
Credimus

Edith Hemaspaandra and Lane A. Hemaspaandra

Abstract We believe that economic design and computational complexity—while
already important to each other—should become even more important to each other
with each passing year. But for that to happen, experts in on the one hand such areas as
social choice, economics, and political science and on the other hand computational
complexity will have to better understand each other’s worldviews. This article, writ-
ten by two complexity theorists who also work in computational social choice theory,
focuses on one direction of that process by presenting a brief overview of how most
computational complexity theorists view the world. Although our immediate moti-
vation is to make the lens through which complexity theorists see the world be better
understood by those in the social sciences, we also feel that even within computer
science it is very important for nontheoreticians to understand how theoreticians
think, just as it is equally important within computer science for theoreticians to
understand how nontheoreticians think.

1 Introduction

Predictions are cheap. Our cheap prediction is:

Economic design and computational complexity should and will in the future
be even more deeply intertwined than they currently are.

E. Hemaspaandra
Department of Computer Science, Rochester Institute of Technology,
Rochester, NY 14623, USA
e-mail: eh@cs.rit.edu

L. A. Hemaspaandra (B)
Department of Computer Science, University of Rochester,
Rochester, NY 14627, USA
URL: http://www.cs.rochester.edu/u/lane

© Springer Nature Switzerland AG 2019
J.-F. Laslier et al. (eds.), The Future of Economic Design, Studies in
Economic Design, https://doi.org/10.1007/978-3-030-18050-8_20

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18050-8_20&domain=pdf
mailto:eh@cs.rit.edu
http://www.cs.rochester.edu/u/lane
https://doi.org/10.1007/978-3-030-18050-8_20

142 E. Hemaspaandra and L. A. Hemaspaandra

What is a bit less cheap is working tomake predictions come true. If the prediction
is broad or ambitious enough, doing that is often a task beyondone paper, one lifetime,
or one generation.

Nonetheless, in this article we will seek to make a small contribution toward our
predication’s eventual realization. In particular, as complexity theorists who have
for more than a decade also been working in computational social choice theory, we
have seen first-hand how deeply important computational social choice theory and
computational complexity have been to each other. And the “to each other” there is
not written casually. As argued in a separate paper (Hemaspaandra 2018), the benefit
of the interaction of those areas has been very much a two-way street.

However, to increase the strength and quality of the interaction, and to thus reap
even more benefits and insights than are currently being gained, a needed foundation
will be mutual understanding. After all, even the different subareas of computer
science have quite different views of what computer science is about, and sometimes
it seems that computer scientists don’t understand even each other’s worldviews.

As complexity theorists, we can expertly address only one direction in which
explanation is needed: trying to explain the—perhaps strange to those who are not
complexity theorists—way that complexity theorists tend to view the world. We
sincerely hope that the reciprocal directions will be addressed by appropriate experts
from themany other disciplines whose practitioners are part of the study of economic
design.

Beyond that, we also embrace and somewhat generalize a hope that for the case of
(computational) social choice is expressed in the above article (Hemaspaandra 2018):
We hope that in time there will be a generation of researchers who are trained through
graduate programs that make students simultaneously expert in computational com-
plexity and one of the other disciplines underpinning economic design—researchers
who in a single person achieve a shared understanding of two areas. But for now,
most researchers have as their core training one area, even if they do reach out to
work in—or work with experts in—another area. And thus we write this article to
try to make as transparent as we can within a few pages the crazy, yet (to our taste)
just-right, way that complexity theorists view the world.

The remainder of this article is organized as follows. Section2 further discusses
the need for, and the importance of improving, mutual understanding. That section
argues that the way that complexity theorists view the world is rarely understood
even by the other areas of computer science, and that the areas of computer science
themselves are separated by huge cultural gaps. Section3 presents what we feel is
the heart of how computational complexity theorists view the world, which is:

We as complexity theorists believe that there is a landscape of beautiful mathe-
matical richness, coherence, and elegance—waiting for researchers to perceive
it better and better with the passing of time—in which problems are grouped
by their computational properties.

Credimus 143

2 The Need for Creed: Why Understanding Each
Other Is Hard yet Needed and Important

In this section, we briefly mention some cultural chasms between complexity and
social choice—and even between complexity and other areas of computer science—
and suggest that shrinking or removing those chasms is important: Understanding
between collaborators is of great value to the collaboration.

2.1 Spanning to Computational Social Choice, Economics,
and Beyond

In this section, we will focus on computational social choice, as that is the particular
facet of economic design that the authors are most familiar with.

This paperwill not itself present themanyways that computational complexity and
computational social choice have interacted positively and in ways that benefit both
areas. As mentioned above, a separate paper (Hemaspaandra 2018) already makes
that case, for example pointing out: how computational social choice has populated
with problems such classes as the �

p
2 level of the polynomial hierarchy and NPPP;

how computational social choice has provided the first natural domain in which
complexity theory’s search-versus-decision separation machinery could be applied;
how that application itself gives insight into how to best frame themanipulative-attack
definitions in computational social choice; how complexity’s “join” operation has
been valuable in proving the impossibility of obtaining certain impossibility results
in computational social choice theory; how the study of online control yielded a
completely new quantifier-alternation characterization of coNP; and much more,
such as how important a role approximation, dichotomy results, and parameterized
complexity have played in computational social choice.

It in fact is quite remarkable how strongly complexity has helped the study of
computational social choice, and is even more remarkable—since this is the direc-
tion that might not have been apparent beforehand—how strongly computational
social choice has helped the study of computational complexity theory. And most
remarkable of all is that these results have usually been obtained by researchers from
one side, although ones who were very interested in the other side. This clearly is
a pair of areas that already is showing very strong content interactions and mutual
benefits. Think of howmuchmore waits to be seen and achievedwhen computational
social choice theorists/social choice theorists and complexity theorists deepen their
understanding of each other.

Some might worry about the “computational” in “computational social choice”
above—namely, worrying that computational social choice is such a young area that
no one is “native” to it. We disagree. It is true that much of the key, early work on this
area—as it was emerging as an areawith a distinct identity—was done by researchers
whose training was in operations research, logic, artificial intelligence (AI), theoret-

144 E. Hemaspaandra and L. A. Hemaspaandra

ical computer science, economics, social choice, political science, or mathematics.
But already a generation of students, now in their 20s and 30s, has been trainedwhose
thesis work was on computational social choice theory: researchers whose “native”
area and identity is—despite the fact that their thesis advisors view themselves as
at their core part of one of the older areas just listed—that they are computational
social choice theory researchers. This is a very good development, and yet we are
asking even more: Now that the area has its own identity, one can hope to grow
researchers whose core training and identity embraces both that young area and the
area of computational complexity.

2.2 Spanning to Other Computer-Science Areas

It is often discussed within computer science departments whether computer science
is even a coherent discipline. After all, if one thinks about which other department
the areas of computer science feel kinship to, for theoreticians that generally would
be mathematics, for systems people that generally would be electrical and com-
puter engineering, for symbolic AI people that often would be one of brain and
cognitive sciences, linguistics, philosophy, or psychology, and for vision/robotics AI
people that might be mechanical engineering, electrical and computer engineering,
or visual science.

The cultural differences are also stark. For example, taking as our examples the
two subareas of computer science that are most strongly represented in computa-
tional social choice research—AI and theory—we have the following contrasts in
culture. Anonymous submissions at the main conferences versus submissions with
the authors’ identities open. Intermediate feedback and rebuttals at the main confer-
ences versus no such round. Authors’ names generally being ordered by contribution
versus authors names always being listed alphabetically.1 Large hierarchical program
committees versus small almost-flat program committees. And that listing is not even
mentioning the issue of the contrasting content of the areas, or their differing views
on conference versus journal publication.

Almost any theoretical computer scientist will have stories of how sharply his or
her perspective has differed from those of his or her nontheory colleagues, e.g., a
nontheory colleague who firmly felt that 8x8 chess—not NxN chess (Storer 1983)
but actual 8x8 chess—under the standard rules (which implicitly limit the length

1One of us once asked a colleague, who at one point was the president of AAAI, whether he, upon
seeing a paper with a very large number of authors with them all in alphabetical order, would really
assume that Dr. Aardvark had made the largest contribution. The colleague looked back as if he’d
been asked whether he really believed that 1+ 1 = 2 and said that he of course would. In fact, in
the different area within computer science known as systems, there is a running semi-joke—that
excellently corresponds with reality—that one can tell how theoretical a given systems conference
is by looking at what portion of its papers list the authors in alphabetical order; in fact, there is a
very funny joke-paper (Appel 1992) that quantifies this—more rigorously than the earlier part of
this sentence does—to prove that the POPL conference is quite theoretical.

Credimus 145

of any game) is a great example of asymptotic complexity, and who advised the
theoretician to go use Google to learn more about this. We suspect that nontheory
computer science faculty members could write quite similar sentences—with differ-
ent examples—from their own points of view, regarding the things theory faculty
members say.

So even the subareas of computer science have some gaps between them as to
understanding, or at least have rather large agree-to-disagree differences. Our hope
is that, regarding the former, this short article may be helpful.

We mention, however, that we do not agree that anything said above shows that
computer science is not a coherent discipline. To us, and in this we aremerely relating
an important,much loved insight that has been around in one formor another formany
decades (Knuth 1997; Harel 1987), there is a unifying core to the field of computer
science: algorithmic thought (and the study of algorithms). That core underpins
AI, systems, and theory, and makes computer science an at least decently coherent
discipline.

3 A Core Belief, and Its Expressions, Interpretations,
and Implications

3.1 A Core Belief

We feel that a core view—in fact, the core view—of complexity theorists is the
following (phrased here both as a profession of belief and as a statement of what is
believed).

[Core Belief We as complexity theorists believe that:] There is a land-
scape of beautiful mathematical richness, coherence, and elegance—waiting
for researchers to perceive it better and better with the passing of time—in
which problems are grouped by their computational properties.

If the subfield can be said to have a creed, this is it.
By saying that complexity theorists feel this, we don’t mean to suggest that it is

exclusive to them. In a less computational vein, the great mathematician Paul Erdős
spoke of “The Book,” which holds the most elegant proof of each mathematical
theorem. He famously said, “You don’t have to believe in God, but you should
believe in The Book,” and surely viewed as moments of true joy those when a proof
so beautiful as to belong in the bookwas discovered. And the great computer scientist
Edsger Dijkstra is traditionally credited2 with this lovely, insightful comment:

2The quote is attributed to him in works of others as early as 1993 (Haines, 1993, p. 4), though
attributing the quote to Dijkstra is disputed, as Michael Fellows published a very similar comment

146 E. Hemaspaandra and L. A. Hemaspaandra

Computer Science is no more about computers than astronomy is about tele-
scopes. — E. Dijkstra

Though different people interpret that quotation in different ways, we have always
interpreted it to suggest almost precisely what our core belief is expressing. Indeed,
the quotation’s implicitly drawn parallel between astronomy studying the structure
of the universe and computer scientists studying a similarly majestic structure is
extremely powerful. And things are made even more pointed in the 1991 version by
Michael Fellows, which follows the same sentiment as that of the quotation with,
“There is an essential unity of mathematics and computer science.”

3.2 The Heretics

Having read Sect. 3.1, theoretical researchers from any field may think, “Well, duh!”
That is, theymay think that the core belief is obvious, andwonder who could possibly
think anything else.

The answer is that quite a large portion of the field computer science thinks some-
thing else. This was most famously expressed in a 1999 “Best Practices Memo”
(Patterson et al. 1999) that was published in Computing Research News, the newslet-
ter of a prestigious group, the Computing Research Association, of over two hundred
North American organizations involved in computing research, including many uni-
versities. To this day, that memo is on the Computing Research Association’s web
site as a best practices memo (Patterson et al. 2017, although there certainly has been
strong pushback on some of its points, see, e.g., Vardi 2009; Fortnow 2009). The
most jump-off-the-page lines in that memo are these:

... experimentalists tend to conduct research that involves creating computational artifacts
and assessing them. The ideas are embodied in the artifact, which could be a chip, circuit,
computer, network, software, robot, etc. Artifacts can be compared to lab apparatus in other
physical sciences or engineering in that they are a medium of experimentation. Unlike lab
apparatus, however, computational artifacts embody the idea or concept as well as being a
means tomeasure or observe it. Researchers test andmeasure the performance of the artifacts,
evaluating their effectiveness at solving the target problem.Akey research tradition is to share
artifacts with other researchers to the greatest extent possible. Allowing one’s colleagues to
examine and use one’s creation is a more intimate way of conveying one’s ideas than journal
publishing, and is seen to be more effective. For experimentalists conference publication is
preferred to journal publication, and the premier conferences are generally more selective
than the premier journals... In these and other ways experimental research is at variance with
conventional academic publication traditions.

in a 1991 manuscript that appeared in a 1993 conference proceedings and published the identical
quotation in 1993 in a Computing Research News article joint with Ian Parberry.

Credimus 147

Underlying this is aworldview that is very different than that ofmost theoreticians.
The worldview is that software systems and devices are often so complex that trying
to theoretically capture their behavior and properties is hopeless, andwe instead need
to experiment on them to make observations. For example, that view might suggest
that operating systems are so enormous and complex that we can’t really capture or
understand precisely their behavior.

Yet theoreticians think otherwise. Theoreticians dream of a time when essentially
all programs—of any size—will have a rigorous, formally specified relationship
between their inputs and their actions/outputs, and when we will seek to prove that
the programs satisfy those relationships (insofar as can be done without running
aground on undecidability issues). Perhaps that time will be decades or centuries
away for extremely complex programs, but we believe it will come. And in fact, real
progress—for example thanks to advances in automated theorem-proving/automated
reasoning—has been made in the past few decades on verifying that even some quite
large programming systems meet their specifications.

In brief, we don’t think that because software systems are complex one can only
experiment on them as if they were great mysteries; rather, we think that, precisely
because they are so complex, the field should increase its efforts to formally under-
stand them, including working on building the tools and techniques to underpin such
an understanding.

To be fair to the above-quoted memo, it carefully had a very separate coverage
in which it described what theoreticians do. But to many theoreticians, viewing
computing systems as too complex to theoretically analyze—and more suitable for
experimenting on—is far too pessimistic, at least as a long-term view.

Is ourCoreBelief utterly optimistic?Not purely so. It is broadly optimistic, inwhat
it believes exists, though to be frank the landscape it is speaking of is typically more
about problems and classes than about analyzing operating systems. But embracing
the Core Belief does not mean that one must be delusional as to time frames. For
example, in Gasarch’s P versus NP poll (Gasarch 2012), only 53% percent of those
polled felt that P versus NP would be resolved by the year 2100. 3% thought it would
never be resolved, and 5% said they simply did not know when/if it will be resolved.

A astounding 92% of the polled theoreticians believe that it will be eventually
resolved, even though currently no path for imminently resolving the question is in
sight (see also the very grim possibility mentioned in the 1970s by Hartmanis and
Hopcroft (1976): that the question might be independent of the axioms of set theory).
Theoreticians have generally taken to heart Sir Thomas Bacon’s 1605 comment from
The Advancement of Learning:

They are ill discoverers that think there is no land, when they can see nothing
but sea. — Thomas Bacon

148 E. Hemaspaandra and L. A. Hemaspaandra

3.3 Landscape and Classification

So what is this landscape that the Core Belief speaks of? And how can we bring it
into better focus?

3.3.1 Axes and Granularity of Classification

The landscape is one where each problem is located by its classification in terms of
variousmeasures.What is its (asymptotic, of course) deterministic time cost?What is
its deterministic space cost? What are its nondeterministic costs? Its costs in various
probabilistic models? What about in nondeterministic models that forbid ambiguity
(i.e., that have at most one accepting path) or that polynomially bound the ambiguity?
What about in quantum computing models and biocomputing models? Howwell can
the problem be—in various senses—solved by heuristics or approximations? What
types of circuit families can capture the problem? What types of interactive proof
classes can capture the problem?

And that is just a quick start to listing aspects of interest. The number of interesting
dimensions along which problems can be classified is already large, and continues
to grow with time. Our landscape is not a physical one, of course, but is a rich world
of mathematical classification.

The granularity with which we group the “locations” in this world itself is inter-
esting. Complexity theorists typically focus on equivalence classes of problems,
linked by some type of reduction. For example, the NP-complete problems are all
those problems that are many-one, polynomial-time interreducible with the problem
of testing the satisfiability of boolean formulas. One can think of the NP-complete
sets as an extremely important feature of the landscape. Yet one can also view the
landscape with an interest in other degrees of granularity. The class of NP-Turing-
complete sets for example contains all the NP-complete sets, and may well contain
additional sets (Lutz and Mayordomo 1996), since Turing reductions are a more
powerful reduction type than many-one reductions. Going in the other direction, the
class of sets that are polynomial-time isomorphic to boolean satisfiability may well
be a strict subset of the NP-complete sets, and it is known to be a strict subset with
probability one relative to a random oracle (Kurtz et al. 1995).

Briefly put, complexity classes usually are defined by placing a bound on some
key resource, e.g., NP is the class of sets that can be accepted by polynomially time-
bounded nondeterministic computation. Complexity classes in some sense are upper
bounds on some dimension of complexity. Reductions are yardsticks by which sets
can be compared. If a set A reduces to a set B by some standard reduction type, we
view A as being “easier or not too much harder” than B, with the details depend-
ing on what power the reduction itself possesses. There are now a huge number of
intensely studied reduction types, capturing such notions as, just as examples, the
amount of time or space the reduction is itself allowed to use; whether the reduction
is a single query or multiple ones and if the latter how they are used and whether

Credimus 149

they are sequential or parallel; and to what extent the reduction itself can act non-
deterministically. And completeness for complexity classes combines a class with a
reduction type, identifying those sets in the class that are so powerful that every set
in the class reduces to them by the given reduction type. In some sense, the com-
pleteness equivalence class of a complexity class groups together those problems,
if any such problems exist (and some parts of the landscape perhaps lack complete
sets Sipser 1982; Gurevich 1983; Hartmanis and Hemachandra 1988; Hemaspaan-
dra et al. 1993), that distill the essence of the potential hardness of the class—they
share the same underlying computational challenge. As such, they help complexity
theorists focus on what the source of a problem’s complexity is.

The joyful obsession and life’swork of complexity theorists is to better understand
this landscape. This often is done though classifying where important problems—or
groups of problems—fall. Farmore rarely yet vastlymore excitingly, complexity the-
orists find new relationships between the different dimensions of classification, e.g.,
by showing that every set in the polynomial hierarchy Turing reduces to probabilis-
tic polynomial time (Toda 1991) or by showing the class of sets having interactive
proofs is precisely deterministic polynomial space (PSPACE) (Shamir 1992).

3.3.2 Classification Is Done for Insights Into the Landscape

The Core Belief and the previous section should hint at a truth that often is surprising
to people who are not complexity theorists. That truth is that complexity theorists
want to classify problems as part of the ongoing attempts to better understand the
landscape of problem complexity. And in particular, we are interested in doing that
even for problems where the classifications we are trying to distinguish between
don’t in practice differ in what they say about how quickly a problem can be solved.

For example, complexity theorists think that it is a rather big deal whether a
problem—if it is an interesting one, such as about logic—is complete for double
exponential time versus for example being complete for triple exponential space.
This isn’t because we think that complete problems for double exponential time are
going to be easy to quickly solve. It is because we want to clarify where interesting
problems fall in the landscape.

Looking at the other extreme, there is a huge amount of research into complexity
classes (such as certain uniform circuit classes and logarithmic-space classes) all of
which are contained in deterministic polynomial time. Yet to most people, determin-
istic polynomial time already is the promised land as to computational cost. Nonethe-
less, smaller classes are intensely studied, to better understand the rich world of com-
plexities that exist there, and which problems have which complexities, although in
fairness we should mention that some of this type of study is also motivated by the
issue of whether the problem can or cannot be parallelized (Greenlaw et al. 1995).

But the real kicker here is that even if SAT solvers turn out to be able to do
stunningly well on NP-complete problems, complexity theorists still will view the
notion of NP-completeness as being of fundamental importance to the landscape.
This is not because we don’t care about how well heuristics can do—that too is

150 E. Hemaspaandra and L. A. Hemaspaandra

a dimension of the landscape, and thus something on which rigorous results are
important and welcome—but rather we think that the notion of NP-completeness
itself is one of the greatest beauties of the landscape, and is natural and compelling
in so very many ways.3

To take as an example one of the most beautiful examples of how profound the
issue is of whether NP-complete sets belong to P, i.e., whether P = NP, we mention
that a not widely known paper by Hartmanis and Yesha (1984) is in effect showing
that whether humans can be perfectly replaced by machines in the task of finding and
presenting particular-sized mathematical proofs of theorems—loosely put, the issue
of whether humans have any chance of having any special creativity and importance
in achieving mathematical proofs—can be characterized by the outcome of such
basic landscape questions as whether P and NP differ, and whether P and PSPACE
differ.

4 Conclusion

To end as we started, we believe that economic design and computational complexity
should become even more important to each other with each passing year, but that an
improved mutual understanding of the areas’ worldviews is important in making that
happen. In that spirit, this article sets out the optimistic worldview that we believe
is held by most computational complexity theorists. And the most central part of
that worldview is that we as complexity theorists believe that there is a landscape of
beautiful mathematical richness, coherence, and elegance—waiting for researchers
to perceive it better and better with the passing of time—in which problems are
grouped by their computational properties.

That is not to say that we believe that the greatest open issueswithin that landscape
will be resolved within our lifetimes. But we believe that—just as that landscape
has already been seen to have utter surprises in what it says regarding language
theory (Szelepcsényi 1988; Immerman 1988), interactive proofs (Lund et al. 1992;
Shamir 1992), branching programs and safe-storage machines (Barrington 1989; Cai
and Furst 1991), approximation (Arora et al. 1998), the power and lack of power of
probabilistic computation (Nisan and Wigderson 1994; Impagliazzo and Wigderson
1997; Toda 1991), and muchmore—the landscape contains countless more surprises

3This article is not on the subject of how well heuristics can do on NP-complete problems, or
the strengths and limitations of SAT solvers. On one hand, there are theoretical results showing
that polynomial-time heuristics cannot have a subexponentially dense set of errors on any NP-hard
problem unless the polynomial hierarchy collapses. And if someone says they have a SAT solver
that works on any collection of NP problems they ever have encountered, it is interesting to point
out to them that factoring numbers that are the product of two large primes can be turned into a SAT
problem, and so their amazing SAT solver should be able to break RSA and make them rich… yet
no one has yet been able to make that work. On the other hand, SAT solvers undeniably do perform
remarkably well on a great range of data sets. For discussion of most of the issues just mentioned,
and how they can be at least partially reconciled, see for example the article by Hemaspaandra and
Williams (2012).

Credimus 151

and advances thatwill be reached in years, in decades, and in centuries, andwebelieve
that many of them will be in the important, rapidly growing areas at the intersection
of economic design and computational complexity.

Acknowledgements We thank William S. Zwicker for helpful comments and suggestions. This
work was done in part while on a sabbatical stay at ETH Zürich’s Department of Computer Science,
generously supported by that department.

References

Appel, A. (1992). Is POPL mathematics or science? SIGPLAN Notices, 27(4), 87–89.
Arora, S., Lund, C., Motwani, R., Sudan, M., & Szegedy, M. (1998). Proof verification and the
hardness of approximation problems. Journal of the ACM, 45(3), 501–555.

Barrington,D. (1989). Bounded-width polynomial-size branching programs recognize exactly those
languages in NC1. Journal of Computer and System Sciences, 38(1), 150–164.

Cai, J.-Y., & Furst, M. (1991). PSPACE survives constant-width bottlenecks. International Journal
of Foundations of Computer Science, 2(1), 67–76.

Fortnow, L. (2009). Time for computer science to grow up. Communications of the ACM, 52(8),
33–35.

Gasarch, W. (2012). The second P =? NP poll. SIGACT News, 43(2), 53–77.
Greenlaw, R., Hoover, H., & Ruzzo, W. (1995). Limits to parallel computation: P-completeness

theory. Oxford: Oxford University Press.
Gurevich, Y. (1983). Algebras of feasible functions. In Proceedings of the 24th IEEE Symposium

on Foundations of Computer Science (pp. 210–214). IEEE Computer Society Press.
Haines, M. (1993). Distributed runtime support for task and data management. Ph.D. thesis, Col-
orado State University, Fort Colins, CO, August 1993. Available as Colordo State Univeristy
Department of Computer Science Technical Report CS-93-110.

Harel, D. (1987). Algorithmics: The spirit of computing. Boston: Addison-Wesley.
Hartmanis, J., & Hemachandra, L. (1988). Complexity classes without machines: On complete
languages for UP. Theoretical Computer Science, 58(1–3), 129–142.

Hartmanis, J., & Hopcroft, J. (1976). Independence results in computer science. SIGACT News,
8(4), 13–24.

Hartmanis, J., & Yesha, Y. (1984). Computation times of NP sets of different densities. Theoretical
Computer Science, 34(1–2), 17–32.

Hemaspaandra, L. (2018). Computational social choice and computational complexity: BFFs? In
Proceedings of the 32nd AAAI Conference on Artificial Intelligence (pp. 7971–7977). AAAI
Press.

Hemaspaandra, L., Jain, S., & Vereshchagin, N. (1993). Banishing robust Turing completeness.
International Journal of Foundations of Computer Science, 4(3), 245–265.

Hemaspaandra, L., & Williams, R. (2012). An atypical survey of typical-case heuristic algorithms.
SIGACT News, 43(4), 71–89.

Immerman, N. (1988). Nondeterministic space is closed under complementation. SIAM Journal on
Computing, 17(5), 935–938.

Impagliazzo, R., & Wigderson, A. (1997). P = BPP if E requires exponential circuits: Derandom-
izing the XOR lemma. In Proceedings of the 29th ACM Symposium on Theory of Computing (pp.
220–229). ACM Press.

Knuth, D. (1997). Algorithms in modern mathematics and computer science. In A. Ershov & D.
Knuth (Eds.), Algorithms in modern mathematics and computer science (pp. 82–99). Lecture
Notes in Computer Science #122. Berlin: Springer.

152 E. Hemaspaandra and L. A. Hemaspaandra

Kurtz, S., Mahaney, S., & Royer, J. (1995). The isomorphism conjecture fails relative to a random
oracle. Journal of the ACM, 42(2), 401–420.

Lund, C., Fortnow, L., Karloff, H., & Nisan, N. (1992). Algebraic methods for interactive proof
systems. Journal of the ACM, 39(4), 859–868.

Lutz, J., & Mayordomo, E. (1996). Cook versus Karp-Levin: Separating completeness notions if
NP is not small. Theoretical Computer Science, 164(1–2), 123–140.

Nisan, N., & Wigderson, A. (1994). Hardness vs. randomness. Journal of Computer and System
Sciences, 49(2), 149–167.

Patterson, D., Snyder, L., &Ullman, J. (1999). Best practices memo: Evaluating computer scientists
and engineers for promotion and tenure. Computing Research News, 11(3), A–B (special insert).

Patterson, D., Snyder, L., & Ullman, J. (2017). Evaluating computer scientists and engineers
for promotion and tenure. https://cra.org/resources/best-practice-memos/evaluating-computer-
scientists-and-engineers-for-promotion-and-tenure/, URL verified October 31, 2017.

Shamir, A. (1992). IP = PSPACE. Journal of the ACM, 39(4), 869–877.
Sipser, M. (1982). On relativization and the existence of complete sets. In Proceedings of the 9th

International Colloquium on Automata, Languages, and Programming (pp. 523–531). Lecture
Notes in Computer Science #140. Berlin: Springer.

Storer, J. (1983). On the complexity of chess. Journal of Computer and System Sciences, 27(1),
77–100.

Szelepcsényi, R. (1988). The method of forced enumeration for nondeterministic automata. Acta
Informatica, 26(3), 279–284.

Toda, S. (1991). PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing, 20(5),
865–877.

Vardi M. (2009). Conferences vs. journals in computing research. Communications of the ACM,
52(5), 5.

https://cra.org/resources/best-practice-memos/evaluating-computer-scientists-and-engineers-for-promotion-and-tenure/
https://cra.org/resources/best-practice-memos/evaluating-computer-scientists-and-engineers-for-promotion-and-tenure/

	Credimus
	1 Introduction
	2 The Need for Creed: Why Understanding Each Other Is Hard yet Needed and Important
	2.1 Spanning to Computational Social Choice, Economics, and Beyond
	2.2 Spanning to Other Computer-Science Areas

	3 A Core Belief, and Its Expressions, Interpretations, and Implications
	3.1 A Core Belief
	3.2 The Heretics
	3.3 Landscape and Classification

	4 Conclusion
	References

