
Reliable Rowhammer Attack
and Mitigation Based on Reverse
Engineering Memory Address

Mapping Algorithms

Saeyoung Oh and Jong Kim(B)

Department of Computer Science and Engineering,
Pohang University of Science and Technology (POSTECH),

Pohang, Republic of Korea
{osy4997,jkim}@postech.ac.kr

Abstract. Rowhammer attacks intentionally induce bit flips to corrupt
victim’s data whose integrity must be guaranteed. To perform sophisti-
cated rowhammer attacks, attackers need to repeatedly access the neigh-
boring rows of target data. In DRAM, however, the physical addresses
of neighboring rows are not always contiguous even if they are located
before or after a target row. Hence, it is important to know the map-
ping algorithm which maps between physical addresses and physical row
indexes not only for an attack but also for protection.

In this paper, we introduce a method to reverse engineer the exact
mapping algorithm and demonstrate that the assumption in previous
rowhammer work is faulty. In addition, we introduce a novel and effi-
cient rowhammer method and improve existing mitigations that has
a security hole caused by the faulty assumption. Finally, we evaluate
the effectiveness of the proposed attack and show that the proposed
mitigation almost perfectly defends against rowhammer attacks.

Keywords: Rowhammer bug · Reverse engineer ·
Memory address mapping

1 Introduction

In the last decades, DRAM has evolved dramatically. Researchers and manufac-
turers have devoted many efforts to increase the capacity of DRAM memory. As
a consequence, the recent DRAM achieves high cell density, and thus, can hold
large amounts of data. Despite the benefit, the development also brought side
effects such as hardware faults which threaten data integrity.

A rowhammer attack is a representative attack abusing a disturbance error
which is one of the high-density DRAM hardware faults. This attack corrupts tar-
get data by maximizing the effects of disturbance errors. In specific, the attacks

c© Springer Nature Switzerland AG 2019
B. B. Kang and J. Jang (Eds.): WISA 2018, LNCS 11402, pp. 146–158, 2019.
https://doi.org/10.1007/978-3-030-17982-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17982-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-17982-3_12

Reliable Rowhammer Attack and Mitigation 147

repeatedly access the neighboring rows of the target row that contains the tar-
get data. Although rowhammer attacks exploit a hardware fault, the attacks are
performed at the software level without direct access to the hardware.

One of the requirements for rowhammer attacks is that attackers need to
access the neighboring rows of the target row in the same bank. However, the
mapping information between the user-level locations (e.g., virtual addresses
or physical addresses) and physical locations on DRAM (e.g., row and bank
information) is not available publicly. Therefore, it is not straightforward to
access the upper and lower neighboring rows in the same bank.

To find the mapping, previous work has reverse engineered the mapping
algorithm between physical addresses and physical DRAM bank indexes [10,14].
Using the mapping algorithm for banks, it is possible to track down bank indexes
with physical addresses. However, no method has been proposed to find the exact
mapping algorithm for rows, although a part of the mapping algorithm is already
revealed [4]. To defend against the rowhammer attacks, a mitigation also has to
understand the mapping algorithm since it has to locate the exact neighboring
rows. However, due to the difficulty of knowing row-mapping information, previ-
ous work has used a näıve assumption that DRAM rows are arranged identically
to the sequence of physical addresses [1,3]. If the assumption is faulty, these
mitigations will not work as the intended way.

In this paper, we introduce a method to reverse engineer the mapping algo-
rithm for rows. This method exploits the insight that rowhammer induces bit
flips only on the neighboring rows. Based on this method, we demonstrate the
invalidity of the commonly presumed assumption that physically contiguous rows
have also contiguous physical addresses, and propose a novel and precise mapping
algorithm-aware rowhammer attack. Also, we show that this invalid assumption
causes a security hole in existing mitigation methods, and improve the exist-
ing mitigation by using our method to reverse engineer the mapping algorithm.
Finally, we evaluate our attack and mitigation methods.

The contributions of our research are as follows:

• We introduce a method to reverse engineer the DRAM row organization and
discover the mapping algorithm for rows. To the best of our knowledge, no
such method has been used by the previous work to reverse engineer the
organization of DRAM modules.

• We propose a novel and precise rowhammer attack with exact mapping algo-
rithm.

• We explain a security hole of existing mitigations and improve one of the
mitigations using our exact mapping algorithm.

2 Background

In this section, we introduce DRAM organization and a rowhammer bug. In
addition, we explain the prior work to reverse engineer the DRAM mapping
algorithm.

148 S. Oh and J. Kim

Channel 1

Channel 2

DIMMs

DIMMs

Rank

Memory
Controller

(a) Memory controller, channels,
DIMMs and ranks

Subarray
Local row buffer

Subarray
Local row buffer

…

Global row buffer

Bank

Row

Column

512 Rows

(b) Subarrays within a bank

Fig. 1. DRAM organization.

2.1 DRAM Organization

DRAMs are hierarchically organized (Fig. 1a). Channels connect a memory con-
troller to Dual Inline Memory Modules (DIMMs). Modern DIMMs can have
at most eight ranks which denote sets of DRAM chips. Each rank has multi-
ple banks and banks contain numerous cells that store the voltage representing
logical data. All cells are connected horizontally and vertically through word-
lines and bitlines. The horizontally and vertically connected cells are respectively
called rows and columns (Fig. 1b).

The 2D array of cells is subdivided into several subarrays [7]. Each subarray
is composed of 512 rows and has regularity, which indicates that the subarray
internal organizations are same as each other. All the cells in one subarray are
connected to one local row buffer, and all local row buffers are connected to
one global row buffer (Fig. 1b). All row buffers store and amplify the voltage of
DRAM data to a recognizable level.

The data on the DRAM cells are volatile because the voltage representing the
data is leaked over time, leading to data loss. Therefore, the voltage is maintained
by refreshing cells periodically before the voltage drops below the threshold (the
indicator to determine whether the data is 0 or 1).

2.2 Rowhammer

Since DRAM chips have been compressed remarkably to increase the capacity
within limited space, many hardware faults have emerged [2,5,6]. One of the
hardware faults is a disturbance error which hazards data integrity due to inter-
ferences of adjacent cells.

Rowhammer is a method to intentionally induce the disturbance error.
Rowhammer is performed by repeatedly and rapidly accessing a DRAM row
(called an aggressor row). This process accelerates the effect of the disturbance
error, that corrupts the neighboring rows (called target rows or victim rows) of
the aggressor row.

Reliable Rowhammer Attack and Mitigation 149

Double-sided rowhammer, an effective method to induce bit flips, was intro-
duced in [12]. Double-sided rowhammer repeatedly accesses both upper and
lower neighboring rows of a target row, while the single-sided rowhammer repeat-
edly accesses only a single neighboring row to induce bit flips on the target
row. To corrupt target data by using double-sided rowhammer (or single-sided
rowhammer) exquisitely, it is necessary to know the user-level address (i.e., vir-
tual address) of upper and lower neighboring rows in the same bank. Previous
work [11,13] has introduced the methods to know the virtual addresses that
correspond to the physical addresses of potential neighboring rows. However,
since these methods are performed with the unproven assumption that con-
tiguous rows have contiguous physical addresses, the potential neighboring rows
may not be actual neighboring rows. Therefore, to precisely corrupt the target
row, attackers need to know the exact physical addresses corresponding to the
neighboring rows in the same bank.

2.3 Mapping Algorithm

To access data on DRAM module, the memory controller locates the data on
DRAM by referring to mapping algorithm. The mapping algorithm determines
the location of data on DRAM and is composed of several physical address bits.
Since it must map the physical address to the hierarchies of DRAM, the algo-
rithm consists of sub-mapping algorithms for channels, modules, ranks, banks,
and rows.

The mapping algorithm for banks is reverse engineered in previous work [10,
14]. By using a timing method which is related to row buffers, this work reveals
that the mapping algorithm for banks is composed of XORed combinations of
certain physical address bits. In contrast, the mapping algorithm for rows cannot
be reverse engineered with the method which is used in the work. While it is
possible to find which physical address bits compose the mapping algorithm for
rows, it is impossible to identify how the composed bits of physical address deter-
mine the physical location of rows. This means that it is possible to distinguish
whether the row of a certain physical address is different from the rowhammer
target row in the same bank, but it is impossible to identify the exact upper and
lower rows of the target row.

3 Reverse Engineering Mapping Algorithm

While the mapping algorithm for banks is reverse engineered, the mapping algo-
rithm for rows cannot be reverse engineered using the timing method. Therefore,
previous work [1,3,14] has näıve assumption that physical rows are arranged
identically to physical addresses. According to the prior assumption, two rows
are physically contiguous if the physical addresses of these rows are contiguous
in the same bank.

Let r represent a row address composed of {b0, b1, . . . , bn}, bi be the ith row
bit, where n is the number of bits on a logical row address. The row index
function on prior assumption is:

150 S. Oh and J. Kim

LRow(r) =
n∑

i=0

2ibi, (1)

where r is a row address. These bits of a row address can be extracted from a
physical address by using the previous methods [10,14]. We call this function (1)
a logical row index function in this paper. Previous work has not demonstrated
that the logical row index function is used in the real architecture.

The goal of this section is to find the real mapping algorithm. We can express
the mapping algorithm as:

PRow(r) =
n∑

i=0

2iFi(r) (2)

We call this function (2) a physical row index function in this paper and the goal
of this section is to find the Fi(r) that is assumed to consist of physical address
bits.

Before explaining our method in detail, we assume that 512 contiguous logical
rows constitute one physical subarray and the mapping algorithm of one DRAM
subarray also works for all DRAM subarrays. These assumptions seem reasonable
due to the regularity of DRAM subarrays [5]. Therefore, we only focus on the
lower 9 bits of a row address because each DRAM subarray consists of 512 (=29)
rows.

Serialize Phase

r0r1r2r3r4r5…
r511r512

Local Row Buffer

(r0, r2, r1)
(r1, r4, r3)
(r4, r3, r5)

…
(r510, r511, r512)

PRow (r)

Logical Subarray Physical SubarraySet of tuples

Rowhammer Merge Find

Find Phase

r0r2r1r4r3r5…
r511r512

Local Row Buffer

Fig. 2. Overall procedure of reverse engineering.

We reverse engineer the mapping algorithm in two steps. First, we arrange
DRAM rows in sequential order by using rowhammer. We refer to this step
as row serialization. Second, we manually find the mapping algorithm with the
serialized rows, that is finding the function Fi(r). The overall procedure of reverse
engineering is shown in Fig. 2.

Reliable Rowhammer Attack and Mitigation 151

3.1 Row Serialization

In this subsection, we describe how to serialize rows of the single subarray in
physical order to find the exact mapping algorithm. The key idea of row seri-
alization is that rowhammer induces bit flips only on the neighboring rows of
an aggressor row. We can identify the neighboring rows of aggressor rows by
detecting the rows that have been corrupted by the rowhammer.

For convenience, we first define the following primitives:

• rn is a row address which is composed of {b0, b1, b2, ..., bi}, where i is the
number of bits on row address rn.

• srn,m is a row that is sandwiched between rows rn and rm.
• Dhammer(rn, rm) returns the set of the rows that have been corrupted by

double-sided rowhammer when rn and rm are aggressor rows.
• Shammer(r) returns the set of the rows that have been corrupted by single-

sided rowhammer when r is an aggressor row.

We perform double-sided rowhammer with all the combinations of two rows
within a single DRAM subarray to find a row that is sandwiched between two
rows. A single DRAM subarray consists of 512 rows, so the number of cases is
at most

(
512
2

)
= 130, 816. Thus, we argue that the time required to perform the

rowhammer with two selected rows is feasible. We check which rows have been
corrupted by double-sided rowhammer on the selected rows rn and rm. By this
process, we can find the set of Dhammer(rn, rm), which is related to srn,m.
However, the set of Dhammer(rn, rm) may contain rows that are adjacent to
the other sides of the aggressor rows in addition to the sandwiched rows due to
the effects of single-sided rowhammer. Therefore, we remove the effect of single-
sided rowhammer by excluding the sets of Shammer(rn) and Shammer(rm)
from Dhammer(rn, rm) by performing additional single-sided rowhammer on
rm and rn.

Ideally, Dhammer(rn, rm)−Shammer(rn)−Shammer(rm) must have only
one row srn,m because only one sandwiched row can be between two aggressor
rows. Therefore, except for two boundary rows (the 0th row and the 512th row)
which are not affected by double-sided rowhammer, 510 tuples (rn, srn,m, rm)
can be obtained within a single DRAM subarray. This tuple indicates a sequence
of physically contiguous rows. After obtaining the tuple, we can infer overall row
arrangements due to the subarray regularity.

With the tuples, we can reconstruct a subarray by using the following rules:

• If two tuples, (rn1 , srn1,m1 , rm1) and (rn2 , srn2,m2 , rm2) exist such that
srn1,m1 = rn2 and rm1 = srn2,m2 , then the two tuples can be merged into
(rn1 , rn2 , rm1 , rm2).

• If two tuples, (rn3 , srn3,m3 , rm3) and (rn4 , srn4,m4 , rm4) exist such that rm3 =
rn4 , then the two tuples can be merged into (rn3 , srn3,m3 , rm3 , srn4,m4 , rm4).

Using this method, we can ideally merge all of the tuples into one sequentially
ordered tuple, that is, the physical sequence of 512 rows within a single DRAM
subarray.

152 S. Oh and J. Kim

The success of row serialization depends on the number of corrupted rows
after performing double-sided rowhammer. However, some rows might not be
corrupted. To resolve this problem, we focus on the subarray regularity, which
means that every subarray is organized identically. Due to this regularity, undis-
covered tuples in one subarray can be obtained from another subarray.

3.2 Finding Mapping Algorithm

Next, we use the serialized rows to find the mapping algorithm of physical row
indexes PRow(rn) (or Fi(r)). As we mentioned, the input of this function (2) is
a row address and the output is a physical row index. We manually find the func-
tion PRow(r) by exploiting the insight that the discovered tuple (rn, srn,m, rm)
implies PRow(rn) + 1 = PRow(srn,m) and PRow(rm) − 1 = PRow(srn,m),
which means that the rows of the tuple are sequentially contiguous.

3.3 Row Address Mapping Schemes

We tested six DDR3 modules of three major DRAM manufacturers with this
method to reverse engineer the mapping algorithm (Table 1). By using this
method, we discovered two mapping algorithm schemes, which are address mir-
roring and row twisting. As a result, we demonstrate that the prior assumption
is faulty.

Address Mirroring. The first scheme is observed only on one rank1 of two-
rank DRAM modules for all of the experimented manufacturers. The other rank
is subject to either the logical row index function or row twisting. The physical
row index function is (we mark the components which are different from the
logical row index function in bold):

i 0 1 2 3 4 5 6 7 8

Fi(r) b0 b1 b2 b4 b3 b6 b5 b8 b7

JEDEC [4] documents this scheme, called address mirroring that is deployed
to increase throughput by cross-wiring some wires on one rank. We can identify
that our discovered physical row index is address mirroring because the index
of address mirroring in the JEDEC standard is exactly identical with ours. The
sameness implies that our method to reverse engineer is valid to find the exact
physical address.

1 In fact, it is impossible to distinguish the rank bits and bank bits from the existing
reverse engineering method. However, since we can track the difference of mapping
algorithm for each rank, we can infer which bit of the bank bits is a rank bit.

Reliable Rowhammer Attack and Mitigation 153

Row Twisting. The second scheme is observed only on DRAMs from A manu-
facturer, and we call the scheme row twisting. The physical row index function is
(we mark the components which are different from the logical row index function
in bold):

i 0 1 2 3 4 5 6 7 8

Fi(r) b0 b1 ⊕ b3 b2 ⊕ b3 b3 b4 b5 b6 b7 b8

According to our experimental result, the row twisting function is applied
after address mirroring. For example, when a module is affected by both row
twisting and address mirroring, the bit swap of b3 and b4 is first performed (due
to address mirroring) and the swapped b3 (originally b4) is XORed with b2 and b1
later (due to row twisting). Therefore, we infer that row twisting is an internal
mechanism of DRAM chip unlike address mirroring which is a mechanism at
a circuit level. We also infer that row twisting is somehow related to twisted
wordline schemes [8,9].

Table 1. Address mirroring and row twisting on DDR3 modules of three major
manufacturers.

Tag Manufacturer Model # of ranks Mirroring Twisting

A SAMSUNG M378B5273DH0-CK0 2 � �
B M378B5273DH0-CH9 2 � �
C M378B5173QH0-CK0 1 �
D HYNIX HMT351U6CFR8C-PB 2 �
E HMT351U6CFR8C-H9 2 �
F MICRON MT16JTF51264AZ-1G6M1∗ 2 �
∗In this case, there are not enough bit flips to reverse engineer the mapping
algorithm. However, since some bit flips are induced in rowhammer experiments
with only address mirroring, we infer that this module is affected only by address
mirroring.

4 Mapping Algorithm-Aware Rowhammer

If attackers know the exact mapping algorithm for rows, the attackers can per-
form more effective rowhammer attack by inducing more exploitable bit flips.
In addition, attackers can exquisitely perform rowhammer attacks because the
attackers can locate the exact upper/lower neighboring rows of the target row.
We refer to this method as mapping algorithm-aware rowhammer.

We give an example of rows that are vulnerable to rowhammer attacks
(Fig. 3). For simplicity, we assume that the DRAM module is affected by only
address mirroring. When the faulty assumption is applied, the upper row is Rowb

154 S. Oh and J. Kim

1st

… 0 0 0 0 0 0 1 0 0 0
0th3rd 2nd4th5th6th7th8th9th

Rowa

… 0 0 0 0 0 0 0 1 1 1Rowb

… 0 0 0 0 0 0 1 0 0 1Rowc

… 0 0 0 0 0 1 0 1 1 1Rowd

(a) Vulnerable rows

Rowb
Rowa
Rowc

…

…

Row Buffer

(b) Logical

Rowd
Rowa
Rowc

…

…

Row Buffer

(c) Physical

Fig. 3. Vulnerable rows on address mirroring. The upper row in logical index (b) and
the upper row in physical index (c) is different about Rowa.

and the lower row is Rowc with respect to Rowa (Fig. 3b). However, the upper
row of Rowa in address mirroring is actually Rowd, not Rowb (Fig. 3c). The
logical row indexes of Rowa, Rowb, Rowc and Rowd are 8, 7, 9 and 23, but their
physical row indexes are 16, 7, 17 and 15, respectively.

We evaluate the effectiveness of mapping algorithm-aware rowhammer. To
evaluate the effectiveness, we measured the number of bit flips that were caused
by double-sided rowhammer. We exploited three kinds of double-sided rowham-
mer:

(i) R1 is performed with the assumption that physically contiguous rows have
contiguous physical addresses.

(ii) R2 is performed with the assumption that row indexes are affected only by
address mirroring.

(iii) R3 is performed with the assumption that row indexes are affected by both
address mirroring and row twisting.

We performed these three types of rowhammer on the memory space that is
different from the subarray used in the experiment of Table 1. We tested on two
modules: one was inferred to be affected only by address mirroring (module D);
the other was inferred to be affected by both address mirroring and row twisting
(module A) by our proposed method. We measured the number of bit flips on
two processors, Sandy Bridge (i7-2600) and Haswell (i5-4460).

Although the prior assumption is faulty, R1 showed considerable bit flips
(Fig. 4). The abnormal result is because some physical rows are sequential like
logical rows, or single-sided rowhammer has shown an effect even if the attack
uses double-sided rowhammer. However, module A shows the largest number of
bit flips by R3 (25% more bit flips than R1 on average), and module D shows the
largest number of bit flips by R2 (12% more bit flips than R1 on average). This
experimental result shows that the proposed attack method, mapping algorithm-
aware rowhammer, is more efficient than the conventional method regardless of
processor types.

Also, this experimental result validates that our discovered mapping algo-
rithm is correct.

Reliable Rowhammer Attack and Mitigation 155

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

module A module D module A module D

Sandy Brdige Haswell

N
or

m
al

iz
ed

 #
 o

f b
it

fli
ps

R1

R2

R3

Fig. 4. Normalized number of bit flips. The number of bit flips for each case is nor-
malized to R1.

5 Improved Mitigation

In this section, we explain existing mitigations and how the mitigations can be
attacked by rowhammer attacks. Then, we improve Anvil, one of the existing
mitigation methods, and evaluate its effectiveness as a proof-of-concept.

5.1 Existing Mitigations and a Security Hole

We study two representative mitigations, Anvil [1] and G-CATT [3], and explain
how they are affected negatively by the faulty assumption using the aforemen-
tioned example of the vulnerable row (Fig. 3).

Anvil. Anvil defends rowhammer attacks by refreshing potential victim rows
when the signs of rowhammer attacks are detected. The potential victim rows
are the neighboring rows of the detected aggressor rows and thus Anvil refreshes
the presumed neighboring rows.

However, according to the faulty assumption of Anvil, Anvil regards Rowb

and Rowc as potential victim rows when Rowa is the aggressor row (Fig. 3b).
Therefore, if attackers repeatedly access the aggressor row Rowa, bit flips may
occur on Rowd, which was not refreshed by Anvil. As a result, Anvil can detect
rowhammer attacks but cannot refresh all the victim rows.

G-CATT. G-CATT defends rowhammer attacks by putting a row between rows
of different security domains (e.g., kernel and user) to physically separate the
rows. Since rowhammer attacks only corrupt rows that are adjacent to aggressor
rows, attackers cannot corrupt victim memory on G-CATT.

However, according to the faulty assumption of G-CATT, G-CATT expects
that Rowa and Rowd are already separated (Fig. 3b). Therefore, if an attacker
process is allocated in Rowd, Rowa is vulnerable to rowhammer attacks.

156 S. Oh and J. Kim

5.2 Method to Improve Existing Mitigations

To perfectly defend against rowhammer attacks, the existing mitigations must
be improved with the proper physical row indexes. There are two methods to
improve the existing mitigations with our discovered mapping algorithm.

The first method regards all possible neighboring rows of each and every
case of the mapping algorithm schemes as the actual neighboring rows. This
method takes additional runtime overhead to manage additional rows but our
method to find the mapping algorithm is not required. The second method finds
the mapping algorithm by using our proposed method before performing the
existing mitigations. This method is only possible when the victim’s DRAM
modules are vulnerable enough to be able to be reverse engineered and initial
time to find the mapping algorithm. However, this method does not need an
additional runtime overhead compared to the first method.

1.00

0.40
0.27

0.00
0.0
0.2
0.4
0.6
0.8
1.0
1.2

No Anvil Anvil Anvil with Only
Mirroring

Fully Improved
Anvil

N
or

m
al

iz
ed

 #
 o

f b
it

fli
ps

Fig. 5. Normalized number of bit flips with module A on Sandy Bridge.

5.3 Evaluation

We measured the bit flips by rowhammer on module A to evaluate the effec-
tiveness of the improved mitigation that considers the exact mapping algorithm
schemes. First, to show the security hole of existing mitigations, we performed
single-sided rowhammer on Anvil with only the mapping algorithm for banks.
Next, we improved Anvil into two cases: one is improved by considering only
address mirroring, and the other is improved by considering both address mir-
roring and row twisting. We perform single-sided rowhammer again on those two
improved Anvil methods (Fig. 5).

Anvil and Anvil with only mirroring might refresh actual victim rows because
some refreshed rows are actual victim rows in spite of the faulty information
about the neighboring rows. However, not all potential victim rows are actual
victim rows, and thus Anvil and Anvil with only mirroring cannot refresh all
of the actual victim rows. Fully improved Anvil, which is modified by using our
mapping algorithm, shows no bit flips. This result shows that the fully improved
mitigation can effectively defend against rowhammer attacks. In addition, we
believe that G-CATT also properly prevents rowhammer attacks if the exact
mapping algorithm is applied to G-CATT.

Reliable Rowhammer Attack and Mitigation 157

6 Conclusion

We introduced a method to reverse engineer the mapping algorithm for rows
and revealed an exact mapping algorithm for rows. This method uses the fea-
ture that rowhammer induces bit flips only on the neighboring rows of aggressor
rows. Using this method, we can infer the exact row arrangement. As a result,
we demonstrate that previous work has faulty assumption that physically con-
tiguous rows have also contiguous physical addresses.

Based on the exact physical row index, we can induce bit flips more efficiently
than the conventional rowhammer method which does not consider the exact
physical row index. Note that more bit flips make the rowhammer attack more
successful because there are more candidates of exploitable bit flips. Also, we
have shown that it is possible to make bit flips in the system with rowhammer
mitigation methods if they were used with the faulty assumption. Finally, we
have improved the existing mitigation and showed that the improved mitigation
perfectly protects against rowhammer attacks.

Acknowledgement. This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIP) (No.
2017R1A2B4010914).

References

1. Aweke, Z.B., et al.: ANVIL: software-based protection against next-generation
rowhammer attacks. ACM SIGPLAN Not. 51(4), 743–755 (2016)

2. Baumann, R.: The impact of technology scaling on soft error rate performance
and limits to the efficacy of error correction. In: International Electron Devices
Meeting, IEDM 2002, pp. 329–332. IEEE (2002)

3. Brasser, F., Davi, L., Gens, D., Liebchen, C., Sadeghi, A.R.: Can’t touch this:
software-only mitigation against rowhammer attacks targeting kernel memory. In:
Proceedings of the 26th USENIX Security Symposium (Security), Vancouver, BC,
Canada (2017)

4. JEDEC: DDR3 SDRAM Unbuffered DIMM Design Specification, rev. 1.06 (2013)
5. Khan, S., Lee, D., Mutlu, O.: Parbor: an efficient system-level technique to detect

data-dependent failures in dram. In: 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pp. 239–250. IEEE
(2016)

6. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of dram disturbance errors. In: 2014 ACM/IEEE 41st International Sympo-
sium on Computer Architecture (ISCA), pp. 361–372, June 2014

7. Kim, Y., Seshadri, V., Lee, D., Liu, J., Mutlu, O.: A case for exploiting subarray-
level parallelism (SALP) in dram. ACM SIGARCH Comput. Arch. News 40(3),
368–379 (2012)

8. Min, D.S., Langer, D.W.: Twisted line techniques for multi-gigabit dynamic ran-
dom access memories, US Patent 6,034,879, 7 March 2000

9. Min, D.S., Seo, D.I., You, J., Cho, S., Chin, D., Park, Y.: Wordline coupling noise
reduction techniques for scaled drams. In: 1990 Symposium on VLSI Circuits,
Digest of Technical Papers, pp. 81–82. IEEE (1990)

158 S. Oh and J. Kim

10. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA: exploiting
dram addressing for cross-CPU attacks. In: USENIX Security Symposium, pp.
565–581 (2016)

11. Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.: Flip Feng
Shui: hammering a needle in the software stack. In: USENIX Security Symposium,
pp. 1–18 (2016)

12. Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to gain ker-
nel privileges (2015). https://googleprojectzero.blogspot.kr/2015/03/exploiting-
dram-rowhammer-bug-to-gain.html

13. Van Der Veen, V., et al.: Drammer: deterministic rowhammer attacks on mobile
platforms. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1675–1689. ACM (2016)

14. Xiao, Y., Zhang, X., Zhang, Y., Teodorescu, R.: One bit flips, one cloud flops:
cross-VM row hammer attacks and privilege escalation. In: USENIX Security Sym-
posium, pp. 19–35 (2016)

https://googleprojectzero.blogspot.kr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.kr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

	Reliable Rowhammer Attack and Mitigation Based on Reverse Engineering Memory Address Mapping Algorithms
	1 Introduction
	2 Background
	2.1 DRAM Organization
	2.2 Rowhammer
	2.3 Mapping Algorithm

	3 Reverse Engineering Mapping Algorithm
	3.1 Row Serialization
	3.2 Finding Mapping Algorithm
	3.3 Row Address Mapping Schemes

	4 Mapping Algorithm-Aware Rowhammer
	5 Improved Mitigation
	5.1 Existing Mitigations and a Security Hole
	5.2 Method to Improve Existing Mitigations
	5.3 Evaluation

	6 Conclusion
	References

