
Andrea Lodi
Viswanath Nagarajan (Eds.)

 123

LN
CS

 1
14

80

20th International Conference, IPCO 2019
Ann Arbor, MI, USA, May 22–24, 2019
Proceedings

Integer Programming
and Combinatorial Optimization

Lecture Notes in Computer Science 11480

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Andrea Lodi • Viswanath Nagarajan (Eds.)

Integer Programming
and Combinatorial Optimization
20th International Conference, IPCO 2019
Ann Arbor, MI, USA, May 22–24, 2019
Proceedings

123

Editors
Andrea Lodi
École Polytechnique de Montréal
Montreal, QC, Canada

Viswanath Nagarajan
University of Michigan
Ann Arbor, MI, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-17952-6 ISBN 978-3-030-17953-3 (eBook)
https://doi.org/10.1007/978-3-030-17953-3

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-9269-633X
http://orcid.org/0000-0002-9514-5581
https://doi.org/10.1007/978-3-030-17953-3

Preface

This volume collects the 33 extended abstracts presented at IPCO 2019, the 20th
Conference on Integer Programming and Combinatorial Optimization, held May
22–24, 2019, at Ann Arbor, Michigan, USA. IPCO is under the auspices of the
Mathematical Optimization Society, and it is an important forum for presenting the
latest results of theory and practice of the various aspects of discrete optimization. The
first IPCO conference took place at the University of Waterloo in May 1990, and the
University of Michigan is hosting the 20th such event.

The conference had a Program Committee consisting of 15 members. In response to
the call for papers, we received 114 submissions, of which two were withdrawn prior to
the decision process. The Program Committee met at Aussois, France, in January 2019.
Each submission was reviewed by at least three Program Committee members. There
were many high-quality submissions, of which the committee selected 33 to appear in
the conference proceedings. We expect the full versions of the extended abstracts
appearing in this volume of Lecture Notes in Computer Science to be submitted for
publication in refereed journals, and a special issue of Mathematical Programming
Series B is on the way.

This year, IPCO was preceded by a Summer School during May 20–21, 2019, with
lectures by Nikhil Bansal, Samuel Burer and João Gouveia. We thank them warmly for
their contributions. We would like to thank:

– The authors who submitted their research to IPCO
– The members of the Program Committee, who spent much time and energy

reviewing the submissions
– The expert additional reviewers whose opinions were crucial in the paper selection
– The members of the local Organizing Committee: Alexander Barvinok, Jon Lee,

Viswanath Nagarajan, Seth Pettie, Siqian Shen and Dan Steffy, who made this
conference possible

– The Mathematical Optimization Society and in particular the members of its IPCO
Steering Committee: David Williamson, Jens Vygen, Oktay Günlük and Jochen
Koenemann, for their help and advice

– EasyChair for making paper management simple and effective
– EasyChair and Springer for their efficient cooperation in producing this volume

We would also like to thank the following sponsors for their financial support:
FICO, Gurobi Optimization, IBM, LLamasoft, Microsoft, MOSEK, Springer, The
Optimization Firm, The Office of Naval Research, The National Science Foundation,
the Michigan Center for Applied and Interdisciplinary Mathematics, and the
Department of Industrial and Operations Engineering (University of Michigan).

March 2019 Andrea Lodi
Viswanath Nagarajan

Organization

Program Committee

Amitabh Basu Johns Hopkins University, USA
Jose Correa Universidad de Chile, Chile
Sanjeeb Dash IBM Research, USA
Volker Kaibel Otto-von-Guericke Universität Magdeburg, Germany
Simge Küçükyavuz Northwestern University, USA
Retsef Levi Massachusetts Institute of Technology, USA
Andrea Lodi École Polytechnique de Montréal, Canada
James Luedtke University of Wisconsin-Madison, USA
Tom Mccormick The University of British Columbia, Canada
Ruth Misener Imperial College London, UK
Viswanath Nagarajan University of Michigan, USA
Marc Pfetsch TU Darmstadt, Germany
Martin Skutella TU Berlin, Germany
Gautier Stauffer Kedge Business School, France
Angelika Wiegele Alpen-Adria-Universität Klagenfurt, Austria

Contents

Identically Self-blocking Clutters. 1
Ahmad Abdi, Gérard Cornuéjols, and Dabeen Lee

Min-Max Correlation Clustering via MultiCut. 13
Saba Ahmadi, Samir Khuller, and Barna Saha

Strong Mixed-Integer Programming Formulations for Trained
Neural Networks . 27

Ross Anderson, Joey Huchette, Christian Tjandraatmadja,
and Juan Pablo Vielma

Extended Formulations from Communication Protocols
in Output-Efficient Time . 43

Manuel Aprile and Yuri Faenza

Sub-Symmetry-Breaking Inequalities for ILP with Structured Symmetry 57
Pascale Bendotti, Pierre Fouilhoux, and Cécile Rottner

Intersection Cuts for Polynomial Optimization . 72
Daniel Bienstock, Chen Chen, and Gonzalo Muñoz

Fixed-Order Scheduling on Parallel Machines . 88
Thomas Bosman, Dario Frascaria, Neil Olver, René Sitters,
and Leen Stougie

Online Submodular Maximization: Beating 1/2 Made Simple 101
Niv Buchbinder, Moran Feldman, Yuval Filmus, and Mohit Garg

Improving the Integrality Gap for Multiway Cut . 115
Kristóf Bérczi, Karthekeyan Chandrasekaran, Tamás Király,
and Vivek Madan

‘1-sparsity Approximation Bounds for Packing Integer Programs 128
Chandra Chekuri, Kent Quanrud, and Manuel R. Torres

A General Framework for Handling Commitment in Online
Throughput Maximization . 141

Lin Chen, Franziska Eberle, Nicole Megow, Kevin Schewior,
and Cliff Stein

Lower Bounds and a New Exact Approach for the Bilevel Knapsack
with Interdiction Constraints . 155

Federico Della Croce and Rosario Scatamacchia

On Friedmann’s Subexponential Lower Bound for Zadeh’s Pivot Rule 168
Yann Disser and Alexander V. Hopp

Tight Approximation Ratio for Minimum Maximal Matching 181
Szymon Dudycz, Mateusz Lewandowski, and Jan Marcinkowski

Integer Programming and Incidence Treedepth . 194
Eduard Eiben, Robert Ganian, Dušan Knop, Sebastian Ordyniak,
Michał Pilipczuk, and Marcin Wrochna

A Bundle Approach for SDPs with Exact Subgraph Constraints 205
Elisabeth Gaar and Franz Rendl

Dynamic Flows with Adaptive Route Choice . 219
Lukas Graf and Tobias Harks

The Markovian Price of Information . 233
Anupam Gupta, Haotian Jiang, Ziv Scully, and Sahil Singla

On Perturbation Spaces of Minimal Valid Functions: Inverse Semigroup
Theory and Equivariant Decomposition Theorem . 247

Robert Hildebrand, Matthias Köppe, and Yuan Zhou

On Compact Representations of Voronoi Cells of Lattices 261
Christoph Hunkenschröder, Gina Reuland, and Matthias Schymura

An Efficient Characterization of Submodular Spanning Tree Games 275
Zhuan Khye Koh and Laura Sanità

The Asymmetric Traveling Salesman Path LP Has Constant
Integrality Ratio . 288

Anna Köhne, Vera Traub, and Jens Vygen

Approximate Multi-matroid Intersection via Iterative Refinement 299
André Linhares, Neil Olver, Chaitanya Swamy, and Rico Zenklusen

An Exact Algorithm for Robust Influence Maximization 313
Giacomo Nannicini, Giorgio Sartor, Emiliano Traversi,
and Roberto Wolfler-Calvo

A New Contraction Technique with Applications
to Congruency-Constrained Cuts . 327

Martin Nägele and Rico Zenklusen

Sparsity of Integer Solutions in the Average Case . 341
Timm Oertel, Joseph Paat, and Robert Weismantel

x Contents

A Generic Exact Solver for Vehicle Routing and Related Problems. 354
Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa,
and François Vanderbeck

Earliest Arrival Transshipments in Networks with Multiple Sinks 370
Miriam Schlöter

Intersection Cuts for Factorable MINLP. 385
Felipe Serrano

Linear Programming Using Limited-Precision Oracles 399
Ambros Gleixner and Daniel E. Steffy

Computing the Nucleolus of Weighted Cooperative Matching Games
in Polynomial Time. 413

Jochen Könemann, Kanstantsin Pashkovich, and Justin Toth

Breaking Symmetries to Rescue Sum of Squares: The Case
of Makespan Scheduling . 427

Victor Verdugo and José Verschae

Random Projections for Quadratic Programs over a Euclidean Ball 442
Ky Vu, Pierre-Louis Poirion, Claudia D’Ambrosio, and Leo Liberti

Author Index . 453

Contents xi

Identically Self-blocking Clutters

Ahmad Abdi(B), Gérard Cornuéjols, and Dabeen Lee

Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA
{aabdi,gc0v,dabeenl}@andrew.cmu.edu

Abstract. A clutter is identically self-blocking if it is equal to its blocker.
We prove that every identically self-blocking clutter different from {{a}}
is nonideal. Our proofs borrow tools from Gauge Duality and Quadratic
Programming. Along the way we provide a new lower bound for the
packing number of an arbitrary clutter.

1 The Main Result

All sets considered in this paper are finite. Let V be a set of elements, and let
C be a family of subsets of V called members. If no member contains another,
then C is said to be a clutter over ground set V [12]. All clutters considered
in this paper are different from {}, {∅}. Let C be a clutter over ground set V .
A cover is a subset of V that intersects every member. The covering number,
denoted τ(C), is the minimum cardinality of a cover. A packing is a collection of
pairwise disjoint members. The packing number, denoted ν(C), is the maximum
cardinality of a packing. Observe that τ(C) ≥ ν(C). A cover is minimal if it does
not contain another cover. The family of minimal covers forms another clutter
over ground set V ; this clutter is called the blocker of C and is denoted b(C) [12].
It is well-known that b(b(C)) = C [12,17]. We say that C is an identically self-
blocking clutter if C = b(C). (This terminology was coined in [4].) Observe that
{a} is the only identically self-blocking clutter with a member of cardinality one.

Theorem 1 ([6]). A clutter C is identically self-blocking if, and only if, ν(C) =
ν(b(C)) = 1.

Consider for w ∈ Z
V
+ the dual pair of linear programs

min w�x
s.t.

∑
(xu : u ∈ C) ≥ 1 ∀C ∈ C

x ≥ 0

max 1�y
s.t.

∑
(yC : u ∈ C ∈ C) ≤ wu ∀u ∈ V

y ≥ 0,

labeled (P), (D), respectively. Denote by τ�(C, w), ν�(C, w) the optimal values
of (P), (D), respectively, and by τ(C, w), ν(C, w) the optimal values of (P), (D)
subject to the additional integrality constraints x ∈ Z

V , y ∈ Z
C , respectively.

Observe that by Strong Linear Programming Duality, τ(C, w) ≥ τ�(C, w) =
ν�(C, w) ≥ ν(C, w).

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 1–12, 2019.
https://doi.org/10.1007/978-3-030-17953-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_1

2 A. Abdi et al.

Notice the correspondence between the 0–1 feasible solutions of (P) and the
covers of C, as well as the correspondence between the integer feasible solutions
of (D) for w = 1 and the packings of C. In particular, τ(C,1) = τ(C) and
ν(C,1) = ν(C). We will refer to the feasible solutions of (P) as fractional covers,
and to the feasible solutions of (D) for w = 1 as fractional packings.

C has the max-flow min-cut property if τ(C, w) = ν(C, w) for all w ∈ Z
V
+ [10]. C

is ideal if τ(C, w) = ν�(C, w) for all w ∈ Z
V
+ [11]. Clearly clutters with the max-

flow min-cut property are ideal. The max-flow min-cut property is not closed
under taking blockers, but

Theorem 2 ([18]). A clutter is ideal if, and only if, its blocker is ideal.

If C is an identically self-blocking clutter different from {{a}}, then τ(C) ≥
2 > 1 = ν(C) by Theorem 1, so C does not have the max-flow min-cut property.
In this paper, we prove the following stronger statement:

Theorem 3. An identically self-blocking clutter different from {{a}} is non-
ideal.

For an integer n ≥ 3, denote by Δn the clutter over ground set {1, . . . , n}
whose members are {1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n}. Notice that the ele-
ments and members of Δn correspond to the points and lines of a degenerate pro-
jective plane. Denote by L7 the clutter over ground set {1, . . . , 7} whose members
are {1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 6}, {3, 5, 7}. Notice that
the elements and members of L7 correspond to the points and lines of the
Fano plane. It can be readily checked that {Δn : n ≥ 3} ∪ {L7} are identi-
cally self-blocking clutters. There are many other examples of identically self-
blocking clutters, and in fact there is one for every pair of blocking clutters ([4],
Remark 3.4 and Corollary 3.6). Another example, for instance, is the clutter over
ground set {1, . . . , 6} whose members are {6, 1, 2}, {6, 2, 3}, {6, 3, 4}, {6, 4, 5},
{6, 5, 1}, {1, 2, 4}, {2, 3, 5}, {3, 4, 1}, {4, 5, 2}, {5, 1, 3}.

Conjecture 4. An identically self-blocking clutter different from {{a}} has one
of {Δn : n ≥ 3},L7, {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}} as minor.

(Notice that the last clutter above is not identically self-blocking.) For disjoint
X,Y ⊆ V , the minor of C obtained after deleting X and contracting Y is the
clutter over ground set V − (X ∪ Y) whose members are

C \ X/Y := the inclusionwise minimal sets of {C − Y : C ∈ C, C ∩ X = ∅}.
It is well-known that b(C \X/Y) = b(C)/X \Y [21], and that if a clutter is ideal,
then so is every minor of it [22]. It can be readily checked that the clutters in
Conjecture 4 are nonideal. Thus Conjecture 4 – if true – would be a strengthening
of Theorem 3.

The rest of the paper is organized as follows: We will present two proofs of
Theorem 3, one will be short and indirect (Sect. 2) while the other will be a longer
and direct proof that essentially unravels the first proof (Sect. 5). In Sect. 3, by

Identically Self-blocking Clutters 3

using our techniques, we will provide a new lower bound for the packing number
of an arbitrary clutter, and in Sect. 4, we will see a surprising emergence of
cuboids, a special class of clutters. In Sect. 6 we will address the relevance of
studying identically self-blocking clutters, a relatively narrow problem, and why
it may be of interest to the community.

2 Gauge Duality

Here we present a short and indirect proof of Theorem 3. Take an integer n ≥ 1
and let M be a matrix with n columns and nonnegative entries and without a
row of all zeros. Consider the polyhedron P :=

{
x ∈ R

n
+ : Mx ≥ 1

}
. The blocker

of P is the polyhedron Q := {z ∈ R
n
+ : z�x ≥ 1 ∀x ∈ P}. Fulkerson showed that

there exists a matrix N with n columns and nonnegative entries and without a
row of all zeros such that Q =

{
z ∈ R

n
+ : Nz ≥ 1

}
, and that the blocker of Q

is P [14,15]. In 1987 Chaiken proved the following fascinating result:

Theorem 5 ([8]). Take an integer n ≥ 1, let P,Q be a blocking pair of polyhedra
in R

n, and let R be a positive definite n by n matrix. Then min{x�Rx : x ∈ P}
and min{z�R−1z : z ∈ Q} have reciprocal optimal values.

Theorem 5 exhibits an instance of gauge duality, a general framework introduced
by Freund later the same year [13]. Theorem 5 in the special case of diagonal
R’s was also proved by Lovász in 2001 [19]. Both Freund and Lovász seem to
have been unaware of Chaiken’s result.

Let C be a clutter over ground set V . Define the incidence matrix of C as
the matrix M whose columns are indexed by the elements and whose rows are
the incidence vectors of the members, and define Q(C) :=

{
x ∈ R

V
+ : Mx ≥ 1

}
.

Fulkerson showed that if C,B are blocking ideal clutters then Q(C), Q(B) give an
instance of blocking polyhedra [14,15]. Therefore Theorem 5 has the following
consequence:

Theorem 6. Let C,B be blocking ideal clutters. Then min{x�x : x ∈ Q(C)} and
min{z�z : z ∈ Q(B)} have reciprocal optimal values.

We will need the following lemma whose proof makes use of concepts such
as the Lagrangian and the Karush-Kuhn-Tucker conditions (see [7], Chapter 5):

Lemma 7 ([8]). Let C be a clutter over ground set V , and let M be its incidence
matrix. Then min{x�x : Mx ≥ 1, x ≥ 0} has a unique optimal solution x� ∈
R

V
+. Moreover, there exists y ∈ R

C
+ such that M�y = x�, 1�y = x��x� and

y�(Mx� − 1) = 0.

Proof. Notice that min{x�x : Mx ≥ 1, x ≥ 0} satisfies Slater’s condition, that
there is a feasible solution satisfying all the inequalities strictly. As x�x is a
strictly convex function, our quadratic program has a unique optimal solution
x� ∈ R

V
+. Denote by L(x;μ, σ) := x�x − μ�(Mx − 1) − σ�x the Lagrangian

4 A. Abdi et al.

of the program. Since Slater’s condition is satisfied, there exist μ� ∈ R
C
+ and

σ� ∈ R
V
+ satisfying the Karush-Kuhn-Tucker conditions:

0 = ∇xL(x�;μ�, σ�) = 2x� − M�μ� − σ�

0 = μ��(Mx� − 1)

0 = σ��x�.

Let y := 1
2μ�. Since σ� and M have nonnegative entries, and the third equation

holds, the first equation implies that M�y = x�. Multiplying the first equation
by x�� from the left, and taking the next two equations into account, we get
that 1�y = x��x�. As y�(Mx� −1) = 0 clearly holds, y is the desired vector. ��

We are now ready for the first, short and indirect proof of Theorem 3, stating
that an identically self-blocking clutter different from {{a}} is nonideal:

Proof (of Theorem 3). Let C be an identically self-blocking clutter over ground
set V that is different from {{a}}, and let M be its incidence matrix. Suppose
for a contradiction that C is ideal. Then Theorem 6 applies and tells us that
min{x�x : Mx ≥ 1, x ≥ 0} = 1. Let x�, y be as in Lemma 7; so x� = M�y
and 1 = x��x� = 1�y. As C is an identically self-blocking clutter different from
{{a}}, every member has cardinality at least two, and by Theorem 1 every two
members intersect, implying in turn that MM� ≥ J + I.1 As a result,

1 = x��x� = y�MM�y ≥ y�(J + I)y = y�11�y + y�y = 1 + y�y,

implying in turn that y = 0, a contradiction. ��

3 Lower Bounding the Packing Number

Here we present a lower bound on the packing number of an arbitrary clutter.
We need the following lemma from 1965 proved by Motzkin and Straus:

Lemma 8 ([20]). Let G = (V,E) be a simple graph, and let L be its V by V
adjacency matrix: for all u, v ∈ V , Luv = 1 if {u, v} ∈ E and Luv = 0 otherwise.
Then

max
{
y�Ly : 1�y = 1, y ≥ 0

}
= 1 − 1

ω(G)

where ω(G) is the maximum cardinality of a clique of G.

Let C be a clutter over ground set V . Finding ν(C) can be cast as finding the
maximum cardinality of a clique of a graph. This observation, combined with
Lemma 8, has the following consequence:
1 Throughout the paper, J is a square all ones matrix of appropriate dimension, and
I is the identity matrix of appropriate dimension.

Identically Self-blocking Clutters 5

Lemma 9. Let C be a clutter over ground set V , and let M be its incidence
matrix. Then

min

{

y�MM�y −
∑

C∈C
(|C| − 1)y2

C : 1�y = 1, y ≥ 0

}

=
1

ν(C)
.

Proof. (≤) Let y ∈ R
C
+ be the incidence vector of a maximum packing of C. Then

1
ν(C) · y is a feasible solution whose objective value is 1

ν(C) , implying in turn that
≤ holds. (≥) Let G be the graph whose vertices correspond to the members of C,
where two vertices are adjacent if the corresponding members are disjoint. Let L
be the adjacency matrix of G. Then MM� ≥ Diag(|C| − 1 : C ∈ C) + J − L.
Notice that there is a bijection between the packings in C and the cliques in G,
and in particular that ν(C) = ω(G). Thus by Lemma 8, for any y ∈ R

C
+ such

that 1�y = 1,

1 − 1
ν(C)

≥ y�Ly ≥
∑

C∈C
(|C| − 1)y2

C + y�Jy − y�MM�y

=
∑

C∈C
(|C| − 1)y2

C + 1 − y�MM�y,

implying in turn that ≥ holds. ��
As a consequence, after employing Carathéodory’s theorem (see [9], §3.14) and
the Cauchy-Schwarz inequality (see [23]), we get the following lower bound on
the packing number of a clutter:

Theorem 10 ([5]). Let C be a clutter over ground set V , and let M be its
incidence matrix. Then

ν(C) ≥
(

y�MM�y

y�Jy
− min{|C| − 1 : C ∈ C}

min{|V |, |C|}
)−1

∀y ∈ R
C
+, y = 0.

Proof. Pick a nonzero y ∈ R
C
+. By Carathéodory’s theorem there is a y′ ∈ R

C
+

such that M�y′ ≤ M�y, 1�y′ = 1�y and |supp(y′)| ≤ |V |. Lemma 9 applied to
1

1�y′ · y′ implies that

ν(C) ≥
(

y′�MM�y′ − ∑
C∈C(|C| − 1)y′

C
2

y′�Jy′

)−1

≥
(

y�MM�y

y�Jy
−

∑
C∈C(|C| − 1)y′

C
2

y′�Jy′

)−1

.

By the Cauchy-Schwarz inequality applied to the nonzero entries of y′,

∑
C∈C(|C| − 1)y′

C
2

y′�Jy′ ≥
(∑

C∈C
√|C| − 1 · y′

C

)2

|supp(y′)| · y′�Jy′ ≥ min{|C| − 1 : C ∈ C}
min{|V |, |C|} .

Combining the last two inequalities proves the theorem. ��

6 A. Abdi et al.

This theorem was proved implicitly by Aharoni, Erdős and Linial in 1988. Given
that M is the incidence matrix of C, the authors explicitly proved Theorem 10
for y a maximum fractional packing of C:

ν(C) ≥
(

1�1
ν�2(C)

− min{|C| − 1 : C ∈ C}
min{|V |, |C|}

)−1

≥ ν�2(C)
|V | .

But one can do better:

Theorem 11. Let C be a clutter over ground set V , and let α := min
{
x�x :

x ∈ Q(C)
}
. Then

ν(C) ≥
(

1
α

− min{|C| − 1 : C ∈ C}
min{|V |, |C|}

)−1

.

Proof. Let M be the incidence matrix of C, and let x ∈ R
V
+ be the point in Q(C)

such that x�x = α. By Lemma 7, there exists y ∈ R
C
+ such that x = M�y and

1�y = α. By Theorem 10,

ν(C) ≥
(

x�x

y�11�y
− min{|C| − 1 : C ∈ C}

min{|V |, |C|}
)−1

=
(

α

α2
− min{|C| − 1 : C ∈ C}

min{|V |, |C|}
)−1

,

as required. ��
Let

β := min
{

y�MM�y

y�Jy
: y ≥ 0, y = 0

}

and α := min{x�x : Mx ≥ 1, x ≥ 0}.

By Strong Conic Programming Duality (see [7], Chapter 5),

1√
β

= max
{
1�y : ‖M�y‖ ≤ 1, y ≥ 0

}
= min{‖x‖ : Mx ≥ 1, x ≥ 0} =

√
α,

so β = 1
α . As a result, the inequality given by Theorem 11 is the best lower

bound derived from Theorem 10.
As an immediate consequence of Theorem 11, we get another new lower

bound on the packing number of a clutter:

Theorem 12. Let C be a clutter. Then ν(C) ≥ min
{
x�x : x ∈ Q(C)

}
.

See ([1], Chapter 3, Theorem 3.2) for an alternative proof of this theorem.

Identically Self-blocking Clutters 7

4 Cuboids

Take an even integer n ≥ 2. A cuboid is a clutter over ground set {1, . . . , n} where
every member C satisfies |C ∩ {1, 2}| = |C ∩ {3, 4}| = · · · = |C ∩ {n − 1, n}| = 1.
Introduced in [2], cuboids form a very special class of clutters, to the point that
some of the main conjectures in the field can be phrased equivalently in terms
of cuboids [3]. Cuboids play a special role here also:

Theorem 13. Let C be an ideal clutter over n elements whose members do not
have a common element, and let α := min{x�x : x ∈ Q(C)}. Then α ≥ 4

n .
Moreover, the following statements are equivalent:

(i) α = 4
n ,

(ii) n is even, after a possible relabeling of the ground set the sets {1, 2}, {3, 4},
. . . , {n−1, n} are minimal covers, and the members of minimum cardinality
form an ideal cuboid over ground set {1, . . . , n} whose members do not have
a common element.

To prove this theorem we need a few preliminary results. Given a simple
graph G = (V,E), a fractional perfect matching is a y ∈ R

E
+ such that 1�y = |V |

2
and for each vertex u ∈ V ,

∑
(ye : u ∈ e) = 1. We need the following classic

result:

Lemma 14 (folklore). If a bipartite graph has a fractional perfect matching,
then it has a perfect matching.

Lemma 15. Take an integer n ≥ 2, and let C be a clutter over ground set
{1, . . . , n}. Then the following statements are equivalent:

(i) C has a fractional packing of value 2 and b(C) has a fractional packing of
value n

2 ,
(ii) n is even, and in C, after a possible relabeling of the ground set the sets

{1, 2}, {3, 4}, . . . , {n − 1, n} are minimal covers, and the members of mini-
mum cardinality form a cuboid over ground set {1, . . . , n} with a fractional
packing of value 2.

Proof. (ii) ⇒ (i) is immediate. (i) ⇒ (ii): Let M,N be the incidence matrices
of C, b(C), respectively. Let y ∈ R

C
+ be a fractional packing of C of value 2; so

M�y ≤ 1 and 1�y = 2. Let t ∈ R
b(C)
+ be a fractional packing of b(C) of value

n
2 ; so N�t ≤ 1 and 1�t = n

2 . Then n = 1�1 ≥ t�NM�y ≥ t�Jy = t�11�y =
n
2 · 2 = n. Thus equality holds throughout, implying in turn that (1) M�y = 1
and 1�y = 2, (2) N�t = 1 and 1�t = n

2 , (3) if yC > 0 and tB > 0 for some
C ∈ C and B ∈ b(C), then |C ∩ B| = 1. Notice that τ(C) ≥ 2 and τ(b(C)) ≥ n

2 ,
so every member of C has cardinality at least n

2 while every member of b(C) has
cardinality at least 2. Together with (1) and (2), these observations imply that
n is even, and (4) if yC > 0 for some C ∈ C, then |C| = n

2 , (5) if tB > 0 for
some B ∈ b(C), then |B| = 2. Let G be the graph over vertices {1, . . . , n} whose
edges correspond to {B ∈ b(C) : tB > 0}. Pick C ∈ C such that yC > 0. Then

8 A. Abdi et al.

by (3) the vertex subset C intersects every edge of G exactly once, implying in
turn that G is a bipartite graph. By (2) G has a fractional perfect matching,
and as the graph is bipartite, there must be a perfect matching by Lemma 14,
labeled as {1, 2}, {3, 4}, . . . , {n − 1, n} after a possible relabeling of the ground
set. As a consequence, the members of C of minimum cardinality form a cuboid
over ground set {1, . . . , n} which by (1) and (4) has a fractional packing of value
2. Thus (ii) holds. ��
Remark 16. Let C be a clutter over n elements, and let α, x� be the optimal
value and solution of min{x�x : x ∈ Q(C)}, respectively. Then the following
statements hold:

(i) α ≥ ν�2(C)
n . Moreover, equality holds if and only if x� = ν�(C)

n · 1.
(ii) Assume that every member has cardinality at least two. Then α ≤ n

4 . More-
over, equality holds if and only if x� = 1

2 · 1.

Proof. (i) The Cauchy-Schwarz inequality implies that α = x��x� ≥ (1�x�)2
n ≥

τ�2(C)
n = ν�2(C)

n . Moreover, equality holds throughout if and only if the entries
of x� are equal and 1�x� = ν�(C), i.e. x� = ν�(C)

n · 1. (ii) is immediate. ��
We also need the following result proved implicitly in [2] (its proof can be

found in the proof of Theorem 1.6, Claim 3 on p. 543):

Lemma 17 ([2]). Take an even integer n ≥ 2, and let C be an ideal clutter over
ground set {1, . . . , n} where {1, 2}, {3, 4}, . . . , {n−1, n} are minimal covers. Then{
C ∈ C : |C| = n

2

}
is an ideal cuboid.

We are now ready to prove Theorem 13:

Proof (of Theorem 13). By Remark 16 (i), α ≥ ν�2(C)
n = τ2(C)

n ≥ 4
n , where

the equality follows from the fact that C is ideal, and the last inequality holds
because the members have no common element. (i) ⇒ (ii): Assume that α = 4

n .
Let x� be the optimal solution of min{x�x : x ∈ Q(C)}. Then by Remark 16 (i),
τ(C) = 2 and x� =

(
2
n , 2

n , . . . , 2
n

)
. Let M be the incidence matrix of C. By

Lemma 7, there is a y ∈ R
C
+ such that M�y = x� and 1�y = 4

n , that is,

n
2 · y is a fractional packing of C of value 2.

Let β, z� be the optimal value and solution of min{z�z : z ∈ Q(b(C))}. As C is an
ideal clutter, it follows from Theorem 6 that β = 1

α = n
4 . Thus by Remark 16 (ii),

z� =
(
1
2 , 1

2 , . . . , 1
2

)
. Let N be the incidence matrix of b(C). By Lemma 7, there

is a t ∈ R
b(C)
+ such that N�t = z� and 1�z� = n

4 , that is,

2t is a fractional packing of b(C) of value n
2 .

It therefore follows from Lemma 15 that n is even, after a possible relabeling
of the ground set the sets {1, 2}, {3, 4}, . . . , {n − 1, n} are minimal covers of C,
and the members of C of minimum cardinality form a cuboid C0 over ground set

Identically Self-blocking Clutters 9

{1, . . . , n} with a fractional packing of value 2. In particular, the members of C0

do not have a common element. Moreover, since C is an ideal clutter, it follows
from Lemma 17 that C0 is an ideal cuboid, thereby proving (ii). (ii) ⇒ (i):
Observe that every member has cardinality at least n

2 , so
(
2
n , 2

n , . . . , 2
n

) ∈ Q(C),
implying in turn that α ≤ 4

n . Since α ≥ 4
n also, (i) must hold. ��

We showed that among ideal clutters C whose members do not have a common
element, it is essentially cuboids that achieve the smallest possible value for
min{x�x : x ∈ Q(C)}. Our proof relied on Lemma 15, which in itself has another
consequence. Viewing clutters as simple games, Hof et al. [16] showed that given
a clutter C over n elements, its critical threshold value is always at most n

4 , and
this maximum is achieved if, and only if, C has a fractional packing of value n

2
and b(C) has a fractional packing of value 2. Thus by Lemma 15, it is essentially
blockers of cuboids that achieve the largest possible critical threshold value.

5 Bypassing Gauge Duality

Here we present a longer and direct proof of the main result of the paper, The-
orem 3. This proof will bypass the use of Theorem 6. We will need the following
two lemmas:

Lemma 18. Let C,B be clutters over ground set V such that |C ∩ B| = 1 for
all C ∈ C, B ∈ B, for which there exist nonzero y ∈ R

C
+ and t ∈ R

B
+ such that∑

C∈C yCχC =
∑

B∈B tBχB. Then

ν(C) ≥
(
1�t

1�y
− min{|C| − 1 : C ∈ C}

min{|V |, |C|}
)−1

ν(B) ≥
(
1�y

1�t
− min{|B| − 1 : B ∈ B}

min{|V |, |B|}
)−1

.

Proof. Due to the symmetry between C and B, it suffices to prove the first
inequality. After possibly scaling t, we may assume that 1�t = 1. Our hypotheses
imply that for each C ′ ∈ C,

∑

C∈C
yC |C ′ ∩ C| =

∑

C∈C
yCχ�

C′χC =
∑

B∈B
tBχ�

C′χB =
∑

B∈B
tB |C ′ ∩ B| = 1.

Thus, given that M is the incidence matrix of C, the equalities above state that
MM�y = 1. And Theorem 10 applied to y implies that

ν(C) ≥
(

y�1
y�Jy

− min{|C| − 1 : C ∈ C}
min{|V |, |C|}

)−1

,

therefore implying the first inequality. ��
Given a clutter, a fractional cover is minimal if it is not greater than or equal

to another fractional cover. Given an ideal clutter, it is well-known that every
minimal fractional cover can be written as a convex combination of the incidence
vectors of minimal covers (see for instance [11]). We will use this fact below:

10 A. Abdi et al.

Lemma 19. Let C,B be blocking ideal clutters. Then there exist nonempty C′ ⊆
C and B′ ⊆ B such that |C ∩ B| = 1 for all C ∈ C′, B ∈ B′, for which there exist
nonzero y ∈ R

C′
+ and t ∈ R

B′
+ such that

∑
C∈C′ yCχC =

∑
B∈B′ tBχB.

Proof. Let M,N be the incidence matrices of C,B, respectively. Let x� be the
optimal solution of min{x�x : x ∈ Q(C)}. Then x� is a minimal fractional cover
of C. As C is an ideal clutter, x� = N�t for some t ∈ R

B
+ such that 1�t = 1.

Moreover, by Lemma 7, there exists y ∈ R
C
+ such that M�y = x� and y�(Mx�−

1) = 0. Thus, 1�y = x��M�y = t�NM�y ≥ t�Jy = t�11�y = 1�y, implying
that t�NM�y = t�Jy. Therefore, if C′ := {C ∈ C : yC > 0} and B′ := {B ∈ B :
tB > 0}, we have that |C ∩B| = 1 for all C ∈ C′, B ∈ B′. Moreover, the equation
M�y = x� = N�t implies that

∑
C∈C′ yCχC =

∑
B∈B′ tBχB. As C′ and B′ are

clearly nonempty, they are the desired clutters. ��
Theorem 20. Let C,B be blocking ideal clutters. If τ(C) ≥ 2 and τ(B) ≥ 2, then
ν(C) ≥ 2 or ν(B) ≥ 2.

Proof. Assume that τ(C) ≥ 2 and τ(B) ≥ 2. By Lemma 19, there exist nonempty
C′ ⊆ C and B′ ⊆ B such that |C ∩ B| = 1 for all C ∈ C′, B ∈ B′, for which there
exist nonzero y ∈ R

C′
+ and t ∈ R

B′
+ such that

∑
C∈C′ yCχC =

∑
B∈B′ tBχB. As

the members of C′ and B′ have cardinality at least two, we get from Lemma 18
that ν(C′) > 1�y

1�t
and ν(B′) > 1�t

1�y
. As ν(C) ≥ ν(C′) and ν(B) ≥ ν(B′), it follows

that ν(C) ≥ 2 or ν(B) ≥ 2, as required. ��
We are now ready to prove Theorem 3 again, stating that an identically

self-blocking clutter different from {{a}} is nonideal:

Proof (of Theorem 3). Let C be an identically self-blocking clutter different from
{{a}}. Then τ(C) ≥ 2, and ν(C) = 1 by Theorem 1. Theorem 20 now applies
and tells us that C cannot be ideal, as required. ��

6 Concluding Remarks

Given a general blocking pair C,B of ideal clutters, what can be said about them?
This is an important research topic in Integer Programming and Combinatorial
Optimization. We showed that if τ(C) ≥ 2 and τ(B) ≥ 2, then ν(C) ≥ 2 or ν(B) ≥
2 (Theorems 3 and 20). Equivalently, if the members of C,B have cardinality at
least two, then one of the two clutters has a bicoloring, i.e. the ground set can
be bicolored so that every member receives an element of each color. Next to
Lehman’s width-length characterization [18], this is the only other fact known
about the structure of C and B. As such, we expect the results as well as the
tools introduced here to help us address the question in mind.

Our main result led us to two computable lower bounds – one weaker than
the other – on the packing number of an arbitrary clutter (Theorems 11 and 12).
We believe these lower bounds will have applications beyond the scope of this
paper. We also characterized the clutters on which one of the lower bounds is at

Identically Self-blocking Clutters 11

its weakest; we showed that these clutters are essentially cuboids (Theorem 13).
Combined with evidence from [2,3], this only stresses further the central role of
cuboids when studying ideal clutters.

Finally, we used techniques from Convex Optimization to prove the main
result of the paper. A natural question is whether there is an elementary and
discrete approach for proving the result? Conjecture 4 provides a potential app-
roach and leads to an interesting research direction.

Acknowledgements. We would like to thank Fatma Kılınç-Karzan, Kanstantsin
Pashkovich and Levent Tunçel for fruitful discussions about different parts of this
work. We would also like to thank the referees; their feedback improved the presenta-
tion of the paper. This work was supported in part by ONR grant 000141812129 and
NSF grant CMMI 1560828.

References

1. Abdi, A.: Ideal clutters. Ph.D. dissertation, University of Waterloo (2018)
2. Abdi, A., Cornuéjols, G., Pashkovich, K.: Ideal clutters that do not pack. Math.

Oper. Res. 43(2), 533–553 (2018)
3. Abdi, A., Cornuéjols, G., Guric̆anová, N., Lee, D.: Cuboids, a class of clutters.

Submitted
4. Abdi, A., Pashkovich, K.: Delta minors, delta free clutters, and entanglement.

SIAM J. Discrete Math. 32(3), 1750–1774 (2018)
5. Aharoni, R., Erdős, P., Linial, N.: Optima of dual integer linear programs. Com-

binatorica 8(1), 13–20 (1988)
6. Berge, C.: Hypergraphs: Combinatorics of Finite Sets. North Holland, Amsterdam

(1989)
7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,

Cambridge (2004)
8. Chaiken, S.: Extremal length and width of blocking polyhedra, Kirchhoff spaces

and multiport networks. SIAM J. Algebraic Discrete Methods 8(4), 635–645 (1987)
9. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer, Berlin

(2014)
10. Cornuéjols, G.: Combinatorial Optimization. Packing and Covering. SIAM,

Philadelphia (2001)
11. Cornuéjols, G., Novick, B.: Ideal 0, 1 matrices. J. Comb. Theor. Ser. B 60(1),

145–157 (1994)
12. Edmonds, J., Fulkerson, D.R.: Bottleneck extrema. J. Comb. Theor. Ser. B 8(3),

299–306 (1970)
13. Freund, R.M.: Dual gauge programs, with applications to quadratic programming

and the minimum-norm problem. Math. Program. 38, 47–67 (1987)
14. Fulkerson, D.R.: Blocking and anti-blocking pairs of polyhedra. Math. Program.

1, 168–194 (1971)
15. Fulkerson, D.R.: Blocking polyhedra. In: Harris, B. (ed.) Graph Theory and Its

Applications, pp. 93–112. Academic Press, New York (1970)
16. Hof, F., Kern, W., Kurz, S., Pashkovich, K., Paulusma, D.: Simple games

versus weighted voting games: bounding the critical threshold value. Preprint,
arXiv:1810.08841 (2018)

http://arxiv.org/abs/1810.08841

12 A. Abdi et al.

17. Isbell, J.R.: A class of simple games. Duke Math. J. 25(3), 423–439 (1958)
18. Lehman, A.: On the width-length inequality. Math. Program. 17(1), 403–417

(1979)
19. Lovász, L.: Energy of convex sets, shortest paths, and resistance. J. Comb. Theor.

Ser. A 94(2), 363–382 (2001)
20. Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of

Turán. Canad. J. Math. 17, 533–540 (1965)
21. Seymour, P.D.: The forbidden minors of binary matrices. J. Lond. Math. Soc.

2(12), 356–360 (1976)
22. Seymour, P.D.: The matroids with the max-flow min-cut property. J. Comb. Theor.

Ser. B 23(2–3), 189–222 (1977)
23. Steele, J.M.: The Cauchy-Schwarz Master Class: An Introduction to the Art of

Mathematical Inequalities. Cambridge University Press, Cambridge (2004)

Min-Max Correlation Clustering
via MultiCut

Saba Ahmadi1(B), Samir Khuller2, and Barna Saha3

1 University of Maryland, College Park, College Park, USA
saba@cs.umd.edu

2 Northwestern University, Evanston, USA
samir.khuller@northwestern.edu

3 College of Information and Computer Science,
University of Massachussetts Amherst, Amherst, USA

barna@cs.umass.edu

Abstract. Correlation clustering is a fundamental combinatorial opti-
mization problem arising in many contexts and applications that has
been the subject of dozens of papers in the literature. In this problem we
are given a general weighted graph where each edge is labeled positive or
negative. The goal is to obtain a partitioning (clustering) of the vertices
that minimizes disagreements – weight of negative edges trapped inside a
cluster plus positive edges between different clusters. Most of the papers
on this topic mainly focus on minimizing total disagreement, a global
objective for this problem.

In this paper we study a cluster-wise objective function that asks to
minimize the maximum number of disagreements of each cluster, which
we call min-max correlation clustering. The min-max objective is a nat-
ural objective that respects the quality of every cluster. In this paper,
we provide the first nontrivial approximation algorithm for this problem
achieving an O(log n) approximation for general weighted graphs. To do
so, we also obtain a corresponding result for multicut where we wish
to find a multicut solution while trying to minimize the total weight of
cut edges on every component. The results are then further improved to
obtain an O(r2)-approximation for min-max correlation clustering and
min-max multicut for graphs that exclude Kr,r minors.

Keywords: Correlation clustering · Multicut ·
Approximation algorithms

A full version of this paper appears at http://cs.umd.edu/∼samir/LCC.pdf
The first two authors are supported by NSF grant CNS 156019. Part of the research was
done when the third author was visiting the Simons Institute of Theory of Computing
and the author is supported by NSF CAREER 1652303, NSF CCF 1464310 and a
Google faculty award.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 13–26, 2019.
https://doi.org/10.1007/978-3-030-17953-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_2&domain=pdf
http://cs.umd.edu/~samir/LCC.pdf
https://doi.org/10.1007/978-3-030-17953-3_2

14 S. Ahmadi et al.

1 Introduction

Correlation clustering is a fundamental optimization problem introduced by
Bansal, Blum and Chawla [3]. In this problem, we are given a general weighted
graph where each edge is labeled positive or negative. The goal is to obtain a
partitioning of the vertices into an arbitrary number of clusters that agrees with
the edge labels as much as possible. That is a clustering that minimizes dis-
agreements, which is the weight of positive edges between the clusters plus the
weight of negative edges inside the clusters. In addition, correlation clustering
captures some fundamental graph cut problems including min s-t cut, multiway
cut and multicut. Correlation clustering has been studied extensively for more
than a decade [1,2,6,7,10]. Most of the papers have focused on a global min-sum
objective function, i.e. minimizing total number of disagreements or maximizing
the total number of agreements.

In recent work, Puleo and Milenkovic [14] introduced a local vertex-wise min-
max objective for correlation clustering which bounds the maximum number of
disagreements on each node. This problem arises in many community detec-
tion applications in machine learning, social sciences, recommender systems and
bioinformatics [8,13,16]. This objective function makes sure each individual has
a minimum quality within the clusters. They showed this problem is NP-hard
even on un-weighted complete graphs, and developed an O(1) approximation
algorithm for unweighted complete graphs. Charikar et al. [5] improved upon
the work by Puleo et al. [14] for complete graphs by giving a 7 approximation.
For general weighted graphs, their approximation bound is O(

√
n) where n is

the number of vertices. Both these algorithms rely on LP rounding, based on a
standard linear program relaxation for the problem. In contrast, for the global
minimization objective an O(log n)-approximation can be obtained [10]. There-
fore, the local objective for correlation clustering seems significantly harder to
approximate than the global objective.

In this work, we propose a new local cluster-wise min-max objective for
correlation clustering – minimizing the maximum number of disagreements of
each cluster. This captures the case when we wish to create communities that are
harmonious, as global min sum objectives could create an imbalanced community
structure. This new local objective guarantees fairness to communities instead
of individuals. To name a few applications for this new objective, consider a task
of instance segmentation in an image which can be modeled using correlation
clustering [11,12]. A cluster-wise min-max objective makes sure each detected
instance has a minimum quality. Another example is in detecting communities in
social networks, this objective makes sure there are no communities with lower
quality compared to the other communities. No hardness results are known for
the cluster-wise min-max objective.

A similar objective was proposed for the multiway cut problem by Svitk-
ina and Tardos [15]. In the min-max multiway cut problem, given a graph G
and k terminals the goal is to get a partitioning of G of size k that separates all
terminals and the maximum weight of cut edges on each part is minimized. Svitk-
ina and Tardos [15] showed an O(log3 n) approximation algorithm for min-max

Min-Max Correlation Clustering via MultiCut 15

multiway cut on general graphs (this bound immediately improves to O(log2 n)
by using better bisection algorithms). Bansal et al. [4] studied a graph partition-
ing problem called min-max k-partitioning from a similar perspective. In this
problem, given a graph G = (V,E) and k ≥ 2 the goal is to partition the ver-
tices into k roughly equal parts S1, · · · , Sk while minimizing maxi δ(Si). They
showed an O(

√
log n log k) approximation algorithm for this problem. They also

improved the approximation ratio given by Svitkina et al. [15] for min-max mul-
tiway cut to O(

√
log n log k). Bansal et al’s seminal work [4] uses the concept of

orthogonal separators introduced by Chlamtac et al. [9] to achieve their result.

2 Results and High Level Ideas

In this paper, we give an approximation algorithm for the problem of min-max
correlation clustering.

Definition 1 (Min-max Correlation Clustering). Let G = (V,E) be an edge-
weighted graph such that each edge is labeled positive or negative. The min-max
correlation clustering problem asks for a partioning of the nodes (a clustering)
where the maximum disagreement of a cluster is minimized. Disagreement of a
cluster C is the weight of negative edges with both endpoints inside C plus the
weight of positive edges with exactly one endpoint in C.

We prove the following theorem for min-max correlation clustering.

Theorem 1. Given an edge weighted graph G = (V,E) on n vertices such that
each edge is labeled positive or negative, there exists a polynomial time algorithm
which outputs a clustering C = {C1, · · · , CC} of G such that the disagreement on
each Ci ∈ C is at most O(log(n)) · OPT ; where OPT is the maximum disagree-
ment on each cluster in an optimal solution of min-max correlation clustering.

In order to prove Theorem 1, we give a reduction from the problem of min-
max correlation clustering to a problem which we call min-max multicut.

Definition 2 (Min-max Multicut). Given an edge weighted graph G = (V,E)
and a set of source-sink pairs {(s1, t1), · · · , (sT , tT }, the goal is to give a par-
titioning P = {P1, P2, · · · , P|P|} of G such that all the source sink pairs are
separated, and max1≤i≤|P| δ(Pi) is minimized.

In min-max multicut, we do not force each part of the partitioning to have
a terminal and there could be some parts without any terminals in the final
solution. However, in the min-max multiway cut problem introduced by Svitkina
and Tardos [15], each part needs to have exactly one terminal. We prove the
following theorem for min-max multicut:

Theorem 2. Given an edge weighted graph G = (V,E) on n vertices, and a set
of source sink pairs SG = {(s1, t1), · · · , (sT , tT)}, there exists a polynomial time
algorithm which outputs a partitioning P = {P1, · · · , P|P|} of G such that all
source sink pairs are separated, and max1≤i≤|P| δ(Pi) ≤ O(log(n)) · OPT ; where
OPT is the value of the optimum solution of min-max multicut.

16 S. Ahmadi et al.

We also consider the following variation of min-max multicut called min-max
constrained multicut. In this variation, the goal is to partition a graph into a
minimum number of parts to separate all source-sink pairs.

Definition 3 (Min-max Constrained Multicut). An edge weighted graph G =
(V,E) and a set of source-sink pairs {(s1, t1), · · · , (sT , tT)} is given. Given k the
minimum number of parts needed to separate all source sink pairs, the goal is to
partition G into k parts {P1, · · · , Pk} which separate all source-sink pairs, and
max1≤i≤k δ(Pi) is minimized.

We defer our results for this problem to the full version of this paper. Finally, we
get improved approximation ratios for min-max correlation clustering, min-max
multicut on graphs excluding a fixed minor.

Theorem 3. Given an edge weighted graph G excluding Kr,r minors, there exist
polynomial time O(r2)-approximation algorithms for min-max correlation clus-
tering and min-max multicut.

2.1 High Level Ideas

Most algorithms for correlation clustering with the global minimizing disagree-
ment objective use a linear programming relaxation [6,7,10]. The recent work of
Charikar, Gupta and Scharwtz also uses a similar linear programming relaxation
for the vertex-wise min-max objective [5]. Surprisingly, these relaxations do not
work for the min-max correlation clustering problem considered in this paper.
Indeed, simply obtaining a linear programming relaxation for the cluster-wise
min-max objective looks challenging!

Bansal et al. [4] considered a semidefinite programming (SDP) based approx-
imation algorithm for min-max k balanced partitioning and min-max multiway
cut with k terminals. In their approach, instead of finding the entire solution in
one shot, they obtain a single part at a time. It is possible to encode the same
problem with a linear program albeit with a worse approximation guarantee.
They use SDP rounding to obtain a part with low cut capacity, and repeat the
process until the parts produce a covering of all the vertices. By properly adjust-
ing the weight of each part, the covering can be obtained efficiently. Finally, they
convert the covering to partitioning.

The problem of extracting a single cluster of min-max correlation clustering
can be captured by a semidefinite programming formulation. Here it is not over
a cut capacity objective, instead we need to simultaneously consider the intra-
cluster negative edges as well as inter-cluster positive edges. Indeed, even for the
global minimization objective, we are not aware of any good rounding algorithm
based on SDP relaxation of correlation clustering. Therefore, rounding the SDP
formulation directly looks difficult. To overcome this, we instead consider a new
problem of min-max multicut. Demaine et al. [10] have shown an approximation
preserving reduction between multicut and correlation clustering (for the global
objective function). By solving the min-max multicut problem and then using the
aforementioned reduction, we solve the min-max correlation clustering problem.

Min-Max Correlation Clustering via MultiCut 17

First, the reduction of Demaine et al. [10] is for the global objective, and an
equivalence in global objective does not necessarily correspond to equivalency in
local min-max objective. Fortunately, we could show indeed such an equivalency
can be proven (the details are deferred to the full version). Thus, the “multicut”
route seems promising as it optimizes over a cut objective. We consider obtaining
each component of the min-max multicut problem, repeat this process to obtain
a covering [4], and finally convert the covering to a partitioning.

The major technical challenge comes in rounding the SDP relaxation for
the multicut instance where we seek to find a single component with good cut
property. In order for the relaxation to be valid, we have to add new constraints
so that no source-sink pair (si, ti) appears together. We also need to ensure that
the component obtained satisfies a weight lower bound by assigning weights to
each vertex. This is important in the next step when we wish to get a covering
of all the vertices: we will decrease the weight of the vertices in the component
recovered and again recompute the SDP relaxation with the same weight lower
bound. This ensures the same component is not repeatedly recovered and a final
covering can be obtained. To solve min-max multiway cut, Bansal et al. [4] need
to separate k terminals. To do so, they can just guess which of the k terminals if
any should appear in the current component with only k +1 guesses. For us, the
number of such guesses would be 3T where T is the number of source sink pairs
since for every pair (si, ti), either si or ti or none would be part of the returned
component. Since T could be O(n2) such a guessing is prohibitive. We need to
come up with a new approach to address this issue.

We use a SDP relaxation to compute a metric on the graph vertices and add
additional constraints to separate source sink pairs along with the spreading
constraints from Bansal et al. [4] to recover a component of desired size. Next,
we use the SDP separator technique introduced by Bansal et al. [4] to design a
rounding algorithm that returns a set S = {S1, S2, · · · , Sj}, such that for each
Si ∈ S, there are no source-sink pairs in Si. Bansal et al. [4] need to glue the
sets in S and report it as a single component, since they wish to get a solution
with specified number of components at the end. However, in min-max multicut
problem, the number of components does not matter. Therefore, we do not need
to union the sets in S, and as a result no source-sink violations happen.

It is possible to use a linear programming formulation for the detour via
multicut and use LP-separators of Bansal et al. [4] in place of orthogonal sepa-
rators and follow our algorithm. This would achieve a similar bound for min-max
multicut and min-max correlation clustering in general graphs, but a much bet-
ter bound of O(r2 · OPT) for graphs that exclude Kr,r minors. The details are
deferred to the full version.

3 Min-Max Multicut

Given a subset S ⊆ V , let δ(S) denote the number of edges with exactly one
end-point in S and let the number of source sink pairs (si, ti) such that both si

and ti belong to S be vio(S).

18 S. Ahmadi et al.

In order to prove Theorem2, we first wish to find a set S = {S1, · · · , Sj},
such that ∀Si ∈ S, Si ⊆ V , and δ(Si) ≤ O(log(n)) · OPT , where OPT is the
maximum number of cut edges on each part of the optimum partitioning for
the min-max multicut problem on graph G. In addition, Pr[vio(Si) ≥ 1] ≤ 1/n,
where n is the number of vertices in G.

Graph G = (V,E) can have arbitrary edge weights, w : E → R
+. We

assume graph G = (V,E) is also a vertex-weighted graph, and there is a mea-
sure η on V such that η(V) = 1. This measure is used to get a covering of all
the vertices. In Sect. 3.4, Theorem 4 is repeatedly applied to generate a fam-
ily of sets that cover all the vertices. When a vertex is covered its weight is
decreased so the uncovered vertices have a higher weight. Constraint η(S) ∈
η(S) =

∑j
i=1 η(Si) ∈ [

H/4, 12H
]

makes sure the newly computed family of
sets S has adequate coverage. Parameter H ∈ (0, 1) is equal to 1/k where k
is the number of parts in the optimum partitioning which we guess. Since the
maximum number of parts is at most n, H ≥ 1/n.

After getting a covering of all the vertices, in Sect. 3.4, it is explained how to
convert a covering into a partitioning with the properties desired in Theorem2.
In order to prove Theorem 1, in the full version of this paper we show how
a O(log n)-approximation algorithm for min-max multicut implies a O(log n)-
approximation algorithm for min-max correlation clustering.

First we prove the following theorem:

Theorem 4. We are given an edge-weighted graph G = (V,w), a set of source
sink pairs SG, a measure η on V such that η(V) = 1, and a parameter H ∈ (0, 1).
Assume there exists a set T ⊆ V such that η(T) ∈ [H, 2H], and vio(T) = 0. We
design an efficient randomized algorithm to find a set S, where S = {S1, · · · , Sj}
satisfying ∀Si ∈ S, Si ⊆ V , η(S) =

∑j
i=1 η(Si) ∈ [

H/4, 12H
]
, and ∀Si ∈ S,

Pr[vio(Si) ≥ 1] ≤ 1
n , and:

δ(Si) ≤ O(log(n)) · min
{
δ(T) : η(T) ∈ [H, 2H],∀(si, ti) ∈ SG, |{si, ti} ∩ T | ≤ 1}

In order to prove this theorem, we use the notion of m−orthogonal separators,
a distribution over subsets of vectors, introduced by Chlamtac et al. [9] which is
explained in the following:

Definition 4. Let X be an �22 space (i.e a finite collection of vectors satisfying
�22 triangle inequalities with the zero vector) and m > 0. A distribution over
subsets S of X is an m−orthogonal separator of X with probability scale α > 0,
separation threshold 0 < β < 1, and distortion D > 0, if the following conditions
hold:

– ∀u ∈ X,Pr(u ∈ S) = α ‖u‖2
– ∀u, v ∈ X if ‖u − v‖2 ≥ β min{‖u‖2 , ‖v‖2} then Pr(u ∈ S and v ∈ S) ≤

min{Pr(u∈S),Pr(v∈S)}
m

– ∀u, v ∈ X, Pr(IS(u) �= IS(v)) ≤ αD · ‖u − v‖2, where IS is the indicator
function for the set S.

Min-Max Correlation Clustering via MultiCut 19

Operator ‖.‖ shows the �2 norm. Chlamtac et al. [9] proposed an algorithm for
finding m-orthogonal separators.

Theorem 5 [9]. There exists a polynomial-time randomized algorithm that
given an �22 space X containing 0 and a parameter m > 0, and 0 < β < 1,
generates an m−orthogonal separator with distortion D = Oβ(

√
log |X| log m)

and α ≥ 1
poly(|X|) .

3.1 SDP Relaxation

In order to prove Theorem4, we use the following SDP relaxation which is
inspired by Bansal et al. [4] except for Constraints 5 and 6. In this relaxation,
we assign a vector v̄ for each vertex v ∈ V . The objective is to minimize the
total weight of cut edges. The set of Constraints 2 are �22 triangle inqualities, and
the set of Constraints 3 and 4 are �22 triangle inequalities with the zero vector.
The set of Constraints 5 and 6 make sure that for each source-sink pair (si, ti),
both si and ti do not belong to S since both vectors s̄i and t̄i could not be 1 for
some fixed unit vector simultaneously. Constraint 7 and the set of Constraints 8
make sure the returned subgraph has the desired size. Suppose now that we have
approximately guessed the measure H of the optimal solution H ≤ η(S) ≤ 2H.
We can ignore all vertices v ∈ V with η(v) > 2H since they do not participate
in the optimal solution and thus write the set of Constraints 8. Constraints (9)
are spreading constraints introduced by Bansal et al. [4] which ensure size of S
is small.

min
∑

(u,v)∈E w(u, v) ‖ū − v̄‖2 (1)

‖ū − w̄‖2 + ‖w̄ − v̄‖2 ≥ ‖ū − v̄‖2 ∀u, v, w ∈ V (2)

‖ū − w̄‖2 ≥ ‖ū‖2 − ‖w̄‖2 ∀u,w ∈ V (3)

‖ū‖2 + ‖v̄‖2 ≥ ‖ū − v̄‖2 ∀u, v ∈ V (4)

‖s̄i − t̄i‖2 ≥ ‖s̄i‖2 ∀(si, ti) ∈ SG (5)

‖s̄i − t̄i‖2 ≥ ‖t̄i‖2 ∀(si, ti) ∈ SG (6)
∑

v∈V ‖v̄‖2 η(v) ≥ H (7)

‖v̄‖2 = 0 if η(v) > 2H (8)
∑

v∈V η(v) · min{‖ū − v̄‖2 , ‖ū‖2} ≥ (1 − 2H) ‖ū‖2 ∀u ∈ V (9)

Lemma 1. Given S∗ = arg min
{
δ(T) : η(T) ∈ [H, 2H],∀(si, ti) ∈ SG, |{si, ti}∩

T | ≤ 1}, the optimal value of SDP is at most δ(S∗).

Proof. We defer proof to the full version of this paper.

20 S. Ahmadi et al.

3.2 Approximation Algorithm

In this section, we prove Theorem 4. We propose an approximation algorithm
which is inspired by Bansal et al.’s [4] algorithm for small-set expansion (SSE).
However, there is a significant difference between our algorithm and theirs. In
the SSE problem, one does not need to worry about separating source sink pairs.

First, we solve the SDP relaxation, and then proceed iteratively. In each
iteration, we sample an n3-orthogonal separator S with β = 1/2 and return it
(we repeatedly sample S, until a particular function1 f(S) has some positive
value. Details are deferred to Sect. 3.3). Then, S is removed from graph G and
the SDP solution, by zeroing the weight of edges incident on S (i.e discarding
these edges), and zeroing the SDP variables corresponding to vertices in S. The
algorithm maintains the subsets of vertices removed so far in a set U ⊆ V , by
initializing U = ∅, and then at each iteration by updating U = U ∪{S}. We keep
iterating until η(U) =

∑
Si∈U η(Si) ≥ H/4. After the last iteration, if η(U) > H,

we output F = S where S is computed in the last iteration. Otherwise, we put
F = U . Note that in this case, U = {S1, · · · , S|U |}.

3.3 Analysis

First, let’s see what is the effect of algorithm’s changes to the SDP solution. By
zeroing vectors in S and discarding the edges incident on S, the SDP value may
only decrease. Triangle inequalities, and the source-sink constraints still hold.
Constraint

∑
v∈V ‖v̄‖2 η(v) ≥ H will be violated due to zeroing some variables.

However, since before the last iteration η(U) ≤ H
4 , the following constraint still

holds:
∑

v∈V ‖v̄‖2 η(v) ≥ 3H
4 (10)

Next, we show the set of spreading constraints (9) will remain satisfied after
removing S. Consider the spreading constraint for a fixed vertex u, two cases
might happen:

Case 1: If ∃S ∈ U such that u ∈ S, then u will be removed and ‖ū‖ = 0,
the spreading constraint will be satisfied since RHS is 0.

Case 2: If �S ∈ U such that u ∈ S, the RHS will not change and we can
show that min{‖ū − v̄‖2 , ‖ū‖2} does not decrease. If �S′ ∈ U such that v ∈ S′,
then the term min{‖ū − v̄‖2 , ‖ū‖2} does not change. If ∃S′ ∈ U such that v ∈ S′,
then min{‖ū − v̄‖2 , ‖ū‖2} = ‖ū‖2 since ‖v̄‖ = 0, and its value does not decrease.

Therefore, in both these cases, the spreading constraints will not be violated.

Lemma 2. Let S be a sampled n-orthogonal separator. Fix a vertex u. We claim
that Pr[η(S) ≤ 12H | u ∈ S] ≥ 7

8 .

Proof. We defer proof to Appendix A.1.

1 defined later.

Min-Max Correlation Clustering via MultiCut 21

Next, we upper bound δ(S). By the third property of orthogonal separators:

E[δ(S)] ≤ αD · ∑
(u,v)∈E ‖ū − v̄‖2 · w(u, v) ≤ αD · SDP

where D = Oβ(
√

log n log(n3)) = O(log n). Note that β = 1/2. Consider the
function f :

f(S) =

{
η(S) − δ(S) · H

4D·SDP if S �= ∅ and η(S) < 12H

0 otherwise

We wish to lower bound E[f(S)]. First, we lower bound E[η(S)]. As a result of
Lemma 2 and the first property of orthogonal separators:

E[η(S)] =
∑

u∈V Pr[u ∈ S ∧ η(S) < 12H] · η(u)

=
∑

u∈V Pr[η(S) < 12H | u ∈ S] · Pr[u ∈ S] · η(u) ≥ ∑
u∈V

7α‖ū‖2η(u)
8

Since E[δ(S)] ≤ αD · SDP and using Constraint 10:

E[f(S)] ≥ ∑
u∈V

7α‖ū‖2η(u)
8 − α · D · SDP · H

4D·SDP ≥ 7α 3H
4

8 − αH
4 = 13

32αH

We have f(S) ≤ 2nH since ‖ū‖ = 0 whenever η(u) > 2H. Therefore, Pr[f(S) >

0] ≥ 13
32αH

2nH = Ω(α
n). So after O(n2/α) samples, with probability exponentially

close to 1, the algorithm finds a set S with f(S) > 0. f(S) > 0 implies η(S) ≥
δ(S) · H

4D·SDP , therefore δ(S) ≤ 4D·SDP ·η(S)
H . Consider the two possible cases for

the output F :
Case 1: F = U = {S1, S2, · · · , S|U |}, and η(F) =

∑|U |
i=1 η(Si). In this case,

H
4 ≤ η(F) ≤ H. The set U is a set of orthogonal separators and each Si ∈ U
forms a separate part.

Case 2: F = S. In this case, let’s show the last iteration of step 1 as U =
Uold ∪ {S}. We know η(U) > H, and η(Uold) < H

4 , therefore η(S) > 3H/4. Also
f(S) > 0 implies η(S) ≤ 12H. Therefore, 3H/4 < η(S) ≤ 12H.

In both cases, H
4 ≤ η(F) ≤ 12H.

We showed when a set Si ∈ U is sampled, δ(Si) ≤ 4D·SDP ·η(Si)
H . However, in

the LHS of this inequality, edges like (u, v) where u ∈ Sj , v ∈ Si and j < i are
not considered. We can show

∑i−1
j=1 δ(Sj , Si) ≤ ∑i−1

j=1
4D·SDP ·η(Sj)

H ≤ 4D · SDP

since
∑i−1

j=1 η(Sj) ≤ H. Therefore, δ(Si) ≤ 4D·SDP ·η(Si)
H +

∑i−1
j=1 δ(Sj , Si) ≤

O(D · SDP) since η(Si) ≤ 12H.
In addition, by the second property of orthogonal separators, for each source-

sink pair (sj , tj), the probability that both sj and tj belong to the orthogonal
separator Si is bounded by 1

n3 . Therefore, Pr[vio(Si) ≥ 1] ≤ T
n3 ≤ n2

n3 = 1
n . This

completes the proof of Theorem 4.
The following corollary is implied from Theorem 4 and is used in the next

section.

22 S. Ahmadi et al.

Corollary 1. Given an edge-weighted graph G = (V,w), a set of source sink
pairs SG, a measure η on V such that η(V) = 1, and a parameter τ , a set S =
{S1, · · · , Sj} could be found satisfying ∀Si ∈ S, Si ⊆ V,Pr[vio(Si) ≥ 1] ≤ 1/n, and
δ(Si) ≤ O(log(n)) · OPT , where OPT = arg min{δ(T) : η(T)

η(V) ≥ τ, vio(T) = 0}.
In addition, η(S) =

∑j
i=1 η(Si) ≥ Ω(τ · η(V)).

Proof. The algorithm guesses H ≥ τ such that H ≤ η(OPT) ≤ 2H. Guessing is
feasible since 0 ≤ η(OPT) ≤ n·η(u), where u is the weight of the heaviest element
in OPT , and H can be chosen from the set {2tη(u) : u ∈ V, t = 0, · · · , log(n)} of
size O(n log(n)). Theorem 4 is invoked with parameter H. The obtained solution
S satisfies the properties of this corollary.

3.4 Covering and Aggregation

Once we find F , we follow the multiplicative update algorithm of [4] with some
minor modifications, to get a covering of all the vertices. Then, we use the
aggregation step to convert the covering to a partitioning. This step is simpler
than [4] since we are not required to maintain any size bound on the subgraphs
returned after aggregation.

Theorem 6. Given graph G = (V,E) and T pairs of source and sink, running
Algorithm 1 on this instance outputs a multiset S that satisfies the following
conditions:

– for all S ∈ S: δ(S) ≤ D · OPT where D = O(log(n)),Pr[vio(S) ≥ 1] ≤ 1/n

– for all v ∈ V , |{S∈S:v∈S}|
|S| ≥ 1

5γkn , where γ = O(1) and k is the number of
parts in the optimal solution which we guess.

Proof. We defer proof to AppendixA.2.

Algorithm 1. Covering Procedure for Min-Max Multicut
1 Set t = 1, S = ∅ and y1(v) = 1 ∀v ∈ V ;
2 Guess k, which is the number of parts in the optimal solution;
3 while

∑
v∈V yt(v) > 1

n do
4 Find set St = {S1, · · · , Sj} using Corollary 1, where τ = 1

k and
∀v ∈ V, η(v) = yt(v)/

∑
v∈V yt(v);

5 S = St ∪ S;
6 // Update the weights of the covered vertices;
7 for v ∈ V do
8 Set yt+1(v) = 1

2 · yt(v) if ∃Si ∈ St such that v ∈ Si, and
yt+1(v) = yt(v) otherwise.;

9 Set t = t + 1;
10 return S;

Now the covering of G is converted into a partitioning of G without violating
min-max objective by much.

Min-Max Correlation Clustering via MultiCut 23

Theorem 7. Given a weighted graph G = (V,E), a set of source-sink pairs
(s1, t1), · · · , (sT , tT), and a cover S consisting of subsets of V such that:

– ∀v ∈ V , v is covered by at least a fraction c
nk of sets S ∈ S, where k is the

number of partitions of the optimum solution which we guessed in the covering
section, and c ∈ (0, 1].

– ∀S ∈ S, δ(S) ≤ B, Pr[vio(S) ≥ 1] ≤ 1/n.

We propose a randomized polynomial time algorithm which outputs a partition
P of V such that ∀Pi ∈ P, δ(Pi) ≤ 2B, and Pr[vio(Pi) ≥ 1] ≤ 1/n.

Algorithm 2. Aggregation Procedure For Min-Max Multicut
1 Step 1: Sort sets in S in a random order: S1, S2, · · · , S|S|. Let

Pi = Si \ (∪j<iSj).
2 Step 2: while There is a set Pi such that δ(Pi) > 2B do
3 Set Pi = Si and for all j �= i, set Pj = Pj \ Si;

Proof. We defer proof to AppendixA.3.

Acknowledgements. We are grateful to Nikhil Bansal for useful discussions during
a Dagstuhl workshop on scheduling (18101).

A Missing Proofs

A.1 Proof of Lemma 2

Proof. Consider a vertex u and let Au = {v : ‖ū − v̄‖2 ≥ β ‖ū‖2} and Bu = {v :
‖ū − v̄‖2 < β ‖ū‖2}. Assume for now that u ∈ S. We show with high probability
η(Au ∩ S) is small, and η(Bu) is also small. Vertex u satisfies the spreading
constraint. It is easy to see that:

(1 − 2H) ‖u‖2 ≤ ∑
v∈V η(v) · min{‖ū − v̄‖2 , ‖ū‖2} ≤ β ‖ū‖2 η(Bu) + ‖ū‖2 η(Au)

Since η(V) = 1 and Au ∪Bu = V , η(Au)+η(Bu) = 1, and β = 1/2 therefore:

(1 − 2H) ≤ βη(Bu) + (1 − η(Bu)) (11)

∴ η(Bu) ≤ 2H

1 − β
= 4H (12)

Consider an arbitrary vertex v ∈ Au where ‖v̄‖ �= 0. By definition of Au,
‖ū − v̄‖2 ≥ β ‖ū‖2 ≥ β min{‖ū‖2 , ‖v̄‖2}. Therefore, by the second property of
orthogonal separators and since we assumed u ∈ S, then Pr[v ∈ S | u ∈ S] ≤
1

n3 ≤ H. The second inequality holds since H ≥ 1/n.
Now we show a bound for E[η(Au ∩ S) | u ∈ S]:

E[η(Au ∩ S) | u ∈ S] =
∑

v∈Au
η(v) Pr[v ∈ S | u ∈ S] ≤ H

24 S. Ahmadi et al.

Now, we want to bound Pr[η(S) ≥ 12H |u ∈ S]. The event {η(S) ≥ 12H |u ∈ S}
implies the event {η(Au ∩S) ≥ 8H |u ∈ S} since η(Bu ∩S) ≤ η(Bu) ≤ 4H. (The
second inequality holds by (12)). Now we are ready to complete the proof.

Pr[η(S) ≥ 12H | u ∈ S] ≤ Pr[η(Au ∩ S) ≥ 8H | u ∈ S] ≤ E[η(Au ∩ S) | u ∈ S]

8H
≤ H

8H
= 1/8

We showed Pr[η(S) ≥ 12H |u ∈ S] ≤ 1/8, therefore Pr[η(S) ≤ 12H |u ∈ S] ≥ 7/8
and the proof is complete.

A.2 Proof of Theorem 6

Proof. For an iteration t, let Y t =
∑

v∈V yt(v). Consider the optimal solu-
tion {S∗

i }k
i=1 to the min-max multicut problem. There exists at least a S∗

j ∈
{S∗

i }k
i=1 with weight greater than or equal to the average (yt(S∗

j) ≥ Y t

k),
vio(S∗

j) = 0, and δ(S∗
j) ≤ OPT . Therefore by Corollary 1 where H = 1

k , a set
St = {S1, S2, · · · , Sj} could be found where ∀Si ∈ St, δ(Si) ≤ O(log n) · OPT ,
Pr[vio(Si) ≥ 1] ≤ 1/n.

Now we show the second property of the theorem holds. Let � denote the
number of iterations in the while loop. Let |{S ∈ S : v ∈ S}| = Nv. By the
updating rules y�+1(v) = 1/2Nv . Therefore 1

2Nv
= y�+1(v) ≤ 1/n, which implies

Nv ≥ log(n). By Corollary 1, yt(St) ≥ 1
γkY t where γ = O(1). Therefore:

Y t+1 = Y t − 1
2
yt(St) ≤ (1 − 1

2γk
)Y t

Which implies Y � ≤ (1 − 1
2γk)�−1Y 1 = (1 − 1

2γk)�−1n. Also Y � > 1/n therefore,
� ≤ 1 + 4γk ln(n) ≤ 5γk log(n). In each iteration t, the number of sets in St is
at most n (since all the sets in St are disjoint), therefore |S| ≤ 5γkn log(n), and
the second property is proved.

A.3 Proof of Theorem7

Proof. A similar proof to the one given by Bansal et al. [4] shows after step 2,
for each Pi ∈ P, δ(Pi) ≤ 2B. We start by analyzing Step 1. Observe that after
Step 1, the collection of sets {Pi} is a partition of V and Pi ⊆ Si for every i.
Particularly, vio(Pi) ≤ vio(Si). Note, however, that the bound δ(Pi) ≤ B may
be violated for some i since Pi might be a strict subset of Si.

We finish the analysis of Step 1 by proving that E[
∑

i δ(Pi)] ≤ 2knB/c. Fix
an i ≤ |S| and estimate the expected weight of edges E(Pi,∪j>iPj), given that
the ith set in the random ordering is S. If an edge (u, v) belongs to E(Pi,∪j>iPj),
then (u, v) ∈ E(Si, V \ Si) = E(S, V \ S) and both u, v /∈ ∪j<iSj . For any edge
(u, v) ∈ δ(S) (with u ∈ S, v /∈ S), Pr((u, v) ∈ E(Pi,∪j>iPj) | Si = S) ≤ Pr(v /∈
∪j<iSj | Si = S) ≤ (1 − c

nk)i−1, since v is covered by at least c
nk fraction of sets

in S and is not covered by Si = S. Hence,

E[w(E(Pi,∪j>iPj)) | Si = S] ≤ (1 − c

nk
)i−1δ(S) ≤ (1 − c

nk
)i−1B

Min-Max Correlation Clustering via MultiCut 25

and E[w(E(Pi,∪j>iPj)) ≤ (1 − c
nk)i−1B. Therefore:

E
[∑

i δ(Pi)
]

= 2 · E
[∑

i w(E(Pi,∪j>iPj))
] ≤ 2

∑∞
i=0(1 − c

nk)iB = 2knB/c

Now we want to analyze step 2. Consider potential function
∑

i δ(Pi), we showed
after step 1, E

[∑
i δ(Pi)

] ≤ 2knB/c. We prove that this potential function
reduces quickly over the iterations of Step 2, thus, Step 2 terminates after a
small number of steps. After each iteration of Step 2, the following invariant
holds: the collection of sets {Pi} is a partition of V and Pi ⊆ Si for all i.
Particularly, vio(Pi) ≤ vio(Si). Using an uncrossing argument, we show at every
iteration of the while loop in step 2,

∑
i δ(Pi) decreases by at least 2B.

δ(Si) +
∑

j �=i δ(Pj \ Si) ≤ δ(Si) +
∑

j �=i

(
δ(Pj) + w(E(Pj \ Si, Si)) − w(E(Si \ Pj , Pj))

)

≤ δ(Si) +
∑

j �=i

(
δ(Pj)

)
+ w(E(V \ Si, Si)) − w(E(Pi, V \ Pi))

=
∑

j

(
δ(Pj)

)
+ 2δ(Si) − 2δ(Pi) ≤ ∑

j

(
δ(Pj)

)
− 2B

The above inequalities use the facts that Pi ⊆ Si for all i and that all the Pj ’s
are disjoint. The second inequality uses the facts that

∑
j 	=i w(E(Pj \ Si, Si)) =

w(E(V \ Si, Si)), and
∑

j 	=i w(E(Si \ Pj , Pj)) ≥ w(E(Pi, V \ Pi)), which hold
since the collection of sets {Pi} is a partition of V , and Pi ⊆ Si. In particular,∑

j 	=i w(E(Si \ Pj , Pj)) ≥ w(E(Pi, V \ Pi)) holds since for each edge e if e ∈
E(Pi, Pj) then e ∈ E(Si \ Pj , Pj). The last inequality holds since δ(Si) ≤ B and
δ(Pi) > 2B.

This proves that the number of iterations of the while loop is polynomially
bounded and after step 2, δ(Pi) ≤ 2B for each Pi.

In addition, since each Pi is a subset of Si, vio(Pi) ≤ vio(Si). Therefore
Pr[vio(Pi) ≥ 1] ≤ 1/n.

References

1. Ailon, N., Avigdor-Elgrabli, N., Liberty, E., Van Zuylen, A.: Improved approxi-
mation algorithms for bipartite correlation clustering. SIAM J. Comput. 41(5),
1110–1121 (2012)

2. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. J. ACM (JACM) 55(5), 23 (2008)

3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),
89–113 (2004)

4. Bansal, N., et al.: Min-max graph partitioning and small set expansion. SIAM J.
Comput. 43(2), 872–904 (2014)

5. Charikar, M., Gupta, N., Schwartz, R.: Local guarantees in graph cuts and cluster-
ing. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp.
136–147. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3 12

6. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
In: 44th Annual IEEE Symposium on Foundations of Computer Science, Proceed-
ings, pp. 524–533. IEEE (2003)

https://doi.org/10.1007/978-3-319-59250-3_12

26 S. Ahmadi et al.

7. Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP
rounding algorithm for correlation clustering on complete and complete k-partite
graphs. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory
of Computing, pp. 219–228. ACM (2015)

8. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Ismb, vol. 8, pp.
93–103 (2000)

9. Chlamtac, E., Makarychev, K., Makarychev, Y.: How to play unique games using
embeddings. In: 47th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2006, pp. 687–696. IEEE (2006)

10. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in
general weighted graphs. Theor. Comput. Sci. 361(2–3), 172–187 (2006)

11. Kim, S., Nowozin, S., Kohli, P., Yoo, C.D.: Higher-order correlation clustering for
image segmentation. In Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F.,
Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol.
24, pp. 1530–1538. Curran Associates, Inc. (2011)

12. Kirillov, A., Levinkov, E., Andres, B., Savchynskyy, B., Rother, C.: Instancecut:
from edges to instances with multicut. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 7322–7331. IEEE (2017)

13. Kriegel, H.-P., Kröger, P., Zimek, A.: Clustering high-dimensional data: a survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Trans. Knowl. Discov. Data (TKDD) 3(1), 1 (2009)

14. Puleo, G., Milenkovic, O.: Correlation clustering and biclustering with locally
bounded errors. In: International Conference on Machine Learning, pp. 869–877
(2016)

15. Svitkina, Z., Tardos, É.: Min-Max multiway cut. In: Jansen, K., Khanna, S., Rolim,
J.D.P., Ron, D. (eds.) APPROX/RANDOM -2004. LNCS, vol. 3122, pp. 207–218.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27821-4 19

16. Symeonidis, P., Nanopoulos, A., Papadopoulos, A., Manolopoulos, Y.: Nearest-
biclusters collaborative filtering with constant values. In: Nasraoui, O.,
Spiliopoulou, M., Srivastava, J., Mobasher, B., Masand, B. (eds.) WebKDD 2006.
LNCS (LNAI), vol. 4811, pp. 36–55. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-77485-3 3

https://doi.org/10.1007/978-3-540-27821-4_19
https://doi.org/10.1007/978-3-540-77485-3_3
https://doi.org/10.1007/978-3-540-77485-3_3

Strong Mixed-Integer Programming
Formulations for Trained Neural

Networks

Ross Anderson1, Joey Huchette1(B), Christian Tjandraatmadja1,
and Juan Pablo Vielma2

1 Google Research, Cambridge, USA
{rander,jhuchette,ctjandra}@google.com

2 MIT, Cambridge, USA
jvielma@mit.edu

Fig. 1. The convex relaxation for a ReLU neuron using: (Left) existing MIP formula-
tions, and (Right) the formulations presented in this paper.

Abstract. We present an ideal mixed-integer programming (MIP) for-
mulation for a rectified linear unit (ReLU) appearing in a trained neural
network. Our formulation requires a single binary variable and no addi-
tional continuous variables beyond the input and output variables of
the ReLU. We contrast it with an ideal “extended” formulation with a
linear number of additional continuous variables, derived through stan-
dard techniques. An apparent drawback of our formulation is that it
requires an exponential number of inequality constraints, but we pro-
vide a routine to separate the inequalities in linear time. We also prove
that these exponentially-many constraints are facet-defining under mild
conditions. Finally, we study network verification problems and observe
that dynamically separating from the exponential inequalities (1) is much
more computationally efficient and scalable than the extended formula-
tion, (2) decreases the solve time of a state-of-the-art MIP solver by a
factor of 7 on smaller instances, and (3) nearly matches the dual bounds
of a state-of-the-art MIP solver on harder instances, after just a few
rounds of separation and in orders of magnitude less time.

Keywords: Mixed-integer programming · Formulations ·
Deep learning

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 27–42, 2019.
https://doi.org/10.1007/978-3-030-17953-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_3

28 R. Anderson et al.

1 Introduction

Deep learning has proven immensely powerful at solving a number of important
predictive tasks arising in areas such as image classification, speech recognition,
machine translation, and robotics and control [27,35]. The workhorse model in
deep learning is the feedforward network NN : Rm0 → Rms with rectified linear
unit (ReLU) activation functions, for which NN(x0) = xs is defined through

xi
j = ReLU(wi,j · xi−1 + bi,j) (1)

for each layer i ∈ �s�
def= {1, . . . , s} and j ∈ �mi�. Note that the input x0 ∈ Rm0

might be high-dimensional, and that the output xs ∈ Rms may be multivariate.
In this recursive description, ReLU(v) def= max{0, v} is the ReLU activation func-
tion, and wi,j and bi,j are the weights and bias of an affine function which are
learned during the training procedure. Each equation in (1) corresponds to a
single neuron in the network. Networks with any specialized linear transforma-
tions such as convolutional layers can be reduced to this model after training,
without loss of generality.

There are numerous contexts in which one may want to solve an optimiza-
tion problem containing a trained neural network such as NN. For example, such
problems arise in deep reinforcement learning problems with high dimensional
action spaces and where any of the cost-to-go function, immediate cost, or the
state transition functions are learned by a neural network [3,19,40,44,55]. Alter-
natively, there has been significant recent interest in verifying the robustness of
trained neural networks deployed in systems like self-driving cars that are incredi-
bly sensitive to unexpected behavior from the machine learning model [15,43,48].
Relatedly, a string of recent work has used optimization over neural networks
trained for visual perception tasks to generate new images which are “most rep-
resentative” for a given class [42], are “dreamlike” [41], or adhere to a particular
artistic style via neural style transfer [26].

1.1 MIP Formulation Preliminaries

In this work, we study mixed-integer programming (MIP) approaches for opti-
mization problems containing trained neural networks. In contrast to heuristic or
local search methods often deployed for the applications mentioned above, MIP
offers a framework for producing provably optimal solutions. This is of particular
interest in the verification problem, where rigorous dual bounds can guarantee
robustness in a way that purely primal methods cannot.

We focus on constructing MIP formulations for the graph of ReLU neurons:

gr(ReLU ◦ f ; [L,U]) def= { (x, (ReLU ◦ f)(x)) | L � x � U } , (2)

where ◦ is the standard function composition operator (g ◦ f)(x) = g(f(x)).
This substructure consists of a single ReLU activation function, taking as input
an affine function f(x) = w · x + b over a η-dimensional box-constrained input

MIP Formulations for Trained Neural Networks 29

domain. The nonlinearity is handled by introducing an auxiliary binary variable
z to indicate whether (ReLU◦f)(x) = 0 or (ReLU◦f)(x) = f(x) for a given value
of x. We focus on these particular substructures because we can readily produce
a MIP formulation for the entire network as the composition of formulations for
each individual neuron.1

A MIP formulation is ideal if the extreme points of its linear programming
(LP) relaxation are integral. Ideal formulations are highly desirable from a com-
putational perspective, and offer the strongest possible convex relaxation for the
set being formulated [50].

Our main contribution is an ideal formulation for a single ReLU neuron
with no auxiliary continuous variables and an exponential number of inequal-
ity constraints. We show that each of these exponentially-many constraints is
facet-defining under very mild conditions. We also provide a simple linear-time
separation routine to generate the most violated inequality from the exponential
family. This formulation is derived by constructing an ideal extended formulation
that uses η auxiliary continuous variables and projecting them out. We evaluate
our methods computationally on verification problems for image classification
networks trained on the MNIST digit dataset, where we observe that separating
over these exponentially-many inequalities solves smaller instances faster than
using Gurobi’s default cut generation by a factor of 7, and (nearly) matches the
dual bounds on larger instances in orders of magnitude less time.

1.2 Relevant Prior Work

In recent years a number of authors have used MIP formulations to model trained
neural networks [14,16,20,25,32,38,44,46,47,49,55,56], mostly applying big-M
formulation techniques to ReLU-based networks. When applied to a single neu-
ron of the form (2), these big-M formulations will not be ideal or offer an exact
convex relaxation; see Example 1 for an illustration. Additionally, a stream of
literature in the deep learning community has studied convex relaxations in
the original space of input/output variables x and y (or a dual representa-
tion thereof), primarily for verification tasks [9,22,23]. It has been shown that
these convex relaxations are equivalent to those provided by the standard big-M
MIP formulation, after projecting out the auxiliary binary variables (e.g. [46]).
Moreover, some authors have investigated how to use convex relaxations within
the training procedure in the hopes of producing neural networks with a priori
robustness guarantees [21,53,54].

Beyond MIP and convex relaxations, a number of authors have investigated
other algorithmic techniques for modeling trained neural networks in optimiza-
tion problems, drawing primarily from the satisfiability, constraint program-
ming, and global optimization communities [7,8,33,37,45]. Another intriguing
direction studies restrictions to the space of models that may make the opti-
mization problem over the network inputs simpler: for example, the classes of
binarized [34] or input convex [1] neural networks.
1 Further analysis of the interactions between neurons can be found in the full-length

version of this extended abstract [2].

30 R. Anderson et al.

Broadly, our work fits into a growing body of research in prescriptive analytics
and specifically the “predict, then optimize” framework, which considers how to
embed trained machine learning models into optimization problems [11,12,17,18,
24,28,39]. Additionally, the formulations presented below have connections with
existing structures studied in the MIP and constraint programming community
like indicator variables and on/off constraints [4,10,13,29,30].

1.3 Starting Assumptions and Notation

We will assume that −∞ < Li < Ui < ∞ for each input component i. While
a bounded input domain will make the formulations and analysis considerably
more difficult than the unbounded setting (see [4] for a similar phenomenon),
it ensures that standard MIP representability conditions are satisfied (e.g. [50,
Sect. 11]). Furthermore, variable bounds are natural for many applications (for
example in verification problems), and are absolutely essential for ensuring rea-
sonable dual bounds.

Define L̆, Ŭ ∈ Rη such that, for each i ∈ �η�,

L̆i =

{
Li if wi � 0
Ui if wi < 0

and Ŭi =

{
Ui if wi � 0
Li if wi < 0

.

This definition implies that wiL̆i � wiŬi for each i, which simplifies the handling
of negative weights wi < 0. Take the values M+(f) def= maxx̃∈[L,U] f(x̃) ≡ w ·Ŭ +b

and M−(f) def= minx̃∈[L,U] f(x̃) ≡ w · L̆+ b. Define supp(w) def= { i ∈ �η� | wi �= 0 }.
Finally, take R�0

def= { x ∈ R | x � 0 } as the nonnegative orthant.
We say that strict activity holds for a given ReLU neuron gr(ReLU◦f ; [L,U])

if M−(f) < 0 < M+(f), or in other words, if gr(ReLU ◦ f ; [L,U]) is not equal
to either gr(0; [L,U]) or gr(f ; [L,U]). We assume for the remainder that strict
activity holds for each ReLU neuron. This assumption is not onerous, as other-
wise, the nonlinearity can be replaced by an affine function (either 0 or w ·x+b).
Moreover, strict activity can be verified or disproven in time linear in η.

2 The ReLU Neuron

The ReLU is the workhorse of deep learning models: it is easy to reason about,
introduces little computational overhead, and despite its simple structure is
nonetheless capable of articulating complex nonlinear relationships.

2.1 A Big-M Formulation

A standard big-M formulation for gr(ReLU ◦ f ; [L,U]) is:

y � f(x) (3a)

y � f(x) − M−(f) · (1 − z) (3b)

y � M+(f) · z (3c)
(x, y, z) ∈ [L,U] × R�0 × {0, 1}. (3d)

MIP Formulations for Trained Neural Networks 31

This is the formulation used recently in the bevy of papers referenced in Sect. 1.2.
Unfortunately, this formulation is not necessarily ideal, as illustrated by the
following example.

Example 1. If f(x) = x1 + x2 − 1.5, formulation (3a–3d) for gr(ReLU ◦ f ; [0, 1]2)
is

y � x1 + x2 − 1.5 (4a)
y � x1 + x2 − 1.5 + 1.5(1 − z) (4b)
y � 0.5z (4c)

(x, y, z) ∈ [0, 1]2 × R�0 × [0, 1] (4d)
z ∈ {0, 1}. (4e)

The point (x̂, ŷ, ẑ) = ((1, 0), 0.25, 0.5) is feasible for the LP relaxation (4a–4d);
however, (x̂, ŷ) ≡ ((1, 0), 0.25) is not in Conv(gr(ReLU ◦ f ; [0, 1]2)), and so the
formulation does not offer an exact convex relaxation (and, hence, is not ideal).
See Fig. 1 for an illustration: on the left, of the big-M formulation projected to
(x, y)-space, and on the right, the tightest possible convex relaxation.

The integrality gap of (3a–3d) can be arbitrarily bad, even in fixed
dimension η.

Example 2. Fix γ ∈ R�0 and even η ∈ N. Take the affine function f(x) =∑η
i=1 xi, the input domain [L,U] = [−γ, γ]η, and the point x̂ = γ ·

(1,−1, · · · , 1,−1) as a scaled vector of alternating ones and negative ones. We
can check that (x̂, ŷ, ẑ) = (x̂, 1

2γη, 1
2) is feasible for the LP relaxation of the

big-M formulation (3a–3d). Additionally, f(x̂) = 0, and for any ỹ such that
(x̂, ỹ) ∈ Conv(gr(ReLU ◦ f ; [L,U])), then ỹ = 0 necessarily. Therefore, there
exists a fixed point x̂ in the input domain where the tightest possible convex
relaxation (for example, from an ideal formulation) is exact, but the big-M for-
mulation deviates from this value by at least 1

2γη.

Intuitively, this example suggests that the big-M formulation is particularly
weak around the boundary of the input domain, as it cares only about the value
f(x) of the affine function, and not the particular input value x.

2.2 An Ideal Extended Formulation

It is possible to produce an ideal extended formulation for the ReLU neuron by
introducing auxiliary continuous variables. The “multiple choice” formulation is

32 R. Anderson et al.

(x, y) = (x0, y0) + (x1, y1) (5a)

y0 = 0 � w · x0 + b(1 − z) (5b)

y1 = w · x1 + bz � 0 (5c)

L(1 − z) � x0 � U(1 − z) (5d)

Lz � x1 � Uz (5e)
z ∈ {0, 1}, (5f)

is an ideal extended formulation for piecewise linear functions [52]. It can alter-
natively be derived from techniques introduced by Balas [5,6]. Although the mul-
tiple choice formulation offers the tightest possible convex relaxation for a single
neuron, it requires a copy x0 of the input variables (note that it is straightforward
to use Eq. (5a) to eliminate the second copy x1). This means that when the mul-
tiple choice formulation is applied to every neuron in the network to formulate
NN, the total number of continuous variables required is m0 +

∑r
i=1(mi−1 +1)mi

(using the notation of (1), where mi is the number of neurons in layer i). In con-
trast, the big-M formulation requires only m0+

∑r
i=1 mi continuous variables to

formulate the entire network. As we will see in Sect. 3.2, the quadratic growth in
size of the extended formulation can quickly become burdensome. Additionally, a
folklore observation in the MIP community is that multiple choice formulations
tend to not perform as well as expected in simplex-based branch-and-bound
algorithms, likely due to degeneracy introduced by the block structure [51].

2.3 An Ideal Non-extended Formulation

We now present a non-extended ideal formulation for the ReLU neuron, stated
only in terms of the original variables (x, y) and the single binary variable z. Put
another way, it is the strongest possible tightening that can be applied to the
big-M formulation (3a–3d) and so matches the strength of the multiple choice
formulation without the additional continuous variables.

Proposition 1. Take some affine function f(x) = w · x + b over input domain
[L,U]. The following is an ideal formulation for gr(ReLU ◦ f ; [L,U]):

y � w · x + b (6a)

y �
∑
i∈I

wi(xi − L̆i(1 − z)) +

⎛
⎝b +

∑
i�∈I

wiŬi

⎞
⎠ z ∀I ⊆ supp(w) (6b)

(x, y, z) ∈ [L,U] × R�0 × {0, 1} (6c)

Proof. See AppendixA.1.
�
Furthermore, each of the exponentially-many inequalities in (6b) is necessary.

MIP Formulations for Trained Neural Networks 33

Proposition 2. Each inequality in (6b) is facet-defining.

Proof. See AppendixA.2.
�
We require the assumption of strict activity above, as introduced in Sect. 1.3.

Under the same condition, it is also possible to show that (6a) is facet-defining,
but we omit it in this extended abstract for brevity. As a result of this and
Proposition 2, the formulation (6a–6c) is minimal (modulo variable bounds).

The proof of Proposition 2 offers a geometric interpretation of the facets
induced by (6b). Each facet is a convex combination of two faces: an (η − |I|)-
dimensional face consisting of all feasible points with z = 0 and xi = L̆i for all
i ∈ �η�\I, and an |I|-dimensional face consisting of all feasible points with z = 1
and xi = Ŭi for all i ∈ I.

It is also possible to separate from the family (6b) in time linear in η.

Proposition 3. Take a point (x̂, ŷ, ẑ) ∈ [L,U]×R�0 × [0, 1], along with the set

Î =
{

i ∈ supp(w)
∣∣∣ wix̂i < wi

(
L̆i(1 − ẑ) + Ŭiẑ

) }
.

If any constraint in the family (6b) is violated at (x̂, ŷ, ẑ), then the one corre-
sponding to Î is the most violated.

Proof. Follows from inspecting the family (6b): each has the same left-hand-side,
and so to maximize violation, it suffices to select the subset I that minimizes the
right-hand-side. This can be performed in a separable manner, independently for
each component i ∈ supp(w), giving the result.
�

Observe that the inequalities (3b) and (3c) are equivalent to those in (6b)
with I = supp(w) and I = ∅, respectively (modulo components i with
wi = 0). This suggests an iterative scheme to produce strong relaxations for
ReLU neurons: start with the big-M formulation (3a–3d), and use Proposition 3
to separate strengthening inequalities from the exponential family (6b) as they
are needed. We evaluate this approach in the following computational study.

3 Computational Experiments

To conclude the work, we study the strength of the ideal formulations presented
in Sect. 2 for individual ReLU neurons. We study the verification problem on
image classification networks trained on the canonical MNIST digit dataset [36].
We train a neural network f : [0, 1]28×28 → R10, where the 10 outputs correspond
to the logits for each of the digits from 0 to 9. Given a labeled image x̃ ∈
[0, 1]28×28, our goal is to prove or disprove the existence of a perturbation of x̃
such that the neural network f produces a wildly different classification result.
If f(x̃)i = max10

j=1 f(x̃)j , then image x̃ is placed in class i. To evaluate robustness
around x̃ with respect to class j, we can solve the following optimization problem
for some small constant ε > 0:

maxa:||a||∞�ε f(x̃ + a)j − f(x̃ + a)i.

34 R. Anderson et al.

If the optimal solution (or a valid dual bound thereof) is less than zero, this
verifies that our network is robust around x̃ in the sense that we cannot produce
a small perturbation that will flip the classification from i to j.

We train a smaller and a larger model, each with two convolutional layers with
ReLU activation functions, feeding into a dense layer of ReLU neurons, and then
a final dense linear layer. TensorFlow pseudocode specifying the two network
architectures is included in Fig. 2. We generate 100 instances for each network
by randomly selecting images x̃ with true label i from the test data, along with a
random target adversarial class j �= i. Note that we make no attempts to utilize
recent techniques that train the networks to be verifiable [21,53,54,56].

Fig. 2. TensorFlow pseudocode specifying the two network architectures used.

For all experiments, we use the Gurobi v7.5.2 solver, running with a single
thread on a machine with 128 GB of RAM and 32 CPUs at 2.30 GHz. We use a
time limit of 30 min (1800 s) for each run. We perform our experiments using the
tf.opt package for optimization over trained neural networks; tf.opt is under
active development at Google, with the intention to open source the project in the
future. Below, the big-M + (6b) method is the big-M formulation (3a–3d) paired
with separation2 over the exponential family (6b), and with Gurobi’s cutting plane
generation turned off. Similarly, the big-M and the extended methods are the big-
M formulation (3a–3d) and the extended formulation (5a– 5f) respectively, with
default Gurobi settings. Finally, the big-M+no cuts method turns off Gurobi’s
cutting plane generation without adding separation over (6b).

2 We use cut callbacks in Gurobi to inject separated inequalities into the cut loop. While
this offers little control over when the separation procedure is run, it allows us to take
advantage of Gurobi’s sophisticated cut management implementation.

MIP Formulations for Trained Neural Networks 35

3.1 Small ReLU Network

We start with a smaller ReLU network whose architecture is depicted in Tensor-
Flow pseudocode in Fig. 2a. The model attains 97.2% test accuracy. We select a
perturbation ball radius of ε = 0.1. We report the results in Table 1 and in Fig. 3.
The big-M + (6b) method solves 7 times faster on average than the big-M formu-
lation. Indeed, for 79 out of 100 instances the big-M method does not prove opti-
mality after 30 min, and it is never the fastest choice (the “win” column). More-
over, the big-M + no cuts times out on every instance, implying that using some
cuts is important. The extended method is roughly 5 times slower than the big-
M + (6b) method, but only exceeds the time limit on 19 instances, and so is sub-
stantially more reliable than the big-M method for a network of this size. From
this, we conclude that the additional strength offered by the ideal formulations
(5a–5f) and (6a–6c) can offer substantial computational improvement over the
big-M formulation (3a–3d).

3.2 Larger ReLU Network

Now we turn to the larger ReLU network described in Fig. 2b. The trained model
attains 98.5% test accuracy. We select a perturbation ball radius of ε = 10/256.

Table 1. Results for smaller network. Shifted geometric mean for time and optimality
gap taken over 100 instances (shift of 10 and 1, respectively). The “win” column is the
number of (solved) instances on which the method is the fastest.

Method Time (s) Optimality gap Win

big-M + (6b) 174.49 0.53% 81

big-M 1233.49 6.03% 0

big-M + no cuts 1800.00 125.6% 0

Extended 890.21 1.26% 6

Fig. 3. Number of small network instances solved within a given amount of time.
Curves to the upper left are better, with more instances solved in less time.

36 R. Anderson et al.

For these larger networks, we eschew solving the problems to optimality and
focus on the quality of the dual bound available at the root node. As Gurobi
does not reliably produce feasible primal solutions for these larger instances, we
turn off primal heuristics and compare the approaches based on the “verifica-
tion gap”, which measures how far the dual bound is from proving robustness
(i.e. an objective value of 0). To evaluate the quality of a dual bound, we mea-
sure the “improvement percentage” big M bound−other bound

big M bound
, where our baseline for

comparison, big M bound, is the bound from the big-M + no cuts method, and
other bound is the dual bound being compared.

Table 2. Results at the root node for larger network. Shifted geometric mean of bound,
time, and improvement over 100 instances (shift of 10).

Method Bound Time (s) Improvement

big-M + no cuts 302.03 3.08 –

big-M + (6b) 254.95 8.13 15.44%

big-M 246.87 612.65 18.08%

big-M + 15 s timeout 290.21 15.00 3.75%

Extended – 1800.00 –

We report aggregated results over 100 instances in Table 2. First, we are
unable to solve even the LP relaxation of the extended method on any of the
instances in the allotted 30 min, due to the quadratic growth in size. In contrast,
the LP relaxation of the big-M + no cuts method can be solved very quickly. The
big-M + (6b) method strengthens this LP bound by more than 15% on average,
and only takes roughly 2.5× as long. This is not only because the separation
runs very quickly, but also for a technical reason: when Gurobi’s cutting planes
are disabled, the callback separating over (6b) is only called a small number of
times, as determined by Gurobi’s internal cut selection procedure. Therefore,
this 15% improvement is the result of only a small number of separation rounds,
not an exhaustive iterative procedure (i.e. Gurobi terminates the cut loop well
before all violated inequalities have been separated).

We may compare these results against the big-M method, which is able
to provide a modestly better bound (roughly 18% improvement), but requires
almost two orders of magnitude more time to produce the bound. For another
comparison, big-M +15 s timeout, we set a smaller time limit of 15 s on Gurobi,
which is a tighter upper bound on the maximum time used by the big-M + (6b)
method. In this short amount of time, Gurobi is not able to improve the bound
substantially, with less than 4% improvement. This suggests that the inequali-
ties (6b) are not trivial to infer by generic cutting plane methods, and that it
takes Gurobi many rounds of cut generation to achieve the same level of bound
improvement we derive from restricting ourselves to those cuts in (6b).

Acknowledgement. The authors gratefully acknowledge Yeesian Ng and Ondřej
Sýkora for many discussions on the topic of this paper, and for their work on the
development of the tf.opt package used in the computational experiments.

MIP Formulations for Trained Neural Networks 37

A Deferred Proofs

A.1 Proof of Proposition 1

Proof. The result follows from applying Fourier–Motzkin elimination to
(5a–5f) to project out the x0, x1, y0, and y1 variables; see [31, Chap. 13] for
an explanation of the approach. We start by eliminating the x1, y0, and y1 using
the equations in (5a), (5b), and (5c), respectively, leaving only x0.

First, if there is some input component i with wi = 0, then x0
i only appears

in the constraints (5d–5e), and so the elimination step produces Li � xi � Ui.
Second, if there is some i with wi < 0, then we introduce an auxiliary variable

x̃i with the equation x̃i = −xi. We then replace wi ← |wi|, Li ← −Ui, and
Ui ← −Li, and proceed as follows under the assumption that w > 0.

Applying the Fourier-Motzkin procedure to eliminate x0
1 gives the inequalities

y � w · x + b

y � w1x1 − w1L1(1 − z) +
∑
i>1

wix
0
i + bz

y � w1U1z +
∑
i>1

wix
0
i + bz

y � w1x1 − w1U1(1 − z) +
∑
i>1

wix
0
i + bz

y � w1L1z +
∑
i>1

wix
0
i + bz

L1 � x1 � U1,

along with the existing inequalities in (5a–5f) where the x0
1 coefficient is zero.

Repeating this procedure for each remaining component of x0 yields the linear
system

y � w · x + b (7a)

y �
∑
i∈I

wixi −
∑
i∈I

wiLi(1 − z) +

⎛
⎝b +

∑
i�∈I

wiUi

⎞
⎠ z ∀I ⊆ supp(w) (7b)

y �
∑
i∈I

wixi −
∑
i∈I

wiUi(1 − z) +

⎛
⎝b +

∑
i�∈I

wiLi

⎞
⎠ z ∀I ⊆ supp(w) (7c)

(x, y, z) ∈ [L,U] × R�0 × [0, 1]. (7d)

Moreover, we can show that the family of inequalities (7c) is redundant, and
can therefore be removed. Fix some I ⊆ supp(w), and take h(I) def=

∑
i∈I wiL̆i +∑

i�∈I wiŬi + b. If h(�η� \ I) � 0, we can express the inequality in (7c) corre-

38 R. Anderson et al.

sponding to the set I as a conic combination of the remaining constraints as:

y � w · x + b × 1
0 � Li − xi × wi ∀i /∈ I

0 � z − 1 × h(�η� \ I)

Alternatively, if h(�η� \ I) < 0, we can express the inequality in (7c) corre-
sponding to the set I as a conic combination of the remaining constraints as:

y � 0 × 1
0 � xi − Ui × wi ∀i ∈ I

0 � −z × − h(�η� \ I)

To complete the proof, for any components i where we introduced an auxiliary
variable x̃i, we use the corresponding equation x̃i = −xi to eliminate xi and
replace it x̃i, giving the result.
�

A.2 Proof of Proposition 2

Proof. We fix I = {κ + 1, . . . , η} for some κ; this is without loss of generality by
permuting the rows of the matrices presented below. Additionally, we presume
that w � 0, which allows us to infer that L̆ = L and Ŭ = U . This is also without
loss of generality by appropriately interchanging + and − in the definition of
the p̃k below. In the following, references to (6b) are taken to be references to
the inequality in (6b) corresponding to the subset I.

Take the two points p0 = (x, y, z) = (L, 0, 0) and p1 = (U, f(U), 1). Each
point is feasible with respect to (6a–6c) and satisfies (6b) at equality. Then for
some ε > 0 and for each i ∈ �η�\I, take p̃i = (x, y, z) = (L + εei, 0, 0). Similarly,
for each i ∈ I, take p̃i = (x, y, z) = (U − εei, f(U − εei), 1). From the strict
activity assumption, there exists some ε > 0 sufficiently small such that each p̃k

is feasible with respect to (6a–6c) and satisfies (6b) at equality.
This leaves us with η+2 feasible points satisfying (6b) at equality; the result

then follows by showing that the points are affinely independent. Take the matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 − p0

p̃1 − p0

...
p̃κ − p0

p̃κ+1 − p0

...
p̃η − p0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U − L f(U) 1
εe1 0 0
...

...
...

εeκ 0 0
U − L − εeκ+1 f(U − εeκ+1) 1

...
...

...
U − L − εeη f(U − εeη) 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U − L f(U) 1
εe1 0 0
...

...
...

εeκ 0 0
−εeκ+1 −wκ+1ε 0

...
...

...
−εeη −wηε 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the third matrix is constructed by subtracting the first row to each of
row κ + 2 to η + 1 (i.e. those corresponding to p̃i − p0 for i > κ), and is taken
to mean congruency with respect to elementary row operations. If we permute

MIP Formulations for Trained Neural Networks 39

the last column (corresponding to the z variable) to the first column, we observe
that the resulting matrix is upper triangular with a nonzero diagonal, and so has
full row rank. Therefore, the starting matrix also has full row rank, as we only
applied elementary row operations, and therefore the η + 2 points are affinely
independent, giving the result.
�

References

1. Amos, B., Xu, L., Kolter, J.Z.: Input convex neural networks. In: Precup, D.,
Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 70, pp. 146–155. PMLR,
International Convention Centre, Sydney, Australia, 06–11 August 2017

2. Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.P.: Strong convex relax-
ations and mixed-integer programming formulations for trained neural networks
(2018). https://arxiv.org/abs/1811.01988

3. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforce-
ment learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)

4. Atamtürk, A., Gómez, A.: Strong formulations for quadratic optimization with
M-matrices and indicator variables. Math. Program. 170, 141–176 (2018)

5. Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete opti-
mization problems. SIAM J. Algorithmic Discret. Methods 6(3), 466–486 (1985)

6. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points.
Discret. Appl. Math. 89, 3–44 (1998)

7. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model
complex real-world problems. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 115–
129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7 11

8. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Optimization and controlled
systems: a case study on thermal aware workload dispatching. In: Proceedings of
the Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 427–433 (2012)

9. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Crimin-
isi, A.: Measuring neural net robustness with constraints. In: Advances in Neural
Information Processing Systems, pp. 2613–2621 (2016)

10. Belotti, P., et al.: On handling indicator constraints in mixed integer programming.
Comput. Optim. Appl. 65(3), 545–566 (2016)

11. Bertsimas, D., Kallus, N.: From predictive to prescriptive analytics. Management
Science (2018). https://arxiv.org/abs/1402.5481

12. Biggs, M., Hariss, R.: Optimizing objective functions determined from random
forests (2017). https://papers.ssrn.com/sol3/papers.cfm?abstract id=2986630

13. Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming
with indicator constraints. Math. Program. 151(1), 191–223 (2015)

14. Bunel, R., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: A unified view of
piecewise linear neural network verification. In: Advances in Neural Information
Processing Systems (2018)

15. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)

16. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 18

https://arxiv.org/abs/1811.01988
https://doi.org/10.1007/978-3-642-23786-7_11
https://arxiv.org/abs/1402.5481
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2986630
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18

40 R. Anderson et al.

17. Deng, Y., Liu, J., Sen, S.: Coalescing data and decision sciences for analytics.
In: Recent Advances in Optimization and Modeling of Contemporary Problems.
INFORMS (2018)

18. Donti, P., Amos, B., Kolter, J.Z.: Task-based end-to-end model learning in stochas-
tic optimization. In: Guyon, I., et al. (eds.) Advances in Neural Information Pro-
cessing Systems, vol. 30, pp. 5484–5494. Curran Associates, Inc. (2017)

19. Dulac-Arnold, G., et al.: Deep reinforcement learning in large discrete action spaces
(2015). https://arxiv.org/abs/1512.07679

20. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5 9

21. Dvijotham, K., et al.:: Training verified learners with learned verifiers (2018).
https://arxiv.org/abs/1805.10265

22. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A dual approach
to scalable verification of deep networks. In: Thirty-Fourth Conference Annual
Conference on Uncertainty in Artificial Intelligence (2018)

23. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

24. Elmachtoub, A.N., Grigas, P.: Smart ”Predict, then Optimize” (2017). https://
arxiv.org/abs/1710.08005

25. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23, 296–309 (2018)

26. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style (2015).
https://arxiv.org/abs/1508.06576

27. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, vol. 1. MIT Press, Cam-
bridge (2016)

28. den Hertog, D., Postek, K.: Bridging the gap between predictive and pre-
scriptive analytics - new optimization methodology needed (2016). http://www.
optimization-online.org/DB HTML/2016/12/5779.html

29. Hijazi, H., Bonami, P., Cornuéjols, G., Ouorou, A.: Mixed-integer nonlinear pro-
grams featuring “on/off” constraints. Comput. Optim. Appl. 52(2), 537–558 (2012)

30. Hijazi, H., Bonami, P., Ouorou, A.: A note on linear on/off constraints (2014).
http://www.optimization-online.org/DB FILE/2014/04/4309.pdf

31. Hooker, J.: Logic-Based Methods for Optimization: Combining Optimization and
Constraint Satisfaction. Wiley, Hoboken (2011)

32. Huchette, J.: Advanced mixed-integer programming formulations: methodology,
computation, and application. Ph.D. thesis, Massachusetts Institute of Technology
(June 2018)

33. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

34. Khalil, E.B., Gupta, A., Dilkina, B.: Combinatorial attacks on binarized neural
networks. In: International Conference on Learning Representations (2019)

35. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

https://arxiv.org/abs/1512.07679
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://arxiv.org/abs/1805.10265
https://doi.org/10.1007/978-3-319-68167-2_19
https://arxiv.org/abs/1710.08005
https://arxiv.org/abs/1710.08005
https://arxiv.org/abs/1508.06576
http://www.optimization-online.org/DB_HTML/2016/12/5779.html
http://www.optimization-online.org/DB_HTML/2016/12/5779.html
http://www.optimization-online.org/DB_FILE/2014/04/4309.pdf
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

MIP Formulations for Trained Neural Networks 41

36. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998)

37. Lombardi, M., Gualandi, S.: A lagrangian propagator for artificial neural networks
in constraint programming. Constraints 21(4), 435–462 (2016)

38. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks (2017). https://arxiv.org/abs/1706.07351

39. Mǐsić, V.V.: Optimization of tree ensembles (2017). https://arxiv.org/abs/1705.
10883

40. Mladenov, M., Boutilier, C., Schuurmans, D., Elidan, G., Meshi, O., Lu, T.:
Approximate linear programming for logistic Markov decision processes. In: Pro-
ceedings of the Twenty-sixth International Joint Conference on Artificial Intelli-
gence (IJCAI 2017), pp. 2486–2493, Melbourne, Australia (2017)

41. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: going deeper into neural net-
works (2015). https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-
neural.html

42. Olah, C., Mordvintsev, A., Schubert, L.: Feature Visualization. Distill (2017).
https://distill.pub/2017/feature-visualization

43. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: IEEE European Symposium
on Security and Privacy, pp. 372–387, March 2016

44. Say, B., Wu, G., Zhou, Y.Q., Sanner, S.: Nonlinear hybrid planning with deep net
learned transition models and mixed-integer linear programming. In: Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, pp. 750–756 (2017)

45. Schweidtmann, A.M., Mitsos, A.: Global deterministic optimization with artificial
neural networks embedded. J. Optim. Theory Appl. 180(3), 925–948 (2019)

46. Serra, T., Ramalingam, S.: Empirical bounds on linear regions of deep rectifier
networks (2018). https://arxiv.org/abs/1810.03370

47. Serra, T., Tjandraatmadja, C., Ramalingam, S.: Bounding and counting linear
regions of deep neural networks. In: Thirty-Fifth International Conference on
Machine Learning (2018)

48. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Con-
ference on Learning Representations (2014)

49. Tjeng, V., Xiao, K., Tedrake, R.: Verifying neural networks with mixed integer
programming. In: International Conference on Learning Representations (2019)

50. Vielma, J.P.: Mixed integer linear programming formulation techniques. SIAM
Rev. 57(1), 3–57 (2015)

51. Vielma, J.P.: Small and strong formulations for unions of convex sets from the
Cayley embedding. Math. Program. (2018)

52. Vielma, J.P., Nemhauser, G.: Modeling disjunctive constraints with a logarith-
mic number of binary variables and constraints. Math. Program. 128(1–2), 49–72
(2011)

53. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the con-
vex outer adversarial polytope. In: International Conference on Machine Learning
(2018)

54. Wong, E., Schmidt, F., Metzen, J.H., Kolter, J.Z.: Scaling provable adversarial
defenses. In: 32nd Conference on Neural Information Processing Systems (2018)

https://arxiv.org/abs/1706.07351
https://arxiv.org/abs/1705.10883
https://arxiv.org/abs/1705.10883
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://distill.pub/2017/feature-visualization
https://arxiv.org/abs/1810.03370

42 R. Anderson et al.

55. Wu, G., Say, B., Sanner, S.: Scalable planning with Tensorflow for hybrid nonlinear
domains. In: Advances in Neural Information Processing Systems, pp. 6276–6286
(2017)

56. Xiao, K.Y., Tjeng, V., Shafiullah, N.M., Madry, A.: Training for faster adversarial
robustness verification via inducing ReLU stability. In: International Conference
on Learning Representations (2019)

Extended Formulations from
Communication Protocols
in Output-Efficient Time

Manuel Aprile1(B) and Yuri Faenza2

1 DISOPT, EPFL, Lausanne, Switzerland
manuelf.aprile@gmail.com

2 IEOR, Columbia University, New York, USA
yf2414@columbia.edu

Abstract. Deterministic protocols are well-known tools to obtain
extended formulations, with many applications to polytopes arising in
combinatorial optimization. Although constructive, those tools are not
output-efficient, since the time needed to produce the extended formu-
lation also depends on the number of rows of the slack matrix (hence,
of the exact description in the original space). We give general sufficient
conditions under which those tools can be implemented as to be output-
efficient, showing applications to e.g. Yannakakis’ extended formulation
for the stable set polytope of perfect graphs, for which, to the best of our
knowledge, an efficient construction was previously not known. For spe-
cific classes of polytopes, we give also a direct, efficient construction of
those extended formulations. Finally, we deal with extended formulations
coming from certain unambiguous non-deterministic protocols.

Keywords: Communication protocols · Extended formulations ·
Perfect graphs

1 Introduction

Linear extended formulations are a fundamental tool in integer programming and
combinatorial optimization, as they allow to reduce an optimization problem
over a polyhedron P to an analogous one over a polyhedron Q that linearly
projects to P . When Q can be described with much fewer inequalities than P
(typically, polynomial vs. exponential in the dimension of P), this leads to a
computational speedup. Q as above is called an extension of P , any set of linear
inequalities describing Q is an extended formulation, and the minimum number
of inequalities in an extended formulation for P is called the extension complexity
of P , and denoted by xc(P). Computing or bounding the extension complexity
of polytopes has been an important topic in recent years, see e.g. [6,12,27].

Lower bounds on extension complexity are usually unconditional: neither
they rely on any complexity theory assumptions, nor they take into account the

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 43–56, 2019.
https://doi.org/10.1007/978-3-030-17953-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_4

44 M. Aprile and Y. Faenza

time needed to produce the extension or the encoding length of coefficients in
the inequalities. Upper bounds are often constructive and produce an extended
formulation in time polynomial (often linear) in its size. Examples of the latter
include Balas’ union of polytopes, reflection relations, and branched polyhedral
branching systems (see e.g. [9,18]).

The fact that we can construct extended formulations efficiently is crucial,
since their final goal is to make certain optimization problems (more) tractable.
It is interesting to observe that there is indeed a gap between the existence of
certain extended formulations, and the fact that we can construct them effi-
ciently: in [5], it is shown that there is a small extended formulation for the
stable set polytope that is O(

√
n)-approximated (n being the number of nodes

of the graph), but we do not expect to obtain it efficiently because of known
hardness results [17]. In another case, a proof of the existence of a formulation
of subexponential size with integrality gap 2 + ε for min-knapsack [4] predated
the efficient construction of a formulation with these properties [11].

In this paper, we investigate the efficiency of an important tool for produc-
ing extended formulation: communication protocols. In a striking result, Yan-
nakakis [30] showed that a deterministic communication protocol computing the
slack matrix of a polytope P = {x : Ax ≤ b} ⊆ R

n can be used to produce an
extended formulation for P . The number of inequalities of the latter is at most
2c, where c is the complexity of the protocol (see Sect. 2 for definitions). Hence,
deterministic protocols can be used to provide upper bounds on extension com-
plexity of polytopes. This reduction is constructive, but not efficient. Indeed,
it produces an extended formulation with n + 2c variables, 2c inequalities, and
an equation per row of A. Basic linear algebra implies that most equations are
redundant, but in order to obtain a basis we may have to go through the full (pos-
sibly exponential-sized) list. The main application of Yannakakis’ technique is
arguably given in his original paper, and deals with the stable set polytope of per-
fect graphs. This is a class of polytopes that has received much attention in the
literature [8,16]. They also play an important role in extension complexity: while
many open problems in the area were settled one after the other [6,12,19,27], we
still do not know if the stable set polytope of perfect graphs has polynomial-size
extension complexity. Yannakakis’ protocol gives an upper bound of nO(n log n),
while the best lower bound is as small as Ω(n log n) [2]. On the other hand, a
maximum stable set in a perfect graph can be computed efficiently via a poly-
size semidefinite extension known as Lovasz’ Theta body [23]. This can also be
used, together with the ellipsoid method, to efficiently find a coloring of a perfect
graph, see e.g. [28, Section 67.1]. We remark that designing a combinatorial (or
at least SDP-free) polynomial-time algorithm to find a maximum stable set in
perfect graphs, or to color them, is a main open problem [7].

Our Results. In this paper, we investigate conditions under which we can
explicitly obtain an extended formulation from a communication protocol in
time polynomial in the size of the formulation itself. We first show a gen-
eral algorithm that achieves this for any deterministic protocol, given a com-
pact representation of the protocol as a labelled tree and of certain extended

Extended Formulations from Communication Protocols Efficiently 45

formulations associated to leaves of the tree. The algorithm runs in linear time
in the input size and is flexible, in that it also handles non-exact extended for-
mulations. We then show that in some cases one can obtain those extended
formulations directly, without relying on this general algorithm. This may be
more interesting computationally. We show applications of our techniques in the
context of (not only) perfect graphs. Our most interesting application is to Yan-
nakakis’ original protocol, whose associated extended formulation we construct
in time linear in the size of the formulation itself, which is nO(log n). For perfect
graphs, this gives a subexponential SDP-free algorithm that computes a maxi-
mum stable set (resp. an optimal coloring). For general graphs, this gives a new
relaxation of the stable set polytope which is (strictly) contained in the clique
relaxation. Finally, we discuss extended formulations from certain unambiguous
non-deterministic protocols.

Note: Extended discussions and several proofs are deferred to the journal version.

2 Preliminaries

Deterministic Communication Protocols. We start by describing the gen-
eral setting of communication protocols, referring to [20] for details. Let M be
a non-negative matrix with row (resp. column) set X (resp. Y), and two agents
Alice and Bob. Alice is given as input a row index i ∈ X, Bob a column index
j ∈ Y , and they aim at determining Mij by exchanging information according to
some pre-specified mechanism, that goes under the name of deterministic proto-
col. Such a protocol can be modelled as a rooted tree, with each vertex modelling
a step where one of Alice or Bob sends a bit (hence labelled with A or B), and
its children representing subsequent steps of the protocol. The tree is therefore
binary, with each edge representing a 0 or a 1 sent. The leaves of the tree indicate
the termination of the protocol and are labelled with the corresponding output.
At each step of the protocol, the actions of Alice (resp. Bob) only depend on
her (resp. his) input and on what they exchanged so far. The protocol is said
to compute M if, for any input i of Alice and j of Bob, it returns Mij . Hence,
a deterministic protocol can be identified by the following parameters: a rooted
binary tree τ with node set V; a function � : V → {A,B} (“Alice”,“Bob”) asso-
ciating each vertex to its type; for each leaf v ∈ V, a non-negative number Λv

corresponding to the value output at v; for each v ∈ V, the set Sv of pairs
(i, j) ⊆ X × Y such that, on input (i, j), the step corresponding to node v is
executed during the protocol. We represent this compactly by (τ, �, Λ, {Sv}v∈V).
It can be shown that each Sv is a rectangle, i.e. a submatrix of M . For a leaf
v of τ , all entries of Sv have the same value Λv, i.e. they form a submatrix of
M with constant values. Such submatrices are called monochromatic rectangles.
We assume that Sv �= ∅ for each v.

An execution of the protocol is a path of τ from the root to a leaf, whose edges
correspond to the bits sent during the execution. The complexity of the protocol
is given by the height h of the tree τ . A deterministic protocol computing M
gives a partition of M in at most 2h monochromatic rectangles. We remark that

46 M. Aprile and Y. Faenza

one can obtain a protocol (and a partition in rectangles) for MT given a protocol
for M by just exchanging the roles of Alice and Bob.

Extended Formulations and How to Find Them. We follow here the frame-
work introduced in [26], that extends [30]. Consider a pair of polytopes (P,Q)
with P = conv(v1, . . . , vn) ⊆ Q = {x ∈ R

d : Ax ≤ b} ⊆ R
d, where A has m rows.

A polyhedron Q ∈ R
d′

is an extension for the pair (P,Q) if there is a projection
π : Rd′ → R

d such that P ⊆ π(R) ⊆ Q. An extended formulation for (P,Q)
is a set of linear inequalities describing R as above, and the minimum number
of inequalities in an extended formulation for (P,Q) is its extension complexity.
The slack matrix M(P,Q) of the pair (P,Q) is the non-negative m × n matrix
with M(P,Q)i,j = bi − a�

i vj , where ai is the i-th row of A. A non-negative fac-
torization of M is a pair of non-negative matrices (T,U) such that M = TU . The
non-negative rank of M is the smallest intermediate dimension in a non-negative
factorization of M .

Theorem 1 [26] [Yannakakis’ Theorem for pairs of polytopes]. Given a slack
matrix M of a pair of polytopes (P,Q) of dimension at least 1, the extension
complexity of (P,Q) is equal to the non-negative rank of M . In particular, if
M = TU is a non-negative factorization of M , then P ⊆ {x : ∃ y ≥ 0 :
Ax + Ty = b} ⊆ Q.

Hence, a factorization of the slack matrix of intermediate dimension N gives
an extended formulation of size N (i.e., with N inequalities). However such
formulation has as many equations as the number of rows of A.

Now assume we have a deterministic protocol of complexity c for computing
M = M(P,Q). The protocol gives a partition of M into at most 2c monochro-
matic rectangles. This implies that M = R1 + · · · + RN , where N ≤ 2c and each
Ri is a rank 1 matrix corresponding to a monochromatic rectangle of non-zero
value. Hence M can be written as a product of two non-negative matrices U, T
of intermediate dimension N , where Ti,j = 1 if the (monochromatic) rectangle
Rj contains row index i and 0 otherwise, and Ui,j is equal to the value of Ri if
Ri contains column index j, and 0 otherwise. As a consequence of Theorem 1,
this yields an extended formulation for (P,Q). In particular, let R1 be the set
of monochromatic, non-zero rectangles of M produced by the protocol and, for
i = 1, . . . , m, let R1

i ⊂ R1 be the set of rectangles whose row index set includes
i. Then the following is an extended formulation for (P,Q):

aix +
∑

R∈R1
i

yR = bi ∀ i = 1, . . . ,m (1)

y ≥ 0

Again, the formulation has as many equations as the number of rows of A,
and it is not clear how to get rid of non-redundant equations efficiently. Note
that all definitions and facts from this section specialize to those from [30] for a
single polytope when P = Q.

Extended Formulations from Communication Protocols Efficiently 47

Stable Set Polytope and QSTAB(G). The stable set polytope STAB(G) is
the convex hull of the characteristic vectors of stable (also, independent) sets of
a graph G. It has exponential extension complexity [12,15]. The clique relaxation
of STAB(G) is:

QSTAB(G) =

{
x ∈ R

d
+ :

∑

v∈C

xv ≤ 1 for all cliques C of G

}
. (2)

Note that in (2) one could restrict to maximal cliques, even though in the fol-
lowing we will consider all cliques when convenient. As a consequence of the
equivalence between separation and optimization, optimizing over QSTAB(G)
is NP-hard for general graphs, see e.g. [28]. However, the clique relaxation is
exact for perfect graphs, for which the optimization problem is polynomial-time
solvable via semidefinite programming (see Sect. 1).

Theorem 2 ([8]). A graph G is perfect if and only if STAB(G) = QSTAB(G).

The following result from [30] is crucial for this paper.

Theorem 3. Let G be a graph with n vertices. There is a deterministic proto-
col of complexity O(log2 n) computing the slack matrix of the pair (STAB(G),
QSTAB(G)). Hence, there is an extended formulation of size nO(log(n)) for
(STAB(G),QSTAB(G)).

We remark that, when G is perfect, Theorem 3 gives a quasipolynomial size
extended formulation for STAB(G). However, as discussed above, it is not clear
how to obtain such formulation in subexponential time.

3 A General Approach

We present here a general technique to explicitly and efficiently produce extended
formulations from deterministic protocols, starting with an informal discussion.

The natural approach to reduce the size of (1) is to eliminate redundant
equations. However, the structure of the coefficient matrix depends both on A
and on rectangles R i’s of the factorization, which can have a complex behaviour.
The reader is encouraged to try e.g. on the extended formulations obtained via
Yannakakis’ protocol for STAB(G), G perfect: the sets R i’s have very non-trivial
relations with each other that depend heavily on the graph, and we did not
manage to directly reduce the system (1) for general perfect graphs. Theorem 5
shows how to bypass this problem: in order to reconstruct the original extended
formulation, all we need are (hopefully simpler) extended formulations for certain
polytopes associated to all leaves of the protocol. We first recall a well-known
fact [3], in the version given in [29, Section 3.1.1].

48 M. Aprile and Y. Faenza

Theorem 4. Let P1, P2 ⊂ R
d be non-empty polytopes, with Pi = πi{y ∈ R

mi :
Aiy ≤ bi}, where πi : Rmi → d is a linear map, for i = 1, 2. Let P = conv(P1 ∪
P2). Then we have:

P = {x ∈ R
d : ∃ y1 ∈ R

m1 , y2 ∈ R
m2 , λ ∈ R : x = π1(y1) + π2(y2),

A1y1 ≤ λb1, A1y2 ≤ (1 − λ)b2, 0 ≤ λ ≤ 1}.

Moreover, the inequality λ ≥ 0 (λ ≤ 1 respectively) is redundant if P1 (P2) has
dimension at least 1. Hence xc(P) ≤ xc(P1) + xc(P2) + |{i : dim(Pi) = 0}|.

We now give the main theorem of this section. Note that, while the result
relies on the existence of a deterministic protocol (τ, �, Λ, {Sv}v∈V), its complex-
ity does not depend on the encoding of Λ and {Sv}v∈V .

Theorem 5. Let S be a slack matrix for a pair (P,Q), where

P = conv{x∗
1, . . . , x

∗
n} ⊆ Q = {x ∈ R

d : aix ≤ bi for i = 1, . . . ,m} ⊆ R
d

are polytopes and for j ∈ [d], let �j (resp. uj) be a valid upper bound (resp.
lower bound) on the variable xj in Q. Assume there exists a deterministic pro-
tocol (τ, �, Λ, {Sv}v∈V) with complexity c computing S, and let R be the set of
monochromatic rectangles in which it partitions S (hence c ≤ �log2 |R|�). For
R ∈ R, let PR = conv{x∗

j : j is a column of R} and QR = {x ∈ R
d : aix ≤ bi ∀ i

row of R; �j ≤ xj ≤ uj for all j ∈ [d]}.
Suppose we are given τ, � and, for each R ∈ R, an extended formulation TR

for (PR, QR). Let σ(TR) be the size (number of inequalities) of TR, and σ+(TR)
be the total encoding length of the description of TR (including the number of
inequalities, variables and equations). Then we can construct an extended formu-
lation for (P,Q) of size linear in

∑
R∈R σ(TR) in time linear in

∑
R∈R σ+(TR).

Proof. We can assume without loss of generality that τ is a complete binary tree,
i.e. each node of the protocol other than the leaves has exactly two children. Let
V be the set of nodes of τ and v ∈ V. Recall that Sv is the (non-necessarily
monochromatic) rectangle given by all pairs (i, j) such that, on input (i, j), the
execution of the protocol visits node v. Let us define, for any such Sv, a pair
(Pv, Qv) with Pv = conv{x∗

j : j is a column of Sv} and

Qv = {x ∈ R
d : aix ≤ bi ∀ i row of Sv; �j ≤ xj ≤ uj for all j ∈ [d]}.

Clearly Pv ⊆ P ⊆ Q ⊆ Qv, and Qv is a polytope. Moreover, Sρ = S, Pρ = P , and
Qρ = Q for the root ρ of τ . We now show how to obtain an extended formulation
Tv for the pair (Pv, Qv) given extended formulations Tvi

’s for (Pvi
, Qvi

), i = 0, 1,
where v0 (resp. v1) are the two children nodes of v in τ .

Assume first that v is labelled A. Then we have ST
v =

[
Sv0 Sv1

]T (up to
permutation of rows), since the bit sent by Alice at v splits Sv in two rectangles
by rows – those corresponding to rows where she sends 1 and those corresponding
to rows where she sends 0. Therefore Pv = Pv0 = Pv1 and Qv = Qv0 ∩Qv1 . Hence

Extended Formulations from Communication Protocols Efficiently 49

we have Pv ⊆ π0(Tv0)∩π1(Tv1) ⊆ Qv, where πi is a projection from the space of
Tvi

to R
d. An extended formulation for Tv := π0(Tv0) ∩ π1(Tv1) can be obtained

efficiently by juxtaposing the formulations of Tv0 , Tv1 .
If conversely v is labelled B, similarly we have Sv =

[
Sv0 Sv1

]
(up to per-

mutations of columns). Hence, Pv = conv{Pv0 ∪ Pv1} and Qv = Qv0 = Qv1 ,
which implies Pv ⊆ conv{π0(Tv0) ∪ π1(Tv1)} ⊆ Qv. An extended formulation
for Tv := conv{π0(Tv0) ∪ π1(Tv1)} can be obtained efficiently by applying The-
orem 4 to the formulations of Tv0 , Tv1 . Iterating the procedure, in a bottom-up
approach we obtain an extended formulation for (P,Q) from extended formula-
tions of (Pv, Qv), for each leaf v of the protocol.

We now bound the total encoding size of our formulation. If Tv = π0(Tv0) ∩
π1(Tv1), then σ+(Tv) ≤ σ+(Tv0) + σ+(Tv1). Consider now Tv = conv{π0(Tv0) ∪
π1(Tv1)}. From Theorem 4 we have σ+(Tv) ≤ σ+(Tv0) + σ+(Tv1) + O(d). Since
the binary tree associated to the protocol is complete, it has size linear in the
number of leaves, hence for the final formulation Tρ we have

σ+(Tρ) ≤
∑

R∈R
(σ+(TR) + O(d)) = O

(
∑

R∈R
σ+(TR)

)
,

where the last equation follows from the fact that we can assume σ+(TR) ≥ d for
any R ∈ R. The bounds on the size of Tρ and on the time needed to construct
the formulation are derived analogously. ��

A couple of remarks on Theorem 5 are in order. The reader may recognize
that the proof of Theorem5 has a similar flavour to that of the main result
in [11], where a technique is given to construct approximate extended formula-
tions for 0/1 polytopes using Boolean formulas. However, those two results seem
incomparable, in the sense that one does not follow from the other. It is unclear
whether a more general framework encompassing both those techniques would
have interesting applications.

The formulation produced by Theorem5 may not be exactly the one given
by the corresponding protocol. Also, even for the special case P = Q, the proof
relies on the version of Yannakakis’ theorem for pairs of polytopes. On the other
hand, it does not strictly require that we reach the leaves of the protocol – a
similar bottom-up approach would work starting at any node v if we have an
extended formulation for (Pv, Qv).

Using Theorem 5 it is possible to efficiently produce the formulation from
Theorem 3, see the appendix. We instead show a direct derivation of a formu-
lation of the same size in the next section. An application of Theorem5 to
min-up/min-down polytopes is also mentioned in Sect. 5.

4 Direct Derivations

Complement Graphs. An extended formulation for STAB(G), G perfect,
can be efficiently obtained from an extended formulation of STAB(Ḡ), keeping

50 M. Aprile and Y. Faenza

a similar dimension (including the number of equations). We use the following
two known facts.

Lemma 6 ([28]). G is a perfect graph if and only if STAB(G) = {x : x ≥
0, xT y ≤ 1 ∀ y ∈ STAB(Ḡ)}.
Lemma 7 ([25,29]). Given a non-empty polyhedron Q and γ ∈ R, let P = {x :
xT y ≤ γ ∀ y ∈ Q}. If Q = {y : ∃ z : Ay + Bz ≤ b, Cy + Dz = d}, then we have
that

P = {x : ∃λ ≥ 0, μ : AT λ + CT μ = x, BT λ + DT μ = 0, bT λ + dT μ ≤ γ}.

Hence xc(P) ≤ xc(Q) + 1.

The next fact then follows immediately.

Corollary 8. Let G be a perfect graph on n vertices such that STAB(Ḡ) admits
an extended formulation Q with r additional variables (i.e. n + r variables
in total), m inequalities and k equations. Then STAB(G) admits an extended
formulation with m + k additional variables, m + 1 inequalities, n + r equations,
which can be written down efficiently given Q.

Stable Set Polytopes of Perfect Graphs. We now present an algorithm that,
given a perfect graph G on n vertices, produces an explicit extended formulation
for STAB(G) of size nO(log n), in time bounded by nO(log n). The algorithm is
based on a decomposition approach inspired by Yannakakis’ protocol [30], even
though the formulation obtained has a different form than the one obtained via
Yannakakis’ protocol as in (1). A key tool is the next Lemma, whose proof can be
found in the journal version. For a vertex v of G, N+(v) := N(v) ∪ {v} denotes
the inclusive neighbourhood of v.

Lemma 9. Let G be a perfect graph on vertex set V = {v1, . . . , vn}, and, fix
k with 1 ≤ k ≤ n. Let Gi be the induced subgraph of G on vertex set Vi =
N+(vi) \ {v1, . . . , vi−1} for i = 1, . . . , k, and G0 the induced subgraph of G on
vertex set V0 = {vk+1, . . . , vn}. Then we have STAB(G) = (STAB(G0)×R

V \V0)∩
· · · ∩ (STAB(Gk) × R

V \Vk).

A simple though important observation for our approach is the following.

Observation 10. Let P1, . . . , Pk ∈ R
n be polytopes and P = P1 ∩ · · · ∩ Pk, and

let Qi be an extended formulation for Pi for i = 1, . . . , k, i.e. Pi = {x ∈ R
n :

∃ y(i) ∈ R
ri : (x, y(i)) ∈ Qi}. Then P = {x ∈ R

n : for i = 1, . . . , k ∃ y(i) ∈ R
ri :

(x, y(i)) ∈ Qi}.
Theorem 11. Let G be a perfect graph on n vertices. There is an algorithm
that, on input G, outputs an extended formulation of STAB(G) of size nO(log n)

in nO(log n) time.

Extended Formulations from Communication Protocols Efficiently 51

Proof. We argue by induction on n. In this proof, logarithms are in base 2 (note
that this was not needed earlier, because of big O notation). The base cases for n
bounded by a constant are trivial, as the size of the classical formulation (and the
time to obtain it) is constant too. For general n, let v1, . . . , vk be the vertices of G
with degree at most n/2 and G0, . . . , Gk be defined as in Lemma 9. First, assume
that k ≥ n/2, hence G0, . . . , Gk have all size at most n/2+1. By induction, and
thanks to Lemma 9 and Observation 10, running the algorithm on G0, . . . , Gk

and then applying Lemma9, we produce an extended formulation of STAB(G)

from those of STAB(G0), . . . ,STAB(Gk) of size at most n · (
n
2 + 1

)c log(n
2 +1)

for some constant c > 0, but this is at most nc log n (assuming without loss of
generality that c ≥ 2). The same bound holds for the total running time.

If k < n/2, we take the complement graph Ḡ, hence swapping low degree
and high degree vertices: we now have k ≥ n/2, hence by the previous case the

algorithm obtains a formulation of STAB(Ḡ) of size at most n·(n
2 + 1

)c log(n
2 +1).

We can then use Lemma 7 to efficiently obtain a formulation for STAB(G),

which by Corollary 8 has size at most n · (n
2 + 1

)c log(n
2 +1) + 1 ≤ nc log n. Similar

calculations bound the number of variables and equations of the formulation.
The same bound holds for the total running time. ��

Extension to Non-perfect Graphs and General Decomposition Trees.
Although in the previous section we restricted ourselves to perfect graphs for
ease of exposition, it is not hard to show that the above algorithm can be used
on general graphs, yielding an extended formulation of (STAB(G),QSTAB(G))
of quasipolynomial size. Moreover, one can notice that the correctness of the
algorithm does not depend on the decomposition procedure chosen: informally,
one can define an arbitrary decomposition tree whose root corresponds to G and
whose nodes correspond to either decomposing the graph as in Lemma 9 (with
any choice of vertices v1, . . . , vk) or taking the complement graph. Using such a
tree and proceeding similarly as above we can obtain an extended formulation
whose size only depends on the size of the tree and on the formulations we have
for the subgraphs corresponding to leaves of the tree.

Theorem 12. Let G be a graph with n vertices. There is an algorithm that,
on input G, outputs an extended formulation of (STAB(G),QSTAB(G)) of size
nO(log n) in nO(log n) time.

Theorem 12, whose proof can be found in the appendix, generalizes Theo-
rem 11 and, we believe, can have interesting computational consequences: indeed,
there is interest in producing relaxations of STAB(G) without explicitly comput-
ing the Theta body (see for instance [13]). We conclude by remarking that, as a
consequence of the main result of [14], there exists a constant c > 0 such that,
there is no extended formulation of size O(nlogc n) for (STAB(G),QSTAB(G)):
this limits the extent to which Theorem12 could be improved for general
(non-perfect) graphs.

52 M. Aprile and Y. Faenza

Claw-Free Perfect Graphs and Extensions. Let t ∈ N≥3. A graph G is K1,t-
free if it does not contain K1,t (the complete bipartite graph with bipartitions
of size 1 and t, respectively) as an induced subgraph. When t = 3, G is called
claw-free. The following protocol for STAB(G) when G is perfect and K1,t-
free appeared in [10]. Let Alice be given a clique C and Bob a stable set S.
Alice sends v ∈ C. If v ∈ S, Bob outputs 0. Else, he sends S′ := S ∩ N(v).
Since G is K1,t-free, |S′| ≤ t − 1. Since S ∩ C ⊂ S ∩ N+(v) = S′, Alice then
outputs 1 − |C ∩ S′| = 1 − |C ∩ S|. This gives an extended formulation of size
O(|V (G)|)t, with one equation per clique of G. It turns out that a much smaller
set of equations is needed.

Theorem 13. Let G be a K1,t-free perfect graph. Let R be the set of monochro-
matic rectangles relative to the protocol for G. Following (1), denote by R C the
set of rectangles including the row index corresponding to the clique C. Then the
following is an extended formulation of STAB(G).

x(C) +
∑

R∈R C

yR = 1 ∀ C clique of G, |C| ≤ 2

x, y ≥ 0.

5 Further Applications and Extensions

The techniques developed in this papers can be applied to other extended for-
mulations arising from deterministic protocols. Two more examples are: Min-
up/min-down polytopes, which have been introduced in [22] to model schedul-
ing problems with machines that have a physical constraint on the frequency of
switches between the operating and not operating states; Threshold-free graphs,
where a threshold graph is a graph for which there is an ordering of the ver-
tices v1, . . . , vn, such that for each i vi is either complete or anticomplete to
vi+1, . . . , vn. We remark that a deterministic protocol for the clique-stable set
incidence matrix of threshold-free graphs is known [21]. We defer details to the
journal version.

Deterministic protocols are not the only that can be employed to produce
extended formulations. In fact, extended formulations are equivalent to random-
ized protocols that compute the slack matrix in expectation, as defined in [10].
Even more, every extended formulation is obtained from a simple, one-way ran-
domized protocol, see again [10]. Because of this strong equivalence, it seems
hard to obtain a general algorithm as in Theorem5. On the other hand, non-
deterministic unambiguous protocols can also be used to show the existence of
extended formulations, and seem easier to deal with. For instance, an extended
formulation for a comparability graphs from a non-deterministic unambiguous
protocol has been given in [30]. Again, this result does not imply that one can
build the formulation efficiently. However, the construction can be made efficient
by employing the techniques developed in the present paper. In particular, Theo-
rem 13 holds also when G is a comparability graph (we remark that an extended

Extended Formulations from Communication Protocols Efficiently 53

formulation for the stable set polytopes of comparability graphs which does not
use the protocol has been given in [24], to which we also refer to for the definition
of comparability graphs). We defer details and the extension of those techniques
to more general unambiguous non-deterministic protocols to the journal version.

Acknowledgements. We thank Mihalis Yannakakis for inspiring discussions and
Samuel Fiorini for useful comments on [1], where many of the results presented here
appeared. Manuel Aprile would also like to thank Aurélie Lagoutte and Nicolas Bous-
quet for useful discussions.

Appendix

Application of Theorem 5 to (STAB(G), QSTAB(G)). We now sketch how
to apply Theorem5 to the protocol from Theorem 3 in order to obtain an
extended formulation for (STAB(G), QSTAB(G)) in time nO(log(n)).

For a detailed description of the protocol from [30] and for full details of
the proof, we refer to the journal version. Here we recall that, at the beginning
of the protocol, Alice is given a clique C of G as input and Bob a stable set
S, and they want to compute the entry of the slack matrix of STAB(G) cor-
responding to C,S, i.e. to establish whether C,S intersect or not. To do that,
they exchange vertices of their respective sets. The number of vertices exchanged
in total is at most �log2 n�. Hence, the protocol partitions the slack matrix of
(STAB(G), QSTAB(G)) in a collection R of nO(log n) monochromatic rectan-
gles. Each rectangle R ∈ R is univocally identified by the list of vertices sent by
Alice and by Bob during the execution of the protocol, which we denote by CR

and SR respectively. Notice that |CR| + |SR| ≤ �log2 n�. For any clique C (resp.
stable set) whose corresponding row (resp. column) is in R, we write C ∈ R
(resp. S ∈ R). If C ∈ R, then CR ⊆ C (in particular, CR is a clique), and sim-
ilarly S ∈ R implies SR ⊆ S (and SR is a stable set). We let PR be the convex
hull of stable sets S ∈ R and QR the set of clique inequalities corresponding to
cliques C ∈ R, together with the unit cube constraints.

To apply Theorem 5 we need to have a description of τ, � and the extended
formulations for (PR, QR), for each R ∈ R. These are computed as follows.

1. τ , �, and (CR, SR) for all R ∈ R. Enumerate all cliques and stable sets of G
of combined size at most �log2 n� and run the protocol on each of those input
pairs. Each of those inputs gives a path in the tree (with the corresponding
�), terminating in a leaf v, corresponding to a rectangle R. τ is given by the
union of those paths, hence it has size nO(log n). Moreover, the inclusion-wise
minimal input pairs corresponding to the same rectangle R give CR, SR.

2. Extended formulations of (PR, QR), for each R ∈ R. From the discussion in
Sect. 2, it follows that an extended formulation of (PR, QR) is given by

TR :={x ∈ R
d, yR ∈ R : x(C) + yR = 1 ∀ C ∈ R, yR ≥ 0, 0 ≤ x ≤ 1}. (3)

We now claim that the equations in the description above, which can be
exponentially many, are implied by a much smaller system (of size at most

54 M. Aprile and Y. Faenza

n):

TR ={x ∈ R
d, yR ∈ R : x(CR) + yR = 1

x(CR + v) + yR = 1 ∀ v ∈ V \ CR : CR + v ∈ R

yR ≥ 0, 0 ≤ x ≤ 1}.

Let C ∈ R. We only need to show that x(C) + yR is a linear combination of
the left-hand sides of the equations above. For any v ∈ C \ CR, one can show
that CR + v ∈ R. Hence we obtain, as required,

∑

v∈C\CR

(x(CR + v) + yR) − (|C \ CR| − 1)(x(CR) + yR) = x(C) + yR.

Proof of Theorem 12 (Sketch). The decomposition scheme outlined in the
proof of Theorem11 can be associated to a decomposition tree τ = τ(G) on
nO(log n) nodes as follows: at each step, either decompose the current graph
H using Lemma 9 (in which case each children is one of the Hi’s), or take the
complement (in which case there is a single child, associated to H̄). We will abuse
notation and identify a node of the decomposition tree and the corresponding
subgraph. Note, in particular, that this decomposition tree does not depend on
the fact that G is perfect, hence it can be applied here as well.

We can assume that, for each leaf L of τ , we are given an extended formulation
TL of (STAB(L),QSTAB(L)). Consider the extended formulation, which we call
η(G), obtained by traversing τ bottom-up and applying the following:

1. if a non-leaf node H of τ has a single child H̄, then define η(H) to be equal
to the extended formulation of {x ∈ R

V (H) : xT y ≤ 1 ∀ y ∈ η(H̄)}, obtained
by applying Lemma7.

2. otherwise if H has children H0, . . . , Hk, then we define η(H) to be the
extended formulation obtained from η(H0), . . . , η(Hk) using Observation 10.

We only need to prove that η(G) is an extended formulation for
(STAB(G),QSTAB(G)), as the efficiency aspects have been discussed in The-
orems 5 and 11. We proceed by induction on the height of τ , in particu-
lar we prove that for a node H of τ , η(H) is an extended formulation of
(STAB(H),QSTAB(H)), assuming this is true for the children of H. If H is
a leaf of τ , then there is nothing to prove. Otherwise, we need to analyze two
cases:

1. H has a single child, labelled H̄. Assume that STAB(H̄) ⊆ π(η(H̄)) ⊆
QSTAB(H̄), where π is the projection on the appropriate space. Let S
be a stable set in H, and χS the corresponding incidence vector. For any
y ∈ π(η(H̄)) ⊆ QSTAB(H̄), we have yT χS = y(S) ≤ 1 as S is a clique
in H̄, hence since η(H) (hence π(η(H))) is clearly convex it follows that
STAB(H) ⊆ π(η(H)). Now, for a clique C of H and x ∈ π(η(H)), one has
χC ∈ π(η(H̄)) hence x(C) = xT χC ≤ 1, proving π(η(H)) ⊆ QSTAB(H).

Extended Formulations from Communication Protocols Efficiently 55

2. H has children H0, . . . , Hk. Assume that for i = 0, . . . , k, STAB(Hi) ⊆
π(η(Hi)) ⊆ QSTAB(Hi) for π as above. Let χS be the characteristic vec-
tor of a stable set S of H, for every i = 0, . . . , k S ∩ V (Hi) is a stable
set in Hi, hence χS ∈ π(η(Hi)) × R

V (H)\V (Hi), and by convexity we con-
clude again that STAB(H) ⊆ π(η(H)). Finally, let x ∈ π(η(H)), and let
C be a clique of H. It follows from the way we decompose H, that C is
contained in Hi for some i: indeed, if {v1, . . . , vk} ∩ C �= ∅, let i be the
minimum such that vi ∈ C, then C ⊆ N+(Vi) \ {v1, . . . , vi−1} = Vi by
definition; if {v1, . . . , vk} ∩ C = ∅, then C ⊆ V0. By induction hypothesis,
π(η(Hi)) ⊆ QSTAB(Hi). But then x(C) ≤ 1, and since this holds for all the
cliques of H, we have π(η(H)) ⊆ QSTAB(H). ��

References

1. Aprile, M.: On some problems related to 2-level polytopes. Ph.D. thesis, École
Polytechnique Fédérale de Lausanne (2018)

2. Aprile, M., Faenza, Y., Fiorini, S., Huynh, T., Macchia, M.: Extension complexity
of stable set polytopes of bipartite graphs. In: Bodlaender, H.L., Woeginger, G.J.
(eds.) WG 2017. LNCS, vol. 10520, pp. 75–87. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68705-6 6

3. Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)
4. Bazzi, A., Fiorini, S., Huang, S., Svensson, O.: Small extended formulation for

knapsack cover inequalities from monotone circuits. In: Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2326–2341.
SIAM (2017)

5. Bazzi, A., Fiorini, S., Pokutta, S., Svensson, O.: No small linear program approxi-
mates vertex cover within a factor 2− ε. Math. Oper. Res. 44(1), 147–172 (2018)

6. Chan, S.O., Lee, J.R., Raghavendra, P., Steurer, D.: Approximate constraint sat-
isfaction requires large LP relaxations. J. ACM (JACM) 63(4), 34 (2016)

7. Chudnovsky, M., Trotignon, N., Trunck, T., Vušković, K.: Coloring perfect graphs
with no balanced skew-partitions. J. Comb. Theory Ser. B 115, 26–65 (2015)

8. Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory Ser.
B 18, 138–154 (1975)

9. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial
optimization. 4OR 8(1), 1–48 (2010)

10. Faenza, Y., Fiorini, S., Grappe, R., Tiwary, H.R.: Extended formulations, nonneg-
ative factorizations, and randomized communication protocols. Math. Program.
153(1), 75–94 (2015)

11. Fiorini, S., Huynh, T., Weltge, S.: Strengthening convex relaxations of 0/1-sets
using Boolean formulas. arXiv preprint arXiv:1711.01358 (2017)

12. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., De Wolf, R.: Linear vs. semidef-
inite extended formulations: exponential separation and strong lower bounds. In:
Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Comput-
ing, pp. 95–106. ACM (2012)

13. Giandomenico, M., Letchford, A.N., Rossi, F., Smriglio, S.: Ellipsoidal relaxations
of the stable set problem: theory and algorithms. SIAM J. Optim. 25(3), 1944–1963
(2015)

14. Göös, M.: Lower bounds for clique vs. independent set. In: 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, pp. 1066–1076. IEEE (2015)

https://doi.org/10.1007/978-3-319-68705-6_6
https://doi.org/10.1007/978-3-319-68705-6_6
http://arxiv.org/abs/1711.01358

56 M. Aprile and Y. Faenza

15. Göös, M., Jain, R., Watson, T.: Extension complexity of independent set polytopes.
SIAM J. Optim. 47(1), 241–269 (2018)

16. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs.
N.-Holl. Math. Stud. 88, 325–356 (1984)

17. H̊astad, J.: Some optimal inapproximability results. J. ACM (JACM) 48(4), 798–
859 (2001)

18. Kaibel, V.: Extended formulations in combinatorial optimization. OPTIMA 85,
2–7 (2011)

19. Kaibel, V., Pashkovich, K.: Constructing extended formulations from reflection
relations. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimiza-
tion, pp. 77–100. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38189-8 4

20. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1996)

21. Lagoutte, A.: Personal communication, Cargese, Corsica, 18 October 2018
22. Lee, J., Leung, J., Margot, F.: Min-up/min-down polytopes. Discrete Optim. 1(1),

77–85 (2004)
23. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1),

1–7 (1979)
24. Lovász, L.: Stable sets and polynomials. Discrete Math. 124(1–3), 137–153 (1994)
25. Martin, R.K.: Using separation algorithms to generate mixed integer model refor-

mulations. Oper. Res. Lett. 10(3), 119–128 (1991)
26. Pashkovich, K.: Extended formulations for combinatorial polytopes. Ph.D. thesis,

Otto-von-Guericke-Universität Magdeburg (2012)
27. Rothvoß, T.: The matching polytope has exponential extension complexity. J. ACM

(JACM) 64(6), 41 (2017)
28. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24.

Springer, Heidelberg (2002)
29. Weltge, S.: Sizes of linear descriptions in combinatorial optimization. Ph.D. thesis,

Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik (2015)
30. Yannakakis, M.: Expressing combinatorial optimization problems by linear pro-

grams. J. Comput. Syst. Sci. 43, 441–466 (1991)

https://doi.org/10.1007/978-3-642-38189-8_4
https://doi.org/10.1007/978-3-642-38189-8_4

Sub-Symmetry-Breaking Inequalities
for ILP with Structured Symmetry

Pascale Bendotti1,2, Pierre Fouilhoux1(B), and Cécile Rottner1,2

1 Sorbonne Université, LIP6 CNRS 7606, Paris, France
pierre.fouilhoux@lip6.fr

2 EDF R&D, Palaiseau, France
{pascale.bendotti,cecile.rottner}@edf.fr

Abstract. We consider integer linear programs whose solutions are
binary matrices and whose (sub-)symmetry groups are symmetric
groups acting on (sub-)columns. We propose a framework to build
(sub-)symmetry-breaking inequalities for such programs, by introducing
one additional variable per sub-symmetry group considered. The pro-
posed framework is applied to derive inequalities breaking both symme-
tries and sub-symmetries in the graph coloring problem and in the ramp
constrained min-up/min-down unit commitment problem.

Keywords: Integer linear programming ·
(Sub)-symmetry breaking inequalities · Graph Coloring Problem ·
Unit Commitment Problem

1 Introduction

It is well known that symmetries arising in integer linear programs can impair
the solution process, in particular when symmetric solutions lead to an exces-
sively large Branch-and-Bound (B&B) search tree. Various techniques, so called
Symmetry-Breaking Techniques (SBT), are available to handle symmetries in
integer linear programs of the form (ILP) min{cx | x ∈ X} with c ∈ R

n, and
X ⊆ P(m,n), where P(m,n) is the set of m × n binary matrices. A symmetry
is defined as a permutation π of the indices {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n} such
that for any solution matrix x ∈ X , matrix π(x) is also solution with the same
cost, i.e., π(x) ∈ X and c(x) = c(π(x)). The symmetry group G of (ILP) is the
set of all such permutations. It partitions the solution set X into orbits, i.e., two
matrices are in the same orbit if there exists a permutation in G sending one to
the other. A subproblem is problem (ILP) restricted to a subset of X . In [4],
symmetries arising in solution subsets of (ILP) are called sub-symmetries. Such
sub-symmetries may be undetected in G.

In this article, we focus on structured symmetries arising from
(sub-)symmetry groups containing all sub-column permutations of a given solu-
tion submatrix. These symmetry groups are assumed to be known or previously
detected [6,21]. A first idea to break symmetries is to reformulate the problem
c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 57–71, 2019.
https://doi.org/10.1007/978-3-030-17953-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_5

58 P. Bendotti et al.

using integer variables summing the variables along orbits. Such a reformulation
aggregates variables, thus reduces the size of the resulting ILP [20]. However,
this can be used only when solutions can be disaggregated, e.g., when the integer
decomposition property [2] holds. A more general idea to break symmetries is, in
each orbit, to pick one solution, defined as the representative, and then restrict
the solution set to the set of all representatives. The most common choice of
representative is based on the lexicographical order. Column y ∈ {0, 1}m is said
to be lexicographically, denoted by lex., greater than column z ∈ {0, 1}m if there
exists i ∈ {1, ...,m−1} such that ∀i′ ≤ i, yi′ = zi′ and yi+1 > zi+1, i.e., yi+1 = 1
and zi+1 = 0. We write y � z (resp. y � z) if y is lex. greater than z (resp.
greater than or equal to z). A technique is said to be full symmetry-breaking
(resp. partial symmetry-breaking) if the solution set is exactly (resp. partially)
restricted to the representative set.

Many SBT are based on pruning and fixing rules in the B&B tree [4,11,17,
26,30]. Other SBT rely on full or partial Symmetry-Breaking Inequalities (SBI).
Note that the size of the LP solved at each node of the branching tree is generally
invariant under pruning and fixing techniques, whereas it is increased using SBI.

SBI can be derived from the linear description of the convex hull of an arbi-
trary representative set [12]. In most works, each chosen representative x is
lex. maximal in its orbit, i.e., x � g(x), for each g ∈ G. The convex hull of
the representative set is called the symmetry-breaking polytope [14]. When x
is a matrix and symmetry group G acts on the columns of x, the symmetry-
breaking polytope is called orbitope. Even if complete linear descriptions for
symmetry-breaking polytopes may be hard to reach in general, ILP formula-
tions for these polytopes still yield full SBI [14]. Instead of considering orbits of
solutions, [21,22] introduce inequalities enforcing a lexicographical order within
orbits.

If symmetry group G is the symmetric group Sn acting on the columns, the
chosen representative x of an orbit may be such that its columns x(1), ..., x(n)
are lex. non-increasing, i.e., for all j < n, x(j) � x(j + 1). The convex hull
of all m × n binary matrices with lex. non-increasing columns is called the full
orbitope [18]. An O(mn3) extended formulation is given in [16]. To the best of
our knowledge, it has never been used in practice to handle symmetries. A com-
plete linear description of the full orbitope in the x variable space seems hard to
reach [24]. To ensure that the integer solutions are in the full orbitope, Friedman
[12] introduces full SBI with exponentially valued coefficients, causing numerical
intractability. Some alternative inequalities featuring binary coefficients can also
be used, at the expense of losing the full symmetry-breaking property. Exam-
ples are column inequalities [18,29], or the partial symmetry-breaking form of
Friedman inequalities [15,23].

We propose a general framework (Sect. 2) to build full Sub-Symmetry-
Breaking Inequalities (SSBI) in order to handle sub-symmetries arising from
solution subsets whose symmetry groups contain the symmetric group acting
on some sub-columns. One additional variable per subset Q considered may be
needed in these inequalities, depending on whether variables x are sufficient to

Sub-Symmetry-Breaking Inequalities for ILP with Structured Symmetry 59

indicate that “x belongs to subset Q”. The proposed framework is applied to
derive such inequalities when the symmetry group is the symmetric group Sn

acting on the columns (Sect. 3). It is also applied to derive efficient SSBI for the
Graph Coloring Problem (Sect. 4) and for the Ramp constrained Min-up/min-
down Unit Commitment Problem (Sect. 5).

2 Sub-Symmetry-Breaking Inequalities

For a given solution subset Q, the symmetry group GQ of the corresponding
subproblem is different from G and may contain symmetries undetected in G.
In practice it is too expensive to compute the symmetry group for every subset
Q ⊂ X . However for many problems, symmetries of G can be deduced from the
problem’s structure, and so can symmetries of GQ, for some particular solution
subsets Q. In this case, symmetries of GQ are a priori known, and thus do not need
to be computed. Such symmetries may be handled together with symmetries of G.
In this section, we introduce SSBI designed to simultaneously handle symmetries
and sub-symmetries in symmetric groups. First, we briefly recall the concepts of
sub-symmetry in ILP introduced in [4].

Consider a subset Q ⊂ X of solutions of (ILP). The sub-symmetry group GQ

relative to subset Q is defined as the symmetry group of subproblem min{cx | x ∈
Q}. Permutations in sub-symmetry group GQ are referred to as sub-symmetries.

Let {Qs ⊂ X , s ∈ {1, ..., q}} be a set of solution subsets. To each
Qs, s ∈ {1, ..., q}, there corresponds a sub-symmetry group GQs

. Let Os
k,

k ∈ {1, ..., os}, be the orbits defined by GQs
on subset Qs, s ∈ {1, ..., q}, and

O = {Os
k, k ∈ {1, ..., os}, s ∈ {1, ..., q}}. For given x ∈ P(m,n), let us define

G(x) =
⋃

Qs�x GQs
, the set of all permutations π in

⋃q
s=1 GQs

such that π can
be applied to x. Matrix x′ is said to be in relation with x ∈ P(m,n) if there
exist r ∈ N and permutations π1, ..., πr such that πk ∈ G(πk−1 ◦ ... ◦ π1(x)),
∀k ∈ {1, ..., r}, and x′ = πr ◦πr−1 ◦ ...◦π1(x). The generalized orbit O of x w.r.t.
{Qs, s ∈ {1, ..., q}} is thus the set of all x′ in relation with x. By definition, for
any generalized orbit O, there exist orbits σ1, ..., σp ∈ O such that O = ∪p

s=1σs.
To each orbit σ, there corresponds a representative ρ(σ). The set of represen-
tatives {ρ(σ), σ ∈ O} is said to be orbit-compatible if for any generalized orbit
O = ∪p

s=1σs, σ1, ..., σp ∈ O, there exists j such that ρ(σj) = ρ(σs) for all i such
that ρ(σj) ∈ σs. Such a solution ρ(σj) is said to be a generalized representative
of O.

Given x ∈ X and sets R ⊂ {1, ...,m} and C ⊂ {1, ..., n}, we consider subma-
trix (R,C) of x, denoted by x(R,C), obtained by considering columns C of x on
rows R only. Symmetry group GQ is the sub-symmetric group w.r.t. (R,C) if it is
the set of all permutations of the columns of x(R,C). If GQ is the sub-symmetric
group w.r.t. (R,C) then subset Q is said to be sub-symmetric w.r.t. (R,C).

Consider a set S of Qs, s ∈ {1, ..., q}, such that each subset Qs ⊆ X , s ∈
{1, ..., q}, is sub-symmetric w.r.t. (Rs, Cs). For each orbit Os

k, k ∈ {1, ..., os} of
GQs

, s ∈ {1, ..., q}, its representative xs
k ∈ Os

k is chosen to be such that submatrix
xs

k(Rs, Cs) is lex. maximal, i.e., its columns are lex. non-increasing. Such xs
k is

said to be the lex-max of orbit Os
k w.r.t. (Rs, Cs).

60 P. Bendotti et al.

Property 1 ([4]). {xs
k, k ∈ {1, ..., os}, s ∈ {1, ..., q}} is orbit-compatible.

The full sub-orbitope Psub(S) associated to S is the convex hull of binary
matrices x such that for each s ∈ {1, ..., q}, if x ∈ Qs then the columns of
x(Rs, Cs) are lex. non-increasing.

2.1 Definition and Validity of Sub-Symmetry-Breaking Inequalities

Consider a set S of solution subsets Qs, s ∈ {1, ..., q}, such that each subset
Qs, s ∈ {1, ..., q}, is sub-symmetric w.r.t. (Rs, Cs). Consider an integer variable
zs, s ∈ {1, ..., q}, such that zs = 0 if variable x ∈ Qs, and such that zs ≥ 1 if
x �∈ Qs. For any x ∈ X , function Z associates x to a vector Z(x) such that zs,
s ∈ {1, ..., q}, is the sth component of Z(x) denoted by Zs(x).

Note that in many cases, function Z is linear, i.e., each integer variable zs

is a linear expression of variables x. In such cases, no additional variable zs is
needed, as zs = Z(x). In some cases where function Z is not linear, variable zs

can be linearly expressed from variables x using only a few additional inequalities
or integer variables.

Given c, c′ ∈ Cs such that c < c′, the sub-symmetry-breaking inequality,
denoted by (Qs(c, c′)), is defined as follows.

xr1,c′ ≤ zs + xr1,c where r1 = min(Rs) (1)

For each orbit Os
k, k ∈ {1, ..., os}, of GQs

, s ∈ {1, ..., q}, the chosen repre-
sentative is the lex-max of orbit Os

k w.r.t. (Rs, Cs). Then by Property 1, this
set of representatives is orbit-compatible. In particular, solution set X can be
restricted to the set of representatives by considering its intersection with the
full sub-orbitope Psub(S). If x ∈ Qs, inequality (Qs(c, c′)) enforces that the first
row of submatrix x(Rs, Cs) is lex. non-increasing, hence the following.

Lemma 1 (Validity). If x ∈ Psub(S), then (x,Z(x)) satisfies inequality
(Qs(c, c′)) for each s ∈ {1, ..., q} and c, c′ ∈ Cs such that c < c′.

Note that an inequality similar to (1) applied to a row of Rs distinct from r1
may not be valid when used alongside with (1), as shown in Example 1.

Example 1. Let S = {Q1}, q = 1, where subset Q1 = {x ∈ P(4, 3) ∩ X |
∑3

c=1 x2,c = 3} Let us suppose the symmetry group of Q1 is the sub-symmetric
group w.r.t. submatrix ({3, 4}, {1, 2, 3}). Variable z1 can be defined using equality
z1 = 3 −

∑3
c=1 x2,c. Note that z1 = Z1(x) = 0 when

∑3
c=1 x2,c = 3, i.e., x ∈ Q1,

and is positive otherwise. Here the first row in R1 is r1 = min(R1) = 3, thus given
c, c′ ∈ {1, 2, 3}, c < c′, inequality (Q1(c, c′)) is x3,c′ ≤ (3 −

∑3
j=1 x2,j) + x3,c.

This inequality enforces that row 3 of a solution matrix x is lex. ordered, i.e.,
x3,1 ≥ x3,2 ≥ x3,3, whenever

∑3
c=1 x2,c = 3. Now let x1, x2 ∈ Q1:

x1 =

⎡

⎢
⎢
⎣

1 0 0
1 1 1
1 0 0
0 1 1

⎤

⎥
⎥
⎦ and x2 =

⎡

⎢
⎢
⎣

1 0 0
1 1 1
0 0 1
1 1 0

⎤

⎥
⎥
⎦

Sub-Symmetry-Breaking Inequalities for ILP with Structured Symmetry 61

Inequality (Q1(c, c′)) cuts off solution x2 from the feasible set. Inequality (1)
applied to row 4 is x4,c′ ≤ (3 −

∑3
j=1 x2,j) + x4,c This inequality would cut off

x1. This shows that these two inequalities cannot be used simultaneously.

Note that in the general case, inequalities (1) may only be partial-symmetry-
breaking. Indeed, for given s ∈ {1, ..., q} and c, c′ ∈ Cs such that c < c′,
inequality (Qs(c, c′)) only enforces that the first row of submatrix x(Rs, Cs) is
lex. non-increasing when x ∈ Qs. In the case when xr1,c′ < xr1,c, then sub-
columns x(Rs, {c′}) ≺ x(Rs, {c}). Otherwise, when xr1,c′ = xr1,c, inequality (1)
is not sufficient to select the lexmax representatives.

To enforce a lexicographical order, subsequent rows of submatrix x(Rs, Cs)
should be considered until a tie-break row is found. It is shown in the next
section that inequalities (Qs(c, c′)) for all s ∈ {1, ..., q} and c < c′ ∈ Cs enforce
that x ∈ Psub(S) provided a tie-break condition on set S is fulfilled.

2.2 Full Symmetry-Breaking Sufficient Condition

We introduce a condition for inequalities (1) to be full symmetry-breaking.
For each s ∈ {1, ..., q}, consider Rs = {rs

1, ..., r
s
|Rs|} and Cs = {cs

1, ..., c
s
|Cs|},

where rs
1 < ... < rs

|Rs| and cs
1 < ... < cs

|Cs|. For given s ∈ {1, ..., q} and any two
columns cs

l−1, c
s
l ∈ Cs, if there is a solution x ∈ Qs such that columns cs

l−1 and
cs
l are equal from row rs

1 to row rs
k−1, it must be ensured that row rs

k is lex. non
increasing, i.e., xrs

k,csl−1
≥ xrs

k,csl
. The key idea is to exhibit another set Qp ∈ S

for quadruple (Qs, k, l, x), such that Qp contains x and is sub-symmetric w.r.t.
(Rp, Cp), where the first row of Rp is rs

k and Cp contains columns cs
l−1 and cs

l .
Then inequality (Qp(cs

l−1, c
s
l)) will ensure that xrs

k,csl−1
≥ xrs

k,csl
. For each quartet

(Qs, k, l, x), the existence of such a subset Qp in S will be ensured by tie-break
condition (C), defined as follows:

(C)

⎧
⎨

⎩

∀s ∈ {1, ..., q}, ∀k ∈ {2, ..., |Rs|}, ∀l ∈ {2, ..., |Cs|}
If x ∈ Qs s. t. xrs

k′ ,csl−1
= xrs

k′ ,csl , ∀k′ ∈ {1, ..., k − 1}, then
there exists p ∈ {1, ..., q} s. t. x ∈ Qp, Cp ⊇ {cs

l−1, c
s
l } and rs

k = min(Rp)

If condition (C) holds, inequalities (Qs(cs
l−1, cs

l)), s ∈ {1, ..., q}, l ∈ {2, ...,
|Cs|} exactly restrict the solution set to the representative set X ∩Psub(S). They
are thus full symmetry-breaking, w.r.t. the sub-symmetries defined by S. Thus:

Theorem 1. If (C) holds, then x ∈ Psub(S) iff (x,Z(x)) satisfies (Qs(cs
l−1, c

s
l)),

∀s ≤ q, ∀l ∈ {2, ..., |Cs|}

For general set S, condition (C) may not hold. Fortunately, we can con-
struct from S another set S̃ satisfying (C) and such that Psub(S̃) = Psub(S).
The idea is to divide each Qs, s ∈ {1, ..., q}, in smaller subsets such that for
each rs

k ∈ Rs and each cs
l ∈ Cs, there is a subset Q sub-symmetric w.r.t.

(R,C) = ({rs
k, ..., rs

|Rs|}, {cs
l−1, c

s
l }).

62 P. Bendotti et al.

The set S̃ is defined as S̃ = {Q̃s(k, l) | s ∈ {1, ..., q}, k ∈ {1, ..., |Rs|}, l ∈
{2, ..., |Cs|}}, where for each s ∈ {1, ..., q}, l ∈ {2, ..., |Cs|}, k ∈ {1, ..., |Rs|},

Q̃s(k, l) = {x ∈ Qs | xr,csl−1
= xr,csl

, ∀r ∈ {rs
1, ..., r

s
k−1}}

Note that for solution x ∈ Qs such that columns cs
l−1 and cs

l are equal from
row rs

1 to rs
k−1, the set exhibited for quartet (Qs, k, l, x) is Q̃s(k, l). Note also

that Q̃s(1, l) = Qs, l ∈ {2, ..., |Cs|}. We thus have the following result:

Lemma 2. Set S̃ satisfies (C) and is such that Psub(S̃) = Psub(S).

It follows, from Theorem 1, that inequalities (Q(c, c′)), c < c′ ∈ C, Q ∈ S̃ are
full symmetry-breaking w.r.t. the sub-symmetries defined by S.

Corollary 1. If for each Q ∈ S̃, (x,Z(x)) satisfies inequality (Q(c, c′)), ∀c <
c′ ∈ C, then x ∈ Psub(S).

Set S̃ can be considered instead of S, thus implying that at least one inequal-
ity (resp. at most one variable) can be added per subset Q ∈ S̃, i.e., O(qmn)
inequalities at least (resp. variables at most).

3 Application to the Symmetric Group Case

In this section, we apply the framework of Sect. 2 to any problem whose symme-
try group G is the symmetric group Sn acting on the columns. The collection SS

of subsets considered will lead to inequalities restricting any solution x ∈ X to
be in the full orbitope. These inequalities feature variables z which can be explic-
itly expressed from x with O(mn) linear inequalities. Here, the sub-symmetries
considered are restrictions of symmetries’ actions to solution subsets.

A complete linear description of the 2-column full orbitope, featuring addi-
tional integer variables, is proposed in [24]. In the general n-column case, we
show that these inequalities can also be derived using the framework described
in Sect. 2, and can be used as full SBI.

We consider SS =
{
Qi,j , i ∈ {0} ∪ {1, ...,m − 1}, j ∈ {2, ..., n}

}
, where

Qi,j = {x ∈ X | xi′,j−1 = xi′,j ∀i′ ∈ {1, ..., i}}. Subset Qi,j is the set of feasible
solutions such that columns j −1 and j are equal from row 1 to row i. Note that
Q0,j = X . The symmetry group of Qi,j is then the sub-symmetric group w.r.t.
(Ri, {j − 1, j}) where Ri = {i + 1, ...,m}. It can be readily checked that in this
case, S already satisfies condition (C).

Let variable zi,j be such that zi,j = 0 if x ∈ Qi,j and 1 otherwise. Note
that for all j ∈ {2, ..., n}, Q0,j = X , thus z0,j = 0, ∀x ∈ X . Note also that
X ∩ Psub(SS) is a subset of the full orbitope. Thus, given that the columns of
any x ∈ X ∩ Psub(SS) are in a non-increasing lexicographical order, function Z
is such that Z(x) = z, where z satisfies the following linear inequalities.

Sub-Symmetry-Breaking Inequalities for ILP with Structured Symmetry 63

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z1,j−1 = x1,j−1 − x1,j ∀j ∈ {2, ..., n} (2a)
zi,j−1 ≤ zi−1,j−1 + xi,j−1 ∀i ∈ {2, ...,m}, j ∈ {2, ..., n} (2b)
zi,j−1 + xi,j ≤ 1 + zi−1,j−1 ∀i ∈ {2, ...,m}, j ∈ {2, ..., n} (2c)
xi,j−1 ≤ zi,j−1 + xi,j ∀i ∈ {2, ...,m}, j ∈ {2, ..., n} (2d)
zi−1,j−1 ≤ zi,j−1 ∀i ∈ {2, ...,m}, j ∈ {2, ..., n} (2e)

Constraint (2a) sets variable z1,j−1 to 1 whenever columns j−1 and j are different
and in a non-increasing lexicographical order on row 1, and to 0 when they are
equal. Constraint (2b) (resp. (2c)) sets variable zi,j−1 to 0 when zi−1,j−1 = 0
and columns j − 1 and j are equal to 0 (resp. 1) on row i. Constraint (2d) sets
variable zi,j−1 to 1 if columns j − 1 and j are different and in a non-increasing
lexicographical order on row i. Constraint (2e) sets zi,j−1 to 1 when variable
zi−1,j−1 = 1, i.e., when columns j − 1 and j are different before row i.

For each i ∈ {0, ...,m − 1} and j ∈ {2, ..., n} inequality (1) is inequal-
ity (Qi,j(j − 1, j)) as follows: xi+1,j ≤ zi,j−1 + xi+1,j−1, ∀i ∈ {1, ...,m},
∀j ∈ {2, ..., n}. It ensures that if columns j − 1 and j of x are equal from
row 1 to i, then row i + 1 is in a non-increasing lexicographical order.

Note that if zi−1,j−1 − zi,j−1 = −1 then necessarily xi,j = 0. Thus inequality
((Qi,j(j − 1, j))) can be lifted to

xi,j ≤ (2zi−1,j−1 − zi,j−1) + xi,j−1 (3)

In the special case when n = 2, by replacing variable zi,j by yi,j where zi,j =
1 −

∑i
i′=1 yi′,j , for each i ∈ {1, ...,m}, j ∈ {1, 2}, inequalities (2a)–(3) yield the

complete linear description of the 2-column full orbitope proposed in [24]. In the
general n-column case, inequalities (2a)–(3) are still full symmetry-breaking (by
Theorem 1), and then can be used to restrict the feasible set to any full orbitope.
In this case, O(mn) additional variables and constraints are needed.

4 Application to the Graph Coloring Problem

Given an undirected graph G = (V,E) with |V | = n, a vertex coloring of G is
an assignment of values {1, . . . , n}, denoted as colors, to the nodes so that no
two adjacent nodes receive the same color. The minimum number of colors in
a vertex coloring of G is called the chromatic number χ(G) of G. The vertex
coloring problem is to find a vertex coloring with a minimum number of colors.

The column generation based linear program, proposed in [27], provides very
good lower bounds. This approach is also used to come up with ILPs [13,25].
On the opposite, to obtain a compact ILP, a classical formulation is proposed as
an extension of the stable set formulation [9]. However this formulation is very
symmetric as a new vertex coloring can be obtained from another by permuting
the color indices. An extension of this formulation has been devised in [7,10]
using the notion of representative nodes, i.e., nodes representing a color. Some
SBI for the classical graph coloring formulation are deduced from the linear
description of the partitioning orbitope [18].

64 P. Bendotti et al.

We consider the classical vertex coloring formulation where variable xi
k indi-

cates that color k ∈ {1, ...,K} is assigned to vertex i ∈ {1, ..., n}. The feasible
solution set is denoted by Xcol. Let S1 and S2 be two disjoint stable subsets of
V and let W ⊆ V be such that S1 and S2 have the same neighborhood in W ,
i.e., N(S1) ∩ W = N(S2) ∩ W . Let K be an upper bound on χ(G).

Consider solution subset

QS1,S2,W
c1,c2 =

{
x ∈ Xcol | xi

c1 = 1 ∀i ∈ S1, xi
c2 = 1 ∀i ∈ S2,

xi
c1 = 0 ∀i ∈ U\N(S1), xi

c2 = 0 ∀i ∈ U\N(S2)
}

where U = V \(W ∪S1∪S2). Subset QS1,S2,W
c1,c2 contains all colorings such that S1

has color c1, S2 has color c2, and elements outside S1, S2 and W are not colored
by c1 or c2. Note that subset QS1,S2,W

c1,c2 is sub-symmetric w.r.t. (R, {c1, c2}),
where R = W\(N(S1) ∩ N(S2)).

Variable z associated to QS1,S2,W
c1,c2 can be linearly expressed in terms of x

variables, as follows

z =
∑

s∈S1
(1 − xs

c1) +
∑

s∈S2
(1 − xs

c2) +
∑

r∈U\N(s1)
xr

c1 +
∑

r∈U\N(s2)
xr

c2

As this is a partition problem, there is exactly one 1-entry on each row. Therefore,
Hence if x ∈ QS1,S2,W

c1,c2 and if sub-matrix (R, {c1, c2}) has lex. non-increasing
columns, then variable xw1

c2 = 0. Thus the corresponding SSBI is xw1
c2 ≤ z, where

w1 = min R.
For a set S containing arbitrary QS1,S2,W

c1,c2 , condition (C) is not necessarily
satisfied. For each QS1,S2,W

c1,c2 ∈ S, for any r ∈ {2, ..., |W |}, set Q̃S1,S2,W
c1,c2 (r) is

defined as Q̃S1,S2,W
c1,c2 (r) = Qs1,s2,W

c1,c2 ∩
{
x | xi

c1 = xi
c2 , ∀i ∈ {w1, ..., wr−1}

}
, where

W = {w1, ..., w|W |}, w1 < ... < w|W |. Let us then consider set S̃ containing
the sets in S and sets Q̃S1,S2,W

c1,c2 (r), for each r ∈ {2, ..., |W |}. By Lemma 2, set
S̃ satisfies condition (C) and therefore the associated SSBI are full symmetry-
breaking. Note that variable z̃ associated to Q̃S1,S2,W

c1,c2 (r) can be expressed as
z̃ = z +

∑r−1
i=1 xwi

c1 , where z is the variable associated to set QS1,S2,W
c1,c2 . Indeed, if

sub-symmetries are broken, then xwi
c2 cannot be 1 if

∑i−1
j=1 x

wj
c1 is 0.

Symmetry group G of the classical vertex coloring formulation contains all
column permutations of solution matrices (where a column corresponds to a
color). For any partitioning problem, column inequalities introduced in [18] are
full symmetry-breaking w.r.t. such symmetries. We can show that these inequal-
ities can also be derived using our framework, by considering solution subsets
Q∅,∅,V

k,k+1 , Q̃∅,∅,V
k,k+1 (i), i ∈ V and variables z̃ =

∑i−1
j=k xj

k −
∑min(i,K)

k′=k+2 xi
k′ .

Promising experimental results are obtained on DIMACS graph coloring
benchmark instances [1] classified as NP-m (i.e., solvable within a minute). We
compare our inequalities to the classical vertex coloring formulation (denoted by
F), and to the latter formulation in which column inequalities are added (denoted
by F -Col), each being implemented with Cplex 12.8 C++ API in default setting.
This means in particular that Cplex internal SBT are turned on. We denote by
F -Sub the classical formulation with column and SSBI, derived for some sets S1

and S2 of size 1.

Sub-Symmetry-Breaking Inequalities for ILP with Structured Symmetry 65

Formulation F -Sub improves F -Col on some instances. Moreover, on some
instances sets, e.g., ash or le, SSBI prove to be extremely efficient as they improve
F ’s CPU time by a factor up to 30 and F -Col’s by a factor up to 3.

5 Application to the Unit Commitment Problem

The Unit Commitment Problem (UCP) has demonstrated to be a good candidate
to apply SBT [4,20,23,29]. Given a discrete time horizon T = {1, ..., T}, a
demand for electric power Dt is to be met at each time period t ∈ T . Power is
provided by a set N of n production units. At each time period, unit j ∈ N is
either down or up, and in the latter case, its production is within [P j

min, P j
max].

Each unit must satisfy min-up (resp. min-down) times, i.e., it must remain up
(resp. down) during at least Lj (resp. �j) periods after start up (resp. shut down).
Each unit j also features three costs: a fixed cost cj

f , incurred each time period
the unit is up; a start-up cost cj

0, incurred each time the unit starts up; and a
cost cj

p proportional to its production. The Min-up/min-down UCP (MUCP) is
to find a production plan minimizing the total cost while satisfying the demand
and the minimum up and down time constraints. The MUCP is strongly NP-
hard [5]. In the real-world UCP, some technical constraints have to be taken
into account, such as ramp constraints. The MUCP is the combinatorial core
structure of the UCP. In this article, we consider the RMUCP, i.e. the MUCP
featuring ramp-up (resp. ramp-down) constraints, i.e., the maximum increase
(resp. decrease) in generated power from time period t to time period t + 1 is
RU j (resp. RDj). Moreover, if unit i starts up at time t (resp. shuts down at
time t + 1), its production at time t cannot be higher than SU j (resp. SDj).

The classical formulation of the RMUCP features two sets of binary variables:
up variables xt,j , indicating if unit j is up at time t, and start-up variables ut,j ,
indicating if unit j starts up at time t [3,29,32]. The feasible set is denoted
by XUCP . The RMUCP formulation including ramp constraints can be further
strengthened with valid inequalities as proposed in [19,28,31].

In practical instances, there are H sets of nh identical units, i.e., units with
same characteristics. Assuming a solution is expressed as a matrix where column
j corresponds to the up/down trajectory of unit j over the time horizon, then
any permutation of columns corresponding to identical units leads to another
solution with same cost. Moreover, in some subproblems, there exist symmetries
not contained in the symmetry group of the original problem, arising from the
possibility of permuting some sub-columns. Consider two identical units and
suppose at some time period t, these two units are down and ready to start up.
Then their plans after t can be permuted, even if they do not have the same
up/down plan before t. This still holds when ramp-constraints are considered.

5.1 Sub-Symmetry-Breaking Inequalities for the RMUCP

For each t ∈ T and any two units j < j′ of type h, consider Q
t,h

j,j′ ⊂ XUCP :

66 P. Bendotti et al.

Q
t,h

j,j′ =
{
x ∈ XUCP | xt′,i = 0, ∀t′ ∈ {t − �i, ..., t − 1}, ∀i ∈ {j, j′}

}

Subset Q
t,h

j,j′ is sub-symmetric w.r.t. the submatrix defined by rows and columns
({t, ..., T}, {j, j′}). Most of these sub-symmetries, referred to as Start-up sub-
symmetries, are not detected in the symmetry group of the RMUCP. Note
that Q

t,h

j,j′ is different from subsets Qi,j defined in Sect. 3. Applying results from

Sect. 2, variables zt,h
j,j′ , indicating whether x ∈ Q

t,h

j,j′ , are
zt,h

j,j′ = xt−�j ,j′ +
∑t−1

t′=t−�j+1 ut′,j′ + xt−�j ,j +
∑t−1

t′=t−�j+1 ut′,j

Consider SUCP =
{
Q

t,h

j,j′ , t ∈ T , ∀h, j < j′ of type h
}
. Then set S directly

satisfies condition C. For each h, j < j′ and t ∈ T , inequalities (Q
t,h

j,j′) are :
xt,j′ ≤ [xt−�h,j′ +

∑t−1
t′=t−�h+1 ut′,j′] + [xt−�h,j +

∑t−1
t′=t−�h+1 ut′,j] + xt,j .

Inequalities (Q
t,h

j,j′) can be further strengthened, using the relationship
between variables x and u. First note that by definition of variables w:
xt,j′ − [xt−�h,j′ +

∑t−1
t′=t−�h+1 ut′,j′] = ut,j′ −

∑t
t′=t−�h+1 wt′,j′ As if ut,j′ = 1,

then
∑t

t′=t−�h+1 wt′,j′ = 0, the following Start-Up-Ready inequalities are valid

and stronger than inequalities (Q
t,h

j,j′):

ut,j′ ≤
[
xt−�h,j +

t−1∑

t′=t−�h+1

ut′,j
]
+ xt,j (4)

5.2 Experimental Results

We compare symmetry-breaking formulations for the RMUCP. Whereas the
aggregated formulation proposed in [20] is very efficient for the MUCP, it can
no longer be used for the RMUCP. An alternative formulation is the so-called
aggregated interval formulation [20]. The corresponding results (not included in
this paper) revealed computation times at least one order of magnitude slower
than those obtained with any other proposed formulation. Furthermore, for some
of the largest instances, the root node cannot be processed at all within the time
limit. As shown in [29], neither Friedman inequalities nor column inequalities
are competitive w.r.t. the classical UCP formulation when solved by Cplex. On
the opposite, partial Friedman SBI has been shown to outperform Cplex in [23].
Hence the following formulations for the ramp-constrained MUCP are compared:

– F (x, u): (x, u)-formulation.
– W (x, u): (x, u)-formulation with partial Friedman SBI.
– F (x, u, z): (x, u)-formulation with variables z, inequalities (2a)-(2e) and (3).
– LF (x, u): (x, u)-formulation with SSBI (4).

Formulation F (x, u, z) is obtained by adding (2a)–(3) to F (x, u). Taking into
account sub-symmetries leads to LF (x, u) featuring Start-Up-Ready inequalities
(4), in place of (2a)–(3). Note that start-up sub-symmetries are not handled by
F (x, u), W (x, u) and F (x, u, z). Each formulation features O(nT) variables.

Sub-Symmetry-Breaking Inequalities for ILP with Structured Symmetry 67

All experiments are performed using the same settings as in Sect. 4. The
RMUCP instances are solved within a 3600 s timelimit. In AppendixA, the
generation of RMUCP instances is described, along with some statistics on the
instances characteristics in Table 1, and in AppendixB performance indicators
in Table 2. In short, formulation LF (x, u) appears to be the most efficient.

6 Perspectives

A perspective is to use the proposed framework to derive new SSBI. For the
GCP, more experimental work would be necessary to embed SSBI in an efficient
resolution setting. Obviously the proposed framework can be further applied to
other problems with structured symmetries, e.g., covering problems.

A RMUCP Instances

We generate RMUCP instances as follows. For each instance, we generate a “2-
peak per day” type demand with a large variation between peak and off-peak
values: during one day, the typical demand in energy has two peak periods, one in
the morning and one in the evening. The amplitudes between peak and off-peak
periods have similar characteristics to those in the dataset from [8].

We consider the parameters (Pmin, Pmax, L, �, cf , c0, cp) of each unit from
the dataset presented in [8]. We draw a correlation matrix between these charac-
teristics and define a possible range for each characteristic. In order to introduce
symmetries in our instances, some units are randomly generated based on the
parameters correlations and ranges. Each unit generated is duplicated d times,
where d is randomly selected in [1, n

F] in order to obtain a total of n units. The
parameter F is called symmetry factor, and can vary from 2 to 4 depending on
the value of n. Note that these instances are generated along the same lines as
literature instances considered in [3], but with different F factors.

In order to determine which symmetry-breaking technique performs best
w.r.t. the number of rows and columns of matrices in feasible set X , we consider
various instance sizes n ∈ {20, 30, 60} and T ∈ {48, 96}, and various symmetry
factors F ∈ {2, 3, 4}.

For each size (n, T) and symmetry factor F , we generate a set of 20 instances.
Symmetry factor F = 4 is not considered for instances with a small number
n of units (n = 20 or 30), as it leads to very small sets of identical units.
The ramp characteristics are the following: RU j = (P j

max − P j
min)/3, RDj =

(P j
max − P j

min)/2 and SU j = SDj = P j
min.

Table 1 provides some statistics on the instances characteristics. For each
instance, a group is a set of two or more units with the same characteristics.
Each unit which has not been duplicated is a singleton. The first and second
entries column-wise are the number of singletons and groups. The third entry is
the average group size and the fourth entry is the maximum group size. Each
entry row-wise corresponds to the average value obtained over 20 instances with
same size (n, T) and same symmetry factor F .

68 P. Bendotti et al.

Table 1. Instance characteristics

Size (n, T) Sym. factor Nb singl. Nb groups Av. group size Group max. size

(20, 48) F = 3 1.25 4.90 3.96 5.75

F = 2 0.75 3.20 6.45 8.75

(20, 96) F = 3 0.90 4.75 4.08 5.60

F = 2 0.75 3.45 5.93 8.65

(30, 48) F = 3 1.10 5.35 5.51 9.45

F = 2 0.25 3.85 8.30 12.60

(30, 96) F = 3 0.40 5.25 5.97 8.65

F = 2 0.55 4.05 7.59 11.40

(60, 48) F = 4 0.80 7.70 7.86 13.20

F = 3 0.55 5.80 10.90 17.80

F = 2 0.20 4.75 13.90 23.80

(60, 96) F = 4 0.60 7.90 7.79 13.20

F = 3 0.30 5.95 10.50 16.60

F = 2 0.20 4.35 14.80 24.90

B Tables Relative to Results for the RMUCP

Table 2 provides, for each formulation and each group of 20 instances:
#opt: Number of instances solved to optimality,
#nodes: Average number of nodes,
gap: Average optimality gap,
CPU time: Average CPU time in seconds.

Note that a sign “-” in the column entry corresponding to the CPU time means
that no instance could be solved within the time limit.

Table 2. Comparison of formulations for MUCP instances with symmetries.

Instances Formulation #opt #nodes gap (%) CPU time

(20, 48) F = 2 F (x, u) 9 667 974 0.009 16 2061.6

W (x, u) 10 232 589 0.011 15 1965.2

F (x, u, z) 11 139 493 0.009 91 1840.4

LF (x, u) 16 242 096 0.001 89 980.4

F = 3 F (x, u) 13 634 436 0.002 96 1424.7

W (x, u) 16 314 447 0.004 40 1295.9

F (x, u, z) 18 102 717 0.002 26 998.0

LF (x, u) 20 30 014 0 132.8

Sub-Symmetry-Breaking Inequalities for ILP with Structured Symmetry 69

Table 2. (continued)

Instances Formulation #opt #nodes gap (%) CPU time

(20, 96) F = 2 F (x, u) 5 702 415 0.007 76 2781.9

W (x, u) 4 233 582 0.025 84 3058.1

F (x, u, z) 8 61 384 0.006 81 2556.5

LF (x, u) 6 160 150 0.007 18 2675.6

F = 3 F (x, u) 7 989 738 0.006 44 2470.2

W (x, u) 5 198 137 0.014 66 2725.6

F (x, u, z) 12 87 375 0.004 24 1819.7

LF (x, u) 15 186 018 0.005 65 1794.7

(30, 48) F = 2 F (x, u) 4 354 029 0.018 03 2924.7

W (x, u) 7 210 032 0.011 00 2535.4

F (x, u, z) 4 71 467 0.025 47 2969.0

LF (x, u) 15 219 655 0.002 04 1341.8

F = 3 F (x, u) 6 379 482 0.012 13 2676.9

W (x, u) 10 240 767 0.006 98 1931.4

F (x, u, z) 5 107 609 0.016 23 2736.1

LF (x, u) 16 191 113 0.002 19 965.7

(30, 96) F = 2 F (x, u) 3 390 666 0.004 63 3069.8

W (x, u) 4 121 205 0.007 55 3130.1

F (x, u, z) 5 46 869 0.009 18 3107.7

LF (x, u) 9 315 503 0.002 38 2263.5

F = 3 F (x, u) 5 460 304 0.003 24 2927.0

W (x, u) 3 211 303 0.004 65 3130.5

F (x, u, z) 4 61 994 0.004 55 3059.7

LF (x, u) 12 183 633 0.000 77 1852.9

(60, 48) F = 2 F (x, u) 1 757 017 0.003 09 3437.6

W (x, u) 4 203 485 0.002 85 3046.2

F (x, u, z) 6 66 272 0.037 46 2839.8

LF (x, u) 5 569 546 0.001 26 2710.6

F = 3 F (x, u) 1 850 192 0.002 68 3422.5

W (x, u) 6 192 656 0.002 45 2689.3

F (x, u, z) 9 40 680 0.003 97 2527.5

LF (x, u) 14 493 254 0.000 40 1450.2

F = 4 F (x, u) 7 870 666 0.002 43 2582.4

W (x, u) 10 295 149 0.000 95 1971.9

F (x, u, z) 14 33 574 0.000 53 1623.1

LF (x, u) 15 459 142 0.000 27 1043.8

(60, 96) F = 2 F (x, u) 0 120 125 0.012 62 −
W (x, u) 0 23 851 0.051 90 −
F (x, u, z) 0 3 813 0.528 55 −
LF (x, u) 0 52 226 0.011 25 −

F = 3 F (x, u) 0 144 265 0.014 90 −
W (x, u) 0 50 841 0.018 15 −
F (x, u, z) 0 6 404 0.034 76 −
LF (x, u) 0 83 335 0.013 11 −

F = 4 F (x, u) 0 230 935 0.009 56 −
W (x, u) 0 92 298 0.010 63 −
F (x, u, z) 0 9 616 0.015 89 −
LF (x, u) 2 150 692 0.006 56 3467.7

70 P. Bendotti et al.

References

1. Graph coloring benchmark. https://sites.google.com/site/graphcoloring/vertex-
coloring

2. Baum, S., Trotter, L.E.: Integer rounding and polyhedral decomposition for totally
unimodular systems. In: Henn, R., Korte, B., Oettli, W. (eds.) Optimization and
Operations Research. LNCS, vol. 157, pp. 15–23. Springer, Heidelberg (1978).
https://doi.org/10.1007/978-3-642-95322-4 2

3. Bendotti, P., Fouilhoux, P., Rottner, C.: The min-up/min-down unit commitment
polytope. J. Comb. Optim. 36(3), 1024–1058 (2018)

4. Bendotti, P., Fouilhoux, P., Rottner, C.: Orbitopal fixing for the full (sub-)orbitope
and application to the unit commitment problem. Optimization Online (2018).
http://www.optimization-online.org/DB HTML/2017/10/6301.html

5. Bendotti, P., Fouilhoux, P., Rottner, C.: On the complexity of the unit commitment
problem. Ann. Oper. Res. 274(1), 119–130 (2019)

6. Berthold, T., Pfetsch, M.E.: Detecting orbitopal symmetries. In: Fleischmann, B.,
Borgwardt, K.H., Klein, R., Tuma, A. (eds.) Operations Research Proceedings
2008, pp. 433–438. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00142-0 70

7. Burke, E.K., Mareček, J., Parkes, A.J., Rudová, H.: A supernodal formulation
of vertex colouring with applications in course timetabling. Ann. Oper. Res. 79,
105–130 (2010)

8. Carrion, M., Arroyo, J.M.: A computationally efficient mixed-integer linear formu-
lation for the thermal unit commitment problem. IEEE Trans. Power Syst. 21,
1371–1378 (2006)

9. Coll, P., Marenco, J., Dı́az, I., Zabala, P.: Facets of the graph coloring polytope.
Ann. Oper. Res. 116, 79–90 (2002)

10. Figueiredo, R., Barbosa, V., Maculan, N., Souza, C.: Acyclic orientations with
path constraints. RAIRO-Oper. Res. 42, 455–467 (2008)

11. Fischetti, M., Lodi, A., Salvagnin, D.: Just MIP it!. In: Maniezzo, V., Stützle, T.,
Voß, S. (eds.) Matheuristics. Annals of Information Systems, vol. 10, pp. 39–70.
Springer, Boston (2009). https://doi.org/10.1007/978-1-4419-1306-7 2

12. Friedman, E.J.: Fundamental domains for integer programs with symmetries. In:
Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 146–153.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73556-4 17

13. Gualandi, S., Malucelli, F.: Exact solution of graph coloring problems via constraint
programming and column generation. INFORMS J. Comput. 24(1), 81–100 (2012)

14. Hojny, C., Pfetsch, M.E.: Polytopes associated with symmetry handling. Opti-
mization Online (2017). http://www.optimization-online.org/DB HTML/2017/
01/5835.html

15. Jans, R.: Solving lot-sizing problems on parallel identical machines using
symmetry-breaking constraints. INFORMS J. Comput. 21(1), 123–136 (2009)

16. Kaibel, V., Loos, A.: Branched polyhedral systems. In: Eisenbrand, F., Shepherd,
F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 177–190. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13036-6 14

17. Kaibel, V., Peinhardt, M., Pfetsch, M.E.: Orbitopal fixing. In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 74–88. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-72792-7 7

18. Kaibel, V., Pfetsch, M.E.: Packing and partitioning orbitopes. Math. Program.
114(1), 1–36 (2008)

https://sites.google.com/site/graphcoloring/vertex-coloring
https://sites.google.com/site/graphcoloring/vertex-coloring
https://doi.org/10.1007/978-3-642-95322-4_2
http://www.optimization-online.org/DB_HTML/2017/10/6301.html
https://doi.org/10.1007/978-3-642-00142-0_70
https://doi.org/10.1007/978-3-642-00142-0_70
https://doi.org/10.1007/978-1-4419-1306-7_2
https://doi.org/10.1007/978-3-540-73556-4_17
http://www.optimization-online.org/DB_HTML/2017/01/5835.html
http://www.optimization-online.org/DB_HTML/2017/01/5835.html
https://doi.org/10.1007/978-3-642-13036-6_14
https://doi.org/10.1007/978-3-540-72792-7_7

Sub-Symmetry-Breaking Inequalities for ILP with Structured Symmetry 71

19. Knueven, B., Ostrowski, J., Wang, J.: Generating cuts from the ramping poly-
tope for the unit commitment problem. Optimization Online (2016). http://www.
optimization-online.org/DB HTML/2015/09/5099.html

20. Knueven, B., Ostrowski, J., Watson, J.P.: Exploiting identical generators in unit
commitment. IEEE Trans. Power Syst. 33(4), 4496–4507 (2018)

21. Liberti, L.: Reformulations in mathematical programming: automatic symmetry
detection and exploitation. Math. Program. 131(1), 273–304 (2012)

22. Liberti, L., Ostrowski, J.: Stabilizer-based symmetry breaking constraints for math-
ematical programs. J. Glob. Optim. 60(2), 183–194 (2014)

23. Lima, R.M., Novais, A.Q.: Symmetry breaking in MILP formulations for unit com-
mitment problems. Comput. Chem. Eng. 85, 162–176 (2016)

24. Loos, A.: Describing orbitopes by linear inequalities and projection based tools.
Ph.D. thesis, Universität Magdeburg (2011)

25. Malaguti, E., Monaci, M., Toth, P.: An exact approach for the vertex coloring
problem. Discrete Optim. 8(2), 174–190 (2010)

26. Margot, F.: Exploiting orbits in symmetric ILP. Math. Program. 98(1), 3–21 (2003)
27. Mehrotra, A., Trick, M.: A column generation approach for graph coloring.

INFORMS J. Comput. 8, 344–354 (1996)
28. Ostrowski, J., Anjos, M.F., Vannelli, A.: Tight mixed integer linear programming

formulations for the unit commitment problem. IEEE Trans. Power Syst. 27, 39–46
(2012)

29. Ostrowski, J., Anjos, M.F., Vannelli, A.: Modified orbital branching for structured
symmetry with an application to unit commitment. Math. Program. 150(1), 99–
129 (2015)

30. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Pro-
gram. 126(1), 147–178 (2011)

31. Pan, K., Guan, Y.: A polyhedral study of the integrated minimum-up/-down time
and ramping polytope. Optimization Online (2016). http://www.optimization-
online.org/DB HTML/2015/08/5070.html

32. Rajan, D., Takriti, S.: Minimum up/down polytopes of the unit commitment prob-
lem with start-up costs. IBM Research Report (2005)

http://www.optimization-online.org/DB_HTML/2015/09/5099.html
http://www.optimization-online.org/DB_HTML/2015/09/5099.html
http://www.optimization-online.org/DB_HTML/2015/08/5070.html
http://www.optimization-online.org/DB_HTML/2015/08/5070.html

Intersection Cuts for Polynomial
Optimization

Daniel Bienstock1, Chen Chen2, and Gonzalo Muñoz3(B)

1 IEOR, Columbia University, New York, USA
dano@columbia.edu

2 ISE, The Ohio State University, Columbus, USA
chen.8018@osu.edu

3 IVADO Fellow, Polytechnique Montréal, Montreal, Canada
gonzalo.munoz@polymtl.ca

Abstract. We consider dynamically generating linear constraints (cut-
ting planes) to tighten relaxations for polynomial optimization problems.
Many optimization problems have feasible set of the form S∩P , where S
is a closed set and P is a polyhedron. Integer programs are in this class
and one can construct intersection cuts using convex “forbidden” regions,
or S-free sets. Here, we observe that polynomial optimization problems
can also be represented as a problem with linear objective function over
such a feasible set, where S is the set of real, symmetric matrices rep-
resentable as outer-products of the form xxT . Accordingly, we study
outer-product-free sets and develop a thorough characterization of sev-
eral (inclusion-wise) maximal intersection cut families. In addition, we
present a cutting plane approach that guarantees polynomial-time sep-
aration of an extreme point in P \ S using our outer-product-free sets.
Computational experiments demonstrate the promise of our approach
from the point of view of strength and speed.

1 Introduction

In this work we focus on polynomial optimization:

min p0(x)
(PO) s.t. pi(x) ≤ 0 i = 1, ...,m,

where each pi is a polynomial function with respect to x ∈ R
n. We consider

the dynamic generation of linear valid inequalities, i.e. cutting planes, to tighten
relaxations of PO. Cuts for polynomial optimization are typically generated
for a single nonlinear term or function (e.g. [7,35,37,41,45,51–53]) over a sim-
ple subset of linear constraints such as box constraints. In contrast, we develop
general-purpose cuts that have the potential to involve all variables simultane-
ously. To the best of our knowledge there are two papers (applicable to polyno-
mial optimization) that are similar to our work in this regard. The disjunctive
cuts of Saxena, Bonami, and Lee [46,47], and the work of Ghaddar, Vera, and
c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 72–87, 2019.
https://doi.org/10.1007/978-3-030-17953-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_6

Intersection Cuts for Polynomial Optimization 73

Anjos [26] who propose a lift-and-project method using moment relaxations.
Polynomial-time separation from these procedures is not guaranteed in general.

We adopt the geometric perspective for generating cuts, in which cuts for a
region of the form S ∩ P , with P a polyhedron and S a closed set, are derived
from convex forbidden zones, or S-free sets. The S-free approach developed in
the context of mixed-integer programming, with S typically considered to be
the integer lattice. Practical applications of this technique have so far focused
on natural extensions such as conic integer programming (e.g. [4,30,42]) and
bilevel mixed-integer linear programming [23]. In contrast, PO represents an
essentially different domain of application since variables here are continuous.

We work with a representation of PO that uses a symmetric matrix of deci-
sion variables, and yields an equivalent formulation with a linear objective func-
tion and a feasible region of the form S ∩ P , with S the (closed) set of sym-
metric matrices that can be represented as outer products of the form xxT —
accordingly, we study outer-product-free sets. Several families of full-dimensional
(inclusion-wise) maximal outer-product-free sets are identified in Theorems 3 and
4 of Sect. 5. Furthermore, we derive an oracle-based outer-product-free set in
Sect. 4. With the aforementioned results we develop a cut generation procedure
(see Sect. 6) that has (to our knowledge) the following unique properties: any
infeasible extreme point of a (lifted) polyhedral relaxation of PO can be sepa-
rated in polynomial time; and variable bounds are not required. In Sect. 7 we
demonstrate the practical effectiveness of our approach over a variety of instances
using a straightforward pure cutting-plane setup. The speed of our separation
routines and the quality of the resulting cuts strongly suggest the viability of
our cut families within a full-fledged branch-and-cut solver.

1.1 Notation

Denote the interior of a set int(·) and its boundary bd(·). The convex hull of
a set is denoted conv(·), and its closure is clconv(·); likewise, the conic hull of
a set is cone(·), and its closure clcone(·). For a point x and nonempty set S in
R

n, we define d(x, S) := infs∈S{‖x − s‖2}; note that for S closed we can replace
the infimum with minimum. Denote the ball with center x and radius r to be
B(x, r). 〈·, ·〉 denotes the matrix inner product and ‖ · ‖F the Frobenius norm. A
positive semidefinite matrix may be referred to as a PSD matrix for short, and
likewise NSD refers to negative semidefinite.

2 S-free Sets and the Intersection Cut

Definition 1. A set C ⊂ R
n is S-free if int(C) ∩ S = ∅ and C is convex.

For any S-free set C we have S ∩ P ⊆ clconv(P \ int(C)), and so any valid
inequalities for clconv(P \ int(C)) are valid for S ∩ P . Hillestad and Jacobsen
[29], and later on Sen and Sherali [48], provide results regarding polyhedrality
of clconv(P \ int(C)). Averkov [5] provides theoretical consideration on how

74 D. Bienstock et al.

one can derive cuts from C. In specific instances, conv(P \ int(C)) can be fully
described (see [10,11,30,42]), however, separating over P \ int(C) is NP-hard
[25]. A standard workaround is to find a simplicial cone P ′ containing P and
apply Balas’ intersection cut [6] for P ′ \ int(C) (also see Tuy [54]). Larger S-free
sets can be useful for generating deeper cuts [17].

Definition 2. An S-free set C is maximal if V �⊃ C for all S-free V .

Under certain conditions (see [9,17,18,30]), maximal S-free sets are sufficient
to generate all nontrivial cuts for a problem. When S = Z

n, C is called a
lattice-free set. Maximal lattice-free sets are well-studied in integer programming
theory [1,2,8,14,20,27,30,36], and the notion of S-free sets was introduced as a
generalization [21].

2.1 The Intersection Cut

Let P ′ ⊇ P be a simplicial conic relaxation of P : a displaced polyhedral cone
with apex x̄ and defined by the intersection of n linearly independent halfspaces.
P ′ may be written as follows:

P ′ = {x̄ +
n∑

j=1

λjr
j : λ ≥ 0}. (1)

Each extreme ray of P ′ is of the form {x̄ + λjr
j |λj ≥ 0}. Alternatively, the

simplicial conic relaxation can be given in inequality form

P ′ = {x|Ax ≤ b}, (2)

where A is an invertible matrix. Note that any basis of P would be suitable to
derive P ′. The apex x̄ = A−1b, and the rays rj in (1) can be obtained directly
from A: for each j, one can identify −rj as the jth column of the inverse of A.

We shall assume x̄ /∈ S, so that x̄ is to be separated from S via separation
from P ′ \ int(C), with C an S-free set with x̄ in its interior. Since x̄ ∈ int(C),
there must exist λ > 0 such that x̄ + λjr

j ∈ int(C) ∀j. Also, each extreme ray
is either entirely contained in C, i.e. x̄ + λjr

j ∈ int(C)∀λj ≥ 0, or else there is
an intersection point with the boundary: ∃λ∗

j : x̄ + λ∗
jr

j ∈ bd(C). We refer to
λ∗

j as the step length in the latter case, and for convenience, we define the step
length λ∗

j = ∞ in the former case. The intersection cut is the halfspace whose
boundary contains each intersection point (given by λ∗

j < ∞) and that is parallel
to all extreme rays contained in C.

Given λ∗
j ∈ (0,∞]∀j = 1, . . . , n, Balas [6, Theorem 2] provides a closed-form

expression for the intersection cut πx ≤ π0:

π0 =
n∑

i=1

(1/λ∗
i)bi − 1, πj =

n∑

i=1

(1/λ∗
i)aij , (3)

where aij are the entries of A in (2) and 1/∞ := 0 [6, p. 34].

Intersection Cuts for Polynomial Optimization 75

The validity of the intersection cut and a condition in which the cut gives
the convex hull of P ′ \ int(C) is established by Balas [6, Theorem 1]. A more
detailed analysis, as well as a strengthening procedure for infinite step lengths
is provided in our full-length paper [12].

3 Moment-Based Reformulation of Polynomial
Optimization

Our approach to PO leverages the moment/sum-of-squares approach (see [33,
34]) from which a definition of the feasible set as S ∩ P is naturally obtained.

Let mr = [1, x1, . . . , xn, x1x2, . . . , x
2
n, . . . , xr

n] be a vector of all monomials
up to degree r. Any polynomial may be written as pi(x) = mT

r Aimr (provided
r is sufficiently large), where Ai is a symmetric matrix derived from pi. We can
apply this transformation to PO to obtain a lifted representation LPO:

min〈A0,X〉
(LPO) s.t. 〈Ai,X〉 ≤ bi, i = 1, ...,m, (4a)

X = mrm
T
r . (4b)

Denote nr :=
(
n+r

r

)
, i.e. the length of mr. Here Ai ∈ S

nr×nr are symmetric
matrices of data, and X ∈ S

nr×nr is a symmetric matrix of decision variables.
The problem has linear objective function, linear constraints (4a), and nonlinear
constraints (4b). One can replace the moment matrix condition X = mrm

T
r with

the equivalent conditions ofX � 0, rank(X) ≤ 1 and linear consistency constraints
among entries from X representing the same monomial. Dropping the nonconvex
rank one constraint yields the standard semidefinite relaxation [50].

On the other hand, the feasible region of LPO has a natural description as
an intersection of a polyhedron POP , that corresponds to linear constraints (4a)
together with consistency constraints, and the following closed set,

SOP := {X ∈ S
nr×nr : X = xxT , x ∈ R

nr}.

Accordingly, we shall study sets that are outer-product-free (OPF): closed, con-
vex sets in S

nr×nr with interiors that do not intersect with SOP . In what follows,
suppose we have an extreme point X̄ ∈ POP \ SOP with spectral decomposition
X̄ :=

∑nr

i=1 λidid
T
i and ordering λ1 ≥ ... ≥ λnr

. We seek to separate X̄.

4 Oracle-Based Outer-Product-Free Sets

If one has access to a distance oracle to the set S, one can easily construct an
OPF set, namely, an OPF ball. In the case of LPO this corresponds to the
distance to the nearest symmetric outer product. This distance is a special case
of the following PSD matrix approximation problem, given an integer q > 0:

(PMA) min
Y

{‖X̄ − Y ‖ : rank(Y) ≤ q, Y � 0
}

.

Here ‖ · ‖ is a unitarily invariant matrix norm such as the Frobenius norm,
‖ · ‖F . Dax [19] proves the following:

76 D. Bienstock et al.

Theorem 1 (Dax’s Theorem). Let k be the number of nonnegative eigen-
values of X̄. For q = 1, . . . , n − 1, an optimal solution to PMA is given by
Y =

∑min{k,q}
i=1 λidid

T
i .

When X̄ is not NSD, the solution from Dax’s theorem coincides with Eckart-
Young-Mirsky [22,40] solution to PMA without the PSD constraint. The opti-
mal PSD approximant allows us to construct an OPF ball:

Boracle(X̄) :=
{B(X̄, ‖X̄‖F), if X̄ is NSD,

B(X̄, ‖∑n
i=2 λidid

T
i ‖F), otherwise.

Corollary 1. Boracle(X̄) is OPF.

Proof. Setting q = 1 in Dax’s Theorem, we see that the nearest symmetric outer
product is either λ1d1d

T
1 if λ1 > 0, or else the zeros matrix. ��

For LPO we can use a simple geometric construction involving Theorem 2
to obtain an OPF cone from the oracle ball. This extension is detailed in [12].

5 Maximal Outer-Product-Free Sets

5.1 General Properties of Maximal Outer-Product-Free Sets

We now turn to characterizing and finding maximal OPF sets. Our first Theorem
is a building block towards maximality.

Theorem 2. Let C ⊂ S
nr×nr be a full-dimensional OPF set. Then clcone(C) is

OPF. In particular, every full-dimensional maximal OPF set is a convex cone.

Proof. Suppose clcone(C) is not OPF; since it is closed and convex, then by
definition of OPF sets there must exist d ∈ R

nr such that ddT is in its interior.
If d is the zeros vector, then int(C) also contains the origin, which contradicts
the condition of C being OPF. Otherwise the ray r0 emanating from the origin
with nonzero direction ddT is entirely contained in and hence is an interior ray
of clcone(C). By convexity, the interior of cone(C) is the same as the interior of
its closure, so r0 is also an interior ray of cone(C). From this, it can be proved
that r0 must pass through the interior of C (see [12]). But every point along r0

is a symmetric outer-product, which again implies that C is not OPF. ��
We can also obtain the following properties regarding the geometry of max-

imal OPF sets via their supporting halfspaces.

Definition 3. A supporting halfspace of a closed, convex set S contains S and
its boundary is a supporting hyperplane of S.

Intersection Cuts for Polynomial Optimization 77

Lemma 1. Let C be a full-dimensional maximal OPF set. Every supporting
halfspace of C is of the form 〈A,X〉 ≥ 0 for some A ∈ S

nr×nr .

Proof. From Theorem 2 we have that C is a convex cone. From this it follows
that a supporting halfspace 〈A,X〉 ≥ b must have b = 0. ��

From Lemma 1 we may characterize a maximal OPF set as C = {X ∈
S

nr×nr |〈Ai,X〉 ≥ 0 ∀i ∈ I}, with I a potentially infinite index set.

Theorem 3. The halfspace 〈A,X〉 ≥ 0 is maximal OPF iff A is NSD.

Proof. If A has a strictly positive eigenvalue, then 〈A, ddT 〉 > 0 for some d, and
so the halfspace is not OPF. If A is NSD then 〈A, ddT 〉 = dT Ad ≤ 0 ∀d ∈ R

nr , so
the halfspace is OPF. For maximality, suppose the halfspace is strictly contained
in another OPF set C̄. Then there exists some X̄ ∈ int(C̄) such that 〈A, X̄〉 < 0.
Thus, −X̄ ∈ int(C̄) and so is the zeros matrix. Thus C̄ cannot be OPF. ��

5.2 Maximal Outer-Product-Free Sets Derived from 2 × 2
Submatrices

Theorem 3 provides our first explicit family of maximal OPF sets. Another family
is suggested by the following result by Kocuk, Dey, and Sun [31]:

Proposition 1 (KDS Proposition). A nonzero, Hermitian matrix X is PSD
and has rank one iff all the 2×2 minors of X are zero and the diagonal elements
of X are nonnegative.

In what follows, denote the entries of a 2×2 submatrix of X from some rows

i1 < i2 and columns j1 < j2 as X[[i1,i2],[j1,j2]] :=
[

a b
c d

]
.

Lemma 2. Let λ ∈ R
2 with ‖λ‖2 = 1. (5a) and (5b) describe an OPF set:

λ1(a + d)/2 + λ2(b − c)/2 ≥ ‖(b + c)/2, (a − d)/2‖2, (5a)
λ1(b + c)/2 + λ2(a − d)/2 ≥ ‖(a + d)/2, (b − c)/2‖2. (5b)

Proof. The set defined by ad ≥ bc is OPF (Proposition 1). The proof follows
from checking that (5a) defines a subset of it. Similarly, (5b) defines a subset of
ad ≤ bc. ��
The following Theorem provides an extensive list of maximal OPF sets that can
be obtained from Lemma 2. We leave the proof in the Appendix.

Theorem 4. (5a) describes a maximal OPF set if

(i) λ1 = 1, λ2 = 0, and neither b nor c are diagonal entries;
(ii) λ1 = 0, λ2 = 1, and b is a diagonal entry;
(iii) λ1 = 0, λ2 = −1, and c is a diagonal entry;
(iv) λ2

1 + λ2
2 = 1, and none of a, b, c, d are diagonal entries.

78 D. Bienstock et al.

Similarly, (5b) describes a maximal OPF set if
(v) λ1 = 1, λ2 = 0, and either b or c is a diagonal entry;
(vi) λ1 = 0, λ2 = 1, and a but not d is a diagonal entry;
(vii) λ1 = 0, λ2 = −1, and d but not a is a diagonal entry;
(viii) λ2

1 + λ2
2 = 1, and none of a, b, c, d are diagonal entries.

The following theorem shows that the maximal OPF sets we have identified
characterizes all such sets in the special case where nr = 2.

Theorem 5. In S
2×2 every full-dimensional maximal OPF set is either the cone

of PSD matrices or a halfspace of the form 〈A,X〉 ≥ 0, where A is NSD.

Proof. See [12] for details.

6 Implementation of Intersection Cuts

Suppose that we have a simplicial conic relaxation of POP with apex X̄. This
section provides a brief overview on how to generate a cutting plane to separate
X̄ from POP ∩ SOP using results from Sects. 4 and 5.

6.1 Step 1: Selecting an Outer-Product-Free Set

Separation Using the Distance Oracle. As outlined in Sect. 4, Boracle(X̄),
or its conic extension/strengthening can always be used to separate X̄.

Separation Using Halfspaces. Theorem 3 shows that certain halfspaces are
OPF sets. Moreover, it is not hard to see that the halfspaces of Theorem 3 imply
and provide no more than the family of cuts equivalent to the PSD condition:

dT Xd ≥ 0 ∀d ∈ R
n ⇐⇒ X � 0.

Choosing d equal to the eigenvectors of X̄ provides polynomial-time sep-
aration (given fixed numerical tolerances); this is a well-studied linear outer-
approximation procedure for semidefinite programming problems [32,44,47,49],
and here we provide a new interpretation of them via the maximal OPF property.

Separation with all 2 × 2 Submatrices of X̄. From Proposition 1 we have
that X̄ /∈ SOP implies a nonzero 2 × 2 minor or a negative diagonal term.
Supposing the nonnegative diagonal constraints are included in POP , then at
least one of the O(n4) 2 × 2 minors will be nonzero. We can show that for any
such minor that is nonzero at least one of the sets described in Theorem 4 will
strictly contain X̄. There is an additional choice of the λ parameters for sets
of the form (iv) and (viii), which in our experiments we set to extreme values
λ1 = 1, λ2 = 0 or λ1 = 0, λ2 = 1. Intermediate values for λ are the subject of
ongoing research.

Intersection Cuts for Polynomial Optimization 79

Separation with Only Principal 2 × 2 Submatrices of X̄. An alternative
characterization to Proposition 1 is given by Chen, Atamtürk and Oren [16]:

Proposition 2 (CAO Proposition). For n > 1 a nonzero Hermitian PSD
n × n matrix X has rank one iff all of its 2 × 2 principal minors are zero.

Hence if X̄ is not PSD then it is contained in at least one halfspace described
in Theorem 3. Otherwise, X̄ has at least one of its O(n2) principal 2 × 2 minors
strictly positive, and so (5a) is strictly satisfied for case (i) of Theorem 4.

6.2 Step 2: Generating an Intersection Cut

The halfspace OPF sets can generate a cut directly as mentioned above. We only
need the eigenvectors of X̄. The remaining OPF sets are a ball, for which the
step-lengths for the intersection cuts are simply the ball’s radius, and second-
order cones. We can thus derive (see [12]) computationally trivial closed-form
expressions for step lengths from the interior of a second-order cone to its bound-
ary. This is one of the most crucial features of our proposed cutting planes, as
they can be generated with little computational effort and thus making them
suitable for their incorporation in a branch-and-cut procedure.

7 Numerical Experiments

We present experiments using a pure cutting-plane algorithm using the cuts
described in Sect. 6. The experiments are designed to investigate the stand-alone
performance of our cuts, particularly separation speed and effectiveness. The
cutting plane algorithm solves an LP relaxation and obtains an (extreme point)
optimal solution X̄, adds cuts separating X̄, and repeats until either:

– A time limit of 600 seconds is reached, or
– The objective value does not improve for 10 iterations, or
– The violation of all cuts is not more than 10−6. Here, if πT x ≤ π0 is the cut

and x∗ is the candidate solution, we define the violation as (πT x∗ −π0)/‖π‖1.
For improving stability, we add a maximum of 10 cuts per iteration (selected

using violations) and remove non-active cuts every 15 iterations. Computations
are run on a 32-core server with an Intel Xeon Gold 6142 2.60 GHz CPU and
512 GB of RAM. Although the machine is powerful, we run the algorithm single-
threaded and the experiments do not require a significant amount of memory;
we confirmed that similar performance can be obtained with a laptop. The code
is written in C++ using the Eigen library for linear algebra [28]. The LP solver
is Gurobi 8.0.0 and, for comparisons, we solve SDP relaxations using the C++
Fusion API of Mosek 8 [43]. Our code is available at https://github.com/g-
munoz/poly cuts cpp.

Test instances are taken from two sources. First, we consider all 27 problem
instances from Floudas et al. [24] (available via GLOBALLib [39]) that have
quadratic objective and constraints. Our cuts can accommodate arbitrary poly-
nomial terms, however for implementation purposes reading QCQP problems is

https://github.com/g-munoz/poly_cuts_cpp
https://github.com/g-munoz/poly_cuts_cpp

80 D. Bienstock et al.

more convenient. Second, we consider all 99 instances of BoxQP developed by
several authors [15,55]. These problems have simple box constraints x ∈ [0, 1]n

and a nonconvex quadratic objective function. In a recent paper by Bonami et al.
[13], the authors show how to obtain cutting planes for this particular case.

We choose the initial LP relaxation to be the standard RLT relaxation of
QCQP: setting r = 1 in LPO and including McCormick estimators for bilinear
terms (see [3,38]). Problem sizes vary from 21 × 21 to 126 × 126 symmetric
matrices of decision variables for BoxQP instances and from 6 × 6 to 63 × 63 for
GLOBALLib instances. To obtain variable bounds for some of the GLOBALLib
instances we apply a simple bound tightening procedure: minimize/maximize a
given variable subject to the RLT relaxation. Lastly, we use Gap Closed as a
measure of quality of the bounds generated by each approach. This is defined
as follows: let OPT denote the optimal value of an instance, RLT the optimal
value of the standard RLT relaxation, and GLB the objective value obtained
after applying the cutting plane procedure. Then Gap Closed = GLB−RLT

OPT−RLT .

Results. In Table 1, we show a performance comparison in the selected GLOB-
ALLib instances between our cutting plane algorithm versus the relaxation
obtained from adding a PSD requirement for the variable X in the RLT relax-
ation (SDP). We do not show results for 2 of the instances, as the RLT relaxation
is tight for these. The results in Table 1 are very encouraging: in only 4 instances
we are not able to reach the same gap closed as the SDP. Moreover, our simple
cutting plane approach (almost) always runs in just a few seconds.

In Table 2, we compare our results with the V2 setting used by Saxena,
Bonami and Lee [46] in the selected GLOBALLib instances. We chose [46] as
a comparison as we find it the most similar to our approach. V2 uses an RLT
relaxation for QCQPs and applies two types of cuts: an outer-approximation of
the PSD cone and disjunctive cuts for which the separation involves a MIP. We
emphasize that these families of cuts are complementary and not competitive. It
is also important to mention that the running times in Table 2 for V2 correspond
to the reports in [46], published in 2010. While new hardware may improve these
times, we believe the conclusions we draw from Table 2 would not change.

For comparison purposes, we turned off our simple bound tightening routine
in order to obtain the same initial relaxation value as V2 (and thus the gaps
are different than the ones in Table 1). Even doing so, for certain instances of
GLOBALLib we did not obtain the same initial bound and thus excluded these
from comparison. On the comparable GLOBALLib instances our algorithm ter-
minates with smaller gap closed on average, but it does produce higher gap
closed on some instances. The advantage of our cuts is that times are substan-
tially shorter. This is expected, as V2 solves a MIP in the cut generation, while
our cuts only require finding eigenvalues and roots of single-variable quadratics.
Overall we believe these results are promising, as the cutting planes are able to
close a significant amount of gap in many cases, in a very short time.

The results on the BoxQP instances are interesting as well. In the interest of
space, we limit ourselves to summarizing them here. The interested reader can
find a complete log in https://goo.gl/8wPeY6. We compare with V2 as before,

https://goo.gl/8wPeY6

Intersection Cuts for Polynomial Optimization 81

Table 1. Comparison of intersection cuts versus SDP relaxation in non-convex
quadratic GLOBALLib instances.

Instance SDP Intersection Cuts
Name Gap Closed Time Gap Closed Time
Ex2 1 1 0.00% 0.01 57.70% 0.02
Ex2 1 5 0.00% 0.03 99.57% 0.01
Ex2 1 6 0.00% 0.02 79.56% 0.09
Ex2 1 7 0.00% 0.46 22.59% 0.96
Ex2 1 8 0.00% 1.11 51.89% 1.91
Ex2 1 9 0.00% 0.02 31.92% 0.98
Ex3 1 1 0.00% 0.05 0.71% 0.32
Ex3 1 2 22.41% 0.01 100.00% 0.00
Ex3 1 4 0.00% 0.01 32.61% 0.02
Ex5 2 2 case1 0.00% 0.04 12.84% 0.79
Ex5 2 2 case2 0.00% 0.04 30.25% 0.56
Ex5 2 2 case3 0.00% 0.04 19.15% 0.50
Ex5 2 4 0.00% 0.02 27.55% 0.20

Instance SDP Intersection Cuts
Name Gap Closed Time Gap Closed Time
Ex5 2 5 0.00% 1.84 0.00% 7.83
Ex5 3 2 0.10% 0.74 0.00% 0.94
Ex5 3 3 3.75% 105.01 0.50% 8.12
Ex5 4 2 0.00% 0.02 0.40% 0.08
Ex8 4 1 98.43% 0.84 59.42% 23.03
Ex9 1 4 0.00% 0.06 97.65% 0.08
Ex9 2 1 6.25% 0.07 26.55% 4.45
Ex9 2 2 16.67% 0.04 62.14% 1.55
Ex9 2 3 0.00% 0.24 0.00% 0.30
Ex9 2 4 99.83% 0.03 33.33% 0.10
Ex9 2 6 99.76% 0.27 56.64% 0.20
Ex9 2 7 6.25% 0.05 26.55% 4.58

Table 2. Comparison of Intersection Cuts versus V2 approach of [46] in Non-Convex
Quadratic GLOBALLib Instances. Entries labelled NR were not reported in [46].

Instance V2 Intersection Cuts
Name Gap Closed Time Gap Closed Time
Ex2 1 1 72.62% 704.40 57.70% 0.02
Ex2 1 5 99.98% 0.17 99.68% 0.00
Ex2 1 6 99.95% 3397.65 88.82% 0.09
Ex2 1 8 84.70% 3632.28 3.08% 1.71
Ex2 1 9 98.79% 1587.94 32.01% 0.89
Ex3 1 1 15.94% 3600.27 0.89% 0.11
Ex3 1 2 99.99% 0.08 100.00% 0.00
Ex3 1 4 86.31% 21.26 32.61% 0.02
Ex5 2 2 case1 0.00% 0.02 0.00% 0.02
Ex5 2 2 case2 0.00% 0.05 0.00% 0.08
Ex5 2 2 case3 0.36% 0.36 18.89% 0.11

Instance V2 Intersection Cuts
Name Gap Closed Time Gap Closed Time
Ex5 2 4 79.31% 68.93 27.14% 0.20
Ex5 2 5 6.27% 3793.17 0.00% 7.59
Ex5 3 2 7.27% 245.82 0.00% 0.91
Ex5 3 3 0.21% 3693.76 0.50% 16.73
Ex5 4 2 27.57% 3614.38 0.56% 0.10
Ex9 1 4 0.00% 0.60 0.00% 0.06
Ex9 2 1 60.04% 2372.64 27.27% 0.10
Ex9 2 2 88.29% 3606.36 69.88% 8.30
Ex9 2 6 87.93% 2619.02 99.70% 1.76
Ex9 2 8 NR NR 99.68% 0.03

and we replicate the same initial relaxation used by Saxena, Bonami and Lee [46],
namely the weak RLT relaxation (wRLT)1. We also compare against the wRLT
relaxation with a PSD constraint (wRLT+SDP). On the 42 BoxQP instances
reported in [46], our cuts always perform better than both V2 and wRLT+SDP.
The latter reaches optimality in seconds, but the relaxation is not strong, as
there are missing McCormick inequalities. Intersection Cuts, with a time limit
of 600 seconds, is able to close 90.49% gap on average in these instances, while
V2 closes 65.28% and wRLT+SDP 51.87%. Even though wRLT is a relaxation
that is not used in practice, these experiments still evidence the potential of our
proposed cuts, as they close a large amount of gap in a short amount of time,
even surpassing the impact of including an explicit SDP constraint.

1 This BoxQP relaxation only adds the “diagonal” McCormick estimates Xii ≤ xi.

82 D. Bienstock et al.

8 Conclusions

We have introduced intersection cuts in the context of polynomial optimiza-
tion. Accordingly, we have developed an S-free approach for polynomial opti-
mization, where S is the set of real, symmetric outer products. Our results on
full-dimensional maximal OPF sets include a full characterization of such sets
when nr = 2 as well as extensive families of maximal OPF sets. Computa-
tional experiments have demonstrated the potential of our cuts as a fast way
to reduce optimality gaps on a variety of problems using computationally sim-
ple closed-form procedures. A full implementation is being considered for future
empirical work, incorporating the cuts into a branch-and-cut solver and devel-
oping a more sophisticated implementation, e.g. stronger initial relaxations with
problem-specific valid inequalities, warm-starting the outer-approximation with
an SDP, sparsification of the cuts, advanced cut management, improved scala-
bility, among others.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments. This research was partly supported by award ONR N00014-16-1-2889,
Conicyt Becas Chile 72130388 and The Institute for Data Valorisation (IVADO).

Appendix

Proof (Theorem 4). The OPF property is given by Lemma2, so maximality
remains. Let C be a set described by (5a) or (5b). It suffices to construct, for
every symmetric matrix X̄ �∈ C, Z := zzT such that Z − X̄ ∈ int(C). This
implies Z ∈ int(conv(C ∪ X̄)). Denote the submatrices of X̄, Z:

X̄[[i1,i2],[j1,j2]] :=
[

ā b̄
c̄ d̄

]
, Z[[i1,i2],[j1,j2]] :=

[
aZ bZ

cZ dZ

]
.

Furthermore, for convenience let us define the following:

p̄ := (ā + d̄)/2, q̄ := (ā − d̄)/2, r̄ := (b̄ + c̄)/2, s̄ := (b̄ − c̄)/2.

Construction for (5a): Suppose X̄ violates (5a). We propose the following:

aZ = q̄ + λ1‖q̄, r̄‖2, bZ = r̄ + λ2‖q̄, r̄‖2, cZ = r̄ − λ2‖q̄, r̄‖2, dZ = −q̄ + λ1‖q̄, r̄‖2
(6)

=⇒ λ1(ā + d̄)/2 + λ2(b̄ − c̄)/2 < ‖(b̄ + c̄)/2, (ā − d̄)/2‖2
= λ1(aZ + dZ)/2 + λ2(bZ − cZ)/2

where the last equality follows from λ2
1 + λ2

2 = 1. This implies

λ1((aZ − ā) + (dZ − d̄))/2 + λ2((bZ − b̄) − (cZ − c̄))/2 > 0

Intersection Cuts for Polynomial Optimization 83

and since ‖((bZ − b̄) + (cZ − c̄))/2, ((aZ − ā) − (dZ − d̄))/2‖2 = 0, we conclude
Z − X̄ ∈ int(C).

Construction for (5b): If X̄ violates (5b), we use the following construction:

aZ = p̄ + λ2‖p̄, s̄‖2, bZ = s̄ + λ1‖p̄, s̄‖2, cZ = −s̄ + λ1‖p̄, s̄‖2, dZ = p̄ − λ2‖p̄, s̄‖2.
=⇒ λ1(b̄ + c̄)/2 + λ2(ā − d̄)/2 < ‖(ā + d̄)/2, (b̄ − c̄)/2‖2

= λ1(bZ + cZ)/2 + λ2(aZ − dZ)/2,

=⇒ λ1((bZ − b̄) + (cZ − c̄))/2 + λ2((aZ − ā) − (dZ − d̄))/2 > 0.

We conclude Z − X̄ ∈ int(C) as before, since ‖((aZ − ā) + (dZ − d̄))/2, ((bZ −
b̄) − (cZ − c̄))/2‖2 = 0. It remains to set the other entries of Z and to show it is
an outer product.

Claim. For each condition (i)–(viii), aZdZ = bZcZ and all diagonal elements
among aZ , bZ , cZ , dZ are nonnegative.

Proof: First consider conditions (i)–(iv). By construction of (6):

aZdZ = −q̄2 + λ2
1‖q̄, r̄‖22 = r̄2 − λ2

2‖q̄, r̄‖22 = bZcZ .

The second equality is derived from the following identity:

‖q̄, r̄‖22 = q̄2 + r̄2 ⇐⇒ −q̄2 + λ2
1‖q̄, r̄‖22 = r̄2 − λ2

2‖q̄, r̄‖22.
Nonnegativity of diagonal elements follows from ‖q̄, r̄‖2 ≥ max{|q̄|, |r̄|}. In case
(i) only aZ or dZ can be diagonal elements, and they are both nonnegative. The
other cases can be directly verified. Similarly, for conditions (v)–(viii):

aZdZ = p̄2 − λ2
2‖p̄, s̄‖22 = −s̄2 + λ2

1‖p̄, s̄‖22 = bZcZ .

The second equality is derived from the following identity:

‖p̄, s̄‖22 = p̄2 + s̄2 ⇐⇒ −s̄2 + λ2
1‖p̄, s̄‖22 = p̄2 − λ2

2‖p̄, s̄‖22.
Nonnegativity of diagonal elements follows from the same argument as before,

by using the fact that ‖p̄, s̄‖2 ≥ max{|p̄|, |s̄|}. �
To maintain symmetry we set Zi1,j1 = Zj1,i1 , Zi1,j2 = Zj2,i1 , Zi2,j1 = Zj1,i2 ,

Zi2,j2 = Zj2,i2 . Now denote � = [i1, i2, j1, j2]. If aZ = bZ = cZ = dZ = 0, then
we simply set all other entries of Z equal to zero and so Z is the outer-product
of the vector of zeroes. Otherwise, consider the following cases.

Case 1: � has 4 unique entries. Suppose w.l.o.g we have an upper-triangular
entry (i1 < i2 < j1 < j2) and furthermore suppose that bZ is nonzero. Then set

Z� :=

⎡

⎢⎢⎣

1 dZ/bZ aZ bZ

dZ/bZ d2Z/b2Z cZ dZ

aZ cZ a2
Z aZbZ

bZ dZ aZbZ b2Z

⎤

⎥⎥⎦

84 D. Bienstock et al.

and set all remaining entries of Z to zero. Other orderings of indices or the use
of a different nonzero entry is handled by relabeling/rearranging column/row
order.

Case 2: � has three unique entries. Then, exactly one of aZ , bZ , cZ , dZ is a diag-
onal entry, and so cases (i)–(iii), (v)–(vii) apply. If in any of these cases aZ or
dZ is on the diagonal, by construction |bZ | = |cZ |. As aZdZ = bZcZ , we have
bZ = cZ = 0 iff exactly one of aZ or dZ is zero. Likewise, if bZ or cZ is a diagonal
element, then |aZ | = |dZ | and so aZ = dZ = 0 iff exactly one of bZ or cZ are
zero.

Suppose aZ is a nonzero diagonal entry. We propose:

Z�′ =

⎡

⎣
aZ bZ cZ

bZ b2Z/aZ dZ

cZ dZ c2Z/aZ

⎤

⎦

where �′ are the unique entries of �. If aZ = 0 and on the diagonal, then we
replace b2Z/aZ and c2Z/aZ with |dZ |. If bZ , cZ or dZ is on the diagonal, we use
the same construction but with relabeling/rearranging column/row order.

Case 3: � has two unique entries. All remaining entries of Z are set to zero.

For all cases, our construction ensures that all diagonal entries of Z are
nonnegative, and all 2 × 2 minors are zero; by Proposition 1, Z is an outer-
product. ��

References

1. Andersen, K., Louveaux, Q., Weismantel, R.: An analysis of mixed integer linear
sets based on lattice point free convex sets. Math. Oper. Res. 35(1), 233–256 (2010)

2. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities from two
rows of a simplex tableau. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007.
LNCS, vol. 4513, pp. 1–15. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72792-7 1

3. Anstreicher, K.M.: Semidefinite programming versus the reformulation lineariza-
tion technique for nonconvex quadratically constrained quadratic programming. J.
Glob. Optim. 43, 471–484 (2009)

4. Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Math. Program.
122, 1–20 (2010)

5. Averkov, G.: On finite generation and infinite convergence of generalized closures
from the theory of cutting planes. arXiv preprint arXiv:1106.1526 (2011)

6. Balas, E.: Intersection cuts—a new type of cutting planes for integer programming.
Oper. Res. 19(1), 19–39 (1971)

7. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Multiterm polyhedral relaxations for
nonconvex, quadratically constrained quadratic programs. Optim. Methods Softw.
24(4–5), 485–504 (2009)

8. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex
sets in linear subspaces. Math. Oper. Res. 35(3), 704–720 (2010)

https://doi.org/10.1007/978-3-540-72792-7_1
https://doi.org/10.1007/978-3-540-72792-7_1
http://arxiv.org/abs/1106.1526

Intersection Cuts for Polynomial Optimization 85

9. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Minimal inequalities for an
infinite relaxation of integer programs. SIAM J. Discrete Math. 24(1), 158–168
(2010)

10. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: On families of quadratic
surfaces having fixed intersections with two hyperplanes. Discrete Appl. Math.
161(16–17), 2778–2793 (2013)

11. Bienstock, D., Michalka, A.: Cutting-planes for optimization of convex functions
over nonconvex sets. SIAM J. Optim. 24, 643–677 (2014)

12. Bienstock, D., Chen, C., Muñoz, G.: Outer-product-free sets for polynomial opti-
mization and oracle-based cuts. arXiv preprint arXiv:1610.04604 (2016)

13. Bonami, P., Günlük, O., Linderoth, J.: Globally solving nonconvex quadratic pro-
gramming problems with box constraints via integer programming methods. Math.
Program. Comput. 10(3), 333–382 (2018)

14. Borozan, V., Cornuéjols, G.: Minimal valid inequalities for integer constraints.
Math. Oper. Res. 34(3), 538–546 (2009)

15. Burer, S.: Optimizing a polyhedral-semidefinite relaxation of completely positive
programs. Math. Program. Comput. 2(1), 1–19 (2010)

16. Chen, C., Atamtürk, A., Oren, S.S.: A spatial branch-and-cut method for non-
convex QCQP with bounded complex variables. Math. Program. 165(2), 549–577
(2017)

17. Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.: Cut-
generating functions and S-free sets. Math. Oper. Res. 40(2), 276–391 (2014)

18. Cornuéjols, G., Wolsey, L., Yıldız, S.: Sufficiency of cut-generating functions. Math.
Program. 152, 1–9 (2013)

19. Dax, A.: Low-rank positive approximants of symmetric matrices. Adv. Linear Alge-
bra Matrix Theory 4(3), 172–185 (2014)

20. Dey, S.S., Wolsey, L.A.: Lifting integer variables in minimal inequalities corre-
sponding to lattice-free triangles. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.)
IPCO 2008. LNCS, vol. 5035, pp. 463–475. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-68891-4 32

21. Dey, S.S., Wolsey, L.A.: Constrained infinite group relaxations of MIPs. SIAM J.
Optim. 20(6), 2890–2912 (2010)

22. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank.
Psychometrika 1(3), 211–218 (1936)

23. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: A new general-purpose algorithm
for mixed-integer bilevel linear programs. Oper. Res. 65(6), 1615–1637 (2017)

24. Floudas, C.A., et al.: Handbook of Test Problems in Local and Global Optimization,
vol. 33. Springer, Boston (2013). https://doi.org/10.1007/978-1-4757-3040-1

25. Freund, R.M., Orlin, J.B.: On the complexity of four polyhedral set containment
problems. Math. Program. 33(2), 139–145 (1985)

26. Ghaddar, B., Vera, J.C., Anjos, M.F.: A dynamic inequality generation scheme for
polynomial programming. Math. Program. 156(1–2), 21–57 (2016)

27. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner poly-
hedra. Math. Program. 3(1), 23–85 (1972)

28. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org
29. Hillestad, R.J., Jacobsen, S.E.: Reverse convex programming. Appl. Math. Optim.

6(1), 63–78 (1980)
30. Kılınç-Karzan, F.: On minimal valid inequalities for mixed integer conic programs.

Math. Oper. Res. 41(2), 477–510 (2015)

http://arxiv.org/abs/1610.04604
https://doi.org/10.1007/978-3-540-68891-4_32
https://doi.org/10.1007/978-3-540-68891-4_32
https://doi.org/10.1007/978-1-4757-3040-1
http://eigen.tuxfamily.org

86 D. Bienstock et al.

31. Kocuk, B., Dey, S.S., Sun, X.A.: Matrix minor reformulation and SOCP-based
spatial branch-and-cut method for the AC optimal power flow problem. Math.
Program. Comput. 10(4), 557–596 (2018)

32. Krishnan, K., Mitchell, J.E.: A unifying framework for several cutting plane meth-
ods for semidefinite programming. Optim. Methods Softw. 21, 57–74 (2006)

33. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11, 796–817 (2001)

34. Laurent, M.: Sums of squares, moment matrices and optimization over polyno-
mials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic
Geometry, pp. 157–270. Springer, New York (2009). https://doi.org/10.1007/978-
0-387-09686-5 7

35. Locatelli, M., Schoen, F.: On convex envelopes for bivariate functions over poly-
topes. Math. Program. 144, 1–27 (2013)

36. Lovász, L.: Geometry of numbers and integer programming. In: Mathematical Pro-
gramming: Recent Developments and Applications, pp. 177–210 (1989)

37. Luedtke, J., Namazifar, M., Linderoth, J.: Some results on the strength of relax-
ations of multilinear functions. Math. Program. 136(2), 325–351 (2012)

38. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: part I - convex underestimating problems. Math. Program. 10(1), 147–175
(1976)

39. Meeraus, A.: GLOBALLib. http://www.gamsworld.org/global/globallib.htm
40. Mirsky, L.: Symmetric gauge functions and unitarily invariant norms. Q. J. Math.

11(1), 50–59 (1960)
41. Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-

constrained quadratic programs (MIQCQP) through piecewise-linear and edge-
concave relaxations. Math. Program. 136(1), 155–182 (2012)

42. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer
programming: convexification techniques for structured sets. Math. Program. 155,
1–37 (2015)

43. MOSEK ApS: The MOSEK Fusion API for C++ 8.1.0.63 (2018). https://docs.
mosek.com/8.1/cxxfusion/index.html

44. Qualizza, A., Belotti, P., Margot, F.: Linear programming relaxations of quadrat-
ically constrained quadratic programs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer
Nonlinear Programming, pp. 407–426. Springer, New York (2012). https://doi.org/
10.1007/978-1-4614-1927-3 14

45. Rikun, A.D.: A convex envelope formula for multilinear functions. J. Glob. Optim.
10(4), 425–437 (1997)

46. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer
quadratically constrained programs: extended formulations. Math. Program. 124,
383–411 (2010)

47. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer
quadratically constrained programs: projected formulations. Math. Program. 130,
359–413 (2011)

48. Sen, S., Sherali, H.D.: Nondifferentiable reverse convex programs and facetial con-
vexity cuts via a disjunctive characterization. Math. Program. 37(2), 169–183
(1987)

49. Sherali, H.D., Fraticelli, B.M.P.: Enhancing RLT relaxations via a new class of
semidefinite cuts. J. Glob. Optim. 22, 233–261 (2002)

50. Shor, N.Z.: Quadratic optimization problems. Sov. J. Circ. Syst. Sci. 25, 6 (1987)
51. Tardella, F.: Existence and sum decomposition of vertex polyhedral convex

envelopes. Optim. Lett. 2, 363–375 (2008)

https://doi.org/10.1007/978-0-387-09686-5_7
https://doi.org/10.1007/978-0-387-09686-5_7
http://www.gamsworld.org/global/globallib.htm
https://docs.mosek.com/8.1/cxxfusion/index.html
https://docs.mosek.com/8.1/cxxfusion/index.html
https://doi.org/10.1007/978-1-4614-1927-3_14
https://doi.org/10.1007/978-1-4614-1927-3_14

Intersection Cuts for Polynomial Optimization 87

52. Tawarmalani, M., Richard, J.P.P., Xiong, C.: Explicit convex and concave
envelopes through polyhedral subdivisions. Math. Program. 138, 1–47 (2013)

53. Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of lower semi-
continuous functions. Math. Program. 93, 247–263 (2002)

54. Tuy, H.: Concave programming under linear constraints. Sov. Math. 5, 1437–1440
(1964)

55. Vandenbussche, D., Nemhauser, G.: A branch-and-cut algorithm for nonconvex
quadratic programs with box constraints. Math. Program. 102(3), 559–575 (2005)

Fixed-Order Scheduling on Parallel
Machines

Thomas Bosman1(B), Dario Frascaria1, Neil Olver1,2, René Sitters1,2,
and Leen Stougie1,2

1 Department of Econometrics and Operations Research,
Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

thomas.bosman@vu.nl
2 CWI, Amsterdam, The Netherlands

Abstract. We consider the following natural scheduling problem: Given
a sequence of jobs with weights and processing times, one needs to assign
each job to one of m identical machines in order to minimize the sum
of weighted completion times. The twist is that for machine the jobs
assigned to it must obey the order of the input sequence, as is the case
in multi-server queuing systems. We establish a constant factor approxi-
mation algorithm for this (strongly NP-hard) problem. Our approach is
necessarily very different from what has been used for similar scheduling
problems without the fixed-order assumption. We also give a QPTAS for
the special case of unit processing times.

1 Introduction

We consider an extremely simple, yet challenging, scheduling principle that arises
in many logistic and service applications. Given a sequence of jobs and a set of
machines, we need to dispatch the jobs one by one over the machines, where
for each machine the ordering of the original sequence is preserved. Hence, each
machine must handle the jobs in a first-in first-out (FIFO) order. Each job has a
processing time pj and weight wj and the goal is to minimize the weighted sum
of completion times, where the completion time of a job j is the total processing
time of the jobs preceding j (including j) on the same machine.

The FIFO-ordering restriction is common in queuing theory, where the task
assignment problem [5,8,9] is concerned with the same question, except that
jobs arrive stochastically over time. Our problem can be seen as asking for the
optimal way of dispatching jobs from a single queue over m server queues under
complete information of the processing times, essentially unzipping a single queue
into m queues. The reverse problem of zipping m queues into a single queue, is
the classic single machine scheduling problem: 1|chains|∑ wjCj (in the 3-field

This work was partially supported by the Netherlands Organisation for Scientific
Research (NWO) through a VIDI grant (016.Vidi.189.087) and the Gravitation
Programme Networks (024.002.003).

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 88–100, 2019.
https://doi.org/10.1007/978-3-030-17953-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_7

Fixed-Order Scheduling on Parallel Machines 89

notation by Graham et al. [7]) and can be solved efficiently by greedily selecting
a prefix of jobs with largest ratio of total weight over total processing time [12].

In the scheduling literature, the fixed-ordering scheduling problem can be
seen as a special case of scheduling problems with sequence dependent setup times,
where for each pair of jobs there is a changeover cost cij that is paid if job j is the
immediate successor of job i on a machine. Such setup times occur naturally in
many industrial applications [1]. Our problem is precisely this, in the special case
where cij = ∞ if i is later than j in the ordering, and cij = 0 otherwise. While
the problem has received substantial attention (see [1–3] for a comprehensive
literature review), almost nothing is known from a theoretical perspective (an
exception is [10], but this is concerned with a rather unusual objective function).
We believe our work may shed light on this more general problem.

We remark that the online version of the problem, where we need to assign a
job before we get to know the next job in the sequence, does not admit a constant-
competitive algorithm. Consider, for example, two machines and a sequence of
three jobs (where job 1 should be completed first and job 3 last on any machine)
with p1 = k2, p2 = k, p3 = 1 and w1 = 1, w2 = k and w3 is either zero or k3,
depending on the schedule of the first two jobs. Here, k is an arbitrarily large
number. It is easy to see that a good schedule requires knowledge of the weight
of job 3 before deciding whether to put jobs 1 and 2 on the same machine.

Our Contribution. Scheduling problems with weighted completion times objec-
tive without ordering constraints typically admit good approximations algo-
rithms. For identical machines there is a PTAS [19], while a slightly better
than 3

2 -approximation [4] for unrelated machines is known. But even simpler
approaches yield a constant factor approximation. On identical machines, it
is a classic result due to Kawaguchi and Kyan [11] (see [17] for a modern
proof) that scheduling greedily according to Smith ratio (see Sect. 2) is a 1+

√
2

2 -
approximation. For unrelated machines, independent rounding of both a natural
time-indexed LP [16] and a (nontrivial) convex quadratic program [18] works,
and achieve approximation ratios of 3

2 + ε and 3
2 respectively. Another approach

is α-point scheduling [15], where jobs are sorted according to the time by which
an α fraction of the job has been processed in some LP relaxation. The jobs are
then scheduled greedily in that order. This method has enabled many algorith-
mic improvements in scheduling, since it can be modified to deal with additional
complications, such as precedence constraints and release times [13].

Fixed-order scheduling appears highly resistant to all these techniques. A big
obstacle is that moving even a single pair of jobs onto the same machine can
have a catastrophic effect on the objective function if the order is fixed: think of
a job with large processing time but minuscule weight, followed by a job with
large weight and minuscule processing time. Thus in order to have any hope
of a non-trivial performance guarantee, jobs must be assigned to machines in
a highly dependent way. To achieve this, our approach radically departs from
earlier ones.

We define an important partial order ≺: essentially, j ≺ k means that not
only is j earlier than k in the FIFO ordering, but also this ordering is opposite

90 T. Bosman et al.

to what would be preferred according to Smith’s rule. Thus as alluded to earlier,
if j ≺ k we should be particularly careful about assigning j and k to the same
machine. Order the machines arbitrarily. A key idea is that at only a constant
factor loss, we can restrict our attention to a class of schedules we call Smith-
monotone, meaning that if j ≺ k, then j is assigned to an earlier machine
(or the same machine) as the one that k is assigned to. Next, we relax the
problem by computing each job’s completion times partially, based only on jobs
preceding it in the partial order ≺. While this potentially distorts completion
times a lot, we can ensure the amortized effect is not too large by appropriately
rounding weights and processing times. Finally, we formulate a new LP using
these partial completion times and enforcing the strong structure imposed by
Smith monotonicity. This LP can be rounded in a way that completely respects
the pairwise probabilities of jobs being assigned to the same machine; Smith
monotonicity is crucial here. The rounding is very appealing and natural, and
can be seen an analog of α-point scheduling with respect to machine index rather
than time.

Finally, we remark that for the case of unit processing times, the complexity
of the problem is unknown, but it is unlikely to be APX-hard: we present a
QPTAS in Sect. A of the appendix.

2 Problem Definition, Notation and NP-Hardness

We have a set of identical machines M = {1, . . . , m}, each of which can process
one job at a time, and a totally ordered set of jobs J = 1, ..., n, where each job
j ∈ J has weight wj ∈ N and processing time pj ∈ N. Because of its frequent
use we also define notation for the so called Smith ratio sj := wj

pj
of job j.

A feasible schedule μ : J → M assigns to every job j a machine μ(j). Each
machine processes the jobs assigned to it in order of their number. The cost of
the schedule μ is the sum of weighted completion times, i.e.,

Γ (μ) =
∑

k∈J

∑

j∈J:j≤k,
μ(j)=μ(k)

pj · wk. (1)

The objective is to minimize the cost of the schedule. We denote by opt the
optimal cost, by σμ : J → N the function that maps every job to its completion
time under μ and by ≺ a partial order on J such that j ≺ k if and only if j < k
and sj ≤ sk.

Note that we explicitly disallow pj = 0. This is for convenience, and ensures
that the Smith ratio wj/pj is always well defined. Our results easily extend to
the case where jobs with zero processing time are allowed.

The problem of minimizing the sum of weighted completion times with-
out ordering constraints is a classic problem that has long been known to be
strongly NP-hard [6]. This result extends to fixed-order scheduling as well: given
an assignment of jobs to a machine, it is always optimal to schedule them in
decreasing order of Smith ratio, so the ordering constraints become redundant
if s1 ≥ s2 ≥ · · · ≥ sn.

Fixed-Order Scheduling on Parallel Machines 91

3 Structural Properties of Optimal Solutions

In this section we will provide a characterization of an optimal solution which
will help us construct a constant-factor approximation algorithm in Sect. 4.

Unit Processing Times
Suppose all jobs have equal processing time and hence that the relation j ≺ k
indicates that j < k and wj ≤ wk. W.l.o.g. we may then as well assume that
the processing times are 1. An initial simplification is that we will assume that
schedules are staircase shaped, in the sense that for every prefix of the jobs
1, . . . , k, the number of jobs assigned to each machine decreases monotonically
with the machine index. We will use the following equivalent definition.

Definition 1. A schedule μ is staircase shaped if for each job k, μ(k) = |{j <
k : σμ(j) = σμ(k)}| + 1.

Given any schedule μ, we can clearly turn it into a staircase shaped schedule
without changing the completion time of any job.

Clearly we want jobs with high weights to be completed early, but this may
not always be possible because of the ordering on the jobs. Intuitively, it seems
like a good idea to ‘reserve’ some of the good spots early in the schedule, for
higher weight jobs later in the sequence. In staircase shaped schedules this means
that early and low weight jobs should be put on low index machines as much as
possible. Lemma 1 below makes this more precise.

Definition 2. A schedule μ is Smith-monotone if, for every j ≺ k, it holds
that μ(j) ≤ μ(k).

Lemma 1. For unit processing times, there exists an optimal schedule that is
Smith-monotone and staircase shaped.

Proof. Let us define the potential function
∑

j∈J μ(j)j. Let μ be a solution
maximizing this potential function among those that are optimal and staircase
shaped. Suppose μ is not Smith-monotone. We obtain a contradiction by showing
there is a staircase shaped schedule with a higher potential but no higher cost.

Since μ is not Smith-monotone, there exists a pair j ≺ k that violates Smith
monotonicity. Pick j, k so that there is no other violating pair j′ ≺ k′ between
it, i.e with j ≤ j′ and k′ ≤ k and at least one of the inequalities strict. We call
such a pair tight. For g = j, k, let Sg = {h ∈ {j + 1, . . . , k − 1} : μ(h) = μ(g)}
be the set of jobs between j and k on the machine of job g. It follows that
h ∈ Sk =⇒ wh ≤ wj and that h ∈ Sj =⇒ wh ≥ wk as, otherwise, the pair
j ≺ k would not be tight. (In fact, < holds.) By assigning j to the machine of
k and vice-versa we get a schedule μ′ that improves our potential function. We
first show is that the new schedule μ′ does not incur a higher cost than μ.

Since only the starting times (whence completion times) of j, k and jobs in
Sj and Sk may change, all others remaining equal, it follows that

∑

h∈{j}∪Sk

σμ′(h) +
∑

h∈{k}∪Sj

σμ′(h) =
∑

h∈{j}∪Sk

σμ(h) +
∑

h∈{k}∪Sj

σμ(h),

92 T. Bosman et al.

hence ∑

h∈{j}∪Sk

(σμ′(h) − σμ(h)) =
∑

h∈{k}∪Sj

(σμ(h) − σμ′(h)). (2)

Now note that the completion times of jobs j and Sk increase, while those of k
and Sj decrease, since the schedule was staircase shaped. Combining this with
the fact that wh ≤ wj for h ∈ Sk and wh ≥ wk for h ∈ Sj , we can bound the
increase in the cost as follows:

∑

h∈{j,k}∪Sj∪Sk

wh(σμ′(h) − σμ(h)) =

∑

h∈{j}∪Sk

wh(σμ′(h) − σμ(h)) −
∑

h∈{k}∪Sj

wh(σμ(h) − σμ′(h)) ≤

wj

∑

h∈{j}∪Sk

(σμ′(h) − σμ(h)) − wk

∑

h∈{k}∪Sj

(σμ(h) − σμ′(h)) ≤ 0 by (2).

So the new schedule has a higher potential function and no higher cost. The
schedule may not be staircase shaped, however. But simply sorting the jobs
fixes this without undoing our work. To see this, note that the set of timeslots
occupied on each machine did not change when we modified the schedule. So the
fact that the old schedule was staircase shaped, implies that the new schedule
still has the following weaker property: if exactly k jobs are scheduled at time t,
they are scheduled on the first k machines. By sorting all the jobs assigned to
one timeslot by number and assigning them to the first available machine in that
order, the potential function can only increase further, while completion times
stay the same. Hence, we have found an optimal staircase shaped schedule with
higher potential function than we started with, contradicting our choice of the
original schedule and concluding the proof.

General Processing Times
Unfortunately, for general processing times we cannot hope for an equally nice
structural result. Indeed, there may not be an optimal schedule that is Smith-
monotone. However, as we will now show, we may impose this structure with
the loss of only a constant factor in the objective.

The proof works by reducing a general instance to one with unit processing
times, finding an optimal Smith-monotone schedule, and then rounding it back.
Although this reduction is not polynomial time, it will suffice to prove the bound
on the optimality ratio. Instead, in the next section we will find that we can
bypass the reduction, and approximate such a schedule directly.

Given an instance I to the general problem, let Iunit be the instance with
unit processing times obtained from I by replacing every job j ∈ J with a set
U(j) = {j1, . . . , jpj } of pj consecutive jobs, each having unit processing time and
weight wj/pj . Let Junit be the set of jobs of Iunit and optunit be the optimal
cost for Iunit.

Fixed-Order Scheduling on Parallel Machines 93

Lemma 2. optunit ≤ opt − ∑
j∈J

1
2 (pj − 1)wj

Proof. The statement follows for the schedule μunit obtained from the optimal
schedule for I by putting all the jobs in U(j) on the machine μ(j), for all j ∈ J .
The completion times of the jobs in U(j) run from σ(j) − pj + 1 to σ(j), and
hence the average completion time is σ(j) − 1

2 (pj − 1). The proof follows from
multiplying by the total weight of the jobs in U(j).

Lemma 3. An optimal Smith-monotone schedule for I has cost at most
optunit +

∑
j∈J(pj − 1)wj.

Proof. Given an optimal schedule μunit for Iunit, we can create a schedule for I by
putting job j on machine i with probability |{h ∈ U(j) : μunit(h) = i}|/|U(j)|,
for all j ∈ J . The expected time spent processing job j ∈ J on machine i is
exactly |{h ∈ U(j) : μunit(h) = i}|. As a consequence, the expected starting
time of a job j ∈ J is at most the average starting time of the jobs in U(j), and
thus the expected completion time is at most the expected completion time of
jobs in U(j) plus pj − 1 (which is the difference between the processing time of
job j and any job in U(j)).

What remains to show is that μ is Smith-monotone. By Lemma 1 we can
assume, w.l.o.g., that the optimal solution of Iunit satisfies Smith monotonicity.
Consider an arbitrary pair j ≺ k. We have that j′ ≺ k′ for all jobs j′ ∈ U(j), k′ ∈
U(k). This implies that, if any job in U(j) is scheduled on machine i, all jobs in
U(k) are scheduled on machines with index not smaller than i. Hence it holds
that the machine with highest index to which j may be assigned cannot have
index larger than any machine to which k may be assigned. Therefore, for every
possible realization of the random schedule, Smith monotonicity is satisfied,
completing the proof.

Lemma 4. An optimal Smith-monotone schedule has cost at most 3
2opt.

Proof. By Lemma 3, we have that an optimal Smith-monotone schedule has cost
at most optunit +

∑
j∈J(pj − 1)wj , which in turn, by Lemma2, is at most

opt + 1
2

∑
j∈J(pj − 1)wj ≤ 3

2opt.

Though the bound in Lemma4 is unlikely to be tight, it cannot be improved
much further. The Kawaguchi-Kyan bound of 1+

√
2

2 ≈ 1.207 is known to be
tight [11,17], and this lower bound carries over to fixed-order scheduling: the
worst-case example uses jobs with equal Smith ratios, and in that case reordering
the jobs assigned to a machine does not change the cost.

4 A Constant Factor Approximation Algorithm

In this section we will describe an algorithm that proves our main result: Theo-
rem 1. Our approach is as follows: first we round the instance such that all Smith
ratios are powers of 1

3 (by rounding up the weights as appropriate). Given that, we
show that a certain relaxed objective function is always within a constant of the
original objective function. We then use LP rounding to find a Smith-monotone
schedule that is optimal with respect to the relaxed objective function.

94 T. Bosman et al.

Theorem 1. Fixed-order scheduling can be approximated to within a factor 27
2 +

9
√

3 < 29.1 .

From hereon assume that all Smith ratios are powers of some fixed γ ∈ (0, 1).
Suppose we relax the objective function (1) to disregard the contribution of
processing times of jobs with j < k and wj > wk (hence, j �≺ k) in the completion
time of job k. We claim this relaxation loses only a factor (4

1−√
γ − 3).

Definition 3. The partial completion time of a job k ∈ J under a schedule
μ is

c̃k =
∑

j�k:μ(j)=μ(k)

pj .

The partial cost of a schedule μ is Γ̃ (μ) =
∑

k∈J wk c̃k.

It is crucial that the Smith ratios are powers of γ; this ensures that either j � k or
wj is relatively large compared to wk. Intuitively, in the latter case we don’t care
too much about the effect of j’s processing time on the lighter-weight job k.

Theorem 2. Take an instance where all Smith ratios are positive powers of
γ ∈ (0, 1). Consider any schedule μ and denote its cost by Γ (μ). It holds that

Γ̃ (μ) ≤ Γ (μ) ≤
(

4
1 − √

γ
− 3

)

· Γ̃ (μ).

Since it is obvious that Γ̃ (μ) ≤ Γ (μ) we prove the upper bound.
To simplify notation assume the instance has only one machine; the result

can be applied to each machine individually. For d ∈ N, let Nd be the set of
jobs j with sj = γd; let Wd and Pd be, respectively, the total weight and total
processing time of jobs in Nd. We denote by Hd = 1

Wd

∑
k∈Nd

wk c̃k the weighted
average of the partial cost in Nd. It follows that

Γ̃ (μ) =
∑

k∈J

wk c̃k =
∑

d∈N

WdHd =
∑

d∈N

γdPdHd. (3)

Our goal is to bound Γ (μ) in the same terms. Since Hd only accounts for
the contribution of jobs with Smith ratio at most γd in the completion time of
jobs in Nd, we need to correct for the other jobs (that are in N1, . . . , Nd−1). In
the worst case, all these jobs are scheduled first and hence their processing times
need to be added. Therefore we get:

Γ (μ) ≤
∑

d∈N

Wd(Hd +
d−1∑

i=1

Pi) ≤
∑

d∈N

γdPd(Hd +
d−1∑

i=1

Pi). (4)

We will prove that this value can be bounded by the desired constant times Γ̃ (μ).
Globally our strategy is to show that every newly introduced term γdPdPi can
be charged to a term in the expression for Γ̃ (μ) such that no term gets charged
more than a 4

1−√
γ − 4 fraction of its value.

Fixed-Order Scheduling on Parallel Machines 95

Before we can proceed we will need the inequality in Lemma 5 below. It
says that the average weighted completion time in Nd is at least half the total
processing time in Nd, which can intuitively be seen as follows: think of all jobs
j ∈ Nd as blocks of equal width, length pj and mass wj . So, all blocks have
equal density. Now stack the boxes on top of each other: then Pd corresponds
to the total length, and Hd approximately to the center of mass, which is in the
middle.

Lemma 5. Pd ≤ 2Hd.

Proof.

Hd =
1

Wd

∑

k∈Nd

wk

∑

j≤k∧sj≤sk

pj ≥ 1
Wd

∑

k∈Nd

wk

∑

j≤k∧j∈Nd

pj

︸ ︷︷ ︸
:=Q

Suppose now that Q < Pd

2 . Since Wd = γdPd, it follows that:

Q =
1
Pd

∑

k∈Nd

pk(Pd −
∑

h>k∧h∈Nd

ph) = Pd − 1
Pd

∑

h∈Nd

ph

∑

k<h∧k∈Nd

pk ≥ Pd − Q,

implying that Q ≥ Pd/2, a contradiction. �
Lemma 6. max{γdPdHd, γ

iPiHi} ≥ 1
2 (γdPdPi)γ

1
2 (i−d).

Proof. Suppose that γdPdHd < 1
2γdPdPiγ

1
2 (i−d). This implies that

Hd <
1
2
Piγ

1
2 (i−d). (5)

So we obtain

γdPdPiγ
1
2 (i−d) ≤ γd2HdPiγ

1
2 (i−d)

(5)
< γd−iγiPiγ

1
2 (i−d)Piγ

1
2 (i−d) ≤ 2γiHiPi,

where the first and third inequalities follow from Lemma5. �
We are now ready to prove Theorem 2.

Proof (Theorem 2). We will prove the following inequality, implying the theorem
by (4):

∑

d∈N

γdPdHd

(4
1 − √

γ
− 4

) ≥
∑

d∈N

γdPd

d−1∑

i=1

Pi.

Applying Lemma 6 and replacing the max by a sum we get:

∑

d∈N

γdPd

d−1∑

i=1

Pi ≤
∑

d∈N

d−1∑

i=1

γ
1
2 (d−i)2max(γdPdHd, γ

iPiHi)

≤
∑

d∈N

d−1∑

i=1

γ
1
2 (d−i)2(γdPdHd + γiPiHi)

≤
∑

d∈N

∞∑

i=1

γ
1
2 i4(γdPdHd) =

∑

d∈N

γdPdHd(
4

1 − √
γ

− 4). �

96 T. Bosman et al.

Linear Programming Relaxation
Suppose all Smith ratios are positive powers of γ ∈ (0, 1). The following mixed-
integer program captures the problem of finding a Smith-monotone ordering that
minimizes the modified objective Γ̃ (μ).

min
∑

k∈J

wk c̃k

s.t. uk ≥ uj + zjk ∀j ≺ k (6)
uk ≤ m ∀k ∈ J (7)

c̃k ≥ pk +
∑

j≺k

(1 − zjk)pj ∀k ∈ J (8)

uk ∈ N, zjk ∈ {0, 1} ∀k ∈ J, j ≺ k

Here, zjk is the indicator variable for the event that j and k are assigned to
different machines. The variable uk indicates which machine job k is assigned
to. Finally, c̃k represents the partial completion time of job k. The constraint
(6) is valid since we require a Smith-monotone ordering.

Now consider the natural LP relaxation of this mixed-integer program, where
we drop the integrality requirements and instead require 1 ≤ uk ≤ m, 0 ≤ zjk ≤ 1.
Denote this relaxation by (LP). Let (z∗, u∗, c̃∗) be an optimal solution to (LP),
with cost optlp.

Definition 4. For β ∈ (0, 1), the β-point schedule associated to u∗ is the
schedule obtained by assigning job j to machine �u∗

j − β�.
From now on, β will be chosen uniformly at random from (0, 1), making the
β-point schedule a random schedule.

Let Nd be the set of jobs with Smith ratios γd and let C̃k be the (random)
partial completion time of job k under the β-point schedule. The following state-
ments are easy to verify.

Proposition 1. For any pair of jobs j ≺ k, the probability that jobs j and k are
assigned to the same machine under the β-point schedule is at most 1 − z∗

jk.

Proof. This follows immediately from the constraint (6). �
Proposition 2. For any k ∈ J , E[C̃k] ≤ c̃∗

k. Hence

E

[∑

k∈J

wkC̃k

]
≤

∑

k∈J

wk c̃∗
k = optlp.

Proof. This follows from Proposition 1 and (8). �
Note that a β-point schedule can be derandomized in polynomial time: a

job j is always assigned to u∗
j when u∗

j is integral and to either �u∗
j� or �u∗

j�
otherwise. Let bj be the maximum value of β for which �u∗

j − β� = �u∗
j�. It

follows that all possible schedules are the ones obtained by assigning to β the
values in {bj |j ∈ J} ∪ {1}.

Fixed-Order Scheduling on Parallel Machines 97

Constant Factor Approximation
We are now ready to complete the main proof of this section.

Proof (Theorem 1). Given an instance I where the jobs have arbitrary Smith
ratios, let Iγ be the instance obtained from I by rounding up the weights such
that the Smith ratios are powers of γ, where γ will be defined later, and then
scaled to be in (0, 1). Let optI and optIγ be the optimal cost for the instances
I and Iγ respectively. Clearly the cost of any schedule μ on Iγ is at most γ−1

times the cost of μ on I and optI ≤ optIγ since the cost of a schedule is linear
in the weights (see (1)) and weights do not affect feasibility.

We denote by μ and optlp, respectively, the β-point schedule and the optimal
cost of (LP) on Iγ . By Lemma 4, Proposition 2 and Theorem 2, the cost of μ on
I is at most

3

2

(
4

1 − √
γ

− 3

)
· optlp ≤ 3

2

(
4

1 − √
γ

− 3

)
· optIγ ≤ 3

2

(
4

1 − √
γ

− 3

)
· optIγ

−1.

Minimizing over γ, this yields an approximation ratio of

min
γ∈(0,1)

3
2

(
4

1 − √
γ

− 3
)

· γ−1 =
3
2
(9 + 6

√
3) =

27
2

+ 9
√

3

when γ = 1/3, concluding the proof. �

5 Epilogue

Our work suggests many further interesting and natural directions. One is to
find a PTAS (or even a polynomial time exact algorithm) for unit processing
times, perhaps expanding on the QPTAS in the appendix. Good approximation
algorithms for all of the following problems remain open questions.

(1) There are k arrival lines that need to be dispatched over m servers, such
that the FIFO ordering in each of the arrival lines is obeyed in each of the
server queues.

(2) An arbitrary partial order on the jobs is given, and we require that if two
jobs are assigned to the same machine, then the partial order is respected.
(1) is exactly this problem, where the partial order is described by k disjoint
chains.

(3) Instead of requiring that the order is exactly preserved, a natural relaxation
is to allow a reordering buffer (see, e.g. [14]) of limited size. Jobs enter the
buffer in the given FIFO order, but any job in the buffer can be chosen and
assigned to one of the machines.

A A QPTAS for unit processing times

In this section we sketch a simple quasipolynomial time approximation scheme
(QPTAS) for the problem under unit processing times. Note that we do not know

98 T. Bosman et al.

if this version of the problem remains NP-hard. However, it seems to capture
most of the difficulty, so we feel that tackling this case will help substantially in
improving the upper bound for the general case. The QPTAS works by solving
a relaxed problem by dynamic programming. We round the completion times to
geometric intervals and then we consider schedules in which at any time point
only one machine per completion time can accept jobs. This sufficiently reduces
the solution space to get a quasipolynomial time algorithm.

The first step is to consider only a logarithmic number of distinct completion
times. Let R = {�(1 + ε)i� : i ∈ N} be the set of integers found by rounding
down a geometric series growing with rate 1 + ε. Then order the elements 1 =
R1 < R2 < . . . and take R0 = 0 by convention. Assume that s is the smallest
index such that Rs ≥ n, and note that s = O(log1+ε(n)). Now consider the
objective of minimizing the weighted sum of rounded completion times, where
each completion time is rounded up to the nearest Ri. Call this the rounded
objective; clearly the rounded objective of any schedule is at most 1 + ε times
the actual objective. So, if we can find an optimal segmented schedule for the
rounded objective, we immediately get a (1 + ε)-approximation to the original
problem.

Now we define a restricted type of schedule, which we call a segmented stair-
case schedule. A segmented staircase schedule is similar to a staircase shaped
schedule, except that the “steps” are now defined in terms of the rounded com-
pletion times. When j is assigned to a machine, it is assigned to the leftmost
machine that gives it the same rounded completion time. In other words, if a
job j gets assigned to μ(j) and gets completed at time t ∈ (Ri, Ri+1], then μ(j)
is the lowest index machine for which the number of jobs k < j assigned to it
does not exceed Ri+1 − 1.

Lemma 7. There is an optimal solution to the problem of minimizing the
rounded objective that is a segmented staircase schedule.

Proof. Take μ to be a schedule for which (μ(1), μ(2), . . . , μ(n)) is lexicographi-
cally minimal amongst all solutions that are optimal for the rounded objective.
Notice that μ must be staircase shaped; otherwise, transforming it into a stair-
case shaped schedule would yield a schedule μ′ in which every job has the same
completion time, but which is lexicographically smaller than μ.

Suppose for a contradiction that this schedule is not a segmented staircase
schedule. Let j be the last (maximum index) job that violates the rule for a
segmented staircase schedule: j is assigned to machine h′, but h < h′ is the
smallest index machine that gives it the same rounded completion time, ignoring
all jobs after j. Let k be the first job k > j scheduled on machine h. (If there
is no such job, then moving j to h′ reduces the lexicographical value and does
not increase the total rounded completion time.) Note that since j was chosen
maximally, no job � with j < � < k is scheduled on machine h′. Moreover,
σμ(k) > σμ(j), since μ is staircase shaped, so it must be that j and k are both
in the same segment (Ri, Ri+1] for some i. So we can simply swap k and j to
obtain a lexicographically smaller schedule of the same rounded objective value.

Fixed-Order Scheduling on Parallel Machines 99

For segmented staircase schedules, we can compactly describe the loads on the
machines just prior to assigning job j. Let Xj

i be the number of jobs on machines
with load currently in the interval [Ri, Ri+1) just prior to assigning job j. Since
only one of the machines with load in that interval can have strictly more than
Ri jobs on it, this number also completely determines how many machines there
are with loads exactly Ri. For each j, we have nO(log1+ε n) options for the values
of Xj

1 ,X
j
2 , . . . , X

j
s . Once we know the minimum cost of a schedule attaining each

of those options, we can compute the cost of all the schedules up to job j + 1.
Hence, we get the main result of this section.

Theorem 3. For any ε > 0, there is a (1 + ε)-approximation algorithm for
fixed-order scheduling with unit processing times with running time nO(log1+ε n).

References

1. Allahverdi, A.: The third comprehensive survey on scheduling problems with setup
times/costs. Eur. J. Oper. Res. 246(2), 345–378 (2015)

2. Allahverdi, A., Gupta, J.N., Aldowaisan, T.: A review of scheduling research involv-
ing setup considerations. Omega 27(2), 219–239 (1999)

3. Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y.: A survey of scheduling problems
with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)

4. Bansal, N., Srinivasan, A., Svensson, O.: Lift-and-round to improve weighted com-
pletion time on unrelated machines. In: Proceedings of the 48th Annual ACM
Symposium on Theory of Computing, pp. 156–167 (2016)

5. Feng, H., Misra, V., Rubenstein, D.: Optimal state-free, size-aware dispatching for
heterogeneous M/G/-type systems. Perform. Eval. 62(1), 475–492 (2005)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

7. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in
deterministic sequencing and scheduling: a survey. In: Discrete Optimization II.
Annals of Discrete Mathematics, vol. 5, pp. 287–326. Elsevier (1979)

8. Harchol-Balter, M.: Performance Modeling and Design of Computer Systems:
Queueing Theory in Action, 1st edn. Cambridge University Press, New York (2013)

9. Harchol-Balter, M., Crovella, M.E., Murta, C.D.: On choosing a task assignment
policy for a distributed server system. IEEE J. Parallel Distrib. Comput. 59(2),
204–228 (1999)

10. Hiraishi, K., Levner, E., Vlach, M.: Scheduling of parallel identical machines to
maximize the weighted number of just-in-time jobs. Comput. Oper. Res. 29(7),
841–848 (2002)

11. Kawaguchi, T., Kyan, S.: Worst case bound of an LRF schedule for the mean
weighted flow-time problem. SIAM J. Comput. 15(4), 1119–1129 (1986)

12. Lawler, E.L.: Sequencing jobs to minimize total weighted completion time subject
to precedence constraints. Ann. Discrete Math. 2, 7590 (1978)

13. Queyranne, M., Schulz, A.S.: Approximation bounds for a general class of prece-
dence constrained parallel machine scheduling problems. SIAM J. Comput. 35(5),
1241–1253 (2006)

14. Räcke, H., Sohler, C., Westermann, M.: Online scheduling for sorting buffers. In:
Möhring, R., Raman, R. (eds.) Proceedings of 10th Annual European Symposium
on Algorithms, pp. 820–832 (2002)

100 T. Bosman et al.

15. Schulz, A.S., Skutella, M.: The power of α-points in preemptive single machine
scheduling. J. Sched. 5(2), 121–133 (2002)

16. Schulz, A.S., Skutella, M.: Scheduling unrelated machines by randomized rounding.
SIAM J. Discrete Math. 15(4), 450–469 (2002)

17. Schwiegelshohn, U.: An alternative proof of the Kawaguchi-Kyan bound for the
Largest-Ratio-First rule. Oper. Res. Lett. 39(4), 255–259 (2011)

18. Skutella, M.: Convex quadratic and semidefinite programming relaxations in
scheduling. J. ACM 48, 206–242 (2001)

19. Skutella, M., Woeginger, G.J.: A PTAS for minimizing the total weighted comple-
tion time on identical parallel machines. Math. Oper. Res. 25(1), 63–75 (2000)

Online Submodular Maximization:
Beating 1/2 Made Simple

Niv Buchbinder1, Moran Feldman2, Yuval Filmus3, and Mohit Garg2(B)

1 Tel Aviv University, Tel Aviv, Israel
niv.buchbinder@gmail.com

2 The Open University of Israel, Ra’anana, Israel
{moranfe,mohitga}@openu.ac.il

3 Technion, Haifa, Israel
filmus.yuval@gmail.com

Abstract. The problem of Submodular Welfare Maximization (SWM)
captures an important subclass of combinatorial auctions and has been
studied extensively from both computational and economic perspectives.
In particular, it has been studied in a natural online setting in which
items arrive one-by-one and should be allocated irrevocably upon arrival.
In this setting, it is well known that the greedy algorithm achieves a com-
petitive ratio of 1/2, and recently Kapralov et al. [22] showed that this
ratio is optimal for the problem. Surprisingly, despite this impossibility
result, Korula et al. [25] were able to show that the same algorithm is
0.5052-competitive when the items arrive in a uniformly random order,
but unfortunately, their proof is very long and involved. In this work,
we present an (arguably) much simpler analysis that provides a slightly
better guarantee of 0.5096-competitiveness for the greedy algorithm in
the random-arrival model. Moreover, this analysis applies also to a gen-
eralization of online SWM in which the sets defining a (simple) partition
matroid arrive online in a uniformly random order, and we would like
to maximize a monotone submodular function subject to this matroid.
Furthermore, for this more general problem, we prove an upper bound
of 0.576 on the competitive ratio of the greedy algorithm, ruling out the
possibility that the competitiveness of this natural algorithm matches
the optimal offline approximation ratio of 1 − 1/e.

Keywords: Submodular optimization · Online auctions ·
Greedy algorithms

1 Introduction

The Submodular Welfare Maximization problem (SWM) captures an impor-
tant subclass of combinatorial auctions and has been studied extensively from
both computational and economic perspectives. In this problem we are given a
set of m items and a set of n bidders, where each bidder has a non-negative

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 101–114, 2019.
https://doi.org/10.1007/978-3-030-17953-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_8

102 N. Buchbinder et al.

monotone submodular utility function,1 and the objective is to partition the
items among the bidders in a way that maximizes the total utility of the bid-
ders. Interestingly, SWM generalizes other extensively studied problems such as
maximum (weighted) matching and budgeted allocation (see [28] for a compre-
hensive survey).

SWM is usually studied in the value oracle model (see Sect. 2 for defini-
tion). In this model the best approximation ratio for SWM is 1 − (1 − 1/n)n ≥
(1 − 1/e) [8,16,30]. A different line of work studies SWM in a natural online set-
ting in which items arrive one-by-one and should be allocated irrevocably upon
arrival. This setting generalizes, for example, online (weighted) matching and
budgeted allocation [1,7,14,21,24,29,32]. It is well known that for this online
setting the greedy approach that allocates each item to the bidder with the cur-
rently maximal marginal gain for the item is 1/2-competitive, which is the opti-
mal deterministic competitive ratio [18,22]. While randomization is known to be
very helpful for many special cases of online SWM (e.g., matching), Kapralov
et al. [22] proved that, unfortunately, this is not the case for online SWM itself—
i.e., no (randomized) algorithm can achieve a competitive ratio better than 1/2
for this problem (unless NP = RP).

A common relaxation of the online setting is to assume that the items arrive
in a random order rather than in an adversarial one [9,19]. This model was
also studied extensively for special cases of SWM for which improved algorithms
were obtained [19,23,26]. Surprisingly, unlike in the adversarial setting, Korula
et al. [25] showed that the simple (deterministic) greedy algorithm achieves a
competitive ratio of at least 0.5052 in the random arrival model. Unfortunately,
the analysis of the greedy algorithm by Korula et al. [25] is very long and involves
many tedious calculations, making it very difficult to understand why it works
or how to improve it.

1.1 Our Results

In this paper, we study the problem of maximizing a monotone submodular
function over a (simple) partition matroid. This problem is a generalization of
SWM (see Sect. 2 for exact definitions and a standard reduction between the
problems) in which a ground set N is partitioned into disjoint non-empty sets
P1, P2, . . . , Pm. The goal is to choose a subset S ⊆ N that contains at most
one element from each set Pi and maximizes a given non-negative monotone
submodular function f .2 We are interested in the performance of the greedy
algorithm for this problem when the sets Pi are ordered uniformly at random.
A formal description of the algorithm is given as Algorithm1.

1 A set function f : 2N → R is monotone if f(S) ≤ f(T) for every two sets S ⊆ T ⊆ N
and submodular if f(S ∪ {u}) − f(S) ≥ f(T ∪ {u}) − f(T) for every two such sets
and an element u ∈ N \ T .

2 This constraint on the set of items that can be selected is equivalent to select-
ing an independent set of the partition matroid M defined by the partition
{P1, P2, . . . , Pm}.

Online Submodular Maximization: Beating 1/2 Made Simple 103

It is well known that for a fixed (rather than random) permutation π, the
greedy algorithm achieves exactly 1/2-approximation [18]. We prove the following.

Theorem 1. Algorithm 1 achieves an approximation ratio of at least 0.5096 for
the problem of maximizing a non-negative monotone submodular function subject
to a partition matroid constraint.

Algorithm 1. Random Order Greedy(f,M)
1 Initialize: A0 ← ∅.
2 Let π be a uniformly random permutation of [m].
3 for i = 1 to m do
4 Let ui be the element u ∈ Pπ(i) maximizing

f(u | Ai−1) � f(Ai−1 ∪ {u}) − f(Ai−1).
5 Ai ← Ai−1 ∪ {ui}.

6 Return Am.

Through a standard reduction from SWM, this result yields the same guar-
antee also on the performance of the greedy algorithm for SWM in the random
order model. Thus, the result both generalizes and improves over the previously
known 0.5052-approximation [25]. Our analysis is also arguably simpler, giving
a direct, clean, and short proof that avoids the use of factor revealing LPs.

It should also be mentioned that the result of Korula et al. [25] represents the
first combinatorial algorithm for offline SWM achieving a better approximation
ratio than 1/2. Analogously, our result is a combinatorial algorithm achieving a
better than 1/2 approximation ratio for the more general problem of maximizing
a non-negative monotone submodular function subject to a partition matroid
constraint. We remark that in a recent work Buchbinder et al. [5] described a
(very different) offline combinatorial algorithm which achieves a better than 1/2
approximation for the even more general problem of maximizing a non-negative
monotone submodular function subject to a general matroid constraint. How-
ever, the approximation guarantee achieved in [5] is worse, and the algorithm is
more complicated and cannot be implemented in an online model.

The greedy algorithm in the random arrival model is known to be (1 − 1/e)-
competitive for special cases of SWM [19]. For online SWM it is an open question
whether the algorithm achieves this (best possible) ratio. However, for the more
general problem of maximizing a monotone submodular function over a partition
matroid, the following result answers this question negatively. In fact, the result
shows that the approximation ratio obtained by the greedy algorithm is quite
far from 1 − 1/e ≈ 0.632.

Theorem 2. There exist a partition matroid M and a non-negative monotone
submodular function f over the same ground set such that the approximation
ratio of Algorithm 1 for the problem of maximizing f subject to the constraint
defined by M is at most 19/33 ≤ 0.576.

Due to space constraints, the proof of Theorem 2 is deferred to the appendix.

104 N. Buchbinder et al.

1.2 Our Technique

The proof we describe for Theorem 1 consists of two parts. In the first part
(Sect. 3.1), we show that when the greedy algorithm considers sets of the par-
tition in a random order, it gains most of the value of its output set during its
first iterations (Lemma 3). For example, after viewing 90% of the sets the algo-
rithm already has 49.5% of the value of the optimal solution, which is 99% of
its output guarantee according to the standard analysis. Thus, to prove that the
greedy algorithm has a better than 1/2 approximation ratio, it suffices to show
that it gets a non-negligible gain from its last iterations.

In the second part of our analysis (Sect. 3.2), we are able to show that this is
indeed the case. Intuitively, in this part of the analysis we view the execution of
Algorithm 1 as having three stages defined by two integer values 0 < r ≤ r′ < m.
The first stage consists of the first r iterations of the algorithm, the second
stage consists of the next r′ − r iterations and the last stage consists of the
remaining m− r′ iterations. As explained above, by Lemma 3 we get that if r′ is
large enough, then f(Ar′) is already very close to f(OPT)/2, where OPT is an
optimal solution. We use two steps to prove that f(Am) is significantly larger
than f(Ar′), and thus, achieves a better than 1/2 approximation ratio. In the
first step (Lemma 4), we use symmetry to argue that there are two independent
sets of M that consist only of elements that Algorithm 1 can pick in its second
and third phases, and in addition, the value of their union is large. One of
these sets consists of the elements of OPT that are available in the final m − r
iterations, and the other set (which we denote by C) is obtained by applying
an appropriately chosen function to these elements of OPT . In the second step
of the analysis, implemented by Lemma 5, we use the fact that the final m − r′

elements of C are a random subset of C to argue that they have a large marginal
contribution even with respect to the final solution Am. Combining this with
the observation that these elements represent a possible set of elements that
Algorithm 1 could pick during its last stage, we get that the algorithm must
have made a significant gain during this stage.

1.3 Additional Related Results

The optimal approximation ratio for the problem of maximizing a monotone
submodular function subject to a partition matroid constraint (and its spe-
cial case SWM) is obtained by an algorithm known as (Measured) Continuous
Greedy [8,16]. Unfortunately, this algorithm is problematic from a practical point
of view since it is based on a continuous relaxation and is quite slow. As discussed
above, our first result can be viewed as an alternative simple combinatorial algo-
rithm for this problem, and thus, it is related to a line of work that aims to find
better alternatives for Continuous Greedy [3,6,17,31].

While the problem of maximizing a monotone submodular function subject
to a partition matroid was studied almost exclusively in the value oracle model,
the view of SWM as an auction has motivated its study also in an alternative
model known as the demand oracle model. In this model a strictly better than
(1 − 1/e)-approximation is known for the problem [13].

Online Submodular Maximization: Beating 1/2 Made Simple 105

Another online model, that can be cast as a special case of the random arrival
model and was studied extensively, is the i.i.d. stochastic model. In this model
input items arrive i.i.d. according to a known or unknown distribution. In the
i.i.d. model with a known distribution improved competitive ratios for special
cases of SWM are known [2,15,20,27]. Moreover, for the i.i.d. model with an
unknown distribution a (1 − 1/e)-competitive algorithm is known for SWM as
well as for several of its special cases [10,11,22].

2 Preliminaries

For every two sets S, T ⊆ N we denote the marginal contribution of adding T
to S, with respect to a set function f , by f(T | S) � f(T ∪ S) − f(S). For an
element u ∈ N we use f(u | S) as shorthands for f({u} | S)—note that we have
already used this notation previously in Algorithm 1.

Following are two well known facts that we use in the analysis of Algorithm 1.

Lemma 1 (Lemma 2.2 of [12]). Let f : 2N → R be a submodular function,
and let T be an arbitrary set T ⊆ N . For every random set Tp ⊆ T which
contains every element of T with probability p (not necessarily independently),

E[f(Tp)] ≥ (1 − p) · f(∅) + p · f(T).

Observation 1. For every sets two S1 ⊆ S2 ⊆ N and an additional set T ⊆ N ,
it holds that f(S1 | T) ≤ f(S2 | T) and f(T | S1) ≥ f(T | S2).

The Submodular Welfare Maximization problem (SWM). In this problem we
are given a set N of m items and a set B of n bidders. Each bidder i has a non-
negative monotone submodular utility function fi : 2N → R≥0; and the goal is
to partition the items among the bidders in a way that maximizes

∑m
i=1 fi(Si)

where Si is the set of items allocated to bidder i.

Maximizing a Monotone Submodular Function over a (Simple) Partition
Matroid. In this problem we are given a partition matroid M over a ground
set N and a non-negative monotone submodular function f : 2N → R≥0. A par-
tition matroid is defined by a partition of its ground set into non-empty disjoint
sets P1, P2, . . . , Pm. A set S ⊆ N is independent in M if |S ∩ Pi| ≤ 1 for every
set Pi, and the goal in this problem is to find a set S ⊆ N that is independent
in M and maximizes f .

In this work we make the standard assumption that the objective function f
can be accessed only through a value oracle, i.e., an oracle that given a subset
S returns the value f(S).

A Standard Reduction Between the Above Two Problems. Given an instance of
SWM, we construct the following equivalent instance of maximizing a monotone
submodular function subject to a partition matroid. For each item u ∈ N and

106 N. Buchbinder et al.

bidder i ∈ B, we create an element (u, i) which represents the assignment of u to
i. Additionally, we define a partition of these elements by constructing for every
item u a set Pu = {(u, i) | i ∈ B}. Finally, for a subset S of the elements, we
define

f(S) =
∑

i∈B

fi({u ∈ N | (u, i) ∈ S}).

One can verify that for every independent set S the value of f is equal to the
total utility of the bidders given the assignment represented by S; and moreover,
f is non-negative, monotone and submodular.

It is important to note that running a greedy algorithm that inspects the
partitions in a random order after this reduction is the same as running the
greedy algorithm on the original SWM instance in the random arrival model.

Additional Technical Reduction. Our analysis of Algorithm 1 uses two integer
parameters 0 < r ≤ r′ < m. A natural way to choose these parameters is
to set them to r = αm and r′ = βm, where α and β are rational numbers.
Unfortunately, not for every choice of α, β and m these values are integral. The
following reduction, which can be proved using standard techniques, allows us to
bypass this technical issue (the proof of this reduction and other omitted proofs
can be found in the full version of this paper [4]).

Reduction 1. For any fixed choice of two rational values α, β ∈ (0, 1), one
may assume that αm and βm are both integral for the purpose of analyzing the
approximation ratio of Algorithm 1.

3 Analysis of the Approximation Ratio

In this section, we analyze Algorithm 1 and lower bound its approximation ratio.
The analysis is split between Sects. 3.1 and 3.2. In Sect. 3.1 we present a basic
(and quite standard) analysis of Algorithm 1 which only shows that it is a 1/2-
approximation algorithm, but proves along the way some useful properties of
the algorithm. In Sect. 3.2 we use these properties to present a more advanced
analysis of Algorithm 1 which shows that it is a 0.5096-approximation algorithm
(and thus proves Theorem 1).

Let us now define some notation that we use in both parts of the analysis.
Let OPT be an optimal solution (i.e., an independent set of M maximizing f).
Note that since f is monotone we may assume, without loss of generality, that
OPT is a base of M (i.e., it includes exactly one element of the set Pi for every
1 ≤ i ≤ m). Additionally, for every set T ⊆ N we denote by T (i) the subset of T
that excludes elements appearing in the first i sets out of P1, P2, . . . , Pm when
these sets are ordered according to the permutation π. More formally,

T (i) = T \
i⋃

j=1

Pπ(j) = T ∩
m⋃

j=i+1

Pπ(j).

Online Submodular Maximization: Beating 1/2 Made Simple 107

Since π is a uniformly random permutation and OPT contains exactly one
element of each set Pi (due to our assumption that it is a base of M), we get
the following observation as an immediate consequence.

Observation 2. For every 0 ≤ i ≤ m, OPT (i) is a uniformly random subset of
OPT of size m − i.

3.1 Basic Analysis

In this section, we present a basic analysis of Algorithm 1. Following is the central
lemma of this analysis which shows that the expression f(Ai) + f(S ∪ Ai ∪ T (i))
is a non-decreasing function of i for every pair of set S ⊆ N and base T of M
(recall that Ai is the set constructed by Algorithm 1 during its i-th iteration).
It is important to note that this lemma holds deterministically, i.e., it holds for
every given permutation π.

Lemma 2. For every subset S ⊆ N , base T of M and 1 ≤ i ≤ m, f(Ai) +
f(S ∪ Ai ∪ T (i)) ≥ f(Ai−1) + f(S ∪ Ai−1 ∪ T (i−1)).

Proof. Observe that

f(Ai) − f(Ai−1) = f(ui | Ai−1) ≥ f(T ∩ Pπ(i) | Ai−1)

≥ f(T ∩ Pπ(i) | S ∪ Ai−1 ∪ T (i)) = f(S ∪ Ai−1 ∪ T (i−1)) − f(S ∪ Ai−1 ∪ T (i))

≥ f(S ∪ Ai−1 ∪ T (i−1)) − f(S ∪ Ai ∪ T (i)),

where the first inequality follows from the greedy choice of the algorithm,
the second inequality holds due to Observation 1 and the final inequality follows
from the monotonicity of f .
�

The following is an immediate corollary of the last lemma. Note that, like
the lemma, it is deterministic and, thus, holds for every permutation π.

Corollary 1. For every subset S ⊆ N , base T of M and 0 ≤ i ≤ m, f(Am) +
f(S ∪ Am) ≥ f(Ai) + f(S ∪ Ai ∪ T (i)) ≥ f(S ∪ T).

Proof. Since f(Ai)+f(S∪Ai∪T (i)) is a non-decreasing function of i by Lemma 2,

f(Am)+f(S ∪Am ∪T (m)) ≥ f(Ai)+f(S ∪Ai ∪T (i)) ≥ f(A0)+f(S ∪A0∪T (0)).

The corollary now follows by recalling that A0 = ∅, observing that f(A0) ≥ 0
since f is non-negative and noting that by definition T (m) = ∅ and T (0) = T .
�

By choosing S = ∅ and T = OPT , the last corollary yields f(Am) ≥ 1/2 ·
f(OPT), which already proves that Algorithm 1 is a 1/2-approximation algorithm
as promised. The following lemma strengthens this result by showing a lower
bound on the value of f(Ai) for every 0 ≤ i ≤ m. Note that this lower bound,
unlike the previous one, holds only in expectation over the random choice of the
permutation π. Let g(x) � x − x2/2.

Lemma 3. For every 0 ≤ i ≤ m, E[f(Ai)] ≥ g(i/m) · f(OPT).

We omit the proof due to space constraints (it can be found in the full
version [4]). Note that Lemma 3 is very similar to known results (see, e.g., [25]).

108 N. Buchbinder et al.

3.2 Breaking 1/2: An Improved Analysis of Algorithm 1

In this section, we use the properties of Algorithm 1 proved in the previous
section to derive a better than 1/2 lower bound on its approximation ratio and
prove Theorem 1. As explained in Sect. 1.2, we view here an execution of Algo-
rithm 1 as consisting of three stages, where the places of transition between the
stages are defined by two integer parameters 0 < r ≤ r′ < m whose values are
set later in this section to 0.4 m and 0.76 m, respectively. The first lemma that
we present (Lemma 4) uses a symmetry argument to prove that there are two
(not necessarily distinct) independent sets of M that consist only of elements
that Algorithm 1 can pick in its second and third stages (the final m − r iter-
ations), and in addition, the value of their union is large. One of these sets is
OPT (r), and the other set is obtained by applying to OPT (r) an appropriately
chosen function h. Interestingly, the guarantee of Lemma 4 is particularly strong
when the algorithm makes little progress during the second and third stages
(i.e., f(Am | Am−r) is small), which intuitively is the case in which the basic
analysis (from Sect. 3.1) fails to guarantee more than 1/2-approximation.

Let c be the true (unknown) approximation ratio of Algorithm 1.

Lemma 4. There exists a function h : 2N → 2N such that

(a) for every 1 ≤ i ≤ m and set S ⊆ N , |Pi ∩ h(S)| = |Pi ∩ S|.
(b) E[f(h(OPT (r)) ∪ OPT (r))] ≥ f(OPT) − c−1 · E[f(Am | Am−r)].

Proof. Given Part (b) of the lemma, it is natural to define h(S), for every set
S ⊆ N , as the set T maximizing f(T ∪S) among all the sets obeying Part (a) of
the lemma (where ties are broken in an arbitrary way). In the rest of the proof
we show that this function indeed obeys Part (b).

Observe that

f(Am−r ∪ (OPT \ OPT (m−r))) = f(OPT \ OPT (m−r) | Am−r) + f(Am−r)

≥ f(OPT \ OPT (m−r) | Am−r ∪ OPT (m−r)) + f(Am−r)

= f(Am−r ∪ OPT) − f(OPT (m−r) | Am−r)

≥ f(OPT) − f(OPT (m−r) | Am−r),

where first inequality follows from Observation 1 and the second follows by the
monotonicity of f . We now note that the last r iterations of Algorithm 1 can
be viewed as a standalone execution of this algorithm on the partition matroid
defined by the sets Pm−r+1, . . . , Pm and the objective function f(· | Am−r).
Thus, by the definition of c, the expected value of f(OPT (m−r) | Am−r) is at
most c−1 · E[f(Am \ Am−r | Am−r)] = c−1 · E[f(Am | Am−r)]. Combining this
with the previous inequality, we get

E[f(h(OPT \ OPT (m−r)) ∪ (OPT \ OPT (m−r)))]

≥ E[f(Am−r ∪ (OPT \ OPT (m−r)))] ≥ E[f(OPT) − f(OPT (m−r) | Am−r)]

≥ f(OPT) − c−1 · E[f(Am | Am−r)],

Online Submodular Maximization: Beating 1/2 Made Simple 109

where the first inequality holds due to the definition of h since Am−r obeys
Part (a) of the lemma (for S = OPT \ OPT (m−r)).

To prove the lemma it remains to observe that by Observation 2 the random
sets OPT \ OPT (m−r) and OPT (r) have the same distribution, which implies
that f(h(OPT \OPT (m−r))∪ (OPT \OPT (m−r))) and f(h(OPT (r))∪OPT (r))
have the same expectation.
�

Let us denote C = h(OPT (r)). Note that C is a random set since OPT (r)

is. The following lemma uses the properties of C proved by Lemma 4 to show
that Algorithm 1 must make a significant gain during its third stage. Intuitively,
the guarantee of this lemma is useful because the basic analysis implies that
when Algorithm 1 does not get much more than 1/2-approximation, its solution
gains most of its value early in the execution. Thus, in this case both Ar and
Am−r should have a significant fraction of the value of the output set Am, and
therefore, the positive terms on the right hand side of the guarantee of the lemma
can counter the negative term.

Lemma 5. Let p = m−r′
m−r , then

E[f(Am | Ar′)] ≥ f(OPT)−(2+p/c)·E[f(Am)]+p·E[f(Ar)]+(p/c)·E[f(Am−r)].

Proof. Observe that

f(Am | Ar′) ≥ f(C(r′) | Am ∪ OPT (r)) = f(Am ∪ C(r′) | Ar ∪ OPT (r)) −
f(Am | Ar ∪ OPT (r)) ≥ f(C(r′) | Ar ∪ OPT (r)) − f(Am | Ar ∪ OPT (r)),

where the first inequality follows by plugging i = r′, T = Ar ∪ C and S =
Am ∪ OPT (r) in the first inequality of Corollary 1, and the second inequality
follows by Observation 1.

Similar to what we do in the proof of Lemma 3, let us now denote by πr

an arbitrary injective function from {1, . . . , r} to {1, . . . , m} and by E(πr) the
event that π(j) = πr(j) for every 1 ≤ j ≤ r. Observe that conditioned on E(πr)
the set OPT (r) is deterministic, and thus so is the set C which is obtained
from OPT (r) by the application of a deterministic function; but C(r′) remains
a random set that contains every element of C with probability p. Hence, by
Lemma 1, conditioned on E(πr), we get

E[f(C(r′) | Ar ∪ OPT (r))] ≥ p · f(C | Ar ∪ OPT (r)).

Taking now expectation over all the possible events E(πr), and combining with
the previous inequality, we get

E[f(Am | Ar′)] ≥ p · E[f(C | Ar ∪ OPT (r))] − E[f(Am | Ar ∪ OPT (r))]

= p · E[f(C ∪ Ar ∪ OPT (r))]+ (1−p) · E[f(Ar ∪ OPT (r))]− E[f(Am ∪ OPT (r))]

≥ p · E[f(C ∪ OPT (r))] + (1 − p) · E[f(Ar ∪ OPT (r))] − E[f(Am ∪ OPT (r))],

where the second inequality holds due to the monotonicity of f . We now need to
bound all the terms on the right hand side of the last inequality. The first term

110 N. Buchbinder et al.

is lower bounded by p · f(OPT) − (p/c) · E[f(Am | Am−r)] due to Lemma 4. A
lower bound of f(OPT)− f(Ar) on the expression f(Ar ∪OPT (r)) follows from
the second inequality of Corollary 1 by setting T = OPT and S = ∅. Finally,
an upper bound of 2f(Am) − f(Ar) on the expression f(Am ∪ OPT (r)) follows
from the first inequality of the same corollary by setting T = OPT and S = Am.
Plugging all these bounds into the previous inequality yields

E[f(Am | Ar′)] ≥ p · f(OPT) − (p/c) · E[f(Am | Am−r)] +
(1 − p) · E[f(OPT) − f(Ar)] − E[2f(Am) − f(Ar)]

= f(OPT) − (2 + p/c) · E[f(Am)] + p · E[f(Ar)] + (p/c) · E[f(Am−r)].
�
We are now ready to prove Theorem 1.

Proof (Proof of Theorem 1). Let q = r/m. By Lemma 5,

E[f(Am)] = E[f(Am | Ar′)] + E[f(Ar′)] ≥ f(OPT) − (2 + p/c) · E[f(Am)] +
p · E[f(Ar)] + (p/c) · E[f(Am−r)] + E[f(Ar′)].

Rearranging this inequality, and using the lower bound on E[f(Ai)] given by
Lemma 3, we get

(3 + p/c) · E[f(Am)] ≥ [1 + p · g(q) + (p/c) · g(1 − q) + g(1 − p + pq)] · f(OPT)

= [1 + pq(1 − q/2) + (p/c)(1 − q2)/2 + (1 − p2 + 2p2q − p2q2)/2] · f(OPT)

=
1
2
[3 + pq(2 − q) + pc−1(1 − q2) − p2(1 − q)2] · f(OPT).

Thus, the approximation ratio of Algorithm 1 is at least

3 + pq(2 − q) + pc−1(1 − q2) − p2(1 − q)2

6 + 2pc−1
.

Since c is the true approximation ratio of this algorithm by definition, we get

c ≥ 3 + pq(2 − q) + pc−1(1 − q2) − p2(1 − q)2

6 + 2pc−1
.

We now choose p = q = 0.4. Notice that these values for p and q can be achieved
by setting r = 0.4 m and r′ = 0.76 m, and moreover, we can assume that this is
a valid choice for r and r′ by Reduction 1. Plugging these values of p and q into
the last inequality and simplifying, we get 6c2 − 2.3984c − 0.336 ≥ 0. One can
verify that all the positive solutions for this inequality are larger than 0.5096,
which completes the proof of the theorem.
�

Acknowledgment. We thank Nitish Korula, Vahab S. Mirrokni and Morteza Zadi-
moghaddam for sharing with us the full version of their paper [25]. The research of Niv
Buchbinder was supported by ISF grant 1585/15 and BSF grant 2014414. The research
of Moran Feldman and Mohit Garg was supported in part by ISF grant 1357/16. Yuval
Filmus is a Taub Fellow—supported by the Taub Foundations. His research was funded
by ISF grant 1337/16.

Online Submodular Maximization: Beating 1/2 Made Simple 111

A Upper Bounding the Approximation Ratio

In this section, we prove Theorem 2. We first give in Sect. A.1 a simple proof of
a weaker form of the theorem with a bound of 7/12 ≈ 0.583 instead of 19/33 ≈
0.576. The proof of the theorem as stated appears in Sect.A.2.

A.1 A Simple Weaker Bound

Let us construct a partition matroid over a ground set N consisting of twelve
elements and a non-negative monotone submodular function f : 2N → R≥0

over the same ground set. The partition matroid is defined by a partition
of the ground set into three sets: Px = {x1, x2, x3, x4}, Py = {y1, y2, y3, y4}
and Pz = {z1, z2, z3, z4}. To define the function f , we view each element of
N as a subset of an underlying universe U consisting of 12 elements: U =
{α1, · · · , α4, β1, · · · , β4, γ1, · · · , γ4}. The function f is then given as the cover-
age function f(S) = |⋃u∈S u| (coverage functions are known to be non-negative,
monotone and submodular). The following table completes the definition of f
by specifying the exact subset of U represented by each element of N :

Elements of Px Elements of Py Elements of Pz

x1 = {α1, α2, α3, α4} y1 = {β1, β2, β3, β4} z1 = {γ1, γ2, γ3, γ4}
x2 = {β1, β2, γ1, γ2} y2 = {α1, α2, γ1, γ2} z2 = {α1, α2, β1, β2}
x3 = {β1, γ3} y3 = {α1, γ3} z3 = {α1, β3}
x4 = {β3, γ1} y4 = {α3, γ1} z4 = {α3, β1}

It is easy to verify that the optimum solution for this instance (i.e., the
independent set of M maximizing f) is the set {x1, y1, z1} whose value is 12.
To analyze the performance of Algorithm 1 on this instance, we must set a tie
breaking rule. Here we assume that the algorithm always breaks ties in favor of
the element with the higher index, but it should be noted that a small pertur-
bation of the values of f can be used to make the analysis independent of the
tie breaking rule used (at the cost of weakening the impossibility proved by an
additive ε term for an arbitrary small constant ε > 0).

Now, consider the case that the set Px arrives first, followed by Py and finally
Pz. One can check that in this case the greedy algorithm picks the elements x2,
y3 and z4 (in this order), and that their marginal contributions upon arrival are
4, 2 and 1, respectively. Similarly, it can be checked that the exact same marginal
contributions also appear in every one of the other five possible arrival orders
of the sets Px, Py, Pz. Thus, regardless of the arrival order, the approximation
ratio achieved by Algorithm 1 for the above instance is only (4+2+1)/12 = 7/12.

Remark: It should be noted that by combining multiple independent copies
of the above described instance, one can get an arbitrarily large instance for
which the approximation ratio of Algorithm 1 is only 7/12. This rules out the
possibility that the approximation ratio of Algorithm 1 approaches 1 − 1/e for
large enough instances.

112 N. Buchbinder et al.

A.2 Stronger Upper Bound

We now get to proving Theorem 2 with the stated bound of 19/33. The proof is
similar to the one given in Sect.A.1, but the set system we need to use is more
complicated.

We construct a partition matroid over a ground set N consisting of 32 ele-
ments and a non-negative monotone submodular function f : 2N → R≥0 over
the same ground set. The ground set of the partition matroid consists of four
types of elements:

– o1, o2, o3, o4
– x1, x2, x3, x4

– yij for distinct i, j ∈ {1, 2, 3, 4}
– zijk for distinct i, j, k ∈ {1, 2, 3, 4}, where we ignore the order between the

first two indices (i.e., zijk and zjik are two names for the same element)

The partition matroid is defined by a partition of the ground set into four
parts P1, P2, P3, P4, where part Pi is comprised of the 8 elements of the forms
oi, xi, yji, zjki.

As in Sect. A, the function f is a coverage function, but this time a weighted
one. The universe U used to define this function consists of 28 elements:

U = {ai, bi, ci, di, ei, fi, gi : i ∈ {1, 2, 3, 4}}.

The weights of the elements in this universe are given by the following function
w : U → R≥0:

v ai bi ci di ei fi gi

w(v) 14 14 8 5 4 7 14

We extend w to subsets of U by defining w(V) =
∑

v∈V w(v). The function f
is then the weighted coverage function given by the formula f(S) = w(

⋃
v∈S v).

Like coverage functions, weighted coverage functions (with non-negative weights)
are also known to be non-negative, monotone and submodular.

In order to complete the definition of f , we need to specify the sets that the
elements of N correspond to:

oi = {ai, bi, ci, di, ei, fi, gi}
xi = {bj , cj : j �= i}
yij = {ci, ej} ∪ {dk, ek, fk : k �= i, j}

zijk = {fi, fj , g�}, where � is the unique element of {1, 2, 3, 4} \ {i, j, k}

It is easy to verify that the optimal solution for this instance is {o1, o2, o3, o4}
and that it achieves a total weight of 264. In contrast, by choosing an appropriate
tie breaking rule, we can cause Algorithm 1 to act in the following way when
presented with the parts Pi, Pj , Pk, P�: choose xi, yij , zijk, o� (which has total
weight 152, and thus, yields an approximation ratio of 152/264 = 19/33).

Online Submodular Maximization: Beating 1/2 Made Simple 113

References

1. Aggarwal, G., Goel, G., Karande, C., Mehta, A.: Online vertex-weighted bipartite
matching and single-bid budgeted allocations. In: SODA, pp. 1253–1264 (2011)

2. Alaei, S., Hajiaghayi, M., Liaghat, V.: Online prophet-inequality matching with
applications to ad allocation. In: EC, pp. 18–35 (2012)

3. Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular func-
tions. In: SODA, pp. 1497–1514 (2014)

4. Buchbinder, N., Feldman, M., Filmus, Y., Garg, M.: Online submodular maxi-
mization: Beating 1/2 made simple. CoRR abs/1807.05529 (2018). http://arxiv.
org/abs/1807.05529

5. Buchbinder, N., Feldman, M., Garg, M.: Deterministic (1/2+ε)-approximation for
submodular maximization over a matroid. In: SODA, pp. 241–254 (2019)

6. Buchbinder, N., Feldman, M., Schwartz, R.: Comparing apples and oranges: query
trade-off in submodular maximization. Math. Oper. Res. 42(2), 308–329 (2017)

7. Buchbinder, N., Jain, K., Naor, J.S.: Online primal-dual algorithms for maximizing
ad-auctions revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 253–264. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75520-3 24

8. Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766
(2011)

9. Devanur, N.R., Hayes, T.P.: The adwords problem: online keyword matching with
budgeted bidders under random permutations. In: EC, pp. 71–78 (2009)

10. Devanur, N.R., Jain, K., Sivan, B., Wilkens, C.A.: Near optimal online algorithms
and fast approximation algorithms for resource allocation problems. In: EC, pp.
29–38 (2011)

11. Devanur, N.R., Sivan, B., Azar, Y.: Asymptotically optimal algorithm for stochas-
tic adwords. In: EC, pp. 388–404 (2012)

12. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

13. Feige, U., Vondrák, J.: The submodular welfare problem with demand queries.
Theory Comput. 6(1), 247–290 (2010)

14. Feldman, J., Korula, N., Mirrokni, V., Muthukrishnan, S., Pál, M.: Online ad
assignment with free disposal. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol.
5929, pp. 374–385. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10841-9 34

15. Feldman, J., Mehta, A., Mirrokni, V.S., Muthukrishnan, S.: Online stochastic
matching: beating 1-1/e. In: FOCS, pp. 117–126 (2009)

16. Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for
submodular maximization. In: FOCS, pp. 570–579 (2011)

17. Filmus, Y., Ward, J.: Monotone submodular maximization over a matroid via non-
oblivious local search. SIAM J. Comput. 43(2), 514–542 (2014)

18. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for
maximizing submodular set functions - II. Math. Program. Study 8, 73–87 (1978)

19. Goel, G., Mehta, A.: Online budgeted matching in random input models with
applications to adwords. In: SODA, pp. 982–991 (2008)

20. Haeupler, B., Mirrokni, V.S., Zadimoghaddam, M.: Online stochastic weighted
matching: improved approximation algorithms. In: Chen, N., Elkind, E., Koutsou-
pias, E. (eds.) WINE 2011. LNCS, vol. 7090, pp. 170–181. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25510-6 15

http://arxiv.org/abs/1807.05529
http://arxiv.org/abs/1807.05529
https://doi.org/10.1007/978-3-540-75520-3_24
https://doi.org/10.1007/978-3-540-75520-3_24
https://doi.org/10.1007/978-3-642-10841-9_34
https://doi.org/10.1007/978-3-642-10841-9_34
https://doi.org/10.1007/978-3-642-25510-6_15

114 N. Buchbinder et al.

21. Kalyanasundaram, B., Pruhs, K.: An optimal deterministic algorithm for online
b-matching. Theor. Comput. Sci. 233(1–2), 319–325 (2000)

22. Kapralov, M., Post, I., Vondrák, J.: Online submodular welfare maximization:
greedy is optimal. In: SODA, pp. 1216–1225 (2013)

23. Karande, C., Mehta, A., Tripathi, P.: Online bipartite matching with unknown
distributions. In: STOC, pp. 587–596 (2011)

24. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bipar-
tite matching. In: STOC, pp. 352–358 (1990)

25. Korula, N., Mirrokni, V.S., Zadimoghaddam, M.: Online submodular welfare max-
imization: greedy beats 1/2 in random order. In: STOC, pp. 889–898 (2015)

26. Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: an app-
roach based on strongly factor-revealing LPs. In: STOC, pp. 597–606 (2011)

27. Manshadi, V.H., Gharan, S.O., Saberi, A.: Online stochastic matching: online
actions based on offline statistics. Math. Oper. Res. 37(4), 559–573 (2012)

28. Mehta, A.: Online matching and ad allocation. Found. Trends Theor. Comput. Sci.
8(4), 265–368 (2013)

29. Mehta, A., Saberi, A., Vazirani, U.V., Vazirani, V.V.: Adwords and generalized
online matching. J. ACM 54(5), 22 (2007)

30. Mirrokni, V.S., Schapira, M., Vondrák, J.: Tight information-theoretic lower
bounds for welfare maximization in combinatorial auctions. In: EC, pp. 70–77
(2008)

31. Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrák, J., Krause, A.: Lazier
than lazy greedy. In: AAAI, pp. 1812–1818 (2015)

32. Zadimoghaddam, M.: Online weighted matching: beating the 1/2 barrier. CoRR
abs/1704.05384 (2017)

Improving the Integrality Gap
for Multiway Cut

Kristóf Bérczi1(B) , Karthekeyan Chandrasekaran2, Tamás Király1 ,
and Vivek Madan2

1 MTA-ELTE Egerváry Research Group, Department of Operations Research,
Eötvös Loránd University, Budapest, Hungary

{berkri,tkiraly}@cs.elte.hu
2 University of Illinois, Urbana-Champaign, USA

{karthe,vmadan2}@illinois.edu

Abstract. In the multiway cut problem, we are given an undirected
graph with non-negative edge weights and a collection of k terminal
nodes, and the goal is to partition the node set of the graph into k
non-empty parts each containing exactly one terminal so that the total
weight of the edges crossing the partition is minimized. The multiway
cut problem for k ≥ 3 is APX-hard. For arbitrary k, the best-known
approximation factor is 1.2965 due to Sharma and Vondrák [12] while
the best known inapproximability result due to Angelidakis, Makarychev
and Manurangsi [1] rules out efficient algorithms to achieve an approx-
imation factor that is less than 1.2. In this work, we improve on the
lower bound to 1.20016 by constructing an integrality gap instance for
the CKR relaxation.

A technical challenge in improving the gap has been the lack of geo-
metric tools to understand higher-dimensional simplices. Our instance is
a non-trivial 3-dimensional instance that overcomes this technical chal-
lenge. We analyze the gap of the instance by viewing it as a convex combi-
nation of 2-dimensional instances and a uniform 3-dimensional instance.
We believe that this technique could be exploited further to construct
instances with larger integrality gap. One of the ingredients of our proof
technique is a generalization of a result on Sperner admissible labelings
due to Mirzakhani and Vondrák [11] that might be of independent com-
binatorial interest.

Keywords: Combinatorial optimization · Multiway cut ·
Integrality gap · Approximation

1 Introduction

In the multiway cut problem, we are given an undirected graph with non-negative
edge weights and a collection of k terminal nodes and the goal is to find a
minimum weight subset of edges to delete so that the k input terminals cannot
reach each other. Equivalently, the goal is to find a partition of the vertex set into
c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 115–127, 2019.
https://doi.org/10.1007/978-3-030-17953-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_9&domain=pdf
http://orcid.org/0000-0003-0457-4573
http://orcid.org/0000-0001-7218-2112
https://doi.org/10.1007/978-3-030-17953-3_9

116 K. Bérczi et al.

k sets with each set containing exactly one terminal such that the total weight of
the edge boundaries of the sets is minimized. For convenience, we will use k-way
cut to denote this problem when we would like to highlight the dependence on k
and multiway cut to denote this problem when k grows with the size of the input
graph. The 2-way cut problem is the classic minimum {s, t}-cut problem which
is solvable in polynomial time. For k ≥ 3, Dahlhaus, Johnson, Papadimitriou,
Seymour and Yannakakis [7] showed that the k-way cut problem is APX-hard
and gave a (2 − 2/k)-approximation. Owing to its applications in partitioning
and clustering, k-way cut has been an intensely investigated problem in the
algorithms literature. Several novel rounding techniques in the approximation
literature were discovered to address the approximability of this problem.

The known approximability as well as inapproximability results are based
on a linear programming relaxation, popularly known as the CKR relaxation
in honor of the authors—Călinescu, Karloff and Rabani—who introduced it [5].
The CKR relaxation takes a geometric perspective of the problem. For a graph
G = (V,E) with edge weights w : E → R+ and terminals t1, . . . , tk, the CKR
relaxation is given by

min
1
2

∑

e={u,v}∈E

w(e)‖xu − xv‖1

s.t. xu ∈ Δk ∀ u ∈ V,

xti = ei ∀ i ∈ [k],

where Δk := {(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 xi = 1} is the (k − 1)-dimensional
simplex, ei ∈ {0, 1}k is the extreme point of the simplex along the i-th coordinate
axis, i.e., ei

j = 1 if and only if j = i, and [k] denotes the set {1, . . . , k}.
Călinescu, Karloff and Rabani designed a rounding scheme for the relaxation

which led to a (3/2 − 1/k)-approximation thus improving on the (2 − 2/k)-
approximation by Dahlhaus et al. For 3-way cut, Cheung, Cunningham and
Tang [6] as well as Karger, Klein, Stein, Thorup and Young [9] designed alterna-
tive rounding schemes that led to a 12/11-approximation factor and also exhib-
ited matching integrality gap instances. We recall that the integrality gap of an
instance to the LP is the ratio between the integral optimum value and the LP
optimum value. Determining the exact integrality gap of the CKR relaxation
for k ≥ 4 has been an intriguing open question. After the results by Karger
et al. and Cunningham et al., a rich variety of rounding techniques were devel-
oped to improve the approximation factor of k-way cut for k ≥ 4 [3,4,12]. The
best-known approximation factor for multiway cut is 1.2965 due to Sharma and
Vondrák [12].

On the hardness of approximation side, Manokaran, Naor, Raghavendra and
Schwartz [10] showed that the hardness of approximation for k-way cut is at
least the integrality gap of the CKR relaxation assuming the Unique Games
Conjecture (UGC). More precisely, if the integrality gap of the CKR relaxation
for k-way cut is τk, then it is UGC-hard to approximate k-way cut within a factor
of τk − ε for every constant ε > 0. As an immediate consequence of this result,

Improving the Integrality Gap for Multiway Cut 117

we know that the 12/11-approximation factor for 3-way cut is tight. For k-way
cut, Freund and Karloff [8] constructed an instance showing an integrality gap
of 8/(7 + (1/(k − 1))). This was the best known integrality gap until last year
when Angelidakis, Makarychev and Manurangsi [1] gave a remarkably simple
construction showing an integrality gap of 6/(5 + (1/(k − 1))) for k-way cut. In
particular, this gives an integrality gap of 1.2 for multiway cut.

We note that the known upper and lower bounds on the approximation factor
for multiway cut match only up to the first decimal digit and thus the approx-
imability of this problem is far from resolved. Indeed Angelidakis, Makarychev
and Manurangsi raise the question of whether the lower bound can be improved.
In this work, we improve on the lower bound by constructing an instance with
integrality gap 1.20016.

Theorem 1. For every constant ε > 0, there exists an instance of multiway cut
such that the integrality gap of the CKR relaxation for that instance is at least
1.20016 − ε.

The above result in conjunction with the result of Manokaran et al. immedi-
ately implies that multiway cut is UGC-hard to approximate within a factor of
1.20016 − ε for every constant ε > 0.

One of the ingredients of our technique underlying the proof of Theorem 1
is a new generalization of a result on Sperner admissible labelings due to Mirza-
khani and Vondrák [11] that might be of independent combinatorial interest (see
Theorem 6).

2 Background and Result

Before outlining our techniques, we briefly summarize the background literature
that we build upon to construct our instance. We rely on two significant results
from the literature. In the context of the k-way cut problem, a cut is a function
P : Δk → [k + 1] such that P (ei) = i for all i ∈ [k], where we use the notation
[k] := {1, 2, . . . , k}. The use of k + 1 labels as opposed to k labels to describe
a cut is slightly non-standard, but is useful for reasons that will become clear
later on. The approximation ratio τk(P) of a distribution P over cuts is given
by its maximum density :

τk(P) := sup
x,y∈Δk,x �=y

PrP∼P(P (x) �= P (y))
(1/2)‖x − y‖1 .

Karger et al. [9] defined τ∗
k := infP τk(P), and moreover showed that there exists

P that achieves the infimum. Hence, τ∗
k = minP τk(P). With this definition of

τ∗
k , Karger et al. [9] showed that for every ε > 0, there is an instance of multiway

cut with k terminals for which the integrality gap of the CKR relaxation is at
least τ∗

k − ε. Thus, Karger et al.’s result reduced the problem of constructing an
integrality gap instance for multiway cut to proving a lower bound on τ∗

k .
Next, Angelidakis, Makarychev and Manurangsi [1] reduced the problem of

lower bounding τ∗
k further by showing that it is sufficient to restrict our attention

118 K. Bérczi et al.

to non-opposite cuts as opposed to all cuts. A cut P is a non-opposite cut if
P (x) ∈ Support(x) ∪ {k + 1} for every x ∈ Δk where, we use the notation
Support(x) := {i ∈ [k] | xi �= 0}. Let Δk,n := Δk ∩ ((1/n)Z)k where (1/n)Z :=
{i/n | i ∈ Z}. For a distribution P over cuts, let

τk,n(P) := max
x,y∈Δk,n,x �=y

PrP∼P(P (x) �= P (y))
(1/2)‖x − y‖1 , and

τ̃∗
k,n := min{τk,n(P) : P is a distribution over non-opposite cuts}.

Angelidakis, Makarychev and Manurangsi showed that τ̃∗
k,n − τ∗

K = O(kn/(K −
k)) for all K > k. Thus, in order to lower bound τ∗

K , it suffices to lower bound
τ̃∗
k,n. That is, it suffices to construct an instance that has large integrality gap
against non-opposite cuts.

As a central contribution, Angelidakis, Makarychev and Manurangsi con-
structed an instance showing that τ̃∗

3,n ≥ 1.2 − O(1/n). Now, by setting
n = Θ(

√
K), we see that τ∗

K is at least 1.2 − O(1/
√

K). Furthermore, they
also showed that their lower bound on τ̃∗

3,n is almost tight, i.e., τ̃∗
3,n ≤ 1.2. The

salient feature of this framework is that in order to improve the lower bound on
τ∗
K , it suffices to improve τ̃∗

k,n for some 4 ≤ k < K.
The main technical challenge towards improving τ̃∗

4,n is that one has to deal
with the 3-dimensional simplex Δ4. Indeed, all known gap instances includ-
ing that of Angelidakis, Makarychev and Manurangsi are constructed using
the 2-dimensional simplex. In the 2-dimensional simplex, the properties of non-
opposite cuts are easy to visualize and their cut-values are convenient to charac-
terize using simple geometric observations. However, the values of non-opposite
cuts in the 3-dimensional simplex become difficult to characterize. Our main con-
tribution is a simple argument based on properties of lower-dimensional simplices
that overcomes this technical challenge. We construct a 3-dimensional instance
that has gap larger than 1.2 against non-opposite cuts.

Theorem 2. τ̃∗
4,n ≥ 1.20016 − O(1/n).

Theorem 1 follows from Theorem 2 using the above arguments.

3 Outline of Ideas

Let G = (V,E) be the graph with node set Δ4,n and edge set E4,n := {xy :
x, y ∈ Δ4,n, ‖x − y‖1 = 2/n}, where the terminals are the four unit vectors. In
order to lower bound τ̃∗

4,n, we will come up with weights on the edges of G such
that every non-opposite cut has cost at least α = 1.20016 and moreover the
cumulative weight of all edges is n + O(1). This suffices to lower bound τ̃∗

4,n by
the following proposition.

Proposition 1. Suppose that there exist weights w : E4,n → R≥0 on the edges
of G such that every non-opposite cut has cost at least α and the cumulative
weight of all edges is n + O(1). Then, τ̃∗

4,n ≥ α − O(1/n).

Improving the Integrality Gap for Multiway Cut 119

Proof. For an arbitrary distribution P over non-opposite cuts, we have

τk,n(P) = max
x,y∈Δk,n,x �=y

PrP∼P(P (x) �= P (y))
(1/2)‖x − y‖1 ≥ max

xy∈E4,n

PrP∼P(P (x) �= P (y))
(1/2)‖x − y‖1

= max
xy∈E4,n

PrP∼P(P (x) �= P (y))
1/n

≥
∑

xy∈E4,n

w(xy)PrP∼P(P (x) �= P (y))
(1/n)(

∑
e∈E4,n

w(e))

≥ α

1 + O(1/n)
= α − O(1/n),

where the last inequality follows from the hypothesis that every non-opposite
cut has cost at least α and the cumulative weight of all edges is n + O(1). �

We obtain our weighted instance from four instances that have large gap
against different types of cuts, and then compute the convex combination of
these instances that gives the best gap against all non-opposite cuts. All of our
four instances are defined as edge-weights on the graph G = (V,E). We identify
Δ3,n with the facet of Δ4,n defined by x4 = 0. Our first three instances are
2-dimensional instances, i.e. only edges induced by Δ3,n have positive weight.
The fourth instance has uniform weight on E4,n.

We first explain the motivation behind Instances 1, 2, and 4, since these are
easy to explain. Let Lij := {xy ∈ E4,n : Support(x),Support(y) ⊆ {i, j}}.

– Instance 1 is simply the instance of Angelidakis, Makarychev and Manurangsi
[1] on Δ3,n. It has gap 1.2− 1

n against all non-opposite cuts, since non-opposite
cuts in Δ4,n induce non-opposite cuts on Δ3,n. Additionally, we show in
Lemma 2 that the gap is strictly larger than 1.2 by a constant if the following
two conditions hold for the cut:

• there exist i, j ∈ [3] such that Lij contains only one edge whose end-nodes
have different labels (a cut with this property is called a non-fragmenting
cut), and

• Δ3,n has a lot of nodes with label 5.
– Instance 2 has uniform weight on L12, L13 and L23, and 0 on all other edges.

Here, a cut in which each Lij contains at least two edges whose end-nodes
have different labels (a fragmenting cut) has large weight. Consequently, this
instance has gap at least 2 against such cuts.

– Instance 4 has uniform weight on all edges in E4,n. A beautiful result due to
Mirzakhani and Vondrák [11] implies that non-opposite cuts with no node of
label 5 have large weight. Consequently, this instance has gap at least 3/2
against such cuts. We extend their result in Lemma 1 to show that the weight
remains large if Δ3,n has few nodes with label 5.

At first glance, the arguments above seem to suggest that some convex com-
bination of these three instances already has gap strictly larger than 1.2 for all
non-opposite cuts. However, there exist two non-opposite cuts such that at least
one of them has cost at most 1.2 in every convex combination of these three
instances (see full version [2]). One of these two cuts is a fragmenting cut that
has almost zero cost in Instance 4 and the best possible cost, namely 1.2, in

120 K. Bérczi et al.

Instance 1. Instance 3 is constructed specifically to boost the cost against this
non-opposite cut. It has positive uniform weight on 3 equilateral triangles, inci-
dent to e1, e2 and e3 on the face Δ3,n. We call the edges of these triangles red
edges. The side length of these triangles is a parameter, denoted by c, that is
optimized at the end of the proof. Essentially, we show that if a non-opposite
cut has small cost both on Instance 1 and Instance 4 (i.e., weight 1.2 on Instance
1 and O(1/n2) weight on Instance 4), then it must contain red edges.

Our lower bound of 1.20016 is obtained by optimizing the coefficients of
the convex combination and the parameter c. By Proposition 1 and the results
of Angelidakis, Makarychev and Manurangsi, we obtain that τ∗

K ≥ 1.20016 −
O(1/

√
K), i.e., the integrality gap of the CKR relaxation for k-way cut is at least

1.20016−O(1/
√

k). We complement our lower bound of 1.20016 by also showing
that the best possible gap that can be achieved using convex combinations of
our four instances is 1.20067 (see Theorem 4). We refer the reader to the full
version of this work [2] for all missing proofs.

4 A 3-dimensional Gap Instance Against Non-opposite
Cuts

We will focus on the graph G = (V,E) with the node set V := Δ4,n being
the discretized 3-dimensional simplex and the edge set E4,n := {xy : x, y ∈
Δ4,n, ‖x − y‖1 = 2/n}. The four terminals s1, . . . , s4 will be the four extreme
points of the simplex, namely si = ei for i ∈ [4]. In this context, a cut is a function
P : V → [5] such that P (si) = i for all i ∈ [4]. The cut-set corresponding to P
is defined as δ(P) := {xy ∈ E4,n : P (x) �= P (y)}. For a set S of nodes, we will
also use δ(S) to denote the set of edges with exactly one end node in S. Given
a weight function w : E4,n → R+, the cost of a cut P is

∑
e∈δ(P) w(e). Our goal

is to come up with weights on the edges so that the resulting 4-way cut instance
has gap at least 1.20016 against non-opposite cuts.

We recall that Lij denotes the boundary edges between terminals si and sj .
We will denote the boundary nodes between terminals si and sj as Vij , i.e.,
Vij := {x ∈ Δ4,n : Support(x) ⊆ {i, j}}. Let c ∈ (0, 1/2) be a constant to be
fixed later, such that cn is integral. For each i ∈ [3], we define Ui := {x ∈ Δ4,n :
x4 = 0, xi = 1−c}, Ri := Ui ∪{x ∈ Vij : xi ≥ 1−c, j ∈ [3]\{i}}, Closure(Ri) :=
{x ∈ Δ4,n : x4 = 0, xi ≥ 1 − c}, and Γi := {xy ∈ E4,n : x, y ∈ Ri}. We will refer
to the nodes in Ri as red1 nodes near terminal si and the edges in Γi as the red
edges near terminal si (see Fig. 1b). Let Face(s1, s2, s3) denote the subgraph of
G induced by the nodes whose support is contained in {1, 2, 3}. We emphasize
that red edges and red nodes are present only in Face(s1, s2, s3) and that the
total number of red edges is exactly 9cn.

1 We use the term “red” as a convenient way for the reader to remember these nodes
and edges. The exact color is irrelevant.

Improving the Integrality Gap for Multiway Cut 121

s1

s2 s3

L31L12

L23

(a) One face of the simplex with edge-
sets L12, L23 and L31.

s1

s2 s3

cn

Closure(R1)

U1

(b) Definition of red nodes and edges
near terminal s1. Dashed part corre-
sponds to (R1, Γ1).

Fig. 1. Notation on Face(s1, s2, s3).

4.1 Gap Instance as a Convex Combination

Our gap instance is a convex combination of the following four instances.

1. Instance I1. Our first instance constitutes the 3-way cut instance constructed
by Angelidakis, Makarychev and Manurangsi [1] that has gap 1.2 against non-
opposite cuts. To ensure that the total weight of all the edges in their instance
is exactly n, we will scale their instance by 6/5. Let us denote the resulting
instance as J . In I1, we simply use the instance J on Face(s1, s2, s3) and set
the weights of the rest of the edges in E4,n to be zero.

2. Instance I2. In this instance, we set the weights of the edges in L12, L23, L13

to be 1/3 and the weights of the rest of the edges in E4,n to be zero.
3. Instance I3. In this instance, we set the weights of the red edges to be 1/9c

and the weights of the rest of the edges in E4,n to be zero.
4. Instance I4. In this instance, we set the weight of edges in E4,n to be 1/n2.

We note that the total weight of all edges in each of the above instances
is n + O(1). For multipliers λ1, . . . , λ4 ≥ 0 to be chosen later that will satisfy∑4

i=1 λi = 1, let the instance I be the convex combination of the above four
instances, i.e., I = λ1I1 + λ2I2 + λ3I3 + λ4I4. By the properties of the four
instances, it immediately follows that the total weight of all edges in the instance
I is also n + O(1).

4.2 Gap of the Convex Combination

The following theorem is the main result of this section.

Theorem 3. For every n ≥ 10 and c ∈ (0, 1/2) such that cn is integer, every
non-opposite cut on I has cost at least the minimum of the following two terms:

(i) λ2 + (1.2 − 1
n)λ1 + minα∈[0, 12]

{
0.4αλ1 + 3

(
1
2 − α

)
λ4

}

(ii) 2λ2 + (1.2 − 5
2n)λ1 + 3min

{
2λ3
9c ,min

α∈
[
0, c

2
2

]
{

0.4αλ1 + 3
(

c2

2 − α
)

λ4

}}

Before proving Theorem 3, we see its consequence.

122 K. Bérczi et al.

Corollary 1. There exist constants c ∈ (0, 1/2) and λ1, λ2, λ3, λ4 ≥ 0 with∑4
i=1 λi = 1 such that the cost of every non-opposite cut in the resulting convex

combination I is at least 1.20016 − O(1/n).

Proof. The corollary follows from Theorem 3 by setting λ1 = 0.751652, λ2 =
0.147852, λ3 = 0.000275, λ4 = 0.100221 and c = 0.074125 (this is the optimal
setting to achieve the largest lower bound based on Theorem 3). �

Corollary 1 in conjunction with Proposition 1 immediately implies Theorem
2. The following theorem complements Corollary 1 by giving an upper bound
on the best possible gap that is achievable using the convex combination of our
four instances.

Theorem 4. For every constant c ∈ (0, 1/2) and every λ1, λ2, λ3, λ4 ≥ 0 with∑4
i=1 λi = 1, there exists a non-opposite cut whose cost in the resulting convex

combination I is at most 1.20067 + O(1/n).

In light of Corollary 1 and Theorem 4, if we believe that the integrality gap of
the CKR relaxation is more than 1.20067, then considering convex combination
of alternative instances is a reasonable approach towards proving this.

The rest of the section is devoted to proving Theorem 3. We rely on two
main ingredients in the proof. The first ingredient is a statement about non-
opposite cuts in the 3-dimensional discretized simplex. We prove this in the
appendix, where we also give a generalization to higher dimensional simplices,
which might be of independent interest.

Lemma 1. Let P be a non-opposite cut on Δ4,n with α(n + 1)(n + 2) nodes
from Face(s1, s2, s3) labeled as 1, 2, or 3 for some α ∈ [0, 1/2]. Then, |δ(P)| ≥
3αn(n + 1).

The constant 3 that appears in the conclusion of Lemma 1 is the best possible
for any fixed α (if n → ∞). To see this, consider the non-opposite cut P obtained
by labeling si to be i for every i ∈ [4], all nodes at distance at most

√
2αn

from s1 to be 1, and all remaining nodes to be 5. The number of nodes from
Face(s1, s2, s3) labeled as 1, 2, or 3 is αn2 + O(n). The number of edges in the
cut is 3αn2 + O(n).

The second ingredient involves properties of the 3-way cut instance con-
structed by Angelidakis, Makarychev and Manurangsi [1]. We need two prop-
erties that are summarized in Lemma 2 and Corollary 2. We define a cut
Q : Δ3,n → [4] to be a fragmenting cut if |δ(Q) ∩ Lij | ≥ 2 for every distinct
i, j ∈ [3]; otherwise it is a non-fragmenting cut.

The first property is that non-opposite non-fragmenting cuts in Δ3,n that
label a large number of nodes with label 4 have cost much larger than 1.2. Recall
that J is the instance constructed by Angelidakis, Makarychev and Manurangsi
[1] with edge weights scaled by 6/5 so that the total edge-weight is exactly n.

Lemma 2. Let Q : Δ3,n → [4] be a non-opposite cut with αn2 nodes labeled as
4. If Q is a non-fragmenting cut and n ≥ 10, then the cost of Q on J is at least
1.2 + 0.4α − 1

n .

Improving the Integrality Gap for Multiway Cut 123

We show Lemma 2 by modifying Q to obtain a non-opposite cut Q′ while
reducing its cost by 0.4α. By the main result of [1], the cost of every non-opposite
cut Q′ on J is at least 1.2− 1

n . Therefore, it follows that the cost of Q on J is at
least 1.2 − 1

n + 0.4α. We emphasize that while it might be possible to improve
the constant 0.4 that appears in the conclusion of Lemma 2, it does not lead to
much improvement on the overall integrality gap as illustrated by Theorem 4.

The second property is that non-opposite cuts which do not remove any of
the red edges, but label a large number of nodes in the red region with label 4
have cost much larger than 1.2.

Corollary 2. Let Q : Δ3,n → [4] be a non-opposite cut and n ≥ 10. For each
i ∈ [3], let

Ai :=

{
{v ∈ Closure(Ri) : Q(v) = 4} if δ(Q) ∩ Γi = ∅,

∅ otherwise.

Then, the cost of Q on J is at least 1.2 + 0.4
∑3

i=1 |Ai|/n2 − 5
2n .

In order to show Corollary 2, we first derive that the cost of the edges δ(∪3
i=1Ai)

in the instance J is at least 0.4
∑3

i=1 |Ai|/n2− 3
2n using Lemma 2. Next, we modify

Q to obtain a non-opposite cut Q′ such that δ(Q′) = δ(Q)\δ(∪3
i=1Ai). By the main

result of [1], the cost of every non-opposite cut Q′ on J is at least 1.2− 1
n . Therefore,

it follows that the cost of Q on J is at least 1.2 + 0.4
∑3

i=1 |Ai|/n2.
We now have the ingredients to prove Theorem 3.

Proof of Theorem 3. Let P : Δ4,n → [5] be a non-opposite cut. Let Q be the cut
P restricted to Face(s1, s2, s3), i.e., for every v ∈ Δ4,n with Support(v) ⊆ [3], let

Q(v) :=

{
P (v) if P (v) ∈ {1, 2, 3},

4 if P (v) = 5.

We consider two cases.

Case 1: Q is a non-fragmenting cut. Let the number of nodes in Face(s1, s2, s3)
that are labeled by Q as 4 (equivalently, labeled by P as 5) be α(n + 1)(n + 2)
for some α ∈ [

0, 1
2

]
. Since |{x ∈ Face(s1, s2, s3) : Q(x) = 4}| ≥ αn2,

Lemma 2 implies that the cost of Q on J , and hence the cost of P on I1, is
at least 1.2 + 0.4α − 1

n . Moreover, the cost of P on I2 is at least 1 since at
least one edge in Lij should be in δ(P) for every pair of distinct i, j ∈ [3]. To
estimate the cost on I4, we observe that the number of nodes on Face(s1, s2, s3)
labeled by P as 1, 2, or 3 is (1/2 − α)(n + 1)(n + 2). By Lemma 1, we have
that |δ(P)| ≥ 3(1/2 − α)n(n + 1) and thus, the cost of P on I4 is at least
3(1/2 − α). Therefore, the cost of P on the convex combination instance I is at
least λ2 +

(
1.2 − 1

n

)
λ1 + minα∈[0, 12]

{
0.4αλ1 + 3

(
1
2 − α

)
λ4

}
.

Case 2: Q is a fragmenting cut. Then, the cost of P on I2 is at least 2 as a
fragmenting cut contains at least 2 edges from each Lij for distinct i, j ∈ [3].

124 K. Bérczi et al.

We will now compute the cost of P on the other instances. Let r := |{i ∈ [3] :
δ(P) ∩ Γi �= ∅}|, i.e., r is the number of red triangles that are intersected by the
cut P . We will derive lower bounds on the cost of the cut in each of the three
instances I1, I3 and I4 based on the value of r ∈ {0, 1, 2, 3}. For each i ∈ [3], let

Ai :=

{
{v ∈ Closure(Ri) : P (v) = 5} if δ(P) ∩ Γi = ∅,

∅ otherwise,

and let α := |A1 ∪ A2 ∪ A3|/((n + 1/c)(n + 2/c)). Since c < 1/2, the sets Ai

and Aj are disjoint for distinct i, j ∈ [3]. We note that α ∈ [0, (3 − r)c2/2] since
|Ai| ≤ (cn + 1)(cn + 2)/2 and Ai ∩ Aj = ∅.

In order to lower bound the cost of P on I1, we will use Corollary 2. We
recall that Q is the cut P restricted to Face(s1, s2, s3), so the cost of P on I1 is
the same as the cost of Q on J . Moreover, by Corollary 2, the cost of Q on J is
at least 1.2 + 0.4α − 5

2n , because α ≤ ∑3
i=1 |Ai|/n2. Hence, the cost of P on I1

is at least 1.2 + 0.4α − 5
2n .

We now show that the cost of P on I3 is at least 2r/9c. For this, we will
show that for i ∈ [3], if δ(P)∩Γi �= ∅, then |δ(P)∩Γi| ≥ 2. Indeed, the subgraph
(Ri, Γi) is a cycle and therefore, if P (x) �= P (y) for some xy ∈ Γi, then the path
Γi − xy must also contain two consecutive nodes labeled differently by P .

Next we compute the cost of P on I4. If r = 3, then the cost of P on I4 is at
least 0. Suppose r ∈ {0, 1, 2}. For a red triangle i ∈ [3] with δ(P) ∩ Γi = ∅, we
have at least (cn + 1)(cn + 2)/2 − |Ai| nodes from Closure(Ri) that are labeled
as 1, 2, or 3. Moreover, the nodes in Closure(Ri) and Closure(Rj) are disjoint
for distinct i, j ∈ [3]. Hence, the number of nodes in Face(s1, s2, s3) that are
labeled as 1, 2, or 3 is at least (3 − r)(cn + 1)(cn + 2)/2 − α(n + 1/c)(n + 2/c) =
((3−r)c2/2−α)(n+1/c)(n+2/c), which is at least ((3−r)c2/2−α)(n+1)(n+2),
since c ≤ 1. Therefore, by Lemma 1, we have |δ(P)| ≥ 3((3 − r)c2/2 − α)n2 and
thus, the cost of P on I4 is at least 3((3 − r)c2/2 − α).

Thus, the cost of P on the convex combination instance I is at least 2λ2 +
(1.2 − 5

2n)λ1 + γ(r, α) for some α ∈ [0, (3 − r)c2/2], where

γ(r, α) :=

{
6λ3
9c , if r = 3,

0.4αλ1 + 2r
9cλ3 + 3

(
(3−r)c2

2 − α
)

λ4, if r ∈ {0, 1, 2}.

In particular, the cost of P on the convex combination instance I is at least
2λ2 + (1.2 − 5/(2n))λ1 + γ∗, where γ∗ := min

r∈{0,1,2,3}
min

α∈
[
0,

(3−r)c2
2

] γ(r, α). The

following claim completes the proof of the theorem.

Claim. γ∗ ≥ 3min
{

2λ3
9c ,min

α∈
[
0, c

2
2

]
{

0.4αλ1 + 3
(

c2

2 − α
)

λ4

}}
. �

Acknowledgements. Kristóf was supported by the ÚNKP-18-4 New National Excel-
lence Program of the Ministry of Human Capacities. Karthekeyan was supported by

Improving the Integrality Gap for Multiway Cut 125

NSF grant CCF-1814613. Tamás was supported by the Hungarian National Research,
Development and Innovation Office – NKFIH grant K120254. Vivek was supported by
NSF grant CCF-1319376.

Appendix: Size of Non-opposite Cuts in Δk,n

In this section, we prove Lemma 1. In fact, we prove a general result for Δk,n, that
may be useful for constructing instances with larger gap by considering higher
dimensional simplices. Our result is an extension of a theorem of Mirzakhani
and Vondrák [11] on Sperner-admissible labelings.

A labeling � : Δk,n → [k] is Sperner-admissible if �(x) ∈ Support(x) for every
x ∈ Δk,n. We say that x ∈ Δk,n has an inadmissible label if �(x) /∈ Support(x).
Let Hk,n denote the hypergraph whose node set is Δk,n and whose hyperedge
set is E :=

{{
n−1

n x + 1
ne1,

n−1
n x + 1

ne2, . . . ,
n−1

n x + 1
nek

}
: x ∈ Δk,n−1

}
. Each

hyperedge e ∈ E has k nodes, and if x, y ∈ e, then there exist distinct i, j ∈ [n]
such that x − y = 1

nei − 1
nej . We remark that Hk,n has

(
n+k−1

k−1

)
nodes and(

n+k−2
k−1

)
hyperedges. Geometrically, the hyperedges correspond to simplices that

are translates of each other and share at most one node. Given a labeling �,
a hyperedge of Hk,n is monochromatic if all of its nodes have the same label.
Mirzakhani and Vondrák showed the following.

Theorem 5 (Proposition 2.1 in [11]). Let � be a Sperner-admissible labeling
of Δk,n. Then, the number of monochromatic hyperedges in Hk,n is at most(
n+k−3

k−1

)
, and therefore the number of non-monochromatic hyperedges is at least(

n+k−3
k−2

)
.

Our main result of this section is an extension of the above result to the case
when there are some inadmissible labels on a single face of Δk,n. We show that
a labeling in which all inadmissible labels are on a single face still has a large
number of non-monochromatic hyperedges. We will denote the nodes x ∈ Δk,n

with Support(x) ⊆ [k − 1] as Face(s1, . . . , sk−1).

Theorem 6. Let � be a labeling of Δk,n such that all inadmissible labels are on
Face(s1, . . . , sk−1) and the number of nodes with inadmissible labels is β (n+k−2)!

n!
for some β. Then, the number of non-monochromatic hyperedges of Hk,n is at

least
(

1
(k−2)! − β

)
(n+k−3)!
(n−1)! .

Proof. Let Z := {x ∈ Face(s1, . . . , sk−1) : �(x) = k}, i.e. Z is the set of nodes in
Face(s1, . . . , sk−1) having an inadmissible label. Let us call a hyperedge of Hk,n

inadmissible if the label of one of its nodes is inadmissible.

Claim. There are at most β (n+k−3)!
(n−1)! inadmissible monochromatic hyperedges.

Proof. Let E ′ be the set of inadmissible monochromatic hyperedges. Each hyper-
edge e ∈ E ′ has exactly k − 1 nodes from Face(s1, . . . , sk−1) and they all have
the same label as e is monochromatic. Thus, each e ∈ E ′ contains k − 1 nodes

126 K. Bérczi et al.

from Z. We define an injective map ϕ : E ′ → Z by letting ϕ(e) to be the node
x ∈ e∩Z with the largest 1st coordinate. Notice that if x = ϕ(e), then the other
nodes of e are x − (1/n)e1 + (1/n)ei (i = 2, . . . , k), and all but the last one are
in Z. In particular, x1 is positive.

Let Z ′ ⊆ Z be the image of ϕ. For x ∈ Z and i ∈ {2, . . . , k − 1}, let
Zi

x := {y ∈ Z : yj = xj ∀j ∈ [k − 1] \ {1, i}}. Since yk = 0 and ‖y‖1 = 1 for
every y ∈ Z, the nodes of Zi

x are on a line containing x. It also follows that
Zi

x ∩ Zj
x = {x} if i �= j. Let Z ′′ := {x ∈ Z : ∃i ∈ {2, . . . , k − 1} such that xi ≥

yi ∀y ∈ Zi
x}. We observe that if x ∈ Z ′, then for each i ∈ {2, . . . , k−1}, the node

y = x − (1/n)e1 + (1/n)ei is in Z and hence, y ∈ Zi
x with yi > xi. In particular,

this implies that Z ′ ∩ Z ′′ = ∅. We now compute an upper bound on the size of
Z \ Z ′′, which gives an upper bound on the size of Z ′ and hence also on the size
of E ′, as |Z ′| = |E ′|. For each node x ∈ Z \ Z ′′ and for every i ∈ {2, . . . , k − 1},
let zi

x be the node in Z ′′ ∩ Zi
x with the largest ith coordinate. Clearly zi

x �= zj
x if

i �= j, because Zi
x ∩ Zj

x = {x}.
For given y ∈ Z ′′ and i ∈ {2, . . . , k − 1}, we want to bound the size of

S := {x ∈ Z \ Z ′′ : zi
x = y}. Consider a ∈ S. Then, zi

a = y implies that the
node in Z ′′ ∩ Zi

a with the largest i-th coordinate is y. That is, yj = aj for all
j ∈ [k − 1] \ {1, i} and moreover yi ≥ ai. If yi = ai, then y = a, so a is in Z ′′

which contradicts a ∈ S. Thus, yi > ai for any a ∈ S, i.e. the nodes in S are on
the line Zi

y and their i-th coordinate is strictly smaller than yi. This implies that
|S| ≤ nyi. Consequently, the size of the set {x ∈ Z \ Z ′′ : y = zi

x for some i ∈
{2, . . . , k − 1}} is at most n, since

∑k−2
i=2 yi ≤ ‖y‖1 = 1.

For each x ∈ Z \ Z ′′, we defined k − 2 distinct nodes z2x, . . . , zk−1
x ∈ Z ′′.

Moreover, for each y ∈ Z ′′, we have at most n distinct nodes x in Z\Z ′′ for which
there exists i ∈ {2, . . . , k − 1} such that y = zi

x. Hence, (k − 2)|Z \ Z ′′| ≤ n|Z ′′|,
and therefore |Z \ Z ′′| ≤ (n/(n + k − 2))|Z|. This gives |E ′| = |Z ′| ≤ |Z \ Z ′′| ≤

n
n+k−2 |Z| ≤ β (n+k−2)!

n!
n

n+k−2 = β (n+k−3)!
(n−1)! , as required. �

Let �′ be a Sperner-admissible labeling obtained from � by changing the label
of each node in Z to an arbitrary admissible label. By Theorem 5, the number
of monochromatic hyperedges for �′ is at most

(
n+k−3

k−1

)
. By combining this with

the above claim, we get that the number of monochromatic hyperedges for � is
at most

(
n+k−3

k−1

)
+ β (n+k−3)!

(n−1)! . Since Hk,n has
(
n+k−2

k−1

)
hyperedges, the number

of non-monochromatic hyperedges is at least
(
n+k−2

k−1

) − (
n+k−3

k−1

) − β (n+k−3)!
(n−1)! =(

1
(k−2)! − β

)
(n+k−3)!
(n−1)! . �

We note that Theorem 6 is tight for the extreme cases where β = 0 and
β = 1/(k − 2)!.

We now derive Lemma 1 from Theorem 6.

Proof of Lemma 1. Let � be the labeling of Δ4,n obtained from P by setting
�(x) = 4 if P (x) = 5, and �(x) = P (x) otherwise. This is a labeling with
(12 − α)(n + 1)(n + 2) nodes having an inadmissible label, all on Face(s1, s2, s3).
We apply Theorem 6 with parameters k = 4, β = 1

2 − α, and the labeling �. By

Improving the Integrality Gap for Multiway Cut 127

the theorem, the number of non-monochromatic hyperedges in H4,n = (Δ4,n, E)
under labeling � is at least αn(n + 1).

We observe that for each hyperedge e = {u1, u2, u3, u4} ∈ E , the subgraph
G[e] induced by the nodes in e contains 6 edges. Also, for any two hyperedges
e1 and e2, the edges in the induced subgraphs G[e1] and G[e2] are disjoint as
e1 and e2 can share at most one node. Moreover, for each non-monochromatic
hyperedge e ∈ E , at least 3 edges of G[e] are in δ(P). Thus, the number of edges
of G that are in δ(P) is at least 3αn(n + 1). �

References

1. Angelidakis, H., Makarychev, Y., Manurangsi, P.: An improved integrality gap for
the Călinescu-Karloff-Rabani relaxation for multiway cut. In: Integer Programming
and Combinatorial Optimization, IPCO 2017, pp. 39–50 (2017)

2. Bérczi, K., Chandrasekaran, K., Király, T., Madan, V.: Improving the integrality
gap for multiway cut (2018). Preprint: https://arxiv.org/abs/1807.09735

3. Buchbinder, N., Naor, J., Schwartz, R.: Simplex partitioning via exponential clocks
and the multiway cut problem. In: Proceedings of the Forty-Fifth Annual ACM
Symposium on Theory of Computing, STOC 2013, pp. 535–544 (2013)

4. Buchbinder, N., Schwartz, R., Weizman, B.: Simplex transformations and the mul-
tiway cut problem. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2017, pp. 2400–2410 (2017)

5. Călinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for
multiway cut. J. Comput. Syst. Sci. 60(3), 564–574 (2000)

6. Cheung, K., Cunningham, W., Tang, L.: Optimal 3-terminal cuts and linear pro-
gramming. Math. Programm. 106(1), 1–23 (2006)

7. Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The
complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

8. Freund, A., Karloff, H.: A lower bound of 8/(7+1/(k− 1)) on the integrality ratio
of the Călinescu-Karloff-Rabani relaxation for multiway cut. Inf. Process. Lett.
75(1), 43–50 (2000)

9. Karger, D., Klein, P., Stein, C., Thorup, M., Young, N.: Rounding algorithms for a
geometric embedding of minimum multiway cut. Math. Oper. Res. 29(3), 436–461
(2004)

10. Manokaran, R., Naor, J., Raghavendra, P., Schwartz, R.: SDP gaps and UGC
hardness for multiway cut, 0-extension, and metric labeling. In: Proceedings of
the Fortieth Annual ACM Symposium on Theory of Computing, STOC 2008, pp.
11–20 (2008)

11. Mirzakhani, M., Vondrák, J.: Sperner’s colorings, hypergraph labeling problems
and fair division. In: Proceedings of the twenty-sixth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2015, pp. 873–886 (2015)

12. Sharma, A., Vondrák, J.: Multiway cut, pairwise realizable distributions, and
descending thresholds. In: Proceedings of the Forty-Sixth Annual ACM Sympo-
sium on Theory of Computing, STOC 2014, pp. 724–733 (2014)

https://arxiv.org/abs/1807.09735

�1-sparsity Approximation Bounds
for Packing Integer Programs

Chandra Chekuri, Kent Quanrud, and Manuel R. Torres(B)

University of Illinois at Urbana-Champaign, Urbana, IL, USA
{chekuri,quanrud2,manuelt2}@illinois.edu

Abstract. We consider approximation algorithms for packing integer
programs (PIPs) of the form max{〈c, x〉 : Ax ≤ b, x ∈ {0, 1}n} where c,
A, and b are nonnegative. We let W = mini,j bi/Ai,j denote the width
of A which is at least 1. Previous work by Bansal et al. [1] obtained
an Ω(1

Δ
1/�W �
0

)-approximation ratio where Δ0 is the maximum number

of nonzeroes in any column of A (in other words the �0-column spar-
sity of A). They raised the question of obtaining approximation ratios
based on the �1-column sparsity of A (denoted by Δ1) which can be
much smaller than Δ0. Motivated by recent work on covering integer
programs (CIPs) [4,7] we show that simple algorithms based on random-
ized rounding followed by alteration, similar to those of Bansal et al. [1]
(but with a twist), yield approximation ratios for PIPs based on Δ1.
First, following an integrality gap example from [1], we observe that
the case of W = 1 is as hard as maximum independent set even when
Δ1 ≤ 2. In sharp contrast to this negative result, as soon as width is
strictly larger than one, we obtain positive results via the natural LP
relaxation. For PIPs with width W = 1 + ε where ε ∈ (0, 1], we obtain
an Ω(ε2/Δ1)-approximation. In the large width regime, when W ≥ 2, we
obtain an Ω((1

1+Δ1/W
)1/(W−1))-approximation. We also obtain a (1−ε)-

approximation when W = Ω(log(Δ1/ε)

ε2
).

Keywords: Packing integer programs · Approximation algorithms ·
�1-column sparsity

1 Introduction

Packing integer programs (abbr. PIPs) are an expressive class of integer pro-
grams of the form:

maximize 〈c, x〉 over x ∈ {0, 1}n s.t. Ax ≤ b,

C. Chekuri and K. Quanrud supported in part by NSF grant CCF-1526799. M. Torres
supported in part by fellowships from NSF and the Sloan Foundation.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 128–140, 2019.
https://doi.org/10.1007/978-3-030-17953-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_10

�1-sparsity Approximation Bounds for PIPs 129

where A ∈ R
m×n
≥0 , b ∈ R

m
≥0 and c ∈ R

n
≥0 all have nonnegative entries1. Many

important problems in discrete and combinatorial optimization can be cast as
special cases of PIPs. These include the maximum independent set in graphs and
hypergraphs, set packing, matchings and b-matchings, knapsack (when m = 1),
and the multi-dimensional knapsack. The maximum independent set problem
(MIS), a special case of PIPs, is NP-hard and unless P = NP there is no
n1−ε-approximation where n is the number of nodes in the graph [10,18]. For
this reason it is meaningful to consider special cases and other parameters that
control the difficulty of PIPs. Motivated by the fact that MIS admits a simple

1
Δ(G) -approximation where Δ(G) is the maximum degree of G, previous work
considered approximating PIPs based on the maximum number of nonzeroes in
any column of A (denoted by Δ0); note that when MIS is written as a PIP, Δ0

coincides with Δ(G). As another example, when maximum weight matching is
written as a PIP, Δ0 = 2. Bansal et al. [1] obtained a simple and clever algorithm
that achieved an Ω(1/Δ0)-approximation for PIPs via the natural LP relaxation;
this improved previous work of Pritchard [13,14] who was the first to obtain
an approximation for PIPs only as a function of Δ0. Moreover, the rounding
algorithm in [1] can be viewed as a contention resolution scheme which allows one
to get similar approximation ratios even when the objective is submodular [1,6].
It is well-understood that PIPs become easier when the entries in A are small
compared to the packing constraints b. To make this quantitative we consider the
well-studied notion called the width defined as W := mini,j:Ai,j>0 bi/Ai,j . Bansal
et al. obtain an Ω((1

Δ0
)1/�W�)-approximation which improves as W becomes

larger. Although they do not state it explicitly, their approach also yields a
(1 − ε)-approximation when W = Ω(1

ε2 log(Δ0/ε)).
Δ0 is a natural measure for combinatorial applications such as MIS and

matchings where the underlying matrix A has entries from {0, 1}. However, in
some applications of PIPs such as knapsack and its multi-dimensional general-
ization which are more common in resource-allocation problems, the entries of
A are arbitrary rational numbers (which can be assumed to be from the interval
[0, 1] after scaling). In such applications it is natural to consider another measure
of column-sparsity which is based on the �1 norm. Specifically we consider Δ1,
the maximum column sum of A. Unlike Δ0, Δ1 is not scale invariant so one
needs to be careful in understanding the parameter and its relationship to the
width W . For this purpose we normalize the constraints Ax ≤ b as follows. Let
W = mini,j:Ai,j>0 bi/Ai,j denote the width as before (we can assume without
loss of generality that W ≥ 1 since we are interested in integer solutions). We can
then scale each row Ai of A separately such that, after scaling, the i’th constraint
reads as Aix ≤ W . After scaling all rows in this fashion, entries of A are in the
interval [0, 1], and the maximum entry of A is equal to 1. Note that this scaling
process does not alter the original width. We let Δ1 denote the maximum col-
umn sum of A after this normalization and observe that 1 ≤ Δ1 ≤ Δ0. In many

1 We can allow the variables to have general integer upper bounds instead of restricting
them to be boolean. As observed in [1], one can reduce this more general case to the
{0, 1} case without too much loss in the approximation.

130 C. Chekuri et al.

settings of interest Δ1 � Δ0. We also observe that Δ1 is a more robust measure
than Δ0; small perturbations of the entries of A can dramatically change Δ0

while Δ1 changes minimally.
Bansal et al. raised the question of obtaining an approximation ratio for

PIPs as a function of only Δ1. They observed that this is not feasible via the
natural LP relaxation by describing a simple example where the integrality gap
of the LP is Ω(n) while Δ1 is a constant. In fact their example essentially shows
the existence of a simple approximation preserving reduction from MIS to PIPs
such that the resulting instances have Δ1 ≤ 2; thus no approximation ratio that
depends only on Δ1 is feasible for PIPs unless P = NP . These negative results
seem to suggest that pursuing bounds based on Δ1 is futile, at least in the worst
case. However, the starting point of this paper is the observation that both the
integrality gap example and the hardness result are based on instances where
the width W of the instance is arbitrarily close to 1. We demonstrate that these
examples are rather brittle and obtain several positive results when we consider
W ≥ (1 + ε) for any fixed ε > 0.

1.1 Our Results

Our first result is on the hardness of approximation for PIPs that we already
referred to. The hardness result suggests that one should consider instances
with W > 1. Recall that after normalization we have Δ1 ≥ 1 and W ≥ 1
and the maximum entry of A is 1. We consider three regimes of W and obtain
the following results, all via the natural LP relaxation, which also establish
corresponding upper bounds on the integrality gap.

(i) 1 < W ≤ 2. For W = 1 + ε where ε ∈ (0, 1] we obtain an Ω(ε2

Δ1
)-

approximation.
(ii) W ≥ 2. We obtain an Ω((1

1+
Δ1
W

)1/(W−1))-approximation which can be

simplified to Ω((1
1+Δ1

)1/(W−1)) since W ≥ 1.
(iii) A (1 − ε)-approximation when W = Ω(1

ε2 log(Δ1/ε)).

Our results establish approximation bounds based on Δ1 that are essentially
the same as those based on Δ0 as long as the width is not too close to 1.
We describe randomized algorithms which can be derandomized via standard
techniques. The algorithms can be viewed as contention resolution schemes, and
via known techniques [1,6], the results yield corresponding approximations for
submodular objectives; we omit these extensions in this version.

All our algorithms are based on a simple randomized rounding plus alteration
framework that has been successful for both packing and covering problems. Our
scheme is similar to that of Bansal et al. at a high level but we make a simple but
important change in the algorithm and its analysis. This is inspired by recent
work on covering integer programs [4] where �1-sparsity based approximation
bounds from [7] were simplified.

�1-sparsity Approximation Bounds for PIPs 131

1.2 Other Related Work

We note that PIPs are equivalent to the multi-dmensional knapsack problem.
When m = 1 we have the classical knapsack problem which admits a very efficient
FPTAS (see [2]). There is a PTAS for any fixed m [8] but unless P = NP an
FPTAS does not exist for m = 2.

Approximation algorithms for PIPs in their general form were considered
initially by Raghavan and Thompson [15] and refined substantially by Srinivasan
[16]. Srinivasan obtained approximation ratios of the form Ω(1/nW) when A
had entries from {0, 1}, and a ratio of the form Ω(1/n1/�W�) when A had entries
from [0, 1]. Pritchard [13] was the first to obtain a bound for PIPs based solely
on the column sparsity parameter Δ0. He used iterated rounding and his initial
bound was improved in [14] to Ω(1/Δ2

0). The current state of the art is due to
Bansal et al. [1]. Previously we ignored constant factors when describing the
ratio. In fact [1] obtains a ratio of (1 − o(1) e−1

e2Δ0
) by strengthening the basic LP

relaxation.
In terms of hardness of approximation, PIPs generalize MIS and hence one

cannot obtain a ratio better than n1−ε unless P = NP [10,18]. Building on
MIS, [3] shows that PIPs are hard to approximate within a nΩ(1/W) factor for
any constant width W . Hardness of MIS in bounded degree graphs [17] and
hardness for k-set-packing [11] imply that PIPs are hard to approximate to
within Ω(1/Δ1−ε

0) and to within Ω((log Δ0)/Δ0) when Δ0 is a sufficiently large
constant. These hardness results are based on {0, 1} matrices for which Δ0 and
Δ1 coincide.

There is a large literature on deterministic and randomized rounding algo-
rithms for packing and covering integer programs and connections to several
topics and applications including discrepancy theory. �1-sparsity guarantees for
covering integer programs were first obtained by Chen, Harris and Srinivasan [7]
partly inspired by [9].

2 Hardness of Approximating PIPs as a Function of Δ1

Bansal et al. [1] showed that the integrality gap of the natural LP relaxation
for PIPs is Ω(n) even when Δ1 is a constant. One can use essentially the same
construction to show the following theorem whose proof can be found in the
appendix.

Theorem 1. There is an approximation preserving reduction from MIS to
instances of PIPs with Δ1 ≤ 2.

Unless P = NP , MIS does not admit a n1−ε-approximation for any fixed
ε > 0 [10,18]. Hence the preceding theorem implies that unless P = NP one
cannot obtain an approximation ratio for PIPs solely as a function of Δ1.

132 C. Chekuri et al.

Round-and-Alter Framework: input A, b, and α

let x be the optimum fractional solution of the natural LP relaxation
for j ∈ [n], set x′

j to be 1 independently with probability αxj and 0 otherwise
x′′ ← x′

for i ∈ [m] do
find S ⊆ [n] such that setting x′

j = 0 for all j ∈ S would satisfy 〈ei, Ax′〉 ≤ bi

for all j ∈ S, set x′′
j = 0

end for
return x′′

Fig. 1. Randomized rounding with alteration framework.

3 Round and Alter Framework

The algorithms in this paper have the same high-level structure. The algorithms
first scale down the fractional solution x by some factor α, and then randomly
round each coordinate independently. The rounded solution x′ may not be fea-
sible for the constraints. The algorithm alters x′ to a feasible x′′ by considering
each constraint separately in an arbitrary order; if x′ is not feasible for constraint
i some subset S of variables are chosen to be set to 0. Each constraint corre-
sponds to a knapsack problem and the framework (which is adapted from [1])
views the problem as the intersection of several knapsack constraints. A formal
template is given in Fig. 1. To make the framework into a formal algorithm, one
must define α and how to choose S in the for loop. These parts will depend on
the regime of interest.

For an algorithm that follows the round-and-alter framework, the expected
output of the algorithm is E [〈c, x′′〉] =

∑n
j=1 cj ·Pr[x′′

j = 1]. Independent of how
α is defined or how S is chosen, Pr[x′′

j = 1] = Pr[x′′
j = 1|x′

j = 1] · Pr[x′
j = 1]

since x′′
j ≤ x′

j . Then we have

E[〈c, x′′〉] = α

n∑

j=1

cjxj · Pr[x′′
j = 1|x′

j = 1].

Let Eij be the event that x′′
j is set to 0 when ensuring constraint i is satisfied

in the for loop. As x′′
j is only set to 0 if at least one constraint sets x′′

j to 0, we
have

Pr[x′′
j = 0|x′

j = 1] = Pr

⎡

⎣
⋃

i∈[m]

Eij |x′
j = 1

⎤

⎦ ≤
m∑

i=1

Pr[Eij |x′
j = 1].

Combining these two observations, we have the following lemma, which
applies to all of our subsequent algorithms.

Lemma 1. Let A be a randomized rounding algorithm that follows the round-
and-alter framework given in Fig. 1. Let x′ be the rounded solution obtained with

�1-sparsity Approximation Bounds for PIPs 133

round-and-alter-by-sorting(A, b, α1):
let x be the optimum fractional solution of the natural LP relaxation
for j ∈ [n], set x′

j to be 1 independently with probability α1xj and 0 otherwise
x′′ ← x′

for i ∈ [m] do
sort and renumber such that Ai,1 ≤ · · · ≤ Ai,n

s ← max{� ∈ [n] :
∑�

j=1 Ai,jx
′
j ≤ bi}

for each j ∈ [n] such that j > s, set x′′
j = 0

end for
return x′′

Fig. 2. Round-and-alter in the large width regime. Each constraint sorts the coordi-
nates in increasing size and greedily picks a feasible set and discards the rest.

scaling factor α. Let Eij be the event that x′′
j is set to 0 by constraint i. If for all

j ∈ [n] we have
∑m

i=1 Pr[Eij |x′
j = 1] ≤ γ, then A is an α(1 − γ)-approximation

for PIPs.

We will refer to the quantity Pr[Eij |x′
j = 1] as the rejection probability of

item j in constraint i. We will also say that constraint i rejects item j if x′′
j is

set to 0 in constraint i.

4 The Large Width Regime: W ≥ 2

In this section, we consider PIPs with width W ≥ 2. Recall that we assume
A ∈ [0, 1]m×n and bi = W for all i ∈ [m]. Therefore we have Ai,j ≤ W/2 for
all i, j and from a knapsack point of view all items are “small”. We apply the
round-and-alter framework in a simple fashion where in each constraint i the
coordinates are sorted by the coefficients in that row and the algorithm chooses
the largest prefix of coordinates that fit in the capacity W and the rest are
discarded. We emphasize that this sorting step is crucial for the analysis and
differs from the scheme in [1]. Figure 2 describes the formal algorithm.

The Key Property for the Analysis: The analysis relies on obtaining a bound on
the rejection probability of coordinate j by constraint i. Let Xj be the indicator
variable for j being chosen in the first step. We show that Pr[Eij | Xj = 1] ≤ cAij

for some c that depends on the scaling factor α. Thus coordinates with smaller
coefficients are less likely to be rejected. The total rejection probability of j,∑m

i=1 Pr[Eij | Xj = 1], is proportional to the column sum of coordinate j which
is at most Δ1.

The analysis relies on the Chernoff bound, and depending on the parameters,
one needs to adjust the analysis. In order to highlight the main ideas we provide
a detailed proof for the simplest case and include the proofs of some of the other
cases in the appendix. The rest of the proofs can be found in the full version [5].

134 C. Chekuri et al.

4.1 An Ω(1/Δ1)-approximation Algorithm

We show that round-and-alter-by-sorting yields an Ω(1/Δ1)-approximation if we
set the scaling factor α1 = 1

c1Δ1
where c1 = 4e1+1/e.

The rejection probability is captured by the following main lemma.

Lemma 2. Let α1 = 1
c1Δ1

for c1 = 4e1+1/e. Let i ∈ [m] and j ∈ [n]. Then in the

algorithm round-and-alter-by-sorting(A, b, α1), we have Pr[Eij |Xj = 1] ≤ Ai,j

2Δ1
.

Proof. At iteration i of round-and-alter-by-sorting, after the set {Ai,1, . . . , Ai,n}
is sorted, the indices are renumbered so that Ai,1 ≤ · · · ≤ Ai,n. Note that j may
now be a different index j′, but for simplicity of notation we will refer to j′ as
j. Let ξ� = 1 if x′

� = 1 and 0 otherwise. Let Yij =
∑j−1

�=1 Ai,�ξ�.
If Eij occurs, then Yij > W − Ai,j , since x′′

j would not have been set to zero
by constraint i. That is,

Pr[Eij |Xj = 1] ≤ Pr[Yij > W − Ai,j |Xj = 1].

The event Yij > W − Ai,j does not depend on x′
j . Therefore,

Pr[Yij > W − Ai,j |Xj = 1] ≤ Pr[Yij ≥ W − Ai,j].

To upper bound E[Yij], we have

E[Yij] =
j−1∑

�=1

Ai,� · Pr[X� = 1] ≤ α1

n∑

�=1

Ai,�x� ≤ α1W.

As Ai,j ≤ 1, W ≥ 2, and α1 < 1/2, we have (1−α1)W
Ai,j

> 1. Using the fact that
Ai,j is at least as large as all entries Ai,j′ for j′ < j, we satisfy the conditions to
apply the Chernoff bound in Theorem 7. This implies

Pr[Yij > W − Ai,j] ≤
(

α1e
1−α1W

W − Ai,j

)(W−Ai,j)/Ai,j

.

Note that W
W−Ai,j

≤ 2 as W ≥ 2. Because e1−α1 ≤ e and by the choice of α1, we
have
(

α1e
1−α1W

W − Ai,j

)(W−Ai,j)/Ai,j

≤ (2eα1)
(W−Ai,j)/Ai,j =

(
1

2e1/eΔ1

)(W−Ai,j)/Ai,j

.

Then we prove the final inequality in two parts. First, we see that W ≥ 2
and Ai,j ≤ 1 imply that W−Ai,j

Ai,j
≥ 1. This implies

(
1

2Δ1

)(W−1)/Ai,j

≤ 1
2Δ1

.

Second, we see that

(1/e1/e)(W−Ai,j)/Ai,j ≤ (1/e1/e)1/Ai,j ≤ Ai,j

for Ai,j ≤ 1, where the first inequality holds because W − Ai,j ≥ 1 and the
second inequality holds by Lemma 7. This concludes the proof.

�1-sparsity Approximation Bounds for PIPs 135

Theorem 2. When setting α1 = 1
c1Δ1

where c1 = 4e1+1/e, for PIPs with
width W ≥ 2, round-and-alter-by-sorting(A, b, α1) is a randomized (α1/2)-
approximation algorithm.

Proof. Fix j ∈ [n]. By Lemma 2 and the definition of Δ1, we have

m∑

i=1

Pr[Eij |Xj = 1] ≤
m∑

i=1

Ai,j

2Δ1
≤ 1

2
.

By Lemma 1, which shows that upper bounding the sum of the rejection prob-
abilities by γ for every item leads to an α1(1 − γ)-approximation, we get the
desired result.

4.2 An Ω(1
(1+Δ1/W)1/ (W −1))-approximation

We improve the bound from the previous section by setting α1 =
1

c2(1+Δ1/W)1/(W −1) where c2 = 4e1+2/e. Note that the scaling factor becomes
larger as W increases. The proof of the following lemma can be found in the
appendix.

Lemma 3. Let α1 = 1
c2(1+Δ1/W)1/(W −1) for c2 = 4e1+2/e. Let i ∈ [m] and

j ∈ [n]. Then in the algorithm round-and-alter-by-sorting(A, b, α1), we have
Pr[Eij |Xj = 1] ≤ Ai,j

2Δ1
.

If we replace Lemma 2 with Lemma 3 in the proof of Theorem 2, we obtain
the following stronger guarantee.

Theorem 3. When setting α1 = 1
c2(1+Δ1/W)1/(W −1) where c2 = 4e1+2/e, for

PIPs with width W ≥ 2, round-and-alter-by-sorting(A, b, α1) is a randomized
(α1/2)-approximation.

4.3 A (1 − O(ε))-approximation When W ≥ Ω(1
ε2 ln(Δ1

ε
))

In this section, we give a randomized (1−O(ε))-approximation for the case when
W ≥ Ω(1

ε2 ln(Δ1
ε)). We use the algorithm round-and-alter-by-sorting in Fig. 2 with

the scaling factor α1 = 1 − ε.

Lemma 4. Let 0 < ε < 1
e , α1 = 1 − ε, and W = 2

ε2 ln(Δ1
ε) + 1. Let i ∈ [m] and

j ∈ [n]. Then in round-and-alter-by-sorting(A, b, α1), we have Pr[Eij |Xj = 1] ≤
e · εAi,j

Δ1
.

Lemma 4 implies that we can upper bound the sum of the rejection proba-
bilities for any item j by eε, leading to the following theorem.

Theorem 4. Let 0 < ε < 1
e and W = 2

ε2 ln(Δ1
ε) + 1. When setting α1 = 1 −

ε and c = e + 1, round-and-alter-by-sorting(A, b, α1) is a randomized (1 − cε)-
approximation algorithm.

136 C. Chekuri et al.

5 The Small Width Regime: W = (1 + ε)

We now consider the regime when the width is small. Let W = 1 + ε for some
ε ∈ (0, 1]. We cannot apply the simple sorting based scheme that we used for the
large width regime. We borrow the idea from [1] in splitting the coordinates into
big and small in each constraint; now the definition is more refined and depends
on ε. Moreover, the small coordinates and the big coordinates have their own
reserved capacity in the constraint. This is crucial for the analysis. We provide
more formal details below.

We set α2 to be ε2

c3Δ1
where c3 = 8e1+2/e. The alteration step differentiates

between “small” and “big” coordinates as follows. For each i ∈ [m], let Si =
{j : Ai,j ≤ ε/2} and Bi = {j : Ai,j > ε/2}. We say that an index j is small
for constraint i if j ∈ Si. Otherwise we say it is big for constraint i when
j ∈ Bi. For each constraint, the algorithm is allowed to pack a total of 1+ ε into
that constraint. The algorithm separately packs small indices and big indices.
In an ε amount of space, small indices that were chosen in the rounding step
are sorted in increasing order of size and greedily packed until the constraint is
no longer satisfied. The big indices are packed by arbitrarily choosing one and
packing it into the remaining space of 1. The rest of the indices are removed
to ensure feasibility. Figure 3 gives pseudocode for the randomized algorithm
round-alter-small-width which yields an Ω(ε2/Δ1)-approximation.

round-alter-small-width(A, b, ε, α2):
let x be the optimum fractional solution of the natural LP relaxation
for j ∈ [n], set x′

j to be 1 independently with probability α2xj and 0 otherwise
x′′ ← x′

for i ∈ [m] do
if |Si| = 0 then

s ← 0
else

sort and renumber such that Ai,1 ≤ · · · ≤ Ai,n

s ← max
{

� ∈ Si :
∑�

j=1 Ai,jx
′
j ≤ ε

}

end if
if |Bi| = 0, then t = 0, otherwise let t be an arbitrary element of Bi

for each j ∈ [n] such that j > s and j �= t, set x′′
j = 0

end for
return x′′

Fig. 3. By setting the scaling factor α2 = ε2

cΔ1
for a sufficiently large constant c,

round-alter-small-width is a randomized Ω(ε2/Δ1)-approximation for PIPs with width
W = 1 + ε for some ε ∈ (0, 1] (see Theorem 5).

It remains to bound the rejection probabilities. Recall that for j ∈ [n], we
define Xj to be the indicator random variable 1(x′

j = 1) and Eij is the event
that j was rejected by constraint i.

�1-sparsity Approximation Bounds for PIPs 137

We first consider the case when index j is big for constraint i. Note that it
is possible that there may not exist any big indices for a given constraint. The
same holds true for small indices.

Lemma 5. Let ε ∈ (0, 1] and α2 = ε2

c3Δ1
where c3 = 8e1+2/e. Let i ∈ [m] and

j ∈ Bi. Then in round-alter-small-width(A, b, ε, α2), we have Pr[Eij |Xj = 1] ≤
Ai,j

2Δ1
.

Proof. Let E be the event that there exists j′ ∈ Bi such that j′ �= j and Xj′ = 1.
Observe that if Eij occurs and Xj = 1, then it must be the case that at least
one other element of Bi was chosen in the rounding step. Thus,

Pr[Eij |Xj = 1] ≤ Pr[E] ≤
∑

�∈Bi
� �=j

Pr[X� = 1] ≤ α2

∑

�∈Bi

x�,

where the second inequality follows by the union bound. Observe that for all � ∈
Bi, we have Ai,� > ε/2. By the LP constraints, we have 1 + ε ≥ ∑

�∈Bi
Ai,�x� >

ε
2 · ∑

�∈Bi
x�. Thus,

∑
�∈Bi

x� ≤ 1+ε
ε/2 = 2/ε + 2.

Using this upper bound for
∑

�∈Bi
x�, we have

α2

∑

�∈Bi

x� ≤ ε2

c3Δ1

(
2
ε

+ 2
)

≤ 4ε

c3Δ1
≤ Ai,j

2Δ1
,

where the second inequality utilizes the fact that ε ≤ 1 and the third inequality
holds because c3 ≥ 16 and Ai,j > ε/2.

Next we consider the case when index j is small for constraint i. The analysis
here is similar to that in the preceding section with width at least 2 and thus
the proof is deferred to the full version [5].

Lemma 6. Let ε ∈ (0, 1] and α2 = ε2

c3Δ1
where c3 = 8e1+2/e. Let i ∈ [m] and

j ∈ Si. Then in round-alter-small-width(A, b, ε, α2), we have Pr[Eij |Xj = 1] ≤
Ai,j

2Δ1
.

Theorem 5. Let ε ∈ (0, 1]. When setting α2 = ε2

c3Δ1
for c3 = 8e1+2/e, for

PIPs with width W = 1 + ε, round-alter-small-width(A, b, ε, α2) is a randomized
(α2/2)-approximation algorithm.

Proof. Fix j ∈ [n]. Then by Lemmas 5 and 6 and the definition of Δ1, we have

m∑

i=1

Pr[Eij |Xj = 1] ≤
m∑

i=1

Ai,j

2Δ1
≤ 1

2
.

Recall that Lemma 1 gives an α2(1 − γ)-approximation where γ is an upper
bound on the sum of the rejection probabilities for any item. This concludes the
proof.

138 C. Chekuri et al.

Appendix

A Chernoff Bounds and Useful Inequalities

The following standard Chernoff bound is used to obtain a more convenient
Chernoff bound in Theorem 7. The proof of Theorem 7 follows directly from
choosing δ such that (1 + δ)μ = W − β and applying Theorem 6.

Theorem 6 ([12]). Let X1, . . . , Xn be independent random variables where Xi

is defined on {0, βi}, where 0 < βi ≤ β ≤ 1 for some β. Let X =
∑

i Xi and
denote E[X] as μ. Then for any δ > 0,

Pr[X ≥ (1 + δ)μ] ≤
(

eδ

(1 + δ)1+δ

)μ/β

Theorem 7. Let X1, . . . , Xn ∈ [0, β] be independent random variables for some
0 < β ≤ 1. Suppose μ = E[

∑
i Xi] ≤ αW for some 0 < α < 1 and W ≥ 1 where

(1 − α)W > β. Then

Pr

[
∑

i

Xi > W − β

]

≤
(

αe1−αW

W − β

)(W−β)/β

.

Lemma 7. Let x ∈ (0, 1]. Then (1/e1/e)1/x ≤ x.

Lemma 8. Let y ≥ 2 and x ∈ (0, 1]. Then x/y ≥ (1/e2/e)y/2x.

B Skipped Proofs

B.1 Proof of Theorem 1

Proof. Let G = (V,E) be an undirected graph without self-loops and let n = |V |.
Let A ∈ [0, 1]n×n be indexed by V . For all v ∈ V , let Av,v = 1. For all uv ∈ E,
let Au,v = Av,u = 1/n. For all the remaining entries in A that have not yet been
defined, set these entries to 0. Consider the following PIP:

maximize 〈x,1〉 over x ∈ {0, 1}n s.t. Ax ≤ 1. (1)

Let S be the set of all feasible integral solutions of (1) and I be the set of
independent sets of G. Define g : S → I where g(x) = {v : xv = 1}. To show g
is surjective, consider a set I ∈ I. Let y be the characteristic vector of I. That
is, yv is 1 if v ∈ I and 0 otherwise. Consider the row in A corresponding to an
arbitrary vertex u where yu = 1. For all v ∈ V such that v is a neighbor to
u, yv = 0 as I is an independent set. Thus, as the nonzero entries in A of the
row corresponding to u are, by construction, the neighbors of u, it follows that
the constraint corresponding to u is satisfied in (1). As u is an arbitrary vertex,
it follows that y is a feasible integral solution to (1) and as I = {v : yv = 1},
g(y) = I.

�1-sparsity Approximation Bounds for PIPs 139

Define h : S → N0 such that h(x) = |g(x)|. It is clear that maxx∈S h(x) is
equal to the optimal value of (1). Let Imax be a maximum independent set of G.
As g is surjective, there exists z ∈ S such that g(z) = Imax. Thus, maxx∈S h(x) ≥
|Imax|. As maxx∈S h(x) is equal to the optimum value of (1), it follows that a
β-approximation for PIPs implies a β-approximation for maximum independent
set.

Furthermore, we note that for this PIP, Δ1 ≤ 2, thus concluding the proof.

B.2 Proof of Lemma 3

Proof. The proof proceeds similarly to the proof of Lemma 2. Since α1 < 1/2,
everything up to and including the application of the Chernoff bound there
applies. This gives that for each i ∈ [m] and j ∈ [n],

Pr[Eij |Xj = 1] ≤ (2eα1)
(W−Ai,j)/Ai,j .

By choice of α1, we have

(2eα1)
(W−Ai,j)/Ai,j =

(
1

2e2/e(1 + Δ1/W)1/(W−1)

)(W−Ai,j)/Ai,j

We prove the final inequality in two parts. First, note that W−Ai,j

Ai,j
≥ W − 1

since Ai,j ≤ 1. Thus,

(
1

2(1 + Δ1/W)1/(W−1)

)(W−Ai,j)/Ai,j

≤ 1
2W−1(1 + Δ1/W)

≤ W

2Δ1
.

Second, we see that

(
1

e2/e

)(W−Ai,j)/Ai,j

≤
(

1
e2/e

)W/2Ai,j

≤ Ai,j

W

for Ai,j ≤ 1, where the first inequality holds because W ≥ 2 and the second
inequality holds by Lemma 8.

References

1. Bansal, N., Korula, N., Nagarajan, V., Srinivasan, A.: Solving packing integer
programs via randomized rounding with alterations. Theory Comput. 8(24), 533–
565 (2012). https://doi.org/10.4086/toc.2012.v008a024

2. Chan, T.M.: Approximation schemes for 0-1 knapsack. In: 1st Symposium on Sim-
plicity in Algorithms (2018)

3. Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM J. Comput.
33(4), 837–851 (2004)

4. Chekuri, C., Quanrud, K.: On approximating (sparse) covering integer programs.
In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1596–1615. SIAM (2019)

https://doi.org/10.4086/toc.2012.v008a024

140 C. Chekuri et al.

5. Chekuri, C., Quanrud, K., Torres, M.R.: �1-sparsity approximation bounds for
packing integer programs (2019). arXiv preprint: arXiv:1902.08698

6. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via
the multilinear relaxation and contention resolution schemes. SIAM J. Comput.
43(6), 1831–1879 (2014)

7. Chen, A., Harris, D.G., Srinivasan, A.: Partial resampling to approximate covering
integer programs. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 1984–2003. Society for Industrial and Applied
Mathematics (2016)

8. Frieze, A., Clarke, M.: Approximation algorithms for the m-dimensional 0-1 knap-
sack problem: worst-case and probabilistic analyses. Eur. J. Oper. Res. 15(1),
100–109 (1984)

9. Harvey, N.J.: A note on the discrepancy of matrices with bounded row and column
sums. Discrete Math. 338(4), 517–521 (2015)

10. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Math. 182(1), 105–142
(1999)

11. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set pack-
ing. Comput. Complex. 15(1), 20–39 (2006)

12. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

13. Pritchard, D.: Approximability of sparse integer programs. In: Fiat, A., Sanders, P.
(eds.) ESA 2009. LNCS, vol. 5757, pp. 83–94. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04128-0 8

14. Pritchard, D., Chakrabarty, D.: Approximability of sparse integer programs. Algo-
rithmica 61(1), 75–93 (2011)

15. Raghavan, P., Tompson, C.D.: Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)

16. Srinivasan, A.: Improved approximation guarantees for packing and covering inte-
ger programs. SIAM J. Comput. 29(2), 648–670 (1999)

17. Trevisan, L.: Non-approximability results for optimization problems on bounded
degree instances. In: Proceedings of the Thirty-Third Annual ACM Symposium on
Theory of Computing, pp. 453–461. ACM (2001)

18. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Sym-
posium on Theory of Computing, pp. 681–690. ACM (2006)

http://arxiv.org/abs/1902.08698
https://doi.org/10.1007/978-3-642-04128-0_8
https://doi.org/10.1007/978-3-642-04128-0_8

A General Framework for Handling
Commitment in Online Throughput

Maximization

Lin Chen1, Franziska Eberle2(B), Nicole Megow2, Kevin Schewior3,4,
and Cliff Stein5

1 Department of Computer Science, University of Houston, Houston, TX, USA
chenlin198662@gmail.com

2 Department for Mathematics/Computer Science,
University of Bremen, Bremen, Germany
{feberle,nicole.megow}@uni-bremen.de

3 Fakultät für Informatik, Technische Universität München, München, Germany
kschewior@gmail.com

4 Département d’Informatique, École Normale Supérieure, Paris, France
5 Department of IEOR, Columbia University, New York, USA

cliff@ieor.columbia.edu

Abstract. We study a fundamental online job admission problem where
jobs with deadlines arrive online over time at their release dates, and the
task is to determine a preemptive single-server schedule which maximizes
the number of jobs that complete on time. To circumvent known impos-
sibility results, we make a standard slackness assumption by which the
feasible time window for scheduling a job is at least 1+ε times its process-
ing time, for some ε > 0. We quantify the impact that different provider
commitment requirements have on the performance of online algorithms.
Our main contribution is one universal algorithmic framework for online
job admission both with and without commitments. Without commit-
ment, our algorithm with a competitive ratio of O(1/ε) is the best possi-
ble (deterministic) for this problem. For commitment models, we give the
first non-trivial performance bounds. If the commitment decisions must
be made before a job’s slack becomes less than a δ-fraction of its size,
we prove a competitive ratio of O(ε/((ε − δ)δ2)), for 0 < δ < ε. When
a scheduler must commit upon starting a job, our bound is O(1/ε2).
Finally, we observe that for scheduling with commitment the restriction
to the “unweighted” throughput model is essential; if jobs have individual
weights, we rule out competitive deterministic algorithms.

N. Megow—Supported by the German Science Foundation (DFG) Grant ME 3825/1.
K. Schewior—Supported by CONICYT Grant PII 20150140 and DAAD PRIME pro-
gram.
C. Stein—Research partly supported by NSF Grants CCF-1714818 and CCF-1822809.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 141–154, 2019.
https://doi.org/10.1007/978-3-030-17953-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_11

142 L. Chen et al.

1 Introduction

Many modern computing environments, such as internal clusters and public
clouds, involve a centralized system for managing the resource allocation of a
large diverse workload [21] with a heterogeneous mixture of jobs. In this paper,
we will study scheduling policies, evaluated by the commonly used notion of
throughput which is the number of jobs completed, or if jobs have weights, the
total weight of jobs completed. Throughput is a “social welfare” objective that
tries to maximize total utility. To this end, a solution may abort jobs close to
their deadlines in favor of many shorter and more urgent tasks [11]. However,
for many industrial applications, service providers have to commit to complete
admitted jobs since without such a guarantee, some applications will fail or
customers may be unhappy and choose another environment.

Formally, we consider a fundamental single-machine scheduling model in
which jobs arrive online over time at their release date rj . Each job has a pro-
cessing time pj ≥ 0, a deadline dj , and possibly a weight wj > 0. In order to
complete, a job must receive pj units of processing time in the interval [rj , dj). If
a schedule completes a set S of jobs, then the throughput is |S| while the weighted
throughput is

∑
j∈S wj . To measure the quality of an online algorithm, we use

standard competitive analysis where its performance is compared to that of an
optimal offline algorithm with full knowledge of the future.

Deadline-based objectives are typically much harder to optimize than other
Quality-of-Service (QoS) metrics such as response time or makespan. Indeed, the
problem becomes hopeless when preemption (interrupting a job and resuming it
later) is not allowed: whenever an algorithm starts a job j without being able
to preempt it, it may miss the deadlines of an arbitrary number of jobs. For
scheduling with commitment, we provide a similarly strong lower bound for the
preemptive version of the problem in the presence of weights. Therefore, we focus
on unweighted preemptive online throughput maximization.

Hard examples for online algorithms tend to involve jobs that arrive and then
must immediately be processed since dj−rj ≈ pj . To bar such jobs from a system,
we require that any submitted job contains some slack. An instance has ε-slack if
every job satisfies dj − rj ≥ (1+ ε)pj . We develop algorithms whose competitive
ratio depends on ε. This slackness parameter captures certain aspects of QoS
provisioning and admission control, see, e.g., [13,19], and it has been considered
in previous work, e.g., in [2,4,12,14,21,23]. Other results for scheduling with
deadlines use speed scaling, which can be viewed as adding slack to the schedule,
e.g., [1,3,15,22]. In this paper we quantify the impact that different commitment
requirements have on the performance of online algorithms.

1.1 Our Results and Techniques

Our main contribution is a general algorithmic framework, called the region
algorithm, for online scheduling with and without commitments. We prove per-
formance guarantees which are either tight or constitute the first non-trivial
results. We also answer open questions in previous work. We show strong lower
bounds for the weighted case. Thus, our algorithms are all for unit weights wj = 1.

Handling Commitment in Online Throughput Maximization 143

Optimal Algorithm for Scheduling Without Commitment. We show that
the region algorithm achieves a competitive ratio of O(1ε), and give a matching
lower bound (ignoring constants) for any deterministic online algorithm.

Impossibility Results for Commitment Upon Job Arrival. In this most
restrictive model, an algorithm must decide immediately at a job’s release date
if the job will be completed. We show that no (randomized) online algorithm
admits a bounded competitive ratio. Such a lower bound has only been shown
by exploiting job weights [21,25]. Hence, we do not consider this model further.

Scheduling With Commitment. We distinguish two different models:
(i) commitment upon job admission and (ii) δ-commitment. In the first model,
an algorithm may discard a job any time before its start. In the second model,
an online algorithm must commit to complete a job when its slack has reduced
from the original slack requirement of an ε-fraction of the size to a δ-fraction
for 0 < δ < ε, modeling an early-enough commitment for mission-critical jobs.
We show that implementations of the region algorithm yield a competitive
ratio of O(1/ε2) for commitment upon admission and a competitive ratio of
O(ε/((ε − δ)δ2)), for 0 < δ < ε, in the δ-commitment model. These are the
first rigorous non-trivial upper bounds—for any commitment model (excluding
wj = pj).

Instances with arbitrary weights are hopeless without further restrictions.
We show that there is no deterministic online algorithm with bounded compet-
itive ratio, neither for commitment upon admission (also shown in [2]) nor for
δ-commitment. Informally, our construction implies that there is no determinis-
tic online algorithm with bounded competitive ratio in any commitment model
in which a scheduler may have to commit to a job before it has completed.
(See Sect. 5 for more details.) We rule out bounded performance guarantees for
ε ∈ (0, 1). For sufficiently large slackness (ε > 3), an online algorithm is pro-
vided in [2] that has bounded competitive ratio. Our new lower bound answers
affirmatively the open question of whether high slackness is indeed required.

Finally, our impossibility result for weighted jobs and the positive result for
instances without weights clearly separate the weighted from the unweighted
setting. Hence, we do not consider algorithms for weighted throughput.

Our Techniques. Once a job j is admitted to the system, its slack becomes a
scarce resource: To complete the job on time one needs to carefully “spend” the
slack on admitting jobs to be processed before the deadline of j. Our general
framework for admission control, the region algorithm, addresses this issue
by the concept of “responsibility”: Whenever a job j′ is admitted while j could
be processed, j′ becomes responsible for not admitting similar-length jobs for a
certain period, its region. The intention is that j′ reserves time for j to complete.
To balance between reservation (commitment to complete j) and performance
(loss of other jobs), the algorithm uses the parameters α and β, which specify
the length of a region and the similarity of job lengths.

A major difficulty in the analysis is understanding the complex interval struc-
ture formed by feasible time windows, regions, and processing time intervals.

144 L. Chen et al.

Here, the key ingredient is that regions are defined independently of scheduling
decisions. Thus, the analysis can be naturally split into two parts. In the first
part, we argue that the scheduling routine can handle the admitted jobs suffi-
ciently well for aptly chosen parameters α and β. That means that the respective
commitment model is obeyed and, if not implied by that, an adequate number of
the admitted jobs is completed. In the second part, we can disregard how jobs
are actually scheduled and argue that the region algorithm admits sufficiently
many jobs to be competitive with an optimum solution. The above notion of
“responsibility” suggests a proof strategy mapping jobs that are completed in
the optimum to the corresponding job that was “responsible” due to its region.
Transforming this idea into a charging scheme is, however, a non-trivial task as
there might be many (� Θ(1

ε2)) jobs released within the region of a single job j
and completed by the optimum but not admitted by the region algorithm due to
many consecutive regions of varying size. We develop a careful charging scheme
that avoids such overcharging. We handle the complex interval structure by
working on a natural tree structure (interruption tree) related to the region con-
struction and independent of the actual schedule. Our charging scheme comprises
two central routines for distributing charge: Moving charge along a sequence of
consecutive jobs (Push Forward) or to children (Push Down).

1.2 Previous Results

Preemptive online scheduling and admission control have been studied rigor-
ously, see, e.g., [5,12,14] and references therein. Impossibility results for jobs with
hard deadlines and without slack have been known for decades [6,7,17,18,20].

Most research on online scheduling does not address commitment. The
only results independent of slack (or other job-dependent parameters) concern
weighted throughput for the special case wj = pj , where a constant competitive
ratio is possible [6,17,18,24]. In the unweighted setting, a randomized O(1)-
competitive algorithm is known [16]. For instances with ε-slack, an O(1

ε2)-
competitive algorithm in the general weighted setting is given in [21]. To the
best of our knowledge, no lower bound was known to date.

Much less is known for scheduling with commitment. In the most restrictive
model, commitment upon job arrival, Lucier et al. [21] rule out competitive online
algorithms for any slack parameter ε when jobs have arbitrary weights. For
commitment upon job admission, they give a heuristic that empirically performs
very well but without a rigorous worst-case bound. Azar et al. [2] show that
no bounded competitive ratio is possible for weighted throughput maximization
for small ε. For the δ-commitment model, [2] design (in the context of truthful
mechanisms) an online algorithm that is O(1

ε2)-competitive for large slack ε.
They left open if this latter condition is an inherent property of any committed
scheduler in this model which we answer affirmatively. The machine utilization
variant (wj = pj) is better tractable as greedy algorithms achieve the best
possible competitive ratio Θ(1ε) [10,12] in all mentioned commitment models.

Handling Commitment in Online Throughput Maximization 145

2 Our General Framework

2.1 The Region Algorithm

We now present our general algorithmic framework for scheduling with and with-
out commitment. We assume that the slackness constant ε > 0 and, in the
δ-commitment model, 0 < δ < ε are known to the online algorithm.

Algorithm 1.1. Region algorithm

Scheduling routine: At any time t, run an admitted and not yet completed job
with shortest processing time.

Event: Upon release of a new job at time t or Upon ending of a region at time t:
Call region preemption routine.

Region preemption routine:
k ← the job whose region contains t
i ← a shortest available job at t, i.e.,

i = arg min{pj | rj ≤ t and dj − t ≥ (1 + δ)pj}
If pi < βpk, then
1. admit job i and reserve region R(i) = [t, t + αpi),
2. update remaining regions R(j) with R(j) ∩ [t, ∞) �= ∅ as described below

We first describe informally three underlying design principles. The third
principle is crucial to improve on existing results that only use the first two [21].

1. A running job can be preempted only by smaller jobs (parameter β).
2. A job cannot start for the first time when its remaining slack is too small

(constant δ in the δ-commitment model and otherwise set to δ = ε
2).

3. If a job preempts other jobs, then it takes “responsibility” for a certain time
interval (parameter α) in which the jobs it preempted can be processed.

The region algorithm has two parameters, α ≥ 1 and 0 < β < 1. A region,
R(j) for job j, is a union of time intervals associated with j, and the size of the
region is the sum of sizes of the intervals. Region R(j) will always have size αpj ,
although the particular time intervals composing the region may change over
time. Regions are always disjoint. Informally, whenever our algorithm starts a
job i (we say i is admitted) that arrives during the region of an already admitted
job j, then the current interval of j is split into two intervals and the region R(j)
and all later regions are delayed.

Formally, at any time t, the region algorithm maintains two sets of jobs:
admitted jobs, which have been started before or at time t, and available jobs. A
job j is available if it is released before or at time t, is not yet admitted, and it is
not too close to its deadline, i.e., rj ≤ t and dj −t ≥ (1+δ)pj . The intelligence of
the region algorithm lies in admitting jobs and (re)allocating regions. The actual
scheduling decisions then are independent of the regions: at any point in time,
schedule the shortest admitted job that has not completed its processing, i.e.,
schedule admitted jobs in Shortest Processing Time (SPT) order. The algorithm
never explicitly considers deadlines except when deciding whether to admit jobs.

146 L. Chen et al.

The region algorithm starts by admitting job 1 at its release date and creating
the region R(1) := [r1, r1+αp1). Two events – the release of a job and the end of
a region– trigger the region preemption subroutine. This subroutine compares
the processing time of the smallest available job i with the processing time of
the admitted job k whose region contains t. If pi < βpk, job i is admitted and the
region algorithm reserves the interval [t, t + αpi) for processing i. Since regions
must be disjoint, the algorithm then modifies all other remaining regions, i.e.,
the parts of regions that belong to [t,∞) of other jobs j. We refer to the set of
such jobs j whose regions have not yet completed by time t as J(t). Intuitively,
we preempt the interval of the region containing t and delay its remaining part
as well as the remaining regions of all other jobs. Formally, this update of all
remaining regions is defined as follows. Let k be the one job whose region is
interrupted at time t, and let [a′

k, b′
k) be the interval of R(k) containing t. Interval

[a′
k, b′

k) is replaced by [a′
k, t)∪ [t+αpi, b

′
k +αpi). For all other jobs j ∈ J(t)\{k},

the remaining region [a′
j , b

′
j) of j is replaced by [a′

j +αpi, b
′
j +αpi). Observe that,

although the region of a job may change throughout the algorithm, the starting
point of a region for a job will never be changed. See the summary Algorithm1.1.

We apply the region algorithm in different commitment models with different
choices of parameters α and β, which we derive in the following sections. In the
δ-commitment model, δ is given as part of the input. In the other models, i.e.,
without commitment or with commitment upon admission, we simply set δ = ε

2 .
If the region algorithm commits to a job, it does so upon admission, which

is, for our algorithm, the same as its start time. The parameter δ determines the
latest possible start time of a job, which is then for our algorithm also the latest
time the job can be admitted. Thus, for the analysis, the algorithm’s execution
for commitment upon admission (δ = ε

2) is a special case of δ-commitment. This
is true only for our algorithm, not in general.

2.2 Main Results on the Region Algorithm

In the analysis we focus on instances with small slack (0 < ε ≤ 1) as for ε > 1 we
run our algorithm simply by setting ε = 1 and obtain constant competitive ratios.

Without commitment, we give an optimal online algorithm which is an expo-
nential improvement upon a previous result [21] (given for weighted throughput).
For scheduling with commitment, we give the first rigorous upper bound.

Theorem 1 (Scheduling Without Commitment). Let 0 < ε ≤ 1. Choosing
α = 1, β = ε

4 , δ = ε
2 , the region algorithm is Θ(1ε)-competitive for scheduling

without commitment.

Theorem 2 (Scheduling With Commitment). Let 0 < δ < ε ≤ 1. Choos-
ing α = 8

δ , β = δ
4 , the region algorithm is O(ε

(ε−δ)δ2)-competitive in the δ-
commitment model. When the scheduler has to commit upon admission, the
region algorithm has a competitive ratio O(1

ε2) for α = 4
ε and β = ε

8 .

Handling Commitment in Online Throughput Maximization 147

2.3 Interruption Trees

To analyze the performance of the region algorithm, we retrospectively consider
the final schedule and the final regions. Let aj be the admission date of job j
which was not changed while executing the algorithm. Let bj denote the end point
of j’s region. Then, the convex hull of R(j) is given by conv(R(j)) = [aj , bj).

t

Fig. 1. Gantt chart of the regions (left) and the interruption tree (right)

Our analysis crucially relies on understanding the interleaving structure of
the regions that the algorithm constructs. We use a tree or forest in which each
job is represented by one vertex. A job vertex is the child of another vertex if
and only if the region of the latter is interrupted by the first one. The leaves
correspond to jobs with non-interrupted regions. By adding a machine job M
with pM := ∞ and aM = −∞, we can assume that the instance is represented
by a tree which we call interruption tree. This idea is visualized in Fig. 1, where
the vertical arrows indicate the interruption of a region by another job.

Let π(j) denote the parent of j. Let Tj be the subtree of the interruption
tree rooted in job j and let the forest T−j be Tj without its root j. By abusing
notation, we denote the tree/forest as well as its jobs by T∗. A key property of
this tree is that the processing times on a path are geometrically decreasing.

Lemma 1. Let j1, . . . , j� be � jobs on a path in the interruption (sub)tree Tj

rooted in j such that π(ji+1) = ji. Then, pj�
≤ βpj�−1 · · · ≤ β�−1pj1 ≤ β�pj and

the total processing volume is
∑�

i=1 pji
≤ ∑�

i=1 βipj ≤ β
1−β · pj.

3 Successfully Completing Sufficiently Many Jobs

We show that the region algorithm completes sufficiently many jobs among the
admitted jobs on time, when the parameters α, β, and δ are chosen properly.
Scheduling Without Commitment. Let δ = ε

2 for 0 <ε≤ 1.

Theorem 3. Let α = 1 and β = ε
4 . Then the region algorithm completes at

least half of all admitted jobs before their deadline.

The intuition for setting α = 1 and thus reserving regions of minimum size
|R(j)| = pj , for any j, is that, due to the scheduling order SPT, a job is always
prioritized within its own region and, in the model without commitment, a job
does not need to block extra time in the future to ensure the completion of

148 L. Chen et al.

preempted jobs. In order to prove Theorem3, we show that a late job j implies
that the subtree Tj rooted in j contains more finished than unfinished jobs.

Scheduling With Commitment. For both models, commitment at admission
and δ-commitment, we give conditions on the choice of α, β, and δ such that
every admitted job will complete before its deadline. We restrict in the analysis
to the δ-commitment model since the algorithm otherwise runs with δ = ε

2 .

Theorem 4. Let ε, δ > 0 be fixed with δ < ε. If α ≥ 1 and 0 < β < 1 satisfy

α − 1
α

·
(

1 + δ − β

1 − β

)

≥ 1, (1)

any job j admitted by the algorithm at time aj ≤ dj − (1 + δ)pj finishes by dj.

For any admitted jobj, we consider two types of descendants in the interrup-
tion subtree Tj whose regions intersect [aj , dj): (i) jobs k with dj ∈ conv(R(k))
form a path in Tj and, thus, Lemma 1 bounds their total processing volume
from above by β

1−β pj , (ii) jobs k with R(k) ⊂ [aj , dj) reserve an (α−1
α)-fraction

of R(k) for processing j. Thus, a straightforward calculation implies Theorem4.

4 Competitiveness: Admission of Sufficiently Many Jobs

Theorem 5. The number of jobs that an optimal (offline) algorithm can com-
plete on time is by at most a multiplicative factor λ + 1 larger than the number
of jobs admitted by the region algorithm, where λ := ε

ε−δ
α
β , for 0 < δ < ε ≤ 1.

To prove the theorem, we fix an instance and an optimal offline algorithm
Opt. Let X be the set of jobs that Opt scheduled and the region algorithm
did not admit. We can assume that Opt completes all jobs in X on time. Let J
denote the jobs that the region algorithm admitted. Then, X ∪ J is a superset
of the jobs scheduled by Opt. Thus, showing |X| ≤ λ|J | implies Theorem 5.

To this end, we develop a charging procedure that assigns each job in X
to a unique job in J such that each job j ∈ J is assigned at most λ = ε

ε−δ
α
β

jobs. For a job j ∈ J admitted by the region algorithm we define the subset
Xj ⊂ X based on release dates. Then, we inductively transform the laminar
family (Xj)j∈J into a partition (Yj)j∈J of X with |Yj | ≤ λ for all j ∈ J in the
proof of Lemma 2, starting with the leaves in the interruption tree as base case
(Appendix, Lemma 4). For the construction of (Yj)j∈J , we heavily rely on the
key property (Volume Lemma 3) and Corollary 1.

More precisely, for a job j ∈ J let Xj be the set of jobs x ∈ X that were
released in the interval [aj , bj) and satisfy px < βpπ(j). Let XS

j := {x ∈ Xj :
px < βpj} and XB

j := Xj \ XS
j denote the small and the big jobs, respectively,

in Xj . Recall that [aj , bj) is the convex hull of the region R(j) of job j and that it
includes the convex hulls of the regions of all descendants of j in the interruption
tree, i.e., jobs in Tj . In particular, Xk ⊂ Xj if k ∈ Tj .

Handling Commitment in Online Throughput Maximization 149

Observation 1

1. Any job x ∈ X that is scheduled by Opt and that is not admitted by the region
algorithm is released within the region of some job j ∈ J , i.e.,

⋃
j∈J Xj = X.

2. As the region algorithm admits any job that is small w.r.t. j and released in
R(j), it holds that XS

j =
⋃

k:π(k)=j Xk.

Recall that M denotes the machine job. By Observation 1, X = XS
M and,

thus, it suffices to show that |XS
M | ≤ λ|J |. In fact, we show a stronger statement

for each job j ∈ J . The number of small jobs in Xj is bounded by λτj where τj

is the number of descendants of j in the interruption tree, i.e., τj := |T−j |.
Lemma 2. For all j ∈ J ∪ {M}, |XS

j | ≤ λτj.

A proof sketch can be found in the appendix. We highlight the main steps
here. The fine-grained definition of the sets Xj in terms of the release dates and
the processing times allows us to show that any job j with |Xj | > (τj + 1)λ
has siblings j1, . . . , jk such that |Xj | +

∑k
i=1 |Xji

| ≤ λ(τj + 1 +
∑k

i=1(τji
+ 1)).

We call i and j siblings if they have the same parent in the interruption tree.
Simultaneously applying this charging idea to all descendants of a job h already
proves |XS

h | ≤ λτh as XS
h =

⋃
j:π(j)=h Xj by Observation 1.

We prove that this “balancing” of Xj between jobs only happens between
siblings j1, . . . , jk with the property that bji

= aji+1 for 1 ≤ i < k. We call such
a set of jobs a string of jobs. The ellipses in Fig. 1 visualize the maximal strings
of jobs. A job j is isolated if bi
= aj and bj
= ai for all children i
= j of π(j).

The next (technical) lemma is a key ingredient for the “balancing” of Xj

between a string of jobs. For any subset of J , we index the jobs in order of
increasing admission points aj . Conversely, for a subset of X, we order the jobs
in increasing order of completion times, C∗

x, in the optimal schedule.

Lemma 3 (Volume Lemma). Let f, . . . , g ∈ J be jobs with a common parent
in the interruption tree. Let x ∈ ⋃g

j=f Xj such that

g∑

j=f

∑

y∈Xj :C∗
y ≤C∗

x

py ≥ ε

ε − δ
(bg − af) + px. (V)

Then, px ≥ βpj∗ , where j∗ ∈ J ∪ {M} is the job whose region contains bg.

The next corollary follows directly from the Volume Lemma applied to a
string of jobs or to a single job j ∈ J (let f = j = g). To see this, recall that Xj

contains only jobs that are small w.r.t. π(j), i.e., all x ∈ Xj satisfy px < βpπ(j).

Corollary 1. Let {f, . . . , g} ⊂ J be a string of jobs and let x ∈ ⋃g
j=f Xj satisfy

(V). Then, the interruption tree contains a sibling j∗ of g with bg = aj∗ .

150 L. Chen et al.

The main part of the proof of Lemma2 is to show (V) for a string of jobs only
relying on

∑g
j=f |Xj | > λ

∑g
j=f (τj + 1). Then, Corollary 1 allows us to charge

the “excess” jobs to a subsequent sibling g + 1. The relation between processing
volume and size of job sets is possible due to the definition of Xj based on Tj .

Proof of Theorem 5. The job set scheduled by Opt clearly is a subset of
X ∪ J , the union of jobs only scheduled by Opt and the jobs admitted by the
region algorithm. Thus, it suffices to prove that |X| ≤ λ|J |. By Observation 1,
|XS

M | ≤ λ|J | implies |X| ≤ λ|J |. This holds by applying Lemma2 to the machine
job M . ��

Finalizing the Proofs of Theorems 1 and 2

Proof of Theorem 1. Set α = 1 and β = ε
4 . By Theorem 3 at least half of all

admitted jobs complete on time. Theorem5 implies the competitive ratio 16/ε. ��
Proof of Theorem 2. Theorem 4, α = 8

δ and β = δ
4 imply that the algo-

rithm completes all admitted jobs. Theorem 5 implies the competitive ratio
32/((ε−δ)δ2+1). ��

5 Lower Bounds on the Competitive Ratio

Theorem 6 (Scheduling Without Commitment). Every deterministic
online algorithm has a competitive ratio Ω(1ε).

Theorem 7 (Commitment Upon Arrival). No randomized online algorithm
has a bounded competitive ratio for commitment upon arrival.

Theorem 8 (δ-Commitment). Consider weighted jobs in the δ-commitment
model. For any δ > 0 and ε with δ ≤ ε < 1+δ, no deterministic online algorithm
has a bounded competitive ratio.

In particular, there is no bounded competitive ratio possible for ε ∈ (0, 1). A
restriction for ε appears to be necessary as Azar et al. [2] provide an upper bound
for sufficiently large slackness, i.e., ε > 3. We answer affirmatively the open
question in [2] if high slackness is indeed required. Again, this strong impossibility
result clearly separates the weighted and the unweighted problem as we show in
the unweighted setting a bounded competitive ratio for any ε > 0 (Theorem 2).

6 Concluding Remarks

We provide a general framework for online scheduling of deadline-sensitive jobs
with and without commitment. This is the first unifying approach and we believe
that it captures well (using parameters) the key design principles needed when
scheduling online, deadline-sensitive, and with commitment. Some gaps between
upper and lower bounds remain and, clearly, it would be interesting to close
them. In fact, the lower bound comes from scheduling without commitment and
it is unclear, if scheduling with commitment is truly harder than without. It is

Handling Commitment in Online Throughput Maximization 151

somewhat surprising that essentially the same algorithm performs well for both
commitment models, commitment upon admission and δ-commitment, whereas
a close relation between the models does not seem immediate. It remains open
if an algorithm can exploit the seemingly greater flexibility of δ-commitment.

Our focus on unit-weight jobs is justified by strong impossibility results
(Theorem 7, 8, [2,21,25]). Thus, for weighted throughput a rethinking of the
model is needed. A major difficulty seems to be the interleaving structure of
time intervals as special structures (laminar or agreeable intervals) have been
proven to be substantially better tractable in related research [8,9].

Finally, while we close the problem of scheduling unweighted jobs without
commitment with a best-achievable competitive ratio Θ(1ε), it remains open
if the weighted setting is indeed harder than the unweighted setting or if the
upper bound O(1

ε2) in [21] can be improved. Future research on generalizations
to multi-processors seems highly relevant. We believe that our general framework
is a promising starting point.

A Appendix

Lemma 4. Let {f, . . . , g} ⊂ J be jobs at maximal distance from M such that
∑i

j=f |Xj | > λ(i + 1 − f) holds for all f ≤ i ≤ g. If g is the last such job, there

is a sibling j∗ of g with bg = aj∗ and
∑j∗

j=f |Xj | ≤ λ(j∗ + 1 − f).

Proof (Sketch). Observe that [af , bg) =
⋃k

j=f R(g) because the leaves f, . . . , g

form a string of jobs. Thus, by showing that there is a job x ∈ Xg
f :=

⋃g
j=f Xj

satisfying (V), we prove the lemma with the Volume Lemma. We show that for
every job f ≤ j ≤ g there is a set Yj such that the processing volume of Yj

covers the interval [aj , bj) at least ε
ε−δ times. More precisely, Yf , . . . , Yg satisfy

(i)
⋃g

j=f
Yj ⊂ Xg

f , (ii) |Yj | = λ, (iii)Yj ⊂ {x ∈ Xg
f
: px ≥ βpj} for f ≤ j ≤ g.

Then, (ii) and (iii) imply
∑

y∈Yj
py ≥ λβpj = ε

ε−δ (bj −aj). Thus, if x /∈ ⋃g
j=f Yj

and x is among those jobs in Xg
f that Opt completes last, (V) is satisfied. We first

describe how to find Yf , . . . , Yg before we show that these sets satisfy (i) to (iii).
By assumption, |Xf | > λ. Index the jobs in Xf = {x1, . . . , xλ, xλ+1, . . .} in

increasing completion times C∗
x. Define Yf := {x1, . . . , xλ} and Lf := Xf\Yf . Let

Yf , . . . , Yj and Lj be defined for f < j + 1 ≤ g. By assumption, |Xj+1 ∪ Lj | >
λ since |Yi| = λ for f ≤ i ≤ j. We again index the jobs in Xj+1 ∪ Lj =
{x1, . . . , xλ, xλ+1, . . .} in increasing optimal completion times. Then, Yj+1 :=
{x1, . . . , xλ} and Lj+1 := {xλ+1, . . .}. Since we move jobs only horizontally to
later siblings, we call this procedure Push Forward.

By definition, (i) and (ii) are satisfied. Since f, . . . , g are leaves, the jobs in
Yj ∩ Xj are big w.r.t. j. Thus, it remains to show that the jobs in Lj are big
w.r.t. the next job j + 1. To this end, we assume that the jobs in Yf , . . . , Yj are
big w.r.t. f, . . . , j, respectively. If we find an index f ≤ i(x) ≤ j such that x

as well as the jobs in
⋃j

i=i(x) Yi are released after ai(x) and x completes after

152 L. Chen et al.

every y ∈ ⋃j
i=i(x) Yi, then the Volume Lemma 3 implies that x ∈ Lj is big

w.r.t. j + 1. Indeed, then
∑j

i=i(x)

∑
y∈Xi:C

∗
y ≤C∗

x
py ≥ px +

∑j
i=i(x)

∑
y∈Yi

py ≥
ε

ε−δ (bj − ai(x)) + px. By induction, we show the existence of such an index i(x).
By the same argumentation for j = g, Corollary 1 implies the lemma. ��

Lemma 2. For all j ∈ J ∪ {M}, |XS
j | ≤ λτj.

Proof (Sketch). Recall that Tj is the subtree of the interruption tree rooted
in j ∈ J while the forest T−j is Tj without its root j. We show that for all
j ∈ J ∪ {M} there exists a partition (Yk)k∈T−j

with

(i)
⋃

k∈T−j
Yk = XS

j , (ii)Yk ⊂ {x ∈ Xj : px ≥ βpk}, (iii) |Yk| ≤ λ for k ∈ T−j .

Then, |XS
j | = |⋃k∈T−j

Yk| =
∑

k∈T−j
|Yk| ≤ τjλ and, thus, the lemma follows.

The proof consists of an outer and an inner induction. The outer induction
is on the distance ϕ(j) of a job j from machine job M , i.e., ϕ(M) := 0 and
ϕ(j) := ϕ(π(j)) + 1 for j ∈ J . Let ϕmax := max{ϕ(i) : i ∈ J}. The inner
induction uses the idea about pushing jobs x ∈ Xj to some later sibling of j in
the same string of jobs (see proof of Lemma 4).

Let j ∈ J with ϕ(j) = ϕmax − 1. By Observation 1, XS
j =

⋃
k:π(k)=j Xk,

where all k ∈ T−j are leaves at distance ϕmax from M . To define Yk for k ∈ T−j

satisfying (i) to (iii), we distinguish three cases:
Case 1. If k ∈ T−j is isolated, |Xk| ≤ λ follows directly from the Volume

Lemma as otherwise
∑

x∈Xk
px ≥ λβpk + px = ε

ε−δ (bk − ak) + px contradicts
Corollary 1, where x ∈ Xk is the last job that Opt completes from the set Xk.
Since all jobs in Xk are big w.r.t. k, we set Yk := Xk.

Case 2. For k ∈ T−j with |Xk| > λ, we find Yf , . . . , Yg with Lemma 4 and
set Yg+1 := Xg+1 ∪ Lg where f ≤ k ≤ g (maximal) satisfy Lemma 2.

Case 3. Consider jobs k in a string with |Xk| ≤ λ without siblings f, . . . , g
in the same string with bg = ak and

∑g
i=f |Xj | > (g − f)λ. This means that

such jobs do not receive jobs x ∈ Xi for i
= k by the Push Forward procedure
in Case 2. For such k ∈ T−j we define Yk := Xk as in Case 1.

Then, XS
j =

⋃
k∈T−j

Xk =
⋃

k∈T−j
Yk and, thus, (i) to (iii) are satisfied.

We use induction to extend the claim for ϕ = ϕmax to all 0 ≤ ϕ ≤ ϕmax.
Let ϕ < ϕmax such that (Yk)k∈T−j

satisfying (i) to (iii) exists for all j ∈ J with
ϕ(j) ≥ ϕ. Fix j ∈ J with ϕ(j) = ϕ−1. By induction and Observation 1, it holds
that XS

j =
⋃

k:π(k)=j

(
XB

k ∪ ⋃
i∈T−k

Yi

)
. Now, we use the partitions (Yi)i∈T−k

for k with π(k) = j as starting point to find the partition (Yk)k∈T−j
. We fix k

with π(k) = j and distinguish similar three cases as in the base case:
Case 1. If k is isolated, we show that |Xk| ≤ (τk + 1)λ and develop a

procedure to find (Yi)i∈Tk
.

By induction, |XS
k | ≤ τkλ. In the full version of the paper, we prove that

|XB
k | ≤ λ + (τkλ − |XS

k |). To construct (Yi)i∈Tk
, we assign min{λ, |XB

k |} jobs
from XB

k to Yk. If |XB
k | > λ, distribute the remaining jobs according to λ − |Yi|

among the descendants of k. Then, Xk =
⋃

i∈Tk
Yi. Because a job that is big

w.r.t job k is also big w.r.t. all descendants of k, every (new) set Yi satisfies

Handling Commitment in Online Throughput Maximization 153

(ii) and (iii). We refer to this procedure as Push Down since jobs are shifted
vertically to descendants.

Case 2. If |Xk| > (τk +1)λ, k must belong to a string with similar properties
as in Lemma 4, i.e., there is a maximal string of jobs f, . . . , g containing k such
that

∑i
j=f |Xj | > λ

∑i
j=f τj for f ≤ i ≤ g and bj = aj+1 for f ≤ j < g.

If the Volume Condition (V) is satisfied, there exists another sibling g + 1
that balances the sets Xf , . . . , Xg,Xg+1 due to Corollary 1. This is shown by
using Push Down within a generalization of the Push Forward procedure.
As the jobs f, . . . , g may have descendants, we use Push Forward to construct
the sets Zf , . . . , Zg and Lf , . . . , Lg with |Zk| = λ(τk + 1). Then, we apply Push
Down to Zk and (Yi)i∈T−k

in order to obtain (Yi)i∈Tk
such that they will satisfy

Zk =
⋃

i∈Tk
Yi, Yi ⊂ {x ∈ Xj : px ≥ βpi}, and |Yi| = λ for i ∈ Tk. Thus, the

sets Xf , . . . , Xg satisfy (V) and we can apply Corollary 1.
Case 3. Any job k with π(k) = j that was not yet considered as part

of a string must satisfy |Xk| ≤ (τk + 1)λ. We use Push Down of Case 1 to
get (Yi)i∈Tk

. Hence, we have found (Yk)k∈T−j
with the properties (i) to (iii). ��

References

1. Agrawal, K., Li, J., Lu, K., Moseley, B.: Scheduling parallelizable jobs online to
maximize throughput. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.)
LATIN 2018. LNCS, vol. 10807, pp. 755–776. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77404-6 55

2. Azar, Y., Kalp-Shaltiel, I., Lucier, B., Menache, I., Naor, J., Yaniv, J.: Truthful
online scheduling with commitments. In: Proceedings of the ACM Symposium on
Economics and Computations (EC), pp. 715–732 (2015)

3. Bansal, N., Chan, H.-L., Pruhs, K.: Competitive algorithms for due date schedul-
ing. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 28–39. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73420-8 5

4. Baruah, S.K., Haritsa, J.R.: Scheduling for overload in real-time systems. IEEE
Trans. Comput. 46(9), 1034–1039 (1997)

5. Baruah, S.K., Haritsa, J.R., Sharma, N.: On-line scheduling to maximize task
completions. In: Proceedings of the IEEE Real-Time Systems Symposium (RTSS),
pp. 228–236 (1994)

6. Baruah, S.K., et al.: On the competitiveness of on-line real-time task scheduling.
Real-Time Syst. 4(2), 125–144 (1992)

7. Canetti, R., Irani, S.: Bounding the power of preemption in randomized scheduling.
SIAM J. Comput. 27(4), 993–1015 (1998)

8. Chen, L., Megow, N., Schewior, K.: An O(log m)-competitive algorithm for online
machine minimization. In: Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 155–163 (2016)

9. Chen, L., Megow, N., Schewior, K.: The power of migration in online machine min-
imization. In: Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pp. 175–184 (2016)

10. DasGupta, B., Palis, M.A.: Online real-time preemptive scheduling of jobs with
deadlines. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913,
pp. 96–107. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-
X 11

https://doi.org/10.1007/978-3-319-77404-6_55
https://doi.org/10.1007/978-3-319-77404-6_55
https://doi.org/10.1007/978-3-540-73420-8_5
https://doi.org/10.1007/978-3-540-73420-8_5
https://doi.org/10.1007/3-540-44436-X_11
https://doi.org/10.1007/3-540-44436-X_11

154 L. Chen et al.

11. Ferguson, A.D., Bod́ık, P., Kandula, S., Boutin, E., Fonseca, R.: Jockey: guaranteed
job latency in data parallel clusters. In: Proceedings of the European Conference
on Computer Systems (EuroSys), pp. 99–112 (2012)

12. Garay, J.A., Naor, J., Yener, B., Zhao, P.: On-line admission control and packet
scheduling with interleaving. In: Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), pp. 94–103 (2002)

13. Georgiadis, L., Guérin, R., Parekh, A.K.: Optimal multiplexing on a single link:
delay and buffer requirements. IEEE Trans. Inf. Theory 43(5), 1518–1535 (1997)

14. Goldwasser, M.H.: Patience is a virtue: the effect of slack on competitiveness for
admission control. In: Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 396–405 (1999)

15. Im, S., Moseley, B.: General profit scheduling and the power of migration on het-
erogeneous machines. In: Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pp. 165–173 (2016)

16. Kalyanasundaram, B., Pruhs, K.: Maximizing job completions online. J. Algo-
rithms 49(1), 63–85 (2003)

17. Koren, G., Shasha, D.E.: MOCA: a multiprocessor on-line competitive algorithm
for real-time system scheduling. Theor. Comput. Sci. 128(1–2), 75–97 (1994)

18. Koren, G., Shasha, D.E.: Dover: an optimal on-line scheduling algorithm for over-
loaded uniprocessor real-time systems. SIAM J. Comput. 24(2), 318–339 (1995)

19. Liebeherr, J., Wrege, D.E., Ferrari, D.: Exact admission control for networks with
a bounded delay service. IEEE/ACM Trans. Netw. 4(6), 885–901 (1996)

20. Lipton, R.: Online interval scheduling. In: Proceedings of the ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 302–311 (1994)

21. Lucier, B., Menache, I., Naor, J., Yaniv, J.: Efficient online scheduling for deadline-
sensitive jobs: extended abstract. In: Proceedings of the ACM Symposium on Par-
allelism in Algorithms and Architectures (SPAA), pp. 305–314 (2013)

22. Pruhs, K., Stein, C.: How to schedule when you have to buy your energy. In: Pro-
ceedings of the International Conference on Approximation Algorithms for Com-
binatorial Optimization Problems (APROX), pp. 352–365 (2010)

23. Schwiegelshohn, C., Schwiegelshohn, U.: The power of migration for online slack
scheduling. In: Proceedings of the European Symposium of Algorithms (ESA), vol.
57, pp. 75:1–75:17 (2016)

24. Woeginger, G.J.: On-line scheduling of jobs with fixed start and end times. Theor.
Comput. Sci. 130(1), 5–16 (1994)

25. Yaniv, J.: Job scheduling mechanisms for cloud computing. Ph.D. thesis, Technion,
Israel (2017)

Lower Bounds and a New Exact
Approach for the Bilevel Knapsack

with Interdiction Constraints

Federico Della Croce1,2(B) and Rosario Scatamacchia1

1 Dipartimento di Ingegneria Gestionale e della Produzione, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

{federico.dellacroce,rosario.scatamacchia}@polito.it
2 CNR, IEIIT, Torino, Italy

Abstract. We consider the Bilevel Knapsack with Interdiction Con-
straints, an extension of the classic 0-1 knapsack problem formulated
as a Stackelberg game with two agents, a leader and a follower, that
choose items from a common set and hold their own private knapsacks.
First, the leader selects some items to be interdicted for the follower
while satisfying a capacity constraint. Then the follower packs a set of
the remaining items according to his knapsack constraint in order to
maximize the profits. The goal of the leader is to minimize the follower’s
profits. The presence of two decision levels makes this problem very diffi-
cult to solve in practice: the current state-of-the-art algorithms can solve
to optimality instances with 50–55 items at most. We derive effective
lower bounds and present a new exact approach that exploits the struc-
ture of the induced follower’s problem. The approach successfully solves
all benchmark instances within one second in the worst case and larger
instances with up to 500 items within 60 s.

1 Introduction

Recently, a growing attention has been centered to multilevel programming. Here
we focus on bilevel optimization where two agents, denoted as a leader and a
follower, play a Stackelberg game [11]. In this game, the leader takes the first
decision and then the follower reacts taking into account the leader’s strategy.
Two standard assumptions hold in a Stackelberg game: complete information,
that is each agent knows the problem solved by the other agent; rationale behav-
ior, namely each agent has no interest in deviating from his own objective.

In this paper, we consider the Bilevel Knapsack with Interdiction Constraints
(BKP), as introduced in [6]. The problem is an extension of the classic 0-1
Knapsack Problem (KP) to a Stackelberg game where the leader and the follower
choose items from a common set and hold their own private knapsacks. First,
the leader selects some items to be interdicted for the follower while satisfying
a capacity constraint. Then the follower packs a set of the remaining items
according to his knapsack constraint in order to maximize the profits. The goal
c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 155–167, 2019.
https://doi.org/10.1007/978-3-030-17953-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_12

156 F. Della Croce and R. Scatamacchia

of the leader is to minimize the follower’s profits. One of the best performing
algorithms for BKP is given in [2]. The algorithm, denoted as CCLW, solves to
optimality instances with 50 items within a CPU time limit of 3600 s, running
out of time in instances with 55 items only. Very recently, an improved branch-
and-cut algorithm was given in [7]. The proposed approach manages to solve to
optimality all benchmark instances in [2], requiring at most a computation time
of about 85 s in an instance with 55 items. We also mention the work of [8] where
a heuristic approach is proposed for BKP and other interdiction games.

Other bilevel knapsack problems have been tackled in the literature. In [1],
the leader cannot interdict items but modifies the follower’s capacity. In [4], the
leader can modify the follower’s objective function only. As discussed in [2], both
problems are easier to handle than BKP. Recently, a polynomial algorithm has
been provided in [3] for the continuous BKP.

Our contribution for BKP is twofold. First, we derive effective lower bounds
based on mathematical programming. Second, we present a new exact approach
that exploits the induced follower’s problem and the lower bounds. The proposed
approach shows up to be very effective successfully solving all benchmark liter-
ature instances provided in [2] within few seconds of computation. Moreover,
our algorithm manages to solve to optimality all instances with up to 500 items
within a CPU time limit of 60 s. Further details are available in [5].

2 Notation and Problem Formulation

In BKP a set of n items and two knapsacks are given. Each item i (= 1, . . . , n)
has associated a profit pi > 0 and a weight wi > 0 for the follower’s knapsack
and a weight vi > 0 for the leader’s knapsack. Leader and follower have different
knapsack capacities denoted by Cu and Cl, respectively. Quantities pi, vi, wi

(i = 1, . . . , n), Cu, Cl are assumed to be integer, with vi ≤ Cu and wi ≤ Cl

for all i. To avoid trivial instances, it is also assumed that
n∑

i=1

vi > Cu and
n∑

i=1

wi > Cl. We introduce 0/1 variables xi (i = 1, . . . , n) equal to one if the

leader selects item i and 0/1 variables yi equal to one if item i is chosen by the
follower. BKP can be modeled as follows:

min

n∑

i=1

piyi (1)

subject to
n∑

i=1

vixi ≤ Cu (2)

xi ∈ {0, 1} i = 1, . . . , n (3)
where y1, . . . , yn solve

the follower’s problem: max

n∑

i=1

piyi (4)

subject to

n∑

i=1

wiyi ≤ Cl (5)

yi ≤ 1 − xi i = 1, . . . , n (6)
yi ∈ {0, 1} i = 1, . . . , n (7)

New Approach for the Bilevel KP 157

The leader’s objective function (1) minimizes the profits of the follower
through the interdiction constraints (6). These constraints ensure that each item
i can be selected by the follower, i.e. yi ≤ 1, only if the item is not interdicted by
the leader, i.e. xi = 0. Constraint (2) represents the leader’s capacity constraint.
The objective function (4) maximizes the follower’s profits and constraint (5)
represents the follower’s capacity constraint. Constraints (3) and (7) define the
domain of the variables.

The optimal solution value of model (1)–(7) is denoted by z∗. The optimal
solution vectors of variables xi and yi are respectively denoted by x∗ and y∗.
Notice that in model (1)–(7) there always exists an optimal solution for the leader
which is maximal, namely where items are included in the leader’s knapsack until
there is enough capacity left.

Let us now recall the optimal solution of the continuous relaxation of a stan-
dard KP, namely the follower’s model (4)–(7) without constraints (6) and con-

straints (7) replaced by inclusion in [0, 1]. Under the assumption
n∑

i=1

wi > Cl,

this solution has the following structure. Consider the sorting of the items by
non-increasing ratios of profits over weights:

p1

w1
≥ p2

w2
≥ · · · ≥ pn

wn

. (8)

According to this order, items j = 1, 2, . . . are inserted into the knapsack as

long as
j∑

k=1

wk ≤ Cl. The first item s which cannot be fully packed is commonly

denoted in the knapsack literature as the split item (or break/critical item).
The optimal solution of the KP linear relaxation is given by setting yj = 1 for

j = 1, . . . , s − 1, yj = 0 for j = s + 1, . . . , n and ys = (Cl −
s−1∑

j=1

wj)/ws. The

solution with items 1, . . . , (s − 1) is a feasible solution for KP and is commonly
denoted as the split solution.

In the remainder of the paper, we assume the ordering of the items (8). We
denote by KP (x) the follower’s knapsack problem induced by a leader’s strategy
encoded in vector x, i.e. a knapsack problem with item set

S := {i : xi = 0, xi ∈ x}.

We also denote by KPLP (x) the corresponding Linear Programming (LP) relax-
ation. If

∑
i∈S wi > Cl, we define the critical item c of KPLP (x) as the last item

with a strictly positive value in its optimal solution. Thus, we have yc ∈ (0, 1]
and a corresponding split solution with profit

∑

i∈S:i<c

pi =

c−1∑

i=1

pi(1 − xi) (9)

which constitutes a feasible solution for KP (x). Notice that we denote by z(M)
the optimal solution value of any given mathematical model M .

158 F. Della Croce and R. Scatamacchia

3 Computing Lower Bounds on BKP

Consider the optimal solution vector x∗. In the induced follower’s knapsack prob-
lem KP (x∗) with item set S, two cases can occur: either there is no critical
item in KPLP (x∗), namely

∑
i∈S wi ≤ Cl, or one critical item exists, namely∑

i∈S wi > Cl. The first case can be easily handled by considering that the fol-
lower will pack all items not interdicted by the leader. This case is discussed in
Sect. 4.2.

In the second case, we derive effective lower bounds on BKP by guessing
the critical item of KPLP (x∗) and correspondingly computing the related split
solution of the follower’s problem. These bounds constitute the main ingredient
of the exact approach presented in Sect. 4. Since we do not know a priori the
leader’s optimal solution x∗, we formulate an Integer Linear Programming (ILP)
model where we impose that a given item c must be critical and evaluate the
profit of the corresponding split solution in the objective function. We consider
binary variables kj (j = 1, . . . , wc) associated with the weight contribution of
the critical item and introduce the following model (denoted as CRIT1(c)).

CRIT1(c) : min

c−1∑

i=1

pi(1 − xi) (10)

subject to

n∑

i=1

vixi ≤ Cu (11)

c−1∑

i=1

wi(1 − xi) +

wc∑

j=1

jkj = Cl (12)

wc∑

j=1

kj = 1 (13)

xc = 0 (14)
xi ∈ {0, 1} i = 1, . . . , n (15)
kj ∈ {0, 1} j = 1, . . . , wc (16)

The objective function (10) minimizes the value of the split solution. Con-
straint (11) represents the leader’s capacity constraint. Constraints (12) and
(13) ensure that item c is critical as it is the last item packed, with a weight in
the interval [1, wc]. Constraint (14) indicates that item c can be critical only if
it is not interdicted by the leader. Constraints (15) and (16) indicate that all
variables are binary. We can state the following proposition.

Proposition 1. If there exists a critical item c in KPLP (x∗), then z(CRIT1(c))
is a valid lower bound on z∗.

Proof. Under the assumption that item c is critical in KPLP (x∗), the optimal
BKP solution x∗ constitutes a feasible solution for model CRIT1(c). Let denote
by z1 the corresponding solution value that coincides with the value of the split
solution in KP (x∗). Since the follower maximizes the profits in KP (x∗) obtaining
a solution with a value greater than (or equal to) the one of the split solution,
we have z1 ≤ z∗. But this means that there exists an optimal solution of model
CRIT1(c) such that z(CRIT1(c)) ≤ z1 which implies a lower bound on z∗. ��

New Approach for the Bilevel KP 159

The previous proposition already provides a first significant lower bound for
the problem. However, following the reasoning in the proof of Proposition 1, we
remark that improved bounds on z∗ can be derived by considering any feasible
solution for KP (x∗) that might be obtained by removing (adding) items that
were not interdicted by the leader and that were selected (not selected) by the
split solution, provided that the follower’s capacity is not exceeded. Indeed, this
corresponds to removing tuples of items i ∈ [1, c − 1] : xi = 0 and/or to adding
tuples of items i ∈ [c, n] : xi = 0 from the split solution without exceeding the
follower’s capacity.

Notice that, the state-of-the-art algorithms for KP, Minknap [10] and Combo
[9] consider that in general only few items with ratio pi/wi close to that of the
critical item change their values in an optimal solution with respect to the values
taken in the split solution. These items constitute the so-called core of the knap-
sack. Minknap and Combo start with the computation of the split solution and
an expanding core initialized with the critical item only. Then, the algorithms
iteratively enlarge the core by evaluating both the removal of items from the split
solution and the addition of items after the critical item. The empirical evidence
illustrates that an optimal (or close to be optimal) KP solution is typically found
after few iterations.

We cannot precisely characterize the features of these exact algorithms by a
set of constraints within an ILP model, but we can mimic the same algorithmic
reasoning by considering subsets of the items set c − δ, ..., c + δ including the
critical item c for any given core size 2δ+1. In each subset, the items i : i ≤ c−1
are removed from the split solution, while the items j : j ≥ c are added to the
solution. Correspondingly, the initial profit and weight of the split solution are
modified by subtracting the profits and the weights of the removed items and
by summing up the profits and the weights of the added items.

Then, for any given subset τ of the items set c − δ, ..., c + δ, let pτ and wτ be
the overall profit (namely the value of the improvement upon the split solution)
and weight contributions of the items in τ , namely:

p
τ
= −

∑

i∈τ:i<c

pi +
∑

j∈τ:j≥c

pj ; (17)

w
τ
= −

∑

i∈τ:i<c

wi +
∑

j∈τ:j≥c

wj . (18)

A subset τ with pτ ≤ 0 is not considered since it does not improve upon the split
solution. Instead, an improving subset with pτ > 0 is feasible only if wτ ≤ wc

and all items in τ are not interdicted by the leader. In that case, by keeping
the notation of model CRIT1(c), an improvement π can be determined if the
following constraint is added:

π ≥ p
τ
(

wc∑

j=max{1;wτ }
kj −

∑

i∈τ

xi). (19)

Correspondingly, a new model can be generated by introducing a non-
negative variable π that carries the maximum additional profit to the split solu-
tion value provided by any of the additional constraints (19) indicated above.

160 F. Della Croce and R. Scatamacchia

These constraints, denoted as F(π, x, k), link variable π to variables xi and kj .
The model (denoted as CRIT2(c)) is as follows.

CRIT2(c) : min

c−1∑

i=1

pi(1 − xi) + π (20)

subject to F(π, x, k) (21)
(11), (16)

π ≥ 0 (22)

Clearly, due to the addition of constraints inF(π, x, k), we have z(CRIT1(c)) ≤
z(CRIT2(c)) for any c. Notice that, in all these additional constraints, only items
whichwill not be interdicted by the leader can be packed and the follower’s capacity
constraint is not violated. We denote as proper any set F(π, x, k) that satisfies both
conditions. After the set F(π, x, k) is built, variable π will carry the maximum
profit obtainable in addition to the profit of the split solution.

Proposition 2. If KPLP (x∗) admits a critical item c and model CRIT2(c) has
a proper set F(π, x, k), then z(CRIT2(c)) ≤ z∗.

Proof. Since model CRIT2(c) considers feasible solutions for KP (x∗), the
inequality holds by applying the same argument of Proposition 1. ��

We remark that models CRIT1(c) and CRIT2(c) contain a pseudo polyno-
mial number of binary variables kj depending on the magnitude of the follower’s
weights. Hence, the hardness of these ILP models may increase with the size
increase of such input entries.

4 A New Exact Approach for BKP

4.1 Overview

We propose an exact algorithm for BKP that considers the possible existence
of a critical item in KPLP (x∗) and exploits the bounds provided by model
CRIT2(c). The key idea of the algorithm is to compute appropriate leader’s
solutions by exploring the most promising subproblems in terms of lower bounds.
This strategy considerably speeds up in practice both the identification and
certification of an optimal interdiction structure.

The approach involves two main steps. In the first step, the possible non-
existence of a critical item is first evaluated. Then, the approach assumes the exis-
tence of a critical item and identifies a set of possible candidate items. For each
candidate item c and a parameter δ to identify the core size, model CRIT2(c)
is built by considering several subsets of additional constraints (19). Then the
linear relaxation CRITLP

2 (c) is solved, where the integrality constraints (15)
and (16) are replaced by inclusion in [0, 1]. The feasible problems CRITLP

2 (c)
are sorted by increasing optimal value so as to identify an order of the most
promising subproblems to explore. A limited number of feasible BKP solutions
is also computed in this step.

New Approach for the Bilevel KP 161

In the second step, each relevant subproblem is explored by constraint genera-
tion until the subproblem can be pruned. An optimal BKP solution is eventually
returned. The approach takes as input five parameters α, β, δ, μ, γ and relies
on an ILP solver along its steps. We discuss the steps of the algorithm in the
following. The corresponding pseudo code is provided in Appendix.

4.2 Step 1

Handling the Possible Non-existence of a Critical Item. We first consider
the case where there does not exist a critical item in KPLP (x∗). Thus, the
follower will select all available items which are not interdicted by the leader and
an optimal solution of BKP is found by solving the following problem NCR.

NCR : min

n∑

i=1

pi(1 − xi) (23)

subject to
n∑

i=1

vixi ≤ Cu (24)

n∑

i=1

wi(1 − xi) ≤ Cl (25)

xi ∈ {0, 1} i = 1, . . . , n (26)

If problem NCR is feasible, let denote by x′ the related optimal solution
representing the leader’s strategy. The corresponding follower’s solution is
denoted by y′, with y′

i = 1 − x′
i (i = 1, . . . , n). The current best solution (x∗, y∗)

with value z∗ (which will be optimal at the end of the algorithm) is initialized
accordingly (Lines 3–4 of the pseudo code).

Identifying the Relevant Critical Items. We now assume that there exists a
critical item c in KPLP (x∗) (Lines 5–13) and estimate the first and last possible
items l and r that can be critical according to ordering (8). For item l we have

l := min{j :

j∑

i=1

wi ≥ Cl}. (27)

All items 1, . . . , (l − 1) cannot in fact be critical even without the leader’s inter-
diction. For the last item r, we first compute the maximum weight of the follower
that can be interdicted by the leader (similarly as in [2]) by solving the following
problem (denoted by LW).

LW : max

n∑

i=1

wixi (28)

subject to

n∑

i=1

vixi ≤ Cu (29)

xi ∈ {0, 1} i = 1, . . . , n (30)

Item r is defined as

r := min{j :

j∑

i=1

wi ≥ Cl + z(LW)}. (31)

162 F. Della Croce and R. Scatamacchia

Since from (31) we have
r∑

i=1

wi(1−xi) ≥ Cl for any leader’s strategy, all items

from (r + 1) to n cannot be critical.

Building Models CRIT2(c). For each candidate critical item c ∈ [l, r], we
formulate model CRIT2(c) by constructing a proper set F(π, x, k) as follows.
Consider the subsets involving items in the interval [c − δ, c + δ]. Even for small
value of δ, the number of subsets can be very large. Hence, in order to limit the
number of constraints in F(π, x, k), we propose a different strategy that greedily
selects the subsets according to the procedure denoted as ComputeTuples and
sketched in Appendix.

For a given value of δ, we consider the interval of items [a, b], with a =
max{1; c − δ} and b = min{c + δ;n}. Starting by the empty set, we enumerate
at most α “backward” sets with items (c − 1), . . . , a in increasing order of size.
Each set has a profit and weight equal to the sum of profits and weights of the
included items. We also compute at most β “forward” sets with items c, . . . , b in
increasing order of size and with a weight not superior to the maximum weight
of a backward set. This in order to exclude forward sets having less chance to
be combined with a backward set.

Then the backward (resp. forward) sets are ordered by increasing (resp.
decreasing) profit. We combine each backward set with a forward set and gen-
erate a tuple τ . If pτ > 0 and wτ ≤ wc, we add constraint (19) to F(π, x, k).
We continue adding constraints to F(π, x, k) until their number is superior to
an input parameter μ. If not previously included, we also add to set F(π, x, k)
the constraint π ≥ pckwc

which handles the possible adding of the critical item
to the split solution if the residual capacity is equal to wc.

Then we solve models CRITLP
2 (c) for each c ∈ [l, r] and order the models by

increasing optimal value so as to have an order of most promising subproblems
to explore. If for the first subproblem we have z(CRITLP

2 (c)) ≥ z∗, an optimal
BKP solution is already certified (Line 13 of the pseudo code).

Computing Feasible BKP Solutions. According to the previous order of
subproblems, we compute BKP feasible solutions by considering the first γ sub-
problems (Lines 15–21). For a given item c, we solve model CRIT2(c) obtaining a
solution x̂. If z(CRIT2(c)) < z∗, we solve the induced follower’s problem KP (x̂)
with optimal solution ŷ and update the current best solution if z(KP (x̂)) < z∗.

4.3 Step 2

This step considers all relevant (ordered) suproblems CRIT2(c). For each sub-
problem, we first test for standard variables fixing and then each subproblem is
explored by means of a constraint generation approach (Lines 23–33).

Fixing Variables in Subproblems. For a given problem CRITLP
2 (c), denote

the optimal values of variables xi and kj by xLP
i and kLP

j respectively. Let rxi

and rkj
be the reduced costs of non basic variables in the optimal solution of

New Approach for the Bilevel KP 163

CRITLP
2 (c). We apply then standard variable-fixing techniques from Integer

Linear Programming: if the gap between the best feasible solution available and
the optimal solution value of the continuous relaxation solution is not greater
than the absolute value of a non basic variable reduced cost, then the related
variable can be fixed to its value in the continuous relaxation solution. Thus, the
following constraints are added to CRIT2(c):

∀ i : |rxi
| ≥ z

∗ − z(CRIT
LP
2 (c)), xi = x

LP
i ; (32)

∀ j : |rkj
| ≥ z

∗ − z(CRIT
LP
2 (c)), kj = k

LP
j . (33)

Solving Subproblems. For each open subproblem CRIT2(c), we first solve
CRIT2(c) obtaining a solution x̄. If the corresponding objective value is lower
than the current best feasible solution value, we solve KP (x̄) with solution ȳ
and if an improving solution is found, the current best solution is updated, as
in Sect. 4.2. Then, we add to CRIT2(c) the constraint

n∑

i:ȳi=1

xi ≥ 1. (34)

Constraint (34) is a cut imposing that at least one item selected by the
follower in solution ȳ must be interdicted. We solve CRIT2(c) with one more
constraint and apply the same procedure until z(CRIT2(c)) ≥ z∗ or the problem
becomes infeasible. At the end of Step 2, the optimal BKP solution (x∗, y∗) is
returned (Line 34).

5 Computational Results

All tests were performed on an Intel i7 CPU @ 2.4 GHz with 8 GB of RAM.
The code was implemented in the C++ programming language. The ILP
solver used along the steps of the algorithm is CPLEX 12.6.2. The parame-
ters of the ILP solver were set to their default values. The BKP instances with
n = 35, 40, 45, 50, 55 are generated in [2] as follows. Profits pi and weights wi

of the follower and weights vi of the leader are integers randomly distributed in
[1, 100]: 10 instances are generated for each value of n. The follower’s capacity Cl

is set to �(INS/11)
∑n

i wi� where INS (= 1, . . . , 10) denotes the instance iden-
tifier. The leader’s capacity is randomly selected in the interval [Cl −10;Cl +10].

We first tested our approach on these 50 benchmark instances. After some
preliminary computational tests, we chose the following parameter entries for
our approach: α = 100, β = 100, δ = 10, μ = 150, γ = 2. Algorithm CCLW
in [2] solves all instances with 50 items within a CPU time limit of 3600 s but
runs out of time limit in two instances with 55 items. Algorithm in [7] solves
all benchmark instances, requiring at most a computation time of about 85 s for
solving an instance with 55 items. The proposed exact approach outperforms
the competing algorithms, successfully solving to optimality each instance in at
most 1.1 s (the maximum CPU time is reached in an instance with 55 items)

164 F. Della Croce and R. Scatamacchia

with an average of 0.2 s. Notice that the tests in [2] and in [7] were carried
out on different but comparable machines in terms of hardware specifications.
Furthermore, the computational tests in both [2] and [7] are limited to instances
with 55 items. We then tested larger instances with n = 100, 200, 300, 400, 500
according to the generation scheme in [2]. For each value of n and INS, we
generated 10 instances for a total of 500 instances. For these large instances, we
set the parameters of our algorithm to the following values: α = 500, β = 500,
δ = 20, μ = 1000, γ = 5. It is pointed out in [2] that in instances with INS ≥ 5
the follower’s capacity constraint is expected to be inactive and this makes the
instances easy to solve. Our computational experiments confirm this trend: the
proposed algorithm solves each instance with n from 100 to 500 and INS ≥ 5
in at most 8 s never invoking Step 2. In the light of this consideration, we report
in the following Table 1 only the results for instances with INS ≤ 4.

Table 1. BKP instances with n = 100, 200, 300, 400, 500 and INS ≤ 4.

n INS #Opt CPU time # Subproblems
in Step 2

CRIT2(·)
solved

Average Max Average Max Average Max

100 1 10 2.1 3.0 0.7 2.0 4.8 7.0
2 10 5.6 9.9 3.8 9.0 8.9 16.0
3 10 4.3 6.4 2.5 7.0 7.5 12.0
4 10 2.3 4.5 0.7 4.0 5.2 9.0

200 1 10 5.3 10.7 3.4 7.0 8.9 17.0
2 10 7.8 12.2 5.0 9.0 10.1 14.0
3 10 9.1 13.6 6.4 12.0 12.3 19.0
4 10 6.0 8.6 3.5 8.0 8.3 13.0

300 1 10 6.4 8.3 3.9 8.0 9.0 13.0
2 10 15.5 37.4 7.2 14.0 13.5 23.0
3 10 14.0 17.7 10.9 15.0 16.8 24.0
4 10 8.7 13.2 4.9 11.0 9.9 16.0

400 1 10 8.8 12.3 6.7 10.0 12.8 17.0
2 10 15.2 18.7 9.1 12.0 15.1 20.0
3 10 19.0 30.5 12.0 17.0 18.8 32.0
4 10 12.6 16.5 8.4 23.0 13.8 30.0

500 1 10 11.9 18.2 7.6 13.0 13.1 20.0
2 10 20.6 26.6 11.0 20.0 17.0 25.0
3 10 21.2 25.8 12.7 17.0 17.8 22.0
4 10 15.1 17.1 4.7 8.0 9.8 13.0

New Approach for the Bilevel KP 165

The results in the table are summarized in terms of average, maximum CPU
time and number of optimal solutions obtained with a time limit of 60 s. We also
report average and maximum number of subproblems explored in Step 2. The last
column reports average and maximum number of times model CRIT2(c) is solved
along the two steps. The results illustrate the effectiveness of our approach. All
instances are solved to optimality requiring 37.4 s at most for an instance with
300 items. The number of subproblems handled by Step 2 is in general limited,
reaching a maximum value of 23 (in an instance with 400 items). Also, the
number of models CRIT2(c) to be solved is generally limited and never superior
to 32. We finally point out that the number of times constraint (34) is added
to each subproblem is limited: in the tested instances, the while–loop of Step 2
executed 8 iterations at most.

Appendix

ComputeTuples(c, α, β, δ, μ)
1: Consider items in the interval [a, b] with a := max{c−δ; 1}, b := min{c+δ;n}.
2: Starting from the empty set and in increasing order of size, enumerate α

backward sets with items (c−1), . . . , a. Denote by wmax the maximum weight
of a backward set. Order the sets by increasing profits.

3: Enumerate β forward sets with items c, . . . , b in increasing order of size and
with a weight not superior to wmax. Order the sets by decreasing profits.

4: Take the first available backward set. Merge the set with a forward set and
generate tuple τ .

5: If pτ > 0 and wτ ≤ wc, add constraint π ≥ pτ (
wc∑

j=max{1;wτ }
kj − ∑

i∈τ

xi) to

F(π, x, k).
6: Iterate Steps 4-5 as long as |F(π, x, k)| ≤ μ.
7: If not already included, add to F(π, x, k) constraint π ≥ pckwc

.

166 F. Della Croce and R. Scatamacchia

Exact solution approach
1: Input: BKP instance, parameters α, β, δ, μ, γ.

� Step 1
2: Handle the absence of a critical item:
3: solve NCR; z∗ ← +∞;
4: if NCR has a feasible solution then x∗ = x′, y∗ = y′, z∗ = z(NCR); end

if
5: Identify the candidate critical items and build models CRIT2(c):
6: Compute the interval of critical items [l, r]: l ← apply (27), r ← apply (31);
7: for all c in [l, r] do
8: Build model CRIT2(c) by procedure ComputeTuples(c, α, β, δ, μ);
9: Solve model CRITLP

2 (c);
10: end for
11: Sort models CRIT2(c) by increasing z(CRITLP

2 (c)).
12: =⇒ Create a list of ordered critical items L = {c1, c2, . . . };
13: if z(CRITLP

2 (c1)) ≥ z∗ then return (x∗, y∗); end if
14: Compute feasible BKP solutions:
15: for i = 1, . . . , γ do
16: if z(CRITLP

2 (ci)) < z∗ then x̂ ← solve CRIT2(ci);
17: if z(CRIT2(ci)) < z∗ then ŷ ← solve KP (x̂);
18: if z(KP (x̂)) < z∗ then x∗ = x̂, y∗ = ŷ, z∗ = z(KP (x̂)); end if
19: end if
20: end if
21: end for

� Step 2
22: Solve subproblems:
23: for all c in list L do
24: if z(CRITLP

2 (c)) ≥ z∗ then return (x∗, y∗); end if
25: Apply (32), (33) and fix variables in CRIT2(c);
26: x̄ ← solve CRIT2(c);
27: while z(CRIT2(c)) < z∗ do
28: ȳ ← solve KP (x̄);
29: if z(KP (x̄) < z∗ then x∗ = x̄, y∗ = ȳ, z∗ = z(KP (x̄)); end if
30: Add constraint (34) to CRIT2(c);
31: x̄ ← solve CRIT2(c);
32: end while
33: end for
34: return (x∗, y∗).

New Approach for the Bilevel KP 167

References

1. Brotcorne, L., Hanafi, S., Mansi, R.: One-level reformulation of the bilevel knapsack
problem using dynamic programming. Discrete Optim. 10, 1–10 (2013)

2. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.: Bilevel knapsack with inter-
diction constraints. INFORMS J. Comput. 28, 319–333 (2016)

3. Carvalho, M., Lodi, A., Marcotte, P.: A polynomial algorithm for a continuous
bilevel knapsack problem. Oper. Res. Lett. 46, 185–188 (2018)

4. Chen, L., Zhang, G.: Approximation algorithms for a bi-level knapsack problem.
Theor. Comput. Sci. 497, 1–12 (2013)

5. Della Croce, F., Scatamacchia, R.: A new exact approach for the bilevel knapsack
with interdiction constraints (2018). http://arxiv.org/abs/1811.02822

6. DeNegre, S.: Interdiction and discrete bilevel linear programming. Ph.D. thesis.
Lehigh University (2011)

7. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: Interdiction games and mono-
tonicity, with application to knapsack problems. INFORMS J. Comput. (2018, to
appear), technical report available at: https://homepage.univie.ac.at/ivana.ljubic/
research/publications/interdiction games and monotonicity.pdf

8. Fischetti, M., Monaci, M., Sinnl, M.: A dynamic reformulation heuristic for gener-
alized interdiction problems. Eur. J. Oper. Res. 267, 40–51 (2018)

9. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for
the 0-1 knapsack problem. Manag. Sci. 45, 414–424 (1999)

10. Pisinger, D.: A minimal algorithm for the 0-1 knapsack problem. Oper. Res. 45,
758–767 (1997)

11. Stackelberg, H.V.: The Theory of the Market Economy. Oxford University Press,
Oxford (1952)

http://arxiv.org/abs/1811.02822
https://homepage.univie.ac.at/ivana.ljubic/research/publications/interdiction_games_and_monotonicity.pdf
https://homepage.univie.ac.at/ivana.ljubic/research/publications/interdiction_games_and_monotonicity.pdf

On Friedmann’s Subexponential Lower
Bound for Zadeh’s Pivot Rule

Yann Disser1,2 and Alexander V. Hopp1,2(B)

1 Graduate School of Computational Engineering, TU Darmstadt,
Darmstadt, Germany

hopp@gsc.tu-darmstadt.de
2 Department of Mathematics, TU Darmstadt, Darmstadt, Germany

disser@mathematik.tu-darmstadt.de

Abstract. The question whether the Simplex method admits a polyno-
mial time pivot rule remains one of the most important open questions
in discrete optimization. Zadeh’s pivot rule had long been a promis-
ing candidate, before Friedmann (IPCO, 2011) presented a subexponen-
tial instance, based on a close relation to policy iteration algorithms for
Markov decision processes (MDPs). We investigate Friedmann’s lower
bound construction and exhibit three flaws in his analysis: We show that
(a) the initial policy for the policy iteration does not produce the required
occurrence records and improving switches, (b) the specification of occur-
rence records is not entirely accurate, and (c) the sequence of improving
switches described by Friedmann does not consistently follow Zadeh’s
pivot rule. In this paper, we resolve each of these issues. While the first
two issues require only minor changes to the specifications of the initial
policy and the occurrence records, the third issue requires a significantly
more sophisticated ordering and associated tie-breaking rule that are in
accordance with the Least-Entered pivot rule. Most importantly, our
changes do not affect the macroscopic structure of Friedmann’s MDP,
and thus we are able to retain his original result.

1 Introduction

The Simplex method, originally proposed by Dantzig in 1947 [2], is one of the
most important algorithms to solve linear programs in practice. At its core, it
operates by maintaining a subset of basis variables while restricting non-basis
variables to trivial values, and repeatedly replacing a basis variable according to
a fixed pivot rule until the objective function value can no longer be improved.
Exponential worst-case instances have been devised for many natural pivot rules
(see, for example, [1,5,7,8]), and the question whether a polynomial time pivot
rule exists remains one of the most important open problems in optimization.

This work is supported by the ‘Excellence Initiative’ of the German Federal and State
Governments and the Graduate School CE at TU Darmstadt.
Full version digitally published at the University and State Library Darmstadt, avail-
able at http://tuprints.ulb.tu-darmstadt.de/id/eprint/7557.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 168–180, 2019.
https://doi.org/10.1007/978-3-030-17953-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_13&domain=pdf
http://tuprints.ulb.tu-darmstadt.de/id/eprint/7557
https://doi.org/10.1007/978-3-030-17953-3_13

On Friedmann’s Subexponential Lower Bound for Zadeh’s Pivot Rule 169

Zadeh’s Least-Entered pivot rule [11] was designed to avoid the exponen-
tial behavior on known worst-case instances for other pivot rules. It is memo-
rizing in that it selects a variable to enter the basis that improves the objective
function and has previously been selected least often among all improving vari-
ables. For more than thirty years, Zadeh’s rule defied all attempts to construct
superpolynomial instances, and seemed like a promising candidate for a polyno-
mial pivot rule.

It was a breakthrough when Friedmann eventually presented the first super-
polynomial lower bound for Zadeh’s pivot rule [4]. His construction uses a connec-
tion between the Simplex Algorithm and Howard’s Policy Iteration Algorithm [6]
for computing optimal policies in Markov decision processes (MDPs). For a given
n ∈ N, Friedmann’s construction consists of an MDP of size O(n2), an initial
policy, and an ordering of the improving switches obeying the Least-Entered
pivot rule. This ordering results in an exponential number of iterations when
beginning with the initial policy and repeatedly making improving switches in
the specified order. The construction translates into a linear program of the same
asymptotic size for which the Simplex Algorithm with Zadeh’s pivot rule needs
Ω(2n) steps. Since the input size is O(n2), this in turn results in a superpoly-
nomial lower bound. Recently, an exponential lower bound for Zadeh’s pivot
rule was found for AUSOs [10], but it is not clear whether this construction
can be realized as a linear program. However, the construction is simpler than
Friedmann’s construction with more natural tie-breaking, and thus presents an
alternative approach to devising lower bounds for memorizing pivot rules.

Our Contribution. In this paper, we expose different flaws in Friedmann’s
construction and present adaptations to eliminate them. We first show that the
chosen initial policy does not produce the claimed set of improving switches,
and propose a modified initial policy that leads to the desired behavior. Second,
we observe that the given formula describing the occurrence records (that count
the number of times an improving switch was made) is inaccurate, and provide
a (small) correction that does not disturb the overall argument.

Most importantly, we exhibit a significant problem with the order in which
the improving switches are applied in [4]. More precisely, we show that this order
does not consistently obey Zadeh’s pivot rule, and, in fact, that no consistent
ordering exists that updates the MDP “level by level” in each phase according
to a fixed order. This not only rules out Friedmann’s ordering, but shows that
a fundamentally different approach to ordering improving switches is needed.
To amend this issue, we show the existence of an ordering and a tie-breaking
rule compatible with the Least-Entered rule, such that applying improving
switches according to the ordering still proceeds along the same macroscopic
phases as intended by Friedmann. In this way, we are able to quantitatively
retain Friedmann’s superpolynomial lower bound.

Outline. Throughout this paper, we assume some basic familiarity with the
construction given in [4] and Markov decision processes in general. We review
the most important aspects and notation of [4] in Sect. 2. Section 3 treats issues
with the initial policy and the description of the occurrence records and our

170 Y. Disser and A. V. Hopp

adaptations to address them. The main part of this paper is Sect. 4, where we
show that the sequence of improving switches can be reordered such that the
Least-Entered rule is obeyed.

2 Friedmann’s Lower Bound Construction

In [4], Friedmann uses the connection between the Simplex Algorithm and the
Policy Iteration Algorithm for obtaining optimal policies in MDPs. Similarly, we
also restrict our discussion to policy iteration for MDPs, with the understand-
ing that results carry over to the Simplex Algorithm. We assume knowledge of
MDPs and the connection to the Simplex Algorithm and refer to [9] for more
information. For convenience, we refer to improving switches simply as switches.

Let n ∈ N. Friedmann’s construction emulates an n-bit binary counter by a
Markov decision process Gn. For every n-digit binary number b, there is a pol-
icy σb for Gn representing b. We denote the i-th bit of b by bi, so b = (bn, . . . , b1).
The MDP Gn is constructed such that applying the Policy Iteration Algorithm
using the Least-Entered rule enumerates the policies σ0 to σ2n−1. According
to the pivot rule, the algorithm always chooses a switch chosen least often in the
past. More specifically, an occurrence record φ is maintained, and, in every step,
a switch minimizing φ is chosen. The rule does however not determine which
switch minimizing φ should be chosen, so a tie-breaking rule is needed. For an
edge e and a policy σ, we denote the occurrence record of e once σ is reached
by φσ(e). We denote the set of improving switches with respect to σ by Iσ.

We fix the following notation. The set of n-digit binary numbers is denoted
by Bn. For b ∈ Bn, b �= 0, �(b) denotes the least significant bit of b equal to 1.
The unique policy representing b ∈ Bn constructed in [4] is denoted by σb.

The process Gn can be interpreted as a “fair alternating binary counter” as
follows. Usually, when counting from 0 to 2n − 1 in binary, less significant bits
are switched more often than more significant bits. As the Least-Entered
pivot rule forces the algorithm to switch all bits equally often, the construction
must ensure to operate correctly when all bits are switched equally often. This
is achieved by representing every bit by two gadgets where only one actively
represents the bit. The gadgets alternate in actively representing the bit.

The construction consists of n structurally identical levels, where level i rep-
resents the i-th bit. A large number N ∈ N is used for defining the rewards and a
small number ε ≥ 0 is used for defining the probabilities. The i-th level is shown
in Fig. 1(a), the coarse structure of the whole MDP in Fig. 1(b).

A number nv below or next to a vertex v in Fig. 1(a) denotes a reward
of (−N)nv associated with every edge leaving v. Other edges have a reward of 0.

Each level i contains two gadgets attached to the entry vertex ki, called
lanes. We refer to the left lane as lane 0 and to the right lane as lane 1. Lane j
of level i contains a randomization vertex Aj

i and two attached cycles with
vertices bj

i,0 and bj
i,1. These gadgets are called bicycles, and we identify the bicycle

containing Aj
i with that vertex. For a bicycle Aj

i , the edges (bj
i,0, A

j
i), (b

j
i,1, A

j
i)

are called edges of the bicycle. For a policy σ, the bicycle Aj
i is closed (w.r.t. σ)

if and only if σ(bj
i,0) = σ(bj

i,1) = Aj
i . A bicycle that is not closed is called open.

On Friedmann’s Subexponential Lower Bound for Zadeh’s Pivot Rule 171

ki

2i + 7

t k1 . . . knc0i

7

A0
i

b0i,1

b0i,0

1−ε
2

1−ε
2

d0
i

ε

s

h0
i

6

2i + 8

t

t

k1...
kn

c1i

7

A1
i

b1i,1

b1i,0

1−ε
2

1−ε
2

d1
i

ε

s

h1
i

6

2i + 8

t

t

k1...
kn

ki+1ki+2 . . . kn

(a) Circular vertices are player-controlled, squares are
randomization vertices. Bold vertices can be reached from
other levels, dashed vertices do not belong to level i.

s

k1 k2 k3 . . . kn

kn+1

t

(b) The entry vertices are
all connected to s and t.
Connections between lev-
els and from the levels to s
are not shown here. The
vertex kn+1 is needed for
technical reasons.

Fig. 1. Level i of Gn (left) and coarse structure of Gn (right)

The i-th level of Gn corresponds to the i-th bit of the counter. Which of the
bicycles of level i is actively representing the i-th bit depends on bi+1. When
this bit is equal to 1, A1

i is considered active. Otherwise, A0
i is considered active.

The i-th bit is equal to 1 if and only if the active bicycle in level i is closed.
As initial policy, the MDP is provided the policy σ� representing 0. Then,

a sequence of policies σ1, . . . , σ2n−1 is enumerated by the Policy Iteration Algo-
rithm using the Least-Entered pivot rule and an (implicit) tie-breaking rule.
For b ∈ Bn, b �= 0, the policy σb should fulfill the following invariants.

1. Exactly the bicycles A
bi+1
i corresponding to bits bi = 1 are closed.

2. For all other bicycles Aj
i , it holds that σb(b

j
i,0) = σb(b

j
i,1) = k�(b).

3. All entry vertices point to the lane containing the active bicycle if bi = 1 and
to k�(b) otherwise.

4. The vertex s points to the entry vertex of the least significant set bit.
5. All vertices h0

i point to the entry vertex of the first level after level i + 1
corresponding to a set bit, or to t if no such level exists.

6. The vertex dj
i points to hj

i if and only if bi+1 = j and to s otherwise.

The Policy Iteration Algorithm is only allowed to switch one edge per iteration.
However, the policy σb+1 cannot be reached from σb by performing a single
switch. Therefore, intermediate policies need to be introduced for the transition
from σb to σb+1. These intermediate policies are divided into six phases. In each
phase, a different “task” is performed within the construction. Let �′ := �(b+1).

1. In phase 1, switches inside of some bicycles are performed to keep the occur-
rence records of the bicycle edges as balanced as possible. For every open
bicycle Aj

i , at least one of the edges (bj
i,0, A

j
i), (b

j
i,1, A

j
i) is switched. Some

172 Y. Disser and A. V. Hopp

bicycles are allowed to switch both edges such that their occurrence record
can “catch up” with the other edges. In the active bicycle of level �′, we also
switch both edges, as this bicycle needs to be closed with respect to σb+1.

2. In phase 2, the new least significant set bit is “made accessible”. Thus, k�′ is
switched to cj

�′ , where j is the lane containing the active bicycle.
3. In phase 3, we perform the “resetting process”. The entry vertices of all levels i

corresponding to bits with (b+1)i = 0 switch to k�′ . The same is done for all
vertices bj

i,l contained in inactive bicycles and all vertices bj
i,l corresponding

to levels i with (b + 1)i = 0.
4. In phase 4, the vertices h0

i are updated according to �(b + 1).
5. In phase 5, we switch s to the entry vertex corresponding to �(b + 1).
6. In phase 6, we update the vertices dj

i such that h0
i is the target of d0i if and

only if (b + 1)i+1 = 0 and h1
i is the target of d1i if and only if (b + 1)i+1 = 1.

Before discussing our findings, we need to introduce notation related to
binary counting. We further briefly describe the tables contained in [4].

Let b ∈ Bn. By binary counting, we refer to the process of enumerating the
binary representations of all numbers b̃ ∈ {0, 1, . . . , b}. These numbers are used
to determine how often and when edges of Gn are improving and will be applied.

Intuitively, we are interested in schemes that we observe when counting
from 0 to b, or, more precisely, in the set of numbers that match a scheme.
A scheme is a set S ⊆ N × {0, 1} and b matches S if bi = q for all (i, q) ∈ S.
Since the occurrence records of the edges depend on how often a specific scheme
occurred when counting from 0 to b, we introduce the following terms.

Definition 1 ([4]). Let b ∈ Bn, i ∈ {1, . . . , n} and let S be a scheme. The flip
set F (b, i, S) is the set of all numbers between 0 and b matching S whose least
significant bit is the i-th bit. The flip number is defined as f(b, i, S) := |F (b, i, S)|
and we set f(b, i) := f(b, i, ∅).

We now briefly describe the tables of [4]. For p ∈ {1, . . . , 6}, [4, Table 2]
defines the term phase p policy. As we prove later, there is an issue concerning
the side conditions of phase 3. For a phase p policy σ, [4, Table 3] contains
subsets Lp

σ and supersets Up
σ of the set of improving switches. The last table is [4,

Table 4]. For b ∈ Bn, it contains the occurrence records φσb of the edges with
respect to the unique policy representing b. We discuss an issue regarding this
table in Sect. 3. Other than correcting these issues, we rely on [4, Tables 2, 3, 4].

3 Initial Policy and Occurrence Records

In this section, we discuss the initial policy σ� used in [4] and the description
of the occurrence records given in [4, Table 4]. We show that σ� contradicts
several aspects of [4], and provide an alternative initial policy resolving these
issues. Then, we discuss why the description of the occurrence records given in
[4, Table 4] is not entirely accurate and provide a correction of this inaccuracy.

On Friedmann’s Subexponential Lower Bound for Zadeh’s Pivot Rule 173

On [4, page 11], the following is stated regarding σ�: “As designated initial
policy σ�, we use σ�(dj

i) = hj
i and σ�() = t for all other player 0 nodes with non-

singular out-degree.” This initial policy, however, is inconsistent with the sub-
and supersets of improving switches given in [4, Table 3] and [4, Lemma 4].1

Issue 1. The initial policy σ� described in [4, page 10] contradicts [4, Table 3]
since Iσ� �= {(bj

i,r, A
j
i) : σ�(bj

i,r) �= Aj
i}. In addition, when the Policy Iteration

Algorithm is started with σ�, at least one of [4, Tables 3, 4] is incorrect for b = 1.

Thus, the initial policy needs to be changed. We propose the following policy
that resolves both issues. Note that it also fulfills [4, Lemma 1] and can thus
indeed be used as initial policy for Gn.

Theorem 1. Define the policy σ∗ via σ∗(d0i) := h0
i and σ∗(d1i) := s for all

i ∈ {1, . . . , n} and σ∗(·) := t for all other player-controlled vertices with non-
singular out-degree. Then Iσ∗ = {(bj

i,r, A
j
i) : σ∗(bj

i,r) �= Aj
i} and starting the

Policy Iteration Algorithm with σ∗ does not contradict [4, Tables 3, 4] for b = 1.

We next prove an issue related to the occurrence records of the bicycles as
specified in [4, Table 4].

Issue 2. Let b < 2n−k−1−1 for some k ∈ N. Assume that the occurrence records
of the edges are given by [4, Table 4]. Then, there is a pair (bj

i,0, A
j
i), (b

j
i,1, A

j
i)

such that at least one of them has a negative occurrence record.

The problem is that the given description does not properly distinguish
between inactive bicycles that need to catch up with the counter and inactive
bicycles that do not need to do so. Informally, for b ∈ Bn the occurrence records
once the policy σb is reached can be described as follows: (a) Every closed and
active bicycle has an occurrence record corresponding to the last time it was
closed, (b) every open and active bicycle has an occurrence record of b and
(c) inactive bicycles are either “catching up” with other bicycles and thus have
an occurrence record less than b or already finished catching up and have an
occurrence record of b.

To resolve Issue 2, we formulate an additional condition. It is used to dis-
tinguish inactive bicycles that might need to catch up with the counter because
they have already been closed once (if b ≥ 2i−1 +j ·2i), and inactive bicycle that
do not need to catch up because they have not been closed before.

To formulate this condition, we need more notation. Let b ∈ Bn and Aj
i be

a fixed bicycle. We define g as the largest number smaller than b such that the
least significant set bit of g has index i and the (i + 1)-th bit is equal to j. In
addition, we define z := b − g − 2i−1 and φσb(Aj

i) := φσb(bj
i,0, A

j
i) + φσb(bj

i,1, A
j
i).

According to the proof of [4, Lemma 5], the switches inside a cycle center Aj
i

should then be applied according to the following rules.

1 Proofs for all statements can be found in the full paper [3].

174 Y. Disser and A. V. Hopp

1. If Aj
i is open and active, we switch one edge of the bicycle.

2. Let j := b�(b+1)+1. In addition to 1., the second edge of Aj
�(b+1) is switched.

3. If Aj
i is inactive and b < 2i−1 + j · 2i, one edge of the bicycle is switched.

4. If Aj
i is inactive, b ≥ 2i−1 + j · 2i and z < 1

2 (b − 1 − g), both edges of Aj
i are

switched. If z ≥ 1
2 (b − 1 − g), only one edge is switched.

The following theorem gives a correct description of the occurrence records.

Theorem 2. Suppose that improving switches within bicycles are applied as
described by rules 1 to 4. Let b ∈ Bn and Aj

i be a bicycle. Then, the occurrence
records of (bj

i,0, A
j
i) and (bj

i,1, A
j
i) are correctly specified by the system

|φσb(bj
i,0, A

j
i) − φσb(bj

i,1, A
j
i)| ≤ 1 (3.1)

φσb(Aj
i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g + 1, Aj
i is closed and active

b, Aj
i is open and active

b, Aj
i is inactive and b < 2i−1 + j · 2i

g + 1 + 2z, Aj
i is inactive and b ≥ 2i−1 + j · 2i

(3.2)

4 Improving Switches of Phase 3

We next discuss the application of improving switches in phase 3. There are
two contradictory descriptions in [4] how to apply these. We prove that nei-
ther of the given orderings obeys the Least-Entered rule. We additionally
show that a natural adaptation of Friedmann’s scheme still does not obey the
Least-Entered rule. We then go on to prove the existence of an ordering and
an associated tie-breaking rule that obey the Least-Entered rule while still
producing the intended behavior of Friedmann’s construction.

Throughout this section, for a fixed b ∈ Bn, we use � := �(b) and �′ := �(b+1).

4.1 Issues with Friedmann’s Switching Order

In Sect. 2, we stated that during phase 3, improving switches need to be applied
for every entry vertex ki contained in a level i with (b + 1)i = 0. In addition,
several bicycles need to be opened. However, according to the description given
in [4, pages 9–10], both of these updates should not be performed for all levels
but only those with an index smaller than �′. To be precise, the following is
stated:2 “In the third phase, we perform the major part of the resetting process.
By resetting, we mean to unset lower bits again, which corresponds to reopening
the respective bicycles. Also, we want to update all other inactive or active but
not set bicycles again to move to the entry point k�′ . In other words, we need
to update the lower entry points kz with z < �′ to move to k�′ , and the bicycle
nodes bj

z,l to move to k�′ . We apply these switches by first switching the entry
node kz for some z < �′ and then the respective bicycle nodes bj

z,r.”
However, there is an issue regarding this informal description.

2 The notation in the quote was adapted from [4] to be in line with our paper.

On Friedmann’s Subexponential Lower Bound for Zadeh’s Pivot Rule 175

Issue 3. For every b ∈ {1, . . . , 2n−2 − 1}, the informal description of phase 3
contradicts [4, Tables 2, 4]. It additionally violates the Least-Entered pivot
rule during the transition from σb to σb+1 for every b ∈ {3, . . . , 2n−2 − 2}.

In other parts of the construction, Friedmann seems to apply the switches
differently, by not only applying them for levels with a lower index than the least
significant set bit but for all levels. Especially, the side conditions of [4, Table 2]
for defining a phase p policy rely on the fact that these switches are applied
for all levels i with (b + 1)i = 0. According to the proof of [4, Lemma 5], the
switches need to be applied as follows: (See Footnote 2) “In order to fulfill all
side conditions for phase 3, we need to perform all switches from higher indices
to smaller indices, and ki to k�′ before bj

i,r with (b + 1)i+1 �= j or (b + 1)i = 0
to k�′”. However, applying improving switches in this way results in another
issue.3

Issue 4. Applying the improving switches as described in [4, Lemma 5] does
not obey the Least-Entered pivot rule.

We can show an even stronger statement. (See Footnote 3) Friedmann applies
improving switches of phase 3 as follows: During the transition from σb to σb+1,
switches are applied “one level after another” where the order of the levels
depends on �(b + 1). That is, depending on �(b + 1), an ordering S�(b+1) of
the levels is considered and when i1 appears before i2 in S�(b+1), all switches in
level i1 need to be applied before any switch of level i2. We prove that applying
improving switches in this way violates the Least-Entered pivot rule at least
once, independently of how S�(b+1) is chosen.

Issue 5. Consider some b ∈ Bn and the transition from σb to σb+1. Suppose
that the switches of phase 3 are applied “level by level” according to any fixed
ordering of the levels as described above. Further suppose that this ordering only
depends on �(b + 1). Then, the Least-Entered pivot rule is violated.

Observe that Issue 5 rules out a broader class of orderings. In some sense,
this shows that Friedmann’s ordering needs to be changed fundamentally, and
cannot be fixed by slight adaptation.

4.2 Fixing the Ordering of the Improving Switches

We now prove the existence of an ordering and an associated tie-breaking rule
for the application of the switches of phase 3 that obey the Least-Entered
rule. We then show that these can be used to prove the existence of an ordering
and an associated tie-breaking rule that obey the Least-Entered rule for all
phases that produces the intended behavior.

For every phase p policy σ, [4, Table 3] gives a subset Lp
σ and a superset Up

σ

of the improving switches Iσ for σ, see [4, Lemma 4]. The improving switch that

3 The proof can be found in Appendix A.

176 Y. Disser and A. V. Hopp

is then applied in σ is always contained in Lp
σ, and Up

σ is analyzed instead of Iσ

to show that the intended switch can indeed be applied. Now, let σ be a phase 3
policy. We need to compare L3

σ and U3
σ since all switches that can possibly be

applied during phase 3 are contained in U3
σ . This is done via partitioning U3

σ . The
comparison then enables us to show that there is always a switch contained in L3

σ

minimizing the occurrence record. This justifies that “we will only use switches
from Lp

σ” [4, page 12] (at least for phase p = 3). We then show the following: All
improving switches that should be applied during phase 3 according to [4] can
be applied (in a different order) during phase 3, without violating the Least-
Entered pivot rule.

As outlined in Sect. 2, the transition from σb to σb+1 is partitioned into six
phases. During the third phase, the MDP is reset, that is, some bicycles are
opened and the targets of some entry vertices are changed. Therefore, a phase 3
policy σ is always associated with such a transition and we always implicitly
consider the underlying transition from σb to σb+1.

We begin by further investigating the occurrence records of switches that
should be applied during phase 3, i.e., we analyze the set L3

σ. First, the occurrence
record of these switches is bounded from above by the flip number f(b, �′).

Lemma 1. Let σ be a phase 3 policy. Then maxe∈L3
σ

φσ(e) ≤ f(b, �′).

The following lemma gives a matching lower bound of f(b, �′) on all improving
switches that should be applied after phase 3. It will also be used to estimate
the occurrence records of possible improving switches contained in U3

σ .

Lemma 2. Let σ be a phase 3 policy. Assume that the Policy Iteration Algo-
rithm is started with the policy σ∗. Then mine∈L4

σ∪L5
σ∪L6

σ
φσ(e) ≥ f(b, �′).

We now partition U3
σ as follows (note that U4

σ ⊆ U3
σ), cf. [4, Table 3]:

U3,1
σ := {(ki, kz) : σ(ki) /∈ {kz, k�′}, z ≤ �′ ∧ (b + 1)i = 0}

U3,2
σ := {(bj

i,r, kz) : σ(bj
i,r) /∈ {kz, k�′}, z ≤ �′ ∧ (b + 1)i = 0}}

U3,3
σ := {(bj

i,r, kz) : σ(bj
i,r) /∈ {kz, k�′}, z ≤ �′ ∧ (b + 1)i+1 �= j}

U3,4
σ := U4

σ

Lemma 2 can be used to show that the occurrence records of edges contained
in U3,4 are too large. To be precise, no switch contained in one of this sets will
be applied during phase 3 when following the Least-Entered rule.

Lemma 3. Let σ be a phase 3 policy. Then, for all e ∈ L3
σ and ẽ ∈ Iσ ∩ U3,4

σ , it
holds that φσ(e) ≤ φσ(ẽ).

It remains to analyze the sets U3,1
σ , U3,2

σ and U3,3
σ . We show that applying

certain switches contained in L3
σ prevent other switches contained in these sets

from being applied. To do so, we introduce subsets of U3,1
σ , U3,2

σ and U3,3
σ . The

On Friedmann’s Subexponential Lower Bound for Zadeh’s Pivot Rule 177

idea is to “slice” these sets such that for each slice, one improving switch prevents
the whole slice from being applied. We thus define the following sets:

S3,1
i,σ := {(ki, kz) : σ(ki) /∈ {kz, k�′}, z ≤ �′ ∧ (b + 1)i = 0} ⊆ U3,1

σ

S3,2
i,j,r,σ := {(bj

i,r, kz) : σ(ki) /∈ {kz, k�′}, z ≤ �′ ∧ (b + 1)i = 0} ⊆ U3,2
σ

S3,3
i,j,r,σ := {(bj

i,r, kz) : σ(ki) /∈ {kz, k�′}, z ≤ �′ ∧ (b + 1)i �= j} ⊆ U3,3
σ

The informal idea discussed previously is formalized by the following lemma.

Lemma 4. The following statements hold.

1. Let σ be the phase 3 policy in which the switch (ki, k�′) is applied. Let σ′ be
a phase 3 policy of the same transition reached after σ. Then Iσ′ ∩ S3,1

i,σ′ = ∅.
2. Let σ be the phase 3 policy in which the improving switch (bj

i,l, k�′) with
σ(bj

i,l) �= k�′ and (b + 1)i = 0 is applied. Let σ′ be a phase 3 policy of the
same transition reached after σ. Then Iσ′ ∩ S3,2

i,j,l,σ′ = ∅.
3. Let σ be the phase 3 policy in which the improving switch (bj

i,l, k�′) with
σ(bj

i,l) �= k�′ and (b + 1)i+1 �= j is applied. Let σ′ be a phase 3 policy of
the same transition reached after σ. Then Iσ′ ∩ S3,3

i,j,l,σ′ = ∅.
This statement can then be used to prove the following lemma.

Lemma 5. Let σ be a phase 3 policy. Then there is an edge e ∈ L3
σ minimizing

the occurrence record among all improving switches.

This lemma does not yet imply that all switches of phase 3 can be applied
since it is not clear why it cannot happen that phase 4 is reached although not
all switches of phase 3 were applied yet. However, the following theorem proves
that this is impossible (See footnote 3).

Theorem 3. There is an ordering of the improving switches and an associated
tie-breaking rule compatible with the Least-Entered pivot rule such that all
improving switches contained in L3

σb
are applied and the Least-Entered pivot

rule is obeyed during phase 3.

Although Theorem 3 shows that the improving switches of phase 3 can be
applied such that the Least-Entered rule is obeyed, it does not imply that
the transition from σb to σb+1 can be executed as intended in [4]. That is, it
does not imply that the improving switches of the other phases can be applied
as intended. This however can be shown using Theorem 3, yielding the following
result.

Theorem 4. Fix the transition from σb to σb+1 for some σ ∈ Bn. There is an
order in which to apply improving switches during this transition such that the
Least-Entered rule is obeyed, and the switches of phase p are applied before
any switches of phase p + 1, for every p ∈ {1, . . . , 5}.

Acknowledgments. The authors are very grateful to Oliver Friedmann for helpful
comments and discussions, as well as support in using his implementation of the original
construction to verify our findings.

178 Y. Disser and A. V. Hopp

A Proofs of Selected Statements

This section contains the proofs of the main statements. The proofs use the
following two statements whose proofs can be found in [3].

Lemma A.1. Let i ∈ {2, . . . , n − 2} and l < i. Then, there is a number b ∈ Bn

with �(b + 1) = l such that for all j ∈ {i + 2, . . . , n}, φσb(ki, k�′) < φσb(kj , k�′)
and (ki, k�′), (kj , k�′) ∈ L3

σb
.

Lemma A.2. Assume that for any transition, the switches that should be
applied during phase 3 were applied in some order. Let i ∈ {2, . . . , n−2} and l <
i. Then there is a b ∈ Bn with �(b+1) = l such that φσb(ki+1, k�′) < φσb(b1i,r, k�′),
where r ∈ {0, 1} is arbitrary and (ki+1, k�′), (b1i,r, k�′) ∈ L3

σb
.

We now prove the main statements of this paper.

Issue 4. Applying the improving switches as described in [4, Lemma 5] does
not obey the Least-Entered pivot rule.

Proof. According to [4, Lemma 5], the switches of phase 3 should be applied
as follows (See footnote 2): “[. . .] we need to perform all switches from higher
indices to smaller indices, and ki to k�′ before bj

i,l with (b+1)i+1 �= j or (b+1)i =
0 to k�′”.

Let i ∈ {2, . . . , n − 2}, l < i and j ∈ {i + 2, . . . , n − 2}. By Lemma A.1,
there is a number b ∈ Bn such that l = �(b + 1) and φσb(ki, k�′) < φσb(kj , k�′).
In addition, (ki, k�′), (kj , k�′) ∈ L3

σb
. Therefore, the switch (kj , k�′) should be

applied before the switch (ki, k�′) during the transition from σb to σb+1 when
following the description of [4].

Consider the phase 3 policy σ of this transition in which the switch (kj , k�′)
should be applied. Then, since j > i and we “perform all switches from higher
indices to smaller indices”, the switch (ki, k�′) was not applied yet. However, it
still is an improving switch for the policy σ. This implies φσb(kj , k�′) = φσ(kj , k�′)
and φσb(ki, k�′) = φσ(ki, k�′). Consequently, φσb(ki, k�′) < φσb(kj , k�′) implies
that φσ(ki, k�′) < φσ(kj , k�′). Thus, since the edge (ki, k�′) is an improving
switch for σ having a lower occurrence record than (kj , k�′) and σ was chosen
as the policy in which (kj , k�′) should be applied, the Least-Entered rule is
violated.
�
Issue 5. Consider some b ∈ Bn and the transition from σb to σb+1. Suppose
that the switches of phase 3 are applied “level by level” according to any fixed
ordering of the levels as described above. Further suppose that this ordering only
depends on �(b + 1). Then, the Least-Entered pivot rule is violated.

Proof. To prove Issue 5, we show that applying the improving switches as dis-
cussed before violates Zadeh’s Least-Entered rule several times by showing
the following statement: Let Si be an ordering of {1, . . . , n} for i ∈ {1, . . . , n}.
Suppose that the improving switches of phase 3 of the transition from σb to σb+1

are applied in the order defined by S�(b+1) for all b ∈ Bn. Then, for every possible

On Friedmann’s Subexponential Lower Bound for Zadeh’s Pivot Rule 179

least significant bit l ∈ {1, . . . , n − 4}, assuming that the ordering Sl obeys the
Least-Entered rule results in a contradiction.

Fix some l ∈ {1, . . . , n − 4}. Consider the ordering Sl = (s1, . . . , sn). For any
k ∈ {1, . . . , n}, we denote the position of k within Sl by k�. Towards a contra-
diction, assume that applying the improving switches level by level according to
the ordering Sl obeys the Least-Entered rule. We show that this assumption
yields (l + 1)� < (n − 1)� and (n − 1)� < (l + 1)�.

Let i ∈ {l+1, . . . , n−2}. Then, i > l and therefore, by Lemma A.2, there is a
number b ∈ Bn with �(b+1) = �′ = l and φσb(ki+1, k�′) < φσb(b1i,r, k�′) such that
(ki+1, k�′), (b0i,r, k�′) ∈ L3

σb
. Thus, both switches need to be applied during the

transition from σb to σb+1. Because of φσb(ki+1, k�′) < φσb(b1i,r, k�′), level i + 1
needs to appear before level i within the ordering Sl. Since this argument can
be applied for all i ∈ {l + 1, . . . , n − 2}, the sequence

(n − 1, n − 2, . . . , l + 1)

needs to be a (not necessarily consecutive) subsequence of Sl. In particular,
(n − 1)� < (l + 1)� since l + 1 �= n − 1 by assumption.

Let i = l + 1 and j ∈ {i + 2, . . . , n}. Then, by Lemma A.1, there is a
number b ∈ Bn with �(b + 1) = l such that φσb(ki, k�′) < φσb(ki+2, k�′) and
(ki, k�′), (ki+2, k�′) ∈ L3

σb
. Now, both switches need to be applied during the

transition from σb to σb+1. Therefore, for all i ∈ {l + 1, . . . , n − 2}, level i needs
to appear before any of the levels level j ∈ {i + 2, . . . , n} within Sl. But this
implies that the sequence

(l + 1, l + 3, l + 4, . . . , n − 1, n)

needs to be a (not necessarily consecutive) subsequence of Sl. In particular,
(l + 1)� < (n − 1)� since n − 1 ≥ l + 3 as we have l ≤ n − 4 by assumption. This
however contradicts (n − 1)� < (l + 1)�.
�
Theorem 3. There is an ordering of the improving switches and an associated
tie-breaking rule compatible with the Least-Entered pivot rule such that all
improving switches contained in L3

σb
are applied and the Least-Entered pivot

rule is obeyed during phase 3.

Proof. Let σ denote the first phase 3 policy of the transition from σb to σb+1.
Then, L3

σ = L3
σb

. By Lemma 5, there is an edge e1 ∈ L3
σ minimizing the occur-

rence record Iσ. Applying this switch results in a new phase 3 policy σ[e1] such
that L3

σ[e1]
= L3

σ \ {e1}. Now, again by Lemma 5, there is an edge e2 ∈ L3
σ[e1]

minimizing the occurrence record Iσ[e1].
We can now apply the same argument iteratively until we reach a phase 3 pol-

icy σ̂ such that
∣
∣L3

σ̂

∣
∣ = 1 while only applying switches contained in L3

σb
. Then, by

construction and by Lemma 5, (e1, e2, . . .) defines an ordering of the edges of L3
σb

and an associated tie-breaking rule that always follow the Least-Entered rule.
When the policy σ̂ with

∣
∣L3

σ̂

∣
∣ = 1 is reached, applying the remaining improving

switch results in a phase 4 policy. Then, all improving switches contained in L3
σb

were applied and the Least-Entered pivot rule was obeyed.
�

180 Y. Disser and A. V. Hopp

References

1. Avis, D., Chvátal, V.: Notes on Bland’s pivoting rule. In: Balinski, M.L., Hoffman,
A.J. (eds.) Polyhedral Combinatorics. Mathematical Programming Studies, vol. 8,
pp. 24–34. (1978). https://doi.org/10.1007/BFb0121192

2. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press,
Princeton (1963)

3. Disser, Y., Hopp, A.V.: On Friedmann’s subexponential lower bound for Zadeh’s
pivot rule. Technical report, Technische Universität Darmstadt (2018). http://
tuprints.ulb.tu-darmstadt.de/id/eprint/7557

4. Friedmann, O.: A subexponential lower bound for Zadeh’s pivoting rule for solving
linear programs and games. In: Proceedings of the 15th International Conference
on Integer Programming and Combinatoral Optimization (IPCO), pp. 192–206
(2011)

5. Goldfarb, D., Sit, W.Y.: Worst case behavior of the steepest edge simplex method.
Discrete Appl. Math. 1(4), 277–285 (1979)

6. Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press, Cam-
bridge (1960)

7. Jeroslow, R.G.: The simplex algorithm with the pivot rule of maximizing criterion
improvement. Discrete Math. 4(4), 367–377 (1973)

8. Klee, V., Minty, G.J.: How good is the simplex algorithm? In: Inequalities III, pp.
159–175. Academic Press, New York (1972)

9. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York (2005)

10. Thomas, A.: Unique sink orientations: complexity, structure and algorithms. Ph.D.
thesis, ETH Zurich (2017)

11. Zadeh, N.: What is the worst case behavior of the simplex algorithm? Technical
report 27, Departments of Operations Research, Stanford (1980)

https://doi.org/10.1007/BFb0121192
http://tuprints.ulb.tu-darmstadt.de/id/eprint/7557
http://tuprints.ulb.tu-darmstadt.de/id/eprint/7557

Tight Approximation Ratio for Minimum
Maximal Matching

Szymon Dudycz(B), Mateusz Lewandowski, and Jan Marcinkowski

Institute of Computer Science, University of Wrocław, Wrocław, Poland
{szymon.dudycz,mateusz.lewandowski,jan.marcinkowski}@cs.uni.wroc.pl

Abstract. We study a combinatorial problem called Minimum Maxi-
mal Matching, where we are asked to find in a general graph the smallest
matching that can not be extended. We show that this problem is hard
to approximate with a constant smaller than 2, assuming the Unique
Games Conjecture.

As a corollary we show, that Minimum Maximal Matching in bipar-
tite graphs is hard to approximate with constant smaller than 4

3
, with

the same assumption. With a stronger variant of the Unique Games
Conjecture—that is Small Set Expansion Hypothesis—we are able to
improve the hardness result up to the factor of 3

2
.

1 Introduction

Matchings are some of the most central combinatorial structures in theory of
algorithms. A routine computing them is a basic puzzle used in numerous results
in Computer Science (like Christofides algorithm). Various variants of matchings
are studied extensively. Their computation complexity status is usually well-
known and some techniques discovered when studying matchings are afterwards
employed in other problems.

As we know since 1961, many natural variants of perfect matchings and
maximum matchings can be found in polynomial time, even in general graphs.
Here we study a different problem—Minimum Maximal Matching (mmm). The
task is—given graph G, to find an inclusion-wise maximal matching M with the
smallest cardinality (or weight in the weighted version).

1.1 Related Work

The mmm problem was studied as early as 1980, when Yannakakis and Gavril
showed that it is NP-hard even in some restricted cases [20]. Their paper also
presents an equivalence of mmm and Minimum Edge Dominating Set (eds) prob-
lem, where the goal is to find minimum cardinality subset of edges F , such that

S. Dudycz—Supported by the Polish National Science Centre grant 2013/11/B/ST6/
01748.
M. Lewandowski and J. Marcinkowski—Supported by the Polish National Science Cen-
tre grant 2015/18/E/ST6/00456.
c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 181–193, 2019.
https://doi.org/10.1007/978-3-030-17953-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_14

182 S. Dudycz et al.

every edge in the graph is adjacent to some edge in F . Every maximal matching
is already an edge dominating set, and any edge dominating set can be easily
transformed to a maximal matching of no larger size. This equivalence does not
hold for the weighted variants of the problem.

It is a well known, simple combinatorial fact, that one maximal matching in
any graph can not be more than twice as large as another maximal matching.
This immediately gives a trivial 2-approximation algorithm for mmm. Coming
up with 2-approximation in the weighted variant of either of the problems is
more challenging. In 2003, Carr, Fujito, Konjevod and Parekh presented a 2 1

10 -
approximation algorithm for a weighted eds problem [3]. Later the approxima-
tion was improved to 2 by Fujito and Nagamochi [8].

Some algorithms aiming at approximation ratio better then 2 were also devel-
oped for the unweighted problem. Gotthilf, Lewenstein and Rainschmidt came up
with a 2 − c log n

n -approximation for the general case [9]. Schmied and Viehmann
have a better-than-two constant ratio for dense graphs [19].

Finally, hardness results need to be mentioned. In 2006 Chlebík and Chle-
bíková proved, that it is NP-hard to approximate the problem within fac-
tor better than 7

6 [4]. The result was later improved to 1.2071 by Escoffier,
Monnot, Paschos, and Xiao [7]. 3

2 -hardness results depending on ugc were also
obtained [7,19].

1.2 Unique Games Conjecture

Unique Games Conjecture, since being formulated by Khot in 2002 [11], has been
used to prove hardness of approximation of many problems. For the survey on
ugc results see [12].

Many hardness results obtained from Unique Games Conjecture match pre-
viously known algorithms, as is the case, for example, of Vertex Cover, Max Cut
or Maximum Acyclic Subgraph. Therefore, it is appealing to use it to obtain new
results. While ugc is still open, recently a related 2–2-Games Conjecture has
been proved [14], in consequence proving Unique Games Conjecture with par-
tial completeness. This result provides some evidence towards validity of Unique
Games Conjecture.

Basing on Unique Games Conjecture we are able to prove the main result of
our paper.

Theorem 1. Assuming Unique Games Conjecture, it is NP-hard to approxi-
mate Minimum Maximal Matching with constant better than 2.

The proof of this theorem relies on the UGC-hardness proof for Vertex Cover
of Khot and Regev [15]. In essence, we endeavour to build a matching over the
vertices of Vertex Cover.

1 In their paper they claim 1.18-hardness, which is achieved by approximation pre-
serving reduction from vertex cover problem. Using recent

√
2-hardness for Vertex

Cover [14] gives 1.207-hardness for Minimum Maximal Matching.

Tight Approximation Ratio for Minimum Maximal Matching 183

The Minimum Maximal Matching problem does not seem to be easier on
bipartite graphs. All the algorithms mentioned above are defined for general
graphs and we are not aware of any ways to leverage the bipartition of the input
graph. At the same time, our hardness proof only works for general graphs. With
some observations we are able to achieve a hardness result for bipartite graphs,
which, however, is not tight.

Theorem 2. Assuming Unique Games Conjecture, it is NP-hard to approxi-
mate bipartite Minimum Maximal Matching with constant better than 4

3 .

1.3 Obtaining a Stronger Result

The studies on Unique Games Conjecture and hardness of approximation of
different problems have led to formulating different hypotheses strengthening
upon ugc—among them the Small Set Expansion Hypothesis proposed by
Raghavendra and Steurer [18], and another conjecture—whose name is not yet
established and so far the name Strong UGC is used—formulated by Bansal and
Khot [1]. A competent discussion on differences between the two conjectures can
be found in [16, Appendix C].

To improve our result on bipartite graphs, we construct a reduction from
a problem called Maximum Balanced Biclique (mbb), where—given a bipartite
graph—the goal is to find a maximum biclique with the same number of vertices
on each side of the graph. Hardness of approximation results suitable for our
reduction have been found starting from both the Small Set Expansion Hypoth-
esis [16] and Strong UGC [2].

Theorem 3. Assuming Small Set Expansion Hypothesis (or Strong Unique
Games Conjecture), it is NP-hard to approximate Bipartite Minimum Maximal
Matching with a constant better than 3

2 .

Due to space limitations, this result is only presented in the full version of
our paper (published on arXiv [6]).

2 Revisiting the Khot-Regev Reduction

In their paper [15] Khot and Regev prove the ugc-hardness of approximating
Minimum Vertex Cover within a factor smaller than 2. In this section we look
at parts of their proof more closely.

Their reduction starts off with an alternative formulation of ugc2, which,
they show, is a consequence of the standard variant.

2 In their paper, Khot and Regev call this formulation “Strong Unique Games Conjec-
ture”. Since then, however, the same name has been used to refer another formulation,
as in [1], we decided to minimise confusion by not recalling this name.

184 S. Dudycz et al.

2.1 Khot-Regev Formulation of Unique Games Conjecture

This formulation talks about a variant of Unique Label Cover problem described
by a tuple Φ = (X,R,Ψ, E). X is a set of variables, E are the edges and Ψx1,x2

defines a constraint for every pair of variables connected by an edge. A constraint
is a permutation Ψx1,x2 ∈ R ↔ R meaning that if x1 is labelled with a colour
r ∈ R, x2 must be labelled with Ψx1,x2(r).

A t-labelling is an assignment of subsets L(x) of size |L(x)| = t to the vari-
ables. A constraint Ψx1,x2 is satisfied by the t-labelling L if there exists a colour
r ∈ L(x1) such that Ψx1,x2(r) ∈ L(x2).

Conjecture 1 (Unique Games Conjecture).
For any ξ, γ > 0 and t ∈ N there exists some |R| such that it is NP-hard to

distinguish, given an instance Φ = (X,R,Ψ, E) which category it falls into:

– (yes instance): There exists a labelling (1-labelling) L and a set X0 ⊆ X,
|X0| � (1− ξ)|X|, such that L satisfies all constraints between vertices of X0.

– (no instance): For any t-labelling L and any set X0 ⊆ X, |X0| � γ|X|, not
all constraints between variables of X0 are satisfied by L.

2.2 Weighted Vertex Cover

The next step is a reduction from the ugc to the Minimum Vertex Cover prob-
lem. Given an instance Φ = (X,R,Ψ, E) of Unique Label Cover problem, as
described above, we build a graph GΦ.

For every variable in x ∈ X we create a cloud Cx of 2|R| vertices. Each vertex
corresponds to a subset of labels and is denoted by (x, S) ∈ |X| × P(R)3. The
weight of a new vertex (x, S), denoted as w(x, S), is equal to

μ(|S|) =
1

|X| · p|S|(1 − p)|R\S|

where p = 1
2 − ε (there is a bias towards smaller sets). The total weight of GΦ is

thus equal to 1.
Next, we connect the vertices (x1, S1) and (x2, S2) if there is no pair of labels

s1 ∈ S1 and s2 ∈ S2 satisfying the constraint Ψx1,x2 . Two lemmas are proved.

Lemma 1 ([15, Sec. 4.2]). If Φ was a yes instance, the graph GΦ has an
independent set of weight at least 1

2 − 2ε.

Proof. The instance Φ, being a yes instance, has a labelling L assigning one
colour rx to each variable x. We know, that there is a large set X0 of vari-
ables (|X0| � (1 − ξ) |X|), such that all constraints between variables of X0 are
satisfied by L.

We now define
IS =

{
(x, S)

∣
∣ x ∈ X0, rx ∈ S

}

3 P(R) denotes a power set of R, that is set of all subsets of R.

Tight Approximation Ratio for Minimum Maximal Matching 185

and claim, that IS is an independent set in GΦ. For any two variables x1 and
x2 of X0 we know, that

Ψx1,x2(rx1) = rx2 .

Indeed, if we then take the sets of labels S1 � r1 and S2 � r2, they do satisfy
the constraint for the variables x1, x2. Hence, there is no edge between (x1, S1)
and (x2, S2).

Finally, the weight of IS is equal to

w (IS) =
∑

x∈X0

⎛

⎝
∑

S⊆R,S�rx

w(x, S)

⎞

⎠ =
∑

x∈X0

⎛

⎝ 1

|X| ·
|R|∑

k=1

(
|R| − 1

k − 1

)
· pk · (1 − p)|R|−k

⎞

⎠

=
∑

x∈X0

⎛

⎝p · 1

|X| ·
|R|−1∑

k=0

(
|R| − 1

k

)
· pk · (1 − p)|R|−1−k

⎞

⎠

=
∑

x∈X0

(
p · 1

|X| · (p + (1 − p))|R|−1

)

=
|X0|
|X| · p � (1 − ξ)(

1

2
− ε) >

1

2
− 2ε.

��
The most of their paper is dedicated to proving the following key lemma.

Lemma 2 ([15, Sec. 4.3]). If Φ is a no instance, GΦ does not have an inde-
pendent set of weight larger than 2γ.

Since the Minimum Vertex Cover is a complement of the Maximum Indepen-
dent Set, we see that it is hard to distinguish between graphs with Minimum
Vertex Cover of the weight 1

2 + 2ε and those, where Minimum Vertex Cover
weights 1 − 2γ.

2.3 Notation

Throughout this paper we are going to use Φ as an instance of Unique Label
Cover problem that we are translating to GΦ. The weight function w on vertices
and bias function μ is going to be referred to, as well as the constants ε and γ.
When Φ is a yes instance, we are going to refer to the set X0 as in Conjecture 1,
and use the independent set IS from Lemma 1.

3 Weighted Minimum Maximal Matching

Let us now modify their reduction. The graph G′
Φ gets additional edges between

vertices (x, S1), (x, S2) if S1 ∩ S2 = ∅—they do not assign the same colour to
the variable x. Clearly, the Lemmas 1 and 2 still hold for G′

Φ.
Moreover, we introduce the weight function on the edges.

w+ ((x1, S1) , (x2, S2))
def== w (x1, S1) + w (x2, S2)

186 S. Dudycz et al.

This weight function is such that for any matching, the weight of matching edges
is equal to the weight of matched vertices.

We will now show the similar statements are true for the Minimum Maximal
Matching as for the independent set.

Lemma 3. If Φ was a yes instance, the Minimum Maximal Matching in
(G′

Φ, w+) weights at most 1
2 + 2ε.

Lemma 4. If Φ was a no instance, the Minimum Maximal Matching in
(G′

Φ, w+) weights at least 1 − 2γ.

These lemmas altogether will give us the theorem.

Theorem 4. Assuming the Unique Games Conjecture, for any ε > 0 it is NP-
hard to distinguish between graphs with Maximal Matching of weight 1

2 + ε and
those where every Maximal Matching weights at least 1 − ε.

This in turn means that—assuming UGC—a polynomial-time approximation
algorithm with a factor better than 2 can not be constructed.

Proof (Proof of Lemma 3).
Let us construct a matching M in G′

Φ. The matching will only consist of the
edges between vertices corresponding to the same variable in Φ. First we define
the part of M restricted to X0

4.

M0 =
{

(x, S1) ∼ (x, S2)
∣
∣ x ∈ X0 ∧ S1 � S2 = R \ {rx}

}

For vertices in clouds corresponding to variables outside of X0 we define

M1 =
{

(x, S1) ∼ (x, S2)
∣
∣ x ∈ X0 ∧ S1 � S2 = R

}

The matching M will be the union of M0 and M1.
We can observe, that the vertices matched by M are exactly those, that do

not belong to IS. Hence,

w+(M) � w(V (G′
Φ)) − w(IS) � 1 −

(
1
2

− 2ε

)
=

1
2

+ 2ε

Moreover, since the vertices of M compose a vertex cover, M is a maximal
matching. ��
Proof (Proof of Lemma 4).

Let M be any maximal matching. The vertices matched by M , V (M) form
a vertex cover. Hence, the weight of M is going to be at least as large as the
weight of the Minimum Vertex Cover. From Lemma 2 we know, that if Φ was a
no instance, G′

Φ’s Minimum Vertex Cover weights at least 1 − 2γ. ��

4 � is a disjoint union symbol.

Tight Approximation Ratio for Minimum Maximal Matching 187

4 Towards the Unweighted MMM: Fractional Matchings

A natural way to reduce a weighted variant of a problem to the unweighted
would often be to assume that the weights are integral (that can be achieved
by rounding them first at a negligible cost) and copying every vertex as many
times, as its weight would suggest. This simple strategy will not however work
with instances from previous section, where we were matching pairs of vertices
of different weights. Such a matching does not easily translate to the graph with
vertex copies. Thus, we want to create different, fractional matching, in which
every vertex is matched proportionally to its weight. Then, we can use such
matching after copying each vertex.

In order to extend our approximation hardness proof to Minimum Maxi-
mal Matching problem in unweighted graphs, we thus need first to modify our
weighted reduction a bit. The structure remains the same, but the weight of each
edge is now defined to be the minimum of the weights of its endpoints.

wmin ((x1, S1) , (x2, S2))
def== min {w(x1, S1), w(x2, S2)}

Similarly to the reasoning presented in the previous section, when G′
Φ is a

yes instance, we will want to construct a matching and argue that it is maximal
using a known vertex cover.

Definition 1. A fractional matching is an assignment of values to variables xe

corresponding to edges, such that for every edge e 0 � xe � wmin(e) and for
every vertex v, the sum

∑
(v,w)∈E x(v,w) � w(v).

Definition 2. A fractional matching x saturates a vertex v if
∑

(v,w)∈E x(v,w) =
w(v). A vertex v is unmatched if

∑
(v,w)∈E x(v,w) = 0.

As we know already, when Φ is a yes instance, there is a vertex cover in G′
Φ

composed of all vertices except those in IS.

Lemma 5. If Φ was a yes instance, a fractional matching exists that leaves all
vertices in IS unmatched and saturates all the other vertices.

4.1 Proving Lemma 5

Our matching will again only match vertices in the same clouds. Let us first
concentrate on vertices in the cloud Cx corresponding to a variable x �∈ X0. The
matching needs to saturate every vertex in Cx.

The fractional matching F can be viewed as a real-valued vector and will be
a sum of three matchings. The first one is defined similarly to M1 in Lemma 3.

F 0
(
(x, S1), (x, S2)

)
=

{
wmin ((x, S1), (x, S2)) , if S1 � S2 = R

0, otherwise

Recalling, that the weight function w, defined on vertices, has a bias towards
smaller sets, we can state the following.

188 S. Dudycz et al.

Observation 5. F 0 saturates all vertices (x, S) ∈ Cx if |S| � |R|
2 .

Let us now pick 0 < k < |R|
2 and look at the layer C k

x =
{
(x, S)

∣
∣ |S| = k

}
.

The graph is symmetric, and F 0 matches every vertex with the same weight—
μ(|R| − k) = 1

|X|p
|R|−k(1 − p)k. In order to build a matching F 1, that saturates

all vertices in the layer we build a bipartite graph Bk out of C k
x
5.

Definition 3. For every set S of size k, Bk has two vertices, SL and SR. SL
1

is connected with SR
2 if S1 ∩ S2 = ∅.

The graph Bk is in fact a Bipartite Kneser Graph. As proved in [17], it has
a Hamiltonian cycle Hk. We are using this cycle to define F 1—for every edge
connecting the sets S1 and S2 in Hk we lay the weight of

F 1 ((x, S1), (x, S2)) =
1
4

(μ(k) − μ(|R| − k))

on the edge connecting them in C k
x .

To saturate the vertices (x, ∅) (for x �∈ X0), we must realize that all these
vertices form a clique in which we can find a Hamiltonian Cycle H∅. Let us
define F 2

F 2
(
(x1, ∅), (x2, ∅)

)
=

{
μ(0)−μ(|R|)

2 , for {x1, x2} ∈ H∅
0, otherwise

Lemma 6. F 0 + F 1 + F 2 saturates all vertices in C k
x .

Proof. We look at the vertex (x, S). For 0 < |S| < |R|
2 , the Hamiltonian Cycle Hk

visits every set exactly twice (once SL and once SR), using four edges incident
to it. Hence, the total contribution of F 0 and F 1 is equal to

μ(|R| − k) + 4 · 1
4

(μ(k) − μ(|R| − k)) = μ(k) = w(x, S).

F 0 contributes μ(|R|) to the vertex (x, ∅), while F 2 contributes 2 · μ(0)−μ(|R|)
2 ,

hence that vertex is also saturated.
Finally, vertices with S = ∅ are saturated by F 0 + F 2. ��

When x ∈ X 0. We proceed similarly as for vertices not in X0. For the cloud Cx

when x ∈ X0, our first matching F 0 is taking the labeling of the variable x into
account. Similarly to Lemma 3, we match (x, S1) and (x, S2) if S1�S2 = R\{rx},
thus saturating the larger of the sets.

Again, the layer C k
x for k < |R|−1

2 , composed of sets not containing rx, is a
Bipartite Kneser Graph, and we use its Hamiltonian cycle to define F 1.

Also the vertices (x, ∅) for x ∈ X0 form a clique. Once again, we can use the
Hamiltonian Cycle in that clique to define F 2.
5 A significantly more crude approach is possible, that just uses every edge equally.

Tight Approximation Ratio for Minimum Maximal Matching 189

5 Unweighted MMM

Starting with a graph G′
Φ with the weight function w on the vertices, and any

precision parameter ρ > 0, we are going to construct an unweighted graph Gρ
Φ =

(V ρ, Eρ). The resulting graph size is polynomial in |Φ| and 1
ρ .

Definition 4. Let n = |V (G′
Φ)| · 1

ρ . For every v ∈ V (G′
Φ) we set nv = n ·

w(v)�66. The new set of vertices is going to consist of multiple copies of original
vertices; for each vertex v, we add 4 · nv copies.

V ρ =
{ 〈v, i〉 ∣

∣ v ∈ V (G′
Φ), i ∈ {1, . . . , 4 · nv}}

.

The edges are going to connect each pair of copies of vertices connected in G′
Φ.

Eρ =
{{〈v1, i1〉 , 〈v2, i2〉}

∣
∣ {v1, v2} ∈ E(GΦ),

i1 ∈ [4 · nv1], i2 ∈ [4 · nv2]
}
.

This construction has been presented in [5]. It is shown that any vertex
cover C ⊂ G′

Φ yields a product vertex cover Cρ =
⋃

v∈C{v} × [4 · nv] with∣
∣
∣w(C) − |Cρ|

|V (Gρ
Φ)|

∣
∣
∣ < ρ (precision). Moreover, every minimal vertex cover in Gρ

Φ

is a product vertex cover [5, Proposition 8.1].
As before, we are now going to prove two lemmas witnessing the completeness

and soundness of our reduction.

Lemma 7 (Soundness). If Φ was a no instance, for every maximal matching
M in Gρ

Φ

2 · |M | > |V (Gρ
Φ)| (1 − 2γ − ρ) .

Proof. Take any maximal matching M . The 2 · |M | vertices matched by it form
a vertex cover C. Let C− be a minimal vertex cover obtained by removing
unneeded vertices from C. As presented in [5], C− is a product vertex cover,
which means, there is a vertex cover Cw in G′

Φ with weight

w(Cw) <
|C−|

V (Gρ
Φ)

+ ρ � |C|
V (Gρ

Φ)
+ ρ.

On the other hand, from Lemma 2 we have, that w(Cw) > 1 − 2γ. ��

Lemma 8 (Completeness). If Φ was a yes instance, a maximal matching M
exists in Gρ

Φ with

2 · |M | < |V (Gρ
Φ)|

(
1
2

+ 2ε + ρ

)
.

6 �x� is an integer nearest to x.

190 S. Dudycz et al.

Fig. 1. A close-up look at the resulting matching in a cloud of vertices corresponding
to the variable x ∈ X0. The fractional matchings F 0 and F 1 constructed in Sect. 4 can
be discretised to match all the copies of respective vertices.

Proof. Take F , a fractional matching on (G′
Φ, wmin) constructed in Lemma 5.

When F 0 matches vertices u = (x, S1) and v = (x, S2) with some weight F 0(u, v),
we are going to match 4 · n · F 0(u, v)� copies of u and v using parallel edges.

Let us focus on a vertex u = (x, S) �∈ IS belonging to a vertex cover
of G′

Φ, with 0 < |S| < |R|
2 . It is matched by F 0 to (x, S′), which leaves

4 (w(x, S)� − w(x, S′)�) vertices in Gρ
Φ unmatched. This number is divisible

by 4, which allows us to match all the copies of vertices in the Bipartite Kneser
Graph according to F 1 (see Fig. 1).

Finally, the number of unmatched copies of the (x, ∅) vertices is divisible by
2. We can thus replicate F 2 to match all the remaining copies of these vertices.

Since we are matching every node in a vertex cover of the graph Gρ
Φ, our

matching is maximal and its cardinality is half of the cardinality of the vertex
cover.

|M | =
1
2

(V (Gρ
Φ) − |IS|ρ) <

1
2
V (Gρ

Φ)
(

1 −
(

1
2

− 2ε − ρ

))

��

6 Conclusion

We would like to finish by discussing potentially interesting open problems. Nat-
ural question following our result on mmm is whether other hardness results for
Vertex Cover also hold for mmm. In particular, it is known that Vertex Cover on
k-hypergraphs is hard to approximate with a constant better than k [15]. Also,
the best known NP-hardness of Vertex Cover is

√
2, following the reduction from

2–2 Games Conjecture [13], which has been recently proven [14].
Both of these reductions are very similar to Khot and Regev’s ugc-hardness

of Vertex Cover. As such they can be used to prove corresponding hardnesses of
weighted mmm, by following similar approach as in Sect. 3. They differ, however,
in the choice of the weight function of vertices, which turns out to be crucial

Tight Approximation Ratio for Minimum Maximal Matching 191

in terms of unweighted mmm. These weight functions have bias towards bigger
sets, so construction described in Sect. 4 can not be used for these problems.

Still the best known NP-hardness of unweighted mmm is 1.207 by Escoffier,
Monnot, Paschos, and Xiao [7] and it is an open problem, whether it can be
improved to match hardness of Vertex Cover using 2–2 Games Conjecture.

In case of bipartite mmm, there remains a gap between our 3
2 -hardness and

best known constant approximation algorithm, which has ratio 2. Showing that
bipartite mmm is hard to approximate with a constant better than 2 would imme-
diately imply tight hardness of Maximum Stable Matching with Ties [10]. On
the other hand, there are no results for mmm leveraging restriction to bipartite
graphs. Thus, a potential better than 2 approximation algorithm for bipartite
graphs would be interesting for showing structural difference between mmm in
bipartite and general graphs.

A Hardness of Bipartite MMM

In this section we will perform a natural reduction to prove the following
theorem.

Theorem 6. Assuming the Unique Games Conjecture, for any ε > 0 it is NP-
hard to distinguish between balanced bipartite graphs of 2n vertices:

– (yes instance) with a Maximal Matching of size smaller than n
(

1
2 + ε

)
.

– (no instance) with no Maximal Matching of size smaller than n
(

2
3 − ε

)
.

We will start with the graph Gρ
Φ defined in Sect. 5. The bipartite graph HΦ

has two copies vl and vr of every vertex v ∈ Gρ
Φ. The vertices ul and vr are

connected with an edge if there is an edge (u, v) in Gρ
Φ. n is going to be equal

to |V (Gρ
Φ)|. We will call this construction bipartisation of an undirected graph.

It is easy to see, that if Φ is a yes instance of the Unique Label Cover
problem, we can use the matching from Lemma 8 (M in Gρ

Φ) to produce a
maximal matching in HΦ. For every edge (u, v) ∈ M we will put its two copies,
(ul, vr) and (vl, ur) into the matching. The resulting matching size is thus equal
to 2 · |M | < n(1

2 + ε).

A.1 Covering with Paths

In order to analyse the no case, we need to look at the bipartite instance and its
matchings from another angle. For any matching in HΦ, we will view its edges
as directed edges in Gρ

Φ—the vertices on the left will be viewed as out vertices,
and those on the right as in vertices. The graph Gρ

Φ will thus be covered with
directed edges. Every vertex will be incident to at most one outgoing and one
incoming edge, which means that the edges will form a structure of directed
paths and cycles. The set of these paths and cycles will be called P(M) for a
matching M .

192 S. Dudycz et al.

Observation 7. If M is a maximal matching, every path P ∈ P(M) has a
length |P | � 2.

Proof. Assume, that for a maximal matching M in HΦ there is a length-one path
P = (u, v) ∈ P(M). This means, that the vertices vl and ur are unmatched in
M—yet, they are connected with an edge, that can be added to the matching
(that would form a length-2 cycle in P(M)). ��

We will now use this observation to prove the relation between maximal
matchings in HΦ and vertex covers in Gρ

Φ.

Lemma 9. For any maximal matching M in HΦ, there exists a vertex cover C
in Gρ

Φ of size |C| � 3
2 |M |.

Proof. We will construct the vertex cover using paths and cycles of P(M). For
every P ∈ P(M) we add all the vertices of P into C. When P is a cycle, it
contains as many vertices as edges. A path has at most 3

2 as many vertices as
edges, since its length is at least 2. ��

As shown in Lemma 7, when Φ is a no instance, the Minimum Vertex Cover
in Gρ

Φ has at least n(1 − ε) vertices. The Minimum Maximal Matching in HΦ

must in this case have at least 2
3n(1 − ε) > n(2

3 − ε) edges.
The hardness coming from Theorem 6 is, that assuming UGC, no polynomial-

time algorithm will provide approximation for Minimum Maximal Matching with
a factor 4

3 − ε for any ε > 0.

References

1. Bansal, N., Khot, S.: Optimal long code test with one free bit. In: 50th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25–
27, 2009, Atlanta, Georgia, USA, pp. 453–462. (2009). https://doi.org/10.1109/
FOCS.2009.23

2. Bhangale, A., et al.: Bi-covering: covering edges with two small subsets of ver-
tices. SIAM J. Discrete Math. 31(4), 2626–2646 (2017). https://doi.org/10.1137/
16M1082421

3. Carr, R.D., et al.: A 2 1
10

-approximation algorithm for a generalizationof the
weighted edge-dominating set problem. In: Proceedings of the Algorithms -
ESA2000, 8th Annual European Symposium, Saarbrücken, Germany, 5–8 Septem-
ber, 2000, pp. 132–142 (2000). https://doi.org/10.1007/3-540-45253-2_13

4. Chlebík, M., Chlebíková, J.: Approximation hardness of edge dominating set prob-
lems. J. Comb. Optim. 11(3), 279–290 (2006). https://doi.org/10.1007/s10878-
006-7908-0

5. Dinur, I., Safra, S.: The importance of being biased. In: Proceedings on 34th Annual
ACM Symposium on Theory of Computing, May 19–21, 2002, Montréal, Québec,
Canada, pp. 33–42 (2002). https://doi.org/10.1145/509907.509915

6. Dudycz, S., Lewandowski, M., Marcinkowski, J.: Tight Approximation Ratio for
Minimum Maximal Matching. In: CoRR abs/1811.08506 (2018). arXiv: 1811.08506

https://doi.org/10.1109/FOCS.2009.23
https://doi.org/10.1109/FOCS.2009.23
https://doi.org/10.1137/16M1082421
https://doi.org/10.1137/16M1082421
https://doi.org/10.1007/3-540-45253-2_13
https://doi.org/10.1007/s10878-006-7908-0
https://doi.org/10.1007/s10878-006-7908-0
https://doi.org/10.1145/509907.509915
http://arxiv.org/abs/1811.08506

Tight Approximation Ratio for Minimum Maximal Matching 193

7. Escoffier, B., et al.: New results on polynomial inapproximabilityand fixed parame-
ter approximability of edge dominating set. Theory Comput. Syst. 56(2), 330–346
(2015). https://doi.org/10.1007/s00224-014-9549-5

8. Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight
edge dominating set problem. Discrete Appl. Math. 118(3), 199–207 (2002).
https://doi.org/10.1016/S0166-218X(00)00383-8

9. Gotthilf, Z., Lewenstein, M., Rainshmidt, E.: A approximation algorithm for the
minimum maximal matching problem. In: Approximation and Online Algorithms,
6th International Workshop, WAOA 2008, Karlsruhe, Germany, September 18–
19, 2008. Revised Papers, pp. 267–278 (2008). https://doi.org/10.1007/978-3-540-
93980-1_21

10. Huang, C.-C., et al.: A tight approximation bound for the stable marriage problem
with restricted ties. In: Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, APPROX/ RANDOM 2015, August 24–26,
2015, Princeton, NJ, USA, pp. 361–380 (2015). https://doi.org/10.4230/LIPIcs.
APPROX-RANDOM.2015.361

11. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings on 34th
Annual ACM Symposium on Theory of Computing, May 19–21, 2002, Montréal,
Québec, Canada, pp. 767–775 (2002). https://doi.org/10.1145/509907.510017

12. Khot, S.: On the unique games conjecture (Invited Survey). In: Proceedings of the
25th Annual IEEE Conference on Computational Complexity, CCC 2010, Cam-
bridge, Massachusetts, USA, 9–12 June 2010, pp. 99–121 (2010). https://doi.org/
10.1109/CCC.2010.19

13. Khot, S., Minzer, D., Safra, M.: On independent sets, 2-to-2 games, and Grassmann
graphs. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp. 576–589
(2017). https://doi.org/10.1145/3055399.3055432

14. Khot, S., Minzer, D., Safra, M.: Pseudorandom sets in grassmann graph have
near-perfect expansion. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 25, p. 6 (2018). https://eccc.weizmann.ac.il/report/2018/006

15. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2−ε. J.
Comput. Syst. Sci. 74(3), 335–349 (2008)

16. Manurangsi, P.: Inapproximability of maximum biclique problems, minimum k-cut
and densest at-least-k-subgraph from the small set expansion hypothesis. Algo-
rithms 11(1), 10 (2018). https://doi.org/10.3390/a11010010

17. Mütze, T., Su, P.: Bipartite kneser graphs are hamiltonian. Combinatorica 37(6),
1207–1219 (2017). https://doi.org/10.1007/s00493-016-3434-6

18. Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjecture.
In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, Cambridge, Massachusetts, USA, 5–8 June 2010, pp. 755–764 (2010). https://
doi.org/10.1145/1806689.1806788

19. Schmied, R., Viehmann, C.: Approximating edge dominating set in dense graphs.
Theor. Comput. Sci. 414(1), 92–99 (2012). https://doi.org/10.1016/j.tcs.2011.10.
001

20. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math.
38(3), 364–372 (1980). https://doi.org/10.1137/0138030

https://doi.org/10.1007/s00224-014-9549-5
https://doi.org/10.1016/S0166-218X(00)00383-8
https://doi.org/10.1007/978-3-540-93980-1_21
https://doi.org/10.1007/978-3-540-93980-1_21
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.361
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.361
https://doi.org/10.1145/509907.510017
https://doi.org/10.1109/CCC.2010.19
https://doi.org/10.1109/CCC.2010.19
https://doi.org/10.1145/3055399.3055432
https://eccc.weizmann.ac.il/report/2018/006
https://doi.org/10.3390/a11010010
https://doi.org/10.1007/s00493-016-3434-6
https://doi.org/10.1145/1806689.1806788
https://doi.org/10.1145/1806689.1806788
https://doi.org/10.1016/j.tcs.2011.10.001
https://doi.org/10.1016/j.tcs.2011.10.001
https://doi.org/10.1137/0138030

Integer Programming and Incidence
Treedepth

Eduard Eiben1, Robert Ganian2, Dušan Knop3,4, Sebastian Ordyniak5(B),
Micha�l Pilipczuk6, and Marcin Wrochna6,7

1 Department of Informatics, University of Bergen, Bergen, Norway
eduard.eiben@uib.no

2 Algorithms and Complexity Group, Technische Universität Wien, Vienna, Austria
rganian@ac.tuwien.ac.at

3 Algorithmics and Computational Complexity, Faculty IV, TU Berlin,
Berlin, Germany

4 Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czech Republic

dusan.knop@fit.cvut.cz
5 Algorithms Group, Department of Computer Science,

University of Sheffield, Sheffield, UK
s.ordyniak@sheffield.ac.uk

6 Institute of Informatics, University of Warsaw, Warsaw, Poland
{michal.pilipczuk,marcin.wrochna}@mimuw.edu.pl

7 University of Oxford, Oxford, UK

Abstract. Recently a strong connection has been shown between the
tractability of integer programming (IP) with bounded coefficients on the
one side and the structure of its constraint matrix on the other side. To
that end, integer linear programming is fixed-parameter tractable with
respect to the primal (or dual) treedepth of the Gaifman graph of its
constraint matrix and the largest coefficient (in absolute value). Moti-
vated by this, Koutecký, Levin, and Onn [ICALP 2018] asked whether it
is possible to extend these result to a more broader class of integer linear
programs. More formally, is integer linear programming fixed-parameter
tractable with respect to the incidence treedepth of its constraint matrix
and the largest coefficient (in absolute value)?

We answer this question in negative. We prove that deciding the fea-
sibility of a system in the standard form, Ax = b, l ≤ x ≤ u, is NP-hard

Eduard Eiben was supported by Pareto-Optimal Parameterized Algo-
rithms (ERC Starting Grant 715744). This work is a part of projects
CUTACOMBS, PowAlgDO (M. Wrochna) and TOTAL (M. Pilipczuk)
that have received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreements No. 714704, No. 714532, and No. 677651).
Dušan Knop is supported by DFG, project “MaMu”, NI 369/19. Marcin
Wrochna is supported by Foundation for Polish Science (FNP) via the
START stipend. Robert Ganian acknowledges support from the FWF
Austrian Science Fund (Project P31336: NFPC) and is also affiliated
with FI MU, Brno, Czech Republic.
c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 194–204, 2019.
https://doi.org/10.1007/978-3-030-17953-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_15

Integer Programming and Incidence Treedepth 195

even when the absolute value of any coefficient in A is 1 and the incidence
treedepth of A is 5. Consequently, it is not possible to decide feasibility
in polynomial time even if both the assumed parameters are constant,
unless P = NP.

Keywords: Integer programming · Incidence treedepth ·
Gaifman graph · Computational complexity

1 Introduction

In this paper we consider the decision version of Integer Linear Program (ILP)
in standard form. Here, given a matrix A ∈ Z

m×n with m rows (constraints)
and n columns and vectors b ∈ Z

m and l,u ∈ Z
n the task is to decide whether

the set

{x ∈ Z
n | Ax = b, l ≤ x ≤ u} (SSol)

is non-empty. We are going to study structural properties of the incidence graph
of the matrix A. An integer program (IP) is a standard IP (SIP) if its set of
solutions is described by (SSol), that is, if it is of the form

min {f(x) | Ax = b, l ≤ x ≤ u ,x ∈ Z
n} , (SIP)

where f : Nn → N is the objective function; in case f is a linear function the
above SIP is said to be a linear SIP. Before we go into more details we first
review some recent development concerning algorithms for solving (linear) SIPs
in variable dimension with the matrix A admitting a certain decomposition.

Let E be a 2 × 2 block matrix, that is, E =
(

A1 A2
A3 A4

)
, where A1, . . . , A4 are

integral matrices. We define an n-fold 4-block product of E for a positive integer
n as the following block matrix

E(n) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A1 A2 A2 · · · A2

A3 A4 0 · · · 0
A3 0 A4 · · · 0
...

. . .
A3 0 0 · · · A4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where 0 is a matrix containing only zeros (of appropriate size). One can ask
whether replacing A in the definition of the set of feasible solutions (SSol) can
give us an algorithmic advantage leading to an efficient algorithm for solving
such SIPs. We call such an SIP an n-fold 4-block IP. We derive two special
cases of the n-fold 4-block IP with respect to special cases for the matrix E
(see monographs [4,17] for more information). If both A1 and A3 are void (not
present at all), then the result of replacing A with E(n) in (SIP) yields the n-fold
IP. Similarly, if A1 and A2 are void, we obtain the 2-stage stochastic IP.

196 E. Eiben et al.

The first, up to our knowledge, pioneering algorithmic work on n-fold
4-block IPs is due to Hemmecke et al. [9]. They gave an algorithm that given n,
the 2 × 2 block matrix E, and vectors w,b, l,u finds an integral vector x with
E(n)x = b, l ≤ x ≤ u minimizing wx. The algorithm of Hemmecke et al. [9]
runs in time ng(r,s,‖E‖∞)L, where r is the number of rows of E, s is the number
of columns of E, L is the size of the input, and g : N → N is a computable
function. Thus, from the parameterized complexity viewpoint this is an XP algo-
rithm for parameters r, s, ‖E‖∞. This algorithm has been recently improved by
Chen et al. [3] who give better bounds on the function g; it is worth noting that
Chen et al. [3] study also the special case where A1 is a zero matrix and even
in that case present an XP algorithm. Since the work of Hemmecke et al. [9]
the question of whether it is possible to improve the algorithm to run in time
g′(r, s, ‖E‖∞) · nO(1)L or not has become a major open question in the area of
mathematical programming.

Of course, the complexity of the two aforementioned special cases of n-fold
4-block IP are extensively studied as well. The first FPT algorithm1 for the n-fold
IPs (for parameters r, s, ‖E‖∞) is due to Hemmecke et al. [10]. Their algorithm
has been subsequently improved [7,14]. Altmanová et al. [1] implemented the
algorithm of Hemmecke et al. [10] and improved the polynomial factor (achieving
the same running time as Eisenbrand et al. [7]) the above algorithms (from cubic
dependence to n2 log n). The best running time of an algorithm solving n-fold
IP is due to Jansen et al. [12] and runs in nearly linear time in terms of n.

Last but not least, there is an FPT algorithm for solving the 2-stage stochastic
IP due to Hemmecke and Schultz [11]. This algorithm is, however, based on a
well quasi ordering argument yielding a bound on the size of the Graver basis
for these IPs. Very recently Klein [13] presented a constructive approach using
Steinitz lemma and give the first explicit (and seemingly optimal) bound on
the size of the Graver basis for 2-stage (and multistage) IPs. It is worth noting
that possible applications of 2-stage stochastic IP are much less understood than
those of its counterpart n-fold IP.

In the past few years, algorithmic research in this area has been mainly
application-driven. Substantial effort has been taken in order to find the right
formalism that is easier to understand and yields algorithms having the best
possible ratio between their generality and the achieved running time. It turned
out that the right formalism is connected with variants of the Gaifman graph
(see e.g. [5]) of the matrix A (for the definitions see the Preliminaries section).

Our Contribution. In this paper we focus on the incidence (Gaifman) graph. We
investigate the (negative) effect of the treedepth of the incidence Gaifman graph
on tractability of ILP feasibility.

Theorem 1. Given a matrix A ∈ {−1, 0, 1}m×n and vectors l,u ∈ Z
n
∞. Decid-

ing whether the set defined by (SSol) is non-empty is NP-hard even if b = 0 and
tdI(A) ≤ 5.

1 That is, an algorithm running in time f(r, s, ‖E‖∞) · nO(1)L.

Integer Programming and Incidence Treedepth 197

Preliminaries

For integers m < n by [m : n] we denote the set {m,m + 1, . . . , n} and [n] is
a shorthand for [1 : n]. We use bold face letters for vectors and normal font
when referring to their components, that is, x is a vector and x3 is its third
component. For vectors of vectors we first use superscripts to access the “inner
vectors”, that is, x = (x1, . . . ,xn) is a vector of vectors and x3 is the third vector
in this collection.

From Matrices to Graphs. Let A be an m×n integer matrix. The incidence Gaif-
man graph of A is the bipartite graph GI = (R ∪ C,E), where R = {r1, . . . , rm}
contains one vertex for each row of A and C = {c1, . . . , cn} contains one vertex
for each column of A. There is an edge {r, c} between the vertex r ∈ R and
c ∈ C if A(r, c) �= 0, that is, if row r contains a nonzero coefficient in column c.
The primal Gaifman graph of A is the graph GP = (C,E), where C is the set of
columns of A and {c, c′} ∈ E whenever there exists a row of A with a nonzero
coefficient in both columns c and c′. The dual Gaifman graph of A is the graph
GD = (R,E), where R is the set of rows of A and {r, r′} ∈ E whenever there
exists a column of A with a nonzero coefficient in both rows r and r′.

Treedepth. Undoubtedly, the most celebrated structural parameter for graphs is
treewidth, however, in the case of ILPs bounding treewidth of any of the graphs
defined above does not lead to tractability (even if the largest coefficient in A is
bounded as well see e.g. [14, Lemma 18]). Treedepth is a structural parameter
which is useful in the theory of so-called sparse graph classes, see e.g. [16]. Let
G = (V,E) be a graph. The treedepth of G, denoted td(G), is defined by the
following recursive formula:

td(G) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if |V (G)| = 1,

1 + minv∈V (G) td(G − v) if G is connected with |V (G)| > 1,

maxi∈[k] td(Gi) if G1, . . . , Gk are connected components of G.

Let A be an m×n integer matrix. The incidence treedepth of A, denoted tdI(A),
is the treedepth of its incidence Gaifman graph GI . The dual treedepth of A,
denoted tdD(A), is the treedepth of its dual Gaifman graph GD. The primal
treedepth is defined similarly.

The following two well-known theorems will be used in the proof of
Theorem 1.

Theorem 2 (Chinese Remainder Theorem). Let p1, . . . , pn be pairwise co-
prime integers greater than 1 and let a1, . . . , an be integers such that for all
i ∈ [n] it holds 0 ≤ ai < pi. Then there exists exactly one integer x such that

1. 0 ≤ x <
∏n

i=1 pi and
2. ∀i ∈ [n] : x ≡ ai mod pi.

Theorem 3 (Prime Number Theorem). Let π(n) denote the number of
primes in [n], then π(n) ∈ Θ(n

log n).

198 E. Eiben et al.

It is worth pointing out that, given a positive integer n encoded in unary, it
is possible to the n-th prime in polynomial time.

2 Proof of Theorem 1

Before we proceed to the proof of Theorem 1 we include a brief sketch of its
idea. To prove NP-hardness, we will give a polynomial time reduction from 3-
SAT which is well known to be NP-complete [8]. The proof is inspired by the
NP-hardness proof for ILPs given by a set of inequalities, where the primal graph
is a star, of Eiben et al. [6].

Proof Idea. Let ϕ be a 3-CNF formula. We encode an assignment into a variable y.
With every variable vi of the formula ϕ we associate a prime number pi. We make
y mod pi be the boolean value of the variable vi; i.e., using auxiliary gadgets we
force y mod pi to always be in {0, 1}. Further, if for a clause C ∈ ϕ by ‖C‖ we
denote the product of all of the primes associated with the variables occurring
in C, then, by Chinese Remainder Theorem, there is a single value in [‖C‖],
associated with the assignment that falsifies C, which we have to forbid for
y mod ‖C‖. We use the box constraints, i.e., the vectors l,u, for an auxiliary
variable taking the value y mod ‖C‖ to achieve this. For example let ϕ = (v1 ∨
¬v2 ∨ v3) and let the primes associated with the three variables be 2, 3, and 5,
respectively. Then we have ‖(v1∨¬v2∨v3)‖ = 30 and, since v1 = v3 = false and
v2 = true is the only assignment falsifying this clause, we have that 21 is the
forbidden value for y mod 30. Finally, the (SIP) constructed from ϕ is feasible if
and only if there is a satisfying assignment for ϕ.

Proof (of Theorem 1). Let ϕ be a 3-CNF formula with n′ variables v1, . . . , vn′ and
m′ clauses C1, . . . , Cm′ (an instance of 3-SAT). Note that we can assume that none
of the clauses in ϕ contains a variable along with its negation. We will define an
SIP, that is, vectors b, l,u, and a matrix A with O((n′ + m′)5) rows and columns,
whose solution set is non-empty if and only if a satisfying assignment exists for ϕ.
Furthermore, we present a decomposition of the incidence graph of the constructed
SIP proving that its treedepth is at most 5. We naturally split the vector x of the
SIP into subvectors associated with the sought satisfying assignment, variables,
and clauses of ϕ, that is, we have x =

(
y,x1, . . . ,xn′

, z1, . . . , zm′
)
. Throughout

the proof pi denotes the i-th prime number.

Variable Gadget. We associate the xi =
(
xi
0, . . . , x

i
pi

)
part of x with the variable

vi and bind the assignment of vi to y. We add the following constraints

xi
1 = xi

� ∀� ∈ [2 : pi] (1)

xi
0 = y +

pi∑

�=1

xi
� (2)

and box constraints

Integer Programming and Incidence Treedepth 199

−∞ ≤ xi
� ≤ ∞ ∀� ∈ [pi] (3)

0 ≤ xi
0 ≤ 1 (4)

to the SIP constructed so far.

Claim. For given values of xi
0 and y, one may choose the values of xi

� for � ∈ [pi]
so that (1) and (2) are satisfied if and only if xi

0 ≡ y mod pi.

Proof. By (1) we know xi
1 = · · · = xi

pi
and thus by substitution we get the

following equivalent form of (2)

xi
0 = y + pi · xi

1 . (5)

But this form is equivalent to xi
0 ≡ y mod pi. �

Note that by (the proof of) the above claim the conditions (1) and (2) essentially
replace the large coefficient (pi) used in the condition (5). This is an efficient
trade-off between large coefficients and incidence treedepth which we are going
to exploit once more when designing the clause gadget.

By the above claim we get an immediate correspondence between y and
truth assignments for v1, . . . , vn′ . For an integer w and a variable vi we define
the following mapping

assignment(w, vi) =

⎧
⎪⎨

⎪⎩

true if w ≡ 1 mod pi

false if w ≡ 0 mod pi

undefined otherwise.

Notice that (4) implies that the the mapping assignment(y, vi) ∈ {true, false}
for i ∈ [n′]. We straightforwardly extend the mapping assignment(·, ·) for tuples
of variables as follows. For a tuple a of length �, the value of assignment(w,a) is
(assignment(w, a1), . . . , assignment(w, a�)) and we say that assignment(w,a) is
defined if all of its components are defined.

Clause Gadget. Let Cj be a clause with variables ve, vf , vg. We define ‖Cj‖ as
the product of the primes associated with the variables occurring in Cj , that is,

‖Cj‖ = pe ·pf ·pg. We associate the zj =
(
zj
0, . . . , z

j
‖Cj‖

)
part of x with the clause

Cj . Let dj be the unique integer in [‖Cj‖] for which assignment(dj , (ve, vf , vg)) is
defined and gives the falsifying assignment for Cj . The existence and uniqueness
of dj follows directly from the Chinese Remainder Theorem. We add the following
constraints

zj
1 = zj

� ∀� ∈ [2 : ‖Cj‖] (6)

zj
0 = y +

∑

1≤�≤‖Cj‖
zj

� (7)

200 E. Eiben et al.

and box constraints

−∞ ≤ zj
� ≤ ∞ ∀� ∈ [‖Cj‖] (8)

dj + 1 ≤ zj
0 ≤ ‖Cj‖ + dj − 1 (9)

to the SIP constructed so far.

Claim. Let Cj be a clause in ϕ with variables ve, vf , vg. For given values of
y and zj

0 such that assignment(y, (ve, vf , vg)) is defined, one may choose the
values of zj

� for � ∈ [‖Cj‖] so that (6), (7), (8) and (9) are satisfied if and only if
assignment(y, (ve, vf , vg)) satisfies Cj .

Proof. Similarly to the proof of the first claim, (6) and (7) together are equivalent
to zj

0 ≡ y mod ‖Cj‖. Finally, by (9) we obtain that zj
0 �= dj which holds if and

only if assignment(y, (ve, vf , vg)) satisfies Cj . �

Let Ax = 0 be the SIP with constraints (1), (2), (6), and (7) and box
constraints l ≤ x ≤ u given by (3), (4), (8), (9), and −∞ ≤ y ≤ ∞. By the
first claim, constraints (1), (2), (3), (4), are equivalent to the assertion that
assignment(y, (v1, . . . , vn′)) is defined. Then by the second claim, constraints
(6), (7), (8), (9) are equivalent to checking that every clause in ϕ is satisfied
by assignment(y, (v1, . . . , vn′)). This finishes the reduction and the proof of its
correctness.

In order to finish the proof we have to bound the number of variables and
constraints in the presented SIP and to bound the incidence treedepth of A. It
follows from the Prime Number Theorem that pi = O(i log i). Hence, the number
of rows and columns of A is at most (n′ + m′)p3n′ = O((n′ + m′)5).

Claim. It holds that tdI(A) ≤ 5.

Proof. Let G be the incidence graph of the matrix A. It is easy to verify that y is
a cut-vertex in G. Observe that each component of G−y is now either a variable
gadget for vi with i ∈ [n′] (we call such a component a variable component) or a
clause gadget for Cj with j ∈ [m′] (we call such a component a clause component).
Let Gi

v be the variable component (of G − y) containing variables xi and Gj
c be

the clause component containing variables zj . Let tv = max�∈[n′] td(G�
v) and

tc = max�∈[m′] td(G�
c). It follows that td(G) ≤ 1 + max(tv, tc).

Refer to Fig. 1. Observe that if we delete the variable xi
1 together with the

constraint (2) from Gi
v, then each component in the resulting graph contains at

most two vertices. Each of these components contains either

– a variable xi
� and an appropriate constraint (1) (the one containing xi

� and xi
0)

for some � ∈ [2 : pi] or
– the variable xi

0.

Since treedepth of an edge is 2 and treedepth of the one vertex graph is 1, we
have that tv ≤ 4.

Integer Programming and Incidence Treedepth 201

The bound on tc follows the same lines as for tv, since indeed the two gadgets
have the same structure. Now, after deleting zj

1 and (7) in Gj
c we arrive to a graph

with treedepth of all of its components again bounded by two (in fact, none of
its components contain more than two vertices). Thus, tv ≤ 4 and the claim
follows. �

The theorem follows by combining the three above claims. �

3 Incidence Treedepth of Restricted ILPs

It is worth noting that the proof of Theorem 1 crucially relies on having variables
as well as constraints which have high degree in the incidence graph. Thus, it is
natural to ask whether this is necessary or, equivalently, whether bounding the
degree of variables, constraints, or both leads to tractability. It is well known
that if a graph G has bounded degree and treedepth, then it is of bounded
size, since indeed the underlying decomposition tree has bounded height and
degree and thus bounded number of vertices. Let (SIP) with n variables be
given. Let maxdegC(A) denote the maximum arity of a constraint in its con-
straint matrix A and let maxdegV (A) denote the maximum occurrence of a
variable in constraints of A. In other words, maxdegC(A) denotes the maximum
number of nonzeros in a row of A and maxdegV (A) denotes the maximum num-
ber of nonzeros in a column of A. Now, we get that ILP can be solved in time
f(maxdegC(A),maxdegV (A), tdI(A))LO(1), where f is some computable func-
tion and L is the length of the encoding of the given ILP thanks to Lenstra’s
algorithm [15].

y

xi
0 = y +

∑pi
�=1 x

i
�

xi
0 xi

1

xi
1 = xi

2 xi
1 = xi

2· · ·

xi
2 xi

pi
· · ·

Fig. 1. The variable gadget for ui of 3-SAT instance together with the global variable
y. Variables (of the IP) are in circular nodes while equations are in rectangular ones.
The nodes deleted in the proof of the third claim in the proof of Theorem 1 have light
gray background.

202 E. Eiben et al.

The above observation can in fact be strengthened—namely, if the arity of
all the constraints or the number of occurrences of all the variables in the given
SIP is bounded, then we obtain a bound on either primal or dual treedepth. This
is formalized by the following lemma.

Lemma 4. For every (SIP) we have

tdP (A) ≤ maxdegC(A) · tdI(A) and tdD(A) ≤ maxdegV (A) · tdI(A).

The proof idea is to investigate the definition of the incidence treedepth of A,
which essentially boils down to recursively eliminating either a row, or a column,
or decomposing a block-decomposable matrix into its blocks. Then, say for the
second inequality above, eliminating a column can be replaced by eliminating
all the at most maxdegV (A) rows that contain non-zero entries in this column.

It follows that if we bound either maxdegV (A) or maxdegC(A), that is, for-
mally set maxdeg(A) = min {maxdegV (A),maxdegC(A)}, then the linear IP
with such a solution set is solvable in time f(maxdeg(A), ‖A‖∞) ·nO(1) ·L thanks
to results of Koutecký et al. [14]. Consequently, the use of high-degree constraints
and variables in the proof of Theorem 1 is unavoidable.

4 Conclusions

We have shown that, unlike the primal and the dual treedepth, the incidence
treedepth of a constraint matrix of (SIP) does not (together with the largest
coefficient) provide a way to tractability. This shows our current understanding
of the structure of the incidence Gaifman graph is not sufficient. Thus, the effect
on tractability of some other “classical” graph parameters shall be investigated.
For example we have some preliminary evidences that

– the vertex cover number of the incidence Gaifman graph together with the
largest coefficient yields a tractable case and

– the graph in our reduction (Theorem 1) may admit a treecut decomposition
of constant width.

We are going to investigate the two above claims in detail in the full version
of this paper. Last but not least, all of the above suggest some open questions.
Namely, whether ILP parameterized by the largest coefficient and treewidth
and the maximum degree of the incidence Gaifman graph is in FPT or not.
Furthermore, one may also ask about parameterization by the largest coefficient
and the feedback vertex number of the incidence Gaifman graph.

Appendix

Proof of Lemma 4. We prove only the second inequality, as the first one is sym-
metric. The proof is by induction with respect to the total number of rows and
columns of the matrix A. The base of the induction, when A has one row and
one column, is trivial, so we proceed to the induction step.

Integer Programming and Incidence Treedepth 203

Observe that GI(A) is disconnected if and only if GD(A) is disconnected if
and only if A is a block-decomposable matrix. Moreover, the incidence treedepth
of A is the maximum incidence treedepth among the blocks of A, and the same
also holds for the dual treedepth. Hence, in this case we may apply the induction
hypothesis to every block of A and combine the results in a straightforward
manner.

Assume then that GI(A) is connected. Then

td(GI(A)) = 1 + min
v∈V (GI(A))

td(GI(A) − v).

Let v be the vertex for which the minimum on the right hand side is attained.
We consider two cases: either v is a row of A or a column of A.

Suppose first that v is a row of A. Then we have

td(GD(A)) ≤ 1 + td(GD(A) − v)
≤ 1 + maxdegV (A) · td(GI(A) − v)
= 1 + maxdegV (A) · (td(GI(A)) − 1)
≤ maxdegV (A) · td(GI(A))

as required, where the second inequality follows from applying the induction
assumption to A with the row v removed.

Finally, suppose that v is a column of A. Let X be the set of rows of A that
contain non-zero entries in column v; then |X| ≤ maxdegV (A) and X is non-
empty, because GI(A) is connected. If we denote by A − v the matrix obtained
from A by removing column v, then we have

td(GD(A)) ≤ |X| + td(GD(A) − X)
≤ maxdegV (A) + td(GD(A − v))
≤ maxdegV (A) + maxdegV (A) · td(GI(A − v))
≤ maxdegV (A) · td(GI(A)),

as required. Here, in the second inequality we used the fact that GD(A) − X is
a subgraph of GD(A − v), while in the third inequality we used the induction
assumption for the matrix A − v. �

References

1. Altmanová, K., Knop, D., Koutecký, M.: Evaluating and tuning n-fold integer pro-
gramming. In: D’Angelo, G. (ed.) 17th International Symposium on Experimental
Algorithms, SEA 2018, L’Aquila, Italy, 27–29 June 2018. LIPIcs, vol. 103, pp. 10:1–
10:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/
10.4230/LIPIcs.SEA.2018.10

2. Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.): 45th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2018,
Prague, Czech Republic, 9–13 July 2018. LIPIcs, vol. 107. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2018). http://www.dagstuhl.de/dagpub/978-3-
95977-076-7

https://doi.org/10.4230/LIPIcs.SEA.2018.10
https://doi.org/10.4230/LIPIcs.SEA.2018.10
http://www.dagstuhl.de/dagpub/978-3-95977-076-7
http://www.dagstuhl.de/dagpub/978-3-95977-076-7

204 E. Eiben et al.

3. Chen, L., Xu, L., Shi, W.: On the graver basis of block-structured integer program-
ming. CoRR abs/1805.03741 (2018). http://arxiv.org/abs/1805.03741

4. De Loera, J.A., Hemmecke, R., Köppe, M.: Algebraic and Geometric Ideas in
the Theory of Discrete Optimization. MOS-SIAM Series on Optimization, vol. 14.
SIAM (2013). https://doi.org/10.1137/1.9781611972443

5. Dechter, R.: Chapter 7 - tractable structures for constraint satisfaction problems.
In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming,
Foundations of Artificial Intelligence, vol. 2, pp. 209–244. Elsevier (2006). https://
doi.org/10.1016/S1574-6526(06)80011-8

6. Eiben, E., Ganian, R., Knop, D., Ordyniak, S.: Unary integer linear program-
ming with structural restrictions. In: Lang, J. (ed.) Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018,
Stockholm, Sweden, 13–19 July 2018, pp. 1284–1290. ijcai.org (2018). https://doi.
org/10.24963/ijcai.2018/179

7. Eisenbrand, F., Hunkenschröder, C., Klein, K.: Faster algorithms for integer pro-
grams with block structure. In: Chatzigiannakis et al. [2], pp. 49:1–49:13. https://
doi.org/10.4230/LIPIcs.ICALP.2018.49

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

9. Hemmecke, R., Köppe, M., Weismantel, R.: A polynomial-time algorithm for opti-
mizing over N -fold 4-block decomposable integer programs. In: Eisenbrand, F.,
Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 219–229. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-13036-6 17

10. Hemmecke, R., Onn, S., Romanchuk, L.: N-fold integer programming in cubic
time. Math. Program. 137(1–2), 325–341 (2013). https://doi.org/10.1007/978-3-
642-13036-6 17

11. Hemmecke, R., Schultz, R.: Decomposition of test sets in stochastic integer
programming. Math. Program. 94(2), 323–341 (2003). https://doi.org/10.1007/
s10107-002-0322-1

12. Jansen, K., Lassota, A., Rohwedder, L.: Near-linear time algorithm for n-fold ILPs
via color coding. CoRR abs/1811.00950 (2018)

13. Klein, K.: About the complexity of two-stage stochastic IPs. CoRR abs/1901.01135
(2019). http://arxiv.org/abs/1901.01135

14. Koutecký, M., Levin, A., Onn, S.: A parameterized strongly polynomial algorithm
for block structured integer programs. In: Chatzigiannakis et al. [2], pp. 85:1–85:14.
https://doi.org/10.4230/LIPIcs.ICALP.2018.85

15. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8(4), 538–548 (1983). https://doi.org/10.1287/moor.8.4.538

16. Nešetřil, J., Ossona de Mendez, P.: Sparsity - Graphs, Structures, and Algo-
rithms. AC, vol. 28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27875-4

17. Onn, S.: Nonlinear Discrete Optimization: An Algorithmic Theory (Zurich Lectures
in Advanced Mathematics). European Mathematical Society Publishing House
(2010)

http://arxiv.org/abs/1805.03741
https://doi.org/10.1137/1.9781611972443
https://doi.org/10.1016/S1574-6526(06)80011-8
https://doi.org/10.1016/S1574-6526(06)80011-8
https://doi.org/10.24963/ijcai.2018/179
https://doi.org/10.24963/ijcai.2018/179
https://doi.org/10.4230/LIPIcs.ICALP.2018.49
https://doi.org/10.4230/LIPIcs.ICALP.2018.49
https://doi.org/10.1007/978-3-642-13036-6_17
https://doi.org/10.1007/978-3-642-13036-6_17
https://doi.org/10.1007/978-3-642-13036-6_17
https://doi.org/10.1007/s10107-002-0322-1
https://doi.org/10.1007/s10107-002-0322-1
http://arxiv.org/abs/1901.01135
https://doi.org/10.4230/LIPIcs.ICALP.2018.85
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4

A Bundle Approach for SDPs with Exact
Subgraph Constraints

Elisabeth Gaar(B) and Franz Rendl

Alpen-Adria-Universität Klagenfurt, Institut für Mathematik,
Universitätsstr. 65-67, 9020 Klagenfurt, Austria

{elisabeth.gaar,franz.rendl}@aau.at

Abstract. The ‘exact subgraph’ approach was recently introduced as a
hierarchical scheme to get increasingly tight semidefinite programming
relaxations of several NP-hard graph optimization problems. Solving
these relaxations is a computational challenge because of the potentially
large number of violated subgraph constraints. We introduce a compu-
tational framework for these relaxations designed to cope with these
difficulties. We suggest a partial Lagrangian dual, and exploit the fact
that its evaluation decomposes into two independent subproblems. This
opens the way to use the bundle method from non-smooth optimization
to minimize the dual function. Computational experiments on the Max-
Cut, stable set and coloring problem show the efficiency of this approach.

Keywords: Semidefinite programming · Relaxation hierarchy ·
Max-Cut · Stable set · Coloring

1 Introduction

The study of NP-hard problems has led to the introduction of various hierarchies
of relaxations, which typically involve several levels. Moving from one level to the
next the relaxations get increasingly tighter and ultimately the exact optimum
may be reached, but the computational effort grows accordingly.

Among the most prominent hierarchies are the polyhedral ones from Boros,
Crama and Hammer [3] as well as the ones from Sherali and Adams [20], Lovász
and Schrijver [15] and Lasserre [13] which are based on semidefinite programming
(SDP). Even though on the starting level they have a simple SDP relaxation,
already the first nontrivial level in the hierarchy requires the solution of SDPs
in matrices of order

(
n
2

)
and on level k the matrix order is nO(k). Hence they are

considered mainly as theoretical tools and from a practical point of view these
hierarchies are of limited use.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk�lodowska-Curie grant agreement No
764759 and the Austrian Science Fund (FWF): I 3199-N31 and P 28008-N35. We
thank three anonymous referees for their constructive comments which substantially
helped to improve the presentation of our material.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 205–218, 2019.
https://doi.org/10.1007/978-3-030-17953-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_16&domain=pdf
http://orcid.org/0000-0002-1643-6066
http://orcid.org/0000-0003-1578-9414
https://doi.org/10.1007/978-3-030-17953-3_16

206 E. Gaar and F. Rendl

Not all hierarchies are of this type. In [3], a polyhedral hierarchy for the
Max-Cut problem is introduced which maintains

(
n
2

)
variables in all levels,

with a growing number of constraints. More recently, Adams, Anjos, Rendl and
Wiegele [1] introduced a hierarchy of SDP relaxations which act in the space
of symmetric n × n matrices and at level k of the hierarchy all submatrices of
order k have to be ‘exact’ in a well-defined sense, i.e. they have to fulfill an exact
subgraph constraint (ESC).

It is the main purpose of this paper to describe an efficient way to optimize
over level k of this hierarchy for small values of k, e.g. k � 6, and demonstrate
the efficiency of our approach for the Max-Cut, stable set and coloring problem.

Maintaining
(
n
k

)
possible ESCs in an SDP in matrices of order n is compu-

tationally infeasible even for k = 2 or k = 3, because each ESC creates roughly(
k
2

)
additional equality constraints and at most 2k additional linear variables.
We suggest the following ideas to overcome this difficulty. First we proceed

iteratively, and in each iteration we include only (a few hundred of) the most
violated ESCs. More importantly, we propose to solve the dual of the resulting
SDP. The structure of this SDP with ESCs admits a reformulation of the dual
in the form of a non-smooth convex minimization problem with attractive fea-
tures. First, any dual solution yields a valid bound for our relaxations, so it is
not necessary to carry out the minimization to optimality. Secondly, the dual
function evaluation decomposes into two independent problems. The first one is
simply a sum of max-terms (one for each subgraph constraint), and the second
one consists in solving a ‘basic’ SDP, independent of the ESCs. The optimizer for
this second problem also yields a subgradient of the objective function. With this
information at hand we suggest to use the bundle method from non-smooth con-
vex optimization. It provides an effective machinery to get close to a minimizer
in few iterations.

As a result we are able to get near optimal solutions where all ESCs for small
values of k (k � 6) are satisfied up to a small error tolerance. Our computational
results demonstrate the practical potential of this approach.

We finish this introductory section with some notation. We denote the vector
of all-ones of size n with 1n and Δn = {x ∈ R

n
+ :

∑n
i=1 xi = 1}. If the dimension

is clear from the context we may omit the index and write 1 and Δ. Furthermore
let N = {1, 2, . . . , n}. A graph G on n vertices has vertex set N and edge set
E and G is its complement graph. Sn is the set of n-dimensional symmetric
matrices.

2 The Problems and Their Semidefinite Relaxations

In the Max-Cut problem a symmetric matrix L ∈ Sn is given and c ∈ {−1, 1}n

which maximizes cT Lc should be determined. If the matrix L corresponds to the
Laplacian matrix of a (edge-weighted undirected) graph G, this is equivalent to
finding a bisection of the vertices of G such that the total weight of the edges
joining the two bisection blocks is maximized. Such an edge set is also called a
cut in G.

A Bundle Approach for SDPs with Exact Subgraph Constraints 207

Bisections of N can be expressed as c ∈ {−1, 1}n where the two bisection
blocks correspond to the entries in c of the same sign. Given c ∈ {−1, 1}n we
call C = ccT a cut matrix. The convex hull of all cut matrices (of order n) is
denoted by CUTn or simply CUT if the dimension is clear. Since cT Lc = 〈L, ccT 〉
Max-Cut can also be written as the following (intractable) linear program

zmc = max{〈L,X〉 : X ∈ CUT}.

CUT is contained in the spectrahedron X E = {X ∈ Sn : diag(X) = 1n, X � 0} ,
hence

max
{〈L,X〉 : X ∈ X E

}
(1)

is a basic semidefinite relaxation for Max-Cut. This model is well-known,
attributed to Schrijver and was introduced in a dual form by Delorme and Pol-
jak [4]. It can be solved in polynomial time to a fixed prescribed precision and
solving this relaxation for n = 1000 takes only a few seconds.

It is well-known that the Max-Cut problem is NP-hard. On the positive side,
Goemans and Williamson [8] show that one can find a cut in a graph with
nonnegative edge weights of value at least 0.878zmc in polynomial time.

In the stable set problem the input is an unweighted graph G. We call a
set of vertices stable, if no two vertices are adjacent. Moreover we call a vector
s ∈ {0, 1}n a stable set vector if it is the incidence vector of a stable set. The con-
vex hull of all stable set vectors of G is denoted with STAB(G). In the stable set
problem we want to determine the stability number α(G), which denotes the car-
dinality of a largest stable set in G, hence α(G) = max

{
1T s : s ∈ STAB(G)

}
.

Furthermore we denote with STAB2(G) = conv
{
ssT : s ∈ STAB(G)

}
the con-

vex hull of all stable set matrices ssT . Then with the arguments of Gaar [7] it
is easy to check that α(G) = max{trace(X) : X ∈ STAB2(G)}. Furthermore
STAB2(G) is contained in the following spectrahedron

X S =
{

X ∈ Sn : Xij = 0 ∀{i, j} ∈ E, x = diag(X),
(

1 xT

x X

)
� 0

}
,

which is known as the theta body in the literature. Therefore

ϑ(G) = max
{
trace(X) : X ∈ X S

}
(2)

is a relaxation of the stable set problem. The Lovász theta function ϑ(G) was
introduced in a seminal paper by Lovász [14]. We refer to Grötschel, Lovász and
Schrijver [9] for a comprehensive analysis of ϑ(G).

Determining α(G) is again NP-hard. Contrary to Max-Cut, which has a
polynomial time .878-approximation, for every ε > 0 there can be no polynomial
time algorithm that approximates α(G) within a factor better than O(n1−ε)
unless P = NP , see H̊astad [11].

The coloring problem for a given graph G consists in determining the chro-
matic number χ(G), which is the smallest t such that N can be partitioned into
t stable sets. Let S = (s1, . . . , sk) be a matrix where each column is a stable set
vector and these stable sets partition V into k sets. Let us call such matrices S

208 E. Gaar and F. Rendl

stable-set partition matrices (SSPM). The n × n matrix X = SST is called col-
oring matrix. The convex hull of the set of all coloring matrices of G is denoted
by COL(G). We also need the extended coloring polytope

COLε(G) = conv

{(
k 1T

1 X

)
=

k∑

i=1

(
1
si

)(
1
si

)T

:
S = (s1, . . . , sk) is a

SSPM of G, X = SST

}

.

The difficult set COLε can be relaxed to the easier spectrahedron X C

X C =
{(

t 1T

1 X

)
� 0 : diag(X) = 1n, Xij = 0 ∀{i, j} ∈ E

}

and we can consider the semidefinite program

t∗(G) = min
{

t :
(

t 1T

1 X

)
∈ X C

}
. (3)

Obviously t∗(G) � χ(G) holds because the SSPM S consisting of χ(G) stable
sets yields a feasible coloring matrix X = SST with objective function value
χ(G). It is in fact a consequence of conic duality that t∗(G) = ϑ(G) holds.

It is NP-hard to find χ(G), to find a 4-coloring of a 3-colorable graph [10] and
to color a k-colorable graph with O(k

log k
25) colors for sufficiently large k, [12].

3 Exact Subgraph Hierarchy

In this section we will discuss how to systematically tighten the relaxations (1),
(2) and (3) with ‘exactness conditions’ imposed on small subgraphs. We obtained
these relaxations by relaxing the feasible regions CUT, STAB2 and COL of the
integer problem to simple spectrahedral sets. Now we will use small subgraphs
to get closer to original feasible regions again.

For I ⊆ N we denote with XI the principal submatrix of X corresponding
to the rows and columns in I. Furthermore let GI be the induced subgraph of
G on the set of vertices I and let kI = |I| be the cardinality of I.

We first look at the exact subgraph relaxations for Max-Cut. The exact sub-
graph constraint (ESC) on I ⊆ N , introduced in [1] by Adams, Anjos, Rendl
and Wiegele, requires that the matrix XI corresponding to the subgraph GI lies
in the convex hull of the cut matrices of GI , that is

XI ∈ CUT|I| .

In this case we say that X is exact on I.
Now we want the ESCs to be fulfilled not only for one but for a certain

selection of subgraphs. We denote with J the set of subgraphs which we require
to be exact and get the following SDP relaxation with ESCs for Max-Cut.

max{〈L,X〉 : X ∈ X E , XI ∈ CUT|I| ∀I ∈ J} (4)

A Bundle Approach for SDPs with Exact Subgraph Constraints 209

We proceed analogously for the stable set problem in a graph G. The ESC of
a subgraph GI for the stable set problem requires that XI ∈ STAB2(GI) holds
and the SDP with ESCs for the stable set problem is

max{trace(X) : X ∈ X S , XI ∈ STAB2(GI) ∀I ∈ J}. (5)

Turning to the coloring problem, we analogously impose additional con-
straints of the form XI ∈ COL(GI) to obtain the SDP with ESCs

min
{

t :
(

t 1T

1 X

)
∈ X C , XI ∈ COL(GI) ∀I ∈ J

}
. (6)

Note that in the case of the stable set and the coloring problem the polytopes
STAB2(GI) and COL(GI) depend on the subgraph GI , whereas in Max-Cut the
polytope CUT|I| only depends on the number of vertices of the subgraph.

From a theoretical point of view, we obtain the k-th level of the exact sub-
graph hierarchy of [1] if we use J = {I ⊆ N : |I| = k} in the relaxations (4),
(5) and (6) respectively. We denote the corresponding objective function values
with zk

mc, zk
ss and zk

c . So the k-th level of the hierarchy is obtained by forcing all
subgraphs on k vertices to be exact in the basic SDP relaxation.

In the case of the stable set and the Max-Cut problem we have zn
ss = α(G)

(see [7]) and zn
mc = zmc. For coloring zn

c � χ(G) holds. Let zk
cε be the resulting

value if we add the inequalities t �
∑tI

i=1[λI]i|SI
i | where |SI

i | is the number
of colors used for the SSPM SI

i and λI ∈ ΔtI is a variable for the convex
combination for each subgraph I to the SDP for zk

c . Then zn
cε = χ(G) holds. Since

the focus of this paper are computational results we are interested only in the
computational results we omit the details and further theoretical investigations.

An important feature of this hierarchy is that the size of the matrix variable
remains n or n + 1 on all levels of the hierarchy and only more linear variables
and constraints (enforcing the ESCs, hence representing convex hull conditions)
are added on higher levels. So it is possible to approximate zk

mc, zk
ss and zk

c by
forcing only some subgraphs of order k to be exact. This is our key ingredient
to computationally obtain tight bounds on zmc, α(G) and χ(G).

From a practical point of view solving the relaxations (4), (5) and (6) with
standard interior point (IP) solvers like SDPT3 [21] or MOSEK [16] is very time
consuming. In Table 1 we list computation times (in seconds) for one specific
Max-Cut and one specific stable set instance. We vary the number of ESCs for
subgraphs of order 3, 4 and 5, so we solve (4) and (5) for different J . We choose
J such that the total number of equality constraints induced by the convex hull
formulation of the ESCs b ranges between 6000 and 15000. Since the matrix order
n is fixed to n = 100, the overall computation time depends essentially on the
number of constraints, independent of the specific form of the objective function.
Aside from the ESC constraints, we have n additional equations for Max-Cut
and n+m+1 additional equations for the stable set problem. Here m denotes the
number of edges of the graph. We have m = 722 in the example graph. Clearly
the running times get huge for a large number of ESC. Furthermore MATLAB
requires 12 GB of memory for b = 15000, showing also memory limitations.

210 E. Gaar and F. Rendl

Note that it is argued in [1] that z4mc = z3mc, so we omit subgraphs of order
kI = 4 for Max-Cut. This is because in the back of our minds our final algorithm
to determine the best possible bounds first includes ESCs of size k, starting for
example with k = 3. As soon as we do not find violated ESCs of size k anymore,
we repeat this for size k + 1.

4 Partial Lagrangian Dual

To summarize we are interested in solving relaxations (4), (5) and (6) with a
potentially large number of ESCs, where using interior point solvers is too time
consuming. In this section we will first establish a unified formulation of the
relaxations (4), (5) and (6). Then we will build the partial Lagrangian dual of this
formulation, where only the ESCs are dualized. This model will be particularly
amenable for the bundle method, because it will be straightforward to obtain a
subgradient of the model when evaluating it at a certain point.

In order to unify the notation for the three problems observe that the ESCs
XI ∈ CUT|I|, XI ∈ STAB2(GI) and XI ∈ COL(GI) can be represented as

XI =
tI∑

i=1

λiC
I
i , λ ∈ ΔtI , (7)

where CI
i is the i-th cut, stable set or coloring matrix of the subgraph GI and

tI is their total number.
A formal description of ESC in (7) requires some additional notation. First we

introduce the projection PI : Sn �→ SkI
, mapping X to the submatrix XI . Second

we define a map AI : SkI
�→ R

tI , such that its adjoint map A�
I : RtI �→ SkI

is
given by A�

I (λ) =
∑tI

i=1 λiC
I
i and produces a linear combination of the cut,

stable set or coloring matrices. Thus we can rewrite (7) as

A�
I (λI) − PI(X) = 0, λI ∈ ΔtI . (8)

The left-hand side of the matrix equality is a symmetric matrix, of which
some entries (depending on which problem we consider) are zero for sure, so
we do not have to include all kI × kI equality constraints into the SDP. Let bI

be the number of equality constraints we have to include. Note that bI =
(
kI

2

)
,

bI =
(
kI+1

2

) − mI and bI =
(
kI

2

) − mI for the Max-Cut, stable set and coloring
problem respectively, if mI denotes the number of edges of GI . This is because
in the case of the stable set problem we also have to include equations for the
entries of the main diagonal contrary to Max-Cut and the coloring problem.
Then we define a linear map MI : RbI �→ SkI

such that the adjoint operator
M�

I : SkI
�→ R

bI extracts the bI positions, for which we have to include the
equality constraints, into a vector. So eventually we can rephrase (8) equivalently
as

M�
I (A�

I (λI) − PI(X)) = 0, λI ∈ ΔtI ,

A Bundle Approach for SDPs with Exact Subgraph Constraints 211

which are bI+1 equalities and tI inequalities. In consequence all three relaxations
(4), (5) and (6) have the generic form

z = max{〈C, X̂〉 : X̂ ∈ X , λI ∈ ΔtI , M�
I (A�

I (λI) − PI(X)) = 0 ∀I ∈ J}, (9)

where C, X , AI , MI and bI have to be defined problem specific. Furthermore

X̂ = X in the case of Max-Cut and stable set and X̂ =
(

t 1T

1 X

)
for coloring,

but for the sake of understandability we will just use X in the following.
The key idea to get a handle on problem (9) is to consider the partial

Lagrangian dual where the ESCs (without the constrains λI ∈ ΔtI) are dualized.
We introduce a vector of multipliers yI of size bI for each I and collect them in
y = (yI)I∈J and also collect λ = (λI)I∈J . The Lagrangian function becomes

L(X,λ, y) = 〈C,X〉 +
∑

I∈J

〈yI ,M�
I (A�

I (λI) − PI(X))〉

and standard duality arguments (Rockafellar [19, Corollary 37.3.2]) yield

z = min
y

max
X∈X

λI∈ΔtI

L(X,λ, y). (10)

For a fixed set of multipliers y the inner maximization becomes

max
X∈X

λI∈ΔtI

〈

C −
∑

I∈J

P�
I MI(yI),X

〉

+
∑

I∈J

〈AIMI(yI), λI〉.

This maximization is interesting in at least two aspects. First, it is separable
in the sense that the first term depends only on X and the second one only on
the separate λI . Moreover, if we denote the linear map AIMI(yI) : RbI �→ R

tI

with DI , the second term has an explicit solution, namely

max
λI∈ΔtI

〈DI(yI), λI〉 = max
1�i�tI

[DI(yI)]i . (11)

In order to consider the first term in more detail, we define the following
function. Let b =

∑
I∈J bI be the dimension of y. Then h : Rb → R is defined as

h(y) = max
X∈X

〈

C −
∑

I∈J

P�
I MI(yI),X

〉

=

〈

C −
∑

I∈J

P�
I MI(yI),X∗

〉

, (12)

where X∗ is a maximizer over the set X for y fixed. Note that h(y) is convex
but non-smooth, but (12) shows that gI = −MT

I PI(X∗) is a subgradient of h
with respect to yI . By combining (11) and (12) we can reformulate the partial
Lagrangian dual (10) to

z = min
y

{

h(y) +
∑

I∈J

max
1�i�tI

[DI(yI)]i

}

. (13)

The formulation (13) of the original relaxations (4), (5) and (6) fits perfectly
into the bundle method setting described by Frangioni and Gorgone in [6], hence
we suggest to approach this problem using the bundle method.

212 E. Gaar and F. Rendl

5 Solving (13) with the Bundle Method

The bundle method is an iterative procedure for minimizing a convex non-smooth
function and firstly maintains the current center y, which represents the current
estimate to the optimal solution, throughout the iterations. Secondly it maintains
the bundle of the form B = {(y1, h1, g1,X1), . . . , (yr, hr, gr,Xr)}. Here y1, . . . , yr

are the points which we use to set up our subgradient model. Moreover hi =
h(yi), gi is a subgradient of h at yi and Xi is a maximizer of h at yi as in (12).

At the start we select y1 = y = 0 and evaluate h at y, which yields the bundle
B = {(y1, g1, h1,X1)}. A general iteration consists of the two steps determining
the new trial point and evaluating the oracle. For determining a new trial point
ỹ the subgradient information of the bundle B translates into the subgradient
model h(y) � hj + 〈gj , y − yj〉 for all j = 1, . . . , r. It is common to introduce
ej = h(y) − hj − 〈gj , y − yj〉 for j = 1, . . . , r and with h = h(y) the subgradient
model becomes

h(y) � max
1�j�r

{
h − ej + 〈gj , y − y〉} . (14)

The right-hand side above is convex, piecewise linear and minorizes h. In each
iteration of the bundle method we minimize the right-hand side of (14) instead
of h, but ensure that we do not move too far from y by adding a penalty term
of the form 1

2μ ‖y − y‖2 for a parameter μ ∈ R+ to the objective function. With
the auxiliary variables w ∈ R and vI ∈ R for all I ∈ J to model the maximum
terms and with v = (vI)I∈J ∈ R

q and q = |J | we end up with

min
y,w,v

w +
∑

I∈J

vI +
1
2
μ ‖y − y‖2 (15)

st w � h − ej + 〈gj , y − y〉 ∀j = 1, . . . , r

vI � [DI(yI)]i ∀i = 1, . . . , tI ∀I ∈ J.

This is a convex quadratic problem in 1 + q + b variables with r +
∑

I∈J tI
linear inequality constraints. Its solution (ỹ, w̃, ṽ) includes the new trial point
ỹ. Problems of this type can be solved efficiently in various ways, see [7] for
further details. In our implementation we view (15) as a rotated second order
cone program with one second-order cone constraint and solve it with MOSEK.

The second step in each bundle iteration is to evaluate the dual function h
at ỹ. In our case determining h(ỹ) means solving the basic SDP relaxation as
introduced in Sect. 2 with a modified objective function. Hence in the case of
Max-Cut the oracle can be evaluated very quickly, whereas evaluating the oracle
is computationally more expensive for the stable set and the coloring problem.

The bundle iteration finishes by deciding whether ỹ becomes the new center
(serious step, roughly speaking if the increase of the objective function is good)
or not (null step). In either case the new point is included in the bundle, some
other elements of the bundle are possibly removed, the bundle parameter μ is
updated and a new iteration starts.

A Bundle Approach for SDPs with Exact Subgraph Constraints 213

6 Computational Results and Conclusions

We close with a small sample of computational results and start with comparing
our bundle method with interior point methods. In our context we are mostly
interested to improve the upper bounds quickly, so we do not run the bundle
method described in Sect. 5 until we reach a minimizer, but stop after a fixed
number of iterations, say 30. In Table 1 one sees that the running times decrease
drastically if we use the bundle method. For b ≈ 15000 it takes the bundle
method only around 8% of the MOSEK running time to get as close as 95% to
the optimal value, which is sufficient for our purposes. One sees that our bundle
method scales much better for increasing |J |.

If we are given a graph and want to get an approximation on zk
mc, zk

ss and
zk
c , then we iteratively perform a fixed number, say 30, iterations of the bundle

method and then update the set J . We denote the exact subgraph bounds (ESB)
obtained in this way with sk

mc, sk
ss and sk

c .
For the sake of brevity we will only outline how to determine J heuristically,

see [7] for details. Let X∗ be the current solution of (4), (5) or (6). We use the fact
that the inner product of X∗

I and particular matrices of size kI is potentially
small whenever X∗

I is not in STAB2(GI). Minimizing this inner product over
all subgraphs of order kI would yield a quadratic assignment problem, so we
repeatedly use a local search heuristic for fixed particular matrices in order to
obtain potential subgraphs. Then we calculate the projection distances from X∗

I

to STAB2(GI) for all these subgraphs and include those in J which have the
largest distances and hence are violated most.

Finally we present several computational results for obtained ESBs. Note
that we refrain from comparing the running times of our bundle method with
the running time of inter point methods, because interior point methods would
reach their limit very soon. Hence the bounds presented can only be obtained
with our methods in reasonable time.

When considering Max-Cut the graphs in Table 2 are from the Biq Mac
library [2] with n = 100 vertices. The edge density is 10%, 50% and 90%. The first
3 instances have positive weights and the remaining 3 have also some negative
weights. The column labeled 3 provides the deviation (in %) of the ESB with
k = 3 from zmc. Thus if p is the value in the column labeled 3, then s3mc =
(1 + p/100)zmc. The columns labeled 5 and 7 are to be understood in a similar
way for k = 5 and k = 7. We note that the improvement of the bound from
column 3 to column 7 is quite substantial in all cases. We also point out that
the relative gap is much larger if also negative edge weights are present.

In Table 3 we look at graphs from the Beasley collection [2] with n = 250.
These instances were used by Rendl, Rinaldi and Wiegele [18] in a Branch-and-
Bound setting. We only consider the ‘hardest’ instances from [18] where the
Branch-and-Bound tree has more than 200 nodes. The table provides the gap
at the root node and also the number of nodes in the Branch-and-Bound tree
as reported in [18]. The column 7-gap contains the gap after solving our new
relaxation with ESCs up to size k = 7. We find it remarkable that the first
instance is solved to optimality and the gap in the second instance is reduced

214 E. Gaar and F. Rendl

by 75% compared to the original gap. This implies that using our ESBs would
expectedly reduce the very high number of required Branch-And-Bound nodes
tremendously.

We conclude that for Max-Cut our ESB constitute a substantial improvement
compared to the previously used strongest bounds based on SDP with triangle
inequalities. These correspond to the column 3-gap.

For the calculations for the stable set and the coloring problem all instances
are chosen in such a way that ϑ(G) does not coincide and is not very close to
α(G) and χ(G) respectively.

The instances for the stable set problem are taken partly from the DIMACS
challenge [5] with some additional instances from [7] with n ranging from 26
to 200. Table 4 contains the new bounds. Here the starting point is the relax-
ation ϑ(G). We carry out 10 cycles of adding ESCs. In each cycle we add at
most 200 ESCs, so in the final round we have no more than 2000 ESCs. The
column heading indicates the order of the subgraphs. Here the improvement of
the bounds is smaller than in the Max-Cut case, but we see that including larger
subgraphs leads to much tighter bounds. In Table 5 we show that our approach
also reduces the largest found projection distance over all subgraphs GI of XI to
the corresponding STAB2(GI) in the course of the cycles. This indicates that the
violation of the subgraphs decreases over the cycles and less and less subgraphs
do not fulfill the ESCs. For example the value 0.000 for the graph spin5 for s2ss

at the end of the cycles means that we did not find a violated subgraph of order
2 anymore.

Results for a selection of coloring instances from [17] are provided in Tables 6
and 7. As in the stable set case there is only little improvement using small
subgraphs (k = 2 or 3). The inclusion of larger subgraphs (k = 6) shows the
potential of the exact subgraph approach.

Summarizing, we offer the following conclusions from these preliminary com-
putational results.

• Our computational approach based on the partial Lagrangian dual is very
efficient in handling also a large number of ESCs. The dual function evaluation
separates the SDP part from the ESCs and therefore opens the way for large-scale
computations. The minimization of the dual function is carried out as a convex
quadratic optimization problem without any SDP constraints, and therefore is
also suitable for a large number of ESCs.

• On the practical side we consider the small ESCs for Max-Cut a promising
new way to tighten bounds for this problem. It will be a promising new project
to explore these bounds also in a Branch-and-Bound setting.

• Our computational results for stable set and coloring confirm the theoretical
hardness results for these problems. Here the improvement of the relaxations is
small for k � 3 but including larger subgraphs yields a noticeable improvement
of the bounds. It will be a challenge to extend our approach to larger subgraphs.

A Bundle Approach for SDPs with Exact Subgraph Constraints 215

A Tables

Table 1. The running times for one Max-Cut and one stable set instance with different
fixed sets of ESCs. The graphs of order n = 100 are from the Erdős-Rényi model.

#ESC of size b Interior point Our bundle

Time (sec) Time (sec) % of MOSEK

3 4 5 MOSEK SDPT3 Oracle Overall Time Value

MC 2000 0 6000 18.37 49.22 1.01 6.05 32.93 97.20

2000 300 9000 55.24 134.78 1.18 9.33 16.90 95.02

4000 0 12000 104.56 289.78 1.71 11.13 10.64 93.66

3000 600 15000 184.43 525.85 1.56 14.83 8.04 94.54

SS 1050 0 0 5914 23.54 79.25 7.86 10.65 45.22 98.25

1050 212 63 8719 50.11 174.33 10.61 16.52 32.96 97.89

2100 0 0 11780 126.40 388.07 7.43 12.27 9.71 93.65

1575 318 212 14653 241.29 648.83 10.79 20.21 8.38 94.44

Table 2. The deviation of the ESB to zmc for several Max-Cut instances.

Name 3 5 7 zmc

pw01-100.1 0.40 0.00 0.00 2060

pw05-100.1 0.90 0.51 0.39 8045

pw09-100.1 0.58 0.38 0.31 13417

w01-100.1 0.13 0.00 0.00 719

w05-100.1 3.91 1.41 0.85 1606

w09-100.1 8.06 5.66 5.09 2096

Table 3. The gap of the ESB to zmc for two Max-Cut instances.

Name BBnodes Root gap 7-gap zmc

beas-250-6 223 1.02 0.00 41014

beas-250-8 4553 2.19 0.49 35726

216 E. Gaar and F. Rendl

Table 4. Tighten ϑ(G) towards α(G) for several instances for 10 cycles.

Name n m ϑ(G) s2ss s3ss s4ss s5ss s6ss α(G)

CubicVT26 5 26 39 11.82 11.82 11.00 10.98 10.54 10.46 10

Circulant47 030 47 282 14.30 14.30 13.61 13.21 13.24 13.14 13

G 50 0 5 50 308 13.56 13.46 13.13 12.96 12.82 12.67 12

hamming6 4 64 1312 5.33 4.00 4.00 4.00 4.00 4.00 4

spin5 125 375 55.90 55.90 50.42 50.17 50.00 50.00 50

keller4 171 5100 14.01 13.70 13.54 13.50 13.49 13.49 11

sanr200 0 9 200 2037 49.27 49.04 48.94 48.86 48.78 48.75 42

c fat200 5 200 11427 60.35 60.34 58.00 58.00 58.00 58.00 58

Table 5. Maximum found projection distance of XI to STAB2(GI) for the computa-
tions of Table 4.

Name n Beginning End

s2c s4c s6c s2c s4c s6c

CubicVT26 5 26 0.000 0.102 0.193 0.000 0.029 0.013

G 50 0 5 50 0.087 0.093 0.118 0.000 0.013 0.024

spin5 125 0.000 0.084 0.269 0.000 0.046 0.006

sanr200 0 9 200 0.044 0.062 0.107 0.072 0.028 0.020

Table 6. Tighten ϑ(G) towards χ(G) for several instances for 10 cycles.

Name n m ϑ(G) s2c s3c s4c s5c s6c χ(G) �
myciel4 23 71 2.53 2.53 2.90 2.91 3.28 3.29 5

myciel5 47 236 2.64 2.64 3.05 3.09 3.45 3.45 6

mug88 1 88 146 3.00 3.00 3.00 3.00 3.00 3.00 4

1 FullIns 4 93 593 3.12 3.12 3.25 3.37 3.80 3.80 5

myciel6 95 755 2.73 2.73 3.02 3.09 3.57 3.51 7

myciel7 191 2360 2.82 2.82 3.02 3.08 3.63 3.50 8

2 FullIns 4 212 1621 4.06 4.06 4.32 4.38 4.66 4.68 6

flat300 26 0 300 21633 16.99 17.04 17.12 17.10 17.12 17.12 26

A Bundle Approach for SDPs with Exact Subgraph Constraints 217

Table 7. Maximum found projection distance of XI to COL(GI) for the computations
of Table 6.

Name n Beginning End

s2c s4c s6c s2c s4c s6c

myciel4 23 0.000 0.365 0.760 0.000 0.000 0.000

1 FullIns 4 93 0.009 0.349 0.629 0.000 0.158 0.203

myciel7 191 0.000 0.356 0.621 0.000 0.207 0.272

flat300 26 0 300 0.127 0.279 0.360 0.143 0.142 0.091

References

1. Adams, E., Anjos, M.F., Rendl, F., Wiegele, A.: A hierarchy of subgraph
projection-based semidefinite relaxations for some NP-hard graph optimization
problems. INFOR Inf. Syst. Oper. Res. 53(1), 40–47 (2015)

2. Biq Mac Library. http://biqmac.aau.at/. Accessed 18 Nov 2018
3. Boros, E., Crama, Y., Hammer, P.L.: Upper-bounds for quadratic 0-1 maximiza-

tion. Oper. Res. Lett. 9(2), 73–79 (1990)
4. Delorme, C., Poljak, S.: Laplacian eigenvalues and the maximum cut problem.

Math. Program. Ser. A 62(3), 557–574 (1993)
5. DIMACS Implementation Challenges (1992). http://dimacs.rutgers.edu/

Challenges/. Accessed 18 Nov 2018
6. Frangioni, A., Gorgone, E.: Bundle methods for sum-functions with “easy” com-

ponents: applications to multicommodity network design. Math. Program. 145(1),
133–161 (2014)

7. Gaar, E.: Efficient Implementation of SDP Relaxations for the Stable Set Problem.
Ph.D. thesis, Alpen-Adria-Universität Klagenfurt (2018)

8. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. Assoc.
Comput. Mach. 42(6), 1115–1145 (1995)

9. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization, Algorithms and Combinatorics. Study and Research Texts, vol. 2.
Springer, Berlin (1988)

10. Guruswami, V., Khanna, S.: On the hardness of 4-coloring a 3-colorable graph.
SIAM J. Discrete Math. 18(1), 30–40 (2004)

11. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Math. 182(1), 105–142
(1999)

12. Khot, S.: Improved inapproximability results for MaxClique, chromatic number
and approximate graph coloring. In: 42nd IEEE Symposium on Foundations of
Computer Science, Las Vegas, NV, pp. 600–609. IEEE Computer Society, Los
Alamitos (2001)

13. Lasserre, J.B.: An Explicit exact SDP relaxation for nonlinear 0-1 programs. In:
Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 293–303. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45535-3 23

14. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1),
1–7 (1979)

http://biqmac.aau.at/
http://dimacs.rutgers.edu/Challenges/
http://dimacs.rutgers.edu/Challenges/
https://doi.org/10.1007/3-540-45535-3_23

218 E. Gaar and F. Rendl

15. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization.
SIAM J. Optim. 1(2), 166–190 (1991)

16. MOSEK ApS: The MOSEK optimization toolbox for MATLAB manual. Version
8.0. (2017). http://docs.mosek.com/8.0/toolbox/index.html

17. Nguyen, T.H., Bui, T.: Graph coloring benchmark instances. https://turing.cs.hbg.
psu.edu/txn131/graphcoloring.html. Accessed 18 Nov 2018

18. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting
semidefinite and polyhedral relaxations. Math. Program. Ser. A 121(2), 307–335
(2010)

19. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Prince-
ton University Press, Princeton (1970)

20. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM J. Discrete
Math. 3(3), 411–430 (1990)

21. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear pro-
grams using SDPT3. Math. Program. Ser. B 95(2), 189–217 (2003)

http://docs.mosek.com/8.0/toolbox/index.html
https://turing.cs.hbg.psu.edu/txn131/graphcoloring.html
https://turing.cs.hbg.psu.edu/txn131/graphcoloring.html

Dynamic Flows with Adaptive
Route Choice

Lukas Graf(B) and Tobias Harks

Institute of Mathematics, Augsburg University, Augsburg, Germany
{lukas.graf,tobias.harks}@math.uni-augsburg.de

Abstract. We study dynamic network flows and investigate instanta-
neous dynamic equilibria (IDE) requiring that for any positive inflow
into an edge, this edge must lie on a currently shortest path towards
the respective sink. We measure path length by current waiting times in
queues plus physical travel times. As our main results, we show (1) exis-
tence of IDE flows for multi-source single sink networks, (2) finite ter-
mination of IDE flows for multi-source single sink networks assuming
bounded and finitely lasting inflow rates, and, (3) the existence of a com-
plex multi-commodity instance where IDE flows exist, but all of them
are caught in cycles and persist forever.

1 Introduction

Dynamic network flows have been studied for decades in the optimization and
transportation literature, see the classical book of Ford and Fulkerson [5] or
the more recent surveys of Skutella [17] and Peeta [13]. A fundamental model
describing the dynamic flow propagation process is the so-called fluid queue
model, see Vickrey [19]. Here, one is given a digraph G = (V,E), where edges
e ∈ E are associated with a queue with positive service capacity νe ∈ Z+ and a
physical travel time τe ∈ Z+. If the total inflow into an edge e = vw ∈ E exceeds
the queue service capacity νe, a queue builds up and agents need to wait in
the queue before they are forwarded along the edge. The total travel time along
e is thus composed of the waiting time spent in the queue plus the physical
travel time τe. A schematic illustration of the inflow and outflow mechanics of
an edge e is given in Fig. 1. The fluid queue model has been mostly studied from
a game-theoretic perspective, where it is assumed that agents act selfishly and
travel along shortest routes under prevailing conditions. This behavioral model
is known as dynamic equilibrium and has been analyzed in the transportation
science literature for decades, see [6,12,20]. In the past years, however, several
new exciting developments have emerged: Koch and Skutella [10] elegantly char-
acterized dynamic equilibria by their derivatives which gives a template for their
computation. Subsequently, Cominetti, Correa and Larré [3] derived alternative
characterizations and proved existence and uniqueness in terms of experienced

The research of the authors was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) - HA 8041/1-1 and HA 8041/4-1.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 219–232, 2019.
https://doi.org/10.1007/978-3-030-17953-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_17

220 L. Graf and T. Harks

Fig. 1. An edge e = vw with a nonempty queue.

travel times of equilibria even for multi-commodity networks (see also [1,4,16]
for further recent work on the fluid queueing model).

The concept ‘dynamic equilibrium’ assumes complete knowledge and simulta-
neous route choice by all travelers. Complete knowledge requires that a traveler
is able to exactly forecast future travel times along the chosen path effectively
anticipating the whole evolution of the flow propagation process across the net-
work. While this assumption has been justified by letting travelers learn good
routes over several trips, this concept may not accurately reflect the behavioral
changes caused by the wide-spread use of navigation devices. As also discussed
in Marcotte et al. [11], Hamdouch et al. [9] or Unnikrishnan and Waller [18],
drivers may not always learn good routes over several trips but are informed in
real-time about the current traffic situations and, if beneficial, reroute instan-
taneously no matter how good or bad that route was in hindsight (for a more
detailed discussion we refer to the full version [8]).

In this paper, we consider an adaptive route choice model, where at every
node (intersection), travelers may alter their route depending on the current
network conditions, that is, based on current travel times and queuing delays.
We assume that, if a traveler arrives at the end of an edge, she may change
the current route and opt for a currently shorter one. This type of reasoning
does neither rely on private information of travelers nor on the capability of
unraveling the future flow propagation process. We term a dynamic flow an
instantaneous dynamic equilibrium (IDE), if for every point in time and every
edge with positive inflow (of some commodity), this edge lies on a currently
shortest path towards the respective sink. In the following we illustrate IDE in
comparison to classical dynamic equilibrium with an example.

1.1 An Example

Consider the network in Fig. 2 (left). There are two source nodes s1 and s2 with
constant inflow rates u1(θ) ≡ 3 for θ ∈ [0, 1) and u2(θ) ≡ 4 for θ ∈ [1, 2).
Commodity 1 (red) has two simple paths connecting s1 with the sink t. Since
both have equal length (

∑
e τe = 3), in an IDE, commodity 1 can use both of

them. In Fig. 2, the flow takes the direct edge to t with a rate of one, while edge
s1v is used at a rate of two. This is actually the only split possible in an IDE,
since any other split (different in more than just a subset of measure zero of
[0, 1)) would result in a queue forming on one of the two edges, which would
make the respective path longer than the other one. At time θ = 1, the inflow at

Dynamic Flows with Adaptive Route Choice 221

s1 stops and a new inflow of commodity 2 (blue) at s2 starts. This new flow again
has two possible paths to t, however here, the direct path (

∑
e τe = 1) is shorter

than the alternative (
∑

e τe = 4). So all flow enters edge s2t and starts to form a
queue. At time θ = 2, the first flow particles of commodity 1 arrive at s2 with a
rate of 2. Since the flow of commodity 2 has built up a queue of length 3 on edge
s2t by this time, the estimated travel times

∑
e(τe + qe(θ)) are the same on both

simple s2-t paths. Thus, the red flow is split evenly between both possible paths.
This results in the queue-length on edge s2t remaining constant and therefore
this split gives us an IDE flow for the interval [2, 3). At time θ = 3, red particles
will arrive at s1 again, thus having traveled a full cycle (s1 − v − s2 − s1). This
example shows that IDE flows may involve a flow decomposition along cycles.1

In contrast, the (classical) dynamic equilibrium flow will just send more of the
red flow along the direct path (s1, t) since the future queue growth at edge s2t
of the alternative path is already anticipated.

Fig. 2. The evolution of an IDE flow over the time horizon [0, 3]. (Color figure online)

1.2 Related Work

In the transportation science literature, the idea of an instantaneous user or
dynamic equilibrium has already been proposed since the late 80’s, see Ran and
Boyce [14, § VII-IX], Boyce, Ran and LeBlanc [2,15], Friesz et al. [7]. These works
develop an optimal control-theoretic formulation and characterize instantaneous
user equilibria by Pontryagin’s optimality conditions. However, the underlying
equilibrium concept of Boyce, Ran and LeBlanc [2,15] and Friesz et al. [7] is
different from ours. While the verbally written concept of IDE is similar to the
one we use here, the mathematical definition of an IDE in [2,7,15] requires that
instantaneous travel times are minimal for used path towards the sink. A path
is used, if every arc of the path has positive flow. As, for instance, the authors
in Boyce, Ran and LeBlanc [2, p. 130] admit: “Specifically with our definition
of a used route, it is possible that no route is ever ‘used’ because vehicles stop
entering the route before vehicles arrive at the last link on the route. Thus, for
some networks every flow can be in equilibrium.” Ran and Boyce [14, § VII, pp.
148] present a link-based definition of IDE. They define node labels at nodes
v ∈ V indicating the current shortest travel time from the source node to some

1 Note that cycles may occur even in instances with only a single commodity (e.g. in
the same graph with u1 = 8, νsv = 7 and νvw = 7).

222 L. Graf and T. Harks

intermediate node v and require that whenever edge vw has positive flow, edge
vw must be contained in a shortest s-w path. This is different from our definition
of IDE, because we require that whenever there is positive inflow into an edge vw,
it must be contained in a currently shortest v-t path, where t is the sink of the
considered inflow. Another important difference to our model is that [2,7,14,15]
assume a finite time horizon on which the control problems are defined, thus,
only describing the flow trajectories over the given time horizon. Our results show
that this assumption can be too restrictive: there are multi-commodity instances
with finitely lasting bounded inflows that admit IDE flows cycling forever.

1.3 Our Results

We define a notion of instantaneous dynamic equilibrium (IDE) stating that a
dynamic flow is an IDE, if at any point in time, for every edge with positive
inflow (of some commodity), this edge lies on a currently shortest path towards
the respective sink. Our first main result (Theorem 1) shows that IDE exist
for multi-source single sink networks with piecewise constant inflow rates. The
existence proof relies on a constructive method extending any IDE flow up to
time θ to an IDE flow on a strictly larger interval θ + ε for some ε > 0. The
key insight for the extension procedure relies on solving a sequence of nonlinear
programs, each associated with finding the right outflow split for given node
inflows. With the extension property, Zorn’s Lemma implies the existence of
IDE on the whole R≥0. Given that, unlike the classical dynamic equilibrium,
IDE flows may involve cycling behavior (see the example in Fig. 2), we turn to
the issue of whether it is possible that positive flow volume remains forever in
the network (assuming finitely lasting bounded inflows). Our second main result
(Theorem 2) shows that for multi-source single sink networks, there exists a
finite time T > 0 at which the network is cleared, that is, all flow particles have
reached their destination within the time horizon [0, T]. We then turn to general
multi-commodity networks. Here, we show (Theorem 3) that for bounded and
finitely lasting inflow rates, termination in finite time is not guaranteed anymore.
We construct a quite complex instance where IDE flows exist, but all IDE flows
are caught in cycles and travel forever.

2 The Flow Model

In the following, we describe a fluid queuing model as used before in Koch and
Skutella [10] and Cominetti, Correa and Larré [3]. We are given a digraph2

G = (V,E) with queue service rates νe ∈ Z+, e ∈ E and travel times τe ∈ Z+

for all e ∈ E. There is a finite set of commodities I = {1, . . . , n}, each with a
commodity-specific source node si ∈ V and a common sink node t ∈ V .3 The
(infinitesimally small) agents of every commodity i ∈ I are generated according
2 Or a directed multi-graph. All results from this papers hold there as well.
3 Without loss of generality we will always assume that all source nodes and the sink t

are distinct from each other. Moreover, t is reachable from every other vertex v ∈ V .

Dynamic Flows with Adaptive Route Choice 223

to a right-constant inflow rate function ui : [ri, Ri) → R≥0, where we say that
a function g : [a, b) → R is right-constant if for every x ∈ [a, b) there exists an
ε > 0 such that g is constant on [x, x + ε), i.e. for all y ∈ [x, x + ε) we have
g(y) = g(x). The time points ri ≥ 0 and Ri > ri are the release and ending time
of commodity i, respectively. A flow over time is a tuple f = (f+, f−), where
f+, f− : R≥0×E → R≥0 are integrable functions modeling the inflow rate f+

e (θ)
and outflow rate f−

e (θ) of an edge e ∈ E at time θ ≥ 0. The flow conservation
constraints are modeled as

∑

e∈δ+
v

f+
e (θ) −

∑

e∈δ−
v

f−
e (θ) = bv(θ), (1)

where δ+v := { vu ∈ E } and δ−
v := {uv ∈ E } are the sets of outgoing edges from

v and incoming edges into v, respectively, and bv(θ) is the balance at node v,
which needs to be equal to ui(θ), if v = si and θ ∈ [ri, Ri), non-positive for v = t
and any θ and equal to zero in all other cases. The queue length of edge e at
time θ is given by

qe(θ) = F+
e (θ) − F−

e (θ + τe), (2)

where F+
e (θ) :=

∫ θ

0
f+

e (z)dz and F−
e (θ) :=

∫ θ

0
f−

e (z)dz denote the cumulative
inflow and outflow, respectively. We implicitly assume that f−

e (θ) = 0 for all
θ ∈ [0, τe). Together with Constraint (3) this will imply that the queue length is
always non-negative. We assume that the queue operates at capacity which can
be modeled by

f−
e (θ + τe) =

{
ν(e), if qe(θ) > 0
min { f+

e (θ), ν(e) } , if qe(θ) = 0
for all e ∈ E, θ ∈ R≥0. (3)

It has been shown in Cominetti et al. [3] that this condition is in fact equivalent
to the following equation describing the queue length dynamics:

q′
e(θ) =

{
f+

e (θ) − νe, if qe(θ) > 0
[f+

e (θ) − νe]+, if qe(θ) = 0.
(4)

We assume that, whenever an agent arrives at an intermediate node v at time
θ, she is given the information about the current queue lengths qe(θ) and travel
times τe, e ∈ E, and, based on this information, she computes a shortest v-t path
and enters the first edge on this path. We define the instantaneous travel time
of an edge e at time θ as ce(θ) = τe + qe(θ)/νe, where qe(θ)/νe is the current
waiting time to be spent in the queue of edge e. We can now define node labels
�v(θ) corresponding to current shortest path distances from v to the sink t. For
v ∈ V and θ ∈ R≥0, define �t(θ) = 0 and �v(θ) = mine=vw∈E{�w(θ) + ce(θ)} for
all v �= t. We say that edge e = vw is active at time θ, if �v(θ) = �w(θ) + ce(θ).
We denote by Eθ ⊆ E the set of active edges. Now we are ready to formally
define an instantaneous dynamic equilibrium for the continuous flow version.

224 L. Graf and T. Harks

Definition 1. A flow f is an instantaneous dynamic equilibrium (IDE), if it
satisfies:

For all θ ∈ R≥0, e ∈ E: f+
e (θ) > 0 ⇒ e ∈ Eθ. (5)

In words, a flow f is an IDE, if, whenever flow enters an edge e = vw at some
point θ, this edge must be contained in a currently shortest path from v to t.

3 Existence of IDE Flows

We now describe an algorithm computing an IDE for multi-source single-sink
networks. Let f = (f+, f−) denote a flow over time. We denote by b−

v (θ) :=∑
e∈δ−

v
f−

e (θ)+
∑

i∈I:si=v ui(θ) the current inflow at vertex v at time θ. Moreover,
let δ−

v (θ) := δ−
v ∩ Eθ denote those outgoing edges of v that are active at time θ.

The main idea of our algorithm works as follows. Starting from time θ = 0 we
compute inductively a sequence of intervals [0, θ1), [θ1, θ2), . . . with 0 < θi < θi+1

and corresponding constant inflows (f+
e (θ))e for θ ∈ [θi, θi+1) that form together

with the corresponding edge outflows (f−
e (θ))e an IDE. Suppose we are given

an IDE flow up to time θk, that is, a tuple (f+, f−) of right-constant functions
f+

e : [0, θk) → R≥0 and f−
e : [0, θk+τe) → R≥0 satisfying Constraints (1), (3) and

(5). Note that this is enough information to compute F+
e (θk) and F−

e (θk + τe)
and thus also qe(θk), ce(θk) and �v(θk) for all e ∈ E and v ∈ V . We now describe
how to extend this flow to the interval [θk, θk + ε) for some ε > 0. Assume
that b−

v (θ) is constant for θ ∈ [θk, θk + ε) for some v ∈ V and ε > 0. Moreover
let δ−

v (θk) = {vw1, vw2, . . . , vwk} for some k ≥ 1 and define [k] := {1, . . . , k}.
Thus, we have �v(θk) = cvwi

(θk) + �wi
(θk) for all i ∈ [k]. Assume that labels of

nodes wi, i ∈ [k] change linearly after θk, that is, there are constants awi
∈ R

for i ∈ [k] with �wi
(θ) = �wi

(θk) + awi
(θ − θk) for all θ ∈ [θk, θk + ε). Our goal

is to find constant inflows f+
vwi

(θ), i ∈ [k], θ ∈ [θk, θk + ε) satisfying the supply
b−
v (θ) and, for some ε′ > 0, fulfilling the following invariant for all i ∈ [k] and

θ ∈ [θk, θk + ε′):

cvwi
(θ) + �wi

(θ) ≤ cvwj
(θ) + �wj

(θ) for all i, j ∈ [k] with f+
vwi

(θ) > 0. (6)

If the inflow f+
vwi

is constant, then by Eq. (4) the queue length qvwi
has piece-

wise constant derivative and, thus, is itself piecewise linear. This implies that
the instantaneous travel time cvwi

is piecewise linear as well, with derivative

c′
vwi

(θ) =
q′
vwi

(θ)

νvwi
and, in particular, linear on [θk, θk + ε′) for some ε′ > 0. Since

the invariant is fulfilled at θ = θk and the �wi
are assumed to be linear on the

interval [θk, θk + ε), a sufficient condition for constant inflows to satisfy (6) for
all θ ∈ [θk, θk + ε′) is the following: For all i ∈ [k] the constant inflows satisfy at
time θk (and, thus, for all θ ∈ [θk, θk + ε′)):

c′
vwi

(θk) + �′
wi

(θk) ≤ c′
vwj

(θk) + �′
wj

(θk) for all i, j ∈ [k] with f+
vwi

(θk) > 0. (7)

This condition simply makes sure that whenever an edge vwi has positive inflow,
the remaining distance towards t grows from θk onwards at the lowest speed.

Dynamic Flows with Adaptive Route Choice 225

We will now define an optimization problem in variables xvwi
, i ∈ [k] for which

an optimal solution exists and satisfies the conditions defined in (7). The proof
can be found in AppendixA (Lemma 1).

min
xvwi

≥0,i∈[k]

k∑

i=1

∫ xvwi

0

gvwi
(z)

νvwi

+ awi
dz s.t.:

k∑

i=1

xvwi
= b−

v (θk), (OPT-b−
v (θk))

where gvwi
(z) :=

{
z − νvwi

, if qvwi
(θk) > 0

[z − νvwi
]+, if qvwi

(θk) = 0.
Hence, gvwi

(f+
vwi

(θk)) is the

derivative of qvwi
at θk (cf. Eq. (4)).

This way we can extend a given IDE flow up to time θk+ε′ for a single node v
by solving Eq. (OPT-b−

v (θk)) and setting fvwi
(θ) := xvwi

for some suitable short
interval [θk, θk +ε′), provided that the flow is already extended for all nodes with
strictly smaller label �w(θk). To do that for all nodes, we simply order them by
their current labels at time θk and then iteratively solve the above optimization
problem for each node, beginning with the one with the smallest label. A more
detailed explanation of this procedure is given in AppendixA (Lemma 2).

Theorem 1. For any multi-source single sink network with right-constant
inflow rate functions, there exists an IDE flow f with right-constant functions
f+

e and f−
e , e ∈ E.

The proof can be found in AppendixA. In the full version [8], we give an
example that IDE need not be unique.

4 Termination of IDE Flows

In this section, we investigate the question, whether an IDE flow actually van-
ishes within finite time, that is, if the finitely lasting and bounded inflow reaches
the sink within finite time.

Definition 2. A flow f terminates, if there exists a θ̂ ≥ θ0 := max {Ri | i ∈ I }
such that by time θ̂ the total volume of flow in the network is zero, i.e.

G(θ̂) :=
∑

e∈E

(F+
e (θ̂) − F−

e (θ̂)) =
∑

i∈I

θ̂∫

0

ui(θ)dθ −
∑

e∈δ−
t

F−
e (θ) +

∑

e∈δ+
t

F+
e (θ) = 0.

Theorem 2. For multi-source single-sink networks, any IDE flow terminates.

We will only sketch the three main steps of the proof here – for the detailed
proof, see [8]. As our first step, we show that in an acyclic network, all flows
over time terminate (IDE or not). To show this, we take a topological order on
V (with t as the last element) and show that whenever there is a node v with
no flow on edges between nodes that come before v (for all times after some
θ1), then, there exists θ2 ≥ θ1 such that no flow will arrive at v after θ2. In the

226 L. Graf and T. Harks

second step, we show that flows with total volume G(θ) < 1 at time θ ≥ θ0 must
terminate. This follows, because for a remaining flow volume less than one, the
total length of all queues is less than 1 as well and, thus, an IDE flow can only
use edges that lie on a shortest path to t with respect to τe. Since these edges
form an acyclic subgraph (independent of the time θ) such a flow terminates by
step 1. For the third step, we take a generic IDE flow in an arbitrary multi-source
single sink network and assume by contradiction that there exist edges e such
that for any θ ∈ R≥0, there exists a time θ′ ≥ θ with F+

e (θ′) − F−
e (θ′) ≥ 1

|E| .
From these edges we take the closest one to t and show – similarly to the first
step – that there exists some time θ′′ such that all flow on this edge will travel on
a direct path to t (after time θ′′). Altogether, this implies that eventually more
flow volume arrives at t than the totally generated volume (at the sources), a
contradiction. Thus, there exists some time θ∗ after which the total amount in
the network is less than 1 and, hence, the flow terminates by the second step.

Remark 1. For the entire proof to work, we only need the assumption of bound-
edness and finite support of inflow rates ui, thus, the result holds for more general
inflow functions.

5 Multi-commodity Networks

We now generalize the model to multi-source multi-sink networks. A multi-
commodity flow over time is a tuple f = ((f+

i,e)i∈I,e∈E , (f−
i,e)i∈I,e∈E), where

f+
i,e, f

−
i,e : R≥0 → R≥0 are integrable functions for all i ∈ I and e ∈ E that

satisfy corresponding balance constraints for each v ∈ V . Queue lengths depend
on the aggregate cumulative inflows and outflows, respectively. For i ∈ I, v ∈ V
and θ ∈ R≥0, we define commodity-specific node labels �i

v(θ) as in the single sink
case except that ti is used as sink node. We say that edge e = vw is active for
i ∈ I at time θ, if �i

v(θ) = �i
w(θ) + ce(θ). Let Ei

θ ⊆ E be the set of active edges.

Definition 3. A multi-commodity flow f is an instantaneous dynamic equilib-
rium if for all i ∈ I, θ ∈ R≥0 and e ∈ E it satisfies f+

i,e(θ,) > 0 ⇒ e ∈ Ei
θ.

Together with Leon Sering, we are currently working on a proof that IDE always
exist for multi-commodity networks, which will be included in the full version of
this paper. Regarding termination, however, we can already show that there are
instances in which there exists an IDE flow and any IDE flow does not terminate.

Theorem 3. There is a multi-commodity network with two sinks and all edge
travel times and capacities equal to 1, where any IDE flow does not terminate.

To construct such an instance we make use of several gadgets. The first one,
gadget A, will serve as the main building block and is depicted in Fig. 4. It
consists of two cycles with one common edge v1v2 and one commodity with
constant inflow rate of 2 on the interval [0, 1) at node v1 with a sink node t
outside the gadget and reachable from the nodes v2, v5 and v7 via some paths

Dynamic Flows with Adaptive Route Choice 227

P2, P5 and P7, respectively. Our goal will be to embed this gadget into a larger
instance in such a way, that for any IDE flow, the flow inside gadget A will
exhibit the following flow pattern for all h ∈ N (see Fig. 3):

1. On the interval [5h,5h+ 1): All flow generated at v1 (for h = 0) or arriv-
ing at v1 (for h > 0) enters the edge to v2 at a rate of 2, half of it directly
starting to travel along the edge, half of it building up a queue of length 1 at
time 5h + 1.

2. On the interval [5h+ 1,5h+ 2): The flow arriving at node v2 enters the
edge to v3 because v2, v3, v4, v5, P5 is currently the shortest path to t. The
length of the queue of edge v1v2 decreases until it reaches 0 at time 5h + 2.

3. On the interval [5h+ 2,5h+ 3): The flow arriving at node v2 enters the
edge to v6 because v2, v6, v7, P7 is currently the shortest path to t.

4. On the interval [5h+ 4,5h+ 5): The flows arriving at nodes v5 and
v7 enter the respective edges towards node v1 because v5, v1, v2, P2 and
v7, v1, v2, P2 are currently the shortest paths to get to t.

5. On the interval [5h+ 5,5h+ 6): There is a total inflow of 2 at node v1,
which enters the edge to v2. Thus, the pattern repeats.

Fig. 3. The desired flow pattern in gadget A at times θ = 0, 1, 2, 3, 4, 5,

The effect of this behavior is that other particles outside the gadget, who
want to travel through this gadget along the central vertical path, will estimate
an additional waiting time as indicated by the diagram displayed inside gadget
A in Fig. 4 (next to the vertical red path). Now, in order to actually guarantee
the described behavior, we need to embed gadget A into a larger instance in
such a way, that for any IDE flow the following assumptions hold:

1. The only paths leaving A are the four dashed paths indicated in Fig. 4.
2. The three (blue) paths P2, P5 and P7 are of the same length L (w.r.t. τe).
3. For all h ∈ N and all θ ∈ [5h + 1, 5h + 2), (5h + 2, 5h + 5] the unique shortest

paths are given in the description for the flow pattern above.

228 L. Graf and T. Harks

Fig. 4. Gadget A (the dashed paths and nodes are not part of the gadget). The (red)
diagram inside the box A indicates the waiting time on edge v1v2 (and therefore on
the (red) vertical path through the gadget), provided that the flow inside this gadget
follows the flow pattern indicated in Fig. 3. The (blue) diagrams on the right indicate
the desired waiting times on the paths P2, P5 and P7, respectively (Color figure online).

In order to satisfy the assumptions 1–3., we will now construct three types of
gadgets B2, B5 and B7 for the three paths P2, P5 and P7, each of equal length on
which any IDE flow induces waiting times as shown by the respective diagrams
on the right side in Fig. 4. To build these gadgets we need time shifted versions
of gadget A, which we denote by A+k. Such a gadget is constructed the same
way as gadget A above, with the only difference that the support of the inflow
rate function ui is shifted to the interval [k mod 5, k mod 5 + 1). Gadget B2 now
consists of the concatenation of four gadgets of type A+0, four gadgets of type
A+1 and four gadgets of type A+2 in series along their vertical paths through
them with three edges between each two gadgets (see Fig. 5 in Appendix A).
Similarly, gadget B5 consists of three copies of A+3-type gadgets, three copies
of A+4-type gadgets and additional 6 · 4 edges to ensure that the vertical path
has the same length as the one of gadget B2. Finally, gadget B7 consists of three
copies of A+3-type gadgets, three copies of A+4-type gadgets, two copies of A+5-
type gadgets, one copy of A+6-type gadgets and additional 3 · 4 edges. We again
use the notation B+k

j to refer to a time shifted version of gadget Bj – i.e. with
all used gadgets A shifted by additional k time steps. Next, we build a gadget
C by just taking one copy of each B+k

j for all j ∈ { 2, 5, 7 } and k = 0, 1, 2, 3, 4
(see Fig. 6 in Appendix A). Finally, taking two copies of this gadget, C and C ′,
and two additional nodes, t and t′, where t will be the sink node for all players
in C and t′ the sink node for all players in C ′, we can build our entire graph as
indicated by Fig. 7 in Appendix A. We connect the top edges of the gadgets B+k

j

in gadget C ′ with the sink t and use those gadgets’ respective vertical paths as
the P+k

j paths for gadget C and vice versa.
In order to prove the correctness of our construction (i.e. that any IDE flow on

this instance does not terminate) we need the following important observation:

Observation 1. If a flow in some A+k-type gadget (with k ∈ { 0, 1, 2, 3, 4 })
follows the desired flow pattern for all unit time intervals between k and some
θ ∈ N0, θ ≥ k, the induced waiting time on edge v1v2 of this gadget will follow

Dynamic Flows with Adaptive Route Choice 229

the waiting time function indicated by the diagram in Fig. 4 (shifted by k) for
the next unit time interval [θ, θ + 1), independent of the evolution of the flow in
this interval. The same is true for all B+k

j -type gadgets.

With this observation we can prove Theorem 2 by induction on the number of
passed unit time intervals. We assume that a given IDE flow follows the flow
pattern described at the beginning of the construction and indicated in Fig. 3
for all unit time intervals up to some θ ∈ N0. Then by Observation 1 we know
that at least the waiting time pattern will continue to hold for the next unit time
interval. So for each node v within a generic A+k-type gadget, we can identify
the shortest v-t path on the next interval and only need to verify that its first
edge is indeed the one the flow is supposed to enter. This shows that the flow
pattern will hold for all times and, in particular, that the flow never terminates.

Remark 2. It is even possible to modify the network in such a way, that only a
single source (and multiple sinks) is necessary.

A Omitted Proofs and Figures of Sects. 3 and 5

Lemma 1. There exists an optimal solution xvwi
, i ∈ [k] to OPT-b−

v (θk) so that
f+

vwi
(θk) = xvwi

, i ∈ [k] satisfies (7).

Proof. The objective function is continuous and the feasible region is non-empty
and compact, thus, by the theorem of Weierstraß an optimal solution exists.
Assigning a multiplier λ ∈ R to the equality constraint, we obtain xvwi

> 0 ⇒
gvwi

(xvwi
)

νvwi
+ awi

+ λ = 0, xvwi
= 0 ⇒ gvwi

(xvwi
)

νvwi
+ awi

+ λ ≥ 0, implying (7). ��

Lemma 2. Let f = (f+, f−) be an IDE flow up to time θk ≥ 0 and suppose
there are constant inflow rate functions b−

v : [θk, θk + ε) → R≥0 for some ε > 0
and all nodes v ∈ V (in particular, this means ε ≤ min { τe | e ∈ E }). Then there
exists some ε′ > 0 such that we can extend f to an IDE flow up to time θk + ε′

with all functions f+
e constant on the interval [θk, θk + ε′) and all functions f−

e

right-constant on the intervals [θk + τe, θk + τe + ε′).

Proof. First, we sort the nodes by their labels �v(θk) and will now define the
outflows using Lemma 1 for each node, beginning with the one with the smallest
label. This first one will always be t (with label �t(θk) = 0) for which we can
define f+

e (θ) = f−
e (θ + τe) = 0 for all outgoing edges e ∈ δ+t and all times

θ ∈ [θk, θk + ε). Now we take some node v such that for all nodes w with strictly
smaller label at time θk and all edges e ∈ δ+w we have already defined f+

e on
some interval [θk, θk + ε′) and f−

e on some interval [θk + τe, θk + τe + ε′) in such
a way that on the interval [θk, θk + ε′) we have

1. the labels �w(θ) change linearly,
2. no additional edges are added to the sets δ+w (θ) of active edges leaving w,

230 L. Graf and T. Harks

3. the f+
e are constant and the f−

e right-constant for all e ∈ δ+w and
4. the functions f+

e and f−
e for e ∈ δ+w satisfy Constraints (1), (3) and (5).

Let δ+v (θk) := {vw1, vw2, . . . , vwk} be the set of active edges at v at time θk.
Then, at time θk, each wi must have a strictly smaller label than v. Hence,
they satisfy Properties 1–4. We can now apply Lemma 1 to determine the flows
f+

vwi
(θk). Additionally, we set f+

e (θk) = 0 for all non-active edges leaving v, i.e.
all e ∈ δ+v \ δ+v (θk). Assuming that this flow remains constant on the whole
interval [θk, θk +ε′), we can determine the first time θ̂ ≥ θk, where an additional
edge vw ∈ δ+v or wv ∈ δ−

v becomes newly active. This can only happen after
some positive amount of time has passed, i.e., for some θ̂ > θk, because: (i)
at time θk the edge was non-active and therefore �v(θk) > cvw(θk) + �w(θk) or
�w(θk) > cwv(θk) + �v(θk), respectively, (ii) all labels change linearly (and thus
continuously) and (iii) cvw or cwv is changing piecewise linearly, since the length
of its queue does so as well (as both f+

vw and f−
wv are piecewise constant). If the

difference θ̂−θk is smaller than the current ε′, we take it as our new ε′, otherwise
we keep it as it is. In both cases, we extend f+

e to the interval [θk, θk + ε′) for all
e ∈ δ+v by setting f+

e (θ) = f+
e (θk) for all θ ∈ [θk, θk + ε′). This guarantees that

the label of v changes linearly on this interval, no additional edges become active
and the functions f+

e are constant. Also f+
e satisfies Constraints (1) and (5) by

definition. Finally, we define f−
e by setting f−

e (θ + τe) := νe, if qe(θk) + (θ −
θk)(f+

e (θk) − νe) > 0, and f−
e (θ + τe) := f+

e (θ) else. Then, f−
e is right-constant

and together with f+
e satisfies Constraint (3). In summary, using this procedure

we can extend f node by node to an IDE flow up to θk + ε′ for some ε′ > 0. ��
Proof (Proof of Theorem 1). Let F be the set of tupels (f, θ), with θ ∈ R≥0∪{∞}
and f a IDE flow over time up to time θ with right-constant functions f+

e and
f−

e . We define a partial order on F by (f, θ) ≤ (f ′, θ′) :⇔ θ ≤ θ′ and f ′∣∣
[0,θ)

≡ f .
Now, F is non-empty, since the 0-flow is obviously an IDE flow up to time 0, and
for any chain (f (1), θ1), (f (2), θ2), . . . in F, we can define an upper bound (f̂ , θ̂)
to this chain by setting θ̂ := sup { θk } and

f̂+
e : [0, θ̂) → R≥0, θ �→ f (k),+

e (θ) with k s.t θ < θk

f̂−
e : [0, θ̂ + τe) → R≥0, θ �→ f (k),−

e (θ) with k s.t θ < θk + τe.

This is well defined and an IDE flow up to θ̂, since for every θ it coincides with
some IDE flow f (k) and therefore is an IDE flow up to θ itself. By Zorn’s lemma,
we get the existence of a maximal element (f∗, θ∗) ∈ F. If we had θ∗ < ∞,
we could apply the extension property (Lemma 2) to f∗, a contradiction to its
maximality. So we must have θ∗ = ∞ and, hence, f∗ is an IDE flow on R≥0. ��

Dynamic Flows with Adaptive Route Choice 231

Fig. 5. Gadget B2 consisting of four copies of each of the types A+0, A+1, A+2. The
diagram inside the box of gadget B2 indicates the waiting time on the vertical path
through gadget B2, provided that within all of the used gadgets A, the flow follows the
flow pattern from Fig. 3. The dashed parts are not part of the gadget.

Fig. 6. Gadget C

Fig. 7. The graph

References

1. Bhaskar, U., Fleischer, L., Anshelevich, E.: A Stackelberg strategy for routing flow
over time. Games Econ. Behav. 92, 232–247 (2015)

2. Boyce, D.E., Ran, B., LeBlanc, L.J.: Solving an instantaneous dynamic user-
optimal route choice model. Transp. Sci. 29(2), 128–142 (1995)

3. Cominetti, R., Correa, J.R., Larré, O.: Dynamic equilibria in fluid queueing net-
works. Oper. Res. 63(1), 21–34 (2015)

4. Cominetti, R., Correa, J.R., Olver, N.: Long term behavior of dynamic equilibria
in fluid queuing networks. In: Proceedings of the Integer Programming and Combi-
natorial Optimization - 19th International Conference, IPCO 2017, Waterloo, ON,
Canada, 26–28 June 2017, pp. 161–172 (2017)

232 L. Graf and T. Harks

5. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press,
Princeton (1962)

6. Friesz, T.L., Bernstein, D., Smith, T.E., Tobin, R.L., Wie, B.W.: A variational
inequality formulation of the dynamic network user equilibrium problem. Oper.
Res. 41(1), 179–191 (1993)

7. Friesz, T.L., Luque, J., Tobin, R.L., Wie, B.: Dynamic network traffic assignment
considered as a continuous time optimal control problem. Oper. Res. 37(6), 893–
901 (1989)

8. Graf, L., Harks, T.: Dynamic flows with adaptive route choice. arXiv (2018),
https://arxiv.org/abs/1811.07381

9. Hamdouch, Y., Marcotte, P., Nguyen, S.: A strategic model for dynamic traffic
assignment. Networks Spat. Econ. 4(3), 291–315 (2004)

10. Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over
time. Theory Comput. Syst. 49(1), 71–97 (2011)

11. Marcotte, P., Nguyen, S., Schoeb, A.: A strategic flow model of traffic assignment
in static capacitated networks. Oper. Res. 52(2), 191–212 (2004)

12. Meunier, F., Wagner, N.: Equilibrium results for dynamic congestion games.
Transp. Sci. 44(4), 524–536 (2010). An updated version (2014) is available on
Arxiv

13. Peeta, S., Ziliaskopoulos, A.: Foundations of dynamic traffic assignment: the past,
the present and the future. Networks Spat. Econ. 1(3), 233–265 (2001)

14. Ran, B., Boyce, D.: Dynamic Urban Transportation Network Models: Theory and
Implications for Intelligent Vehicle-Highway Systems. Lecture Notes in Economics
and Mathematical Systems. Springer, Heidelberg (1996). https://doi.org/10.1007/
978-3-662-00773-0

15. Ran, B., Boyce, D.E., LeBlanc, L.J.: A new class of instantaneous dynamic user-
optimal traffic assignment models. Oper. Res. 41(1), 192–202 (1993)

16. Sering, L., Vargas-Koch, L.: Nash flows over time with spillback. In: Proceedings
of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM (to
appear, 2019)

17. Skutella, M.: An introduction to network flows over time. In: Research Trends
in Combinatorial Optimization, Bonn Workshop on Combinatorial Optimization,
Bonn, Germany, 3–7 November 2008, pp. 451–482 (2008)

18. Unnikrishnan, A., Waller, S.: User equilibrium with recourse. Networks Spat. Econ.
9(4), 575–593 (2009)

19. Vickrey, W.S.: Congestion theory and transport investment. Am. Econ. Rev. 59(2),
251–260 (1969)

20. Zhu, D., Marcotte, P.: On the existence of solutions to the dynamic user equilibrium
problem. Transp. Sci. 34(4), 402–414 (2000)

https://arxiv.org/abs/1811.07381
https://doi.org/10.1007/978-3-662-00773-0
https://doi.org/10.1007/978-3-662-00773-0

The Markovian Price of Information

Anupam Gupta1, Haotian Jiang2(B), Ziv Scully1, and Sahil Singla3

1 Carnegie Mellon University, Pittsburgh, PA 15213, USA
{anupamg,zscully}@cs.cmu.edu

2 University of Washington, Seattle, WA 98195, USA
jhtdavid@uw.edu

3 Princeton University, Princeton, NJ 08544, USA
singla@cs.princeton.edu

Abstract. Suppose there are n Markov chains and we need to pay a
per-step price to advance them. The “destination” states of the Markov
chains contain rewards; however, we can only get rewards for a subset of
them that satisfy a combinatorial constraint, e.g., at most k of them, or
they are acyclic in an underlying graph. What strategy should we choose
to advance the Markov chains if our goal is to maximize the total reward
minus the total price that we pay?

In this paper we introduce a Markovian price of information model
to capture settings such as the above, where the input parameters of
a combinatorial optimization problem are given via Markov chains. We
design optimal/approximation algorithms that jointly optimize the value
of the combinatorial problem and the total paid price. We also study
robustness of our algorithms to the distribution parameters and how to
handle the commitment constraint.

Our work brings together two classical lines of investigation: getting
optimal strategies for Markovian multi-armed bandits, and getting exact
and approximation algorithms for discrete optimization problems using
combinatorial as well as linear-programming relaxation ideas.

Keywords: Multi-armed bandits · Gittins index · Probing algorithms

1 Introduction

Suppose we are running an oil company and are deciding where to set up new
drilling operations. There are several candidate sites, but the value of drilling
each site is a random variable. We must therefore inspect sites before drilling.
Each inspection gives more information about a site’s value, but the inspection
process is costly. Based on laws, geography, or availability of equipment, there
are constraints on which sets of drilling sites are feasible. We ask:

What adaptive inspection strategy should we adopt to find a feasible set
of sites to drill which maximizes, in expectation, the value of the chosen
(drilled) sites minus the total inspection cost of all sites?

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 233–246, 2019.
https://doi.org/10.1007/978-3-030-17953-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_18

234 A. Gupta et al.

Let us consider the optimization challenges in this problem:

(i) Even if we could fully inspect each site for free, choosing the best feasible
set of sites is a combinatorial optimization problem.

(ii) Each site may have multiple stages of inspection. The costs and possible
outcomes of later stages may depend on the outcomes of earlier stages. We
use a Markov chain for each site to model how our knowledge about the
value of the site stochastically evolves with each inspection.

(iii) Since a site’s Markov chain model may not exactly match reality, we want
a robust strategy that performs well even under small changes in the model
parameters.

(iv) If there is competition among several companies, it may not be possible to
do a few stages of inspection at a given site, abandon that site’s inspection
to inspect other sites, and then later return to further inspect the first site.
In this case the problem has additional “take it or leave it” or commitment
constraints, which prevent interleaving inspection of multiple sites.

While each of the above aspects has been individually studied in the past,
no prior work addresses all of them. In particular, aspects (i) and (ii) have not
been simultaneously studied before. In this work we advance the state of the art
by solving the (i)-(ii)-(iii) and the (i)-(ii)-(iv) problems.

To study aspects (i) and (ii) together, in Sect. 2 we propose the Markovian
Price of Information (Markovian PoI) model. The Markovian PoI model
unifies prior models which address (i) or (ii) alone. These prior models include
those of Kleinberg et al. [17] and Singla [18], who study the combinatorial opti-
mization aspect (i) in the so-called price of information model, in which each
site has just a single stage of inspection; and those of Dimitriu et al. [8] and
Kleinberg et al. [17, Appendix G], who consider the multiple stage inspection
aspect (ii) for the problem of selecting just a single site.

Our main results1 show how to solve combinatorial optimization problems,
including both maximization and minimization problems, in the Markovian
PoI model. We give two methods of transforming classic algorithms, originally
designed for the Free-Info (inspection is free) setting, into adaptive algorithms
for the Markovian PoI setting. These adaptive algorithms respond dynami-
cally to the random outcomes of inspection.

– In Sect. 3.3 we transform “greedy” α-approximation algorithms in the Free-
Info setting into α-approximation adaptive algorithms in the Markovian
PoI setting (Theorem 1). For example, this yields optimal algorithms for
matroid optimization (Corollary 1).

– In Sect. 4 we show how to slightly modify our α-approximations for the
Markovian PoI setting in Theorem 1 to make them robust to small changes
in the model parameters (Theorem 2).

1 Due to space constraints, we omit full proofs in this extended abstract. The full
version is available at https://arxiv.org/abs/1902.07856.

https://arxiv.org/abs/1902.07856

The Markovian Price of Information 235

– In Sect. 5 we use online contention resolution schemes (OCRSs) [10] to trans-
form LP based Free-Info maximization algorithms into adaptive Marko-
vian PoI algorithms while respecting the commitment constraints. Specifi-
cally, a 1/α-selectable OCRS yields α-approximation with commitment (The-
orem 3).

The general idea behind our first result (Theorem 1) is the following. A
Frugal combinatorial algorithm (Definition 8) is, roughly speaking, “greedy”:
it repeatedly selects the feasible item of greatest marginal value. We show how
to adapt any Frugal algorithm to the Markovian PoI setting:

– Instead of using a fixed value for each item i, we use a time-varying “proxy”
value that depends on the state of i’s Markov chain.

– Instead of immediately selecting the item i of greatest marginal value, we
advance i’s Markov chain one step.

The main difficulty lies in choosing each item’s proxy value, for which simple
heuristics can be suboptimal. We use a quantity for each state of each item’s
Markov chain called its grade, and an item’s proxy value is its minimum grade so
far. A state’s grade is closely related to the Gittins index from the multi-armed
bandit literature, which we discuss along with other related work in Sect. 6.

2 The Markovian Price of Information Model

To capture the evolution of our knowledge about an item’s value, we use the
notion of a Markov system from [8] (who did not consider values at the destina-
tions).

Definition 1 (Markov System). A Markov system S = (V, P, s, T,π, r) for
an element consists of a discrete Markov chain with state space V, a transition
matrix P = {pu,v} indexed by V ×V (here pu,v is the probability of transitioning
from u to v), a starting state s, a set of absorbing destination states T ⊆ V ,
a non-negative probing price πu ∈ R≥0 for every state u ∈ V \ T , and a value
rt ∈ R for each destination state t ∈ T . We assume that every state u ∈ V
reaches some destination state.

We have a collection J of ground elements, each associated with its own
Markov system. An element is ready if its Markov system has reached one of its
absorbing destination states. For a ready element, if ω is the (random) trajectory
of its Markov chain then d(ω) denotes its associated destination state. We now
define the Markovian PoI game, which consists of an objective function on J .

Definition 2 (Markovian PoIGame). Given a set of ground elements J ,
constraints F ⊆ 2J , an objective function f : 2J × R

|J| → R, and a Markov
system Si = (Vi, Pi, si, Ti,πi, ri) for each element i ∈ J , the Markovian PoI
game is the following. At each time step, we either advance a Markov system Si

from its current state u ∈ Vi \ Ti by incurring price πu
i , or we end the game by

selecting a subset of ready elements I ⊆ J that are feasible—i.e., I ∈ F .

236 A. Gupta et al.

A common choice for f is the additive objective f(I,x) =
∑

i∈I
xi.

Let ω denote the trajectory profile for the Markovian PoI game: it consists
of the random trajectories ωi taken by all the Markov chains i at the end of the
game. To avoid confusion, we write the selected feasible solution I as I(ω). A
utility/disutility optimization problem is to give a strategy for a Markovian
PoI game while optimizing both the objective and the total price.

Utility Maximization (Util-Max): A Markovian PoI game where the con-
straints F are downward-closed (i.e., packing) and the values ri are non-negative
for every i ∈ J (i.e., ∀t ∈ Ti, rt

i ≥ 0, and can be understood as a reward obtained
for selecting i). The goal is to find a strategy ALG maximizing utility :

Umax(ALG) Δ= Eω

[
f

(
I(ω), {r

d(ωi)
i }i∈I(ω)

)

︸ ︷︷ ︸
value

−∑
i

∑
u∈ωi

πu
i

︸ ︷︷ ︸
total price

]
. (1)

Since the empty set is always feasible, the optimum utility is non-negative.

We also define a minimization variant of the problem that is useful to capture
covering combinatorial problems such as minimum spanning trees and set cover.

Disutility Minimization (Disutil-Min): A Markovian PoI game where
the constraints F are upward-closed (i.e., covering) and the values ri are non-
negative for every i ∈ J (i.e., ∀t ∈ Ti, rt

i ≥ 0, and can be understood as a cost
we pay for selecting i). The goal is to find a strategy ALG minimizing disutility :

Umin(ALG) Δ= Eω

[
f

(
I(ω), {r

d(ωi)
i }i∈I(ω)

)
+

∑
i

∑
u∈ωi

πu
i

]
.

We will assume that the function f is non-negative when all ri are non-negative.
Hence, the disutility of the optimal policy is non-negative.

In the special case where all the Markov chains for a Markovian PoI game
are formed by a directed acyclic graph (Dag), we call the corresponding opti-
mization problem Dag-Util-Max or Dag-Disutil-Min.

3 Adaptive Utility Maximization via Frugal Algorithms

Frugal algorithms, introduced in Singla [18], capture the intuitive notion of
“greedy” algorithms. There are many known Frugal algorithms, e.g., optimal
algorithms for matroids and O(1)-approx algorithms for matchings, vertex cover,
and facility location. These Frugal algorithms were designed in the traditional
free information (Free-Info) setting, where each ground element has a fixed
value. Can we use them in the Markovian PoI world?

Our main contribution is a technique that adapts any Frugal algorithm to
the Markovian PoI world, achieving the same approximation ratio as the orig-
inal algorithm. The result applies to semiadditive objective functions f , which
are those of the form f(I,x) =

∑
i∈I

xi + h(I) for some h : 2J → R.

The Markovian Price of Information 237

Theorem 1. For a semiadditive objective function val, if there exists an α-
approximation Frugal algorithm for a Util-Max problem over some packing
constraints F in the Free-Info world, then there exists an α-approximation
strategy for the corresponding Util-Max problem in the Markovian PoI
world.

We prove an analogous result for Disutil-Min in the full version. The fol-
lowing corollaries immediately follow from known Frugal algorithms [18].

Corollary 1. In the Markovian PoI world, we have:

– An optimal algorithm for both Util-Max and Disutil-Min for matroids.
– A 2-approx for Util-Max for matchings and a k-approx for a k-system.
– A min{θ, log n}-approx for Disutil-Min for set-cover, where θ is the maxi-

mum number of sets in which a ground element is present.
– A 1.861-approx for Disutil-Min for facility location.
– A 3-approx for Disutil-Min for prize-collecting Steiner tree.

Before proving Theorem 1, we define a grade for every state in a Markov
system in Sect. 3.1, much as in [8]. This grade is a variant of the popular Gittins
index. In Sect. 3.2, we use the grade to define a prevailing cost and an epoch
for a trajectory. In Sect. 3.3, we use these definitions to prove Theorem 1. We
consider Util-Max throughout, but analogous definitions and arguments hold
for Disutil-Min.

3.1 Grade of a State

To define the grade τv of a state v ∈ V in Markov system S = (V, P, s, T,π, r), we
consider the following Markov game called τ -penalized S, denoted S(τ). Roughly,
S(τ) is the same as S but with a termination penalty, which is a constant τ ∈ R.

Suppose v ∈ V denotes the current state of S in the game S(τ). In each
move, the player has two choices: (a) Halt that immediately ends the game, and
(b) Play that changes the state, price, and value as follows:

– If v ∈ V \T , the player pays price πv, the current state of S changes according
to the transition matrix P , and the game continues.

– If v ∈ T , then the player receives penalized value rv − τ , where τ is the
aforementioned termination penalty, and the game ends.

The player wishes to maximize his utility, which is the expected value he
obtains minus the expected price he pays. We write Uv(τ) for the utility attained
by optimal play starting from state v ∈ V .

The utility Uv(τ) is clearly non-increasing in the penalty τ , and one can also
show that it is continuous [8, Section 4]. In the case of large penalty τ → +∞,
it is optimal to halt immediately, achieving Uv(τ) = 0. In the opposite extreme
τ → −∞, it is optimal to play until completion, achieving Uv(τ) → +∞. Thus,
as we increase τ from −∞ to +∞, the utility Uv(τ) becomes 0 at some critical
value τ = τv. This critical value τv that depends on state v is the grade.

238 A. Gupta et al.

Definition 3 (Grade). The grade of a state v in Markov system S is τv Δ=
sup{τ ∈ R | Uv(τ) > 0}. For a Util-Max problem, we write the grade of a
state v in Markov system Si corresponding to element i as τv

i .

The quantity grade of a state is well-defined from the above discussion. We
emphasize that it is independent of all other Markov systems. Put another way,
the grade of a state is the penalty τ that makes the player indifferent between
halting and playing. It is known how to compute grade efficiently [8, Section 7].

3.2 Prevailing Cost and Epoch

We now define a prevailing cost [8] and an epoch. The prevailing cost of Markov
system S is its minimum grade at any point in time.

Definition 4 (Prevailing Cost). The prevailing cost of Markov system Si

in a trajectory ωi is Y max(ωi) = minv∈ωi
{τv

i }. For trajectory profile ω, denote
Y max(ω) the list of prevailing costs for each Markov system.

Put another way, the prevailing cost is the maximum termination penalty
for the game S(τ) such that for every state along ω the player does not want to
halt.

Observe that the prevailing cost of a trajectory can only decrease as it extends
further. In particular, it decreases whenever the Markov system reaches a state
with grade smaller than each of the previously visited states. We can therefore
view the prevailing cost as a non-increasing piecewise constant function of time.
This motivates us to define an epoch.

Definition 5 (Epoch). An epoch for a trajectory ω is any maximal continuous
segment of ω where the prevailing cost does not change.

Since the grade can be computed efficiently, we can also compute the prevailing
cost and epochs of a trajectory efficiently.

3.3 Adaptive Algorithms for Utility Maximization

In this section, we prove Theorem 1 that adapts a Frugal algorithm in Free-
Info world to a probing strategy in the Markovian PoI world. This theorem
concerns semiadditive functions, which are useful to capture non-additive objec-
tives of problems like facility location and prize-collecting Steiner tree.

Definition 6 (Semiadditive Function [18]). A function f(I,X) : 2J ×R
|J| →

R is semiadditive if there exists a function h : 2J → R s.t. f(I,x) =
∑

i∈I
xi +

h(I).

All additive functions are semiadditive with h(I) = 0 for all I. To capture the
facility location problem on a graph G = (J,E) with metric (J, d), clients C ⊆ J ,
and facility opening costs x : J → R≥0, we can define h(I) =

∑
j∈C mini∈I d(j, i).

Notice h only depends on the identity of facilities I and not their opening costs.

The Markovian Price of Information 239

The proof of Theorem 1 takes two steps. We first give a randomized reduction
to upper bound the utility of the optimal strategy in the Markovian PoI world
with the optimum of a surrogate problem in the Free-Info world. Then, we
transform a Frugal algorithm into a strategy with utility close to this bound.

Upper Bounding the Optimal Strategy Using a Surrogate. The main
idea in this section is to show that for Util-Max, no strategy (in particular,
optimal) can derive more utility from an element i ∈ J than its prevailing cost.
Here, the prevailing cost of i is for a random trajectory to a destination state
in Markov system Si. Since the optimal strategy can only select a feasible set
in F , this idea naturally leads to the following Free-Info surrogate problem:
imagine each element’s value is exactly its (random) prevailing cost, the goal is
to select a set feasible in F to maximize the total value. In Lemma 1, we show
that the expected optimum value of this surrogate problem is an upper bound
on the optimum utility for Util-Max. First, we formally define the surrogate
problem.

Definition 7 (Surrogate Problem). Given a Util-Max problem with semi-
additive objective val and packing constraints F over universe J , the correspond-
ing surrogate problem over J is the following. It consists of constraints F and
(random) objective function f̃ : 2J → R given by f̃(I) = val(I,Ymax(ω)), where
Ymax(ω) denotes the prevailing costs over a random trajectory profile ω consist-
ing of independent random trajectories for each element i ∈ J to a destination
state. The goal is to select I ∈ F to maximize f̃(I).

Let SUR(ω) Δ= maxI∈F{val(I,Ymax(ω))} denote the optimum value of the
surrogate problem for trajectory profile ω. We now upper bound the optimum
utility in the Markovian PoI world (proved in full version). Our proof borrows
ideas from the “prevailing reward argument” in [8].

Lemma 1. For a Util-Max problem with objective val and packing constraints
F , let OPT denote the utility of the optimal strategy. Then,

OPT ≤ Eω [SUR(ω)] = Eω

[
maxI∈F{val(I,Ymax(ω))}],

where the expectation is over a random trajectory profile ω that has every Markov
system reaching a destination state.

Designing an Adaptive Strategy Using a Frugal Algorithm. A Frugal
algorithm selects elements one-by-one and irrevocably. Besides greedy algo-
rithms, its definition also captures “non-greedy” algorithms such as primal-dual
algorithms that do not have the reverse-deletion step [18].

Definition 8 (FrugalPacking Algorithm). For a combinatorial optimiza-
tion problem on universe J in the Free-Info world with packing constraints
F ⊆ 2J and objective f : 2J → R, we say Algorithm A is Frugal if there exists

240 A. Gupta et al.

a marginal-value function g(Y, i, y) : R
J × J × R → R that is increasing in y,

and for which the pseudocode is given by Algorithm 1. Note that this algorithm
always returns a feasible solution if ∅ ∈ F .

Algorithm 1. Frugal Packing Algorithm A
1: Start with M = ∅ and vi = 0 for each element i ∈ J .
2: For each element i �∈ M , compute vi = g(YM , i, Yi). Let j =

arg maxi�∈M & M∪i∈F{vi}.
3: If vj > 0 then add j into M and go to Step 2. Otherwise, return M .

The following lemma shows that a Frugal algorithm can be converted to a
strategy with the same utility in the Markovian PoI world.

Lemma 2. Given a Frugal packing Algorithm A, there exists an adaptive
strategy ALGA for the corresponding Util-Max problem in Markovian PoI
world with utility at least Eω [val(A(Ymax(ω)),Ymax(ω))], where A(Ymax(ω) is
the solution returned by A for objective f(I) = val(Ymax(ω), I).

The strategy for Lemma 2 is in Algorithm 2 but the full proof is deferred.

Algorithm 2. ALGA for Util-Max in Markovian PoI

1: Start with M = ∅ and vi = 0 for all elements i.
2: For each element i �∈ M , set g(Ymax

M , i, τui
i) where ui is the current state of i.

3: Consider the element j = arg maxi�∈M & M∪i∈F{vi}.
4: If vj > 0, then if Sj is not in a destination state then proceed Sj by one step and

go to Step 2. Else, when vj > 0 but Sj is in a destination state tj , select j into M
and go to Step 2.

5: Else, if every element i �∈ M has vi ≤ 0 then return set M .

Proof (Proof of Theorem 1). From Lemma 2, the utility of ALGA is at least
Eω [val(A(Ymax(ω)),Ymax(ω))]. Since Algorithm A is an α-approx algorithm in
the Free-Info world, it follows

Eω [val(A(Ymax(ω)),Ymax(ω))] ≥ 1
α

· Eω

[
max
I∈F

{val(I,Ymax(ω))}].

Using the upper bound on optimal utility OPT ≤ Eω

[
maxI∈F{val(I,

Ymax(ω))}] from Lemma 1, we have utility of ALGA is at least 1
α · OPT.

In the full version, a similar approach is used for the Disutil-Min prob-
lem with semi-additive function. This shows that for both Util-Max or
Disutil-Min problem with semi-additive function, a Frugal algorithm can
be transformed from Free-Info to Markovian PoI world while retaining its
performance.

4 Robustness in Model Parameters

In practical applications, the parameters of Markov systems (i.e., transition
probabilities, values, and prices) are not known exactly but are estimated by

The Markovian Price of Information 241

statistical sampling. In this setting, the true parameters, which govern how each
Markov system evolves, differ from the estimated parameters that the algorithm
uses to make decisions. This raises a natural question: how well does an adapted
Frugal algorithm do when the true and the estimated parameters differ? We
would hope to design a robust algorithm, meaning small estimation errors cause
only small error in the utility objective.

In the important special case where the Markov chain corresponding to each
element is formed by a directed acyclic graph (Dag), an adaptation of our strat-
egy in Theorem 1 is robust. This Dag assumption turns out to be necessary as
similar results do not hold for general Markov chains. In particular, we prove
the following generalization of Theorem 1 under the Dag assumption.

Theorem 2 (Informal statement). If there exists an α-approximation Frugal
algorithm A (α ≥ 1) for a packing problem with a semiadditive objective function,
then it suffices to estimate the true model parameters of a Dag-Markovian PoI
game within an additive error of ε/poly, where poly is some polynomial in the
size of the input, to design a strategy with utility at least 1

α ·OPT−ε, where OPT
is the utility of the optimal policy that knows all the true model parameters.

Specifically, our strategy ÂLGA for Theorem 2 is obtained from the strategy
in Theorem 1 by making use of the following idea: each time we advance an
element’s Markov system, we slightly increase the estimated grade of every state
in that Markov system. This ensures that whenever we advance a Markov system,
we advance through an entire epoch and remain optimal in the “teasing game”.

Our analysis of ÂLGA works roughly as follows. We first show that under the
Dag assumption, close estimates of the model parameters of a Markov system
can be used to closely estimate the grade of each state. We can therefore assume
that close estimates of all grades are given as input. Next we define the “shifted”
prevailing cost corresponding to the “shifted” grades. This allows us to equate
the utility of ÂLGA by the utility of running A in the “modified” surrogate
problem where the input to A is the “shifted” prevailing costs instead of the
true prevailing costs. Finally, we prove that the “shifted” prevailing costs are
close to the real prevailing costs and thus the “modified” surrogate problem is
close to the surrogate problem. This allows us to bound the utility of running
A in the “modified” surrogate problem by the optimal strategy to the surrogate
problem. Combining with Lemma 1 finishes the proof of Theorem 2.

An analogous result for Disutil-Min also holds.

5 Handling Commitment Constraints

Consider the Markovian PoI model defined in Sect. 2 with an additional
restriction that whenever we abandon advancing a Markov system, we need to
immediately and irrevocably decide if we are selecting this element into the final
solution I. Since we only select ready elements, any element that is not ready
when we abandon its Markov system is automatically discarded. We call this

242 A. Gupta et al.

constraint commitment. The benchmark for our algorithm is the optimal pol-
icy without the commitment constraint. For single-stage probing, such commit-
ment constraints have been well studied, especially in the context of stochastic
matchings [2,4].

We study Util-Max in the Dag model with the commitment constraint. Our
algorithms make use of the online contention resolution schemes (OCRSs) pro-
posed in [10]. OCRSs address our problem in the Free-Info world2 (i.e., we can
see the realization of the r.v.s for free, but there is the commitment constraint).
Constant factor “selectable” OCRSs are known for several constraint families:
1
4 for matroids, 1

2e for matchings, and Ω(1
k) for intersection of k matroids [10].

We show how to adapt them to Markovian PoI with commitment.

Theorem 3. For an additive objective, if there exists a 1/α-selectable OCRS
(α ≥ 1) for a packing constraint F , then there exists an α-approximation algo-
rithm for the corresponding Dag-Util-Max problem with commitment.

The proof of this result uses a new LP relaxation (inspired from [13]) to
bound the optimum utility of a Markovian PoI game without commitment
(see Sect. A.1). Although this relaxation is not exact even for Pandora’s box
(and cannot be used to design optimal strategies in Corollary 1), it turns out to
suffice for our approximation guarantees. In Sect.A.2, we use an OCRS to round
this LP with only a small loss in the utility, while respecting the commitment
constraint.

Remark 1. We do not consider Disutil-Min problem under commitment
because it captures prophet inequalities in a minimization setting where no poly-
nomial approximation is possible even for i.i.d. r.v.s [9, Theorem 4].

6 Related Work

Our work is related to work on multi-armed bandits in the scheduling literature.
The Gittins index theorem [12] provides a simple optimal strategy for several
scheduling problems where the objective is to maximize the long-term expo-
nentially discounted reward. This theorem turned out to be fundamental and
[19–21] gave alternate proofs. It can be also used to solve Weitzman’s Pandora’s
box. The reader is referred to the book [11] for further discussions on this topic.
Influenced by this literature, [8] studied scheduling of Markovian jobs, which is
a minimization variant of the Gittins index theorem without any discounting.
Their paper is part of the inspiration for our Markovian PoI model.

The Lagrangian variant of stochastic probing considered in [13] is similar to
our Markovian PoI model. However, their approach using an LP relaxation
to design a probing strategy is fundamentally different from our approach using

2 In fact, OCRSs consider a variant where the adversary chooses the order in which
the elements are tried. This handles the present problem where we may choose the
order.

The Markovian Price of Information 243

a Frugal algorithm. E.g., unlike Corollary 1, their approach cannot give opti-
mal probing strategies for matroid constraints due to an integrality gap. Also,
their approach does not work for Disutil-Min. In Appendix A, we extend their
techniques using OCRSs to handle the commitment constraint for Util-Max.

There is also a large body of work in related models where information has a
price [1,3,5–7,14–16]. Finally, as discussed in the introduction, the works in [17]
and [18] are directly relevant to this paper. The former’s primary focus is on
single item settings and its applications to auction design, and the latter studies
price of information in a single-stage probing model. Our contributions concern
selecting multiple items in multi-stage probing model, in some sense unifying
these two lines of work.

Acknowledgements. A. Gupta and S. Singla were supported in part by NSF awards
CCF1536002, CCF-1540541, and CCF-1617790, and the Indo-US Joint Center for Algo-
rithms Under Uncertainty. H. Jiang was supported in part by CCF-1740551, CCF-
1749609, and DMS-1839116. Z. Scully was supported by an ARCS Foundation schol-
arship and the NSF GRFP under Grant Nos. DGE-1745016 and DGE-125222.

A Details for Handling Commitment Constraints

In this section we handle commitment constraints from Sect. 5 to prove Theo-
rem 3. In Sect. A.1, we give an LP relaxation to upper bound the optimum utility
without the commitment constraint. In Sect. A.2, we apply an OCRS to round
the LP solution to obtain an adaptive policy, while satisfying the commitment
constraint.

A.1 Upper Bounding the Optimum Utility

Define the following variables, where i is an index for the Markov systems.

– yu
i : probability we reach state u in Markov system Si for u ∈ Vi \ Ti.

– zu
i : probability we play Si when it is in state u for u ∈ Vi \ Ti.

– xi =
∑

u∈Ti
zu
i : probability Si is selected into the final solution when in a

destination state.
– PF is a convex relaxation containing all feasible solutions for packing F .

We can now formulate the following LP, which is inspired from [13].

max
z

∑

i

(∑

u∈Ti

ru
i zu

i −
∑

u∈Vi\Ti

πu
i zu

i

)

subject to ysi
i = 1 ∀i ∈ J

yu
i =

∑
v∈Vi

(Pi)uvzv
i ∀i ∈ J,∀u ∈ Vi \ si

xi =
∑

u∈Ti
zu
i ∀i ∈ J

zu
i ≤ yu

i ∀i ∈ J,∀u ∈ Vi

x ∈ PF
xi, y

u
i , zu

i ≥ 0 ∀i ∈ J,∀u ∈ Vi

244 A. Gupta et al.

The first four constraints characterize the dynamics in advancing the Markov
systems. The fifth constraint encodes the packing constraint F . We denote the
optimal solution of this LP as (x,y, z). We can efficiently solve the above LP for
packing constraints such as matroids, matchings, and intersection of k matroids.

If we interpret the variables yu
i , xi, and zu

i as the probabilities corresponding
to the optimal strategy without commitment, it forms a feasible solution to the
LP. This implies the following claim.

Lemma 3. The optimum utility without commitment is at most the LP value.

A.2 Rounding the LP Using an OCRS

Before describing our rounding algorithm, we define an OCRS. Intuitively, it is
an online algorithm that given a random set ground elements, selects a feasible
subset of them. Moreover, if it can guarantee that every i is selected w.p. at least
1
α · xi, it is called 1

α -selectable.

Definition 9 (OCRS [10]). Given a point x ∈ PF , let R(x) denote a random
set containing each i independently w.p. xi. The elements i reveal one-by-one
whether i ∈ R(x) and we need to decide irrevocably whether to select an i ∈ R(x)
into the final solution before the next element is revealed. An OCRS is an online
algorithm that selects a subset I ⊆ R(x) such that I ∈ F .

Definition 10 (1
α -Selectability [10]). Let α ≥ 1. An OCRS for F is 1

α -
selectable if for any x ∈ PF and all i, we have Pr[i ∈ I | i ∈ R(x)] ≥ 1

α .

Our algorithm ALG uses OCRS as an oracle. It starts by fixing an arbitrary
order π of the Markov systems. (Our algorithm works even when an adversary
decides the order of the Markov systems.) Then at each step, the algorithm
considers the next element i in π and queries the OCRS whether to select element
i if it is ready. If OCRS decides to select i, then ALG advances the Markov
system such that it plays from each state u with independent probability zu

i /yu
i .

This guarantees that the destination state is reached with probability xi. If
OCRS is not going to select i, then ALG moves on to the next element in π. A
formal description of the algorithm can be found in Algorithm 3.

Algorithm 3. Algorithm ALG for Handling the Commitment Constraint
1: Fix an arbitrary order π of the items. Set M = ∅ and pass x to OCRS.
2: Consider the next element i in the order of π. Query OCRS whether to add i to

M if i is ready.
(a) If OCRS would add i to M , then keep advancing the Markov system: play from
each current state u ∈ Vi\Ti independently w.p. zu

i /yu
i , and otherwise go to Step 2.

If a destination state t is reached then add i to M w.p. zt
i/yt

i .
(b) Go to Step 2.

The Markovian Price of Information 245

We show below that ALG has a utility of at least 1/α times the LP value.

Lemma 4. The utility of ALG is at least 1/α times the LP optimum.

Since by Lemma 3 the LP optimum is an upper bound on the utility of any
policy without commitment, this proves Theorem 3. We now prove Lemma 4.

Proof (Proof of Lemma 4). Recollect that we call a Markov system ready if it
reaches an absorbing destination state. We first notice that once ALG starts
to advance a Markov system i, then by Step 2 of Algorithm 3, element i is
ready with probability exactly xi. This agrees with what ALG tells the OCRS.
Since the OCRS is 1/α-selectable, the probability that any Markov system Si

begins advancing is 1/α. Here the probability is both over the random choice
of the OCRS and the randomness due to the Markov systems. Conditioning on
the event that Si begins advancing, the probability that it is selected into the
final solution on reaching a destination state t ∈ Ti is exactly zt

i . Hence, the
conditioned utility from Markov system Si is exactly

∑
u∈Ti

ru
i zu

i − ∑
u∈Vi\Ti

πu
i zu

i . (2)

By removing the conditioning and by linearity of expectation, the utility of ALG

is at least 1
α · ∑

i

(∑
u∈Ti

ru
i zu

i − ∑
u�∈Ti

πu
i zu

i

)
, which proves this lemma.

References

1. Abbas, A.E., Howard, R.A.: Foundations of Decision Analysis. Pearson Higher Ed.
London (2015)

2. Bansal, N., Gupta, A., Li, J., Mestre, J., Nagarajan, V., Rudra, A.: When LP
is the cure for your matching woes: improved bounds for stochastic matchings.
Algorithmica 63(4), 733–762 (2012)

3. Charikar, M., Fagin, R., Guruswami, V., Kleinberg, J.M., Raghavan, P., Sahai,
A.: Query strategies for priced information. J. Comput. Syst. Sci. 64(4), 785–819
(2002). https://doi.org/10.1006/jcss.2002.1828

4. Chen, N., Immorlica, N., Karlin, A.R., Mahdian, M., Rudra, A.: Approximating
matches made in heaven. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 266–278.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02927-1 23

5. Chen, Y., Immorlica, N., Lucier, B., Syrgkanis, V., Ziani, J.: Optimal data acqui-
sition for statistical estimation. arXiv preprint arXiv:1711.01295 (2017)

6. Chen, Y., Hassani, S.H., Karbasi, A., Krause, A.: Sequential information maxi-
mization: When is greedy near-optimal? In: Conference on Learning Theory, pp.
338–363 (2015)

7. Chen, Y., Javdani, S., Karbasi, A., Bagnell, J.A., Srinivasa, S.S., Krause, A.: Sub-
modular surrogates for value of information. In: AAAI, pp. 3511–3518 (2015)

8. Dumitriu, I., Tetali, P., Winkler, P.: On playing golf with two balls. SIAM J.
Discrete Math. 16(4), 604–615 (2003)

9. Esfandiari, H., Hajiaghayi, M., Liaghat, V., Monemizadeh, M.: Prophet secretary.
SIAM J. Discrete Math. 31(3), 1685–1701 (2017)

https://doi.org/10.1006/jcss.2002.1828
https://doi.org/10.1007/978-3-642-02927-1_23
http://arxiv.org/abs/1711.01295

246 A. Gupta et al.

10. Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes.
In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 1014–1033. Society for Industrial and Applied Mathematics
(2016)

11. Gittins, J., Glazebrook, K., Weber, R.: Multi-Armed Bandit Allocation Indices.
Wiley, Chichester (2011)

12. Gittins, J., Jones, D.: A dynamic allocation index for the sequential design of
experiments. In: Gani, J. (ed.) Progress in Statistics, pp. 241–266. North-Holland,
Amsterdam (1974)

13. Guha, S., Munagala, K.: Approximation algorithms for budgeted learning prob-
lems. In: STOC, pp. 104–113 (2007), full version as: Approximation Algorithms
for Bayesian Multi-Armed Bandit Problems. http://arxiv.org/abs/1306.3525

14. Guha, S., Munagala, K., Sarkar, S.: Information acquisition and exploitation in
multichannel wireless systems. In: IEEE Transactions on Information Theory. Cite-
seer (2007)

15. Gupta, A., Kumar, A.: Sorting and selection with structured costs. In: Proceedings
of the 42nd IEEE Symposium on Foundations of Computer Science, 2001, pp. 416–
425. IEEE (2001)

16. Kannan, S., Khanna, S.: Selection with monotone comparison costs. In: Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium on Discrete algorithms, pp.
10–17. Society for Industrial and Applied Mathematics (2003)

17. Kleinberg, R., Waggoner, B., Weyl, G.: Descending Price Optimally Coordinates
Search. arXiv preprint arXiv:1603.07682 (2016)

18. Singla, S.: The price of information in combinatorial optimization. In: Proceed-
ings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM (2018)

19. Tsitsiklis, J.N.: A short proof of the Gittins index theorem. The Annals of Applied
Probability, pp. 194–199 (1994)

20. Weber, R.: On the Gittins index for multiarmed bandits. Ann. Appl. Probab. 2(4),
1024–1033 (1992)

21. Whittle, P.: Multi-armed bandits and the Gittins index. J. Roy. Stat. Soc. Ser. B
(Methodol.), 143–149 (1980)

http://arxiv.org/abs/1306.3525
http://arxiv.org/abs/1603.07682

On Perturbation Spaces of Minimal Valid
Functions: Inverse Semigroup Theory and

Equivariant Decomposition Theorem

Robert Hildebrand1 , Matthias Köppe2(B) , and Yuan Zhou3

1 Grado Department of Industrial and Systems Engineering,
Virginia Tech, Blacksburg, USA

rhil@vt.edu
2 Department of Mathematics, University of California, Davis, USA

mkoeppe@math.ucdavis.edu
3 Department of Mathematics, University of Kentucky, Lexington, USA

yuan.zhou@uky.edu

Abstract. The non-extreme minimal valid functions for the Gomory–
Johnson infinite group problem are those that admit effective perturba-
tions. For a class of piecewise linear functions for the 1-row problem we
give a precise description of the space of these perturbations as a direct
sum of certain finite- and infinite-dimensional subspaces. The infinite-
dimensional subspaces have partial symmetries; to describe them, we
develop a theory of inverse semigroups of partial bijections, interacting
with the functional equations satisfied by the perturbations. Our paper
provides the foundation for grid-free algorithms for testing extremality
and for computing liftings of non-extreme functions. The grid-freeness
makes the algorithms suitable for piecewise linear functions whose break-
points are rational numbers with huge denominators.

Keywords: Integer programs · Cutting planes · Group relaxations

1 Introduction

A powerful method to derive cutting planes for unstructured integer linear opti-
mization problems is to study relaxations with more structure and convenient

The authors wish to thank C.Y. Hong, who worked on a first grid-free implementation
in 2013, and Q. Louveaux and R. La Haye for valuable discussions during 2013/14. A
preliminary version of the development in this paper appeared in Y.Z.’s 2017 Ph.D. the-
sis [14]. The authors gratefully acknowledge partial support from the National Science
Foundation through grants DMS-0914873 (R.H., M.K.) and DMS-1320051 (M.K., Y.Z.)
Part of this work was done while R.H. and M.K. were visiting the Simons Institute for
the Theory of Computing in Fall 2017. It was partially supported by the DIMACS/Si-
mons Collaboration on Bridging Continuous and Discrete Optimization through NSF
grant CCF-1740425.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 247–260, 2019.
https://doi.org/10.1007/978-3-030-17953-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_19&domain=pdf
http://orcid.org/0000-0002-2730-0084
http://orcid.org/0000-0003-2492-4139
http://orcid.org/0000-0003-2426-1371
https://doi.org/10.1007/978-3-030-17953-3_19

248 R. Hildebrand et al.

properties. The pioneering relaxation in this line of research on general-purpose
cutting planes is Gomory’s finite group relaxation. The valid inequalities for this
model arise from cut-generating functions, the valid functions of the Gomory–
Johnson infinite group problem [6,7]. A notion of domination gives rise to the
family of minimal (valid) functions; they have the following characterization,
which for the purposes of this paper we will take as a definition. Let G = R

k and
fix a parameter f ∈ G\Zk; then a minimal valid function π for the infinite group
problem Rf (G,Zk) is a function π : G → R+ such that π(0) = 0, π(f) = 1, and

π(x + z) = π(x) for x ∈ G, z ∈ Z
k (periodicity) (1a)

Δπ(x, y) ≥ 0 for x, y ∈ G (subadditivity), (1b)
Δπ(x, f − x) = 0 for x ∈ G (symmetry condition), (1c)

where Δπ(x, y) = π(x) + π(y) − π(x + y) is the subadditivity slack. Among
the minimal functions, the so-called extreme functions stand out; they are an
infinite-dimensional analog of facets. Following [9, sect. 6], we define the space

Π̃π =
{

π̃ : Rk → R | ∃ ε > 0 s.t. π± = π ± επ̃ are minimal valid
}

(2)

of effective perturbation functions for the minimal valid function π. This is a
vector space, a subspace of the space of bounded functions. (In this extended
abstract, we restrict ourselves to the case of continuous piecewise linear func-
tions π; then Π̃π consists of bounded continuous functions.) The function π is
said to be extreme if the space Π̃π is trivial.

Our paper considers the single-row case (k = 1). For this case, Basu et al.
[2] gave the first algorithm to decide extremality of a piecewise linear function
with rational breakpoints in some “grid” (group) G = 1

qZ. To obtain this result,
Basu et al. [2] use two closely linked techniques: (a) Group actions describe the
required symmetries (equivariance) of perturbations. (b) Polyhedral complexes
model the structure of the subadditivity slack function Δπ : R2 → R.

For a set B of breakpoints, assumed to be Z-periodic, define ΔPB as the
Z
2-periodic polyhedral complex resulting by partitioning the plane R

2 by the
arrangement of lines x ∈ B, y ∈ B and x + y ∈ B. This complex defines convex
polygons on which Δπ is affine [2,9]. When B = 1

qZ, then p1 : (x, y) �→ x,
p2 : (x, y) �→ y, and p3 : (x, y) �→ x + y project all vertices of ΔPB back to the
set B; we have stabilization of breakpoints due to unimodularity. Going to higher
dimension, piecewise linear functions defined on a standard triangulation of R2

studied in the IPCO 2013 paper [1] and [3,5] also stabilize. However, the non-
existence of triangulations with stabilization for R

k, k ≥ 3 [8] has blocked the
path for further generalizations of the approach of [2].

In the present paper, we develop a foundational theory for grid-free algo-
rithms for k = 1, paving a new way for generalizations. Under the assumption
of a finitely presented moves closure (Assumption 4.2), we are able to provide
in Theorem 4.9 a “dynamic” stabilization result. It depends on more detailed
data of the function than the group G generated by B. In fact, we replace the
use of group actions in [2] with a new approach using inverse semigroup actions,

On Perturbation Spaces of Minimal Valid Functions 249

which are a better model for the partial symmetries that perturbation functions
satisfy. We develop a rich theory of these inverse semigroups in Sect. 3. Already
for k = 1, the grid-free approach of the present paper extends the practical
reach of algorithms, enabling computations that are less sensitive to the size of
denominators in the input, as well as computations with irrational input.

Moreover, while the earlier result by Basu et al. [2] only guarantees to con-
struct a piecewise linear effective perturbation (when the space is nontrivial),
we provide a precise description of the space as a direct sum of certain finite-
and infinite-dimensional subspaces (Theorems 4.15 and 4.16). Each of the lat-
ter is isomorphic to the space of Lipschitz functions supported on a compact
interval that vanish on the boundary, extended equivariantly according to the
action of the inverse semigroup. (This also improves upon a coarser decomposi-
tion result limited to the grid case [4, Theorem 3.14].) The precise description of
the perturbation space of a non-extreme minimal function π enables new lifting
algorithms for cutting planes. Given a minimal valid function, we can strengthen
it by following improving effective perturbations. By our theorem, the problem
of finding such a direction decomposes into subproblems; one finite-dimensional,
the others independent variational problems over Lipschitz functions.

2 Functional Equations, Move Ensembles, Equivariance

We begin with the following standard observation.

Lemma 2.1. Let π be a minimal valid function. If additivity (Δπ(x, y) = 0)
holds for some (x, y), then the subadditivity (1b) of minimal valid functions
implies that also Δπ̃(x, y) = 0 holds for every effective perturbation π̃ ∈ Π̃π.

Because π is assumed to be piecewise linear, the set of additivities E(π) =
{ (x, y) | Δπ(x, y) = 0 } can be structured (“combinatorialized”) using the poly-
hedral complex ΔPB introduced in Sect. 1; see also [2,9]. Setting aside the 0-
dimensional additivities (vertices of ΔPB , which come back into play in Sect. 4),
we represent the remaining additivities by one-parameter families of two types.
In the first type, we have

Δπ̃(x, t) = 0 ⇔ π̃(x) = π̃(x + t) − π̃(t), for x ∈ D, (3)

where D is an open interval and t ∈ R is a point. When π̃(t) = 0 we say that
π̃ is invariant under the action of the restricted translation move τt|D : D →
D + t, x �→ x + t. A second type of one-parameter families of additivities is

Δπ̃(x, r − x) = 0 ⇔ π̃(x) = −π̃(r − x) + π̃(r), for x ∈ D. (4)

Here a negative sign enters in the relation of values at x and r−x. We define the
restricted reflection move ρr|D : D → r−D, x �→ r−x. By assigning a character
χ(τt) = +1 and χ(ρr) = −1 to the translations and reflections, we can unify
these equations as

π̃(x) = χ(γ) π̃(γ(x)) + cπ̃
γ|D for x ∈ D, (5)

250 R. Hildebrand et al.

where γ is either a translation or a reflection and cπ̃
γ|D is some constant. We then

say that π̃ is equivariant under the action of γ|D when cπ̃
γ|D = 0. Otherwise, we

say that π̃ is affinely equivariant under the action of γ|D.

Definition 2.2 (Initial move ensemble). We collect all moves τt|D and ρr|D
that arise in this way from Lemma 2.1 in a set Ω0, which we call the initial move
ensemble. (For convenience, we also add the inverses of these moves, as well as
the empty moves (translations and reflections with domain ∅) to Ω0.)

Definition 2.3. Whenever we use the notation γ|D in our paper, γ will be
a translation or reflection, and the domain D ⊆ R will be an open inter-
val (or ∅). These restricted moves form an inverse semigroup [13], which we
denote by Γ⊆(R), with respect to the operations composition ◦ and inverse
γ|D−1 = γ−1|γ(D). Subsets of Γ⊆(R) are called (move) ensembles.

Note that the inverse of a move is not an inverse in a group-theoretic sense:
The compositions γ|D ◦ (γ|D)−1 = τ0|γ(D) and (γ|D)−1 ◦ γ|D = τ0|D are only
partial identities (restrictions of the identity τ0 to intervals) and therefore not
neutral elements but merely idempotents. This illustrates that inverse semigroup
actions, and the symmetries they describe, are more general than group actions.

Definition 2.4. Let Ω be a move ensemble and let π̃ : R → R be a function.
We say that π̃ is affinely Ω-equivariant (in short, π̃ respects Ω) provided

that for every γ|D ∈ Ω there exists a constant cπ̃
γ|D such that (5) holds.

3 Inverse Semigroup Actions and Closures

Our strategy for computing the space of effective perturbations is to consider
the properties of the following ensemble containing Ω0, for π̃ ∈ Π̃π.

Definition 3.1. For a function π̃ : R → R, we denote the ensemble of moves
under whose action π̃ is affinely equivariant as

Γ resp(π̃) =
{

γ|D ∈ Γ⊆(R)
∣
∣ ∃cπ̃

γ|D ∈ R s.t. (5) holds
}
.

The ensemble Γ resp(π̃) satisfies various closure properties. We can enlarge
the known initial moves ensemble Ω0 by forming its closure under the same
properties. Below we discuss these properties, starting with the algebraic and
order-theoretic axioms. That Γ resp(π̃) satisfies them follows directly from (5).

Definition 3.2. A move ensemble Γ is a move semigroup (i.e., an inverse sub-
semigroup of Γ⊆(R)) if it satisfies the following axioms (closure properties):

γ′|D′ ◦ γ|D ∈ Γ for all γ|D, γ′|D′ ∈ Γ, (composition)

(γ|D)−1 ∈ Γ for all γ|D ∈ Γ. (inv)

For a move ensemble Ω, the move semigroup isemi(Ω) generated by Ω is the
smallest move semigroup containing Ω.

On Perturbation Spaces of Minimal Valid Functions 251

Definition 3.3. The joined ensemble join(Ω) of an ensemble Ω is the smallest
set Ω∨ ⊇ Ω that is join-closed, i.e., satisfies

γ|D ∈ Ω∨ if ∃{γ|Di}i∈I ⊆ Ω∨ such that D ⊆
⋃

i∈I Di. (join)

In particular, join-closed ensembles Ω∨ are closed under restrictions: For γ|D ∈
Ω∨ and an open interval (or empty set) D′ ⊆ D, we have γ|D′ ∈ Ω∨. The same
is true for the corestrictions I′

∣
∣(γ|D) = γ|D∩γ−1(I′) to intervals I ′. A join-closed

ensemble Ω∨ has a set Max(Ω∨) of maximal elements (in the restriction partial
order), such that every element is a restriction of a maximal element. The initial
ensemble Ω0 of π already satisfies (join) and (inv), but it is not a semigroup.
Next we introduce a topological version of axiom (join); it is satisfied by Ω0 and
Γ resp(π̃) because π and π̃ ∈ Π̃π are continuous functions.
Definition 3.4. The extended move ensemble extend(Ω) of a move ensemble Ω
is the smallest set Ω∨ ⊇ Ω that is extension-closed, i.e., satisfies the following:

γ|D ∈ Ω∨ if ∃{γ|Di}i∈I ⊆ Ω∨ such that D ⊆ cl(
⋃

i∈I Di). (extend)

The following closure property also holds because of continuity.
Definition 3.5. The limits closure lim(Ω) of a moves ensemble Ω is the small-
est moves ensemble Ω̄ ⊇ Ω that is limits-closed, i.e., satisfies the following
axiom, for open intervals D ⊆ R.

If γi → γ(as affine functions) and γi|D ∈ Ω̄ for all i, then γ|D ∈ Ω̄. (lim)

The final closure property comes in from the theory of functional equations.
For an open set O ⊆ R

2, define the (join-closed) move ensemble moves(O) as
the set of γ|D whose graph Gr(γ|D) is contained in O. Using the fact that π̃ is
a bounded function, it follows from [4, Theorem 4.3] that Γ resp(π̃) satisfies:
Definition 3.6. A move ensemble Ω� is a kaleidoscopic join-closed ensemble
if it satisfies (join) and the following axiom, for open intervals D, I ⊆ R:

{τt|D′ ∈ moves(D × I)} ⊆ Ω� iff {ρr|D′ ∈ moves(D × I)} ⊆ Ω�. (kaleido)

(In fact, if π̃ respects moves(D × I) ⊆ Ω�, then by [4, Theorem 4.3], it follows
that π̃ is affine on D and I, with the same slope. We say that D∪I is a connected
covered component of Ω�.) We now arrive at the main definition.
Definition 3.7. A closed move semigroup is a limits-closed extension-closed
kaleidoscopic join-closed move semigroup, i.e., a move ensemble that satisfies all
the following axioms: (composition), (inv), (join), (extend), (lim), and (kaleido).

Definition 3.8. We define the closed move semigroup clsemi(Ω) generated by
a move ensemble Ω (or just moves closure of Ω) to be the smallest (by set
inclusion) closed move semigroup containing Ω.

Theorem 3.9. (Moves closure). Suppose θ is bounded and continuous. If θ
is affinely Ω-equivariant, then θ is affinely clsemi(Ω)-equivariant.

Corollary 3.10. Let π be a continuous piecewise linear minimal valid function.
Then π is affinely clsemi(Ω0)-equivariant. Every effective perturbation function
π̃ ∈ Π̃π is also affinely clsemi(Ω0)-equivariant.

252 R. Hildebrand et al.

4 Decomposition Theorem

Assumption 4.1. π : R → R is a minimal valid function that is continuous
piecewise linear with breakpoints B, so B ∩ [0, 1] is finite. We assume that there
is no redundant breakpoint (B is minimal).

4.1 Assumption: Finitely Presented Moves Closure

Let Ω0 be the initial additive move ensemble of π (Sect. 2).

Assumption 4.2. The moves closure clsemi(Ω0) has a finite presentation by
moves and components, i.e., there exists a finite set Ω and a finite set C =
{C1, C2, . . . , Ck} of connected covered components Ci, each of which is a finite
union of open intervals, such that

clsemi(Ω0) = jmoves(Ω, C) := join(Ω ∪
⋃k

i=1 moves(Ci × Ci)).

Without loss of generality, the components Ci can be taken as maximal and
pairwise disjoint. (Fig. 1 (right) shows an example.)

Assumption 4.2 holds in the following case.

Theorem 4.3 (Finite presentation of the moves closure, rational case).
Let π be a piecewise linear function whose breakpoints are rational, i.e., B ⊆

G = 1
qZ for some q ∈ N. Then clsemi(Ω0) has a finite presentation (Ω, C), where

(i) the endpoints of all domains and the values t and r of moves τt, ρr|D ∈ Ω
lie in G ∩ [0, 1], (ii) the endpoints of all maximal intervals of all Ci ∈ C lie in
G ∩ [0, 1].

The proof of Theorem 4.3 can be made fully algorithmic (and grid-free). We
can compute clsemi(Ω0) using a completion algorithm that manipulates finite
presentations, maintaining properties (i) and (ii), using only the algebraic and
order-theoretic axioms and (extend). There are only finitely many finite presen-
tations satisfying (i) and (ii); this implies the finiteness of the algorithm.

The following result, applied to the polygons in E(π) on which Δπ = 0 (the
additive two-dimensional faces), provides the initialization.

Proposition 4.4 (Patching lemma; akin to [5, Lemma 2.7]). Let O ⊆ R
2

be a connected open set. Let D = {x | (x, y) ∈ O } and I = { y | (x, y) ∈ O }.
Then join(isemi(moves(O))) = moves ((D ∪ I) × (D ∪ I)) .

However, finitely presented closures clsemi(Ω0) as required in Assumption 4.2
arise in a more general setting than the rational case of Theorem 4.3, through
the interplay of the entire list of closure properties from Sect. 3. Our key theorem
using the analytic properties is the following: Rectangles appear in the closure
whenever there is a convergent sequence of moves.

Theorem 4.5 (Limits imply components). Let Γ̄� be a limits-closed kalei-
doscopic join-closed move semigroup. Assume that γ|D is the limit move of a
sequence {γi|D}i∈N of moves in Γ̄� with γi �= γ for every i. Let I = γ(D). Then
moves((D ∪ I) × (D ∪ I)) ⊆ Γ̄�.

On Perturbation Spaces of Minimal Valid Functions 253

This is related to an observation in [2] regarding the function bhk irrational
. Our Theorem 4.5 is much more general and does not require the specific

arithmetic context of [2]. (It is also key to the proof of Theorem 4.8 below.)
Empirically, for all families of piecewise linear minimal valid functions in the

literature (see [10] for an electronic compendium), even if the breakpoints are
irrational, the closure clsemi(Ω0) has a finite presentation.

Assumption 4.6. We are given a finite presentation (Ω, C) of clsemi(Ω0) in
reduced form, i.e., each move γ|D ∈ Ω is maximal in clsemi(Ω0), and the graph
Gr(γ|D) is not covered by the union of open rectangles Ci × Ci, i = 1, . . . , k.

The finite presentation shown in Fig. 1 (right) has this property.

4.2 Properties of the Finitely Presented Moves Closure

Let C := C1 ∪ C2 ∪ · · · ∪ Ck denote the open set of points in (0, 1) that are
covered. We will refer to the open set U := (0, 1) \ cl(C) as the set of points in
(0, 1) that are uncovered. Then we have the partition [0, 1] = C ∪ X ∪ U , where

X := {0} ∪ ∂C ∪ {1} = {0} ∪ ∂U ∪ {1}. (6)

(In Fig. 1, X = {0, 1
24 , 1

8 , 1
6 , 1

4 , . . . , 1}.) Recall from Sect. 2 that we set aside the
0-dimensional additivities (vertices of ΔPB). Now they come back. Let

V :=
{

pi(x, y)
∣
∣ (x, y) ∈ vert(ΔPB), Δπ(x, y) = 0, i = 1, 2, 3

}
∩ [0, 1]. (7)

We define the orbit of V ∩ U under Ω, a finite set by Assumptions 4.1/4.2/4.6,

Y := Ω(V ∩ U) =
{

γ|D(x)
∣
∣ x ∈ V ∩ U, x ∈ D and γ|D ∈ Ω

}
. (8)

(In Fig. 1, V ∩ U = { 1
3 , 5

12 , 1
2 , 7

12}. This set is already closed under the action of
Ω, as ρ11/12(13) = 7

12 and ρ11/12(5
12) = 1

2 . Thus Y = V ∩ U in the example.)

Remark 4.7. It follows from the closure properties that the orbit stays within
U . More generally, consider the ensemble Ω|U , consisting of the restrictions of
the moves of Ω to U . Then the images of all restricted moves stay in U as well.
In other words, (a) the restriction Ω|U equals the double restriction U |Ω|U , (b)
Ω|U is a finite move ensemble.

By Assumptions 4.1/4.2/4.6, all elements of Ω are maximal in clsemi(Ω0). It
follows that all elements of Ω|U are maximal in clsemi(Ω0)|U .

After these preliminaries, we are able to state the main theorem.

Theorem 4.8 (Structure and generation theorem for finitely presented
moves closures). Under Assumptions 4.1/4.2/4.6,

(a) clsemi(Ω0) = extend(clsemi(Ω0|U) ∪ clsemi(Ω0|C)).
(b) Ω|U = Max(extend(isemi(Ω0|U))).
(c) a, b, γ(a), γ(b) ∈ X ∪ Y for any γ|(a,b) ∈ Ω|U .

We emphasize that the theorem does not depend on an algorithm to compute
the moves closure. The proof appears in the appendix.

https://github.com/mkoeppe/cutgeneratingfunctionology/search?q=%22def+bhk_irrational%22

254 R. Hildebrand et al.

E(π)
clsemi
(Ω0)

Fig. 1. The function π = equiv7 example xyz 2() provided by the software [12]
(graph at the left and top borders of both diagrams). Left, its complex ΔP (solid
gray lines) with the additive faces forming E(π) colored in green. Right, the moves
closure clsemi(Ω0) of π, as computed by the command igp.equiv7 mode = True;
igp.extremality test(igp.equiv7 example xyz 2(), True, show all perturbations=True). It
has a finite presentation by Ω = {τ0|(0,1), ρ11/12|(0,11/12)} (blue and red line segments
of slopes ±1) and a set C = {C1, C2, C3} of (maximal) connected covered components
C1 = (11

12
, 1) (the lavender square shows C1 × C1), C2 = (0, 1

24
) ∪ (7

8
, 11
12

) (coral), and
C3 = (1

24
, 1
8
)∪(1

6
, 1
4
)∪(2

3
, 3
4
)∪(19

24
, 7
8
) (lime). The set C ∪B′ = C ∪X ∪Y ∪Z of covered

points and refined breakpoints is marked in magenta on the left and top borders. (Color
figure online)

4.3 Refined Breakpoints B′, Finite-Dimensional Perturbations

In addition to the finite sets X and Y , we define

Z := {x | x ∈ U, x = ρ|D(x) for some reflection move ρ|D ∈ Ω }, (9)

the set of uncovered character conflicts. (In Fig. 1, Z = { 11
24}.) Under Assump-

tions 4.1/4.2/4.6, the sets X, Y , Z are finite and closed under the action of
clsemi(Ω0). We then define a refined set of breakpoints, B′ := (X ∪ Y ∪ Z) + Z.
Because B was chosen minimal, B ∩ C = ∅ and thus B ⊆ B′. Hence, the poly-
hedral complex T := PB′ is a refinement of PB , so π is piecewise linear over T .

Theorem 4.9 (Breakpoint stabilization theorem). Let (x, y) be an addi-
tive vertex of ΔT with x, y ∈ [0, 1]. Let z = x + y. Then, x, y, z ∈ B′ ∪ (C + Z).

Definition 4.10. Define the space of finite-dimensional perturbations as

Π̃π
T :=

{
π̃ ∈ Π̃π

∣
∣ π̃ is continuous piecewise linear over T

}
. (10)

Lemma 4.11. We have π̃T ∈ Π̃π
T if and only if π̃T is continuous piecewise

linear over T and satisfies the following conditions.

On Perturbation Spaces of Minimal Valid Functions 255

(i) π̃T (0) = 0 and π̃T (f) = 0;
(ii) π̃T is Z-periodic;
(iii) For any vertex (x, y) of ΔT , Δπ(x, y) = 0 implies Δπ̃T (x, y) = 0.

4.4 Connected Uncovered Components Ui, Equivariant
Perturbations

Definition 4.12. Define the space of equivariant perturbations

Π̃π
zero(T) :=

{
π̃ ∈ Π̃π

∣
∣ π̃(t) = 0, ∀t ∈ B′ }.

Definition 4.13. Define the set U ′ := U \B′ of refined uncovered points. Con-
sider the ensemble Ω|U ′ of maximal moves restricted to U ′. Partition U ′ into the
(maximal) connected uncovered components {U1, . . . , Ul}, as follows. Each com-
ponent Ui is a maximal subset of U ′ that is the disjoint union of the uncovered
intervals I1, . . . , Ip ⊆ U ′ such that any two Ij and Ik (1 ≤ j, k ≤ p) are connected
by a maximal move γ|Ik

∈ Ω|U ′ with domain Ik and image Ij = γ(Ik). Pick
Di ∈ {I1, . . . , Ip} arbitrarily as the fundamental domain, and write Ij = γi,j(Di)
where γi,j |Di

∈ Ω|U ′ for j = 1, . . . , p.

This is well-defined; the ensemble Ω|U ′ only has moves γ|D whose domain D
and image γ(D) are both contained in the same Ui, for i = 1, 2, . . . , l. Each
component Ui ⊆ U ′ can be written as Ui =

⋃
γi,j(Di).

Theorem 4.14 (Characterization of the equivariant perturbations sup-
ported on an uncovered component). Under Assumptions 4.1/4.2/4.6 and
notation of Definition 4.13, let i ∈ {1, . . . , l} and let π̃i : R → R be a Z-periodic
function such that π̃i(x) = 0 for x �∈ Ui. Then π̃i ∈ Π̃π

zero(T) if and only if

(i) π̃i is Lipschitz continuous on cl(Di);
(ii) π̃i(x) = 0 for x ∈ ∂Di;
(iii) π̃i(x) = χ(γi,j)π̃i(γi,j(x)) for x ∈ Di, j = 1, . . . , p.

For i = 1, . . . , l, denote the space of functions π̃i as in the theorem by Π̃π
Ui

. It is
independent of the choice of fundamental domain.

Theorem 4.15 (Direct sum decomposition of equivariant perturba-
tions by uncovered components). We have the direct sum decomposition
Π̃π

zero(T) = Π̃π
U1

⊕ · · · ⊕ Π̃π
Ul

, i.e., if π̃ ∈ Π̃π
zero(T), then it has a unique decompo-

sition π̃ = π̃1 + π̃2 + · · · + π̃l such that π̃i ∈ Π̃π
Ui

for i = 1, . . . , l.

Each π̃i (i = 1, 2, . . . , l) satisfies the conditions in Theorem 4.14, and thus is
supported on the connected uncovered component Ui and is obtained by choosing
an arbitrary Lipschitz continuous template on the fundamental domain Di, then
by extending equivariantly to the other intervals through the moves in Ω|U ′ .

256 R. Hildebrand et al.

Fig. 2. Direct sum decomposition of the space Π̃π of effective perturbations for the
function π from Fig. 1. Top, basis of the space Π̃T of finite-dimensional perturbations.
Bottom, representatives of the equivariant perturbation spaces Π̃π

Ui
for the 4 connected

uncovered components Ui.

4.5 Decomposition Theorem for Effective Perturbations

The following main theorem generalizes [4, Lemma 3.14] to our setting, which
does not require assuming B′ = 1

qZ. Figure 2 illustrates the decomposition.

Theorem 4.16 (Perturbation decomposition theorem). Under Assump-
tions 4.1/4.2/4.6, we have the direct sum decomposition Π̃π = Π̃π

T ⊕ Π̃π
zero(T),

i.e., for an effective perturbation π̃ ∈ Π̃π, there exists a unique pair π̃T ∈ Π̃π
T

and π̃zero(T) ∈ Π̃π
zero(T) such that π̃ = π̃T + π̃zero(T).

Proof. Let π̃ ∈ Π̃π be an effective perturbation. Let π̃T be the unique contin-
uous piecewise linear function over T such that π̃T (t) = π̃(t) for every t ∈ B′.
Define π̃zero(T) = π̃ − π̃T . Note that π̃T is the unique continuous piecewise lin-
ear function over T such that π̃zero(T)(t) = 0 for every t ∈ B′. It is left to
show that π̃T , π̃zero(T) ∈ Π̃π. We first show that π̃T ∈ Π̃π, by applying Lemma
4.11. It suffices to show that π̃T satisfies condition (iii) of Lemma 4.11. Let
(x, y) be an additive vertex of ΔT . By Lemma 2.1, Δπ(x, y) = 0 implies that
Δπ̃(x, y) = 0. Since (x, y) is an additive vertex of ΔT , Theorem 4.9 implies that
x, y, z ∈ B′ ∪ C, where z = x + y. We have π̃T (t) = π̃(t) for t = x, y or z, and
hence Δπ̃T (x, y) = Δπ̃(x, y) = 0. Therefore, π̃T ∈ Π̃π. The vector space Π̃π

contains both π̃ and π̃T , so π̃zero(T) = π̃ − π̃T ∈ Π̃π. ��

Finally, we show that, up to possible finite-dimensional affine linear relations
between slopes on covered intervals, the moves closure is exactly the inverse
semigroup of all moves that are respected by π and its effective perturbations.

Theorem 4.17. Under Assumptions 4.1/4.2/4.6, we have that

clsemi(Ω0)|U = Γ resp(π + Π̃π)|U = Γ resp(Π̃π)|U , (11)

where Γ resp(Π̃π) =
⋂

π̃∈Π̃π Γ resp(π̃).

On Perturbation Spaces of Minimal Valid Functions 257

Remark 4.18 (Discontinuous case). We have proved all results in a more general
setting that allows discontinuous piecewise linear functions that are one-sided
continuous at 0. Axiom (extend) is modified to take the set of continuity of π
into account. We use additional lemmas regarding the existence of limits. The
space of equivariant perturbations stays the same space of Lipschitz functions; all
discontinuities go into the finite-dimensional perturbations, which then consists
of piecewise linear functions with possible jumps at the refined breakpoints. The
results do not extend to the two-sided discontinuous case; see [11].

A Some Omitted Proofs and Results

We summarize some results on the interactions of the closure axioms. While
the inverse semigroup generated by a join-closed ensemble is not automatically
join-closed, the following holds: Applying (join) or the stronger (extend) to an
inverse semigroup preserves the inverse semigroup properties,

join(isemi(Ω)) = isemi(join(isemi(Ω))), (12a)
extend(isemi(Ω)) = isemi(extend(isemi(Ω))). (12b)

Also applying limit and then join to a semigroup retains the semigroup proper-
ties , i.e., join(lim(join(isemi(Ω)))) is a semigroup.

For some of the individual closure properties, generation theorems are avail-
able. Let Ωinv be the union of the move ensemble Ω and the inverses of all of its
moves; this is clearly the smallest ensemble containing Ω that satisfies (inv). Also
isemi(Ω), defined as the smallest inverse semigroup containing Ω, is, of course,
the set of all finite compositions γk|Dk

◦ · · · ◦ γ1|D1 of moves γi|Di
∈ Ωinv. The

joined ensemble join(Ω) and the extended ensemble extend(Ω) consist of the
following moves:

join(Ω) =
{

γ|D
∣
∣ D ⊆ Cγ

}
, (13a)

extend(Ω) =
{

γ|D
∣
∣ D ⊆ cl(Cγ)

}
, where Cγ :=

⋃
{ I | γ|I ∈ Ω }. (13b)

In particular, joined ensembles and extended ensembles have maximal elements
in the restriction partial order, which is not true for arbitrary ensembles.

For closures with respect to more complex combinations of our axioms, no
generation theorem is available. In particular, we have no generation theorem
for the moves closure. It is unknown if clsemi(Ω) can be obtained by a finite
number of applications of closures with respect to the individual axioms similar
to (12). Instead we reason about the moves closure in an indirect way, as follows:
Let L be the family of closed move semigroups containing Ω. Then clsemi(Ω) =⋂
L =

⋂
Ω′∈L

Ω′; this holds because of the structure of our axioms.
In addition to the various closure properties, we use the following lemma in

the proof of the structure and generation theorem for finitely presented moves
closures (Theorem 4.8). Recall that the initial moves ensemble Ω0 is join-closed.

258 R. Hildebrand et al.

Lemma A.1 (Filtration of isemi(Ω0|U) by word length; maximal
moves). Under Assumptions 4.1/4.2/4.6, for k ∈ N, let

Ω0|U k =
{

γk|Dk ◦ · · · ◦ γ1|D1

∣
∣ γi|Di ∈ Ω0|U for 1 ≤ i ≤ k

}
.

Then Ω0|U 1 ⊆ Ω0|U 2 ⊆ . . . and isemi(Ω0|U) =
⋃

k∈N
Ω0|U k. For each k ∈ N, the

ensemble Ω0|U k is equal to the set of restrictions of the ensemble Max(Ω0|U k)
of its maximal elements in the restriction partial order, which is a finite set. For
γ|(a,b) ∈ Max(Ω0|U k), we have a, b, γ(a), γ(b) ∈ X ∪ Y .

Proof of Theorem 4.8 (Structure and generation theorem)

Part (a). Let Ω′ denote the right hand side of the equation in part (a). Clearly,
Ω0 ⊆ Ω′ ⊆ clsemi(Ω0). We now show that Ω′ is a closed move semigroup. By
Remark 4.7-(a), we have that clsemi(Ω0|U) ⊆ restrict(Ω|U) ⊆ moves(U × U),
where restrict(Ω|U) is the set of restrictions of moves γ|D ∈ Ω to domains that
are open subintervals of D∩U (or ∅); and clsemi(Ω0|C) =

⋃k
i=1 moves(Ci×Ci) ⊆

moves(C × C), where the open sets U and C are disjoint. Thus, we have that
clsemi(Ω0|U) ∪ clsemi(Ω0|C) is a move semigroup, under Assumption 4.2. It
follows from (12b) that Ω′ is a move semigroup that satisfies (extend). Note
that for any open intervals D and I such that moves(D × I) ⊆ clsemi(Ω0), we
have moves(D × I) ⊆ clsemi(Ω0|C). Therefore, Ω′ also satisfies (kaleido) and
(lim) by Theorem 4.5. We conclude that Ω′ is a closed move semigroup. Hence,
part (a) holds.

Part (b). By restricting the moves ensembles on both sides of the equation in
part (a) to domain U , we obtain that

restrict(Ω|U) = clsemi(Ω0)|U = clsemi(Ω0|U) (14)

Next, we show that

clsemi(Ω0|U) = extend(isemi(Ω0|U)). (15)

It follows from (12b) that extend(isemi(Ω0|U)) is a move semigroup that satisfies
(extend) (and also (join)). Since

extend(isemi(Ω0|U)) ⊆ clsemi(Ω0|U) = restrict(Ω|U), (16)

where the equality follows from (14), and Ω|U is a finite move ensemble by
Remark 4.7-(b), we obtain that the move semigroup extend(isemi(Ω0|U)) also
satisfies (kaleido) and (lim). Therefore, extend(isemi(Ω0|U)) is a closed move
semigroup which contains Ω0|U . Since clsemi(Ω0|U) is the smallest closed move
semigroup containing Ω0|U , we have clsemi(Ω0|U) ⊆ extend(isemi(Ω0|U)).
Together with (16), we conclude that (15) holds. Since Ω has only maximal
moves, (14) and (15) imply the equation in part (b).

On Perturbation Spaces of Minimal Valid Functions 259

Part (c). Let γ|(a,b) ∈ Ω|U . By symmetry, it suffices to show that a, b ∈ X ∪ Y .
Consider x = a or x = b. Part (b) implies that

Ω|U = Max(extend(join(isemi(Ω0|U)))).

Together with (13b), we know that x is the limit of a sequence {xj}j∈N, where xj

is an endpoint of the domain Dj of a move γ|Dj ∈ Max(join(isemi(Ω0|U))). By
Lemma A.1 and (13a), for any j ∈ N, we have that Dj is a maximal subinterval
of

⋃
{D | γ|D ∈

⋃
k∈N

Max(Ω0|U k) }. Thus for every j ∈ N, there exists a
sequence {xj

k}k∈N such that each xj
k is an endpoint of the domain of a move

γ|Dj
k

∈ Max(Ω0|U k), and xj
k → xj as k → ∞. We obtain that xk

k → x as k → ∞,
where each xk

k ∈ X ∪Y by Lemma A.1. Since X ∪Y is a finite discrete set under
Assumption 4.2, we obtain that x ∈ X ∪ Y . ��

References

1. Basu, A., Hildebrand, R., Köppe, M.: Equivariant perturbation in Gomory and
Johnson’s Infinite Group Problem: II. The unimodular two-dimensional case. In:
Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 62–73. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36694-9 6

2. Basu, A., Hildebrand, R., Köppe, R.: Equivariant perturbation in Gomory and
Johnson’s infinite group problem. I. The one-dimensional case. Math. Oper. Res.
40(1), 105–129 (2014). https://doi.org/10.1287/moor.2014.0660

3. Basu, A., Hildebrand, R., Köppe, M.: Equivariant perturbation in Gomory and
Johnson’s infinite group problem. IV. The general unimodular two-dimensional
case, Manuscript (2016)

4. Basu, A., Hildebrand, R., Köppe, M.: Light on the infinite group relaxation I: foun-
dations and taxonomy. 4OR 14(1), 1–40 (2016). https://doi.org/10.1007/s10288-
015-0292-9

5. Basu, A., Hildebrand, R., Köppe, M.: Equivariant perturbation in Gomory and
Johnson’s infinite group problem–III: foundations for the k-dimensional case with
applications to k = 2. Math. Program. 163(1), 301–358 (2017). https://doi.org/
10.1007/s10107-016-1064-9

6. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner poly-
hedra I. Math. Program. 3, 23–85 (1972). https://doi.org/10.1007/BF01584976

7. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner poly-
hedra. Math. Program. 3, 359–389 (1972). https://doi.org/10.1007/BF01585008

8. Hildebrand, R.: On polyhedral subdivisions closed under group operations,
Manuscript (2013)

9. Hong, C.Y., Köppe, M., Zhou, Y.: Equivariant perturbation in Gomory and John-
son’s infinite group problem (V). Software for the continuous and discontinuous 1-
row case. Optim. Methods Softw. 33(3), 475–498 (2018). https://doi.org/10.1080/
10556788.2017.1366486

10. Köppe, M., Zhou, Y.: An electronic compendium of extreme functions for the
Gomory-Johnson infinite group problem. Oper. Res. Lett. 43(4), 438–444 (2015).
https://doi.org/10.1016/j.orl.2015.06.004

https://doi.org/10.1007/978-3-642-36694-9_6
https://doi.org/10.1287/moor.2014.0660
https://doi.org/10.1007/s10288-015-0292-9
https://doi.org/10.1007/s10288-015-0292-9
https://doi.org/10.1007/s10107-016-1064-9
https://doi.org/10.1007/s10107-016-1064-9
https://doi.org/10.1007/BF01584976
https://doi.org/10.1007/BF01585008
https://doi.org/10.1080/10556788.2017.1366486
https://doi.org/10.1080/10556788.2017.1366486
https://doi.org/10.1016/j.orl.2015.06.004

260 R. Hildebrand et al.

11. Köppe, M., Zhou, Y.: Equivariant perturbation in Gomory and Johnson’s infinite
group problem. VI. The curious case of two-sided discontinuous minimal valid func-
tions. Discrete Optim. 30, 51–72 (2018). https://doi.org/10.1016/j.disopt.2018.05.
003

12. Köppe, M., Zhou, Y., Hong, C.Y., Wang, J.: Cutgeneratingfunctionology: Sage
code for computation and experimentation with cut-generating functions, in par-
ticular the Gomory-Johnson infinite group problem (2019). https://github.com/
mkoeppe/cutgeneratingfunctionology, version 1.3

13. Lawson, M.V.: Inverse semigroups: The theory of partial symmetries. World Sci-
entific (1998)

14. Zhou, Y.: Infinite-dimensional relaxations of mixed-integer optimization problems,
Ph.D. thesis, University of California, Davis, Graduate Group in Applied Mathe-
matics, May 2017. https://search.proquest.com/docview/1950269648

https://doi.org/10.1016/j.disopt.2018.05.003
https://doi.org/10.1016/j.disopt.2018.05.003
https://github.com/mkoeppe/cutgeneratingfunctionology
https://github.com/mkoeppe/cutgeneratingfunctionology
https://search.proquest.com/docview/1950269648

On Compact Representations of Voronoi
Cells of Lattices

Christoph Hunkenschröder(B) , Gina Reuland, and Matthias Schymura(B)

École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
{christoph.hunkenschroder,matthias.schymura}@epfl.ch,

ginareuland@gmail.com

Abstract. In a seminal work, Micciancio & Voulgaris (2010) described
a deterministic single-exponential time algorithm for the Closest Vector
Problem (CVP) on lattices. It is based on the computation of the Voronoi
cell of the given lattice and thus may need exponential space as well. We
address the major open question whether there exists such an algorithm
that requires only polynomial space.

To this end, we define a lattice basis to be c-compact if every facet
normal of the Voronoi cell is a linear combination of the basis vectors
using coefficients that are bounded by c in absolute value. Given such
a basis, we get a polynomial space algorithm for CVP whose running
time naturally depends on c. Thus, our main focus is the behavior of
the smallest possible value of c, with the following results: There always
exist c-compact bases, where c is bounded by n2 for an n-dimensional
lattice; there are lattices not admitting a c-compact basis with c grow-
ing sublinearly with the dimension; and every lattice with a zonotopal
Voronoi cell has a 1-compact basis.

Keywords: Closest Vector Problem · Lattices · Voronoi cells

1 Introduction

An n-dimensional lattice is the integral linear span of n linearly independent
vectors, Λ = {Bz : z ∈ Z

n}, B ∈ R
d×n. If not stated otherwise, we always

assume d = n, that is, the lattice has full rank.
Two widely investigated and important problems in the Algorithmic Geome-

try of Numbers, Cryptography, and Integer Programming are the Shortest Vector
Problem and the Closest Vector Problem. Given a lattice Λ, the Shortest Vec-
tor Problem (SVP) asks for a shortest non-zero vector in Λ. For a target vector
t ∈ R

n, the Closest Vector Problem (CVP) asks for a lattice vector z� minimizing
the Euclidean length ‖t−z‖ among all z ∈ Λ. We will only recall some milestones
of the algorithmic development, for a more detailed overview we refer to the work
of Hanrot, Pujol & Stehlé [15], as well as to the more recent Gaussian Sampling
Algorithms, the most recent one by Aggarwal & Stephens-Davidowitz [1].

In the 1980’s, Kannan presented two algorithms solving SVP and CVP in bit-
complexity nO(n) and polynomial space [17]. Although the constants involved in
c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 261–274, 2019.
https://doi.org/10.1007/978-3-030-17953-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_20&domain=pdf
http://orcid.org/0000-0001-5580-3677
http://orcid.org/0000-0001-5156-7953
https://doi.org/10.1007/978-3-030-17953-3_20

262 C. Hunkenschröder et al.

the running time had been improved, it took roughly fifteen years until a signif-
icantly better algorithm was discovered. In 2001, Ajtai, Kumar & Sivakumar [2]
gave a randomized algorithm for the Shortest Vector Problem, only taking 2O(n)

time. However, in addition to the randomness, they also had to accept exponen-
tial space dependency for their improved running time. Though their algorithm
is not applicable to the Closest Vector Problem in its full generality, they show in
a follow-up work that for any fixed ε, it can be used to approximate CVP up to
a factor of (1 + ε) with running time depending on 1/ε [3]. These authors more-
over posed the question whether randomness or exponential space is necessary
for a running time better than nO(n). It took again around a decade until this
question was partially answered by Micciancio & Voulgaris [23], who obtained
a deterministic 2O(n) algorithm for both problems. Their algorithm is based on
computing the Voronoi cell VΛ of the lattice, the region of all points at least
as close to the origin as to any other lattice point. But as the Voronoi cell is a
polytope with up to 2(2n − 1) facets, the Micciancio-Voulgaris algorithm needs
exponential space for storing the Voronoi cell in the worst (and generic) case.
Since storing the Voronoi cell in a different, “more compact,” way than by facet-
description would lead to a decreased space requirement, they raise the question
whether such a representation exists in general.

Our main objective is to propose such a compact representation of the
Voronoi cell and to investigate its merits towards a single-exponential time and
polynomial space algorithm for the CVP. As being closer to the origin than to
a certain lattice vector v expresses in the inequality 2xᵀv ≤ ‖v‖2, the facets
of VΛ can be stored as a set FΛ ⊆ Λ of lattice vectors, which are called the
Voronoi relevant vectors, or facet vectors. We say that a basis B of a lattice Λ
is c-compact, if each Voronoi relevant vector of Λ can be represented in B with
coefficients bounded by c in absolute value. Hence, by iterating over (2c + 1)n

vectors, we include the set FΛ. With c(Λ), we denote the smallest c such that
there exists a c-compact basis of Λ. As a consequence of the ideas in [23] and this
notion of compactness we get (Corollary 2): Given a c-compact basis of a lattice
Λ ⊆ R

n, we can solve the Closest Vector Problem in time (2c + 1)O(n) poly(n)
and polynomial space.

Thus, the crucial question is: How small can we expect c(Λ) to be for an
arbitrary lattice? If c(Λ) is constant, then the above yields asymptotically the
same running time as the initial Micciancio-Voulgaris algorithm, but uses only
polynomial space. Of course, this only holds under the assumption that we know
a c-compact basis of Λ. This observation has consequences for the variant of CVP
with preprocessing, which we discuss in Sect. 4.

As an example of a large family of lattices, we prove in Sect. 2.3, that zono-
topal lattices are as compact as possible: If the Voronoi cell of Λ is a zonotope,
then c(Λ) = 1, and a 1-compact basis can even be found among the Voronoi rel-
evant vectors. Moreover, every lattice of rank at most four has a 1-compact basis
(see Corollary 1). However, starting with dimension five there are examples of lat-
tices with c(Λ) > 1, and thus we want to understand how large this compactness
constant can be in the worst case. Motivated by applications in crystallography,

On Compact Representations of Voronoi Cells of Lattices 263

the desire for good upper bounds on c(Λ) was already formulated in [10,11], and
results of Seysen [26] imply that c(Λ) ∈ nO(log n). We improve this to c(Λ) ≤ n2

and, on the negative side, we identify a family of lattices without a o(n)-compact
basis (Sects. 2.1 and 2.2).

In Sect. 3, we relax the notion of a c-compact basis as follows. Denote by c̄(Λ)
the smallest constant c̄ such that there is any square matrix W with FΛ ⊆ {Wz :
z ∈ Z

n, ‖z‖∞ ≤ c̄}. Hence, in general, the matrix W generates a superlattice of
Λ. This relaxation is motivated by the fact that, given a basis, membership to
a lattice can be checked in polynomial time. Thus if c̄(Λ) is much smaller than
c(Λ), this additional check is faster than iterating over a larger set. Regarding
the relaxed compactness constant we prove that for every lattice Λ, we have
c̄(Λ) ∈ O(n log n), and that there are lattices Λ ⊆ R

n with c(Λ) / c̄(Λ) ∈ Ω(n).
In summary, our contribution can be described as follows: If we are given

a c(Λ)-compact basis of a lattice, then we can modify the algorithm of Mic-
ciancio & Voulgaris to obtain a polynomial space algorithm for CVP. In whole
generality, the time complexity of this algorithm cannot be better than nO(n),
as in Kannan’s work. However, we provide evidence that there are large and
interesting classes of lattices, for which this improves to single-exponential time.
We think that it is worth to study the proposed compactness concept further.
In particular, it would be interesting to understand the size of the compactness
constant for a generic lattice, and to conceive an efficient algorithm to find a
c-compact basis.

An extended version of this work is available on the arXiv preprint server [16].

2 The Notion of a c-compact Basis

Given a lattice Λ ⊆ R
n, its Voronoi cell is defined by

VΛ = {x ∈ R
n : ‖x‖ ≤ ‖x − z‖ for all z ∈ Λ} ,

where ‖ · ‖ denotes the Euclidean norm. It consists of all points that are at
least as close to the origin than to any other lattice point of Λ. The Voronoi
cell turns out to be a centrally symmetric polytope having outer description
VΛ =

{
x ∈ R

n : 2xᵀz ≤ ‖z‖2 for all z ∈ Λ
}
. A vector v ∈ Λ is called weakly

Voronoi relevant if the corresponding inequality 2xᵀv ≤ ‖v‖2 defines a support-
ing hyperplane of VΛ, and it is called (strictly) Voronoi relevant if it is moreover
facet-defining. Let FΛ and CΛ be the set of strictly and weakly Voronoi relevant
vectors of Λ, respectively. The central definition of this work is the following.

Definition 1. A basis B of a lattice Λ is called c-compact, if

FΛ ⊆ {Bz : z ∈ Z
n, ‖z‖∞ ≤ c} .

Moreover, the compactness constant of Λ is defined as

c(Λ) = min{c ≥ 0 : Λ possesses a c-compact basis}.

264 C. Hunkenschröder et al.

As discussed in the introduction, the notion of a c-compact basis provides a
compact representation of the Voronoi cell VΛ, the complexity of which depends
on the value of the constant c. Before we set out to study the compactness
constant in detail, we offer various equivalent definitions that serve as auxiliary
tools and that also provide a better understanding of the underlying concept.

To this end, let Λ� = {y ∈ R
n : yᵀz ∈ Z for all z ∈ Λ} be the dual lattice of Λ,

and let K� = {x ∈ R
n : xᵀy ≤ 1 for all y ∈ K} be the polar body of a compact

convex set K ⊆ R
n containing the origin in its interior. The basic properties we

need are the following: If B is a basis of Λ, then B−ᵀ is a basis of Λ�, usually
called the dual basis of B. For a matrix A ∈ GLn(R) and a compact convex
set K as above, we have (AK)� = A−ᵀK�. We refer to Gruber’s textbook [14]
for details and more information on these concepts.

Lemma 1. Let B = {b1, . . . , bn} be a basis of a lattice Λ ⊆ R
n. The following

are equivalent:

(i) B is c-compact,
(ii) c · conv(FΛ)� contains the dual basis B−ᵀ of Λ�,
(iii) writing B−ᵀ = {b�

1, . . . , b
�
n}, we have FΛ ⊆ {x ∈ Λ : |xᵀb�

i | ≤ c,∀1 ≤ i ≤ n},
(iv) FΛ ⊆ c PB, where PB =

∑n
i=1[−bi, bi].

Proof. (i) ⇐⇒ (ii): By definition, B is c-compact if and only if FΛ ⊆ {Bz : z ∈
Z

n, ‖z‖∞ ≤ c}. This means that Q = conv(FΛ) ⊆ B[−c, c]n. Taking polars, we
see that this is equivalent to B−ᵀ 1

cC�
n ⊆ Q�, where C�

n = conv{±e1, . . . ,±en} is
the standard crosspolytope. Since the columns of B−ᵀ constitute a basis of the
dual lattice Λ�, the proof is finished.

(i) ⇐⇒ (iii): B = {b1, . . . , bn} is c-compact if and only if the representation
v =

∑n
i=1 αibi of any Voronoi relevant vector v ∈ FΛ satisfies |αi| ≤ c, for all

1 ≤ i ≤ n. By the definition of the dual basis, we have αi = vᵀb�
i , which proves

the claim.
(i) ⇐⇒ (iv): By definition, FΛ ⊆ c PB if and only if for every v ∈ FΛ, there

are coefficients α1, . . . , αn ∈ R such that v =
∑n

i=1 αibi and |αi| ≤ c. These
coefficients are unique, and since B is a basis of Λ, they are integral, that is
αi ∈ Z. Thus, the inclusion we started with is equivalent to saying that B is
c-compact.
�

Part (iv) of the above lemma shows that the compactness constant c(Λ) is
the minimum c such that FΛ ⊆ c PB , for some basis B of Λ. In this defini-
tion, the concept has been introduced already by Engel, Michel & Senechal [11]
together with the variant χ(Λ), where one replaces FΛ by the larger set CΛ of
weakly Voronoi relevant vectors. Motivated by applications in crystallography,
a reoccurring question posed in [10,11] is to give good upper bounds on these
lattice invariants c(Λ) and χ(Λ).

Results of Seysen [26] on simultaneous lattice reduction of the primal and
dual lattice imply that c(Λ) ≤ χ(Λ) ∈ nO(log n). This is however the only bound
that we are aware of.

On Compact Representations of Voronoi Cells of Lattices 265

2.1 A Polynomial Upper Bound

In the sequel, we occassionally need Minkowski’s successive minima of a convex
body K and a lattice Λ in R

n. For 1 ≤ i ≤ n, the ith successive minimum is
defined as

λi(K,Λ) = min {λ ≥ 0 : λK contains i linearly independent points of Λ} .

Minkowski’s development of his Geometry of Numbers was centered around the
study of these important lattice parameters (we refer to Gruber’s handbook [14]
for background). With this notion, Lemma 1(ii) provides a lower bound on the
compactness constant of a given lattice. Indeed, we have c(Λ) ≥ λn(Q�, Λ�),
where Q = conv(FΛ).

Our first result aims for an explicit upper bound on c(Λ) only depending on
the dimension of the lattice. To this end, we first need an auxiliary result.

Lemma 2. Let Λ be a lattice with Voronoi cell VΛ. Then, λ1(V�
Λ, Λ�) ≤ 2n

π , that
is, there is a dual lattice vector y� ∈ Λ� such that VΛ ⊆ {

x ∈ R
n : |xᵀy�| ≤ 2n

π

}
.

Proof. Since λi(VΛ, Λ) = 2, for all 1 ≤ i ≤ n, this follows from the transference
bound λ1(VΛ, Λ)λ1(V�

Λ, Λ�) ≤ 4n
π (cf. [18, Lem. (1.2)], [19, Cor. 1.6]).
�

Theorem 1. For every lattice Λ ⊆ R
n, there exists an n2-compact basis.

Proof. We prove by induction on the dimension that there exists a basis D =
{y1, . . . , yn} of Λ� such that VΛ ⊆ {

x ∈ R
n : |xᵀyi| ≤ 1

2n2, 1 ≤ i ≤ n
}
.

Since every Voronoi relevant vector lies in the boundary of 2VΛ, its inner
product with each yi is then bounded by n2. Hence, the basis of Λ that is dual
to D is an n2-compact basis by Lemma 1(iii).

If n = 1, the claimed containment is trivially true, hence let n ≥ 2. Let y1
be a shortest vector of Λ� with respect to the norm ‖ · ‖V�

Λ
. By Lemma 2, we

have VΛ ⊆ {
x ∈ R

n : |xᵀy1| ≤ 2n
π

}
. Let Λ′ = Λ ∩ {x ∈ R

n : xᵀy1 = 0}, and
observe that the orthogonal projection π : R

n → {x ∈ R
n : xᵀy1 = 0} fulfills

π(Λ�) = (Λ′)�, where we dualize with respect to the linear span of Λ′ (cf. [20,
Ch. 1]). By induction hypothesis, there is a basis D′ = {y′

2, . . . , y
′
n} of (Λ′)�, such

that VΛ′ ⊆ {
x ∈ R

n : xᵀy1 = 0 and |xᵀy′
i| ≤ 1

2 (n − 1)2, 2 ≤ i ≤ n
}
. As Λ′ ⊆ Λ,

we have VΛ ⊆ VΛ′ + lin{y1}. Moreover, as (Λ′)� is the projection of Λ� along y1,
there exist αi ∈ [−1/2, 1/2) such that yi = y′

i + αiy1 ∈ Λ� for 2 ≤ i ≤ n, and
D = {y1, . . . , yn} is a basis of Λ�. Hence,

VΛ ⊆ {
x ∈ R

n : |xᵀy1| ≤ 2n
π , |xᵀy′

i| ≤ 1
2 (n − 1)2, 2 ≤ i ≤ n

}

⊆ {
x ∈ R

n : |xᵀy1| ≤ 2n
π , |xᵀyi| ≤ 1

2 (n − 1)2 + n
π , 2 ≤ i ≤ n

}

⊆ {
x ∈ R

n : |xᵀyi| ≤ 1
2n2, 1 ≤ i ≤ n

}
,

finishing the proof.
�
Remark 1. As also the weakly Voronoi relevant vectors CΛ lie in the boundary of
2VΛ, the basis from the previous proof also shows χ(Λ) ≤ n2, for every lattice Λ.

266 C. Hunkenschröder et al.

2.2 Lattices Without Sublinearly-Compact Bases

In this part, we identify an explicit family of lattices whose compactness constant
grows at least linearly with the dimension. While the pure existence of such a
family also follows from Proposition 4(iii) below, the class of lattices discussed
in this section also allows to discriminate between the compactness constant and
a relaxed variant, which will be introduced in the next section.

For any a ∈ N and n ∈ N, we define the lattice

Λn(a) = {z ∈ Z
n : z1 ≡ · · · ≡ zn mod a} . (1)

As the characterization of the facet vectors, as well as the proof of the fol-
lowing theorem is rather technical, we refer to Appendix for the details.

Theorem 2. Let n ∈ N≥4, a = �n/2�. Then, the lattice Λn = Λn(a) has com-
pactness constant c(Λn) ≥ ⌈

n
4

⌉
.

2.3 Compact Bases and Zonotopal Lattices

For the sake of brevity, we call a 1-compact basis of a lattice just a compact basis.
A class of lattices that allow for a compact representation of their Voronoi cells
are the lattices of Voronoi’s first kind. They correspond to those lattices Λ that
comprise the first reduction domain in Voronoi’s reduction theory (see [28,29]).
These lattices have been characterized in [7] by possessing an obtuse superbasis,
which is a set of vectors {b0, . . . , bn} ⊆ Λ that generates Λ, and that fulfills the
superbasis condition b0 + . . . + bn = 0 and the obtuseness condition bᵀ

i bj ≤ 0,
for all i �= j. Given an obtuse superbasis, for each Voronoi relevant vector v ∈ Λ
there is a strict non-empty subset S ⊆ {0, 1, . . . , n} such that v =

∑
i∈S bi.

Proposition 1. (i) Every lattice of Voronoi’s first kind has a compact basis.
(ii) Every lattice of rank at most three has a compact basis.
(iii) For n ≥ 4, the checkerboard lattice Dn = {x ∈ Z

n : 1ᵀx ∈ 2Z} is not of
Voronoi’s first kind, but has a compact basis.

(iv) There exists a lattice Λ ⊆ R
5 with c(Λ) ≥ 2.

Proof. (i): Every obtuse superbasis contains in fact a compact basis. Indeed,
using the representation of a Voronoi relevant vector above and writing b0 =
−∑n

i=1 bi, we get v =
∑

i∈S bi = −∑
i/∈S bi. One of the terms does not use b0.

(ii): Every lattice of dimension at most three is of Voronoi’s first kind (cf. [7]).
(iii): Bost and Künnemann [6, Prop. B.2.6] showed that for n ≥ 4, the lattice

Dn is not of Voronoi’s first kind. The set B = {b1, . . . , bn} with b1 = e1+en,
and bi = ei − ei−1 for 2 ≤ i ≤ n, is a basis of Dn. The vectors 2ei ± 2ej are
contained in 2Dn, for all i, j. Hence, if ±v are the unique shortest vectors
in v + 2Λ, they are of the form {±(ei ± ej) : 1 ≤ i < j ≤ n}. A routine
calculation shows that all these vectors are a {−1, 0, 1}-combination of the
basis B.

(iv): This follows immediately from Theorem 2 with the lattice Λ5(3).
�

On Compact Representations of Voronoi Cells of Lattices 267

We now explore to which extent these initial observations on lattices with
compact bases can be generalized.

A zonotope Z in R
n is a Minkowski sum of finitely many line segments, that

is, Z =
∑r

i=1[ai, bi], for some ai, bi ∈ R
n. The vectors b1 − a1, . . . , br − ar are

usually called the generators of Z. We call a lattice zonotopal if its Voronoi
cell is a zonotope. A generic zonotopal lattice has typically high combinatorial
complexity. An explicit example is the root lattice A�

n; its zonotopal Voronoi cell
is generated by

(
n+1
2

)
vectors and it has exactly the maximum possible 2(2n −1)

facets (cf. [8, Ch. 4 & Ch. 21]).
It turns out that every lattice of Voronoi’s first kind is zonotopal, but starting

from dimension four, the class of zonotopal lattices is much richer (cf. Vallentin’s
thesis [28, Ch. 2] and [13]). In the following, we prove that every zonotopal lattice
possesses a compact basis, thus extending Proposition 1(i) significantly.

Theorem 3. Every zonotopal lattice has a compact basis. It can be found among
its Voronoi relevant vectors.

Proof. Let Λ be a zonotopal lattice in R
n, and let Z = VΛ be its Voronoi cell.

The general idea of our proof is the following: Using Erdahl’s [12] structural
results on zonotopes that tile space by translation, we can find a dicing which
induces the same tiling of R

n as the Delaunay tiling of Λ. By the duality of
the Delaunay and the Voronoi tiling this provides us with additional structure
that is used to identify a compact basis among the Voronoi relevant vectors. For
details we refer to the Appendix.
�

Our next result is in a similar spirit. It shows that if we are able to add a
zonotope to a Voronoi cell and obtain a Voronoi cell again, then the compactness
constant can only decrease. For its statement, we write Z(U) =

∑r
i=1[−ui, ui]

for the possibly lower-dimensional zonotope spanned by the set of vectors
U = {u1, . . . , ur}. Recall, that χ(Λ) denotes the compactness constant for rep-
resenting the set of weakly Voronoi relevant vectors of Λ.

Proposition 2. Let Λ ⊆ R
n be a lattice such that its Voronoi cell admits a

decomposition VΛ = VΓ + Z(U), for some full-dimensional lattice Γ and vectors
U ⊆ R

n. Then, we have χ(Λ) ≤ χ(Γ).

Proof. It suffices to prove the claim for the case r = 1. Indeed, if Z(U) is
generated by more than one generator, we just repeat the process successively.
Hence, in the following we assume that VΛ = VΓ + [−u, u], for some non-zero
vector u ∈ R

n. Dutour Sikirić et al. [9, Lem. 1 & Lem. 3] give a characterization of
the weakly Voronoi relevant vectors of Λ in terms of those of Γ : First of all, there
is a dual lattice vector eu ∈ Γ � such that Λ = AuΓ , where Aux = x + 2(eᵀ

ux)u,
for x ∈ R

n. Then, z = Auw ∈ Λ is weakly Voronoi relevant if and only if w is
weakly Voronoi relevant for Γ , and eᵀ

uw ∈ {0,±1}.
Now, let B = {b1, . . . , bn} be a basis of Γ such that for every weakly Voronoi

relevant vector w ∈ CΓ , we have w =
∑n

i=1 γibi, for some coefficients |γi| ≤ χ(Γ).
Thus, if z = Auw is weakly Voronoi relevant for Λ, then z =

∑n
i=1 γi(Aubi), and

AuB is a basis of Λ. As a consequence, χ(Λ) ≤ χ(Γ).
�

268 C. Hunkenschröder et al.

As a corollary we settle the question on the largest possible compactness
constant of a four-dimensional lattice. For the proof we refer to Appendix.

Corollary 1. Every lattice of rank at most four has a compact basis.

3 Relaxing the Basis Condition

The compact representation problem for the set of Voronoi relevant vectors does
not need B to be a basis of the lattice Λ. In fact, it suffices that we find linearly
independent vectors W = {w1, . . . , wn} that allow to decompose each Voronoi
relevant vector as an integer linear combination with small coefficients, as the
membership to a lattice can easily be decided by solving a system of linear
equations. If the constant reduces drastically by this relaxation, the additional
check is still faster.

Definition 2. Let Λ ⊆ R
n be a lattice. A set of linearly independent vectors

W = {w1, . . . , wn} ⊆ R
n is called c-compact for Λ, if

FΛ ⊆ {w1z1 + . . . + wnzn : z ∈ Z
n, ‖z‖∞ ≤ c} .

We define the relaxed compactness constant of Λ as

c̄(Λ) = min{c ≥ 0 : there is a c-compact set W for Λ}.

If every Voronoi relevant vector is an integral combination of W , then so is
every lattice vector. That is, a c-compact set W for Λ gives rise to a superlattice
Γ = WZ

n ⊇ Λ. The compactness constants c̄(Λ) and c(Λ) are related as follows.

Proposition 3. For every lattice Λ in R
n and Q = conv(FΛ), we have

c̄(Λ) = λn(Q�, Λ�) and c̄(Λ) ≤ c(Λ) ≤ n c̄(Λ).

Proof. The identity c̄(Λ) = λn(Q�, Λ�) follows by arguments analogous to those
establishing the equivalence of (i) and (ii) in Lemma 1. The inequality c̄(Λ) ≤
c(Λ) is a direct consequence of the definition of these parameters.

By definition of the n-th successive minimum, there are linearly independent
vectors v1, . . . , vn ∈ (λn(Q�, Λ�) · Q�) ∩ Λ�. By induction on the dimension one
can show that the parallelepiped P =

∑n
i=1[0, vi] contains a basis of Λ�. Since P

is contained in nλn(Q�, Λ�) · Q�, the inequality c(Λ) ≤ n c̄(Λ) follows.
�
While the relaxation to representing FΛ by a set W rather than by lattice

bases may reduce the respective compactness constant by O(n), there is still
a class of lattices that show that in the worst case the relaxed compactness
constant can be linear in the dimension as well. In combination with Theorem 2,
the second part of the following result moreover shows that the factor n in
Proposition 3 is tight up to a constant.

On Compact Representations of Voronoi Cells of Lattices 269

Proposition 4. (i) For every lattice Λ ⊆ R
n, we have c̄(Λ) ∈ O(n log n).

(ii) For a = �n
2 �, let Λn = Λn(a) be the lattice defined in (1). For every n ∈ N,

we have c̄(Λn) ≤ 3, whereas c(Λn) ≥ �n
4 �, for n ≥ 4.

(iii) There are self-dual lattices Λ ⊆ R
n with relaxed compactness constant

c̄(Λ) ∈ Ω(n).

Proof. (i) The polytope Q = conv(FΛ) is centrally symmetric, all its vertices
are points of Λ, and int(Q) ∩ Λ = {0}. Therefore, we have λ1(Q,Λ) = 1.
Proposition 3 and the transference theorem of Banaszczyk [4] thus imply
that there is an absolute constant γ > 0 such that

c̄(Λ) = λn(Q�, Λ�) = λ1(Q,Λ) · λn(Q�, Λ�) ≤ γ n log n. (2)

(ii) In view of Proposition 3, we have to find n linearly independent points of
Λ�

n in 3Q�. To this end, we define yi := 1
a (ei − en), for 1 ≤ i ≤ n − 1.

Furthermore, let yn = 1
a1, if n is even, and yn =

({ 1
a}n−1, 2

a

)
, if n is odd.

We claim that the vectors y1, . . . , yn do the job. They are clearly linearly
independent, and since Λn(a)� =

{
z ∈ 1

aZ
n : 1ᵀz ∈ Z

}
they belong to Λn.

The characterization of Voronoi relevant vectors of Λn in Lemma 3 allows
to verify |yᵀ

i v| ≤ 3, for all 1 ≤ i ≤ n and v ∈ FΛn
.

(iii) Let Λ be a self-dual lattice and let VΛ be its Voronoi cell. Each Voronoi
relevant vector v ∈ FΛ provides a facet of VΛ via the inequality vᵀx ≤
1
2‖v‖2, as well as a facet of Q� via the inequality vᵀx ≤ 1 (this defines
indeed a facet, as v is a vertex of Q – the polar of Q�). As ‖v‖ ≥ λ1(Bn, Λ),
for every c < λ1(Bn, Λ)2, we have that c · Q� is contained in the interior
of twice the Voronoi cell of Λ� = Λ, and hence contains no non-trivial dual
lattice point. Therefore, c̄(Λ) ≥ λ1(Bn, Λ)2.

Conway & Thompson (see [24, Ch. 2, §9]) proved that there are self-dual

lattices Λ in R
n with minimal norm λ1(Bn, Λ) ≥

⌊
1√
π

(
5
3Γ

(
n
2 + 1

)) 1
n

⌋
. Stirling’s

approximation then gives that c̄(Λ) ∈ Ω(n).
�
Based on the common belief that the best possible upper bound in (2) is

linear in n, we conjecture that c̄(Λ) ∈ O(n), and even c(Λ) ∈ O(n), for every
lattice Λ ⊆ R

n.

4 Algorithmic Point of View

When it comes to computing a c(Λ)-compact basis, not much is known. Lemma 1
suggests to take the polar of conv(FΛ), and then to look for a dual basis in a
suitable dilate thereof. However, in order to do this, we need a description of the
Voronoi relevant vectors in the first place. Therefore, we rather discuss how to
incorporate an already known c-compact basis into the algorithm of Micciancio
and Voulgaris [23].

Their algorithm consists of two main parts. In a preprocessing step, it com-
putes the Voronoi cell VΛ, which can be done in time 2O(n) in a recursive manner.
Given a c-compact basis B this part is immediate as B grants a superset of FΛ

270 C. Hunkenschröder et al.

by definition. Once the Voronoi cell VΛ is computed, a vector p ∈ Λ is closest
to a target vector t if and only if t − p ∈ VΛ. In the second part, they itera-
tively identify a Voronoi relevant vector v ∈ FΛ whose induced facet inequality
2xᵀv ≤ ‖v‖2 is violated by t. Replacing t by the shorter vector t−v and keeping
track of the successively found vectors v, yields a lattice vector p ∈ Λ such that
t − p ∈ VΛ after finitely many steps. This technique previously known as the
iterative slicer [27], was refined in [23] to estimate the number of necessary steps
by 2n poly(n). More sophisticated arguments, as presented in [5] allow to further
decrease the number of iterations.

Corollary 2. Assume that we are given a c-compact basis B of a lattice Λ ⊆ R
n.

For any target point t ∈ R
n, a closest lattice vector to t can be found in time

O((2c + 1)n 2n poly(n)) and space polynomial in the input size.

Proof. Theorem 4.2 and Remark 4.4 in [23] state that a closest vector can be
found in time O(|V | · 2n poly(n)), where V is a superset of the Voronoi relevant
vectors FΛ. We set V = {Bz : z ∈ Z

n, ‖z‖∞ ≤ c} ⊇ FΛ.
The reduction to polynomial space follows from [23, Rem. 4.3]: Their algo-

rithm may need exponential space because they store FΛ. As a subset of V it is
however described just by the polynomial-size data (B, c).
�

The Micciancio-Voulgaris algorithm naturally can be presented as an algo-
rithm for the Closest Vector Problem with Preprocessing (CVPP). In this variant
of CVP, we may precompute the lattice for an arbitrary amount of time and store
some additional information. Only then the target vector is revealed to us, and
the additional information can be used to find a closest vector faster. In prac-
tice, we might have to solve CVP on the same lattice with several target vectors,
hence we might benefit from spending more time for preprocessing.

Considered in this setting, our results compress the information after the
preprocessing step into polynomial space. However, it is unclear how to compute
a c-compact basis without computing the Voronoi cell first.

Problem 1. Can we compute a basis B of Λ attaining c(Λ) in single-exponential
time and polynomial space?

McKilliam et al. [21] show that for lattices of Voronoi’s first kind, CVP can
be solved in polynomial time, provided an obtuse superbasis is known. One
may wonder whether our representation also allows for solving CVPP faster.
However, Micciancio [22] showed that if CVPP can be solved in polynomial time
for arbitrary lattices, then NP ⊆ P/poly and the polynomial hierarchy collapses.

Acknowledgments. We thank Daniel Dadush and Frank Vallentin for helpful
remarks and suggestions. In particular, Daniel Dadush pointed us to the arguments in
Theorem 1 that improved our earlier estimate of order O(n2 log n).

This work was supported by the Swiss National Science Foundation (SNSF) within
the project Convexity, geometry of numbers, and the complexity of integer programming
(Nr. 163071). The paper grew out of the master thesis of the second author [25].

On Compact Representations of Voronoi Cells of Lattices 271

Appendix

Lemma 3. Let n ∈ N≥4, a = �n/2�, and Λn = Λn(a). A vector v ∈ Λn is
Voronoi relevant if and only if v = ±1, or there exists ∅ �= S � {1, . . . , n} s.t.

vi = a − � (i ∈ S), vj = −� (j /∈ S), and � ∈ {�a|S|
n �, �a|S|

n �}. (3)

Proof (Sketch). Voronoi characterized a strictly Voronoi relevant vector v in a
lattice Λ by the property that ±v are the only shortest vectors in the co-set
v + 2Λ (cf. [8, p. 477]). We use this crucially to show that Voronoi relevant
vectors different from ±1 are characterized by (3).

The vectors ±1 are Voronoi relevant as they are shortest vectors of the lattice;
if two linearly independent shortest vectors v1, v2 were in the same co-set v1 +
2Λn, then (v1 +v2)/2 would be a strictly shorter vector. To analyze any shortest
vector u of some co-set v+2Λn, v ∈ Λn, we make the following two observations.
First, as 2aei ∈ 2Λn, we have u ∈ [−a, a]n. Due to the definition of Λn, either
u ∈ {0,±a}n, or u ∈ [−a + 1, a − 1]n. In the first case, if we have at least two
non-zero entries, we can flip the sign of one entry and obtain a vector of the same
length in the same co-set, but linearly independent. Hence, that co-set does not
have any Voronoi relevant vectors. In the other case, again due to vi ≡ vj mod a
for any lattice vector, u ∈ {a−�,−�}n for some 1 ≤ � < n. Considering the norm
of u as a function in � and bearing in mind that 1 ∈ 2Λn, we see that ‖u‖2 is
minimized precisely for the choices of � given in (3). Due to this line of thought,
in order to show that each vector u of shape (3) is indeed Voronoi relevant,
it suffices to show that any vector in {−a, 0, a}n is either longer than u, or in
another residue class.
�
Proof (Theorem 2). For brevity, we write c = c(Λn), Q = conv(FΛn

). As 1 ∈ Λn,
there exists a w ∈ Λ�

n with 1ᵀw = 1, implying that each basis of Λ�
n contains a

vector y such that 1ᵀy is an odd integer. In particular, by Lemma 1, we know
that c Q� contains such a y. As Q� is centrally symmetric, assume 1ᵀy ≥ 1.
Further, since Λ�

n is invariant under permutation of the coordinates, we may
assume that y1 ≥ y2 ≥ · · · ≥ yn. Let us outline our arguments: We split 1ᵀy
into two parts, by setting A :=

∑k
i=1 yi, and B :=

∑n
i>k yi, where k = �n/2�.

We show that A ≥ B + 1, and construct a Voronoi relevant vector v ∈ Λn by
choosing S = {1, . . . , k} and � = �ak/n�. Hence, (a − �), � ≈ n/4 and we obtain
vᵀy � n

4A − n
4B ≥ n/4 by distinguishing the four cases n mod 4.

For showing A ≥ B + 1, consider yk. As y ∈ Λ�
n, there is an integer z such

that we can write yk = z
a . Note that we have A ≥ kyk = z and B ≤ (n−k) z

a ≤ z.
Let α, γ ≥ 0 such that A = z + α and B = z − γ. As A + B = 2z + α − γ has to
be an odd integer, we have |α − γ| ≥ 1, implying α ≥ 1 or γ ≥ 1. Therefore, in
fact we have A ≥ max{B + 1, 1}.
�

We now give the details of the proof of Theorem 3. A dicing D in R
n is an

arrangement consisting of families of infinitely many equally-spaced hyperplanes
with the following properties: (i) there are n families with linearly independent

272 C. Hunkenschröder et al.

normal vectors, and (ii) every vertex of the arrangement is contained in a hyper-
plane of each family. The vertex set of a dicing forms a lattice Λ(D). Erdahl [12,
Thm. 3.1] represents a dicing D as a set D = {±d1, . . . ,±dr} of hyperplane
normals and a set E = {±e1, . . . ,±es} ⊆ Λ(D) of edge vectors of the arrange-
ment D = D(D,E) satisfying: (E1) Each pair of edges ±ej ∈ E is contained
in a line d⊥

i1
∩ . . . ∩ d⊥

in−1
, for some linearly independent di1 , . . . , din−1 ∈ D, and

conversely each such line contains a pair of edges; (E2) For each 1 ≤ i ≤ r and
1 ≤ j ≤ s, we have dᵀ

i ej ∈ {0,±1}.

Proof (Theorem 3). We start by reviewing the Delaunay tiling of the lattice Λ.
A sphere Bc(R) = {x ∈ R

n : ‖x − c‖2 ≤ R2} is called an empty sphere of Λ
(with center c ∈ R

n and radius R ≥ 0), if every point in Bc(R) ∩ Λ lies on the
boundary of Bc(R). A Delaunay polytope of Λ is defined as the convex hull of
Bc(R) ∩ Λ, and the family of all Delaunay polytopes induces a tiling DΛ of R

n

which is the Delaunay tiling of Λ. This tiling is in fact dual to the Voronoi tiling.
Erdahl [12, Thm. 2] shows that the Voronoi cell of a lattice is a zonotope if

and only if its Delaunay tiling is a dicing. More precisely, the tiling DΛ induced
by the Delaunay polytopes of Λ is equal to the tiling induced by the hyper-
plane arrangement of a dicing D = D(D,E) with normals D = {±d1, . . . ,±dr}
and edge vectors E = {±e1, . . . ,±es}. By the duality of the Delaunay and the
Voronoi tiling, an edge of DΛ containing the origin corresponds to a facet normal
of the Voronoi cell VΛ. Therefore, the edge vectors E are precisely the Voronoi
relevant vectors of Λ.

Now, choosing n linearly independent normal vectors, say d1, . . . , dn ∈ D, the
properties (E1) and (E2) imply the existence of edge vectors, say e1, . . . , en ∈ E,
such that dᵀ

i ej = δij , with δij being the Kronecker delta. Moreover, the set
B = {e1, . . . , en} is a basis of {x ∈ R

n : dᵀ
i x ∈ Z, 1 ≤ i ≤ n}, which by

property E2) equals the whole lattice Λ. Hence, {d1, . . . , dn} is the dual basis
of B and every Voronoi relevant vector v ∈ FΛ = E fulfills dᵀ

i v ∈ {0,±1}. In
view of Lemma 1 (iii), this means that B is a compact basis of Λ consisting of
Voronoi relevant vectors, as desired.
�
Proof (Corollary 1). By Proposition 1(ii), every lattice of rank ≤ 3 has a com-
pact basis. Thus, let Λ ⊆ R

4 be of full rank. If Λ is zonotopal, then by Theorem 3
c(Λ) = 1. Voronoi’s reduction theory shows that if Λ is not zonotopal, then its
Voronoi cell VΛ has the 24-cell as a Minkowski summand (cf. [28, Ch. 3]). Up
to isometries and scalings, the only lattice whose Voronoi cell is combinatorially
equivalent to the 24-cell, is the root lattice D4. Thus, we have a decomposition
VΛ = VΓ +Z(U), for some generators U = {u1, . . . , ur} ⊆ R

4 and a lattice Γ that
is isometric to D4. Hence, by Proposition 2, we get c(Λ) ≤ χ(Λ) ≤ χ(Γ) = χ(D4).
Engel et al. [11] computed that χ(D4) = 1, which finishes our proof.
�

On Compact Representations of Voronoi Cells of Lattices 273

References

1. Aggarwal, D., Stephens-Davidowitz, N.: Just take the average! an embarrassingly
simple 2n-time algorithm for SVP (and CVP). In: OASIcs-OpenAccess Series in
Informatics, vol. 61. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018).
https://doi.org/10.4230/OASIcs.SOSA.2018.12

2. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proceedings of the Thirty-Third Annual ACM Symposium on
Theory of Computing, pp. 601–610. ACM (2001). https://doi.org/10.1145/380752.
380857

3. Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and the closest
lattice vector problem. In: Proceedings 17th IEEE Annual Conference on Compu-
tational Complexity, pp. 53–57. IEEE (2002). https://doi.org/10.1109/CCC.2002.
1004339

4. Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lattices in Rn.
II. Application of K-convexity. Discrete Comput. Geom. 16(3), 305–311 (1996).
https://doi.org/10.1007/BF02711514

5. Bonifas, N., Dadush, D.: Short paths on the Voronoi graph and closest vector prob-
lem with preprocessing. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 295–314. SIAM, Philadelphia (2015).
https://doi.org/10.1137/1.9781611973730.22

6. Bost, J.B., Künnemann, K.: Hermitian vector bundles and extension groups on
arithmetic schemes I. Geometry of numbers. Adv. Math. 223(3), 987–1106 (2010).
https://doi.org/10.1016/j.aim.2009.09.005

7. Conway, J.H., Sloane, N.J.A.: Low-dimensional lattices. VI. Voronŏı reduction of
three-dimensional lattices. Proc. Roy. Soc. Lond. Ser. A 436(1896), 55–68 (1992).
https://doi.org/10.1098/rspa.1992.0004

8. Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups, Grundlehren
der Mathematischen Wissenschaften. Fundamental Principles of Mathematical Sci-
ences, 3rd edn., vol. 290. Springer, New York (1999). https://doi.org/10.1007/978-
1-4757-6568-7

9. Dutour Sikirić, M., Grishukhin, V., Magazinov, A.: On the sum of a parallelotope
and a zonotope. Eur. J. Combin. 42, 49–73 (2014). https://doi.org/10.1016/j.ejc.
2014.05.005

10. Engel, P.: Mathematical problems in modern crystallography. Comput. Math.
Appl. 16(5–8), 425–436 (1988). https://doi.org/10.1016/0898-1221(88)90232-5

11. Engel, P., Michel, L., Senechal, M.: New geometric invariants for Euclidean lattices.
In: Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign.
Math., vol. 37, pp. 268–272. Enseignement Math., Geneva (2001)

12. Erdahl, R.M.: Zonotopes, dicings, and Voronoi’s conjecture on parallelohedra. Eur.
J. Combin. 20(6), 527–549 (1999). https://doi.org/10.1006/eujc.1999.0294

13. Erdahl, R.M., Ryshkov, S.S.: On lattice dicing. Eur. J. Combin. 15(5), 459–481
(1994). https://doi.org/10.1006/eujc.1994.1049

14. Gruber, P.M.: Convex and discrete geometry, Grundlehren der Mathematis-
chen Wissenschaften. Fundamental Principles of Mathematical Sciences, vol. 336.
Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-71133-9

15. Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice
vector problems. In: Chee, Y.M., et al. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
159–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-
7 10

https://doi.org/10.4230/OASIcs.SOSA.2018.12
https://doi.org/10.1145/380752.380857
https://doi.org/10.1145/380752.380857
https://doi.org/10.1109/CCC.2002.1004339
https://doi.org/10.1109/CCC.2002.1004339
https://doi.org/10.1007/BF02711514
https://doi.org/10.1137/1.9781611973730.22
https://doi.org/10.1016/j.aim.2009.09.005
https://doi.org/10.1098/rspa.1992.0004
https://doi.org/10.1007/978-1-4757-6568-7
https://doi.org/10.1007/978-1-4757-6568-7
https://doi.org/10.1016/j.ejc.2014.05.005
https://doi.org/10.1016/j.ejc.2014.05.005
https://doi.org/10.1016/0898-1221(88)90232-5
https://doi.org/10.1006/eujc.1999.0294
https://doi.org/10.1006/eujc.1994.1049
https://doi.org/10.1007/978-3-540-71133-9
https://doi.org/10.1007/978-3-642-20901-7_10
https://doi.org/10.1007/978-3-642-20901-7_10

274 C. Hunkenschröder et al.

16. Hunkenschröder, C., Reuland, G., Schymura, M.: On compact representations of
Voronoi cells of lattices. https://arxiv.org/abs/1811.08532 (2018)

17. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987). https://doi.org/10.1287/moor.12.3.415

18. Kannan, R., Lovász, L.: Covering minima and lattice-point-free convex bodies.
Ann. Math. (2) 128(3), 577–602 (1988). https://doi.org/10.2307/1971436

19. Kuperberg, G.: From the mahler conjecture to gauss linking integrals. Geom.
Funct. Anal. 18(3), 870–892 (2008). https://doi.org/10.1007/s00039-008-0669-4

20. Martinet, J.: Perfect lattices in Euclidean spaces, Grundlehren der Mathematis-
chen Wissenschaften. Fundamental Principles of Mathematical Sciences, vol. 327.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05167-2

21. McKilliam, R.G., Grant, A., Clarkson, I.V.L.: Finding a closest point in a lattice
of Voronoi’s first kind. SIAM J. Discrete Math. 28(3), 1405–1422 (2014). https://
doi.org/10.1137/140952806

22. Micciancio, D.: The hardness of the closest vector problem with preprocessing.
IEEE Trans. Inform. Theory 47(3), 1212–1215 (2001). https://doi.org/10.1109/
18.915688

23. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm
for most lattice problems based on Voronoi cell computations. SIAM J. Comput.
42(3), 1364–1391 (2013). https://doi.org/10.1137/100811970

24. Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. Springer, Heidelberg (1973).
ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73

25. Reuland, G.: A Compact Representation of the Voronoi Cell. École Polytechnique
Fédérale de Lausanne, January 2018. Master thesis

26. Seysen, M.: A measure for the non-orthogonality of a lattice basis. Combin. Probab.
Comput. 8(3), 281–291 (1999). https://doi.org/10.1017/S0963548399003764

27. Sommer, N., Feder, M., Shalvi, O.: Finding the closest lattice point by iterative
slicing. SIAM J. Discrete Math. 23(2), 715–731 (2009). https://doi.org/10.1137/
060676362

28. Vallentin, F.: Sphere coverings, lattices, and tilings (in low dimensions). Ph.D.
thesis, Technical University Munich, Germany (2003). http://nbn-resolving.de/
urn/resolver.pl?urn:nbn:de:bvb:91-diss2003112600173, 128 p

29. Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes
quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. J.
Reine Angew. Math. 134, 198–287 (1908). https://doi.org/10.1515/crll.1908.134.
198

https://arxiv.org/abs/1811.08532
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.2307/1971436
https://doi.org/10.1007/s00039-008-0669-4
https://doi.org/10.1007/978-3-662-05167-2
https://doi.org/10.1137/140952806
https://doi.org/10.1137/140952806
https://doi.org/10.1109/18.915688
https://doi.org/10.1109/18.915688
https://doi.org/10.1137/100811970
https://doi.org/10.1017/S0963548399003764
https://doi.org/10.1137/060676362
https://doi.org/10.1137/060676362
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss2003112600173
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss2003112600173
https://doi.org/10.1515/crll.1908.134.198
https://doi.org/10.1515/crll.1908.134.198

An Efficient Characterization of
Submodular Spanning Tree Games

Zhuan Khye Koh1(B) and Laura Sanità2

1 Department of Mathematics, London School of Economics,
London WC2A 2AE, UK

z.koh3@lse.ac.uk
2 Department of Combinatorics and Optimization, University of Waterloo,

Waterloo, ON N2L 3G1, Canada
lsanita@uwaterloo.ca

Abstract. Cooperative games are an important class of problems in
game theory, where the goal is to distribute a value among a set of play-
ers who are allowed to cooperate by forming coalitions. An outcome of
the game is given by an allocation vector that assigns a value share to
each player. A crucial aspect of such games is submodularity (or convex-
ity). Indeed, convex instances of cooperative games exhibit several nice
properties, e.g. regarding the existence and computation of allocations
realizing some of the most important solution concepts proposed in the
literature. For this reason, a relevant question is whether one can give a
polynomial time characterization of submodular instances, for prominent
cooperative games that are in general non-convex.

In this paper, we focus on a fundamental and widely studied cooper-
ative game, namely the spanning tree game. An efficient recognition of
submodular instances of this game was not known so far, and explicitly
mentioned as an open question in the literature. We here settle this open
problem by giving a polynomial time characterization of submodular
spanning tree games.

Keywords: Spanning trees · Cooperative games ·
Submodular functions

1 Introduction

Cooperative games are among the most studied classes of problems in game
theory, with plenty of applications in economics, mathematics, and computer
science. In such games, the goal is to distribute cost (or revenue) among a set
of participants, usually called players, who are allowed to cooperate. Formally,
we are given a set of players N , and a characteristic function ν : 2N → IR, with

This work was supported by the NSERC Discovery Grant Program and an Early
Researcher Award by the Province of Ontario.
Z. K. Koh—This work was done while the author was at the University of Waterloo.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 275–287, 2019.
https://doi.org/10.1007/978-3-030-17953-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_21

276 Z. K. Koh and L. Sanità

ν(∅) = 0. Here, ν(S) represents the cost paid (revenue received) by the subset of
players S if they choose to form a coalition. An outcome of the game is given by
an allocation y ∈ IRN such that

∑
v∈N yv = ν(N), which assigns a cost (revenue)

share to each player. Of course, there are a number of criteria for evaluating how
“good” an allocation is, such as stability, fairness, and so on.

Probably the most popular solution concept for cooperative games is the core.
It is the set of stable outcomes where no subset of players has an incentive to
form a coalition to deviate. In a cooperative cost game, this translates naturally
to the following constraint:

∑
v∈S yv ≤ ν(S), for all S ⊆ N . Intuitively, if this

constraint is violated for some set S, the total cost currently paid by the players
in S is more than the total cost ν(S) they would have to pay if they form a
coalition – this incentivizes these players to deviate from the current allocation.
Besides the core, there are several other crucial solution concepts which have
been defined in the literature, e.g. the Shapley value, the nucleolus, the kernel, the
bargaining set, and the von Neumann-Morgenstern solution set (we refer to [2]
for details). Many fundamental questions involving such solution concepts have
been investigated in the past few decades: Which cooperative game instances
admit an allocation realizing a particular solution concept? Can we efficiently
compute it? Can we test whether a given allocation belong to such sets?

Submodularity (or convexity) is a crucial property which yields interesting
answers to some of the questions above. An instance of a cooperative cost game
is called submodular if the characteristic function ν is submodular, meaning that

∀A,B ⊆ N, ν(A) + ν(B) ≥ ν(A ∪ B) + ν(A ∩ B). (∗)

Submodular games exhibit a large number of desirable properties. In particular,
(i) a core solution always exists and can be computed in polynomial time [14];
(ii) testing whether an allocation belongs to the core is equivalent to separating
over the extended polymatroid of ν, which can be performed efficiently [8]; (iii)
computing the nucleolus can be done efficiently [10]; (iv) there is a nice “snow-
balling” effect that arises when the game is played cooperatively, meaning that
joining a coalition becomes more attractive as the coalition grows, and so the
value of the so-called grand coalition ν(N) is always reached [14]. We refer to
[11,14] for other interesting properties of submodular games involving other cru-
cial solution concepts. Given these observations, it is not surprising that some
researchers have investigated whether it is possible to give an efficient charac-
terization of submodular instances, for prominent cooperative games that are
in general non-convex. Such characterizations are known, for example, for the
minimum coloring game and the minimum vertex cover game [13], as well as for
some communication games [12].

This paper focuses on one of the most fundamental cooperative games,
namely the spanning tree game. This game was introduced more than 40 years
ago [1,3], and since then it has been widely studied in the literature. To get an
intuition about the problem, consider the following setting. A set of clients N
would like to be connected to a central source r which can provide a service to
them. The clients wish to build a network connecting them to the source r, at

An Efficient Characterization of Submodular Spanning Tree Games 277

minimum cost. An obvious way to solve this problem is to compute a minimum
spanning tree connecting N ∪ {r}. But how should the clients fairly split the
cost of the tree among them? Formally, an instance of the spanning tree game is
described by an edge-weighted complete graph G = (V,E) where V = N ∪ {r}.
The set of players is given by N , and the characteristic function ν(S) is equal
to the cost of a minimum spanning tree in the subgraph induced by S ∪ {r}.

Despite being one of the most studied cooperative games, the existence of
an efficient characterization of submodularity for the spanning tree game has
remained elusive so far. Granot and Huberman [7] proved that spanning tree
games are permutationally convex (which is a generalization of submodularity).
Their result implies that a core solution always exists for such games, despite
being non-convex in general (this was first proven by the same authors in [6]).
However, other nice properties of submodular games do not generalize: for gen-
eral spanning tree games, testing core membership is coNP-hard [4], and com-
puting the nucleolus is NP-hard [5]. Trudeau [15] gave a sufficient condition for
an instance of the game to be submodular. An important step forward was made
by Kobayashi and Okamoto [9], who gave a characterization of submodularity
for instances of the spanning tree game where the edge weights are restricted to
take only two values. For general weights, they stated some necessary (but not
always sufficient) as well as some sufficient (but not always necessary) conditions
for an instance to be submodular. Whether a polynomial time characterization
of submodularity exists for spanning tree games is left as an open question. In
fact, they stated twice in their paper:

“We feel that recognizing a submodular minimum-cost spanning tree game is
coNP-complete, but we are still far from proving such a result.”

Our Results and Techniques. In this paper, we finally settle this open ques-
tion: we give a polynomial time characterization of submodular spanning tree
games.

Our characterization uses combinatorial techniques and it is based on two
main ingredients. The first one, described in Sect. 3, is a generalization of
Kobayashi and Okamoto’s result [9]. When the edges can have only two dis-
tinct weights, they proved that the only obstruction to submodularity comes
from the presence of certain cycles in the graph induced by the cheaper edges.
When dealing with more weight values, say w1 < w2 < · · · < wk, things become
necessarily more complicated. We can still prove that an obstruction to submod-
ularity is given by certain cycles, which we call violated, but (a) our definition
of violated cycles is more involved than the one in [9], and (b) we have to look
for such cycles not just in one induced graph, but in each graph induced by the
edges of weight at most wi, for all i < k.

Furthermore, the presence of violated cycles is not anymore the only obstruc-
tion to submodularity. Roughly speaking, violated cycles capture how the edges
of a certain weight should relate to the cheaper ones, but we still need a condition
that takes into account the “magnitude” of distinct weight values, when k > 2.
This leads to the second main ingredient of our characterization, described in
Sect. 4. We show that, under the assumption of not having violated cycles, we

278 Z. K. Koh and L. Sanità

can identify polynomially many subsets of vertices which could yield the highest
possible violation to the submodularity inequality (∗). We can then efficiently
test the submodularity of our instance by checking whether the inequality (∗) is
satisfied on this family of subsets of vertices. Combining these two ingredients
yields a polynomial time characterization of submodularity for spanning tree
games, as described in Sect. 5.

2 Preliminaries and Notation

For a subset S ⊆ V , let mst(S) denote the weight of a minimum spanning tree
in G[S], where G[S] is the subgraph of G induced by S. Given a subgraph H
of G, let w(H) denote the sum of edge weights in H, i.e.

∑
e∈E(H) w(e). For

an edge set F , we will also use w(F) to indicate the sum of edge weights in
F . For a vertex u ∈ V , NH(u) is the neighborhood of u in H, while δH(u) is
the set of edges incident to u in H. Given a pair of vertices u, v ∈ N , let Suv

denote the family of vertex subsets which contain r but not u or v, i.e. Suv :=
{S ⊆ V : r ∈ S and u, v /∈ S}. Define the function fuv : Suv → IR as

fuv(S) := mst(S ∪ u) + mst(S ∪ v) − mst(S) − mst(S ∪ {u, v}).

It is easy to see that the spanning tree game on G is submodular if and only if
fuv(S) ≥ 0 for all u, v ∈ N and S ∈ Suv. Let w1 < w2 < · · · < wk be the edge-
weights of G. For each i ∈ {1, 2, . . . , k}, define the graph Gi := (V,Ei) where
Ei := {e ∈ E : w(e) ≤ wi}. Note that Gk = G. For a vertex u ∈ V , denote Ni(u)
as the neighborhood of u in Gi. For an edge uv ∈ E, define the neighborhood of
uv in Gi as

Ni(uv) := Ni(u) ∩ Ni(v).

It represents the set of vertices whose edges to u and v have weight at most
wi. Notice that u, v /∈ Ni(uv). We will also need the following graph theory
terminology. A hole is an induced cycle with at least four vertices. A diamond is
the complete graph K4 minus one edge. We will refer to the vertices of degree 2
in a diamond as tips. Lastly, the following property of minimum spanning trees
will be useful to us (we omit its straightforward proof).

Lemma 1. Let T be a minimum spanning tree of G. For every subset S ⊆ V ,
there exists a minimum spanning tree of G[S] which contains E(T [S]).

3 Violated Cycles

In this section, we will prove that a submodular spanning tree game does not
contain violated cycles, which will be defined later. First, we need to introduce
the concept of well-covered cycles.

Definition 1. Given a cycle C and a chord f = uv, let P1 and P2 denote the
two u-v paths in C. The cycles P1 + f and P2 + f are called the subcycles of C
formed by f . We say that f covers C if w(f) ≥ w(e) for all e ∈ E(P1) or for all
e ∈ E(P2). If C is covered by all of its chords, then it is well-covered.

An Efficient Characterization of Submodular Spanning Tree Games 279

Next, we define the following two simple structures. We then proceed to show
that a submodular spanning tree game does not contain either of them.

Definition 2. A hole is bad if at least one of its vertices is not adjacent to r.
An induced diamond is bad if its hamiltonian cycle is well-covered but at least
one of its tips is not adjacent to r.

The proof of the next lemma can be found in the appendix.

Lemma 2. If the spanning tree game on G is submodular, then there are no (a)
bad holes or (b) bad induced diamonds in Gi for all i < k.

We are now ready to define the main object of study in this section:

Definition 3. A violated cycle is a well-covered cycle which contains at least a
pair of non-adjacent vertices and at least a vertex not adjacent to r.

Observe that bad holes and hamiltonian cycles of bad induced diamonds are
examples of violated cycles (we consider a hole to be well-covered). The next
lemma extends the scope of Lemma 2 to include violated cycles. When k = 2,
this coincides with the condition given by Kobayashi and Okamoto [9] because
every cycle in G1 is well-covered.

Lemma 3. If the spanning tree game on G is submodular, then there are no
violated cycles in Gi for all i < k.

Proof. We will prove the contrapositive. Let j be the smallest integer such that
Gj contains a violated cycle. By our choice of j, there are no violated cycles in Gi

for all i < j. Let C be a smallest violated cycle in Gj . Then, maxe∈E(C) w(e) =
wj . We first prove the following claim:

Claim. For any chord f , the subcycles of C formed by f are well-covered.

Proof. Let C1 and C2 denote the subcycles of C formed by f . For the purpose
of contradiction, suppose C2 is not well-covered. Let g = uv be the cheapest
chord in C2 such that w(g) < w(f) and w(g) < w(h) for some edge h ∈ E(C2),
where f and h lie in different subcycles of C2 formed by g (see Fig. 1 for an
example). This chord exists because C is well-covered but C2 is not. Consider
the subcycles C3 and C4 of C formed by g, where f is a chord of the former.
Observe that C3 is well-covered because w(g) < w(h), while C4 is well-covered
due to our choice of g. Moreover, we have w(g) ≥ w(e) for all e ∈ E(C3) as C
is well-covered. Let w(g) = w� for some � < j. Then, C3 is still present in G�

but not f because w(g) < w(f). Thus, the vertices of C3 are adjacent to r in G�

because there are no violated cycles in G�. In particular, we have ru, rv ∈ E�.
Next, since C is a violated cycle in Gj , there exists a vertex s ∈ V (C4) \ V (C3)
such that rs /∈ Ej . This implies that the vertices of C4 are pairwise adjacent
in Gj , as otherwise it is a smaller violated cycle than C. In particular, we have
su, sv ∈ Ej . Now, consider the 4-cycle D defined by E(D) := {ru, rv, su, sv}. It
is well-covered because w(g) = w� and ru, rv ∈ E�. As rs /∈ Ej , it is a violated
cycle in Gj . However, it is smaller than C because C3 has at least 4 vertices. We
have arrived at a contradiction. �

280 Z. K. Koh and L. Sanità

r s

u

v

h

f g

Fig. 1. The ellipse represents the violated cycle C in the previous claim. The shaded
region highlights the smaller violated cycle D. The dashed edge indicates rs /∈ Ej .

Our goal is to show the existence of a bad hole or a bad induced diamond in
Gj . Then, we can invoke Lemma 2 to conclude that the game is not submodular.
We may assume there is at least one chord in C, otherwise it is a bad hole. First,
consider the case when r ∈ V (C). Let s ∈ V (C) where rs /∈ Ej . For any chord
f in C, observe that r and s lie in different subcycles of C formed by f . This is
because the subcycles are well-covered by the previous claim, so the one which
contains both r and s will contradict the minimality of C. Now, let g be a chord
of C. Let Cr and Cs denote the subcycles of C formed by g where r ∈ V (Cr)
and s ∈ V (Cs). The vertices of Cr are adjacent to r due to the minimality of C.
Thus, Cr is a triangle. Otherwise, there exists a chord in Cr incident to r, and it
forms a subcycle of C which contains both r and s. By an analogous argument,
Cs is also a triangle. Therefore, C is a bad induced diamond in Gj .

Next, consider the case when r /∈ V (C). From this point forward, we may
assume that every smallest violated cycle in Gj does not contain r. Otherwise, we
are back in the first case again. With this additional assumption, non-adjacency
within C implies non-adjacency with r, as shown by the following claim.

Claim. For any pair of vertices u, v ∈ V (C) such that uv /∈ Ej , we have ru /∈ Ej

or rv /∈ Ej .

Proof. For the purpose of contradiction, suppose ru, rv ∈ Ej . Let s ∈ V (C) such
that rs /∈ Ej . Let Psu and Psv denote the edge-disjoint s-u and s-v paths in C
respectively. Let u′ and v′ be the closest vertex to s on Psu and Psv respectively
such that ru′, rv′ ∈ Ej (see Fig. 2 for an example). Without loss of generality, let
w(ru′) ≥ w(rv′). Denote Psu′ and Psv′ as the s-u′ and s-v′ subpaths of Psu and
Psv respectively. Now, consider the cycle D := Psu′ + Psv′ + ru′ + rv′. Observe
that it contains r and is no bigger than C. Furthermore, it does not contain a
chord incident to r by our choice of u′ and v′. To arrive at a contradiction, it is
left to show that D is well-covered, as this would imply D is violated. Suppose
for a contradiction, that D is not well-covered. Then, there exists a chord g in
D such that w(g) < w(ru′) and w(g) < w(h) for some h ∈ E(D), where ru′

and h lie in different subcycles of D formed by g. This chord exists because C
is well-covered but D is not. Let C1 and C2 denote the subcycles of C formed
by g, where h ∈ E(C2). Note that C1 is well-covered because w(g) < w(h).
Moreover, we also have w(g) ≥ w(e) for all e ∈ E(C1) because C is well-covered.
Let w(g) = w� for some � < j. Then, C1 is still present in G� but not ru′. Since

An Efficient Characterization of Submodular Spanning Tree Games 281

C1 also contains u, v and uv /∈ E�, it is a violated cycle in G�. However, this is
a contradiction because there are no violated cycles in G�. �

r s

u = u′

v = v′

h

g

Fig. 2. The ellipse represents the violated cycle C in the previous claim. The shaded
region highlights the violated cycle D. The dashed edges indicate non-adjacency in Gj .
In this example, u = u′ and v = v′.

The remaining proof proceeds in a similar fashion to the first case. Let u, v ∈
V (C) such that uv /∈ Ej . By the claim above, we know that ru /∈ Ej or rv /∈ Ej .
For any chord f in C, observe that u and v lie in different subcycles of C formed
by f . This is because the subcycles are well-covered, so the one which contains
both u and v will contradict the minimality of C. Now, let g be a chord of C.
Let Cu and Cv denote the subcycles of C formed by g where u ∈ V (Cu) and
v ∈ V (Cv). The vertices of Cu are pairwise adjacent due to the minimality of C.
Thus, Cu is a triangle. Otherwise, there exists a chord in Cu incident to u, and it
forms a subcycle of C which contains both u and v. By an analogous argument,
Cv is also a triangle. Therefore, C is a bad induced diamond in Gj . �

Observe that we have proven something stronger. Namely, if Gj contains a
violated cycle, then there exists an i ≤ j such that Gi contains a bad hole or a
bad induced diamond. Thus, if there are no bad holes or bad induced diamonds
in Gi for all i < k, then there are no violated cycles in these subgraphs too. As
a result, verifying the condition in Lemma 3 reduces to searching for bad holes
and bad induced diamonds in Gi, which can be done efficiently. To look for bad
holes, one could check if there exists a hole through a given vertex v for all v ∈ N
where rv /∈ Ei. To look for bad induced diamonds, a naive implementation would
involve examining all vertex subsets of size 4, which still runs in polynomial time.

4 Candidate Edges and Expensive Neighborhood

In the previous section, we have shown that violated cycles are an obstruction
to submodularity. Moreover, their existence can be tested in polynomial time. In
light of this fact, we now focus on graphs which do not contain violated cycles.
For the sake of brevity, we will use (�) to denote the following property:

There are no violated cycles in Gi for all i < k.

282 Z. K. Koh and L. Sanità

The goal of this section is to study the behaviour of fuv assuming (�) holds.
As a first step, the following lemma sheds light on how a minimum spanning
tree changes under vertex removal.

Lemma 4. Assume (�) holds. Let T be a minimum spanning tree of G[S] where
r ∈ S ⊆ V . For any s �= r, there exists a minimum spanning tree of G[S \ s]
which contains E(T \ s) and additionally, only uses edges from G[NT (s) ∪ r].

Proof. Pick a vertex s ∈ S \ r. By Lemma 1, there exists a minimum spanning
tree of G[S\s] which contains E(T \s). Let T ′ be such a tree which uses the most
edges from G[NT (s)∪r]. We will show that T ′ is our desired tree. For the purpose
of contradiction, suppose T ′ has an edge uv where uv /∈ E(T) and u /∈ NT (s)∪r.
Note that u and v lie in different components of T \ s. Let Psu and Psv denote
the unique s-u and s-v paths in T respectively. Then, C := Psu ∪ Psv ∪ uv is a
well-covered cycle in Gi where w(uv) = wi. Let u′ and v′ be the vertices adjacent
to s in Psu and Psv respectively. By our choice of T ′, w(u′v′) > w(uv). Since uv
is the most expensive edge in C, the vertices of C are not pairwise adjacent in
Gi. So they are adjacent to r in Gi. However, adding ru′ or rv′ to T ′ creates a
fundamental cycle which uses the edge uv. Swapping it with uv creates another
minimum spanning tree of G[S \ s] which contains E(T \ s) and uses more edges
from G[NT (s) ∪ r]. We have arrived at a contradiction. �

Given a pair of vertices u, v ∈ N where w(uv) = wi, the following definition
distinguishes the neighbours of u, v in G from the neighbours of u, v in Gi.

Definition 4. For an edge uv ∈ E, if w(uv) = wi, the expensive neighborhood
of uv is defined as

N̂(uv) := Nk(uv) \ Ni(uv).

In other words, the expensive neighborhood of an edge uv is the set of vertices
s /∈ {u, v} such that max {w(su), w(sv)} > w(uv). It turns out that the function
fuv always returns zero when evaluated on a set which does not lie entirely in
the expensive neighborhood of uv.

Lemma 5. Assume (�) holds. Let u, v ∈ N and S ∈ Suv. If S �⊆ N̂(uv), then
fuv(S) = 0.

Proof. Let T be a minimum spanning tree of G[S ∪ {u, v}]. First, we show that
we can assume uv /∈ E(T). Since S �⊆ N̂(uv), there exists a vertex s ∈ S such
that max {w(su), w(sv)} ≤ w(uv). If uv ∈ E(T), then by rooting T at s, u is
either a child or a parent of v. Adding su to T in the former and sv in the
latter creates a fundamental cycle which contains uv. Thus, we can replace uv
with this new edge to obtain the desired tree. Now, by Lemma 4, there exists a
minimum spanning tree T ′ of G[S ∪v] which contains E(T \u) and additionally,
only uses edges from G[NT (u) ∪ r]. Since v /∈ NT (u) ∪ r, the neighborhood of v
is identical in both trees, i.e. NT (v) = NT ′(v).

Consider the forest T \ v. Let p ∈ NT (v) such that p and r lie in the same
component of T \v (see Fig. 3 for an example). Note that p = r if r ∈ NT (v). We

An Efficient Characterization of Submodular Spanning Tree Games 283

claim that p and r also lie in the same component of the forest T ′ \ v. We may
assume that p �= r, as otherwise the claim is trivially true. Moreover, we may
assume that u lies on the unique p-r path in T . Otherwise, we are done because
the same path is present in T ′ \ v. Let Cr denote the component of T \ v which
contains p, r and u. By Lemma 4, the endpoints of every edge in E(T ′)\E(T \u)
lie in Cr. This proves the claim.

Using Lemma 4, we can construct a minimum spanning tree of G[S ∪ u] by
deleting v from T and adding a set of edges F from G[NT (v) ∪ r]. Note that
pr /∈ F as p and r lie in the same component of T \ v. Since p and r also lie
in the same component of T ′ \ v and NT (v) = NT ′(v), deleting v from T ′ and
adding F creates a minimum spanning tree of G[S]. Thus, we get

fuv(S) = mst(S ∪ u) + mst(S ∪ v) − mst(S) − mst(S ∪ {u, v})

=
(
mst(S ∪ u) − w(T)

)
−

(
mst(S) − w(T ′)

)

=
(
w(F) − w(δT (v))

)
−

(
w(F) − w(δT ′(v))

)
= 0

as desired. �

v

p

u

r
v

p

r

Fig. 3. The left image depicts an example of the minimum spanning tree T in G[S ∪
{u, v}]. The right image depicts an example of the minimum spanning tree T ′ in G[S∪v].
The solid edges belong to the trees while dashed edges belong to the edge set F .

We can now focus solely on vertex sets which lie entirely in the expensive
neighborhood of uv. Observe that if r /∈ N̂(uv), then S �⊆ N̂(uv) for all S ∈ Suv.
Thus, we do not have to check these edges as fuv(S) = 0 for all S ∈ Suv by the
previous lemma. This motivates the following definition:

Definition 5. An edge uv ∈ E is called a candidate edge if r ∈ N̂(uv).

With a mild assumption, we can show that the function fuv is inclusion-wise
nonincreasing in the expensive neighborhood of uv.

Lemma 6. Assume (�) holds and fxy(N̂(xy)) ≥ 0 for every candidate edge xy.
Let uv be a candidate edge and S ∈ Suv such that S ⊆ N̂(uv). For any s �= r,
fuv(S) ≤ fuv(S \ s).

284 Z. K. Koh and L. Sanità

Proof. Pick a vertex s ∈ S\r. Without loss of generality, assume w(su) ≥ w(sv).
Then, w(su) > w(uv) because s ∈ N̂(uv). However, these two inequalities also
imply that v /∈ N̂(su). It follows that the set (S \ s) ∪ v is not contained in the
expensive neighborhood of su. By Lemma 5,

0 = fsu((S \ s) ∪ v)
= mst(S ∪ v) + mst((S \ s) ∪ {u, v}) − mst((S \ s) ∪ v) − mst(S ∪ {u, v}).

Rearranging yields

mst(S ∪ v) − mst(S ∪ {u, v}) = mst((S \ s) ∪ v) − mst((S \ s) ∪ {u, v}). (1)

Since uv is a candidate edge, let w(uv) = wi for some i < k. We will proceed by
induction on i. For the base case i = k−1, we have wk−1 = w(uv) < w(su) = wk.
Since N̂(su) = ∅, the set S \ s is not contained in the expensive neighborhood
of su because r ∈ S \ s. By Lemma 5,

0 = fsu(S \ s) = mst(S) + mst((S \ s) ∪ u) − mst(S \ s) − mst(S ∪ u).

Rearranging yields

mst(S ∪ u) − mst(S) = mst((S \ s) ∪ u) − mst(S \ s). (2)

Adding (1) and (2) gives fuv(S) = fuv(S \ s). Now, suppose the lemma is true
for all i ≥ j for some j < k. For the inductive step, let w(uv) = wj−1. We may
assume that S \ s ⊆ N̂(su), as otherwise we obtain equality again. This implies
that su is a candidate edge because r ∈ S \ s. Since w(su) > w(uv) = wj−1, by
the inductive hypothesis we obtain

0 ≤ fsu(N̂(su))
≤ fsu(S \ s) = mst(S) + mst((S \ s) ∪ u) − mst(S \ s) − mst(S ∪ u)

where the first inequality is due to our assumption. Then, by rearranging and
adding it to (1), we obtain fuv(S) ≤ fuv(S \ s) as desired. �

5 Characterization of Submodularity

We are finally ready to give an efficient characterization of submodular spanning
tree games.

Theorem 1. The spanning tree game on G is submodular if and only if:

(i) There are no violated cycles in Gi for all i < k.
(ii) For every candidate edge uv, fuv(N̂(uv)) ≥ 0.

Furthermore, these conditions can be verified in polynomial time.

An Efficient Characterization of Submodular Spanning Tree Games 285

Proof. For necessity, assume the game is submodular. Then, Condition (i) is
satisfied by Lemma 3 while Condition (ii) is satisfied trivially. For sufficiency,
assume Conditions (i) and (ii) hold. Let u, v ∈ N and S ∈ Suv. If S �⊆ N̂(uv),
then fuv(S) = 0 by Lemma 5. On the other hand, if S ⊆ N̂(uv), then uv is a
candidate edge. By Lemma 6,

fuv(S) ≥ fuv(N̂(uv)) ≥ 0.

Therefore, the game is submodular.
Finally, Condition (ii) can clearly be verified in polynomial time, and

Condition (i) can be verified in polynomial time as discussed at the end of
Sect. 3. �

Appendix

Proof of Lemma2(a)

We will prove the contrapositive. Let C be a bad hole in Gi for some i < k.
Consider the following cases:

Case 1: C contains r. Let u, v be the vertices adjacent to r in C. Let P be the
path obtained by deleting r, u, v from C. Let u′, v′ be the endpoints of P where
uu′, vv′ ∈ E(C). Note that u′ = v′ if P is a singleton. Let S = V (P) ∪ r. Then,

mst(S) ≥ w(P) + wi+1

mst(S ∪ u) = w(P) + w(ru) + w(uu′)
mst(S ∪ v) = w(P) + w(rv) + w(vv′)

mst(S ∪ {u, v}) ≥ w(P) + w(ru) + w(uu′) + w(rv) + w(vv′) − wi

which yields: mst(S ∪u)+mst(S ∪v)−mst(S)−mst(S ∪{u, v}) ≤ wi −wi+1 < 0.

Case 2: Cdoes not contain r. Let s = arg minx∈V (C) w(rx). Let u, v be the
vertices adjacent to s in C. Let P be the path obtained by deleting s, u, v from
C. Let u′, v′ be the endpoints of P where uu′, vv′ ∈ E(C). Let S = V (P)∪{r, s}.
Observe that if r is adjacent to two non-adjacent vertices of C, then we are done
because there is a bad hole containing r. We are left with the following subcases:

Subcase 2.1: r is adjacent to at most one vertex of C. We have

mst(S) ≥ w(P) + w(rs) + wi+1

mst(S ∪ u) = w(P) + w(rs) + w(su) + w(uu′)
mst(S ∪ v) = w(P) + w(rs) + w(sv) + w(vv′)

mst(S ∪ {u, v}) ≥ w(P) + w(rs) + w(su) + w(uu′) + w(sv) + w(vv′) − wi

which yields: mst(S ∪u)+mst(S ∪v)−mst(S)−mst(S ∪{u, v}) ≤ wi −wi+1 < 0.

286 Z. K. Koh and L. Sanità

Subcase 2.2: r is adjacent to two vertices of C. Suppose rs, ru ∈ Ei. Then,

mst(S) ≥ w(P) + w(rs) + wi+1

mst(S ∪ u) = w(P) + w(rs) + min {w(ru), w(su)} + w(uu′)

mst(S ∪ v) = w(P) + w(rs) + w(sv) + w(vv′)

mst(S ∪ {u, v}) ≥ w(P) + w(rs) + min {w(ru), w(su)} + w(uu′) + w(sv) + w(vv′) − wi

which yields: mst(S ∪u)+mst(S ∪v)−mst(S)−mst(S ∪{u, v}) ≤ wi −wi+1 < 0.
�

Proof of Lemma2(b)

We will prove the contrapositive. Let D be a bad induced diamond in Gi for
some i < k. Consider the following cases:

Case 1: D contains r. Note that r is a tip of D. Let s be the other tip and u, v
be the non-tip vertices of D. Let S = {r, s}. Then,

mst(S) ≥ wi+1

mst(S ∪ u) = w(ru) + w(su)
mst(S ∪ v) = w(rv) + w(sv)

mst(S ∪ {u, v}) ≥ w(ru) + w(su) + w(rv) + w(sv) − wi

which yields: mst(S ∪u)+mst(S ∪v)−mst(S)−mst(S ∪{u, v}) ≤ wi −wi+1 < 0.

Case 2: D does not contain r. Let s, t be the tips of D where w(rs) ≤ w(rt).
Note that rt /∈ Ei. Let u, v be the non-tip vertices of D where w(ru) ≤ w(rv).
Let S = {r, s, t}. Consider the following subcases:

Subcase 2.1: r is adjacent to at most one vertex of D. Note that rv /∈ Ei. So,

mst(S) ≥ w(rs) + wi+1

mst(S ∪ u) = min {w(rs), w(ru)} + w(su) + w(tu)
mst(S ∪ v) = min {w(rs), w(rv)} + w(sv) + w(tv)

mst(S ∪ {u, v}) ≥ min {w(rs), w(ru)} + w(su) + w(tu) + w(sv) + w(tv) − wi

which yields: mst(S ∪u)+mst(S ∪v)−mst(S)−mst(S ∪{u, v}) ≤ wi −wi+1 < 0.

Subcase 2.2: r is adjacent to two vertices of D. Observe that if ru, rv ∈ Ei, then
we are done because there is a bad induced diamond containing r. So, let rv /∈ Ei.
This implies rs, ru ∈ Ei. We may also assume w(su) < max {w(rs), w(ru)}.
Otherwise, {rs, ru, su, sv, uv} is a bad induced diamond containing r. Then,

mst(S) ≥ w(rs) + wi+1

mst(S ∪ u) = min {w(rs), w(ru)} + w(su) + w(tu)
mst(S ∪ v) = w(rs) + w(sv) + w(tv)

mst(S ∪ {u, v}) ≥ min {w(rs), w(ru)} + w(su) + w(tu) + w(sv) + w(tv) − wi

An Efficient Characterization of Submodular Spanning Tree Games 287

which yields: mst(S ∪u)+mst(S ∪v)−mst(S)−mst(S ∪{u, v}) ≤ wi −wi+1 < 0.

Subcase 2.3: r is adjacent to three vertices of D. Let w(rv) = wj for some
j ≤ i. Consider the induced diamond {ru, rv, tu, tv, uv}. If it is well-covered,
then we are done because it is bad and contains r. So let max {w(su), w(sv)} ≤
w(uv) < w(rv). We may also assume w(su) < max {w(rs), w(ru)}. Otherwise,
{rs, ru, su, sv, uv} is a bad induced diamond in Gj−1 which contains r. Then,

mst(S) ≥ w(rs) + wi+1

mst(S ∪ u) = min {w(rs), w(ru)} + w(su) + w(tu)
mst(S ∪ v) = min {w(rs), w(rv)} + w(sv) + w(tv)

mst(S ∪ {u, v}) ≥ min {w(rs), w(ru)} + w(su) + w(tu) + w(sv) + w(tv) − wi

which yields: mst(S ∪u)+mst(S ∪v)−mst(S)−mst(S ∪{u, v}) ≤ wi −wi+1 < 0.
�

References

1. Bird, C.G.: On cost allocation for a spanning tree: a game theoretic approach.
Networks 6(4), 335–350 (1976)

2. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Coop-
erative Game Theory. Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers, San Rafael (2011)

3. Claus, A., Kleitman, D.J.: Cost allocation for a spanning tree. Networks 3(4),
289–304 (1973)

4. Faigle, U., Kern, W., Fekete, S.P., Hochstättler, W.: On the complexity of testing
membership in the core of min-cost spanning tree games. Int. J. Game Theory
26(3), 361–366 (1997)

5. Faigle, U., Kern, W., Kuipers, J.: Note computing the nucleolus of min-cost span-
ning tree games is NP-hard. Int. J. Game Theory 27(3), 443–450 (1998)

6. Granot, D., Huberman, G.: Minimum cost spanning tree games. Math. Program.
21(1), 1–18 (1981)

7. Granot, D., Huberman, G.: The relationship between convex games and minimum
cost spanning tree games: a case for permutationally convex games. SIAM J. Alge-
braic Discrete Methods 3(3), 288–292 (1982)

8. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization, Algorithms and Combinatorics, vol. 2. Springer, Heidelberg (1993).
https://doi.org/10.1007/978-3-642-78240-4

9. Kobayashi, M., Okamoto, Y.: Submodularity of minimum-cost spanning tree
games. Networks 63(3), 231–238 (2014)

10. Kuipers, J.: A polynomial time algorithm for computing the nucleolus of convex
games. Report M 96–12, Maastricht University (1996)

11. Maschler, M., Peleg, B., Shapley, L.S.: The kernel and bargaining set for convex
games. Int. J. Game Theory 1(1), 73–93 (1971)

12. van den Nouweland, A., Borm, P.: On the convexity of communication games. Int.
J. Game Theory 19(4), 421–430 (1991)

13. Okamoto, Y.: Submodularity of some classes of the combinatorial optimization
games. Math. Methods Oper. Res. 58(1), 131–139 (2003)

14. Shapley, L.S.: Cores of convex games. Int. J. Game Theory 1(1), 11–26 (1971)
15. Trudeau, C.: A new stable and more responsive cost sharing solution for minimum

cost spanning tree problems. Games Econ. Behav. 75(1), 402–412 (2012)

https://doi.org/10.1007/978-3-642-78240-4

The Asymmetric Traveling Salesman
Path LP Has Constant Integrality Ratio

Anna Köhne, Vera Traub(B), and Jens Vygen

Research Institute for Discrete Mathematics, University of Bonn, Bonn, Germany
{koehne,traub,vygen}@or.uni-bonn.de

Abstract. We show that the classical LP relaxation of the asymmetric
traveling salesman path problem (ATSPP) has constant integrality ratio.
If ρATSP and ρATSPP denote the integrality ratios for the asymmetric TSP
and its path version, then ρATSPP ≤ 4ρATSP − 3.

We prove an even better bound for node-weighted instances: if the
integrality ratio for ATSP on node-weighted instances is ρNW

ATSP, then
the integrality ratio for ATSPP on node-weighted instances is at most
2ρNW

ATSP − 1. Moreover, we show that for ATSP node-weighted instances
and unweighted digraph instances are almost equivalent. From this we
deduce a lower bound of 2 on the integrality ratio of unweighted digraph
instances.

1 Introduction

In the asymmetric traveling salesman path problem (ATSPP), we are given a
directed graph G = (V,E), two vertices s, t ∈ V , and weights c : E → R≥0∪{∞}.
We look for a sequence s = v0, v1, . . . , vk = t that contains every vertex at least
once (an s-t-tour); the goal is to minimize

∑k
i=1 c(vi−1, vi). Equivalently, we can

assume that G is complete and the triangle inequality c(u, v)+ c(v, w) ≥ c(u,w)
holds for all u, v, w ∈ V , and require the sequence to contain every vertex exactly
once.

The special case s = t is known as the asymmetric traveling salesman problem
(ATSP). In a recent breakthrough, Svensson, Tarnawski, and Végh [11] found the
first constant-factor approximation algorithm for ATSP, and they also proved
that its standard LP relaxation has constant integrality ratio.

Feige and Singh [4] showed that any α-approximation algorithm for ATSP
implies a (2α + ε)-approximation algorithm for ATSPP (for any ε > 0). Hence
ATSPP also has a constant-factor approximation algorithm. In this paper we
prove a similar relation for the integrality ratios. This answers an open question
by Friggstad, Gupta, and Singh [5].

Given that the upper bound on the integrality ratio by Svensson, Tarnawski,
and Végh [11] is a large constant that will probably be improved in the future,
such a blackbox result seems particularly desirable. Any improved upper bound
on the integrality ratio for ATSP then immediately implies a better bound for
the path version.
c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 288–298, 2019.
https://doi.org/10.1007/978-3-030-17953-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_22&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_22

Asymmetric Traveling Salesman Path LP 289

1.1 The Linear Programming Relaxation

The classical linear programming relaxation for ATSPP (for s �= t) is

min c(x)

s.t. x(δ−(s)) − x(δ+(s)) = −1

x(δ−(t)) − x(δ+(t)) = 1

x(δ−(v)) − x(δ+(v)) = 0 for v ∈ V \ {s, t}
x(δ(U)) ≥ 2 for ∅ �= U ⊆ V \ {s, t}

xe ≥ 0 for e ∈ E

(ATSPP LP)

Here (and henceforth) we write c(x) :=
∑

e∈E c(e)xe, x(F) :=
∑

e∈F xe,
δ+(U) := {(u, v) ∈ E : u ∈ U, v ∈ V \ U}, δ−(U) := δ+(V \ U), δ(U) :=
δ−(U) ∪ δ+(U), δ+(v) := δ+({v}), and δ−(v) := δ−({v}). For an instance I
we denote by LPI the value of an optimum solution to (ATSPP LP) and by
OPTI the value of an optimum integral solution. If the instance is clear from the
context, we will sometimes simply write LP and OPT. Note that the integral solu-
tions of (ATSPP LP) are precisely the incidence vectors of multi-digraphs (V, F)
that are connected and become Eulerian by adding one edge (t, s). Hence they
correspond to walks from s to t that visit all vertices, in other words: s-t-tours.

The integrality ratio of (ATSPP LP), denoted by ρATSPP, is the maximal
ratio of an optimum integral solution and an optimum fractional solution; more
precisely supI

OPTI
LPI

, where the supremum goes over all instances I = (G, c, s, t)
with s �= t for which the denominator is nonzero and finite. Nagarajan and Ravi
[9] proved that ρATSPP = O(

√
n), where n = |V |. This bound was improved to

O(log n) by Friggstad, Salavatipour, and Svitkina [6] and to O(log n/ log log n)
by Friggstad, Gupta, and Singh [5]. In this paper we prove that the integrality
ratio of (ATSPP LP) is in fact constant.

Let ρATSP denote the integrality ratio of the classical linear programming
relaxation for ATSP:

min c(x)

s.t. x(δ−(v)) − x(δ+(v)) = 0 for v ∈ V

x(δ(U)) ≥ 2 for ∅ �= U � V

xe ≥ 0 for e ∈ E

(ATSP LP)

Svensson, Tarnawski, and Végh [11] proved that ρATSP is a constant. By an
infinite sequence of instances, Charikar, Goemanns, and Karloff [2] showed that
ρATSP ≥ 2. It is obvious that ρATSPP ≥ ρATSP: split an arbitrary vertex of an
ATSP instance into two copies, one (called s) inheriting the outgoing edges, and
one (called t) inheriting the entering edges; add an edge (t, s) of cost zero and
with x(t,s) := x(δ+(s)) − 1. Figure 1 displays a simpler family of examples, due
to Friggstad, Gupta, and Singh [5], showing that ρATSPP ≥ 2.

290 A. Köhne et al.

s t
4(= k)

2(= k/2)

2(= k/2)

1.5

1.5

1

1

0.5

0.5

0

0

0

Fig. 1. Example with integrality ratio approaching 2 as the number of vertices
increases. Setting xe := 1

2
for all shown edges defines a feasible solution of (ATSPP LP).

If the 2k curved edges have cost 1 and the dotted edges have cost 0, we have
LP = c(x) = k, but any s-t-tour costs at least 2k − 1. (In the figure, k = 4.) Set-
ting yU = 1

2
for the vertex sets indicated by the ellipses and av as shown in blue

defines an optimum solution of (ATSPP DUAL). (Color figure online)

1.2 Our Results and Techniques

Our main result says that ρATSPP ≤ 4ρATSP −3. Together with [11], this implies
a constant integrality ratio for (ATSPP LP).

Similarly as Feige and Singh [4], we transform our ATSPP instance to an
ATSP instance by adding a feedback path from t to s and work with an integral
solution to this ATSP instance. This may use the feedback path several times
and hence consist of several s-t-walks in the original instance. We now merge
these to a single s-t-walk that contains all vertices. In contrast to Feige and
Singh [4], the merging procedure cannot use an optimum s-t-tour, but only an
LP solution. Our merging procedure is similar to one step of the approximation
algorithm for ATSP by Svensson, Tarnawski, and Végh [11], but our analysis is
more involved. The main difficulty is that the reduction of ATSP to so-called
“laminarly-weighted” instances used by Svensson, Tarnawski, and Végh [11] does
not work for the path version.

In Sect. 3, we describe our merging procedure and obtain a first bound on the
cost of our single s-t-walk that contains all vertices. However, this bound still
depends on the difference of two dual LP variables corresponding to the vertices
s and t. In Sect. 4 we give a tight upper bound on this value, which will imply
our main result ρATSPP ≤ 4ρATSP − 3.

The main lemma that we use to prove this bound essentially says that adding
an edge (t, s) of cost equal to the LP value does not change the value of an
optimum LP solution. Note that using the new edge (t, s) with value one or
more is obviously pointless, but it is not obvious that this edge will not be used
at all.

For node-weighted instances we obtain a better result: if the integrality ratio
for ATSP on node-weighted instances is ρNW

ATSP, then the integrality ratio for
ATSPP on node-weighted instances is at most 2ρNW

ATSP −1. Svensson [10] showed
that ρNW

ATSP ≤ 13.

Asymmetric Traveling Salesman Path LP 291

Boyd and Ellitot-Magwood [1] describe a family of node-weighted instances
that shows ρNW

ATSP ≥ 2. In Sect. 5 we observe that for ATSP node-weighted
instances behave in the same way as unweighted instances. Hence for ATSP there
is a family of unweighted digraphs whose integrality ratio tends to 2. Therefore
such a family exists also for ATSPP.

In this version some proofs are omitted or only sketched. For full proofs we
refer to [8].

2 Preliminaries

Given an instance (G, c, s, t) and an optimum solution x∗ to (ATSPP LP), we
may assume that G = (V,E) is the support graph of x∗; so x∗

e > 0 for all e ∈ E.
(This is because omitting edges e with x∗

e = 0 does not change the optimum
LP value and can only increase the cost of an optimum integral solution.) We
consider the dual LP of (ATSPP LP):

max at − as +
∑

∅�=U⊆V \{s,t}
2yU

s.t. aw − av +
∑

U :e∈δ(U)

yU ≤ c(e) for e = (v, w) ∈ E

yU ≥ 0 for ∅ �= U ⊆ V \ {s, t}.

(ATSPP DUAL)

The support of y is the set of nonempty subsets U of V \{s, t} for which yU > 0.
We denote it by supp(y). We say that a dual solution (a, y) has laminar support
if for any two nonempty sets A,B ∈ supp(y) we have A ∩ B = ∅, A ⊆ B,
or B ⊆ A. See Fig. 1 for an example. We recall some well-known properties of
primal and dual LP solutions (cf. [8,11]):

Proposition 1. Let (a, y) be an optimum solution to (ATSPP DUAL). Then
there is a vector y′ such that (a, y′) is an optimum solution to (ATSPP DUAL)
and has laminar support.

Proposition 2. Let (G, c, s, t) be an instance of ATSPP, where G is the support
graph of an optimum solution x∗ to (ATSPP LP). Let (a, y) be an optimum
solution of (ATSPP DUAL). Let U ∈ {V }∪supp(y). Then the strongly connected
components of G[U] can be numbered U1, . . . , Ul such that δ−(U) = δ−(U1),
δ+(U) = δ+(Ul), and δ+(Ui) = δ−(Ui+1) �= ∅ for i = 1, . . . , l−1. If U = V , then
s ∈ U1 and t ∈ Ul.

Proposition 3. Let (G, c, s, t) be an instance of ATSPP, where G is the support
graph of an optimum solution to (ATSPP LP). Let (a, y) be an optimum solution
to (ATSPP DUAL) with laminar support. Let Ū ∈ {V } ∪ supp(y) and v, w ∈ Ū .
If w is reachable from v in the induced subgraph G[Ū], then there is a v-w-path
in G[Ū] that enters and leaves every set U ∈ supp(y) at most once.

292 A. Köhne et al.

3 Bounding the Integrality Ratio

We first transform an instance and a solution to (ATSPP LP) to an instance
and a solution to (ATSP LP) and work with an integral solution of this ATSP
instance. The following lemma is essentially due to Feige and Singh [4]. For
completeness, we prove it here again for our setting.

Lemma 1. Let d ≥ 0 be a constant. Then ρATSPP ≤ (d + 1)ρATSP − d if the
following condition holds for every instance I = (G, c, s, t) of ATSPP where G is
the support graph of an optimum solution to (ATSPP LP): If there are s-t-walks
P1, . . . , Pk (k > 0) of total cost L in G, there is a single s-t-walk P in G with
cost c(P) ≤ L + d(k − 1) · LP which contains all vertices of P1, . . . , Pk.

Proof. Let I = (G, c, s, t) be an instance of ATSPP and x∗ be an optimum
solution to (ATSPP LP); so LP = c(x∗). We may assume that G is the support
graph of x∗. Consider the instance I ′ = (G′, c′) of ATSP that arises from I as
follows. We add a new vertex v to G and two edges (t, v) and (v, s) with weights
c′(t, v) = d · LP and c′(v, s) = 0. Then there is a feasible solution of (ATSP LP)
for I ′ with cost (d+1) ·LP (extend x∗ by setting x∗

(t,v) = x∗
(v,s) = 1). Hence there

is a solution to ATSP for I ′ with cost at most (d + 1)ρATSP · LP. Let R be such
a solution. Then R has to use (t, v) and (v, s) at least once, since it has to visit
v. By deleting all copies of (t, v) and (v, s) from R, we get k > 0 s-t-walks in G
with total cost at most (d + 1)ρATSP · LP − dk · LP such that every vertex of G is
visited by at least one of them. Our assumption now guarantees the existence of
a single s-t-walk P with cost c(P) ≤ (d + 1)ρATSP · LP − dk · LP + d(k − 1) · LP =
((d + 1)ρATSP − d) · LP in G, which contains every vertex of G. This walk is
a solution of ATSPP for I and thus we have ρATSPP ≤ (d + 1)ρATSP − d as
proposed. �

We now describe a merging procedure similar to one step (“inducing on a
tight set”) of the approximation algorithm for ATSP by Svensson, Tarnawski,
and Végh [11].

Lemma 2. Let (G, c, s, t) be an instance of ATSPP, where G is the support
graph of an optimum solution to (ATSPP LP). Let (a, y) be an optimum solution
to (ATSPP DUAL) with laminar support.

Let k > 0 and P1, . . . , Pk be s-t-walks in G with total cost L. Then there is
a single s-t-walk P in G which contains every vertex of P1, . . . , Pk and has cost
at most L + (k − 1)(LP + 2(as − at)).

Proof. Let V1, . . . , Vl be the vertex sets of the strongly connected components
of G in their topological order, which is unique by Proposition 2. Let P j

i be the
section of Pi that visits vertices in Vj (for i = 1, . . . , k and j = 1, . . . , l). By
Proposition 2 applied to U = V , none of these sections of Pi is empty. (Such a
section might consist of a single vertex and no edges, but it has to contain at
least one vertex.)

We consider paths Rj
i in G for j = 1, . . . , l that we will use to connect the

walks P j
1 , . . . , P j

k to a single walk visiting all vertices in Vj . See Fig. 3. If j is

Asymmetric Traveling Salesman Path LP 293

odd, let Rj
i (for i = 1, . . . k − 1) be a path from the last vertex of P j

i to the
first vertex of P j

i+1. If j is even, let Rj
i (for i = 2, . . . , k) be a path from the

last vertex of P j
i to the first vertex of P j

i−1. (Such paths exists because G[Vj]
is strongly connected.) By Proposition 3 we can choose the paths Rj

i such that
they do not enter or leave any element of supp(y) more than once.

s t

V1 V2 Vl

Fig. 2. Construction of P . The s-t-walks P1, . . . , Pk are shown with solid lines. (Here,
P1 is the topmost walk and Pk is shown in the bottom.) The vertex sets V1, . . . , Vl of
the strongly connected components are indicated by the dashed lines. The red, blue,
and green solid paths show the walks P j

i , i.e. the sections of the walks Pi within the
strongly connected components of G. The dotted arrows indicate the paths Rj

i . (Color
figure online)

We now construct our s-t-walk P that will visit every vertex of P1, . . . , Pk.
We start by setting P = s and then add for j = 1, . . . , l all the vertices in Vj to P

as follows. If j is odd, we append P j
i and Rj

i for i = 1 to i = k−1 and at last P j
k .

If j is even, we append P j
i and Rj

i for i = k to i = 2 and at last P j
1 . Note that

when moving from one connected component Vi to the next component Vi+1, we
use an edge from either P1 (if i is even) or Pk (if i is odd). Then P is, indeed, an
s-t walk in G and contains every vertex of P1, . . . , Pk. We now bound the cost of
the walk P . For every edge e = (v, w) of P we have by complementary slackness

c(e) = aw − av +
∑

U :e∈δ(U)

yU .

For an s-t-walk R in G we have

c(R) =
∑

(v,w)∈E(R)

⎛

⎝aw − av +
∑

U :(v,w)∈δ(U)

yU

⎞

⎠ = at − as + cy(R), (1)

294 A. Köhne et al.

where the cost function cy is defined as cy(e) :=
∑

U :e∈δ(U) yU . Hence, to bound
the cost of the s-t-walk P , we can bound cy(P) and then subtract as and add at.

P is constructed from pieces of P1, . . . , Pk and the paths Rj
i . Each of the

paths Rj
i can only contain vertices of Vj . Two paths Rj

i and Rj′
i′ , such that

j �= j′, can never both enter or both leave the same element of supp(y): otherwise
they would contain vertices of the same strongly connected component of G by
Proposition 2. Thus every element of supp(y) is entered at most k − 1 times and
left at most k − 1 times on all the paths Rj

i used in the construction of P , and
the total cy cost of these paths is at most (k−1)

∑
U 2yU = (k−1)(LP+as −at).

The cy cost of the edges of P1, . . . , Pk is

k∑

i=1

cy(Pi) =
k∑

i=1

(c(Pi) − at + as) = L + k · as − k · at.

Consequently, we have

c(P) = at − as + cy(P)
≤ at − as + L + k · as − k · at + (k − 1)

(
LP + as − at

)

= L + (k − 1)
(
LP + 2(as − at)

)

as claimed. �
Svensson, Tarnawski, and Végh [11] reduced ATSP to so-called laminarly-

weighted instances. In a laminarly-weighted instance we have a = 0 (and (a, y)
has laminar support). For such instances Lemmas 1 and 2 would immediately
imply our main result (even with better constants). However, the reduction to
laminarly-weighted instances for ATSP does not yield an analogous statement
for the path version. Instead, we will prove that as − at ≤ LP for some optimum
dual LP solution (Sect. 4).

Let us first consider a simpler special case.

Definition 1. An instance (G, c, s, t) of ATSPP or an instance (G, c) of ATSP
is called node-weighted if there are nonnegative node weights (cv)v∈V such that
c(v, w) = cv + cw for every edge (v, w).

Note that node-weighted instances are not necessarily symmetric because it
might happen that an edge (v, w) exists, but (w, v) does not exist. For node-
weighted instances an argument similar to the proof of Lemma 2 can be used to
prove the following bound.

Theorem 1. Let ρNW
ATSP be the integrality ratio for ATSP on node-weighted

instances and ρNW
ATSPP be the integrality ratio for ATSPP on node-weighted

instances. Then
ρNW
ATSPP ≤ 2ρNW

ATSP − 1.

Asymmetric Traveling Salesman Path LP 295

4 Bounding the Difference of as and at

Now we bound the difference of the dual variables as and at by LP. Using Lemmas
1 and 2, this will imply our main result ρATSPP ≤ 4ρATSP − 3.

First, we give an equivalent characterization of the minimum value of as −at

in any optimum dual solution. This will not be needed to prove our main result,
but might help to get some intuition.

Lemma 3. Let I = (G, c, s, t) be an instance of ATSPP and let Δ ≥ 0. Now
consider the instance I ′ = (G + e′, c, s, t), where we add an edge e′ = (t, s) with
c(e′) := Δ. Then LPI ≥ LPI′ . Moreover, LPI = LPI′ if and only if there exists an
optimum solution (a, y) of (ATSPP DUAL) for the instance I with as −at ≤ Δ.

We will now work with an optimum dual solution (a, y) with as−at minimum.
Note that this minimum is attained because for every feasible dual solution (a, y)
we have as − at ≥ −LP. By Proposition 1, we can assume in addition that (a, y)
has laminar support.

Lemma 4. Let (G, c, s, t) be an instance of ATSPP, where G is the support
graph of an optimum solution to (ATSPP LP). Let (a, y) be an optimum solution
of (ATSPP DUAL) such that as − at is minimum. Let Ū ⊆ V \ {s, t} such that
every s-t-path in G enters (and leaves) Ū at least once. Then yŪ = 0.

Proof. (sketch) Suppose yŪ > 0 and let ε := yŪ . Let R be the set of vertices
reachable from s in G − Ū . We define a dual solution (ā, ȳ) as follows:

ȳ(U) :=

{
yU − ε if U = Ū

yU else
āv :=

⎧
⎪⎨

⎪⎩

av − 2ε if v ∈ R

av − ε if v ∈ Ū

av else.

We can show that (ā, ȳ) is also an optimum solution to (ATSPP DUAL). Since
ās − āt < as − at, this yields a contradiction. �
Lemma 5. Let (G, c, s, t) be an instance of ATSPP, where G is the support
graph of an optimum solution to (ATSPP LP). Let (a, y) be an optimum solution
to (ATSPP DUAL) that has laminar support and minimum as − at.

Then G contains two s-t-paths P1 and P2 such that for every set U ∈ supp(y)
we have |E(P1) ∩ δ(U)| + |E(P2) ∩ δ(U)| ≤ 2.

Proof. (sketch) By Lemma 4, for every set U ∈ supp(y) there is an s-t-path in
G that visits no vertex in U . We contract all maximal sets U ∈ supp(y). Using
a variant of Menger’s theorem, we can find two s-t-paths in G such that each
vertex arising from the contraction of a set U ∈ supp(y) is visited by at most
one of the two paths.

Now we revert the contraction of the sets U ∈ supp(y). We complete the edge
sets of the two s-t-paths we found before (which are not necessarily connected
anymore after undoing the contraction), to paths P1 and P2 with the desired

296 A. Köhne et al.

properties. To see that this is possible, let v be the end vertex of an edge entering
a contracted set U ∈ supp(y) and let w be the start vertex of an edge leaving
U . Then by Proposition 2, the vertex w is reachable from v in G[U] and by
Proposition 3, we can choose a v-w-path in G[U] that enters and leaves every
set U ′ ∈ supp(y) with U ′

� U at most once. �

s t
P1

P2

Fig. 3. The paths P1 and P2 as in Lemma 5. In black the vertex sets U ∈ supp(y) are
shown. The paths P1 and P2 are not necessarily disjoint but they never both cross the
same set U with yU > 0.

We finally show our main lemma.

Lemma 6. Let I = (G, c, s, t) be an instance of ATSPP, where G is the sup-
port graph of an optimum solution to (ATSPP LP). Then there is an optimum
solution (a, y) of (ATSPP DUAL) with laminar support and as − at ≤ LP.

Proof. Let (a, y) be an optimum solution to (ATSPP DUAL) that has lam-
inar support and minimum as − at. Note that such an optimum dual solu-
tion exists by Proposition 1. We again define the cy cost of an edge e to be
cy(e) =

∑
U :e∈δ(U) yU . By Lemma 5, G contains two s-t-paths P1 and P2 such

that cy(P1) + cy(P2) ≤ ∑
∅�=U⊆V \{s,t} 2 · yU . Then, using (1),

0 ≤ c(P1) + c(P2)
= cy(P1) − (as − at) + cy(P2) − (as − at)

≤
∑

∅�=U⊆V \{s,t}
2 · yU − 2(as − at),

implying

as − at ≤
∑

∅�=U⊆V \{s,t}
2 · yU − (as − at) = LP.

�
We remark (although we will not need it) that Lemma 6 also holds for general

instances. To adapt the proof, work with the subgraph G′ of G that contains all
edges of G for which the dual constraint is tight. Now G′ plays the role of G in
the proof, and by choosing ε small enough in the proof of Lemma 4 we maintain
dual feasibility also for the edges that are not in G′.

Asymmetric Traveling Salesman Path LP 297

0 0

00

1s t

Fig. 4. Example with no optimum dual solutions with as −at < LP: The numbers next
to the arcs denote their cost. For this instance we have LP = 1. However adding an
edge (t, s) with cost γ < 1 would result in an instance with LP = γ. By Lemma 3 there
cannot be an optimum dual solution where as − at < 1 = LP.

By Lemma 3, this also shows that adding an edge (t, s) of cost equal to the
LP value does not change the value of an optimum LP solution.

The instance in Fig. 4 shows that the bound as − at ≤ LP is tight. Note that
the bound is also tight for the instance in Fig. 1 in which x∗

e > 0 for all edges
e, and in which the integrality ratio is arbitrarily close to the best known lower
bound of 2.

We will now prove our main result.

Theorem 2. Let ρATSP be the integrality ratio of (ATSP LP). Then the inte-
grality ratio ρATSPP of (ATSPP LP) is at most 4ρATSP − 3.

Proof. Let (G, c, s, t) be an instance of ATSPP, where G is the support graph
of an optimum solution to (ATSPP LP). By Lemma 6, there is an optimum
dual solution (a, y) with laminar support and as − at ≤ LP. Using Lemma 2,
this implies that the condition of Lemma 1 is fulfilled for d = 3. This shows
ρATSPP ≤ 4ρATSP − 3. �

5 Node-Weighted and Unweighted Instances

In the full version of the paper we observe that, for ATSP, node-weighted
instances are not much more general than unweighted instances.

Theorem 3. The integrality ratio of (ATSP LP) is the same for unweighted
and for node-weighted instances. For any constants α ≥ 1 and ε > 0, there is a
polynomial-time (α + ε)-approximation algorithm for node-weighted instances if
there is a polynomial-time α-approximation algorithm for unweighted instances.

In particular, our construction implies that the node-weighted instances from
Boyd and Ellitot-Magwood [1] can be transformed to unweighted instances whose
integrality ratio tends to 2. It seems that previously only unweighted instances
with integrality ratio at most 3

2 were known (e.g. [7]).
By splitting an arbitrary vertex into two copies s and t, both inheriting

all incident edges, this also yields a family of unweighted digraph instances of
ATSPP whose integrality ratio tends to two. We summarize:

Corollary 1. The integrality ratio for unweighted digraph instances is at least
two, both for (ATSP LP) and (ATSPP LP).

298 A. Köhne et al.

References

1. Boyd, S., Ellitot-Magwood, P.: Computing the integrality gap of the asymmetric
traveling salesman problem. Electron. Notes Discrete Math. 19, 241–247 (2005)

2. Charikar, M., Goemans, M.X., Karloff, H.: On the integrality ratio for the asym-
metric traveling salesman problem. Math. Oper. Res. 31, 245–252 (2006)

3. Edmonds, J.: Optimum branchings. J. Res. Nat. Bur. Stand. B 71, 233–240 (1967)
4. Feige, U., Singh, M.: Improved approximation ratios for traveling salesperson tours

and paths in directed graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim,
J.D.P. (eds.) APPROX/RANDOM -2007. LNCS, vol. 4627, pp. 104–118. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74208-1 8

5. Friggstad, Z., Gupta, A., Singh, M.: An improved integrality gap for asymmetric
TSP paths. Math. Oper. Res. 41, 745–757 (2016)

6. Friggstad, Z., Salavatipour, M.R., Svitkina, Z.: Asymmetric traveling salesman
path and directed latency problems. SIAM J. Comput. 42, 1596–1619 (2013)

7. Gottschalk, C.: Approximation algorithms for the traveling salesman problem in
graphs and digraphs. Master’s Thesis, Research Institute for Discrete Mathematics,
University of Bonn (2013)

8. Köhne, A., Traub, V., Vygen, J.: The asymmetric traveling salesman path LP has
constant integrality ratio. arXiv:1808.06542 (2018)

9. Nagarajan, V., Ravi, R.: The directed minimum latency problem. In: Goel, A.,
Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX/RANDOM -2008. LNCS,
vol. 5171, pp. 193–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85363-3 16

10. Svensson, O.: Approximating ATSP by relaxing connectivity. In: Proceedings of
the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2015), pp. 1–19 (2015)

11. Svensson, O., Tarnawski, J., Végh, L.: A constant-factor approximation algorithm
for the asymmetric traveling salesman problem. In: Proceedings of the 50th Annual
ACM Symposium on Theory of Computing (STOC 2018), pp. 204–213 (2018)

https://doi.org/10.1007/978-3-540-74208-1_8
http://arxiv.org/abs/1808.06542
https://doi.org/10.1007/978-3-540-85363-3_16
https://doi.org/10.1007/978-3-540-85363-3_16

Approximate Multi-matroid Intersection
via Iterative Refinement

André Linhares1, Neil Olver2,3, Chaitanya Swamy1, and Rico Zenklusen4(B)

1 Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Canada

{alinhare,cswamy}@uwaterloo.ca
2 Department of Econometrics and Operations Research,

Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
n.olver@vu.nl

3 CWI, Amsterdam, The Netherlands
4 Department of Mathematics, ETH Zurich, Zurich, Switzerland

ricoz@math.ethz.ch

Abstract. We introduce a new iterative rounding technique to round
a point in a matroid polytope subject to further matroid constraints.
This technique returns an independent set in one matroid with limited
violations of the other ones. On top of the classical steps of iterative
relaxation approaches, we iteratively refine/split involved matroid con-
straints to obtain a more restrictive constraint system, that is amenable
to iterative relaxation techniques. Hence, throughout the iterations, we
both tighten constraints and later relax them by dropping constraints
under certain conditions. Due to the refinement step, we can deal with
considerably more general constraint classes than existing iterative relax-
ation/rounding methods, which typically round on one matroid polytope
with additional simple cardinality constraints that do not overlap too
much.

We show how our rounding method, combined with an application of a
matroid intersection algorithm, yields the first 2-approximation for find-
ing a maximum-weight common independent set in 3 matroids. Moreover,
our 2-approximation is LP-based, and settles the integrality gap for the
natural relaxation of the problem. Prior to our work, no upper bound
better than 3 was known for the integrality gap, which followed from
the greedy algorithm. We also discuss various other applications of our
techniques, including an extension that allows us to handle a mixture of
matroid and knapsack constraints.

1 Introduction

Matroids are among the most fundamental and well-studied structures in com-
binatorial optimization. Recall that a matroid M is a pair M = (N, I), where N

A. Linhares and C. Swamy—Research supported by NSERC grant 327620-09 and an
NSERC DAS Award.
N. Olver—Supported by NWO VIDI grant 016.Vidi.189.087.
R. Zenklusen—Supported by Swiss National Science Foundation grant 200021 165866.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 299–312, 2019.
https://doi.org/10.1007/978-3-030-17953-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_23&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_23

300 A. Linhares et al.

is a finite ground set and I ⊆ 2N is a family of sets, called independent sets, such
that (i) ∅ ∈ I, (ii) if A ∈ I and B ⊆ A, then B ∈ I, and (iii) if A,B ∈ I with
|A| > |B|, then there is an element e ∈ A \ B such that B ∪ {e} ∈ I. We make
the standard assumption that a matroid is specified via an independence oracle,
which, given S ⊆ N as input, returns if S ∈ I. Matroids capture many inter-
esting problems, and matroid-optimization algorithms provide a powerful tool
in the design and analysis of efficient algorithms. A key matroid optimization
problem is matroid intersection, wherein we seek a maximum-weight set that is
independent in two matroids, for which various efficient algorithms are known,
and we also have a celebrated min-max theorem and a polyhedral understand-
ing of the problem. The versatility of matroid intersection comes from the fact
that the intersection of matroids allows for describing a very broad family of
constraints.

Unfortunately, as soon as the intersection of 3 or more matroids is con-
sidered, already the unweighted version of determining a maximum cardinality
common independent set becomes APX-hard. Due to its fundamental nature,
and many natural special cases, the problem of optimizing over 3 or more
matroids has received considerable attention. In particular, there is extensive
prior work ranging from the study of maximum cardinality problems [15],
the maximization of submodular functions over the intersection of multiple
matroids (see [4,8,11,16,17] and the references therein), to various interesting
special cases like k-dimensional matching (see [3,6,7,12,13] and the references
therein; many of these results apply also to the k-set packing problem which
generalizes k-dimensional matching).

Nevertheless, there are still basic open questions regarding the approximabil-
ity of the optimization over 3 or more matroids. Perhaps the most basic problem
of this type is the weighted 3-matroid intersection problem, defined as follows.

Weighted 3-Matroid Intersection. Given matroids Mi = (N, Ii), for i =
1, 2, 3, on a common ground set N , and a weight vector w ∈ RN , solve

max {w(I) : I ∈ I1 ∩ I2 ∩ I3} ,

where we use the shorthand w(S) :=
∑

e∈S w(e) for any set S ⊆ N .
The unweighted 3-matroid intersection problem, which is also sometimes

called the cardinality version of 3-matroid intersection, is the special case where
w(e) = 1 for all e ∈ N , so w(S) = |S| for S ⊆ N .

The 3-matroid intersection problem has a natural and canonical LP-relaxation:

max
{
wT x : x ∈ PI1 ∩ PI2 ∩ PI3

}
, (LP3-mat)

where, for a matroid M = (N, I), we denote by PI ⊆ [0, 1]N the matroid poly-
tope of M , which is the convex hull of all characteristic vectors of sets in I. It
has a well known inequality description given by

PI =
{
x ∈ RN

≥0 : x(S) ≤ r(S) ∀S ⊆ N
}

,

Approximate Multi-matroid Intersection via Iterative Refinement 301

where r : 2N −→ Z≥0 is the rank function of M , which, for S ⊆ N , is defined by
r(S) := max

{|I| : I ∈ I, I ⊆ S
}
. The rank function is submodular, and r(S) can

be computed for any S ⊆ N using an independence oracle. It will therefore often
be convenient to assume that a matroid M is specified via its rank oracle that,
given S ⊆ N as input, returns r(S). In particular, one can efficiently optimize
any linear function over PI given a rank oracle (or equivalently an independence
oracle). The above LP-relaxation extends naturally to the k-matroid intersection
problem, which is the extension of 3-matroid intersection to k matroids.

Whereas (LP3-mat), and its extension (LPk-mat) to k-matroid intersection,
are well-known LP-relaxations, there remain various gaps in our understand-
ing of these relaxations. It is widely known that the greedy algorithm is a k-
approximation for k-matroid intersection. Moreover, this approximation is rel-
ative to the optimal value of (LPk-mat), which leads to the current best upper
bound of k on the integrality gap of (LPk-mat), for all k ≥ 3. However, the best
lower bound on the integrality gap of (LPk-mat) is k−1, whenever k−1 is a prime
power; this is known to be achievable in instances where the involved matroids
are partition matroids, and for unweighted instances [3,9,15,18].

Significant progress on approximating k-matroid intersection was achieved
by Lee, Sviridenko, and Vondrák [17], who presented, for any fixed ε > 0,
a local search procedure with running time exponential in ε that leads to
a (k − 1 + ε)-approximation (i.e., the weight of the set returned is at least
(optimum)/(k − 1 + ε)). Unfortunately, apart from its high running time depen-
dence on ε, this approach does not shed any insights on (LPk-mat), as the above
guarantee is not relative to OPTLPk-mat . Further progress on understanding the
quality of the LP-relaxations has only been achieved in special cases. In par-
ticular, for unweighted k-matroid intersection, Lau, Ravi and Singh [15] give
an LP-based (k − 1)-approximation through iterative rounding. Their proof is
based on identifying an element with “large” fractional value, picking it, and
altering the fractional solution so that it remains feasible; the last step cru-
cially uses the fact that the instance is unweighted to control the loss in the LP
objective value. For the intersection of k unitary partition matroids, a problem
also known as k-dimensional matching, Chan and Lau [3] were able to obtain a
(k − 1)-approximation based on (LPk-mat), and Parekh and Pritchard [18] later
obtained the same approximation factor for the intersection of k (not necessarily
unitary) partition matroids.

Although it is generally believed that a (k − 1)-approximation for k-matroid
intersection should exist, and that the integrality gap of (LPk-mat) is equal to
the known lower bound of k−1, this has remained open even for 3-matroid inter-
section (prior to our work). Recall that in this case, the best known upper and
lower bounds on the integrality gap of (LP3-mat) are 3 (via the classical greedy
algorithm) and 2 respectively. Moreover, the only method to beat the trivial 3-
approximation of the greedy algorithm is the non-LP based and computationally
quite expensive (2 + ε)-approximation in [17]. One main reason for the limited
progress is the lack of techniques for rounding points in the intersection of mul-
tiple matroid polytopes with sufficiently strong properties. In particular, one

302 A. Linhares et al.

technical difficulty that is encountered is that the tight constraints (even at an
extreme point) may have large overlap, and we do not know of ways for dealing
with this.

Our Results. We introduce a new iterative rounding approach to handle the
above difficulties, that allows for dealing with a very general class of optimization
problems involving matroids. Before delving into the details of this technique,
we highlight its main implication in the context of 3-matroid intersection.

Theorem 1. There is an LP-relative 2-approximation for weighted 3-matroid
intersection. That is, for any instance, we can efficiently find a common inde-
pendent set R with w(R) ≥ OPTLP3-mat/2; thus, the integrality gap of (LP3-mat)
is at most 2.

This is the first 2-approximation for 3-matroid intersection (with general
weights). Moreover, our result settles the integrality gap of (LP3-mat) due to the
known matching integrality gap lower bound of 2.

The chief new technical ingredient that leads to Theorem1, and results for
other applications discussed in Sect. 3, is an approximation result based on a
novel iterative refinement technique (see Sect. 2) for problems of the following
type. Let N = N0 be a finite ground set, and Mi = (Ni, Ii) for i = 0, . . . , k be
k+1 matroids with rank functions {ri}, where Ni ⊆ N , and w ∈ RN be a weight
vector (note that negative weights are allowed). We consider the problem

max
{
w(I) : I ∈ B0, I ∩ Ni ∈ Ii ∀i ∈ [k]

}
, (1)

where B0 is the set of all bases of M0 and [k] := {1, . . . , k}. The reason we con-
sider matroids Mi for i ∈ [k] defined on ground sets Ni that are subsets of N , is
because, as we show below, we obtain guarantees depending on how strongly the
sets Ni overlap; intuitively, problem (1) becomes easier as the overlap between
N1, . . . , Nk decreases, and our guarantee improves correspondingly.

We cannot hope to solve (1) optimally, as this would enable one to solve the
NP-hard k-matroid intersection problem. Our goal will be to find a basis of M0 of
large weight that is “approximately independent” in the matroids M1, . . . , Mk.

How to quantify “approximate independence”? Perhaps the two notions that
first come to mind are additive and multiplicative violation of the rank con-
straints. Whereas additive violations are common in the study of degree-bounded
MST problems, which can be cast as special cases of (1), it turns out that such
a guarantee is impossible to obtain (in polytime) for (1). More precisely, we
show in AppendixA (via a replication idea) that, even for k = 2, if we could
find in polytime a basis B of M0 satisfying |B| ≤ ri(B) + α for i = 1, 2 for
α = O(|N |1−ε) for any ε > 0, then we could efficiently find a basis of M0 that
is independent in M1, M2; the latter problem is easily seen to be NP-hard via a
reduction from Hamiltonian path. We therefore consider multiplicative violation
of the rank constraints. We say that S ⊆ N is α-approximately independent,
or simply α-independent, for a matroid M = (N, I), if |T | ≤ α · r(T) ∀T ⊆ S
(equivalently, χS ∈ αPI , where χS is the characteristic vector of S). This is

Approximate Multi-matroid Intersection via Iterative Refinement 303

much stronger than simply requiring that |S| ≤ α · r(S), and it is easy to give
examples where this weaker notion admits sets that one would consider to be
quite far from being independent. An appealing feature of the stronger defini-
tion is that, using the min-max result for matroid-intersection (or via matroid
partition; see, e.g., [5]), it follows easily that if α ∈ Z≥1, then S is α-independent
iff S can be partitioned into at most α independent sets of M . We now state the
guarantee we obtain for (1) precisely. We consider the following canonical LP
relaxation of (1):

max
{
wT x : x ∈ RN

≥0, x ∈ PB0 , x|Ni
∈ PIi

∀i ∈ [k]
}

, (LPmat)

where for a set S ⊆ N , we use x|S ∈ RS to denote the restriction of x to S,
and PB0 := PI0 ∩ {x ∈ RN : x(N) = r0(N)} is the matroid base polytope of
M0. For ease of notation, we will sometimes write x ∈ PIi

and R ∈ Ii instead of
x|Ni

∈ PIi
and R∩Ni ∈ Ii, respectively. Our main result for (1), based on a new

iterative rounding algorithm for (LPmat) described in Sect. 2, is the following.

Theorem 2. Let q1, . . . , qk ∈ Z≥1 such that
∑

i∈[k]:e∈Ni

q−1
i ≤ 1 ∀e ∈ N . (2)

If (LPmat) is feasible, then one can efficiently compute R ⊆ N such that (i)
R ∈ B0; (ii) w(R) ≥ OPTLPmat ; and (iii) R is qi-independent in Mi ∀i ∈ [k].

Note that, in particular, taking qi = maxe∈N

∣
∣{j ∈ [k] : e ∈ Nj}

∣
∣ for all

i ∈ [k] satisfies (2). Thus, we violate the constraints imposed by the other
matroids M1, . . . , Mk by a multiplicative factor depending on how strongly the
Nis overlap.

While we have stated Theorem 2 in terms of bases of M0, the following natural
variant is easily deduced from it (we defer the proof to AppendixB).

Corollary 3. Theorem2 also holds when R is required only to be an independent
set in M0 (as opposed to a basis), and we replace PB0 in (LPmat) by PI0 .

A variety of problem settings can be handled via Theorem2 and Corollary 3 in
a unified way. We first show how to obtain a crisp, simple proof of Theorem1.

Proof of Theorem 1. Given matroids Mi = (N, Ii) for i = 0, 1, 2, and a weight
vector w ∈ RN , we first solve (LP3-mat) to obtain an optimal solution x∗. Now we
utilize Corollary 3 with the same three matroids, and q1 = q2 = 2. Clearly, these
q-values satisfy (2), and x∗ is a feasible solution to (LPmat), when we replace PB0

by PI0 . Thus, we obtain a set A ∈ I0 with w(A) ≥ wT x∗ and χA ∈ 2PI1 ∩ 2PI2 .
It is well known that PI1 ∩ PI2 is a polytope with integral extreme points

(see, e.g., [5]). So since χA/2 ∈ PI1 ∩ PI2 , by using an algorithm for (weighted)
matroid intersection applied to matroids M1 and M2 restricted to A, we can find
a set R ⊆ A such that R ∈ I1 ∩ I2 and w(R) ≥ wT χA/2 ≥ wT x∗/2. Finally,
since R ⊆ A and A ∈ I0, we also have that R ∈ I0. ��

304 A. Linhares et al.

Beyond 3-matroid intersection, Theorem2 is applicable to various con-
strained (e.g., degree-bounded) spanning tree problems; we expand on this below.
In Sect. 3, we discuss an application in this direction, wherein we seek a min-cost
spanning tree satisfying matroid-independence constraints on the edge-sets of a
given disjoint collection of node sets. Using Theorem 2, we obtain a spanning
tree with a multiplicative factor-2 violation of the matroid constraints.

In Sect. 3, we also present a noteworthy extension of Theorem 2 with t knap-
sack constraints in addition to k matroid constraints, where we obtain bounded
multiplicative violations of all involved constraints. The only other such result
we are aware of that applies to a mixture of matroid and knapsack constraints
is by Gupta et al. [10]; their result in our setting yields an O(kt)-approximation
with no constraint violation, which is incomparable to our result.

Related Work and Connections. By choosing M0 to be a graphic matroid,
problem (1) generalizes many known constrained spanning tree problems, includ-
ing degree-bounded spanning trees, and generalizations thereof considered by
Bansal et al. [2], Király et al. [14], and Zenklusen [21]. Theorem 2 thus yields a
unified way to deal with various spanning tree problems considered in the litera-
ture, where the soft/degree constraints are violated by at most a constant factor.
However, as noted earlier, whereas the above works obtain stronger, additive vio-
lation results, such guarantees are not possible for our general problem (1) (see
AppendixA). This hardness (of obtaining small additive violations) carries over
to the spanning tree application that we consider in Sect. 3 (which generalizes
the matroidal degree-bounded spanning tree problem considered in [21]).

To showcase how Theorem 2 can be used for such problems, consider the
minimum degree-bounded spanning tree problem, where given is a graph G =
(V,E) with edge weights w : E → R and degree bounds Bv ∈ Z≥1 for v ∈ V .
The nominal problem asks to find a spanning tree T ⊆ E with |T ∩ δ(v)| ≤ Bv

for v ∈ V minimizing w(T), where δ(v) denotes the set of edges incident with v.
Here one can apply Theorem 2 with M0 being the graphic matroid of G, and for
each v ∈ V we define a uniform matroid Mv with ground set δ(v) and rank Bv.
Theorem 2 with qv = 2 ∀v ∈ V and negated edge weights leads to a spanning tree
T with |T ∩δ(v)| ≤ 2Bv ∀v ∈ V and weight no more than the optimal LP-weight.
Whereas this is a simple showcase example, Theorem 2 can be used in a similar
way for considerably more general constraints than just degree constraints.

Finally, we highlight a main difference of our approach compared to prior
techniques. Prior techniques for related problems, as used, for example, by Singh
and Lau [20], Király et al. [14], and Bansal et al. [2], successively drop constraints
of a relaxation. Also, interesting variations have been suggested that do not just
drop constraints but may relax constraints by replacing a constraint by a weaker
family (see work by Bansal etal. [1]). In contrast, our method does not just relax
constraints, but also strengthens the constraint family in some iterations, so as
to simplify it and enable one to drop constraints later on.

Approximate Multi-matroid Intersection via Iterative Refinement 305

2 Our Rounding Technique

Our rounding technique heavily relies on a simple yet very useful “splitting”
procedure for matroids, which we call matroid refinement.

Matroid Refinement. Let M = (N, I) be a matroid with rank function r :
2N → Z≥0, and let S � N , S = ∅. Refining M with respect to S yields the
two matroids M1 = M |S obtained by restricting M to S, and M2 = M/S
obtained by contracting S in M . Formally, the independent sets of the two
matroids M1 = (S, I1),M2 = (N \ S, I2) are given by I1 = {I ⊆ S : I ∈ I},
and I2 = {I ⊆ N \ S : I ∪ IS ∈ I}, where IS ∈ I is a maximum cardinality
independent subset of S. It is well-known that the definition of I2 does not
depend on which set IS is chosen. The rank functions r1 : 2S → Z≥0 and
r2 : 2N\S → Z≥0 of M1 and M2, respectively, are given by

r1(A) = r(A) ∀A ⊆ S, and r2(B) = r(B ∪ S) − r(S) ∀B ⊆ N \ S. (3)

We refer the reader to [19, Volume B] for more information on matroid restric-
tions and contractions. The following lemma describes two basic yet important
relations between a matroid M = (N, I) and its refinements M1 = M |S and
M2 = M/S. These relations easily follow from well-known properties of matroids;
we omit the proofs here, but include them in the full version.

Lemma 4. (i) If x ∈ RN satisfies x|S ∈ PI1 and x|N\S ∈ PI2 , then x ∈ PI .
(ii) Let x ∈ PI be such that x(S) = r(S). Then x|S ∈ PI1 and x|N\S ∈ PI2 .

Intuitively, matroid refinement serves to partly decouple the matroid inde-
pendence constraints for M , thereby allowing one to work with somewhat “sim-
pler” matroids subsequently, and we leverage this carefully in our algorithm.

An Algorithm Based on Iterative Refinement and Relaxation.
Algorithm 1 describes our method to prove Theorem 2. Recall that the input
is an instance of problem (1), which consists of k + 1 matroids Mi = (Ni, Ii)
for i = 0, . . . , k, where each Ni is a subset of a finite ground set N = N0, and a
weight vector w ∈ RN . We are also given integers qi ≥ 1 for i ∈ [k] satisfying (2).

Algorithm 1 starts by solving the natural LP-relaxation in step 2 to obtain
an optimal extreme point x∗. As is common in iterative rounding algorithms, we
delete all elements of value 0 and fix all elements of value 1 through contractions
in step 3. Apart from these standard operations, we refine the matroids in step 5,
as long as there is a matroid M ′ = (N ′, I ′) in our collection M with a nontrivial
x∗-tight set S ⊆ N ′, i.e., x∗(S) = r′(S) and S /∈ {∅, N ′}. Notice that after
step 5, the q-values for the matroids in the new collection M continue to satisfy
(2). Step 6 is our relaxation step, where we drop a matroid M ′ = (N ′, I ′) if
|N ′| − x∗(N ′) < qM ′ . This is the step that results in a violation of the matroid
constraints, but, as we show, the above condition ensures that even if we select all
elements of N ′ in the solution, the violation is still within the prescribed bounds.

306 A. Linhares et al.

Algorithm 1. Iterative refinement/relaxation algorithm for Theorem 2
1. Initialize M ← {M1, . . . ,Mk}, qMi ← qi for all i ∈ [k].
2. Compute an optimal basic solution x∗ to (LPmat) for the matroids {M0} ∪ M.
3. Delete all e ∈ N with x∗(e) = 0 and contract all e ∈ N with x∗(e) = 1 from all

relevant matroids, updating also the ground set N .
4. If N = ∅: return the set of all elements contracted so far.
5. While there is a matroid M ′ = (N ′, I′) ∈ M with associated rank function r′,

s.t. ∃ ∅ �= S � N ′ with x∗(S) = r′(S):
(Refinement.) Set M ′

1 = M ′|S , M ′
2 = M ′/S, and qM′

1
= qM′

2
= qM′ .

Update M ← (M \ {M ′}) ∪ {M ′
1,M

′
2}.

6. Find a matroid M ′ = (N ′, I′) ∈ M with associated rank function r′, such that
x∗(N ′) = r′(N ′) and |N ′| − x∗(N ′) < qM′ ; remove M ′ from M. Go to step 2.

Moreover, we will show in the proof of Lemma6 that, whenever Algorithm 1 is
at step 6, there is a matroid M ′ = (N ′, I ′) ∈ M that can be dropped, i.e.,
x∗(N ′) = r′(N ′) and |N ′| − x∗(N ′) < qM ′ . We remark that, in step 6, one could
also drop all matroids M ′ ∈ M fulfilling this condition, instead of just a single
one, without impacting the correctness of the algorithm.

One can find an x∗-tight set ∅ = S � N ′ (if one exists) in step 5 by minimizing
the submodular function r′(A)−x∗(A) over the sets ∅ = A � N ′. Depending on
the matroids involved, faster specialized approaches can be employed.

It is perhaps illuminating to consider the combined effect of all the refine-
ment steps and step 6 corresponding to a given basic optimal solution x∗.
Using standard uncrossing techniques, one can show that for each matroid
M ′ = (N ′, I ′) ∈ M, there is a nested family of sets ∅ � S1 � . . . � Sp ⊆ N ′

whose rank constraints span the x∗-tight constraints of M ′. Let p′ := p if p = 0
or Sp = N ′, and let p′ := p − 1 otherwise; so any Si with i ∈ [p′] can be used to
refine M ′. The combined effect of steps 5 for M ′ can be seen as replacing M ′ by
the matroids

(
M ′|S�

)
/S�−1 for � = 1, . . . , p′ + 1, where S0 := ∅ and Sp′+1 := N ′.

Step 6 chooses some M ′ ∈ M and a “ring” S� \ S�−1 of its nested family satis-
fying |S� \ S�−1| − x∗(S� \ S�−1) < qM ′ , and drops the matroid created for this
ring.

Analysis. Lemma 5 shows that if Algorithm 1 terminates, then it returns a set
with the desired properties. In Lemma 6, we show that the algorithm terminates
in a polynomial number of iterations. In particular, we show that in step 6, there
will always be a matroid in our collection that we can drop.

Lemma 5. Suppose that Algorithm1 returns a set R ⊆ N . Then, R satisfies
the properties stated in Theorem2.

Proof. Note that R ∈ B0, as M0 is only modified via deletions or contractions.
Moreover, w(R) ≥ OPT , where OPT is the optimal value of (LPmat) for the
input instance. Indeed, if x∗ is the current optimal solution, and we update our
instance (via deletions, contractions, refinements, or dropping matroids), then

Approximate Multi-matroid Intersection via Iterative Refinement 307

x∗ restricted to the new ground set remains feasible for (LPmat) for the new
instance. This is immediate for deletions and contractions, and if we drop a
matroid; it holds for refinements due to Lemma 4 (ii). So if the optimal value
of (LPmat) decreases, this is only because we contract elements with x∗(e) = 1,
which we include in R. It follows that w(R) ≥ OPT .

It remains to show that R satisfies property (iii) of Theorem2, i.e., R is
qi-independent in Mi for all i ∈ [k]. To this end, consider the state of the algo-
rithm at a point during its execution right before step 2. Hence, the instance
may already have been modified through prior refinements, contractions, dele-
tions, and relaxations. We claim that the invariant below holds throughout the
algorithm:

If a subset R′ of the current ground set satisfies the properties of Theorem 2
with respect to the current instance, then the set R consisting of R′ and all
elements contracted so far fulfills the properties of Theorem2 with respect
to the original instance.

To show the claim, it suffices to show that the invariant is preserved when-
ever we change the instance in the algorithm. Note that R = R′ unless the
change involves contracting an element. First, one can observe that if the
instance changes by deleting an element of value 0 or contracting an element
of value 1, then the invariant is preserved. Next, consider step 5, where we refine
M ′ = (N ′, I ′) ∈ M to obtain M ′|S = (S, I ′

1) and M ′/S = (N ′ \ S, I ′
2) whose q-

values are set to qM ′ . We are given that χR′ |S ∈ qM ′PI′
1

and χR′ |N ′\S ∈ qM ′PI′
2
,

and we have R = R′. So by Lemma 4 (i), we have χR/qM ′ ∈ PI′ , or equivalently
χR ∈ qM ′PI′ .

Finally, consider the case where a matroid M ′ = (N ′, I ′) ∈ M gets dropped
in step 6. We have R = R′, and we need to show that χR|N ′ ∈ qM ′PI′ . Let
x∗ be the optimal solution used in the algorithm when M ′ was dropped. We
have |N ′| − x∗(N ′) < qM ′ , and since x∗(N ′) = r′(N ′), and both |N ′| and qM ′

are integral, this implies |N ′| − x∗(N ′) ≤ qM ′ − 1. So N ′ can be partitioned
into a basis of M ′, which has size r′(N ′) = x∗(N ′) ≥ |N ′| − (qM ′ − 1), and
at most qM ′ − 1 other singleton sets. Each singleton {e} is independent in M ′,
since 0 < x∗(e) ≤ r′({e}) as x∗|N ′ ∈ PI′ . Therefore, N ′ can be partitioned into
at most qM ′ independent sets of M ′. Intersecting these sets with R shows that
R ∩ N ′ can be partitioned into at most qM ′ independent sets of M ′. ��

We now prove that the algorithm terminates. Note that refinements guaran-
tee that whenever the algorithm is at step 6, then for any M ′ = (N ′, I ′) ∈ M,
only the constraint of PI′ corresponding to N ′ may be x∗-tight. This allows us
to leverage ideas similar to those in [2,14] to show that step 6 is well defined.

Lemma 6. Algorithm1 terminates in at most (2k + 1)|N | iterations.

Proof. We show that whenever the algorithm is at step 6, then at least one
matroid in our collection can be dropped. This implies the above bound on the
number of iterations as follows. There can be at most |N | deletions or contrac-
tions. Each matroid Mi = (Ni, Ii) in our input spawns at most |Ni| refinements,

308 A. Linhares et al.

as each refinement of a matroid creates two matroids with disjoint (nonempty)
ground sets. This also means that step 6 can be executed at most k|N | times.

We focus on showing that step 6 is well defined. Consider the current col-
lection of matroids M. (Recall that M does not contain the current version of
M0.) Let x∗ be the current basic solution, which is not integral; otherwise every
element would have been deleted or contracted in step 3 and we would have ter-
minated in step 4. Since we deleted all elements e with x∗(e) = 0, the current
ground set N satisfies N = supp(x∗) := {e ∈ N : x∗(e) > 0}.

Consider a full-rank subsystem of (LPmat), Ax = b, consisting of linearly
independent, x∗-tight constraints. By standard uncrossing arguments, we may
assume that the constraints of Ax = b coming from a single matroid correspond
to a nested family of sets. The system Ax = b must contain some constraint
corresponding to a matroid M ′ ∈ M. Otherwise, we would have a full-rank
system consisting of constraints coming from only one matroid, namely M0,
which would yield a unique integral solution; but x∗ is not integral. Furthermore,
for a matroid M ′ = (N ′, I ′) ∈ M, the only constraint of PI′ that can be x∗-
tight corresponds to N ′, as otherwise, M ′ would have been refined in step 5. So
a matroid M ′ ∈ M gives rise to at most one row of A, which we denote by AM ′

if it exists. Let ∅ � S1 � . . . � Sp ⊆ N0 = N denote the nested family of sets
that give rise to the constraints of M0 in our full-rank system.

Consider the following token-counting argument. Each e ∈ N gives x∗(e)
tokens to the row of A corresponding to the smallest set S� containing e (if one
exists). It also supplies

(
1 − x∗(e)

)
/qM ′ tokens to every row AM ′ corresponding

to a matroid M ′ ∈ M whose ground set contains e. Since the q-values satisfy
(2), every e ∈ N supplies at most one unit of token in total to the rows of A.
Every row of A corresponding to a set S� receives x∗(S�) − x∗(S�−1) tokens,
where S0 := ∅. This is positive and integer, and thus at least 1. We claim that
there is some e ∈ N that supplies strictly less than one token unit. Given this, it
must be that there is a row AM ′ corresponding to a matroid M ′ = (N ′, I ′) ∈ M
that receives less than 1 token unit; thus |N ′| − x∗(N ′) < qM ′ as desired.

Finally, we prove the claim. If every element supplies exactly one token unit,
then it must be that: (i) Sp = N , (ii) inequality (2) is tight for all e ∈ N , and
(iii) for every e ∈ N , every matroid M ′ = (N ′, I ′) ∈ M with e ∈ N ′ gives
rise to a row AM ′ . But then

∑
M ′∈M

1
qM′ · AM ′ = χN , which is the row of A

corresponding to the constraint of M0 for the set Sp. This contradicts that A
has full rank. ��

3 Further Applications and Extensions

Generalized Matroidal Degree-Bounded Spanning Tree (gmdst). In this
problem, we are given an undirected graph G = (V,E) with edge costs c ∈ RE ,
disjoint node-sets S1, . . . , Sk, and matroids Mi = (δ(Si), Ii) for all i ∈ [k], where
δ(Si) is the set of edges of G that cross Si. We want to find a spanning tree
T of minimum cost such that T ∩ δ(Si) ∈ Ii for all i ∈ [k]. This generalizes
the matroidal degree-bounded MST problem considered by [21], wherein each

Approximate Multi-matroid Intersection via Iterative Refinement 309

node {v} is an Si set. Clearly, each edge belongs to at most 2 ground sets of the
matroids {Mi}i∈[k]. Thus, by taking M0 to be the graphic matroid and setting
w = −c, Theorem 2 leads to a tree T of cost at most the optimum such that
T ∩ δ(Si) is 2-independent in Mi for all i ∈ [k].

We remark that, whereas [21] obtains an O(1)-additive violation of the
matroid constraints for matroidal degree-bounded MST problem, such a poly-
time additive guarantee is not possible for gmdst unless P = NP. This follows
from the same replication idea used in AppendixA to rule out small additive
violations for (1).

Extension to Knapsack Constraints. We can consider a generalization of
(1), where, in addition to the matroids M0, . . . , Mk (over subsets of N) and
weight vector w ∈ RN , we have t knapsack constraints, indexed by i = k +
1, . . . , k + t. The i-th knapsack constraint is specified by a ground set Ni ⊆ N ,
cost vector ci ∈ RNi

≥0, and budget Ui ≥ 0. The goal is to find a maximum-weight
set R such that R ∈ B0 ∩ I1 ∩ . . . ∩ Ik, and satisfying ci(R ∩ Ni) ≤ Ui for all
i = k + 1, . . . , k + t.

We consider the natural LP-relaxation (LPmatkn) for this problem, and
extend Theorem 2 to obtain the following result; we sketch the proof in
AppendixB.

Theorem 7. Let q1, . . . , qk+t ∈ Z≥1 be such that
∑

i∈[k+t]:e∈Ni

1
qi

≤ 1 for all
e ∈ N . If (LPmatkn) is feasible, then one can efficiently compute R ⊆ N such
that (i) R ∈ B0; (ii) w(R) ≥ OPTLPmatkn ; (iii) R is qi-independent in Mi for all
i ∈ [k]; and (iv) ci(R∩Ni) ≤ Ui + qi ·

(
maxe∈Ni

ci
e

)
for all i ∈ {k +1, . . . , k + t}.

A Impossibility of Achieving Small Additive Violations

We show that Theorem 2 for problem (1) cannot be strengthened to yield a
basis of M0 that has small additive violation for the matroid constraints of
M1, . . . , Mk, even when k = 2.

We first define additive violation precisely. Given a matroid M = (N, I) with
rank function r, we say that a set R ⊆ N is μ-additively independent in M if
|R|−r(R) ≤ μ; equivalently, we can remove at most μ elements from R to obtain
an independent set in M . Unlike results for degree-bounded spanning trees, or
matroidal degree-bounded MST [21], we show that small additive violation is
not possible in polytime (assuming P = NP) even for the special case of (1)
where k = 2, so we seek a basis of M0 that is independent in M1,M2.

Theorem 8. Let f(n) = O(n1−ε), where ε > 0 is a constant. Suppose we have
a polytime algorithm A for (1) that returns a basis B of M0 satisfying |B| ≤
ri(B) + f(|N |) for i = 1, 2 (where ri is the rank function of Mi). Then we can
find in polytime a basis of M0 that is independent in M1,M2.

310 A. Linhares et al.

The problem of finding a basis of M0 that is independent in M1,M2 is NP-
hard, as shown by an easy reduction from the directed Hamiltonian path prob-
lem. Thus, Theorem 8 shows that it is NP-hard to obtain an additive violation
for problem (1) that is substantially better than linear violation.

Proof of Theorem 8. Choose t large enough so that t > 2f(t|N |). Since f(n) =
O

(
n1−ε

)
, this is achieved by some t = poly(|N |). For each i ∈ {0, 1, 2}, let M ′

i

be the direct sum of t copies of Mi. Let N ′ be the ground set of these matroids,
which consists of t disjoint copies of N , which we label N1, . . . , Nt.

Clearly, the instance (M ′
0,M

′
1,M

′
2) is feasible iff the original instance is fea-

sible. Suppose that running A on the replicated instance yields a basis R′ of
M ′

0 that has the stated additive violation for the matroids M ′
1,M

′
2. Hence, there

are two sets Q1, Q2 ⊆ R′ with |Q1|, |Q2| ≤ f(t|N |), such that R′ \ Qi is inde-
pendent in M ′

i for i = 1, 2. Hence, R′ \ (Q1 ∪ Q2) is independent in both M ′
1

and M ′
2. Because |Q1 ∪ Q2| ≤ 2f(t|N |) < t, we have by the pigeonhole princi-

ple that there is one j ∈ [t] such that (Q1 ∪ Q2) ∩ Nj = ∅. This implies that
R = R′ ∩ Nj = (R′ \ (Q1 ∪ Q2)) ∩ Nj , when interpreted on the ground set N , is
independent in both M1 and M2. Moreover, the elements of R, when interpreted
on the ground set N , are a basis in M0 because R′ is a basis in M ′

0. Hence, R is
the desired basis without any violations. ��

B Omitted Proofs

Proof of Corollary 3. Extend N by adding a set F of r(N0) additional elements
with 0 weight, where r is the rank function of M0. We modify M0 to a matroid
M̂0 on the ground set N0 ∪ F , given by the rank function r̂(S) := min{r(S∩N0)+
|S ∩ F |, r(N0)}. That is, M̂0 is the union of M0 with a free matroid on F , but
then truncated to have rank r(N0). Let P

̂B0
be the matroid base polytope of M̂0.

It is now easy to see that if x ∈ RN0∪F lies in P
̂B0

, then x|N0 ∈ PI0 . Moreover, we
can extend x ∈ RN0 with x ∈ PI0 to x′ ∈ RN0∪F so that x′ ∈ P

̂B0
and x′|N0 = x.

The corollary thus follows by applying Theorem2 to M̂0,M1, . . . , Mk. ��
Proof sketch of Theorem 7. We first state the LP-relaxation (LPmatkn).

max
{

wT x : x ∈ RN
≥0, x ∈ PB0 , x|Ni

∈ PIi
∀i ∈ [k],

(ci)T x|Ni
≤ Ui ∀i = k + 1, . . . , k + t

}
. (LPmatkn)

The algorithm leading to Theorem 7 is quite similar to Algorithm 1, and so
is its analysis, and we highlight the main changes.

In the algorithm, whenever we contract an element e, for each knapsack
constraint with e ∈ Ni, we now update Ui ← Ui − ci

e and drop e from Ni. After
performing all possible deletions, contractions, and refinements, we now either
drop a matroid M ′ ∈ M′ in step 6 as before, or, we drop a knapsack constraint
for some i ∈ {k + 1, . . . , k + t} if |Ni| − x∗(Ni) ≤ qi.

Approximate Multi-matroid Intersection via Iterative Refinement 311

To prove termination, we need only argue that we can always drop a matroid
constraint, or a knapsack constraint in step 6 (modified as above). This follows
from the same token-counting argument as in the proof of Lemma 6. Recall that if
Ax = b is a full-rank subsystem of (LPmatkn) consisting of linearly independent
x∗-tight constraints, then we may assume that the rows of A corresponding
to the M0-constraints form a nested family C. We define a token-assignment
scheme, where each e ∈ N supplies x∗(e) tokens to the row of A corresponding
to the smallest set in C containing e (if one exists), and

(
1 − x∗(e)

)
/qM ′ to each

row AM ′ coming from a matroid M ′ ∈ M in our collection whose ground set
contains e. Additionally, every e ∈ N now also supplies

(
1 − x∗(e)

)
/qi tokens to

each row of A originating from a knapsack constraint whose ground set contains
e. Under this scheme, as before, given the constraint on our q-values, it follows
that every e ∈ N supplies at most 1 token unit. Also, as before, each row of
A corresponding to an M0 constraint receives at least 1 token unit. So either
there is some row AM ′ coming from a matroid in M that receives strictly less
than 1 token-unit, or there must be some row of A corresponding to a knapsack
constraint that receives at most 1 token-unit; the latter case corresponds to a
knapsack constraint i with |Ni| − x∗(Ni) ≤ qi.

The proof of parts (i)–(iii) is exactly as before. To prove part (iv), consider the
i-th knapsack constraint. Note that the only place where we possibly introduce
a violation in the knapsack constraint is when we drop the constraint. If x∗

is the optimal solution just before we drop the constraint, then we know that
(ci)T x∗|Ni

≤ Ui. (Note that Ni and Ui refer to the updated ground set and
budget.) It follows that if S denotes the set of elements included from this
residual ground set Ni, then the additive violation in the knapsack constraint is

ci(S) − Ui ≤ ci(Ni) − Ui ≤ (
max
e∈Ni

ci
e

)(|Ni| − x∗(Ni)
) ≤ qi · (

max
e∈Ni

ci
e

)
. ��

References

1. Bansal, N., Khandekar, R., Könemann, J., Nagarajan, V., Peis, B.: On generaliza-
tions of network design problems with degree bounds. In: Proceedings of Integer
Programming and Combinatorial Optimization (IPCO), pp. 110–123 (2010)

2. Bansal, N., Khandekar, R., Nagarajan, V.: Additive guarantees for degree-bounded
directed network design. SIAM J. Comput. 39(4), 1413–1431 (2009)

3. Chan, Y.H., Lau, L.C.: On linear and semidefinite programming relaxations for
hypergraphic matching. Math. Program. Ser. A 135, 123–148 (2012)

4. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via
the multilinear relaxation and contention resolution schemes. SIAM J. Comput.
43(6), 1831–1879 (2014)

5. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. Wiley, New York (1998)

6. Cygan, M.: Improved approximation for 3-dimensional matching via bounded path-
width local search. In: Proceedings of 54th IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 509–518 (2013)

312 A. Linhares et al.

7. Cygan, M., Grandoni, F., Mastrolilli, M.: How to sell hyperedges: the hypermatch-
ing assignment problem. In: Proceedings of the 24th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 342–351 (2013)

8. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for
maximizing submodular set functions - II. Math. Program. Study 8, 73–87 (1978)

9. Füredi, Z.: Maximum degree and fractional matchings in uniform hypergraphs.
Combinatorica 1(2), 155–162 (1981)

10. Gupta, A., Nagarajan, V., Ravi, R.: Robust and maxmin optimization under
matroid and knapsack uncertainty sets. ACM Trans. Algorithms 12(1), 121 (2015)

11. Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone
submodular maximization: offline and secretary algorithms. In: Saberi, A. (ed.)
WINE 2010. LNCS, vol. 6484, pp. 246–257. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17572-5 20

12. Halldórsson, M.M.: Approximating discrete collections via local improvements. In:
Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 160–169 (1995)

13. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM J. Discrete Math. 2(1), 68–72 (1989)

14. Király, T., Lau, L.C., Singh, M.: Degree bounded matroids and submodular flows.
In: Proceedings of Integer Programming and Combinatorial Optimization (IPCO),
pp. 259–272 (2008)

15. Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization,
1st edn. Cambridge University Press, New York (2011)

16. Lee, J., Mirrokni, V., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone
submodular functions under matroid or knapsack constraints. SIAM J. Discrete
Math. 23(4), 2053–2078 (2010)

17. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple
matroids via generalized exchange properties. Math. Oper. Res. 35(4), 795–806
(2010)

18. Parekh, O., Pritchard, D.: Generalized hypergraph matching via iterated packing
and local ratio. In: Bampis, E., Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952,
pp. 207–223. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18263-
6 18

19. Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency. Springer,
Heidelberg (2003)

20. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: Proceedings of the 39th Annual ACM Symposium on
Theory of Computing (STOC), pp. 661–670 (2007)

21. Zenklusen, R.: Matroidal degree-bounded minimum spanning trees. In: Proceedings
of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1512–1521 (2012)

https://doi.org/10.1007/978-3-642-17572-5_20
https://doi.org/10.1007/978-3-642-17572-5_20
https://doi.org/10.1007/978-3-319-18263-6_18
https://doi.org/10.1007/978-3-319-18263-6_18

An Exact Algorithm for Robust Influence
Maximization

Giacomo Nannicini1(B), Giorgio Sartor2, Emiliano Traversi3,
and Roberto Wolfler-Calvo3,4

1 IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
nannicini@us.ibm.com

2 SINTEF Digital, Oslo, Norway
giorgio.sartor@sintef.no

3 LIPN, Université Paris 13, Villetaneuse, France
{traversi,wolfler}@lipn.fr

4 Department of Mathematics and Computer Science,
University of Cagliari, Cagliari, Italy

Abstract. We propose a Branch-and-Cut algorithm for the robust influ-
ence maximization problem. The influence maximization problem aims
to identify, in a social network, a set of given cardinality comprising
actors that are able to influence the maximum number of other actors.
We assume that the social network is given in the form of a graph with
node thresholds to indicate the resistance of an actor to influence, and
arc weights to represent the strength of the influence between two actors.
In the robust version of the problem that we study, the node thresholds
are affected by uncertainty and we optimize over a worst-case scenario
within a given robustness budget. Numerical experiments show that we
are able to solve to optimality instances of size comparable to other exact
approaches in the literature for the non-robust problem, but in addition
to this we can also tackle the robust version with similar performance.

Keywords: Influence maximization · Integer programming ·
Robust optimization

1 Introduction

Social networks are an integral part of social analysis, because they play an impor-
tant role in the spread of, e.g., information, innovation, or purchase decisions. A
social network is defined as a graph with actors (or groups of actors) corresponding
to nodes, and arcs corresponding to interactions between actors. Interactions may
represent different concepts such as friendship, mentor-apprentice, one- or two-
way communication, and so on. Recent years have witnessed growing interest in
the definition and study of mathematical models to represent the propagation of
influence – broadly defined – in a social network, as well as in the identification of
the actors that can play an important role in facilitating such propagation. This
paper concerns the identification of such actors.
c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 313–326, 2019.
https://doi.org/10.1007/978-3-030-17953-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_24

314 G. Nannicini et al.

The influence maximization problem is defined on a graph with an associated
diffusion process that models the spread of influence on the graph. A node is
defined as active if it is affected by the diffusion process. A subset of the nodes
are selected as seeds, and their role is to initialize the diffusion process. Influence
propagates in a breadth-first manner starting from the seeds. Several rules can
be used to model the activation of a node. A commonly used model associates
an activation threshold to each node, and a nonnegative weight to each arc
representing the strength of the interaction; this paper uses such a model. The
condition under which a node is activated by its neighbors is often described by
an activation function, several types of which are discussed in the literature. The
Influence Maximization Problem (IMP) is defined as the problem of identifying
a subset of nodes of a given cardinality that maximizes the number of nodes
activated at the end of the influence propagation process.

Literature Review. The idea of identifying the set of nodes that maximizes influ-
ence on a network dates back to [5,15]. Several variants of the IMP have been
presented in the literature; we refer to the recent surveys [2,12,13] for an exten-
sive analysis of these variants.

The majority of the literature models the diffusion of influence on the graph
using a threshold model or a cascade model, see e.g., [11]. In the threshold model,
a node becomes active if and only if a function of the weights on arcs incoming
from activated neighbors is larger than the node threshold. In the cascade model,
a node is activated if at least one of its neighbors is active. We further distinguish
between deterministic, stochastic and robust models. In deterministic models,
the graph parameters (i.e., weights and thresholds) are given and immutable.
In the stochastic model, some of them are random variables and we optimize
the expected number of active nodes. In the robust model, some parameters
are uncertain and we optimize the worst case over a given uncertainty set. This
distinction is crucial, because the stochastic version of the problem leads to a
monotone submodular maximization problem under reasonable assumptions [14].
Hence, it admits an efficient (1 − 1

e)-approximation using a greedy algorithm,
see e.g., [11,14]. The deterministic and robust version are not known to admit
such an approximation in general and they tend to be much harder to solve in
practice (but see [4] for an approximation algorithm for a robust version of IMP
under some conditions, that still requires submodularity).

The papers [11,12] study the greedy approach for the threshold and cascade
model in the stochastic setting. [17] proposes an exact cutting plane approach for
the same class of models, using strong optimality cuts exploiting submodularity.
The papers [4,10] present a greedy algorithm for a robust version of the cascade
models, optimizing a measure of regret regarding the set of chosen seeds.

Among the variants of IMP, we mention the Target Set Selection Prob-
lem (TSSP) [1]) and the (Generalized) Least Cost Influence Problem (GLCIP)
in [8,9]. The TSSP looks for the minimum-cost set of seed nodes that guarantees
activation of a given percentage of the total number of nodes. The TSSP and
the IMP are in some sense two different formulations for the same problem [1]:
in TSSP, the total number of activated nodes is a constraint and the number of

An Exact Algorithm for Robust Influence Maximization 315

seed nodes is the objective function, while for IMP it is the other way around.
GLCIP is a generalization of TSSP that allows incentives to decrease node acti-
vation thresholds paying a cost [8]. Both [1] and [8] use integer programming
formulations with an exponential size.

Contributions of this Paper. We present an exact algorithm for the deterministic
and robust IMP assuming a linear threshold model; we conjecture that many
results could be generalized to other activation functions. The algorithm that
we propose is based on a mixed-integer linear program (MILP) and Branch-and-
Cut. The model of uncertainty for the robust IMP is akin to the Γ -robustness
of [3]: we assume that the node activation thresholds are allowed to vary within
a certain range, but the total amount of deviation from the nominal problem
data is limited by a robustness parameter; our goal is to choose seeds so as to
optimize the total influence on the graph, assuming the worst-case realization of
the problem data (i.e., node thresholds) allowed by the given robustness param-
eter. To the best of our knowledge, this is the first time that an exact algorithm
for a robust version of IMP is proposed in the literature. Furthermore, even the
non-robust version of the MILP used in this paper is novel. Our algorithm for
the robust IMP is not simply the application of the ideas of [3] to the non-robust
model: indeed, for reasons that will become apparent after discussing the mathe-
matical model for IMP in more detail, it is not clear how to apply the procedure
of [3] to our model. We therefore propose a full Branch-and-Cut algorithm that
uses a cut separation procedure to “robustify” a MILP for IMP.

The MILP that we propose for IMP originates from a bilevel formulation
of the problem, where the inner problem (a linear problem with an exponen-
tial number of constraints and a provably integer optimum) is dualized, leading
to a quadratic problem with binary and linear variables. This formulation is
linearized with the use of indicator constraints. The final model contains an
exponential number of variables, that could be generated with a column gener-
ation procedure. The number of variables depends on the density of the graph
and the arc weights. To make the problem robust, we use an exponential number
of cuts that can be separated solving a sub-MILP.

We test the proposed Branch-and-Cut algorithm on a set of instances com-
prising social network graphs taken from [8]. We show that our integer pro-
gramming formulation for the non-robust model is competitive with the exact
algorithm of [8] for the related GLCIP problem. Furthermore, we are able to
solve the robust IMP to optimality for instances of similar size.

2 Problem Formulation

To formulate the problem of maximizing the influence on a graph G = (V,E)
with arc weights wij , we start by considering the problem of computing the
amount of influence spread once the activation seeds are given. Assume w.l.o.g.
that V = {1, . . . , n}, and denote by δ−(j) and δ+(j) the instar and outstar of
node j. In the rest of this paper, we will use y ∈ {0, 1}n as the incidence vector

316 G. Nannicini et al.

of the seeds. Given seeds y and a vector of node thresholds t, we define the set of
active nodes as the set returned by Algorithm 1, and the corresponding influence
as its cardinality.

1: A0 ← {j ∈ V : yj = 1}
2: for k = 1, . . . , n do
3: Ak ← Ak−1

4: for every j ∈ V : Ak−1 ∩ δ−(j) �= ∅ do
5: if

∑
i′∈δ−(j):i′∈Ak−1

wi′j ≥ tj then Ak ← Ak ∪ {j}
return An

Algorithm 1: Function InfluenceSpread(y, t).

The activation function used in Algorithm 1 is known as the linear threshold
model. If the node activation thresholds tj are given as input, the model is
deterministic. This paper studies a robust counterpart of linear threshold model,
in which the activation threshold tj of each node j can deviate by some fraction
Δ from its nominal value, and the total amount of threshold variations is upper
bounded by a given number B. Because we want to optimize over a worst-case
scenario, the activation thresholds can only increase. Given a vector of seeds
ȳ ∈ {0, 1}n, the total amount of influence that spreads on the graph under this
robust setting is the optimum of the following problem:

RIx,θ(ȳ) := minx,θ

∑
j∈V xj

∀j ∈ V
∑

i∈δ−(j) wijxi − θj + ε − ∑
i∈δ−(j) wijxj ≤ tj

∀j ∈ V xj ≥ ȳj∑
j∈V θj ≤ B

∀j ∈ V 0 ≤ θj ≤ Δtj
∀j ∈ V xj ∈ {0, 1}.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

In the above formulation, ε is a small enough value ensuring that if xj = 0
then

∑
i∈δ−(j) wijxi < tj . In our experiments we use ε = 10−d/2, where d is

the number of digits of precision of the problem data after the decimal dot. The
constraints

∑
j∈V θj ≤ B, 0 ≤ θj ≤ Δtj ∀j ∈ V define a polyhedral uncertainty

set in a manner similar to [3], although we consider r.h.s. uncertainty rather
than on the constraint matrix.

Proposition 1. The optimum of RIx,θ(ȳ) is the total influence spread on G
from seeds ȳ under our robustness model, and the variables xj indicate which
nodes are active at the end of the influence propagation process.

All proofs are given in the Appendix. The above formulation does not suffer
from self-activating loops (which require additional caution, see e.g., [8]), and
it has n binary variables only. Because of Proposition 1, the robust IMP with q
activation seeds can be solved as the following bilevel optimization problem:

An Exact Algorithm for Robust Influence Maximization 317

maxy RIx,θ(y)∑
j∈V yj = q

∀j ∈ V yj ∈ {0, 1}.

⎫
⎬

⎭
(R-IMP)

Notice that if we fix θ = 0, solving RIx,θ=0(ȳ) yields xj = 1 exactly for the nodes
returned by InfluenceSpread(ȳ, t). It is easy to show by counterexample that
RIx,θ(y), taken as a set function of the incidence vector y, is not submodular
even for fixed θ. The robust approach of [3] is difficult to apply here because we
do not even have a single-level formulation for the problem. To obtain a single-
level formulation, one possibility would be to consider a time-expanded graph
with n2 nodes to represent the n iterations of Algorithm 1. We instead keep a
model with n binary variables, and rely on lazy constraints for robustness.

3 Activation Set Formulation for the Non-robust
Problem

Our first step toward solving (R-IMP) is a formulation for the non-robust coun-
terpart of the problem. In this section we therefore assume that θ = 0 for sim-
plicity. The node activation threshold at node j is then tj . For all j ∈ V , let
Cj : {S ⊆ δ−(j) :

∑
i∈S wij ≥ tj , S is minimal}. It is obvious that a node j is

active if and only if there exists S ∈ Cj such that all nodes in S are active. This is
called a minimal activation set. The concept of activation set was first introduced
in the recent paper [8]. We developed the idea independently and we use our sim-
pler definition, but it is easy to verify that the definition above corresponds to
the minimal influencing set of [8] in the context of the linear threshold model
and no incentives. We can reformulate RIx,θ=0(ȳ) using minimal activation sets.

ASx(ȳ) := min
∑

j∈V xj

∀j ∈ V,∀S ∈ Cj

∑
i∈S xi − xj ≤ |S| − 1

∀j ∈ V xj ≥ ȳj .

⎫
⎬

⎭
(1)

Proposition 2. If ȳ is a 0-1 vector, the optimal solution x∗ to ASx(ȳ) is integer
and xj = 1 if and only if j ∈ An as returned by InfluenceSpread(ȳ, t).

We can use ASx(ȳ) to obtain a single-level linear formulation for the restriction
of (OPT) in which θ = 0. More specifically, we consider the following problem:

maxy ASx(y)∑
j∈V yj = q

∀j ∈ V yj ∈ {0, 1}.

⎫
⎬

⎭
(IMP-θ0)

We first take the dual of the inner problem ASx(ȳ) for a fixed ȳ. The dual is:

maxπ,μ

∑
j∈V

∑
S∈Cj

(|S| − 1)πS +
∑

j∈V μj ȳj

∀j ∈ V
∑

k∈δ+(j)

∑
S∈Ck:j∈S πS − ∑

S∈Cj
πS + μj ≤ 1

∀j ∈ V,∀S ∈ Cj πS ≤ 0
∀j ∈ V μj ≥ 0.

⎫
⎪⎪⎬

⎪⎪⎭

318 G. Nannicini et al.

The solution of this problem has value equal to that of its primal problem and
therefore, by Proposition 2, to InfluenceSpread(ȳ, t) whenever ȳ ∈ {0, 1}n. It
follows that a valid formulation for (IMP-θ0) is the following:

maxπ,μ,y

∑
j∈V

∑
S∈Cj

(|S| − 1)πS +
∑

j∈V μjyj

∀j ∈ V
∑

k∈δ+(j)

∑
S∈Ck:j∈S πS − ∑

S∈Cj
πS + μj ≤ 1

∑
j∈V yj = q

∀j ∈ V,∀S ∈ Cj πS ≤ 0
∀j ∈ V μj ≥ 0
∀j ∈ V yj ∈ {0, 1}.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

This is a quadratic problem, but we can easily reformulate it as a linear problem
with indicator constraints. To achieve this result, we simply notice that whenever
yj = 0, μj has no contribution in the objective function; since μj appears in a
single constraint and increasing μj reduces the feasible region for the remaining
variables, there exists an optimal solution in which yj = 0 implies μj = 0. Thus,
we obtain the following formulation for (IMP-θ0):

maxπ,μ,y

∑
j∈V

∑
S∈Cj

(|S| − 1)πS +
∑

j∈V μj

∀j ∈ V
∑

k∈δ+(j)

∑
S∈Ck:j∈S πS − ∑

S∈Cj
πS + μj ≤ 1

∀j ∈ V yj = 0 ⇒ μj = 0∑
j∈V yj = q

∀j ∈ V,∀S ∈ Cj πS ≤ 0
∀j ∈ V μj ≥ 0
∀j ∈ V yj ∈ {0, 1}.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(DUAL-θ0)

The advantage with respect to (R-IMP) is of course that we now have a single-
level problem, rather than bilevel. To achieve this result we had to fix θ = 0.
This restriction will be lifted in the next section.

We prove an additional result that we could not successfully exploit from an
empirical point of view, but may be interesting for future research. The proof is
based on total dual integrality.

Proposition 3. For every ȳ ∈ {0, 1}n, the polyhedron corresponding to the LP
obtained by fixing y = ȳ in (DUAL-θ0) is an integral polyhedron.

4 Branch-and-Cut for Robust Influence Maximization

For the robust version of the problem it is no longer sufficient to consider only the
case θ = 0. In fact, we would like to optimize over θ as in the original formulation
(R-IMP), but it is not obvious how to use the dualization trick described in
the previous section when θ is not fixed. This is because the activation sets
may change with θ, since θ directly affects the node activation thresholds. To
overcome this difficulty, we propose to work with a modification of (DUAL-θ0)
that includes dual πS variables for all the activation sets that may be minimal

An Exact Algorithm for Robust Influence Maximization 319

for any of the possible values of θ, ensuring via cuts that the objective function
value for a given indicator vector of seed nodes ȳ corresponds to RIx,θ(ȳ), i.e.,
the minimum possible influence spread when optimizing over θ.

To implement this idea we must define an appropriate collection of acti-
vation sets. Define Ce

j : {S ⊆ δ−(j) : ∃θj ∈ [0,Δtj] such that
∑

i∈S wij ≥
tj + θj , S is minimal}. We call this an extended collection of activation sets. An
algorithm to compute Ce

j is given in Algorithm 2; for a given node j, the first
call to the recursive function in Algorithm 2 should be RecGenExt(j, S ←
∅,first to add ← 1, Ce

j ← ∅). This will produce Ce
j .

1: if first to add > |δ−(j)| then return false

2: if
∑

i∈S wij ≥ t then
3: Ce

j ← Ce
j ∪ S

4: if
∑

i∈S wij ≥ tj + Δtj then return true /* If S is an activation set for any
possible threshold of node j, we do not need to add more items to the set */

5: any generated ← false
6: for i ← first to add to |δ−(j)| do
7: next generated ← RecGenExt(j, S ∪{i}, i+1, Ce

j) /* Check if adding the next
largest item would make S a valid activation set */

8: if next generated = false then break else any generated ← true
return any generated

Algorithm 2: Function RecGenExt(j, S,first to add, Ce
j). We assume w.l.o.g.

(up to relabeling) that δ−(j) := {1, . . . , |δ−(j)|}, and δ−(j) is sorted by decreas-
ing value of wij . This guarantees that the generated sets are minimal.

We then define a family of 2n inequalities that, together with a modification
of (DUAL-θ0), define a problem equivalent to (R-IMP). For every ȳ ∈ {0, 1}n,
let θȳ be the optimum value of θ for problem RIx,θ(ȳ). Let Cȳ

j := {S ⊆ δ−(j) :
∑

i∈S wij ≥ tj + θȳ
j , S is minimal} ⊆ Ce

j be the set of activation sets that are
minimal for node thresholds tj + θȳ

j . Consider the following problem:

maxπ,μ,y,z z
∀ȳ ∈ {0, 1}n

∑
j∈V

∑
S∈Cȳ

j
(|S| − 1)πS +

∑
j∈V

∑
S∈Ce

j \Cȳ
j

|S|πS +
∑

j∈V μj − z ≥ 0
∀j ∈ V

∑
k∈δ+(j)

∑
S∈Ce

k:j∈S πS − ∑
S∈Ce

j
πS + μj ≤ 1

∀j ∈ V yj = 0 ⇒ μj = 0∑
j∈V yj = q

∀j ∈ V,∀S ∈ Ce
j πS ≤ 0

∀j ∈ V μj ≥ 0
∀j ∈ V yj ∈ {0, 1}.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(R-IMP-LAZY)

320 G. Nannicini et al.

Proposition 4. The optimum of (R-IMP-LAZY) is equal to the optimum of
(R-IMP), and the value of the y variables at the respective optima coincide.

In (R-IMP-LAZY), the first set of inequalities ensures that in the dual only some
activation set constraints are binding, see the proof of Proposition 4. The algo-
rithm for (R-IMP) that we propose is the following. First, generate the extended
collection Ce

j of activation covers, using Algorithm 2. It is easy to see that each
activation set S ∈ Ce

j is valid in the range [tj ,min{(1 + Δ)tj ,
∑

i∈S wij}] and it
is minimal if the threshold is strictly greater than

∑
i∈S wij −mini∈S wij . Then,

implement problem (R-IMP-LAZY) with a Branch-and-Cut solver, defining the
first set of constraints as lazy constraints, i.e., constraints which are generated
when an integer solution is found, rather than at problem definition. The callback
for lazy constraints keeps a list L of the points ȳ for which the corresponding
constraints have already been generated, and proceeds as follows:

– Given a candidate solution ỹ, check if ỹ ∈ L; if so, return without generating
additional cuts.

– Solve RIx,θ(ỹ), and let θ̃ be the optimal value of θ.
– For every j ∈ V , construct Cỹ

j by comparing θ̃j with the ranges for validity
and minimality associated with each of the activation sets.

– Add the constraint
∑

j∈V

∑
S∈Cỹ

j
(|S| − 1)πS +

∑
j∈V

∑
S∈Ce

j \Cỹ
j
(|S|)πS +

∑
j∈V μj − z ≥ 0 to the problem, and add ỹ to L.

The solver terminates with an optimal solution for (R-IMP-LAZY), which is
then equal to (R-IMP) by Proposition 4. The hope is that termination is achieved
adding a comparatively small number of lazy constraints, rather than all the 2n

constraints involving ȳ in (R-IMP-LAZY). We remark that we need to solve a
MILP to find the optimal ỹ in each call of the lazy constraint generator. Never-
theless, given two vectors ȳ, ȳ′ we expect that θȳ and θȳ′

have many components
that are equal to each other, due to the budget constraint on θ. Hence, the cut
generated for some ȳ is likely to help for other ȳ′ as well.

We remark that Ce
j may have exponentially large cardinality. However, its

elements and the related variables can be generated via column generation. In
this paper, the full sets Ce

j are generated explicitly.

5 Computational Results

We test our approach on a large collection of graphs taken from the literature.
The Branch-and-Cut algorithm is written in Python using IBM ILOG CPLEX
12.8.0 as MILP solver. We activate the numerical emphasis setting because of
some difficulties faced during our numerical evaluation (on some graphs, model
(DUAL-θ0) can have solutions with very large values). Related to this, we remark
that reformulating the indicator constraints with big-M constraints is likely to
fail: we tried a similar approach, but the big-M values required for validity are too
large in practice. CPLEX may delete lazy constraints at times, hence our imple-
mentation adds previously generated constraints if a new incumbent violates

An Exact Algorithm for Robust Influence Maximization 321

them. All experiments are executed on a single core of an Intel Xeon E5-4620 at
2.2 GHz, 4 GB RAM, and a time limit of 1 h.

We consider the class of directed graphs SW [8,16], with a number of nodes
chosen from {50, 75, 100} and an average node degree chosen from {4, 8, 12}. We
use the same SW instances as in [8]. This includes 10 instances for each choice
of number of nodes and average node degrees. We additionally test a directed
version of the Erdos-Rényi random graph [7]: the conclusions of the study are
similar and are not reported for space reasons.

Table 1. Computing time, optimality gap, and number of instances solved to optimal-
ity for type SW graphs, averaged across different average node degrees.

B 0 1 10 100

n s Δ 0 0.1 0.5 1 0.1 0.5 1 0.1 0.5 1

50 0.02 time (s) 0.1 0.9 0.5 0.6 1.0 0.7 0.7 0.5 0.7 1.0

gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

opt (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.05 time (s) 9.7 24.3 10.4 8.3 25.0 19.0 20.5 21.9 18.8 17.3

gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

opt (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.1 time (s) 233.1 766.6 417.9 314.8 1197.6 1466.1 969.0 1102.3 1738.6 1664.9

gap (%) 0.0 1.7 0.0 0.0 2.5 1.4 0.0 3.5 3.6 15.6

opt (%) 100.0 95.0 100.0 100.0 95.0 95.0 100.0 95.0 95.0 85.0

75 0.02 time (s) 43.2 258.0 8.5 3.8 285.7 9.2 5.4 297.5 8.7 5.3

gap (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

opt (%) 100.0 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7

0.05 time (s) 1522.5 1997.4 1292.5 500.4 2411.8 2210.1 878.5 2350.7 2275.8 1113.7

gap (%) 433.3 486.2 0.0 0.0 539.5 63.8 0.0 558.0 57.2 0.8

opt (%) 66.7 66.7 96.7 96.7 43.3 66.7 96.7 43.3 66.7 93.3

0.1 time (s) 1592.8 2989.2 3458.8 3515.6 3600.0 3600.0 3600.2 3569.6 3600.0 3600.0

gap (%) 102.5 227.5 283.5 262.1 355.4 469.3 437.0 339.5 543.2 576.1

opt (%) 66.7 23.3 6.7 6.7 0.0 0.0 0.0 3.3 0.0 0.0

100 0.02 time (s) 134.1 818.6 16.9 7.4 817.2 19.2 10.4 835.7 19.3 10.0

gap (%) 0.0 170.0 0.0 0.0 271.1 0.0 0.0 186.1 0.0 0.0

opt (%) 100.0 93.3 100.0 100.0 93.3 100.0 100.0 93.3 100.0 100.0

0.05 time (s) 2563.0 3600.0 3578.1 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0 3600.0

gap (%) 598.7 809.6 589.6 534.1 930.9 976.4 815.7 893.8 1020.5 987.4

opt (%) 36.7 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 time (s) 1386.9 3428.8 3600.0 3600.0 3600.0 3600.0 3600.0 3512.0 3600.0 3600.0

gap (%) 109.9 275.4 336.0 409.1 352.8 562.9 595.1 349.6 616.7 703.5

opt (%) 66.7 6.7 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0

We solve the robust and non-robust IMP on each graph using different sets
of parameters. The number of seeds is chosen as a fraction s ∈ {0.02, 0.05, 0.1}

322 G. Nannicini et al.

of n, rounded to the nearest integer. The robustness budget B is chosen from
{0, 1, 10, 100}, where 0 corresponds to the non-robust case (i.e., the deterministic
linear threshold model); the maximum threshold deviation Δ, only applicable to
the robust case, is chosen ∈ {0.1, 0.5, 1}. We have a total of 2400 SW instances.

Table 1 shows the average computation time, the average gap and the per-
centage of instances solved to optimality for each combination of parameters. In
our tests CPLEX generates very few cuts – mostly implied bounds, but almost
no other cut. This may be related to the numerical difficulties mentioned above.
The complexity of the instance quickly increases with the number of nodes and
with the number of seeds; this is not surprising and agrees with similar findings
presented in [8]. The robust version seems harder than the non-robust coun-
terpart, but at least for smaller instances the computation time is similar. In
some cases, the robust problem actually solves faster than the non-robust one.
For the instances with n = 100, s ≥ 0.05, the robust problem is rarely solved
to optimality within one hour. In our tests, problems with high average degree
are more difficult to solve, probably because the cardinality of the collections of
extended covers Ce

j increases rapidly, leading to thousands of variables.

Table 2. Values of the best incumbent found for type SW graphs, averaged across
different average node degrees.

B 0 1 10 100

n s Δ 0 0.1 0.5 1 0.1 0.5 1 0.1 0.5 1

50 0.02 5.5 3.5 3.5 3.3 3.1 2.1 1.9 3.1 2.1 1.9

0.05 23.0 12.8 12.0 10.5 10.2 6.5 5.3 10.2 6.5 5.1

0.1 40.3 27.5 22.6 18.1 21.6 10.8 9.4 21.6 10.2 8.2

75 0.02 12.1 6.4 6.3 5.9 5.7 3.8 3.3 5.7 3.8 3.2

0.05 28.9 17.5 13.3 11.9 12.1 7.6 6.8 12.1 7.3 6.2

0.1 57.7 40.0 30.8 27.5 24.0 14.7 13.8 26.0 13.1 11.1

100 0.02 10.9 5.8 5.8 5.5 5.4 3.6 3.2 5.4 3.6 3.2

0.05 41.1 21.2 18.9 15.4 15.3 9.0 8.5 15.7 8.8 7.3

0.1 77.2 43.0 32.9 26.9 30.3 16.5 15.3 32.1 15.3 13.1

We briefly compare to the results of [8], which use the same type of graphs
SW although they solve the related GLCIP problem, rather than IMP. For the
non-robust problem, we are able to solve to optimality problems of similar size
(we solve all instances with n = 50 and 2/3 of the instances with n = 75, 100,
[8] solves roughly 3/4 of the instances with n = 50 and 1/3 of the instances with
n = 75, 100).

Table 2 shows that the price of robustness is quite high: protecting against
a small amount of uncertainty (B = 1, Δ = 0.1) decreases the total number of
activated nodes by 41% already. To further investigate the change in the optimal
solutions, we measure the Hamming distance between the set of seeds computed

An Exact Algorithm for Robust Influence Maximization 323

by the non-robust model and the robust model. We find that the difference is
significant, e.g., for n = 50 on average 83% of the seeds change.

Conclusions and Future Research. We present an exact Branch-and-Cut algo-
rithm for the robust and deterministic influence maximization problem. To solve
the deterministic version of the problem we introduce a new formulation originat-
ing from a bilevel problem, exploiting the dual of some (integral) subproblems.
The formulation is extended to the robust case by adding an exponential num-
ber of cuts that are separated in a Branch-and-Cut framework. We numerically
show that the proposed algorithm is capable of finding optimal robust solutions
on graphs from the literature.

This paper discusses uncertainty on the node activation threshold; it is possi-
ble that our approach can be adapted to handle uncertainty on the edge weights
as well. This is not pursued in this paper. Furthermore, our numerical evaluation
suggests that finding classes of valid cuts may be highly beneficial. Because this
may be difficult with the current formulation, finding alternative formulations
that still allow “robustification” cuts is an interesting research direction for the
future. With the current formulation, column generation for the πS variables
appears to be necessary to scale up to larger instances.

Proofs

Proof. Proposition 1. It suffices to show that for a given choice of the adver-
sarial threshold modification θj , problem RIx,θ(ȳ) computes the total influence
spread as if we had applied InfluenceSpread(ȳ, t + θ). Notice that RIx,θ(ȳ)
is a minimization problem and each xj is lower bounded by two quantities

only: ȳj , and
∑

i∈δ−(j) wijxi−tj−θj+ε
∑

i∈δ−(j) wij
. The latter quantity is > 0 if and only if

∑
i∈δ−(j) wijxi > tj + θj , implying that xj = 1 if and only if its activation rule

is triggered by its neighbors. If we apply InfluenceSpread(ȳ, t + θ), it is easy
to see by induction over the main loop that for each xj ∈ Ak there is an implied
lower bound xj ≥ 1, and for all nodes �∈ An there is no such implied lower bound.
It follows that in the optimal solution xj = 1 if and only if j ∈ An.

Proof. Proposition 2. Every xj is lower bounded by ȳj and by
∑

i∈S xi−|S|+1
for some subset of nodes S adjacent to node j.

We first show by induction for k = 1, . . . , n that for every node j ∈ Ak in
InfluenceSpread(ȳ, t), we have an implied lower bound xj ≥ 1 in ASx(ȳ).

For k = 1 the claim is obvious because of the constraints xj ≥ ȳj .
To go from k − 1 to k, notice that if node j is added to Ak at step k of
InfluenceSpread(ȳ, t), it must be that

∑
i∈δ−(j):i∈Ak−1

wij ≥ tj . By the induc-
tion hypothesis for all i ∈ Ak−1 we have xi ≥ 1, hence

∑
i∈δ−(j) wijxi ≥ tj . By

definition of minimal activation set, there must exist some S ∈ Cj , say S̄, such
that S̄ ⊆ Ak−1. Then the corresponding constraint

∑
i∈S̄ xi − xj ≤ |S̄| − 1 in

the formulation ASx(ȳ) reads |S̄| − xj ≤ |S̄| − 1, implying xj ≥ 1.

324 G. Nannicini et al.

Finally, for every j �∈ An, all the constraints
∑

i∈S xi −xj ≤ |S| − 1 are slack
because there does not exist S ∈ Cj , S ⊆ Ak for some k. Hence, the implied lower
bound for xj is 0. Since we are minimizing

∑
j∈V xj , at the optimum xj = 1 if

and only if j ∈ An.

Proof. Proposition 3. We show that for a given 0–1 vector ȳ, the remaining sys-
tem in (DUAL-θ0) is total dual integral. This implies that it defines an integral
polyhedron [6].

The discussion in this section shows that the dual of (DUAL-θ0) for fixed
y = ȳ is the problem ASx(ȳ) defined in (1). To show total dual integrality of the
desired system, we need to show that for any integer value of the r.h.s. of the
first set of constraints in ASx(ȳ), either ASx(ȳ) is infeasible, or it has an optimal
solution that is integer.

Let b be a given vector of integer r.h.s. values for the first set of constraints,
which are indexed by j ∈ V, S ∈ Cj . First, notice that if bj,S < 0 for any j, S, the
problem is infeasible; hence, we only need to consider the case b ≥ 0. We show
how to construct an integer optimal solution.

Define x0 := ȳ. Apply the following algorithm: for k = 1, . . . , n, (i) set xk
j ←

0∀j; (ii) for j ∈ V, S ∈ Cj , set xk
j ← max{xk

j ,
∑

i∈S xk−1
i − bj,S}. It is clear that

this defines an integral vector xn. We now show that this solution is optimal. Let
x∗ be an optimal solution for the problem with r.h.s. b. We first show by induction
that xk ≤ x∗. For k = 0 this is obvious as x ≥ ȳ = x0 is among the constraints.
Assume xk−1 ≤ x∗ and suppose xk

h > x∗
h for some h. Since xk

h is initially 0, it
must be that for some S, xk

h is set to
∑

i∈S xk−1
i − bh,S > x∗

h for the first time. But
∑

i∈S xk−1
i − bh,S ≤ ∑

i∈S x∗
i − bh,S ≤ x∗

h, because x∗ satisfies the constraints;
this is a contradiction. It follows that xk ≤ x∗ for all k = 1, . . . , n. It is easy to
check that xn is feasible by construction, and therefore it must be optimal.

Proof. Proposition 4. Let π∗, y∗, μ∗, z∗ be the optimal solution of
(R-IMP-LAZY). Consider the following LP, obtained by fixing y = y∗, keeping
only one of the constraints involving z for a given value ȳ in (R-IMP-LAZY), and
eliminating the z variable (which is unnecessary if it appears in one constraint
only):

maxπ,μ,y

∑
j∈V

∑
S∈Cȳ

j
(|S| − 1)πS+

∑
j∈V

∑
S∈Ce

j \Cȳ
j

|S|πS +
∑

j∈V μj

∀j ∈ V
∑

k∈δ+(j)

∑
S∈Ce

k:j∈S πS − ∑
S∈Ce

j
πS + μj ≤ 1

∀j ∈ V, y∗
j = 0 μj = 0

∀j ∈ V,∀S ∈ Ce
j πS ≤ 0

∀j ∈ V μj ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

An Exact Algorithm for Robust Influence Maximization 325

This problem is feasible as the all-zero solution is feasible. Using the reverse of
the transformations discussed in Sect. 3, we can show that the dual of the above
problem is equivalent to the following LP:

min
∑

j∈V xj

∀j ∈ V,∀S ∈ Cȳ
j

∑
i∈S xi − xj ≤ |S| − 1

∀j ∈ V,∀S ∈ Ce
j \ Cȳ

j

∑
i∈S xi − xj ≤ |S|

∀j ∈ V xj ≥ y∗
j

∀j ∈ V xj ≤ 1
∀j ∈ V xj ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(3)

The constraints with r.h.s. value |S| are redundant and can be dropped. As a
result, with the same argument used for Proposition 2, the optimum value of (3)
and therefore (2) is equal to RIx,θ=θȳ (y∗), i.e., the influence spread with seeds
determined by y∗ and node thresholds equal to t + θȳ.

Now notice that the objective function of (R-IMP-LAZY) corresponding to
π∗, y∗, μ∗, z∗ is equal to the minimum objective function of all the problems (2),
for all ȳ ∈ {0, 1}n. In other words, (R-IMP-LAZY) yields the following value:

min
ȳ∈{0,1}n

RIx,θ=θȳ(y∗).

By definition of θȳ, this minimum is attained for ȳ = y∗. Hence, the optimum of
(R-IMP-LAZY) has value RIx,θ=θy∗ (y∗), i.e., the influence spread with seeds y∗,
when the node thresholds are chosen to be the worst possible within the allowed
set of node thresholds. Since we are maximizing, this is equivalent to solving
(R-IMP).

References

1. Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for
target set selection. Theoret. Comput. Sci. 411(44–46), 4017–4022 (2010)

2. Banerjee, S., Jenamani, M., Pratihar, D.K.: A survey on influence maximization
in a social network. arXiv preprint arXiv:1808.05502 (2018)

3. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
4. Chen, W., Lin, T., Tan, Z., Zhao, M., Zhou, X.: Robust influence maximization. In:

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 795–804. ACM (2016)

5. Domingos, P., Richardson, M.: Mining the network value of customers. In: Pro-
ceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2001, pp. 57–66. ACM, New York (2001)

6. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs.
In: Annals of Discrete Mathematics, vol. 1, pp. 185–204. Elsevier (1977)

7. Erdos, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci 5(1), 17–60 (1960)

8. Fischetti, M., Kahr, M., Leitner, M., Monaci, M., Ruthmair, M.: Least cost influ-
ence propagation in (social) networks. Math. Program. 170(1), 293–325 (2018)

http://arxiv.org/abs/1808.05502

326 G. Nannicini et al.

9. Gunnec, D.: Integrating social network effects in product design and diffusion.
Ph.D. thesis (2012)

10. He, X., Kempe, D.: Stability and robustness in influence maximization. ACM
Trans. Knowl. Discovery Data (TKDD) 12(6), 66 (2018)

11. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146. ACM,
New York (2003)

12. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. Theory Comput. 11(4), 105–147 (2015)

13. Li, Y., Fan, J., Wang, Y., Tan, K.L.: Influence maximization on social graphs: a
survey. IEEE Trans. Knowl. Data Eng. 30, 1852–1872 (2018)

14. Mossel, E., Roch, S.: On the submodularity of influence in social networks. In: Pro-
ceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing,
pp. 128–134. ACM (2007)

15. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral market-
ing. In: Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 61–70. ACM (2002)

16. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature
393(6684), 440 (1998)

17. Wu, H.H., Küçükyavuz, S.: A two-stage stochastic programming approach for
influence maximization in social networks. Comput. Optim. Appl. 69(3), 563–595
(2018)

A New Contraction Technique
with Applications

to Congruency-Constrained Cuts

Martin Nägele(B) and Rico Zenklusen

Department of Mathematics, ETH Zurich, Zurich, Switzerland
martin.naegele@ifor.math.ethz.ch, ricoz@math.ethz.ch

Abstract. Minimum cut problems are among the most classical prob-
lems in Combinatorial Optimization and are used in a wide set of applica-
tions. Some of the best-known efficiently solvable variants include global
minimum cuts, minimum s-t cuts, and minimum odd cuts in undirected
graphs. We study a problem class that can be seen to generalize the
above variants, namely finding congruency-constrained minimum cuts,
i.e., we consider cuts whose number of vertices is congruent to r modulo
m, for some integers r and m. Apart from being a natural generalization
of odd cuts, congruency-constrained minimum cuts exhibit an interesting
link to a long-standing open problem in Integer Programming, namely
whether integer programs described by an integer constraint matrix with
bounded subdeterminants can be solved efficiently.

We develop a new contraction technique inspired by Karger’s cel-
ebrated contraction algorithm for minimum cuts, that, together with
further insights, leads to a polynomial time randomized approxima-
tion scheme for congruency-constrained minimum cuts for any constant
modulus m. Instead of contracting edges of the original graph, we use
splitting-off techniques to create an auxiliary graph on a smaller ver-
tex set, which is used for performing random edge contractions. This
way, a well-structured distribution of candidate pairs of vertices to be
contracted is obtained, where the involved pairs are generally not con-
nected by an edge. As a byproduct, our technique reveals new struc-
tural insights into near-minimum odd cuts, and, more generally, near-
minimum congruency-constrained cuts.

1 Introduction

Cuts in undirected graphs are a basic structure in Combinatorial Optimization
with a multitude of applications. The global minimum cut problem, the minimum
s-t cut problem, and the minimum odd cut problem are among the best known
efficiently solvable minimum cut variants, and have been the cradle of many
exciting algorithmic techniques. We study a generalization of these problems

R. Zenklusen—Supported by Swiss National Science Foundation grant 200021 165866.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 327–340, 2019.
https://doi.org/10.1007/978-3-030-17953-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_25

328 M. Nägele and R. Zenklusen

that we call congruency-constrained minimum cut (CCMC), where a congruency
constraint on the vertices in the cut is imposed, as described in the box below.1

Congruency-Constrained Minimum Cut (CCMC): Let G = (V,E)
be an undirected graph with edge weights w : E → R�0 and let γ : V →
Z�0. Let m ∈ Z>0 and r ∈ Z�0. The task is to find a minimizer of

min

{
w(δ(C))

∣∣∣∣∣ ∅ � C � V,
∑
v∈C

γ(v) ≡ r (mod m)

}
. (CCMC)

We call m the modulus of the problem, and we will typically consider m to be
constant. Moreover, allowing general γ-values—instead of setting γ(v) = 1 for all
v ∈ V , i.e., requiring that |C| ≡ r (mod m)—is merely for convenience. Indeed,
the case of general γ-values can be reduced to the unit case by replacing each
vertex v by a clique of (γ(v) mod m)-many vertices with large edge values.2

Apart from generalizing well-known cut problems, we are interested in the
study of (CCMC) due to a link to an intriguing open question in Integer Pro-
gramming, namely whether integer linear programs (ILPs) defined by an inte-
ger constraint matrix with bounded subdeterminants can be solved efficiently.
Recently it was shown in [1] that ILPs of the form min{cT x | Ax � b, x ∈ Z

n}
can be solved efficiently if A ∈ Z

m×n is bimodular, i.e., A has full column-rank
and the determinant of any n × n submatrix of A is in {−2,−1, 0, 1, 2}. This
result implies that if A is totally bimodular, i.e., all subdeterminants of A are in
{−2,−1, 0, 1, 2}, then the corresponding ILP can be solved in polynomial time
even without the requirement of A having full column rank (see [1] for details).
This extends the well-known fact that ILPs with a totally unimodular constraint
matrix can be solved efficiently; here, the absolute value of subdeterminants is
bounded by 1. Only very limited techniques are known for attacking the ques-
tion whether ILPs remain efficiently solvable in the Δ-modular case for some
constant Δ > 2, i.e., rank(A) = n and any n × n subdeterminant of A is in
{−Δ,−Δ + 1, . . . ,Δ}. Interestingly, to approach the bimodular case, classical
combinatorial optimization problems with congruency constraints play a crucial
role, and the problem can be reduced to certain types of congruency-constrained
cut and flow problems (see [1]). In particular, (CCMC) with modulus m can

1 The minimum odd cut problem is captured by (CCMC) by choosing m = 2, r = 1,
and γ(v) = 1 for all v ∈ V . Global minimum cuts correspond to m = 1, r arbitrary,
and γ(v) = 0 for all v ∈ V , and s-t cuts can be modeled as minimum {s, t}-odd cuts,
i.e., m = 2, r = 1, γ(s) = γ(t) = 1, and γ(v) = 0 for all v ∈ V \ {s, t}.

2 Here, (γ(v) mod m) denotes the smallest positive integer congruent to γ(v) modulo
m. Reducing modulo m is crucial to obtain a blow-up bounded by m, which, as
mentioned, we will typically assume to be constant.

A New Contraction Technique for Congruency-Constrained Cuts 329

be reduced to m-modular ILPs.3 Hence, if one believes that Δ-modular ILPs
can be solved efficiently for Δ = O(1), then (CCMC) should admit an efficient
algorithm. Conversely, despite the fact that, for Δ ≥ 3, further gaps have to
be overcome to reduce Δ-modular ILPs to congruency-constrained cut and flow
problems, the results in [1] give hope that congruency-constrained cuts may be
a useful building block for attacking Δ-modular ILPs, besides merely being a
special case thereof.

Not much is known in terms of techniques to deal with congruency constraints
in Combinatorial Optimization beyond parity constraints (m = 2). These con-
straints introduce an algebraic component to the underlying problem, which is a
main additional hurdle to overcome. Some progress has been achieved for moduli
m that are constant prime powers, where it was shown in [17] that submodular
function minimization under congruency constraints with such moduli can be
solved efficiently. As the cut function is submodular, this implies that (CCMC)
can be solved efficiently for m being a constant prime power. However, the tech-
niques in [17] do not extend to general constant moduli m, due to intrinsic
additional complications appearing when m has two different prime divisors.

The goal of this paper is to show that contraction techniques, in the spirit
of Karger’s algorithm for global minimum cuts [11,12], can be employed to

C

· · ·

u

v1
v2 v3 vn

w

γ(u) = γ(w) = 4, ∀i ∈ [n] : γ(vi) = 3

w(e) = 1 w(e) = M

Fig. 1. A (CCMC) instance with m = 6
and r = 1. Its optimal value is n+M −1,
achieved by the highlighted cut C.

approach (CCMC). A naive way of
using Karger for (CCMC) faces several
hurdles, which we exemplify through
the (CCMC) instance in Fig. 1, param-
eterized by an even number n and a
weight M � 1.4 It consists of n paths of
length 2 between two vertices u and w.
An optimal cut is highlighted in gray.
Karger’s algorithm returns any global
minimum cut in a graph G = (V,E)
with probability Ω(|V |−2), implying
that there are at most O(|V |2) global
minimum cuts. However, for M = 1,
the (CCMC) problem in Fig. 1 has expo-
nentially many optimal solutions. Hence, such a result cannot hold here. More-
over, if one of the n many u-w paths gets contracted, then the problem turns

3 If M is the incidence matrix of the digraph H = (V, A) obtained by bidirecting G,

min

{∑
a∈A

waya

∣∣∣∣∣ Mx − y � 0,
∑

v∈V γ(v)xv + zm = r, xs = 1, xt = 0,

x ∈ {0, 1}V , y ∈ {0, 1}A, z ∈ Z .

}

solves the minimum s-t cut problem in G with congruency constraint γ(C) ≡
r (mod m), where the cut corresponds to the set C = {v ∈ V | xv = 1}. Moreover,
the constraint matrix of the above ILP can be seen to be m-modular. Analogously to
how global min cut problems can be reduced to min s-t cut problems, every (CCMC)
problem can be reduced to solving linearly many problems of the above type.

4 Even n ensures that S = {w, v1, v2, . . . , vn} is infeasible, i.e., γ(S) �≡ 1 (mod 6).

330 M. Nägele and R. Zenklusen

infeasible. It is not clear how to fix this. Even if we forbid contractions that make
the instance infeasible, it is likely that in many of the u-w paths, one would con-
tract the edge of weight 1. It is not hard to verify that Karger-type contractions
would with high probability lead to a cut that is about twice as large as the
minimum cut if M is chosen large (and this factor of 2 can be boosted further).

To overcome these and further hurdles, substantial changes seem necessary,
and we introduce new techniques to employ contraction algorithms in our con-
text. A key difference of our method to Karger’s algorithm, and other contrac-
tion algorithms in a similar spirit (see a recent result of Chandrasekaran, Xu
and Yu [4] for a nice adaptation of Karger’s algorithm to the hypergraph k-cut
problem), is that we do not contract edges of the graph. Instead, we define a
distribution over pairs of vertices to contract that may not be connected by an
edge. Moreover, we only look for contractions among certain vertices, namely
those v ∈ V fulfilling γ(v) �≡ 0 (mod m). We show that splitting-off techniques
from Graph Theory can be leveraged to design an efficient procedure to sample
from a distribution of vertex pairs to contract with strong properties.

1.1 Our Results

Our main result for (CCMC) via our new contraction technique is the following.

Theorem 1. (CCMC) with constant modulus m admits a PRAS.

Recall that a PRAS (polynomial time randomized approximation scheme) is
an efficient procedure that, for any fixed ε > 0, returns with high probability, by
which we mean with probability at least 1−1/|V |, a (1+ε)-approximate solution.

Moreover, for a constant composite modulus m that is the product of only
two primes, we obtain an exact procedure.

Theorem 2. (CCMC) with a constant modulus that is the product of two primes
admits an efficient randomized algorithm that w.h.p. returns an optimal solution.

This is in stark contrast to prior procedures, in particular for congruency-
constrained submodular function minimization [17], which employ techniques
that face hard barriers for moduli beyond prime powers.

Finally, in a similar spirit to Karger’s algorithm for global minimum cuts, our
contraction algorithm allows us to derive structural results on near-minimum
congruency-constrained cuts. Whereas Karger’s analysis shows that there are
only polynomially many cuts of value at most a constant factor higher than the
minimum cut, we cannot hope for results of this type: The example in Fig. 1
shows that (CCMC) problems can have exponentially many optimal solutions.
For prime moduli, we show that near-minimum (CCMC) cuts are near-minimum
cuts (without congruency constraint) in one of only a polynomial number of
minimum s-t cut or global minimum cut instances. These instances are defined
on contractions of G, i.e., graphs obtained from G = (V,E) by successively
contracting nonempty node sets S ⊆ V . When contracting a set S, all vertices
of S are replaced by a single vertex vS with γ(vS) :=

∑
v∈S γ(v), all edges with

A New Contraction Technique for Congruency-Constrained Cuts 331

both endpoints in S are deleted, and each edge connecting a vertex in S to a
vertex u ∈ V \ S is replaced by an edge between u and vS of the same weight.
By construction, a cut C in a contraction of G naturally corresponds to a cut C
in G of the same weight with γ(C) = γ(C), and thus, we can identify these cuts.

Theorem 3. Consider a (CCMC) problem on G = (V,E) with constant prime
modulus m and optimal value OPT, and let ρ ≥ 1 be a constant. Then there is an
efficient randomized method returning poly(|V |) many minimum cut instances,
each of which is either a minimum s-t cut or global minimum cut instance,
defined on contractions of G, such that the following holds with high probability.
A cut C ⊆ V , C �= ∅, is a solution to (CCMC) of value at most ρ · OPT if and
only if C is a feasible solution of value at most ρ · OPT in one of the minimum
cut instances (without congruency constraint).

Due to space constraints, the focus of this extended abstract lies on Theo-
rem 1. Proofs of Theorems 2 and 3 are deferred to a long version of the paper.

1.2 Further Discussion on Related Results

Work on minimum cut problems with constraints of congruency type date back
to the early ’80s, when Padberg and Rao [19] presented a method to efficiently
find a minimum cut among all cuts with an odd number of vertices. Barahona
and Conforti [2] later showed that efficient minimization is also possible over all
cuts with an even number of vertices. Later works by Grötschel, Lovász, and
Schrijver [10], and by Goemans and Ramakrishnan [8] generalized these results,
by showing that even any submodular function can be minimized over so-called
triple families and, more generally, parity families. Submodular functions gen-
eralize cut functions, and triple as well as parity families capture congruency
constraints with modulus 2. More generally, these approaches even allow for
minimizing over all cuts C ⊆ V of cardinality not congruent to r modulo m,
for any integers r and m, which turns out to be a much simpler constraint than
requiring a cardinality congruent to r modulo m. Indeed, (CCMC) for unbounded
m quickly leads to NP-hard problems, as one could model an arbitrary cardi-
nality constraint through a congruency constraint. In particular, if G = (V,E)
is a graph with an even number of vertices, then seeking a minimum cut C
with |C| ≡ 0 (mod |V |/2) captures the well-known minimum bisection prob-
lem. Khot [13] showed that, unless NP has randomized sub-exponential time
algorithms, the minimum bisection problem does not admit a polynomial time
approximation scheme. Hence, it seems unlikely that a PRAS can be obtained
for (CCMC) without a bound on the modulus.

We briefly mention further works linked to matrices with bounded subdeter-
minants. This includes the problem of finding a maximum weight independent
set in a graph with constant odd-cycle packing number, for which a PTAS was
obtained by Bock, Faenza, Moldenhauer, Vargas, and Jacinto [3]. This problem
readily reduces to ILPs with bounded subdeterminants, due to an observation of
Grossman, Kulkarni, and Schochteman [9]. Another recent result by Eisenbrand

332 M. Nägele and R. Zenklusen

and Vempala [6] is a randomized simplex-type algorithm for linear program-
ming that is strongly polynomial whenever all subdeterminants of the constraint
matrix defining the LP are bounded by a polynomial in the dimension of the
problem. Furthermore, there has been interesting recent progress on the prob-
lem of approximating the largest subdeterminant of a matrix (see Di Summa,
Eisenbrand, Faenza, and Moldenhauer [5], and Nikolov [18]).

2 An Overview of Our Approach

As mentioned, the core of our approach is a contraction procedure inspired by
Karger’s global minimum cut algorithm, where we sample vertex pairs to be
contracted from a certain distribution. In fact, the analysis of Karger’s random
contraction algorithm exploits that, whenever a random edge is contracted in a
graph G = (V,E), this contraction is bad with probability at most k/|V | for some
constant k ∈ Z>0. More precisely, in the analysis, an arbitrary minimum cut C
is fixed, and a contraction is bad if it contracts two vertices on different sides
of C. The probability of bad contractions being at most k/|V | implies that by
contracting until only k vertices remain, and then enumerating all cuts among
those vertices, each minimum cut is found with probability at least 1/

(|V |
k

).
For (CCMC), an important observation is that it suffices to decide which

vertices in V �≡0 := {v ∈ V | γ(v) �≡ 0 (mod m)} are part of a solution. Indeed,
for any cut C, the value of γ(C) is determined by the intersection C ∩ V �≡0.
Moreover, for any U ⊆ V �≡0, the value

ν(U) := min {w(δ(C)) | ∅ � C � V, C ∩ V �≡0 = U}

and a minimizer CU can be obtained efficiently by a minimum cut computation
in a contraction of G.5 As CU ∩ V �≡0 = U , we have γ(CU) ≡ γ(U) (mod m).

Due to the above, instead of performing contractions over the full graph, as
done in Karger’s algorithm, we only contract pairs in V �≡0, with the goal to reduce
V �≡0 to a constant-size set. If we achieve this, it suffices to enumerate over all
U ⊆ V �≡0 with γ(U) ≡ r (mod m), minimize ν(U), and return a corresponding
cut CU . The theorem below is a key technical result of this paper, and shows
that a suitable distribution over vertex pairs in V �≡0 to contract exists whenever
the sum

∑
v∈V�≡0

ν({v}) is large enough.

Theorem 4. Let I = (G,w, γ,m, r) be a (CCMC) instance on G = (V,E). Let
α > 0 and c > 0 with

∑
v∈V�≡0

ν({v}) > 2α
c ·|V �≡0|. Then, there is a distribution D

over pairs in V �≡0 such that Pr{u,v}∼D
[|{u, v} ∩ C| = 1

]
� c/|V�≡0| for any feasible

solution C of I with w(δ(C)) � α. Moreover, there is an efficient procedure to
sample from D.

5 If U �∈ {∅, V �≡0}, then CU can be computed by contracting U and V �≡0 \ U in G,
and by determining a minimum cut in the contracted graph that separates the two
vertices corresponding to the contracted sets. If U ∈ {∅, V �≡0}, then ν(U) is obtained
by contracting V �≡0 and finding a global minimum cut in the contracted graph.

A New Contraction Technique for Congruency-Constrained Cuts 333

To prove Theorem 4, we use weighted splitting-off techniques on G to con-
struct a weighted auxiliary graph H on the vertex set V �≡0. We show that by
choosing edges of H with probabilities proportional to the edge weights, a dis-
tribution with the properties highlighted in Theorem 4 is obtained. Details of
the proof are discussed in Sect. 3 and Appendix A.2.

Theorem 4 with α = OPT (or α slightly larger than OPT) implies that,
whenever

∑
v∈V�≡0

ν({v}) is large compared to OPT, a contraction step has good
success probability, similar to Karger’s analysis. Otherwise, instead of perform-
ing a contraction, we approximately reduce the problem to another (CCMC)
instance with smaller modulus. More precisely, if

∑
v∈V�≡0

ν({v}) is sufficiently
small, there are many vertices v ∈ V �≡0 where the smallest cut C{v} ⊆ V separat-
ing v from V �≡0\{v} has weight no more than β = κ ·OPT for a small constant κ.
Such cuts are useful to modify a cut with wrong residue class. Indeed, consider a
cut C with small weight w(δG(C)), but γ(C) �≡ r (mod m). Then, C := C
C{v}
satisfies γ(C) ≡ γ(C) ± γ(v) (where the sign depends on whether v ∈ C), while
the weight w(δ(C)) increased by at most β compared to w(δ(C)); we recall that
β is small with respect to OPT. Our plan is that if we have enough small cuts
C{v}, we can simplify the congruency constraint to one with smaller modulus,
because the small cuts of type C{v} allow for moving solutions into the right
residue class. This idea leads to the following notion of a reduction family.

Definition 1 (Reduction family). Let I = (G,w, γ,m, r) be a (CCMC)
instance on the graph G = (V,E). For β ∈ R>0 and q ∈ [m − 1], a family
R(β, q) ⊆ 2V is a reduction family for I if

(i) R(β, q) = {R1, R2, . . . , R2mq−1} with mq := m
gcd(m,q) ,

6

(ii) for each i ∈ [2mq −1], there is one vertex ui ∈ Ri with γ(ui) ≡ q (mod m),
and γ(u) ≡ 0 (mod m) for all other u ∈ Ri \ {ui},

(iii) the vertices u1, . . . u2mq−1 are distinct, and
(iv) w(δ(Ri)) � β for all i ∈ [2mq − 1].

A reduction family R(β, q) allows for correcting the residue class γ(C) of a
solution C by any multiple of q modulo m, with losses in terms of cut weight
controlled by the parameter β. Given a reduction family R(β, q), it is thus suf-
ficient to find a solution C ′ satisfying γ(C ′) ≡ r (mod m′) for m′ = gcd(m, q).
This is formalized in the following lemma, with a proof given in Appendix A.1.

Lemma 1 (Reduction lemma).Let R(β, q) be a reduction family for a (CCMC)
instance (G,w, γ,m, r), and let m′ = gcd(m, q). Given a cut C ′

� V , C ′ �= ∅, with
γ(C ′) ≡ r (mod m′), one can efficiently obtain a cut C � V , C �= ∅, such that (i)
w(δ(C)) � w(δ(C ′)) +

(
m
m′ − 1

)
β, and (ii) γ(C) ≡ r (mod m).

The above reduction lemma applied with a reduction family R(β, q) allows
for reducing the modulus from m to a divisor m′ of m, which is strictly smaller
than m, as 0 < q < m. We call such a reduction to a smaller modulus through a

6 gcd(m, q) denotes the greatest common divisor of m and q.

334 M. Nägele and R. Zenklusen

reduction family a reduction step. The next theorem shows that reduction fam-
ilies exist (and can be found efficiently) whenever Theorem 4 fails to guarantee
a distribution with the desired properties for Karger-type contraction steps, i.e.,
whenever

∑
v∈V�≡0

ν({v}) is small. In this case, there are many vertices v ∈ V �≡0

for which ν({v}) is small, i.e., the cut C{v} has small value. A subset of these cuts
can then be used as a reduction family. This idea is concretized in Theorem 5
below, a proof of which we defer to a full version of this extended abstract.

Theorem 5. Let I be a (CCMC) instance with modulus m and let B > 0.
Assume that |V �≡0| � 4m2 and

∑
v∈V�≡0

ν({v}) � B · |V �≡0|. Then, for some
q ∈ [m − 1], one can efficiently obtain a reduction family R(2B, q) for I.

A reduction step reduces the modulus m to a divisor strictly smaller than m,
hence we can perform at most log2(m) many reduction steps, and might end up
solving a problem with modulus 1, i.e., an unconstrained minimum cut problem.

Altogether, the ingredients discussed above lead to Algorithm 1. This algo-
rithm requires a guess α for the value of the optimal solution, which we can
assume to know up to a factor of (1 + ε) by trying all polynomially many values

α ∈ {0} ∪ {
(1 + ε)i · wmin

∣∣ 0 � i � �log1+ε(wtot/wmin)
}

, (1)

where wmin := min{w(e) | e ∈ E, w(e) �= 0} and wtot := w(E).

Algorithm 1. Contraction-Reduction algorithm for (CCMC).
Input: (CCMC) instance I = (G, w, γ, m, r) on G = (V, E), error parameter

ρ > 0, optimal value guess α > 0.
while |V �≡0| > max

{
4m2,

⌈
4m
ρ

⌉}
and

∑
v∈V �≡0

ν({v}) > ρα
2m

· |V �≡0| do
1. Sample a pair {u, v} from the distribution D guaranteed by Theorem 4.
2. Modify G by contracting the set {u, v}.

if |V �≡0| � max
{
4m2,

⌈
4m
ρ

⌉}
then

1. For every S ⊆ V �≡0 with γ(S) ≡ r (mod m), let
CS ∈ arg min{w(δ(C)) | ∅ � C � V, C ∩ V �≡0 = S}.

2. Among all cuts CS obtained in step 1, let C be one of smallest value
w(δ(C)).

return Cut that corresponds to C in input graph before contractions.
else

1. Use Theorem 5 to get reduction family R(β, q) for β = ρα
m

and some
q ∈ [m − 1].

2. Let m′ = gcd(m, q). Apply Algorithm 1 recursively to I′ =(G, w, γ, m′, r)
with error parameter ρ and optimal value guess α to obtain a solution
C′ of I′.

3. Apply Lemma 1 to get a solution C of I from C′ and R(β, q).

return Cut that corresponds to C in input graph before contractions.

While |V �≡0| is large, Algorithm 1 contracts two vertices of V �≡0 whenever the
conditions of Theorem 4 are met with c = 4m/ρ. Note that every contraction

A New Contraction Technique for Congruency-Constrained Cuts 335

step reduces the number of vertices in V �≡0 by one or two, depending on whether
γ(u) + γ(v) �≡ 0 (mod m) or not. The if-block in Algorithm 1 performs the enu-
meration step described earlier once there are at most max

{
4m2,

⌈
4m
ρ

⌉}
vertices

left in V �≡0. If neither of the above is possible, then Theorem 5 and Lemma 1 allow
for a reduction step, which is executed in the else-block, where we recursively
invoke Algorithm 1 on an instance with strictly smaller modulus. Combining the
above insights, we can prove the following guarantee for Algorithm 1.

Theorem 6. Consider a (CCMC) instance (G,w, γ,m, r) with optimal solution
value OPT. Let α � OPT and ρ > 0. Algorithm 1 is an efficient procedure that,
by using α as an optimal value guess and ρ as error parameter, returns a solution
with value at most OPT + ρα log2 m with probability at least 1/

(|V |
�4m/ρ�

).

Proof. The only randomized step of Algorithm 1 occurs in the while-loop, where
pairs {u, v} for contraction are sampled. For the analysis, we fix an optimal solu-
tion C0 of I, and first assume that no contraction is bad w.r.t. C0, i.e., that no
contraction step contracts two vertices on different sides of C0 throughout Algo-
rithm 1. Under this assumption, we prove by induction on m that Algorithm 1
returns a cut C satisfying w(δ(C)) � OPT + ρα log2 m.

If m = 1, then V �≡0 = ∅, hence the algorithm directly executes the if-block,
where an unconstrained minimum cut problem is solved, giving an exact solution.
This reflects that for m = 1, (CCMC) is an unconstrained minimum cut problem.

Now let m > 1. If no bad contraction is performed, C0 remains feasible
once the while-loop terminated, and α remains an upper bound on the optimal
solution value in the new contracted graph. If |V �≡0| � max

{
4m2,

⌈
4m
ρ

⌉}
, then,

in the if-block, all remaining options are enumerated, and an optimal solution
is found. Else, we have |V �≡0| � 4m2 and

∑
v∈V�≡0

ν({v}) � ρα
2m · |V �≡0|, hence by

Theorem 5 with B = ρα
2m , a reduction family R(ρα

m , q) can be found efficiently.
We have q ∈ [m − 1] by Theorem 5, so m′ = gcd(m, q) < m. Thus, by the
inductive assumption, the recursive application of Algorithm 1 in step 2 of the
else-block returns a solution C ′

� V , C ′ �= ∅, of I ′ with

γ(C ′) ≡ r (mod m′) and w(δ(C ′)) � OPT + ρα log2(m
′). (2)

Note that in the inequality, we used OPT(I ′) � OPT, which follows from the
fact that C0 remains feasible for I ′. By (2) and Lemma 1, the solution C of I
constructed in step 3 is a cut, satisfies γ(C) ≡ r (mod m), and

w(δ(C)) � w(δ(C ′))+
(

m
m′ − 1

)
ρα
m � OPT+ρα(log2 m′+1) � OPT+ρα log2 m,

where the last inequality follows from m′ � m/2, as m′ is a divisor of m and
strictly smaller than m. This concludes the induction. Thus, if no bad contraction
steps are performed, a solution of value at most OPT + ρα log2 m is returned.

We now show that with probability 1/
(|V |

�4m/ρ�
), no contraction step is bad

w.r.t. C0 throughout all recursive calls of Algorithm 1. Contraction steps are
performed if

∑
v∈V�≡0

ν({v}) > ρα
2m · |V �≡0|, hence by Theorem 4 with c = 4m

ρ ,

336 M. Nägele and R. Zenklusen

Pr[a random contraction is bad w.r.t. C0] � 4m

ρ · |V �≡0| � k

|V �≡0| , (3)

where k :=
⌈
4m
ρ

⌉
. The same bound can be derived in all recursive calls of Algo-

rithm 1 w.r.t. the corresponding modulus m′ used in that call. As m′ < m for any
recursive call with modulus m′, the upper bound k/|V�≡0| from (3) holds at any
stage. Let s1, s2, . . . , s� ∈ Z, in this order, be the sizes of V �≡0 when contraction
steps are performed. Note that every contraction step reduces |V �≡0| by at least
1, reduction steps do not increase |V �≡0|, and |V �≡0| > k whenever contraction
steps are performed. This implies |V | � s1 > s2 > . . . > s� > k. Consequently,

Pr[no contraction is bad w.r.t. C0] �
�∏

i=1

(
1 − k

si

)
�

|V |∏
i=k+1

(
1 − k

i

)
=

1(|V |
k

) ,

as desired. Finally, all operations in Algorithm 1 can be performed in polynomial
time (using running time guarantees from Theorems 4, 5, and Lemma 1). As
observed earlier, solving a (CCMC) instance with modulus m requires at most
log2(m) many recursive calls to Algorithm 1, hence Algorithm 1 is efficient. ��

Guessing the optimal solution value up to a factor (1+ε) and repeating Algo-
rithm 1 polynomially often independently implies our main result, Theorem 1.

Proof of Theorem 1. For all polynomially many values of α given in (1), we run
Algorithm 1 with ρ = ε

(1+ε) log2(m) for
(|V |

k

)
log |V | many times independently,

where k = �4m/δ, and we return the best solution found over all iterations.
By Theorem 6, for α ∈ [OPT, (1 + ε)OPT), a single iteration returns a (1 + ε)-
approximate solution with probability at least 1/

(|V |
k

). Hence, among all iterations
with this α, a (1 + ε)-approximate solution is found with probability at least

1 − (
1 − 1/

(|V |
k

))(|V |
k)·log |V | � 1 − exp(− log |V |) = 1 − 1/|V |. ��

3 Good Contraction Distributions Through Splitting-Off

To obtain a good distribution for Karger-type contractions (Theorem 4), we con-
struct a weighted auxiliary graph H = (V �≡0, F), and then select a pair of vertices
f ∈ F for contraction in G with probabilities proportional to the edge weights in
H. The construction of H is based on splitting-off techniques, which, loosely speak-
ing, allow for modifying a given graph such that certain connectivity properties are
preserved. Our interest lies in preserving the values ν({v}) = μG,w({v}, V �≡0 \{v})
for all v ∈ V �≡0, where we use the notation μG,w(A,B) := min{w(δ(C)) | A ⊆ C ⊆
V \B}. Generalizing a splitting-off theorem of Lovász [14] to a weighted setting in
combination with algorithmic ideas of Frank [7], we obtain the following theorem
(see Appendix A.2 for more details).

A New Contraction Technique for Congruency-Constrained Cuts 337

Theorem 7. Let G = (V,E) be a graph with edge weights w : E → R�0, and
let Q ⊆ V . There is a strongly polynomial time algorithm to obtain a graph
H = (Q,F) and edge weights wH : F → R�0 such that

(i) wH(δH(q)) = μG,w({q}, Q \ {q}) for all q ∈ Q, and
(ii) wH(δH(C ∩ Q)) � w(δG(C)) for all C ⊆ V .

We now show how Theorem 7 is used to prove Theorem 4.

Proof of Theorem 4. Apply Theorem 7 to (G,w) with Q = V �≡0 to obtain the
graph H = (V �≡0, F) with weights wH . The distribution D over vertex pairs
{u, v} we use is given by choosing {u, v} ∈ F with probability proportional to
wH({u, v}). This is clearly an efficient sampling procedure. By Theorem 7(i),

2 · wH(F) =
∑

v∈V�≡0

wH(δH(v)) =
∑

v∈V�≡0

μG,w({v}, Q \ {v}) =
∑

v∈V�≡0

ν({v}).

If C is a solution of I with w(δ(C)) � α, then by choice of D and the above,

Pr{u,v}∼D
[|{u, v} ∩ C| = 1

]
=

wH(δH(C ∩ V �≡0))
wH(F)

� 2 · w(δG(C))∑
v∈V�≡0

ν({v})
� c

|V �≡0| , (4)

as desired, where the inequalities are due to Theorem 7(ii), w(δG(C)) � α, and
the assumption

∑
v∈V�≡0

ν({v})> 2α
c · |V �≡0| in Theorem 4. ��

A Missing Proofs

A.1 Proof of Lemma 1

Let R(β, q) = {R1, R2, . . . , R2mq−1} with distinct ui ∈ Ri for all i ∈ [2mq −1] as
given in item (ii) of Definition 1. We distinguish two cases: Either, there are mq

many vertices among the ui with ui ∈ C ′, or there are mq many with ui �∈ C ′.
In the first case, assume w.l.o.g. that u1, . . . , umq

∈ C ′, and let Uk :=
⋃k

i=1 Ri

for k ∈ {0, . . . , mq − 1}. We show that for some k, the set Ck := C ′
Uk has the
desired properties. First observe that all Ck are cuts, as C0 = C ′ is a cut, and
u1 /∈ Ck � umq

for k ∈ [mq − 1]. Moreover, k � mq − 1 implies

w(δ(Ck)) � w(δ(C ′)) +
∑k

i=1w(δ(Ri)) � w(δ(C ′)) + (mq − 1)β. (5)

Using mq = m
gcd(m,q) = m

m′ , we see that (5) is precisely point (i) of Lemma 1 for
Ck. To conclude, we show that there exists k such that Ck satisfies γ(Ck) ≡ r
(mod m), i.e., point (ii). Using that γ(u) ≡ 0 (mod m) for all u ∈ Ri \{ui}, and
ui ∈ C ′ for all i ∈ [mq], we obtain γ(Ck) ≡ γ(C ′) − ∑k

i=1 γ(ui) ≡ γ(C ′) − kq
(mod m). It thus suffices to find k ∈ {0, . . . , mq − 1} with γ(C ′) − kq ≡ r
(mod m), or equivalently,

kq ≡ γ(C ′) − r (mod m). (6)

338 M. Nägele and R. Zenklusen

By assumption, γ(C ′) − r ≡ 0 (mod m′), so r′ := γ(C′)−r
m′ ∈ Z, and q′ := q

m′ ∈ Z

because m′ = gcd(m, q). Dividing (6) by m′, we obtain the equivalent equation
kq′ ≡ r′ (mod mq), which has a solution k ∈ {0, . . . , mq − 1} as gcd(q′,mq) = 1.

The second case, i.e., u1, . . . , umq
/∈ C ′, is similar: Ck always is a cut because

C0 = C ′ is a cut, and u1 ∈ Ck �� umq
for k ≥ 1. Equation (5) remains true and

implies point (i). For point (ii), we use γ(Ck) ≡ γ(C ′)+
∑k

i=1 γ(ui), and the above
analysis results in kq′ ≡ −r′ (mod mq), admitting a solution k ∈ {0, . . . , mq−1}.

Finally, given R(β, q) and C ′, checking which of the two cases applies can be
done in polynomial time, as well as solving the respective congruence equation
for k. Thus, a cut C with the desired properties can be obtained efficiently. ��

A.2 Sketch of proof of Theorem 7

As indicated earlier, Theorem 7 is a consequence of splitting-off techniques from
Graph Theory, a fundamental tool dating back to the ’70s [14–16]. Typically,
a graph is modified by repeatedly splitting off two edges from a vertex v, i.e.,
replacing two non-parallel edges {v, x} and {v, y} by a new edge {x, y}, or delet-
ing two parallel edges incident to v. Denoting μG(A,B) := min{|δG(C)| | A ⊆
C ⊆ V \ B} for a graph G = (V,E) and A,B ⊆ V , Lovász proved the following.

Theorem 8 (Lovász [14]). Let G = (V,E) be Eulerian, let Q ⊆ V , and let
v ∈ V \ Q. For every edge {v, x} ∈ E, there exists another edge {v, y} ∈ E such
that the graph G′ arising from G by splitting off {v, x} and {v, y} from v satisfies

μG({q}, Q \ {q}) = μG′({q}, Q \ {q}) ∀q ∈ Q.

Iterative applications of Theorem 8 for fixed Q ⊆ V and v ∈ V \ Q result in a
new graph on the vertex set V \v only, without changing the value of minimum cuts
separating a single vertex q fromQ\{q}, for all q ∈ Q.We aim for a generalization of
this statement to a weighted setting, where the graph G = (V,E) has edge weights
w : E → R�0, a splitting operation consists of decreasing the weight on two edges
{v, x} and {v, y} by some ε > 0 while increasing the weight on the edge {x, y} by ε,

Algorithm 2. Fractionally splitting off a single vertex.
Input: Graph G = (V, E) with edge weights w : E → R�0, Q ⊆ V , v ∈ V \ Q.

foreach x, y ∈ NG(v) := {z ∈ V \ {v} | {v, z} ∈ E}, x �= y do
foreach q ∈ Q do

Calculate the min cut sizes
cq
1 = μG,w({q}, Q \ {q}), cq

2 = μG,w({q, v}, (Q \ {q}) ∪ {x, y}),

and cq
3 = μG,w({q, x, y}, (Q \ {q}) ∪ {v}).

Split off ε from e1 = {v, x} and e2 = {v, y}, where

ε = min
q∈Q

min
{
(c

q
2 − c

q
1)/2, (c

q
3 − c

q
1)/2, w(e1), w(e2)

}
.

return Modified graph G with vertex v deleted and modified weights w.

A New Contraction Technique for Congruency-Constrained Cuts 339

and we want the weighted cut values μG,w({q}, Q \ {q}) to be invariant. We claim
that this is achieved by Algorithm 2. We highlight that efficient weighted versions
of other splitting-off results (than Theorem 8) have already been considered by
Frank [7], and our method is heavily inspired by Frank’s approach.

In the inner for loop in Algorithm 2, if q ∈ {x, y}, then cq
2 = μG,w({q, v}, (Q\

{q}) ∪ {x, y}) is the value of an infeasible cut problem (because both arguments
of μG,w contain q), which we interpret as ∞.

In each iteration of the outer for loop in Algorithm 2, we split off ε � 0 from
{v, x} and {v, y}, with ε chosen maximal so that all weights remain non-negative
and the connectivities of interest are preserved. This choice of ε implies that once
the outer for loop terminated, there is no pair of edges incident to v from which
a positive weight can be split off. Uniformly scaling all weights of this remaining
graph to even integral weights (which we interpret as edge multiplicities) and
employing Theorem 8, we can prove that there can only be a single edge with
positive weight incident to v in the remaining graph, which we can thus safely
delete without affecting connectivities within V \ {v}.

The following lemma summarizes the guarantees that we thereby obtain for
Algorithm 2. A formal proof is deferred to a long version of this paper.

Lemma 2. Let G = (V,E) be a graph with edge weights w : E → R�0, let Q � V
and v ∈ V \Q. On this input, Algorithm 2 returns, in running time dominated by
O(|V |3) many minimum cut computations in (G,w), a graph H = (V \ {v}, F)
with edge weights wH : F → R such that

(i) μH,wH
({q}, Q \ {q}) = μG,w({q}, Q \ {q}) for all q ∈ Q, and

(ii) wH(δH(C \ {v})) � w(δG(C)) for all C ⊆ V .

Applying Lemma 2 iteratively for all v ∈ V \Q immediately yields Theorem 7.

References

1. Artmann, S., Weismantel, R., Zenklusen, R.: A strongly polynomial algorithm for
bimodular integer linear programming. In: Proceedings of the 49th Annual ACM
Symposium on Theory of Computing (STOC), pp. 1206–1219 (2017)

2. Barahona, F., Conforti, M.: A construction for binary matroids. Discrete Math.
66(3), 213–218 (1987)

3. Bock, A., Faenza, Y., Moldenhauer, C., Ruiz-Vargas, A.J.: Solving the stable set
problem in terms of the odd cycle packing number. In: Proceedings of the 34th
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pp. 187–198 (2014)

4. Chandrasekaran, K., Xu, C., Yu, X.: Hypergraph k-cut in randomized polynomial
time. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1426–1438 (2018)

5. Di Summa, M., Eisenbrand, F., Faenza, Y., Moldenhauer, C.: On largest volume
simplices and sub-determinants. In: Proceedings of the 26th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 315–323 (2015)

6. Eisenbrand, F., Vempala, S.: Geometric random edge. Math. Program. 164(1),
325–339 (2017)

340 M. Nägele and R. Zenklusen

7. Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J.
Discrete Math. 5(1), 25–53 (1992)

8. Goemans, M.X., Ramakrishnan, V.S.: Minimizing submodular functions over fam-
ilies of sets. Combinatorica 15(4), 499–513 (1995)

9. Grossman, J.W., Kulkarni, D.M., Schochetman, I.E.: On the minors of an incidence
matrix and its smith normal form. Linear Algebra Appl. 218, 213–224 (1995)

10. Grötschel, M., Lovász, L., Schrijver, A.: Corrigendum to our paper “The ellipsoid
method and its consequences in combinatorial optimization”. Combinatorica 4(4),
291–295 (1984)

11. Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-cut
algorithm. In: Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 21–30 (1993)

12. Karger, D.R., Stein, C.: A new approach to the minimum cut problem. J. ACM
43(4), 601–640 (1996)

13. Khot, S.: Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipar-
tite clique. SIAM J. Comput. 36(4), 1025–1071 (2006)

14. Lovász, L.: On some connectivity properties of Eulerian graphs. Acta Mathematica
Academiae Scientiarum Hungarica 28(1), 129–138 (1976)

15. Lovász, L.: Combinatorial Problems and Exercises. North-Holland, Amsterdam
(1979)

16. Mader, W.: A reduction method for edge-connectivity in graphs. Ann. Discrete
Math. 3, 145–164 (1978)

17. Nägele, M., Sudakov, B., Zenklusen, R.: Submodular minimization under congru-
ency constraints. In: Proceedings of the 29th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 849–866 (2018)

18. Nikolov, A.: Randomized rounding for the largest simplex problem. In: Proceedings
of the 47th Annual ACM Symposium on Theory of Computing (STOC), pp. 861–
870 (2015)

19. Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Oper.
Res. 7(1), 67–80 (1982)

Sparsity of Integer Solutions
in the Average Case

Timm Oertel1, Joseph Paat2(B), and Robert Weismantel2

1 School of Mathematics, Cardiff University, Cardiff, UK
2 Institute for Operations Research, ETH Zürich, Zürich, Switzerland

joseph.paat@ifor.math.ethz.ch

Abstract. We examine how sparse feasible solutions of integer programs
are, on average. Average case here means that we fix the constraint
matrix and vary the right-hand side vectors. For a problem in standard
form with m equations, there exist LP feasible solutions with at most m
many nonzero entries. We show that under relatively mild assumptions,
integer programs in standard form have feasible solutions with O(m)
many nonzero entries, on average. Our proof uses ideas from the theory
of groups, lattices, and Ehrhart polynomials. From our main theorem
we obtain the best known upper bounds on the integer Carathéodory
number provided that the determinants in the data are small.

1 Introduction

Let m,n ∈ Z≥1 and A ∈ Z
m×n. We always assume that A has full row rank.

We also view A as a set of its column vectors. So, W ⊆ A implies that W is a
subset of the columns of A.

We aim to find a sparse integer vector in the set

P (A, b) := {x ∈ Z
n
≥0 : Ax = b},

where b ∈ Z
m. That is, we aim at finding a solution z such that | supp(z)| is as

small as possible, where supp(x) := {i ∈ {1, . . . , m} : xi �= 0} for x ∈ R
n. To

this end, we define the support function of (A, b) to be

σ(A, b) := min{| supp(z)| : z ∈ P (A, b)}.

If P (A, b) = ∅, then σ(A, b) := ∞. We define the support function of A to be

σ(A) := max{σ(A, b) : b ∈ Z
m and σ(A, b) < ∞}.

The question of determining σ(A) generalizes problems that have been open
for decades. A notable special case is the so-called integer Carathéodory number,
i.e. the minimum number of Hilbert basis elements in a rational pointed polyhe-
dral cone required to represent an integer point in the cone. We say that A has
the Hilbert basis property if its columns correspond to a Hilbert basis of cone(A).
c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 341–353, 2019.
https://doi.org/10.1007/978-3-030-17953-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_26&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_26

342 T. Oertel et al.

For A with the Hilbert basis property, Cook et al. [8] showed that σ(A) ≤ 2m−1
and Sebő showed that σ(A) ≤ 2m−2 [12]. Bruns et al. [7] provide an example of
A with the Hilbert basis property with 7

6m ≤ σ(A). However, for matrices with
the Hilbert basis property, the true value of σ(A) is unknown.

For general choices of A, Eisenbrand and Shmonin [10] showed that σ(A) ≤
2m log2(4m‖A‖∞), where ‖ · ‖∞ is the max norm. Aliev et al. [1] and Aliev
et al. [2] improved the previous result and showed that

σ(A) ≤ m + log2(g−1
√

det(AAᵀ)) ≤ 2m log2(2
√

m‖A‖∞), (1)

where g = gcd{|det(B)| : B is an m × m submatrix of A}. It turns out that the
previous upper bound is close to the true value of σ(A). In fact, for every ε > 0,
Aliev et al. [1] provide an example of A for which m log2(‖A‖∞)1/(1+ε) ≤ σ(A).

In this paper, we consider σ(A, b) for most choices of b. We formalize this
‘average case’ using the asymptotic support function of A defined by

σasy(A) := min
{

k ∈ Z : lim
t→∞

|{b ∈ {−t, ..., t}m : σ(A, b) ≤ k}|
|{b ∈ {−t, ..., t}m : P (A, b) �= ∅}| = 1

}
.

Note that σasy(A) ≤ σ(A) ≤ |A|.
The value σasy(A) can be thought of as the smallest k such that almost all

feasible integer programs with constraint matrix A have solutions with support
of cardinality at most k. The function σasy(·) was introduced by Bruns and
Gubeladze in [6], where it was shown that σasy(A) ≤ 2m − 3 for matrices with
the Hilbert basis property. In general, an average case analysis of the support
question has not been provided in the literature. Average case behavior of inte-
ger programs has been studied in specialized settings, see, e.g., [9] for packing
problems in 0, 1 variables and [3] for problems with only one constraint. How-
ever, to the best of our knowledge, there are no other studies available that are
concerned with the average case behavior of integer programs, in general.

Our analysis reveals that the sizes of the m × m minors of A affect sparsity.
It turns out that the number of factors in the prime decomposition of the minors
also affects sparsity. Moreover, for matrices with large minors but few factors,
there exist solutions whose support depends on the number of factors rather
than the size of the minors. Recall that a prime is a natural number greater
than or equal to 2 that is divisible only by itself and 1. We now formalize these
parameters related to the minors of a matrix.

Let W ∈ Z
m×d be of full row rank, where d ∈ Z≥1. Denote the set of absolute

values of the m × m minors by

Δ(W) := {|det(W ′)| : W ′ is an invertible m × m submatrix of W},

and denote the set of ‘number of prime factors’ in each minor by

Φ(W) :=
{

t ∈ Z≥1 :
W ′ an invertible m × m submatrix of W, and
|det(W ′)| =

∏t
i=1 αi with α1, . . . , αt prime

}
. (2)

Sparsity of Integer Solutions in the Average Case 343

If Φ(W) consists of only one element (e.g., when W ∈ Z
m×m), then we denote

the element by φ(W). If W ∈ Z
m×m and |det(W)| = 1, then φ(W) = 0. We

denote the maximum and minimum of these sets by

δmax(W) := max(Δ(W)), δmin(W) := min(Δ(W)),
φmax(W) := max(Φ(W)), and φmin(W) := min(Φ(W)).

Our first main result bounds σasy using these parameters.

Theorem 1. Let A ∈ Z
m×n and W ⊆ A such that cone(A) = cone(W). Then

(i) σasy(A) ≤ m + φmax(W) ≤ m + log2(δmax(W)),

(ii) σasy(A) ≤ 2m + φmin(W) ≤ 2m + log2(δmin(W)).

Theorem 1 guarantees that the average support σasy(A) is linear in m in two
special cases: (a) the minimum minor of A is on the order of 2m or (b) there is
a prime minor. We emphasize that (ii) uses the minimum values φmin and δmin,
which can be bounded by sampling any m × m invertible submatrix of A. Thus,
σasy(A) can be bounded by finding a single m × m invertible submatrix of A.

Note that the bound in (1) includes the term g. Our proof of Theorem 1
can be adjusted to prove σasy(A) ≤ m + log2(g−1δmax(W)) and σasy(A) ≤
2m + log2(g−1δmin(W)). We omit this analysis here to simplify the exposition.
However, it should be mentioned that

δmax(A) ≤ (
∑

δ∈Δ(A) δ2)1/2 =
√

det(AAᵀ),

where the equation follows from the so-called Cauchy-Binet formula. Therefore,
if A has two nonzero m×m minors, then Theorem 1 (i) improves (1), on average.

A corollary of Theorem 1 is that if A has the Hilbert basis property, then
the extreme rays of cone(A) provide enough information to bound σasy(A).

Corollary 1. Let V ⊆ Z
m and H ⊆ Z

m×t. Assume that H has the Hilbert basis
property and cone(H) = cone(V). Then

σasy(H) ≤ m + φmax(V) ≤ m + log2 (δmax(V)) .

If δmax(V) < 2m−3, then the bound in Corollary 1 improves the bound in [6].
By modifying a construction in [1], we obtain two interesting examples of

σasy(A). The first example shows that Theorem 1 (i) gives a tight bound. The
second example shows that Theorem 1 (ii) gives a tight bound and that σasy(A)
can be significantly smaller than σ(A).

Theorem 2. For every m ∈ Z≥1 and d ∈ Z≥1, there is a matrix A ∈ Z
m×n

such that φmax(A) = d and σasy(A) = m + d.
For every m ∈ Z≥1 and d ∈ Z≥m+3, there is a matrix B ∈ Z

(m+1)×n such
that φmin(B) = 0 and σasy(B) = 2m + 2 < m + d = σ(B).

344 T. Oertel et al.

The proof of Theorem 1 is based on a combination of group theory, lattice
theory, and Ehrhart theory. On a high level, the combination of group and lattice
theory bears similarities to papers of Gomory [11] and Aliev et al. [2]. Gomory
investigated the value function of an IP and proved its periodicity when the
right-hand side vector is sufficiently large. Aliev et al. showed periodicity for the
function σ(A, b) provided again that b is sufficiently large. Our refined analysis
allows us to quantify the number of right-hand sides for which the support
function is small. This new contribution requires not only group and lattice
theory, but also Ehrhart theory.

Sections 2 and 3 provide background on groups and subcones. In Sect. 4 we
use the average support for each subcone to prove Theorem 1. We prove Theo-
rem 2 in Appendix A.

2 The Group Structure of a Parallelepiped

Let W ∈ Z
m×m be an invertible matrix, which we also view as a set of m

linearly independent column vectors. Let Π(W) denote the integer vectors in
the fundamental parallelepiped generated by W :

Π(W) := {z ∈ Z
m : z = Wλ for λ ∈ [0, 1)m}.

For each b ∈ Z
m, there is a unique g ∈ Π(W) such that b = g + Wz,

where z ∈ Z
m [5, Lemma 2.1, page 286]. Thus, we can define a residue function

ρW : Z
m → Π(W) by

ρW (b) = ρW (g + Wz) �→ g. (3)

The image of Z
m under ρW (i.e., Π(W)) creates a group GW (Zm) using the

operation +GW
: Π(W) × Π(W) → Π(W) defined by

g +GW
h �→ ρW (g + h).

The identity of GW (Zm) is the zero vector in Z
m, and

|GW (Zm)| = |det(W)|, (4)

see, e.g., [5, Corollary 2.6, page 286]. Equation (4) implies GW (Zm) is finite.
The choice of notation for GW (Zm) is to emphasize that it is the group

generated by the residues of all integer linear combinations of vectors in Z
m.

We can also consider the group generated by any subset of vectors in Z
m. Given

B ⊆ Z
m, we denote the subgroup of GW (Zm) generated by B by

GW (B) := {ρW (Bz) : z ∈ Z
|B|}. (5)

If B = ∅, then GW (B) := {0}. The set GW (B) is a subgroup of GW (Zm) because
{Bz : z ∈ Z

|B|} is a sublattice of Z
m.

We collect some basic properties about the group GW (B).

Lemma 1. Let W ∈ Z
m×m be an invertible matrix. For every B ⊆ Z

m,
GW (B) = {ρW (Bz) : z ∈ Z

|B|
≥0}.

Sparsity of Integer Solutions in the Average Case 345

Proof. For each z ∈ Z
|B|, we can write Bz as

Bz =
∑

b∈B:zb≥0 zbb +
∑

b∈B:zb<0 zbb.

Thus, it suffices to show ρW (−b) ∈ {ρW (By) : y ∈ Z
|B|
≥0} =: C for each b ∈ B. If

ρW (b) = 0, then ρW (−b) = ρW (b) = 0 ∈ C. If ρW (b) �= 0, then because GW (B)
is finite there exists τ ∈ Z≥2 with ρW (τb) = 0. Note that ρW ((τ −1)b)+ρW (b) =
0 = ρW (b) + ρW (−b), so ρW (−b) = ρW ((τ − 1)b) ∈ C. �
Lemma 2. Let W ∈ Z

m×m be an invertible matrix and B ⊆ Z
m. If t ∈ Z≥0

with t ≥ φ(W), then there exist w1, . . . , wt ∈ B (possibly with repetitions) such
that GW ({w1, . . . , wt}) = GW (B).

Proof. Set s := φ(W). First, we show that for each r ∈ {0, . . . , s} there exist
w1, . . . , wr ∈ B (possibly with repetitions) such that

either GW ({w1, . . . , wr}) = GW (B)
or GW (∅) � GW ({w1}) � . . . � GW ({w1, . . . , wr}). (6)

We prove (6) by induction on r. The result is vacuously true for r = 0, so assume
that (6) holds for r ∈ Z≥0 and consider r + 1. Define

Gr := GW ({w1, . . . , wr}). (7)

By the induction hypothesis, there exist w1, . . . , wr ∈ B such that (6) holds.
If Gr = GW (B), then wr+1 := wr proves (6) for r + 1. If Gr

� GW (B), then
G0

� . . . � Gr by (6) and induction. Recall ρW (·) from (3). If ρW (b) ∈ Gr for
every b ∈ B, then GW (B) ⊆ Gr and |GW (B)| ≤ |Gr| < |GW (B)|, which is a con-
tradiction. Thus, there exists wr+1 ∈ B such that ρW (wr+1) �∈ Gr. The sequence
G0, . . . , Gr, Gr+1 := GW ({w1, . . . , wr+1}) satisfies (6), which proves (6).

Let G1, . . . , Gs be chosen to satisfy (6). If Gs = GW (B), then set ws+1 =
. . . = wt := ws to conclude GW ({w1, . . . , wt}) = GW (B). It is left to consider
the case when Gs

� GW (B). We claim that this leads to a contradiction.
By (2) and (4), |GW (Zm)| =

∏s
i=1 αi for primes α1, . . . , αs. By (7),

G1, . . . , Gs are subgroups of GW (Zm), so |G1|, . . . , |Gs| divide |GW (Zm)| (see,
e.g., [4, Chapter 2]). Also, Gs

� GW (B) and (6) imply that G1
� . . . � Gs.

Hence, 1 < |G1| < . . . < |Gs| and |Gi| divides |Gi+1| for each i ∈ {1, . . . , s − 1}.
This implies that |Gs| has at least s many prime factors. However, |Gs| <
|GW (B)| ≤ |GW (Zm)|, and |GW (Zm)| only has s many prime factors. Thus,
|Gi| = |GW (Zm)| for some i ∈ {1, . . . , s}, which contradicts Gi = GW (Zm) ⊇
GW (B). �

3 Lattice Points in Cones

A set Λ ⊆ Z
m is a lattice if 0 ∈ Λ, x + y ∈ Λ for x, y ∈ Λ, and if x ∈ Λ then

−x ∈ Λ (see, e.g., [5, Chapter VII]). So, Λ is a subgroup of Z
m. We assume that

346 T. Oertel et al.

a lattice contains m linearly independent vectors. For B ⊆ R
m and x ∈ R

m, set
B + x := {b + x : b ∈ B}.

We use following lemma to find suitable translated subcones in which σ(A, ·)
is bounded. The proof of Lemma 3 is in Appendix B.

Lemma 3. Let v1, . . . , vm ∈ Z
m be linearly independent vectors and set K :=

cone({v1, . . . , vm}). For t ∈ Z≥0 and x1, . . . , xt ∈ Z
m, there is a z =

∑m
i=1 kiv

i ∈
K ∩ Z

m, where k1, . . . , km ∈ Z≥0, such that K + z ⊆ K ∩ ⋂t
i=1(K + xi).

Let W ⊆ Z
m. For each x ∈ cone(W), Carathéodory’s Theorem implies that

there is a linearly independent set W i ⊆ W such that x ∈ cone(W i). Thus,

cone(W) =
⋃s

i=1 cone(W i), (8)

where s ∈ Z≥1 and W 1, . . . , W s ⊆ W are the linearly independent subsets of
W . The following lemma states that for a given lattice Λ, ‘most’ of the points in
cone(W)∩Λ are found in translations of the subcones cone(W 1), . . . , cone(W s).

Lemma 4. Let W ⊆ Z
m be such that cone(W) is m-dimensional. Let s ∈ Z≥1

and W 1, . . . , W s ⊆ W be as in (8). Let Λ ⊆ Z
m be a lattice and assume that

W 1, . . . , W s ⊆ Λ. For each i ∈ {1, . . . , s}, choose any kw ∈ Z≥0 for each w ∈ W i,
and define zi :=

∑
w∈W i kww. Then

lim
t→∞

|{−t, ..., t}m ∩ ⋃s
i=1(Λ ∩ (cone(W i) + zi))|

|{−t, ..., t}m ∩ ⋃s
i=1(Λ ∩ cone(W i))| = 1. (9)

Proof. For i ∈ {1, . . . , s} set Ki := cone(W i). The fraction in (9) equals

1 − |{−t, ..., t}m ∩ ⋂s
i=1(Λ ∩ [Ki \ (Ki + zi)])|

|{−t, ..., t}m ∩ ⋃s
i=1(Λ ∩ Ki)| .

Thus, in order to prove (9), it is enough to prove

lim
t→∞

|{−t, ..., t}m ∩ ⋂s
i=1(Λ ∩ [Ki \ (Ki + zi)])|

|{−t, ..., t}m ∩ ⋃s
i=1(Λ ∩ Ki)| = 0. (10)

By assumption, cone(W) is m-dimensional. Thus, we may assume that the sets
W 1, . . . , W s each have m linearly independent vectors.

Let i ∈ {1, . . . , s} and Li ⊆ Λ ∩ Ki be the Λ points that are coordinate-wise
at most one more than zi in the coordinate system defined by W i:

Li := {∑
w∈W i βww : βw ∈ R and 0 ≤ βw ≤ kw + 1 ∀ w ∈ W i} ∩ Λ.

The set Li is finite.
The numerator of (10) considers Λ ∩ [Ki \ (Ki + zi)], so take y ∈ Λ ∩ [Ki \

(Ki + zi)]. We claim that

y ∈ r + {∑w∈I λww : λw ∈ R≥0 ∀ w ∈ I}, (11)

Sparsity of Integer Solutions in the Average Case 347

where r ∈ Li and I ⊆ W i with |I| ≤ m − 1. Write y as y =
∑

w∈W i γww,
where γw ∈ R≥0 for each w ∈ W i and γw̄ < kw̄ for some w̄ ∈ W i. We have
y − τw ∈ Λ for each w ∈ W i \ {w̄} and τ ∈ Z because W i ⊆ Λ and y ∈ Λ. In
particular, y − �γw�w ∈ Λ ∩ Ki and y − ∑

w∈V �γw�w ∈ Li, where V := {w ∈
W i : γw > kw +1}. This proves (11). Note that we use the fact that Li is defined
by βw ≤ kw + 1 rather than βw ≤ kw: if Li was defined by βw ≤ kw, then in the
extreme case 0 = kw and γw ∈ (0, 1), the vector y − �γw�w = y is not in Li.

We use the fact that |I| < m to show Λ ∩ [Ki \ (Ki + zi)] is contained in
finite union of lower dimensional spaces. Although we showed |I| ≤ m − 1, we
can assume |I| = m − 1 by extending it arbitrarily to have m − 1 columns and
setting λw = 0 for these new columns. Hence,

s⋂

i=1

Λ ∩ [Ki \ (Ki + zi)]

⊆
s⋂

i=1

⋃

r∈Li

⋃

I⊆W i

|I|=m−1

r +
{ ∑

w∈I

λww : λw ∈ R≥0 ∀ w ∈ I

}
. (12)

For each i ∈ {1, . . . , s} and I ⊆ W i with |I| = m − 1, define the polytope

P (i,I) := {∑
w∈I λww : λw ∈ [0, 1] ∀ w ∈ I}.

By assumption, w ∈ Λ for each w ∈ I, so the vertices of P (i,I) are in Λ. Ehrhart
theory then implies that there is a polynomial π(i,I)(t) of degree m−1 such that

π(i,I)(t) = |tP (i,I) ∩ Λ| = |{∑w∈I λww : λw ∈ [0, t] ∀ w ∈ I} ∩ Λ|
for each t ∈ Z≥1. The leading coefficient of π(i,I) is the (m − 1) dimensional vol-
ume of P (i,I), which is positive, see [5, Chapter VIII]. Similarly, for the polytope

P i := {∑
w∈W i λww : λw ∈ [0, 1] ∀ w ∈ W i}

there exists a polynomial πi(t) of degree m with positive leading coefficient such
that for each t ∈ Z≥1

πi(t) = |tP i ∩ Λ| = |{∑w∈W i λww : λw ∈ [0, t] ∀ w ∈ W i} ∩ Λ|.
Define

d := max{‖r +
∑

w∈I w‖∞ : i ∈ {1, . . . , s}, r ∈ Li, I ⊆ W i with |I| ≤ m − 1}.

We show that the values in (10) go to zero as t → ∞ by bounding the fraction

|{−td, ..., td}m ∩ ⋂s
i=1(Λ ∩ [Ki \ (Ki + zi)])|

|{−td, ..., td}m ∩ ⋃s
i=1(Λ ∩ Ki)|

for each t ∈ Z≥0. By the definition of d, tP i ⊆ {−td, . . . , td}m ∩ Ki for every
i ∈ {1, . . . , s}. So for each i ∈ {1, . . . , s}, say i = 1, it follows that

π1(t) = |tP 1 ∩ Λ| ≤ |{−td, . . . , td}m ∩ Λ ∩ K1| ≤
∣∣∣∣{−td, ..., td}m ∩

s⋃

i=1

(Λ ∩ Ki)
∣∣∣∣.

348 T. Oertel et al.

Hence,
1

|{−td, ..., td}m ∩ ⋃s
i=1(Λ ∩ Ki)| ≤ 1

π1(t)
. (13)

If i ∈ {1, . . . , s} and y ∈ {−td, . . . , td}m ∩ Λ ∩ [Ki \ (Ki + zi)], then, by (12),
y = r +

∑
w∈I λww for r ∈ Li, I ⊆ W i with |I| = m − 1, and λw ∈ R≥0 for each

w ∈ I. This implies that

‖∑
w∈I λww‖∞ = ‖y − r‖∞ ≤ ‖y‖∞ + ‖r‖∞ ≤ td + d = (t + 1)d.

Hence,

{−td, . . . , td}m ∩ Λ ∩ [Ki \ (Ki + zi)] ⊆
⋃

r∈Li

⋃

I⊆W i

|I|=m−1

r + (t + 1)dP (i,I).

If r ∈ Li, then by the definition of Li, r ∈ Λ. This implies that the number of Λ
points in r + (t + 1)dP (i,I) is equal to π(i,I)((t + 1)d). So, for each i ∈ {1, . . . , s},

|{−td, . . . , td}m ∩ Λ ∩ [Ki \ (Ki + zi)]| ≤
∑

r∈Li

∑

I⊆W i

|I|=m−1

π(i,I)((t + 1)d). (14)

The polynomial on the right-hand side of (14), call it ψ(t + 1), is of degree
m − 1 and has a positive leading coefficient. Also, by (13) and (14),

|{−td, ..., td}m ∩ ⋂s
i=1(Λ ∩ [Ki \ (Ki + zi)])|

|{−td, ..., td}m ∩ ⋃s
i=1(Λ ∩ Ki)| ≤ ψ(t + 1)

π1(t)
.

Recall that π1 is of degree m, ψ is of degree m − 1, and ψ and π1 have positive
leading coefficients. Moreover, the limit as t → ∞ is the same as td → ∞. Hence,

lim
t→∞

|{−t, ..., t}m ∩ ⋂s
i=1(Λ ∩ [Ki \ (Ki + zi)])|

|{−t, ..., t}m ∩ ⋃s
i=1(Λ ∩ Ki)|

= lim
t→∞

|{−td, ..., td}m ∩ ⋂s
i=1(Λ ∩ [Ki \ (Ki + zi)])|

|{−td, ..., td}m ∩ ⋃s
i=1(Λ ∩ Ki)| = lim

t→∞
ψ(t + 1)

π1(t)
= 0. �

4 Proof of Theorem 1

The assumption cone(A) = cone(W) indicates that we can write cone(A) as

cone(A) =
⋃s

i=1 cone(W i), (15)

where s ∈ Z≥1 and W 1, . . . , W s ⊆ W are linearly independent sets; see (8). Also,
A has full row rank, so we assume that W 1, . . . , W s each contain m linearly
independent vectors. For i ∈ {1, . . . , s}, let Ki := cone(W i).

Sparsity of Integer Solutions in the Average Case 349

First, we prove σasy(A) ≤ m + φmax(A). In order to do this, we find a lattice
Λ and points z1 ∈ K1, . . . , zs ∈ Ks such that

σ(A, b) ≤ m + φmax(W) ∀ b ∈ (Λ ∩ (K1 + z1)) ∪ . . . ∪ (Λ ∩ (Ks + zs))

and Λ contains every b ∈ Z
m such that P (A, b) �= ∅. With these values, we will

be able to apply Lemma 4 to prove the desired result.
Fix i ∈ {1, . . . , s} and set φi := φ(W i). Let GW i(Zm) be the group defined

in Sect. 2. In view of Lemma 2, there exist w1, . . . , wt ∈ A with t ≤ φi and

GW i({w1, . . . , wt}) = GW i(A).

We emphasize that the choice of w1, . . . , wt depends on W i. Define the lattice

Λi :=
{ ∑

h∈GWi (A)

khh +
∑

w∈W i

pww : kh ∈ Z ∀ h ∈ GW i(A), pw ∈ Z ∀ w ∈ W i

}
.

In Lemma 6, we show that Λi does not depend on i. Lemma 1 implies that
Λi ⊇ {g ∈ GW i(Zm) : ∃ b ∈ Z

m such that ρW i(b) = g and P (A, b) �= ∅}. Thus,

if b �∈ Λi (equivalently, if ρW i(b) �∈ GW i(A)), then P (A, b) = ∅. (16)

Lemma 5. There exists zi ∈ Λi ∩ Ki that satisfies the following: for every
b ∈ (Ki + zi) ∩ Z

m, either b �∈ Λi (so P (A, b) = ∅) by (16)) or σ(A, b) ≤ m + φi.
The vector zi satisfies zi =

∑
w∈W i kww, where kw ∈ Z≥0 for each w ∈ W i.

Proof of Lemma. For each g ∈ GW i(A) = GW i({w1, . . . , wt}), there exists xg ∈
Z

m such that

xg − g =
∑

w∈W i τww and xg =
∑

w∈W i qww +
∑t

�=1 p�w
�, (17)

where τw ∈ Z and qw ∈ Z≥0 for each w ∈ W i and p1, . . . , pt ∈ Z≥0. By
Lemma 3, there exists zi ∈ Λi ∩ Ki such that ρW i(zi) = 0 and Ki + zi ⊆
Ki ∩ ⋂

g∈GWi (A)(K
i + xg). Let b ∈ (Ki + zi) ∩ Z

m such that P (A, b) �= ∅.
By (16), there is a g ∈ GW i(A) such that ρW i(b) = g. So, by (17),

b = g +
∑

w∈W i τ̄ww = xg +
∑

w∈W i(τ̄w − τw)w
=

∑t
�=1 p�w

� +
∑

w∈W i(qw + τ̄w − τw)w,
(18)

where τ̄w ∈ Z for each w ∈ W i. Note τ̄w − τw ∈ Z≥0 for each w ∈ W i because
b ∈ Ki + zi ⊆ Ki + xg. Thus, P (A, b) �= ∅ and σ(A, b) ≤ |W i| + t ≤ m + φi. �
Lemma 6. For every pair i, j ∈ {1, . . . , s}, the lattices Λi and Λj are equal.

Proof of Lemma. It is enough to show that Λ1 ⊆ Λ2. Let x ∈ Λ1. By Lemmas 3
and 5, there is a point y ∈ (K1 + z1) ∩ Λ1 such that ρW 1(y) = ρW 1(x). Also,
by Lemma 5, P (A, y) �= ∅. Hence, by (16), y ∈ Λ2. Similarly, w ∈ Λ2 for each
w ∈ W 1. These inclusions along with ρW 1(y) = ρW 1(x) imply x ∈ Λ2. �

350 T. Oertel et al.

Set Λ := Λ1 = . . . = Λs. Lemma 5 implies that
⋃s

i=1(Λ ∩ (Ki + zi)) ⊆ {b ∈ Z
m : σ(A, b) ≤ m + φmax}.

By (15) and (16), it follows that

{b ∈ Z
m : P (A, b) �= ∅} ⊆ cone(A) ∩ Λ =

⋃s
i=1 Λ ∩ Ki

Hence, for each t ∈ Z≥1, it follows that

|{b ∈ {−t, ..., t}m : σ(A, b) ≤ m + φmax}|
|{b ∈ {−t, ..., t}m : P (A, b) �= ∅}|

≥ |{b ∈ {−t, ..., t}m ∩ (⋃s
i=1 Λ ∩ (Ki + zi)

)}|
|{b ∈ {−t, ..., t}m ∩ (

⋃s
i=1 Λ ∩ Ki)}| . (19)

By Lemma 4, it follows that σasy(A) ≤ m + φmax(W). Also, the inequality
φi ≤ log2(|det(W i)|) for each i ∈ {1, . . . , s} implies φmax(W) ≤ log2(δmax(W))
and σasy(A) ≤ m + φmax(W) ≤ m + log2(δmax(W)).

Consider the inequality σasy(A) ≤ 2m+φmin(W). Without loss of generality,
φ1 ≤ . . . ≤ φs. Let z1 ∈ K1 ∩ Λ be given from Lemma 5. Let i ∈ {2, . . . , s}.
Using Lemma 3 and the fact that K1 + z1 is m-dimensional, the representative
set {xg : g ∈ GW i(A)} from (17) can be chosen in K1 + z1. Let b ∈ Ki + zi.
By (18), there exists a g ∈ GW i(A) such that

b = xg +
∑

w∈W i(τ̄w − τw)w,

where τ̄w − τw ∈ Z≥0 for each w ∈ W i. The point xg is in K1 + z1, so
P (A, xg) �= ∅ and there are w1, . . . , wm+φ1 ∈ A such that xg =

∑m+φ1
i=1 q�w

�,
where q1, . . . , qm+φ1 ∈ Z≥0. So,

b =
∑m+φ1

�=1 q�w
� +

∑
w∈W i(τ̄w − kw)w.

Thus, P (A, b) �= ∅ and σ(A, b) ≤ 2m + φ1 = 2m + φmin(W). Hence, σasy(A) ≤
2m + φmin(W).

Finally, assume log2(δmin(W))= log2(W 2). Observe that φ(W 2) ≤
log2(W 2), so σasy(A) ≤ 2m + φmin(W) ≤ 2m + log2(δmin(W)). �

A Proof of Theorem 2

We construct both matrices A and B using a submatrix Ã, which we construct
first. Let d ∈ Z≥1 and p1 < . . . < pd be prime. For i ∈ {1, . . . , d}, define
qi :=

∏d
j=1,j 	=i pi and δ :=

∏d
j=1 pi. Define the matrix Ã :=

[
q1, . . . qd, −δ

]
. The

matrix Ã has d + 1 columns, so σasy(Ã) ≤ 1 + d. The matrix Ã is similar to the
example in [1, Theorem 2] and the theory of so-called primorials. We claim

if b ∈ Z<0 and b ≡ 1 mod δ, then P (Ã, b) �= ∅ and σ(Ã, b) = 1 + d. (20)

Sparsity of Integer Solutions in the Average Case 351

Note that gcd(q1, . . . , qd) = 1. The Frobenius number of {q1, . . . , qd} is the largest
integer that cannot be written as a positive integer linear combination of q1, . . . ,
and qd. Hence, if we choose b̄ ∈ Z≥1 to be the Frobenius number of {q1, . . . , qd},
then b ≥ b̄ + 1 implies P (Ã, b) �= ∅. If b ≡ 1 mod δ, then b is not divisible by
pi for any i ∈ {1, . . . , d}. Thus, if b ≥ b̄ + 1 and b ≡ 1 mod δ, then σ(Ã, b) = d.
Finally, observe that if b < 0, then b + kδ > b̄ for large enough k ∈ Z≥1. The
only negative column of Ã is −δ, so σ(Ã, b) = 1 + d. This proves (20).

Now we define the matrix A. Let m ∈ Z≥1 and define

A :=
[

Im−1 0(m−1)×(d+1)

01×(m−1) Ã

]
∈ Z

m×(m+d),

where Ik ∈ Z
k×k is the identity matrix and 0k×s ∈ Z

k×s is the all zero matrix
for k, s ∈ Z≥1. Note that φmax(A) = d. If b ∈ Z

m−1
>0 × Z<0 is such that the last

component is equivalent to 1 mod δ, then σ(A, b) = m + d by the arguments
above. Now, the set of b ∈ Z

m such that P (A, b) �= ∅ is contained in Z
m−1
≥0 × Z.

So, for every t ∈ Z≥1, the set of feasible solutions in {−tδ, . . . , tδ}m contains
t(tδ − 1)m−1 points b such that σ(A, b) = m + d. Moreover, if t ∈ Z≥b̄, then
P (A, b) �= ∅ for every b ∈ {0, . . . , tδ}m−1 × {−tδ, . . . , tδ}. Therefore,

lim
t→∞

|{b ∈ {−t, ..., t} : σ(A, b) ≤ (m − 1) + d}|
|{b ∈ {−t, ..., t} : P (A, b) �= ∅}|

= lim
t→∞

|{b ∈ {−tδ, ..., tδ} : σ(A, b) ≤ (m − 1) + d}|
|{b ∈ {−tδ, ..., tδ} : P (A, b) �= ∅}|

≤ lim
t→∞

(2tδ + 1)(tδ + 1)m−1 − t(tδ + 1)m−1

(2tδ + 1)(tδ + 1)m−1
< 1.

Using this and the fact that A has m + d columns, we have σasy(A) = m + d.
Now we define the matrix B. Let A ∈ Z

m×(m+d) be as above. Let e1×(m+1) ∈
Z
1×(m+1) be the all ones matrix and U ∈ Z

m×(m+1). Assume
∣
∣∣∣ det

([
U

e1×(m+1)

])∣
∣∣∣ = 1

and set

B :=
[

U A
e1×(m+1) 01×(m+d)

]
∈ Z

(m+1)×(2m+1+d).

Note that φmin(B) = 0, so Theorem 1 (ii) implies that σasy(B) ≤ 2m + 2. Let
b ∈ Z

m × {0} be such that P (B, b) �= ∅. If z ∈ P (B, b), then the first m + 1
components of z are zero. So, similarly to above, there are b ∈ Z

m+1 such that
σ(B, b) = m + d. Hence, σasy(B) ≤ 2m + 2 < m + d = σ(B). �

B Proof of Lemma 3

Assume that t = 2. Let x := x1 and y := x2. First, we show that K ∩ (K + x) ∩
(K + y) �= ∅. Since v1, . . . , vm are linearly independent, K is a full-dimensional

352 T. Oertel et al.

simplicial cone. Hence, there exist linearly independent vectors a1, . . . , am ∈ R
m

such that K = {w ∈ R
m : (ai)ᵀw ≤ 0 ∀ i ∈ {1, . . . , m}} and linearly independent

vectors r1, . . . , rm ∈ K such that (ai)ᵀri < 0 for each i ∈ {1, . . . , m}.
There is a set J ⊆ {1, · · · ,m} such that (aj)ᵀ(x − y) > 0 for each j ∈ J and

(aj)ᵀ(x − y) ≤ 0 for each j ∈ {1, . . . , m} \ J . For j ∈ {1, . . . , m}, set

λj :=

⎧
⎪⎪⎨

⎪⎪⎩

max
{

0,− (aj)ᵀx
(aj)ᵀrj

}
, if j ∈ {1, . . . , m} \ J

max
{

− (aj)ᵀ(x−y)
(aj)ᵀrj ,− (aj)ᵀx

(aj)ᵀrj

}
, if j ∈ J.

Note that λ1, . . . , λm ∈ R≥0, so x+
∑m

j=1 λjr
j ∈ K +x. For each i ∈ {1, . . . , m},

it follows that

(ai)ᵀ
(

x +
m∑

j=1

λjr
j − y

)
≤ (ai)ᵀ(x − y) + λi(ai)ᵀri ≤ 0.

So, x +
∑m

j=1 λjr
j − y ∈ K and x +

∑m
j=1 λjr

j ∈ K + y. Finally, for each
i ∈ {1, . . . , m}, it follows that

(ai)ᵀ
(

x +
m∑

j=1

λjr
j

)
≤ (ai)ᵀx + λi(ai)ᵀri ≤ 0.

Hence, x +
∑m

j=1 λjr
j ∈ K and K ∩ (K + x) ∩ (K + y) �= ∅.

Let w ∈ K ∩ (K + x) ∩ (K + y). Then K + w ⊆ K ∩ (K + x) ∩ (K + y).
Because K is full-dimensional, there exists a point z ∈ (K + w) ∩ Z

m such that
z =

∑m
i=1 kiv

i for ki ∈ Z≥0. Note that z ∈ K + w ⊆ K and

K + z ⊆ K + w ⊆ K + (K ∩ (K + x) ∩ (K + y)) ⊆ K ∩ (K + x) ∩ (K + y).

For t ≥ 3, the result follows by induction. �

References

1. Aliev, I., De Loera, J., Eisenbrand, F., Oertel, T., Weismantel, R.: The support of
integer optimal solutions. SIAM J. Optim. 28, 2152–2157 (2018)

2. Aliev, I., De Loera, J., Oertel, T., O’Neil, C.: Sparse solutions of linear diophantine
equations. SIAM J. Appl. Algebra Geom. 1, 239–253 (2017)

3. Aliev, I., Henk, M., Oertel, T.: Integrality gaps of integer knapsack problems. In:
Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 25–38.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3 3

4. Artin, M.: Algebra. Prentice Hall, Englewood Cliffs (1991)
5. Barvinok, A.: A Course in Convexity, vol. 54. American Mathematical Society,

Providence (2002)
6. Bruns, W., Gubeladze, J.: Normality and covering properties of affine semigroups.

J. für die reine und angewandte Mathematik 510, 151–178 (2004)

https://doi.org/10.1007/978-3-319-59250-3_3

Sparsity of Integer Solutions in the Average Case 353

7. Bruns, W., Gubeladze, J., Henk, M., Martin, A., Weismantel, R.: A counterexample
to an integer analogue of Carathéodory’s theorem. J. für die reine und angewandte
Mathematik 510, 179–185 (1999)

8. Cook, W., Fonlupt, J., Schrijver, A.: An integer analogue of Carathéodory’s theo-
rem. J. Comb. Theory Ser. B 40(1), 63–70 (1986)

9. Dyer, M., Frieze, A.: Probabilistic analysis of the multidimensional knapsack prob-
lem. Math. Oper. Res. 14, 162–176 (1989)

10. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res.
Lett. 34, 564–568 (2006)

11. Gomory, R.: On the relation between integer and noninteger solutions to linear
programs. Proc. Natl. Acad. Sci. 53, 260–265 (1965)

12. Sebő, A.: Hilbert bases, Carathéodory’s theorem and combinatorial optimization.
In: Proceedings of the 1st Integer Programming and Combinatorial Optimization
Conference, pp. 431–455 (1990)

A Generic Exact Solver for Vehicle
Routing and Related Problems

Artur Pessoa3, Ruslan Sadykov1,2(B), Eduardo Uchoa3,
and François Vanderbeck1,2

1 Inria Bordeaux — Sud-Ouest, Talence, France
ruslan.sadykov@inria.fr

2 University of Bordeaux, Talence, France
3 Universidade Federal Fluminense, Niterói, Brazil

Abstract. Major advances were recently obtained in the exact solu-
tion of Vehicle Routing Problems (VRPs). Sophisticated Branch-Cut-
and-Price (BCP) algorithms for some of the most classical VRP variants
now solve many instances with up to a few hundreds of customers. How-
ever, adapting and reimplementing those successful algorithms for other
variants can be a very demanding task. This work proposes a BCP solver
for a generic model that encompasses a wide class of VRPs. It incorpo-
rates the key elements found in the best recent VRP algorithms: ng-path
relaxation, rank-1 cuts with limited memory, and route enumeration; all
generalized through the new concept of “packing set”. This concept is
also used to derive a new branch rule based on accumulated resource
consumption and to generalize the Ryan and Foster branch rule. Exten-
sive experiments on several variants show that the generic solver has an
excellent overall performance, in many problems being better than the
best existing specific algorithms. Even some non-VRPs, like bin packing,
vector packing and generalized assignment, can be modeled and effec-
tively solved.

Keywords: Integer programming · Column generation · Routing

1 Introduction

Since its introduction by Dantzig and Ramser [25], the Vehicle Routing Problem
(VRP) has been one of the most widely studied in combinatorial optimization.
Google Scholar indicates that 728 works containing both words “vehicle” and
“routing” in the title were published only in 2017. VRP relevance stems from its
direct use in the real systems that distribute goods and provide services, vital
to the modern economies. Reflecting the large variety of conditions in those sys-
tems, the VRP literature is spread into dozens, perhaps hundreds, of variants.
For example, there are variants that consider capacities, time windows, hetero-
geneous fleets, pickups and deliveries, optional customer visits, arc routing, etc.

In recent years, big advances in the exact solution of VRPs had been accom-
plished. A milestone was certainly the Branch-Cut-and-Price (BCP) algorithm
c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 354–369, 2019.
https://doi.org/10.1007/978-3-030-17953-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_27

A Generic Exact Solver for Vehicle Routing and Related Problems 355

of [45,47], that could solve Capacitated VRP (CVRP) instances with up to 360
customers, a large improvement upon the previous record of 150 customers. That
algorithm exploits many elements introduced by several authors, combining and
enhancing them. In particular, the new concept of limited memory cut proved
to be pivotal. Improvements of the same magnitude were later obtained for a
number of classical variants like VRP with Time Windows (VRPTW) [46], Het-
erogeneous Fleet VRP (HFVRP) and Multi Depot VRP (MDVRP) [50], and
Capacitated Arc Routing (CARP) [49]. For all those variants, instances with
about 200 customers are now likely to be solved, perhaps in hours or even days.
However, there is something even more interesting: typical instances with about
100 customers, that a few years ago would take hours, are solved in less than
1 min. This means that many more real world instances can now be tackled by
exact algorithms in reasonable times.

Unhappily, designing and coding each one of those complex and sophisticated
BCPs has been a highly demanding task, measured on several work-months of
a skilled team. In effect, this prevents the practical use of those algorithms in
real world problems, that actually, seldom correspond exactly to one of the most
classical variants. This work presents a framework that can handle most VRP
variants found in the literature and can be used to model and solve many other
new variants. In order to obtain state-of-the-art BCP performance, some key
elements found in the best specific VRP algorithms had to be generalized. The
new concept of packing set was instrumental for that.

The quest for general exact VRP algorithms can be traced back to Balin-
ski and Quandt [8], where a set partitioning formulation valid for many vari-
ants was proposed. That formulation had only turned practical in the 1980’s
and 1990’s, when the Branch-and-Price (BP) method was developed. At that
time, it was recognized that the pricing subproblems could often be modeled as
Resource Constrained Shortest Path (RCSP) problems and solved by labeling
algorithms, leading to quite generic methods (for example, [27]). However, those
BP algorithms only worked well on problems with “tightly constrained” routes,
like VRPTW with narrow time windows. Many variants, including CVRP, were
much better handled by Branch-and-Cut (BC) algorithms using problem-specific
cuts (for example, [43]). In the late 2010’s, after works like [4,5,14,28,33,38,56],
it became clear that the combination of cut and column generation performs bet-
ter than pure BP or pure BC on almost all problems. Until today, BCP remains
the dominant VRP approach. A first attempt of a generic BCP was presented in
[6], where 7 variants, all of them particular cases of the HFVRP, could be solved.
Recently, [58] proposed a BCP for several particular cases of the HFVRP with
time windows. The framework now proposed is far more generical than that.

2 The Basic Model

2.1 Graphs for RCSP Generation

Define directed graphs Gk = (V k, Ak), k ∈ K. Let V = ∪k∈KV k and A = ∪k∈K

Ak. The graphs are not necessarily simple and may even have loops. Vertices

356 A. Pessoa et al.

and arcs in all graphs are distinct and carry the information about which graph
they belong: a vertex v ∈ V belongs to Gk(v) and an arc a ∈ A belongs to
Gk(a). Each graph has special source and sink vertices: vk

source and vk
sink. Define

a set R of resources, divided into main resources RM and secondary resources
RN . For each r in R and a ∈ A, qa,r ∈ R is the consumption of resource r in
arc a. If r ∈ RN , consumptions are unrestricted in sign. However, for r ∈ RM ,
consumptions should be non-negative. Moreover, for any k ∈ K there should not
exist a cycle in Gk where the consumption of all main resources are zero. Finally,
there are finite accumulated resource consumption intervals [la,r, ua,r], a ∈ A.
Since in most applications these intervals are more naturally defined on vertices,
we may define intervals [lv,r, uv,r], v ∈ V , meaning that [la,r, ua,r] = [lv,r, uv,r]
for every arc a ∈ δ−(v) (i.e., entering v).

A resource constrained path p = (vk
source = v0, a1, v1, . . . , an−1, vn−1, an, vn =

vk
sink) over a graph Gk, having n ≥ 1 arcs, is feasible if: for every r ∈ R, the

accumulated resource consumption Sj,r at visit j, 0 ≤ j ≤ n, where S0,r = 0 and
Sj,r = max{laj ,r, Sj−1,r + qaj ,r}, does not exceed uaj ,r. Note that some feasible
paths may not be elementary, some vertices or arcs being visited more than once.
For each k ∈ K, let P k denote the set of all feasible resource constrained paths
in Gk. We will assume that each set P k is finite, either because Gk is acyclic or
because at least one main resource is defined on it. Define P = ∪k∈KP k. Again,
a general path p ∈ P carries the information of its graph, Gk(p).

2.2 Formulation

The problem should be formulated as follows. There are variables xj , 1 ≤ j ≤ n1,
and variables ys, 1 ≤ s ≤ n2. The first n̄1 x variables and the first n̄2 y variables
are defined to be integer. Equations (1a) and (1b) define a general objective
function and m general constraints over those variables, respectively. Constraints
(1b) may even contain exponentially large families of cuts, provided that suitable
procedures are given for their separation. However, by simplicity, we continue the
presentation as if all the m constraints are explicitly defined. For each variable xj ,
1 ≤ j ≤ n1, M(xj) ⊆ A defines its mapping into a non-empty subset of the arcs.
We remark that mappings do not need to be disjoint, the same arc can mapped
to more than one variable xj . Define M−1(a) as {j|1 ≤ j ≤ n1; a ∈ M(xj)}.
As not all arcs need to belong to some mapping, some M−1 sets may be empty.
For each path p ∈ P , let λp be a non-negative integer variable; coefficient hp

a

indicates how many times a appears in p. The relation between variables x and
λ is given by (1c). For each k ∈ K, Lk and Uk are given lower and upper bounds
on number of paths in a solution.

A Generic Exact Solver for Vehicle Routing and Related Problems 357

Min
n1∑

j=1

cjxj +
n2∑

s=1
fsys (1a)

S.t.
n1∑

j=1

αijxj +
n2∑

s=1
βisys ≥ di, i = 1, . . . ,m, (1b)

xj =
∑

k∈K

∑

p∈Pk

(
∑

a∈M(xj)

hp
a

)

λp, j = 1 . . . , n1, (1c)

Lk ≤ ∑

p∈Pk

λp ≤ Uk, k ∈ K, (1d)

λp ∈ Z+, p ∈ P, (1e)
xj ∈ N, ys ∈ N j = 1, . . . , n̄1, s = 1, . . . , n̄2. (1f)

Eliminating the x variables and relaxing the integrality constraints, the following
LP is obtained:

Min
∑

k∈K

∑

p∈Pk

(
n1∑

j=1

cj

∑

a∈M(j)

hp
a

)

λp +
n2∑

s=1
fsys (2a)

S.t.
∑

k∈K

∑

p∈Pk

(
n1∑

j=1

αij

∑

a∈M(xj)

hp
a

)

λp +
n2∑

s=1
βisys ≥ di, i = 1, . . . ,m, (2b)

Lk ≤ ∑

p∈Pk

λp ≤ Uk, k ∈ K, (2c)

λp ≥ 0, p ∈ P. (2d)

Master LP (2a)–(2d) is solved by column generation. Let πi, 1 ≤ i ≤ m, denote
the dual variables of Constraints (2b), νk

+ and νk
−, k ∈ K, are the dual variables

of Constraints (2c). The reduced cost of an arc a ∈ A is defined as:

c̄a =
∑

j∈M−1(a)

cj −
m∑

i=1

∑

j∈M−1(a)

αijπi.

The reduced cost of a path p = (v0, a1, v1, . . . , an−1, vn−1, an, vn) ∈ P k is:

c̄(p) =
n∑

j=1

c̄aj
− νk

+ − νk
−.

So, the pricing subproblems correspond to finding, for each k ∈ K, a path p ∈ P k

with minimum reduced cost.

3 Generalizing State-of-the-Art Elements: Packing Sets

Formulation (1a)–(1f) can be used to model most VRP variants (and also many
other non-VRPs). It can be solved by a standard BP algorithm (or a standard
robust BCP algorithm [52], if (1b) contains separated constraints), where the

358 A. Pessoa et al.

RCSP subproblems are handled by a labeling dynamic programming algorithm.
However, its performance on the more classic VRP variants would be very poor
when compared to the best existing specific algorithms. One of the main contri-
butions of this work is a generalization of the key additional elements found in
those state-of-the-art algorithms, leading to the construction of a powerful and
still quite generic BCP algorithm.

In order to do that, we introduce a new concept. Let B ⊂ 2A be a collection
of mutually disjoint subsets of A such that the constraints:

∑

a∈B

∑

p∈P

hp
aλp ≤ 1, B ∈ B, (3)

are satisfied by at least one optimal solution (x∗, y∗, λ∗) of Formulation (1a)–
(1f). In those conditions, we say that B defines a collection of packing sets. Note
that a packing set can contain arcs from different graphs and not all arcs in A
need to belong to some packing set. The definition of a proper B is part of the
modeling. It does not follow automatically from the analysis of (1a)–(1f).

3.1 ng-Paths

One of the weaknesses of linear relaxation (2a)–(2d) when modeling classical
VRPs is the existence of non-elementary paths in P . In those cases, one would
like to eliminate those paths. However, this would make the pricing subproblems
much harder, intractable in many cases. A good compromise between formula-
tion strength and pricing difficulty can be obtained by the so-called ng-paths,
introduced in Baldacci et al. [7].

In our more general context, ideally, we would like to keep only routes that
do not use more than one arc in the same packing set. Instead, we settle for
generalized ng-paths defined as follows. For each arc a ∈ A, let NG(a) ⊆ B
denote the ng-set of a. An ng-path may use two arcs belonging to the same
packing set B, but only if the subpath between those two arcs passes by an arc a
such that B /∈ NG(a). The ng-sets may be determined a priori or dynamically,
like in [17] and [54].

3.2 Limited Memory Rank-1 Cuts

The Rank-1 Cuts (R1Cs) [48] are a generalization of the Subset Row Cuts pro-
posed by Jepsen et al. [38]. Here, they are further generalized as follows. Consider
a collection of packing sets B and non-negative multipliers ρB for each B ∈ B.
A Chvátal-Gomory rounding of Constraints (3) yields:

∑

p∈P

⌊
∑

B∈B
ρB

∑

a∈B

hp
a

⌋

λp ≤
⌊

∑

B∈B
ρB

⌋

. (4)

R1Cs are potentially strong, but each added cut makes the pricing subproblems
significantly harder. The limited memory technique [45] is essential for mitigating

A Generic Exact Solver for Vehicle Routing and Related Problems 359

that negative impact. In our context, a R1C characterized by its multipliers ρ
is associated to a memory set A(ρ) ⊆ A. Variables λp corresponding to paths p
passing by arcs a /∈ A(ρ) may have their coefficients decreased in (4). However,
if the memory sets are adjusted in such a way that variables λp with positive
values in the current linear relaxation have their best possible coefficients, the
resulting limited memory R1C (lm-R1C) is as effective as the original R1C.

3.3 Path Enumeration

The path enumeration technique was proposed by Baldacci et al. [5], and later
improved by Contardo and Martinelli [23]. It consists in trying to enumerate into
a table all paths in a certain set P k that can possibly be part of an improving
solution. After a successful enumeration, the corresponding pricing subproblem
k can be solved by inspection, saving time. If the enumeration has already suc-
ceeded for all k ∈ K and the total number of paths in the tables is not too large
(say, less than 10,000) the overall problem may be even finished by a MIP solver.

In our context, we try to enumerate paths p without more than one arc in the
same packing set, and with c̄(p) < UB−LB, where UB is the best known integer
solution cost, and LB the value of the current linear relaxation. Moreover, if two
paths p and p′ lead to variables λp and λ′

p with identical coefficients in (2b)–(2c),
we drop the one with a larger cost.

3.4 Branching

Branching constraints over x and y variables do not change the structure of the
pricing subproblems. In many models they suffice for correctness. However, there
are models where Constraints (1e) need to be explicitly enforced. Branching over
individual λ variables is permitted, but should be avoided due to a big negative
impact in the pricing and also due to highly unbalanced branch trees [64].

The model has the option of branching using a generalization of the Ryan
and Foster rule [57]. Choose distinct sets B and B′ in B. Let P (B,B′) ⊆ P be
the subset of the paths that contain arcs in both B and B′. The branch is over
the value of

∑
p∈P (B,B′) λp. The pricing still becomes harder, but branch trees

are more balanced.
We included in the model a new way of branching that does not increase the

pricing difficulty. For chosen B ∈ B, r ∈ RM and for a certain threshold value t∗:
in the left child make ua,r = t∗, for all a ∈ B; in the right child make la,r = t∗.
In other words, the branch is over the accumulated consumption of resource r
on arcs in B. In principle, this branching it is not complete: some fractional λ
solutions can not be eliminated by it. However, it may work very well in practice.

4 Model Examples

We selected 4 problems to exemplify how problems are modeled in our solver.
First, a simple didactic model; then a case where branching over the λ variables
is necessary; the third model illustrates the use of secondary resources; the fourth
model relies on a non-trivial transformation of the original problem.

360 A. Pessoa et al.

4.1 Generalized Assignment Problem (GAP)

Data: Set T of tasks; set K of machines; capacity Qk, k ∈ K; assignment cost
ck
t and machine load wk

t , t ∈ T , k ∈ K.
Goal: Find an assignment of tasks to machines such that the total load in each
machine does not exceed its capacity, with minimum total cost.
Model: Graph Gk = (V k, Ak) for each k ∈ K, V k = {vk

t : t = 0, . . . , |T |}, Ak =
{ak

t+ = (vk
t−1, v

k
t), ak

t− = (vk
t−1, v

k
t) : t = 1, . . . , |T |}, vk

source = vk
0 , vk

sink = vk
|T |

(see Fig. 1). R = RM = {1}; qak
t+,1 = wk

t , qak
t−,1 = 0, t ∈ T ; [lvk

t ,1, uvk
t ,1] = [0, Qk],

t ∈ T ∪ {0}. Binary variables xk
t , t ∈ T , k ∈ K. The formulation is:

Min
∑

t∈T

∑

k∈K

ck
t xk

t (5a)

S.t.
∑

k∈K

xk
t = 1, t ∈ T ; (5b)

Lk = 0, Uk = 1, k ∈ K; M(xk
t) = {ak

t+}, t ∈ T, k ∈ K (by abuse of notation
we use the variable itself instead of its linear index as the argument of mapping
M). B = ∪t∈T {{ak

t+ : k ∈ K}}. Branching is over the x variables.

vk0 vk1 vk2 vk3 vk|T |−1 vk|T |ak
1+

ak
1−

ak
2+

ak
2−

ak
3+

ak
3−

ak
|T |+

ak
|T |−

.

Fig. 1. GAP model graph, RCSPs correspond to binary knapsack solutions.

4.2 Vector Packing (VPP)/Bin Packing (BPP)

Data: Set T of items; set D of dimensions; bin capacities Qd, d ∈ D; item weight
wd

t , t ∈ T , d ∈ D. (Bin packing is the case where |D| = 1).
Goal: Find a packing using the minimum number of bins, such that, for each
dimension, the total weight of the items in a bin does not exceed its capacity.
Model: A single graph G = (V,A) (we omit the index k in such cases), V =
{vt : t = 0, . . . , |T |}, A = {at+ = (vt−1, vt), at− = (vt−1, vt) : t = 1, . . . , |T |},
vsource = v0, vsink = v|T |. R = RM = D; qat+,d = wd

t , qat−,d = 0, t ∈ T, d ∈ D;
[lvt,d, uvt,d] = [0, Qd], t ∈ T ∪ {0}, d ∈ D. Binary variables xt, t ∈ T ∪ {0}. The
formulation is:

Min x0 (6a)
S.t. xt = 1, t ∈ T ; (6b)

L = 0, U = ∞; M(x0) = {a1+, a1−}, M(xt) = {at+}, t ∈ T . B = ∪t∈T {{at+}}.
Branching on λ variables; first over accumulated resource consumption and, if
still needed, by Ryan and Foster rule.

A Generic Exact Solver for Vehicle Routing and Related Problems 361

4.3 Pickup and Delivery VRPTW (PDPTW)

Data: Directed graph G′ = (V ′, A′), where V ′ = {0} ∪ P ′ ∪ D′, P ′ = {1, . . . , n}
is the set of pickup vertices and D′ = {n + 1, . . . , 2n} the set of corresponding
deliveries (a pickup at i correspond to a delivery at i + n); vehicle capacities Q;
traveling cost ca and time (traveling time plus service time) ta, a ∈ A′; positive
demands dv, v ∈ P ′ (dv = −dv−n, v ∈ D′); and time windows [l′v, u′

v], v ∈ V ′.
Goal: Find a set of routes such that each pickup or delivery vertex is visited
exactly once, any visit to a pickup vertex implies that the corresponding delivery
vertex is visited later by the same route, the accumulated demand of visited
nodes never exceed the capacity along a route, and the accumulated sum of
traversal and waiting times until reaching each node falls within its time window
(waiting times are added to meet lower bounds), minimizing the total sum of
traversal costs.
Model: A single graph G = (V,A), V = V ′ ∪ {2n + 1}, A = (A′ \ {(v, 0) : v ∈
D′}) ∪ {(v, 2n + 1) : v ∈ D′} (assume c(v,2n+1) = c(v,0) and t(v,2n+1) = t(v,0)),
vsource = v0, vsink = v2n+1. RM = {n + 2}; RN = {1, . . . , n + 1}; q(v,v′),v′ = 1, if
v′ ∈ P ′, q(v,v′),v′−n = −1, if v′ ∈ D′, and q(v,v′),n+1 = dv′ , (v, v′) ∈ A; qa,n+2 =
ta, a ∈ A; all other resource consumptions are zero; uv,r = 1, r = 1, . . . , n,
uv,n+1 = u2n+1,n+1 = Q and (lv,n+2, uv,n+2) = (l′v, u′

v), v ∈ P ′ ∪ D′; all other
resource bounds are zero. Binary variables xa, a ∈ A. The formulation is:

Min
∑

a∈A caxa (7a)
S.t.

∑
a∈δ−(v) xa = 1, v ∈ P ′; (7b)

L = 0, U = ∞; M(xa) = {a}, a ∈ A. B = ∪v∈V {δ−(v)}. Branching on x
variables.

4.4 Capacitated Arc Routing (CARP)

Data: Undirected graph G′ = (V ′, E), V ′ = {0, . . . , n}, 0 is the depot vertex;
positive cost ce and non-negative demand de, e ∈ E, set of required edges S =
{e ∈ E | de > 0}; vehicle capacity Q.
Goal: Find a minimum cost set of routes, closed walks starting and ending at
the depot, that serve the demands in all required edges. Edges in a route can be
traversed either serving or deadheading (not servicing). The sum of the demands
of the served edges in a route can not exceed capacity.
Model: For i, j ∈ V ′, let D(i, j) ⊆ E be the set of edges in a chosen cheapest
path from i to j, with cost C(i, j) =

∑
e∈D(i,j) ce. Define a dummy required edge

r0 = (0, 0′) and S0 = S ∪ {r0}. For each r = (w1, w2) ∈ S0, define o(r, w1) = w2

and o(r, w2) = w1.
The model has a single graph G = (V,A), V = {vw

r : r ∈ S0, w ∈ r}, A =
{(vw1

r1
, vz1

r2
), (vw1

r1
, vz2

r2
), (vw2

r1
, vz1

r2
), (vw2

r1
, vz2

r2
) : r1 = (w1, w2), r2 = (z1, z2) ∈ S0},

vsource = v0
r0

, vsink = v0′
r0

; R = RM = {1}; for a = (vw
r1

, vz
r2

) ∈ A, qa,1 = dr2 ;
lv,1 = 0, uv,1 = Q, v ∈ V . Binary variables xa, a ∈ A. For a = (vw

r1
, vz

r2
) ∈ A,

362 A. Pessoa et al.

ca = C(w, o(r2, z)) + cr2 . The formulation is:

Min
∑

a∈A caxa (8a)
S.t.

∑
a∈δ−({v

w1
r ,v

w2
r }) xa = 1, r = (w1, w2) ∈ S, (8b)

plus Rounded Capacity Cuts [43] and Lifted Odd-Cutsets [9,11]; L = 0, U =
∞; M(xa) = {a}, a ∈ A. B = ∪r=(w1,w2)∈S{δ−({vw1

r , vw2
r })}. Branching on

aggregation of x variables (see Appendix A).

5 Computational Experiments

The generic BCP solver optimization algorithms were coded in C++ over the
BaPCod package [63]. IBM CPLEX Optimizer version 12.8.0 was used as the
LP solver in column generation and as the solver for the enumerated MIPs. The
experiments were run on a 2 Deca-core Ivy-Bridge Haswell Intel Xeon E5-2680 v3
server running at 2.50 GHz. The 128 GB of available RAM was shared between 8
copies of the algorithm running in parallel on the server. Each instance is solved
by one copy of the algorithm using a single thread. The models are defined using
either a C++ interface or a Julia–JuMP [29] based interface.

A description of the main algorithms used in the BCP solver can not be
presented here by lack of space. However, they are generalizations and enhance-
ments of already published algorithms. In some cases the original algorithms had
to be significantly revised, to avoid that the generalizations introduce excessive
performance overheads. Pricing problems are solved by a bucket graph based
labeling algorithm [58], including a bucket arc elimination procedure based on
reduced costs. Automatic dual price smoothing [51] is employed to stabilize the
column generation convergence. Path enumeration is performed using an exten-
sion of the algorithm from [5,47]. Multi-phase strong branching [47,55] is used
to reduce the search tree size. Restricted master and diving heuristics [59] are
built-in to improve the primal solution during the search.

In Table 1, we show computational results for 13 problems. The first column
is the problem acronym, second column refers to data sets, the third indicates
the number of instances. Next is the time limit per instance. The last three
columns show the results obtained by our generic solver, as well as by two other
algorithms, those with the best (to our knowledge) published results for the data
set. For each algorithm, we give the number of instances solved within the time
limit, the average time in brackets (geometric mean time if the time limit is
10 hours or more), and its reference. For instances not solved, the time limit
is considered as the solution time. Best results are marked in bold. Note that
the generic solver uses a single parameterization per problem, not per data set.
Additional information about experiments is available in Appendix A.

The results presented in Table 1 show that the generic BCP significantly out-
performs the state-of-the-art for VRPTW, TOP, CTOP, CPTP, VRPSL, and
VPP. A noticeably better performance is achieved for CVRP and HFVRP. For

A Generic Exact Solver for Vehicle Routing and Related Problems 363

Table 1. Generic solver vs best specific solvers on 13 problems.

Problem Data set # T.L Gen. BCP Best Publ. 2nd Best

CVRP E-M [20,21] 12 10 h 12 (61 s) 12 (49 s) [47] 10 (432 s) [23]

X [62] 58 60 h 36 (147m) 34 (209m) [62] –

VRPTW Solomon Hardest [61] 14 1 h 14 (5m) 13 (17m) [46] 9 (39m) [7]

Homberger 200 [34] 60 30 h 56 (21m) 50 (70m) [46] 7 (-) [39]

HFVRP BaldacciMingozzi [6] 40 1 h 40 (144 s) 39 (287 s) [50] 34 (855 s) [6]

MDVRP Cordeau [24] 11 1 h 11 (6m) 11 (7m) [50] 9 (25m) [23]

PDPTW RopkeCordeau [56] 40 1 h 40 (5m) 33 (17m) [35] 32 (14m) [4]

LiLim [41] 30 1 h 3 (56m) 23 (20m) [4] 18 (27m) [35]

TOP Chao class 4 [19] 60 1 h 55 (8m) 39 (15m) [13] 30 (-) [31]

CTOP Archetti [2] 14 1 h 13 (7m) 6 (35m) [1] 7 (34m) [2]

CPTP Archetti open [2] 28 1 h 24 (9m) 0 (1 h) [16] 0 (1 h) [1]

VRPSL Bulhoes [16] 180 2 h 159 (16m) 49 (90m) [16] –

GAP OR-Lib, type D [10] 6 2 h 5 (40m) 5 (30m) [53] 5 (46m) [3]

Nauss [44] 30 1 h 25 (23m) 1 (58m) [36] 0 (1 h) [44]

VPP Classes 1,4,5,9 [18] 40 1 h 38 (8m) 13 (50m) [37] 10 (53m) [15]

BPP Falkenauer T [32] 80 10m 80 (16 s) 80 (1 s) [15] 80 (24 s) [12]

Hard28 [60] 28 10m 28 (17 s) 28 (7 s) [12] 26 (14 s) [15]

AI [26] 250 1 h 160 (25m) 116 (35m) [12] 100 (40m) [15]

ANI [26] 250 1 h 103 (35m) 164 (35m) [22] 51 (48m) [12]

CARP Eglese [30] 24 30 h 22 (36m) 22 (43m) [49] 10 (237m) [9]

MDVRP, GAP, BPP and CARP, the generic BCP is comparable to the best per-
forming algorithms in the literature. Results are mixed for PDPTW. Worse per-
formance for LiLim instances can be explained by the fact that the generic BCP
does not incorporate some labeling algorithm acceleration techniques specific
to PDPTW. For the RopkeCordeau instances however, generic state-of-the-art
BCP elements mitigate the effect of lacking ad-hoc enhancements.

6 Conclusions

We proposed a new generic way of modeling VRPs and related problems, so that
they can be solved by an algorithm that already includes many state-of-the-art
elements. It combines old modeling concepts (like the use of RCSPs for defining
the valid routes) with a new one, the packing sets. The experiments show that
the generic solver has a performance either comparable or better than the spe-
cific algorithms for all VRP variants tested. The cases where the performance
was much better can be explained by the fact that previous authors often did
not use some advanced BCP elements due to the complexity of their implemen-
tation. However, if generic BCP solvers become publicly and/or commercially
available, we believe that their use may become as standard as that of MIP
solvers nowadays.

We plan to release the presented generic solver for academic use after addi-
tional testing and documentation. It will include the optimization algorithms

364 A. Pessoa et al.

in a pre-compiled library and a Julia–JuMP user interface. Modeling a typical
VRP variant, like those in our tests, requires around 100 lines of Julia code. This
means that a user can already have a good working algorithm in a day. More
work on computational experiments for parameter tuning may be needed for an
improved performance. Then separation routines for problem specific cuts can
be added for top performance.

A Additional Information on the Experiments

We provide additional information about the experiments reported in Table 1,
including relevant modeling decisions, datasets and remarks.

Note that the performance of exact algorithms is sensitive to the initial primal
bound value given by the user before execution. We tried to be as fair as possible
in this regard. Unless stated otherwise for the problems below we use the same
bounds (usually took from the heuristic literature) as in previous works.

CVRP (Capacitated Vehicle Routing Problem): The model is defined over undi-
rected edge variables and separates Rounded Capacity Cuts (RCCs) [40], using
the procedure in CVRPSEP [42]. A packing set is defined for each customer and
contains all incoming arcs to the corresponding node in the graph. Branching is
done over edge variables. The considered E-M instances are the 12 hardest ones,
those considered in [47]. The considered X instances are those with less than 400
customers.

VRPTW (Vehicle Routing Problem with Time Windows): The same model as
CVRP except that only time is defined as a graph resource, capacity is enforced
by RCCs. The considered Solomon instances (all with 100 customers) are the
hardest ones according to [46].

HFVRP (Heterogeneous Fleet Vehicle Routing Problem): The model is defined
over undirected edge variables. Each graph Gk (with capacity resource) corre-
sponds to a vehicle type. Branching is on the number of paths in P k, assignment
of packing sets to graphs, and on edge variables. Instances with 50, 75, and 100
customers are considered.

MDVRP (Multi-Depot Vehicle Routing problem): The model is defined over
undirected edge variables. Each graph Gk corresponds to a depot. Branching is
the same as for HFVRP. Only instances with one capacity resource are considered
(without time constraints).

PDPTW: The model is precisely defined in Sect. 4.3.

TOP/CTOP (Team Orienteering Problem): The model contains binary vari-
ables y that are not mapped to any RCSP graph, so they appear directly in
Formulation 2. Those variables indicate which customers will be visited. The
problem is to maximize the total profit of visited customers. For TOP, one

A Generic Exact Solver for Vehicle Routing and Related Problems 365

(time) resource is defined. In CTOP, an additional capacity resource is consid-
ered. Branching is on y and edge variables. No initial upper bound is defined.
Instances of class 4, the most difficult one according to [13], are considered for
TOP. Only basic instances from [2] are considered for CTOP, as well as open
ones.

CPTP (Capacitated Profitable Tour Problem): Similar to CTOP, except that
there is no time resource. The objective is the difference between the total profit
and the transportation cost. Only open instances from [2] are considered.

VRPSL (VRP with Service Level constraints): Generalization of CVRP in which
a service weight is defined for each customer. For each predefined group of cus-
tomers, total service weight of visited customers should not be below a threshold.
The model contains edge and y variables. For each group, a knapsack constraint
over y variables is defined. Branching is both on y and edge variables.

GAP: The model is precisely defined in Sect. 4.1. Instances of the most difficult
type D are considered. For OR-Library instances, we took best known solution
values as initial upper bounds. We used Nauss instances with |T | = 90, 100 and
|K| = 25, 30. Initial bounds for them were calculated by us using problem specific
strong diving heuristic from [58]. Its time is included in the reported time.

BPP/VPP: The model is precisely defined in Sect. 4.2. The branching over the
accumulated resource consumption showed to be effective so that Ryan and
Foster branch rule was never needed. For VPP, we took only largest instances
(200 items) with 2 resources of classes 1, 4, 5, and 9, the most difficult ones
according to [37]. No initial bound is given for VPP. For BPP, we used the
initial primal bound equal to the rounded up column generation dual bound
plus one. Such solutions are easily obtainable by very simple heuristics.

CARP: The model is defined in Sect. 4.4. The branching is done on aggrega-
tion of x variables: (1) corresponding to node degrees in the original graph; (2)
corresponding to whether required two edges are served immediately one after
another by the same route or not. The Eglese dataset is used in all recent works
on CARP.

B Open CVRP Instances Solved

According to CVRPLIB (http://vrp.atd-lab.inf.puc-rio.br) there were 52 open
CVRP instances in the X set [62]. We started long runs of the generic solver
on the most promising ones, using a specially calibrated parameterization. We
could solve 5 instances to optimality for the first time, as indicated in Table 2.
Improved best known solutions are underlined.

http://vrp.atd-lab.inf.puc-rio.br

366 A. Pessoa et al.

Table 2. Detailed results on the open instances solved.

Instance Prev. BKS Root LB Nodes Total time OPT

X-n284-k15 20226 20168 940 11.0 days 20215

X-n322-k28 29834 29731 1197 5.6 days 29834

X-n393-k38 38260 38194 1331 5.8 days 38260

X-n469-k138 221909 221585 8964 15.2 days 221824

X-n548-k50 86701 86650 337 2.0 days 86700

References

1. Archetti, C., Bianchessi, N., Speranza, M.: Optimal solutions for routing problems
with profits. Discrete Appl. Math. 161(4–5), 547–557 (2013)

2. Archetti, C., Feillet, D., Hertz, A., Speranza, M.G.: The capacitated team orien-
teering and profitable tour problems. J. Oper. Res. Soc. 60(6), 831–842 (2009)

3. Avella, P., Boccia, M., Vasilyev, I.: A computational study of exact knapsack sep-
aration for the generalized assignment problem. Comput. Optim. Appl. 45(3),
543–555 (2010)

4. Baldacci, R., Bartolini, E., Mingozzi, A.: An exact algorithm for the pickup and
delivery problem with time windows. Oper. Res. 59(2), 414–426 (2011)

5. Baldacci, R., Christofides, N., Mingozzi, A.: An exact algorithm for the vehicle
routing problem based on the set partitioning formulation with additional cuts.
Math. Program. 115, 351–385 (2008)

6. Baldacci, R., Mingozzi, A.: A unified exact method for solving different classes of
vehicle routing problems. Math. Program. 120(2), 347–380 (2009)

7. Baldacci, R., Mingozzi, A., Roberti, R.: New route relaxation and pricing strategies
for the vehicle routing problem. Oper. Res. 59(5), 1269–1283 (2011)

8. Balinski, M., Quandt, R.: On an integer program for a delivery problem. Oper.
Res. 12(2), 300–304 (1964)

9. Bartolini, E., Cordeau, J.F., Laporte, G.: Improved lower bounds and exact algo-
rithm for the capacitated arc routing problem. Math. Program. 137(1), 409–452
(2013)

10. Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper.
Res. Soc. 41(11), 1069–1072 (1990)

11. Belenguer, J., Benavent, E.: The capacitated arc routing problem: valid inequalities
and facets. Comput. Optim. Appl. 10(2), 165–187 (1998)

12. Belov, G., Scheithauer, G.: A branch-and-cut-and-price algorithm for one-
dimensional stock cutting and two-dimensional two-stage cutting. Eur. J. Oper.
Res. 171(1), 85–106 (2006)

13. Bianchessi, N., Mansini, R., Speranza, M.G.: A branch-and-cut algorithm for the
team orienteering problem. Int. Trans. Oper. Res. 25(2), 627–635 (2018)

14. Bode, C., Irnich, S.: Cut-first branch-and-price-second for the capacitated arc-
routing problem. Oper. Res. 60(5), 1167–1182 (2012)

15. Brandão, F., Pedroso, J.P.: Bin packing and related problems: general arc-flow
formulation with graph compression. Comput. Oper. Res. 69, 56–67 (2016)

16. Bulhoes, T., Hà, M.H., Martinelli, R., Vidal, T.: The vehicle routing problem with
service level constraints. Eur. J. Oper. Res. 265(2), 544–558 (2018)

A Generic Exact Solver for Vehicle Routing and Related Problems 367

17. Bulhoes, T., Sadykov, R., Uchoa, E.: A branch-and-price algorithm for the mini-
mum latency problem. Comput. Oper. Res. 93, 66–78 (2018)

18. Caprara, A., Toth, P.: Lower bounds and algorithms for the 2-dimensional vector
packing problem. Discrete Appl. Math. 111(3), 231–262 (2001)

19. Chao, I.M., Golden, B.L., Wasil, E.A.: The team orienteering problem. Eur. J.
Oper. Res. 88(3), 464–474 (1996)

20. Christofides, N., Eilon, S.: An algorithm for the vehicle-dispatching problem. Oper.
Res. Q. 20, 309–318 (1969)

21. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In:
Christofides, N., Mingozzi, A., Toth, P. (eds.) Combinatorial Optimization, pp.
315–338. Wiley, Chichester (1979)

22. Clautiaux, F., Hanafi, S., Macedo, R., Émilie Voge, M., Alves, C.: Iterative aggre-
gation and disaggregation algorithm for pseudo-polynomial network flow models
with side constraints. Eur. J. Oper. Res. 258(2), 467–477 (2017)

23. Contardo, C., Martinelli, R.: A new exact algorithm for the multi-depot vehicle
routing problem under capacity and route length constraints. Discrete Optim. 12,
129–146 (2014)

24. Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and
multi-depot vehicle routing problems. Networks 30(2), 105–119 (1997)

25. Dantzig, G., Ramser, J.: The truck dispatching problem. Manage. Sci. 6(1), 80–91
(1959)

26. Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems: math-
ematical models and exact algorithms. Eur. J. Oper. Res. 255(1), 1–20 (2016)

27. Desaulniers, G., Desrosiers, J., loachim, I., Solomon, M.M., Soumis, F., Villeneuve,
D.: A unified framework for deterministic time constrained vehicle routing and crew
scheduling problems. In: Crainic, T.G., Laporte, G. (eds.) Fleet Management and
Logistics. CRT, pp. 57–93. Springer, Boston (1998). https://doi.org/10.1007/978-
1-4615-5755-5 3

28. Desaulniers, G., Lessard, F., Hadjar, A.: Tabu search, partial elementarity, and
generalized k-path inequalities for the vehicle routing problem with time windows.
Transp. Sci. 42(3), 387–404 (2008)

29. Dunning, I., Huchette, J., Lubin, M.: JuMP: a modeling language for mathematical
optimization. SIAM Rev. 59(2), 295–320 (2017)

30. Eglese, R.W., Li, L.Y.O.: Efficient routeing for winter gritting. J. Oper. Res. Soc.
43(11), 1031–1034 (1992)

31. El-Hajj, R., Dang, D.C., Moukrim, A.: Solving the team orienteering problem with
cutting planes. Comput. Oper. Res. 74, 21–30 (2016)

32. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heurist.
2, 5–30 (1996)

33. Fukasawa, R., et al.: Robust branch-and-cut-and-price for the capacitated vehicle
routing problem. Math. Program. 106(3), 491–511 (2006)

34. Gehring, H., Homberger, J.: Parallelization of a two-phase metaheuristic for routing
problems with time windows. J. Heurist. 8(3), 251–276 (2002)

35. Gschwind, T., Irnich, S., Rothenbächer, A.K., Tilk, C.: Bidirectional labeling in
column-generation algorithms for pickup-and-delivery problems. Eur. J. Oper. Res.
266(2), 521–530 (2018)

36. Gurobi Optimization, Inc.: Gurobi optimizer reference manual, version 7.5 (2017).
http://www.gurobi.com

37. Heßler, K., Gschwind, T., Irnich, S.: Stabilized branch-and-price algorithms for
vector packing problems. Eur. J. Oper. Res. 271(2), 401–419 (2018)

https://doi.org/10.1007/978-1-4615-5755-5_3
https://doi.org/10.1007/978-1-4615-5755-5_3
http://www.gurobi.com

368 A. Pessoa et al.

38. Jepsen, M., Petersen, B., Spoorendonk, S., Pisinger, D.: Subset-row inequalities
applied to the vehicle-routing problem with time windows. Oper. Res. 56(2), 497–
511 (2008)

39. Kallehauge, B., Larsen, J., Madsen, O.: Lagrangian duality applied to the vehicle
routing problem with time windows. Comput. Oper. Res. 33(5), 1464–1487 (2006)

40. Laporte, G., Nobert, Y.: A branch and bound algorithm for the capacitated vehicle
routing problem. Oper.-Res.-Spektrum 5(2), 77–85 (1983)

41. Li, H., Lim, A.: A metaheuristic for the pickup and delivery problem with time
windows. Int. J. Artif. Intell. Tools 12(02), 173–186 (2003)

42. Lysgaard, J.: CVRPSEP: a package of separation routines for the capacitated
vehicle routing problem. Aarhus School of Business, Department of Management
Science and Logistics (2003)

43. Lysgaard, J., Letchford, A.N., Eglese, R.W.: A new branch-and-cut algorithm for
the capacitated vehicle routing problem. Math. Program. 100(2), 423–445 (2004)

44. Nauss, R.M.: Solving the generalized assignment problem: an optimizing and
heuristic approach. INFORMS J. Comput. 15(3), 249–266 (2003)

45. Pecin, D., Pessoa, A., Poggi, M., Uchoa, E.: Improved branch-cut-and-price for
capacitated vehicle routing. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol.
8494, pp. 393–403. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07557-0 33

46. Pecin, D., Contardo, C., Desaulniers, G., Uchoa, E.: New enhancements for the
exact solution of the vehicle routing problem with time windows. INFORMS J.
Comput. 29(3), 489–502 (2017)

47. Pecin, D., Pessoa, A., Poggi, M., Uchoa, E.: Improved branch-cut-and-price for
capacitated vehicle routing. Math. Program. Comput. 9(1), 61–100 (2017)

48. Pecin, D., Pessoa, A., Poggi, M., Uchoa, E., Santos, H.: Limited memory rank-1
cuts for vehicle routing problems. Oper. Res. Lett. 45(3), 206–209 (2017)

49. Pecin, D., Uchoa, E.: Comparative analysis of capacitated arc routing formu-
lations for designing a new branch-cut-and-price algorithm. Transp. Sci. (2019,
to appear)

50. Pessoa, A., Sadykov, R., Uchoa, E.: Enhanced branch-cut-and-price algorithm for
heterogeneous fleet vehicle routing problems. Eur. J. Oper. Res. 270, 530–543
(2018)

51. Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F.: Automation and combina-
tion of linear-programming based stabilization techniques in column generation.
INFORMS J. Comput. 30(2), 339–360 (2018)

52. Poggi de Aragão, M., Uchoa, E.: Integer program reformulation for robust branch-
and-cut-and-price. In: Wolsey, L. (ed.) Annals of Mathematical Programming in
Rio, Búzios, Brazil, pp. 56–61 (2003)

53. Posta, M., Ferland, J.A., Michelon, P.: An exact method with variable fixing for
solving the generalized assignment problem. Comput. Optim. Appl. 52, 629–644
(2012)

54. Roberti, R., Mingozzi, A.: Dynamic ng-path relaxation for the delivery man prob-
lem. Transp. Sci. 48(3), 413–424 (2014)

55. Røpke, S.: Branching decisions in branch-and-cut-and-price algorithms for vehicle
routing problems. In: Presentation in Column Generation 2012 (2012)

56. Ropke, S., Cordeau, J.F.: Branch and cut and price for the pickup and delivery
problem with time windows. Transp. Sci. 43(3), 267–286 (2009)

57. Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. In:
Wren, A. (ed.) Computer Scheduling of Public Transport: Urban Passenger Vehicle
and Crew Scheduling, pp. 269–280. North-Holland, Amsterdam (1981)

https://doi.org/10.1007/978-3-319-07557-0_33
https://doi.org/10.1007/978-3-319-07557-0_33

A Generic Exact Solver for Vehicle Routing and Related Problems 369

58. Sadykov, R., Uchoa, E., Pessoa, A.: A bucket graph based labeling algorithm with
application to vehicle routing. Technical report L-2017-7, Cadernos do LOGIS-
UFF, Niterói, Brazil, October 2017

59. Sadykov, R., Vanderbeck, F., Pessoa, A., Tahiri, I., Uchoa, E.: Primal heuristics
for branch-and-price: the assets of diving methods. INFORMS J. Comput. (2018)

60. Schoenfield, J.E.: Fast, exact solution of open bin packing problems without linear
programming. Technical report, US Army Space and Missile Defense Command
(2002)

61. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35(2), 254–265 (1987)

62. Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Subramanian, A., Vidal, T.: New
benchmark instances for the capacitated vehicle routing problem. Eur. J. Oper.
Res. 257(3), 845–858 (2017)

63. Vanderbeck, F., Sadykov, R., Tahiri, I.: BaPCod – a generic Branch-And-Price
Code (2018). https://realopt.bordeaux.inria.fr/?page id=2

64. Vanderbeck, F., Wolsey, L.A.: Reformulation and decomposition of integer pro-
grams. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958–2008, pp.
431–502. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-
0 13

https://realopt.bordeaux.inria.fr/?page_id=2
https://doi.org/10.1007/978-3-540-68279-0_13
https://doi.org/10.1007/978-3-540-68279-0_13

Earliest Arrival Transshipments
in Networks with Multiple Sinks

Miriam Schlöter(B)

Institute for Operations Research, ETH Zürich, Zürich, Switzerland
miriam.schloeter@ifor.math.ethz.ch

Abstract. We study a classical flow over time problem that captures
the essence of evacuation planning: given a network with capacities and
transit times on the arcs and sources/sinks with supplies/demands, an
earliest arrival transshipment (EAT) sends the supplies from the sources
to the sinks such that the amount of flow which has reached the sinks
is maximized for every point in time simultaneously. In networks with
only a single sink earliest transshipments do exist for every choice of
supplies and demands. This is why so far a lot of effort has been put into
the development of efficient algorithms for computing EATs in this class
of networks, whereas not much is known about EATs in networks with
multiple sinks, aside from the fact that they don’t exist in general.

We make huge progress regarding EATs in networks with multiple
sinks by formulating the first exact algorithm that decides whether a
given tight EAT problem has solution and that computes the EAT in
case of existence. Our algorithm only works on the originally given net-
work without requiring any form of expansion and thus just requires
polynomial space. Complementing this algorithm we show that in mul-
tiple sink networks it is, already for tight instances, NP-hard to decide
whether an EAT does exist for a specific choice of supplies and demands.

Keywords: Flows over time · Submodular function minimization ·
Earliest arrival flows · Earliest arrival transshipments · Evacuation

1 Introduction

In 2017 the United States and several Caribbean islands were hit by two severe
hurricanes. On both occasions it was necessary to evacuate millions of people
from the dangers of these tropical storms. However, in many places the evacua-
tion was disorganized and inefficient which resulted in a large number of unnec-
essary injuries and deaths. Due to climate change the number and intensity of
such natural disasters will probably increase in the future, which makes it even
more essential to develop well-planned evacuation strategies. Flows over time,
which were introduced by Ford and Fulkerson in the 1950s [13,14], have been
used successfully to model evacuation scenarios in the past [3,7,19]. One main

This work was supported by the DFG SPP 1736 “Algorithms for Big Data”.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 370–384, 2019.
https://doi.org/10.1007/978-3-030-17953-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_28

Earliest Arrival Transshipments in Networks with Multiple Sinks 371

aim when disaster strikes is to bring endangered people to safe areas as quickly as
possible but often this is not enough to ensure optimal evacuation. For example,
meteorologists are still not able to precisely predict when a hurricane will hit the
coast. In such situations an evacuation strategy should thus also have the prop-
erty that it saves as many people as possible no matter when the actual tragedy
occurs. This property is captured by earliest arrival transshipments (EATs). The
results we present in this paper are deep insights into the structure and efficient
computation of EATs in networks with multiple sinks.

Introduction to Flow Over Time and Related Work. Throughout this paper
R+ and Z+ denote the sets of non-negative reals and integers, respectively. We
consider a dynamic network N = (D = (V,A), u, τ, S+, S−) that consists of
a directed graph D = (V,A), a capacity function u : A → Z+, a transit time
function τ : A → Z+ and disjoint sets of sources S+ ⊆ V and sinks S− ⊆ V .
The union S+ ∪ S− is called the set of terminals. We assume that the sources
have no ingoing and the sinks no outgoing arcs. In this setting an arc’s capacity
bounds the rate at which flow may enter it, while the transit time of an arc
specifies the time flow needs to travel from its tail to its head. Moreover, we
denote by b : S+ ∪ S− → Z a supply/demand-function with supplies b(s) > 0
for all s ∈ S+ and demands b(t) < 0 for all t ∈ S− such that b(S+ ∪ S−) :=∑

x∈S+∪S− b(x) = 0.
A flow over time f is a Lebesque integrable function1 f : A ×R+ → R+ that

specifies for each arc a and each point in time θ ≥ 0 the flow rate at which flow
enters the arc – and leaves it at time θ + τa. Additionally, a flow over time f is
required to respect the capacity of every arc at every point time and to fulfill
flow conservation, i.e. at every point in time and for every note v ∈ V \(S+∪S−)
the flow entering and leaving the node v must cancel out. Given T ≥ 0 we say
that f has time horizon T if no flow remains in the network after time T .

Ford and Fulkerson [13,14] also introduced the concept of the time-expanded
network N T corresponding to a dynamic network N and an integral time horizon
T that gets rid of the transit time. It consists of one copy of the nodes of N
for each point in time θ ∈ {1, . . . , T}, called time layers. For each arc a in
N the time-expanded network contains copies of the same capacity connecting
any two layers at distance τa. Many flow over time problems can be reduced to
classical static flow problems in the time-expanded network. However, the size of
the time-expanded network is exponential (pseudo-polynomial) in the input-size.
When considering a flow over time problem it is often the first goal to find a
polynomial space algorithm that does not rely on time-expansion and only works
on the original network. We achieve this aim for tight EAT problems.

Given a dynamic network N and a supply/demand function b : S+ ∪S−→ Z,
the aim of the earliest arrival transshipment problem (N , b)EAT is to find a flow
over time f that satisfies the supplies/demands and has the property that the
amount of flow that has arrived at the sinks up to time θ is maximized for each
θ ≥ 0. Such a flow f is called earliest arrival transshipment (EAT). Gale [15]
1

There exist two different models for flows over time – a discrete and a continuous model. We con-
sider the continuous model but the presented results also hold in the discrete case (see also [12]).

372 M. Schlöter

studied the EAT problem in networks with a single source and a single sink, also
denoted as earliest arrival flow problem, and showed existence of earliest arrival
flows (EAFs) (see also [31]). The first polynomial space algorithms for computing
EAFs, which rely on the successive shortest path algorithm, are given in [29,40].
In [6] it is shown that the earliest arrival flow problem is NP-hard. In networks
with several sinks EATs do not exist for every choice of supplies/demands [9].
On the other hand, in [32] it is observed that in networks with multiple sources
but only a single sink EATs do always exist. This is the reason why so far a lot
of research has been focused on the efficient computation of EATs in dynamic
networks with only a single sink [1,9,11,17,33,34,39]. In particular, there is a
polynomial space algorithm to compute EATs in such networks [34]. Regarding
EATs in multiple sink networks not many results have been achieved. Schmidt
and Skutella [35] characterize networks with multiple sources and sinks with
only zero transit times in which every EAT problem has a solution and there
are efficient algorithms that compute approximations of EATs in multiple sink
networks [16]. See [2,9,18,20,23,24,28,34] for the latest results about a related
flow over time problem, the quickest transshipment problem.

Our Contribution. The only result that is known about EATs in multiple sink
networks is that they in general do not exist. In particular, the problem of check-
ing whether there exists an EAT solving a given problem and of computing such
an EAT efficiently in case of existence is still open. We make huge progress in this
context by formulating the first polynomial space algorithm for these problems
for the special case of tight EAT problems in dynamic networks with multiple
sources and multiple sinks. An EAT problem (N , b)EAT is tight if the maxi-
mum amount of flow that can be sent from S+ to S− until time T (disregarding
supplies/demands) is equal to b(S+). Here, T is the minimal time needed to
fulfill all supplies/demands. Complementing this algorithm we derive that it is,
already for tight instances, NP-hard to decide whether a given EAT problem
has a solution. We remark that all our results carry over to general (non-tight)
EAT problems in dynamic networks with multiple sinks and a single source. The
ideas and techniques for tight EAT problems can also be applied to this more
general case. However, doing so in detail is beyond the scope of this paper.

As our first result we derive the earliest arrival pattern corresponding to tight
EAT problems (Sect. 3), that is, the function that describes the time-dependent
maximum flow value. Knowing the pattern is essential for the construction of
our algorithm (Sect. 4). Overall, we show that we can check whether a tight
EAT problem has a solution by just minimizing a suitably defined submodular
function that we can evaluate in polynomial space. To obtain the EAT in case of
existence we exploit that many algorithms for submodular function minimization
not only compute the minimum of the given function but also a dual optimality
certificate which is a vector inside the submodular function’s base polytope.
This vector is given as a convex combination of vertices of the base polytope
that in our case we show to correspond to so-called lex-max earliest arrival
flows for which we present a polynomial space algorithm to compute them.
Thus, we essentially achieve a solution to a tight EAT problem as a convex

Earliest Arrival Transshipments in Networks with Multiple Sinks 373

combination of lex-max EAFs. Although the output size of our algorithm is
necessarily exponential in the input size, it runs in polynomial space producing
the output sequentially. Due to the space limitation some proofs of non-trivial
results and some technical details will be skipped in this extended abstract. We
will always state when we do so.

2 Preliminaries and Notation

For a finite set U , R
U is defined to be the |U |-dimensional real vector space

with components indexed by the elements in U . Furthermore, we define x(X) :=∑
u∈X x(u) for X ⊆ U , and by 2U we denote the power set of the set U .

Submodular Function Minimization. Given a finite ground set U , a set function
g : 2U → R is submodular if for all X ⊆ Y ⊆ U and x ∈ U \ Y it satisfies
g(X ∪ {x}) − g(X) ≥ g(Y ∪ {x}) − g(Y), and submodular function minimization
(SFM) is the problem of computing the minimum value as well as a minimizer
X∗ ⊆ U of a submodular function. In many algorithms for SFM the base polytope
B(g) of a submodular function g plays a central role,

B(g) := {x ∈ R
U | x(X) ≤ g(X) for all X ⊆ U and x(U) = g(U)}.

It is possible to optimize over B(g) in strongly polynomial time [8,37]:

Theorem 1 ([8,37]). Given a submodular function g : 2U → R and w ∈ R
U ,

a vector x∗ ∈ B(g) with wT x∗ = max{wT x | x ∈ B(g)} can be found via a
greedy algorithm: find a total order ≺ on U such that u ≺ u′ if w(u) ≥ w(u′) for
u, u′ ∈ U and define x∗ ∈ R

U by x∗(u) := g({u′ ∈ U | u′ ≺ u} ∪ {u}) − g({u′ ∈
U | u′ ≺ u}).

Theorem 1 implies that each total order ≺ on U induces a corresponding vertex
v≺ of B(g) and vice versa. The following theorem is also central for SFM. For
x ∈ R

U define the vector x− ∈ R
U by x−(u) := min{x(u), 0} for each u ∈ U .

Theorem 2 (Edmonds [8]). For a submodular function g : 2U → R with the
property that g(∅) = 0, it holds that minX⊆U g(X) = maxx∈B(g) x−(U).

Many combinatorial algorithms for SFM rely on Theorem2 and a lot of them,
e.g., [5,10,21,22,30,36], make use of the same key idea, the so-called frame-
work of Cunningham [4,5]: while minimizing a submodular function g, these
algorithms also compute the optimal point x∗ ∈ B(g) maximizing x−(U) (see
Theorem 2) as a convex combination of vertices of B(g). The currently fastest
known strongly polynomial time algorithm for SFM using this framework is
Orlin’s algorithm [30], which we denote by SFMOrlin (the fastest algorithm for
SFM is due to Lee et al. [27]). It returns a minimizer X∗ ⊆ U of g, the optimal
point x∗ ∈ B(g) given as a minimal convex combination of vertices of B(g), and
the minimal value vmin of g. Note that a submodular function can only be min-
imized in (strongly) polynomial running time if we can evaluate g in (strongly)
polynomial time.

374 M. Schlöter

Flows Over Time – Additional Notation. The value of a flow over time f in a
dynamic network N at time θ ≥ 0, denoted by |f |θ, is the overall amount of flow
that has reached the sinks of N until time θ. For each v ∈ V we denote the net
amount of flow that has left the node v up to time θ in a flow over time f by
netf (v, θ). If v ∈ S−, then we have netf (v, θ) ≤ 0 for all θ ≥ 0 and −netf (v, θ)
is the amount of flow that has arrived at the sink v until time θ.

A dynamic network N can also be regarded as a static network. In this case
we usually consider the transit times τ as costs on the arcs. If x is a static
flow in N , we denote by Nx = (Dx, ux, τ, S+, S−) the corresponding residual
network with τ(←−a) := −τ(a) and ux(←−a) := ux(a)−x(a). Here ←−a = (v, u) is the
backwards arc of a = (u, v) ∈ A and Dx is the residual graph of D.

The flows over time returned by the main algorithm presented in this paper
are of a special structure: they are generalized temporally repeated flows over
time. In a dynamic network N we denote by

←→P the set of all paths from S+ to
S− that might use all arcs in forward and backward direction. Let x : A → R+

be a static flow in N . A generalized temporally repeated flow fx corresponding to
x is obtained out of a generalized path decomposition (xP)

P∈←→P of x by sending

flow at rate xP into each flow carrying path P ∈ ←→P starting from time 0 on.
The flow over time fx is not necessarily feasible as fx(a, θ) can be negative.

When considering the time-expanded network N T corresponding to a
dynamic network N and an integral time horizon T the copy of a node v ∈ V
in layer θ is called vθ. The sources/sinks of N T are given by S+ ∪ S− which are
added to N T by connecting the nodes in S+ ∪S− to its respective copies in each
time layer by arcs with infinite capacity. There is a nice correspondence between
static flows in N T and flows over time with time horizon T in N . In fact, each
feasible static flow xT in N T yields a flow over time f in N with time horizon
T such that

netxT ({v1, v2, . . . , vθ}) = netf (v, θ) ∀ v ∈ S+ ∪ S−, θ ∈ {1, 2, . . . , T}. (1)

See [25] for a proof of this fact. Note that the time-expanded network can simi-
larly be constructed for arbitrary rational time horizons T = p/q, p, q ∈ Z>0 by
creating a time layer for each θ ∈ {1/q, . . . , p/q}. This can be done such that (1)
still holds. For a thorough introduction to flows over time see [38].

Earliest Arrival Transshipments. Let N = (D = (V,A), u, τ, S+, S−) be a
dynamic network and b : S+ ∪ S−→ Z a supply/demand function. Consider the
corresponding EAT problem (N , b)EAT. We say that T ≥ 0 is the minimal feasi-
ble time horizon for (N , b)EAT if T is the minimal time needed to be able to fulfill
all supplies/demands. The earliest arrival pattern p∗ : R+ → R+ of (N , b)EAT is
defined by setting p∗(θ) to be the maximal amount of flow that can be sent from
S+ to S− before time θ ≥ 0 while respecting the supplies/demands.

For θ ≥ 0 the function oθ : 2S+∪S−→ R+ is obtained by setting oθ(X) to be
the maximal amount of flow that can be sent from X to S− \ X before time θ
(disregarding supplies/demands) for all X ⊆ S+ ∪ S−. The value oθ(X) can be
computed via one minimum-cost flow computation using an algorithm of Ford

Earliest Arrival Transshipments in Networks with Multiple Sinks 375

and Fulkerson [13]. We call an EAT problem (N , b)EAT with minimal feasible
time horizon T tight if oT (S+) = b(S+). Hoppe and Tardos [20] observe that oθ

is a submodular function for every θ ≥ 0.
In dynamic networks with a single source s and a single sink t an EAT

with time horizon T can be derived using the successive shortest path algorithm
(SSPA) from s to t. Hereby, the transit times are regarded as costs [29,40]. The
generalized temporally repeated flow corresponding to the paths and their flow
values occurring in the SSPA-computation is an earliest arrival flow. The pattern
of such an earliest arrival flow is θ �→ oθ(S+).

3 The Earliest Arrival Pattern

The construction of our algorithm that checks whether a tight EAT problem
(N , b)EAT has a solution and computes the solution in case of existence heavily
relies on the structure of the earliest arrival pattern p∗ corresponding to such
problems. Assume that T is the minimal feasible time horizon for a given tight
EAT problem (N , b)EAT, i.e., oT (S+) = b(S+). In this tight case respecting the
supplies and demands does not reduce the maximal amount of flow that can be
sent from the sources to the sinks until time T . It turns out that this is true for
the whole earliest arrival pattern.

Theorem 3. Let (N , b)EAT be a tight EAT problem with minimal feasible time
horizon T . We have p∗(θ) = oθ(S+) for all θ ≤ T .

A similar statement for EATs in dynamic networks with multiple sources and
a single sink was shown in [1]. The proof for Theorem3 is essentially a gener-
alization of the one given in [1]. This is why we skip the proof of Theorem3
here.

4 Computing Tight Earliest Arrival Transshipments

In this section we present the main result of this paper: a polynomial space
algorithm that checks whether a given tight EAT problem (N , b)EAT has a solu-
tion and that computes this solution in case of existence. Throughout most of
this section we consider tight EAT problems in dynamic networks with a single
source. Only at the end of this section all our results will be generalized to tight
problems in networks with multiple sources and sinks. Let N = (D,u, τ, {s}, S−)
denote a dynamic network with multiple sinks S− and a single source s, and
assume that (N , b)EAT is tight, i.e., oT ({s}) = −b(S−) where T is the minimal
feasible time horizon of (N , b)EAT. Note that T can be determined in polynomial
time by one parametric submodular function minimization of oθ − b according
to a feasibility criterion of Klinz [26]. Since N is a single sink network, we can
assume that b is just defined on S−. The supply of s is implicitly given by
−b(S−).

Before we state the structural main result that our algorithm is based on,
we need two additional definitions. First, EAT problems are heavily connected

376 M. Schlöter

to a suitably defined submodular function. This function is defined similarly to
the function oθ, but it additionally incorporates the earliest arrival pattern of
a tight EAT problem, θ �→ oθ({s}). Given a dynamic network N with a single
source s and a time horizon θ ≥ 0 we define the set function γθ : 2S− → R as
follows:

X �→
maximum amount of flow that can arrive at the sinks in X until time θ in a

flow over time f in N with time horizon θ and |f |θ′ = oθ′
({s}) for all θ′ < θ.

A flow over time f with time horizon θ and pattern θ′ �→ oθ′
({s}) for all θ′ ∈ [0, θ)

that also fulfills −netf (X, θ′) = γθ′
(X) for some θ′ < θ and X ⊆ S− is said

to satisfy γθ′
(X). Note that the function γθ is completely independent of the

demands on the sinks. It turns out that γθ is in fact submodular.

Lemma 1. Let N be a dynamic network with only a single source s. The cor-
responding set function γθ is submodular for every θ ≥ 0.

The proof of Lemma 1 is deferred to AppendixA. The second ingredient for our
structural main result is a special class of flows over time that is similar to
lexicographically maximal flows over time [20,29] but again also incorporates
the earliest arrival pattern of tight EAT problems.

Definition 1. Let N be a dynamic network with a single source s, and ≺ a total
order on the set of sinks S−. We call a flow over time f with time horizon T a
lexicographically maximal earliest arrival flow (lex-max EAF) with respect to ≺
if f fulfills the following conditions: (i) The flow over time f has pattern θ �→
oθ({s}) for θ ∈ [0, T). (ii) The amount of flow sent into the sinks is maximized
lexicographically in decreasing order ≺ while respecting the pattern.

Since flows over time with pattern θ �→ oθ({s}) do exist, e.g., earliest arrival
flows from s to S+, lex-max earliest arrival flows do also exist for every choice
of parameters. With the definition of γθ and of lex-max earliest arrival flows we
are now ready to state the structural main result of our paper.

Theorem 4 (Structure of EATs). A tight EAT problem (N , b)EAT in a
dynamic network N with a single source and minimal feasible time horizon T
has a solution if and only if −b ∈ B(γT). If (N , b)EAT has a solution, it can
be achieved as a convex combination of at most |S−| lex-max EAFs with time
horizon T .

To prove this theorem, several steps are necessary. As a first observation note
that if −b ∈ B(γT), then (N , b)EAT does not have a solution: by definition of
B(γT), −b ∈ B(γT) implies that −b(X) > γT (X) for some X ⊆ S− which
contradicts the existence of an EAT solving (N , b)EAT by the definition of γT

and the fact that the pattern of a tight EAT problem (N , b)EAT is given by
θ �→ oθ({s}) (see Theorem 3). In order to prove Theorem4, we still need to show
the converse statement. For this purpose we deduce that the vertices of B(γT) are
given by the excess vectors of lex-max earliest arrival flows with time horizon T .

Earliest Arrival Transshipments in Networks with Multiple Sinks 377

This also immediately implies that in case of existence, i.e. if −b ∈ B(γT), an
EAT can be obtained as a convex combination of lex-max earliest arrival flows.

Thus, it is our next goal to derive the excess vector of a lex-max earliest arrival
flow. We start with a simple observation: let N be a dynamic network with only
a single source, ≺ a total order on S− and T ≥ 0. If a flow over time f with
time horizon T fulfills −netf ({t′ ∈ S− | t � t′}, T) = γT ({t′ ∈ S− | t � t′}) for
all t ∈ S−, then the flow over time f is a lex-max EAF with respect to ≺ and T
by the definition of γT . The existence of flows over time fulfilling this property
can be derived from a connection between flows over time f in N satisfying
γT (X) for some X ⊆ S− and certain static lex-max flows in the time-expanded
network. This is done in AppendixA. Overall, we can state the following lemma
about the excess vector of a lex-max earliest arrival flow.

Lemma 2. Let N be a dynamic network with a single source s, T ≥ 0 a time
horizon and ≺ a total order on S−. A lex-max earliest arrival flow f with respect
to ≺ and time horizon T fulfills −netf ({t′ ∈ S− | t � t′}) = γT ({t′ ∈ S− | t �
t′}).

With Lemma 2 it is easy to derive a correspondence between the vertices of
B(γT) and lex-max earliest arrival flows with time horizon T . Recall that by
Theorem 1 the vertices of B(γT) correspond to total orders ≺ on S−.

Corollary 1. Let N be a dynamic network with a single source, T ≥ 0 a time
horizon and ≺ a total order on S−. If f≺ is the lex-max EAF with time horizon T
in N and v≺ the vertex of B(γT) corresponding to ≺, it holds that netf≺(s, T) =
−v≺(t) for all t ∈ S−.

Corollary 1 is an immediate consequence of Theorem 1 and Lemma 2. Using
Corollary 1 we are now also able to prove Theorem 4.

Proof of Theorem 4. We already argued that −b ∈ B(γT) is a necessary condi-
tion for the existence of a solution of (N , b)EAT. We will now prove the converse
direction. For this purpose, choose some x ∈ B(γT). Thus, we can obtain x as
convex combination of vertices of B(γT). Then, by Corollary 2, a corresponding
convex combination of lex-max earliest arrival flows gives us a solution to the
problem (N ,−x)EAT. That the number of elements in the convex combination
is at most |S−| follows with Carathéodory’s theorem. ��

When given a tight earliest arrival transshipment problem (N , b)EAT with
time horizon T ≥ 0 in a dynamic network N with a single source, we can by
Theorem 4 check the existence of a solution by testing whether −b ∈ B(γT). This
can be done by minimizing the the submodular function γT +b. If its minimum is
at most zero, then −b is in the base polytope, if the minimum is strictly smaller
than zero, it is not. In order to be able to minimize this submodular function
using only polynomial space, we need to be able to evaluate it in polynomial
space. Additionally, in order to be able to compute a solution to (N , b)EAT as a
convex combination of lex-max EAFs, we also need a polynomial space algorithm
to compute such flows over time. With Algorithm1 we present an algorithm that

378 M. Schlöter

solves both problems: To compute a lex-max EAF with respect to some given
order ≺ on S− and some time horizon T ≥ 0, the first objective is to compute
a flow over time f with pattern θ �→ oθ({s}) for θ ∈ [0, T). It was shown by
Wilkinson [40] that the successive shortest path algorithm (SSPA) can be used
to compute a flow over time with this pattern. This is why the base of Algorithm1
is the SSPA. Since we want the flow arriving at the sinks to respect the order ≺,
our implementation of the SSPA has the additional feature that in each iteration
a shortest path is chosen with respect to the order ≺. By d(N , u, v) we denote
the length of a shortest path between u, v ∈ V in N .

Algorithm 1. Computation of lex-max earliest arrival flows
Input : A dynamic network N = (D = (V, A), u, τ, {s}, S−), a time horizon

T ≥ 0 and a total order ≺ on S−

Output: A lex-max earliest arrival flow f in N with respect to T and ≺
xP ← 0 for all P ∈ ←→P
x ← static flow from s to S− with generalized path decomposition (xP)

P∈←→P
while d(Nx, s, S−) < T do

l ← d(Nx, s, S−)
for i = k, k − 1, . . . , 1 do

while d(Nx, s, ti) = l do
P ← shortest s-ti path in Nx and γ ← min{u(a) | a ∈ P}
augment x along P by γ

f ← gen. temporally repeated flow with time horizon T given by (xP)
P∈←→P .

Theorem 5 (Correctness of Algorithm 1). Let N be a dynamic network
with a single source, T ≥ 0 a time horizon, and ≺ a total order on the sinks S−.
The flow over time f returned by Algorithm1 with respect to these parameters
fulfills −netf ({t′ ∈ S− | t � t′}, T) = γT ({t′ ∈ S− | t � t′}) for all t ∈ S− and
is thus a lex-max EAF with respect to T and ≺.

It is clear that Algorithm 1 computes a flow over time with the correct pattern
(see [29,40]). That the returned flow fulfills the other property of a lex-max EAF
follows directly from the fact that the shortest paths are chosen with respect to
the given order. We skip the proof of this theorem here. Algorithm1 can also
be used to evaluate the submodular function γT at an arbitrary X ⊆ S− by
choosing a total order ≺ on S− with t ≺ t′ for all t ∈ S− \ X and t′ ∈ X.

Corollary 2. Using Algorithm1, γT can be evaluated in polynomial space.

By incorporating our polynomial space algorithm for evaluating γT into a
strongly polynomial time SFM algorithm, we can hence test whether (N , b)EAT

has a solution using only polynomial space. It turns out that a suitable convex
combination of lex-max EAFs solving (N , b)EAT is essentially also computed
while minimizing the submodular function γT + b.

Earliest Arrival Transshipments in Networks with Multiple Sinks 379

Corollary 3. By minimizing γT + b with the help of Algorithm1, we can check
in polynomial space whether a tight EAT problem (N , b)EAT with time horizon
T in a network with a single source has a solution. If an SFM algorithm using
Cunnigham’s framework is used, also a convex combination of lex-max EAFs
solving (N , b)EAT is computed during the minimization, in case of existence.

Proof. Only the last statement remains to be proved. When minimizing the sub-
modular function γT +b, e.g., with the algorithm of Orlin, then, besides the min-
imal value of the submodular function, also a convex combination of vertices of
B(γT +b) giving the vector x∗ = argmax{x−(S−) | x ∈ B(γT)} is computed (see
Theorem 2). In particular, we get d ≤ |S−| total orders ≺1, . . . ,≺d correspond-
ing to the suitable vertices of B(γT + b) and convex coefficients λ1, . . . , λd ≥ 0.
Denote by f1, . . . , fd the lex-max EAFs in N with time horizon T with respect
to the total orders ≺1, . . . ,≺d, respectively. Corollary 1, the observation that
x∗ is the zero vector, and the fact that B(γT) = B(γT + b) − b imply that f
fulfills netf (t, T) = b(t) for all t ∈ S−. Since by construction f has pattern
θ �→ oθ({s}) for θ ∈ [0, T), the flow over time f is an EAT solving (N , b)EAT.
The above arguing shows that while doing SFM of γT + b also a convex com-
bination of lex-max EAFs solving the problem (N , b)EAT is determined, in case
of existence of a solution. The specific lex-max EAFs have to be computed by
Algorithm 1. ��
Summarizing, we thus obtain a polynomial space method that checks whether
(N , b)EAT has a solution and computes it in case of existence.

Tight EATs in General Networks. We conclude by sketching how our results
can be generalized to tight EATs in general dynamic networks. Assume that
(N , b)EAT is a tight EAT problem with minimal feasible time horizon T in a
dynamic network N with multiple sources and multiple sinks. Denote by Ns the
dynamic network in which a super source s is attached to all sources in S+ by
arcs with zero transit time and infinite capacity. The source s is the new single
source of Ns. By bs we denote the restriction of b to the sinks in S−. Similarly,
we can define Nt and bt by attaching a super sink t to the sinks in S−. Thus, we
obtain two new tight EAT problems (Ns, bs)EAT and (Nt, bt)EAT with the same
minimal feasible time horizon T as before.

Theorem 6. A tight EAT problem (N , b)EAT in a dynamic network with mul-
tiple sources and multiple sinks has a solution if and only if (Ns, bs)EAT has a
solution.

Proof. If (N , b)EAT has a solution, then a flow over time f solving this problem
can simply be transformed into a flow over time solving (Ns, bs)EAT. For the other
direction let fs and ft be flows over time solving (Ns, bs)EAT and (Nt, bt)EAT,
respectively. Denote by xs and xt the corresponding (maximum) flows in the
time-expanded network (see (1)). By a result of Minieka [29] both static flows can
be “glued” together to obtain a maximum flow x in the time-expanded network
which hat the departure pattern of xt and the arrival pattern of xs. The flow

380 M. Schlöter

over time f induced by x by construction fulfills all supplies and demands and
has pattern θ �→ oθ(S+) as required (see Theorem 3). ��
By Theorem 6 we can use Theorem 4 to check if a general tight EAT problem
(N , b)EAT has a solution. To compute a solution to (N , b)EAT in polynomial
space, we combine the results from this paper with [34]. In [34] it is shown that
(Nt, bt)EAT can be solved by a convex combination of lex-max flows over time.
The main idea for the polynomial space computation of a flow solving (N , b)EAT

is to combine a convex combination of lex-max flows over time solving (Nt, bt)EAT

and a convex combination of lex-max EAFs solving (Ns, bs)EAT by incorporating
Algorithm 1 into the algorithm in [20] for computing lex-max flows over time.
The details of this construction are beyond the scope of this paper.

Finally, we state that by reducing from Partition using techniques from [6]
we can show the following hardness result:

Theorem 7. Let (N , b)EAT be a tight EAT Problem with two sinks. It is NP-
hard to decide whether there exists an EAT solving (N , b)EAT.

A Appendix

Preliminaries for the Proof of Lemma 1. To prove Lemma 1 we need the notion
of static lex-max flows. Let N be a dynamic network and ≺ a total order on
S+∪S−. A static lexicographically maximum (lex-max) flow x in N with respect
to ≺ is a static flow which maximizes the net amount of flow sent out of S+∪S− in
increasing order ≺. For the sinks this means that the flow into them is maximized
in decreasing order ≺. If we denote by maxN (S,X) the value of a static maximum
flow from S ⊆ S+ to X ⊆ S− in network N , then it is due to Minieka [29] that

netx({s′ ∈ S+ ∪ S− | s′ � s})

= maxN ({s′ ∈ S+ | s′ � s}, {s′ ∈ S− | s � s′}) ∀ s ∈ S+ ∪ S−.
(2)

The proof of Lemma 1 strongly relies on Lemma 3, a connection between flows
over time in N satisfying γθ(X) for some rational θ = p, q with p, q ∈ Z>0

and some X ⊆ S−, and certain static lex-max flows in the time-expanded net-
work. We consider the time-expanded network N θ corresponding to our given
dynamic network N with only a single source s and denote by s∗ the single
super source of N θ. Additionally, in each layer θ′ we attach a super sink tθ

′
X

to nodes tθ
′

with t ∈ X by an arc (tθ
′
, tθ

′
X) with infinite capacity. Similarly,

we attach a super sink tθ
′

S−\X and moreover we add an overall super sink tθ
′

∗
to each layer by infinite capacity arcs (tθ

′
S−\X , tθ

′
∗) and (tθ

′
X , tθ

′
∗). We consider

{t
1/q
X , t

1/q
S−\X , . . . , t

p/q
X , t

p/q
S−\X} or {t

1/q
∗ , . . . , t

p/q
∗ } as sets of sinks of N T .

Lemma 3. A flow over time f in a dynamic network N with only a single
source s with rational time horizon T = p/q, p, q ∈ Z>0, that satisfies γT (X) for
some X ⊆ S− fulfills the following properties: (1) We have netf (X, θ) = −γθ(X)

Earliest Arrival Transshipments in Networks with Multiple Sinks 381

for all θ ≤ T . (2) The flow over time f induces a static lex-max flow in N T

with respect to the total order s∗ ≺ t
p/q
S−\X ≺ t

p/q
X ≺ t

(p−1)/q
S−\X ≺ t

(p−1)/q
X ≺ . . . ≺

t
1/q
S−\X ≺ t

1/q
X .

The proof of Lemma 3 mostly relies on (1) and (2) and we skip it here.

Proof of Lemma 1. Lemma 3, (1) and (2), imply for an integral T ≥ 0,

γT (X) (2)=
T∑

i=1

maxNT (s∗, {t1∗, . . . , t
i
∗, t

i
X}) − maxNT (s∗, {t1∗, . . . , t

i
∗}).

Note that maxNT (s∗, {t1∗, . . . , t
i
∗}) is independent of X and thus in order to show

submodularity, it suffices to show that gθ : 2S−→ R with

gθ(X) := maxNT (s∗, {t1∗, . . . , t
θ
∗, t

θ
X}) for X ⊆ S−,

is submodular on S− for all θ ∈ {1, . . . , T}. To show this fact, fix some integral
θ, A ⊆ B ⊆ S−, and v ∈ S− \ B. We redefine the time-expanded network N θ.
In time layer θ we now attach a super sink tθv to vθ, a super sink tθA to the copies
of sinks in A in layer θ, a super sink tθB\A to the copies of the sinks in B \ A,
and a super sink tθS−\(B∪{v}) to the copies of the remaining sinks in layer θ.
Then, gθ(A ∪ {v}) − gθ(A) is exactly the amount of flow that reaches tθv in a
lex-max flow in N θ with respect to the order ≺ given by

s∗ ≺ tθS−\(B∪{v}) ≺ tθB\A ≺ tθv ≺ tθA ≺ tθ−1
∗ ≺ . . . ≺ t1∗.

Similarly, gθ(B ∪ {v}) − gθ(B) is exactly the amount of flow that reaches tθv in
a static lex-max flow in N θ with respect to

s∗ ≺ tθS−\(B∪{v}) ≺ tθv ≺ tθB\A ≺ tθA ≺ tθ−1
∗ ≺ . . . ≺ t1∗.

Since the sink tθv has a higher priority with respect to ≺ in the first order, we
obtain gθ(B ∪ {v}) − gθ(B) ≤ gθ(A ∪ {v}) − gθ(A), and thus submodularity.
The submodularity for arbitrary rational time horizons follows by using a finer
discretization of time and for irrational time horizons by continuity. ��
Preliminaries for the Proof of Lemma 2. It turns out that Lemma 2 is a direct
consequence of the following lemma which is the reverse direction of Lemma 3.

Lemma 4. Let N be a dynamic network and T = p/q with p, q ∈ Z>0 a rational
time horizon. A static lex-max flow x in N T with respect to the total order

s∗ ≺ t
p/q
S−\X ≺ t

p/q
X ≺ t

(p−1)/q
S−\X ≺ t

(p−1)/q
X ≺ . . . ≺ t

1/q
S−\X ≺ t

1/q
X ,

induces a flow over time with time horizon T satisfying γθ(X) for each θ ∈ [0, T).

382 M. Schlöter

Proof. For the simplification of notation we only consider integral time horizons
in our proof. Let f be the flow over time induced by the static lex-max flow x.
By Lemma 3, (1) and (2) we obtain for our flow over time f ,

−netf (X, θ)

(1),(2)=
θ∑

i=1

(maxNT (s∗, {t1∗, . . . , t
i−1
∗ , tiX}) − maxNT (s∗, {t1∗, . . . , t

i−1
∗ }))

Lem. 3= γθ(X) for all θ ∈ {0, 1, . . . , T}.

By definition of f and (1) it also holds that |f |θ = oθ({s}) for all θ ∈
{0, 1, . . . , T}. The function θ �→ oθ({s}) is piecewise linear [29,40] and since
all transit times are integral, breakpoints of this function only occur at integral
points in time. However, by the construction of f from x (see [25]) the func-
tion θ �→ |f |θ is also a piecewise linear function with breakpoints only occurring
at integral points in time. Thus, we have |f |θ = oθ({s}) for all θ ≤ T and
hence by our arguing above the flow over time f satisfies γθ(X) for each integral
θ ∈ {1, 2, . . . , T}. By the first statement of Lemma 3, γθ(X) is satisfied by f for
all θ ∈ [0, T). ��
We can now prove Lemma 2.

Proof of Lemma 2. Let ≺ be given by t1 ≺ t2 ≺ . . . ≺ tk for S− = {t1, t2, . . . , tk}.
Lemma 4 implies that a static lex-max flow in N T with respect to a total order
≺′ given by s∗ ≺′ t

p/q
1 ≺′ . . . ≺′ t

p/q
k ≺′ t

(p−1)/q
1 ≺′ . . . ≺′ t

(p−1)/q
k ≺′ . . . ≺′

t
1/q
1 ≺′ . . . ≺′ t

1/q
k induces a flow over time f with the required properties. ��

References

1. Baumann, N., Skutella, M.: Earliest arrival flows with multiple sources. Math.
Oper. Res. 34, 499–512 (2009). https://doi.org/10.1287/moor.1090.0382

2. Burkard, R.E., Dlaska, K., Klinz, B.: The quickest flow problem. Zeitschrift für
Oper. Res. 37(1), 31–58 (1993). https://doi.org/10.1007/BF01415527

3. Chalmet, L.G., Francis, R.L., Saunders, P.B.: Network models for building evacu-
ation. Fire Technol. 18(1), 90–113 (1982). https://doi.org/10.1007/BF02993491

4. Cunningham, W.H.: Testing membership in matroid polyhedra. J. Comb. Theory
Ser. B 36(2), 161–188 (1984). https://doi.org/10.1016/0095-8956/(84)90023-6

5. Cunningham, W.H.: On submodular function minimization. Combinatorica 5(3),
185–192 (1985). https://doi.org/10.1007/BF02579361

6. Disser, Y., Skutella, M.: The simplex algorithm is NP-mighty. In: Indyk, P. (ed.)
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 858–872. Society for Industrial and Applied Mathematics SIAM
(2015). https://doi.org/10.1137/1.9781611973730.59

7. Dressler, D., et al.: On the use of network flow techniques for assigning evacuees
to exits. Procedia Eng. 3, 205–215 (2010). https://doi.org/10.1016/j.proeng.2010.
07.019

https://doi.org/10.1287/moor.1090.0382
https://doi.org/10.1007/BF01415527
https://doi.org/10.1007/BF02993491
https://doi.org/10.1016/0095-8956/(84)90023-6
https://doi.org/10.1007/BF02579361
https://doi.org/10.1137/1.9781611973730.59
https://doi.org/10.1016/j.proeng.2010.07.019
https://doi.org/10.1016/j.proeng.2010.07.019

Earliest Arrival Transshipments in Networks with Multiple Sinks 383

8. Edmonds, J.: Submodular functions, matroids and certain polyhedra. In: Proceed-
ings of the Calgary International Conference on Combinatorial Structures and
Their Applications, pp. 69–87 (1970)

9. Fleischer, L.: Faster algorithms for the quickest transshipment problem. SIAM J.
Optim. 12(1), 18–35 (2001). https://doi.org/10.1137/S1052623497327295

10. Fleischer, L., Iwata, S.: Improved algorithms for submodular function minimization
and submodular flow. In: Proceedings of the Thirty-Second Annual ACM Sympo-
sium on Theory of Computing, pp. 107–116. Association for Computing Machinery
ACM (2000). http://doi.acm.org/10.1145/335305.335318

11. Fleischer, L., Skutella, M.: Quickest flows over time. SIAM J. Comput. 36(6),
1600–1630 (2007). https://doi.org/10.1137/S0097539703427215

12. Fleischer, L., Tardos, É.: Efficient continuous-time dynamic network flow algo-
rithms. Oper. Res. Lett. 23(3–5), 71–80 (1998). https://doi.org/10.1016/S0167-
6377(98)00037-6

13. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows.
Oper. Res. 6(3), 419–433 (1958). https://doi.org/10.1287/opre.6.3.419

14. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Prince-
ton (1962). https://press.princeton.edu/titles/9233.html

15. Gale, D.: Transient flows in networks. Mich. Math. J. 6(1), 59–63 (1959). https://
doi.org/10.1307/mmj/1028998140

16. Groß, M., Kappmeier, J.-P.W., Schmidt, D.R., Schmidt, M.: Approximating ear-
liest arrival flows in arbitrary networks. In: Epstein, L., Ferragina, P. (eds.) ESA
2012. LNCS, vol. 7501, pp. 551–562. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33090-2 48

17. Hajek, B., Ogier, R.G.: Optimal dynamic routing in communication networks with
continuous traffic. Networks 14(3), 457–487 (1984). https://doi.org/10.1002/net.
3230140308

18. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: efficient algo-
rithms and complexity. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woegin-
ger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 397–409. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-45061-0 33

19. Hamacher, H.W., Tjandra, S.A.: Mathematical modelling of evacuation problems:
a state of the art. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evac-
uation Dynamics, pp. 227–266. Springer, Heidelberg (2002)

20. Hoppe, B., Tardos, É.: The quickest transshipment problem. Math. Oper. Res.
25(1), 36–62 (2000). https://doi.org/10.1287/moor.25.1.36.15211

21. Iwata, S.: A faster scaling algorithm for minimizing submodular functions. In:
Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 1–8. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-47867-1 1

22. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions. J. ACM (JACM) 48(4), 761–777
(2001). http://doi.acm.org/10.1145/502090.502096

23. Kamiyama, N., Katoh, N., Takizawa, A.: An efficient algorithm for evacuation
problems in dynamic network flows with uniform arc capacity. In: Cheng, S.-W.,
Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 231–242. Springer, Heidelberg
(2006). https://doi.org/10.1007/11775096 22

24. Kamiyama, N., Katoh, N., Takizawa, A.: An efficient algorithm for the evacuation
problem in a certain class of networks with uniform path-lengths. Discrete Appl.
Math. 157, 3665–3677 (2009). https://doi.org/10.1016/j.dam.2009.04.007

25. Kappmeier, J.W.: Generalizations of flows over time with applications in evacua-
tions optimization. Ph.D. thesis, TU Berlin (2014)

https://doi.org/10.1137/S1052623497327295
http://doi.acm.org/10.1145/335305.335318
https://doi.org/10.1137/S0097539703427215
https://doi.org/10.1016/S0167-6377(98)00037-6
https://doi.org/10.1016/S0167-6377(98)00037-6
https://doi.org/10.1287/opre.6.3.419
https://press.princeton.edu/titles/9233.html
https://doi.org/10.1307/mmj/1028998140
https://doi.org/10.1307/mmj/1028998140
https://doi.org/10.1007/978-3-642-33090-2_48
https://doi.org/10.1007/978-3-642-33090-2_48
https://doi.org/10.1002/net.3230140308
https://doi.org/10.1002/net.3230140308
https://doi.org/10.1007/3-540-45061-0_33
https://doi.org/10.1287/moor.25.1.36.15211
https://doi.org/10.1007/3-540-47867-1_1
http://doi.acm.org/10.1145/502090.502096
https://doi.org/10.1007/11775096_22
https://doi.org/10.1016/j.dam.2009.04.007

384 M. Schlöter

26. Klinz, B.: Cited as personal comunication (1994) in [20]
27. Lee, Y.T., Sidford, A., Wong, S.C.W.: A faster cutting plane method and its impli-

cations for combinatorial and convex optimization. In: 56th Annual Symposium on
Foundations of Computer Science. pp. 1049–1065. IEEE (2015). https://doi.org/
10.1109/focs.2015.68

28. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An O(n log2 n) algorithm for a sink
location problem in dynamic tree networks. Discrete Appl. Math. 154, 2387–2401
(2006). http://www.sciencedirect.com/science/article/pii/S0166218X06001880

29. Minieka, E.: Maximal, lexicographic, and dynamic network flows. Oper. Res. 21(2),
517–527 (1973). https://doi.org/10.1287/opre.21.2.517

30. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function
minimization. Math. Program. 118(2), 237–251 (2009). https://doi.org/10.1007/
s10107-007-0189-2

31. Philpott, A.: Continuous-time flows in networks. Math. Oper. Res. 15(4), 640–661
(1990). https://doi.org/10.1287/moor.15.4.640

32. Richardson, D., Tardos, É.: Cited as personal comunication (2002) in [11]
33. Ruzika, S., Sperber, H., Steiner, M.: Earliest arrival flows on series-parallel graphs.

Networks 57(2), 169–173 (2011). https://doi.org/10.1002/net.20398
34. Schlöter, M., Skutella, M.: Fast and memory-efficient algorithms for evacuation

problems. In: Klein, P.N. (ed.) Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2017, pp. 821–840. Society
for Industrial and Applied Mathematics SIAM (2017). https://doi.org/10.1137/
1.9781611974782.52

35. Schmidt, M., Skutella, M.: Earliest arrival flows in networks with multiple sinks.
Discrete Appl. Math. 164, 320–327 (2014). https://doi.org/10.1016/j.dam.2011.
09.023

36. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. J. Comb. Theory Ser. B 80(2), 346–355 (2000). https://
doi.org/10.1006/jctb.2000.1989

37. Shapley, L.S.: Cores of convex games. Int. J. Game Theory 1(1), 11–26 (1971).
https://doi.org/10.1007/BF01753431

38. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász,
L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1 21

39. Tjandra, S.A.: Dynamic network optimization with application to the evacua-
tion problem. Ph.D. thesis, TU Kaiserslautern (2003). https://kluedo.ub.uni-kl.
de/frontdoor/index/index/year/2003/docId/1407

40. Wilkinson, W.L.: An algorithm for universal maximal dynamic flows in a network.
Oper. Res. 19(7), 1602–1612 (1971). https://doi.org/10.1287/opre.19.7.1602

https://doi.org/10.1109/focs.2015.68
https://doi.org/10.1109/focs.2015.68
http://www.sciencedirect.com/science/article/pii/S0166218X06001880
https://doi.org/10.1287/opre.21.2.517
https://doi.org/10.1007/s10107-007-0189-2
https://doi.org/10.1007/s10107-007-0189-2
https://doi.org/10.1287/moor.15.4.640
https://doi.org/10.1002/net.20398
https://doi.org/10.1137/1.9781611974782.52
https://doi.org/10.1137/1.9781611974782.52
https://doi.org/10.1016/j.dam.2011.09.023
https://doi.org/10.1016/j.dam.2011.09.023
https://doi.org/10.1006/jctb.2000.1989
https://doi.org/10.1006/jctb.2000.1989
https://doi.org/10.1007/BF01753431
https://doi.org/10.1007/978-3-540-76796-1_21
https://kluedo.ub.uni-kl.de/frontdoor/index/index/year/2003/docId/1407
https://kluedo.ub.uni-kl.de/frontdoor/index/index/year/2003/docId/1407
https://doi.org/10.1287/opre.19.7.1602

Intersection Cuts for Factorable MINLP

Felipe Serrano(B)

Optimization Department, Zuse Institute Berlin,
Takustr. 7, 14195 Berlin, Germany

serrano@zib.de

Abstract. Given a factorable function f , we propose a procedure that
constructs a concave underestimator of f that is tight at a given point.
These underestimators can be used to generate intersection cuts. A pecu-
liarity of these underestimators is that they do not rely on a bounded
domain. We propose a strengthening procedure for the intersection cuts
that exploits the bounds of the domain. Finally, we propose an exten-
sion of monoidal strengthening to take advantage of the integrality of
the non-basic variables.

Keywords: Mixed-integer nonlinear programming · Intersection cuts ·
Monoidal strengthening

1 Introduction

In this work we propose a procedure for generating intersection cuts for mixed
integer nonlinear programs (MINLP). We consider MINLP of the following form

max cTx

s.t. gj(x) ≤ 0, j ∈ J

Ax = b

xi ∈ Z, i ∈ I

x ≥ 0,

(1)

where J = {1, . . . , l} denotes the indices of the nonlinear constraints, gj : Rn → R

are assumed to be continuous and factorable (see Definition 1), A ∈ R
m×n,

c ∈ R
n, b ∈ R

m, and I ⊆ {1, . . . , n} are the indices of the integer variables.
We denote the set of feasible solutions by S and a generic relaxation of S by
R, that is, S ⊆ R. When R is a translated simplicial cone and C contains its

This work has been supported by the Research Campus MODAL Mathematical Opti-
mization and Data Analysis Laboratories funded by the Federal Ministry of Education
and Research (BMBF Grant 05M14ZAM). The author thank the Schloss Dagstuhl –
Leibniz Center for Informatics for hosting the Seminar 18081 “Designing and Imple-
menting Algorithms for Mixed-Integer Nonlinear Optimization” for providing the envi-
ronment to develop the ideas in this paper.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 385–398, 2019.
https://doi.org/10.1007/978-3-030-17953-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_29&domain=pdf
http://orcid.org/0000-0002-7892-3951
https://doi.org/10.1007/978-3-030-17953-3_29

386 F. Serrano

apex and no point of S in its interior, valid inequalities for conv(R\C) are called
intersection cuts [3]. See the excellent survey [18] for recent developments and
details on intersection cuts for mixed integer linear programs (MILP).

Many applications can be modeled as MINLP [13]. The current state of the
art for solving MINLP to global optimality is via linear programming (LP), con-
vex nonlinear programming and (MILP) relaxations of S, together with spatial
branch and bound [10,27,28,30,39,42]. Roughly speaking, the LP-based spatial
branch and bound algorithm works as follows. The initial polyhedral relaxation
is solved and yields x̄. If the solution x̄ is feasible for (1), we obtain an optimal
solution. If not, we try to separate the solution from the feasible region. This is
usually done by considering each violated constraint separately. Let g(x) ≤ 0 be
a violated constraint of (1). If g(x̄) > 0 and g is convex, then g(x̄)+vT(x−x̄) ≤ 0,
where v ∈ ∂g(x̄) and ∂g(x̄) is the subdifferential of g at x̄, is a valid cut. If gj is
non-convex, then a convex underestimator gvex, that is, a convex function such
that gvex(x) ≤ g(x) over the feasible region, is constructed and if gvex(x̄) > 0
the previous cut is constructed for gvex. If the point cannot be separated, then
we branch, that is, we select a variable xk in a violated constraint and split the
problem into two problems, one with xk ≤ x̄k and the other one with xk ≥ x̄k.

Applying the previous procedure to the MILP case, that is (1) with J = ∅,
reveals a problem with this approach. In this case, the polyhedral relaxation is
just the linear programming (LP) relaxation. Assuming that x̄ is not feasible for
the MILP, then there is an i ∈ I such that xi /∈ Z. Let us treat the constraint
xi ∈ Z as a nonlinear non-convex constraint represented by some function as
g(xi) ≤ 0. Then, g(x̄i) > 0. However, a convex underestimator ḡ of g must
satisfy that gvex(z) ≤ 0 for every z ∈ R, since gvex(z) ≤ g(z) ≤ 0 for every z ∈ Z

and gvex(z) is convex. Since separation is not possible, we need to branch.
However, for the current state-of-the-art algorithms for MILP, cutting planes

are a fundamental component [1]. A classical technique for building cutting
planes in MILP is based on exploiting information from the simplex tableau [18].
When solving the LP relaxation, we obtain xB = x̄B +RxN , where B and N are
the indices of the basic and non-basic variables, respectively. Since x̄ is infea-
sible for the MILP, there must be some k ∈ B ∩ I such that x̄k /∈ Z. Now,
even though x̄ cannot be separated from the violated constraint xk ∈ Z, the
equivalent constraint, x̄k +

∑
j∈N rkjxj ∈ Z can be used to separate x̄.

In the MINLP case, this framework generates equivalent non-linear con-
straints with some appealing properties. The change of variables xk = x̄k +∑

j∈N rkjxj for the basic variables present in a violated nonlinear constraint
g(x) ≤ 0, produces the non-linear constraint h(xN) ≤ 0 for which h(0) > 0 and
xN ≥ 0. Assuming that the convex envelope of h exists in xN ≥ 0, then we
can always construct a valid inequality. Indeed, by [38, Corollary 3], the convex
envelope of h is tight at 0. Since an ε-subgradient1 always exists for any ε > 0
and x ∈ dom h [14], an h(0)

2 -subgradient, for instance, at 0 will separate it.

1 An ε-subgradient of a convex function f at y ∈ dom f is v such that f(x) ≥ f(y) −
ε + vT(x − y) for all x ∈ dom f .

Intersection Cuts for Factorable MINLP 387

Even when there is no convex underestimator for h, a valid cutting plane
does exist. Continuity of h implies that X = {xN ≥ 0 : h(xN) ≤ 0} is closed
and [17, Lemma 2.1] ensures that 0 /∈ convX, thus, a valid inequality exists.
We introduce a technique to construct such a valid inequality. The idea is to
build a concave underestimator of h, have, such that have(0) = h(0) > 0. Then,
C = {xN : have(xN) ≥ 0} is an S-free set, that is, a convex set that does not
contain any feasible point in its interior, and as such can be used to build an
intersection cut (IC) [3,24,41].

First Contribution. In Sect. 3, we present a procedure to build concave underes-
timators for factorable functions that are tight at a given point. The procedure
is similar to McCormick’s method for constructing convex underestimators, and
generalizes Proposition 3.2 and improves Proposition 3.3 of [26]. These underes-
timators can be used to build intersection cuts. We note that IC from a concave
underestimator can generate cuts that cannot be generated by using the convex
envelope. This should not be surprising, given that intersection cuts work at the
feasible region level, while convex underestimators depend on the graph of the
function. A simple example is {x ∈ [0, 2] : −x2 +1 ≤ 0}. When separating 0, the
intersection cut gives x ≥ 1, while the convex envelope over [0, 2] yields x ≥ 1/2.

There are many differences between concave underestimators and convex
ones. Maybe the most interesting one is that concave underestimators do not
need bounded domains to exist. As an extreme example, −x2 is a concave under-
estimator of itself, but a convex underestimator only exists if the domain of x
is bounded. Even though this might be regarded as an advantage, it is also a
problem. If concave underestimators are independent of the domain, then we
cannot improve them when the domain shrinks.

Second Contribution. In Sect. 4, we propose a strengthening procedure that uses
the bounds of the variables to enlarge the S-free set. Our procedure improves
on the one used by Tuy [41].

Other techniques for strengthening IC have been proposed, such as, exploiting
the integrality of the non-basic variables [6,19,20], improving the relaxation
R [7,32,33] and computing the convex hull of R\C [8,17,23,36,37].

Third Contribution. By interpreting IC as disjunctive cuts [4], we extend
monoidal strengthening to our setting [6] in Sect. 5. Although its applicability
seems to be limited, we think it is of independent interest, especially for MILP.

2 Related Work

There have been many efforts on generalizing cutting planes from MILP to
MINLP, we refer the reader to [31] and the references therein. In [31], the
authors study how to compute conv(R\C) where R is not polyhedral, but C
is a k-branch split. In practice, such sets C usually come from the integrality
of the variables. Works that build sets C which do not come from integrality

388 F. Serrano

considerations include [9,11,21,22,34,35]. We refer to [12] and the references
therein for more details. We would like to point out that the disjunctions built
in [9,34,35] can be interpreted as piecewise linear concave underestimators. How-
ever, our approach is not suitable for disjunctive cuts built through cut generat-
ing LPs [5], since we generate infinite disjunctions, see Sect. 5, so we rely on the
classical concept of intersection cuts where R is a translated simplicial cone.

Khamisov [26] studies functions f : R
n → R, representable as f(x) =

maxy∈R ϕ(x, y) where ϕ is continuous and concave on x. These functions allow
for a concave underestimator at every point. He shows that this class of functions
is very general, in particular, the class of functions representable as difference of
convex functions is a strict subset of this class. He then proposes a procedure to
build concave underestimators of composition of functions which is a special case
of Theorem 1 below. He also suggests how to build an underestimator for the
product of two functions over a compact domain. We simplify the construction
for the product and no longer need a compact domain.

Although not directly related to this work, other papers that use underesti-
mators other than convex are [15,16,25].

3 Concave Underestimators

In his seminal paper [29], McCormick proposed a method to build convex under-
estimators of factorable functions.

Definition 1. Given a set of univariate functions L, e.g., L = {cos, ·n,
exp, log, ...}, the set of factorable functions F is the smallest set that contains L,
the constant functions, and is closed under addition, product and composition.

As an example, e−(cos(x2)+xy/4)2 is a factorable function for L = {cos, exp}.
Given the inductive definition of factorable functions, to show a property

about them one just needs to show that said property holds for all the functions
in L, constant functions, and that it is preserved by the product, addition and
composition. For instance, McCormick [29] proves, constructively, that every
factorable function admits a convex underestimator and a concave overestimator,
by showing how to construct estimators for the sum, product and composition
of two functions for which estimators are known.

An estimator for the sum of two functions is the sum of the estimators.
For the product, McCormick uses the well-known McCormick inequalities. Less
known is the way McCormick handles the composition f(g(x)). Let fvex be a
convex underestimator of f and zmin = arg min fvex(z). Let gvex be a convex
underestimator of g and gave a concave overestimator. McCormick shows2 that
fvex(mid{gvex(x), gave(x), zmin}) is a convex underestimator of f(g(x)), where
mid{x, y, z} is the median between x, y and z. It is well known that the optimum
of a convex function over a closed interval is given by such a formula, thus

fvex(mid{gvex(x), gave(x), zmin}) = min{fvex(z) : z ∈ [gvex(x), gave(x)]},

see also [40].
2 He actually leaves it as an exercise for the reader.

Intersection Cuts for Factorable MINLP 389

Definition 2. Let X ⊆ R
n be convex, and f : X → R be a function. We say

that fave : X → R is a concave underestimator of f at x̄ ∈ X if fave is concave,
fave(x) ≤ f(x) for every x ∈ X and fave(x̄) = f(x̄). Similarly we define a
convex overestimator of f at x̄ ∈ X .

Remark 1. For simplicity, we will consider only the case where X = R
n. This

restriction leaves out some common functions like log. One possibility to include
these function is to let the range of the function to be R∪{±∞}. Then, log(x) =
−∞ for x ∈ R−. Note that other functions like

√
x can be handled by replacing

them by a concave underestimator defined on all R.

We now show that every factorable function admits a concave underestimator
at a given point. Since the case for the addition is easy, we just need to specify
how to build concave underestimators and convex overestimators for

– the product of two functions for which estimators are known,
– the composition f(g(x)) where estimators of f and g are known and f is

univariate.

Theorem 1. Let f : R → R and g : Rn → R. Let gave, fave be, respectively, a
concave underestimator of g at x̄ and of f at g(x̄). Further, let gvex be a convex
overestimator of g at x̄. Then, h : Rn → R given by

h(x) := min{fave(gave(x)), fave(gvex(x))},

is a concave underestimator of f ◦ g at x̄.

Remark 2. The generalization of Theorem 1 to the case where f is multivariate
in the spirit of [40] is straightforward.

The computation of a concave underestimator and convex overestimator of
the product of two functions reduces to the computation of estimators for the
square of a function through the polarization identity

4f(x)g(x) = (f(x) + g(x))2 − (f(x) − g(x))2.

Let h : R
n → R for which we know estimators hvex ≤ h ≤ have at x̄. From

Theorem 1, a convex overestimator of h2 at x̄ is given by max{hvex
2, have2}. On

the other hand, a concave underestimator of h2 at x̄ can be constructed from
the underestimator h2(x) ≥ h2(x̄) + 2h(x̄)(h(x) − h(x̄)). From here we obtain

{
2h(x̄)hvex(x) − h2(x̄), if h(x̄) ≤ 0
2h(x̄)have(x) − h2(x̄), if h(x̄) > 0.

(2)

Example 1. Let us compute a concave underestimator of f(x) = e−(cos(x2)+x/4)2

at 0. Estimators of x2 are given by 0 ≤ x2 ≤ x2. For cos(x), estimators are
cos(x) − x2/2 ≤ cos(x) ≤ 1. Then, a concave underestimator of cos(x2) is,
according to Theorem 1, min{cos(0)−02/2, cos(x2)−x4/2} = cos(x2)−x4/2. A
convex overestimator is 1. Hence, cos(x2)−x4/2+x/4 ≤ cos(x2)+x/4 ≤ 1+x/4.

390 F. Serrano

Given that −x2 is concave, a concave underestimator of −(cos(x2)+x/4)2 is
min{−(cos(x2)−x4/2+x/4)2,−(1+x/4)2}. To compute a convex overestimator
of −(cos(x2)+x/4)2, we compute a concave underestimator of (cos(x2)+x/4)2.
Since, cos(x2) + x/4 at 0 is 1, (2) yields 2(cos(x2) − x4/2 + x/4) − 1.

Finally, a concave underestimator of ex at x = −1 is just its linearization,
e−1+e−1(x+1) and so e−1+e−1(1+min{−(cos(x2)−x4/2+x/4)2,−(1+x/4)2})
is a concave underestimator of f(x). The intermediate estimators as well as the
final concave underestimator are illustrated in Fig. 1.

Fig. 1. Concave underestimator (orange) and convex overestimator (green) of cos(x2)+
x/4 (left), −(cos(x2) + x/4)2 (middle) and f(x) (right) at x = 0. (Color figure online)

For ease of exposition, in the rest of the paper we assume that the concave
underestimator is differentiable. All results can be extended to the case where
the functions are only sub- or super-differentiable.

4 Enlarging the S-free Sets by Using Bound Information

In Sect. 3, we showed how to build concave underestimators which give us S-
free sets. Note that the construction does not make use of the bounds of the
domain. We can exploit the bounds of the domain by the observation that the
concave underestimator only needs to underestimate within the feasible region.
However, to preserve the convexity of the S-free set, we must ensure that the
underestimator is still concave.

Let h(x) ≤ 0 be a constraint of (1), assume x ∈ [l, u] and let have be a concave
underestimator of h. Throughout this section, S = {x ∈ [l, u] : h(x) ≤ 0}. In
order to construct a concave function ĥ such that {x : ĥ(x) ≥ 0} contains
{x : have(x) ≥ 0}, consider the following function

ĥ(x) = min{have(z) + ∇have(z)T(x − z) : z ∈ [l, u], have(z) ≥ 0}. (3)

A similar function was already considered by Tuy [41]. The only difference is
that Tuy’s strengthening does not use the restriction have(z) ≥ 0, see Fig. 2.

Proposition 1. Let have be a concave underestimator of h at x̄ ∈ [l, u], such
that h(x̄) > 0. Define ĥ as in (3). Then, the set C = {x : ĥ(x) ≥ 0} is a convex
S-free set and C ⊇ {x : have(x) ≥ 0}.

Intersection Cuts for Factorable MINLP 391

In general, evaluating ĥ is a difficult problem and there is no closed form
formula. However, when have is quadratic, the problem in the right hand side of
(3) is convex and a cut could be strengthen in polynomial time.

Fig. 2. Feasible region {x, y ∈ [0, 2] : h(x, y) ≤ 0}, where h = x2−2y2+4xy−3x+2y+1,
in blue together with have(x, y) ≤ 0 at x̄ = (1, 1) (left), Tuy’s strengthening (middle)
and ĥ ≤ 0 (right) in orange. Region shown is [0, 4]2, [0, 2]2 is bounded by black lines.
The difference between the S-free sets can be seen on the top of the picture. (Color
figure online)

5 “Monoidal” Strengthening

We show how to strengthen cuts from reverse convex constraints when exactly
one non-basic variable is integer. Our technique is based on monoidal strength-
ening applied to disjunctive cuts, see Lemma 1 and the discussion following it. If
more than one variable is integer, we can generate one cut per integer variable,
relaxing the integrality of all but one variable at a time. However, under some
conditions (see Remark 6), we can exploit the integrality of several variables
at the same time. Our exposition of the monoidal strengthening technique is
slightly different from [6] and is inspired by [43, Section 4.2.3].

Throughout this section, we assume that we already have a concave under-
estimator, and that we have performed the change of variables described in the
introduction. Therefore, we consider the constraint {x ∈ [0, u] : h(x) ≤ 0} where
h : Rn → R is concave and h(0) > 0. Let Y = {y ∈ [0, u] : h(y) = 0}. The convex
S-free set C = {x ∈ [0, u] : h(x) ≥ 0} can be written as

C =
⋂

y∈Y

{x ∈ [0, u] : ∇h(y)Tx ≥ ∇h(y)Ty}.

The concavity of h implies that h(0) ≤ h(y) − ∇h(y)Ty for all y in the domain
of h. In particular, if y ∈ Y , then ∇h(y)Ty ≤ −h(0) < 0. Since all feasible points
satisfy h(x) ≤ 0, they must satisfy the infinite disjunction

∨

y∈Y

∇h(y)T

∇h(y)Ty
x ≥ 1. (4)

392 F. Serrano

The maximum principle [4] implies that with

αj = max
y∈Y

∂jh(y)
∇h(y)Ty

, (5)

the cut
∑

j αjxj ≥ 1 is valid. We remark that the maximum exists, since the
concavity of h implies that for y ∈ Y , h(ej) ≤ ∂jh(y) − ∇h(y)Ty. This implies,
together with ∇h(y)Ty ≤ −h(0) < 0, that ∂jh(y)

∇h(y)Ty
≤ 1 + h(ej)

∇h(y)Ty
. If h(ej) ≥ 0,

then ∂jh(y)
∇h(y)Ty

≤ 1. Otherwise, ∂jh(y)
∇h(y)Ty

≤ 1 − h(ej)
h(0) .

The application of monoidal strengthening [6, Theorem 3] to a valid disjunc-
tion

∨
i αix ≥ 1 requires the existence of bounds βi such that αix ≥ βi is valid

for every feasible point. Let β(y) be such a bound for (4). An example of β(y) is

β(y) = min
x∈[0,u]

∇h(y)Tx

∇h(y)Ty
.

Remark 3. If β(y) ≥ 1, then ∇h(y)Tx/∇h(y)Ty ≥ 1 is redundant and can be
removed from (4). Therefore, we can assume without loss of generality that
β(y) < 1.

The strengthening derives from the fact that a new disjunction can be
obtained from (4) and, with it, a new disjunctive cut. The disjunction on the fol-
lowing Lemma is trivially satisfied, but provides the basis for building non-trivial
new disjunctions.

Lemma 1. Every x ≥ 0 that satisfies (4), also satisfies

∨

y∈Y

∇h(y)Tx

∇h(y)Ty
+ z(y)(1 − β(y)) ≥ 1, (6)

where z : Y → Z is such that z ≡ 0 or there is a y0 ∈ Y for which z(y0) > 0.

Remark 4. Even if some disjunctive terms have no lower bound, that is, β(y) =
−∞ for y ∈ Y ′ ⊆ Y , Lemma 1 still holds if, additionally, z(y) = 0 for all y ∈ Y ′.
This means that we are not using that disjunction for the strengthening. In
particular, if for some variable xj , αj is defined by some y ∈ Y ′, then this cut
coefficient cannot be improved.

Assume now that xk ∈ Z for every k ∈ K ⊆ {1, . . . , n}. One way of con-
structing a new disjunction is to find a set of functions M such that for any
choice of mk ∈ M and any feasible assignment of xk, z(y) :=

∑
k∈K xkmk(y)

satisfies the conditions of Lemma 1, that is, z is in

Z = {z : Y → Z : z ≡ 0 ∨ ∃y ∈ Y, z(y) > 0}.

Once such a family of functions has been identified, the cut
∑

j γjxj ≥ 1 with
γj = αj if j /∈ K, and

γk = inf
m∈M

max
y∈Y

∂kh(y)
∇h(y)Ty

+ m(y)(1 − β(y)) for k ∈ K, (7)

Intersection Cuts for Factorable MINLP 393

is valid and at least as strong as (5). Any M ⊆ Z such that (M,+) is a monoid,
that is, 0 ∈ M and M is closed under addition can be used in (7).

Remark 5. This is exactly what is happening in [6, Theorem 3]. Indeed, in the
finite case, that is, when Y is finite, Balas and Jeroslow considered M = {m ∈
Z

Y :
∑

y∈Y my ≥ 0}. Clearly, (M,+) is a monoid and M ⊆ Z. Therefore,
Lemma 1 implies that

∨
y∈Y αyx +

∑
k mk

yxk(1 − βy) ≥ 1 is valid for any choice
of mk ∈ M , which in turn implies [6, Theorem 3].
For an application that uses a different monoid see [2].

The question that remains is how to choose M . For example, the monoid
M = {m : Y → Z : m has finite support and

∑
y∈Y m(y) ≥ 0} is an obvious

candidate for M . However, the problem is how to optimize over such an M ,
see (7).

We circumvent this problem by considering only one integer variable at a
time. Fix k ∈ K. In this setting we can use Z as M , which is not a monoid.
Indeed, if z ∈ Z, then xkz ∈ Z for any xk ∈ Z+. The advantage of using Z is
that the solution of (7) is easy to characterize.

With M = Z, the cut coefficients (7) of all variables are the same as (5)
except for xk. The cut coefficient of xk is given by

inf
z∈Z

max
y∈Y

∂kh(y)
∇h(y)Ty

+ z(y)(1 − β(y)).

To compute this coefficient, observe that one would like to have z(y) < 0
for points y such that the objective function of (5) is large. However, z must be
positive for at least one point. Therefore,

min
y∈Y

∂kh(y)
∇h(y)Ty

+ (1 − β(y))

is the best coefficient we can hope for if z �≡ 0. This coefficient can be achieved by

z(y) =

{
1, if y ∈ arg miny∈Y

∂kh(y)
∇h(y)Ty

+ (1 − β(y)),

−L, otherwise
(8)

where L > 0 is sufficiently large.
Summarizing, we can obtain the following cut:

αj =

{
maxy∈Y

∂jh(y)
∇h(y)Ty

if j �= k

min{maxy∈Y
∂jh(y)

∇h(y)Ty
,miny∈Y

∂jh(y)
∇h(y)Ty

+ (1 − β(y))} if j = k
(9)

Remark 6. Let zk ∈ Z be given by (8) for each k ∈ K. Assume there is a subset
K0 ⊆ K and a monoid M ⊆ Z such that zk ∈ M for every k ∈ K0. Then, the
strengthening can be applied to all xk for k ∈ K0.

Alternatively, if there is a constraint enforcing that at most one of the xk

can be non-zero for k ∈ K0, e.g.,
∑

k∈K xk ≤ 1, then the strengthening can be
applied to all xk for k ∈ K0.

394 F. Serrano

In the finite case, our application of monoidal strengthening would be domi-
nated by the original technique of [6] by using an appropriate monoid. However,
in the presence of extra constraint, such as the one described above, our tech-
nique can dominate vanilla monoidal strengthening.

Example 2. Consider the constraint {x ∈ {0, 1, 2} × [0, 5] : h(x) ≤ 0}, where
h(x1, x2) = −10x2

1 − 1/2x2
2 +2x1x2 +4, see Fig. 3. The IC is given by

√
5/2x1 +

1/(2
√

2)x2 ≥ 1. Note that (1/
√

10,
√

10) ∈ Y and yields the term 1/
√

10x2 ≥ 1
in (4). Since x2 ≥ 0, β(1/

√
10,

√
10) = 0. Hence, (9) yields α1 ≤ min{√5/2, 1} =

1 and the strengthened inequality is x1 + 1/(2
√

2)x2 ≥ 1.

Fig. 3. The feasible region {x ∈ {0, 1, 2} × [0, 5] : h(x) ≤ 0} from Example 2 (left), the
IC (middle), and the strengthened cut (right).

6 Conclusions

We have introduced a procedure to generate concave underestimators of fac-
torable functions, which can be used to generate intersection cuts, together with
two strengthening procedures.

It remains to be seen the practical performance of these intersection cuts.
We expect that its generation is cheaper than the generation of disjunctive cuts,
given that there is no need to solve an LP. As for the strengthening procedures,
they might be too expensive to be of practical use. An alternative is to construct a
polyhedral inner approximation of the S-free set and use monoidal strengthening
in the finite setting. However, in this case, the strengthening proposed in Sect. 4
has no effect. Nonetheless, as far as the author knows, this has been the first
application of monoidal strengthening that is able to exploit further problem
structure such as demonstrated in Remark 6 and it might be interesting to
investigate further.

Identification of when the proposed concave underestimators generate maxi-
mal S-free sets is the subject of current investigation.

Acknowledgments. The author would like to thank Stefan Vigerske, Franziska
Schlösser, Sven Wiese, Ambros Gleixner, Dan Steffy and Juan Pablo Vielma for
helpful discussions, and Leon Eifler, Daniel Rehfeldt for comments that improved
the manuscript. He would also like to thank three anonymous reviewers for valuable
comments.

Intersection Cuts for Factorable MINLP 395

A Proofs

A.1 Proof of Theorem 1

Proof. Clearly, h(x̄) = f(g(x̄)).
To establish h(x) ≤ f(g(x)), notice that

h(x) = min{fave(z) : gave(x) ≤ z ≤ gvex(x)}. (10)

Since z = g(x) is a feasible solution and fave is an underestimator of f , we obtain
that h(x) ≤ f(g(x)).

Now, let us prove that h is concave. To this end, we again use the represen-
tation (10). To simplify notation, we write g1, g2 for gave, g

vex, respectively.
We prove concavity by definition, that is,

h(λx1 + (1 − λ)x2) ≥ λh(x1) + (1 − λ)h(x2), for λ ∈ [0, 1].

Let

I = [g1(λx1 + (1 − λ)x2), g2(λx1 + (1 − λ)x2)]
J = [λg1(x1) + (1 − λ)g1(x2), λg2(x1) + (1 − λ)g2(x2)].

By the concavity of g1 and convexity of g2 we have I ⊆ J . Therefore,

h(λx1 + (1 − λ)x2) = min{fave(z) : z ∈ I} ≥ min{fave(z) : z ∈ J}.

Since fave is concave, the minimum is achieved at the boundary,

min{fave(z) : z ∈ J} = min
i∈{1,2}

fave(λgi(x1) + (1 − λ)gi(x2)).

Furthermore, fave(λgi(x1)+ (1−λ)gi(x2)) ≥ λfave(gi(x1))+ (1−λ)fave(gi(x2))
which implies that

h(λx1 + (1 − λ)x2) ≥ min
i∈{1,2}

λfave(gi(x1)) + (1 − λ)fave(gi(x2))

≥ min
i∈{1,2}

λfave(gi(x1)) + min
i∈{1,2}

(1 − λ)fave(gi(x2))

= λh(x1) + (1 − λ)h(x2),

as we wanted to show.

A.2 Proof of Proposition 1

Proof. The function ĥ is concave since it is the minimum of linear functions.
This establishes the convexity of C.

To show that C ⊇ {x : have(x) ≥ 0}, notice that have(x) = minz have(z) +
∇have(z)T(x − z). The inclusion follows from observing that the objective func-
tion in the definition of ĥ(x) is the same as above, but over a smaller domain.

396 F. Serrano

To show that it is S-free, we will show that for every x ∈ [l, u] such that
h(x) ≤ 0, ĥ(x) ≤ 0.

Let x0 ∈ [l, u] such that h(x0) ≤ 0. Since have is a concave underestimator
at x̄, have(x̄) > 0 and have(x0) ≤ 0. If have(x0) = 0, then, by definition, ĥ(x0) ≤
have(x0) = 0 and we are done. We assume, therefore, that have(x0) < 0.

Consider g(λ) = have(x̄+λ(x0−x̄)) and let λ1 ∈ (0, 1) be such that g(λ1) = 0.
The existence of λ1 is justified by the continuity of g, g(0) > 0 and g(1) < 0.
Equivalently, x1 = x̄ + λ1(x0 − x̄) is the intersection point between the segment
joining x0 with x̄ and {x : have(x) = 0}. The linearization of g at λ1 evaluated at
λ = 1 is negative, because g is concave, and equals have(x1) + ∇have(x1)T (x0 −
x1). Finally, given that x1 ∈ [l, u] and have(x1) = 0, x1 is feasible for (3) and we
conclude that ĥ(x0) < 0.

A.3 Proof of Lemma 1

Proof. If z ≡ 0, then (6) reduces to (4).
Otherwise, let y0 ∈ Y such that z(y0) > 0, that is, z(y0) ≥ 1. By Remark 3,

for every y ∈ Y , it holds 1 − β(y) > 0, and so

z(y0)(1 − β(y0)) ≥ 1 − β(y0).

Therefore, β(y0) ≥ 1 − z(y0)(1 − β(y0)). Since every x ≥ 0 satisfying (4)
satisfies ∇h(y0)

Tx
∇h(y0)Ty0

≥ β(y0), we conclude that ∇h(y0)
Tx

∇h(y0)Ty0
+ z(y0)(1 − β(y0)) ≥ 1

holds.

References

1. Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years
of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimiza-
tion, pp. 449–481. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38189-8 18

2. Balas, E., Qualizza, A.: Monoidal cut strengthening revisited. Discrete Optim.
9(1), 40–49 (2012). https://doi.org/10.1016/j.disopt.2011.11.002

3. Balas, E.: Intersection cuts–a new type of cutting planes for integer programming.
Oper. Res. 19(1), 19–39 (1971). https://doi.org/10.1287/opre.19.1.19

4. Balas, E.: Disjunctive programming. In: Discrete Optimization II, Proceedings of
the Advanced Research Institute on Discrete Optimization and Systems Applica-
tions of the Systems Science Panel of NATO and of the Discrete Optimization
Symposium co-sponsored by IBM Canada and SIAM Banff, Aha. and Vancouver,
pp. 3–51. Elsevier BV (1979). https://doi.org/10.1016/s0167-5060(08)70342-x

5. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for
mixed 0–1 programs. Math. Program. 58(1–3), 295–324 (1993). https://doi.org/
10.1007/bf01581273

6. Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. Eur. J.
Oper. Res. 4(4), 224–234 (1980). https://doi.org/10.1016/0377-2217(80)90106-x

https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1016/j.disopt.2011.11.002
https://doi.org/10.1287/opre.19.1.19
https://doi.org/10.1016/s0167-5060(08)70342-x
https://doi.org/10.1007/bf01581273
https://doi.org/10.1007/bf01581273
https://doi.org/10.1016/0377-2217(80)90106-x

Intersection Cuts for Factorable MINLP 397

7. Balas, E., Margot, F.: Generalized intersection cuts and a new cut generat-
ing paradigm. Math. Program. 137(1–2), 19–35 (2011). https://doi.org/10.1007/
s10107-011-0483-x

8. Basu, A., Cornuéjols, G., Zambelli, G.: Convex sets and minimal sublinear func-
tions. J. Convex Anal. 18(2), 427–432 (2011)

9. Belotti, P.: Disjunctive cuts for nonconvex MINLP. In: Lee, J., Leyffer, S. (eds.)
Mixed Integer Nonlinear Programming, vol. 154, pp. 117–144. Springer, New York
(2011). https://doi.org/10.1007/978-1-4614-1927-3 5

10. Belotti, P., Lee, J., Liberti, L., Margot, F., Wchter, A.: Branching and bounds
tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5),
597–634 (2009). https://doi.org/10.1080/10556780903087124

11. Bienstock, D., Chen, C., Muñoz, G.: Outer-product-free sets for polynomial opti-
mization and oracle-based cuts. http://arxiv.org/abs/1610.04604

12. Bonami, P., Linderoth, J., Lodi, A.: Disjunctive cuts for mixed integer nonlinear
programming problems. Prog. Comb. Optim. 18, 521–541 (2011)

13. Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in
mixed-integer nonlinear programming, MINLP, and constrained derivative-free
optimization, CDFO. Eur. J. Oper. Res. 252(3), 701–727 (2016). https://doi.org/
10.1016/j.ejor.2015.12.018

14. Brondsted, A., Rockafellar, R.T.: On the subdifferentiability of convex functions.
Proc. Am. Math. Soc. 16(4), 605 (1965). https://doi.org/10.2307/2033889

15. Buchheim, C., D’Ambrosio, C.: Monomial-wise optimal separable underestimators
for mixed-integer polynomial optimization. J. Glob. Optim. 67(4), 759–786 (2016).
https://doi.org/10.1007/s10898-016-0443-3

16. Buchheim, C., Traversi, E.: Separable non-convex underestimators for binary
quadratic programming. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela,
A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 236–247. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38527-8 22

17. Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.: Cut-
generating functions and S-free sets. Math. Oper. Res. 40(2), 276–391 (2015).
https://doi.org/10.1287/moor.2014.0670

18. Conforti, M., Cornuéjols, G., Zambelli, G.: Corner polyhedron and intersection
cuts. Surv. Oper. Res. Manag. Sci. 16(2), 105–120 (2011). https://doi.org/10.1016/
j.sorms.2011.03.001

19. Conforti, M., Cornuéjols, G., Zambelli, G.: A geometric perspective on lifting.
Oper. Res. 59(3), 569–577 (2011). https://doi.org/10.1287/opre.1110.0916

20. Dey, S.S., Wolsey, L.A.: Two row mixed-integer cuts via lifting. Math. Program.
124(1–2), 143–174 (2010). https://doi.org/10.1007/s10107-010-0362-x

21. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: Intersection cuts for bilevel opti-
mization. In: Louveaux, Q., Skutella, M. (eds.) IPCO 2016. LNCS, vol. 9682, pp.
77–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33461-5 7

22. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: A new general-purpose algorithm
for mixed-integer bilevel linear programs. Oper. Res. 65(6), 1615–1637 (2017).
https://doi.org/10.1287/opre.2017.1650

23. Glover, F.: Polyhedral convexity cuts and negative edge extensions. Zeitschrift fr
Oper. Res. 18(5), 181–186 (1974). https://doi.org/10.1007/bf02026599

24. Glover, F.: Convexity cuts and cut search. Oper. Res. 21(1), 123–134 (1973).
https://doi.org/10.1287/opre.21.1.123

25. Hasan, M.M.F.: An edge-concave underestimator for the global optimization
oftwice-differentiable nonconvex problems. J. Glob. Optim. 71(4), 735–752 (2018).
https://doi.org/10.1007/s10898-018-0646-x

https://doi.org/10.1007/s10107-011-0483-x
https://doi.org/10.1007/s10107-011-0483-x
https://doi.org/10.1007/978-1-4614-1927-3_5
https://doi.org/10.1080/10556780903087124
http://arxiv.org/abs/1610.04604
https://doi.org/10.1016/j.ejor.2015.12.018
https://doi.org/10.1016/j.ejor.2015.12.018
https://doi.org/10.2307/2033889
https://doi.org/10.1007/s10898-016-0443-3
https://doi.org/10.1007/978-3-642-38527-8_22
https://doi.org/10.1287/moor.2014.0670
https://doi.org/10.1016/j.sorms.2011.03.001
https://doi.org/10.1016/j.sorms.2011.03.001
https://doi.org/10.1287/opre.1110.0916
https://doi.org/10.1007/s10107-010-0362-x
https://doi.org/10.1007/978-3-319-33461-5_7
https://doi.org/10.1287/opre.2017.1650
https://doi.org/10.1007/bf02026599
https://doi.org/10.1287/opre.21.1.123
https://doi.org/10.1007/s10898-018-0646-x

398 F. Serrano

26. Khamisov, O.: On optimization properties of functions, with a concave minorant.
J. Glob. Optim. 14(1), 79–101 (1999). https://doi.org/10.1023/a:1008321729949

27. Kılınç, M.R., Sahinidis, N.V.: Exploiting integrality in the global optimization of
mixed-integer nonlinear programming problems with BARON. Optim. Methods
Softw. 33(3), 540–562 (2017). https://doi.org/10.1080/10556788.2017.1350178

28. Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw.
24(4–5), 657–668 (2009). https://doi.org/10.1080/10556780902753221

29. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: part i – convex underestimating problems. Math. Program. 10(1), 147–175
(1976). https://doi.org/10.1007/bf01580665

30. Misener, R., Floudas, C.A.: ANTIGONE: algorithms for coNTinuous/integerglobal
optimization of nonlinear equations. J. Glob. Optim. 59(2–3), 503–526 (2014).
https://doi.org/10.1007/s10898-014-0166-2

31. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts fornonlinear integer pro-
gramming: convexification techniques for structured sets. Math. Program. 155(1–
2), 575–611 (2015). https://doi.org/10.1007/s10107-015-0866-5

32. Porembski, M.: How to extend the concept of convexity cuts to derive deeper
cutting planes. J. Glob. Optim. 15(4), 371–404 (1999). https://doi.org/10.1023/a:
1008315229750

33. Porembski, M.: Finitely convergent cutting planes for concave minimization. J.
Glob. Optim. 20(2), 109–132 (2001). https://doi.org/10.1023/a:1011240309783

34. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed inte-
ger quadratically constrained programs: extended formulations. Math. Program.
124(1–2), 383–411 (2010). https://doi.org/10.1007/s10107-010-0371-9

35. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed inte-
ger quadratically constrained programs: projected formulations. Math. Program.
130(2), 359–413 (2010). https://doi.org/10.1007/s10107-010-0340-3

36. Sen, S., Sherali, H.D.: Facet inequalities from simple disjunctions in cutting plane
theory. Math. Program. 34(1), 72–83 (1986). https://doi.org/10.1007/bf01582164

37. Sen, S., Sherali, H.D.: Nondifferentiable reverse convex programs and facetial con-
vexity cuts via a disjunctive characterization. Math. Program. 37(2), 169–183
(1987). https://doi.org/10.1007/bf02591693

38. Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of lower semi-
continuous functions. Math. Program. 93(2), 247–263 (2002). https://doi.org/10.
1007/s10107-002-0308-z

39. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global
optimization. Math. Program. 103(2), 225–249 (2005). https://doi.org/10.1007/
s10107-005-0581-8

40. Tsoukalas, A., Mitsos, A.: Multivariate McCormick relaxations. J. Glob. Optim.
59(2–3), 633–662 (2014). https://doi.org/10.1007/s10898-014-0176-0

41. Tuy, H.: Concave programming with linear constraints. In: Doklady Akademii
Nauk, vol. 159, pp. 32–35. Russian Academy of Sciences (1964)

42. Vigerske, S., Gleixner, A.: SCIP: global optimization of mixed-integer nonlinear
programs in a branch-and-cut framework. Optim. Methods Softw. 33(3), 563–593
(2017). https://doi.org/10.1080/10556788.2017.1335312

43. Wiese, S.: On the interplay of mixed integer linear, mixed integer nonlinear and
constraint programming (2016). https://doi.org/10.6092/unibo/amsdottorato/
7612

https://doi.org/10.1023/a:1008321729949
https://doi.org/10.1080/10556788.2017.1350178
https://doi.org/10.1080/10556780902753221
https://doi.org/10.1007/bf01580665
https://doi.org/10.1007/s10898-014-0166-2
https://doi.org/10.1007/s10107-015-0866-5
https://doi.org/10.1023/a:1008315229750
https://doi.org/10.1023/a:1008315229750
https://doi.org/10.1023/a:1011240309783
https://doi.org/10.1007/s10107-010-0371-9
https://doi.org/10.1007/s10107-010-0340-3
https://doi.org/10.1007/bf01582164
https://doi.org/10.1007/bf02591693
https://doi.org/10.1007/s10107-002-0308-z
https://doi.org/10.1007/s10107-002-0308-z
https://doi.org/10.1007/s10107-005-0581-8
https://doi.org/10.1007/s10107-005-0581-8
https://doi.org/10.1007/s10898-014-0176-0
https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.6092/unibo/amsdottorato/7612
https://doi.org/10.6092/unibo/amsdottorato/7612

Linear Programming Using
Limited-Precision Oracles

Ambros Gleixner1 and Daniel E. Steffy2(B)

1 Konrad-Zuse-Zentrum für Informationstechnik Berlin,
Takustr. 7, 14195 Berlin, Germany

gleixner@zib.de
2 Mathematics and Statistics, Oakland University, Rochester, MI, USA

steffy@oakland.edu

Abstract. Linear programming is a foundational tool for many aspects
of integer and combinatorial optimization. This work studies the com-
plexity of solving linear programs exactly over the rational numbers
through use of an oracle capable of returning limited-precision LP solu-
tions. Under mild assumptions, it is shown that a polynomial number
of calls to such an oracle and a polynomial number of bit operations,
is sufficient to compute an exact solution to an LP. Previous work has
often considered oracles that provide solutions of an arbitrary specified
precision. While this leads to polynomial-time algorithms, the level of
precision required is often unrealistic for practical computation. In con-
trast, our work provides a foundation for understanding and analyzing
the behavior of the methods that are currently most effective in practice
for solving LPs exactly.

Keywords: Linear programming · Oracle complexity ·
Diophantine approximation · Exact solutions · Symbolic computation ·
Rational arithmetic · Extended-precision arithmetic ·
Iterative refinement

1 Introduction

This paper studies algorithms for solving linear programs (LPs) exactly over the
rational numbers. The focus lies on methods that employ a limited-precision LP
oracle—an oracle that is capable of providing approximate primal-dual solutions.
We assume that the reader is familiar with fundamental results and notation
related to linear optimization, such as those presented in [15,22]. We define
the encoding length or size of an integer n ∈ Z as 〈n〉 := 1 + �log(|n| + 1)�,
using base-two logarithms throughout the paper. For a rational number p/q ,
〈p/q〉 := 〈p〉 + 〈q〉. Encoding lengths of vectors and matrices are defined as the
sums of the encoding lengths of their entries. To clearly distinguish between the

The first author was supported by the Research Campus MODAL funded by the Ger-
man Ministry of Education and Research under grant number 05M14ZAM.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 399–412, 2019.
https://doi.org/10.1007/978-3-030-17953-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_30&domain=pdf
http://orcid.org/0000-0003-0391-5903
http://orcid.org/0000-0002-0370-9555
https://doi.org/10.1007/978-3-030-17953-3_30

400 A. Gleixner and D. E. Steffy

size and the value of numbers, we will often explicitly use the term value when
referring to the numeric value taken by numbers.

In order to compute exact rational solutions to linear programs, many algo-
rithms first compute sufficiently accurate approximate solutions and then exploit
techniques to convert these solutions to exact rational solutions such as the fol-
lowing, related to the Diophantine approximation problem.

Theorem 1 ([22], Cor. 6.3b). For α ∈ Q, M > 0 there exists at most one
rational number p/q such that |p/q − α| < 1/(2Mq) and 1 � q � M . There
exists a polynomial-time algorithm to test whether this number exists and, if so,
to compute this number.

The underlying algorithm is essentially the extended Euclidean algorithm. Its
running time is polynomial in the size of α and M , and is very fast in practice.
Hence, if an approximation α of an unknown rational number p/q can be com-
puted with error at most 1/(2M2), where M bounds the unknown denominator
q, then the exact value of p/q can be recovered efficiently; we refer to this process
as rational reconstruction. For LPs it is well known that a priori bounds on the
denominators of the entries of any basic primal-dual solution can be computed
from Cramer’s rule and Hadamard’s inequality [22]. Therefore, upon computing
a sufficiently accurate approximation of an optimal basic solution, Theorem1
can be applied componentwise to recover the exact solution.

An alternative, computationally more expensive technique for reconstructing
rational vectors that works under milder assumptions, is based on polynomial-
time lattice reduction algorithms as pioneered by [20]. It is often referred to
as simultaneous Diophantine approximation and has notably been used by [15]
to develop polynomial-time algorithms to solve LPs exactly over the rational
numbers. Their algorithm relies on the ellipsoid method [17] to compute highly
accurate approximate solutions which are used to reconstruct exact rational
solutions. Unfortunately, the levels of precision prescribed when computing the
approximate solution would be prohibitively expensive to use in practice.

Example 1. Consider the following small and unremarkable LP.

max 2x1 + 3x2 + 2x3 + x4 + 2x5 − x6

s.t. x1 + x2 + 2x3 + 3x4 + x5 � 3
x1 − x2 + x4 + 3x5 − 2x6 � 2
x1 + 2x2 + x3 + 3x4 + x6 � 4
x1, x2, x3, x4, x5, x6 � 0

According to [15, Theorem 6.3.2], an exact rational solution to an LP can be
found by first calling a weak optimization oracle to find an approximate solution
followed by simultaneous Diophantine approximation. The tolerance stated for
this purpose is ε = 2−18n〈c〉−24n4ϕ

‖c‖∞
, where c is the objective vector and ϕ is the

facet complexity (an upper bound on the encoding length of inequalities sufficient
to describe the polyhedron, see [15]). For the above problem, ε ≈ 10−169,059.

Linear Programming Using Limited-Precision Oracles 401

For problems of practical interest, ε will be even smaller. While ε is suitable for
establishing polynomial-time algorithms, it may be far beyond what is feasible
for real computations in practice. Other theoretically motivated methods based
on interior point methods [6,16,21] suffer from similar limitations.

By contrast, the largest encoding length of any vertex of the above example
is merely 27 and the largest denominator across all vertices is 8. Thus, a solution
with componentwise difference from a vertex under 1/128 would be sufficient to
apply Theorem 1 to recover the vertex. Also in general, most LPs of practical
interest are highly sparse and may have other special characteristics that result
in their solutions having encoding length dramatically smaller than the value of
derivable worst-case bounds on these values. In this light, one main contribution
of this paper is an output-sensitive algorithm with running time depending not
only on input length, but also on the size of the output, see Sect. 4.

Most algorithms used in practice today for computing exact rational solu-
tions to LPs are based on the simplex method. Directly applying the simplex
method in rational arithmetic is often prohibitively expensive due to the cost of
arithmetic on rational numbers that can grow very large during the intermediate
computations. Methods have been developed to replace these rational computa-
tions by integer arithmetic [4,10–12]. However, most successful in practice today
is the combined use of floating-point and exact computation [3,8,13,18,19]. For
example, the QSopt ex solver [3] applies the simplex method in floating-point
arithmetic and then recomputes the final primal-dual solution from the returned
basis using exact arithmetic. If the primal-dual solution is not optimal or feasible,
further simplex pivots are executed at increasingly higher levels of precision until
an optimal solution is found. This incremental precision boosting is often very
effective, but can become slow in cases where many extended-precision simplex
pivots are needed. A further contribution of this paper is a significant improve-
ment of this approach for which double-precision floating-point pivots suffice,
see Sect. 3. The foundation is the recent iterative refinement method for linear
programming, that has proven effective for computing high-accuracy solutions
to LPs [14]. Its properties and necessary adjustments are described in Sect. 2.
Sect. 5 analyzes the computational benefits of the new methods in practice.

2 Iterative Refinement with Limited-Precision Oracles

Our starting point is the iterative refinement method proposed in [14], which
uses calls to a limited-precision LP solver in order to generate a sequence of
increasingly accurate solutions. In the following we give a precise definition
of a limited-precision LP oracle which is necessary to evaluate the behavior
of the algorithms defined in this paper. It is also helpful to introduce the
set F(p) := {n/2p ∈ Q : n ∈ Z, |n| � 22p} for some fixed p ∈ N; this can
be viewed as a superset of floating-point numbers, that is easier to handle in
the subsequent proofs. Double-precision floating-point numbers, for example,
are contained in F(1074).

402 A. Gleixner and D. E. Steffy

Definition 1. We call an oracle a limited-precision LP oracle if there exist
constants p ∈ N, 0 < η < 1, and σ > 0 such that for any LP

min{cT x : Ax = b, x � �} (P)

with A ∈ Q
m×n, b ∈ Q

m, and c, � ∈ Q
n, the oracle either reports a “failure” or

returns an approximate primal–dual solution x̄ ∈ F(p)n, ȳ ∈ F(p)m that satisfies

‖Ax̄ − b‖∞ � η, (1a)
x̄ � � − η1, (1b)

c − AT ȳ � −η1, (1c)
|(x̄ − �)T (c − AT ȳ)| � σ, (1d)

when it is given the LP min{c̄T x : Āx = b̄, x � �̄}, where Ā ∈ Q
m×n, c̄, �̄ ∈ Q

n,
and b̄ ∈ Q

m are A, c, �, and b with all numbers rounded to F(p). We call the
oracle a limited-precision LP-basis oracle if it additionally returns a basis B ⊆
{1, . . . , n} satisfying

|x̄i − �i| � η for all i
∈ B, (2a)
|ci − ȳT A·i| � η for all i ∈ B. (2b)

Relating this definition with the behavior of real-world limited-precision LP
solvers, we note that although real-world solvers are not guaranteed to find
a solution with residual errors bounded by a fixed constant, these errors could
nonetheless be computed and checked, correctly identifying the case of “failure”.

Algorithm 1 states the basic iterative refinement procedure from [14]; pre-
sentation is simplified by consolidating tolerances and scaling factors. The basic
convergence result, restated here as Lemma 1, carries over from [14].

Lemma 1. Given an LP of form (P) and a limited-precision LP oracle with con-
stants η and σ, let (xk, yk,Δk)k=1,2,... be the sequence of primal–dual solutions
and scaling factors produced by Algorithm1 with incremental scaling limit α � 2.
Let ε := max{η, 1/α}. Then for all iterations k, Δk+1 � Δk/ε, and

‖Axk − b‖∞ � εk, (3a)
xk − � � −εk1, (3b)

c − AT yk � −εk1, (3c)
|(xk − �)T (c − AT yk)| � σε2(k−1). (3d)

Hence, for any τ > 0, Algorithm1 terminates in finite time after at most
�max{log(τ)/ log(ε), log(τε/σ)/ log(ε2)}� oracle calls.

This lemma shows that the number of calls to the LP oracle before reaching
a positive termination tolerance τ is linear in the encoding length of τ . In order
to prove polynomial running time it is also necessary to argue that the encoding
length of numbers encountered at intermediate steps of the algorithm do not
grow too fast. This gives the following new result. See the appendix for a proof.

Linear Programming Using Limited-Precision Oracles 403

Algorithm 1: Iterative Refinement for a Primal and Dual Feasible LP
input : rational LP data A, b, �, c, termination tolerance τ � 0
parameters : incremental scaling limit α ∈ N, α � 2
output : primal–dual solution x∗ ∈ Q

n, y∗ ∈ Q
m within tolerance τ

1 begin
2 Δ1 ← 1 /* initial solve */

3 get (Ā, b̄, �̄, c̄) ≈ (A, b, �, c) in working precision of the oracle

4 call oracle for min{c̄T x : Āx = b̄, x � �̄}, abort if failure
5 (x1, y1) ← approximate primal–dual solution returned

6 for k ← 1, 2, . . . do /* refinement loop */

7 b̂ ← b − Axk, �̂ ← � − xk, ĉ ← c − AT yk /* compute residual error */

8 δk ← max
{

maxj |b̂j |, maxi �̂i, maxi −ĉi, |∑i −�̂iĉi|
}

9 if δk � τ then return x∗ ← xk, y∗ ← yk

10 δk ← max{δk, 1/(αΔk)} /* scale problem */

11 Δk+1 ← 2�log(1/δk)� /* round scaling factor to power of two */

12 get (b̄, �̄, c̄) ≈ Δk+1(b̂, �̂, ĉ) in working precision of the oracle
/* solve for corrector solution */

13 call oracle for min{c̄T x : Āx = b̄, x � �̄}, abort if failure
14 (x̂, ŷ) ← approximate primal–dual solution returned
15 (xk+1, yk+1) ← (xk, yk) + 1

Δk+1
(x̂, ŷ) /* perform correction */

Theorem 2. Algorithm1 with a limited-precision LP oracle according to Defi-
nition 1 runs in oracle-polynomial time, i.e., it requires a polynomial number of
oracle calls and a polynomial number of bit operations in the size of the input
A, b, �, c, τ .

3 Oracle Algorithms with Basis Verification

Iterative refinement as stated in Algorithm 1 only terminates in finite time for
positive termination tolerance τ > 0. The first extension, presented in this
section, assumes a limited-precision LP-basis oracle as formalized in Definition 1
and computes exact basic solutions in oracle-polynomial time. Using such an
oracle, Algorithm 1 produces a sequence (xk, yk,Bk)k=1,2,..., where the bases Bk

correspond to the transformed problems solved at line 13. From [14] we know
that these bases also correspond to LP bases for the original problem. We may
then ask whether or not this sequence is guaranteed to arrive at an optimal basis.
The following lemma helps to answer this question in the affirmative.

Lemma 2. Given an LP (P) with rational data A ∈ Q
m×n, b ∈ Q

m, and �, c ∈
Q

n, the following hold for any basic primal–dual solution x, y: (1) Either x is
(exactly) primal feasible or its maximum primal violation has at least the value
1/24〈A,b〉+5〈�〉+2n2+4n; and (2) either y is (exactly) dual feasible or its maximum
dual violation has at least the value 1/24〈A,c〉+2n2+4n.

404 A. Gleixner and D. E. Steffy

A detailed proof is omitted, but the basic idea is summarized as follows. Sup-
pose x, y is a basic primal–dual solution with respect to some basis B. It can
be shown that the size of the entries in x and y are bounded by a polynomial
in 〈A, b, �, c〉 and that all nonzero violations can be expressed as differences of
rational numbers with bounded denominator, resulting in the above bounds. The
following theorem states the main convergence result.

Theorem 3. Suppose we are given an LP (P), a fixed 0 < ε < 1, and a sequence
of primal–dual solutions xk, yk with associated bases Bk such that (3a–3c) and

|(xk)i − �i| � εk for all i
∈ Bk, (4a)
|ci − yT

k A·i| � εk for all i ∈ Bk (4b)

hold for k = 1, 2, Then there exists a threshold K = K(A,m, n, b, �, c, ε) such
that the bases Bk are optimal for all k � K. The function satisfies the asymptotic
bound K(A,m, n, b, �, c, ε) ∈ O((m2〈A〉 + 〈b, �, c〉 + n2)/ log(1/ε)).

Again, a detailed proof is omitted, but the main idea is summarized as follows.
The proof uses (4a) and (4b) to show analogs of (3a–3c) hold with right-hand
side 24m2〈A〉+2εk for the solutions x̃k, ỹk associated with bases Bk. Then for k �
K, the primal and dual violations of x̃k, ỹk drop below the minimum thresholds
stated in Lemma 2. From then on Bk must be optimal.

Conditions (3a–3c) require that the primal and dual violations of xk, yk con-
verge to zero precisely as is guaranteed by Lemma 1 for the sequence of numeric
solutions produced by iterative refinement. The validity of the additional condi-
tions (4a) and (4b) that the numeric solutions become “more and more basic”
at the same rate as the primal and dual violations decrease is established in the
proof of the main result at the end of this section.

The bound on the number of refinements in Theorem3 may seem surprisingly
large when considering that the best-known iteration complexity for interior
point methods is O(

√
n + m〈A, b, �, c〉) [21] and that in each refinement round an

LP is solved. One reason for this difference is that iterative refinement converges
linearly, while interior point algorithms are a form of Newton’s method, which
allows for superlinear convergence. Additionally, the low-precision LPs solved
by Algorithm 1 may be less expensive in practice than performing interior point
iterations in very high-precision arithmetic. Moreover, as observed experimen-
tally in [14], an optimal basis is typically reached after very few refinements.
Hence, we do not want to rely on bounds computed a priori, but rather check
the optimality of the basis early.

This is achieved by extending Algorithm1 as follows. Suppose the LP oracle
returns a basis B̂ in line 13. The termination criterion on line 9 is replaced by first
solving the linear system of equations associated with B̂ for a basic solution x̃, ỹ
in exact arithmetic and then checking its optimality. If this check is successful
then the solution is returned, otherwise the solution is discarded and Algorithm1
continues with the next refinement round. This leads to the main result of this
section. The proof is given in the appendix.

Linear Programming Using Limited-Precision Oracles 405

Theorem 4. Suppose we are given a rational, primal and dual feasible LP (P)
and a limited-precision LP-basis oracle according to Definition 1. Then Algo-
rithm1 interleaved with a basis verification, as described above, terminates with
an optimal solution to (P) in oracle-polynomial running time.

4 Rational Reconstruction Algorithms

The algorithm developed in the previous section relies solely on the optimality of
the basis information. Except for computing the residual vectors it does not make
use of the more and more accurate numerical solutions produced. In this section,
we discuss a conceptually different technique that exploits the approximate solu-
tions as starting points in order to reconstruct an exact optimal solution. First
we need to show that the sequence of approximate solutions converges.

Lemma 3. Suppose we are given a rational, primal and dual feasible LP (P)
and a limited-precision LP-basis oracle with precision p, and define C := 2p.
Let (xk, yk,Δk)k=1,2,... be the sequence of primal–dual solutions and scaling fac-
tors produced by Algorithm1. Then (xk, yk) converges to a rational, basic, and
optimal solution (x̃, ỹ) of (P) and ‖(x̃, ỹ) − (xk, yk)‖∞ � C

∑∞
i=k+1 Δ−1

i .

A proof of this lemma can be found in the appendix. Note that the statement
holds for any upper bound C on the absolute values in the corrector solutions
x̂, ŷ returned by the oracle in line 14 of Algorithm1. In practice, this may be
much smaller than the largest floating-point representable value in F(p), 2p.

Now suppose we know a priori a bound M on the denominators in the limit,
then we can compute x̃, ỹ from an approximate solution satisfying ‖(xk, yk) −
(x̃, ỹ)‖∞ < 1/(2M2) by applying Theorem1 componentwise. If the size of M
is small, i.e., polynomial in the input size, then iterative refinement produces a
sufficiently accurate solution after a polynomial number of refinements. However,
the worst-case bounds produced by Hadamard’s inequality of this type have been
demonstrated to be weak in practice [1,23]. Computing an approximate solution
with error below 1/(2M2) before applying Theorem1 can thus be unnecessarily
expensive. This motivates the following extension of Algorithm1 to an output-
sensitive algorithm that attempts to reconstruct exact solution vectors during
early rounds of refinement.

First, we fix a parameter β between 1 and 1/ε, ε := max{η, 1/α}. During
Algorithm 1, we attempt reconstruction after line 10. We compute a speculative
bound on the denominator as Mk :=

√
Δk+1/(2βk). Then the value 1/(2M2

k)
equals βk/Δk+1 ≈ βkδk and tries to estimate the error in the solution. If recon-
struction attempts fail, the term βk keeps growing exponentially such that we
eventually obtain a true bound on the error. Initially, however, βk is small in
order to account for the many cases where the residual δk is a good proxy for
the error. Primal feasibility, dual feasibility, and complementary slackness of
these heuristically reconstructed solutions must be checked exactly using ratio-
nal arithmetic. If this check fails, we discard the solution and continue with the

406 A. Gleixner and D. E. Steffy

next refinement round. Otherwise, it is returned as optimal. The following theo-
rem shows that the algorithm computes an exactly optimal solution to a primal
and dual feasible LP under the conditions guaranteed by Lemma3.

Theorem 5. Suppose we are given an LP (P), fixed constants C � 1, 0 < ε < 1,
1 < β < 1/ε, and a rational limit point x̃, ỹ with the denominator of each compo-
nent at most q̃. Furthermore, suppose a sequence of primal–dual solutions xk, yk

and scaling factors Δk � 1 satisfies ‖(x̃, ỹ) − (xk, yk)‖∞ � C
∑∞

i=k+1 Δ−1
i with

Δ1 = 1 and Δk/Δk+1 � ε. Let Mk :=
√

Δk+1/(2βk).
Then there exists K ∈ O(max{〈q̃〉, 〈C〉}) such that

‖(x̃, ỹ) − (xk, yk)‖∞ < 1/(2M2
k), 1 � q̃ � Mk, (5)

holds for all k � K, i.e., x̃, ỹ can be reconstructed from xk, yk componentwise in
polynomial time using Theorem1.

Again, a proof is provided in the appendix. The running time is output-
sensitive as it depends on the encoding length of the solution. The value of C is
a constant bound on the absolute values in the corrector solutions. Although C
is independent of the input size and does not affect asymptotic running time, we
include it explicitly in order to exhibit the practical dependency on the corrector
solutions returned by the oracle.

We now consider the cost associated with reconstructing the solution vec-
tors. The cost of applying the standard extended Euclidean algorithm to perform
rational reconstruction on input with encoding length d is O(d2), asymptotically
faster variants exist but are not used here for the sake of simplicity [24]. The
following lemma, proven in the appendix, shows that if Algorithm1 is modified
as in the preceding discussion to apply rational reconstruction componentwise
for each approximate solution (xk, yk) encountered, the cost of this added com-
putation will be polynomial in the number of iterations.

Lemma 4. The running time of applying rational reconstruction componentwise
to xk and yk within the k-th refinement round is O((n + m)k2). Moreover, if it
is applied at a geometric frequency, namely at rounds k = �f�, �f2�, . . . for some
f > 1, and Algorithm1 terminates at round K then the cumulative time spent
on rational reconstruction throughout the algorithm is O((n + m)K2).

Now, assuming the conditions laid out in Theorem5 hold, then the number
of iterations that Algorithm1 interleaved with rational reconstruction performs
before computing an exact rational solution is polynomially bounded in the
encoding length of the input. Together with this bound on the number of itera-
tions, Lemma 4 gives a polynomial bound on the time spent on rational recon-
struction. The arguments from Theorem 2 still apply and limit the growth of the
numbers and cost of the other intermediate computations, giving the following.

Theorem 6. Suppose we are given a primal and dual feasible LP (P) and
a limited-precision LP-basis oracle according to Definition 1 with constants

Linear Programming Using Limited-Precision Oracles 407

p, η, and σ. Fix a scaling limit α � 2 and let ε := max{η, 1/α}. Then
Algorithm1 interleaved with rational reconstruction using denominator bound
Mk :=

√
Δk+1/(2βk), β < 1/ε, at round k, terminates with an optimal solution

in oracle-polynomial running time.

Note that the basis does not need to be known explicitly. Accordingly, the algo-
rithm may even return an optimal solution x∗, y∗ that is different from the limit
point x̃, ỹ if it is discovered by rational reconstruction at an early iterate xk, yk.
In this case, x∗, y∗ is not guaranteed to be a basic solution unless one explicitly
discards solutions that are not basic in the optimality checks.

5 Computational Experiments

Using the simplex-based LP solver SoPlex [14,25], we analyzed the computa-
tional performance of iterative refinement both with basis verification (SoPlexfac)
and rational reconstruction (SoPlexrec). In addition, we compared both methods
against the state-of-the-art solver QSopt ex, version 2.5.10 [2,3].

For basis verification, the exact solution of the primal and dual basis systems
relies on a rational LU factorization and two triangular solves for the stan-
dard, column-wise basis matrix. For efficiency, basis verification is only called
after two refinement steps have not updated the basis information. The rational
reconstruction routine is an adaption of code used in [23]. The error correction
factor β was set to 1.1. The rational reconstruction frequency f is set to 1.2,
i.e., after a failed attempt at reconstructing an optimal solution, reconstruction
is paused until 20% more refinement steps have been performed. We employ the
DLCM method [5,7] for accelerating the reconstruction of the solution vectors.

As test bed we use an extensive collection of 1,202 primal and dual feasible
LPs from several public sources detailed in the electronic supplement of [14].
The experiments were conducted on a cluster of 64-bit Intel Xeon X5672 CPUs
with 48 GB main memory, simultaneously running at most one job per node and
using a time limit of two hours per instance for each SoPlex and QSopt ex run.

Overall Results. None of the solvers dominates the others: for each of QSopt ex,
SoPlexfac, and SoPlexrec there exist instances that can be solved only by this
one solver. Overall, however, the iterative refinement-based methods are able to
solve more instances than QSopt ex, and SoPlexfac exhibits significantly shorter
runtimes than the other two methods. Of the 1,202 instances, 1,158 are solved
by all three. QSopt ex solves 1,163 instances, SoPlexrec solves 1,189 instances,
and SoPlexfac solves the largest number of instances: 1,191.

On 8 of the 39 instances not solved by QSopt ex this is due to a memory limit
during or after precision boosts and highlights that solving extended-precision
LPs may not only be time-consuming, but also require excessive memory. By con-
trast, the iterative refinement-based methods work with a more memory-efficient
double-precision floating-point rounding of the LP and never reach the memory
limit. However, SoPlexrec and SoPlexfac could not solve seven instances because
the floating-point simplex implementation failed during iterative refinement.

408 A. Gleixner and D. E. Steffy

Finally, for the 492 instances that could be solved by all three algorithms,
but were sufficiently nontrivial such that one of the solvers took at least two
seconds, Table 1 compares average runtimes and number of simplex iterations.
The lines starting with 64-bit, 128-bit, and 192-bit filter for the instances cor-
responding to the final precision level used by QSopt ex. Overall, SoPlexfac is
1.85 times faster than QSopt ex and even 2.85 times faster than SoPlexrec. On
LPs where QSopt ex found the optimal solution after the double-precision solve
(line 64-bit), SoPlexfac is 30% faster although it uses about 40% more simplex
iterations than QSopt ex. When QSopt ex has to boost the working precision
of the floating-point solver (lines 128-bit and 192-bit), the results become even
more pronounced, with SoPlexfac being over three times faster than QSopt ex.

Table 1. Aggregate comparison on instances that could be solved by all and where
one solver took at least 2 s. Columns #iter and t report shifted geometric means of
simplex iterations and solving times, using a shift of 2 s and 100 simplex iterations,
respectively. Column Δt gives the ratios of times with those of QSopt ex.

QSopt ex prec #inst QSopt ex SoPlexfac SoPlexrec

#iter t #iter t Δt #iter t Δt

any 492 8025.7 15.6 9740.6 8.5 0.54 9740.6 24.2 1.55

64-bit 324 8368.3 16.1 11683.7 11.3 0.70 11683.7 14.8 0.92

128-bit 163 7217.1 13.9 6757.2 4.3 0.31 6757.2 58.5 4.21

192-bit 5 16950.9 72.5 10763.4 20.5 0.28 10763.4 134.6 1.86

Rational Reconstruction vs. Basis Verification. Table 2 compares SoPlexrec and
SoPlexfac in more detail for all 1,186 instances solved by both methods. Here,
the lines starting with [t, 7200] filter for subsets of increasingly hard instances
for which at least one method took t = 1, 10 or 100 s.

Table 2. Comparison of SoPlexfac and SoPlexrec on instances solved by both.
Columns #ref, #fac, #rec contain arithm. means of refinements, basis verifications,
and reconstruction attempts. Columns t, tfac, trec report shifted geom. mean times for
the total solving process, the basis verifications, and rational reconstruction routines,
with a shift of 2 s. Column Δt reports the ratio between the mean solve times.

Test set #inst SoPlexfac SoPlexrec

#ref #fac tfac t #ref #rec trec t Δt

all 1186 2.1 0.95 0.21 2.8 68.3 6.74 1.26 5.2 1.82

[1, 7200] 591 2.3 0.98 0.43 8.8 135.1 11.04 3.28 21.8 2.47

[10, 7200] 311 2.4 0.99 0.83 24.1 241.6 15.47 9.15 101.9 4.22

[100, 7200] 161 2.7 0.98 1.40 42.8 384.9 19.70 22.95 340.3 7.95

Linear Programming Using Limited-Precision Oracles 409

Compared to SoPlexrec, the number of refinements for SoPlexfac is very small
because the final, optimal basis is almost always reached by the second round. For
1,123 LPs, SoPlexfac performs exactly one rational factorization; for 7 instances
two factorizations. Notably, there are 61 instances where no factorization is nec-
essary because the approximate solution is exactly optimal. As a result, the
average number of factorizations (column “#fac”) is slightly below one.

On average, the time for rational factorization and triangular solves (column
“tfac”) is small compared to the total solving time. In combination with the
small number of refinements, this explains why SoPlexfac is significantly faster.
However, for 21 instances, tfac consumes more than 90% of the runtime. On 3 of
these instances, SoPlexfac times out, while they can be solved by SoPlexrec.

Column “trec” shows that calling rational reconstruction at a geometric fre-
quency succeeds in keeping reconstruction time low also as the number of refine-
ments increases. However, 5 instances solved by SoPlexfac, but not by SoPlexrec,
show large denominators in the optimal solution and point to a bottleneck of
SoPlexrec. The number of refinements that could be performed within the time
limit did not suffice to reach a sufficiently accurate approximate solution.

Appendix

This appendix collects proofs for the main results used in the paper.

Proof of Theorem 2

Proof. Line 10 ensures that at iteration k, Δk � 2�log α	(k−1) and thus 〈Δk〉 �
�log α�k. From line 15, the entries in the refined solution vectors xk, yk have the
form

∑k
j=1 Δj

−1 nj

2p with nj ∈ Z, |nj | � 22p, for j = 1, . . . , k. With Dj := log(Δj)
and a := �log(α)� this can be rewritten as

k∑

j=1

2−Dj
nj

2p
=

(k∑

j=1

nj2a(k−1)−Dj
)
/2p+a(k−1). (6)

The latter is a fraction with integer numerator and denominator. The numerator
is bounded by 22p+ak−1. Hence, 〈xk〉+〈yk〉 � (n+m)(2ak+3p+2). The numbers
stored in b̂, l̂, ĉ and δk satisfy the same asymptotic bound. By Lemma 1, the
maximum number of iterations is O(log(1/τ)) = O(〈τ〉). All in all, the size of
the numbers encountered during the algorithm is O(〈A, b, �, c〉 + (n + m)〈τ〉).

Finally, the total number of elementary operations is polynomially bounded
as follows. The initial rounding of the constraint matrix costs O(nnz) elementary
operations, where nnz is the number of nonzero entries in A. For each of the
O(〈τ〉) refinements, computing residual errors, maximum violation, and checking
termination involves O(nnz +n+m) operations; the computation of the scaling
factors takes constant effort, and the update of the transformed problem and
the correction of the primal–dual solution vectors costs O(n + m) operations. �

410 A. Gleixner and D. E. Steffy

Proof of Theorem 4

Proof. Let ε := max{η, 1/α}, where η is the feasibility tolerance of the LP oracle
and α is the scaling limit used in Algorithm 1. Conditions (3a–3c) of Theorem 3
follow directly from Lemma 1. We prove conditions (4a) and (4b) by induction.
For k = 1, they follow from (2a) and (2b). Suppose they hold for k � 1. Let x̂, ŷ, B̂
be the last approximate solution returned by the oracle. Then for all i
∈ Bk+1

|(xk+1)i − �i| =
∣
∣(xk)i +

x̂i

Δk+1
− �i

∣
∣ = |x̂i + Δk+1((xk)i − �i

︸ ︷︷ ︸
=−�̂i

)|/Δk+1
︸ ︷︷ ︸

�ε−k by Lemma 1

� |x̂i − Δk+1�̂i|/εk
(2a)

� ηεk � εk+1,

proving (4a). The induction step for (4b) is analogous. Thus, the sequence of
basic solutions xk, yk,Bk satisfies the conditions of Theorem 3 and Bk is optimal
after a polynomial number of refinements. According to Theorem2, this runs in
oracle-polynomial time. The linear systems used to compute the basic solutions
exactly over the rational numbers can be solved in polynomial time [9]. �
Proof of Lemma 3

Proof. This result inherently relies on the boundedness of the corrector solutions
returned by the oracle. Since their entries are in F(p), ‖(x̂k, ŷk)‖∞ � 2p. Then
(xk, yk) =

∑k
i=1

1
Δi

(x̂i, ŷi) constitutes a Cauchy sequence: for any k, k′ � K,
‖(xk, yk)− (xk′ , yk′)‖∞ � 2p

∑∞
i=K+1 εi = 2pεK+1/(1− ε), where ε is the rate of

convergence from Lemma 1. Thus, a unique limit point (x̃, ỹ) exists. Using proof
techniques as for Theorem 3 one can show that (x̃, ỹ) is basic, hence rational. �
Proof of Theorem 5

Proof. Note that Δk/Δk+1 � ε for all k implies Δi � Δjε
j−i for all j � i. Then

Mk =
√

Δk+1/(2βk) � q̃ holds if
√

1/(2βkεk) � q̃. This holds for all

k � K1 := (2 log q̃ + 1)/ log(1/(βε)) ∈ O(〈q̃〉). (7)

Furthermore, C
∑∞

i=k+1 Δ−1
i � C

∑∞
i=k+1 εi−k−1Δ−1

k+1 = C/((1 − ε)Δk+1),
which is less than 1/(2M2

k) = βk/Δk+1 for all

k > K2 := (log C − log(1 − ε))/ log β ∈ O(〈C〉). (8)

Hence (5) holds for all k > K := max{K1,K2}. �
Proof of Lemma 4

Proof. From the proof of Theorem 2 we know that at the k-th iteration of the
algorithm, the encoding length of the components of xk, yk are each bounded
by (2αk + 3p + 2), which is O(k) as α, p are constants. Together with the fact
that rational reconstruction can be performed in quadratic time, as discussed
above, the first result is established.

Linear Programming Using Limited-Precision Oracles 411

To show the second claim we assume that f > 1 and let K be the final
index at which rational reconstruction is attempted. Then if we consider the
sequence of indices at which rational reconstruction was applied, that sequence is
term-wise bounded above by the following sequence (given in decreasing order):
S = (K, �K/f�, �K/f2�, . . . , �K/fa�) where a = �logf K�. Thus, the cost to
perform rational reconstruction at iterations indexed by the sequence S gives an
upper bound on the total cost. Again, using the quadratic bound on the cost for
rational reconstruction, we arrive at the following cumulative bound, involving
a geometric series:

O

(

(n + m)
a∑

i=0

�K/f i�2
)

= O

(

(n + m)K2
a∑

i=0

f−2i

)

= O((n + m)K2).

This establishes the result. �

References

1. Abbott, J., Mulders, T.: How tight is Hadamard’s bound? Exp. Math. 10(3), 331–
336 (2001). http://projecteuclid.org/euclid.em/1069786341

2. Applegate, D.L., Cook, W., Dash, S., Espinoza, D.G.: Qsopt ex. http://www.dii.
uchile.cl/∼daespino/ESolver doc/

3. Applegate, D.L., Cook, W., Dash, S., Espinoza, D.G.: Exact solutions to linear
programming problems. Oper. Res. Lett. 35(6), 693–699 (2007). https://doi.org/
10.1016/j.orl.2006.12.010

4. Azulay, D.-O., Pique, J.-F.Ç.: Optimized Q-pivot for exact linear solvers. In:
Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 55–71. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 6

5. Chen, Z., Storjohann, A.: A BLAS based C library for exact linear algebra on
integer matrices. In: Proceedings of the 2005 International Symposium on Symbolic
and Algebraic Computation, ISSAC 2005, pp. 92–99 (2005). https://doi.org/10.
1145/1073884.1073899

6. Cheung, D., Cucker, F.: Solving linear programs with finite precision: II. Algo-
rithms. J. Complex. 22(3), 305–335 (2006). https://doi.org/10.1016/j.jco.2005.10.
001

7. Cook, W., Steffy, D.E.: Solving very sparse rational systems of equations. ACM
Trans. Math. Softw. 37(4), 39:1–39:21 (2011). https://doi.org/10.1145/1916461.
1916463

8. Dhiflaoui, M., et al.: Certifying and repairing solutions to large LPs: how good
are LP-solvers? In: Proceedings of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2003, pp. 255–256. SIAM (2003)

9. Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Natl.
Bur. Stan. 71B(4), 241–245 (1967)

10. Edmonds, J., Maurras, J.F.: Note sur les Q-matrices d’Edmonds. RAIRO.
Recherche Opérationnelle 31(2), 203–209 (1997). http://www.numdam.org/item?
id=RO 1997 31 2 203 0

11. Escobedo, A.R., Moreno-Centeno, E.: Roundoff-error-free algorithms for solving
linear systems via Cholesky and LU factorizations. INFORMS J. Comput. 27(4),
677–689 (2015). https://doi.org/10.1287/ijoc.2015.0653

http://projecteuclid.org/euclid.em/1069786341
http://www.dii.uchile.cl/~daespino/ESolver_doc/
http://www.dii.uchile.cl/~daespino/ESolver_doc/
https://doi.org/10.1016/j.orl.2006.12.010
https://doi.org/10.1016/j.orl.2006.12.010
https://doi.org/10.1007/3-540-49481-2_6
https://doi.org/10.1145/1073884.1073899
https://doi.org/10.1145/1073884.1073899
https://doi.org/10.1016/j.jco.2005.10.001
https://doi.org/10.1016/j.jco.2005.10.001
https://doi.org/10.1145/1916461.1916463
https://doi.org/10.1145/1916461.1916463
http://www.numdam.org/item?id=RO_1997__31_2_203_0
http://www.numdam.org/item?id=RO_1997__31_2_203_0
https://doi.org/10.1287/ijoc.2015.0653

412 A. Gleixner and D. E. Steffy

12. Escobedo, A.R., Moreno-Centeno, E.: Roundoff-error-free basis updates of LU fac-
torizations for the efficient validation of optimality certificates. SIAM J. Matrix
Anal. Appl. 38(3), 829–853 (2017). https://doi.org/10.1137/16M1089630

13. Gärtner, B.: Exact arithmetic at low cost - a case study in linear program-
ming. Comput. Geom. 13(2), 121–139 (1999). https://doi.org/10.1016/S0925-
7721(99)00012-7

14. Gleixner, A.M., Steffy, D.E., Wolter, K.: Iterative refinement for linear program-
ming. INFORMS J. Comput. 28(3), 449–464 (2016). https://doi.org/10.1287/ijoc.
2016.0692

15. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Algorithms and Combinatorics, vol. 2. Springer, Heidelberg (1988).
https://doi.org/10.1007/978-3-642-78240-4

16. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Com-
binatorica 4(4), 373–395 (1984). https://doi.org/10.1007/BF02579150

17. Khachiyan, L.G.: Polynomial algorithms in linear programming (in Russian).
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 20(1), 51–68 (1980).
https://doi.org/10.1016/0041-5553(80)90061-0. English translation: USSR Com-
putational Mathematics and Mathematical Physics, 20(1):53-72, 1980

18. Koch, T.: The final NETLIB-LP results. Oper. Res. Lett. 32(2), 138–142 (2004).
https://doi.org/10.1016/S0167-6377(03)00094-4

19. Kwappik, C.: Exact linear programming. Master’s thesis, Universität des Saarlan-
des, May 1998

20. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982). https://doi.org/10.
1007/BF01457454

21. Renegar, J.: A polynomial-time algorithm based on Newton’s method, for linear
programming. Math. Program. 40(1–3), 59–93 (1988). https://doi.org/10.1007/
BF01580724

22. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
23. Steffy, D.E.: Exact solutions to linear systems of equations using output sensitive

lifting. ACM Commun. Comput. Algebra 44(3/4), 160–182 (2011). https://doi.
org/10.1145/1940475.1940513

24. Wang, X., Pan, V.Y.: Acceleration of Euclidean algorithm and rational number
reconstruction. SIAM J. Comput. 2(32), 548–556 (2003)

25. Zuse Institute Berlin: SoPlex. Sequential object-oriented simPlex. http://soplex.
zib.de/

https://doi.org/10.1137/16M1089630
https://doi.org/10.1016/S0925-7721(99)00012-7
https://doi.org/10.1016/S0925-7721(99)00012-7
https://doi.org/10.1287/ijoc.2016.0692
https://doi.org/10.1287/ijoc.2016.0692
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/BF02579150
https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/10.1016/S0167-6377(03)00094-4
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01580724
https://doi.org/10.1007/BF01580724
https://doi.org/10.1145/1940475.1940513
https://doi.org/10.1145/1940475.1940513
http://soplex.zib.de/
http://soplex.zib.de/

Computing the Nucleolus of Weighted
Cooperative Matching Games

in Polynomial Time

Jochen Könemann1, Kanstantsin Pashkovich2, and Justin Toth1(B)

1 University of Waterloo, Waterloo, ON N2L 3G1, Canada
{jochen,wjtoth}@uwaterloo.ca

2 University of Ottawa, Ottawa, ON K1N 6N5, Canada
kpashkov@uottawa.ca

Abstract. We provide an efficient algorithm for computing the nucle-
olus for an instance of a weighted cooperative matching game. This
resolves a long-standing open question posed in [Faigle, Kern, Fekete,
Hochstättler, Mathematical Programming, 1998].

Keywords: Combinatorial optimization · Algorithmic game theory ·
Matchings

1 Introduction

Imagine a network of players that form partnerships to generate value. For exam-
ple, maybe a tennis league pairing players to play exhibition matches [3], or peo-
ple making trades in an exchange network [39]. These are examples of what are
called matching games. In a (weighted) matching game, we are given a graph
G = (V,E), weights w : E → R≥0, the player set is the set V of nodes of G, and
w(uv) denotes the value earned when u and v collaborate. Each coalition S ⊆ V
is assigned a value ν(S) so that ν(S) is equal to the value of a maximum weight
matching on the induced subgraph G[S]. The special case of matching games
where w = 1 is the all-ones vector, and G is bipartite is called an assignment
game and was introduced in a classical paper by Shapley and Shubik [39], and
was later generalized to general graphs by Deng, Ibaraki, and Nagamochi [11].

We are interested in what a fair redistribution of the total value ν(V) to the
players in the network looks like. The field of cooperative game theory gives us the
language to make this question formal. A vector x ∈ RV is called an allocation if

This work was done in part while the second author was visiting the Simons Institute for
the Theory of Computing. Supported by DIMACS/Simons Collaboration on Bridging
Continuous and Discrete Optimization through NSF grant #CCF-1740425.
We acknowledge the support of the Natural Sciences and Engineering Research Council
of Canada (NSERC). Cette recherche a été financée par le Conseil de recherches en
sciences naturelles et en génie du Canada (CRSNG).

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 413–426, 2019.
https://doi.org/10.1007/978-3-030-17953-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_31&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_31

414 J. Könemann et al.

x(V) = ν(V) (where we use x(V) as a short-hand for
∑

i∈V x(i) as usual). Given
such an allocation, we let x(S) − ν(S) be the excess of coalition S ⊆ V . This
quantity can be thought of as a measure of the satisfaction of coalition S. A fair
allocation should maximize the bottleneck excess, i.e. maximize the minimum
excess, and this can be accomplished by an LP:

max ε (P)
s.t. x(S) ≥ ν(S) + ε for all S ⊆ V

x(V) = ν(V)
x ≥ 0.

Let ε∗ be the optimum value of (P), and define P (ε∗) to be the set of allocations
x such that (x, ε∗) is feasible for (P). The set P (ε∗) is known as the leastcore [33]
of the given cooperative game, and the special case when ε∗ = 0, P (0) is the well-
known core [21] of (V, ν). Intuitively, allocations in the core describe payoffs in
which no coalition of players could profitably deviate from the grand coalition V .

Why stop at maximizing the bottleneck excess? Consider an allocation which,
subject to maximizing the smallest excess, maximizes the second smallest excess,
and subject to that maximizes the third smallest excess, and so on. This process
of successively optimizing the excess of the worst-off coalitions yields our primary
object of interest, the nucleolus. For an allocation x ∈ RV , let θ(x) ∈ R2V −2 be
the vector obtained by sorting the list of excess values x(S) − ν(S) for any ∅ �=
S ⊂ V in non-decreasing order1. The nucleolus, denoted η(V, ν) and defined by
Schmeidler [38], is the unique allocation that lexicographically maximizes θ(x):

η(V, ν) := arg lex max{θ(x) : x ∈ P (ε∗)}.

We refer the reader to Appendix B for an example instance of the weighted
matching game with its nucleolus. We now have sufficient terminology to state
our main result:

Theorem 1. Given a graph G = (V,E) and weights w : E → R, the nucle-
olus η(V, ν) of the corresponding weighted matching game can be computed in
polynomial time.

Despite its intricate definition the concept of the nucleolus is surprisingly
ancient. Its history can be traced back to a discussion on bankruptcy divi-
sion in the Babylonian Talmud [1]. Modern research interest in the nucleolus
stems not only from its geometric beauty [33], or several practical applications
(e.g., see [5,32]), but from the strange way problems of computing the nucleolus
fall in the complexity landscape, seeming to straddle the NP vs P boundary.
1 It is common within the literature, for instance in [26], to exclude the coalitions for
S = ∅ and S = V in the definition of the nucleolus. On the other hand, one could also
consider the definition of the nucleolus with all possible coalitions, including S = ∅

and S = V . We note that the two definitions of the nucleolus are equivalent in all
instances of matching games except for the trivial instance of a graph consisting of
two nodes joined by a single edge.

Polytime Nucleolus of Matching Games 415

Beyond being one of the most fundamental problems in combinatorial opti-
mization, starting with the founding work of Kuhn on the Hungarian method
for the assignment problem [29], matching problems have historically teetered
on the cusp of hardness. For example, prior to Edmonds’ celebrated Blossom
Algorithm [12,13] it was not clear whether Maximum Matching belonged in P.
For another example, until Rothvoß’ landmark result [37] it was thought that the
matching polytope could potentially have sub-exponential extension complexity.
In cooperative game theory, matchings live up to their historical pedigree of
representing a challenging problem class. The long standing open problem in
this area was whether the nucleolus of a weighted matching game instance can
be computed in polynomial time. The concept of the nucleolus has been known
since 1969 [38], and the question was posed as an important open problem in
multiple papers. In 1998, Faigle, Kern, Fekete, and Hochstättler [15] mention
the problem in their work on the nucleon, a multiplicative-error analog to the
nucleolus which they show is polynomial time computable. Kern and Paulusma
state the question of computing the nucleolus for general matching games as an
important open problem in 2003 [26]. In 2008, Deng and Fang [9] conjectured this
problem to be NP-hard, and in 2017 Biró, Kern, Paulusma, and Wojuteczky [4]
reaffirmed this problem as an interesting open question. Theorem 1 settles the
question, providing a polynomial-time algorithm to compute the nucleolus of a
general instance of a weighted cooperative matching game.

Prior to our work, the nucleolus was known to be polynomial-time com-
putable only in structured instances of the matching game. Solymosi and Ragha-
van [40] showed how to compute the nucleolus in an (unweighted) assignment
game instance in polynomial time. Kern and Paulusma [26] later provided an
efficient algorithm to compute the nucleolus in general unweighted matching
game instances. Paulusma [35] extended the work in [26] and gave an efficient
algorithm to compute the nucleolus in matching games where edge weights are
induced by node potentials. Farczadi [20] finally extended Paulusma’s framework
further using the concept of extendible allocations. We note also that it is easy
to compute the nucleolus in weighted instances of the matching game with non-
empty core. For such instances, the leastcore has a simple compact description
that does not include constraints for coalitions of size greater than 2. Thus it
is relatively straightforward to adapt the iterative algorithm of Maschler [33] to
a polynomial-time algorithm for computing the nucleolus (e.g., see [20, Chapter
2.3] for the details, Sect. 1.2 for an overview).

In a manner analogous to how we have defined matching games, a wide variety
combinatorial optimization games can be defined [11]. In such games, the value of
a coalition S of players is succinctly given as the optimal solution to an underlying
combinatorial optimization problem. It is natural to conjecture that the complex-
ity of computing the nucleolus in an instance of such a game would fall in lock-step
with the complexity of the underlying problem. Surprisingly this is not the case.
For instance, computing the nucleolus is known to be NP-hard for network flow
games [10], weighted threshold games [14], and spanning tree games [16,19]. On
the other hand, polynomial time algorithms are known for finding the nucleolus of
special cases of flow games, certain classes of matching games, fractional matching
games, and convex games [2,6,10,17,20,22,23,26,30,34–36,40].

416 J. Könemann et al.

The nucleolus is known to lie in the prekernel [38], a solution concept repre-
senting allocations which, speaking intuitively, reflect a balance of power between
players. The prekernel of a cooperative game is known to be non-convex and
even disconnected in general [28,41]. Despite this, Faigle, Kern and Kuipers [17]
showed how to compute a point in the intersection of prekernel and leastcore in
polynomial time under the reasonable assumption that the game has a polyno-
mial time oracle to compute the minimum excess coalition for a given allocation.
Later the same authors [18] refine their result to computing a point in the inter-
section of the core and lexicographic kernel, a set which is also known to contain
the nucleolus. Bateni et al. [2] pose as an open question the existence of an
efficiently computable, balanced and unique way of sharing profit in a network
bargaining setting. The nucleolus is always unique [38], and balanced in the
sense of lying in the leastcore intersect prekernel. Theorem 1 therefore resolves
the latter open question left in [2].

1.1 Leastcore and Core of Matching Games

It is straightforward to see that (P) can be rewritten equivalently as

max ε (P1)
s.t. x(M) ≥ w(M) + ε for all M ∈ M

x(V) = ν(G)
x ≥ 0 ,

where M is the set of all matchings M on G, and x(M) is a shorthand for
x(V (M)).

The separation problem for the linear program (P1) can be reduced to finding
a maximum weight matching in the graph G with edge weights w(uv) − x(uv),
uv ∈ E (where we use x(uv) as a shorthand for x(u)+x(v)). Since the maximum
weight matching can be found in polynomial time [12], we know that the linear
program (P1) can be solved in polynomial time as well [25].

We use ε1 to denote the optimal value of (P1) and P1(ε1) for the set of
allocations x such that (x, ε1) is feasible for the leastcore linear program (P1).
In general, for a value ε and a linear program Q on variables in RV ×R we denote
by Q(ε) the set {x ∈ RV : (x, ε) is feasible for Q}.

Note that ε1 ≤ 0. Indeed, ε ≤ 0 in any feasible solution (x, ε) to (P1) as
otherwise x(M) would need to exceed w(M) for all matchings M . In particular
this would also hold for a maximum weight matching on G, implying that x(V) >
ν(G). If ε1 = 0 then the core of the cooperative matching game is non-empty.
One can see that ε1 = 0 if and only if the value of a maximum weight matching
on G with weights w equals the value of a maximum weight fractional matching.
This follows since x ∈ P1(ε1) is a fractional weighted node cover of value ν(G)
when ε1 = 0. When ε1 < 0, we say that the cooperative matching game has an
empty core. The matching game instance given in Appendix B has an empty
core.

Polytime Nucleolus of Matching Games 417

In this paper, we assume that the cooperative matching game (G,w) has an
empty core, as computing the nucleolus is otherwise well-known to be doable in
polynomial time [35].

1.2 Maschler’s Scheme

As discussed, our approach to proving Theorem 1 relies on Maschler’s scheme.
The scheme requires us to solve a linear number of LPs: {(Pj)}j≥1 that we now
define. (P1) is the leastcore LP that we have already seen in Sect. 1.1. LPs (Pj)
for j ≥ 2 are defined inductively. Crucial in their definition is the notion of fixed
coalitions that we introduce first. For a polyhedron Q ⊆ RV we denote by Fix(Q)
the collection of sets S ⊆ V such that x(S) is constant over the polyhedron Q,
i.e.

Fix(Q) := {S ⊆ V : x(S) = x′(S) for all x, x′ ∈ Q} .

With this we are now ready to state LP (Pj) for j ≥ 2:

max ε (Pj)

s.t. x(S) − ν(S) ≥ ε for all S ⊂ V, S �∈ Fix(Pj−1(εj−1))
x ∈ Pj−1(εj−1) ,

where εj be the optimal value of the linear program (Pj). Let j∗ be the minimum
number j such that Pj(εj) contains a single point. This point is the nucleolus of
the game [8]. It is well-known [33] that Pj−1(εj−1) ⊂ Pj(εj) and εj−1 < εj for
all j. Since the dimension of the polytope describing feasible solutions of (Pj)
decreases in every round until the dimension becomes zero, we have j∗ ≤ |V |
[33], [35, Pages 20–24].

Therefore, in order to find the nucleolus of the cooperative matching game
efficiently it suffices to solve each linear program (Pj), j = 1, . . . , j∗ in polynomial
time. We accomplish this by providing polynomial-size formulations for (Pj) for
all j ≥ 1.

In Sect. 2 we introduce the concept of universal matchings which are fun-
damental to our approach, and give a compact formulation for the first linear
program in Maschler’s Scheme, the leastcore. We also present our main technical
lemma, Lemma 5, which provides a crucial symmetry condition on the values
allocations can take over the vertices of blossoms in the graph decomposition we
use to describe the compact formulation. In Sect. 3 we describe the successive
linear programs in Maschler’s Scheme and provide a compact formulation for
each one in a matching game.

2 Leastcore Formulation

In this section we provide a polynomial-size description of (P1). It will be
useful to define a notation for excess: for any x ∈ P1(ε1) and M ∈ M let
excess(x,M) := x(M) − w(M).

418 J. Könemann et al.

2.1 Universal Matchings, Universal Allocations

For each x ∈ P1(ε1) we say that a matching M ∈ M is an x-tight matching
whenever excess(x,M) = ε1. We denote by Mx the set of x-tight matchings.

A universal matching M ∈ M is a matching which is x-tight for all x ∈
P1(ε1). We denote the set of universal matchings on G by Muni. A universal
allocation x∗ ∈ P1(ε1) is a leastcore point whose x∗-tight matchings are precisely
the set of universal matchings, i.e. Mx∗

= Muni.

Lemma 1. There exists a universal allocation x∗ ∈ P1(ε1).

Proof. Indeed, it is straightforward to show that every x∗ in the relative interior
(see [42, Lemma 2.9(ii)]) of P1(ε1) is a universal allocation. If the relative interior
is empty then P1(ε1) is a singleton, which trivially contains a universal allocation.
In the arxiv version [27] we provide a combinatorial proof. �

Lemma 2. A universal allocation x∗ ∈ P1(ε1) can be computed in polynomial
time.

Proof. A point x∗ in the relative interior of P1(ε1) can be found in polynomial
time using the ellipsoid method (Theorem 6.5.5 [24], [7]). Since any allocation
x∗ from the relative interior of P1(ε1) is a universal allocation, this implies the
statement of the lemma. �

Given a non-universal allocation x and a universal allocation x∗, we observe
that Mx∗ ⊂ Mx and so θ(x∗) is strictly lexicographically greater than θ(x).
Thus the nucleolus is a universal allocation. We emphasize that Mx∗

= Muni is
invariant under the (not necessarily unique) choice of universal allocations x∗.
Henceforth we fix a universal allocation x∗ ∈ P1(ε1).

2.2 Description for Convex Hull of Universal Matchings.

By the definition of universal allocation x∗, a matching M is universal if and
only if it is x∗-tight. Thus, M is a universal matching if and only if its charac-
teristic vector lies in the optimal face of the matching polytope correspond-
ing to (the maximization of) the linear objective function assigning weight
− excess(x∗, uv) = w(uv) − x∗(uv) to each edge uv ∈ E. Let O be the set
of node sets S ⊆ V such that |S| ≥ 3, |S| is odd. Edmonds [12] gave a linear
description of the matching polytope of G as the set of y ∈ RE satisfying:

y(δ(v)) ≤ 1 for all v ∈ V
y(E(S)) ≤ (|S| − 1)/2 for all S ∈ O

y ≥ 0 .

Thus, a matching M ∈ M is universal if and only if it satisfies the constraints

M ∩ δ(v) = 1 for all v ∈ W
M ∩ E(S) = (|S| − 1)/2 for all S ∈ L

M ∩ {e} = 0 for all e ∈ F ,
(1)

Polytime Nucleolus of Matching Games 419

where W is some subset of V , L is a subset of O, and F is a subset of E. Using
an uncrossing argument, as in [31, Pages 141–150], we may assume that the
collection of sets L is a laminar family of node sets; i.e., for any two distinct sets
S, T ∈ L, either S ∩ T = ∅ or S ⊆ T or T ⊆ S.

Lemma 3. For every node v ∈ V there exists M ∈ Muni such that v is exposed
by M . Hence, W = ∅.

Proof. Assume for a contradiction that there exists a node v ∈ V such that
v ∈ W .

First, note that there always exists a non-universal matching M ∈ M\Muni

since otherwise the empty matching would be universal, and thus

0 = x∗(∅) = w(∅) + ε1,

implying that the core of the given matching game instance is non-empty.
Suppose first that there exists a node u ∈ V exposed by some matching

M ′ ∈ Muni such that x∗
u > 0. We define

δ0 := min{excess(x∗,M) − ε1 : M ∈ M \ Muni} .

Recall that Muni is the set of maximum weight matchings on G with respect
to the node weights w(uv) − x∗(uv), uv ∈ E, i.e. Muni is the set of x∗-tight
matchings. Moreover, recall that excess(x∗,M) = ε1 for M ∈ Muni. Thus, we
have δ0 > 0.

We define δ := min{δ0, x
∗
u} > 0 and a new allocation x′ as follows:

x′
r :=

⎧
⎪⎨

⎪⎩

x∗
r + δ, if r = v

x∗
r − δ, if r = u

x∗
r , otherwise.

Since all universal matchings contain v, the excess with respect to x′ of any
universal matching is no smaller than their excess with respect to x∗. Therefore,
by our choice of δ, (x′, ε1) is a feasible, and hence optimal, solution for (P1). But
M ′ is not x′-tight, since M ′ covers v and exposes u. This contradicts that M ′ is
a universal matching.

Now consider the other case: for all u ∈ V if u is exposed by a universal
matching then x∗

u = 0. Then, for every universal matching M ∈ Muni we have

ε1 = excess(x∗,M) = x∗(V) − w(M) = ν(G) − w(M).

Since ν(G) is the maximum weight of a matching on G with respect to the weights
w, we get that ε1 ≥ 0. Thus x∗ is in the core, contradicting our assumption that
the core is empty. �

420 J. Könemann et al.

2.3 Description of Leastcore

We denote inclusion-wise maximal sets in the family L as S∗
1 , S∗

2 , . . . , S∗
k . We

define the edge set E+ to be the set of edges in G such that at most one of its
nodes is in S∗

i for every i ∈ [k] := {1, . . . , k}, i.e.

E+ := E \ (k⋃

i=1

E(S∗
i)

)
.

Lemma 4. For every choice of vi ∈ S∗
i , i ∈ [k], there exists a universal matching

M ∈ Muni such that the node set covered by M is as follows

k⋃

i=1

S∗
i \{vi} .

Proof. By Lemma 3, we know that for every i ∈ [k] there exists a universal
matching Mvi

∈ Muni such that vi is exposed by Mvi
. Now, for every i ∈ [k],

let us define
Mi := E(S∗

i) ∩ Mvi
.

Since Mi satisfies all laminar family constraints in L for subsets of S∗
i we have

that
k⋃

i=1

Mi

is a matching satisfying all the constraints (1), and hence is a universal matching
covering the desired nodes. �

For each i ∈ [k] fix a unique representative node v∗
i ∈ S∗

i . By Lemma 4,
there exists a universal matching M∗ covering precisely

⋃
i∈[k] S

∗
i \{v∗

i }. For any
x ∈ P1(ε1) and S ⊆ V we use diff(x, S) to denote

diff(x, S) := x(S) − x∗(S) .

For single nodes we use the shorthand diff(x, v) = diff(x, {v}). We now prove
the following crucial structure result on allocations in the leastcore.

Lemma 5. For every leastcore allocation x, i.e. for every x ∈ P1(ε1), we have
that

(i) for all i ∈ [k], for all u ∈ S∗
i : diff(x, u) = diff(x, v∗

i),
(ii) for all e ∈ E+ : excess(x, e) ≥ 0.

Proof. Consider u ∈ S∗
i , and note that we may use Lemma 4 to choose a universal

matching Mu covering precisely

S∗
i \{u} ∪

⋃

j �=i

S∗
j \{v∗

j }.

Polytime Nucleolus of Matching Games 421

Hence we have V (Mu)∪{u} = V (M∗)∪{v∗
i }, and since M∗ and Mu are universal,

x(M∗) = x∗(M∗) and x(Mu) = x∗(Mu). Using these observations we see that

sym(x, u) = x(u) + x(Mu) − (x∗(u) − x∗(Mu))
= x(v∗

i) + x(M∗) − (x∗(v∗
i) − x∗(M∗)) = diff(x, v∗

i).

showing (i).
Now we prove (ii). Consider e ∈ E+ where e = {u, v}. Since e �∈ E(S∗

i) for all
i ∈ [k], we can choose a universal matching M exposing u and v by Lemma 4.
Thus M ∪ {e} is also a matching. Notice M is x-tight, and so we have

excess(x, e) = excess(x,M ∪ {e})
︸ ︷︷ ︸

≥ε1

− excess(x,M)
︸ ︷︷ ︸

=ε1

≥ 0

as desired. �

Lemma 6. Let x ∈ P1(ε1) and let M ∈ M be a matching such that
M ⊆ ⋃

i∈[k] E(S∗
i). Then there exists M ′ ⊆ M∗ such that excess(x,M ′) ≤

excess(x,M) and for all i ∈ [k], |M ′ ∩ E(S∗
i)| = |M ∩ E(S∗

i)|.
Proof. See the arxiv version [27]. �

Recall that x∗ is a fixed universal allocation in P1(ε1). Let E∗ ⊆ E denote
the union of universal matchings, i.e. E∗ = ∪M∈Muni

M . We now define linear
program (P 1).

max ε (P 1)

s.t. diff(x, u) = diff(x, v∗
i) for all u ∈ S∗

i , i ∈ [k] (2)
excess(x, e) ≤ 0 for all e ∈ E∗

excess(x, e) ≥ 0 for all e ∈ E+

excess(x,M∗) = ε

x(V) = ν(G)
x ≥ 0 .

Let ε1 be the optimal value of the linear program (P 1). We now show that P1(ε1)
is indeed a compact description of the leastcore P1(ε1).

Theorem 2. We have ε1 = ε1 and P1(ε1) = P 1(ε1).

Proof. See Appendix A.

422 J. Könemann et al.

3 Computing the Nucleolus

The last section presented a polynomial-size formulation for the leastcore
LP (P1). In this section we complete our polynomial-time implementa-
tion of Maschler’s scheme by showing that (Pj) has the following compact
reformulation:

max ε (P j)

s.t. excess(x, e) ≥ ε − ε1 for all e ∈ E+, e �∈ Fix(P j−1(εj−1))
x(v) ≥ ε − ε1 for all v ∈ V, v �∈ Fix(P j−1(εj−1))

excess(x, e) ≤ ε1 − ε for all e ∈ E∗, e �∈ Fix(P j−1(εj−1))
x ∈ P j−1(εj−1) ,

where εj is the optimal value of the linear program (P j).

Theorem 3. For all j = 1, . . . , j∗, we have εj = εj and Pj(εj) = P j(εj).

Proof. We refer the reading to the arxiv version [27] for the proof.

With Theorem 3 we can replace each linear program (Pj) with (P j) in Maschler’s
Scheme. Since the universal allocation x∗, the node sets S∗

i , i ∈ [k], the edge
set E+, and the edge set E∗ can all be computed in polynomial time, we have
shown that the nucleolus of any cooperative matching game with empty core
can be computed in polynomial time. Therefore we have shown Theorem 1.

Open Questions. Matching Games generalize naturally to b-matching games,
where instead the underlying optimization problem is to find an edge subset M
with |M ∩ δ(v)| ≤ bv for each node v. Biro, Kern, Paulusma, and Wojuteczky [4]
showed that the core-separation problem when bv > 2 for some vertex v, is
coNP-Hard. Despite this, the complexity of computing the nucleolus of these
games is open.

Our algorithm relies heavily on the ellipsoid method. When the core is non-
empty, there is a combinatorial algorithm for finding the nucleolus [3]. It would
be interesting to develop a combinatorial algorithm for nucleolus computation
of matching games in general.

Acknowledgements. The authors thank Umang Bhaskar, Daniel Dadush, and Linda
Farczadi for stimulating and insightful discussions related to this paper.

Appendix

A Proof of Theorem 2

Proof. First, we show that P1(ε1) ⊆ P 1(ε1). Consider x ∈ P1(ε1). By Lemma 5(i)
we have

diff(x, u) = diff(x, v∗
i) for all u ∈ S∗

i , i ∈ [k].

Polytime Nucleolus of Matching Games 423

Lemma 5(ii) shows that excess(x, e) ≥ 0 for all e ∈ E+, and excess(x,M∗) = ε1

holds by the universality of M∗. It remains to show that

excess(x, e) ≤ 0 for all e ∈ E∗.

Suppose for contradiction there exists e ∈ E∗ such that excess(x, e) > 0. By the
definition of E∗, there exists a universal matching M ′ containing e. Since M ′ is
universal, excess(x,M ′) = ε1. But by our choice of e,

excess(x,M ′ \ {e}) < excess(x,M ′) = ε1

contradicting that x is in P1(ε1). Thus we showed that (x, ε1) is feasible for (P 1),
i.e. we showed that P1(ε1) ⊆ P 1(ε1).

To complete the proof we show that P 1(ε1) ⊆ P1(ε1). Let x be an allocation
in P 1(ε1). Due to the description of the linear program (P1), it is enough to
show that for every matching M ∈ M we have

excess(x,M) ≥ ε1 .

Since excess(x, e) ≥ 0 for alle ∈ E+, it suffices to consider only the matchings M ,
which are unions of matchings on the graphs G[S∗

i], i ∈ [k]. Let ti := |M∩E(S∗
i)|.

By Lemma 6 applied to x∗ there exists M ′ ⊆ M∗ such that excess(x∗,M) ≥
excess(x∗,M ′) and |M ′ ∩E(S∗

i)| = ti, for all i ∈ [k]. Then due to constraints (2)
in (P 1) we have

excess(x,M) =
k∑

i=1

2ti diff(x, v∗
i)

︸ ︷︷ ︸
=diff(x,M ′)

+ excess(x∗,M)
︸ ︷︷ ︸
≥excess(x∗,M ′)

≥ excess(x,M ′) ≥ excess(x,M∗) = ε1 ,

where the last inequality follows since M ′ ⊆ M∗ and excess(x, e) ≤ 0 for all
e ∈ E∗.

Thus, we showed that P1(ε1) ⊆ P 1(ε1) and P 1(ε1) ⊆ P1(ε1). Recall, that ε1

and ε1 are the optimal values of the linear programs (P1) and (P 1) respectively.
Thus, we have ε1 = ε1 and P1(ε1) = P 1(ε1). �

B Example of a Matching Game With Empty Core

Consider the example in Fig. 1. This graph G = (V,E) is a 5-cycle with two
adjacent edges 15 and 12 of weight 2, and the remaining three edges of weight 1.
Since the maximum weight matching value is ν(G) = 3, but the maximum weight
fractional matching value is 7

2 , the core of this game is empty. The allocation
x∗ defined by x∗(1) = 7

5 and x∗(2) = x∗(3) = x∗(4) = x∗(5) = 2
5 lies in the

leastcore. Each edge has the same excess, − 1
5 , and any coalition of four vertices

yields a minimum excess coalition with excess − 2
5 . Hence the leastcore value of

this game is ε1 = − 2
5 .

424 J. Könemann et al.

Fig. 1. Matching game with
empty core

In fact, we can see that x∗ is the nucleolus of
this game. To certify this we can use the result
of Schmeidler [38] that the nucleolus lies in the
intersection of the leastcore and the prekernel.
For this example, the prekernel condition that
for all i �= j ∈ V ,

max{x(S ∪ {i}) − ν(S ∪ {i}) : S ⊆ V \{j}}
= max{x(S ∪ {j}) − ν(S ∪ {j}) : S ⊆ V \{i}}

reduces to the condition that the excess values
of non-adjacent edges are equal. Since G is an
odd cycle, this implies that all edges has equal
excess, i.e.

excess(x, 12) = excess(x, 23) = excess(x, 34)
= excess(x, 45) = excess(x, 15).

Combining the four equations above with the leastcore condition that x(V) =
ν(G) we obtain a system of equations with the unique solution x∗. Hence the
intersection of the leastcore and prekernel is precisely {x∗}, and so by Schmeidler,
x∗ is the nucleolus.

References

1. Aumann, R.J., Maschler, M.: Game theoretic analysis of a bankruptcy problem
from the talmud. J. Econ. Theory 36(2), 195–213 (1985)

2. Bateni, M.H., Hajiaghayi, M.T., Immorlica, N., Mahini, H.: The cooperative game
theory foundations of network bargaining games. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6198, pp. 67–78. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14165-2 7

3. Biró, P., Kern, W., Paulusma, D.: Computing solutions for matching games. Int.
J. Game Theory 41, 75–90 (2012)

4. Biró, P., Kern, W., Paulusma, D., Wojuteczky, P.: The stable fixtures problem
with payments. Games Econ. Behav. 11(9), 245–268 (2017)

5. Brânzei, R., Solymosi, T., Tijs, S.: Strongly essential coalitions and the nucleolus
of peer group games. Int. J. Game Theory 33(3), 447–460 (2005)

6. Chen, N., Lu, P., Zhang, H.: Computing the nucleolus of matching, cover and clique
games. In: AAAI (2012)

7. Dadush, D.: Personal communication (2017)
8. Davis, M., Maschler, M.: The kernel of a cooperative game. Naval Res. Logist. Q.

12(3), 223–259 (1965)
9. Deng, X., Fang, Q.: Algorithmic cooperative game theory. In: Chinchuluun, A.,

Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.) Pareto Optimality, Game Theory
and Equilibria. SOIA, vol. 17, pp. 159–185. Springer, New York (2008). https://
doi.org/10.1007/978-0-387-77247-9 7

https://doi.org/10.1007/978-3-642-14165-2_7
https://doi.org/10.1007/978-3-642-14165-2_7
https://doi.org/10.1007/978-0-387-77247-9_7
https://doi.org/10.1007/978-0-387-77247-9_7

Polytime Nucleolus of Matching Games 425

10. Deng, X., Fang, Q., Sun, X.: Finding nucleolus of flow game. J. Comb. Optim.
18(1), 64–86 (2009)

11. Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combina-
torial optimization games. Math. Oper. Res. 24(3), 751–766 (1999)

12. Edmonds, J.: Maximum matching and a polyhedron with 0, 1-vertices. J. Res.
Natl. Bur. Stan. B 69(125–130), 55–56 (1965)

13. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)
14. Elkind, E., Goldberg, L.A., Goldberg, P., Wooldridge, M.: Computational com-

plexity of weighted threshold games. In: Proceedings of the National Conference
on Artificial Intelligence, p. 718 (2007)

15. Faigle, U., Kern, W., Fekete, S.P., Hochstättler, W.: The nucleon of cooperative
games and an algorithm for matching games. Math. Program. 83(1–3), 195–211
(1998)

16. Faigle, U., Kern, W., Kuipers, J.: Note computing the nucleolus of min-cost span-
ning tree games is NP-hard. Int. J. Game Theory 27(3), 443–450 (1998)

17. Faigle, U., Kern, W., Kuipers, J.: On the computation of the nucleolus of a coop-
erative game. Int. J. Game Theory 30(1), 79–98 (2001)

18. Faigle, U., Kern, W., Kuipers, J.: Computing an element in the lexicographic kernel
of a game. Math. Methods Oper. Res. 63(3), 427–433 (2006)

19. Faigle, U., Kern, W., Paulusma, D.: Note on the computational complexity of least
core concepts for min-cost spanning tree games. Math. Methods Oper. Res. 52(1),
23–38 (2000)

20. Farczadi, L.: Matchings and games on networks. University of Waterloo (2015)
21. Gillies, D.B.: Solutions to general non-zero-sum games. Contrib. Theory Games

4(40), 47–85 (1959)
22. Granot, D., Granot, F., Zhu, W.R.: Characterization sets for the nucleolus. Int. J.

Game Theory 27(3), 359–374 (1998)
23. Granot, D., Maschler, M., Owen, G., Zhu, W.R.: The kernel/nucleolus of a standard

tree game. Int. J. Game Theory 25(2), 219–244 (1996)
24. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial

Optimization, Algorithms and Combinatorics: Study and Research Texts, vol. 2.
Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-97881-4

25. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization, vol. 2. Springer, New York (2012)

26. Kern, W., Paulusma, D.: Matching games: the least core and the nucleolus. Math.
Oper. Res. 28(2), 294–308 (2003)

27. Koenemann, J., Pashkovich, K., Toth, J.: Computing the nucleolus of weighted
cooperative matching games in polynomial time. arXiv preprint arXiv:1803.03249
(2018)

28. Kopelowitz, A.: Computation of the kernels of simple games and the nucleolus of
n-person games. Technical report, Hebrew Univ Jerusalem (Israel) Dept of Math-
ematics (1967)

29. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res.
Logist. Q. 2(1–2), 83–97 (1955)

30. Kuipers, J., Solymosi, T., Aarts, H.: Computing the nucleolus of some
combinatorially-structured games. Math. Program. 88(3), 541–563 (2000)

31. Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization,
vol. 46. Cambridge University Press, Cambridge (2011)

32. Lemaire, J.: An application of game theory: cost allocation. ASTIN Bull. J. IAA
14(1), 61–81 (1984)

https://doi.org/10.1007/978-3-642-97881-4
http://arxiv.org/abs/1803.03249

426 J. Könemann et al.

33. Maschler, M., Peleg, B., Shapley, L.S.: Geometric properties of the kernel, nucleo-
lus, and related solution concepts. Math. Oper. Res. 4(4), 303–338 (1979)

34. Megiddo, N.: Computational complexity of the game theory approach to cost allo-
cation for a tree. Math. Oper. Res. 3(3), 189–196 (1978)

35. Paulusma, D.: Complexity Aspects of Cooperative Games. Twente University
Press, Enschede (2001)

36. Potters, J., Reijnierse, H., Biswas, A.: The nucleolus of balanced simple flow net-
works. Games Econ. Behav. 54(1), 205–225 (2006)

37. Rothvoß, T.: The matching polytope has exponential extension complexity. J. ACM
(JACM) 64(6), 41 (2017)

38. Schmeidler, D.: The nucleolus of a characteristic function game. SIAM J. Appl.
Math. 17(6), 1163–1170 (1969)

39. Shapley, L.S., Shubik, M.: The assignment game I: the core. Int. J. Game Theory
1(1), 111–130 (1971)

40. Solymosi, T., Raghavan, T.E.: An algorithm for finding the nucleolus of assignment
games. Int. J. Game Theory 23(2), 119–143 (1994)

41. Stearns, R.E.: Convergent transfer schemes for n-person games. Trans. Am. Math.
Soc. 134(3), 449–459 (1968)

42. Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer, New York (2012)

Breaking Symmetries to Rescue Sum
of Squares: The Case of Makespan

Scheduling

Victor Verdugo1,2 and José Verschae1(B)

1 Institute of Engineering Sciences, Universidad de O’Higgins, Rancagua, Chile
{victor.verdugo,jose.verschae}@uoh.cl

2 Department of Mathematics, London School of Economics, London, UK

Abstract. The Sum of Squares (SoS) hierarchy gives an automatized
technique to create a family of increasingly tighter convex relaxations
for binary programs. There are several problems for which a constant
number of rounds give integrality gaps matching the best known approx-
imation algorithm. In many other, however, ad-hoc techniques give sig-
nificantly better approximation factors. The lower bounds instances, in
many cases, are invariant under the action of a large permutation group.
The main purpose of this paper is to study how the presence of sym-
metries on a formulation degrades the performance of the relaxation
obtained by the SoS hierarchy. We do so for the special case of the min-
imum makespan problem on identical machines. Our first result is to
show that a linear number of rounds of SoS applied over the configu-
ration linear program yields an integrality gap of at least 1.0009. This
improves on the recent work by Kurpisz et al. [30] that shows an analo-
gous result for the weaker LS+ and SA hierarchies. Then, we consider the
weaker assignment linear program and add a well chosen set of symmetry
breaking inequalities that removes a subset of the machine permutation
symmetries. We show that applying the SoS hierarchy for Oε(1) rounds
to this linear program reduces the integrality gap to (1 + ε). Our results
suggest that the presence of symmetries were the main barrier preventing
the SoS hierarchy to give tight relaxations.

1 Introduction

The lift-and-project hierarchies, as Sherali & Adams (SA), Lovász & Schrijver
(LS), or Sum of Squares (SoS), are systematic methods for obtaining a family
of increasingly tight relaxations, parameterized on the round of the hierarchy.
Arguably, it is not well understood for which problems these hierarchies yield
relaxations that match the best possible approximation algorithm. Indeed, there
are some positive results, but many other strong negative results for algorithmi-
cally easy problems. This shows a natural limitation to the power of hierarchies
as one-fit-all technique. Quite remarkably, the instances used for obtaining lower

This work has been partially funded by Project Fondecyt Nr. 1181527.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 427–441, 2019.
https://doi.org/10.1007/978-3-030-17953-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_32&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_32

428 V. Verdugo and J. Verschae

bounds often have a very symmetric structure [13,30,31,44,46], which suggests a
strong connection between the tightness of the relaxation given by these hierar-
chies and symmetries. The main purpose of this work is to study this connection
for a specific relevant problem, namely, minimum makespan scheduling on iden-
tical machines. This problem is one of the first considered under the lens of
approximation algorithms [12], and since then it has been studied extensively.
The input of the problem consists of a set J of n jobs, each having an integral
processing time pj > 0, and a set M = [m] of m identical machines. Given an
assignment σ : J → M , the load of a machine i is the total processing time of
jobs assigned to i, that is,

∑
j∈σ−1(i) pj . The objective is to find an assignment

of jobs to machines that minimizes the makespan, that is, the maximum load.
The problem is strongly NP-hard and admits several polynomial-time approx-
imation schemes based on different techniques, as dynamic programming and
some tractable versions of integer programming [1,2,7,15,16,19,20].

Integrality Gaps. The minimum makespan problem has two natural linear relax-
ations, which have been widely studied in the literature. The assignment linear
program uses binary variables xij which indicate if job j is assigned to machine i.
It is easy to see that its integrality gap is 2. The stronger configuration linear
program, uses an exponential number of variables yiC which indicate whether
the set of jobs assigned to i has C as a multiset of processing times. Kurpisz et
al. [30] showed that the configuration linear program has an integrality gap of
at least 1024/1023 ≈ 1.0009 even after a linear number of rounds of the LS+

or SA hierarchies. Hence, the same lower bound holds when the ground formu-
lation is the assignment linear program. On the other hand, Kurpisz et al. [30]
leave open if the SoS hierarchy applied to the configuration linear program has
a (1 + ε) integrality gap after constantly many rounds for constant ε > 0, i.e.,
Oε(1) rounds. Our first main contribution is a negative answer to this question.

Theorem 1. Consider the problem of scheduling identical machines to minimize
the makespan. For each n ∈ N there exists an instance with n jobs such that,
after Ω(n) rounds of the SoS hierarchy over the configuration linear program,
the obtained semidefinite relaxation has an integrality gap of at least 1.0009.

Since the configuration linear program is stronger than the assignment linear
program, our result holds if we apply Ω(n) rounds of SoS over the assignment
linear program. The proof of the lower bound relies on tools from representation
theory of symmetric groups over polynomials rings and it is inspired on the recent
work by Raymond et al. for invariant sums of squares over k-hypercubes [47].
On one hand, the lower bound is obtained by constructing high-degree pseudo-
expectations, and by obtaining symmetry-reduced decompositions of the poly-
nomial ideal defined by the configuration liner program, on the other hand. The
machinery from representation theory allows to restrict attention to invariant
polynomials, and we combine this with a strong pseudoindependence result for a
well chosen polynomial spanning set. Our analysis is also connected to the work
of Razborov on flag algebras and we believe it can be of independent interest for
analyzing lower bounds in the context of SoS in presence of symmetries [48,49].

Breaking Symmetries to Rescue SoS: The Case of Makespan Scheduling 429

Symmetries and Hierarchies. It is natural to explore whether symmetry handling
techniques might help overcoming the limitation given by Theorem1. A natural
source of symmetry for this problem comes from the fact that the machines
are identical: Given a schedule, we obtain other with the same makespan by
permuting the assignment over the machines. In other words, the assignment
linear program is invariant under the action of the symmetric group on the set
of machines. The question we study is the following: Is it possible to obtain a
polynomial size linear or semidefinite program with an integrality gap of at most
(1 + ε) that is not invariant under the machine symmetries? That is, our goal is
to understand if the group action is deteriorating the quality of the relaxations
obtained from the SoS hierarchy. This time, we provide a positive answer.

Theorem 2. Consider the problem of scheduling identical machines to minimize
the makespan. After adding a set of linearly many symmetry breaking inequalities
to the assignment linear program, Oε(1) rounds of the SoS hierarchy yields a
convex relaxation with an integrality gap of at most (1 + ε), for any ε > 0.

The theorem is based on introducing a formulation that breaks the sym-
metries in the invariant assignment program by adding new constraints. This
enforces that any integer feasible solution of the formulation should respect a
lexicographic order over the machine configurations. On top of the linear pro-
gram obtained from adding the aforementioned constraints, we apply the SoS
hierarchy. Using the decomposition theorem [23], we can can construct a solution
that is integral on a well chosen set of machines M ′ of size Oε(1). Our symme-
try breaking inequalities imply that between two consecutive machines in M ′,
our solution assigns approximately the same configurations, and thus we can
construct an approximately optimal solution.1

Literature Review

Upper Bounds. The first application of semidefinite programming in the con-
text of approximation algorithms was by the work of Goemans & Williamson for
Max-Cut [11]. There are not many positive results in this line for other combi-
natorial optimization problems, but of particular interest to our work is the SoS
based approximation scheme by Karlin et al. to the Max-Knapsack problem [23].
They use a structural decomposition theorem satisfied by the SoS hierarchy, which
makes a difference with respect to other classic hierarchies. Recently, for a con-
stant number of machines, Levey and Rothvoss design an approximation scheme
with a sub-exponential number of rounds in the weaker SA hierarchy [34], which
was recently improved to a QPTAS [8]. A lot of attention has received the SoS
method in order to design algorithms for high-dimensional problems. Among
them we find matrix and tensor completion [5,45], tensor decomposition [37]
and clustering [26,46].

1 The current version gives a high-level exposition of our work. The full version with
examples, figures, explanatory comments and technical details can be found in [54].

430 V. Verdugo and J. Verschae

Lower Bounds. The first was obtained in the context of positivstellensatz cer-
tificates was by Grigoriev [13], showing the necessity of a linear number of SoS
rounds to refute an easy Knapsack instance. Similar results were obtained by
Laurent [31] for Max-Cut and by Kurpisz et al. for unconstrained polynomial
optimization [27]. The same authors show that for a certain polynomial-time
single machine scheduling problem, the SoS hierarchy exhibits an unbounded
integrality gap even in a high-degree regime [27,29]. Remarkable are the work
of Grigoriev [14] and Schoenebeck [52] exhibiting the difficulty for SoS to cer-
tify the insatisfiability of random 3-SAT instances in subexponential time, and
recently there have been efforts on unifying frameworks to show lower bounds on
random CSP’s [3,24,25]. For estimation and detection problems, lower bounds
have been shown for the planted clique problem, k-densest subgraph and tensor
PCA, among others [4,17].

Invariant Sum of Squares. Remarkable in this line is the work of Gatermann
& Parrillo, that studied how to obtain reduced sums of squares certificates of
non-negativity when the polynomial is invariant under the action of a group,
using tools from representation theory [9]. Recently, Raymond et al. developed
on the Gatermann & Parrillo method to construct symmetry-reduced sum of
squares certificates for polynomials over k-subset hypercubes [47]. Furthermore,
the authors make an interesting connection with the Razborov method and flag
algebras [48,49]. Blekherman et al. provided degree bounds on rational represen-
tations for certificates over the hypercube, recovering as a corollary known lower
bounds for combinatorial optimization problems like Max-Cut [6,32]. Kurpisz
et al. provide a method for proving SoS lower bounds when the formulations
exhibits a high degree of symmetry, even under the presence of symmetries [28].

Symmetry Handling in Integer Programming. The integer programming
community have dealt with symmetries by either breaking them [18,22,35], or
devising symmetry-aware exact algorithms as isomorphism pruning [38], orbital
branching [42] and orbitopal fixing [21]. Ostrowski [41] uses the SA hierarchy and
reduces the dimension of the lifted relaxation to obtain a faster algorithm. For
an extensive treatment we refer to the surveys by Margot [39] and Liberti [36].

2 Preliminaries: Sum of Squares and Pseudoexpectations

In what follows we denote by R[x] the ring of polynomials with real coefficients.
Binary integer programming belongs to a larger class of problems in polynomial
optimization, where the constraints are defined by polynomials in the variables
indeterminates. More specifically, for given index sets M,J and E, consider the
set K defined as

{
x ∈ R

E : gi(x) ≥ 0 ∀i ∈ M, hj(x) = 0 ∀j ∈ J, x2
e − xe = 0 ∀e ∈ E

}
, (1)

where gi, hj ∈ R[x] for all i ∈ M and for all j ∈ J . In particular, for binary inte-
ger programming the equality and inequality constraints are affine functions. We

Breaking Symmetries to Rescue SoS: The Case of Makespan Scheduling 431

denote by IE the ideal of polynomials in R[x] generated by {x2
e−xe : e ∈ E}, and

let R[x]/IE be the quotient ring of polynomials that vanish in the ideal IE . That
is, f, g ∈ R[x] are in the same equivalence class of the quotient ring if f −g ∈ IE ,
that we denote f ≡ g mod IE . Alternatively, f ≡ g mod IE if and only if the
polynomials evaluate to the same values on the vertices of the hypercube, that
is, f(x) = g(x) for all x ∈ {0, 1}E . Observe that the equivalence classes in the
quotient ring are in bijection with the square-free polynomials in R[x], that is,
polynomials where no variable appears squared. In what follows we identify ele-
ments of R[x]/IE in this way. Given S ⊆ E, we denote by xS the square-free
monomial that is obtained from the product of the variables indexed by the ele-
ments in S, that is, xS =

∏
e∈S xe. The degree of a polynomial f ∈ R[x]/IE is

denoted by deg(f), and we say that f is a sum of squares polynomial, for short
SoS, if there exist polynomials {sα}α∈A for a finite family A in the quotient ring
such that f ≡ ∑

α∈A s2α mod IE .

Certificates and SoS Method. The question of certifying the infeasibility of (1) is
hard in general but sometimes it is possible to find simple certificates of infeasi-
bility. We say that there exists a degree-� SoS certificate of infeasibility for K if
there exist SoS polynomials s0 and {si}i∈M , and polynomials {rj}j∈J such that

− 1 ≡ s0 +
∑

i∈M

sigi +
∑

j∈J

rjhj mod IE , (2)

and the degree of every polynomial in the right hand side is at most �. The SoS
algorithm iteratively checks the existence of a SoS certificate, parameterized in
the degree, and each step of the algorithm is called a round. Since |E| is an
upper bound on the certificate degree, the method is guaranteed to terminate
[33,43]. Furthermore, the existence of a degree-� SoS certificate can be decided
by solving a semidefinite program, in time |E|O(�). In the case of binary integer
programming, if K is infeasible there exists a degree-� SoS certificate, with � ≤
|E| [33]. We say that a linear functional Ẽ : R[x]/IE → R is a degree-� SoS
pseudoexpectation for (1), if it satisfies the following properties:

1. Ẽ(1) = 1,
2. Ẽ(f2) ≥ 0 for all f ∈ R[x]/IE with deg(f) ≤ �/2,
3. Ẽ(f2gi) ≥ 0 for all i ∈ M , for all f ∈ R[x]/IE with deg(f2gi) ≤ �,
4. Ẽ(fhj) = 0 for all j ∈ J , for all f ∈ R[x]/IE with deg(fhj) ≤ �,

where p is the square-free representation of p after polynomial division by the
Gröbner basis {x2

e − xe : e ∈ E}. That is, p ≡ p mod IE .2

Lemma 3. Assume that K defined in (1) is empty. If there exists a degree-� SoS
pseudoexpectation for K then there is no degree-� SoS certificate of infeasibility.

This lemma provides a way of finding lower bounds on the minimum value of
a certificate’s degree, and it will used in Sect. 3. In the following we refer to
low-degree when the degree of a certificate or the pseudoexpectation is O(1).
2 In what follows, every time we evaluate a polynomial in the pseudoexpectation we are

doing it over the square-free representation. We omit the bar notation for simplicity.

432 V. Verdugo and J. Verschae

3 Lower Bound: Symmetries Are Hard for SoS

In what follows we show that the SoS method fails to provide a low-degree cer-
tificate of infeasibility for a certain family of scheduling instances. The program
we analyze is known as the configuration linear program, that has proven to
be powerful for different scheduling and packing problems [10,53]. Given a value
T > 0, a configuration corresponds to a multiset of processing times such that its
total sum does not exceed T . The multiplicity m(p,C) indicates the number of
times that the processing time p appears in the multiset C. The load of a config-
uration C is just the total processing time,

∑
p∈{pj :j∈J} m(p,C) · p. Given T , let

C denote the set of all configurations with load at most T . For each combination
of i ∈ M and a configuration C ∈ C, the program has a variable yiC that models
whether machine i is scheduled according to configuration C. Let np denote the
number of jobs in J with processing time p. Consider the formulation, clp(T),
given by (i)

∑
C∈C yiC = 1 for all i ∈ M , (ii)

∑
i∈M

∑
C∈C m(p,C)yiC = np for

all p ∈ {pj : j ∈ J} and (iii) yiC ∈ {0, 1} for all i ∈ M,C ∈ C. The configuration
linear program corresponds to the linear relaxation where the last constraint is
changed to yiC ≥ 0. We briefly describe the construction of a family of hard
instances {Ik}k∈N for the configuration linear program in [30]. Let T = 1023,
and for each odd k ∈ N we have n = 15k jobs and 3k machines. There are 15
different job-sizes with value O(1), each one with multiplicity k. There exist a
set of special configurations {C1, . . . , C6}, called matching configurations, such
that the program above is infeasible if and only if the program restricted to the
matching configurations is infeasible [30, Lemma 2].

Theorem 4 ([30]). For each odd k, there exists a degree-
k/2� SA pseudoex-
pectation for the configuration linear program.

3.1 A Symmetry-Reduced Decomposition of the Scheduling Ideal

Given T > 0, the variable set of the configuration linear program is E = [m] ×
C, and the symmetric group Sm acts over the monomials in R[y] according to
σyiC = yσ(i)C for every σ ∈ Sm. The action extends linearly to R[y]/IE , and
the configuration linear program is invariant under this action, that is, for every
y ∈ clp(T) and every σ ∈ Sm we have σy ∈ clp(T). We say that a polynomial
f ∈ R[y]/IE is Sm-invariant if σf = f for every σ ∈ Sm. In particular, if f is
invariant we have f = 1/|Sm|∑σ∈Sm

σf := sym(f), which is the symmetrization
or Reynolds operator of the group action. We say that a linear function L over
the quotient ring is Sm-symmetric if for every polynomial f ∈ R[y]/IE we have
L(f) = L(sym(f)).

Lemma 5. Let Ẽ be a symmetric linear operator over R[y]/IE such that for
every invariant SoS polynomial g of degree at most � we have Ẽ(g) ≥ 0. Then,
Ẽ(f2) ≥ 0 for every f ∈ R[y]/IE with deg(f) ≤ �/2.

Therefore, when Ẽ is symmetric we restrict our attention to those poly-
nomials that are invariant and SoS. To analyze the action of the symmetric

Breaking Symmetries to Rescue SoS: The Case of Makespan Scheduling 433

group over R[y] we introduce some tools from representation theory to char-
acterize the invariant Sm-modules of the polynomial ring [51]. We say that a
Sm-module V is irreducible if the only invariant subspaces are {0} and V . Any
Sm-module V can be decomposed into irreducible modules, and the decomposi-
tion is indexed by the partitions of m. A partition of m is a vector (λ1, . . . , λt)
such that λ1 ≥ λ2 ≥ · · · λt > 0 and λ1 + · · · + λt = m. We denote by λ � m
when λ is a partition of m. Then, V can be decomposed as V =

⊕
λ�m Vλ,

that is, a direct sum where each Vλ is an irreducible Sm-module of V [51].
Each of the subspaces in the direct sum is called an isotypic component. A
tableau of shape λ is a bijective filling between [m] and the cells of a grid
with t rows, and every row r ∈ [t] has length λr. In this case, the shape or
Young diagram of the tableau is λ. For a tableau τλ of shape λ, we denote
by rowr(τλ) the subset of [m] that fills row r in the tableau. The row group
Rτλ

is the subgroup of Sm that stabilizes the rows of the tableau τλ, that is,
Rτλ

=
{

σ ∈ Sm : σ · rowr(τλ) = rowr(τλ) for every r ∈ [t]
}

.

Invariant SoS Polynomials. Let Q� be the quotient ring R[y]/IE restricted to
polynomials of degree at most � and let Q� =

⊕
λ�m Q�

λ be its isotypic decompo-
sition. Given a tableau τλ of shape λ, let Wτλ

be the row subspace of fixed points
in Q� for the row group Rτλ

, that is, Wτλ
= {q ∈ Q�

λ : σq = q for all σ ∈ Rτλ
}.

The following result follows from the work of Gaterman and Parrillo [9] and
the recent work of Raymond et al. [47] in the context of symmetry reduction
for invariant semidefinite programs. In what follows, 〈A,B〉 denotes the trace
of AB. Given � ∈ [m], let Λ� be the partitions of m that are lexicographically
larger than (m − �, 1, . . . , 1).

Theorem 6. Suppose that g ∈ R[y]/IE is a degree-� SoS and Sm-invariant
polynomial. For each partition λ ∈ Λ�, let τλ be a tableau of shape λ and let
Pλ = {pλ

1 , . . . , pλ
�λ

} be a set of polynomials such that span(Pλ) ⊇ Wτλ
. Then,

for each partition λ ∈ Λ� there exists a �λ × �λ positive semidefinite matrix Mλ

such that g =
∑

λ∈Λ�
〈Mλ, Zλ〉, where Zλ

ij = sym(pλ
i pλ

j).

Together with Lemma 5, it is enough to study pseudoexpectations for each of
the partitions in Λ� separately. Theorem 6 gives us flexibility in the spanning set
that we use for describing the row subspaces. If A is a matrix with entries in
R[y]/IE , let Ẽ(A) be the matrix obtained by applying Ẽ to each entry of A.

Lemma 7. Suppose that for each λ ∈ Λ�, the spanning set Pλ of Wτλ
is such

that Ẽ(Zλ) is positive semidefinite. Then, if deg(f) ≤ �/2 we have Ẽ(f2) ≥ 0.

3.2 Spanning Sets of the Scheduling Ideal

In this section we show how to construct the spanning sets of the row subspaces
in order to apply Lemma7, which together with a particular linear operator
provides the existence of a high-degree SoS pseudoexpectation. We say that
S ⊆ [m] × C is a partial schedule if for every i ∈ [m] we have δS(i) ≤ 1, where δS

434 V. Verdugo and J. Verschae

is the vertex degree in the (directed) bipartite graph GS with vertex partition
[m] and C, and edges S. We denote by M(S) the set of machines incident to
a partial schedule S, that is, {i ∈ [m] : δS(i) = 1}. Sometimes is convenient
to see a partial schedule S as a function from M(S) to C, so we say that S is
partial schedule with domain M(S). Let sched be the ideal of polynomials in
R[y] generated by

{∑
C∈C yiC − 1 : i ∈ [m]

} ∪
{

y2
iC − yiC : i ∈ [m], C ∈ C

}
. Let

Q�
sched be the polynomials in sched with degree equal to � that vanish in the

ideal sched.

Theorem 8. Q�
sched is spanned by {yS : |S| = � and S is a partial schedule}.

3.3 Spanning Sets of the Invariant Row Subspace

In previous section we provided a reduced spanning set for the quotient ring
vanishing in sched. In the following we construct spanning sets for the invariant
row subspaces. Given a tableau τλ with shape λ, the hook(τλ) is the tableau
with shape (λ1, 1, . . . , 1) ∈ Z

m−λ1+1, its first row it is equal to the first row of
τλ and the remaining elements of τλ fill the rest of the cells in increasing order
over the rows. That part is called the tail of the hook, and we denote by tail(τλ)
the elements of [m] in the tail of hook(τλ). We say that a partial schedule is in
γ-profile, with γ : C → Z+, if for every C ∈ C we have δS(C) = γ(C). A partial
schedule in γ-profile has size

∑
C∈C γ(C), a quantity that we denote by ‖γ‖. We

denote by supp(γ) the support of the vector γ, namely, {C ∈ C : γ(C) > 0}.

Definition 9. Given a partial schedule T , we say that a partial schedule A over
[m] \ M(T) is a (T, γ)-extension if A is in γ-profile. We denote by F(T, γ) the
set of (T, γ)-extensions. In particular, every (T, γ)-extension has size ‖γ‖.

Given a partial schedule T and a γ-profile, let BT,γ be the polynomial defined
by BT,γ =

∑
A∈F(T,γ) yA, if γ �= 0, and 1 otherwise. In words, this polynomial

corresponds to the sum over all those partial schedules in γ-profile that are not
incident to M(T). The following theorem is the main result of this section.

Theorem 10. Let λ ∈ Λ� and a tableau τλ of shape λ. Then, the row subspace
Wτλ

of Q�
sched is spanned by Pλ, defined as

�⋃

ω=0

{
yT BT,γ : T is partial schedule with M(T) = tail(τλ) and ‖γ‖ = ω

}
. (3)

3.4 High-Degree SoS Pseudoexpectation: Proof of Theorem1

Recall that for every k odd, the hard instance Ik has m = 3k machines. Also,
the linear operators we consider are supported over partial schedules incident to
a set of matching configurations, {C1, . . . , C6}. Consider Ẽ : R[y]/IE → R such
that for every partial schedule S of cardinality at most k/2 we have Ẽ(yS) =

1
(3k)|S|

∏6
j=1(k/2)δS(Cj), where (a)b = a(a − 1) · · · (a − b + 1), and (a)0 = 1; Ẽ is

zero elsewhere. We state the main result that implies Theorem 1.

Breaking Symmetries to Rescue SoS: The Case of Makespan Scheduling 435

Theorem 11. For every odd k, the operator Ẽ is a degree-
k/6� SoS pseudoex-
pectation for the configuration linear program in instance Ik and T = 1023.

Theorem 4 guarantees that for every k odd, Ẽ is a degree-
k/2� SA pseudoex-
pectation, and therefore a degree-
k/6� SA pseudoexpectation as well. In partic-
ular, properties (1) and (4) are satisfied. Since the configuration linear program is
constructed from equality constraints, it is enough to check property (2) for high
enough degree, in this case � =
k/6�. To check property (2) we require a notion
of conditional pseudoexpectations. Given a partial schedule T , consider the oper-
ator ẼT : R[y]/IE → R such that ẼT (yS) = 1

(3k−|T |)!
∏6

j=1(k/2 − δT (Cj))δS(Cj)

for every partial schedule S over the machines [m] \ M(T) and zero otherwise.

Lemma 12. If T, S are disjoint partial schedules, then Ẽ(yT yS) = ẼT (yS)
Ẽ(yT).

Lemma 13. Let T be a partial schedule and γ, μ a pair of configuration pro-
files with |T | + ‖γ‖ + ‖μ‖ ≤ k/2 and supp(γ), supp(μ) ⊆ {C1, . . . ,C6}. Then,
ẼT (BT,γBT,μ) = ẼT (BT,γ)ẼT (BT,μ).

Proof Idea of Theorem 11. By Lemma 7 it is enough to prove that Ẽ(Zλ) obtained
from the spanning set in (3) is positive semidefinite for each partition λ ∈ λ�.
By Lemma 12, Ẽ(Zλ) is block diagonal, with one block for each partial schedule
with domain tail(τλ). By Lemma 13 each block is a rank-1 matrix, and therefore
positive semidefinite. The detailed proof can be found in the full version.

4 Breaking Symmetries to Approximate with SoS

In the previous section we showed that the action of the symmetric group is hard
to tackle for the SoS method. In the following we show how to obtain almost
optimal programs in terms of integrality gap if we apply the SoS hierarchy after
breaking symmetries on the assignment linear program.3 In this model, there
are variables xij indicating whether job j is assigned to machine i. For a given
guess on the optimal makespan T , consider the formulation assign(T) defined
by: (i)

∑
i∈M xij = 1 for all j ∈ J , (ii)

∑
j∈J xijpj ≤ T for all i ∈ M , and

(iii) xij ∈ {0, 1} for all i, j. The assignment linear program corresponds to the
linear relaxation where the last constraint is changed to xij ≥ 0. The symmetric
group Sm acts over the monomials in R[x] according to σxij = xσ(i)j , for every
σ ∈ Sm. The action extends linearly to R[x]/IE , and assign(T) is invariant under
this action, that is, for every x ∈ assign(T) and σ ∈ Sm we have σx ∈ assign(T).

3 Recently, it was noted that the SoS hierarchy cannot necessarily be solved in poly-
time, even for a constant number of rounds [40]. As we will show in the journal
version, this is not an issue as the Sherali-Adams hierarchy suffices for our purposes.

436 V. Verdugo and J. Verschae

4.1 Symmetry Breaking Inequalities

In what follows we break symmetries by forcing a specific order on the configu-
rations over the machines. Suppose we have a partitioning J of the jobs set J
into s parts, J = {J1, . . . , Js}. For example, suppose the job sizes are ordered
from largest to smallest, that is p1 > p2 > · · · > ps where s = |{pj : j ∈ J}| is the
number of different job sizes. For the case Jq = {j ∈ J : pj = pq} we call J the
job-sizes partition. Given a partitioning of the jobs, a configuration C is a multi-
set of elements in {1, . . . , s}. Recall that for every q ∈ {1, . . . , s}, the multiplicity
of q in C, m(q, C), is the number of times that q appears repeated in C. As we
did before, we denote by C the set of all configurations. Observe that it coincides
with the configuration notion introduced in the context of the configuration lin-
ear program if we consider the job-sizes partition. We say that a configuration C
is lexicographically larger than S, and we denote C >lex S, if there exists q ∈ [s]
such that m(�, C) = m(�, S) for all � < q and m(q, C) > m(q, S). The relation
>lex defines a total order over C. Given a positive integer B and a partition-
ing J of the jobs, consider the program assign(B, T) obtained by intersecting
assign(T) with a set of symmetry breaking inequalities,

assign(T) ∩
m−1⋂

i=1

{
x ∈ R

M×J :
s∑

q=1

Bs−q
∑

j∈Jq

(
xij − x(i+1)j

) ≥ 0
}

.

We remark that the symmetry breaking constraints depend on the partitioning
of J . In the following we show that for sufficiently large, but polynomially sized
B, every solution in assign(B, T) obeys the lexicographic order on configura-
tions. Given a feasible integer solution x ∈ assign(T) and a machine i ∈ M , let
confi(x) ∈ C be the configuration defined by the number of jobs for each possi-
ble part that are scheduled in i according to x, that is, for every q ∈ {1, . . . , s},
m(q, confi(x)) =

∑
j∈Jq

xij .

Theorem 14. There exists B∗ = O(|J |2) such that for all (integral) solution
x ∈ assign(B, T) and for each i ∈ M \ {m}, we have confi(x) ≥lex confi+1(x).

4.2 Balanced Partitionings

Now we will show that low-degree SoS pseudoexpectations of assign(B, T) can
be rounded to obtain integral solutions with almost optimal makespan, where
the degree depends only on the number of configurations in C and the size
of J . A partitioning J is α-balanced, for α ≥ 1, if for every K,H ⊆ J such
that conf(K) = conf(H),

∑
j∈K pj ≤ α

∑
j∈H pj . Observe that the job-sizes

partitioning is 1-balanced. A key parameter is the maximum number of jobs
that can be assigned to a machine with makespan T , that is, λ = max{|K| :∑

j∈K pj ≤ T}. Recall that C depends on the partitioning and let τ(C) = 2λ|C|.
Theorem 15. Consider a value T > 0 and an α-balanced partitioning of J . Sup-
pose there exists a degree-τ(C) SoS pseudoexpectation for assign(B∗, T). Then,
we can find in polynomial time an integral solution xlex ∈ assign(B,αT).

Breaking Symmetries to Rescue SoS: The Case of Makespan Scheduling 437

For every ε > 0 we show how to construct a (1 + ε)-balanced partitioning,
which combined with the previous theorem yields the approximation scheme. An
overview can be found in the appendix and the full proof in the full version [54].

A SDP Based Approximation Scheme: Proof Sketch
of Theorem2

The subset of long jobs is denoted by Jlong and the short jobs are Jshort =
J \ Jlong. We consider a partitioning obtained by grouping jobs with a similar
processing time.

Lemma 16. For every ε > 0, there exists a partitioning, called ε-partitioning,
that is (1 + ε)-balanced.

Consider assign(B∗, T) obtained from the ε-partitionings and according to
Theorem 14. Using binary search we look for the smallest T such that there exists
a degree-τ(C) SoS pseudoexpectation for the long jobs. Theorem15 constructs a
schedule for the long jobs. The short jobs are scheduled greedily. Details can be
found in the full version [54].

B Pseudoexpectation Rounding: Proof Overview
of Theorem15

Observe that for the hard instances shown for the configuration linear program,
for T = 1023 we have that τ(C) = O(1). Recall that for T = 1023 there is
no feasible schedule for the instance and the job-sizes partition is 1-balanced.
Therefore, for every odd k, Theorem 15 guarantees that the degree of a SoS pseu-
doexpectation in assign(B∗, T) is upper bounded by a constant, and therefore
there is a low-degree SoS certificate of infeasiblity.

One of the key tools in our rounding algorithm is the notion of pseudoex-
pectation conditioning. Consider a degree-� pseudoexpectation Ẽ, let i ∈ M be
a machine and K ⊆ J such that Ẽ

(∏
j∈K xij

∏
j∈J\K(1 − xij)

)
> 0. Observe

that the polynomial in this expression is equal to 1 if and only xij = 1 for every
j ∈ K and xij = 0 for every j ∈ J \K. That is, machine i is scheduled integrally
with the jobs in K. For simplicity, we call φi,K =

∏
j∈K xij

∏
j∈J\K(1 − xij).

The (i,K)-conditioning of Ẽ corresponds to the linear operator over R[x]/IE

defined by Ẽi,K(xI) = Ẽ(xIφi,K)/Ẽ(φi,K), for every I ⊆ M × J . Intuitively, the
(i,K)-conditioning is the pseudoexpectation value obtained by conditioning on
the event that machine i is scheduled integrally with the jobs in K.

Lemma 17. Let Ẽ be a degree-� pseudoexpectation with � ≥ 2λ and consider a
machine i ∈ M . Then, the following holds:

(a) If Ẽ(φi,K) > 0, then |K| ≤ λ.
(b) Ẽi,K(xij) = 1 for every j ∈ K and Ẽi,K(xij) = 0 for every j ∈ J \ K.

438 V. Verdugo and J. Verschae

(c) If there exists H ⊆ J such that Ẽ(φi,H) > 0, then
∑

K⊆J Ẽ(φi,K) = 1 and
Ẽ =

∑
K⊆J:˜E(φi,K)>0 Ẽ(φi,K) · Ẽi,K .

In particular, property (c) above justifies the intuition behind since it decom-
poses the pseudoexpectation as a convex combination of conditionings. We now
state the Decomposition Theorem adapted to the assignment linear program
in the language of pseudoexpectations. It was originally introduced using the
moments approach, but they are equivalent and we refer to [50] for a proof and
a detailed exposition of the SoS hierarchy.

Theorem 18 ([23]). Let Ẽ be a degree-� SoS pseudoexpectation of assign(B, T),
with � ≥ 2λ. Then, for every machine i ∈ M and a subset of jobs K ⊆ J such
that Ẽ(φi,K) > 0, the operator Ẽi,K is a degree-(� − 2λ) SoS pseudoexpectation
of assign(B, T).

Lemma 17 (b) guarantees that a conditioning Ẽi,K is integral for machine i

and this machine is scheduled with exactly the jobs in K, when Ẽ(φi,K) > 0. In
our algorithm we iteratively decompose the current pseudoexpectation according
to the above conditionings. Every time we perform this step we obtain an integral
machine schedule, and therefore in order to progress we require that machine to
remain integral along the execution.

Proposition 19. Let Ẽ be a degree-� SoS pseudoexpectation of assign(B∗, T),
with � ≥ 2λ, and let h ∈ M be such that Ẽ(xhj) ∈ {0, 1} for each j ∈ J . Let i ∈ M

and K ⊆ J be such that Ẽi,K(φi,K) > 0. Then, Ẽi,K(xhj) = Ẽ(xhj) ∈ {0, 1} for
each j ∈ J .

Overview of the Rounding Algorithm. Consider a partitioning of the jobs that is
α-balanced. If we start from a high enough level of the hierarchy, we get at the
end of the procedure a solution that is feasible for assign(B∗, T), and therefore,
the configurations of the integral machines have to obey the lexicographic order.
The algorithm consist of two phases. In Phase 1, we use the solution obtained
from high enough level of the hierarchy to find the last machine which is fraction-
ally scheduled according to configuration C1 using the Decomposition Theorem,
and pick the corresponding conditioning pseudoexpectation. We then proceed by
finding the last machine scheduled fractionally according to C2 in the pseudoex-
pectation conditioning, and so on, for every configuration Ck. We end up with
a pseudoexpectation that is integral for all these machines, and it respects the
lexicographic order. The number of conditioning steps is upper bounded by the
number of configurations. In Phase 2, we greedily construct the schedule for the
rest of the machines and jobs that have not been assigned yet. The correctness of
Phase 2 is guaranteed by certifying the feasibility of a particular transportation
problem. We call the schedule obtained in this way the lexicographic schedule,
xlex. The detailed analysis of the rounding algorithm can be found in the full
version.

Breaking Symmetries to Rescue SoS: The Case of Makespan Scheduling 439

References

1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing. In: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, pp. 493–500, ACM-SIAM (1997)

2. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. J. Sched. 1(1), 55–66 (1998)

3. Barak, B., Chan, S.O., Kothari, P.K.: Sum of squares lower bounds from pair wise
independence. In: Proceedings of the Forty-Seventh Annual ACM Symposium on
Theory of Computing, STOC 2015, pp. 97–106. ACM (2015)

4. Barak, B., Hopkins, S.B., Kelner, J., Kothari, P., Moitra, A., Potechin, A.: A nearly
tight sum-of-squares lower bound for the planted clique problem. In: Proceedings
of Foundations of Computer Science, FOCS 2016, pp. 428–437. IEEE (2016)

5. Barak, B., Moitra, A.: Noisy tensor completion via the sum-of-squares hierarchy.
In: Proceedings of the 29th Conference on Learning Theory, COLT 2016, pp. 417–
445 (2016)

6. Blekherman, G., Gouveia, J., Pfeiffer, J.: Sums of squares on the hypercube. Math-
ematische Zeitschrift 284(1–2), 41–54 (2016)

7. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for inte-
ger programming using the Steinitz lemma. In: Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pp. 808–816
(2018)

8. Garg, S.: Quasi-PTAS for scheduling with precedences using LP hierarchies. In:
Proceedings of the 45th International Colloquium on Automata, Languages, and
Programming, ICALP 2018, pp. 59:1–59:13 (2018)

9. Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums
of squares. J. Pure Appl. Algebra 192(1–3), 95–128 (2004)

10. Goemans, M., Rothvoß, T.: Polynomiality for bin packing with a constant number
of item types. In: Proceedings of the Twenty-Fifth annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 830–839. SIAM (2014)

11. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–
1145 (1995)

12. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.
45(9), 1563–1581 (1966)

13. Grigoriev, D.: Complexity of positivstellensatz proofs for the knapsack. Comput.
Complex. 10(2), 139–154 (2001)

14. Grigoriev, D.: Linear lower bound on degrees of positivstellensatz calculus proofs
for the parity. Theoret. Comput. Sci. 259(1–2), 613–622 (2001)

15. Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS Publish-
ing Co., Boston (1996)

16. Hochbaum, D., Shmoys, D.: Using dual approximation algorithms for scheduling
problems theoretical and practical results. J. ACM 34, 144–162 (1987)

17. Hopkins, S.B., Kothari, P.K., Potechin, A., Raghavendra, P., Schramm, T., Steurer,
D.: The power of sum-of-squares for detecting hidden structures. In: Proceedings
of the 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, pp. 720–731. IEEE (2017)

18. Jans, R.: Solving lot-sizing problems on parallel identical machines using
symmetry-breaking constraints. INFORMS J. Comput. 21(1), 123–136 (2009)

440 V. Verdugo and J. Verschae

19. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an MILP
relaxation with a constant number of integral variables. SIAM J. Discrete Math.
24(2), 457–485 (2010)

20. Jansen, K., Klein, K., Verschae, J.: Closing the gap for makespan scheduling via
sparsification techniques. In: Proceedings of the 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, pp. 72:1–72:13 (2016)

21. Kaibel, V., Peinhardt, M., Pfetsch, M.E.: Orbitopal fixing. Discrete Optim. 8,
595–610 (2011)

22. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Math. Program.
114(1), 1–36 (2008)

23. Karlin, A.R., Mathieu, C., Nguyen, C.T.: Integrality gaps of linear and semi-
definite programming relaxations for knapsack. In: Günlük, O., Woeginger, G.J.
(eds.) IPCO 2011. LNCS, vol. 6655, pp. 301–314. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20807-2 24

24. Kothari, P., O’Donnell, R., Schramm, T.: SOS lower bounds with hard constraints:
think global, act local. arXiv preprint arXiv:1809.01207 (2018)

25. Kothari, P.K., Mori, R., O’Donnell, R., Witmer, D.: Sum of squares lower bounds
for refuting any CSP. In: Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2017, pp. 132–145. ACM (2017)

26. Kothari, P.K., Steinhardt, J., Steurer, D.: Robust moment estimation and improved
clustering via sum of squares. In: Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, pp. 1035–1046. ACM (2018)

27. Kurpisz, A., Leppänen, S., Mastrolilli, M.: On the hardest problem formulations
for the 0/1 Lasserre hierarchy. Math. Oper. Res. 42(1), 135–143 (2016)

28. Kurpisz, A., Leppänen, S., Mastrolilli, M.: Sum-of-squares hierarchy lower bounds
for symmetric formulations. In: Louveaux, Q., Skutella, M. (eds.) IPCO 2016.
LNCS, vol. 9682, pp. 362–374. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33461-5 30

29. Kurpisz, A., Leppänen, S., Mastrolilli, M.: An unbounded sum-of-squares hierarchy
integrality gap for a polynomially solvable problem. Math. Program. 166(1–2), 1–
17 (2017)

30. Kurpisz, A., Mastrolilli, M., Mathieu, C., Mömke, T., Verdugo, V., Wiese, A.:
Semidefinite and linear programming integrality gaps for scheduling identical
machines. Math. Program. 172(1–2), 231–248 (2018)

31. Laurent, M.: Lower bound for the number of iterations in semidefinite hierarchies
for the cut polytope. Math. Oper. Res. 28(4), 871–883 (2003)

32. Laurent, M.: Semidefinite representations for finite varieties. Math. Program.
109(1), 1–26 (2007)

33. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials.
In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry,
vol. 149, pp. 157–270. Springer, New York (2009). https://doi.org/10.1007/978-0-
387-09686-5 7

34. Levey, E., Rothvoss, T.: A (1+epsilon)-approximation for makespan scheduling
with precedence constraints using LP hierarchies. In:Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pp.
168–177. ACM (2016)

35. Liberti, L.: Automatic generation of symmetry-breaking constraints. In: Yang,
B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 328–338.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85097-7 31

https://doi.org/10.1007/978-3-642-20807-2_24
http://arxiv.org/abs/1809.01207
https://doi.org/10.1007/978-3-319-33461-5_30
https://doi.org/10.1007/978-3-319-33461-5_30
https://doi.org/10.1007/978-0-387-09686-5_7
https://doi.org/10.1007/978-0-387-09686-5_7
https://doi.org/10.1007/978-3-540-85097-7_31

Breaking Symmetries to Rescue SoS: The Case of Makespan Scheduling 441

36. Liberti, L.: Symmetry in mathematical programming. In: Lee, J., Leyffer, S. (eds.)
Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its
Applications, pp. 263–283. Springer, New York (2012). https://doi.org/10.1007/
978-1-4614-1927-3 9

37. Ma, T., Shi, J., Steurer, D.: Polynomial-time tensor decompositions with sum-of
squares. In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, pp. 438–446. IEEE (2016)

38. Margot, F.: Pruning by isomorphism in branch-and-cut. Math. Program. 94, 71–90
(2002)

39. Margot, F.: Symmetry in integer linear programming. In: Jünger, M., et al. (eds.)
50 Years of Integer Programming 1958–2008, pp. 647–686. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-540-68279-0 17

40. O’Donnell, R.: SOS is not obviously automatizable, even approximately. In: Pro-
ceedings of the 8th Innovations in Theoretical Computer Science Conference (ITCS
2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 67, pp. 59:1–
59:10. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

41. Ostrowski, J.: Using symmetry to optimize over the Sherali-Adams relaxation.
Math. Program. Comput. 6, 405–428 (2014)

42. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Pro-
gram. 126, 147–178 (2011)

43. Parrilo, P.: Semidefinite programming relaxations for semialgebraic problems.
Math. program. 96, 293–320 (2003)

44. Potechin, A.: Sum of squares lower bounds from symmetry and a good story. arXiv
preprint arXiv:1711.11469 (2017)

45. Potechin, A., Steurer, D.: Exact tensor completion with sum-of-squares. arXiv
preprint arXiv:1702.06237 (2017)

46. Raghavendra, P., Schramm, T., Steurer, D.: High-dimensional estimation via sum-
of-squares proofs. arXiv preprint arXiv:1807.11419 (2018)

47. Raymond, A., Saunderson, J., Singh, M., Thomas, R.R.: Symmetric sums of
squares over k-subset hypercubes. Math. Program. 167(2), 315–354 (2018)

48. Razborov, A.A.: Flag algebras. J. Symbol. Logic 72(4), 1239–1282 (2007)
49. Razborov, A.A.: On 3-hypergraphs with forbidden 4-vertex configurations. SIAM

J. Discrete Math. 24(3), 946–963 (2010)
50. Rothvoß, T.: The Lasserre hierarchy in approximation algorithms. Lecture notes

for MAPSP (2013)
51. Sagan, B.E.: The Symmetric Group: Representations, Combinatorial Algorithms,

and Symmetric Functions. GTM, vol. 203. Springer, New York (2001). https://doi.
org/10.1007/978-1-4757-6804-6

52. Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-CSPs. In: Pro-
ceedings of the 49th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2008, pp. 593–602. IEEE (2008)

53. Svensson, O.: Santa claus schedules jobs on unrelated machines. SIAM J. Comput.
41(5), 1318–1341 (2012)

54. Verdugo, V., Verschae, J.: Breaking symmetries to rescue sum of squares: the case
of makespan scheduling. arXiv preprint arXiv:abs/1811.08539 (2018)

https://doi.org/10.1007/978-1-4614-1927-3_9
https://doi.org/10.1007/978-1-4614-1927-3_9
https://doi.org/10.1007/978-3-540-68279-0_17
http://arxiv.org/abs/1711.11469
http://arxiv.org/abs/1702.06237
http://arxiv.org/abs/1807.11419
https://doi.org/10.1007/978-1-4757-6804-6
https://doi.org/10.1007/978-1-4757-6804-6
http://arxiv.org/abs/abs/1811.08539

Random Projections for Quadratic
Programs over a Euclidean Ball

Ky Vu1, Pierre-Louis Poirion2, Claudia D’Ambrosio3, and Leo Liberti3(B)

1 Department of Mathematics, FPT University, Hanoi, Vietnam
vukhacky@gmail.com

2 RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
pierre-louis.poirion@riken.jp

3 CNRS LIX Ecole Polytechnique, 91128 Palaiseau, France
{dambrosio,liberti}@lix.polytechnique.fr

Abstract. Random projections are used as dimensional reduction tech-
niques in many situations. They project a set of points in a high dimen-
sional space to a lower dimensional one while approximately preserving
all pairwise Euclidean distances. Usually, random projections are applied
to numerical data. In this paper, however, we present a successful applica-
tion of random projections to quadratic programming problems subject
to polyhedral and a Euclidean ball constraint. We derive approximate
feasibility and optimality results for the lower dimensional problem. We
then show the practical usefulness of this idea on many random instances,
as well as on two portfolio optimization instances with over 25M nonzeros
in the (quadratic) risk term.

1 Introduction

In this paper we show that Random Projections (RP) can be applied to
Quadratic Programming (QP) problems subject to linear inequality constraints
and a single Euclidean ball constraint. We consider the following pair of QP
formulations:

maxy y�Q̃y + c̃�y

Ãy ≤ b̃
‖y‖2 ≤ R,

⎫
⎬

⎭
(1)

maxx x�Qx + c�x
Ax ≤ b

‖x‖2 ≤ 1.

⎫
⎬

⎭
(2)

In Eq. (1), y is a vector of n decision variables, Q̃ is a symmetric n × n matrix,
c̃ ∈ R

n, Ã is m × n, b̃ ∈ R
m, and R is a positive scalar. We also assume that

Ãy ≤ b̃ defines a full dimensional polyhedron and that b̃ ≥ 0 (this can be relaxed
by translation if a feasible point for Ãy ≤ b̃ is known). No assumption is made
on Q̃. Eq. (2) is a scaled version of Eq. (1), where Q = R2Q̃, c = Rc̃, A = Ã/μ

This paper has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement n. 764759
“MINOA”.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 442–452, 2019.
https://doi.org/10.1007/978-3-030-17953-3_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_33&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_33

Random Projections for Quadratic Programs over a Euclidean Ball 443

(where μ = maxj ‖Ãj‖2 and Ãj is the j-th column of Ã), and b = b̃/(Rμ). Given
a solution x∗ of Eq. (2), then y∗ = Rx∗ is a solution of Eq. (1). Note that all the
columns of A are vectors of norm ≤ 1.

QP is now a ripe field with many applications (e.g., portfolio optimization,
constrained linear regression, stable set problem, maximum cut and many more).
The significance of the ball constraint is technical, but it could simply be inter-
preted to mean “bounded”, since for all bounded QPs we can find a large enough
R (in Eq. (1)) so that all solutions fall within a ball of radius R. In practice, how-
ever, if R is too large it might lead to ill scaling of Eq. (2). Note, however, that
Eq. (1) is interesting in its own right as it is the formulation of the well-known
trust region subproblem.

If we assume that all the data are rational, then the decision version of Eq. (2)
without the ball constraint is NP-complete [9]. Moreover, by [10,11], the deci-
sion version of Eq. (2) without the polyhedral constraints is in P (and hence also
in NP). For Eq. (2), one of the following applies: (i) some of the linear inequalities
are active at the optimum; (ii) the ball inequality is active at the optimum; (iii)
a combination of (i) and (ii); (iv) the optimum is unconstrained. In the first two
cases the results in [9–11] apply, and the problem is in NP. Case (iii) falls in both
of the first two categories, and the problem is still in NP. For case (iv) we can tell
apart optimality vs. unboundedness by testing whether Q has negative eigenvalues
or not [10]. Hence, the decision versions of Eqs. (1) and (2) are in NP.

RPs are random matrices which are used to perform dimensionality reduc-
tion on a set of vectors while approximately preserving all pairwise Euclidean
distances with high probability. The goal of this paper is the applicability of RPs
to bounded QPs such as those of Eq. (2). Specifically, we will define a projected
version of Eq. (2) and prove that it is likely to have approximately the same
optima as the original QP. We also perform a computational verification of our
claim and show that the theoretical results, which are asymptotic in nature, also
apply in practice.

RPs are usually applied to numerical data in view of speeding up algorithms
which are essentially based on Euclidean distances, such as k-means or k-nearest
neighbours. Since RPs ensure approximations of Euclidean distances by defini-
tion, it is perhaps not so surprising that they should work well in those settings.
The focus of the present work is the much more counter-intuitive statement that
a Mathematical Programming formulation might be approximately invariant (as
regards feasibility and optimality) w.r.t. randomly projecting the input param-
eters. Similarly in spirit to our previous work on Linear Programming [13], but
using a different projection and proof techniques, the results of this paper are
independent of any solution algorithm, and largely independent of Euclidean
distances (barring the �2 ball bounding the feasible region, which is applied to
decision variables rather than data). While RPs have already been applied to
some optimization problems, these are usually unconstrained minimizations of �2
norms and/or assume small Gaussian or doubling dimension of the feasible set
[8,15]: two assumptions we do not make.

444 K. Vu et al.

The rest of this paper is organized as follows. In Sect. 2 we define RPs and
the projected QP. In Sect. 3 we introduce some theoretical results about random
projections. In Sect. 4 we prove the main theorems about RPs applied to QP. In
Sect. 5 we discuss computational results.

2 Definitions

RPs are simple but powerful tools for dimension reduction [4,8,12,13,15]. They
are often constructed as random matrices sampled from some given distribution
classes. The simplest examples are suitably scaled matrices sampled componen-
twise from independently identically distributed (i.i.d.) random variables with
Gaussian N(0, 1), uniform on [−1, 1], or Rademacher ±1 distributions. One of
the most important features of a RP is that it approximately preserves the norm
of any given vector with high probability. In particular, let P ∈ R

d×n be a RP,
e.g. sample every component of P from N(0, 1/

√
d). Then, for any x ∈ R

n and
ε ∈ (0, 1), we have

Prob

[

(1 − ε)‖x‖22 ≤ ‖Px‖22 ≤ (1 + ε)‖x‖22
]

≥ 1 − 2e−Cε2d, (3)

where C is a universal constant (in fact a more precise statement should be
existentially quantified by “there exists a constant C such that. . . ”).

Perhaps the most famous application of RPs is the Johnson-Lindenstrauss
lemma [2]. It states that, for any ε ∈ (0, 1) and for any finite set X ⊆ R

n, there
is a mapping F : Rn → R

d, in which d = O(ln |X|
ε2), such that

∀x, y ∈ X (1 − ε)‖x − y‖22 ≤ ‖F (x) − F (y)‖22 ≤ (1 + ε)‖x − y‖22.
Such a mapping F can be realized as the matrix P above. The existence of the
correct mapping is shown (by the probabilistic method) using the union bound.
Moreover, the probability of sampling a correct mapping can be made arbitrarily
high. In practice, we found that there is often no need to re-sample P .

In the following, all norm symbols ‖ · ‖ will be assumed to refer to the �2
norm ‖ · ‖2. We sample our RPs from Gaussian ensembles (in practice, we also
specify their density, see Sect. 5).

2.1 The Randomly Projected QP

Let P ∈ R
d×n be a RP. We want to “project” each vector x ∈ R

n to a lower
dimensional vector Px ∈ R

d. Consider the following projected problem:

max {x�(P�PQP�P)x + c�P�Px | AP�Px ≤ b, ‖Px‖ ≤ 1}.

By setting u = Px, c̄ = Pc, Ā = AP�, Q̄ = PQP�, we can rewrite it as

max
u∈ Im(P)

{u�Q̄u + c̄�u | Āu ≤ b, ‖u‖ ≤ 1}, (4)

Random Projections for Quadratic Programs over a Euclidean Ball 445

where Im(P) is the image space generated by P . Since P is (randomly) generated
with full rank with probability 1, it is very likely to be a surjective mapping.
Therefore, we assume it is safe to remove the constraint u ∈ Im(P) and study
the smaller dimensional problem:

max
u∈Rd

{u�Q̄u + c̄�u | Āu ≤ b, ‖u‖ ≤ 1}, (5)

where u ranges in R
d. As we will show later, Eq. (5) yields a good approximate

solution of Eq. (2) with high probability.

3 Some Properties of Random Projections

It is known that singular values of random matrices often concentrate around
their means. In the case when the RP is sampled from Gaussian ensembles,
this phenomenon is well-understood due to many current research efforts. The
following lemma, which is proved in [16], uses this phenomenon to show that,
when P ∈ R

d×n is a Gaussian random matrix (with the number of row sig-
nificantly smaller than the number of columns), then PP� is very close to an
identity matrix. This gives an intuitive explanation as to why Eq. (5) has desir-
able approximate properties w.r.t. Eq. (2).

Lemma 3.1 ([16]). Let P ∈ R
d×n be a RP. Then for any δ > 0 and 0 < ε < 1

2 ,
with probability at least 1 − δ, we have ‖PP� − I‖2 ≤ ε provided that

n ≥ (d + 1) ln(2d/δ)/(C1ε
2), (6)

where ‖ . ‖2 is the spectral norm of the matrix and C1 > 1
4 is some universal

constant.

This lemma also tells us that, when we go from low to high dimensions, with
high probability we can ensure that the norms of all the points endure small
distortions. Indeed, for any vector u ∈ R

d, then

‖P�u‖2 − ‖u‖2 = 〈P�u, P�u〉 − 〈u, u〉 = 〈(PP� − I)u, u〉 ∈ [−ε‖u‖2, ε‖u‖2],

due to the Cauchy-Schwarz inequality. Moreover, it implies that ‖P�‖2 ≤ (1+ε)
with probability at least 1 − δ.

Condition (6) is not difficult to satisfy in practice, since d is often very small
compared to n. On the other hand, n should be large enough to dominate the
effect of 1

ε2 .

Lemma 3.2. Let P ∈ R
d×n be a RP satisfying Eq. (3) and let 0 < ε < 1. Then

there is a universal constant C0 such that the following statements hold.

(i) For any x, y ∈ R
n, 〈x, y〉 − ε‖x‖ ‖y‖ ≤ 〈Px, Py〉 ≤ 〈x, y〉 + ε‖x‖ ‖y‖ with

probability at least 1 − 4e−C0ε2d.

446 K. Vu et al.

(ii) Let 1 be the all-one vector. For any x ∈ R
n and A ∈ R

m×n having unit row
vectors, we have Ax − ε‖x‖1 ≤ AP�Px ≤ Ax + ε‖x‖1 with probability at
least 1 − 4me−C0ε2d.

(iii) For any two vectors x, y ∈ R
n and a square matrix Q ∈ R

n×n, then with
probability at least 1 − 8 k e−C0ε2d, we have:

x�Qy − 3ε‖x‖ ‖y‖ ‖Q‖∗ ≤ x�P�PQP�Py ≤ x�Qy + 3ε‖x‖ ‖y‖ ‖Q‖∗,

in which ‖Q‖∗ is the nuclear norm of Q and k is the rank of Q.

4 Approximate Optimality

We now prove that the objective of the quadratic problem in Eq. (2) is approxi-
mately preserved under RPs. To do so, we study the relations between this and
two other problems:

(QP−
ε) max{u�PQP�u + (Pc)�u | AP�u ≤ b, ‖u‖ ≤ 1 − ε, u ∈ R

d}
(QP+

ε) max{u�PQP�u + (Pc)�u | AP�u ≤ b + ε, ‖u‖ ≤ 1 + ε, u ∈ R
d}.

We first state the following feasibility result.

Theorem 4.1. Let P ∈ R
d×n be a RP. Let δ ∈ (0, 1). Assume further that

Eq. (6) holds for some universal constant C1 > 1
4 . Then with probability at least

1 − δ, for any feasible solution u of the projected problem (QP−
ε), P�u is also

feasible for the original problem in Eq. (2).

We remark the following universal property of Theorem4.1: with a fixed proba-
bility, feasibility holds for all vectors u (instead of a given vector).

Proof. Let C1 be as in Lemma 3.1. Let u be any feasible solution for the projected
problem (QP−

ε) and take x̂ = P�u. Then we have Ax̂ = AP�u ≤ b and

‖P�u‖2 = 〈P�u, P�u〉 = 〈u, u〉 + 〈(PP� − I)u, u〉 ≤ (1 + ε)‖u‖2

with probability at least 1 − δ (by Lemma 3.1). This implies that ‖x̂‖ ≤ (1 +
ε/2)‖u‖; and since ‖u‖ ≤ 1 − ε, we have ‖x̂‖ ≤ (1 + ε/2)(1 − ε) < 1 with
probability at least 1 − δ, which proves the theorem. �

Let u−
ε and u+

ε be optimal solutions for these two problems, respectively.
Denote by x−

ε = P�u−
ε and x+

ε = P�u+
ε . Let x∗ be an optimal solution

for the original problem in Eq. (2). We will bound x∗�Qx∗ + c�x∗ between
x−�

ε Qx−
ε + c�x−

ε and x+�
ε Qx+

ε + c�x+
ε , the two values that are expected to be

approximately close to each other.

Theorem 4.2. Let P ∈ R
d×n be a RP, and let δ ∈ (0, 1). Let x∗ be an optimal

solution for the original problem Eq. (2). Then there are universal constants
C0 > 1 and C1 > 1

4 such that, if d ≥ ln(m/δ)/(C0ε
2) and Eq. (6) are satisfied,

we will have the following two statements. (i) With probability at least 1− δ, the
solution x−

ε is feasible for the original problem Eq. (2). (ii) With probability at
least 1 − δ,

x−�
ε Qx−

ε + c�x−
ε ≤ x∗�Qx∗ + c�x∗ ≤ x+�

ε Qx+
ε + c�x+

ε + 3ε‖Q‖∗ + ε‖c‖.

Random Projections for Quadratic Programs over a Euclidean Ball 447

Proof. The constants C0 and C1 are chosen in the same way as before. (i) By
Theorem 4.1, with probability at least 1 − δ, for any feasible point u of the
projected problem (QP−

ε), P�u is also feasible for the original problem Eq. (2).
Therefore, it must hold also for x−

ε .

(ii) By Part (i) above, with probability at least 1 − δ, x−
ε is feasible for the

original problem Eq. (2). Therefore, we have x−�
ε Qx−

ε +c�x−
ε ≤ x∗�Qx∗ +c�x∗

with probability at least 1− δ. Moreover, due to Lemma 3.2, with probability at
least 1 − 8(k + 1)e−C0ε2d, where k is the rank of Q, we have

x∗�Qx∗ ≤ x∗�P�PQP�Px∗ + 3ε‖x∗‖2 ‖Q‖∗ ≤ x∗�P�PQP�Px∗ + 3ε‖Q‖∗
and c�x∗ ≤ c�P�Px∗ + ε‖c‖ ‖x∗‖ ≤ c�P�Px∗ + ε‖c‖,

since ‖x∗‖ ≤ 1. Hence x∗�Qx∗ +c�x∗ ≤ x∗�P�PQP�Px∗ +c�P�Px∗ +ε‖c‖+
3ε‖Q‖∗. On the other hand, let û = Px∗; due to Lemma 3.2, we have

AP�û = AP�Px∗ ≤ Ax∗ + ε‖x∗‖1 ≤ Ax∗ + ε1≤ b + ε

with probability at least 1−4me−C0ε2d (the last inequality holds by the assump-
tion b ≥ 0), and ‖û‖ = ‖Px∗‖ ≤ (1 + ε)‖x∗‖ ≤ (1 + ε) with probability at least
1 − 2e−C0ε2d (by Lemma 3.2). Therefore, û is a feasible solution for the problem
(QP+

ε) with probability at least 1 − (4m + 2)e−C0ε2d. Due to the optimality of
u+

ε for the problem (QP+
ε), it follows that

x∗�Qx∗ + c�x∗ ≤ x∗�P�PQP�Px∗ + c�P�Px∗ + ε‖c‖ + 3ε‖Q‖∗
= û�PQP�û + c�P�û + ε‖c‖ + 3ε‖Q‖∗
≤ u+�

ε PQP�u+
ε + (Pc)�u+

ε + ε‖c‖ + 3ε‖Q‖∗
= x+�

ε Qx+
ε + c�x+

ε + ε‖c‖ + 3ε‖Q‖∗,

with probability at least 1−(4m+6)e−C0ε2d, which is at least 1−δ for the chosen
universal constant C0. Hence x∗�Qx∗+c�x∗ ≤ x+�

ε Qx+
ε +c�x+

ε +3ε‖Q‖∗+ε‖c‖,
which concludes the proof. �

The above result implies that the value of x∗�Qx∗ + c�x∗ lies between
x−�

ε Qx−
ε + c�x−

ε and x+�
ε Qx+

ε + c�x+
ε . It remains to prove that these two

values are not so far from each other. Let S∗ = {x ∈ R
n | Ax ≤ b, ‖x‖ ≤ 1}.

Since, by assumption, the feasible set of (2) is full dimensional, S∗ is also full
dimensional.

We associate with each set S a positive number full(S) > 0, which is consid-
ered as a fullness measure of S and is defined as the maximum radius of any closed
ball contained in S. Now, from our assumption, we have full(S∗) = r∗ > 0,
where r∗ is the radius of the greatest ball inscribed in S∗ (see Fig. 1, left).

The following lemma characterizes the fullness of S+
ε with respect to r∗,

where S+
ε = {u ∈ R

d | AP�u ≤ b + ε, ‖u‖ ≤ 1 + ε} is the feasible set of the
problem (QP+

ε).

448 K. Vu et al.

Fig. 1. Left: fullness of a set. Right: idea of the proof of Theorem 4.4.

Lemma 4.3. Let S∗ be full-dimensional with full(S∗) = r∗. Then with prob-
ability at least 1 − 3δ, S+

ε is also full-dimensional with the fullness measure
full(S+

ε) ≥ (1 − ε)r∗.

The proof of this lemma extensively uses the fact that, for any row vector a ∈ R
n

sup‖u‖≤r a�u = r‖a‖, which is actually the equality condition in the Cauchy-
Schwartz inequality.

Now we will estimate the gap between the two objective functions of the
problems (QP+

ε) and (QP−
ε) using the fullness measure. The theorem states

that, as long as the fullness of the original polyhedron is large enough, the gap
between them is small. Figure 1, right, gives the proof idea.

Theorem 4.4. Let 0 < ε < 0.1. Then with probability at least 1 − 4δ, we have
x−�

ε Qx−
ε +c�x−

ε ≤ x+�
ε Qx+

ε +c�x+
ε < (1+ε)2

(1−ε)2
(x−�

ε Qx−
ε +c�x−

ε)+ ε
full(S∗)

(36+18‖c‖).

Proof. Let B(u0, r0) be a closed ball with maximum radius that is contained in
S+

ε . In order to establish the relation between u+
ε and u−

ε , our idea is to move u+
ε

closer to u0, so that the new point is contained in S−
ε . Therefore, its objective

value will be less that the value of u−
ε , but quite close to the objective value of u+

ε .
We define û = (1−λ)u+

ε +λu0 for some λ ∈ (0, 1): we want to find λ such that û is
feasible for (QP−

ε) while its corresponding objective value is not so different from
x+�

ε Qx+
ε +c�x+

ε . Since for all ‖u‖ ≤ r0, AP�(u0+u) = AP�u0+AP�u ≤ b+ε.
Then AP�u0 ≤ b + ε − r0(‖A1P

�‖, . . . , ‖AmP�‖)�. Therefore, we have, with
probability at least 1 − δ,

AP�u0 ≤ b + ε − r0(1 − ε)(‖A1‖, . . . , ‖Am‖)� = b + ε − r0(1 − ε).

Hence AP�û = (1 − λ)AP�u+
ε + λAP�u0 ≤ b + ε − λr0(1 − ε) ≤ b + ε − 1

2λr0,
since we can assume w.l.o.g. that ε ≤ 1

2 . Hence, AP�û ≤ b if we choose ε ≤
λ r0

2 . Furthermore ‖û‖ ≤ 1 + ε Hence, when we choose λ = 2 ε
r0

, then 1−ε
1+ε û

Random Projections for Quadratic Programs over a Euclidean Ball 449

is feasible for the problem (QP−
ε) with probability at least 1 − δ. Therefore,

1+ε
1−εu−�

ε PQP�u−
ε +(Pc)�u−

ε is greater than or equal to û�PQP�û+(Pc)�û =

=
(
u+

ε + λ(u0 − u+
ε)

)�
PQP�(

u+
ε + λ(u0 − u+

ε)
)

+ (Pc)�û

= u+�
ε PQP�u+

ε + λu+�
ε PQP�(

u0 − u+
ε

)
+ λ(u0 − u+

ε)�PQP�u+
ε

+ λ2(u0 − u+
ε)�PQP�(u0 − u+

ε) + (Pc)�û.

However, from Lemma 3.2 and the Cauchy-Schwartz inequality, we have

|u+�
ε PQP�(

u0 − u+
ε

)| ≤ ‖P�u+
ε ‖ ‖Q‖2 ‖P�(u0 − u+

ε

)‖
≤ (1 + ε)2‖u+

ε ‖ ‖Q‖2 ‖(u0 − u+
ε

)‖ ≤ 2(1 + ε)4 ‖Q‖2
(since ‖u+

ε ‖ and ‖u−
ε ‖ ≤ 1 + ε), and similarly for other terms. We then have

û�PQP�û ≥ u+�
ε PQP�u+

ε − (4λ + 4λ2)(1 + ε)4 ‖Q‖2.
Since ε < 0.1, we have (1 + ε)4 < 2 and we can assume that λ < 1. Then we
have

û�PQP�û > u+�
ε PQP�u+

ε − 16λ‖Q‖2
= u+�

ε PQP�u+
ε − 32ε/r0 (since ‖Q‖2 = 1)

≥ u+�
ε PQP�u+

ε − 32ε/((1 − ε)full(S∗)) (due to Lemma 4.3)

> u+�
ε PQP�u+

ε − 36ε/full(S∗) (since ε ≤ 0.1),

with probability at least 1 − 2δ. Furthermore, we have

c�P �û = c�P �u+
ε + λc�P �(u0 − u+

ε) ≥ c�P �u+
ε − 4(1 + ε)ε

r0
‖Pc‖.

We know that r0 ≥ (1 − ε)r∗, hence

c�P �û ≥ c�P �u+
ε − 4(1 + ε)ε

r0
‖Pc‖ ≥ c�P �u+

ε − 4(1 + ε)2ε

(1 − ε)r∗ ‖c‖,

with probability at least 1 − δ. The results holds by ε < 0.1. �

5 Computational Results

Although we developed our theory for dense Gaussian RPs, in practice one can
decrease computational costs considerably by using sparsity [1,3]. All of the
results of this paper, aside from Lemma 3.1, actually hold (unchanged) also for
sub-gaussian RPs. Amongst sub-gaussian RPs, we elect to use d × n matri-
ces where each component is sampled from N(0, 1√

d
) with some given proba-

bility dens ∈ (0, 1). Although we are not going to include the generalization of
Lemma 3.1 to sub-gaussian RPs here for lack of space, the proof exploits the fact
that the largest and smallest singular values of sub-gaussian RPs are approxi-
mately the same.

All tests were carried out on a single core of a 4-CPU machine with 64 GB
RAM, each CPU of which has 8 cores (Intel Xeon CPU E5-2620 v4@2.10 GHz).

450 K. Vu et al.

5.1 Random Instances

Our first computational test is carried out of randomly generated feasible
instances of Eq. (2) with Q negative semidefinite (we make this assumption in
order to compute guaranteed global maxima in acceptable CPU times for com-
parison purposes: the projection technique is independent of the convexity of the
objective function). We generate all instances varying the following parameters:
number of constraints m ∈ {10, 100, 1000}, of variables n ∈ {2000, 3000}, ran-
dom number generation distribution distr ∈ {0, 1} (choosing between uniform
distributions U(0, 1) and U(−1, 1)) and density dens ∈ {0.1, 0.6} for matrices A
and Q. As mentioned above, our RPs are sparse random Gaussian matrices P
with ε ∈ {0.10, 0.15, 0.20} and density densP ∈ {0.2, 0.5, 1.0}. This yields a total
of 216 solution logs (all instances with all RP generation methods) obtained
using the IPOPT solver [14]. We benchmark means, standard deviations, maxi-
mum and minimum values for: (i) CPU time (solution of original vs. projected
problem to optimality, where the projected CPU time also includes RP sam-
pling, matrix multiplication and solution retrieval time); (ii) objective function

ratio ρ =
|f∗
org−f∗

retr|
max(|f∗

org|,|f∗
retr|)

, where f∗
org is the optimal objective function value of

Eq. (2) and f∗
retr is the value of the objective function of Eq. (2) evaluated at

the solution retrieved from the projected problem Eq. (5); (iii) average feasibil-
ity errors denoted ace, are, be for, respectively, Ax ≤ b, ranges −1 ≤ x ≤ 1 and
‖x‖ ≤ 1. All our coding was carried out in Julia+JuMP [5].

Table 1. Computational results for random instances.

CPUorg CPUproj ρ ace are be

mean 37.691 14.590 0.103 0.0 0.0 2.237

stdev 49.984 15.057 0.070 0.0 0.0 0.916

min 8.750 2.170 0.000 0.0 0.0 0.921

max 198.350 61.340 0.485 0.0 0.0 3.886

Table 1 shows a consistent behaviour of our projection technique: pro-
jected formulations take considerably less time to solve (despite pre- and post-
processing steps), and yield solutions having objective function values within
around 10% of the optimum, with no feasibility error w.r.t. linear and range
constraints. There is a large ball error, however, which we are unable to explain
at this time—we are looking into it. Scaling the retrieved solution back to norm
1 yields a feasible point but increases ρ considerably (to around 0.4 on average).

Table 2 shows the trade-off between approximation quality and efficiency in
function of the parameters ε and densP of the RP (blacker is better). The best
compromise appears to be achieved for ε = 0.15 and densP = 0.2.

Random Projections for Quadratic Programs over a Euclidean Ball 451

Table 2. Trade-off between approximation and efficiency for ε and densP .

densP 0.2 0.5 1.0

ε CPUorg CPUproj ρ CPUorg CPUproj ρ CPUorg CPUproj ρ

0.10 37.57 19.91 0.07 37.90 21.02 0.06 37.76 24.36 0.07

0.15 37.56 11.26 0.10 37.81 11.95 0.09 37.78 12.16 0.11

0.20 37.50 10.04 0.14 37.71 10.30 0.15 37.62 10.32 0.14

5.2 Two Large Portfolio Instances

We consider two large-scale Markowitz portfolio [6,7] instances where the objec-
tive is a scalarized version of risk minimization (using correlation rather than
covariance for better scaling) and return maximization. The system Ax ≤ b
encodes the portfolio constraints 0 ≤ x ≤ 1 (with −x ≤ 0 being part of the
inequality constraints) and

∑
j xj ≤ 1, which imply ‖x‖2 ≤ 1. The stock price

data were obtained from Kaggle (goo.gl/XHfhi2), and yielded fully dense Q
matrices. We have used the ε = 0.15 and densP = 0.2 RP settings obtained
from Table 2. Our results are presented in Table 3. The computational savings
are remarkable, the optimal objective function values are within a reasonable
approximation ratio, but the retrieved solutions are slightly infeasible w.r.t. lin-
ear and range constraints. Specifically, some of the components of the retrieved
solutions are very slightly negative (0.001 for etfs and 0.0005 for stocks on
average), which is an issue we had also observed in applying RPs to Linear
Programs [13]. The ball errors are again high.

Table 3. Results for two large instances of Markowitz’ portfolio problem.

Instance n nnz(Q) CPUorg CPUproj ρ ace are be

etfs 1344 902,496 534.32 11.38 0.270 0.026 0.001 1.570

stocks 7163 25,650,703 266,713.40 132.78 0.007 0.023 0.001 3.927

6 Conclusion

We prove that random projections can be used to generate lower dimensional
QPs, bounded by a Euclidean ball constraint, which have approximately the
same global optimum with arbitrarily high probability as their original counter-
parts. Computational results are exhibited to substantiate our claim and show
the applicability of our techniques.

As a corollary, we remark that our results are also applicable to reduce the
number of variables of inequality constrained LPs (with a Euclidean ball con-
straint), since there is no assumption on Q (so Q = 0 is a possibility). We are in
the process of deriving theorems which ensure better bounds given this specific
structure.

http://www.goo.gl/XHfhi2

452 K. Vu et al.

References

1. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with
binary coins. J. Comput. Syst. Sci. 66, 671–687 (2003)

2. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert
space. In: Hedlund, G. (ed.) Conference in Modern Analysis and Probability. Con-
temporary Mathematics, vol. 26, pp. 189–206. American Mathematical Society,
Providence (1984)

3. Kane, D., Nelson, J.: Sparser Johnson-Lindenstrauss transforms. J. ACM 61(1), 4
(2014)

4. Liberti, L., Vu, K.: Barvinok’s Naive algorithm in distance geometry. Oper. Res.
Lett. 46, 476–481 (2018)

5. Lubin, M., Dunning, I.: Computing in operations research using Julia. INFORMS
J. Comput. 27(2), 238–248 (2015). https://doi.org/10.1287/ijoc.2014.0623

6. Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)
7. Mencarelli, L., D’Ambrosio, C.: Complex portfolio selection via convex mixed-

integer quadratic programming: a survey. Int. Trans. Oper. Res. 26, 389–414 (2019)
8. Pilanci, M., Wainwright, M.: Randomized sketches of convex programs with sharp

guarantees. In: International Symposium on Information Theory (ISIT), pp. 921–
925. IEEE, Piscataway (2014)

9. Vavasis, S.: Quadratic programming is in NP. Inf. Process. Lett. 36, 73–77 (1990)
10. Vavasis, S., Zippel, R.: Proving polynomial-time for sphere-constrained quadratic

programming. Technical report 90–1182, Department of Computer Science, Cornell
University (1990)

11. Vavasis, S.: Nonlinear Optimization: Complexity Issues. Oxford University Press,
Oxford (1991)

12. Vu, K., Poirion, P.L., Liberti, L.: Gaussian random projections for Euclidean mem-
bership problems. Discrete Appl. Math. (2018). https://doi.org/10.1016/j.dam.
2018.08.025

13. Vu, K., Poirion, P.L., Liberti, L.: Random projections for linear programming.
Math. Oper. Res. 43, 1051–1404 (2018). https://doi.org/10.1287/moor.2017.0894

14. Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106(1),
25–57 (2006)

15. Woodruff, D.: Sketching as a tool for linear algebra. Found. Trends Theoret. Com-
put. Sci. 10(1–2), 1–157 (2014)

16. Zhang, L., Mahdavi, M., Jin, R., Yang, T., Zhu, S.: Recovering the optimal solution
by dual random projection. In: Shalev-Shwartz, S., Steinwart, I. (eds.) Conference
on Learning Theory (COLT), Proceedings of Machine Learning Research, vol. 30,
pp. 135–157 (2013). http://www.jmlr.org

https://doi.org/10.1287/ijoc.2014.0623
https://doi.org/10.1016/j.dam.2018.08.025
https://doi.org/10.1016/j.dam.2018.08.025
https://doi.org/10.1287/moor.2017.0894
http://www.jmlr.org

Author Index

Abdi, Ahmad 1
Ahmadi, Saba 13
Anderson, Ross 27
Aprile, Manuel 43

Bendotti, Pascale 57
Bérczi, Kristóf 115
Bienstock, Daniel 72
Bosman, Thomas 88
Buchbinder, Niv 101

Chandrasekaran, Karthekeyan 115
Chekuri, Chandra 128
Chen, Chen 72
Chen, Lin 141
Cornuéjols, Gérard 1

D’Ambrosio, Claudia 442
Della Croce, Federico 155
Disser, Yann 168
Dudycz, Szymon 181

Eberle, Franziska 141
Eiben, Eduard 194

Faenza, Yuri 43
Feldman, Moran 101
Filmus, Yuval 101
Fouilhoux, Pierre 57
Frascaria, Dario 88

Gaar, Elisabeth 205
Ganian, Robert 194
Garg, Mohit 101
Gleixner, Ambros 399
Graf, Lukas 219
Gupta, Anupam 233

Harks, Tobias 219
Hildebrand, Robert 247
Hopp, Alexander V. 168
Huchette, Joey 27
Hunkenschröder, Christoph 261

Jiang, Haotian 233

Khuller, Samir 13
Király, Tamás 115
Knop, Dušan 194
Koh, Zhuan Khye 275
Köhne, Anna 288
Könemann, Jochen 413
Köppe, Matthias 247

Lee, Dabeen 1
Lewandowski, Mateusz 181
Liberti, Leo 442
Linhares, André 299

Madan, Vivek 115
Marcinkowski, Jan 181
Megow, Nicole 141
Muñoz, Gonzalo 72

Nägele, Martin 327
Nannicini, Giacomo 313

Oertel, Timm 341
Olver, Neil 88, 299
Ordyniak, Sebastian 194

Paat, Joseph 341
Pashkovich, Kanstantsin 413
Pessoa, Artur 354
Pilipczuk, Michał 194
Poirion, Pierre-Louis 442

Quanrud, Kent 128

Rendl, Franz 205
Reuland, Gina 261
Rottner, Cécile 57

Sadykov, Ruslan 354
Saha, Barna 13
Sanità, Laura 275
Sartor, Giorgio 313

Scatamacchia, Rosario 155
Schewior, Kevin 141
Schlöter, Miriam 370
Schymura, Matthias 261
Scully, Ziv 233
Serrano, Felipe 385
Singla, Sahil 233
Sitters, René 88
Steffy, Daniel E. 399
Stein, Cliff 141
Stougie, Leen 88
Swamy, Chaitanya 299

Tjandraatmadja, Christian 27
Torres, Manuel R. 128
Toth, Justin 413

Traub, Vera 288
Traversi, Emiliano 313

Uchoa, Eduardo 354

Vanderbeck, François 354
Verdugo, Victor 427
Verschae, José 427
Vielma, Juan Pablo 27
Vu, Ky 442
Vygen, Jens 288

Weismantel, Robert 341
Wolfler-Calvo, Roberto 313
Wrochna, Marcin 194

Zenklusen, Rico 299, 327
Zhou, Yuan 247

454 Author Index

	Preface
	Organization
	Contents
	Identically Self-blocking Clutters
	1 The Main Result
	2 Gauge Duality
	3 Lower Bounding the Packing Number
	4 Cuboids
	5 Bypassing Gauge Duality
	6 Concluding Remarks
	References

	Min-Max Correlation Clustering via MultiCut
	1 Introduction
	2 Results and High Level Ideas
	2.1 High Level Ideas

	3 Min-Max Multicut
	3.1 SDP Relaxation
	3.2 Approximation Algorithm
	3.3 Analysis
	3.4 Covering and Aggregation

	A Missing Proofs
	A.1 Proof of Lemma 2
	A.2 Proof of Theorem 6
	A.3 Proof of Theorem7

	References

	Strong Mixed-Integer Programming Formulations for Trained Neural Networks
	1 Introduction
	1.1 MIP Formulation Preliminaries
	1.2 Relevant Prior Work
	1.3 Starting Assumptions and Notation

	2 The ReLU Neuron
	2.1 A Big-M Formulation
	2.2 An Ideal Extended Formulation
	2.3 An Ideal Non-extended Formulation

	3 Computational Experiments
	3.1 Small ReLU Network
	3.2 Larger ReLU Network

	A Deferred Proofs
	A.1 Proof of Proposition1
	A.2 Proof of Proposition2

	References

	Extended Formulations from Communication Protocols in Output-Efficient Time
	1 Introduction
	2 Preliminaries
	3 A General Approach
	4 Direct Derivations
	5 Further Applications and Extensions
	References

	Sub-Symmetry-Breaking Inequalities for ILP with Structured Symmetry
	1 Introduction
	2 Sub-Symmetry-Breaking Inequalities
	2.1 Definition and Validity of Sub-Symmetry-Breaking Inequalities
	2.2 Full Symmetry-Breaking Sufficient Condition

	3 Application to the Symmetric Group Case
	4 Application to the Graph Coloring Problem
	5 Application to the Unit Commitment Problem
	5.1 Sub-Symmetry-Breaking Inequalities for the RMUCP
	5.2 Experimental Results

	6 Perspectives
	A RMUCP Instances
	B Tables Relative to Results for the RMUCP
	References

	Intersection Cuts for Polynomial Optimization
	1 Introduction
	1.1 Notation

	2 S-free Sets and the Intersection Cut
	2.1 The Intersection Cut

	3 Moment-Based Reformulation of Polynomial Optimization
	4 Oracle-Based Outer-Product-Free Sets
	5 Maximal Outer-Product-Free Sets
	5.1 General Properties of Maximal Outer-Product-Free Sets
	5.2 Maximal Outer-Product-Free Sets Derived from 22 Submatrices

	6 Implementation of Intersection Cuts
	6.1 Step 1: Selecting an Outer-Product-Free Set
	6.2 Step 2: Generating an Intersection Cut

	7 Numerical Experiments
	8 Conclusions
	References

	Fixed-Order Scheduling on Parallel Machines
	1 Introduction
	2 Problem Definition, Notation and NP-Hardness
	3 Structural Properties of Optimal Solutions
	4 A Constant Factor Approximation Algorithm
	5 Epilogue
	A A QPTAS for unit processing times
	References

	Online Submodular Maximization: Beating 1/2 Made Simple
	1 Introduction
	1.1 Our Results
	1.2 Our Technique
	1.3 Additional Related Results

	2 Preliminaries
	3 Analysis of the Approximation Ratio
	3.1 Basic Analysis
	3.2 Breaking 1/2: An Improved Analysis of Algorithm 1

	A Upper Bounding the Approximation Ratio
	A.1 A Simple Weaker Bound
	A.2 Stronger Upper Bound

	References

	Improving the Integrality Gap for Multiway Cut
	1 Introduction
	2 Background and Result
	3 Outline of Ideas
	4 A 3-dimensional Gap Instance Against Non-opposite Cuts
	4.1 Gap Instance as a Convex Combination
	4.2 Gap of the Convex Combination

	References

	1-sparsity Approximation Bounds for Packing Integer Programs
	1 Introduction
	1.1 Our Results
	1.2 Other Related Work

	2 Hardness of Approximating PIPs as a Function of 1
	3 Round and Alter Framework
	4 The Large Width Regime: W 2
	4.1 An (1/1)-approximation Algorithm
	4.2 An (1(1 +1/W)1/(W-1))-approximation
	4.3 A (1-O())-approximation When W (12ln(1))

	5 The Small Width Regime: W = (1+)
	A Chernoff Bounds and Useful Inequalities
	B Skipped Proofs
	B.1 Proof of Theorem 1
	B.2 Proof of Lemma 3

	References

	A General Framework for Handling Commitment in Online Throughput Maximization
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Previous Results

	2 Our General Framework
	2.1 The Region Algorithm
	2.2 Main Results on the Region Algorithm
	2.3 Interruption Trees

	3 Successfully Completing Sufficiently Many Jobs
	4 Competitiveness: Admission of Sufficiently Many Jobs
	5 Lower Bounds on the Competitive Ratio
	6 Concluding Remarks
	A Appendix
	References

	Lower Bounds and a New Exact Approach for the Bilevel Knapsack with Interdiction Constraints
	1 Introduction
	2 Notation and Problem Formulation
	3 Computing Lower Bounds on BKP
	4 A New Exact Approach for BKP
	4.1 Overview
	4.2 Step 1
	4.3 Step 2

	5 Computational Results
	References

	On Friedmann's Subexponential Lower Bound for Zadeh's Pivot Rule
	1 Introduction
	2 Friedmann's Lower Bound Construction
	3 Initial Policy and Occurrence Records
	4 Improving Switches of Phase 3
	4.1 Issues with Friedmann's Switching Order
	4.2 Fixing the Ordering of the Improving Switches

	A Proofs of Selected Statements
	References

	Tight Approximation Ratio for Minimum Maximal Matching
	1 Introduction
	1.1 Related Work
	1.2 Unique Games Conjecture
	1.3 Obtaining a Stronger Result

	2 Revisiting the Khot-Regev Reduction
	2.1 Khot-Regev Formulation of Unique Games Conjecture
	2.2 Weighted Vertex Cover
	2.3 Notation

	3 Weighted Minimum Maximal Matching
	4 Towards the Unweighted MMM: Fractional Matchings
	4.1 Proving Lemma 5

	5 Unweighted MMM
	6 Conclusion
	A Hardness of Bipartite MMM
	A.1 Covering with Paths

	References

	Integer Programming and Incidence Treedepth
	1 Introduction
	2 Proof of Theorem 1
	3 Incidence Treedepth of Restricted ILPs
	4 Conclusions
	References

	A Bundle Approach for SDPs with Exact Subgraph Constraints
	1 Introduction
	2 The Problems and Their Semidefinite Relaxations
	3 Exact Subgraph Hierarchy
	4 Partial Lagrangian Dual
	5 Solving (13) with the Bundle Method
	6 Computational Results and Conclusions
	A Tables
	References

	Dynamic Flows with Adaptive Route Choice
	1 Introduction
	1.1 An Example
	1.2 Related Work
	1.3 Our Results

	2 The Flow Model
	3 Existence of IDE Flows
	4 Termination of IDE Flows
	5 Multi-commodity Networks
	A Omitted Proofs and Figures of Sects.3 and 5
	References

	The Markovian Price of Information
	1 Introduction
	2 The Markovian Price of Information Model
	3 Adaptive Utility Maximization via Frugal Algorithms
	3.1 Grade of a State
	3.2 Prevailing Cost and Epoch
	3.3 Adaptive Algorithms for Utility Maximization

	4 Robustness in Model Parameters
	5 Handling Commitment Constraints
	6 Related Work
	A Details for Handling Commitment Constraints
	A.1 Upper Bounding the Optimum Utility
	A.2 Rounding the LP Using an OCRS

	References

	On Perturbation Spaces of Minimal Valid Functions: Inverse Semigroup Theory and Equivariant Decomposition Theorem
	1 Introduction
	2 Functional Equations, Move Ensembles, Equivariance
	3 Inverse Semigroup Actions and Closures
	4 Decomposition Theorem
	4.1 Assumption: Finitely Presented Moves Closure
	4.2 Properties of the Finitely Presented Moves Closure
	4.3 Refined Breakpoints B', Finite-Dimensional Perturbations
	4.4 Connected Uncovered Components [i], Equivariant Perturbations
	4.5 Decomposition Theorem for Effective Perturbations

	A Some Omitted Proofs and Results
	References

	On Compact Representations of Voronoi Cells of Lattices
	1 Introduction
	2 The Notion of a c-compact Basis
	2.1 A Polynomial Upper Bound
	2.2 Lattices Without Sublinearly-Compact Bases
	2.3 Compact Bases and Zonotopal Lattices

	3 Relaxing the Basis Condition
	4 Algorithmic Point of View
	References

	An Efficient Characterization of Submodular Spanning Tree Games
	1 Introduction
	2 Preliminaries and Notation
	3 Violated Cycles
	4 Candidate Edges and Expensive Neighborhood
	5 Characterization of Submodularity
	References

	The Asymmetric Traveling Salesman Path LP Has Constant Integrality Ratio
	1 Introduction
	1.1 The Linear Programming Relaxation
	1.2 Our Results and Techniques

	2 Preliminaries
	3 Bounding the Integrality Ratio
	4 Bounding the Difference of as and at
	5 Node-Weighted and Unweighted Instances
	References

	Approximate Multi-matroid Intersection via Iterative Refinement
	1 Introduction
	2 Our Rounding Technique
	3 Further Applications and Extensions
	A Impossibility of Achieving Small Additive Violations
	B Omitted Proofs
	References

	An Exact Algorithm for Robust Influence Maximization
	1 Introduction
	2 Problem Formulation
	3 Activation Set Formulation for the Non-robust Problem
	4 Branch-and-Cut for Robust Influence Maximization
	5 Computational Results
	References

	A New Contraction Technique with Applications to Congruency-Constrained Cuts
	1 Introduction
	1.1 Our Results
	1.2 Further Discussion on Related Results

	2 An Overview of Our Approach
	3 Good Contraction Distributions Through Splitting-Off
	A Missing Proofs
	A.1 Proof of Lemma 1
	A.2 Sketch of proof of Theorem 7

	References

	Sparsity of Integer Solutions in the Average Case
	1 Introduction
	2 The Group Structure of a Parallelepiped
	3 Lattice Points in Cones
	4 Proof of Theorem 1
	A Proof of Theorem 2
	B Proof of Lemma 3
	References

	A Generic Exact Solver for Vehicle Routing and Related Problems
	1 Introduction
	2 The Basic Model
	2.1 Graphs for RCSP Generation
	2.2 Formulation

	3 Generalizing State-of-the-Art Elements: Packing Sets
	3.1 ng-Paths
	3.2 Limited Memory Rank-1 Cuts
	3.3 Path Enumeration
	3.4 Branching

	4 Model Examples
	4.1 Generalized Assignment Problem (GAP)
	4.2 Vector Packing (VPP)/Bin Packing (BPP)
	4.3 Pickup and Delivery VRPTW (PDPTW)
	4.4 Capacitated Arc Routing (CARP)

	5 Computational Experiments
	6 Conclusions
	A Additional Information on the Experiments
	B Open CVRP Instances Solved
	References

	Earliest Arrival Transshipments in Networks with Multiple Sinks
	1 Introduction
	2 Preliminaries and Notation
	3 The Earliest Arrival Pattern
	4 Computing Tight Earliest Arrival Transshipments
	A Appendix
	References

	Intersection Cuts for Factorable MINLP
	1 Introduction
	2 Related Work
	3 Concave Underestimators
	4 Enlarging the S-free Sets by Using Bound Information
	5 ``Monoidal'' Strengthening
	6 Conclusions
	A Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Proposition 1
	A.3 Proof of Lemma 1

	References

	Linear Programming Using Limited-Precision Oracles
	1 Introduction
	2 Iterative Refinement with Limited-Precision Oracles
	3 Oracle Algorithms with Basis Verification
	4 Rational Reconstruction Algorithms
	5 Computational Experiments
	References

	Computing the Nucleolus of Weighted Cooperative Matching Games in Polynomial Time
	1 Introduction
	1.1 Leastcore and Core of Matching Games
	1.2 Maschler's Scheme

	2 Leastcore Formulation
	2.1 Universal Matchings, Universal Allocations
	2.2 Description for Convex Hull of Universal Matchings.
	2.3 Description of Leastcore

	3 Computing the Nucleolus
	A Proof of Theorem 2
	B Example of a Matching Game With Empty Core
	References

	Breaking Symmetries to Rescue Sum of Squares: The Case of Makespan Scheduling
	1 Introduction
	2 Preliminaries: Sum of Squares and Pseudoexpectations
	3 Lower Bound: Symmetries Are Hard for SoS
	3.1 A Symmetry-Reduced Decomposition of the Scheduling Ideal
	3.2 Spanning Sets of the Scheduling Ideal
	3.3 Spanning Sets of the Invariant Row Subspace
	3.4 High-Degree SoS Pseudoexpectation: Proof of Theorem1

	4 Breaking Symmetries to Approximate with SoS
	4.1 Symmetry Breaking Inequalities
	4.2 Balanced Partitionings

	A SDP Based Approximation Scheme: Proof Sketch of Theorem2
	B Pseudoexpectation Rounding: Proof Overview of Theorem15
	References

	Random Projections for Quadratic Programs over a Euclidean Ball
	1 Introduction
	2 Definitions
	2.1 The Randomly Projected QP

	3 Some Properties of Random Projections
	4 Approximate Optimality
	5 Computational Results
	5.1 Random Instances
	5.2 Two Large Portfolio Instances

	6 Conclusion
	References

	Author Index

