
�1-sparsity Approximation Bounds
for Packing Integer Programs

Chandra Chekuri, Kent Quanrud, and Manuel R. Torres(B)

University of Illinois at Urbana-Champaign, Urbana, IL, USA
{chekuri,quanrud2,manuelt2}@illinois.edu

Abstract. We consider approximation algorithms for packing integer
programs (PIPs) of the form max{〈c, x〉 : Ax ≤ b, x ∈ {0, 1}n} where c,
A, and b are nonnegative. We let W = mini,j bi/Ai,j denote the width
of A which is at least 1. Previous work by Bansal et al. [1] obtained
an Ω( 1

Δ
1/�W �
0

)-approximation ratio where Δ0 is the maximum number

of nonzeroes in any column of A (in other words the �0-column spar-
sity of A). They raised the question of obtaining approximation ratios
based on the �1-column sparsity of A (denoted by Δ1) which can be
much smaller than Δ0. Motivated by recent work on covering integer
programs (CIPs) [4,7] we show that simple algorithms based on random-
ized rounding followed by alteration, similar to those of Bansal et al. [1]
(but with a twist), yield approximation ratios for PIPs based on Δ1.
First, following an integrality gap example from [1], we observe that
the case of W = 1 is as hard as maximum independent set even when
Δ1 ≤ 2. In sharp contrast to this negative result, as soon as width is
strictly larger than one, we obtain positive results via the natural LP
relaxation. For PIPs with width W = 1 + ε where ε ∈ (0, 1], we obtain
an Ω(ε2/Δ1)-approximation. In the large width regime, when W ≥ 2, we
obtain an Ω(( 1

1+Δ1/W
)1/(W−1))-approximation. We also obtain a (1−ε)-

approximation when W = Ω( log(Δ1/ε)

ε2
).

Keywords: Packing integer programs · Approximation algorithms ·
�1-column sparsity

1 Introduction

Packing integer programs (abbr. PIPs) are an expressive class of integer pro-
grams of the form:

maximize 〈c, x〉 over x ∈ {0, 1}n s.t. Ax ≤ b,
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where A ∈ R
m×n
≥0 , b ∈ R

m
≥0 and c ∈ R

n
≥0 all have nonnegative entries1. Many

important problems in discrete and combinatorial optimization can be cast as
special cases of PIPs. These include the maximum independent set in graphs and
hypergraphs, set packing, matchings and b-matchings, knapsack (when m = 1),
and the multi-dimensional knapsack. The maximum independent set problem
(MIS), a special case of PIPs, is NP-hard and unless P = NP there is no
n1−ε-approximation where n is the number of nodes in the graph [10,18]. For
this reason it is meaningful to consider special cases and other parameters that
control the difficulty of PIPs. Motivated by the fact that MIS admits a simple

1
Δ(G) -approximation where Δ(G) is the maximum degree of G, previous work
considered approximating PIPs based on the maximum number of nonzeroes in
any column of A (denoted by Δ0); note that when MIS is written as a PIP, Δ0

coincides with Δ(G). As another example, when maximum weight matching is
written as a PIP, Δ0 = 2. Bansal et al. [1] obtained a simple and clever algorithm
that achieved an Ω(1/Δ0)-approximation for PIPs via the natural LP relaxation;
this improved previous work of Pritchard [13,14] who was the first to obtain
an approximation for PIPs only as a function of Δ0. Moreover, the rounding
algorithm in [1] can be viewed as a contention resolution scheme which allows one
to get similar approximation ratios even when the objective is submodular [1,6].
It is well-understood that PIPs become easier when the entries in A are small
compared to the packing constraints b. To make this quantitative we consider the
well-studied notion called the width defined as W := mini,j:Ai,j>0 bi/Ai,j . Bansal
et al. obtain an Ω(( 1

Δ0
)1/�W�)-approximation which improves as W becomes

larger. Although they do not state it explicitly, their approach also yields a
(1 − ε)-approximation when W = Ω( 1

ε2 log(Δ0/ε)).
Δ0 is a natural measure for combinatorial applications such as MIS and

matchings where the underlying matrix A has entries from {0, 1}. However, in
some applications of PIPs such as knapsack and its multi-dimensional general-
ization which are more common in resource-allocation problems, the entries of
A are arbitrary rational numbers (which can be assumed to be from the interval
[0, 1] after scaling). In such applications it is natural to consider another measure
of column-sparsity which is based on the �1 norm. Specifically we consider Δ1,
the maximum column sum of A. Unlike Δ0, Δ1 is not scale invariant so one
needs to be careful in understanding the parameter and its relationship to the
width W . For this purpose we normalize the constraints Ax ≤ b as follows. Let
W = mini,j:Ai,j>0 bi/Ai,j denote the width as before (we can assume without
loss of generality that W ≥ 1 since we are interested in integer solutions). We can
then scale each row Ai of A separately such that, after scaling, the i’th constraint
reads as Aix ≤ W . After scaling all rows in this fashion, entries of A are in the
interval [0, 1], and the maximum entry of A is equal to 1. Note that this scaling
process does not alter the original width. We let Δ1 denote the maximum col-
umn sum of A after this normalization and observe that 1 ≤ Δ1 ≤ Δ0. In many

1 We can allow the variables to have general integer upper bounds instead of restricting
them to be boolean. As observed in [1], one can reduce this more general case to the
{0, 1} case without too much loss in the approximation.
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settings of interest Δ1 � Δ0. We also observe that Δ1 is a more robust measure
than Δ0; small perturbations of the entries of A can dramatically change Δ0

while Δ1 changes minimally.
Bansal et al. raised the question of obtaining an approximation ratio for

PIPs as a function of only Δ1. They observed that this is not feasible via the
natural LP relaxation by describing a simple example where the integrality gap
of the LP is Ω(n) while Δ1 is a constant. In fact their example essentially shows
the existence of a simple approximation preserving reduction from MIS to PIPs
such that the resulting instances have Δ1 ≤ 2; thus no approximation ratio that
depends only on Δ1 is feasible for PIPs unless P = NP . These negative results
seem to suggest that pursuing bounds based on Δ1 is futile, at least in the worst
case. However, the starting point of this paper is the observation that both the
integrality gap example and the hardness result are based on instances where
the width W of the instance is arbitrarily close to 1. We demonstrate that these
examples are rather brittle and obtain several positive results when we consider
W ≥ (1 + ε) for any fixed ε > 0.

1.1 Our Results

Our first result is on the hardness of approximation for PIPs that we already
referred to. The hardness result suggests that one should consider instances
with W > 1. Recall that after normalization we have Δ1 ≥ 1 and W ≥ 1
and the maximum entry of A is 1. We consider three regimes of W and obtain
the following results, all via the natural LP relaxation, which also establish
corresponding upper bounds on the integrality gap.

(i) 1 < W ≤ 2. For W = 1 + ε where ε ∈ (0, 1] we obtain an Ω( ε2

Δ1
)-

approximation.
(ii) W ≥ 2. We obtain an Ω(( 1

1+
Δ1
W

)1/(W−1))-approximation which can be

simplified to Ω(( 1
1+Δ1

)1/(W−1)) since W ≥ 1.
(iii) A (1 − ε)-approximation when W = Ω( 1

ε2 log(Δ1/ε)).

Our results establish approximation bounds based on Δ1 that are essentially
the same as those based on Δ0 as long as the width is not too close to 1.
We describe randomized algorithms which can be derandomized via standard
techniques. The algorithms can be viewed as contention resolution schemes, and
via known techniques [1,6], the results yield corresponding approximations for
submodular objectives; we omit these extensions in this version.

All our algorithms are based on a simple randomized rounding plus alteration
framework that has been successful for both packing and covering problems. Our
scheme is similar to that of Bansal et al. at a high level but we make a simple but
important change in the algorithm and its analysis. This is inspired by recent
work on covering integer programs [4] where �1-sparsity based approximation
bounds from [7] were simplified.
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1.2 Other Related Work

We note that PIPs are equivalent to the multi-dmensional knapsack problem.
When m = 1 we have the classical knapsack problem which admits a very efficient
FPTAS (see [2]). There is a PTAS for any fixed m [8] but unless P = NP an
FPTAS does not exist for m = 2.

Approximation algorithms for PIPs in their general form were considered
initially by Raghavan and Thompson [15] and refined substantially by Srinivasan
[16]. Srinivasan obtained approximation ratios of the form Ω(1/nW ) when A
had entries from {0, 1}, and a ratio of the form Ω(1/n1/�W�) when A had entries
from [0, 1]. Pritchard [13] was the first to obtain a bound for PIPs based solely
on the column sparsity parameter Δ0. He used iterated rounding and his initial
bound was improved in [14] to Ω(1/Δ2

0). The current state of the art is due to
Bansal et al. [1]. Previously we ignored constant factors when describing the
ratio. In fact [1] obtains a ratio of (1 − o(1) e−1

e2Δ0
) by strengthening the basic LP

relaxation.
In terms of hardness of approximation, PIPs generalize MIS and hence one

cannot obtain a ratio better than n1−ε unless P = NP [10,18]. Building on
MIS, [3] shows that PIPs are hard to approximate within a nΩ(1/W ) factor for
any constant width W . Hardness of MIS in bounded degree graphs [17] and
hardness for k-set-packing [11] imply that PIPs are hard to approximate to
within Ω(1/Δ1−ε

0 ) and to within Ω((log Δ0)/Δ0) when Δ0 is a sufficiently large
constant. These hardness results are based on {0, 1} matrices for which Δ0 and
Δ1 coincide.

There is a large literature on deterministic and randomized rounding algo-
rithms for packing and covering integer programs and connections to several
topics and applications including discrepancy theory. �1-sparsity guarantees for
covering integer programs were first obtained by Chen, Harris and Srinivasan [7]
partly inspired by [9].

2 Hardness of Approximating PIPs as a Function of Δ1

Bansal et al. [1] showed that the integrality gap of the natural LP relaxation
for PIPs is Ω(n) even when Δ1 is a constant. One can use essentially the same
construction to show the following theorem whose proof can be found in the
appendix.

Theorem 1. There is an approximation preserving reduction from MIS to
instances of PIPs with Δ1 ≤ 2.

Unless P = NP , MIS does not admit a n1−ε-approximation for any fixed
ε > 0 [10,18]. Hence the preceding theorem implies that unless P = NP one
cannot obtain an approximation ratio for PIPs solely as a function of Δ1.
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Round-and-Alter Framework: input A, b, and α

let x be the optimum fractional solution of the natural LP relaxation
for j ∈ [n], set x′

j to be 1 independently with probability αxj and 0 otherwise
x′′ ← x′

for i ∈ [m] do
find S ⊆ [n] such that setting x′

j = 0 for all j ∈ S would satisfy 〈ei, Ax′〉 ≤ bi

for all j ∈ S, set x′′
j = 0

end for
return x′′

Fig. 1. Randomized rounding with alteration framework.

3 Round and Alter Framework

The algorithms in this paper have the same high-level structure. The algorithms
first scale down the fractional solution x by some factor α, and then randomly
round each coordinate independently. The rounded solution x′ may not be fea-
sible for the constraints. The algorithm alters x′ to a feasible x′′ by considering
each constraint separately in an arbitrary order; if x′ is not feasible for constraint
i some subset S of variables are chosen to be set to 0. Each constraint corre-
sponds to a knapsack problem and the framework (which is adapted from [1])
views the problem as the intersection of several knapsack constraints. A formal
template is given in Fig. 1. To make the framework into a formal algorithm, one
must define α and how to choose S in the for loop. These parts will depend on
the regime of interest.

For an algorithm that follows the round-and-alter framework, the expected
output of the algorithm is E [〈c, x′′〉] =

∑n
j=1 cj ·Pr[x′′

j = 1]. Independent of how
α is defined or how S is chosen, Pr[x′′

j = 1] = Pr[x′′
j = 1|x′

j = 1] · Pr[x′
j = 1]

since x′′
j ≤ x′

j . Then we have

E[〈c, x′′〉] = α

n∑

j=1

cjxj · Pr[x′′
j = 1|x′

j = 1].

Let Eij be the event that x′′
j is set to 0 when ensuring constraint i is satisfied

in the for loop. As x′′
j is only set to 0 if at least one constraint sets x′′

j to 0, we
have

Pr[x′′
j = 0|x′

j = 1] = Pr

⎡

⎣
⋃

i∈[m]

Eij |x′
j = 1

⎤

⎦ ≤
m∑

i=1

Pr[Eij |x′
j = 1].

Combining these two observations, we have the following lemma, which
applies to all of our subsequent algorithms.

Lemma 1. Let A be a randomized rounding algorithm that follows the round-
and-alter framework given in Fig. 1. Let x′ be the rounded solution obtained with
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round-and-alter-by-sorting(A, b, α1):
let x be the optimum fractional solution of the natural LP relaxation
for j ∈ [n], set x′

j to be 1 independently with probability α1xj and 0 otherwise
x′′ ← x′

for i ∈ [m] do
sort and renumber such that Ai,1 ≤ · · · ≤ Ai,n

s ← max{� ∈ [n] :
∑�

j=1 Ai,jx
′
j ≤ bi}

for each j ∈ [n] such that j > s, set x′′
j = 0

end for
return x′′

Fig. 2. Round-and-alter in the large width regime. Each constraint sorts the coordi-
nates in increasing size and greedily picks a feasible set and discards the rest.

scaling factor α. Let Eij be the event that x′′
j is set to 0 by constraint i. If for all

j ∈ [n] we have
∑m

i=1 Pr[Eij |x′
j = 1] ≤ γ, then A is an α(1 − γ)-approximation

for PIPs.

We will refer to the quantity Pr[Eij |x′
j = 1] as the rejection probability of

item j in constraint i. We will also say that constraint i rejects item j if x′′
j is

set to 0 in constraint i.

4 The Large Width Regime: W ≥ 2

In this section, we consider PIPs with width W ≥ 2. Recall that we assume
A ∈ [0, 1]m×n and bi = W for all i ∈ [m]. Therefore we have Ai,j ≤ W/2 for
all i, j and from a knapsack point of view all items are “small”. We apply the
round-and-alter framework in a simple fashion where in each constraint i the
coordinates are sorted by the coefficients in that row and the algorithm chooses
the largest prefix of coordinates that fit in the capacity W and the rest are
discarded. We emphasize that this sorting step is crucial for the analysis and
differs from the scheme in [1]. Figure 2 describes the formal algorithm.

The Key Property for the Analysis: The analysis relies on obtaining a bound on
the rejection probability of coordinate j by constraint i. Let Xj be the indicator
variable for j being chosen in the first step. We show that Pr[Eij | Xj = 1] ≤ cAij

for some c that depends on the scaling factor α. Thus coordinates with smaller
coefficients are less likely to be rejected. The total rejection probability of j,∑m

i=1 Pr[Eij | Xj = 1], is proportional to the column sum of coordinate j which
is at most Δ1.

The analysis relies on the Chernoff bound, and depending on the parameters,
one needs to adjust the analysis. In order to highlight the main ideas we provide
a detailed proof for the simplest case and include the proofs of some of the other
cases in the appendix. The rest of the proofs can be found in the full version [5].
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4.1 An Ω(1/Δ1)-approximation Algorithm

We show that round-and-alter-by-sorting yields an Ω(1/Δ1)-approximation if we
set the scaling factor α1 = 1

c1Δ1
where c1 = 4e1+1/e.

The rejection probability is captured by the following main lemma.

Lemma 2. Let α1 = 1
c1Δ1

for c1 = 4e1+1/e. Let i ∈ [m] and j ∈ [n]. Then in the

algorithm round-and-alter-by-sorting(A, b, α1), we have Pr[Eij |Xj = 1] ≤ Ai,j

2Δ1
.

Proof. At iteration i of round-and-alter-by-sorting, after the set {Ai,1, . . . , Ai,n}
is sorted, the indices are renumbered so that Ai,1 ≤ · · · ≤ Ai,n. Note that j may
now be a different index j′, but for simplicity of notation we will refer to j′ as
j. Let ξ� = 1 if x′

� = 1 and 0 otherwise. Let Yij =
∑j−1

�=1 Ai,�ξ�.
If Eij occurs, then Yij > W − Ai,j , since x′′

j would not have been set to zero
by constraint i. That is,

Pr[Eij |Xj = 1] ≤ Pr[Yij > W − Ai,j |Xj = 1].

The event Yij > W − Ai,j does not depend on x′
j . Therefore,

Pr[Yij > W − Ai,j |Xj = 1] ≤ Pr[Yij ≥ W − Ai,j ].

To upper bound E[Yij ], we have

E[Yij ] =
j−1∑

�=1

Ai,� · Pr[X� = 1] ≤ α1

n∑

�=1

Ai,�x� ≤ α1W.

As Ai,j ≤ 1, W ≥ 2, and α1 < 1/2, we have (1−α1)W
Ai,j

> 1. Using the fact that
Ai,j is at least as large as all entries Ai,j′ for j′ < j, we satisfy the conditions to
apply the Chernoff bound in Theorem 7. This implies

Pr[Yij > W − Ai,j ] ≤
(

α1e
1−α1W

W − Ai,j

)(W−Ai,j)/Ai,j

.

Note that W
W−Ai,j

≤ 2 as W ≥ 2. Because e1−α1 ≤ e and by the choice of α1, we
have
(

α1e
1−α1W

W − Ai,j

)(W−Ai,j)/Ai,j

≤ (2eα1)
(W−Ai,j)/Ai,j =

(
1

2e1/eΔ1

)(W−Ai,j)/Ai,j

.

Then we prove the final inequality in two parts. First, we see that W ≥ 2
and Ai,j ≤ 1 imply that W−Ai,j

Ai,j
≥ 1. This implies

(
1

2Δ1

)(W−1)/Ai,j

≤ 1
2Δ1

.

Second, we see that

(1/e1/e)(W−Ai,j)/Ai,j ≤ (1/e1/e)1/Ai,j ≤ Ai,j

for Ai,j ≤ 1, where the first inequality holds because W − Ai,j ≥ 1 and the
second inequality holds by Lemma 7. This concludes the proof.
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Theorem 2. When setting α1 = 1
c1Δ1

where c1 = 4e1+1/e, for PIPs with
width W ≥ 2, round-and-alter-by-sorting(A, b, α1) is a randomized (α1/2)-
approximation algorithm.

Proof. Fix j ∈ [n]. By Lemma 2 and the definition of Δ1, we have

m∑

i=1

Pr[Eij |Xj = 1] ≤
m∑

i=1

Ai,j

2Δ1
≤ 1

2
.

By Lemma 1, which shows that upper bounding the sum of the rejection prob-
abilities by γ for every item leads to an α1(1 − γ)-approximation, we get the
desired result.

4.2 An Ω( 1
(1+Δ1/W )1/ (W −1) )-approximation

We improve the bound from the previous section by setting α1 =
1

c2(1+Δ1/W )1/(W −1) where c2 = 4e1+2/e. Note that the scaling factor becomes
larger as W increases. The proof of the following lemma can be found in the
appendix.

Lemma 3. Let α1 = 1
c2(1+Δ1/W )1/(W −1) for c2 = 4e1+2/e. Let i ∈ [m] and

j ∈ [n]. Then in the algorithm round-and-alter-by-sorting(A, b, α1), we have
Pr[Eij |Xj = 1] ≤ Ai,j

2Δ1
.

If we replace Lemma 2 with Lemma 3 in the proof of Theorem 2, we obtain
the following stronger guarantee.

Theorem 3. When setting α1 = 1
c2(1+Δ1/W )1/(W −1) where c2 = 4e1+2/e, for

PIPs with width W ≥ 2, round-and-alter-by-sorting(A, b, α1) is a randomized
(α1/2)-approximation.

4.3 A (1 − O(ε))-approximation When W ≥ Ω( 1
ε2 ln(Δ1

ε
))

In this section, we give a randomized (1−O(ε))-approximation for the case when
W ≥ Ω( 1

ε2 ln(Δ1
ε )). We use the algorithm round-and-alter-by-sorting in Fig. 2 with

the scaling factor α1 = 1 − ε.

Lemma 4. Let 0 < ε < 1
e , α1 = 1 − ε, and W = 2

ε2 ln(Δ1
ε ) + 1. Let i ∈ [m] and

j ∈ [n]. Then in round-and-alter-by-sorting(A, b, α1), we have Pr[Eij |Xj = 1] ≤
e · εAi,j

Δ1
.

Lemma 4 implies that we can upper bound the sum of the rejection proba-
bilities for any item j by eε, leading to the following theorem.

Theorem 4. Let 0 < ε < 1
e and W = 2

ε2 ln(Δ1
ε ) + 1. When setting α1 = 1 −

ε and c = e + 1, round-and-alter-by-sorting(A, b, α1) is a randomized (1 − cε)-
approximation algorithm.
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5 The Small Width Regime: W = (1 + ε)

We now consider the regime when the width is small. Let W = 1 + ε for some
ε ∈ (0, 1]. We cannot apply the simple sorting based scheme that we used for the
large width regime. We borrow the idea from [1] in splitting the coordinates into
big and small in each constraint; now the definition is more refined and depends
on ε. Moreover, the small coordinates and the big coordinates have their own
reserved capacity in the constraint. This is crucial for the analysis. We provide
more formal details below.

We set α2 to be ε2

c3Δ1
where c3 = 8e1+2/e. The alteration step differentiates

between “small” and “big” coordinates as follows. For each i ∈ [m], let Si =
{j : Ai,j ≤ ε/2} and Bi = {j : Ai,j > ε/2}. We say that an index j is small
for constraint i if j ∈ Si. Otherwise we say it is big for constraint i when
j ∈ Bi. For each constraint, the algorithm is allowed to pack a total of 1+ ε into
that constraint. The algorithm separately packs small indices and big indices.
In an ε amount of space, small indices that were chosen in the rounding step
are sorted in increasing order of size and greedily packed until the constraint is
no longer satisfied. The big indices are packed by arbitrarily choosing one and
packing it into the remaining space of 1. The rest of the indices are removed
to ensure feasibility. Figure 3 gives pseudocode for the randomized algorithm
round-alter-small-width which yields an Ω(ε2/Δ1)-approximation.

round-alter-small-width(A, b, ε, α2):
let x be the optimum fractional solution of the natural LP relaxation
for j ∈ [n], set x′

j to be 1 independently with probability α2xj and 0 otherwise
x′′ ← x′

for i ∈ [m] do
if |Si| = 0 then

s ← 0
else

sort and renumber such that Ai,1 ≤ · · · ≤ Ai,n

s ← max
{

� ∈ Si :
∑�

j=1 Ai,jx
′
j ≤ ε

}

end if
if |Bi| = 0, then t = 0, otherwise let t be an arbitrary element of Bi

for each j ∈ [n] such that j > s and j �= t, set x′′
j = 0

end for
return x′′

Fig. 3. By setting the scaling factor α2 = ε2

cΔ1
for a sufficiently large constant c,

round-alter-small-width is a randomized Ω(ε2/Δ1)-approximation for PIPs with width
W = 1 + ε for some ε ∈ (0, 1] (see Theorem 5).

It remains to bound the rejection probabilities. Recall that for j ∈ [n], we
define Xj to be the indicator random variable 1(x′

j = 1) and Eij is the event
that j was rejected by constraint i.
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We first consider the case when index j is big for constraint i. Note that it
is possible that there may not exist any big indices for a given constraint. The
same holds true for small indices.

Lemma 5. Let ε ∈ (0, 1] and α2 = ε2

c3Δ1
where c3 = 8e1+2/e. Let i ∈ [m] and

j ∈ Bi. Then in round-alter-small-width(A, b, ε, α2), we have Pr[Eij |Xj = 1] ≤
Ai,j

2Δ1
.

Proof. Let E be the event that there exists j′ ∈ Bi such that j′ �= j and Xj′ = 1.
Observe that if Eij occurs and Xj = 1, then it must be the case that at least
one other element of Bi was chosen in the rounding step. Thus,

Pr[Eij |Xj = 1] ≤ Pr[E ] ≤
∑

�∈Bi
� �=j

Pr[X� = 1] ≤ α2

∑

�∈Bi

x�,

where the second inequality follows by the union bound. Observe that for all � ∈
Bi, we have Ai,� > ε/2. By the LP constraints, we have 1 + ε ≥ ∑

�∈Bi
Ai,�x� >

ε
2 · ∑

�∈Bi
x�. Thus,

∑
�∈Bi

x� ≤ 1+ε
ε/2 = 2/ε + 2.

Using this upper bound for
∑

�∈Bi
x�, we have

α2

∑

�∈Bi

x� ≤ ε2

c3Δ1

(
2
ε

+ 2
)

≤ 4ε

c3Δ1
≤ Ai,j

2Δ1
,

where the second inequality utilizes the fact that ε ≤ 1 and the third inequality
holds because c3 ≥ 16 and Ai,j > ε/2.

Next we consider the case when index j is small for constraint i. The analysis
here is similar to that in the preceding section with width at least 2 and thus
the proof is deferred to the full version [5].

Lemma 6. Let ε ∈ (0, 1] and α2 = ε2

c3Δ1
where c3 = 8e1+2/e. Let i ∈ [m] and

j ∈ Si. Then in round-alter-small-width(A, b, ε, α2), we have Pr[Eij |Xj = 1] ≤
Ai,j

2Δ1
.

Theorem 5. Let ε ∈ (0, 1]. When setting α2 = ε2

c3Δ1
for c3 = 8e1+2/e, for

PIPs with width W = 1 + ε, round-alter-small-width(A, b, ε, α2) is a randomized
(α2/2)-approximation algorithm.

Proof. Fix j ∈ [n]. Then by Lemmas 5 and 6 and the definition of Δ1, we have

m∑

i=1

Pr[Eij |Xj = 1] ≤
m∑

i=1

Ai,j

2Δ1
≤ 1

2
.

Recall that Lemma 1 gives an α2(1 − γ)-approximation where γ is an upper
bound on the sum of the rejection probabilities for any item. This concludes the
proof.
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Appendix

A Chernoff Bounds and Useful Inequalities

The following standard Chernoff bound is used to obtain a more convenient
Chernoff bound in Theorem 7. The proof of Theorem 7 follows directly from
choosing δ such that (1 + δ)μ = W − β and applying Theorem 6.

Theorem 6 ([12]). Let X1, . . . , Xn be independent random variables where Xi

is defined on {0, βi}, where 0 < βi ≤ β ≤ 1 for some β. Let X =
∑

i Xi and
denote E[X] as μ. Then for any δ > 0,

Pr[X ≥ (1 + δ)μ] ≤
(

eδ

(1 + δ)1+δ

)μ/β

Theorem 7. Let X1, . . . , Xn ∈ [0, β] be independent random variables for some
0 < β ≤ 1. Suppose μ = E[

∑
i Xi] ≤ αW for some 0 < α < 1 and W ≥ 1 where

(1 − α)W > β. Then

Pr

[
∑

i

Xi > W − β

]

≤
(

αe1−αW

W − β

)(W−β)/β

.

Lemma 7. Let x ∈ (0, 1]. Then (1/e1/e)1/x ≤ x.

Lemma 8. Let y ≥ 2 and x ∈ (0, 1]. Then x/y ≥ (1/e2/e)y/2x.

B Skipped Proofs

B.1 Proof of Theorem 1

Proof. Let G = (V,E) be an undirected graph without self-loops and let n = |V |.
Let A ∈ [0, 1]n×n be indexed by V . For all v ∈ V , let Av,v = 1. For all uv ∈ E,
let Au,v = Av,u = 1/n. For all the remaining entries in A that have not yet been
defined, set these entries to 0. Consider the following PIP:

maximize 〈x,1〉 over x ∈ {0, 1}n s.t. Ax ≤ 1. (1)

Let S be the set of all feasible integral solutions of (1) and I be the set of
independent sets of G. Define g : S → I where g(x) = {v : xv = 1}. To show g
is surjective, consider a set I ∈ I. Let y be the characteristic vector of I. That
is, yv is 1 if v ∈ I and 0 otherwise. Consider the row in A corresponding to an
arbitrary vertex u where yu = 1. For all v ∈ V such that v is a neighbor to
u, yv = 0 as I is an independent set. Thus, as the nonzero entries in A of the
row corresponding to u are, by construction, the neighbors of u, it follows that
the constraint corresponding to u is satisfied in (1). As u is an arbitrary vertex,
it follows that y is a feasible integral solution to (1) and as I = {v : yv = 1},
g(y) = I.
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Define h : S → N0 such that h(x) = |g(x)|. It is clear that maxx∈S h(x) is
equal to the optimal value of (1). Let Imax be a maximum independent set of G.
As g is surjective, there exists z ∈ S such that g(z) = Imax. Thus, maxx∈S h(x) ≥
|Imax|. As maxx∈S h(x) is equal to the optimum value of (1), it follows that a
β-approximation for PIPs implies a β-approximation for maximum independent
set.

Furthermore, we note that for this PIP, Δ1 ≤ 2, thus concluding the proof.

B.2 Proof of Lemma 3

Proof. The proof proceeds similarly to the proof of Lemma 2. Since α1 < 1/2,
everything up to and including the application of the Chernoff bound there
applies. This gives that for each i ∈ [m] and j ∈ [n],

Pr[Eij |Xj = 1] ≤ (2eα1)
(W−Ai,j)/Ai,j .

By choice of α1, we have

(2eα1)
(W−Ai,j)/Ai,j =

(
1

2e2/e(1 + Δ1/W )1/(W−1)

)(W−Ai,j)/Ai,j

We prove the final inequality in two parts. First, note that W−Ai,j

Ai,j
≥ W − 1

since Ai,j ≤ 1. Thus,

(
1

2(1 + Δ1/W )1/(W−1)

)(W−Ai,j)/Ai,j

≤ 1
2W−1(1 + Δ1/W )

≤ W

2Δ1
.

Second, we see that

(
1

e2/e

)(W−Ai,j)/Ai,j

≤
(

1
e2/e

)W/2Ai,j

≤ Ai,j

W

for Ai,j ≤ 1, where the first inequality holds because W ≥ 2 and the second
inequality holds by Lemma 8.
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