
One-Pixel Adversarial Example that Is
Safe for Friendly Deep Neural Networks

Hyun Kwon1, Yongchul Kim2, Hyunsoo Yoon1, and Daeseon Choi3(B)

1 School of Computing, Korea Advanced Institute of Science and Technology,
Daejeon, South Korea

2 Department of Electrical Engineering, Korea Military Academy, Seoul, South Korea
3 Department of Medical Information,

Kongju National University, Gongju, South Korea
sunchoi@kongju.ac.kr

Abstract. Deep neural networks (DNNs) offer superior performance in
machine learning tasks such as image recognition, speech recognition,
pattern analysis, and intrusion detection. In this paper, we propose a one-
pixel adversarial example that is safe for friendly deep neural networks.
By modifying only one pixel, our proposed method generates a one-pixel-
safe adversarial example that can be misclassified by an enemy classifier
and correctly classified by a friendly classifier. To verify the performance
of the proposed method, we used the CIFAR-10 dataset, ResNet model
classifiers, and the Tensorflow library in our experiments. Results show
that the proposed method modified only one pixel to achieve success rates
of 13.5% and 26.0% in targeted and untargeted attacks, respectively.
The success rate is slightly lower than that of the conventional one-
pixel method, which has success rates of 15% and 33.5% in targeted and
untargeted attacks, respectively; however, this method protects 100%
of the friendly classifiers. In addition, if the proposed method modifies
five pixels, this method can achieve success rates of 20.5% and 52.0% in
targeted and untargeted attacks, respectively.

Keywords: Deep neural network (DNN) · Adversarial example ·
One-pixel attack · Differential evolution (DE)

1 Introduction

Deep neural networks (DNNs) [12] have been widely used for image recognition,
speech recognition, pattern analysis, and intrusion detection. However, adver-
sarial examples [15] are a serious threat to DNNs. An adversarial example is a
distorted sample that adds a small amount of noise to the original sample; this
can lead to misclassification of the DNN. Adversarial examples and their effects
have been extensively studied.

In recent years, one-pixel adversarial attacks [14] have emerged as a threat
to DNNs. Unlike conventional adversarial attacks, this method causes DNN mis-
classification by modifying a single pixel and is useful for applications such as
c© Springer Nature Switzerland AG 2019
B. B. Kang and J. Jang (Eds.): WISA 2018, LNCS 11402, pp. 42–54, 2019.
https://doi.org/10.1007/978-3-030-17982-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17982-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-17982-3_4


One-Pixel Adversarial Example that Is Safe for Friendly DNNs 43

stickers. However, this method has not been considered for situations such as
military scenarios, where enemy forces and friendly forces are mixed.

The adversarial example of friendly forces can be useful in situations such
as military engagements. Because battlegrounds are shared by enemy forces and
friendly forces, friend-safe adversarial examples [9] that can be misclassified by
enemy classifiers and correctly classified by friendly classifiers could prove to be
an invaluable tool. For example, it may be necessary to modify the road signs
on a battlefield to deceive only the enemy’s self-driven vehicles.

Thus, we propose an advanced one-pixel adversarial example that preserves
the recognition of friendly classifiers. By modifying only one pixel, the proposed
method can generate a one-pixel-safe adversarial example that can be misclassi-
fied by enemy classifiers and correctly classified by friendly classifiers. This paper
makes the following contributions:

– First, we propose a one-pixel-safe adversarial example by modifying a single
pixel in a DNN and systematically organize the frameworks of the proposed
scheme.

– The proposed scheme has two configurations: targeted and untargeted
attacks. The proposed method can generate the one-pixel-safe adversarial
example in for both configurations.

– We used the CIFAR-10 dataset to validate the performance and analyze the
success rates for targeted attack and untargeted attacks. In addition, we ana-
lyzed the performance of this method by modifying groups of three and five
pixels.

The remainder of this paper is structured as follows: Sect. 2 reviews related
works. Our proposed adversarial example attack is presented in Sect. 3. The
experiments and evaluation are shown in Sect. 4, and a discussion of the proposed
system is presented in Sect. 5. Finally, conclusions are given in Sect. 6.

2 Related Works

The study of adversarial examples was introduced by Szegedy et al. [15] in
2014. The main goal of using an adversarial example is to induce the DNN into
making a mistake by adding a small amount of noise to the original image such
that humans cannot tell the difference between the original and the distorted
image.

The basic method for generating adversarial examples is described in
Sect. 2.1. Adversarial examples can be categorized in three ways: recognition
of an adversarial example, information on the target model information, and
method for generation, as described in Sects. 2.2–2.4.

2.1 Adversarial Example Generation

The basic architecture that generates an adversarial example comprises two ele-
ments: a target model and a transformer. The transformer takes the original



44 H. Kwon et al.

sample x and original class y as input data. Next, the transformer creates a
transformed example x∗ = x + w, with noise value w added to the original sam-
ple x as output; the transformed example x∗ is given as input data to the target
model. The target model then provides the transformer with the class probabil-
ity results for the transformed example. Following this, the transformer updates
the noise values w in the transformed example x∗ = x+w so that the other class
probabilities are higher than the original class probabilities, while minimizing
the distortion distances between x∗ and x.

2.2 Categorization by Recognition of Adversarial Example

According to the class that the target model recognizes from the adversarial
examples, we can divide these examples into two subcategories: targeted and
untargeted. A targeted adversarial example is an adversarial example that causes
the target model to recognize the adversarial image as a particular intended class.
This can be expressed mathematically as follows:

Given a target model and original sample x ∈ X, the problem is an opti-
mization problem that generates a targeted adversarial example x∗:

x∗ : argmin
x∗

L(x, x∗) s. t. f(x∗) = y∗

where L(·) is the distance measure between the original sample x and the trans-
formed example x∗, and y∗ is the particular intended class. f(·) is an operation
function that provides class results for the input values of the target model.

An untargeted adversarial example is an adversarial example that causes the
target model to recognize the adversarial image as a class other than the original
class. It can be expressed mathematically as follows:

Given a target model and original sample x ∈ X, the problem is an opti-
mization problem that generates an untargeted adversarial example x∗:

x∗ : argmin
x∗

L(x, x∗) s. t. f(x∗) �= y

where y ∈ Y is the original class.
Untargeted adversarial examples have the advantages of less distortion from

the original image and shorter learning time when compared with targeted adver-
sarial examples. However, targeted adversarial examples are more sophisticated
attacks as they are misclassified as target classes chosen by the attacker.

2.3 Categorization by Information on Target Model

Depending on the amount of target information required, attacks that generate
adversarial examples can also be divided into two types: white box attacks and
black box attacks. However, black box attacks only require an input response; no
additional information about the target is needed. In this paper, the proposed
method is a white box attack that knows both the enemy and friendly classifiers.



One-Pixel Adversarial Example that Is Safe for Friendly DNNs 45

2.4 Categorization by Method for Adversarial Example Generation

There are four typical attacks that generate adversarial examples. The first is
the fast-gradient sign method (FGSM) [4], which can find x∗ through L∞:

x∗ = x + ε · sign(�lossF,t(x))

where F is an object function and t is a target class. In every FGSM itera-
tion, the gradient is updated by ε from the original x, and x∗ is found through
optimization. This method is simple and demonstrates good performance.

The second attack is iterative FGSM (I-FGSM) [8], which is an updated
version of the FGSM. Instead of changing the amount ε in each step, the smaller
amount of α is updated and eventually clipped by the same ε:

xi
∗ = xi−1

∗ − clipε(α · sign(�lossF,t(xi−1
∗)))

The I-FGSM provides better performance than the FGSM.
The third type of attack is the Deepfool method [10], which is an untargeted

attack and uses the L2 distance measure. This method generates an adversarial
example that is more efficient than the FGSM and as close as possible to the
original image. To generate an adversarial example, this method constructs of
a neural network and looks for x∗ using linearization approximation. However,
because the neural network is not completely linear, we must find the adversarial
example through multiple iterations; i.e., it is a more complicated process than
that of the FGSM.

The fourth attack method is the Carlini attack [2], which is the latest attack
method and delivers better performance than the FGSM and I-FGSM. This
method can achieve a 100% success rate, even against a distillation structure
[11], which was recently introduced in the literature. The key principle of this
method involves the use of a different objective function:

D(x, x∗) + c · f(x∗)

Instead of using the conventional objective function D(x, x∗), this method pro-
poses a means to find an appropriate binary c value. In addition, it suggests a
method to control the attack success rate even with some increased distortion
by reflecting the confidence value as follows:

f(x∗) = max(Z(x∗)t − max {Z(x∗)t : i �= t} ,−k)

where Z(·) represents the pre-softmax classification result vector and t is a target
class.

The four previously mentioned methods add a small amount of noise to the
entire original sample, causing misclassification. In a recent study, Su et al. [14]
proposed a one-pixel attack that causes misclassification by modifying a single
pixel. In one-pixel attacks, differential evolution [3,13] is used as the optimizer.
The advantage of one-pixel attacks is that they do not affect the rest of the
pixels in the original sample. For example, a traffic sign could be attacked by
modifying one pixel in the sign when it is deployed. In this paper, the proposed
method is constructed by applying a similar one-pixel attack.



46 H. Kwon et al.

3 Proposed Method

To generate a one-pixel-safe adversarial example, we propose a network archi-
tecture that consists of a transformer, a friendly discriminator Dfriend, and an
enemy discriminator Denemy, as shown in Fig. 1.

Fig. 1. Proposed architecture.

The transformer takes the original sample x ∈ X and the original class
y ∈ Y as input and converts the original sample to the transformed example x∗.
Furthermore, Dfriend and Denemy are pre-trained classifiers and are not changed
during transformation. They take x∗ as input and provide their classification
result (i.e., confidence) to the transformer.

The goal of this architecture is to add one pixel of noise to the original sample
so that the transformed example x∗ is misclassified by Denemy and correctly clas-
sified by Dfriend. There are two configurations in which the transformed example
x∗ is incorrectly classified by Denemy: the targeted adversarial and untargeted
adversarial examples. In mathematical expressions, the operation functions of
Denemy and Dfriend are denoted as f enemy(x) and f friend(x), respectively. Given
the pre-trained Dfriend and Denemy and the original input x ∈ X, we have an
optimization problem that generates the targeted adversarial example x∗:

x∗ : argmin
x∗

L(x, x∗) s. t. f friend(x∗) = y and f enemy(x∗) = y∗,



One-Pixel Adversarial Example that Is Safe for Friendly DNNs 47

where L(·) is the chosen measure of the distance between the original sample
x and transformed example x∗, and y∗ ∈ Y is the target class chosen by the
attacker. An untargeted adversarial example x∗ is similarly generated:

x∗ : argmin
x∗

L(x, x∗) s. t. f friend(x∗) = y and f enemy(x∗) �= y.

This procedure consists of pre-training Dfriend and Denemy and creating a
transformation that generates a one-pixel-safe adversarial example, x∗. First,
Dfriend and Denemy are trained to classify the original sample x.

f friend(x) = y ∈ Y and f enemy(x) = y ∈ Y.

In our experiments, Dfriend and Denemy were trained to classify the original sam-
ples using CIFAR-10 with more than 92% accuracy. Second, the transformer
accepts the original sample and original class as input and produces the trans-
formed example x∗. For this study, we modified the transformer architecture
given in [9,14], and defined x∗ as

x∗ = x + w,

where x = (x1, ..., xn) is the original sample with n n-dimensional inputs and
w = (w1, ..., wn) is noise with n-dimension.

The classification results of x∗ by Dfriend and Denemy are returned to
the transformer. The transformer then calculates the total objection function,
fT(x∗), and generates a one-pixel-safe adversarial example x∗ by iteratively max-
imizing fT(x∗). fT(·) is defined as

maximize
x∗ fT(x∗) = f friend

y (x∗) + f enemy
y∗ (x∗) subject to ‖w‖0 ≤ d, (1)

where f friend
y (x∗) and f enemy

y∗ (x∗) are the objection functions of Dfriend and
Denemy, and d is 1 as the one-pixel attack. In d dimension, all but one of the
remaining pixels in the original sample are zero.

To satisfy the Eq. (1), the one-pixel attack uses differential evolution (DE)
[3,13]. DE is a population-based optimization algorithm used to solve optimiza-
tion problems for multiple models. During iteration, this method generates can-
didate solutions (children) based on the current solution (parent). By comparing
the children with their parent, one of two solutions is selected; specifically, this
method aims to find the solution with the highest fitness value. The DE equation
[3,13,14] is as follows:

xi(g + 1) = xa(g) + F (xb(g) + xc(g)),

a �= b �= c,

where xi is the element of the candidate solution; a, b, and c are arbitrary
values; F is a scale parameter set; and g is the current generation index. When
a candidate solution (child) is generated, the solution with the highest fitness
values will survive by comparing the candidate solution (child) with the parent



48 H. Kwon et al.

or current solution (parent). The above process is continued until the iteration is
over. Using the DE method, our proposed method generates x∗ by maximizing
fT.

To satisfy f friend(x∗) = y, f friend
y (x∗) should be maximized as

maximize
x∗ f friend

y (x∗),

where y is the original class.
However, f enemy presents two cases (targeted and untargeted adversarial

examples).
To satisfy f enemy(x∗) = y∗, in targeted adversarial examples, f enemy

y∗ (x∗)
should be maximized as

maximize
x∗ f enemy

y∗ (x∗),

where y∗ is the targeted class.
To satisfy f enemy(x∗) �= y in an untargeted adversarial example, f enemy

y∗ (x∗)
should be maximized as

maximize
x∗ f enemy

y∗ (x∗) = maximize
x∗ {−f enemy

y (x∗)},

where y is the original class. The procedure for generating a one-pixel-safe adver-
sarial example is detailed in Algorithm1.

Algorithm 1. one-pixel-safe adversarial example generation in a transformer.
Input: original sample x, one-pixel noise w, original class y, targeted class y∗, itera-

tions r, dimension d.
Targeted adversarial example generation:

d ← 1
x∗ ← 0
for r step do

x∗ ← x + w
Update w by maximizing

x∗
f friend
y (x∗) + fenemy

y∗ (x∗) subject to ‖w‖0 ≤ d

end for
return x∗

Untargeted adversarial example generation:
d ← 1
x∗ ← 0
for r step do

x∗ ← x + w
Update w by maximizing

x∗
f friend
y (x∗) − fenemy

y (x∗) subject to ‖w‖0 ≤ d

end for
return x∗

4 Experiment and Evaluation

Our experiments showed that the proposed scheme can generate a one-pixel-
safe adversarial example that is incorrectly classified by enemy classifiers and



One-Pixel Adversarial Example that Is Safe for Friendly DNNs 49

correctly classified by friendly classifiers. We used the Tensorflow [1] library (a
widely used open source library) for machine learning on a Xeon E5-2609 1.7-
GHz server.

4.1 Experimental Method

In this experiment, we used the CIFAR-10 dataset [7] (planes, cars, birds, cats,
deer, dogs, frogs, horses, boats, and trucks). The CIFAR-10 dataset consists of
50,000 training data and 10,000 test data. The experimental method consisted
of (1) pre-training Dfriend and Denemy and (2) transforming the one-pixel-safe
adversarial example.

First, during pre-training, Dfriend and Denemy were common Resnet networks
[5]. Their configuration and training parameters are shown in Tables 2 and 3 of
the appendix. 50,000 training data were used to train Dfriend and Denemy. During

Table 1. A one-pixel-safe adversarial example for each target class that was misclas-
sified by Denemy for each original sample: plane “0,” cars “1,” birds “2,” cats “3,” deer
“4,” dogs “5,” frogs “6,” horses “7,” boats “8,” and trucks “9.”

Original Targeted classes misclassified by Denemy

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”



50 H. Kwon et al.

testing, Dfriend and Denemy correctly classified the original samples with 92.15%
and 92.31% accuracy, respectively.

Next, DE optimization was applied to generate the one-pixel-safe adversarial
example [3,13]. The population size was 400, the scale parameter set was 0.5, the
iteration was 100, and perturbation was 1. The initial population used the uni-
form distribution U(1, 32) to generate the x–y coordinates, and the RGB values
followed an average of 128 and a standard deviation of 127 for the Gaussian dis-
tribution. For a given number of iterations, the transformer updated the output
x∗ and provided it to Dfriend and Denemy, from which it receives feedback. At the
end of the iterations, the transformation result x∗ was evaluated in terms of the
accuracy of Dfriend, which was the attack success rate. In detail, the accuracy of
Dfriend is the coincidence rate between the original class and the output class of
Dfriend; the attack success rate is the rate at which Denemy incorrectly classifies
x∗. The attack success rate has two configurations: targeted and untargeted. The
targeted attack success rate is the coincidence rate between the targeted class
and the class output by Denemy; the untargeted attack success rate is the rate
of inconsistency between the original class and the output class of Denemy.

(a) Targeted attack (b) Untargeted attack

Fig. 2. The success rate and confidence of Denemy and Dfriend for 200 random adver-
sarial examples generated by modifying one-, three-, and five-pixel attacks.

4.2 Experimental Results

The evaluation of one-pixel-safe adversarial examples is divided into targeted
and untargeted adversarial examples. In addition, we analyzed the success rate
and confidence by additionally modifying groups of three and five pixels.



One-Pixel Adversarial Example that Is Safe for Friendly DNNs 51

Targeted Attack. Table 1 shows one-pixel-safe adversarial examples that were
incorrectly classified as the targeted class by Denemy and correctly classified as
the original class by Dfriend for each original sample. Furthermore, Table 1 shows
that the one-pixel-safe adversarial example is similar to the original sample;
specifically, there is a difference of only one pixel.

Figure 2(a) shows the success rate and confidence of Denemy and Dfriend for
one-, three-, and five-pixel targeted attacks. In the one-pixel attack, the success
rate was 13.5% where the target attack success rate and friend accuracy were
100%. The confidences of the one-pixel attack also showed that the values of
0.754 and 0.851 for Denemy and Dfriend were the highest fitness values. Thus, we
know that it is more difficult to deceive the enemy classifier owing to the high
confidence in the friend classifier. Figure 2(a) also shows that the success rate
increased along with the number of changeable pixels. In the five-pixel attack,
the success rate was 20.5%.

Untargeted Attack. Figure 2(b) shows the success rate and confidence of
Denemy and Dfriend for one-, three-, and five-pixel untargeted attacks. In the
one-pixel attack, the success rate was 26.0% when the untargeted attack success
rate and the friend accuracy were 100%. Because untargeted attacks are easier
to optimize than targeted attacks, the success rate of untargeted attacks was
12.5% higher. Similar to targeted attacks, Fig. 2(b) shows that the success rate
increased along with the number of changeable pixels. In the five-pixel attack,
the success rate was 52.0%.

5 Discussion

Attack Method Consideration. Our proposed method added one-pixel noise
with strange colors to the original sample; however, human perception was main-
tained at 100%. In addition, one out of 3,072 pixels of CIFAR-10 is about 0.03%
part, meaning one-pixel noise was very low.

We considered targeted or untargeted attacks depending on priority differ-
ences between the success rate and the goals of the target model misrecognition.
If the success rate was more important, the attacker chose an untargeted attack.
If an attacker wished to change the misclassification into a target class of their
choice, they used a targeted attack.

The assumption of the proposed method was a white box attack that has
identified the enemy and friendly classifiers. Since DE optimization searches for
one pixel with the highest confidence value, the proposed method must know
the classification results of Denemy and Dfriend to derive the input values.



52 H. Kwon et al.

Application. The one-pixel-safe adversarial example can be applied to practical
applications (such as stickers). For example, once a traffic left sign has been
deployed, a hybrid adversarial left sign can be generated by replacing one pixel
that was generated in advance. Thus, a one-pixel-safe adversarial left sign can be
misclassified as a right sign by an enemy vehicle and can be correctly classified
as a left sign by a friendly vehicle.

Limitation. The proposed method has a lower success rate than the conven-
tional one-pixel attack method. In the ResNet model [5], the conventional one-
pixel attack achieved a higher success rate than the proposed method with 15.0%
and 33.5% success rates for targeted and untargeted attacks, respectively. Since
the proposed method has a higher recognition condition for a friendly classifier,
it is difficult to confirm that a modification of one pixel satisfies a one-pixel-safe
adversarial example. To increase the success rate of the proposed method, we
must also increase the number of pixels that can be modified.

6 Conclusion

In this paper, we proposed a novel one-pixel-safe adversarial example by modi-
fying a single pixel. The proposed method generated a one-pixel-safe adversarial
example by adding one pixel of noise to the original sample, thereby causing
misclassification for enemy classifiers and maintaining correct recognition for
friendly classifiers. Experimental results on CIFAR-10 data confirmed that the
proposed method showed a success rate of 13.5% and 26.0% for targeted and
untargeted attacks, respectively. Although these rates are slightly lower than
those of the conventional one-pixel method (15% and 33.5%), our proposed
method protects 100% of friendly classifiers. When the proposed method was
applied to five pixels, the success rates were 20.5% and 52.0% for targeted and
untargeted attacks, respectively. This method can also be used in applications
such as stickers.

In future work, we will expand the proposed method to new datasets, such as
the ImageNet and Voice. In addition, future work will involve the implementation
of new algorithms to improve upon the results achieved in these experiments.
Finally, challenges related to countermeasures against our proposed method must
be addressed.

Acknowledgement. This work was supported by National Research Foundation
(NRF) of Korea grants funded by the Korean government (MSIT) (2016R1A4A1011761
and 2017R1A2B4006026) and an Institute for Information & Communications Tech-
nology Promotion (IITP) grant funded by the Korean government (MSIT) (No. 2016-
0-00173).



One-Pixel Adversarial Example that Is Safe for Friendly DNNs 53

Appendix

Table 2. Dfriend and Denemy model of 34-layer ResNet [5]

Layer type Model shape

#1 layer Convolution+ReLU [7, 7, 64]

Max pooling [3, 3]

#2 layer Convolution+ReLU [1, 1, 64]

#2 layer Convolution+ReLU [3, 3, 64]

#2 layer Convolution+ReLU [1, 1, 256]

#2 layer Repeat 3 times

#3 layer Convolution+ReLU [3, 3, 128]

#3 layer Convolution+ReLU [3, 3, 128]

#3 layer Repeat 4 times

#4 layer Convolution+ReLU [3, 3, 256]

#4 layer Convolution+ReLU [3, 3, 256]

#4 layer Repeat 6 times

#5 layer Convolution+ReLU [3, 3, 512]

#5 layer Convolution+ReLU [3, 3, 512]

#5 layer Repeat 3 times

Fully connected+ReLU [1000]

Softmax [10]

Table 3. Dfriend and Denemy model parameters.

Parameter Values

Learning rate of SGD [6] 0.1

Momentum 0.9

Delay rate 1 (decay 0.0001)

Iteration 50,000

Batch size 128

Epochs 200



54 H. Kwon et al.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. OSDI.
16, 265–283 (2016)

2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

3. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art.
IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

4. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial exam-
ples. In: International Conference on Learning Representations (2015)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

6. Ketkar, N.: Stochastic gradient descent. In: Ketkar, N. (ed.) Deep Learning with
Python, pp. 111–130. Apress, Berkeley (2017). https://doi.org/10.1007/978-1-
4842-2766-4 8

7. Krizhevsky, A., Nair, V., Hinton, G.: The CIFAR-10 dataset (2014). http://www.
cs.toronto.edu/kriz/cifar.html

8. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world.
In: ICLR Workshop (2017)

9. Kwon, H., Kim, Y., Park, K.W., Yoon, H., Choi, D.: Friend-safe evasion attack: an
adversarial example that is correctly recognized by a friendly classifier. Comput.
Secur. 78, 380–397 (2018)

10. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

11. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to
adversarial perturbations against deep neural networks. In: 2016 IEEE Symposium
on Security and Privacy (SP), pp. 582–597. IEEE (2016)

12. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

13. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

14. Su, J., Vargas, D.V., Kouichi, S.: One pixel attack for fooling deep neural networks.
arXiv preprint arXiv:1710.08864 (2017)

15. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Con-
ference on Learning Representations (2014). http://arxiv.org/abs/1312.6199

https://doi.org/10.1007/978-1-4842-2766-4_8
https://doi.org/10.1007/978-1-4842-2766-4_8
http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html
http://arxiv.org/abs/1710.08864
http://arxiv.org/abs/1312.6199

	One-Pixel Adversarial Example that Is Safe for Friendly Deep Neural Networks
	1 Introduction
	2 Related Works
	2.1 Adversarial Example Generation
	2.2 Categorization by Recognition of Adversarial Example
	2.3 Categorization by Information on Target Model
	2.4 Categorization by Method for Adversarial Example Generation

	3 Proposed Method
	4 Experiment and Evaluation
	4.1 Experimental Method
	4.2 Experimental Results

	5 Discussion
	6 Conclusion
	References




