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Abstract. This paper proposes two attractive classes of Barreto-
Naehrig curve for ate-based pairing by imposing certain condition χ ≡
7, 11 (mod 12) on the integer χ that parameterizes the curve settings.
The restriction results in an unparalleled way to determine a BN curve,
its twisted curve coefficients, and obvious generator points. The proposed
χ ≡ 11 (mod 12) are found to be more efficient than χ ≡ 7 (mod 12)
together with pseudo 8-sparse multiplication in Miller’s algorithm. The
authors also provide comparative implementations for the proposal.

Keywords: Pairing · Tower of extension field ·
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1 Introduction

Pairing-Based Cryptography (PBC) provides several innovative protocols, e.g.
ID-based encryption [6] and BLS short signatures [5] making it an inseparable
tool of modern cryptography. The prerequisites for PBC are a pairing-friendly
elliptic curve [9] and an efficient pairing algorithm. Over the years, several vari-
ants of Weil’s pairing i.e. ate [7], χ-ate [15], optimal-ate [17] pairings have been
evolved. However, to find a suitable pairing-friendly curve is a nontrivial task.
In 2005 Barreto et al. [4] made a major breakthrough introducing parame-
terized pairing-friendly curve named as Barreto-Naehrig (BN) curve given as
polynomial formulas of an integer. This work especially focuses on pairing in
BN curve. A bilinear-pairing is an efficiently computable non-degenerate map
e : G1 × G2 → G3. Typically, G1 and G2 are additive cyclic sub-groups of order
r defined over a finite extension field Fpk and G3 is a multiplicative cyclic sub-
group of order r in F

∗
pk . The embedding degree k (k = 12 for BN) is the smallest

positive integer such that r|(pk − 1), where prime p and order r is given by
polynomial formulas of integer χ.
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When considering the pairing over BN curves, suitable parameter χ have to
be found for which both p and r become an odd prime number. Then it comes
to determining an elliptic curve E : y2 = x3 + b to be a BN curve over the prime
field Fp. The probabilistic way to prove curve coefficient b is to choose a ran-
dom b and check the group order until #E(Fp) = r. Moreover, a sextic twisted
curve E′(Fp12/d) (d = 6) also have to be determined, since the Miller’s algorithm
for pairing in BN curve is calculated over E′. However, E′ could not be deter-
mined immediately since there exist two possible types of the twisted curve with
d = 6. As noted above, these initial settings require time-consuming computa-
tion. In addition to this, when selecting the parameters, the following cautions
are considered for an efficient implementation of pairing. The Parameters have
an effect on efficient towering; another prerequisite of efficient finite field arith-
metic; one of the pivotal factors of efficient pairing implementation. Also, the
parameters with a small Hamming weight result in reducing calculation amount
of the Miller’s algorithm and final exponentiation. Moreover, the authors found
that not all parameters end up efficient line evaluation of Miller’s algorithm due
to the type of twisted curve E′. However, the conditions of suitable parameters
have not clearly given at this point. This paper overcomes the aforementioned
challenges of efficient pairing in BN curve by restricting parameter as mentioned
below.

Our Contribution: The major contribution of this paper can be summarized
as (i) offering two attractive classes of BN curves by restricting integer χ as
χ ≡ 7, 11 (mod 12). (ii) The restriction also results in an efficient tower of
extension field construction given in [1]. (iii) Instantaneously determining the
coefficient b in BN curve and resulting obvious rational points overcomes the
probabilistic approach. (iv) The twisted curve and its coefficients can also be
determined easily from the condition on χ. (v) Proposed parameter satisfying
χ ≡ 11 (mod 12) enables more efficient implementation pairing. Moreover, the
authors implemented several candidate curves and compared performances for
the lower Hamming weight.

Previous Works: BN curve is one of the most widely studied pairing-friendly
curves. The most relevant work similar to this is Costello et al.’s [8] proposal on
restricting the parameter for BLS curve for embedding degree 24. They also men-
tion the efficiency of the Miller’s algorithm. This paper does not only describes
more details applying pseudo 8-sparse multiplication but also focus on the small
Hamming weight of the parameter.

Organization of this Paper: Section 2 overviews several necessary backgrounds.
Sections 3 and 4 give the required details with theoretic proofs of the proposal.
The implementation results are compared in Sect. 5 and Sect. 6 which draws the
conclusion.
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2 Fundamentals

This section shows that the details of the necessary fundamentals of pairing over
BN curve to keep the reference and for easy explanation of rest of the paper.

BN Curves: Barreto-Naehrig curve [4] is a class of non super-singular (ordinary)
pairing-friendly elliptic curves of embedding degree k = 12 defined as E/Fp :
y2 = x3 + b. Its characteristic p, order r and Frobenius trace t are given as
follows:

⎧
⎨

⎩

p = p(χ) = 36χ4 + 36χ3 + 24χ2 + 6χ + 1,
r = r(χ) = 36χ4 + 36χ3 + 18χ2 + 6χ + 1,
t = t(χ) = 6χ2 + 1.

(1)

where χ is an integer. In what follows, the parameter χ is called BN parameter
and the prime p is called BN prime. If #E(Fp) = r, E becomes a BN curve.

Tower of the Extension Field: Pairing requires arithmetic operations in embed-
ded extension fields. It is important to consider the way to construct the exten-
sion field since it affects to the efficiency of the pairing. Therefore, this paper
especially focuses on the construction of efficient tower of the extension field.
Bailey et al. [2] proposed the optimal extension field by the towering irreducible
binomials. In the context of the pairing over BN curve, where k = 12, one of
the way to construct the efficient extension field proposed by Aranha et al. [1]
as follows:

⎧
⎨

⎩

Fp2 = Fp[α]/(α2 − (−1)),
Fp6 = Fp2 [β]/(β3 − (α + 1)),
Fp12 = Fp6 [γ]/(γ2 − β),

(2)

where p is a BN prime and α, β, γ are one of the roots of the modular polynomials
of Fp2 ,Fp6 and Fp12 . The set of the basis elements constructing Fp12 vector is
denoted as

{
1, α, β, αβ, β2, αβ2, γ, αγ, βγ, αβγ, β2γ, αβ2γ

}
.

Ate-Based Pairing: While BN curve is applied in different variants of pairings,
e.g. ate [7], optimal-ate [17] and χ-ate [15] pairing; the groups G1, G2 and G3

for such ate-based pairings are defined as G1 = E(Fp12)[r] ∩ Ker(φ − [1]), G2 =
E(Fp12)[r] ∩ Ker(φ − [p]), G3 = F

∗
p12/(F∗

p12)r. E(Fp12)[r] denotes rational points
of order r and [s] denotes s times scalar multiplication for a rational point. φ
denotes the Frobenius mapping given as φ : (x, y) �→ (xp, yp). Ker(·) is the kernel
of ·, which means that Ker(·) is a set whose elements are mapped to an initial
point by ·. In what follows, we consider P ∈ G1 ⊆ E(Fp) and Q ∈ G2 ⊂ E(Fp12).
Then, optimal-ate eα(Q,P ) and χ-ate eζ(Q,P ) pairing are given as follows:

eα(Q,P ) =
{
f6χ+2,Q(P ) · l[6χ+2]Q,[p]Q(P ) · l[6χ+2+p]Q,[−p2]Q(P )

} p12−1
r ,

eζ(Q,P ) =
{

fχ,Q(P )(1+p3)(1+p10) · l[χ]Q,φ3([χ]Q)(P )

·l[χ]Q+φ3([χ]Q),φ10([χ]Q+φ3([χ]Q))(P )
} p12−1

r .
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where the first term of eα and eζ denotes the output of Miller’s loop and the
second and third terms are the line evaluations. An efficient way to calculate
these line evaluation steps, called 7-sparse and pseudo 8-sparse multiplication
are proposed in [12,14]. The details of the line evaluation are discussed in Sect. 4.

3 Attractive Classes of BN Curves

This section shows that the proposed classes of BN curves can result in efficient
pairing implementations. Table 1 shows two classes of the BN curve parameter,
categorized as Class 1 and Class 2. The conditions χ ≡ 7 (mod 12) and χ ≡
11 (mod 12) are satisfied by Class 1 and Class 2, respectively. The advantages
of choosing such parameters are following.

– The efficient towering of Fp12 given in Eq. (2) can be constructed (See
Lemma 1 below).

– The coefficients of the curve E/Fp to be a BN curve can be determined
uniquely. Once a BN parameter satisfying χ ≡ 7, 11 (mod 12) is found,
the BN curves are immediately given as y2 = x3 + 26l−1, y2 = x3 + 26l+1,
where l is an integer (See Lemma 2 below). The curve y2 = x3 + 26l+1 can
have an obvious generator point (−22l,±23l). And also y2 = x3 + 26l−1 has
(−22l,±(−2)−1/2 · 23l), where −2 is a quadratic residue in Fp since −1 and 2
are quadratic non-residues in Fp (See Theorem 1).

– The correct twisted curves can also be determined uniquely. The parameter
χ ≡ 7, 11 (mod 12) results in twisted curve as y2 = x3 + 26l−1(α + 1), y2 =
x3 + 26l+1(α + 1)−1 (See Lemma 3 below).

Table 1. Two attractive classes of the BN curve

Type Condition of χ Efficient
towering

BN curve E/Fp Twisted curve E′/Fp2

Class 1 χ ≡ 7(mod 12) � y2 = x3 + 26l−1 y2 = x3 + 26l−1(α + 1)

Class 2 χ ≡ 11(mod 12) � y2 = x3 + 26l+1 y2 = x3+26l+1(α+1)−1

3.1 Using Parameters Satisfying χ ≡ 7, 11 (mod 12)

This subsection shows how the proposed condition of χ can result in efficient
towering of Fp12 by using the theorem of quadratic and cubic residue in Fp.

Theorem 1. Let (−) be the Legendre symbol and (−)3 be a multiplicative func-
tion defined as follows:

(
μ

p

)

3

{
= 1 if μ is a cubic residue in Fp,
	= 1 if μ is a cubic non-residue in Fp.
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If the characteristic p is a BN prime; quadratic and cubic residue properties for
certain elements in Fp are given by the condition of BN parameter χ as follows:

(a)
(−1

p

)

=
{

1 if χ ≡ 0 (mod 2),
−1 if χ ≡ 1 (mod 2). (3a)

(b)
(

2
p

)

=
{

1 if χ ≡ 0, 1 (mod 4),
−1 if χ ≡ 2, 3 (mod 4). (3b)

(c)
(

2
p

)

3

{
= 1 if χ ≡ 0 (mod 3),
	= 1 if χ ≡ 1, 2 (mod 3). (3c)

Proof. For the details of the proof, please refer to [16, § 5.1]. 
�
Lemma 1. If the characteristic p is a BN prime and χ satisfies χ ≡ 7, 11 (mod
12), the efficient tower of the extension field given in Eq. (2) can be constructed.

Proof. To construct Fp
α2−(−1)−−−−−−→ Fp2 , α2 − (−1) should be an irreducible poly-

nomial over Fp. Therefore, −1 has to be a quadratic non-residue in Fp. Then,
χ should be satisfying χ ≡ 1 (mod 2) from Eq. (3a). In the similar way, when

constructing Fp2
β3−(α+1)−−−−−−→ Fp6

γ2−β−−−→ Fp12 , (α + 1) should be a quadratic and
cubic non-residue in Fp2 . This condition means that 2 ∈ Fp has to be a quadratic
and cubic non-residue as shown in the following equations.

(α + 1)
p2−1

2 = ((α + 1)p(α + 1))
p−1
2 = 2

p−1
2 = −1,

(α + 1)
p2−1

3 = ((α + 1)p(α + 1))
p−1
3 = 2

p−1
3 	= 1.

According to Eqs. (3b) and (3c), if 2 is a quadratic and cubic non-residue in Fp, χ
should satisfy χ ≡ 1, 2 (mod 3), χ ≡ 2, 3 (mod 4). Therefore, the condition to
construct efficient extension field is given by χ ≡ 1, 2 (mod 3), χ ≡ 3 (mod 4)
which means χ ≡ 7, 11 (mod 12). 
�
From the proposed conditions, it is clear that it shrinks the probability of get-
ting smaller Hamming weight (HW) of χ. Smaller Hamming weight (less than
6) is a catalyst for efficient Miller’s algorithm and final exponentiation. Since,
according to [3], for 128-bit security, the �log2 χ = 114 is expected. There-
fore, an exhaustive search can result in smaller Hamming weight along with the
proposed conditions.

3.2 Determining BN Curves and Twisted Curves

In this part, we show how uniquely the BN curves’ and its twisted curves’ coef-
ficients can be determined in E/Fp and E′/Fp2 , respectively. For the reference
in our proof, we recall the theorem given by Shirase as follows:
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Theorem 2. Let p be a BN prime, and let n0 = n0(χ), n1 = n1(χ), n2 = n2(χ),
n3 = n3(χ), n4 = n4(χ) and n5 = n5(χ) be polynomials defined as

n0(χ) = 12χ2(3χ2 + 3χ + 1), n1(χ) = 36χ4 + 36χ3 + 18χ2 + 1,

n2(χ) = 3(12χ4 + 12χ3 + 10χ2 + 2χ + 1), n3(χ) = 4(9χ4 + 9χ3 + 9χ2 + 3χ + 1),

n4(χ) = 3(12χ4 + 12χ3 + 10χ2 + 4χ + 1), n5(χ) = 36χ4 + 36χ3 + 18χ2 + 6χ + 1.

Then, the group orders of E2 : y2 = x3 + 2 are determined as follows:

#E2(Fp) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n0 if χ ≡ 0, 9 (mod 12),
n1 if χ ≡ 7, 10 (mod 12),
n2 if χ ≡ 5, 8 (mod 12),
n3 if χ ≡ 3, 6 (mod 12),
n4 if χ ≡ 1, 4 (mod 12),
n5 if χ ≡ 2, 11 (mod 12).

(4)

Proof. Please refer to [16, § 5.2]. 
�
Remark 1. The group orders n0, n1, n2, n3, n4 and n5 can be denoted as

n0 = p + 1 − (3f + t)/2, n1 = p + 1 − (3f − t)/2, n2 = p + 1 − (−t),
n3 = p + 1 − (−3f − t)/2, n4 = p + 1 − (−3f + t)/2, n5 = p + 1 − t,

where p is a BN prime, t is a Frobenius trace and f = f(χ) = 6χ2 + 4χ + 1 is
an integer. From the definition [4], an elliptic curve which has the order n5 = r
becomes BN curve.

Remark 2. The divisibility of the group order by 2 or 3 of the curve Eb(Fpk) :
y2 = x3+b depends on its coefficient. If the coefficient b is a cubic residue in Fpk ,
#Eb(Fpk) is divisible by 2, since there exists an obvious rational point (−b1/3, 0)
of order 2. Therefore, if p is a BN prime and b has a cubic residue property,
#Eb(Fp) can be determine as n0 or n3. Similarly, if the coefficient b is quadratic
residue in Fp, #Eb(Fp) is divisible by 3 and determined as n0, n2 or n4.

Lemma 2. (i) The BN parameter χ satisfying χ ≡ 11 (mod 12) results in the
BN curve as E26l+1/Fp : y2 = x3 + 26l+1, where l ∈ Z. (ii) If the parameter
satisfies χ ≡ 7 (mod 12), the curve E26l−1/Fp : y2 = x3 + 26l−1 always becomes
BN curve.

Proof. (i) If the BN parameter satisfies χ ≡ 11 (mod 12), we first note that the
group order #E2(Fp) is n5 from Eq. (4) in Theorem 2. Then, let us consider a
map from E26l+1 to E2 given as follows:

E26l+1 : y2 = x3 + 26l+1 → E2 : y2 = x3 + 2, (x, y) �→ (2−2lx, 2−3ly).

It is easily found that the map is isomorphic in Fp since 2−2l and 2−3l are
elements in Fp. Therefore, we got the equation #E26l+1(Fp) = #E2(Fp) = n5.
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(ii) If the BN parameter satisfies χ ≡ 7 (mod 12), the group order #E2(Fp)
is n1 from Eq. (4). Then, let us consider following twist mapping.

E26l−1 : y2 = x3 + 26l−1 → E26l+1 : y2 = x3 + 26l+1, (x, y) �→ (2
2
3 x, 2y).

Since 2 is a cubic non-residue element in Fp, the isomorphic mapping exists in
Fp3 and we can say that E26l−1 is a twisted curve of E26l+1 with the twist degree
3. There exist two types of twist of degree 3. E26l−1 has only two possible group
orders given as p + 1 − (3f1 − t1)/2 or p + 1 − (−3f1 − t1)/2, where t1 is the
Frobenius trace of E26l+1(Fp) and f1 is computed by 4p = t21 + 3f2

1 [13]. We
can represent t1, f1 as t1 = t1(χ) = 6χ2 + 6χ + 1, f1 = f1(χ) = 6χ2 + 2χ + 1
since #E26l+1(Fp) = n1. Thus, the possible group order can be obtained as
n5 = 36χ4 + 36χ3 + 18χ2 + 6χ + 1 and n3 = 4(9χ4 + 9χ3 + 9χ2 + 3χ + 1). As
discussed in Remark 2, when the group order of elliptic curves can be divisible by
2, coefficients of the curves should have cubic residue property. Here, #E26l−1(Fp)
cannot have 2 as a factor since the curve coefficient 26l−1 has cubic non-residue
property. Finally we can find #E26l−1(Fp) = n5. According to Remark 1, the
curves having the order n5 become BN curve, E26l−1 and E26l+1 end up as BN
curve for the respective conditions of χ. 
�
Next, we show the proof of the twisted curve E′/Fp2 can be determined as
y2 = x3 + 26l−1(α + 1), y2 = x3 + 26l+1(α + 1)−1 for each parameters.

Lemma 3. When Fp12 is constructed by Eq. (2), the correct sextic twist with E′

can be obtained uniquely. If the parameter satisfies χ ≡ 7 ( mod 12), E′
26l−1/Fp2 :

y2 = x3 + 26l−1(α + 1) becomes twisted curve. When χ ≡ 11 (mod 12),
E′

26l+1/Fp2 : y2 = x3 + 26l+1(α + 1)−1 becomes twisted curve.

Proof. There exist two twists of E with the degree 6, E′ has only two possible
group orders given as p2 + 1 − (−3f2 + t2)/2 or p2 + 1 − (3f2 + t2)/2 [13],
where t2 is a Frobenius trace of E over Fp2 computed as t2 = t2 − 2p. f2 is
an integer calculated by 4p2 = t22 + 3f2

2 . In the context of BN curve, t2 and f2
are given by t2 = t2(χ) = −36χ4 − 72χ3 − 36χ2 − 12χ − 1 and f2 = f2(χ) =
(6χ2 + 1)(6χ2 + 4χ + 1), respectively. Then, the possible group orders can be
denoted as 4(324χ8 + 648χ7 + 756χ6 + 540χ5 + 288χ4 + 108χ3 + 30χ2 + 6χ + 1)
or (36χ4 + 36χ3 + 18χ2 + 6χ + 1)(36χ4 + 36χ3 + 30χ2 + 6χ + 1). Thus, it is
found that the twisted curve order becomes #E′(Fp2) = (36χ4 + 36χ3 + 18χ2 +
6χ + 1)(36χ4 + 36χ3 + 30χ2 + 6χ + 1) since E′ has a unique order such that
r = r(χ)|#E′(Fp2). It means that E′(Fp2) cannot divisible by 2. Therefore, the
twisted curve E′ coefficients should be a cubic non-residue in Fp2 . Now in the
case of the BN curve denoted as y2 = x3 + 26l+1, twisted curves can be denoted
as y2 = x3 +26l+1(α+1) or y2 = x3 +26l+1(α+1)−1 since (α+1) and (α+1)−1

are quadratic and cubic non-residue in Fp2 . Then, the cubic residue properties
of each curve coefficients can be denoted as follows:

(
26l+1(α + 1)

) p2−1
3 =

((
26l+1(α + 1)

)p+1
) p−1

3
=

(
(26l+1)2 · 2

) p−1
3 = 1,

(
26l+1(α + 1)−1

) p2−1
3 =

((
26l+1(α + 1)−1

)p+1
) p−1

3
=

(
(26l+1)2 · 2−1

) p−1
3 	= 1.
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Since the coefficient of E′ needs to be a cubic non-residue in Fp2 , the twisted
curve is determined as y2 = x3 + 26l+1(α + 1)−1. In the case of y2 = x3 + 26l−1,
its twisted curves are also derived in the same way. 
�

4 Implementation Pairing Using Attractive Classes

This section shows the overview of sparse multiplication techniques and describes
the implementation difference between two classes.

4.1 Overview: Sparse Multiplication for Miller’s Algorithm

It is well known that the line evaluation can be optimized by applying the 7-
sparse multiplication [12]. Mori et al. [14] have shown a more efficient technique
called the pseudo 8-sparse multiplication for BN curve in the affine coordinate.

Let P (xP , yP ) be a rational point in G1 and Q(xQ, yQ) and T (xT , yT ) be
rational points in G2. Let us consider the sextic twist given as

ψ6 : E′(Fp2) → E(Fp12), (xQ′ , yQ′) �→ (xQ′z−1/3, yQ′z−1/2),

where z is a quadratic and cubic non-residue in Fp2 . Applying this map-
ping, Q and T can be considered as points Q′(xQ′ , yQ′) = (z1/3xQ, z1/2yQ)
and T ′(xT ′ , yT ′) = (z1/3xQ, z1/2yQ) on E′. Let the elliptic curve addition be
T ′ + Q′ = R′(xR′ , yR′). Then, the line evaluation and elliptic curve addition
(ECA) can be calculated as

A = 1
xQ′ −xT ′ , B = yQ′ − yT ′ , C = AB,D = xT ′ + xQ′ , xR′ = C2 − D

E = CxT ′ − yT ′ , yR′ = E − CxR′ ,

lT ′,Q′(P ) = yP − z−1/6CxP + z−1/2E. (5)

Here, all the variables (A,B,C,D,E) are calculated as Fp2 elements. There exist
7 zero coefficients in Eq. (5) which lead to 7-sparse multiplication.

The line evaluation can be more optimized by multiplying y−1
P in both side of

Eq. (5) as yP
−1lT ′,Q′(P ) = 1−z−1/6C(xP yP

−1)+z−1/2EyP
−1. One of the non-

zero coefficient becomes 1 and it realizes more efficient multiplications. However,
comparing with Eq. (5), it is found that they need a little more calculation for
xP yP

−1 and yP
−1. To minimize the computation overhead of xP yP

−1, let us
consider the following isomorphic mapping.

Ê(Fp) : y2 = x3 + bẑ → E(Fp) : y2 = x3 + b, (x, y) �→ (ẑ−1/3x, ẑ−1/2y),

Ê′(Fp2) : y2 = x3 + bzẑ → E′(Fp2) : y2 = x3 + bz, (x, y) �→ (ẑ−1/3x, ẑ−1/2y),

where ẑ is a quadratic and cubic residue in Fp defined as ẑ = (xP y−1
P )6. Then, a

rational point P̂ ∈ Ê can be represented as P̂ (xP̂ , yP̂ ) = (x3
P y−2

P , x3
P y−2

P ). In the
same way, Q̂′, T̂ ′ ∈ Ê′ can be denoted as Q̂′(xQ̂′ , yQ̂′) = (x2

P y−2
P xQ′ , x3

P y−3
P yQ′),
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Algorithm 1. Pseudo 8-Sparse Multiplication for Class 1
Input: a = (a0 + a1β + a2β

2) + (a3 + a4β + a5β
2)γ, b = 1 + b4βγ + b5β

2γ
Output: c = (c0 + c1β + c2β

2) + (c3 + c4β + c5β
2)γ

where ai, bj , ci ∈ Fp2 (i = 0, · · · , 5, j = 4, 5)
1 t0 ← a0b4, t1 ← a1b5, t2 ← a0 + a1, t3 ← b4 + b5 ; (2m̃2 + 2ã2)

2 t2 ← t2t3 − t0 − t1 ; (m̃2 + 2ã2)

3 c5 ← a5 + t2, c4 ← a4 + t0 + a2b5(α + 1); (m̃2 + 3ã2 + B̃2)

4 c3 ← a3 + (a2b4 + t1)(α + 1); (m̃2 + 2ã2 + B̃2)

5 t0 ← a3b4, t1 ← a4b5, t2 ← a3 + a4, t2 ← t2t3 − t0 − t1; (3m̃2 + 3ã2)

6 c0 ← a0 + t2(α + 1), c1 ← a1 + (t1 + a5b4)(α + 1); (m̃2 + 3ã2 + 2B̃2)

7 c2 ← a2 + t0 + a5b5(α + 1); (m̃2 + 2ã2 + B̃2)

return c;

T̂ ′(xT̂ ′ , yT̂ ′) = (x2
P y−2

P xT ′ , x3
P y−3

P yT ′). Applying these rational points for line
evaluation, xP̂ y−1

P̂
becomes 1. Therefore, line evaluation can be optimized as

l̂T̂ ′,Q̂′(P̂ ) = y−1

P̂
lT̂ ′,Q̂′(P̂ ) = 1 − z−1/6C + z−1/2EyP̂

−1. (6)

The remaining 7 zero and 1 one coefficients in Eq. (6) lead to an efficient multi-
plication called pseudo 8-sparse multiplication.

4.2 Line Evaluation for the Proposed Attractive Classes

Here, this paper describes the line evaluation for two classes of BN curves. In
what follows, the cost of the multiplication, constant multiplication, squaring,
addition/subtraction and inversion over Fpk are represented as m̃k, m̃uk, s̃k, ãk

and ĩk, respectively. The costs of multiplication by (α + 1) and (α + 1)−1 are
especially denoted as B̃2 and B̃−1

2 .

Using Class 1: It is found that the sextic twist parameter z is (α + 1) since the
twisted curve of Class 1 is E′ : y2 = x3 + 26l−1(α + 1) from Table 1. Therefore,
the sextic twist mapping for Class 1 is given as follows:

E′(Fp2) : y2 = x3 + 26l−1(α + 1) → E(Fp12) : y2 = x3 + 26l−1,

(x, y) �→ ((α + 1)−1/3x, (α + 1)−1/2y) = ((α + 1)−1xβ2, (α + 1)−1yβγ).

Then, the line evaluation of the pseudo 8-sparse form can be obtained for the
rational point P̂ ∈ Ê′(Fp) and Q̂′, T̂ ′ ∈ Ê′(Fp2) as follows:

l̂T̂ ′,Q̂′(P ) = 1 − (α + 1)−1Cβ2γ + (α + 1)−1EyP̂
−1βγ. (7)

Finally, the pseudo 8-sparse multiplication is calculated by Algorithm1.
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Using Class 2: The twist parameter z for E′ from Table 1 is (α+1)−1. Therefore,
the sextic twist mapping for Class 2 is given as follows:

E′(Fp2) : y2 = x3 + 26l+1(α + 1)−1 → E(Fp12) : y2 = x3 + 26l+1,

(x, y) �→ ((α + 1)1/3x, (α + 1)1/2y) = (xβ, yβγ).

Then, the line evaluation of the pseudo 8-sparse form can be obtained in affine
coordinate for the rational point P̂ ∈ Ê′(Fp) and Q̂′, T̂ ′ ∈ Ê′(Fp2) as follows:

l̂T̂ ′,Q̂′(P ) = 1 − Cγ + EyP̂
−1βγ. (8)

Therefore, Algorithm 2 shows the derived pseudo 8-sparse multiplication.

Algorithm 2. Pseudo 8-Sparse Multiplication for Class 2
Input: a = (a0 + a1β + a2β

2) + (a3 + a4β + a5β
2)γ, b = 1 + b3γ + b4βγ

Output: c = (c0 + c1β + c2β
2) + (c3 + c4β + c5β

2)γ
where ai, bj , ci ∈ Fp2 (i = 0, · · · , 5, j = 4, 5)

1 t0 ← a0b3, t1 ← a1b4, t2 ← a0 + a1, t3 ← b3 + b4; (2m̃2 + 2ã2)

2 t2 ← t2t3 − t0 − t1; (m̃2 + 2ã2)

3 c4 ← a4 + t2, c3 ← a3 + t0 + a2b4(α + 1); (m̃2 + 3ã2 + B̃2)

4 c5 ← a5 + t1 + a2b3; (m̃2 + 2ã2)

5 t0 ← a3b3, t1 ← a4b4, t2 ← a3 + a4, t2 ← t2t3 − t0 − t1; (3m̃2 + 3ã2)

6 c2 ← a2 + t2, c1 ← a1 + t0 + a5b4(α + 1); (m̃2 + 3ã2 + B̃2)

7 c0 ← a0 + (t1 + a5b3)(α + 1); (m̃2 + 2ã2 + B̃2)

return c;

Comparing Class 1 and Class 2: Table 2 shows the calculation costs of the sextic
twist, computation of line evaluation/ECA, and pseudo 8-sparse multiplication
for Class 1 and Class 2. It is easily found that Class 1 requires more B̃2 and B̃−1

2

computation, making it costlier than Class 2. This cost incurs due to the twist
coefficient z. The details of the costs are given by B̃2 = 2ã1 and B̃−1

2 = 2m̃u1 +

Table 2. Calculation cost of the sextic twist, line evaluation and ECA and pseudo
8-sparse multiplication for proposed classes

Type Sextic
twist

Line evaluation and ECA Pseudo 8-sparse
multiplication

T̂ �= Q̂ T̂ = Q̂

Class 1 2B̃−1
2 3m̃2 + m̃u2 + s̃2

+6ã2 + ĩ2 +2B̃−1
2

3m̃2 + m̃u2 + 2s̃2
+ 7ã2 + ĩ2 + 2B̃−1

2

10m̃2 +17ã2 +5B̃2

Class 2 0 3m̃2 + m̃u2

+ s̃2 + 6ã2 + ĩ2

3m̃2 + m̃u2

+ 2s̃2 + 7ã2 + ĩ2

10m̃2 +17ã2 +3B̃2
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2ã1. Although the costs are seemingly insignificant than other Fp operations,
however, they appear repeatedly in line evaluation, ECA calculation and sparse
multiplication in the Miller’s algorithm for more than 114 times. Therefore,
the authors suggest that using Class 2 is a better choice for efficient pairing
implementation.

5 Experimental Result

This section gives details of the experimental implementation. The source code
can be found in Github1. The big integer arithmetic is implemented using the
mpz t data type of GMP [11] library. In what follows, multiplication, squaring,
addition/subtraction/negation and inversion in Fp are denoted as M , S, A and
I, respectively. This paper assumes that M = 5A, S = 4.5A and I = 30A for per-
formance comparison (based on the average time of 1 million Fp operations). The
pairings are implemented by using pseudo 8-sparse multiplication for the Miller’s
algorithm (see Sect. 4) and Fuentes-Castaneda et al.’s [10] final exponentiation
algorithm. Table 3 shows the computational environment. The parameters of the
proposed classes of the BN curve at the 128-bit security level are given in Table 4.
Table 5 shows the operation count based on the counter in the implementation
code. The result also shows the average execution time of 100 pairings.

Table 5 shows that Miller’s algorithm using Class 2 is more than 3.9% effi-
cient than Class 1. It is also found that the performance of Class 2 for the
parameter of the Hamming weight 6 is close to the Class 1 with the Hamming
weight 4. According to Table 5, the efficiency precedence can be expressed as
(ii)> (i)≈ (iv)> (iii). Therefore, the authors conclude that Class 2 is a better
choice for efficient pairing implementation. The total cost in execution time is
subject to the environment. However, the time cost is coherent with the opera-
tion count.

Table 3. Computational Environment

CPU Memory Compiler OS Language Library

Intel(R) Core(TM) 8GB GCC 4.2.1 macOS High C GMP

i7-7567U CPU @ 3.50GHz Sierra 10.13.6 ver 6.1.2 [11]

Table 4. Proposed classes of the parameter at the 128-bit security level (four types)

Type χ HW BN curve Twisted curve

(i) Class 1a 2114 + 2101 − 214 − 1 4 y2 = x3 + 32 y2 = x3 + 32(α + 1)

(ii) Class 2 2114 + 284 − 253 − 1 4 y2 = x3 + 2 y2 = x3 + 2(α + 1)−1

(iii) Class 1 2114 + 278 + 251 − 238 − 236 − 1 6 y2 = x3 + 32 y2 = x3 + 32(α + 1)

(iv) Class 2 2114 + 294 + 255 − 253 − 23 − 1 6 y2 = x3 + 2 y2 = x3 + 2(α + 1)−1

a Proposed by Barbulescu et al. [3].

1 http://github.com/YukiNanjo/BN12 attractive.

http://github.com/YukiNanjo/BN12_attractive
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Table 5. Operation count and execution time using proposed classes

Type Pairing Time Operation count

operations [ms] M S A I

(i) Class 1 Miller’s Opt-ate 5.17 1696 9062 35770 125

Alg. χ-ate 4.88 1658 8893 35241 120

Final Exp. 4.79 1428 8131 43102 1

(ii) Class 2 Miller’s Opt-ate 4.88 1201 9061 34774 125

Alg. χ-ate 4.75 1183 8892 34285 120

Final Exp. 4.71 1428 8131 43102 1

(iii) Class 1 Miller’s Opt-ate 5.24 1728 9234 36298 129

Alg. χ-ate 5.03 1674 8979 35505 122

Final Exp. 4.94 1428 8455 44446 1

(iv) Class 2 Miller’s Opt-ate 5.04 1217 9233 35270 129

Alg. χ-ate 4.82 1191 8978 34533 122

Final Exp. 4.86 1428 8455 44446 1

6 Conclusion

This paper has proposed two attractive classes of BN curves for the efficient pair-
ing implementation which result in not only constructing an efficient tower of the
extension field but also instantaneously determining BN curve, its twisted curves
and obvious generator points. Moreover, this paper clearly describes that the
implementation difference of the Miller’s algorithm between two classes apply-
ing pseudo 8-sparse multiplication. The authors conclude that Class 2 curve
(χ ≡ 11 (mod 12)) is a better choice for efficient pairing. As a future work, the
authors would like to examine the similar technique for other pairing-friendly
curves.
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