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Abstract. We study dynamic network flows and investigate instanta-
neous dynamic equilibria (IDE) requiring that for any positive inflow
into an edge, this edge must lie on a currently shortest path towards
the respective sink. We measure path length by current waiting times in
queues plus physical travel times. As our main results, we show (1) exis-
tence of IDE flows for multi-source single sink networks, (2) finite ter-
mination of IDE flows for multi-source single sink networks assuming
bounded and finitely lasting inflow rates, and, (3) the existence of a com-
plex multi-commodity instance where IDE flows exist, but all of them
are caught in cycles and persist forever.

1 Introduction

Dynamic network flows have been studied for decades in the optimization and
transportation literature, see the classical book of Ford and Fulkerson [5] or
the more recent surveys of Skutella [17] and Peeta [13]. A fundamental model
describing the dynamic flow propagation process is the so-called fluid queue
model, see Vickrey [19]. Here, one is given a digraph G = (V,E), where edges
e ∈ E are associated with a queue with positive service capacity νe ∈ Z+ and a
physical travel time τe ∈ Z+. If the total inflow into an edge e = vw ∈ E exceeds
the queue service capacity νe, a queue builds up and agents need to wait in
the queue before they are forwarded along the edge. The total travel time along
e is thus composed of the waiting time spent in the queue plus the physical
travel time τe. A schematic illustration of the inflow and outflow mechanics of
an edge e is given in Fig. 1. The fluid queue model has been mostly studied from
a game-theoretic perspective, where it is assumed that agents act selfishly and
travel along shortest routes under prevailing conditions. This behavioral model
is known as dynamic equilibrium and has been analyzed in the transportation
science literature for decades, see [6,12,20]. In the past years, however, several
new exciting developments have emerged: Koch and Skutella [10] elegantly char-
acterized dynamic equilibria by their derivatives which gives a template for their
computation. Subsequently, Cominetti, Correa and Larré [3] derived alternative
characterizations and proved existence and uniqueness in terms of experienced
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Fig. 1. An edge e = vw with a nonempty queue.

travel times of equilibria even for multi-commodity networks (see also [1,4,16]
for further recent work on the fluid queueing model).

The concept ‘dynamic equilibrium’ assumes complete knowledge and simulta-
neous route choice by all travelers. Complete knowledge requires that a traveler
is able to exactly forecast future travel times along the chosen path effectively
anticipating the whole evolution of the flow propagation process across the net-
work. While this assumption has been justified by letting travelers learn good
routes over several trips, this concept may not accurately reflect the behavioral
changes caused by the wide-spread use of navigation devices. As also discussed
in Marcotte et al. [11], Hamdouch et al. [9] or Unnikrishnan and Waller [18],
drivers may not always learn good routes over several trips but are informed in
real-time about the current traffic situations and, if beneficial, reroute instan-
taneously no matter how good or bad that route was in hindsight (for a more
detailed discussion we refer to the full version [8]).

In this paper, we consider an adaptive route choice model, where at every
node (intersection), travelers may alter their route depending on the current
network conditions, that is, based on current travel times and queuing delays.
We assume that, if a traveler arrives at the end of an edge, she may change
the current route and opt for a currently shorter one. This type of reasoning
does neither rely on private information of travelers nor on the capability of
unraveling the future flow propagation process. We term a dynamic flow an
instantaneous dynamic equilibrium (IDE), if for every point in time and every
edge with positive inflow (of some commodity), this edge lies on a currently
shortest path towards the respective sink. In the following we illustrate IDE in
comparison to classical dynamic equilibrium with an example.

1.1 An Example

Consider the network in Fig. 2 (left). There are two source nodes s1 and s2 with
constant inflow rates u1(θ) ≡ 3 for θ ∈ [0, 1) and u2(θ) ≡ 4 for θ ∈ [1, 2).
Commodity 1 (red) has two simple paths connecting s1 with the sink t. Since
both have equal length (

∑
e τe = 3), in an IDE, commodity 1 can use both of

them. In Fig. 2, the flow takes the direct edge to t with a rate of one, while edge
s1v is used at a rate of two. This is actually the only split possible in an IDE,
since any other split (different in more than just a subset of measure zero of
[0, 1)) would result in a queue forming on one of the two edges, which would
make the respective path longer than the other one. At time θ = 1, the inflow at
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s1 stops and a new inflow of commodity 2 (blue) at s2 starts. This new flow again
has two possible paths to t, however here, the direct path (

∑
e τe = 1) is shorter

than the alternative (
∑

e τe = 4). So all flow enters edge s2t and starts to form a
queue. At time θ = 2, the first flow particles of commodity 1 arrive at s2 with a
rate of 2. Since the flow of commodity 2 has built up a queue of length 3 on edge
s2t by this time, the estimated travel times

∑
e(τe + qe(θ)) are the same on both

simple s2-t paths. Thus, the red flow is split evenly between both possible paths.
This results in the queue-length on edge s2t remaining constant and therefore
this split gives us an IDE flow for the interval [2, 3). At time θ = 3, red particles
will arrive at s1 again, thus having traveled a full cycle (s1 − v − s2 − s1). This
example shows that IDE flows may involve a flow decomposition along cycles.1

In contrast, the (classical) dynamic equilibrium flow will just send more of the
red flow along the direct path (s1, t) since the future queue growth at edge s2t
of the alternative path is already anticipated.

Fig. 2. The evolution of an IDE flow over the time horizon [0, 3]. (Color figure online)

1.2 Related Work

In the transportation science literature, the idea of an instantaneous user or
dynamic equilibrium has already been proposed since the late 80’s, see Ran and
Boyce [14, § VII-IX], Boyce, Ran and LeBlanc [2,15], Friesz et al. [7]. These works
develop an optimal control-theoretic formulation and characterize instantaneous
user equilibria by Pontryagin’s optimality conditions. However, the underlying
equilibrium concept of Boyce, Ran and LeBlanc [2,15] and Friesz et al. [7] is
different from ours. While the verbally written concept of IDE is similar to the
one we use here, the mathematical definition of an IDE in [2,7,15] requires that
instantaneous travel times are minimal for used path towards the sink. A path
is used, if every arc of the path has positive flow. As, for instance, the authors
in Boyce, Ran and LeBlanc [2, p. 130] admit: “Specifically with our definition
of a used route, it is possible that no route is ever ‘used’ because vehicles stop
entering the route before vehicles arrive at the last link on the route. Thus, for
some networks every flow can be in equilibrium.” Ran and Boyce [14, § VII, pp.
148] present a link-based definition of IDE. They define node labels at nodes
v ∈ V indicating the current shortest travel time from the source node to some

1 Note that cycles may occur even in instances with only a single commodity (e.g. in
the same graph with u1 = 8, νsv = 7 and νvw = 7).
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intermediate node v and require that whenever edge vw has positive flow, edge
vw must be contained in a shortest s-w path. This is different from our definition
of IDE, because we require that whenever there is positive inflow into an edge vw,
it must be contained in a currently shortest v-t path, where t is the sink of the
considered inflow. Another important difference to our model is that [2,7,14,15]
assume a finite time horizon on which the control problems are defined, thus,
only describing the flow trajectories over the given time horizon. Our results show
that this assumption can be too restrictive: there are multi-commodity instances
with finitely lasting bounded inflows that admit IDE flows cycling forever.

1.3 Our Results

We define a notion of instantaneous dynamic equilibrium (IDE) stating that a
dynamic flow is an IDE, if at any point in time, for every edge with positive
inflow (of some commodity), this edge lies on a currently shortest path towards
the respective sink. Our first main result (Theorem 1) shows that IDE exist
for multi-source single sink networks with piecewise constant inflow rates. The
existence proof relies on a constructive method extending any IDE flow up to
time θ to an IDE flow on a strictly larger interval θ + ε for some ε > 0. The
key insight for the extension procedure relies on solving a sequence of nonlinear
programs, each associated with finding the right outflow split for given node
inflows. With the extension property, Zorn’s Lemma implies the existence of
IDE on the whole R≥0. Given that, unlike the classical dynamic equilibrium,
IDE flows may involve cycling behavior (see the example in Fig. 2), we turn to
the issue of whether it is possible that positive flow volume remains forever in
the network (assuming finitely lasting bounded inflows). Our second main result
(Theorem 2) shows that for multi-source single sink networks, there exists a
finite time T > 0 at which the network is cleared, that is, all flow particles have
reached their destination within the time horizon [0, T ]. We then turn to general
multi-commodity networks. Here, we show (Theorem 3) that for bounded and
finitely lasting inflow rates, termination in finite time is not guaranteed anymore.
We construct a quite complex instance where IDE flows exist, but all IDE flows
are caught in cycles and travel forever.

2 The Flow Model

In the following, we describe a fluid queuing model as used before in Koch and
Skutella [10] and Cominetti, Correa and Larré [3]. We are given a digraph2

G = (V,E) with queue service rates νe ∈ Z+, e ∈ E and travel times τe ∈ Z+

for all e ∈ E. There is a finite set of commodities I = {1, . . . , n}, each with a
commodity-specific source node si ∈ V and a common sink node t ∈ V .3 The
(infinitesimally small) agents of every commodity i ∈ I are generated according
2 Or a directed multi-graph. All results from this papers hold there as well.
3 Without loss of generality we will always assume that all source nodes and the sink t

are distinct from each other. Moreover, t is reachable from every other vertex v ∈ V .
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to a right-constant inflow rate function ui : [ri, Ri) → R≥0, where we say that
a function g : [a, b) → R is right-constant if for every x ∈ [a, b) there exists an
ε > 0 such that g is constant on [x, x + ε), i.e. for all y ∈ [x, x + ε) we have
g(y) = g(x). The time points ri ≥ 0 and Ri > ri are the release and ending time
of commodity i, respectively. A flow over time is a tuple f = (f+, f−), where
f+, f− : R≥0×E → R≥0 are integrable functions modeling the inflow rate f+

e (θ)
and outflow rate f−

e (θ) of an edge e ∈ E at time θ ≥ 0. The flow conservation
constraints are modeled as

∑

e∈δ+
v

f+
e (θ) −

∑

e∈δ−
v

f−
e (θ) = bv(θ), (1)

where δ+v := { vu ∈ E } and δ−
v := {uv ∈ E } are the sets of outgoing edges from

v and incoming edges into v, respectively, and bv(θ) is the balance at node v,
which needs to be equal to ui(θ), if v = si and θ ∈ [ri, Ri), non-positive for v = t
and any θ and equal to zero in all other cases. The queue length of edge e at
time θ is given by

qe(θ) = F+
e (θ) − F−

e (θ + τe), (2)

where F+
e (θ) :=

∫ θ

0
f+

e (z)dz and F−
e (θ) :=

∫ θ

0
f−

e (z)dz denote the cumulative
inflow and outflow, respectively. We implicitly assume that f−

e (θ) = 0 for all
θ ∈ [0, τe). Together with Constraint (3) this will imply that the queue length is
always non-negative. We assume that the queue operates at capacity which can
be modeled by

f−
e (θ + τe) =

{
ν(e), if qe(θ) > 0
min { f+

e (θ), ν(e) } , if qe(θ) = 0
for all e ∈ E, θ ∈ R≥0. (3)

It has been shown in Cominetti et al. [3] that this condition is in fact equivalent
to the following equation describing the queue length dynamics:

q′
e(θ) =

{
f+

e (θ) − νe, if qe(θ) > 0
[f+

e (θ) − νe]+, if qe(θ) = 0.
(4)

We assume that, whenever an agent arrives at an intermediate node v at time
θ, she is given the information about the current queue lengths qe(θ) and travel
times τe, e ∈ E, and, based on this information, she computes a shortest v-t path
and enters the first edge on this path. We define the instantaneous travel time
of an edge e at time θ as ce(θ) = τe + qe(θ)/νe, where qe(θ)/νe is the current
waiting time to be spent in the queue of edge e. We can now define node labels
�v(θ) corresponding to current shortest path distances from v to the sink t. For
v ∈ V and θ ∈ R≥0, define �t(θ) = 0 and �v(θ) = mine=vw∈E{�w(θ) + ce(θ)} for
all v �= t. We say that edge e = vw is active at time θ, if �v(θ) = �w(θ) + ce(θ).
We denote by Eθ ⊆ E the set of active edges. Now we are ready to formally
define an instantaneous dynamic equilibrium for the continuous flow version.
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Definition 1. A flow f is an instantaneous dynamic equilibrium (IDE), if it
satisfies:

For all θ ∈ R≥0, e ∈ E: f+
e (θ) > 0 ⇒ e ∈ Eθ. (5)

In words, a flow f is an IDE, if, whenever flow enters an edge e = vw at some
point θ, this edge must be contained in a currently shortest path from v to t.

3 Existence of IDE Flows

We now describe an algorithm computing an IDE for multi-source single-sink
networks. Let f = (f+, f−) denote a flow over time. We denote by b−

v (θ) :=∑
e∈δ−

v
f−

e (θ)+
∑

i∈I:si=v ui(θ) the current inflow at vertex v at time θ. Moreover,
let δ−

v (θ) := δ−
v ∩ Eθ denote those outgoing edges of v that are active at time θ.

The main idea of our algorithm works as follows. Starting from time θ = 0 we
compute inductively a sequence of intervals [0, θ1), [θ1, θ2), . . . with 0 < θi < θi+1

and corresponding constant inflows (f+
e (θ))e for θ ∈ [θi, θi+1) that form together

with the corresponding edge outflows (f−
e (θ))e an IDE. Suppose we are given

an IDE flow up to time θk, that is, a tuple (f+, f−) of right-constant functions
f+

e : [0, θk) → R≥0 and f−
e : [0, θk+τe) → R≥0 satisfying Constraints (1), (3) and

(5). Note that this is enough information to compute F+
e (θk) and F−

e (θk + τe)
and thus also qe(θk), ce(θk) and �v(θk) for all e ∈ E and v ∈ V . We now describe
how to extend this flow to the interval [θk, θk + ε) for some ε > 0. Assume
that b−

v (θ) is constant for θ ∈ [θk, θk + ε) for some v ∈ V and ε > 0. Moreover
let δ−

v (θk) = {vw1, vw2, . . . , vwk} for some k ≥ 1 and define [k] := {1, . . . , k}.
Thus, we have �v(θk) = cvwi

(θk) + �wi
(θk) for all i ∈ [k]. Assume that labels of

nodes wi, i ∈ [k] change linearly after θk, that is, there are constants awi
∈ R

for i ∈ [k] with �wi
(θ) = �wi

(θk) + awi
(θ − θk) for all θ ∈ [θk, θk + ε). Our goal

is to find constant inflows f+
vwi

(θ), i ∈ [k], θ ∈ [θk, θk + ε) satisfying the supply
b−
v (θ) and, for some ε′ > 0, fulfilling the following invariant for all i ∈ [k] and

θ ∈ [θk, θk + ε′):

cvwi
(θ) + �wi

(θ) ≤ cvwj
(θ) + �wj

(θ) for all i, j ∈ [k] with f+
vwi

(θ) > 0. (6)

If the inflow f+
vwi

is constant, then by Eq. (4) the queue length qvwi
has piece-

wise constant derivative and, thus, is itself piecewise linear. This implies that
the instantaneous travel time cvwi

is piecewise linear as well, with derivative

c′
vwi

(θ) =
q′
vwi

(θ)

νvwi
and, in particular, linear on [θk, θk + ε′) for some ε′ > 0. Since

the invariant is fulfilled at θ = θk and the �wi
are assumed to be linear on the

interval [θk, θk + ε), a sufficient condition for constant inflows to satisfy (6) for
all θ ∈ [θk, θk + ε′) is the following: For all i ∈ [k] the constant inflows satisfy at
time θk (and, thus, for all θ ∈ [θk, θk + ε′)):

c′
vwi

(θk) + �′
wi

(θk) ≤ c′
vwj

(θk) + �′
wj

(θk) for all i, j ∈ [k] with f+
vwi

(θk) > 0. (7)

This condition simply makes sure that whenever an edge vwi has positive inflow,
the remaining distance towards t grows from θk onwards at the lowest speed.
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We will now define an optimization problem in variables xvwi
, i ∈ [k] for which

an optimal solution exists and satisfies the conditions defined in (7). The proof
can be found in AppendixA (Lemma 1).

min
xvwi

≥0,i∈[k]

k∑

i=1

∫ xvwi

0

gvwi
(z)

νvwi

+ awi
dz s.t.:

k∑

i=1

xvwi
= b−

v (θk), (OPT-b−
v (θk))

where gvwi
(z) :=

{
z − νvwi

, if qvwi
(θk) > 0

[z − νvwi
]+, if qvwi

(θk) = 0.
Hence, gvwi

(f+
vwi

(θk)) is the

derivative of qvwi
at θk (cf. Eq. (4)).

This way we can extend a given IDE flow up to time θk+ε′ for a single node v
by solving Eq. (OPT-b−

v (θk)) and setting fvwi
(θ) := xvwi

for some suitable short
interval [θk, θk +ε′), provided that the flow is already extended for all nodes with
strictly smaller label �w(θk). To do that for all nodes, we simply order them by
their current labels at time θk and then iteratively solve the above optimization
problem for each node, beginning with the one with the smallest label. A more
detailed explanation of this procedure is given in AppendixA (Lemma 2).

Theorem 1. For any multi-source single sink network with right-constant
inflow rate functions, there exists an IDE flow f with right-constant functions
f+

e and f−
e , e ∈ E.

The proof can be found in AppendixA. In the full version [8], we give an
example that IDE need not be unique.

4 Termination of IDE Flows

In this section, we investigate the question, whether an IDE flow actually van-
ishes within finite time, that is, if the finitely lasting and bounded inflow reaches
the sink within finite time.

Definition 2. A flow f terminates, if there exists a θ̂ ≥ θ0 := max {Ri | i ∈ I }
such that by time θ̂ the total volume of flow in the network is zero, i.e.

G(θ̂) :=
∑

e∈E

(F+
e (θ̂) − F−

e (θ̂)) =
∑

i∈I

θ̂∫

0

ui(θ)dθ −
∑

e∈δ−
t

F−
e (θ) +

∑

e∈δ+
t

F+
e (θ) = 0.

Theorem 2. For multi-source single-sink networks, any IDE flow terminates.

We will only sketch the three main steps of the proof here – for the detailed
proof, see [8]. As our first step, we show that in an acyclic network, all flows
over time terminate (IDE or not). To show this, we take a topological order on
V (with t as the last element) and show that whenever there is a node v with
no flow on edges between nodes that come before v (for all times after some
θ1), then, there exists θ2 ≥ θ1 such that no flow will arrive at v after θ2. In the
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second step, we show that flows with total volume G(θ) < 1 at time θ ≥ θ0 must
terminate. This follows, because for a remaining flow volume less than one, the
total length of all queues is less than 1 as well and, thus, an IDE flow can only
use edges that lie on a shortest path to t with respect to τe. Since these edges
form an acyclic subgraph (independent of the time θ) such a flow terminates by
step 1. For the third step, we take a generic IDE flow in an arbitrary multi-source
single sink network and assume by contradiction that there exist edges e such
that for any θ ∈ R≥0, there exists a time θ′ ≥ θ with F+

e (θ′) − F−
e (θ′) ≥ 1

|E| .
From these edges we take the closest one to t and show – similarly to the first
step – that there exists some time θ′′ such that all flow on this edge will travel on
a direct path to t (after time θ′′). Altogether, this implies that eventually more
flow volume arrives at t than the totally generated volume (at the sources), a
contradiction. Thus, there exists some time θ∗ after which the total amount in
the network is less than 1 and, hence, the flow terminates by the second step.

Remark 1. For the entire proof to work, we only need the assumption of bound-
edness and finite support of inflow rates ui, thus, the result holds for more general
inflow functions.

5 Multi-commodity Networks

We now generalize the model to multi-source multi-sink networks. A multi-
commodity flow over time is a tuple f = ((f+

i,e)i∈I,e∈E , (f−
i,e)i∈I,e∈E), where

f+
i,e, f

−
i,e : R≥0 → R≥0 are integrable functions for all i ∈ I and e ∈ E that

satisfy corresponding balance constraints for each v ∈ V . Queue lengths depend
on the aggregate cumulative inflows and outflows, respectively. For i ∈ I, v ∈ V
and θ ∈ R≥0, we define commodity-specific node labels �i

v(θ) as in the single sink
case except that ti is used as sink node. We say that edge e = vw is active for
i ∈ I at time θ, if �i

v(θ) = �i
w(θ) + ce(θ). Let Ei

θ ⊆ E be the set of active edges.

Definition 3. A multi-commodity flow f is an instantaneous dynamic equilib-
rium if for all i ∈ I, θ ∈ R≥0 and e ∈ E it satisfies f+

i,e(θ, ) > 0 ⇒ e ∈ Ei
θ.

Together with Leon Sering, we are currently working on a proof that IDE always
exist for multi-commodity networks, which will be included in the full version of
this paper. Regarding termination, however, we can already show that there are
instances in which there exists an IDE flow and any IDE flow does not terminate.

Theorem 3. There is a multi-commodity network with two sinks and all edge
travel times and capacities equal to 1, where any IDE flow does not terminate.

To construct such an instance we make use of several gadgets. The first one,
gadget A, will serve as the main building block and is depicted in Fig. 4. It
consists of two cycles with one common edge v1v2 and one commodity with
constant inflow rate of 2 on the interval [0, 1) at node v1 with a sink node t
outside the gadget and reachable from the nodes v2, v5 and v7 via some paths
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P2, P5 and P7, respectively. Our goal will be to embed this gadget into a larger
instance in such a way, that for any IDE flow, the flow inside gadget A will
exhibit the following flow pattern for all h ∈ N (see Fig. 3):

1. On the interval [5h,5h+ 1): All flow generated at v1 (for h = 0) or arriv-
ing at v1 (for h > 0) enters the edge to v2 at a rate of 2, half of it directly
starting to travel along the edge, half of it building up a queue of length 1 at
time 5h + 1.

2. On the interval [5h+ 1,5h+ 2): The flow arriving at node v2 enters the
edge to v3 because v2, v3, v4, v5, P5 is currently the shortest path to t. The
length of the queue of edge v1v2 decreases until it reaches 0 at time 5h + 2.

3. On the interval [5h+ 2,5h+ 3): The flow arriving at node v2 enters the
edge to v6 because v2, v6, v7, P7 is currently the shortest path to t.

4. On the interval [5h+ 4,5h+ 5): The flows arriving at nodes v5 and
v7 enter the respective edges towards node v1 because v5, v1, v2, P2 and
v7, v1, v2, P2 are currently the shortest paths to get to t.

5. On the interval [5h+ 5,5h+ 6): There is a total inflow of 2 at node v1,
which enters the edge to v2. Thus, the pattern repeats.

Fig. 3. The desired flow pattern in gadget A at times θ = 0, 1, 2, 3, 4, 5, . . . .

The effect of this behavior is that other particles outside the gadget, who
want to travel through this gadget along the central vertical path, will estimate
an additional waiting time as indicated by the diagram displayed inside gadget
A in Fig. 4 (next to the vertical red path). Now, in order to actually guarantee
the described behavior, we need to embed gadget A into a larger instance in
such a way, that for any IDE flow the following assumptions hold:

1. The only paths leaving A are the four dashed paths indicated in Fig. 4.
2. The three (blue) paths P2, P5 and P7 are of the same length L (w.r.t. τe).
3. For all h ∈ N and all θ ∈ [5h + 1, 5h + 2), (5h + 2, 5h + 5] the unique shortest

paths are given in the description for the flow pattern above.
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Fig. 4. Gadget A (the dashed paths and nodes are not part of the gadget). The (red)
diagram inside the box A indicates the waiting time on edge v1v2 (and therefore on
the (red) vertical path through the gadget), provided that the flow inside this gadget
follows the flow pattern indicated in Fig. 3. The (blue) diagrams on the right indicate
the desired waiting times on the paths P2, P5 and P7, respectively (Color figure online).

In order to satisfy the assumptions 1–3., we will now construct three types of
gadgets B2, B5 and B7 for the three paths P2, P5 and P7, each of equal length on
which any IDE flow induces waiting times as shown by the respective diagrams
on the right side in Fig. 4. To build these gadgets we need time shifted versions
of gadget A, which we denote by A+k. Such a gadget is constructed the same
way as gadget A above, with the only difference that the support of the inflow
rate function ui is shifted to the interval [k mod 5, k mod 5 + 1). Gadget B2 now
consists of the concatenation of four gadgets of type A+0, four gadgets of type
A+1 and four gadgets of type A+2 in series along their vertical paths through
them with three edges between each two gadgets (see Fig. 5 in Appendix A).
Similarly, gadget B5 consists of three copies of A+3-type gadgets, three copies
of A+4-type gadgets and additional 6 · 4 edges to ensure that the vertical path
has the same length as the one of gadget B2. Finally, gadget B7 consists of three
copies of A+3-type gadgets, three copies of A+4-type gadgets, two copies of A+5-
type gadgets, one copy of A+6-type gadgets and additional 3 · 4 edges. We again
use the notation B+k

j to refer to a time shifted version of gadget Bj – i.e. with
all used gadgets A shifted by additional k time steps. Next, we build a gadget
C by just taking one copy of each B+k

j for all j ∈ { 2, 5, 7 } and k = 0, 1, 2, 3, 4
(see Fig. 6 in Appendix A). Finally, taking two copies of this gadget, C and C ′,
and two additional nodes, t and t′, where t will be the sink node for all players
in C and t′ the sink node for all players in C ′, we can build our entire graph as
indicated by Fig. 7 in Appendix A. We connect the top edges of the gadgets B+k

j

in gadget C ′ with the sink t and use those gadgets’ respective vertical paths as
the P+k

j paths for gadget C and vice versa.
In order to prove the correctness of our construction (i.e. that any IDE flow on

this instance does not terminate) we need the following important observation:

Observation 1. If a flow in some A+k-type gadget (with k ∈ { 0, 1, 2, 3, 4 })
follows the desired flow pattern for all unit time intervals between k and some
θ ∈ N0, θ ≥ k, the induced waiting time on edge v1v2 of this gadget will follow
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the waiting time function indicated by the diagram in Fig. 4 (shifted by k) for
the next unit time interval [θ, θ + 1), independent of the evolution of the flow in
this interval. The same is true for all B+k

j -type gadgets.

With this observation we can prove Theorem 2 by induction on the number of
passed unit time intervals. We assume that a given IDE flow follows the flow
pattern described at the beginning of the construction and indicated in Fig. 3
for all unit time intervals up to some θ ∈ N0. Then by Observation 1 we know
that at least the waiting time pattern will continue to hold for the next unit time
interval. So for each node v within a generic A+k-type gadget, we can identify
the shortest v-t path on the next interval and only need to verify that its first
edge is indeed the one the flow is supposed to enter. This shows that the flow
pattern will hold for all times and, in particular, that the flow never terminates.

Remark 2. It is even possible to modify the network in such a way, that only a
single source (and multiple sinks) is necessary.

A Omitted Proofs and Figures of Sects. 3 and 5

Lemma 1. There exists an optimal solution xvwi
, i ∈ [k] to OPT-b−

v (θk) so that
f+

vwi
(θk) = xvwi

, i ∈ [k] satisfies (7).

Proof. The objective function is continuous and the feasible region is non-empty
and compact, thus, by the theorem of Weierstraß an optimal solution exists.
Assigning a multiplier λ ∈ R to the equality constraint, we obtain xvwi

> 0 ⇒
gvwi

(xvwi
)

νvwi
+ awi

+ λ = 0, xvwi
= 0 ⇒ gvwi

(xvwi
)

νvwi
+ awi

+ λ ≥ 0, implying (7). ��

Lemma 2. Let f = (f+, f−) be an IDE flow up to time θk ≥ 0 and suppose
there are constant inflow rate functions b−

v : [θk, θk + ε) → R≥0 for some ε > 0
and all nodes v ∈ V (in particular, this means ε ≤ min { τe | e ∈ E }). Then there
exists some ε′ > 0 such that we can extend f to an IDE flow up to time θk + ε′

with all functions f+
e constant on the interval [θk, θk + ε′) and all functions f−

e

right-constant on the intervals [θk + τe, θk + τe + ε′).

Proof. First, we sort the nodes by their labels �v(θk) and will now define the
outflows using Lemma 1 for each node, beginning with the one with the smallest
label. This first one will always be t (with label �t(θk) = 0) for which we can
define f+

e (θ) = f−
e (θ + τe) = 0 for all outgoing edges e ∈ δ+t and all times

θ ∈ [θk, θk + ε). Now we take some node v such that for all nodes w with strictly
smaller label at time θk and all edges e ∈ δ+w we have already defined f+

e on
some interval [θk, θk + ε′) and f−

e on some interval [θk + τe, θk + τe + ε′) in such
a way that on the interval [θk, θk + ε′) we have

1. the labels �w(θ) change linearly,
2. no additional edges are added to the sets δ+w (θ) of active edges leaving w,
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3. the f+
e are constant and the f−

e right-constant for all e ∈ δ+w and
4. the functions f+

e and f−
e for e ∈ δ+w satisfy Constraints (1), (3) and (5).

Let δ+v (θk) := {vw1, vw2, . . . , vwk} be the set of active edges at v at time θk.
Then, at time θk, each wi must have a strictly smaller label than v. Hence,
they satisfy Properties 1–4. We can now apply Lemma 1 to determine the flows
f+

vwi
(θk). Additionally, we set f+

e (θk) = 0 for all non-active edges leaving v, i.e.
all e ∈ δ+v \ δ+v (θk). Assuming that this flow remains constant on the whole
interval [θk, θk +ε′), we can determine the first time θ̂ ≥ θk, where an additional
edge vw ∈ δ+v or wv ∈ δ−

v becomes newly active. This can only happen after
some positive amount of time has passed, i.e., for some θ̂ > θk, because: (i)
at time θk the edge was non-active and therefore �v(θk) > cvw(θk) + �w(θk) or
�w(θk) > cwv(θk) + �v(θk), respectively, (ii) all labels change linearly (and thus
continuously) and (iii) cvw or cwv is changing piecewise linearly, since the length
of its queue does so as well (as both f+

vw and f−
wv are piecewise constant). If the

difference θ̂−θk is smaller than the current ε′, we take it as our new ε′, otherwise
we keep it as it is. In both cases, we extend f+

e to the interval [θk, θk + ε′) for all
e ∈ δ+v by setting f+

e (θ) = f+
e (θk) for all θ ∈ [θk, θk + ε′). This guarantees that

the label of v changes linearly on this interval, no additional edges become active
and the functions f+

e are constant. Also f+
e satisfies Constraints (1) and (5) by

definition. Finally, we define f−
e by setting f−

e (θ + τe) := νe, if qe(θk) + (θ −
θk)(f+

e (θk) − νe) > 0, and f−
e (θ + τe) := f+

e (θ) else. Then, f−
e is right-constant

and together with f+
e satisfies Constraint (3). In summary, using this procedure

we can extend f node by node to an IDE flow up to θk + ε′ for some ε′ > 0. ��
Proof (Proof of Theorem 1). Let F be the set of tupels (f, θ), with θ ∈ R≥0∪{∞}
and f a IDE flow over time up to time θ with right-constant functions f+

e and
f−

e . We define a partial order on F by (f, θ) ≤ (f ′, θ′) :⇔ θ ≤ θ′ and f ′∣∣
[0,θ)

≡ f .
Now, F is non-empty, since the 0-flow is obviously an IDE flow up to time 0, and
for any chain (f (1), θ1), (f (2), θ2), . . . in F, we can define an upper bound (f̂ , θ̂)
to this chain by setting θ̂ := sup { θk } and

f̂+
e : [0, θ̂) → R≥0, θ �→ f (k),+

e (θ) with k s.t θ < θk

f̂−
e : [0, θ̂ + τe) → R≥0, θ �→ f (k),−

e (θ) with k s.t θ < θk + τe.

This is well defined and an IDE flow up to θ̂, since for every θ it coincides with
some IDE flow f (k) and therefore is an IDE flow up to θ itself. By Zorn’s lemma,
we get the existence of a maximal element (f∗, θ∗) ∈ F. If we had θ∗ < ∞,
we could apply the extension property (Lemma 2) to f∗, a contradiction to its
maximality. So we must have θ∗ = ∞ and, hence, f∗ is an IDE flow on R≥0. ��
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Fig. 5. Gadget B2 consisting of four copies of each of the types A+0, A+1, A+2. The
diagram inside the box of gadget B2 indicates the waiting time on the vertical path
through gadget B2, provided that within all of the used gadgets A, the flow follows the
flow pattern from Fig. 3. The dashed parts are not part of the gadget.

Fig. 6. Gadget C

Fig. 7. The graph
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