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1 Introduction

Imagine a network of players that form partnerships to generate value. For exam-
ple, maybe a tennis league pairing players to play exhibition matches [3], or peo-
ple making trades in an exchange network [39]. These are examples of what are
called matching games. In a (weighted) matching game, we are given a graph
G = (V,E), weights w : E → R≥0, the player set is the set V of nodes of G, and
w(uv) denotes the value earned when u and v collaborate. Each coalition S ⊆ V
is assigned a value ν(S) so that ν(S) is equal to the value of a maximum weight
matching on the induced subgraph G[S]. The special case of matching games
where w = 1 is the all-ones vector, and G is bipartite is called an assignment
game and was introduced in a classical paper by Shapley and Shubik [39], and
was later generalized to general graphs by Deng, Ibaraki, and Nagamochi [11].

We are interested in what a fair redistribution of the total value ν(V ) to the
players in the network looks like. The field of cooperative game theory gives us the
language to make this question formal. A vector x ∈ RV is called an allocation if
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x(V ) = ν(V ) (where we use x(V ) as a short-hand for
∑

i∈V x(i) as usual). Given
such an allocation, we let x(S) − ν(S) be the excess of coalition S ⊆ V . This
quantity can be thought of as a measure of the satisfaction of coalition S. A fair
allocation should maximize the bottleneck excess, i.e. maximize the minimum
excess, and this can be accomplished by an LP:

max ε (P )
s.t. x(S) ≥ ν(S) + ε for all S ⊆ V

x(V ) = ν(V )
x ≥ 0.

Let ε∗ be the optimum value of (P ), and define P (ε∗) to be the set of allocations
x such that (x, ε∗) is feasible for (P ). The set P (ε∗) is known as the leastcore [33]
of the given cooperative game, and the special case when ε∗ = 0, P (0) is the well-
known core [21] of (V, ν). Intuitively, allocations in the core describe payoffs in
which no coalition of players could profitably deviate from the grand coalition V .

Why stop at maximizing the bottleneck excess? Consider an allocation which,
subject to maximizing the smallest excess, maximizes the second smallest excess,
and subject to that maximizes the third smallest excess, and so on. This process
of successively optimizing the excess of the worst-off coalitions yields our primary
object of interest, the nucleolus. For an allocation x ∈ RV , let θ(x) ∈ R2V −2 be
the vector obtained by sorting the list of excess values x(S) − ν(S) for any ∅ �=
S ⊂ V in non-decreasing order1. The nucleolus, denoted η(V, ν) and defined by
Schmeidler [38], is the unique allocation that lexicographically maximizes θ(x):

η(V, ν) := arg lex max{θ(x) : x ∈ P (ε∗)}.

We refer the reader to Appendix B for an example instance of the weighted
matching game with its nucleolus. We now have sufficient terminology to state
our main result:

Theorem 1. Given a graph G = (V,E) and weights w : E → R, the nucle-
olus η(V, ν) of the corresponding weighted matching game can be computed in
polynomial time.

Despite its intricate definition the concept of the nucleolus is surprisingly
ancient. Its history can be traced back to a discussion on bankruptcy divi-
sion in the Babylonian Talmud [1]. Modern research interest in the nucleolus
stems not only from its geometric beauty [33], or several practical applications
(e.g., see [5,32]), but from the strange way problems of computing the nucleolus
fall in the complexity landscape, seeming to straddle the NP vs P boundary.
1 It is common within the literature, for instance in [26], to exclude the coalitions for
S = ∅ and S = V in the definition of the nucleolus. On the other hand, one could also
consider the definition of the nucleolus with all possible coalitions, including S = ∅

and S = V . We note that the two definitions of the nucleolus are equivalent in all
instances of matching games except for the trivial instance of a graph consisting of
two nodes joined by a single edge.
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Beyond being one of the most fundamental problems in combinatorial opti-
mization, starting with the founding work of Kuhn on the Hungarian method
for the assignment problem [29], matching problems have historically teetered
on the cusp of hardness. For example, prior to Edmonds’ celebrated Blossom
Algorithm [12,13] it was not clear whether Maximum Matching belonged in P.
For another example, until Rothvoß’ landmark result [37] it was thought that the
matching polytope could potentially have sub-exponential extension complexity.
In cooperative game theory, matchings live up to their historical pedigree of
representing a challenging problem class. The long standing open problem in
this area was whether the nucleolus of a weighted matching game instance can
be computed in polynomial time. The concept of the nucleolus has been known
since 1969 [38], and the question was posed as an important open problem in
multiple papers. In 1998, Faigle, Kern, Fekete, and Hochstättler [15] mention
the problem in their work on the nucleon, a multiplicative-error analog to the
nucleolus which they show is polynomial time computable. Kern and Paulusma
state the question of computing the nucleolus for general matching games as an
important open problem in 2003 [26]. In 2008, Deng and Fang [9] conjectured this
problem to be NP-hard, and in 2017 Biró, Kern, Paulusma, and Wojuteczky [4]
reaffirmed this problem as an interesting open question. Theorem 1 settles the
question, providing a polynomial-time algorithm to compute the nucleolus of a
general instance of a weighted cooperative matching game.

Prior to our work, the nucleolus was known to be polynomial-time com-
putable only in structured instances of the matching game. Solymosi and Ragha-
van [40] showed how to compute the nucleolus in an (unweighted) assignment
game instance in polynomial time. Kern and Paulusma [26] later provided an
efficient algorithm to compute the nucleolus in general unweighted matching
game instances. Paulusma [35] extended the work in [26] and gave an efficient
algorithm to compute the nucleolus in matching games where edge weights are
induced by node potentials. Farczadi [20] finally extended Paulusma’s framework
further using the concept of extendible allocations. We note also that it is easy
to compute the nucleolus in weighted instances of the matching game with non-
empty core. For such instances, the leastcore has a simple compact description
that does not include constraints for coalitions of size greater than 2. Thus it
is relatively straightforward to adapt the iterative algorithm of Maschler [33] to
a polynomial-time algorithm for computing the nucleolus (e.g., see [20, Chapter
2.3] for the details, Sect. 1.2 for an overview).

In a manner analogous to how we have defined matching games, a wide variety
combinatorial optimization games can be defined [11]. In such games, the value of
a coalition S of players is succinctly given as the optimal solution to an underlying
combinatorial optimization problem. It is natural to conjecture that the complex-
ity of computing the nucleolus in an instance of such a game would fall in lock-step
with the complexity of the underlying problem. Surprisingly this is not the case.
For instance, computing the nucleolus is known to be NP-hard for network flow
games [10], weighted threshold games [14], and spanning tree games [16,19]. On
the other hand, polynomial time algorithms are known for finding the nucleolus of
special cases of flow games, certain classes of matching games, fractional matching
games, and convex games [2,6,10,17,20,22,23,26,30,34–36,40].
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The nucleolus is known to lie in the prekernel [38], a solution concept repre-
senting allocations which, speaking intuitively, reflect a balance of power between
players. The prekernel of a cooperative game is known to be non-convex and
even disconnected in general [28,41]. Despite this, Faigle, Kern and Kuipers [17]
showed how to compute a point in the intersection of prekernel and leastcore in
polynomial time under the reasonable assumption that the game has a polyno-
mial time oracle to compute the minimum excess coalition for a given allocation.
Later the same authors [18] refine their result to computing a point in the inter-
section of the core and lexicographic kernel, a set which is also known to contain
the nucleolus. Bateni et al. [2] pose as an open question the existence of an
efficiently computable, balanced and unique way of sharing profit in a network
bargaining setting. The nucleolus is always unique [38], and balanced in the
sense of lying in the leastcore intersect prekernel. Theorem 1 therefore resolves
the latter open question left in [2].

1.1 Leastcore and Core of Matching Games

It is straightforward to see that (P ) can be rewritten equivalently as

max ε (P1)
s.t. x(M) ≥ w(M) + ε for all M ∈ M

x(V ) = ν(G)
x ≥ 0 ,

where M is the set of all matchings M on G, and x(M) is a shorthand for
x(V (M)).

The separation problem for the linear program (P1) can be reduced to finding
a maximum weight matching in the graph G with edge weights w(uv) − x(uv),
uv ∈ E (where we use x(uv) as a shorthand for x(u)+x(v)). Since the maximum
weight matching can be found in polynomial time [12], we know that the linear
program (P1) can be solved in polynomial time as well [25].

We use ε1 to denote the optimal value of (P1) and P1(ε1) for the set of
allocations x such that (x, ε1) is feasible for the leastcore linear program (P1).
In general, for a value ε and a linear program Q on variables in RV ×R we denote
by Q(ε) the set {x ∈ RV : (x, ε) is feasible for Q}.

Note that ε1 ≤ 0. Indeed, ε ≤ 0 in any feasible solution (x, ε) to (P1) as
otherwise x(M) would need to exceed w(M) for all matchings M . In particular
this would also hold for a maximum weight matching on G, implying that x(V ) >
ν(G). If ε1 = 0 then the core of the cooperative matching game is non-empty.
One can see that ε1 = 0 if and only if the value of a maximum weight matching
on G with weights w equals the value of a maximum weight fractional matching.
This follows since x ∈ P1(ε1) is a fractional weighted node cover of value ν(G)
when ε1 = 0. When ε1 < 0, we say that the cooperative matching game has an
empty core. The matching game instance given in Appendix B has an empty
core.
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In this paper, we assume that the cooperative matching game (G,w) has an
empty core, as computing the nucleolus is otherwise well-known to be doable in
polynomial time [35].

1.2 Maschler’s Scheme

As discussed, our approach to proving Theorem 1 relies on Maschler’s scheme.
The scheme requires us to solve a linear number of LPs: {(Pj)}j≥1 that we now
define. (P1) is the leastcore LP that we have already seen in Sect. 1.1. LPs (Pj)
for j ≥ 2 are defined inductively. Crucial in their definition is the notion of fixed
coalitions that we introduce first. For a polyhedron Q ⊆ RV we denote by Fix(Q)
the collection of sets S ⊆ V such that x(S) is constant over the polyhedron Q,
i.e.

Fix(Q) := {S ⊆ V : x(S) = x′(S) for all x, x′ ∈ Q} .

With this we are now ready to state LP (Pj) for j ≥ 2:

max ε (Pj)

s.t. x(S) − ν(S) ≥ ε for all S ⊂ V, S �∈ Fix(Pj−1(εj−1))
x ∈ Pj−1(εj−1) ,

where εj be the optimal value of the linear program (Pj). Let j∗ be the minimum
number j such that Pj(εj) contains a single point. This point is the nucleolus of
the game [8]. It is well-known [33] that Pj−1(εj−1) ⊂ Pj(εj) and εj−1 < εj for
all j. Since the dimension of the polytope describing feasible solutions of (Pj)
decreases in every round until the dimension becomes zero, we have j∗ ≤ |V |
[33], [35, Pages 20–24].

Therefore, in order to find the nucleolus of the cooperative matching game
efficiently it suffices to solve each linear program (Pj), j = 1, . . . , j∗ in polynomial
time. We accomplish this by providing polynomial-size formulations for (Pj) for
all j ≥ 1.

In Sect. 2 we introduce the concept of universal matchings which are fun-
damental to our approach, and give a compact formulation for the first linear
program in Maschler’s Scheme, the leastcore. We also present our main technical
lemma, Lemma 5, which provides a crucial symmetry condition on the values
allocations can take over the vertices of blossoms in the graph decomposition we
use to describe the compact formulation. In Sect. 3 we describe the successive
linear programs in Maschler’s Scheme and provide a compact formulation for
each one in a matching game.

2 Leastcore Formulation

In this section we provide a polynomial-size description of (P1). It will be
useful to define a notation for excess: for any x ∈ P1(ε1) and M ∈ M let
excess(x,M) := x(M) − w(M).
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2.1 Universal Matchings, Universal Allocations

For each x ∈ P1(ε1) we say that a matching M ∈ M is an x-tight matching
whenever excess(x,M) = ε1. We denote by Mx the set of x-tight matchings.

A universal matching M ∈ M is a matching which is x-tight for all x ∈
P1(ε1). We denote the set of universal matchings on G by Muni. A universal
allocation x∗ ∈ P1(ε1) is a leastcore point whose x∗-tight matchings are precisely
the set of universal matchings, i.e. Mx∗

= Muni.

Lemma 1. There exists a universal allocation x∗ ∈ P1(ε1).

Proof. Indeed, it is straightforward to show that every x∗ in the relative interior
(see [42, Lemma 2.9(ii)]) of P1(ε1) is a universal allocation. If the relative interior
is empty then P1(ε1) is a singleton, which trivially contains a universal allocation.
In the arxiv version [27] we provide a combinatorial proof. �

Lemma 2. A universal allocation x∗ ∈ P1(ε1) can be computed in polynomial
time.

Proof. A point x∗ in the relative interior of P1(ε1) can be found in polynomial
time using the ellipsoid method (Theorem 6.5.5 [24], [7]). Since any allocation
x∗ from the relative interior of P1(ε1) is a universal allocation, this implies the
statement of the lemma. �

Given a non-universal allocation x and a universal allocation x∗, we observe
that Mx∗ ⊂ Mx and so θ(x∗) is strictly lexicographically greater than θ(x).
Thus the nucleolus is a universal allocation. We emphasize that Mx∗

= Muni is
invariant under the (not necessarily unique) choice of universal allocations x∗.
Henceforth we fix a universal allocation x∗ ∈ P1(ε1).

2.2 Description for Convex Hull of Universal Matchings.

By the definition of universal allocation x∗, a matching M is universal if and
only if it is x∗-tight. Thus, M is a universal matching if and only if its charac-
teristic vector lies in the optimal face of the matching polytope correspond-
ing to (the maximization of) the linear objective function assigning weight
− excess(x∗, uv) = w(uv) − x∗(uv) to each edge uv ∈ E. Let O be the set
of node sets S ⊆ V such that |S| ≥ 3, |S| is odd. Edmonds [12] gave a linear
description of the matching polytope of G as the set of y ∈ RE satisfying:

y(δ(v)) ≤ 1 for all v ∈ V
y(E(S)) ≤ (|S| − 1)/2 for all S ∈ O

y ≥ 0 .

Thus, a matching M ∈ M is universal if and only if it satisfies the constraints

M ∩ δ(v) = 1 for all v ∈ W
M ∩ E(S) = (|S| − 1)/2 for all S ∈ L

M ∩ {e} = 0 for all e ∈ F ,
(1)
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where W is some subset of V , L is a subset of O, and F is a subset of E. Using
an uncrossing argument, as in [31, Pages 141–150], we may assume that the
collection of sets L is a laminar family of node sets; i.e., for any two distinct sets
S, T ∈ L, either S ∩ T = ∅ or S ⊆ T or T ⊆ S.

Lemma 3. For every node v ∈ V there exists M ∈ Muni such that v is exposed
by M . Hence, W = ∅.

Proof. Assume for a contradiction that there exists a node v ∈ V such that
v ∈ W .

First, note that there always exists a non-universal matching M ∈ M\Muni

since otherwise the empty matching would be universal, and thus

0 = x∗(∅) = w(∅) + ε1,

implying that the core of the given matching game instance is non-empty.
Suppose first that there exists a node u ∈ V exposed by some matching

M ′ ∈ Muni such that x∗
u > 0. We define

δ0 := min{excess(x∗,M) − ε1 : M ∈ M \ Muni} .

Recall that Muni is the set of maximum weight matchings on G with respect
to the node weights w(uv) − x∗(uv), uv ∈ E, i.e. Muni is the set of x∗-tight
matchings. Moreover, recall that excess(x∗,M) = ε1 for M ∈ Muni. Thus, we
have δ0 > 0.

We define δ := min{δ0, x
∗
u} > 0 and a new allocation x′ as follows:

x′
r :=

⎧
⎪⎨

⎪⎩

x∗
r + δ, if r = v

x∗
r − δ, if r = u

x∗
r , otherwise.

Since all universal matchings contain v, the excess with respect to x′ of any
universal matching is no smaller than their excess with respect to x∗. Therefore,
by our choice of δ, (x′, ε1) is a feasible, and hence optimal, solution for (P1). But
M ′ is not x′-tight, since M ′ covers v and exposes u. This contradicts that M ′ is
a universal matching.

Now consider the other case: for all u ∈ V if u is exposed by a universal
matching then x∗

u = 0. Then, for every universal matching M ∈ Muni we have

ε1 = excess(x∗,M) = x∗(V ) − w(M) = ν(G) − w(M).

Since ν(G) is the maximum weight of a matching on G with respect to the weights
w, we get that ε1 ≥ 0. Thus x∗ is in the core, contradicting our assumption that
the core is empty. �
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2.3 Description of Leastcore

We denote inclusion-wise maximal sets in the family L as S∗
1 , S∗

2 , . . . , S∗
k . We

define the edge set E+ to be the set of edges in G such that at most one of its
nodes is in S∗

i for every i ∈ [k] := {1, . . . , k}, i.e.

E+ := E \ ( k⋃

i=1

E(S∗
i )

)
.

Lemma 4. For every choice of vi ∈ S∗
i , i ∈ [k], there exists a universal matching

M ∈ Muni such that the node set covered by M is as follows

k⋃

i=1

S∗
i \{vi} .

Proof. By Lemma 3, we know that for every i ∈ [k] there exists a universal
matching Mvi

∈ Muni such that vi is exposed by Mvi
. Now, for every i ∈ [k],

let us define
Mi := E(S∗

i ) ∩ Mvi
.

Since Mi satisfies all laminar family constraints in L for subsets of S∗
i we have

that
k⋃

i=1

Mi

is a matching satisfying all the constraints (1), and hence is a universal matching
covering the desired nodes. �

For each i ∈ [k] fix a unique representative node v∗
i ∈ S∗

i . By Lemma 4,
there exists a universal matching M∗ covering precisely

⋃
i∈[k] S

∗
i \{v∗

i }. For any
x ∈ P1(ε1) and S ⊆ V we use diff(x, S) to denote

diff(x, S) := x(S) − x∗(S) .

For single nodes we use the shorthand diff(x, v) = diff(x, {v}). We now prove
the following crucial structure result on allocations in the leastcore.

Lemma 5. For every leastcore allocation x, i.e. for every x ∈ P1(ε1), we have
that

(i) for all i ∈ [k], for all u ∈ S∗
i : diff(x, u) = diff(x, v∗

i ),
(ii) for all e ∈ E+ : excess(x, e) ≥ 0.

Proof. Consider u ∈ S∗
i , and note that we may use Lemma 4 to choose a universal

matching Mu covering precisely

S∗
i \{u} ∪

⋃

j �=i

S∗
j \{v∗

j }.
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Hence we have V (Mu)∪{u} = V (M∗)∪{v∗
i }, and since M∗ and Mu are universal,

x(M∗) = x∗(M∗) and x(Mu) = x∗(Mu). Using these observations we see that

sym(x, u) = x(u) + x(Mu) − (x∗(u) − x∗(Mu))
= x(v∗

i ) + x(M∗) − (x∗(v∗
i ) − x∗(M∗)) = diff(x, v∗

i ).

showing (i).
Now we prove (ii). Consider e ∈ E+ where e = {u, v}. Since e �∈ E(S∗

i ) for all
i ∈ [k], we can choose a universal matching M exposing u and v by Lemma 4.
Thus M ∪ {e} is also a matching. Notice M is x-tight, and so we have

excess(x, e) = excess(x,M ∪ {e})
︸ ︷︷ ︸

≥ε1

− excess(x,M)
︸ ︷︷ ︸

=ε1

≥ 0

as desired. �

Lemma 6. Let x ∈ P1(ε1) and let M ∈ M be a matching such that
M ⊆ ⋃

i∈[k] E(S∗
i ). Then there exists M ′ ⊆ M∗ such that excess(x,M ′) ≤

excess(x,M) and for all i ∈ [k], |M ′ ∩ E(S∗
i )| = |M ∩ E(S∗

i )|.
Proof. See the arxiv version [27]. �

Recall that x∗ is a fixed universal allocation in P1(ε1). Let E∗ ⊆ E denote
the union of universal matchings, i.e. E∗ = ∪M∈Muni

M . We now define linear
program (P 1).

max ε (P 1)

s.t. diff(x, u) = diff(x, v∗
i ) for all u ∈ S∗

i , i ∈ [k] (2)
excess(x, e) ≤ 0 for all e ∈ E∗

excess(x, e) ≥ 0 for all e ∈ E+

excess(x,M∗) = ε

x(V ) = ν(G)
x ≥ 0 .

Let ε1 be the optimal value of the linear program (P 1). We now show that P1(ε1)
is indeed a compact description of the leastcore P1(ε1).

Theorem 2. We have ε1 = ε1 and P1(ε1) = P 1(ε1).

Proof. See Appendix A.
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3 Computing the Nucleolus

The last section presented a polynomial-size formulation for the leastcore
LP (P1). In this section we complete our polynomial-time implementa-
tion of Maschler’s scheme by showing that (Pj) has the following compact
reformulation:

max ε (P j)

s.t. excess(x, e) ≥ ε − ε1 for all e ∈ E+, e �∈ Fix(P j−1(εj−1))
x(v) ≥ ε − ε1 for all v ∈ V, v �∈ Fix(P j−1(εj−1))

excess(x, e) ≤ ε1 − ε for all e ∈ E∗, e �∈ Fix(P j−1(εj−1))
x ∈ P j−1(εj−1) ,

where εj is the optimal value of the linear program (P j).

Theorem 3. For all j = 1, . . . , j∗, we have εj = εj and Pj(εj) = P j(εj).

Proof. We refer the reading to the arxiv version [27] for the proof.

With Theorem 3 we can replace each linear program (Pj) with (P j) in Maschler’s
Scheme. Since the universal allocation x∗, the node sets S∗

i , i ∈ [k], the edge
set E+, and the edge set E∗ can all be computed in polynomial time, we have
shown that the nucleolus of any cooperative matching game with empty core
can be computed in polynomial time. Therefore we have shown Theorem 1.

Open Questions. Matching Games generalize naturally to b-matching games,
where instead the underlying optimization problem is to find an edge subset M
with |M ∩ δ(v)| ≤ bv for each node v. Biro, Kern, Paulusma, and Wojuteczky [4]
showed that the core-separation problem when bv > 2 for some vertex v, is
coNP-Hard. Despite this, the complexity of computing the nucleolus of these
games is open.

Our algorithm relies heavily on the ellipsoid method. When the core is non-
empty, there is a combinatorial algorithm for finding the nucleolus [3]. It would
be interesting to develop a combinatorial algorithm for nucleolus computation
of matching games in general.

Acknowledgements. The authors thank Umang Bhaskar, Daniel Dadush, and Linda
Farczadi for stimulating and insightful discussions related to this paper.

Appendix

A Proof of Theorem 2

Proof. First, we show that P1(ε1) ⊆ P 1(ε1). Consider x ∈ P1(ε1). By Lemma 5(i)
we have

diff(x, u) = diff(x, v∗
i ) for all u ∈ S∗

i , i ∈ [k].
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Lemma 5(ii) shows that excess(x, e) ≥ 0 for all e ∈ E+, and excess(x,M∗) = ε1

holds by the universality of M∗. It remains to show that

excess(x, e) ≤ 0 for all e ∈ E∗.

Suppose for contradiction there exists e ∈ E∗ such that excess(x, e) > 0. By the
definition of E∗, there exists a universal matching M ′ containing e. Since M ′ is
universal, excess(x,M ′) = ε1. But by our choice of e,

excess(x,M ′ \ {e}) < excess(x,M ′) = ε1

contradicting that x is in P1(ε1). Thus we showed that (x, ε1) is feasible for (P 1),
i.e. we showed that P1(ε1) ⊆ P 1(ε1).

To complete the proof we show that P 1(ε1) ⊆ P1(ε1). Let x be an allocation
in P 1(ε1). Due to the description of the linear program (P1), it is enough to
show that for every matching M ∈ M we have

excess(x,M) ≥ ε1 .

Since excess(x, e) ≥ 0 for alle ∈ E+, it suffices to consider only the matchings M ,
which are unions of matchings on the graphs G[S∗

i ], i ∈ [k]. Let ti := |M∩E(S∗
i )|.

By Lemma 6 applied to x∗ there exists M ′ ⊆ M∗ such that excess(x∗,M) ≥
excess(x∗,M ′) and |M ′ ∩E(S∗

i )| = ti, for all i ∈ [k]. Then due to constraints (2)
in (P 1) we have

excess(x,M) =
k∑

i=1

2ti diff(x, v∗
i )

︸ ︷︷ ︸
=diff(x,M ′)

+ excess(x∗,M)
︸ ︷︷ ︸
≥excess(x∗,M ′)

≥ excess(x,M ′) ≥ excess(x,M∗) = ε1 ,

where the last inequality follows since M ′ ⊆ M∗ and excess(x, e) ≤ 0 for all
e ∈ E∗.

Thus, we showed that P1(ε1) ⊆ P 1(ε1) and P 1(ε1) ⊆ P1(ε1). Recall, that ε1

and ε1 are the optimal values of the linear programs (P1) and (P 1) respectively.
Thus, we have ε1 = ε1 and P1(ε1) = P 1(ε1). �

B Example of a Matching Game With Empty Core

Consider the example in Fig. 1. This graph G = (V,E) is a 5-cycle with two
adjacent edges 15 and 12 of weight 2, and the remaining three edges of weight 1.
Since the maximum weight matching value is ν(G) = 3, but the maximum weight
fractional matching value is 7

2 , the core of this game is empty. The allocation
x∗ defined by x∗(1) = 7

5 and x∗(2) = x∗(3) = x∗(4) = x∗(5) = 2
5 lies in the

leastcore. Each edge has the same excess, − 1
5 , and any coalition of four vertices

yields a minimum excess coalition with excess − 2
5 . Hence the leastcore value of

this game is ε1 = − 2
5 .
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Fig. 1. Matching game with
empty core

In fact, we can see that x∗ is the nucleolus of
this game. To certify this we can use the result
of Schmeidler [38] that the nucleolus lies in the
intersection of the leastcore and the prekernel.
For this example, the prekernel condition that
for all i �= j ∈ V ,

max{x(S ∪ {i}) − ν(S ∪ {i}) : S ⊆ V \{j}}
= max{x(S ∪ {j}) − ν(S ∪ {j}) : S ⊆ V \{i}}

reduces to the condition that the excess values
of non-adjacent edges are equal. Since G is an
odd cycle, this implies that all edges has equal
excess, i.e.

excess(x, 12) = excess(x, 23) = excess(x, 34)
= excess(x, 45) = excess(x, 15).

Combining the four equations above with the leastcore condition that x(V ) =
ν(G) we obtain a system of equations with the unique solution x∗. Hence the
intersection of the leastcore and prekernel is precisely {x∗}, and so by Schmeidler,
x∗ is the nucleolus.
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