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Abstract Weconsider the out-of-the-planedisplacements of nonlinear elastic strings
which are coupled through point masses attached to the ends and viscoelastic springs.
We provide the modeling, the well-posedness in the sense of classical semi-global
C2-solutions together with some extra regularity at the masses and then prove exact
boundary controllability and velocity-feedback stabilizability, where controls act on
both sides of the mass-spring-coupling.

Keywords Coupled system of quasilinear wave equations · Dynamical boundary
condition · Visoelastic springs · Exact boundary controllability

AMS subject classifications 93B05 · 35L05 · 35L72
Yue Wang—Project supported by the DFG EXC315 Engineering of Adcanced Materials, National
Basic Research Program of China (No 2013CB834100), and the National Natural Science Foun-
dation of China (11121101).

G. Leugering (B)
Department of Mathematics, Friedrich-Alexander University, Erlangen-Nuremberg,
Cauerstrasse 11, 91058 Erlangen, Germany
e-mail: leugering@am.uni-erlangen.de

T. Li · Y. Wang
School of Mathematical Sciences, Fudan University, Shanghai 200433,
People’s Republic of China
e-mail: dqli@fudan.edu.cn

Y. Wang
e-mail: yuewang15@fudan.edu.cn

T. Li
Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University,
Shanghai 200433, People’s Republic of China

Nonlinear Mathematical Modeling and Methods Laboratory, Fudan University,
Shanghai 200433, People’s Republic of China

© Springer Nature Switzerland AG 2019
F. Alabau-Boussouira et al. (eds.), Trends in Control Theory
and Partial Differential Equations, Springer INdAM Series 32,
https://doi.org/10.1007/978-3-030-17949-6_8

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17949-6_8&domain=pdf
mailto:leugering@am.uni-erlangen.de
mailto:dqli@fudan.edu.cn
mailto:yuewang15@fudan.edu.cn
https://doi.org/10.1007/978-3-030-17949-6_8


140 G. Leugering et al.

1 Introduction

Controllability properties for elastic strings with attached tip-masses have been un-
der consideration for quite some time. In [8] an in-span mass has been considered
and controllability results in asymmetric spaces have been estbalished that reflect a
smoothing property according the presence of the point-mass. See also [9]. In [2] the
authors consider inverse problems for networks of strings, where the transmission
conditions at multiple joints involve point-masses. The combination of elastic strings
coupled via elastic springs and tip-masses has been considered by the authors of this
article in [18], where exact boundary controllability was shown. In this article we
extend the results of [18] to a coupling via viscoelastic springs. The method is based
on the fundamental concept described in [12–14]. See also the recent work [11].

For a single 1-D quasilinear wave equation, based on a result concerning semi-
global C2 solutions, Li and Yu [15] used a direct constructive method with modular
structure [13, 14] to establish local exact boundary controllability with Dirichlet,
Neumann, Robin and dissipative boundary controls, respectively. For elastic strings,
where a tip mass is attached to one of the ends, dynamical boundary condition
appear according to Newton’s law, see [3]. Exact boundary controllability for 1-
D quasilinear single wave equations with dynamical boundary conditions has been
obtained in [18]. We begin with two nonlinear elastic strings of common length L
coupled at x = 0 via an elastic linear spring with stiffness κ. If we restrict ourselves
to out-of-the-plane displacements the equations governing the motion of the strings
become scalar. At the end points, i.e. at x = 0, x = L , we attach masses, which for
the sake of simplicity we take as being equal to 1. At the free ends, i.e. at x = L , we
apply boundary controls acting as forces. See Fig. 1.

Fig. 1 Two strings coupled via an elastic spring and masses
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We introduce the stiffness of the strings as Ki (uix ), i = 1, 2 and, correspondingly,
Vi (r) := ∫ r

0 Ki (s)ds. We introduce the Lagrange function

L(u) :=
T∫

0

⎧
⎨

⎩

2∑

i=1

⎡

⎣
L∫

0

1

2
(uit )

2(x, t) − Vi (u
i
x )(x, t)dx

⎤

⎦+ 1

2

2∑

i=1

(uit )
2(0, t) − 1

2
κ
(
u1(0, t) − u2(0, t)

)2

⎫
⎬

⎭
dt.

Then, upon standard variational calculations, we obtain the following coupled system
of two linear wave equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uitt − Ki (u
i
x )x = 0, x ∈ (0, L), t ∈ (0, T ), i = 1, 2,

x = 0 : u1t t (0, t) = K1(u
1
x )(0, t) − κ(u1(0, t) − u2(0, t)),

u2t t (0, t) = K2(u
2
x )(0, t) + κ(u1(0, t) − u2(0, t)),

x = L : u1t t = −K1(u
1
x )(L , t) + h1(t),

u2t t = −K2(u
2
x )(L , t) + h2(t), t ∈ (0, T )

t = 0 : ui (x, 0) = φi
0(x), u

i
t (x, 0) = ψi

1(x), x ∈ [0, L], i = 1, 2,

(1.1)

where κ stands for the stiffness (Hooke’s constant) of the spring. We are to find
two boundary controls (h1(t), h2(t)) on x = L in order to achieve exact boundary
controllability for the coupled system (1.1). We assume that zero is at equilibrium
such that

Ki (0) = 0, K ′
i (0) > 0.

For non-constant equilibria, we need to work around such equilibria. We refer to a
forthcoming publication formore complicated networks and non-constant equilibria.
We now extend the model problem in that we introduce a linear viscoelastic behavior
of Kelvin–Voigt type to the coupling spring. To this end we note that a Maxwell ele-
ment, as shown in Fig. 2, satisfies the constitutive equation in continuum mechanics

σ = Eε + τ ε̇,

where σ, ε signify the stress and the strain, respectively. See e.g. [17]. In this context
the strain in the spring is given by the difference between the mass points. We,
therefore, introduce besides κ = E the parameter τ , representing the dash-pot. See
Fig. 2 for a cartoon of this situation.

The corresponding system of quasilinear wave equations with this coupling is
given by.
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Fig. 2 Two strings coupled via a viscoelastic element and masses

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uitt − Ki (u
i
x )x = 0, x ∈ (0, L), t ∈ (0, T ), i = 1, 2,

x = 0 : u1t t (0, t) = K1(u
1
x )(0, t) − κ(u1(0, t) − u2(0, t)) − τ (u1t (0, t) − u2t (0, t)),

u2t t (0, t) = K2(u
2
x )(0, t) + κ(u1(0, t) − u2(0, t)) + τ (u1t (0, t) − u2t (0, t)),

x = L : u1t t = −K1(u
1
x )(L , t) + h1(t),

u2t t = −K2(u
2
x )(L , t) + h2(t), t ∈ (0, T ),

t = 0 : ui (x, 0) = φi0(x), u
i
t (x, 0) = ψi

1(x), x ∈ [0, L], i = 1, 2.

(1.2)

Kelvin-type visocelasticity as seen above is described by an ordinary differential
equation between the stress and the strains. The corresponding boundary condition
is still local, but second order in time. General viscoelastic springs would involve a
convolution with a relaxation kernel a(·). The corresponding model then takes the
following format.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uitt − Ki (u
i
x )x = 0, x ∈ (0, L), t ∈ (0, T ), i = 1, 2,

x = 0 : u1t t (0, t) = K1(u
1
x )(0, t) − κ(u1(0, t) − u2(0, t)) − ∂

∂t

t∫

0

a(t − s)(u1(0, s) − u2(0, s))ds,

u2t t (0, t) = K2(u
2
x )(0, t) + κ(u1(0, t) − u2(0, t)) + ∂

∂t

t∫

0

a(t − s)(u1(0, s) − u2(0, s))ds,

x = L : u1t t = −K1(u
1
x )(L , t) + h1(t),

u2t t = −K2(u
2
x )(L , t) + h2(t), t ∈ (0, T ),

t = 0 : ui (x, 0) = φi (x), uit (x, 0) = ψi (x), ui (x, s) = 0, s < 0, x ∈ [0, L], i = 1, 2.
(1.3)

In the case of (1.3), we need to add a zero displacement history. The alternative is
to assume that a(s) = 0, t < 0. In this case the boundary condition is non-local in
time already. The classical boundary controllability problem then consists in finding
suitably smooth controls hi (·), i = 1, 2 such that in a given time T > 0 the controls
drive the system (1.1), (1.2) or (1.3) to a given displacement and velocity profile at
the final time T :
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∃? (h1, h2) such that ui satisfy (1.1), (1.2) or (1.3) and

t = 0 : (ui (x, 0), uit (x, 0))
T = (φi (x),ψi (x))T, i = 1, 2, 0 ≤ x ≤ L (1.4)

t = T : (ui (x, T ), uit (x, T ))T = (�i (x),� i (x))T, i = 1, 2, 0 ≤ x ≤ L .

While the question of exact controllability is natural for (1.1) and (1.2), it is more
complicated in the case (1.3), as the final targets �,� need to be holdable states.
This means that after hitting the targets, the solution should stay there, possibly under
applying constant controls. This is true for (1.1) and (1.2), but may fail to hold in the
case (1.3), as the convolution dives the system beyond the final time T if the controls
are switched off.

We integrate the second-order in time boundary conditions appearing in (1.1),
(1.2) or (1.3) with respect to time. We obtain at x = 0

u1t (0, t) = u1t (0, 0) +
t∫

0

(
K1(u

1
x )(0, s) − κ(u1(0, s) − u2(0, s))

)
ds (1.5)

u1t (0, t) = u1t (0, 0) +
t∫

0

(
K1(u

1
x )(0, s) − κ(u1(0, s) − u2(0, s))

)
ds

−τ (u1(0, t) − u2(0, t)) + τ (u1(0, 0) − u2(0, 0)) (1.6)

u1t (0, t) = u1t (0, 0) +
t∫

0

(
K1(u

1
x )(0, s) − κ(u1(0, s) − u2(0, s))

)
ds

+
t∫

0

a(t − s)(u1(0, s) − u2(0, s))ds. (1.7)

In case of (1.5), (1.6), the boundary conditions can be put into the format

u1t (0, t) = G11(ψ
1(0),φ1(0),φ2(0)) + G21(u

1(0, t), u2(0, t)) +
t∫

0

G31(s, u
1(0, s), u2(0, s), u1x (0, s))ds,

(1.8)

whereas in case (1.7), the corresponding boundary condition is given by:

u1t (0, t) = G11(ψ
1(0),φ1(0),φ2(0)) +

t∫

0

G31(t, s, u
1(0, s), u2(0, s), u1x (0, s))ds,

(1.9)

where now the kernel G31 explicitly depends on the actual time t . The situation for
u2 is analogous. We may summarize as follows.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uitt − Ki (u
i
x )x = 0, x ∈ (0, L), t ∈ (0, T ) i = 1, 2,

x = 0 : u1t (0, t) = G11(ψ
1(0),φ1(0),φ2(0)) + G21(u

1(0, t), u2(0, t))

+
t∫

0

G31(t, s, u
1(0, s), u2(0, s), u1x (0, s))ds,

u2t (0, t) = G12(ψ
2(0),φ1(0),φ2(0)) + G22(u

1(0, t), u2(0, t))

+
t∫

0

G32(t, s, u
1(0, s), u2(0, s), u2x (0, s))ds,

x = L : u1t (L , t) = ψ1(L) +
t∫

0

Ḡ21(u
1
x )(L , s)ds +

t∫

0

h1(s)ds,

u2t (L , t) = ψ2(L) +
t∫

0

Ḡ22(u
2
x )(L , s)ds +

t∫

0

h2(s)ds, t ∈ (0, T ),

t = 0 : ui (x, 0) = φi
0(x), u

i
t (x, 0) = ψi

1(x), x ∈ [0, L], i = 1, 2.
(1.10)

Thus, the basicmodel to be discussed consists of coupled quasilinear wave equations,
where the coupling is given by a non-local in time boundary condition of first order.
In the case of general viscoelasticity, the kernels depend on the actual time, whereas
in the elastic case and the Maxwell-type viscoelastic case the kernel does not depend
on the actual time.

2 Well-Posedness and Dissipativity of the Viscoeleastic
Model

2.1 Well-Posedness

In order to prove existence and uniqueness of semi-global classical solutions, we
introduce the new variables

vi := uix , wi := uit , i = 1, 2.

We have

vi
t = wi

x = uixt , wi
t = Ki (v

i )x = K ′
i (v

i )vi
x = K ′

i (u
i
x )u

i
xx , i = 1, 2.
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We further introduce hi (z) :=
z∫

0

√
K ′

i (s)ds and define the following Riemann invari-

ants

r i−(x, t) := wi (x, t) + hi (v
i (x, t)), r+(x, t) := wi (x, t) − hi (v

i (x, t)), r i0(x, t) := ui (x, t). (2.1)

We deduce the following equations for these Riemann invariants

∂t r
i
−(x, t) −

√
K ′

i (v
i (x, t)∂xr

i
−(x, t) = 0 (2.2)

∂t r
i
+(x, t) +

√
K ′

i (v
i (x, t)∂xr

i
+(x, t) = 0

∂t r
i
0(x, t) = wi (x, t). (2.3)

We have the relations

wi = 1

2
(r i− + r i+), hi (v

i ) = 1

2
(r i− − r i+), i = 1, 2. (2.4)

As we assume K ′
i (s) > 0, we have Dvi hi (vi ) = √

K ′
i (v

i ) > 0 and, thus, hi is strictly
monotone. Therefore, there is an inverse mapping such that vi = pi (r i− − r i+). The
Riemann invariants obviously diagonalize our system of equations transformed into
a first order system. We are going to write the coupling and boundary conditions in
terms of the Riemann invariants. To this end, we insert the definitions (2.1) and the re-
lations (2.2), (2.4) and the expression for vi into (1.2).We assumeφ = (φ1, . . . ,φn)

T

is C2 a vector-valued function of x with small C2[0, L] norm, ψ = (ψ1, . . . ,ψn)
T is

C1 a vector-valued function of x with small C1 norm, such that the conditions of C2

compatibility at the points (t, x) = (0, 0) and (0, L) are satisfied, respectively.

1

2
(r1+ + r1−)t (0, t) = K1(p

1(r1− − r1+)(0, t)) − κ
(
r10 (0, t) − r20 (0, t)

)

− τ

(
1

2
(r1− + r1+)t (0, t) − 1

2
(r2− + r2+)(0, t))

)

(2.5)

1

2
(r2+ + r2−)(0, t) = K2(p

2(r2− − r2+)(0, t)) + κ
(
r10 (0, t) − r20 (0, t)

)

+ τ

(
1

2
(r1− + r1+)(0, t) − 1

2
(r2− + r2+)(0, t))

)

. (2.6)

We integrate (2.5) with respect to time and leave the Riemann variable r i+(0, t) on
the left-hand side, as this is the variable that determines the outgoing waves at x = 0.
We obtain



146 G. Leugering et al.

r1+(0, t) = (r1−(0, 0) + r1+(0, 0)) − r1−(0, t) (2.7)

+ 2

t∫

0

{
K1(p

1(r1− − r1+)(0, s)) − τ
(
r1−(0, s) − r2−(0, s) + r1+(0, s) − r2+(0, s)

)}
ds

− 2κ

t∫

0

(
r10 (0, s) − r20 (0, s)

)
ds

r2+(0, t) = (r2−(0, 0) + r2+(0, 0)) − r2−(0, t) (2.8)

+ 2

t∫

0

{
K2(p

1(r2− − r2+)(0, s)) + τ
(
r1−(0, s) − r2−(0, s) + r1+(0, s) − r2+(0, s)

)}
ds

+ 2κ

t∫

0

(
r10 (0, s) − r20 (0, s)

)
ds

Similarly, we obtain the boundary conditions at x = L as follows

r1−(L , t) = (r1−(L , 0) + r1+(L , 0)) − r1+(L , t)

− 2

t∫

0

{
K1(p

1(r1− − r1+)(L , s)) −
(
r1−(L , s) + r1+(L , s)

)}
ds + 2

t∫

0

h1(s)ds

r2−(L , t) = (r2−(L , 0) + r2+(L , 0)) − r2+(L , t) (2.9)

− 2

t∫

0

{
K2(p

2(r2− − r2+)(L , s)) −
(
r2−(L , s) + r2+(L , s)

)}
ds + 2

t∫

0

h1(s)ds.

We may now introduce the kernels

g1(s, r
i−, r i0, r

i+, i = 1, 2) := K1(p
1(r1− − r1+)(0, s)) − τ

(
r1−(0, s) − r2−(0, s) + r1+(0, s) − r2+(0, s)

)

− 2κ
(
r10 (0, s) − r20 (0, s)

)

g2(s, r
i−, r i0, r

i+, i = 1, 2) := K2(p
2(r1− − r1+)(0, s)) + τ

(
r1−(0, s) − r2−(0, s) + r1+(0, s) − r2+(0, s)

)

+ 2κ
(
r10 (0, s) − r20 (0, s)

)
(2.10)

ḡ1(s, r
i−, r i0, r

i+, i = 1, 2) := K1(p
1(r1− − r1+)(L , s)) −

(
r1−(L , s) + r1+(L , s)

)

ḡ2(s, r
i−, r i0, r

i+, i = 1, 2) := K2(p
2(r2− − r2+)(L , s)) −

(
r2−(L , s) + r2+(L , s)

)
.

We also introduce the initial value functions:

f i (ψi (0),φx (0)) := (r1−(0, 0) + r1+(0, 0)) − r1−(0, t). (2.11)

With this notation we are in the position to rewrite the system (1.2) as follows.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t

⎛

⎝
r i0
r−
r+

⎞

⎠+
⎛

⎜
⎝

0 0 0
0 −√Ki (pi (r−, r+) 0
0 0

√
Ki (pi (r−, r+)

⎞

⎟
⎠ ∂x

⎛

⎝
r i0
r−
r+

⎞

⎠ =
⎛

⎝

1
2 (r− + r+)

0
0

⎞

⎠

r i+(0, t) = f i (φi (0), φx (0)) +
t∫

0

gi (s, r−, r0, r+)ds

ri−(L , t) = f̄ i (φi (L), φx (L)) +
t∫

0

ḡ(s, r−, r0, r+)ds +
t∫

0

hi (s)ds

r0(x, 0) = ψi (x), r−(x, 0) = ψi (x) + hi (φ
′(x, 0)), r+(x, 0) = ψi (x) − hi (φ

′(x, 0)).

(2.12)

This is precisely the format requested in [18] in order to show well-posedness of
(2.12) and, hence, of (1.2). In order to apply the results of [18], we need to assume
C2-compatibility of the initial data. That is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K ′
1(φ

1
x (0))φ

1
xx (0) = K1(φ

1
x(0)) − κ(φ1(0) − φ2(0)) − τ (ψ1(0) − ψ2(0))

K ′
2(φ

1
x (0))φ

2
xx (0) = K2(φ

1
x(0)) + κ(φ1(0) + φ2(0)) − τ (ψ1(0) − ψ2(0))

K ′
1(φ

1
x (L))φ1

xx (L) = K1(φ
1
x(L)) − k1ψ

1(L)

K ′
1(φ

2
x (L))φ2

xx (L) = K2(φ
2
x(L)) − k1ψ

1(L).

(2.13)

Theorem 2.1 For any given T > 0, suppose that ‖(φ,ψ)‖(C2[0,L])2×(C1[0,L])2 ,
‖h‖(C0[0,T ])2 and ‖h̄[0, T ]‖(C0[0,T ])2 are small enough (depending on T ), and the
conditions of C2 compatibility (2.13) are satisfied at the points (t, x) = (0, 0) and
(0, L), respectively. Then, the forward mixed initial-boundary value problems (1.2)
admit a unique semi-global C2 solution u = u(t, x) with small C2 norm on the
domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}.

We also obtain an additional regularity with respect to the time at x = 0, due to
the masses there.

Remark 2.1 For the semi-global C2 solution u = u(t, x) given in Theorem 2.1, if
hi (t) ≡ 0(i = 1, 2), or more generally, hi (t) ∈ C1[0, T ] with small C1[0, T ] norm,
there is a hidden regularity on x = 0 that ui (t, 0) ∈ C3[0, T ](i = 1, 2) with small
C3 norm.

2.2 Dissipativity of the Nonlinear Model

We now consider the following total energy related with the original system: (1.2).

E(t) =
∑

i=1,2

L∫

0

(
1

2
(uit )

2 + V i (uix )

)

dx + 1

2

(
uit (0, t)

2 + uit (L , t)2
)

+ 1

2

(
u1(0, t) − u2(0, t)

)2
,

(2.14)
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where the potential V i (r) satisfies V i (r) =
r∫

0
Ki (s)ds. However, for h1(t), h2(t) in

(1.2), we choose velocity feedack controls

u1t t (L , t) = −K1(u
1
x )(L , t) − k1u

1
t (L , t),

u2t t (L , t) = −K2(u
2
x )(L , t) − k2u

2
t (L , t), t ∈ (0, T ) (2.15)

Assuming second order regularity, we obtain.

d

dt
E(t) =

∑

i=1,2

⎧
⎨

⎩

L∫

0

(
uit u

i
tt + Ki (u

i
x )u

i
xt

)
dx + uit (0, t)u

i
tt (0, t)

⎫
⎬

⎭
(2.16)

+ κ
(
u1(0, t) − u2(0, t)

) (
u1t (0, t) − u2t (0, t)

)

=
∑

i=1,2

L∫

0

uit
(
uitt − (Kiu

i
x )x

)
dx +

∑

i=1,2

Ki (u
i
x )u

i
t (x, t)|L0 + u1t (L , t)u1t t (L , t) + u2t (L , t)u2t t (L , t)

+ u1t (0, t)
(
u1t t + κ(u1(0, t) − u2)0, t))

)+ u1t (0, t)
(
u2t t − κ(u1(0, t) − u2(0, t))

)

= u1t (L , t)(u1t t (L , t) + K1(u
1
x )(L , t)) + u2t (L , t)(u2t t (L , t) + K2(u

2
x )(L , t))

+ u1t (0, t)
(
u1t t − K1(u

1
x )(0, t) + κ(u1(0, t) − u2(0, t))

)

+ u1t (0, t)
(
u2t t − K2(u

2
x )(0, t) − κ(u1(0, t) − u2(0, t))

)

= −k1(u
1
t (L , t))2 − k2(u

2
t (L , t)2 + u1t (0, t)(−τ (u1t (0, t) − u2t (0, t)) + u2t (0, t)(τ (u1t (0, t) − u2t (0, t))

= −k1(u
1
t (L , t))2 − k2(u

2
t (L , t))2 − τ

(
u1t (0, t) − u2t (0, t)

)2 ≤ 0.

This shows dissipativity. It is clear from (2.16) that the uncontrolled and purely
elastic case leads to energy conservation. This suggests that boundary exponential
stabilizability should hold. In the case of the linear model, we provide a proof of
this fact. The investigation of the nonlinear case will be the subject of a forthcoming
publication.

3 Exact Boundary Controllability for the Kelvin-Type
Viscoelastic Coupling

In this section, we examine the problem of exact boundary controllability for a
coupled system of two 1-D quasilinear wave equations, where the coupling is given
by a Maxwell-type visocelastic spring-dash-pot system.

To this end, we provide final data �,�, where � = (�1,�2)
T is a C2

vector-valued function of x with small C2[0, L] norm, � = (�1, �2)
T is a C1[0, L]

vector-valued function of x with small C1[0, L] norm, such that the conditions of
C2 compatibility (2.13) at the points (t, x) = (T, 0) and (T, L) are satisfied, respec-
tively. Obviously, u = 0 is an equilibrium state of (1.2), and we will establish local
one-sided exact boundary controllability around u = 0. By the results in [18], we
obtain:



1-d Wave Equations Coupled via Viscoelastic Springs and Masses … 149

Theorem 3.1 Let

T > 2L max
i=1,2

(
1

√
K ′

i (0)

)

. (3.1)

For any given initial data (φ,ψ) and final data (�,�) with small norms
‖(φ,ψ)‖(C2[0,L])2×(C1[0,L])2 and ‖(�,�)‖(C2[0,L])2×(C1[0,L])2 and boundary controls
hi ≡ 0(i = 1, 2), such that the conditions of C2 compatibility are satisfied at the
points (t, x) = (0, 0) and (T, 0), respectively. Then, there exist boundary controls
H = (h̄1, h̄2) with small norm ‖H‖(C0[0,T ])2 on x = L, such that the mixed initial-
boundary value problem for (1.2) admits a unique C2 solution u = u(t, x)with small
C2 norm on the domainR(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, which exactly sat-
isfies (1.4).

Remark 3.1 More generally, if hi (t) ∈ C1[0, T ](i = 1, 2)with smallC1 norm, The-
orem 3.1 still holds.

4 Exponential Boundary Stabilization of a Linear
Kelvin–Voigt-Model

To fix ideas, let us consider the following linear model of two strings coupled via
a Kelvin–Voigt-type viscoelastic spring without tip-masses and velocity boundary
feedbacks at x = L:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uitt − uixx = 0, x ∈ (0, L), t ∈ (0, T ), i = 1, 2,

x = 0 : u1x (0, t) = κ(u1(0, t) − u2(0, t)) + τ (u1t (0, t) − u2t (0, t)),

u2x (0, t) = −κ(u1(0, t) − u2(0, t)) − τ (u1t (0, t) − u2t (0, t)),

x = L : u1x (L , t) = −k1u
1
t (L , t),

u2x (L , t) = −k2u
2
t (L , t), t ∈ (0, T ),

t = 0 : ui (x, 0) = φi (x), uit (x, 0) = ψi (x), x ∈ [0, L], i = 1, 2.

(4.1)

Here, the feedback parameters k1, k2 are positive numbers. As for existence and
uniqueness of solutions, in case that φi (x), i = 1, 2 are not constant, we refer to
the previous section, where the result trivially follows from the nonlinear case. It is,
however, also possible to achieve the wellposedness results via semi-group theory.
We wish to prove exponential decay via an appropriate Liapunov function. As we
ultimately intend to prove such property for the nonlinear model (1.2), we do not
rely on results about linear equations, where uniform exponential stabilizability can
be determined form exact boundary controllability. According to Theorem 3.1, exact
controllability can be inferred in principle also for the linear problem considered here.
However, for nonlinear equations no such implication is known. For that matter it is
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important to retrieve exponential stabilizability by Liapunov-techniques. Moreover,
such techniques are much more precise about the decay rates. We refer to [4, 5, 7]
for the techniques and their applications. We introduce the new variables

vi := uix , wi := uit , i = 1, 2

and the Riemann invariants

r i− := vi + wi , r i+ := vi − wi , i = 1, 2.

With this, we obtain

∂t r
i
− − ∂xr

i
− = 0, ∂t r

i
+ + ∂xr

i
+− = 0.

We consider a candidate Liapunov function:

E(t) :=1

2

∑

i=1,2

L∫

0

{
Ai

+ exp(−μx)(r i+)2 + Ai
− exp(μx)(r i−)2

}
dx

+ 1

2
κ(u1(0, t) − u2(0, t))2 =: E0(t) + E1(t), (4.2)

where μ, Ai+, Ai− > 0 are still to be determined. We obtain

d

dt
E0 =

∑

i=1,2

L∫

0

{
Ai

+ exp(−μx)r i+∂t r
i
+ + Ai

− exp(μx)r i−∂t r
i
−
}
dx (4.3)

=
∑

i=1,2

L∫

0

{

Ai
+ exp(−μx)

(

−1

2
∂x (r

i
+)2
)

+ Ai
− exp(μx)

(

−1

2
∂x (r

i
−)2
)}

dx

−
∑

i=1,2

1

2
Ai

+ exp(−μx)(r i+)2|L0 +
∑

i=1,2

1

2
Ai

− exp(μx)(r i−)2|L0 − μE0(t).

Moreover

d

dt
E1 = κ

(
u1(0, t) − u2(0, t)

) (
u1t (0, t) − u2t (0, t)

)
(4.4)

= κ
(
u1(0, t) − u2(0, t)

)( 1

τ

(
u1x (0, t)

)
− κ

τ

(
u1(0, t) − u2(0, t)

))

= −κ2

τ

(
u1(0, t) − u2(0, t)

)2 + κ

τ

(
u1(0, t) − u2(0, t)

)
u1x (0, t)

≤ −κ2

τ

(
u1(0, t) − u2(0, t)

)2 + κ

τ
ρ
(
u1(0, t) − u2(0, t)

)2 + κ

τ

1

4ρ

(
r1−(0, t) + r1+(0, t)

)2
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≤ −κ

τ
(κ − ρ)

(
u1(0, t) − u2(0, t)

)2 + κ

τ

1

4ρ

(
1

δ
r1−(0, t)2 + δr1+(0, t)2

)

= κ

τ

1

4ρ

(
1

δ
r1−(0, t)2 + δr1+(0, t)2

)

− 2
κ − ρ

τ
E1(t)

We are now concerned with the boundary values. We have

u1x (0, t) = κ(u1(0, t) − u2(0, t)) + τ (u1t (0, t) − u2t (0, t)) ⇔
(r1−(0, t) + r1+(0, t)) = κ(u1(0, t) − u2(0, t)) + τ

(
r1−(0, t) − r1+(0, t) − r2−(0, t) + r2+(0, t)

)
⇔

(1 + τ )r1+(0, t) − τr2+(0, t) = (τ − 1)r1−(0, t) − τr2−(0, t) + κ(u1(0, t) − u2(0, t)).

The analogous boundary representation holds for the second string. Together we
have

(1 + τ )r1+(0, t) − τr2+(0, t) = (τ − 1)r1−(0, t) − τr2−(0, t) + κ(u1(0, t) − u2(0, t))

−τr1+(0, t) + (1 + τ )r2+(0, t) = (τ − 1)r2−(0, t) − τr1−(0, t) − κ(u1(0, t) − u2(0, t)),

which reads as follows:

(
1 + τ −τ
−τ 1 + τ

)(
r1+(0, t)
r2+(0, t)

)

=
(

τ − 1 −τ

−τ τ − 1

)(
r1−(0, t)
r2−(0, t)

)

+ κ

(
(u1(0, t) − u2(0, t))

−(u1(0, t) − u2(0, t))

)

(4.5)

solving for the Riemann invariants with sign ‘+’ we obtain

(
r1+(0, t)
r2+(0, t)

)

= − 1

1 + 2τ

(
1 2τ
2τ 1

)(
r1−(0, t)
r2−(0, t)

)

+ κ

1 + 2τ

(
(u1(0, t) − u2(0, t))

−(u1(0, t) − u2(0, t))

)

.

(4.6)

or

(
r1+(0, t)
r2+(0, t)

)

= − 1

1 + 2τ

(
r1−(0, t) + 2τr2−(0, t)

2τr1−(0, t) + r2−(0, t)

)

+ κ

1 + 2τ

(
(u1(0, t) − u2(0, t))

−(u1(0, t) − u2(0, t))

)

. (4.7)

We take the 2−norm of both sides and obtain after some calculus.

r1+(0, t)2 + r2+(0, t)2 ≤ 3κ2

(1 + 2τ )2
(u1(0, t) − u2(0, t))2 +

(

1 + 2(1 − 2τ )2

(1 + 2τ )2

)
(
r1−(0, t)2 + r2−(0, t)2

)
.

(4.8)

At x = L we have

uix (L , t) = −kiu
i
t (L , t), i = 1, 2 ⇔ (4.9)

r i−(L , t) + r i+(L , t) = −ki (r
i
−(L , t) − r i+(L , t), i = 1, 2 ⇔

r i−(L , t) = ki − 1

ki + 1
r i+(L , t), i = 1, 2..
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Notice that for ki = 1 (4.9) provides transparent boundary feedback conditions such
that no energy enters the strings at x = L , i.e. waves approaching x = L from inside
the strings leave without any reflection. We now go back to (4.2).

−
∑

i=1,2

1

2
Ai

+ exp(−μx)(r i+)2|L0 +
∑

i=1,2

1

2
Ai

− exp(μx)(r i−)2|L0 (4.10)

= 1

2

{
∑

i=1,2

(
Ai

+(r i+(0, t))2 − Ai
−(r i−(0, t))2

)

+
∑

i=1,2

(
Ai

− exp(μL)(r1−(0, t))2 − Ai
+ exp(−μL)(r i+(L , t))2

)
}

.

With this, we can now estimate

d

dt
E(t) ≤ 1

2

⎧
⎨

⎩

∑

i=1,2

(
Ai+(r i+(0, t))2 − Ai−(r i−(0, t))2

)
(4.11)

+
∑

i=1,2

(
Ai− exp(μL)(r1−(0, t))2 − Ai+ exp(−μL)(r i+(L , t))2

)
⎫
⎬

⎭

+ κ

4

1

ρδ
r1−(0, t)2 + κ

4

δ

ρ
r1+(0, t)2 − μE0(t) − 2

κ − ρ

τ
E1(t).

= 1

2
(A1+ + κ

2δ

ρ
)r1+(0, t)2 + 1

2
A2+r2+(0, t)2 − 1

2
(A1− − κ

1

2ρδ
)r1−(0, t)2 − 1

2
A2−r2−(0, t)2

+ 1

2
A1− exp(μL)r1−(L , t)2 + 1

2
A2− exp(μL)r2−(L , t)2

− 1

2
A1+ exp(−μL)r1+(L , t)2 − 1

2
A2+ exp(−μL)r2+(L , t)2 − μE0(t) − 2

κ − ρ

τ
E1(t).

We now use (4.8), (4.9) in (4.11) and obtain

d

dt
E(t) ≤ −μE0(t) − 2

κ − ρ

τ
E1(t) (4.12)

+ max(A1+ + κ
δ

ρ
, A2+)

{
3κ2

2(1 + 2τ )2
(u1(0, t) − u2(0, t))2 + 1

2

(

1 + 2
(1 − 2τ )2

(1 + 2τ )2

)

(r1−(0, t)2 + r2−(0, t)2)

}

− 1

2
(A1− − κ

1

2ρδ
)r1−(0, t)2 − 1

2
A2−r2−(0, t)2 + 1

2

(
k − 1

k + 1

)2

exp(μL)
(
A1−r1+(L , t)2 + A2−r2+(L , t)2

)

− 1

2
exp(−μL)

(
A1+r1+(L , t) + A2+r2+(L , t)2

)

=
{

max(A1+ + κ
δ

ρ
, A2+)

1

2

(

1 + 2
(1 − 2τ )2

(1 + 2τ )2

)

+ κ

2

1

δρ
− 1

2
A1−
}

r1−(0, t)2

+
{

max(A1+ + κ
δ

ρ
, A2+)

1

2

(

1 + 2
(1 − 2τ )2

(1 + 2τ )2

)

− 1

2
A2−
}

r2−(0, t)2

+ 1

2

{(
k − 1

k + 1

)2

A1− exp(μL) − A1+ exp(−μL)

}

r1+(L , t)2
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+ 1

2

{(
k − 1

k + 1

)2

A2− exp(μL) − A2+ exp(−μL)

}

r2+(L , t)2

− μE0(t) −
(

2
κ − ρ

τ
− 3κ2

2(1 + 2τ )2
max(A1+ + κ

δ

ρ
, A2+)

)

E1(t).

Recall that κ, τ ≥ 0 are fixed physical parameters, while A±, δ, τ > 0 can be chosen
under given constraints in order to achieve the desired energy estimate. It is clear from
(4.12) that if we choose the feedback-gains ki = k = 1, i = 1, 2, the third and the
fourth term are automatically negative, regardless how small Ai+, i = 1, 2 are, and the
first and the second term become negative for large Ai−, i = 1, 2 and small Ai+, i =
1, 2, small δ, ρ with δ ≈ ρ. In this case also the factor of E1(t) becomes negative,
say −μ for suitably small μ > 0. One can also choose the viscosity parameter τ to
improve the estimates. Thus, for the case of optimal feedback gains, i.e. ki = 1, i =
1, 2, we obtain the estimate

d

dt
E(t) ≤ −μE(t),∀t > 0, (4.13)

which provides us with exponential decay, for suitable choices of the parameters
above. In the general case, we have to fulfil the following inequalities, where for the
sake of simplicity, we choose Ai− = A−, Ai+ = A+, i = 1, 2.

(i) (A+ + κ
δ

ρ
)
1

2

(

1 + 2
(1 − 2τ )2

(1 + 2τ )2

)

+ κ

2

1

δρ
− 1

2
A− ≤ 0

(i i)
1

2

(
k − 1

k + 1

)2

A− exp(μL) − A+ exp(−μL) ≤ 0 (4.14)

(i i i)

(

2
κ − ρ

τ
− 3κ2

2(1 + 2τ )2
(A+ + κ

δ

ρ
)

)

≥ μ > 0.

Under the conditions (4.14), we obtain again (4.13). Clearly, small spring stiffness κ
and small viscosity τ will improve the exponential decay rate μ which also depends
on the relation between A+ and A−:

A+
A−

≥ 1

2

(
k − 1

k + 1

)2

exp(2μL).

We assume the following compatibility conditions.
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ1
x (0) = κ(φ1(0) − φ2(0)) + τ (ψ1(0) − ψ2(0))

φ2
x (0) = −κ(φ1(0) − φ2(0)) − τ ((ψ1(0) − ψ2(0))

φ1
x (L) = −k1ψ

1(L)

φ2
x (L) = −k2ψ

2(L).

(4.15)
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Theorem 4.1 Let φ ∈ C1(0, L),ψ ∈ C0(0, L) satisfy the compatibility conditions
(4.15) and let the assumptions (4.14) be fulfilled. Then the unique solution of (4.1)
decays exponentially.

Remark 4.1 The result concerns an L2-type Liapunov function for the linear system
(4.1). We conjecture that a similar result, also for H 2-type Liapunov functions hold
true. This will be the subject of a forthcoming publication.

5 Conclusion and Outlook

We have analyzed linear and quasilinear strings coupled via visco-elastic springs
of standard type. We have provided a framework that allows for generalizations
in various directions. First of all, general visco-elastic spring coupling of fading
memory type can be considered in the quasilinear context. See [19] for general non-
local boundary conditions in the context of exact controllability from both sides of
the spring coupling. The situation is more complex for controls appearing only at
the end of one string. If the spring stiffness is infinite, in other words, if the strings
are directly coupled via a mass, we have to consider asymmetric spaces, due to
the smoothing effect of the coupling mass. See e.g. [8]. Such phenomena have not
been discussed for the quasilinear wave equation so far. Therefore, this contribution
gives a first result concerning controllability of nonlinear strings with point-mass
and visco-elastic spring couplings.

We also embarked on stability and stabilization properties of such systems. How-
ever, due to space limitations, we just looked at linear strings, no masses and low
regularity of solutions. The full system with masses and quasilinear strings is cur-
rently open, but subject to a forthcoming publication. Moreover, all that has been
said in this contribution concerns out-of-plane-displacement models. There is cur-
rently no corresponding result for planar of spatial quasilinear strings and springs.
Again, this is subject to current research of the authors. For a general model and
corresponding controllability results for 3-d quasilinear string networks see [10]. In
[6] quasilinear networks of Timoshenko beams have been considered. Again, these
models may be extended to spring-couplings as in this article.

We end with the proposition of a damage model, where we assume that the cou-
pling spring undergoes a damage process which, in turn, is driven by excessive strains
at the coupling point. To this end, we consider a time dependent stiffness κ(t) of the
coupling spring and propose an evolution of damage in due course as follows
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uitt − Ki (u
i
x )x = 0, x ∈ (0, , T )L), t ∈ (0, i = 1, 2,

x = 0 : u1t t (0, t) = K1(u
1
x )(0, t) − κ(t)(u1(0, t) − u2(0, t)),

u2t t (0, t) = K2(u
2
x )(0, t) + κ(t)(u1(0, t) − u2(0, t)),

κt = −{1
2
(u1(0, t) − u2(0, t))2 − η}+κ(t), κ(0) = κ0,

x = L : u1t t = −K1(u
1
x )(L , t) + h1(t),

u2t t = −K2(u
2
x )(L , t) + h2(t),

t = 0 : ui (x, 0) = φi (x), uit (x, 0) = ψi (x), ui (x, s) = 0, s < 0, x ∈ [0, L], i = 1, 2.

(5.1)

Here {a}+ = max(a, 0). The nonlinear ordinary differential equation for the evolu-
tion of the damage describes an exponential decay of κ(t) for time periods, where
the displacement of the spring is excessively large (larger than η >> 0). Problems
of this type are open. They are connected to the general problem of degeneration in
the coefficients of wave equations in the sense of [1]. Clearly, if only one control is
considered, the problem looses the property of controllability as the spring damage
finally leads to break of the spring. The controllability or observability time will tend
to infinity as κ(t) tends to zero.
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