
Chapter 14
Near Arithmetic Progressions
in Sparse Sets

Szemeredi’s theorem says that relatively dense sets contain arithmetic progressions.
The purpose of this chapter is to present a result of Leth from [89] which shows
that certain sparse sets contain “near” arithmetic progressions. We then detail
the connection between the aforementioned theorem of Leth and the Erdős-Turán
conjecture.

14.1 The Main Theorem

We begin by making precise the intuitive notion of “near” arithmetic progression
mentioned in the introduction.

Definition 14.1 Fix w ∈ N0 and t, d ∈ N.1 A (t, d,w)-progression is a set of the
form

B(b, t, d,w) :=
t−1⋃

i=0

[b + id, b + id + w].

By a block progression we mean a (t, d,w)-progression for some t, d,w.

Note that a (t, d, 0)-progression is the same thing as a t-term arithmetic progression
with difference d .

1In this chapter, we deviate somewhat from our conventions so as to match up with the notation
from [89].
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154 14 Near Arithmetic Progressions in Sparse Sets

Definition 14.2 If A ⊆ N, we say that A nearly contains a (t, d,w)-progression if
there is a (t, d,w)-progression B(b, t, d,w) such that A∩[b + id, b + id +w] �= ∅
for each i = 1, . . . , t − 1.

Thus, if A nearly contains a (t, d, 0)-progression, then A actually contains a
t-term arithmetic progression. Consequently, when A nearly contains a (t, d,w)-
progression with “small” w, then this says that A is “close” to containing an
arithmetic progression. The main result of this chapter allows us to conclude
that even relatively sparse sets with a certain amount of density regularity nearly
contain block progressions satisfying a further homogeneity assumption that we
now describe.

Definition 14.3 Suppose that A ⊆ N, I is an interval in N, and 0 < s < 1. We say
that A nearly contains a (t, d,w)-progression in I with homogeneity s if there is
some B(b, t, d,w) contained in I such that the following two conditions hold for
all i, j = 0, 1, . . . , t − 1:

(i) δ(A, [b + id, b + id + w]) ≥ (1 − s)δ(A, I)

(ii) δ(A, [b + id, b + id + w]) ≥ (1 − s)δ(A, [b + jd, b + jd + w]).
Thus, for small s, we see that A meets each block in a density that is roughly the

same throughout and that is roughly the same as on the entire interval.
The density regularity condition roughly requires that on sufficiently large

subintervals of I , the density does not increase too rapidly. Here is the precise
formulation:

Definition 14.4 Suppose that I ⊆ N is an interval, r ∈ R, r > 1, and m ∈ N.
We say that A ⊆ I has the (m, r)-density property on I if, whenever J ⊆ I is an
interval with |J |/|I | ≥ 1/m, then δ(A, J ) ≤ rδ(A, I).

Of course, given any m ∈ N and A ⊆ I , there is r ∈ R such that A has the
(m, r)-density property on I . The notion becomes interesting when we think of r as
fixed.

Given a hyperfinite interval I ⊆ ∗
N, r ∈ ∗

R, r > 1, and M ∈ ∗
N, we say that an

internal set A ⊆ I has the internal (M, r)-density property on I if the conclusion of
the definition above holds for internal subintervals J of I .

Lemma 14.5 Suppose that A ⊆ [1, N] is an internal set with the internal (M, r)-
density property for someM > N. Let f : [0, 1] → [0, 1] be the (standard) function
given by

f (x) := st

( |A ∩ [1, xN]|
|A ∩ [1, N]|

)
.

Then f is a Lipschitz function with Lipschitz constant r .

Proof Fix x < y in [0, 1]. Write x := st(K/N) and y := st(L/N). Since y−x �= 0,
we have that L−K

N
is not infinitesimal; in particular, L−K

N
> 1/M . Since A has

the (M, r)-density property on [1, N], we have that δ(A, [K,L]) ≤ rδ(A, [1, N]).
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Thus, it follows that

f (y) − f (x) = st

( |A ∩ [K,L]|
|A ∩ [1, N]|

)
= st

(
δ(A, [K,L] L − K

|A ∩ [1, N]|
)

≤ r st

(
L − K

N

)
= r(y − x).

Here is the main result of this section:

Theorem 14.6 (Leth) Fix functions g, h : R>0 → R
>0 such that h is increasing

and g(x) → ∞ as x → ∞. Fix also s > 0, r > 1, and j, t ∈ N. Then there is m =
m(g, h, s, r, t, j) ∈ N such that, for all n > m, whenever I is an interval of length
n and A ⊆ I is nonempty and has the (m, r)-density property on I , then A contains
a (t, d,w)-almost progression with homogeneity s such that w/d < h(d/n) and
1/g(m) < d/n < 1/j .

Roughly speaking, if A has sufficient density regularity, then A contains an
almost-progression with “small” w (small compared to the distance of the progres-
sion).

The proof of the theorem relies on the following standard lemma; see [89,
Lemma 1].

Lemma 14.7 Suppose that E ⊆ R has positive Lebesgue measure and t ∈ N. Then
there is v > 0 such that, for all 0 < u < v, there is an arithmetic progression in E

of length t and difference u.

We stress that in the previous lemma, u and v are real numbers.

Proof of Theorem 14.6 Fix g, h, s, r, j, t as in the statement of Theorem 14.6. We
show that the conclusion holds for all infinite M , whence by underflow there exists
m ∈ N as desired. Thus, we fix M > N and consider N > M , an interval I ⊆ ∗

N

of length N , and a hyperfinite subset A ⊆ I that has the internal (M, r)-density
property on I . Without loss of generality, we may assume that I = [1, N]. Suppose
that we can find B,D,W ∈ ∗

N and standard c > 0 such that [B,B + (t − 1)D +
W ] ⊆ [1, N] and, for all i = 0, 1, . . . , t − 1, we have:

δ(A, [1, N])(c − s

2
) ≤ δ(A, [B + iD,B + iD + W ]) ≤ δ(A, [1, N])(c + s

4
). (†)

We claim that A nearly contains the internal (t,D,W)-progression B(B, t,D,W)

with homogeneity s. Indeed, item (i) of Definition 14.3 is clear. For item (ii), observe
that

δ(A, [B + iD,B + iD + W ]) ≥ δ(A, [1, N])(c − s

2
)

≥ δ(A, [B + jD,B + jD + W ])(c − s
2

c + s
4
)
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and note that
c− s

2
c+ s

4
> 1 − s. Thus, it suffices to find B,D,W, c satisfying (†) and

for which W/D < h(D/N) and 1/g(M) < D/N < 1/j .
Let f be defined as in the statement of Lemma 14.5. Set b := st(B/N), d :=

st(D/N), and w := st(W/N). Assume that w �= 0. Then we have that

st

(
δ(A, [B + iD,B + iD + W ])

δ(A, [1, N])
)

= f (b + id + w) − f (b + id)

w
.

We thus want to find B,D,W and c satisfying

c − s

2
<

f (b + id + w) − f (b + id)

w
< c + s

4
. (††)

Now the middle term in (††) looks like a difference quotient and the idea is
to show that one can bound f ′(b + id) for i = 0, 1, . . . , t − 1. Indeed, by
Lemma 14.5, f is Lipschitz, whence it is absolutely continuous. In particular, by
the Fundamental Theorem of Calculus, f is differentiable almost everywhere and
f (x) = ∫ x

0 f ′(u)du. Since f (0) = 0 and f (1) = 1, it follows that {x ∈ [0, 1] :
f ′(x) ≥ (1 − s

4 )} has positive measure. In particular, there is c > 1 such that

E := {x ∈ [0, 1] : c − s

4
≤ f ′(x) ≤ c}

has positive measure. By Lemma 14.7, there is b ∈ E and 0 < u < 1/j such
that b, b + u, b + 2u, . . . , b + (t − 1)u ∈ E. Take B,D ∈ [1, N] such that b =
st(B/N) and u = st(D/N). Note that g(M) is infinite and D/N is noninfinitesimal,
so 1/g(M) < D/N < 1/j . It remains to choose W . Since f is differentiable on E,
there is w > 0 sufficiently small so that for all i = 0, 1, . . . , t − 1, we have |f ′(b +
id) − f (b+id+w)−f (b+id)

w
| < s

4 . For this w, (††) clearly holds; we now take W such
that w = st(W/N). Since h(D/N) is nonfinitesimal (as D/N is noninfinitesimal),
if w is chosen sufficiently small, then W/D < h(D/N).

Theorem 14.6 implies a very weak form of Szemeredi’s theorem.

Corollary 14.8 Suppose that BD(A) > 0. Suppose that g, h, s, t, j are as in the
hypothesis of Theorem 14.6. Then for n sufficiently large, there is an interval I of
length n such that A ∩ I contains a (t, s, d)-almost progression in I with w/d <

h(d/n) and 1/g(m) < d/n < 1/j .

Proof Take r ∈ R with r > 1 satisfying BD(A) > 1/r . Let m := m(g, h, s, r, t, j)

as in the conclusion of Theorem 14.6. Let n > m and take an interval I of length
n such that δ(A, I) > 1/r . It remains to observe that A ∩ I has the (m, r)-density
property on I .
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14.2 Connection to the Erdős-Turán Conjecture

Leth’s original motivation was the following conjecture of Erdős and Turán from
[47]:

Conjecture 14.9 (Erdős-Turán) Suppose that A = (an) is a subset of N such that∑
1/an diverges. Then A contains arbitrarily long arithmetic progressions.

Leth first observed the following standard fact about the densities of sequences
satisfying the hypotheses of the Erdős-Turán conjecture.

Lemma 14.10 Suppose that A = (an) is enumerated in increasing order and
is such that

∑
1/an diverges. Then, for arbitrarily large n, one has δ(A, n) >

1/(log n)2.

Proof We argue by contrapositive. Suppose that δ(A, n) ≤ 1/(log n)2 for all n ≥
n0 ≥ 4. We first show that this implies that an ≥ 1

2n(log n)2 for all n > n0. Suppose
otherwise and fix n ≥ n0. Then |A ∩ [1, 1

2n(log n)2]| ≥ n. On the other hand, by
our standing assumption, we have that

|A ∩ [1,
1

2
n(log n)2]) ≤ 1/2n(log n)2

(log((1/2n(log n))2 ≤ 1

2
n,

yielding the desired contradiction.
Since an ≥ 1

2n(log n)2 eventually, we have that

∑ 1

an

≤
∑ 2

n(log n)2 ,

whence
∑ 1

an
, converges.

The truth of the following conjecture, together with the theorem that follows it,
would imply that, for sets satisfying the density condition in the previous lemma,
the existence of almost arithmetic progressions implies the existence of arithmetic
progressions.

Conjecture 14.11 (Leth) Fix t ∈ N and c > 0. Then there is n0 := n0(t, c) such
that, for all n ≥ n0, whenever A ⊆ N is such that δ(A, n) > 1/(c log n)2 log log n,
then A nearly contains a (t, d,w)-progression on [1, n] with w/d < d/n where d

is a power of 2.

We should remark that requiring that d be a power of 2 is not much of an extra
requirement. Indeed, our proof of Theorem 14.6 shows that one can take d there to
be a power of 2. For any t and c, we let L(t, c) be the statement that the conclusion
of the previous conjecture holds for the given t and c. We let L(t) be the statement
that L(t, c) holds for all c > 0.
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Theorem 14.12 Suppose that L(t) is true for a given t ∈ N. Further suppose that
A ⊆ N is such that there is c > 0 for which, for arbitrarily large n, one has
δ(A, n) > c/(log n)2. Then A contains an arithmetic progression of length t .

Before we prove this theorem, we state the following standard combinatorial fact,
whose proof we leave as an exercise to the reader (alternatively, this is proven in [89,
Proposition 1]).

Proposition 14.13 Let m,n ∈ N be such that m < n, let A ⊆ N, and let I be
an interval of length n. Then there is an interval J ⊆ I of length m such that
δ(A, J ) > δ(A, I)/2.

Proof of Theorem 14.12 For reasons that will become apparent later in the proof, we
will need to work with the set 2A rather than A. Note that 2A satisfies the hypothesis
of the theorem for a different constant c′ > 0.

By overflow, we may find M > N such that δ(∗(2A),M) > c′
(log M)2 . Take L > N

such that 22L ≤ M < 22L+1
and set N := 22L

. If we apply Proposition 14.13 to any
n ≤ N and I = [1, N], we can find an interval In ⊆ [1,M] of length n such that

|∗(2A) ∩ In| >
c′M

2(log M)2 ≥ c′M
2(log 22L+1

)2
= c′/8

(log N)2 .

For 1 ≤ k ≤ L, write I
22k = [xk, yk].

We will now construct an internal set B ⊆ [1, N] such that δ(B,N) >
1

(c′′ log N)2 log log N , where c′′ := √
8/c′. Since we are assuming that L(t) holds, by

transfer we will be able to find an internal (t, d,w)-progression nearly inside of B

with w/d < d/N and w and d both powers of 2. The construction of B will allow
us to conclude that ∗(2A) contains a t-termed arithmetic progression of difference
d , whence so does 2A by transfer, and thus so does A.

Set B0 := [1, N] and, for the sake of describing the following recursive
construction, view B0 as the union of two subintervals of length N/2 = 22L−1 =
22L−20

; we refer to these subintervals of B0 as blocks. Now divide each block in B0
into 2 = 220

intervals of length 22L−20
/220 = 22L−21

and, for each 0 ≤ j < 220
,

we place the j th subblock of each block in B0 into B1 if and only if x0 + j ∈ ∗2A.
Now divide each block in B1 into 221

intervals of length 22L−21
/221 = 22L−22

and, for each 0 ≤ j < 221
, we place the j th subblock of each block in B1 into B2 if

and only if x1 + j ∈ ∗2A.
We continue recursively in this manner. Thus, having constructed the hyperfinite

set Bk , which is a union of blocks of length 22L−2k
, we break each block of Bk into

22k
many intervals of length 22L−2k

/22k = 22L−2k+1
and we place the j th subblock

of each block in Bk into Bk+1 if and only if xk + j ∈ ∗2A.
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We set B := BL. Since |Bk+1|/|Bk| >
c′/8

(log N)2 for each 0 ≤ k < L, it follows
that

|B| >
(c′/8)LN

(log N)2L
= N

(c′′ log N)2 log log N
.

By applying transfer to L(t), we have that B nearly contains an internal (t, d,w)-
progression B(b, t, d,w) contained in [1, N] such that w/d < d/N and d is a
power of 2. Take k such that 22L−2k+1 ≤ d < 22L−2k

. Note that this implies that
22L−2k+1 | d . Also, we have

w < (d/N) · d < (2−2k

)22L−2k = 22L−2k+1
.

We now note that B(b, t, d,w) must be contained in a single block C of Bk .
Indeed, since d | 22L−2k

and w | 22L−2k+1
, we have d + w < ( 1

2 + 1
22k )(22L−2k

),
whence the fact that [b, b + w] and [b + d, b + d + w] both intersect Bk would
imply that [xk−1, yk−1] contains consecutive elements of ∗2A, which is clearly a
contradiction.

Now write d = m ·22L−2k+1
. Take 0 ≤ j < 22k

so that [b, b+w] intersects Bk+1
in the j th subblock of C so xk + j ∈ ∗2A. Since [b+d, b+d +w]∩Bk+1 �= ∅, we
have that at least one of xk + j + (m − 1), xk + j + m, or xk + j + (m + 1) belong
to ∗(2A). However, since xk + j and m are both even, it follows that we must have
xk + j + m ∈ ∗(2A). Continuing in this matter, we see that xk + j + im ∈ ∗2A for
all i = 0, 1, . . . , t − 1. It follows by transfer that 2A contains a t-term arithmetic
progression, whence so does A.

Putting everything together, we have:

Corollary 14.14 The Erdős-Turán conjecture follows from Leth’s Conjecture.

Leth used Theorem 14.6 to prove the following theorem, which is similar in spirit
to Conjecture 14.6, except that it allows sparser sequences but in turn obtains almost
progressions with weaker smallness properties relating d and w.

Theorem 14.15 Suppose that s > 0 and t ∈ N
>2 are given. Further suppose that

h is as in Theorem 14.6. Let A ⊆ N be such that, for all ε > 0, we have δ(A, n) >

1/nε for sufficiently large n. Then for sufficiently large n, A nearly contains an
(t, d,w)-progression on [1, n] of homogeneity s with w/d < h(log d/ log n), where
d is a power of 2.

Proof Suppose that the conclusion is false. Then there is N such that ∗A does not
nearly contain any internal (t, d,w)-progression on [1, N] of homogeneity s with
w/d < h(log d/ log N). It suffices to show that there is ε > 0 such that δ(∗A,N) <

1/Nε . Let m be as in the conclusion of Theorem 14.6 with r = 2 and g(x) = x (and
h as given in the assumptions of the current theorem).
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Claim If I ⊆ [1, N] is a hyperfinite interval with |I | >
√

N , then ∗A does not have
the (m, 2)-density property on I .

We will return to the proof of the claim in a moment. We first see how the claim
allows us to complete the proof of the theorem. Let K > N be the maximal k ∈ ∗

N

such that m2k ≤ N , so m2K ≤ N < m2K+2. We construct, by internal induction,
for i = 0, 1, . . . ,K , a descending chain of hyperfinite subintervals (Ii) of I of
length m2K−i as follows. By Proposition 14.13, we may take I0 to be any hyperfinite
subinterval of I of length m2K such that δ(∗A, I0) ≥ δ(∗A,N)/2. Suppose that
i < K and Ii has been constructed such that |Ii | = m2k−i . Since ∗A does not have
the (m, 2) density property on Ii , there is a subinterval Ii+1 of length |Ii |/m2k−i−1

with δ(∗A, Ii+1) ≥ 2δ(∗A, Ii). Notice now that IK is a hyperfinite interval of length
mK ≤ √

N < mK+1 and δ(∗A, IK) ≥ 2Kδ(∗A, I0). It follows that

δ(∗A,N) ≤ 2δ(A, I0) ≤ 2−(K−1)δ(A, IK) ≤ 2−(K−1).

It follows that

|A ∩ [1, N]| ≤ 2−(K−1)N ≤ 2−(K−1)m2K+2 = m
2K+2−(K−1)

log 2
log m = (m2K)1−z.

if we set z := (K−1) log2
2K log m

− 1
K

. If we set ε := st(z/2) = log 2
4 logm

, then it follows that

|A ∩ [1, N]| ≤ N1−ε , whence this ε is as desired.
We now prove the claim. Suppose, towards a contradiction, that I ⊆ [1, N] is a

hyperfinite interval with |I | >
√

N and is such that ∗A does have the (m, 2)-density
property on I . By the choice of m, ∗A nearly contains an internal (t, d,w)-almost
progression of homogeneity s with w/d < h(d/|I |) and d > |I |/m >

√
N/m.

Notice now that st
(

log d
log N

)
≥ st

(
1/2 logN−log m

log N

)
= 1

2 . Note that we trivially have

that d/|I | < 1/t , whence d/|I | < log d/ log N ; since h is increasing, we have that
w/d < h(log d/ log N), contradicting the choice of N . This proves the claim and
the theorem.

In [90, Theorem 3], Leth shows that one cannot replace (log d)/(log n) with d/n

in the previous theorem.

Notes and References

There are other generalizations of arithmetic progressions appearing in the liter-
ature, e.g. the notion of quasi-progression appearing in [131]. It should be noted
that they use the term (t, d,w)-progression in a related, but different, manner than
it is used in this chapter. The Erdős-Turan conjecture, first formulated in [48],
is one of the most important open problems in combinatorial number theory. A
positive solution would immediately generalize both Szemeredi’s Theorem and the
Green-Tao theorem on the existence of arbitrarily long arithmetic progressions in
the primes [64].
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