
Lower Bounds and a New Exact
Approach for the Bilevel Knapsack

with Interdiction Constraints

Federico Della Croce1,2(B) and Rosario Scatamacchia1

1 Dipartimento di Ingegneria Gestionale e della Produzione, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

{federico.dellacroce,rosario.scatamacchia}@polito.it
2 CNR, IEIIT, Torino, Italy

Abstract. We consider the Bilevel Knapsack with Interdiction Con-
straints, an extension of the classic 0-1 knapsack problem formulated
as a Stackelberg game with two agents, a leader and a follower, that
choose items from a common set and hold their own private knapsacks.
First, the leader selects some items to be interdicted for the follower
while satisfying a capacity constraint. Then the follower packs a set of
the remaining items according to his knapsack constraint in order to
maximize the profits. The goal of the leader is to minimize the follower’s
profits. The presence of two decision levels makes this problem very diffi-
cult to solve in practice: the current state-of-the-art algorithms can solve
to optimality instances with 50–55 items at most. We derive effective
lower bounds and present a new exact approach that exploits the struc-
ture of the induced follower’s problem. The approach successfully solves
all benchmark instances within one second in the worst case and larger
instances with up to 500 items within 60 s.

1 Introduction

Recently, a growing attention has been centered to multilevel programming. Here
we focus on bilevel optimization where two agents, denoted as a leader and a
follower, play a Stackelberg game [11]. In this game, the leader takes the first
decision and then the follower reacts taking into account the leader’s strategy.
Two standard assumptions hold in a Stackelberg game: complete information,
that is each agent knows the problem solved by the other agent; rationale behav-
ior, namely each agent has no interest in deviating from his own objective.

In this paper, we consider the Bilevel Knapsack with Interdiction Constraints
(BKP), as introduced in [6]. The problem is an extension of the classic 0-1
Knapsack Problem (KP) to a Stackelberg game where the leader and the follower
choose items from a common set and hold their own private knapsacks. First,
the leader selects some items to be interdicted for the follower while satisfying
a capacity constraint. Then the follower packs a set of the remaining items
according to his knapsack constraint in order to maximize the profits. The goal
c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 155–167, 2019.
https://doi.org/10.1007/978-3-030-17953-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_12

156 F. Della Croce and R. Scatamacchia

of the leader is to minimize the follower’s profits. One of the best performing
algorithms for BKP is given in [2]. The algorithm, denoted as CCLW, solves to
optimality instances with 50 items within a CPU time limit of 3600 s, running
out of time in instances with 55 items only. Very recently, an improved branch-
and-cut algorithm was given in [7]. The proposed approach manages to solve to
optimality all benchmark instances in [2], requiring at most a computation time
of about 85 s in an instance with 55 items. We also mention the work of [8] where
a heuristic approach is proposed for BKP and other interdiction games.

Other bilevel knapsack problems have been tackled in the literature. In [1],
the leader cannot interdict items but modifies the follower’s capacity. In [4], the
leader can modify the follower’s objective function only. As discussed in [2], both
problems are easier to handle than BKP. Recently, a polynomial algorithm has
been provided in [3] for the continuous BKP.

Our contribution for BKP is twofold. First, we derive effective lower bounds
based on mathematical programming. Second, we present a new exact approach
that exploits the induced follower’s problem and the lower bounds. The proposed
approach shows up to be very effective successfully solving all benchmark liter-
ature instances provided in [2] within few seconds of computation. Moreover,
our algorithm manages to solve to optimality all instances with up to 500 items
within a CPU time limit of 60 s. Further details are available in [5].

2 Notation and Problem Formulation

In BKP a set of n items and two knapsacks are given. Each item i (= 1, . . . , n)
has associated a profit pi > 0 and a weight wi > 0 for the follower’s knapsack
and a weight vi > 0 for the leader’s knapsack. Leader and follower have different
knapsack capacities denoted by Cu and Cl, respectively. Quantities pi, vi, wi

(i = 1, . . . , n), Cu, Cl are assumed to be integer, with vi ≤ Cu and wi ≤ Cl

for all i. To avoid trivial instances, it is also assumed that
n∑

i=1

vi > Cu and
n∑

i=1

wi > Cl. We introduce 0/1 variables xi (i = 1, . . . , n) equal to one if the

leader selects item i and 0/1 variables yi equal to one if item i is chosen by the
follower. BKP can be modeled as follows:

min

n∑

i=1

piyi (1)

subject to
n∑

i=1

vixi ≤ Cu (2)

xi ∈ {0, 1} i = 1, . . . , n (3)
where y1, . . . , yn solve

the follower’s problem: max

n∑

i=1

piyi (4)

subject to

n∑

i=1

wiyi ≤ Cl (5)

yi ≤ 1 − xi i = 1, . . . , n (6)
yi ∈ {0, 1} i = 1, . . . , n (7)

New Approach for the Bilevel KP 157

The leader’s objective function (1) minimizes the profits of the follower
through the interdiction constraints (6). These constraints ensure that each item
i can be selected by the follower, i.e. yi ≤ 1, only if the item is not interdicted by
the leader, i.e. xi = 0. Constraint (2) represents the leader’s capacity constraint.
The objective function (4) maximizes the follower’s profits and constraint (5)
represents the follower’s capacity constraint. Constraints (3) and (7) define the
domain of the variables.

The optimal solution value of model (1)–(7) is denoted by z∗. The optimal
solution vectors of variables xi and yi are respectively denoted by x∗ and y∗.
Notice that in model (1)–(7) there always exists an optimal solution for the leader
which is maximal, namely where items are included in the leader’s knapsack until
there is enough capacity left.

Let us now recall the optimal solution of the continuous relaxation of a stan-
dard KP, namely the follower’s model (4)–(7) without constraints (6) and con-

straints (7) replaced by inclusion in [0, 1]. Under the assumption
n∑

i=1

wi > Cl,

this solution has the following structure. Consider the sorting of the items by
non-increasing ratios of profits over weights:

p1

w1
≥ p2

w2
≥ · · · ≥ pn

wn

. (8)

According to this order, items j = 1, 2, . . . are inserted into the knapsack as

long as
j∑

k=1

wk ≤ Cl. The first item s which cannot be fully packed is commonly

denoted in the knapsack literature as the split item (or break/critical item).
The optimal solution of the KP linear relaxation is given by setting yj = 1 for

j = 1, . . . , s − 1, yj = 0 for j = s + 1, . . . , n and ys = (Cl −
s−1∑

j=1

wj)/ws. The

solution with items 1, . . . , (s − 1) is a feasible solution for KP and is commonly
denoted as the split solution.

In the remainder of the paper, we assume the ordering of the items (8). We
denote by KP (x) the follower’s knapsack problem induced by a leader’s strategy
encoded in vector x, i.e. a knapsack problem with item set

S := {i : xi = 0, xi ∈ x}.

We also denote by KPLP (x) the corresponding Linear Programming (LP) relax-
ation. If

∑
i∈S wi > Cl, we define the critical item c of KPLP (x) as the last item

with a strictly positive value in its optimal solution. Thus, we have yc ∈ (0, 1]
and a corresponding split solution with profit

∑

i∈S:i<c

pi =

c−1∑

i=1

pi(1 − xi) (9)

which constitutes a feasible solution for KP (x). Notice that we denote by z(M)
the optimal solution value of any given mathematical model M .

158 F. Della Croce and R. Scatamacchia

3 Computing Lower Bounds on BKP

Consider the optimal solution vector x∗. In the induced follower’s knapsack prob-
lem KP (x∗) with item set S, two cases can occur: either there is no critical
item in KPLP (x∗), namely

∑
i∈S wi ≤ Cl, or one critical item exists, namely∑

i∈S wi > Cl. The first case can be easily handled by considering that the fol-
lower will pack all items not interdicted by the leader. This case is discussed in
Sect. 4.2.

In the second case, we derive effective lower bounds on BKP by guessing
the critical item of KPLP (x∗) and correspondingly computing the related split
solution of the follower’s problem. These bounds constitute the main ingredient
of the exact approach presented in Sect. 4. Since we do not know a priori the
leader’s optimal solution x∗, we formulate an Integer Linear Programming (ILP)
model where we impose that a given item c must be critical and evaluate the
profit of the corresponding split solution in the objective function. We consider
binary variables kj (j = 1, . . . , wc) associated with the weight contribution of
the critical item and introduce the following model (denoted as CRIT1(c)).

CRIT1(c) : min

c−1∑

i=1

pi(1 − xi) (10)

subject to

n∑

i=1

vixi ≤ Cu (11)

c−1∑

i=1

wi(1 − xi) +

wc∑

j=1

jkj = Cl (12)

wc∑

j=1

kj = 1 (13)

xc = 0 (14)
xi ∈ {0, 1} i = 1, . . . , n (15)
kj ∈ {0, 1} j = 1, . . . , wc (16)

The objective function (10) minimizes the value of the split solution. Con-
straint (11) represents the leader’s capacity constraint. Constraints (12) and
(13) ensure that item c is critical as it is the last item packed, with a weight in
the interval [1, wc]. Constraint (14) indicates that item c can be critical only if
it is not interdicted by the leader. Constraints (15) and (16) indicate that all
variables are binary. We can state the following proposition.

Proposition 1. If there exists a critical item c in KPLP (x∗), then z(CRIT1(c))
is a valid lower bound on z∗.

Proof. Under the assumption that item c is critical in KPLP (x∗), the optimal
BKP solution x∗ constitutes a feasible solution for model CRIT1(c). Let denote
by z1 the corresponding solution value that coincides with the value of the split
solution in KP (x∗). Since the follower maximizes the profits in KP (x∗) obtaining
a solution with a value greater than (or equal to) the one of the split solution,
we have z1 ≤ z∗. But this means that there exists an optimal solution of model
CRIT1(c) such that z(CRIT1(c)) ≤ z1 which implies a lower bound on z∗. ��

New Approach for the Bilevel KP 159

The previous proposition already provides a first significant lower bound for
the problem. However, following the reasoning in the proof of Proposition 1, we
remark that improved bounds on z∗ can be derived by considering any feasible
solution for KP (x∗) that might be obtained by removing (adding) items that
were not interdicted by the leader and that were selected (not selected) by the
split solution, provided that the follower’s capacity is not exceeded. Indeed, this
corresponds to removing tuples of items i ∈ [1, c − 1] : xi = 0 and/or to adding
tuples of items i ∈ [c, n] : xi = 0 from the split solution without exceeding the
follower’s capacity.

Notice that, the state-of-the-art algorithms for KP, Minknap [10] and Combo
[9] consider that in general only few items with ratio pi/wi close to that of the
critical item change their values in an optimal solution with respect to the values
taken in the split solution. These items constitute the so-called core of the knap-
sack. Minknap and Combo start with the computation of the split solution and
an expanding core initialized with the critical item only. Then, the algorithms
iteratively enlarge the core by evaluating both the removal of items from the split
solution and the addition of items after the critical item. The empirical evidence
illustrates that an optimal (or close to be optimal) KP solution is typically found
after few iterations.

We cannot precisely characterize the features of these exact algorithms by a
set of constraints within an ILP model, but we can mimic the same algorithmic
reasoning by considering subsets of the items set c − δ, ..., c + δ including the
critical item c for any given core size 2δ+1. In each subset, the items i : i ≤ c−1
are removed from the split solution, while the items j : j ≥ c are added to the
solution. Correspondingly, the initial profit and weight of the split solution are
modified by subtracting the profits and the weights of the removed items and
by summing up the profits and the weights of the added items.

Then, for any given subset τ of the items set c − δ, ..., c + δ, let pτ and wτ be
the overall profit (namely the value of the improvement upon the split solution)
and weight contributions of the items in τ , namely:

p
τ
= −

∑

i∈τ:i<c

pi +
∑

j∈τ:j≥c

pj ; (17)

w
τ
= −

∑

i∈τ:i<c

wi +
∑

j∈τ:j≥c

wj . (18)

A subset τ with pτ ≤ 0 is not considered since it does not improve upon the split
solution. Instead, an improving subset with pτ > 0 is feasible only if wτ ≤ wc

and all items in τ are not interdicted by the leader. In that case, by keeping
the notation of model CRIT1(c), an improvement π can be determined if the
following constraint is added:

π ≥ p
τ
(

wc∑

j=max{1;wτ }
kj −

∑

i∈τ

xi). (19)

Correspondingly, a new model can be generated by introducing a non-
negative variable π that carries the maximum additional profit to the split solu-
tion value provided by any of the additional constraints (19) indicated above.

160 F. Della Croce and R. Scatamacchia

These constraints, denoted as F(π, x, k), link variable π to variables xi and kj .
The model (denoted as CRIT2(c)) is as follows.

CRIT2(c) : min

c−1∑

i=1

pi(1 − xi) + π (20)

subject to F(π, x, k) (21)
(11), (16)

π ≥ 0 (22)

Clearly, due to the addition of constraints inF(π, x, k), we have z(CRIT1(c)) ≤
z(CRIT2(c)) for any c. Notice that, in all these additional constraints, only items
whichwill not be interdicted by the leader can be packed and the follower’s capacity
constraint is not violated. We denote as proper any set F(π, x, k) that satisfies both
conditions. After the set F(π, x, k) is built, variable π will carry the maximum
profit obtainable in addition to the profit of the split solution.

Proposition 2. If KPLP (x∗) admits a critical item c and model CRIT2(c) has
a proper set F(π, x, k), then z(CRIT2(c)) ≤ z∗.

Proof. Since model CRIT2(c) considers feasible solutions for KP (x∗), the
inequality holds by applying the same argument of Proposition 1. ��

We remark that models CRIT1(c) and CRIT2(c) contain a pseudo polyno-
mial number of binary variables kj depending on the magnitude of the follower’s
weights. Hence, the hardness of these ILP models may increase with the size
increase of such input entries.

4 A New Exact Approach for BKP

4.1 Overview

We propose an exact algorithm for BKP that considers the possible existence
of a critical item in KPLP (x∗) and exploits the bounds provided by model
CRIT2(c). The key idea of the algorithm is to compute appropriate leader’s
solutions by exploring the most promising subproblems in terms of lower bounds.
This strategy considerably speeds up in practice both the identification and
certification of an optimal interdiction structure.

The approach involves two main steps. In the first step, the possible non-
existence of a critical item is first evaluated. Then, the approach assumes the exis-
tence of a critical item and identifies a set of possible candidate items. For each
candidate item c and a parameter δ to identify the core size, model CRIT2(c)
is built by considering several subsets of additional constraints (19). Then the
linear relaxation CRITLP

2 (c) is solved, where the integrality constraints (15)
and (16) are replaced by inclusion in [0, 1]. The feasible problems CRITLP

2 (c)
are sorted by increasing optimal value so as to identify an order of the most
promising subproblems to explore. A limited number of feasible BKP solutions
is also computed in this step.

New Approach for the Bilevel KP 161

In the second step, each relevant subproblem is explored by constraint genera-
tion until the subproblem can be pruned. An optimal BKP solution is eventually
returned. The approach takes as input five parameters α, β, δ, μ, γ and relies
on an ILP solver along its steps. We discuss the steps of the algorithm in the
following. The corresponding pseudo code is provided in Appendix.

4.2 Step 1

Handling the Possible Non-existence of a Critical Item. We first consider
the case where there does not exist a critical item in KPLP (x∗). Thus, the
follower will select all available items which are not interdicted by the leader and
an optimal solution of BKP is found by solving the following problem NCR.

NCR : min

n∑

i=1

pi(1 − xi) (23)

subject to
n∑

i=1

vixi ≤ Cu (24)

n∑

i=1

wi(1 − xi) ≤ Cl (25)

xi ∈ {0, 1} i = 1, . . . , n (26)

If problem NCR is feasible, let denote by x′ the related optimal solution
representing the leader’s strategy. The corresponding follower’s solution is
denoted by y′, with y′

i = 1 − x′
i (i = 1, . . . , n). The current best solution (x∗, y∗)

with value z∗ (which will be optimal at the end of the algorithm) is initialized
accordingly (Lines 3–4 of the pseudo code).

Identifying the Relevant Critical Items. We now assume that there exists a
critical item c in KPLP (x∗) (Lines 5–13) and estimate the first and last possible
items l and r that can be critical according to ordering (8). For item l we have

l := min{j :

j∑

i=1

wi ≥ Cl}. (27)

All items 1, . . . , (l − 1) cannot in fact be critical even without the leader’s inter-
diction. For the last item r, we first compute the maximum weight of the follower
that can be interdicted by the leader (similarly as in [2]) by solving the following
problem (denoted by LW).

LW : max

n∑

i=1

wixi (28)

subject to

n∑

i=1

vixi ≤ Cu (29)

xi ∈ {0, 1} i = 1, . . . , n (30)

Item r is defined as

r := min{j :

j∑

i=1

wi ≥ Cl + z(LW)}. (31)

162 F. Della Croce and R. Scatamacchia

Since from (31) we have
r∑

i=1

wi(1−xi) ≥ Cl for any leader’s strategy, all items

from (r + 1) to n cannot be critical.

Building Models CRIT2(c). For each candidate critical item c ∈ [l, r], we
formulate model CRIT2(c) by constructing a proper set F(π, x, k) as follows.
Consider the subsets involving items in the interval [c − δ, c + δ]. Even for small
value of δ, the number of subsets can be very large. Hence, in order to limit the
number of constraints in F(π, x, k), we propose a different strategy that greedily
selects the subsets according to the procedure denoted as ComputeTuples and
sketched in Appendix.

For a given value of δ, we consider the interval of items [a, b], with a =
max{1; c − δ} and b = min{c + δ;n}. Starting by the empty set, we enumerate
at most α “backward” sets with items (c − 1), . . . , a in increasing order of size.
Each set has a profit and weight equal to the sum of profits and weights of the
included items. We also compute at most β “forward” sets with items c, . . . , b in
increasing order of size and with a weight not superior to the maximum weight
of a backward set. This in order to exclude forward sets having less chance to
be combined with a backward set.

Then the backward (resp. forward) sets are ordered by increasing (resp.
decreasing) profit. We combine each backward set with a forward set and gen-
erate a tuple τ . If pτ > 0 and wτ ≤ wc, we add constraint (19) to F(π, x, k).
We continue adding constraints to F(π, x, k) until their number is superior to
an input parameter μ. If not previously included, we also add to set F(π, x, k)
the constraint π ≥ pckwc

which handles the possible adding of the critical item
to the split solution if the residual capacity is equal to wc.

Then we solve models CRITLP
2 (c) for each c ∈ [l, r] and order the models by

increasing optimal value so as to have an order of most promising subproblems
to explore. If for the first subproblem we have z(CRITLP

2 (c)) ≥ z∗, an optimal
BKP solution is already certified (Line 13 of the pseudo code).

Computing Feasible BKP Solutions. According to the previous order of
subproblems, we compute BKP feasible solutions by considering the first γ sub-
problems (Lines 15–21). For a given item c, we solve model CRIT2(c) obtaining a
solution x̂. If z(CRIT2(c)) < z∗, we solve the induced follower’s problem KP (x̂)
with optimal solution ŷ and update the current best solution if z(KP (x̂)) < z∗.

4.3 Step 2

This step considers all relevant (ordered) suproblems CRIT2(c). For each sub-
problem, we first test for standard variables fixing and then each subproblem is
explored by means of a constraint generation approach (Lines 23–33).

Fixing Variables in Subproblems. For a given problem CRITLP
2 (c), denote

the optimal values of variables xi and kj by xLP
i and kLP

j respectively. Let rxi

and rkj
be the reduced costs of non basic variables in the optimal solution of

New Approach for the Bilevel KP 163

CRITLP
2 (c). We apply then standard variable-fixing techniques from Integer

Linear Programming: if the gap between the best feasible solution available and
the optimal solution value of the continuous relaxation solution is not greater
than the absolute value of a non basic variable reduced cost, then the related
variable can be fixed to its value in the continuous relaxation solution. Thus, the
following constraints are added to CRIT2(c):

∀ i : |rxi
| ≥ z

∗ − z(CRIT
LP
2 (c)), xi = x

LP
i ; (32)

∀ j : |rkj
| ≥ z

∗ − z(CRIT
LP
2 (c)), kj = k

LP
j . (33)

Solving Subproblems. For each open subproblem CRIT2(c), we first solve
CRIT2(c) obtaining a solution x̄. If the corresponding objective value is lower
than the current best feasible solution value, we solve KP (x̄) with solution ȳ
and if an improving solution is found, the current best solution is updated, as
in Sect. 4.2. Then, we add to CRIT2(c) the constraint

n∑

i:ȳi=1

xi ≥ 1. (34)

Constraint (34) is a cut imposing that at least one item selected by the
follower in solution ȳ must be interdicted. We solve CRIT2(c) with one more
constraint and apply the same procedure until z(CRIT2(c)) ≥ z∗ or the problem
becomes infeasible. At the end of Step 2, the optimal BKP solution (x∗, y∗) is
returned (Line 34).

5 Computational Results

All tests were performed on an Intel i7 CPU @ 2.4 GHz with 8 GB of RAM.
The code was implemented in the C++ programming language. The ILP
solver used along the steps of the algorithm is CPLEX 12.6.2. The parame-
ters of the ILP solver were set to their default values. The BKP instances with
n = 35, 40, 45, 50, 55 are generated in [2] as follows. Profits pi and weights wi

of the follower and weights vi of the leader are integers randomly distributed in
[1, 100]: 10 instances are generated for each value of n. The follower’s capacity Cl

is set to �(INS/11)
∑n

i wi� where INS (= 1, . . . , 10) denotes the instance iden-
tifier. The leader’s capacity is randomly selected in the interval [Cl −10;Cl +10].

We first tested our approach on these 50 benchmark instances. After some
preliminary computational tests, we chose the following parameter entries for
our approach: α = 100, β = 100, δ = 10, μ = 150, γ = 2. Algorithm CCLW
in [2] solves all instances with 50 items within a CPU time limit of 3600 s but
runs out of time limit in two instances with 55 items. Algorithm in [7] solves
all benchmark instances, requiring at most a computation time of about 85 s for
solving an instance with 55 items. The proposed exact approach outperforms
the competing algorithms, successfully solving to optimality each instance in at
most 1.1 s (the maximum CPU time is reached in an instance with 55 items)

164 F. Della Croce and R. Scatamacchia

with an average of 0.2 s. Notice that the tests in [2] and in [7] were carried
out on different but comparable machines in terms of hardware specifications.
Furthermore, the computational tests in both [2] and [7] are limited to instances
with 55 items. We then tested larger instances with n = 100, 200, 300, 400, 500
according to the generation scheme in [2]. For each value of n and INS, we
generated 10 instances for a total of 500 instances. For these large instances, we
set the parameters of our algorithm to the following values: α = 500, β = 500,
δ = 20, μ = 1000, γ = 5. It is pointed out in [2] that in instances with INS ≥ 5
the follower’s capacity constraint is expected to be inactive and this makes the
instances easy to solve. Our computational experiments confirm this trend: the
proposed algorithm solves each instance with n from 100 to 500 and INS ≥ 5
in at most 8 s never invoking Step 2. In the light of this consideration, we report
in the following Table 1 only the results for instances with INS ≤ 4.

Table 1. BKP instances with n = 100, 200, 300, 400, 500 and INS ≤ 4.

n INS #Opt CPU time # Subproblems
in Step 2

CRIT2(·)
solved

Average Max Average Max Average Max

100 1 10 2.1 3.0 0.7 2.0 4.8 7.0
2 10 5.6 9.9 3.8 9.0 8.9 16.0
3 10 4.3 6.4 2.5 7.0 7.5 12.0
4 10 2.3 4.5 0.7 4.0 5.2 9.0

200 1 10 5.3 10.7 3.4 7.0 8.9 17.0
2 10 7.8 12.2 5.0 9.0 10.1 14.0
3 10 9.1 13.6 6.4 12.0 12.3 19.0
4 10 6.0 8.6 3.5 8.0 8.3 13.0

300 1 10 6.4 8.3 3.9 8.0 9.0 13.0
2 10 15.5 37.4 7.2 14.0 13.5 23.0
3 10 14.0 17.7 10.9 15.0 16.8 24.0
4 10 8.7 13.2 4.9 11.0 9.9 16.0

400 1 10 8.8 12.3 6.7 10.0 12.8 17.0
2 10 15.2 18.7 9.1 12.0 15.1 20.0
3 10 19.0 30.5 12.0 17.0 18.8 32.0
4 10 12.6 16.5 8.4 23.0 13.8 30.0

500 1 10 11.9 18.2 7.6 13.0 13.1 20.0
2 10 20.6 26.6 11.0 20.0 17.0 25.0
3 10 21.2 25.8 12.7 17.0 17.8 22.0
4 10 15.1 17.1 4.7 8.0 9.8 13.0

New Approach for the Bilevel KP 165

The results in the table are summarized in terms of average, maximum CPU
time and number of optimal solutions obtained with a time limit of 60 s. We also
report average and maximum number of subproblems explored in Step 2. The last
column reports average and maximum number of times model CRIT2(c) is solved
along the two steps. The results illustrate the effectiveness of our approach. All
instances are solved to optimality requiring 37.4 s at most for an instance with
300 items. The number of subproblems handled by Step 2 is in general limited,
reaching a maximum value of 23 (in an instance with 400 items). Also, the
number of models CRIT2(c) to be solved is generally limited and never superior
to 32. We finally point out that the number of times constraint (34) is added
to each subproblem is limited: in the tested instances, the while–loop of Step 2
executed 8 iterations at most.

Appendix

ComputeTuples(c, α, β, δ, μ)
1: Consider items in the interval [a, b] with a := max{c−δ; 1}, b := min{c+δ;n}.
2: Starting from the empty set and in increasing order of size, enumerate α

backward sets with items (c−1), . . . , a. Denote by wmax the maximum weight
of a backward set. Order the sets by increasing profits.

3: Enumerate β forward sets with items c, . . . , b in increasing order of size and
with a weight not superior to wmax. Order the sets by decreasing profits.

4: Take the first available backward set. Merge the set with a forward set and
generate tuple τ .

5: If pτ > 0 and wτ ≤ wc, add constraint π ≥ pτ (
wc∑

j=max{1;wτ }
kj − ∑

i∈τ

xi) to

F(π, x, k).
6: Iterate Steps 4-5 as long as |F(π, x, k)| ≤ μ.
7: If not already included, add to F(π, x, k) constraint π ≥ pckwc

.

166 F. Della Croce and R. Scatamacchia

Exact solution approach
1: Input: BKP instance, parameters α, β, δ, μ, γ.

� Step 1
2: Handle the absence of a critical item:
3: solve NCR; z∗ ← +∞;
4: if NCR has a feasible solution then x∗ = x′, y∗ = y′, z∗ = z(NCR); end

if
5: Identify the candidate critical items and build models CRIT2(c):
6: Compute the interval of critical items [l, r]: l ← apply (27), r ← apply (31);
7: for all c in [l, r] do
8: Build model CRIT2(c) by procedure ComputeTuples(c, α, β, δ, μ);
9: Solve model CRITLP

2 (c);
10: end for
11: Sort models CRIT2(c) by increasing z(CRITLP

2 (c)).
12: =⇒ Create a list of ordered critical items L = {c1, c2, . . . };
13: if z(CRITLP

2 (c1)) ≥ z∗ then return (x∗, y∗); end if
14: Compute feasible BKP solutions:
15: for i = 1, . . . , γ do
16: if z(CRITLP

2 (ci)) < z∗ then x̂ ← solve CRIT2(ci);
17: if z(CRIT2(ci)) < z∗ then ŷ ← solve KP (x̂);
18: if z(KP (x̂)) < z∗ then x∗ = x̂, y∗ = ŷ, z∗ = z(KP (x̂)); end if
19: end if
20: end if
21: end for

� Step 2
22: Solve subproblems:
23: for all c in list L do
24: if z(CRITLP

2 (c)) ≥ z∗ then return (x∗, y∗); end if
25: Apply (32), (33) and fix variables in CRIT2(c);
26: x̄ ← solve CRIT2(c);
27: while z(CRIT2(c)) < z∗ do
28: ȳ ← solve KP (x̄);
29: if z(KP (x̄) < z∗ then x∗ = x̄, y∗ = ȳ, z∗ = z(KP (x̄)); end if
30: Add constraint (34) to CRIT2(c);
31: x̄ ← solve CRIT2(c);
32: end while
33: end for
34: return (x∗, y∗).

New Approach for the Bilevel KP 167

References

1. Brotcorne, L., Hanafi, S., Mansi, R.: One-level reformulation of the bilevel knapsack
problem using dynamic programming. Discrete Optim. 10, 1–10 (2013)

2. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.: Bilevel knapsack with inter-
diction constraints. INFORMS J. Comput. 28, 319–333 (2016)

3. Carvalho, M., Lodi, A., Marcotte, P.: A polynomial algorithm for a continuous
bilevel knapsack problem. Oper. Res. Lett. 46, 185–188 (2018)

4. Chen, L., Zhang, G.: Approximation algorithms for a bi-level knapsack problem.
Theor. Comput. Sci. 497, 1–12 (2013)

5. Della Croce, F., Scatamacchia, R.: A new exact approach for the bilevel knapsack
with interdiction constraints (2018). http://arxiv.org/abs/1811.02822

6. DeNegre, S.: Interdiction and discrete bilevel linear programming. Ph.D. thesis.
Lehigh University (2011)

7. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: Interdiction games and mono-
tonicity, with application to knapsack problems. INFORMS J. Comput. (2018, to
appear), technical report available at: https://homepage.univie.ac.at/ivana.ljubic/
research/publications/interdiction games and monotonicity.pdf

8. Fischetti, M., Monaci, M., Sinnl, M.: A dynamic reformulation heuristic for gener-
alized interdiction problems. Eur. J. Oper. Res. 267, 40–51 (2018)

9. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for
the 0-1 knapsack problem. Manag. Sci. 45, 414–424 (1999)

10. Pisinger, D.: A minimal algorithm for the 0-1 knapsack problem. Oper. Res. 45,
758–767 (1997)

11. Stackelberg, H.V.: The Theory of the Market Economy. Oxford University Press,
Oxford (1952)

http://arxiv.org/abs/1811.02822
https://homepage.univie.ac.at/ivana.ljubic/research/publications/interdiction_games_and_monotonicity.pdf
https://homepage.univie.ac.at/ivana.ljubic/research/publications/interdiction_games_and_monotonicity.pdf

	Lower Bounds and a New Exact Approach for the Bilevel Knapsack with Interdiction Constraints
	1 Introduction
	2 Notation and Problem Formulation
	3 Computing Lower Bounds on BKP
	4 A New Exact Approach for BKP
	4.1 Overview
	4.2 Step 1
	4.3 Step 2

	5 Computational Results
	References

