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Abstract. Since with massive data growth, the need for autonomous
and generic anomaly detection system is increased. However, develop-
ing one stand-alone generic anomaly detection system that is accurate
and fast is still a challenge. In this paper, we propose conventional time-
series analysis approaches, the Seasonal Autoregressive Integrated Mov-
ing Average (SARIMA) model and Seasonal Trend decomposition using
Loess (STL), to detect complex and various anomalies. Usually, SARIMA
and STL are used only for stationary and periodic time-series, but by
combining, we show they can detect anomalies with high accuracy for
data that is even noisy and non-periodic. We compared the algorithm
to Long Short Term Memory (LSTM), a deep-learning-based algorithm
used for anomaly detection system. We used a total of seven real-world
datasets and four artificial datasets with different time-series properties
to verify the performance of the proposed algorithm.

Keywords: Anomaly detection · SARIMA · STL · Real-time ·
Data stream

1 Introduction

Extremely vast data leads to severe challenges to a security administrator
who should catch all the anomalies in real-time. Anomaly detection cannot be
regarded as a human-work anymore. To automate the anomaly detection pro-
cess, machine-learning-based and statistics-based anomaly detection have been
researched within diverse research areas including network intrusion detection,
fraud detection, medical diagnoses, sensor events and others. Despite the variety
of such studies in recent years, most anomaly detection systems find anomalies
in limited conditions. This is because not only a variety of attacks but also mul-
tiple sensors in a single device generate a different type of time-series. In the
case of IoT devices, which are embedded with multiple sensors, it is inefficient to
use independent anomaly detection algorithms to each different sensor. Anomaly
detection systems that are resistant to various datasets should detect anomalies
autonomously irrespectively of the time-series properties.

Also, the anomaly detection system should occupy as little memory as possi-
ble. Most of deep learning based anomaly detection systems are generally unsuit-
able for an environment such as IoT devices because of the limited memory and
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light capacity. As most anomalies cause a critical problem to the medical sys-
tem such as ventricular assist system, anomaly detection system must get less
latency. Although there are many types of researches based on deep learning
recently, deep learning approaches are not suitable to process data in real-time
that changes frequently or has large data since it takes a lot of time to build a
model compared to other algorithms.

The critical conditions of anomaly detection system for IoT devices or cloud
network intrusion detection are as follows. First is accuracy, second is speed,
third is the small size of the model and the last is domain universality [2,19]. We
propose ADSaS, anomaly detection system using SARIMA and STL, to meet the
four conditions. SARIMA is conventional time-series forecast method, and STL
is a versatile and robust method for time-series decomposition. Aforementioned
methods are commonly used for stationary and periodic time-series data [7]. In
our experiments, however, integrating two methods shows better performance
not only for periodic data but also for non-periodic data. Moreover, the size
of the model and speed are optimized by undersampling and interpolation. For
accuracy, we defined an anomaly window for evaluation and then judged how
well ADSaS finds anomalies in various datasets.

The contributions of our system are as follows:

– Regardless of time-series properties, ADSaS detects anomalies with high pre-
cision and recall. We verify this by using the time-series from a variety of
sources. With the development of Cyber-Physical Systems (CPS) or IoT
devices, anomaly detection systems must detect anomaly autonomously and
generically for applications.

– ADSaS detects various types of anomaly. (i.e., peak, dip, concept drift, con-
textual anomalies, and collective anomalies).

– ADSaS detects anomalies with short latency. We use two conventional time-
series analysis methods and advance performance by undersampling. By
undersampling time-series, time-series model is built much faster. Though
undersampling causes loss of data, STL recovers that loss by decomposing
prediction errors.

– ADSaS proceeds anomaly detection in real-time for every data stream.

2 Related Works

In particular, there have been studies such as automotive IDS [8], SCADA,
control network [18] to detect anomalies for mission-critical and safety-critical
systems. It is important to develop anomaly detection algorithm robustly for the
efficiency of intrusion detection in a modern network environment such as cloud
computing [9]. Anomaly detection in time-series is roughly divided to clustering-
based approach [11,12] and forecast-based approach. Most of the forecast-based
approaches perform anomaly detection based on the error with the predicted
value.



ADSaS: Comprehensive Real-Time Anomaly Detection System 31

Several machine learning techniques were introduced so far for anomaly
detection system. LSTM network has been demonstrated to be particularly use-
ful for anomaly detection in time-series [13]. Jonathan et al. [6] also presented a
novel anomaly detection system to detect cyber attacks in CPS by using unsu-
pervised learning approach, Recurrent Neural Network (RNN). Sucheta et al. [3]
applied RNN and LSTM to detect anomalies in ECG signals. They used only a
single data source, so did not show the generality of algorithms.

Some studies used diverse dataset sources to evaluate anomaly detection
algorithm. Numenta used Hierarchical Temporal Memory (HTM) algorithm to
detect anomaly detection capable for stream time-series [2]. HTM is a neural
network, and every neuron in HTM remember and predict the value by com-
municating with each other. Since it is composed of a higher order than other
neural networks, it may not be suitable for anomaly detection systems which
require high speed. Yahoo suggested EGADS [10], plug-in-out anomaly detec-
tion framework, and they indicated that it is essential to use time-series features
for anomaly detection. EGADS offers AR, MA, and ARIMA. Several studies [17]
used ARIMA models to forecast time-series, but they did not process errors for
a non-periodic dataset. SARIMA was also frequently used for time series predic-
tion, but it was not applied to anomaly detection system [16].

3 Backgrounds

3.1 Time-Series Analysis

Power Spectral Density. Power spectral density is a simple but powerful
method to find the frequency of the data [15]. Power spectral density of the signal
(time-series data) describes the distribution of power which refers to frequency.
Power spectral density graph shows clear peaks when the signal has evident
frequencies.

Dickey-Fuller Test. Dickey-Fuller Test tests the null hypothesis that a unit
root is present in an autoregressive model [5]. The unit root test is carried out
under the null hypothesis test value γ = 0 against the alternative hypothesis of
γ < 0. The unit root test is an analytical method for determining stationarity
of the time-series. In ADSaS, when the p-value of the test is bigger than 0.0005,
we reject the hypothesis and refer the time-series as non-stationary data.

STL. STL is an algorithm developed to decompose a time-series into three com-
ponents namely: the trend, seasonality, and residuals (remainder) [4]. A trend
shows a persistent increasing or decreasing direction in data, seasonality shows
seasonal factors over a fixed period, and residuals mean noise of the time-series.
For time-series analysis, residuals mainly considered as errors. In this paper, we
use residuals of time-series to extract errors that are related to anomalies.
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3.2 Time-Series Forecast Model

Autoregressive (AR) Model. AR model is used when a value from a time-
series is regressed on previous values from the same time-series. When time-series
data has white noise αt, autoregressive parameter φ, an AR(p) model Zt at time
t is defined as:

Zt = φ1Zt−1 + φ2Zt−2 + · · · + φpZt−p + αt (1)

Moving Average (MA) Model. MA model uses complicated stochastic struc-
ture to model time-series [14]. When time-series has white noise αt, parameters
of the model θ, a MA(q) model Zt at time t is defined as:

Zt = αt − θ1αt−1 − · · · − θqαt−q (2)

ARIMA. ARIMA model generalizes an ARMA model (AR+MA) by replac-
ing the difference among previous values. An ARMA model is applicable only
for stationary time-series, ARIMA is applicable for non-stationary time-series.
ARMA(p, q) model is given by:

Zt − φ1Zt−1 − · · · − φpZt−p = αt + θ1αt−1 + · · · − θqαt−q (3)(
1 −

p∑
i=1

φiL
i

)
Zt =

(
1 +

q∑
i=1

θiL
i

)
αt (4)

In here, L is the lag operator of Z. ARIMA(p, d, q) model has parameters
p (the order of AR model), q (the order of MA model) and also d (the degree
of differencing). When two out of the three parameters are zeros, the model is
referred to as AR or MA or I. (i.e., ARIMA(1,0,0) is AR(1)) ARIMA(p, d, q)
model is defined as:(

1 −
p∑

i=1

φiL
i

)
(1 − L)dZt =

(
1 +

q∑
i=1

αiL
i

)
αt (5)

SARIMA. SARIMA is a much more efficient model to express time-series with
seasonality than ARIMA model. It has an additional parameter seasonal order
called s. SARIMA is defined as SARIMA(p, d, q)(P,D,Q)s. The parameters
p, d, q are for non-seasonal part of the time-series, and P,D,Q are for seasonal
part of the model. In other words, SARIMA creates models with both seasonal
and non-seasonal data. For s = 12, SARIMA builds a time-series model with
seasonality per 12 data points.
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4 Methodology

ADSaS. ADSaS consists of three modules, dataset analysis module, forecasting
module and error processing module. Let the vector xt is the value of a system
at time t. Real-time anomaly detection system should classify whether the value
is an anomaly or not without using any data after the time t. First of all, by
analyzing the proper size of the train set, dataset analysis module finds the
frequency and stationarity of the given dataset. Then, forecasting module fore-
casts xt+1, xt+2, xt+3,. . . by using train set (The size of forecast can be changed).
When data stream xt+1 comes, error processing module calculates the residuals
of the error and the cumulative probability of the residuals. If the cumulative
probability is less or bigger then the threshold, ADSaS classifies the value as an
anomaly and alert. For more accurate forecast model, only the normal value is
fed back to the train set.

Data Analysis Module. STL and SARIMA, mainly used algorithms, work
based on the properties of the time-series data. To get the properties, we use
Dickey-Fuller test for stationarity and power density spectra for frequency. When
data does not have stationarity, we use one day for default frequency.

Fig. 1. The figure shows how the forecasting module and error processing module
works.

Forecasting Module. SARIMA model has a s parameter that represents the
seasonality frequency. If a time-series has regular change per one second and
repeats every day, s should be at least 86400 to define time-series model. How-
ever, large s causes a huge amount of time, which is problematic for practical
anomaly detection systems. The ADSaS uses undersampling and interpolation
to shorten building time. Figure 1 is details about how the prediction and error
processing works. First, we undersample the train set X to X ′(|X| � |X ′|).
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If the dataset is recorded at the five-minute interval, we adjust it at the one-
hour interval by averaging them. Then, SARIMA model for train set is built to
describe and forecast time-series. The interval of the model is one-hour, so we
interpolate forecasts at the initial interval (in this case, five-minute) by using
cubic spline interpolation. Where the predicted value is pt and real value is xt,
absolute prediction error et is defined as pt − xt.

Fig. 2. Observed value, predicted value, prediction error, and residuals of error for the
given time series data.

Error Processing Module. In the error processing module, prediction errors
are decomposed by STL and the residuals are calculated. Although undersam-
pling and interpolation arise a serious problem of missing actual data points,
regularity of the errors due to lost data points diminishes the residuals. We
model the residuals distribution as a rolling normal distribution, though the dis-
tribution of prediction errors is not technically a normal distribution. Where the
sample mean μ, and variance σ2 are given, the cumulative distribution function
is calculated as follows:

F (x) =
∫ x

−∞

e− (x−μ)2

2σ2

σ
√

2π
dx (6)
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We threshold F (rt) based on a user-defined parameter ε to alert anomalies1. If
F (rt) is smaller than ε or greater than 1 − ε, it is determined as anomaly.

Figure 2 is an example of error residuals2 The error increment is occurred in
the normal data (first jump) due to the undersampling and interpolation. How-
ever, it is judged to be a regular error by STL, so decomposed to trend or sea-
sonality, no residuals. As the anomaly occurs, the residuals decreases/increases
sharply. This causes the dramatic difference in residuals between regular errors
and unexpected errors, so anomalies are detected by ADSaS easily.

5 Experimental Evaluation

5.1 Dataset

There are 11 datasets we used in the experiment, eight datasets from Numenta
Anomaly Benchmark (NAB) [1] and three datasets from the P corporation,
Korea’s leading third-party online payment solution. NAB is a benchmark for
evaluating anomaly detection algorithms, and it is comprised of over 50 labeled
artificial and real-world datasets. Also, the real-world datasets from P are user
login statistics, tracks the browser, service provider and login result status. The
anomalies are labeled when the real attack attempts are held. All the anomalies
were confirmed by P corporation.

All datasets except four datasets (NAB artificial jump datasets) are real-
world datasets, which cover various fields, including CPU utilization, machine
temperature, and user login statistics. The examples of datasets are shown in
Fig. 3. Each dataset has different time series characteristics and anomaly types.
For instance, dataset (b) has concept drift anomaly that it should not be detected
as anomaly after the drift point. Dataset (c) disk write anomaly has lots of noises.
NYC taxi dataset shows various anomalies (peak, dip and partial decrease).

5.2 Evaluation Metrics

We use precision, recall and F1-score to evaluate the algorithm. When the actual
anomaly is classified as an anomaly, it is true positive. False positive is when the
normal data is classified to be an anomaly. False negative is when the anomaly
is classified as normal, and true negative is when the normal data is classified
as normal. Depending on the area, false positive may be more important than
false negative to check performance or vice versa. We use F1-score to evaluate
both precision( TP

TP+FP ), which is an indicator of whether the anomalies detected
by the algorithm is trusty and recall( TP

TP+FN ), which is an indicator of how
many anomalies are detected by the algorithm. The metric of F1-score is 2 ×
Precision×Recall
Precision+Recall .

1 We used ε = 0.0005 for experiments.
2 Anomalies are colored with red.
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Fig. 3. The examples of the datasets.

Anomaly Window. We also define anomaly window to evaluate the perfor-
mance of the algorithm. An anomaly may occur only at a certain point (peak,
dip), but it may occur over a long period. It is not false positive to detect anomaly
at the point immediately before or after the occurrence of an anomaly. It is
essential to set the appropriate anomaly windows covering anomalies. Numenta
defines their own anomaly windows for NAB dataset, but it is too large to distin-
guish whether the classification is right or wrong. We use small enough window
size to prevent inept detection considered as true positive or true negative. In
the case of anomalies occurring over a long period, it can be judged as a section
composed of several anomaly windows. If the anomaly window is successfully
detected in section, it is considered to be true positive after the detection.

6 Results

Table 1 shows the comparisons of precision, recall and F1-score for algorithms
from different kinds of sources. It shows that ADSaS yields the best overall
datasets except one, NAB CPU. For NAB CPU, the algorithm that uses only
LSTM shows the best result. LSTM algorithm, however, is a deep learning based
algorithm that takes a lot of time to learn. In addition, for data such as NAB
Jumps and P Login, which has periodicity and stationary, LSTM shows low-
est F1-score than other algorithms. Even LSTM with STL, F1-score is slightly
increased in periodic time-series, but it is decreased by about half in case of
non-periodic data (NAB CPU).
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Table 1. Comparison of results between algorithms.

Dataset Total
window

Anomaly
window

Metrics STL
only

SARIMA
only

LSTM
only

LSTM
with
STL

ADSaS

NAB
jumps

335 11–25 Precision 0.920 0.518 0.324 0.278 1.000

Recall 0.910 0.727 0.500 0.750 1.000

F1-score 0.903 0.583 0.370 0.392 1.000

NAB
CPU

335 4 Precision 0.800 0.143 0.833 0.308 1.000

Recall 1.000 0.250 1.000 1.000 0.250

F1-score 0.889 0.182 0.909 0.471 0.400

NAB
disk

394 1 Precision 0.025 0.026 0.049 0.018 1.000

Recall 1.000 1.000 0.222 1.000 1.000

F1-score 0.049 0.051 0.049 0.018 1.000

NAB
temper-
ature

315 9 Precision 0.250 0.000 0.049 0.059 1.000

Recall 0.222 0.000 0.222 0.625 0.500

F1-score 0.235 0.000 0.080 0.108 0.667

NAB
taxi

214 9 Precision 0.533 0.000 0.176 0.161 1.000

Recall 0.889 0.000 0.333 1.000 1.000

F1-score 0.667 0.000 0.231 0.277 1.000

P login 1,102 245 Precision 0.970 1.000 0.962 0.968 1.000

Recall 0.922 0.307 0.307 1.000 1.000

F1-score 0.945 0.470 0.466 0.984 1.000

P
browser

1,102 131 Precision 0.947 1.000 1.000 0.942 1.000

Recall 0.954 0.588 0.924 0.992 1.000

F1-score 0.951 0.740 0.960 0.967 1.000

P
provider

1,102 141 Precision 0.914 1.000 0.917 0.849 1.000

Recall 0.979 0.057 0.936 1.000 0.993

F1-score 0.945 0.107 0.926 0.919 0.996

We note that in most datasets, an algorithm that uses only STL has the next
highest F1-score after ADSaS. In particular, as opposed to LSTM, it performed
well for NAB Jumps and P Login which are periodic time-series. However, STL
does not forecast anything, so it is impossible to automatically correct anomalies
to normal values, which is possible in other algorithms. SARIMA only algorithm
does not perform well in anomaly detection because its forecast accuracy is
compromised by the undersampling and interpolation processes. For NAB disks,
which is the noisiest dataset, all but ADSaS has very low F1-score less than 0.05.
This suggests that SARIMA, STL, and LSTM cannot handle noise alone, but
combining SARIMA and STL shows remarkable performance at handling noise.
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We also analyze the reasons why ADSaS performed poorly on NAB CPU
dataset. ADSaS found only one of the four anomaly windows, which is the last
anomaly window, the actual concept drift. ADSaS is unable to determine the
first anomaly whether or not it is an anomaly because it is used as train set.
This is a fatal disadvantage of ADSaS. Both SARIMA and STL require a data
set of a certain size to be used as a train set to forecast or decompose time-
series. ADSaS uses both algorithms, so the amount of data sets initially used for
training is greater than others. However, since there are large enough datasets
for anomaly detection in real business, this is not a big problem to ADSaS. In
addition, ADSaS shows near-perfect accuracy for most datasets.

Figure 4 shows examples of the residuals and errors from each algorithm in
NAB taxi dataset. The anomaly is determined by the cumulative distribution
function of these data. There are five anomaly sections (including peak, dip,
partial decrease), and a total number of anomaly windows is nine. First, ADSaS
and STL have some similar forms but STL shows some bumps between the
fourth and fifth anomaly sections which cause false positives. SARIMA generates
a lot of errors regularly due to its uncertainty of forecasting. LSTM shows the
lowest prediction error compared to other algorithms, but the prediction error
is increased only at the point where peaks exist. For dip and partial decrease,
where the value is suddenly reduced, the prediction error is low because LSTM
quickly adjusts to the value.

Fig. 4. Residuals or error of each algorithm for NAB taxi dataset. Anomaly windows
are colored with red. (Color figure online)
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Table 2. The latency of classification for each stream and model-build.

Algorithm Model build (s) Classify (s)

STL 0.000 0.189

SARIMA 3.776 0.000

LSTM 1982.410 0.001

ADSaS 3.992 0.187

Table 2 is a comparison of latency between algorithms. STL does not need
to build a model, so only time-decomposition process increases latency. Unlike
other algorithms, the time decomposition of STL is directly linked to anomaly
detection and cannot proceed with batch. For SARIMA, the forecast size can
be adjusted to help speed up the forecasting. In this experiment, SARIMA
model predicts the daily data in advance. Therefore, anomaly classification using
SARIMA is very fast because all it has to do is calculate the actual stream data
difference. Although we used the LSTM model with 12 neurons, two hidden
layer and relu activation function in this experiment, which is comparatively
not a heavy model, LSTM took the 1982 seconds to build the model. As the
number of neurons and hidden layers increases, building or updating LSTM’s
model takes an extraordinary amount of time.

7 Conclusions

By combining STL and SARIMA, we have presented algorithms to detect var-
ious anomalies in datasets from various sources. In addition, comparing with
LSTM shows that conventional time-series analysis has better performance and
accuracy than the deep-learning algorithm. In this paper, we have discussed
the forecasting model SARIMA does not give accurate predictions, but STL
is able to resolve incomplete predictions by decomposing the prediction errors.
It supports the fact that the STL algorithm will be more useful in anomaly
detection than other approaches in error processing, such as likelihood. We also
showed that the conventional time-series techniques are applicable to noisy and
non-stationary datasets (NAB Disk). We applied our algorithm to real online
payment system data and showed that ADSaS can be applied directly to the
real industry. ADSaS succeeded in detecting anomaly right at the time of the
attack. In this experiment, only the SARIMA model is used as the time-series
prediction algorithm, but other time-series models including GARCH model,
that expresses white noises, can be used as a predictor module. Furthermore,
we need to update our algorithms to detect anomaly using multivariate datasets
because we conducted the experiments on datasets with an only single variable.
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