
Strong Mixed-Integer Programming
Formulations for Trained Neural

Networks

Ross Anderson1, Joey Huchette1(B), Christian Tjandraatmadja1,
and Juan Pablo Vielma2

1 Google Research, Cambridge, USA
{rander,jhuchette,ctjandra}@google.com

2 MIT, Cambridge, USA
jvielma@mit.edu

Fig. 1. The convex relaxation for a ReLU neuron using: (Left) existing MIP formula-
tions, and (Right) the formulations presented in this paper.

Abstract. We present an ideal mixed-integer programming (MIP) for-
mulation for a rectified linear unit (ReLU) appearing in a trained neural
network. Our formulation requires a single binary variable and no addi-
tional continuous variables beyond the input and output variables of
the ReLU. We contrast it with an ideal “extended” formulation with a
linear number of additional continuous variables, derived through stan-
dard techniques. An apparent drawback of our formulation is that it
requires an exponential number of inequality constraints, but we pro-
vide a routine to separate the inequalities in linear time. We also prove
that these exponentially-many constraints are facet-defining under mild
conditions. Finally, we study network verification problems and observe
that dynamically separating from the exponential inequalities (1) is much
more computationally efficient and scalable than the extended formula-
tion, (2) decreases the solve time of a state-of-the-art MIP solver by a
factor of 7 on smaller instances, and (3) nearly matches the dual bounds
of a state-of-the-art MIP solver on harder instances, after just a few
rounds of separation and in orders of magnitude less time.

Keywords: Mixed-integer programming · Formulations ·
Deep learning

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 27–42, 2019.
https://doi.org/10.1007/978-3-030-17953-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_3

28 R. Anderson et al.

1 Introduction

Deep learning has proven immensely powerful at solving a number of important
predictive tasks arising in areas such as image classification, speech recognition,
machine translation, and robotics and control [27,35]. The workhorse model in
deep learning is the feedforward network NN : Rm0 → Rms with rectified linear
unit (ReLU) activation functions, for which NN(x0) = xs is defined through

xi
j = ReLU(wi,j · xi−1 + bi,j) (1)

for each layer i ∈ �s�
def= {1, . . . , s} and j ∈ �mi�. Note that the input x0 ∈ Rm0

might be high-dimensional, and that the output xs ∈ Rms may be multivariate.
In this recursive description, ReLU(v) def= max{0, v} is the ReLU activation func-
tion, and wi,j and bi,j are the weights and bias of an affine function which are
learned during the training procedure. Each equation in (1) corresponds to a
single neuron in the network. Networks with any specialized linear transforma-
tions such as convolutional layers can be reduced to this model after training,
without loss of generality.

There are numerous contexts in which one may want to solve an optimiza-
tion problem containing a trained neural network such as NN. For example, such
problems arise in deep reinforcement learning problems with high dimensional
action spaces and where any of the cost-to-go function, immediate cost, or the
state transition functions are learned by a neural network [3,19,40,44,55]. Alter-
natively, there has been significant recent interest in verifying the robustness of
trained neural networks deployed in systems like self-driving cars that are incredi-
bly sensitive to unexpected behavior from the machine learning model [15,43,48].
Relatedly, a string of recent work has used optimization over neural networks
trained for visual perception tasks to generate new images which are “most rep-
resentative” for a given class [42], are “dreamlike” [41], or adhere to a particular
artistic style via neural style transfer [26].

1.1 MIP Formulation Preliminaries

In this work, we study mixed-integer programming (MIP) approaches for opti-
mization problems containing trained neural networks. In contrast to heuristic or
local search methods often deployed for the applications mentioned above, MIP
offers a framework for producing provably optimal solutions. This is of particular
interest in the verification problem, where rigorous dual bounds can guarantee
robustness in a way that purely primal methods cannot.

We focus on constructing MIP formulations for the graph of ReLU neurons:

gr(ReLU ◦ f ; [L,U]) def= { (x, (ReLU ◦ f)(x)) | L � x � U } , (2)

where ◦ is the standard function composition operator (g ◦ f)(x) = g(f(x)).
This substructure consists of a single ReLU activation function, taking as input
an affine function f(x) = w · x + b over a η-dimensional box-constrained input

MIP Formulations for Trained Neural Networks 29

domain. The nonlinearity is handled by introducing an auxiliary binary variable
z to indicate whether (ReLU◦f)(x) = 0 or (ReLU◦f)(x) = f(x) for a given value
of x. We focus on these particular substructures because we can readily produce
a MIP formulation for the entire network as the composition of formulations for
each individual neuron.1

A MIP formulation is ideal if the extreme points of its linear programming
(LP) relaxation are integral. Ideal formulations are highly desirable from a com-
putational perspective, and offer the strongest possible convex relaxation for the
set being formulated [50].

Our main contribution is an ideal formulation for a single ReLU neuron
with no auxiliary continuous variables and an exponential number of inequal-
ity constraints. We show that each of these exponentially-many constraints is
facet-defining under very mild conditions. We also provide a simple linear-time
separation routine to generate the most violated inequality from the exponential
family. This formulation is derived by constructing an ideal extended formulation
that uses η auxiliary continuous variables and projecting them out. We evaluate
our methods computationally on verification problems for image classification
networks trained on the MNIST digit dataset, where we observe that separating
over these exponentially-many inequalities solves smaller instances faster than
using Gurobi’s default cut generation by a factor of 7, and (nearly) matches the
dual bounds on larger instances in orders of magnitude less time.

1.2 Relevant Prior Work

In recent years a number of authors have used MIP formulations to model trained
neural networks [14,16,20,25,32,38,44,46,47,49,55,56], mostly applying big-M
formulation techniques to ReLU-based networks. When applied to a single neu-
ron of the form (2), these big-M formulations will not be ideal or offer an exact
convex relaxation; see Example 1 for an illustration. Additionally, a stream of
literature in the deep learning community has studied convex relaxations in
the original space of input/output variables x and y (or a dual representa-
tion thereof), primarily for verification tasks [9,22,23]. It has been shown that
these convex relaxations are equivalent to those provided by the standard big-M
MIP formulation, after projecting out the auxiliary binary variables (e.g. [46]).
Moreover, some authors have investigated how to use convex relaxations within
the training procedure in the hopes of producing neural networks with a priori
robustness guarantees [21,53,54].

Beyond MIP and convex relaxations, a number of authors have investigated
other algorithmic techniques for modeling trained neural networks in optimiza-
tion problems, drawing primarily from the satisfiability, constraint program-
ming, and global optimization communities [7,8,33,37,45]. Another intriguing
direction studies restrictions to the space of models that may make the opti-
mization problem over the network inputs simpler: for example, the classes of
binarized [34] or input convex [1] neural networks.
1 Further analysis of the interactions between neurons can be found in the full-length

version of this extended abstract [2].

30 R. Anderson et al.

Broadly, our work fits into a growing body of research in prescriptive analytics
and specifically the “predict, then optimize” framework, which considers how to
embed trained machine learning models into optimization problems [11,12,17,18,
24,28,39]. Additionally, the formulations presented below have connections with
existing structures studied in the MIP and constraint programming community
like indicator variables and on/off constraints [4,10,13,29,30].

1.3 Starting Assumptions and Notation

We will assume that −∞ < Li < Ui < ∞ for each input component i. While
a bounded input domain will make the formulations and analysis considerably
more difficult than the unbounded setting (see [4] for a similar phenomenon),
it ensures that standard MIP representability conditions are satisfied (e.g. [50,
Sect. 11]). Furthermore, variable bounds are natural for many applications (for
example in verification problems), and are absolutely essential for ensuring rea-
sonable dual bounds.

Define L̆, Ŭ ∈ Rη such that, for each i ∈ �η�,

L̆i =

{
Li if wi � 0
Ui if wi < 0

and Ŭi =

{
Ui if wi � 0
Li if wi < 0

.

This definition implies that wiL̆i � wiŬi for each i, which simplifies the handling
of negative weights wi < 0. Take the values M+(f) def= maxx̃∈[L,U] f(x̃) ≡ w ·Ŭ +b

and M−(f) def= minx̃∈[L,U] f(x̃) ≡ w · L̆+ b. Define supp(w) def= { i ∈ �η� | wi �= 0 }.
Finally, take R�0

def= { x ∈ R | x � 0 } as the nonnegative orthant.
We say that strict activity holds for a given ReLU neuron gr(ReLU◦f ; [L,U])

if M−(f) < 0 < M+(f), or in other words, if gr(ReLU ◦ f ; [L,U]) is not equal
to either gr(0; [L,U]) or gr(f ; [L,U]). We assume for the remainder that strict
activity holds for each ReLU neuron. This assumption is not onerous, as other-
wise, the nonlinearity can be replaced by an affine function (either 0 or w ·x+b).
Moreover, strict activity can be verified or disproven in time linear in η.

2 The ReLU Neuron

The ReLU is the workhorse of deep learning models: it is easy to reason about,
introduces little computational overhead, and despite its simple structure is
nonetheless capable of articulating complex nonlinear relationships.

2.1 A Big-M Formulation

A standard big-M formulation for gr(ReLU ◦ f ; [L,U]) is:

y � f(x) (3a)

y � f(x) − M−(f) · (1 − z) (3b)

y � M+(f) · z (3c)
(x, y, z) ∈ [L,U] × R�0 × {0, 1}. (3d)

MIP Formulations for Trained Neural Networks 31

This is the formulation used recently in the bevy of papers referenced in Sect. 1.2.
Unfortunately, this formulation is not necessarily ideal, as illustrated by the
following example.

Example 1. If f(x) = x1 + x2 − 1.5, formulation (3a–3d) for gr(ReLU ◦ f ; [0, 1]2)
is

y � x1 + x2 − 1.5 (4a)
y � x1 + x2 − 1.5 + 1.5(1 − z) (4b)
y � 0.5z (4c)

(x, y, z) ∈ [0, 1]2 × R�0 × [0, 1] (4d)
z ∈ {0, 1}. (4e)

The point (x̂, ŷ, ẑ) = ((1, 0), 0.25, 0.5) is feasible for the LP relaxation (4a–4d);
however, (x̂, ŷ) ≡ ((1, 0), 0.25) is not in Conv(gr(ReLU ◦ f ; [0, 1]2)), and so the
formulation does not offer an exact convex relaxation (and, hence, is not ideal).
See Fig. 1 for an illustration: on the left, of the big-M formulation projected to
(x, y)-space, and on the right, the tightest possible convex relaxation.

The integrality gap of (3a–3d) can be arbitrarily bad, even in fixed
dimension η.

Example 2. Fix γ ∈ R�0 and even η ∈ N. Take the affine function f(x) =∑η
i=1 xi, the input domain [L,U] = [−γ, γ]η, and the point x̂ = γ ·

(1,−1, · · · , 1,−1) as a scaled vector of alternating ones and negative ones. We
can check that (x̂, ŷ, ẑ) = (x̂, 1

2γη, 1
2) is feasible for the LP relaxation of the

big-M formulation (3a–3d). Additionally, f(x̂) = 0, and for any ỹ such that
(x̂, ỹ) ∈ Conv(gr(ReLU ◦ f ; [L,U])), then ỹ = 0 necessarily. Therefore, there
exists a fixed point x̂ in the input domain where the tightest possible convex
relaxation (for example, from an ideal formulation) is exact, but the big-M for-
mulation deviates from this value by at least 1

2γη.

Intuitively, this example suggests that the big-M formulation is particularly
weak around the boundary of the input domain, as it cares only about the value
f(x) of the affine function, and not the particular input value x.

2.2 An Ideal Extended Formulation

It is possible to produce an ideal extended formulation for the ReLU neuron by
introducing auxiliary continuous variables. The “multiple choice” formulation is

32 R. Anderson et al.

(x, y) = (x0, y0) + (x1, y1) (5a)

y0 = 0 � w · x0 + b(1 − z) (5b)

y1 = w · x1 + bz � 0 (5c)

L(1 − z) � x0 � U(1 − z) (5d)

Lz � x1 � Uz (5e)
z ∈ {0, 1}, (5f)

is an ideal extended formulation for piecewise linear functions [52]. It can alter-
natively be derived from techniques introduced by Balas [5,6]. Although the mul-
tiple choice formulation offers the tightest possible convex relaxation for a single
neuron, it requires a copy x0 of the input variables (note that it is straightforward
to use Eq. (5a) to eliminate the second copy x1). This means that when the mul-
tiple choice formulation is applied to every neuron in the network to formulate
NN, the total number of continuous variables required is m0 +

∑r
i=1(mi−1 +1)mi

(using the notation of (1), where mi is the number of neurons in layer i). In con-
trast, the big-M formulation requires only m0+

∑r
i=1 mi continuous variables to

formulate the entire network. As we will see in Sect. 3.2, the quadratic growth in
size of the extended formulation can quickly become burdensome. Additionally, a
folklore observation in the MIP community is that multiple choice formulations
tend to not perform as well as expected in simplex-based branch-and-bound
algorithms, likely due to degeneracy introduced by the block structure [51].

2.3 An Ideal Non-extended Formulation

We now present a non-extended ideal formulation for the ReLU neuron, stated
only in terms of the original variables (x, y) and the single binary variable z. Put
another way, it is the strongest possible tightening that can be applied to the
big-M formulation (3a–3d) and so matches the strength of the multiple choice
formulation without the additional continuous variables.

Proposition 1. Take some affine function f(x) = w · x + b over input domain
[L,U]. The following is an ideal formulation for gr(ReLU ◦ f ; [L,U]):

y � w · x + b (6a)

y �
∑
i∈I

wi(xi − L̆i(1 − z)) +

⎛
⎝b +

∑
i�∈I

wiŬi

⎞
⎠ z ∀I ⊆ supp(w) (6b)

(x, y, z) ∈ [L,U] × R�0 × {0, 1} (6c)

Proof. See AppendixA.1.
�
Furthermore, each of the exponentially-many inequalities in (6b) is necessary.

MIP Formulations for Trained Neural Networks 33

Proposition 2. Each inequality in (6b) is facet-defining.

Proof. See AppendixA.2.
�
We require the assumption of strict activity above, as introduced in Sect. 1.3.

Under the same condition, it is also possible to show that (6a) is facet-defining,
but we omit it in this extended abstract for brevity. As a result of this and
Proposition 2, the formulation (6a–6c) is minimal (modulo variable bounds).

The proof of Proposition 2 offers a geometric interpretation of the facets
induced by (6b). Each facet is a convex combination of two faces: an (η − |I|)-
dimensional face consisting of all feasible points with z = 0 and xi = L̆i for all
i ∈ �η�\I, and an |I|-dimensional face consisting of all feasible points with z = 1
and xi = Ŭi for all i ∈ I.

It is also possible to separate from the family (6b) in time linear in η.

Proposition 3. Take a point (x̂, ŷ, ẑ) ∈ [L,U]×R�0 × [0, 1], along with the set

Î =
{

i ∈ supp(w)
∣∣∣ wix̂i < wi

(
L̆i(1 − ẑ) + Ŭiẑ

) }
.

If any constraint in the family (6b) is violated at (x̂, ŷ, ẑ), then the one corre-
sponding to Î is the most violated.

Proof. Follows from inspecting the family (6b): each has the same left-hand-side,
and so to maximize violation, it suffices to select the subset I that minimizes the
right-hand-side. This can be performed in a separable manner, independently for
each component i ∈ supp(w), giving the result.
�

Observe that the inequalities (3b) and (3c) are equivalent to those in (6b)
with I = supp(w) and I = ∅, respectively (modulo components i with
wi = 0). This suggests an iterative scheme to produce strong relaxations for
ReLU neurons: start with the big-M formulation (3a–3d), and use Proposition 3
to separate strengthening inequalities from the exponential family (6b) as they
are needed. We evaluate this approach in the following computational study.

3 Computational Experiments

To conclude the work, we study the strength of the ideal formulations presented
in Sect. 2 for individual ReLU neurons. We study the verification problem on
image classification networks trained on the canonical MNIST digit dataset [36].
We train a neural network f : [0, 1]28×28 → R10, where the 10 outputs correspond
to the logits for each of the digits from 0 to 9. Given a labeled image x̃ ∈
[0, 1]28×28, our goal is to prove or disprove the existence of a perturbation of x̃
such that the neural network f produces a wildly different classification result.
If f(x̃)i = max10

j=1 f(x̃)j , then image x̃ is placed in class i. To evaluate robustness
around x̃ with respect to class j, we can solve the following optimization problem
for some small constant ε > 0:

maxa:||a||∞�ε f(x̃ + a)j − f(x̃ + a)i.

34 R. Anderson et al.

If the optimal solution (or a valid dual bound thereof) is less than zero, this
verifies that our network is robust around x̃ in the sense that we cannot produce
a small perturbation that will flip the classification from i to j.

We train a smaller and a larger model, each with two convolutional layers with
ReLU activation functions, feeding into a dense layer of ReLU neurons, and then
a final dense linear layer. TensorFlow pseudocode specifying the two network
architectures is included in Fig. 2. We generate 100 instances for each network
by randomly selecting images x̃ with true label i from the test data, along with a
random target adversarial class j �= i. Note that we make no attempts to utilize
recent techniques that train the networks to be verifiable [21,53,54,56].

Fig. 2. TensorFlow pseudocode specifying the two network architectures used.

For all experiments, we use the Gurobi v7.5.2 solver, running with a single
thread on a machine with 128 GB of RAM and 32 CPUs at 2.30 GHz. We use a
time limit of 30 min (1800 s) for each run. We perform our experiments using the
tf.opt package for optimization over trained neural networks; tf.opt is under
active development at Google, with the intention to open source the project in the
future. Below, the big-M + (6b) method is the big-M formulation (3a–3d) paired
with separation2 over the exponential family (6b), and with Gurobi’s cutting plane
generation turned off. Similarly, the big-M and the extended methods are the big-
M formulation (3a–3d) and the extended formulation (5a– 5f) respectively, with
default Gurobi settings. Finally, the big-M+no cuts method turns off Gurobi’s
cutting plane generation without adding separation over (6b).

2 We use cut callbacks in Gurobi to inject separated inequalities into the cut loop. While
this offers little control over when the separation procedure is run, it allows us to take
advantage of Gurobi’s sophisticated cut management implementation.

MIP Formulations for Trained Neural Networks 35

3.1 Small ReLU Network

We start with a smaller ReLU network whose architecture is depicted in Tensor-
Flow pseudocode in Fig. 2a. The model attains 97.2% test accuracy. We select a
perturbation ball radius of ε = 0.1. We report the results in Table 1 and in Fig. 3.
The big-M + (6b) method solves 7 times faster on average than the big-M formu-
lation. Indeed, for 79 out of 100 instances the big-M method does not prove opti-
mality after 30 min, and it is never the fastest choice (the “win” column). More-
over, the big-M + no cuts times out on every instance, implying that using some
cuts is important. The extended method is roughly 5 times slower than the big-
M + (6b) method, but only exceeds the time limit on 19 instances, and so is sub-
stantially more reliable than the big-M method for a network of this size. From
this, we conclude that the additional strength offered by the ideal formulations
(5a–5f) and (6a–6c) can offer substantial computational improvement over the
big-M formulation (3a–3d).

3.2 Larger ReLU Network

Now we turn to the larger ReLU network described in Fig. 2b. The trained model
attains 98.5% test accuracy. We select a perturbation ball radius of ε = 10/256.

Table 1. Results for smaller network. Shifted geometric mean for time and optimality
gap taken over 100 instances (shift of 10 and 1, respectively). The “win” column is the
number of (solved) instances on which the method is the fastest.

Method Time (s) Optimality gap Win

big-M + (6b) 174.49 0.53% 81

big-M 1233.49 6.03% 0

big-M + no cuts 1800.00 125.6% 0

Extended 890.21 1.26% 6

Fig. 3. Number of small network instances solved within a given amount of time.
Curves to the upper left are better, with more instances solved in less time.

36 R. Anderson et al.

For these larger networks, we eschew solving the problems to optimality and
focus on the quality of the dual bound available at the root node. As Gurobi
does not reliably produce feasible primal solutions for these larger instances, we
turn off primal heuristics and compare the approaches based on the “verifica-
tion gap”, which measures how far the dual bound is from proving robustness
(i.e. an objective value of 0). To evaluate the quality of a dual bound, we mea-
sure the “improvement percentage” big M bound−other bound

big M bound
, where our baseline for

comparison, big M bound, is the bound from the big-M + no cuts method, and
other bound is the dual bound being compared.

Table 2. Results at the root node for larger network. Shifted geometric mean of bound,
time, and improvement over 100 instances (shift of 10).

Method Bound Time (s) Improvement

big-M + no cuts 302.03 3.08 –

big-M + (6b) 254.95 8.13 15.44%

big-M 246.87 612.65 18.08%

big-M + 15 s timeout 290.21 15.00 3.75%

Extended – 1800.00 –

We report aggregated results over 100 instances in Table 2. First, we are
unable to solve even the LP relaxation of the extended method on any of the
instances in the allotted 30 min, due to the quadratic growth in size. In contrast,
the LP relaxation of the big-M + no cuts method can be solved very quickly. The
big-M + (6b) method strengthens this LP bound by more than 15% on average,
and only takes roughly 2.5× as long. This is not only because the separation
runs very quickly, but also for a technical reason: when Gurobi’s cutting planes
are disabled, the callback separating over (6b) is only called a small number of
times, as determined by Gurobi’s internal cut selection procedure. Therefore,
this 15% improvement is the result of only a small number of separation rounds,
not an exhaustive iterative procedure (i.e. Gurobi terminates the cut loop well
before all violated inequalities have been separated).

We may compare these results against the big-M method, which is able
to provide a modestly better bound (roughly 18% improvement), but requires
almost two orders of magnitude more time to produce the bound. For another
comparison, big-M +15 s timeout, we set a smaller time limit of 15 s on Gurobi,
which is a tighter upper bound on the maximum time used by the big-M + (6b)
method. In this short amount of time, Gurobi is not able to improve the bound
substantially, with less than 4% improvement. This suggests that the inequali-
ties (6b) are not trivial to infer by generic cutting plane methods, and that it
takes Gurobi many rounds of cut generation to achieve the same level of bound
improvement we derive from restricting ourselves to those cuts in (6b).

Acknowledgement. The authors gratefully acknowledge Yeesian Ng and Ondřej
Sýkora for many discussions on the topic of this paper, and for their work on the
development of the tf.opt package used in the computational experiments.

MIP Formulations for Trained Neural Networks 37

A Deferred Proofs

A.1 Proof of Proposition 1

Proof. The result follows from applying Fourier–Motzkin elimination to
(5a–5f) to project out the x0, x1, y0, and y1 variables; see [31, Chap. 13] for
an explanation of the approach. We start by eliminating the x1, y0, and y1 using
the equations in (5a), (5b), and (5c), respectively, leaving only x0.

First, if there is some input component i with wi = 0, then x0
i only appears

in the constraints (5d–5e), and so the elimination step produces Li � xi � Ui.
Second, if there is some i with wi < 0, then we introduce an auxiliary variable

x̃i with the equation x̃i = −xi. We then replace wi ← |wi|, Li ← −Ui, and
Ui ← −Li, and proceed as follows under the assumption that w > 0.

Applying the Fourier-Motzkin procedure to eliminate x0
1 gives the inequalities

y � w · x + b

y � w1x1 − w1L1(1 − z) +
∑
i>1

wix
0
i + bz

y � w1U1z +
∑
i>1

wix
0
i + bz

y � w1x1 − w1U1(1 − z) +
∑
i>1

wix
0
i + bz

y � w1L1z +
∑
i>1

wix
0
i + bz

L1 � x1 � U1,

along with the existing inequalities in (5a–5f) where the x0
1 coefficient is zero.

Repeating this procedure for each remaining component of x0 yields the linear
system

y � w · x + b (7a)

y �
∑
i∈I

wixi −
∑
i∈I

wiLi(1 − z) +

⎛
⎝b +

∑
i�∈I

wiUi

⎞
⎠ z ∀I ⊆ supp(w) (7b)

y �
∑
i∈I

wixi −
∑
i∈I

wiUi(1 − z) +

⎛
⎝b +

∑
i�∈I

wiLi

⎞
⎠ z ∀I ⊆ supp(w) (7c)

(x, y, z) ∈ [L,U] × R�0 × [0, 1]. (7d)

Moreover, we can show that the family of inequalities (7c) is redundant, and
can therefore be removed. Fix some I ⊆ supp(w), and take h(I) def=

∑
i∈I wiL̆i +∑

i�∈I wiŬi + b. If h(�η� \ I) � 0, we can express the inequality in (7c) corre-

38 R. Anderson et al.

sponding to the set I as a conic combination of the remaining constraints as:

y � w · x + b × 1
0 � Li − xi × wi ∀i /∈ I

0 � z − 1 × h(�η� \ I)

Alternatively, if h(�η� \ I) < 0, we can express the inequality in (7c) corre-
sponding to the set I as a conic combination of the remaining constraints as:

y � 0 × 1
0 � xi − Ui × wi ∀i ∈ I

0 � −z × − h(�η� \ I)

To complete the proof, for any components i where we introduced an auxiliary
variable x̃i, we use the corresponding equation x̃i = −xi to eliminate xi and
replace it x̃i, giving the result.
�

A.2 Proof of Proposition 2

Proof. We fix I = {κ + 1, . . . , η} for some κ; this is without loss of generality by
permuting the rows of the matrices presented below. Additionally, we presume
that w � 0, which allows us to infer that L̆ = L and Ŭ = U . This is also without
loss of generality by appropriately interchanging + and − in the definition of
the p̃k below. In the following, references to (6b) are taken to be references to
the inequality in (6b) corresponding to the subset I.

Take the two points p0 = (x, y, z) = (L, 0, 0) and p1 = (U, f(U), 1). Each
point is feasible with respect to (6a–6c) and satisfies (6b) at equality. Then for
some ε > 0 and for each i ∈ �η�\I, take p̃i = (x, y, z) = (L + εei, 0, 0). Similarly,
for each i ∈ I, take p̃i = (x, y, z) = (U − εei, f(U − εei), 1). From the strict
activity assumption, there exists some ε > 0 sufficiently small such that each p̃k

is feasible with respect to (6a–6c) and satisfies (6b) at equality.
This leaves us with η+2 feasible points satisfying (6b) at equality; the result

then follows by showing that the points are affinely independent. Take the matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 − p0

p̃1 − p0

...
p̃κ − p0

p̃κ+1 − p0

...
p̃η − p0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U − L f(U) 1
εe1 0 0
...

...
...

εeκ 0 0
U − L − εeκ+1 f(U − εeκ+1) 1

...
...

...
U − L − εeη f(U − εeη) 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U − L f(U) 1
εe1 0 0
...

...
...

εeκ 0 0
−εeκ+1 −wκ+1ε 0

...
...

...
−εeη −wηε 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the third matrix is constructed by subtracting the first row to each of
row κ + 2 to η + 1 (i.e. those corresponding to p̃i − p0 for i > κ), and is taken
to mean congruency with respect to elementary row operations. If we permute

MIP Formulations for Trained Neural Networks 39

the last column (corresponding to the z variable) to the first column, we observe
that the resulting matrix is upper triangular with a nonzero diagonal, and so has
full row rank. Therefore, the starting matrix also has full row rank, as we only
applied elementary row operations, and therefore the η + 2 points are affinely
independent, giving the result.
�

References

1. Amos, B., Xu, L., Kolter, J.Z.: Input convex neural networks. In: Precup, D.,
Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 70, pp. 146–155. PMLR,
International Convention Centre, Sydney, Australia, 06–11 August 2017

2. Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.P.: Strong convex relax-
ations and mixed-integer programming formulations for trained neural networks
(2018). https://arxiv.org/abs/1811.01988

3. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforce-
ment learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)

4. Atamtürk, A., Gómez, A.: Strong formulations for quadratic optimization with
M-matrices and indicator variables. Math. Program. 170, 141–176 (2018)

5. Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete opti-
mization problems. SIAM J. Algorithmic Discret. Methods 6(3), 466–486 (1985)

6. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points.
Discret. Appl. Math. 89, 3–44 (1998)

7. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model
complex real-world problems. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 115–
129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7 11

8. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Optimization and controlled
systems: a case study on thermal aware workload dispatching. In: Proceedings of
the Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 427–433 (2012)

9. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Crimin-
isi, A.: Measuring neural net robustness with constraints. In: Advances in Neural
Information Processing Systems, pp. 2613–2621 (2016)

10. Belotti, P., et al.: On handling indicator constraints in mixed integer programming.
Comput. Optim. Appl. 65(3), 545–566 (2016)

11. Bertsimas, D., Kallus, N.: From predictive to prescriptive analytics. Management
Science (2018). https://arxiv.org/abs/1402.5481

12. Biggs, M., Hariss, R.: Optimizing objective functions determined from random
forests (2017). https://papers.ssrn.com/sol3/papers.cfm?abstract id=2986630

13. Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming
with indicator constraints. Math. Program. 151(1), 191–223 (2015)

14. Bunel, R., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: A unified view of
piecewise linear neural network verification. In: Advances in Neural Information
Processing Systems (2018)

15. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)

16. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 18

https://arxiv.org/abs/1811.01988
https://doi.org/10.1007/978-3-642-23786-7_11
https://arxiv.org/abs/1402.5481
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2986630
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18

40 R. Anderson et al.

17. Deng, Y., Liu, J., Sen, S.: Coalescing data and decision sciences for analytics.
In: Recent Advances in Optimization and Modeling of Contemporary Problems.
INFORMS (2018)

18. Donti, P., Amos, B., Kolter, J.Z.: Task-based end-to-end model learning in stochas-
tic optimization. In: Guyon, I., et al. (eds.) Advances in Neural Information Pro-
cessing Systems, vol. 30, pp. 5484–5494. Curran Associates, Inc. (2017)

19. Dulac-Arnold, G., et al.: Deep reinforcement learning in large discrete action spaces
(2015). https://arxiv.org/abs/1512.07679

20. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5 9

21. Dvijotham, K., et al.:: Training verified learners with learned verifiers (2018).
https://arxiv.org/abs/1805.10265

22. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A dual approach
to scalable verification of deep networks. In: Thirty-Fourth Conference Annual
Conference on Uncertainty in Artificial Intelligence (2018)

23. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

24. Elmachtoub, A.N., Grigas, P.: Smart ”Predict, then Optimize” (2017). https://
arxiv.org/abs/1710.08005

25. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23, 296–309 (2018)

26. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style (2015).
https://arxiv.org/abs/1508.06576

27. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, vol. 1. MIT Press, Cam-
bridge (2016)

28. den Hertog, D., Postek, K.: Bridging the gap between predictive and pre-
scriptive analytics - new optimization methodology needed (2016). http://www.
optimization-online.org/DB HTML/2016/12/5779.html

29. Hijazi, H., Bonami, P., Cornuéjols, G., Ouorou, A.: Mixed-integer nonlinear pro-
grams featuring “on/off” constraints. Comput. Optim. Appl. 52(2), 537–558 (2012)

30. Hijazi, H., Bonami, P., Ouorou, A.: A note on linear on/off constraints (2014).
http://www.optimization-online.org/DB FILE/2014/04/4309.pdf

31. Hooker, J.: Logic-Based Methods for Optimization: Combining Optimization and
Constraint Satisfaction. Wiley, Hoboken (2011)

32. Huchette, J.: Advanced mixed-integer programming formulations: methodology,
computation, and application. Ph.D. thesis, Massachusetts Institute of Technology
(June 2018)

33. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

34. Khalil, E.B., Gupta, A., Dilkina, B.: Combinatorial attacks on binarized neural
networks. In: International Conference on Learning Representations (2019)

35. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

https://arxiv.org/abs/1512.07679
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://arxiv.org/abs/1805.10265
https://doi.org/10.1007/978-3-319-68167-2_19
https://arxiv.org/abs/1710.08005
https://arxiv.org/abs/1710.08005
https://arxiv.org/abs/1508.06576
http://www.optimization-online.org/DB_HTML/2016/12/5779.html
http://www.optimization-online.org/DB_HTML/2016/12/5779.html
http://www.optimization-online.org/DB_FILE/2014/04/4309.pdf
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

MIP Formulations for Trained Neural Networks 41

36. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998)

37. Lombardi, M., Gualandi, S.: A lagrangian propagator for artificial neural networks
in constraint programming. Constraints 21(4), 435–462 (2016)

38. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks (2017). https://arxiv.org/abs/1706.07351

39. Mǐsić, V.V.: Optimization of tree ensembles (2017). https://arxiv.org/abs/1705.
10883

40. Mladenov, M., Boutilier, C., Schuurmans, D., Elidan, G., Meshi, O., Lu, T.:
Approximate linear programming for logistic Markov decision processes. In: Pro-
ceedings of the Twenty-sixth International Joint Conference on Artificial Intelli-
gence (IJCAI 2017), pp. 2486–2493, Melbourne, Australia (2017)

41. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: going deeper into neural net-
works (2015). https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-
neural.html

42. Olah, C., Mordvintsev, A., Schubert, L.: Feature Visualization. Distill (2017).
https://distill.pub/2017/feature-visualization

43. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: IEEE European Symposium
on Security and Privacy, pp. 372–387, March 2016

44. Say, B., Wu, G., Zhou, Y.Q., Sanner, S.: Nonlinear hybrid planning with deep net
learned transition models and mixed-integer linear programming. In: Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, pp. 750–756 (2017)

45. Schweidtmann, A.M., Mitsos, A.: Global deterministic optimization with artificial
neural networks embedded. J. Optim. Theory Appl. 180(3), 925–948 (2019)

46. Serra, T., Ramalingam, S.: Empirical bounds on linear regions of deep rectifier
networks (2018). https://arxiv.org/abs/1810.03370

47. Serra, T., Tjandraatmadja, C., Ramalingam, S.: Bounding and counting linear
regions of deep neural networks. In: Thirty-Fifth International Conference on
Machine Learning (2018)

48. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Con-
ference on Learning Representations (2014)

49. Tjeng, V., Xiao, K., Tedrake, R.: Verifying neural networks with mixed integer
programming. In: International Conference on Learning Representations (2019)

50. Vielma, J.P.: Mixed integer linear programming formulation techniques. SIAM
Rev. 57(1), 3–57 (2015)

51. Vielma, J.P.: Small and strong formulations for unions of convex sets from the
Cayley embedding. Math. Program. (2018)

52. Vielma, J.P., Nemhauser, G.: Modeling disjunctive constraints with a logarith-
mic number of binary variables and constraints. Math. Program. 128(1–2), 49–72
(2011)

53. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the con-
vex outer adversarial polytope. In: International Conference on Machine Learning
(2018)

54. Wong, E., Schmidt, F., Metzen, J.H., Kolter, J.Z.: Scaling provable adversarial
defenses. In: 32nd Conference on Neural Information Processing Systems (2018)

https://arxiv.org/abs/1706.07351
https://arxiv.org/abs/1705.10883
https://arxiv.org/abs/1705.10883
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://distill.pub/2017/feature-visualization
https://arxiv.org/abs/1810.03370

42 R. Anderson et al.

55. Wu, G., Say, B., Sanner, S.: Scalable planning with Tensorflow for hybrid nonlinear
domains. In: Advances in Neural Information Processing Systems, pp. 6276–6286
(2017)

56. Xiao, K.Y., Tjeng, V., Shafiullah, N.M., Madry, A.: Training for faster adversarial
robustness verification via inducing ReLU stability. In: International Conference
on Learning Representations (2019)

	Strong Mixed-Integer Programming Formulations for Trained Neural Networks
	1 Introduction
	1.1 MIP Formulation Preliminaries
	1.2 Relevant Prior Work
	1.3 Starting Assumptions and Notation

	2 The ReLU Neuron
	2.1 A Big-M Formulation
	2.2 An Ideal Extended Formulation
	2.3 An Ideal Non-extended Formulation

	3 Computational Experiments
	3.1 Small ReLU Network
	3.2 Larger ReLU Network

	A Deferred Proofs
	A.1 Proof of Proposition1
	A.2 Proof of Proposition2

	References

