

Identically Self-blocking Clutters

Ahmad Abdi^(\boxtimes), Gérard Cornuéjols, and Dabeen Lee

Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA *{*aabdi,gc0v,dabeenl*}*@andrew.cmu.edu

Abstract. A clutter is *identically self-blocking* if it is equal to its blocker. We prove that every identically self-blocking clutter different from *{{a}}* is nonideal. Our proofs borrow tools from Gauge Duality and Quadratic Programming. Along the way we provide a new lower bound for the packing number of an arbitrary clutter.

1 The Main Result

All sets considered in this paper are finite. Let V be a set of *elements*, and let C be a family of subsets of V called *members*. If no member contains another, then C is said to be a *clutter* over *ground set* V [\[12](#page-10-0)]. All clutters considered in this paper are different from $\{\}, \{\emptyset\}$. Let C be a clutter over ground set V. A *cover* is a subset of V that intersects every member. The *covering number*, denoted $\tau(\mathcal{C})$, is the minimum cardinality of a cover. A *packing* is a collection of pairwise disjoint members. The *packing number*, denoted $\nu(\mathcal{C})$, is the maximum cardinality of a packing. Observe that $\tau(\mathcal{C}) > \nu(\mathcal{C})$. A cover is *minimal* if it does not contain another cover. The family of minimal covers forms another clutter over ground set V; this clutter is called the *blocker of* C and is denoted $b(C)$ [\[12\]](#page-10-0). It is well-known that $b(b(\mathcal{C})) = C$ [\[12,](#page-10-0)[17](#page-11-0)]. We say that C is an *identically self*blocking clutter if $C = b(C)$. (This terminology was coined in [\[4\]](#page-10-1).) Observe that ${a}$ is the only identically self-blocking clutter with a member of cardinality one.

Theorem 1 ([\[6](#page-10-2)]). *A clutter* C *is identically self-blocking if, and only if,* $\nu(\mathcal{C}) =$ $\nu(b(\mathcal{C}))=1.$

Consider for $w \in \mathbb{Z}_+^V$ the dual pair of linear programs

$$
\min_{w \in X} w^{\top} x
$$
\n
$$
\text{s.t. } \sum_{x \geq 0} (x_u : u \in C) \geq 1 \ \forall C \in C \quad \text{s.t. } \sum_{y \geq 0} (y_C : u \in C \in C) \leq w_u \ \forall u \in V
$$
\n
$$
y \geq 0,
$$

labeled (P) , (D) , respectively. Denote by $\tau^*(\mathcal{C}, w)$, $\nu^*(\mathcal{C}, w)$ the optimal values of (P) , (D) , respectively, and by $\tau(\mathcal{C}, w)$, $\nu(\mathcal{C}, w)$ the optimal values of (P) , (D) subject to the additional integrality constraints $x \in \mathbb{Z}^V, y \in \mathbb{Z}^{\mathcal{C}}$, respectively. Observe that by Strong Linear Programming Duality, $\tau(C, w) \geq \tau^*(C, w) =$ $\nu^*(\mathcal{C}, w) \ge \nu(\mathcal{C}, w).$

Notice the correspondence between the $0-1$ feasible solutions of (P) and the covers of \mathcal{C} , as well as the correspondence between the integer feasible solutions of (D) for $w = 1$ and the packings of C. In particular, $\tau(C, 1) = \tau(C)$ and $\nu(\mathcal{C}, \mathbf{1}) = \nu(\mathcal{C})$. We will refer to the feasible solutions of (P) as *fractional covers*, and to the feasible solutions of (D) for $w = 1$ as *fractional packings*.

C has the *max-flow min-cut property* if $\tau(C, w) = \nu(C, w)$ for all $w \in \mathbb{Z}_+^V$ [\[10\]](#page-10-3). C is *ideal* if $\tau(C, w) = \nu^*(C, w)$ for all $w \in \mathbb{Z}_+^V$ [\[11\]](#page-10-4). Clearly clutters with the maxflow min-cut property are ideal. The max-flow min-cut property is not closed under taking blockers, but

Theorem 2 ([\[18\]](#page-11-1)**).** *A clutter is ideal if, and only if, its blocker is ideal.*

If C is an identically self-blocking clutter different from $\{\{a\}\}\,$, then $\tau(\mathcal{C})$ $2 > 1 = \nu(\mathcal{C})$ by Theorem [1,](#page-0-0) so $\mathcal C$ does not have the max-flow min-cut property. In this paper, we prove the following stronger statement:

Theorem 3. *An identically self-blocking clutter different from* {{a}} *is nonideal.*

For an integer $n \geq 3$, denote by Δ_n the clutter over ground set $\{1,\ldots,n\}$ whose members are $\{1, 2\}, \{1, 3\}, \ldots, \{1, n\}, \{2, 3, \ldots, n\}.$ Notice that the elements and members of Δ_n correspond to the points and lines of a degenerate projective plane. Denote by \mathbb{L}_7 the clutter over ground set $\{1,\ldots,7\}$ whose members are $\{1, 2, 3\}, \{1, 4, 5\}, \{1, 6, 7\}, \{2, 4, 7\}, \{2, 5, 6\}, \{3, 4, 6\}, \{3, 5, 7\}.$ Notice that the elements and members of \mathbb{L}_7 correspond to the points and lines of the Fano plane. It can be readily checked that $\{\Delta_n : n \geq 3\} \cup \{\mathbb{L}_7\}$ are identically self-blocking clutters. There are many other examples of identically selfblocking clutters, and in fact there is one for every pair of blocking clutters ([\[4\]](#page-10-1), Remark 3.4 and Corollary 3.6). Another example, for instance, is the clutter over ground set $\{1,\ldots,6\}$ whose members are $\{6,1,2\}, \{6,2,3\}, \{6,3,4\}, \{6,4,5\}$, $\{6, 5, 1\}, \{1, 2, 4\}, \{2, 3, 5\}, \{3, 4, 1\}, \{4, 5, 2\}, \{5, 1, 3\}.$

Conjecture 4. *An identically self-blocking clutter different from* {{a}} *has one* $of \{\Delta_n : n \geq 3\}, \mathbb{L}_7, \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{5, 1\}\}\$ as minor.

(Notice that the last clutter above is *not* identically self-blocking.) For disjoint $X, Y \subseteq V$, the *minor of* C obtained after *deleting* X and *contracting* Y is the clutter over ground set $V - (X \cup Y)$ whose members are

 $\mathcal{C} \setminus X/Y :=$ the inclusionwise minimal sets of $\{C - Y : C \in \mathcal{C}, C \cap X = \emptyset\}.$

It is well-known that $b(\mathcal{C} \setminus X/Y) = b(\mathcal{C})/X \setminus Y$ [\[21\]](#page-11-2), and that if a clutter is ideal, then so is every minor of it [\[22\]](#page-11-3). It can be readily checked that the clutters in Conjecture [4](#page-1-0) are nonideal. Thus Conjecture 4 – if true – would be a strengthening of Theorem [3.](#page-1-1)

The rest of the paper is organized as follows: We will present two proofs of Theorem [3,](#page-1-1) one will be short and indirect (Sect. [2\)](#page-2-0) while the other will be a longer and direct proof that essentially unravels the first proof (Sect. [5\)](#page-8-0). In Sect. [3,](#page-3-0) by

using our techniques, we will provide a new lower bound for the packing number of an arbitrary clutter, and in Sect. [4,](#page-6-0) we will see a surprising emergence of *cuboids*, a special class of clutters. In Sect. [6](#page-9-0) we will address the relevance of studying identically self-blocking clutters, a relatively narrow problem, and why it may be of interest to the community.

2 Gauge Duality

Here we present a short and indirect proof of Theorem [3.](#page-1-1) Take an integer $n \geq 1$ and let M be a matrix with n columns and nonnegative entries and without a row of all zeros. Consider the polyhedron $P := \{x \in \mathbb{R}^n_+ : Mx \geq 1\}$. The *blocker of P* is the polyhedron $Q := \{z \in \mathbb{R}_+^n : z^\top x \geq 1 \,\forall x \in P\}$. Fulkerson showed that there exists a matrix N with n columns and nonnegative entries and without a row of all zeros such that $Q = \{z \in \mathbb{R}_+^n : Nz \geq 1\}$, and that the blocker of Q is P [\[14](#page-10-5)[,15](#page-10-6)]. In 1987 Chaiken proved the following fascinating result:

Theorem 5 ([\[8](#page-10-7)]). *Take an integer* $n \geq 1$, *let* P, Q *be a blocking pair of polyhedra in* \mathbb{R}^n , and let R *be a positive definite* n *by* n *matrix. Then* $\min\{x^\top Rx : x \in P\}$ *and* $\min\{z^{\top}R^{-1}z : z \in Q\}$ *have reciprocal optimal values.*

Theorem [5](#page-2-1) exhibits an instance of *gauge duality*, a general framework introduced by Freund later the same year [\[13\]](#page-10-8). Theorem [5](#page-2-1) in the special case of diagonal R's was also proved by Lovász in 2001 [\[19](#page-11-4)]. Both Freund and Lovász seem to have been unaware of Chaiken's result.

Let $\mathcal C$ be a clutter over ground set V. Define the *incidence matrix* of $\mathcal C$ as the matrix M whose columns are indexed by the elements and whose rows are the incidence vectors of the members, and define $Q(\mathcal{C}) := \{x \in \mathbb{R}_+^V : Mx \ge 1\}.$ Fulkerson showed that if \mathcal{C}, \mathcal{B} are blocking *ideal* clutters then $Q(\mathcal{C}), Q(\mathcal{B})$ give an instance of blocking polyhedra $[14,15]$ $[14,15]$ $[14,15]$. Therefore Theorem [5](#page-2-1) has the following consequence:

Theorem 6. Let C, B be blocking ideal clutters. Then $\min\{x \mid x : x \in Q(C)\}$ and $\min\{z \mid z : z \in Q(\mathcal{B})\}$ have reciprocal optimal values.

We will need the following lemma whose proof makes use of concepts such as the *Lagrangian* and the *Karush-Kuhn-Tucker* conditions (see [\[7\]](#page-10-9), Chapter 5):

Lemma 7 ([\[8](#page-10-7)]). Let C be a clutter over ground set V, and let M be its incidence *matrix. Then* $\min\{x^\top x : Mx \geq 1, x \geq 0\}$ *has a unique optimal solution* $x^* \in$ \mathbb{R}^V_+ . Moreover, there exists $y \in \mathbb{R}^{\mathcal{C}}_+$ such that $M^{\top}y = x^{\star}$, $\mathbf{1}^{\top}y = x^{\star \top}x^{\star}$ and $y^{\top}(Mx^* - 1) = 0.$

Proof. Notice that $\min\{x \mid x : Mx \geq 1, x \geq 0\}$ satisfies Slater's condition, that there is a feasible solution satisfying all the inequalities strictly. As $x^{\dagger}x$ is a strictly convex function, our quadratic program has a unique optimal solution $x^* \in \mathbb{R}_+^V$. Denote by $L(x; \mu, \sigma) := x^\top x - \mu^\top (Mx - \mathbf{1}) - \sigma^\top x$ the Lagrangian

of the program. Since Slater's condition is satisfied, there exist $\mu^* \in \mathbb{R}_+^{\mathcal{C}}$ and $\sigma^* \in \mathbb{R}_+^V$ satisfying the Karush-Kuhn-Tucker conditions:

$$
0 = \nabla_x L(x^*, \mu^*, \sigma^*) = 2x^* - M^\top \mu^* - \sigma^*
$$

\n
$$
0 = {\mu^*}^\top (Mx^* - 1)
$$

\n
$$
0 = {\sigma^*}^\top x^*.
$$

Let $y := \frac{1}{2}\mu^*$. Since σ^* and M have nonnegative entries, and the third equation holds, the first equation implies that $M⁺y = x[*]$. Multiplying the first equation by x^* from the left, and taking the next two equations into account, we get that $\mathbf{1}^\top y = x^* \cdot x^*$. As $y^\top (M x^* - \mathbf{1}) = \mathbf{0}$ clearly holds, y is the desired vector. \square

We are now ready for the first, short and indirect proof of Theorem [3,](#page-1-1) stating that an identically self-blocking clutter different from $\{\{a\}\}\$ is nonideal:

Proof (of Theorem [3](#page-1-1)). Let C be an identically self-blocking clutter over ground set V that is different from $\{\{a\}\}\$, and let M be its incidence matrix. Suppose for a contradiction that $\mathcal C$ is ideal. Then Theorem [6](#page-2-2) applies and tells us that $\min\{x^{\top}x : Mx \ge 1, x \ge 0\} = 1.$ Let x^{\star}, y be as in Lemma [7;](#page-2-3) so $x^{\star} = M^{\top}y$ and $1 = x^* \, x^* = \mathbf{1}^\top y$. As C is an identically self-blocking clutter different from $\{\{a\}\}\,$, every member has cardinality at least two, and by Theorem [1](#page-0-0) every two members intersect, implying in turn that $MM^{\top} \geq J + I$ ^{[1](#page-3-1)}. As a result,

$$
1 = x^{\star \top} x^{\star} = y^{\top} M M^{\top} y \ge y^{\top} (J + I) y = y^{\top} \mathbf{1} \mathbf{1}^{\top} y + y^{\top} y = 1 + y^{\top} y,
$$

implying in turn that $y = 0$, a contradiction.

3 Lower Bounding the Packing Number

Here we present a lower bound on the packing number of an arbitrary clutter. We need the following lemma from 1965 proved by Motzkin and Straus:

Lemma 8 ([\[20\]](#page-11-5)). Let $G = (V, E)$ be a simple graph, and let L be its V by V *adjacency matrix: for all* $u, v \in V$, $L_{uv} = 1$ *if* $\{u, v\} \in E$ *and* $L_{uv} = 0$ *otherwise. Then*

$$
\max\left\{y^{\top}Ly : \mathbf{1}^{\top}y = 1, y \ge \mathbf{0}\right\} = 1 - \frac{1}{\omega(G)}
$$

where $\omega(G)$ *is the maximum cardinality of a clique of G.*

Let C be a clutter over ground set V. Finding $\nu(\mathcal{C})$ can be cast as finding the maximum cardinality of a clique of a graph. This observation, combined with Lemma [8,](#page-3-2) has the following consequence:

$$
\Box
$$

¹ Throughout the paper, *J* is a square all ones matrix of appropriate dimension, and *I* is the identity matrix of appropriate dimension.

Lemma 9. *Let* C *be a clutter over ground set* V *, and let* M *be its incidence matrix. Then*

$$
\min\left\{y^{\top}MM^{\top}y - \sum_{C \in \mathcal{C}}(|C| - 1)y_C^2 : \mathbf{1}^{\top}y = 1, y \ge \mathbf{0}\right\} = \frac{1}{\nu(\mathcal{C})}.
$$

Proof. (\leq) Let $y \in \mathbb{R}^{\mathcal{C}}_+$ be the incidence vector of a maximum packing of \mathcal{C} . Then $\frac{1}{\nu(\mathcal{C})} \cdot y$ is a feasible solution whose objective value is $\frac{1}{\nu(\mathcal{C})}$, implying in turn that \leq holds. (>) Let G be the graph whose vertices correspond to the members of C, where two vertices are adjacent if the corresponding members are disjoint. Let L be the adjacency matrix of G. Then $MM' \geq \text{Diag}(|C|-1 : C \in \mathcal{C}) + J - L$. Notice that there is a bijection between the packings in $\mathcal C$ and the cliques in G , and in particular that $\nu(C) = \omega(G)$. Thus by Lemma [8,](#page-3-2) for any $y \in \mathbb{R}^{\mathcal{C}}_+$ such that $\mathbf{1}^{\top} y = 1$,

$$
1 - \frac{1}{\nu(C)} \ge y^\top Ly \ge \sum_{C \in C} (|C| - 1)y_C^2 + y^\top J y - y^\top M M^\top y
$$

=
$$
\sum_{C \in C} (|C| - 1)y_C^2 + 1 - y^\top M M^\top y,
$$

implying in turn that \geq holds.

As a consequence, after employing Carathéodory's theorem (see [\[9\]](#page-10-10), §3.14) and the Cauchy-Schwarz inequality (see $[23]$), we get the following lower bound on the packing number of a clutter:

Theorem 10 ([\[5\]](#page-10-11)). Let C be a clutter over ground set V, and let M be its *incidence matrix. Then*

$$
\nu(\mathcal{C}) \ge \left(\frac{y^\top M M^\top y}{y^\top J y} - \frac{\min\{|C| - 1 : C \in \mathcal{C}\}}{\min\{|V|, |\mathcal{C}|\}}\right)^{-1} \quad \forall y \in \mathbb{R}^{\mathcal{C}}_+, y \ne \mathbf{0}.
$$

Proof. Pick a nonzero $y \in \mathbb{R}_+^{\mathcal{C}}$. By Carathéodory's theorem there is a $y' \in \mathbb{R}_+^{\mathcal{C}}$
such that $M^{\top} y' \leq M^{\top} y$, $\mathbf{1}^{\top} y' = \mathbf{1}^{\top} y$ and $|\text{supp}(y')| \leq |V|$. Lemma [9](#page-3-3) applied to $\frac{1}{\mathbf{1}^\top y'} \cdot y'$ implies that

$$
\nu(C) \ge \left(\frac{{y'}^{\top}MM^{\top}y' - \sum_{C \in \mathcal{C}}(|C| - 1){y'_C}^2}{y'^{\top}Jy'}\right)^{-1}
$$

$$
\ge \left(\frac{{y^{\top}MM^{\top}y}}{y^{\top}Jy} - \frac{\sum_{C \in \mathcal{C}}(|C| - 1){y'_C}^2}{y'^{\top}Jy'}\right)^{-1}.
$$

By the Cauchy-Schwarz inequality applied to the nonzero entries of y' ,

$$
\frac{\sum_{C \in \mathcal{C}}(|C|-1)y'_C{}^2}{y'^\top J y'} \ge \frac{\left(\sum_{C \in \mathcal{C}} \sqrt{|C|-1} \cdot y'_C\right)^2}{|\text{supp}(y')| \cdot y'^\top J y'} \ge \frac{\min\{|C|-1 : C \in \mathcal{C}\}}{\min\{|V|, |\mathcal{C}|\}}.
$$

Combining the last two inequalities proves the theorem. 

$$
\Box
$$

This theorem was proved implicitly by Aharoni, Erdős and Linial in 1988. Given that M is the incidence matrix of \mathcal{C} , the authors explicitly proved Theorem [10](#page-4-0) for y a maximum fractional packing of \mathcal{C} :

$$
\nu(C) \ge \left(\frac{\mathbf{1}^\top \mathbf{1}}{\nu^{\star 2}(C)} - \frac{\min\{|C| - 1 : C \in C\}}{\min\{|V|, |C|\}}\right)^{-1} \ge \frac{\nu^{\star 2}(C)}{|V|}.
$$

But one can do better:

Theorem 11. Let C be a clutter over ground set V, and let $\alpha := \min\{x \mid x : x \in \mathbb{R}^n\}$ $x \in Q(C)$. Then

$$
\nu(\mathcal{C}) \ge \left(\frac{1}{\alpha} - \frac{\min\{|C| - 1 : C \in \mathcal{C}\}}{\min\{|V|, |\mathcal{C}|\}}\right)^{-1}.
$$

Proof. Let M be the incidence matrix of C, and let $x \in \mathbb{R}^V_+$ be the point in $Q(C)$ such that $x^{\top} x = \alpha$. By Lemma [7,](#page-2-3) there exists $y \in \mathbb{R}_+^{\mathcal{C}}$ such that $x = M^{\top} y$ and $\mathbf{1}^\top y = \alpha$. By Theorem [10,](#page-4-0)

$$
\nu(C) \ge \left(\frac{x^{\top} x}{y^{\top} \mathbf{1} \mathbf{1}^{\top} y} - \frac{\min\{|C| - 1 : C \in \mathcal{C}\}}{\min\{|V|, |\mathcal{C}|\}}\right)^{-1} = \left(\frac{\alpha}{\alpha^2} - \frac{\min\{|C| - 1 : C \in \mathcal{C}\}}{\min\{|V|, |\mathcal{C}|\}}\right)^{-1},
$$

as required. \square

Let

$$
\beta := \min \left\{ \frac{y^\top M M^\top y}{y^\top J y} : y \ge \mathbf{0}, y \ne \mathbf{0} \right\} \quad \text{and} \quad \alpha := \min \{ x^\top x : M x \ge \mathbf{1}, x \ge \mathbf{0} \}.
$$

By Strong Conic Programming Duality (see [\[7\]](#page-10-9), Chapter 5),

$$
\frac{1}{\sqrt{\beta}} = \max\left\{ \mathbf{1}^\top y : \|M^\top y\| \le 1, y \ge \mathbf{0} \right\} = \min\{\|x\| : Mx \ge \mathbf{1}, x \ge \mathbf{0}\} = \sqrt{\alpha},
$$

so $\beta = \frac{1}{\alpha}$. As a result, the inequality given by Theorem [11](#page-5-0) is the best lower bound derived from Theorem [10.](#page-4-0)

As an immediate consequence of Theorem [11,](#page-5-0) we get another new lower bound on the packing number of a clutter:

Theorem 12. Let C be a clutter. Then $\nu(C) \ge \min\{x \mid x : x \in Q(C)\}\$.

See ([\[1\]](#page-10-12), Chapter 3, Theorem 3.2) for an alternative proof of this theorem.

4 Cuboids

Take an even integer $n \geq 2$. A *cuboid* is a clutter over ground set $\{1, \ldots, n\}$ where every member C satisfies $|C \cap \{1,2\}| = |C \cap \{3,4\}| = \cdots = |C \cap \{n-1, n\}| = 1$. Introduced in [\[2](#page-10-13)], cuboids form a very special class of clutters, to the point that some of the main conjectures in the field can be phrased equivalently in terms of cuboids [\[3\]](#page-10-14). Cuboids play a special role here also:

Theorem 13. *Let* C *be an ideal clutter over* n *elements whose members do not have a common element, and let* $\alpha := \min\{x^\top x : x \in Q(C)\}\)$. Then $\alpha \geq \frac{4}{n}$. *Moreover, the following statements are equivalent:*

- (i) $\alpha = \frac{4}{n},$
- *(ii)* n *is even, after a possible relabeling of the ground set the sets* $\{1,2\}, \{3,4\}$, ..., {n−1, n} *are minimal covers, and the members of minimum cardinality form an ideal cuboid over ground set* {1,...,n} *whose members do not have a common element.*

To prove this theorem we need a few preliminary results. Given a simple graph $G = (V, E)$, a *fractional perfect matching* is a $y \in \mathbb{R}^E_+$ such that $\mathbf{1}^\top y = \frac{|V|}{2}$ and for each vertex $u \in V$, $\sum (y_e : u \in e) = 1$. We need the following classic result:

Lemma 14 (folklore). *If a bipartite graph has a fractional perfect matching, then it has a perfect matching.*

Lemma 15. Take an integer $n > 2$, and let C be a clutter over ground set {1,...,n}*. Then the following statements are equivalent:*

- *(i)* C *has a fractional packing of value* 2 *and* b(C) *has a fractional packing of value* $\frac{n}{2}$,
- *(ii)* n *is even, and in* C*, after a possible relabeling of the ground set the sets* $\{1,2\}, \{3,4\}, \ldots, \{n-1,n\}$ are minimal covers, and the members of mini*mum cardinality form a cuboid over ground set* {1,...,n} *with a fractional packing of value* 2*.*

Proof. **(ii)** \Rightarrow **(i)** is immediate. **(i)** \Rightarrow **(ii)**: Let M, N be the incidence matrices of $C, b(C)$, respectively. Let $y \in \mathbb{R}_+^C$ be a fractional packing of C of value 2; so $M^{\top}y \leq \mathbf{1}$ and $\mathbf{1}^{\top}y = 2$. Let $t \in \mathbb{R}_{+}^{b(\mathcal{C})}$ be a fractional packing of $b(\mathcal{C})$ of value $\frac{n}{2}$; so $N^{\top}t \leq \mathbf{1}$ and $\mathbf{1}^{\top}t = \frac{n}{2}$. Then $n = \mathbf{1}^{\top}\mathbf{1} \geq t^{\top}NM^{\top}y \geq t^{\top}Jy = t^{\$ $\frac{\bar{n}}{2} \cdot 2 = n$. Thus equality holds throughout, implying in turn that **(1)** $M^{\top}y = 1$ and $\mathbf{1}^\top y = 2$, **(2)** $N^\top t = 1$ and $\mathbf{1}^\top t = \frac{n}{2}$, **(3)** if $y_C > 0$ and $t_B > 0$ for some $C \in \mathcal{C}$ and $B \in b(\mathcal{C})$, then $|C \cap B| = 1$. Notice that $\tau(\mathcal{C}) \geq 2$ and $\tau(b(\mathcal{C})) \geq \frac{n}{2}$, so every member of C has cardinality at least $\frac{n}{2}$ while every member of $b(\mathcal{C})$ has cardinality at least 2. Together with (1) and (2), these observations imply that *n* is even, and (4) if $y_C > 0$ for some $C \in \mathcal{C}$, then $|C| = \frac{n}{2}$, (5) if $t_B > 0$ for some $B \in b(\mathcal{C})$, then $|B| = 2$. Let G be the graph over vertices $\{1, \ldots, n\}$ whose edges correspond to ${B \in b(C) : t_B > 0}$. Pick $C \in \mathcal{C}$ such that $y_C > 0$. Then by (3) the vertex subset C intersects every edge of G exactly once, implying in turn that G is a bipartite graph. By (2) G has a fractional perfect matching, and as the graph is bipartite, there must be a perfect matching by Lemma [14,](#page-6-1) labeled as $\{1, 2\}, \{3, 4\}, \ldots, \{n-1, n\}$ after a possible relabeling of the ground set. As a consequence, the members of $\mathcal C$ of minimum cardinality form a cuboid over ground set $\{1,\ldots,n\}$ which by (1) and (4) has a fractional packing of value 2. Thus (ii) holds. 2. Thus (ii) holds. 

Remark 16. *Let* C *be a clutter over n elements, and let* α, x^* *be the optimal value and solution of* $\min\{x \mid x : x \in Q(C)\}$, respectively. Then the following *statements hold:*

(*i*) $\alpha \geq \frac{\nu^{*2}(C)}{n}$. Moreover, equality holds if and only if $x^* = \frac{\nu^{*}(C)}{n} \cdot 1$. *(ii) Assume that every member has cardinality at least two. Then* $\alpha \leq \frac{n}{4}$ *. Moreover, equality holds if and only if* $x^* = \frac{1}{2} \cdot \mathbf{1}$ *.*

Proof. (i) The Cauchy-Schwarz inequality implies that $\alpha = x^{*T} x^* \geq \frac{(1^T x^*)^2}{n}$ *τ*²(C)</sup> = $\frac{\nu^{*2}(C)}{n}$. Moreover, equality holds throughout if and only if the entries of x^* are equal and $\mathbf{1}^\top x^* = \nu^*(\mathcal{C})$, i.e. $x^* = \frac{\nu^*(\mathcal{C})}{n} \cdot \mathbf{1}$. (ii) is immediate.

We also need the following result proved implicitly in [\[2](#page-10-13)] (its proof can be found in the proof of Theorem 1.6, Claim 3 on p. 543):

Lemma 17 ([\[2\]](#page-10-13)). Take an even integer $n > 2$, and let C be an ideal clutter over *ground set* $\{1, \ldots, n\}$ *where* $\{1, 2\}, \{3, 4\}, \ldots, \{n-1, n\}$ *are minimal covers. Then* $\{C \in \mathcal{C} : |C| = \frac{n}{2}\}$ is an ideal cuboid.

We are now ready to prove Theorem [13:](#page-6-2)

Proof (of Theorem [13\)](#page-6-2). By Remark [16](#page-7-0) (i), $\alpha \geq \frac{\nu^{*2}(C)}{n} = \frac{\tau^2(C)}{n} \geq \frac{4}{n}$, where the equality follows from the fact that $\mathcal C$ is ideal, and the last inequality holds because the members have no common element. **(i)** \Rightarrow **(ii)**: Assume that $\alpha = \frac{4}{n}$. Let x^* be the optimal solution of $\min\{x^\top x : x \in Q(C)\}\)$. Then by Remark [16](#page-7-0) (i), $\tau(\mathcal{C}) = 2$ and $x^* = \left(\frac{2}{n}, \frac{2}{n}, \ldots, \frac{2}{n}\right)$. Let M be the incidence matrix of C. By Lemma [7,](#page-2-3) there is a $y \in \mathbb{R}_+^{\mathcal{C}}$ such that $M^{\top}y = x^*$ and $\mathbf{1}^{\top}y = \frac{4}{n}$, that is,

 $\frac{n}{2} \cdot y$ is a fractional packing of C of value 2.

Let β, z^* be the optimal value and solution of $\min\{z^\top z : z \in Q(b(C))\}$. As C is an ideal clutter, it follows from Theorem [6](#page-2-2) that $\beta = \frac{1}{\alpha} = \frac{n}{4}$. Thus by Remark [16](#page-7-0) (ii), $z^* = (\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2})$. Let N be the incidence matrix of $b(\mathcal{C})$. By Lemma [7,](#page-2-3) there is a $t \in \mathbb{R}^{b(\mathcal{C})}_+$ such that $N^\top t = z^\star$ and $\mathbf{1}^\top z^\star = \frac{n}{4}$, that is,

2t is a fractional packing of $b(\mathcal{C})$ of value $\frac{n}{2}$.

It therefore follows from Lemma 15 that n is even, after a possible relabeling of the ground set the sets $\{1,2\}, \{3,4\},\ldots, \{n-1,n\}$ are minimal covers of C, and the members of $\mathcal C$ of minimum cardinality form a cuboid $\mathcal C_0$ over ground set

 $\{1,\ldots,n\}$ with a fractional packing of value 2. In particular, the members of \mathcal{C}_0 do not have a common element. Moreover, since $\mathcal C$ is an ideal clutter, it follows from Lemma [17](#page-7-1) that C_0 is an ideal cuboid, thereby proving (ii). (ii) \Rightarrow (i): Observe that every member has cardinality at least $\frac{n}{2}$, so $\left(\frac{2}{n}, \frac{2}{n}, \ldots, \frac{2}{n}\right) \in Q(\mathcal{C})$, implying in turn that $\alpha \leq \frac{4}{n}$. Since $\alpha \geq \frac{4}{n}$ also, (i) must hold.

We showed that among ideal clutters C whose members do not have a common element, it is essentially cuboids that achieve the smallest possible value for $\min\{x \mid x : x \in Q(C)\}\.$ Our proof relied on Lemma [15,](#page-6-3) which in itself has another consequence. Viewing clutters as *simple games*, Hof et al. [\[16\]](#page-10-15) showed that given a clutter C over *n* elements, its *critical threshold value* is always at most $\frac{n}{4}$, and this maximum is achieved if, and only if, \mathcal{C} has a fractional packing of value $\frac{n}{2}$ and $b(\mathcal{C})$ has a fractional packing of value 2. Thus by Lemma [15,](#page-6-3) it is essentially blockers of cuboids that achieve the largest possible critical threshold value.

5 Bypassing Gauge Duality

Here we present a longer and direct proof of the main result of the paper, Theorem [3.](#page-1-1) This proof will bypass the use of Theorem [6.](#page-2-2) We will need the following two lemmas:

Lemma 18. *Let* C, B *be clutters over ground set* V *such that* $|C \cap B| = 1$ *for* $all \ C \in \mathcal{C}, B \in \mathcal{B}$, for which there exist nonzero $y \in \mathbb{R}_+^{\mathcal{C}}$ and $t \in \mathbb{R}_+^{\mathcal{B}}$ such that $\sum_{C \in \mathcal{C}} y_C \chi_C = \sum_{B \in \mathcal{B}} t_B \chi_B$. Then

$$
\nu(\mathcal{C}) \ge \left(\frac{\mathbf{1}^\top t}{\mathbf{1}^\top y} - \frac{\min\{|C| - 1 : C \in \mathcal{C}\}}{\min\{|V|, |\mathcal{C}|\}}\right)^{-1}
$$

$$
\nu(\mathcal{B}) \ge \left(\frac{\mathbf{1}^\top y}{\mathbf{1}^\top t} - \frac{\min\{|B| - 1 : B \in \mathcal{B}\}}{\min\{|V|, |\mathcal{B}|\}}\right)^{-1}.
$$

Proof. Due to the symmetry between C and B , it suffices to prove the first inequality. After possibly scaling t, we may assume that $\mathbf{1}^{\top}t = 1$. Our hypotheses imply that for each $C' \in \mathcal{C}$,

$$
\sum_{C \in \mathcal{C}} y_C |C' \cap C| = \sum_{C \in \mathcal{C}} y_C \chi_{C'}^{\top} \chi_C = \sum_{B \in \mathcal{B}} t_B \chi_{C'}^{\top} \chi_B = \sum_{B \in \mathcal{B}} t_B |C' \cap B| = 1.
$$

Thus, given that M is the incidence matrix of \mathcal{C} , the equalities above state that $MM^{\dagger}y = 1$. And Theorem [10](#page-4-0) applied to y implies that

$$
\nu(C) \ge \left(\frac{y^{\top} \mathbf{1}}{y^{\top} J y} - \frac{\min\{|C| - 1 : C \in \mathcal{C}\}}{\min\{|V|, |\mathcal{C}|\}}\right)^{-1},
$$

therefore implying the first inequality.

Given a clutter, a fractional cover is *minimal* if it is not greater than or equal to another fractional cover. Given an ideal clutter, it is well-known that every minimal fractional cover can be written as a convex combination of the incidence vectors of minimal covers (see for instance [\[11\]](#page-10-4)). We will use this fact below:

Lemma 19. *Let* \mathcal{C}, \mathcal{B} *be blocking ideal clutters. Then there exist nonempty* $\mathcal{C}' \subset$ \mathcal{C} and $\mathcal{B}' \subseteq \mathcal{B}$ such that $|C \cap B| = 1$ for all $C \in \mathcal{C}', B \in \mathcal{B}'$, for which there exist *nonzero* $y \in \mathbb{R}_+^{C'}$ *and* $t \in \mathbb{R}_+^{B'}$ *such that* $\sum_{C \in C'} y_C \chi_C = \sum_{B \in B'} t_B \chi_B$.

Proof. Let M, N be the incidence matrices of C, B, respectively. Let x^* be the optimal solution of $\min\{x^\top x : x \in Q(C)\}\)$. Then x^* is a minimal fractional cover of C. As C is an ideal clutter, $x^* = N^{\top}t$ for some $t \in \mathbb{R}_+^{\mathcal{B}}$ such that $\mathbf{1}^{\top}t = 1$. Moreover, by Lemma [7,](#page-2-3) there exists $y \in \mathbb{R}^{\mathcal{C}}_+$ such that $M^{\top}y = x^*$ and $y^{\top} (Mx^* -$ **1**) = **0**. Thus, $\mathbf{1}^\top y = x^* M^\top y = t^\top N M^\top y \ge t^\top J y = t^\top \mathbf{1} \mathbf{1}^\top y = \mathbf{1}^\top y$, implying that $t^{\top}NM^{\top}y = t^{\top}Jy$. Therefore, if $\mathcal{C}' := \{C \in \mathcal{C} : y_C > 0\}$ and $\mathcal{B}' := \{B \in \mathcal{B} : C \in \mathcal{C} : y_C > 0\}$ $t_B > 0$, we have that $|C \cap B| = 1$ for all $C \in \mathcal{C}', B \in \mathcal{B}'$. Moreover, the equation $M^{\top}y = x^* = N^{\top}t$ implies that $\sum_{C \in \mathcal{C}'} y_C \chi_C = \sum_{B \in \mathcal{B}'} t_B \chi_B$. As C' and B' are clearly nonempty, they are the desired clutters. 

Theorem 20. *Let* C, B *be blocking ideal clutters. If* $\tau(C) > 2$ *and* $\tau(B) > 2$ *, then* $\nu(\mathcal{C}) \geq 2$ *or* $\nu(\mathcal{B}) \geq 2$ *.*

Proof. Assume that $\tau(\mathcal{C}) \geq 2$ and $\tau(\mathcal{B}) \geq 2$. By Lemma [19,](#page-8-1) there exist nonempty $\mathcal{C}' \subseteq \mathcal{C}$ and $\mathcal{B}' \subseteq \mathcal{B}$ such that $|C \cap B| = 1$ for all $C \in \mathcal{C}', B \in \mathcal{B}'$, for which there exist nonzero $y \in \mathbb{R}_+^{C'}$ and $t \in \mathbb{R}_+^{B'}$ such that $\sum_{C \in \mathcal{C}'} y_C \chi_C = \sum_{B \in \mathcal{B}'} t_B \chi_B$. As the members of \mathcal{C}' and \mathcal{B}' have cardinality at least two, we get from Lemma [18](#page-8-2) that $\nu(\mathcal{C}') > \frac{1-y}{1+t}$ and $\nu(\mathcal{B}') > \frac{1-t}{1+y}$. As $\nu(\mathcal{C}) \geq \nu(\mathcal{C}')$ and $\nu(\mathcal{B}) \geq \nu(\mathcal{B}')$, it follows that $\nu(\mathcal{C}) > 2$ or $\nu(\mathcal{B}) > 2$, as required.

We are now ready to prove Theorem [3](#page-1-1) again, stating that an identically self-blocking clutter different from $\{\{a\}\}\$ is nonideal:

Proof (of Theorem [3\)](#page-1-1). Let $\mathcal C$ be an identically self-blocking clutter different from $\{\{a\}\}\.$ Then $\tau(C) \geq 2$, and $\nu(C) = 1$ by Theorem [1.](#page-0-0) Theorem [20](#page-9-1) now applies and tells us that C cannot be ideal. as required. and tells us that $\mathcal C$ cannot be ideal, as required.

6 Concluding Remarks

Given a general blocking pair \mathcal{C}, \mathcal{B} of ideal clutters, what can be said about them? This is an important research topic in Integer Programming and Combinatorial Optimization. We showed that if $\tau(\mathcal{C}) \geq 2$ and $\tau(\mathcal{B}) \geq 2$, then $\nu(\mathcal{C}) \geq 2$ or $\nu(\mathcal{B}) \geq 2$ 2 (Theorems [3](#page-1-1) and [20\)](#page-9-1). Equivalently, if the members of \mathcal{C}, \mathcal{B} have cardinality at least two, then one of the two clutters has a *bicoloring*, i.e. the ground set can be bicolored so that every member receives an element of each color. Next to Lehman's *width-length* characterization [\[18](#page-11-1)], this is the only other fact known about the structure of C and B . As such, we expect the results as well as the tools introduced here to help us address the question in mind.

Our main result led us to two computable lower bounds – one weaker than the other – on the packing number of an arbitrary clutter (Theorems [11](#page-5-0) and [12\)](#page-5-1). We believe these lower bounds will have applications beyond the scope of this paper. We also characterized the clutters on which one of the lower bounds is at its weakest; we showed that these clutters are essentially cuboids (Theorem [13\)](#page-6-2). Combined with evidence from [\[2,](#page-10-13)[3](#page-10-14)], this only stresses further the central role of cuboids when studying ideal clutters.

Finally, we used techniques from Convex Optimization to prove the main result of the paper. A natural question is whether there is an elementary and discrete approach for proving the result? Conjecture [4](#page-1-0) provides a potential approach and leads to an interesting research direction.

Acknowledgements. We would like to thank Fatma Kiling-Karzan, Kanstantsin Pashkovich and Levent Tunçel for fruitful discussions about different parts of this work. We would also like to thank the referees; their feedback improved the presentation of the paper. This work was supported in part by ONR grant 000141812129 and NSF grant CMMI 1560828.

References

- 1. Abdi, A.: Ideal clutters. Ph.D. dissertation, University of Waterloo (2018)
- 2. Abdi, A., Cornuéjols, G., Pashkovich, K.: Ideal clutters that do not pack. Math. Oper. Res. **43**(2), 533–553 (2018)
- 3. Abdi, A., Cornuéjols, G., Guričanová, N., Lee, D.: Cuboids, a class of clutters. Submitted
- 4. Abdi, A., Pashkovich, K.: Delta minors, delta free clutters, and entanglement. SIAM J. Discrete Math. **32**(3), 1750–1774 (2018)
- 5. Aharoni, R., Erdős, P., Linial, N.: Optima of dual integer linear programs. Combinatorica **8**(1), 13–20 (1988)
- 6. Berge, C.: Hypergraphs: Combinatorics of Finite Sets. North Holland, Amsterdam (1989)
- 7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
- 8. Chaiken, S.: Extremal length and width of blocking polyhedra, Kirchhoff spaces and multiport networks. SIAM J. Algebraic Discrete Methods **8**(4), 635–645 (1987)
- 9. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer, Berlin (2014)
- 10. Cornuéjols, G.: Combinatorial Optimization. Packing and Covering. SIAM, Philadelphia (2001)
- 11. Cornu´ejols, G., Novick, B.: Ideal 0, 1 matrices. J. Comb. Theor. Ser. B **60**(1), 145–157 (1994)
- 12. Edmonds, J., Fulkerson, D.R.: Bottleneck extrema. J. Comb. Theor. Ser. B **8**(3), 299–306 (1970)
- 13. Freund, R.M.: Dual gauge programs, with applications to quadratic programming and the minimum-norm problem. Math. Program. **38**, 47–67 (1987)
- 14. Fulkerson, D.R.: Blocking and anti-blocking pairs of polyhedra. Math. Program. **1**, 168–194 (1971)
- 15. Fulkerson, D.R.: Blocking polyhedra. In: Harris, B. (ed.) Graph Theory and Its Applications, pp. 93–112. Academic Press, New York (1970)
- 16. Hof, F., Kern, W., Kurz, S., Pashkovich, K., Paulusma, D.: Simple games versus weighted voting games: bounding the critical threshold value. Preprint, [arXiv:1810.08841](http://arxiv.org/abs/1810.08841) (2018)
- 17. Isbell, J.R.: A class of simple games. Duke Math. J. **25**(3), 423–439 (1958)
- 18. Lehman, A.: On the width-length inequality. Math. Program. **17**(1), 403–417 (1979)
- 19. Lovász, L.: Energy of convex sets, shortest paths, and resistance. J. Comb. Theor. Ser. A **94**(2), 363–382 (2001)
- 20. Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Tur´an. Canad. J. Math. **17**, 533–540 (1965)
- 21. Seymour, P.D.: The forbidden minors of binary matrices. J. Lond. Math. Soc. **2**(12), 356–360 (1976)
- 22. Seymour, P.D.: The matroids with the max-flow min-cut property. J. Comb. Theor. Ser. B **23**(2–3), 189–222 (1977)
- 23. Steele, J.M.: The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press, Cambridge (2004)