the value of a normal random variable with zero mean and covariance σ2I.
Then we use the model

xi = x̃i + ξi.

In matrices, we write
X = X̃ + Ξ.

We will assume that mean ({ξ}) = 0 and Covmat ({ξ}) = σ2I.
(a) Show that our assumptions mean that the row rank of Ξ is d. Do this by

contradiction: show if the row rank of Ξ is r<d, there is some rotation U
so that each Uξ has zeros in the last d− r components; now think about
the covariance matrix of Uξ.

(b) Assume that the row rank of X̃ is s � d. Show that the row rank of X is
d. Do this by noticing that the noise is independent of the dataset. This
means that mean

({
xξT

})
= mean ({x})mean

({
ξT
})

= 0. Now show
that

Covmat ({x}) = Covmat ({x̃}) + σ2I.
Now use the results of the previous exercise.

(c) We now have a geometric model for both X̃ and X . The points in X̃ lie on
some hyperplane that passes through the origin in d-dimensional space.
This hyperplane has dimension s.

(d) The points in X lie on a “thickened” version of this hyperplane which has
dimension d because the matrix has rank d. Show that the variance of the
data in any direction normal to the original hyperplane is σ2.

(e) Use the previous subexercises to argue that a rank s approximation of X
lies closer to X̃ than X does. Use the Frobenius norm.

6.2. Write D(2) for the matrix whose i,jth component is

D
(2)
ij =

(
xi − xj

)T (
xi − xj

)
= xi · xi − 2xi · xj + xj · xj

where mean ({x}) = 0. Now write

A =
[
I − 1

N
11T

]
.

Show that

−1

2
AD(2)(x)AT = XXT .

6.3. You have a dataset of N vectors xi in d-dimensions, stacked into a matrix
X , and wish to build an s-dimensional dataset Ys so that YsY∫T minimizes

||YsY∫T −XXT ||F . Form an SVD, to get

X = UΣVT

and write
Y = UsΣs

(the subscript-s notation is in the chapter).
(a) Show that

||YsY∫
T −XXT ||F = ||Σ2

s − Σ2 ||F .

Explain why this means that Ys is a solution.
(b) For any s × s orthonormal matrix R, show that YR = UsΣsR is also a

solution. Interpret this geometrically.

6.4. You Should 138

Programming Exercises

6.4. At https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015,
you can find a dataset giving word counts for each word that appears at least
50 times in the NIPS conference proceedings from 1987 to 2015, by paper.
It’s big. There are 11,463 distinct words in the vocabulary, and 5811 total
documents. We will investigate simple document clustering with this dataset.

(a) Reproduce Fig. 6.5 using approximations with rank 100, 500, and 2000.
Which is best, and why?

(b) Now use a TF-IDF weight to reproduce Fig. 6.5 using approximations with
rank 100, 500, and 2000. Which is best, and why?

(c) Reproduce Fig. 6.6 using approximations with rank 100, 500, and 2000.
Which is best, and why?

(d) Now use a TF-IDF weight to reproduce Fig. 6.6 using approximations with
rank 100, 500, and 2000. Which is best, and why?

6.5. Choose a state. For the 15 largest cities in your chosen state, find the distance
between cities and the road mileage between cities. These differ because of
the routes that roads take; you can find these distances by careful use of the
internet. Prepare a map showing these cities on the plane using principal
coordinate analysis for each of these two distances. How badly does using the
road network distort to make a map distort the state? Does this differ from
state to state? Why?

6.6. CIFAR-10 is a dataset of 32 × 32 images in 10 categories, collected by Alex
Krizhevsky, Vinod Nair, and Geoffrey Hinton. It is often used to evaluate
machine learning algorithms. You can download this dataset from https://
www.cs.toronto.edu/∼kriz/cifar.html.
(a) For each category, compute the mean image and the first 20 principal

components. Plot the error resulting from representing the images of each
category using the first 20 principal components against the category.

(b) Compute the distances between mean images for each pair of classes. Use
principal coordinate analysis to make a 2D map of the means of each
categories. For this exercise, compute distances by thinking of the images
as vectors.

(c) Here is another measure of the similarity of two classes. For class A and
class B, define E(A → B) to be the average error obtained by represent-
ing all the images of class A using the mean of class A and the first 20
principal components of class B. This should tell you something about
the similarity of the classes. For example, imagine images in class A con-
sist of dark circles that are centered in a light image, but where different
images have circles of different sizes; images of class B are dark on the
left, light on the right, but different images change from dark to light
at different vertical lines. Then the mean of class A should look like a
fuzzy centered blob, and its principal components make the blob bigger
or smaller. The principal components of class B will move the dark patch
left or right. Encoding an image of class A with the principal components
of class B should work very badly. But if class C consists of dark circles
that move left or right from image to image, encoding an image of class
C using A’s principal components might work tolerably. Now define the
similarity between classes to be (1/2)(E(A → B) + E(B → A)). Use
principal coordinate analysis to make a 2D map of the classes. Compare
this map to the map in the previous exercise—are they different? why?

https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

C H A P T E R 7

Canonical Correlation Analysis

In many applications, one wants to associate one kind of data with another.
For example, every data item could be a video sequence together with its sound
track. You might want to use this data to learn to associate sounds with video,
so you can predict a sound for a new, silent, video. You might want to use this
data to learn how to read the (very small) motion cues in a video that result from
sounds in a scene (so you could, say, read a conversation off the tiny wiggles in the
curtain caused by the sound waves). As another example, every data item could
be a captioned image. You might want to predict words from pictures to label the
pictures, or predict pictures from words to support image search. The important
question here is: what aspects of the one kind of data can be predicted from the
other kind of data?

In each case, we deal with a dataset of N pairs, pi = [xi,yi]
T
, where xi is

a dx dimensional vector representing one kind of data (e.g., words, sound, image,
video) and yi is a dy dimensional vector representing the other kind. I will write
{x} for the x part, etc., but notice that our agenda of prediction assumes that the
pairing is significant—if you could shuffle one of the parts without affecting the
outcome of the algorithm, then you couldn’t predict one from the other.

We could do a principal components analysis on {p}, but that approach misses
the point. We are primarily interested in the relationship between {x} and {y} and
the principal components capture only the major components of variance of {p}.
For example, imagine the xi all have a very large scale, and the yi all have a very
small scale. Then the principal components will be determined by the xi. We
assume that {x} and {y} have zero mean, because it will simplify the equations
and is easy to achieve. There is a standard procedure for dealing with data like
this. This is quite good at, say, predicting words to attach to pictures. However, it
can result in a misleading analysis, and I show how to check for this.

7.1 Canonical Correlation Analysis

Canonical correlation analysis (or CCA) seeks linear projections of {x} and {y} such
that one is easily predicted from the other. A projection of {x} onto one dimension
can be represented by a vector u. The projection yields a dataset

{
uTx

}
whose

i’th element is uTxi. Assume we project {x} onto u and {y} onto v. Our ability
to predict one from the other is measured by the correlation of these two datasets.
So we should look for u, v so that

corr
({

uTx,vTy
})

is maximized. If you are worried that a negative correlation with a large absolute
value also allows good prediction, and this isn’t accounted for by the expression,
you should remember that we get to choose the sign of v.

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 7

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_7

7.1. Canonical Correlation Analysis 140

We need some more notation. Write Σ for the covariance matrix of {p}. Recall
pi = [xi,yi]

t
. This means the covariance matrix has a block structure, where one

block is covariance of x components of {p} with each other, another is covariance
of y components with each other, and the third is covariance of x components with
y components. We write

Σ =

[
Σxx Σxy

Σyx Σyy

]
=

[
x− x covariance x− y covariance
y − x covariance y − y covariance

]
.

We have that

corr
({

uTx,vTy
})

=
uTΣxyv√

uTΣxxu
√

vTΣyyv

and maximizing this ratio will be hard (think about what the derivatives look like).
There is a useful trick. Assume u∗, v∗ are values at a maximum. Then they must
also be solutions of the problem

Max uTΣxyv Subject to uTΣxxu = c1 and vTΣyyv = c2

(where c1, c2 are positive constants of no particular interest). This second problem
is quite easy to solve. The Lagrangian is

uTΣxyv − λ1(u
TΣxxu− c1)− λ2(v

TΣyyv − c2)

so we must solve
Σxyv − λ1Σxxu = 0
ΣT

xyu− λ2Σyyv = 0

For simplicity, we assume that there are no redundant variables in x or y, so that
Σxx and Σyy are both invertible. We substitute (1/λ1)Σ

−1
xxΣxyv = u to get

Σ−1
yy Σ

T
xyΣ

−1
xxΣxyv = (λ1λ2)v.

Similar reasoning yields

Σ−1
xxΣxyΣ

−1
yy Σ

T
xyu = (λ1λ2)u.

So u and v are eigenvectors of the relevant matrices. But which eigenvectors?
Notice that

uTΣxyv = uT (λ1Σxxu) =
(
λ2v

TΣyy

)
v

so that

corr
({

uTx,vTy
})

=
uTΣxyv√

uTΣxxu
√

vTΣyyv
=
√

λ1

√
λ2

meaning that the eigenvectors corresponding to the largest eigenvalues give the
largest correlation directions, to the second largest give the second largest correla-
tion directions, and so on. There are min(dx, dy) directions in total. The values of
corr

({
uTx,vTy

})
for the different directions are often called canonical correla-

tions. The projections are sometimes known as canonical variables.

7.1. Canonical Correlation Analysis 141

Worked Example 7.1 Anxiety and Wildness in Mice

Compute the canonical correlations between indicators of anxiety and of wild-
ness in mice, using the dataset at http://phenome.jax.org/db/q?rtn=projects/
details&sym=Jaxpheno7

Solution: You should read the details on the web page that publishes the
data. The anxiety indicators are: transfer arousal, freeze, activity,

tremor, twitch, defecation jar, urination jar, defecation arena,

urination arena, and the wildness indicators are: biting, irritability,

aggression, vocal, finger approach. After this, it’s just a question of
finding a package and putting the data in it. I used R’s cancor, and found the
following five canonical correlations: 0.62, 0.53, 0.40, 0.35, 0.30. You shouldn’t
find the presence of strong correlations shocking (anxious mice should be
bitey), but we don’t have any evidence this isn’t an accident. The example in
the subsection below goes into this question in more detail.
This data was collected by The Jackson Laboratory, who ask it be cited as:
Neuromuscular and behavioral testing in males of six inbred strains of mice.
MPD:Jaxpheno7. Mouse Phenome Database website, The Jackson Laboratory,
Bar Harbor, Maine USA. http://phenome.jax.org

Procedure: 7.1 Canonical Correlation Analysis

Given a dataset of N pairs, pi = [xi,yi]
T
, where xi is a dx dimensional

vector representing one kind of data (e.g., words, sound, image, video)
and yi is a dy dimensional vector representing the other kind. Write Σ
for the covariance matrix of {p}. We have

Σ =

[
Σxx Σxy

Σyx Σyy

]
.

Write uj for the eigenvectors of

Σ−1
xxΣxyΣ

−1
yy Σ

T
xy

sorted in the descending order of eigenvalue. Write vj for the eigenvec-
tors of

Σ−1
yy Σ

T
xyΣ

−1
xxΣxy

sorted in the descending order of eigenvalue. Then uT
1 xi is most

strongly correlated with v1yi; u
T
2 xi is second most strongly correlated

with v2yi; and so on, up to j = min(dx, dy).

http://phenome.jax.org/db/q?rtn=projects/details&sym=Jaxpheno7
http://phenome.jax.org/db/q?rtn=projects/details&sym=Jaxpheno7
http://phenome.jax.org

7.2. Example: CCA of Words and Pictures 142

Rank

0

0.2

0.4

0.6

0.8

1
R

el
at

iv
e

va
lu

e
Features
Annotations

0 50 100 150 200 250 0 50 100 150 200 250
Rank

0

0.2

0.4

0.6

0.8

1

V
al

ue

Figure 7.1: On the left, the 291 largest eigenvalues of the covariance for features and
for word vectors, normalized by the largest eigenvalue in each case, plotted against
rank. Notice in each case relatively few eigenvalues capture most of the variance.
The word vectors are 291 dimensional, so this figure shows all the variances for
the word vectors, but there are a total of 3000 eigenvalues for the features. On the
right, the canonical correlations for this dataset. Notice that there are some rather
large correlations, but quite quickly the values are small

7.2 Example: CCA of Words and Pictures

CCA is commonly used to find good matching spaces. Here is an example. Assume
we have a set of captioned images. It is natural to want to build two systems:
given an image, caption it; and given a caption, produce a good image. There
is a very wide range of methods that have been deployed to attack this problem.
Perhaps the simplest—which is surprisingly effective—is to use a form of nearest
neighbors in a cleverly chosen space. We have N images described by feature
vectors xi, corresponding to N captions described by word vectors yi. The i’th
image corresponds to the i’th caption. The image features have been constructed
using specialized methods (there are some constructions in Chaps. 8 and 17, but
coming up with the best construction is still a topic of active research, and way
outside the scope of this book). The word vectors are like those of Sect. 6.3.

We would like to map the word vectors and the image features into a new
space. We will assume that the features have extracted all the useful properties of
the images and captions, and so a linear map of each is sufficient. If an image and
a caption correspond, we would like their feature vectors to map to points that are
nearby. If a caption describes an image very poorly, we would like its feature vector
to map far away from where the image’s feature vector maps.

Assume we have this new space. Then we could come up with a caption for
a new image by mapping the image into the space, and picking the nearest point
that represents a caption. We could come up with an image for a new caption by
mapping the caption into the space, then picking the nearest point that represents
an image. This strategy (with some tuning, improvements, and so on) remains
extremely hard to beat.

For this example, I will use a dataset called the IAPR TC-12 benchmark,
which is published by ImageCLEF. A description of the dataset can be found at
https://www.imageclef.org/photodata. There are 20,000 images, each of which has

https://www.imageclef.org/photodata

7.2. Example: CCA of Words and Pictures 143

tree

tree trunk

tree

hand

man

table

wall

woman

board

house

tree

tree tree

board

classroom

man

table

woman

1.000000

0.707107 0.707107

0.730297

Figure 7.2: Four images with true (in red) and predicted (green) label words. Words
are predicted using a CCA of image features and word vectors, as described in the
text. Images are from a test set, not used in constructing the CCA. The yellow box
gives the cosine distance between the predicted and true word vectors, smoothed by
projection to a 150- dimensional space as in Chap. 5. For these images, the cosine
distances are reasonably close to one, and the predictions are quite good

a text annotation. The annotations use a vocabulary of 291 words, and the word
vectors are binary (i.e., word is there or not). I used image features published by
Mathieu Guillaumin, at https://lear.inrialpes.fr/people/guillaumin/data.php. These
features are not the current state of the art for this problem, but they’re easily
available and effective. There are many different features available at this location,
but for these figures, I used the DenseSiftV3H1 feature set. I matched test im-
ages to training captions using the 150 canonical variables with largest canonical
correlations.

The first thing you should notice (Fig. 7.1) is that both image features and
text behave as you should expect. There are a small number of large eigenvalues
in the covariance matrix, and a large number of small eigenvalues. Because the
scaling of the features is meaningless, I have plotted the eigenvalues as fractions
of the largest value. Notice also that the first few canonical correlations are large
(Fig. 7.1).

There are two ways to evaluate a system like this. The first is qualitative, and
if you’re careless or optimistic, it looks rather good. Figure 7.2 shows a set of images
with true word labels and labels predicted using the nearest neighbors procedure.
Predicted labels are in green, and true labels are in red. Mostly, these labellings
should look quite good to you. Some words are missing from the predictions, true,
but most predictions are about right.

A quantitative evaluation reflects the “about right” sense. For each image, I
formed the cosine distance between the predicted word vector and the true word
vector, smoothed by projection to a 150-dimensional space. This is the number
in the yellow box. These numbers are fairly close to one for Fig. 7.2, which is a

https://lear.inrialpes.fr/people/guillaumin/data.php

7.3. Example: CCA of Albedo and Shading 144

cloud

field

grandstand

player

sky

spectator

tree

tree

front

man

rock

sign

trail

flower

front

leave

0.338062

0.223607

hill

house

lawn

man

palm

sky

woman

board

classroom

man

table

woman

cloud

front

group

people

rock

sky

flower

front

leave

0.298142

0.204124

Figure 7.3: Four images with true (in red) and predicted (green) label words. Words
are predicted using a CCA of image features and word vectors, as described in the
text. Images are from a test set, not used in constructing the CCA. The yellow box
gives the cosine distance between the predicted and true word vectors, smoothed by
projection to a 150- dimensional space as in Chap. 5. For these images, the cosine
distances are rather far from one, and the predictions are not as good as those in
Fig. 7.2

good sign. But Figs. 7.3 and 7.4 suggest real problems. There are clearly images
for which the predictions are poor. In fact, predictions are poor for most images,
as Fig. 7.5 shows. This figure gives the cosine distance between predicted and true
labels (again, smoothed by projection to a 150-dimensional space), sorted from best
to worst, for all test images. Most produce really bad label vectors with very low
cosine distance.

Improving this is a matter of image features. The features I have used here
are outdated. I used them because it was easy to get many different sets of features
for the same set of images (yielding some rather interesting exercises). Modern
feature constructions allow improved labelling of images, but modern systems still
tend to use CCA, although often in more complex forms than we can deal with
here.

7.3 Example: CCA of Albedo and Shading

Here is a classical computer vision problem. The brightness of a diffuse (=dull,
not shiny or glossy) surface in an image is the product of two effects: the albedo
(the percentage of incident light that it reflects) and the shading (the amount of
light incident on the surface). We will observe the brightness in an image, and
the problem is to recover the albedo and the shading separately. This has been an
important problem in computer vision since the early 1970s, and in human vision
since the mid nineteenth century. The problem still gets regular and significant

7.3. Example: CCA of Albedo and Shading 145

garden

house

lawn

palm

roof

tree

window

board

classroom

man

table

woman

condor board

classroom

man

table

woman

0.000000

0.000000

centre

city

light

night

street

gravel

landscape

mountain

road

flower

front

leave

board

classroom

man

table

woman

0.000000

0.000000

Figure 7.4: Four images with true (in red) and predicted (green) label words. Words
are predicted using a CCA of image features and word vectors, as described in the
text. Images are from a test set, not used in constructing the CCA. The yellow box
gives the cosine distance between the predicted and true word vectors, smoothed by
projection to a 150- dimensional space as in Chap. 5. For these images, the cosine
distances are rather close to zero, and the predictions are bad

attention in the computer vision literature, because it’s hard, and because it seems
to be important.

We will confine our discussion to smooth (=not rough) surfaces, to prevent
the complexity spiralling out of control. Albedo is a property of surfaces. A dark
surface has low albedo (it reflects relatively little of the light that falls on it) and a
light surface has high albedo (it reflects most of the light that falls on it). Shading
is a property of the geometry of the light sources with respect to the surface. When
you move an object around in a room, its shading may change a lot (though people
are surprisingly bad at noticing this), but its albedo doesn’t change at all. To
change an object’s albedo, you need (say) a marker or paint. All this suggests that
a CCA of albedo against shading will suggest there is no correlation.

Because this is a classical problem, there are datasets one can download.
There is a very good dataset giving the albedo and shading for images, collected
by Roger Grosse, Micah K. Johnson, Edward H. Adelson, and William T. Freeman
at http://www.cs.toronto.edu/∼rgrosse/intrinsic/. These images show individual ob-
jects on black backgrounds, and there are masks identifying object pixels. For each
image in the dataset, there is an albedo map (basically, an image of the albedos)
and a shading map. These maps are constructed by clever photographic techniques.
I constructed random 11× 11 tiles of albedo and shading for each of the 20 objects
depicted. I chose 20 tiles per image (so 400 in total), centered at random locations,
but chosen so that every pixel in a tile lies on an object pixel. The albedo tiles I
chose for a particular image were in the same locations in that image as the shading
tiles—each pair of tiles represents a pair of albedo-shading in some image patch. I

http://www.cs.toronto.edu/~rgrosse/intrinsic/

7.3. Example: CCA of Albedo and Shading 146

0 50 100 150 200 250 300 350 400
Rank

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

os
in

e
di

st
an

ce

Cosine distance between predicted
and true label sets, train data

dim=50
dim=100
dim=150
dim=200
dim=250

0 500 1000 1500 2000
Rank

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

V
al

ue

Cosine distance between predicted
and true label sets, test data

Figure 7.5: Left: all values of cosine distance between predicted and true word
labels, sorted from best to worst, for the CCA method of the text, for different
numbers of canonical variables, for the training data. The distances are fairly
good, and 150 seems like a reasonable choice of dimension. On the right, cosine
distances between predicted and true for test data; this looks much worse. I have
marked the regions where the “good,” “medium,” and “bad” figures come from.
Note that most values are bad—predicting words from images is hard. Accurate
predictions require considerably more sophisticated feature constructions than we
have used here

then reshaped each tile into a 121-dimensional vector, and computed a CCA. The
top 10 values of canonical correlations I obtained were: 0.96, 0.94, 0.93, 0.93, 0.92,
0.92, 0.91, 0.91, 0.90, 0.88.

If this doesn’t strike you as ridiculous, then you should check you understand
the definitions of albedo and shading. How could albedo and shading be correlated?
Do people put dark objects in light places, and light objects in dark places? The
correct answer is that they are not correlated, but that this analysis has missed one
important, nasty point. The objective function we are maximizing is a ratio

corr
({

uTx,vTy
})

=
uTΣxyv√

uTΣxxu
√
vTΣyyv

.

Now look at the denominator of this fraction, and recall our work on PCA. The
whole point of PCA is that there are many directions u such that uTΣxxu is small—
these are the directions that we can drop in building low dimensional models. But
now they have a potential to be a significant nuisance. We could have the objective
function take a large value simply because the terms in the denominator are very
small. This is what happens in the case of albedo and shading. You can check this
by looking at Fig. 7.6, or by actually looking at the size of the canonical correlation
directions (the u’s and v’s). You will find that, if you compute u and v using
the procedure I described, these vectors have large magnitude (I found magnitudes
of the order of 100). This suggests, correctly, that they’re associated with small
eigenvalues in Σxx and Σyy.

7.3. Example: CCA of Albedo and Shading 147

Albedo tiles (10x10) Shading tiles (10x10) Albedo CC’s (5x5) Shading CC’s (5x5)

Figure 7.6: On the left, a 10 × 10 grid of tiles of albedo (far left) and shading
(center left), taken from Grosse et al.’s dataset. The position of the tiles is keyed,
so (for example) the albedo tile at 3, 5 corresponds to the shading tile at 3, 5. On
the right, the first 25 canonical correlation directions for albedo (center right)
and shading (far right). I have reshaped these into tiles and zoomed them. The
scale of smallest value is black, and largest white. These are ordered so the pair
with highest correlation is at the top left, next highest is one step to the right, etc.
You should notice that these directions do not look even slightly like the patterns
in the original tiles, or like any pattern you expect to encounter in a real image.
This is because they’re not: these are directions that have very small variance

Just a quick check with intuition and an image tells us that these canonical
correlations don’t mean what we think. But this works only for a situation where
we have intuition, etc. We need a test that tells whether the large correlation values
have arisen by accident.

Permutation distribution

stat

D
en

si
ty

0.2 0.3 0.4 0.5 0.6 0.7

0
1

2
3

4
5

test= Wilks , original test statistic= 0.297 , p= 0.023

Figure 7.7: A histogram of values of Wilks’ lambda obtained from permuted versions
of the mouse dataset of example 7.1. The value obtained for the original dataset
is shown by the vertical line. Notice that most values are larger (about 97% of
values), meaning that we would see the canonical correlation values we see only
about once in 30 experiments if they were purely a chance effect. There is very
likely a real effect here

7.3. Example: CCA of Albedo and Shading 148

3.8 4 4.2 4.4 4.6 4.8 5 5.2
Wilks lambda 10–16

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fr
eq

ue
nc

y

Wilks lambda for shuffled word/picture
data, 30 shuffles

Figure 7.8: A histogram of values of Wilks’ lambda obtained from permuted versions
of the word and picture dataset of Sect. 7.2. I computed the value for the first 150
canonical variates, and used 30 shuffles (which takes quite a long time). The value
for the true dataset is 9.92e−25, which suggests very strongly that the correlations
are not accidental

7.3.1 Are Correlations Significant?

There is an easy and useful strategy for testing this. If there really are meaningful
correlations between the {x} and {y}, they should be disrupted if we reorder the
datasets. So if something important is changed by reordering one dataset, there is
evidence that there is a meaningful correlation. The recipe is straightforward. We
choose a method to summarize the canonical correlations in a number (this is a
statistic, a term you should remember). In the case of canonical correlations, the
usual choice is Wilks’ lambda (or Wilks’ λ if you’re fussy).

Write ρi for the i’th canonical correlation. For r ≤ min(dx, dy), Wilks’
lambda is

Λ(r) =

i=r∏

i=1

(1− ρ2i).

Notice if there are a lot of strong correlations in the first r, we should get a small
value of Λ(r), and as r increases, Λ(r) gets smaller. We can now use the following
procedure. For each r, compute Λ(r). Now construct a collection of new datasets
by randomly reordering the items in {y}, and for each we compute the value of
Λ(r). This gives an estimate of the distribution of values of Λ(r) available if there
is no correlation. We then ask what fraction of the reordered datasets have an even
smaller value of Λ(r) than the observed value. If this fraction is small for a given r,
then it is unlikely that the correlations we observed arose by accident. Write f(r)
for the fraction of randomly reordered datasets that have Λ(r) smaller than that
observed for the real dataset. Generally, f(r) grows as r increases, and you can use
this to decide what number of canonical correlations are not accidental. All this is
fairly easily done using a package (I used CCP in R).

Figure 7.7 shows what happens for the mouse canonical correlation of exam-
ple 7.1. You should notice that this is a significance test, and follows the usual

7.3. Example: CCA of Albedo and Shading 149

Permutation distribution

stat

D
en

si
ty

0e+00 1e−21 2e−21 3e−21 4e−21 5e−21

0e
+0

0
1e

+2
1

2e
+2

1
3e

+2
1

4e
+2

1
5e

+2
1

test= Wilks , original test statistic= 0.000000000000000000000000138 , p= 0.826

Figure 7.9: A histogram of values of Wilks’ lambda obtained from permuted versions
of the 400 tile albedo-shading dataset discussed in the text. The value obtained
for the original dataset is shown by the vertical line, and is really tiny (rather
less than 1e−21). But rather more than four-fifths (82.6%) of the values obtained
by permuting the data are even tinier, meaning that we would see the canonical
correlation values we see or smaller about 4 in every 5 experiments if they were
purely a chance effect. There is no reason to believe the two have a correlation

recipe for such tests except that we estimate the distribution of the statistic empir-
ically. Here about 97% of random permutations have a larger value of the Wilks’
lambda than that of the original data, which means that we would see the canonical
correlation values we see only about once in 30 experiments if they were purely a
chance effect. You should read this as quite good evidence there is a correlation.
As Fig. 7.8 shows, there is good evidence that the correlations for the words and
pictures data of Sect. 7.2 are not accidental, either.

But the albedo-shading correlations really are accidental. Figure 7.9 shows
what happens for albedo and shading. The figure is annoying to interpret, because
the value of the Wilks’ lambda is extremely small; the big point is that almost
every permutation of the data has an even smaller value of the Wilks’ lambda—the
correlations are entirely an accident, and are of no statistical significance.

Remember This: A canonical correlation analysis can mislead you.
The problem is the division in the objective function. If you’re working
with data where many principal components have very small variances, you
can get large correlations as a result. You should always check whether the
CCA is actually telling you something useful. A natural check is the Wilks’
lambda procedure.

7.4. You Should 150

CCA: CCA can mislead you

7.4 You Should

7.4.1 Remember These Terms

canonical correlations . 140
canonical variables . 140
albedo . 144
shading . 144
Wilks’ lambda . 148

7.4.2 Remember These Facts

CCA can mislead you . 150

7.4.3 Remember These Procedures

Canonical Correlation Analysis . 141

7.4.4 Be Able to

• Use a canonical correlation analysis to investigate correlations between two
types of data.

• Use Wilks’ lambda to determine whether correlations are the result of real
effects.

7.4. You Should 151

Programming Exercises

7.1. We investigate CCA to predict words from pictures using Mathieu Guillaumin’s
published features, available at https://lear.inrialpes.fr/people/guillaumin/data.
php.
(a) Reproduce Figs. 7.1 and 7.5 of Sect. 7.2, using the same features and the

same number of canonical variables.
(b) One reasonable summary of performance is the mean of the cosine distance

between true and predicted label vectors over all test images. This number
will vary depending on how many of the canonical variables you use to
match. Plot this number over the range [1 . . . 291], using at least 10 points.

(c) Based on the results of the previous subexercise, choose a good number
of canonical variables. For the 30 most common words in the vocabulary,
compute the total error rate, the false positive rate, and the false negative
rate for predictions over the whole test set. Does this suggest any way to
improve the method?

7.2. We investigate image features using Mathieu Guillaumin’s published features,
available at https://lear.inrialpes.fr/people/guillaumin/data.php.
(a) Compute a CCA of the GIST features against the DenseSiftV3H1 features,

and plot the sorted canonical correlations. You should get a figure like
Fig. 7.1. Does this suggest that different feature sets encode different
aspects of the image?

(b) If you concatenate GIST features with DenseSiftV3H1 features, do you
get improved word predictions?

7.3. Here is a much more elaborate exercise investigating CCA to predict words
from pictures using Mathieu Guillaumin’s published features, available at https://
lear.inrialpes.fr/people/guillaumin/data.php.
(a) Reproduce Fig. 7.5 of Sect. 7.2, for each of the available image feature sets.

Is any particular feature set better overall?
(b) Now take the top 50 canonical variables of each feature set for the images,

and concatenate them. This should yield 750 variables that you can use
as image features. Reproduce Fig. 7.5 for this set of features. Was there
an improvement in performance?

(c) Finally, if you can get your hands on some hefty linear algebra software,
concatenate all the image feature sets. Reproduce Fig. 7.5 for this set of
features. Was there an improvement in performance?

https://lear.inrialpes.fr/people/guillaumin/data.php
https://lear.inrialpes.fr/people/guillaumin/data.php
https://lear.inrialpes.fr/people/guillaumin/data.php
https://lear.inrialpes.fr/people/guillaumin/data.php
https://lear.inrialpes.fr/people/guillaumin/data.php

P A R T T H R E E

Clustering

C H A P T E R 8

Clustering

One very good, very simple, model for data is to assume that it consists of
multiple blobs. To build models like this, we must determine (a) what the blob
parameters are and (b) which data points belong to which blob. Generally, we will
collect together data points that are close and form blobs out of them. The blobs
are usually called clusters, and the process is known as clustering.

Clustering is a somewhat puzzling activity. It is extremely useful to cluster
data, and it seems to be quite important to do it reasonably well. But it surprisingly
hard to give crisp criteria for a good (resp. bad) clustering of a dataset. Typically,
one evaluates clustering by seeing how well it supports an application.

There are many applications of clustering. You can summarize a dataset
by clustering it, then reporting a summary of each cluster. Summaries might be
either a typical element of each cluster or (say) the mean of each cluster. Clusters
can help expose structure in a dataset that is otherwise quite difficult to see. For
example, in Sect. 8.2.5, I show ways of visualizing the difference between sets of
grocery stores by clustering customer records. It turns out that different sets of
stores get different types of customer, but you can’t see that by looking directly
at the customer records. Instead, you can assign customers to types by clustering
the records, then look at what types of customer go to what set of store. This
observation yields a quite general procedure for building features for complex signals
(images, sound, accelerometer data). The method can take signals of varying size
and produce a fixed size feature vector, which is then used for classification.

8.1 Agglomerative and Divisive Clustering

There are two natural recipes you can use to produce clustering algorithms. In
agglomerative clustering, you start with each data item being a cluster, and
then merge clusters recursively to yield a good clustering (Procedure 8.1). The
difficulty here is that we need to know a good way to measure the distance between
clusters, which can be somewhat harder than the distance between points. In
divisive clustering, you start with the entire dataset being a cluster, and then
split clusters recursively to yield a good clustering (Procedure 8.2). The difficulty
here is we need to know some criterion for splitting clusters.

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 8

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_8

8.1. Agglomerative and Divisive Clustering 156

Procedure: 8.1 Agglomerative Clustering

Choose an inter-cluster distance. Make each point a separate cluster.
Now, until the clustering is satisfactory,

• Merge the two clusters with the smallest inter-cluster distance.

Procedure: 8.2 Divisive Clustering

Choose a splitting criterion. Regard the entire dataset as a single clus-
ter. Now, until the clustering is satisfactory,

• choose a cluster to split;
• then split this cluster into two parts.

To turn these recipes into algorithms requires some more detail. For agglom-
erative clustering, we need to choose a good inter-cluster distance to fuse nearby
clusters. Even if a natural distance between data points is available, there is no
canonical inter-cluster distance. Generally, one chooses a distance that seems ap-
propriate for the dataset. For example, one might choose the distance between the
closest elements as the inter-cluster distance, which tends to yield extended clusters
(statisticians call this method single-link clustering). Another natural choice is
the maximum distance between an element of the first cluster and one of the second,
which tends to yield rounded clusters (statisticians call this method complete-link
clustering). Finally, one could use an average of distances between elements in the
cluster, which also tends to yield rounded clusters (statisticians call this method
group average clustering).

For divisive clustering, we need a splitting method. This tends to be something
that follows from the logic of the application, because the ideal is an efficient method
to find a natural split in a large dataset. We won’t pursue this question further.

Finally, we need to know when to stop. This is an intrinsically difficult task
if there is no model for the process that generated the clusters. The recipes I have
described generate a hierarchy of clusters. Usually, this hierarchy is displayed to
a user in the form of a dendrogram—a representation of the structure of the hi-
erarchy of clusters that displays inter-cluster distances—and an appropriate choice
of clusters is made from the dendrogram (see the example in Fig. 8.1).

Another important thing to notice about clustering from the example of
Fig. 8.1 is that there is no right answer. There are a variety of different clusterings
of the same data. For example, depending on what scales in that figure mean, it
might be right to zoom out and regard all of the data as a single cluster, or to zoom
in and regard each data point as a cluster. Each of these representations may be
useful.

8.1. Agglomerative and Divisive Clustering 157

di
st

an
ce

1 2 3 4 5 6

1

2

3

4
5

6

1 cluster

2 clusters

6 clusters

Figure 8.1: Left, a dataset; right, a dendrogram obtained by agglomerative cluster-
ing using single-link clustering. If one selects a particular value of distance, then
a horizontal line at that distance splits the dendrogram into clusters. This repre-
sentation makes it possible to guess how many clusters there are and to get some
insight into how good the clusters are

8.1.1 Clustering and Distance

In the algorithms above, and in what follows, we assume that the features are scaled
so that distances (measured in the usual way) between data points are a good
representation of their similarity. This is quite an important point. For example,
imagine we are clustering data representing brick walls. The features might contain
several distances: the spacing between the bricks, the length of the wall, the height
of the wall, and so on. If these distances are given in the same set of units, we could
have real trouble. For example, assume that the units are centimeters. Then the
spacing between bricks is of the order of one or two centimeters, but the heights
of the walls will be in the hundreds of centimeters. In turn, this means that the
distance between two data points is likely to be completely dominated by the height
and length data. This could be what we want, but it might also not be a good thing.

There are some ways to manage this issue. One is to know what the features
measure, and know how they should be scaled. Usually, this happens because you
have a deep understanding of your data. If you don’t (which happens!), then it is
often a good idea to try and normalize the scale of the dataset. There are two good
strategies. The simplest is to translate the data so that it has zero mean (this is
just for neatness—translation doesn’t change distances), then scale each direction
so that it has unit variance. More sophisticated is to translate the data so that
it has zero mean, then transform it so that each direction is independent and has
unit variance. Doing so is sometimes referred to as decorrelation or whitening;
I described how to do this in the exercises (p. 90).

8.1. Agglomerative and Divisive Clustering 158

173207169155192203188186145159162195205193209206146156174177179160151184187150175191176178194190153158167182163183196181154170157144201210197148164168165171172149199161198141143185152147166180200202189142204208 1 59 35 50 56 25 18 47 5 23 26 3 8 29 22 6 57 39 45 48 49 21 54 14 15 7 33 51 53 4 12 46 34 68 16 41 42 30 55 67 69 27 70 32 20 64 2 58 28 43 66 13 19 9 10 36 37 38 11 44 63 24 60 31 65 52 71 77108137 75 96122101123134140 72 76 73 81 74132118107 92 93105 97104112119106 85 98116100113111124131 86 99 88 87110102128117126127109120103 79 95 82 94 80130133135 84 91129125136114138139 61 62 78115 90 83121 89 17 40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 8.2: A dendrogram obtained from the seed dataset, using single-link clus-
tering. Recall that the data points are on the horizontal axis, and that the vertical
axis is distance; there is a horizontal line linking two clusters that get merged,
established at the height at which they’re merged. I have plotted the entire den-
drogram, despite the fact it’s a bit crowded at the bottom, because you can now
see how clearly the dataset clusters into a small set of clusters—there are a small
number of vertical “runs”

Worked Example 8.1 Agglomerative Clustering

Cluster the seed dataset from the UC Irvine Machine Learning Dataset Repos-
itory (you can find it at http://archive.ics.uci.edu/ml/datasets/seeds).

Solution: Each item consists of seven measurements of a wheat kernel; there
are three types of wheat represented in this dataset. For this example, I used
Matlab, but many programming environments will provide tools that are useful
for agglomerative clustering. I show a dendrogram in Fig. 8.2). I deliberately
forced Matlab to plot the whole dendrogram, which accounts for the crowded
look of the figure. As you can see from the dendrogram and from Fig. 8.3, this
data clusters rather well.

http://archive.ics.uci.edu/ml/datasets/seeds

8.2. The k-Means Algorithm and Variants 159

−4 −3 −2 −1 0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

Figure 8.3: A clustering of the seed dataset, using agglomerative clustering, single-
link distance, and requiring a maximum of 30 clusters. I have plotted each clus-
ter with a distinct marker (though some markers differ only by color). Notice
that there are a set of fairly natural isolated clusters. The original data is eight-
dimensional, which presents plotting problems; I show a scatterplot on the first two
principal components (though I computed distances for clustering in the original
eight-dimensional space)

Remember This: Agglomerative clustering starts with each data point
a cluster, then recursively merges. There are three main ways to compute
the distance between clusters. Divisive clustering starts with all in one
cluster, then recursively splits. Choosing a split can be tricky.

8.2 The k-Means Algorithm and Variants

Assume we have a dataset that, we believe, forms many clusters that look like
blobs. If we knew where the center of each of the clusters was, it would be easy to
tell which cluster each data item belonged to—it would belong to the cluster with

8.2. The k-Means Algorithm and Variants 160

Sepal.Length

Petal.Width

setosa versicolor virginica

Scatter Plot Matrix

Sepal
Length

7

8
7 8

5

6

5 6

Sepal
Width

3.5

4.0

4.5

2.0

2.5

3.0

3.5 4.0 4.5

2.0 2.5 3.0

Petal
Length

4

5

6

7

1

2

3

4

4 5 6 7

1 2 3 4

Petal
Width

1.5

2.0

2.5

0.0

0.5

1.0

0.0

1.5 2.0 2.5

0.5 1.0

P
et

al
.L

en
gt

h

Figure 8.4: Left: a 3D scatterplot for the famous Iris data, collected by Edgar
Anderson in 1936, and made popular among statisticians by Ronald Fisher in that
year. I have chosen three variables from the four, and have plotted each species
with a different marker. You can see from the plot that the species cluster quite
tightly, and are different from one another. Right: a scatterplot matrix for the Iris
data. There are four variables, measured for each of three species of iris. I have
plotted each species with a different marker. You can see from the plot that the
species cluster quite tightly, and are different from one another

the closest center. Similarly, if we knew which cluster each data item belonged to,
it would be easy to tell where the cluster centers were—they’d be the mean of the
data items in the cluster. This is the point closest to every point in the cluster.

We can formalize this fairly easily by writing an expression for the squared
distance between data points and their cluster centers. Assume that we know how
many clusters there are in the data, and write k for this number. There are N data
items. The ith data item to be clustered is described by a feature vector xi. We
write cj for the center of the jth cluster. We write δi,j for a discrete variable that
records which cluster a data item belongs to, so

δi,j =

{
1 if xi belongs to cluster j
0 otherwise.

We require that every data item belongs to exactly one cluster, so that
∑

j δi,j = 1.
We require that every cluster contains at least one point, because we assumed we

8.2. The k-Means Algorithm and Variants 161

knew how many clusters there were, so we must have that
∑

i δi,j > 0 for every
j. We can now write the sum of squared distances from data points to cluster
centers as

Φ(δ, c) =
∑

i,j

δi,j
[
(xi − cj)

T (xi − cj)
]
.

Notice how the δi,j are acting as “switches.” For the i’th data point, there is only
one non-zero δi,j which selects the distance from that data point to the appropriate
cluster center. It is natural to want to cluster the data by choosing the δ and c that
minimizes Φ(δ, c). This would yield the set of k clusters and their cluster centers
such that the sum of distances from points to their cluster centers is minimized.

There is no known algorithm that can minimize Φ exactly in reasonable time.
The δi,j are the problem: it turns out to be hard to choose the best allocation
of points to clusters. The algorithm we guessed above is a remarkably effective
approximate solution. Notice that if we know the c’s, getting the δ’s is easy—for
the i’th data point, set the δi,j corresponding to the closest cj to one and the others
to zero. Similarly, if the δi,j are known, it is easy to compute the best center for
each cluster—just average the points in the cluster. So we iterate:

• Assume the cluster centers are known and allocate each point to the closest
cluster center.

• Replace each center with the mean of the points allocated to that cluster.

We choose a start point by randomly choosing cluster centers, and then iterate
these stages alternately. This process eventually converges to a local minimum of
the objective function (the value either goes down or is fixed at each step, and
it is bounded below). It is not guaranteed to converge to the global minimum of
the objective function, however. It is also not guaranteed to produce k clusters,
unless we modify the allocation phase to ensure that each cluster has some non-zero
number of points. This algorithm is usually referred to as k-means (summarized
in Algorithm 8.3).

Procedure: 8.3 k-Means Clustering

Choose k. Now choose k data points cj to act as cluster centers. Until
the cluster centers change very little

• Allocate each data point to cluster whose center is nearest.
• Now ensure that every cluster has at least one data point; one
way to do this is by supplying empty clusters with a point chosen
at random from points far from their cluster center.

• Replace the cluster centers with the mean of the elements in their
clusters.

Usually, we are clustering high dimensional data, so that visualizing clusters
can present a challenge. If the dimension isn’t too high, then we can use panel plots.

8.2. The k-Means Algorithm and Variants 162

Scatter Plot Matrix

Sepal
Length0

1

2 0 1 2

−2

−1

0

−2 −1 0

Sepal
Width

1

2

3
1 2 3

−2

−1

0

−2 −1 0

Petal
Length0.0

0.5

1.0

1.5 0.00.51.01.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

Petal
Width0.0

0.5

1.0

1.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

−3 −2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

CLUSPLOT(scalediris)

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

Figure 8.5: On the left, a panel plot of the iris data clustered using k-means with
k = 2. By comparison with Fig. 8.4, notice how the versicolor and verginica clusters
appear to have been merged. On the right, this dataset projected onto the first
two principal components, with one blob drawn over each cluster

An alternative is to project the data onto two principal components, and plot the
clusters there; the process for plotting 2D covariance ellipses from Sect. 4.4.2 comes
in useful here. A natural dataset to use to explore k-means is the iris data, where
we know that the data should form three clusters (because there are three species).
Recall this dataset from Sect. 4.1. I reproduce Fig. 4.3 from that section as Fig. 8.4,
for comparison. Figures 8.5, 8.6, and 8.7 show different k-means clusterings of
that data.

One natural strategy for initializing k-means is to choose k data items at
random, then use each as an initial cluster center. This approach is widely used,
but has some difficulties. The quality of the clustering can depend quite a lot on
initialization, and an unlucky choice of initial points might result in a poor clus-
tering. One (again quite widely adopted) strategy for managing this is to initialize
several times, and choose the clustering that performs best in your application. An-
other strategy, which has quite good theoretical properties and a good reputation,
is known as k-means++. You choose a point x uniformly and at random from
the dataset to be the first cluster center. Then you compute the squared distance
between that point and each other point; write d2i (x) for the distance from the i’th
point to the first center. You now choose the other k − 1 cluster centers as IID
draws from the probability distribution

d2i (x)∑
u d

2
u(x)

.

8.2. The k-Means Algorithm and Variants 163

Scatter Plot Matrix

Sepal
Length0

1

2 0 1 2

−2

−1

0

−2 −1 0

Sepal
Width

1

2

3
1 2 3

−2

−1

0

−2 −1 0

Petal
Length0.0

0.5

1.0

1.5 0.00.51.01.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

Petal
Width0.0

0.5

1.0

1.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2

CLUSPLOT(scalediris)

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

Figure 8.6: On the left, a panel plot of the iris data clustered using k-means with
k = 3. By comparison with Fig. 8.4, notice how the clusters appear to follow the
species labels. On the right, this dataset projected onto the first two principal
components, with one blob drawn over each cluster

8.2.1 How to Choose k

The iris data is just a simple example. We know that the data forms clean clusters,
and we know there should be three of them. Usually, we don’t know how many
clusters there should be, and we need to choose this by experiment. One strategy
is to cluster for a variety of different values of k, then look at the value of the cost
function for each. If there are more centers, each data point can find a center that
is close to it, so we expect the value to go down as k goes up. This means that
looking for the k that gives the smallest value of the cost function is not helpful,
because that k is always the same as the number of data points (and the value is
then zero). However, it can be very helpful to plot the value as a function of k,
then look at the “knee” of the curve. Figure 8.8 shows this plot for the iris data.
Notice that k = 3—the “true” answer—doesn’t look particularly special, but k = 2,
k = 3, or k = 4 all seem like reasonable choices. It is possible to come up with
a procedure that makes a more precise recommendation by penalizing clusterings
that use a large k, because they may represent inefficient encodings of the data.
However, this is often not worth the bother.

In some special cases (like the iris example), we might know the right answer
to check our clustering against. In such cases, one can evaluate the clustering by
looking at the number of different labels in a cluster (sometimes called the purity),
and the number of clusters. A good solution will have few clusters, all of which have
high purity. Mostly, we don’t have a right answer to check against. An alternative
strategy, which might seem crude to you, for choosing k is extremely important
in practice. Usually, one clusters data to use the clusters in an application (one
of the most important, vector quantization, is described in Sect. 8.3). There are
usually natural ways to evaluate this application. For example, vector quantization

8.2. The k-Means Algorithm and Variants 164

Scatter Plot Matrix

Sepal
Length0

1

2 0 1 2

−2

−1

0

−2 −1 0

Sepal
Width

1

2

3
1 2 3

−2

−1

0

−2 −1 0

Petal
Length0.0

0.5

1.0

1.5 0.00.51.01.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

Petal
Width0.0

0.5

1.0

1.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

−1.5 −0.5

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2

CLUSPLOT(scalediris)

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

1

23

Figure 8.7: On the left, a panel plot of the iris data clustered using k-means with
k = 5. By comparison with Fig. 8.4, notice how setosa seems to have been broken
in two groups, and versicolor and verginica into a total of three. On the right, this
dataset projected onto the first two principal components, with one blob drawn
over each cluster

is often used as an early step in texture recognition or in image matching; here one
can evaluate the error rate of the recognizer, or the accuracy of the image matcher.
One then chooses the k that gets the best evaluation score on validation data. In
this view, the issue is not how good the clustering is; it’s how well the system that
uses the clustering works.

8.2.2 Soft Assignment

One difficulty with k-means is that each point must belong to exactly one cluster.
But, given we don’t know how many clusters there are, this seems wrong. If a
point is close to more than one cluster, why should it be forced to choose? This
reasoning suggests we assign points to cluster centers with weights. These weights
are different from the original δi,j because they are not forced to be either zero
or one, however. Write wi,j for the weight connecting point i to cluster center j.
Weights should be non-negative (i.e., wi,j ≥ 0), and each point should carry a total
weight of 1 (i.e.,

∑
j wi,j = 1), so that if the i’th point contributes more to one

cluster center, it is forced to contribute less to all others. You should see wi,j as
a simplification of the δi,j in the original cost function. We can write a new cost
function

Φ(w, c) =
∑

i,j

wi,j

[
(xi − cj)

T (xi − cj)
]
,

which we would like to minimize by choice of w and c. There isn’t any improvement
in the problem, because for any choice of c, the best choice of w is to allocate
each point to its closest cluster center. This is because we have not specified any
relationship between w and c.

8.2. The k-Means Algorithm and Variants 165

Scatter Plot Matrix

Sepal
Length

7

8
7 8

5

6

5 6

Sepal
Width

3.5

4.0

4.5
3.5 4.0 4.5

2.0

2.5

3.0

2.0 2.5 3.0

Petal
Length

4

5

6

7
4 5 6 7

1

2

3

4

1 2 3 4

Petal
Width

1.5

2.0

2.5
1.5 2.0 2.5

0.0

0.5

1.0

0.0 0.5 1.0

setosa versicolor virginica

2 4 6 8 10 12 14

10
0

20
0

30
0

40
0

50
0

60
0

Number of Clusters

W
ith

in
 g

ro
up

s
su

m
 o

f s
qu

ar
es

Figure 8.8: On the left, the scatterplot matrix for the Iris data, for reference. On
the right, a plot of the value of the cost function for each of several different values
of k. Notice how there is a sharp drop in cost going from k = 1 to k = 2, and again
at k = 4; after that, the cost falls off slowly. This suggests using k = 2, k = 3, or
k = 4, depending on the precise application

But w and c should be coupled. We would like wi,j to be large when xi is
close to cj , and small otherwise. Write di,j for the distance ||xi − cj ||, choose a
scaling parameter σ > 0, and write

si,j = e
−d2

i,j

2σ2 .

This si,j is often called the affinity between the point i and the center j; it is large
when they are close in σ units, and small when they are far apart. Now a natural
choice of weights is

wi,j =
si,j∑k
l=1 si,l

.

All these weights are non-negative, and sum to one. The weight linking a point and
a cluster center is large if the point is much closer to one center than to any other.
The scaling parameter σ sets the meaning of “much closer”—we measure distance
in units of σ.

Once we have weights, re-estimating the cluster centers is easy. We use the
weights to compute a weighted average of the points. In particular, we re-estimate
the j’th cluster center by ∑

i wi,jxi∑
i wi,j

.

Notice that k-means is a special case of this algorithm where σ limits to zero. In
this case, each point has a weight of one for some cluster, and zero for all others,
and the weighted mean becomes an ordinary mean. I have collected the description
into a box (Procedure 8.4) for convenience.

8.2. The k-Means Algorithm and Variants 166

Notice one other feature of this procedure. As long as you use sufficient
precision for the arithmetic (which might be a problem), wi,j is always greater than
zero. This means that no cluster is empty. In practice, if σ is small compared to
the distances between points, you can end up with empty clusters. You can tell if
this is happening by looking at

∑
i wi,j ; if this is very small or zero, you have a

problem.

Procedure: 8.4 k-Means with Soft Weights

Choose k. Choose k data points cj to act as initial cluster centers.
Choose a scale, σ. Until the cluster centers change very little:

• First, we estimate the weights. For each pair of a data point xi

and a cluster cj , compute the affinity

si,j = e

−||xi − cj ||2

2σ2 .

• Now for each pair of a data point xi and a cluster cj compute the
soft weight linking the data point to the center

wi,j = si,j/

k∑

l=1

si,l.

• For each cluster, compute a new center

cj =

∑
i wi,jxi∑
i wi,j

.

8.2.3 Efficient Clustering and Hierarchical k-Means

One important difficulty occurs in applications. We might need to have an enormous
dataset (millions of items is a real possibility), and so a very large k. In this case, k-
means clustering becomes difficult because identifying which cluster center is closest
to a particular data point scales linearly with k (and we have to do this for every
data point at every iteration). There are two useful strategies for dealing with this
problem.

The first is to notice that, if we can be reasonably confident that each cluster
contains many data points, some of the data is redundant. We could randomly
subsample the data, cluster that, then keep the cluster centers. This helps rather
a lot, but not enough if you expect the data will contain many clusters.

A more effective strategy is to build a hierarchy of k-means clusters. We
randomly subsample the data (typically quite aggressively), then cluster this with
a small value of k. Each data item is then allocated to the closest cluster center, and
the data in each cluster is clustered again with k-means. We now have something

8.2. The k-Means Algorithm and Variants 167

that looks like a two-level tree of clusters. Of course, this process can be repeated
to produce a multi-level tree of clusters.

8.2.4 k-Medoids

In some cases, we want to cluster objects that can’t be averaged. One case where
this happens is when you have a table of distances between objects, but do not
know vectors representing the objects. For example, you could collect data giving
the distances between cities, without knowing where the cities are (as in Sect. 6.2.3,
particularly Fig. 6.1), then try and cluster using this data. As another example,
you could collect data giving similarities between breakfast items as in Sect. 6.2.3,
then turn the similarities into distances by taking the negative logarithm. This
gives a usable table of distances. You still can’t average kippers with oatmeal, so
you couldn’t use k-means to cluster this data.

A variant of k-means, known as k-medoids, applies to this case. In k-medoids,
the cluster centers are data items rather than averages, and so are called “medoids.”
The rest of the algorithm has a familiar form. We assume k, the number of cluster
centers, is known. We initialize the cluster centers by choosing examples at random.
We then iterate two procedures. In the first, we allocate each data point to the
closest medoid. In the second, we choose the best medoid for each cluster by finding
the data point that minimizes the sum of distances of points in the cluster to that
medoid. This point can be found by simply searching all the points in the cluster.

8.2.5 Example: Groceries in Portugal

Clustering can be used to expose structure in datasets that isn’t visible with simple
tools. Here is an example. At http://archive.ics.uci.edu/ml/datasets/Wholesale+
customers, you will find a dataset giving sums of money spent annually on different
commodities by customers in Portugal. The commodities are divided into a set
of categories (fresh; milk; grocery; frozen; detergents and paper; and delicatessen)
relevant for the study. These customers are divided by channel (two channels,
corresponding to different types of shop) and by region (three regions). You can
think of the data as being divided into six blocks (one for each pair of channel and
region). There are 440 customer records, and there are many customers in each
block. The data was provided by M. G. M. S. Cardoso.

Figure 8.9 shows a panel plot of the customer data; the data has been clus-
tered, and I gave each of 10 clusters its own marker. You (or at least, I) can’t see
any evidence of the six blocks here. This is due to the form of the visualization,
rather than a true property of the data. People tend to like to live near people
who are “like” them, so you could expect people in a region to be somewhat sim-
ilar; you could reasonably expect differences between blocks (regional preferences;
differences in wealth; and so on). Retailers have different channels to appeal to
different people, so you could expect people using different channels to be different.
But you don’t see this in the plot of clusters. In fact, the plot doesn’t really show
much structure at all, and is basically unhelpful.

Here is a way to think about structure in the data. There are likely to be
different “types” of customer. For example, customers who prepare food at home
might spend more money on fresh or on grocery, and those who mainly buy prepared

http://archive.ics.uci.edu/ml/datasets/Wholesale+customers

8.2. The k-Means Algorithm and Variants 168

Scatter Plot Matrix

Fresh

Milk

Grocery

Frozen

DetPaper

Delicatessen

Figure 8.9: A panel plot of the wholesale customer data of http://archive.ics.uci.
edu/ml/datasets/Wholesale+customers, which records sums of money spent annually
on different commodities by customers in Portugal. This data is recorded for six
different blocks (two channels each within three regions). I have plotted each block
with a different marker, but you can’t really see much structure here, for reasons
explained in the text

food might spend more money on delicatessen; similarly, coffee drinkers with cats
or with children might spend more on milk than the lactose-intolerant, and so on.
So we can expect customers to cluster in types. An effect like this is hard to
see on a panel plot of the clustered data (Fig. 8.9). The plot for this dataset is
hard to read, because the dimension is fairly high for a panel plot and the data is
squashed together in the bottom left corner. However, you can see the effect when
you cluster the data and look at the cost function in representing the data with
different values of k—quite a small set of clusters gives quite a good representation
of the customers (Fig. 8.10). The panel plot of cluster membership (also in that
figure) isn’t particularly informative. The dimension is quite high, and clusters get
squashed together.

There is an important effect which isn’t apparent in the panel plots. Some of
what cause customers to cluster in types are driven by things like wealth and the ten-
dency of people to have neighbors who are similar to them. This means that differ-
ent blocks should have different fractions of each type of customer. There might be
more deli-spenders in wealthier regions; more milk-spenders and detergent-spenders
in regions where it is customary to have many children; and so on. This sort of

http://archive.ics.uci.edu/ml/datasets/Wholesale+customers
http://archive.ics.uci.edu/ml/datasets/Wholesale+customers

8.2. The k-Means Algorithm and Variants 169

0 5 10 15 20 25 30 35

5.
0e

+1
0

1.
0e

+1
1

1.
5e

+1
1

Number of Clusters

W
ith

in
 g

ro
up

s
su

m
 o

f s
qu

ar
es

Scatter Plot Matrix

Fresh

Milk

Grocery

Frozen

DetPaper

Delicatessen

Figure 8.10: On the left, the cost function (of Sect. 8.2) for clusterings of the
customer data with k-means for k running from 2 to 35. This suggests using a k
somewhere in the range 10–30; I chose 10. On the right, I have clustered this data
to 10 cluster centers with k-means. The clusters seem to be squashed together, but
the plot on the left suggests that clusters do capture some important information.
Using too few clusters will clearly lead to problems. Notice that I did not scale
the data, because each of the measurements is in a comparable unit. For example,
it wouldn’t make sense to scale expenditures on fresh and expenditures on grocery
with a different scale. The main point of the plot on the right is that it’s hard to
interpret, and that we need a better way to represent the underlying data

structure will not be apparent in a panel plot. A block of a few milk-spenders and
many detergent-spenders will have a few data points with high milk expenditure
values (and low other values) and also many data points with high detergent expen-
diture values (and low other values). In a panel plot, this will look like two blobs;
but if there is a second block with many milk-spenders and few detergent-spenders
it will also look like two blobs, lying roughly on top of the first set of blobs. It will
be hard to spot the difference between the blocks.

An easy way to see this difference is to look at histograms of the types of
customer within each block. Figure 8.11 shows this representation for the shopper
dataset. The figure shows the histogram of customer types that appears in each
block. The blocks do appear to contain quite different distributions of customer
type, as you would expect. It looks as though the channels (rows in this figure)
are more different than the regions (columns in this figure). Again, you might
expect this: regions might contain slightly different customers (e.g., as a result of
regional food preferences), but different channels are intended to cater to different
customers.

8.2. The k-Means Algorithm and Variants 170

0.0

0.1

0.2

0.3

Channel 1, Region 1

Fr
eq

ue
nc

y

0.0

0.1

0.2

0.3

Channel 2, Region 1

Fr
eq

ue
nc

y
0.0

0.1

0.2

0.3

Channel 1, Region 2

Fr
eq

ue
nc

y

0.0

0.1

0.2

0.3

Channel 2, Region 2

Fr
eq

ue
nc

y

0.0

0.1

0.2

0.3

Channel 1, Region 3

Fr
eq

ue
nc

y

0.0

0.1

0.2

0.3

1 5 10

2 4 6 8 10

2 4 6 8 10

2 4 6 8 10

2 4 6 8 10

2 4 6 8 10
Channel 2, Region 3

Fr
eq

ue
nc

y

Figure 8.11: The histogram of different types of customer, by block, for the customer
data. Notice how the distinction between the blocks is now apparent—the blocks do
appear to contain quite different distributions of customer type. It looks as though
the channels (rows in this figure) are more different than the regions (columns in
this figure)

8.2.6 General Comments on k-Means

If you experiment with k-means, you will notice one irritating habit of the algorithm.
It almost always produces either some rather spread out clusters or some single
element clusters. Most clusters are usually rather tight and blobby clusters, but
there is usually one or more bad cluster. This is fairly easily explained. Because
every data point must belong to some cluster, data points that are far from all
others (a) belong to some cluster and (b) very likely “drag” the cluster center into
a poor location. This applies even if you use soft assignment, because every point
must have total weight one. If the point is far from all others, then it will be
assigned to the closest with a weight very close to one, and so may drag it into a
poor location, or it will be in a cluster on its own.

There are ways to deal with this. If k is very big, the problem is often not
significant, because then you simply have many single element clusters that you
can ignore. It isn’t always a good idea to have too large a k, because then some
larger clusters might break up. An alternative is to have a junk cluster. Any point
that is too far from the closest true cluster center is assigned to the junk cluster,
and the center of the junk cluster is not estimated. Notice that points should not
be assigned to the junk cluster permanently; they should be able to move in and
out of the junk cluster as the cluster centers move.

8.3. Describing Repetition with Vector Quantization 171

Remember This: k-Means clustering is the “go-to” clustering algo-
rithm. You should see it as a basic recipe from which many algorithms can
be concocted. The recipe is: iterate: allocate each data point to the closest
cluster center; re-estimate cluster centers from their data points. There are
many variations, improvements, etc., that are possible on this recipe. We
have seen soft weights and k-medoids. k-Means is not usually best imple-
mented with the method I described (which isn’t particularly efficient, but
gets to the heart of what is going on). Implementations of k-means differ
in important ways from my rather high-level description of the algorithm;
for any but tiny problems, you should use a package, and you should look
for a package that uses the Lloyd–Hartigan method.

8.3 Describing Repetition with Vector Quantization

The classifiers in Chap. 1 can be applied to simple images (the MNIST exercises at
the end of the chapter, for example), but they will annoy you if you try to apply
them as described to more complicated signals. All the methods described apply
to feature vectors of fixed length. But typical of signals like speech, images, video,
or accelerometer outputs is that different versions of the same thing have different
lengths. For example, pictures appear at different resolutions, and it seems clumsy
to insist that every image be 28×28 before it can be classified. As another example,
some speakers are slow, and others are fast, but it’s hard to see much future for a
speech understanding system that insisted that everyone speak at the same speed
so the classifier could operate. We need a construction that will take a signal and
produce a useful feature vector of fixed length. This section shows one of the most
useful such constructions (but be aware, this is an enormous topic).

Repetition is an important feature of many interesting signals. For example,
images contain textures, which are orderly patterns that look like large numbers of
small structures that are repeated. Examples include the spots of animals such as
leopards or cheetahs; the stripes of animals such as tigers or zebras; the patterns on
bark, wood, and skin. Similarly, speech signals contain phonemes—characteristic,
stylized sounds that people assemble together to produce speech (for example, the
“ka” sound followed by the “tuh” sound leading to “cat”). Another example comes
from accelerometers. If a subject wears an accelerometer while moving around, the
signals record the accelerations during their movements. So, for example, brushing
one’s teeth involves a lot of repeated twisting movements at the wrist, and walking
involves swinging the hand back and forth.

Repetition occurs in subtle forms. The essence is that a small number of
local patterns can be used to represent a large number of examples. You see this
effect in pictures of scenes. If you collect many pictures of, say, a beach scene, you
will expect most to contain some waves, some sky, and some sand. The individual
patches of wave, sky, or sand can be surprisingly similar. However, it’s fair to
model this by saying different images are made by selecting some patches from
a vocabulary of patches, then placing them down to form an image. Similarly,

8.3. Describing Repetition with Vector Quantization 172

pictures of living rooms contain chair patches, TV patches, and carpet patches.
Many different living rooms can be made from small vocabularies of patches; but
you won’t often see wave patches in living rooms, or carpet patches in beach scenes.
This suggests that the patches that are used to make an image reveal something
about what is in the image. This observation works for speech, for video, and for
accelerometer signals too.

An important part of representing signals that repeat is building a vocabulary
of patterns that repeat, then describing the signal in terms of those patterns. For
many problems, knowing what vocabulary elements appear and how often is much
more important than knowing where they appear. For example, if you want to
tell the difference between zebras and leopards, you need to know whether stripes
or spots are more common, but you don’t particularly need to know where they
appear. As another example, if you want to tell the difference between brushing
teeth and walking using accelerometer signals, knowing that there are lots of (or
few) twisting movements is important, but knowing how the movements are linked
together in time may not be. As a general rule, one can do quite a good job of
classifying video just by knowing what patterns are there (i.e., without knowing
where or when the patterns appear). Not all signals are like this. For example, in
speech it really matters what sound follows what sound.

8.3.1 Vector Quantization

It is natural to try and find patterns by looking for small pieces of signal of fixed
size that appear often. In an image, a piece of signal might be a 10x10 patch,
which can be reshaped into a vector. In a sound file, which is likely represented
as a vector, it might be a subvector of fixed size. A 3-axis accelerometer signal
is usually represented as a 3 × r dimensional array (where r is the number of
samples); in this case, a piece might be a 3 × 10 subarray, which can be reshaped
into a vector. But finding patterns that appear often is hard to do, because the
signal is continuous—each pattern will be slightly different, so we cannot simply
count how many times a particular pattern occurs.

Here is a strategy. We take a training set of signals, and cut each signal into
pieces of fixed size and reshape them into d dimensional vectors. We then build
a set of clusters out of these pieces. This set of clusters is often thought of as a
dictionary, because we expect many or most cluster centers to look like pieces that
occur often in the signals and so are repeated.

We can now describe any new piece of signal with the cluster center closest
to that piece. This means that a piece of signal is described with a number in the
range [1, . . . , k] (where you get to choose k), and two pieces that are close should be
described by the same number. This strategy is known as vector quantization
(often VQ).

This strategy applies to any kind of signal, and is surprisingly robust to details.
We could use d dimensional vectors for a sound file;

√
d×

√
d dimensional patches

for an image; or 3×(d/3) dimensional subarrays for an accelerometer signal. In each
case, it is easy to compute the distance between two pieces using sum of squared
differences. It seems not to matter much if the signals are cut into overlapping or

8.3. Describing Repetition with Vector Quantization 173

Figure 8.12: Top: two images with rather exaggerated repetition, published on
flickr.com with a creative commons license by webtreats. Next to these images, I
have placed zoomed sampled 10×10 patches from those images; although the spots
(resp. stripes) aren’t necessarily centered in the patches, it’s pretty clear which
image each patch comes from. Bottom: a 40 patch dictionary computed using
k-means from 4000 samples from each image. If you look closely, you’ll see that
some dictionary entries are clearly stripe entries, others clearly spot entries. Stripe
images will have patches represented by stripe entries in the dictionary and spot
images by spot entries

non-overlapping pieces when forming the dictionary, as long as there are enough
pieces.

Procedure: 8.5 Building a Dictionary for VQ

Take a training set of signals, and cut each signal into pieces of fixed
size. The size of the piece will affect how well your method works, and
is usually chosen by experiment. It does not seem to matter much if the
pieces overlap. Cluster all the example pieces, and record the k cluster
centers. It is usual, but not required, to use k-means clustering.

We can now build features that represent important repeated structure in
signals. We take a signal, and cut it up into vectors of length d. These might
overlap, or be disjoint. We then take each vector, and compute the number that
describes it (i.e., the number of the closest cluster center, as above). We then
compute a histogram of the numbers we obtained for all the vectors in the signal.
This histogram describes the signal.

www.flickr.com

8.3. Describing Repetition with Vector Quantization 174

Procedure: 8.6 Representing a Signal Using VQ

Take your signal, and cut it into pieces of fixed size. The size of the
piece will affect how well your method works, and is usually chosen by
experiment. It does not seem to matter much if the pieces overlap. For
each piece, record the closest cluster center in the dictionary. Repre-
sent the signal with a histogram of these numbers, which will be a k
dimensional vector.

Notice several nice features to this construction. First, it can be applied to
anything that can be thought of in terms of fixed size pieces, so it will work for
speech signals, sound signals, accelerometer signals, images, and so on. Another
nice feature is the construction can accept signals of different length, and produce a
description of fixed length. One accelerometer signal might cover 100 time intervals;
another might cover 200; but the description is always a histogram with k buckets,
so it’s always a vector of length k.

Yet another nice feature is that we don’t need to be all that careful how we
cut the signal into fixed length vectors. This is because it is hard to hide repetition.
This point is easier to make with a figure than in text, so look at Fig. 8.12.

The number of pieces of signal (and so k) might be very big indeed. It is quite
reasonable to want to build a dictionary for a million items and use tens to hundreds
of thousands of cluster centers. In this case, it is a good idea to use hierarchical
k-means, as in Sect. 8.2.3. Hierarchical k-means produces a tree of cluster centers.
It is easy to use this tree to vector quantize a query data item. We vector quantize
at the first level. Doing so chooses a branch of the tree, and we pass the data item
to this branch. It is either a leaf, in which case we report the number of the leaf,
or it is a set of clusters, in which case we vector quantize, and pass the data item
down. This procedure is efficient both when one clusters and at run time.

Representing a signal as a histogram of cluster centers loses information in
two important ways. First, the histogram has little or no information about how
the pieces of signal are arranged. So, for example, the representation can tell
whether an image has stripy or spotty patches in it, but not where those patches
lie. You should not rely on your intuition to tell you whether this lost information
is important or not. For many kinds of image classification task, histograms of
cluster centers are much better than you might guess, despite not encoding where
patches lie (though still better results are now obtained with convolutional neural
networks).

Second, replacing a piece of signal with a cluster center must lose some detail,
which might be important, and likely results in some classification errors. There is
a surprisingly simple construction that can alleviate these problems. Build three
(or more) dictionaries, rather than one, using different sets of training pieces. For
example, you could cut the same signals into pieces on a different grid. Now use
each dictionary to produce a histogram of cluster centers, and classify with those.
Finally, use a voting scheme to decide the class of each test signal. In many prob-
lems, this approach yields small but useful improvements.

8.3. Describing Repetition with Vector Quantization 175

0 500 1000 1500 2000 2500
0

20

40

60
Brushing teeth − example 1

Time

X
 A

cc
el

er
at

io
n

0 200 400 600 800 10000

20

40

60
Brushing teeth − example 2

Time

X
 A

cc
el

er
at

io
n

0 500 1000 1500 2000 25000

20

40

60

80
Brushing teeth − example 3

Time

X
 A

cc
el

er
at

io
n

0 500 1000 1500 2000 25000

20

40

60

80
Brushing teeth − example 4

Time

X
 A

cc
el

er
at

io
n

0 1000 2000 3000 4000 5000
25

30

35

40

45

50
Eat meat − example 1

Time

X
 A

cc
el

er
at

io
n

0 2000 4000 6000
25

30

35

40

45
Eat meat − example 4

Time

X
 A

cc
el

er
at

io
n

0 2000 4000 6000 8000
20

25

30

35

40

45
Eat meat − example 3

Time

X
 A

cc
el

er
at

io
n

0 1000 2000 3000 4000 5000
25

30

35

40

45
Eat meat − example 2

Time

X
 A

cc
el

er
at

io
n

Figure 8.13: Some examples from the accelerometer dataset at https://archive
.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+
Accelerometer. I have labelled each signal by the activity. These show acceleration
in the X direction (Y and Z are in the dataset, too). There are four examples
for brushing teeth and four for eat meat. You should notice that the examples
don’t have the same length in time (some are slower and some faster eaters, etc.),
but that there seem to be characteristic features that are shared within a category
(brushing teeth seems to involve faster movements than eating meat)

8.3.2 Example: Activity from Accelerometer Data

A complex example dataset appears at https://archive.ics.uci.edu/ml/datasets/
Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer. This dataset
consists of examples of the signal from a wrist mounted accelerometer, produced
as different subjects engaged in different activities of daily life. Activities include:
brushing teeth, climbing stairs, combing hair, descending stairs, and so on. Each is
performed by 16 volunteers. The accelerometer samples the data at 32Hz (i.e., this
data samples and reports the acceleration 32 times per second). The accelerations
are in the x, y, and z-directions. The dataset was collected by Barbara Bruno, Ful-
vio Mastrogiovanni, and Antonio Sgorbissa. Figure 8.13 shows the x-component of
various examples of toothbrushing.

There is an important problem with using data like this. Different subjects
take quite different amounts of time to perform these activities. For example, some
subjects might be more thorough toothbrushers than other subjects. As another
example, people with longer legs walk at somewhat different frequencies than people
with shorter legs. This means that the same activity performed by different subjects
will produce data vectors that are of different lengths. It’s not a good idea to deal
with this by warping time and resampling the signal. For example, doing so will
make a thorough toothbrusher look as though they are moving their hands very
fast (or a careless toothbrusher look ludicrously slow: think speeding up or slowing
down a movie). So we need a representation that can cope with signals that are a
bit longer or shorter than other signals.

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer
https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer

8.3. Describing Repetition with Vector Quantization 176

0 10 20 30 400

20

40

60

Time

X
 A

cc
el

er
at

io
n

Accelerometer cluster centers

Figure 8.14: Some cluster centers from the accelerometer dataset. Each cluster
center represents a 1-s burst of activity. There are a total of 480 in my model, which
I built using hierarchical k-means. Notice there are a couple of centers that appear
to represent movement at about 5Hz; another few that represent movement at
about 2Hz; some that look like 0.5Hz movement; and some that seem to represent
much lower frequency movement. These cluster centers are samples (rather than
chosen to have this property)

Another important property of these signals is that all examples of a particular
activity should contain repeated patterns. For example, brushing teeth should show
fast accelerations up and down; walking should show a strong signal at somewhere
around 2Hz; and so on. These two points should suggest vector quantization to you.
Representing the signal in terms of stylized, repeated structures is probably a good
idea because the signals probably contain these structures. And if we represent
the signal in terms of the relative frequency with which these structures occur, the
representation will have a fixed length, even if the signal doesn’t. To do so, we need
to consider (a) over what time scale we will see these repeated structures and (b)
how to ensure we segment the signal into pieces so that we see these structures.

Generally, repetition in activity signals is so obvious that we don’t need to be
smart about segment boundaries. I broke these signals into 32 sample segments,
one following the other. Each segment represents 1 s of activity. This is long enough
for the body to do something interesting, but not so long that our representation
will suffer if we put the segment boundaries in the wrong place. This resulted in
about 40,000 segments. I then used hierarchical k-means to cluster these segments.
I used two levels, with 40 cluster centers at the first level, and 12 at the second.
Figure 8.14 shows some cluster centers at the second level.

I then computed histogram representations for different example signals
(Fig. 8.15). You should notice that when the activity label is different, the his-
togram looks different, too.

Another useful way to check this representation is to compare the aver-
age within class chi-squared distance with the average between class chi-squared

8.3. Describing Repetition with Vector Quantization 177

100 200 300 400
0

0.05

0.1

0.15

0.2
Climb stairs

100 200 300 400
0

0.05

0.1

0.15

0.2
Climb stairs

100 200 300 400
0

0.05

0.1

0.15

0.2
Climb stairs

100 200 300 400

100 200 300 400 100 200 300 400 100 200 300 400100 200 300 400

100 200 300 400 100 200 300 400 100 200 300 400100 200 300 400

0

0.05

0.1

0.15

0.2
Climb stairs

Comb hair Comb hair Comb hairComb hair

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2
Brush teeth

0

0.05

0.1

0.15

0.2
Brush teeth

0

0.05

0.1

0.15

0.2
Brush teeth

0

0.05

0.1

0.15

0.2
Brush teeth

Figure 8.15: Histograms of cluster centers for the accelerometer dataset, for different
activities. You should notice that (a) these histograms look somewhat similar
for different actors performing the same activity and (b) these histograms look
somewhat different for different activities

distance. I computed the histogram for each example. Then, for each pair of ex-
amples, I computed the chi-squared distance between the pair. Finally, for each
pair of activity labels, I computed the average distance between pairs of examples
where one example has one of the activity labels and the other example has the
other activity label. In the ideal case, all the examples with the same label would
be very close to one another, and all examples with different labels would be rather
different. Table 8.1 shows what happens with the real data. You should notice
that for some pairs of activity label, the mean distance between examples is smaller
than one would hope for (perhaps some pairs of examples are quite close?). But
generally, examples of activities with different labels tend to be further apart than
examples of activities with the same label.

Yet another way to check the representation is to try classification with nearest
neighbors, using the chi-squared distance to compute distances. I split the dataset
into 80 test pairs and 360 training pairs; using 1-nearest neighbors, I was able to
get a held-out error rate of 0.79. This suggests that the representation is fairly
good at exposing what is important.

8.4. You Should 178

0.9 2.0 1.9 2.0 2.0 2.0 1.9 2.0 1.9 1.9 2.0 2.0 2.0 2.0
1.6 2.0 1.8 2.0 2.0 2.0 1.9 1.9 2.0 1.9 1.9 2.0 1.7

1.5 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 2.0
1.4 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.8

1.5 1.8 1.7 1.9 1.9 1.8 1.9 1.9 1.8 2.0
0.9 1.7 1.9 1.9 1.8 1.9 1.9 1.9 2.0

0.3 1.9 1.9 1.5 1.9 1.9 1.9 2.0
1.8 1.8 1.9 1.9 1.9 1.9 1.9

1.7 1.9 1.9 1.9 1.9 1.9
1.6 1.9 1.9 1.9 2.0

1.8 1.9 1.9 1.9
1.8 2.0 1.9

1.5 2.0
1.5

TABLE 8.1: Each column of the table represents an activity for the activity
dataset https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+
with+Wrist-worn+Accelerometer, as does each row. In each of the upper diagonal
cells, I have placed the average chi-squared distance between histograms of examples
from that pair of classes (I dropped the lower diagonal for clarity). Notice that
in general the diagonal terms (average within class distance) are rather smaller
than the off diagonal terms. This quite strongly suggests that we can use these
histograms to classify examples successfully

8.4 You Should

8.4.1 Remember These Terms

clusters . 155
clustering . 155
decorrelation . 157
whitening . 157
k-means . 161
k-means++ . 162
affinity . 165
vector quantization . 172
VQ . 172

8.4.2 Remember These Facts

Agglomerative and divisive clustering 159
K-means is the “go-to” clustering recipe 171

8.4.3 Remember These Procedures

Agglomerative Clustering . 156
Divisive Clustering . 156
k-Means Clustering . 161
k-Means with Soft Weights . 166
Building a Dictionary for VQ . 173
Representing a Signal Using VQ . 174

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer

8.4. You Should 179

Programming Exercises

8.1. You can find a dataset dealing with European employment in 1979 at http://
dasl.datadesk.com/data/view/47. This dataset gives the percentage of people
employed in each of a set of areas in 1979 for each of a set of European countries.

(a) Use an agglomerative clusterer to cluster this data. Produce a dendrogram
of this data for each of single link, complete link, and group average clus-
tering. You should label the countries on the axis. What structure in the
data does each method expose? It’s fine to look for code, rather than writ-
ing your own. Hint: I made plots I liked a lot using R’s hclust clustering
function, and then turning the result into a phylogenetic tree and using a
fan plot, a trick I found on the web; try plot(as.phylo(hclustresult),

type=’’fan’’). You should see dendrograms that “make sense” (at least
if you remember some European history), and have interesting differences.

(b) Using k-means, cluster this dataset. What is a good choice of k for this
data and why?

8.2. Obtain the liver disorder dataset from UC Irvine machine learning website
(http://archive.ics.uci.edu/ml/datasets/Liver%20Disorders; data provided by
Richard S. Forsyth). The first five values in each row represent various bi-
ological measurements, and the sixth is a measure of the amount of alcohol
consumed daily. We will analyze this data following the recipe of Sect. 8.2.5.
Divide the data into four blocks using the amount of alcohol, where each block
is a quantile (so data representing the lowest quarter of consumption rates go
into the first block, etc.). Now cluster the data using the first five values and
k-means. For each block, compute a histogram of the cluster centers (as in
Fig. 8.11). Plot these histograms. What do you conclude?

8.3. Obtain the Portuguese student math grade dataset from UC Irvine machine
learning website (https://archive.ics.uci.edu/ml/datasets/student+performance;
data provided by Paulo Cortez). There are two datasets at the URL—you
are looking for the one that relates to math grades. Each row contains some
numerical attributes (columns 3, 7, 8, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30) and
some other attributes. We will consider only the numerical attributes. Column
33 contains the grade at the end of the year in numerical form. We will analyze
this data following the recipe of Sect. 8.2.5. Divide the data into four blocks
using the final grade, where each block is a quantile (so data representing the
lowest quarter of grades go into the first block, etc.). Now cluster the data
using the numerical values and k-means. For each block, compute a histogram
of the cluster centers (as in Fig. 8.11). Plot these histograms. What do you
conclude?

8.4. Obtain the activities of daily life dataset from the UC Irvine machine
learning website (https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+
Recognition+with+Wrist-worn+Accelerometer; data provided by Barbara
Bruno, Fulvio Mastrogiovanni, and Antonio Sgorbissa).
(a) Build a classifier that classifies sequences into one of the 14 activities pro-

vided. To make features, you should vector quantize, then use a histogram
of cluster centers (as described in the subsection; this gives a pretty ex-
plicit set of steps to follow). You will find it helpful to use hierarchical
k-means to vector quantize. You may use whatever multiclass classifier
you wish, though I’d start with R’s decision forest, because it’s easy to
use and effective. You should report (a) the total error rate and (b) the
class-confusion matrix of your classifier.

http://dasl.datadesk.com/data/view/47
http://dasl.datadesk.com/data/view/47
http://archive.ics.uci.edu/ml/datasets/Liver%20Disorders
https://archive.ics.uci.edu/ml/datasets/student+performance
https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer

8.4. You Should 180

(b) Now see if you can improve your classifier by (a) modifying the number
of cluster centers in your hierarchical k-means and (b) modifying the size
of the fixed length samples that you use.

8.5. This is a fairly ambitious exercise. It will demonstrate how to use vector
quantization to handle extremely sparse data. The 20 newsgroups dataset is a
famous text dataset. It consists of posts collected from 20 different newsgroups.
There are a variety of tricky data issues that this presents (for example, what
aspects of the header should one ignore? should one reduce words to their
stems, so “winning” goes to “win,” “hugely” to “huge,” and so on?). We will
ignore these issues, and deal with a cleaned up version of the dataset. This
consists of three items each for train and test: a document-word matrix, a
set of labels, and a map. You can find this cleaned up version of the dataset
at http://qwone.com/∼jason/20Newsgroups/. You should look for the cleaned
up version, identified as 20news-bydate-matlab.tgz on that page. The usual
task is to label a test article with which newsgroup it came from. Instead, we
will assume you have a set of test articles, all from the same newsgroup, and
you need to identify the newsgroup. The document-word matrix is a table of
counts of how many times a particular word appears in a particular document.
The collection of words is very large (53,975 distinct words), and most words
do not appear in most documents, so most entries of this matrix are zero. The
file train.data contains this matrix for a collection of training data; each row
represents a distinct document (there are 11,269), and each column represents
a distinct word.
(a) Cluster the rows of this matrix to get a set of cluster centers using k-means.

You should have about one center for every 10 documents. Use k-means,
and you should find an efficient package rather than using your own imple-
mentation. In particular, implementations of k-means differ in important
ways from my rather high-level description of the algorithm; you should
look for a package that uses the Lloyd–Hartigan method. Hint: Cluster-
ing all these points is a bit of a performance; check your code on small
subsets of the data first, because the size of this dataset means that clus-
tering the whole thing will be slow.

(b) You can now think of each cluster center as a document “type.” For each
newsgroup, plot a histogram of the “types” of document that appear in the
training data for that newsgroup. You’ll need to use the file train.label,
which will tell you what newsgroup a particular item comes from.

(c) Now train a classifier that accepts a small set of documents (10–100) from
a single newsgroup, and predicts which of 20 newsgroups it comes from.
You should use the histogram of types from the previous subexercise as
a feature vector. Compute the performance of this classifier on the test
data (test.data and test.label).

8.6. This is a substantial exercise. The MNIST dataset is a dataset of 60,000 train-
ing and 10,000 test examples of handwritten digits, originally constructed by
Yann Lecun, Corinna Cortes, and Christopher J.C. Burges. It is very widely
used to check simple methods. There are 10 classes in total (“0” to “9”). This
dataset has been extensively studied, and there is a history of methods and
feature constructions at https://en.wikipedia.org/wiki/MNIST database and at
http://yann.lecun.com/exdb/mnist/. You should notice that the best meth-
ods perform extremely well. The original dataset is at http://yann.lecun.com/
exdb/mnist/. It is stored in an unusual format, described in detail on that
website. Writing your own reader is pretty simple, but web search yields read-

http://qwone.com/~jason/20Newsgroups/
https://en.wikipedia.org/wiki/MNIST_database
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

8.4. You Should 181

ers for standard packages. There is reader code in Matlab available (at least)
at http://ufldl.stanford.edu/wiki/index.php/Using the MNIST Dataset. There is
reader code for R available (at least) at https://stackoverflow.com/questions/
21521571/how-to-read-mnist-database-in-r.
The dataset consists of 28 × 28 images. These were originally binary images,
but appear to be grey level images as a result of some anti-aliasing. I will
ignore mid grey pixels (there aren’t many of them) and call dark pixels “ink
pixels,” and light pixels “paper pixels.” The digit has been centered in the
image by centering the center of gravity of the image pixels. For this exercise,
we will use raw pixels in untouched images.
(a) We will use hierarchical k-means to build a dictionary of image patches.

For untouched images, construct a collection of 10 × 10 image patches.
You should extract these patches from the training images on an overlap-
ping 4×4 grid, meaning that each training image produces 16 overlapping
patches (so you could have 960,000 training patches!). For each training
image, choose one of these patches uniformly and at random. Now sub-
sample this dataset of 60,000 patches uniformly and at random to produce
a 6000 element dataset. Cluster this dataset to 50 centers. Now build 50
datasets, one per cluster center. Do this by taking each element of the
60,000 patch dataset, finding which of the cluster centers is closest to it,
and putting the patch in that center’s dataset. Now cluster each of these
datasets to 50 centers.

(b) You now have a dictionary of 2500 entries. For each query image, con-
struct a set of 10 × 10 patches on an overlapping 4 × 4 grid. Now for
each of the centers, you should extract 9 patches. Assume the center is
at (x, y); obtain 9 patches by extracting a patch centered at (x − 1, y −
1), (x, y− 1), . . . , (x+ 1, y+ 1). This means each test image will have 144
associated patches. Now use your dictionary to find the closest center to
each patch, and construct a histogram of patches for each test image.

(c) Train a classifier (I’d use a decision forest) using this histogram of patches
representation. Evaluate this classifier on the test data.

(d) Can you improve this classifier by modifying how you extract patches, the
size of the patches, or the number of centers?

(e) At this point, you’re likely tired of MNIST, but very well informed. Com-
pare your methods to the table of methods at http://yann.lecun.com/exdb/
mnist/.

8.7. CIFAR-10 is a dataset of 32x32 images in 10 categories, collected by Alex
Krizhevsky, Vinod Nair, and Geoffrey Hinton. It is often used to evaluate ma-
chine learning algorithms. You can download this dataset from https://www.
cs.toronto.edu/∼kriz/cifar.html. There are 10 classes, 50,000 training images,
and 10,000 test images.
(a) We will use hierarchical k-means to build a dictionary of image patches.

For untouched images, construct a collection of 10×10×3 image patches.
You should extract these patches from the training images at random
locations (you don’t know where the good stuff in the image is), and
you should extract two patches per training image. Now subsample this
dataset of 100,000 patches uniformly and at random to produce a 10,000
element dataset. Cluster this dataset to 50 centers. Now build 50 datasets,
one per cluster center. Do this by taking each element of the 100,000 patch
dataset, finding which of the cluster centers is closest to it, and putting
the patch in that center’s dataset. Now cluster each of these datasets to
50 centers.

http://ufldl.stanford.edu/wiki/index.php/Using_the_MNIST_Dataset
https://stackoverflow.com/questions/21521571/how-to-read-mnist-database-in-r
https://stackoverflow.com/questions/21521571/how-to-read-mnist-database-in-r
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

8.4. You Should 182

(b) You now have a dictionary of 2500 entries. For each query image, con-
struct a set of 10× 10 patches. You should extract patches using centers
that are on a grid spaced two pixels apart horizontally and vertically, so
there will be a lot of overlap between the patches. Now use your dictio-
nary to find the closest center to each patch, and construct a histogram
of patches for each test image.

(c) Train a classifier (I’d use a decision forest) using this histogram of patches
representation. Evaluate this classifier on the test data.

(d) Can you improve this classifier by modifying how you extract patches, the
size of the patches, or the number of centers?

(e) At this point, you’re likely tired of CIFAR-10 but very well informed.
Compare your methods to Roderigo Benenson’s table of methods at http://
rodrigob.github.io/are we there yet/build/classification datasets results.html.

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

C H A P T E R 9

Clustering Using Probability
Models

Clustering objects requires some notion of how similar they are. We have seen
how to cluster using distance in feature space, which is a natural way of thinking
about similarity. Another way to think about similarity is to ask whether two
objects have high probability under the same probability model. This can be a
convenient way of looking at things when it is easier to build probability models
than it is to measure distances. It turns out to be a natural way of obtaining soft
clustering weights (which emerge from the probability model). And it provides a
framework for our first encounter with an extremely powerful and general algorithm,
which you should see as a very aggressive generalization of k-means.

9.1 Mixture Models and Clustering

It is natural to think of clustering in the following way. The data was created by
a collection of distinct probability models (one per cluster). For each data item,
something (nature?) chose which model was to produce a point, and then an IID
sample of that model produces the point. We see the points: we’d like to know what
the models were, but (and this is crucial) we don’t know which model produced
which point. If we knew the models, it would be easy to decide which model
produced which point. Similarly, if we knew which point went to which model, we
could determine what the models were. One encounters this situation—or problems
that can be mapped to this situation—again and again. It is very deeply embedded
in clustering problems.

You should notice a resonance with k-means here. In k-means, if we knew the
centers, which point belongs to which center would be easy; if we knew which point
belongs to which center, the centers would be easy. We dealt with this situation
quite effectively by repeatedly fixing one, then estimating the other. It is pretty
clear that a natural algorithm for dealing with the probability models is to iterate
between estimating which model gets which point, and the model parameters. This
is the key to a standard, and very important, algorithm for estimation here, called
EM (or expectation maximization, if you want the long version). I will develop
this algorithm in two simple cases, and we will see it in a more general form later.

Notation: This topic lends itself to a glorious festival of indices, limits of
sums and products, etc. I will do one example in quite gory detail; the other
follows the same form, and for that we’ll proceed more expeditiously. Writing the
limits of sums or products explicitly is usually even more confusing than adopting
a compact notation. When I write

∑
i or

∏
i, I mean a sum (or product) over all

values of i. When I write
∑

i,ĵ or
∏

i,ĵ , I mean a sum (or product) over all values
of i except for the jth item. I will write vectors, as usual, as x; the ith such vector

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 9

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_9

9.1. Mixture Models and Clustering 184

in a collection is xi, and the kth component of the ith vector in a collection is xik.
In what follows, I will construct a vector δi corresponding to the ith data item xi

(it will tell us what cluster that item belongs to). I will write δ to mean all the
δi (one for each data item). The jth component of δi is δij . When I write

∑
δu
, I

mean a sum over all values that δu can take. When I write
∑

δ, I mean a sum over
all values that each δ can take. When I write

∑
δ,δ̂v

, I mean a sum over all values
that all δ can take, omitting all cases for the vth vector δv.

9.1.1 A Finite Mixture of Blobs

A blob of data points is quite easily modelled with a single normal distribution.
Obtaining the parameters is straightforward (estimate the mean and covariance
matrix with the usual expressions). Now imagine I have t blobs of data, and I know
t. A normal distribution is likely a poor model, but I could think of the data as being
produced by t normal distributions. I will assume that each normal distribution has
a fixed, known covariance matrix Σ, but the mean of each is unknown. Because the
covariance matrix is fixed, and known, we can compute a factorization Σ = AAT .
The factors must have full rank, because the covariance matrix must be positive
definite. This means that we can apply A−1 to all the data, so that each blob
covariance matrix (and so each normal distribution) is the identity.

Write μj for the mean of the jth normal distribution. We can model a dis-
tribution that consists of t distinct blobs by forming a weighted sum of the blobs,
where the jth blob gets weight πj . We ensure that

∑
j πj = 1, so that we can think

of the overall model as a probability distribution. We can then model the data as
samples from the probability distribution

p(x|μ1, . . . , μk, π1, . . . , πk) =
∑

j

πj

[
1√
(2π)d

exp

(
−1

2
(x− μj)

T (x− μj)

)]
.

The way to think about this probability distribution is that a point is generated
by first choosing one of the normal distributions (the jth is chosen with probability
πj), then generating a point from that distribution. This is a pretty natural model
of clustered data. Each mean is the center of a blob. Blobs with many points in
them have a high value of πj , and blobs with a few points have a low value of πj .
We must now use the data points to estimate the values of πj and μj (again, I
am assuming that the blobs—and the normal distribution modelling each—have
the identity as a covariance matrix). A distribution of this form is known as a
mixture of normal distributions, and the πj terms are usually called mixing
weights.

Writing out the likelihood will reveal a problem: we have a product of many
sums. The usual trick of taking the log will not work, because then you have a
sum of logs of sums, which is hard to differentiate and hard to work with. A much
more productive approach is to think about a set of hidden variables which tell us
which blob each data item comes from. For the ith data item, we construct a vector
δi. The jth component of this vector is δij , where δij = 1 if xi comes from blob
(equivalently, normal distribution) j and zero otherwise. Notice there is exactly
one 1 in δi, because each data item comes from one blob. I will write δ to mean all

9.1. Mixture Models and Clustering 185

the δi (one for each data item). Assume we know the values of these terms. I will
write θ = (μ1, . . . , μk, π1, . . . , πk) for the unknown parameters. Then we can write

p(xi|δi, θ) =
∏

j

[
1√
(2π)d

exp

(
−1

2
(xi − μj)

T (xi − μj)

)]δij

(because δij = 1 means that xi comes from blob j, so the terms in the product are
a collection of 1’s and the probability we want). We also have

p(δij = 1|θ) = πj

allowing us to write

p(δi|θ) =
∏

j

[πj]
δij

(because this is the probability that we select blob j to produce a data item; again,
the terms in the product are a collection of 1’s and the probability we want). This
means that

p(xi, δi|θ) =
∏

j

{[
1√
(2π)d

exp

(
−1

2
(xi − μj)

T (xi − μj)

)]
πj

}δij

and we can write a log-likelihood. The data are the observed values of x and δ
(remember, we pretend we know these; I’ll fix this in a moment), and the parameters
are the unknown values of μ1, . . . , μk and π1, . . . , πk. We have

L(μ1, . . . , μk, π1, . . . , πk;x, δ) = L(θ;x, δ)

=
∑

ij

{[(
−1

2
(xi − μj)

T (xi − μj)

)]
+ log πj

}
δij

+K,

where K is a constant that absorbs the normalizing constants for the normal dis-
tributions. You should check this expression. I have used the δij as a “switch”—for
one term, δij = 1 and the term in curly brackets is “on,” and for all others that
term is multiplied by zero. The problem with all this is that we don’t know δ. I
will deal with this when we have another example.

9.1.2 Topics and Topic Models

We have already seen that word counts expose similarities between documents
(Sect. 6.3). We now assume that documents with similar word counts will come
from the same topic (mostly, a term of art for cluster used in the natural language
processing community). A really useful model is to assume that words are condi-
tionally independent, conditioned on the topic. This means that, once you know
the topic, words are IID samples of a multinomial distribution that is given by the
topic (the word probabilities for that topic). If it helps, you can think of the
topic as multi-sided die with a different word on each face. Each document has one

9.1. Mixture Models and Clustering 186

topic. If you know the topic, you make a document by rolling this die—which is
likely not a fair die—some number of times.

This model of documents has problems. Word order doesn’t matter in this
model nor does where a word appears in a document or what words are near in
the document and what others are far away. We’ve already seen that ignoring
word order, word position, and neighbors can still produce useful representations
(Sect. 6.3). Despite its problems, this model clusters documents rather well, is easy
to work with, and is the basis for more complex models.

A single document is a set of word counts that is obtained by (a) selecting
a topic then (b) drawing words as IID samples from that topic. We now have a
collection of documents, and we want to know (a) what topic each document came
from and (b) the word probabilities for each topic. Now imagine we know which
document comes from which topic. Then we could estimate the word probabilities
using the documents in each topic by simply counting. In turn, imagine we know
the word probabilities for each topic. Then we could tell (at least in principle) which
topic a document comes from by looking at the probability each topic generates
the document, and choosing the topic with the highest probability. This procedure
should strike you as being very like k-means, though the details have changed.

To construct a probabilistic model more formally, we will assume that a doc-
ument is generated in two steps. We will have t topics. First, we choose a topic,
choosing the jth topic with probability πj . Then we will obtain a set of words
by repeatedly drawing IID samples from that topic, and record the count of each
word in a count vector. Each topic is a multinomial probability distribution. The
vocabulary is d-dimensional. Write pj for the d-dimensional vector of word prob-
abilities for the jth topic. Now write xi for the ith vector of word counts (there
are N vectors in the collection). We assume that words are generated indepen-
dently, conditioned on the topic. Write xik for the kth component of xi, and so
on. Notice that xT

i 1 is the sum of entries in xi, and so the number of words in
document i. Then the probability of observing the counts in xi when the document
was generated by topic j is

p(xi|pj) =

(
(xT

i 1)!∏
v xiv!

)∏

u

pxiu
ju .

We can now write the probability of observing a document. Again, we write
θ = (p1, . . . ,pt, π1, . . . , πt) for the vector of unknown parameters. We have

p(xi|θ) =
∑

l

p(xi|topic is l)p(topic is l|θ)

=
∑

l

[((
xT
i 1
)
!∏

v xiv!

)
∏

u

pxiu

lu

]
πl.

This model is widely called a topic model; be aware that there are many kinds
of topic model, and this is a simple one. The expression should look unpromising,
in a familiar way. If you write out a likelihood, you will see a product of sums;
and if you write out a log-likelihood, you will see a sum of logs of sums. Neither
is enticing. We could use the same trick we used for a mixture of normals. Write

9.1. Mixture Models and Clustering 187

δij = 1 if xi comes from topic j, and δij = 0 otherwise. Then we have

p(xi|δij = 1, θ) =

[((
xT
i 1
)
!∏

v xiv!

)
∏

u

pxiu
ju

]

(because δij = 1 means that xi comes from topic j). This means we can write

p(xi|δi, θ) =
∏

j

{[((
xT
i 1
)
!∏

v xiv!

)
∏

u

pxiu
ju

]}δij

(because δij = 1 means that xi comes from topic j, so the terms in the product are
a collection of 1’s and the probability we want). We also have

p(δij = 1|θ) = πj

(because this is the probability that we select topic j to produce a data item),
allowing us to write

p(δi|θ) =
∏

j

[πj]
δij

(again, the terms in the product are a collection of 1’s and the probability we want).
This means that

p(xi, δi|θ) =
∏

j

[((
xT
i 1
)
!∏

v xiv!

)
∏

u

(
pxiu
ju

)
πj

]δij

and we can write a log-likelihood. The data are the observed values of x and δ
(remember, we pretend we know these for the moment), and the parameters are
the unknown values collected in θ. We have

L(θ;x, δ) =
∑

i

⎧
⎨

⎩
∑

j

[
∑

u

xiu log pju + log πj

]
δij

⎫
⎬

⎭+K,

where K is a term that contains all the

log

((
xT
i 1
)
!∏

v xiv!

)

terms. This is of no interest to us, because it doesn’t depend on any of our pa-
rameters. It takes a fixed value for each dataset. You should check this expression,
noticing that, again, I have used the δij as a “switch”—for one term, δij = 1 and
the term in curly brackets is “on,” and for all others that term is multiplied by
zero. The problem with all this, as before, is that we don’t know δij . But there is
a recipe.

9.2. The EM Algorithm 188

9.2 The EM Algorithm

There is a straightforward, natural, and very powerful recipe for estimating θ for
both models. In essence, we will average out the things we don’t know. But this
average will depend on our estimate of the parameters, so we will average, then re-
estimate parameters, then re-average, and so on. If you lose track of what’s going
on here, think of the example of k-means with soft weights (Sect. 8.2.2; this is close
to what the equations for the case of a mixture of normals will boil down to). In
this analogy, the δ tell us which cluster center a data item came from. Because we
don’t know the values of the δ, we assume we have a set of cluster centers; these
allow us to make an estimate of the δ; then we use this estimate to re-estimate the
centers; and so on.

This is an instance of a general recipe. Recall we wrote θ for a vector of
parameters. In the mixture of normals case, θ contained the means and the mixing
weights; in the topic model case, it contained the topic distributions and the mixing
weights. Assume we have an estimate of the value of this vector, say θ(n). We could
then compute p(δ|θ(n),x). In the mixture of normals case, this is a guide to which
example goes to which cluster. In the topic case, it is a guide to which example
goes to which topic.

We could use this to compute the expected value of the likelihood with respect
to δ. We compute

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x) = Ep(δ|θ(n),x)[L(θ;x, δ)]

(where the sum is over all values of δ). Notice that Q(θ; θ(n)) is a function of θ
(because L was), but now does not have any unknown δ terms in it. This Q(θ; θ(n))
encodes what we know about δ.

For example, assume that p(δ|θ(n),x) has a single, narrow peak in it, at (say)
δ = δ0. In the mixture of normals case, this would mean that there is one allocation
of points to clusters that is significantly better than all others, given θ(n). For this
example, Q(θ; θ(n)) will be approximately L(θ;x, δ0).

Now assume that p(δ|θ(n),x) is about uniform. In the mixture of normals
case, this would mean that any particular allocation of points to clusters is about
as good as any other. For this example, Q(θ; θ(n)) will average L over all possible
δ values with about the same weight for each.

We obtain the next estimate of θ by computing

θ(n+1) =
argmax

θ
Q
(
θ; θ(n)

)

and iterate this procedure until it converges (which it does, though I shall not prove
that). The algorithm I have described is extremely general and powerful, and is
known as expectation maximization or (more usually) EM. The step where

9.2. The EM Algorithm 189

we compute Q(θ; θ(n)) is called the E-step; the step where we compute the new
estimate of θ is known as the M-step.

One trick to be aware of: it is quite usual to ignore additive constants in the
log-likelihood, because they have no effect. When you do the E-step, taking the
expectation of a constant gets you a constant; in the M-step, the constant can’t
change the outcome. As a result, additive constants may disappear without notice
(they do so regularly in the research literature). In the mixture of normals example,
below, I’ve tried to keep track of them; for the mixture of multinomials, I’ve been
looser.

9.2.1 Example: Mixture of Normals: The E-step

Now let us do the actual calculations for a mixture of normal distributions. The
E-step requires a little work. We have

Q
(
θ; θ(n)

)
=
∑

δ

L(θ;x, δ)p
(
δ|θ(n),x

)
.

If you look at this expression, it should strike you as deeply worrying. There are a
very large number of different possible values of δ. In this case, there are tN cases
(there is one δi for each data item, and each of these can have a one in each of t
locations). It isn’t obvious how we could compute this average.

But notice

p(δ|θ(n),x) = p(δ,x|θ(n))
p(x|θ(n))

and let us deal with numerator and denominator separately. For the numerator,
notice that the xi and the δi are independent, identically distributed samples, so
that

p(δ,x|θ(n)) =
∏

i

p(δi,xi|θ(n)).

The denominator is slightly more work. We have

p
(
x|θ(n)

)
=

∑

δ

p
(
δ,x|θ(n)

)

=
∑

δ

[
∏

i

p
(
δi,xi|θ(n)

)]

=
∏

i

⎡

⎣
∑

δi

p
(
δi,xi|θ(n)

)
⎤

⎦ .

You should check the last step; one natural thing to do is check with N = 2 and

9.2. The EM Algorithm 190

t = 2. This means that we can write

p(δ|θ(n),x) =
p
(
δ,x|θ(n)

)

p
(
x|θ(n)

)

=

∏
i p
(
δi,xi|θ(n)

)

∏
i

[∑
δi p

(
δi,xi|θ(n)

)]

=
∏

i

p
(
δi,xi|θ(n)

)
∑

δi
p
(
δi,xi|θ(n)

)

=
∏

i

p
(
δi|xi, θ

(n)
)
.

Now we need to look at the log-likelihood. We have

L(θ;x, δ) =
∑

ij

{[(
−1

2
(xi − μj)

T (xi − μj)

)]
+ log πj

}
δij +K.

The K term is of no interest—it will result in a constant—but we will try to
keep track of it. To simplify the equations we need to write, I will construct a t
dimensional vector ci for the ith data point. The jth component of this vector will
be {[(

−1

2
(xi − μj)

T (xi − μj)

)]
+ log πj

}

so we can write
L(θ;x, δ) =

∑

i

cTi δi +K.

Now all this means that

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x)

=
∑

δ

(
∑

i

cTi δi +K

)
p(δ|θ(n),x)

=
∑

δ

(
∑

i

cTi δi +K

)
∏

u

p(δu|θ(n),x)

=
∑

δ

(
cT1 δ1

∏

u

p(δu|θ(n),x) + . . . cTNδN
∏

u

p(δu|θ(n),x)
)
.

We can simplify further. We have that
∑

δi p(δi|xi, θ
(n)) = 1, because this is a

probability distribution. Notice that, for any index v

∑

δ

(
cTv δv

∏

u

p(δu|θ(n),x)
)

=
∑

δv

(
cTv δvp(δv|θ(n),x)

)
⎡

⎢⎣
∑

δ, δ̂v

∏

u,v̂

p(δu|θ(n),x)

⎤

⎥⎦

=
∑

δv

(
cTv δvp(δv|θ(n),x)

)
.

9.2. The EM Algorithm 191

So we can write

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x)

=
∑

i

⎡

⎣
∑

δi

cTi δip(δi|θ(n),x)

⎤

⎦+K

=
∑

i

⎡

⎣

⎛

⎝
∑

j

{[(
−1

2
(xi − μj)

T (xi − μj)

)
+ log πj

]
wij

}⎞

⎠

⎤

⎦+K,

where

wij = 1p(δij = 1|θ(n),x) + 0p(δij = 0|θ(n),x)
= p(δij = 1|θ(n),x).

Now

p(δij = 1|θ(n),x) =
p(x, δij = 1|θ(n))

p(x|θ(n))

=
p(x, δij = 1|θ(n))∑
l p(x, δil = 1|θ(n))

=
p(xi, δij = 1|θ(n))

∏
u,̂i p(xu, δu|θ)(∑

l p(x, δil = 1|θ(n))
)∏

u,̂i p(xu, δu|θ)

=
p(xi, δij = 1|θ(n))∑
l p(x, δil = 1|θ(n)) .

If the last couple of steps puzzle you, remember we obtained p(x, δ|θ) =
∏

i p(xi, δi|θ).
Also, look closely at the denominator; it expresses the fact that the data must have
come from somewhere. So the main question is to obtain p(xi, δij = 1|θ(n)). But

p(xi, δij = 1|θ(n)) = p(xi|δij = 1, θ(n))p(δij = 1|θ(n))

=

[
1√
(2π)d

exp

(
−1

2
(xi − μj)

T (xi − μj)

)]
πj .

Substituting yields

p(δij = 1|θ(n),x) =
[
exp

(
− 1

2 (xi − μj)
T (xi − μj)

)]
πj∑

k

[
exp

(
− 1

2 (xi − μk)T (xi − μk)
)]

πk

= wij .

9.2.2 Example: Mixture of Normals: The M-step

The M-step is more straightforward. Recall

Q(θ; θ(n)) =

⎛

⎝
∑

ij

{[(
−1

2
(xi − μj)

T (xi − μj)

)]
+ log πj

}
wij +K

⎞

⎠

9.2. The EM Algorithm 192

and we have to maximize this with respect to μ and π, and the terms wij are known.
This maximization is easy. We compute

μ
(n+1)
j =

∑
i xiwij∑
i wij

and

π
(n+1)
j =

∑
i wij

N
.

You should check these expressions. When you do so, remember that, because π is
a probability distribution,

∑
j πj = 1 (otherwise you’ll get the wrong answer). You

need to either use a Lagrange multiplier or set one probability to (1− all others).

9.2.3 Example: Topic Model: The E-step

We need to work out two steps. The E-step requires a little calculation. We have

Q(θ; θ(n)) =
∑

δ

L(θ;x, δ)p(δ|θ(n),x)

=
∑

δ

⎛

⎝
∑

ij

{[
∑

u

xiu log pju

]
+ log πj

}
δij

⎞

⎠ p(δ|θ(n),x)

=

⎛

⎝
∑

ij

{[
∑

k

xi,k log pj,k

]
+ log πj

}
wij

⎞

⎠ .

Here the last two steps follow from the same considerations as in the mixture of
normals. The xi and δi are IID samples, and so the expectation simplifies as in
that case. If you’re uncertain, rewrite the steps of Sect. 9.2.1. The form of this Q
function is the same as that (a sum of cTi δi terms, but using a different expression
for ci). In this case, as above,

wij = 1p(δij = 1|θ(n),x) + 0p(δij = 0|θ(n),x)
= p(δij = 1|θ(n),x).

Again, we have

p(δij = 1|θ(n),x) =
p(xi, δij = 1|θ(n))

p(xi|θ(n))

=
p(xi, δij = 1|θ(n))∑
l p(xi, δil = 1|θ(n))

9.2. The EM Algorithm 193

and so the main question is to obtain p(xi, δij = 1|θ(n)). But

p(xi, δij = 1|θ(n)) = p(xi|δij = 1, θ(n))p(δij = 1|θ(n))

= =

[
∏

k

pxk

j,k

]
πj .

Substituting yields

p(δij = 1|θ(n),x) =

[∏
k p

xk

j,k

]
πj

∑
l

[∏
k p

xk

l,k

]
πl

.

9.2.4 Example: Topic Model: The M-step

The M-step is more straightforward. Recall

Q(θ; θ(n)) =

⎛

⎝
∑

ij

{[
∑

k

xi,k log pj,k

]
+ log πj

}
wij

⎞

⎠

and we have to maximize this with respect to μ and π, and the terms wij are known.
This maximization is easy, but remember that the probabilities sum to one, so you
need to either use a Lagrange multiplier or set one probability to (1 − all others).
You should get

p
(n+1)
j =

∑
i xiwij∑

i x
T
i 1wij

and

π
(n+1)
j =

∑
i wij

N
.

You should check these expressions by differentiating and setting to zero.

9.2.5 EM in Practice

The algorithm we have seen is amazingly powerful; I will use it again, ideally with
less notation. One could reasonably ask whether it produces a “good” answer.
Slightly surprisingly, the answer is yes. The algorithm produces a local maximum
of p(x|θ), the likelihood of the data conditioned on parameters. This is rather
surprising because we engaged in all the activity with δ to avoid directly dealing
with this likelihood (which in our cases was an unattractive product of sums). I
did not prove this, but it’s true anyway. I have summarized the general algorithm,
and the two instances we studied, in boxes below for reference. There are some
practical issues.

9.2. The EM Algorithm 194

Procedure: 9.1 EM

Given a model with parameters θ, data x, and missing data δ, which
gives rise to a log-likelihood L(θ;x, δ) = logP (x, δ|θ) and some initial
estimate of parameters θ(1), iterate

• The E-step: Obtain

Q(θ; θ(n)) = Ep(δ|θ(n),x)[L(θ;x, δ)].

• The M-step: Compute

θ(n+1) =
argmax

θ
Q(θ; θ(n)).

Diagnose convergence by testing the size of the update to θ.

Procedure: 9.2 EM for Mixtures of Normals: E-step

Assume θ(n) = (μ1, . . . , μt, π1, . . . , πt) is known. Compute weights wij

linking the ith data item to the jth cluster center, using

w
(n)
ij =

[
exp

(
− 1

2

(
xi − μ

(n)
j

)T (
xi − μ

(n)
j

))]
π
(n)
j

∑
k

[
exp

(
− 1

2

(
xi − μ

(n)
k

)T (
xi − μ

(n)
k

))]
π
(n)
k

.

Procedure: 9.3 EM for Mixtures of Normals: M-step

Assume θ(n) = (μ1, . . . , μt, π1, . . . , πt) and weights wij linking the ith
data item to the jth cluster center are known. Then estimate

μ
(n+1)
j =

∑
i xiw

(n)
ij

∑
i w

(n)
ij

and

π
(n+1)
j =

∑
i w

(n)
ij

N
.

9.2. The EM Algorithm 195

Procedure: 9.4 EM for Topic Models: E-step

Assume θ(n) = (p1, . . . ,pt, π1, . . . , πt) is known. Compute weights w
(n)
ij

linking the ith data item to the jth cluster center, using

w
(n)
ij =

[∏
k

(
p
(n)
j,k

)xk
]
π
(n)
j

∑
l

[∏
k

(
p
(n)
j,k

)xk
]
π
(n)
l

.

Procedure: 9.5 EM for Topic Models: M-step

Assume θ(n) = (p1, . . . ,pt, π1, . . . , πt) and weights w
(n)
ij linking the ith

data item to the jth cluster center are known. Then estimate

p
(n+1)
j =

∑
i xiw

(n)
ij

∑
i x

T
i 1w

(n)
ij

and

π
(n+1)
j =

∑
i w

(n)
ij

N
.

First, how many cluster centers should there be? Mostly, the answer is a
practical one. We are usually clustering data for a reason (vector quantization
is a really good reason), and then we search for a k that yields the best results.
Second, how should one start the iteration? This depends on the problem you want
to solve, but for the two cases I have described, a rough clustering using k-means
usually provides an excellent start. In the mixture of normals problem, you can
take the cluster centers as initial values for the means, and the fraction of points in
each cluster as initial values for the mixture weights. In the topic model problem,
you can cluster the count vectors with k-means, use the overall counts within a
cluster to get an initial estimate of the multinomial model probabilities, and use
the fraction of documents within a cluster to get mixture weights. You need to be
careful here, though. You really don’t want to initialize a topic probability with
a zero value for any word (otherwise no document containing that word can ever
go into the cluster, which is a bit extreme). For our purposes, it will be enough to
allocate a small value to each zero count, then adjust all the word probabilities to
be sure they sum to one. More complicated approaches are possible.

Third, we need to avoid numerical problems in the implementation. Notice
that you will be evaluating terms that look like

πke
−(xi−μk)

T (xi−μk)/2

∑
u πue−(xi−μu)T (xi−μu)/2

.

9.2. The EM Algorithm 196

Imagine you have a point that is far from all cluster means. If you just blithely
exponentiate the negative distances, you could find yourself dividing zero by zero,
or a tiny number by a tiny number. This can lead to trouble. There’s an easy
alternative. Find the center the point is closest to. Now subtract the square of this
distance (d2min for concreteness) from all the distances. Then evaluate

πke
−
[
(xi−μk)

T (xi−μk)−d2

min

]
/2

∑
u πue

−
[
(xi−μu)T (xi−μu)−d2

min

]
/2

which is a better way of estimating the same number (notice the e
−d2

min/2 terms
cancel top and bottom).

The last problem is more substantial. EM will get to a local minimum of
p(x|θ), but there might be more than one local minimum. For clustering problems,
the usual case is there are lots of them. One doesn’t really expect a clustering
problem to have a single best solution, as opposed to a lot of quite good solutions.
Points that are far from all clusters are a particular source of local minima; placing
these points in different clusters yields somewhat different sets of cluster centers,
each about as good as the other. It’s not usual to worry much about this point. A
natural strategy is to start the method in a variety of different places (use k-means
with different start points), and choose the one that has the best value of Q when
it has converged.

Remember This: You should use the same approach to choosing the
number of cluster centers with EM as you use with k-means (try a few dif-
ferent values, and see which yields the most useful clustering). You should
initialize an EM clusterer with k-means, but be careful of initial probabilities
that are zero when initializing a topic model. You should be careful when
computing weights, as it is easy to have numerical problems. Finally, it’s a
good idea to start EM clustering at multiple start points.

However, EM isn’t magic. There are problems where computing the expecta-
tion is hard, typically because you have to sum over a large number of cases which
don’t have the nice independence structure that helped in the examples I showed.
There are strategies for dealing with this problem—essentially, you can get away
with an approximate expectation—but they’re beyond our reach at present.

There is an important, rather embarrassing, secret about EM. In practice, it
isn’t usually that much better as a clustering algorithm than k-means. You can
only really expect improvements in performance if it is really important that many
points can make a contribution to multiple cluster centers, and this doesn’t happen
very often. For a dataset where this does apply, the data itself may not really be
an IID draw from a mixture of normal distributions, so the weights you compute
are only approximate. Usually, it is smart to start EM with k-means. Nonetheless,
EM is an algorithm you should know, because it is very widely applied in other

9.2. The EM Algorithm 197

situations, and because it can cluster data in situations where it isn’t obvious how
you compute distances.

Remember This: EM clusterers aren’t much better than k-means clus-
terers, but EM is very general. It is a procedure for estimating the parame-
ters of a probability model in the presence of missing data; this is a scenario
that occurs in many applications. In clustering, the missing data was which
data item belonged to which cluster.

9.3. You Should 198

9.3 You Should

9.3.1 Remember These Terms

EM . 183
expectation maximization . 183
mixture of normal distributions . 184
mixing weights . 184
topic . 185
word probabilities . 185
topic model . 186
expectation maximization . 188
EM . 188
E-step . 189
M-step . 189

9.3.2 Remember These Facts

Tips for using EM to cluster . 196
EM is a quite general algorithm . 197

9.3.3 Remember These Procedures

EM . 194
EM for Mixtures of Normals: E-step 194
EM for Mixtures of Normals: M-step 194
EM for Topic Models: E-step . 195
EM for Topic Models: M-step . 195

9.3.4 Be Able to

• Use EM to cluster points using a mixture of normals model.
• Cluster documents using EM and a topic model.

9.3. You Should 199

Problems

9.1. You will derive the expressions for the M-step for mixture of normal clustering.
Recall

Q(θ; θ(n)) =

⎛

⎝
∑

ij

{[(
−1

2
(xi − μj)

T (xi − μj)
)]

+ log πj

}
wij +K

⎞

⎠

and we have to maximize this with respect to μ and π, and the terms wij are
known. Show that

μ
(n+1)
j =

∑
i xiwij∑
i wij

and

π
(n+1)
j =

∑
i wij

N
maximize Q. When you do so, remember that, because π is a probability
distribution,

∑
j πj = 1 (otherwise you’ll get the wrong answer). You need to

either use a Lagrange multiplier or set one probability to (1− all others).
9.2. You will derive the expressions for the M-step for topic models. Recall

Q(θ; θ(n)) =

⎛

⎝
∑

ij

{[
∑

k

xi,k log pj,k

]
+ log πj

}
wij

⎞

⎠

and we have to maximize this with respect to μ and π, and the terms wij are
known. Show that

p
(n+1)
j =

∑
i xiwij∑

i x
T
i 1wij

and

π
(n+1)
j =

∑
i wij

N
.

When you do so, remember that, because π is a probability distribution,∑
j πj = 1 (otherwise you’ll get the wrong answer). Furthermore, the pj

are all probability distributions. You need to either use Lagrange multipliers
or set one probability to (1− all others).

Programming Exercises

9.3. Image segmentation is an important application of clustering. One breaks an
image into k segments, determined by color, texture, etc. These segments are
obtained by clustering image pixels by some representation of the image around
the pixel (color, texture, etc.) into k clusters. Then each pixel is assigned to
the segment corresponding to its cluster center.
(a) Obtain a color image represented as three arrays (red, green, and blue).

You should look for an image where there are long scale color gradients
(a sunset is a good choice). Ensure that this image is represented so the
darkest pixel takes the value (0, 0, 0) and the lightest pixel takes the value
(1, 1, 1). Now assume the pixel values have covariance the identity matrix.
Cluster its pixels into 10, 20, and 50 clusters, modelling the pixel values
as a mixture of normal distributions and using EM. Display the image
obtained by replacing each pixel with the mean of its cluster center. What
do you see?

9.3. You Should 200

(b) The weights linking an image to a cluster center can be visualized as an
image. For the case of 10 cluster centers, construct a figure showing the
weights linking each pixel to each cluster center (all 10 images). You
should notice that the weights linking a given pixel to each cluster center
do not vary very much. Why?

(c) Now repeat the previous two subexercises, but now using 0.1 × I as the
covariance matrix. Show the new set of weight maps. What has changed,
and why?

(d) Now estimate the covariance of pixel values by assuming that pixels are
normally distributed (this is somewhat in tension with assuming they’re
distributed as a mixture of normals, but it works). Again, cluster the
image’s pixels into 10, 20, and 50 clusters, modelling the pixel values as
a mixture of normal distributions and using EM, but now assuming that
each normal distribution has the covariance from your estimate. Display
the image obtained by replacing each pixel with the mean of its cluster
center. Compare this result from the result of the first exercise. What do
you see?

9.4. If you have a careful eye, or you chose a picture fortunately, you will have
noticed that the previous exercise can produce image segments that have many
connected components. For some applications, this is fine, but for others, we
want segments that are compact clumps of pixels. One way to achieve this is
to represent each pixel with 5D vector, consisting of its RG and B values and
its x and y coordinates. You then cluster these 5D vectors.
(a) Obtain a color image represented as three arrays (red, green, and blue).

You should look for an image where there are many distinct colored objects
(for example, a bowl of fruit). Ensure that this image is represented so the
darkest pixel takes the value (0, 0, 0) and the lightest pixel takes the value
(1, 1, 1). Represent the x and y coordinates of each pixel using the range 0
to 1 as well. Now assume the pixel RGB values have covariance 0.1 times
the identity matrix, there is zero covariance between position and color,
and the coordinates have covariance σ times the identity matrix where σ
is a parameter we will modify. Cluster your image’s pixels into 20, 50,
and 100 clusters, with σ = (0.01, 0.1, 1) (so 9 cases). Again, model the
pixel values as a mixture of normal distributions and using EM. For each
case, display the image obtained by replacing each pixel with the mean of
its cluster center. What do you see?

9.5. EM has applications that don’t look like clustering at first glance. Here is one.
We will use EM to reject points that don’t fit a line well (if you haven’t seen
least squares line fitting, this exercise isn’t for you).
(a) Construct a dataset of 10 2D points which are IID samples from the

following mixture distribution. Draw the x coordinate from the uniform
distribution on the range [0, 10]. With probability 0.8, draw ξ a normal
random variable with mean 0 and standard deviation 0.001 and form the
y coordinate as y = x + ξ. With probability 0.2, draw the y coordinate
from the uniform distribution on the range [0, 10]. Plot this dataset—you
should see about eight points on a line with about two scattered points.

(b) Fit a least squares line to your dataset, and plot the result. It should
be bad, because the scattered points may have a significant effect on the
line. If you were unlucky, and drew a sample where there were no scattered
points or where this line fits well, keep drawing datasets until you get one
where the fit is poor.

9.3. You Should 201

(c) We will now use EM to fit a good line. Write N(μ, σ) for a normal
distribution with mean μ and standard deviation σ, and U(0, 10) for the
uniform distribution on the range 0 − 10. Model the y coordinate using
the mixture model P (y|a, b, π, x) = πN(ax + b, 0.001) + (1 − π)U(0, 10).
Now associate a variable δi with the ith data point, where δi = 1 if the
data point comes from the line model and δi = 0 otherwise. Write an
expression for P (yi, δi|a, b, π, x).

(d) Assume that a(n), b(n), and π(n) are known. Show that

Q
(
a, b, π; a(n), b(n), π(n)

)
= −

∑

i

wi
(axi + b− yi)

2

20.0012
+(1−wi)(1/10)+K

(where K is a constant). Here

wi = EP (δi|a(n),b(n),π(n),x)[δi].

(e) Show that

wi = P (δi|a(n), b(n), π(n), x) =
π(n)e

− (a(n)xi+b(n)−yi)
2

20.0012

π(n)e
− (a(n)xi+b(n)−yi)

2

20.0012 + (1− π(n)) 1
10

.

(f) Now implement an EM algorithm using this information, and estimate
the line for your data. You should try multiple start points. Do you get
a better line fit? Why?

9.6. This is a fairly ambitious exercise. We will use the document clustering method
of Sect. 9.1.2 to identify clusters of documents, which we will associate with
topics. The 20 newsgroups dataset is a famous text dataset. It consists of posts
collected from 20 different newsgroups. There are a variety of tricky data issues
that this presents (for example, what aspects of the header should one ignore?
should one reduce words to their stems, so “winning” goes to “win,” “hugely”
to “huge,” and so on?). We will ignore these issues, and deal with a cleaned up
version of the dataset. This consists of three items each for train and test: a
document-word matrix, a set of labels, and a map. You can find this cleaned up
version of the dataset at http://qwone.com/∼jason/20Newsgroups/. You should
look for the cleaned up version, identified as 20news-bydate-matlab.tgz on
that page. The usual task is to label a test article with which newsgroup
it came from. The document-word matrix is a table of counts of how many
times a particular word appears in a particular document. The collection of
words is very large (53,975 distinct words), and most words do not appear in
most documents, so most entries of this matrix are zero. The file train.data

contains this matrix for a collection of training data; each row represents a
distinct document (there are 11,269), and each column represents a distinct
word.
(a) Cluster the rows of this matrix, using the method of Sect. 9.1.2, to get a

set of cluster centers which we will identify as topics. Hint: Clustering all
these points is a bit of a performance; check your code on small subsets of
the data first, because the size of this dataset means that clustering the
whole thing will be slow.

http://qwone.com/~jason/20Newsgroups/

9.3. You Should 202

(b) You can now think of each cluster center as a document “type.” Assume
you have k clusters (topics). Represent each document by a k-dimensional
vector. Each entry of the vector should be the negative log probability
of the document under that cluster model. Now use this information to
build a classifier that identifies the newsgroup using the vector. You’ll
need to use the file train.label, which will tell you what newsgroup a
particular item comes from. I advise you to use a randomized decision
forest, but other choices are plausible. Evaluate your classifier using the
test data (test.data and test.label).

P A R T F O U R

Regression

C H A P T E R 10

Regression

Classification tries to predict a class from a data item. Regression tries to
predict a value. For example, we know the zip code of a house, the square footage
of its lot, the number of rooms, and the square footage of the house, and we wish
to predict its likely sale price. As another example, we know the cost and condition
of a trading card for sale, and we wish to predict a likely profit in buying it and
then reselling it. As yet another example, we have a picture with some missing
pixels— perhaps there was text covering them, and we want to replace it—and we
want to fill in the missing values. As a final example, you can think of classification
as a special case of regression, where we want to predict either +1 or −1; this isn’t
usually the best way to proceed, however. Predicting values is very useful, and so
there are many examples like this.

10.1 Overview

We want to build a model that predicts some number y from a feature vector x. An
appropriate choice of x (details below) will mean that the predictions made by this
model will lie on a straight line. Figure 10.1 shows two example regressions that
work rather well. The data are plotted with a scatterplot, and the line gives the
prediction of the model for each value on the horizontal axis. Figure 10.2 shows two
example regressions that work fairly badly. These examples capture some important
points.

For most data, y isn’t really a function of x—you might have two examples
where the same x gives different y values. This occurs in each of the figures.
Usually, we think of the data as samples from a distribution P (X,Y), and the
regression estimates the mean of P (Y | {X = x}). Thinking about the problem this
way should make it clear that we’re not relying on any exact, physical, or causal
relationship between Y and X. It’s enough that their joint probability makes useful
predictions possible, something we will test by experiment. This means that you
can build regressions that work in somewhat surprising circumstances. For example,
regressing children’s reading ability against their foot size can be quite successful.
This isn’t because having big feet somehow helps you read; it’s because on the
whole, older children read better, and also have bigger feet.

The model might predict well (the weight of the fish), but it’s unlikely to make
perfect predictions. Even when the y associated with a given value of x changes
quite a lot, the predictions can be useful (the crickets—you really can make a fair
guess at temperature from frequency). Sometimes regressions work rather badly
(there is very little relationship between heart rate and temperature).

In this chapter, I show how to fit a model; how to tell whether the model is
good; and some things we can do to make the model better. Mostly, we will use
regression for prediction, but there are other applications. It should be fairly clear

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 10

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_10

10.1. Overview 206

that if test data isn’t “like” training data, the regression might not work. Formal
guarantees require that both test and training data be IID samples from the same
distribution. It isn’t usually possible to tell whether this occurs with practical data,
so that we ignore this point—we’ll simply try to build the best regressions we can
with the data we have.

Weight vs length in perch from Lake Laengelmavesi

Length (cm)

W
ei

gh
t (

gr
)

R^2=0.87

10 20 30 40

0
20

0
40

0
60

0
80

0
10

00

14 15 16 17 18 19 20

70
75

80
85

90

Chirp frequency vs temperature in crickets

Frequency

Te
m

pe
ra

tu
re

R^2=0.68

Figure 10.1: On the left, a regression of weight against length for perch from a
Finnish lake (you can find this dataset, and the back story at http://www.amstat.
org/publications/jse/jse data archive.htm; look for “fishcatch” on that page). Notice
that the linear regression fits the data fairly well, meaning that you should be
able to predict the weight of a perch from its length fairly well. On the right, a
regression of air temperature against chirp frequency for crickets. The data is fairly
close to the line, meaning that you should be able to tell the temperature from the
pitch of cricket’s chirp fairly well. This data is from http://mste.illinois.edu/patel/
amar430/keyprob1.html. The R2 you see on each figure is a measure of the goodness
of fit of the regression (Sect. 10.2.4)

10.1.1 Regression to Spot Trends

Regression isn’t only used to predict values. Another reason to build a regression
model is to compare trends in data. Doing so can make it clear what is really hap-
pening. Here is an example from Efron (“Computer-Intensive methods in statistical
regression,” B. Efron, SIAM Review, 1988). Table 10.1 in the Appendix shows some
data from medical devices, which sit in the body and release a hormone. The data
shows the amount of hormone currently in a device after it has spent some time in
service, and the time the device spent in service. The data describes devices from
three production lots (A, B, and C). Each device, from each lot, is supposed to have

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://mste.illinois.edu/patel/amar430/keyprob1.html
http://mste.illinois.edu/patel/amar430/keyprob1.html

10.1. Overview 207

Longevity vs Thorax in Female Fruitflies

Thorax Length (mm)

Li
fe

sp
an

R^2=0.41

0.65 0.70 0.75 0.80 0.85 0.90 0.95

20
40

60
80

10
0

97 98 99 100

60
65

70
75

80
85

90

Heart rate vs temperature in humans

Temperature (F)

H
ea

rt
ra

te
 (b

pm
)

R^2=0.06

Figure 10.2: Regressions do not necessarily yield good predictions or good model
fits. On the left, a regression of the lifespan of female fruitflies against the length
of their torso as adults (apparently, this doesn’t change as a fruitfly ages; you can
find this dataset, and the back story at http://www.amstat.org/publications/jse/
jse data archive.htm; look for “fruitfly” on that page). The figure suggests you can
make some prediction of how long your fruitfly will last by measuring its torso, but
not a particularly accurate one. On the right, a regression of heart rate against
body temperature for adults. You can find the data at http://www.amstat.org/
publications/jse/jse data archive.htm as well; look for “temperature” on that page.
Notice that predicting heart rate from body temperature isn’t going to work that
well, either

the same behavior. The important question is: Are the lots the same? The amount
of hormone changes over time, so we can’t just compare the amounts currently in
each device. Instead, we need to determine the relationship between time in service
and hormone, and see if this relationship is different between batches. We can do
so by regressing hormone against time.

Figure 10.3 shows how a regression can help. In this case, we have modelled
the amount of hormone in the device as

a× (time in service) + b

for a, b chosen to get the best fit (much more on this point later!). This means
we can plot each data point on a scatterplot, together with the best fitting line.
This plot allows us to ask whether any particular batch behaves differently from
the overall model in any interesting way.

However, it is hard to evaluate the distances between data points and the best
fitting line by eye. A sensible alternative is to subtract the amount of hormone
predicted by the model from the amount that was measured. Doing so yields a

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.amstat.org/publications/jse/jse_data_archive.htm

10.2. Linear Regression and Least Squares 208

residual—the difference between a measurement and a prediction. We can then
plot those residuals (Fig. 10.3). In this case, the plot suggests that lot A is special—
all devices from this lot contain less hormone than our model predicts.

50 100 150 200
15

20

25

30

35

40

A
C

A
C

C

A

B

C

A

BC
A

C

A
B
C

A

B

C
A

B
C

Time in service

A
m

ou
nt

 o
f h

or
m

on
e

Hormone against time in service

50 100 150 200
−6

−4

−2

0

2

4

6

A

C

A

C

C

A

B C

A

BC

A
C

A
B
C

A

B
C

A

B

C

Time in service

R
es

id
ua

l

Regression residual against time

Figure 10.3: On the left, a scatterplot of hormone against time for devices from
Table 10.1. Notice that there is a pretty clear relationship between time and amount
of hormone (the longer the device has been in service, the less hormone there is).
The issue now is to understand that relationship so that we can tell whether lots A,
B, and C are the same or different. The best fit line to all the data is shown as well,
fitted using the methods of Sect. 10.2. On the right, a scatterplot of residual—the
distance between each data point and the best fit line—against time for the devices
from Table 10.1. Now you should notice a clear difference; some devices from lots B
and C have positive and some negative residuals, but all lot A devices have negative
residuals. This means that, when we account for loss of hormone over time, lot A
devices still have less hormone in them. This is a pretty good evidence that there
is a problem with this lot

Useful Fact: 10.1 Definition: Regression

Regression accepts a feature vector and produces a prediction, which
is usually a number, but can sometimes have other forms. You can
use these predictions as predictions, or to study trends in data. It is
possible, but not usually particularly helpful, to see classification as a
form of regression.

10.2 Linear Regression and Least Squares

Assume we have a dataset consisting of a set of N pairs (xi, yi). We think of
yi as the value of some function evaluated at xi, with some random component
added. This means there might be two data items where the xi are the same,

10.2. Linear Regression and Least Squares 209

and the yi are different. We refer to the xi as explanatory variables and the yi
as a dependent variable. We want to use the examples we have—the training
examples—to build a model of the dependence between y and x. This model will
be used to predict values of y for new values of x, which are usually called test
examples. It can also be used to understand the relationships between the x. The
model needs to have some probabilistic component; we do not expect that y is a
function of x, and there is likely some error in evaluating y anyhow.

10.2.1 Linear Regression

We cannot expect that our model makes perfect predictions. Furthermore, y may
not be a function of x—it is quite possible that the same value of x could lead to
different y’s. One way that this could occur is that y is a measurement (and so
subject to some measurement noise). Another is that there is some randomness in
y. For example, we expect that two houses with the same set of features (the x)
might still sell for different prices (the y’s).

A good, simple model is to assume that the dependent variable (i.e., y) is
obtained by evaluating a linear function of the explanatory variables (i.e., x), then
adding a zero mean normal random variable. We can write this model as

y = xTβ + ξ,

where ξ represents random (or at least, unmodelled) effects. We will always assume
that ξ has zero mean. In this expression, β is a vector of weights, which we must
estimate. When we use this model to predict a value of y for a particular set
of explanatory variables x∗, we cannot predict the value that ξ will take. Our
best available prediction is the mean value (which is zero). Notice that if x = 0,
the model predicts y = 0. This may seem like a problem to you—you might be
concerned that we can fit only lines through the origin—but remember that x
contains explanatory variables, and we can choose what appears in x. The two
examples show how a sensible choice of x allows us to fit a line with an arbitrary
y-intercept.

Useful Fact: 10.2 Definition: Linear Regression

A linear regression takes the feature vector x and predicts xTβ, for
some vector of coefficients β. The coefficients are adjusted, using data,
to produce the best predictions.

10.2. Linear Regression and Least Squares 210

Example: 10.1 A Linear Model Fitted to a Single Explanatory Variable

Assume we fit a linear model to a single explanatory variable. Then
the model has the form y = xβ + ξ, where ξ is a zero mean random
variable. For any value x∗ of the explanatory variable, our best estimate
of y is βx∗. In particular, if x∗ = 0, the model predicts y = 0, which
is unfortunate. We can draw the model by drawing a line through the
origin with slope β in the x, y plane. The y-intercept of this line must
be zero.

Example: 10.2 A Linear Model with a Non-zero y-Intercept

Assume we have a single explanatory variable, which we write u. We
can then create a vector x = [u, 1]

T
from the explanatory variable. We

now fit a linear model to this vector. Then the model has the form
y = xTβ + ξ, where ξ is a zero mean random variable. For any value
x∗ = [u∗, 1]T of the explanatory variable, our best estimate of y is
(x∗)Tβ, which can be written as y = β1u

∗ + β2. If x∗ = 0, the model
predicts y = β2. We can draw the model by drawing a line through the
origin with slope β1 and y-intercept β2 in the x, y plane.

10.2.2 Choosing β

We must determine β. We can proceed in two ways. I show both because different
people find different lines of reasoning more compelling. Each will get us to the
same solution. One is probabilistic, the other isn’t. Generally, I’ll proceed as if
they’re interchangeable, although at least in principle they’re different.

Probabilistic Approach: We could assume that ξ is a zero mean normal
random variable with unknown variance. Then P (y|x, β) is normal, with mean
xTβ, and so we can write out the log-likelihood of the data. Write σ2 for the
variance of ξ, which we don’t know, but will not worry about right now. We have
that

logL(β) =
∑

i

logP (yi|xi, β)

= − 1

2σ2

∑

i

(yi − xT
i β)

2 + term not depending on β.

Maximizing the log-likelihood of the data is equivalent to minimizing the negative
log-likelihood of the data. Furthermore, the term 1

2σ2 does not affect the location

10.2. Linear Regression and Least Squares 211

of the minimum, so we must have that the β we want minimizes
∑

i(yi − xT
i β)

2,
or anything proportional to it. It is helpful to minimize an expression that is an
average of squared errors, because (hopefully) this doesn’t grow much when we add
data. We therefore minimize

(
1

N

)(∑

i

(yi − xT
i β)

2

)
.

Direct Approach: Notice that, if we have an estimate of β, we have an
estimate of the values of the unmodelled effects ξi for each example. We just take
ξi = yi − xT

i β. It is quite natural to make the unmodelled effects “small.” A good
measure of size is the mean of the squared values, which means we want to minimize

(
1

N

)(∑

i

(yi − xT
i β)

2

)
.

We can write all this more conveniently using vectors and matrices. Write y
for the vector ⎛

⎜⎜⎝

y1
y2
. . .
yn

⎞

⎟⎟⎠

and X for the matrix ⎛

⎜⎜⎝

xT
1

xT
2

. . .
xT
n

⎞

⎟⎟⎠ .

Then we want to minimize
(

1

N

)(
y −Xβ)T (y −Xβ

)

which means that we must have

X TXβ −X Ty = 0.

For reasonable choices of features, we could expect that X TX—which should strike
you as being a lot like a covariance matrix—has full rank. If it does, which is the
usual case, this equation is easy to solve. If it does not, there is more to do, which
we will do in Sect. 10.4.2.

Remember This: The vector of coefficients β for a linear regression is
usually estimated using a least-squares procedure.

10.2. Linear Regression and Least Squares 212

10.2.3 Residuals

Assume we have produced a regression by solving

X TX β̂ −X Ty = 0

for the value of β̂. I write β̂ because this is an estimate; we likely don’t have the
true value of the β that generated the data (the model might be wrong, etc.). We

cannot expect that X β̂ is the same as y. Instead, there is likely to be some error.
The residual is the vector

e = y −X β̂

which gives the difference between the true value and the model’s prediction at each
point. Each component of the residual is an estimate of the unmodelled effects for
that data point. The mean-squared error is

m =
eTe

N

and this gives the average of the squared error of prediction on the training exam-
ples.

Notice that the mean-squared error is not a great measure of how good the
regression is. This is because the value depends on the units in which the dependent
variable is measured. So, for example, if you measure y in meters you will get a
different mean-squared error than if you measure y in kilometers.

10.2.4 R-squared

There is an important quantitative measure of how good a regression is which
doesn’t depend on units. Unless the dependent variable is a constant (which would
make prediction easy), it has some variance. If our model is of any use, it should
explain some aspects of the value of the dependent variable. This means that
the variance of the residual should be smaller than the variance of the dependent
variable. If the model made perfect predictions, then the variance of the residual
should be zero.

We can formalize all this in a relatively straightforward way. We will ensure
that X always has a column of ones in it, so that the regression can have a non-zero
y-intercept. We now fit a model

y = Xβ + e

(where e is the vector of residual values) by choosing the value β̂ of β such that
eT e is minimized. Then we get some useful technical results.

10.2. Linear Regression and Least Squares 213

Useful Facts: 10.3 Regression

We write y = X β̂+e, where e is the residual. Assume X has a column
of ones, and β̂ is chosen to minimize eT e. Then we have

1. eTX = 0, i.e., e is orthogonal to any column of X . This is because,
if e is not orthogonal to some column of e, we can increase or
decrease the β̂ term corresponding to that column to make the
error smaller. Another way to see this is to notice that β̂ is chosen
to minimize 1

N eTe, which is 1
N (y−X β̂)T (y−X β̂). Now because

this is a minimum, the gradient with respect to β̂ is zero, so
(y −X β̂)T (−X) = −eTX = 0.

2. eT1 = 0 (recall that X has a column of all ones, and apply the
previous result).

3. 1T (y −X β̂) = 0 (same as previous result).

4. eTX β̂ = 0 (first result means that this is true).

Now y is a one-dimensional dataset arranged into a vector, so we can compute
mean ({y}) and var[y]. Similarly, X β̂ is a one-dimensional dataset arranged into a

vector (its elements are xT
i β̂), as is e, so we know the meaning of mean and variance

for each. We have a particularly important result:

var[y] = var
[
X β̂

]
+ var[e].

This is quite easy to show, with a little more notation. Write y = (1/N)(1Ty)1 for

the vector whose entries are all mean ({y}); similarly for e and for X β̂. We have

var[y] = (1/N)(y − y)T (y − y)

and so on for var[ei], etc. Notice from the facts that y = X β̂. Now

var[y] = (1/N)
([

X β̂ −X β̂
]
+ [e− e]

)T ([
X β̂ −X β̂

]
+ [e− e]

)

= (1/N)

([
X β̂ −X β̂

]T [
X β̂ −X β̂

]
+ 2 [e− e]

T
[
X β̂ −X β̂

]

+ [e− e]
T
[e− e]

)

= (1/N)

([
X β̂ −X β̂

]T [
X β̂ −X β̂

]
+ [e− e]

T
[e− e]

)

because e = 0 and eTX β̂ = 0 and eT1 = 0

= var
[
X β̂

]
+ var[e].

This is extremely important, because it allows us to think about a regression as
explaining variance in y. As we are better at explaining y, var[e] goes down. In

10.2. Linear Regression and Least Squares 214

turn, a natural measure of the goodness of a regression is what percentage of the
variance of y it explains. This is known as R2 (the r-squared measure). We have

R2 =
var
[
X β̂

]

var[y]

which gives some sense of how well the regression explains the training data. Notice
that the value of R2 is not affected by the units of y (exercises).

Good predictions result in high values of R2, and a perfect model will have
R2 = 1 (which doesn’t usually happen). For example, the regression of Fig. 10.3 has
an R2 value of 0.87. Figures 10.1 and 10.2 show the R2 values for the regressions
plotted there; notice how better models yield larger values of R2. Notice that if
you look at the summary that R provides for a linear regression, it will offer you
two estimates of the value for R2. These estimates are obtained in ways that try to
account for (a) the amount of data in the regression, and (b) the number of variables
in the regression. For our purposes, the differences between these numbers and the
R2 I defined are not significant. For the figures, I computed R2 as I described in the
text above, but if you substitute one of R’s numbers nothing terrible will happen.

Remember This: The quality of predictions made by a regression can be
evaluated by looking at the fraction of the variance in the dependent variable
that is explained by the regression. This number is called R2, and lies
between zero and one; regressions with larger values make better predictions.

10.2.5 Transforming Variables

Sometimes the data isn’t in a form that leads to a good linear regression. In this
case, transforming explanatory variables, the dependent variable, or both can lead
to big improvements. Figure 10.4 shows one example, based on the idea of word
frequencies. Some words are used very often in text; most are used seldom. The
dataset for this figure consists of counts of the number of time a word occurred
for the 100 most common words in Shakespeare’s printed works. It was originally
collected from a concordance, and has been used to attack a variety of interesting
questions, including an attempt to assess how many words Shakespeare knew. This
is hard, because he likely knew many words that he didn’t use in his works, so
one can’t just count. If you look at the plot of Fig. 10.4, you can see that a linear
regression of count (the number of times a word is used) against rank (how common
a word is, 1–100) is not really useful. The most common words are used very often,
and the number of times a word is used falls off very sharply as one looks at less
common words. You can see this effect in the scatterplot of residual against depen-
dent variable in Fig. 10.4—the residual depends rather strongly on the dependent
variable. This is an extreme example that illustrates how poor linear regressions
can be.

10.2. Linear Regression and Least Squares 215

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

Frequency of word usage in Shakespeare

Rank

N
um

be
r o

f a
pp

ea
ra

nc
es

0 20 40 60 80 100 0 1 2 3 4

2
4

6
8

Frequency of word usage in Shakespeare, log−log

Log rank

Lo
g

nu
m

be
r o

f a
pp

ea
ra

nc
es

Figure 10.4: On the left, word count plotted against rank for the 100 most common
words in Shakespeare, using a dataset that comes with R (called “bard,” and quite
likely originating in an unpublished report by J. Gani and I. Saunders). I show a
regression line too. This is a poor fit by eye, and the R2 is poor, too (R2 = 0.1).
On the right, log word count plotted against log rank for the 100 most common
words in Shakespeare, from that dataset. The regression line is very close to the
data

However, if we regress log-count against log rank, we get a very good fit indeed.
This suggests that Shakespeare’s word usage (at least for the 100 most common
words) is consistent with Zipf’s law. This gives the relation between frequency f
and rank r for a word as

f ∝ 1

r

s

,

where s is a constant characterizing the distribution. Our linear regression suggests
that s is approximately 1.67 for this data.

In some cases, the natural logic of the problem will suggest variable transfor-
mations that improve regression performance. For example, one could argue that
humans have approximately the same density, and so that weight should scale as
the cube of height; in turn, this suggests that one regress weight against the cube
root of height. Generally, shorter people tend not to be scaled versions of taller
people, so the cube root might be too aggressive, and so one thinks of the square
root.

Remember This: The performance of a regression can be improved by
transforming variables. Transformations can follow from looking at plots,
or thinking about the logic of the problem.

10.2. Linear Regression and Least Squares 216

Weight vs length in perch from Lake Laengelmavesi

Length (cm)

W
ei

gh
t (

gr
)

10 20 30 40

0
20

0
40

0
60

0
80

0
10

00

14 15 16 17 18 19 20

70
75

80
85

90

Chirp frequency vs temperature in crickets

Frequency

Te
m

pe
ra

tu
re

Figure 10.5: The Box-Cox transformation suggests a value of λ = 0.303 for the
regression of weight against height for the perch data of Fig. 10.1. You can find
this dataset, and the back story at http://www.amstat.org/publications/jse/jse data
archive.htm; look for “fishcatch” on that page. On the left, a plot of the resulting
curve overlaid on the data. For the cricket temperature data of that figure (from
http://mste.illinois.edu/patel/amar430/keyprob1.html), the transformation suggests
a value of λ = 4.75. On the right, a plot of the resulting curve overlaid on the data

The Box-Cox transformation is a method that can search for a transfor-
mation of the dependent variable that improves the regression. The method uses a
one-parameter family of transformations, with parameter λ, then searches for the
best value of this parameter using maximum likelihood. A clever choice of transfor-
mation means that this search is relatively straightforward. We define the Box-Cox
transformation of the dependent variable to be

y
(bc)
i =

{
yλ
i −1
λ if λ = 0

log yi if λ = 0
.

It turns out to be straightforward to estimate a good value of λ using maximum
likelihood. One searches for a value of λ that makes residuals look most like a
normal distribution. Statistical software will do it for you. This transformation can
produce significant improvements in a regression. For example, the transformation
suggests a value of λ = 0.303 for the fish example of Fig. 10.1. It isn’t natural to
plot weight0.303 against height, because we don’t really want to predict weight0.303.
Instead, we plot the predictions of weight that come from this model, which will
lie on a curve with the form (ax+ b)

1
0.303 , rather than on a straight line. Similarly,

the transformation suggests a value of λ = 0.475 for the cricket data. Figure 10.5
shows the result of these transforms.

http://www.amstat.org/publications/jse/jse_data_archive.htm
http://mste.illinois.edu/patel/amar430/keyprob1.html

10.2. Linear Regression and Least Squares 217

Remember This: The Box-Cox transformation seeks a power of the
dependent variable that is better predicted by a linear function of the in-
dependent variables. The process works by constructing a likelihood in the
power, then finding the maximum likelihood; statistical software will do the
details. The transformation applies only to datasets.

10.2.6 Can You Trust Your Regression?

Linear regression is useful, but it isn’t magic. Some regressions make poor predic-
tions (recall the regressions of Fig. 10.2). As another example, regressing the first
digit of someone’s telephone number against the length of their foot won’t work.

We have some straightforward tests to tell whether a regression is working.
You can look at a plot for a dataset with one explanatory variable and one
dependent variable. You plot the data on a scatterplot, then plot the model as a
line on that scatterplot. Just looking at the picture can be informative (compare
Fig. 10.1 and Fig. 10.2).

You can check if the regression predicts a constant. This is usually a bad
sign. You can check this by looking at the predictions for each of the training data
items. If the variance of these predictions is small compared to the variance of
the independent variable, the regression isn’t working well. If you have only one
explanatory variable, then you can plot the regression line. If the line is horizontal,
or close, then the value of the explanatory variable makes very little contribution
to the prediction. This suggests that there is no particular relationship between
the explanatory variable and the independent variable.

You can also check, by eye, if the residual isn’t random. If y − xTβ is
a zero mean normal random variable, then the value of the residual vector should
not depend on the corresponding y-value. Similarly, if y − xTβ is just a zero mean
collection of unmodelled effects, we want the value of the residual vector to not
depend on the corresponding y-value either. If it does, that means there is some
phenomenon we are not modelling. Looking at a scatterplot of e against y will
often reveal trouble in a regression (Fig. 10.7). In the case of Fig. 10.7, the trouble
is caused by a few data points that are very different from the others severely
affecting the regression. We will discuss how to identify and deal with such points
in Sect. 10.3. Once they have been removed, the regression improves markedly
(Fig. 10.8).

Remember This: Linear regressions can make bad predictions. You
can check for trouble by: evaluating R2; looking at a plot; looking to see if
the regression makes a constant prediction; or checking whether the residual
is random.

10.3. Visualizing Regressions to Find Problems 218

Procedure: 10.1 Linear Regression Using Least Squares

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional explanatory vector, and each yi is a single dependent vari-
able. We assume that each data point conforms to the model

yi = xT
i β + ξi,

where ξi represents unmodelled effects. We assume that ξi are samples
of a random variable with 0 mean and unknown variance. Sometimes,
we assume the random variable is normal. Write

y =

⎛

⎜⎜⎝

y1
y2
. . .
yn

⎞

⎟⎟⎠

and

X =

⎛

⎜⎜⎝

xT
1

xT
2

. . .
xT
n

⎞

⎟⎟⎠ .

We estimate β̂ (the value of β) by solving the linear system

X TX β̂ −X Ty = 0.

For a data point x, our model predicts xT β̂. The residuals are

e = y −X β̂.

We have that eT1 = 0. The mean-squared error is given by

m =
eT e

N
.

The R2 is given by

R2 =
var
[
X β̂

]

var[y]
.

Values of R2 range from 0 to 1; a larger value means the regression is
better at explaining the data.

10.3 Visualizing Regressions to Find Problems

I have described regressions on a single explanatory variable, because it is easy to
plot the line in this case. You can find most problems by looking at the line and

10.3. Visualizing Regressions to Find Problems 219

the data points. But a single explanatory variable isn’t the most common or useful
case. If we have many explanatory variables, it can be hard to plot the regression
in a way that exposes problems. Data points that are significantly different from
others are the main source of problems. This is most easily seen in plots with one
explanatory variable, but the effect applies in other regressions, too. This section
mainly describes methods to identify and solve difficulties when you can’t simply
plot the regression. Mostly, we will focus on problem data points.

xv

yv

−40 −20 0 20 40

−4
0

−2
0

0
20

40

−40 −20 0 20 40

−4
0

−2
0

0
20

40

nxv

ny
v

Figure 10.6: On the left, a synthetic dataset with one independent and one explana-
tory variable, with the regression line plotted. Notice the line is close to the data
points, and its predictions seem likely to be reliable. On the right, the result of
adding a single outlying data point to that dataset. The regression line has changed
significantly, because the regression line tries to minimize the sum of squared ver-
tical distances between the data points and the line. Because the outlying data
point is far from the line, the squared vertical distance to this point is enormous.
The line has moved to reduce this distance, at the cost of making the other points
further from the line

10.3.1 Problem Data Points Have Significant Impact

When we construct a regression, we are solving for the β that minimizes
∑

i(yi −
xT
i β)

2, equivalently for the β that produces the smallest value of
∑

i e
2
i . This means

that residuals with large value can have a very strong influence on the outcome—
we are squaring that large value, resulting in an enormous value. Generally, many
residuals of medium size will have a smaller cost than one large residual and the
rest tiny. This means that a data point that lies far from the others can swing the
regression line very significantly. Figure 10.6 illustrates this effect, which occurs
commonly in real datasets and is an important nuisance.

Data points like the one in Fig. 10.6 are often known as outliers. This isn’t
a term one can use with much precision. Such data points can come from a variety
of sources. Failures of equipment, transcription errors, someone guessing a value

10.3. Visualizing Regressions to Find Problems 220

to replace lost data, and so on are some methods that might produce outliers. In
the distant past, academics blamed secretaries for outliers. There could be some
important but relatively rare effect that produces a couple of odd data points.
Major scientific discoveries have resulted from investigators taking outliers seriously,
and trying to find out what caused them (though you shouldn’t see a Nobel Prize
lurking behind every outlier).

Weight against height,
all points

Height

W
ei

gh
t

30 40 50 60 70 8010
0

15
0

20
0

25
0

30
0

35
0

100 150 200 250

−5
0

0
50

10
0

15
0

Residuals against fitted values,
weight against height,

all points

Fitted values

R
es

id
ua

ls

Figure 10.7: On the left, weight regressed against height for the bodyfat dataset.
The line doesn’t describe the data particularly well, because it has been strongly
affected by a few data points (filled-in markers). On the right, a scatterplot of the
residual against the value predicted by the regression. This doesn’t look like noise,
which is a sign of trouble

Outlying data points can significantly weaken the usefulness of a regression.
For some regression problems, we can identify data points that might be a problem,
and then resolve how to deal with them. One possibility is that they are true
outliers—someone recorded a data item wrong, or they represent an effect that just
doesn’t occur all that often. Then removing these data points is justified. Another
is that they are important data, and our linear model may not be good enough. In
this case, removing the points might not be justified. But it might be acceptable to
remove outliers, as the result could be a linear model that is well behaved for most
cases, but doesn’t model some rare effect and so occasionally makes wild errors.

Figure 10.7 shows a regression of human weight against height using a dataset
that has four outliers. This data is taken from a dataset published by Dr. John
Rasp on human body measurements. I found it at http://www2.stetson.edu/∼jrasp/
data.htm (look for bodyfat.xls). I will use this dataset several times in this chapter
to produce regressions predicting weight from height, and from a variety of other
measurements. Notice how the regression line doesn’t fit the main blob of data
particularly well, and there are some odd residuals. One fitted value is very different
from the others, and there are some residuals that are about the same size as the
predicted values. Figure 10.8 shows what happens when the four oddest points

http://www2.stetson.edu/~jrasp/data.htm
http://www2.stetson.edu/~jrasp/data.htm

10.3. Visualizing Regressions to Find Problems 221

are removed. The line is much closer to the blob, and the residuals are much less
erratic.

There are two problems here. The first is a visualization problem. It’s rel-
atively straightforward to spot outliers in regressions you can plot, but finding
outliers in regressions where there are many independent variables requires new
tools. The second is a modelling problem. We could construct a model that fits all
data, but is poor; we could seek some transformation so that the model works bet-
ter on all data (which might be hard to obtain); or we could throw out or discount
the outliers and settle for a model that works very well on all data, but ignores
some effects.

The simplest strategy, which is powerful but dangerous, is to identify outliers
and remove them. The danger is you might find that each time you remove a few
problematic data points, some more data points look strange to you. Following
this line of thought too far can lead to models that fit some data very well, but are
essentially pointless because they don’t handle most effects. An alternative strategy
is to build methods that can discount the effects of outliers. I describe some such
methods, which can be technically complex, in the following chapter.

Weight against height,
4 outliers removed

Height

W
ei

gh
t

30 40 50 60 70 8010
0

15
0

20
0

25
0

30
0

35
0

100 150 200 250

−5
0

0
50

10
0

15
0

Residuals against fitted values,
weight against height,

4 outliers removed

Fitted values

R
es

id
ua

ls

Figure 10.8: On the left, weight regressed against height for the bodyfat dataset.
I have now removed the four suspicious looking data points, identified in Fig. 10.7
with filled-in markers; these seemed the most likely to be outliers. On the right,
a scatterplot of the residual against the value predicted by the regression. Notice
that the residual looks like noise. The residual seems to be uncorrelated to the
predicted value; the mean of the residual seems to be zero; and the variance of the
residual doesn’t depend on the predicted value. All these are good signs, consistent
with our model, and suggest the regression will yield good predictions

10.3. Visualizing Regressions to Find Problems 222

Remember This: Outliers can affect linear regressions significantly.
Usually, if you can plot the regression, you can look for outliers by eyeballing
the plot. Other methods exist, but are beyond the scope of this text.

10.3.2 The Hat Matrix and Leverage

Write β̂ for the estimated value of β, and y(p) = X β̂ for the predicted y values.
Then we have

β̂ =
(
X TX

)−1
(X Ty)

so that
y(p) = (X

(
X TX

)−1 X T)y.

What this means is that the values the model predicts at training points are a linear

function of the true values at the training points. The matrix (X
(
X TX

)−1 X T) is
sometimes called the hat matrix. The hat matrix is written H, and I shall write
the i, j’th component of the hat matrix hij .

Remember This: The predictions of a linear regression at training
points are a linear function of the y-values at the training points. The
linear function is given by the hat matrix.

The hat matrix has a variety of important properties. I won’t prove any here,
but the proofs are in the exercises. It is a symmetric matrix. The eigenvalues can
be only 1 or 0. And the row sums have the important property that

∑

j

h2
ij ≤ 1.

This is important, because it can be used to find data points that have values that
are hard to predict. The leverage of the i’th training point is the i’th diagonal
element, hii, of the hat matrix H. Now we can write the prediction at the i’th
training point yp,i = hiiyi +

∑
j �=i hijyj . But if hii has large absolute value, then

all the other entries in that row of the hat matrix must have small absolute value.
This means that, if a data point has high leverage, the model’s value at that point
is predicted almost entirely by the observed value at that point. Alternatively, it’s
hard to use the other training data to predict a value at that point.

Here is another way to see this importance of hii. Imagine we change the

value of yi by adding Δ; then y
(p)
i becomes y

(p)
i +hiiΔ. In turn, a large value of hii

means that the predictions at the i’th point are very sensitive to the value of yi.

10.3. Visualizing Regressions to Find Problems 223

Remember This: Ideally, the value predicted for a particular data point
depends on many other data points. Leverage measures the importance of
a data point in producing a prediction at that data point. If the leverage of
a point is high, other points are not contributing much to the prediction for
that point, and it may well be an outlier.

10.3.3 Cook’s Distance

Another way to find points that may be creating problems is to look at the effect
of omitting the point from the regression. We could compute y(p) using the whole
dataset. We then omit the i’th point from the dataset, and compute the regression

coefficients from the remaining data (which I will write β̂î). Now write y
(p)

î
= X β̂î.

This vector is the predictions that the regression makes at all points when it is
trained with the i’th point removed from the training data. Now one can compare

y(p) to y
(p)

î
. Points with large values of Cook’s distance are suspect, because

omitting such a point strongly changes the predictions of the regression. The score
for the comparison is called Cook’s distance. If a point has a large value of
Cook’s distance, then it has a strong influence on the regression and might well
be an outlier. Typically, one computes Cook’s distance for each point, and takes
a closer look at any point with a large value. This procedure is described in more
detail in the box below. Notice the rough similarity to cross-validation (omit some
data and recompute). But in this case, we are using the procedure to identify points
we might not trust, rather than to get an unbiased estimate of the error.

Procedure: 10.2 Computing Cook’s Distance

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional explanatory vector, and each yi is a single dependent vari-
able. Write β̂ for the coefficients of a linear regression (see Proce-

dure 10.1), and β̂î for the coefficients of the linear regression computed

by omitting the i’th data point, y(p) for X β̂, m for the mean-squared
error, and

y
(p)

î
= X β̂î.

The Cook’s distance of the i’th data point is

(y(p) − y
(p)

î
)T (y(p) − y

(p)

î
)

dm
.

Large values of this distance suggest that a point may present problems.
Statistical software will compute and plot this distance for you.

10.3. Visualizing Regressions to Find Problems 224

Remember This: The Cook’s distance of a training data point measures
the effect on predictions of leaving that point out of the regression. A large
value of Cook’s distance suggests other points are poor at predicting the
value at a given point, so a point with a large value of Cook’s distance may
be an outlier.

Standardized residuals against fitted values,
weight against height,

4 outliers removed

Fitted values

R
es

id
ua

ls

Standardized residuals of height vs weight

str

Fr
eq

ue
nc

y

100 150 200 250

−4
−2

0
2

4

−2 −1 0 1 2 3

0
10

20
30

40

Figure 10.9: On the left, standardized residuals plotted against predicted value
for weight regressed against height for the bodyfat dataset. I removed the four
suspicious looking data points, identified in Fig. 10.7 with filled-in markers. These
seemed the most likely to be outliers. You should compare this plot with the resid-
uals in Fig. 10.8, which are not standardized. Notice that relatively few residuals
are more than two standard deviations away from the mean, as one expects. On the
right, a histogram of the residual values. Notice this looks rather like a histogram
of a standard normal random variable, though there are slightly more large positive
residuals than one would like. This suggests that the regression is working tolerably

10.3.4 Standardized Residuals

The hat matrix has another use. It can be used to tell how “large” a residual is. The
residuals that we measure depend on the units in which y was expressed, meaning
we have no idea what a “large” residual is. For example, if we were to express y in
kilograms, then we might want to think of 0.1 as a small residual. Using exactly
the same dataset, but now with y expressed in grams, that residual value becomes
100—is it really “large” because we changed units?

10.4. Many Explanatory Variables 225

Now recall that we assumed, in Sect. 10.2.1, that y − xTβ was a zero mean
normal random variable, but we didn’t know its variance. It can be shown that,
under our assumption, the i’th residual value, ei, is a sample of a normal random
variable whose variance is (

(eT e)

N

)
(1− hii).

This means we can tell whether a residual is large by standardizing it—that is,
dividing by its standard deviation. Write si for the standard residual at the i’th
training point. Then we have that

si =
ei√(

(eT e)
N

)
(1− hii)

.

When the regression is behaving, this standardized residual should look like a sam-
ple of a standard normal random variable (Fig. 10.9). Three simple properties of
standard normal random variables that you should commit to memory (if you
haven’t already) appear in the box below. Large (or odd) values of the standard
residuals are a sign of trouble.

Remember This: About 66% of the sampled values of a standard nor-
mal random variable are in the range [−1, 1]. About 95% of the sampled
values of a standard normal random variable are in the range [−2, 2]. About
99% of the sampled values of a standard normal random variable are in the
range [−3, 3].

R produces a nice diagnostic plot that can be used to look for problem data
points. The plot is a scatterplot of the standardized residuals against leverage,
with level curves of Cook’s distance superimposed. Figure 10.10 shows an example.
Some bad points that are likely to present problems are identified with a number
(you can control how many, and the number, with arguments to plot). Problem
points will have high leverage and/or high Cook’s distance and/or high residual.
The figure shows this plot for three different versions of the dataset (original; two
problem points removed; and two further problem points removed).

10.4 Many Explanatory Variables

In earlier sections, I implied you could put anything into the explanatory variables.
This is correct, and makes it easy to do the math for the general case. However, I
have plotted only cases where there was one explanatory variable (together with a
constant, which hardly counts). In some cases (Sect. 10.4.1), we can add explana-
tory variables and still have an easy plot. Adding explanatory variables can cause
the matrix X TX to have poor condition number; there’s an easy strategy to deal
with this (Sect. 10.4.2).

10.4. Many Explanatory Variables 226

Leverage
lm(WEIGHT ~ HEIGHT)

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook’s distance

1
0.5

0.5
1

Residuals vs Leverage

4239

Leverage
lm(WEIGHT ~ HEIGHT)

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook’s distance
0.1

0.05

0.05

0.1

Residuals vs Leverage

216
41

0.0 0.1 0.2 0.3 0.4 0.5

−2
0

2
4

6

0.00 0.01 0.02 0.03

−2
−1

0
1

2
3

4

0.00 0.01 0.02 0.03

−2
−1

0
1

2
3

Leverage
lm(WEIGHT ~ HEIGHT)

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook’s distance
0.1

0.05

0.05

0.1

Residuals vs Leverage

36

145

Figure 10.10: A diagnostic plot, produced by R, of a linear regression of weight
against height for the bodyfat dataset. Top: the whole dataset. Notice that two
points are very odd indeed. The point labelled 42 has gigantic Cook’s distance and
quite extraordinary leverage. The point labelled 39 has a standardized residual that
is six standard deviations away from the mean (i.e., never happens for a normal
random variable). Bottom left: The diagnostic plot with the two most extreme
points in the top figure removed. Notice that the points labelled 39 and 216 have
very large standardized residual and large Cook’s distance. Bottom right: The
diagnostic plot with these two further points removed. At this point, the regression
seems well behaved (or, at least, removing more points seems more dangerous than
stopping)

Most cases are hard to plot successfully, and one needs better ways to visualize
the regression than just plotting. The value of R2 is still a useful guide to the
goodness of the regression, but the way to get more insight is to use the tools of
the previous section.

10.4. Many Explanatory Variables 227

10.4.1 Functions of One Explanatory Variable

Imagine we have only one measurement to form explanatory variables. For example,
in the perch data of Fig. 10.1, we have only the length of the fish. If we evaluate
functions of that measurement, and insert them into the vector of explanatory
variables, the resulting regression is still easy to plot. It may also offer better
predictions. The fitted line of Fig. 10.1 looks quite good, but the data points look
as though they might be willing to follow a curve. We can get a curve quite easily.
Our current model gives the weight as a linear function of the length with a noise
term (which we wrote yi = β1xi + β0 + ξi). But we could expand this model to
incorporate other functions of the length. In fact, it’s quite surprising that the
weight of a fish should be predicted by its length. If the fish doubled in each
direction, say, its weight should go up by a factor of eight. The success of our
regression suggests that fish do not just scale in each direction as they grow. But
we might try the model yi = β2x

2
i + β1xi + β0 + ξi. This is easy to do. The i’th

row of the matrix X currently looks like [xi, 1]. We build a new matrix X (b), where
the i’th row is [x2

i , xi, 1], and proceed as before. This gets us a new model. The
nice thing about this model is that it is easy to plot—our predicted weight is still
a function of the length, it’s just not a linear function of the length. Several such
models are plotted in Fig. 10.11.

You should notice that it can be quite easy to add a lot of functions like this
(in the case of the fish, I tried x3

i as well). However, it’s hard to decide whether the
regression has actually gotten better. The least-squares error on the training data
will never go up when you add new explanatory variables, so the R2 will never get
worse. This is easy to see, because you could always use a coefficient of zero with the
new variables and get back the previous regression. However, the models that you
choose are likely to produce worse and worse predictions as you add explanatory
variables. Knowing when to stop can be tough (Sect. 11.1), though it’s sometimes
obvious that the model is untrustworthy (Fig. 10.11).

Remember This: If you have only one measurement, you can construct
a high dimensional x by using functions of that measurement. This produces
a regression that has many explanatory variables, but is still easy to plot.
Knowing when to stop is hard, but insight into the underlying problem can
help.

10.4.2 Regularizing Linear Regressions

Our current regression strategy requires solving X TX β̂ = X Ty. If X TX has small
(or zero) eigenvalues, we may make serious errors. A matrix with small eigenvalues
can turn large vectors into small ones, so if X TX has small eigenvalues, then there
is some large w so that X TX (β̂+w) is not much different from X TX β̂. This means

that a small change in X Ty can lead to a large change in the estimate of β̂.

10.4. Many Explanatory Variables 228

Weight vs length in
 perch from Lake Laengelmavesi,

 three models.

Length (cm)

W
ei

gh
t (

gr
)

linear
quadratic
cubic

10 20 30 40

0
20

0
40

0
60

0
80

0
10

00

10 20 30 40

0
20

0
40

0
60

0
80

0
10

00

Weight vs length in
 perch from Lake Laengelmavesi,

 all powers up to 10.

Length (cm)

W
ei

gh
t (

gr
)

Figure 10.11: On the left, several different models predicting fish weight from
length. The line uses the explanatory variables 1 and xi; and the curves use other
monomials in xi as well, as shown by the legend. This allows the models to predict
curves that lie closer to the data. It is important to understand that, while you
can make a curve go closer to the data by inserting monomials that doesn’t mean
you necessarily have a better model. On the right, I have used monomials up to
x10
i . This curve lies very much closer to the data points than any on the other side,

at the cost of some very odd looking wiggles in between data points (look at small
lengths; the model goes quite strongly negative there, but I can’t bring myself to
change the axes and show predictions that are obvious nonsense). I can’t think of
any reason that these structures would come from true properties of fish, and it
would be hard to trust predictions from this model

This is a problem, because we can expect that different samples from the same
data will have somewhat different values of X Ty. For example, imagine the person
recording fish measurements in Lake Laengelmavesi recorded a different set of fish;
we expect changes in X and y. But, if X TX has small eigenvalues, these changes
could produce large changes in our model.

Small (or zero) eigenvalues are quite common in practical problems. They
arise from correlations between explanatory variables. Correlations between ex-
planatory variables mean that we can predict, quite accurately, the value of one
explanatory variable using the values of the other variables. In turn, there must be
a vector w so that Xw is small. The exercises give the construction in detail, but
the idea is simple. If (say) you can predict the first explanatory variable very well
as a linear function of the others, then a w that looks like

[−1, coefficients of linear function]

should result in a small Xw. But if Xw is small, wTX TXw must be small, so that
X TX has at least one small eigenvalue.

10.4. Many Explanatory Variables 229

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

NA NA NA NA NA NA NA NA NA NA NA NA NA NA

four outliers removed

2 4 6 845
0

50
0

55
0

60
0

65
0

70
0

75
0

64 66 68 70 72 74 76 78

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Linear regression of Weight against Height,
 four outliers removed

Height

W
ei

gh
t

no regularization
regularization

Figure 10.12: On the left, cross-validated error estimated for different choices
of regularization constant for a linear regression of weight against height for the
bodyfat dataset, with four outliers removed. The horizontal axis is log regression
constant; the vertical is cross-validated error. The mean of the error is shown as a
spot, with vertical error bars. The vertical lines show a range of reasonable choices
of regularization constant (left yields the lowest observed error, right the error
whose mean is within one standard error of the minimum). On the right, two
regression lines on a scatterplot of this dataset; one is the line computed without
regularization, the other is obtained using the regularization parameter that yields
the lowest observed error. In this case, the regularizer doesn’t change the line much,
but may produce improved values on new data. Notice how the cross-validated error
is fairly flat with low values of the regularization constant—there is a range of values
that works quite well

The problem is relatively easy to control. When there are small eigenvalues
in X TX , we expect that β̂ will be large (because we can add components in the
direction of at least one w without changing anything much), and so the largest

components in β̂ might be very inaccurately estimated. If we are trying to pre-
dict new y values, we expect that large components in β̂ turn into large errors in
prediction (exercises).

An important and useful way to suppress these errors is to try to find a β̂
that isn’t large, and also gives a low error. We can do this by regularizing, using
the same trick we saw in the case of classification. Instead of choosing the value of
β that minimizes (

1

N

)
(y −Xβ)T (y −Xβ)

we minimize
(

1

N

)
(y −Xβ)T (y −Xβ) + λβTβ

Error + Regularizer.

10.4. Many Explanatory Variables 230

Here λ > 0 is a constant that weights the two requirements of small error and small
β̂ relative to one another. Notice also that dividing the total error by the number
of data points means that our choice of λ shouldn’t be affected by changes in the
size of the dataset.

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

NA NA NA NA NA NA NA NA NA NA NA NA NA NA

all points

2 4 6 870
0

80
0

90
0

10
00

11
00

12
00

30 40 50 60 70
15

0
20

0
25

0
30

0
35

0

Linear regression of Weight against Height,
 all points

Height

W
ei

gh
t

no regularization
regularization

Figure 10.13: Regularization doesn’t make outliers go away. On the left, cross-
validated error estimated for different choices of regularization constant for a linear
regression of weight against height for the bodyfat dataset, with all points. The
horizontal axis is log regression constant; the vertical is cross-validated error. The
mean of the error is shown as a spot, with vertical error bars. The vertical lines
show a range of reasonable choices of regularization constant (left yields the lowest
observed error, right the error whose mean is within one standard error of the
minimum). On the right, two regression lines on a scatterplot of this dataset;
one is the line computed without regularization, the other is obtained using the
regularization parameter that yields the lowest observed error. In this case, the
regularizer doesn’t change the line much, but may produce improved values on
new data. Notice how the cross-validated error is fairly flat with low values of the
regularization constant—the precise value of the regularization constant doesn’t
matter much hear. Notice also how the error in this regression is very much greater
than that in the regression of Fig. 10.12. Outliers in the training part of a cross-
validation split cause the model to be poor, and outliers in the test part result in
very poor predictions, too

Regularization helps to deal with the small eigenvalue, because to solve for β
we must solve the equation

[(
1

N

)
X TX + λI

]
β̂ =

(
1

N

)
X Ty

(obtained by differentiating with respect to β and setting to zero) and the smallest
eigenvalue of the matrix (

(
1
N

)
(X TX+λI)) will be at least λ (exercises). Penalizing

a regression with the size of β in this way is sometimes known as ridge regression.

10.4. Many Explanatory Variables 231

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.60.8

−5
0

5
10

15

Leverage
lm(WEIGHT ~ BODYFAT + DENSITY + AGE + HEIGHT +

ADIPOSITY + NECK + CHEST + A

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook’s distance

1
0.5
0.5
1

Residuals vs Leverage

42

39

36

−1
0

−5
0

5

Leverage
lm(WEIGHT ~ BODYFAT + DENSITY + AGE + HEIGHT +

ADIPOSITY + NECK + CHEST + A

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook’s distance

1
0.5

0.5
1

Residuals vs Leverage

163

216

221

Figure 10.14: On the left, residuals plotted against leverage for a regression of
weight against all other measurements for the bodyfat dataset. I did not remove
the outliers. The contours on the plot are contours of Cook’s distance; I have
overlaid arrows showing points with suspiciously large Cook’s distance. Notice
also that several points have high leverage, without having a large residual value.
These points may or may not present problems. On the right, the same plot for
this dataset with points 36, 39, 41, and 42 removed (these are the points I have
been removing for each such plot). Notice that another point now has high Cook’s
distance, but mostly the residual is much smaller

We choose λ in the same way we used for classification; split the training set
into a training piece and a validation piece, train for different values of λ, and test
the resulting regressions on the validation piece. The error is a random variable,
random because of the random split. It is a fair model of the error that would occur
on a randomly chosen test example, assuming that the training set is “like” the test
set, in a way that I do not wish to make precise. We could use multiple splits, and
average over the splits. Doing so yields both an average error for a value of λ and
an estimate of the standard deviation of error.

Statistical software will do all the work for you. I used the glmnet package in
R (see exercises for details). Figure 10.12 shows an example, for weight regressed
against height. Notice the regularization doesn’t change the model (plotted in the
figure) all that much. For each value of λ (horizontal axis), the method has com-
puted the mean error and standard deviation of error using cross-validation splits,
and displays these with error bars. Notice that λ = 0 yields poorer predictions
than a larger value; large β̂ really are unreliable. Notice that there is now no λ
that yields the smallest validation error, because the value of error depends on the
random splits used in cross-validation. A reasonable choice of λ lies between the
one that yields the smallest error encountered (one vertical line in the plot) and the
largest value whose mean error is within one standard deviation of the minimum
(the other vertical line in the plot) (Fig. 10.13).

10.4. Many Explanatory Variables 232

Standardized residuals against fitted values,
weight against all,

all points

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

100 150 200 250 300 350 100 150 200 250 300 350

−1
5

−1
0

−5
0

5
10

15

−1
5

−1
0

−5
0

5
10

15

Standardized residuals against fitted values,
weight against all,
4 outliers removed

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Figure 10.15: On the left, standardized residuals plotted against predicted value
for weight regressed against all variables for the bodyfat dataset. Four data points
appear suspicious, and I have marked these with a filled-in marker. On the right,
standardized residuals plotted against predicted value for weight regressed against
all variables for the bodyfat dataset, but with the four suspicious looking data
points removed. Notice two other points stick out markedly

All this is quite similar to regularizing a classification problem. We started
with a cost function that evaluated the errors caused by a choice of β, then added
a term that penalized β for being “large.” This term is the squared length of β,
as a vector. It is sometimes known as the L2 norm of the vector. In Sect. 11.4, I
describe the consequences of using other norms.

Remember This: The performance of a regression can be improved by
regularizing, particularly if some explanatory variables are correlated. The
procedure is similar to that used for classification.

10.4.3 Example: Weight Against Body Measurements

We can now look at regressing weight against all body measurements for the bodyfat
dataset. We can’t plot this regression (too many independent variables), but we
can approach the problem in a series of steps.

Finding Suspect Points: Figure 10.14 shows the R diagnostic plots for a
regression of weight against all body measurements for the bodyfat dataset. We’ve
already seen there are outliers, so the odd structure of this plot should be no par-
ticular surprise. There are several really worrying points here. As the figure shows,

10.4. Many Explanatory Variables 233

Standardized residuals against fitted values,
weight against all,

 6 outliers removed

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

100 150 200 250 300 350

−1
5

−1
0

−5
0

5
10

15

18 20 22 24 26 28 30

−4
−2

0
2

4

Standardized residuals against fitted values,
sqrt(weight) against all,

 6 outliers removed

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Figure 10.16: On the left, standardized residuals plotted against predicted value for
weight regressed against all variables for the bodyfat dataset. I removed the four
suspicious data points of Fig. 10.15, and the two others identified in that figure.
Notice a suspicious “banana” shape—the residuals are distinctly larger for small
and for large predicted values. This suggests that a non-linear transformation of
something might be helpful. I used a Box-Cox transformation, which suggested
a value of 0.5 (i.e., regress 2(

√
weight − 1)) against all variables. On the right,

the standardized residuals for this regression. Notice that the “banana” has gone,
though there is a suspicious tendency for the residuals to be smaller rather than
larger. Notice also the plots are on different axes. It’s fair to compare these plots by
eye; but it’s not fair to compare details, because the residual of a predicted square
root means something different than the residual of a predicted value

removing the four points identified in the caption, based on their very high stan-
dardized residuals, high leverage, and high Cook’s distance, yields improvements.
We can get some insight by plotting standardized residuals against predicted value
(Fig. 10.9). There is clearly a problem here; the residual seems to depend quite
strongly on the predicted value. Removing the four outliers we have already identi-
fied leads to a much improved plot, also shown in Fig. 10.15. This is banana-shaped,
which is suspicious. There are two points that seem to come from some other model
(one above the center of the banana, one below). Removing these points gives the
residual plot shown in Fig. 10.16.

Transforming Variables: The banana shape of the plot of standardized
residuals against value means that large predictions and small predictions are each
a bit too big, but predictions that are close to the mean are a bit too small. This
is a suggestion that some non-linearity somewhere would improve the regression.
One option is a non-linear transformation of the independent variables. Finding the
right one might require some work, so it’s natural to try a Box-Cox transformation
first. This gives the best value of the parameter as 0.5 (i.e., the dependent variable
should be

√
weight), which makes the residuals look much better (Fig. 10.16).

10.4. Many Explanatory Variables 234

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

six outliers removed

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 1515 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

all data

Figure 10.17: Plots of mean-squared error as a function of log regularization param-
eter (i.e., log λ) for a regression of weight1/2 against all variables for the bodyfat
dataset. These plots show that mean-squared error averaged over cross-validation
folds with a vertical one standard deviation bar. On the left, the plot for the
dataset with the six outliers identified in Fig. 10.15 removed. On the right, the
plot for the whole dataset. Notice how the outliers increase the variability of the
error, and the best error

120 140 160 180 200 220 240

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Predicted vs True values of weight for
 a regression of weight against all variables

six outliers removed

True weight, lbs

P
re

di
ct

ed
 w

ei
gh

t,
lb

s

Figure 10.18: A scatterplot of the predicted weight against the true weight for the
bodyfat dataset. The prediction is made with all variables, but the six outliers
identified above are omitted. I used a Box-Cox transformation with parameter 1/2,
and the regularization parameter that yielded the smallest mean-squared error in
Fig. 10.17

Choosing a Regularizing Value: Figure 10.17 shows the glmnet plot of
cross-validated error as a function of regularizer weight. A sensible choice of value

10.4. Many Explanatory Variables 235

here seems to be a bit smaller than −2 (between the value that yields the smallest
error encountered—one vertical line in the plot—and the largest value whose mean
error is within one standard deviation of the minimum—the other vertical line in
the plot). I chose −2.2.

How Good Are the Resulting Predictions Likely to Be: the standard-
ized residuals don’t seem to depend on the predicted values, but how good are the
predictions? We already have some information on this point. Figure 10.17 shows
cross-validation errors for regressions of weight1/2 against height for different reg-
ularization weights, but some will find this slightly indirect. We want to predict
weight, not weight1/2. I chose the regularization weight that yielded the lowest
mean-squared error for the model of Fig. 10.17, omitting the six outliers previously
mentioned. I then computed the predicted weight for each data point using that
model (which predicts weight1/2, remember; but squaring takes care of that). Fig-
ure 10.18 shows the predicted values plotted against the true values. You should
not regard this plot as a safe way to estimate generalization (the points were used
in training the model; Fig. 10.17 is better for that), but it helps to visualize the
errors. This regression looks as though it is quite good at predicting bodyweight
from other measurements.

10.5. You Should 236

10.5 You Should

10.5.1 Remember These Terms

Regression . 205
residual . 208
explanatory variables . 209
dependent variable . 209
training examples . 209
test examples . 209
residual . 212
mean-squared error . 212
Zipf’s law . 215
Box-Cox transformation . 216
outliers . 219
hat matrix . 222
leverage . 222
Cook’s distance . 223
standardizing . 225
ridge regression . 230
L2 norm . 232
condition number . 242
condition number . 242
idempotence . 243

10.5.2 Remember These Facts

Definition: Regression . 208
Definition: Linear Regression . 209
Estimating β . 211
Regression . 213
Evaluates the quality of predictions made by a regression with R2 . 214
Transforming variables is useful . 215
The Box-Cox transformation . 217
Linear regressions can fail . 217
Outliers can affect linear regressions significantly 222
The hat matrix mixes training y-values to produce predictions . . . 222
Be suspicious of points with high leverage 223
Be suspicious of points with high Cook’s distance 224
Samples of a standard normal random variable 225
Appending functions of a measurement to x is useful 227
You can regularize a regression . 232

10.5.3 Remember These Procedures

Linear Regression Using Least Squares 218
Computing Cook’s Distance . 223

10.5. You Should 237

10.5.4 Be Able to

• Construct a linear regression, using ridge regularization as required.
• Use leverage, Cook’s distance, and standardized residuals to identify possible
outliers.

• Apply simple variable transformations to improve a linear regression.
• Evaluate a linear regression.

10.5. You Should 238

Appendix: Data

Batch A
Amount of Time in
hormone service

25.8 99
20.5 152
14.3 293
23.2 155
20.6 196
31.1 53
20.9 184
20.9 171
30.4 52

Batch B
Amount of Time in
hormone service

16.3 376
11.6 385
11.8 402
32.5 29
32.0 76
18.0 296
24.1 151
26.5 177
25.8 209

Batch C
Amount of Time in
hormone service

28.8 119
22.0 188
29.7 115
28.9 88
32.8 58
32.5 49
25.4 150
31.7 107
28.5 125

TABLE 10.1: A table showing the amount of hormone remaining and the time in
service for devices from lot A, lot B, and lot C. The numbering is arbitrary (i.e.,
there’s no relationship between device 3 in lot A and device 3 in lot B). We expect
that the amount of hormone goes down as the device spends more time in service,
so cannot compare batches just by comparing numbers

10.5. You Should 239

Problems

0 20 40 60 80
100

150

200

250

Age in years

Sy
st

ol
ic

 b
lo

od
 p

re
ss

ur
e

Blood pressure against age

Figure 10.19: A regression of blood pressure against age, for 30 data points

10.1. Figure 10.19 shows a linear regression of systolic blood pressure against age.
There are 30 data points.
(a) Write ei = yi − xT

i β for the residual. What is the mean ({e}) for this
regression?

(b) For this regression, var ({y}) = 509 and the R2 is 0.4324. What is var ({e})
for this regression?

(c) How well does the regression explain the data?
(d) What could you do to produce better predictions of blood pressure (with-

out actually measuring blood pressure)?

0 1000 2000 3000 4000

0
50

00
10

00
0

15
00

0

Population vs area for
 kittiwake colonies

Area (km^2)

P
op

ul
at

io
n

(n
o.

 o
f b

re
ed

in
g

pa
irs

)

Figure 10.20: A regression of the number of breeding pairs of kittiwakes against the
area of an island, for 22 data points

10.2. At http://www.statsci.org/data/general/kittiwak.html, you can find a dataset
collected by D.K. Cairns in 1988 measuring the area available for a seabird

http://www.statsci.org/data/general/kittiwak.html

10.5. You Should 240

(black-legged kittiwake) colony and the number of breeding pairs for a variety
of different colonies. Figure 10.20 shows a linear regression of the number of
breeding pairs against the area. There are 22 data points.
(a) Write ei = yi − xT

i β for the residual. What is the mean ({e}) for this
regression?

(b) For this regression, var ({y}) = 16,491,357 and the R2 is 0.62. What is
var ({e}) for this regression?

(c) How well does the regression explain the data? If you had a large island,
to what extent would you trust the prediction for the number of kittiwakes
produced by this regression? If you had a small island, would you trust
the answer more?

Population vs log area for
 kittiwake colonies

log Area (log km^2)

P
op

ul
at

io
n

(n
o.

 o
f b

re
ed

in
g

pa
irs

)

4 5 6 7 8 4 5 6 7 8

0
50

00
10

00
0

15
00

0

0
50

00
10

00
0

15
00

0

Population vs log area for
 kittiwake colonies

log Area (log km^2)

P
op

ul
at

io
n

(n
o.

 o
f b

re
ed

in
g

pa
irs

)

Figure 10.21: Left: A regression of the number of breeding pairs of kittiwakes
against the log of area of an island, for 22 data points. Right: A regression of the
number of breeding pairs of kittiwakes against the log of area of an island, for 22
data points, using a method that ignores two likely outliers

10.3. At http://www.statsci.org/data/general/kittiwak.html, you can find a dataset
collected by D.K. Cairns in 1988 measuring the area available for a seabird
(black-legged kittiwake) colony and the number of breeding pairs for a variety
of different colonies. Figure 10.21 shows a linear regression of the number of
breeding pairs against the log of area. There are 22 data points.
(a) Write ei = yi − xT

i β for the residual. What is the mean ({e}) for this
regression?

(b) For this regression, var ({y}) = 16,491,357 and the R2 is 0.31. What is
var ({e}) for this regression?

(c) How well does the regression explain the data? If you had a large island,
to what extent would you trust the prediction for the number of kittiwakes
produced by this regression? If you had a small island, would you trust
the answer more? Why?

(d) Figure 10.21 shows the result of a linear regression that ignores two likely
outliers. Would you trust the predictions of this regression more? Why?

http://www.statsci.org/data/general/kittiwak.html

10.5. You Should 241

Sulfate against time for
Brunhilda the baboon

time (hrs)

S
ul

fa
te

 c
on

ce
nt

ra
tio

n

0 50 100 150

4
6

8
10

12
14

3 4 5 6 7 8 9

0
2

4
6

Residuals against fitted values for
sulfate against time for
Brunhilda the baboon

fitted value

re
si

du
al

Figure 10.22: Left: A regression of the concentration of sulfate in the blood of
Brunhilda the baboon against time. Right: For this regression, a plot of residual
against fitted value

10.4. At http://www.statsci.org/data/general/brunhild.html, you will find a dataset
that measures the concentration of a sulfate in the blood of a baboon named
Brunhilda as a function of time. Figure 10.22 plots this data, with a linear
regression of the concentration against time. I have shown the data, and also
a plot of the residual against the predicted value. The regression appears to
be unsuccessful.
(a) What suggests the regression has problems?
(b) What is the cause of the problem, and why?
(c) What could you do to improve the problems?

10.5. Assume we have a dataset where Y = Xβ + ξ, for some unknown β and ξ.
The term ξ is a normal random variable with zero mean, and covariance σ2I
(i.e., this data really does follow our model).
(a) Write β̂ for the estimate of β recovered by least squares, and Ŷ for the

values predicted by our model for the training data points. Show that

Ŷ = X
(
XTX

)−1

XT .Y

(b) Show that
E[ŷi − yi] = 0

for each training data point yi, where the expectation is over the proba-
bility distribution of ξ.

(c) Show that
E
[
(β̂ − β)

]
= 0,

where the expectation is over the probability distribution of ξ.
10.6. This exercise investigates the effect of correlation on a regression. Assume we

have N data items (xi, yi). We will investigate what happens when the data
have the property that the first component is relatively accurately predicted
by the other components. Write xi1 for the first component of xi, and xi,1̂

http://www.statsci.org/data/general/brunhild.html

10.5. You Should 242

for the vector obtained by deleting the first component of xi. Choose u to
predict the first component of the data from the rest with minimum error, so
that xi1 = xT

i1̂
u + wi. The error of prediction is wi. Write w for the vector

of errors (i.e., the i’th component of w is wi). Because wTw is minimized by
choice of u, we havewT1 = 0 (i.e., the average of the wi’s is zero). Assume that
these predictions are very good, so that there is some small positive number ε
so that wTw ≤ ε.
(a) Write a = [−1,u]T . Show that

aTXTXa ≤ ε.

(b) Now show that the smallest eigenvalue of XTX is less than or equal to ε.
(c) Write sk =

∑
u x2uk, and smax for max(s1, . . . , sd). Show that the largest

eigenvalue of XTX is greater than or equal to smax.
(d) The condition number of a matrix is the ratio of largest to smallest

eigenvalue of a matrix. Use the information above to bound the condition
number of XTX .

(e) Assume that β̂ is the solution to XTX β̂ = XTY. Show that the

(XTY −XTX (β̂ + a))T (XTY −XTX (β̂ + a))

(for a as above) is bounded above by

ε2(1 + uTu).

(f) Use the last subexercises to explain why correlated data will lead to a
poor estimate of β̂.

10.7. This exercise explores the effect of regularization on a regression. Assume we
have N data items (xi, yi). We will investigate what happens when the data
have the property that the first component is relatively accurately predicted
by the other components. Write xi1 for the first component of xi, and xi,1̂
for the vector obtained by deleting the first component of xi. Choose u to
predict the first component of the data from the rest with minimum error, so
that xi1 = xT

i1̂
u + wi. The error of prediction is wi. Write w for the vector

of errors (i.e., the i’th component of w is wi). Because wTw is minimized by
choice of u, we havewT1 = 0 (i.e., the average of the wi’s is zero). Assume that
these predictions are very good, so that there is some small positive number ε
so that wTw ≤ ε.
(a) Show that, for any vector v,

vT
(
XTX + λI

)
v ≥ λvTv

and use this to argue that the smallest eigenvalue of
(
XTX + λI

)
is

greater than λ.
(b) Write b for an eigenvector of XTX with eigenvalue λb. Show that b is

an eigenvector of
(
XTX + λI

)
with eigenvalue λb + λ.

(c) Recall XTX is a d×dmatrix which is symmetric, and so has d orthonormal
eigenvectors. Write bi for the i’th such vector, and λbi

for the correspond-
ing eigenvalue. Show that

XTXβ −XTY = 0

10.5. You Should 243

is solved by

β =

d∑

i=1

YTXbi

λbi

.

(d) Using the notation of the previous sub exercise, show that

(XTX + λI)β −XTY = 0

is solved by

β =

d∑

i=1

YTXbi

λbi
+ λ

.

Use this expression to explain why a regularized regression may produce
better results on test data than an unregularized regression.

10.8. We will study the hat matrix, H = X
(
XTX

)−1 XT . We assume that
(
XTX

)−1

exists, so that (at least) N ≥ d.
(a) Show that HH = H. This property is sometimes referred to as idempo-

tence.
(b) Now an SVD yields X = UΣVT . Show that H = UUT .
(c) Use the result of the previous exercise to show that each eigenvalue of H

is either 0 or 1.
(d) Show that

∑
j h

2
ij ≤ 1.

Programming Exercises

10.9. At http://www.statsci.org/data/general/brunhild.html, you will find a dataset
that measures the concentration of a sulfate in the blood of a baboon named
Brunhilda as a function of time. Build a linear regression of the log of the
concentration against the log of time.
(a) Prepare a plot showing (a) the data points and (b) the regression line in

log–log coordinates.
(b) Prepare a plot showing (a) the data points and (b) the regression curve

in the original coordinates.
(c) Plot the residual against the fitted values in log–log and in original coor-

dinates.
(d) Use your plots to explain whether your regression is good or bad and why.

10.10. At http://www.statsci.org/data/oz/physical.html, you will find a dataset of
measurements by M. Larner, made in 1996. These measurements include body
mass, and various diameters. Build a linear regression of predicting the body
mass from these diameters.
(a) Plot the residual against the fitted values for your regression.
(b) Now regress the cube root of mass against these diameters. Plot the

residual against the fitted values in both these cube root coordinates and
in the original coordinates.

(c) Use your plots to explain which regression is better.
10.11. At https://archive.ics.uci.edu/ml/datasets/Abalone, you will find a dataset of

measurements by W. J. Nash, T. L. Sellers, S. R. Talbot, A. J. Cawthorn, and
W. B. Ford, made in 1992. These are a variety of measurements of blacklip
abalone (Haliotis rubra; delicious by repute) of various ages and genders.
(a) Build a linear regression predicting the age from the measurements, ig-

noring gender. Plot the residual against the fitted values.

http://www.statsci.org/data/general/brunhild.html
http://www.statsci.org/data/oz/physical.html
https://archive.ics.uci.edu/ml/datasets/Abalone

10.5. You Should 244

(b) Build a linear regression predicting the age from the measurements, in-
cluding gender. There are three levels for gender; I’m not sure whether
this has to do with abalone biology or difficulty in determining gender.
You can represent gender numerically by choosing 1 for one level, 0 for
another, and −1 for the third. Plot the residual against the fitted values.

(c) Now build a linear regression predicting the log of age from the measure-
ments, ignoring gender. Plot the residual against the fitted values.

(d) Now build a linear regression predicting the log age from the measure-
ments, including gender, represented as above. Plot the residual against
the fitted values.

(e) It turns out that determining the age of an abalone is possible, but difficult
(you section the shell, and count rings). Use your plots to explain which
regression you would use to replace this procedure, and why.

(f) Can you improve these regressions by using a regularizer? Use glmnet to
obtain plots of the cross-validated prediction error.

10.12. At https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.
data, you will find the famous Boston Housing dataset. This consists of 506
data items. Each is 13 measurements, and a house price. The data was col-
lected by Harrison, D. and Rubinfeld, D.L in the 1970s (a date which explains
the very low house prices). The dataset has been widely used in regression
exercises, but seems to be waning in popularity. At least one of the inde-
pendent variables measures the fraction of population nearby that is “Black”
(their word, not mine). This variable appears to have had a significant effect
on house prices then (and, sadly, may still now).
(a) Regress house price (variable 14) against all others, and use leverage,

Cook’s distance, and standardized residuals to find possible outliers. Pro-
duce a diagnostic plot that allows you to identify possible outliers.

(b) Remove all points you suspect as outliers, and compute a new regression.
Produce a diagnostic plot that allows you to identify possible outliers.

(c) Apply a Box-Cox transformation to the dependent variable—what is the
best value of the parameter?

(d) Now transform the dependent variable, build a linear regression, and check
the standardized residuals. If they look acceptable, produce a plot of fitted
house price against true house price.

(e) Assume you remove a total of six outliers. There are a variety of reasonable
choices. How strongly does the Box-Cox variable depend on your choice
of points to remove? Does the Box-Cox variable change if you remove no
outliers?

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data

C H A P T E R 11

Regression: Choosing and
Managing Models

This chapter generalizes our understanding of regression in a number of ways.
The previous chapter showed we could at least reduce training error, and quite likely
improve predictions, by inserting new independent variables into a regression. The
difficulty was knowing when to stop. In Sect. 11.1, I will describe some methods to
search a family of models (equivalently, a set of subsets of independent variables) to
find a good model. In the previous chapter, we saw how to find outlying points and
remove them. In Sect. 11.2, I will describe methods to compute a regression that
is largely unaffected by outliers. The resulting methods are powerful, but fairly
intricate.

To date, we have used regression to predict a number. With a linear model, it
is difficult to predict a probability—because linear models can predict negative num-
bers or numbers bigger than one—or a count—because linear models can predict
non-integers. A very clever trick (Sect. 11.3) uses regression to predict the parame-
ter of a carefully chosen probability distribution, and so probabilities, counts, and
so on.

Finally, Sect. 11.4 describes methods to force regression models to choose a
small set of predictors from a large set, and so produce sparse models. These meth-
ods allow us to fit regressions to data where we have more predictors than examples,
and often result in significantly improved predictions. Most of the methods in this
chapter can be used together to build sophisticated and accurate regressions in
quite surprising circumstances.

11.1 Model Selection: Which Model Is Best?

It is usually quite easy to have many explanatory variables in a regression problem.
Even if you have only one measurement, you could always compute a variety of
non-linear functions of that measurement. As we have seen, inserting variables into
a model will reduce the fitting cost, but that doesn’t mean that better predictions
will result (Sect. 10.4.1). We need to choose which explanatory variables we will use.
A linear model with few explanatory variables may make poor predictions because
the model itself is incapable of representing the independent variable accurately. A
linear model with many explanatory variables may make poor predictions because
we can’t estimate the coefficients well. Choosing which explanatory variables we
will use (and so which model we will use) requires that we balance these effects.

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 11

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_11

11.1. Model Selection: Which Model Is Best? 246

11.1.1 Bias and Variance

We now look at the process of finding a model in a fairly abstract way. Doing
so makes plain three distinct and important effects that cause models to make
predictions that are wrong. One is irreducible error. Even a perfect choice of
model can make mistaken predictions, because more than one prediction could be
correct for the same x. Another way to think about this is that there could be
many future data items, all of which have the same x, but each of which has a
different y. In this case some of our predictions must be wrong, and the effect is
unavoidable.

A second effect is bias. We must use some collection of models. Even the
best model in the collection may not be capable of predicting all the effects that
occur in the data. Errors that are caused by the best model still not being able to
predict the data accurately are attributed to bias.

The third effect is variance. We must choose our model from the collection
of models. The model we choose is unlikely to be the best model. This might occur,
for example, because our estimates of the parameters aren’t exact because we have
a limited amount of data. Errors that are caused by our choosing a model that is
not the best in the family are attributed to variance.

All this can be written out in symbols. We have a vector of predictors x, and
a random variable Y . At any given point x, we have

Y = f(x) + ξ

where ξ is noise and f is an unknown function. We have

E[ξ] = 0 and E
[
ξ2
]
= var ({ξ}) = σ2

ξ .

The noise ξ is independent of X. We have some procedure that takes a selection of
training data, consisting of pairs (xi, yi), and selects a model f̂ . We will use this

model to predict values for future x. It is highly unlikely that f̂ is the same as f ;
assuming that it is involves assuming that we can perfectly estimate the best model
with a finite dataset, which doesn’t happen.

We need to understand the error that will occur when we use f̂ to predict
for some data item that isn’t in the training set. This is the error that we will
encounter in practice. The error at any point x is

E

[
(Y − f̂(x))2

]

where the expectation is taken over P (Y, training data|x). But the new query point
x does not depend on the training data and the value Y does not depend on the
training data either, so the distribution is P (Y |x)× P (training data).

The expectation can be written in an extremely useful form. Recall var[U] =

E
[
U2
]
− E[U]

2
. This means we have

E

[
(Y − f̂(x))2

]
= E

[
Y 2
]
− 2E

[
Y f̂

]
+ E

[
f̂2
]

= var[Y] + E[Y]
2 − 2E

[
Y f̂

]
+ var

[
f̂
]
+ E

[
f̂
]2
.

11.1. Model Selection: Which Model Is Best? 247

Now Y = f(X) + ξ, E[ξ] = 0, and ξ is independent of X so we have E[Y] = E[f],

E

[
Y f̂

]
= E

[
(f + ξ)f̂

]
= E

[
ff̂
]
, and var[Y] = var[ξ] = σ2

ξ . This yields

E

[
(Y − f̂(x))2

]
= var[Y] + E[f]

2 − 2E
[
ff̂
]
+ var

[
f̂
]
+ E

[
f̂
]2

= var[Y] + f2 − 2fE
[
f̂
]
+ var

[
f̂
]
+ E

[
f̂
]2
(f isn’t random)

= σ2
ξ + (f − E

[
f̂
]
)2 + var

[
f̂
]

The expected error on all future data is the sum of three terms.

• The irreducible error is σ2
ξ ; even the true model must produce this error, on

average. There is nothing we can do about this error.

• The bias is (f −E

[
f̂
]
)2. This term reflects the fact that even the best choice

of model (E
[
f̂
]
) may not be the same as the true source of data (f).

• The variance is var
[
f̂
]
= E

[
(f̂ − E

[
f̂
]
)2
]
. To interpret this term, notice

the best model to choose would be E

[
f̂
]
(remember, the expectation is over

choices of training data; this model would be the one that best represented
all possible attempts to train). Then the variance represents the fact that the

model we chose (f̂) is different from the best model (E
[
f̂
]
). The difference

arises because our training data is a subset of all data, and our model is chosen
to be good on the training data, rather than on every possible training set.

Irreducible error is easily dealt with; nothing we do will improve this error, so there
is no need to do anything. But there is an important practical trade-off between
bias and variance. Generally, when a model comes from a “small” or “simple”
family, we expect that (a) we can estimate the best model in the family reasonably
accurately (so the variance will be low) but (b) the model may have real difficulty
reproducing the data (meaning the bias is large). Similarly, if the model comes
from a “large” or “complex” family, the variance is likely to be high (because it
will be hard to estimate the best model in the family accurately) but the bias will
be low (because the model can more accurately reproduce the data). All modelling
involves managing this trade-off between bias and variance. I am avoiding being
precise about the complexity of a model because it can be tricky to do. One
reasonable proxy is the number of parameters we have to estimate to determine the
model.

You can see a crude version of this trade-off in the perch example of Sect. 10.4.1
and Fig. 10.11. Recall that, as I added monomials to the regression of weight
against length, the fitting error went down; but the model that uses length10 as
an explanatory variable makes very odd predictions away from the training data.
When I use low degree monomials, the dominant source of error is bias; and when
I use high degree monomials, the dominant source of error is variance. A common
mistake is to feel that the major difficulty is bias, and so to use extremely complex
models. Usually the result is poor estimates of model parameters, leading to huge

11.1. Model Selection: Which Model Is Best? 248

errors from variance. Experienced modellers fear variance far more than they fear
bias.

The bias–variance discussion suggests it isn’t a good idea simply to use all
the explanatory variables that you can obtain (or think of). Doing so might lead
to a model with serious variance problems. Instead, we must choose a model that
uses a subset of the explanatory variables that is small enough to control variance,
and large enough that the bias isn’t a problem. We need some strategy to choose
explanatory variables. The simplest (but by no means the best; we’ll see better in
this chapter) approach is to search sets of explanatory variables for a good set. The
main difficulty is knowing when you have a good set.

Remember This: There are three kinds of error. Nothing can be done
about irreducible error. Bias is the result of a family of models none of
which can fit the data exactly. Variance is the result of difficulty estimating
which model in the family to use. Generally, there is a payoff between
bias and variance—using simpler model families causes more bias and less
variance, and so on.

11.1.2 Choosing a Model Using Penalties: AIC and BIC

We would like to choose one of a set of models. We cannot do so using just the
training error, because more complex models will tend to have lower training error,
and so the model with the lowest training error will tend to be the most complex
model. Training error is a poor guide to test error, because lower training error is
evidence of lower bias on the models part; but with lower bias, we expect to see
greater variance, and the training error doesn’t take that into account.

One strategy is to penalize the model for complexity. We add some penalty,
reflecting the complexity of the model, to the training error. We then expect to see
the general behavior of Fig. 11.1. The training error goes down, and the penalty
goes up as the model gets more complex, so we expect to see a point where the sum
is at a minimum.

There are a variety of ways of constructing penalties. AIC (short for an
information criterion) is a method due originally to H. Akaike, described in “A
new look at the statistical model identification,” IEEE Transactions on Automatic
Control, 1974. Rather than using the training error, AIC uses the maximum value
of the log-likelihood of the model. Write L for this value. Write k for the number
of parameters estimated to fit the model. Then the AIC is

2k − 2L
and a better model has a smaller value of AIC (remember this by remembering
that a larger log-likelihood corresponds to a better model). Estimating AIC is

11.1. Model Selection: Which Model Is Best? 249

Number of parameters

Negative
Log-LikelihoodPenalty

Penalized
Negative
Log-Likelihood

Figure 11.1: This is a standard abstract picture of a family of models. As we add
explanatory variables (and so parameters) to produce a more complex model, the
value of the negative log-likelihood of the best model can’t go up, and usually goes
down. This means that we cannot use the value as a guide to how many explanatory
variables there should be. Instead, we add a penalty that increases as a function
of the complexity of the model, and search for the model that minimizes the sum
of negative log-likelihood and penalty. AIC and BIC penalize complexity with a
penalty that is linear in the number of parameters, but there are other possible
penalties. In this figure, I am following the usual convention of plotting the penalty
as a curve rather than a straight line

straightforward for regression models if you assume that the noise is a zero mean
normal random variable. You estimate the mean-squared error, which gives the
variance of the noise, and so the log-likelihood of the model. You do have to keep
track of two points. First, k is the total number of parameters estimated to fit the
model. For example, in a linear regression model, where you model y as xTβ + ξ,
you need to estimate d parameters to estimate β̂ and the variance of ξ (to get
the log-likelihood). So in this case k = d + 1. Second, log-likelihood is usually
only known up to a constant, so that different software implementations often use
different constants. This is wildly confusing when you don’t know about it (why
would AIC and extractAIC produce different numbers on the same model?) but
of no real significance—you’re looking for the smallest value of the number, and
the actual value doesn’t mean anything. Just be careful to compare only numbers
computed with the same routine.

An alternative is BIC (Bayes’ information criterion), given by

2k logN − 2L

(where N is the size of the training dataset). You will often see this written as
2L − 2k logN ; I have given the form above so that one always wants the smaller
value as with AIC. There is a considerable literature comparing AIC and BIC. AIC
has a mild reputation for overestimating the number of parameters required, but is
often argued to have firmer theoretical foundations.

11.1. Model Selection: Which Model Is Best? 250

Worked Example 11.1 AIC and BIC

Write Md for the model that predicts weight from length for the perch dataset
as
∑j=d

j=0 βj length
j . Choose an appropriate value of d ∈ [1, 10] using AIC and

BIC.

Solution: I used the R functions AIC and BIC, and got the table below.
1 2 3 4 5 6 7 8 9 10

AIC 677 617 617 613 615 617 617 612 613 614
BIC 683 625 627 625 629 633 635 633 635 638

The best model by AIC has (rather startlingly!) d = 8. One should not take
small differences in AIC too seriously, so models with d = 4 and d = 9 are fairly
plausible, too. BIC suggests d = 2.

Remember This: AIC and BIC are methods for computing a penalty
that increases as the complexity of the model increases. We choose a model
that gets a low value of penalized negative log-likelihood.

11.1.3 Choosing a Model Using Cross-Validation

AIC and BIC are estimates of error on future data. An alternative is to measure
this error on held-out data, using a cross-validation strategy (as in Sect. 1.1.3). One
splits the training data into F folds, where each data item lies in exactly one fold.
The case F = N is sometimes called “leave-one-out” cross-validation. One then
sets aside one fold in turn, fitting the model to the remaining data, and evaluating
the model error on the left-out fold. The model error is then averaged. This process
gives us an estimate of the performance of a model on held-out data. Numerous
variants are available, particularly when lots of computation and lots of data are
available. For example, one might not average over all folds; one might use fewer
or more folds; and so on.

11.1. Model Selection: Which Model Is Best? 251

Worked Example 11.2 Cross-Validation

Write Md for the model that predicts weight from length for the perch dataset
as
∑j=d

j=0 βj length
j . Choose an appropriate value of d ∈ [1, 10] using leave-one-

out cross-validation.

Solution: I used the R functions CVlm, which takes a bit of getting used to. I
found:

1 2 3 4 5 6 7 8 9 10
1.9e4 4.0e3 7.2e3 4.5e3 6.0e3 5.6e4 1.2e6 4.0e6 3.9e6 1.9e8

where the best model is d = 2.

11.1.4 Greedy Search with Stagewise Regression

Assume we have a set of explanatory variables and we wish to build a model,
choosing some of those variables for our model. Our explanatory variables could
be many distinct measurements, or they could be different non-linear functions of
the same measurement, or a combination of both. We can evaluate models relative
to one another fairly easily (AIC, BIC, or cross-validation, your choice). However,
choosing which set of explanatory variables to use can be quite difficult, because
there are so many sets. The problem is that you cannot predict easily what adding
or removing an explanatory variable will do. Instead, when you add (or remove) an
explanatory variable, the errors that the model makes change, and so the usefulness
of all other variables changes too. This means that (at least in principle) you have
to look at every subset of the explanatory variables. Imagine you start with a
set of F possible explanatory variables (including the original measurement, and
a constant). You don’t know how many to use, so you might have to try every
different group, of each size, and there are far too many groups to try. There are
two useful alternatives.

In forward stagewise regression, you start with an empty working set
of explanatory variables. You then iterate the following process. For each of the
explanatory variables not in the working set, you construct a new model using
the working set and that explanatory variable, and compute the model evaluation
score. If the best of these models has a better score than the model based on the
working set, you insert the appropriate variable into the working set and iterate.
If no variable improves the working set, you decide you have the best model and
stop. This is fairly obviously a greedy algorithm.

Backward stagewise regression is pretty similar, but you start with a
working set containing all the variables, and remove variables one-by-one and greed-
ily. As usual, greedy algorithms are very helpful but not capable of exact optimiza-
tion. Each of these strategies can produce rather good models, but neither is
guaranteed to produce the best model.

11.1. Model Selection: Which Model Is Best? 252

Remember This: Forward and backward stagewise regression are
greedy searches for sets of independent variables that predict effectively. In
forward stagewise regression, one adds variables to a regression; in back-
ward, one removes variables from the regression. Success can be checked
with AIC, BIC, or cross-validation. The search stops when adding (resp.
removing) a variable makes the regression worse.

11.1.5 What Variables Are Important?

Imagine you regress some measure of risk of death against blood pressure, whether
someone smokes or not, and the length of their thumb. Because high blood pressure
and smoking tend to increase risk of death, you would expect to see “large” coeffi-
cients for these explanatory variables. Since changes in the thumb length have no
effect, you would expect to see “small” coefficients for these explanatory variables.
You might think that this suggests a regression can be used to determine what
effects are important in building a model. It can, but doing so correctly involves
serious difficulties that I will not deal with in detail. Instead, I will sketch what
can go wrong so that you’re discouraged from doing this without learning quite a
lot more.

One difficulty is the result of variable scale. If you measure thumb length in
kilometers, the coefficient is likely small; if you measure thumb length in microm-
eters, the coefficient is likely large. But this change has nothing to do with how
important the variable is for prediction. This means that interpreting the coefficient
is tricky.

Another difficulty is the result of sampling variance. Imagine that we have an
explanatory variable that has absolutely no relationship to the dependent variable.
If we had an arbitrarily large amount of data, and could exactly identify the correct
model, we’d find that, in the correct model, the coefficient of that variable was zero.
But we don’t have an arbitrarily large amount of data. Instead, we have a sample
of data. Hopefully, our sample is random so that (with some work) our estimate of
the coefficient is the value of a random variable whose expected value is zero, but
whose variance isn’t. This means we are very unlikely to see a zero, but should see a
value which is a small number of standard deviations away from zero. Dealing with
this requires a way to tell whether the difference between a coefficient and zero is
meaningful, or is just the result of random effects. There is a theory of statistical
significance for regression coefficients, but we have other things to do.

Yet another difficulty has to do with practical significance, and is rather
harder. We could have explanatory variables that are genuinely linked to the inde-
pendent variable, but might not matter very much. This is a common phenomenon,
particularly in medical statistics. It requires considerable care to disentangle some
of these issues. Here is an example. Bowel cancer is a nasty disease, which could
kill you. Being screened for bowel cancer is at best embarrassing and unpleasant,
and involves some startling risks. There is considerable doubt, from reasonable
sources, about whether screening has value and if so, how much (as a start point,

11.2. Robust Regression 253

you could look at Ransohoff DF. “How Much Does Colonoscopy Reduce Colon
Cancer Mortality?” which appears in Ann. Intern. Med. 2009). There is some
evidence linking eating red or processed meat to incidence of bowel cancer. A good
practical question is: should one abstain from eating red or processed meat based
on increased bowel cancer risk?

Coming to an answer is tough; the coefficient in any regression is clearly not
zero, but it’s pretty small. Here are some numbers. The UK population in 2012 was
63.7 million (this is a summary figure from Google, using World Bank data; there’s
no reason to believe that it’s significantly wrong). I obtained the following figures
from the UK cancer research institute website, at http://www.cancerresearchuk.org/
health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer. There
were 41,900 new cases of bowel cancer in the UK in 2012. Of these cases, 43%
occurred in people aged 75 or over. Fifty-seven percent of people diagnosed with
bowel cancer survive for 10 years or more after diagnosis. Of diagnosed cases, an
estimated 21% is linked to eating red or processed meat, and the best current es-
timate is that the risk of incidence is between 17 and 30% higher per 100 g of red
meat eaten per day (i.e., if you eat 100 g of red meat per day, your risk increases
by some number between 17 and 30%; 200 g a day gets you twice that number;
and—rather roughly—so on). These numbers are enough to confirm that there is a
non-zero coefficient linking the amount of red or processed meat in your diet with
your risk of bowel cancer (though you’d have a tough time estimating the exact
value of that coefficient from the information here). If you eat more red meat,
your risk of dying of bowel cancer really will go up. But the numbers I gave above
suggest that (a) it won’t go up much and (b) you might well die rather late in life,
where the chances of dying of something are quite strong. The coefficient linking
eating red meat and bowel cancer is clearly pretty small, because the incidence of
the disease is about 1 in 1500 per year. Does the effect of this link matter enough
to (say) stop eating red or processed meat? you get to choose, and your choice has
consequences.

Remember This: There are serious pitfalls in trying to interpret the
coefficients of a regression. A small coefficient might come from a choice of
scale for the associated variable. A large coefficient might still be the result
of random effects, and assessing whether it requires a model of statistical
significance. Worse, a coefficient might be clearly non-zero, but have little
practical significance. It’s tempting to look at the coefficients and try and
come to conclusions, but you should not do this without much more theory.

11.2 Robust Regression

We have seen that outlying data points can result in a poor model. This is caused by
the squared error cost function: squaring a large error yields an enormous number.
One way to resolve this problem is to identify and remove outliers before fitting a

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer

11.2. Robust Regression 254

model. This can be difficult, because it can be hard to specify precisely when a
point is an outlier. Worse, in high dimensions most points will look somewhat like
outliers, and we may end up removing almost all the data. The alternative solution
I offer here is to come up with a cost function that is less susceptible to problems
with outliers. The general term for a regression that can ignore some outliers is a
robust regression.

11.2.1 M-Estimators and Iteratively Reweighted Least Squares

One way to reduce the effect of outliers on a least squares solution would be to
weight each point in the cost function. We need some method to estimate an
appropriate set of weights. This would use a large weight for errors at points that
are “trustworthy,” and a low weight for errors at “suspicious” points.

We can obtain such weights using an M-estimator, which estimates param-
eters by replacing the negative log-likelihood with a term that is better behaved.
In our examples, the negative log-likelihood has always been squared error. Write
β for the parameters of the model being fitted, and ri(xi, β) for the residual error
of the model on the ith data point. For us, ri will always be yi − xT

i β. So rather
than minimizing ∑

i

(ri(xi, β))
2

as a function of β, we will minimize an expression of the form

∑

i

ρ(ri(xi, β);σ),

for some appropriately chosen function ρ. Clearly, our negative log-likelihood is
one such estimator (use ρ(u;σ) = u2). The trick to M-estimators is to make ρ(u;σ)
look like u2 for smaller values of u, but ensure that it grows more slowly than u2

for larger values of u (Fig. 11.2).
The Huber loss is one important M-estimator. We use

ρ(u;σ) =

{
u2

2 |u | < σ

σ|u | − σ2

2

which is the same as u2 for −σ ≤ u ≤ σ, and then switches to |u | for larger (or
smaller) σ. The Huber loss is convex (meaning that there will be a unique minimum
for our models) and differentiable, but its derivative is not continuous. The choice
of the parameter σ (which is known as scale) has an effect on the estimate. You
should interpret this parameter as the distance that a point can lie from the fitted
function while still being seen as an inlier (anything that isn’t even partially an
outlier) (Fig. 11.3).

Generally, M-estimators are discussed in terms of their influence function.
This is

∂ρ

∂u
.

Its importance becomes evidence when we consider algorithms to fit β̂ using an

11.2. Robust Regression 255

30 40 50 60 70

10
5

20
0

25
0

30
0

35
0

Robust regressions of weight against height,
bodyfat dataset

Height

W
ei

gh
t

RLM, Huber, k2=1e2
LM
LM, outliers excluded

Figure 11.2: Comparing three different linear regression strategies on the bodyfat
data, regressing weight against height. Notice that using an M-estimator gives an
answer very like that obtained by rejecting outliers by hand. The answer may well
be “better” because it isn’t certain that each of the four points rejected is an outlier,
and the robust method may benefit from some of the information in these points.
I tried a range of scales for the Huber loss (the “k2” parameter), but found no
difference in the line resulting over scales varying by a factor of 1e4, which is why
I plot only one scale

M-estimator. Our minimization criterion is

∇β

(
∑

i

ρ(yi − xT
i β;σ)

)
=

∑

i

[
∂ρ

∂u

]
(−xi)

= 0.

Here the derivative ∂ρ
∂u is evaluated at yi − xT

i β, so it is a function of β. Now write
wi(β) for

∂ρ
∂u

yi − xT
i β

(again, where the derivative is evaluated at yi −xT
i β, and so wi is a function of β).

We can write the minimization criterion as
∑

i

[wi(β)]
[
yi − xT

i β
]
[−xi] = 0.

Now write W(β) for the diagonal matrix whose i’th diagonal entry is wi(β). Then
our fitting criterion is equivalent to

X T [W(β)]y = X T [W(β)]Xβ.

The difficulty in solving this is that wi(β) depend on β, so we can’t just solve a

linear system in β. We could use the following strategy. Find some initial β̂(1).

11.2. Robust Regression 256

100 150 200 250 300 350

−2
0

0
20

40
60

80
10

0
12

0

Weight regressed against all for bodyfat,
residual against fitted value,

all points

Fitted value

R
es

id
ua

l

Weight regressed against all for bodyfat,
histogram of residuals,

all points

Residual

Fr
eq

ue
nc

y

100500

0
20

40
60

80
10

0
12

0
Figure 11.3: A robust linear regression of weight against all variables for the bodyfat
dataset, using the Huber loss and all data points. On the left, residual plotted
against fitted value (the residual is not standardized). Notice that there are some
points with very large residual, but most have much smaller residual; this wouldn’t
happen with a squared error. On the right, a histogram of the residual. If one
ignores the extreme residual values, this looks normal. The robust process has been
able to discount the effect of the outliers, without us needing to identify and reject
outliers by hand

Now evaluate W using that estimate, and re-estimate by solving the linear system.
Iterate this until it settles down. This process uses W to downweight points that
are suspiciously inconsistent with our current estimate of β, then update β using
those weights. The strategy is known as iteratively reweighted least squares,
and is very effective.

We assume we have an estimate of the correct parameters β̂(n), and consider
updating it to β̂(n+1). We compute

w
(n)
i = wi(β̂

(n)) =
∂ρ
∂u (yi − xT

i β
(n);σ)

yi − xT
i β̂

(n)
.

We then estimate β̂(n+1) by solving

X TW(n)y = X TW(n)X β̂(n+1).

The key to this algorithm is finding good start points for the iteration. One
strategy is randomized search. We select a small subset of points uniformly at
random, and fit some β̂ to these points, then use the result as a start point. If
we do this often enough, one of the start points will be an estimate that is not
contaminated by outliers.

11.2. Robust Regression 257

Procedure: 11.1 Fitting a Regression with Iteratively Reweighted Least
Squares

Write ri for the residual at the i’th point, yi − xT
i β. Choose an M-

estimator ρ, likely the Huber loss; write wi(β) for

∂ρ
∂u

yi − xT
i β

.

We will minimize ∑

i

ρ(ri(xi, β);σ)

by repeatedly

• finding some initial β̂(1) by selecting a small subset of points uni-
formly at random and fitting a regression to those points;

• iterating the following procedure until the update is very small

1. compute W(n) = diag(wi(β̂
(n)));

2. solve
X TW(n)y = X TW(n)X β̂(n+1)

for β̂(n+1);

• keep the resulting β̂ if
∑

i ρ(ri(xi, β̂);σ) is smaller than any seen
so far.

11.2.2 Scale for M-Estimators

The estimators require a sensible estimate of σ, which is often referred to as scale.
Typically, the scale estimate is supplied at each iteration of the solution method.
One reasonable estimate is the MAD or median absolute deviation, given by

σ(n) = 1.4826 mediani|r(n)i (xi; β̂
(n−1)) |.

Another popular estimate of scale is obtained with Huber’s proposal 2 (that
is what everyone calls it!). Choose some constant k1 > 0, and define Ξ(u) =

min (|u |, k1)2. Now solve the following equation for σ:

∑

i

Ξ

(
r
(n)
i (xi; β̂

(n−1))

σ

)
= Nk2

where k2 is another constant, usually chosen so that the estimator gives the right
answer for a normal distribution (exercises). This equation needs to be solved with
an iterative method; the MAD estimate is the usual start point. R provides hubers,
which will compute this estimate of scale (and figures out k2 for itself). The choice
of k1 depends somewhat on how contaminated you expect your data to be. As
k1 → ∞, this estimate becomes more like the standard deviation of the data.

11.3. Generalized Linear Models 258

11.3 Generalized Linear Models

We have used a linear regression to predict a value from a feature vector, but
implicitly have assumed that this value is a real number. Other cases are important,
and some of them can be dealt with using quite simple generalizations of linear
regression. When we derived linear regression, I said one way to think about the
model was

y = xTβ + ξ

where ξ was a normal random variable with zero mean and variance σ2
ξ . Another

way to write this is to think of y as the value of a random variable Y . In this case,
Y has mean xTβ and variance σ2

ξ . This can be written as

Y ∼ N(xTβ, σ2
ξ).

This offers a fruitful way to generalize: we replace the normal distribution with
some other parametric distribution, and predict the parameter of that distribution
using xTβ. This is a generalized linear model or GLM. Three examples are
particularly important.

11.3.1 Logistic Regression

Assume the y values can be either 0 or 1. You could think of this as a two-class clas-
sification problem, and deal with it using an SVM. There are sometimes advantages
to seeing it as a regression problem. One is that we get to see a new classification
method that explicitly models class posteriors, which an SVM doesn’t do.

We build the model by asserting that the y values represent a draw from a
Bernoulli random variable (definition below, for those who have forgotten). The
parameter of this random variable is θ, the probability of getting a one. But
0 ≤ θ ≤ 1, so we can’t just model θ as xTβ. We will choose some link function
g so that we can model g(θ) as xTβ. This means that, in this case, g must map
the interval between 0 and 1 to the whole line, and must be 1–1. The link function
maps θ to xTβ; the direction of the map is chosen by convention. We build our
model by asserting that g(θ) = xTβ.

Remember This: A generalized linear model predicts the parameter
of a probability distribution from a regression. The link function ensures
that the prediction of the regression meets the constraints required by the
distribution.

Useful Fact: 11.1 Definition: Bernoulli Random Variable

A Bernoulli random variable with parameter θ takes the value 1 with
probability θ and 0 with probability 1 − θ. This is a model for a coin
toss, among other things.

11.3. Generalized Linear Models 259

Notice that, for a Bernoulli random variable, we have that

log

[
P (y = 1|θ)
P (y = 0|θ)

]
= log

[
θ

1− θ

]

and the logit function g(u) = log
[

u
1−u

]
meets our needs for a link function (it

maps the interval between 0 and 1 to the whole line, and is 1–1). This means we
can build our model by asserting that

log

[
P (y = 1|x)
P (y = 0|x)

]
= xTβ

then solving for the β that maximizes the log-likelihood of the data. Simple ma-
nipulation yields

P (y = 1|x) = ex
T β

1 + exT β
and P (y = 0|x) = 1

1 + exT β
.

In turn, this means the log-likelihood of a dataset will be

L(β) =
∑

i

[
I[y=1](yi)x

T
i β − log

(
1 + ex

T
i β
)]

.

You can obtain β from this log-likelihood by gradient ascent (or rather a lot faster
by Newton’s method, if you know that).

A regression of this form is known as a logistic regression. It has the
attractive property that it produces estimates of posterior probabilities. Another
interesting property is that a logistic regression is a lot like an SVM. To see this,
we replace the labels with new ones. Write ŷi = 2yi − 1; this means that ŷi takes
the values −1 and 1, rather than 0 and 1. Now I[y=1](yi) =

ŷi+1
2 , so we can write

−L(β) = −
∑

i

[
ŷi + 1

2
xT
i β − log

(
1 + ex

T
i β
)]

=
∑

i

[
−
(
ŷi + 1

2
xT
i β

)
+ log

(
1 + ex

T
i β
)]

=
∑

i

[
log

(
1 + ex

T
i β

e
ŷi+1

2 xT
i
β

)]

=
∑

i

[
log

(
e

−(ŷi+1)

2 xT
i β + e

1−ŷi
2 xT

i β
)]

and we can interpret the term in square brackets as a loss function. If you plot
it, you will notice that it behaves rather like the hinge loss. When ŷi = 1, if xTβ
is positive, the loss is very small, but if xTβ is strongly negative, the loss grows
linearly in xTβ. There is similar behavior when ŷi = −1. The transition is smooth,
unlike the hinge loss. Logistic regression should (and does) behave well for the same
reasons the SVM behaves well.

11.3. Generalized Linear Models 260

Be aware that logistic regression has one annoying quirk. When the data
are linearly separable (i.e., there exists some β such that yix

T
i β > 0 for all data

items), logistic regression will behave badly. To see the problem, choose the β that
separates the data. Now it is easy to show that increasing the magnitude of β will
increase the log-likelihood of the data; there isn’t any limit. These situations arise
fairly seldom in practical data.

Remember This: Logistic regression predicts the probability that a
Bernoulli random variable is one using a logit link function. The result is
a binary classifier whose loss is very similar to a hinge loss.

11.3.2 Multiclass Logistic Regression

Imagine y ∈ [0, 1, . . . , C − 1]. Then it is natural to model p(y|x) with a dis-
crete probability distribution on these values. This can be specified by choosing
(θ0, θ1, . . . , θC−1) where each term is between 0 and 1 and

∑
i θi = 1. Our link

function will need to map this constrained vector of θ values to a �C−1. We can
do this with a fairly straightforward variant of the logit function, too. Notice that
there are C−1 probabilities we need to model (the C’th comes from the constraint∑

i θi = 1). We choose one vector β for each probability, and write βi for the vector
used to model θi. Then we can write

xTβi = log

(
θi

1−
∑

u θu

)

and this yields the model

P (y = 0|x, β) =
ex

T β0

1 +
∑

i e
xT βi

P (y = 1|x, β) =
ex

T β1

1 +
∑

i e
xT βi

. . .

P (y = C − 1|x, β) =
1

1 +
∑

i e
xT βi

and we would fit this model using maximum likelihood. The likelihood is easy to
write out, and gradient descent is a good strategy for actually fitting models.

Remember This: Multiclass logistic regression predicts a multinomial
distribution using a logit link function. The result is an important multiclass
classifier.

11.3. Generalized Linear Models 261

11.3.3 Regressing Count Data

Now imagine that the yi values are counts. For example, yi might have the count
of the number of animals caught in a small square centered on xi in a study region.
As another example, xi might be a set of features that represent a customer, and
yi might be the number of times that customer bought a particular product. The
natural model for count data is a Poisson model, with parameter θ representing the
intensity (reminder below).

Useful Fact: 11.2 Definition: Poisson Distribution

A non-negative, integer valued random variable X has a Poisson distri-
bution when its probability distribution takes the form

P ({X = k}) = θke−θ

k!
,

where θ > 0 is a parameter often known as the intensity of the distri-
bution.

Now we need θ > 0. A natural link function is to use

xTβ = log θ

yielding a model

P ({X = k}) = ekx
T βe−ex

T β

k!
.

Now assume we have a dataset. The negative log-likelihood can be written as

−L(β) = −
∑

i

log

⎛

⎝eyix
T
i βe−e

xT
i

β

yi!

⎞

⎠

= −
∑

i

(
yix

T
i β − ex

T
i β − log(yi!)

)
.

There isn’t a closed form minimum available, but the log-likelihood is convex, and
gradient descent (or Newton’s method) is enough to find a minimum. Notice that
the log(yi!) term isn’t relevant to the minimization, and is usually dropped.

Remember This: You can predict count data with a GLM by predicting
the parameter of a Poisson distribution with an exponential link function.

11.4. L1 Regularization and Sparse Models 262

11.3.4 Deviance

Cross-validating a model is done by repeatedly splitting a dataset into two pieces,
training on one, evaluating some score on the other, and averaging the score. But
we need to keep track of what to score. For earlier linear regression models (e.g.,
Sect. 11.1), we have used the squared error of predictions. This doesn’t really make
sense for a generalized linear model, because predictions are of quite different form.
It is usual to use the deviance of the model. Write yt for the true prediction at
a point, xp for the independent variables we want to obtain a prediction for, β̂ for

our estimated parameters; a generalized linear model yields P (y|xp, β̂). For our
purposes, you should think of the deviance as

−2 logP (yt|xp, β̂)

(this expression is sometimes adjusted in software to deal with extreme cases, etc.).
Notice that this is quite like the least squares error for the linear regression case,
because there

−2 logP (y|xp, β̂) = (xT
p β̂ − yt)

2/σ2 +K

for K some constant.

Remember This: Evaluate a GLM with the model’s deviance.

11.4 L1 Regularization and Sparse Models

Forward and backward stagewise regression were strategies for adding independent
variables to, or removing independent variables from, a model. An alternative, and
very powerful, strategy is to construct a model with a method that forces some
coefficients to be zero. The resulting model ignores the corresponding independent
variables. Models built this way are often called sparse models, because (one
hopes) that many independent variables will have zero coefficients, and so the model
is using a sparse subset of the possible predictors.

In some situations, we are forced to use a sparse model. For example, imagine
there are more independent variables than there are examples. In this case, the
matrix X TX will be rank deficient. We could use a ridge regression (Sect. 10.4.2)
and the rank deficiency problem will go away, but it would be hard to trust the
resulting model, because it will likely use all the predictors (more detail below).
We really want a model that uses a small subset of the predictors. Then, because
the model ignores the other predictors, there will be more examples than there are
predictors that we use.

There is now quite a strong belief among practitioners that using sparse mod-
els is the best way to deal with high dimensional problems (although there are lively
debates about which sparse model to use, etc.). This is sometimes called the “bet
on sparsity” principle: use a sparse model for high dimensional data, because dense
models don’t work well for such problems.

11.4. L1 Regularization and Sparse Models 263

11.4.1 Dropping Variables with L1 Regularization

We have a large set of explanatory variables, and we would like to choose a small
set that explains most of the variance in the independent variable. We could do
this by encouraging β to have many zero entries. In Sect. 10.4.2, we saw we could
regularize a regression by adding a term to the cost function that discouraged large
values of β. Instead of solving for the value of β that minimized

∑
i(yi − xT

i β)
2 =

(y −Xβ)T (y −Xβ) (which I shall call the error cost), we minimized

∑

i

(yi − xT
i β)

2 +
λ

2
βTβ = (y −Xβ)T (y −Xβ) +

λ

2
βTβ

(which I shall call the L2 regularized error). Here λ > 0 was a constant chosen
by cross-validation. Larger values of λ encourage entries of β to be small, but do
not force them to be zero. The reason is worth understanding.

Write βk for the kth component of β, and write β−k for all the other compo-
nents. Now we can write the L2 regularized error as a function of βk:

(a+ λ)β2
k − 2b(β−k)βk + c(β−k)

where a is a function of the data and b and c are functions of the data and of β−k.
Now notice that the best value of βk will be

βk =
b(β−k)

(a+ λ)
.

Notice that λ doesn’t appear in the numerator. This means that, to force βk to
zero by increasing λ, we may have to make λ arbitrarily large. This is because
the improvement in the penalty obtained by going from a small βk to βk = 0 is
tiny—the penalty is proportional to β2

k.
To force some components of β to zero, we need a penalty that grows linearly

around zero rather than quadratically. This means we should use the L1 norm of
β, given by

||β ||1 =
∑

k

|βk |.

To choose β, we must now solve

(y −Xβ)T (y −Xβ) + λ||β ||1

for an appropriate choice of λ. An equivalent problem is to solve a constrained
minimization problem, where one minimizes

(y −Xβ)T (y −Xβ) subject to ||β ||1 ≤ t

where t is some value chosen to get a good result, typically by cross-validation.
There is a relationship between the choice of t and the choice of λ (with some
thought, a smaller t will correspond to a bigger λ) but it isn’t worth investigating
in any detail.

Actually solving this system is quite involved, because the cost function is not
differentiable. You should not attempt to use stochastic gradient descent, because

11.4. L1 Regularization and Sparse Models 264

this will not compel zeros to appear in β̂. There are several methods, which are
beyond our scope. As the value of λ increases, the number of zeros in β̂ will increase
too. We can choose λ in the same way we used for classification; split the training
set into a training piece and a validation piece, train for different values of λ, and
test the resulting regressions on the validation piece. The family of solutions β̂(λ)
for all values of λ ≥ 0 is known as the regularization path. One consequence
of modern methods is that we can generate a very good approximation to the
regularization path about as easily as we can get a solution for a single value of
λ. As a result, cross-validation procedures for choosing λ are efficient.

Remember This: An L1 regularization penalty encourages models to
have zero coefficients. The optimization problem that results is quite spe-
cialized. A strong approximation to the regularization path can be produced
relatively easily, so cross-validation to choose λ is efficient.

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

−2 −1 0 1 2 3

0
20

0
40

0
60

0

10 10 10 10 10 10 9 9 9 9 9 8 6 4 4 2 2 1

−2 −1 0 1 2 3

0
20

0
40

0
60

0
80

0
10

00

14 14 14 13 13 13 13 11 10 9 9 6 5 4 4 2 2 1

Figure 11.4: Plots of mean-squared error as a function of log regularization parameter
(i.e., log λ) for a regression of weight against all variables for the bodyfat dataset
using an L1 regularizer (i.e., a lasso). These plots show mean-squared error averaged
over cross-validation folds with a vertical one standard deviation bar. On the left,
the plot for the dataset with the six outliers identified in Fig. 10.15 removed. On
the right, the plot for the whole dataset. Notice how the outliers increase the
variability of the error, and the best error. The top row of numbers gives the
number of non-zero components in β̂. Notice how as λ increases, this number falls
(there are 15 explanatory variables, so the largest model would have 15 variables).
The penalty ensures that explanatory variables with small coefficients are dropped
as λ gets bigger

11.4. L1 Regularization and Sparse Models 265

One way to understand the models that result is to look at the behavior
of cross-validated error as λ changes. The error is a random variable, random
because of the random split. It is a fair model of the error that would occur on
a randomly chosen test example (assuming that the training set is “like” the test
set, in a way that I do not wish to make precise yet). We could use multiple splits,
and average over the splits. Doing so yields both an average error for each value
of λ and an estimate of the standard deviation of error. Figure 11.4 shows the
result of doing so for two datasets. Again, there is no λ that yields the smallest
validation error, because the value of error depends on the random split cross-
validation. A reasonable choice of λ lies between the one that yields the smallest
error encountered (one vertical line in the plot) and the largest value whose mean
error is within one standard deviation of the minimum (the other vertical line in

the plot). It is informative to keep track of the number of zeros in β̂ as a function
of λ, and this is shown in Fig. 11.4.

Worked Example 11.3 Building an L1 Regularized Regression

Fit a linear regression to the bodyfat dataset, predicting weight as a function of
all variables, and using the lasso to regularize. How good are the predictions?
Do outliers affect the predictions?

Solution: I used the glmnet package, and I benefited a lot from example
code by Trevor Hastie and Junyang Qian and published at https://web.stanford.
edu/∼hastie/glmnet/glmnet alpha.html. I particularly like the R version; on my
computer, the Matlab version occasionally dumps core, which is annoying. You
can see from Fig. 11.4 that (a) for the case of outliers removed, the predictions
are very good and (b) the outliers create problems. Note the magnitude of the
error, and the low variance, for good cross-validated choices.

Another way to understand the models is to look at how β̂ changes as λ
changes. We expect that, as λ gets smaller, more and more coefficients become
non-zero. Figure 11.5 shows plots of coefficient values as a function of log λ for a
regression of weight against all variables for the bodyfat dataset, penalized using
the L1 norm. For different values of λ, one gets different solutions for β̂. When
λ is very large, the penalty dominates, and so the norm of β̂ must be small. In
turn, most components of β̂ are zero. As λ gets smaller, the norm of β̂ falls
and some components of become non-zero. At first glance, the variable whose
coefficient grows very large seems important. Look more carefully, this is the last
component introduced into the model. But Fig. 11.4 implies that the right model
has 7 components. This means that the right model has log λ ≈ 1.3, the vertical
line shown in the detailed figure. In the best model, that coefficient is in fact zero.

The L1 norm can sometimes produce an impressively small model from a
large number of variables. In the UC Irvine Machine Learning repository, there is
a dataset to do with the geographical origin of music (https://archive.ics.uci.edu/

https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music

11.4. L1 Regularization and Sparse Models 266

Log Lambda

C
oe

ffi
ci

en
ts

−3 −2 −1 0 1 2 3 −2 −1 0 1 2 3 4

Log Lambda

C
oe

ffi
ci

en
ts

0
10

20
30

40

14 14 13 11 9 5 2

0
2

4
6

8
10

14 13 11 9 5 2 0

Figure 11.5: Plots of coefficient values as a function of log λ for a regression of weight
against all variables for the bodyfat dataset, penalized using the L1 norm. In each
case, the six outliers identified in Fig. 10.15 were removed. On the left, the plot of
the whole path for each coefficient (each curve is one coefficient). On the right, a
detailed version of the plot. The vertical line shows the value of log λ that produces
the model with smallest cross-validated error (look at Fig. 11.4). Notice that the
variable that appears to be important, because it would have a large weight with
λ = 0, does not appear in this model.

ml/datasets/Geographical+Original+of+Music). The dataset was prepared by Fang
Zhou, and donors were Fang Zhou, Claire Q, and Ross D. King. Further details
appear on that webpage, and in the paper: “Predicting the Geographical Origin
of Music” by Fang Zhou, Claire Q, and Ross D. King, which appeared at ICDM
in 2014. There are two versions of the dataset. One has 116 explanatory variables
(which are various features representing music), and 2 independent variables (the
latitude and longitude of the location where the music was collected). Figure 11.6
shows the results of a regression of latitude against the independent variables using
L1 regularization. Notice that the model that achieves the lowest cross-validated
prediction error uses only 38 of the 116 variables.

Regularizing a regression with the L1 norm is sometimes known as a lasso. A
nuisance feature of the lasso is that, if several explanatory variables are correlated,
it will tend to choose one for the model and omit the others (example in exercises).
This can lead to models that have worse predictive error than models chosen using
the L2 penalty. One nice feature of good minimization algorithms for the lasso is
that it is easy to use both an L1 penalty and an L2 penalty together. One can form

(
1

N

)(∑

i

(yi − xT
i β)

2

)
+ λ

(
(1− α)

2
||β ||22 + α||β ||1

)

Error + Regularizer

where one usually chooses 0 ≤ α ≤ 1 by hand. Doing so can both discourage large
values in β and encourage zeros. Penalizing a regression with a mixed norm like this

https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music

11.4. L1 Regularization and Sparse Models 267

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

Log Lambda

C
oe

ffi
ci

en
ts

−6 −4 −2 0 2

28
0

30
0

32
0

34
0

36
0 88 88 88 85 83 76 74 72 61 48 28 20 15 13 63 0

−6 −4 −2 0 2

−1
0

−5
0

5
10

88 77 57 15 0

Figure 11.6: Mean-squared error as a function of log regularization parame-
ter (i.e., log λ) for a regression of latitude against features describing mu-
sic (details in text), using the dataset at https://archive.ics.uci.edu/ml/datasets/
Geographical+Original+of+Music and penalized with the L1 norm. The plot on the
left shows mean-squared error averaged over cross-validation folds with a vertical
one standard deviation bar. The top row of numbers gives the number of non-zero
components in β̂. Notice how as λ increases, this number falls. The penalty ensures
that explanatory variables with small coefficients are dropped as λ gets bigger. On
the right, a plot of the coefficient values as a function of log λ for the same re-
gression. The vertical line shows the value of log λ that produces the model with
smallest cross-validated error. Only 38 of 116 explanatory variables are used by
this model

is sometimes known as elastic net. It can be shown that regressions penalized with
elastic net tend to produce models with many zero coefficients, while not omitting
correlated explanatory variables. All the computation can be done by the glmnet

package in R (see exercises for details).

11.4.2 Wide Datasets

Now imagine we have more independent variables than examples (this is some-
times referred to as a “wide” dataset). This occurs quite often for a wide range
of datasets; it’s particularly common for biological datasets and natural language
datasets. Unregularized linear regression must fail, because X TX must be rank
deficient. Using an L2 (ridge) regularizer will produce an answer that should seem
untrustworthy. The estimate of β is constrained by the data in some directions,
but in other directions it is constrained only by the regularizer.

An estimate produced by L1 (lasso) regularization should look more reliable to
you. Zeros in the estimate of β mean that the corresponding independent variables

https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music

11.4. L1 Regularization and Sparse Models 268

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or alpha=1

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or alpha=.5

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or alpha=0

0.
0

0.
5

1.
0

1.
5

2.
0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or alpha=1

alpha=.5
alpha=.1

0.
5

1.
0

1.
5

2.
0

2.
5

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

−4 −3 −2 −1 0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

14 10 10 8 7 4 4 3 2 1 1

−3 −2 −1 0 1

29 27 26 25 17 14 13 7 7

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

55 54 51 42 37 33 24 13 9

−4 −3 −2 −1 0 3 4 5 6 7

401 401 401 401 401 401 401 401 401 401 401 401 401

alpha=0 (ridge)

Figure 11.7: On the left, a comparison between three values of α in a glmnet

regression predicting octane from NIR spectra (see Example 11.4). The plots show
cross-validated error against log regularization coefficient for α = 1 (lasso) and two
elastic net cases, α = 0.5 and α = 0.1. I have plotted these curves separately,
with error bars, and on top of each other but without error bars. The values on
top of each separate plot show the number of independent variables with non-zero
coefficients in the best model with that regularization parameter. On the right, a
ridge regression for comparison. Notice that the error is considerably larger, even
at the best value of the regularization parameter

are ignored. Now if there are many zeros in the estimate of β, the model is being
fit with a small subset of the independent variables. If this subset is small enough,
then the number of independent variables that are actually being used is smaller
than the number of examples. If the model gives low enough error, it should seem
trustworthy in this case. There are some hard questions to face here (e.g., does the
model choose the “right” set of variables?) that we can’t deal with.

Remember This: The lasso can produce impressively small models,
and handles wide datasets very well.

11.4. L1 Regularization and Sparse Models 269

Worked Example 11.4 L1 Regularized Regression for a “Wide” Dataset

The gasoline dataset has 60 examples of near infrared spectra for gasoline of
different octane ratings. The dataset is due to John H. Kalivas, and was orig-
inally described in the article “Two Data Sets of Near Infrared Spectra,” in
the journal Chemometrics and Intelligent Laboratory Systems, vol. 37, pp.
255–259, 1997. Each example has measurements at 401 wavelengths. I found
this dataset in the R library pls. Fit a regression of octane against infrared
spectrum using L1 regularized logistic regression.

Solution: I used the glmnet package, and I benefited a lot from example code
by Trevor Hastie and Junyang Qian and published at https://web.stanford.edu/
∼hastie/glmnet/glmnet alpha.html. The package will do ridge, lasso, and elastic
net regressions. One adjusts a parameter in the function call, α, that balances
the terms; α = 0 is ridge and α = 1 is lasso. Not surprisingly, the ridge isn’t
great. I tried α = 0.1, α = 0.5, and α = 1. Results in Fig. 11.7 suggest fairly
strongly that very good predictions should be available with the lasso using
quite a small regularization constant; there’s no reason to believe that the best
ridge models are better than the best elastic net models, or vice versa. The
models are very sparse (look at the number of variables with non-zero weights,
plotted on the top).

log(Lambda)

M
ul

tin
om

ia
l D

ev
ia

nc
e

log(Lambda)

M
ul

tin
om

ia
l D

ev
ia

nc
e

−10 −8 −6 −4 −2

1
2

3
4

136 127 120 107 96 83 76 62 53 42 32 25 16 8 0 0

−10 −8 −6 −4 −2

1
2

3
4

177 167 152 133 118 100 85 78 64 53 45 30 21 1 0

Figure 11.8: Multiclass logistic regression on the MNIST dataset, using a lasso and
elastic net regularizers. On the left, deviance of held-out data on the digit dataset
(Worked Example 11.5), for different values of the log regularization parameter
in the lasso case. On the right, deviance of held-out data on the digit dataset
(Worked Example 11.5), for different values of the log regularization parameter in
the elastic net case, α = 0.5

https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html

11.4. L1 Regularization and Sparse Models 270

11.4.3 Using Sparsity Penalties with Other Models

A really nice feature of using an L1 penalty to enforce sparsity in a model is that
it applies to a very wide range of models. For example, we can obtain a sparse
SVM by replacing the L2 regularizer with an L1 regularizer. Most SVM packages
will do this for you, although I’m not aware of any compelling evidence that this
produces an improvement in most cases. All of the generalized linear models I
described can be regularized with an L1 regularizer. For these cases, glmnet will
do the computation required. The worked example shows using a multinomial (i.e.,
multiclass) logistic regression with an L1 regularizer.

Worked Example 11.5 Multiclass Logistic Regression with an L1 Regu-
larizer

The MNIST dataset consists of a collection of handwritten digits, which must
be classified into 10 classes (0, . . . , 9). There is a standard train/test split.
This dataset is often called the zip code dataset because the digits come from
zip codes, and has been quite widely studied. Yann LeCun keeps a record
of the performance of different methods on this dataset at http://yann.lecun.
com/exdb/mnist/. Obtain the Zip code dataset from http://statweb.stanford.
edu/∼tibs/ElemStatLearn/, and use a multiclass logistic regression with an L1
regularizer to classify it.

Solution: The dataset is rather large, and on my computer the fitting process
takes a little time. Figure 11.8 shows what happens with the lasso, and with
elastic net with α = 0.5 on the training set, using glmnet to predict and
cross-validation to select λ values. For the lasso, I found an error rate on the
held-out data of 8.5%, which is OK, but not great compared to other methods.
For elastic net, I found a slightly better error rate (8.2%); I believe even lower
error rates are possible with these codes.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/

11.5. You Should 271

11.5 You Should

11.5.1 Remember These Terms

irreducible error . 246
bias . 246
variance . 246
AIC . 248
BIC . 249
forward stagewise regression . 251
Backward stagewise regression . 251
statistical significance . 252
robust regression . 254
Huber loss . 254
scale . 254
inlier . 254
iteratively reweighted least squares 256
MAD . 257
median absolute deviation . 257
Huber’s proposal 2 . 257
generalized linear model . 258
GLM . 258
link function . 258
logit function . 259
logistic regression . 259
intensity . 261
deviance . 262
sparse models . 262
error cost . 263
L2 regularized error . 263
regularization path . 264
regularization path . 264
lasso . 266
elastic net . 267

11.5.2 Remember These Facts

Three kinds of error: irreducible, bias and variance 248
AIC and BIC . 250
Stagewise regressions are greedy searches 252
Interpreting regression coefficients is harder than you think 253
Generalize linear regression with a GLM 258
Definition: Bernoulli Random Variable 259
Logistic regression is one useful GLM 260
Multiclass logistic regression is another useful GLM 260
Definition: Poisson Distribution . 261
Predict count data with a GLM . 261
Evaluate a GLM with the model’s deviance 262

11.5. You Should 272

An L1 regularization penalty encourages zeros in models 264
Use the lasso . 268

11.5.3 Remember These Procedures

Fitting a Regression with Iteratively Reweighted Least Squares . . . 257

11.5. You Should 273

Problems

Programming Exercises

11.1. This is an extension of the previous exercise. At https://archive.ics.uci.edu/
ml/machine-learning-databases/housing/housing.data, you will find the famous
Boston Housing dataset. This consists of 506 data items. Each is 13 mea-
surements, and a house price. The data was collected by Harrison, D. and
Rubinfeld, D.L in the 1970s (a date which explains the very low house prices).
The dataset has been widely used in regression exercises, but seems to be
waning in popularity. At least one of the independent variables measures the
fraction of population nearby that is “Black” (their word, not mine). This
variable appears to have had a significant effect on house prices then (and,
sadly, may still now). Hint: you really shouldn’t write your own code; I used
rlm and boxcox in R for this.
(a) Use Huber’s robust loss and iteratively reweighted least squares to regress

the house price against all other variables. How well does this regression
compare to the regression obtained by removing outliers and Box-Coxing,
above?

(b) As you should have noticed, the Box-Cox transformation can be quite
strongly affected by outliers. Remove up to six outliers from this dataset
using a diagnostic plot, then estimate the Box-Cox transformation. Now
transform the dependent variable, and use Huber’s robust loss and itera-
tively reweighted least squares to regress the transformed variable against
all others using all data (i.e., put the outliers you removed to compute
a Box-Cox transformation back into the regression). How does this re-
gression compare to the regression in the previous subexercise, and to the
regression obtained by removing outliers and Box-Coxing, above?

11.2. UC Irvine hosts a dataset of blog posts at https://archive.ics.uci.edu/ml/datasets/
BlogFeedback. There are 280 independent features which measure various
properties of the blog post. The dependent variable is the number of com-
ments that the blog post received in the 24 h after a base time. The zip file
that you download will have training data in blogData train.csv, and test
data in a variety of files named blogData test-*.csv.
(a) Predict the dependent variable using all features, a generalized linear

model (I’d use a Poisson model, because these are count variables), and
the lasso. For this exercise, you really should use glmnet in R. Produce
a plot of the cross-validated deviance of the model against the regular-
ization variable (cv.glmnet and plot will do this for you). Use only the
data in blogData train.csv.

(b) Your cross-validated plot of deviance likely doesn’t mean all that much to
you, because the deviance of a Poisson model takes a bit of getting used to.
Choose a value of the regularization constant that yields a strong model,
at least by the deviance criterion. Now produce a scatterplot of true values
vs predicted values for data in blogData train.csv. How well does this
regression work? keep in mind that you are looking at predictions on the
training set.

(c) Choose a value of the regularization constant that yields a strong model,
at least by the deviance criterion. Now produce a scatterplot of true values
vs predicted values for data in blogData test-*.csv. How well does this
regression work?

(d) Why is this regression difficult?

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data
https://archive.ics.uci.edu/ml/datasets/BlogFeedback
https://archive.ics.uci.edu/ml/datasets/BlogFeedback

11.5. You Should 274

11.3. At http://genomics-pubs.princeton.edu/oncology/affydata/index.html, you will
find a dataset giving the expression of 2000 genes in tumor and normal colon
tissues. Build a logistic regression of the label (normal vs tumor) against the
expression levels for those genes. There are a total of 62 tissue samples, so
this is a wide regression. For this exercise, you really should use glmnet in
R. Produce a plot of the classification error of the model against the regular-
ization variable (cv.glmnet—look at the type.measure argument—and plot

will do this for you). Compare the prediction of this model with the baseline
of predicting the most common class.

11.4. The Jackson lab publishes numerous datasets to do with genetics and phe-
notypes of mice. At https://phenome.jax.org/projects/Crusio1, you can find a
dataset giving the strain of a mouse, its gender, and various observations (click
on the “Downloads” button). These observations are of body properties like
mass, behavior, and various properties of the mouse’s brain.
(a) We will predict the gender of a mouse from the body properties and the

behavior. The variables you want are columns 4 through 41 of the dataset
(or bw to visit time d3 d5; you shouldn’t use the id of the mouse). Read
the description; I’ve omitted the later behavioral measurements because
there are many N/A’s. Drop rows with N/A’s (there are relatively few).
How accurately can you predict gender using these measurements, using
a logistic regression and the lasso? For this exercise, you really should
use glmnet in R. Produce a plot of the classification error of the model
against the regularization variable (cv.glmnet—look at the type.measure
argument—and plot will do this for you). Compare the prediction of this
model with the baseline of predicting the most common gender for all
mice.

(b) We will predict the strain of a mouse from the body properties and the
behavior. The variables you want are columns 4 through 41 of the dataset
(or bw to visit time d3 d5; you shouldn’t use the id of the mouse). Read
the description; I’ve omitted the later behavioral measurements because
there are many N/A’s. Drop rows with N/A’s (there are relatively few).
This exercise is considerably more elaborate than the previous, because
multinomial logistic regression does not like classes with few examples.
You should drop strains with fewer than 10 rows. How accurately can you
predict strain using these measurements, using multinomial logistic regres-
sion and the lasso? For this exercise, you really should use glmnet in R.
Produce a plot of the classification error of the model against the regular-
ization variable (cv.glmnet—look at the type.measure argument—and
plot will do this for you). Compare the prediction of this model with the
baseline of predicting a strain at random.

This data was described in a set of papers produced by this laboratory, and
they like users to cite the papers. Papers are

• Delprato A, Bonheur B, Algéo MP, Rosay P, Lu L, Williams RW, Crusio
WE. Systems genetic analysis of hippocampal neuroanatomy and spatial
learning in mice. Genes Brain Behav. 2015 Nov;14(8):591–606.

• Delprato A, Algéo MP, Bonheur B, Bubier JA, Lu L, Williams RW,
Chesler EJ, Crusio WE. QTL and systems genetics analysis of mouse
grooming and behavioral responses to novelty in an open field. Genes
Brain Behav. 2017 Nov;16(8):790–799.

• Delprato A, Bonheur B, Algéo MP, Murillo A, Dhawan E, Lu L, Williams
RW, Crusio WE. A QTL on chromosome 1 modulates inter-male aggres-
sion in mice. Genes Brain Behav. 2018 Feb 19.

http://genomics-pubs.princeton.edu/oncology/affydata/index.html
https://phenome.jax.org/projects/Crusio1

C H A P T E R 12

Boosting

The following idea may have occurred to you after reading the chapter on
regression. Imagine you have a regression that makes errors. You could try to
produce a second regression that fixes those errors. You may have dismissed this
idea, though, because if one uses only linear regressions trained using least squares,
it’s hard to see how to build a second regression that fixes the first regression’s
errors.

Many people have a similar intuition about classification. Imagine you have
trained a classifier. You could try to train a second classifier to fix errors made by
the first. There doesn’t seem to be any reason to stop there, and you might try
and train a third classifier to fix errors made by the first and the second, and so on.
The details take some work, as you would expect. It isn’t enough to just fix errors.
You need some procedure to decide what the overall prediction of the system of
classifiers is, and you need some way to be confident that the overall prediction will
be better than the prediction produced by the initial classifier.

It is fruitful to think about correcting earlier predictions with a new set. I will
start with a simple version that can be used to avoid linear algebra problems for
least squares linear regression. Each regression will see different features from the
previous regressions, so there is a prospect of improving the model. This approach
extends easily to cover regressions that use something other than a linear function
to predict values (I use a tree as an example).

Getting the best out of the idea requires some generalization. Regression
builds a function that accepts features and produces predictions. So does classifi-
cation. A regressor accepts features and produces numbers (or, sometimes, more
complicated objects like vectors or trees, though we haven’t talked about that
much). A classifier accepts features and produces labels. We generalize, and call
any function that accepts a feature and produces predictions a predictor. Pre-
dictors are trained using losses, and the main difference between a classifier and a
regressor is the loss used to train the predictor.

We will build an optimal predictor as a sum of less ambitious predictors, often
known as weak learners. We will build the optimal predictor incrementally using
a greedy method, where we construct a new weak learner to improve over the sum
of all previous weak learners, without adjusting the old ones. This process is called
boosting. Setting this up will take some work, but it is worth doing, as we then
have a framework makes it possible to boost a very wide range of classifiers and
regressors. Boosting is particularly attractive when one has a weak learner that is
simple and easy to train; one can often produce a predictor that is very accurate
and can be evaluated very fast.

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 12

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_12

12.1. Greedy and Stagewise Methods for Regression 276

12.1 Greedy and Stagewise Methods for Regression

The place to start is linear regression. We will assume that we have so many
features that we cannot solve the linear algebra problem resulting from least squares
regression. Recall to build a linear regression of y against some high dimensional
vector x (using the notation of Chap. 10), we will need to solve

X TXβ = X Ty

but this might be hard to do if X was really big. You’re unlikely to see many
problems where this really occurs, because modern software and hardware are very
efficient in dealing with even enormous linear algebra problems. However, thinking
about this case is very helpful. What we could do is choose some subset of the
features to work with, to obtain a smaller problem, solve that, and go again.

12.1.1 Example: Greedy Stagewise Linear Regression

Write x(i) for the i’th subset of features. For the moment, we will assume this is a
small set of features and worry about how to choose the set later. Write X (i) for
the matrix constructed out of these features, etc. Now we regress y against X (1).
This chooses the β̂(1) that minimizes the squared length of the residual vector

e(1) = y −X (1)β̂(1).

We obtain this β̂(1) by solving

(
X (1)

)T
X (1)β̂(1) =

(
X (1)

)T
y.

We would now like to obtain an improved predictor by using more features in
some way. We will build an improved predictor by adding some linear function of
these new features to the original predictor. There are some important constraints.
The improved predictor should correct errors made by the original predictor, but
we do not want to change the original predictor. One reason not to is that we are
building a second linear function to avoid solving a large linear algebra problem.
Adjusting the original predictor at the same time will land us back where we started
(with a large linear algebra problem).

To build the improved predictor, form X (2) out of these features. The im-
proved predictor will be

X (1)β̂(1) + X (2)β(2).

We do not want to change β̂(1) and so we want to minimize

(
y −

[
X (1)β̂(1) + X (2)β(2)

])T (
y −

[
X (1)β̂(1) + X (2)β(2)

])

as a function of β(2) alone. To simplify, write

e(2) =
(
y −

[
X (1)β(1) + X (2)β(2)

])

= e(1) −X (2)β(2)

12.1. Greedy and Stagewise Methods for Regression 277

and we must choose β(2) to minimize

(
e(1) −X (2)β(2)

)T (
e(1) −X (2)β(2)

)
.

This follows a familiar recipe. We obtain this β̂(1) by solving

(
X (2)

)T
X (2)β̂(2) =

(
X (2)

)T
e(1).

Notice this is a linear regression of e(1) against the features in X (2). This is ex-
tremely convenient. The linear function that improves the original predictor is
obtained using the same procedure (linear regression) as the original predictor. We
just regress the residual (rather than y) against the new features.

The new linear function is not guaranteed to make the regression better, but
it will not make the regression worse. Because our choice of β̂(2) minimizes the
squared length of e(2), we have that

e(2)
T
e(2) ≤ e(1)

T
e(1)

with equality only if X (2)β̂(2) = 0. In turn, the second round did not make the
residual worse. If the features in X (2) aren’t all the same as those in X (1), it is very
likely to have made the residual better.

Extending all this to an R’th round is just a matter of notation; you can write
an iteration with e(0) = y. Then you regress e(j−1) against the features in X (j) to
get β̂(j), and

e(j) = e(j−1) −X (j)β̂(j) = e(0) −
j∑

u=1

X (u)β̂(u).

The residual never gets bigger (at least if your arithmetic is exact). This procedure
is referred to as greedy stagewise linear regression. It’s stagewise, because we
build up the model in steps. It’s greedy, because we do not adjust our estimate of
β̂(1), . . . , β̂(j−1) when we compute β̂(j), etc.

This process won’t work for a linear regression when we use all the features
in X (1). It’s worth understanding why. Consider the first step. We will choose β to
minimize (y−Xβ)T (y−Xβ). But there’s a closed form solution for this β (which

is β̂ = (X TX)−1X Ty; remind yourself if you’ve forgotten by referring to Chap. 10),
and this is a global minimizer. So to minimize

([
y −X β̂

]
−Xγ

)T ([
y −X β̂

]
−Xγ

)

by choice of γ, we’d have to have Xγ = 0, meaning that the residual wouldn’t
improve.

At this point, greedy stagewise linear regression may look like nothing more
than a method of getting otherwise unruly linear algebra under control. But it’s ac-
tually a model recipe, exposed in the box below. This recipe admits very substantial
generalization.

12.1. Greedy and Stagewise Methods for Regression 278

Procedure: 12.1 Greedy Stagewise Linear Regression

We choose to minimize the squared length of the residual vector. Write

L(j)(β) = ||(e(j−1) −X (j)β) ||2.

Start with e(0) = y and j = 1. Now iterate:

• choose a set of features to form X (j);
• construct β̂(j) by minimizing L(j)(β); do so by solving the linear
system (

X (j)
)T

X (j)β̂(j) =
(
X (j)

)T
e(j−1).

• form e(j) = e(j−1) −X (j)β̂(j);
• increment j to be j + 1.

The prediction for the training data is

∑

j

X (j)β̂(j).

Write x for a test point for which you want a prediction, and x(j) for
the j’th set of features from that test point. The prediction for x is

∑

j

x(j)β̂(j).

It is natural to choose the features at random, as more complicated
strategies might be hard to execute. There isn’t an obvious criterion
for stopping, but looking at a plot of the test error with iterations will
be informative.

Remember This: A linear regression that has a very large number of
features could result in a linear algebra problem too large to be conveniently
solved. In this case, there is an important strategy. Choose a small subset
of features and fit a model. Now choose a small random subset of features
and use them to fit a regression that predicts the residual of the current
model. Add the regression to the current model, and go again. This recipe
can be aggressively generalized, and is extremely powerful.

12.1. Greedy and Stagewise Methods for Regression 279

12.1.2 Regression Trees

I haven’t seen the recipe in Box 12.1 used much for linear regressions, but as a
model recipe it’s extremely informative. It becomes much more interesting when
applied to regressions that don’t use linear functions. It is straightforward to coopt
machinery we saw in the context of classification to solve regression problems, too.
A regression tree is defined by analogy with a decision tree (Sect. 2.2). One builds
a tree by splitting on coordinates, so each leaf represents a cell in space where the
coordinates satisfy some inequalities. For the simplest regression tree, each leaf
contains a single value representing the value the predictor takes in that cell (one
can place other prediction methods in the leaves; we won’t bother). The splitting
process parallels the one we used for classification, but now we can use the error in
the regression to choose the split instead of the information gain.

Worked Example 12.1 Regressing Prawn Scores Against Location

At http://www.statsci.org/data/oz/reef.html you will find a dataset describing
prawns caught between the coast of northern Queensland and the Great Barrier
Reef. There is a description of the dataset at that URL; the data was collected
and analyzed by Poiner et al, cited at that URL. Build a regression tree pre-
dicting prawn score 1 (whatever that is!) against latitude and longitude using
this dataset.

Solution: This dataset is nice, because it is easy to visualize interesting
predictors. Figure 12.1 shows a 3D scatterplot of score 1 against latitude and
longitude. There are good packages for building such trees (I used R’s rpart).
Figure 12.1 shows a regression tree fitted with that package, as an image. This
makes it easy to visualize the function. The darkest points are the smallest
values, and the lightest points are the largest. You can see what the tree does:
carve space into boxes, then predict a constant inside each.

Remember This: A regression tree is like a classification tree, but a
regression tree stores values rather than labels in the leaves. The tree is
fitted using a procedure quite like fitting a classification tree.

12.1.3 Greedy Stagewise Regression with Trees

We wish to regress y against x using many regression trees. Write f(x; θ(j)) for a
regression tree that accepts x and produces a prediction (here θ(j) are parameters

http://www.statsci.org/data/oz/reef.html

12.1. Greedy and Stagewise Methods for Regression 280

142.5143

Catch score 1

143.5144-12
-11.5

1

-1

0

3

2

-11
143.8 143.6 143.4 143.2 143.0

−1
1.

8
−1

1.
6

−1
1.

4
−1

1.
2

Prawn catch regressed with 1 tree
 train MSE: 0.438 test MSE: 0.653

Longitude

La
tit

ud
e

Figure 12.1: On the left, a 3D scatterplot of score 1 of the prawn trawls data
from http://www.statsci.org/data/oz/reef.html, plotted as a function of latitude and
longitude. On the right, a regression using a single regression tree, to help visualize
the kind of predictor these trees produce. You can see what the tree does: carve
space into boxes, then predict a constant inside each. The intensity scale is chosen
so that the range is symmetric; because there are no small negative numbers, there
are no very dark boxes. The odd axes (horizontal runs from bigger to smaller) are
chosen so that you can register the left to the right by eye

internal to the tree: where to split; what is in the leaves; and so on). Write the
regression as

F (x) =
∑

j

f(x; θ(j))

where there might be quite a lot of trees indexed by j. Now we must fit this
regression model to the data by choosing values for each θ(j). We could fit the
model by minimizing ∑

i

(yi − F (xi))
2

as a function of all the θ(j)’s. This is unattractive, because it isn’t clear how to
solve this optimization problem.

The recipe for greedy stagewise linear regression applies here, with very little
change. The big difference is that there is no need to choose a new subset of
independent variables each time (the regression tree fitting procedure will do this).
The recipe looks (roughly) like this: regress y against x using a regression tree;
construct the residuals; and regress the residuals against x; and repeat until some
termination criterion.

http://www.statsci.org/data/oz/reef.html

12.1. Greedy and Stagewise Methods for Regression 281

In notation, start with an F (0) = 0 (the initial model) and j = 0. Write e
(j)
i

for the residual at the j’th round and the i’th example. Set e
(0)
i = yi. Now iterate

the following steps:

• Choose θ̂(j) to minimize

∑

i

(
e
(j−1)
i − f(xi; θ)

)2

as a function of θ using some procedure to fit regression trees.
• Set

e
(j)
i = e

(j−1)
i − f(xi; θ̂

(j)).

• Increment j to j + 1.

This is sometimes referred to as greedy stagewise regression. Notice that there
is no particular reason to stop, unless (a) the residual is zero at all data points
or (b) for some reason, it is clear that no future progress would be possible. For
reference, I have put this procedure in a box below.

Worked Example 12.2 Greedy Stagewise Regression for Prawns

Construct a stagewise regression of score 1 against latitude and longitude, using
the prawn trawls dataset from http://www.statsci.org/data/oz/reef.html. Use a
regression tree.

Solution: There are good packages for building regression trees (I used R’s
rpart). Stagewise regression is straightforward. I started with a current pre-
diction of zero. Then I iterated: form the current residual (score 1—current
prediction); regress that against latitude and longitude; then update the cur-
rent residual. Figures 12.2 and 12.3 show the result. For this example, I used a
function of two dimensions so I could plot the regression function in a straight-
forward way. It’s easy to visualize a regression tree in 2D. The root node of the
tree splits the plane in half, usually with an axis aligned line. Then each node
splits its parent into two pieces, so each leaf is a rectangular cell on the plane
(which might stretch to infinity). The value is constant in each leaf. You can’t
make a smooth predictor out of such trees, but the regressions are quite good
(Fig. 12.3).

http://www.statsci.org/data/oz/reef.html

12.1. Greedy and Stagewise Methods for Regression 282

Prawn catch regressed with 1 tree
train MSE: 0.438 test MSE: 0.653

Longitude

La
tit

ud
e

143.8 143.6 143.4 143.2 143.0

−1
1.

8
−1

1.
6

−1
1.

4
−1

1.
2

143.8 143.6 143.4 143.2 143.0

−1
1.

8
−1

1.
6

−1
1.

4
−1

1.
2

Prawn catch regressed with 4 trees
train MSE: 0.333 test MSE: 0.614

Longitude

La
tit

ud
e

Figure 12.2: Score 1 of the prawn trawls data from http://www.statsci.org/data/oz/
reef.html, regressed against latitude and longitude (I did not use depth, also in that
dataset; this means I could plot the regression easily). The axes (horizontal runs
from bigger to smaller) are chosen so that you can register with the plot in Fig. 12.1
by eye. The intensity scale is chosen so that the range is symmetric; because there
are no small negative numbers, there are no very dark boxes. The figure shows
results using 1 and 4 trees. Notice the model gets more complex as we add trees.
Further stages appear in Fig. 12.3, which uses the same intensity scale

Procedure: 12.2 Greedy Stagewise Regression with Trees

Write f(x; θ) for a regression tree, where θ encodes internal parameters
(where to split, thresholds, and so on). We will build a regression that
is a sum of trees, so the regression is

F (x; θ) =
∑

j

f(x; θ(j)).

We choose to minimize the squared length of the residual vector, so
write

L(j)(θ) =
∑

i

(
e
(j−1)
i − f(xi; θ)

)2
.

Start with e
(0)
i = yi and j = 0. Now iterate:

• construct θ̂(j) by minimizing L(j)(θ) using regression tree software
(which should give you an approximate minimizer);

• form e
(j)
i = e

(j−1)
i − f(xi; θ̂

(j));
• increment j to j + 1.

http://www.statsci.org/data/oz/reef.html
http://www.statsci.org/data/oz/reef.html

12.1. Greedy and Stagewise Methods for Regression 283

The prediction for a data item x is

∑

j

f(x; θ̂(j))

There isn’t an obvious criterion for stopping, but looking at a plot of
the test error with iterations will be informative.

Prawn catch regressed with 50 trees
train MSE: 0.070 test MSE: 1.076

Prawn catch regressed with 100 trees
train MSE: 0.043 test MSE: 1.071

Longitude
143.8 143.6 143.4 143.2 143.0 143.8 143.6 143.4 143.2 143.0

Longitude

La
tit

ud
e

−1
1.

8
−1

1.
6

−1
1.

4
−1

1.
2

−1
1.

8
−1

1.
6

−1
1.

4
−1

1.
2

La
tit

ud
e

Figure 12.3: Score 1 of the prawn trawls data from http://www.statsci.org/data/oz/
reef.html, regressed against latitude and longitude (I did not use depth, also in that
dataset; this means I could plot the regression easily). The axes (horizontal runs
from bigger to smaller) are chosen so that you can register with the plot in Fig. 12.1
by eye. The intensity scale is chosen so that the range is symmetric; because there
are no small negative numbers, there are no very dark boxes. The figure shows
results of a greedy stagewise regression using regression trees using 50 and 100
trees. Notice that both train and test error go down, and the model gets more
complex as we add trees

None of this would be helpful if the regression using trees 1 . . . j is worse than
the regression using trees 1 . . . j−1. Here is an argument that establishes that greedy
stagewise regression should make progress in the training error. Assume that, if
there is any tree that reduces the residual, the software will find one such tree; if

not, it will return a tree that is a single leaf containing 0. Then ||e(j) ||2 ≤ ||e(j−1) ||2,
because the tree was chosen to minimize ||e(j) ||2 = L(j)(θ) = ||(e(j−1) − f(x; θ)) ||.
If the tree is successful at minimizing this expression, the error will not go up.

In practice, greedy stagewise regression is well-behaved. One could reasonably
fear overfitting. Perhaps only the training error goes down as you add trees, but
the test error might go up. This can happen, but it tends not to happen (see the
examples). We can’t go into the reasons here (and they have some component of
mystery, anyhow).

http://www.statsci.org/data/oz/reef.html
http://www.statsci.org/data/oz/reef.html

12.2. Boosting a Classifier 284

Remember This: It is difficult to fit a weighted sum of regression
trees to data directly. Greedy stagewise methods offer a straightforward
procedure. Fit a tree to the data to obtain an initial model. Now repeat:
Fit a tree to predict the residual of the current model; add that tree to the
current model. Stop by looking at validation error.

12.2 Boosting a Classifier

The recipes I have given above are manifestations of a general approach. This ap-
proach applies to both regression and classification. The recipes seem more natural
in the context of regression (which is why I did those versions first). But in both
regression and classification we are trying to build a predictor—a function that
accepts features and reports either a number (regression) or a label (classification).
Notice we can encode the label as a number, meaning we could classify with regres-
sion machinery. In particular, we have some function F (x). For both regression
and classification, we apply F , for example, x to obtain a prediction. The regressor
or classifier is learned by choosing a function that gets good behavior on a train-
ing set. This notation is at a fairly high level of abstraction (so, for example, the
procedure we’ve used in classification where we take the sign of some function is
represented by F).

12.2.1 The Loss

In early chapters, it seemed as though we used different kinds of predictor for
classification and regression. But you might have noticed that the predictor used
for linear support vector machines bore a strong similarity to the predictor used for
linear regression, though we trained these two in quite different ways. There are
many kinds of predictor—linear functions; trees; and so on. We now take the view
that the kind of predictor you use is just a matter of convenience (what package
you have available; what math you feel like doing; etc.). Once you know what kind
of predictor you will use, you must choose the parameters of that predictor. In this
new view, the really important difference between classification and regression is
the loss that you use to choose these parameters. The loss is the cost function used
to evaluate errors, and so to train the predictor. Training a classifier involves using
a loss that penalizes errors in class prediction in some way, and training a regressor
means using a loss that penalizes prediction errors.

The empirical loss is the average loss on the training set. Different predictors
F produce different losses at different examples, so the loss depends on the predictor
F . Notice the kind of predictor isn’t what’s important; instead, the loss scores the
difference between what a predictor produced and what it should have produced.
Now write L(F) for this empirical loss. There are many plausible losses that apply
to different prediction problems. Here are some examples:

12.2. Boosting a Classifier 285

• For least squares regression, we minimized the least squares error:

Lls(F) =
1

N

∑

i

(yi − F (xi))
2

(though the 1/N term sometimes was dropped as irrelevant; Sect. 10.2.2).
• For a linear SVM, we minimized the hinge loss:

Lh(F) =
1

N

∑

i

max(0, 1− yiF (xi))

(assuming that labels are 1 or −1; Sect. 2.1.1).
• For logistic regression, we minimized the logistic loss:

Llr(F) =
1

N

∑

i

[
log

(
e

−(yi+1)

2 F (xi) + e
1−yi

2 F (xi)
)]

(again, assuming that labels are 1 or −1; Sect. 11.3.1).

We construct a loss by taking the average over the training data of a point-
wise loss—a function l that accepts three arguments: a y-value, a vector x, and a
prediction F (x). This average is an estimate of the expected value of that pointwise
loss over all data.

• For least squares regression,

lls(y,x, F) = (y − F (x))
2
.

• For a linear SVM,

lh(y,x, F) = max(0, 1− yF (x)).

• For logistic regression,

llr(y,x, F) =
[
log

(
e

−(y+1)
2 F (x) + e

1−y
2 F (x)

)]
.

We often used a regularizer with these losses. It is quite common in boosting to
ignore this regularization term, for reasons I will explain below.

Remember This: Models are predictors that accept a vector and predict
some value. All our models are scored using an average of a pointwise loss
function that compares the prediction at each data point with the training
value at that point. The important difference between classification and
regression is the pointwise loss function that is used.

12.2. Boosting a Classifier 286

12.2.2 Recipe: Stagewise Reduction of Loss

We have used a predictor that was a sum of weak learners (equivalently, individual
linear regressions; regression trees). Now generalize by noticing that scaling each
weak learner could possibly produce a better result. So our predictor is

F (x; θ,a) =
∑

j

ajf(x; θ
(j))

where aj is the scaling for each weak learner.
Assume we have some F , and want to compute a weak learner that improves

it. Whatever the particular choice of loss L, we need to minimize

1

N

∑

i

l (yi,xi, F (xi) + ajf(xi; θ
(j))).

For most reasonable choices of loss, we can differentiate l and we write

∂l
∂F

∣∣∣∣
i

to mean the partial derivative of that function with respect to the F argument,
evaluated at the point (yi,xi, F (xi)). Then a Taylor series gives us

1

N

∑

i

l (yi,xi, F (xi) + ajf(xi; θ
(j))) ≈ 1

N

∑

i

l (yi,xi, F (xi))

+aj
1

N

∑

i

[(
∂l
∂F

∣∣∣∣
i

)
f(xi; θ

(j))

]
.

In turn, this means that we can minimize by finding parameters θ̂(j) such that

1

N

∑

i

(
∂l
∂F

∣∣∣∣
i

)
f(xi; θ̂

(j))

is negative. This predictor should cause the loss to go down, at least for small
values of aj . Now assume we have chosen an appropriate predictor, represented

by θ̂(j) (the estimate of the predictor’s parameters). Then we can obtain aj by
minimizing

Φ(aj) =
1

N

∑

i

l (yi,xi, F (xi) + ajf(xi; θ̂
(j)))

which is a one-dimensional problem (remember, F and θ̂(j) are known; only aj is
unknown).

This is quite a special optimization problem. It is one-dimensional (which
simplifies many important aspects of optimization). Furthermore, from the Taylor
series argument, we expect that the best choice of aj is greater than zero. A problem
with these properties is known as a line search problem, and there are strong and
effective procedures in any reasonable optimization package for line search problems.
You could use a line search method from an optimization package, or just minimize

12.2. Boosting a Classifier 287

this function with an optimization package, which should recognize it as line search.
The overall recipe, which is extremely general, is known as gradient boost; I have
put it in a box, below.

Procedure: 12.3 Gradient Boost

We wish to choose a predictor F that minimizes a loss

L(F) =
1

N

∑

j

l (yj ,xj , F).

We will do so iteratively by searching for a predictor of the form

F (x; θ) =
∑

j

αjf(x; θ
(u)).

Start with F = 0 and j = 0. Now iterate:

• form a set of weights, one per example, where

w
(j)
i =

∂l
∂F

∣∣∣∣
i

(this means the partial derivative of l (y,x, F) with respect to the
F argument, evaluated at the point (yi,xi, F (xi)));

• choose θ̂(j) (and so the predictor f) so that

∑

i

w
(j)
i f(xi; θ̂

(j))

is negative;
• now form Φ(aj) = L(F+ajf(·; θ̂(j))) and search for the best value
of aj using a line search method.

The prediction for any data item x is

∑

j

αjf(x; θ̂
(j)).

There isn’t an obvious criterion for stopping, but looking at a plot of
the test error with iterations will be informative.

The important problem here is finding parameters θ̂(j) such that

∑

i

w
(j)
i f(xi; θ̂

(j))

12.2. Boosting a Classifier 288

is negative. For some predictors, this can be done in a straightforward way. For
others, this problem can be rearranged into a regression problem. We will do an
example of each case.

Remember This: Gradient boosting builds a sum of predictors using
a greedy stagewise method. Fit a predictor to the data to obtain an initial
model. Now repeat: Compute the appropriate weight at each data point; fit
a predictor using these weights; search for the best weight with which to add
this predictor to the current model; and add the weighted predictor to the
current model. Stop by looking at validation error. The weight is a partial
derivative of the loss with respect to the predictor, evaluated at the current
value of the predictor.

12.2.3 Example: Boosting Decision Stumps

The name “weak learner” comes from the considerable body of theory covering
when and how boosting should work. An important fact from that theory is that
the predictor f(·; θ̂(j)) needs only to be a descent direction for the loss—i.e., we

need to ensure that adding some positive amount of f(·; θ̂(j)) to the prediction will
result in an improvement in the loss. This is a very weak constraint in the two-class
classification case (it boils down to requiring that the learner can do slightly better
than a 50% error rate on a weighted version of the dataset), so that it is reasonable
to use quite a simple classifier for the predictor.

One very natural classifier is a decision stump, which tests one linear projec-
tion of the features against a threshold. The name follows, rather grossly, because
this is a highly reduced decision tree. There are two common strategies. In one, the
stump tests a single feature against a threshold. In the other, the stump projects
the features onto some vector chosen during learning, and tests that against a
threshold.

Decision stumps are useful because they’re easy to learn, though not in them-
selves a particularly strong classifier. We have examples (xi, yi). We will assume
that yi are 1 or −1. Write f(x; θ) for the stump, which will predict −1 or 1. For
gradient boost, we will receive a set of weights hi (one per example), and try to
learn a decision stump that minimizes the sum

∑
i hif(xi; θ) by choice of θ. We

use a straightforward search, looking at each feature and for each, checking a set
of thresholds to find the one that maximizes the sum. If we seek a stump that
projects features, we project the features onto a set of random directions first. The
box below gives the details.

12.2. Boosting a Classifier 289

Procedure: 12.4 Learning a Decision Stump

We have examples (xi, yi). We will assume that yi are 1 or −1, and xi

have dimension d. Write f(x; θ) for the stump, which will predict −1 or
1. We receive a set of weights hi (one per example), and wish to learn a
decision stump that minimizes the sum

∑
i hif(xi; θ). If the dataset is

too large for your computational resources, obtain a subset by sampling
uniformly at random without replacement. The parameters will be a
projection, a threshold and a sign. Now for j = 1 : d

• Set vj to be either a random d-dimensional vector or the j’th
basis vector (i.e., all zeros, except a one in the j’th component).

• Compute ri = vT
j xi.

• Sort these r’s; now construct a collection of thresholds t from
the sorted r’s where each threshold is halfway between the sorted
values.

• For each t, construct two predictors. One reports 1 if r > t, and
−1 otherwise; the other reports −1 if r > t and 1 otherwise. For
each of these predictors, compute the value

∑
i hif(xi; θ). If this

value is smaller than any seen before, keep vj , t, and the sign of
the predictor.

Now report the vj , t, and sign that obtained the best value.

Remember This: Decision stumps are very small decision trees. They
are easy to fit, and have a particularly good record with gradient boost.

12.2.4 Gradient Boost with Decision Stumps

We will work with two-class classification, as boosting multiclass classifiers can be
tricky. One can apply gradient boost to any loss that appears convenient. However,
there is a strong tradition of using the exponential loss. Write yi for the true
label for the i’th example. We will label examples with 1 or −1 (it is easy to
derive updates for the case when the labels are 1 or 0 from what follows). Then
the exponential loss is

le(y,x, F (x)) = e[−yF (x)].

Notice if F (x) has the right sign, the loss is small; if it has the wrong sign, the loss
is large.

We will use a decision stump. Decision stumps report a label (i.e., 1 or −1).
Notice this doesn’t mean that F reports only 1 or −1, because F is a weighted sum
of predictors. Assume we know Fr−1, and seek ar and fr. We then form

w
(j)
i =

∂l
∂F

∣∣∣∣
i

= −yie
[−yiF (xi)].

12.2. Boosting a Classifier 290

Notice there is one weight per example. The weight is negative if the label is
positive, and positive if the label is negative. If F gets the example right, the
weight will have small magnitude, and if F gets the example wrong, the weight will
have large magnitude. We want to choose parameters θ̂(j) so that

C(θ(j)) =
∑

i

w
(j)
i f(xi; θ̂

(j)).

is negative. Assume that the search described in Box 12.4 is successful in producing
such an f(xi; θ̂

(j)). To get a negative value, f(·; θ̂(j)) should try to report the same
sign as the example’s label (recall the weight is negative if the label is positive,
and positive if the label is negative). This means that (mostly) if F gets a positive

example right, f(·; θ̂(j)) will try to increase the value that F takes, etc.

The search produces an f(·; θ̂(j)) that has a large absolute value of C(θ(j)).

Such an f(·; θ̂(j)) should have large absolute values, for example, where w
(j)
i has

large magnitude. But these are examples that F got very badly wrong (i.e., pro-
duced a prediction of large magnitude, but the wrong sign).

It is easy to choose a decision stump that minimizes this expression C(θ).
The weights are fixed, and the stump reports either 1 or −1, so all we need to do is
search for a split that achieves a minimum. You should notice that the minimum is
always negative (unless all weights are zero, which can’t happen). This is because
you can multiply the stump’s prediction by −1 and so flip the sign of the score.

12.2.5 Gradient Boost with Other Predictors

A decision stump makes it easy to construct a predictor such that

∑

i

wr−1,ifr(xi; θr)

is negative. For other predictors, it may not be so easy. It turns out that this
criterion can be modified, making it straightforward to use other predictors. There
are two ways to think about these modifications, which end up in the same place:
choosing θ̂(j) to minimize

∑

i

([
−w

(j)
i

]
− f(xi; θ

(j))
)2

is as good (or good enough) for gradient boost to succeed. This is an extremely
convenient result, because many different regression procedures can minimize this
loss. I will give both derivations, as different people find different lines of reasoning
easier to accept.

Reasoning About Minimization: Notice that

∑

i

([
−w

(j)
i

]
− f(xi; θ

(j))
)2

=
∑

i

⎡

⎢⎣

(
w

(j)
i

)2

+(f(xi; θ
(j)))2

+2(w
(j)
i f(xi; θ

(j)))

⎤

⎥⎦ .

12.2. Boosting a Classifier 291

Now assume that
∑

i(f(xi; θ
(j)))2 is not affected by θ(j). For example, f could

be a decision tree that reports either 1 or −1. In fact, it is usually sufficient that∑
i(f(xi; θ

(j)))2 is not much affected by θ(j). Then if you have a small value of

∑

i

([
−w

(j)
i

]
− f(xi; θ

(j))
)2

,

that must be because
∑

i wr−1,if(xi; θr) is negative. So we seek θ(j) that minimizes

∑

i

([
−w

(j)
i

]
− f(xi; θ

(j))
)2

.

Reasoning About Descent Directions: You can think of L as a function
that accepts a vector of prediction values, one at each data point. Write v for this
vector. The values are produced by the current predictor. In this model, we have
that

∇vL ∝ w
(j)
i .

In turn, this suggests we should minimize L by obtaining a new predictor f which
takes values as close as possible to −∇vL—that is, choose fr that minimizes

∑

i

([
−w

(j)
i

]
− f(xi; θ

(j))
)2

.

Remember This: The original fitting criterion for predictors in gradi-
ent boost is awkward. An easy argument turns this into a familiar regression
problem.

12.2.6 Example: Is a Prescriber an Opiate Prescriber?

You can find a dataset of prescriber behavior focusing on opiate prescriptions at
https://www.kaggle.com/apryor6/us-opiate-prescriptions. One column of this data
is a 0-1 answer, giving whether the individual prescribed opiate drugs more than
10 times in the year. The question here is: does a doctor’s pattern of prescribing
predict whether that doctor will predict opiates?

You can argue this question either way. It is possible that doctors who see
many patients who need opiates also see many patients who need other kinds of
drug for similar underlying conditions. This would mean the pattern of drugs
prescribed would suggest whether the doctor prescribed opiates. It is possible that
there are prescribers engaging in deliberate fraud (e.g., prescribing drugs that aren’t
necessary, for extra money). Such prescribers would tend to prescribe drugs that
have informal uses that people are willing to pay for, and opiates are one such drug,
so the pattern of prescriptions would be predictive. The alternative possibility is
that patients who need opiates attend doctors randomly, so that the pattern of
drugs prescribed isn’t predictive.

https://www.kaggle.com/apryor6/us-opiate-prescriptions

12.2. Boosting a Classifier 292

Error against number of trees

Number of trees

E
rr

or
 ra

te
train
test

0 50 100 150

0.
00

0.
05

0.
10

0.
15

0.
20

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

Loss against number of trees

Number of trees

Lo
ss

Figure 12.4: Models for a boosted decision tree classifier predicting whether a given
prescriber will write more than 10 opioid prescriptions in a year, using the data of
https://www.kaggle.com/apryor6/us-opiate-prescriptions. Left: train and test error
against number of trees; right: exponential loss against number of trees. Notice
that both test and train error go down, but there is a test–train gap. Notice also
a characteristic property of boosting; continuing to boost after the training error
is zero (about 50 trees in this case) still results in improvements in the test error.
Note also that lower exponential loss doesn’t guarantee lower training error

We will predict the Opioid.Prescriber column from the other entries, using
a boosted decision tree and the exponential loss function. Confusingly, the column
is named Opioid.Prescriber but all the pages, etc. use the term “opiate”; the
internet suggests that “opiates” come from opium, and “opioids” are semi-synthetic
or synthetic materials that bind to the same receptors. Quite a lot of money rides
on soothing the anxieties of internet readers about these substances, so I’m inclined
to assume that easily available information is unreliable; for us, they will mean the
same thing.

This is a fairly complicated classification problem. It is natural to try gradient
boost using a regression tree. To fit the regression tree, I used R’s rpart; for
line search, I used Newton’s method. Doing so produces quite good classification
(Fig. 12.4). This figure illustrates two very useful and quite typical feature of a
boosted classifier.

• The test error usually declines even after the training error is zero.
Look at Fig. 12.4, and notice the training error hits zero shortly after 50 trees.
The loss is not zero there—exponential loss can never be zero—and continues
to decline as more trees are added, even when the training error hits zero.
Better, the test error continues to decline, though slowly. The exponential
loss has the property that, even if the training error is zero, the predictor
tries to have larger magnitude at each training point (i.e., boosting tries to
make F (xi) larger if yi is positive, and smaller if yi is negative). In turn, this
means that, even after the training error is zero, changes to F might cause
some test examples to change sign.

https://www.kaggle.com/apryor6/us-opiate-prescriptions

12.2. Boosting a Classifier 293

• The test error doesn’t increase sharply, however, far boosting pro-
ceeds. You could reasonably be concerned that adding new weak learners
to a boosted predictor would eventually cause overfitting problems. This
can happen, but doesn’t happen very often. It’s also quite usual that the
overfitting is mild. For this reason, it was believed until relatively recently
that overfitting could never happen. Mostly, adding weak learners results in
slow improvements to test error. This effect is most reliable when the weak
learners are relatively simple, like decision stumps. The predictor we learn
is regularized by the fact that a collection of decision stumps is less inclined
to overfit than one might reasonably expect. In turn, this justifies the usual
practice of not incorporating explicit regularizers in a boosting loss.

12.2.7 Pruning the Boosted Predictor with the Lasso

You should notice there is a relatively large number of predictors here, and it’s
reasonable to wonder if one could get good results with fewer. This is a good
question. When you construct a set of boosted predictors, there is no guarantee
they are all necessary to achieve a particular error rate. Each new predictor is
constructed to cause the loss to go down. But the loss could go down without
causing the error rate to go down. There is a reasonable prospect that some of the
predictors are redundant.

Whether this matters depends somewhat on the application. It may be im-
portant to evaluate the minimum number of predictors. Furthermore, having many
predictors might (but doesn’t usually) create generalization problems. One strat-
egy to remove redundant predictors is to use the lasso. For a two-class classifier,
one uses a generalized linear model (logistic regression) applied to the values of the
predictors at each example. Figure 12.5 shows the result of using a lasso (from
glmnet) to the predictors used to make Fig. 12.4. Notice that reducing the size of
the model seems not to result in significant loss of classification accuracy here.

There is one point to be careful about. You should not compute a cross-
validated estimate of error on all data. That estimate of error will be biased low,
because you are using some data on which the predictors were trained (you must
have a training set to fit the boosted model and obtain the predictors in the first
place). There are two options: you could fit a lasso on the training data, then
evaluate on test; or you could use cross-validation to evaluate a fitted lasso on the
test set alone. Neither strategy is perfect. If you fit a lasso to the training data,
you may not make the best estimate of coefficients, because you are not taking
into account variations caused by test–train splits (Fig. 12.5). But if you use cross-
validation on the test set alone, you will be omitting quite a lot of data. This is
a large dataset (25,000 prescribers) so I tried both approaches (compare Fig. 12.5
with Fig. 12.6). A better option might be to apply the Lasso during the boosting
process, but this is beyond our scope.

12.2. Boosting a Classifier 294

log(Lambda)

M
is

cl
as

si
fic

at
io

n
E

rr
or

−8 −6 −4 −2

0.
0

0.
1

0.
2

0.
3

0.
4

122 119 116 112 109 101 96 84 72 54 42 21 83 1

−8 −6 −4 −2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Test error rate against regularization constant,
Lasso on training data

Log regularization constant

E
rr

or
 ra

te

Figure 12.5: Left: A cross-validation plot from cv.glmnet for the lasso applied to
predictions on training data obtained from all 150 trees from the boosted model of
Fig. 12.4. You should not believe this cross-validated error, because the predictors
were trained on this data. This means that data on both sides of the cross-validation
split have been seen by the model (though not by the lasso). This plot suggests
zero error is attainable by quite small models. But the cross-validated error here is
biased low as the plot on the right confirms. Right: The error of the best model for
each value of the regularization constant in the plot on the left, now evaluated on
a held-out set. If you have enough data, you could break it into train (for training
predictors and the lasso), validation (to select a model, using a plot like this), and
test (to evaluate the resulting model)

Remember This: You can prune boosted models with the lasso. It’s
often very effective, but you need to be careful about how you choose a
model—it’s easy to accidentally evaluate on training data.

12.2.8 Gradient Boosting Software

Up to this point, the examples shown have used simple loops I wrote with R. This
is fine for small datasets, but gradient boost can be applied very successfully to
extremely large datasets. For example, many recent Kaggle competitions have been
won with gradient boosting methods. Quite a lot of the work in boosting methods
admits parallelization across multiple threads or across multiple machines. Various
clever speedups are also available. When the dataset is large, you need to have
software that can exploit these tricks. As of writing, the standard is XGBoost,
which can be obtained from https://xgboost.ai. This is the work of a large open
source developer community, based around code by Tianqi Chen and a paper by
Tianqi Chen and Carlos Guestrin. The paper is XGBoost: A Scalable Tree Boosting

https://xgboost.ai

12.2. Boosting a Classifier 295

log(Lambda)

M
is

cl
as

si
fic

at
io

n
E

rr
or

142 140 136 124 108 86 75 61 39 28 15 11 73 1

−8 −6 −4 −2

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

−8 −6 −4 −2

0.
0

0.
2

0.
4

0.
6

0.
8

Test error rate against regularization constant,
Lasso on training data

Log regularization constant

E
rr

or
 ra

te
Figure 12.6: Here I have split the data into two. I used a training set to pro-
duce predictors using gradient boosting applied to decision stumps. I then applied
cv.glmnet to a separate test set. Left: A cross-validation plot from cv.glmnet

for the lasso applied to predictions on test data passed through each of the 150
trees made by the boosted model of Fig. 12.4. This gives an accurate estimate of
the error, as you can see by comparing to the test error of the best model for each
value of the regularization constant (right). This approach gives a better estimate
of what the model will do, but may present problems if you have little data

System, which you can find in Proc. SIGKDD 2016, or at https://arxiv.org/abs/
1603.02754.

XGBoost has a variety of features to notice (see the tutorials at https://
xgboost.readthedocs.io/en/latest/tutorials/index.html). XGBoost doesn’t do line
search. Instead, one sets a parameter eta—the value of α in Procedure 12.3—
which is fixed. Generally, larger eta values result in larger changes of the model
with each new tree, but a greater chance of overfitting. There is an interaction
between this parameter and the maximum depth of the tree you use. Generally,
the larger the maximum depth of a tree (which can be selected), the more likely
you will see overfitting, unless you set eta small.

XGBoost offers early stopping. If properly invoked, it can monitor error on
an appropriate set of data (training or validation, your choice) and, if there is
insufficient progress, it will stop training. Using this requires care. If you stop
early using test data, the estimate of model performance that XGBoost returns
must be biased. This is because it chooses a model (when to stop) using test data.
You should follow the recipe of splitting data into three (train, validation, test),
then train on training data, use validation for early stopping, and evaluate on test
data.

https://arxiv.org/abs/1603.02754
https://arxiv.org/abs/1603.02754
https://xgboost.readthedocs.io/en/latest/tutorials/index.html
https://xgboost.readthedocs.io/en/latest/tutorials/index.html

12.2. Boosting a Classifier 296

University rankings from various predictors
MD=4, eta=1

Number of trees

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

train
validation
test

0 50 100 150 200

0
20

40
60

80
10

0

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

Predictions of University Rankings
MD=4, eta=1

True Value

P
re

di
ct

ed
 V

al
ue

, 2
00

 tr
ee

s
Figure 12.7: On the left, training and test error reported by XGBoost for the univer-
sity ranking data as in example 12.3. The error is RMS error, because I modelled
the rank as a continuous variable. The test error is slightly larger than validation
error, likely a result of having a small test set. On the right, plots of predicted
value against true value for the final regression. A regression is not a particularly
good way of predicting rankings, because it does not know there needs to be a
distinct value for each university and it does not know that there can be no ranking
greater than the number of universities. Despite these disadvantages, the method
can generally predict when a university will be highly ranked but tends to mix up
the rankings of lower ranked (= larger number) universities

Remember This: Very good, very fast, very scalable gradient boosting
software is available.

Worked Example 12.3 Predicting the Quality of Education of a University

You can find a dataset of measures of universities at https://www.kaggle.com/
mylesoneill/world-university-rankings/data. These measures are used to predict
rankings. From these measures, but not using the rank or the name of the
university, predict the quality of education using a stagewise regression. Use
XGBoost.

https://www.kaggle.com/mylesoneill/world-university-rankings/data
https://www.kaggle.com/mylesoneill/world-university-rankings/data

12.2. Boosting a Classifier 297

Solution:
Ranking universities is a fertile source of light entertainment for as-
sorted politicians, bureaucrats, and journalists. I have no idea what
any of the numbers in this dataset mean (and I suspect I may not be
the only one). Anyhow, one could get some sense of how reasonable
they are by trying to predict the quality of education score from the
others. This is a nice model problem for getting used to XGBoost. I
modelled the rank as a continuous variable (which isn’t really the best
way to produce learned rankers—but we’re just trying to see what a
new tool does with a regression problem). This means that root-mean-
square error is a natural loss. Figure 12.7 shows plots of a simple model.
This is trained with trees whose maximum depth is 4. For Fig. 12.7, I
used η = 1, which is quite aggressive. The scatterplot of predictions
against true values for held-out data (in Fig. 12.7) suggests the model
has a fairly good idea whether a university is strong or weak, but isn’t
that good at predicting the rank of universities where the rank is quite
large (i.e., there are many stronger universities). For Fig. 12.8, I used a
maximum depth of 8 and η = 0.1, which is much more conservative. I
allowed the training procedure to stop early if it saw 100 trees without
an improvement on a validation set. This model is distinctly better
than the model of Fig. 12.7. The scatterplot of predictions against true
values for held-out data (in Fig. 12.7) suggests the model has a fairly
good idea whether a university is strong or weak, but isn’t that good
at predicting the rank of universities where the rank is quite large (i.e.,
there are many stronger universities).

Worked Example 12.4 Opioid Prescribers with XGBoost

Use XGBoost to obtain the best test accuracy you can on the dataset of
Sect. 12.2.6. Investigate how accurate a model you can build by varying the
parameters.

Solution: XGBoost is very fast (somewhere between 10 and 100 times faster
than my homebrew gradient booster using rpart), so one can fiddle with hyper-
parameters to see what happens. Figure 12.9 shows models trained with depth
1 trees (so decision stumps, and comparable with the models of Fig. 12.4). The
eta values were 1 and 0.5. You should notice distinct signs of overfitting—the
validation error is drifting upwards quite early in training and continues to do
so. There is a very large number of stumps (800) so that all effects are visible.
Figure 12.10 shows a model trained with max depth 1 and eta of 0.2; again
there are notable signs of overfitting. Training conservatively with a deeper
tree (max depth 4, eta of 0.1, and early stopping) leads to a somewhat better
behaved model. All these models are more accurate than those of Fig. 12.4.

12.2. Boosting a Classifier 298

University rankings from various predictors
MD=8, eta=.1

Number of trees

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

train
validation
test

0 500 1000 1500 0 100 200 300 400 500

0
20

40
60

80
10

0

0
10

0
20

0
30

0
40

0
50

0

Predictions of University Rankings
MD=8, eta=.1

True Value

P
re

di
ct

ed
 V

al
ue

Figure 12.8: On the left, training and test error for reported by xgboost for the
university ranking data as in example 12.3. This model uses a deeper tree (max-
imum depth of 8) and a smaller eta (0.1). It stops once adding 100 trees hasn’t
changed the validation error much. On the right, plots of predicted value against
true value for the final regression. This model is notably more accurate than that
of Fig. 12.7

Opioid Prescriber with XGBoost,
MD=1 eta=1

Number of trees

E
rr

or
 R

at
e

train
validation
test

train
validation
test

0 200 400 600 800

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0 100 200 300 400

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Opioid Prescriber with XGBoost,
MD=1 eta=.5

Number of trees

E
rr

or
 R

at
e

Figure 12.9: On the left, training, validation, and test error reported by xgboost

for the opioid data as in example 12.2.6. Validation error is not strictly needed,
as I did not apply early stopping. But the plot is informative. Notice how the
validation error drifts up as the number of trees increases. Although this effect is
slow and small, it’s a sign of overfitting. Decreasing the eta (right) does not cure
this trend (see also Fig. 12.10)

12.3. You Should 299

Opioid Prescriber with XGBoost,
MD=1, eta=0.2

Number of trees

E
rr

or
 R

at
e

train
validation
test

train
validation
test

0 200 400 600 800

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0 100 200 300 400

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Opioid Prescriber with XGBoost,
MD=8, eta= .1, best= 109

Number of trees

E
rr

or
 R

at
e

Figure 12.10: On the left, training, validation, and test error reported by xgboost for
the opioid data as in example 12.2.6. This figure should be compared to Fig. 12.9.
As in that figure, I used a fixed number of trees but now a rather small eta—this
still doesn’t cure the problem. On the right, I used deeper trees, and an even
smaller eta, with early stopping. This produces the strongest model so far

12.3 You Should

12.3.1 Remember These Definitions

12.3.2 Remember These Terms

predictor . 275
weak learners . 275
boosting . 275
greedy stagewise linear regression . 277
regression tree . 279
greedy stagewise regression . 281
predictor . 284
loss . 284
empirical loss . 284
pointwise loss . 285
line search . 286
gradient boost . 287
decision stump . 288
exponential loss . 289
XGBoost . 294

12.3.3 Remember These Facts

Greedy stagewise linear regression is an important core recipe 278
Regression trees are like classification trees 279
Greedy stagewise regression can fit using many regression trees . . . 284

12.3. You Should 300

Classification and regression differ by training loss 285
Gradient boosting builds a predictor greedily 288
Gradient boosting decision stumps is a go-to 289
Predicting the weights in gradient boost is easier than it looks 291
The lasso can prune boosted models 294
Use XGBoost for big gradient boosting problems 296

12.3.4 Remember These Procedures

Greedy Stagewise Linear Regression 278
Greedy Stagewise Regression with Trees 282
Gradient Boost . 287
Learning a Decision Stump . 289

12.3.5 Be Able to

• Set up and solve a regression problem using

Problems

12.1. Show that you cannot improve the training error of a linear regression using
all features by a stagewise step.
(a) First, write β̂ for the value that minimizes

(y −Xβ)T (y −Xβ).

Now show that for β �= β̂, we have

(y −Xβ)T (y −Xβ) ≥ (y −X β̂)T (y −X β̂).

(b) Now explain why this means the residual can’t be improved by regressing
it against the features.

12.2. This exercise compares regression trees to linear regression. Mostly, one can
improve the training error of a regression tree model by a stagewise step. Write
f(x; θ) for a regression tree, where θ encodes internal parameters (where to
split, thresholds, and so on).
(a) Write θ̂ for the parameters of the regression tree that minimizes

L(θ) =
∑

i

(yi − f(xi; θ))
2 .

over all possible depths, splitting variables, and splitting thresholds. Why
is L(θ̂) = 0?

(b) How many trees achieve this value? Why would you not use that tree
(those trees) in practice?

(c) A regression tree is usually regularized by limiting the maximum depth.
Why (roughly) should this work?

12.3. We will fit a regression model to N one-dimensional points xi. The value at
the i’th point is yi. We will use regression stumps. These are regression trees
that have two leaves. A regression stump can be written as

f(x; t, v1, v2) =

{
v1 for x > t
v2 otherwise

12.3. You Should 301

(a) Assume that each data point is distinct (so you don’t have xi = xj for
i �= j). Show that you can build a regression with zero error with N
stumps.

(b) Is it possible to build a regression with zero error with fewer than N
stumps?

(c) Is there a procedure for fitting stumps that guarantees that gradient boost-
ing results in a model that has zero error when you use exactly N stumps?
Warning:This might be quite hard.

12.4. We will fit a classifier to N data points xi with labels yi (which are 1 or −1).
The data points are distinct. We use the exponential loss, and use decision
stumps identified using Procedure 12.4. Write

Fr(x; θ, a) =

r∑

j=1

ajf(x; θ
(j))

for the predictor that uses r decision stumps, F0 = 0, and L(Fr) for the
exponential loss evaluated for that predictor on the dataset.
(a) Show that there is some α1 so that L(F1) < L(F0) when you use this

procedure for fitting stumps.
(b) Show that there is some αi so that L(Fi) < L(Fi−1) when you use this

procedure for fitting stumps.
(c) All this means that the loss must continue to decline through an arbitrary

number of rounds of boosting. Why does it not stop declining?
(d) If the loss declines at every round of boosting, does the training error do

so as well? Why?

Programming Exercises

General Remark: These exercises are suggested activities, and are rather open
ended. Installing multi-threaded XGBoost—which you’ll need—on a Mac can get quite
exciting, but nothing that can’t be solved with a bit of searching.

12.5. Reproduce the example of Sect. 12.2.6, using a decision stump. You should
write your own code for this stump and gradient boost. Prune the boosted
predictor with the lasso. What test accuracy do you get?

12.6. Reproduce the example of Sect. 12.2.6, using XGBoost and adjusting hyper-
parameters (eta; the maximum depth of the tree; and so on) to get the best
result. What test accuracy do you get?

12.7. Use XGBoost to classify MNIST digits, working directly with the pixels. This
means you will have a 784-dimensional feature set. What test accuracy do you
get? (mine was surprisingly high compared to the example of Sect. 17.2.1).

12.8. Investigate feature constructions for using XGBoost to classify MNIST digits.
The subexercises suggest feature constructions. What test accuracy do you
get?
(a) One natural construction is to project the images onto a set of principal

components (50 is a good place to start, yielding a 50- dimensional feature
vector).

(b) Another natural construction is to project the images each of the per-
class principal components (50 is a good place to start, yielding a 500-
dimensional feature vector).

(c) Yet another natural construction is to use vector quantization for windows
on a grid in each image.

12.3. You Should 302

12.9. Use XGBoost to classify CIFAR-10 images, working directly with the pixels.
This means you will have a 3072-dimensional feature set. What test accuracy
do you get?

12.10. Investigate feature constructions for using XGBoost to classify CIFAR-10
images. The subexercises suggest feature constructions. What test accuracy
do you get?
(a) One natural construction is to project the images onto a set of principal

components (50 is a good place to start, yielding a 50- dimensional feature
vector).

(b) Another natural construction is to project the images each of the per-
class principal components (50 is a good place to start, yielding a 500-
dimensional feature vector).

(c) Yet another natural construction is to use vector quantization for windows
on a grid in each image.

P A R T F I V E

Graphical Models

C H A P T E R 13

Hidden Markov Models

There are many situations where one must work with sequences. Here is a
simple, and classical, example. We see a sequence of words, but the last word
is missing. I will use the sequence “I had a glass of red wine with my grilled
xxxx.” What is the best guess for the missing word? You could obtain one possible
answer by counting word frequencies, then replacing the missing word with the
most common word. This is “the,” which is not a particularly good guess because
it doesn’t fit with the previous word. Instead, you could find the most common pair
of words matching “grilled xxxx,” and then choose the second word. If you do this
experiment (I used Google Ngram viewer, and searched for “grilled *”), you will
find mostly quite sensible suggestions (I got “meats,” “meat,” “fish,” “chicken,”
in that order). If you want to produce random sequences of words, the next word
should depend on some of the words you have already produced. A model with this
property that is very easy to handle is a Markov chain (defined below).

It is really common to see a noisy sequence, and want to recover the noise
free version. You should think of this recipe in a very broad way. So, for example,
the recipe applies when one hears sound and would like to turn it into text. Here,
the sound is the noisy sequence, and the text is the noise free version. You might
see handwriting (noisy sequence) and want to recover text (noise free version). You
might see video of a person moving (noisy sequence) and want to recover joint angles
(noise free version). The standard model for this recipe is a hidden Markov model.
We assume the noise free sequence is generated by a known Markov model, and
the procedure that produced observed items from the sequence is known. In this
case, a straightforward inference algorithm yields the noise free sequence from the
observations. Furthermore, a hidden Markov model can be learned from examples
using EM.

13.1 Markov Chains

A sequence of random variables Xn is a Markov chain if it has the property that,

P (Xn = j|values of all previous states) = P (Xn = j|Xn−1),

or, equivalently, only the last state matters in determining the probability of the
current state. The probabilities P (Xn = j|Xn−1 = i) are the transition prob-
abilities. We will always deal with discrete random variables here, and we will
assume that there is a finite number of states. For all our Markov chains, we will
assume that

P (Xn = j|Xn−1 = i) = P (Xn−1 = j|Xn−2 = i).

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 13

305

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_13

13.1. Markov Chains 306

Formally, we focus on discrete time, time homogenous Markov chains in a finite
state space. With enough technical machinery one can construct many other kinds
of Markov chain.

WD D

D WD

Home Office
Me

Home

Office

Umbrella

Figure 13.1: A directed graph representing the umbrella example. Notice you can’t
arrive at the office wet with the umbrella at home (you’d have taken it), and so on.
Labelling the edges with probabilities is left to the reader

One natural way to build Markov chains is to take a finite directed graph and
label each directed edge from node i to node j with a probability. We interpret
these probabilities as P (Xn = j|Xn−1 = i) (so the sum of probabilities over outgoing
edges at any node must be 1). The Markov chain is then a biased random walk
on this graph. A bug (or any other small object you prefer) sits on one of the graph’s
nodes. At each time step, the bug chooses one of the outgoing edges at random.
The probability of choosing an edge is given by the probabilities on the drawing
of the graph (equivalently, the transition probabilities). The bug then follows that
edge. The bug keeps doing this until it hits an end state.

Worked Example 13.1 Umbrellas

I own one umbrella, and I walk from home to the office each morning, and back
each evening. If it is raining (which occurs with probability p, and my umbrella
is with me), I take it; if it is not raining, I leave the umbrella where it is. We
exclude the possibility that it starts raining while I walk. Where I am, and
whether I am wet or dry, forms a Markov chain. Draw a state machine for this
Markov chain.

Solution: Figure 13.1 gives this chain. A more interesting question is with
what probability I arrive at my destination wet? Again, we will solve this with
simulation.

13.1. Markov Chains 307

2 1j-1
W

L L L L

W W W
...

Figure 13.2: A directed graph representing the gambler’s ruin example. I have
labelled each state with the amount of money the gambler has at that state. There
are two end states, where the gambler has zero (is ruined), or has j and decides
to leave the table. The problem we discuss is to compute the probability of being
ruined, given the start state is s. This means that any state except the end states
could be a start state. I have labelled the state transitions with “W” (for win) and
“L” for lose, but have omitted the probabilities

Worked Example 13.2 The Gambler’s Ruin

Assume you bet 1 a tossed coin will come up heads. If you win, you get 1 and
your original stake back. If you lose, you lose your stake. But this coin has
the property that P (H) = p < 1/2. You have s when you start. You will keep
betting until either (a) you have 0 (you are ruined; you can’t borrow money)
or (b) the amount of money you have accumulated is j, where j > s. The coin
tosses are independent. The amount of money you have is a Markov chain.
Draw the underlying state machine. Write P (ruined, starting with s|p) = ps.
It is straightforward that p0 = 1, pj = 0. Show that

ps = pps+1 + (1− p)ps−1.

Solution: Figure 13.2 illustrates this example. The recurrence relation follows
because the coin tosses are independent. If you win the first bet, you have s+1
and if you lose, you have s− 1.

Notice an important difference between Examples 13.1 and 13.2. For the
gambler’s ruin, the sequence of random variables can end (and your intuition likely
tells you it should do so reliably). We say the Markov chain has an absorbing
state—a state that it can never leave. In the example of the umbrella, there is an
infinite sequence of random variables, each depending on the last. Each state of
this chain is recurrent—it will be seen repeatedly in this infinite sequence. One
way to have a state that is not recurrent is to have a state with outgoing but no
incoming edges.

The gambler’s ruin example illustrates some points that are quite character-
istic of Markov chains. You can often write recurrence relations for the probability
of various events. Sometimes you can solve them in the closed form, though we will
not pursue this thought further. It is often very helpful to think creatively about
what the random variable is (Example 13.3).

13.1. Markov Chains 308

HH

HT

TH

TT
T

H

Figure 13.3: A directed graph representing the coin flip example, using the pairs
of random variables described in Worked Example 13.3. A sequence “HTHTHH”
(where the last two H’s are the last two flips) would be generated by transitioning
to H, then to HT, then to TH, then to HT, then to TH, then to HH. By convention,
the end state is a double circle. Each edge has probability 1/2

Worked Example 13.3 Multiple Coin Flips

You choose to flip a fair coin until you see two heads in a row, and then stop.
Represent the resulting sequence of coin flips with a Markov chain. What is
the probability that you flip the coin four times?

Solution: You could think of the chain as being a sequence of independent
coin flips. This is a Markov chain, but it isn’t very interesting, and it doesn’t
get us anywhere. A better way to think about this problem is to have the
X’s be pairs of coin flips. The rule for changing state is that you flip a coin,
then append the result to the state and drop the first item. Then you need
a special state for stopping, and some machinery to get started. Figure 13.3
shows a drawing of the directed graph that represents the chain. The last
three flips must have been THH (otherwise you’d go on too long, or end too
early). But, because the second flip must be a T , the first could be either H
or T . This means there are two sequences that work: HTHH and TTHH.
So P (4 flips) = 2/16 = 1/8. We might want to answer significantly more
interesting questions. For example, what is the probability that we must flip
the coin more than 10 times? It is often possible to answer these questions by
analysis, but we will use simulations.

13.1. Markov Chains 309

21 3

p

q

p p

q

q q

q

q

Figure 13.4: A virus can exist in one of 3 strains. At the end of each year, the virus
mutates. With probability α, it chooses uniformly and at random from one of the
2 other strains, and turns into that; with probability 1− α, it stays in the strain it
is in. For this figure, we have transition probabilities p = (1− α) and q = (α/2)

Useful Facts: 13.1 Markov Chains

A Markov chain is a sequence of random variables Xn with the property
that:

P (Xn = j|values of all previous states) = P (Xn = j|Xn−1).

13.1.1 Transition Probability Matrices

Define the matrix P with pij = P (Xn = j|Xn−1 = i). Notice that this matrix has
the properties that pij ≥ 0 and ∑

j

pij = 1

because at the end of each time step the model must be in some state. Equivalently,
the sum of transition probabilities for outgoing arrows is one. Non-negative matrices
with this property are stochastic matrices. By the way, you should look very
carefully at the i’s and j’s here—Markov chains are usually written in terms of row
vectors, and this choice makes sense in that context.

13.1. Markov Chains 310

Worked Example 13.4 Viruses

Write out the transition probability matrix for the virus of Fig. 13.4, assuming
that α = 0.2.

Solution: We have P (Xn = 1|Xn−1 = 1) = (1 − α) = 0.8, and P (Xn =
2|Xn−1 = 1) = α/2 = P (Xn = 3|Xn−1 = 1); so we get

⎛

⎝
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

⎞

⎠

Now imagine we do not know the initial state of the chain, but instead have
a probability distribution. This gives P (X0 = i) for each state i. It is usual to take
these k probabilities and place them in a k-dimensional row vector, which is usually
written π. From this information, we can compute the probability distribution over
the states at time 1 by

P (X1 = j) =
∑

i

P (X1 = j,X0 = i)

=
∑

i

P (X1 = j|X0 = i)P (X0 = i)

=
∑

i

pijπi.

If we write p(n) for the row vector representing the probability distribution of the
state at step n, we can write this expression as

p(1) = πP.

Now notice that

P (X2 = j) =
∑

i

P (X2 = j,X1 = i)

=
∑

i

P (X2 = j|X1 = i)P (X1 = i)

=
∑

i

pij

(
∑

ki

pkiπk

)
.

so that
p(n) = πPn.

13.1. Markov Chains 311

This expression is useful for simulation, and also allows us to deduce a variety of
interesting properties of Markov chains.

Useful Facts: 13.2 Transition Probability Matrices

A finite state Markov chain can be represented with a matrix P of tran-
sition probabilities, where the i, j’th element pij = P (Xn = j|Xn−1 =
i). This matrix is a stochastic matrix. If the probability distribution of
state Xn−1 is represented by πn−1, then the probability distribution of
state Xn is given by πT

n−1P.

13.1.2 Stationary Distributions

Worked Example 13.5 Viruses

We know that the virus of Fig. 13.4 started in strain 1. After two-state transi-
tions, what is the distribution of states when α = 0.2? when α = 0.9? What
happens after 20 state transitions? If the virus starts in strain 2, what happens
after 20 state transitions?

Solution: If the virus started in strain 1, then π = [1, 0, 0]. We must
compute π(P(α))2. This yields [0.66, 0.17, 0.17] for the case α = 0.2 and
[0.4150, 0.2925, 0.2925] for the case α = 0.9. Notice that, because the virus
with small α tends to stay in whatever state it is in, the distribution of states
after 2 years is still quite peaked; when α is large, the distribution of states is
quite uniform. After 20 transitions, we have [0.3339, 0.3331, 0.3331] for the case
α = 0.2 and [0.3333, 0.3333, 0.3333] for the case α = 0.9; you will get similar
numbers even if the virus starts in strain 2. After 20 transitions, the virus has
largely “forgotten” what the initial state was.

In Example 13.5, the distribution of virus strains after a long interval appears
not to depend much on the initial strain. This property is true of many Markov
chains. Assume that our chain has a finite number of states. Assume that any
state can be reached from any other state, by some sequence of transitions. Such
chains are called irreducible. Notice this means there is no absorbing state, and
the chain cannot get “stuck” in a state or a collection of states. Then there is a
unique vector s, usually referred to as the stationary distribution, such that for
any initial state distribution π,

lim
n → ∞ πP(n) = s.

13.1. Markov Chains 312

Equivalently, if the chain has run through many steps, it no longer matters what
the initial distribution is. The probability distribution over states will be s.

The stationary distribution can often be found using the following property.
Assume the distribution over states is s, and the chain goes through one step. Then
the new distribution over states must be s too. This means that

sP = s

so that s is an eigenvector of PT , with eigenvalue 1. It turns out that, for an
irreducible chain, there is exactly one such eigenvector.

The stationary distribution is a useful idea in applications. It allows us to
answer quite natural questions, without conditioning on the initial state of the
chain. For example, in the umbrella case, we might wish to know the probability
I arrive home wet. This could depend on where the chain starts (Example 13.6).
If you look at the figure, the Markov chain is irreducible, so there is a stationary
distribution and (as long as I’ve been going back and forth long enough for the
chain to “forget” where it started), the probability it is in a particular state doesn’t
depend on where it started. So the most sensible interpretation of this probability
is the probability of a particular state in the stationary distribution.

Worked Example 13.6 Umbrellas, but Without a Stationary Distribution

This is a different version of the umbrella problem, but with a crucial difference.
When I move to town, I decide randomly to buy an umbrella with probability
0.5. I then go from office to home and back. If I have bought an umbrella, I
behave as in Example 13.1. If I have not, I just get wet. Illustrate this Markov
chain with a state diagram.

Solution: Figure 13.5 does this. Notice this chain isn’t irreducible. The state
of the chain in the far future depends on where it started (i.e., did I buy an
umbrella or not).

Useful Facts: 13.3 Many Markov Chains Have Stationary Distributions

If a Markov chain has a finite set of states, and if it is possible to get
from any state to any other state, then the chain will have a stationary
distribution. A sample state of the chain taken after it has been running
for a long time will be a sample from that stationary distribution. Once
the chain has run for long enough, it will visit states with a frequency
corresponding to that stationary distribution, though it may take many
state transitions to move from state to state.

13.1. Markov Chains 313

13.1.3 Example: Markov Chain Models of Text

Imagine we wish to model English text. The very simplest model would be to
estimate individual letter frequencies (most likely, by counting letters in a large
body of example text). We might count spaces and punctuation marks as letters.
We regard the frequencies as probabilities, then model a sequence by repeatedly
drawing a letter from that probability model. You could even punctuate with this
model by regarding punctuation signs as letters, too. We expect this model will
produce sequences that are poor models of English text—there will be very long
strings of “a”s, for example. This is clearly a (rather dull) Markov chain. It is
sometimes referred to as a 0-th order chain or a 0-th order model, because each
letter depends on the 0 letters behind it.

WD D

D WD

Home Office
Me

Home

Office

Umbrella

WDWD

Figure 13.5: In this umbrella example, there can’t be a stationary distribution; what
happens depends on the initial, random choice of buying/not buying an umbrella

A slightly more sophisticated model would be to work with pairs of letters.
Again, we would estimate the frequency of pairs by counting letter pairs in a body
of text. We could then draw a first letter from the letter frequency table. Assume
this is an “a.” We would then draw the second letter by drawing a sample from
the conditional probability of encountering each letter after “a,” which we could
compute from the table of pair frequencies. Assume this is an “n.” We get the
third letter by drawing a sample from the conditional probability of encountering
each letter after “n,” which we could compute from the table of pair frequencies,
and so on. This is a first order chain (because each letter depends on the one letter
behind it).

Second and higher order chains (or models) follow the general recipe, but
the probability of a letter depends on more of the letters behind it. You may be
concerned that conditioning a letter on the two (or k) previous letters means we

13.1. Markov Chains 314

don’t have a Markov chain, because I said that the n’th state depends on only the
n− 1’th state. The cure for this concern is to use states that represent two (or k)
letters, and adjust transition probabilities so that the states are consistent. So for
a second order chain, the string “abcde” is a sequence of four states, “ab,” “bc,”
“cd,” and “de.”

Worked Example 13.7 Modelling Short Words

Obtain a text resource, and use a trigram letter model to produce four letter
words. What fraction of bigrams (resp. trigrams) do not occur in this resource?
What fraction of the words you produce are actual words?

Solution: I used the text of a draft of this chapter. I ignored punctuation
marks, and forced capital letters to lower case letters. I found 0.44 of the
bigrams and 0.90 of the trigrams were not present. I built two models. In one,
I just used counts to form the probability distributions (so there were many
zero probabilities). In the other, I split a probability of 0.1 between all the
cases that had not been observed. A list of 20 word samples from the first
model is “ngen,” “ingu,” “erms,” “isso,” “also,” “plef,” “trit,” “issi,” “stio,”
“esti,” “coll,” “tsma,” “arko,” “llso,” “bles,” “uati,” “namp,” “call,” “riat,”
“eplu”; two of these are real English words (three if you count “coll,” which I
don’t; too obscure), so perhaps 10% of the samples are real words. A list of 20
word samples from the second model is “hate,” “ther,” “sout,” “vect,” “nces,”
“ffer,” “msua,” “ergu,” “blef,” “hest,” “assu,” “fhsp,” “ults,” “lend,” “lsoc,”
“fysj,” “uscr,” “ithi,” “prow,” “lith”; four of these are real English words (you
might need to look up “lith,” but I refuse to count “hest” as being too archaic),
so perhaps 20% of the samples are real words. In each case, the samples are
too small to take the fraction estimates all that seriously.

Letter models can be good enough for (say) evaluating communication devices,
but they’re not great at producing words (Example 13.7). More effective language
models are obtained by working with words. The recipe is as above, but now we use
words in place of letters. It turns out that this recipe applies to such domains as
protein sequencing, DNA sequencing, and music synthesis as well, but now we use
amino acids (resp. base pairs; notes) in place of letters. Generally, one decides what
the basic item is (letter, word, amino acid, base pair, note, etc.). Then individual
items are called unigrams and 0’th order models are unigram models; pairs are
bigrams and first order models are bigram models; triples are trigrams, second
order models trigram models; and for any other n, groups of n in sequence are
n-grams and n− 1’th order models are n-gram models.

13.1. Markov Chains 315

Worked Example 13.8 Modelling Text with n-Grams of Words

Build a text model that uses bigrams (resp. trigrams, resp. n-grams) of words,
and look at the paragraphs that your model produces.

Solution: This is actually a fairly arduous assignment, because it is hard
to get good bigram frequencies without working with enormous text re-
sources. Google publishes n-gram models for English words with the year
in which the n-gram occurred and information about how many differ-
ent books it occurred in. So, for example, the word “circumvallate” ap-
peared 335 times in 1978, in 91 distinct books—some books clearly felt the
need to use this term more than once. This information can be found
starting at http://storage.googleapis.com/books/ngrams/books/datasetsv2.html.
The raw dataset is huge, as you would expect. There are numerous n-
gram language models on the web. Jeff Attwood has a brief discus-
sion of some models at https://blog.codinghorror.com/markov-and-you/; So-
phie Chou has some examples, and pointers to code snippets and text
resources, at http://blog.sophiechou.com/2013/how-to-model-markov-chains/.
Fletcher Heisler, Michael Herman, and Jeremy Johnson are authors of
RealPython, a training course in Python, and give a nice worked ex-
ample of a Markov chain language generator at https://realpython.com/
blog/python/lyricize-a-flask-app-to-create-lyrics-using-markov-chains/. Markov
chain language models are effective tools for satire. Garkov is Josh
Millard’s tool for generating comics featuring a well-known cat (at
http://joshmillard.com/garkov/). There’s a nice Markov chain for review-
ing wines by Tony Fischetti at http://www.onthelambda.com/2014/02/20/
how-to-fake-a-sophisticated-knowledge-of-wine-with-markov-chains/.

It is usually straightforward to build a unigram model, because it is usually
easy to get enough data to estimate the frequencies of the unigrams. There are
many more bigrams than unigrams, many more trigrams than bigrams, and so on.
This means that estimating frequencies can get tricky. In particular, you might
need to collect an immense amount of data to see every possible n-gram several
times. Without seeing every possible n-gram several times, you will need to deal
with estimating the probability of encountering rare n-grams that you haven’t seen.
Assigning these n-grams a probability of zero is unwise, because that implies that
they never occur, as opposed to occur seldom.

There are a variety of schemes for smoothing data (essentially, estimating
the probability of rare items that have not been seen). The simplest one is to
assign some very small fixed probability to every n-gram that has a zero count.
It turns out that this is not a particularly good approach, because, for even quite
small n, the fraction of n-grams that have zero count can be very large. In turn,
you can find that most of the probability in your model is assigned to n-grams you
have never seen. An improved version of this model assigns a fixed probability to
unseen n-grams, then divides that probability up between all of the n-grams that
have never been seen before. This approach has its own characteristic problems. It

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
https://blog.codinghorror.com/markov-and-you/
http://blog.sophiechou.com/2013/how-to-model-markov-chains/
https://realpython.com/blog/python/lyricize-a-flask-app-to-create-lyrics-using-markov-chains/
https://realpython.com/blog/python/lyricize-a-flask-app-to-create-lyrics-using-markov-chains/
http://joshmillard.com/garkov/
http://www.onthelambda.com/2014/02/20/how-to-fake-a-sophisticated-knowledge-of-wine-with-markov-chains/
http://www.onthelambda.com/2014/02/20/how-to-fake-a-sophisticated-knowledge-of-wine-with-markov-chains/

13.2. Hidden Markov Models and Dynamic Programming 316

ignores evidence that some of the unseen n-grams are more common than others.
Some of the unseen n-grams have (n− 1) leading terms that are (n− 1)-grams that
we have observed. These (n − 1)-grams likely differ in frequency, suggesting that
n-grams involving them should differ in frequency, too. More sophisticated schemes
are beyond our scope, however.

13.2 Hidden Markov Models and Dynamic Programming

Imagine we wish to build a program that can transcribe speech sounds into text.
Each small chunk of text can lead to one, or some, sounds, and some randomness
is involved. For example, some people pronounce the word “fishing” rather like
“fission.” As another example, the word “scone” is sometimes pronounced rhyming
with “stone,” sometimes rhyming with “gone,” and very occasionally rhyming with
“toon” (really!). A Markov chain supplies a model of all possible text sequences,
and allows us to compute the probability of any particular sequence. We will use
a Markov chain to model text sequences, but what we observe is sound. We must
have a model of how sound is produced by text. With that model and the Markov
chain, we want to produce text that (a) is a likely sequence of words and (b) is
likely to have produced the sounds we hear.

Many applications contain the main elements of this example. We might
wish to transcribe music from sound. We might wish to understand American
sign language from video. We might wish to produce a written description of how
someone moves from video observations. We might wish to break a substitution
cipher. In each case, what we want to recover is a sequence that can be modelled
with a Markov chain, but we don’t see the states of the chain. Instead, we see
noisy measurements that depend on the state of the chain, and we want to recover
a state sequence that is (a) likely under the Markov chain model and (b) likely to
have produced the measurements we observe.

13.2.1 Hidden Markov Models

Assume we have a finite state, time homogenous Markov chain, with S states. This
chain will start at time 1, and the probability distribution P (X1 = i) is given by
the vector π. At time u, it will take the state Xu, and its transition probability
matrix is pij = P (Xu+1 = j|Xu = i). We do not observe the state of the chain.
Instead, we observe some Yu. We will assume that Yu is also discrete, and there
are a total of O possible states for Yu for any u. We can write a probability
distribution for these observations P (Yu|Xu = i) = qi(Yu). This distribution is
the emission distribution of the model. For simplicity, we will assume that the
emission distribution does not change with time.

We can arrange the emission distribution into a matrixQ. A hidden Markov
model consists of the transition probability distribution for the states, the rela-
tionship between the state and the probability distribution on Yu, and the initial
distribution on states, that is, (P,Q, π). These models are often dictated by an
application. An alternative is to build a model that best fits a collection of observed
data, but doing so requires technical machinery we cannot expound here.

I will sketch how one might build a model for transcribing speech, but you
should keep in mind this is just a sketch of a very rich area. We can obtain the

13.2. Hidden Markov Models and Dynamic Programming 317

probability of a word following some set of words using n-gram resources, as in
Sect. 13.1.3. We then build a model of each word in terms of small chunks of word
that are likely to correspond to common small chunks of sound. We will call these
chunks of sound phonemes. We can look up the different sets of phonemes that
correspond to a word using a pronunciation dictionary. We can combine these two
resources into a model of how likely it is one will pass from one phoneme inside a
word to another, which might either be inside this word or inside another word.
We now have P. We will not spend much time on π, and might even model it as a
uniform distribution. We can use a variety of strategies to build Q. One is to build
discrete features of a sound signal, then count how many times a particular set of
features is produced when a particular phoneme is played.

13.2.2 Picturing Inference with a Trellis

Assume that we have a sequence of N measurements Yi that we believe to be the
output of a known hidden Markov model. We wish to recover the “best” corre-
sponding sequence of Xi. Doing so is inference. We will choose the sequence that
maximizes the posterior probability of X1, . . . , XN , conditioned on the observations
and the model, which is

P (X1, X2, . . . , XN |Y1, Y2, . . . , YN ,P,Q, π).

This is maximum a posteriori inference (or MAP inference).
It is equivalent to recover a sequence Xi that minimizes

− logP (X1, X2, . . . , XN |Y1, Y2, . . . , YN ,P,Q, π).

This is more convenient, because (a) the log turns products into sums, which will be
convenient and (b) minimizing the negative log probability gives us a formulation
that is consistent with algorithms in Chap. 14. The negative log probability factors
as

− log

(
P (X1, X2, . . . , XN , Y1, Y2, . . . , YN |P,Q, π)

P (Y1, Y2, . . . , YN)

)

and this is

− logP (X1, X2, . . . , XN , Y1, Y2, . . . , YN |P,Q, π) + logP (Y1, Y2, . . . , YN).

Notice that P (Y1, Y2, . . . , YN) doesn’t depend on the sequence of Xu we choose, and
so the second term can be ignored. What is important here is that we can decom-
pose − logP (X1, X2, . . . , XN , Y1, Y2, . . . , YN |P,Q, π) in a very useful way, because
the Xu form a Markov chain. We want to minimize

− logP (X1, X2, . . . , XN , Y1, Y2, . . . , YN |P,Q, π)

but this is

−

⎡

⎢⎢⎣

logP (X1) + logP (Y1|X1)+
logP (X2|X1) + logP (Y2|X2)+

. . .
logP (XN |Xn−1) + logP (YN |XN).

⎤

⎥⎥⎦

13.2. Hidden Markov Models and Dynamic Programming 318

1 2

3

1

2

3

1

2

3

1

2

3

log P(Y1 | X1 =2)

p12

p23
p13

p31

Y1 Y2 Y3

log P(Y1 | X1 =3)

log P(Y1 | X1 =1)

p12log
p13log

p23log

p31log

1

2

3

Y4

Figure 13.6: At the top left, a simple state transition model. Each outgoing edge
has some probability, though the topology of the model forces two of these proba-
bilities to be 1. Below, the trellis corresponding to that model. Each path through
the trellis corresponds to a legal sequence of states, for a sequence of three mea-
surements. We weight the arcs with the log of the transition probabilities, and the
nodes with the log of the emission probabilities. I have shown some weights

Notice that this cost function has an important structure. It is a sum of terms.
There are terms that depend on a single Xi (unary terms) and terms that depend
on two (binary terms). Any state Xi appears in at most two binary terms.

We can illustrate this cost function in a structure called a trellis. This is a
weighted, directed graph consisting of N copies of the state space, which we arrange
in columns. There is a column corresponding to each measurement. We add a
directed arrow from any state in the u’th column to any state in the u+1’th column
if the transition probability between the states isn’t 0. This represents the fact that
there is a possible transition between these states. We then label the trellis with
weights. We weight the node representing the case that state Xu = j in the column
corresponding to Yu with − logP (Yu|Xu = j). We weight the arc from the node
representing Xu = i to that representing Xu+1 = j with − logP (Xu+1 = j|Xu = i).

The trellis has two crucial properties. Each directed path through the trellis
from the start column to the end column represents a legal sequence of states. Now
for some directed path from the start column to the end column, sum all the weights
for the nodes and edges along this path. This sum is the negative log of the joint
probability of that sequence of states with the measurements. You can verify each
of these statements easily by reference to a simple example (try Fig. 13.6)

There is an efficient algorithm for finding the path through a trellis which
maximizes the sum of terms. The algorithm is usually called dynamic program-
ming or the Viterbi algorithm. I will describe this algorithm both in narrative
and as a recursion. We could proceed by finding, for each node in the first column,

13.2. Hidden Markov Models and Dynamic Programming 319

1

2

3

1

2

3

1

2

3

1

2

3

–1

–3

–9

–1

–3

–9

–1

–3

–9

–1

–3

–9

1

2

3

1

2

3

1

2

3

1

2

3

–1

–3

–9

–1

–3

–9

–1

–3

–9
–1

–3.69

–9

1

2

3

1

2

3

1

2

3

1

2

3

–1

–3

–9

–1

–3

–9
–4.69

–10

–10.69

Cost to go Cost to goIII

Cost of pathIVCost to goIII

1

2

3

1

2

3

1

2

3

1

2

3

–14.69

–16.69

–20.69

1

2

3

1

2

3

1

2

3

1

2

3

–1

–3

–9
–13.69

–13.69

–11.69

Figure 13.7: An example of finding the best path through a trellis. The probabilities
of leaving a node are uniform (and remember, ln 2 ≈ −0.69). Details in the text

the best path from that node to any node in the last. There are S such paths, one
for each node in the first column. Once we have these paths, we can choose the
one with highest log joint probability. Now consider one of these paths. It passes
through the i’th node in the u’th column. The path segment from this node to the
end column must, itself, be the best path from this node to the end. If it wasn’t,
we could improve the original path by substituting the best. This is the key insight
that gives us an algorithm.

Start at the final column of the tellis. We can evaluate the best path from
each node in the final column to the final column, because that path is just the
node, and the value of that path is the node weight. Now consider a two-state
path, which will start at the second-last column of the trellis (look at panel I in
Fig. 13.7). We can easily obtain the value of the best path leaving each node in this
column. Consider a node: we know the weight of each arc leaving the node and

13.2. Hidden Markov Models and Dynamic Programming 320

the weight of the node at the far end of the arc, so we can choose the path segment
with the largest value of the sum; this arc is the best we can do leaving that node.
This sum is the best value obtainable on leaving that node—which is often known
as the cost to go function.

Now, because we know the best value obtainable on leaving each node in the
second-last column, we can figure out the best value obtainable on leaving each
node in the third-last column (panel II in Fig. 13.7). At each node in the third-last
column, we have a choice of arcs. Each of these reaches a node from which we know
the value of the best path. So we can choose the best path leaving a node in the
third-last column by finding the path that has the best value of: the arc weight
leaving the node; the weight of the node in the second-last column the arc arrives
at; and the value of the path leaving that node. This is much more easily done than
described. All this works just as well for the third-last column, etc. (panel III in
Fig. 13.7) so we have a recursion. To find the value of the best path with X1 = i,
we go to the corresponding node in the first column, then add the value of the node
to the value of the best path leaving that node (panel IV in Fig. 13.7). Finally, to
find the value of the best path leaving the first column, we compute the minimum
value over all nodes in the first column.

We can also get the path with the minimum likelihood value. When we
compute the value of a node, we erase all but the best arc leaving that node. Once
we reach the first column, we simply follow the path from the node with the best
value. This path is illustrated by dashed edges in Fig. 13.7 (panel IV).

13.2.3 Dynamic Programming for HMMs: Formalities

We will formalize the recursion of the previous section with two ideas. First, we
define Cw(j) to be the cost of the best path segment to the end of the trellis leaving
the node representing Xw = j. Second, we define Bw(j) to be the node in column
w + 1 that lies on the best path leaving the node representing Xw = j. So Cw(j)
tells you the cost of the best path, and Bw(j) tells you what node is next on the
best path.

Now it is straightforward to find the cost of the best path leaving each node
in the second-last column, and also the path. In symbols, we have

CN−1(j) = min
u

[− logP (XN = u|XN−1 = j)− logP (YN |XN = u)]

and

BN−1(j) =
argmin

u
[− logP (XN = u|XN−1 = j)− logP (YN |XN = u)] .

You should check this against step I of Fig. 13.7
Once we have the best path leaving each node in the w + 1’th column and

its cost, it’s straightforward to find the best path leaving the w’th column and its
cost. In symbols, we have

Cw(j) = min
u

[− logP (Xw+1 = u|Xw = j)− logP (Yw+1|Xw+1 = u)− Cw+1(u)]

13.2. Hidden Markov Models and Dynamic Programming 321

and

Bw(j)=
argmin

u
[− logP (Xw+1 =u|Xw = j)− logP (Yw+1|Xw+1 =u)−Cw+1(u)] .

Check this against steps II and III in Fig. 13.7.
Now finding the best path is easy. We run the recursion until we have C1(j)

for each j. This gives the cost of the best path leaving the j’th node in column 1.
We choose the node with the best cost, say ĵ. The next node on the best path is
B1(ĵ); and the path is B1(ĵ), B2(B1(ĵ)),

13.2.4 Example: Simple Communication Errors

Hidden Markov models can be used to correct text errors. We will simplify some-
what, and assume we have text that has no punctuation marks, and no capital
letters. This means there are a total of 27 symbols (26 lower case letters, and a
space). We send this text down some communication channel. This could be a
telephone line, a fax line, a file saving procedure, or anything else. This channel
makes errors independently at each character. For each location, with probability
1−p the output character at that location is the same as the input character. With
probability p, the channel chooses randomly between the character one ahead or
one behind in the character set, and produces that instead. You can think of this
as a simple model for a mechanical error in one of those now ancient printers where
a character strikes a ribbon to make a mark on the paper. We must reconstruct
the transmission from the observations.

* e t i a o s n r h
1.9e−1 9.7e−2 7.9e−2 6.6e−2 6.5e−2 5.8e−2 5.5e−2 5.2e−2 4.8e−2 3.7e−2

TABLE 13.1: The most common single letters (unigrams) that I counted from a draft
of this chapter, with their probabilities. The “*” stands for a space. Spaces are
common in this text, because I have tended to use short words (from the probability
of the “*”, average word length is between five and six letters)

I built a unigram model, a bigram model, and a trigram model. I stripped the
text of this chapter of punctuation marks and mapped the capital letters to lower
case letters. I used an HMM package (in my case, for Matlab; but there’s a good one
for R as well) to perform inference. The main programming here is housekeeping
to make sure the transition and emission models are correct. About 40% of the
bigrams and 86% of the trigrams did not appear in the text. I smoothed the
bigram and trigram probabilities by dividing the probability 0.01 evenly between
all unobserved bigrams (resp. trigrams). The most common unigrams, bigrams,
and trigrams appear in Tables 13.1, 13.2, and 13.3. As an example sequence, I used

the trellis has two crucial properties each directed path through the trel-
lis from the start column to the end column represents a legal sequence
of states now for some directed path from the start column to the end
column sum all the weights for the nodes and edges along this path
this sum is the log of the joint probability of that sequence of states

13.2. Hidden Markov Models and Dynamic Programming 322

Lead char
* *t (2.7e−2) *a (1.7e−2) *i (1.5e−2) *s (1.4e−2) *o (1.1e−2)
e e* (3.8e−2) er (9.2e−3) es (8.6e−3) en (7.7e−3) el (4.9e−3)
t th (2.2e−2) t* (1.6e−2) ti (9.6e−3) te (9.3e−3) to (5.3e−3)
i in (1.4e−2) is (9.1e−3) it (8.7e−3) io (5.6e−3) im (3.4e−3)
a at (1.2e−2) an (9.0e−3) ar (7.5e−3) a* (6.4e−3) al (5.8e−3)
o on (9.4e−3) or (6.7e−3) of (6.3e−3) o* (6.1e−3) ou (4.9e−3)
s s* (2.6e−2) st (9.4e−3) se (5.9e−3) si (3.8e−3) su (2.2e−3)
n n* (1.9e−2) nd (6.7e−3) ng (5.0e−3) ns (3.6e−3) nt (3.6e−3)
r re (1.1e−2) r* (7.4e−3) ra (5.6e−3) ro (5.3e−3) ri (4.3e−3)
h he (1.4e−2) ha (7.8e−3) h* (5.3e−3) hi (5.1e−3) ho (2.1e−3)

TABLE 13.2: The most common bigrams that I counted from a draft of this chapter,
with their probabilities. The “*” stands for a space. For each of the 10 most
common letters, I have shown the five most common bigrams with that letter in
the lead. This gives a broad view of the bigrams, and emphasizes the relationship
between unigram and bigram frequencies. Notice that the first letter of a word has
a slightly different frequency than letters (top row: bigrams starting with a space
are first letters). About 40% of the possible bigrams do not appear in the text

th the he is* *of of* on* es* *a* ion
1.7e−2 1.2e−2 9.8e−3 6.2e−3 5.6e−3 5.4e−3 4.9e−3 4.9e−3 4.9e−3 4.9e−3

tio e*t in* *st *in at* ng* ing *to *an
4.6e−3 4.5e−3 4.2e−3 4.1e−3 4.1e−3 4.0e−3 3.9e−3 3.9e−3 3.8e−3 3.7e−3

TABLE 13.3: The most frequent 10 trigrams in a draft of this chapter, with their
probabilities. Again, “*” stands for space. You can see how common “the” and
“*a*” are; “he*” is common because “*the*” is common. About 80% of possible
trigrams do not appear in the text

with the measurements you can verify each of these statements easily
by reference to a simple example

(which is text you could find in a draft of this chapter). There are 456 characters
in this sequence.

When I ran this through the noise process with p = 0.0333, I got

theztrellis has two crucial properties each directed path through the
tqdllit from the start column to the end coluln represents a legal se-
quencezof states now for some directed path from the start column to
thf end column sum aml the veights for the nodes and edges along this
path this sum is the log of the joint probability oe that sequence of
states wish the measurements youzcan verify each of these statements
easily by reference to a simple examqle

which is mangled but not too badly (13 of the characters are changed, so 443
locations are the same).

The unigram model produces

13.3. Learning an HMM 323

the trellis has two crucial properties each directed path through the
tqdllit from the start column to the end column represents a legal se-
quence of states now for some directed path from the start column to
thf end column sum aml the veights for the nodes and edges along this
path this sum is the log of the joint probability oe that sequence of
states wish the measurements you can verify each of these statements
easily by reference to a simple examqle

which fixes three errors. The unigram model only changes an observed character
when the probability of encountering that character on its own is less than the
probability it was produced by noise. This occurs only for “z,” which is unlikely on
its own and is more likely to have been a space. The bigram model produces

she trellis has two crucial properties each directed path through the
trellit from the start column to the end coluln represents a legal sequence
of states now for some directed path from the start column to the end
column sum aml the veights for the nodes and edges along this path
this sum is the log of the joint probability oe that sequence of states
wish the measurements you can verify each of these statements easily
by reference to a simple example

This is the same as the correct text in 449 locations, so somewhat better than the
noisy text. The trigram model produces

the trellis has two crucial properties each directed path through the trel-
lit from the start column to the end column represents a legal sequence
of states now for some directed path from the start column to the end
column sum all the weights for the nodes and edges along this path
this sum is the log of the joint probability of that sequence of states
with the measurements you can verify each of these statements easily
by reference to a simple example

which corrects all but one of the errors (look for “trellit”).

13.3 Learning an HMM

There are two very distinct cases for learning an HMM. In the first case, the hidden
states have known and important semantics. For example, the hidden states could
be words or letters. In this case, we want any model we learn to respect the seman-
tics of the hidden states. For example, the model should recover the right words to
go with ink or sound or whatever. This case is straightforward (Sect. 13.3.1).

In the second case, we want to model sequences, but the hidden states are
just a modelling device. One example is motion capture data. Various devices
can be used to measure the position of human joints in space while a person is
moving around. These devices report position as a function of time. This kind of
data is extremely useful in making computer generated imagery (CGI) for films and
computer games. We might observe some motion capture data, and try to make
more (HMMs actually do this quite poorly). As another example, we might observe
stock price data, and try to make more. As yet another example, we might observe

13.3. Learning an HMM 324

encrypted text and want to make more encrypted text (for example, to confuse the
people encrypting the text). This case isn’t like the examples I’ve used to describe
or justify HMMs, but it occurs fairly often. In this case, EM is an effective learning
algorithm (Sect. 13.3.2).

13.3.1 When the States Have Meaning

There are two interesting versions of this case. In one, we see example sequences
of Xi with corresponding Yi. Since everything is discrete, building models of
P (Xi+1|Xi) and of P (Y |X) is straightforward—one simply counts. This assumes
that there is enough example data. When there is not—usually signalled by zero
counts for some cases—one must use smoothing methods that are beyond our scope.
If one has this kind of data, it is possible to build other kinds of sequence model; I
describe these models in the following chapter.

In the second case, we see example sequences of Xi but do not see the Yi

corresponding to those sequences. A standard example is a substitution cipher for
English text. Here it is easy to get a lot of data for P (Xi+1|Xi) (one looks up text
resources in English), but we have no data for P (Y |X) because we do not know
what X corresponds to observed Y ’s. Learning in this case is a straightforward
variant of the EM algorithm for learning when there is no X data (below; for the
variant, see the exercises).

13.3.2 Learning an HMM with EM

We have a dataset Y for which we believe a hidden Markov model is an appropriate
model. This dataset consists of R sequences of visible states. The u’th sequence
has N(u) elements. We will assume that the observed values lie in a discrete space
(i.e., there are O possible values that the Y ’s can take, and no others). We wish to
choose a model that best represents a set of data. Assume, for the moment, that

we knew each hidden state corresponding to each visible state. Write Y
(u)
t is the

observed value for the t’th observed state in the u’th sequence; write X
(u)
t for the

random variable representing the hidden value for the t’th observed state in the
u’th sequence; write sk for the hidden state values (where k is in the range 1 . . . S);
and write yk for the possible values for Y (where k is in the range 1 . . . O).

The hidden Markov model is given by three sets of parameters, π, P, and
Q. We will assume that these parameters are not affected by where we are in the
sequence (i.e., the model is homogeneous). First, π is an S-dimensional vector.
The i’th element, πi, of this vector gives the probability that the model starts in
state si, i.e., πi = P (X1 = si|θ). Second, P is an S × S-dimensional table. The
i, j’th element of this table gives P (Xt+1 = sj |Xt = si). Finally, Q is an O × S-
dimensional table. We will write qj(yi) = P (Yt = yi|Xt = sj) for the i, j’th element
of this table. Note I will write θ to represent all of these parameters together.

Now assume that we know the values of X
(u)
t for all t, u, (i.e., for each Y

(u)
t we

know that X
(u)
t = si). Then estimating the parameters is straightforward. We can

estimate each by counting. For example, we estimate πi by counting the number

13.3. Learning an HMM 325

of sequences where X1 = si, then dividing by the total number of sequences. We

will encapsulate this knowledge in a function δ
(u)
t (i), where

δ
(u)
t (i) =

{
1 if X

(u)
t = si

0 otherwise
.

If we know δ
(u)
t (i), we have

πi =
number of times in si at time 1

number of sequences

=

∑R
u=1 δ

(u)
1 (i)

R

Pij =
number of transitions from sj to si

total number of transitions

=

∑R
u=1

∑N(u)−1
t=1 δ

(u)
t (j)δ

(u)
t+1(i)∑R

u=1 [N(u)− 1]

qj(yi) =
number of times in sj and observe Y = yi

number of times in sj

=

∑R
u=1

∑N(u)
t=1 δ

(u)
t (j)δ(Y

(u)
t , yi)

∑R
u=1

∑N(u)
t=1 δ

(u)
t (j)

where δ(u, v) is one if its arguments are equal and zero otherwise.

The problem (of course) is that we don’t know δ
(u)
t (i). But we have been here

before (Sects. 9.2.1 and 9.2.3). The situation follows the recipe for EM: we have

missing variables (the X
(u)
t ; or, equivalently, the δ

(u)
t (i)) where the log-likelihood

can be written out cleanly in terms of the missing variables. We assume we know
an estimate of the parameters θ̂(n). We construct

Q(θ; θ̂(n)) = EP (δ|Y,θ̂(n))[logP (δ, Y |θ)]

(the E-step). Then we compute

θ̂(n+1) =
argmin

θ
Q(θ; θ̂(n))

(the M-step). As usual, the problem is the E-step. I will not derive this in detail
(enthusiasts can easily reconstruct the derivation from what follows together with
Chap. 9). The essential point is that we need to recover

ξ
(u)
t (i) = EP (δ|Y,θ̂(n))

[
δ
(u)
t (i)

]
= P (X

(u)
t = si|Y, θ̂(n)).

13.3. Learning an HMM 326

For the moment, assume we know these. Then we have

π̂i
(n+1) = expected frequency of being in si at time 1

=

∑R
u=1 ξ

(u)
1 (i)

R

P̂(n+1)
ij =

expected number of transitions from sj to si
expected number of transitions from state sj

=

∑R
u=1

∑N(u)
t=1 ξ

(u)
t (j)ξ

(u)
t+1(i)∑R

u=1

∑N(u)
t=1 ξ

(u)
t (j)

q̂
(n+1)
j (k) =

expected number of times in sj and observing Y = yk
expected number of times in state sj

=

∑R
u=1

∑N(u)
t=1 ξ

(u)
t (j)δ(Y

(u)
t , yk)

∑R
u=1

∑N(u)
t=1 ξ

(u)
t (j)

where δ(u, v) is one if its arguments are equal and zero otherwise.

To evaluate ξ
(u)
t (i), we need two intermediate variables: a forward variable

and a backward variable. The forward variable is

α
(u)
t (j) = P (Y

(u)
1 , . . . , Y

(u)
t , X

(u)
t = sj |θ̂(n)).

The backward variable is

β
(u)
t (j) = P ({Y (u)

t+1, Y
(u)
t+2, . . . , Y

(u)
N(u)}|X

(u)
t = sj |θ̂(n)).

Now assume that we know the values of these variables, we have that

ξ
(u)
t (i) = P (X

(u)
t = si|θ̂(n),Y(u))

=
P (Y(u), X

(u)
t = si|θ̂(n))

P (Y(u)|θ̂(n))

=
α
(u)
t (i)β

(u)
t (i)

∑S
i=1 α

(u)
t (i)β

(u)
t (i)

Both the forward and backward variables can be evaluated by induction. We

get α
(u)
t (j) by observing that:

α
(u)
1 (j) = P (Y

(u)
1 , X

(u)
1 = sj |θ̂(n))

= π
(n)
j q

(n)
j (Y1).

13.3. Learning an HMM 327

Now for all other t’s, we have

α
(u)
t+1(j) = P (Y

(u)
1 , . . . , Y

(u)
t+1, X

(u)
t+1 = sj |θ̂(n))

=

S∑

l=1

P (Y
(u)
1 , . . . , Y

(u)
t , Y

(u)
t+1, X

(u)
t = sl, X

(u)
t+1 = sj |θ̂(n))

=

(
S∑

l=1

[
P (Y

(u)
1 , . . . , Y

(u)
t , X

(u)
t = sl|θ̂(n))×

P (X
(u)
t+1 = sj |X(u)

t = sl, θ̂
(n))

])

×P
(
Y

(u)
t+1|X

(u)
t+1 = sj , θ̂

(n)
)

=

[
S∑

l=1

α
(u)
t (l)p

(n)
lj

]
q
(n)
j (Yt+1)

We get β
(u)
t (j) by observing that:

β
(u)
N(u)(j) = P (no further output|X(u)

N(u) = sj , θ̂
(n))

= 1.

Now for all other t we have

β
(u)
t (j) = P

(
Y

(u)
t+1, Y

(u)
t+2, . . . , Y

(u)
N(u)|X

(u)
t = sj , θ̂

(n)
)

=

S∑

l=1

[
P
(
Y

(u)
t+1, Y

(u)
t+2, . . . , Y

(u)
N(u), X

(u)
t+1 = sl|X(u)

t = sj , θ̂
(n)
)]

=

S∑

l=1

⎡

⎣ P
(
Y

(u)
t+2, . . . , Y

(u)
N(u)|X

(u)
t+1 = sj , θ̂

(n)
)

×P
(
Y

(u)
t+1, X

(u)
t+1 = sl|X(u)

t = sj , θ̂
(n)
)

⎤

⎦

= P
(
Y

(u)
t+2, . . . , Y

(u)
N(u)|X

(u)
t+1 = sj , θ̂

(n)
)

⎛

⎝
S∑

l=1

⎡

⎣ P
(
X

(u)
t+1 = sl|X(u)

t = sj , θ̂
(n)
)

×P
(
Y

(u)
t+1|X

(u)
t+1 = slθ̂

(n)
)

⎤

⎦

⎞

⎠

= βt+1(j)

(
S∑

l=1

[
q
(n)
l

(
Y

(u)
t+1

)
p
(n)
lj

])

As a result, we have a simple fitting algorithm, collected in Algorithm 13.1.

13.3. Learning an HMM 328

Procedure: 13.1 Fitting Hidden Markov Models with EM

We fit a model to a data sequence Y is achieved by a version of EM.
We seek the values of parameters θ = (P,Q, π)i. We assume we have
an estimated θ̂(n), and then compute the coefficients of a new model;
this iteration is guaranteed to converge to a local maximum of P (Y|θ̂).

Until θ̂(n+1) is the same as θ̂(n)

compute the forward variables α and β
using the procedures of Algorithms 13.2 and 13.3

compute ξ
(u)
t (i) =

α
(u)
t (i)β

(u)
t (i)∑S

i=1
α

(u)
t (i)β

(u)
t (i)

compute the updated parameters using the procedures of Procedure 13.4
end

Procedure: 13.2 Computing the Forward Variable for Fitting an HMM

α
(u)
1 (j) = π

(n)
j q

(n)
j (Y1)

α
(u)
t+1(j) =

[
S∑

l=1

α
(u)
t (l)p

(n)
lj

]
q
(n)
j (Yt+1)

Procedure: 13.3 Computing the Backward Variable for Fitting an HMM

β
(u)
N(u)(j) = 1

β
(u)
t (j) = βt+1(j)

(
S∑

l=1

[
q
(n)
l (Y

(u)
t+1)p

(n)
lj

])

13.4. You Should 329

Procedure: 13.4 Updating Parameters for Fitting an HMM

π̂i
(n+1) =

∑R
u=1 ξ

(u)
1 (i)

R

P̂(n+1)
ij =

∑R
u=1

∑N(u)
t=1 ξ

(u)
t (j)ξ

(u)
t+1(i)∑R

u=1

∑N(u)
t=1 ξ

(u)
t (j)

q̂j(k)
(n+1) =

∑R
u=1

∑N(u)
t=1 ξ

(u)
t (j)δ(Y

(u)
t , yk)

∑R
u=1

∑N(u)
t=1 ξ

(u)
t (j)

where δ(u, v) is one if its arguments are equal and zero otherwise.

13.4 You Should

13.4.1 Remember These Terms

Markov chain . 305
transition probabilities . 305
biased random walk . 306
absorbing state . 307
recurrent . 307
stochastic matrices . 309
irreducible . 311
stationary distribution . 311
unigrams . 314
unigram models . 314
bigrams . 314
bigram models . 314
trigrams . 314
trigram models . 314
n-grams . 314
n-gram models . 314
smoothing . 315
emission distribution . 316
hidden Markov model . 316
phonemes . 317
inference . 317
maximum a posteriori . 317
MAP . 317
trellis . 318
dynamic programming . 318
Viterbi algorithm . 318

13.4. You Should 330

cost to go function . 320
forward variable . 326
backward variable . 326

13.4.2 Remember These Facts

Markov Chains . 309
Transition Probability Matrices . 311
Many Markov Chains Have Stationary Distributions 312

13.4.3 Be Able to

• Set up a simple HMM and use it to solve problems.
• Learn a simple HMM from data using EM

Problems

13.1. Multiple die rolls: You roll a fair die until you see a 5, then a 6; after that,
you stop. Write P (N) for the probability that you roll the die N times.
(a) What is P (1)?
(b) Show that P (2) = (1/36).
(c) Draw a directed graph encoding all the sequences of die rolls that you

could encounter. Don’t write the events on the edges; instead, write their
probabilities. There are 5 ways not to get a 5, but only one probability,
so this simplifies the drawing.

(d) Show that P (3) = (1/36).
(e) Now use your directed graph to argue that P (N) = (5/6)P (N − 1) +

(25/36)P (N − 2).
13.2. More complicated multiple coin flips: You flip a fair coin until you see

eitherHTH or THT , and then you stop. We will compute a recurrence relation
for P (N).
(a) Draw a directed graph for this chain.
(b) Think of the directed graph as a finite state machine. Write ΣN for some

string of length N accepted by this finite state machine. Use this finite
state machine to argue that SigmaN has one of four forms:

1. TTΣN−2

2. HHΣN−3

3. THHΣN−2

4. HTTΣN−3

(c) Now use this argument to show that P (N) = (1/2)P (N−2)+(1/4)P (N−
3).

13.3. For the umbrella example of worked Example 13.1, assume that with prob-
ability 0.7 it rains in the evening, and 0.2 it rains in the morning. I am
conventional, and go to work in the morning, and leave in the evening.
(a) Write out a transition probability matrix.
(b) What is the stationary distribution? (you should use a simple computer

program for this).
(c) What fraction of evenings do I arrive at home wet?
(d) What fraction of days do I arrive at my destination dry?

13.4. You Should 331

Programming Exercises

13.4. A dishonest gambler has two dice and a coin. The coin and one die are both
fair. The other die is unfair. It has P (n) = [0.5, 0.1, 0.1, 0.1, 0.1, 0.1] (where n is
the number displayed on the top of the die). At the start, the gambler chooses
a die uniformly and at random. At each subsequent step, the gambler chooses
a die by flipping a weighted coin. If the coin comes up heads (probability p),
the gambler changes the die, otherwise, the gambler keeps the same die. The
gambler rolls the chosen die.
(a) Model this process with a hidden Markov model. The emitted symbols

should be 1, . . . , 6. Doing so requires only two hidden states (which die is
in hand). Simulate a long sequence of rolls using this model for the case
p = 0.01 and p = 0.5. What difference do you see?

(b) Use your simulation to produce 10 sequences of 100 symbols for the case
p = 0.1. Record the hidden state sequence for each of these. Now recover
the hidden state using dynamic programming (you should likely use a
software package for this; there are many good ones for R and Matlab).
What fraction of the hidden states is correctly identified by your inference
procedure?

13.5. A dishonest gambler has two dice and a coin. The coin and one die are both
fair. The other die is unfair. It has P (n) = [0.5, 0.1, 0.1, 0.1, 0.1, 0.1] (where n is
the number displayed on the top of the die). At the start, the gambler chooses
a die uniformly and at random. At each subsequent step, the gambler chooses
a die by flipping a weighted coin. If the coin comes up heads (probability p),
the gambler changes the die, otherwise, the gambler keeps the same die. The
gambler rolls the chosen die.
(a) Model this process with a hidden Markov model. The emitted symbols

should be 1, . . . , 6. Doing so requires only two hidden states (which die
is in hand). Produce one sequence of 1000 symbols for the case p = 0.2
with your simulator.

(b) Use the sequence of symbols and EM to learn a hidden Markov model
with two states.

(c) It turns out to be difficult with the tools at our disposal to compare
your learned model with the true model. Can you do this by inferring
a sequence of hidden states using each model, then comparing the in-
ferred sequences? Explain. Hint: No—but the reason requires a moment’s
thought.

(d) Simulate a sequence of 1000 states using the learned model and also using
the true model. For each sequence compute the fraction of 1’s, 2’s, etc.
observed in the sequence. Does this give you any guide as to how good
the learned model is? Hint: can you use the chi-squared test to tell if any
differences you see are due to chance?

13.6. Warning: this exercise is fairly elaborate, though straightforward.
We will correct text errors using a hidden Markov model.
(a) Obtain the text of a copyright-free book in plain characters. One natural

source is Project Gutenberg, at https://www.gutenberg.org. Simplify this
text by dropping all punctuation marks except spaces, mapping capital
letters to lower case, and mapping groups of many spaces to a single space.
The result will have 27 symbols (26 lower case letters and a space). From
this text, count unigram, bigram, and trigram letter frequencies.

(b) Use your counts to build models of unigram, bigram, and trigram let-
ter probabilities. You should build both an unsmoothed model and at

https://www.gutenberg.org

13.4. You Should 332

least one smoothed model. For the smoothed models, choose some small
amount of probability ε and split this between all events with zero count.
Your models should differ only by the size of ε.

(c) Construct a corrupted version of the text by passing it through a process
that, with probability pc, replaces a character with a randomly chosen
character, and otherwise reports the original character.

(d) For a reasonably sized block of corrupted text, use an HMM inference
package to recover the best estimate of your true text. Be aware that
your inference will run more slowly as the block gets bigger, but you
won’t see anything interesting if the block is (say) too small to contain
any errors.

(e) For pc = 0.01 and pc = 0.1, estimate the error rate for the corrected text
for different values of ε. Keep in mind that the corrected text could be
worse than the corrupted text.

13.7. Warning: this exercise is fairly elaborate, though straightforward.
We will break a substitution cipher using a hidden Markov model.
(a) Obtain the text of a copyright-free book in plain characters. One natural

source is Project Gutenberg, at https://www.gutenberg.org. Simplify this
text by dropping all punctuation marks except spaces, mapping capital
letters to lower case, and mapping groups of many spaces to a single space.
The result will have 27 symbols (26 lower case letters and a space). From
this text, count unigram, bigram, and trigram letter frequencies.

(b) Use your counts to build models of unigram, bigram, and trigram let-
ter probabilities. You should build both an unsmoothed model and at
least one smoothed model. For the smoothed models, choose some small
amount of probability ε and split this between all events with zero count.
Your models should differ only by the size of ε.

(c) Construct a ciphered version of the text. We will use a substitution cipher,
which you can represent as randomly chosen permutation of 27 points.
You should represent this permutation as a 27 × 27 permutation matrix.
Remember a permutation matrix contains only zeros and ones. Each
column and each row contains exactly one 1. You can now represent each
character with a 27-dimensional one-hot vector. This is a 27-dimensional
vector. One component is 1, and the others are 0. For the i’th character,
the i’th component is 1 (so an “a” is represented by a vector with 1 in the
first component, etc.). The document becomes a sequence of these vectors.
Now you can get a representation of the ciphered document by multiplying
the representation of the original document by the permutation matrix.

(d) Using at least 10,000 ciphered characters apply EM, rather like Sect. 13.3.2,
to estimate an HMM. You should use the unigram model of the previous
subexercise as the transition model, and you should not re-estimate the
transition model. Instead, you should estimate the emission model and
prior only. This is straightforward; plug the known transition model, the
estimated emission model, and the prior into the E-step, and then in the
M-step update only the emission model and the prior.

(e) For a reasonably sized block of ciphered text, use an HMM inference
package and your learned model to recover the best estimate of your true
text. Be aware that your inference will run more slowly as the block gets
bigger, but you won’t see anything interesting if the block is (say) too
small to contain any errors.

(f) Now perform the last two steps using your bigram and trigram models.
Which model deciphers with the lowest error rate?

https://www.gutenberg.org

C H A P T E R 14

Learning Sequence Models
Discriminatively

In this chapter, I resolve two problems that you might not have noticed in the
previous chapter. First, HMMs aren’t that natural for many sequences, because a
model that represents (say) ink conditioned on (say) a letter is odd. Generative
models like this must often do much more work than is required to solve a problem,
and modelling the letter conditioned on the ink is usually much easier (this is why
classifiers work). Second, in many applications you would want to learn a model
that produces the right sequence of hidden states given a set of observed states, as
opposed to maximizing likelihood.

Resolving these issues requires some generalization. Hidden Markov models
have two very nice properties. First, they can be represented as graphs; second,
inference is easy and efficient. In this chapter, we will look at other models which
can be represented on graphs and which allow easy inference. Inference is efficient
if the graph representation is a forest. One apparently natural model for sequences
meets our criteria, is discriminative, and has a nasty hidden bug. The better model
can’t be interpreted in terms of joint probabilities of pairs of hidden states, but still
allows easy inference.

Now we want our model to accept (say) sequences of ink and produce (say)
sequences of characters. One approach to training is to choose a model that max-
imizes the joint probability of training data. But this may not be what we really
seek. Assume the training data consists of (say) sequences of ink and (say) se-
quences of characters. Then we what we really want is that, when our model
receives a ground truth sequence of ink, it produces corresponding ground truth
sequence of characters. This view is much more like training a classifier (which is
trained to produce the ground truth label when it gets a training input, or mostly).
Training a sequence model to produce the sequences you want turns out to be a
straightforward, but interesting, generalization of our reasoning about classifiers.

14.1 Graphical Models

What made an HMM an attractive model is that inference is easy. We could search
an exponential space of paths in polynomial time to find the best path. I showed
this by transferring the cost function for an HMM to a trellis, then reasoning about
paths on that trellis. But nothing I did required the cost function that we were
minimizing to come from log probabilities (you should revisit Sect. 13.2 to check
this point, which is important). I could put arbitrary node and edge weights on
the trellis, and still use my algorithm to recover the path with the smallest sum of
weights.

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 14

333

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_14

14.1. Graphical Models 334

14.1.1 Inference and Graphs

This opens the possibility that we could assemble other kinds of model—not HMMs—
for which inference is easy. This idea turns out to be fruitful, but requires thinking
about what made inference easy. For an HMM, I could factor the log of the joint
probability by

− logP (Y1, Y2, . . . , YN , X1, X2, . . . , XN) = − logP (X1)− logP (Y1|X1)−
logP (X2|X1)− logP (Y2|X2)−
. . .

logP (XN |XN−1)− logP (YN |XN).

Inference requires choosing the X1, . . . , XN values that maximize this objective
function. Notice the objective function is a sum of two kinds of term. There are
unary terms which are functions that take one argument, and which we write
V (Xi). Notice that the variable identifies which vertex function we are talking
about; the convention follows probability notation. There are binary terms which
are functions that take two arguments, and which we write E(Xi, Xj), using the
same convention. For example, in the case of the HMM, the variables would be the
hidden states, the unary terms would be the negative logs of emission probabilities,
and binary terms would be the negative logs of transition probabilities.

It is quite natural to draw this objective function as a graph. There is one
vertex for each variable (and the unary terms are sometimes called vertex terms),
and one edge for each binary term (binary terms are sometimes called edge terms).
It turns out that if this graph is a forest, then optimization will be easy, which I
shall sketch here. By the way, this does not mean that if the graph is not a forest,
optimization is necessarily hard; there is a large and interesting collection of details
to be navigated here, all of which we shall ignore.

The simplest case is a chain graph. A chain graph looks like a chain (hence
the name), and is the graph that arises from an HMM. There is one vertex term
for each Xi (for the HMM, this is − logP (Yi|Xi)). There is an edge term for Xi

and Xi+1 for each i where both exist (for the HMM, this is − logP (Xi+1|Xi)). We
could write the objective function for inference as

f(X1, . . . , Xn) =
i=N∑

i=1

V (Xi) +
i=N−1∑

i=1

E(Xi, Xi+1)

and we wish to minimize this function. Now we define a new function, the cost-
to-go function, with a recursive definition. Write

f
(N−1)

cost-to-go(XN−1) = min
XN

[E(XN−1, XN) + V (XN)] .

This function represents the effect of a choice of value for XN−1 on the terms that
involve XN , where one chooses the best possible choice of XN . This means that

min
X1, . . . , XN

f(X1, . . . , XN)

14.1. Graphical Models 335

is equal to

min
X1, . . . , XN−1

(
f(X1, . . . , XN−1) + f

(N−1)

cost-to-go(XN−1)
)
,

which means that we can eliminate the Nth variable from the optimization by
replacing the term

E(XN−1, XN) + V (XN)

with
f
(N−1)

cost-to-go(XN−1),

which is a function of XN−1 alone.
Equivalently, assume we must choose a value for XN−1. The cost-to-go func-

tion tells us the value of E(XN−1, XN) + V (XN) obtained by making the best
choice of XN conditioned on our choice of XN−1. Because any other choice would
not lead to a minimum, if we know the cost-to-go function at XN−1, we can now
compute the best choice of XN−1 conditioned on our choice of XN−2. This yields
that

min
XN−1,XN

[E(XN−2, XN−1) + V (XN−1) + E(XN−1, XN) + V (XN)]

is equal to

min
XN−1

[
E(XN−2, XN−1) + V (XN−1) +

(
min
XN

E(XN−1, XN) + V (XN)

)]
.

But all this can go on recursively, yielding

f
(k)

cost-to-go(Xk) = min
Xk+1

E(Xk, Xk+1) + V (Xk) + f
(k+1)

cost-to-go(Xk+1).

This is basically what we did with a trellis in Sect. 13.2.2. Notice that

min
X1, . . . , XN

f(X1, . . . , XN)

is equal to

min
X1, . . . , XN−1

(
f(X1, . . . , XN−1) + f

(N−1)

cost-to-go(XN−1)
)

which is equal to

min
X1, . . . , XN−2

(
f(X1, . . . , XN−2) + f

(N−2)

cost-to-go(XN−2)
)
,

and we can apply the recursive definition of the cost-to-go function to get

min
X1, . . . , XN

f(X1, . . . , XN) =
min
X1

(
f(X1) + f1

cost-to-go(X1)
)
.

14.1. Graphical Models 336

All this gives another description of the trellis maximization process. We start at

XN , and construct f
(N−1)

cost-to-go(XN−1). We can represent this function as a table,

giving the value of the cost-to-go function for each possible value of XN−1. We
build a second table giving the optimum XN for each possible value of XN−1.

From this, we can build f
(N−2)

cost-to-go(XN−2), again as a table, and also the best

XN−1 as a function of XN−2, again as a table, and so on. Now we arrive at X1.
We obtain the solution for X1 by choosing the X1 that yields the best value of(
fchain(X1) + f1

cost-to-go(X1)
)
. But from this solution, we can obtain the solution

for X2 by looking in the table that gives the best X2 as a function of X1, and so
on. It should be clear that this process yields a solution in polynomial time; if each
Xi can take one of k values, then the time is O(NK2).

This strategy will work for a model with the structure of a forest. The proof
is an easy induction. If the forest has no edges (i.e., consists entirely of nodes),
then it is obvious that a simple strategy applies (choose the best value for each Xi

independently). This is clearly polynomial. Now assume that the algorithm yields
a result in polynomial time for a forest with e edges, and show that it works for a
forest with e+ 1 edges. There are two cases. The new edge could link two existing
trees, in which case we could reorder the trees so the nodes that are linked are roots,
construct a cost-to-go function for each root, and then choose the best pair of states
for these roots from the cost-to-go functions. Otherwise, one tree had a new edge
added, joining the tree to an isolated node. In this case, we reorder the tree so that
this new node is the root and build a cost-to-go function from the leaves to the root.
The fact that the algorithm works is a combinatorial insight. In Sect. 15.1, we will
see graphical models that do not admit easy inference because their graph is not a
forest. In those cases, we will need to use approximation strategies for inference.

Remember This: Dynamic programming inference doesn’t require the
weights to be log probabilities to work. All that is required is a cost function
on a forest that is a sum of charges for vertices and edges. In this general
form, dynamic programming works by repeatedly eliminating a node and
computing cost-to-go function.

14.1.2 Graphical Models

A probability model where the inference problem can be drawn as a graph is called
a graphical model. There are good reasons to use models with this property. It is
known when inference is easy. If inference is hard (as we shall see), there are often
quite good approximation procedures. The models often fit interesting problems
quite naturally, and can be quite easy to construct (Fig. 14.1).

Here is one quite useful way to write the general class of graphical models.
Assume we wish to construct a probability distribution over a collection of R vari-

14.1. Graphical Models 337

X1

Y1

X2

Y2

XN

YN

...

Figure 14.1: An HMM is an example of a graphical model. The joint probability
distribution of the hidden variablesXi and the observations Yi factors as in the text.
Each variable appears as a vertex. There is an edge between pairs of variables that
appear in the factorization. These edges have an arrowhead drawn according to
conventions about conditional probability. Finally, the observed values are shaded

ables, U1, . . . , UR. We want to draw a graph, so this distribution must be factored
into a set of terms where each term depends on at most two variables. This means
that there are some functions ψi, φij so that

− logP (U1, . . . , UR) =
R∑

i=1

ψi(Ui) +
∑

(i,j)∈pairs
φij(Ui, Uj) +K

where K is the log of the normalizing constant (it ensures the distribution sums
to one), and is of no interest to us at present.

Now assume we have a probability distribution that can be written in this
form. We partition the U variables into two groups. The Xi are unknown and we
need to recover them by inference, and the Yj are known. In turn, this means that
some of the ψ (resp. φ) become constants because the argument is (resp. both
arguments are) known; these are of no interest, and we can drop them from the
drawing. Some of the φ become effectively functions of a single argument, because
the value of the other argument is known and fixed. It is usual to keep these
edges and relevant nodes in the drawing, but shade the known argument. In turn,
inference involves solving for the values of a set of discrete variables to minimize
the value of an objective function f(X1, . . . , Xn).

For some graphical models (HMMs are a good example), φij(Ui, Uj) can be
interpreted in terms of conditional probability. In the case of an HMM, if you make
the right choices, you can think of φii+1(Ui, Ui+1) as logP (Ui+1|Ui). In models like
this, it is usual to add an arrowhead to the edge pointing to the variable that is in
front of the conditioning bar (i.e., Uj+1 in the example).

14.1.3 Learning in Graphical Models

Graphical models can be tricky to learn. We have seen that we can use EM to learn
an HMM that models sequences without knowing the hidden states corresponding

14.2. Conditional Random Field Models for Sequences 338

to the observations. This approach doesn’t extend to all graphical models, by any
manner of means.

The rest of this chapter focuses on a natural and important learning strategy
which is very different from using EM. I will describe this for sequence models,
but it can be used for other models too. Assume we have a collection of example
sequences of observations (write Y(u) for the u’th such sequence) and of hidden
states (write X(u) for the u’th such sequence). We construct a family of cost
functions C(X,Y ; θ) parametrized by θ. We then choose the θ so that inference
applied to the cost function yields the right answer. So we want to choose θ so that

argmin
X

C(Y(u),X; θ)

is X(u) or “close to” it. The details require quite a lot of work, which we do
below. What is important now is that this strategy applies to any model where
easy inference is available. This means we can generalize quite significantly from
HMMs, which is the next step.

14.2 Conditional Random Field Models for Sequences

HMM models have been widely used, but have one odd feature that is inconsis-
tent with practical experience. Recall Xi are the hidden variables, and Yi are the
observations. HMMs model

P (Y1, . . . , Yn|X1, . . . , Xn) ∝ P (Y1, . . . , Yn, X1, . . . , Xn),

which is the probability of observations given the hidden variables. This is modelled
using the factorization

P (Y1, Y2, . . . , YN , X1, X2, . . . , XN) = P (X1)P (Y1|X1)

P (X2|X1)P (Y2|X2)

. . .

P (XN |XN−1)P (YN |XN).

In much of what we will do, this seems unnatural. For example, in the case of
reading written text, we would be modelling the probability of the observed ink
given the original text. But we would not attempt to find a single character by
modelling the probability of the observed ink given the character (I will call this a
generative strategy). Instead, we would search using a classifier, which is a model
of the probability of the character conditioned on the observed ink (I will call this
a discriminative strategy). The two strategies are quite different in practice. A
generative strategy would need to explain all possible variants of the ink that a
character could produce, but a discriminative strategy just needs to judge whether
the ink observed is the character or not.

14.2. Conditional Random Field Models for Sequences 339

Remember This: HMMs have an odd feature that is often inconvenient.
Generating observations from labels can require a much more detailed model
than choosing a label from an observation.

14.2.1 MEMMs and Label Bias

One alternative would be to look for a model that factors in a different way. For
example, we could consider

P (X1, X2, . . . , XN |Y1, Y2, . . . , YN) = P (X1|Y1)×
P (X2|Y2, X1)×
P (X3|X2, Y2)×
. . .×
P (XN |XN−1, YN).

This means that

− logP (X1, X2, . . . , XN |Y1, Y2, . . . , YN) = − logP (X1|Y1)

− logP (X2|Y2, X1)

− logP (X3|X2, Y2)

. . .

− logP (XN |XN−1, YN).

This is still a set of edge and vertex functions, but notice there is only one vertex
function (− logP (X1|Y1)). All the remaining terms are edge functions. Models of
this form are known as maximum entropy Markov models or MEMMs.

These models are deprecated. You should not use one without a special
justification. Rather than just ignoring these models, I have described them because
the reason they are deprecated is worth understanding, and because if I don’t, it’s
quite likely you’ll invent them on your own.

The problem is this: these models very often ignore measurements, as a result
of their structure. To see this, assume we have fitted a model, and wish to recover
the best sequence of Xi corresponding to a given sequence of observations Yi. We
must minimize

− logP (X1, X2, . . . , XN |Y1, Y2, . . . , YN) = − logP (X1|Y1)

− logP (X2|Y2, X1)

− logP (X3|X2, Y2)

. . .

− logP (XN |XN−1, YN).

by choice of X1, . . . , XN . We can represent this cost function on a trellis, as for the
HMM, but now notice that the costs on the trellis behave differently. For an HMM,

14.2. Conditional Random Field Models for Sequences 340

1 2

34
1

2

3

1

2

3

1

2

3

4 4 4

Figure 14.2: On the left, a Markov chain used in an MEMM. On the right, the
resulting trellis. Notice that, in state 1, there is only one outgoing edge. In turn,
this means that − logP (Xi+1 = 2|Xi = 1, Yi) = 0, whatever the value of Yi. This
guarantees mischief, detailed in the text

each state (circle) in a trellis had a cost, corresponding to − logP (Yi|Xi), and each
edge had a cost (− logP (Xi+1|Xi)), and the cost of a particular sequence was the
sum of the costs along the implied path. But for an MEMM, the representation is
slightly different. There is no term associated with each state in the trellis; instead,
we associate the edge going from the state Xi = U to the state Xi+1 = V with
the cost − logP (Xi+1 = V |Xi = U, Yi). Again, the cost of a sequence of states is
represented by the sum of costs along the corresponding path. This may look to
you like a subtle change, but it has nasty effects.

Look at the example of Fig. 14.2. Notice that when the model is in state
1, it can only transition to state 4. In turn, this means that − logP (Xi+1 =
4|Xi = 1, Yi) = 0 whatever the measurement Yi is. Furthermore, either P (Xi+1 =
3|Xi = 2, Yi) ≥ 0.5 or P (Xi+1 = 1|Xi = 2, Yi) ≥ 0.5 (because there are only two
options leaving state 2). Here the measurement can determine which of the two
options has higher probability. That figure shows a trellis corresponding to three
measurements. In this trellis, the path 2 1 4 will be the lowest cost path unless the
first measurement overwhelmingly disfavors the transition 2 → 1. This is because
most other paths must share weights between many outgoing edges; but 1 → 4 is
very cheap, and 2 → 1 will be cheap unless there is an unusual measurement. Paths
which pass through many states with few outgoing edges are strongly favored. This
is known as the label bias problem. There are some fixes that can be applied,
but it is better to reengineer the model.

14.2. Conditional Random Field Models for Sequences 341

Remember This: The obvious fix to the generative property of an HMM
doesn’t work, because the model can ignore or discount measurements.

14.2.2 Conditional Random Field Models

We want a model of sequences that is discriminative, but doesn’t have the label bias
problem. We’d also like that model to be as tractable as an HMM for sequences.
We can achieve this by ensuring that the graphical representation of the model is
a chain graph. We’d like the resulting model to be discriminative in form—i.e., we
should be able to interpret the vertex functions as − logP (Xi|Yi)—but we don’t
want an MEMM.

We start with the cost functions. Write Ei(a, b) for the cost of the edge from
Xi = a to Xi+1 = b, and write Vi(a) for the cost of assigning Xi = a. We will
use Vi(a) = − logP (Xi = a|Yi) as a vertex cost function, because we want the
model to be discriminative. We will assume that Ei(a, b) and Vi(a) are bounded
(straightforward, because the variables are all discrete anyhow), but we will not
apply any direct probabilistic interpretation to this function. Instead, we interpret
the whole model by stating that

− logP (X1 = x1, X2 = x2, . . . , XN = xN |Y1, Y2, . . . , YN)

is
[V1(x1) + E1(x1, x2) + V2(x2) + E2(x2, x3) + . . . VN (xN)] +K

where K is the log of the normalizing constant, chosen to ensure the probability
distribution sums to 1. There is a crucial difference with the MEMM; there are
now node as well as edge costs but we can’t interpret the edge costs as transition
probabilities. A model with this structure is known as a conditional random
field.

Notice the minus sign. This means that the best sequence has the smallest
value of ⎡

⎢⎢⎣

V1(x1) + E1(x1, x2)+
V2(x2) + E2(x2, x3)+
. . .
VN (xN)

⎤

⎥⎥⎦ ,

and we can think of this expression as a cost. Inference is straightforward by
dynamic programming, as above, if we have known Ei and Vi terms.

Remember This: In a CRF, the weights on edges cannot be directly
interpreted as conditional probabilities. Instead, we write out a joint proba-
bility model. If the model forms a forest, dynamic programming will work.

14.2. Conditional Random Field Models for Sequences 342

14.2.3 Learning a CRF Takes Care

What is much more interesting is learning a CRF. We don’t have a probabilistic
interpretation of Ei, so we can’t reconstruct an appropriate table of values by
(say) counting. There must be some set of parameters, θ, that we are trying to
adjust. However, we need some principle to drive the choice of θ. One strategy is
to maximize

− logP (X1 = x1, X2 = x2, . . . , XN = xN |Y1, Y2, . . . , YN , θ)

but this is difficult to do in practice. The problem is that the normalizing constant
K depends on θ. This means that we need to be able to compute K. It is possible
to do this, but the computation is moderately expensive.

We have that

K = log

(
∑

u1,u2,...,un

exp − [V1(u1)+E1(u1, u2)+V2(u2)+E2(u2, u3)+ . . . VN (uN)]

)

and this sum is over an exponential space (all possible combinations of u1, u2, . . . , uN).
Dynamic programming will yield this sum for a graph that is a forest. Notice that

∑

u1,u2,...,uN

exp− [V1(u1) + E1(u1, u2) + V2(u2) + E2(u2, u3) + . . . VN (uN)]

is

∑

u1,u2,...,uN−1

⎛

⎜⎝
exp− [V1(u1) + E1(u1, u2) + V2(u2) + E2(u2, u3) + . . . VN−1]

×∑
uN

exp− [EN−1(uN−1, uN) + VN (uN)]

⎞

⎟⎠ .

From this, we get the usual recursion. Write

fsum-prod to i(ui) =
∑

ui+1,...,uN

exp−

⎡

⎢⎢⎢⎢⎣

Ei(ui, ui+1)+
Vi+1(ui+1)+

Ei+1(ui+1, ui+2)+
. . .

VN (uN)

⎤

⎥⎥⎥⎥⎦

and notice that

fsum-prod to N − 1(uN−1) =
∑

uN

exp− [EN1
(uN−1, uN) + VN (uN)] .

Now

fsum-prod to i(ui) =
∑

ui+1

(exp− [Ei(ui, ui+1) + Vi+1(ui+1)]

×fsum-prod to i+ 1(ui+1)
)

14.3. Discriminative Learning of CRFs 343

and
K = log

∑

u1

fsum-prod to 1(u1).

This procedure is sometimes known as the sum-products algorithm. I have
described this procedure because it gives me a chance to re-emphasize just how
powerful and useful dynamic programming and its underlying reasoning are. But
computing K like this to learn θ is unattractive. You’d need the gradient of K,
which can also be computed from the recursion, but you’d need to apply this
procedure for each step of the descent process. Furthermore, this approach is
somewhat indirect, because it constructs the probability model that maximizes the
log-posterior of the observed data. That isn’t necessarily what we want—instead,
we’d like the model to produce the right answer at inference time. In the next
section, I expound a more direct training principle.

Remember This: You can learn a CRF for sequences using maximum
likelihood, but doing so takes care. You must compute the normalizing
constant, which can be done with the sum-products algorithm.

14.3 Discriminative Learning of CRFs

A really powerful strategy for learning a CRF follows by obtaining both the obser-
vations and the state for a set of example sequences. Different sequences in this

set might have different lengths; this doesn’t matter. Now write Y
(k)
i for the i’th

element of the k’th sequence of observations, etc. For any set of parameters, we
can recover a solution from the observations using dynamic programming (write

Inference (Y1, . . . , Y
(k)
N , θ) for this). Now we will choose a set of parameters θ̂ so

that
Inference

(
Y

(k)
1 , . . . , Y

(k)
N , θ̂

)
is close to X

(k)
1 . . . X

(k)
N .

In words, the principle is this: Choose parameters so that, if you infer a sequence
of hidden states from a set of training observations, you will get the hidden states
that are (about) the same as those observed.

14.3.1 Representing the Model

We need a parametric representation of Vi and Ei; we’ll then search for the param-
eters that yield the right model. We will simplify notation somewhat, by assuming
that each vertex function is the same function and that each edge function is the
same function. This isn’t required, but it is the most usual case, and we have enough
to deal with. We now construct a set of functions φj(U, V) (one for each j), and a

vector of parameters θ
(v)
j . Finally, we choose V to be a weighted sum of these basis

functions, so that V (u) =
∑

j θ
(v)
j φj(u, Yi). Similarly, for Ei we will construct a set

14.3. Discriminative Learning of CRFs 344

of functions ψj(U, V) (one for each j) and a vector of parameters θ
(e)
j . We choose E

to be a weighted sum of these basis functions, so that E(U, V) =
∑

j θ
(e)
j ψj(U, V).

Modelling involves choosing φj(U, V) and ψj(U, V). Learning involves choosing
θ = (θ(v), θ(e)).

I give some sample constructions below, but you may find them somewhat
involved at first glance. What is important is that (a) we have some parameters θ
so that, for different choices of parameter, we get different cost functions; and (b)

for any choice of parameters (say θ̂) and any sequence of Yi we can label each vertex
and each edge on the trellis with a number representing the cost of that vertex or
edge. Assume we have these properties. Then for any particular θ̂ we can construct
the best sequence of Xi using dynamic programming (as above). Furthermore, we

can try to adjust the choice of θ̂ so that for the i’th training sequence, y(i), inference
yields x(i) or something close by.

14.3.2 Example: Modelling a Sequence of Digits

Here is a massive simplification of the problem of reading a sequence of digits.
Assume we see a sequence of digits, where the observations are inked numerals, like
MNIST, which appear in a window of fixed size, like MNIST. Assume also we know
the location of each digit’s window, which is the important simplification.

Each φj(U, V) accepts two arguments. One is the ink pattern on the paper
(the V), and the other is a label to be attached to the ink (the U). Here are three
possible approaches for building φj .

• Multinomial logistic regression works quite well on MNIST using just the pixel
values as features. This means that you can compute 10 linear functions of the
pixel values (one for each numeral) such that the linear function corresponding
to the right numeral is smaller than any other of the functions, at least most of
the time. Write Lu(V) for the linear function of the ink (V) that corresponds
to the u’th digit. Then we could use

∑
u I[U=u]Lu(V) as a φ.

• For each possible numeral u and each pixel location p build a feature function
φ(U, V) = I[U=u]I[V (p)=0]. This is 1 if U = u (i.e., for a particular numeral,
u) and the ink at pixel location p is dark, and otherwise zero. We index these
feature functions in any way that seems convenient to get φj(U, V).

• For each class x, we will build several different classifiers each of which can tell
that class from all the others. We obtain different classifiers by using different
training sets; or different features; or different classifier architectures; or all of
these. Write gi,u(V) for the i’th classifier for class u. We ensure that gi,u(V)
is small if V is of class u, and large otherwise. Then for each classifier and
each class we can build a feature function by φ(U, V) = gi,U (V). We index
these feature functions in any way that seems convenient.

We must now build the ψj(U, V). Here U and V can take the value of
any state. I will assume the states are labelled with counting numbers, with-
out any loss of generality, and will write a, b for particular values of the state.
One simple construction is to build one ψ for each a, b pair, yielding ψj(U, V) =
I[U=a]I[V=b]. If there are S possible states, there will be S2 of these feature func-
tions. Each one takes the value 1 when U and V take the corresponding state values,

14.3. Discriminative Learning of CRFs 345

otherwise is 0. This construction will allow us to represent any possible cost for
any transitions, as long as the cost doesn’t depend on the observations.

We now have a model of the cost. I will write sequences like vectors, so x
is a sequence, and xi is the i’th element of that sequence. Write C(x;y, θ) for
the cost of a sequence x of hidden variables, conditioned on observed values y and
parameters θ. I’m suppressing the number of items in this sequence for conciseness,
but will use N if I need to represent it. We have

C(x;y, θ) =
N∑

i=1

⎡

⎣
∑

j

θ
(v)
j φj(xi, yi)

⎤

⎦+
N−1∑

i=1

[(
∑

l

θ
(e)
l ψl(xi, xi+1)

)]
.

Notice that this cost function is linear in θ. We will use this to build a search for
the best setting of θ.

14.3.3 Setting Up the Learning Problem

I will write x(i) for the i’th training sequence of hidden states, and y(i) for the i’th

training sequence of observations. I will write x
(i)
j for the hidden state at step j

in the i’th training sequence, etc. The general principle we will adopt is that we
should train a model by choosing θ such that, if we apply inference to y(i), we will
recover x(i) (or something very similar).

For any sequence x, we would like to have C(x(i);y(i), θ) ≤ C(x;y(i), θ).
This inequality is much more general than it seems, because it covers any available
sequence. Assume we engage in inference on the model represented by θ, using y(i)

as observed variables. Write x+,i for the sequence recovered by inference, so that

x+,i =
argmin

x
C(x;y(i), θ)

(i.e., x+,i is the sequence recovered from the model by inference if the parameters
take the value θ). In turn, the inequality means that

C(x(i);y(i), θ) ≤ C(x+,i;y(i), θ).

It turns out that this is not good enough; we would also like the cost of solutions
that are further from the true solution to be higher. So we want to ensure that the
cost of a solution grows at least as fast as its distance from the true solution. Write
d(u,v) for some appropriate distance between two sequences u and v. We want to
have

C(x(i);y(i), θ) + d(x,x(i)) ≤ C(x;y(i), θ).

Again, we want this inequality to be true for any sequence x. This means that

C(x(i);y(i), θ) ≤ C(x;y(i), θ)− d(x,x(i))

for any x. Now write

x(∗,i) =
argmin

x
C(x;y(i), θ)− d(x,x(i)).

14.3. Discriminative Learning of CRFs 346

The inequality becomes

C(x(i);y(i), θ) ≤ C(x(∗,i);y(i), θ)− d(x(∗,i),x(i)).

This constraint is likely to be violated in practice. Assume that

ξi = max(C(x(i);y(i), θ)− C(x(∗,i);y(i), θ) + d(x(∗,i),x(i)), 0)

so that ξi measures the extent to which the constraint is violated. We would like
to choose θ so that we have the smallest possible set of constraint violations. It is
natural to want to minimize the sum of ξi over all training data. But we also want
to ensure that θ is not “too large,” for the same reasons we regularized a support
vector machine. Choose a regularization constant λ. Then we want to choose θ to
minimize the regularized cost

∑

i∈examples

ξi + λθT θ

where ξi is defined as above. This problem is considerably harder than it might
look, because each ξi is a (rather strange) function of θ.

14.3.4 Evaluating the Gradient

We will solve the learning problem by stochastic gradient descent, as usual. First,
we obtain an initial value of θ. Then we repeatedly choose a minibatch of examples
at random, evaluate the gradient for that minibatch, update the estimate of θ,
and go again. There is the usual nuisance of choosing a steplength, etc. which is
handled in the usual way. The important question is evaluating the gradient.

Imagine we have chosen the u’th example. We must evaluate ∇θξu. Recall

ξu = max(C(x(u);y(u), θ)− C(x(∗,u);y(u), θ) + d(x(∗,u),x(u)), 0)

and assume that we know x(∗,u). We will ignore the concern that ξu may not be
differentiable in θ as a result of the max. If ξu = 0, we will say the gradient is zero.
For the other case, recall that

C(x;y, θ) =
N∑

i=1

⎡

⎣
∑

j

θ
(v)
j φ

(v)
j (xi, yi)

⎤

⎦+
N−1∑

i=1

[(
∑

l

θ
(e)
l φ

(e)
l (xi, xi+1)

)]

and that this cost function is linear in θ. The distance term d(x(∗,u),x(u)) doesn’t
depend on θ, so doesn’t contribute to the gradient. So if we know x∗,i, the gradient
is straightforward because C is linear in θ.

To be more explicit, we have

∂C

∂θ
(v)
j

=

N∑

i=1

[
φ
(v)
j

(
x
(u)
i , y

(u)
i

)
− φ

(v)
j

(
x
(∗,u)
i , y

(u)
i

)]

and

∂C

∂θ
(e)
l

=

N−1∑

i=1

[
φ
(e)
l

(
x
(u)
i , x

(u)
i+1

)
− φ

(e)
l

(
x
(∗,u)
i , x

(∗,u)
i+1

)]
.

14.3. Discriminative Learning of CRFs 347

The problem is that we don’t know x(∗,u) because it could change each time
we change θ. Recall

x(∗,u) =
argmin

x
C(x;y(u), θ)− d(x,x(u)).

So, to compute the gradient, we must first run an inference on the example to
obtain x(∗,u). But this inference could be hard, depending on the form of

C(x;y(u), θ)− d(x,x(u))

(which is often known as the loss augmented constraint violation). We would
like to choose d(x,x(u)) so that we get a distance that doesn’t make the inference
harder. One good, widely used example is the Hamming distance.

The Hamming distance between two sequences is the number of locations in
which they disagree. Write diff(m,n) = 1− I[m=n](m,n) for a function that returns
zero if its arguments are the same, and one otherwise. Then we can express the
Hamming distance as

dh(x,x
(u)) =

∑

k

diff
(
xk, x

(u)
k

)
.

We could scale the Hamming distance, to express how quickly we expect the cost
to grow. So we will choose a non-negative number ε, and write

d(x,x(u)) = εdh(x,x
(u)).

The expression for Hamming distance is useful, because it allows us to represent
the distance term on a trellis. In particular, think about the trellis corresponding
to the u’th example. Then to represent the cost

C(x;y(u), θ)− d(x,x(u))

we adjust the node costs on each column. For the k’th column, we subtract ε from
each of the node costs except the one corresponding to the k’th term in x(u). Then
the sum of edge and node terms along any path will correspond to C(x;y(u), θ)−
d(x,x(u)). In turn, this means we can construct x(∗,u) by dynamic programming
to this offset trellis.

Now we can compute the gradient for any example, so learning is (conceptu-
ally) straightforward. In practice, computing the gradient at any example involves
finding the best sequence predicted by the loss augmented constraint violation, then
using this to compute the gradient. Every gradient evaluation involves a round of
inference, making the method slow.

Remember This: A key learning principle for CRFs is that inference
on the model applied to training observations should produce the correspond-
ing hidden states. This leads to an algorithm that repeatedly: (a) computes
the current best inferred set of hidden states; (b) adjusts the cost functions
so that the desired sequence scores better than the current best.

14.4. You Should 348

14.4 You Should

14.4.1 Remember These Terms

unary terms . 334
binary terms . 334
vertex terms . 334
edge terms . 334
chain graph . 334
cost-to-go function . 334
graphical model . 336
normalizing constant . 337
generative . 338
discriminative . 338
maximum entropy Markov models 339
MEMM . 339
label bias problem . 340
conditional random field . 341
sum-products algorithm . 343
loss augmented constraint violation 347
Hamming distance . 347

14.4.2 Remember These Procedures

14.4.3 Be Able to

• Explain the label bias problem.
• Explain the difference between a CRF sequence model and an HMM.
• Use dynamic programming to infer a sequence of labels for a CRF sequence
model.

• Set up and solve the learning problem for a CRF sequence model in your
application domain.

14.4. You Should 349

Problems

14.1. You are presented with a set of training sequences for a model that must infer
a binary sequence (of 0’s and 1’s) from a sequence of observed strings of two
characters (“a”s and “b”s). You see the following set of pairs:

111111000000 aaaaaabbbbbb
000000111111 bbbbbbaaaaaa
0001111000 bbbaaaabbb

000000 aaaaaa
111111 bbbbbb

(a) You decide to represent the model using an HMM, learning model param-
eters by maximum likelihood. What is p(‘a’|0)?

(b) Using this HMM model, what is p(111111000000|aaaaaabbbabb)? Why?
(c) You decide instead to represent the model using a CRF. Your model is

represented by six parameters. Write c01, etc. for the cost associated with
a 1 following a 0, c1a etc. for the cost of observing an “a” when the model
is in state 1. Assume that all costs are finite. Now assume that c11 < c10,
c00 < c01, c1a < c0a, and c0b < c1b. If c01 + c10 + c1a > c00 + c00 + c0a,
show the model will infer 111111000000 when it observes “aaaaaabbbabb.”

Programming Exercises

14.2. You determine, using your skill and judgement, that any word on a list of four
letter words requires censorship. You implement a censoring procedure that
chooses to replace either one or two letters in the word. The number of letters
is chosen uniformly and at random. Your procedure then chooses the letters
to replace by selecting either one or two distinct locations at random, then
replacing the letter in that location with a letter randomly selected from the
26 lowercase letters. The list of words is fair, lair, bear, tear, wear, tare, cart,
tart, mart, marl, turl, hurl, duck, muck, luck, cant, want, aunt, hist, mist, silt,
wilt, fall, ball, bell
(a) For each word in the list of 25, generate 20 censored examples using

the model. Why is it hard to use this information to build a model of
p(word|censored word) that is useful?

(b) We will recover the censored word from the true word using a simplified
version of discriminative learning of sequence models. We will work with 1
element sequences (i.e., each whole word is a sequence). The cost function
for a pair of true/censored word is

number of letters in common + λnumber of different letters

so, for example, if the true word is “mist” and the censored word is “malt,”
the cost is 2+ 2λ. Using your training dataset, choose the value of λ that
produces the best performance (simple search should do this - you don’t
need stochastic gradient descent).

(c) Now generate a test set of censored words, and infer their true form. How
accurate is your model?

14.3. Warning: this exercise is fairly elaborate, though straightforward.
We will correct text errors using a sequence model.
(a) Obtain the text of a copyright-free book in plain characters. One natural

source is Project Gutenberg, at https://www.gutenberg.org. Simplify this

https://www.gutenberg.org

14.4. You Should 350

text by dropping all punctuation marks except spaces, mapping capital
letters to lowercase, and mapping groups of many spaces to a single space.
The result will have 27 symbols (26 lowercase letters and a space).

(b) Construct a corrupted version of the text by passing it through a process
that, with probability pc, replaces a character with a randomly chosen
character, and otherwise reports the original character.

(c) Use the first half of the text to build a sequence model. You should look
only at bigrams. You should use 27 × 27 ψj(U, V); each of these is itself
a 27 × 27 table containing zeros in all but one location. You should use
27× 27 φj(U, V). Again, each of these is itself a 27× 27 table containing
zeros in all but one location. You should use the Hamming distance to
augment the constraint violation loss, and train the method as in the text.
Use ε = 1e− 2.

(d) Now corrupt the second half of the text using the error process above.
Using the model you fitted in the previous subexercise, denoise this text.
How accurate is your method?

(e) Now try to fit your model with a much larger value of ε. What happens?

C H A P T E R 15

Mean Field Inference

Graphical models are important and useful, but come with a serious practical
problem. For many models, we cannot compute either the normalizing constant or
the maximum a posteriori state. It will help to have some notation. Write X for a
set of observed values, H1, . . . , HN for the unknown (hidden) values of interest. We
will assume that these are discrete. We seek the values of H1, . . . , HN that maxi-
mizes P (H1, . . . , HN |X). There is an exponential number of such possible values,
so we must exploit some kind of structure in the problem to find the maximum. In
the case of a model that could be drawn as a forest, this structure was easily found;
for models which can’t, mostly that structure isn’t there. This means the model
is formally intractable—there is no practical prospect of an efficient algorithm for
finding the maximum.

There are two reasons not to use this problem as a reason to simply ignore
graphical models. First, graphical models that quite naturally describe interesting
application problems are intractable. This chapter will work with one such model
for denoising images. Second, there are quite good approximation procedures for
extracting information from intractable models. This chapter will describe one such
procedure.

15.1 Useful but Intractable Models

Here is a formal model we can use. A Boltzmann machine is a distribution model
for a set of binary random variables. Assume we have N binary random variables
Ui, which take the values 1 or −1. The values of these random variables are not
observed (the true values of the pixels). These binary random variables are not
independent. Instead, we will assume that some (but not all) pairs are coupled.
We could draw this situation as a graph (Fig. 15.1), where each node represents a
Ui and each edge represents a coupling. The edges are weighted, so the coupling
strengths vary from edge to edge.

Write N (i) for the set of random variables whose values are coupled to that
of i—these are the neighbors of i in the graph. The joint probability model is

logP (U |θ) =

⎡

⎣
∑

i

∑

j∈N (i)

θijUiUj

⎤

⎦− logZ(θ) = −E(U |θ)− logZ(θ).

Now UiUj is 1 when Ui and Uj agree, and −1 otherwise (this is why we chose Ui

to take values 1 or −1). The θij are the edge weights; notice if θij > 0, the model
generally prefers Ui and Uj to agree (as in, it will assign higher probability to states
where they agree, unless other variables intervene), and if θij < 0, the model prefers
they disagree.

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 15

351

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_15

15.1. Useful but Intractable Models 352

U4

U1 U2

U3

Figure 15.1: On the left, a simple Boltzmann machine. Each Ui has two possible
states, so the whole thing has 16 states. Different choices of the constants coupling
the U ’s along each edge lead to different probability distributions. On the right,
this Boltzmann machine adapted to denoising binary images. The shaded nodes
represent the known pixel values (Xi in the text) and the open nodes represent the
(unknown, and to be inferred) true pixel values Hi. Notice that pixels depend on
their neighbors in the grid. There are 216 states for X in this simple example

Here E(U |θ) is sometimes referred to as the energy (notice the sign—higher
energy corresponds to lower probability) and Z(θ) ensures that the model normal-
izes to 1, so that

Z(θ) =
Σ

all values of U
[exp (−E(U |θ))] .

15.1.1 Denoising Binary Images with Boltzmann Machines

Here is a simple model for a binary image that has been corrupted by noise. At
each pixel, we observe the corrupted value, which is binary. Hidden from us are the
true values of each pixel. The observed value at each pixel is random, but depends
only on the true value. This means that, for example, the value at a pixel can
change, but the noise doesn’t cause blocks of pixels to, say, shift left. This is a
fairly good model for many kinds of transmission noise, scanning noise, and so on.
The true value at each pixel is affected by the true value at each of its neighbors—a
reasonable model, as image pixels tend to agree with their neighbors.

We can apply a Boltzmann machine. We split the U into two groups. One
group represents the observed value at each pixel (I will use Xi, and the convention
that i chooses the pixel), and the other represents the hidden value at each pixel
(I will use Hi). Each observation is either 1 or −1. We arrange the graph so that
the edges between the Hi form a grid, and there is a link between each Xi and its
corresponding Hi (but no other—see Fig. 15.1).

Assume we know good values for θ. We have

P (H|X, θ) =
exp(−E(H,X|θ))/Z(θ)

ΣH [exp(−E(H,X|θ))/Z(θ)]
=

exp (−E(H,X|θ))
ΣH exp (−E(H,X|θ)) ,

so posterior inference doesn’t require evaluating the normalizing constant. This
isn’t really good news. Posterior inference still requires a sum over an exponential

15.1. Useful but Intractable Models 353

number of values. Unless the underlying graph is special (a tree or a forest) or very
small, posterior inference is intractable.

You might think that focusing on MAP inference will solve this problem.
Recall that MAP inference seeks the values of H to maximize P (H|X, θ) or equiv-
alently, maximizing the log of this function. We seek

argmax
H

logP (H|X, θ) = (−E(H,X|θ))− log [ΣH exp (−E(H,X|θ))]

but the second term is not a function of H, so we could avoid the intractable
sum. This doesn’t mean the problem is tractable. Some pencil and paper work
will establish that there is some set of constants aij and bj so that the solution is
obtained by solving

argmax
H

(∑
ij aijhihj

)
+
∑

j bjhj

subject to hi ∈ {−1, 1}
.

This is a combinatorial optimization problem with considerable potential for un-
pleasantness. How nasty it is depends on some details of the aij , but with the right
choice of weights aij , the problem is max-cut, which is NP-hard.

Remember This: A natural model for denoising a binary image is
to assume that there are unknown, true pixel values that tend to agree
with the observed noisy pixel values and with one another. This model
is intractable—you can’t compute the normalizing constant, and you can’t
find the best set of true pixel values.

15.1.2 A Discrete Markov Random Field

Boltzmann machines are a simple version of a much more complex device widely
used in computer vision and other applications. In a Boltzmann machine, we took
a graph and associated a binary random variable with each node and a coupling
weight with each edge. This produced a probability distribution. We obtain a
Markov random field by placing a random variable (doesn’t have to be binary,
or even discrete) at each node, and a coupling function (almost anything works)
at each edge. Write Ui for the random variable at the i’th node, and θ(Ui, Uj) for
the coupling function associated with the edge from i to j (the arguments tell you
which function; you can have different functions on different edges).

We will ignore the possibility that the random variables are continuous. A
discrete Markov random field has all Ui discrete random variables with a finite
set of possible values. Write Ui for the random variable at each node, and θ(Ui, Uj)
for the coupling function associated with the edge from i to j (the arguments tell

15.1. Useful but Intractable Models 354

you which function; you can have different functions on different edges). For a
discrete Markov random field, we have

logP (U |θ) =

⎡

⎣
∑

i

∑

j∈N (i)

θ(Ui, Uj)

⎤

⎦− logZ(θ).

It is usual—and a good idea—to think about the random variables as indicator
functions, rather than values. So, for example, if there were three possible values
at node i, we represent Ui with a 3D vector containing one indicator function for
each value. One of the components must be one, and the other two must be zero.
Vectors like this are sometimes known as one-hot vectors. The advantage of this
representation is that it helps to keep track of the fact that the values that each
random variable can take are not really to the point; it’s the interaction between
assignments that matters. Another advantage is that we can easily keep track of
the parameters that matter. I will adopt this convention in what follows.

I will write ui for the random variable at location i represented as a vector.
All but one of the components of this vector are zero, and the remaining component
is 1. If there are #(Ui) possible values for Ui and #(Uj) possible values for Uj , we
can represent θ(Ui, Uj) as a #(Ui) × #(Uj) table of values. I will write Θ(ij) for

the table representing θ(Ui, Uj), and θ
(ij)
mn for the m, n’th entry of that table. This

entry is the value of θ(Ui, Uj) when Ui takes its m’th value and Uj takes its n’th

value. I write Θ(ij) for a matrix whose m, n’th component is θ
(ij)
mn . In this notation,

I write
θ(Ui, Uj) = uT

i Θ
(ij)uj .

All this does not simplify computation of the normalizing constant. We have

Z(θ) =
Σ

all values of u

⎡

⎣exp

⎛

⎝
∑

i

∑

j∈N (i)

uT
i Θ

(ij)uj

⎞

⎠

⎤

⎦ .

Note that the collection of all values of u has rather nasty structure, and is very
big—it consists of all possible one-hot vectors representing each U .

15.1.3 Denoising and Segmenting with Discrete MRFs

A simple denoising model for images that aren’t binary is just like the binary
denoising model. We now use a discrete MRF. We split the U into two groups, H
and X. We observe a noisy image (the X values) and we wish to reconstruct the
true pixel values (the H). For example, if we are dealing with grey level images
with 256 different possible grey values at each pixel, then each H has 256 possible
values. The graph is a grid for the H and one link from an X to the corresponding
H (like Fig. 15.1). Now we think about P (H|X, θ). As you would expect, the
model is intractable—the normalizing constant can’t be computed.

15.1. Useful but Intractable Models 355

Worked Example 15.1 A Simple Discrete MRF for Image Denoising

Set up an MRF for grey level image denoising.

Solution: Construct a graph that is a grid. The grid represents the true value
of each pixel, which we expect to be unknown. Now add an extra node for each
grid element, and connect that node to the grid element. These nodes represent
the observed value at each pixel. As before, we will separate the variables U
into two sets, X for observed values and H for hidden values (Fig. 15.1). In
most grey level images, pixels take one of 256 (= 28) values. For the moment,
we work with a grey level image, so each variable takes one of 256 values. There
is no reason to believe that any one pixel behaves differently from any other
pixel, so we expect the θ(Hi, Hj) not to depend on the pixel location; there’ll
be one copy of the same function at each grid edge. By far the most usual case
has

θ(Hi, Hj) =

[
0 if Hi = Hj

c otherwise,

where c > 0. Representing this function using one-hot vectors is straightfor-
ward. There is no reason to believe that the relationship between observed and
hidden values depends on the pixel location. However, large differences between
observed and hidden values should be more expensive than small differences.
Write Xj for the observed value at node j, where j is the observed value node
corresponding to Hi. We usually have

θ(Hi, Xj) = (Hi −Xj)
2.

If we think of Hi as an indicator function, then this function can be represented
as a vector of values; one of these values is picked out by the indicator. Notice
there is a different vector at each Hi node (because there may be a different
Xi at each).

Now write hi for the hidden variable at location i represented as a vector, etc.
Remember, all but one of the components of this vector are zero, and the remaining
component is 1. The one-hot vector representing an observed value at location i is

xi. I write Θ(ij) for a matrix who’s m, n’th component is θ
(ij)
mn . In this notation, I

write
θ(Hi, Hj) = hT

i Θ
(ij)hj

and
θ(Hi, Xj) = hT

i Θ
(ij)xj = hT

i βi.

In turn, we have

log p(H|X) =

⎡

⎣

⎛

⎝
∑

ij

hT
i Θ

(ij)hj

⎞

⎠+
∑

i

hT
i βi

⎤

⎦+ logZ.

15.1. Useful but Intractable Models 356

Worked Example 15.2 Denoising MRF—II

Write out Θ(ij) for the θ(Hi, Hj) with the form given in example 15.1 using the
one-hot vector notation.

Solution: This is more a check you have the notation. cI is the answer.

Worked Example 15.3 Denoising MRF—III

Assume that we have X1 = 128 and θ(Hi, Xj) = (Hi −Xj)
2. What is β1 using

the one-hot vector notation? Assume pixels take values in the range [0, 255].

Solution: Again, a check you have the notation. We have

β1 =

⎛

⎜⎜⎜⎜⎝

1282 first component
. . .

(i− 128)2 i’th component
. . .
1272

⎞

⎟⎟⎟⎟⎠
.

U4

U1 U2

U3

Figure 15.2: For problems like image segmentation, hidden labels may be linked to
many observed labels. So, for example, the segment label at one pixel might depend
on the values of many pixels. This is a sketch of such a graph. The shaded nodes
represent the known pixel values (Xi in the text) and the open nodes represent the
(unknown, and to be inferred) labels Hi. A particular hidden node may depend
on many pixels, because we will use all these pixel values to compute the cost of
labelling that node in a particular way

Segmentation is another application that fits this recipe. We now want to
break the image into a set of regions. Each region will have a label (e.g., “grass,”
“sky,” “tree,” etc.). The Xi are the observed values of each pixel value, and the

15.1. Useful but Intractable Models 357

Hi are the labels. In this case, the graph may have quite complex structure (e.g.,
Fig. 15.2). We must come up with a process that computes the cost of labelling
a given pixel location in the image with a given label. Notice this process could
look at many other pixel values in the image to come up with the label, but not at
other labels. There are many possibilities. For example, we could build a logistic
regression classifier that predicts the label at a pixel from image features around
that pixel (if you don’t know any image feature constructions, assume we use the
pixel color; if you do, you can use anything that pleases you). We then model the
cost of having a particular label at a particular point as the negative log probability
of the label under that model. We obtain the θ(Hi, Hj) by assuming that labels on
neighboring pixels should agree with one another, as in the case of denoising.

15.1.4 MAP Inference in Discrete MRFs Can Be Hard

As you should suspect, focusing on MAP inference doesn’t make the difficulty go
away for discrete Markov random fields.

Worked Example 15.4 Useful Facts About MRFs

Show that, using the notation of the text, we have: (a) for any i, 1Thi = 1;
(b) the MAP inference problem can be expressed as a quadratic program, with
linear constraints, on discrete variables.

Solution: For (a) the equation is true because exactly one entry in hi is 1,
the others are zero. But (b) is more interesting. MAP inference is equivalent
to maximizing log p(H|X). Recall logZ does not depend on the h. We seek

max
h1,...,hN

⎡

⎣

⎛

⎝
∑

ij

hT
i Θ

(ij)hj

⎞

⎠+
∑

i

hT
i βi

⎤

⎦+ logZ

subject to very important constraints. We must have 1Thi = 1 for all i.
Furthermore, any component of any hi must be either 0 or 1. So we have a
quadratic program (because the cost function is quadratic in the variables),
with linear constraints, on discrete variables.

Example 15.4 is a bit alarming, because it implies (correctly) that MAP in-
ference in MRFs can be very hard. You should remember this. Gradient descent
is no use here because the idea is meaningless. You can’t take a gradient with
respect to discrete variables. If you have the background, it’s quite easy to prove
by producing (e.g., from Example 15.4) an MRF where inference is equivalent to
max-cut, which is NP-hard.

15.2. Variational Inference 358

Worked Example 15.5 MAP Inference for MRFs Is a Linear Program

Show that, using the notation of the text, the MAP inference for an MRF prob-
lem can be expressed as a linear program, with linear constraints, on discrete
variables.

Solution: If you have two binary variables zi and zj both in {0, 1}, then write
qij = zizj . We have that qij ≤ zi, qij ≤ zj , qij ∈ {0, 1}, and qij ≥ zi + zj − 1.
You should check (a) these inequalities and (b) that qij is uniquely identified by
these inequalities. Now notice that each hi is just a bunch of binary variables,
and the quadratic term hT

i Θ
(ij)hj is linear in qij .

Example 15.5 is the start of an extremely rich vein of approximation math-
ematics, which we shall not mine. If you are of a deep mathematical bent, you
can phrase everything in what follows in terms of approximate solutions of linear
programs. For example, this makes it possible to identify MRFs for which MAP
inference can be done in polynomial time; the family is more than just trees. We
won’t go there.

Remember This: A natural model for denoising general images follows
the line of the binary image model. One assumes that there are unknown,
true pixel values that tend to agree with the observed noisy pixel values
and with one another. This model is intractable—you can’t compute the
normalizing constant, and you can’t find the best set of true pixel values.
This is also a natural model of image segmentation, where the unknown
values are segment identities.

15.2 Variational Inference

We could just ignore intractable models, and stick to tractable models. This isn’t a
good idea, because intractable models are often quite natural. The discrete Markov
random field model of an image is a fairly natural model. Image labels should
depend on pixel values, and on neighboring labels. It is better to try and deal with
the intractable model. One really successful strategy for doing so is to choose a
tractable parametric family of probability models Q(H; θ), then adjust θ to find

parameter values θ̂ that represent a distribution that is “close” in the right sense
to P (H|X). One then extracts information from Q(H; θ̂). This process is known
as variational inference. What is remarkable is that (a) it is possible to find a

Q(H; θ̂) without too much fuss and (b) information extracted from this distribution
is often accurate and useful.

15.2. Variational Inference 359

Remember This: Variational inference tries to find a tractable distri-
bution Q(H; θ̂) that is “close” to an intractable P (H|X). One then extracts

information from Q(H; θ̂).

15.2.1 The KL Divergence

Assume we have two probability distributions P (X) and Q(X). A measure of their
similarity is the KL divergence (or sometimes Kullback–Leibler divergence)
written as

D(P || Q) =

∫
P (X) log

P (X)

Q(X)
dX

(you’ve clearly got to be careful about zeros in P and Q here). This likely strikes
you as an odd measure of similarity, because it isn’t symmetric. It is not the case
that D(P || Q) is the same as D(Q || P), which means you have to watch your P’s
and Q’s. Furthermore, some work will demonstrate that it does not satisfy the
triangle inequality, so KL divergence lacks two of the three important properties of
a metric.

KL divergence has some nice properties, however. First, we have

D(P || Q) ≥ 0

with equality only if P and Q are equal almost everywhere (i.e., except on a set of
measure zero).

Remember This: The KL divergence measures the similarity of two
probability distributions. It is always non-negative, and is only zero if the
two distributions are the same. However, it is not symmetric.

Second, there is a suggestive relationship between KL divergence and maxi-
mum likelihood. Assume that Xi are IID samples from some unknown P (X), and
we wish to fit a parametric model Q(X|θ) to these samples. This is the usual situ-
ation we deal with when we fit a model. Now write H(P) for the entropy of P (X),
defined by

H(P) = −
∫

P (X) logP (X)dx = −EP [logP].

The distribution P is unknown, and so is its entropy, but it is a constant. Now we
can write

D(P || Q) = EP [logP]− EP [logQ].

15.2. Variational Inference 360

Then

L(θ) =
∑

i

logQ(Xi|θ) ≈
∫

P (X) logQ(X|θ)dX = EP (X)[logQ(X|θ)]

= −H(P)− D(P || Q)(θ).

Equivalently, we can write

L(θ) + D(P || Q)(θ) = −H(P).

Recall P doesn’t change (though it’s unknown), so H(P) is also constant (though
unknown). This means that when L(θ) goes up, D(P || Q)(θ) must go down. When
L(θ) is at a maximum, D(P || Q)(θ) must be at a minimum. All this means that,
when you choose θ to maximize the likelihood of some dataset given θ for a para-
metric family of models, you are choosing the model in that family with smallest
KL divergence from the (unknown) P (X).

Remember This: Maximum likelihood estimation recovers the param-
eters of a distribution in the chosen family that is closest in KL divergence
to the data distribution.

15.2.2 The Variational Free Energy

We have a P (H|X) that is hard to work with (usually because we can’t evaluate
P (X)) and we want to obtain a Q(H) that is “close to” P (H|X). A good choice
of “close to” is to require that

D(Q(H) || P (H|X))

is small. Expand the expression for KL divergence, to get

D(Q(H) || P (H|X)) = EQ[logQ]− EQ[logP (H|X)]

= EQ[logQ]− EQ[logP (H,X)] + EQ[logP (X)]

= EQ[logQ]− EQ[logP (H,X)] + logP (X)

which at first glance may look unpromising, because we can’t evaluate P (X). But
logP (X) is fixed (although unknown). Now rearrange to get

logP (X) = D(Q(H) || P (H|X))− (EQ[logQ]− EQ[logP (H,X)])

= D(Q(H) || P (H|X))− EQ.

Here
EQ = (EQ[logQ]− EQ[logP (H,X)])

is referred to as the variational free energy. We can’t evaluate D(Q(H) || P (H|X)).
But, because logP (X) is fixed, when EQ goes down, D(Q(H) || P (H|X)) must

15.3. Example: Variational Inference for Boltzmann Machines 361

go down too. Furthermore, a minimum of EQ will correspond to a minimum of
D(Q(H) || P (H|X)). And we can evaluate EQ.

We now have a strategy for building approximate Q(H). We choose a family of
approximating distributions. From that family, we obtain the Q(H) that minimizes
EQ (which will take some work). The result is theQ(H) in the family that minimizes
D(Q(H) || P (H|X)). We use that Q(H) as our approximation to P (H|X), and
extract whatever information we want from Q(H).

Remember This: The variational free energy of Q gives a bound on the
KL divergence D(Q(H) || P (H|X)), and is tractable if Q was chosen sensi-
bly. We select the element of the family of Q with the smallest variational
free energy.

15.3 Example: Variational Inference for Boltzmann Machines

We want to construct a Q(H) that approximates the posterior for a Boltzmann
machine. We will choose Q(H) to have one factor for each hidden variable, so
Q(H) = q1(H1)q2(H2) . . . qN (HN). We will then assume that all but one of the
terms in Q are known, and adjust the remaining term. We will sweep through the
terms doing this until nothing changes.

The i’th factor in Q is a probability distribution over the two possible values
of Hi, which are 1 and −1. There is only one possible choice of distribution. Each
qi has one parameter πi = P ({Hi = 1}). We have

qi(Hi) = (πi)
(1+Hi)

2 (1− πi)
(1−Hi)

2 .

Notice the trick that the power each term is raised to is either 1 or 0, and I have
used this trick as a switch to turn on or off each term, depending on whether Hi is
1 or −1. So qi(1) = πi and qi(−1) = (1− πi). This is a standard, and quite useful,
trick. We wish to minimize the variational free energy, which is

EQ = (EQ[logQ]− EQ[logP (H,X)]).

We look at the EQ[logQ] term first. We have

EQ[logQ] = Eq1(H1)...qN (HN)[log q1(H1) + . . . log qN (HN)]

= Eq1(H1)[log q1(H1)] + . . .EqN (HN)[log qN (HN)],

where we get the second step by noticing that

Eq1(H1)...qN (HN)[log q1(H1)] = Eq1(H1)[log q1(H1)]

(write out the expectations and check this if you’re uncertain).

15.3. Example: Variational Inference for Boltzmann Machines 362

Now we need to deal with EQ[logP (H,X)]. We have

log p(H,X) = −E(H,X)− logZ

=
∑

i∈H

∑

j∈N (i)∩H

θijHiHj +
∑

i∈H

∑

j∈N (i)∩X

θijHiXj +K

(where K doesn’t depend on any H and is so of no interest). Assume all the q’s are
known except the i’th term. Write Qî for the distribution obtained by omitting qi
from the product, so Q1̂ = q2(H2)q3(H3) . . . qN (HN), etc. Notice that

EQ[logP (H,X)] =

(
qi(−1)EQî

[logP (H1, . . . , Hi = −1, . . . , HN , X)]+
qi(1)EQî

[logP (H1, . . . , Hi = 1, . . . , HN , X)]

)
.

This means that if we fix all the q terms except qi(Hi), we must choose qi to minimize

qi(−1) log qi(−1) + qi(1) log qi(1) −
qi(−1)EQî

[logP (H1, . . . , Hi = −1, . . . , HN , X)] +

qi(1)EQî
[logP (H1, . . . , Hi = 1, . . . , HN , X)]

subject to the constraint that qi(1) + qi(−1) = 1. Introduce a Lagrange multiplier
to deal with the constraint, differentiate and set to zero, and get

qi(1) =
1

c
exp

(
EQî

[logP (H1, . . . , Hi = 1, . . . , HN , X)]
)

qi(−1) =
1

c
exp

(
EQî

[logP (H1, . . . , Hi = −1, . . . , HN , X)]
)

where c = exp
(
EQî

[logP (H1, . . . , Hi = −1, . . . , HN , X)]
)
+

exp
(
EQî

[logP (H1, . . . , Hi = 1, . . . , HN , X)]
)
.

In turn, this means we need to know EQî
[logP (H1, . . . , Hi = −1, . . . , HN , X)], etc.,

only up to a constant. Equivalently, we need to compute only log qi(Hi)+K for K
some unknown constant (because qi(1) + qi(−1) = 1). Now we compute

EQî
[logP (H1, . . . , Hi = −1, . . . , HN , X)].

This is equal to

EQî

⎡

⎣
∑

j∈N (i)∩H

θij(−1)Hj +
∑

j∈N (i)∩X

θij(−1)Xj + terms not containing Hi

⎤

⎦

which is the same as
∑

j∈N (i)∩H

θij(−1)EQî
[Hj] +

∑

j∈N (i)∩X

θij(−1)Xj +K

and this is the same as
∑

j∈N (i)∩H

θij(−1)((πj)(1) + (1− πj)(−1)) +
∑

j∈N (i)∩X

θij(−1)Xj +K

15.3. Example: Variational Inference for Boltzmann Machines 363

and this is
∑

j∈N (i)∩H

θij(−1)(2πj − 1) +
∑

j∈N (i)∩X

θij(−1)Xj +K.

If you thrash through the case for

EQî
[logP (H1, . . . , Hi = 1, . . . , HN , X)]

(which works the same) you will get

log qi(1) = EQî
[logP (H1, . . . , Hi = 1, . . . , HN , X)] +K

=
∑

j∈N (i)∩H

[θij(2πj − 1)] +
∑

j∈N (i)∩X

[θijXj] +K

and

log qi(−1) = EQî
[logP (H1, . . . , Hi = −1, . . . , HN , X)] +K

=
∑

j∈N (i)∩H

[−θij(2πj − 1)] +
∑

j∈N (i)∩X

[−θijXj] +K.

All this means that

πi =
ea

ea + eb
,

where

a = e

(∑
j∈N(i)∩H

[θij(2πj−1)]+
∑

j∈N(i)∩X
[θijXj]

)

b = e

(∑
j∈N(i)∩H

[−θij(2πj−1)]+
∑

j∈N(i)∩X
[−θijXj]

)

.

After this blizzard of calculation, our inference algorithm is straightforward. We
visit each hidden node in turn, set the associated πi to the value of the expression
above assuming all the other πj are fixed at their current values, and repeat until
convergence. We can test convergence by checking the size of the change in each
πj .

We can now do anything to Q(H) that we would have done to P (H|X).
For example, we might compute the values of H that maximize Q(H) for MAP
inference. It is wise to limit ones ambition here, because Q(H) is an approximation.
It’s straightforward to set up and describe, but it isn’t particularly good. The main
problem is that the variational distribution is unimodal. Furthermore, we chose a
variational distribution by assuming that each Hi was independent of all others.
This means that computing, say, covariances will likely lead to the wrong numbers
(although it’s easy—almost all are zero, and the remainder are easy). Obtaining
an approximation by assuming that Hi is independent of all others is often called
a mean field method.

15.4. You Should 364

Remember This: A long, but easy, derivation yields a way to recover
an approximation to the best denoised binary image. The inference algo-
rithm is a straightforward optimization procedure.

15.4 You Should

15.4.1 Remember These Terms

Boltzmann machine . 351
energy . 352
max-cut . 353
Markov random field . 353
discrete Markov random field . 353
one-hot vectors . 354
variational inference . 358
KL divergence . 359
Kullback–Leibler divergence . 359
variational free energy . 360
mean field method . 363

15.4.2 Remember These Facts

A natural denoiser for binary images is intractable 353
A natural denoiser for images is also intractable 358
Variational inference uses an easy distribution close to an intractable

model . 359
KL divergence measures the similarity of two probability distributions359
Maximum likelihood estimation uses KL divergence 360
The variational free energy bounds KL divergence, and is tractable . 361
Mean field inference works well for denoising binary images 364

15.4.3 Be Able to

• Set up and solve a mean field model for denoising binary images.

P A R T S I X

Deep Networks

C H A P T E R 16

Simple Neural Networks

All the classification and regression procedures we have seen till now assume
that a reasonable set of features is available. If the procedure didn’t work well,
we needed to use domain knowledge, problem insight, or sheer luck to obtain more
features. A neural network offers an alternative option: learn to make good features
from the original signal. A neural network is made up of units. Each accepts a set
of inputs and a set of parameters, and produces a number which is a non-linear
function of the inputs and the parameters. It is straightforward to produce a k way
classifier out of k units.

More interesting is to build a set of layers, by connecting the outputs of one
layer of units to the inputs of the next. The first layer accepts inputs in whatever
form is available. The final layer operates as a classifier. The intermediate layers
each map their input into features that the next layer finds useful. As a result, the
network learns features that the final classification layer finds useful. A stack of
layers like this can be trained with stochastic gradient descent. The big advantage
of this approach is that we don’t need to worry about what features to use—the
network is trained to form strong features. This is very attractive for applications
like classifying images, and the best performing image classification systems known
are built using neural networks.

This chapter describes units, how to make layers out of units, and how to
train a neural network. Most of the tricks that are needed to build a good image
classification system with a neural network are described in the next chapter.

16.1 Units and Classification

We will build complex classification systems out of simple units. A unit takes a
vector x of inputs and uses a vector w of parameters (known as the weights), a
scalar b (known as the bias), and a non-linear function F to form its output, which
is

F (wTx+ b).

Over the years, a wide variety of non-linear functions have been tried. Current best
practice is to use the ReLU (for rectified linear unit), where

F (u) = max (0, u).

For example, if x was a point on the plane, then a single unit would represent a
line, chosen by the choice of w and b. The output for all points on one side of the
line would be zero. The output for points on the other side would be a positive
number that is larger for points that are further from the line.

Units are sometimes referred to as neurons, and there is a large and rather
misty body of vague speculative analogy linking devices built out of units to neu-
roscience. I deprecate this practice; what we are doing here is quite useful and

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 16

367

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_16

16.1. Units and Classification 368

interesting enough to stand on its own without invoking biological authority. Also,
if you want to see a real neuroscientist laugh, explain to them how your neural
network really models some gobbet of brain tissue or other.

16.1.1 Building a Classifier out of Units: The Cost Function

We will build a multiclass classifier out of units by modelling the class posterior
probabilities using the outputs of the units. Each class will get the output of a
single unit. We will organize these units into a vector o, whose i’th component is
oi, which is the output of the i’th unit. This unit has parameters w(i) and b(i). We
want to use the i’th unit to model the probability that the input is of class i, which
I will write p(class = i|x,w(i), b(i)).

To build this model, I will use the softmax function. This is a function
that takes a C dimensional vector and returns a C dimensional vector that is non-
negative, and whose components sum to one. We have

softmax(u) = s(u) =

(
1∑
k e

uk

)
⎡

⎢⎢⎣

eu1

eu2

. . .
euC

⎤

⎥⎥⎦

(recall uj is the j’th component of u). We then use the model

p(class = j|x,w(i), b(i)) = sj(o(x,w
(i), b(i))).

Notice that this expression passes important tests for a probability model. Each
value is between 0 and 1, and the sum over classes is 1.

In this form, the classifier is not super interesting. For example, imagine that
the features x are points on the plane, and we have two classes. Then we have two
units, one for each class. There is a line corresponding to each unit; on one side
of the line, the unit produces a zero, and on the other side, the unit produces a
positive number that increases with perpendicular distance from the line. We can
get a sense of what the decision boundary will be like from this. When a point is
on the 0 side of both lines, the class probabilities will be equal (and so both 1

2—two
classes, remember). When a point is on the positive side of the j’th line, but the
zero side of the other, the class probability for class j will be

eoj(x,w
(j),b(j))

1 + eoj(x,w
(j),b(j))

,

and the point will always be classified in the j’th class (remember, oj ≥ 0 because of
the ReLU). Finally, when a point is on the positive side of both lines, the classifier
boils down to choosing the class j that has the largest value of oj(x,w

(j), b(j)). All
this leads to the decision boundary shown in Fig. 16.1. Notice that this is piecewise
linear, and somewhat more complex than the boundary of an SVM.

16.1. Units and Classification 369

O2O1

Components of x

w2w1

b1 b2

To softmax

O1

O2

0 side 0 side

Either class

Class 1

Class 2Class 1

Class 2

Figure 16.1: On the left, a simple classifier consisting of two units observing an
input vector (in this case 4D), and providing outputs. On the right, the decision
boundary for two units classifying a point in 2D into one of the two classes. As
described in the text, the boundary consists of a set of rays. There are three regions:
in one, the point is class 1; in the second, the point is class 2; and in the third,
each class has the same probability. The angle of the dashed line depends on the
magnitudes of w(1) and w(2)

Remember This: Neural networks can make excellent classifiers. Out-
puts are passed through a softmax layer to produce estimates of the posterior
an input belongs to a class. A very simple k class classifier can be made
out of k units. This should be compared to logistic regression.

16.1.2 Building a Classifier out of Units: Strategy

The essential difficulty here is to choose the w’s and b’s that result in the best
behavior. We will do so by writing a cost function that estimates the error rate of
the classification, then searching for a value that makes that function small. We
have a set of N examples xi and for each example we know the class. There are a
total of C classes. We encode the class of an example using a one hot vector yi,
which is C dimensional. If the i’th example is from class j, then the j’th component
of yi is 1, and all other components in the vector are 0. I will write yij for the j’th
component of yi.

A natural cost function looks at the log likelihood of the data under the prob-
ability model produced from the outputs of the units. Stack all of the coefficients
into a vector θ. If the i’th example is from class j, we would like

− log p(class = j|xi, θ)

to be small (notice the sign here; it’s usual to minimize negative log likelihood).
The components of yi can be used as switches, as in the discussion of EM to obtain
a loss function

16.1. Units and Classification 370

1

N

∑

i

Llog(yi, s(o(xi, θ))) =
1

N

∑

i

[− log p(class of example i|xi, θ)]

=
1

N

∑

i∈data

[{
−yT

i log s(o(xi, θ))
}]

(recall the j’th component of log s is log sj). This loss is variously known as log-loss
or cross-entropy loss.

As in the case of the linear SVM (Sect. 2.1), we would like to achieve a low
cost with a “small” θ, and so form an overall cost function that will have loss and
penalty terms. It isn’t essential to divide by N (the minimum is in the same place
either way) but doing so means the loss of a model does not grow with the size of
the training set, which is often convenient.

We will penalize large sets of weights, as in the linear SVM. Remember, we
have C units (one per class) and so there are C distinct sets of weights. Write the
weights for the k’th unit w(k). Our penalty becomes

1

2

∑

k∈units

(
w(k)

)T
w(k).

As in the case of the linear SVM (Sect. 2.1), we write λ for a weight applied to the
penalty. Our cost function is then

S(θ,x;λ) =
1

N

∑

i∈data

[{
−yT

i log s(o(xi, θ))
}]

+
λ

2

∑

k∈units

(
w(k)

)T
w(k).

(misclassification loss) (penalty)

Remember This: Networks are trained by descent on a loss. The usual
loss for a classifier is a negative log-posterior, with the posterior modelled
using a softmax function. It is usual to regularize with the magnitude of
weights.

16.1.3 Building a Classifier out of Units: Training

I have described a simple classifier built out of units. We must now train this
classifier, by choosing a value of θ that results in a small loss. It may be quite hard
to get the true minimum, and we may need to settle for a small value. We use
stochastic gradient descent, because we have seen it before; because it is effective;
and because it is the algorithm of choice when training more complex classifiers
built out of units.

16.1. Units and Classification 371

For the SVM, we selected one example at random, computed the gradient
at that example, updated the parameters, and went again. For neural nets, it
is more usual to use minibatch training, where we select a subset of the data
uniformly and at random, compute a gradient using that subset, update, and go
again. This is because in the best implementations many operations are vectorized,
and using a minibatch can provide a gradient estimate that is clearly better than
that obtained using only one example, but doesn’t take longer to compute. The size
of the minibatch is usually determined by memory or architectural considerations.
It is often a power of two, for this reason.

Now imagine we have chosen a minibatch of M examples. We must compute
the gradient of the cost function. The penalty term is easily dealt with, but the
loss term is something of an exercise in the chain rule. We drop the index for the
example, and so have to handle the gradient of

−y log s(o(x, θ)) =
∑

u

yu log su (o(x, θ))

with respect to the elements of θ. Applying the chain rule, we have

∂

∂w
(j)
a

[yu log su (o(x, θ))] = yu

[
∑

v

∂ log su
∂ov

∂ov

∂w
(j)
a

]

and
∂

∂b(j)
[yu log su (o(x, θ))] = yu

[
∑

v

∂ log su
∂ov

∂ov
∂b(j)

]
.

The relevant partial derivatives are straightforward. Write I[u=v](u, v) for the
indicator function that is 1 when u = v and zero otherwise. We have

∂ log su
∂ov

= I[u=v] −
eov∑
k e

ok

= I[u=v] − sv.

To get the other partial derivatives, we need yet more notation (but this isn’t new,
it’s a reminder). I will write I[ou>0](ou) for the indicator function that is 1 if its
argument is greater than zero. Notice that if j = u,

∂ou

∂w
(j)
a

= 0 and
∂ou
∂b(j)

= 0.

Then
∂ov

∂w
(j)
a

= xa

[
I[ov>0](ov)

] [
I[u=j](u, j)

]

and
∂ou
∂b(j)

=
[
I[ou>0](ou)

] [
I[u=j](u, j)

]
.

Once you have the gradient, you need to use it. Each step will look like
θ(n+1) = θ(n) − ηn∇θcost. You need to choose ηn for each step. This is widely

16.2. Example: Classifying Credit Card Accounts 372

known as the learning rate; an older term is stepsize (neither term is a super-
accurate description). It is not usual for the stepsize to be the same throughout
learning. We would like to take “large” steps early, and “small” steps late, in
learning, so we would like ηn to be “large” for small n, and “small” for large n. It
is tough to be precise about a good choice. As in stochastic gradient descent for a
linear SVM, breaking learning into epochs (e(n) is the epoch of the n’th iteration),
then choosing two constants a and b to obtain

ηn =
1

a+ be(n)

is quite a good choice. Another rule that is quite widely used is to form

ηn = η(1/γ)e(n),

where γ is larger than one. The constants, and the epoch size, will need to be
chosen by experiment. As we build more complex collections of units, the need for
a better process will become pressing.

Choosing the regularization constant follows the recipe we saw for a linear
SVM. Hold out a validation dataset. Train for several different values of λ. Evaluate
each system on the validation dataset, and choose the best. Notice this involves
many rounds of training, which could make things slow. Evaluating the classifier
is like evaluating any other classifier. You evaluate the error on a held-out dataset
that wasn’t used to choose the regularization constant, or during training.

16.2 Example: Classifying Credit Card Accounts

The UC Irvine Machine Learning Repository hosts a dataset on Taiwanese credit
card accounts. The dataset records a variety of properties of credit card users, to-
gether with whether they defaulted on their payment or not. The dataset was
donated by I-Cheng Yeh. The task is to predict whether an account will de-
fault or not. You can find the dataset at https://archive.ics.uci.edu/ml/datasets/
default+of+credit+card+clients.

Straightforward methods work relatively poorly on this classification problem.
About 22% of accounts default, so by just predicting that no account will default
(the prior), you can get an error rate of 0.22. While this would likely produce
happy customers, shareholders might be unhappy. A reasonable baseline is L1
regularized logistic regression (I used glmnet as in Sect. 11.4). An appropriate
choice of regularization constant gets a cross-validated error rate with a mean of
0.19 and a standard deviation of about 0.002. This is better than the prior, but
not much.

I trained a simple two-unit network using stochastic gradient descent as in
the previous section. I normalized each feature separately to have zero mean and
unit standard deviation. The figures show plots of the loss and error for a variety of
different configurations and training options. As the figures show, this network can
be made to behave slightly better than logistic regression, likely because the decision
boundary is slightly more complicated. The dataset contains 30,000 examples. I
used a 25,000 to train, and the rest for test. I used the gradient at a single example
to update (rather than using a batch of examples). Every 100 updates, I computed

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

16.2. Example: Classifying Credit Card Accounts 373

Epochs

0.4

0.5

Lo
ss

Train, 1e-3
Train, 1e-4

Test, 1e-3
Test, 1e-4

Epochs

0.15

0.2

0.25

Er
ro

r r
at

e

Train, 1e-4

Train, 1e-3

Test, 1e-4

Test, 1e-3

Prior

glmnet

Epochs

0.4

0.5

Lo
ss

Train, 1e-2

Test, 1e-2

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10
Epochs

0.15

0.2

0.25

Er
ro

r r
at

e
Train, 1e-2

Test, 1e-2

Prior

glmnet

Figure 16.2: On the left, a plot of loss and on the right, a plot of error. The top
row is for stepsizes 1e−4 and 1e−3, and the bottom row is for stepsize 1e−2. Each
plot shows loss (resp. error) as training progresses for a two-unit classifier on the
credit card account data of the text. These plots are for a regularization constant
of 0.001. The test error for a stepsize of 1e−3 is significantly better than the cross-
validated error produced by glmnet. Smaller stepsizes produce rather worse results.
In the bottom row, the stepsize is rather large, resulting in quite noisy curves which
are hard to compare. As the bottom row shows, a larger stepsize results in a rather
less effective method

and recorded the value of both loss and error for both train and test sets. An epoch
is 25,000 updates. The figures show plots of both loss and error for both train
and test set as training proceeds. These plots are an important and usual part of
keeping track of training.

The figures show the stepsize I used in each case. Generally, a curve for a large
stepsize will be noisier than a curve for a small stepsize. Small stepsizes produce
smoother curves, but small stepsizes usually result in poor exploration of the space
of models and often produce rather higher training error (resp. loss). On the other
hand, too large a stepsize means the method never settles into a good solution. In
fact, a sufficiently large stepsize can cause training to diverge. I have separated
the largest stepsize from the others, because the very noisy curve made the others
hard to resolve. In each case, I adjusted the stepsize at the end of an epoch by
multiplying by 1/1.1 (so in the last epoch, the stepsize is about 0.38 the stepsize

16.2. Example: Classifying Credit Card Accounts 374

Epochs

0.4

0.5

Lo
ss

Train, 1e-3

Train, 1e-4
Test, 1e-3

Test, 1e-4

Epochs

0.15

0.2

0.25

Er
ro

r r
at

e

Train, 1e-4

Train, 1e-3

Test, 1e-3

Prior

glmnet

Epochs

0.4

0.5

Lo
ss

Train, 1e-2

Test, 1e-2

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10
Epochs

0.15

0.2

0.25

Er
ro

r r
at

e

Train, 1e-2

Test, 1e-2

Prior

glmnet

Test, 1e-4

Figure 16.3: On the left, a plot of loss and on the right, a plot of error. The top
row is for stepsizes 1e−4 and 1e−3, and the bottom row is for stepsize 1e−2. Each
plot is for a two-unit classifier on the credit card account data. These plots are for
a regularization constant of 0. You might expect a larger test–train gap than for
Fig. 16.2, but the difference isn’t large or reliable

at the start). You might notice that the curves are a little less noisy at the end of
training than at the start. All of Figs. 16.2, 16.3, and 16.4 are on the same set of
axes, and I have plotted the error rates for the two baselines as horizontal lines for
reference. You should look at these figures in some detail.

For most problems, there is no natural stopping criterion (in some cases, you
can stop training when error on a validation set reaches some value). I stopped
training after ten epochs. As you can see from the curves, this choice seems rea-
sonable. Each choice of stepsize and of regularization constant yields a different
model. These models can be compared by looking at the curves, but it takes some
search to find a good set of stepsizes and of regularization constant.

Figure 16.2 shows a model with a regularization constant of 0.001, which
seems to be quite good. Reducing the regularization constant to 0 produces a rather
worse set of models (Fig. 16.3), as does increasing the constant to 0.1 (Fig. 16.4).
You should notice that the regularization constant has quite complicated effects. A
larger regularization constant tends to yield (but doesn’t guarantee) a smaller gap
between test and train curves.

16.2. Example: Classifying Credit Card Accounts 375

Epochs

0.4

0.5

Lo
ss

Train, 1e-3

Train, 1e-4
Test, 1e-3 Test, 1e-4

Epochs

0.15

0.2

0.25

Er
ro

r r
at

e

Train, 1e-4
Train, 1e-3

Test, 1e-4

Test, 1e-3

Prior

glmnet

Epochs

0.4

0.5

Lo
ss

Train, 1e-2

Test, 1e-2

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10
Epochs

0.15

0.2

0.25

Er
ro

r r
at

e

Train, 1e-2

Test, 1e-2

Prior

glmnet

Figure 16.4: On the left, a plot of loss and on the right, a plot of error. The top
row is for stepsizes 1e−4 and 1e−3, and the bottom row is for stepsize 1e−2. Each
plot shows loss (resp. error) as training progresses for a two-unit classifier on the
credit card account data of the text. These plots are for a regularization constant
of 0.1. You might expect a smaller test–train gap than for Fig. 16.2 or for Fig. 16.3,
but the difference isn’t large or reliable. Test errors are notably worse than the
cross-validated error produced by glmnet. In the bottom row, the stepsize is rather
large, resulting in quite noisy curves which are hard to compare. As the bottom
row shows, a larger stepsize results in a rather less effective method

Comparing Figs. 16.3 and 16.4 yields another point to remember. A model
can produce lower loss and higher error rates. The training loss for 1e−3 and 1e−4
is better in Fig. 16.3 than in Fig. 16.4, but the error rates are higher in Fig. 16.3
than in Fig. 16.4. To explain this, remember the loss is not the same as the error
rate. A method can improve the loss without changing the error rate by improving
the probability of the right class, even if doing so doesn’t change the ranking of the
classes.

You should build a simple classifier like this for some choice of dataset. If you
try, you will notice that the performance quite strongly depends both on choice
of stepsize and of regularization constant, and there can be some form of minor
interactions between them. Another important consideration is initialization.
You need to choose the initial values of all of the parameters. There are many

16.2. Example: Classifying Credit Card Accounts 376

parameters; in our case, with a d dimensional x and C classes, we have (d+1)×C
parameters. If you initialize each parameter to zero, you will find that the gradient
is also zero, which is not helpful. This occurs because all the ou will be zero (because
the wu,i and the bu are zero). It is usual to initialize to draw a sample of a zero
mean normal random variable for each initial value. Each should have a small
standard deviation. If you replicate my experiments above, you will notice that
the size of this standard deviation matters quite a lot (I used the value 0.01 for
the figures). Generally, one gets a system like this to work by trying a variety of
different settings, and using an awful lot of data.

If you try this experiment (and you really should), you will also notice that
preprocessing data is important to get good results. You should have noticed
that, for the credit card example, I normalized each feature separately. Try with this
dataset and see what happens if you fail to do this, but use the other parameters I
used (I was unable to get any sensible progress from training). A partial explanation
of why there might be problems is easy. The first feature has very large standard
deviation (of the order of 1e5) and the others have much smaller standard deviation
(of the order of 1). If you fit a good classifier to this data, you will discover that the
coefficient of the first feature is quite large, but some other features have quite small
coefficients. But the gradient search starts with very small values of each coefficient.
If the stepsize is small, the search must spend very many steps building up a large
value of the coefficient; if it is large, it is likely to get small coefficients wrong. It
is a general fact that a good choice of preprocessing can significantly improve the
performance of a neural network classifier. However, I know of no general procedure
to establish the right preprocessing for a particular problem other than trying a lot
of different approaches.

Here is another significant obstacle that occurs in training. Imagine the system
gets into a state where for some unit u, ou = 0 for every training data item. This
could happen, for example, if the learning rate was too large, or you chose an
unlucky initialization. Then the system can’t get out of this state, because the
gradient for that unit will be zero for every training data item, too. Such units
are referred to as dead units. For a very simple classifier like our two-unit model,
this problem can be contained by keeping the learning rate small enough. In more
complex architectures (below), it is also contained by having a large number of
units. Figure 16.5 shows this effect occurring in an extreme version in the two-unit
example for credit cards—here both units are dead.

Plots of loss can be very informative, and skilled practitioners are good at
diagnosing training problems from these plots. Here are some basics. If the learning
rate is small, the system will make very slow progress but may (eventually) end up
in a good state. If the learning rate is large, the system will make fast progress
initially, but will then stop improving, because the state will change too quickly
to find a good solution. If the learning rate is very large, the system might even
diverge. If the learning rate is just right, you should get fast descent to a good
value, and then slow but fairly steady improvement. Of course, just as in the
case of SVMs, the plot of loss against step isn’t a smooth curve, but rather noisy.
Complicated models can display quite startling phenomena, not all of which are
understood or explained. I found an amusing collection of examples of training
problems at lossfunctions.tumblr.com—you should look at this.

lossfunctions.tumblr.com

16.3. Layers and Networks 377

Epochs

0

0.5

1
Lo

ss

0 2 4 6 8 10 0 2 4 6 8 10
Epochs

0

0.5

1

Er
ro

r r
at

e

Prior
glmnet

Figure 16.5: On the left, a plot of loss and on the right, a plot of error. Each plot
shows loss (resp. error) as training progresses for a two-unit classifier on the credit
card account data of the text. This is an extreme case (notice the axes are different
from those in the other figures) where both units died very early in training. The
stepsize is 1e−3, but this has no effect because the gradient is zero. The error
rate is very high, because each unit produces a zero and so the probabilities are
0.5. The tiebreaking mechanism is “choose default” which gives a particularly poor
performance here

16.3 Layers and Networks

We have built a multiclass classifier out of units by using one unit per class, then
interpreting the outputs of the units as probabilities using a softmax function.
This classifier is at best only mildly interesting. The way to get something really
interesting is to ask what the features for this classifier should be. To date, we have
not looked closely at features. Instead, we’ve assumed that they come with the
dataset or should be constructed from domain knowledge. Remember that, in the
case of regression, we could improve predictions by forming non-linear functions of
features. We can do better than that; we could learn what non-linear functions to
apply, by using the output of one set of units to form the inputs of the next set.

16.3.1 Stacking Layers

We will focus on systems built by organizing the units into layers; these layers
form a neural network (a term I dislike, for the reasons above, but use because
everybody else does). There is an input layer, consisting of the units that receive
feature inputs from outside the network. There is an output layer, consisting of
units whose outputs are passed outside the network. These two might be the same,
as they were in the previous section. The most interesting cases occur when they
are not the same. There may be hidden layers, whose inputs come from other
layers and whose outputs go to other layers. In our case, the layers are ordered,
and outputs of a given layer act as inputs to the next layer only (as in Fig. 16.6—we
don’t allow connections to wander all over the network). For the moment, assume
that each unit in a layer receives an input from every unit in the previous layer;
this means that our network is fully connected. Other architectures are possible,

16.3. Layers and Networks 378

Input layer

Output layer

Softmax

x

u

o

θ1

θ2

Layer 1

Layer 2

s

Softmax

x

Figure 16.6: On the left, an input layer connected to an output layer. The units in
the input layer take the inputs and compute features; the output layer turns these
features into output values that will be turned into class probabilities with the
softmax function. On the right, an abstraction of these layers. I have illustrated
the softmax as a layer of its own. Each layer of units accepts a vector and some
parameters, and produces another vector. The softmax layer takes no parameters

but right now the most important question is how to train the resulting object.
Figure 16.6 shows a simple generalization of our classifier, with two layers of

units connected to one another. The best way to think about the systems we are
building is in terms of multiple layers of functions that accept vector inputs (and
often parameters) and produce vector outputs. A layer of units is one such function.
But a softmax layer is another. The figure shows this abstraction applied to the
collection of units. Here the first layer accepts an input x and some parameters
θ(1), and produces an output u. The second layer accepts this u as input, together
with some parameters, then makes an output o. The third layer is softmax—it
accepts inputs and makes outputs, but has no parameters. The whole stack of
layers produces a model of the conditional probability of each class, conditioned on
the input x and the parameters θ.

We will train objects like this with stochastic gradient descent. The important
question is how to compute the gradient. The issue here is that s depends on θ(1)

only by way of u—changing θ(1) causes s to change only by changing u.
I could write the object pictured in Fig. 16.6 as

s(o(u(x, θ(1)), θ(2)))

(which is a clumsy notation for something made quite clear by the picture). This
is more cleanly written as

16.3. Layers and Networks 379

s,

where

s = s(o)

o = o(u, θ(2))

u = u(x, θ(1)).

You should see these equations as a form of map for a computation. You feed in x;
this gives u; which gives o; which gives s; from which you compute your loss.

16.3.2 Jacobians and the Gradient

Now to compute the gradient. I will do the logic in two ways, because one might
work better for you than the other. For graphical thinkers, look at Fig. 16.6. The
loss L will change only if s changes. If the input is fixed, to determine the effects of
a change in θ(2), you must compute the effect of that change on o; then the effect of
the change in o on s; and finally, the effect of the that change in s on the loss. And
if the input is fixed, determining the effects of a change in θ(1) is more complicated.
You must compute the effect of that change on u; then the effect of the change in
u on o; then the effect of the change in o on s; and finally, the effect of that change
in s on the loss. It may be helpful to trace these changes along the figure with a
pencil.

If you find equations easier to reason about, the last paragraph is just the
chain rule, but in words. The loss is L(s). Then you can apply the chain rule to
the set of equations

s,

where

s = s(o)

o = o(u, θ(2))

u = u(x, θ(1)).

It will help to represent the relevant derivatives cleanly with a general nota-
tion. Assume we have a vector function f of a vector variable x. I will write #(x)
to mean the number of components of x, and xi for the i’th component. I will write
Jf ;x to mean ⎛

⎜⎝

∂f1
∂x1

. . . ∂f1
∂x#(x)

.
∂f#(f)

∂x1
. . .

∂f#(s)

∂f#(o)

⎞

⎟⎠

and refer to such a matrix of first partial derivatives as a Jacobian (in some circles,
it is called the derivative of f , but this convention can become confusing). The
Jacobian simplifies writing out the chain rule. You should check (using whatever
form of the chain rule you recall) that

∇θ(2)L = (∇sL)× Js;o × Jo;θ(2) .

16.3. Layers and Networks 380

Input layer

Output layer

Softmax

x x

θ1 Linear

RELU

θ3 Linear

RELU

o

Softmax
5

3

4

2

1

Figure 16.7: On the left, an input layer connected to an output layer as in Fig. 16.6.
On the right, a further abstraction of these layers, which is useful in computing
the gradient. This sees a unit as a composite of two layers. The first computes the
linear function, then the second computes the ReLU

Now to get the derivative of the loss with respect to θ(1) is more interesting. The
loss depends on θ(1) only via u. So we must have

∇θ(1)L = (∇sL)× Js;o × Jo;u × Ju;θ(1) .

The reasoning of the last two paragraphs can be extended to cover any number
of layers, parameters, interconnections, and so on, as long as we have notation to
keep track of each layer’s inputs and outputs.

Remember This: Stacking multiple layers of units into a neural net-
work results in learned features that should cause the final classifier to per-
form well. There are a variety of conventions as to what makes a layer. The
chain rule yields the gradient of a network loss with respect to parameters.

16.3.3 Setting up Multiple Layers

To go further, we will need to keep track of some details with new notation. We will
see a neural network as a collection of D layers of functions. Each function accepts
a vector and produces a vector. These layers are not layers of units. Instead, it

16.3. Layers and Networks 381

is convenient to see a unit as a composite of two layers. The first uses a set of
parameters to compute a linear function of its inputs. The second computes the
ReLU from the result of the linear function. As Fig. 16.7 shows, this means that a
network of two layers of units followed by a softmax has D = 5.

This notation allows us to abstract away from what each function does, and
so compute the gradient. I will write the r’th function o(r). Not every function will
accept parameters (the ReLU and softmax functions don’t; the linear functions do).
I will use the convention that the r’th layer receives parameters θ(r); this parameter
vector will be empty if the r’th layer does not accept parameters. In this notation,
the output of a network applied to x could be written as

o(D)(o(D−1)(. . . (o1(x, θ(1)), θ(2)), . . .), θ(D))

which is messy. More clean is to write

o(D),

where

o(D) = o(D)(u(D), θ(D))

u(D) = o(D−1)(u(D−1), θ(D−1))

. . . = . . .

u(2) = o(1)(u(1), θ1)

u(1) = x.

These equations really are a map for a computation. You feed in x; this gives u(1);
which gives u(2); and so on, up to o(D). This is important, because it allows us to
write an expression for the gradient fairly cleanly (Fig. 16.8 captures some of this).

Our losses will usually consist of two terms. The first is an average of per-item
losses, and so takes the form

1

N

∑

i

L(yi,o
(D)(xi, θ)).

The second (which we won’t always use) is a term that depends on the parameters,
which will be used to regularize as with SVMs and regression as above. The gradient
of the regularization term is easy.

16.3.4 Gradients and Backpropagation

To get the gradient of the loss term, drop the index of the example and focus on

L(y,o(D)),

where

o(D) = o(D)(u(D), θ(D))

u(D) = o(D−1)(u(D−1), θ(L−1))

. . . = . . .

u(2) = o(1)(u(1), θ1)

u(1) = x.

16.3. Layers and Networks 382

o(D)

u(D) = o(D-1)

x

Layer 1

Layer L

Layer L-1

o(1)

θ(D)

θ(D-1)

θ(1)

Loss

u(D-1)

Figure 16.8: Notation for layers, inputs, and parameters, for reference

Again, think of these equations as a map for a computation. Now consider ∇θL
and extend our use of the chain rule from Sect. 16.1.3, very aggressively. We have

∇θ(D)L(y,o(D)) = (∇o(D)L)× Jo(D);θ(D)

(I ignored θ(D) in Sect. 16.1.3, because layer D was a softmax layer and didn’t have
any parameters).

Now think about ∇θ(D−1)L. The loss depends on θ(D−1) in a somewhat round-
about way; layer D − 1 uses θ(D−1) to produce its outputs, and these are fed into
layer D as that layer’s inputs. So we must have

∇θ(D−1)L(yi,o
(D)(xi, θ)) = (∇o(D)L)× Jo(D);u(D) × Jo(D−1);θ(D−1)

(look carefully at the subscripts on the Jacobians, and remember that u(D) =
o(D−1)). And o(D) depends on θ(D−2) through u(D) which is a function of u(D−1)

which is a function of θ(D−2), so that

∇θ(D−2)L(yi,o
(D)(xi, θ)) = (∇o(D)L)× Jo(D);u(D) × Jo(D−1);u(D−1) × Jo(D−2);θ(D−2)

(again, look carefully at the subscripts on each of the Jacobians, and remember
that u(D) = o(D−1) and u(D−1) = o(D−2)).

We can now get to the point. We have a recursion:

v(D) = (∇o(D)L)

∇θ(D)L = v(D)Jo(D);θ(D)

∇θ(D−1)L = v(D)Jo(D);u(D)Jo(D−1);θ(D−1)

. . .

∇θ(i−1)L = v(D)Jo(D);u(D) . . .Jo(i);u(i)Jo(i−1);θ(i−1)

. . .

16.4. Training Multilayer Networks 383

But look at the form of the products of the matrices. We don’t need to remultiply
all those matrices; instead, we are attaching a new term to a product we’ve already
computed. All this is more cleanly written as:

v(D) =
(
∇(D)

o L
)

∇θ(D)L = v(D)Jo(D);θ(D)

v(D−1) = v(D)Jo(D);u(D)

∇θ(D−1)L = v(D−1)Jo(D−1);θ(D−1)

. . .

v(i−1) = v(i)Jo(i);u(i)

∇θ(i−1)L = v(i−1)Jo(i−1);θ(i−1)

. . .

I have not added notation to keep track of the point at which the partial
derivative is evaluated (it should be obvious, and we have quite enough notation
already). When you look at this recursion, you should see that, to evaluate v(i−1),
you will need to know u(k) for k ≥ i− 1. This suggests the following strategy. We
compute the u’s (and, equivalently, o’s) with a “forward pass,” moving from the
input layer to the output layer. Then, in a “backward pass” from the output to the
input, we compute the gradient. Doing this is often referred to as backpropaga-
tion.

Remember This: The gradient of a multilayer network follows from
the chain rule. A straightforward recursion known as backpropagation yields
an efficient algorithm for evaluating the gradient. Information flows up the
network to compute outputs, then back down to get gradients.

16.4 Training Multilayer Networks

A multilayer network represents an extremely complex, highly non-linear function,
with an immense number of parameters. Such an architecture has been known for a
long time, but hasn’t been particularly successful until recently. Hindsight suggests
the problem is that networks are hard to train successfully. There is quite good
evidence that having many layers can improve practical performance if one can
train the resulting network. For some kinds of problem, multilayer networks with a
very large number of layers (sometimes called deep networks) easily outperform
all other known methods. Neural networks seem to behave best when one is solving
a classification problem and has an awful lot of data. We will concentrate on this
case.

Getting a multilayer neural network to behave well faces a number of impor-
tant structural obstacles. There isn’t (as of writing) any kind of clear theoretical

16.4. Training Multilayer Networks 384

guide to what will and won’t work. What this means is that building really useful
applications involves mastering a set of tricks, and building intuition as to when
each trick will be helpful. There is now a valuable community of people on the in-
ternet who share tricks, code implementing the tricks, and their general experience
with those tricks.

Datasets: Fully connected layers have many parameters, meaning that mul-
tiple layers will need a lot of data to train, and will take many training batches.
There is some reason to believe that multilayer neural networks were discounted
in application areas for quite a long time because people underestimated just how
much data and how much training was required to make them perform well. Very
large datasets seem to be essential for successful applications, but there isn’t any
body of theory that will give a helpful guide to when one has enough data, etc.

Computing Friction: Evaluating multilayer neural networks and their gra-
dients can be slow. Modern practice stresses the use of GPUs, which significantly
improve training time. There are fierce software obstacles, too. If you’re uncertain
on this point, use the description above to build and train a three-layer network
from scratch in a reasonable programming environment. You’ll find that you spend
a lot of time and effort on housekeeping code (connecting layers to one another;
evaluating gradients; and so on). Having to do this every time you try a new net-
work is a huge obstacle. Modern practice stresses the use of customized software
environments, which accept a network description and do all the housekeeping for
you. I describe some current environments in Sect. 16.4.1, but by the time these
words appear in print, new ones might have popped up.

Redundant Units: In our current layer architectures, the units have a kind
of symmetry. For example, one could swap the first and the second unit and their
weights, swap a bunch of connections to the next layer, and have exactly the same
classifier, but with major changes to the weight vector. This means that many units
might be producing about the same output for the same input, and we would be
unable to diagnose this. One problem that results is units in later layers might
choose only one of the equivalent units, and rely on that one. This is a poor
strategy, because that particular unit might behave badly—it would be better to
look at all the redundant units. You might expect that a random initialization
resolves this problem, but there is some evidence that advanced tricks that force
units to look at most of their inputs can be quite helpful (Sect. 16.4.2).

Gradient Obfuscation: One obstacle that remains technically important
has to do with the gradient. Look at the recursion I described for backpropaga-
tion. The gradient update at the L’th (top) layer depends pretty directly on the
parameters in that layer. But now consider a layer close to the input end of the
network. The gradient update has been multiplied by several Jacobian matrices.
The update may be very small (if these Jacobians shrink their input vectors) or
unhelpful (if layers close to the output have poor parameter estimates). For the
gradient update to be really helpful, we’d like the layers higher up the network to
be right, but we can’t achieve this with lower layers that are confused, because they
pass their outputs up. If a layer low in the network is in a nonsensical state, it may
be very hard to get it out of that state. In turn, this means that adding layers to
a network might improve performance, but also might make it worse because the
training turns out poorly.

16.4. Training Multilayer Networks 385

There are a variety of strategies for dealing with gradient problems. We might
try to initialize each layer with a good estimate, as in Sect. 16.4.3. Poor gradient
estimates can sometimes be brought under control with gradient rescaling tricks
(Sect. 16.4.4). Changing the structure of the layers can help. The most useful
variant is the convolutional layer, a special form of layer that has fewer parameters
and applies very well to image and sound signals. These are described in the next
chapter. Changing the way that layers connect can help too, and I describe some
tricks in the next chapter.

Remember This: Multilayer neural networks are trained with multi-
batch stochastic gradient descent, often using variants of the gradient to
update. Training can be difficult, but a number of tricks can help.

16.4.1 Software Environments

In Sect. 16.3.3, I wrote a multilayer network as

o(D),

where

o(D) = o(D)(u(D), θ(D))

u(D) = o(D−1)(u(D−1), θ(L−1))

. . . = . . .

u(2) = o(1)(u(1), θ1)

u(1) = x.

I then used the equations as a map for a computation. This map showed how to
use the chain rule to compute gradients. To use this map, we need to know: (a) the
form of the computation in the layer; (b) the derivative of the layer with respect to
its inputs; and (c) the derivative of the layer with respect to its parameters. There
are a variety of types of layer that are particularly useful (we’ve seen a softmax
layer and a fully connected layer; in the next chapter, we’ll see a convolutional
layer).

There are now several software environments that can accept a description of a
network as a map of a computation, like the one above, and automatically construct
a code that implements that network. In essence, the user writes a map, provides
inputs, and decides what to do with gradients to get descent. These environments
support the necessary housekeeping to map a network onto a GPU, evaluate the
network and its gradients on the GPU, train the network by updating parameters,
and so on. The easy availability of these environments has been an important factor
in the widespread adoption of neural networks.

At the time of writing, the main environments available are:

16.4. Training Multilayer Networks 386

• Darknet: This is an open source environment developed by Joe Redmon.
You can find it at https://pjreddie.com/darknet/. There is some tutorial ma-
terial there.

• MatConvNet: This is an environment for MATLAB users, originally written
by Andrea Vedaldi and supported by a community of developers. You can
find it at http://www.vlfeat.org/matconvnet. There is a tutorial at that URL.

• MXNet: This is a software framework from Apache that is supported on
a number of public cloud providers, including Amazon Web Services and
Microsoft Azure. It can be invoked from a number of environments, including
R and MATLAB. You can find it at https://mxnet.apache.org.

• PaddlePaddle: This is an environment developed at Baidu Research. You
can find it at http://www.paddlepaddle.org. There is tutorial material on that
page; I understand there is a lot of tutorial material in Chinese, but I can’t
read Chinese and so can’t find it or offer URLs. You should search the web
for more details.

• PyTorch: This is an environment developed at Facebook’s AI research. You
can find it at https://pytorch.org. There video tutorials at https://pytorch.
org/tutorials/.

• TensorFlow: This is an environment developed at Google. You can find it
at https://www.tensorflow.org. There is extensive tutorial material at https://
www.tensorflow.org/tutorials/.

• Keras: This is an environment developed by François Chollet, intended to
offer high-level abstractions independent of what underlying computational
framework is used. It is supported by the TensorFlow core library. You can
find it at https://keras.io. There is tutorial material at that URL.

Each of these environments has their own community of developers. It is now
common in the research community to publish code, networks, and datasets openly.
This means that, for much cutting edge research, you can easily find a code base
that implements a network; and all the parameter values that the developers used
to train a network; and a trained version of the network; and the dataset they used
for training and evaluation. But these aren’t the only environments. You can find
a useful comparison at https://en.wikipedia.org/wiki/Comparison of deep-learning
software that describes many other environments.

Remember This: Training even a simple network involves a fair
amount of housekeeping code. There are a number of software environ-
ments that simplify setting up and training complicated neural networks.

16.4.2 Dropout and Redundant Units

Regularizing by the square of the weights is all very well, but doesn’t ensure that
units don’t just choose one of their redundant inputs. A very useful regularization
strategy is to try and ensure that no unit relies too much on the output of any

https://pjreddie.com/darknet/
http://www.vlfeat.org/matconvnet
https://mxnet.apache.org
http://www.paddlepaddle.org
https://pytorch.org
https://pytorch.org/tutorials/
https://pytorch.org/tutorials/
https://www.tensorflow.org
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/tutorials/
https://keras.io
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software

16.4. Training Multilayer Networks 387

other unit. One can do this as follows. At each training step, randomly select some
units, set their outputs to zero (and reweight the inputs of the units receiving input
from them), and then take the step. Now units are trained to produce reasonable
outputs even if some of their inputs are randomly set to zero—units can’t rely too
much on one input, because it might be turned off. Notice that this sounds sensible,
but it isn’t quite a proof that the approach is sound that comes from experiment.
The approach is known as dropout.

There are some important details we can’t go into. Output units are not
subject to dropout, but one can also turn off inputs randomly. At test time, there
is no dropout. Every unit computes its usual output in the usual way. This creates
an important training issue. Write p for the probability that a unit is dropped
out, which will be the same for all units subject to dropout. You should think of
the expected output of the i’th unit at training time as (1 − p)oi (because with
probability p, it is zero). But at test time, the next unit will see oi; so at training
time, you should reweight the inputs by 1/(1−p). In exercises, we will use packages
that arrange all the details for us.

Remember This: Dropout can force units to look at inputs from all of
a set of redundant units, and so regularize a network.

16.4.3 Example: Credit Card Accounts Revisited

The Taiwan credit card account data of Sect. 16.2 has 30,000 examples. I split
this dataset into 25,000 training examples and 5000 validation examples. I will use
results on these validation examples to illustrate performance of various different
network architectures, but we won’t choose an architecture, so we don’t need a test
set to evaluate the chosen architecture.

I will compare four different architectures (Fig. 16.9). The simplest—I from
now on—has one layer of 100 units with ReLU non-linearities. These units accept
the input features and produce a 100 dimensional feature vector. A linear func-
tion maps the resulting 100 dimensional feature space to a two-dimensional feature
space, and then a softmax produces class-conditional probabilities. You should
think of this network as a single layer that produces a 100 dimensional feature
vector, followed by a logistic regression classifier that classifies the feature vector.
Notice this is different from the classifier of Sect. 16.2 because that used just two
units, one per class; here the units produce a large feature vector. Architecture
II has a second layer of units (again, ReLU non-linearities) that maps the first
100 dimensional feature vector to a second 100 dimensional feature vector; this is
followed by the linear function and softmax as with I. Architecture III has a third
layer of units (again, ReLU non-linearities) that maps the second 100 dimensional
feature vector to a second 100 dimensional feature vector; this is followed by the
linear function and softmax as with I. Finally, architecture IV has a third layer
of units (again, ReLU non-linearities) that maps the third 100 dimensional feature

16.4. Training Multilayer Networks 388

Linear map

Units with RELUs

Input

2D

100D

Linear map

Units with RELUs

Input

2D

100D

Units with RELUs

100D

Linear map

Units with RELUs

Input

2D

100D

Units with RELUs

100D

Units with RELUs

100D

Units with RELUs

Input

100D

Units with RELUs

100D

Units with RELUs

100D

Units with RELUs

100D

Linear map

2D

I II III IV

Figure 16.9: The four architectures I used to classify the Taiwan credit card data

vector to a second 100 dimensional feature vector; this is followed by the linear
function and softmax as with I. For each of the architectures, I used dropout of
50% of the units for each ReLU layer. I used a regularization constant of 0.01, but
did not find any particular improvement resulting from changes of this constant.

I used minibatch stochastic gradient descent to minimize, with a minibatch
size of 500. I chose this number for convenience, rather than through detailed
experiment. Every step, I computed the loss and error rate for each of the training
and validation sets. Every 400 steps, I reduced the learning rate by computing

η =
η

1.77

(so after 1600 steps, the learning rate is reduced by a factor of ten).
Initialization presented serious problems. For architecture I, I initialized each

parameter with a sample of a zero mean normal random variable with small variance
for each initial value, and learning proceeded without difficulty. This strategy did
not work for the other architectures (or, at least, I couldn’t get it to work for them).
For each of these architectures, I found that a random initialization produced a
system that very quickly classified all examples with one class. This is likely the
result of dead units caused by poor gradient steps in the early part of the process.

To train architectures II–IV properly, I found it necessary to initialize with
the previous architectures earlier layers. So I initialized architecture II’s first ReLU
layer with a trained version of architecture I’s first ReLU layer (and its second
layer randomly); architecture III’s first two ReLU layers with a trained version of
architecture II’s first two ReLU layers; and so on. This trick is undignified, but I
found it to work. We will see it again (Sect. 18.1.5).

Figure 16.10 compares the four architectures. Generally, having more layers
improved the error rate, but not as much as one might hope for. You should notice

16.4. Training Multilayer Networks 389

Epochs

0.42

0.45

0.48
Lo

ss

Epochs

0.16

0.18

0.2

Er
ro

r

Epochs

0.42

0.45

0.48

Lo
ss

I
II III

IV

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50
Epochs

0.16

0.18

0.2

Er
ro

r
I

IIIII
IV

Figure 16.10: On the left loss and on the right error plotted for training (top,
noisy, hard to resolve) and validation (bottom, smooth) datasets for various neural
networks applied to classifying the Taiwan credit card data. I used the four archi-
tectures described in the text. The training curves are hard to resolve (but if you
are viewing this figure in color, the colors are keyed, so red is I, blue II, green III,
and grey IV). Note that improvements in loss don’t necessarily yield improvements
in error. Note also that adding layers results in a more accurate classifier, but the
improvement in accuracy for this dataset is not large

one important curiosity. The validation loss is actually slightly larger for networks
with more layers, but the validation error rate is smaller. The loss is not the same
as the error rate, and so it is quite common to see improvements in loss that don’t
result in reduction in error. One important mechanism occurs when a network
improves its loss by improving the class-conditional posteriors for examples that
it already classifies correctly. If there are many such examples, you might see a
significant improvement in loss with no improvement in error. This is a significant
nuisance that can’t be fixed by training to minimize error rate, because error rate
isn’t differentiable in parameters (or rather, the derivative of error at each example
is zero for almost every parameter setting, which isn’t helpful).

16.4. Training Multilayer Networks 390

Remember This: Stacking multiple layers of units results in learned
features that should cause the final classifier to perform well. Such multi-
layer neural networks make excellent classifiers, but can be hard to train
without enough data.

16.4.4 Advanced Tricks: Gradient Scaling

Everyone is surprised the first time they learn that the best direction to travel in
when you want to minimize a function is not, in fact, backwards down the gradi-
ent. The gradient is uphill, but repeated downhill steps are often not particularly
efficient. An example can help, and we will look at this point several ways because
different people have different ways of understanding this point.

We can look at the problem with algebra. Consider f(x, y) = (1/2)(εx2+y2),
where ε is a small positive number. The gradient at (x, y) is (εx, y). For simplicity,
use a fixed learning rate η, so we have

[
x(r)

y(r)

]
=

[
(1− εη)x(r−1)

(1− η)y(r−1)

]
.

If you start at, say (x(0), y(0)) and repeatedly go downhill along the gradient, you
will travel very slowly to your destination. You can show that

[
x(r)

y(r)

]
=

[
(1− εη)rx(0)

(1− η)ry(0)

]
.

The problem is that the gradient in y is quite large (so y must change quickly) and
the gradient in x is small (so x changes slowly). In turn, for steps in y to converge
we must have |1− η | < 1; but for steps in x to converge, we require only the much
weaker constraint |1− εη | < 1. Imagine we choose the largest η we dare for the
y constraint. The y value will very quickly have small magnitude, though its sign
will change with each step. But the x steps will move you closer to the right spot
only extremely slowly.

Another way to see this problem is to reason geometrically. Figure 16.11 shows
this effect for this function. The gradient is at right angles to the level curves of
the function. But when the level curves form a narrow valley, the gradient points
across the valley rather than down it. The effect isn’t changed by rotating and
translating the function (Fig. 16.12).

You may have learned that Newton’s method resolves this problem. This is
all very well, but to apply Newton’s method we would need to know the matrix
of second partial derivatives. A network can easily have thousands to millions
of parameters, and we simply can’t form, store, or work with matrices of these
dimensions. Instead, we will need to think more qualitatively about what is causing
trouble.

16.4. Training Multilayer Networks 391

Figure 16.11: A plot of the level curves (curves of constant value) of the function
f(x, y) = (1/2)(εx2 + y2). Notice that the value changes slowly with large changes
in x, and quickly with small changes in y. The gradient points mostly toward
the x-axis; this means that gradient descent is a slow zig-zag across the “valley”
of the function, as illustrated. We might be able to fix this problem by changing
coordinates, if we knew what change of coordinates to use

One useful insight into the problem is that fast changes in the gradient vector
are worrying. For example, consider f(x) = (1/2)(x2 + y2). Imagine you start
far away from the origin. The gradient won’t change much along reasonably sized
steps. But now imagine yourself on one side of a valley like the function f(x) =
(1/2)(x2+εy2); as you move along the gradient, the gradient in the x direction gets
smaller very quickly, then points back in the direction you came from. You are not
justified in taking a large step in this direction, because if you do you will end up
at a point with a very different gradient. Similarly, the gradient in the y direction
is small, and stays small for quite large changes in y value. You would like to take
a small step in the x direction and a large step in the y direction.

You can see that this is the impact of the second derivative of the function
(which is what Newton’s method is all about). But we can’t do Newton’s method.
We would like to travel further in directions where the gradient doesn’t change
much, and less far in directions where it changes a lot. There are several methods
for doing so.

Momentum: We should like to discourage parameters from “zig-zagging” as
in the example above. In these examples, the problem is caused by components of
the gradient changing sign from step to step. It is natural to try and smooth the
gradient. We could do so by forming a moving average of the gradient. Construct a
vector v, the same size as the gradient, and initialize this to zero. Choose a positive
number μ < 1. Then we iterate

v(r+1) = μv(r) + η∇θE

θ(r+1) = θ(r) − v(r+1).

Notice that, in this case, the update is an average of all past gradients, each weighted
by a power of μ. If μ is small, then only relatively recent gradients will participate
in the average, and there will be less smoothing. Larger μ leads to more smoothing.

16.4. Training Multilayer Networks 392

Figure 16.12: Rotating and translating a function rotates and translates the gradi-
ent; this is a picture of the function of Fig. 16.11, but now rotated and translated.
The problem of zig-zagging remains. This is important, because it means that we
may have serious difficulty choosing a good change of coordinates

A typical value is μ = 0.9. It is reasonable to make the learning rate go down with
epoch when you use momentum, but keep in mind that a very large μ will mean
you need to take several steps before the effect of a change in learning rate shows.

Adagrad: We will keep track of the size of each component of the gradient.
In particular, we have a running cache c which is initialized at zero. We choose a

small number α (typically 1e−6), and a fixed η. Write g
(r)
i for the i’th component

of the gradient ∇θE computed at the r’th iteration. Then we iterate

c
(r+1)
i = c

(r)
i + (g

(r)
i)2

θ
(r+1)
i = θ

(r)
i − η

g
(r)
i

(c
(r+1)
i)

1
2 + α

Notice that each component of the gradient has its own learning rate, set by the
history of previous gradients.

RMSprop: This is a modification of Adagrad, to allow it to “forget” large

gradients that occurred far in the past. Again, write g
(r)
i for the i’th component of

the gradient ∇θE computed at the r’th iteration. We choose another number, Δ,
(the decay rate; typical values might be 0.9, 0.99, or 0.999), and iterate

16.4. Training Multilayer Networks 393

c
(r+1)
i = Δc

(r)
i + (1−Δ)(g

(r)
i)2

θ
(r+1)
i = θ

(r)
i − η

g
(r)
i

(c
(r+1)
i)

1
2 + α

.

Adam: This is a modification of momentum that rescales gradients, tries
to forget large gradients, and adjusts early gradient estimates to correct for bias.

Again, write g
(r)
i for the i’th component of the gradient ∇θE computed at the r’th

iteration. We choose three numbers β1, β2, and ε (typical values are 0.9, 0.999, and
1e−8, respectively), and some stepsize or learning rate η. We then iterate

v(r+1) = β1 ∗ v(r) + (1− β1) ∗ ∇θE

c
(r+1)
i = β2 ∗ c(r)i + (1− β2) ∗ (gri)2

v̂ =
v(r+1)

1− βt
1

ĉi =
ĉ
(r+1)
i

1− βt
2

θ
(r+1)
i = θ

(r)
i − η

v̂i√
ĉi + ε

.

Remember This: If you are not getting improvements during training,
use a gradient scaling trick.

16.5. You Should 394

16.5 You Should

16.5.1 Remember These Terms

unit . 367
weights . 367
bias . 367
ReLU . 367
neurons . 367
softmax function . 368
one hot . 369
log-loss . 370
cross-entropy loss . 370
minibatch training . 371
learning rate . 372
stepsize . 372
dead units . 376
layers . 377
neural network . 377
hidden layers . 377
fully connected . 377
Jacobian . 379
backpropagation . 383
deep networks . 383
dropout . 387
decay rate . 392

16.5.2 Remember These Facts

Softmax yields class posterior . 369
Train networks by minimizing loss 370
Basic ideas for multilayer networks 380
Backpropagation yields gradients . 383
Training can be hard . 385
Use a software environment . 386
Dropout can be useful . 387
Multilayer networks work well . 390
Gradient tricks can help . 393

16.5.3 Remember These Procedures

• Backpropagation is a catch-all term describing a recursion used to compute
the state and gradients of a neural network. Inputs are presented to the
network, and propagated forward along the layers to evaluate the output;
once this is known, the gradient of the loss with respect to parameters can be
computed by working backwards toward the input.

16.5. You Should 395

16.5.4 Be Able to

• Run at least the tutorials for your chosen neural network environment.
• Set up and train a simple multilayer neural network classifier for a straight-
forward problem.

• Apply gradient scaling procedures to improve network training.

16.5. You Should 396

Problems

16.1. Draw the decision boundary for a classifier built with three units (one per
class) that classifies a 2D point x into three classes.

16.2. Write the loss of a network classifying an example x as

L(y,o(D)),

where

o(D) = o(D)(u(D), θ(D))

u(D) = o(D−1)(u(D−1), θ(L−1))

. . . = . . .

u(2) = o(1)(u(1), θ1)

u(1) = x.

Now consider ∇θL.
(a) Show

∇θ(D)L(y,o
(D)) = (∇o(D)L)× Jo(D);θ(D) .

(b) Show

∇θ(D−1)L(yi,o
(D)(xi, θ)) = (∇o(D−1)L)× Jo(D);u(D) × Jo(D−1);θ(D−1) .

(c) Show

∇θ(D−2)L(yi,o
(D)(xi, θ)) = (∇o(D)L)× Jo(D);u(D) × Jo(D−1);u(D−1)

× Jo(D−2);θ(D−2) .

16.3. Confirm that the gradient computed by the recursion

v(D) =
(
∇(D)

o L
)

∇θ(D)L = v(D)Jo(D);θ(D)

v(D−1) = v(D)Jo(D);u(D)

∇θ(D−1)L = v(D−1)Jo(D−1);θ(D−1)

. . .

v(i−1) = v(i)Jo(i);u(i)

∇θ(i−1)L = v(i−1)Jo(i−1);θ(i−1)

. . .

is correct. What is ∇θ(1)L?
16.4. Write the loss of a network classifying an example x as

L(y,o(D)),

where

o(D) = o(D)(u(D), θ(D))

u(D) = o(D−1)(u(D−1), θ(L−1))

. . . = . . .

u(2) = o(1)(u(1), θ1)

u(1) = x.

16.5. You Should 397

Explain how to use backpropagation to compute

∇xL.

Programming Exercises

16.5. Reproduce the example of Sect. 16.2, using the constants in that example, the
initialization in that example, and the preprocessing example. Hint: use one
of the packages sketched in Sect. 16.4.1, or this will be tricky. It’s a good
warm-up problem to get used to an environment.
(a) What happens if you do not preprocess the features?
(b) By adjusting initialization, learning rate, preprocessing, and so on, what

is the best test error you can get?
16.6. Reproduce the example of Sect. 16.4.3, using the constants in that example,

the initialization in that example, and the preprocessing example. Hint: use
one of the packages sketched in Sect. 16.4.1, or this will be very tricky indeed.
Use the previous exercise as a warm-up problem.
(a) What happens if you do not preprocess the features?
(b) By adjusting initialization, learning rate, preprocessing, and so on, what

is the best test error you can get?
(c) Can you get multilayer networks to train without using the trick in that

section?
(d) Does dropout help or hurt the accuracy?

16.7. The UC Irvine machine learning data repository hosts a collection of data on
the whether p53 expression is active or inactive. You can find out what this
means, and more information about the dataset, by reading: Danziger, S.A.,
Baronio, R., Ho, L., Hall, L., Salmon, K., Hatfield, G.W., Kaiser, P., and
Lathrop, R.H. “Predicting Positive p53 Cancer Rescue Regions Using Most
Informative Positive (MIP) Active Learning,” PLOS Computational Biology,
5(9), 2009; Danziger, S.A., Zeng, J., Wang, Y., Brachmann, R.K. and Lathrop,
R.H. “Choosing where to look next in a mutation sequence space: Active
Learning of informative p53 cancer rescue mutants,” Bioinformatics, 23(13),
104–114, 2007; and Danziger, S.A., Swamidass, S.J., Zeng, J., Dearth, L.R.,
Lu, Q., Chen, J.H., Cheng, J., Hoang, V.P., Saigo, H., Luo, R., Baldi, P.,
Brachmann, R.K. and Lathrop, R.H. “Functional census of mutation sequence
spaces: the example of p53 cancer rescue mutants,” IEEE/ACM transactions
on computational biology and bioinformatics, 3, 114–125, 2006.
You can find this data at https://archive.ics.uci.edu/ml/datasets/p53+Mutants.
There are a total of 16,772 instances, with 5409 attributes per instance. At-
tribute 5409 is the class attribute, which is either active or inactive. There are
several versions of this dataset. You should use the version K8.data.
Train a multilayer neural network to classify this data, using stochastic gradi-
ent descent. You will need to drop data items with missing values. You should
estimate a regularization constant using cross-validation, trying at least three
values. Your training method should touch at least 50% of the training set
data. You should produce an estimate of the accuracy of this classifier on
held-out data consisting of 10% of the dataset, chosen at random. Preprocess
the features as in Sect. 16.4.3.
(a) What happens if you do not preprocess the features?
(b) By adjusting initialization, learning rate, preprocessing, and so on, what

is the best test error you can get?

https://archive.ics.uci.edu/ml/datasets/p53+Mutants

16.5. You Should 398

(c) Can you get multilayer networks to train without using the trick in that
section?

(d) Does dropout help or hurt the accuracy?
(e) Do gradient scaling tricks help or hurt the training process?

C H A P T E R 17

Simple Image Classifiers

There are two problems that lie at the core of image understanding. The
first is image classification, where we decide what class an image of a fixed size
belongs to. It’s usual to work with a collection of images of objects. These objects
will be largely centered in the image, and largely isolated. Each image will have
an associated object name, using a taxonomy of classes provided in advance. You
should think of catalog images of clothing or furniture. Another possible example is
mugshot photos or pictures of people on websites (where the taxonomy is names).
Judging by the amount of industry money pouring into image classification research,
there are valuable applications for solutions.

The second problem is object detection, where we try to find the locations
of objects of a set of classes in the image. So we might try to mark all cars, all
cats, all camels, and so on. As far as anyone knows, the right way to think about
object detection is that we search a collection of windows in an image, apply an
image classification method to each window, then resolve disputes between over-
lapping windows. How windows are to be chosen for this purpose is an active and
quickly changing area of research. Object detection is another problem receiving
tremendous attention from industry.

Neural networks have enabled spectacular progress in both problems. We now
have very accurate methods for large scale image classification and quite effective
and fast methods for object detection. This chapter describes the main methods
used in building these methods, and finishes with two fairly detailed examples of
simple image classification. The next chapter covers modern methods for image
classification and object detection.

17.1 Image Classification

An instructive image classification dataset is the MNIST dataset of handwritten
digits. This dataset is very widely used to check simple methods. It was originally
constructed by Yann Lecun, Corinna Cortes, and Christopher J.C. Burges. You
can find this dataset in several places. The original dataset is at http://yann.lecun.
com/exdb/mnist/. The version I used was prepared for a Kaggle competition (so
I didn’t have to decompress Lecun’s original format). I found it at http://www.
kaggle.com/c/digit-recognizer.

Images have important, quite general, properties (Fig. 17.1). Images of “the
same thing”—in the case of MNIST, the same handwritten digit—can look fairly
different. Small shifts and small rotations do not change the class of an image.
Making the image somewhat brighter of somewhat darker does not change the class
of the image either. Making the image somewhat larger, or making it somewhat
smaller (then cropping or filling in pixels as required) does not change the class
either. This means that individual pixel values are not particularly informative—

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 17

399

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_17&domain=pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.kaggle.com/c/digit-recognizer
http://www.kaggle.com/c/digit-recognizer
https://doi.org/10.1007/978-3-030-18114-7_17

17.1. Image Classification 400

Figure 17.1: On the left, a selection of digits from the MNIST dataset. Notice how
images of the same digit can vary, which makes classifying the image demanding. It
is quite usual that pictures of “the same thing” look quite different. On the right,
digit images from MNIST that have been somewhat rotated and somewhat scaled,
then cropped fit the standard size. Small rotations, small scales, and cropping
really doesn’t affect the identity of the digit

you can’t tell whether a digit image is, for example, a zero by looking at a given
pixel, because the ink might slide to the left or to the right of the pixel without
changing the digit. In turn, you should not expect applying logistic regression
directly to the pixel values to be particularly helpful. For MNIST, this approach
yields an error rate that is quite poor compared to better methods (try it—glmnet

can handle this).
Another important property of images is that they have many pixels. Building

a fully connected layer where every unit sees every pixel is impractical—each unit
might have millions of inputs, none of which is particularly useful. But if you think
of a unit as a device for constructing features, this construction is odd, because
it suggests that one needs to use every pixel in an image to construct a useful
feature. This isn’t consistent with experience. For example, if you look at the
images in Fig. 17.2, you will notice another important property of images. Local
patterns can be quite informative. Digits like 0 and 8 have loops. Digits like 4 and
8 have crossings. Digits like 1, 2, 3, 5, and 7 have line endings, but no loops or
crossings. Digits like 6 and 9 have loops and line endings. Furthermore, spatial
relations between local patterns are informative. A 1 has two line endings above one
another; a 3 has three line endings above one another. These observations suggest
a strategy that is a central tenet of modern computer vision: you construct features
that respond to patterns in small, localized neighborhoods; then other features look
at patterns of those features; then others look at patterns of those, and so on.

17.1. Image Classification 401

17.1.1 Pattern Detection by Convolution

For the moment, think of an image as a two-dimensional array of intensities. Write
Iuv for the pixel at position u, v. We will construct a small array (a mask or
kernel) W, and compute a new image N from the image and the mask, using the
rule

Line ending

Line ending

Loop

Loop

Loop ?

Crossing

Crossing

Figure 17.2: Local patterns in images are quite informative. MNIST images, shown
here, are simple images, so a small set of patterns is quite helpful. The relative
location of patterns is also informative. So, for example, an eight has two loops, one
above the other. All this suggests a key strategy: construct features that respond
to patterns in small, localized neighborhoods; then other features that look at
patterns of those features; then others that look at patterns of those, and so on.
Each pattern (here line endings, crossings, and loops) has a range of appearances.
For example, a line ending sometimes has a little wiggle as in the three. Loops can
be big and open, or quite squashed. The list of patterns isn’t comprehensive. The
“?” shows patterns that I haven’t named, but which appear to be useful. In turn,
this suggests learning the patterns (and patterns of patterns; and so on) that are
most useful for classification

Nij =
∑

kl

Ii−k,j−lWkl.

Here we sum over all k and l that apply to W; for the moment, do not worry
about what happens when an index goes out of the range of I. This operation is
known as convolution. The form of the operation is important in signal processing
mathematics, but makes it quite hard to understand what convolution is good for.
We will generalize the idea.

Notice that if we flip W in both directions to obtain M, we can write the new
image as

N = conv(I,M)

where

Nij =
∑

kl

IklMk−i,l−j .

In what follows, I will always apply this flip, and use the term “convolution” to refer
to the operator conv defined above. This isn’t consistent with the signal processing
literature, but is quite usual in the machine learning literature. Now reindex yet

17.1. Image Classification 402

again, by substituting u = k − i, v = l − j, and noticing that if u runs over the
range 0 to ∞, so does u− i to get

Nij =
∑

uv

Ii+u,j+vMuv.

Digits

Kernels

Convolution output Test against threshold Superimposed

Figure 17.3: On the far left, some images from the MNIST dataset. Three kernels
appear on the center left; the small blocks show the kernels scaled to the size of
the image, so you can see the size of the piece of image the kernel is applied to. The
larger blocks show the kernels (mid grey is zero; light is positive; dark is negative).
The kernel in the top row responds most strongly to a dark bar above a light bar;
that in the middle row responds most strongly to a dark bar to the left of a light
bar; and the bottom kernel responds most strongly to a spot. Center shows the
results of applying these kernels to the images. You will need to look closely to see
the difference between a medium response and a strong response. Center right
shows pixels where the response exceeds a threshold. You should notice that this
gives (from top to bottom): a horizontal bar detector; a vertical bar detector; and
a line ending detector. These detectors are moderately effective, but not perfect.
Far right shows detector responses (in black) superimposed on the original image
(grey) so you can see the alignment between detections and the image

This operation is linear. You should check that:

• if I is zero, then conv(I,M) is zero;
• conv(kI,M) = kconv(I,M); and
• conv(I + J ,M) = conv(I,M) + conv(J ,M).

The value of Nij is a dot-product, as you can see by reindexing M and the piece
of image that lies under M to be vectors. This view explains why a convolution
is interesting: it is a very simple pattern detector. Assume that u and v are unit
vectors. Then u · v is largest when u = v, and smallest when u = −v. Using the
dot-product analogy, for Nij to have a large and positive value, the piece of image
that lies under M must “look like” M. Figure 17.3 gives some examples.

17.1. Image Classification 403

The proper model for conv is this. To compute the value of N at some
location, you take the window W of I at that location that is the same size as N ;
you multiply together the elements of M and W that lie on top of one another;
and you sum the results (Fig. 17.4). Thinking of this as an operation on windows
allows us to generalize in very useful ways.

X
X

X

X

X

Σ

M

I

N

Figure 17.4: To compute the value of N at some location, you shift a copy of M to
lie over that location in I; you multiply together the non-zero elements of M and
I that lie on top of one another; and you sum the results

In the original operation, we used a window at every location in I, but we
may prefer to look at (say) a window at every second location. The centers of the
windows we wish to look at lie on a grid of locations in I. The number of pixels
skipped between points on the grid is known as its stride. A grid with stride 1
consists of each spatial location. A grid with stride 2 consists of every second spatial
location in I, and so on. You can interpret a stride of 2 as either performing conv

then keeping the value at every second pixel in each direction. Better is to think
of the kernel striding across the image—perform the conv operation as above, but
now move the window by two pixels before multiplying and adding.

The description of the original operation avoided saying what would happen if
the window at a location went outside I. We adopt the convention that N contains
entries only for windows that lie inside I. But we can apply padding to I to ensure
that N has the size we want. Padding attaches a set of rows (resp. columns) to the
top and bottom (resp. left and right) of I to make it a convenient size. Usually,
but not always, the new rows or columns contain zeros. By far the most common
case uses M that are square with odd dimension (making it much easier to talk
about the center). Assume I is nx × ny and M is (2k + 1) × (2k + 1); if we pad
I with k rows on top and bottom and k columns on each side, conv(I,M) will be
nx × ny (Fig. 17.5).

17.1. Image Classification 404

Stride 1

Stride 2

No padding Padding of 1 tblr

Figure 17.5: The effects of stride and padding on conv. On the left, conv without
padding accepts an I, places a 3× 3 M on grid locations determined by the stride,
then reports values for valid windows. When the stride is 1, a 5 × 5 I becomes
a 3 × 3 N . When the stride is 2, a 5 × 5 I becomes a 2 × 2 N . The hatching
and shading show the window used to compute the corresponding value in N . On
the right, conv with padding accepts an I, pads it (in this case, by one row top
and bottom, and one column left and right), places a 3× 3 M on grid locations in
the padded result determined by the stride, then reports values for valid windows.
When the stride is 1, a 5× 5 I becomes a 5× 5 N . When the stride is 2, a 5× 5 I
becomes a 3× 3 N . The hatching and shading show the window used to compute
the corresponding value in N

Images are naturally 3D objects with two spatial dimensions (up–down, left–
right) and a third dimension that chooses a slice (R, G, or B for a color image).
This structure is natural for representations of image patterns, too—two dimensions
that tell you where the pattern is and one that tells you what it is. The results in
Fig. 17.3 show a block consisting of three such slices. These slices are the response
of a pattern detector for a fixed pattern, where there is one response for each spatial
location in the block, and so are often called feature maps.

We will generalize conv and apply it to 3D blocks of data (which I will call
blocks). Write I for an input block of data, which is now x × y × d. Two
dimensions—usually the first two, but this can depend on your software environment—
are spatial and the third chooses a slice. Write M for a 3D kernel, which is
kx × ky × d. Now choose padding and a stride. This determines a grid of loca-
tions in the spatial dimensions of I. At each location, we must compute the value
of N . To do so, take the 3D window W of I at that location that is the same size as
N ; you multiply together the elements of M and W that lie on top of one another;
and you sum the results (Fig. 17.4). This sum now goes over the third dimension
as well. This produces a two-dimensional N .

To make this operation produce a block of data, use a 4D block of kernels. This
kernel block consists ofD kernels, each of which is a kx×ky×d dimensional kernel.
If you apply each kernel as in the previous paragraph to an x× y × d dimensional

17.1. Image Classification 405

Kernel block 2

Kernel block 1

x

y

d

X

Y

D

Feature
map 1

Feature
map 2

Figure 17.6: On the left, two kernels (now 3D, as in the text) applied to a set of
feature maps produce one new feature map per kernel, using the procedure of the
text (the bias term isn’t shown). Abstract this as a process that takes an x× y× d
block to an X × Y ×D block (as on the right)

I, you obtain an X × Y ×D dimensional block N , as in Fig. 17.6. What X and Y
are depends on kx, ky, the stride and the padding. A convolutional layer takes a
kernel block and a bias vector of D bias terms. The layer applies the kernel block
to an input block (as above), then adds the corresponding bias value to each slice.

A convolutional layer is a very general and very useful idea. A fully connected
layer is one form of convolutional layer. You can build a simple pattern detector
out of a convolutional layer followed by a ReLU layer. You can build a linear map
that reduces dimension can be built out of a convolutional layer.

Useful Fact: 17.1 Definition: Convolutional Layer

A convolutional layer makes 3D blocks of data from 3D blocks of data,
using a stride, padding, a block of kernels, and a vector of bias terms.
The details are in the text.

Remember This: A fully connected layer can be thought of as a convo-
lutional layer followed by a ReLU layer. Assume you have an x×y×d block
of data. Reshape this to be a (xyd) × 1 × 1 block. Apply a convolutional
layer whose kernel block has size (xyd)×1×D, and then a ReLU. This pair
of layers produces the same result as a fully connected layer of D units.

.

17.1. Image Classification 406

Remember This: Take the output of a convolutional layer and apply
a ReLU. First, think about what happens to one particular piece of image
the size of one particular kernel. If that piece is “sufficiently similar” to the
kernel, we will see a positive response at the relevant location. If the piece is
too different, we will see a zero. This is a pattern detector as in Fig. 17.3.
What “sufficiently similar” means is tuned by changing the bias for that
kernel. For example, a bias term that is negative with large magnitude
means the image block will need to be very like the kernel to get a non-zero
response. This pattern detector is (basically) a unit—apply a ReLU to a
linear function of the piece of image, plus a constant. Now it should be clear
what happens when all kernels are applied to the whole image. Each pixel
in a slice represents the result of a pattern detector applied to the piece of
image corresponding to the pixel. Each slice of the resulting block represents
the result of a different pattern detector. The elements of the output block
are often thought of as features.

Remember This: There isn’t a standard meaning for the term con-
volutional layer. I’m using one of the two that are widely used. Software
implementations tend to use my definition. Very often, research papers use
the alternative, which is my definition followed by a non-linearity (almost
always a ReLU). This is because convolutional layers mostly are followed
by ReLUs in research papers, but it is more efficient in software implemen-
tations to separate the two.

Different software packages use different defaults about padding. One default
assumes that no padding is applied. This means that a kernel block of size kx ×
ky × d ×D applied to a block of size x × y × d with stride 1 yields a block of size
(nx − kx + 1) × (ny − ky + 1) ×D (check this with a pencil and paper). Another
assumes that the input block is padded with zeros so that the output block is
nx × ny ×D.

Remember This: In Fig. 17.3, most values in the output block are zero
(black pixels in that figure). This is typical of pattern detectors produced
in this way. This is an experimental fact that seems to be related to deep
properties of images.

17.1. Image Classification 407

Remember This: A kernel block that is 1 × 1 × nz ×D is known as
a 1 × 1 convolution. This is a linear map in an interesting way. Think
of the input and output blocks as sets of column vectors. So the input block
is a set of nx × ny column vectors, each of which has dimension nz × 1
(i.e., there is a column vector at each location of the input block). Write
iuv for the vector at location u, v in the input block, and ouv for the vector
at location u, v in the output block. Then there is a D × nz matrix M so
that the 1× 1 convolution maps iuv to

ouv = Miuv.

This can be extremely useful when the input has very high dimension, be-
cause M can be used to reduce dimension and is learned from data.

17.1.2 Convolutional Layers upon Convolutional Layers

Convolutional layers take blocks of data and make blocks of data, as do ReLU
layers. This suggests the output of a convolutional layer could be passed through a
ReLU, then connected to another convolutional layer, and so on. Doing this turns
out to be an excellent idea.

Think about the output of the first convolutional layer. Each location receives
inputs from pixels in a window about that location. The output of the ReLU, as
we have seen, forms a simple pattern detector. Now if we put a second layer on
top of this, each location in the second layer receives inputs from first layer values
in a window about that location. This means that locations in the second layer
are affected by a larger window of pixels than those in the first layer. You should
think of these as representing “patterns of patterns.” If we place a third layer on
top of the second layer, locations in that third layer will depend on an even larger
window of pixels. A fourth layer will depend on a yet larger window, and so on.
The key point here is that we can choose the patterns by learning what kernels will
be applied at each layer.

The receptive field of a location in a data block (or, equivalently, a unit)
is the set of image pixels that affect the value of the location. Usually, all that
matters is the size of the receptive field. The receptive field of a location in the
first convolutional layer will be given by the kernel of that layer. Determining the
receptive field for later layers requires some bookkeeping (among other things, you
must account for any stride or pooling effects).

If you have several convolutional layers with stride 1, then each block of data
has the same spatial dimensions. This tends to be a problem, because the pixels
that feed a unit in the top layer will tend to have a large overlap with the pixels that
feed the unit next to it. In turn, the values that the units take will be similar, and
so there will be redundant information in the output block. It is usual to try and

17.2. Two Practical Image Classifiers 408

Pooling 3x3s2Pooling 2x2s2

Figure 17.7: In a pooling layer, pooling units compute a summary of their inputs,
then pass it on. The most common case is 2×2, illustrated here on the left. We tile
each feature map with 2×2 windows that do not overlap (so have stride 2). Pooling
units compute a summary of the inputs (usually either the max or the average),
then pass that on to the corresponding location in the corresponding feature map
of the output block. As a result, the spatial dimensions of the output block will
be about half those of the input block. On the right, the common alternative of
pooling in overlapping 3× 3 windows with stride 2

deal with this by making blocks get smaller. One natural strategy is to occasionally
have a layer that has stride 2.

An alternative strategy is to use pooling. A pooling unit reports a summary
of its inputs. In the most usual arrangement, a pooling layer halves each spatial
dimension of a block. For the moment, ignore the entirely minor problems presented
by a fractional dimension. The new block is obtained by pooling units that pool
a window at each feature map of the input block to form each feature map of
the output block. If these units pool a 2 × 2 window with stride 2 (i.e., they
don’t overlap), the output block is half the size of the input block. We adopt the
convention that the output reports only valid input windows, so that this takes an
x × y × d block to an floor(x/2) × floor(y/2) × d block. So, as Fig. 17.7 shows, a
5× 5× 1 block becomes a 2× 2× 1 block, but one row and one column are ignored.
A common alternative is pooling a 3× 3 window with a stride of 2; in this case, a
5× 5× 1 block becomes a 2× 2× 1 block without ignoring rows or columns. Each
unit reports either the largest of the inputs (yielding a max pooling layer) or the
average of its inputs (yielding an average pooling layer).

17.2 Two Practical Image Classifiers

We can now put together image classifiers using the following rough architecture.
A convolutional layer receives image pixel values as input. The output is fed to
a stack of convolutional layers, each feeding the next, possibly with ReLU layers
intervening. There are occasional max-pooling layers, or convolutional layers with
stride 2, to ensure that the data block gets smaller and the receptive field gets
bigger as the data moves through the network. The output of the final layer is fed
to one or more fully connected layers, with one output per class. Softmax takes

17.2. Two Practical Image Classifiers 409

Figure 17.8: The mean of MNIST training images is shown on the left, surrounded
by a black frame so that you can resolve it against the background. On the right,
the positive (top) and negative (bottom) components of the difference between
mean and image for some training images. Lighter pixels have larger magnitude.
Notice the blob of small positive values where there tends to be ink, and the strong
negative values where this particular image has ink. This gives the network some
information about where ink is expected to lie in general images, which seems to
help training in practice

these outputs and turns them into class probabilities. The whole is trained by batch
gradient descent, or a variant, as above, using a log-loss.

Notice that different image classification networks differ by relatively straight-
forward changes in architectural parameters. Mostly, the same thing will happen
to these networks (variants of batch gradient descent on a variety of costs; dropout;
evaluation). In turn, this means that we should use some form of specification
language to put together a description of the architecture of interest. Ideally, in
such an environment, we describe the network architecture, choose an optimiza-
tion algorithm, and choose some parameters (dropout probability, etc.). Then the
environment assembles the net, trains it (ideally, producing log files we can look
at), and runs an evaluation. The tutorials mentioned in Sect. 16.4.1 each contain
examples of image classifiers for the relevant environments. In the examples shown
here, I used MatConvNet, because I am most familiar with Matlab.

17.2. Two Practical Image Classifiers 410

17.2.1 Example: Classifying MNIST

MNIST images have some very nice features that mean they are a good case to start
with. Our relatively simple network architecture accepts images of a fixed size.
This property is quite common, and applies to most classification architectures.
This isn’t a problem for MNIST, because all the MNIST images have the same
size. Another nice feature is that pixels are either ink pixels or paper pixels—there
are few intermediate values, and none of them are meaningful or helpful. In more
general images, I and 0.9 × I show the same thing, just at different brightnesses.
This doesn’t happen for MNIST images. Yet another nice feature is that there is
a fixed test–train split that everyone uses, so that comparisons are easy. Without
a fixed split, the difference in performance between two networks might be due to
random effects, because the networks see different test sets.

28x28x1
24x24x20

12x12x20
8x8x50

4x4x50

1x1x500 1x1x101x1x500 1x1x10

C
onv 5x5x1x20

M
axpool 2x2

C
onv 4x4x50x500

R
elu

C
onv 1x1x500x10

Softm
ax

C
onv 5x5x20x50

M
axpool 2x2

Whole image5x5 6x6 14x14 16x16 Whole image Whole image

Data blocks

Network layers

Receptive fields

Figure 17.9: Three different representations of the simple network used to classify
MNIST digits for this example. Details in the text

Much of the information in an MNIST image is redundant. Many pixels
are paper pixels for every (or almost every) image. These pixels should likely
be ignored by every classifier, because they contain little or no information. For

17.2. Two Practical Image Classifiers 411

Figure 17.10: Four of the 20 kernels in the first layer of my trained version of the
MNIST network. The kernels are small (5 × 5) and have been blown up so you
can see them. The outputs for each kernel on a set of images are shown above the
kernel. The output images are scaled so that the largest value over all outputs is
light, the smallest is dark, and zero is mid grey. This means that the images can
be compared by eye. Notice that (rather roughly) the far left kernel looks for
contrast; center left seems to respond to diagonal bars; center right to vertical
bars; and far right to horizontal bars

other pixels, the value of the pixel is less important than how different the pixel is
from the expected value at that location. Experience shows that it is surprisingly
hard for neural networks to learn from heavily redundant image data. It is usual
to preprocess images to remove some redundancies. For MNIST, the usual is to
subtract the mean of the training images from the input image. Figure 17.8 shows
how doing so seems to enhance the information content of the image.

Figure 17.9 shows the network used for this example. This network is a
standard simple classification network for MNIST, distributed with MatConvNet.
There are three different representations of the network here. The network layers
representation, in the center of the figure, records the type of each layer and the
size of the relevant convolution kernels. The first layer accepts the image which is a
28×28×1 block of data (the data block representation), and applies a convolution.
By convention, “conv 5× 5× 1× 20” means a convolution layer, with a 20 different
kernels each 5 × 5 × 1. The effects of some of the learned kernels in this layer are
visualized in Fig. 17.10.

In the implementation I used, the convolution was not padded so that the
resulting data block was 24× 24× 20 (check that you know why this is correct). A
value in this data block is computed from a 5×5 window of pixels, so the receptive
field is 5 × 5. Again, by convention, every convolutional layer has a bias term, so
the total number of parameters in the first layer is (5× 5× 1)× 20+ 20 (check this
statement, too). The next layer is a 2 × 2 max-pooling layer, which again is not
padded. This takes a 24 × 24 × 20 block and produces a 12 × 12 × 20 block. The
receptive field for values in this block is 6× 6 (you should check this with a pencil
and paper drawing; it’s right).

Another convolutional layer and another max-pooling layer follow, reducing
the data to a 4×4×50 block. Every value in this block is potentially affected by ev-
ery image pixel, and this is true for all following blocks. Yet another convolutional

17.2. Two Practical Image Classifiers 412

Figure 17.11: Visualizing the patterns that the final stage ReLUs respond to for
the simple CIFAR example. Each block of images shows the images that get the
largest output for each of 10 ReLUs (the ReLUs were chosen at random from
the 500 available). Notice that these ReLU outputs don’t correspond to class—
these outputs go through a fully connected layer before classification—but each
ReLU clearly responds to a pattern, and different ReLUs respond more strongly to
different patterns

layer reduces this to a 1 × 1 × 500 block (again, where every value is potentially
affected by every pixel in the image). That goes through a ReLU (outputs visu-
alized in Fig. 17.11). You should think of the result as a 500 dimensional feature
vector describing the image, and the convolutional layer and softmax that follow
are logistic regression applied to that feature vector.

I trained this network for 20 epochs using tutorial code circulated with Mat-
ConvNet. Minibatches are pre-selected so that each training data item is touched
once per epoch, so an epoch represents a single pass through the data. It is common
in image classification to report loss, top-1 error, and top-5 error. Top-1 error is
the frequency that the correct class has the highest posterior. Top-5 error is the
frequency that the correct class appears in the five classes with largest posterior.
This can be useful when the top-1 error is large, because you may observe improve-
ments in top-5 error even when the top-1 error doesn’t change. Figure 17.12 shows
the loss, top-1 error, and top-5 error for training and validation sets plotted as a
function of epoch. This network has a low error rate, so of the 10,000 test examples
there are only 89 errors, which are shown in Fig. 17.13.

17.2.2 Example: Classifying CIFAR-10

CIFAR-10 is a dataset of 32× 32 color images in ten categories, collected by Alex
Krizhevsky, Vinod Nair, and Geoffrey Hinton. It is often used to evaluate image
classification algorithms. There are 50,000 training images and 10,000 test images,
and the test–train split is standard. Images are evenly split between the classes.
Figure 17.14 shows the categories, and examples from each category. There is
no overlap between the categories (so “automobile” consists of sedans, etc., and
“truck” consists of big trucks). You can download this dataset from https://www.
cs.toronto.edu/∼kriz/cifar.html.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

17.2. Two Practical Image Classifiers 413

epoch

0

0.05

0.1

0.15

0.2

0.25

0.3
objective

epoch

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
top1err

0 10 20 0 10 20 0 10 20
epoch

0

0.002

0.004

0.006

0.008

0.01

0.012
top5err

train
val

train
val

train
val

Figure 17.12: This figure shows the results of training the network of Fig. 17.9 on the
MNIST training set. Loss, top-1 error, and top-5 error for training and validation
sets plotted as a function of epoch for the network of the text. The loss (recorded
here as “objective”) is the log-loss. Note: the low validation error; the gap between
train and validation error; and the very low top-5 error. The validation error is
actually quite high for this dataset—you can find a league table at http://rodrigob.
github.io/are we there yet/build/classification datasets results.html

Figure 17.15 shows the network used to classify CIFAR-10 images. This net-
work is again a standard classification network for CIFAR-10, distributed with
MatConvNet. Again, I have shown the network in three different representations.
The network layer representation, in the center of the figure, records the type of
each layer and the size of the relevant convolution kernels. The first layer accepts
the image which is a 32× 32× 3 block of data (the data block representation), and
applies a convolution.

In this network, the convolution was padded so that the resulting data block

Figure 17.13: Left: All 89 errors from the 10,000 test examples in MNIST and right
the predicted labels for these examples. True labels are mostly fairly clear, though
some of the misclassified digits take very odd shapes

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

17.2. Two Practical Image Classifiers 414

Figure 17.14: The CIFAR-10 image classification dataset consists of 60,000 images,
in a total of ten categories. The images are all 32 × 32 color images. This figure
shows 20 images from each of the 10 categories and the labels of each category.
On the far right, the mean of the images in each category. I have doubled the
brightness of the means, so you can resolve color differences. The per category
means are different, and suggest that some classes look like a blob on a background,
and others (e.g., ship, truck) more like an outdoor scene

was 32× 32× 32. You should check whether you agree with these figures, and you
can tell by how much the image needed to be padded to achieve this (a drawing
might help). A value in this data block is computed from a 5× 5 window of pixels,
so the receptive field is 5×5. Again, by convention, every convolutional layer has a
bias term, so the total number of parameters in the first layer is (5×5×3)×32+32.
The next layer is a 3×3 max pooling layer. The notation 3s2 means that the pooling
blocks have a stride of 2, so they overlap. The block is padded for this pooling layer,
by attaching a single column at the right and a single row at the bottom to get a
33 × 33 × 32 block. With this padding and stride, the pooling takes 33 × 33 × 32
block and produces a 16× 16× 32 block (you should check this with a pencil and
paper drawing; it’s right). The receptive field for values in this block is 7× 7 (you
should check this with a pencil and paper drawing; it’s right, too).

The layer labelled “Apool 3s2” is an average pooling layer which computes
an average in a 3× 3 window, again with a stride of 2. The block is padded before
this layer in the same way the block before the max-pooling layer was padded.
Eventually, we wind up with a 64 dimensional feature vector describing the image,
and the convolutional layer and softmax that follow are logistic regression applied
to that feature vector.

Just like MNIST, much of the information in a CIFAR-10 image is redundant.
It’s now somewhat harder to see the redundancies, but Fig. 17.14 should make you
suspect that some classes have different backgrounds than others. Figure 17.14
shows the class mean for each class. There are a variety of options for normalizing
these images (more below). For this example, I whitened pixel values for each pixel
in the image grid independently (Procedure 17.1, which is widely used). Whitened
images tend to be very hard for humans to interpret. However, the normalization
involved deals with changes in overall image brightness and moderate shifts in color
rather well, and can significantly improve classification.

17.2. Two Practical Image Classifiers 415

C
onv 5x5x3x32

M
axpool 3s2

C
onv 1x1x64x10

C
onv 4x4x64x64

Softm
ax

C
onv 5x5x32x32

R
elu

A
pool 3s2

C
onv 5x5x32x64

A
pool 3s2

R
elu

R
elu

R
elu

32x32x3
32x32x32

16x16x32

16x16x32
16x16x32

16x16x32

8x8x32 8x8x64 8x8x64

4x4x64
1x1x10

1x1x101x1x641x1x64

7 7 15 15 19 35 43 6735 67 67 67

Data blocks

Network layers

Receptive fields

5

Figure 17.15: Three different representations of the simple network used to classify
CIFAR-10 images for this example. Details in the text

Procedure: 17.1 Simple Image Whitening

At Training Time: Start with N training images I(i). We assume

that these are 3D blocks of data. Write I
(i)
uvw for the u, v, w’th location

in the i’th image. Compute M and S, where the u, v, w’th location in
each is given by

Muvw =

∑
i I

(i)
uvw

N

Suvw =

√∑
i(I

(i)
uvw −M

(i)
uvw)2

N
.

Choose some small number ε to avoid dividing by zero. Now the i’th
whitened image, W(i), has for its u, v, w’th location

W (i)
uvw = (I(i)uvw −Muvw)/(Suvw + ε).

17.2. Two Practical Image Classifiers 416

Use these whitened images to train.
At Test Time: For a test image T , compute W which has for its u,
v, w’th location

Wuvw = (Tuvw −Muvw)/(Suvw + ε)

and classify that.

epoch

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
objective

epoch

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
top1err

0 20 40 60 0 20 40 60 0 20 40 60
epoch

0

0.02

0.04

0.06

0.08

0.1

0.12
top5err

train
val

train
val

train
val

Figure 17.16: This figure shows the results of training the network of Fig. 17.15
on the CIFAR-10 training set. Loss, top-1 error, and top-5 error for training and
validation sets, plotted as a function of epoch for the network of the text. The loss
(recorded here as “objective”) is the log-loss. Note: the low validation error; the
gap between train and validation error; and the very low top-5 error. The validation
error is actually quite high for this dataset—you can find a league table at http://
rodrigob.github.io/are we there yet/build/classification datasets results.html

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

17.2. Two Practical Image Classifiers 417

Figure 17.17: Some of the approximately 2000 test examples misclassified by the
network trained in the text. Each row corresponds to a category. The images in
that row belong to that category, but are classified as belonging to some other
category. At least some of these images look like “uncommon” views of the object
or “strange” instances—it’s plausible that the network misclassifies images when
the view is uncommon or the object is a strange instance of the category

Figure 17.18: Some of the approximately 2000 test examples misclassified by the
network trained in the text. Each row corresponds to a category. The images in
that row are classified as belonging to that category, but actually belong to another.
At least some of these images look like “confusing” views—for example, you can
find birds that do look like aircraft, and aircraft that do look like birds

I trained this network for 20 epochs using tutorial code circulated with Mat-
ConvNet. Minibatches are pre-selected so that each training data item is touched
once per epoch, so an epoch represents a single pass through the data. It is common
in image classification to report loss, top-1 error, and top-5 error. Top-1 error is
the frequency that the correct class has the highest posterior. Top-5 error is the
frequency that the correct class appears in the five classes with largest posterior.
This can be useful when the top-1 error is large, because you may observe improve-
ments in top-5 error even when the top-1 error doesn’t change. Figure 17.16 shows
the loss, top-1 error, and top-5 error for training and validation sets plotted as a
function of epoch. This classifier misclassifies about 2000 of the test examples, so
it is hard to show all errors. Figure 17.17 shows examples from each class that are
misclassified as belonging to some other class. Figure 17.18 shows examples that
are misclassified into each class.

17.2. Two Practical Image Classifiers 418

The phenomenon that ReLUs are pattern detectors is quite reliable. Fig-
ure 17.19 shows the 20 images that give the strongest responses for each of 10
ReLUs in the final ReLU layer. These ReLUs clearly have a quite strong theory
of a pattern, and different ReLUs respond most strongly to quite different pat-
terns. More sophisticated visualizations search for images that get the strongest
response from units at various stages of complex networks; it’s quite reliable that
these images show a form of order or structure.

17.2.3 Quirks: Adversarial Examples

Adversarial examples are a curious experimental property of neural network image
classifiers. Here is what happens. Assume you have an image x that is correctly
classified with label l. The network will produce a probability distribution over

Figure 17.19: Visualizing the patterns that the final stage ReLUs respond to for
the simple CIFAR example. Each block of images shows the images that get the
largest output for each of 10 ReLUs (the ReLUs were chosen at random from the 64
available in the top ReLU layer). Notice that these ReLU outputs don’t correspond
to class—these outputs go through a fully connected layer before classification—
but each ReLU clearly responds to a pattern, and different ReLUs respond more
strongly to different patterns

labels P (L|x). Choose some label k that is not correct. It is possible to use modern
optimization methods to search for a modification to the image δx such that

δx is small

and

P (k|x+ δx) is large.

You might expect that δx is “large”; what is surprising is that mostly it is so tiny
as to be imperceptible to a human observer. The property of being an adversar-
ial example seems to be robust to image smoothing, simple image processing, and
printing and photographing. The existence of adversarial examples raises the fol-
lowing, rather alarming, prospect: You could make a template that you could hold

17.2. Two Practical Image Classifiers 419

over a stop sign, and with one pass of a spraypaint can, turn that sign into some-
thing that is interpreted as a minimum speed limit sign by current computer vision
systems. I haven’t seen this demonstration done yet, but it appears to be entirely
within the reach of modern technology, and it and activities like it offer significant
prospects for mayhem.

What is startling about this behavior is that it is exhibited by networks that
are very good at image classification, assuming that no one has been fiddling with
the images. So modern networks are very accurate on untampered pictures, but
may behave very strangely in the presence of tampering. One can (rather vaguely)
identify the source of the problem, which is that neural network image classifiers
have far more degrees of freedom than can be pinned down by images. This ob-
servation doesn’t really help, though, because it doesn’t explain why they (mostly)
work rather well, and it doesn’t tell us what to do about adversarial examples.
There have been a variety of efforts to produce networks that are robust to adver-
sarial examples, but evidence right now is based only on experiment (some networks
behave better than others) and we are missing clear theoretical guidance.

17.3. You Should 420

17.3 You Should

17.3.1 Remember These Definitions

17.3.2 Remember These Terms

image classification . 399
object detection . 399
mask . 401
kernel . 401
convolution . 401
stride . 403
padding . 403
feature maps . 404
blocks . 404
kernel block . 404
convolutional layer . 405
features . 406
1× 1 convolution . 407
receptive field . 407
pooling . 408
max pooling . 408
average pooling . 408

17.3.3 Remember These Facts

Definition: Convolutional Layer . 405
Making fully connected layers with convolutional layers 405
Convolutional layer + ReLU=Pattern detector 406
There are two common meanings of “convolutional layer” 406
Pattern detector responses are usually sparse 406
1× 1 convolution=linear map . 407

17.3.4 Remember These Procedures

Simple Image Whitening . 415

17.3.5 Be Able to

• Explain what convolutional layers do.
• Compute the size of a data block resulting from applying a convolutional layer
with given size and stride to a block with given padding.

• Explain what a 1× 1 convolution does and why it might be useful.
• Train and run a simple image classifier in your chosen framework.
• Explain why preprocessing data might help a neural network based classifier.
• Explain what an adversarial example is.

17.3. You Should 421

Programming Exercises

17.1. Download tutorial code for a simple MNIST classifier for your chosen program-
ming framework, and train and run a classifier using that code. You should
be able to do this exercise without access to a GPU.

17.2. Now reproduce the example of Sect. 17.2.1 in your chosen programming frame-
work. The section contains enough detail about the structure of the network
for you to build that network. This isn’t a super good classifier; the point of the
exercise is being able to translate a description of a network to an instance.
Use the standard test–train split, and train with straightforward stochastic
gradient descent. Choose a minibatch size that works for this example and
your hardware. Again, you should be able to do this exercise without access
to a GPU.
(a) Does using momentum improve training?
(b) Does using dropout in the first two layers result in a better performing

network?
(c) Modify this network architecture to improve performance. Reading ahead

will suggest some tricks. What works best?
17.3. Download tutorial code for a simple CIFAR-10 classifier for your chosen pro-

gramming framework, and train and run a classifier using that code. You
might very well be able to do this exercise without access to a GPU.

17.4. Now reproduce the example of Sect. 17.2.2 in your chosen programming frame-
work. The section contains enough detail about the structure of the network
for you to build that network. This isn’t a super good classifier; the point of the
exercise is being able to translate a description of a network to an instance.
Use the standard test–train split, and train with straightforward stochastic
gradient descent. Choose a minibatch size that works for this example and
your hardware. Again, you might very well be able to do this exercise without
access to a GPU.
(a) Does using momentum improve training?
(b) Does using dropout in the first two layers result in a better performing

network?
(c) Modify this network architecture to improve performance. Reading ahead

will suggest some tricks. What works best?

C H A P T E R 18

Classifying Images and
Detecting Objects

Neural networks have gone from being one curiosity in lists of classification
methods to being the prime engine of a huge and very successful industry. This has
happened in a very short time, less than a decade. The main reason is that, with
enough training data and enough training ingenuity, neural networks produce very
successful classification systems, much better than anyone has been able to produce
with other methods. They are particularly good at classifying images. As Fig. 18.1
shows, the top-5 error rate on one (very large and very hard) image classification
dataset has collapsed in quite a short period. The primary reason seems to be that
the features that are being used by the classifier are themselves learned from data.
The learning process seems to ensure that the features are useful for classification.
It’s easy to see that it might do so; the news here is that it does.

There are two important trends that have advanced this area. One is the
development of large, challenging (but not unreasonably hard) datasets that are
publicly available and where accuracy is evaluated using conventions that are fair
and open. The second is the widespread dissemination of successful models. If
someone produces a really good image classifier, you can usually find an imple-
mentation on the internet fairly soon afterwards. This means that it’s easy to
fiddle with successful architectures and try to make them better. Very often, these
implementations come with pretrained models.

This chapter will describe the main recent successes in image classification
and object detection using neural networks. It’s unlikely you would be able to
build anything I describe here from the text alone, but you can likely find a trained
version elsewhere. You should get a good enough grasp of what people do, what
seems to work, and why to apply and use models that have been shared.

18.1 Image Classification

I will describe several important network architectures in the following subsections,
but building any of these from scratch based only on this description would be a
heroic (and likely unsuccessful) venture. What you should do is download a version
for the environment you prefer, and play with that. You can find pretrained models
at:

• https://pjreddie.com/darknet/imagenet/ (for darknet);
• http://www.vlfeat.org/matconvnet/pretrained/ (for MatConvNet);
• https://mxnet.apache.org/api/python/gluon/model zoo.html (for MXNet);
• https://github.com/PaddlePaddle/models (for PaddlePaddle; it helps to be
able to read Chinese);

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 18

423

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_18&domain=pdf
https://pjreddie.com/darknet/imagenet/
http://www.vlfeat.org/matconvnet/pretrained/
https://mxnet.apache.org/api/python/gluon/model_zoo.html
https://github.com/PaddlePaddle/models
https://doi.org/10.1007/978-3-030-18114-7_18

18.1. Image Classification 424

2010 2011 2012 2013 2014 2014 2015
Year

0

0.05

0.1

0.15

0.2

0.25

0.3

To
p-

5
Er

ro
r R

at
e

8
Layers

19
Layers

Not
network

22
Layers

152
Layers

Not
network

8
Layers

AlexNet

VGGNet GoogleNet
(Inception)

ResNet

Figure 18.1: The top-5 error rate for image classification using the ImageNet dataset
has collapsed from 28% to 3.6% from 2010 to 2015. There are two 2014 entries here,
which makes the fall in error rate look slower. This is because each of these methods
is significant, and discussed in the sections below. Notice how increasing network
depth seems to have produced reduced error rates. This figure uses ideas from an
earlier figure by Kaiming He. Each of the named networks is described briefly in a
section below

• https://pytorch.org/docs/stable/torchvision/models.html (for PyTorch);
• https://github.com/tensorflow/models (for TensorFlow);
• https://keras.io (for Keras; look for “examples” in the sidebar).

18.1.1 Datasets for Classifying Images of Objects

MNIST and CIFAR-10 are no longer cutting edge image classification datasets. The
networks I described are quite simple, but work rather well on these problems. The
very best methods are now extremely good. Rodrigo Benenson maintains a website
giving best performance to date on these datasets at http://rodrigob.github.io/are
we there yet/build/classification datasets results.html. The best error rate recorded
there for MNIST is 0.21% (i.e., a total of 21 test examples wrong in the 10,000
example test set). For CIFAR-10, the best error rate is 3.47% (i.e., a total of 347
test examples wrong; much better than our 2000 odd). Mostly, methods work so
well that improvements must be very small, and so it is difficult to see what is an
important change and what is a lucky accident. These datasets are now mostly
used for warming-up purposes—to check that an idea isn’t awful, or that a method
can work on an “easy” dataset.

https://pytorch.org/docs/stable/torchvision/models.html
https://github.com/tensorflow/models
https://keras.io
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

18.1. Image Classification 425

Remember This: MNIST and CIFAR-10 are warm-up datasets. You
can find MNIST at http://yann.lecun.com/exdb/mnist/ or at http://www.
kaggle.com/c/digit-recognizer . You can find CIFAR-10 at https://www.cs.
toronto.edu/∼kriz/cifar.html .

It is difficult to say precisely what makes a dataset hard. It is very likely
that having more categories makes a dataset harder than having few categories.
It is very likely that having a lot of training data per category makes a dataset
easier. It is certain that labelling errors and differences between test images and
training images will cause problems. Modern datasets tend to be built carefully
using protocols that try to ensure that the label for each data item is right. For
example, one can have images labelled independently, then check whether the labels
agree. There isn’t any way of checking to see that the training set is like the test
set, but one can collect first, then split later.

MNIST and CIFAR-10 contain pictures of largely isolated objects. A harder
dataset is CIFAR-100. This is very like CIFAR-10, but now with 100 categories.
Images are 32 × 32 color images in 100 categories, collected by Alex Krizhevsky,
Vinod Nair, and Geoffrey Hinton. There are 50,000 training images (so now 500
per category, rather than 5000) and 10,000 test images, and the test–train split is
standard. Images are evenly split between the classes. The categories are grouped
rather roughly into superclasses, so that there are several different insect categories,
several different reptile categories, and so on.

Remember This: CIFAR-100 is a small hard image classification
dataset. You can download this dataset from https://www.cs.toronto.edu/
∼kriz/cifar.html . CIFAR-100 accuracy is also recorded at http:// rodrigob.
github.io/are we there yet/build/classification datasets results.html . The
best error rate (24.28%) is a crude indicator that this dataset is harder
than CIFAR-10 or MNIST.

There are several important big image classification datasets. Datasets tend
to develop over time, and should be followed by looking at a series of workshops.
The Pascal visual object classes challenges are a set of workshops held from 2005
to 2012 to respond to challenges in image classification. The workshops, which were
a community wide effort led by the late Mark Everingham, resulted in a number
of tasks and datasets which are still used. There is more information, including
leaderboards, best practice, organizers, etc., at http://host.robots.ox.ac.uk/pascal/
VOC/.

http://yann.lecun.com/exdb/mnist/
http://www.kaggle.com/c/digit-recognizer
http://www.kaggle.com/c/digit-recognizer
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://host.robots.ox.ac.uk/pascal/VOC/
http://host.robots.ox.ac.uk/pascal/VOC/

18.1. Image Classification 426

Remember This: PASCAL VOC 2007 remains a standard image clas-
sification dataset. You can find this at http://host.robots.ox.ac.uk/pascal/
VOC/voc2007/ index.html . The dataset uses a collection of 20 object classes
that became a form of standard.

There is very little point in classifying images of objects into classes that
aren’t useful, but it isn’t obvious what classes should be used. One strategy is to
organize classes in the same way that nouns for objects are organized. WordNet
is a lexical database of the English language, organized hierarchically in a way
that tries to represent the distinctions that people draw between objects. So, for
example, a cat is a felid which is a carnivore which is a placental mammal

which is a vertebrate which is a chordate which is an animal (and so on. . .). You
can explore WordNet at https://wordnet.princeton.edu. ImageNet is a collection
organized according to a semantic hierarchy taken from WordNet. ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) workshops were held from 2010 to
2017, organized around a variety of different challenges.

Remember This: ImageNet is an extremely important large-scale
image classification dataset. A very commonly used standard is the
ILSVRC2012 dataset, with 1000 classes and 1.28 million training im-
ages. There’s a standard validation set of 50,000 images (50 per category).
You can find this at http://www.image-net.org/challenges/LSVRC/2012/
nonpub-downloads. The dataset uses a collection of 1000 object classes that
became a form of standard.

18.1.2 Datasets for Classifying Images of Scenes

Objects tend to appear together in quite structured ways, so if you see a giraffe
you might also expect to see an acacia or a lion, but you wouldn’t expect to see
a submarine or a couch. Different contexts tend to result in different groups of
objects. So in grassland you might see a giraffe or a lion, and in the living room
you might see a couch, but you don’t expect a giraffe in a living room. This
suggests that environments are broken up into clusters that look different and tend
to contain different objects. Such clusters are widely called scenes in the vision
community. An important image classification challenge is to take an image of a
scene and predict what the scene is.

One important scene classification dataset is the SUN dataset. This is widely
used for training, and for various classification challenges. There is a benchmark
dataset with 397 categories. The full dataset contains over 900 categories and many
million images. Workshop challenges, including particular datasets used and leader-
boards, appear at http://lsun.cs.princeton.edu/2016/ (LSUN 2016); and http://lsun.

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html
https://wordnet.princeton.edu
http://www.image-net.org/challenges/LSVRC/2012/nonpub-downloads
http://www.image-net.org/challenges/LSVRC/2012/nonpub-downloads
http://lsun.cs.princeton.edu/2016/
http://lsun.cs.princeton.edu/2017/

18.1. Image Classification 427

cs.princeton.edu/2017/ (LSUN 2017). The challenges use a selected subset of the
scene categories.

Remember This: SUN is a large-scale scene classification dataset that
has been the core of several challenge workshops. The dataset appears at
https://groups.csail.mit.edu/vision/SUN/ .

Another important dataset is the Places-2 dataset. There are 10 million
images in over 400 categories, with annotations of scene attributes and a variety of
other materials.

Remember This: Places-2 is a large-scale scene classification dataset.
You can find this at http://places2.csail.mit.edu.

18.1.3 Augmentation and Ensembles

Three important practical issues need to be addressed to build very strong image
classifiers.

• Data sparsity: Datasets of images are never big enough to show all effects
accurately. This is because an image of a horse is still an image of a horse
even if it has been through a small rotation, or has been resized to be a bit
bigger or smaller, or has been cropped differently, and so on. There is no way
to take account of these effects in the architecture of the network.

• Data compliance: We want each image fed into the network to be the same
size.

• Network variance: The network we have is never the best network; train-
ing started at a random set of parameters, and has a strong component of
randomness in it. For example, most minibatch selection algorithms select
random minibatches. Training the same architecture on the same dataset
twice will not yield the same network.

All three can be addressed by some care with training and test data.
Generally, the way to address data sparsity is data augmentation, by ex-

panding the training dataset to include different rotations, scalings, and crops of
images. Doing so is relatively straightforward. You take each training image, and
generate a collection of extra training images from it. You can obtain this collection
by: resizing and then cropping the training image; using different crops of the same
training image (assuming that training images are a little bigger than the size of
image you will work with); rotating the training image by a small amount, resizing
and cropping; and so on.

http://lsun.cs.princeton.edu/2017/
https://groups.csail.mit.edu/vision/SUN/
http://places2.csail.mit.edu

18.1. Image Classification 428

There are some cautions. When you rotate then crop, you need to be sure
that no “unknown” pixels find their way into the final crop. You can’t crop too
much, because you need to ensure that the modified images are still of the relevant
class, and too aggressive a crop might cut out the horse (or whatever) entirely.
This somewhat depends on the dataset. If each image consists of a tiny object on a
large background, and the objects are widely scattered, crops need to be cautious;
but if the object covers a large fraction of the image, the cropping can be quite
aggressive.

Cropping is usually the right way to ensure that each image has the same
size. Resizing images might cause some to stretch or squash, if they have the
wrong aspect ratio. This likely isn’t a great idea, because it will cause objects to
stretch or squash, making them harder to recognize. It is usual to resize images to
a convenient size without changing the aspect ratio, then crop to a fixed size.

There are two ways to think about network variance (at least!). If the net-
work you train isn’t the best network (because it can’t be), then it’s very likely that
training multiple networks and combining the results in some way will improve clas-
sification. You could combine results by, for example, voting. Small improvements
can be obtained reliably like this, but the strategy is often deprecated because it
isn’t particularly elegant or efficient. A more usual approach is to realize that the
network might very well handle one crop of a test image rather better than others
(because it isn’t the best network, etc.). Small improvements in performance can
be obtained very reliably by presenting multiple crops of a test image to a given
network, and combining the results for those crops.

18.1.4 AlexNet

The first really successful neural network image classifier was AlexNet, described
in “ImageNet Classification with Deep Convolutional Neural Networks,” a NIPS
2012 paper by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. AlexNet is
quite like the simple networks we have seen—a sequence of convolutional layers that
reduce the spatial dimensions of the data block, followed by some fully connected
layers—but has a few special features. GPU memories in 2012 were much smaller
than they are now, and the network architecture is constructed so that the data
blocks can be split across two GPUs. There are new normalization layers, and there
is a fully connected layer that reduces a data block in size in a new way.

The impact of splitting the data blocks is quite significant. As Fig. 18.2 shows,
the image passes into a convolutional layer with 96 kernels followed by a ReLU,
response normalization (which modifies values in a block, but doesn’t change its
size), and max pooling. This would normally result in a data block of dimension
55× 55× 96, but here each GPU gets a block consisting of the output of a different
half of the kernels (so there are two 55×55×48 blocks). Each goes through another
convolutional layer of 128 kernels (size 5× 5× 48), with a total of 256 kernels. The
blocks on GPU 1 and GPU 2 may contain quite different features; the block on
GPU 1 at B in the figure does not see the block on GPU 2 at A. The block at C
for each GPU is constructed using the block at B for both GPUs, but then blocks
move through the network without interacting until the dense layer (which turns
E into F). This means that features on one GPU could encode rather different
properties, and this actually happens in practice.

18.1. Image Classification 429

C
onv11x11x3x96s4

M
axpool 3x3s2

R
elu

R
espN

orm

C
onv5x5x48x256

R
elu

R
espN

orm

C
onv3x3x256x384

R
elu

C
onv3x3x192x384

R
elu

C
onv3x3x192x256

R
elu

FC
 then R

eLU

FC
 then R

eLU

FC
 then R

eLU

Softm
ax

224x224x3

55x55x48

27x27x128

13x13x192 13x13x192 13x13x128

1x1x2048

1x1x1000

1x1x2048 1x1x1000

A

A

B C D E F G H I

B C D E F G H I

GPU 1

GPU 2

Data blocks

Network layers

M
axpool 3x3s2

M
axpool 3x3s2

Figure 18.2: Two views of the architecture of AlexNet, the first convolutional neural
network architecture to beat earlier feature constructions at image classification.
There are five convolutional layers with ReLU, response normalization, and pooling
layers interspersed. Top shows the data blocks at various stages through the net-
work and bottom shows all the layers (capital letters key stages in the network to
blocks of data). Horizontal and diagonal arrows in the top box indicate how data
is split between GPUs, details in the main text. The response normalization layer
is described in the text. I have compacted the final fully connected layers to fit the
figure in

For each location in a block, response normalization layers then scale the value
at that location using a summary of nearby values. Response normalization like
this is no longer widely used, so I will omit details. This network was trained using
substantial data augmentation, as above. Units in the first two layers are dropped
out with a probability of 0.5. Training uses the usual stochastic gradient descent,
but with momentum. AlexNet was a spectacular success, achieving top-1 and
top-5 error rates of 37.5% and 17.0%, respectively, on the ImageNet ILSVRC-2010
challenge. These scores are significantly better than any other method had produced
in the past, and stimulated widespread investigation into network architectures that
might do better.

18.1. Image Classification 430

Remember This: AlexNet was a spectacular success at classifying
ImageNet images.

18.1.5 VGGNet

AlexNet has some odd features. It has relatively few layers. It splits data blocks
across GPUs. The kernels in the first layer are large, and have a large stride. And it
has response normalization layers. VGGNet is a family of networks built to investi-
gate these and other issues. Using the best member of the family, the best practices
in cropping, evaluation, data augmentation, and so on, VGGNet obtained top-1 and
top-5 error rates of 23.7% and 6.8%, respectively, on the ImageNet ILSVRC-2014
challenge. This was a substantial improvement. Table 18.1 describes the five most
important VGGNets (the sixth was used to establish that response normalization
wasn’t helpful for everything; this doesn’t matter to us).

Table 18.1 is a more compact presentation of much of the information in
Fig. 18.2, but for the five VGGNets. The table shows the flow of information
downwards. The naming conventions work like this. The term “convX-Y” means a
convolutional layer of Y X×X kernels followed by a ReLU layer. The term “FC-X”
means a fully connected layer that produces an X dimensional vector. For example,
in VGGNet-A, a 224× 224× 3 image passes into a layer, labelled “conv3-64.” This
consists of a convolutional layer of 64 3× 3× 3 kernels, followed by a ReLU layer.
The block then passes into a maxpool layer, pooling over 2×2 windows with stride
2. The result goes to a convolutional layer of 128 3 × 3 × 3 kernels, followed by
a ReLU layer. Eventually, the block of data goes to a fully connected layer that
produces a 4096 dimensional vector (“FC-4096”), passes through another of these
to an FC-1000 layer, and then to a softmax layer.

Reading across the table gives the different versions of the network. Notice
that there are significantly more layers with trainable weights than for AlexNet.
The E version (widely known as VGG-19) is the most widely used; others were
mainly used in training, and to establish that more layers give better performance.
The networks have more layers as the version goes up. Terms in bold identify
layers introduced when the network changes (reading right). So, for example, the
B version has a conv3-64 term that the A version doesn’t have, and the C, D, and
E versions keep; the C version has a conv1-512 term that the A and B versions
don’t have, and the D and E versions replace with a conv3-512 term.

You should expect that training a network this deep is hard (recall Sect. 16.4.3).
VGGNet training followed a more elaborate version of the procedure I used in
Sect. 16.4.3. Notice that the B version is the A version together with two new
terms, etc. Training proceeded by training the A version. Once the A version was
trained, the new layers were inserted to make a B version (keeping the parameter
values of the A version’s layers), and the new network was trained from that initial-
ization. All parameter values in the new network were updated. The C version was
then trained from B, and so on. All training is by minibatch stochastic gradient

18.1. Image Classification 431

Network architecture

A B C D E

Number of layers with learnable weights

11 13 16 16 19

Input (224× 224× 3 image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
conv3-64 conv3-64 conv3-64 conv3-64

maxpool2× 2s2

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

conv3-64 conv3-64 conv3-64 conv3-64

maxpool2× 2s2

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128

conv3-128 conv3-128 conv3-128 conv3-128

maxpool2× 2s2

conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256

conv3-256

maxpool2× 2s2

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512

conv3-512

maxpool2× 2s2

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512

conv3-512

maxpool2× 2s2

FC-4096

FC-4096

FC-1000

softmax

TABLE 18.1: This table summarizes the architecture of five VGGNets. Details in
the text

descent with momentum. The first two layers were subject to dropout (probability
of dropout 0.5). Data was aggressively augmented.

Experiment suggests that the features constructed by VGG-19 and networks
like it are canonical in some way. If you have a task that involves computing
something from an image, using VGG-19 features for that task very often works.
Alternatively, you could use VGG-19 as an initialization for training a network for
your task. VGG-19 is still widely used as a feature stack—a network that was
trained for classification, but whose features are being used for something else.

18.1. Image Classification 432

Remember This: VGGNet outperformed AlexNet at classifying Ima-
geNet images. There are several versions. VGG-19 is still used to produce
image features for other tasks.

18.1.6 Batch Normalization

There is good experimental evidence that large values of inputs to any layer within a
neural network lead to problems. One source of the problem could be this. Imagine
some input to some unit has a large absolute value. If the corresponding weight is
relatively small, then one gradient step could cause the weight to change sign. In
turn, the output of the unit will swing from one side of the ReLU’s non-linearity
to the other. If this happens for too many units, there will be training problems
because the gradient is then a poor prediction of what will actually happen to the
output. So we should like to ensure that relatively few values at the input of any
layer have large absolute values. We will build a new layer, sometimes called a
batch normalization layer, which can be inserted between two existing layers.

Write xb for the input of this layer, and ob for its output. The output has the
same dimension as the input, and I shall write this dimension d. The layer has two
vectors of parameters, γ and β, each of dimension d. Write diag(v) for the matrix
whose diagonal is v, and with all other entries zero. Assume we know the mean
(m) and standard deviation (s) of each component of xb, where the expectation is
taken over all relevant data. The layer forms

xn = [diag(s+ ε)]
−1 (

xb −m
)

ob = [diag(γ)]xn + β.

Notice that the output of the layer is a differentiable function of γ and β. Notice
also that this layer could implement the identity transform, if γ = diag(s + ε) and
β = m. We adjust the parameters in training to achieve the best performance.
It can be helpful to think about this layer as follows. The layer rescales its input
to have zero mean and unit standard deviation, then allows training to readjust
the mean and standard deviation as required. In essence, we expect that large
values encountered between layers are likely an accident of the difficulty training a
network, rather than required for good performance.

The difficulty here is we don’t know either m or s, because we don’t know the
parameters used for previous layers. Current practice is as follows. First, start with
m = 0 and s = 1 for each layer. Now choose a minibatch, and train the network
using that minibatch. Once you have taken enough gradient steps and are ready
to work on another minibatch, re-estimate m as the mean of values of the inputs
to the layer, and s as the corresponding standard deviations. Now obtain another
minibatch, and proceed. Remember, γ and β are parameters that are trained, just
like the others (using gradient descent, momentum, AdaGrad, or whatever). Once
the network has been trained, one then takes the mean (resp. standard deviation)
of the layer inputs over the training data for m (resp. s). Most neural network

18.1. Image Classification 433

implementation environments will do all the work for you. It is quite usual to place
a batch normalization layer between each layer within the network.

For some problems, minibatches are small, usually because one is using a
large model or a large data item and its hard to cram many items into the GPU.
If you have many GPUs, you can consider synchronizing the minibatches and then
averaging over all the minibatches being presented to the GPU—this isn’t for ev-
erybody. If the minibatch is small, then the estimate of m and s obtained using
a minibatch will be noisy, and batch normalization typically performs poorly. For
many problems involving images, you can reasonably expect that groups of features
should share the same scale. This justifies using group normalization, where the
feature channels are normalized in groups across a minibatch. The advantage of
doing so is that you will have more values to use when estimating the parameters;
the disadvantage is that you need to choose which channels form groups.

There is a general agreement that normalization improves training, but some
disagreement about the details. Experiments comparing two networks, one with
normalization the other without, suggest that the same number of steps tends to
produce a lower error rate when batch normalized. Some authors suggest that
convergence is faster (which isn’t quite the same thing). Others suggest that larger
learning rates can be used.

Remember This: Batch normalization improves training by discour-
aging large numbers in datablocks that aren’t required for accuracy. When
minibatches are small, it can be better to use group normalization, where
one normalizes over groups of features.

18.1.7 Computation Graphs

In Sect. 113, I wrote a simple network in the following form:

o(D),

where

o(D) = o(D)(u(D), θ(D))

u(D) = o(D−1)(u(D−1), θ(D−1))

. . . = . . .

u(2) = o(1)(u(1), θ1)

u(1) = x.

These equations really were a map for a computation. You feed in x; this gives
u(1); which gives u(2); and so on, up to o(D). The gradient follows from passing
information back down this map. These procedures don’t require that any layer
has only one input or that any layer has only one output. All we need is to connect
the inputs and the outputs in a directed acyclic graph, so that at any node we

18.1. Image Classification 434

1

2

3

4

5

6

Figure 18.3: A simple computation graph. You should reassure yourself that a
straightforward adjustment to backpropagation will yield all gradients of interest
for this network

know what it means for information to go forward (resp. backward). This graph is
known as a computation graph. Figure 18.3 shows an example that you should
use to check that you understand how gradients would be computed. A key feature
of good software environments is that they support building complex computation
graphs.

18.1.8 Inception Networks

Up to here, we have seen image classification networks as a sequence of layers,
where each layer has one input and one output, and information passes from layer
to layer in order, and in blocks. This isn’t necessary for backpropagation to work.
It’s enough to have a set of blocks (equivalent to our layers), each with possibly
more than one input and possibly more than one outputs. As long as you know
how to differentiate each output with respect to each input, and as long as outputs
are connected to inputs in a directed acyclic graph, backpropagation works.

This means that we can build structures that are far richer than a sequence
of layers. A natural way to do this is to build layers of modules. Figure 18.4
shows two inception modules (of a fairly large vocabulary that you can find in
the literature; there are some pointers at the end of the chapter). The base block
passes its input to each output. A block labelled “AxB” is a convolution layer of
A × B kernels followed by a layer of ReLUs; a stack block stacks each of the data
blocks from its input to form its output.

Modules consist of a set of streams that operate independently on a data block;
the resulting blocks are then stacked. Stacking means each stream must produce a
block of the same spatial size, so all the streams must have consistent stride. Each

18.1. Image Classification 435

Base

Stack

1x1

3x3

Pool1x1

1x1

1x1

3x3

3x3

Base

Stack

1x1

3x3

3x3s2

1x1 Pool

3x3s2

Grid size reduction blockFeature construction block

Figure 18.4: On the left an inception module for computing features. On the right,
a module that reduces the size of the grid. The feature module features with: 5× 5
support (far left stream); 3 × 3 support (left stream); 1 × 1 support after pooling
(right stream); and 1 × 1 support without pooling. These are then stacked into
a block. The grid size reduction module takes a block of features on a grid, and
reduces the size of the grid. The stream on the left constructs a reduced size grid of
features that have quite broad support (5× 5 in the input stream); the one in the
center constructs a reduced size grid of features that have medium support (3 × 3
in the input stream); and the one on the right just pools. The outputs of these
streams are then stacked

of the streams has a 1× 1 convolution in it, which is used for dimension reduction.
This means that if you stack two modules, each stream in the top module can select
from features which look at the incoming data over different spatial scales. This
selection occurs because the network learns the linear map that achieves dimension
reduction. In the network, some units can specialize in big (or small, or mixed size)
patterns, and later units can choose to make their patterns out of big (or small, or
mixed size) components.

There are many different inception modules, and a rich collection of possi-
ble networks built out of them. Networks built out of these modules are usually
called inception networks. Inception networks tend to be somewhat smaller and
faster than VGG-19. An inception network (with appropriate practices in crop-
ping, evaluation, data augmentation, and so on) obtained top-1 and top-5 error
rates of 21.2% and 5.6%, respectively, on the ImageNet ILSVRC-2012 classifica-
tion challenge dataset. This was a substantial improvement. As you would expect,
training can be tricky. It’s usual to use RMSprop.

18.1. Image Classification 436

Remember This: Inception networks outperformed VGG-19 on Im-
ageNet. Inception networks are built of modules. Feature modules select
from incoming data using a 1 × 1 convolution, then construct features at
different spatial scales, then stack them. Other modules reduce the size of
the spatial grid. Training can be tricky.

18.1.9 Residual Networks

A randomly initialized deep network can so severely mangle its inputs that only a
wholly impractical amount of training will cause the latest layers to do anything
useful. As a result, there have been practical limits on the number of layers that
can be stacked. One recent strategy for avoiding this difficulty is to use residual
connections.

Our usual process takes a data block X (l), forms a function of that block
W(X (l)), then applies a ReLU to the result. To date, the function involves applying
either a fully connected layer or a convolution, then adding bias terms. Writing
F (·) for a ReLU, we have

X (l+1) = F (W(X (l))).

Now assume the linear function does not change the size of the block. We replace
this process with

X (l+1) = F (W(X (l))) + X (l)

(where F , W, etc. are as before). The usual way to think about this is that a
layer now passes on its input, but adds a residual term to it. The point of all this
is that, at least in principle, this residual layer can represent its output as a small
offset on its input. If it is presented with large inputs, it can produce large outputs
by passing on the input. Its output is also significantly less mangled by stacking
layers, because its output is largely given by its input plus a non-linear function.
These residual connections can be used to bypass multiple blocks. Networks that
use residual connections are often known as ResNets.

There is good evidence that residual connections allow layers to be stacked
very deeply indeed (for example, 1001 layers to get under 5% error on CIFAR-
10; beat that if you can!). One reason is that there are useful components to the
gradient for each layer that do not get mangled by previous layers. You can see
this by considering the Jacobian of such a layer with respect to its inputs. You will
see that this Jacobian will have the form

Jo(l);ul = (I +Ml),

where I is the identity matrix and Ml is a set of terms that depend on the map W.
Now remember that, when we construct the gradient at the k’th layer, we evaluate
by multiplying a set of Jacobians corresponding to the layers above. This product
in turn must look like

18.1. Image Classification 437

P
o
o
l
s
2

P
o
o
l
s
2

F
C
4
0
9
6

F
C
1
0
0
0

F
C
4
0
9
6

64 128 256 512

P
o
o
l
s
2

P
o
o
l
s
2

512

P
o
o
l
s
2

7
x
7
x
6
4
s
2

3 blocks
3x3x64

3
x
3
x
1
2
8
s
2

3
x
3
x
1
2
8

3 blocks
3x3x128

3
x
3
x
2
5
6
s
2

3
x
3
x
2
5
6

5 blocks
3x3x256

3
x
3
x
5
1
2
s
2

3
x
3
x
5
1
2

2 blocks
3x3x512

F
C
1
0
0
0

A
v
g
P
o
o
l

ResNet
block

34 layer ResNet

VGG-19

Figure 18.5: Comparing VGG-19 to a 34 layer ResNet requires an even more
compact graphical representation. Each shaded box is a convolutional layer of 3×
3×D kernels followed by a ReLU. The number of kernels is given the notation below
the box, and D follows by matching sizes. Every layer with learnable parameters is
represented by a box, so VGG-19 has 19 such layers, together with pooling layers.
The 34 layer ResNet has 34 such layers. There are a few specialized layers (text in
the box), but most appear in the blocks (inset) which have two 3×3×D layers with
a residual connection that skips both. These blocks are stacked, as indicated in the
figure. The dashed lines around greyed blocks represent a residual connection that
causes the size of the data block to change

(∇o(D)L) Jo(D);u(D) × Jo(D−1);u(D−1) × · · · × Jok;θk

which is
(∇o(D)L) (I +MD)(I +MD−1) . . . (I +Ml+1)Jxk+1;θk

which is
(∇o(D)L) (I +MD +MD−1 . . .+Ml+1 + . . .)Jxk+1;θk ,

which means that some components of the gradient at that layer do not get mangled
by being passed through a sequence of poorly estimated Jacobians.

For some choices of function, the size of the block changes. In this case, we
cannot use the form X (l+1) = F (W(X (l)) + X (l), but instead use

X (l+1) = F (W(X (l)) + G(X (l)),

where G represents a learned linear projection of X (l) to the right size block.

18.2. Object Detection 438

It is possible to train very deep networks with this structure very success-
fully. Figure 18.5 compares a 34 layer residual network with a VGG-19 network.
A network with this structure (with appropriate practices in cropping, evaluation,
data augmentation, and so on) obtained top-1 and top-5 error rates of 24.2% and
7.4%, respectively, on the ImageNet ILSVRC-2012 classification challenge valida-
tion dataset. This is somewhat worse than the inception network performance, but
accuracy can be significantly improved by building deeper networks (hard to draw)
and using ensembles, voting over different crops, and so on. A model using 152
layers (ResNet-152) obtained a top-5 error of 3.57% ImageNet ILSVRC-2015 chal-
lenge. ResNet-152 is widely used as a feature stack, and is usually more accurate
than VGGNet.

Remember This: ResNets are the go-to for image classification.
ResNets use a network block that adds a processed version of the input
to the input. This means that helpful gradient values are available even
for very deep networks. ResNet models can be built with extremely deep
networks, and are widely used to make features for tasks other than image
classification.

18.2 Object Detection

An object detection program must mark the locations of each object from a known
set of classes in test images. Object detection is hard for many reasons. First,
objects can look different when you look at them from different directions. For
example, a car seen from above can look very different from a car seen from the
side. Second, objects can appear in images at a wide range of scales and locations.
For example, a single image can contain large faces (from people standing close to
the camera) and small faces (from people in the background). Third, many objects
(like people) deform without changing their identity. Fourth, there are often nasty
hierarchical structures to worry about. For example, chairs have legs, backs, bolts,
washers, nuts, cushions, stitches (on the cushions), and so on. Finally, most scenes
contain an awful lot of objects (think about the number of bolts in a picture of a
lecture hall—each chair has many) and most are not worth mentioning.

18.2.1 How Object Detectors Work

Object detectors are built out of image classifiers. Here is the simplest way to build
(say) a face detector. Build an image classifier that can tell whether a face is present
in an image window of fixed size or not. This classifier produces a high score for
faces, and a low score for non-faces. Take this face classifier, and search through a
set of windows selected from the image. Use the resulting scores to decide which
windows contain faces. This very simple model exposes the big questions to be
addressed. We must:

18.2. Object Detection 439

• Decide on a window shape: This is easy. There are two possibilities: a
box, or something else. Boxes are easy to represent, and are used for almost
all practical detectors. The alternative—some form of mask that cuts the
object out of the image—is hardly ever used, because it is hard to represent.

• Build a classifier for windows: This is easy—we’ve seen multiple con-
structions for image classifiers.

• Decide which windows to look at: This turns out to be an interesting
problem. Searching all windows isn’t efficient.

• Choose which windows with high classifier scores to report: This is
interesting, too, because windows will overlap, and we don’t want to report
the same object multiple times in slightly different windows.

• Report the precise locations of all faces using these windows: This
is also interesting. It turns out our window is likely not the best available,
and we can improve it after deciding that it contains a face.

Which window to look at is hard, and most innovation has occurred here.
Each window is a hypothesis about the configuration (position and size) of the
object. The very simplest procedure for choosing windows is to use all windows on
some grid (if you want to find larger faces, use the same grid on a smaller version of
the image). No modern detector looks at a grid because it is inefficient. A detector
that looks at closely spaced windows may be able to localize (estimate position
and size of) the object more accurately. But more windows mean the classifier’s
false positive rate must be extremely small to produce a useful detector. Tiling the
image tends to produce far too many windows, many of which are fairly obviously
bad (for example, a box might cut an object in half).

Deciding which windows to report presents minor but important problems.
Assume you look at 32 × 32 windows with a stride of 1. Then there will be many
windows that overlap the object fairly tightly, and these should have quite similar
scores. Just thresholding the value of the score will mean that we report many
instances of the same object in about the same place, which is unhelpful. If the
stride is large, no window may properly overlap the object and it might be missed.
Instead, most methods adopt variants of a greedy algorithm usually called non-
maximum suppression. First, build a sorted list of all windows whose score is
over threshold. Now repeat until the list is empty: choose the window with highest
score, and accept it as containing an object; now remove all windows with large
enough overlap on the object window.

Deciding precisely where the object is also presents minor but important prob-
lems. Assume we have a window that has a high score, and has passed through
non-maximum suppression. The procedure that generated the window does not
do a detailed assessment of all pixels in the window (otherwise we wouldn’t have
needed the classifier), so this window likely does not represent the best localization
of the object. A better estimate can be obtained by predicting a new bounding
box using a feature representation for the pixels in the current box. It’s natural to
use the feature representation computed by the classifier for this bounding box
regression step.

18.2. Object Detection 440

Remember This: Object detectors work by passing image boxes that
are likely to contain objects into a classifier. The classifier gives scores for
each possible object in the box. Multiple detections of the same object by
overlapping boxes can be dealt with by non-maximum suppression, where
higher-scoring boxes eliminate lower-scoring but overlapping boxes. Boxes
are then adjusted with a bounding box regression step.

18.2.2 Selective Search

The simplest procedure for building boxes is to slide a window over the image.
This is simple, but works rather badly. It produces a large number of boxes, and
the boxes themselves ignore important image evidence. Objects tend to have quite
clear boundaries in images. For example, if you are looking at a picture of a horse
in a field, there’s usually no uncertainty about where the horse ends and where
the field begins. At these boundaries, a variety of image properties change quite
sharply. At the boundary of the horse, color changes (say, brown to green); texture
changes (say, smooth skin to rough grass); intensity changes (say, dark brown horse
to brighter green grass); and so on.

Making boxes by sliding windows ignores this information. Boxes that span a
boundary probably contain only part of an object. Boxes that have no boundaries
nearby likely don’t contain anything interesting. It is still quite difficult to actually
find the boundaries of objects, because not every boundary has a color change
(think of a brown horse in a brown field), and some color changes occur away from
boundaries (think about the stripes on a zebra). Nonetheless, it has been known for
some time that one can use boundaries to score boxes for their “objectness.” The
best detectors are built by looking only at boxes that have a high enough objectness
score.

The standard mechanism for computing such boxes is known as selective
search. A quick description is straightforward, but the details matter (and you’ll
need to look them up). First, one breaks up the image into regions—groups
of pixels that have coherent appearance—using an agglomerative clusterer. The
agglomerative clusterer is quite important, because the representation it produces
allows big regions to be made of smaller regions (so, for example, a horse might
be made of a head, body, and legs). Second, one scores the regions produced by
the clusterer for “objectness.” This score is computed from computing a variety of
region features, encoding color, texture, and so on. Finally, the regions are ranked
by the score. It isn’t safe to assume that regions with a score over some threshold
are objects and the others aren’t, but the process is very good at reducing the
number of boxes to look at. One does not need to go very deep into the ranked list
of regions to find all objects of interest in a picture (2000 is a standard).

18.2. Object Detection 441

Remember This: Image boxes that are likely to contain objects are
closely related to regions. Selective search finds these boxes by building
a region hierarchy, then scoring regions for objectness; regions with good
objectness score produce bounding boxes. This gives an effective way of
finding the boxes that are likely to contain objects.

18.2.3 R-CNN, Fast R-CNN and Faster R-CNN

There is a natural way to build a detector using selective search and an image
classifier. Use selective search to build a ranked list of regions. For each region
in the ranked list, build a bounding box. Now warp this box to a standard size,
and pass the resulting image to an image classifier. Rank the resulting boxes
by the predicted score for the best object, and keep boxes whose score is over a
threshold. Now apply non-maximum suppression and bounding box regression to
that list. Figure 18.6 shows this architecture, known as R-CNN; it produces a
very successful detector, but a speedup is available.

The problem with R-CNN is that one must pass each box independently
through an image classifier. There tends to be a high degree of overlap between
the boxes. This means the image classifier has to compute the neural network
features at a given pixel for every box that overlaps the pixel, so doing unnecessary
redundant work. The cure produces a detector known as Fast R-CNN. Pass the
whole image through a convolutional neural network classifier (but ignore the fully
connected layers). Now take the boxes that come from selective search, and use
them to identify regions of interest (ROIs) in the feature maps. Compute class
probabilities from these regions of interest using image classification machinery.

The ROIs will have different sizes, depending on the scale of the object. These
need to be reduced to a standard size; otherwise, we cannot pass them into the
usual machinery. The trick is a ROI pooling layer, which produces a standard
size summary of each ROI that is effective for classification. Decide on a standard
size to which the ROIs will be reduced (say rx × ry). Make a stack of grids this
size, one per ROI. For each ROI, break the ROI into an rx× ry grid of evenly sized
blocks. Now compute the maximum value in each block, and place that value in
the corresponding location in the grid representing the ROI. This stack of grids can
then be passed to a classifier.

The culmination of this line of reasoning (so far!) is Faster R-CNN. It turns
out that selective search slows down Fast R-CNN. At least part of this slowdown
is computing features, etc., for selective search. But selective search is a process
that predicts boxes from image data. There is no particular reason to use special
features for this purpose, and it is natural to try and use the same set of features to
predict boxes and to classify them. Faster R-CNN uses image features to identify
important boxes (Fig. 18.7).

18.2. Object Detection 442

Selective
Search Reshape

Neural net
Classifier

Non-max
Suppression

Bounding box
regression

0.010.02

0.9

0.85

0.9

Figure 18.6: A schematic picture of how R-CNN works. A picture of Inkosi Albert
Luthuli is fed in to selective search, which proposes possible boxes; these are cut
out of the image, and reshaped to fixed size; the boxes are classified (scores next
to each box); non-maximum suppression finds high scoring boxes and suppresses
nearby high scoring boxes (so his face isn’t found twice); and finally bounding box
regression adjusts the corners of the box to get the best fit using the features inside
the box

Convolutional neural networks aren’t particularly good at making lists, but
are very good at making spatial maps. The trick is to encode a large collection of
image boxes in a representation of fixed size that can be thought of as a map. The
set of boxes can be represented like this. Construct a 3D block where each spatial
location in the block represents a point on a grid in the image (a stride of 16 between
the grid points in the original). The third coordinate in the block represents an
anchor box. These are boxes of different size and aspect ratio, centered at the
grid location (Fig. 18.8; 9 in the original). You might be concerned that looking
at a relatively small number of sizes, locations, and aspect ratios creates problems;
but bounding box regression is capable of dealing with any issues that arise. We
want the entries in this map to be large when a box is likely to contain an object
(you can think of this as an “objectness” score) and small otherwise. Thresholding
the boxes and using non-maximum suppression yields a list of possible boxes, which
can be handled as above.

18.2. Object Detection 443

ROI pool
Non-max
Suppression

Bounding box
regression

Neural net
feature
stack

Crop
ROIsImage

Selective
Search

Neural net
Classifier

Figure 18.7: Fast R-CNN is much more efficient than R-CNN, because it computes a
single feature map from the image, then uses the boxes proposed by selective search
to cut regions of interest (ROIs) from it. These are mapped to a standard size by
a ROI pooling layer, then presented to a classifier. The rest should be familiar

A significant attraction of this approach is that the process that makes boxes
can be trained at the same time as the classifier—box proposals can take classifier
eccentricities in mind, and vice versa. At training time, one needs two losses. One
loss measures the effectiveness of the box proposal process and the other measures
the accuracy of the detector. The main difference is that the box proposal process
needs to give a high score to any box with a good IoU against any ground truth
bounding box (whatever the object in the box). The detector needs to name the
object in the box.

Remember This: R-CNN, Fast R-CNN, and Faster R-CNN are
strongly performing object detection systems that differ by how boxes are
proposed. R-CNN and Fast R-CNN use selective search; Faster R-CNN
scores anchor boxes. As of writing, Faster R-CNN is the reference object
detector.

18.2.4 YOLO

All the detectors we have seen so far come up with a list of boxes that are likely
to be useful. YOLO (You Only Look Once) is a family of detectors (variants pay
off accuracy against speed) that uses an entirely different approach to boxes. The
image is divided into an S × S grid of tiles. Each tile is responsible for predicting
the box of any object whose center lies inside the tile. Each tile is required to
report B boxes, where each box is represented by the location of its center in the
tile together with its width and its height. For each of these boxes (write b), each
tile must also report a box confidence score c(b(tile)). The method is trained to
produce a confidence score of zero if no object has its center in the tile, and the
IoU for the box with ground truth if there is such an object (of course, at run time
it might not report this score correctly).

Each tile also reports a class posterior, p(class|tile) for that tile. The score

18.2. Object Detection 444

Box non-max
Suppression

ROI pool
Neural net
feature
stack

Crop
ROIs

Image

Box proposal
network

Non-max
Suppression

Bounding box
regression

Neural net
Classifier

Figure 18.8: Faster RCNN uses two networks. One uses the image to compute
“objectness” scores for a sampling of possible image boxes. The samples (called
“anchor boxes”) are each centered at a grid point. At each grid point, there are
nine boxes (three scales, three aspect ratios). The second is a feature stack that
computes a representation of the image suitable for classification. The boxes with
highest objectness score are then cut from the feature map, standardized with
ROI pooling, then passed to a classifier. Bounding box regression means that the
relatively coarse sampling of locations, scales, and aspect ratios does not weaken
accuracy

linking each of the boxes b in a tile to a class is then computed as

c(b(tile))× p(class|tile).

Notice how the box scoring process has been decoupled from the object class pro-
cess. Each tile is scoring what object overlaps the tile and also scoring which boxes
linked to the tile are important. But these scores are computed separately—the
method does not know which box is being used when it computes the object scores.
This means the method can be extremely fast, and YOLO offers relatively easy
trade-offs between speed and accuracy, which are often helpful (for example, one
can use more or fewer network layers to make features; more or fewer boxes per
tile; and so on).

Decoupling boxes from classes comes with problems. YOLO tends to handle
small objects poorly. There is a limited number of boxes, and so the method
has difficulties with large numbers of small objects. The decision as to whether an
object is present or not is based on the whole tile, so if the object is small compared
to the tile, the decision might be quite inaccurate. YOLO tends not to do well with
new aspects or new configurations of familiar objects. This is caused by the box
prediction process. If the method is trained on (say) all vertical views of trees (tall
thin boxes), it can have trouble with a tree lying on its side (short wide box).

18.2. Object Detection 445

Remember This: The YOLO family of detectors works very differently
from the R-CNN family. In Yolo, image tiles produce objectness scores for
boxes and a classification score for objects independently; these are then
multiplied. The advantage is speed, and tunable payoffs between speed and
accuracy. The disadvantages are that many small objects are hard to detect,
and new configurations of familiar objects are often missed.

18.2.5 Evaluating Detectors

Evaluating object detectors takes care. An object detector takes an image, and,
for each object class it knows about, produces a list of boxes each of which has a
score. Evaluating the detector involves comparing these boxes with ground truth
boxes that have been marked on the image by people. The evaluation should favor
detectors that get the right number of the right object in the right place. It should
discourage detectors that just propose an awful lot of boxes. Getting this right
takes a fair amount of careful work, which won’t appeal to (or be useful to) all.
The rest of the section is skippable if you’re not that interested in object detection.

To start, assume the detector responds to only one kind of object. You now
have two lists: one (G) is the list of ground truth boxes, the other (D) is the list
of boxes the detector produces, which has already been subject to non-maximum
suppression, bounding box regression, and anything else the team that created the
detector can think of. You should think of the detector as a search process. The
detector has searched a huge collection of boxes, and produced some boxes that it
asserts are relevant, in order of relevance (this is the list D). This list needs to be
scored. The evaluation must mark boxes in D with relevant if they match ground
truth boxes and irrelevant otherwise, and then summarize the lists.

The boxes that the detector predicts are unlikely to match ground truth ex-
actly, and we need some way of telling whether the boxes are good enough. The
standard method for doing this is to test the IoU (intersection over union). Write
Bg for the ground truth box and Bp for the predicted box. The IoU is

IoU(Bp, Bg) =
Area(Bg ∩Bp)

Area(Bg ∪Bp)
.

Choose some threshold t. If IoU(Bp, Bg) > t, then Bp could match the ground
truth box Bg.

The detector should be credited for producing a box that has a high score and
matches a ground truth box. But the detector should not be able to improve its
score by predicting many boxes on top of a ground truth box. The standard way
to handle the problem is to mark the overlapping box with highest score relevant.
The procedure is:

• Choose a threshold t.
• OrderD by the score of each box, and mark every element ofD with irrelevant.
Choose a threshold t.

18.2. Object Detection 446

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ec

is
io

n

Precision
Interpolated Precision

Figure 18.9: Two plots for an imaginary search process. The precision plotted
against recall shows a characteristic sawtooth shape. Interpolated precision mea-
sures the best precision you can get by increasing the recall, and so smoothes the
plot. Interpolated precision is also a more natural representation of what one wants
from search results—most people would be willing to add items to get higher pre-
cision. Interpolated precision is used to evaluate detectors

• For each element of D in order of score, compare that box against all ground
truth boxes. If any ground truth box has IoU > t, mark the detector box
relevant and remove that ground truth box from G. Proceed until there are
no more ground truth boxes.

Now every box in D is tagged either relevant or irrelevant.
There are standard evaluations for search results like those produced by our

detector. The first step is to merge the lists for each evaluation image into a single
list of results. The precision of a set of search results S is given by

P(S) = number of relevant search results

total number of search results
.

The recall is given by

R(S) = number of relevant search results

total number of relevant items in collection
.

As you move down the list D in order of score, you get a new set of search results.
The recall never decreases as the set gets larger, and so you could plot the precision
as a function of recall (write P(R)). These plots have a characteristic sawtooth
structure (Fig. 18.9). If you add a single irrelevant item to the set of results, the
precision will fall; if you then add a relevant item, it jumps up. The sawtooth
doesn’t really reflect how useful the set of results is—people are usually willing to
add several items to a set of search results to improve the precision—and so it is
better to use interpolated precision. The interpolated precision at some recall
value R0 is given by

P̂(R0) =
max

R ≥ R0
P(R)

18.3. Further Reading 447

(Fig. 18.9). By convention, the average precision is computed as

1

11

10∑

i=0

P̂
(

i

10

)
.

This value summarizes the recall–precision curve. Notice this averages in interpo-
lated precision at high recall. Doing so means a detector cannot get a high score by
producing only very few, very accurate boxes—to do well, a detector should have
high precision even when it is forced to predict every box.

Average precision evaluates detection for one category of object. The mean
average precision (mAP) is the mean of the average precision for each category.
The value depends on the IoU threshold chosen. One convention is to report mAP
at IoU = 0.5. Another is to compute mAP at a set of 10 IoU values (0.45+ i×0.05
for i ∈ 1 . . . 10), then average the mAPs. These evaluations produce numbers that
tend to be bigger for better detectors, but it takes some practice to have a clear
sense of what an improvement in mAP actually means.

Remember This: Evaluating object detectors should favor detectors
that get the right number of the right objects in the right places, and should
discourage detectors that just produce a lot of boxes. Evaluation scores boxes
produced by the detector for relevance (is this the right box in the right
place?) using IoU scores to evaluate how well boxes overlap with ground
truth. The average precision is computed from an interpolated precision
curve for each type of object. This is then averaged over object types to
yield mAP.

18.3 Further Reading

To proceed further, you really should be reading original papers, which is how this
subject is communicated. Here’s a reading list to get started with.

• Origins of CNNs: Gradient-based learning applied to document recognition,
by Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner, Proceed-
ings of the IEEE 86 (11), 2278–2324.

• Batch normalization: Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, by Sergey Ioffe, Christian
Szegedy, Proc Int. Conf. Machine Learning, 2015. You can find a version at
https://arxiv.org/abs/1502.03167.

• ImageNet: ImageNet Large Scale Visual Recognition Challenge, by Olga
Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei in International Journal of Computer Vision
December 2015, Volume 115, Issue 3, pp. 211–252.

https://arxiv.org/abs/1502.03167

18.3. Further Reading 448

• Pascal: The Pascal Visual Object Classes (VOC) Challenge, by Mark Ever-
ingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew
Zisserman, International Journal of Computer Vision, June 2010, Volume 88,
Issue 2, pp. 303–338.

• VGGNet: Very Deep Convolutional Networks for Large-Scale Image Recog-
nition by Karen Simonyan and Andrew Zisserman, Proc. Int. Conf. Learned
Representations, 2015. You can find a version of this at https://arxiv.org/pdf/
1409.1556.pdf.

• Inception: Going Deeper with Convolutions, by Christian Szegedy, Wei Liu,
Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich, Proc Computer Vision
and Pattern Recognition, 2015. You can find a version of this at https://arxiv.
org/abs/1409.4842.

• ResNets: Deep Residual Learning for Image Recognition by Kaiming He,
Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Proc Computer Vision and
Pattern Recognition, 2015. You can find a version of this at https://arxiv.org/
abs/1512.03385.

• Selective search: Selective Search for Object Recognition by J. R. R. Ui-
jlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders, Interna-
tional Journal of Computer Vision September 2013, Volume 104, Issue 2, pp.
154–171.

• R-CNN: Rich feature hierarchies for accurate object detection and semantic
segmentation, by R. Girshick, J. Donahue, T. Darrell, and J. Malik, IEEE
Conf. on Computer Vision and Pattern Recognition, 2014. You can find a
version of this at https://arxiv.org/abs/1311.2524.

• Fast R-CNN: Fast R-CNN, by Ross Girshick, IEEE Int. Conf. on Com-
puter Vision (ICCV), 2015, pp. 1440–1448. You can find a version of this
at https://www.cv-foundation.org/openaccess/content iccv 2015/html /Gir-
shick Fast R- CNN ICCV 2015 paper.html.

• Faster R-CNN: Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks, by Shaoqing Ren, Kaiming He, Ross Girshick,
and Jian Sun, Advances in Neural Information Processing Systems 28 (NIPS
2015). You can find a version of this at http://papers.nips.cc/paper/5638-
faster-r-cnn-towards-real-time-object-detection-with-region-proposal-
networks.pdf.

• YOLO: You Only Look Once: Unified, Real-Time Object Detection, by Joseph
Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi, Proc Computer
Vision and Pattern Recognition, 2016. You can find a version of this at
https://www.cv-foundation.org/openaccess/content cvpr 2016/papers/Redmon
You Only Look CVPR 2016 paper.pdf. There’s a home page at https://pjreddie.
com/darknet/yolo/.

https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1311.2524
https://www.cv-foundation.org/openaccess/content_iccv_2015/html/Girshick_Fast_R-CNN_ICCV_2015_paper.html
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/

18.4. You Should 449

18.4 You Should

18.4.1 Remember These Terms

Pascal . 425
WordNet . 426
ImageNet . 426
scene . 426
SUN . 426
Places-2 . 427
data augmentation . 427
AlexNet . 428
VGG-19 . 430
feature stack . 431
batch normalization layer . 432
group normalization . 433
computation graph . 434
inception modules . 434
residual connections . 436
ResNets . 436
configuration . 439
localize . 439
non-maximum suppression . 439
bounding box regression . 439
selective search . 440
regions . 440
R-CNN . 441
Fast R-CNN . 441
ROI pooling layer . 441
Faster R-CNN . 441
anchor box . 442
YOLO . 443
IoU . 445
precision . 446
recall . 446
interpolated precision . 446
average precision . 447
mean average precision . 447

18.4.2 Remember These Facts

MNIST and CIFAR-10 are warmup datasets 425
CIFAR-100 is a small hard dataset 425
PASCAL VOC 2007 remains a standard image classification dataset 426
ImageNet is the a standard large scale image classification dataset . 426
SUN is a large-scale scene classification dataset 427
Places-2 is a large-scale scene classification dataset 427
Alexnet was a spectacular success at image classification 430

18.4. You Should 450

VGGNet was a spectacular success at image classification 432
Batch or group normalization can help training 433
Inception networks handle features at multiple spatial scales 436
ResNets can be very deep and very accurate 438
How object detectors work . 440
Selective search finds boxes likely to contain objects 441
How R-CNN, Fast R-CNN and Faster R-CNN work 443
YOLO trades off speed with accuracy 445
Evaluating object detectors is fiddly 447

18.4.3 Be Able to

• Run an image classifier in your chosen environment.
• Explain how current object detectors work.
• Run an object detector in your chosen environment.

18.4. You Should 451

Problems

18.1. Modify the backpropagation algorithm to deal with directed acyclic graphs
like that of Fig. 18.3. Note the layers are numbered there, and I will denote
the parameters of the i’th layer as θi.
(a) The first step is to deal with layers that have one output, but two inputs.

If we can deal with two inputs, we can deal with any number. Write the

inputs of layer 6 as x
(6)
1 and x

(6)
2 . Write J

o(6);x
(6)
i

for the Jacobian of

the output with respect to the i’th input. Explain how to compute ∇θ4L
using this Jacobian.

(b) Layer 2 has two outputs. Write the outputs o
(2)
1 and o

(2)
2 . Write J

o
(2)
i

;x(2)

for the Jacobian of the i’th output with respect to its input. Explain how
to compute ∇θ2L using this Jacobian (and others!).

(c) Can you backpropagate through a layer that has two inputs and two out-
puts?

(d) What goes wrong with backpropagation when the computation graph has
a cycle?

Programming Exercises

General Remark: These exercises are suggested activities, and are rather open
ended. It will be difficult to do them without a GPU. You may have to deal with some fun
installing software environments, etc. It’s worthwhile being able to do this, though.

Minor Nuisance: At least in my instance of the ILSVRC-2012 validation dataset,
some images are grey level images rather than RGB. Ensure the code you use turns them
into RGB images by making the R, G, and B channel the same as the original intensity
channel, or funny things can happen.

18.2. Download a pretrained VGGNet-19 image classifier for your chosen program-
ming framework.
(a) Run this classifier on ILSVRC-2012 validation dataset. Each image needs

to be reduced to 224× 224 block. Do this by first resizing the image uni-
formly so that the smallest dimension is 224, then cropping the right half
of the image. Ensure that you do whatever preprocessing your instance
of VGGNet-19 requires on this crop (this should be subtracting the mean
RGB at each pixel from each pixel; i.e., follow the procedure on page 416,
but don’t divide by the standard deviation). In this case, what is the
top-1 error rate? What is the top-5 error rate?

(b) Now investigate the effect of multiple crops. For each image in the val-
idation dataset, crop to 224 × 224 for five different crop windows. One
of these is centered in the image; the other four are obtained by placing
a corner of the crop window at each corner of the image, respectively.
Ensure that you do whatever preprocessing your instance of VGGNet-19
requires on each crop (this should be subtracting the mean RGB at each
pixel from each pixel; i.e., follow the procedure on page 416, but don’t
divide by the standard deviation). Pass each crop through the network,
then average the predicted class posteriors, and use that score. In this
case, what is the top-1 error rate? What is the top-5 error rate?

18.3. Download a pretrained ResNet image classifier for your chosen programming
framework.
(a) Run this classifier on ILSVRC-2012 validation dataset. Each image needs

18.4. You Should 452

to be reduced to 224× 224 block. Do this by first resizing the image uni-
formly so that the smallest dimension is 224, then cropping the right half
of the image. Ensure that you do whatever preprocessing your instance of
ResNet requires on this crop (this should be subtracting the mean RGB
at each pixel from each pixel; i.e., follow the procedure on page 416, but
don’t divide by the standard deviation). In this case, what is the top-1
error rate? What is the top-5 error rate?

(b) Now investigate the effect of multiple crops. For each image in the vali-
dation dataset, crop to 224× 224 for five different crop windows. One of
these is centered in the image; the other four are obtained by placing a
corner of the crop window at each corner of the image, respectively. En-
sure that you do whatever preprocessing your instance of ResNet requires
on each crop (this should be subtracting the mean RGB at each pixel from
each pixel; i.e., follow the procedure on page 416, but don’t divide by the
standard deviation). Pass each crop through the network, then average
the predicted class posteriors, and use that score. In this case, what is
the top-1 error rate? What is the top-5 error rate?

18.4. Download both a pretrained ResNet image classifier and a pretrained VGG-19
for your chosen programming framework. For each image in the validation
dataset, use a center crop to 224× 224. Ensure that you do whatever prepro-
cessing your instances require. Record for every image the true class, the class
predicted by ResNet, and the class predicted by VGG-19.
(a) On average, if you know VGG-19 predicted the label correctly or not, how

accurately can you predict whether ResNet gets the label right? Answer
this by computing P (ResNet right|VGG right) and P (ResNet right|VGG wrong)
using your data.

(b) Both networks are quite accurate, even for top-1 error. This means that
their errors must be correlated, because each gets most examples right.
We would like to know whether the result of the previous subexercise is
due to this effect, or something else. Write the VGG-19 error rate as v,
and the ResNet error rate as r. Write v for a 50,000 dimensional binary
vector, with v 1’s, where the entries are IID samples from a Bernoulli
distribution with mean v. This is a model of randomly distributed errors
with the same error rate as VGG-19. A similar r models random errors
for ResNet. Draw 1000 samples of (v, r) pairs, and compute the mean
and standard error of P (ri = 0|vi = 1) and P (ri = 1|vi = 0). Use
this information to determine whether ResNet “knows” something about
VGG-19 errors.

(c) What could cause the effect you see?
(d) How are errors distributed across categories?
(e) Hard! (but interesting). Obtain instances of several different ImageNet

classification networks. Investigate the pattern of errors. In particular,
for images that one instance mislabels, do other instances mislabel it as
well? If so, how many different labels are used in total? I have found
surprisingly strong agreement between instances that mislabel an image
(i.e., if network A thinks an image of a dog is a cat, and network B gets
the same image wrong as well, then network B will likely think it’s a cat,
too).

18.5. Choose 10 ImageNet classes. For each class, download 50 example images
of items that belong to those classes from an internet image source (images.

images.google.com

18.4. You Should 453

google.com or images.bing.com are good places to start; query using the name
of the category).
(a) Classify these images into the ImageNet classes using a pretrained net-

work. What is the top-1 error rate? What is the top-5 error rate?
(b) Compare the results of this experiment with the accuracy on the validation

set for these classes. What is going on?

images.google.com
images.bing.com

C H A P T E R 19

Small Codes for Big Signals

This chapter explores a different kind of use of neural networks. Rather
than classifying or detecting patterns directly, we try to build low dimensional
representations of high dimensional signals. The simplest reason to do so is to build
a map of a dataset. We’ve already seen one procedure for doing so. It turns out
that procedure has problems; this chapter starts with two alternative procedures.
These are useful in their own right for mapping datasets.

The next step is to try to learn a function that will take new data items
and predict a low dimensional representation for them. One could see this as a
regression problem (i.e., learn this function from example pairs of high-d/low-d
representations). But it’s more productive to see it as an encoding problem. Learn
an encoding of the input data that preserves what is important. To evaluate the
encoding, we also learn to decode the code to produce the original data item.
This leads us to an autoencoder—a pair of encoder and decoder, which are trained
together, to produce a good mapping to a low dimensional code. We have already
seen how to build networks that make data blocks smaller using stride or pooling.
A decoder needs to make a data block bigger, which requires some new tricks.
Ensuring that an autoencoder produces good looking images requires some work
on the training loss and the training process, but can be done.

If you have a working decoder, it is natural to feed it random codes to see
if it makes new images. This doesn’t work as stated. The difficulties are that
encoders tend to produce codes with odd distributions, and that decoders tend to
panic when fed with unfamiliar codes. Each effect can be mitigated with tricks.
Producing images out of random numbers using decoder-like strategies requires
clever management of the loss function used for training, but works moderately
well for special cases as of writing.

19.1 Better Low Dimensional Maps

One really important use for small representations of big signals is building maps.
We’ve already seen one algorithm (Sect. 6.2). We start with N d dimensional points
x, where the i’th point is xi. We would like to build a map of this dataset, to
visualize its major features. We would like to know, for example, whether it contains
many or few blobs; whether there are many scattered points; and so on. We might
also want to plot this map using different plotting symbols for different kinds of
data points. For example, if the data consists of images, we might be interested in
whether images of cats form blobs that are distinct from images of dogs, and so on.
I will write yi for the point in the map corresponding to the xi. The map is an M
dimensional space. If one is trying to build a map, M is almost always two or three
in applications. Sometimes one just wants a lower dimensional representation that

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7 19

455

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18114-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-18114-7_19

19.1. Better Low Dimensional Maps 456

preserves important information. In this case, M can be large and the procedure
is often referred to as embedding.

Principal coordinate analysis used eigenvectors to identify a mapping of the
data that made low dimensional distances similar to high dimensional distances. I
argued that the choice of map should minimize

∑

i,j

(
||yi − yj ||2 − ||xi − xj ||2

)2
,

then rearranged terms to produce a solution that minimized
∑

i,j

(
yT
i yj − xT

i xj

)2
.

But the choice of cost function is not a particularly good idea. The map will
be almost entirely determined by points that are very far apart. This happens
because squared differences between big numbers tend to be a lot bigger than
squared differences between small numbers, and so distances between points that
are far apart will be the most important terms in the cost function. In turn, this
could mean our map does not really show the structure of the data—for example, a
small number of scattered points in the original data could break up clusters in the
map (the points in clusters are pushed apart to get a map that places the scattered
points in about the right place with respect to each other).

19.1.1 Sammon Mapping

Sammon mapping is a method to fix these problems by modifying the cost func-
tion. We attempt to make the small distances more significant in the solution by
minimizing

C(y1, . . . ,yN) =

(
1∑

i<j ||xi − xj ||

)
∑

i<j

[
(||yi − yj || − ||xi − xj ||)2

||xi − xj ||

]
.

The first term is a constant that makes the gradient cleaner, but has no other effect.
What is important is we are biasing the cost function to make the error in small
distances much more significant. Unlike straightforward multidimensional scaling,
the range of the sum matters here—if i equals j in the sum, then there will be a
divide by zero.

No closed form solution is known for this cost function. Instead, choosing
the y for each x is by gradient descent on the cost function. You should notice
there is no unique solution here, because rotating, translating, or reflecting all the
yi will not change the value of the cost function. Furthermore, there is no reason
to believe that gradient descent necessarily produces the best value of the cost
function. Experience has shown that Sammon mapping works rather well, but has
one annoying feature. If one pair of high dimensional points is very much closer
together than any other, then getting the mapping right for that pair of points is
extremely important to obtain a low value of the cost function. This should seem
like a problem to you, because a distortion in a very tiny distance should not be
much more important than a distortion in a small distance.

19.1. Better Low Dimensional Maps 457

Worked Example 19.1 Sammon Mapping MNIST Data

Prepare a Sammon mapping of 1000 examples, drawn at random, from the
MNIST dataset to two dimensions.

Solution: The problem has 2000 variables (the unknown y’s). The cost
function depends on x only through the distances, so it isn’t clear if reducing
the dimension of the x helps or not. I tried two cases: in one, I just used the 784
dimensional vectors for the MNIST digits, and in the second, I used principal
coordinate analysis to map the digits to 30 dimensions. I then computed the
Sammon mapping for each case. I used MATLAB’s fmincon optimizer (which
can do an approximate version of Newton’s method called LBFGS that speeds
things up). Figure 19.1 shows results. Note that the dimension reduction
doesn’t seem to have changed anything important, and it didn’t make the
method notably faster, either.

Remember This: Sammon mapping produces an embedding of high
dimensional data into a lower dimensional space that reduces the emphasis
that principal coordinate analysis places on large distances. It does so by
solving an optimization problem to choose coordinates in a low dimensional
space for each data point. Sammon mappings are often biased by very small
distances, however.

19.1.2 T-SNE

We will now build a model by reasoning about probability rather than about dis-
tance (although this story could likely be told as a metric story, too). We will build
a model of the probability that two points in the high dimensional space are neigh-
bors, and another model of the probability that two points in the low dimensional
space are neighbors. We will then adjust the locations of the points in the low
dimensional space so that the KL divergence between these two models is small.

We reason first about the probability that two points in the high dimensional
space are neighbors. Write the conditional probability that xj is a neighbor of xi

as pj|i. Write

wj|i = exp

(
||xj − xi ||2

2σ2
i

)
.

We use the model
pj|i =

wj|i∑
k wk|i

.

Notice this depends on the scale at point i, written σi. For the moment, we assume
this is known. Now we define pij the joint probability that xi and xj are neighbors

19.1. Better Low Dimensional Maps 458

0

0

0
1
2
3
4
5
6
7
8
9

0

0

0
1
2
3
4
5
6
7
8
9

Figure 19.1: Sammon mappings of 1000 samples of a 784 dimensional MNIST digits.
On the left, the mapping used the whole digit vector, and on the right, the data
was reduced to 30 dimensions using PCA, then subjected to a Sammon mapping.
The class labels were not used in training, but the plot shows class labels. This helps
to determine whether the visualization is any good—you could reasonably expect a
visualization to put items in the same class close together and items in very different
classes far apart. As the legend on the side shows, the classes are moderately well
separated. Reducing dimension doesn’t appear to make much difference

by assuming pii = 0, and for all other pairs

pij =
pj|i + pi|j

2N
.

This is an N ×N table of probabilities; you should check that this table represents
a joint probability distribution (i.e., it’s non-negative, and sums to one).

We use a slightly different probability model in the low dimensional space. We
know that, in a high dimensional space, there is “more room” near a given point
(think of this as a base point) than there is in a low dimensional space. This means
that mapping a set of points from a high dimensional space to a low dimensional
space is almost certain to move some points further away from the base point than
we would like. In turn, this means there is a higher probability that a distant point
in the low dimensional space is still a neighbor of the base point. Our probability
model needs to have “long tails”—the probability that two points are neighbors
should not fall off too quickly with distance. Write qij for the probability that yi

and yj are neighbors. We assume that qii = 0 for all i. For other pairs, we use the
model

qij(y1, . . . ,yN) =

1
1+||yi−yj||2∑

k,l,k �=l
1

1+||yl−yk||2

(where you might recognize the form of Student’s t-distribution if you have seen
that before). You should think about the situation like this. We have a table
representing the probabilities that two points in the high dimensional space are
neighbors, from our model of pij . The values of the y can be used to fill in an

19.1. Better Low Dimensional Maps 459

N × N joint probability table representing the probabilities that two points are
neighbors. We would like this tables to be like one another. A natural metric of
similarity is the KL divergence, of Sect. 15.2.1. So we will choose y to minimize

Ctsne(y1, . . . ,yN) =
∑

ij

pij log
pij

qij(y1, . . . ,yN)
.

Remember that pii = qii = 0, so adopt the convention that 0 log 0/0 = 0 to avoid
embarrassment (or, if you don’t like that, omit the diagonal terms from the sum).
Gradient descent with a fixed steplength and momentum was sufficient to minimize
this in the original papers, though likely the other tricks of Sect. 16.4.4 might help.

There are two missing details. First, the gradient has a quite simple form
(which I shall not derive). We have

∇yi
Ctsne = 4

∑

j

[
(pij − qij)

(yi − yj)

1 + ||yi − yj ||2

]
.

Second, we need to choose σi. There is one such parameter per data point, and
we need them to compute the model of pij . This is usually done by search, but
to understand the search, we need a new term. The perplexity of a probability
distribution with entropy H(P) is defined by

Perp(P) = 2H(P).

The search works as follows: the user chooses a value of perplexity; then, for each i,
a binary search is used to choose σi such that pj|i has that perplexity. Experiments
currently suggest that the results are quite robust to wide changes in the users
choice. In practical examples, it is quite usual to use PCA to get a somewhat
reduced dimensional version of the x.

Worked Example 19.2 T-SNE on MNIST Data

Prepare a T-SNE mapping of 1000 examples, drawn at random, from the
MNIST dataset to two dimensions.

Solution: The problem has 2000 variables (the unknown y’s). I used the very
nice MATLAB code provided by Laurens van der Maaten at https://lvdmaaten.
github.io/tsne/. There are codes for a variety of other environments on that
page, too. I tried two cases: in one, I used principal coordinate analysis to map
the digits to 30 dimensions and in the other, I mapped to 200 dimensions. I
then computed the T-SNE mapping for each case. Figure 19.2 shows results.
Note that the dimension reduction doesn’t seem to have changed anything
important, and it didn’t make the method notably faster, either.

https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/

19.2. Maps That Make Low-D Representations 460

0

0

0

0

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

Figure 19.2: A T-SNE mapping of 1000 samples of a 784 dimensional dataset. On
the left, the data was reduced to 30 dimensions using PCA, then subjected to a T-
SNE mapping. On the right, the data was reduced to 200 dimensions using PCA,
then mapped. The class labels were not used in training, but the plot shows class
labels. This helps to determine whether the visualization is any good—you could
reasonably expect a visualization to put items in the same class close together and
items in very different classes far apart. As the legend on the side shows, T-SNE
separates the classes much more effectively than Sammon mapping (Fig. 19.1)

Remember This: T-SNE produces an embedding of high dimensional
data into a lower dimensional space. It does so by solving an optimization
problem to choose coordinates in a low dimensional space for each data
point. The optimization problem tries to make the probability a pair of
points are neighbors in the low dimensional space similar to that probabil-
ity in the high dimensional space. T-SNE appears less inclined to distort
datasets than either principal coordinate analysis or Sammon mapping.

19.2 Maps That Make Low-D Representations

T-SNE and Sammon mapping establish that we can produce low dimensional rep-
resentations from high dimensional data. These representations are helpful, but
there are problems. First, while we have low-d representations, we don’t have a
map to low-d—for example, we have no process to construct the y corresponding to
a new x (other than applying the whole procedure for a new set of points. Second,
we don’t have any way of talking about whether the representation is “right”; in
fact, we don’t have any way of telling a good representation from a bad one.

The natural way to fix the first problem is to try and build a map that accepts
the x and produces a y. This could be a network. We could (say) train the network

19.2. Maps That Make Low-D Representations 461

to produce the yi made by a set of xi and smooth for other x. This isn’t really
appealing, because we don’t know whether the yi are right. One way to fix this
is to insist that each yi can be used to reconstruct its original xi. We train two
networks together: One produces an y from an x; and another reconstructs the x
from the y alone.

19.2.1 Encoders, Decoders, and Autoencoders

An encoder is a network that can take a signal and produce a code. Typically,
this code is a description of the signal. For us, signals have been images and
I will continue to use images as examples, but you should be aware that all I
will say can be applied to sound and other signals. The code might be “smaller”
than the original signal—in the sense it contains fewer numbers—or it might even
be “bigger”—it will have more numbers, a case referred to as an overcomplete
representation. You should see our image classification networks as encoders. They
take images and produce short representations. A decoder is a network that can
take a code and produce a signal. We have not seen decoders to date.

An autoencoder is a coupled pair of encoder and decoder. The encoder maps
signals into codes, and the decoder reconstructs the original signal from those codes.
The pair is trained so that the reconstruction is accurate—if you feed a signal x
into an encoder E to get y = E(x), then the decoder D should ensure that D(y) is
close to x. Autoencoders have great potential to be useful, which we will explore in
the following sections. One application is in unsupervised feature learning, where
we try to construct a useful feature set from a set of unlabelled images. We could
use the code produced by the autoencoder as a source of features. Another possible
use for an autoencoder is to produce a clustering method—we use the autoencoder
codes to cluster the data. Yet another possible use for an autoencoder is to generate
images. Imagine we can train an autoencoder so that (a) you can reconstruct the
image from the codes and (b) the codes have a specific distribution. Then we could
try to produce new images by feeding random samples from the code distribution
into the decoder.

We will describe one procedure to produce an autoencoder. The encoder is a
set of layers that produces a block of data we shall call a code. For concreteness,
we will discuss grey level images, and assume the encoder consists of convolutional
layers. Write Ii for the i’th input image. All images will have dimension m×m×1.
We will assume that the encoder produces a block of data that is s × s × r. It is
usual to have these layers produce a block of data where the spatial dimensions
are smaller than the input. This is the result of stride and pooling—s is likely a
lot smaller than m. Write E(I, θe) for the encoder applied to image I; here θe are
the weights and biases of the units in the encoder. Write Zi = E(Ii, θe) for the
code produced by the encoder for the i’th image. Decoder architectures typically
mimic encoder architectures (but with the data flow in the opposite direction!).
This leads to a characteristic appearance in pictures of the network, and encoder–
decoder architectures are often called hourglass networks. Figure 19.3 shows a
simple autoencoder architecture derived from our MNIST classifier of Sect. 17.2.1.

19.2. Maps That Make Low-D Representations 462

28x28x1
24x24x20

12x12x20
8x8x50

4x4x50

C
onv 5x5x1x20

M
axpool 2x2

D
econv 5x5x50x20

M
axpool 2x2

C
onv 5x5x20x50

M
axunpool 2x2

M
axunpool 2x2

D
econv 5x5x1x20

28x28x1

8x8x50
12x12x20

24x24x20

Code

Encoder Decoder

Figure 19.3: A simple autoencoder architecture following the network architecture
of Sect. 17.2.1. Note the hourglass shape of the picture of the data blocks—the
encoder makes them smaller, and the decoder then makes them bigger again

In the left half of this figure, big data blocks get smaller; in the right, small blocks
get bigger.

Remember This: An autoencoder consists of an encoder, which is
trained to produce low dimensional codes from high dimensional data, and
a decoder, which is trained to recover that data from the codes. The two
are trained together to produce codes that allow reconstruction.

19.2.2 Making Data Blocks Bigger

We know how to make a big block of data smaller. But building a decoder requires
making a small block of data bigger. This requires new tricks (or, rather, modified
versions of old tricks). A transposed convolution layer or deconvolution layer
increases the spatial dimensions of a block of data. In the simplest case (stride 1, as
in the example of Fig. 19.3) padding will do the trick. So padding an 8× 8 feature
map by four on top, bottom, left, and right, then applying a 5× 5 kernel will lead
to a 12× 12 feature map.

19.2. Maps That Make Low-D Representations 463

3x3 Conv S2,
pad 1 tl

4 x 4
blockx

x

x
x x

Figure 19.4: A deconvolutional layer or transposed convolutional layer takes a
spatially small block of data and enlarges it. The most common case involves
stride 2 and a 3 × 3 kernel, illustrated here. An m × m feature map arrives. A
(2m+1)× (2m+1) intermediate feature map is created, and populated with values
from the input map. The values can be placed at every second location (a larger
stride would place them further apart), as illustrated. Various methods use the
locations marked with an “x” differently (one could leave them at zero; copy input
pixels; or interpolate input pixels). The intermediate feature map is padded with
one row and one column, then a 3× 3 kernel is applied. The result is 2m× 2m

Dealing with stride in the layers requires more care. Figure 19.4 illustrates the
process for a 2× 2 feature map. There are several options for enlarging the feature
map. For the simplest, take an m × m feature map, and create an intermediate
map of zeros that is (2m+1)× (2m+1). Place an input feature map value at every
second location of the intermediate map (Fig. 19.4). Alternatively, some locations in
the intermediate map can be reconstructed with bilinear interpolation, a standard
upsampling procedure (marked with “x”s in Fig. 19.4). This is very slightly slower,
but can suppress some artifacts in reconstruction. Either procedure produces a
(2m + 1) × (2m + 1) feature map. Now pad top and left with zeros, and apply a
3× 3 convolution to obtain a 2m× 2m map.

Encoders often have pooling layers. A pooling layer loses information by
choosing the largest (resp. average) of a set of values. When the encoder and
decoder have mirrored layers, it is straightforward to build an unpooling layer.
We will assume that pooling windows do not overlap. For average pooling, the
pooling layer takes a window, computes an average, and reports that at a location.
Unpooling average pooling is straightforward if the pooling windows don’t overlap—
take the average value at an input location and copy it to each of the elements of the
corresponding window in the output location (Fig. 19.5). Unpooling max pooling
is slightly more elaborate, and works only if the pooling and unpooling mirror one
another (Fig. 19.5). Adjust the pooling layer so that it records which of the pooling
window elements was the max. To unpool, create a zero intermediate feature map
of the appropriate size. Now use the pointers created when the feature map was
pooled to place the pooled value in the corresponding window location on the
unpooled image.

One last trick is important. Think about the final layer of the decoder, which
will be a convolutional layer followed by a non-linearity. Using a ReLU for the
non-linearity should seem odd to you, because we know that image pixel values are
bounded above as well as below. It is usual to use a sigmoid layer here. The
sigmoid function is

19.2. Maps That Make Low-D Representations 464

x
x

x
x

x
x

x
x x

x
x

Modified max-pool

Unpooling max-poolUnpooling avg-pool

x

Figure 19.5: When the pooling windows do not overlap, unpooling an avg-pool
layer is straightforward (left). The layer makes an intermediate map the size of the
pooling layers input, with one copy of the average for each location in the pooling
window. Unpooling a max-pooling layer is more intricate (right). The max-pooling
layer is modified to record which of the elements of the window is the max; this
is passed forward with the pooling results. At unpooling time, this information is
used to place pixel values in a map of zeros. The “x”s in the figure are pixels whose
values are ignored by the pooling process

σ(x) =
1

1 + e−x
.

For very small values of x, the sigmoid is close to zero, and for large values it is
close to one. There is a smooth transition around zero. A sigmoid layer accepts a
block of data and applies the sigmoid non-linearity to each element of the block.
Using a sigmoid layer means that the output is in the range 0 to 1. If your images
are scaled 0 to 255, you will need to rescale them to compute a sensible loss like
this.

We have Zi = E(Ii, θe), and would like to have D(Zi, θd) close to Ii. We
could enforce this by training the system, by stochastic gradient descent on θe, θd,
to minimize ||D(Zi, θd)− Ii ||2. One thing should worry you. If s × s × r is larger
than m×m, then there is the possibility that the code is redundant in uninteresting
ways. For example, if s = m, the encoder could consist of units that just pass on
the input, and the decoder would pass on the input too—in this case, the code is
the original image, and nothing of interest has happened. This redundancy might
be quite hard to spot and could occur even if s×s×r was smaller than m×m if the
network “discovered” some clever representational trick. There is a good chance
that an autoencoder trained with this loss alone will behave badly.

Remember This: A decoder makes small data blocks—the codes—
larger using a transposed convolution layer or deconvolution layer. The
input block is increased in size using one of the several methods, then sub-
jected to a convolution.

19.2. Maps That Make Low-D Representations 465

Figure 19.6: Three batches of face images from the widely used Celeb-A dataset,
which you can find at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html, with black
boxes over the faces where the inpainting autoencoder is required to reconstruct the
image without seeing it. Results in Fig. 19.7. Figure courtesy of Anand Bhattad,
of UIUC

19.2.3 The Denoising Autoencoder

There is a clever trick to avoid this problem. We can require the codes to be robust,
in the sense that if we feed a noisy image to the encoder, it will produce a code
that recovers the original image. This means that we are requiring a code that not
only describes the image, but is not disrupted by noise. Training an autoencoder
like this results in a denoising autoencoder. Now the encoder and decoder can’t
just pass on the image, because the result would be the noisy image. Instead, the
encoder has to try and produce a code that isn’t affected (much) by noise, and the
decoder has to take the possibility of noise into account while decoding.

Depending on the application, we could use one (or more) of a variety of
different noise models. These impose slightly different requirements on the behavior
of the encoder and decoder. There are three natural noise models: add independent
samples of a normal random variable at each pixel (this is sometimes known as
additive Gaussian noise); take randomly selected pixels, and replace their values
with 0 (masking noise); and take randomly selected pixels and replace their values
with a random choice of brightest or darkest value (salt and pepper noise).

Some extreme training tricks are possible, and sometimes justified. Fig-
ures 19.6 and 19.7 illustrates an autoencoder trained to fill in large blocks of an
image (an inpainting autoencoder). This can work for, say, faces, because the
missing piece of face can be predicted moderately well from the remaining face.

Remember This: Autoencoder training can be tricky, because training
can discover trivial encodings, particularly if codes are large. Training can
be improved by requiring the autoencoder denoise its inputs.

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

19.2. Maps That Make Low-D Representations 466

Figure 19.7: Top: shows three batches of face images from the widely used Celeb-A
dataset, which you can find at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.
Bottom: shows the output of an inpainting autoencoder on these images. You
should notice that the autoencoder does not preserve high spatial frequency details
(the faces have been slightly blurred), but that it mostly reproduces the faces rather
well. The inputs are in Fig. 19.6; notice there are large blocks of face missing,
which the autoencoder is perfectly capable of supplying. Figure courtesy of Anand
Bhattad, of UIUC

It remains tricky to get really nice images from the decoder. We will discuss
some of the tricks later, but using sum of squared errors as a reconstruction loss
tends to produce somewhat blurry images (e.g., Fig. 19.8). This is because the
square of a small number is very small. As a result, the sum of squared error loss
tends to prefer errors that are small, but somewhat widely distributed. This is a
quirk that is quite easy to spot with a little practice (Fig. 19.9 sketches why small
widely distributed errors tend to result in blur). The loss is not a particularly good
representation of what is important in the appearance of an image. For example,
shifting an image left by one pixel leads to a huge sum of squares error, without
really changing the image in any important way.

A perceptual loss between two images I1 and I2 is computed as follows.
Obtain an image classification network (VGGNet is popular for this purpose). Write
Di(I1) for the block of data that leaves the i’th layer of this network when I1 is

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

19.2. Maps That Make Low-D Representations 467

Figure 19.8: Top: shows three batches of face images from the widely used Celeb-
A dataset, which you can find at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.
Bottom: shows the output of a simple autoencoder on these images. You should
notice that the autoencoder does not preserve high spatial frequency details (the
faces have been slightly blurred), but that it mostly reproduces the faces rather
well. It is traditional to evaluate image autoencoders on face datasets, because
mild blurring often makes a face look more attractive. Figure courtesy of Anand
Bhattad, of UIUC

passed in. This block has size Wi×Hi×Fi. Reshape the block into a vector di(I1).
Then the feature reconstruction loss for the i’th layer is

Lfr,i(I1, I2) =
(

1

WiHiFi

)(
||di(I1),di(I2) ||2

)
.

Choose a set of weights wi for each layer. The perceptual loss between I1 and I2
is then

Lper(I1, I2) =
∑

i

wiLfr,i(I1, I2).

It is usual to use only the first few layers in computing this loss. The loss works
because the early layers of a classification network look for local patterns in the
image, and forcing the layer outputs to be similar means that local patterns are

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

19.2. Maps That Make Low-D Representations 468

Intensity Reconstructed
Intensity

Difference

Figure 19.9: Autoencoders trained with a sum of squared error loss tend to produce
rather blurry images. This is because placing a sharp edge in slightly the wrong
place is expensive with this loss (even though it doesn’t change the image much),
but blurring an edge is cheap. On the left, a stylized image edge with one possible
reconstruction error. The top graph shows the image intensity along some line (x is
distance along the line); the middle graph shows one possible reconstruction, with
the edge correctly reproduced but in the wrong place; and the lower graph shows
the resulting error. This error will have a large sum of squares, because it consists
of large values. On the right, a stylized image edge with a different reconstruction
error, which makes the edge blurry. Notice how the error is small and spread out;
as a result, the sum of squared errors is small. We can safely assume that an
autoencoder will make some kind of error. Using the sum of squared errors means
that blurring edges is relatively cheap, and so likely to occur

similar. This preserves edges, for example, because a smoothed edge doesn’t look
the same as a sharp edge to a pattern detector. Strong autoencoders can be trained
with a loss

Lgen(I1, I2) = λ1Lper(I1, I2) + λ2||I1 − I2 ||2.
Now write noise(Ii) to mean the result of applying noise to image Ii. The

training loss, for example, i, encoder parameters θe, and decoder parameters θd is

Lgen(D(Zi, θd), Ii), where Zi = E(noise(Ii), θe).

You should notice that masking noise and salt and pepper noise are different to
additive Gaussian noise, because for masking noise and salt and pepper noise only
some pixels are affected by noise. It is natural to weight the least-square error at
these pixels higher in the reconstruction loss—when we do so, we are insisting that
the encoder learn a representation that is really quite good at predicting missing
pixels. Training is by stochastic gradient descent, using one of the gradient tricks
of Sect. 16.4.4. Note that each time we draw a training example, we construct a
new instance of noise for that version of the training example, so the encoding and
decoding layer may see the same example with different sets of pixels removed, etc.

Autoencoders have a variety of interesting uses. Because the codes are small,
but represent the signals that are encoded, they can be used to index the signals
or to cluster them. They are often used to learn features that might be useful for
some purpose other than reconstruction. One important case occurs when we have

19.3. Generating Images from Examples 469

little labelled image data. There aren’t enough labels to learn a full convolutional
neural network, but we could hope that using an autoencoder would produce usable
features. The process involves: fit an autoencoder to a large set of likely relevant
image data; now discard the decoders, and regard the encoder stack as something
that produces features; pass the code produced by the last layer of the stack into a
fully connected layer; and fine-tune the whole system using labelled training data.
The features aren’t necessarily well adapted to classification—with a lot of labelled
data, it’s better to use the methods of Chap. 18—but they tend to be quite good.

Remember This: Using only sum of square errors to train image
autoencoders tends to result in blurry reconstructed images. The perceptual
loss helps to improve this.

19.3 Generating Images from Examples

Assume Alice has a large dataset of images which need to remain private. For
example, these could be medical images, and Alice might not have permission to
show pictures of other peoples’ insides to the world. Bob wants to build systems
for classifying medical images. If Alice could train a method to make images (an
image generator) using her images, she could then generate pictures. The method
would need to produce images that were like Alice’s images, but not the same. If
Alice could prove that releasing the generated pictures doesn’t violate the privacy
rights of her patients, and that they’re “right,” then she could release them to Bob.
Proving it’s acceptable to release the images requires some work—for example, if the
generator just reorganizes or copies the training data, there is a problem. Proving
that the images are “right” may also require some work. But Alice may have a
way to show Bob something like her data that helps Bob and doesn’t hurt Alice’s
patients.

It’s worth understanding why it’s hard to generate images. The natural strat-
egy is to build a model of the probability distribution of images, P (X), then draw
samples from that model. Such a model is hard to build directly, because there is
a lot of structure in an image. For most pixels, the colors nearby are about the
same as the colors at that pixel. At some pixels, there are sharp changes in color.
But these edge points are very highly organized spatially, too—they (largely) de-
marcate shapes. There is coherence at quite long spatial scales in images, too. For
example, in an image of a donut sitting on a table, the color of the table inside the
hole is about the same as the color outside. All this means that the overwhelming
majority of arrays of numbers are not images. If you’re suspicious, and not easily
bored, draw samples from a multivariate normal distribution with unit covariance
and see how long it will take before one of them even roughly looks like an image
(hint: it won’t happen in your lifetime, but looking at a few million samples is
a fairly harmless way to spend time). This section will be a very broad survey,
and will focus on image generation. But procedures for generating images from
examples will apply to other kinds of signal, too.

19.3. Generating Images from Examples 470

19.3.1 Variational Autoencoders

Here is one natural strategy for generating images. Build an autoencoder. Now
generate random codes, and feed them into the decoder. It’s worth trying this
to reassure yourself that it really doesn’t work. It doesn’t work for two reasons.
First, the codes that come out of a decoder have a complicated distribution, and
generating codes from that distribution is difficult because we don’t know it. Notice
that choosing one code from the codes produced by a training dataset isn’t good
enough—the decoder will produce something very close to a training image, which
isn’t what we’re trying to achieve. Second, the decoder has been trained to decode
the training codes only. The training procedure doesn’t force it to produce sensible
outputs for codes that are near training codes, and most decoders in fact don’t do
so.

It is possible to train an autoencoder to overcome both difficulties. These are
known as variational autoencoders. Rather than producing codes, the encoder
produces a representation of a probability distribution. Typically, the encoder takes
an input image and produces a mean value for the code that would be produced
by that distribution and a set of standard deviations. It does so to represent
the distribution of codes for images “near” the input image. The set of all codes
produced by a decoder like this has a probability distribution that is a very large
mixture of normal distributions (one per training example).

The next step is to write a training loss that scores the KL divergence between
the code distribution and a standard distribution. This is typically a standard
normal distribution. This loss would drive the encoder–decoder pair so that the
code distribution is a standard normal distribution, meaning it is easy to draw a
sample from the code distribution.

We must now ensure that the decoder can decode codes that are not those
seen in training. Here is how to do this. When an image is passed into the encoder,
it produces a mean and standard deviation. Rather than showing the decoder this
mean, draw a sample from the normal distribution represented by that mean and
standard deviation. This is a code that (a) comes from the code distribution and
(b) is “close” to the code that results from the original training image. Now write
a loss that requires the decoder takes that code, and produces an image “close” to
the original training image.

I have omitted the details, because they are somewhat delicate and are not
for everyone. However, assume you have trained an encoder/decoder pair like this
(there is good evidence that this can be done). Then you can generate images by
drawing samples of a standard normal distribution, and passing them through the
decoder.

Variational autoencoders tend to produce blurry images. Adjusting the loss to
improve the images is unattractive (you might spend all of your time adding terms
to the loss to suppress new effects). An alternative is to try and show that some
competent classifier can’t tell the difference between a real image and a generated
image.

19.3. Generating Images from Examples 471

Remember This: Variational autoencoders are trained to produce codes
of a known distribution. The training procedure tries to ensure that the
decoder produces sensible results for codes that are close to codes observed
in training. As a result, the decoder can produce sensible images from
random numbers, though the results are often blurry.

19.3.2 Adversarial Losses: Fooling a Classifier

Here is a strategy for generating specialized images, for example, images of faces.
Construct a decoder. Feed it with a stream of random codes, drawn as IID samples
from some convenient distribution. Now train the decoder by requiring that a
competent adversary can’t tell the difference between the generated images and
real images of faces. In this scheme, the decoder is usually called a generator and
the adversary is a classifier usually called a discriminator. The discriminator will
need training, too. The natural procedure is to construct a discriminator using the
best generator you have; then adjust the generator to fool that; then readjust the
discriminator; then the generator; and so on. In this scheme, the decoder is usually
called a generator, and networks trained like this are usually called generative
adversarial networks or GANs. Actually imposing these requirements involves
important technical difficulties.

Write G(z) for an image generated from a code z; write D(x) for the discrim-
inator applied to some image x. We assume the discriminator produces a number
between 0 and 1, and we would like it to produce a 1 for any real image, and a 0
for any synthetic image. Now consider the cost function

C(D,G) =
1

Nr

∑

xi∈real images

log (D(xi)) +
1

Ns

∑

zj∈codes
log (1−D(G(zj))) .

If the discriminator works very well (i.e., can tell the difference between real and
synthetic images) this will be large. If the generator works very well (i.e., can fool
the discriminator), the cost will be small. So we could try and find D̂ and Ĝ that
are obtained as

argmin
G

argmax
D

C(D,G).

Here G would be some form of decoder, and D would be some form of classifier.
It seems natural to try using stochastic gradient descent/ascent on this problem.
One scheme is to repeatedly fix the G, and take some uphill steps in D; now fix D,
and take some downhill steps in G. This is where the term adversarial comes from:
the generator and the discriminator are adversaries, trying to beat one another in
a game.

This apparently simple scheme is fraught with practical and technical difficul-
ties. Here is one important difficulty. Imagine G isn’t quite right, but D is perfect,
and so reports 1 for every possible true image and 0 for every possible synthetic
image. Then there is no gradient to train G, because any small update of G will

19.3. Generating Images from Examples 472

Figure 19.10: Three batches of face images generated by a variant of the GAN
strategy described in Sect. 19.3.2, using the Celeb-A dataset (which you can find
at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) as training data. You should
notice that these images really look like faces “at a glance,” but if you attend
you’ll see various slightly creepy eyes, small global distortions of the face shape,
odd mouth shapes, and the like. Figure courtesy of Anand Bhattad, of UIUC

still produce images that aren’t quite right. This means that we may want a D
that isn’t very good. In fact, we are requiring that D has an important property:
if you make an image “more real,” then D will produce a larger value, and if you
make it “less real,” D will produce a smaller value. This is a much more demanding
requirement than requiring D as a classifier.

Here is a second difficulty. Imagine there are two clusters of faces that are
quite different. I will use “glasses” and “no glasses” as an example. In principle,
if the generator does not produce “glasses” faces, then the discriminator has an
easier job (any face with “glasses” can be classified as real). But this is a very weak
signal—it may be hard to use this information to force the generator to produce
faces with “glasses,” particularly if they’re uncommon in the training data. This
leads to a quite common phenomenon, sometimes called mode collapse, where
a generator will produce some kinds of image but not others. This is particularly
difficult to identify experimentally, because it is hard to know what is missing from
the generated images.

Despite these caveats, it has been possible to train networks like this. There is
good evidence that they are capable of producing rather good images (Fig. 19.10),
if the contents are specialized (i.e., one can produce images of faces, of rooms, or
of lungs as below, but not some generic image of anything). There is also good
evidence that the general idea of an adversarial loss can be used to tune other
generators rather well. For example, efforts to improve VAE-like networks or au-
toencoders by imposing an adversarial loss are often successful. The discriminator
can easily spot that real images aren’t fuzzy; and the caveats above are mitigated
by the use of other losses to ensure the generator starts in about the right place.

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

19.3. Generating Images from Examples 473

Remember This: An adversarial loss balances a generator—which
makes images—with a discriminator—which tries to tell a real image from
a generated image. The two compete: the generator tries to fool the dis-
criminator, and the discriminator tries to spot the generator. Training with
adversarial losses can be tricky.

19.3.3 Matching Distributions with Test Functions

Here is an alternative view of our training requirements. You can see the images
made by a generator as samples of a probability distribution P (R) (R for recon-
struct). It is hard to write out the form of this distribution, but easy to sample
it—just draw a random code and pass it through the decoder. The true images
are samples of another probability distribution, P (X). We would like to adjust the
generator so that P (R) is “the same” as P (X).

One way to test whether two distributions are “the same” is to look at ex-
pectations. For example, think about two probability distributions P (x) and Q(x)
on the closed interval from 0 to 1. Choose a sufficiently large set of functions φk,
indexed by k. As a concrete example, you could think of the monomials, where
φ0 = 1, φ1 = x, φ2 = x2, and so on. Now assume Eφk

[P (x)] = Eφk
[Q(x)] for all of

these functions. This implies that, for any other function f(x), Ef [P (x)] must be
arbitrarily close to Ef [Q(x)]. This is because you can represent f(x) with a series
to arbitrary precision, so that

f(x) = aoφo(x) + a1φ1(x) + · · ·+ arbitrarily small error.

In turn, P (x) and Q(x) are “the same” for all practical purposes. If you’ve seen
some formal analysis and probability, you’ll notice that I’ve fudged on a variety of
details here, but you’ll be able to fill them in.

This all suggests the following strategy. Come up with a collection of test
functions φk. Choose the generator to force

∑

k

⎡

⎣ 1

Nr

∑

xi∈real images

φk(xi)−
1

Ns

∑

zj∈codes
φk(G(zj))

⎤

⎦
2

to be small. There are difficulties here, too. First, the collection of test functions
might need to be very large, creating problems with gradients and the like. Second,
these test functions will need to be “useful” in some reasonable way. So, for example,
a test function that extracts the value of a single pixel is unlikely to be much help.
The right way to proceed is to search for a witness function, which is a test
function that emphasizes the difference between the distributions. Notice this is
quite like the adversarial interaction in the previous section: we adjust the generator
so that P (R) is close to P (X) using our current test functions; then we search for
a witness function that emphasizes the difference, and add it to the set of test
functions; then adjust using the new set of tests; and so on.

19.3. Generating Images from Examples 474

Figure 19.11: Images of chest X-Rays generated by a GAN using the one dimen-
sional method sketched in the text. Figure courtesy of Ishan Deshpande and Alex
Schwing, of UIUC. I can show these images because they’re not medical images of
real humans—they were made by a computer program!

Remember This: The distribution of images made by a generator
should match the distribution of training images. One way to evaluate this
is to ensure that there are not test functions that have a different expectation
on the training and generated images. This criterion has an adversarial
component, because the training process needs to identify test functions that
highlight the difference between training and generated images.

19.3.4 Matching Distributions by Looking at Distances

An alternative method for comparing P (R) and P (X) reasons about nearby points.
We will think about two sets of samples {Ri} and {Xj} in one dimension. For
simplicity, we will reason about sample sets that have the same size. If these
samples come from the same distribution, there should be an X close to any R,
and an R close to any X. In particular, a reasonable measure of similarity is to
pair X’s with R’s, then sum the distance between pairs. We choose pairs so that:
each X (resp. R) has exactly one R (resp. X); and the sum of the distances is
minimized. It turns out that one can evaluate this particular distance in an easy
way. Sort the Ri in descending order; sort the Xj in descending order; then obtain
the pairs by pairing the first Ri with the first Xj , the second with the second, and
so on. We now sum the squared distances between pairs.

This trick extends to multiple dimensions in a simple way. Assume we have
high dimensional Ri (resp. Xj). Now choose some random direction in this high
dimensional space, and project the Ri (resp. Xj) onto that direction. If the dis-
tributions are the same, the projected distributions are the same. So we should
obtain a “small” value of the sum for that—and any—projection. In turn, this jus-

19.4. You Should 475

tifies averaging the distances over many random projections. Of course, what we
need is a projection that emphasizes the difference between the generator and true
images, and that involves an adversary again. The procedure looks like this: adjust
the generator so that P (R) and P (X) are close using the current projections; now
find a projection that makes them look different; now adjust the generator using
that projection as well; and proceed. This line of reasoning leads to rather good
generative models, as Fig. 19.11 suggests.

Remember This: A strong measure of similarity between two distri-
butions in one dimension can be obtained by reasoning about the distances
between points. This can be extended to handle high dimensional distribu-
tions by projecting down to one dimension. This criterion has an adver-
sarial component, because the training process needs to identify projections
that highlight the difference between training and generated images.

19.4 You Should

19.4.1 Remember These Terms

embedding . 456
Sammon mapping . 456
perplexity . 459
encoder . 461
overcomplete . 461
decoder . 461
autoencoder . 461
hourglass networks . 461
transposed convolution layer . 462
deconvolution layer . 462
unpooling . 463
sigmoid layer . 463
denoising autoencoder . 465
inpainting autoencoder . 465
perceptual loss . 466
edge points . 469
variational autoencoders . 470
generator . 471
discriminator . 471
generator . 471
generative adversarial networks . 471
GAN . 471
mode collapse . 472
witness function . 473

19.4. You Should 476

19.4.2 Remember These Facts

Sammon mapping embeds data in a low dimensional space 457
T-SNE is the first choice to embed data in a low dimensional space . 460
Autoencoders learn to make small codes which allow reconstruction. 462
Transposed convolution (deconvolution) makes small blocks larger . 464
Training an autoencoder to denoise can be helpful 466
Perceptual loss results in less blurry autoencoded images 469
Variational autoencoders can generate images 471
Adversarial losses improve generators 473
Generators can be trained by matching expectations 474
Generators can be trained by matching one dimensional distributions 475

19.4.3 Be Able to

• Construct a Sammon mapping of a set of data points.
• Construct a T-SNE mapping of a set of data points.
• Train and evaluate a simple autoencoder, using downloaded software.
• Understand what makes a variational autoencoder useful.
• Give a brief account of why images can be generated from random numbers.

Programming Exercises

General Remark: These exercises are suggested activities, and are rather open
ended. It will be difficult to do them without a GPU. You may have to deal with some fun
installing software environments, etc. It’s worthwhile being able to do this, though.

19.1. Download an autoencoder for MNIST data for your preferred programming
environment. For MNIST, there are two kinds of autoencoder. One treats
MNIST data as images (so reports each pixel in the range 0–1 or 0–255) and
the other treats them as binary images (so reports either 0 or 1 at each pixel).
You want the first kind. Start with a pretrained model.
(a) For each image in the MNIST test dataset, compute the residual error of

the autoencoder. This is the difference between the true image and the
reconstruction of that image by the autoencoder. It is an image itself.
Prepare a figure showing the mean residual error, and the first five prin-
cipal components. Each is an image. You should preserve signs (i.e., the
mean residual error may have negative as well as positive entries). The
way to show these images most informatively is to use a mid grey value for
zero, then darker values for more negative image values and lighter values
for more positive values. The scale you choose matters. You should show
mean and five principal components on the same grey scale for all six im-
ages, chosen so the largest absolute value over all six images is full dark
or full light, respectively, and mean and five principal components on a
scale where the grey scale is chosen for each image separately.

(b) Determine the mean and covariance of the codes on training data. Now
draw random samples from a normal distribution with that mean and
covariance, and feed these samples into the decoder. Do the results look
like images?

(c) Model the codes with a mixture of normals in the following way. For each
class, determine the mean and covariance of the codes on training data.
Your mixture distribution is then an evenly weighted sum of the ten class

19.4. You Should 477

distributions. Now draw random samples from this mixture distribution,
and feed these samples into the decoder. Do the results look like images?

(d) Classify the MNIST images using a random decision forest applied to
the autoencoder codes. Compare the results of this approach with using a
straightforward neural network classifier. In particular, how much labelled
training data do you need to classify the MNIST images with reasonable
accuracy like this?

19.2. Download an autoencoder for MNIST data for your preferred programming
environment. For MNIST, there are two kinds of autoencoder. One treats
MNIST data as images (so reports each pixel in the range 0–1 or 0–255) and
the other treats them as binary images (so reports either 0 or 1 at each pixel).
You want the first kind.
(a) Now train the autoencoder. Can you improve the error on the test set

by data augmentation? You should investigate small scales and small
rotations of the images.

(b) Modify the autoencoder by adding a layer to the encoder and a layer to
the decoder, and retrain it. Does it get better?

19.3. Download an autoencoder for CIFAR-10 data for your preferred programming
environment. For CIFAR-10, there are two kinds of autoencoder. One treats
CIFAR-10 data as images (so reports each pixel in the range 0–1 or 0–255)
and the other treats them as binary images (so reports either 0 or 1 at each
pixel). You want the first kind. Start with a pretrained model.
(a) For each image in the CIFAR-10 test dataset, compute the residual error

of the autoencoder. This is the difference between the true image and the
reconstruction of that image by the autoencoder. It is an image itself.
Prepare a figure showing the mean residual error, and the first five prin-
cipal components. Each is an image. You should preserve signs (i.e., the
mean residual error may have negative as well as positive entries). The
way to show these images most informatively is to use a mid grey value for
zero, then darker values for more negative image values and lighter values
for more positive values. The scale you choose matters. You should show
mean and five principal components on the same grey scale for all six im-
ages, chosen so the largest absolute value over all six images is full dark
or full light, respectively, and mean and five principal components on a
scale where the grey scale is chosen for each image separately.

(b) Determine the mean and covariance of the codes on training data. Now
draw random samples from a normal distribution with that mean and
covariance, and feed these samples into the decoder. Do the results look
like images?

(c) Model the codes with a mixture of normals in the following way. For each
class, determine the mean and covariance of the codes on training data.
Your mixture distribution is then an evenly weighted sum of the ten class
distributions. Now draw random samples from this mixture distribution,
and feed these samples into the decoder. Do the results look like images?

(d) Classify the CIFAR-10 images using a random decision forest applied to
the autoencoder codes. Compare the results of this approach with using a
straightforward neural network classifier. In particular, how much labelled
training data do you need to classify the CIFAR-10 images with reasonable
accuracy like this?

19.4. You Should 478

19.4. Download an autoencoder for CIFAR-10 data for your preferred programming
environment.
(a) Now train the autoencoder. Can you improve the error on the test set

by data augmentation? You should investigate small scales and small
rotations of the images.

(b) Modify the autoencoder by adding a layer to the encoder and a layer to
the decoder, and retrain it. Does it get better?

19.5. We will evaluate a variational autoencoder applied to the MNIST dataset.
Obtain (or write! but this isn’t required) a for a variational autoencoder.
Train this autoencoder on the MNIST dataset. Use only the MNIST training
set.
(a) We now need to determine how well the codes produced by this autoen-

coder can be interpolated. For ten pairs of MNIST test images of the
same digit, selected at random, compute the code for each image of the
pair. Now compute seven evenly spaced linear interpolates between these
codes, and decode the result into images. Prepare a figure showing this
interpolate. Lay out the figure so each interpolate is a row. On the left
of the row is the first test image; then the interpolate closest to it; etc.;
to the last test image. You should have a ten rows and nine columns of
images.

(b) For ten pairs of MNIST test images of different digits, selected at random,
compute the code for each image of the pair. Now compute seven evenly
spaced linear interpolates between these codes, and decode the result into
images. Prepare a figure showing this interpolate. Lay out the figure so
each interpolate is a row. On the left of the row is the first test image;
then the interpolate closest to it; etc.; to the last test image. You should
have a ten rows and nine columns of images.

(c) Determine the mean and covariance of the codes on training data. Now
draw random samples from a normal distribution with that mean and
covariance, and feed these samples into the decoder. Do the results look
like images?

(d) Model the codes with a mixture of normals in the following way. For each
class, determine the mean and covariance of the codes on training data.
Your mixture distribution is then an evenly weighted sum of the ten class
distributions. Now draw random samples from this mixture distribution,
and feed these samples into the decoder. Do the results look like images?

(e) Classify the MNIST images using a random decision forest applied to the
variational autoencoder codes. Compare the results of this approach with
using a straightforward neural network classifier. In particular, how much
labelled training data do you need to classify the MNIST images with
reasonable accuracy like this?

Index

1× 1 convolution, 407
L2 norm, 232
k-means, 161
k-means++, 162

absorbing state, 307
accuracy, 4
additive, zero mean, independent

Gaussian noise, 103
affine transformation, 80
affinity, 165
AIC, 248
albedo, 144
AlexNet, 428
all-vs-all, 33
anchor box, 442
approximate nearest neighbor, 9
autoencoder, 461
average pooling, 408
average precision, 447

backpropagation, 383
Backward stagewise regression, 251
backward variable, 326
bag, 42
bag-of-words, 126
bagging, 42
baselines, 4
batch, 26
batch normalization layer, 432
batch size, 26
Bayes risk, 4
bias, 246, 367
biased random walk, 306
BIC, 249
bigram models, 314
bigrams, 314
binary terms, 334
blocks, 404
Boltzmann machine, 351
boosting, 275

bounding box regression, 439
Box-Cox transformation, 216

canonical correlations, 140
canonical variables, 140
chain graph, 334
class conditional probability, 11
class error rate, 6
class-confusion matrix, 5
classifier, 3

definition, 3, 21
nearest neighbors, 7

clustering, 155
complete-link clustering,

156
dendrogram, 156, 157
group average clustering, 156
grouping and agglomeration,

155
partitioning and division,

155
single-link clustering, 156
using K-means, 159

clusters, 79, 155
coefficients, 97
color constancy, 106
comparing to chance, 4
computation graph, 434
condition number, 242
conditional random field, 341
configuration, 439
convolution, 401
convolutional layer, 405
Cook’s distance, 223
cosine distance, 127
cost to go function, 320
cost-to-go function, 334
covariance ellipses, 85
cross-entropy loss, 370
cross-validation, 7

folds, 250

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7

479

https://doi.org/10.1007/978-3-030-18114-7

Index 480

data augmentation, 427
dead units, 376
decay rate, 392
decision boundary, 21
decision forest, 35
decision function, 35
decision stump, 288
decision tree, 34
decoder, 461
deconvolution layer, 462
decorrelation, 157
deep networks, 383
dendrogram, see clustering
denoising autoencoder, 465
dependent variable, 209
descent direction, 25
descriptive statistics, 86
deviance, 262
discrete Markov random field, 353
discriminative, 338
discriminator, 471
distributional semantics, 131
document-term matrix, 128
dropout, 387
dynamic programming, 318

E-step, 189
edge points, 469
edge terms, 334
eigenvalue, 81
eigenvector, 81
elastic net, 267
EM, 183, 188
embedding, 456
emission distribution, 316
empirical distribution, 86
empirical loss, 284
encoder, 461
energy, 352
epoch, 27
error, 4
error cost, 263
expectation maximization, 183,

188
explanatory variables, 209
exponential loss, 289

false negative rate, 5
false positive rate, 5
Fast R-CNN, 441
Faster R-CNN, 441
feature maps, 404
feature stack, 431
feature vector, 4
features, 406
fold, 7
folds, see cross-validation
forward stagewise regression, 251
forward variable, 326
Frobenius norm, 100
fully connected, 377

GAN, 471
Gaussian distribution, 83
generalized linear model, 258
generalizing badly, 6
generative, 338
generative adversarial networks, 471
generator, 471
GLM, 258
gradient boost, 287
gradient descent, 25
graphical model, 336
greedy stagewise linear regression,

277
greedy stagewise regression, 281
group normalization, 433
growth function, 58

Hamming distance, 347
hat matrix, 222
hidden layers, 377
hidden Markov model, 316
hinge loss, 23
hourglass networks, 461
Huber loss, 254
Huber’s proposal 2, 257

idempotence, 243
image classification, 399
ImageNet, 426
inception modules, 434
inference, 317
information gain, 38

Index 481

inlier, 254
inpainting autoencoder, 465
intensity, 261
interpolated precision, 446
IoU, 445
irreducible, 311
irreducible error, 246
iteratively reweighted least squares,

256

Jacobian, 379

k-means, see clustering
kernel, 401
kernel block, 404
KL divergence, 359
Kullback–Leibler divergence, 359

L2 regularized error, 263
label bias problem, 340
lasso, 266
latent semantic analysis, 128
layers, 377
learning curves, 27
learning rate, 26, 372
learning schedule, 27
leave-one-out cross-validation, 7
leverage, 222
likelihood, 11
Likert scales, 126
line search, 25, 286
link function, 258
loadings, 97
localize, 439
log-loss, 370
logistic regression, 259
logit function, 259
loss, 284
loss augmented constraint violation,

347
low rank approximation, 117

M-estimator, see robustness
M-step, 189
MAD, 257
MAP, 317
Markov chain, 305
Markov random field, 353

mask, 401
max pooling, 408
max-cut, 353
maximum a posteriori, 317
maximum entropy Markov models,

339
mean average precision, 447
mean field method, 363
mean-squared error, 212
median absolute deviation, 257
MEMM, 339
minibatch training, 371
mixing weights, 184
mixture of normal distributions, 184
mode collapse, 472
multidimensional scaling, 123
multivariate normal distribution, 83

n-gram models, 314
n-grams, 314
neural network, 377
neurons, 367
non-maximum suppression, 439
normalizing constant, 337

object detection, 399
one hot, 369
one-hot vectors, 354
one-vs-all, 33
outliers, 219
overcomplete, 461
overfitting, 6

padding, 403
Pascal, 425
PCA, 97
perceptual loss, 466
perplexity, 459
phonemes, 317
Places-2, 427
pointwise loss, 50, 285
pooling, 408
posterior, 11
precision, 446
predictor, 49, 275, 284
principal components, 97
principal components analysis, 97

Index 482

principal coordinate analysis, 123
prior, 11

R-CNN, 441
recall, 446
receptive field, 407
recurrent, 307
regions, 440
Regression, 205
regression tree, 279
regularization, 24
regularization parameter, 24
regularization path, 264
regularizer, 24
ReLU, 367
residual, 208, 212
residual connections, 436
ResNets, 436
ridge regression, 230
robust regression, 254
robustness

M-estimator, 254
influence function, 254

M-estimators
scale, 257

ROI pooling layer, 441

Sammon mapping, 456
scale, 254

of an M-estimator, 257
scene, 426
scores, 97
selection bias, 6
selective search, 440
sensitivity, 5
shading, 144
shattering number, 58
sigmoid layer, 463
singular value decomposition, 117
singular values, 118
smooth, 105
smoothing, 315
softmax function, 368
sparse models, 262
specificity, 5
standardizing, 225
stationary distribution, 311

statistical significance, 252
stem, 127
steplength, 26
steplength schedule, 27
stepsize, 26, 372
Stochastic gradient descent, 26
stochastic matrices, 309
stop words, 127
stride, 403
sum-products algorithm, 343
SUN, 426
support vector machine, 23
SVD, 117
SVM, 23
symmetric, 81

term frequency-inverse document
frequency, 134

term-document matrix, 128
test error, 6
test examples, 209
TF-IDF, 134
topic, 185
topic model, 186
total error rate, 4
training error, 6
training examples, 209
training loss, 49
transition probabilities, 305
transposed convolution layer,

462
trellis, 318
trigram models, 314
trigrams, 314

unary terms, 334
unbiased, 7
unigram models, 314
unigrams, 314
union bound, 55
unit, 367
unpooling, 463

validation set, 7
variance, 246
variational autoencoders, 470
variational free energy, 360

Index 483

variational inference, 358
VC dimension, 59
vector quantization, 172
vertex terms, 334
VGG-19, 430
Viterbi algorithm, 318
VQ, 172

weak law of large numbers, 86
weak learners, 275
weights, 367
whitening, 8, 157

Wilks’ lambda, 148
witness function, 473
word embedding, 133
word probabilities, 185
word vectors, 127
WordNet, 426

XGBoost, 294

YOLO, 443

Zipf’s law, 215

Index: Useful Facts

Bernoulli Random Variable, 259

Chebyshev’s Inequality, 52
Convolutional Layer, 405
Covariance, 74
Covariance Matrix, 75

Definition: Bernoulli Random
Variable, 259

Definition: Chebyshev’s Inequality,
52

Definition: Convolutional Layer, 405
Definition: Covariance, 74
Definition: Covariance Matrix, 75
Definition: Hoeffding’s Inequality, 54
Definition: Linear Regression, 209
Definition: Poisson Distribution, 261
Definition: Regression, 208
Definition: The VC Dimension, 60

Generalization Bound in Terms of
VC Dimension, 62

Held-Out Error Predicts Test Error,
from Chebyshev, 52

Hoeffding’s Inequality, 54

Linear Regression, 209

Many Markov Chains Have
Stationary Distributions,
312

Markov Chains, 309
Mean and Variance of an

Expectation Estimated
from Samples, 51

Orthonormal Matrices Are
Rotations, 82

Parameters of a Multivariate Normal
Distribution, 84

Poisson Distribution, 261
Properties of the Covariance Matrix,

75

Regression, 208, 213

The Growth Number of a Family of
Finite VC Dimension, 61

The Largest Variation of Sample
Means Yields a Bound, 62

The VC Dimension, 60
Transition Probability Matrices, 311

Weak Law of Large Numbers, 87

You Can Transform Data to Zero
Mean and Diagonal
Covariance, 83

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7

485

https://doi.org/10.1007/978-3-030-18114-7

Index: Procedures

k-Means Clustering, 161
k-Means with Soft Weights, 166

Agglomerative Clustering, 156

Building a Decision Forest, 42
Building a Decision Forest Using

Bagging, 42
Building a Decision Tree: Overall, 40
Building a Dictionary for VQ, 173

Canonical Correlation Analysis, 141
Choosing a λ, 28
Classification with a Decision Forest,

42
Computing Cook’s Distance, 223
Computing the Backward Variable

for Fitting an HMM, 328
Computing the Forward Variable for

Fitting an HMM, 328
Cross-Validation to Choose a Model,

14

Diagonalizing a Symmetric Matrix,
81

Divisive Clustering, 156

EM, 194
EM for Mixtures of Normals: E-step,

194
EM for Mixtures of Normals:

M-step, 194
EM for Topic Models: E-step, 195
EM for Topic Models: M-step, 195

Fitting a Regression with Iteratively
Reweighted Least Squares,
257

Fitting Hidden Markov Models with
EM, 328

Gradient Boost, 287
Greedy Stagewise Linear Regression,

278
Greedy Stagewise Regression with

Trees, 282

Learning a Decision Stump, 289
Linear Regression Using Least

Squares, 218

Obtaining Some Principal
Components with NIPALS,
103

Principal Components Analysis, 99
Principal Coordinate Analysis, 124

Representing a Signal Using VQ, 174

Simple Image Whitening, 415
Singular Value Decomposition, 118
Splitting a Non-ordinal Feature, 41
Splitting an Ordinal Feature, 40

Training an SVM: Estimating the
Accuracy, 29

Training an SVM: Overall, 29
Training an SVM: Stochastic

Gradient Descent, 30

Updating Parameters for Fitting an
HMM, 329

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7

487

https://doi.org/10.1007/978-3-030-18114-7

Index: Worked Examples

s(B, 3) for a Simple Linear Classifier
on the Line, 58

s(B, 4) for a Simple Linear Classifier
on the Plane, 59

A Simple Discrete MRF for Image
Denoising, 355

Agglomerative Clustering, 159
AIC and BIC, 250
Anxiety and Wildness in Mice, 141

Building an L1 Regularized
Regression, 265

Classifying Breast Tissue Samples,
13

Classifying Heart Disease Data, 43
Classifying Using Nearest Neighbors,

9
Cross-Validation, 251

Denoising MRF—II, 356
Denoising MRF—III, 356

Greedy Stagewise Regression for
Prawns, 281

L1 Regularized Regression for a
“Wide” Dataset, 269

MAP Inference for MRFs Is a Linear
Program, 358

Modelling Short Words, 314

Modelling Text with n-Grams of
Words, 315

Multiclass Logistic Regression with
an L1 Regularizer, 270

Multiple Coin Flips, 308

Opioid Prescribers with XGBoost,
297

Predicting the Quality of Education
of a University, 296

Regressing Prawn Scores Against
Location, 279

Sammon Mapping MNIST Data, 457

T-SNE on MNIST Data, 459
The Gambler’s Ruin, 307
The VC Dimension of the Binary

Functions Produced by a
Linear Classifier on the
Line, 60

The VC Dimension of the Binary
Functions Produced by a
Linear Classifier on the
Plane, 60

Umbrellas, 306
Umbrellas, but Without a Stationary

Distribution, 312
Useful Facts About MRFs, 357

Viruses, 310, 311

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7

489

https://doi.org/10.1007/978-3-030-18114-7

Index: Remember This

Boosting: classification and
regression differ by training
loss, 285

Boosting: gradient boosting builds a
predictor greedily, 288

Boosting: gradient boosting decision
stumps is a go-to, 289

Boosting: predicting the weights in
gradient boost is easier
than it looks, 291

Boosting: the lasso can prune
boosted models, 294

Boosting: use XGBoost for big
gradient boosting problems,
296

CCA can mislead you, 150
Choosing Models: AIC and BIC, 250
Choosing models: an L1

regularization penalty
encourages zeros in models,
264

Choosing Models: stagewise
regressions are greedy
searches, 252

Choosing models: Use the lasso, 268
Classifier: an SVM is a linear

classifier trained with the
hinge loss, 24

Classifier: any SVM package should
build a multiclass classifier
for you, 34

Classifier: definition, 3
Classifier: do not evaluate a classifier

on training data, 7
Classifier: enough examples make a

bad predictor unlikely, 56
Classifier: good and bad properties

of nearest neighbors, 10
Classifier: held-out error predicts

test error (Chebyshev), 53

Classifier: held-out error predicts
test error (Hoeffding), 55

Classifier: linear SVM’s are a go-to
classifier, 33

Classifier: look at false positive rate
and false negative rate
together, 6

Classifier: naive Bayes is simple, and
good for high dimensional
data, 16

Classifier: nearest neighbors has
theoretical guarantees on
the error rate, 8

Classifier: performance summarized
by accuracy or error rate, 5

Classifier: random forests are good
and easy, 44

Classifier: regularization discourages
large errors on future data,
25

Classifier: test error bounds from
training error, finite set of
predictors, 56

Classifier: train linear SVM’s with
stochastic gradient descent,
27

Classifier: VC dimension of linear
classifiers, 61

Clustering: agglomerative and
divisive clustering, 159

Clustering: K-means is the “go-to”
clustering recipe, 171

Clustering: tips for using EM to
cluster, 196

Covariance: correlation from
covariance, 74

Covariance: mean and covariance of
affine transformed dataset,
81

Covariance: mean, variance and
covariance can be used in

© Springer Nature Switzerland AG 2019
D. Forsyth, Applied Machine Learning,
https://doi.org/10.1007/978-3-030-18114-7

491

https://doi.org/10.1007/978-3-030-18114-7

Index: Remember This 492

two senses, 87
CRFs: a CRF has edge weights that

are not joint probabilities,
341

CRFs: dynamic programming works
for forest models, 336

CRFs: HMM’s are generative, which
is inconvenient, 339

CRFs: label bias means you should
not use MEMM’s, 341

CRFs: learn CRF’s discriminatively,
347

CRFs: learning a CRF takes care,
343

EM: EM is a quite general
algorithm, 197

Graphical models: a natural denoiser
for binary images is
intractable, 353

Graphical models: A natural
denoiser for images is also
intractable, 358

Graphical models: KL divergence
measures the similarity of
two probability
distributions, 359

Graphical models: maximum
likelihood estimation uses
KL divergence, 360

Graphical models: mean field
inference works well for
denoising binary images,
364

Graphical models: the variational
free energy bounds KL
divergence, and is tractable,
361

Graphical models: variational
inference uses an easy
distribution close to an
intractable model, 359

High dimensions: high dimensional
data displays odd behavior,
79

High dimensions: the multivariate
normal distribution, 86

Image classification: 1× 1
convolution=linear map,
407

Image classification: Alexnet was a
spectacular success at
image classification, 430

Image classification: batch or group
normalization can help
training, 433

Image classification: CIFAR-100 is a
small hard dataset, 425

Image classification: convolutional
layer + ReLU=Pattern
detector, 406

Image classification: ImageNet is the
a standard large scale image
classification dataset, 426

Image classification: Inception
networks handle features at
multiple spatial scales, 436

Image classification: MNIST and
CIFAR-10 are warmup
datasets, 425

Image classification: PASCAL VOC
2007 remains a standard
image classification dataset,
426

Image classification: pattern
detector responses are
usually sparse, 406

Image classification: Places-2 is a
large-scale scene
classification dataset, 427

Image classification: ResNets can be
very deep and very
accurate, 438

Image classification: SUN is a
large-scale scene
classification dataset, 427

Image classification: there are two
common meanings of
“convolutional layer”, 406

Image classification: VGGNet was a
spectacular success at

Index: Remember This 493

image classification, 432
Image generation: adversarial losses

improve generators, 473
Image generation: generators can be

trained by matching
expectations, 474

Image generation: generators can be
trained by matching one
dimensional distributions,
475

Image generation: variational
autoencoders can generate
images, 471

Mapping and Autencoding:
perceptual loss results in
less blurry autoencoded
images, 469

Mapping and Auto-encoding: T-SNE
is the first choice to embed
data in a low dimensional
space., 460

Mapping and Autoencoding:
autoencoders learn to make
small codes which allow
reconstruction., 462

Mapping and Autoencoding:
Sammon mapping embeds
data in a low dimensional
space, 457

Mapping and autoencoding: training
an autoencoder to denoise
can be helpful, 466

Mapping and Autoencoding:
transposed convolution
(deconvolution) makes
small blocks larger, 464

Modelling: three kinds of error:
irreducible, bias and
variance, 248

Neural: backpropagation yields
gradients, 383

Neural: basic ideas for multilayer
networks, 380

Neural: dropout can be useful, 387
Neural: gradient tricks can help, 393

Neural: making fully connected
layers with convolutional
layers, 405

Neural: Multilayer networks work
well, 390

Neural: softmax yields class
posterior, 369

Neural: train networks by
minimizing loss, 370

Neural: training can be hard, 385
Neural: use a software environment,

386

Object detection: evaluating object
detectors is fiddly, 447

Object detection: how object
detectors work, 440

Object detection: how R-CNN, Fast
R-CNN and Faster R-CNN
work, 443

Object detection: selective search
finds boxes likely to contain
objects, 441

Object detection: YOLO trades off
speed with accuracy, 445

PCA: a few principal components
can represent a high-D
dataset, 98

PCA: PCA can significantly reduce
noise, 105

Regression: appending functions of a
measurement to x is useful,
227

Regression: be suspicious of points
with high Cook’s distance,
224

Regression: be suspicious of points
with high leverage, 223

Regression: Estimating β, 211
Regression: evaluate a GLM with

the model’s deviance, 262
Regression: Evaluates the quality of

predictions made by a
regression with R2, 214

Regression: generalize linear
regression with a GLM, 258

Index: Remember This 494

Regression: greedy stagewise linear
regression is an important
core recipe, 278

Regression: greedy stagewise
regression can fit using
many regression trees, 284

Regression: interpreting regression
coefficients is harder than
you think, 253

Regression: linear regressions can
fail, 217

Regression: logistic regression is one
useful GLM, 260

Regression: multiclass logistic
regression is another useful
GLM, 260

Regression: outliers can affect linear
regressions significantly, 222

Regression: predict count data with
a GLM, 261

Regression: regression trees are like
classification trees, 279

Regression: samples of a standard
normal random variable,
225

Regression: the Box-Cox
transformation, 217

Regression: the hat matrix mixes
training y-values to
produce predictions, 222

Regression: transforming variables is
useful, 215

Regression: you can regularize a
regression, 232

SVD: represent documents with
smoothed word counts, 129

SVD: reweight word counts with
TF-IDF, 135

SVD: smoothed document counts are
a clue to word meanings,
133

SVD: strong word embeddings
require finer measures of
word similarity, 134

SVD: the SVD decomposes a matrix
in a useful way, 118

SVD: the SVD smoothes a data
matrix, 121

SVD: the SVD yields principal
components, 120

	Preface
	Acknowledgments
	Contents
	About the Author
	I Classification
	1 Learning to Classify
	1.1 Classification: The Big Ideas
	1.1.1 The Error Rate and Other Summaries of Performance
	1.1.2 More Detailed Evaluation
	1.1.3 Overfitting and Cross-Validation

	1.2 Classifying with Nearest Neighbors
	1.2.1 Practical Considerations for Nearest Neighbors

	1.3 Naive Bayes
	1.3.1 Cross-Validation to Choose a Model
	1.3.2 Missing Data

	1.4 You Should
	1.4.1 Remember These Terms
	1.4.2 Remember These Facts
	1.4.3 Remember These Procedures
	1.4.4 Be Able to

	2 SVMs and Random Forests
	2.1 The Support Vector Machine
	2.1.1 The Hinge Loss
	2.1.2 Regularization
	2.1.3 Finding a Classifier with Stochastic Gradient Descent
	2.1.4 Searching for λ
	2.1.5 Summary: Training with Stochastic Gradient Descent
	2.1.6 Example: Adult Income with an SVM
	2.1.7 Multiclass Classification with SVMs

	2.2 Classifying with Random Forests
	2.2.1 Building a Decision Tree
	2.2.2 Choosing a Split with Information Gain
	2.2.3 Forests
	2.2.4 Building and Evaluating a Decision Forest
	2.2.5 Classifying Data Items with a Decision Forest

	2.3 You Should
	2.3.1 Remember These Terms
	2.3.2 Remember These Facts
	2.3.3 Use These Procedures
	2.3.4 Be Able to

	3 A Little Learning Theory
	3.1 Held-Out Loss Predicts Test Loss
	3.1.1 Sample Means and Expectations
	3.1.2 Using Chebyshev's Inequality
	3.1.3 A Generalization Bound

	3.2 Test and Training Error for a Classifier from a Finite Family
	3.2.1 Hoeffding's Inequality
	3.2.2 Test from Training for a Finite Family of Predictors
	3.2.3 Number of Examples Required

	3.3 An Infinite Collection of Predictors
	3.3.1 Predictors and Binary Functions
	3.3.2 Symmetrization
	3.3.3 Bounding the Generalization Error

	3.4 You Should
	3.4.1 Remember These Terms
	3.4.2 Remember These Facts
	3.4.3 Be Able to

	II High Dimensional Data
	4 High Dimensional Data
	4.1 Summaries and Simple Plots
	4.1.1 The Mean
	4.1.2 Stem Plots and Scatterplot Matrices
	4.1.3 Covariance
	4.1.4 The Covariance Matrix

	4.2 The Curse of Dimension
	4.2.1 The Curse: Data Isn't Where You Think It Is
	4.2.2 Minor Banes of Dimension

	4.3 Using Mean and Covariance to Understand High Dimensional Data
	4.3.1 Mean and Covariance Under Affine Transformations
	4.3.2 Eigenvectors and Diagonalization
	4.3.3 Diagonalizing Covariance by Rotating Blobs

	4.4 The Multivariate Normal Distribution
	4.4.1 Affine Transformations and Gaussians
	4.4.2 Plotting a 2D Gaussian: Covariance Ellipses
	4.4.3 Descriptive Statistics and Expectations
	4.4.4 More from the Curse of Dimension

	4.5 You Should
	4.5.1 Remember These Terms
	4.5.2 Remember These Facts
	4.5.3 Remember These Procedures

	5 Principal Component Analysis
	5.1 Representing Data on Principal Components
	5.1.1 Approximating Blobs
	5.1.2 Example: Transforming the Height–Weight Blob
	5.1.3 Representing Data on Principal Components
	5.1.4 The Error in a Low Dimensional Representation
	5.1.5 Extracting a Few Principal Components with NIPALS
	5.1.6 Principal Components and Missing Values
	5.1.7 PCA as Smoothing

	5.2 Example: Representing Colors with Principal Components
	5.3 Example: Representing Faces with Principal Components
	5.4 You Should
	5.4.1 Remember These Terms
	5.4.2 Remember These Facts
	5.4.3 Remember These Procedures
	5.4.4 Be Able to

	6 Low Rank Approximations
	6.1 The Singular Value Decomposition
	6.1.1 SVD and PCA
	6.1.2 SVD and Low Rank Approximations
	6.1.3 Smoothing with the SVD

	6.2 Multidimensional Scaling
	6.2.1 Choosing Low D Points Using High D Distances
	6.2.2 Using a Low Rank Approximation to Factor
	6.2.3 Example: Mapping with Multidimensional Scaling

	6.3 Example: Text Models and Latent Semantic Analysis
	6.3.1 The Cosine Distance
	6.3.2 Smoothing Word Counts
	6.3.3 Example: Mapping NIPS Documents
	6.3.4 Obtaining the Meaning of Words
	6.3.5 Example: Mapping NIPS Words
	6.3.6 TF-IDF

	6.4 You Should
	6.4.1 Remember These Terms
	6.4.2 Remember These Facts
	6.4.3 Remember These Procedures
	6.4.4 Be Able to

	7 Canonical Correlation Analysis
	7.1 Canonical Correlation Analysis
	7.2 Example: CCA of Words and Pictures
	7.3 Example: CCA of Albedo and Shading
	7.3.1 Are Correlations Significant?

	7.4 You Should
	7.4.1 Remember These Terms
	7.4.2 Remember These Facts
	7.4.3 Remember These Procedures
	7.4.4 Be Able to

	III Clustering
	8 Clustering
	8.1 Agglomerative and Divisive Clustering
	8.1.1 Clustering and Distance

	8.2 The k-Means Algorithm and Variants
	8.2.1 How to Choose k
	8.2.2 Soft Assignment
	8.2.3 Efficient Clustering and Hierarchical k-Means
	8.2.4 k-Medoids
	8.2.5 Example: Groceries in Portugal
	8.2.6 General Comments on k-Means

	8.3 Describing Repetition with Vector Quantization
	8.3.1 Vector Quantization
	8.3.2 Example: Activity from Accelerometer Data

	8.4 You Should
	8.4.1 Remember These Terms
	8.4.2 Remember These Facts
	8.4.3 Remember These Procedures

	9 Clustering Using Probability Models
	9.1 Mixture Models and Clustering
	9.1.1 A Finite Mixture of Blobs
	9.1.2 Topics and Topic Models

	9.2 The EM Algorithm
	9.2.1 Example: Mixture of Normals: The E-step
	9.2.2 Example: Mixture of Normals: The M-step
	9.2.3 Example: Topic Model: The E-step
	9.2.4 Example: Topic Model: The M-step
	9.2.5 EM in Practice

	9.3 You Should
	9.3.1 Remember These Terms
	9.3.2 Remember These Facts
	9.3.3 Remember These Procedures
	9.3.4 Be Able to

	IV Regression
	10 Regression
	10.1 Overview
	10.1.1 Regression to Spot Trends

	10.2 Linear Regression and Least Squares
	10.2.1 Linear Regression
	10.2.2 Choosing β
	10.2.3 Residuals
	10.2.4 R-squared
	10.2.5 Transforming Variables
	10.2.6 Can You Trust Your Regression?

	10.3 Visualizing Regressions to Find Problems
	10.3.1 Problem Data Points Have Significant Impact
	10.3.2 The Hat Matrix and Leverage
	10.3.3 Cook's Distance
	10.3.4 Standardized Residuals

	10.4 Many Explanatory Variables
	10.4.1 Functions of One Explanatory Variable
	10.4.2 Regularizing Linear Regressions
	10.4.3 Example: Weight Against Body Measurements

	10.5 You Should
	10.5.1 Remember These Terms
	10.5.2 Remember These Facts
	10.5.3 Remember These Procedures
	10.5.4 Be Able to

	11 Regression: Choosing and Managing Models
	11.1 Model Selection: Which Model Is Best?
	11.1.1 Bias and Variance
	11.1.2 Choosing a Model Using Penalties: AIC and BIC
	11.1.3 Choosing a Model Using Cross-Validation
	11.1.4 Greedy Search with Stagewise Regression
	11.1.5 What Variables Are Important?

	11.2 Robust Regression
	11.2.1 M-Estimators and Iteratively Reweighted Least Squares
	11.2.2 Scale for M-Estimators

	11.3 Generalized Linear Models
	11.3.1 Logistic Regression
	11.3.2 Multiclass Logistic Regression
	11.3.3 Regressing Count Data
	11.3.4 Deviance

	11.4 L1 Regularization and Sparse Models
	11.4.1 Dropping Variables with L1 Regularization
	11.4.2 Wide Datasets
	11.4.3 Using Sparsity Penalties with Other Models

	11.5 You Should
	11.5.1 Remember These Terms
	11.5.2 Remember These Facts
	11.5.3 Remember These Procedures

	12 Boosting
	12.1 Greedy and Stagewise Methods for Regression
	12.1.1 Example: Greedy Stagewise Linear Regression
	12.1.2 Regression Trees
	12.1.3 Greedy Stagewise Regression with Trees

	12.2 Boosting a Classifier
	12.2.1 The Loss
	12.2.2 Recipe: Stagewise Reduction of Loss
	12.2.3 Example: Boosting Decision Stumps
	12.2.4 Gradient Boost with Decision Stumps
	12.2.5 Gradient Boost with Other Predictors
	12.2.6 Example: Is a Prescriber an Opiate Prescriber?
	12.2.7 Pruning the Boosted Predictor with the Lasso
	12.2.8 Gradient Boosting Software

	12.3 You Should
	12.3.1 Remember These Definitions
	12.3.2 Remember These Terms
	12.3.3 Remember These Facts
	12.3.4 Remember These Procedures
	12.3.5 Be Able to

	V Graphical Models
	13 Hidden Markov Models
	13.1 Markov Chains
	13.1.1 Transition Probability Matrices
	13.1.2 Stationary Distributions
	13.1.3 Example: Markov Chain Models of Text

	13.2 Hidden Markov Models and Dynamic Programming
	13.2.1 Hidden Markov Models
	13.2.2 Picturing Inference with a Trellis
	13.2.3 Dynamic Programming for HMMs: Formalities
	13.2.4 Example: Simple Communication Errors

	13.3 Learning an HMM
	13.3.1 When the States Have Meaning
	13.3.2 Learning an HMM with EM

	13.4 You Should
	13.4.1 Remember These Terms
	13.4.2 Remember These Facts
	13.4.3 Be Able to

	14 Learning Sequence Models Discriminatively
	14.1 Graphical Models
	14.1.1 Inference and Graphs
	14.1.2 Graphical Models
	14.1.3 Learning in Graphical Models

	14.2 Conditional Random Field Models for Sequences
	14.2.1 MEMMs and Label Bias
	14.2.2 Conditional Random Field Models
	14.2.3 Learning a CRF Takes Care

	14.3 Discriminative Learning of CRFs
	14.3.1 Representing the Model
	14.3.2 Example: Modelling a Sequence of Digits
	14.3.3 Setting Up the Learning Problem
	14.3.4 Evaluating the Gradient

	14.4 You Should
	14.4.1 Remember These Terms
	14.4.2 Remember These Procedures
	14.4.3 Be Able to

	15 Mean Field Inference
	15.1 Useful but Intractable Models
	15.1.1 Denoising Binary Images with Boltzmann Machines
	15.1.2 A Discrete Markov Random Field
	15.1.3 Denoising and Segmenting with Discrete MRFs
	15.1.4 MAP Inference in Discrete MRFs Can Be Hard

	15.2 Variational Inference
	15.2.1 The KL Divergence
	15.2.2 The Variational Free Energy

	15.3 Example: Variational Inference for Boltzmann Machines
	15.4 You Should
	15.4.1 Remember These Terms
	15.4.2 Remember These Facts
	15.4.3 Be Able to

	VI Deep Networks
	16 Simple Neural Networks
	16.1 Units and Classification
	16.1.1 Building a Classifier out of Units: The Cost Function
	16.1.2 Building a Classifier out of Units: Strategy
	16.1.3 Building a Classifier out of Units: Training

	16.2 Example: Classifying Credit Card Accounts
	16.3 Layers and Networks
	16.3.1 Stacking Layers
	16.3.2 Jacobians and the Gradient
	16.3.3 Setting up Multiple Layers
	16.3.4 Gradients and Backpropagation

	16.4 Training Multilayer Networks
	16.4.1 Software Environments
	16.4.2 Dropout and Redundant Units
	16.4.3 Example: Credit Card Accounts Revisited
	16.4.4 Advanced Tricks: Gradient Scaling

	16.5 You Should
	16.5.1 Remember These Terms
	16.5.2 Remember These Facts
	16.5.3 Remember These Procedures
	16.5.4 Be Able to

	17 Simple Image Classifiers
	17.1 Image Classification
	17.1.1 Pattern Detection by Convolution
	17.1.2 Convolutional Layers upon Convolutional Layers

	17.2 Two Practical Image Classifiers
	17.2.1 Example: Classifying MNIST
	17.2.2 Example: Classifying CIFAR-10
	17.2.3 Quirks: Adversarial Examples

	17.3 You Should
	17.3.1 Remember These Definitions
	17.3.2 Remember These Terms
	17.3.3 Remember These Facts
	17.3.4 Remember These Procedures
	17.3.5 Be Able to

	18 Classifying Images and Detecting Objects
	18.1 Image Classification
	18.1.1 Datasets for Classifying Images of Objects
	18.1.2 Datasets for Classifying Images of Scenes
	18.1.3 Augmentation and Ensembles
	18.1.4 AlexNet
	18.1.5 VGGNet
	18.1.6 Batch Normalization
	18.1.7 Computation Graphs
	18.1.8 Inception Networks
	18.1.9 Residual Networks

	18.2 Object Detection
	18.2.1 How Object Detectors Work
	18.2.2 Selective Search
	18.2.3 R-CNN, Fast R-CNN and Faster R-CNN
	18.2.4 YOLO
	18.2.5 Evaluating Detectors

	18.3 Further Reading
	18.4 You Should
	18.4.1 Remember These Terms
	18.4.2 Remember These Facts
	18.4.3 Be Able to

	19 Small Codes for Big Signals
	19.1 Better Low Dimensional Maps
	19.1.1 Sammon Mapping
	19.1.2 T-SNE

	19.2 Maps That Make Low-D Representations
	19.2.1 Encoders, Decoders, and Autoencoders
	19.2.2 Making Data Blocks Bigger
	19.2.3 The Denoising Autoencoder

	19.3 Generating Images from Examples
	19.3.1 Variational Autoencoders
	19.3.2 Adversarial Losses: Fooling a Classifier
	19.3.3 Matching Distributions with Test Functions
	19.3.4 Matching Distributions by Looking at Distances

	19.4 You Should
	19.4.1 Remember These Terms
	19.4.2 Remember These Facts
	19.4.3 Be Able to

	Index
	Index: Useful Facts
	Index: Procedures
	Index: Worked Examples
	Index: Remember This

