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Abstract. We consider dynamically generating linear constraints (cut-
ting planes) to tighten relaxations for polynomial optimization problems.
Many optimization problems have feasible set of the form S∩P , where S
is a closed set and P is a polyhedron. Integer programs are in this class
and one can construct intersection cuts using convex “forbidden” regions,
or S-free sets. Here, we observe that polynomial optimization problems
can also be represented as a problem with linear objective function over
such a feasible set, where S is the set of real, symmetric matrices rep-
resentable as outer-products of the form xxT . Accordingly, we study
outer-product-free sets and develop a thorough characterization of sev-
eral (inclusion-wise) maximal intersection cut families. In addition, we
present a cutting plane approach that guarantees polynomial-time sep-
aration of an extreme point in P \ S using our outer-product-free sets.
Computational experiments demonstrate the promise of our approach
from the point of view of strength and speed.

1 Introduction

In this work we focus on polynomial optimization:

min p0(x)
(PO) s.t. pi(x) ≤ 0 i = 1, ...,m,

where each pi is a polynomial function with respect to x ∈ R
n. We consider

the dynamic generation of linear valid inequalities, i.e. cutting planes, to tighten
relaxations of PO. Cuts for polynomial optimization are typically generated
for a single nonlinear term or function (e.g. [7,35,37,41,45,51–53]) over a sim-
ple subset of linear constraints such as box constraints. In contrast, we develop
general-purpose cuts that have the potential to involve all variables simultane-
ously. To the best of our knowledge there are two papers (applicable to polyno-
mial optimization) that are similar to our work in this regard. The disjunctive
cuts of Saxena, Bonami, and Lee [46,47], and the work of Ghaddar, Vera, and
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Anjos [26] who propose a lift-and-project method using moment relaxations.
Polynomial-time separation from these procedures is not guaranteed in general.

We adopt the geometric perspective for generating cuts, in which cuts for a
region of the form S ∩ P , with P a polyhedron and S a closed set, are derived
from convex forbidden zones, or S-free sets. The S-free approach developed in
the context of mixed-integer programming, with S typically considered to be
the integer lattice. Practical applications of this technique have so far focused
on natural extensions such as conic integer programming (e.g. [4,30,42]) and
bilevel mixed-integer linear programming [23]. In contrast, PO represents an
essentially different domain of application since variables here are continuous.

We work with a representation of PO that uses a symmetric matrix of deci-
sion variables, and yields an equivalent formulation with a linear objective func-
tion and a feasible region of the form S ∩ P , with S the (closed) set of sym-
metric matrices that can be represented as outer products of the form xxT —
accordingly, we study outer-product-free sets. Several families of full-dimensional
(inclusion-wise) maximal outer-product-free sets are identified in Theorems 3 and
4 of Sect. 5. Furthermore, we derive an oracle-based outer-product-free set in
Sect. 4. With the aforementioned results we develop a cut generation procedure
(see Sect. 6) that has (to our knowledge) the following unique properties: any
infeasible extreme point of a (lifted) polyhedral relaxation of PO can be sepa-
rated in polynomial time; and variable bounds are not required. In Sect. 7 we
demonstrate the practical effectiveness of our approach over a variety of instances
using a straightforward pure cutting-plane setup. The speed of our separation
routines and the quality of the resulting cuts strongly suggest the viability of
our cut families within a full-fledged branch-and-cut solver.

1.1 Notation

Denote the interior of a set int(·) and its boundary bd(·). The convex hull of
a set is denoted conv(·), and its closure is clconv(·); likewise, the conic hull of
a set is cone(·), and its closure clcone(·). For a point x and nonempty set S in
R

n, we define d(x, S) := infs∈S{‖x − s‖2}; note that for S closed we can replace
the infimum with minimum. Denote the ball with center x and radius r to be
B(x, r). 〈·, ·〉 denotes the matrix inner product and ‖ · ‖F the Frobenius norm. A
positive semidefinite matrix may be referred to as a PSD matrix for short, and
likewise NSD refers to negative semidefinite.

2 S-free Sets and the Intersection Cut

Definition 1. A set C ⊂ R
n is S-free if int(C) ∩ S = ∅ and C is convex.

For any S-free set C we have S ∩ P ⊆ clconv(P \ int(C)), and so any valid
inequalities for clconv(P \ int(C)) are valid for S ∩ P . Hillestad and Jacobsen
[29], and later on Sen and Sherali [48], provide results regarding polyhedrality
of clconv(P \ int(C)). Averkov [5] provides theoretical consideration on how
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one can derive cuts from C. In specific instances, conv(P \ int(C)) can be fully
described (see [10,11,30,42]), however, separating over P \ int(C) is NP-hard
[25]. A standard workaround is to find a simplicial cone P ′ containing P and
apply Balas’ intersection cut [6] for P ′ \ int(C) (also see Tuy [54]). Larger S-free
sets can be useful for generating deeper cuts [17].

Definition 2. An S-free set C is maximal if V �⊃ C for all S-free V .

Under certain conditions (see [9,17,18,30]), maximal S-free sets are sufficient
to generate all nontrivial cuts for a problem. When S = Z

n, C is called a
lattice-free set. Maximal lattice-free sets are well-studied in integer programming
theory [1,2,8,14,20,27,30,36], and the notion of S-free sets was introduced as a
generalization [21].

2.1 The Intersection Cut

Let P ′ ⊇ P be a simplicial conic relaxation of P : a displaced polyhedral cone
with apex x̄ and defined by the intersection of n linearly independent halfspaces.
P ′ may be written as follows:

P ′ = {x̄ +
n∑

j=1

λjr
j : λ ≥ 0}. (1)

Each extreme ray of P ′ is of the form {x̄ + λjr
j |λj ≥ 0}. Alternatively, the

simplicial conic relaxation can be given in inequality form

P ′ = {x|Ax ≤ b}, (2)

where A is an invertible matrix. Note that any basis of P would be suitable to
derive P ′. The apex x̄ = A−1b, and the rays rj in (1) can be obtained directly
from A: for each j, one can identify −rj as the jth column of the inverse of A.

We shall assume x̄ /∈ S, so that x̄ is to be separated from S via separation
from P ′ \ int(C), with C an S-free set with x̄ in its interior. Since x̄ ∈ int(C),
there must exist λ > 0 such that x̄ + λjr

j ∈ int(C) ∀j. Also, each extreme ray
is either entirely contained in C, i.e. x̄ + λjr

j ∈ int(C)∀λj ≥ 0, or else there is
an intersection point with the boundary: ∃λ∗

j : x̄ + λ∗
jr

j ∈ bd(C). We refer to
λ∗

j as the step length in the latter case, and for convenience, we define the step
length λ∗

j = ∞ in the former case. The intersection cut is the halfspace whose
boundary contains each intersection point (given by λ∗

j < ∞) and that is parallel
to all extreme rays contained in C.

Given λ∗
j ∈ (0,∞]∀j = 1, . . . , n, Balas [6, Theorem 2] provides a closed-form

expression for the intersection cut πx ≤ π0:

π0 =
n∑

i=1

(1/λ∗
i )bi − 1, πj =

n∑

i=1

(1/λ∗
i )aij , (3)

where aij are the entries of A in (2) and 1/∞ := 0 [6, p. 34].
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The validity of the intersection cut and a condition in which the cut gives
the convex hull of P ′ \ int(C) is established by Balas [6, Theorem 1]. A more
detailed analysis, as well as a strengthening procedure for infinite step lengths
is provided in our full-length paper [12].

3 Moment-Based Reformulation of Polynomial
Optimization

Our approach to PO leverages the moment/sum-of-squares approach (see [33,
34]) from which a definition of the feasible set as S ∩ P is naturally obtained.

Let mr = [1, x1, . . . , xn, x1x2, . . . , x
2
n, . . . , xr

n] be a vector of all monomials
up to degree r. Any polynomial may be written as pi(x) = mT

r Aimr (provided
r is sufficiently large), where Ai is a symmetric matrix derived from pi. We can
apply this transformation to PO to obtain a lifted representation LPO:

min〈A0,X〉
(LPO) s.t. 〈Ai,X〉 ≤ bi, i = 1, ...,m, (4a)

X = mrm
T
r . (4b)

Denote nr :=
(
n+r

r

)
, i.e. the length of mr. Here Ai ∈ S

nr×nr are symmetric
matrices of data, and X ∈ S

nr×nr is a symmetric matrix of decision variables.
The problem has linear objective function, linear constraints (4a), and nonlinear
constraints (4b). One can replace the moment matrix condition X = mrm

T
r with

the equivalent conditions ofX � 0, rank(X) ≤ 1 and linear consistency constraints
among entries from X representing the same monomial. Dropping the nonconvex
rank one constraint yields the standard semidefinite relaxation [50].

On the other hand, the feasible region of LPO has a natural description as
an intersection of a polyhedron POP , that corresponds to linear constraints (4a)
together with consistency constraints, and the following closed set,

SOP := {X ∈ S
nr×nr : X = xxT , x ∈ R

nr}.

Accordingly, we shall study sets that are outer-product-free (OPF): closed, con-
vex sets in S

nr×nr with interiors that do not intersect with SOP . In what follows,
suppose we have an extreme point X̄ ∈ POP \ SOP with spectral decomposition
X̄ :=

∑nr

i=1 λidid
T
i and ordering λ1 ≥ ... ≥ λnr

. We seek to separate X̄.

4 Oracle-Based Outer-Product-Free Sets

If one has access to a distance oracle to the set S, one can easily construct an
OPF set, namely, an OPF ball. In the case of LPO this corresponds to the
distance to the nearest symmetric outer product. This distance is a special case
of the following PSD matrix approximation problem, given an integer q > 0:

(PMA) min
Y

{‖X̄ − Y ‖ : rank(Y ) ≤ q, Y � 0
}

.

Here ‖ · ‖ is a unitarily invariant matrix norm such as the Frobenius norm,
‖ · ‖F . Dax [19] proves the following:
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Theorem 1 (Dax’s Theorem). Let k be the number of nonnegative eigen-
values of X̄. For q = 1, . . . , n − 1, an optimal solution to PMA is given by
Y =

∑min{k,q}
i=1 λidid

T
i .

When X̄ is not NSD, the solution from Dax’s theorem coincides with Eckart-
Young-Mirsky [22,40] solution to PMA without the PSD constraint. The opti-
mal PSD approximant allows us to construct an OPF ball:

Boracle(X̄) :=
{B(X̄, ‖X̄‖F ), if X̄ is NSD,

B(X̄, ‖∑n
i=2 λidid

T
i ‖F ), otherwise.

Corollary 1. Boracle(X̄) is OPF.

Proof. Setting q = 1 in Dax’s Theorem, we see that the nearest symmetric outer
product is either λ1d1d

T
1 if λ1 > 0, or else the zeros matrix. ��

For LPO we can use a simple geometric construction involving Theorem 2
to obtain an OPF cone from the oracle ball. This extension is detailed in [12].

5 Maximal Outer-Product-Free Sets

5.1 General Properties of Maximal Outer-Product-Free Sets

We now turn to characterizing and finding maximal OPF sets. Our first Theorem
is a building block towards maximality.

Theorem 2. Let C ⊂ S
nr×nr be a full-dimensional OPF set. Then clcone(C) is

OPF. In particular, every full-dimensional maximal OPF set is a convex cone.

Proof. Suppose clcone(C) is not OPF; since it is closed and convex, then by
definition of OPF sets there must exist d ∈ R

nr such that ddT is in its interior.
If d is the zeros vector, then int(C) also contains the origin, which contradicts
the condition of C being OPF. Otherwise the ray r0 emanating from the origin
with nonzero direction ddT is entirely contained in and hence is an interior ray
of clcone(C). By convexity, the interior of cone(C) is the same as the interior of
its closure, so r0 is also an interior ray of cone(C). From this, it can be proved
that r0 must pass through the interior of C (see [12]). But every point along r0

is a symmetric outer-product, which again implies that C is not OPF. ��
We can also obtain the following properties regarding the geometry of max-

imal OPF sets via their supporting halfspaces.

Definition 3. A supporting halfspace of a closed, convex set S contains S and
its boundary is a supporting hyperplane of S.
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Lemma 1. Let C be a full-dimensional maximal OPF set. Every supporting
halfspace of C is of the form 〈A,X〉 ≥ 0 for some A ∈ S

nr×nr .

Proof. From Theorem 2 we have that C is a convex cone. From this it follows
that a supporting halfspace 〈A,X〉 ≥ b must have b = 0. ��

From Lemma 1 we may characterize a maximal OPF set as C = {X ∈
S

nr×nr |〈Ai,X〉 ≥ 0 ∀i ∈ I}, with I a potentially infinite index set.

Theorem 3. The halfspace 〈A,X〉 ≥ 0 is maximal OPF iff A is NSD.

Proof. If A has a strictly positive eigenvalue, then 〈A, ddT 〉 > 0 for some d, and
so the halfspace is not OPF. If A is NSD then 〈A, ddT 〉 = dT Ad ≤ 0 ∀d ∈ R

nr , so
the halfspace is OPF. For maximality, suppose the halfspace is strictly contained
in another OPF set C̄. Then there exists some X̄ ∈ int(C̄) such that 〈A, X̄〉 < 0.
Thus, −X̄ ∈ int(C̄) and so is the zeros matrix. Thus C̄ cannot be OPF. ��

5.2 Maximal Outer-Product-Free Sets Derived from 2 × 2
Submatrices

Theorem 3 provides our first explicit family of maximal OPF sets. Another family
is suggested by the following result by Kocuk, Dey, and Sun [31]:

Proposition 1 (KDS Proposition). A nonzero, Hermitian matrix X is PSD
and has rank one iff all the 2×2 minors of X are zero and the diagonal elements
of X are nonnegative.

In what follows, denote the entries of a 2×2 submatrix of X from some rows

i1 < i2 and columns j1 < j2 as X[[i1,i2],[j1,j2]] :=
[

a b
c d

]
.

Lemma 2. Let λ ∈ R
2 with ‖λ‖2 = 1. (5a) and (5b) describe an OPF set:

λ1(a + d)/2 + λ2(b − c)/2 ≥ ‖(b + c)/2, (a − d)/2‖2, (5a)
λ1(b + c)/2 + λ2(a − d)/2 ≥ ‖(a + d)/2, (b − c)/2‖2. (5b)

Proof. The set defined by ad ≥ bc is OPF (Proposition 1). The proof follows
from checking that (5a) defines a subset of it. Similarly, (5b) defines a subset of
ad ≤ bc. ��
The following Theorem provides an extensive list of maximal OPF sets that can
be obtained from Lemma 2. We leave the proof in the Appendix.

Theorem 4. (5a) describes a maximal OPF set if

(i) λ1 = 1, λ2 = 0, and neither b nor c are diagonal entries;
(ii) λ1 = 0, λ2 = 1, and b is a diagonal entry;
(iii) λ1 = 0, λ2 = −1, and c is a diagonal entry;
(iv) λ2

1 + λ2
2 = 1, and none of a, b, c, d are diagonal entries.
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Similarly, (5b) describes a maximal OPF set if
(v) λ1 = 1, λ2 = 0, and either b or c is a diagonal entry;
(vi) λ1 = 0, λ2 = 1, and a but not d is a diagonal entry;
(vii) λ1 = 0, λ2 = −1, and d but not a is a diagonal entry;
(viii) λ2

1 + λ2
2 = 1, and none of a, b, c, d are diagonal entries.

The following theorem shows that the maximal OPF sets we have identified
characterizes all such sets in the special case where nr = 2.

Theorem 5. In S
2×2 every full-dimensional maximal OPF set is either the cone

of PSD matrices or a halfspace of the form 〈A,X〉 ≥ 0, where A is NSD.

Proof. See [12] for details.

6 Implementation of Intersection Cuts

Suppose that we have a simplicial conic relaxation of POP with apex X̄. This
section provides a brief overview on how to generate a cutting plane to separate
X̄ from POP ∩ SOP using results from Sects. 4 and 5.

6.1 Step 1: Selecting an Outer-Product-Free Set

Separation Using the Distance Oracle. As outlined in Sect. 4, Boracle(X̄),
or its conic extension/strengthening can always be used to separate X̄.

Separation Using Halfspaces. Theorem 3 shows that certain halfspaces are
OPF sets. Moreover, it is not hard to see that the halfspaces of Theorem 3 imply
and provide no more than the family of cuts equivalent to the PSD condition:

dT Xd ≥ 0 ∀d ∈ R
n ⇐⇒ X � 0.

Choosing d equal to the eigenvectors of X̄ provides polynomial-time sep-
aration (given fixed numerical tolerances); this is a well-studied linear outer-
approximation procedure for semidefinite programming problems [32,44,47,49],
and here we provide a new interpretation of them via the maximal OPF property.

Separation with all 2 × 2 Submatrices of X̄. From Proposition 1 we have
that X̄ /∈ SOP implies a nonzero 2 × 2 minor or a negative diagonal term.
Supposing the nonnegative diagonal constraints are included in POP , then at
least one of the O(n4) 2 × 2 minors will be nonzero. We can show that for any
such minor that is nonzero at least one of the sets described in Theorem 4 will
strictly contain X̄. There is an additional choice of the λ parameters for sets
of the form (iv) and (viii), which in our experiments we set to extreme values
λ1 = 1, λ2 = 0 or λ1 = 0, λ2 = 1. Intermediate values for λ are the subject of
ongoing research.
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Separation with Only Principal 2 × 2 Submatrices of X̄. An alternative
characterization to Proposition 1 is given by Chen, Atamtürk and Oren [16]:

Proposition 2 (CAO Proposition). For n > 1 a nonzero Hermitian PSD
n × n matrix X has rank one iff all of its 2 × 2 principal minors are zero.

Hence if X̄ is not PSD then it is contained in at least one halfspace described
in Theorem 3. Otherwise, X̄ has at least one of its O(n2) principal 2 × 2 minors
strictly positive, and so (5a) is strictly satisfied for case (i) of Theorem 4.

6.2 Step 2: Generating an Intersection Cut

The halfspace OPF sets can generate a cut directly as mentioned above. We only
need the eigenvectors of X̄. The remaining OPF sets are a ball, for which the
step-lengths for the intersection cuts are simply the ball’s radius, and second-
order cones. We can thus derive (see [12]) computationally trivial closed-form
expressions for step lengths from the interior of a second-order cone to its bound-
ary. This is one of the most crucial features of our proposed cutting planes, as
they can be generated with little computational effort and thus making them
suitable for their incorporation in a branch-and-cut procedure.

7 Numerical Experiments

We present experiments using a pure cutting-plane algorithm using the cuts
described in Sect. 6. The experiments are designed to investigate the stand-alone
performance of our cuts, particularly separation speed and effectiveness. The
cutting plane algorithm solves an LP relaxation and obtains an (extreme point)
optimal solution X̄, adds cuts separating X̄, and repeats until either:

– A time limit of 600 seconds is reached, or
– The objective value does not improve for 10 iterations, or
– The violation of all cuts is not more than 10−6. Here, if πT x ≤ π0 is the cut

and x∗ is the candidate solution, we define the violation as (πT x∗ −π0)/‖π‖1.
For improving stability, we add a maximum of 10 cuts per iteration (selected

using violations) and remove non-active cuts every 15 iterations. Computations
are run on a 32-core server with an Intel Xeon Gold 6142 2.60 GHz CPU and
512 GB of RAM. Although the machine is powerful, we run the algorithm single-
threaded and the experiments do not require a significant amount of memory;
we confirmed that similar performance can be obtained with a laptop. The code
is written in C++ using the Eigen library for linear algebra [28]. The LP solver
is Gurobi 8.0.0 and, for comparisons, we solve SDP relaxations using the C++
Fusion API of Mosek 8 [43]. Our code is available at https://github.com/g-
munoz/poly cuts cpp.

Test instances are taken from two sources. First, we consider all 27 problem
instances from Floudas et al. [24] (available via GLOBALLib [39]) that have
quadratic objective and constraints. Our cuts can accommodate arbitrary poly-
nomial terms, however for implementation purposes reading QCQP problems is

https://github.com/g-munoz/poly_cuts_cpp
https://github.com/g-munoz/poly_cuts_cpp
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more convenient. Second, we consider all 99 instances of BoxQP developed by
several authors [15,55]. These problems have simple box constraints x ∈ [0, 1]n

and a nonconvex quadratic objective function. In a recent paper by Bonami et al.
[13], the authors show how to obtain cutting planes for this particular case.

We choose the initial LP relaxation to be the standard RLT relaxation of
QCQP: setting r = 1 in LPO and including McCormick estimators for bilinear
terms (see [3,38]). Problem sizes vary from 21 × 21 to 126 × 126 symmetric
matrices of decision variables for BoxQP instances and from 6 × 6 to 63 × 63 for
GLOBALLib instances. To obtain variable bounds for some of the GLOBALLib
instances we apply a simple bound tightening procedure: minimize/maximize a
given variable subject to the RLT relaxation. Lastly, we use Gap Closed as a
measure of quality of the bounds generated by each approach. This is defined
as follows: let OPT denote the optimal value of an instance, RLT the optimal
value of the standard RLT relaxation, and GLB the objective value obtained
after applying the cutting plane procedure. Then Gap Closed = GLB−RLT

OPT−RLT .

Results. In Table 1, we show a performance comparison in the selected GLOB-
ALLib instances between our cutting plane algorithm versus the relaxation
obtained from adding a PSD requirement for the variable X in the RLT relax-
ation (SDP). We do not show results for 2 of the instances, as the RLT relaxation
is tight for these. The results in Table 1 are very encouraging: in only 4 instances
we are not able to reach the same gap closed as the SDP. Moreover, our simple
cutting plane approach (almost) always runs in just a few seconds.

In Table 2, we compare our results with the V2 setting used by Saxena,
Bonami and Lee [46] in the selected GLOBALLib instances. We chose [46] as
a comparison as we find it the most similar to our approach. V2 uses an RLT
relaxation for QCQPs and applies two types of cuts: an outer-approximation of
the PSD cone and disjunctive cuts for which the separation involves a MIP. We
emphasize that these families of cuts are complementary and not competitive. It
is also important to mention that the running times in Table 2 for V2 correspond
to the reports in [46], published in 2010. While new hardware may improve these
times, we believe the conclusions we draw from Table 2 would not change.

For comparison purposes, we turned off our simple bound tightening routine
in order to obtain the same initial relaxation value as V2 (and thus the gaps
are different than the ones in Table 1). Even doing so, for certain instances of
GLOBALLib we did not obtain the same initial bound and thus excluded these
from comparison. On the comparable GLOBALLib instances our algorithm ter-
minates with smaller gap closed on average, but it does produce higher gap
closed on some instances. The advantage of our cuts is that times are substan-
tially shorter. This is expected, as V2 solves a MIP in the cut generation, while
our cuts only require finding eigenvalues and roots of single-variable quadratics.
Overall we believe these results are promising, as the cutting planes are able to
close a significant amount of gap in many cases, in a very short time.

The results on the BoxQP instances are interesting as well. In the interest of
space, we limit ourselves to summarizing them here. The interested reader can
find a complete log in https://goo.gl/8wPeY6. We compare with V2 as before,

https://goo.gl/8wPeY6
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Table 1. Comparison of intersection cuts versus SDP relaxation in non-convex
quadratic GLOBALLib instances.

Instance SDP Intersection Cuts
Name Gap Closed Time Gap Closed Time
Ex2 1 1 0.00% 0.01 57.70% 0.02
Ex2 1 5 0.00% 0.03 99.57% 0.01
Ex2 1 6 0.00% 0.02 79.56% 0.09
Ex2 1 7 0.00% 0.46 22.59% 0.96
Ex2 1 8 0.00% 1.11 51.89% 1.91
Ex2 1 9 0.00% 0.02 31.92% 0.98
Ex3 1 1 0.00% 0.05 0.71% 0.32
Ex3 1 2 22.41% 0.01 100.00% 0.00
Ex3 1 4 0.00% 0.01 32.61% 0.02
Ex5 2 2 case1 0.00% 0.04 12.84% 0.79
Ex5 2 2 case2 0.00% 0.04 30.25% 0.56
Ex5 2 2 case3 0.00% 0.04 19.15% 0.50
Ex5 2 4 0.00% 0.02 27.55% 0.20

Instance SDP Intersection Cuts
Name Gap Closed Time Gap Closed Time
Ex5 2 5 0.00% 1.84 0.00% 7.83
Ex5 3 2 0.10% 0.74 0.00% 0.94
Ex5 3 3 3.75% 105.01 0.50% 8.12
Ex5 4 2 0.00% 0.02 0.40% 0.08
Ex8 4 1 98.43% 0.84 59.42% 23.03
Ex9 1 4 0.00% 0.06 97.65% 0.08
Ex9 2 1 6.25% 0.07 26.55% 4.45
Ex9 2 2 16.67% 0.04 62.14% 1.55
Ex9 2 3 0.00% 0.24 0.00% 0.30
Ex9 2 4 99.83% 0.03 33.33% 0.10
Ex9 2 6 99.76% 0.27 56.64% 0.20
Ex9 2 7 6.25% 0.05 26.55% 4.58

Table 2. Comparison of Intersection Cuts versus V2 approach of [46] in Non-Convex
Quadratic GLOBALLib Instances. Entries labelled NR were not reported in [46].

Instance V2 Intersection Cuts
Name Gap Closed Time Gap Closed Time
Ex2 1 1 72.62% 704.40 57.70% 0.02
Ex2 1 5 99.98% 0.17 99.68% 0.00
Ex2 1 6 99.95% 3397.65 88.82% 0.09
Ex2 1 8 84.70% 3632.28 3.08% 1.71
Ex2 1 9 98.79% 1587.94 32.01% 0.89
Ex3 1 1 15.94% 3600.27 0.89% 0.11
Ex3 1 2 99.99% 0.08 100.00% 0.00
Ex3 1 4 86.31% 21.26 32.61% 0.02
Ex5 2 2 case1 0.00% 0.02 0.00% 0.02
Ex5 2 2 case2 0.00% 0.05 0.00% 0.08
Ex5 2 2 case3 0.36% 0.36 18.89% 0.11

Instance V2 Intersection Cuts
Name Gap Closed Time Gap Closed Time
Ex5 2 4 79.31% 68.93 27.14% 0.20
Ex5 2 5 6.27% 3793.17 0.00% 7.59
Ex5 3 2 7.27% 245.82 0.00% 0.91
Ex5 3 3 0.21% 3693.76 0.50% 16.73
Ex5 4 2 27.57% 3614.38 0.56% 0.10
Ex9 1 4 0.00% 0.60 0.00% 0.06
Ex9 2 1 60.04% 2372.64 27.27% 0.10
Ex9 2 2 88.29% 3606.36 69.88% 8.30
Ex9 2 6 87.93% 2619.02 99.70% 1.76
Ex9 2 8 NR NR 99.68% 0.03

and we replicate the same initial relaxation used by Saxena, Bonami and Lee [46],
namely the weak RLT relaxation (wRLT)1. We also compare against the wRLT
relaxation with a PSD constraint (wRLT+SDP). On the 42 BoxQP instances
reported in [46], our cuts always perform better than both V2 and wRLT+SDP.
The latter reaches optimality in seconds, but the relaxation is not strong, as
there are missing McCormick inequalities. Intersection Cuts, with a time limit
of 600 seconds, is able to close 90.49% gap on average in these instances, while
V2 closes 65.28% and wRLT+SDP 51.87%. Even though wRLT is a relaxation
that is not used in practice, these experiments still evidence the potential of our
proposed cuts, as they close a large amount of gap in a short amount of time,
even surpassing the impact of including an explicit SDP constraint.

1 This BoxQP relaxation only adds the “diagonal” McCormick estimates Xii ≤ xi.
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8 Conclusions

We have introduced intersection cuts in the context of polynomial optimiza-
tion. Accordingly, we have developed an S-free approach for polynomial opti-
mization, where S is the set of real, symmetric outer products. Our results on
full-dimensional maximal OPF sets include a full characterization of such sets
when nr = 2 as well as extensive families of maximal OPF sets. Computa-
tional experiments have demonstrated the potential of our cuts as a fast way
to reduce optimality gaps on a variety of problems using computationally sim-
ple closed-form procedures. A full implementation is being considered for future
empirical work, incorporating the cuts into a branch-and-cut solver and devel-
oping a more sophisticated implementation, e.g. stronger initial relaxations with
problem-specific valid inequalities, warm-starting the outer-approximation with
an SDP, sparsification of the cuts, advanced cut management, improved scala-
bility, among others.
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Appendix

Proof (Theorem 4). The OPF property is given by Lemma2, so maximality
remains. Let C be a set described by (5a) or (5b). It suffices to construct, for
every symmetric matrix X̄ �∈ C, Z := zzT such that Z − X̄ ∈ int(C). This
implies Z ∈ int(conv(C ∪ X̄)). Denote the submatrices of X̄, Z:

X̄[[i1,i2],[j1,j2]] :=
[

ā b̄
c̄ d̄

]
, Z[[i1,i2],[j1,j2]] :=

[
aZ bZ

cZ dZ

]
.

Furthermore, for convenience let us define the following:

p̄ := (ā + d̄)/2, q̄ := (ā − d̄)/2, r̄ := (b̄ + c̄)/2, s̄ := (b̄ − c̄)/2.

Construction for ( 5a): Suppose X̄ violates (5a). We propose the following:

aZ = q̄ + λ1‖q̄, r̄‖2, bZ = r̄ + λ2‖q̄, r̄‖2, cZ = r̄ − λ2‖q̄, r̄‖2, dZ = −q̄ + λ1‖q̄, r̄‖2
(6)

=⇒ λ1(ā + d̄)/2 + λ2(b̄ − c̄)/2 < ‖(b̄ + c̄)/2, (ā − d̄)/2‖2
= λ1(aZ + dZ)/2 + λ2(bZ − cZ)/2

where the last equality follows from λ2
1 + λ2

2 = 1. This implies

λ1((aZ − ā) + (dZ − d̄))/2 + λ2((bZ − b̄) − (cZ − c̄))/2 > 0
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and since ‖((bZ − b̄) + (cZ − c̄))/2, ((aZ − ā) − (dZ − d̄))/2‖2 = 0, we conclude
Z − X̄ ∈ int(C).

Construction for ( 5b): If X̄ violates (5b), we use the following construction:

aZ = p̄ + λ2‖p̄, s̄‖2, bZ = s̄ + λ1‖p̄, s̄‖2, cZ = −s̄ + λ1‖p̄, s̄‖2, dZ = p̄ − λ2‖p̄, s̄‖2.
=⇒ λ1(b̄ + c̄)/2 + λ2(ā − d̄)/2 < ‖(ā + d̄)/2, (b̄ − c̄)/2‖2

= λ1(bZ + cZ)/2 + λ2(aZ − dZ)/2,

=⇒ λ1((bZ − b̄) + (cZ − c̄))/2 + λ2((aZ − ā) − (dZ − d̄))/2 > 0.

We conclude Z − X̄ ∈ int(C) as before, since ‖((aZ − ā) + (dZ − d̄))/2, ((bZ −
b̄) − (cZ − c̄))/2‖2 = 0. It remains to set the other entries of Z and to show it is
an outer product.

Claim. For each condition (i)–(viii), aZdZ = bZcZ and all diagonal elements
among aZ , bZ , cZ , dZ are nonnegative.

Proof: First consider conditions (i)–(iv). By construction of (6):

aZdZ = −q̄2 + λ2
1‖q̄, r̄‖22 = r̄2 − λ2

2‖q̄, r̄‖22 = bZcZ .

The second equality is derived from the following identity:

‖q̄, r̄‖22 = q̄2 + r̄2 ⇐⇒ −q̄2 + λ2
1‖q̄, r̄‖22 = r̄2 − λ2

2‖q̄, r̄‖22.
Nonnegativity of diagonal elements follows from ‖q̄, r̄‖2 ≥ max{|q̄|, |r̄|}. In case
(i) only aZ or dZ can be diagonal elements, and they are both nonnegative. The
other cases can be directly verified. Similarly, for conditions (v)–(viii):

aZdZ = p̄2 − λ2
2‖p̄, s̄‖22 = −s̄2 + λ2

1‖p̄, s̄‖22 = bZcZ .

The second equality is derived from the following identity:

‖p̄, s̄‖22 = p̄2 + s̄2 ⇐⇒ −s̄2 + λ2
1‖p̄, s̄‖22 = p̄2 − λ2

2‖p̄, s̄‖22.
Nonnegativity of diagonal elements follows from the same argument as before,

by using the fact that ‖p̄, s̄‖2 ≥ max{|p̄|, |s̄|}. �
To maintain symmetry we set Zi1,j1 = Zj1,i1 , Zi1,j2 = Zj2,i1 , Zi2,j1 = Zj1,i2 ,

Zi2,j2 = Zj2,i2 . Now denote � = [i1, i2, j1, j2]. If aZ = bZ = cZ = dZ = 0, then
we simply set all other entries of Z equal to zero and so Z is the outer-product
of the vector of zeroes. Otherwise, consider the following cases.

Case 1: � has 4 unique entries. Suppose w.l.o.g we have an upper-triangular
entry (i1 < i2 < j1 < j2) and furthermore suppose that bZ is nonzero. Then set

Z� :=

⎡

⎢⎢⎣

1 dZ/bZ aZ bZ

dZ/bZ d2Z/b2Z cZ dZ

aZ cZ a2
Z aZbZ

bZ dZ aZbZ b2Z

⎤

⎥⎥⎦
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and set all remaining entries of Z to zero. Other orderings of indices or the use
of a different nonzero entry is handled by relabeling/rearranging column/row
order.

Case 2: � has three unique entries. Then, exactly one of aZ , bZ , cZ , dZ is a diag-
onal entry, and so cases (i)–(iii), (v)–(vii) apply. If in any of these cases aZ or
dZ is on the diagonal, by construction |bZ | = |cZ |. As aZdZ = bZcZ , we have
bZ = cZ = 0 iff exactly one of aZ or dZ is zero. Likewise, if bZ or cZ is a diagonal
element, then |aZ | = |dZ | and so aZ = dZ = 0 iff exactly one of bZ or cZ are
zero.

Suppose aZ is a nonzero diagonal entry. We propose:

Z�′ =

⎡

⎣
aZ bZ cZ

bZ b2Z/aZ dZ

cZ dZ c2Z/aZ

⎤

⎦

where �′ are the unique entries of �. If aZ = 0 and on the diagonal, then we
replace b2Z/aZ and c2Z/aZ with |dZ |. If bZ , cZ or dZ is on the diagonal, we use
the same construction but with relabeling/rearranging column/row order.

Case 3: � has two unique entries. All remaining entries of Z are set to zero.

For all cases, our construction ensures that all diagonal entries of Z are
nonnegative, and all 2 × 2 minors are zero; by Proposition 1, Z is an outer-
product. ��
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