
Controllability Under Positivity
Constraints of Multi-d Wave Equations

Dario Pighin and Enrique Zuazua

Dedicated to Piermarco Cannarsa on the occasion of his 60th
birthday

Abstract We consider both the internal and boundary controllability problems for
wave equations under non-negativity constraints on the controls. First, we prove the
steady state controllability property with nonnegative controls for a general class
of wave equations with time-independent coefficients. According to it, the system
can be driven from a steady state generated by a strictly positive control to another,
by means of nonnegative controls, and provided the time of control is long enough.
Secondly, under the added assumption of conservation and coercivity of the energy,
controllability is proved between states lying on two distinct trajectories. Our meth-
ods are described and developed in an abstract setting, to be applicable to a wide
variety of control systems.
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1 Introduction

This paper is devoted to the study of the controllability properties of the wave equa-
tion, under positivity (or nonnegativity) constraints on the control.

We address both the case where the control acts in the interior of the domain
where waves evolve or on its boundary.

This problem has been exhaustively considered in the unconstrained case but
very little is known in the presence of constraints on the control, an issue of primary
importance in applications, since whatever the applied context under consideration
is, the available controls are always limited. For some of the basic literature on the
unconstrained controllability of wave-like equations the reader is referred to: [1, 3–5,
8, 9, 15, 21, 22, 24, 26].

The developments in this paper are motivated by our earlier works on the con-
strained controllability of heat-like equations ([16, 19]). In that context, due to the
well-known comparison principle for parabolic equations, control and state con-
straints are interlinked. In particular, for the heat equation, nonnegative controls
imply that the solution is nonnegative too, when the initial configuration is nonneg-
ative. Therefore, imposing non-negativity constraints on the control ensures that the
state satisfies the non-negativity constraint too.

This is no longer true for wave-like equations in which the sign of the control
does not determine that of solutions. However, as mentioned above, from a practical
viewpoint, it is very natural to consider the problem of imposing control constraints.
In this work, to fix ideas, we focus in the particular case of nonnegative controls.

First we address the problem of steady state controllability in which one aims at
controlling the solution from a steady configuration to another one. This problem
was addressed in [7], in the absence of constraints on the controls for semilinear
wave equations. Our main contribution here is to control the system by preserving
some constraints on the controls given a priori. And, as we shall see, when the initial
and final steady states are associated to positive time-independent control functions,
the constrained controllability can be guaranteed to hold if the time-horizon is long
enough.

The proof is developed by a step-wise procedure presented in [19] (which differs
from the one in [7, 16]), the so-called “stair-case argument”, along an arc of steady-
states linking the starting and final one. The proof consists on moving recursively
from one steady state to the other by means of successive small amplitude controlled
trajectories linking successive steady-states. This method and result are presented in
a general semigroup setting and it can be successfully implemented for any control
system for which controllability holds by means of L∞ controls.

The same recursive approach enables us to prove a state constrained result, under
additional dissipativity assumptions. But the time needed for this to hold is even
larger than before.

The problem of steady-state controllability is a particular instance of the more
general trajectory control problem, in which, given two controlled trajectories of
the system, both obtained from nonnegative controls, and one state in each of them
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(possibly corresponding to two different time-instances) one aims at driving one state
into the other one by means of nonnegative constrained controls. This result can also
be proved by a similar iterative procedure, but under the added assumption that the
system is conservative and its energy coercive so that uncontrolled trajectories are
globally bounded.

These results hold for long enough control time horizons. The stepwise procedure
we implement needs of a very large control time, much beyond the minimal control
time for the control of the wave equation, that is determined by the finite velocity of
propagation and the so-called Geometric Control Condition (GCC). It is then natural
to introduce the minimal time of control under non-negativity constraints, in both
situations above.

There is plenty to be done to understand how these constrained minimal times
depends on the data to be controlled. Employing d’Alembert’s formula for the one
dimensional wave equation, we compute both of them for constant steady states,
showing that they coincide with the unconstrained one. In that case we also show
that the property of constrained controllability holds in the minimal time too.

Controllability under constraints has already been studied for finite-dimensional
models and heat-like equations (see [16, 19]). In both cases it was also proved that
controllability by nonnegative controls fails if time is too short, when the initial
datum differs from the final target. This fact exhibits a big difference with respect to
the unconstrained control problem for these systems, where controllability holds in
arbitrary small time in both cases. In the wave-like context addressed in this paper
the waiting phenomenon, according to which there is a minimal control time for the
constrained problem, is less surprising. But, simultaneously, on the other hand, in
some sense, the fact that constraints can be imposed on controls and state seems
more striking too.

In [12], authors analysed controllability of the one dimensional wave equation,
under the more classical bilateral constraints on the control. Our work is, as far as
we know, the first one considering unilateral constraints for wave-like equations.

1.1 Internal Control

Let Ω be a connected bounded open set of R
n , n ≥ 1, with C∞ boundary, and let ω

and ω0 be subdomains of Ω such that ω0 ⊂ ω.
Let χ ∈ C∞(Rn) be a smooth function supported in ω such that Range(χ) ⊆

[0, 1], χ�ω0≡ 1.
We assume further that all derivatives of χ vanish on the boundary of Ω . We will

discuss this assumption in Sect. 3.3.
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We consider the wave equation controlled from the interior

⎧
⎪⎨

⎪⎩

ytt − Δy + cy = uχ in (0, T ) × Ω

y = 0 on (0, T ) × ∂Ω

y(0, x) = y00 (x), yt (0, x) = y10(x) in Ω

(1)

where y = y(t, x) is the state, while u = u(t, x) is the control whose action is local-
ized on ω by means of multiplication with the smooth cut-off function χ. The coef-
ficient c = c(x) is C∞ smooth in Ω .

It is well known in the literature (e.g. [10, Sect. 7.2]) that, for any initial datum
(y00 , y

1
0) ∈ H 1

0 (Ω) × L2(Ω) and for any control u ∈ L2((0, T ) × ω), the above
problem admits an unique solution (y, yt ) ∈ C0([0, T ]; H 1

0 (Ω) × L2(Ω)), with
ytt ∈ L2(0, T ; H−1(Ω)).

We assume the Geometric Control Condition on (Ω,ω0, T ∗), which basically
asserts that all bicharacteristic rays enter in the subdomain ω0 in time smaller than
T ∗. This geometric condition is actually equivalent to the property of (unconstrained)
controllability of the system (see [1, 3]).

1.1.1 Steady State Controllability

The purpose of our first result is to show that, in time large, we can drive (1) from
one steady state to another by a nonnegative control, assuming the uniform positivity
of the control defining the steady states.

More precisely, a steady state is a solution to

{
−Δy + cy = uχ in Ω

y = 0 on ∂Ω,
(2)

where u ∈ L2(ω) and y ∈ H 2(Ω) ∩ H 1
0 (Ω). Note that, as a consequence of Fred-

holm Alternative (see [11, Theorem 5.11 page 84]), the existence and uniqueness
of the solution of this elliptic problem can be guaranteed whenever zero is not an
eigenvalue of −Δ + cI : H 1

0 (Ω) −→ H−1(Ω).
The following result holds:

Theorem 1 (Controllability between steady states) Take y0 and y1 in H 2(Ω) ∩
H 1

0 (Ω) steady states associated to L2-controls u1 and u2, respectively. Assume fur-
ther that there exists σ > 0 such that

ui ≥ σ, a.e. in ω. (3)

Then, if T is large enough, there exists u ∈ L2((0, T ) × ω), a control such that
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• the unique solution (y, yt ) to the problem (1)with initial datum (y0, 0) and control
u verifies (y(T, ·), yt (T, ·)) = (y1, 0);

• u ≥ 0 a.e. on (0, T ) × ω.

Theorem 1 is proved in Sect. 3.1. Inspired by [7], we implement a recursive “stair-
case” argument to keep the control in a narrow tubular neighborhood of the segment
connecting the controls defining the initial and final data. This will guarantee the
actual positivity of the control obtained.

1.1.2 Controllability Between Trajectories

The purpose of this section is to extend the above result, under the additional assump-
tion c(x) > −λ1, where λ1 is the first eigenvalue of the Dirichlet Laplacian in Ω .
This guarantees that the energy of the system defines a norm

‖(y0, y1)‖2E =
∫

Ω

[
‖∇ y0‖2 + c

(
y0

)2
]
dx +

∫

Ω

(y1)2dx

on H 1
0 (Ω) × L2(Ω). Thus, by conservation of the energy, uncontrolled solutions are

uniformly bounded for all t .
We assume that both, the initial datum (y00 , y

1
0) and the final target (y

0
1 , y

1
1), belong

to controlled trajectories (see Fig. 1)

(y0i , y
1
i ) ∈ {

(yi (τ , ·), (yi )t (τ , ·) | τ ∈ R
}
, (4)

Fig. 1 Controllability between data lying on trajectories
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where (yi , (yi )t ) solve (1) with nonnegative controls. We suppose that these trajec-
tories are smooth enough, namely

(yi , (yi )t ) ∈ Cs(n)(R; H 1
0 (Ω) × L2(Ω)),

with s(n) = n/2� + 1. Hereafter, we denote by (y0, (y0)t ) the initial trajectory,
while (y1, (y1)t ) stands for the target one.

Note that the regularity is assumed only in time and not in space. This allows to
consider weak steady-state solutions.

We can in particular choose as final target the null state (y01 , y
1
1) = (0, 0). It is

important to highlight that this is something specific to the wave equation. In the
parabolic case (see [16, 19]), this was prevented by the comparison principle, since
the zero target cannot be reached in finite time with non-negative controls. But, for
the wave equation, the maximum principle does not hold and this obstruction does
not apply.

The following result holds

Theorem 2 (Controllability between trajectories) Suppose c(x) > −λ1, for any x ∈
Ω . Let (yi , (yi )t ) ∈ Cs(n)(R; H 1

0 (Ω) × L2(Ω)) be solutions to (1) associated to
controls ui ≥ 0 a.e. in (0, T ) × ω, i = 0, 1. Take (y00 , y

1
0) = (y0(τ0, ·), (y0)t (τ0, ·))

and (y01 , y
1
1) = (y1(τ1, ·), (y1)t (τ1, ·)) for arbitrary values of τ0 and τ1. Then, in time

T > 0 large enough, there exists a control u ∈ L2((0, T ) × ω) such that

• the unique solution (y, yt ) to (1) with initial datum (y00 , y
1
0) verifies the end con-

dition (y(T, ·), yt (T, ·)) = (y01 , y
1
1);• u ≥ 0 a.e. in (0, T ) × ω.

Remark 1 This result is more general than Theorem 1 for two reasons

1. it enables us to link more general data, with nonzero velocity, and not only steady
states;

2. the control defining the initial and target trajectories is assumed to be only non-
negative. This assumption is weaker than the uniform positivity one required in
Theorem 1.

On the other hand, the present result requires the condition c(x) > −λ1 on the
potential c = c(x).

We give the proof of Theorem 2 in Sect. 3.2.

1.2 Boundary Control

Let Ω be a connected bounded open set of R
n , n ≥ 1, with C∞ boundary, and let Γ0

and Γ be open subsets of ∂Ω such that Γ0 ⊂ Γ .
Let χ ∈ C∞(∂Ω) be a smooth function such that Range(χ) ⊆ [0, 1], supp(χ) ⊂

Γ and χ�Γ0≡ 1.
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We now consider the wave equation controlled on the boundary

⎧
⎪⎨

⎪⎩

ytt − Δy + cy = 0 in (0, T ) × Ω

y = χu on (0, T ) × ∂Ω

y(0, x) = y00 (x), yt (0, x) = y10(x) in Ω

(5)

where y = y(t, x) is the state, while u = u(t, x) is the boundary control localized on
Γ by the cut-off function χ. As before, the space-dependent coefficient c is supposed
to be C∞ regular in Ω .

By transposition (see [15]), one can realize that for any initial datum (y00 , y
1
0) ∈

L2(Ω) × H−1(Ω) and control u ∈ L2((0, T ) × Γ ), the above problem admits an
unique solution (y, yt ) ∈ C0([0, T ]; L2(Ω) × H−1(Ω)).

We assume the Geometric Control Condition on (Ω, Γ0, T ∗) which asserts that
all generalized bicharacteristics touch the sub-boundary Γ0 at a non diffractive point
in time smaller than T ∗. By now, it is well known in the literature that this geometric
condition is equivalent to (unconstrained) controllability (see [1, 3]).

1.2.1 Steady State Controllability

As in the context of internal control, our first goal is to show that, in time large, we
can drive (5) from one steady state to another, assuming the uniform positivity of the
controls defining these steady states.

In the present setting a steady state is a time independent solution to (5), namely
a solution to {

−Δy + cy = 0 in Ω

y = χu on ∂Ω.
(6)

In the present setting, u ∈ L2(∂Ω) and y ∈ L2(Ω) solves the above problem in the
sense of transposition (see [14, Chap. II, Sect. 4.2] and [13]).

As in the context of internal control, if 0 is not an eigenvalue of −Δ + cI :
H 1

0 (Ω) −→ H−1(Ω), for any boundary control u ∈ L2(∂Ω), there exists a unique
y ∈ L2(Ω) solution to (6) with boundary control u. This can be proved combining
Fredholm Alternative (see [11, Theorem 5.11 page 84]) and transposition techniques
[14, Theorem 4.1 page 73].

We prove the following result

Theorem 3 (Steady state controllability). Let yi be steady states defined by controls
ui , i = 0, 1, so that

ui ≥ σ, on Γ, (7)

with σ > 0.
Then, if T is large enough, there exists u ∈ L2([0, T ] × Γ ), a control such that
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• the unique solution (y, yt ) to (5) with initial datum (y0, 0) and control u verifies
(y(T, ·), yt (T, ·)) = (y1, 0);

• u ≥ 0 on (0, T ) × Γ.

The proof of the above result can be found in Sect. 4.1. The structure of the proof
resembles the one of Theorem 1, with some technical differences due to the different
nature of the control.

1.2.2 Controllability Between Trajectories

As in the internal control case, we suppose c(x) > −λ1, where λ1 is the first eigen-
value of the Dirichlet Laplacian in Ω . Then, the generator of the free dynamics
is skew-adjoint (see [23, Proposition 3.7.6]), thus generating an unitary group of
operators {Tt }t∈R on L2(Ω) × H−1(Ω).

Both the initial datum and final target (y0i , y
1
i ) belong to a smooth trajectory,

namely
(y0i , y

1
i ) ∈ {

(yi (τ , ·), (yi )t (τ , ·)) | τ ∈ R
}
. (8)

We assume thenonnegativity of the controlsui defining (yi , (yi )t ), for i = 0, 1.Here-
after, in the context of boundary control,we take trajectories of classCs(n)(R; L2(Ω) ×
H−1(Ω)), with s(n) = n/2� + 1. We set (y0, (y0)t ) to be the initial trajectory and
(y1, (y1)t ) be the target one.

Note that, with respect to Theorem 3, we have relaxed the assumptions on the sign
of the controls ui . Now, they are required to be only nonnegative and not uniformly
strictly positive.

Theorem 4 (Controllability between trajectories) Assume c(x) > −λ1, for any
x ∈ Ω . Let (yi , (yi )t ) be solutions to (5) with non-negative controls ui respec-
tively. Suppose the trajectories (yi , (yi )t ) ∈ Cs(n)([0, T ]; L2(Ω) × H−1(Ω)). Pick
(y00 , y

1
0) = (y0(τ0, ·), (y0)t (τ0, ·)) and (y01 , y

1
1) = (y1(τ1, ·), (y1)t (τ1, ·)). Then, in

time large, we can find a control u ∈ L2((0, T ) × Γ ) such that

• the solution (y, yt ) to (5) with initial datum (y00 , y
1
0) fulfills the final condition

(y(T, ·), yt (T, ·)) = (y01 , y
1
1);• u ≥ 0 a.e. in (0, T ) × Γ .

The above Theorem is proved in Sect. 4.2. Furthermore, in Sect. 5, we show how
Theorem 4 applies in the one dimensional case, providing further information about
the minimal time to control and the possibility of controlling the system in the
minimal time.

1.2.3 State Constraints

We impose now constraints both on the control and on the state, namely both the
control and the state are required to be nonnegative.
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In the parabolic case (see [16, 19]) one can employ the comparison principle
to get a state constrained result from a control constrained one. But, now, as we
have explained before, the comparison principle is not valid in general for the wave
equation. And we cannot rely on comparison to deduce our state constrained result
from the control constrained one.

We shall rather apply the “stair-case argument” developed to prove steady state
controllability, paying attention to the added need of preserving state constraints as
well.

Let λ1 be the first eigenvalue of the Dirichlet Laplacian. We assume c > −λ1 in
Ω . We also suppose thatχ ≡ 1, meaning that the control acts on the whole boundary.
We take as initial and final data two steady states y00 and y01 associated to controls
ui ≥ σ > 0. Our proof relies on the application of the maximum principle to (6).
This ensures that the states yi ≥ σ once we know ui ≥ σ. For this reason, we need
c > −λ1 and χ ≡ 1.

Our strategy is the following

• employ the “stair-case argument” used to prove steady state controllability, to keep
the control in a narrow tubular neighborhood of the segment connecting u0 and u1.
This can be done by taking the time of control large enough. Since ui ≥ σ > 0,
this guarantees the positivity of the control;

• by the continuous dependence of the solution on the data, the controlled trajectory
remains also in a narrow neighborhood of the convex combination joining initial
and final data. On the other hand, by themaximumprinciple for the steady problem
(6), we have that y0i ≥ σ in Ω , for i = 0, 1. In this way the state y can be assured
to remain nonnegative.

Theorem 5 We assume c(x) > −λ1 for any x ∈ Ω and χ ≡ 1. Let y00 and y01 be
solutions to the steady problem

{
−Δy + cy = 0 in Ω

y = ui , on ∂Ω
(9)

where ui ≥ σ a.e. on ∂Ω , with σ > 0. We assume y0i ∈ Hs(n)(Ω). Then, there exists
T > 0 such that for any T > T there exists a control u ∈ L∞((0, T ) × ∂Ω) such
that

• the unique solution (y, yt ) to (5) with initial datum (y00 , 0) and control u is such
that (y(T, ·), yt (T, ·)) = (y01 , 0);• u ≥ 0 a.e. on (0, T ) × ∂Ω;

• y ≥ 0 a.e. in (0, T ) × Ω .

The proof of the above Theorem can be found in Sect. 4.3.
Note that the time needed to control the system keeping both the control and the

state nonnegative is greater (or equal) than the corresponding one with no constraints
on the state.
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1.3 Orientation

The rest of the paper is organized as follows:

• Section2: Abstract results;
• Section3: Internal Control: Proof of Theorems 1 and 2;
• Section4: Boundary control: Proof of Theorems 3, 4 and 5;
• Section5: The one dimensional case;
• Section6: Conclusion and open problems;
• Appendix.

2 Abstract Results

The goal of this section is to provide some results on constrained controllability
for some abstract control systems. We apply these results in the context of internal
control and boundary control of the wave equation (see Sect. 1).

We begin introducing the abstract control system. Let H and U be two Hilbert
spaces endowed with norms ‖ · ‖H and ‖ · ‖U respectively. H is called the state space
andU the control space. Let A : D(A) ⊂ H −→ H be a generator of aC0-semigroup
(Tt )t∈R+ , with R

+ = [0,+∞). The domain of the generator D(A) is endowed with
the graph norm ‖x‖2D(A) = ‖x‖2H + ‖Ax‖2H . We define H−1 as the completion of H
with respect to the norm ‖ · ‖−1 = ‖(β I − A)−1(·)‖H , with realβ such that (β I − A)

is invertible from H to H with continuous inverse. Adapting the techniques of [23,
Proposition 2.10.2], one can check that the definition of H−1 is actually independent
of the choice of β. By applying the techniques of [23, Proposition 2.10.3], we deduce
that A admits a unique bounded extension A from H to H−1. For simplicity, we still
denote by A the extension. Hereafter, we writeL (E, F) for the space of all bounded
linear operators from a Banach space E to another Banach space F .

Our control system is governed by:

{
d
dt y(t) = Ay(t) + Bu(t), t ∈ (0,∞),

y(0) = y0,
(10)

where y0 ∈ H , u ∈ L2
loc([0,+∞),U ) is a control function and the control operator

B ∈ L (U, H−1) satisfies the admissibility condition in the following definition (see
[23, Definition 4.2.1]).

Definition 1 The control operator B ∈ L (U, H−1) is said to be admissible if for
all τ > 0 we have Range(Φτ ) ⊂ H , where Φτ : L2((0,+∞);U ) → H−1 is defined
by:

Φτu =
∫ τ

0
Tτ−r Bu(r)dr.
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From now on, we will always assume the control operator to be admissible. One
can check that for any y0 ∈ H and u ∈ L2

loc((0,+∞);U ) there exists a unique mild
solution y ∈ C0([0,+∞), H) to (10) (see, for instance, [23, Proposition 4.2.5]). We
denote by y(·; y0, u) the unique solution to (10) with initial datum y0 and control u.

Now, we introduce the following constrained controllability problem

Let Uad be a nonempty subset of U . Find a subset E of H so that for each
y0, y1 ∈ E , there exists T > 0 and a control u ∈ L∞(0, T ;U ) with u(t) ∈ Uad for a.e.
t ∈ (0, T ), so that y(T ; y0, u) = y1.

We address this controllability problem in the next two subsections, under differ-
ent assumptions on Uad and (A, B). In Sect. 2.1, we study the above controllability
problem, where the initial and final data are steady states, i.e. solutions to the steady
equation:

Ay + Bu = 0 for some u ∈ U. (11)

In Sect. 2.2, we take initial and final data on two different trajectories of (10).
To study the above problem, we need two ingredients, which play a key role in the

proofs of Sects. 2.1 and 2.2. First, we introduce the notion of smooth controllability.
Before introducing this concept, we fix s ∈ N and a Hilbert space V so that

V ↪→ U, (12)

where ↪→ denotes the continuous embedding. Note that all throughout the remainder
of the section, s and V remain fixed.

The concept of smooth controllability is given in the following definition. The
notation y(·; y0, u) stands for the solution of the abstract controlled Eq. (10) with
control u and initial data y0.

Definition 2 The control system (10) is said to be smoothly controllable in time
T0 > 0 if for any y0 ∈ D(As), there exists a control function v ∈ L∞((0, T0); V )

such that
y(T0; y0, v) = 0

and
‖v‖L∞((0,T0);V ) ≤ C‖y0‖D(As ), (13)

the constant C being independent of y0.

Remark 2 (i) In other words, the system is smoothly controllable in time T0 if for
each (regular) initial datum y0 ∈ D(As), there exists a L∞-control u with values in
the regular space V steering our control system to rest at time T0.

(ii) The smooth controllability in time T0 of system (10) is a consequence of the
following observability inequality: there exists a constant C > 0 such that for any
z ∈ D(A∗)

‖T
∗
T0 z‖D(As )∗ ≤ C

∫ T0

0
‖i∗B∗

T
∗
T0−t z‖V ∗dt,
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where D(As)∗ is the dual of D(As) and i : V ↪→ U is the inclusion. This inequality,
that can often be proved out of classical observability inequalities employing the reg-
ularizing properties of the system, provides a way to prove the smooth controllability
for system (10). This occurs for parabolic problem enjoying smoothing properties.

(iii) Besides, for some systems (A, B), even if they do not enjoy smoothing prop-
erties, there is an alternative way to prove the aforementioned smooth controllability
property exploiting the ellipticity properties of the control operator (see [9]).

Under suitable assumptions, the wave system is smoothly controllable (see
Lemmas 4 and 5).

The second ingredient is following lemma, which concerns the regularity of the
inhomogeneous problem.

Lemma 1 Fix k ∈ N and take f ∈ Hk((0, T ); H) such that

{
d j

dt j f (0) = 0, ∀ j ∈ {0, . . . , k}
f (t) = 0, a.e. t ∈ (τ , T ),

(14)

with 0 < τ < T . Consider y solution to the problem

{
d
dt y = Ay + f t ∈ (0, T )

y(0) = 0.
(15)

Then, y ∈ ∩k
j=0C

j ([τ , T ]; D(Ak− j )) and

k∑

j=0

‖y‖C j ([τ ,T ];D(Ak− j )) ≤ C‖ f ‖Hk ((0,T );H),

the constant C depending only on k.

Remark 3 Note that the maximal regularity of the solution is only assured for t ≥ τ ,
after the right hand side term f vanishes.

The proof of this Lemma is given in an Appendix at the end of this paper.

2.1 Steady State Controllability

In this subsection, we study the constrained controllability for some steady states.
Recall s and V are given by (12). Before introducing our main result, we suppose:

(H1) the system (10) is smoothly controllable in time T0 for some T0 > 0.
(H2) Uad is a closed and convex cone with vertex at 0 and intV (Uad ∩ V ) �= ∅,

where intV denotes the interior set in the topology of V .
Furthermore, we define the following subset
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W = intV (Uad ∩ V ) + Uad. (16)

(Note that, since Uad is a convex cone, then W ⊂ Uad.) The main result of this
subsection is the following. The solution to (10) with initial datum y0 and control u
is denoted by y(·; y0, u).

Theorem 6 (Steady state controllability). Assume (H1) and (H2) hold. Let{
(yi , u

i )
}1
i=0 ⊂ H × W satisfying

Ayi + Bui = 0, i = 0, 1.

Then there exists T > T0 and u ∈ L2(0, T ;U ) such that

• u(t) ∈ Uad a.e. in (0, T );
• y(T ; y0, u) = y1.

Remark 4 As we shall see, in the application to the wave equation with positivity
constraints:

• for internal control, U = L2(ω) and V = Hs(n)(ω), with s = s(n) = n/2� + 1;
• for boundary control, U=L2(Γ ) and V=Hs(n)− 1

2 (Γ ), where s(n) = n/2� + 1.

Uad is the set of nonnegative controls in U . In both cases, W is nonempty and
contains controls u in L2(ω) (resp. L2(Γ )) such that u ≥ σ, for some σ > 0. For
this to happen, it is essential that Hs(n)(ω) ↪→ C0(ω) (resp. Hs(n)− 1

2 (Γ ) ↪→ C0(Γ )).
This is guaranteed by our special choice of s = s(n). Furthermore, in these special
cases:

W
U = Uad,

where W
U
is the closure of W in the space U .

In the remainder of the present subsection we prove Theorem 6. The following
Lemma is essential for the proof of Theorem 6. Fix ρ ∈ C∞(R) such that

Range(ρ) ⊆ [0, 1], ρ ≡ 1 over (−∞, 0] and supp(ρ) ⊂⊂ (−∞, 1/2). (17)

Lemma 2 Assume that the system (10) is smoothly controllable in time T0, for some
T0 > 0. Let (η0, v

0) ∈ H ×U be a steady state, i.e. solution to (11) with control v0.
Then, there exists w ∈ L∞((1, T0 + 1); V ) such that the control

v(t) =
{

ρ(t)v0 in (0, 1)

w in (1, T0 + 1)
(18)

drives (10) from η0 to 0 in time T0 + 1. Furthermore,

‖w‖L∞((1,T0+1);V ) ≤ C‖η0‖H . (19)
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Fig. 2 Stepwise procedure

The proof of the above Lemma can be found in the Appendix.
We prove now Theorem 6, by developing a “stair-case argument” (see Fig. 2).

Proof (Proof of Theorem 6)
Let

{
(yi , u

i )
}1
i=0 satisfy

Ayi + Bui = 0 ∀ i ∈ {0, 1} . (20)

By the definition of W , there exists
{
(qi , zi )

}1
i=0 ⊂ intV (Uad ∩ V ) × Uad such that

ui = qi + zi i = 0, 1. (21)

Define the segment joining y0 and y1

γ(s) = (1 − s)y0 + sy1 ∀ s ∈ [0, 1].

For each s ∈ [0, 1], γ(s) solves

Aγ(s) + B(q(s) + z(s)) = 0 ∀ i ∈ {0, 1} .

where (q(s), z(s)) ∈ intV (Uad ∩ V ) × Uad are defined by:

q(s) = (1 − s)q0 + sq1 and z(s) = (1 − s)z0 + sz1 ∀ s ∈ [0, 1].

The rest of the proof is divided into two steps.
Step 1 Show that there exists δ > 0, such that for each s ∈ [0, 1], q(s) +

BV (0, δ) ⊂ intV (Uad ∩ V ), where BV (0, δ) denotes the closed ball in V , centered
at 0 and of radius δ.
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Define
f (s) = inf

y∈V \intV (U ad∩V )

‖q(s) − y‖V , s ∈ [0, 1]. (22)

One can check that f is Lipschitz continuous over the compact interval [0, 1]. Then,
by Weierstrass’ Theorem, we have that

min
s∈[0,1] f (s) > 0.

Choose 0 < δ < mins∈[0,1] f (s). Hence, by (22), it follows that, for each s ∈ [0, 1],

q(s) + BV (0, δ) ⊂ intV (Uad ∩ V ),

as required.
Step 2 Conclusion.
LetC > 0 be given by Lemma 2. Let δ > 0 be given by Step 1. Choose N0 ∈ N \ {0}
such that

N0 >
2C‖y0 − y1‖H

δ
. (23)

For each k ∈ {0, . . . , N0}, define:

yk =
(

1 − k

N0

)

y0 + k

N0
y1 and uk =

(

1 − k

N0

)

u0 + k

N0
u1. (24)

It is clear that, by (21), for each k ∈ {0, . . . , N0 − 1},

‖yk − yk+1‖H = 1

N0
‖y0 − y1‖H and uk − q

(
k

N0

)

∈ Uad. (25)

Arbitrarily fix k ∈ {0, . . . , N0 − 1}. Take η0 = yk − yk+1 and v
0 = uk − uk+1. Then,

we apply Lemma 2, getting a control wk ∈ L∞(1, T0 + 1; V ) such that

y(T0 + 1; yk − yk+1, v̂k) = 0 (26)

and

‖wk‖L∞(1,T0+1;V ) ≤ C‖yk − yk+1‖H , (27)

where

v̂k(t) =
{

ρ(t)(uk − uk+1) t ∈ (0, 1]
wk(t) t ∈ (1, T0 + 1).

(28)
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Define

vk(t) =
{

ρ(t)(uk − uk+1) + uk+1 t ∈ (0, 1]
wk(t) + uk+1 t ∈ (1, T0 + 1).

(29)

At the same time, by (20) and (24), we have

Ayk+1 + Buk+1 = 0 and y(T0 + 1; yk+1, uk+1) = yk+1.

The above, together with (26), (28) and (29), yields

y(T0 + 1; yk, vk) = y(T0 + 1; yk − yk+1, v̂k) + y(T0 + 1; yk+1, uk+1)

= yk+1. (30)

Next, we claim that

vk(t) ∈ Uad for a.e. t ∈ (0, T0 + 1). (31)

To this end, by (16) and since Uad is a convex cone, we have

W is convex and W ⊂ Uad. (32)

By (17), 0 ≤ ρ(t) ≤ 1 for all t ∈ R. Then, by (29) an (32), it follows that, for a.e
t ∈ (0, 1),

vk(t) = ρ(t)uk + (1 − ρ(t))uk+1 ∈ ρ(t)W + (1 − ρ(t))W ⊂ W ⊂ Uad.

At this stage, to show (31), it remains to prove that

vk(t) ∈ Uad for a.e. t ∈ (1, T0 + 1). (33)

Take t ∈ (1, T0 + 1). By (27), (25) and (23), we have

‖wk(t)‖V ≤ C

N0
‖y0 − y1‖H ≤ δ/2.

From this and Step 1, it follows

wk(t) + q

(
k + 1

N0

)

∈ intV (Uad ∩ V ).

By this, (25), (29) and (16), we get, for a.e. t in (1, T0 + 1),
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vk(t) = wk(t) + uk+1

= wk(t) + q

(
k + 1

N0

)

+
(

uk+1 − q

(
k + 1

N0

))

∈ intV (Uad ∩ V ) + Uad

= W .

From this and (32), we are led to (33). Therefore, the claim (31) is true.
Finally, define

u(t) = vk(t − k(T0 + 1)), ∀ t ∈ [k(T0 + 1), (k + 1)(T0 + 1)), k ∈ {0, . . . , N0 − 1} .

Then, from (30) and (31), the conclusion of this theorem follows. ��
In Sects. 3.1 and 4.1, we apply the above Theorem to prove Theorems 1 and 3

respectively. In particular,

• for internal control,

Uad = {
u ∈ L2(ω) | u ≥ 0, a.e. ω

} ;

• for boundary control,

Uad = {
u ∈ L2(Γ ) | u ≥ 0, a.e. Γ

}
.

Then, in both cases, Uad is closed convex cone with vertex at 0.
Nevertheless, the above techniques can be adapted in a wide variety of contexts.

2.2 Controllability Between Trajectories

In this subsection, we study the constrained controllability for some general states
lying on trajectories of the system with possibly nonzero time derivative. Recall s
and V are given by (12). Before introducing our main result, we assume:

(H ′
1) the system (10) is smoothly controllable in time T0 for some T0 > 0.

(H ′
2) the setUad is a closed and convex and intV (Uad ∩ V ) �= ∅,where intV denotes

the interior set in the topology of V ;
(H ′

3) the operator A generates a C0-group {Tt }t∈R over H and ‖Tt‖L (H,H) = 1
for all t ∈ R. Furthermore, A is invertible from D(A) to H , with continuous inverse.

The main result of this subsection is the following. The notation y(·; y0, u) stands
for the solution of the abstract controlled Eq. (10) with control u and initial data y0.

Theorem 7 Assume (H ′
1), (H

′
2) and (H ′

3) hold. Let yi ∈ Cs(R; H) be solutions to
(10) with controls ui ∈ L2

loc(R;U ) for i = 0, 1. Assume ui (t) ∈ Uad for a.e. t ∈ R.
Let τ0, τ1 ∈ R. Then, there exists T > 0 and u ∈ L2(0, T ;U ) such that
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• y(T ; y0(τ0), u) = y1(τ1);
• u(t) ∈ Uad for a.e. t ∈ (0, T ).

Remark 5 (i) Roughly, Theorem 7 addresses the constrained controllability for all
initial data y0 and final target y1, with y0, y1 ∈ E , where

E =
{

y(τ )

∣
∣
∣ τ ∈ R, y ∈ Cs(R; H) and ∃ u ∈ L2

loc(R;U ),

with u(t) ∈ Uad a.e. t ∈ R s.t.
d

dt
y(t) = Ay(t) + Bu(t), t ∈ R

}

.

By Lemma 1, one can check that

{

y(τ ; 0, u)

∣
∣
∣ τ ∈ R, u ∈ Cs(R,Uad),

d j

dt j
u(0) = 0, j = 0, . . . , s

}

⊂ E .

Furthermore, we observe that such set E includes some non-steady states.
(ii) There are at least two differences between Theorems 6 and 7. First of all, Theorem
6 studies constrained controllability for some steady states, whereas Theorem 7
can deal with constrained controllability for some non-steady states (see (i) of this
remark). Secondly, in Theorem 7 the controls ui (i = 0, 1) defining the initial datum
y0(τ0) and final target y1(τ1) are required to fulfill the constraint

ui (t) ∈ Uad, a.e. t ∈ R, i = 0, 1,

while ui in Theorem 6 is required to be in W � Uad. (Then, in Theorem 7 we have
weakened the constraints on ui . In particular, we are able to apply Theorem 7 to the
wave system with nonnegative controls with final target y1 ≡ 0.)

Before proving Theorem 7, we show a preliminary lemma. Note that such Lemma
works with any contractive semigroup. In particular, it holds both for wave-like
and heat-like systems. A similar result was proved in [17, 20]. For the sake of
completeness, we provide the proof of the aforementioned lemma in the Appendix.

Lemma 3 (Null Controllability by small controls) Assume that A generates a con-
tractive C0-semigroup (Tt )t∈R+ over H. Suppose that (H ′

1) holds. Let ε > 0 and
η0 ∈ D(As). Then, there exists T = T (ε, ‖η0‖D(As )) > 0 such that, for any T ≥ T ,
there exists a control v ∈ L∞((0, T ); V ) such that

• y(T ; η0, v) = 0;
• ‖v‖L∞(R+;V ) ≤ ε.

The proof of the Lemma above is given in the Appendix.
We are now ready to prove Theorem 7.
With respect to Theorem 5 we have weakened the constraints on the controls

defining the initial and final trajectories. Then, a priori, we have lost the room for
oscillations needed in the proof of that Theorem. We shall see how to recover this by
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Fig. 3 The two original trajectories. The time τ parameterizing the trajectories is just a parameter
independent of the control time t

modifying the initial and final trajectories away from the initial and final data (see
Figs. 3, 4 and 5).

Proof (Proof of Theorem 7) The main strategy of proof is the following:

(i) we reduce the constrained controllability problem (with initial data y0(τ0) and
final target y1(τ1)) to another controllability problem (with initial datum ŷ0 and
final target 0);

(ii) we solve the latter controllability problem by constructing two controls. The first
control is used to improve the regularity of the solution. The second control is
small in a regular space and steers the system to rest.

Step 1 The part (i) of the above strategy.
For each T > 0, we aim to define a new trajectory with the final state y1(τ1) as value
at time t = T . Choose a smooth function ζ ∈ C∞(R) such that

ζ ≡ 1 over

(

−1

2
,
1

2

)

and supp(ζ) ⊂⊂ (−1, 1). (34)

Take σ ∈ intV (Uad ∩ V ). Arbitrarily fix T > 1. Define a control

û1T (t) = ζ(t − T )u1(t − T + τ1) + (1 − ζ(t − T ))σ. (35)

We denote by ϕT the unique solution to the problem

{
d
dt ϕ(t) = Aϕ(t) + Bû1T (t) t ∈ R

ϕ(T ) = y1(τ1).
(36)
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Fig. 4 The new trajectories to be linked, now synchronized with the control time t . Note that (1)
we have translated the time parameter defining the trajectories and (2) we have modified them away
from the initial and the final data, to apply Lemma 3. The new initial trajectory is represented in
blue, while the new final trajectory is drawn in green. The modified part is dashed. Following the
notation of the proof of Theorem 7, the new initial trajectory is y(·; û0, y0(τ0)), while the new final
trajectory is ϕT

In what follows, we will construct two controls which send y0(τ0) − ϕT (0) to 0 in
time T , which is part (ii) of our strategy. Recall that ρ is given by (17). We define

û0(t) = ρ(t)u0(t + τ0) + (1 − ρ(t))σ t ∈ R.

Step 2 Estimate of ‖y(1; y0(τ0) − ϕT (0), û0 − û1T )‖D(As )

We take the control (û0 − û1T )�(0,1) to be the first control mentioned in part (ii) of our
strategy. In this step, we aim to prove the following regularity estimate associated
with this control: there exists a constant C > 0 independent of T and σ such that

‖y(1; y0(τ0) − ϕT (0), û0 − û1T )‖D(As ) (37)

≤ C
[‖y0‖Cs ([τ0,τ0+1];H) + ‖y1‖Cs ([τ1−1,τ1];H) + ‖σ‖U

]
.

To begin, we introduce ψ the solution to

Aψ + Bσ = 0. (38)

First, we have that
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Fig. 5 The new trajectories linked by the controlled trajectory y, pictured in red. As in Fig. 4, the
new initial trajectory is drawn in blue, while the new final trajectory is represented in green

y(1; y(τ0) − ϕT (0), û0 − û1T )

= y(1; y(τ0), û0) − y(1;ϕT (0), û1)

= [y(1; y(τ0), û0) − ψ] − [y(1;ϕT (0), û1T ) − ψ]
= y(1; y(τ0) − ψ, û0 − σ) − y(1;ϕT (0) − ψ, û1T − σ). (39)

To estimate (37), we need to compute the norms of the last two terms in (39), in the
space D(As). We claim that there exists C1 > 0 (independent of T and σ) such that

‖y(1; y(τ0) − ψ, û0 − σ)‖D(As ) ≤ C1
(‖y0‖Cs ([τ0,τ0+1];H) + ‖σ‖U

)
. (40)

To this end, we show that

y(t; y(τ0) − ψ, û0 − σ) = ρ(t)(y0(t + τ0) − ψ) + η2(t), t ∈ R, (41)

where η2 solves

{
d
dt η2(t) = Aη2(t) − ρ′(y(t + τ0) − ψ) t ∈ R

η2(0) = 0.
(42)

Indeed,

d

dt

[
ρ(t)(y0(t + τ0) − ψ) + η2(t)

]

= ρ(t)(Ay0(t + τ0) + Bu0(t + τ0)) + ρ′(t)(y0(t + τ0) − ψ)
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+ Aη2(t) − ρ′(t)(y0(t + τ0) − ψ)

= A(ρ(t)y0(t + τ0) + η2(t)) + B
(
ρ(t)u0(t + τ0)

)

= A(ρ(t)(y0(t + τ0) − ψ) + η2(t)) + ρ(t)Aψ + B
(
ρ(t)u0(t + τ0)

)

= A(ρ(t)(y0(t + τ0) − ψ) + η2(t)) + B
(
ρ(t)(u0(t + τ0) − σ)

)

= A(ρ(t)(y0(t + τ0) − ψ) + η2(t)) + B(û0(t) − σ). (43)

At the same time, since ρ(0) = 1, from (42), it follows that

ρ(t)(y0(t + τ0) − ψ) + η2(t)�t=0= y0(τ0) − ψ.

From this and (43), we are led to (41).
Next, we will use (41) and (42) to prove (40). To this end, since we assumed

y0 ∈ Cs(R; H) and ψ is independent of t , we get that

y0(· + τ0) − ψ ∈ Cs(R; H).

By this, we apply Lemma 1 obtaining the existence of Ĉ1 > 0 (independent of T and
σ) such that

‖η2(1)‖D(As ) ≤ Ĉ1
(‖y0‖Cs ([τ0,τ0+1];H) + ‖ψ‖H

)
. (44)

At the same time, since ρ(1) = 0 (see (17)), by (41), we have that

y(1; y(T0) − ψ, û0 − σ) = η2(1).

This, together with (44) and (38), yields (40).
At this point, we estimate the norm of the second term in (39) in the space D(As),

namely we prove the existence of C2 > 0 (independent of T and σ) such that

‖y(1;ϕT (0) − ψ, û1T − σ)‖D(As ) ≤ C2
[‖y1‖Cs ([τ1−1,τ1];H) + ‖σ‖U

]
. (45)

To this end, as in the proof of (37), we get that

y(t;ϕT (0) − ψ, û1T − σ) = ζ(t − T )(y1(t − T + τ1) − ψ) + η̃2(t), t ∈ R,

(46)
where η̃2 solves

{
d
dt η̃2(t) = Aη̃2(t) − ζ ′(t − T )(y1(t − T + τ1) − ψ) t ∈ R

η̃2(T ) = 0.
(47)

We will use (46) and (47) to prove (45). Indeed, set

η̂(t) = η̃2(T − t).

By definition of η̂, we have
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{
d
dt η̂(t) = −Aη̂(t) + ζ ′(−t)(y1(τ1 − t) − ψ) t ∈ R

η̂(0) = 0.
(48)

Since we have assumed y1 ∈ Cs(R, H) andψ is independent of t (see (38)), we have

y1 − ψ ∈ Cs(R; H).

Recall that ζ(t) ≡ 1 in
(− 1

2 ,
1
2

)
(see (34)). Then, ζ ′(t) = 0, for each t ∈ (− 1

2 ,
1
2

)
.

Now, by hypothesis (H ′
3), A generates a group of operators. Hence, we can apply

Lemma 1 to (48) getting the existence of C̃2 > 0 (independent of T and σ) such that

‖η̂(1)‖D(As ) ≤ C̃2
(‖y1‖Cs ([τ1−1,τ1];H) + ‖ψ‖H

)
,

whence
‖η̃2(T − 1)‖D(As ) ≤ C̃2

(‖y1‖Cs ([τ1−1,τ1];H) + ‖ψ‖H
)
. (49)

At the same time, by (H ′
3) and some computations, we have that

‖Tt‖L (D(As ),D(As )) = 1, for each t ∈ R.

Since ζ(t − T ) = 0, for each t ∈ [0, T − 1] (see (34)), the above, together with (46)
and (47), yields

‖y(1;ϕT (0) − ψ, û1T − σ)‖D(As) = ‖η̃2(1)‖D(As ) = ‖η̃2(T − 1)‖D(As ).

This, together with (49) and (38), leads to (45).
Step 3 Conclusion.
In this step, we will first construct the second control mentioned in part (ii) of our
strategy. Then we put together the first and second controls (mentioned in part (ii))
to get the conclusion.

By (45),

‖y(1;ϕT (0) − ψ, û1T − σ)‖D(As ) ≤ C2
[‖y1‖Cs ([τ1−1,τ1];H) + ‖σ‖U

]
.

The above estimate is independent of T . Then for each T > 0, by Lemma 3, there
exists

T = T (σ, ‖y0‖Cs ([τ0,τ0+1];H), ‖y1‖Cs ([τ1−1,τ1];H)) > 0

and wT ∈ L∞(R+; V ) such that

{
d
dt z(t) = Az(t) + BwT (t) t ∈ (1, T )

z(1) = y(1; y(τ0) − ϕT (0), û0 − û1T ), z(T ) = 0
(50)
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and

‖wT ‖L∞(1,T ;V ) ≤ 1

2
inf

y∈V \intV (U ad∩V )

‖σ − y‖V . (51)

Note that the last constant is positive, because σ is taken from intV (Uad). Choose
T = T + 1. Define a control:

v =

⎧
⎪⎨

⎪⎩

û0(t) t ∈ (0, 1)

wT (t) + û1T (t) t ∈ (1, T )

û1T (t) t ∈ (T , T + 1).

(52)

We aim to show that

y(T + 1; y0(τ0), v) = y0(τ1) and v(t) ∈ Uad a.e. t ∈ (1, T + 1). (53)

To this end, by (52), (50) and (36), we get that

y(T + 1; y0(τ0), v) = y(T + 1; y0(τ0) − ϕT (0), v − û1T ) + y(T + 1;ϕT (0), û1T )

= T1(zT (T )) + ϕT (T + 1)

= y1(τ1).

This leads to the first conclusion of (53). It remains to show the second condition in
(53). Arbitrarily fix t ∈ (0, 1). By (52) and (45), we have

v(t) = ρ(t)u0(t + τ0) + (1 − ρ(t))σ

∈ ρ(t)Uad + (1 − ρ(t))Uad ⊂ Uad.

Choose also an arbitrary s ∈ (1, T ). By (52), (51) and (35), we obtain

v(s) = w(s) + (1 − ζ(s − T − 1))σ + ζ(s − T − 1)u1(s − T − 1 + τ1)

= w(s) + σ ∈ intV (Uad ∩ V ) ⊂ Uad.

Take any t ∈ (T , T + 1). We find from (52) and (35) that

v(t) = ζ(t − T − 1)u1(t − T − 1 + τ1) + (1 − ζ(t − T − 1))σ

∈ ζ(t − T − 1)Uad + (1 − ζ(t − T − 1))Uad

⊂ Uad.

Therefore, we are led to the second conclusion of (53). This ends the proof. ��
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3 Internal Control: Proof of Theorems 1 and 2

The present section is organized as follows:

• Section3.1: proof of Lemma 4 and Theorem 1;
• Section3.2: proof of Theorem 2;
• Section3.3: discussion of the issues related to the internal control touching the
boundary.

3.1 Proof of Theorem 1

We now prove Theorem 1 by employing Theorem 6.
Firstly, we place our control system in the abstract framework introduced in Sect. 2

and we prove that our control system is smoothly controllable (see Definition 2).
The free dynamics is generated by A : D(A) ⊂ H −→ H , where

A =
(

0 I
−A0 0

)

,

{
H = H 1

0 (Ω) × L2(Ω)

D(A) = (
H 2(Ω) ∩ H 1

0 (Ω)
) × H 1

0 (Ω).
(54)

where A0 = −Δ + cI : H 2(Ω) ∩ H 1
0 (Ω) ⊂ L2(Ω) −→ L2(Ω). The control

operator

B(v) =
(

0
χv.

)

defined from U = L2(ω) to H = H 1
0 (Ω) × L2(Ω) is bounded, then admissible.

Lemma 4 In the above framework take V = Hs(n)(ω) and s = s(n) = n/2� +
1. Assume further (Ω,ω0, T ∗) fulfills the Geometric Control Condition. Then, the
control system (1) is smoothly controllable in any time T0 > T ∗.

The proof of this Lemma can be found in the reference [9, Theorem 5.1].
We are now ready to prove Theorem 1.

Proof (of Theorem 1) We choose as set of admissible controls:

Uad = {
u ∈ L2(ω) | u ≥ 0, a.e. ω

}
.

Then, ⋃

σ>0

{
u ∈ L2(ω) | u ≥ σ, a.e. ω

} ⊂ W . (55)

We highlight that, to prove (55), we need Hs(n)(ω) ↪→ C0(ω). For this reason,
we have chosen s(n) = n/2� + 1.
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Fig. 6 Controlling from the
interior touching the
boundary

By Lemma (4), we have that the system is Smoothly Controllablewith s = s(n) =
n/2� + 1 and V = Hs(n)(ω). Then, by Theorem 6 we conclude. ��

3.2 Proof of Theorem 2

We prove now Theorem 2

Proof (Proof of Theorem 2). As we have seen, our system fits the abstract frame-
work. Moreover, we have checked in Lemma 4 that the system is Smoothly Control-
lable with s(n) = n/2� + 1 and V = Hs(n)(ω). Furthermore, intV (Uad ∩ V ) �= ∅.
Indeed, any constant σ > 0 belongs to intV (Uad ∩ V ), since Hs(n)(ω) ↪→ C0(ω).
This is guaranteed by our choice of s(n) = n/2� + 1.

Therefore, we are in position to apply Theorem 7 and finish the proof. ��

3.3 Internal Controllability From a Neighborhood of the
Boundary

So far, we have assumed that the control is localized by means of a smooth cut-off
function χ so that all its derivatives vanish on the boundary ofΩ . This implies that χ
must be constant on any connected component of the boundary. This prevents us to
localize the internal control in a region touching the boundary only on a subregion,
as in Fig. 6.

In this case, as already pointed out in [8], some difficulties in finding regular
controls may arise. Indeed, as indicated both in [8] and in [9] a crucial property
needs to be verified in order to have controls in C0([0, T ]; Hs(ω)), namely

BB∗(D(A∗)k) ⊂ D(Ak) (56)
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for k = 0, . . . , s, where we have used the notation of the proof of Theorem 1.
Right now, for any k ∈ N we have

D(Ak) =
{(

ψ1

ψ2

) ∣
∣
∣
∣
ψ1 ∈ Hk+1(Ω), Δ jψ1 = 0 on ∂Ω, 0 ≤ j ≤ k/2�
ψ2 ∈ Hk(Ω), Δ jψ2 = 0 on ∂Ω, 0 ≤ j ≤ (k + 1)/2� − 1

}

,

while

D((A∗)k) =
{(

ψ1

ψ2

) ∣
∣
∣
∣

ψ1 ∈ Hk(Ω), Δ jψ1 = 0 on ∂Ω, 0 ≤ j ≤ (k − 1)/2�
ψ2 ∈ Hk−1(Ω), Δ jψ2 = 0 on ∂Ω, 0 ≤ j ≤ k/2� − 1

}

.

(57)
Furthermore,

BB∗ =
(
0 0
χ2 0

)

Then, (56) is verified if and only if for any ψ ∈ Hs(Ω) such that

(Δ) j (ψ) = 0, 0 ≤ j ≤ (s − 1)/2�, a.e. on ∂Ω

the following hold

(Δ) j (χ2ψ) = 0, 0 ≤ j ≤ (s − 1)/2�, a.e. on ∂Ω. (58)

Choosing χ so that all its normal derivatives vanish on ∂Ω

• in case s < 5, we are able to prove (56). Then, by adapting the techniques of [9,
Theorem 5.1], we have that our system is Smoothly Controllable (Definition 2),
with s(n) = n/2� + 1. This enables us to prove Theorem 1 in space dimension
n < 8.

• in case s ≥ 5, in (58) the biharmonic operator (Δ)2 enters into play.Bycomputing it
in normal coordinates on the boundary, some terms appear involving the curvature
and ∂

∂ξk
χ ∂

∂vψ, where (ξ1, . . . , ξn−1) are tangent coordinates, while v is the normal
coordinate. In general, these terms do not vanish, unless ∂Ω is flat. Then, for
n ≥ 8, we are unable to deduce a constrained controllability result in case the
internal control is localized along a subregion of ∂Ω .

4 Boundary Control: Proof of Theorems 3, 4 and 5

This section is devoted to boundary control and is organized as follows:

• Section4.1: proof of Lemma 5 and Theorem 3;
• Section4.2: proof of Theorem 4;
• Section4.3: proof of Theorem 5.
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4.1 Proof of Theorem 3

We prove Theorem 3.
First of all,we explain howour boundary control systemfits the abstract semigroup

setting described in Sect. 2. The generator of the free dynamics is:

A =
(

0 I
−A0 0

)

,

{
H = L2(Ω) × H−1(Ω)

D(A) = H 1
0 (Ω) × L2(Ω),

(59)

where A0 = −Δ + cI : H 1
0 (Ω) ⊂ H−1(Ω) −→ H−1(Ω). The definition of the

control operator is subtler than in the internal control case. Let Δ0 be the Dirichlet
Laplacian. Then, the control operator

B(v) =
(

0
−Δ0 z̃

)

, where

{
−Δz̃ = 0 in Ω

z̃ = χv(·, t) on ∂Ω.

defined from L2(Γ ) to H− 3
2 (Ω). In this case, B is unbounded but admissible (see

[15] or [23, proposition 10.9.1 page 349]).

Lemma 5 In the above framework, set V = Hs(n)− 1
2 (Γ ) and s = s(n), with s(n) =

n/2� + 1. Suppose (GCC) holds for (Ω, Γ0, T ∗). Then, in any time T0 > T ∗, the
control system (5) is smoothly controllable in time T0.

One can prove the above Lemma, by employing [9, Theorem 5.4].

Proof (Proof of Theorem 3)Weprove our Theorem, by choosing the set of admissible
controls:

Uad = {
u ∈ L2(Γ ) | u ≥ 0, a.e. Γ

}
.

Hence,

⋃

σ>0

{
u ∈ L2(Γ ) | u ≥ σ, a.e. Γ

} ⊂ W . (60)

Note that, in order to show (60), it is essential that the embedding
Hs(n)− 1

2 (Γ ) ↪→ C0(Γ ) is continuous. This is guaranteed by the choice s(n) =
n/2� + 1.

By Lemma 5, we conclude that smooth controllability holds. At this point, it
suffices to apply Theorem 6 to conclude. ��



Controllability Under Positivity Constraints of Multi-d Wave Equations 223

4.2 Proof of Theorem 4

We prove now Theorem 4.

Proof (Proof of Theorem 4)We have explained above how our control system (5) fits
the abstract framework presented in Sect. 2. Furthermore, by Lemma 5, the system
is Smoothly Controllable with s(n) = n/2� + 1 and V = Hs(n)− 1

2 (Γ ). Moreover,
the set intV (Uad ∩ V ) is non empty, since all constants σ > 0 belong to it. This is
consequence of the continuity of Hs(n)− 1

2 (Γ ) ↪→ C0(Γ ), valid for s(n) = n/2� +
1. The result holds as a consequence of Theorem 7. ��

4.3 State Constraints. Proof of Theorem 5

We conclude this section proving Theorem 5 about state constraints. The following
result is needed.

Lemma 6 Let s ∈ N
∗ and T > T ∗. Take a steady state solution η0 associated to

the control v0 ∈ Hs− 1
2 (Γ ). Then, there exists v ∈ ∩s

j=0C
j ([0, T ]; Hs− 1

2 − j (Γ )) such
that the unique solution (η, ηt ) to (5) with initial datum (η0, 0) and control v is such
that (η(T, ·), ηt (T, ·)) = (0, 0). Furthermore,

s∑

j=0

‖v‖
C j ([0,T ];Hs− 1

2 − j
(Γ ))

≤ C(T )‖v0‖
Hs− 1

2 (Γ )
, (61)

the constant C being independent of η0 and v0. Finally, if s = s(n) = n/2� + 1,
then the control v ∈ C0([0, T ] × Γ ) and

‖v‖C0([0,T ]×Γ ) ≤ C(T )‖v0‖
Hs(n)− 1

2 (Γ )
. (62)

The above Lemma can be proved by using the techniques of Lemma 2. We now
prove our Theorem about state constraints.

Proof (of Theorem 5)
Step 1 Consequences of Lemma 6.
Let T0 > T ∗, T ∗ being the critical time given by theGeometric Control Condition.

By Lemma 6, for any ε > 0, there exists δε > 0 such that for any pair of steady states
y0 and y1 defined by regular controls ui ∈ Hs(n)− 1

2 (Γ ), such that:

‖u1 − u0‖
Hs(n)− 1

2 (Γ )
< δε (63)

we can find a control u driving (10) from y0 to y1 in time T0 and verifying
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s(n)∑

j=0

‖u − u1‖
C j ([0,T0];Hs(n)− 1

2 − j
(Γ ))

< ε, (64)

where u1 is the control defining y1. Moreover, if (y, yt ) is the unique solution to (5)
with initial datum (y0, 0) and control u, we have

‖y − y1‖C0([0,T0]×Ω) ≤ C‖y − y1‖C0([0,T0];Hs(n)(Ω))

≤ C
s(n)∑

j=0

‖u − u1‖
C j ([0,T0];Hs(n)− 1

2 − j
(Γ ))

≤ Cε,

where we have used the boundedness of the inclusion Hs(n)(Ω) ↪→ C0(Ω) and the
continuous dependence of the data

.
Step 2 Stepwise procedure and conclusion.
We consider the convex combination γ(s) = (1 − s)y0 + sy1. Then, let

zk = γ

(
k

n

)

, k = 0, . . . , n

be a finite sequence of steady states defined by the control uk = n−k
n u0 + k

n u
1. Let

δ > 0. By taking n sufficiently large,

‖uk − uk−1‖Hs(n)− 1
2 (Γ )

< δ. (65)

By the above reasonings, choosing δ small enough, for any 1 ≤ k ≤ n, we can find
a control uk joining the steady states zk−1 and zk in time T0, with

‖yk − zk‖C0([0,T0]×Ω) ≤ σ,

where (yk, (yk)t ) is the solution to (5) with initial datum zk−1 and control uk . Hence,

yk = yk − zk + zk ≥ −σ + σ = 0, on (0, T0) × Ω, (66)

where we have used the maximum principle for elliptic equations (see [2]) to assert
that zk ≥ σ because uk ≥ σ.

By taking the traces in (66), we have uk ≥ 0 for 1 ≤ k ≤ n.
In conclusion, the control u : (0, nT0) −→ Hs(n)− 1

2 (Γ ) defined as u(t) = uk(t −
(k − 1)T0) for t ∈ ((k − 1)T0, kT0) is the required one. This finishes the proof. ��



Controllability Under Positivity Constraints of Multi-d Wave Equations 225

5 The One Dimensional Wave Equation

We consider the one dimensional wave equation, controlled from the boundary

⎧
⎪⎨

⎪⎩

ytt − yxx = 0 (t, x) ∈ (0, T ) × (0, 1)

y(t, 0) = u0(t), y(t, 1) = u1(t) t ∈ (0, T )

y(0, x) = y00 (x), yt (0, x) = y10(x). x ∈ (0, 1)

(67)

As in the general case, by transposition (see [15]), for any initial datum (y00 , y
1
0) ∈

L2(0, 1) × H−1(0, 1) and controls ui ∈ L2(0, T ), the above problem admits an
unique solution (y, yt ) ∈ C0([0, T ]; L2(0, 1) × H−1(0, 1)).

We show how Theorem 4 reads in this one-dimensional setting, in the special case
where both the initial trajectory (y0, (y0)t ) and the final one (y1, (y1)t ) are constant
(independent of x) steady states.

We determine explicitly a pair of nonnegative controls steering (67) from one
positive constant to the other. The controlled solution remains nonnegative.

In this special case, we show further that

• the minimal controllability time is the same, regardless whether we impose the
positivity constraint on the control or not;

• constrained controllability holds in the minimal time.

The minimal controllability time for (67) is defined as follows.
Let (y00 , y

1
0) ∈ L2(0, 1) × H−1(0, 1)be an initial datumand (y01 , y

1
1) ∈ L2(0, 1) ×

H−1(0, 1) be a final target. Then the minimal controllability time without constraints
is defined as follows:

Tmin

def= inf
{
T > 0

∣
∣ ∃ui ∈ L2(0, T ), (y(T, ·), yt (T, ·)) = (y01 , y

1
1)

}
. (68)

Similarly, the minimal time under positivity constraints on the control is defined as:

T c
min

def= inf
{
T > 0

∣
∣ ∃ui ∈ L2(0, T )+, (y(T, ·), yt (T, ·)) = (y01 , y

1
1)

}
. (69)

Finally, we introduce the minimal time with constraints on the state and and the
control:

T s
min

def= inf
{
T > 0

∣
∣ ∃ui ∈ L2(0, T )+, (y(T, ·), yt (T, ·)) = (y01 , y

1
1), y ≥ 0

}
.

(70)

The problem of controllability of the one-dimensional wave equation under bilat-
eral constraints on the control has been studied in [12]. In the next Proposition, we
concentrate on unilateral constraints and we compute explicitly the minimal time for
the specific data considered.

Proposition 1 Let (y00 , 0) be the initial datum and (y01 , 0) be the final target, with
y00 ∈ R

+ and y01 ∈ R
+. Then,
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1. for any time T > 1, there exists two nonnegative controls

u0(t) =
{
y00 t ∈ [0, 1)
(y01 − y00 )

t−1
T−1 + y00 t ∈ (1, T ] (71)

u1(t) =
{

(y01 − y00 )
t

T−1 + y00 t ∈ [0, T − 1)

y01 t ∈ [T − 1, T ] (72)

driving (67) from (y00 , 0) to (y01 , 0) in time T . Moreover, the corresponding solu-
tion remains nonnegative, i.e.

y(t, x) ≥ 0, ∀(t, x) ∈ [0, T ] × [0, 1].

2. T s
min = T c

min = Tmin = 1;
3. the nonnegative controls û0 ≡ y00 and û1 ≡ y01 in L

2(0, 1) steers (67) from (y00 , 0)
to (y01 , 0) in the minimal time. Furthermore, the corresponding solution y ≥ 0
a.e. in (0, 1) × (0, 1);

4. the controls in the minimal time are not unique. In particular, for any λ ∈ [0, 1],
û0λ = (1 − λ)y00 + λy01 and û1λ = (1 − λ)y01 + λy00 drives (67) from (y00 , 0) to
(y01 , 0) in the minimal time.

Proof We proceed in several steps.
Step 1. Proof of the constrained controllability in time T > 1.

By D’Alembert’s formula, the solution (y, yt ) to (67) with initial datum (y00 , 0) and
controls ui defined in (71) and (72), reads as

y(t, x) = f (x + t), (t, x) ∈ [0, T ] × [0, 1],

where

f (ξ) =

⎧
⎪⎨

⎪⎩

y00 ξ ∈ [0, 1)
(y01 − y00 )

ξ−1
T−1 + y00 ξ ∈ [1, T )

y01 . ξ ∈ [T, T + 1].

This finishes the proof of (1.).
Step 2 Computation of the minimal time.
In any time T > 1, controllability under state and control constraints holds. Then,
Tmin ≤ T c

min ≤ T s
min ≤ 1.

It remains to prove that Tmin ≥ 1. This can be obtained by adapting the techniques
of [18, Proposition 4.1].
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Fig. 7 Level sets of the
solution to (67) with initial
datum (y00 , 0) and controls
ûi . In the darker region the
solution takes value y00 ,
while in the complement it
coincides with y01

Step 3 Controllability in the minimal time.
One can check (see Fig. 7) that the unique solution to (67) with initial datum (y00 , 0)
and controls ûi is

y(t, x) =
{
y00 t + x < 1

y01 t + x > 1
(73)

This concludes the argument. ��

6 Conclusions and Open Problems

In this paperwehave analyzed the controllability of thewave equationunderpositivity
constraints on the control and on the state.

1. In the general case (without assuming that the energy defines a norm), we have
shown how to steer the wave equation from one steady state to another in time
large, provided that both steady states are defined by positive controls, away from
zero;

2. in case the energy defines a norm, we have generalized the above result to data
lying on trajectories. Furthermore, the controls defining the trajectory are sup-
posed to be only nonnegative, thus allowing us to take as target (y01 , y

1
1) = (0, 0).

We present now some open problems, which as long as we know, have not been
treated in the literature so far.

• Further analysis of controllability of the wave under state constraints. As pointed
out in [16, 19], in the case of parabolic equations a state constrained result follows
from a control constrained one by means of the comparison principle. For the
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wave equation, such principle does not hold. We have proved Theorem 5, using a
“stair-case argument” but further analysis is required.

• On theminimal time for constrained controllability. Further analysis of theminimal
constrained controllability time is required. In particular, it would be interesting to
compare the minimal constrained controllability time and the unconstrained one
for any choice of initial and final data. As we have seen in Proposition 1, they
coincide for constant steady data in one space dimension.

• In the present paper, we have determined nonnegative controls by employing
results of controllability of smooth data by smooth controls. This imposes a
restriction to our analysis: the action of the control is localized by smooth cut-
off functions. In particular, when controlling (1) from an interior subset touching
the boundary, we encounter the issues discussed in Sect. 3.3 and already pointed
out in [8] and [9].
Then, it would be worth to be able to build nonnegative controls without using
smooth controllability.

• Derive the Optimality System (OS) for the controllability of the wave by nonneg-
ative controls.

• Extend our results to the semilinear setting, by employing the analysis carried out
in [4, Theorem 1.3], [5, 6, 25].

• Extend the results to more general classes of potentials c. For instance, one could
assume c to be bounded, instead of C∞ smooth.
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Appendix

Regularity results

In what follows, H is a real Hilbert space and A : D(A) ⊂ H −→ H is a generator
of a C0-semigroup.

Lemma 7 Let k ∈ N. Take y ∈ Ck([0, T ]; H) ∩ Hk+1((0, T ); H−1) solution to the
homogeneous equation:

d

dt
y = Ay, t ∈ (0, T ). (74)

Then, y ∈ ∩k
j=0C

j ([0, T ]; D(Ak− j )) and

k∑

j=0

‖y‖C j ([0,T ];D(Ak− j )) ≤ C(k)‖y‖Ck ([0,T ];H),
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the constant C(k) depending only on k.

The proof of the above Lemma can be done by using the Eq. (74) (see [2]).
We prove now Lemma 1.

Proof (Proof of Lemma 1) Step 1 Time regularity
By induction on j = 0, . . . , k, we prove that y ∈ C j ([0, T ]; H) and

‖y‖C j ([0,T ];H) ≤ C‖ f ‖H j ((0,T );H).

For j = 0, the validity of the assertion is a consequence of classical semigroup
theory (e.g. [23, Proposition 4.2.5] with control space U = H and control operator
B = I dH ). Assume now that the result hold up to j − 1. Then, let w solution to

{
d
dt w = Aw + f ′ t ∈ (0, T )

w(0) = 0.
(75)

By induction assumption, w ∈ C j−1([0, T ]; H) and the corresponding estimate
holds. Then, ỹ(t) = ∫ t

0 w(σ)dσ ∈ C j ([0, T ]; H) and

‖ỹ‖C j ([0,T ];H) ≤ C‖ f ‖H j ((0,T );H).

Then, it remains to show that y = ỹ. Now, for any t ∈ [0, T ]

ỹ(t) − ỹ(0) =
∫ t

0
[w(σ) − w(0)]dσ =

∫ t

0

∫ σ

0
[Aw(ξ) + f ′(ξ)]dξdσ

=
∫ t

0
[Aỹ(σ) + f (σ)]dσ.

By uniqueness of solution to (15), we have y = ỹ. This finishes the first step.
Step 2 Conclusion
We start observing that y solves

yt = Ay, t ∈ (τ , T ).

Then, by classical semigroup arguments (see [2, Chapter 7]), we conclude. ��
Proof of Lemma 2
We give the proof of Lemma 2.

Proof (Proof of Lemma 2) Let v be given by (18). The proof is made of two steps.
Step 1 Show that y(1; η0, v) ∈ D(As), with s given by (12)
We apply Lemma 1 with y = y(·; η0, ρv

0) − ρη0 and f = ρ′η0, getting

y(1; η0, ρv
0) − ρη0 ∈ D(As).
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Since ρη0 = 0 over (δ, 1), for some δ ∈ (0, 1), we have that

y(1; η0, ρv
0) ∈ D(As).

Step 2 Conclusion
Since y(1; η0, ρv

0) ∈ D(As), we are in position to apply the smooth controllability
(see Definition 2) and determine w ∈ L∞((1, T0 + 1); V ) steering the solution to
(10) from y(1; η0, v) at time t = 1 to 0 at time t = T0 + 1.
Hence, the desired control v reads as (18).

Finally, by similar reasonings the estimate (19) follows. This ends the proof of
this Lemma. ��
Proof of Lemma 3
We prove now Lemma 3.

Proof (Proof of Lemma 3) We split the proof in two steps.
Step 1 Proof of the inequality ‖Tt‖L (D(As ),D(As )) ≤ 1 with t ∈ R

+
Recall that

‖x‖2D(As ) =
s∑

j=0

‖A j x‖2H ∀ x ∈ D(As).

Now, for any x ∈ D(As) and t ∈ R
+, we have

‖A j
Tt x‖H = ‖Tt A

j x‖H ≤ ‖A j x‖H ∀ j = 0, . . . , s.

This yields ‖Tt‖L (D(As ),D(As )) ≤ 1 for any t ∈ R
+.

Step 2 Conclusion.
Let C > 0 be given by (2). Take

N >
C‖η0‖D(As )

ε
. (76)

Arbitrarily fix k ∈ {0, . . . , N − 1}. Consider the following equation

{
d
dt y(t) = Ay(t) + Bχ(kT0,(k+1)T0)(t)uk(t) t ∈ R

+

y(0) = 1
N η0,

(77)

where χ(kT0,(k+1)T0) is the characteristic function of the set (kT0, (k + 1)T0) and uk ∈
L2(R+, V ). From step 1 and (76), we have that

‖y(kT0; (1/N )η0, 0)‖D(As ) ≤ (1/N )‖η0‖D(As ) ≤ ε. (78)

Then, we apply smooth controllability (given by (H ′
1)) to find some control ûk ∈

L∞(R+; V ) so that the solution to (77) with control uk = ûk satisfies
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y((k + 1)T0; (1/T0)η0,χ(kT0,(k+1)T0)ûk) = 0 and ‖ûk‖L∞((kT0,(k+1)T0);V ) ≤ ε.
(79)

Now, we define:

v(t) =
N−1∑

k=0

χ(kT0,(k+1)T0)(t)uk(t) t ∈ R
+. (80)

Then, from (79) and (80), we know

y(NT0; η0, v) = 0 and ‖v‖L∞((0,NT0);V ) ≤ ε.

This leads to the conclusion where T = NT0. ��
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