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Abstract. Security is not just a technical problem, but it is a business
problem. Companies are facing highly-sophisticated and targeted cyber
attacks everyday, and losing a huge amount of money as well as private
data. Threat intelligence helps in predicting and reacting to such prob-
lems, but extracting well-organized threat intelligence from enormous
amount of information is significantly challenging. In this paper, we pro-
pose a novel technique for visualizing security alerts, and implement it
in a system that we call AlertVision, which provides an analyst with a
visual summary about the correlation between security alerts. The visu-
alization helps in understanding various threats in wild in an intuitive
manner, and eventually benefits the analyst to build TI. We applied our
technique on real-world data obtained from the network of 85 organiza-
tions, which include 5,801,619 security events in total, and summarized
lessons learned.
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1 Introduction

Security is a growing concern for enterprises and organizations with ever-evolving
attack techniques. Today’s security threats involve complex attack scenarios, and
are designed to cause persistent damage against specific targets. They are often
called an Advanced Persistent Threat, or APT in short [37]. APT actors typically
leverage ‘advanced’ techniques such as code obfuscation and metamorphism [27]
in order to thwart the detection.

Traditional defense approaches, e.g., Intrusion Detection System (IDS) [2],
are not sufficient to handle APTs, because their focus is only on attack instances.
That is, conventional defenses are mainly about understanding the behavior
of malware instances, analyzing what kind of vulnerabilities are exploited, or
figuring out what kind of techniques are used to bypass defenses. However, such
information can vary depending on the victim as well as the attack campaign.
Furthermore, responding to each and every threat by analyzing them is not
feasible anyways in practice as they appear on a daily basis.
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To deal with APTs, enterprises now try to utilize Threat Intelligence (TI),
which is well-refined knowledge about threats with outward focus. That is, TI
includes information beyond attack instances such as the behavioral patterns of
the threat actors, their intent, and their characteristics. It is widely known that
TI can help prevent security threats in a proactive manner [1].

Although TI-based defense is a promising direction, extracting TI from mas-
sive information obtained in wild is challenging because there are too many
attack instances to consider. Companies employ Security Information and Event
Management (SIEM) systems to detect threats and collect the corresponding
events, which typically produce thousands of events per hour. It is not clear
how to interpret and correlate those events to understand the attackers behind
the scene. Furthermore, there can be false alerts from SIEM systems, which can
easily confuse the TI generation process.

The current best practice in building TI is to correlate alerts generated from
various IDS/IPS systems and identifies high-level patterns of current attacks.
This process is often called alert correlation [23], and it can be used to identify
unknown threats in the future. Most research in this field currently focuses on
improving their accuracy [30,32,36], but an automated way of visualizing the
correlation between security alerts is largely unexplored to date.

In this paper we present a simple and effective approach to visualize security
alerts obtained from SIEM systems. We argue that such visual aids help analysts
understand the characteristics of the attacks and the attackers behind, which
often do not change regardless of the attack campaign: attackers tend to behave
similarly even though the actual attack methodology may vary. To this end, we
implement AlertVision, a visualization system for SIEM alerts, and evaluate it
on real-world SIEM logs, which constitute 5,801,619 alerts in total.

To visualize security alerts, AlertVision first groups them based on their prop-
erty, and produces a set of alert sequences. Each grouped sequence represents
a feature of attack incidents, e.g., an attack source IP or a target service. Our
system then computes similarity between the sequences, and visualizes their
relationships in a graph. The key intuition here is that two or more features
that are seemingly irrelevant can be similar to each other, and visualizing their
relationship can often help understand the meaning of the incidents. To figure
out the similarity between two distinct event sequences, it leverages a sequence
alignment algorithm used in bioinformatics [34].

The primary challenge of AlertVision is to draw a graph where the coor-
dinates of the nodes are not known, but only the distances, i.e., the similar-
ity, between them are known. We leverage a force-directed graph drawing algo-
rithm [7], which can draw a graph in a space based only on their relative dis-
tances. The resulting graph provides a useful insight to analysts because it can
reveal that two seemingly different alert sequences are indeed similar to each
other in the graph. Unlike traditional cluster analysis such as hierarchical clus-
tering, the graph instantly presents visual evidence to analysts.
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Our main contributions are as follows.

1. We propose a technique for visualizing relationship between attackers, which
can help in understanding the meaning of security incidents.

2. We evaluated our technique on a large dataset obtained from real SIEM
devices in wild.

3. We empirically show that security analysts can benefit from our visualization
framework in terms of detecting previously unknown attacks.

2 Background

This section introduces the concept of local sequence alignment algorithm and
force-directed graph layout algorithm, which serve as the basis of our alert visu-
alization approach.

2.1 Local Sequence Alignment Algorithm

Sequence alignment is a way of arranging sequences. There are mainly two cat-
egories: local and global sequence alignment. Local sequence alignment algo-
rithm finds similar subsequences between two sequences. Global alignment algo-
rithm aims to obtain an end-to-end alignment between two sequences, whereas
local alignment algorithm focuses on subsequences. Since we are dealing with
SIEM event sequences that are different in their size and their look, we use local
sequence alignment algorithm to obtain the similarity between the subsequences.

The most popular local sequence alignment algorithm is Smith-
Waterman [34], which is a variation of Needleman-Wunsch algorithm [25]. Smith-
Waterman algorithm is widely adopted in various areas in security such as
malware analysis [15] and intrusion detection [3]. The algorithm takes in two
sequences s1 = a1, a2, . . . , am and s2 = b1, b2, . . . , bn of length m and n, respec-
tively, and computes a scoring matrix H as follows. First, it constructs a (m+1)-
by-(n+1) scoring matrix H, where Hk0 = H0l = 0 for 0 ≤ k ≤ m and 0 ≤ l ≤ n.
It then fills in the scoring matrix with the following equation where s(a, b) is a
similarity score of the two elements a and b, and Wk is the penalty of having a
gap of length k:

Hij = max

⎧
⎪⎪⎨

⎪⎪⎩

Hi−1,j−1 + s(ai, bj),
maxk≥1{Hi−k,j − Wk},
maxl≥1{Hi,j−l − Wl},
0.

(1 ≤ i ≤ m, 1 ≤ j ≤ n)

Finally, it traces back from a cell in H of the highest score to the one with a
score 0, which constitutes the most similar subsequence of s1 and s2.

The time complexity of the classic Smith-Waterman algorithm is O(m2n),
but Gotoh et al. [8] proposed an algorithm of O(m + n) time complexity,
and Myers et al. [24] showed an algorithm of O(n) space complexity. There
are also several linear-time and linear-space sub-optimal algorithms [11], which
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make local sequence alignment even more practical. Furthermore, there are sev-
eral recent attempts to leverage GPU to accelerate the Smith-Waterman algo-
rithm [26,28].

Logs
(L)

Preprocess
(§3.1)

Align
(§3.2)

Draw
(§3.3)

Graph
(G)S M

Fig. 1. Overview of AlertVision.

2.2 Force-Directed Graph

Force-directed graph drawing [7] is an algorithm used for graph layout and visu-
alization. It takes advantage of the idea of Coulomb’s law and Hooke’s law to
determine the position of nodes. In particular, there are attractive forces between
nodes that are far apart, and are repulsive forces between nodes that are close
to each other. The algorithm moves nodes based on these forces until it reaches
an equilibrium state. We leverage this idea to visually represent security alerts.
Although alert logs typically do not have the notion of coordinates, we can
assign specific positions for each alert based on their relative similarities with
force-directed graph drawing. As a result, we can apply a simple and cheap clus-
tering algorithm such as k-means clustering to perform a cluster analysis on alert
logs instead of using an expensive one such as hierarchical clustering [33].

3 AlertVision Design

At a high level, AlertVision takes in security logs generated from SIEM systems
and returns a graph that visually correlating security alerts in the logs. Figure 1
shows the overall architecture of AlertVision. AlertVision consists of three major
modules: Preprocess, Align, and Draw. First, Preprocess parses alert logs
L and produces sequences of alerts S. Next, Align finds similar subsequences
from S using a local sequence alignment algorithm, and produces a matrix M
that stores similarity between every pair of S. Finally, Draw returns a graph
where a sequence in S represents a node based on their similarity M .

3.1 Preprocess

AlertVision first preprocesses alert logs L to generate a set of alert sequences S
by grouping alerts based on a specific attack feature. An attack feature includes
a source IP address initiated the attack and a corresponding attack signature.
By grouping alerts based on a feature, we can potentially realize relationship
between feature values. For example, we may be able to realize the similarity
between specific attacks if we visualize alert sequences grouped by their attack
signatures.
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In our current implementation, we focus on logs obtained from Network Intru-
sion Detection Systems (NIDS). In particular, we focus on source IP addresses of
alert logs. By definition, every entry in NIDS logs contains its source IP address,
i.e., an IP address that initiated the attack. By collecting a sequence of alerts
for each IP address, we know what kind of attacks are introduced from an IP
address in which order. Furthermore, assuming that attack payloads sent from
the same IP address are from the same attacker, we can group the logs, and can
potentially figure out similarities between attackers. From our experiments we
found that an attacker tends to use the same set of IP addresses during an attack
campaign even though actual payloads they use may differ. One notable example
is APT, which typically includes multiple stages of independent attacks.

3.2 Align

Align takes in a set of grouped sequences S, and produces a similarity matrix
M , which contains similarity scores for every pair of grouped sequences in S. The
similarity scores are used to visualize the relationship between the sequences in
the next step. To compute M , we focus on local similarity between two sequences.
Specifically, we first use Smith-Waterman algorithm to compute a local align-
ment with the gap penalty Wk = 1, and the similarity score 2 and −2 for
matching and mismatching elements, respectively. In our implementation, we
say two alerts match if they have the same IDS signature.

Since Smith-Waterman returns the most similar subsequence of given two
sequences, we use the subsequence as the measure of similarity. In particular, we
compute the sum of similarity score (in the scoring matrix H) for every element
in the subsequence, and normalize the sum by dividing it by the minimum length
of the two sequences, because the sum may differ significantly based on the length
of the given sequences. Note that any resulting subsequence can only be as long
as the minimum length of the given sequences. Thus, the normalized similarity
should be always less than two, and greater than zero. To make the score be
in the range from zero to one, we further divide the score by two, which is the
maximum similarity score we gave.

For instance, given two sequences s1 = a1, a2, . . . , am and s2 = b1, b2, . . . , bn
where m < n, let us assume that we have obtained the most similar subsequence
s3 = c1, c2, . . . , cl, and the sum of the similarity score for s3 was x. We then
normalize the sum with: x

2m . Each element in the resulting matrix M represents
a normalized similarity score.

3.3 Draw

The final step of AlertVision is to draw a graph based on the similarity matrix M
we computed in the Align phase. Each nodes in the resulting graph represents a
sequence of alerts generated in the Preprocess step. The key challenge here is
to decide where to place each node in a graph because there is no such notion as
position for each of the sequences. To draw a graph based only on the relative dis-
tances between nodes, we leverage force-directed graph drawing [7] discussed in
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Sect. 2.2. To represent the relationship between nodes, we draw edges only when
two nodes are similar to each other based on our similarity measure. Specifically,
we draw an edge between two nodes when their similarity score is higher than
0.9, i.e., 90%. The algorithm starts by placing every node in random positions
in a two-dimensional coordinate plane, and terminates when all the nodes are in
an equilibrium state.

4 Evaluation

We now evaluate AlertVision on real-world alert logs obtained from real SIEM
devices. Specifically, we answer the following questions to evaluate our system.

1. Can we observe some meaningful correlation between alert sequences that are
close to each other in a graph generated from AlertVision? (Sect. 4.2)

2. How do sequence clusters change over time? Can we see similar clusters over
time? (Sect. 4.3)

3. Is there a specific attack incident that we can identify from the generated
graphs? (Sect. 4.4)

4.1 Experimental Setup

We collected 6-months (from January to June in 2017) logs from real SIEM
devices installed in 85 enterprises, which constitute 5,801,619 alerts for NIDS
in total. There were 96,260 unique source IP addresses used in the alerts exclud-
ing private IP addresses; since one private IP address does not stand for one
independent attacker, we disregarded private IP addresses. We ran Prepro-
cess to make a mapping from a source IP to an alert message, which resulted
in 96,260 mappings in total. We then removed mappings which have a sequence
of only a single alert. Note that such a short sequence cannot affect the result
of Smith-Waterman algorithm and removing them can help reduce overhead of
Align. As a result, we obtained 29,268 unique attack sequences in total. In the
rest of this section, we discuss our research questions based on the results of
Preprocess.

4.2 Alert Sequence Correlation

We ran Align and Draw on the sequences obtained in Sect. 4.1. Figure 2
presents six graphs we obtained by running AlertVision on monthly logs from
Jan. 2017 to Jun. 2017. Each node (dot) in the graphs represents a sequence,
i.e., a group of alerts. The graphs clearly show which sequences are similar to
each other: we can easily recognize clusters of nodes from the graphs. We found
that each cluster in the graphs contain similar attack sequences. For example,
SQL injection attacks formed a large cluster in each of the graphs, and several
web-based attacks such as XSS and XPATH injection formed multiple clusters
that were close to each other. To further analyze the correlation between the
alerts, we grouped the nodes based on their attack characteristics.
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Particularly, there were 504 unique attack signatures in our dataset, and we
manually categorized them into six categories based on their attack character-
istics: (1) SQL injection, (2) vulnerability scanning, (3) XSS, (4) SSH password
guessing, (5) web-based attacks, and (6) known CVE exploitation. We separated
the XSS group with the web-based attack group because we found relatively

Fig. 2. Visualization of 6-month alert logs we collected from real-world SIEM devices.

Fig. 3. Visualization of 6-month alert logs with categorization. (Color figure online)
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many attack instances for XSS compared to other web-based attacks. The CVE
exploitation group includes any attacks that are associated with known CVE.
For example, we observed many exploits on Apache Struts in early 2017, which
is associated with CVE-2017-5638.

Table 1. Attack reuse rate for each attack type based on the nodes in Jan. 2017.

Attack type Feb. Mar. Apr. May Jun.

SQL injection 16.5% 11.6% 7.3% 5.6% 4.3%

Vulnerability scanning 63.8% 62.7% 70.4% 51.9% 54.4%

XSS 30.5% 27.2% 37.3% 27.8% 17.0%

SSH Brute-Forcing 19.8% 8.4% 5.5% 3.2% 1.9%

Web-based attacks 30.2% 15.1% 9.3% 11.2% 12.0%

CVE exploitation 18.8% 18.8% 18.8% 12.5% 6.3%

Figure 3 shows nodes in each of the groups in different colors. It is obvious
from the graphs that our automated graph visualization algorithm was able to
cluster attack sequences into meaningful clusters.

4.3 Attacks over Time

Do clustered sequences in our graphs change over time? We found that the same
IP addresses tend to perform distinct attacks over time. For example, 83% of
nodes that performed XSS in Jan. 2017 used different attack vectors other than
XSS in Jun. 2017. Table 1 summarizes the attack reuse rate, which is the rate
between the number of nodes that reuse the same attack type and the total
number of nodes, for each attack type we consider. We computed the reuse rate
based on the nodes in the graph of Jan. 2017. For example, only 4.3% of the
nodes used for SQL injection in Jan. 2017 were used for SQL injection again in
Jun. 2017. Notably, over 50% of the vulnerability scanners were using the same
IP addresses over time.

We note that we can easily identify such a change by analyzing graphs with
AlertVision, because we can easily highlight specific nodes when drawing graphs.
Furthermore, the current implementation of AlertVision provides a graphical
user interface that allows analysts to click nodes in the graph to see detailed
information about them.

4.4 TI Case Study

Does the information that we obtained from AlertVision match with existing
threat intelligence? To answer this question, we checked if any of the attackers’
IP addresses in our dataset are listed in the IBM X-Force TI service [12]. We
found that several known IP addresses for attackers in the TI were indeed in
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the same group in our graphs. Figures 4 and 5 show that known command-and-
control (C&C) servers and botnet addresses from the TI were in the same group
in the graphs, respectively. Both figures illustrate a case for Jan. 2017, but the
same trend appears in other graphs.

This result signifies the value of AlertVision as a tool that helps analysts
understand the meaning of the attacks. For example, the IBM TI shows some of
the nodes in our graphs are identified as a bot, but other nodes in the graph that
are close the identified bots may be other bots controlled by the same botnet
master as their behaviors are the same as the identified bots.

Fig. 4. Clustered C&C servers. Fig. 5. Clustered botnet bots.

5 Related Work

Leveraging data mining and big data analytics for security has a long history. For
instance, behavior-based anomaly detection [6,18] is a powerful defense mech-
anism that is still being used today. However, such techniques only focus on
detecting attack instances, but not on identifying and analyzing the actors of
the attacks.

Many researchers have recently turned their attention to refining security
data obtained from various sources to build TI and to understand the mean-
ing of threat instances due to recent advances in security threats. There are
currently several attempts to classify threats [5,13,16,21,35,39] by leveraging
ontology formally defined for describing security threats [5]. Although effective,
those approaches are largely manual. Several attempts to defining data struc-
tures for TI have been made too. STIX [1] provides a unified way for expressing
TI. Qamar et al. [29] recently extends STIX to represent semantics and con-
textual information of TI. Kapetanakis et al. [14] leverage traces on the victim
machines left by attackers, e.g., modified/deleted files or registry entries, in order
to generate attacker profiles. However, collecting such information is not feasi-
ble in practice as it requires installing host-based logging application for every
machine, which may raise privacy concerns. On the other hand, our approach
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only uses the existing SIEM events in order to generate profiles. Furthermore,
our system visualizes the relevance between security alerts, which can provide
valuable insight for the TI analysts. Note that AlertVision presents a unique
design point in mining useful knowledge from security alerts with visualization.
Therefore, our technique is complementary to the existing works.

There have been a wide range of research on correlating similar SIEM events,
which is often called, alert correlation [20,31,40]. Alert correlation techniques
are used to detect botnets [9,17] as well as to discover attack patterns from
alert logs [4,23,30,32,38]. Ours is in the same line of research, but our focus is
not on correlating attack instances themselves, but on visually representing the
similarity between attack sources.

Visualizing security alerts has been studied by several researchers, but they
mostly focus on how to graphically representing the raw data itself, but not on
visualizing the meaning of them. Some of them can only be applied to specific
attack types such as Worm [10] and DoS attacks [22]. Livnat et al. [19] propose
a general method for representing alerts based on their detection time and their
location in a network topology, but it does not capture the correlation between
those alerts.

6 Conclusion

In this paper, we presented a novel visualization technique for providing practical
insights for security analysts. We applied our technique on a large-scale dataset
obtained from real enterprise networks, and showed its effectiveness in terms of
understanding attacks and extracting TI from alert logs. The proposed technique
is indeed used internally now in AhnLab, Korea.

Acknowledgements. We thank anonymous reviewers for their helpful feedback. This
research was supported by AhnLab.
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