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Abstract
Diagnosing ovarian cancer is a medical challenge to
clinical researchers. This study aims to develop a novel
prototype of clinical management in diagnosis and
management of patients with ovarian cancer. Various
classification algorithms can be applied to cancer
databases to devise methods that can predict cancer
manifestation. Various methods, however, vary in terms
of the level of accuracy, depending on the classification
algorithm used. Identifying the most accurate classifica-
tion algorithm is a challenging task, primarily due to
limited data availability. In this paper, a comprehensive
comparative analysis of nine different classification
algorithms was conducted and their performances have
been evaluated. The results indicate that all classifiers are
relatively equal in accuracy, meaning that multiple
classifying techniques can be used to support physicians
in rendering more informed diagnostic decisions.
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1 Introduction

Cancer is malignancy and is caused by abnormal cell pro-
liferation spreading to other tissue It is not only a name for
one particular disease but for a group of related diseases [1].
Cancer is not limited to a single location inside the body but
starts as a grouping of mutated cells in a location in the body
and spreads throughout it after those malignant cells multi-
ply and enter the bloodstream. Another characteristic is that
their cells are less specialized than normal cell due to their
inability to mature into a cell type with specific function
[2, 3].

Gene expression can be defined as the process by which a
gene encoded by DNA is used for synthesis of a functional
product that can be either a protein or some other functional
product. Control of when and how often genes are expressed
plays a crucial role in maintaining homeostasis in the
organism [4].

Ovarian cancer accounts for 2.3% of all cancer deaths. In
Europe, 65,538 new patients are diagnosed with ovarian
cancer each year and 42,716, or 65%, end tragically [5]. In
the United States of America, 22,440 women per year are
diagnosed with ovarian cancer and 63% of patients die [6].

Diagnosing cancer is a very complex procedure that is
susceptible to human and equipment error. First, a biopsy of
problematic tissue is conducted and then it is subjected to
cytological and molecular tests. These tests are performed in
isolated environments in order to minimize potential errors,
but errors can always happen [7]. The most effective way to
reduce cancer deaths is to detect it earlier.

Rapid advancement of informational technology provided
available and, in most cases, inexpensive devices to collect
and store the data. In modern, well equipped, clinics data is
gathered and shared in large information systems [8].
Nowadays, a vast number of clinical data and patient his-
tories are available for ovarian cancer. With development of
biomedical engineering, biomedical engineering researchers
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are examining the usage of machine learning techniques in
supporting the diagnosis made by medical professionals.

Diagnosis is a relatively straightforward machine learning
problem. In this process, a larger set of symptoms and
conditions is considered for each patient in respect to clas-
sical diagnostic procedure, whereas medical professionals
can consider only a limited number of parameters and give a
diagnosis based on their interactions [9–11]. By using
machine learning and data mining algorithms, medical pro-
fessionals can establish better diagnoses, choose optimal
medications for their patients, predict readmissions, identify
patients at high-risk for poor outcomes, and in general
improve patient’s health while minimizing costs.

The realization of the complexity of certain decisions to
treat particular diseases by scientists began 25 years ago
when the importance of artificial intelligence became
accentuated [12]. Use of data mining techniques will make
diagnostic process more agile and also reduce health care
costs and waiting times for the patients. The main advantage
of using machine learning is the extraction of essential
information from a large amount of data and its correla-
tions [13].

Cancer is group of critical areas where classification has a
crucial role and where data mining and machine learning are
very powerful as tools in medical diagnosis. Therefore,
machine learning techniques can help doctors make an
accurate diagnosis of ovarian cancer and make the correct
classification between cancerous and healthy tissue basing
on gene expressions, as well as determining the cancer stage.
The most important component in the diagnosis is evaluation
of data taken from the patient and the specialist’s decision,
but artificial intelligence techniques provide support in ren-
dering more informed decisions for medical professionals.

Ovarian cancer diagnosis prediction can be done by
integrating big data and machine learning in order to aid
prediction, diagnosis and therapy. Gene expression analysis
performed by Millstein et al. identified 313 genes that are
candidates for involvement in high grade ovarian cancer
[14]. A support vector machine was used by Furey et al. to
classify cancer tissue samples using gene expression
microarrays and they found that most machine learning
methods perform comparably on datasets utilized [15]. DNA
methylation biomarkers were used as inputs of machine
learning by Wei et al. and they have obtained significant
results using various classification algorithms [16].

The major contributions of this paper are:

• comparison of different data mining algorithms on
ovarian cancer datasets;

• identification of the best performing algorithm to predict
ovarian cancer;

• extraction of useful, classified and accurate attributes for
prediction of cancer;

• optimization of the task of correctly selecting the set of
medical tests that a patient must perform to have the most
accurate, the less expensive and time-consuming diag-
nosis possible;

• propose further investigation for the relevant genes
determined in the paper to confirm their role in ovarian
cancer detection; and

• obtain new discoveries in ovarian cancer mutation
analysis.

This study’s aim was to investigate different machine
learning techniques. Several algorithms have been used and
applied on the ovarian cancer dataset. The focus is on nine
machine learning techniques: Naïve Bayes, Multilayer Per-
ceptron, Simple Logistic, Nearest Neighbor, AdaBoost,
Attribute Selected Classifier, Random Committee, PART,
LMT and Random Forest. These various algorithms were
tested using WEKA toolkit and their results analyzed.

2 Methods

2.1 Dataset

The Ovarian dataset used in this study was obtained from the
Gene Expression Omnibus (GEO) database [17]. It consists
of 148 samples of female patients. For each patient 83 gene
expressions (attributes, features) were collected. Those gene
expressions represent attributes, apart from the class attribute
(patient having or not having ovarian cancer). Samples were
taken invasively by biopsy of tissues of cancer suspicious
patients. Gene expressions of those tissues were measured
using qPCR, which is the gold standard for gene expression
analysis [18, 19]. All diagnosis was performed and con-
firmed by medical professionals.

The number of samples corresponding to healthy and
ovarian cancer groups is presented in Table 1. Of a total of
148 samples, 91 (i.e. 61.5%) had ovarian cancer while the
remaining 57 (i.e. 38.5%) did not have ovarian cancer.

2.2 Classification Algorithms

Classification, or supervised learning, maps the data into
predefined groups and classes. It is performed in two steps:
model construction and model usage. Model construction is
composed of a set of predetermined classes. The model is
constructed by the training set. It is represented as classifi-
cation rules, decision trees, or mathematical formulas [20].
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Attributes or unknown objects are classified by comparison
of test sample with result from the model. In order to avoid
over-fitting, the test set must be independent of the training
set. The percentage of correctly classified test samples is
known as the accuracy rate [20].

A total of nine classification algorithms were used in this
comparative study and the Attribute Selected Classifier for
attribute selection. The classifiers have been categorized into
different groups such as Bayes, Functions, Lazy, Rules, Tree
based classifiers, etc. A mix of algorithms have been chosen
from these groups, according to the classification accuracy
obtained. In order to obtain better and more robust accuracy,
10-fold cross validation was performed. The following sec-
tions briefly explain each of these algorithms.

(a) Naïve Bayes

The Naïve Bayes is widely used because of its clarity, ele-
gance, and wholeness, which are reasons for its wide
application range. It is combination of Naïve and Bayes,
where Naïve stands for independence and Bayes for the
Bayes rule. Independence assumes that the attributes are
independent of each other [21].

Another assumption is that numeric attributes obey a
Gaussian distribution, which is not always true. Therefore,
sometimes other methods for estimating continuous distri-
butions are preferred.

(b) Nearest Neighbor

Nearest Neighbor is a type of lazy learner classifiers with the
main characteristic of storing instances during training. The
learning process tends to be slow. The classification itself
happens by a majority vote of its neighbours. Nearest
Neighbour classifier proved to outperform many other
classifiers in two-class problems [22].

(c) Multilayer Perceptron

Multilayer Perceptron (MLP) is a class of feed-forward
artificial neural network (ANN) with one or more hidden
layers between input and output layer. The advantage of
such a structure is its ability to avoid overfitting and
accomplish nonlinear multiple regressions reliably. MLP’s

simple architecture can model most nonlinear problems
while preserving low computational cost [21].

(d) Simple Logistic

Simple Logistic algorithm is a classifier for building linear
logistic regression models that also copes quite well with
overfitting. Simple logistic algorithms perform much better
on dataset with small number of records. However, tree and
ensemble tree classifiers can outperform it for larger datasets
[21]. Such algorithms are explained further on.

(e) PART

PART is a type of rules classifiers and it uses the
separate-and-conquer strategy to build a rule. By building a
partial decision tree per iteration it does global optimization
in order to produce accurate rule sets [22].

(f) LMT

LMT is a classifier from the decision trees group, used for
building ‘logistic model trees’ (LMTs). LMTs are classifi-
cation trees with logistic regression functions at the leaves.
The LMT algorithm can deal with binary and multi-class
target variables, numeric and nominal attributes and missing
values. It ensures that only relevant attributes are included
[23].

(g) AdaBoost

AdaBoost is a machine learning algorithm that is part of an
ensemble methods called boosting where subsequent models
attempt to fix the prediction errors made by prior models. It
uses short decision tree models, called decision stumps since
each has single decision point. The first model is normally
constructed, but subsequent models are trained and added
until no further improvements are possible [24].

(h) Random Committee

Random committee is form of ensemble learning approach.
It is based on the assumption of improving performance by
combining classifiers. Each classifier construction is denoted

Table 1 Data division of
ovarian cancer database

Training dataset

Classification group Number of samples

Normal 57

Cancer 91
P

148
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by a different random number of seeds based on the same
data. The output class is actually the average of predictions
generated by each of these individual base classifiers [22].

(i) Random Forest

Random Forest is an ensemble of decision trees that consist
of many decision trees. They are form of a nearest neighbor
predictor with the output in terms of the mode of the class´s
output by individual trees. Random Forest usually yields fast
and efficient models due to the possibility of usage without
much modeling and handcrafting needed [22, 25].

(j) Attribute Selected Classifier for Attribute Selection

When Attribute Selected Classifier is used, the dimension-
ality of training and test data is reduced by attribute selection
before being passed on to a classifier. That ability to select
potentially relevant attributes is an essential data engineering
component.

Three attribute selection systems used in this study are:
locally produced correlation technique, wrapper method and
Relief [26]. There are no restrictions for base classifiers.

Correlation based Feature Selection or CFS measures
correlation between nominal attributes. It is an automatic
algorithm that does not require specification of threshold or
number of attributes to be selected. It is assumed that attributes
are independent of each other, but strongly related to class. In
case that attributes are dependent, there is great possibility for
CFS to fail to select all the relevant attributes [25].

The two CFS algorithms used for attribute selection in
this study are the CFS Subset Evaluation and the Correlation
Attribute Selection. The CFS Subset Evaluation method
evaluates the worth of a subset of attributes by considering
the individual predictive ability of each attribute, as well as
the degree of redundancy between them. The search method
used for CFS Subset Evaluation method is Greedy Stepwise.
It performs a greedy forward or backward search through the
space of attribute subsets. Correlation Attribute Selection
evaluation method reduces data by attributes selection before
passing it on to a classifier. Search method used for it is
Ranker. Ranker ranks attributes by their individual
evaluations.

The Wrapper strategy uses an induction algorithm in
order to estimate the merit of the attribute. Attribute wrap-
pers are tuned to the specific interaction between an induc-
tion algorithm and its data. That makes them perform better
than filters, but they tend to be much slower due to the re-run
each time different induction algorithm is used [27].

3 Results and Discussion

For this study, 37 different classification algorithms were
used to diagnose healthy and sick patients. The performance
is defined as accuracy, which was determined as: (number of
correctly classified samples)/(total number of samples)
(Table 2).

For further application, the algorithms with best accuracy
were chosen from each group of classifiers. From Bayes
classification group, Naïve Bayes classifier was chosen (with
an accuracy of 89.25%). From the functions group, Multi-
layer Perceptron and Simple Logistic classifiers were chosen
(with an accuracy of 96.77%). From the Lazy group, Nearest
Neighbor classifier was chosen (with an accuracy of
91.3978%). From META group, AdaBoost classifier (with
an accuracy of 95.70%) and Random Committee classifier
(with an accuracy of 93.55%) were chosen. From RULES
group, PART classifier was chosen (with an accuracy of
91.40%). From the Tree group, LMT classifier (with an
accuracy of 96.77%) and Random Forest classifier (with an
accuracy of 95.67%) were chosen. No algorithm from MISC
group is chosen due to its low accuracy. It should be noted
that no more than two classifiers from one group were
selected.

Table 3 compares and similar studies on ovarian cancer
using different databases, but the same or similar algorithm.
The performance is calculated by subtracting the result of
another study from result obtained in this one. The positive
performance indicates that this study outperformed the other,
while negative indicate that it underperformed. Out of 13
comparisons, a positive result was obtained in 12 of them
and one neutral. Nine of them were outperformed by 5 or
more percent, which can be considered a significant differ-
ence. The case when it failed to outperform can be attributed
to the difference between algorithms compared, since a
genetic algorithm was not introduced in this study.
Methodologically the most similar one is CV Parameter
Selection, which was considered initially in testing phase for
this study and later discarded due to its low accuracy.

Results with Attribute Selection
In order to extract relevant attributes, Attribute Selected
Classifier was used. Three different evaluation methods were
computed: Correlation-based Feature Selection (CFS) Subset
Evaluation, Correlation Attribute Evaluation and Wrapper
Subset Evaluation. All previously chosen classifiers were
implemented as base classifier for each of evaluation meth-
ods. Different search methods were used, and pairs of
evaluation and search methods are in Table 4.
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Table 2 Accuracy results for
classification algorithms

Classifying group Classifying technique Accuracy (%)

Bayes Naïve Bayes 89.25

Functions Multilayer perceptron 96.77

Simple logistic 96.77

Lazy Nearest neighbor 91.40

Meta AdaBoost 95.70

Random committee 93.55

Rules PART 91.40

Trees LMT 96.78

Random forest 95.67

Table 3 Studies employing
similar machine learning
methodologies

Dataset Results (x) Results of this study (y) y − x
(%)

Extrauterine pelvic mass samples
(biopsy) [28]

ANN sensitivity ! 87.5% MLP sensitivity ! 96.7% 9.2

ANN specificity ! 92.7% MLP specificity ! 96.8% 4.2

Small Naïve Bayes
sensitivity ! 94.7%

Naïve Bayes
sensitivity ! 100%

5.3

Small Naïve Bayes
specificity ! 74.1%

Naïve Bayes
specificity ! 84.1%

10

Large Naïve Bayes
sensitivity ! 96.6%

Naïve Bayes
sensitivity ! 100%

3.4

Large Naïve Bayes
specificity ! 79.9%

Naïve Bayes
specificity ! 84.1%

4.2

Ultrasound description of adnexal
pathology [29]

Logistic regression1
sensitivity ! 92%

Simple logistic
sensitivity ! 97%

5

Logistic regression1
specificity ! 87%

Simple logistic
specificity ! 97%

10

Logistic regression2
sensitivity ! 92%

Simple logistic
sensitivity ! 97%

5

Logistic regression1
specificity ! 86%

Simple logistic
specificity ! 97%

11

Tumor markers and lipid
associated sialic acid [30]

Multilayer perceptron
accuracy ! 90%

Multilayer perceptron
accuracy ! 97%

7

Gene expression profiling [31] k-nearest neighbor
accuracy ! 71%

IBk accuracy ! 91% 20

Proteomic spectrum data [32] Genetic algorithm
accuracy ! 99%

CV parameter selection
accuracy ! 68%

−31

Table 4 Attribute selection
evaluation and search method
pairs

Attribute selection

Evaluation method Search method

CFS subset evaluation Greedy stepwise

Correlation attribute evaluation Ranker

Wrapper subset evaluation Best first

Comparative Study on Different Classification … 515



In CFS Subset Evaluation and Correlation Attribute
Evaluation methods, the same attributes were selected for
each base classifier. Selected Classifiers are shown in
Table 5. As we can see in Table 4, both methods selected 18
attributes. Out of those 36 selected attributes, genes 22, 23,
24, 30, 58 and 76 (the six of them), were selected by both
methods, so there are 30 different relevant attributes
according to CFS Subset Evaluation and Correlation Attri-
bute Evaluation methods.

Accuracy of base classifiers applied for the CFS Subset
Evaluation and Correlation Attribute Evaluation methods are
shown in Table 6. For CFS Subset Evaluation method, the
most successful were Nearest Neighbor and Random Forest
classifiers with an accuracy of 94.6237%, while for Corre-
lation Attribute Evaluation method AdaBoost was the best
performing classifier with an accuracy of 95.6989%.

In the Wrapper Subset Evaluation method, different
attributes were selected for each base classifier. Due to the
space limitations, the selected classifiers are not presented in
tabulated format, while their accuracy can be found in
Table 6. The wrapper methods combined with different base
classifiers gave different numbers of selected attributes each
time performed. There are 30 different attributes selected at
least once. Out of those 30 selected attributes genes 23 and
30, namely GYG1p1 and GSK3Bp3, were selected by five
different base classifiers, which is the best result.

Four attributes were selected by all three methods, so they
are the most relevant attributes for ovarian cancer classifi-
cation. Those attributes are 22, 23, 24 and 30.

The genes selected by most machine learning techniques
were: CALM 1/2/3, GYG1p1, PHKG2p3 and GSK3Bp3.
The CALM gene (Calmodulin) encodes for calcium binding
proteins that are subunits of phosphorylase kinase, meaning
that they are included in cellular signaling [33–35]. GYG1p1
(Glycogenin 1) gene codes for proteins involved in glyco-
syltransferase that is a catalyst and involved in signaling
[36]. PHKG2p3 (Phosphorylase Kinase catalytic subunit
Gamma 2) is a gene coding for protein involved in glycogen
storage and kinase activity and some variants are overex-
pressed in cancer [37]. GSK3Bp3 (Glycogen synthase kinase
3 beta) is an enzyme that catalyzes phosphorylation and is
found to be upregulated in cancer [38].

4 Conclusion

In this study, nine classification techniques, namely Naïve
Bayes, Multilayer Perceptron, Simple Logistic, Nearest
Neighbor, AdaBoost, Random Committee, PART, LMT,
and Random Forest were used to evaluate the percentage of
accuracy, with and without attribute selection, for effective
prediction techniques for ovarian cancer diagnostics.

Table 5 Results of attribute selection of CFS subset evaluation and correlation attribute evaluation methods for ovarian cancer database

Evaluator Selected attributes

CF subset evaluator 10 16 17 22 23 24 30 33 35 36 39 41 58 62 68 76 77 82

Correlation
attribute evaluator

4 3 21 79 22 24 58 5 30 80 23 76 20 25 56 54 26 19

Table 6 Attribute selection and
simple classification results

Classifier Accuracy (%)

CFS subset
evaluation

Correlation attribute
evaluation

Wrapper subset
evaluation

No attribute
selection

Naïve Bayes 89.25 87.10 89.25 89.25

Multilayer
perceptron

92.47 82.80 93.55 96.77

Simple logistic 88.17 86.02 87.1 96.77

Nearest
neighbor

94.62 93.55 97.85 91.40

AdaBoost 92.47 95.70 87.10 95.70

Random
committee

92.47 90.32 89.25 93.55

PART 92.47 90.32 92.48 91.40

LMT 91.40 87.10 93.55 96.78

Random forest 94.62 93.55 91.4 95.67
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In order to achieve the aforementioned objective, an
ovarian cancer dataset was utilized. The attribute selection
techniques were used to eliminate those attributes that have
no significance in the classification process. Therefore,
attribute selection technique is the most reliable and the most
significant method to improve the accuracy of different
classification techniques.

In this study, classification rules were compared to predict
the best classifier to develop a new prototype for diagnosis
with a predictable pattern for discovery of ovarian cancer.
Experimental results show the effectiveness of the proposed
method. The base for this is knowledge discovery and data
mining. A classifier was identified to determine the nature of
the disease, which is highly important for differentiating
between healthy and ovarian cancer patients. When
compared with previous similar studies using different
databases, it clearly shows precedence of the use of GEO
database. This study is useful in uncovering patterns hidden
in the data that can help the clinicians and doctors in deci-
sion making.

All of the mentioned genes are members of signaling
cascades and their mutation or disfunction consequently
leads to cancer development. Considering the fact that these
genes have been determined as relevant by machine learning
in this study can lead to further investigation from a bio-
logical perspective and experiments that would confirm the
prediction. Not only would a positive outcome prove the
efficacy of the used ML but could also lead to new discov-
eries in ovarian cancer mutation analysis.
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