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Abstract. In a seminal work, Micciancio & Voulgaris (2010) described
a deterministic single-exponential time algorithm for the Closest Vector
Problem (CVP) on lattices. It is based on the computation of the Voronoi
cell of the given lattice and thus may need exponential space as well. We
address the major open question whether there exists such an algorithm
that requires only polynomial space.

To this end, we define a lattice basis to be c-compact if every facet
normal of the Voronoi cell is a linear combination of the basis vectors
using coefficients that are bounded by c in absolute value. Given such
a basis, we get a polynomial space algorithm for CVP whose running
time naturally depends on c. Thus, our main focus is the behavior of
the smallest possible value of c, with the following results: There always
exist c-compact bases, where c is bounded by n2 for an n-dimensional
lattice; there are lattices not admitting a c-compact basis with c grow-
ing sublinearly with the dimension; and every lattice with a zonotopal
Voronoi cell has a 1-compact basis.
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1 Introduction

An n-dimensional lattice is the integral linear span of n linearly independent
vectors, Λ = {Bz : z ∈ Z

n}, B ∈ R
d×n. If not stated otherwise, we always

assume d = n, that is, the lattice has full rank.
Two widely investigated and important problems in the Algorithmic Geome-

try of Numbers, Cryptography, and Integer Programming are the Shortest Vector
Problem and the Closest Vector Problem. Given a lattice Λ, the Shortest Vec-
tor Problem (SVP) asks for a shortest non-zero vector in Λ. For a target vector
t ∈ R

n, the Closest Vector Problem (CVP) asks for a lattice vector z� minimizing
the Euclidean length ‖t−z‖ among all z ∈ Λ. We will only recall some milestones
of the algorithmic development, for a more detailed overview we refer to the work
of Hanrot, Pujol & Stehlé [15], as well as to the more recent Gaussian Sampling
Algorithms, the most recent one by Aggarwal & Stephens-Davidowitz [1].

In the 1980’s, Kannan presented two algorithms solving SVP and CVP in bit-
complexity nO(n) and polynomial space [17]. Although the constants involved in
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the running time had been improved, it took roughly fifteen years until a signif-
icantly better algorithm was discovered. In 2001, Ajtai, Kumar & Sivakumar [2]
gave a randomized algorithm for the Shortest Vector Problem, only taking 2O(n)

time. However, in addition to the randomness, they also had to accept exponen-
tial space dependency for their improved running time. Though their algorithm
is not applicable to the Closest Vector Problem in its full generality, they show in
a follow-up work that for any fixed ε, it can be used to approximate CVP up to
a factor of (1 + ε) with running time depending on 1/ε [3]. These authors more-
over posed the question whether randomness or exponential space is necessary
for a running time better than nO(n). It took again around a decade until this
question was partially answered by Micciancio & Voulgaris [23], who obtained
a deterministic 2O(n) algorithm for both problems. Their algorithm is based on
computing the Voronoi cell VΛ of the lattice, the region of all points at least
as close to the origin as to any other lattice point. But as the Voronoi cell is a
polytope with up to 2(2n − 1) facets, the Micciancio-Voulgaris algorithm needs
exponential space for storing the Voronoi cell in the worst (and generic) case.
Since storing the Voronoi cell in a different, “more compact,” way than by facet-
description would lead to a decreased space requirement, they raise the question
whether such a representation exists in general.

Our main objective is to propose such a compact representation of the
Voronoi cell and to investigate its merits towards a single-exponential time and
polynomial space algorithm for the CVP. As being closer to the origin than to
a certain lattice vector v expresses in the inequality 2xᵀv ≤ ‖v‖2, the facets
of VΛ can be stored as a set FΛ ⊆ Λ of lattice vectors, which are called the
Voronoi relevant vectors, or facet vectors. We say that a basis B of a lattice Λ
is c-compact, if each Voronoi relevant vector of Λ can be represented in B with
coefficients bounded by c in absolute value. Hence, by iterating over (2c + 1)n

vectors, we include the set FΛ. With c(Λ), we denote the smallest c such that
there exists a c-compact basis of Λ. As a consequence of the ideas in [23] and this
notion of compactness we get (Corollary 2): Given a c-compact basis of a lattice
Λ ⊆ R

n, we can solve the Closest Vector Problem in time (2c + 1)O(n) poly(n)
and polynomial space.

Thus, the crucial question is: How small can we expect c(Λ) to be for an
arbitrary lattice? If c(Λ) is constant, then the above yields asymptotically the
same running time as the initial Micciancio-Voulgaris algorithm, but uses only
polynomial space. Of course, this only holds under the assumption that we know
a c-compact basis of Λ. This observation has consequences for the variant of CVP
with preprocessing, which we discuss in Sect. 4.

As an example of a large family of lattices, we prove in Sect. 2.3, that zono-
topal lattices are as compact as possible: If the Voronoi cell of Λ is a zonotope,
then c(Λ) = 1, and a 1-compact basis can even be found among the Voronoi rel-
evant vectors. Moreover, every lattice of rank at most four has a 1-compact basis
(see Corollary 1). However, starting with dimension five there are examples of lat-
tices with c(Λ) > 1, and thus we want to understand how large this compactness
constant can be in the worst case. Motivated by applications in crystallography,
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the desire for good upper bounds on c(Λ) was already formulated in [10,11], and
results of Seysen [26] imply that c(Λ) ∈ nO(log n). We improve this to c(Λ) ≤ n2

and, on the negative side, we identify a family of lattices without a o(n)-compact
basis (Sects. 2.1 and 2.2).

In Sect. 3, we relax the notion of a c-compact basis as follows. Denote by c̄(Λ)
the smallest constant c̄ such that there is any square matrix W with FΛ ⊆ {Wz :
z ∈ Z

n, ‖z‖∞ ≤ c̄}. Hence, in general, the matrix W generates a superlattice of
Λ. This relaxation is motivated by the fact that, given a basis, membership to
a lattice can be checked in polynomial time. Thus if c̄(Λ) is much smaller than
c(Λ), this additional check is faster than iterating over a larger set. Regarding
the relaxed compactness constant we prove that for every lattice Λ, we have
c̄(Λ) ∈ O(n log n), and that there are lattices Λ ⊆ R

n with c(Λ) / c̄(Λ) ∈ Ω(n).
In summary, our contribution can be described as follows: If we are given

a c(Λ)-compact basis of a lattice, then we can modify the algorithm of Mic-
ciancio & Voulgaris to obtain a polynomial space algorithm for CVP. In whole
generality, the time complexity of this algorithm cannot be better than nO(n),
as in Kannan’s work. However, we provide evidence that there are large and
interesting classes of lattices, for which this improves to single-exponential time.
We think that it is worth to study the proposed compactness concept further.
In particular, it would be interesting to understand the size of the compactness
constant for a generic lattice, and to conceive an efficient algorithm to find a
c-compact basis.

An extended version of this work is available on the arXiv preprint server [16].

2 The Notion of a c-compact Basis

Given a lattice Λ ⊆ R
n, its Voronoi cell is defined by

VΛ = {x ∈ R
n : ‖x‖ ≤ ‖x − z‖ for all z ∈ Λ} ,

where ‖ · ‖ denotes the Euclidean norm. It consists of all points that are at
least as close to the origin than to any other lattice point of Λ. The Voronoi
cell turns out to be a centrally symmetric polytope having outer description
VΛ =

{
x ∈ R

n : 2xᵀz ≤ ‖z‖2 for all z ∈ Λ
}
. A vector v ∈ Λ is called weakly

Voronoi relevant if the corresponding inequality 2xᵀv ≤ ‖v‖2 defines a support-
ing hyperplane of VΛ, and it is called (strictly) Voronoi relevant if it is moreover
facet-defining. Let FΛ and CΛ be the set of strictly and weakly Voronoi relevant
vectors of Λ, respectively. The central definition of this work is the following.

Definition 1. A basis B of a lattice Λ is called c-compact, if

FΛ ⊆ {Bz : z ∈ Z
n, ‖z‖∞ ≤ c} .

Moreover, the compactness constant of Λ is defined as

c(Λ) = min{c ≥ 0 : Λ possesses a c-compact basis}.
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As discussed in the introduction, the notion of a c-compact basis provides a
compact representation of the Voronoi cell VΛ, the complexity of which depends
on the value of the constant c. Before we set out to study the compactness
constant in detail, we offer various equivalent definitions that serve as auxiliary
tools and that also provide a better understanding of the underlying concept.

To this end, let Λ� = {y ∈ R
n : yᵀz ∈ Z for all z ∈ Λ} be the dual lattice of Λ,

and let K� = {x ∈ R
n : xᵀy ≤ 1 for all y ∈ K} be the polar body of a compact

convex set K ⊆ R
n containing the origin in its interior. The basic properties we

need are the following: If B is a basis of Λ, then B−ᵀ is a basis of Λ�, usually
called the dual basis of B. For a matrix A ∈ GLn(R) and a compact convex
set K as above, we have (AK)� = A−ᵀK�. We refer to Gruber’s textbook [14]
for details and more information on these concepts.

Lemma 1. Let B = {b1, . . . , bn} be a basis of a lattice Λ ⊆ R
n. The following

are equivalent:

(i) B is c-compact,
(ii) c · conv(FΛ)� contains the dual basis B−ᵀ of Λ�,
(iii) writing B−ᵀ = {b�

1, . . . , b
�
n}, we have FΛ ⊆ {x ∈ Λ : |xᵀb�

i | ≤ c,∀1 ≤ i ≤ n},
(iv) FΛ ⊆ c PB, where PB =

∑n
i=1[−bi, bi].

Proof. (i) ⇐⇒ (ii): By definition, B is c-compact if and only if FΛ ⊆ {Bz : z ∈
Z

n, ‖z‖∞ ≤ c}. This means that Q = conv(FΛ) ⊆ B[−c, c]n. Taking polars, we
see that this is equivalent to B−ᵀ 1

cC�
n ⊆ Q�, where C�

n = conv{±e1, . . . ,±en} is
the standard crosspolytope. Since the columns of B−ᵀ constitute a basis of the
dual lattice Λ�, the proof is finished.

(i) ⇐⇒ (iii): B = {b1, . . . , bn} is c-compact if and only if the representation
v =

∑n
i=1 αibi of any Voronoi relevant vector v ∈ FΛ satisfies |αi| ≤ c, for all

1 ≤ i ≤ n. By the definition of the dual basis, we have αi = vᵀb�
i , which proves

the claim.
(i) ⇐⇒ (iv): By definition, FΛ ⊆ c PB if and only if for every v ∈ FΛ, there

are coefficients α1, . . . , αn ∈ R such that v =
∑n

i=1 αibi and |αi| ≤ c. These
coefficients are unique, and since B is a basis of Λ, they are integral, that is
αi ∈ Z. Thus, the inclusion we started with is equivalent to saying that B is
c-compact. 
�

Part (iv) of the above lemma shows that the compactness constant c(Λ) is
the minimum c such that FΛ ⊆ c PB , for some basis B of Λ. In this defini-
tion, the concept has been introduced already by Engel, Michel & Senechal [11]
together with the variant χ(Λ), where one replaces FΛ by the larger set CΛ of
weakly Voronoi relevant vectors. Motivated by applications in crystallography,
a reoccurring question posed in [10,11] is to give good upper bounds on these
lattice invariants c(Λ) and χ(Λ).

Results of Seysen [26] on simultaneous lattice reduction of the primal and
dual lattice imply that c(Λ) ≤ χ(Λ) ∈ nO(log n). This is however the only bound
that we are aware of.
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2.1 A Polynomial Upper Bound

In the sequel, we occassionally need Minkowski’s successive minima of a convex
body K and a lattice Λ in R

n. For 1 ≤ i ≤ n, the ith successive minimum is
defined as

λi(K,Λ) = min {λ ≥ 0 : λK contains i linearly independent points of Λ} .

Minkowski’s development of his Geometry of Numbers was centered around the
study of these important lattice parameters (we refer to Gruber’s handbook [14]
for background). With this notion, Lemma 1(ii) provides a lower bound on the
compactness constant of a given lattice. Indeed, we have c(Λ) ≥ λn(Q�, Λ�),
where Q = conv(FΛ).

Our first result aims for an explicit upper bound on c(Λ) only depending on
the dimension of the lattice. To this end, we first need an auxiliary result.

Lemma 2. Let Λ be a lattice with Voronoi cell VΛ. Then, λ1(V�
Λ, Λ�) ≤ 2n

π , that
is, there is a dual lattice vector y� ∈ Λ� such that VΛ ⊆ {

x ∈ R
n : |xᵀy�| ≤ 2n

π

}
.

Proof. Since λi(VΛ, Λ) = 2, for all 1 ≤ i ≤ n, this follows from the transference
bound λ1(VΛ, Λ)λ1(V�

Λ, Λ�) ≤ 4n
π (cf. [18, Lem. (1.2)], [19, Cor. 1.6]). 
�

Theorem 1. For every lattice Λ ⊆ R
n, there exists an n2-compact basis.

Proof. We prove by induction on the dimension that there exists a basis D =
{y1, . . . , yn} of Λ� such that VΛ ⊆ {

x ∈ R
n : |xᵀyi| ≤ 1

2n2, 1 ≤ i ≤ n
}
.

Since every Voronoi relevant vector lies in the boundary of 2VΛ, its inner
product with each yi is then bounded by n2. Hence, the basis of Λ that is dual
to D is an n2-compact basis by Lemma 1(iii).

If n = 1, the claimed containment is trivially true, hence let n ≥ 2. Let y1
be a shortest vector of Λ� with respect to the norm ‖ · ‖V�

Λ
. By Lemma 2, we

have VΛ ⊆ {
x ∈ R

n : |xᵀy1| ≤ 2n
π

}
. Let Λ′ = Λ ∩ {x ∈ R

n : xᵀy1 = 0}, and
observe that the orthogonal projection π : R

n → {x ∈ R
n : xᵀy1 = 0} fulfills

π(Λ�) = (Λ′)�, where we dualize with respect to the linear span of Λ′ (cf. [20,
Ch. 1]). By induction hypothesis, there is a basis D′ = {y′

2, . . . , y
′
n} of (Λ′)�, such

that VΛ′ ⊆ {
x ∈ R

n : xᵀy1 = 0 and |xᵀy′
i| ≤ 1

2 (n − 1)2, 2 ≤ i ≤ n
}
. As Λ′ ⊆ Λ,

we have VΛ ⊆ VΛ′ + lin{y1}. Moreover, as (Λ′)� is the projection of Λ� along y1,
there exist αi ∈ [−1/2, 1/2) such that yi = y′

i + αiy1 ∈ Λ� for 2 ≤ i ≤ n, and
D = {y1, . . . , yn} is a basis of Λ�. Hence,

VΛ ⊆ {
x ∈ R

n : |xᵀy1| ≤ 2n
π , |xᵀy′

i| ≤ 1
2 (n − 1)2, 2 ≤ i ≤ n

}

⊆ {
x ∈ R

n : |xᵀy1| ≤ 2n
π , |xᵀyi| ≤ 1

2 (n − 1)2 + n
π , 2 ≤ i ≤ n

}

⊆ {
x ∈ R

n : |xᵀyi| ≤ 1
2n2, 1 ≤ i ≤ n

}
,

finishing the proof. 
�
Remark 1. As also the weakly Voronoi relevant vectors CΛ lie in the boundary of
2VΛ, the basis from the previous proof also shows χ(Λ) ≤ n2, for every lattice Λ.
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2.2 Lattices Without Sublinearly-Compact Bases

In this part, we identify an explicit family of lattices whose compactness constant
grows at least linearly with the dimension. While the pure existence of such a
family also follows from Proposition 4(iii) below, the class of lattices discussed
in this section also allows to discriminate between the compactness constant and
a relaxed variant, which will be introduced in the next section.

For any a ∈ N and n ∈ N, we define the lattice

Λn(a) = {z ∈ Z
n : z1 ≡ · · · ≡ zn mod a} . (1)

As the characterization of the facet vectors, as well as the proof of the fol-
lowing theorem is rather technical, we refer to Appendix for the details.

Theorem 2. Let n ∈ N≥4, a = �n/2�. Then, the lattice Λn = Λn(a) has com-
pactness constant c(Λn) ≥ ⌈

n
4

⌉
.

2.3 Compact Bases and Zonotopal Lattices

For the sake of brevity, we call a 1-compact basis of a lattice just a compact basis.
A class of lattices that allow for a compact representation of their Voronoi cells
are the lattices of Voronoi’s first kind. They correspond to those lattices Λ that
comprise the first reduction domain in Voronoi’s reduction theory (see [28,29]).
These lattices have been characterized in [7] by possessing an obtuse superbasis,
which is a set of vectors {b0, . . . , bn} ⊆ Λ that generates Λ, and that fulfills the
superbasis condition b0 + . . . + bn = 0 and the obtuseness condition bᵀ

i bj ≤ 0,
for all i �= j. Given an obtuse superbasis, for each Voronoi relevant vector v ∈ Λ
there is a strict non-empty subset S ⊆ {0, 1, . . . , n} such that v =

∑
i∈S bi.

Proposition 1. (i) Every lattice of Voronoi’s first kind has a compact basis.
(ii) Every lattice of rank at most three has a compact basis.
(iii) For n ≥ 4, the checkerboard lattice Dn = {x ∈ Z

n : 1ᵀx ∈ 2Z} is not of
Voronoi’s first kind, but has a compact basis.

(iv) There exists a lattice Λ ⊆ R
5 with c(Λ) ≥ 2.

Proof. (i): Every obtuse superbasis contains in fact a compact basis. Indeed,
using the representation of a Voronoi relevant vector above and writing b0 =
−∑n

i=1 bi, we get v =
∑

i∈S bi = −∑
i/∈S bi. One of the terms does not use b0.

(ii): Every lattice of dimension at most three is of Voronoi’s first kind (cf. [7]).
(iii): Bost and Künnemann [6, Prop. B.2.6] showed that for n ≥ 4, the lattice

Dn is not of Voronoi’s first kind. The set B = {b1, . . . , bn} with b1 = e1+en,
and bi = ei − ei−1 for 2 ≤ i ≤ n, is a basis of Dn. The vectors 2ei ± 2ej are
contained in 2Dn, for all i, j. Hence, if ±v are the unique shortest vectors
in v + 2Λ, they are of the form {±(ei ± ej) : 1 ≤ i < j ≤ n}. A routine
calculation shows that all these vectors are a {−1, 0, 1}-combination of the
basis B.

(iv): This follows immediately from Theorem 2 with the lattice Λ5(3). 
�
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We now explore to which extent these initial observations on lattices with
compact bases can be generalized.

A zonotope Z in R
n is a Minkowski sum of finitely many line segments, that

is, Z =
∑r

i=1[ai, bi], for some ai, bi ∈ R
n. The vectors b1 − a1, . . . , br − ar are

usually called the generators of Z. We call a lattice zonotopal if its Voronoi
cell is a zonotope. A generic zonotopal lattice has typically high combinatorial
complexity. An explicit example is the root lattice A�

n; its zonotopal Voronoi cell
is generated by

(
n+1
2

)
vectors and it has exactly the maximum possible 2(2n −1)

facets (cf. [8, Ch. 4 & Ch. 21]).
It turns out that every lattice of Voronoi’s first kind is zonotopal, but starting

from dimension four, the class of zonotopal lattices is much richer (cf. Vallentin’s
thesis [28, Ch. 2] and [13]). In the following, we prove that every zonotopal lattice
possesses a compact basis, thus extending Proposition 1(i) significantly.

Theorem 3. Every zonotopal lattice has a compact basis. It can be found among
its Voronoi relevant vectors.

Proof. Let Λ be a zonotopal lattice in R
n, and let Z = VΛ be its Voronoi cell.

The general idea of our proof is the following: Using Erdahl’s [12] structural
results on zonotopes that tile space by translation, we can find a dicing which
induces the same tiling of R

n as the Delaunay tiling of Λ. By the duality of
the Delaunay and the Voronoi tiling this provides us with additional structure
that is used to identify a compact basis among the Voronoi relevant vectors. For
details we refer to the Appendix. 
�

Our next result is in a similar spirit. It shows that if we are able to add a
zonotope to a Voronoi cell and obtain a Voronoi cell again, then the compactness
constant can only decrease. For its statement, we write Z(U) =

∑r
i=1[−ui, ui]

for the possibly lower-dimensional zonotope spanned by the set of vectors
U = {u1, . . . , ur}. Recall, that χ(Λ) denotes the compactness constant for rep-
resenting the set of weakly Voronoi relevant vectors of Λ.

Proposition 2. Let Λ ⊆ R
n be a lattice such that its Voronoi cell admits a

decomposition VΛ = VΓ + Z(U), for some full-dimensional lattice Γ and vectors
U ⊆ R

n. Then, we have χ(Λ) ≤ χ(Γ ).

Proof. It suffices to prove the claim for the case r = 1. Indeed, if Z(U) is
generated by more than one generator, we just repeat the process successively.
Hence, in the following we assume that VΛ = VΓ + [−u, u], for some non-zero
vector u ∈ R

n. Dutour Sikirić et al. [9, Lem. 1 & Lem. 3] give a characterization of
the weakly Voronoi relevant vectors of Λ in terms of those of Γ : First of all, there
is a dual lattice vector eu ∈ Γ � such that Λ = AuΓ , where Aux = x + 2(eᵀ

ux)u,
for x ∈ R

n. Then, z = Auw ∈ Λ is weakly Voronoi relevant if and only if w is
weakly Voronoi relevant for Γ , and eᵀ

uw ∈ {0,±1}.
Now, let B = {b1, . . . , bn} be a basis of Γ such that for every weakly Voronoi

relevant vector w ∈ CΓ , we have w =
∑n

i=1 γibi, for some coefficients |γi| ≤ χ(Γ ).
Thus, if z = Auw is weakly Voronoi relevant for Λ, then z =

∑n
i=1 γi(Aubi), and

AuB is a basis of Λ. As a consequence, χ(Λ) ≤ χ(Γ ). 
�
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As a corollary we settle the question on the largest possible compactness
constant of a four-dimensional lattice. For the proof we refer to Appendix.

Corollary 1. Every lattice of rank at most four has a compact basis.

3 Relaxing the Basis Condition

The compact representation problem for the set of Voronoi relevant vectors does
not need B to be a basis of the lattice Λ. In fact, it suffices that we find linearly
independent vectors W = {w1, . . . , wn} that allow to decompose each Voronoi
relevant vector as an integer linear combination with small coefficients, as the
membership to a lattice can easily be decided by solving a system of linear
equations. If the constant reduces drastically by this relaxation, the additional
check is still faster.

Definition 2. Let Λ ⊆ R
n be a lattice. A set of linearly independent vectors

W = {w1, . . . , wn} ⊆ R
n is called c-compact for Λ, if

FΛ ⊆ {w1z1 + . . . + wnzn : z ∈ Z
n, ‖z‖∞ ≤ c} .

We define the relaxed compactness constant of Λ as

c̄(Λ) = min{c ≥ 0 : there is a c-compact set W for Λ}.

If every Voronoi relevant vector is an integral combination of W , then so is
every lattice vector. That is, a c-compact set W for Λ gives rise to a superlattice
Γ = WZ

n ⊇ Λ. The compactness constants c̄(Λ) and c(Λ) are related as follows.

Proposition 3. For every lattice Λ in R
n and Q = conv(FΛ), we have

c̄(Λ) = λn(Q�, Λ�) and c̄(Λ) ≤ c(Λ) ≤ n c̄(Λ).

Proof. The identity c̄(Λ) = λn(Q�, Λ�) follows by arguments analogous to those
establishing the equivalence of (i) and (ii) in Lemma 1. The inequality c̄(Λ) ≤
c(Λ) is a direct consequence of the definition of these parameters.

By definition of the n-th successive minimum, there are linearly independent
vectors v1, . . . , vn ∈ (λn(Q�, Λ�) · Q�) ∩ Λ�. By induction on the dimension one
can show that the parallelepiped P =

∑n
i=1[0, vi] contains a basis of Λ�. Since P

is contained in nλn(Q�, Λ�) · Q�, the inequality c(Λ) ≤ n c̄(Λ) follows. 
�
While the relaxation to representing FΛ by a set W rather than by lattice

bases may reduce the respective compactness constant by O(n), there is still
a class of lattices that show that in the worst case the relaxed compactness
constant can be linear in the dimension as well. In combination with Theorem 2,
the second part of the following result moreover shows that the factor n in
Proposition 3 is tight up to a constant.
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Proposition 4. (i) For every lattice Λ ⊆ R
n, we have c̄(Λ) ∈ O(n log n).

(ii) For a = �n
2 �, let Λn = Λn(a) be the lattice defined in (1). For every n ∈ N,

we have c̄(Λn) ≤ 3, whereas c(Λn) ≥ �n
4 �, for n ≥ 4.

(iii) There are self-dual lattices Λ ⊆ R
n with relaxed compactness constant

c̄(Λ) ∈ Ω(n).

Proof. (i) The polytope Q = conv(FΛ) is centrally symmetric, all its vertices
are points of Λ, and int(Q) ∩ Λ = {0}. Therefore, we have λ1(Q,Λ) = 1.
Proposition 3 and the transference theorem of Banaszczyk [4] thus imply
that there is an absolute constant γ > 0 such that

c̄(Λ) = λn(Q�, Λ�) = λ1(Q,Λ) · λn(Q�, Λ�) ≤ γ n log n. (2)

(ii) In view of Proposition 3, we have to find n linearly independent points of
Λ�

n in 3Q�. To this end, we define yi := 1
a (ei − en), for 1 ≤ i ≤ n − 1.

Furthermore, let yn = 1
a1, if n is even, and yn =

({ 1
a}n−1, 2

a

)
, if n is odd.

We claim that the vectors y1, . . . , yn do the job. They are clearly linearly
independent, and since Λn(a)� =

{
z ∈ 1

aZ
n : 1ᵀz ∈ Z

}
they belong to Λn.

The characterization of Voronoi relevant vectors of Λn in Lemma 3 allows
to verify |yᵀ

i v| ≤ 3, for all 1 ≤ i ≤ n and v ∈ FΛn
.

(iii) Let Λ be a self-dual lattice and let VΛ be its Voronoi cell. Each Voronoi
relevant vector v ∈ FΛ provides a facet of VΛ via the inequality vᵀx ≤
1
2‖v‖2, as well as a facet of Q� via the inequality vᵀx ≤ 1 (this defines
indeed a facet, as v is a vertex of Q – the polar of Q�). As ‖v‖ ≥ λ1(Bn, Λ),
for every c < λ1(Bn, Λ)2, we have that c · Q� is contained in the interior
of twice the Voronoi cell of Λ� = Λ, and hence contains no non-trivial dual
lattice point. Therefore, c̄(Λ) ≥ λ1(Bn, Λ)2.

Conway & Thompson (see [24, Ch. 2, §9]) proved that there are self-dual

lattices Λ in R
n with minimal norm λ1(Bn, Λ) ≥

⌊
1√
π

(
5
3Γ

(
n
2 + 1

)) 1
n

⌋
. Stirling’s

approximation then gives that c̄(Λ) ∈ Ω(n). 
�
Based on the common belief that the best possible upper bound in (2) is

linear in n, we conjecture that c̄(Λ) ∈ O(n), and even c(Λ) ∈ O(n), for every
lattice Λ ⊆ R

n.

4 Algorithmic Point of View

When it comes to computing a c(Λ)-compact basis, not much is known. Lemma 1
suggests to take the polar of conv(FΛ), and then to look for a dual basis in a
suitable dilate thereof. However, in order to do this, we need a description of the
Voronoi relevant vectors in the first place. Therefore, we rather discuss how to
incorporate an already known c-compact basis into the algorithm of Micciancio
and Voulgaris [23].

Their algorithm consists of two main parts. In a preprocessing step, it com-
putes the Voronoi cell VΛ, which can be done in time 2O(n) in a recursive manner.
Given a c-compact basis B this part is immediate as B grants a superset of FΛ



270 C. Hunkenschröder et al.

by definition. Once the Voronoi cell VΛ is computed, a vector p ∈ Λ is closest
to a target vector t if and only if t − p ∈ VΛ. In the second part, they itera-
tively identify a Voronoi relevant vector v ∈ FΛ whose induced facet inequality
2xᵀv ≤ ‖v‖2 is violated by t. Replacing t by the shorter vector t−v and keeping
track of the successively found vectors v, yields a lattice vector p ∈ Λ such that
t − p ∈ VΛ after finitely many steps. This technique previously known as the
iterative slicer [27], was refined in [23] to estimate the number of necessary steps
by 2n poly(n). More sophisticated arguments, as presented in [5] allow to further
decrease the number of iterations.

Corollary 2. Assume that we are given a c-compact basis B of a lattice Λ ⊆ R
n.

For any target point t ∈ R
n, a closest lattice vector to t can be found in time

O((2c + 1)n 2n poly(n)) and space polynomial in the input size.

Proof. Theorem 4.2 and Remark 4.4 in [23] state that a closest vector can be
found in time O(|V | · 2n poly(n)), where V is a superset of the Voronoi relevant
vectors FΛ. We set V = {Bz : z ∈ Z

n, ‖z‖∞ ≤ c} ⊇ FΛ.
The reduction to polynomial space follows from [23, Rem. 4.3]: Their algo-

rithm may need exponential space because they store FΛ. As a subset of V it is
however described just by the polynomial-size data (B, c). 
�

The Micciancio-Voulgaris algorithm naturally can be presented as an algo-
rithm for the Closest Vector Problem with Preprocessing (CVPP). In this variant
of CVP, we may precompute the lattice for an arbitrary amount of time and store
some additional information. Only then the target vector is revealed to us, and
the additional information can be used to find a closest vector faster. In prac-
tice, we might have to solve CVP on the same lattice with several target vectors,
hence we might benefit from spending more time for preprocessing.

Considered in this setting, our results compress the information after the
preprocessing step into polynomial space. However, it is unclear how to compute
a c-compact basis without computing the Voronoi cell first.

Problem 1. Can we compute a basis B of Λ attaining c(Λ) in single-exponential
time and polynomial space?

McKilliam et al. [21] show that for lattices of Voronoi’s first kind, CVP can
be solved in polynomial time, provided an obtuse superbasis is known. One
may wonder whether our representation also allows for solving CVPP faster.
However, Micciancio [22] showed that if CVPP can be solved in polynomial time
for arbitrary lattices, then NP ⊆ P/poly and the polynomial hierarchy collapses.
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Appendix

Lemma 3. Let n ∈ N≥4, a = �n/2�, and Λn = Λn(a). A vector v ∈ Λn is
Voronoi relevant if and only if v = ±1, or there exists ∅ �= S � {1, . . . , n} s.t.

vi = a − � (i ∈ S), vj = −� (j /∈ S), and � ∈ {�a|S|
n �, �a|S|

n �}. (3)

Proof (Sketch). Voronoi characterized a strictly Voronoi relevant vector v in a
lattice Λ by the property that ±v are the only shortest vectors in the co-set
v + 2Λ (cf. [8, p. 477]). We use this crucially to show that Voronoi relevant
vectors different from ±1 are characterized by (3).

The vectors ±1 are Voronoi relevant as they are shortest vectors of the lattice;
if two linearly independent shortest vectors v1, v2 were in the same co-set v1 +
2Λn, then (v1 +v2)/2 would be a strictly shorter vector. To analyze any shortest
vector u of some co-set v+2Λn, v ∈ Λn, we make the following two observations.
First, as 2aei ∈ 2Λn, we have u ∈ [−a, a]n. Due to the definition of Λn, either
u ∈ {0,±a}n, or u ∈ [−a + 1, a − 1]n. In the first case, if we have at least two
non-zero entries, we can flip the sign of one entry and obtain a vector of the same
length in the same co-set, but linearly independent. Hence, that co-set does not
have any Voronoi relevant vectors. In the other case, again due to vi ≡ vj mod a
for any lattice vector, u ∈ {a−�,−�}n for some 1 ≤ � < n. Considering the norm
of u as a function in � and bearing in mind that 1 ∈ 2Λn, we see that ‖u‖2 is
minimized precisely for the choices of � given in (3). Due to this line of thought,
in order to show that each vector u of shape (3) is indeed Voronoi relevant,
it suffices to show that any vector in {−a, 0, a}n is either longer than u, or in
another residue class. 
�
Proof (Theorem 2). For brevity, we write c = c(Λn), Q = conv(FΛn

). As 1 ∈ Λn,
there exists a w ∈ Λ�

n with 1ᵀw = 1, implying that each basis of Λ�
n contains a

vector y such that 1ᵀy is an odd integer. In particular, by Lemma 1, we know
that c Q� contains such a y. As Q� is centrally symmetric, assume 1ᵀy ≥ 1.
Further, since Λ�

n is invariant under permutation of the coordinates, we may
assume that y1 ≥ y2 ≥ · · · ≥ yn. Let us outline our arguments: We split 1ᵀy
into two parts, by setting A :=

∑k
i=1 yi, and B :=

∑n
i>k yi, where k = �n/2�.

We show that A ≥ B + 1, and construct a Voronoi relevant vector v ∈ Λn by
choosing S = {1, . . . , k} and � = �ak/n�. Hence, (a − �), � ≈ n/4 and we obtain
vᵀy � n

4A − n
4B ≥ n/4 by distinguishing the four cases n mod 4.

For showing A ≥ B + 1, consider yk. As y ∈ Λ�
n, there is an integer z such

that we can write yk = z
a . Note that we have A ≥ kyk = z and B ≤ (n−k) z

a ≤ z.
Let α, γ ≥ 0 such that A = z + α and B = z − γ. As A + B = 2z + α − γ has to
be an odd integer, we have |α − γ| ≥ 1, implying α ≥ 1 or γ ≥ 1. Therefore, in
fact we have A ≥ max{B + 1, 1}. 
�

We now give the details of the proof of Theorem 3. A dicing D in R
n is an

arrangement consisting of families of infinitely many equally-spaced hyperplanes
with the following properties: (i) there are n families with linearly independent
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normal vectors, and (ii) every vertex of the arrangement is contained in a hyper-
plane of each family. The vertex set of a dicing forms a lattice Λ(D). Erdahl [12,
Thm. 3.1] represents a dicing D as a set D = {±d1, . . . ,±dr} of hyperplane
normals and a set E = {±e1, . . . ,±es} ⊆ Λ(D) of edge vectors of the arrange-
ment D = D(D,E) satisfying: (E1) Each pair of edges ±ej ∈ E is contained
in a line d⊥

i1
∩ . . . ∩ d⊥

in−1
, for some linearly independent di1 , . . . , din−1 ∈ D, and

conversely each such line contains a pair of edges; (E2) For each 1 ≤ i ≤ r and
1 ≤ j ≤ s, we have dᵀ

i ej ∈ {0,±1}.

Proof (Theorem 3). We start by reviewing the Delaunay tiling of the lattice Λ.
A sphere Bc(R) = {x ∈ R

n : ‖x − c‖2 ≤ R2} is called an empty sphere of Λ
(with center c ∈ R

n and radius R ≥ 0), if every point in Bc(R) ∩ Λ lies on the
boundary of Bc(R). A Delaunay polytope of Λ is defined as the convex hull of
Bc(R) ∩ Λ, and the family of all Delaunay polytopes induces a tiling DΛ of R

n

which is the Delaunay tiling of Λ. This tiling is in fact dual to the Voronoi tiling.
Erdahl [12, Thm. 2] shows that the Voronoi cell of a lattice is a zonotope if

and only if its Delaunay tiling is a dicing. More precisely, the tiling DΛ induced
by the Delaunay polytopes of Λ is equal to the tiling induced by the hyper-
plane arrangement of a dicing D = D(D,E) with normals D = {±d1, . . . ,±dr}
and edge vectors E = {±e1, . . . ,±es}. By the duality of the Delaunay and the
Voronoi tiling, an edge of DΛ containing the origin corresponds to a facet normal
of the Voronoi cell VΛ. Therefore, the edge vectors E are precisely the Voronoi
relevant vectors of Λ.

Now, choosing n linearly independent normal vectors, say d1, . . . , dn ∈ D, the
properties (E1) and (E2) imply the existence of edge vectors, say e1, . . . , en ∈ E,
such that dᵀ

i ej = δij , with δij being the Kronecker delta. Moreover, the set
B = {e1, . . . , en} is a basis of {x ∈ R

n : dᵀ
i x ∈ Z, 1 ≤ i ≤ n}, which by

property E2) equals the whole lattice Λ. Hence, {d1, . . . , dn} is the dual basis
of B and every Voronoi relevant vector v ∈ FΛ = E fulfills dᵀ

i v ∈ {0,±1}. In
view of Lemma 1 (iii), this means that B is a compact basis of Λ consisting of
Voronoi relevant vectors, as desired. 
�
Proof (Corollary 1). By Proposition 1(ii), every lattice of rank ≤ 3 has a com-
pact basis. Thus, let Λ ⊆ R

4 be of full rank. If Λ is zonotopal, then by Theorem 3
c(Λ) = 1. Voronoi’s reduction theory shows that if Λ is not zonotopal, then its
Voronoi cell VΛ has the 24-cell as a Minkowski summand (cf. [28, Ch. 3]). Up
to isometries and scalings, the only lattice whose Voronoi cell is combinatorially
equivalent to the 24-cell, is the root lattice D4. Thus, we have a decomposition
VΛ = VΓ +Z(U), for some generators U = {u1, . . . , ur} ⊆ R

4 and a lattice Γ that
is isometric to D4. Hence, by Proposition 2, we get c(Λ) ≤ χ(Λ) ≤ χ(Γ ) = χ(D4).
Engel et al. [11] computed that χ(D4) = 1, which finishes our proof. 
�
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