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Preface

This volume collects contributions from participants in the INdAM Workshop
“New trends in control theory and partial differential equations”, which was held in
Rome on July 3–7, 2017. The aim of the workshop was to present recent devel-
opments in the field of partial differential equations (PDEs) and control theory, and
to underline connections and interactions between the different areas of this vast
subject.

Control theory is a branch of mathematics which has been widely studied since
the second half of the past century, and finds application in many different fields,
such as mechanics, engineering, finance, medicine, and climatology. On the other
hand, it often poses challenging problems on the theoretical side, and has stimulated
the development of new theories which have become useful in other areas of
mathematics as well.

Control theory has greatly influenced the study of PDEs over the decades. As a
classical example, the approach of dynamic programming has established a con-
nection between optimization problems for finite- dimensional control systems and
the theory of first-order Hamilton–Jacobi equations, which typically do not have
smooth solutions. Similarly, the analysis of stochastic control problems has led to
the study of second-order, possibly degenerate, nonlinear PDEs. A rigorous treat-
ment of these equations has motivated the introduction of suitable kinds of gen-
eralized solutions, such as the class of viscosity solutions, which has found
applications in many other branches of the PDE theory. In this context, it is
important to study the regularity properties of the value function, such as Lipschitz
continuity or semi-concavity, in order to build feedback controls in terms of the
generalized gradients.

In a different direction, one can consider control systems in infinite dimension,
which are governed by PDEs. Common examples are evolutionary PDEs, where the
control either acts as a source term inside the domain or appears in the boundary
conditions. A typical interesting issue is the controllability of the system, i.e., the
ability to steer the system from one given state to another. Another related topic is
observability, where one wishes to analyze whether the solution is determined by its
values on a given subset. This kind of issue has been widely studied for the most
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common linear evolution equations, but there are many other interesting cases
where less is known, e.g., in the presence of degeneracy of the operators or sin-
gularities of the data.

The contributions in this volume treat different aspects of the topics mentioned
above and of related ones. Concerning the study of finite-dimensional systems,
P. Albano studies a first-order equation of eikonal type, whose solution is the value
function of a minimum time-optimal control problem, and gives sufficient condi-
tions for the Lipschitz continuity. V. Basco and H. Frankowska consider an optimal
control problem with infinite horizon and state constraints, and give sufficient
conditions for the Lipschitz continuity of the value function. P. Cannarsa, W.
Cheng, K. Wang, and J. Yan analyze the classical Herglotz’ variational principle in
the calculus of variations and give a Lipschitz estimate of the minimizers.
M. Mazzola and K. T. Nguyen give a new proof of Lyapunov’s theorem in convex
analysis based on a Baire category approach. Focusing on a PDE perspective, I.
Capuzzo Dolcetta gives an overview of results on the maximum principle for
weakly elliptic equations, a class which includes, in particular, the Bellman–Isaacs
equations associated to the optimal control of degenerate diffusion processes as well
as differential games.

Other contributions in this volume deal with the controllability of PDEs.
E. Fernández-Cara and D. Souza study the null controllability of a family of
equations which include the Camassa–Holm and a-Burgers equations. In a more
applied direction, G. Leugering, T. Li, and Y. Wang consider a system modeling
the motion of nonlinear elastic strings and study the boundary controllability and
stabilizability. D. Pighin and E. Zuazua study various cases of controllability for
wave equations in general dimension, under non-negativity constraints on the
controls. J. Vancostenoble proves the approximate controllability for a class of
parabolic equations in the presence of a singular potential.

Further topics related to control of PDEs are treated in the volume. P. Cannarsa,
G. Floridia, and M. Yamamoto prove a Carleman estimate for a transport equation
and use it to deduce an observability inequality in terms of the boundary data.
P. Loreti and D. Sforza consider a semilinear wave equation with an integral
memory term, proving the existence of solutions and an estimate on the boundary
values called hidden regularity, a property which is of interest in the study of
controllability.

Finally, two contributions deal with differential systems which model the
behavior of multiagent phenomena, a topic which is strictly connected to control
theory and has attracted much attention in recent years. P. Cardaliaguet considers a
system of N weakly coupled Hamilton–Jacobi equations with increasingly singular
coupling and proves convergence as N ! +∞ to a mean field games system.
C. Pignotti and I. Reche Vallejo study the asymptotic behavior on a Cucker–Smale
system, proving convergence to consensus under suitable assumptions.

The workshop provided an occasion to celebrate the 60th birthday of Piermarco
Cannarsa, who has made fundamental contributions to these fields and has played
an important part in the mathematical life of the people involved in the workshop
and in this volume, as a teacher and/or as a collaborator and friend.
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Some Remarks on the Dirichlet Problem
for the Degenerate Eikonal Equation

Paolo Albano

Abstract In a bounded domain, we consider the viscosity solution of the homo-
geneous Dirichlet problem for the degenerate eikonal equation. We provide some
sufficient conditions for the (local) Lipschitz regularity of such a function.

Keywords Eikonal equation · Degenerate equations · Viscosity solutions ·
Symplectic geometry

2010 Mathematics Subject Classification 35F30 · 35F21 · 35D40

1 Introduction and Statement of the Results

Let � ⊂ R
n be an open bounded set with boundary, �, and let T be the viscosity

solution of the Dirichlet problem

{
〈A(x)DT (x),DT (x)〉 = 1 in �,

T = 0 on �.
(1.1)

We recall that a continuous function T : � −→ R is a viscosity solution of (1.1) if

(1) T is a viscosity subsolution, i.e. 〈A(x)Dϕ(x),Dϕ(x)〉 ≤ 1, for every ϕ of class
C1 such that T − ϕ has a local maximum at x;

(2) T is a viscosity supersolution, i.e. 〈A(x)Dϕ(x),Dϕ(x)〉 ≥ 1, for every ϕ of class
C1 such that T − ϕ has a local minimum at x;

(3) T (x) = 0 for every x ∈ �.

We are interested in the Lipschitz regularity of T assuming that the map x 	→ A(x)
takes values in the set of the n × n positive semidefinite symmetric matrices.

P. Albano
Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5,
40127 Bologna, Italy
e-mail: paolo.albano@unibo.it
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2 P. Albano

We recall that, if the equation is non degenerate (i.e. if A(·) is positive definite),
then T is locally Lipschitz continuous on�. In fact a subsolution of a non degenerate
eikonal equation is locally Lipschitz continuous.

We observe that, without more restrictive assumptions on the data, Eq. (1.1) may
have no solution. Indeed, it is well known that, for a continuous function, the set

{x ∈ � : T − ϕ has a local minimum at x for a suitable ϕ ∈ C1}

is dense in �. Hence, if A(·) vanishes on an open subset of �, then Eq. (1.1) admits
no viscosity supersolutions and, in particular, (1.1) has no viscosity solutions.

We point out that, in order to have the existence of a continuous solution of
(1.1), it is not enough to assume that A(·) is not totally degenerate on � (i.e. that
rank A(x) ≥ 1 for every x ∈ �). For instance, in the plane with coordinates (x, y),
the Dirichlet problem

{
(∂xT (x, y))2 = 1 in � =]0, 1[×]0, 1[,
T = 0 on ∂�,

admits no continuous viscosity solutions.
We assume

(H1) � ⊂ R
n is an open bounded set with boundary of class C1, �.

(H2) Let k ≤ n be a positive integer and let

� 
 x 	→ B(x)

be a Lipschitz continuous map on � taking values in the set of the k × n
matrices. We denote by LB the Lipschitz constant of B(·) in �.

Set
A(x) =tB B(x) (x ∈ �).

(Here tB is the transpose of the matrix B.) For x ∈ �, let ν(x) be the outward unit
normal to � at x; we say that x ∈ � is a characteristic boundary point if

〈A(x)ν(x), ν(x)〉 = 0.

Then, the set of all the characteristic boundary points is defined as

E = {x ∈ � : 〈A(x)ν(x), ν(x)〉 = 0}.

We have the following global regularity result.

Theorem 1.1 Under assumptions (H1) and (H2), let T : � −→ R be the continu-
ous viscosity solution of the homogeneous Dirichlet problem (1.1) and suppose that
E = ∅. Then, T is Lipschitz continuous on �.
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Remark 1.1 We point out that, in the statement above, we are assuming that there
exists a continuous viscosity solution of Eq. (1.1): as already observed our assump-
tions are not strong enough to guarantee the existence of a viscosity solution of Eq.
(1.1). On the other hand, Theorem 1.1 is in essence a result on the propagation of
the regularity from � towards �.

Proof of Theorem 1.1 We observe that

T ≥ 0 on �. (1.2)

Let us consider the Kružkov transformation of u:

v(x) = 1 − e−λT (x) (x ∈ �), (1.3)

with λ = 1 + LB. By (1.2) and (1.3), we have

0 ≤ v(x) < 1 x ∈ �. (1.4)

Furthermore, because of T is a viscosity solution of (1.1), v is a viscosity solution
of the equation ⎧⎨

⎩
v(x) + |λ−1B(x)Dv(x)| = 1 in �,

v = 0 on �.

(1.5)

We remark that
|v(x) − v(y)| ≤ L|x − y| x, y ∈ � (1.6)

implies

|T (x) − T (y)| ≤ L

λ
eλ‖T‖L∞(�) |x − y| x, y ∈ �.

Hence the proof reduces to show that Estimate (1.6) holds true.
Since � is of class C1 there exists a positive number, ρ, such that, denoting by

d(x) the Euclidean distance function of x from �, we have that d is differentiable on
the set

�ρ = {x ∈ � | d(x) < ρ}.

Furthermore, because of � is noncharacteristic, we have that there exists a positive
constant c such that

d(x) + |λ−1B(x)Dd(x)| ≥ c

λ
x ∈ �ρ.

We claim that Estimate (1.6) holds with

L = λ

c
+ 1

ρ
.
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For this purpose, we will use a standard method of the theory of viscosity solutions:
let us introduce the auxiliary function

�(x, y) = v(x) − v(y) − L|x − y| x, y ∈ �.

Clearly, in order to verify (1.6), it suffices to show that for every x, y ∈ � we have
that �(x, y) ≤ 0. Let us define

M := max
x,y∈�

�(x, y) = �(x̂, ŷ) ≥ �(x̂, x̂) = 0, (1.7)

for a suitable x̂, ŷ ∈ �.
We want to show that M ≤ 0.
If x̂ ∈ � and ŷ ∈ � then, by the homogeneous Dirichlet condition and (1.4), we

deduce that M ≤ 0.
Hence, let us suppose that x̂ ∈ � and ŷ ∈ �. There are two cases either ŷ ∈ � or

ŷ ∈ �. First, let us consider the case of ŷ ∈ �. Then v(ŷ) = 0 and, by (1.4) and (1.7),
we deduce that L|x̂ − ŷ| ≤ 1, i.e.

d(x̂) ≤ |x̂ − ŷ| ≤ 1/L < ρ.

By construction L > λ/c, the function Ld(·) is a supersolution of (1.5) in �ρ and
v ≤ Ld on the boundary of �ρ. Hence, by the comparison principle, we deduce that

v(x) − Ld(x) ≤ 0 x ∈ �ρ,

and we find
M ≤ v(x̂) − Ld(x̂) ≤ 0.

It remains to consider the last case: x̂, ŷ ∈ � and x̂ �= ŷ. Since v is a viscosity
solution of (1.5), we have

{
v(x̂) + |λ−1B(x̂)L(x̂ − ŷ)/|x̂ − ŷ|| ≤ 1,

v(ŷ) + |λ−1B(ŷ)L(x̂ − ŷ)/|x̂ − ŷ|| ≥ 1.

Then, we find

v(x̂) − v(ŷ) ≤ |λ−1B(ŷ)L(x̂ − ŷ)/|x̂ − ŷ|| − |λ−1B(x̂)L(x̂ − ŷ)/|x̂ − ŷ||

and, recalling that λ = 1 + LB, we deduce

v(x̂) − v(ŷ) ≤ λ−1LBL|x̂ − ŷ| ≤ L|x̂ − ŷ|,

hence M ≤ 0. This completes our proof. �
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A particular class of degenerate eikonal equations in which the Dirichlet problem
(1.1) admits a continuous viscosity solution is the one associated with a system of
Hörmander vector fields. Hereafter we assume

(H ) (i) � is an open bounded set and � is a smooth manifold (without boundary)
of dimension n − 1.

(ii) {X1, . . . ,XN } is a system of smooth real vector fields on �′, an open neigh-
borhood of �.

(iii) The system {X1, . . . ,XN } satisfies Hörmander’s bracket generating condi-
tion on �′, i.e. the Lie algebra generated by the vector fields as well as by their
commutators has, in every point, dimension n.

We consider the viscosity solution of the problem

{∑N
j=1(XjT )2(x) = 1 in �,

T = 0 on �,
(1.8)

and, once more, we are interested to the Lipschitz regularity of the solution of (1.8).
It is well-known that, for instance in the case of X1, . . . ,XN linearly independent

vector fields, the solution of Eq. (1.8) has a geometrical interpretation: it is the sub-
Riemannian distance function from the boundary of the set �.

A first Lipschitz regularity result for T was given in [1] for a very special class of
Dirichlet problems on an unbounded domain. More precisely, let M > 0, let k be a
positive integer define

� = {(x, y) ∈ R
n × R : y > M |x|k+1}, (1.9)

and consider the homogeneous Dirichlet problem

{
|∇xT (x, y)|2 + |x|2k(∂yT (x, y))2 = 1 in �

T = 0, on � = ∂�.
(1.10)

In [1] it is proved the following

Theorem 1.2 The nonnegative viscosity solution of the Dirichlet problem (1.10) is
locally Lipschitz continuous in �. Furthermore, T is Hölder continuous of exponent
1/(k + 1) at (0, 0).

Remark 1.2 The exponent 1/(k + 1) in the above result is optimal.

The obstruction to the Lipschitz regularity of the solution of (1.8) is due to the
presence of characteristic boundary points, in the present case

x ∈ E ⇐⇒ X1(x), . . . ,XN (x) are tangent to � at x.
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Example 1 In the case of Eq. (1.10), we have 2n vector fields

X1 = ∂

∂x1
, . . . , Xn = ∂

∂xn
, Xn+1 = x1

∂

∂y
, . . . , X2n = xn

∂

∂y

and the origin (0, 0) is the only characteristic boundary point on the domain (1.9).

In general, near a noncharacteristic boundary point, T is Lipschitz continuous
whilst T fails to be Lipschitz continuous at a characteristic boundary point (see e.g.
[3, Theorem 4.2 (2)]). Due to the smoothness of the data a stronger regularity result
can be proved: T is smooth near a noncharacteristic boundary point (see e.g. [3,
Theorem 4.2 (1)]).

Furthermore, as a consequence of Theorem 1.1, if the whole boundary � is non-
characteristic, then T is Lipschitz continuous on �.

It is well known that T can be interpreted as the value function of a suitable time
optimal control problem; in particular certain time–optimal trajectories–the so called
singular time–optimal trajectories–play a key role in the study of the regularity of
T (see Definition 2.2 below). More precisely, in [3], it is shown that T is locally
Lipschitz continuous if and only if the minimum time problem admits no “singular”
time optimal trajectories. We recall that the singular trajectories can be characterized
as the time–optimal trajectories reaching a characteristic boundary point. One can
show that E is a closed subset of � of (n − 1)-dimensional Hausdorff measure zero
(see e.g. [6]).

Hence, one should expect that the solution of (1.8) may fail to be Lipschitz con-
tinuous on a “small” set. A more precise result can be proved. Indeed, in [4], a partial
regularity result is given: T is of class C∞ on the complement of a closed set of
measure zero. In other words, for the viscosity solution of (1.8)

• there can be a lack of regularity only on a set of measure zero;
• in some cases there is a sort of propagation of Lipschitz singularities, along the
singular time optimal trajectories, from E towards the interior of �.

It is a difficult task to verify whether a time optimal trajectory is singular: the main
tool available being the PontryaginMaximumPrinciple (a set of necessary optimality
conditions).Wewill provide a sufficient (geometrical) condition ensuring the absence
of singular time optimal trajectories. For this purpose, let us begin by recalling some
basic notions, see [7, Chap. XXI].

1.1 Basic Objects

We associate to a vector field Xj, j = 1, . . . ,N , its principal symbol, Xj(x, ξ), which
is a function invariantly defined in the cotangent bundle, T ∗�′. We recall that we
can identify T ∗�′ with �′ × R

n by means of the canonical coordinates induced by
the coordinates on�′. (Hereafter we will use such an identification.) More precisely,
given the vector field
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Xj(x) =
n∑

i=1

aji(x)
∂

∂xi
,

we have that

Xj(x, ξ) =
n∑

i=1

aji(x)ξi (1.11)

is the principal symbol1 of Xj. Here aji ∈ C∞(�′), i = 1, . . . , n and j = 1, . . . ,N .
Let us denote denote the Hamiltonian by

h(x, ξ) =
N∑
j=1

Xj(x, ξ)
2, (x, ξ) ∈ �′ × R

n,

and we define the characteristic set as

� = {(x, ξ) ∈ �′ × (Rn \ {0}) : h(x, ξ) = 0}. (1.12)

We recall that in �′ × R
n is naturally defined the symplectic form, i.e. a closed non–

degenerate smooth 2-form, which (in local canonical coordinates) can be written
as

σ =
n∑

j=1

dξj ∧ dxj.

Given a smooth submanifold V ⊂ �′ × R
n and a point ρ ∈ V , the symbol (TρV )σ

stands for the orthogonal with respect to the symplectic form of the tangent space to
V at ρ. A submanifold V ⊂ �′ × R

n is symplectic if

rank σ|V = dim V (1.13)

or equivalently TρV ∩ (TρV )σ = {0}, for every ρ ∈ V .

Remark 1.3 The cotangent bundle of a smooth manifold is naturally a symplectic
manifold.We recall that, by the Darboux Theorem, all the symplectic manifolds have
locally the same geometry (in contrast with the case of the Riemannian manifolds).

Example 2 Consider the system of vector fields given in Example 1. Then, we have
that

� = {(0, y, 0, η) ∈ R
n × R × R

n × R : y ∈ R, η �= 0}

is a symplectic manifold of dimension 2.

The phenomenon observed in Theorem 1.2 is clarified by the following

1We observe that our terminology slightly differs from the standard one used by people working
on pdes: usually (1.11) stands the principal symbol of the operator Xj/i.
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Theorem 1.3 Assume (H ) and let � be a symplectic manifold. Then T is locally
Lipschitz continuous on �.

(See [3, Theorem 4.4].) In other words, if � is a symplectic manifold, no propa-
gation of Lipschitz singularities occur from E towards the interior of �.

Remark 1.4 We observe that, for a large class of equations, the assumption “� is
a manifold” is automatically satisfied: if X1, . . . ,XN are linearly independent on �′
(i.e. we deal with a vectorial distribution), then � is a manifold of codimension N .
(Here we are implicitly assuming thatN ≤ n.) In such a class, the only assumption of
Theorem 1.3 is that� is symplectic. We recall that a distribution X on a manifold�′
is called strongly bracket generating if for any nonzero section S of the distribution,
the tangent bundle to�′, T�′, is generated by S and the commutators [S,X ] (see [10,
11], see also [5]). It is easy to see that, given a distribution, the following assertions
are equivalent

(1) the distribution is strongly bracket generating;
(2) � is a symplectic manifold.

(See e.g. [9, Sect. 5.6] see also [2, Theorem 3.2].)

Then we have the following scheme:

• if E = ∅, then T is locally Lipschitz continuous on �;
• if E �= ∅ and � is a symplectic manifold, then T is locally Lipschitz continuous
on � (and T is not Lipschitz continuous at any point of E).

A next natural question is to analyze the case of E �= ∅ and � is a manifold which
is not symplectic.

For this purpose, we need one more geometrical notion: the conormal bundle to
�, in coordinates, can be written as

N ∗� = {(x, ξ) : x ∈ �, ξ = λν(x), λ �= 0},

where ν(x) is the outward inner normal to � at x. (We point out that the set above
should be understood as a subset of T ∗�′.) Clearly, the following characterization
holds

E �= ∅ ⇐⇒ N ∗� ∩ � �= ∅.

In order to state our “propagation” result we need the notion of Hamiltonian leaf.

Definition 1.1 Let V ⊂ T ∗�′ be a smooth submanifold and let ρ0 ∈ V . Consider
the (vectorial) distribution

V 
 ρ 	→ TρV ∩ (TρV )σ, (1.14)

and suppose that (1.14) has constant (positive) rank < dim V , i.e.

V 
 ρ 	→ dim{TρV ∩ (TρV )σ}



Some Remarks on the Dirichlet Problem for the Degenerate Eikonal Equation 9

is a constant function. The Hamiltonian leaf going through the point ρ0, Fρ0 ⊂ V , is
the integral manifold of the distribution (1.14), with ρ0 ∈ Fρ0 .

We point out that the existence of an Hamiltonian leaf is granted by the Frobenius
Theorem (for the reader convenience we provide some more details in Appendix
2.2). In the sequel, we will apply Definition 1.1 mainly to the special case of � is a
manifold (and we take V = �).

Remark 1.5 If, in Definition 1.1, we drop the assumption that the rank of σ is less
than dim V , then V is a symplectic submanifold of T ∗�′, TρV ∩ (TρV )σ ≡ {0}, for
ρ near ρ0 and Fρ reduces to the singleton {ρ0}.

In order to clarify the notion of Hamiltonian leaf, let us discuss some examples.

Example 3 (Baouendi–Goulaouic). In R3 consider the vector fields

X1 = ∂x, X2 = ∂y, X3 = xk∂t .

(Here k is a positive integer.) Then, we have that

� = {(0, y, t, 0, 0, τ ) : y, t ∈ R, τ �= 0}

is a manifold of dimension 3 and the rank of the restriction of the symplectic form
to � is 2. Let ρ0 = (0, y0, t0, 0, 0, τ0) ∈ �, then

Fρ0 = {(0, y, t0, 0, 0, τ0) : y ∈ R},

i.e. Fρ0 is a manifold of dimension 1.

Example 4 (Métivier). In R2 we consider the vector fields

X1 = ∂x, X2 = xk∂y, X3 = y�∂y.

(Here k, � are positive integers.) Then, we have

� = {(0, 0, 0, η) : η �= 0}

is a one dimensional manifold and the rank of the restriction of the symplectic form
to � is zero. If ρ0 = (0, 0, 0, η0) ∈ �, then we have

Fρ0 = {(0, 0, 0, η) : η �= 0},

i.e. the Fρ0 is a one dimensional manifold along the fiber.

Example 5 (Liu–Sussmann). In R3 consider the vector fields

X1 = ∂x, X2 = (1 − x)∂y + x2∂t,
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then the characteristic set is

� = {(x, y, t, 0, η, τ ) : x, y, t ∈ R, (1 − x)η + x2τ = 0, (η, τ ) �= 0}.

Then, we have the decomposition

� = (� \ (�1 ∪ �2)) ∪ �1 ∪ �2

with
�1 = {(0, y, t, 0, 0, τ ) : y, t ∈ R, τ �= 0}

and
�2 = {(2, y, t, 0, 0, τ ) : y, t ∈ R, τ �= 0}.

Then, rank σ|�\(�1∪�2) = 4 = dim(� \ (�1 ∪ �2)) (i.e. � \ (�1 ∪ �2) is a sym-
plectic manifold). Let ρ0 = (0, y0, t0, 0, 0, τ0) ∈ �1, then we have

Fρ0 = {(0, y, t0, 0, 0, τ0) : y ∈ R}.

Example 6 In R3 consider the vector fields

X1 = ∂x − yk∂t, X2 = ∂y + xk∂t .

(Here k is an odd number.) Then

� = {(x, y, t, ykτ ,−xkτ , τ ) : x, y, t ∈ R, τ �= 0}

is a manifold of dimension 4 and

� = (� \ �1) ∪ �1

with

� \ �1 = {(x, y, t, ykτ ,−xkτ , τ ) : t ∈ R, xk−1 + yk−1 �= 0, τ �= 0}

and
�1 = {(0, 0, t, 0, 0, τ ) : t ∈ R, τ �= 0}.

Then, both � \ �1 and �1 are symplectic manifolds and Fρ = {ρ}, for every ρ ∈ �.

For some model problems in [3], it was observed that the regularity of the solu-
tion of (1.8) is influenced by the interaction of the characteristic set � with the set
of the characteristic boundary points E. The main result of the present paper is a
geometrization (and a localization) of this fact.
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We denote by
π : �′ × R

n −→ �′, π(x, ξ) = x

the projection on the base. For δ > 0, let Bδ(x0) ⊂ R
n be the (open) Euclidean ball

with center at x0 and radius δ.

Theorem 1.4 Assume (H ) and let x0 ∈ �, δ > 0 with Bδ(x0) ⊂ �′. Suppose that
for every ρ ∈ N ∗� ∩ �, with π(ρ) ∈ Bδ(x0), there exists the Hamiltonian leaf going
through ρ, Fρ, and that

π(Fρ) ∩ � = ∅. (1.15)

Then, possibly reducing δ, the solution T of (1.8) is locally Lipschitz continuous on
� ∩ Bδ(x0).

In other words, if the projection of the Hamiltonian leaves through the character-
istic (conormal) points does not intersect �, then T is locally Lipschitz continuous.

Remark 1.6 (i) The system of vector fields given in Example 4, for every smooth
domain �, trivially satisfies the assumptions of Theorem 1.4. Then, the solution of
(1.8) is locally Lipschitz continuous on �.

(ii) We recall that, once it is established that T is locally Lipschitz continuous,
automatically, we get a stronger regularity. Indeed, as shown in Theorem 4.1 of
[3], for a solution of (1.8) the local Lipschitz continuity is equivalent to the local
semiconcavity (i.e. T can be locally written as the sum of a smooth with a concave
function).

(iii) We observe that if � is a symplectic manifold or E = ∅ or in the case of
Example 6 no propagation occur and, by [3, Theorem 4.4], T is locally Lipschitz
continuous on �.

2 Proof of Theorem 1.4

2.1 Preliminaries

It is well known that (1.8) admits a unique continuous viscosity solution T : � →
R. Indeed, taking � as the target set, the minimum time function associated with
{X1, . . . ,XN } is a solution of the above equation. Such a function is defined as follows.
Given x ∈ � and a measurable control

u = (u1, . . . , uN ) : [0,+∞[→ R
N ,

taking values in the closed unit ball of RN , B1(0), let us denote by yx,u(·) the unique
solution of the Cauchy problem
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{
y′(t) = ∑N

j=1 uj(t)Xj(y(t)) (t ≥ 0)

y(0) = x.
(2.16)

Define the transfer time to � as

τ�(x, u) = inf
{
t ≥ 0 : yx,u(t) ∈ �

}
(∈ [0,+∞]).

The Minimum Time Problem with target � is the following:

(MTP) minimize τ�(x, u) over all controls u : [0,+∞[→ B1(0).

Then, the minimum time function, defined as

T (x) = inf
u(·)

τ�(x, u) (x ∈ �),

turns out to be the unique viscosity solution of the Dirichlet problem (1.8). It is well-
known that Hörmander’s bracket generating condition implies that (2.16) is small
time locally controllable. Hence, T is finite and continuous.

Remark 2.7 We recall that a u(·) is called an optimal control at a point x ∈ � if
T (x) = τ�(x, u). The corresponding solution of (2.16), yx,u, is called the time-optimal
trajectory at x associated with u.

We denote by HXj (x, ξ), j = 1, . . . ,N , the vector field on �′ × R
n given by (in

local canonical coordinates)

HXj (x, ξ) =
n∑

i=1

(
∂Xj

∂ξi
(x, ξ)

∂

∂xi
− ∂Xj

∂xi
(x, ξ)

∂

∂ξi

)
.

Definition 2.2 Let x ∈ � and let y(·) = yx,u(·) be a time-optimal trajectory, with
u : [0,T (x)] → B1(0). We say that y(·) is singular if there exists an absolutely con-
tinuous arc ξ : [0,T (x)] → R

n \ {0} such that, setting ρ(t) = (y(t), ξ(t)), for a.e.
t ∈ [0,T (x)] we have

ρ′(t) =
N∑
j=1

uj(t)HXj (ρ(t)), ρ(t) ∈ �, (2.17)

and
ξ(T (x)) = λν(y(T (x))), λ > 0. (2.18)

Remark 2.8 We recall that the adjective “singular” in Definition 2.2 is motivated by
the fact that if x0 ∈ � and yx0,u is a singular time-optimal trajectory then T fails to
be Lipschitz continuous at yx0,u(t). (This property is the content of Corollary 3.1 in
[3].)
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The following characterization clarifies the nature of the singular time-optimal
trajectories (see Theorem 3.1 in [3]).

Theorem 2.5 Let x ∈ � and let yx,u be a time-optimal trajectory. Then, yx,u is sin-
gular if and only if yx,u(T (x)) ∈ E.

Finally, let recall the basic regularity result proved in [3].

Theorem 2.6 (Interior regularity) Under assumption (H ), the following properties
are equivalent:

(1) (MTP) admits no singular time-optimal trajectory;
(2) T is locally semiconcave in �;
(3) T is locally Lipschitz continuous in �.

2.2 Proof of Theorem 1.4

Let us suppose, by contradiction, that T is not locally Lipschitz continuous near x0.
Then, by Theorem 2.6, possibly reducing δ there exist a point

ρ̄ ∈ � with π(ρ̄) = x̄ ∈ � ∩ Bδ(x0),

and a control function u : [0,T (x̄)] −→ B1(0) such that, denoting by ρ(·) the solution
of (2.17) with ρ(0) = ρ̄, π(ρ(t)) is a singular time–optimal trajectory and

ρ0 := ρ(T (x̄)) ∈ N ∗� ∩ �.

We observe that

� = {X1 = · · · = XN = 0} =⇒ span{dX1(ρ), . . . , dXN (ρ)} ⊂ (Tρ�)⊥,

for every ρ ∈ � near ρ0. (Here⊥ denotes the orthogonal with respect to the standard
Euclidean product in R2n.) Hence, we find

span{HX1(ρ), . . . ,HXN (ρ)} ⊂ (Tρ�)σ, (2.19)

for every ρ ∈ � (near ρ0). Let Fρ0 be the Hamiltonian leaf going through ρ0. Then,
we have that

ρ(t) ∈ Fρ0 , for every t near T (x̄)

(because of (2.19) and, by definition, ρ′(t) ∈ Tρ(t)�, for t near T (x̄)).
Then, we conclude that π(ρ(t)) ∩ � = ∅ for t near T (x̄), in contradiction with the

fact that π(ρ(·)) is a time–optimal trajectory. This completes our proof.
We observe that if the assumptions of Theorem 1.4 are not satisfied, then T may

be not locally Lipschitz continuous on �. Indeed, we have the following
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Example 7 In R3 consider the vector fields

X1 = ∂x, X2 = (1 − x)∂y + x2∂t

(see [8] for a detailed study of this model). Let � be the open set with smooth
boundary defined as follows: let a ∈]0, 1[ and set

�a = {(x, y,−(y − a)2) : x ∈ R, y > 0}.

Consider theEuclidean open ballwith center at (0, a, 0) and radius a/2,B, and extend,
smoothly, �a outside such a ball. We observe that � ∩ B = {(x, y, t) ∈ B : t >

−(y − a)2}. In [3, Example 1], it is shown that the solution of (1.8) is not locally
Lipschitz continuous on � near the point (0, a, 0) ∈ �. Let us show that near this
point the assumptions of Theorem 1.4 are not satisfied. Indeed,

X1(0, a, 0) = ∂x, X2(0, a, 0) = ∂y ∈ T(0,a,0)�,

i.e. (0, a, 0) ∈ E. Furthermore, we have that, for τ0 �= 0,

(0, a, 0, 0, 0, τ0) ∈ N ∗� ∩ �.

and
F(0,a,0,0,0,τ0) = {(0, y, 0, 0, 0, τ0) : y ∈ R}.

Then, we conclude that
π(F(0,a,0,0,0,τ0)) ∩ � �= ∅.

Acknowledgements The author was supported by the INdAM Project 2017 Regolarità delle
soluzioni viscose per equazioni a derivate parziali non lineari degeneri.

Appendix A

In this appendix we provide a couple of results on the existence of an Hamiltonian
leaf.

Theorem A.1 Let � ⊂ T ∗�′ be a submanifold, let ρ0 ∈ � and let suppose that
rank σ|� is constant (< dim�) near ρ0. Then, there exists the Hamiltonian leaf
going through the point ρ0.

Remark A.9 Theorem A.1 is a simple consequence of Theorem 21.2.4 of [7] (see
Theorem 21.2.7 of [7]). We recall that Theorem 21.2.4 is a (local) canonical form
for a submanifold of a symplectic manifold under a constant rank assumption on
the symplectic form. For the reader convenience we will provide a direct proof of
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Theorem A.1 based on the integrability Frobenius theorem (see e.g. Theorem C.1.1
in [7]).

Proof of Theorem A.1 We observe that, because of the rank of σ is constant on �,
then

� 
 ρ 	→ Tρ� ∩ (Tρ�)σ (A.1)

defines a vectorial distribution on � of constant rank. (Here we are also using the
assumption that � is a manifold.) In order to apply the Frobenius Theorem to (A.1),
we need to check that the commutator [X ,Y ] := XY − YX , of two arbitrary (local)
sections of (A.1), X and Y , is still a local section of (A.1).

For this purpose we use the following general result on the differential of a two
form (see Lemma 21.1.5 in [7]).

Lemma A.1 Let ω be a C1 two form on a C2 manifold M and let X ,Y ,Z be three
C1 vector fields on M . Then

dω(X ,Y ,Z) = Xω(Y ,Z) + Yω(Z,X ) + Zω(X ,Y ) (A.2)

− ω([X ,Y ],Z) − ω([Y ,Z],X ) − ω([Z,X ],Y ).

In order to use the Frobenius Theorem, let us apply the lemma with ω = σ,M = �,
X and Y two local sections of the distribution (A.1). We need to verify that

[X ,Y ](ρ) ∈ Tρ� ∩ (Tρ�)σ, (A.3)

for ρ ∈ �. Then, let ρ ∈ � and let Z be a vector field on �, we want to show that

σ([X ,Y ](ρ),Z(ρ)) = 0. (A.4)

(This means that [X ,Y ](ρ) ∈ (Tρ�)σ.) We observe that, since σ is a closed form,
then the left hand side of (A.2) is zero. Furthermore, the assumptions X (ρ),Y (ρ) ∈
Tρ� ∩ (Tρ�)σ and Z(ρ) ∈ Tρ� yield that

σ(Y (ρ),Z(ρ)) = σ(Z(ρ),X (ρ)) = σ(X (ρ),Y (ρ)) = 0.

Finally, using the fact that [Y ,Z](ρ), [Z,X ](ρ) ∈ Tρ�, we deduce that

σ([Y ,Z](ρ),X (ρ)) = σ([Z,X ](ρ),Y (ρ)) = 0

(because of X (ρ),Y (ρ) ∈ (Tρ�)σ). Then, (A.2) implies (A.4), i.e. [X ,Y ](ρ) ∈
(Tρ�)σ . The same argument, taking as Z a vector field on � with values in (Tρ�)σ

yields that
[X ,Y ](ρ) ∈ Tρ�,
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and we deduce that (A.3) holds true. Then, we may apply the Frobenius integrabil-
ity Theorem and the existence of Fρ0 , with ρ0 ∈ Fρ0 , follows. This completes our
proof. �

Let us now consider a more interesting case: rank σ|� is not constant. The simpler
geometrical situation is that the rank of the symplectic form varies on a submanifold.
More precisely we have the following

Theorem A.2 Let ρ0 ∈ � and let us suppose that�, near ρ0, is a manifold and that
there exists a submanifold �1 ⊂ � defined near ρ0, with ρ0 ∈ �1, such that

(1) � \ �1 is a symplectic manifold;
(2) rank σ|�1 (< rank σ|�\�1) is constant

2 < dim�1.

Then, there exists the Hamiltonian leaf going through the point ρ0.

We omit the proof of Theorem A.2 since it is a repetition of the one of Theorem
A.1.
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Lipschitz Continuity of the Value
Function for the Infinite Horizon
Optimal Control Problem Under State
Constraints
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Abstract This paper investigates sufficient conditions for Lipschitz regularity of
the value function for an infinite horizon optimal control problem subject to state
constraints. We focus on problems with a cost functional that includes a discount
rate factor and allow time dependent dynamics and Lagrangian. Furthermore, our
state constraintsmay be unbounded andwith nonsmooth boundary. The key technical
result used in our proof is an estimate on the distance of a given trajectory from the set
of all its viable (feasible) trajectories (provided the discount rate is sufficiently large).
These distance estimates are derived under a uniform inward pointing condition on
the state constraint and imply, in particular, that feasible trajectories depend on initial
states in a Lipschitz way with an exponentially increasing in time Lipschitz constant.
As a corollary, we show that the value function of the original problem coincides
with the value function of the relaxed infinite horizon problem.

Keywords Infinite horizon · Value function · State constraints · Relaxation

1 Introduction

Infinite time horizon models arising in mathematical economics and engineering
typically involve control systems with restrictions on both controls and states. For
instance it is natural to request all the variables involved in an economic model to
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be non-negative. While dealing with control constraints is rather well understood,
the major difficulties with state constraints arise whenever for small perturbations
of the initial state (or of a feasible control) the corresponding trajectory violates the
constraints at a later time. More generally, it may happen that the celebrated value
function associated to an infinite horizonoptimal control problem takes infinite values
and is discontinuous. In particular, this prevents using such a classical tool of optimal
control theory as Hamilton-Jacobi-Bellman equation and its viscosity solution. In
the literature one finds some results concerning continuity of the value function
for state constrained infinite horizon problems, see for instance [13]. However in
this last reference the state constraints are given by a compact set with a smooth
boundary. This clearly does not fit the state constraint described by the cone of
positive vectors. In addition, results of [13] address only the autonomous case, which
is also a serious restriction, because, as it was shown later on, arguments of its proof
can not be extended to the non-autonomous case whenever the time dependence is
merely continuous.

Because of their presence in various applied models, addressing non-autonomous
control systems subject to unbounded and non smooth state constraints remains
crucial. Let us note that (the finite horizon) state-constrained Mayer’s and Bolza’s
problems have been successfully investigated by many authors, see for instance [6,
9, 14] and the references therein. However in the infinite horizon framework these
results can not be used, because restricting optimal trajectories of the infinite horizon
problem to a finite time interval, in general, does not lead to optimal trajectories of
the corresponding finite horizon problem. See [7] for a further discussion of this
issue.

Infinite horizon problems exhibitmany phenomena not arising in the finite horizon
context and for this reason their study is still going on, even in the absence of state
constraints, cfr. [1, 2, 7, 8, 12].

This paper deals with the infinite horizon optimal control problem B∞:

minimize
∫ ∞

t0

e−λt l(t, x(t), u(t)) dt (1)

over all trajectory-control pairs (x(·), u(·)) of the state constrained control system

⎧⎪⎪⎨
⎪⎪⎩

x ′(t) = f (t, x(t), u(t)) a.e. t ∈ [t0,∞)

x(t0) = x0
u(t) ∈ U (t) a.e. t ∈ [t0,∞)

x(t) ∈ A ∀ t ∈ [t0,∞),

(2)

where λ > 0, f : [0,∞) × R
n × R

m → R
n and l : [0,∞) × R

n × R
m → R are

given functions, U : [0,∞) ⇒ R
m is a Lebesgue measurable set-valued map with

closed nonempty images, A is a closed subset of Rn , and (t0, x0) ∈ [0,∞) × A is
the initial datum. Every trajectory-control pair (x(·), u(·)) that satisfies the state con-
strained control system (2) is called feasible. The infimum of the cost functional in
(1) over all feasible trajectory-control pairs, with the initial datum (t0, x0), is denoted
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by V (t0, x0) (if no feasible trajectory-control pair exists at (t0, x0) or if the integral
in (1) is not defined for every feasible pair, we set V (t0, x0) = +∞). The function
V : [0,∞) × A → R ∪ {±∞} is called the value function of problem B∞.

Lipschitz continuity of V for a compact set of constraints A was recently investi-
gated in [4] for autonomous control systems and lagrangian functions. It was used to
get a maximum principle under state constraints and also to obtain sensitivity rela-
tions. However, in [4] the maximum principle was proved for the non-autonomous
case and for possibly unbounded A under the assumption that V (t, ·) is locally Lip-
schitz on A for every t ≥ 0. So the open question remained: how to guarantee the
Lipschitz continuity of V (t, ·) when the data are time dependent and without impos-
ing the compactness of A. Then recovering Lipschitz continuity of the value function
is not straightforward and calls for distinct arguments. Here we propose sufficient
conditions (cfr. Sect. 3) for it, allowing both f and l to be time dependent and not
requiring boundedness of A and smoothness of ∂A. Our proof differs substantially
from the one in [4].

The outline of the paper is as follows. In Sect. 2, we provide basic definitions,
terminology, and facts from nonsmooth analysis. In Sect. 3, we state a new neighbor-
ing feasible trajectory theorem under a uniform inward pointing condition. In Sect.
4, we give an example when the uniform inward pointing condition is satisfied for
functional state constraints and in Sect. 5 we prove our main result on Lipschitz con-
tinuity of the value function. Section 6 is devoted to an application to the relaxation
of our control problem.

2 Preliminaries

Let B(x, δ) stand for the closed ball in Rn with radius δ > 0 centered at x ∈ R
n and

setB = B(0, 1), Sn−1 = ∂B. Denote by | · | and 〈·, ·〉 the Euclidean norm and scalar
product, respectively. Let C ⊂ R

n be a nonempty set. We denote the interior of C by
intC , the convex hull of C by coC , and the distance from x ∈ R

n to C by dC(x) :=
inf{|x − y| : y ∈ C}. If C is closed, we let ΠC(x) be the set of all projections of
x ∈ R

n ontoC . For p ∈ R
+ ∪ {∞} and a Lebesgue measurable set I ⊂ Rwe denote

by L p(I ;Rn) the space of Rn-valued Lebesgue measurable functions on I endowed
with the norm‖ · ‖p,I .We say that f ∈ L p

loc(I ;Rn) if f ∈ L p(J ;Rn) for any compact
subset J ⊂ I . In what follows μ stands for the Lebesgue measure on R.

Let I be an open interval in R. For f ∈ L1
loc(I ;Rn) and all σ ∈ [0, μ(I )) define

θ f (σ ) = sup

{∫
J
| f (τ )| dτ : J ⊂ I , μ(J ) � σ

}
.

We denote byLloc the set of all f ∈ L1
loc([0,∞);R+) such that limσ→0 θ f (σ ) = 0.

Notice that L∞( [0,∞);R+) ⊂ Lloc and, for any f ∈ Lloc, θ f (σ ) < ∞ for every
σ > 0.
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A set-valued map F : Rn ⇒ R
n taking nonempty images is said to be L-Lipschitz

continuous for some L � 0, if F(x) ⊂ F(x̃) + L|x − x̃ |B for all x, x̃ ∈ R
n .

Let I ⊂ R be an open interval and G : I × R
n ⇒ R

n be a multifunction taking
nonempty values. We say that G has a sub-linear growth (in x) if, for some c ∈
L1
loc(I ;R+), supv∈G(t,x) |v| � c(t)(1 + |x |) for a.e. t ∈ I and all x ∈ R

n .
Let Λ ⊂ R

n . We say that G(·, x) is γ -left absolutely continuous, uniformly for
x ∈ Λ, where γ ∈ L1

loc(I ;R+), if

G(s, x) ⊂ G(t, x) +
∫ t

s
γ (τ) dτB ∀s, t ∈ I : s < t, ∀x ∈ Λ. (3)

If I = [S, T ], then we have the following characterization of uniform absolute con-
tinuity from the left: G(·, x) is left absolutely continuous uniformly for x ∈ Λ, for
some γ ∈ L1

loc(I ;R+), if and only if for every ε > 0 there exists δ > 0 such that for
any finite partition S � t1 < τ1 � t2 < τ2 � · · · � tm < τm � T of [S, T ],

m∑
i=1

(τi − ti ) < δ =⇒
m∑
i=1

dG(τi ,x)(G(ti , x)) < ε ∀ x ∈ Λ,

where dE (Ẽ) := inf{β > 0 : Ẽ ⊂ E + βB} for any E, Ẽ ⊂ R
n with inf ∅ = +∞.

Consider a closed set E ⊂ R
n and x ∈ E . The Clarke tangent cone T C

E (x) to E
at x is defined by

TC
E (x) := {ξ ∈ R

n : ∀xi →E x, ∀ti ↓ 0, ∃vi → ξ such that xi + ti vi ∈ E ∀i },

where xi →E x means xi ∈ E for all i .We denote by NC
E (x) := (TC

E (x))− theClarke
normal cone to E at x , where “ − ” stands for the negative polar of a set.

3 Uniform Distance Estimates

We provide here sufficient conditions for uniform linear L∞ estimates on intervals of
the form I = [t0, t1], with 0 � t0 < t1, for the state constrained differential inclusion

{
x ′(t) ∈ F(t, x(t)) a.e. t ∈ I
x(t) ∈ A ∀ t ∈ I,

where F : [0,∞) × R
n ⇒ R

n is a given set-valued map and A ⊂ R
n is a closed set.

A function x : [t0, t1] → R
n is said to be an F-trajectory if it is absolutely con-

tinuous and x ′(t) ∈ F(t, x(t)) for a.e. t ∈ [t0, t1], and a feasible F-trajectory if x(·)
is an F-trajectory and x([t0, t1]) ⊂ A.
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We denote by (H) the following hypothesis on F(·, ·):
(i) F has closed, nonempty values, a sub-linear growth, and F(·, x) is Lebesgue

measurable for all x ∈ R
n;

(ii) there exist M � 0 and α > 0 such that

sup{|v| : v ∈ F(t, x), (t, x) ∈ [0,∞) × (∂A + αB)} ≤ M; (4)

(iii) there exists ϕ ∈ Lloc such that F(t, ·) is ϕ(t)-Lipschitz continuous for a.e.
t ∈ R

+.

We shall also need the following two assumptions:

(AC) there exist η̃ > 0 and γ ∈ Lloc such that F(·, x) is γ -left absolutely contin-
uous, uniformly for x ∈ ∂A + η̃B;

(IPC) for some ε > 0, η > 0 and every (t, x) ∈ [0,∞) × (∂A + ηB) ∩ A there
exists v ∈ co F(t, x) satisfying

{y + [0, ε](v + εB) : y ∈ (x + εB) ∩ A} ⊂ A. (5)

We state next a uniform neighboring feasible trajectory theorem for left absolutely
continuous with respect to time set-valued maps.

Theorem 1 Assume (H), (AC), and (IPC). Then for every δ > 0 there exists a con-
stant β > 0 such that for any [t0, t1] ⊂ [0,∞) with t1 − t0 = δ, any F-trajectory
x̂(·) defined on [t0, t1] with x̂(t0) ∈ A, and any ρ > 0 satisfying

ρ � sup
t∈[t0,t1]

dA(x̂(t)),

we can find an F-trajectory x(·) on [t0, t1] such that x(t0) = x̂(t0),

‖x̂ − x‖∞,[t0,t1] � βρ & x(t) ∈ int A ∀ t ∈ (t0, t1].

The following Proposition can be proved using the same arguments as in [5, pp.
1922–1923].

Proposition 1 Assume (H), (AC), (IPC), and that the assertion of Theorem 1 is valid
under the additional hypothesis: F(t, x) is convex for all (t, x) ∈ [0,∞) × R

n. Then
the assertion of Theorem 1 is valid under (H), (AC), and (IPC) alone.

Proof (of Theorem 1) Fix δ > 0 and let us relabel by η the constant given by
min{η, η̃, α}. Let

k > 0, Δ > 0, ρ̄ > 0, and m ∈ N
+ (6)

be such that k > 1/ε,

(i) Δ � ε; (i i) ρ̄ + MΔ < ε, kρ̄ < ε; (i i i) 4ΔM � η, (7)
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(i) eθϕ(Δ)(θγ (Δ) + θϕ(Δ)M) < ε;
(i i) 2eθϕ(Δ)(θγ (Δ) + θϕ(Δ)M)k < (kε − 1),

(8)

and
δ

m
� Δ. (9)

We remark that all the constants appearing in (6) do not depend on the time interval
[t0, t1], the trajectory x̂(·), and ρ.

By Proposition 1, we may assume that F(·, ·) = co F(·, ·). We consider three
cases.

Case 1: ρ � ρ̄ and δ � Δ.
By (7)–(i i i), if x̂(t0) ∈ A\(∂A + η

2B), then x(·) = x̂(·) is as desired. Suppose
next that x̂(t0) ∈ (∂A + η

2B) ∩ A. Let v ∈ F(t0, x̂(t0)) be as in (IPC) and define
y : [t0, t1] → R

n by y(t0) = x̂(t0) and

y′(t) =
{
v t ∈ [t0, (t0 + kρ) ∧ t1]
x̂ ′(t − kρ) t ∈ (t0 + kρ, t1] ∩ J,

(10)

where J = {s ∈ (t0 + kρ, t1] : x̂ ′(s − kρ) exists}. Hence

‖x̂ − y‖∞,[t0,t1] � 2Mkρ. (11)

By Filippov’s theorem (cfr. [3]) there exists an F-trajectory x(·) on [t0, t1] such that
x(t0) = y(t0) and

‖y − x‖∞,[t0,t] � e
∫ t
t0

ϕ(τ) dτ

∫ t

t0

dF(s,y(s))(y
′(s)) ds (12)

for all t ∈ [t0, t1]. Then, using (H)-(iii), (3), and (10), it follows that

dF(s,y(s))(y
′(s)) �

{
θγ (Δ) + ϕ(s)M(s − t0) a.e. s ∈ [t0, (t0 + kρ) ∧ t1]
ϕ(s)Mkρ + ∫ s

s−kρ γ (τ ) dτ a.e. s ∈ (t0 + kρ, t1]. (13)

Hence, we obtain for any t ∈ [t0, (t0 + kρ) ∧ t1]
∫ t

t0

dF(s,y(s))(y
′(s)) ds � (θγ (Δ) + θϕ(Δ)M)(t − t0),

and, using the Fubini theorem, for any t ∈ (t0 + kρ, t1],
∫ t

t0+kρ
dF(s,y(s))(y

′(s)) ds � (θϕ(Δ)M + θγ (Δ))kρ.
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Thus, by (12), for all t ∈ [t0, (t0 + kρ) ∧ t1]

‖y − x‖∞,[t0,t] � eθϕ(Δ)(θγ (Δ) + θϕ(Δ)M)(t − t0) (14)

and
‖y − x‖∞,[t0,t1] � 2eθϕ(Δ)(θγ (Δ) + θϕ(Δ)M)kρ. (15)

Finally, taking note of (11), it follows that ‖x̂ − x‖∞,[t0,t1] � β1ρ, where β1 =
2(M + eθϕ(Δ)(θγ (Δ) + θϕ(Δ)M))k.

We claim next that x(t) ∈ int A for all t ∈ (t0, t1]. Indeed, if t ∈ (t0, (t0 + kρ) ∧
t1], then from (IPC), (7)-(i) and (10) it follows that

y(t) + (t − t0)εB = x̂(t0) + (t − t0)(v + εB) ⊂ A,

and it is enough to use (14) and (8)-(i).
On the other hand, if t ∈ (t0 + kρ, t1], then for π(t) ∈ ΠA(x̂(t − kρ)) we have

|x̂(t − kρ) − π(t)| = dA(x̂(t − kρ)) � ρ, and, from (10), it follows that

y(t) ∈ π(t) + kρv + ρB. (16)

Now, since |π(t) − x̂(t0)| � |x̂(t − kρ) − π(t)| + |x̂(t − kρ) − x̂(t0)| � ρ̄ + MΔ,
from (5) and (7)-(i i) we have

π(t) + kρv + kρεB = π(t) + kρ(v + εB) ⊂ A. (17)

Finally, (16) and (17) imply that y(t) + (kε − 1)ρB ⊂ A. So, the claim follows from
(8)-(i i) and (15).

Case 2: ρ > ρ̄ and δ � Δ.
By the viability theorem from [10], we know that there exists a feasible F-

trajectory x̄(·) on [t0, t1] starting from x̂(t0). Note that dA(x̄(t)) = 0 for all t ∈ [t0, t1].
By the Case 1, replacing x̂(·) with x̄(·), it follows that there exists a feasible F-
trajectory x(·) on [t0, t1] such that x(t0) = x̂(t0) and x((t0, t1]) ⊂ int A. Hence, by
(4), we have ‖x̂ − x‖∞,[t0,t1] � 2MΔ � β2ρ, with β2 = 2MΔ

ρ̄
.

Case 3: δ > Δ.
The above proof implies that in Cases 1 and 2, β1, β2 can be taken the same if δ is

replaced by any 0 < δ1 < δ. Define β̃ = β1 ∨ β2 and let {[τ i−, τ i+]}mi=1 be a partition
of [t0, t1] by the intervals with the length at most δ/m.

Put x0(·) := x̂(·). From Cases 1 and 2, replacing [t0, t1] by [τ 1−, τ 1+] and setting

ρ0 = max{ρ, sup
t∈[t0,t1]

dA(x0(t))} = ρ,

we conclude that there exists an F-trajectory x1(·) on [τ 1−, τ 1+] = [t0, τ 1+] such that
x1(t0) = x̂(t0), x1((t0, τ 1+]) ⊂ int A, and
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‖x1 − x0‖∞,[τ 1−,τ 1+] � β̃ρ0.

Using Filippov’s theorem, we can extend the trajectory x1(·) onwhole interval [t0, t1]
so that

‖x1 − x0‖∞,[t0,t1] � e
∫ t1
t0

ϕ(τ) dτ
β̃ρ0 � K β̃ρ0,

where K := eθϕ(δ).
Repeating recursively the above argument on each time interval [τ i−, τ i+], we

conclude that there exists a sequence of F-trajectories {xi (·)}mi=1 on [t0, t1], such that
xi (t0) = x̂(t0), xi ((t0, τ i+]) ⊂ int A for all i = 1, . . . ,m, x j (·)|[t0,τ j−1

+ ] = x j−1(·) for
all j = 2, . . . ,m, and

‖xi − xi−1‖∞,[t0,t1] � K β̃ρi−1 ∀ i = 1, . . . ,m, (18)

where ρi−1 = max{ρ, supt∈[t0,t1] dA(xi−1(t))}. Notice that

ρi � ρi−1 + ‖xi − xi−1‖∞,[t0,t1] ∀ i = 1, . . . ,m. (19)

Taking note of (18) and (19) we get for all i = 1, . . . ,m

‖xi − xi−1‖∞,[t0,t1] � K β̃(ρi−2 + ‖xi−1 − xi−2‖∞,[t0,t1])

� K β̃(1 + K β̃)ρi−2 ≤ · · · � K β̃(1 + K β̃)i−1ρ0.

Then, letting x(·) := xm(·) and recalling that ρ0 = ρ, we obtain

‖x − x̂‖∞,[t0,t1] �
m∑
i=1

‖xi − xi−1‖∞,[t0,t1] � K β̃ρ0

m∑
i=1

(1 + K β̃)i−1 � β3ρ,

where β3 = (1 + K β̃)m − 1.
Then all conclusions of the theorem follow with β = β̃ ∨ β3. Observe that β

depends only on ε, η, M , δ, and on functions γ (·) and ϕ(·).
When F ismerelymeasurablewith respect to time, then a stronger inward pointing

condition has to be imposed:

(IPC)′ there exist η > 0, r > 0, M � 0 such that for a.e. t ∈ [0,∞), any y ∈ ∂A +
ηB, and any v ∈ F(t, y), with supn∈N 1

y,η
〈n, v〉 ≥ 0, there existsw ∈ F(t, y) ∩

B(v, M) such that

sup
n∈N 1

y,η

{〈n,w〉, 〈n,w − v〉} � −r,

where N 1
y,η := {n ∈ Sn−1 : n ∈ NC

A (x), x ∈ ∂A ∩ B(y, η)}.
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Let us denote by (H)′ the assumption (H) with (H)-(ii) replaced by a weaker
requirement:

(H)′ (ii) ∃ q ∈ Lloc such that F(t, x) ⊂ q(t)B, ∀ x ∈ ∂A, for a.e. t ∈ [0,∞).

Remark 1 We notice that from (H)′-(ii) and (iii) it follows that for any α > 0 there
exists qα ∈ Lloc such that F(t, x) ⊂ qα(t)B for a.e. t ∈ [0,∞) and all x ∈ ∂A +
αB.

Theorem 2 Let us assume (H)′ and (IPC)′. Then the assertion of Theorem 1 is valid.

Proof (IPC)′ corresponds to the conclusion of [9, Proposition 7] with r , η, and M
defined uniformly over A. Thanks to this observation and Remark 1 exactly the same
arguments as those in [9, proof of Theorem 5] can be used to prove the theorem.

We provide next a condition that simplifies (IPC)′.

Proposition 2 Assume that for some η > 0, r > 0, M � 0, and Γ ⊂ [0,∞),
with μ(Γ ) = 0, and for any t ∈ [0,∞)\Γ , y ∈ ∂A + ηB, and v ∈ F(t, y), with
supn∈N 1

y,η
〈n, v〉 > −r , there exists w ∈ F(t, y) ∩ B(v, M) satisfying supn∈N 1

y,η

〈n,w − v〉 � −r. Then, (IPC)′ holds true for all t ∈ [0,∞)\Γ .

Proof Indeed, otherwise there exist t ∈ [0,∞)\Γ , y ∈ ∂A + ηB, and v ∈ F(t, y),
with supn∈N 1

y,η
〈n, v〉 > −r , such that for any w ∈ F(t, y) ∩ B(v, M) satisfying

supn∈N 1
y,η

〈n,w − v〉 � −r we have supn∈N 1
y,η

〈n,w〉 > −r . Now, by our assump-
tions, there exists w1 ∈ F(t, y) ∩ B(v, M) such that supn∈N 1

y,η
〈n,w1 − v〉 � −r.

Since ad absurdum we supposed that supn∈N 1
y,η

〈n,w1〉 > −r , it follows that there
exists w2 ∈ F(t, y) ∩ B(v, M) satisfying supn∈N 1

y,η
〈n,w2 − w1〉 � −r . Then for any

n ∈ N 1
y,η,

〈n,w2 − v〉 = 〈n,w2 − w1〉 + 〈n,w1 − v〉 � −2r.

Iterating the same argument, we conclude that there exists a sequence {wi }i∈N+ in
F(t, y) ∩ B(v, M) such that supn∈N 1

y,η
〈n,wi − v〉 � −ir for all i ∈ N

+. This contra-
dicts the boundedness of F(t, y) ∩ B(v, M) and ends the proof.

Now, consider the following state constrained differential inclusion

{
x ′(t) ∈ F(t, x(t)) a.e. t ∈ [t0,∞)

x(t) ∈ A ∀ t ∈ [t0,∞),

where t0 � 0. A function x : [t0,∞) → R
n is said to be an F∞-tra jectory or a

feasible F∞-tra jectory if x |[t0,t1](·) is an F-trajectory or a feasible F-trajectory,
respectively, for all t1 > t0.
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Theorem 3 Assume that either (H), (AC), and (IPC) or (H)′ and (IPC)′ hold true.
Furthermore, suppose that

lim sup
t→∞

1

t

∫ t

0
ϕ(τ) dτ < ∞.

Then there exist C > 1, K > 0 such that for any t0 � 0, any x0, x1 ∈ A, and any
feasible F∞-trajectory x : [t0,∞) → R

n, with x(t0) = x0, we can find a feasible
F∞-trajectory x̃ : [t0,∞) → R

n, with x̃(t0) = x1, such that

|x̃(t) − x(t)| � CeKt |x1 − x0| ∀ t � t0.

Proof Let δ = 1 and β > 0 be as in Theorem 1 (or Theorem 2). Consider K1 >

0, K2 > 0, k̃ > 0 such that

2β + 1 < eK1 and
∫ t+1

0
ϕ(s) ds � K2t + k̃ ∀ t � 0. (20)

Fix x0, x1 ∈ A, with x1 �= x0, and a feasible F∞-trajectory x : [t0,∞) → R
n with

x(t0) = x0. By Filippov’s theorem, there exists an F-trajectory y0 : [t0, t0 + 1] →
R

n such that y0(t0) = x1 and

‖y0 − x‖∞,[t0,t0+1] � e
∫ t0+1
t0

ϕ(s) ds |x1 − x0|.

Denote by x0 : [t0, t0 + 1] → R
n the feasible F-trajectory, with x0(t0) = x1, satis-

fying the conclusions of Theorem 1 with x̂(·) = y0(·). Thus

‖x0 − y0‖∞,[t0,t0+1] � β(maxt∈[t0,t0+1] dA(y0(t)) + |x1 − x0|)
� β(‖y0 − x‖∞,[t0,t0+1] + |x1 − x0|) � 2βe

∫ t0+1
t0

ϕ(s) ds |x1 − x0|

and therefore

‖x0 − x‖∞,[t0,t0+1] � ‖x0 − y0‖∞,[t0,t0+1] + ‖y0 − x‖∞,[t0,t0+1]
� (2β + 1)e

∫ t0+1
t0

ϕ(s) ds |x1 − x0|. (21)

Now, applying again Filippov’s theorem on [t0 + 1, t0 + 2], there exists an F-
trajectory y1 : [t0 + 1, t0 + 2] → R

n , with y1(t0 + 1) = x0(t0 + 1), such that, thanks
to (21),

‖y1 − x‖∞,[t0+1,t0+2] � (2β + 1)e
∫ t0+2
t0

ϕ(s) ds |x1 − x0|. (22)

Denoting by x1 : [t0 + 1, t0 + 2] → R
n the feasible F-trajectory, with x1(t0 + 1) =

x0(t0 + 1), satisfying the conclusions of Theorem 1, for x̂(·) = y1(·), we deduce
from (22), that
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‖x1 − y1‖∞,[t0+1,t0+2] � β(2β + 1)e
∫ t0+2
t0

ϕ(s) ds |x1 − x0|. (23)

Hence, taking note of (22) and (23),

‖x1 − x‖∞,[t0+1,t0+2] � (2β + 1)2e
∫ t0+2
t0

ϕ(s) ds |x1 − x0|.

Continuing this construction, we obtain a sequence of feasible F-trajectories
xi : [t0 + i, t0 + i + 1] → R

n such that x j (t0 + j) = x j−1(t0 + j) for all j � 1, and

‖xi − x‖∞,[t0+i,t0+i+1] � (2β + 1)i+1e
∫ t0+i+1
t0

ϕ(s) ds |x1 − x0| ∀ i ∈ N. (24)

Define the feasible F∞-trajectory x̃ : [t0,∞) → R
n by x̃(t) := xi (t) if t ∈ [t0 +

i, t0 + i + 1] and observe that x̃(t0) = x1.
Let t � t0. Then there exists i ∈ N such that t ∈ [t0 + i, t0 + i + 1]. So, from (24)

and (20), it follows that

|x̃(t) − x(t)| � (2β + 1)i+1e
∫ t0+i+1
t0

ϕ(s) ds |x1 − x0|
� ek̃(2β + 1)e(K1+K2)(t0+i)|x1 − x0| � CeKt |x1 − x0|,

where K = K1 + K2 and C = ek̃(2β + 1).

4 Uniform IPC for Functional Set Constraints

Consider the state constraints of the form

A =
m⋂
i=1

Ai , Ai = {x ∈ R
n : gi (x) � 0} i = 1, . . . ,m,

where gi : Rn → R is a C1,1 function with bounded ∇gi (·) for all i ∈ I := {1, . . . ,
m}. Furthermore, we assume in this section that there exist M � 0 and ϕ > 0 such
that sup{|v| : v ∈ F(t, x), (t, x) ∈ [0,∞) × ∂A} � M and F(t, ·) is ϕ-Lipschitz
continuous for any t � 0.

Proposition 3 Assume that for some δ > 0, r > 0 and for all (t, x) ∈ [0,∞) × ∂A
there exists v ∈ co F(t, x) satisfying

〈∇gi (x), v〉 � −r ∀ i ∈
⋃

z∈B(x,δ)

I (z),

where I (z) = {i ∈ I : z ∈ ∂Ai }. Then (IPC) holds true.
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Proof Let us set J (x) := ⋃
z∈B(x,δ) I (z) for all x ∈ ∂A. Fix (t, x) ∈ [0,∞) × ∂A

and v ∈ co F(t, x) satisfying 〈∇gi (x), v〉 � −r for all i ∈ J (x). Pick

k > max
i∈I sup

x �=y

|∇gi (x) − ∇gi (y)|
|x − y| & L > max

i∈I sup
x∈Rn

|∇gi (x)|.

We divide the proof into three steps.
Step 1: We claim that there exists η′ > 0, not depending on (t, x), such that for

all y ∈ B(x, η′) we can find w ∈ co F(t, y), with |w − v| � r/4L , satisfying for all
i ∈ J (x),

〈∇gi (y),w〉 � −r/2.

Indeed, for all i ∈ J (x) and y ∈ B(x, r/4kM) we have

〈∇gi (y), v〉 = 〈∇gi (y) − ∇gi (x), v〉 + 〈∇gi (x), v〉 � kM |y − x | − r � −3r

4

and for all w ∈ R
n such that |w − v| � r/4L

〈∇gi (y),w〉 = 〈∇gi (y),w − v〉 + 〈∇gi (y), v〉 � L|w − v| − 3r/4 � − r

2
.

Since F(t, ·) is ϕ-Lipschitz continuous, there exists w ∈ co F(t, y) such that |w −
v| � r/4L whenever |y − x | � r/4ϕL . So the claim follows with η′ = min{r/4ϕL ,

r/4kM}.
Step 2: We claim that there exists ε′ > 0, not depending on (t, x), such that for

all y ∈ B(x, η′) we can find w ∈ co F(t, y) such that

〈∇gi (z), w̃〉 � −r/4 ∀ z ∈ B(y, ε′), ∀ w̃ ∈ B(w, ε′), ∀ i ∈ J (x).

Indeed, let y ∈ B(x, η′) and w ∈ co F(t, y) be as in Step 1. Then for any w̃ ∈ R
n

such that |w̃ − w| � r/8L and for all i ∈ J (x) and z ∈ R
n ,

〈∇gi (z), w̃〉 = 〈∇gi (z) − ∇gi (y), w̃〉 + 〈∇gi (y), w̃ − w〉 + 〈∇gi (y),w〉
� k(M + r/4L + r/8L)|z − y| + r/8 − r/2.

So the claim follows with ε′ = min{k−1(M + r/2L)−1r/8, r/8L}.
Step 3: We prove that there exist η > 0, ε > 0, not depending on (t, x), such that

for all y ∈ B(x, η) ∩ A we can find w ∈ co F(t, y) satisfying

z + τ w̃ ∈ A ∀ z ∈ B(y, ε) ∩ A, ∀ w̃ ∈ B(w, ε), ∀ 0 � τ � ε. (25)

Let y ∈ B(x, η′) ∩ A and w ∈ co F(t, y) be as in Step 2. Then, by the mean value
theorem, for any τ � 0, any z ∈ B(y, ε′) ∩ A, any w̃ ∈ B(w, ε′), and any i ∈ J (x)
there exists στ ∈ [0, 1] such that
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gi (z + τ w̃) = gi (z) + τ 〈∇gi (z + στ τ w̃), w̃〉
� τ 〈∇gi (z), w̃〉 + k(M + r/4L + ε′)2τ 2

� − rτ
4 + k(M + r/4L + ε′)2τ 2.

Choosing η ∈ (0, η′] and ε ∈ (0, ε′] such that η + ε(M + r/4L + ε) � δ and ε �
k−1(M + r/4L + ε′)−2r/4, it follows that for all z ∈ B(y, ε) ∩ A, w̃ ∈ B(w, ε), and
all 0 � τ � ε

z + τ w̃ ∈ B(x, δ) (26)

and
gi (z + τ w̃) � 0 ∀ i ∈ J (x). (27)

Furthermore, by (26) and since B(x, δ) ⊂ A j for all j ∈ I\J (x), we have for all
z ∈ B(y, ε) ∩ A, w̃ ∈ B(w, ε), and all 0 � τ � ε

gi (z + τ w̃) � 0 ∀ i ∈ I\J (x). (28)

The conclusion follows from (27) and (28).

5 Lipschitz Continuity for a Class of Value Functions

Now we give an application of the results of Sect. 3 to the Lipschitz regularity of
the value function for a class of infinite horizon optimal control problems subject to
state constraints.

Let us consider the problemB∞ stated in the Introduction. Recall that for a func-
tion q ∈ L1

loc([t0,∞);R) the integral
∫ ∞
t0

q(t) dt := limT→∞
∫ T
t0
q(t) dt , provided

this limit exists. We denote by (h) the following assumptions on f and l:

(i) there exists α > 0 such that f and l are bounded functions on

{(t, x, u) : t � 0, x ∈ (∂A + αB), u ∈ U (t)};

(ii) for all (t, x) ∈ [0,∞) × R
n the set

{( f (t, x, u), l(t, x, u)) : u ∈ U (t)}

is closed;
(iii) there exist c ∈ L1

loc([0,∞);R+) and k ∈ Lloc such that for a.e. t ∈ R
+ and for

all x, y ∈ R
n , u ∈ U (t),

| f (t, x, u) − f (t, y, u)| + |l(t, x, u) − l(t, y, u)| � k(t)|x − y|,
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| f (t, x, u)| + |l(t, x, u)| � c(t)(1 + |x |);

(iv) lim supt→∞
1
t

∫ t
0 (c(s) + k(s)) ds < ∞;

(v) for all x ∈ R
n themappings f (·, x, ·), l(·, x, ·) areLebesgue-Borelmeasurable.

Furthermore, we denote by (h)′ the assumptions (h) with (h)-(i) replaced by:

(h)′ (i) ∃ q ∈ Lloc such that for a.e. t ∈ [0,∞)

supu∈U (t)(| f (t, x, u)| + |l(t, x, u)|) � q(t), ∀ x ∈ ∂A.

In what follows G : [0,∞) × R
n → R

n+1 is the measurable with respect to t set-
valued map defined by

G(t, x) = {( f (t, x, u), l(t, x, u)) : u ∈ U (t)}.

For control systems, the conditions (IPC), (AC), and (IPC)′ take the following form:

(ipc) for some ε > 0, η > 0 and every (t, x) ∈ [0,∞) × (∂A + ηB) ∩ A there
exist {αi }ni=0 ⊂ [0, 1], with ∑n

i=0 αi = 1, and {ui }ni=0 ⊂ U (t) satisfying

{
y + [0, ε]

(
n∑

i=0

αi f (t, x, ui ) + εB

)
: y ∈ (x + εB) ∩ A

}
⊂ A;

(ac) there exist η̃ > 0 and γ ∈ Lloc such that G(·, x) is γ -left absolutely continu-
ous, uniformly for x ∈ ∂A + η̃B;

(ipc)′ there exist η > 0, r > 0, M � 0 such that for a.e. t ∈ [0,∞), any y ∈
∂A + ηB, and any u ∈ U (t), with supn∈N 1

y,η
〈n, f (t, y, u)〉 � 0, there exists

w ∈ {w′ ∈ U (t) : | f (t, y,w′) − f (t, y, u)| � M} such that

sup
n∈N 1

y,η

〈n, f (t, y,w)〉, 〈n, f (t, y,w) − f (t, y, u)〉} � −r.

Remark 2 If there exist η̃ > 0, γ, γ̃ ∈ Lloc, and k � 0 such that ( f (·, x, u),

l(·, x, u)) is γ -left absolutely continuous, uniformly for (x, u) ∈ (∂A + η̃B) × R
m ,

U (·) is γ̃ -left absolutely continuous, and f (t, x, ·) is k-Lipschitz continuous for all
(t, x) ∈ [0,∞) × (∂A + η̃B), then (ac) holds true.

Theorem 4 Assume that either (h), (ac), and (ipc) or (h)′ and (ipc)′ hold true.
Then there exist b > 1, K > 0 such that for all λ > K and every t � 0 the function
V (t, ·) is L(t)-Lipschitz continuous on A with L(t) = be−(λ−K )t . Furthermore, for
all λ > K and for every feasible trajectory x(·), we have limt→∞ V (t, x(t)) = 0.

Proof We notice that, by the inward pointing conditions (ipc) or (ipc)′ and the
viability theorem from [10], the problemB∞ admits feasible trajectory-control pairs
for any initial condition. Pick (t0, x0) ∈ [0,∞) × A. Using the sub-linear growth
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of f , l, and the Gronwall lemma, we have 1 + |x(t)| � (1 + |x0)|e
∫ t
t0
c(s) ds for all

t � t0 and for any trajectory-control pair (x(·), u(·)) at (t0, x0).
Let a1 > 0, a2 > 0 be such that

∫ t

0
c(s) ds � a1t + a2 ∀t � 0. (29)

For all T > t0, we have

∫ T
t0
e−λt |l(t, x(t), u(t))| dt �

∫ T
t0
e−λt c(t)(1 + |x0|)e

∫ t
t0
c(s) ds dt

� (1 + |x0|)ea2
∫ T
t0
e−(λ−a1)t c(t) dt.

(30)

Then, by (29) and denoting ψ(t) = ∫ t
t0
c(s) ds, for any λ > a1

∫ T
t0
e−λt |l(t, x(t), u(t))| dt

� (1 + |x0|)|ea2
([
e−(λ−a1)tψ(t)

]T
t0

+ (λ − a1)
∫ T
t0
e−(λ−a1)tψ(t) dt

)

� (1 + |x0|)ea2
(
e−(λ−a1)T (a1T + a2) +

(
a1t0 + a1

λ−a1
+ a2

)
e−(λ−a1)t0

) (31)

Passing to the limit when T → ∞, we deduce that for every feasible trajectory-
control pair (x(·), u(·)) at (t0, x0)

∫ ∞

t0

e−λt |l(t, x(t), u(t))| dt < +∞ ∀λ > a1.

From now on, assume that λ > a1. Fix t � 0 and x1, x0 ∈ A with x1 �= x0. Then,
for any δ > 0 there exists a feasible trajectory-control pair (xδ(·), uδ(·)) at (t, x0)
such that

V (t, x0) + e−δt |x1 − x0| >

∫ ∞

t
e−λsl(s, xδ(s), uδ(s)) ds.

Hence

V (t, x1) − V (t, x0) � e−δt |x1 − x0|+
limτ→∞

∣∣∫ τ

t e−λsl(s, x(s), u(s)) ds − ∫ τ

t e−λsl(s, xδ(s), uδ(s)) ds
∣∣ (32)

for any feasible trajectory-control pair (x(·), u(·)) satisfying x(t) = x1.
Define G̃(t, x, z) = G(t, x) for all (t, x, z) ∈ [0,∞) × R

n × R and consider the
following state constrained differential inclusion in R

n+1

{
(x, z)′(s) ∈ G̃(s, x(s), z(s)) a.e. s ∈ [t,∞)

x(s) ∈ A ∀ s ∈ [t,∞).
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Putting zδ(s) = ∫ s
t l(ξ, xδ(ξ), uδ(ξ)) dξ , by Theorem 3 applied on A × R and the

measurable selection theorem, there exist C > 1, K > 0 such that for all δ > 0
we can find a G̃∞-trajectory (x̃δ(·), z̃δ(·)) on [t,∞), and a measurable selection
ũδ(s) ∈ U (s) a.e. s � t , satisfying

(x̃δ, z̃δ)
′(s) = ( f (s, x̃δ(s), ũδ(s)), l(s, x̃δ(s), ũδ(s))) a.e. s � t,

(x̃δ(t), z̃δ(t)) = (x1, 0), x̃δ([t,∞)) ⊂ A, and for any s � t

|x̃δ(s) − xδ(s)| + |z̃δ(s) − zδ(s)| � CeKs |x1 − x0|. (33)

Now, relabelling by K the constant K ∨ a1, by (33) and integrating by parts, for all
λ > K , all τ � t , and all δ > 0

∣∣∫ τ

t e−λsl(s, x̃δ(s), ũδ(s)) ds − ∫ τ

t e−λsl(s, xδ(s), uδ(s)) ds
∣∣

�
∣∣[e−λs

(∫ s
t l(ξ, x̃δ(ξ), ũδ(ξ)) dξ − ∫ s

t l(ξ, xδ(ξ), uδ(ξ)) dξ
)]τ

t

∣∣
+λ

∣∣∫ τ

t e−λs
(∫ s

t l(ξ, x̃δ(ξ), ũδ(ξ)) dξ − ∫ s
t l(ξ, xδ(ξ), uδ(ξ)) dξ

)
ds

∣∣
� e−λτ |z̃δ(τ ) − zδ(τ )| + λ

∫ τ

t e−λs |z̃δ(s) − zδ(s)|ds
� Ce−λτ eK τ |x1 − x0| + λC

∫ τ

t e−(λ−K )s |x1 − x0| ds
=

(
Ce−(λ−K )τ + λC

[
− e−(λ−K )s

λ−K

]τ

t

)
|x1 − x0|

= (− CK
λ−K e

−(λ−K )τ + λC
λ−K e

−(λ−K )t
) |x1 − x0| � λC

λ−K e
−(λ−K )t |x1 − x0|.

(34)

Taking note of (32), (34), and putting δ = λ − K , we get

V (t, x1) − V (t, x0) �
(

λC

λ − K
+ 1

)
e−(λ−K )t |x1 − x0|.

By the symmetry of the previous inequality with respect to x1 and x0, and since λ,
C , and K do not depend on t , x1, and x0, the first conclusion follows.

Now, let (t0, x0) ∈ [0,∞) × A and consider a feasible trajectory X (·) at (t0, x0).
Let t > t0 and (x(·), u(·)) be a feasible trajectory-control pair at (t, X (t)) such that
V (t, X (t)) >

∫ ∞
t e−λsl(s, x(s), u(s)) ds − 1

t . Then

|V (t, X (t))| �
∫ ∞

t
e−λs |l(s, x(s), u(s))| ds + 1

t
.

From (29) and (30), we have for all T > t

∫ T
t e−λs |l(s, x(s), u(s))| ds �

∫ T
t e−λs(1 + |X (t)|)e∫ s

t c(s ′) ds ′
c(s) ds.

� (1 + |x0|)
∫ T
t e−λse

∫ t
t0
c(s ′) ds ′

e
∫ s
t c(s ′) ds ′

c(s) ds
� (1 + |x0|)

∫ T
t e−λse

∫ s
0 c(s ′) ds ′

c(s) ds � (1 + |x0|)ea2
∫ T
t e−(λ−a1)sc(s) ds.
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Then, arguing as in (31) with t0 replaced by t and taking the limit when T → ∞, we
deduce that

|V (t, X (t))| � (1 + |x0|)ea2
(
a1t + a1

λ − a1
+ a2

)
e−(λ−a1)t + 1

t
.

Since K � a1, the last conclusion follows passing to the limit when t → ∞.

Corollary 1 Assume that either (h), (ac), and (ipc) or (h)′ and (ipc)′ hold true and
that f, l are bounded. Consider any N > 0 with

N ≥ sup{| f (t, x, u)| + |l(t, x, u)| : t � 0, x ∈ R
n, u ∈ U (t)}.

Then, for any λ > 0 sufficiently large, for any x ∈ A, and any t � 0 the function
V (·, x) is Lipschitz continuous on [t,∞) with constant

(
L(t) + 2e−λt

)
N.

Proof By Theorem 4, when λ > 0 is large enough, V (t, ·) is L(t)-Lipschitz contin-
uous on A. Fix x ∈ A and t � 0. Let s, s̃ ∈ [t,∞).

Suppose that s � s̃. Then, by the dynamic programming principle, there exists a
feasible trajectory-control pair (x̄(·), ū(·)) at (s̃, x) such that

V (s, x) − V (s̃, x) � |V (s, x) − V (s, x̄(s))| + ∫ s
s̃ e−λξ |l(ξ, x̄(ξ), ū(ξ))| dξ

+N |s − s̃|e−λt

� L(s)N |s − s̃| + N |s − s̃|e−λs̃ + N |s − s̃|e−λt

�
(
L(t) + 2e−λt

)
N |s − s̃|.

(35)

Arguing in a similar way, we get (35) when s < s̃. Hence, by the symmetry with
respect to s and s̃ in (35), the conclusion follows.

6 Applications to the Relaxation Problem

Let f (·), l(·), and U (·) be as in B∞. Consider the relaxed infinite horizon state
constrained problem Brel∞ :

Ṽ (t0, x0) = inf
∫ ∞

t0

e−λt l̃(t, x(t),w(t)) dt,

where the infimum is taken over all trajectory-control pairs (x(·),w(·)) subject to
the state constrained control system
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⎧⎪⎪⎨
⎪⎪⎩

x ′(t) = f̃ (t, x(t),w(t)) a.e. t ∈ [t0,∞)

x(t0) = x0
w(t) ∈ W (t) a.e. t ∈ [t0,∞)

x(t) ∈ A ∀ t ∈ [t0,∞),

where λ > 0, W : [0,∞) ⇒ R
(n+1)m × R

n+1 is the measurable set-valued map
defined by

W (t) := (×n
i=0U (t)) × {(α0, . . . , αn) ∈ R

n+1 :
n∑

i=0

αi = 1, αi � 0 ∀ i},

and the functions f̃ : [0,∞) × R
n × R

(n+1)m × R
n+1 → R

n and l̃ : [0,∞) × R
n ×

R
(n+1)m × R

n+1 → R are defined by: for all t � 0, x ∈ R
n , and w = (u0, . . . , un,

α0, . . . , αn) ∈ R
(n+1)m × R

n+1

f̃ (t, x,w) =
n∑

i=0

αi f (t, x, ui ) & l̃(t, x,w) =
n∑

i=0

αi l(t, x, ui ).

Theorem 5 Assume that either (h), (ac), and (ipc) or (h)′ and (ipc)′ hold true. Then,
for all large λ > 0, Ṽ (·, ·) = V (·, ·) on [0,∞) × A.

Proof Notice that Ṽ (t, x) � V (t, x) for any (t, x) ∈ [0,∞) × A, and that
Theorem 4 implies that Ṽ (t, ·) and V (t, ·) are Lipschitz continuous on A for all
t � 0 whenever λ > 0 is sufficiently large. That is, in particular, they are continuous
and finite.

Fix (t0, x0) ∈ [0,∞) × A and ε > 0.We claim that: for every j ∈ N
+ there exists

a finite set of trajectory-control pairs {(xk(·), uk(·))}k=1,..., j satisfying the following:
x ′
k(s) = f (s, xk(s), uk(s)) a.e. s ∈ [t0, t0 + k] and xk([t0, t0 + k]) ⊂ A for all k =
1, . . . , j ; if j � 2, xk |[t0,t0+k−1](·) = xk−1(·) for all k = 2, . . . , j ; and for any k =
1, . . . , j

Ṽ (t0, x0) � Ṽ (t0 + k, xk(t0 + k)) +
∫ t0+k

t0

e−λt l(t, xk(t), uk(t)) dt − ε

k∑
i=1

1

2i
.

(36)
Weprove the claimby the induction argumentwith respect to j ∈ N

+. By the dynamic
programming principle, there exists a trajectory-control pair (x̃(·), w̃(·)) on [t0, t0 +
1], feasible for the problem Brel∞ at (t0, x0), such that

Ṽ (t0, x0) + ε

4
> Ṽ (t0 + 1, x̃(t0 + 1)) +

∫ t0+1

t0

e−λt l̃(t, x̃(t), w̃(t)) dt. (37)

By the relaxation theorem for finite horizon problems (cfr. [14]), for any h > 0 there
exists a measurable control ûh(t) ∈ U (t) a.e. t ∈ [t0, t0 + 1] such that the solution
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of the equation (x̂ h)′(t) = f (t, x̂ h(t), ûh(t)) a.e. t ∈ [t0, t0 + 1], with x̂ h(t0) = x0,
satisfies

‖x̂ h − x̃‖∞,[t0,t0+1] < h

and

∣∣∣∣
∫ t0+1

t0

e−λt l̃(t, x̃(t), w̃(t)) dt −
∫ t0+1

t0

e−λt l(t, x̂ h(t), ûh(t)) dt

∣∣∣∣ < h.

Now, consider the following state constrained differential inclusion in Rn+1

{
(x, z)′(s) ∈ G̃(s, x(s), z(s)) a.e. s ∈ [t0, t0 + 1]
x(s) ∈ A ∀ s ∈ [t0, t0 + 1],

where
G̃(t, x, z) = {( f (t, x, u), e−λt l(t, x, u)) : u ∈ U (t)}.

Letting X̂ h(·) = (x̂ h(·), ẑh(·)), with ẑh(t) = ∫ t
t0
e−λsl(s, x̂ h(s), ûh(s)) ds, by Theo-

rem 1, or Theorem 2, and the measurable selection theorem, there exists β > 0 (not
depending on (t0, x0)) such that for any h > 0 we can find a feasible G̃-trajectory
Xh(·) = (xh(·), zh(·)) on [t0, t0 + 1], with Xh(t0) = (x0, 0), and a measurable con-
trol uh(s) ∈ U (s) a.e. s ∈ [t0, t0 + 1], such that

(xh, zh)′(s) = ( f (s, xh(s), uh(s)), e−λsl(s, xh(s), uh(s))) a.e. s ∈ [t0, t0 + 1]

and
‖Xh − X̂ h‖∞,[t0,t0+1] � β( sup

s∈[t0,t0+1]
dA×R(X̂ h(s)) + h).

Since sups∈[t0,t0+1] dA×R(X̂ h(s)) � ‖x̃ − x̂ h‖∞,[t0,t0+1], we have

∣∣∣∫ t0+1
t0

e−λt l(t, xh(t), uh(t)) dt − ∫ t0+1
t0

e−λt l̃(t, x̃(t), w̃(t)) dt
∣∣∣

�
∣∣∣∫ t0+1

t0
e−λt l̃(t, x̃(t), w̃(t)) dt − ∫ t0+1

t0
e−λt l(t, x̂ h(t), ûh(t)) dt

∣∣∣
+

∣∣∣∫ t0+1
t0

e−λt l(t, xh(t), uh(t)) dt − ∫ t0+1
t0

e−λt l(t, x̂ h(t), ûh(t)) dt
∣∣∣

< h(2β + 1)

and

‖xh − x̃‖∞,[t0,t0+1] � ‖x̃ − x̂ h‖∞,[t0,t0+1] + ‖xh − x̂ h‖∞,[t0,t0+1] < h(2β + 1).

Hence, choosing 0 < h < ε/4(2β + 1) sufficiently small, we can find a trajectory-
control pair (xh(·), uh(·)) on [t0, t0 + 1]with xh([t0, t0 + 1]) ⊂ A, uh(s) ∈ U (s) and
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(xh)′(s) = f (s, xh(s), uh(s)) a.e. s ∈ [t0, t0 + 1], xh(t0) = x0 such that, by (37) and
continuity of Ṽ (t0 + 1, ·)

Ṽ (t0, x0) > Ṽ (t0 + 1, xh(t0 + 1)) +
∫ t0+1

t0

e−λt l(t, xh(t), uh(t)) dt − ε

2
.

Letting (x1(·), u1(·)) := (xh(·), uh(·)), the conclusion follows for j = 1.
Now, supposewehave shown that for some j ≥ 1 there exist {(xk(·), uk(·))}k=1,..., j

satisfying the claim. Let us to prove it for j + 1. By the dynamic programming
principle there exists a trajectory-control pair (x̃(·), w̃(·)) on [t0 + j, t0 + j + 1],
feasible for the problem Brel∞ at (t0 + j, x j (t0 + j)), such that

Ṽ (t0 + j, x j (t0 + j)) + ε
2 j+2 > Ṽ (t0 + j + 1, x̃(t0 + j + 1))

+ ∫ t0+ j+1
t0+ j e−λt l̃(t, x̃(t), w̃(t)) dt.

(38)

As before, for every h > 0 there exists a feasible G̃-trajectory Xh(·) = (xh(·), zh(·))
on [t0 + j, t0 + j + 1], with Xh(t0) = (x j (t0 + j), 0), and a measurable control
uh(s) ∈ U (s) a.e. s ∈ [t0 + j, t0 + j + 1], such that

(xh, zh)′(s) = ( f (s, xh(s), uh(s)), e−λsl(s, xh(s), uh(s))) a.e. s ∈ [t0 + j, t0 + j + 1],

satisfying

∣∣∣∣
∫ t0+ j+1

t0+ j
e−λt l(t, xh(t), uh(t)) dt −

∫ t0+ j+1

t0+ j
e−λt l̃(t, x̃(t), w̃(t)) dt

∣∣∣∣ < h(2β + 1)

and
‖xh − x̃‖∞,[t0+ j,t0+ j+1] < h(2β + 1).

Putting

(x j+1(·), u j+1(·)) :=
{

(x j (·), u j (·)) on [t0, t0 + j]
(xh(·), uh(·)) on [t0 + j, t0 + j + 1], (39)

and choosing 0 < h < ε/2 j+2(2β + 1) sufficiently small, it follows from (38) that

Ṽ (t0 + j, x j (t0 + j)) � Ṽ (t0 + j + 1, x j+1(t0 + j + 1))
+ ∫ t0+ j+1

t0+ j e−λt l(t, x j+1(t), u j+1(t)) dt − 2ε
2 j+2 .

(40)

So, taking note of (39) and (40), we obtain
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Ṽ (t0, x0) � Ṽ (t0 + j, x j (t0 + j)) + ∫ t0+ j
t0

e−λt l(t, x j (t), u j (t)) dt − ε
∑ j

i=1
1
2i

� Ṽ (t0 + j + 1, x j+1(t0 + j + 1)) − ε
∑ j

i=1
1
2i − ε

2 j+1

+ ∫ t0+ j+1
t0+ j e−λt l(t, x j+1(t), u j+1(t)) dt + ∫ t0+ j

t0
e−λt l(t, x j (t), u j (t)) dt

= Ṽ (t0 + j + 1, x j+1(t0 + j + 1)) + ∫ t0+ j+1
t0

e−λt l(t, x j+1(t), u j+1(t)) dt

−ε
∑ j+1

i=1
1
2i .

Hence {(xk(·), uk(·))}k=1,..., j+1 also satisfy our claim.Now, let us define the trajectory-
control pair (x(·), u(·)) by (x(t), u(t)) := (xk(t), uk(t)) if t ∈ [t0 + k − 1, t0 + k].
Then (x(·), u(·)) is a feasible trajectory-control pair for the problemB∞ at (t0, x0).
Since Ṽ (t, x(t)) → 0 when t → +∞, by (36), we have

Ṽ (t0, x0) �
∫ ∞
t0

e−λt l(t, x(t), u(t)) dt − ε.

Hence, we deduce that Ṽ (t0, x0) � V (t0, x0) − ε. Since ε is arbitrary, the conclusion
follows.

Remark 3 The authors thank the referee for attracting their attention to [11], where
relaxation of differential inclusions over infinite horizonwas investigated. The frame-
work there is substantially different from ours, because in the relaxation result of [11]
on one hand small variations of the initial state are permitted, on the other hand no
state constraints are involved in the setting of [11].

Acknowledgements The second authorwaspartially supportedby theAir ForceOfficeofScientific
Research under award number FA9550-18-1-0254.
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Herglotz’ Generalized Variational
Principle and Contact Type
Hamilton-Jacobi Equations

Piermarco Cannarsa, Wei Cheng, Kaizhi Wang and Jun Yan

Abstract We develop an approach for the analysis of fundamental solutions to
Hamilton-Jacobi equations of contact type based on a generalized variational prin-
ciple proposed by Gustav Herglotz. We also give a quantitative Lipschitz estimate
on the associated minimizers.

Keywords Hamilton-Jacobi equations · Contact transformations · Herglotz
variational principle

1 Introduction

The so called generalized variational principle was proposed by Gustav Herglotz
in 1930 (see [31, 32]). It generalizes classical variational principle by defining the
functional, whose extrema are sought, by a differential equation. More precisely, the
functional u is defined in an implicit way by an ordinary differential equation

u̇(s) = F(s, ξ(s), ξ̇ (s), u(s)), s ∈ [0, t], (1)
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with u(t) = u0 ∈ R, for t > 0, a function F ∈ C2(R × R
n × R

n × R, R) and a
piecewise C1 curve ξ : [0, t] → R

n . Here, u = u[ξ, s] can be regarded as a func-
tional, on a space of paths ξ(·). The generalized variational principle of Herglotz is
as follows:

Let the functional u = u[ξ, t]be defined by (1)with ξ in the space of piecewiseC1

functions on [0, t]. Then the value of the functional u[ξ, t] is an extremal for the func-
tion ξ such that the variation d

dε
u[ξ + εη, t] = 0 for arbitrary piecewiseC1 functionη

such that η(0) = η(t) = 0.

Herglotz reached the idea of the generalized variational principle through his
work on contact transformations and their connectionswithHamiltonian systems and
Poisson brackets. His work was motivated by ideas from S. Lie, C. Carathéodory and
other researchers. An important reference on the generalized variational principle is
the monograph [30]. The variational principle of Herglotz is important for many
reasons:

– The solutions of the Eq. (1) determine a family of contact transformations, see
[11, 21, 28, 30];

– The generalized variational principle gives a variational description of energy-
nonconservative processes even when F in (1) is independent of t .

– If F has the form F = −λu + L(x, v), then the relevant problems are closely con-
nected to the Hamilton-Jacobi equations with discount factors (see, for instance,
[9, 18, 19, 29, 34–37]). As an extension to nonlinear discounted problems, various
examples are discussed in [14, 43].

– Even for a energy-nonconservative process which can be described with the gen-
eralized variational principle, one can systematically derive conserved quantities
as Noether’s theorems such as [26, 27];

– The generalized variational principle provides a link between the mathematical
structure of control and optimal control theories and contact transformation (see
[25]);

– There are some interesting connections between contact transformations and equi-
librium thermodynamics (see, for instance, [39]).

In this note, we will clarify more connections between the generalized variational
principle of Herglotz and Hamilton-Jacobi theory motivated by recent works in [41,
42] under a set of Tonelli-like conditions. We will begin with generalized variational
principle of Herglotz in the frame of Lagrangian formalism different from the meth-
ods used in [41, 42]. Throughout this paper, let L : R

n × R × R
n be a function of

class C2 such that the following standing assumptions are satisfied:

(L1) L(x, r, ·) > 0 is strictly convex for all (x, r) ∈ R
n × R.

(L2) There exist two superlinear nondecreasing function θ0, θ0 : [0,+∞) →
[0,+∞), θ0(0) = 0 and c0 > 0, such that

θ0(|v|) � L(x, 0, v) � θ0(|v|) − c0, (x, v) ∈ R
n × R

n.
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(L3) There exists K > 0 such that

|Lr (x, r, v)| � K , (x, r, v) ∈ R
n × R × R

n .

Remark 1 For each r ∈ R, from the conditions (L2) and (L3) we could take

θ r := θ0 + K |r |, θr := θ0, cr := c0 + K |r |,

such that
θ r (|v|) � L(x, r, v) � θr (|v|) − cr , (x, v) ∈ R

n × R
n. (2)

Obviously, θ r and θr are both nonnegative, superlinear and nondecreasing functions,
cr > 0.

It is natural to introduce the associated Hamiltonian

H(x, r, p) = sup
v∈Rn

{〈p, v〉 − L(x, r, v)}, (x, r, p) ∈ R
n × R × (Rn)∗.

Let x, y ∈ R
n , t > 0 and u0 ∈ R. Set

Γ t
x,y = {ξ ∈ W 1,1([0, t], R

n) : ξ(0) = x, ξ(t) = y}.

We consider a variational problem

Minimize u0 + inf
∫ t

0
L(ξ(s), uξ (s), ξ̇ (s)) ds, (3)

where the infimum is taken over all ξ ∈ Γ t
x,y such that the Carathéodory equation

u̇ξ (s) = L(ξ(s), uξ (s), ξ̇ (s)), a.e. s ∈ [0, t], (4)

admits an absolutely continuous solution uξ with initial condition uξ (0) = u0. It
is already known that the variational problem (3) with subsidiary conditions (4) is
closely connected to the Hamilton-Jacobi equations in the form

H(x, u(x), Du(x)) = c. (5)

The readers can refer to [28] for a systematic approach of Hamilton-Jacobi equations
in the form (5) especially in the context of contact geometry.

In [41, 42], a weak KAM type theory on Eq. (5) was developed on compact man-
ifolds under the aforementioned Tonelli-like conditions. Problem (3) is understood
as an implicit variational principle [41] and, by introducing the positive and negative
Lax-Oleinik semi-groups, an existence result for weak KAM type solutions of (5)
was obtained provided c in the right side of Eq. (5) belongs to the set of critical values
[42]. The same approach adapts to the evolutionary equations in the form
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Dtu + H(x, u, Dxu) = 0. (6)

Unlike the methods used in [41, 42], in this note, our approach of the Eqs. (5)
and (6) is based on the the variational problem (3) under subsidiary conditions (4).
We give all the details of such a Tonelli-like theory and its connection to viscosity
solutions of (5) and (6).

In view of Proposition 1 below, the infimum in (3) can be achieved. Suppose that
ξ ∈ Γ t

x,y is a minimizer for (3) where uξ is uniquely determined by (4) with initial
condition uξ (0) = u0. Then we call such ξ an extremal. Due to Proposition 1 below,
each extremal ξ and associated uξ are of class C2 and satisfy the Herglotz equation
(Generalized Euler-Lagrange equation by Herglotz)

d

ds
Lv(ξ(s), uξ (s), ξ̇ (s))

= Lx (ξ(s), uξ (s), ξ̇ (s)) + Lu(ξ(s), uξ (s), ξ̇ (s))Lv(ξ(s), uξ (s), ξ̇ (s)).
(7)

Moreover, let p(s) = Lv(ξ(s), uξ (s), ξ̇ (s)) be the so called dual arc. Then p is also
of class C2 and we conclude that (ξ, p, uξ ) satisfies the following Lie equation

⎧⎪⎨
⎪⎩

ξ̇ (s) = Hp(ξ(s), uξ (s), p(s));
ṗ(s) = −Hx (ξ(s), uξ (s), p(s)) − Hu(ξ(s), uξ (s), p(s))p(s);
u̇ξ (s) = p(s) · ξ̇ (s) − H(ξ(s), uξ (s), p(s)),

(8)

where the reader will recognize the classical system of characteristics for (5).
The paper is organized as follows: In Sect. 2, we afford a detailed and rigorous

treatment of (3) under subsidiary conditions (4). In Sect. 3, we study the regularity of
the minimizers and deduce the Herglotz equation (7) and Lie equation (8) as well. In
Sect. 4, we show that the two approaches between [41, 42] and ours are equivalent.
We also sketch the way to move Herglotz’ variational principle to manifolds.

2 Existence of Minimizers in Herglotz’ Variational
Principle

Fix x0, x ∈ R
n , t > 0 and u0 ∈ R. Let ξ ∈ Γ t

x0,x , we consider the Carathéodory equa-
tion {

u̇ξ (s) = L(ξ(s), uξ (s), ξ̇ (s)), a.e. s ∈ [0, t],
uξ (0) = u0.

(9)

We define the action functional

J (ξ) :=
∫ t

0
L(ξ(s), uξ (s), ξ̇ (s)) ds, (10)
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where ξ ∈ Γ t
x0,x and uξ is defined in (9) by Proposition 8 in Appendix. Notice that

Carathéodory’s theorem (Proposition 8) is just a local result, but the existence and
uniqueness of the solution of (9) holds on [0, t] since condition (L3) and that ξ ∈ A .
Our purpose is to minimize J (ξ) over

A = {ξ ∈ Γ t
x0,x : (9) admits an absolutely continuous solution uξ }.

Notice that A �= ∅ because it contains all piecewise C1 curves connecting x0 to x .
It is not hard to check that, for each a ∈ R,

A = A ′ := {ξ ∈ Γ t
x0,x : the function s 
→ L(ξ(s), a, ξ̇ (s))belongs to L1([0, t])}.

Indeed, If ξ ∈ A , then L(ξ(s), uξ (s), ξ̇ (s)) is integrable on [0, t] and uξ is bounded.
Thus ξ ∈ A ′ since

|L(ξ, 0, ξ̇ )| � |L(ξ, uξ , ξ̇ )| + K |uξ |.

On the other hand, if ξ ∈ A ′, then

u̇ξ � L(ξ, 0, ξ̇ ) + K |uξ |.

Therefore, ξ ∈ A .
For the following estimate, we define L0(x, v) := L(x, 0, v).

Lemma 1 Let x0, x ∈ R
n, t > 0, u0 ∈ R. Given ξ ∈ Γ t

x0,x such that (9) admits an
absolutely continuous solution, then we have that

|uξ (s)| � exp(Ks)(|u0| + c0s) (11)

if uξ (s) < 0. In particular, we have

uξ (s) � − exp(Ks)(|u0| + c0s), s ∈ [0, t]. (12)

Proof Let x0, x ∈ R
n , t > 0, u0 ∈ R and ξ ∈ A . Suppose that uξ (s0) < 0, s0 ∈

(0, t]. We define E = {s ∈ [0, s0) : uξ (s) � 0} and

a =
{
0 E = ∅,

sup E E �= ∅.

Then, we have that uξ (s) � 0 for all s ∈ [a, s0] and uξ (a) = 0 if E �= ∅. Now, we
are assuming that E �= ∅. For any s ∈ [a, s0] we have that



44 P. Cannarsa et al.

−|uξ (s)| = uξ (s) = uξ (a) +
∫ s

a
L(ξ(τ ), uξ (τ ), ξ̇ (τ )) dτ

� − |uξ (a)| +
∫ s

a
L0(ξ(τ ), ξ̇ (τ )) dτ − K

∫ s

a
|uξ (τ )| dτ dτ

� − |uξ (a)| +
∫ s

a
θ0(|ξ̇ (τ )|) dτ − c0(s − a) − K

∫ s

a
|uξ (τ )| dτ

� − |uξ (a)| − c0s − K
∫ s

a
|uξ (τ )| dτ.

Then, we have that

|uξ (s)| � (|u0| + c0s) + K
∫ s

a
|uξ (τ )| dτ, s ∈ [a, s0].

Then Gronwall inequality implies

|uξ (s)| � exp(K (s − a))(|u0| + c0s) � exp(Ks)(|u0| + c0s), s ∈ [a, s0].

If E = ∅, then a = 0 and the proof is the same. This leads to (11) and (12). �

In view to Lemma 1, we conclude that infξ∈A J (ξ) is bounded below. Now, for
any ε > 0, set

Aε = {ξ ∈ A : inf
η∈A

J (η) + ε � uξ (t) − u0}.

Lemma 2 Suppose x0 ∈ R
n, t, R > 0, u0 ∈ R and |x − x0| � R. Let ε > 0 and

ξ ∈ Aε. Then we have that

uξ (t) − u0 � t (κ(R/t) + K |u0|) exp(Kt) + ε,

with κ(r) = θ0(r) + 2c0. Moreover, there exist two nondecreasing and superlinear
functions F,G : [0,+∞) → [0,+∞) such that

|uξ (t)| � t F(R/t) + G(t)|u0| + ε, (13)

where F(r) = max{κ(r), c0 exp(Kr)} and G(r) = max{r K exp(Kr) + 1,
exp(Kr)}.
Proof Suppose x0 ∈ R

n , t, R > 0, u0 ∈ R and |x − x0| � R. Let ε > 0 and ξ ∈ Aε.
First, notice that

|L0(x, v)| � L0(x, v) + 2c0 � θ0(|v|) + 2c0, (x, v) ∈ R
n × R

n. (14)

Set κ(r) = θ0(r) + 2c0.
Define ξ0(s) = x0 + s(x − x0)/t for any s ∈ [0, t], then ξ0 ∈ A . Then, for any

s ∈ [0, t], we have that
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|uξ0(s) − u0| �
∫ s

0
|L0(ξ0, ξ̇0)| dτ + K

∫ s

0
|uξ0 | dτ

� tκ(R/t) + K
∫ s

0
|uξ0 − u0| dτ + t K |u0|.

Due to Gronwall inequality, we obtain

|uξ0(s) − u0| � t (κ(R/t) + K |u0|) exp(Kt), s ∈ [0, t]. (15)

Together with Lemma 1, this completes the proof. �

Lemma 3 Suppose x0 ∈ R
n, t, R > 0, u0 ∈ R and |x − x0| � R. Let ε > 0 and

ξ ∈ Aε. Then there exist two continuous functions F1, F2 : [0,+∞) × [0,+∞) →
[0,+∞) depending on R, with Fi (r1, ·) being nondecreasing and superlinear and
Fi (·, r2) being nondecreasing for any r1, r2 � 0, i = 1, 2, such that

|uξ (s)| � t F1(t, R/t) + C1(t)(ε + |u0|), s ∈ [0, t] (16)

and ∫ t

0
|L(ξ, uξ , ξ̇ )| dτ � t F2(t, R/t) + C2(t)(ε + |u0|), (17)

where Ci (t) > 0 for i = 1, 2.

Proof Suppose x0 ∈ R
n , t, R > 0, u0 ∈ R and |x − x0| � R. Let ε > 0 and ξ ∈ Aε.

If uξ (t) � 0, we define E+ = {s ∈ [0, t] : uξ (s) > uξ (t)}. If E+ = ∅, then we
have that uξ (s) � uξ (t) for all s ∈ [0, t]. Now, we suppose that E+ �= ∅. It is known
that E+ is the union of a countable family of open intervals {(ai , bi )} which are
mutually disjoint (It is possible that ai = 0 and this case can be dealt with separately
but similarly). For any τ ∈ E+, there exists an open interval (a, b), a component of
E+ containing s, such that uξ (τ ) > uξ (t) � 0 for all τ ∈ (a, b) and uξ (b) = uξ (t).
Therefore, for almost all s ∈ [a, b], we have that

u̇ξ (s) = L(ξ(s), uξ (s), ξ̇ (s)) � L0(ξ(s), ξ̇ (s)) − Kuξ (s).

Invoking condition (L2), it follows that, for all s ∈ [a, b],

eKbuξ (b) − eKsuξ (s) �
∫ b

s
eK τ L0(ξ(τ ), ξ̇ (τ )) dτ � −c0(b − s)eKb

Thus we obtain that

uξ (s) � c0(b − s)eK (b−s) + eK (b−s)uξ (t)

� c0te
K t + eKt [(tκ(R/t) + K |u0|)eKt + ε + |u0|]

= t F1(t, R/t) + G1(t)|u0| + ε,

s ∈ [0, t], (18)
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where F1(r1, r2) := eKr1(c0 + κ(r2)) and G1(r) = eKr (KeKr + 1).
If uξ (t) < 0, define vξ (s) = uξ (s) − uξ (t), then vξ (s) satisfies the Carathéodory

equation

v̇ξ (s) = L(ξ(s), vξ (s) + uξ (t), ξ̇ (s)), s ∈ [0, t]

with initial condition vξ (0) = u0 − uξ (t). Similarly, We define F+ = {s ∈ [0, t] :
vξ (s) > vξ (t)}. If F+ = ∅, then we have that vξ (s) � vξ (t) = 0 for all s ∈ [0, t].
Now, we suppose that F+ �= ∅ and F+ is the union of a countable family of open
intervals {(ci , di )} which are mutually disjoint. For any s ∈ F+, there exists an open
interval, say (c, d), such that vξ (s) > vξ (t) = 0 for all s ∈ (c, d) and vξ (d) = vξ (t).
Therefore, for almost all s ∈ [c, d], we have that

v̇ξ (s) � L0(ξ(s), ξ̇ (s)) − Kvξ (s) − K |uξ (t)|.

It follows that, for all s ∈ [c, d],

eKdvξ (d) − eKsvξ (s) �
∫ d

s
eK τ L0(ξ(s), ξ̇ (s)) dτ − Kt |uξ (t)|eKt

� − c0te
Kd − Kt |uξ (t)|eKt ,

and this gives rise to

vξ (s) � c0te
K (d−s) + K |uξ (t)|teK (t−s) + eK (d−s)vξ (d) � c0te

K t + Kt |uξ (t)|eKt ,

since vξ (d) = 0. It follows that, for all s ∈ [0, t],

uξ (s) � c0te
K t + KteKt |uξ (t)| + uξ (t) � c0te

K t + (KteKt + 1)|uξ (t)|
� c0te

K t + (KteKt + 1)(t F2(R/t) + G2(t)|u0| + ε)
(19)

with F2 and G2 determined by Lemma 2. By combining (27) and (29) and setting

F3(r1, r2) = max{F1(r1, r2), c0eKr1 + F2(r2)(Kr1eKr1 + 1)},
C1(r) = max{G1(r),G2(t)(Kr1eKr1 + 1)}, C2(r) = max{C1(r), eKrc0},

we conclude that

uξ (s) � t F3(t, R/t) + C1(t)(|u0| + ε), (20)

|uξ (s)| � t F3(t, R/t) + C2(t)(|u0| + ε). (21)

This leads to the proof of (16) together with Lemma 1.
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Now, by (14), Lemma 2 and (21), we have that

∫ s

0
|L0(ξ, ξ̇ )|dτ �

∫ s

0
(L0(ξ, ξ̇ ) + 2c0) dτ � 2c0s + uξ (s) − u0 + K

∫ s

0
|uξ | dτ

� 2c0t + t F2(t, R/t) + C2(t)(|u0| + ε) + |u0|
+ t2K F2(t, R/t) + t KC2(t)(|u0| + ε)

� t F4(t, R/t) + C3(t)(|u0| + ε).

Therefore, (17) follows from the estimate below

∫ t

0
|L(ξ, uξ , ξ̇ )| dτ �

∫ t

0
|L0(ξ, ξ̇ )| dτ + K

∫ t

0
|uξ | dτ

� t F4(t, R/t) + C3(t)(|u0| + ε) + t K (t F3(t, R/t) + C2(t)(|u0| + ε))

= t F5(t, R/t) + C4(t)(|u0| + ε).

We relabel the function Fi and this completes our proof. �
Lemma 4 Suppose x0 ∈ R

n, t, R > 0, u0 ∈ R and |x − x0| � R. Let ε ∈ (0, 1) and
ξ ∈ Aε. Then there exist a continuous function F = Fu0,R : [0,+∞) × [0,+∞) →
[0,+∞), F(r1, ·) is nondecreasing and superlinear and F(·, r2) is nondecreasing
for any r1, r2 � 0, such that

∫ t

0
|ξ̇ (s)| ds � t F(t, R/t) + ε.

Moreover, the family {ξ̇}ξ∈A ε
is equi-integrable.

Proof Let ε > 0 and ξ ∈ Aε. Then, by (L2) we obtain

uξ (t) − u0

=
∫ t

0
L(ξ(s), uξ (s), ξ̇ (s)) ds �

∫ t

0
{L(ξ(s), 0, ξ̇ (s)) − K |uξ (s)|} ds

�
∫ t

0
{θ0(|ξ̇ (s)|) − c0 − K |uξ (s)|} ds

�
∫ t

0
{|ξ̇ (s)| − K |uξ (s)| − (c0 + θ∗

0 (1))} ds.

(22)

In view of Lemma 2, Lemma 3 and (22), we obtain that

∫ t

0
|ξ̇ (s)| ds �

∫ t

0
K |uξ (s)| ds + t (c0 + θ∗

0 (1)) + uξ (t) − u0

� t K (t F1(t, R/t) + C1(t)(ε + |u0|)) + t (c0 + θ∗
0 (1))

+ t F2(t, R/t) + ε := t F3(t, R/t) + ε.
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Now we turn to proof of the equi-integrability of the family {ξ̇}ξ∈A ε
. Since θ0 is a

superlinear function, then for any α > 0 there exists Cα > 0 such that r � θ0(r)/α
for r > Cα . Thus, for any measurable subset E ⊂ [0, t], invoking (L2), (L3) and
Lemma 3, we have that

∫
E∩{|ξ̇ |>Cα}

|ξ̇ |ds � 1

α

∫
E∩{|ξ̇ |>Cα}

θ0(|ξ̇ |)ds � 1

α

∫
E∩{|ξ̇ |>Cα}

(L0(ξ, ξ̇ ) + c0)ds

� 1

α

∫
E∩{|ξ̇ |>Cα}

(L(ξ, uξ , ξ̇ ) + K |uξ | + c0)ds

� 1

α
(uξ (t) − u0 + K (t F1(t, R/t) + C1(t)(ε + |u0|)) + tc0)

� 1

α
(t F2(t, R/t) + 1 + K (t F1(t, R/t) + C1(t)(1 + |u0|)) + tc0)

:= 1

α
F4(t, R/t).

Therefore, we conclude that

∫
E

|ξ̇ |ds �
∫
E∩{|ξ̇ |>Cα}

|ξ̇ |ds +
∫
E∩{|ξ̇ |�Cα}

|ξ̇ |ds � 1

α
F4(t, R/t) + |E |Cα.

Then, the equi-integrability of the family {ξ̇}ξ∈A ε
follows since the right-hand side

can be made arbitrarily small by choosing α large and |E | small, and this proves our
claim.

Proposition 1 The functional

Γ t
x0,x 
 ξ 
→ J (ξ) =

∫ t

0
L(ξ(s), uξ (s), ξ̇ (s)) ds,

where uξ is determined by (9) with initial condition uξ (0) = u0, admits a minimizer
in Γ t

x0,x .

Remark 2 Notice that we can rewrite the functional J as

J (ξ) = (e
∫ t
0 L̂ξ

u dr − 1)u0 +
∫ t

0
e
∫ t
τ
L̂ξ
u dr L(ξ(τ ), 0, ξ̇ (τ )) dτ (23)

since J (ξ) = uξ (t) − u, where

L̂ξ
u(s) =

∫ 1

0
Lu(ξ(s), λuξ (s), ξ̇ (s)) dλ.

We set μξ(s) := e
∫ t
s L̂ξ

u dr . Therefore J (ξ) = J1(ξ) + J2(ξ) where
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J1(ξ) = (μξ (a) − 1)u0, J2(ξ) =
∫ t

0
μξ(τ)L(ξ(τ ), 0, ξ̇ (τ )) dτ.

Proof Fix x0, x ∈ R
n , t > 0 and u0 ∈ R. Consider any minimizing sequence {ξk}

for J , that is, a sequence such that J (ξk) → inf{J (ξ) : ξ ∈ A } as k → ∞. We want
to show that this sequence admits a cluster point which is the required minimizer.
Notice there exists an associated sequence {uξk } given by (9) in the definition of
J (ξk). The idea of the proof is standard but a little bit different.

First, notice that Lemma 4 implies that the sequence of derivatives {ξ̇k} is
equi-integrable. Since the sequence {ξ̇k} is equi-integrable, by the Dunford-Pettis
Theorem there exists a subsequence, which we still denote by {ξ̇k}, and a func-
tion η∗ ∈ L1([0, t], R

n) such that ξ̇k ⇀ η∗ in the weak-L1 topology. The equi-
integrability of {ξ̇k} implies that the sequence {ξk} is equi-continuous and uniformly
bounded. Invoking Ascoli-Arzela theorem, we can also assume that the sequence
{ξk} converges uniformly to some absolutely continuous function ξ∞ ∈ Γ t

x0,x . For
any test function ϕ ∈ C1

0([0, t], R
n),

∫ t

0
ϕη∗ds = lim

k→∞

∫ t

0
ϕξ̇kds = − lim

k→∞

∫ t

0
ϕ̇ξkds = −

∫ t

0
ϕ̇ξ∞ds.

By du Bois-Reymond lemma (see, for instance, [10, Lemma 6.1.1]), we can con-
clude that ξ̇∞ = η∗ almost everywhere. In View of Remark 2 and condition (L3),
we also have that the sequence {μξk } is bounded and equi-continuous. Therefore μξk

converges uniformly to μξ as k → ∞ by taking a subsequence if necessary.
We recall a classical result (see, for instance, [3, Theorem 3.6] or [2, Section 3.4])

on the sequentially lower semicontinuous property on the functional

L1([0, t], R
m) × L1([0, t], R

n) 
 (α, β) 
→ F(α, β) :=
∫ t

0
L(α(s), β(s)) ds.

One has that if (i) L is lower semicontinuous; (ii) L(α, ·) is convex on R
n , then

the functional F is sequentially lower semicontinuous on the space L1([0, t], R
m) ×

L1([0, t], R
n) endowed with the strong topology on L1([0, t], R

m) and the weak
topology on L1([0, t], R

n).
Now, let

L(μξk (s), ξk(s), ξ̇k(s)) := μξk (s)L(ξk(s), 0, ξ̇k(s))

with αξk (s) = (μξk (s), ξk(s)) and βξk (s) = ξ̇k(s), then J2 is lower semi-continuous
in the topology mentioned above. The lower semi-continuos of J1 is obvious (In fact,
J1 is continuous). Therefore, ξ∞ ∈ A is a minimizer of J and this completes the
proof of the existence result.

Corollary 1 Let u0 ∈ R and R > 0 be fixed. Then there exists a continuous function
F = Fu0,R : [0,+∞) × [0,+∞) → [0,+∞), with F(t, r) nondecreasing in both
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variables and superlinear with respect to r , such that for any given t > 0 and x, x0 ∈
R

n, with |x − x0| � R, every minimizer ξ ∈ Γ t
x0,x for (10) satisfies

∫ t

0
|ξ̇ (s)| ds � t F(t, R/t)

and

ess inf
s∈[0,t] |ξ̇ (s)| � F(t, R/t), sup

s∈[0,t]
|ξ(s) − x0| � t F(t, R/t).

Proof The first assertion is direct from Lemma 4. The last two inequality follows
from the relations

ess inf
s∈[0,t] |ξ̇ (s)| � 1

t

∫ t

0
|ξ̇ (s)| ds, and |ξ(s) − x0| �

∫ t

0
|ξ̇ (s)| ds,

together with the first assertion.

3 Necessary Conditions and Regularity of Minimizers

3.1 Lipschitz Estimate of Minimizers

In order to study the regularity of aminimizer ξ of (10), we need an a prioriLipschitz
estimate for ξ . A key point of the proof of such an estimate is the following Erdmann
condition, which is standard for classical autonomous Tonelli Lagrangians. For the
results in and after this section, we suppose the following technical condition

(L2’) L satisfies condition (L2). Moreover, for some R > 1 and every compact set
A ⊂ R

n there exists a constant CA > 0 such that

L(x, 0, rv) � CA(1 + L(x, 0.v)), ∀r ∈ [1, R], (x, v) ∈ A × R
n .

We begin with some fundamental results from convex analysis.

Lemma 5 Let L satisfy conditions (L1)–(L3). We conclude that

(a) The function

f (ε) := Lv(x, r, v/(1 + ε)) · v/(1 + ε) − L(x, r, v/(1 + ε)) (24)

is decreasing for ε > −1. In particular, f (ε) � f (+∞) = −L(x, r, 0) � −θ0

(0) − K |r |.
(b) If ε1, ε2 > −1 and ε1 < ε2, then we have
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L(x, r, v/(1 + ε2)) � (κ + 1)−1L(x, r, v/(1 + ε1)) + κ · (κ + 1)−1(θ0(0) + K |r |)

and

f (ε2) � κ−1L(x, r, v/(1 + ε1)) − (κ−1 + 1)L(x, r, v/(1 + ε2))

where κ = (ε2 − ε1)/(1 + ε1) > 0.

Proof Let ε1, ε2 ∈ (−1,+∞) and ε1 < ε2. We set L(v) = L(x, r, v). By (L1) we
have that

L(v/(1 + ε2)) � L(v/(1 + ε1)) + Lv(v/(1 + ε1)) · {v/(1 + ε2) − v/(1 + ε1)}.

It follows that

f (ε1) − f (ε2) � Lv(v/(1 + ε1)) · (v/(1 + ε1)) − Lv(v/(1 + ε2)) · (v/(1 + ε2))

+ Lv(v/(1 + ε1)) · {v/(1 + ε2) − v/(1 + ε1)}
= Lv(v/(1 + ε1)) · (v/(1 + ε2)) − Lv(v/(1 + ε2)) · (v/(1 + ε2))

={Lv(v/(1 + ε1)) − Lv(v/(1 + ε2))} · {v/(1 + ε1) − v/(1 + ε2)}
· (1/(1 + ε1) − 1/(1 + ε2))

−1 · (1/(1 + ε1))

� 0.

The last statement is a direct consequence of (L2) and (L3).
Now we turn to the proof of (b). Observe that by convexity

L(v/(1 + ε1)) � L(v/(1 + ε2)) + Lv(v/(1 + ε2)) · {v/(1 + ε1) − v/(1 + ε2)}
= L(v/(1 + ε2)) + κ · Lv(v/(1 + ε2)) · (v/(1 + ε2)).

In view of (a) we obtain that

L(v/(1 + ε1)) − (κ + 1)L(v/(1 + ε2))

� κ · {−L(v/(1 + ε2)) + Lv(v/(1 + ε2)) · (v/(1 + ε2))}
� − κ · (θ0(0) + K |r |)

Then the first assertion follows. Moreover, we have that

Lv(v/(1 + ε2)) · (v/(1 + ε2)) � κ−1(L(v/(1 + ε1)) − L(v/(1 + ε2)))

which leads to the second assertion.

Lemma 6 (Erdmann condition) Suppose (L1), (L2’) and (L3) are satisfied. Let ξ ∈
Γ t
x0,x be aminimizer of (10)with uξ determinedby (9)anduξ (0) = u0. Set

∫ s
0 Ludr =∫ s

0 Lu(ξ(r), uξ (r), ξ̇ (r))dr and define



52 P. Cannarsa et al.

E(s) = e− ∫ s
0 Ludr · {

Lv(ξ(s), uξ (s), ξ̇ (s)) · ξ̇ (s) − L(ξ(s), uξ (s), ξ̇ (s))
}

for almost all s ∈ [0, t]. Then E has a continuous representation Ē such that Ē is
absolutely continuous on [0, t] and Ē ′ = 0 for almost all s ∈ [0, t].
Remark 3 Condition (L2’) is satisfied when L has polynomial growth with respect
to v. It is a key point to ensure the finiteness of the action after reparametrization.

Proof We divide the proof into several steps.

Step I: Reparametrization. For any measurable function α : [0, t] → [1/2, 3/2]
satisfying

∫ t
0 α(s) ds = t (the set of all such functions α is denoted by Ω), we define

τ(s) =
∫ s

0
α(r) dr, s ∈ [0, t].

Note that τ : [0, t] → [0, t] is a bi-Lipschitz map and its inverse s(τ ) satisfies

s ′(τ ) = 1

α(s(τ ))
, a.e. τ ∈ [0, t].

Now, given ξ ∈ Γ t
x0,x as above and α ∈ Ω , define the reparameterization η of ξ

by η(τ) = ξ(s(τ )). It follows that η̇(τ ) = ξ̇ (s(τ ))/α(s(τ )). Let uη be the unique
solution of (9) with initial condition uη(0) = u0. Then we have that

J (ξ) � J (η) =
∫ t

0
L(η(τ ), uη(τ ), η̇(τ )) dτ

=
∫ t

0
L(ξ(s), uξ,α(s), ξ̇ (s)/α(s))α(s) ds

where uξ,α solves

u̇ξ,α(s) = L(ξ(s), uξ,α(s), ξ̇ (s)/α(s))α(s), uξ,α(0) = u0.

By a direct calculation, for all α ∈ Ω and almost all s ∈ [0, t], we obtain

u̇ξ,α − u̇ξ = L(ξ, uξ,α, ξ̇/α)α − L(ξ, uξ , ξ̇ )

= L(ξ, uξ,α, ξ̇/α)α − L(ξ, uξ , ξ̇ /α)α + L(ξ, uξ , ξ̇ /α)α − L(ξ, uξ , ξ̇ )

= L̂α
u (uξ,α − uξ ) + L(ξ, uξ , ξ̇ /α)α − L(ξ, uξ , ξ̇ ),

and uξ,α(0) − uξ (0) = 0, where

L̂α
u (s) =

∫ 1

0
Lu

(
ξ(s), uξ (s) + λ(uξ,α(s) − uξ (s)), ξ̇ (s)/α(s)

)
α(s) dλ.
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By solving the Carathéodory equation above, we conclude that

uξ,α(s) − uξ (s) =
∫ s

0
e
∫ s
τ
L̂α
u dr (L(ξ, uξ , ξ̇ /α)α − L(ξ, uξ , ξ̇ )) dτ, (25)

and uξ,α(t) − uξ (t) � 0 for all α ∈ Ω . We claim that

L(ξ, uξ , ξ̇ /α) ∈ L1([0, t]) for all α ∈ Ω. (26)

To show (26), by Lemma 3 we first observe that

L(ξ, uξ , ξ̇ /α) � L(ξ, 0, ξ̇ /α) − K |uξ | � θ0(0) − c0 − K F1(t, |x0 − x |/t)

which gives the lower bound of L(ξ, uξ , ξ̇ /α). For the upper bound we will treat two
cases:

1. Suppose α ∈ [1, 3/2]. Then Lemma 5 (b) shows that L(ξ, uξ , ξ̇ /α) � (κ +
1)−1L(ξ, uξ , ξ̇ ) + κ · (κ + 1)−1(θ0(0) + K |uξ |);

2. For the case α ∈ [1/2, 1], we need condition (L2’). Let A = B̄(0, t F2(t, |x0 −
x |/t)) where F2 is determined by Corollary 1 such that |ξ(s)| � t F2(t, |x0 −
x |/t). Invoking condition (L2’) we conclude that

L(ξ, uξ , ξ̇/α) � L(ξ, 0, ξ̇/α) + K F1(t, |x0 − x |/t)
�CA(1 + L(ξ, 0, ξ̇ )) + K F1(t, |x0 − x |/t)
�CA(1 + L(ξ, uξ , ξ̇ ) + K F1(t, |x0 − x |/t)) + K F1(t, |x0 − x |/t).

Step II: A necessary condition. Next, we introduce the family

Ω0 = {β : [0, t] → R : β ∈ L∞([0, t]) with
∫ t

0
β(s)ds = 0}

and let 0 �= β ∈ Ω0. For any ε ∈ R such that |ε| < ε0 = 1
4‖β‖∞ < 1

2‖β‖∞ we have that
1 + εβ ∈ Ω .

Define the functional Λ : Ω → R by Λ(α) = uξ,α(t). Since Λ(1 + εβ) � Λ(1)
for |ε| < 1

2‖β‖∞ , thenwe have that d
dε

Λ(1 + εβ)|ε=0 = 0 if the derivative exists. Thus,
by (25),

Λ(1 + εβ) − Λ(1)

ε
=

∫ t

0
e
∫ t
s L̂ε

udrλε(s) ds, (27)

where L̂ε
u = ̂L1+εβ

u and
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λε(s) := L(ξ, uξ , ξ̇ /(1 + εβ))(1 + εβ) − L(ξ, uξ , ξ̇ )

ε

= L(ξ, uξ , ξ̇ /(1 + εβ)) · β + 1

ε
(L(ξ, uξ , ξ̇ /(1 + εβ)) − L(ξ, uξ , ξ̇ )).

We claim that

0 = d

dε
Λ(1 + εβ)|ε=0 =

∫ t

0
e
∫ t
s Ludr

{
L(ξ, uξ , ξ̇ ) − Lv(ξ, uξ , ξ̇ ) · ξ̇

}
β ds. (28)

Step III: Summability. Set

lε(s) := Lv(ξ, uξ , ξ̇ /(1 + εβ)) · ξ̇ /(1 + εβ) − L(ξ, uξ , ξ̇ /(1 + εβ)).

Notice that we take out the variable s on right side of the inequalities above. In view
of Lemma 5 (a) and Lemma 3 we have that lε(s) is bounded below by −(θ0(0) +
K F1(t, |x0 − x |/t)). By convexity we have that

L(ξ, uξ , ξ̇ /(1 + εβ)) − L(ξ, uξ , ξ̇ ) � Lv(ξ, uξ , ξ̇ /(1 + εβ)) · {ξ̇ − ξ̇ /(1 + εβ)}
= − εβ · Lv(ξ, uξ , ξ̇ /(1 + εβ)) · ξ̇ /(1 + εβ).

It follows that

λε(s) � − β(s){Lv(ξ, uξ , ξ̇ /(1 + εβ)) · ξ̇ /(1 + εβ) − L(ξ, uξ , ξ̇ /(1 + εβ))}
= − β(s) · lε(s), (29)

Let β ∈ Ω0 and 0 < ε < ε0. We rewrite λε(s), lε(s) as λβ
ε (s), lβε (s) respectively.

Set β+ = β · 1{β�0} and β− = −β · 1{β<0}, then

β = β+ − β−, and β± � 0.

By (29) we have that

0 � λβ
ε (s) + β+l(s)βε (s) � β−(s)lβε (s).

Now observe that β+(s)lβε (s) = β+(s)lβ
+

ε (s) and β−(s)lβε (s) = β−(s)lβ
−

−ε (s). Then
the inequalities above can recast as follows

0 � λβ
ε (s) + β+(s)lβ

+
ε (s) � β−(s)lβ

−
−ε (s). (30)

Lemma 5 (a) ensures that ε 
→ lβ
−

ε is decreasing on [−ε0, ε0] and we conclude that

β−lβ
−

−ε � β−lβ
−

−ε0
∀ε ∈ (0, ε0). (31)



Herglotz’ Generalized Variational Principle … 55

By Lemma 5 (b), we obtain that

β−lβ
−

−ε = β−{Lv(ξ, uξ , ξ̇/(1 − εβ−)) · ξ̇ /(1 − εβ−) − L(ξ, uξ , ξ̇/(1 − εβ−))}
�β−(κ

β−
ε )−1L(ξ, uξ , ξ̇/(1 − ε0β

−)) − β−((κ
β−
ε )−1 + 1)L(ξ, uξ , ξ̇/(1 − εβ−))

where (κβ−
ε )−1 = 1−ε0β

−
ε0−ε

· (β−)−1. In view of (26), (30) and the fact that β−(κβ−
ε )−1

is bounded, we conclude that β−lβ
−

−ε ∈ L1([0, t]) for all ε ∈ (0, ε0].
Step IV: Erdmann condition. Thus integrating (30) and by Lebesgue’s theorem we
obtain that

0 �
∫ t

0
e
∫ t
s Ludr l0(s)β

+(s)ds �
∫ t

0
e
∫ t
s Ludr l0(s)β

−(s)ds.

Therefore,
∫ t
0 e

∫ t
s Ludr l0(s)β(s)ds � 0 and (28) follows since β ∈ Ω0 is arbitrary.

Now, observe that the primitiveμ(s) := ∫ s
0 β(r)dr gives a one-to-one correspon-

dence between Ω0 and the set

Ω1 = {μ : [0, t] → R : μ is Lipschitz continuous with μ(0) = μ(t) = 0}.

Thus, (28) can recast as follows

0 = −e
∫ t
0 Ludr

∫ t

0
E(s)μ′(s) ds ∀μ ∈ Ω1.

Recalling E(s) = −e− ∫ s
0 Ludr l0(s) ∈ L1([0, t]) by Step III, then a basic lemma in the

calculus of variations ensures that E(s) is constant on [0, t].
Proposition 2 Suppose (L1), (L2’) and (L3) are satisfied. Let u0 ∈ R and R > 0 be
fixed. Then there exists a continuous function F = Fu0,R : [0,+∞) × [0,+∞) →
[0,+∞), with F(t, r) nondecreasing in both variables and superlinear with respect
to r , such that for any given t > 0 and x, x0 ∈ R

n, with |x − x0| � R, everyminimizer
ξ ∈ Γ t

x0,x for (10) satisfies

ess sup
s∈[0,t]

|ξ̇ (s)| � F(t, R/t).

Proof Let ξ ∈ Γ t
x0,x be as above. Invoking Lemma 6, E is constant on a subset of

[0, t] of full measure. Let

E1(s) = Lv(ξ(s), uξ (s), ξ̇ (s)) · ξ̇ (s) − L(ξ(s), uξ (s), ξ̇ (s)).

Set lξ (s, α) = L(ξ(s), uξ (s), ξ̇ (s)/α)α for all s ∈ [0, t] and α > 0. A simple com-
putation shows that lξ (s, α) is convex in α and
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d

dα
lξ (s, α)|α=1 = −E1(s).

Taking s0 ∈ [0, t] such that |ξ̇ (s0)| = ess infs∈[0,t] |ξ̇ (s)|, by convexity we have that

−E1(s0) � sup
α<1

lξ (s0, α) − lξ (s0, 1)

α − 1

Let us now take, in the above inequality, α = 3/4. Then, by (L2), (L3), Lemma 3
and Corollary 1 we conclude that

−E1(s0) � 4(lξ (s0, 1) − lξ (s0, 3/4)) = 4(L(ξ(s0), uξ (s0), ξ̇ (s0)) − lξ (s0, 3/4))

� − 4c0 − 4K F1(t, R/t) − 3L(ξ(s0), uξ (s0),
4

3
ξ̇ (s0))

� − 4c0 − 4K F1(t, R/t) − 3K F1(t, R/t) − 3L(ξ(s0), 0,
4

3
ξ̇ (s0))

� − 4c0 − 7K F1(t, R/t) − θ0(
4

3
|ξ̇ (s0)|)

� − 4c0 − 7K F1(t, R/t) − θ0(F2(t, R/t)) := −F3(t, R/t).

It follows that, for almost all s ∈ [0, t],

E(s) = E(s0) = e− ∫ s0
0 Ludτ E1(s0) � eKt F3(t, R/t),

and
E1(s) = e

∫ s
0 Ludτ E(s) � e2Kt F3(t, R/t) := F4(t, R/t). (32)

Now, let s be such that ξ̇ (s) exists and (32) holds. By convexity, we have that

L(ξ(s), uξ (s), ξ̇ (s)/(1 + |ξ̇ (s)|)) − L(ξ(s), uξ (s), ξ̇ (s))

� ((1 + |ξ̇ (s)|)−1 − 1) · 〈Lv(ξ(s), uξ (s), ξ̇ (s)), ξ̇ (s)〉
� ((1 + |ξ̇ (s)|)−1 − 1) · (L(ξ(s), uξ (s), ξ̇ (s)) + F4(t, R/t)).

It follows that

L(ξ(s), uξ (s), ξ̇ (s))

� L(ξ(s), uξ (s), ξ̇ (s)/(1 + |ξ̇ (s)|))(1 + |ξ̇ (s)|) + F4(t, R/t)|ξ̇ (s)|.

Let C = sups∈[0,t],|v|�1 L(ξ(s), uξ (s), v) and by (L2). By Lemma 3 we have that

C � sup
s∈[0,t],|v|�1

{L(ξ(s), 0, v) + K |uξ (s)|} � θ0(1) + K F1(t, R/t) := F5(t, R/t).

It follows that
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L(ξ(s), uξ (s), ξ̇ (s)) � F5(t, R/t) + (F5(t, R/t) + F4(t, R/t))|ξ̇ (s)|.

Therefore, invoking Lemma 3, we obtain

(F5(t, R/t) + F4(t, R/t) + 1)|ξ̇ (s)| − (θ∗
0 (F5(t, R/t) + F4(t, R/t) + 1) + c0)

� θ0(|ξ̇ (s)|) − c0 � L(ξ(s), 0, ξ̇ (s)) � L(ξ(s), uξ (s), ξ̇ (s)) + K |uξ (s)|
� F5(t, R/t) + (F5(t, R/t) + F4(t, R/t))|ξ̇ (s)| + K F1(t, R/t).

This leads to

|ξ̇ (s)| � (θ∗
0 (F5(t, R/t) + F4(t, R/t) + 1) + c0) + F5(t, R/t) + K F1(t, R/t)

:= F6(t, R/t),

which completes the proof.

Proposition 3 Suppose Lλ(x, r, v) = L0(x, v) − λr , r ∈ R, where L0 is a Tonelli
Lagrangian. Then Lλ satisfies condition (L1), (L2) and (L3). Moreover, the Lipschitz
estimate in Proposition 2 holds.

Proof By solving the Carathéodory equation (4), we have that

uξ (t) = e−λt u0 + e−λt
∫ t

0
eλs L0(ξ, ξ̇ ) ds.

Therefore problem (3) is essentially a basic problem in the calculus of variations
with a time-dependent Lagrangian G(t, x, v) = eλt L0(x, v). Moreover, G satisfies a
restricted growth condition

Gt (t, x, v) = λG(t, x, v).

Then any minimizer ξ of (3) is Lipschitz continuous (see, for instance, [3, Theorem
4.9]). Therefore, Erdmann condition in Lemma 6 holds with a slight modification
of the proof and the expected Lipschitz estimate can obtained as in the proof of
Proposition 2 similarly.

3.2 Regularity of Minimizers-Herglotz Equations–Lie
Equations

Let ξ ∈ Γ t
x0,x be a minimizer of (10) where uξ is uniquely determined by (9). For

any λ ∈ R and any Lipschitz function η ∈ Γ t
0,0, we denote ξλ(s) = ξ(s) + λη(s). It

is clear that ξλ ∈ Γ t
x0,x and J (ξ) � J (ξλ). Let uξλ

be the associated unique solution
of (9) with respect to ξλ and the initial condition u0. Notice that
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∂

∂λ
J (ξλ)|λ=0 = ∂

∂λ
uξλ

(t)|λ=0 = 0.

Now for any s ∈ [0, t] we set

Δλ(s) = uξλ
(s) − uξ (s)

λ
= 1

λ

∫ s

0
L(ξλ, uξλ

, ξ̇λ) − L(ξ, uξ , ξ̇ ) dτ,

and

f λ
1 (s) = 1

λ

∫ s

0
L(ξλ, uξλ

, ξ̇λ(s)) − L(ξλ, uξλ
, ξ̇ ) dτ,

f λ
2 (s) = 1

λ

∫ s

0
L(ξλ, uξλ

, ξ̇ ) − L(ξ, uξλ
, ξ̇ ) dτ.

Then f λ
1 and f λ

2 are all absolutely continuous functions on [0, t], and it follows

Δλ(s) = f λ
1 (s) + f λ

2 (s) + 1

λ

∫ s

0
L̂λ
u · (uξλ

− uξ ) dτ, s ∈ [0, t],

where

L̂λ
u(τ ) =

∫ 1

0
Lu(ξ(τ ), uξ (τ ) + θ(uξλ

(τ ) − uξ (τ )), ξ̇ (τ )) dθ, τ ∈ [0, t].

Thus, we conclude that for almost all s ∈ [0, t], the following Carathéodory equation
holds:

Δ̇λ(s) = ḟ λ
1 (s) + ḟ λ

2 (s) + L̂λ
u(s) · Δλ(s) (33)

with initial conditionΔλ(t) = aλ. Notice that limλ→0 Δλ(t) exists and limλ→0 Δλ(t)
= limλ→0 aλ = ∂

∂λ
uξλ

(t)|λ=0 = 0 since ξ is a minimizer of J . It is not difficult to
solve (33), we obtain that

Δλ(s) = aλe
∫ s
t L̂λ

u(r) dr + e
∫ s
t L̂λ

u(r) dr ·
∫ s

t
e− ∫ r

t L̂λ
u(τ ) dτ · ( ḟ λ

1 (r) + ḟ λ
2 (r)) dr.

Since (ξλ(s), ξ̇λ(s), uξλ
(s)) tends (ξ(s), ξ̇ (s), uξ (s)) as λ → 0 for almost all s ∈

[0, t], together with Proposition 2, it follows that, for all s ∈ [0, t], we have

f (s) := ∂

∂λ
uξλ

(s)|λ=0 = e
∫ s
t h(r) dr ·

∫ s

t
e− ∫ r

t h(τ ) dτ · g(r) dr, f (t) = 0, (34)

where g = Lx · η + Lv · η̇ and h = Lu which are both measurable and bounded.
Notice that (33) implies that
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f (s) =
∫ s

0
g(r) + h(r) f (r) dr, s ∈ [0, t].

Then, invoking (34), we conclude that

0 =
∫ t

0
g(s) + h(s) · e

∫ s
t h(r) dr ·

{∫ s

t
e− ∫ r

t h(τ ) dτ · g(r) dr
}
ds

=
∫ t

0
g(s) ds + e

∫ s
t h(r) dr ·

{∫ s

t
e− ∫ r

t h(τ ) dτ · g(r) dr
} ∣∣∣∣

t

0

−
∫ t

0
e
∫ s
t h(r) dr · e− ∫ s

t h(r) dr · g(s) ds

= e
∫ 0
t h(r) dr ·

{∫ t

0
e− ∫ s

t h(r) dr · g(s) ds
}

.

It follows that

0 =
∫ t

0
e− ∫ s

t h(r) dr · g(s) ds =
∫ t

0
e− ∫ s

t h(r) dr · (Lx · η + Lv · η̇)(s) ds.

Invoking the fundamental lemma in calculus of variation (see, for instance,Lemma
6.1.1 in [10]), we obtain that, for almost all s ∈ [0, t],

d

ds
e− ∫ s

t h(r) dr Lv(ξ(s), uξ (s), ξ̇ (s)) = e− ∫ s
t h(r) dr Lx (ξ(s), uξ (s), ξ̇ (s)).

This leads to the so called Herglotz equation (for almost all s ∈ [0, t])
d

ds
Lv(ξ(s), uξ (s), ξ̇ (s))

= Lx (ξ(s), uξ (s), ξ̇ (s)) + Lu(ξ(s), uξ (s), ξ̇ (s))Lv(ξ(s), uξ (s), ξ̇ (s)).
(35)

Since L is of class C2 and L(x, u, ·) is strictly convex, then by the standard
argument as in [10, Sect. 6.2], we conclude that:

Theorem 1 Under our standing assumptions, we have the following regularity prop-
erties for any minimizer ξ for (10):

(1) Both ξ and uξ are of class C2 and ξ satisfies Herglotz equation (35) for all
s ∈ [0, t] where uξ is the unique solution of (9);

(2) Let p(s) = Lv(ξ(s), uξ (s), ξ̇ (s)) be the dual arc. Then p is also of class C2 and
we conclude that (ξ, p, uξ ) satisfies Lie equation (8).

Proof We first need to show that ξ is of class C1. Let N be the set of zero Lebesgue
measure where ξ̇ does not exist. For t̄ ∈ [0, t], choose a sequence {tk} ∈ [0, T ] \ N
such that tk → t̄ . Then ξ̇ (tk) → v̄ for some v̄ ∈ R

n (up to subsequences) and
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Lv(ξ(t̄), uξ (t̄), ξ̇ (t̄)) = lim
k→∞ Lv(ξ(tk), uξ (tk), ξ̇ (tk))

=
∫ t

0
{Lx(ξ(s), uξ (s), ξ̇ (s)) + Lu(ξ(s), uξ (s), ξ̇ (s))Lv(ξ(s), uξ (s), ξ̇ (s))}ds

by (35). From the strict convexity of L it follows that themap v 
→ Lv(ξ(s), uξ (s), v)
is a diffeomorphism. This implies that v̄ is uniquely determined, i.e.,

lim
[0,t]\N
s→t̄

ξ̇ (s) = v̄.

Now, by Lemma 6.2.6 in [10], ξ̇ (t̄) exists and lim[0,t]\N
s→t̄ ξ̇ (s) = ξ̇ (t̄). It follows
ξ is of class C1. In view of (9), uξ is also of class C1.

In view of (7), by setting

F(s) =
∫ s

0
{Lx (ξ, uξ , ξ̇ ) + Lu(ξ, uξ , ξ̇ )Lv(ξ, uξ , ξ̇ )} dτ,

we have that

{Lv(ξ(s), uξ (s), v) − F(s)}|v=ξ̇ (s) = Lv(ξ(0), uξ (0), ξ̇ (0)).

Then, the implicit function theorem implies ξ̇ is of class C1 since both F and Lv are
of class C1. Therefore we conclude that ξ is of class C2 and uξ is of class C2 by (9).

The rest part of the proof is standard and we omit it.

4 Concluding Remarks

4.1 Equivalence of Herglotz’ Variational Principle and the
Implicit Variational Principle

In the recent work [41, 42], the authors introduce an implicit variational principle
on closed manifolds which is essentially equivalent to Herglotz’ principle.

Proposition 4 ([41]) Let M be a C2 closed manifold and let L : T M → R be of
class C3 and satisfy conditions (L1)–(L3) for M instead of R

n here. Given any
x0 ∈ M and u0 ∈ R, there exists a (unique) continuous function hx0,u0(t, x) defined
on (0,+∞) × M satisfying

hx0,u0(t, x) = u0 + inf
ξ

∫ t

0
L(ξ(s), hx0,u0(s, ξ(s)), ξ̇ (s)) ds,
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where ξ is taken over all the Lipschitz continuous curves on M connecting ξ(0) = x0
and ξ(t) = x.

Moreover, let ξ be any curve achieving the infimum together with the curves p
and u defined by

u(s) = hx0,u0(s, ξ(s)), p(s) = Lv(ξ(s), u(s), ξ̇ (s)).

Then (ξ, p, uξ ) is a solution of (8) with conditions ξ(0) = x0, ξ(t) = x and lims→0+

u(s) = u0.

Proposition 5 Let x0, x ∈ R
n, t > 0 and u0 ∈ R. For any ξ ∈ Γ t

x0,x being a mini-
mizer of (10), we denote by uξ (s, u0) the unique solution of (9) with uξ (0, u0) = u0.
Then, for any 0 < t ′ < t , the restriction of ξ on [0, t ′] is a minimizer for

A(t ′, x0, x, u0) := u0 + inf
∫ t ′

0
L(ξ(s), uξ (s), ξ̇ (s)) ds

with uξ the unique solution of (9) restricted on [0, t ′]. Moreover,

A(s, x0, ξ(s), u0) = uξ (s, u0), ∀s ∈ [0, t], (36)

and A(s1 + s2, x0, ξ(s1 + s2), u0) = A(s2, ξ(s1), ξ(s1 + s2), uξ (s1)) for any s1, s2 >

0 and s1 + s2 � t .
In particular, if hx0,u0 is from Proposition 4, then

uξ (s) = hx0,u0(s, ξ(s)), s ∈ [0, t]. (37)

Remark 4 The relation (37) holds only when ξ is a minimizer of (10).

Proof Suppose x0, x ∈ R
n , t > 0 and u0 ∈ R. Let ξ ∈ Γ t

x0,x be a minimizer of (10)
and uξ (s) = uξ (s, u0) be the unique solution of (9) with uξ (0) = u0.

Now, let 0 < t ′ < t . Let ξ1 ∈ Γ t ′
x,ξ(t ′) and ξ2 ∈ Γ t−t ′

ξ(t ′),y be the restriction of ξ on
[0, t ′] and [t ′, t] respectively. Then, we have that

uξ (t
′, u0) = u0 +

∫ t ′

0
L(ξ1(s), uξ1(s), ξ̇1(s)) ds,

uξ (t, u0) − uξ (t
′, u0) =

∫ t

t ′
L(ξ2(s), uξ2(s), ξ̇2(s)) ds.

Then both ξ1 and ξ2 are minimal curve for (10) restricted on [0, t ′] and [t ′, t] respec-
tively by summing up the equalities above and the assumption that ξ is a minimizer
of (10). In particular, (36) follows. The next assertion is direct from the relation

uξ (s1 + s2, u0) = uξ (s2, uξ (s1)), ∀s1, s2 > 0, s1 + s2 � t,
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since uξ solves (9). The last assertion is a direct application of Gronwall’s inequality.
Indeed, we know that for all s ∈ [0, t],

uξ (s) = u0 +
∫ s

0
L(ξ(r), uξ (r), ˙ξ(r)) dr,

hx0,u0(s, ξ(s)) = u0 +
∫ s

0
L(ξ(r), hx0,u0(r, ξ(r)), ξ̇ (r)) dr.

By condition (L3), it follows that

|hx0,u0(s, ξ(s)) − uξ (s)| � K
∫ s

0
|hx0,u0(r, ξ(r)) − uξ (r)| dr.

Our conclusion is a consequence of Gronwall’s inequality.

4.2 Herglotz’ Generalized Variational Principle on Manifolds

Now, we try to explain how to move the Herglotz’ generalized variational principle
to any closed manifold M .

Fix x, y ∈ M , t > 0 and u ∈ R. Let ξ ∈ Γ t
x,y(M), we consider the Carathéodory

equation {
u̇ξ (s) = L(ξ(s), uξ (s), ξ̇ (s)), a.e. s ∈ [0, t],
uξ (0) = u.

(38)

We define the action functional

J (ξ) :=
∫ t

0
L(ξ(s), uξ (s), ξ̇ (s)) ds, (39)

where ξ ∈ Γ t
x,y(M) and uξ is defined in (9). Our purpose is to minimize J (ξ) over

A (M) = {ξ ∈ Γ t
x,y(M) : (9) admits an absolutely continuous solution uξ }.

Notice thatA (M) �= ∅ because it contains all piecewise C1 curves connecting x to
y. In view of the remark before Lemma 1, for each a ∈ R,

A (M) = {ξ ∈ Γ t
x,y(M) : the function s 
→ L(ξ(s), a, ξ̇ (s)) belongs to L1([0, t])}.

We begin with the case when M = R
n . Fix κ > 0. Suppose 0 < t � 1, x, y ∈ R

n

such that |x − y| � κt . Suppose η ∈ A (Rn) is a minimizer of the action functional
η 
→ J (η). Invoking the aforementioned a priori estimates, η is as smooth as L .
Moreover, there exist constants C1(κ) > 0,C2(u, t, κ) > 0 such that
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sup
s∈[0,t]

|η̇(s)| � C1(κ), sup
s∈[0,t]

|η(s) − x | � C1(κ)t, sup
s∈[0,t]

|uη(s)| � C2(u, t, κ).

Let D1 = BRn (x, κt) and D2 = BRn (x, (C1(κ) + 1)t), where the subscript is used
for the ball in R

n . Then, D1 ⊂ D2 since κ � C1(κ). By denoting

B(Rn) = {η ∈ A (Rn) : η(s) ∈ D2 for all s ∈ [0, t]}.

Therefore we can claim that for any x ∈ R
n and y ∈ D1 the following problems are

equivalent:

inf
A (Rn)

J (ξ) = inf
B (Rn)

J (ξ)

They admit the same minimizers.
Now we move to the manifold case. Let {(Bi , Φi )} be a local chart for the C2

closed manifold M . We can suppose that {Bi }Ni=1 is a finite open cover of M and
Φi : Bi → D2 ⊂ R

n is a C2-diffeomorphism for each i = 1, . . . , N and Φ−1
j ◦ Φi :

Bi ∩ Bj → Bi ∩ Bj is a C2-diffeomorphism for each i �= j = 1, . . . , N .
Fix i , let B = Bi and Φ = Φi : B → D2 be a local coordinate. Let L : T M ×

R → R be a Lagrangian satisfying (L1)-(L3). Then

(Φ, dΦ) : T B → D2 × R
n

defines a local trivialization of T B. Let LΦ : D2 × R
n × R → R be defined by

LΦ(x̄, u, v̄) = L(Φ−1(x̄), u, dΦ−1(x̄)v̄), (x̄, v̄) ∈ D2 × R
n, u ∈ R.

Therefore, Herglotz’ generalized variational principle for L restricted to T B × R

is equivalent to the one for LΦ on D2 × R
n × R → R since Φ is a bi-Lipschitz

homeomorphism and a C2-diffeomorphism.

Proposition 6 Fix κ > 0, 0 < t � 1. Then there exist a local chart {(Bi , Φi )}Ni=1 and
a constant C2(κ) > 0 such that each Bi ⊂ BM(x,C2(κ)t), and for any x, y ∈ Bi and
u ∈ R, the following points on the Herglotz’s generalized variational principle hold:

(a) The functional

A (Bi ) 
 ξ 
→ J (ξ) =
∫ t

0
L(ξ(s), uξ (s), ξ̇ (s)) ds,

where uξ is determined by (9) with initial condition uξ (0) = u, admits a mini-
mizer in A (M).

(b) Suppose x, y ∈ Bi . Let ξ ∈ A (Bi ) be a minimizer of J . Then there exists a
function F = FBi : [0,+∞) × [0,+∞) → [0,+∞), with F(·, r) being non-
decreasing for any r � 0, such that
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|uξ (s)| � t F(t, κ) + C(t)|u|, s ∈ [0, t]

where C(t) > 0 is also nondecreasing in t.
(c) Suppose x, y ∈ Bi . Let ξ ∈ A (Bi ) be a minimizer of J . Then, there exists a

function F = Fu,Bi : [0,+∞) × [0,+∞) → [0,+∞), with F(·, r) is nonde-
creasing for any r � 0, such that

ess sup
s∈[0,t]

|ξ̇ (s)| � F(t, κ).

(d) We have the following regularity properties for any minimizer ξ for (39):

(1) Both ξ and uξ are of class C2 and ξ satisfies Herglotz equation (35) in local
charts for all s ∈ [0, t] where uξ is the unique solution of (9);

(2) Let p(s) = Lv(ξ(s), uξ (s), ξ̇ (s)) be the dual arc. Then p is also of class C2

and we conclude that (ξ, p, uξ ) satisfies Lie equation (8) in local charts for
all s ∈ [0, t].

Thus, by using LΦ , it is not difficult to see that there exists a finer open cover,
whichwe also denote by {(Bi , Φi )}Ni=1, such that theHerglotz’ generalized variational
principle can be applied in the case when x, y ∈ Bi and 0 < t � 1 (i = 1, . . . , N )
since {Φi }Ni=1 is equi-bi-Lipschitz.

Now, let us recall the standard “broken geodesic” argument. Pick any x, y ∈ M ,
t > 0 and u ∈ R. Let {(Bi , Φi )}Ni=1 be the local chart in the proposition above. We
suppose without loss of generality that x ∈ B1 and y ∈ BN . Let ξ ∈ A (M). Then
there exists a partition 0 = t0 < t1 < t2 < · · · < tk−1 < tk = t such that z j = ξ(t j )
and z j+1 = ξ(t j+1) are contained in the same Bi . For each j , we define

h j
L(t j+1 − t j , z j , z j+1, u j ) = inf

ξ j

∫ t j+1

t j

L(ξ j (s), uξ j (s), ξ̇ j (s)) ds,

where ξ j is an absolutely continuous curve constrained in Bi connecting z j to z j+1

and uξ j is uniquely determined by (9) with initial condition u j . Now we consider the
problem

g(t, x, y, u) := inf
k∑
j=1

h j
L(t j+1 − t j , z j , z j+1, u j ), (40)

where the infimum is taken over any partition 0 = t0 < t1 < t2 < · · · < tk−1 < tk =
t , z j , z j+1 ∈ M contained in the same Bi and u j ∈ R. Due to Proposition 6 (b), {u j }
can be constrained in a compact subset ofR depending on u, x, y and t . Therefore the
infimum in (40) can be attained. Thanks to the local semiconcavity of the fundamental
solution h j

L , h
j
L is differentiable at each minimizer which leads to the fact

hL(t, x, y, u) = g(t, x, y, u).

Proposition 7 Proposition 6 holds for any connected and closed C2 manifold M.
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4.3 Further Remarks

Comparing to the method used in [41, 42], one can see more from our approach as
follows:

– We can derive the generalized Euler-Lagrange equations in a modern and rigorous
way which does not appear in both [41, 42];

– There should be an extension of the main results of this paper under much more
general conditions (like Osgood type conditions) to guarantee the existence and
uniqueness of the solutions of the associated Carathéodory equation (9).

– Along this line, the quantitative semiconcavity and convexity estimate of the asso-
ciated fundamental solutions have been obtained in [7] recently, which is useful
for the intrinsic study of the global propagation of singularities of the viscosity
solutions of (5) and (6) [4–6, 8];

– When the Lagrangian has the form L(x, v) − λu, by solving the associated
Carathéodory equation (9) directly, one gets the representation formula for the
associated viscosity solutions immediately [13, 19, 40, 43]. The representation
formula bridges the PDE aspects of the problem with the dynamical ones;

– Consider a family of Lagrangians in the form {L(x, v) + ∑k
i=1 ai j ui }, a problem

of Herglotz’ variational principle in the vector form is closely connected to certain
stochastic model of weakly coupled Hamilton-Jacobi equations (see, for instance,
[20, 23, 38]).
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Appendix

Let Ω ⊂ R
n+1 be an open set. A function f : Ω ⊂ R × R

n → R
n is said to satisfy

Carathéodory condition if

– for any x ∈ R
n , f (·, x) is measurable;

– for any t ∈ R, f (t, ·) is continuous;
– for each compact set U of Ω , there is an integrable function mU (t) such that

| f (t, x)| � mU (t), (t, x) ∈ U.
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A classical problem is to find an absolutely continuous function x defined on a real
interval I such that (t, x(t)) ∈ Ω for t ∈ I and satisfies the following Carathéodory
equation

ẋ(t) = f (t, x(t)), a.e., t ∈ I. (41)

Proposition 8 (Carathéodory) If Ω is an open set in R
n+1 and f satisfies the

Carathéodory conditions on Ω , then, for any (t0, x0) in Ω , there is a solution of
(41) through (t0, x0). Moreover, if the function f (t, x) is also locally Lipschitzian in
x with a measurable Lipschitz function, then the uniqueness property of the solution
remains valid.

For the proof of Proposition 8 and more results related to Carathéodory equation
(41), the readers can refer to [17, 24].
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Observability Inequalities for Transport
Equations through Carleman Estimates

Piermarco Cannarsa, Giuseppe Floridia and Masahiro Yamamoto

Abstract We consider the transport equation ∂t u(x, t) + H(t) · ∇u(x, t) = 0 in
Ω × (0, T ), where T > 0 and Ω ⊂ R

d is a bounded domain with smooth boundary
∂Ω . First, we prove a Carleman estimate for solutions of finite energy with piecewise
continuous weight functions. Then, under a further condition which guarantees that
the orbits of H intersect ∂Ω , we prove an energy estimate which in turn yields an
observability inequality. Our results are motivated by applications to inverse prob-
lems.

Keywords Carleman estimates · Transport equation · Observability inequality

1 Introduction

Let d ∈ N and Ω ⊂ R
d be a bounded domain with smooth boundary ∂Ω , ν = ν(x)

be the unit outward normal vector at x to ∂Ω , and let x · y and |x | denote the scalar
product of x, y ∈ R

d and the normof x ∈ R
d , respectively.We set Q := Ω × (0, T ),

and we consider
Pu(x, t) := ∂t u + H(t) · ∇u = 0 in Q, (1)
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where H(t) := (H1(t), . . . , Hd(t)) : [0, T ] → R
d , H ∈ C1([0, T ];Rd).

Equation (1) is called a transport equation and H(t) describes the velocity of the
flow, which is here assumed to be independent of the spatial variable x .
Problem Formulation
We assume

H0 := min
t∈[0,T ] |H(t)| > 0, (2)

and, without loss of generality, we suppose that 0 = (0, . . . , 0) ∈ Ω.

Let us recall the following definition.

Definition 1.1 A partition {t j }m0 of [0, T ] is a strictly increasing finite sequence
t0, t1, . . . , tm (for some m ∈ N) of real numbers starting from the initial point t0 = 0
and arriving at the final point tm = T .

Hereafter, we will call {t j }m0 a uniform partition of [0, T ] when the length of the
intervals [t j , t j+1] is constant for j = 0, . . . ,m − 1, that is, t j = T

m j, j = 0, . . . ,m.

Lemma1.2belowensures that anyvector-valued functionH(t), satisfying (2), admits
a partition {t j }m0 of [0, T ] such that the angles of oscillations of the vector H(t) are
less than π

2 in any time interval [t j , t j+1], j = 0, . . . ,m − 1 (see Fig. 1).

Given a partition {t j }m0 of [0, T ], let us set

η j := H(t j )

|H(t j )| , j = 0, . . . ,m − 1. (3)

Lemma 1.2 Let S∗ ∈ (1/
√
2, 1). For any given H ∈ Lip([0, T ];Rd), satisfying

condition (2), there exist m ∈ N and a partition {t j }m0 of [0, T ] such that

H(t)

|H(t)| · η j ≥ S∗, ∀t ∈ [t j , t j+1], ∀ j = 0, . . . ,m − 1, (4)

where η j are defined in (3).

Fig. 1 In this picture
S∗ = cos π

6 , m = 6 and
Hj := H(t j ), j = 0, . . . , 5.
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Lemma 1.2 is proved in the Appendix.

Remark 1.3 Condition (4) means that there exist m cones in R
d such that the axis

of every cone, that is, the straight line passing through the apex about which the
whole cone has a circular symmetry, is the line between 0 = (0, . . . , 0) and η j , j =
0, . . . ,m − 1. Moreover, a straight line passing through the apex is contained in
the cone if the angle between this line and the axis of the cone is less than π/4.
Indeed, the inequality (4), that is H(t) · η j > cosϑ∗|H(t)| for some ϑ∗ ∈ (0, π

4 ),

is equivalent to the fact that the angle between H(t) and η j is less than π/4. Thus,
H(t) is contained in the same cone ∀t ∈ [t j , t j+1]. Let us note that it can occur that
ηi = η j , for i 
= j.

Let δΩ = diam(Ω) = sup
x,y∈Ω

|x − y|. Let us fix S∗ ∈ (1/
√
2, 1), r > 0 and define

x j := −R jη j , j = 0, . . . ,m − 1, (5)

where η j is defined in (3) and

{
R j = 2 j R0 + (2 j − 1)(δΩ + r),
R0 = 1+S∗

1−S∗ δΩ.
(6)

We note that from (6) it follows that

x j /∈ Ω, j = 0, . . . ,m − 1.

For every j = 0, . . . ,m − 1, let us define

MΩ(x j ) := max
x∈Ω

|x − x j | and dΩ(x j ) := min
x∈Ω

|x − x j |. (7)

Remark 1.4 The choice of the R j ’s in (6) (see Lemma 2.2 below and Fig. 2) guar-
antees that the points x j ’s are located sufficiently far away from Ω and at increasing
distances from the origin.

By the choice of the finite sequence R j = |x j | in (6) (R j sufficiently large com-
pared with δΩ ) we deduce in Lemma 2.1 below that

(x + R jη j ) · η j ≥ S∗|x + R jη j |, ∀x ∈ Ω.

In other words, the apex angle of the minimum cone with the apex x j which includes
Ω is less than 2 arccos S∗(<π/2) (see Fig. 3).

We now introduce theweight functionϕ(x, t) to be used in our Carleman estimate,
as follows. First, we define ϕ on Ω × [0, T ) setting, for every x ∈ Ω,

ϕ(x, t) = ϕ j (x, t) := −β(t − t j ) + |x − x j |2, t ∈ [t j , t j+1), j = 0, . . . ,m − 1,
(8)
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Fig. 2 In this picture S∗ = cos π
6 , m = 3 and Hj := H(t j ), j = 0, 1, 2.

Fig. 3 In this picture: Ω := {(x, y) ∈ R2 : |(x, y) − (1, 0)| < 3}, C = (1, 0), S∗ = cosα ∈
( 1√

2
, 1), m = 1, Hj := H(t j ), j = 0, 1, and β, γ > α, α0 = α, δ ≤ α. We note that dΩ(x0) =

dist (x0,G) and MΩ(x0) = dΩ(x0) + 6.
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where
β := (2S2∗ − 1)H0dΩ(x0), (9)

with H0 and dΩ(x0) defined by (2) and (7), respectively. Then we extend ϕ to Ω ×
[0, T ] by continuity. Observe that ϕ is piecewise smooth in t and smooth in x .
Main Results

In this article, under condition (2), we establish an observability inequality for (1)
which estimates the L2-norm of u(x, 0) by lateral boundary data u|∂Ω×(0,T ) under
some conditions on H(t) (see Theorem 1.6). This observability inequality is a con-
sequence of the following Carleman estimate.

Theorem 1.5 Let u ∈ H 1(Q) be a solution of Eq. (1), where H ∈ C1([0, T ];Rd)

satisfies (2). Let {t j }m0 be a partition of [0, T ] satisfying (4). Then, there exist constants
s0,C0,C > 0 such that for all s > s0 we have

s2
∫
Q

|u|2e2sϕdxdt + se−C0s
m−1∑
j=0

∫
Ω

|u(x, t j )|2dx

≤ C
∫
Q

|Pu|2e2sϕdxdt + CseCs
∫

Σ

|u|2dγ dt + CseCs
∫

Ω

|u(x, T )|2 dx,

where ϕ(x, t) : Q −→ R is the weight function defined in (8), and

Σ = {(x, t) ∈ ∂Ω × (0, T ) : H(t) · ν(x) ≥ 0} (10)

is the subboundary of all exit points for H.

We now give the observability inequality for Eq. (1).

Theorem 1.6 Let g ∈ L2(∂Ω × (0, T )) and let us consider the following problem

{
∂t u + H(t) · ∇u = 0 in Q := Ω × (0, T ),

u|∂Ω×(0,T ) = g.
(11)

Let us suppose that there exists a partition {t j }m0 of [0, T ]associated to H(t) satisfying
(4) such that the following condition holds

max
0≤ j≤m−1

(t j+1 − t j )dΩ(x j )

M2
Ω(x j )

>
1

H0(2S2∗ − 1)
, (12)

where MΩ(x j ), dΩ(x j ) and H0 are defined in (7) and (2), respectively. Then, there
exists a constant C > 0 such that the following inequality holds

‖u(·, t)‖L2(Ω) ≤ C‖g‖L2(∂Ω×(0,T )), 0 ≤ t ≤ T,

for any u ∈ H 1(Q) satisfying (11).
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Assumption (12) is meant to guarantee that the orbit {H(t) ∈ R
d : t ∈ [0, T ]}

intersects ∂Ω. In the following example, we show that this or a similar condition is
indeed necessary: observability fails without some extra assumption.

In the following, for η > 0 we consider Ωη := {z ∈ R
2 : |z| < η}.

Example 1 Let σ > 0 and ρ ∈ (0, 2σ/3). Let Ω := Ωρ and let f ∈ C1(Ωσ ;R)

satisfy supp( f ) ⊂ Ωρ/2 ⊆ Ωσ and let α(t) = (ρ cos t, ρ sin t), t ∈ [0, 2π ]. We set

v(x, y, t) = f (x − ρ cos t, y − ρ sin t).

Thus, v satisfies (1), where H(t) = α′(t), 0 ≤ t ≤ T , and v vanishes at the boundary
of Ωσ . So, {

∂t v + α′(t) · ∇v = 0 in Ωσ × (0, T ),

v|∂Ωσ ×(0,T ) = g,
(13)

with g ≡ 0. We note that |α′(t)| = ρ > 0 and, for t ∈ [0, T ], the support of v(·, ·, t)
is

supp(v(·, ·, t)) =
{
(x, y) ∈ R

2 : |(x − ρ cos t, y − ρ sin t)| <
ρ

2

}
. (14)

Then, from (13) and (14) it follows that observability fails. �

We conclude this introduction with some comments on our main results.

1. One could establish an estimate similar to the one in Theorem 1.6 with the max-
imum norm by the method of characteristics. Our proof is based on Carleman
estimates, which naturally provide L2-estimates for solutions over Ω × {t}. The
method of characteristics does not yield such global L2-estimates directly. L2-
estimates, not estimates in the maximum norm, are related to exact controllability
and aremoreflexibly applied to other problems such as inverse problems, although
we discuss no such aspects in this paper.

2. Although, due to the simplicity of Eq. (1), the method of characteristics can be
easily applied to explain the validity of observability results, the one point we
would like to stress is the fact that, in this paper, we intend to derive a Carleman
estimate under minimal assumptions. Essentially, we want to give an explicit
construction of the weight function that only depends on the lower bound (2) and
the modulus of continuity of H.

3. It is worth noting that Theorem 1.6 aims at the determination of the solution u
on the whole cylinder Ω × [0, T ], not only of u(·, 0) in Ω . For this reason, in
Theorem1.6,wehave tomeasure data on thewhole lateral boundary ∂Ω × (0, T ),
not just on a subboundary as we did for the Carleman estimate in Theorem 1.5—
where, however, the norm of u(·, T ) inΩ is included. The fact that measurements
on the whole boundary are necessary to majorize u on Ω × [0, T ] can be easily
understood by looking at the representation solutions given by characteristics.

4. Another purpose of this paper is to single out an assumption which suffices to
derive observability from a Carleman estimate. We do so with condition (12),
which has a clear geometric meaning: one requires H(t) not to oscillate too much
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for enough time, giving an explicit evaluation of such a time. We do not pretend
our method to provide the optimal evaluation of the observability time. On the
other hand, Example 1 shows that some assumption is needed for observability:
(12) is an example of a sufficient quantitative condition for the observability of
solutions on Ω × [0, T ].

Main References and Outline of the Paper

Carleman estimates for transport equations are proved in Gaitan and Ouzzane [5],
Gölgeleyen and Yamamoto [6], Cannarsa et al. [4], Klibanov and Pamyatnykh [7],
Machida andYamamoto [8] to be applied to inverse problemsof determining spatially
varying coefficients, where coefficients of the first-order terms in x are assumed not
to depend on t . In order to improve results for inverse problems by the application of
Carleman estimates, we need a better choice of the weight function in the Carleman
estimate. The works [5] and [7] use one weight function which is very conventional
for a second-order hyperbolic equation but seems less useful to derive analogous
results for a time-dependent function H(t). Our choice is more similar to the one in
[8] and [6], but even these papers allow no time dependence for H . Although it is
very difficult to choose the best possible weight function for the partial differential
equation under consideration, our choice (8) of the weight function seems more
adapted for the nature of the transport Eq. (1).

In [4] we consider the transport equation ∂t u(x, t) + (H(x) · ∇u(x, t)) + p(x)
u(x, t) = 0 inΩ × (0, T ) (Ω ⊂ R

n bounded domain), and discuss two inverse prob-
lems which consist of determining a vector-valued function H(x) or a real-valued
function p(x) by initial values and data on a subboundary of Ω . In particular in [4]
we obtain conditional stability of Hölder type in a subdomain D provided that the
outward normal component of H(x) is positive on ∂D ∩ ∂Ω . The proofs are based
also on a Carleman estimate where the weight function depends on H .

As it is commented above, the method of characteristics is applicable to inverse
problems for first-order hyperbolic systems as well as transport equations and we
refer for example to Belinskij [2] and Chap.5 in Romanov [9], which discuss an
inverse problem of determining an N × N -matrix C(x) in

∂tU (x, t) + Λ∂xU (x, t) + C(x)U (x, t) = F(x, t), 0 < x < �, t > 0

with a suitably given matrix Λ and vector-valued function F . The works [2] and
[9] apply the method of characteristics to prove the uniqueness and the existence of
C(x) realizing extra data of U provided that � > 0 is sufficiently small.

The method by Carleman estimates for establishing both energy estimates like
Theorem 1.6 and inverse problems of determining spatial varying functions is well-
known for hyperbolic and parabolic equations and we refer to Beilina and Klibanov
[1], Bellassoued and Yamamoto [3], Yamamoto [10].

The plan of the paper is the following. In Sect. 2, we prove the Carleman estimate
(Theorem 1.5). In Sect. 3, we obtain the observability inequality (Theorem 1.6).
Finally, in Appendix we put the proof of Lemma 1.2.
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2 Proof of the Carleman Estimate

Let S∗ ∈
(

1√
2
, 1

)
and {t j }m0 a partition of [0, T ] associated to H(t) such that (4) is

satisfied.

2.1 Some Preliminary Lemmas

Lemma 2.1 Given R j , j = 0, . . . ,m − 1, as in (6), then

(x + R jη j ) · η j ≥ S∗|x + R jη j |, ∀x ∈ Ω, (15)

where η j are defined in (3).

Proof For every x ∈ Ω , we have |x | = |x − 0| ≤ δΩ since 0 ∈ Ω , and

S∗|x + R jη j | ≤ S∗
(|x | + R j |η j |

) = S∗
(|x | + R j

) ≤ S∗
(
δΩ + R j

)
, (16)

and, since −x · η j ≤ |x · η j | ≤ |x ||η j | = |x | ≤ δΩ,

(x + R jη j ) · η j = x · η j + R jη j · η j = x · η j + R j ≥ R j − |x | ≥ R j − δΩ. (17)

From (16) and (17) it follows that a sufficient condition for the inequality (15) is the
following

R j − δΩ ≥ S∗(δΩ + R j ),

that is, R j ≥ 1+S∗
1−S∗ δΩ. For every j = 1, . . . ,m − 1, the last condition is verified by

R j defined as in (6). �
By the definition (6) of the sequence {R j } the following Lemma 2.2 follows.

Lemma 2.2 Let x j = −R jη j , j = 0, . . . ,m − 1, with R j defined as in (6). Then

MΩ(x j ) = max
x∈Ω

|x − x j | < min
x∈Ω

|x − x j+1| = dΩ(x j+1), j = 0, . . . ,m − 2.

(18)

By Lemma 2.2 (see also Fig. 2) we deduce

max
j=0,...,m−1

MΩ(x j ) = MΩ(xm−1) and min
j=0,...,m−1

dΩ(x j ) = dΩ(x0). (19)

Lemma 2.3 Let x j = −R jη j , j = 0, . . . ,m − 1,with R j defined as in (6). Then,

H(t) · (x − x j ) ≥ C∗ H0 dΩ(x0), t j ≤ t ≤ t j+1, j = 0, . . . ,m − 1, x ∈ Ω,

where C∗ = 2S2∗ − 1 > 0 and H0 = min
t∈[0,T ] |H(t)| > 0.
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Proof Let ϑ∗ ∈ (0, π/4) satisfy cosϑ∗ = S∗. For t ∈ [t j , t j+1], j = 0, . . . ,
m − 1, from (15) and Remark 1.3 we deduce that

H(t) · (x − x j ) ≥ cos 2ϑ∗ H0dΩ(x j ) ≥ (2S2∗ − 1) H0dΩ(x0), x ∈ Ω

which is our conclusion. �

2.2 Derivation of the Carleman Estimate

After introducing the previous lemmas in Sect. 2.1, we are able to prove Theorem
1.5. In this section, for simplicity of notations, for j = 0, . . . ,m − 1 let us set

Mj := MΩ(x j ) and μ j := dΩ(x j ), (20)

see (7) for the definitions of MΩ(x j ) and dΩ(x j ).

Proof (of Theorem 1.5). We derive a Carleman estimate on

Q j := Ω × (t j , t j+1), 0 ≤ j ≤ m − 1.

Let wj := esϕ j u, where ϕ j is defined in (8), and

L jw j := esϕ j P(e−sϕ j w j ). (21)

By direct calculations, we obtain

L jw j = ∂tw j + H(t) · ∇wj − s(Pϕ j )wj in Q j , (22)

where, keeping in mind (8) and the definition of the operator P contained in (1),

Pϕ j (x, t) = ∂tϕ j + H(t) · ∇ϕ j = −β + 2H(t) · (x − x j ), 0 ≤ j ≤ m − 1.

By Lemma 2.3 and (9), since β = (2S2∗ − 1)H0μ0 ∈ (
0, 2(2S2∗ − 1)H0μ0

)
we have

Pϕ j = −β + 2H(t) · (x − x j ) ≥ C∗H0μ0, (23)

where C∗ = 2S2∗ − 1. Therefore, by (23) we obtain
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∫
Q j

|L jw j |2dxdt ≥ −2s
∫
Q j

(Pϕ j )wj (∂tw j + H(t) · ∇wj )dxdt

+ s2
∫
Q j

|2H(t) · (x − x j ) − β|2|wj |2dxdt

≥ I1 + I2 + C2
∗H

2
0 μ2

0 s
2
∫
Q j

|wj |2dxdt, (24)

where

I1 := −2s
∫
Q j

(Pϕ j )wj∂tw jdxdt and I2 := −2s
∫
Q j

(Pϕ j )H(t) · (wj∇wj )dxdt.

We have

I1 = −2s
∫
Q j

(Pϕ j )wj∂tw jdxdt = −s
∫ t j+1

t j

∫
Ω

(Pϕ j )∂t (w
2
j )dxdt

= s
∫

Ω

[
Pϕ j (x, t)|wj (x, t)|2

]t=t j
t=t j+1

dx + s
∫
Q j

∂t (Pϕ j (x, t))|wj |2dxdt. (25)

Recalling (20), we obtain

∂t (Pϕ j (x, t)) = 2(x − x j ) · H ′(t) ≥ −2Mm−1 max
t∈[0,T ] |H

′(t)| =: −H ′
0.

Consequently, from (25) we deduce

I1 ≥ s
∫

Ω

[
Pϕ j (x, t)|wj (x, t)|2

]t=t j
t=t j+1

dx − s H ′
0

∫
Q j

|wj |2dxdt. (26)

Then, for I2 we deduce

I2 = −2s
∫
Q j

(Pϕ j )H(t) · (wj∇wj )dxdt = −s
∫ t j+1

t j

∫
Ω

Pϕ j

d∑
k=1

Hk(t)∂k(w
2
j )dxdt

= s
∫ t j+1

t j

∫
Ω

d∑
k=1

(∂k(Pϕ j ))Hk(t)|wj |2dxdt − s
∫ t j+1

t j

∫
∂Ω

Pϕ j (H(t) · ν(x))|wj |2dγ dt.

We note that
H(t) · (x − x j ) ≤ |H(t)||x − x j | ≤ H∗M∗, (27)

where we set (see (19))

M∗ = Mm−1 and H∗ := max
t∈[0,T ] |H(t)| > 0.
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Therefore, since Pϕ j > 0 by (23) and ∂k(Pϕ j ) = 2Hk(t), we estimate I2 in the
following way:

I2 = 2s
∫ t j+1

t j

∫
Ω

d∑
k=1

H 2
k (t)|wj |2dxdt − s

∫ t j+1

t j

∫
∂Ω

Pϕ j (H(t) · ν(x))|wj |2dγ dt

≥ 2s
∫ t j+1

t j

∫
Ω

|H(t)|2|wj |2dxdt

− s
∫

Σ j

(−β + 2H(t) · (x − x j ))(H(t) · ν(x))|wj |2dγ dt

≥ 2 H 2
0 s

∫ t j+1

t j

∫
Ω

|wj |2dxdt − 2s
∫

Σ j

(H(t) · (x − x j ))(H(t) · ν(x))|wj |2dγ dt

≥ 2 H 2
0 s

∫
Q j

|wj |2dxdt − 2H∗M∗s
∫

Σ j

|H(t)||ν(x)||wj |2dγ dt

≥ 2 H 2
0 s

∫
Q j

|wj |2dxdt − 2H 2
∗ M∗s

∫
Σ j

|wj |2dγ dt, (28)

where
Σ j = {(x, t) ∈ ∂Ω × (t j , t j+1) : H(t) · ν(x) ≥ 0}.

Hence, by (24), (26) and (28), we obtain

∫
Q j

|L jw j |2dxdt ≥ s
∫

Ω

[
Pϕ j (x, t)|wj (x, t)|2

]t=t j
t=t j+1

dx

− H ′
0s

∫
Q j

|wj |2dxdt + C1s
2
∫
Q j

|wj |2dxdt

− 2H 2
∗ M∗s

∫
Σ j

|wj |2dγ dt ,

for some positive constant C1. Since wj := esϕ j u, from the previous inequality, for
j = 0, . . . ,m − 1, by (21) we deduce that there exists also a positive constant C2

such that

∫ t j+1

t j

∫
Ω

|Pu|2e2sϕ j dxdt ≥ s
∫

Ω

ψ j (x)dx + (C1s
2 − H ′

0s)
∫
Q j

e2sϕ j |u|2dxdt

− C2se
C2s

∫
Σ j

|u|2dγ dt, (29)

where C1, C2 are positive constants and

ψ j (x) := [
Pϕ j (x, t)e

2sϕ j (x,t) |u(x, t)|2]t=t j
t=t j+1

.
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By (8) and (23) we obtain

ψ j (x) =
[(
2H(t) · (x − x j ) − β

)
e2s(−β(t−t j )+|x−x j |2)|u(x, t)|2

]t=t j

t=t j+1

= (2H(t j ) · (x − x j ) − β)e2s|x−x j |2 |u(x, t j )|2
− (2H(t j+1) · (x − x j ) − β)e2s(−β(t j+1−t j )+|x−x j |2)|u(x, t j+1)|2. (30)

Therefore, summing in j from 0 tom − 1 and keeping inmind that t0 = 0 and tm = T
by (9) and (27) we have

m−1∑
j=0

ψ j (x) ≥ (2H(0) · (x − x0) − β)e2s(|x−x0|2)|u(x, 0)|2 +
m−1∑
j=1

q j (x)|u(x, t j )|2

− (2H(T ) · (x − xm−1) − β)e2s(−β(T−tm−1)+|x−xm−1|2)|u(x, T )|2

≥ μ0H0e
2sμ2

0 |u(x, 0)|2 − 2M∗H∗e2sM
2∗ |u(x, T )|2 +

m−1∑
j=1

q j (x)|u(x, t j )|2,

where, for j = 1, . . . ,m − 1, we set

q j (x) := (2H(t j ) · (x − x j ) − β)e2s|x−x j |2 − (
2H(t j ) · (

x − x j−1
) − β

)
e2s

∣∣x−x j−1
∣∣2

.

Thus, by (7), (20), (23) and (27), we obtain the following estimate

q j (x) ≥ C̃μ0H0e
2sμ2

j − H∗M∗e2sM
2
j−1 = C̃μ0H0e

2sμ2
j

(
1 − M∗H∗

C̃μ0H0

e
−2s

(
μ2

j−M2
j−1

))
.

Thanks to (18) (see Lemma 2.2), the choice of the points x j permits to have
μ j − Mj−1 > 0, and we deduce that there exist s j > 0 enough large, that is s j >

1

2
(
μ2

j−M2
j−1

) log
(
2H∗M∗
C̃μ0H0

)
, j = 1, . . . ,m − 1, such that, for every s > s0 := max

j=1,...,m−1
s j ,

we have q j (x) ≥ μ0H0

2
e2sμ

2
j ≥ μ0H0

2
e2sμ

2
0 ≥ C0e

C0s, (31)

for some positive constant C0 = C0(s). Thus, by (29), (30), and (31) we have that

∫
Q

|Pu|2e2sϕdxdt =
m−1∑
j=0

∫ t j+1

t j

∫
Ω

|Pu|2e2sϕ j dxdt

≥ s
m−1∑
j=0

∫
Ω

ψ j (x)dx + (C1s
2 − H ′

0s)
m−1∑
j=0

∫
Q j

e2sϕ j |u|2dxdt
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− C2se
C2s

m−1∑
j=0

∫
Σ j

|u|2dγ dt

≥ C3s
2
∫
Q
e2sϕ j |u|2dxdt − C2se

C2s
m−1∑
j=0

∫
Σ j

|u|2dγ dt

+ C0se
C0s

m−1∑
j=0

∫
Ω

|u(x, t j )|2dx − C2se
C2s

∫
Ω

|u(x, T )|2 dx

for any 0 < C3 < C1 and all s sufficiently large. The last estimate completes the
proof of Theorem 1.5. �

3 Proof of the Observability Inequality

Let us give in Sect. 3.1 two lemmas and in Sect. 3.2 the proof of Theorem 1.6.

3.1 Energy Estimates

Let us give the following energy estimates.

Lemma 3.1 Let g ∈ L2(∂Ω × (0, T )) and let us consider the problem

{
∂t u + H(t) · ∇u = 0 in Q := Ω × (0, T ),

u|∂Ω×(0,T ) = g.
(11)

Then, for every t ∈ [0, T ], the following energy estimates hold

‖u(·, t)‖2L2(Ω) ≤ ‖u(·, 0)‖2L2(Ω) + H∗‖g‖2L2(∂Ω×(0,T )), (32)

‖u(·, 0)‖2L2(Ω) ≤ ‖u(·, t)‖2L2(Ω) + H∗‖g‖2L2(∂Ω×(0,T )), (33)

for any u ∈ H 1(Q) satisfying (11), where H∗ := max
ξ∈[0,T ] |H(ξ)|.

Proof Let H(t) = (H1(t), . . . , Hd(t)), t ∈ [0, T ]. Multiplying the equation in (11)
by 2u and integrating over Ω , we have

∫
Ω

2u∂t udx +
∫

Ω

d∑
k=1

Hk(t)2u∂kudx = 0,

then,
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∂t

(∫
Ω

|u(x, t)|2dx
)

+
d∑

k=1

∫
Ω

Hk(t)∂k(|u(x, t)|2)dx = 0.

So, integrating by parts, for every t ∈ [0, T ], we obtain

∂t

(∫
Ω

|u(x, t)|2dx
)

= −
d∑

k=1

∫
∂Ω

Hk |u|2νkdγ = −
∫

∂Ω

(H · ν)|g|2dγ, (34)

where ν = (ν1, . . . , νd) is the unit normal vector outward to the boundary ∂Ω . Setting

E(t) :=
∫

Ω

|u(x, t)|2dx, t ∈ [0, T ],

by (34), integrating on [0, t] we deduce

|E(t) − E(0)| =
∣∣∣∣−

∫ t

0

∫
∂Ω

(H(ξ) · ν(x))|g(x, ξ)|2dγ dξ

∣∣∣∣ ≤ H∗‖g‖2L2(∂Ω×(0,T ))

where H∗ = max
ξ∈[0,T ] |H(ξ)|. Thus, for all t ∈ [0, T ], we have

E(t) ≤ E(0) + H∗‖g‖2L2(∂Ω×(0,T )),

and
E(0) ≤ E(t) + H∗‖g‖2L2(∂Ω×(0,T )). �

Lemma 3.2 Let 0 ≤ s1 < s2 ≤ T, g ∈ L2(∂Ω × (0, T )). Let us assume that there
exists a positive constant C = C(s1, s2) such that for every t ∈ [s1, s2] the following
observability inequality holds

‖u(·, t)‖L2(Ω) ≤ C‖g‖L2(∂Ω×(0,T )), for all u ∈ H 1(Q) solution to (11). (35)

Then, there exists a positive constant C = C(s1, s2, T ) such that the inequality (35)
holds for every t ∈ [0, T ].
Proof Let E(t) = ‖u(·, t)‖2L2(Ω)

, t ∈ [0, T ]. For every t ∈ [0, s1], keeping in mind
Lemma 3.1, by (32), (33) and (35) we obtain

‖u(·, t)‖2L2(Ω) = E(t) ≤ E(0) + H∗‖g‖2L2(∂Ω×(0,T )) ≤ E(s1) + 2H∗‖g‖2L2(∂Ω×(0,T ))

≤ (C2 + 2H∗)‖g‖2L2(∂Ω×(0,T )) . (36)

For every t ∈ [s2, T ], using again Lemma 3.1, by (32) and (35) we deduce
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‖u(·, t)‖2L2(Ω)= E(t) ≤ E(s2) + H∗‖g‖2L2(∂Ω×(0,T ))≤ (C2 + H∗)‖g‖2L2(∂Ω×(0,T )) .

(37)
From (36) and (37) the conclusion follows. �

3.2 The Proof

Proof (of Theorem 1.6).
Let ϕ be the weight function given in (8). By the assumption (12) it follows that there
exists j∗ ∈ {0, . . .m − 1} such that

(t j∗+1 − t j∗)dΩ(x j∗)

M2
Ω(x j∗)

>
1

H0(2S2∗ − 1)
. (38)

By the definition of the weight function ϕ(x, t) (see (8)), it follows that, for every
x ∈ Ω, we have

ϕ(x, t j∗) = ϕ j∗(x, t j∗) = |x − x j∗ |2 > 0

and, since (38) holds, keeping in mind that β = (2S2∗ − 1)H0dΩ(x0),

lim
t→(t j∗+1)

−
ϕ j∗(x, t) = |x − x j∗ |2 − β(t j∗+1 − t j∗) < 0.

Therefore, there exist ε ∈
(
0,

t j∗+1 − t j∗

2

)
and δ > 0 such that

{
ϕ(x, t) = ϕ j∗(x, t) > δ, t ∈ [t j∗ , t j∗ + ε], x ∈ Ω,

ϕ(x, t) = ϕ j∗(x, t) < −δ, t ∈ [t j∗+1 − 2ε, t j∗+1), x ∈ Ω.
(39)

Let u ∈ H 1(Q) satisfy (11) on Q = Ω × (0, T ). Let us consider Q∗ := Ω ×
(t j∗ , t j∗+1) ⊆ Q. Now we define a cut-off function χ ∈ C∞([t j∗ , t j∗+1]) such that
0 ≤ χ ≤ 1 and

χ(t) =
{
1, t ∈ [t j∗ , t j∗+1 − 2ε],
0, t ∈ [t j∗+1 − ε, t j∗+1].

We set
v(x, t) = χ(t)u(x, t), (x, t) ∈ Q∗, (40)

and, keeping in mind (11) and (40), we deduce

⎧⎨
⎩

∂t v + H(t) · ∇v = u(∂tχ) in Q∗,
v|∂Ω×(t j∗ , t j∗+1) = χg,
v(x, t j∗+1) = 0, x ∈ Ω.

(41)
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Applying Theorem 1.5 to the problem (41), since |v(x, t)| ≤ |u(x, t)| for every
(x, t) ∈ Q∗ (see (40)), we obtain

s2
∫
Q∗

|v|2e2sϕdxdt ≤ C
∫
Q∗

|u|2|∂tχ |2e2sϕdxdt + CeCs
∫

Σ

|u|2dγ dt, (42)

for all large s > 0 and for some positive constant C .
Therefore, by (40) and (39) we have

s2
∫
Q∗

|v|2e2sϕdxdt ≥ s2
∫ t j∗ +ε

t j∗

∫
Ω

|u|2e2sϕ0dxdt ≥ s2e2sδ
∫ t j∗ +ε

t j∗

∫
Ω

|u|2dxdt
(43)

and, since χ ∈ C∞([t j∗ , t j∗+1]), we also deduce
∫
Q∗

|u|2|∂tχ |2e2sϕdxdt =
∫ t j∗+1−ε

t j∗+1−2ε

∫
Ω

|u|2|∂tχ |2e2sϕ j∗dxdt

≤ K1e
−2sδ

∫ t j∗+1−ε

t j∗+1−2ε

∫
Ω

|u|2dxdt ≤ K1‖u‖2L2(Q∗)e
−2sδ, (44)

for all large s > 0 and for some positive constant K1.
From (42), by (43) and (44) we obtain

s2e2sδ
∫ t j∗ +ε

t j∗

∫
Ω

|u|2dxdt ≤ C1‖u‖2L2(Q∗)e
−2sδ + C1e

C1s‖g‖2L2(∂Ω×(0,T )), (45)

for all large s > 0 and for some positive constant C1.
Setting

E(t) :=
∫

Ω

|u(x, t)|2dx, t ∈ [t j∗ , t j∗+1],

by the energy estimate (33) of Lemma 3.1 we deduce

∫ t j∗ +ε

t j∗

∫
Ω

|u|2dxdt =
∫ t j∗ +ε

t j∗
E(t)dt ≥

∫ t j∗ +ε

t j∗
(E(t j∗) − H∗‖g‖2L2(∂Ω×(0,T )))dt

= ε
(
E(t j∗) − H∗‖g‖2L2(∂Ω×(0,T ))

)
(46)

and, by the energy estimate (32) of Lemma 3.1 we obtain

‖u‖2L2(Q∗) =
∫ t j∗+1

t j∗
E(t)dt =

∫ t j∗+1

t j∗

(
E(t j∗) + H∗‖g‖2L2(∂Ω×(0,T ))

)
dt

≤ E(t j∗)T + H∗T ‖g‖2L2(∂Ω×(0,T )). (47)

Substituting (46) and (47) into (45), we have
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s2e2sδε
(
E(t j∗) − H∗‖g‖2L2(∂Ω×(0,T ))

)
≤ s2e2sδ

∫ t j∗ +ε

t j∗

∫
Ω

|u|2dxdt

≤ C1‖u‖2L2(Q∗)e
−2sδ + C1e

C1s‖g‖2L2(∂Ω×(0,T ))

≤ C1e
−2sδ

(
E(t j∗)T + H∗T ‖g‖2L2(∂Ω×(0,T ))

)

+ C1e
C1s‖g‖2L2(∂Ω×(0,T )),

for all large s > 0. Hence, for all s large enough,

(s2e2sδε − C1T e
−2sδ)E(t j∗) ≤

(
C1e

C1s + s2e2sδεH∗ + C1e
−2sδH∗T

)
‖g‖2L2(∂Ω×(0,T ))

But, for s > 0 enough large, s2e2sδε − C1T e−2sδ > 0. Thus, using again (32), for
every t ∈ [t j∗ , t j∗+1], we obtain

‖u(·, t)‖L2(Ω) = E(t) ≤ E(t j∗) + H∗‖g‖2L2(∂Ω×(0,T )) ≤ C2‖g‖L2(∂Ω×(0,T )),

for some positive constant C2. The conclusion of the proof of Theorem 1.6 fol-
lows from the above inequality, using Lemma 3.2 to extend the above observability
inequality from [t j∗ , t j∗+1] to [0, T ]. �

Remark 3.3 By adapting the above proof, one could easily obtain an observability
inequality for u(·, 0) on Ω , requiring measurements just on the subboundary Σ

defined in (10).
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Appendix

In this appendix we prove Lemma 1.2.

Proof (of Lemma 1.2). Since H ∈ Lip([0, T ];Rd) there exists L > 0 such that

|H(t) − H(s)| ≤ L|t − s|, ∀t, s ∈ [0, T ].
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Let us consider, for simplicity, a uniform partition {t j }m0 of [0, T ]. Let us set

η j := H(t j )

|H(t j )| , j = 0 . . . ,m − 1.

For t ∈ [t j , t j+1], j = 0, ...,m − 1, we deduce

H(t) · η j = (
H(t) − H(t j )

) · η j + H(t j ) · η j ≥ −|H(t) − H(t j )| + |H(t j )|
≥ −L|t − t j | + |H(t j )| ≥ −L

T

m
+ |H(t j )|, (48)

and, since |H(t)| ≤ ∣∣H(t) − H(t j )
∣∣ + |H(t j )|,

∣∣H(t j )
∣∣ ≥ |H(t)| − |H(t) − H(t j )| ≥ |H(t)| − L|t − t j | ≥ |H(t)| − L

T

m
. (49)

From (48) and (49), if we choose the uniform partition withm ≥ 2LT
H0(1−S∗) , where we

recall that H0 = min
t∈[0,T ] |H(t)|, we obtain the conclusion, that is,

H(t) · H(t j )

|H(t j )| ≥ |H(t)| − 2L
T

m
≥ S∗|H(t)|, ∀t ∈ [t j , t j+1], ∀ j = 0, . . . ,m − 1.

�
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On the Weak Maximum Principle
for Degenerate Elliptic Operators

Italo Capuzzo Dolcetta

Abstract This paper provides an overview of some more or less recent results con-
cerning the validity of the weak Maximum Principle for fully nonlinear degener-
ate elliptic equations. Special attention is devoted to the presentation of sufficient
conditions relating the directions of degeneracy and the geometry of the possibly
unbounded domain.

Keywords Fully nonlinear · Degenerate elliptic · Cylindrical domains · Principal
eigenvalue · Min-max formula · Finite difference approximations

1 Introduction

I will give an overview of some more or less recent results concerning the validity
of the weak Maximum Principle, that is of the following sign propagation property:

wMP if u satisfies F(x, u, Du, D2u) ≥ 0 in �, then u ≤ 0 on ∂� implies
u ≤ 0 in �

Here u ∈ USC(�), the set of real-valued upper semicontinuous functions on �,
F is a degenerate elliptic fully nonlinear mapping from � × IR × IRn × Sn into IR
and Sn is the space of n × n symmetric matrices.

In what follows � ⊂ IRn will be a general domain with possibly irregular bound-
ary satisfying either measure-type conditions or geometric conditions related to the
directions of ellipticity of F .

The results presented below apply to upper semicontinuous functions u satisfying
the partial differential inequality F(x, u, Du, D2u) ≥ 0 in viscosity sense [1] and,
a fortiori, in the classical sense. The motivation for considering non-smooth func-
tions is of course a strong one when dealing with fully nonlinear partial differential
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inequalities but is also a relevant one in the linear case, as pointed out by Calabi
[2]. In that paper, brought to the attention of the present author by Garofalo [3],
some version of the Hopf Maximum Principle is indeed proved to hold for upper
semicontinuous functions u satisfying the linear partial differential inequality

Tr(A(x)D2u) + b(x) · Du + c(x)u ≥ 0

in an appropriately defined weak sense. It is worth to note that the weak notion
considered in [2] is in fact similar although a bit stronger than the viscosity notion,
see Mantegazza et al. [4] for comments in this respect.

My presentation here is based in particular on the papers [5–9]. I refer to these
papers for more informations and proofs.

2 The Weak Maximum Principle in Bounded Domains:
A Numerical Criterion

We consider first the case of a bounded domain � ⊆ IRn and report on a charac-
terization result in [5]. Let us start by recalling some well-known facts [10] in the
framework of linear uniformly elliptic operators

L[u] = Tr(A(x)D2u) + b(x) · Du + c(x)u, α I ≤ A(x) ≤ β I

with, say, continuous and bounded coefficients A, b, c, α > 0.
Several sufficient conditions of different nature known to imply the validity of

wMP in a bounded domain �, e.g.

• (i) c(x) ≤ 0
• (ii) exists φ > 0 in � such that L[φ] ≤ 0
• (ii) � is narrow (i.e. contained in a suitably small strip)

Simple examples show however that none of these conditions is however necessary
for the validity of the weak Maximum Principle. What about sufficient and also
necessary conditions for the validity of the Maximum Principle?

An important characterization result is due to Berestycki, Nirenberg andVaradhan
[11]:

wMPholds for uniformly elliptic operators

L[u] = Tr(A(x)D2u) + b(x) · Du + c(x)u

in a bounded domain � if and only if the number λ1 defined by

λ1 := sup{λ ∈ IR : ∃ φ > 0 in � such that L[φ] + λφ ≤ 0 in�}
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is strictly positive. In the definition of λ1, φ ∈ W 2,p
loc (�).

Notably, this very nice numerical criterion was proved to hold under mild condi-
tions on the coefficients and applies to a large class of domains with rough boundary
∂�.

In the above result the matrix A(x) is required to be uniformly positive definite
but not necessarily symmetric. Note that even for symmetric A the operator L is not
in general self-adjoint due to the presence of the drift term b.

Nonetheless, in [11] it is proved that the number λ1 shares some of the properties
of the classical principal eigenvalue for the Dirichlet problem, namely:

• there exists a principal eigenfunction w1 > 0 in� such that
L[w1] + λ1w1 = 0 in �, w1 = 0 on ∂�

• w1 is simple
• Reλ ≥ λ1 for any other eigenvalue λ of L

The existence of an associated positive and simple eigenfunction follows from the
Krein-Rutman theorem thanks to compactness estimates guaranteed by the uniform
ellipticity of L and the boundedness of �.

The Berestycki-Nirenberg-Varadhan definition above can be expressed by the
equivalent pointwise min-max formula

λ1 = − inf
φ(x)>0

sup
x∈�

Lφ(x)

φ(x)

where φ ∈ W 2,p
loc (�). The same formula, under more restrictive conditions (smooth

boundary, continuous coefficients), was considered before in [12].
In that same paper different equivalent representation formulas for λ1 were also

proposed in terms of the average long-run behaviour of the positive semigroup gen-
erated by L . More precisely,

λ1 = − lim
t→+∞

1

t
log sup

x∈�

∫
�

p(t, x, y)dy

where p(t, x, y)dy is the positive density defining the semigroup generated by −L .
A much older reference is [13] where the same min-max formula is proposed for

the principal Dirichlet eigenvalue for the Laplace operator, see also [14].
One motivation for considering similar formulas in the nonlinear case comes

from ergodic optimal control. Consider for example the viscous Hamilton–Jacobi
equation, that is the Bellman equation satisfied by the value function uα of an infinite
horizon stochastic discounted optimal control problem with running cost V :

−1

2

uα + 1

2
|∇uα|2 − V (x) + αuα = 0 , x ∈ IRn

where α > 0 is the discount parameter and the eigenvalue problem for the linear
Schrödinger type equation
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−1

2

� + V (x)� = λ�

If (λ1,� > 0) is a principal eigenvalue-eigenfunction pair, it is easy to check that
the function w = − log� + ∫

IRn �2 log� dx satisfies

−1

2

w + 1

2
|∇w|2 − V (x) + λ1 = 0 ,

∫
IRn

w �2 = 0

which is the Bellman equation of ergodic optimal control.
It can be proved, under some conditions on V , that as α → 0

αuα → λ1, uα −
∫
IRn

uα �2 dx → w

This PDE approach to ergodic optimal control has been introduced by Lasry [15],
developed later by P.L. Lions [16], Bensoussan-Nagai [17] andmany other authors in
more general settings including the case of controlled degenerate diffusions andmore
general Hamiltonians modelled by operators of the type F(D2(w)) + H(x, Dw)

with F convex, see [18].
According to this kind of motivations a quite natural question arises: does the

Berestycki-Nirenberg-Varadhan characterization holds true as it is, or may be with
suitable modifications, in the case of degenerate elliptic operators

Tr(A(x)D2u) + b(x) · Du + c(x)u

with A(x) non-negative definite and, more generally, for fully nonlinear degenerate
elliptic operators ?

That is, is there a number associated to F and � whose positivity enforces the
validity of wMPand conversely?

Recall that the mapping F : � × IR × IRn × Sn → IR is degenerate elliptic if the
weak monotonicity condition

F(x, r, p, X + Y ) ≥ F(x, r, p, X)

holds true for any non-negative definite matrix Y ∈ Sn . The starting point of our
research in [5] was the observation that the definition of λ1 in [11] does not work at
this purpose in the case of degenerate ellipticity as shown by very simple examples
whose analysis lead us to the following definition of the number

μ1(F,�) := sup{λ ∈ IR : ∃�′ ⊃ �, ∃φ ∈ C(�′), φ > 0, F[φ] + λφα ≤ 0 in �′}

associated to a degenerate elliptic mapping F which is assumed to be homogeneous
of degree α > 0 with respect to the matrix slot. Given a domain � in IRN and an
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open set O such that � ⊂ O and an operator F positively homogeneous of degree
α > 0

One cannot expect, in the general case, μ1(F,�) to be a genuine principal eigen-
value. However, under uniform ellipticity for F , this is in fact the case as can be
proved following ideas in [19].

The definition seems to depend on the choice of the setO but in fact this is not the
case as confirmed by the Theorem below, proved in [5] for a general F depending on
all variables. For the sake of simplicity we confine ourselves here to the simplified
model F(x, u, Du, D2u) = F(D2u) − f (x).

Theorem 2.1 Let� be a bounded domain in IRn andO an open set such that� ⊂ O.
Assume that F is continuous, degenerate elliptic, positively homogeneous of degree
α > 0. Assume also that f ∈ C(�).Then

F satisfies wMP in � if and only if μ1(F,�) > 0

For general F extra assumptions are needed, including the Crandall-Ishii-Lions
structural condition to guarantee the comparison property between viscosity sub and
supersolutions.

As far as we know the above result is new even for smooth subsolutions of degen-
erate elliptic linear operators.

Here below a few examples to illustrate the result above:

• Zero order inequalities: F(u(x)) = c(x)u(x) ≥ 0. If c(x) < 0 then, trivially,
u(x) ≤ 0 and, as easy to check μ1(F,�) > 0.
More generally, if F(x, u, Du, D2u) = F(u(x)) ≥ 0 and F is decreasing with
F(0) = 0 then, trivially, μ1 > 0 and u ≤ F−1(0) = 0.

• Transport operators: b(x) · ∇u ≥ 0, x ∈ � , u ≤ 0, x ∈ ∂�

It is not difficult to check that if b vanishes somewhere in � then μ1 = 0.
On the other hand, if there exists a Lyapunov function L such that ∇L �= 0 and
b · ∇L > 0 then μ1 > 0.

• Subelliptic operators: if the ellipticity of F is not degenerate in some direction ν,
that is

F(x, r, p, X + ν ⊗ ν) − F(x, r, p, X) ≥ β > 0

and if the positive constantsC satisfy F(x,C, 0, 0) ≥ 0 in�′, then μ1(F,�) > 0.
This is seen by taking φ(x) = 1 − εeσν·x , with σ large and ε small.
Above conditions satisfied for instance by the 2-dimensional Grushin operator:
∂xx + |x |k∂yy with k an even positive integer.

• Harvey-Lawson Hessian operators, see [20]:

Hk(D
2u) := ηn−k+1(D

2u) + . . . + ηn(D
2u),

k an integer between 1 and n, η1(D2u) ≤ η2(D2u) ≤ . . . ≤ ηN (D2u) the ordered
eigenvalues of the matrix D2u. A test with quadratic polynomials shows that
μ1(Hk) > 0.
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3 Unbounded Domains and Uniform Ellipticity

It is well-known thatwMPmay not hold in general unbounded domains: just observe
that

u(x) = 1 − 1

|x |n−2

with n ≥ 3 satifies �u = 0 in the exterior domain � = IRn \ B1(0), u ≡ 0 on ∂�

but u > 0 in �.
Some remarkable results concerning the validity of wMP for linear uniformly

elliptic operators in unbounded domains are due to [21]. He considered domains
satisfying the following measure-geometric condition:

(G) for fixed numbers σ, τ ∈ (0, 1), there exists a positive real number R(�)

such that for any y ∈ � there exists an n-dimensional ball BRy of radius Ry ≤ R(�)

satisfying
y ∈ BRy , |BRy \ �y,τ | ≥ σ|BRy |

where �y,τ is the connected component of � ∩ BRy/τ containing y.
The above condition, first introduced in [11] requires, roughly speaking, that there

is enough boundary near every point in � allowing so to carry the information on
the sign of u from the boundary to the interior of the domain.

Condition (G) is satisfied for example by unbounded domains with finite mea-
sure with R(�) = C(n)|�| 1

n and also for a large class of unbounded domains with
possibly infinite Lebesgue measure such as infinite cylinders.

On the other hand (G) does not hold on cones: this can be seen as a consequence
of the fact that (G) implies supy∈� dist(y, ∂�) < +∞ .

Another quite simple example of an unbounded domain with infinite Lebesgue
measure satisfying (G) is provided by the perforated plane

IR2
per = IR2 \

⋃
(i, j)∈Z2

Br (i, j)

where Br (i, j) is the disc of radius r < 1 centered at (i, j). Observe that supy∈IR2
per

dist

(y, ∂R2
per ) < +∞ which is definitely not the case for the exterior domain

IRn \ B1(0) considered before.
For domains satisfying (G) Cabré [21] proved an Alexandrov-Bakelman-Pucci

(ABP) type estimate:
If u is aW 2,p strong solution of the uniformly elliptic partial differential inequality

Tr
(
A(x) D2u

) + b(x) · Du + c(x) u ≥ f (x) in �
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with
A(x)ξ · ξ ≥ α|ξ|2 , α > 0

then
sup
�

u ≤ sup
∂�

u+ + C R(�) || f ||Ln(�)

As a consequence of the (ABP) estimate above, if f ≡ 0 and u ≤ 0 on ∂�, the
validity of wMP follows in the case of linear uniformly elliptic operators.

Some of the results in [21] have been later generalized to viscosity solutions of
fully nonlinear uniformly elliptic inequalities in [6] under a weaker form of (G),
namely

(wG) there exist constants σ, τ ∈ (0, 1) such that f or all y ∈ � there is a
ball BRy o f radius Ry containing y such that

|BRy \ �y,τ | ≥ σ|BRy |

where�y,τ is the connected component o f � ∩ BRy/τ containing y .
If supy∈� Ry < +∞ in the above definition, then � satisfies condition (G). Typ-

ical examples of unbounded domains satisfying condition (wG) but not (G) are
nondegenerate cones of IRn (and all their unbounded subsets). Indeed, condition
(wG) is satisfied in this case with Ry = O(|y|) as |y| → ∞.

A less standard example is the plane domain described in polar cohordinates as
� = IR2 \ {


 = eθ , θ ≥ 0
}
. Here (wG) holds with Ry = O

(
e|y|) as |y| → ∞.

The main result in [6] is the following version of the (ABP) estimate and as a
by-product in the case f − = 0 in �, the validity of wMP :

Theorem 3.1 Assume that F satisfies

• αTr (Y ) ≤ F(x, t, p, X + Y ) − F(x, t, p, X) ≤ β Tr (Y ) for some 0 < α ≤ β
• t �→ F(x, t, p, X) is nonincreasing
• F(x, 0, p, O) ≤ b(x) |p|
for all (x, t, p, X) and for all Y ≥ O. Assume also that � satisfies (wG) and

(C) sup
y∈�

Ry ‖b‖L∞(�y,τ ) < ∞

If u ∈ USC(�) with sup� u < +∞ is a solution of F(x, u, Du, D2u) ≥ f (x) in �

where f ∈ C(�) ∩ L∞(�), then

(ABP) sup
�

u ≤ sup
∂�

u+ + C sup
y∈�

Ry ‖ f −‖LN (�y,τ )

for some positive constant C depending on N , α, β, σ, τ and sup
y∈�

Ry ‖b‖L∞(�y,τ ) .
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To obtain the ABPestimate in this more general case we will assume, besides
condition (wG) on the domain, the following coupled requirement on the geometry
of the domain and on the growth of the first order coefficients:

(C) sup
y∈�

Ry ‖b‖L∞(�y,τ ) < ∞

This condition is trivially satisfied if supy∈� Ry ≤ R0 < +∞ in (wG), i.e. if� satis-
fies (G), or when b ≡ 0, namely when F does not depend on first-order derivatives.
For a complete operator, condition (wG) alone is not enough to guarantee the validity
of the Maximum Principle. Indeed, the function

u(x) = u(x1, x2) = (
1 − e1−xα

1
) (

1 − e1−xα
2
)

,

with 0 < ε < 1, is bounded and strictly positive in the cone

� = {
x = (x1, x2) ∈ IR2 : x1 > 1, x2 > 1

}

and satisfies
u ≡ 0 on ∂�, �u + B(x) · Du = 0 in �

where the vectorfield B is given by

B(x) = B(x1, x2) =
(

ε

x1−ε
1

+ 1 − ε

x1
,

ε

x1−ε
2

+ 1 − ε

x2

)

As observed above, � satisfies (wG) with Ry = O(|y|) as |y| → ∞.
Since |B|L∞(�y,τ ) = 1 for every y ∈ �, the interplay condition (C) fails in this

example.
Here are some non trivial cases in which the interplay condition (C) is fulfilled:

• � = {
(x ′, xN ) ∈ IRN−1 × IR : |x ′| < 1 , xN > 0

}
. Since � satisfies condition

(G), then (C) is satisfied if b is any nonnegative bounded and continuous function.
• � = {

(x ′, xN ) ∈ IRN−1 × IR : xN > |x ′|q} with q > 1. Satisfies assumption
(wG) with radii Ry = O

(|y|1/q) as |y| → ∞. In this case, (C) imposes to the
function b a rate of decay b(y) = O

(
1/|y|1/q) as |y| → ∞.

• � is the strictly convex cone
{
x ∈ IRN \ {0} : x/|x | ∈ �

}
where� is a proper sub-

set of the unit half-sphere SN−1+ =
{
x = (x ′, xN ) ∈ IRN−1 × IR : |x | = 1 , xN > 0

}
.

In this case, condition (wG) is satisfied with Ry = O(|y|) for |y| → ∞ and con-
dition (C) requires on the coefficient b the rate of decay b(y) = O (1/|y|) as
|y| → ∞.

It is not hard to check that the values σ = 1
2 and τ < 1 are feasible for the validity

of the measure-geometric conditions in all the above examples.
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4 One-Directional Elliptic Operators on Special
Unbounded Domains

This section is a brief overview of some recent results in collaborationwithVitolo, [7,
8] about the validity of various versions of thewMP for degenerate elliptic operators
F which are strictly elliptic on unbounded domains � of Rn whose geometry is
related to the direction of ellipticity.

Some results of that kind for one-directional elliptic operators in bounded domains
have been previously established by Caffarelli-Li-Nirenberg [22] , see also [23].

Assume that IRn is decomposed as the direct sum U
⊕

U⊥ where U is a k-
dimensional subspace of IRn andU⊥ is its orthogonal complement and denote by P
and Q the projection matrices on U and U⊥, respectively.

We will consider special open domains � satisfying the following condition

(�˚) � ⊆ {x ∈ R
n : a ≤ x · νh ≤ a + d, h = 1, . . . , k} for some a ∈ R, d > 0 ,

where {ν1, . . . , νk} is an orthonormal basis for the subspace U .
Domains as � are contained in infinite parallelepipeds whose k-dimensional

orthogonal section is a cube of edge d.
They may be unbounded and of infinite Lebesgue measure but they do indeed

satisfy the measure-geometric (wG) condition discussed in the previous section. No
regularity assumption is made on the boundary ∂�.

We assume the following monotonicity conditions on the mapping F :

• F is degenerate elliptic: F(x, s, p,Y ) ≥ F(x, s, p, X) if Y ≥ X ,
• F is one-directional elliptic: F(x, 0, p, X + tν ⊗ ν) − F(x, 0, p, X) ≥ α(x)t
for some ν ∈ U and for all t > 0

• F(x, s, p, X) ≤ F(x, r, p, X) if s > r and F(x, 0, 0, O) = 0 forall x ∈ � ,

Here O is the zero-matrix and α(x) is a continuous, strictly positive function such
that lim inf x→∞ α(x) > 0.

The strict one-directional ellipticity condition (�˚) on F play a crucial role in our
results.

We will assume moreover that:

• there exists β > 0 such that F(x, 0, 0, X + t Q) − F(x, 0, 0, X) ≤ βt |x | for all
t > 0, as |x | → ∞

• |F(x, 0, p, X) − F(x, 0, 0, X)| ≤ γ(x)|p| for all p ∈ R
n

Here Q is the orthogonal projection matrix over U and γ is a continuous function
such that γ(x)

α(x) is bounded above in � by some constant � ≥ 0. Observe that both the
matrices ν ⊗ ν and Q belong to Sn and are positive semidefinite.

We will refer collectively to conditions above as the structure condition on F ,
labelled (SC)U. It is worth noting that (SC)U requires a control from below only
with respect to a single direction ν ∈ U and a control from above in the orthogonal
directions, a much weaker condition on F than uniform ellipticity.
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The latter one would indeed require a uniform control of the difference quotients
both from below and from above with respect to all possible increments with positive
semidefinite matrices.

A very basic example of an F satisfying (SC)U is given by the linear operator

F(x, u, Du, D2u) = λ1(x)
∂2u

∂x21
+ · · · + λk(x)

∂2u

∂x2k
+

n∑
i=1

bi (x)
∂u

∂xi
+ c(x)u

which satisfies conditions abovewithU = {xk+1 = · · · = xn = 0}, providedλi (x) ≥
α, i = 1, . . . , k,

∣∣∑
i b

2
i (x)

∣∣1/2 ≤ γ and c(x) ≤ 0.
Further examples are provided by fully nonlinear operators of Bellman-Isaacs

type arising in the optimal control of degenerate diffusion processes:

F(x, u, Du, D2u) = sup
μ

inf
ν

Lμνu,

where

Lμνu =
k∑

i, j=1

aμν
i j

∂2u

∂xi x j
+

n∑
i=1

bμν
i

∂u

∂xi
+ cμνu

with constant coefficients depending μ and ν running in some sets of indexesM,N .
If the matrices (aαβ

i j ) are positive semidefinite for all α,β and

k∑
i, j=1

aμν
i j νh

i νh
j ≥ λ, |bμν

i | ≤ γ, cμν ≤ 0, h = 1, . . . , k,

for an orthonormal basis {ν1, . . . , νk} of some k-dimensional subspace U .
Our results in [7] concerning the validity of (wMP) for one-directional elliptic

operators in the special class of unbounded described above are stated in the following
theorems:

Theorem 4.1 Let � be a domain of Rn satisfying condition

(�ν) � ⊆ {x ∈ R
n : a ≤ x · νh ≤ a + d, h = 1, . . . , k} for some a ∈ R, d > 0 ,

and assume that F satisfies the structure condition (SC)U.
Then (wMP) holds for any u ∈ USC(�) such that u+(x) = o(|x |) as |x | → ∞.

Note that some restriction on the behaviour of u at infinity is unavoidable. Observe
indeed that u(x1, x2, x3) = ex1 sin x2 sin x3 solves the degenerate Dirichlet problem

∂2u

∂x21
+ ∂2u

∂x22
= 0 in �, u(x1, x2, x3) = 0 on ∂�
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in the 1-infinite cylinder� = R × (0,π)2 ⊂ R
3 and u(x1, x2, x3) > 0 in�, implying

the failure of (wMP).
The next is a quantitative form of the above result:

Theorem 4.2 Let � be a domain of Rn satisfying condition

(�ν) � ⊆ {x ∈ R
n : a ≤ x · νh ≤ a + d, h = 1, . . . , k} for some a ∈ R, d > 0 ,

and assume that F satisfies the structure condition (SC)U. If

F(x, u, Du, D2u) ≥ f (x) in �

where f is continuous and bounded from below and u+(x) = o(|x |) as |x | → ∞.
Then

sup
�

u ≤ sup
∂�

u+ e1+d �

1 + d �
‖ f −

α
‖∞ d2

where f −(x) = −min( f (x), 0).

The next result allows a weaker monotonicity requirement for r → F(x, r, p, M)

which must be compensated by some narrowness condition on the domain:

Theorem 4.3 Let � satisfy condition (�˚) and assume that F satisfies (SC)U with
the weaker condition

F(x, s, p, X) − F(x, r, p, Xt) ≤ c(x) (s − r) if s > r

for some continuous function c(x) > 0. Assume also that c(x)
α(x) ≤ K < +∞ in �.

Then (wMP) holds for u ∈ USC(�), u bounded above, provided d2 K is small
enough.

For fixed c > 0 this results applies to narrow domains, that is when the thick-
ness parameter d in condition (�˚) is sufficiently small. Conversely, for fixed d > 0
(wMP) holds provided c is a sufficiently small positive number.

The above result can be used as an intermediate step in the proof of the Theorem
below concerning the validity of (wMP) for unbounded solutions with exponential
growth at infinity, a qualitative Phragmen-Lindelöf type result:

Theorem 4.4 Let � satisfy condition (�˚) and assume that F satisfies (SC)U.
Then, for any fixed β0 > 0 there exists a positive constant d = d(n,α,β, γ,β0) such
that if � has thickness d, then (wMP) holds for functions u ∈ USC(�) such that
u+(x) = O(eβ0|x |) as |x | → ∞.

Conversely, for any fixed d0 > 0 there exists a positive constant β = β(n,α,β, γ,

d0) such that (wMP) holds for functions u ∈ USC(�) such that u+(x) = O(eβ|x |)
as |x | → ∞.
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Note that the assumption

F(x, 0, 0, X + t Q) − F(x, 0, 0, X) ≤ βt |x | for all t > 0, as |x | → ∞

in the directions belonging to U⊥ is essential in order to go beyond a polynomial
growth. Indeed, the function u(x1, x2) = x22 sin x1 is a solution of

∂2u

∂x21
+ 1

2
x22

∂2u

∂x22
= 0

in the cylinder � = (0,π) × R ⊂ R
2, u = 0 on ∂� but u is strictly positive in �.

5 An Approximation of the Principal Eigenvalue

In this final section we present a recent approximation result and a finite difference
scheme for the computation of the principal Dirichlet eigenvalue for fully nonlinear
operators F in the uniformly elliptic case based on the pointwise min-max formula
for the principal eigenvalue presented in the first section. Consider first the self-
adjoint operator Lu(x) = div(A(x)∇u) where A(x) is a symmetric positive definite
matrix with continuous entries, � a bounded open subset of IRn .

The minimum value λ1 in the Rayleigh-Ritz variational formula

λ1 := − min
φ∈H 1

0 (�),||φ||L2(�)=1

∫
�

A(x)Dφ · Dφ dx

is attained at a function w1 such that

{
Lw1(x) + λ1w1(x) = 0 x ∈ �,

w1(x) = 0 x ∈ ∂�

It is also well-known that λ1 is the principal eigenvalue of L in � and w1 is the
corresponding principal eigenfunction of the Dirichlet problem for L .

For linear operators in divergence form there is a vast literature on computational
methods for the principal eigenvalue. On the other hand, general non-divergence type
elliptic operators such as

Tr(A(x)D2u) + b(x) · Du + c(x)u

are not self-adjoint in general and the spectral theory is then much more involved:
in particular, the Rayleigh-Ritz variational formula is not available anymore.

In [9] we developed a finite difference scheme for the computation of the princi-
pal eigenvalue and the principal eigenfunction of fully nonlinear uniformly elliptic
operators based on the min-max formula discussed above:
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λ1 = − inf
φ(x)>0

sup
x∈�

F[φ(x)]
φ(x)

where we used the notation F[φ(x)] = F(x,φ(x), Dφ(x), D2φ(x)). That formula
can be seen as a pointwise alternative to the Rayleigh-Ritz L2 formula.

Our approach applies in particular to linear operators in non-divergence form, see
[24, 25]. The literature in this case is not abundant, see for example [26] and our
approximation results seem to be new even in the linear case.

Let hZn be the orthogonal lattice in IRn where h > 0 is a discretization parameter
and Ch the space of the mesh functions defined on�h = � ⊂ Z

n
h . Consider a discrete

operator Fh defined by

Fh[u](x) := Fh(x, u(x), [u]x )

where

• h > 0 is the discretization parameter (h is meant to tend to 0),
• x ∈ �h is a grid point
• u ∈ Ch
• [·]x represents the stencil of the scheme, i.e. the points in �h\{x} where the value
of u are computed for writing the scheme at the point x (we assume that [w]x is
independent of w(y) for |x − y| > Mh for some fixed M ∈ N).

Following [27] we introduce some basic structure assumptions which are to be
satisfied by the finite difference operator Fh :

(i) Fh is of positive type, i.e. for all x ∈ �h , z, τ ∈ IR, u, η ∈ Ch satisfying 0 ≤
η(y) ≤ τ for each y ∈ �h , then

Fh(x, z, [u + η]x) ≥ Fh(x, z, [u]x ) ≥ Fh(x, z + τ , [u + η]x)

(ii) Fh is 1-positively homogeneous, i.e. for all x ∈ �h , z ∈ IR, u ∈ Ch and t ≥ 0,
then

Fh(x, t z, [tu]x ) = t Fh(x, z, [u]x )

(iii) The family {Fh, 0 < h ≤ h0}, where h0 is a positive constant, is consistent with
F on the domain � ⊂ IRn , i.e. for each u ∈ C2(�)

sup
�h

∣∣F(x, u(x), Du(x), D2u(x)) − Fh(x, u(x), [u]x )
∣∣ → 0 as h → 0,

uniformly on compact subsets of �.

The discretized equations for this kind of approximate operators satisfy some
crucial pointwise estimates which are the discrete analogues of those valid for fully
nonlinear, uniformly elliptic equations.
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If F is uniformly elliptic, it is always possible, see [27], to find a scheme of the
previous type which is of positive type and consistent with F .We don’t know how
to deal with this important issue in the case of degenerate ellipticity.

Mimicking the continuous case we define a discrete principal eigenvalue for Fh

by means of the formula

λh
1 := sup{λ ∈ IR : ∃ φ > 0 in �h, Fh[φ] + λφ ≤ 0 }

The number λh
1 defined in this way has the following properties:

• there is a positive solution φh
1 of

{
F[φ] + λh

1φ = 0 in �h,

φ = 0 on ∂�h,

• or any λ < λ1 the weak Maximum Principle holds for Fh + λ, i.e.
if u is such that Fh[u] + λu ≥ 0 in �h and u ≤ 0 on ∂�h then u ≤ 0 in �h

• λh
1 is given by the finite dimensional optimization problem

λh
1 = − inf

φ∈Ch , φ>0
sup
x∈�h

Fh[φ(x)]
φ(x)

Theorem 5.1 Let (λh
1,φ

h
1) be the sequence of the discrete eigenvalues and of the

corresponding eigenfunctions associated to Fh.
Then,

λh
1 → λ1, φh

1 → φ1

uniformly in � as h → 0, where λ1 and φ1 are respectively the principal eigenvalue
and the corresponding eigenfunction associated to F.

The proof of the convergence result cannot rely on standard stability results in
viscosity solution theory such as the so-called Barles-Souganidis’ method based on
on the validity of a Comparison Principle since the limit problem

{
F[φ] + λ1φ = 0 in �,

φ = 0 on ∂�

does not have such a property which would imply uniqueness which is not the case
since the principal eigenfunction φ1 > 0 and φ ≡ 0 are two distinct solutions of the
problem under our assumption F[0] = 0.

Different techniques are therefore needed for the proof whose, main ingredients
are:

• the semi-relaxed limits in viscosity solution sense,
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• a weak Maximum Principle for the limit problem (rather than the Comparison
Principle),

• the local Hölder estimate in [27]: if uh is a solution of Fh[u] = f , then

|uh(x) − uh(y)| ≤ C
|x − y|δ

R

⎛
⎝max

Bh
R

uh + R

α0

{∑
x∈�h

hn| f (x)|n
} 1

n

⎞
⎠

for any x, y ∈ �hwhere R = min dist(x, ∂�h), Bh
R = B(0, R) ∩ �h , δ, α0 and C

are positive constants independent of h.

In the case of convex operators F such as those arising in the optimal control theory
of degenerate diffusion processes, that is F is the supremum of a family of linear
operators:

F(x, u, Du, D2u) = sup
i∈I

T r(Ai (x)D2u) + bi (x) · Du + ci (x)u

our numerical approach leads to a finite dimensional convex optimization problem.
Further informations and examples of simulation performed with the Optimization
Toolbox of MATLAB can be found in [9].
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On the Convergence of Open Loop Nash
Equilibria in Mean Field Games
with a Local Coupling

Pierre Cardaliaguet

Abstract The paper studies the convergence, as N tends to infinity, of a system of
N weakly coupled Hamilton–Jacobi equations (the open loop Nash system) when
the coupling between the players becomes increasingly singular. The limit equation
is a mean field game system with local coupling.

Keywords Mean field games · Mean field limit · Convergence rate
In this paper we continue the investigation of the mean field limit in differential
games, i.e., the limit of the Nash equilibria in N -players differential games as N
tends to infinity.We focus on equilibria in “open loop control”, where players observe
only their own position, but not the position of the other players. This question has
been first discussed by Lasry and Lions in [10, 12] for the stationary problem in a
Markovian setting. In the nonMarkovian setting (for finite horizonproblems), Fischer
[6] proved the convergence under suitable independence conditions and Lacker [9]
identified all possible limits of the system. The key assumption in all these papers
is that the coupling between the player is nonlocal and regularizing. Here we study
the time dependent problem, with a coupling which becomes increasingly singular
as the number of players tends to infinity. A similar question was addressed in [2] in
the more complex framework of Nash equilibria in “closed loop controls”, in which
the players observe each other completely. This later paper strongly relied on [3]
(see also [4]), where the convergence problem for closed loop Nash equilibria with
regularizing coupling functions was established and several key techniques of proof
introduced.

There are two reasons to study the “open loop” case: the first one is that in
term of modeling, it is as natural to assume that players do not observe each other
as to assume that they observe each other completely: the reality is probably in
between. Second, the question of convergence is mathematically intriguing because
the previous works concerned with open-loop problems were using compactness
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techniques, which seems to be ill-suited with the fact that the coupling becomes
more and more singular.

To be more specific, let us write the open-loop Nash equilibrium system (in
Markovian form). It reads, for any i ∈ {1, . . . , N }:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∂tv
N ,i − �vN ,i + H(xi , DvN ,i ) =

∫

(Td )N−1
FN (xi ,m

N ,i
x )

∏

j �=i

m j (t, x j )dx j in (0, T ) × T
d ,

∂tm
i − �mi − div(mi DpH(xi , DvN ,i )) = 0 in (0, T ) × T

d ,

mi (0, ·) = L(Zi ), vN ,i (T, xi ) = G(xi ) in T
d ,

(1)

where we set, for x = (x1, . . . , xN ) ∈ (Td)N , mN ,i
x = 1

N − 1

∑

j �=i

δx j . In the above

system, the data are the horizon T > 0, the Hamiltonian H : Td × R
d → R, the ter-

minal condition G : Td → R, the initial distribution of players m0 ∈ P(Td) (P(Td)

being the set of probability measures on Td ) and the maps FN : Td × P(Td) → R.
The maps FN are called the coupling because they are responsible of all the interac-
tions between the equations. To avoid issues related to the boundary conditions, we
work with periodic (in space) boundary data: Td = R

d/Zd .
We are also interested in the associated system of N coupled stochastic differential

equations (SDE), which corresponds to the optimal trajectories of the players:

dYi,t = −DpH
(
Yi,t , DvN ,i (t,Yi,t )

)
dt + √

2dBi
t , t ∈ [0, T ], i ∈ {1, . . . , N },

(2)
where the ((Bi

t )t∈[0,T ])i=1,...,N are d-dimensional independent Brownian motions.
Our main assumption is that the maps FN become increasingly singular, in the

sense that there exists a smooth (local) map F : Rd × [0,+∞) → R such that

lim
N→+∞ FN (xi ,mdx) = F(xi ,m(xi )), (3)

for any sufficiently smooth probability density mdx = m(x)dx. Our aim is to show
that, under suitable assumption on the rate of convergence in (3), the limit of the vN ,i

is given by the MFG system with a local coupling, given as the forward-backward
system of PDEs:

⎧
⎨

⎩

−∂t u − �u + H(x, Du) = F(x,m(t, x)) in (0, T ) × T
d ,

∂tm − �m − div(mDpH(x, Du)) = 0 in (0, T ) × T
d ,

u(T, x) = G(x), m(0, ·) = m0 in T
d

(4)

This system has been thoroughly studied in the literature (cf. [7, 8, 12–14] and the
references therein). The typical assumptions ensuring the above MFG system to be
well-posed are that F is monotone with respect to its second variable while H is
convex in its second variable (plus growth conditions on F and H ).
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Our main result (Theorem 3.4) states that the solution of (1) converges to the
solution of (4) as N tends to infinity. Moreover, we describe in Theorem 3.5 the
limit of the solution to (2) in terms of the optimal solution associated to (4). The
technique of proof differs in a substantial way from the ones in [2, 3] (as the Nash
system is open-loop, there is no need to use the so-called master equation) and [6, 9,
10, 12] (because compactness techniques do not seem relevant). The idea consists in
using a well-known monotonicity technique—first developed in [10–12] to show the
uniqueness of the solution of the MFG systems—combined with the development of
the map vN ,i along the optimal trajectories, as explained in [3].

The paper is organized in the following way: we first state our main notation and
assumptions and recall how to approximate the solution to the MFG system with
the local coupling F by the solution of the MFG system with the nonlocal coupling
FN. In Sect. 2 we explain how to interpret system (1) in terms of open-loop Nash
equilibria. The main results are given in Sect. 3, where we prove the convergence of
System (1) to System (4) and describe the propagation of chaos for (2).

1 Preliminaries

1.1 Notation

For the sake of simplicity, the paper is written under the assumption that all maps
are periodic in space. So the underlying state space is the torus Td = R

d/Zd . This
simplifying assumption allows to discard possible problems at infinity (or at the
boundary of a domain). We denote by | · | the euclidean norm in R

d and—by abuse
of notation—the corresponding distance in T

d . The ball centered at x ∈ T
d and of

radius R is denoted by BR(x).
For k ∈ N and α ∈ (0, 1), we denote by Ck+α the set of maps u = u(x)which are

of class Ck and Dku is α-Holder continuous. When u = u(t, x) is time dependent
and α ∈ (0, 1), we say that u is in C0,α if

‖u‖C0,α := ‖u‖∞ + sup
(t,x),(t ′,x ′)

|u(t, x) − u(t ′, x ′)
|x − x ′|α + |t − t ′|α/2

< +∞.

We say that u is in C1,α if u and Du belong to C0,α. Finally C2,α consists in the
maps u such that D2u and ∂t u belong to C0,α. It is known that, if u is in C2,α, then
u is also in C1,α.

We denote by P(Td) the set of Borel probability measures on the torus Td :=
R

d/Zd . It is endowed with the Monge–Kantorovitch distance:

d1(m,m ′) = sup
φ

∫

Td

φ(y) d(m − m ′)(y),

where the supremum is taken over all 1-Lipschitz continuous maps φ : Td → R.
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1.2 Assumption

Throughout the paper, we suppose that the following conditions are in force.

(H1) The Hamiltonian H : Td × R
d → R is smooth, H and DpH are globally

Lipschitz continuous in both variables and H is locally uniformly convex
with respect to the second variable:

D2
ppH(x, p) > 0 ∀(x, p) ∈ T

d × R
d . (5)

(H2) F : Td × [0,+∞) → R is smooth, globallyLipschitz continuous in both vari-
ables and increasing with respect to the second variable with ∂mF � δ > 0
for some δ > 0.

(H3) The terminal cost G : Td → R is a smooth map.
(H4) For any N ∈ N, FN : Td × P(Td) → R is monotone:

∫

Td

(FN (x,m) − FN (x,m ′)d(m − m ′)(x) � 0 ∀m,m ′ ∈ P(Td).

(H5) (difference between FN and F) For any R > 0 and α ∈ (0, 1), there exists
kR,α
N → 0 as N → +∞ such that

‖FN (·,mdx) − F(·,m(·))‖∞ ≤ kR,α
N (6)

for any density m such that ‖m‖Cα ≤ R.
(H6) (uniform regularity of FN for regular densities) For any R > 0 andα ∈ (0, 1),

there exists κR,α > 0 such that, for any N ∈ N,

∣
∣FN (x,mdx) − FN (y,m ′dx)

∣
∣ ≤ κR,α

(|x − y|α + ‖m − m ′‖∞
)

(7)

for any density m,m ′ with ‖m‖Cα , ‖m ′‖Cα ≤ R.
(H7) (regularity assumptions on FN for general probability measures) For any N ∈

N, there exists a constant KN � 1 such that

∣
∣FN (x,m) − FN (x,m ′)

∣
∣ ≤ KNd1(m,m ′) ∀x ∈ T

d , ∀m,m ′ ∈ P(Td).

(8)

Let us briefly comment upon the assumptions. First we note that, by (H5),
FN (x,m) becomes closer and closer to F(x,m) for any smooth density m while
its regularity at general probability measures deteriorates (i.e., KN → +∞ as
N → +∞). Themonotonicity assumptions (H2) and (H4) on F and FN and the con-
vexity of H are known to ensure the uniqueness of the solution in the MFG systems:
they are therefore natural in our study. The global Lipschitz regularity assumption
on H in (H1) is not natural in the context of MFG, but it simplifies a lot the well-
posedness of the MFG system (4) and is used in every key step of the paper. In the
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same way, the map G is assumed to be independent the measure in order to simplify
the analysis of Sect. 1.3: indeed we do not know how to extend the estimates of this
subsection whenG depends onm in a local way. Note however that we could allowG
to depend onm in a smooth, nonlocal and monotone way, as in [3]; however since we
concentrate here on local couplings, we do not present this easy generalization. We
explain in Remark 3.2 that the strong monotonicity condition on F can be avoided
(F non decreasing suffices), but the convergence rates in Theorems 3.1 and 3.4 then
deteriorates a little.

As explained in [2], given a map F satisfying the above conditions, a typical
example for the regularization FN is the following:

Proposition 1.1 Assume that FN = F εN with

F ε(x,m) := F(·, ξε � m(·)) � ξε(x) (9)

where εN → 0 as N → +∞ and ξε(x) = ε−dξ(x/ε), ξ being a symmetric smooth
nonnegative kernel with compact support. Then, for any N, FN is monotone and
satisfies (7).

Moreover the constants kR,α
N and KN in (H5) and (H7) respectively can be

estimated by
kR,α
N ≤ C(1 + R)εα

N , KN ≤ Cε−2d−12−3α
N , (10)

where C depends on the regularity of F and of ξ.

1.3 Regularity Estimates

Let m0 ∈ P(Td) and let (uN ,mN ) and (u,m) be respectively the unique solution to
the MFG systems

⎧
⎨

⎩

−∂t u
N − �uN + H(x, DuN ) = FN (x,m(t)) in (0, T ) × T

d ,

∂tm
N − �mN − div(mN DpH(x, DuN )) = 0 in (0, T ) × T

d ,

uN (T, x) = G(x), mN (0, ·) = m0 in T
d ,

(11)

and ⎧
⎨

⎩

−∂t u − �u + H(x, Du) = F(x,m(t, x)) in (0, T ) × T
d ,

∂tm − �m − div(mDpH(x, Du)) = 0 in (0, T ) × T
d ,

u(T, x) = G(x), m(0, ·) = m0 in T
d .

(12)

Following [12, 13], these systems are known tobewell-posed.We recall the following
estimates on the regularity of (uN ,mN ) and on the difference between (uN ,mN ) and
(u,m).
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Proposition 1.2 ([2]) Assume that m0 has a positive density of class C2. Then the
(uN ,mN ) are bounded in C2,α × C0,α independently of N . Moreover,

sup
t∈[0,T ]

‖uN (t, ·) − u(t, ·)‖H 1(Td ) + ‖mN − m‖L2 ≤ CkR,α
N ,

supt∈[0,T ] ‖DuN (t, ·) − Du(t, ·)‖∞ ≤ C
(
kR,α
N

) 2
d+2

.

where α, R and C depend on on the data and m0, but not on N.

A straightforward consequence of Proposition 1.2 is the following estimate on
optimal trajectories related with the MFG systems (11) and (12).

Corollary 1.3 Let m0 ∈ P(Td), (uN ,mN ) and (u,m) be the solution to the MFG
system (11) and (12) respectively. Let Z be a random variable with law m0 which is
independent of a Brownian motion (Bt ). If (X̃t ) and (Xt ) are the solution to

{
d X̃t = −DpH(X̃t , Du(t, X̃t ))dt + √

2dBt , t ∈ [0, T ],
X̃0 = Z ,

and {
dXt = −DpH(Xt , DuN (t, Xt ))dt + √

2dBt , t ∈ [0, T ],
X0 = Z ,

respectively, then

E

[

sup
t∈[0,T ]

∣
∣
∣X̃t − Xt

∣
∣
∣

]

≤ C
(
kR,α
N

) 2
d+2

,

where C, R and α are as in Proposition 1.2.

2 Open Loop Nash Equilibria

Fix Z = (Z1, . . . , ZN ) a family of i.i.d. random variables on T
d with law m0 ∈

P(Td).
LetA be the set of maps α : [0, T ] × T

d → R
d which are Borel measurable and

bounded.We look atA as the set of strategies of the players.We call—improperly—a
strategy α ∈ A an open loop strategy because it will depend only on player i , and
not of the other players, through the state equation of player i :

dXN ,i
t = α(t, XN ,i

t )dt + √
2dBN ,i

t , X0 = Zi . (13)

In the above equation the (BN ,i ) are independent Brownian motions, independent
of the (Zi ) and the equation is understood in a weak sense. Given an N -tuple
α = (α1, . . . ,αN ) ∈ AN , the cost of player i , for i ∈ {1, . . . , N }, is given by
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J N ,i (m0,αi , (α j ) j �=i ) := E

[∫ T

0

∫

Td
L(XN ,i

t ,αi (t, XN ,i
t )) + FN (XN ,i

t ,mN ,i
XN
t
)dt + G(XN ,i

T )

]

where, (XN ,i
t ) is the solution to (13) with initial condition Zi and mN ,i

XN
t

= 1
N−1∑

j �=i δx j . Note for later use that, if we set

FN ,i (t, xi ;m0,αi , (α j ) j �=i ) := E

[
F(xi ,m

N ,i
XN

t
)
]
, (14)

then, as the (XN ,i )i=1,...,N are independent, we have

FN ,i (t, xi ;m0,αi , (α j ) j �=i ) =
∫

(Td )N−1
FN (xi ,m

N ,i
x )

∏

j �=i

m j (t, x j )dx j ,

where, for any j ∈ {1, . . . , N }, m j (t) is the law of XN , j
t , i.e., the solution of the

Kolmogorov equation

{
∂tm

j − �m j + div(m jα j ) = 0 in (0, T ) × T
d ,

mi (0, ·) = L(Zi ) = m0 in T
d .

(15)

Still because (XN ,i )i=1,...,N are independent, we also have

J N ,i (m0,αi , (α j ) j �=i ) = E

[∫ T

0

∫

Td

L(XN ,i
t ,αi (t, XN ,i

t ))

+FN ,i (t, XN ,i
t ;m0,αi , (α j ) j �=i )dt + G(XN ,i

T )
]
.

Definition 2.1 Fix N ∈ Nwith N � 1.We say that an N -tuple ᾱ = (ᾱ1, . . . , ᾱN ) ∈
AN is an open loop Nash equilibrium if

J N ,i (m0, ᾱi , (ᾱ j ) j �=i ) ≤ J N ,i (m0,α
i , (ᾱ j ) j �=i )

for any αi ∈ A.

The following Proposition shows that our definition corresponds to the construc-
tion of Nash equilibria in [10, 12] in our time dependent setting.

Proposition 2.2 There exists at least one open-loopNash equilibrium.Moreover, for
any open-loop equilibrium ᾱ = (ᾱ1, . . . , ᾱN ), there exists a solution (vi ,mi )i=1,...,N

of (1) such that

ᾱi (t, x) := −DpH(x, Dvi (t, x)) ∀(t, x) ∈ [0, T ] × T
d , ∀i ∈ {1, . . . , N }.
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Finally there exists ᾱ0 ∈ A such that ᾱ := (ᾱ0, . . . , ᾱ0) ∈ AN is an open-loop Nash
equilibrium with associated maps (vi ,mi )i=1,...,N of (1) independent of i . We call
this later equilibrium a symmetric open-loop Nash equilibrium.

Proof We considerAb the subset of α ∈ A such that ‖α‖∞ ≤ ‖DpH‖∞. We endow
Ab with the L∞ norm. On the closed convex set (Ab)

N , we consider the map �

defined as follows. For α = (α1, . . . ,αN ) ∈ (Ab)
N and i ∈ {1, . . . , N }, let XN ,i be

the weak solution to (13), FN ,i be defined by (14). We consider the solution vi to

{−∂tv
i − �vi + H(x, Dvi ) = FN ,i (t, x;m0,αi , (α j ) j �=i ) in (0, T ) × T

d

vi (T, x) = G(x) in T
d ,

(16)
where the map FN ,i is defined in (14). Note that, by our standing assumptions on
FN , the map (t, x) → FN ,i (t, x;m0,α) := FN ,i (t, x;m0,αi , (α j ) j �=i ) is Lipschitz
continuous in space (uniformly with respect to α) and satisfies in time the inequality

∣
∣
∣FN ,i (t, x;m0,α) − FN ,i (t ′, x;m0,α)

∣
∣
∣ ≤ CE

[

d1(m
N ,i
XN
t
,mN ,i

XN
t ′
)

]

≤ C

N

∑

j �=i

E

[
|XN , j

t − XN , j
t ′ |

]

≤ C(1 + sup
j

‖α j‖∞)|t − t ′|1/2 ≤ C(1 + ‖DpH‖∞)|t − t ′|1/2.

(Here the constant C depends on N , which is not an issue sinceN is fixed in this
part). Recall also that, by assumption (H3), the map G is in C2+α. Therefore vi

belongs to C2,α with a norm depending only on the data and on N . Let us set
α̃i := −DpH(·, Dvi (·, ·)) and �(α) = (α̃1, . . . , α̃N ). By our estimates, the map �

is compact and continuous on (Ab)
N and hence has a fixed point ᾱ. Note that, by the

classical verification Theorem, this fixed point is an open loop Nash equilibrium in
the sense of Definition 2.1.

Let us check that any open loop feedback Nash equilibrium has the claimed form.
Let ᾱ = (ᾱ1, . . . , ᾱN ) be such an open loop Nash equilibrium. We denote by (XN ,i )

the solution to (13) with ᾱi instead of αi . For any j , the law m j (t) of XN , j
t satisfies

the Kolmogorov equation (15). Let vi be the solution to (16). By the optimality of
ᾱi , we have

E[vi (0, Zi )] = E

[∫ T

0

∫

Td
L(XN ,i

t , ᾱi (t, XN ,i
t )) + FN ,i (t, XN ,i

t ;m0, α)dt + G(XN ,i
T )

]

.

(17)
On the other hand, by Itô’s formula, we have

E[vi (0, Zi )] = E

[

−
∫ T

0
(∂tv

i + �vi + ᾱi · Dvi )(t, XN ,i
t )dt + G(XN ,i

T )

]

.

Using the equation of vi , we obtain
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E[vi (0, Zi )] = E

[∫ T

0
(−H(XN ,i

t , Dvi (t, XN ,i
t )) − ᾱi (t, XN ,i

t ) · Dvi (t, XN ,i
t )

+FN ,i (t, XN ,i
t ,m0, ᾱ)) dt + G(XN ,i

T )
]
.

As H is locally strictly convex in the second variable (assumption (H1)) and ᾱi is
bounded, we have therefore

E[vi (0, Zi )] � E

[∫ T

0
(L(XN ,i

t , ᾱi (t, XN ,i
t )) + C−1|ᾱi (t, XN ,i

t ) − DpH(XN ,i
t , Dvi (t, XN ,i

t )|2

+FN ,i (t, XN ,i
t ,m0, ᾱ)) dt + G(XN ,i

T )
]

� E[vi (0, Zi )] + C−1
E

[∫ T

0
|ᾱi (t, XN ,i

t ) + DpH(XN ,i
t , Dvi (t, XN ,i

t )|2
]

,

where we used equality (17) in the last line. Thus ᾱi (t, XN ,i
t ) = −DpH(XN ,i

t , Dvi

(t, XN ,i
t )) a.e. Since the law of XN ,i

t has a positive density, we conclude that
ᾱi (t, x) = −DpH(x, Dvi (t, x)) for a.e. (t, x). This shows that the (ui ,mi ) satisfy
(1).

The existence of a symmetric Nash equilibrium is obtained by a very similar
argument, defining the map � : Ab → Ab by requiring that the strategies of the
players are the same.

3 Convergence

Let us fix m0 ∈ P(Td) with a C2 density. For an integer N � 2, we consider a
symmetric equilibrium in open-loop form (vN ,i ,mN ,i )i∈{1,...,N } of (1). Note that, by
symmetry, there exists actually a single unknown vN = vN ,i for any i ∈ {1, . . . , N }.

Our aim is to prove that vN is close to u, where (u,m) is the solution of the MFG
system (12). For this we first compare vN and uN , where (uN ,mN ) is the solution
of the perturbed MFG system (11).

3.1 Estimates Between vN,i and uN

Let (Zi )i∈{1,...,N } be an i.i.d family of N random variables of law m0. We set
Z = (Zi )i∈{1,...,N }. Let also ((Bi

t )t∈[0,T ])i∈{1,...,N } be a family of N independent d-
dimensional Brownian Motions which is also independent of (Zi )i∈{1,...,N }. We con-
sider the systems of SDEs with variables (X t = (Xi,t )i∈{1,...,N })t∈[0,T ] and (Y t =
(Yi,t )i∈{1,...,N })t∈[0,T ]:

{
dXi,t = −DpH

(
Xi,t , DuN (t, Xi,t )

)
dt + √

2dBi
t t ∈ [0, T ],

Xi,0 = Zi ,
(18)
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and {
dYi,t = −DpH

(
Yi,t , DvN (t,Yi,t )

)
dt + √

2dBi
t t ∈ [0, T ],

Yi,0 = Zi .
(19)

Note that the (Xi,t ) are i.i.d. with law mN (t). The Xi and the Yi depend on N , but
we do not write this dependence explicitly for the sake of simplicity.

Theorem 3.1 Assume that KN is such that

{
KN N− 1

d ≤ C̄−1 if d � 3
KN N− 1

2 log(N ) ≤ C̄−1 if d = 2
(20)

for some constant C̄. Then, for any i ∈ {1, . . . , N },

E

[

sup
t∈[0,T ]

|Xi,t − Yi,t |
]

≤
{
CK

1
2
N N

− 1
2d if d � 3

CK
1
2
N N

− 1
4 log

1
2 (N ) if d = 2

and

E

[
|uN (0, Zi ) − vN (0, Z)|

]
≤

⎧
⎪⎪⎨

⎪⎪⎩

C

(

K
3
2
N N− 1

2d + KN N− 1
d

)

if d � 3

C

(

K
3
2
N N− 1

4 log
1
2 (N ) + KN N− 1

2 log(N )

)

if d = 2

where the constant C depends on m0 but not on N.

Proof Following Proposition 1.2, we know that uN is bounded in C2,α (for some
α ∈ (0, 1)): we will use this uniform regularity all along the section.

By Itô’s formula, we have

E
Zi

[
uN (T, Xi,T )

]
= E

Zi

[

uN (0, Zi ) +
∫ T

0
∂t u

N + �uN − DuN · DpH(Xi,t , DuN (t, Xi,t )) dt

]

,

where uN and its derivatives are evaluated at (t, Xi,t ) and where EZi [·] denotes the
conditional expectation with respect to Zi . As uN solves (11), we get therefore

uN (0, Zi ) = E
Zi

[∫ T

0
(−H(Xi,t , DuN )

+DpH(Xi,t , DuN ) · DuN + FN (Xi,t ,m
N (t))) dt + G(Xi,T )

]
.

Wenow compute the variation of vN (t, Xi,t ).We have, using the equation satisfied
by vN ,
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dvN (t, Xi,t ) = (∂tv
N + �vN

−DvN · DpH(Xi,t , DuN (t, Xi,t ))dt + √
2DvN · dBi

t

= (H(Xi,t , DvN ) − DvN · DpH(Xi,t , DuN (t, Xi,t )))dt
−FN ,i (t, Xi,t ; Z, ᾱ)dt + √

2DvN · dBi
t

where vN and its derivatives are evaluated at (t, Xi,t ) and FN ,i is defined by

FN ,i (t, xi ; Z, ᾱ) =
∫

(Td )N−1
FN (xi ,m

N ,i
x )

∏

j �=i

m j (t, x j )dx j

= E

[
FN (xi ,m

N ,i
Y t

)
]

Note that, since Xi,t and (Y j,t ) j �=i are independent, we have

E
[
FN ,i (t, Xi,t ; Z, ᾱ)

] = E

[
FN (Xi,t ,m

N ,i
Y t

)
]
.

Hence

vN (0, Zi ) = E
Zi

[∫ T

0
(−H(Xi,t , DvN ) + DvN · DpH(Xi,t , DuN (t, Xi,t ))

+FN (Xi,t ,m
N ,i
Y t

) dt + G(Xi,T )
]
.

So

uN (0, Zi ) − vN (0, Zi )

= E
Zi

[∫ T

0

[
H(Xi,t , DvN ) − H(Xi,t , DuN ) − DpH(Xi,t , DuN ) · (DvN − DuN )

+(FN (Xi,t ,m
N (t)) − FN (Xi,t ,m

N ,i
Y t

)
]
dt

]
.

(21)
Recall that DuN is bounded by some constant R independently of N . Let us set, for
z � 0,

�(z) =
{
z2 if z ∈ [0, 1]
2z − 1 if z � 1

(22)

From Lemma 3.3 below, there exists C0 > 0 (which depends on R) such that

H(x, q) − H(x, p) − DpH(x, p) · (q − p) � C−1
0 �(|q − p|) ∀p, q with |p| ≤ R.

Therefore

uN (0, Zi ) − vN (0, Zi )

� E
Zi

[∫ T

0
C−1
0 �

(|DvN (t, Xi,t ,Y i
t ) − DuN (t, Xi,t )|

)

+(FN (Xi,t ,m
N (t)) − FN (Xi,t ,m

N ,i
Y t

)
]
dt

]
.

(23)
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Computing in the same way the variation of the terms −uN (t,Yi,t ) + vN (t,Yi,t ),
we find

−uN (0, Zi ) + vN (0, Zi )

= E
Zi

[∫ T

0

[
H(Yi,t , DuN ) − H(Yi,t , DvN ) − DpH(Yi,t , DvN ) · (DuN − DvN )

+(FN (Yi,t ,m
N ,i
Y t

) − FN (Yi,t ,m
N (t))

]
dt

]
,

where DuN and DvN are computed at (t,Yi,t ).
In order to estimate the first term in the right-hand side, we use Lemma 3.3 below

to infer the existence of a constant c0 > 0 (which depends on the uniform bound R
on ‖DuN‖∞) such that

H(x, q) − H(x, p) − DpH(x, p) · (q − p) � c0 min{|p − q|2, c0} ∀p, q with |q| ≤ R.

Therefore

E[−uN (0, Zi ) + vN (0, Z)]
� E

[∫ T

0
c0 min{|DuN (t,Yi,t ) − DvN (t,Yi,t )|2, c0}

+(FN (Yi,t ,m
N ,i
Y t

) − FN (Yi,t ,m
N (t)))

]
dt

]
.

Combining this inequality with (23), we obtain

0 � E

[∫ T

0
C−1
0 �

(
|DvN (t, Xi,t ) − DuN (t, Xi,t )|

)]

+E

[∫ T

0
c0 min{|DuN (t, Yi,t ) − DvN (t, Yi,t )|2, c0}

]

+E

[∫ T

0
FN (Xi,t ,m

N (t)) − FN (Xi,t ,m
N ,i
Y t

) − FN (Yi,t ,m
N (t)) + FN (Yi,t ,m

N ,i
Y t

) dt

]

.

Let us set mN
X t

= 1
N

∑
j δX j,t and mN

Y t
= 1

N

∑
j δY j,t . We note that d1(m

N ,i
Y t

,mN
Y t

) ≤
CN−1. Moreover, as the (Xi,t ) are i.i.d. with lawmN (t), a result by Dereich, Scheut-
zow and Schottstedt [5] implies that, for d � 3,

E
[
d1

(
mN

X t
,mN (t)

)] ≤ CN− 1
d .

For d = 2, the estimate becomes (see Ajtai, Komlos and Tusnády [1]),

E
[
d1

(
mN

X t
,mN (t)

)] ≤ CN− 1
2 log(N ).

As FN is KN -Lipschitz continuous (recall (8)) we obtain (for d � 3)
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CKN N− 1
d � E

[∫ T

0
C−1
0 �

(
|DvN (t, Xi,t ) − DuN (t, Xi,t )|

)
]

+E

[∫ T

0
c0 min{|DuN (t, Yi,t ) − DvN (t, Yi,t )|2, c0}

]

+E

[∫ T

0
FN (Xi,t ,m

N
X t

) − FN (Xi,t ,m
N
Y t

) − FN (Yi,t ,m
N
X t

) + FN (Yi,t ,m
N
Y t

))dt

]

.

We now sum these expressions over i . Since

∑

i

F N (Xi,t ,m
N
X t

) − FN (Xi,t ,m
N
Y t

) − FN (Yi,t ,m
N
X t

) + FN (Yi,t ,m
N
Y t

)

=
∫

Td

(FN (x,mN
X t

) − FN (x,mN
Y t

))d(mN
X t

− mN
Y t

)(x) � 0,

we obtain:

CKN N
1− 1

d �
∑

i

E

[∫ T

0
C−1
0 �

(|DvN (t, Xi,t ) − DuN (t, Xi,t )|
)
]

+
∑

i

E

[∫ T

0
c0 min{|DuN (t,Yi,t ) − DvN (t,Yi,t )|2, c0}

]

.

The random variables
DvN (t, Xi,t ) − DuN (t, Xi,t )

have the same law for any i . In the same way, the random variables

DuN (t,Yi,t ) − DvN (t,Yi,t )

have the same law for any i . We have therefore, for any i ∈ {1, . . . , N } and d � 3,

CKN N
− 1

d � E

[∫ T

0
C−1
0 �

(|DvN (t, Xi,t ) − DuN (t, Xi,t )|
)
]

+E

[∫ T

0
c0 min{|DuN (t,Yi,t ) − DvN (t,Yi,t )|2, c0}

]

.

(24)

In view of the SDEs satisfied by the (Xi,t ) and by the (Yi,t ), we have

|Xi,t − Yi,t | ≤
∫ t

0
| − DpH(Xi,s , DuN (s, Xi,s)) + DpH(Yi,s , DvN (s, Yi,s))| ds

≤
∫ t

0
| − DpH(Xi,s , DuN (s, Xi,s)) + DpH(Yi,s , DuN (s, Yi,s))| ds

+
∫ t

0
| − DpH(Yi,s , DuN (s, Yi,s)) + DpH(Yi,s , DvN (s, Yi,s))| ds

≤ C
∫ t

0
|Xi,s − Yi,s | ds + C

∫ T

0
min{|DuN (s, Yi,s) − DvN (s, Yi,s)|, ‖DpH‖∞} ds
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where we have used the bound and Lipschitz regularity of DpH as well as the
uniform Lipschitz bound of DuN in the space variable x given in Proposition 1.2.
So, by Gronwall’s inequality and (24), we obtain, for any i ∈ {1, . . . , N } and d � 3,

E

[

sup
t∈[0,T ]

|Xi,t − Yi,t |
]

≤ CK
1
2
N N

− 1
2d . (25)

When d = 2, the right-hand side has to be replaced by CK
1
2
N N

− 1
4 log

1
2 (N ).

In order to estimate uN (0, Zi ) − vN (0, Zi ), we come back to (21). By the Lips-
chitz continuity of H and FN we have:

E
[|uN (0, Zi ) − vN (0, Zi )|

]

≤ E

[∫ T

0
C |DvN (t, Xi,t ) − DuN (t, Xi,t )| + KNd1(mN (t),mN ,i

Y t
)dt

]

.
(26)

Let us first estimate the first term in the right-hand side of (26) (for d � 3): we use
inequality (24) and Jensen’s inequality (since � is convex and increasing):

T−1
E

[∫ T

0
|DvN (t, Xi,t ) − DuN (t, Xi,t )|dt

]

≤ �−1

(

T−1
E

[∫ T

0
�

(|DvN (t, Xi,t ) − DuN (t, Xi,t )|
)
dt

])

≤ �−1
(
CKN N

− 1
d

)

So, if we suppose as in assumption (20) that KN N− 1
d ≤ C−1, we obtain

E

[∫ T

0
|DvN (t, Xi,t ) − DuN (t, Xi,t )|dt

]

≤ CK
1
2
N N

− 1
2d .

To estimate the second term in the right-hand side of (26), we note that

E

[
d1(mN (t),mN ,i

Y t
)
]

≤ E

[
d1(mN (t),mN ,i

X t
) + d1(m

N ,i
X t

,mN ,i
Y t

)
]

≤ E

⎡

⎣d1(mN (t),mN ,i
X t

) + 1

N

∑

j �=i

|X j,t − Y j,t |
⎤

⎦ .

So, using, on the one hand, the fact that the (Xi,t ) are i.i.d. with law mN (t) and the
result by Dereich, Scheutzow and Schottstedt [5] and, on the other hand, inequality
(25), we have

E

[
d1(mN (t),mN ,i

Y t
)
]

≤ C
(
N− 1

d + K
1
2
N N

− 1
2d

)
.
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This proves that, if d � 3,

E
[|uN (0, Zi ) − vN (0, Zi )|

] ≤ C
(
K

3
2
N N

− 1
2d + KN N

− 1
d

)
.

Whend = 2, the right-hand side becomesC
(
K

3
2
N N

− 1
4 log

1
2 (N ) + KN N− 1

2 log(N )
)
.

�
Remark 3.2 A variant of Theorem 3.1 can be obtained by replacing uN by u in
the definition of the Xi and in the whole proof, thus avoiding the approximation
argument of Proposition 1.2. As the assumption ∂mF � δ is only used in Proposition
1.2, this condition can then be removed. The price to pay is a deterioration of the
convergence rate because the left-hand side of (24) has to involve a term of the form
supt ‖F(·,m(t, ·)) − FN (·,m(t))‖∞.

In the proof we used the

Lemma 3.3 Assume that D2
ppH > 0 and let � be defined by (22). Then, for any

R > 0, there exists C0, c0 > 0 such that

H(x, q) − H(x, p) − DpH(x, p) · (q − p) � C−1
0 �(|q − p|) ∀p, q with |p| ≤ R

and

H(x, q) − H(x, p) − DpH(x, p) · (q − p) � c0 min{|p − q|2, c0} ∀p, q with |q| ≤ R.

Proof As D2
ppH > 0, there exists θ > 0, depending on R, such that D2

ppH � θ in
T
d × B2R(0). Let x ∈ T

d , p, q ∈ R
d with |p| ≤ R. If |q − p| ≤ R, then by the lower

bound D2
ppH � θ we have

H(x, q) − H(x, p) − DpH(x, p) · (q − p) � θ

2
|p − q|2.

Now assume that |q − p| > R. Let q̂ be the projection of q onto the ball BR(p).
Then (omitting the x dependence which plays no role)

H(q) − H(p) − DpH(p) · (q − p)
= H(q) − H(q̂) − DpH(q̂) · (q − q̂) + H(q̂) − H(p) − DpH(p) · (q̂ − p)

+(DpH(q̂) − DpH(p)) · (q − q̂)

� θ

2
|p − q̂|2 + R−1(|q − p| − R)(DpH(q̂) − DpH(p)) · (q̂ − p)

since q − q̂ and q̂ − p are collinear and |q̂ − p| = R. Using once more the lower
bound on D2

ppH in BR(p), we get

H(q) − H(p) − DpH(p) · (q − p) � θ

2
R2 + (|q − p| − R)Rθ.
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This gives the first result. The second one is obtained in the same way: the inequality
holds if |q − p| ≤ R. Otherwise, let p̂ be the projection of p onto BR(q). Then

H(q) − H(p) − DpH(p) · (q − p)
= H(q) − H( p̂) − DpH( p̂) · (q − p̂) + H( p̂) − H(p) − DpH(p) · ( p̂ − p)

+(DpH( p̂) − DpH(p)) · (q − p̂)

� θ

2
|p − p̂|2 = θ

2
R2.

3.2 Putting the Estimates Together

Here we fix an initial conditionm0 ∈ P(Td), wherem0 has a positive density of class
C2. Let (vN ,i ) be a symmetric solution of the open-loop Nash system (1) and u be
the solution to the MFG system (12). Recall that the vN ,i are equal and we call vN

this map. Combining, Proposition 1.2 and Theorem 3.1 we have:

Theorem 3.4 If condition (20) holds, then

∥
∥
∥vN (0, ·) − u(0, ·)

∥
∥
∥
L1
m0

(Td )
≤

⎧
⎪⎪⎨

⎪⎪⎩

C

(

K
3
2
N N− 1

2d + KN N− 1
d + kR,α

N

)

if d � 3

C

(

K
3
2
N N− 1

4 log
1
2 (N ) + KN N− 1

2 log(N ) + kR,α
N

)

if d = 2
,

(27)
where R and α do not depend on N (but depend on m0). In particular, vN (0, ·)
converges to u(0, ·) in L1

m0
(Td) as soon as KN = o(N

1
3d ) if d � 3 and KN =

o(N
1
6 / log

1
3 (N )) if d = 2.

Next we discuss the convergence of the optimal solutions. Let (Zi ) be an i.i.d
family of N random variables of law m0. We set Z = (Z1, . . . , ZN ). Let also
((Bi

t )t∈[0,T ])i∈{1,...,N } be a family of N independent Brownian motions which is
also independent of (Zi ). We consider the optimal trajectories (Y t = (Y1,t , . . . ,
YN ,t ))t∈[0,T ] for the N -player game:

{
dYi,t = −DpH(Yi,t , DvN (t,Yi,t ))dt + √

2dBi
t , t ∈ [0, T ]

Yi,0 = Zi

and the optimal solution (X̃ t = (X̃1,t , . . . , X̃ N ,t ))t∈[0,T ] to the limit MFG system:

{
d X̃i,t = −DpH

(
X̃i,t , Du

(
t, X̃i,t

))
dt + √

2dBi
t , t ∈ [0, T ]

X̃i,0 = Zi .

The next result provides an estimate of the distance between the solutions:

Theorem 3.5 Under the assumption of Theorem 3.4, we have
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E

[

sup
t∈[0,T ]

∣
∣
∣Yi,t − X̃i,t

∣
∣
∣

]

≤

⎧
⎪⎪⎨

⎪⎪⎩

C

[

K
1
2
N N

− 1
2d +

(
kR,α
N

) 2
d+2

]

if d � 3

C

[

K
1
2
N N

− 1
4 log

1
2 (N ) +

(
kR,α
N

) 1
2

]

if d = 2
(28)

where the constant C > 0 is independent of N . In particular, Yi converges to X̃i if
KN = o(N

1
d ) if d � 3 and KN = o(N

1
2 / log(N )) if d = 2.

The proof is an immediate application of Corollary 1.3 and Theorem 3.1. We
finally apply the above estimates to our main example:

Corollary 3.6 Assume that FN = F εN where

F ε(x,m) = F(·, ξε � m(·)) � ξε(x)

and where ξε is as in the example in Proposition 1.1. If one chooses εN = N−β , with
β ∈ (0, (3d(2d + 12 + 3α))−1), then there exists γ ∈ (0, 1) such that

∥
∥wN ,i (0, ·,m0) − u(0, ·)∥∥L1

m0
(Td )

≤ CN−γ

and

E

[

sup
t∈[0,T ]

∣
∣
∣Yi,t − X̃i,t

∣
∣
∣

]

≤ CN−γ .

Proof From Proposition 1.1, we can choose

kR,α
N ≤ C(1 + R)εα

N = CN−αβ, KN ≤ Cε−2d−12−3α
N = CNβ(2d+12+3α).

Inserting these inequality into (27) gives (for d � 3),

∥
∥
∥wN ,i (0, ·,m0) − u(0, ·)

∥
∥
∥
L1(m0)

≤ C
(
N 3β(2d+12+3α)/2− 1

2d + Nβ(2d+12+3α)− 1
d + N−αβ

)
,

where the right-hand side is of order N−γ for some γ ∈ (0, 1) thanks to our choice
of β. In the same way, by (28),

E

[

sup
t∈[0,T ]

∣
∣
∣Yi,t − X̃i,t

∣
∣
∣

]

≤ C
[
Nβ(2d+12+3α)/2− 1

2d + N−αβ 2
d+2

]
,

which also yield to an algebraic rate of convergence. Computation for the case d = 2
is similar.
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Remarks on the Control of Family
of b–Equations

Enrique Fernández-Cara and Diego A. Souza

Abstract In this paper, we deal with the control of the viscous b–equation in a
one-dimensional bounded domain. For b = 2 and b = 0, we get in particular the
Camassa–Holm and the Burgers-α equations, respectively. We prove that, for any
real number b, we can steer the solution to the equation to zero at any given time, using
a distributed control, locally supported in space, when the initial data are sufficiently
small. Also, for b = 0, we prove the global null controllability for large time.

Keywords Null controllability · Carleman inequalities · Camassa–Holm model ·
Burgers-α equation · b–equations

Mathematics Subject Classification 93B05 · 35Q35 · 35G25 · 93B07

1 Introduction

Let L > 0 and T > 0 be given. Let ω ⊂ (0, L) be a (small) nonempty open interval
which will be referred to as the control domain. Let us present the notations used
along this work. The symbols C , Ĉ and Ci , i = 0, 1, . . . stand for positive constants
(usually depending onω, L and T ). For any r ∈ [1,+∞] and any givenBanach space
X , ‖ · ‖Lr (X) will denote the usual norm in Lebesgue-Bochner space Lr (0, T ; X). In
particular, the norm in Lr (0, L) will be denoted by ‖ · ‖r . We will also need the
Hilbert spaces K s(0, L) := H s(0, L) ∩ H 1

0 (0, L), with s ∈ (1, 3].
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In this paper, we are concerned with the null controllability of the b–equations,
which are described in [10, 23]:
⎧
⎨

⎩

zt − α2zxxt − γ zxx + γ α2zxxxx + (b + 1)zzx − α2zzxxx − bα2zx zxx = v in (0, L) × (0, T ),

z(0, ·) = zxx (0, ·) = z(L , ·) = zxx (L , ·) = 0 in (0, T ),

z(·, 0) = z0 in (0, L).

(1.1)

The physical motivation of this family is explained in [12, 13], where it is shown that
(1.1) can be viewed as an asymptotically equivalent approximation of the shallow
water equations. Thus, z can be viewed as the fluid velocity in the x direction (or
equivalently the height of the free surface of the fluid above a flat bottom), γ > 0
is the fluid viscosity, α > 0 and b ∈ R. When b = 2, this equation is the so-called
one-dimensional viscous Camassa–Holm equation; it describes the unidirectional
surface waves at a free surface of shallow water under the influence of gravity, see
[5]). When b = 3, we are dealing with the viscous Degasperis–Procesi equation (it
plays a similar role in water wave theory, see [9]). Finally, when b = 0, this equation
is the so called Burgers–α equation (that can be regarded as a nonlinear smoothing
regularization of the viscous Burgers equation, see [3]).

Here, we rewrite (1.1) as a controlled parabolic-elliptic system:

⎧
⎪⎪⎨

⎪⎪⎩

yt − γ yxx + zyx + b zx y = v1ω in (0, L) × (0, T ),

z − α2zxx = y in (0, L) × (0, T ),

y(0, ·) = z(0, ·) = y(L , ·) = z(L , ·) = 0 in (0, T ),

y(·, 0) = y0 in (0, L).

(1.2)

The function v = v(x, t) (usually in L2(ω × (0, T ))) is the control acting on the
system and 1ω denotes the characteristic function of ω. This way, we see that the role
of α is to regularize the velocity and it is natural to try to deduce control properties
and/or estimates independent of α. For simplicity, throughout this paper we will take
γ = 1 (all the results can be extended without difficulty to the case where γ is an
arbitrary positive number).

The null controllability problem for (1.2) at time T > 0 is the following:

For any y0 ∈ H1
0 (0, L), find v ∈ L2(ω × (0, T )) such that the associated solution to (1.2)

satisfies

y(·, T ) = 0 in (0, L). (1.3)

Our first main result deals with the local uniform (with respect to α) null con-
trollability for all b ∈ R (a generalization of [1, Theorem1] for b �= 0). It is the
following:

Theorem 1.1 Let b ∈ R be fixed. Then, for each T > 0, the system (1.2) is locally
uniformly null-controllable at time T . More precisely, there exists δ > 0 (independent
of α) such that, for any y0 ∈ H 1

0 (0, L) with ‖y0‖H 1
0

≤ δ, there exist controls
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vα ∈ L∞(0, T ; L2(ω)) and associated states (yα, zα) satisfying (1.3). Moreover, one
can find the vα uniformly bounded:

‖vα‖L∞(L2) ≤ C ∀α > 0. (1.4)

In our second main result, we stablish the controllability in the limit, as α → 0+.
More precisely, one has:

Theorem 1.2 Let b ∈ R be fixed, let T > 0 be given and let δ > 0 be the constant
furnished by Theorem1.1. Assume that y0 ∈ H 1

0 (0, L) and ‖y0‖H 1
0

≤ δ, let vα be a
null control for (1.2) satisfying (1.4) and let (yα, zα) be an associated state satisfying
(1.3). Then, at least for a subsequence, one has

vα → v weakly-* in L∞(0, T ; L2(ω)),

zα → y and yα → y weakly-* in L∞(0, T ; H 1
0 (0, L))

(1.5)

as α → 0+, where (v, y) is a control-state pair for the viscous Burgers equation

⎧
⎨

⎩

yt − γ yxx + (1 + b)yyx = v1ω in (0, L) × (0, T ),

y(0, ·) = y(L , ·) = 0 in (0, T ),

y(·, 0) = y0 in (0, L)

(1.6)

and y satisfies (1.3).

These theorems generalize other previous results on the control of nonlocal non-
linear parabolic equations, see [1]. In particular, we are able here to handle the case
b �= 0, where a “new” nonlinear term appears. This makes the difference with respect
to many other previous works, such as [11, 14, 16, 18, 33].

For completeness, let us mention some previous works on the control of (1.1) and
other similar systems. The controllability properties of the inviscid Camassa–Holm
and the inviscidBurgers equationswerewidely studied in [21, 28] and [6, 24], respec-
tively. The optimal control of the viscous Camassa–Holm equation with homoge-
neous Dirichlet boundary conditions is studied in [29, 32]. On the other hand, the
results on the controllability of the Camassa–Holm equation previous to this paper
have been established on the one-dimensional torus: see [19, 27]. On the other hand,
the controllability of the viscous Burgers equation has been analyzed in [6, 15, 18,
22, 25, 26].

The rest of this paper is organized as follows. In Sect. 2, we recall some results
concerning the controllability of parabolic equations. Sections3 and 4 deal with the
proofs of Theorems1.1 and 1.2, respectively. Finally, in Sect. 5, we present some
additional results and comments.



126 E. Fernández-Cara and D. A. Souza

2 Carleman Inequalities and Null Controllability

In this section, we will recall a null controllability result for a general parabolic linear
system of the form

⎧
⎨

⎩

yt − yxx + (Ay)x + By = v1ω in (0, L) × (0, T ),

y(0, ·) = y(L , ·) = 0 on (0, T ),

y(·, 0) = y0 in (0, L).

(2.1)

where y0 ∈ L2(0, L), A ∈ L∞((0, L) × (0, T )) and B ∈ L∞(0, T ; L2(0, L)) and
the control v is searched in L2(ω × (0, T )).

It is well known that, for each v and y0, there exists exactly one solution y to (2.1),
with

y ∈ C0([0, T ]; L2(0, L)) ∩ L2(0, T ; H 1
0 (0, L)).

The null controllability problem for (2.1) at time T > 0 is the following:

For any y0 ∈ L2(0, L), find v ∈ L2(ω × (0, T )) such that the associated solution to (2.1)
satisfies (1.3).

Let us present the main steps to construct a control for (2.1). This will be later
useful to control the Camassa–Holm equation. Thus, let us present an appropriate
Carleman inequality for the adjoint system of (2.1), which is the following:

⎧
⎨

⎩

−ϕt − ϕxx − Aϕx + Bϕ = f in (0, L) × (0, T ),

ϕ(0, ·) = ϕ(L , ·) = 0 on (0, T ),

ϕ(·, T ) = ϕT in (0, L).

(2.2)

Proposition 2.1 There exist constants λ0 > 0, s0 > 0 and C0 > 0 (depending on L
and ω) such that, for any λ ≥ λ0, any s ≥ s0(T + T 2), any ψT ∈ L2(0, L) and any
g ∈ L2((0, L) × (0, T )), the unique weak solution to

⎧
⎨

⎩

−ψt − ψxx = g in (0, L) × (0, T ),

ψ(0, ·) = ψ(L , ·) = 0 on (0, T ),

ψ(·, T ) = ψT in (0, L)

satisfies

∫ T

0

∫ L

0

[
(sξ)−1(|ψxx |2 + |ψt |2) + (sξ)λ2|ψx |2 + (sξ)3λ4|ψ |2] e−2sα dx dt

≤ C0

(∫ T

0

∫ L

0
|g|2e−2sα dxdt +

∫ T

0

∫

ω

(sξ)3λ4|ψ |2e−2sα dx dt

)

,

(2.3)

where
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α(x, t) := e2λ‖η0‖∞−eλη0(x)

(T −t) , ξ(x, t) := eλη0(x)

(T −t) ∀(x, t) ∈ (0, L) × (0, T ) (2.4)

and η0 ∈ C2([0, L]) is such that η0 > 0 in (0,L), η0(0) = η0(L) = 0 and |η0,x | > 0
in [0, L]\ω.

This result was established in [18, Lemma1.1].
Now, let us introduce g := f + Aϕx − Bϕ, ψT := ϕT and let us apply (2.3) to

(2.2). We see that
∫ T

0

∫ L

0

[
(sξ)−1(|ϕxx |2 + |ϕt |2) + (sξ)λ2|ϕx |2 + (sξ)3λ4|ϕ|2

]
e−2sα dx dt

≤ C0

(∫ T

0

∫ L

0
(| f |2 + |Aϕx |2 + |Bϕ|2)e−2sα dxdt +

∫ T

0

∫

ω

(sξ)3λ4|ϕ|2e−2sα dx dt

)

.

Using the assumptions on A and B, we get

∫ T

0

∫ L

0

[
(sξ)−1(|ϕxx |2 + |ϕt |2) + (sξ)λ2|ϕx |2 + (sξ)3λ4|ϕ|2

]
e−2sα dx dt

≤ C0

(∫ T

0

∫ L

0
| f |2e−2sα dxdt +

∫ T

0

∫

ω

(sξ)3λ4|ϕ|2e−2sα dx dt +
∫ T

0

∫ L

0
|ϕx |2e−2sα dx dt

+ (‖A‖2L∞(L∞) + ‖B‖2L∞(L2)
)

∫ T

0

∫ L

0
|ϕx |2e−2sα dx dt

+‖B‖2L∞(L2)

∫ T

0

∫ L

0
(sξ)2λ2|ϕ|2e−2sα dx dt

)

.

But these last three terms in the right hand side can be absorbed by the left-hand
side if we take s large enough. Indeed, it suffices to take

s1 = max(s0, C(L , ω)(‖A‖2L∞(L∞) + ‖B‖2L∞(L2))

to have

∫ T

0

∫ L

0

[
(sξ)−1(|ϕxx |2 + |ϕt |2) + (sξ)λ2|ϕx |2 + (sξ)3λ4|ϕ|2] e−2sα dx dt

≤ C0

(∫ T

0

∫ L

0
| f |2e−2sα dxdt +

∫ T

0

∫

ω

(sξ)3λ4|ϕ|2e−2sα dx dt

)

,

(2.5)

for any λ ≥ λ0 and any s ≥ s1(T + T 2).
Now, we are going to construct a null-control for (2.1), like in [18]. First, let us

introduce the auxiliary extremal problem

⎧
⎨

⎩

Minimize
1

2

{∫ T

0

∫ L

0
e2sα|y|2 dx dt +

∫ T

0

∫

ω

(sξ)−3λ−4e2sα|v|2 dx dt

}

Subject to (y, v) ∈ H(y0, T ),

(2.6)
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where the linear manifold H(y0, T ) is given by

H(y0, T ) = { (y, v) : v ∈ L2(ω × (0, T )), y solves (2.7) }.

It can be proved that (2.6) possesses exactly one solution (y, v) satisfying

‖(sξ)−3/2λ−2esαv‖L2(L2) ≤ C1‖y0‖2,

where

C1 = e
C2

(
1+1/T +(1+T )

(
‖A‖2L∞(L∞)

+‖B‖2
L∞(L2)

))

and C2 > 0 only depends on L and ω.
Moreover, thanks to the classical Euler–Lagrange characterization, the solution

to the extremal problem (2.6) is given by

y = e−2sα(−ϕt − ϕxx − Aϕx + Bϕ), v := −(sξ)3λ4e−2sαϕ1ω×(0,T ).

From the Carleman inequality (2.5), we can conclude that

(sξ)−1/2e−sαϕ ∈ H 1(0, T ; L2(0, L)) ∩ L2(0, T ; K 2(0, L))

and, in particular,

‖(sξ)−1/2e−sαϕ‖L∞(L2) ≤ C‖(sξ)3/2λ2e−sαϕ‖L2(L2).

Hence, we actually have that v ∈ L∞(0, T ; L2(0, L)) and

‖v‖L∞(L2) ≤ C3‖y0‖2, (2.7)

where again C3 takes the form

C3 = e
C4

(
1+1/T +(1+T )

(
‖A‖2L∞(L∞)

+‖B‖2
L∞(L2)

))

,

for some C4 only depending on L and ω.
This way, we get the following result:

Theorem 2.1 Assume that A ∈ L∞((0, L) × (0, T )) and B ∈ L∞(0, T ; L2(0, L)).
Then, the linear parabolic equation (2.1) is null-controllable at any time T > 0.
Specifacally, for each y0 ∈ L2(0, L) there exists v ∈ L∞(0, T ; L2(ω)) such that the
corresponding solution to (2.1) satisfies (1.3). Furthermore, the control v can be
chosen satisfying the estimate (2.7).
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3 Local Null Controllability of the b-Equations

In this section, we present the proof of Theorem1.1.
For the moment, let us assume that y0 ∈ K 2(0, L). Let us set Z := L∞(0, T ;

H 1
0 (0, L)). The argument is as follows: first, we fix y in Z and we solve the family

of elliptic problems:

{
z − α2zxx = y, in (0, L) × (0, T ),

z(0, ·) = z(L , ·) = 0 in (0, T ); (3.1)

then,we control exactly to zero the linear system (2.1)with A = z, B = (b − 1)zx (by
solving the corresponding extremal problem (2.6)); at this point, we set �α(y) := y
and we consider the mapping �α : Z �→ Z ; then the task is to solve the fixed-point
equation y = �α(y).

Several fixed-point theorems can be applied here. In this paper, we have preferred
to use Schauder’s Theorem, although other results also lead to the good conclusion;
for instance, an argument relying on Kakutani’s Theorem, like in [11], is possible.

In order to get good properties of �α , it is very appropriate to choose controls
belonging to the space L∞(0, T ; L2(0, L)), as we have done in Sect. 2 (see Theo-
rem2.1).

Observe that, if y ∈ Z , it is clear that z ∈ L∞(0, T ; K 3(0, L)). Then, thanks to
Sobolev embedding, we have z, zx , zxx ∈ L∞((0, L) × (0, T )) and the following
is satisfied:

‖z‖2L∞(H 1
0 )

+ 2α2‖z‖2L∞(K 2) ≤ ‖y‖2L∞(H 1
0 )

,

2α2‖zxx‖2L∞(L2) + α4‖zxxx‖2L∞(L2) ≤ ‖yx‖2L∞(L2),
(3.2)

Let us consider the system (2.1) with A = z, B = (b − 1)zx . As already said, we
can associate to z the null control v ∈ L∞(0, T ; L2(0, L)) furnished by Theorem2.1
and, then, the corresponding state y.

Since y0 ∈ K 2(0, L) and z ∈ Z , it is clear that

y ∈ L2(0, T ; K 2(0, L)) ∩ C0([0, T ]; H 1
0 (0, L)),

yt ∈ L2(0, T ; L2(0, L))

and, from standard energy estimates and (2.7), we deduce that

‖yt‖L2(L2) + ‖y‖L2(H2) + ‖y‖L∞(H1
0 ) ≤ (‖y0‖H1

0
+ ‖v‖L2(L2))e

C5(1+‖z‖2L∞(L∞)
+‖zx ‖2

L∞(L2)
)

≤ (‖y0‖H1
0

+ ‖v‖L2(L2))e
C6(1+‖y‖2Z )

≤‖y0‖H1
0

eC7(1+‖y‖2Z ),

(3.3)
where C5, C6 and C7 depend on L , ω and T but are independent of α.

We will use the following result, whose proof is given at the end of this section:
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Lemma 3.1 One has y ∈ L∞(0, T ; K 2ε(0, L)), for all ε ∈ (0, 1), with

‖y‖L∞(K 2ε ) ≤ (‖y0‖K 2 + ‖v‖L∞(L2))e
Cε (1+‖y‖2

L∞(H1
0 )

)
. (3.4)

Now, let us fix ε ∈ (0, 1), let us introduce the Banach space

W = {w ∈ L∞(0, T ; K 2ε(0, L)) : wt ∈ L2(0, T ; L2(0, L))} (3.5)

and the closed ball

M = {w ∈ L∞(0, T ; H 1
0 (0, L)) : ‖w‖L∞(H 1

0 ) ≤ 1} (3.6)

and let us observe that �̃α maps the whole space Z into W .
Notice that the embedding W ↪→ Z is compact, in view of classical results of the

Aubin-Lions kind, see [30].
On the other hand, thanks to (3.3), if ‖y0‖H 1

0
≤ δ (with δ > 0, small enough,

independent of α), �α maps M into itself. Consequently, Schauder’s Fixed-Point
Theorem can be applied in this context and �α possesses at least one fixed point in
M .

This ends the proof of Theorem1.1 when y0 ∈ K 2(0, L).
In the general case, when y0 ∈ H 1

0 (0, L), we can use a standard approximation
argument. Indeed, is {y0,n} is a sequence in K 2(0, L) with ‖y0,n‖H 1

0
≤ δ and y0,n →

y0 in H 1
0 (0, L) and the controls vn and states yn and zn are constructed as above, it

is clear that the vn are uniformly bounded in L∞(0, T ; L2(0, L)) and the yn and zn

are uniformly bounded in good spaces, with respect to α and n, in such a way that
we can pass to the limit in n in the equations. Thus, we get again a control such that
(1.3) holds in this case.

Let us now return to Lemma3.1 and let us establish its proof.

Proof of Lemma3.1. In view of (2.1), y solves the following abstract initial value
problem in L2(0, L):

{
yt = ∂2

xx y − zyx − bzx y + v1ω in [0, T ],
y(0) = y0.

This equation can be rewritten as a nonlinear integral equation:

y(t) = et∂2
xx y0 +

∫ t

0
e(t−s)∂2

xx (−zyx − bzx y + v1ω)(s) ds.

Consequently, applying the operator (∂2
xx )

ε to both sides, we have

(∂2
xx )

ε y(t) = (∂2
xx )

εet∂2
xx y0 +

∫ t

0
(∂2

xx )
εe(t−s)∂2

xx (−zyx − bzx y + v1ω)(s) ds. (3.7)
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Recall that, for any r > 0, there exists C(r) > 0 such that

‖(∂2
xx )

r et∂2
xx ‖L(L2(0,L);L2(0,L)) ≤ C(r) t−r ∀ t > 0;

for the proof, see for instance [4].
Taking L2–norms in both sides of (3.7), we see that

‖(∂2xx )ε y(t)‖L2 ≤ ‖y0‖K2ε + C
∫ t

0
(t − s)−ε

[

(‖z(s)‖L∞ + ‖zx ‖L2 )‖y(s)‖
H1
0

+ ‖v(s)1ω‖L2

]

ds

≤ ‖y0‖K2 + C

(

(‖z‖L∞(L∞) + ‖zx ‖L2(L2)
)‖y‖

L∞(H1
0 )

+ ‖v1ω‖L∞(L2)

) ∫ t

0
(t − s)−ε ds

Finally, using (3.2) and (3.3) and taking into account that ε ∈ (0, 1), we easily obtain
that

‖(∂2
xx )

ε y(t)‖L2 ≤ (‖y0‖K 2 + ‖v1ω‖L∞(L2)

)
eCε (1+‖y‖2Z )

and the proof. �

4 Controllability in the Limit

In this section, we prove Theorem1.2.
For the null controls vα furnished by Theorem1.1 and the associated solutions

(yα, zα) to (1.2), we have the uniform estimates (3.2), (3.3) and (3.4). Recall that
y ∈ M and M is given by (3.6). Consequently, there exist y ∈ L2(0, T ; K 2(0, L))

with yt ∈ L2(0, T ; L2(0, L)) and v ∈ L∞(0, T ; L2(ω)) such that, at least for a sub-
sequence, one has:

yα → y weakly in L2(0, T ; K 2(0, L)),

(yα)t → yt weakly in L2(0, T ; L2(0, L))

vα → v weakly − ∗ in L∞(0, T ; L2(ω)).

(4.1)

As before, we can apply a compactness argument of theAubin-Lions kind and deduce
that

yα → y strongly in L2(0, T ; H 1
0 (0, L)). (4.2)

Using the second equation in (1.2), we see that

(zα − y) − α2(zα − y)xx = (yα − y) + α2yxx .

Multiplying this equation by −(zα − y)xx and integrating in (0, L) × (0, T ), we
deduce
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∫ T

0

∫ L

0
|(zα − y)x |2 dx dt + α2

∫ T

0

∫ L

0
|(zα − y)xx |2 dx dt

=
∫ T

0

∫ L

0
(yα − y)x (zα − y)x dx dt

− α2
∫ T

0

∫ L

0
yxx (zα − y)xx dx dt,

whence

∫ T

0

∫ L

0
|(zα − y)x |2 dx dt ≤

∫ T

0

∫ L

0
|(yα − y)x |2 dx dt + α2‖yxx‖22.

This shows that
zα → y strongly in L2(0, T ; H 1

0 (0, L)) (4.3)

and the transport and reaction terms in (1.2) satisfy

zα(yα)x → yyx strongly in L1((0, L) × (0, T ))

(zα)x yα → yx y strongly in L1((0, L) × (0, T )).
(4.4)

In this way, for each ψ ∈ L∞(0, T ; H 1
0 (0, L)), we obtain

∫ T

0

∫ L

0
((yα)tψ + (yα)xψx + zα(yα)xψ + b(zα)x yαψ) dx dt =

∫ T

0

∫ L

0
vα1(a,b)ψ dx dt.

(4.5)
Using (4.1) and (4.4), we can pass to the limit as α → 0+ in all the terms of (4.5) to
find

∫ T

0

∫ L

0
(ytψ + yxψx + (1 + b)yyxψ) dx dt =

∫ T

0

∫ L

0
v1(a,b)ψ dx dt. (4.6)

That is, y is the unique solution to (1.6) and y satisfies (1.3).

5 Some Additional Results and Comments

5.1 Exponential Decay and Large Time Null Controllability
for the Burgers-α Equation

Let us see that, when b = 0, the large time null controllability of (1.2) holds. This
result provides a positive answer to an open question in [1,Remark 2].More precisely,
we have the following:



Remarks on the Control of Family of b–Equations 133

Theorem 5.1 Assume that b = 0. For each y0 ∈ H 1
0 (0, L), there exists α0 > 0 such

that (1.2) is null-controllable at large time for any α ∈ (0, α0). In other words, there
exist T > 0 (independent of α), controls vα ∈ L∞(ω × (0, T )) and associated states
(yα, zα) satisfying

‖vα‖L∞(L∞) ≤ C (5.1)

and
yα(·, T ) = 0 in (0, L). (5.2)

Proof The task is to replace the assumption “y0 is small” by an assumption imposing
that T is large enough (and independent of α).

Thus, let us assume that b = 0. If y0 ∈ H 1
0 (0, L), then the associated uncontrolled

solution to (1.2) satisfies

yα ∈ L2(0, T ; H 2(0, L)) ∩ C0([0, T ]; H 1
0 (0, L)),

zα ∈ L2
(
0, T ; H 4(0, L)

) ∩ L∞(
0, T ; H 1

0 (0, L) ∩ H 3(0, L)
)
,

(yα)t ∈ L2((0, L) × (0, T )), (zα)t ∈ L2
(
0, T ; H 2(0, L)

)
.

This is a straightforward consequence of elliptic and parabolic regularity theory.
Furthermore, the following estimates hold:

‖yα‖L∞(L∞) ≤ ‖y0‖∞,

‖zα‖L∞(L∞) ≤ ‖y0‖∞.
(5.3)

These regularity properties allow to rewrite (1.2) with b = 0 and v = 0 in the
form

⎧
⎨

⎩

zt − α2zxxt − zxx + α2zxxxx + zzx − α2zzxxx = 0 in (0, L) × (0, T ),

z(0, ·) = z(L , ·) = zxx (0, ·) = zxx (L , ·) = 0 on (0, T ),

z(·, 0) = (I − α2∂xx )
−1y0 in (0, L),

(5.4)

where, by simplicity, we have omitted the index α.
Let us multiply (5.4) by z and let us integrate in (0, L). Then, introducing the

instantaneous energy Eα(t) := ‖z(· , t)‖22 + α2‖zx (· , t)‖22, we see that

1

2

d

dt
Eα(t) + ‖zx (· , t)‖22 + α2‖zxx (· , t)‖22 = −2α2

∫ L

0
zzx zxx dx

for all t > 0 and, therefore,

d

dt
Eα(t) + 2

(
1 − 2α2‖y0‖2∞

) ‖zx (· , t)‖22 + α2‖zxx (· , t)‖22 ≤ 0

and
d

dt
Eα(t) + (π/L)2C(y0, α)Eα(t) ≤ 0,
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whereC(y0, α) = min{1, 2(1 − 2α2‖y0‖2∞)}. Takingα0 = 1/(2‖y0‖∞),wefind that

Eα(t) ≤ e−(π/L)2t Eα(0) ∀t > 0.

and, consequently,
‖z(· , t)‖22 ≤ e−(π/L)2t‖y0‖22 ∀t > 0 (5.5)

whenever α ∈ (0, α0).
Let us multiply (1.2) by y and let us integrate in (0, L). Then

d

dt
‖y(· , t)‖22 + ‖yx (· , t)‖22 ≤ ‖y0‖2∞‖z(· , t)‖22 (5.6)

and, using Poincaré’s inequality and (5.5), we get

d

dt
‖y(· , t)‖22 + (π/L)2‖y(· , t)‖22 ≤ e−(π/L)2t‖y0‖2∞‖y0‖22.

Hence, the L2–norm of y decays exponentially:

‖y(· , t)‖22 ≤ e−(π/L)2t‖y0‖22(1 + ‖y0‖2∞) ∀t > 0. (5.7)

Let us see that the same is true for the L2–norm of yx .
Let us introduce r = 1

2 (π/L)2. It follows that

‖y(· , t)‖22 ≤ ‖y0‖22(1 + ‖y0‖2∞)e−2r t . (5.8)

Hence, combining (5.5), (5.6) and (5.8), it is easy to see that

d

dt

(
ert‖y(· , t)‖22

) + ert‖yx (· , t)‖22 ≤ (r(1 + ‖y0‖2∞) + ‖y0‖2∞)‖y0‖22 e−r t .

Integrating from 0 to t yields

∫ t

0
erσ ‖yx (· , σ )‖22 dσ ≤

(

2 + ‖y0‖2∞ + ‖y0‖2∞
r

)

‖y0‖22. (5.9)

Now, we take the L2-inner product of (1.2) and −(yα)xx and get

d

dt
‖yx (· , t)‖22 ≤ ‖y0‖2∞‖yx (· , t)‖2.

Multiplying this inequality by ert , we deduce that

d

dt

(
ert‖yx (· , t)‖22

) ≤ (r + ‖y0‖2∞) ert ‖yx (· , t)‖22
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and, consequently, we see from (5.9) that

‖yx (· , t)‖22 ≤
[

(r + ‖y0‖2∞)

(

2 + ‖y0‖2∞ + ‖y0‖2∞
r

)

‖y0‖22 + ‖y0‖2H 1
0

]

e−r t .

This ends the proof. �

5.2 A Boundary Controllability Result

Thanks to an extension argument, it can be proved that boundary uniform null con-
trollability results similar to Theorem1.1 hold for the b–family.

For instance, let us see that the analog of Theorem1.1 remains true. Thus, let us
introduce the controlled system

⎧
⎪⎪⎨

⎪⎪⎩

yt − yxx + zyx + bzx y = 0 in (0, L) × (0, T ),

z − α2zxx = y in (0, L) × (0, T ),

z(0, ·) = y(0, ·) = 0, y(L , ·) = z(L , ·) = u on (0, T ),

y(·, 0) = y0 in (0, L),

(5.10)

where u = u(t) stands for the control function and y0 ∈ H 1
0 (0, L) is given.

Let ω and L̃ be given, with L̃ > L and ω ⊂ (L , L̃). Let ỹ0 be the extension-by-
zero of y0; note that ỹ0 ∈ H 1

0 (0, L̃). Arguing as in Theorem1.1, it can be proved that
there exists (ỹ, ṽ), with ṽ ∈ L∞(0, T ; L2(0, L̃)),

⎧
⎪⎪⎨

⎪⎪⎩

ỹt − ỹxx + z1[0,L] ỹx + bzx1[0,L] ỹ = ṽ1ω in (0, L̃) × (0, T ),

z − α2zxx = ỹ in (0, L) × (0, T ),

ỹ(0, ·) = ỹ(L̃, ·) = 0, z(0, ·) = 0, z(L , ·) = ỹ(L , ·) on (0, T ),

ỹ(·, 0) = ỹ0 in (0, L̃),

and ỹ(x, T ) ≡ 0. Then, if we take y := ỹ|(0,L), z and u(t) := ỹ(L , t), we see that
u ∈ L∞(0, T ), y, z and u satisfy (5.10) and y(x, T ) ≡ 0.

5.3 The Situation in Higher Spatial Dimensions

Let � ⊂ R
N be a bounded connected and regular open set (N = 2 or N = 3) and let

ω ⊂ � be a (small) open set. We will use the notation Q := � × (0, T ) and � :=
∂� × (0, T ) and we will use bold symbols for vector-valued functions and spaces
of vector-valued functions.

For any v and any y0 in appropriate spaces, let us consider the following controlled
Navier–Stokes system
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⎧
⎪⎪⎨

⎪⎪⎩

yt − �y + (y · ∇)y + ∇ p = v1ω in Q,

∇ · y = 0 in Q,

y = 0 on �,

y(0) = y0 in �.

(5.11)

For an explanation of the meaning of the equations and unknowns, see for instance
[31]. Here, v = v(x, t) stands for the control function.

Introducing a smoothing kernel and a related modification of (5.11), we obtain
the so called Navier–Stokes-α model or N–dimensional viscous Camassa–Holm
equations: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yt − �y + (z · ∇)y + b∇zt · y + ∇ p = v1ω in Q,

z − α2�z + ∇π = y in Q,

∇ · y = ∇ · z = 0 in Q,

y = z = 0 on �,

y(0) = y0 in �,

(5.12)

for more informations about this equation, see [7, 8, 17, 20].
Let us recall the definitions of some function spaces that are frequently used in

the analysis of the systems (5.11) and (5.12):

H = {
ϕ ∈ L2(�) : ∇ · ϕ = 0 in �, ϕ · n = 0 on ∂�

}
,

V = {
ϕ ∈ H1

0(�) : ∇ · ϕ = 0 in �
}
.

With arguments similar to those in [2] and Theorem1.1, it can be proved that,
for any T > 0, there exists ε > 0 such that, if ‖y0‖V < ε we can find controls vα ∈
L2(ω × (0, T )) (bounded independently of α) and associate states (yα, pα, zα, πα)

satisfying
yα(x, T ) = 0 in �.

Furthermore, it can also be seen that, at least for a subsequence, the vα converge,
in an appropriate sense, to a null control of (5.11).
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Abstract Weconsider the out-of-the-planedisplacements of nonlinear elastic strings
which are coupled through point masses attached to the ends and viscoelastic springs.
We provide the modeling, the well-posedness in the sense of classical semi-global
C2-solutions together with some extra regularity at the masses and then prove exact
boundary controllability and velocity-feedback stabilizability, where controls act on
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1 Introduction

Controllability properties for elastic strings with attached tip-masses have been un-
der consideration for quite some time. In [8] an in-span mass has been considered
and controllability results in asymmetric spaces have been estbalished that reflect a
smoothing property according the presence of the point-mass. See also [9]. In [2] the
authors consider inverse problems for networks of strings, where the transmission
conditions at multiple joints involve point-masses. The combination of elastic strings
coupled via elastic springs and tip-masses has been considered by the authors of this
article in [18], where exact boundary controllability was shown. In this article we
extend the results of [18] to a coupling via viscoelastic springs. The method is based
on the fundamental concept described in [12–14]. See also the recent work [11].

For a single 1-D quasilinear wave equation, based on a result concerning semi-
global C2 solutions, Li and Yu [15] used a direct constructive method with modular
structure [13, 14] to establish local exact boundary controllability with Dirichlet,
Neumann, Robin and dissipative boundary controls, respectively. For elastic strings,
where a tip mass is attached to one of the ends, dynamical boundary condition
appear according to Newton’s law, see [3]. Exact boundary controllability for 1-
D quasilinear single wave equations with dynamical boundary conditions has been
obtained in [18]. We begin with two nonlinear elastic strings of common length L
coupled at x = 0 via an elastic linear spring with stiffness κ. If we restrict ourselves
to out-of-the-plane displacements the equations governing the motion of the strings
become scalar. At the end points, i.e. at x = 0, x = L , we attach masses, which for
the sake of simplicity we take as being equal to 1. At the free ends, i.e. at x = L , we
apply boundary controls acting as forces. See Fig. 1.

Fig. 1 Two strings coupled via an elastic spring and masses
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We introduce the stiffness of the strings as Ki (uix ), i = 1, 2 and, correspondingly,
Vi (r) := ∫ r

0 Ki (s)ds. We introduce the Lagrange function

L(u) :=
T∫

0

⎧
⎨

⎩

2∑

i=1

⎡

⎣
L∫

0

1

2
(uit )

2(x, t) − Vi (u
i
x )(x, t)dx

⎤

⎦+ 1

2

2∑

i=1

(uit )
2(0, t) − 1

2
κ
(
u1(0, t) − u2(0, t)

)2

⎫
⎬

⎭
dt.

Then, upon standard variational calculations, we obtain the following coupled system
of two linear wave equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uitt − Ki (u
i
x )x = 0, x ∈ (0, L), t ∈ (0, T ), i = 1, 2,

x = 0 : u1t t (0, t) = K1(u
1
x )(0, t) − κ(u1(0, t) − u2(0, t)),

u2t t (0, t) = K2(u
2
x )(0, t) + κ(u1(0, t) − u2(0, t)),

x = L : u1t t = −K1(u
1
x )(L , t) + h1(t),

u2t t = −K2(u
2
x )(L , t) + h2(t), t ∈ (0, T )

t = 0 : ui (x, 0) = φi
0(x), u

i
t (x, 0) = ψi

1(x), x ∈ [0, L], i = 1, 2,

(1.1)

where κ stands for the stiffness (Hooke’s constant) of the spring. We are to find
two boundary controls (h1(t), h2(t)) on x = L in order to achieve exact boundary
controllability for the coupled system (1.1). We assume that zero is at equilibrium
such that

Ki (0) = 0, K ′
i (0) > 0.

For non-constant equilibria, we need to work around such equilibria. We refer to a
forthcoming publication formore complicated networks and non-constant equilibria.
We now extend the model problem in that we introduce a linear viscoelastic behavior
of Kelvin–Voigt type to the coupling spring. To this end we note that a Maxwell ele-
ment, as shown in Fig. 2, satisfies the constitutive equation in continuum mechanics

σ = Eε + τ ε̇,

where σ, ε signify the stress and the strain, respectively. See e.g. [17]. In this context
the strain in the spring is given by the difference between the mass points. We,
therefore, introduce besides κ = E the parameter τ , representing the dash-pot. See
Fig. 2 for a cartoon of this situation.

The corresponding system of quasilinear wave equations with this coupling is
given by.
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Fig. 2 Two strings coupled via a viscoelastic element and masses

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uitt − Ki (u
i
x )x = 0, x ∈ (0, L), t ∈ (0, T ), i = 1, 2,

x = 0 : u1t t (0, t) = K1(u
1
x )(0, t) − κ(u1(0, t) − u2(0, t)) − τ (u1t (0, t) − u2t (0, t)),

u2t t (0, t) = K2(u
2
x )(0, t) + κ(u1(0, t) − u2(0, t)) + τ (u1t (0, t) − u2t (0, t)),

x = L : u1t t = −K1(u
1
x )(L , t) + h1(t),

u2t t = −K2(u
2
x )(L , t) + h2(t), t ∈ (0, T ),

t = 0 : ui (x, 0) = φi0(x), u
i
t (x, 0) = ψi

1(x), x ∈ [0, L], i = 1, 2.

(1.2)

Kelvin-type visocelasticity as seen above is described by an ordinary differential
equation between the stress and the strains. The corresponding boundary condition
is still local, but second order in time. General viscoelastic springs would involve a
convolution with a relaxation kernel a(·). The corresponding model then takes the
following format.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uitt − Ki (u
i
x )x = 0, x ∈ (0, L), t ∈ (0, T ), i = 1, 2,

x = 0 : u1t t (0, t) = K1(u
1
x )(0, t) − κ(u1(0, t) − u2(0, t)) − ∂

∂t

t∫

0

a(t − s)(u1(0, s) − u2(0, s))ds,

u2t t (0, t) = K2(u
2
x )(0, t) + κ(u1(0, t) − u2(0, t)) + ∂

∂t

t∫

0

a(t − s)(u1(0, s) − u2(0, s))ds,

x = L : u1t t = −K1(u
1
x )(L , t) + h1(t),

u2t t = −K2(u
2
x )(L , t) + h2(t), t ∈ (0, T ),

t = 0 : ui (x, 0) = φi (x), uit (x, 0) = ψi (x), ui (x, s) = 0, s < 0, x ∈ [0, L], i = 1, 2.
(1.3)

In the case of (1.3), we need to add a zero displacement history. The alternative is
to assume that a(s) = 0, t < 0. In this case the boundary condition is non-local in
time already. The classical boundary controllability problem then consists in finding
suitably smooth controls hi (·), i = 1, 2 such that in a given time T > 0 the controls
drive the system (1.1), (1.2) or (1.3) to a given displacement and velocity profile at
the final time T :
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∃? (h1, h2) such that ui satisfy (1.1), (1.2) or (1.3) and

t = 0 : (ui (x, 0), uit (x, 0))
T = (φi (x),ψi (x))T, i = 1, 2, 0 ≤ x ≤ L (1.4)

t = T : (ui (x, T ), uit (x, T ))T = (�i (x),� i (x))T, i = 1, 2, 0 ≤ x ≤ L .

While the question of exact controllability is natural for (1.1) and (1.2), it is more
complicated in the case (1.3), as the final targets �,� need to be holdable states.
This means that after hitting the targets, the solution should stay there, possibly under
applying constant controls. This is true for (1.1) and (1.2), but may fail to hold in the
case (1.3), as the convolution dives the system beyond the final time T if the controls
are switched off.

We integrate the second-order in time boundary conditions appearing in (1.1),
(1.2) or (1.3) with respect to time. We obtain at x = 0

u1t (0, t) = u1t (0, 0) +
t∫

0

(
K1(u

1
x )(0, s) − κ(u1(0, s) − u2(0, s))

)
ds (1.5)

u1t (0, t) = u1t (0, 0) +
t∫

0

(
K1(u

1
x )(0, s) − κ(u1(0, s) − u2(0, s))

)
ds

−τ (u1(0, t) − u2(0, t)) + τ (u1(0, 0) − u2(0, 0)) (1.6)

u1t (0, t) = u1t (0, 0) +
t∫

0

(
K1(u

1
x )(0, s) − κ(u1(0, s) − u2(0, s))

)
ds

+
t∫

0

a(t − s)(u1(0, s) − u2(0, s))ds. (1.7)

In case of (1.5), (1.6), the boundary conditions can be put into the format

u1t (0, t) = G11(ψ
1(0),φ1(0),φ2(0)) + G21(u

1(0, t), u2(0, t)) +
t∫

0

G31(s, u
1(0, s), u2(0, s), u1x (0, s))ds,

(1.8)

whereas in case (1.7), the corresponding boundary condition is given by:

u1t (0, t) = G11(ψ
1(0),φ1(0),φ2(0)) +

t∫

0

G31(t, s, u
1(0, s), u2(0, s), u1x (0, s))ds,

(1.9)

where now the kernel G31 explicitly depends on the actual time t . The situation for
u2 is analogous. We may summarize as follows.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uitt − Ki (u
i
x )x = 0, x ∈ (0, L), t ∈ (0, T ) i = 1, 2,

x = 0 : u1t (0, t) = G11(ψ
1(0),φ1(0),φ2(0)) + G21(u

1(0, t), u2(0, t))

+
t∫

0

G31(t, s, u
1(0, s), u2(0, s), u1x (0, s))ds,

u2t (0, t) = G12(ψ
2(0),φ1(0),φ2(0)) + G22(u

1(0, t), u2(0, t))

+
t∫

0

G32(t, s, u
1(0, s), u2(0, s), u2x (0, s))ds,

x = L : u1t (L , t) = ψ1(L) +
t∫

0

Ḡ21(u
1
x )(L , s)ds +

t∫

0

h1(s)ds,

u2t (L , t) = ψ2(L) +
t∫

0

Ḡ22(u
2
x )(L , s)ds +

t∫

0

h2(s)ds, t ∈ (0, T ),

t = 0 : ui (x, 0) = φi
0(x), u

i
t (x, 0) = ψi

1(x), x ∈ [0, L], i = 1, 2.
(1.10)

Thus, the basicmodel to be discussed consists of coupled quasilinear wave equations,
where the coupling is given by a non-local in time boundary condition of first order.
In the case of general viscoelasticity, the kernels depend on the actual time, whereas
in the elastic case and the Maxwell-type viscoelastic case the kernel does not depend
on the actual time.

2 Well-Posedness and Dissipativity of the Viscoeleastic
Model

2.1 Well-Posedness

In order to prove existence and uniqueness of semi-global classical solutions, we
introduce the new variables

vi := uix , wi := uit , i = 1, 2.

We have

vi
t = wi

x = uixt , wi
t = Ki (v

i )x = K ′
i (v

i )vi
x = K ′

i (u
i
x )u

i
xx , i = 1, 2.
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We further introduce hi (z) :=
z∫

0

√
K ′

i (s)ds and define the following Riemann invari-

ants

r i−(x, t) := wi (x, t) + hi (v
i (x, t)), r+(x, t) := wi (x, t) − hi (v

i (x, t)), r i0(x, t) := ui (x, t). (2.1)

We deduce the following equations for these Riemann invariants

∂t r
i
−(x, t) −

√
K ′

i (v
i (x, t)∂xr

i
−(x, t) = 0 (2.2)

∂t r
i
+(x, t) +

√
K ′

i (v
i (x, t)∂xr

i
+(x, t) = 0

∂t r
i
0(x, t) = wi (x, t). (2.3)

We have the relations

wi = 1

2
(r i− + r i+), hi (v

i ) = 1

2
(r i− − r i+), i = 1, 2. (2.4)

As we assume K ′
i (s) > 0, we have Dvi hi (vi ) = √

K ′
i (v

i ) > 0 and, thus, hi is strictly
monotone. Therefore, there is an inverse mapping such that vi = pi (r i− − r i+). The
Riemann invariants obviously diagonalize our system of equations transformed into
a first order system. We are going to write the coupling and boundary conditions in
terms of the Riemann invariants. To this end, we insert the definitions (2.1) and the re-
lations (2.2), (2.4) and the expression for vi into (1.2).We assumeφ = (φ1, . . . ,φn)

T

is C2 a vector-valued function of x with small C2[0, L] norm, ψ = (ψ1, . . . ,ψn)
T is

C1 a vector-valued function of x with small C1 norm, such that the conditions of C2

compatibility at the points (t, x) = (0, 0) and (0, L) are satisfied, respectively.

1

2
(r1+ + r1−)t (0, t) = K1(p

1(r1− − r1+)(0, t)) − κ
(
r10 (0, t) − r20 (0, t)

)

− τ

(
1

2
(r1− + r1+)t (0, t) − 1

2
(r2− + r2+)(0, t))

)

(2.5)

1

2
(r2+ + r2−)(0, t) = K2(p

2(r2− − r2+)(0, t)) + κ
(
r10 (0, t) − r20 (0, t)

)

+ τ

(
1

2
(r1− + r1+)(0, t) − 1

2
(r2− + r2+)(0, t))

)

. (2.6)

We integrate (2.5) with respect to time and leave the Riemann variable r i+(0, t) on
the left-hand side, as this is the variable that determines the outgoing waves at x = 0.
We obtain
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r1+(0, t) = (r1−(0, 0) + r1+(0, 0)) − r1−(0, t) (2.7)

+ 2

t∫

0

{
K1(p

1(r1− − r1+)(0, s)) − τ
(
r1−(0, s) − r2−(0, s) + r1+(0, s) − r2+(0, s)

)}
ds

− 2κ

t∫

0

(
r10 (0, s) − r20 (0, s)

)
ds

r2+(0, t) = (r2−(0, 0) + r2+(0, 0)) − r2−(0, t) (2.8)

+ 2

t∫

0

{
K2(p

1(r2− − r2+)(0, s)) + τ
(
r1−(0, s) − r2−(0, s) + r1+(0, s) − r2+(0, s)

)}
ds

+ 2κ

t∫

0

(
r10 (0, s) − r20 (0, s)

)
ds

Similarly, we obtain the boundary conditions at x = L as follows

r1−(L , t) = (r1−(L , 0) + r1+(L , 0)) − r1+(L , t)

− 2

t∫

0

{
K1(p

1(r1− − r1+)(L , s)) −
(
r1−(L , s) + r1+(L , s)

)}
ds + 2

t∫

0

h1(s)ds

r2−(L , t) = (r2−(L , 0) + r2+(L , 0)) − r2+(L , t) (2.9)

− 2

t∫

0

{
K2(p

2(r2− − r2+)(L , s)) −
(
r2−(L , s) + r2+(L , s)

)}
ds + 2

t∫

0

h1(s)ds.

We may now introduce the kernels

g1(s, r
i−, r i0, r

i+, i = 1, 2) := K1(p
1(r1− − r1+)(0, s)) − τ

(
r1−(0, s) − r2−(0, s) + r1+(0, s) − r2+(0, s)

)

− 2κ
(
r10 (0, s) − r20 (0, s)

)

g2(s, r
i−, r i0, r

i+, i = 1, 2) := K2(p
2(r1− − r1+)(0, s)) + τ

(
r1−(0, s) − r2−(0, s) + r1+(0, s) − r2+(0, s)

)

+ 2κ
(
r10 (0, s) − r20 (0, s)

)
(2.10)

ḡ1(s, r
i−, r i0, r

i+, i = 1, 2) := K1(p
1(r1− − r1+)(L , s)) −

(
r1−(L , s) + r1+(L , s)

)

ḡ2(s, r
i−, r i0, r

i+, i = 1, 2) := K2(p
2(r2− − r2+)(L , s)) −

(
r2−(L , s) + r2+(L , s)

)
.

We also introduce the initial value functions:

f i (ψi (0),φx (0)) := (r1−(0, 0) + r1+(0, 0)) − r1−(0, t). (2.11)

With this notation we are in the position to rewrite the system (1.2) as follows.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t

⎛

⎝
r i0
r−
r+

⎞

⎠+
⎛

⎜
⎝

0 0 0
0 −√Ki (pi (r−, r+) 0
0 0

√
Ki (pi (r−, r+)

⎞

⎟
⎠ ∂x

⎛

⎝
r i0
r−
r+

⎞

⎠ =
⎛

⎝

1
2 (r− + r+)

0
0

⎞

⎠

r i+(0, t) = f i (φi (0), φx (0)) +
t∫

0

gi (s, r−, r0, r+)ds

ri−(L , t) = f̄ i (φi (L), φx (L)) +
t∫

0

ḡ(s, r−, r0, r+)ds +
t∫

0

hi (s)ds

r0(x, 0) = ψi (x), r−(x, 0) = ψi (x) + hi (φ
′(x, 0)), r+(x, 0) = ψi (x) − hi (φ

′(x, 0)).

(2.12)

This is precisely the format requested in [18] in order to show well-posedness of
(2.12) and, hence, of (1.2). In order to apply the results of [18], we need to assume
C2-compatibility of the initial data. That is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K ′
1(φ

1
x (0))φ

1
xx (0) = K1(φ

1
x(0)) − κ(φ1(0) − φ2(0)) − τ (ψ1(0) − ψ2(0))

K ′
2(φ

1
x (0))φ

2
xx (0) = K2(φ

1
x(0)) + κ(φ1(0) + φ2(0)) − τ (ψ1(0) − ψ2(0))

K ′
1(φ

1
x (L))φ1

xx (L) = K1(φ
1
x(L)) − k1ψ

1(L)

K ′
1(φ

2
x (L))φ2

xx (L) = K2(φ
2
x(L)) − k1ψ

1(L).

(2.13)

Theorem 2.1 For any given T > 0, suppose that ‖(φ,ψ)‖(C2[0,L])2×(C1[0,L])2 ,
‖h‖(C0[0,T ])2 and ‖h̄[0, T ]‖(C0[0,T ])2 are small enough (depending on T ), and the
conditions of C2 compatibility (2.13) are satisfied at the points (t, x) = (0, 0) and
(0, L), respectively. Then, the forward mixed initial-boundary value problems (1.2)
admit a unique semi-global C2 solution u = u(t, x) with small C2 norm on the
domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}.

We also obtain an additional regularity with respect to the time at x = 0, due to
the masses there.

Remark 2.1 For the semi-global C2 solution u = u(t, x) given in Theorem 2.1, if
hi (t) ≡ 0(i = 1, 2), or more generally, hi (t) ∈ C1[0, T ] with small C1[0, T ] norm,
there is a hidden regularity on x = 0 that ui (t, 0) ∈ C3[0, T ](i = 1, 2) with small
C3 norm.

2.2 Dissipativity of the Nonlinear Model

We now consider the following total energy related with the original system: (1.2).

E(t) =
∑

i=1,2

L∫

0

(
1

2
(uit )

2 + V i (uix )

)

dx + 1

2

(
uit (0, t)

2 + uit (L , t)2
)

+ 1

2

(
u1(0, t) − u2(0, t)

)2
,

(2.14)
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where the potential V i (r) satisfies V i (r) =
r∫

0
Ki (s)ds. However, for h1(t), h2(t) in

(1.2), we choose velocity feedack controls

u1t t (L , t) = −K1(u
1
x )(L , t) − k1u

1
t (L , t),

u2t t (L , t) = −K2(u
2
x )(L , t) − k2u

2
t (L , t), t ∈ (0, T ) (2.15)

Assuming second order regularity, we obtain.

d

dt
E(t) =

∑

i=1,2

⎧
⎨

⎩

L∫

0

(
uit u

i
tt + Ki (u

i
x )u

i
xt

)
dx + uit (0, t)u

i
tt (0, t)

⎫
⎬

⎭
(2.16)

+ κ
(
u1(0, t) − u2(0, t)

) (
u1t (0, t) − u2t (0, t)

)

=
∑

i=1,2

L∫

0

uit
(
uitt − (Kiu

i
x )x

)
dx +

∑

i=1,2

Ki (u
i
x )u

i
t (x, t)|L0 + u1t (L , t)u1t t (L , t) + u2t (L , t)u2t t (L , t)

+ u1t (0, t)
(
u1t t + κ(u1(0, t) − u2)0, t))

)+ u1t (0, t)
(
u2t t − κ(u1(0, t) − u2(0, t))

)

= u1t (L , t)(u1t t (L , t) + K1(u
1
x )(L , t)) + u2t (L , t)(u2t t (L , t) + K2(u

2
x )(L , t))

+ u1t (0, t)
(
u1t t − K1(u

1
x )(0, t) + κ(u1(0, t) − u2(0, t))

)

+ u1t (0, t)
(
u2t t − K2(u

2
x )(0, t) − κ(u1(0, t) − u2(0, t))

)

= −k1(u
1
t (L , t))2 − k2(u

2
t (L , t)2 + u1t (0, t)(−τ (u1t (0, t) − u2t (0, t)) + u2t (0, t)(τ (u1t (0, t) − u2t (0, t))

= −k1(u
1
t (L , t))2 − k2(u

2
t (L , t))2 − τ

(
u1t (0, t) − u2t (0, t)

)2 ≤ 0.

This shows dissipativity. It is clear from (2.16) that the uncontrolled and purely
elastic case leads to energy conservation. This suggests that boundary exponential
stabilizability should hold. In the case of the linear model, we provide a proof of
this fact. The investigation of the nonlinear case will be the subject of a forthcoming
publication.

3 Exact Boundary Controllability for the Kelvin-Type
Viscoelastic Coupling

In this section, we examine the problem of exact boundary controllability for a
coupled system of two 1-D quasilinear wave equations, where the coupling is given
by a Maxwell-type visocelastic spring-dash-pot system.

To this end, we provide final data �,�, where � = (�1,�2)
T is a C2

vector-valued function of x with small C2[0, L] norm, � = (�1, �2)
T is a C1[0, L]

vector-valued function of x with small C1[0, L] norm, such that the conditions of
C2 compatibility (2.13) at the points (t, x) = (T, 0) and (T, L) are satisfied, respec-
tively. Obviously, u = 0 is an equilibrium state of (1.2), and we will establish local
one-sided exact boundary controllability around u = 0. By the results in [18], we
obtain:
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Theorem 3.1 Let

T > 2L max
i=1,2

(
1

√
K ′

i (0)

)

. (3.1)

For any given initial data (φ,ψ) and final data (�,�) with small norms
‖(φ,ψ)‖(C2[0,L])2×(C1[0,L])2 and ‖(�,�)‖(C2[0,L])2×(C1[0,L])2 and boundary controls
hi ≡ 0(i = 1, 2), such that the conditions of C2 compatibility are satisfied at the
points (t, x) = (0, 0) and (T, 0), respectively. Then, there exist boundary controls
H = (h̄1, h̄2) with small norm ‖H‖(C0[0,T ])2 on x = L, such that the mixed initial-
boundary value problem for (1.2) admits a unique C2 solution u = u(t, x)with small
C2 norm on the domainR(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, which exactly sat-
isfies (1.4).

Remark 3.1 More generally, if hi (t) ∈ C1[0, T ](i = 1, 2)with smallC1 norm, The-
orem 3.1 still holds.

4 Exponential Boundary Stabilization of a Linear
Kelvin–Voigt-Model

To fix ideas, let us consider the following linear model of two strings coupled via
a Kelvin–Voigt-type viscoelastic spring without tip-masses and velocity boundary
feedbacks at x = L:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uitt − uixx = 0, x ∈ (0, L), t ∈ (0, T ), i = 1, 2,

x = 0 : u1x (0, t) = κ(u1(0, t) − u2(0, t)) + τ (u1t (0, t) − u2t (0, t)),

u2x (0, t) = −κ(u1(0, t) − u2(0, t)) − τ (u1t (0, t) − u2t (0, t)),

x = L : u1x (L , t) = −k1u
1
t (L , t),

u2x (L , t) = −k2u
2
t (L , t), t ∈ (0, T ),

t = 0 : ui (x, 0) = φi (x), uit (x, 0) = ψi (x), x ∈ [0, L], i = 1, 2.

(4.1)

Here, the feedback parameters k1, k2 are positive numbers. As for existence and
uniqueness of solutions, in case that φi (x), i = 1, 2 are not constant, we refer to
the previous section, where the result trivially follows from the nonlinear case. It is,
however, also possible to achieve the wellposedness results via semi-group theory.
We wish to prove exponential decay via an appropriate Liapunov function. As we
ultimately intend to prove such property for the nonlinear model (1.2), we do not
rely on results about linear equations, where uniform exponential stabilizability can
be determined form exact boundary controllability. According to Theorem 3.1, exact
controllability can be inferred in principle also for the linear problem considered here.
However, for nonlinear equations no such implication is known. For that matter it is
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important to retrieve exponential stabilizability by Liapunov-techniques. Moreover,
such techniques are much more precise about the decay rates. We refer to [4, 5, 7]
for the techniques and their applications. We introduce the new variables

vi := uix , wi := uit , i = 1, 2

and the Riemann invariants

r i− := vi + wi , r i+ := vi − wi , i = 1, 2.

With this, we obtain

∂t r
i
− − ∂xr

i
− = 0, ∂t r

i
+ + ∂xr

i
+− = 0.

We consider a candidate Liapunov function:

E(t) :=1

2

∑

i=1,2

L∫

0

{
Ai

+ exp(−μx)(r i+)2 + Ai
− exp(μx)(r i−)2

}
dx

+ 1

2
κ(u1(0, t) − u2(0, t))2 =: E0(t) + E1(t), (4.2)

where μ, Ai+, Ai− > 0 are still to be determined. We obtain

d

dt
E0 =

∑

i=1,2

L∫

0

{
Ai

+ exp(−μx)r i+∂t r
i
+ + Ai

− exp(μx)r i−∂t r
i
−
}
dx (4.3)

=
∑

i=1,2

L∫

0

{

Ai
+ exp(−μx)

(

−1

2
∂x (r

i
+)2
)

+ Ai
− exp(μx)

(

−1

2
∂x (r

i
−)2
)}

dx

−
∑

i=1,2

1

2
Ai

+ exp(−μx)(r i+)2|L0 +
∑

i=1,2

1

2
Ai

− exp(μx)(r i−)2|L0 − μE0(t).

Moreover

d

dt
E1 = κ

(
u1(0, t) − u2(0, t)

) (
u1t (0, t) − u2t (0, t)

)
(4.4)

= κ
(
u1(0, t) − u2(0, t)

)( 1

τ

(
u1x (0, t)

)
− κ

τ

(
u1(0, t) − u2(0, t)

))

= −κ2

τ

(
u1(0, t) − u2(0, t)

)2 + κ

τ

(
u1(0, t) − u2(0, t)

)
u1x (0, t)

≤ −κ2

τ

(
u1(0, t) − u2(0, t)

)2 + κ

τ
ρ
(
u1(0, t) − u2(0, t)

)2 + κ

τ

1

4ρ

(
r1−(0, t) + r1+(0, t)

)2
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≤ −κ

τ
(κ − ρ)

(
u1(0, t) − u2(0, t)

)2 + κ

τ

1

4ρ

(
1

δ
r1−(0, t)2 + δr1+(0, t)2

)

= κ

τ

1

4ρ

(
1

δ
r1−(0, t)2 + δr1+(0, t)2

)

− 2
κ − ρ

τ
E1(t)

We are now concerned with the boundary values. We have

u1x (0, t) = κ(u1(0, t) − u2(0, t)) + τ (u1t (0, t) − u2t (0, t)) ⇔
(r1−(0, t) + r1+(0, t)) = κ(u1(0, t) − u2(0, t)) + τ

(
r1−(0, t) − r1+(0, t) − r2−(0, t) + r2+(0, t)

)
⇔

(1 + τ )r1+(0, t) − τr2+(0, t) = (τ − 1)r1−(0, t) − τr2−(0, t) + κ(u1(0, t) − u2(0, t)).

The analogous boundary representation holds for the second string. Together we
have

(1 + τ )r1+(0, t) − τr2+(0, t) = (τ − 1)r1−(0, t) − τr2−(0, t) + κ(u1(0, t) − u2(0, t))

−τr1+(0, t) + (1 + τ )r2+(0, t) = (τ − 1)r2−(0, t) − τr1−(0, t) − κ(u1(0, t) − u2(0, t)),

which reads as follows:

(
1 + τ −τ
−τ 1 + τ

)(
r1+(0, t)
r2+(0, t)

)

=
(

τ − 1 −τ

−τ τ − 1

)(
r1−(0, t)
r2−(0, t)

)

+ κ

(
(u1(0, t) − u2(0, t))

−(u1(0, t) − u2(0, t))

)

(4.5)

solving for the Riemann invariants with sign ‘+’ we obtain

(
r1+(0, t)
r2+(0, t)

)

= − 1

1 + 2τ

(
1 2τ
2τ 1

)(
r1−(0, t)
r2−(0, t)

)

+ κ

1 + 2τ

(
(u1(0, t) − u2(0, t))

−(u1(0, t) − u2(0, t))

)

.

(4.6)

or

(
r1+(0, t)
r2+(0, t)

)

= − 1

1 + 2τ

(
r1−(0, t) + 2τr2−(0, t)

2τr1−(0, t) + r2−(0, t)

)

+ κ

1 + 2τ

(
(u1(0, t) − u2(0, t))

−(u1(0, t) − u2(0, t))

)

. (4.7)

We take the 2−norm of both sides and obtain after some calculus.

r1+(0, t)2 + r2+(0, t)2 ≤ 3κ2

(1 + 2τ )2
(u1(0, t) − u2(0, t))2 +

(

1 + 2(1 − 2τ )2

(1 + 2τ )2

)
(
r1−(0, t)2 + r2−(0, t)2

)
.

(4.8)

At x = L we have

uix (L , t) = −kiu
i
t (L , t), i = 1, 2 ⇔ (4.9)

r i−(L , t) + r i+(L , t) = −ki (r
i
−(L , t) − r i+(L , t), i = 1, 2 ⇔

r i−(L , t) = ki − 1

ki + 1
r i+(L , t), i = 1, 2..
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Notice that for ki = 1 (4.9) provides transparent boundary feedback conditions such
that no energy enters the strings at x = L , i.e. waves approaching x = L from inside
the strings leave without any reflection. We now go back to (4.2).

−
∑

i=1,2

1

2
Ai

+ exp(−μx)(r i+)2|L0 +
∑

i=1,2

1

2
Ai

− exp(μx)(r i−)2|L0 (4.10)

= 1

2

{
∑

i=1,2

(
Ai

+(r i+(0, t))2 − Ai
−(r i−(0, t))2

)

+
∑

i=1,2

(
Ai

− exp(μL)(r1−(0, t))2 − Ai
+ exp(−μL)(r i+(L , t))2

)
}

.

With this, we can now estimate

d

dt
E(t) ≤ 1

2

⎧
⎨

⎩

∑

i=1,2

(
Ai+(r i+(0, t))2 − Ai−(r i−(0, t))2

)
(4.11)

+
∑

i=1,2

(
Ai− exp(μL)(r1−(0, t))2 − Ai+ exp(−μL)(r i+(L , t))2

)
⎫
⎬

⎭

+ κ

4

1

ρδ
r1−(0, t)2 + κ

4

δ

ρ
r1+(0, t)2 − μE0(t) − 2

κ − ρ

τ
E1(t).

= 1

2
(A1+ + κ

2δ

ρ
)r1+(0, t)2 + 1

2
A2+r2+(0, t)2 − 1

2
(A1− − κ

1

2ρδ
)r1−(0, t)2 − 1

2
A2−r2−(0, t)2

+ 1

2
A1− exp(μL)r1−(L , t)2 + 1

2
A2− exp(μL)r2−(L , t)2

− 1

2
A1+ exp(−μL)r1+(L , t)2 − 1

2
A2+ exp(−μL)r2+(L , t)2 − μE0(t) − 2

κ − ρ

τ
E1(t).

We now use (4.8), (4.9) in (4.11) and obtain

d

dt
E(t) ≤ −μE0(t) − 2

κ − ρ

τ
E1(t) (4.12)

+ max(A1+ + κ
δ

ρ
, A2+)

{
3κ2

2(1 + 2τ )2
(u1(0, t) − u2(0, t))2 + 1

2

(

1 + 2
(1 − 2τ )2

(1 + 2τ )2

)

(r1−(0, t)2 + r2−(0, t)2)

}

− 1

2
(A1− − κ

1

2ρδ
)r1−(0, t)2 − 1

2
A2−r2−(0, t)2 + 1

2

(
k − 1

k + 1

)2

exp(μL)
(
A1−r1+(L , t)2 + A2−r2+(L , t)2

)

− 1

2
exp(−μL)

(
A1+r1+(L , t) + A2+r2+(L , t)2

)

=
{

max(A1+ + κ
δ

ρ
, A2+)

1

2

(

1 + 2
(1 − 2τ )2

(1 + 2τ )2

)

+ κ

2

1

δρ
− 1

2
A1−
}

r1−(0, t)2

+
{

max(A1+ + κ
δ

ρ
, A2+)

1

2

(

1 + 2
(1 − 2τ )2

(1 + 2τ )2

)

− 1

2
A2−
}

r2−(0, t)2

+ 1

2

{(
k − 1

k + 1

)2

A1− exp(μL) − A1+ exp(−μL)

}

r1+(L , t)2
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+ 1

2

{(
k − 1

k + 1

)2

A2− exp(μL) − A2+ exp(−μL)

}

r2+(L , t)2

− μE0(t) −
(

2
κ − ρ

τ
− 3κ2

2(1 + 2τ )2
max(A1+ + κ

δ

ρ
, A2+)

)

E1(t).

Recall that κ, τ ≥ 0 are fixed physical parameters, while A±, δ, τ > 0 can be chosen
under given constraints in order to achieve the desired energy estimate. It is clear from
(4.12) that if we choose the feedback-gains ki = k = 1, i = 1, 2, the third and the
fourth term are automatically negative, regardless how small Ai+, i = 1, 2 are, and the
first and the second term become negative for large Ai−, i = 1, 2 and small Ai+, i =
1, 2, small δ, ρ with δ ≈ ρ. In this case also the factor of E1(t) becomes negative,
say −μ for suitably small μ > 0. One can also choose the viscosity parameter τ to
improve the estimates. Thus, for the case of optimal feedback gains, i.e. ki = 1, i =
1, 2, we obtain the estimate

d

dt
E(t) ≤ −μE(t),∀t > 0, (4.13)

which provides us with exponential decay, for suitable choices of the parameters
above. In the general case, we have to fulfil the following inequalities, where for the
sake of simplicity, we choose Ai− = A−, Ai+ = A+, i = 1, 2.

(i) (A+ + κ
δ

ρ
)
1

2

(

1 + 2
(1 − 2τ )2

(1 + 2τ )2

)

+ κ

2

1

δρ
− 1

2
A− ≤ 0

(i i)
1

2

(
k − 1

k + 1

)2

A− exp(μL) − A+ exp(−μL) ≤ 0 (4.14)

(i i i)

(

2
κ − ρ

τ
− 3κ2

2(1 + 2τ )2
(A+ + κ

δ

ρ
)

)

≥ μ > 0.

Under the conditions (4.14), we obtain again (4.13). Clearly, small spring stiffness κ
and small viscosity τ will improve the exponential decay rate μ which also depends
on the relation between A+ and A−:

A+
A−

≥ 1

2

(
k − 1

k + 1

)2

exp(2μL).

We assume the following compatibility conditions.
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ1
x (0) = κ(φ1(0) − φ2(0)) + τ (ψ1(0) − ψ2(0))

φ2
x (0) = −κ(φ1(0) − φ2(0)) − τ ((ψ1(0) − ψ2(0))

φ1
x (L) = −k1ψ

1(L)

φ2
x (L) = −k2ψ

2(L).

(4.15)
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Theorem 4.1 Let φ ∈ C1(0, L),ψ ∈ C0(0, L) satisfy the compatibility conditions
(4.15) and let the assumptions (4.14) be fulfilled. Then the unique solution of (4.1)
decays exponentially.

Remark 4.1 The result concerns an L2-type Liapunov function for the linear system
(4.1). We conjecture that a similar result, also for H 2-type Liapunov functions hold
true. This will be the subject of a forthcoming publication.

5 Conclusion and Outlook

We have analyzed linear and quasilinear strings coupled via visco-elastic springs
of standard type. We have provided a framework that allows for generalizations
in various directions. First of all, general visco-elastic spring coupling of fading
memory type can be considered in the quasilinear context. See [19] for general non-
local boundary conditions in the context of exact controllability from both sides of
the spring coupling. The situation is more complex for controls appearing only at
the end of one string. If the spring stiffness is infinite, in other words, if the strings
are directly coupled via a mass, we have to consider asymmetric spaces, due to
the smoothing effect of the coupling mass. See e.g. [8]. Such phenomena have not
been discussed for the quasilinear wave equation so far. Therefore, this contribution
gives a first result concerning controllability of nonlinear strings with point-mass
and visco-elastic spring couplings.

We also embarked on stability and stabilization properties of such systems. How-
ever, due to space limitations, we just looked at linear strings, no masses and low
regularity of solutions. The full system with masses and quasilinear strings is cur-
rently open, but subject to a forthcoming publication. Moreover, all that has been
said in this contribution concerns out-of-plane-displacement models. There is cur-
rently no corresponding result for planar of spatial quasilinear strings and springs.
Again, this is subject to current research of the authors. For a general model and
corresponding controllability results for 3-d quasilinear string networks see [10]. In
[6] quasilinear networks of Timoshenko beams have been considered. Again, these
models may be extended to spring-couplings as in this article.

We end with the proposition of a damage model, where we assume that the cou-
pling spring undergoes a damage process which, in turn, is driven by excessive strains
at the coupling point. To this end, we consider a time dependent stiffness κ(t) of the
coupling spring and propose an evolution of damage in due course as follows
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uitt − Ki (u
i
x )x = 0, x ∈ (0, , T )L), t ∈ (0, i = 1, 2,

x = 0 : u1t t (0, t) = K1(u
1
x )(0, t) − κ(t)(u1(0, t) − u2(0, t)),

u2t t (0, t) = K2(u
2
x )(0, t) + κ(t)(u1(0, t) − u2(0, t)),

κt = −{1
2
(u1(0, t) − u2(0, t))2 − η}+κ(t), κ(0) = κ0,

x = L : u1t t = −K1(u
1
x )(L , t) + h1(t),

u2t t = −K2(u
2
x )(L , t) + h2(t),

t = 0 : ui (x, 0) = φi (x), uit (x, 0) = ψi (x), ui (x, s) = 0, s < 0, x ∈ [0, L], i = 1, 2.

(5.1)

Here {a}+ = max(a, 0). The nonlinear ordinary differential equation for the evolu-
tion of the damage describes an exponential decay of κ(t) for time periods, where
the displacement of the spring is excessively large (larger than η >> 0). Problems
of this type are open. They are connected to the general problem of degeneration in
the coefficients of wave equations in the sense of [1]. Clearly, if only one control is
considered, the problem looses the property of controllability as the spring damage
finally leads to break of the spring. The controllability or observability time will tend
to infinity as κ(t) tends to zero.
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A Semilinear Integro-Differential
Equation: Global Existence and Hidden
Regularity

Paola Loreti and Daniela Sforza

Abstract Here we show a hidden regularity result for nonlinear wave equations
with an integral term of convolution type and Dirichlet boundary conditions. Under
general assumptions on the nonlinear term and on the integral kernel we are able to
state results about global existence of strong and mild solutions without any further
smallness on the initial data. Then we define the trace of the normal derivative of the
solution showing a regularity result. In such a way we extend to integrodifferential
equations with nonlinear termwell-known results available in the literature for linear
wave equations with memory.

Keywords Hidden regularity · Positive definite kernels · Partial differential
equations

1 Introduction

Let � ⊂ R
N (N ≥ 1) be a bounded open domain of class C2. Let us denote by ν

the outward unit normal vector to the boundary �. In this paper we will consider
the Cauchy problem for nonlinear wave equations with a general integral term and
Dirichlet boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

utt (t, x) = �u(t, x) +
∫ t

0
ȧ(t − s)�u(s, x) ds + g(u(t, x)), t ≥ 0, x ∈ �,

u(t, x) = 0 t ≥ 0, x ∈ �,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ �.

(1)
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According to the physical model as proposed in [23], we will assume that the integral
kernel satisfies

a : (0,∞) → R is a positive definite function with a(0) < 1,

a , ȧ ∈ L1(0,+∞),
(2)

and the nonlinear term fulfils the following conditions:

• g ∈ C(R) such that there exist α ≥ 0, with α(N − 2) ≤ 2, and C > 0 so that

g(0) = 0,

|g(x) − g(y)| ≤ C(1 + |x |α + |y|α)|x − y| ∀x, y ∈ R ,
(3)

• set G(t) =
∫ t

0
g(s) ds, there exists C0 > 0 such that

G(t) ≤ C0|t |2 ∀t ∈ R . (4)

Wewill establish the following global existence resultwithout any smallness assump-
tion on initial data.

Theorem 1.1 Under the assumptions (2)–(4), for any (u0, u1) ∈ H 1
0 (�) × L2(�)

problem (1) admits a unique mild solution u on [0,∞).

In our previous work [17] we study the linear case of (1) where the integral
kernel ȧ : [0,∞) → (−∞, 0] is a locally absolutely continuous function, ȧ(0) < 0,
ä(t) ≥ 0 for a.e. t ≥ 0 and a(0) < 1.

In this paper the existence result may be stated for more general kernels, as

• a(t) = a0
∫ ∞

t
e−αs

sβ ds, with α > 0, 0 ≤ β < 1 and 0 ≤ a0 <
�(1−β)

α1−β ,
• a(t) = ∫ ∞

t (a0s + a1)e−αs ds = ( a0
α

t + a0+αa1
α2 )e−αt ,

with α > 0, a0, a1 ≥ 0, a0+αa1
α2 < 1, αa1 − a0 ≥ 0,

• a(t) = k
∫ ∞

t
1

(1+s)α ds, with k > 0 such that a(0) < 1, α > 2.

Examples of fading memory kernels can be found in [8, 10].
Some examples of g satisfying assumptions (3)–(4) are

g(x) = c|x |px, c < 0, p(N − 2) ≤ 2 , g(x) = c sin x, c ∈ R .

In addition, for more regular kernels we will prove a so-called hidden regularity
result.

Theorem 1.2 Assume (3)–(4),

C0 < λ(1 − a(0))/2 , λ := inf{‖∇v‖2L2 , v ∈ H 1
0 (�), ‖v‖L2 = 1},

and
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a ∈ C1([0,∞)), ȧ(0) < 0, a(t) ≥ 0, ȧ(t) ≤ 0 ∀t ≥ 0,

ä(t) ∈ L1
loc(0,+∞), ä(t) ≥ 0, a.e. t ≥ 0,

a , ȧ ∈ L1(0,+∞), a(0) < 1 .

(5)

Let T > 0, there exists a constant c = c(T ) > 0 such that for any u0 ∈ H 1
0 (�) and

u1 ∈ L2(�) if u is the mild solution of (1), then, denoting by ∂νu the normal deriva-
tive, we have ∫ T

0

∫

�

|∂νu|2 d� dt ≤ c(‖∇u0‖2L2 + ‖u1‖2L2) .

Moreover, if the energy E(t) of the solution u satisfies

∫ t

0
E(s) ds ≤ c0E(0) ∀t ≥ 0 (c0 > 0 independent of t),

then we have
∂νu ∈ L2(0,∞; L2(�)).

The proof of the existence of the solution u relies on energy estimates. Although
we use some results obtained in [1, 5, 6], here we are interested to treat initial data
without any smallness, so the previous results have to be adapted to consider our
setting. We also mention the papers [3, 11].

To understand how to frame our paper in the literature, we recall briefly some
known results. Lasiecka and Triggiani [14] established the hidden regularity property
for the weak solution u of the wave equation with Dirichlet boundary conditions that
is

∂νu ∈ L2
loc(R; L2(�)).

The term hidden was proposed by J.L. Lions [15] for the wave equation in the context
of the exact controllability problems. Later in [16] J.L. Lions proved that the weak
solution of the nonlinear wave equation

utt (t, x) = �u(t, x) − |u|pu, t ≥ 0, x ∈ �,

satisfies a trace regularity result. Milla Miranda andMedeiros [19] enlarged the class
of nonlinear terms by means of approximation arguments. However they do not
consider memory terms in the equation, that is ȧ ≡ 0. To our knowledge it seems that
there are not previous papers studying the hidden regularity for solutions of nonlinear
integro-differential problems when the integral kernels satisfy the assumptions (5).

The plan of our paper is the following. In Sect. 2 we list some notations and pre-
liminary results. In Sect. 3 we establish existence and uniqueness results of mild and
strong solutions. Finally, in Sect. 4 we give hidden regularity results for a nonlinear
equation with memory.
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2 Preliminaries

Let L2(�) be endowed with the usual inner product and norm

‖u‖L2 =
(∫

�

|u(x)|2 dx

)1/2

u ∈ L2(�) .

Throughout the paper we will use a standard notation for the integral convolution
between two functions, that is

h ∗ u(t) :=
∫ t

0
h(t − s)u(s) ds . (6)

A well-known result concerning integral equations (see e.g. [9, Theorem2.3.5]), that
we will use later is the following.

Lemma 2.1 Let h ∈ L1(0, T ), T > 0. If the function ϕ(t) + h ∗ ϕ(t) belongs to
L2(0, T ; L2(�)) then ϕ ∈ L2(0, T ; L2(�)) and there exist a positive constant c1 =
c1(‖h‖L1(0,T )), depending on the norm ‖h‖L1(0,T ), such that

∫ T

0
‖ϕ(t)‖2L2 dt ≤ c1

∫ T

0

∥
∥ϕ(t) + h ∗ ϕ(t)

∥
∥2

L2 dt . (7)

Recall that h is a positive definite kernel if for any y ∈ L2
loc(0,∞; L2(�)) we have

∫ t

0

∫

�

y(τ , x)

∫ τ

0
h(τ − s)y(s, x) ds dx dτ ≥ 0 , t ≥ 0 . (8)

Also, h is said to be a strongly positive definite kernel if there exists a constant
δ > 0 such that h(t) − δe−t is positive definite. This stronger notion for the integral
kernel allows to obtain uniform estimates for solutions of integral equations, see [6,
Corollary 2.12]. For completeness we recall here that result, because we will use it
later.

Lemma 2.2 Let a ∈ L1(0,∞) be a strongly positive definite kernel such that ȧ ∈
L1(0,∞) and a(0) < 1. If the function ϕ(t) + ȧ ∗ ϕ(t) belongs to L2(0,∞; L2(�))

then ϕ ∈ L2(0,∞; L2(�)) and there exist a positive constant c1, such that

∫ ∞

0
‖ϕ(t)‖2L2 dt ≤ c1

∫ ∞

0

∥
∥ϕ(t) + ȧ ∗ ϕ(t)

∥
∥2

L2 dt . (9)

Regarding the nonlinear term, we will follow the approach pursued in [7] for the
nonintegral case when ȧ ≡ 0. Precisely, we will consider a function g ∈ C(R) such
that there exist α ≥ 0, with (N − 2)α ≤ 2, and C > 0 so that
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g(0) = 0,

|g(x) − g(y)| ≤ C(1 + |x |α + |y|α)|x − y| ∀x, y ∈ R .
(10)

In [7, Proposition 6.1.5] the following result has been proved.

Proposition 2.3 If g satisfies the hypotheses (10), then g is Lipschitz continuous from
bounded subsets of H 1

0 (�) to L2(�). In particular, there exists a positive constant
C such that

∫

�

|g(u(x))|2 dx ≤ C
∫

�

|∇u(x)|2 dx ∀u ∈ H 1
0 (�) . (11)

We will assume that the integral kernel satisfies the following conditions:

a : (0,∞) → R is a positive definite function,

a , ȧ ∈ L1(0,+∞),

a(0) < 1 .

(12)

For reader’s convenience we begin with recalling some known notions and results.
First, we write the Laplacian as an abstract operator. Indeed, we define the operator
A : D(A) ⊂ L2(�) → L2(�) as

D(A) = H 2(�) ∩ H 1
0 (�)

Au(x) = −�u(x) u ∈ D(A) , x ∈ � a.e.

We recall, see e.g. [5, Definition 3.1], that there exists a unique family {R(t)}t≥0 of
bounded linear operators in L2(�) the so-called resolvent for the linear equation

u′′(t) + Au(t) +
∫ t

0
ȧ(t − s)Au(s) ds = 0 , (13)

that satisfy the following conditions:

(i) R(0) is the identity operator and R(t) is strongly continuous on [0,∞), that
is, for all u ∈ L2(�), R(·)u is continuous;

(ii) R(t) commutes with A, which means that R(t)D(A) ⊂ D(A) and

AR(t)u = R(t)Au , u ∈ D(A) , t ≥ 0 ;

(iii) for any u ∈ D(A), R(·)u is twice continuously differentiable in L2(�) on
[0,∞) and R′(0)u = 0;

(iv) for any u ∈ D(A) and any t ≥ 0,

R′′(t)u + AR(t)u +
∫ t

0
ȧ(t − τ )AR(τ )u dτ = 0 .
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In the sequel we will use the following uniform estimates for the resolvent, see e.g.
[5, Proposition 3.4-(i)], taking into account that D(A1/2) = H 1

0 (�).

Proposition 2.4 For any u ∈ L2(�) and any t > 0, we have 1 ∗ R(t)u ∈ H 1
0 (�)

and

‖R(t)u‖2L2 + (
1 − a(0)

) ‖∇(1 ∗ R)(t)u‖2L2 ≤ ‖u‖2L2 . (14)

In particular, ∇(1 ∗ R)(·) is strongly continuous in L2(�).

Let 0 < T ≤ ∞ be given. We recall some notions of solution for the semilinear
equation

utt (t, x) = �u(t, x) +
∫ t

0
ȧ(t − s)�u(s, x) ds + g(u(t, x)), t ∈ [0, T ] , x ∈ � .

(15)

Definition 2.5 We say that u is a strong solution of (15) on [0, T ] if

u ∈ C2([0, T ]; L2(�)) ∩ C([0, T ]; H 2(�) ∩ H 1
0 (�))

and u satisfies (15) for every t ∈ [0, T ].
Let u0, u1 ∈ L2(�). A function u ∈ C1([0, T ]; L2(�)) ∩ C([0, T ]; H 1

0 (�)) is a
mild solution of (15) on [0, T ] with initial conditions

u(0) = u0, ut (0) = u1, (16)

if

u(t) = R(t)u0 +
∫ t

0
R(τ )u1dτ +

∫ t

0
1 ∗ R(t − τ )g(u(τ ))dτ , (17)

where {R(t)} is the resolvent for the linear equation (13).

Notice that the convolution term in (17) is well defined, thanks to Proposition 2.3. A
strong solution is also a mild one.

Another useful notion of generalized solution of (15) is the so-called weak solu-
tion, that is a function u ∈ C1([0, T ]; L2(�)) ∩ C([0, T ]; H 1

0 (�)) such that for any
v ∈ H 1

0 (�), t → ∫

�
utv dx ∈ C1([0, T ]) and

d

dt

∫

�

ut v dx = −
∫

�

∇u · ∇v dx −
∫

�

∫ t

0
ȧ(t − s)∇u(s) ds · ∇v dx +

∫

�

g(u(t))v dx , ∀t ∈ [0, T ] .
(18)

Adapting a classical argument due to Ball [2], one can show that any mild solution
of (15) is also a weak solution, and the two notions of solution are equivalent in the
linear case when g ≡ 0 (see also [22]).

Throughout the paper we denote with the symbol · the Euclidean scalar product
in RN .
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3 Existence and Uniqueness of Mild and Strong Solutions

The next proposition ensures the local existence and uniqueness of the mild solution
for the Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

utt (t, x) = �u(t, x) +
∫ t

0
ȧ(t − s)�u(s, x) ds + g(u(t, x)), t ≥ 0, x ∈ �,

u(t, x) = 0 t ≥ 0, x ∈ �,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ �.

(19)
The proof relies on suitable regularity estimates for the resolvent {R(t)} such as (14)
(for more details see e.g. [5, Sect. 3]) and a standard fixed point argument (see [4]
for an analogous proof).

Proposition 3.1 If u0 ∈ H 1
0 (�) and u1 ∈ L2(�), there exists a positive number T

such that the Cauchy problem (19) admits a unique mild solution on [0, T ].
Assuming more regular data and using standard argumentations, one can show

that the mild solution is a strong one.

Proposition 3.2 Let u0 ∈ H 2(�) ∩ H 1
0 (�) and u1 ∈ H 1

0 (�). Then, the mild solu-
tion of the Cauchy problem (19) in [0, T ] is a strong solution. In addition, u belongs
to C1([0, T ]; H 1

0 (�)).

To investigate the existence for all t ≥ 0 of the solutions, for g satisfying (10) we
introduce G ∈ C(R) by means of

G(t) =
∫ t

0
g(s) ds . (20)

We define the energy of a mild solution u of (19) on a given interval [0, T ], as

E(t) = 1

2

∫

�

|ut |2 dx + 1 − a(0)

2

∫

�

|∇u|2 dx −
∫

�

G(u) dx . (21)

In view of (10) we have

∫

�

|G(u0(x))| dx ≤ C
∫

�

|∇u0(x)|2 dx ∀u0 ∈ H 1
0 (�) , (22)

and hence

E(0) ≤ C(‖∇u0‖2L2 + ‖u1‖2L2) u0 ∈ H 1
0 (�), u1 ∈ L2(�) . (23)

About the energy of the solutions, we recall some known results, see [6, Lemma 3.5].
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Lemma 3.3 (i) If u0 ∈ H 2(�) ∩ H 1
0 (�) and u1 ∈ H 1

0 (�), then the strong solution
u of problem (19) on [0, T ] satisfies the identity

E(t)+
∫ t

0

∫

�
a ∗ ∇ut (s) · ∇ut (s) dx ds

= E(0) + a(0)
∫

�
|∇u0|2 dx − a(t)

∫

�
∇u0 · ∇u(t) dx −

∫ t

0
ȧ(s)

∫

�
∇u0 · ∇u(s) dx ds ,

(24)

for any t ∈ [0, T ].
(ii) If u0 ∈ H 1

0 (�) and u1 ∈ L2(�), then the mild solution u of problem (19) on
[0, T ] verifies

E(t) ≤ E(0) + a(0)
∫

�
|∇u0|2 dx − a(t)

∫

�
∇u0 · ∇u(t) dx −

∫ t

0
ȧ(s)

∫

�
∇u0 · ∇u(s) dx ds ,

(25)
for any t ∈ [0, T ].

Assuming an extra condition on G, global existence will follow for all data. For
further convenience we introduce the notation

λ = inf{‖∇v‖2L2 , v ∈ H 1
0 (�), ‖v‖L2 = 1} . (26)

Theorem 3.4 Suppose that there exists C0 > 0 such that

G(t) ≤ C0|t |2 ∀t ∈ R . (27)

Then for any (u0, u1) ∈ H 1
0 (�) × L2(�) problem (19) admits a unique mild solution

u on [0,∞).
Moreover, if we suppose that the constant C0 > 0 in (27) satisfies

C0 < λ(1 − a(0))/2, (28)

where λ is defined in (26), then E(t) is positive and we have for any t ≥ 0

E(t) ≥ 1

2
‖ut (t)‖2L2 + C

2
‖∇u(t)‖2L2 , (29)

E(t) ≤ C
(‖u1‖2L2 + ‖∇u0‖2L2

)
, (30)

‖ut (t)‖2L2 + ‖∇u(t)‖2L2 ≤ C
(‖u1‖2L2 + ‖∇u0‖2L2

)
, (31)

where the symbol C denotes positive constants, that can be different.
Furthermore, if u0 ∈ H 2(�) ∩ H 1

0 (�) and u1 ∈ H 1
0 (�), then u is a strong solu-

tion of (19) on [0,∞), u ∈ C1([0,∞); H 1
0 (�)) and for any t ≥ 0

E(t) +
∫ t

0

∫

�

a ∗ ∇ut (s) · ∇ut (s) dx ds ≤ C
(‖u1‖2L2 + ‖∇u0‖2L2

)
. (32)
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Proof Let [0, T ) be the maximal domain of the mild solution u of (19). To prove
T = ∞, we will argue by contradiction and assume that T is a positive real number.
We will show that there exists a constant C = C(T ) > 0 such that

∫

�

|ut |2 dx +
∫

�

|∇u|2 dx ≤ C ∀t ∈ [0, T ) . (33)

First, thanks to (25) we have

∫

�

|ut |2 dx + (
1 − a(0)

)
∫

�

|∇u|2 dx

≤ ‖u1‖2L2 + (
1 − a(0)

)‖∇u0‖2L2 − 2
∫

�

G(u0) dx + 2a(0)‖∇u0‖2L2

− 2a(t)
∫

�

∇u0 · ∇u(t) dx − 2
∫ t

0
ȧ(s)

∫

�

∇u0 · ∇u(s) dx ds + 2
∫

�

G(u(t)) dx

≤ ‖u1‖2L2 + (
1 + a(0)

)‖∇u0‖2L2 + 2
∫

�

|G(u0)| dx

− 2a(t)
∫

�

∇u0 · ∇u(t) dx − 2
∫ t

0
ȧ(s)

∫

�

∇u0 · ∇u(s) dx ds + 2
∫

�

G(u(t)) dx .

(34)

We note that

−2a(t)
∫

�

∇u0 · ∇u(t) dx

≤ 2‖a‖∞
∫

�

|∇u0| |∇u(t)| dx ≤ 1 − a(0)

2

∫

�

|∇u|2 dx + 2‖a‖2∞
1 − a(0)

‖∇u0‖2L2 .

Putting the above estimate into (34), we obtain

∫

�

|ut |2 dx + 1 − a(0)

2

∫

�

|∇u|2 dx

≤ ‖u1‖2L2 +
(

1 + a(0) + 2‖a‖2∞
1 − a(0)

)

‖∇u0‖2L2 + 2
∫

�

|G(u0)| dx

− 2
∫ t

0
ȧ(s)

∫

�

∇u0 · ∇u(s) dx ds + 2
∫

�

G(u(t)) dx .

(35)

Now, we have to estimate the last two terms on the right-hand side of the previous
inequality. As regards the first one, we note that

− 2
∫ t

0
ȧ(s)

∫

�
∇u0 · ∇u(s) dx ds ≤ 2‖ȧ‖1

1 − a(0)
‖∇u0‖2L2 + 1 − a(0)

2

∫ t

0
|ȧ(s)|

∫

�
|∇u(s)|2 dx ds .

(36)
Concerning the other integral, assumption (27) yields for any t ∈ [0, T )

∫

�

G(u(t)) dx ≤ C0

∫

�

|u(t)|2 dx . (37)
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In addition, we observe that

‖u(t)‖2L2 = ‖u0‖2L2 +
∫ t

0

d

ds

∫

�
|u(s)|2 dx ds = ‖u0‖2L2 + 2

∫ t

0

∫

�
u(s)ut (s) dx ds .

Since, by the definition (26) of λ we have

∫

�

|∇u|2 dx ≥ λ

∫

�

|u|2 dx , (38)

we deduce

‖u(t)‖2L2 ≤ ‖u0‖2L2 +
∫ t

0

(∫

�

|ut (s)|2 dx + 1

λ

∫

�

|∇u(s)|2 dx

)

ds .

Therefore, by (37)

∫

�

G(u(t)) dx ≤ C0‖u0‖2L2 + C0

∫ t

0

(∫

�

|ut (s)|2 dx + 1

λ

∫

�

|∇u(s)|2 dx

)

ds

≤ C0‖u0‖2L2 + M
∫ t

0

( ∫

�

|ut (s)|2 dx + 1 − a(0)

2

∫

�

|∇u(s)|2 dx

)

ds ,

(39)

where M = C0 max{1, 2λ−1

1−a(0) }. Plugging (36) and (39) into (35), thanks also to (22)
we get

∫

�

|ut |2 dx + 1 − a(0)

2

∫

�

|∇u|2 dx

≤ ‖u1‖2L2+
(

1 + a(0) + 2
‖a‖2∞ + ‖ȧ‖1

1 − a(0)
+ C0

λ
+ C

)

‖∇u0‖2L2

+
∫ t

0

(|ȧ(s)| + M
)
(∫

�

|ut (s)|2 dx + 1 − a(0)

2

∫

�

|∇u(s)|2 dx

)

ds .

(40)

Applying Gronwall lemma, we obtain for any t ∈ [0, T )

∫

�

|ut |2 dx+ 1 − a(0)

2

∫

�

|∇u|2 dx

≤
(

‖u1‖2L2 +
(

1 + a(0) + 2
‖a‖2∞ + ‖ȧ‖1

1 − a(0)
+ C0

λ
+ C

)

‖∇u0‖2L2

)

e
∫ t
0

(
|ȧ(s)|+M

)
ds

≤
(

‖u1‖2L2 +
(

1 + a(0) + 2
‖a‖2∞ + ‖ȧ‖1

1 − a(0)
+ C0

λ
+ C

)

‖∇u0‖2L2

)

e‖ȧ‖1+MT ,

and hence, set

C(T ) = e‖ȧ‖1+MT

min{1, 1−a(0)
2 }

(

‖u1‖2L2 +
(

1 + a(0) + 2
‖a‖2∞ + ‖ȧ‖1

1 − a(0)
+ C0

λ
+ C

)

‖∇u0‖2L2

)
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we have that (33) holds true.
To have a contradiction, we will prove that u ∈ C([0, T ]; H 1

0 (�)) ∩ C1([0, T ];
L2(�)). First, set

v(t) = R(t)u0 +
∫ t

0
R(τ )u1dτ t ≥ 0 , (41)

we note that, thanks to the properties of the resolvent we have

v(t) ∈ C([0,+∞); H 1
0 (�)) ∩ C1([0,+∞); L2(�)) . (42)

Since by (17) and (41) we can write

u(t) = v(t) +
∫ t

0
1 ∗ R(t − τ )g(u(τ ))dτ , (43)

for h > 0 and 0 ≤ t < t + h < T we have

u(t + h) − u(t) = v(t + h) − v(t) +
∫ t+h

0
1 ∗ R(τ )g(u(t + h − τ ))dτ −

∫ t

0
1 ∗ R(τ )g(u(t − τ ))dτ

= v(t + h) − v(t) +
∫ t

0
1 ∗ R(τ )

[
g(u(t + h − τ )) − g(u(t − τ ))

]
dτ

+
∫ t+h

t
1 ∗ R(τ )g(u(t + h − τ ))dτ .

As a consequence, by (14) we have

‖∇u(t + h) − ∇u(t)‖L2 ≤‖∇v(t + h) − ∇v(t)‖L2 + 1

1 − a(0)

∫ t

0
‖g(u(s + h)) − g(u(s))‖L2ds

+ 1

1 − a(0)

∫ h

0
‖g(u(s))‖L2ds.

Thanks to Proposition 2.3 and (33) we deduce that

‖∇u(t + h) − ∇u(t)‖L2 ≤ ‖∇v(t + h) − ∇v(t)‖L2 + C
∫ t

0
‖∇u(s + h)) − ∇u(s)‖L2ds

+ C
∫ h

0
‖∇u(s)‖L2ds

≤ ‖∇v(t + h) − ∇v(t)‖L2 + Ch + C
∫ t

0
‖∇u(s + h)) − ∇u(s)‖L2ds,

where C = C(T ) > 0 is a positive constant. Applying Gronwall lemma, we get

‖∇u(t + h) − ∇u(t)‖L2 ≤ (‖∇v(t + h) − ∇v(t)‖L2 + Ch
)
eCT ,

and hence the function∇u(t) is uniformly continuous in [0, T [with values in L2(�).
Therefore u(t) can be also defined in T in a way that u ∈ C([0, T ]; H 1

0 (�)). More-
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over, again by (43) we have

ut (t) = vt (t) +
∫ t

0
R(t − τ )g(u(τ ))dτ ,

and hence, thanks to the regularity of v(t), see (42), and u ∈ C([0, T ]; H 1
0 (�)) we

get u ∈ C1([0, T ]; L2(�)). Therefore, one can restart by the data (u(T ), ut (T ) ∈
H 1

0 (�) × L2(�) but this is in contrast with the fact that T is maximal. The contra-
diction follows by assuming that T is a positive real number and hence T = ∞.

Now we suppose that the constant C0 in (27) satisfies the extra condition (28). By
(37) and (38) we get ∫

�

G(u) dx ≤ C0

λ

∫

�

|∇u|2 dx . (44)

Therefore, putting the previous estimate into the expression (21) of the energy, we
obtain

E(t) ≥ 1

2

∫

�

|ut |2 dx +
(
1 − a(0)

2
− C0

λ

) ∫

�

|∇u|2 dx ,

that is (29) where C = λ(1−a(0))−2C0
λ

> 0 thanks to the assumption C0 < λ(1 −
a(0))/2. In particular E(0) ≥ 0.

Again by (25), we get

E(t) ≤ 1

2
‖u1‖2L2 + 1 + a(0)

2
‖∇u0‖2L2+

∫

�

|G(u0)| dx

− a(t)
∫

�

∇u0 · ∇u(t) dx −
∫ t

0
ȧ(s)

∫

�

∇u0 · ∇u(s) dx ds .

(45)

If C > 0 is the constant in (29), taking into account that

−a(t)
∫

�

∇u0 · ∇u(t) dx ≤ ‖a‖∞
∫

�

|∇u0| |∇u(t)| dx ≤ C

4

∫

�

|∇u|2 dx + ‖a‖2∞
C

‖∇u0‖2L2 ,

−
∫ t

0
ȧ(s)

∫

�
∇u0 · ∇u(s) dx ds ≤ C

4

∫ t

0
|ȧ(s)|

∫

�
|∇u(s)|2 dx ds + ‖ȧ‖1

C
‖∇u0‖2L2 ,

from (45) we get

E(t) ≤ 1

2
‖u1‖2L2 +

(
1 + a(0)

2
+ ‖a‖2∞ + ‖ȧ‖1

C

)

‖∇u0‖2L2 +
∫

�

|G(u0)| dx

+ C

4

∫

�

|∇u|2 dx + C

4

∫ t

0
|ȧ(s)|

∫

�

|∇u(s)|2 dx ds .

(46)

Putting together (29) and (46), we get
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1

2
‖ut (t)‖2L2 + C

4
‖∇u(t)‖2L2 ≤ 1

2
‖u1‖2L2 +

(
1 + a(0)

2
+ ‖a‖2∞ + ‖ȧ‖1

C

)

‖∇u0‖2L2 +
∫

�

|G(u0)| dx

+ C

4

∫ t

0
|ȧ(s)|‖∇u(s)‖2L2 ds .

Applying Gronwall lemma, we have for any t ≥ 0

1

2
‖ut (t)‖2L2 + C

4
‖∇u(t)‖2L2

≤ e‖ȧ‖1
(
1

2
‖u1‖2L2 +

(
1 + a(0)

2
+ ‖a‖2∞ + ‖ȧ‖1

C

)

‖∇u0‖2L2 +
∫

�

|G(u0)| dx

)

.

Moreover, putting the above estimate into (46) and taking into account (22) we obtain
that (30) holds true. Finally, (31) follows from (29) and (30), while (32) holds for
strong solutions in view of (24). �

Undermore regular assumptions on the integral kernel, we can establish a different
result concerning the global existence of solutions and the dissipation of energy.
Indeed, we will assume that the integral kernel satisfies the following conditions

a ∈ C1([0,∞)), ȧ(0) < 0, a(t) ≥ 0, ȧ(t) ≤ 0 ∀t ≥ 0,

ä(t) ∈ L1
loc(0,+∞), ä(t) ≥ 0, a.e. t ≥ 0,

a , ȧ ∈ L1(0,+∞), a(0) < 1 .

(47)

It is well known that these conditions imply that a is a strongly positive definite
kernel, see [21, Corollary 2.2], and hence (12) holds true. Then we can consider
a different expression for the energy of the solutions with respect to (21). More
precisely, we will define the energy as follows

E(t) = 1

2

∫

�
|ut (t, x)|2 dx + 1 − a(0) + a(t)

2

∫

�
|∇u(t, x)|2 dx

− 1

2

∫

�

∫ t

0
ȧ(t − s)|∇u(s, x) − ∇u(t, x)|2 ds dx −

∫

�
G(u) dx t ≥ 0 .

(48)

Thanks to the assumptions (47) E(t) is a decreasing function, see e.g. [1, 20]. In
particular, we have

E ′(t) = 1

2
ȧ(t)

∫

�
|∇u(t, x)|2 dx − 1

2

∫

�

∫ t

0
ä(t − s)|∇u(s, x) − ∇u(t, x)|2 ds dx a.e. t ≥ 0 .

(49)

Theorem 3.5 Let us assume (47), (10), (27) and (28).
For any u0 ∈ H 1

0 (�) and u1 ∈ L2(�) there exists a unique mild solution u on
[0,∞) of the Cauchy problem
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⎧
⎪⎪⎨

⎪⎪⎩

utt (t, x) = �u(t, x) +
∫ t

0
ȧ(t − s)�u(s, x) ds + g(u(t, x)) , t ≥ 0, x ∈ �,

u(t, x) = 0 t ≥ 0, x ∈ �,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ �.

(50)
In addition, if the initial data are more regular, that is u0 ∈ H 2(�) ∩ H 1

0 (�) and
u1 ∈ H 1

0 (�) the mild solution of (50) is a strong one.
Moreover, the energy of the mild solution u, defined by (48) is positive and we

have for any t ≥ 0

1 − a(0)

2
‖∇u(t)‖2L2 −

∫

�

G(u) dx > C‖∇u(t)‖2L2 (51)

E(t) ≥ 1

2
‖ut (t)‖2L2 + C‖∇u(t)‖2L2 , (52)

E(t) ≤ C
(‖u1‖2L2 + ‖∇u0‖2L2

)
, (53)

‖ut (t)‖2L2 + ‖∇u(t)‖2L2 ≤ C
(‖u1‖2L2 + ‖∇u0‖2L2

)
, (54)

where the symbol C denotes positive constants, maybe different.

4 Hidden Regularity Results

Throughout this section wewill assume on the integral kernel and on the nonlinearity
the conditions (47), (10), (27) and (28).

Wewill follow the approach pursued in [12, 13] for linear wave equations without
memory and in [17] for the linear case with memory. First, we need to introduce a
technical lemma, that we will use later. For the sake of completeness we prefer to
give all details of the proof, nevertheless some steps are similar to those of the linear
case.

Lemma 4.1 Let u ∈ H 2
loc((0,∞); H 2(�)) be a function satisfying the following

equation

utt (t, x) = �u(t, x) +
∫ t

0
ȧ(t − s)�u(s, x) ds + g(u(t, x)) , in (0,∞) × �.

(55)
If h : � → R

N is a vector field of class C1, then for any fixed S, T ∈ R, 0 ≤ S < T ,
the following identity holds true
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∫ T

S

∫

�

[
2∂ν

(
u + ȧ ∗ u

)
h · ∇(

u + ȧ ∗ u
) − h · ν|∇(

u + ȧ ∗ u
)|2 + h · ν (ut )

2] d� dt

= 2

[∫

�
ut h · ∇(

u + ȧ ∗ u
)

dx

]T

S
+

∫ T

S

∫

�

N∑

j=1

∂ j h j (ut )
2 dx dt

− 2
∫ T

S

∫

�
ut h ·

∫ t

0
ä(t − s)

(∇u(s) − ∇u(t)
)
ds dx dt − 2

∫ T

S
ȧ(t)

∫

�
ut h · ∇u dx dt

+ 2
∫ T

S

N∑

i, j=1

∫

�
∂i h j ∂i

(
u + ȧ ∗ u

)
∂ j

(
u + ȧ ∗ u

)
dx dt −

∫ T

S

∫

�

N∑

j=1

∂ j h j |∇(
u + ȧ ∗ u

)|2 dx dt

+ 2
∫ T

S

∫

�
g(u(t))h · ∇(

u + ȧ ∗ u
)

dx dt .

(56)

Proof To begin with, we multiply the Eq. (55) by

2h · ∇
(

u(t) +
∫ t

0
ȧ(t − s)u(s) ds

)

and integrate over [S, T ] × �. For simplicity, here and in the following we often
drop the dependence on the variables.

First, we will handle the term with utt . Indeed, integrating by parts in the variable
t gives

2
∫ T

S

∫

�

utt h · ∇
(

u(t) +
∫ t

0
ȧ(t − s)u(s) ds

)

dx dt

= 2

[∫

�

ut h · ∇
(

u(t) +
∫ t

0
ȧ(t − s)u(s) ds) dx]TS

−2
∫ T

S

∫

�

ut h · ∇ut dx dt − 2
∫ T

S

∫

�

ut h · ∇
(∫ t

0
ä(t − s)u(s) ds + ȧ(0)u(t)

)

dx dt .

(57)

Now, we note that, if we integrate by parts in the variable x then we obtain

2
∫

�

ut h · ∇ut dx =
∫

�

h · ∇(ut )
2 dx =

∫

�

h · ν (ut )
2 d� −

∫

�

N∑

j=1

∂ j h j (ut )
2 dx .

(58)
In addition, we can write

∫ t

0
ä(t − s)u(s) ds =

∫ t

0
ä(t − s)(u(s) − u(t)) ds +

∫ t

0
ä(s)u(t) ds

=
∫ t

0
ä(t − s)(u(s) − u(t)) ds + ȧ(t)u(t) − ȧ(0)u(t) .

(59)
Therefore, plugging (58) and (59) into (57) yields
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2
∫ T

S

∫

�

utt h · ∇
(

u(t) +
∫ t

0
ȧ(t − s)u(s) ds

)

dx dt

= 2

[∫

�

ut h · ∇
(

u(t) +
∫ t

0
ȧ(t − s)u(s) ds

)

dx

]T

S
−

∫ T

S

∫

�

h · ν (ut )
2 d� dt

+
∫ T

S

∫

�

N∑

j=1

∂ j h j (ut )
2 dx dt − 2

∫ T

S

∫

�

ut h ·
∫ t

0
ä(t − s)

(∇u(s) − ∇u(t)
)

ds dx dt

− 2
∫ T

S
ȧ(t)

∫

�

ut h · ∇u dx dt .

(60)
Now, to manage the terms with �u, we set

w(t) = u(t) +
∫ t

0
ȧ(t − s)u(s) ds , (61)

so, we have to evaluate the term

2
∫ T

S

∫

�

�w h · ∇w dx dt .

Integrating by parts in the variable x we get

2
∫ T

S

∫

�

�w h · ∇w dx dt

= 2
∫ T

S

∫

�

∂νw h · ∇w d� dt − 2
∫ T

S

∫

�

∇w · ∇(h · ∇w) dx dt .

(62)

We observe that

2
∫

�
∇w · ∇(h · ∇w) dx = 2

N∑

i, j=1

∫

�
∂i w ∂i (h j ∂ j w) dx

= 2
N∑

i, j=1

∫

�
∂i h j ∂i w∂ j w dx + 2

N∑

i, j=1

∫

�
h j ∂i w ∂ j (∂i w) dx ,

(63)
and

2
N∑

i, j=1

∫

�

h j∂iw ∂ j (∂iw) dx =
N∑

j=1

∫

�

h j ∂ j (

N∑

i=1

(∂iw)2) dx

=
∫

�

h · ν|∇w|2 d� −
∫

�

N∑

j=1

∂ j h j |∇w|2 dx .

(64)
Therefore, by putting (63) and (64) into (62) we obtain
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2
∫ T

S

∫

�

�w h · ∇w dx dt

= 2
∫ T

S

∫

�

∂νw h · ∇w d� dt −
∫ T

S

∫

�

h · ν|∇w|2 d� dt

− 2
∫ T

S

N∑

i, j=1

∫

�

∂i h j∂iw∂ jw dx dt +
∫ T

S

∫

�

N∑

j=1

∂ j h j |∇w|2 dx dt .

(65)

Finally, by (60) and (65), taking into account (61) we have the identity (56). �

Theorem 4.2 Let u0 ∈ H 2(�) ∩ H 1
0 (�), u1 ∈ H 1

0 (�) and u the strong solution of

⎧
⎪⎪⎨

⎪⎪⎩

utt (t, x) = �u(t, x) +
∫ t

0
ȧ(t − s)�u(s, x) ds + g(u(t, x)) , t ≥ 0, x ∈ �,

u(t, x) = 0 t ≥ 0, x ∈ �,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ �.

(66)
If T > 0, there is a constant c0 > 0 independent of T such that u satisfies the inequal-
ity

∫ T

0

∫

�

∣
∣
∣∂νu + ȧ ∗ ∂νu

∣
∣
∣
2
d�dt ≤ c0

∫ T

0
E(t) dt + c0E(0) , (67)

where E(t) is the energy of the solution given by (48).
Moreover, for a positive constant c0 = c0(T ) we have

∫ T

0

∫

�

∣
∣
∣∂νu + ȧ ∗ ∂νu

∣
∣
∣
2
d�dt ≤ c0(‖∇u0‖2L2 + ‖u1‖2L2) . (68)

Proof To begin with we consider a vector field h ∈ C1(�;RN ) such that

h = ν on � , (69)

see e.g. [12] for the construction of such vector field. From now on, we will denote
with c positive constants, maybe different. In particular, we have

|h(x)| ≤ c and
N∑

i, j=1

|∂i h j (x)| dx ≤ c , ∀x ∈ �. (70)

We will apply the identity (56) with the vector field h satisfying (69) and with S = 0.
First, we observe that

ut = 0 , ∇u = (∂νu)ν on (0, T ) × � . (71)
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For a detailed proof of the second identity see e.g. [19, Lemma 2.1]. Therefore,
thanks to (71) the left-hand side of (56) with S = 0 becomes

∫ T

0

∫

�

∣
∣
∣∂νu + ȧ ∗ ∂νu

∣
∣
∣
2
d�dt ,

and hence (56) can be written as

∫ T

0

∫

�

∣
∣
∣∂νu + ȧ ∗ ∂νu

∣
∣
∣
2
d�dt

= 2

[∫

�
ut h · ∇(

u + ȧ ∗ u
)

dx

]T

0
+

∫ T

0

∫

�

N∑

j=1

∂ j h j (ut )
2 dx dt

− 2
∫ T

0

∫

�
ut h ·

∫ t

0
ä(t − s)

(∇u(s) − ∇u(t)
)
ds dx dt − 2

∫ T

0
ȧ(t)

∫

�
ut h · ∇u dx dt

+ 2
∫ T

0

N∑

i, j=1

∫

�
∂i h j ∂i

(
u + ȧ ∗ u

)
∂ j

(
u + ȧ ∗ u

)
dx dt −

∫ T

0

∫

�

N∑

j=1

∂ j h j |∇(
u + ȧ ∗ u

)|2 dx dt

+ 2
∫ T

0

∫

�
g(u(t))h · ∇(

u + ȧ ∗ u
)

dx dt .

(72)
To prove (67) we have to estimate every term on the right-hand side of (72). Indeed,

2

[∫

�
ut h · ∇(

u + ȧ ∗ u
)

dx

]T

0

= 2
∫

�
ut (T ) h · ∇(

u + ȧ ∗ u
)
(T ) dx − 2

∫

�
u1 h · ∇u0 dx

≤ c
∫

�
|ut (T )|2 dx + c

∫

�
|∇(

u + ȧ ∗ u
)
(T )|2 dx + c

∫

�
|u1|2 dx + c

∫

�
|∇u0|2 dx .

(73)
We proceed to evaluate for all t ∈ [0, T ] the term ∫

�
|∇(

u + ȧ ∗ u
)
(t)|2 dx , because

that evaluation will be also useful later. Since for all t ∈ [0, T ]

∇u(t) + ȧ ∗ ∇u(t) =
(
1 − a(0) + a(t)

)
∇u(t) +

∫ t

0
ȧ(t − s)

(∇u(s) − ∇u(t)
)

ds ,

we have

|∇(
u + ȧ ∗ u

)
(t)|2 ≤ 2

(
1 − a(0) + a(t)

)2|∇u(t)|2 + 2

(∫ t

0
|ȧ(t − s)|∣∣∇u(s) − ∇u(t)

∣
∣ ds

)2
.

In view of ȧ(t) ≤ 0, a(t) ≥ 0 and a(0) < 1 we get

(∫ t

0
|ȧ(t − s)|∣∣∇u(s) − ∇u(t)

∣
∣ ds

)2
≤

∫ t

0
|ȧ(s)| ds

∫ t

0
|ȧ(t − s)|∣∣∇u(s) − ∇u(t)

∣
∣2 ds

≤ −
∫ t

0
ȧ(t − s)

∣
∣∇u(s) − ∇u(t)

∣
∣2 ds ,
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and hence

|∇(
u + ȧ ∗ u

)
(t)|2 ≤ 2

(
1 − a(0) + a(t)

)|∇u(t)|2 − 2
∫ t

0
ȧ(t − s)

∣
∣∇u(s) − ∇u(t)

∣
∣2 ds .

Therefore, taking into account the formula (48) for the energy, by (52) and (51), we
get

2
(
1 − a(0)

)
∫

�

|∇u(t)|2 ≤ cE(t) ,

2
∫

�

(

a(t)|∇u(t)|2 −
∫ t

0
ȧ(t − s)

∣
∣∇u(s) − ∇u(t)

∣
∣2 ds

)

dx ≤ 4E(t)

and hence ∫

�

|∇(
u + ȧ ∗ u

)
(t)|2 dx ≤ cE(t) . (74)

By putting (74) with t = T into (73) and using again (48), we obtain

2

[∫

�

ut h · ∇(
u + ȧ ∗ u

)
dx

]T

0

≤ cE(T ) + cE(0) ,

and hence, since the energy E(t) is decreasing, see (49), we have

2

[∫

�

ut h · ∇(
u + ȧ ∗ u

)
dx

]T

0

≤ cE(0) .

Now, we estimate the second term on the right-hand side of (72) by using (70), the
expression of energy (48) and (52), that is

∫ T

0

∫

�

N∑

j=1

|∂ j h j | |ut |2 dx dt ≤ c
∫ T

0
E(t) dt .

In order to bound the term

2
∫ T

0

∫

�

∣
∣ut h ·

∫ t

0
ä(t − s)

(∇u(s) − ∇u(t)
)

ds
∣
∣dx dt

we note that, thanks also to (70), we have

2c
∫ T

0

∫

�

∣
∣ut

∣
∣

∣
∣
∣
∣

∫ t

0
ä(t − s)

(∇u(s) − ∇u(t)
)
ds

∣
∣ dx dt

≤ c
∫ T

0

∫

�

|ut |2 dx dt + c
∫ T

0

∫

�

∣
∣
∣
∣

∫ t

0
ä(t − s)

(∇u(s) − ∇u(t)
)
ds

∣
∣
∣
∣

2

dx dt .

(75)
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To evaluate the second term on the right-hand side of the previous formula, we
observe

∣
∣
∣
∣

∫ t

0
ä(t − s)

(∇u(s) − ∇u(t)
)
ds

∣
∣
∣
∣

2
≤

(∫ t

0
|ä(t − s)|1/2|ä(t − s)|1/2∣∣∇u(s) − ∇u(t)

∣
∣ds

)2

≤
∫ t

0
ä(s) ds

∫ t

0
ä(t − s)

∣
∣∇u(s) − ∇u(t)

∣
∣2ds

= (ȧ(t) − ȧ(0))
∫ t

0
ä(t − s)

∣
∣∇u(s) − ∇u(t)

∣
∣2ds .

Therefore, in view of ȧ ≤ 0 and formula (49), giving the derivative of the energy,
from the above inequality we obtain

∫ T

0

∫

�

∣
∣
∣
∣

∫ t

0
ä(t − s)

(∇u(s) − ∇u(t)
)
ds

∣
∣
∣
∣

2
dx dt

≤ − ȧ(0)
∫ T

0

∫

�

∫ t

0
ä(t − s)

∣
∣∇u(s) − ∇u(t)

∣
∣2 ds dx dt ≤ 2ȧ(0)

∫ T

0
E ′(t)dt ≤ −2ȧ(0)E(0) .

(76)
Plugging (76) into (75) and using (52) yield

2
∫ T

0

∫

�

∣
∣ut h ·

∫ t

0
ä(t − s)

(∇u(s) − ∇u(t)
)

ds
∣
∣dx dt

≤ c
∫ T

0

∫

�

|ut |2 dx dt + cE(0) ≤ c
∫ T

0
E(t) dt + cE(0) .

Keeping in mind that ȧ(t) ≥ ȧ(0) and by using again (70) and (52), we get

− 2
∫ T

0
ȧ(t)

∫

�
|ut h · ∇u| dx dt

≤ − 2ȧ(0) c
∫ T

0

∫

�
|ut ||∇u| dx dt ≤ −ȧ(0) c

∫ T

0

∫

�
|ut |2 + |∇u|2 dx dt ≤ c

∫ T

0
E(t) dt .

To evaluate the next two terms on the right-hand side of (72) we will use the estimate
(74). Indeed, as regards the first one, by means of (70) we have that

∫ T

0

N∑

i, j=1

∫

�
|∂i h j ∂i

(
u + ȧ ∗ u

)
∂ j

(
u + ȧ ∗ u

)| dx dt

≤ c
∫ T

0

∫

�

⎛

⎝
N∑

i=1

|∂i
(
u + ȧ ∗ u

)|
⎞

⎠

2

dx dt ≤ 2N−1c
∫ T

0

∫

�
|∇(

u + ȧ ∗ u
)|2 dx dt .

Since, from (74), we obtain

∫ T

0

∫

�

|∇(
u + ȧ ∗ u

)|2 dx dt ≤ c
∫ T

0
E(t) dt, (77)
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thus it follows

∫ T

0

N∑

i, j=1

∫

�

|∂i h j∂i
(
u + ȧ ∗ u

)
∂ j

(
u + ȧ ∗ u

)| dx dt ≤ c
∫ T

0
E(t) dt .

In a similar way, thanks again to (70) and (77) we have

∫ T

0

∫

�

N∑

j=1

|∂ j h j | |∇(
u + ȧ ∗ u

)|2 dx dt ≤ c
∫ T

0

∫

�
|∇(

u + ȧ ∗ u
)|2 dx dt ≤ c

∫ T

0
E(t) dt .

Finally, to estimate the last term on the right-hand side of (72) first we use (70)

2
∫ T

0

∫

�

g(u(t))h · ∇(
u + ȧ ∗ u

)
dx dt ≤ c

∫ T

0

∫

�

|g(u(t))|2 dx dt + c
∫ T

0

∫

�

|∇(
u + ȧ ∗ u

)|2 dx dt .

Since by (11) and (52) we have

∫ T

0

∫

�

|g(u(t))|2 dx dt ≤ c
∫ T

0

∫

�

|∇u(t)|2 dx dt ≤ c
∫ T

0
E(t) dt ,

thanks also to (77), we obtain

2
∫ T

0

∫

�

g(u(t))h · ∇(
u + ȧ ∗ u

)
dx dt ≤ c

∫ T

0
E(t) dt .

In conclusion, the previous argumentations show that the sum of all terms on the
right-hand side of (72) can be majorized by c0

∫ T
0 E(t) dt + c0E(0), with c0 > 0

independent of T , and hence (67) holds true. In addition, since E(t) is a decreasing
function and

E(0) = 1

2
‖∇u0‖2L2 + 1

2
‖u1‖2L2 −

∫

�

G(u0) dx ,

thanks also to (22), (68) follows from (67). �

Corollary 4.3 For any T > 0 there exists a unique continuous linear map

L : H 1
0 (�) × L2(�) → L2((0, T ); L2(�))

such that for any u0 ∈ H 2(�) ∩ H 1
0 (�) and u1 ∈ H 1

0 (�), called u the strong solution
of (66), we have

L(u0, u1) = ∂νu .

Proof For u0 ∈ H 2(�) ∩ H 1
0 (�) and u1 ∈ H 1

0 (�), if we denote by u the strong
solution of problem (66) and apply Lemma 2.1 with X = L2(�), then for any T > 0,
thanks to (68) and (7) there exists a constant c0 = c0(T, ‖ȧ‖L1) > 0 such that
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∫ T

0

∫

�

|∂νu|2d�dt ≤ c0(‖∇u0‖2L2 + ‖u1‖2L2) .

By density our claim follows. �

Remark 4.4 For themild solution u of (66)we can introduce the notation ∂νu instead
of L(u0, u1), thanks to Corollary 4.3. So, for any T > 0 we have the following trace
theorem:

(u0, u1) ∈ H 1
0 (�) × L2(�) ⇒ ∂νu ∈ L2((0, T ); L2(�)) ,

and there is a positive constant c0 depending on T and ‖ȧ‖L1 such that

∫ T

0

∫

�

|∂νu|2d�dt ≤ c0(‖∇u0‖2L2 + ‖u1‖2L2) ∀(u0, u1) ∈ H 1
0 (�) × L2(�) .

(78)
This result does not follow from the usual trace theorems of the Sobolev spaces. For
this reason it is called a hidden regularity result. The corresponding inequality (78)
is often called a direct inequality.

Theorem 4.5 Assume there exists c0 > 0 independent of t such that

∫ t

0
E(s) ds ≤ c0E(0) ∀t ≥ 0. (79)

Then, a constant C > 0 exists such that for any u0 ∈ H 1
0 (�) and u1 ∈ L2(�) the

mild solution u of (66) satisfies

∫ ∞

0

∫

�

|∂νu|2d�dt ≤ C(‖∇u0‖2L2 + ‖u1‖2L2) , (80)

that is
∂νu ∈ L2(0,∞; L2(�)) . (81)

Proof In view of (67) and (79) we have

∫ T

0

∫

�

|∂νu + ȧ ∗ ∂νu|2 d�dt ≤ C E(0) ∀T > 0 ,

where the constant C is independent of T , and hence

∫ ∞

0

∫

�

|∂νu + ȧ ∗ ∂νu|2 d�dt ≤ C E(0) .

Finally, thanks to (9) and (22) the estimate (80) follows. �
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Remark 4.6 For example, the assumption (79) holds if the energy decays exponen-
tially. Indeed, if there exists m > 0 such that

−ä(t) ≤ m ȧ(t) for any t ≥ 0,

that is the kernel −ȧ decays exponentially, we can apply [1, Theorem 3.5] to have
that the energy of the mild solution also decays exponentially. Therefore, there exist
α > 0 such that

E(t) ≤ e1−αt E(0) ∀t ≥ 0 .

Also in the case the integral kernel decays polynomially then (79) holds (see [1]).

Remark 4.7 If one assumes more regularity on the integral kernel k = −ȧ, then it
is possible to approach the study of the equation

utt = �u −
∫ t

0
k(t − s)�u(s, x) ds + g(u) ,

by using the so-called MacCamy’s trick, see [18]. Adapted to our case, the trick
consists in setting

v = u − k ∗ u ,

to obtain
u = v + ρk ∗ v,

(where ρk is the resolvent kernel of k and has the same regularity of k), so v is the
solution of the equation

vt t + ρk(0)vt + ρ̈k ∗ v + ρ̇k(0)v = �v + g(v + ρk ∗ v) . (82)

However, in (82) the terms ρ̈k ∗ v and ρ̇k(0)v have a meaning only if k, and hence
ρk , is more regular than in our case. For example, a class of kernels fitting our
assumptions (see [21, Corollary 2.2]), but not suitable for applying the MacCamy’s
trick is given by

k(t) = k0e−√
t

for a suitable k0 > 0.

Acknowledgements The authors would like to thank the anonymous referee for helpful comments
improving the presentation of the paper.
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Lyapunov’s Theorem via Baire Category

Marco Mazzola and Khai T. Nguyen

Abstract Lyapunov’s theorem is a classical result in convex analysis, concerning
the convexity of the range of nonatomicmeasures. Given a family of integrable vector
functions on a compact set, this theorem allows to prove the equivalence between the
range of integral values obtained considering all possible set decompositions and all
possible convex combinations of the elements of the family. Lyapunov type results
have several applications in optimal control theory: they are used to prove bang-
bang properties and existence results without convexity assumptions. Here, we use
the dual approach to the Baire category method in order to provide a “quantitative”
version of such kind of results applied to a countable family of integrable functions.

Keywords Lyapunov’s convexity theorem · Extremal solutions · Baire category ·
Nonconvex optimal control problems

1 Introduction

The use ofBaire categories in the analysis of nonconvex differential inclusions started
with the seminal paper by A. Cellina [4]. These methods were later developed and
adapted to various problems involving nonconvex ordinary and partial differential
inclusions, notably in a series of articles by F. S. De Blasi and G. Pianigiani (see e.g.
[6] and the bibliography therein). It is now known, for example, that the set Sext of
extremal solutions of a differential inclusion, associated to a Lipschitz continuous
multifunction with nonempty, compact and convex images, is residual in the set of
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all solutions S, i.e. it contains the intersection of countably many open dense subsets
of S.

The same problem has been more recently approached by A. Bressan [2] from a
“dual” point of view. The procedure is the following: introduce auxiliary functions
v belonging to some complete space V ; associate to each v ∈ V a nonempty subset
Sv ⊆ S; finally, show that the set of functions v ∈ V satisfying Sv ⊆ Sext is residual in
V . An advantage of this approach with respect to the “direct” one is that it could work
even in the case when Sext is not dense in S. For the differential inclusion problem
mentioned above, this situation can appear when no Lipschitzianity assumptions are
imposed on the multifunction.

The dual approach was employed in [3] in order to derive an extension of the
classical bang-bang theorem in linear control theory. In very broad terms, it was
proved that for almost every v in a space of auxiliary functionals, there is a unique
control minimizing v and steering the system between two given points; furthermore,
this control arc takes values almost everywhere within the extremal points of the set
of admissible controls. The classical proof of the bang-bang principle is actually
based on a Lyapunov type theorem (see [5]). This result can be stated as follows.
Consider a finite family of Lebesgue integrable functions f1, . . . , fm from a compact
subset K ⊂ IRd to IRn and the simplex of IRm

Δm
.=

{
ζ = (ζ1, . . . , ζm) ∈ IRm

∣∣∣ ζi ≥ 0 ∀ i = 1, . . . ,m,

m∑
i=1

ζi = 1

}
.

Denote by M (K ,Δm) the set of Lebesgue measurable functions from K to Δm .
Then, for any θ = (θ1, . . . , θm) ∈ M (K ,Δm) there exists a measurable partition
{E1, . . . , Em} of K such that

∫
E1

f1(x) dx + · · · +
∫
Em

fm(x) dx =
m∑
i=1

∫
K

θi (x) fi (x) dx .

An alternative “extremal” formulation of this theorem is the following. Given θ̄ =
(θ̄1, . . . , θ̄m) ∈ M (K ,Δm), denote

α
.=

∫
K

θ̄1(x) f1(x) dx + · · · +
∫
K

θ̄m(x) fm(x) dx ∈ IRn .

Let Δext
m be the set of extreme points of Δm . According to Lyapunov’s theorem, the

set

A ext
α

.=
{

θ ∈ M
(
K ,Δext

m

) ∣∣∣ m∑
i=1

∫
K

θi (x) fi (x) dx = α

}
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is nonempty. In the present paper, we aim to provide an alternative proof of this result
based on the Baire category method, implying besides thatA ext

α is actually residual
in the set {

θ ∈ M (K ,Δm)

∣∣∣ m∑
i=1

∫
K

θi (x) fi (x) dx = α

}

in a “dual” sense.
The equivalence between the range of integral values obtained considering all

possible set decompositions and all possible convex combinations of given vector
functions plays an important role in optimal control theory, that goes beyond the
application to the bang-bang theorem. For instance, it can be used to derive exis-
tence theorems for optimal control problemswithout convexity assumptions (see e.g.
[1, 7]).

2 A Dual Approach to Lyapunov’s Theorem

For any continuous function v : K → IRm , consider the constrained optimization
problem

Minimizeθ∈Aα

∫
K

θ(x) · v(x)dx (1)

over the set

Aα
.=

{
θ ∈ M (K ,Δm)

∣∣∣ m∑
i=1

∫
K

θi (x) fi (x) dx = α

}
, (2)

where θ(x) · v(x) .= ∑m
i=1 θi (x)vi (x) denotes an inner product. It is clear that (1)–(2)

admits at least a solution. Indeed, since θm = 1 − ∑m−1
i=1 θi , the problem (1)–(2) is

equivalent to

Minimizeθ̃∈B

∫
K

m−1∑
i=1

θ̃i (x) (vi (x) − vm(x))dx (3)

over the set

B
.=

{
θ̃ ∈ L∞(K , IRm−1)

∣∣∣ θ̃i (x) ≥ 0 ∀ i = 1, . . . ,m − 1,
m−1∑
i=1

θ̃i (x) ≤ 1, a.e. x ∈ K ,

m−1∑
i=1

∫
K

θ̃i (x)
(
fi (x) − fm(x)

)
dx = α −

∫
K

fm(x) dx
}

. (4)
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Thanks to Alaoglu’s theorem, for every sequence (θ̃n)∞n=1 ⊂ B, there exists a
subsequence (θ̃nk )∞k=1 converging weakly* to some θ̃ ∈ L∞(K , IRm−1) satisfying
‖θ̃‖L∞(K ,IRm−1) ≤ 1. Hence

lim
nk→+∞

∫
K

m−1∑
i=1

[θ̃nk
i (x) − θ̃i (x)]wi (x) dx = 0 ∀w ∈ L1(K , IRm−1) (5)

yields
m−1∑
i=1

∫
K

θ̃i (x)
(
fi (x) − fm(x)

)
dx = α −

∫
K
fm(x) dx .

Since
∑m−1

i=1 θ̃
nk
i (x) ≤ 1 for a.e. x ∈ K and θ̃

nk
i (x) ≥ 0 for a.e x ∈ K and any i ∈

{1, 2, . . . ,m − 1}, by a contradiction argument one obtains from (5) that θ̃ satisfies
the same properties. Therefore, the setB is weakly*-compact in L∞(K , IRm−1) and
it yields the existence of solutions to (3)–(4).

Let’s define

Vα
.= {

v ∈ C (K , IRm) | (1) − (2) has a unique solution
}

. (6)

Here, C (K , IRm) is the space of continuous function on K with values in IRm . Our
main result is stated as follows.

Theorem 1 Vα is a residual subset of C (K , IRm), i.e. it contains the intersection
of countably many open dense subsets of C (K , IRm). Moreover, for any v ∈ Vα ,
the unique optimal solution θ∗ takes values in Ext (Δm) almost everywhere in the
compact set K .

The main ingredient in the proof of the above theorem is the following lemma.

Lemma 1 Let g : K → IRn be a Lebesgue integrable function. Then the set W g of
continuous functions w ∈ C (K , IR) such that

meas
({

x ∈ K | w(x) = λ · g(x)}) = 0 for all λ ∈ IRn (7)

is residual in C (K , IR).

Proof For every positive integer N and every ε > 0, call W g
ε,N the set of all w ∈

C (K , IR) such that

meas
({

x ∈ K | w(x) = λ · g(x)}) < ε (8)

whenever λ ∈ [−N , N ]n . The Lemma is proved once we show that, for every ε and
N , W g

ε,N is open and dense in C (K ; IR).
1. We begin by proving that W g

ε,N is open. Fix w ∈ W g
ε,N . For any λ ∈ [−N , N ]n ,

define
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ελ
.= ε − meas

({
x ∈ K | w(x) = λ · g(x)}) > 0 . (9)

Using Lusin’s theorem, there exists a continuous function gλ : K �→ IRn such that

meas
({

x ∈ K | gλ(x) 
= g(x)
})

< ελ/4 . (10)

Consider the compact set of IRn

Eλ
.= {

x ∈ K | w(x) = λ · gλ(x)
}
.

By the regularity properties of Lebesgue measure, there exists a relatively open set
Oλ ⊂ K such that

Eλ ⊆ Oλ and meas(Oλ\Eλ) <
ελ

2
. (11)

By the continuity of gλ and w, one has

min
x∈K\Oλ

∣∣∣w(x) − λ · gλ(x)
∣∣∣ .= δλ > 0 .

For any function w̃ ∈ C (K , IR) such that

‖w̃ − w‖∞ = sup
x∈K

|w̃(x) − w(x)| < rλ
.= δλ

3max{1, ‖gλ‖∞} ,

it holds ∣∣∣w̃(x) − λ · gλ(x)
∣∣∣ >

2

3
δλ ∀x ∈ K \ Oλ .

In turn, if |λ̃ − λ| < rλ, this implies

∣∣∣w̃(x) − λ̃ · gλ(x)
∣∣∣ >

δλ

3
> 0 ∀x ∈ K\Oλ

and it yields

meas
({

x ∈ K | w̃(x) = λ̃ · gλ(x)
}) ≤ meas (Oλ) . (12)

By (9), (10), (11) and (12), if

‖w̃ − w‖∞ < rλ and |λ̃ − λ| < rλ , (13)

then it holds
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meas
({

x ∈ K |w̃(x) = λ̃ · g(x)}) (14)

< meas
({

x ∈ K | w̃(x) = λ̃ · gλ(x)
}) + ελ

4

≤ meas (Oλ) + ελ

4
< meas(Eλ) + 3

4
ελ

< meas
({

x ∈ K | w(x) = λ · g(x)}) + 1

4
ελ + 3

4
ελ = ε .

Repeating the above construction, for every λ ∈ [−N , N ]n there exists rλ > 0 so
that the inequalities (13) imply (14). Since the set [−N , N ]n is compact, we can
select a finite family {λ1, . . . , λM} ⊂ [−N , N ]n such that the corresponding open
balls B

(
λk, rλk

)
satisfy

[−N , N ]n ⊂
M⋃
k=1

B
(
λk, rλk

)
.

Setting r
.= min1≤k≤M rλk , for every w̃ ∈ B

(
w, r

)
and λ ∈ [−N , N ]n we obtain

meas
({

x ∈ K | w̃(x) = λ · g(x)}) < ε .

Therefore, B
(
w, r

) ⊆ W g
ε,N , proving that the set W g

ε,N is open in C (K , IR).
2. It remains to prove that each W g

ε,N is dense in C (K ; IR). Relying on Lusin’s
theorem, it is not restrictive to assume that g is continuous. Given any η > 0 and
w̃ ∈ C (K , IR), we will construct a function w ∈ W g

ε,N , satisfying

‖w − w̃‖∞ < η . (15)

For simplicity, without loss of generality we will assume that K = [0, 1]d . Let’s
choose an integer m sufficiently large so that md ≥ n + 1 and h

.= 1
m satisfies

hd <
ε

2n
(16)

and
(x, x ′) ∈ K 2 , |x − x ′| ≤ h

√
d =⇒ ∣∣w̃(x) − w̃(x ′)

∣∣ <
η

2
. (17)

We adopt the following notation: a vector y ∈ (IRm)d will be indexed by
y = (y j ) j∈{0,...,m−1}d . For every ξ ∈ [0, h]d , λ ∈ [−N , N ]n and y ∈ (IRm)d , define

x j,ξ
.= ξ + h j , j ∈ {0, . . . ,m − 1}d

and
Jλ,ξ (y)

.=
{
j ∈ {0, . . . ,m − 1}d

∣∣∣ y j = λ · g(x j,ξ )
}

. (18)
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We claim that the set

Y (ξ)
.=

{
y ∈ (IRm)d

∣∣∣ # Jλ,ξ (y) ≤ n, ∀ λ ∈ [−N , N ]n
}

is dense in (IRm)d . Indeed, the complementary of Y (ξ) is contained in the union of
a finite family of proper hyperspaces: for every collection of indexes

J = { j1, . . . , jn+1} ⊂ {0, . . . ,m − 1}d ,

let us define the projection

ΠJ : (IRm)d �→ IRn+1 , ΠJ (y)
.= (y j1 , . . . , y jn+1) ,

and the linear operator

AJ : IRn �→ IRn+1 , AJ (λ)
.= (

λ · g(xξ, j1), . . . , λ · g(xξ, jn+1)
)

.

Then

(IRm)d\Y (ξ) ⊂
⋃

{J⊂{0,...,m−1}d | #J=n+1}

{
y ∈ (IRm)d | ΠJ (y) ∈ AJ (IR

n)
}
.

For any ξ ∈ [0, h]d and j ∈ {0, . . . ,m − 1}d , define

ỹ j (ξ)
.= w̃(x j,ξ ) .

By the density of Y (ξ) in (IRm)d , we can find y(ξ) ∈ Y (ξ) satisfying

∣∣y j (ξ) − ỹ j (ξ)
∣∣ <

η

2
∀ j ∈ {0, . . . ,m − 1}d . (19)

On the other hand, fixed any ξ ∈ [0, h]d and λ ∈ [−N , N ]n , there exist rλ, δλ > 0
such that

inf
λ′∈B(λ,rλ)

∣∣y j (ξ) − λ′ · g(x j,ξ )
∣∣ > δλ ∀ j ∈ {0, . . . ,m − 1}d\Jλ,ξ (y(ξ)) .

As in the previous step, let {λ1, . . . , λM} ⊂ [−N , N ]n be a finite family such that

[−N , N ]n ⊂
M⋃
k=1

Bn

(
λk, rλk

)
.

Set δ
.= mink∈{1,2,...,M} δk . For any λ ∈ [−N , N ]n , there exists an index k ∈ {1, . . . , M}

such that
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∣∣y j (ξ) − λ · g(x j,ξ )
∣∣ > δ ∀ j ∈ {0, . . . ,m − 1}d\Jξ,λk (y(ξ)) .

Thus, by the uniform continuity of g and the uniformly bound of λ, there exists a
neighborhood N (ξ) of ξ (independent on λ) such that

∣∣y j (ξ) − λ · g(x j,ξ ′)
∣∣ >

δ

2
∀ j ∈ {0, . . . ,m − 1}d\Jξ,λk (y(ξ)), ξ ′ ∈ N (ξ) .

In particular, recalling (18), we obtain that

Jξ ′,λ(y(ξ)) ⊂ Jξ,λk (y(ξ)) ∀ ξ ′ ∈ N (ξ) ,

and this yields

# Jλ,ξ ′(y(ξ)) ≤ n ∀ λ ∈ [−N , N ]n, ∀ ξ ′ ∈ N (ξ) . (20)

Cover the set [0, h[d with finitely many disjoint neighborhoods {N (ξk)}k=1,...,� and
define a piecewise constant function w : [0, 1[d �→ IR by setting

w(x)
.= y j (ξk) if x ∈ N (ξk) + h j , k = 1, . . . , � , j ∈ {0, . . . ,m − 1}d .

For any x ∈ [0, 1[d , let k ∈ {1, . . . , �} and j ∈ {0, . . . ,m − 1}d be such that x ∈
N (ξk) + h j . Then, x and x j,ξk belong to [0, h[d+h j . Recalling (17) and (19), we
have

|w(x) − w̃(x)| ≤ |y j (ξk) − ỹ j (ξk)| + |w̃(xξk , j ) − w̃(x)| < η

and it yields (15).
Moreover, by (16), (18) and (20), we obtain

meas
({

x ∈ K |w(x) = λ · g(x)})

= meas

⎛
⎝ ⋃

j∈{0,...,m−1}d

{
x ∈ [0, h[d+h j | w(x) = λ · g(x)}

⎞
⎠

= meas

⎛
⎝ ⋃

j∈{0,...,m−1}d

�⋃
k=1

{
x ∈ N (ξk) + h j | y j (ξk) = λ · g(x)}

⎞
⎠

≤
�∑

k=1

meas

⎛
⎝ ⋃

j∈{0,...,m−1}d

{
ξ ′ ∈ N (ξk) | y j (ξk) = λ · g(x j,ξ ′)

}⎞⎠

≤
�∑

k=1

n · meas
(
N (ξk)

)
= n hd <

ε

2

for every λ ∈ [−N , N ]n .
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Finally, byLusin’s theorem,we thenmodifyw on a set ofmeasure< ε/2 andmake
it continuous on the entire set K and still satisfying (15). Then w ∈ W g

ε,N ∩ B(w̃, η)

and the set W g
ε,N is dense in C (K , IR). �

We are now going to prove our main theorem.

Proof of Theorem 1. It is divided into 2 steps:
1. Fix v = (v1, . . . , vm) ∈ C (K , IRm) and let θ∗ = (θ∗

1 , . . . , θ∗
m) be a solution of the

optimization problem (1)–(2). We claim that if θ∗ is not extremal, then it is not the
unique solution of (1)–(2) and there exist two indexes i1 
= i2 ∈ {1, . . . ,m} and a
Lagrange multiplier λ = (λ1, . . . , λn) ∈ IRn satisfying

meas
( {

x ∈ K | vi1(x) − vi2(x) = λ · (
fi1(x) − fi2(x)

)} )
> 0 . (21)

Indeed, if θ∗ is non-extremal then the set

K1 = {
x ∈ K | 0 < θ∗

i (x) < 1 for some i ∈ {1, . . . ,m}}
has a positive Lebesgue measure. Since

∑m
i θ∗(x) = 1 for all x ∈ K , we can deduce

that there exist two different indexes i1, i2 ∈ {1, . . . ,m} such that

meas
({
x ∈ K | 0 < θ∗

i (x) < 1 , ∀ i ∈ {i1, i2}
})

> 0 .

Observe that

meas
({
x ∈ K |0 < θ∗

i (x) < 1 , ∀ i ∈ {i1, i2}
})

= meas

(+∞⋃
n=3

{
x ∈ K

∣∣∣ 1

n
< θ∗

i (x) < 1 − 1

n
, ∀ i ∈ {i1, i2}

})
,

there exists n0 ≥ 3 such that the set

K̃ =
{
x ∈ K

∣∣∣ 1

n0
< θ∗

i (x) < 1 − 1

n0
, ∀ i ∈ {i1, i2}

}

has a positive Lebesgue measure.
Consider the auxiliary optimization problem

Minimizeξ∈A 0

∫
K̃

ξ(x)
(
vi1(x) − vi2(x)

)
dx , (22)

where

A0
.=

{
ξ ∈ M (K̃ , [−1, 1])

∣∣∣ ∫
K̃

ξ(x)
(
fi1(x) − fi2(x)

)
dx = 0

}
. (23)
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Observe that ξ ∗ ≡ 0 is an optimal solution of (22)–(23). Indeed, for any ξ ∈ A0,
define the mapping θ̃ : K �→ IRm by

θ̃ (x)
.=

{
θ∗(x) + 1

n0
ξ(x)

(
ei1 − ei2

)
if x ∈ K̃

θ∗(x) if x ∈ K \ K̃ ,

where {e1, . . . , em} is the canonical basis of IRm . Clearly, θ̃ belongs to Aα . Thus,∫
K

θ̃ (x) · v(x)dx ≥
∫
K

θ∗(x) · v(x)dx

and it implies that ∫
K̃

ξ(x)
(
vi1(x) − vi2(x)

)
dx ≥ 0 . (24)

Now let’s consider the vector subspace Y of IRn generated by

{∫
K̃

ξ(x)
(
fi1(x) − fi2(x)

)
dx

∣∣∣ ξ ∈ M (K̃ , [−1, 1])
}

and define two convex subsets of IR × Y

A
.= {

(a0, 0) ∈ IR × Y
∣∣ a0 < 0

}
,

and B the set of elements of the form

(b0, b̄) =
( ∫

K̃
ξ(x)

(
vi1(x) − vi2(x)

)
dx ,

∫
K̃

ξ(x)
(
fi1(x) − fi2(x)

)
dx

)
,

with ξ varying in M (K̃ , [−1, 1]). Recalling (24), one has that A ∩ B = ∅. Thanks
to hyperplane separation theorem, there exists (λ0, λ̄) ∈ ([0,+∞) × Y

) \ {(0, 0)}
such that

λ0a0 ≤ λ0b0 + λ̄ · b̄ ∀ a0 < 0, (b0, b̄) ∈ B .

Observe that λ0 
= 0, otherwise we have

λ̄ ·
∫
K̃

ξ(x)
(
fi1(x) − fi2(x)

)
dx ≥ 0 ∀ ξ ∈ M (K̃ , [−1, 1]) ,

that is impossible, since 0 
= λ̄ ∈ Y . Setting λ = −λ̄/λ0, we obtain∫
K̃

ξ(x)
(
vi1(x) − vi2(x)

)
dx − λ ·

∫
K̃

ξ(x)
(
fi1(x) − fi2(x)

)
dx ≥ lim

a0→0− a0 = 0
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for every ξ ∈ M (K̃ , [−1, 1]). This yields

vi1(x) − vi2(x) = λ · (
fi1(x) − fi2(x)

)
a.e. x ∈ K̃

and consequently (21).
In order to see that θ∗ is not the unique solution of (1)–(2), consider a function

ξ ∈ A0 such that

meas
({

x ∈ K̃
∣∣∣ ξ(x) 
= 0

})
> 0 .

Therefore, the following mappings

θ̃±(x)
.=

{
θ∗(x) ± 1

n0
ξ(x)

(
ei1 − ei2

)
if x ∈ K̃

θ∗(x) if x ∈ K \ K̃

belong to Aα , satisfy θ̃+ 
≡ θ̃− and

min

{∫
K

θ̃−(x) · v(x)dx,
∫
K

θ̃+(x) · v(x)dx
}

≤
∫
K

θ∗(x) · v(x)dx .

2. Remark that if the problem (1)–(2) admits two distinct solutions θ∗ and θ∗∗, then
their convex combination

θ̃
.= θ∗ + θ∗∗

2

is still a solution and it is not extremal. Therefore, by the previous step, Vα contains
the set of functions v = (v1, . . . , vm) ∈ C (K , IRm) satisfying

meas

({
x ∈ K | vi1(x) − vi2 (x) = λ · (

fi1(x) − fi2 (x)
)}) = 0 ∀ i1 
= i2, λ ∈ IRn .

For any Lebesgue integrable function g : K → IRn , define W g as in the statement
of Lemma1. We then have

Vα ⊃
⋂

i1 
=i2∈{1,...,m}

{
v = (v1, . . . , vm) ∈ C (K , IRm)

∣∣∣ vi1 − vi2 ∈ W fi1− fi2
}

.

By Lemma1, the setW fi1− fi2 is residual inC (K , IR) for all i1 
= i2 ∈ {1, 2, . . . ,m},
i.e., there exists a family of open and dense subsets

{
W

fi1− fi2
k

}
k∈IN

of C (K , IR)

satisfying ⋂
k∈IN

W
fi1− fi2

k ⊂ W fi1− fi2 .

Hence we obtain
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Vα ⊃
⋂

i1 
=i2∈{1,...,m}

{
v ∈ C (K , IRm)

∣∣∣ vi1 − vi2 ∈
⋂
k∈IN

W
fi1− fi2

k

}

⊃
⋂

i1 
=i2∈{1,...,m} , k∈IN

{
v ∈ C (K , IRm)

∣∣∣ vi1 − vi2 ∈ W
fi1− fi2

k

}
.

Moreover, it is not difficult to verify that the sets of the last intersection are open
and dense. Therefore we can conclude that Vα contains the intersection of countably
many open dense subsets of C (K , IRm), i.e. it is residual. �

With similar techniques we can deal with a countable family of integrable func-
tions. Let ( fi )∞i=1 be a family of Lebesgue integrable functions from K ⊂ IRd to IRn

satisfying ∫
K
sup
i

‖ fi (x)‖ dx < ∞ , (25)

where ‖ · ‖ is the norm in IRn . Let (θ̄i )∞i=1 be a family of measurable functions from
K to [0,+∞) such that

∞∑
i=1

θ̄i (x) = 1 ∀ x ∈ K .

We can consider θ̄ = (θ̄i )
∞
i=1 as an element of the space L∞(K , �∞), where �∞ is

the space of bounded real sequences. Call

α
.=

∫
K

∞∑
i=1

θ̄i (x) fi (x) dx .

Thanks to (25) and dominated convergence, α ∈ IRn . Given v ∈ C (K , �1), consider
the problem

Minimizeθ∈Aα

∫
K

∞∑
i=1

θi (x)vi (x)dx (26)

over the set

Aα
.=

{
θ ∈ L∞(K , �∞)

∣∣∣ θi (x) ≥ 0 ∀ i ∈ IN ,

∞∑
i=1

θi (x) = 1, a.e. x ∈ K ,

∫
K

∞∑
i=1

θi (x) fi (x) dx = α
}

. (27)

This problem admits at least a solution, since it is equivalent to

Minimizeθ̃∈B

∫
K

∞∑
i=1

θ̃i (x)
(
vi+1(x) − v1(x)

)
dx
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over the set

B
.=

{
θ̃ ∈ L∞(K , �∞)

∣∣∣ θ̃i (x) ≥ 0 ∀ i ∈ IN ,

∞∑
i=1

θ̃i (x) ≤ 1, a.e. x ∈ K ,

∞∑
i=1

∫
K

θ̃i (x)
(
fi+1(x) − f1(x)

)
dx = α −

∫
K
f1(x) dx

}

and B is weakly*-compact in L∞(K , �∞).

Theorem 2 Assume (25). Then the set

Vα
.= {

v ∈ C (K , �1) | (26)−(27) has a unique solution
}

. (28)

is residual in C (K , �1). Moreover, for any v ∈ Vα , the unique optimal solution θ∗
verifies θ∗

i (x) ∈ {0, 1} for almost every x ∈ K and every i .

Proof The proof is similar to the one of Theorem1. Fix v ∈ C (K , �1) and let θ∗ ∈
L∞(K , �∞) be a solution of the optimization problem (26)–(27). If θ∗ does not verify
θ∗
i (x) ∈ {0, 1} for almost every x ∈ K and every i , then it is possible to show as above
that θ∗ is not the unique solution of (26)–(27). We claim that there exist two indexes
i1 
= i2 and λ = (λ1, . . . , λn) ∈ IRn satisfying

meas
({
x ∈ K | vi1(x) − vi2(x) = λ · (

fi1(x) − fi2(x)
)})

> 0 . (29)

Indeed, if θ∗ is non-extremal, we have

0 < meas
({
x ∈ K | 0 < θ∗

i (x) < 1 for some i
}

= meas

( ⋃
I∈IN

+∞⋃
n=3

{
x ∈ K

∣∣∣ 1

n
< θ∗

i (x) < 1 − 1

n
, ∀ i ∈ {i1, i2}, some i1 
= i2 ≤ I

})
.

Consequently, there exist i1 
= i2 and n0 ≥ 3 such that the set

K̃ =
{
x ∈ K

∣∣∣ 1

n0
< θ∗

i (x) < 1 − 1

n0
, ∀ i ∈ {i1, i2}

}

has a positive Lebesgue measure. As in the proof of Theorem1, one can verify that
ξ ∗ ≡ 0 is an optimal solution of the auxiliary problem (22)–(23) and that it satisfies
the necessary condition (29) for some Lagrange multiplier λ = (λ1, . . . , λn) ∈ IRn .
Therefore, if we denote by W fi1− fi2 is the set of functions w ∈ C (K , IR) such that

meas
({
x ∈ K | w(x) = λ · ( fi1(x) − fi2(x))

}) = 0 for all λ ∈ IRn ,

we obtain
Vα ⊃

⋂
i1 
=i2

{
v ∈ C (K , �1)

∣∣∣ vi1 − vi2 ∈ W fi1− fi2
}

.
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By Lemma1, for all i1 
= i2 the setW fi1− fi2 is residual in C (K , IR), i.e., there exists

a family of open and dense subsets
{
W

fi1− fi2
k

}
k∈IN

of C (K , IR) satisfying

⋂
k∈IN

W
fi1− fi2

k ⊂ W fi1− fi2 .

Hence we obtain

Vα ⊃
⋂
i1 
=i2

{
v ∈ C (K , �1)

∣∣∣ vi1 − vi2 ∈
⋂
k∈IN

W
fi1− fi2

k

}

⊃
⋂

i1 
=i2 , k∈IN

{
v ∈ C (K , �1)

∣∣∣ vi1 − vi2 ∈ W
fi1− fi2

k

}
.

Consequently, Vα is residual in C (K , �1). �
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Abstract We consider both the internal and boundary controllability problems for
wave equations under non-negativity constraints on the controls. First, we prove the
steady state controllability property with nonnegative controls for a general class
of wave equations with time-independent coefficients. According to it, the system
can be driven from a steady state generated by a strictly positive control to another,
by means of nonnegative controls, and provided the time of control is long enough.
Secondly, under the added assumption of conservation and coercivity of the energy,
controllability is proved between states lying on two distinct trajectories. Our meth-
ods are described and developed in an abstract setting, to be applicable to a wide
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1 Introduction

This paper is devoted to the study of the controllability properties of the wave equa-
tion, under positivity (or nonnegativity) constraints on the control.

We address both the case where the control acts in the interior of the domain
where waves evolve or on its boundary.

This problem has been exhaustively considered in the unconstrained case but
very little is known in the presence of constraints on the control, an issue of primary
importance in applications, since whatever the applied context under consideration
is, the available controls are always limited. For some of the basic literature on the
unconstrained controllability of wave-like equations the reader is referred to: [1, 3–5,
8, 9, 15, 21, 22, 24, 26].

The developments in this paper are motivated by our earlier works on the con-
strained controllability of heat-like equations ([16, 19]). In that context, due to the
well-known comparison principle for parabolic equations, control and state con-
straints are interlinked. In particular, for the heat equation, nonnegative controls
imply that the solution is nonnegative too, when the initial configuration is nonneg-
ative. Therefore, imposing non-negativity constraints on the control ensures that the
state satisfies the non-negativity constraint too.

This is no longer true for wave-like equations in which the sign of the control
does not determine that of solutions. However, as mentioned above, from a practical
viewpoint, it is very natural to consider the problem of imposing control constraints.
In this work, to fix ideas, we focus in the particular case of nonnegative controls.

First we address the problem of steady state controllability in which one aims at
controlling the solution from a steady configuration to another one. This problem
was addressed in [7], in the absence of constraints on the controls for semilinear
wave equations. Our main contribution here is to control the system by preserving
some constraints on the controls given a priori. And, as we shall see, when the initial
and final steady states are associated to positive time-independent control functions,
the constrained controllability can be guaranteed to hold if the time-horizon is long
enough.

The proof is developed by a step-wise procedure presented in [19] (which differs
from the one in [7, 16]), the so-called “stair-case argument”, along an arc of steady-
states linking the starting and final one. The proof consists on moving recursively
from one steady state to the other by means of successive small amplitude controlled
trajectories linking successive steady-states. This method and result are presented in
a general semigroup setting and it can be successfully implemented for any control
system for which controllability holds by means of L∞ controls.

The same recursive approach enables us to prove a state constrained result, under
additional dissipativity assumptions. But the time needed for this to hold is even
larger than before.

The problem of steady-state controllability is a particular instance of the more
general trajectory control problem, in which, given two controlled trajectories of
the system, both obtained from nonnegative controls, and one state in each of them
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(possibly corresponding to two different time-instances) one aims at driving one state
into the other one by means of nonnegative constrained controls. This result can also
be proved by a similar iterative procedure, but under the added assumption that the
system is conservative and its energy coercive so that uncontrolled trajectories are
globally bounded.

These results hold for long enough control time horizons. The stepwise procedure
we implement needs of a very large control time, much beyond the minimal control
time for the control of the wave equation, that is determined by the finite velocity of
propagation and the so-called Geometric Control Condition (GCC). It is then natural
to introduce the minimal time of control under non-negativity constraints, in both
situations above.

There is plenty to be done to understand how these constrained minimal times
depends on the data to be controlled. Employing d’Alembert’s formula for the one
dimensional wave equation, we compute both of them for constant steady states,
showing that they coincide with the unconstrained one. In that case we also show
that the property of constrained controllability holds in the minimal time too.

Controllability under constraints has already been studied for finite-dimensional
models and heat-like equations (see [16, 19]). In both cases it was also proved that
controllability by nonnegative controls fails if time is too short, when the initial
datum differs from the final target. This fact exhibits a big difference with respect to
the unconstrained control problem for these systems, where controllability holds in
arbitrary small time in both cases. In the wave-like context addressed in this paper
the waiting phenomenon, according to which there is a minimal control time for the
constrained problem, is less surprising. But, simultaneously, on the other hand, in
some sense, the fact that constraints can be imposed on controls and state seems
more striking too.

In [12], authors analysed controllability of the one dimensional wave equation,
under the more classical bilateral constraints on the control. Our work is, as far as
we know, the first one considering unilateral constraints for wave-like equations.

1.1 Internal Control

Let Ω be a connected bounded open set of R
n , n ≥ 1, with C∞ boundary, and let ω

and ω0 be subdomains of Ω such that ω0 ⊂ ω.
Let χ ∈ C∞(Rn) be a smooth function supported in ω such that Range(χ) ⊆

[0, 1], χ�ω0≡ 1.
We assume further that all derivatives of χ vanish on the boundary of Ω . We will

discuss this assumption in Sect. 3.3.
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We consider the wave equation controlled from the interior

⎧
⎪⎨

⎪⎩

ytt − Δy + cy = uχ in (0, T ) × Ω

y = 0 on (0, T ) × ∂Ω

y(0, x) = y00 (x), yt (0, x) = y10(x) in Ω

(1)

where y = y(t, x) is the state, while u = u(t, x) is the control whose action is local-
ized on ω by means of multiplication with the smooth cut-off function χ. The coef-
ficient c = c(x) is C∞ smooth in Ω .

It is well known in the literature (e.g. [10, Sect. 7.2]) that, for any initial datum
(y00 , y

1
0) ∈ H 1

0 (Ω) × L2(Ω) and for any control u ∈ L2((0, T ) × ω), the above
problem admits an unique solution (y, yt ) ∈ C0([0, T ]; H 1

0 (Ω) × L2(Ω)), with
ytt ∈ L2(0, T ; H−1(Ω)).

We assume the Geometric Control Condition on (Ω,ω0, T ∗), which basically
asserts that all bicharacteristic rays enter in the subdomain ω0 in time smaller than
T ∗. This geometric condition is actually equivalent to the property of (unconstrained)
controllability of the system (see [1, 3]).

1.1.1 Steady State Controllability

The purpose of our first result is to show that, in time large, we can drive (1) from
one steady state to another by a nonnegative control, assuming the uniform positivity
of the control defining the steady states.

More precisely, a steady state is a solution to

{
−Δy + cy = uχ in Ω

y = 0 on ∂Ω,
(2)

where u ∈ L2(ω) and y ∈ H 2(Ω) ∩ H 1
0 (Ω). Note that, as a consequence of Fred-

holm Alternative (see [11, Theorem 5.11 page 84]), the existence and uniqueness
of the solution of this elliptic problem can be guaranteed whenever zero is not an
eigenvalue of −Δ + cI : H 1

0 (Ω) −→ H−1(Ω).
The following result holds:

Theorem 1 (Controllability between steady states) Take y0 and y1 in H 2(Ω) ∩
H 1

0 (Ω) steady states associated to L2-controls u1 and u2, respectively. Assume fur-
ther that there exists σ > 0 such that

ui ≥ σ, a.e. in ω. (3)

Then, if T is large enough, there exists u ∈ L2((0, T ) × ω), a control such that
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• the unique solution (y, yt ) to the problem (1)with initial datum (y0, 0) and control
u verifies (y(T, ·), yt (T, ·)) = (y1, 0);

• u ≥ 0 a.e. on (0, T ) × ω.

Theorem 1 is proved in Sect. 3.1. Inspired by [7], we implement a recursive “stair-
case” argument to keep the control in a narrow tubular neighborhood of the segment
connecting the controls defining the initial and final data. This will guarantee the
actual positivity of the control obtained.

1.1.2 Controllability Between Trajectories

The purpose of this section is to extend the above result, under the additional assump-
tion c(x) > −λ1, where λ1 is the first eigenvalue of the Dirichlet Laplacian in Ω .
This guarantees that the energy of the system defines a norm

‖(y0, y1)‖2E =
∫

Ω

[
‖∇ y0‖2 + c

(
y0

)2
]
dx +

∫

Ω

(y1)2dx

on H 1
0 (Ω) × L2(Ω). Thus, by conservation of the energy, uncontrolled solutions are

uniformly bounded for all t .
We assume that both, the initial datum (y00 , y

1
0) and the final target (y

0
1 , y

1
1), belong

to controlled trajectories (see Fig. 1)

(y0i , y
1
i ) ∈ {

(yi (τ , ·), (yi )t (τ , ·) | τ ∈ R
}
, (4)

Fig. 1 Controllability between data lying on trajectories
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where (yi , (yi )t ) solve (1) with nonnegative controls. We suppose that these trajec-
tories are smooth enough, namely

(yi , (yi )t ) ∈ Cs(n)(R; H 1
0 (Ω) × L2(Ω)),

with s(n) = 
n/2� + 1. Hereafter, we denote by (y0, (y0)t ) the initial trajectory,
while (y1, (y1)t ) stands for the target one.

Note that the regularity is assumed only in time and not in space. This allows to
consider weak steady-state solutions.

We can in particular choose as final target the null state (y01 , y
1
1) = (0, 0). It is

important to highlight that this is something specific to the wave equation. In the
parabolic case (see [16, 19]), this was prevented by the comparison principle, since
the zero target cannot be reached in finite time with non-negative controls. But, for
the wave equation, the maximum principle does not hold and this obstruction does
not apply.

The following result holds

Theorem 2 (Controllability between trajectories) Suppose c(x) > −λ1, for any x ∈
Ω . Let (yi , (yi )t ) ∈ Cs(n)(R; H 1

0 (Ω) × L2(Ω)) be solutions to (1) associated to
controls ui ≥ 0 a.e. in (0, T ) × ω, i = 0, 1. Take (y00 , y

1
0) = (y0(τ0, ·), (y0)t (τ0, ·))

and (y01 , y
1
1) = (y1(τ1, ·), (y1)t (τ1, ·)) for arbitrary values of τ0 and τ1. Then, in time

T > 0 large enough, there exists a control u ∈ L2((0, T ) × ω) such that

• the unique solution (y, yt ) to (1) with initial datum (y00 , y
1
0) verifies the end con-

dition (y(T, ·), yt (T, ·)) = (y01 , y
1
1);• u ≥ 0 a.e. in (0, T ) × ω.

Remark 1 This result is more general than Theorem 1 for two reasons

1. it enables us to link more general data, with nonzero velocity, and not only steady
states;

2. the control defining the initial and target trajectories is assumed to be only non-
negative. This assumption is weaker than the uniform positivity one required in
Theorem 1.

On the other hand, the present result requires the condition c(x) > −λ1 on the
potential c = c(x).

We give the proof of Theorem 2 in Sect. 3.2.

1.2 Boundary Control

Let Ω be a connected bounded open set of R
n , n ≥ 1, with C∞ boundary, and let Γ0

and Γ be open subsets of ∂Ω such that Γ0 ⊂ Γ .
Let χ ∈ C∞(∂Ω) be a smooth function such that Range(χ) ⊆ [0, 1], supp(χ) ⊂

Γ and χ�Γ0≡ 1.
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We now consider the wave equation controlled on the boundary

⎧
⎪⎨

⎪⎩

ytt − Δy + cy = 0 in (0, T ) × Ω

y = χu on (0, T ) × ∂Ω

y(0, x) = y00 (x), yt (0, x) = y10(x) in Ω

(5)

where y = y(t, x) is the state, while u = u(t, x) is the boundary control localized on
Γ by the cut-off function χ. As before, the space-dependent coefficient c is supposed
to be C∞ regular in Ω .

By transposition (see [15]), one can realize that for any initial datum (y00 , y
1
0) ∈

L2(Ω) × H−1(Ω) and control u ∈ L2((0, T ) × Γ ), the above problem admits an
unique solution (y, yt ) ∈ C0([0, T ]; L2(Ω) × H−1(Ω)).

We assume the Geometric Control Condition on (Ω, Γ0, T ∗) which asserts that
all generalized bicharacteristics touch the sub-boundary Γ0 at a non diffractive point
in time smaller than T ∗. By now, it is well known in the literature that this geometric
condition is equivalent to (unconstrained) controllability (see [1, 3]).

1.2.1 Steady State Controllability

As in the context of internal control, our first goal is to show that, in time large, we
can drive (5) from one steady state to another, assuming the uniform positivity of the
controls defining these steady states.

In the present setting a steady state is a time independent solution to (5), namely
a solution to {

−Δy + cy = 0 in Ω

y = χu on ∂Ω.
(6)

In the present setting, u ∈ L2(∂Ω) and y ∈ L2(Ω) solves the above problem in the
sense of transposition (see [14, Chap. II, Sect. 4.2] and [13]).

As in the context of internal control, if 0 is not an eigenvalue of −Δ + cI :
H 1

0 (Ω) −→ H−1(Ω), for any boundary control u ∈ L2(∂Ω), there exists a unique
y ∈ L2(Ω) solution to (6) with boundary control u. This can be proved combining
Fredholm Alternative (see [11, Theorem 5.11 page 84]) and transposition techniques
[14, Theorem 4.1 page 73].

We prove the following result

Theorem 3 (Steady state controllability). Let yi be steady states defined by controls
ui , i = 0, 1, so that

ui ≥ σ, on Γ, (7)

with σ > 0.
Then, if T is large enough, there exists u ∈ L2([0, T ] × Γ ), a control such that



202 D. Pighin and E. Zuazua

• the unique solution (y, yt ) to (5) with initial datum (y0, 0) and control u verifies
(y(T, ·), yt (T, ·)) = (y1, 0);

• u ≥ 0 on (0, T ) × Γ.

The proof of the above result can be found in Sect. 4.1. The structure of the proof
resembles the one of Theorem 1, with some technical differences due to the different
nature of the control.

1.2.2 Controllability Between Trajectories

As in the internal control case, we suppose c(x) > −λ1, where λ1 is the first eigen-
value of the Dirichlet Laplacian in Ω . Then, the generator of the free dynamics
is skew-adjoint (see [23, Proposition 3.7.6]), thus generating an unitary group of
operators {Tt }t∈R on L2(Ω) × H−1(Ω).

Both the initial datum and final target (y0i , y
1
i ) belong to a smooth trajectory,

namely
(y0i , y

1
i ) ∈ {

(yi (τ , ·), (yi )t (τ , ·)) | τ ∈ R
}
. (8)

We assume thenonnegativity of the controlsui defining (yi , (yi )t ), for i = 0, 1.Here-
after, in the context of boundary control,we take trajectories of classCs(n)(R; L2(Ω) ×
H−1(Ω)), with s(n) = 
n/2� + 1. We set (y0, (y0)t ) to be the initial trajectory and
(y1, (y1)t ) be the target one.

Note that, with respect to Theorem 3, we have relaxed the assumptions on the sign
of the controls ui . Now, they are required to be only nonnegative and not uniformly
strictly positive.

Theorem 4 (Controllability between trajectories) Assume c(x) > −λ1, for any
x ∈ Ω . Let (yi , (yi )t ) be solutions to (5) with non-negative controls ui respec-
tively. Suppose the trajectories (yi , (yi )t ) ∈ Cs(n)([0, T ]; L2(Ω) × H−1(Ω)). Pick
(y00 , y

1
0) = (y0(τ0, ·), (y0)t (τ0, ·)) and (y01 , y

1
1) = (y1(τ1, ·), (y1)t (τ1, ·)). Then, in

time large, we can find a control u ∈ L2((0, T ) × Γ ) such that

• the solution (y, yt ) to (5) with initial datum (y00 , y
1
0) fulfills the final condition

(y(T, ·), yt (T, ·)) = (y01 , y
1
1);• u ≥ 0 a.e. in (0, T ) × Γ .

The above Theorem is proved in Sect. 4.2. Furthermore, in Sect. 5, we show how
Theorem 4 applies in the one dimensional case, providing further information about
the minimal time to control and the possibility of controlling the system in the
minimal time.

1.2.3 State Constraints

We impose now constraints both on the control and on the state, namely both the
control and the state are required to be nonnegative.
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In the parabolic case (see [16, 19]) one can employ the comparison principle
to get a state constrained result from a control constrained one. But, now, as we
have explained before, the comparison principle is not valid in general for the wave
equation. And we cannot rely on comparison to deduce our state constrained result
from the control constrained one.

We shall rather apply the “stair-case argument” developed to prove steady state
controllability, paying attention to the added need of preserving state constraints as
well.

Let λ1 be the first eigenvalue of the Dirichlet Laplacian. We assume c > −λ1 in
Ω . We also suppose thatχ ≡ 1, meaning that the control acts on the whole boundary.
We take as initial and final data two steady states y00 and y01 associated to controls
ui ≥ σ > 0. Our proof relies on the application of the maximum principle to (6).
This ensures that the states yi ≥ σ once we know ui ≥ σ. For this reason, we need
c > −λ1 and χ ≡ 1.

Our strategy is the following

• employ the “stair-case argument” used to prove steady state controllability, to keep
the control in a narrow tubular neighborhood of the segment connecting u0 and u1.
This can be done by taking the time of control large enough. Since ui ≥ σ > 0,
this guarantees the positivity of the control;

• by the continuous dependence of the solution on the data, the controlled trajectory
remains also in a narrow neighborhood of the convex combination joining initial
and final data. On the other hand, by themaximumprinciple for the steady problem
(6), we have that y0i ≥ σ in Ω , for i = 0, 1. In this way the state y can be assured
to remain nonnegative.

Theorem 5 We assume c(x) > −λ1 for any x ∈ Ω and χ ≡ 1. Let y00 and y01 be
solutions to the steady problem

{
−Δy + cy = 0 in Ω

y = ui , on ∂Ω
(9)

where ui ≥ σ a.e. on ∂Ω , with σ > 0. We assume y0i ∈ Hs(n)(Ω). Then, there exists
T > 0 such that for any T > T there exists a control u ∈ L∞((0, T ) × ∂Ω) such
that

• the unique solution (y, yt ) to (5) with initial datum (y00 , 0) and control u is such
that (y(T, ·), yt (T, ·)) = (y01 , 0);• u ≥ 0 a.e. on (0, T ) × ∂Ω;

• y ≥ 0 a.e. in (0, T ) × Ω .

The proof of the above Theorem can be found in Sect. 4.3.
Note that the time needed to control the system keeping both the control and the

state nonnegative is greater (or equal) than the corresponding one with no constraints
on the state.
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1.3 Orientation

The rest of the paper is organized as follows:

• Section2: Abstract results;
• Section3: Internal Control: Proof of Theorems 1 and 2;
• Section4: Boundary control: Proof of Theorems 3, 4 and 5;
• Section5: The one dimensional case;
• Section6: Conclusion and open problems;
• Appendix.

2 Abstract Results

The goal of this section is to provide some results on constrained controllability
for some abstract control systems. We apply these results in the context of internal
control and boundary control of the wave equation (see Sect. 1).

We begin introducing the abstract control system. Let H and U be two Hilbert
spaces endowed with norms ‖ · ‖H and ‖ · ‖U respectively. H is called the state space
andU the control space. Let A : D(A) ⊂ H −→ H be a generator of aC0-semigroup
(Tt )t∈R+ , with R

+ = [0,+∞). The domain of the generator D(A) is endowed with
the graph norm ‖x‖2D(A) = ‖x‖2H + ‖Ax‖2H . We define H−1 as the completion of H
with respect to the norm ‖ · ‖−1 = ‖(β I − A)−1(·)‖H , with realβ such that (β I − A)

is invertible from H to H with continuous inverse. Adapting the techniques of [23,
Proposition 2.10.2], one can check that the definition of H−1 is actually independent
of the choice of β. By applying the techniques of [23, Proposition 2.10.3], we deduce
that A admits a unique bounded extension A from H to H−1. For simplicity, we still
denote by A the extension. Hereafter, we writeL (E, F) for the space of all bounded
linear operators from a Banach space E to another Banach space F .

Our control system is governed by:

{
d
dt y(t) = Ay(t) + Bu(t), t ∈ (0,∞),

y(0) = y0,
(10)

where y0 ∈ H , u ∈ L2
loc([0,+∞),U ) is a control function and the control operator

B ∈ L (U, H−1) satisfies the admissibility condition in the following definition (see
[23, Definition 4.2.1]).

Definition 1 The control operator B ∈ L (U, H−1) is said to be admissible if for
all τ > 0 we have Range(Φτ ) ⊂ H , where Φτ : L2((0,+∞);U ) → H−1 is defined
by:

Φτu =
∫ τ

0
Tτ−r Bu(r)dr.
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From now on, we will always assume the control operator to be admissible. One
can check that for any y0 ∈ H and u ∈ L2

loc((0,+∞);U ) there exists a unique mild
solution y ∈ C0([0,+∞), H) to (10) (see, for instance, [23, Proposition 4.2.5]). We
denote by y(·; y0, u) the unique solution to (10) with initial datum y0 and control u.

Now, we introduce the following constrained controllability problem

Let Uad be a nonempty subset of U . Find a subset E of H so that for each
y0, y1 ∈ E , there exists T > 0 and a control u ∈ L∞(0, T ;U ) with u(t) ∈ Uad for a.e.
t ∈ (0, T ), so that y(T ; y0, u) = y1.

We address this controllability problem in the next two subsections, under differ-
ent assumptions on Uad and (A, B). In Sect. 2.1, we study the above controllability
problem, where the initial and final data are steady states, i.e. solutions to the steady
equation:

Ay + Bu = 0 for some u ∈ U. (11)

In Sect. 2.2, we take initial and final data on two different trajectories of (10).
To study the above problem, we need two ingredients, which play a key role in the

proofs of Sects. 2.1 and 2.2. First, we introduce the notion of smooth controllability.
Before introducing this concept, we fix s ∈ N and a Hilbert space V so that

V ↪→ U, (12)

where ↪→ denotes the continuous embedding. Note that all throughout the remainder
of the section, s and V remain fixed.

The concept of smooth controllability is given in the following definition. The
notation y(·; y0, u) stands for the solution of the abstract controlled Eq. (10) with
control u and initial data y0.

Definition 2 The control system (10) is said to be smoothly controllable in time
T0 > 0 if for any y0 ∈ D(As), there exists a control function v ∈ L∞((0, T0); V )

such that
y(T0; y0, v) = 0

and
‖v‖L∞((0,T0);V ) ≤ C‖y0‖D(As ), (13)

the constant C being independent of y0.

Remark 2 (i) In other words, the system is smoothly controllable in time T0 if for
each (regular) initial datum y0 ∈ D(As), there exists a L∞-control u with values in
the regular space V steering our control system to rest at time T0.

(ii) The smooth controllability in time T0 of system (10) is a consequence of the
following observability inequality: there exists a constant C > 0 such that for any
z ∈ D(A∗)

‖T
∗
T0 z‖D(As )∗ ≤ C

∫ T0

0
‖i∗B∗

T
∗
T0−t z‖V ∗dt,
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where D(As)∗ is the dual of D(As) and i : V ↪→ U is the inclusion. This inequality,
that can often be proved out of classical observability inequalities employing the reg-
ularizing properties of the system, provides a way to prove the smooth controllability
for system (10). This occurs for parabolic problem enjoying smoothing properties.

(iii) Besides, for some systems (A, B), even if they do not enjoy smoothing prop-
erties, there is an alternative way to prove the aforementioned smooth controllability
property exploiting the ellipticity properties of the control operator (see [9]).

Under suitable assumptions, the wave system is smoothly controllable (see
Lemmas 4 and 5).

The second ingredient is following lemma, which concerns the regularity of the
inhomogeneous problem.

Lemma 1 Fix k ∈ N and take f ∈ Hk((0, T ); H) such that

{
d j

dt j f (0) = 0, ∀ j ∈ {0, . . . , k}
f (t) = 0, a.e. t ∈ (τ , T ),

(14)

with 0 < τ < T . Consider y solution to the problem

{
d
dt y = Ay + f t ∈ (0, T )

y(0) = 0.
(15)

Then, y ∈ ∩k
j=0C

j ([τ , T ]; D(Ak− j )) and

k∑

j=0

‖y‖C j ([τ ,T ];D(Ak− j )) ≤ C‖ f ‖Hk ((0,T );H),

the constant C depending only on k.

Remark 3 Note that the maximal regularity of the solution is only assured for t ≥ τ ,
after the right hand side term f vanishes.

The proof of this Lemma is given in an Appendix at the end of this paper.

2.1 Steady State Controllability

In this subsection, we study the constrained controllability for some steady states.
Recall s and V are given by (12). Before introducing our main result, we suppose:

(H1) the system (10) is smoothly controllable in time T0 for some T0 > 0.
(H2) Uad is a closed and convex cone with vertex at 0 and intV (Uad ∩ V ) �= ∅,

where intV denotes the interior set in the topology of V .
Furthermore, we define the following subset
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W = intV (Uad ∩ V ) + Uad. (16)

(Note that, since Uad is a convex cone, then W ⊂ Uad.) The main result of this
subsection is the following. The solution to (10) with initial datum y0 and control u
is denoted by y(·; y0, u).

Theorem 6 (Steady state controllability). Assume (H1) and (H2) hold. Let{
(yi , u

i )
}1
i=0 ⊂ H × W satisfying

Ayi + Bui = 0, i = 0, 1.

Then there exists T > T0 and u ∈ L2(0, T ;U ) such that

• u(t) ∈ Uad a.e. in (0, T );
• y(T ; y0, u) = y1.

Remark 4 As we shall see, in the application to the wave equation with positivity
constraints:

• for internal control, U = L2(ω) and V = Hs(n)(ω), with s = s(n) = 
n/2� + 1;
• for boundary control, U=L2(Γ ) and V=Hs(n)− 1

2 (Γ ), where s(n) = 
n/2� + 1.

Uad is the set of nonnegative controls in U . In both cases, W is nonempty and
contains controls u in L2(ω) (resp. L2(Γ )) such that u ≥ σ, for some σ > 0. For
this to happen, it is essential that Hs(n)(ω) ↪→ C0(ω) (resp. Hs(n)− 1

2 (Γ ) ↪→ C0(Γ )).
This is guaranteed by our special choice of s = s(n). Furthermore, in these special
cases:

W
U = Uad,

where W
U
is the closure of W in the space U .

In the remainder of the present subsection we prove Theorem 6. The following
Lemma is essential for the proof of Theorem 6. Fix ρ ∈ C∞(R) such that

Range(ρ) ⊆ [0, 1], ρ ≡ 1 over (−∞, 0] and supp(ρ) ⊂⊂ (−∞, 1/2). (17)

Lemma 2 Assume that the system (10) is smoothly controllable in time T0, for some
T0 > 0. Let (η0, v

0) ∈ H ×U be a steady state, i.e. solution to (11) with control v0.
Then, there exists w ∈ L∞((1, T0 + 1); V ) such that the control

v(t) =
{

ρ(t)v0 in (0, 1)

w in (1, T0 + 1)
(18)

drives (10) from η0 to 0 in time T0 + 1. Furthermore,

‖w‖L∞((1,T0+1);V ) ≤ C‖η0‖H . (19)
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Fig. 2 Stepwise procedure

The proof of the above Lemma can be found in the Appendix.
We prove now Theorem 6, by developing a “stair-case argument” (see Fig. 2).

Proof (Proof of Theorem 6)
Let

{
(yi , u

i )
}1
i=0 satisfy

Ayi + Bui = 0 ∀ i ∈ {0, 1} . (20)

By the definition of W , there exists
{
(qi , zi )

}1
i=0 ⊂ intV (Uad ∩ V ) × Uad such that

ui = qi + zi i = 0, 1. (21)

Define the segment joining y0 and y1

γ(s) = (1 − s)y0 + sy1 ∀ s ∈ [0, 1].

For each s ∈ [0, 1], γ(s) solves

Aγ(s) + B(q(s) + z(s)) = 0 ∀ i ∈ {0, 1} .

where (q(s), z(s)) ∈ intV (Uad ∩ V ) × Uad are defined by:

q(s) = (1 − s)q0 + sq1 and z(s) = (1 − s)z0 + sz1 ∀ s ∈ [0, 1].

The rest of the proof is divided into two steps.
Step 1 Show that there exists δ > 0, such that for each s ∈ [0, 1], q(s) +

BV (0, δ) ⊂ intV (Uad ∩ V ), where BV (0, δ) denotes the closed ball in V , centered
at 0 and of radius δ.
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Define
f (s) = inf

y∈V \intV (U ad∩V )

‖q(s) − y‖V , s ∈ [0, 1]. (22)

One can check that f is Lipschitz continuous over the compact interval [0, 1]. Then,
by Weierstrass’ Theorem, we have that

min
s∈[0,1] f (s) > 0.

Choose 0 < δ < mins∈[0,1] f (s). Hence, by (22), it follows that, for each s ∈ [0, 1],

q(s) + BV (0, δ) ⊂ intV (Uad ∩ V ),

as required.
Step 2 Conclusion.
LetC > 0 be given by Lemma 2. Let δ > 0 be given by Step 1. Choose N0 ∈ N \ {0}
such that

N0 >
2C‖y0 − y1‖H

δ
. (23)

For each k ∈ {0, . . . , N0}, define:

yk =
(

1 − k

N0

)

y0 + k

N0
y1 and uk =

(

1 − k

N0

)

u0 + k

N0
u1. (24)

It is clear that, by (21), for each k ∈ {0, . . . , N0 − 1},

‖yk − yk+1‖H = 1

N0
‖y0 − y1‖H and uk − q

(
k

N0

)

∈ Uad. (25)

Arbitrarily fix k ∈ {0, . . . , N0 − 1}. Take η0 = yk − yk+1 and v
0 = uk − uk+1. Then,

we apply Lemma 2, getting a control wk ∈ L∞(1, T0 + 1; V ) such that

y(T0 + 1; yk − yk+1, v̂k) = 0 (26)

and

‖wk‖L∞(1,T0+1;V ) ≤ C‖yk − yk+1‖H , (27)

where

v̂k(t) =
{

ρ(t)(uk − uk+1) t ∈ (0, 1]
wk(t) t ∈ (1, T0 + 1).

(28)
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Define

vk(t) =
{

ρ(t)(uk − uk+1) + uk+1 t ∈ (0, 1]
wk(t) + uk+1 t ∈ (1, T0 + 1).

(29)

At the same time, by (20) and (24), we have

Ayk+1 + Buk+1 = 0 and y(T0 + 1; yk+1, uk+1) = yk+1.

The above, together with (26), (28) and (29), yields

y(T0 + 1; yk, vk) = y(T0 + 1; yk − yk+1, v̂k) + y(T0 + 1; yk+1, uk+1)

= yk+1. (30)

Next, we claim that

vk(t) ∈ Uad for a.e. t ∈ (0, T0 + 1). (31)

To this end, by (16) and since Uad is a convex cone, we have

W is convex and W ⊂ Uad. (32)

By (17), 0 ≤ ρ(t) ≤ 1 for all t ∈ R. Then, by (29) an (32), it follows that, for a.e
t ∈ (0, 1),

vk(t) = ρ(t)uk + (1 − ρ(t))uk+1 ∈ ρ(t)W + (1 − ρ(t))W ⊂ W ⊂ Uad.

At this stage, to show (31), it remains to prove that

vk(t) ∈ Uad for a.e. t ∈ (1, T0 + 1). (33)

Take t ∈ (1, T0 + 1). By (27), (25) and (23), we have

‖wk(t)‖V ≤ C

N0
‖y0 − y1‖H ≤ δ/2.

From this and Step 1, it follows

wk(t) + q

(
k + 1

N0

)

∈ intV (Uad ∩ V ).

By this, (25), (29) and (16), we get, for a.e. t in (1, T0 + 1),



Controllability Under Positivity Constraints of Multi-d Wave Equations 211

vk(t) = wk(t) + uk+1

= wk(t) + q

(
k + 1

N0

)

+
(

uk+1 − q

(
k + 1

N0

))

∈ intV (Uad ∩ V ) + Uad

= W .

From this and (32), we are led to (33). Therefore, the claim (31) is true.
Finally, define

u(t) = vk(t − k(T0 + 1)), ∀ t ∈ [k(T0 + 1), (k + 1)(T0 + 1)), k ∈ {0, . . . , N0 − 1} .

Then, from (30) and (31), the conclusion of this theorem follows. ��
In Sects. 3.1 and 4.1, we apply the above Theorem to prove Theorems 1 and 3

respectively. In particular,

• for internal control,

Uad = {
u ∈ L2(ω) | u ≥ 0, a.e. ω

} ;

• for boundary control,

Uad = {
u ∈ L2(Γ ) | u ≥ 0, a.e. Γ

}
.

Then, in both cases, Uad is closed convex cone with vertex at 0.
Nevertheless, the above techniques can be adapted in a wide variety of contexts.

2.2 Controllability Between Trajectories

In this subsection, we study the constrained controllability for some general states
lying on trajectories of the system with possibly nonzero time derivative. Recall s
and V are given by (12). Before introducing our main result, we assume:

(H ′
1) the system (10) is smoothly controllable in time T0 for some T0 > 0.

(H ′
2) the setUad is a closed and convex and intV (Uad ∩ V ) �= ∅,where intV denotes

the interior set in the topology of V ;
(H ′

3) the operator A generates a C0-group {Tt }t∈R over H and ‖Tt‖L (H,H) = 1
for all t ∈ R. Furthermore, A is invertible from D(A) to H , with continuous inverse.

The main result of this subsection is the following. The notation y(·; y0, u) stands
for the solution of the abstract controlled Eq. (10) with control u and initial data y0.

Theorem 7 Assume (H ′
1), (H

′
2) and (H ′

3) hold. Let yi ∈ Cs(R; H) be solutions to
(10) with controls ui ∈ L2

loc(R;U ) for i = 0, 1. Assume ui (t) ∈ Uad for a.e. t ∈ R.
Let τ0, τ1 ∈ R. Then, there exists T > 0 and u ∈ L2(0, T ;U ) such that
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• y(T ; y0(τ0), u) = y1(τ1);
• u(t) ∈ Uad for a.e. t ∈ (0, T ).

Remark 5 (i) Roughly, Theorem 7 addresses the constrained controllability for all
initial data y0 and final target y1, with y0, y1 ∈ E , where

E =
{

y(τ )

∣
∣
∣ τ ∈ R, y ∈ Cs(R; H) and ∃ u ∈ L2

loc(R;U ),

with u(t) ∈ Uad a.e. t ∈ R s.t.
d

dt
y(t) = Ay(t) + Bu(t), t ∈ R

}

.

By Lemma 1, one can check that

{

y(τ ; 0, u)

∣
∣
∣ τ ∈ R, u ∈ Cs(R,Uad),

d j

dt j
u(0) = 0, j = 0, . . . , s

}

⊂ E .

Furthermore, we observe that such set E includes some non-steady states.
(ii) There are at least two differences between Theorems 6 and 7. First of all, Theorem
6 studies constrained controllability for some steady states, whereas Theorem 7
can deal with constrained controllability for some non-steady states (see (i) of this
remark). Secondly, in Theorem 7 the controls ui (i = 0, 1) defining the initial datum
y0(τ0) and final target y1(τ1) are required to fulfill the constraint

ui (t) ∈ Uad, a.e. t ∈ R, i = 0, 1,

while ui in Theorem 6 is required to be in W � Uad. (Then, in Theorem 7 we have
weakened the constraints on ui . In particular, we are able to apply Theorem 7 to the
wave system with nonnegative controls with final target y1 ≡ 0.)

Before proving Theorem 7, we show a preliminary lemma. Note that such Lemma
works with any contractive semigroup. In particular, it holds both for wave-like
and heat-like systems. A similar result was proved in [17, 20]. For the sake of
completeness, we provide the proof of the aforementioned lemma in the Appendix.

Lemma 3 (Null Controllability by small controls) Assume that A generates a con-
tractive C0-semigroup (Tt )t∈R+ over H. Suppose that (H ′

1) holds. Let ε > 0 and
η0 ∈ D(As). Then, there exists T = T (ε, ‖η0‖D(As )) > 0 such that, for any T ≥ T ,
there exists a control v ∈ L∞((0, T ); V ) such that

• y(T ; η0, v) = 0;
• ‖v‖L∞(R+;V ) ≤ ε.

The proof of the Lemma above is given in the Appendix.
We are now ready to prove Theorem 7.
With respect to Theorem 5 we have weakened the constraints on the controls

defining the initial and final trajectories. Then, a priori, we have lost the room for
oscillations needed in the proof of that Theorem. We shall see how to recover this by
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Fig. 3 The two original trajectories. The time τ parameterizing the trajectories is just a parameter
independent of the control time t

modifying the initial and final trajectories away from the initial and final data (see
Figs. 3, 4 and 5).

Proof (Proof of Theorem 7) The main strategy of proof is the following:

(i) we reduce the constrained controllability problem (with initial data y0(τ0) and
final target y1(τ1)) to another controllability problem (with initial datum ŷ0 and
final target 0);

(ii) we solve the latter controllability problem by constructing two controls. The first
control is used to improve the regularity of the solution. The second control is
small in a regular space and steers the system to rest.

Step 1 The part (i) of the above strategy.
For each T > 0, we aim to define a new trajectory with the final state y1(τ1) as value
at time t = T . Choose a smooth function ζ ∈ C∞(R) such that

ζ ≡ 1 over

(

−1

2
,
1

2

)

and supp(ζ) ⊂⊂ (−1, 1). (34)

Take σ ∈ intV (Uad ∩ V ). Arbitrarily fix T > 1. Define a control

û1T (t) = ζ(t − T )u1(t − T + τ1) + (1 − ζ(t − T ))σ. (35)

We denote by ϕT the unique solution to the problem

{
d
dt ϕ(t) = Aϕ(t) + Bû1T (t) t ∈ R

ϕ(T ) = y1(τ1).
(36)
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Fig. 4 The new trajectories to be linked, now synchronized with the control time t . Note that (1)
we have translated the time parameter defining the trajectories and (2) we have modified them away
from the initial and the final data, to apply Lemma 3. The new initial trajectory is represented in
blue, while the new final trajectory is drawn in green. The modified part is dashed. Following the
notation of the proof of Theorem 7, the new initial trajectory is y(·; û0, y0(τ0)), while the new final
trajectory is ϕT

In what follows, we will construct two controls which send y0(τ0) − ϕT (0) to 0 in
time T , which is part (ii) of our strategy. Recall that ρ is given by (17). We define

û0(t) = ρ(t)u0(t + τ0) + (1 − ρ(t))σ t ∈ R.

Step 2 Estimate of ‖y(1; y0(τ0) − ϕT (0), û0 − û1T )‖D(As )

We take the control (û0 − û1T )�(0,1) to be the first control mentioned in part (ii) of our
strategy. In this step, we aim to prove the following regularity estimate associated
with this control: there exists a constant C > 0 independent of T and σ such that

‖y(1; y0(τ0) − ϕT (0), û0 − û1T )‖D(As ) (37)

≤ C
[‖y0‖Cs ([τ0,τ0+1];H) + ‖y1‖Cs ([τ1−1,τ1];H) + ‖σ‖U

]
.

To begin, we introduce ψ the solution to

Aψ + Bσ = 0. (38)

First, we have that
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Fig. 5 The new trajectories linked by the controlled trajectory y, pictured in red. As in Fig. 4, the
new initial trajectory is drawn in blue, while the new final trajectory is represented in green

y(1; y(τ0) − ϕT (0), û0 − û1T )

= y(1; y(τ0), û0) − y(1;ϕT (0), û1)

= [y(1; y(τ0), û0) − ψ] − [y(1;ϕT (0), û1T ) − ψ]
= y(1; y(τ0) − ψ, û0 − σ) − y(1;ϕT (0) − ψ, û1T − σ). (39)

To estimate (37), we need to compute the norms of the last two terms in (39), in the
space D(As). We claim that there exists C1 > 0 (independent of T and σ) such that

‖y(1; y(τ0) − ψ, û0 − σ)‖D(As ) ≤ C1
(‖y0‖Cs ([τ0,τ0+1];H) + ‖σ‖U

)
. (40)

To this end, we show that

y(t; y(τ0) − ψ, û0 − σ) = ρ(t)(y0(t + τ0) − ψ) + η2(t), t ∈ R, (41)

where η2 solves

{
d
dt η2(t) = Aη2(t) − ρ′(y(t + τ0) − ψ) t ∈ R

η2(0) = 0.
(42)

Indeed,

d

dt

[
ρ(t)(y0(t + τ0) − ψ) + η2(t)

]

= ρ(t)(Ay0(t + τ0) + Bu0(t + τ0)) + ρ′(t)(y0(t + τ0) − ψ)
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+ Aη2(t) − ρ′(t)(y0(t + τ0) − ψ)

= A(ρ(t)y0(t + τ0) + η2(t)) + B
(
ρ(t)u0(t + τ0)

)

= A(ρ(t)(y0(t + τ0) − ψ) + η2(t)) + ρ(t)Aψ + B
(
ρ(t)u0(t + τ0)

)

= A(ρ(t)(y0(t + τ0) − ψ) + η2(t)) + B
(
ρ(t)(u0(t + τ0) − σ)

)

= A(ρ(t)(y0(t + τ0) − ψ) + η2(t)) + B(û0(t) − σ). (43)

At the same time, since ρ(0) = 1, from (42), it follows that

ρ(t)(y0(t + τ0) − ψ) + η2(t)�t=0= y0(τ0) − ψ.

From this and (43), we are led to (41).
Next, we will use (41) and (42) to prove (40). To this end, since we assumed

y0 ∈ Cs(R; H) and ψ is independent of t , we get that

y0(· + τ0) − ψ ∈ Cs(R; H).

By this, we apply Lemma 1 obtaining the existence of Ĉ1 > 0 (independent of T and
σ) such that

‖η2(1)‖D(As ) ≤ Ĉ1
(‖y0‖Cs ([τ0,τ0+1];H) + ‖ψ‖H

)
. (44)

At the same time, since ρ(1) = 0 (see (17)), by (41), we have that

y(1; y(T0) − ψ, û0 − σ) = η2(1).

This, together with (44) and (38), yields (40).
At this point, we estimate the norm of the second term in (39) in the space D(As),

namely we prove the existence of C2 > 0 (independent of T and σ) such that

‖y(1;ϕT (0) − ψ, û1T − σ)‖D(As ) ≤ C2
[‖y1‖Cs ([τ1−1,τ1];H) + ‖σ‖U

]
. (45)

To this end, as in the proof of (37), we get that

y(t;ϕT (0) − ψ, û1T − σ) = ζ(t − T )(y1(t − T + τ1) − ψ) + η̃2(t), t ∈ R,

(46)
where η̃2 solves

{
d
dt η̃2(t) = Aη̃2(t) − ζ ′(t − T )(y1(t − T + τ1) − ψ) t ∈ R

η̃2(T ) = 0.
(47)

We will use (46) and (47) to prove (45). Indeed, set

η̂(t) = η̃2(T − t).

By definition of η̂, we have
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{
d
dt η̂(t) = −Aη̂(t) + ζ ′(−t)(y1(τ1 − t) − ψ) t ∈ R

η̂(0) = 0.
(48)

Since we have assumed y1 ∈ Cs(R, H) andψ is independent of t (see (38)), we have

y1 − ψ ∈ Cs(R; H).

Recall that ζ(t) ≡ 1 in
(− 1

2 ,
1
2

)
(see (34)). Then, ζ ′(t) = 0, for each t ∈ (− 1

2 ,
1
2

)
.

Now, by hypothesis (H ′
3), A generates a group of operators. Hence, we can apply

Lemma 1 to (48) getting the existence of C̃2 > 0 (independent of T and σ) such that

‖η̂(1)‖D(As ) ≤ C̃2
(‖y1‖Cs ([τ1−1,τ1];H) + ‖ψ‖H

)
,

whence
‖η̃2(T − 1)‖D(As ) ≤ C̃2

(‖y1‖Cs ([τ1−1,τ1];H) + ‖ψ‖H
)
. (49)

At the same time, by (H ′
3) and some computations, we have that

‖Tt‖L (D(As ),D(As )) = 1, for each t ∈ R.

Since ζ(t − T ) = 0, for each t ∈ [0, T − 1] (see (34)), the above, together with (46)
and (47), yields

‖y(1;ϕT (0) − ψ, û1T − σ)‖D(As) = ‖η̃2(1)‖D(As ) = ‖η̃2(T − 1)‖D(As ).

This, together with (49) and (38), leads to (45).
Step 3 Conclusion.
In this step, we will first construct the second control mentioned in part (ii) of our
strategy. Then we put together the first and second controls (mentioned in part (ii))
to get the conclusion.

By (45),

‖y(1;ϕT (0) − ψ, û1T − σ)‖D(As ) ≤ C2
[‖y1‖Cs ([τ1−1,τ1];H) + ‖σ‖U

]
.

The above estimate is independent of T . Then for each T > 0, by Lemma 3, there
exists

T = T (σ, ‖y0‖Cs ([τ0,τ0+1];H), ‖y1‖Cs ([τ1−1,τ1];H)) > 0

and wT ∈ L∞(R+; V ) such that

{
d
dt z(t) = Az(t) + BwT (t) t ∈ (1, T )

z(1) = y(1; y(τ0) − ϕT (0), û0 − û1T ), z(T ) = 0
(50)
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and

‖wT ‖L∞(1,T ;V ) ≤ 1

2
inf

y∈V \intV (U ad∩V )

‖σ − y‖V . (51)

Note that the last constant is positive, because σ is taken from intV (Uad). Choose
T = T + 1. Define a control:

v =

⎧
⎪⎨

⎪⎩

û0(t) t ∈ (0, 1)

wT (t) + û1T (t) t ∈ (1, T )

û1T (t) t ∈ (T , T + 1).

(52)

We aim to show that

y(T + 1; y0(τ0), v) = y0(τ1) and v(t) ∈ Uad a.e. t ∈ (1, T + 1). (53)

To this end, by (52), (50) and (36), we get that

y(T + 1; y0(τ0), v) = y(T + 1; y0(τ0) − ϕT (0), v − û1T ) + y(T + 1;ϕT (0), û1T )

= T1(zT (T )) + ϕT (T + 1)

= y1(τ1).

This leads to the first conclusion of (53). It remains to show the second condition in
(53). Arbitrarily fix t ∈ (0, 1). By (52) and (45), we have

v(t) = ρ(t)u0(t + τ0) + (1 − ρ(t))σ

∈ ρ(t)Uad + (1 − ρ(t))Uad ⊂ Uad.

Choose also an arbitrary s ∈ (1, T ). By (52), (51) and (35), we obtain

v(s) = w(s) + (1 − ζ(s − T − 1))σ + ζ(s − T − 1)u1(s − T − 1 + τ1)

= w(s) + σ ∈ intV (Uad ∩ V ) ⊂ Uad.

Take any t ∈ (T , T + 1). We find from (52) and (35) that

v(t) = ζ(t − T − 1)u1(t − T − 1 + τ1) + (1 − ζ(t − T − 1))σ

∈ ζ(t − T − 1)Uad + (1 − ζ(t − T − 1))Uad

⊂ Uad.

Therefore, we are led to the second conclusion of (53). This ends the proof. ��
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3 Internal Control: Proof of Theorems 1 and 2

The present section is organized as follows:

• Section3.1: proof of Lemma 4 and Theorem 1;
• Section3.2: proof of Theorem 2;
• Section3.3: discussion of the issues related to the internal control touching the
boundary.

3.1 Proof of Theorem 1

We now prove Theorem 1 by employing Theorem 6.
Firstly, we place our control system in the abstract framework introduced in Sect. 2

and we prove that our control system is smoothly controllable (see Definition 2).
The free dynamics is generated by A : D(A) ⊂ H −→ H , where

A =
(

0 I
−A0 0

)

,

{
H = H 1

0 (Ω) × L2(Ω)

D(A) = (
H 2(Ω) ∩ H 1

0 (Ω)
) × H 1

0 (Ω).
(54)

where A0 = −Δ + cI : H 2(Ω) ∩ H 1
0 (Ω) ⊂ L2(Ω) −→ L2(Ω). The control

operator

B(v) =
(

0
χv.

)

defined from U = L2(ω) to H = H 1
0 (Ω) × L2(Ω) is bounded, then admissible.

Lemma 4 In the above framework take V = Hs(n)(ω) and s = s(n) = 
n/2� +
1. Assume further (Ω,ω0, T ∗) fulfills the Geometric Control Condition. Then, the
control system (1) is smoothly controllable in any time T0 > T ∗.

The proof of this Lemma can be found in the reference [9, Theorem 5.1].
We are now ready to prove Theorem 1.

Proof (of Theorem 1) We choose as set of admissible controls:

Uad = {
u ∈ L2(ω) | u ≥ 0, a.e. ω

}
.

Then, ⋃

σ>0

{
u ∈ L2(ω) | u ≥ σ, a.e. ω

} ⊂ W . (55)

We highlight that, to prove (55), we need Hs(n)(ω) ↪→ C0(ω). For this reason,
we have chosen s(n) = 
n/2� + 1.
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Fig. 6 Controlling from the
interior touching the
boundary

By Lemma (4), we have that the system is Smoothly Controllablewith s = s(n) =

n/2� + 1 and V = Hs(n)(ω). Then, by Theorem 6 we conclude. ��

3.2 Proof of Theorem 2

We prove now Theorem 2

Proof (Proof of Theorem 2). As we have seen, our system fits the abstract frame-
work. Moreover, we have checked in Lemma 4 that the system is Smoothly Control-
lable with s(n) = 
n/2� + 1 and V = Hs(n)(ω). Furthermore, intV (Uad ∩ V ) �= ∅.
Indeed, any constant σ > 0 belongs to intV (Uad ∩ V ), since Hs(n)(ω) ↪→ C0(ω).
This is guaranteed by our choice of s(n) = 
n/2� + 1.

Therefore, we are in position to apply Theorem 7 and finish the proof. ��

3.3 Internal Controllability From a Neighborhood of the
Boundary

So far, we have assumed that the control is localized by means of a smooth cut-off
function χ so that all its derivatives vanish on the boundary ofΩ . This implies that χ
must be constant on any connected component of the boundary. This prevents us to
localize the internal control in a region touching the boundary only on a subregion,
as in Fig. 6.

In this case, as already pointed out in [8], some difficulties in finding regular
controls may arise. Indeed, as indicated both in [8] and in [9] a crucial property
needs to be verified in order to have controls in C0([0, T ]; Hs(ω)), namely

BB∗(D(A∗)k) ⊂ D(Ak) (56)



Controllability Under Positivity Constraints of Multi-d Wave Equations 221

for k = 0, . . . , s, where we have used the notation of the proof of Theorem 1.
Right now, for any k ∈ N we have

D(Ak) =
{(

ψ1

ψ2

) ∣
∣
∣
∣
ψ1 ∈ Hk+1(Ω), Δ jψ1 = 0 on ∂Ω, 0 ≤ j ≤ 
k/2�
ψ2 ∈ Hk(Ω), Δ jψ2 = 0 on ∂Ω, 0 ≤ j ≤ 
(k + 1)/2� − 1

}

,

while

D((A∗)k) =
{(

ψ1

ψ2

) ∣
∣
∣
∣

ψ1 ∈ Hk(Ω), Δ jψ1 = 0 on ∂Ω, 0 ≤ j ≤ 
(k − 1)/2�
ψ2 ∈ Hk−1(Ω), Δ jψ2 = 0 on ∂Ω, 0 ≤ j ≤ 
k/2� − 1

}

.

(57)
Furthermore,

BB∗ =
(
0 0
χ2 0

)

Then, (56) is verified if and only if for any ψ ∈ Hs(Ω) such that

(Δ) j (ψ) = 0, 0 ≤ j ≤ 
(s − 1)/2�, a.e. on ∂Ω

the following hold

(Δ) j (χ2ψ) = 0, 0 ≤ j ≤ 
(s − 1)/2�, a.e. on ∂Ω. (58)

Choosing χ so that all its normal derivatives vanish on ∂Ω

• in case s < 5, we are able to prove (56). Then, by adapting the techniques of [9,
Theorem 5.1], we have that our system is Smoothly Controllable (Definition 2),
with s(n) = 
n/2� + 1. This enables us to prove Theorem 1 in space dimension
n < 8.

• in case s ≥ 5, in (58) the biharmonic operator (Δ)2 enters into play.Bycomputing it
in normal coordinates on the boundary, some terms appear involving the curvature
and ∂

∂ξk
χ ∂

∂vψ, where (ξ1, . . . , ξn−1) are tangent coordinates, while v is the normal
coordinate. In general, these terms do not vanish, unless ∂Ω is flat. Then, for
n ≥ 8, we are unable to deduce a constrained controllability result in case the
internal control is localized along a subregion of ∂Ω .

4 Boundary Control: Proof of Theorems 3, 4 and 5

This section is devoted to boundary control and is organized as follows:

• Section4.1: proof of Lemma 5 and Theorem 3;
• Section4.2: proof of Theorem 4;
• Section4.3: proof of Theorem 5.
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4.1 Proof of Theorem 3

We prove Theorem 3.
First of all,we explain howour boundary control systemfits the abstract semigroup

setting described in Sect. 2. The generator of the free dynamics is:

A =
(

0 I
−A0 0

)

,

{
H = L2(Ω) × H−1(Ω)

D(A) = H 1
0 (Ω) × L2(Ω),

(59)

where A0 = −Δ + cI : H 1
0 (Ω) ⊂ H−1(Ω) −→ H−1(Ω). The definition of the

control operator is subtler than in the internal control case. Let Δ0 be the Dirichlet
Laplacian. Then, the control operator

B(v) =
(

0
−Δ0 z̃

)

, where

{
−Δz̃ = 0 in Ω

z̃ = χv(·, t) on ∂Ω.

defined from L2(Γ ) to H− 3
2 (Ω). In this case, B is unbounded but admissible (see

[15] or [23, proposition 10.9.1 page 349]).

Lemma 5 In the above framework, set V = Hs(n)− 1
2 (Γ ) and s = s(n), with s(n) =


n/2� + 1. Suppose (GCC) holds for (Ω, Γ0, T ∗). Then, in any time T0 > T ∗, the
control system (5) is smoothly controllable in time T0.

One can prove the above Lemma, by employing [9, Theorem 5.4].

Proof (Proof of Theorem 3)Weprove our Theorem, by choosing the set of admissible
controls:

Uad = {
u ∈ L2(Γ ) | u ≥ 0, a.e. Γ

}
.

Hence,

⋃

σ>0

{
u ∈ L2(Γ ) | u ≥ σ, a.e. Γ

} ⊂ W . (60)

Note that, in order to show (60), it is essential that the embedding
Hs(n)− 1

2 (Γ ) ↪→ C0(Γ ) is continuous. This is guaranteed by the choice s(n) =

n/2� + 1.

By Lemma 5, we conclude that smooth controllability holds. At this point, it
suffices to apply Theorem 6 to conclude. ��
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4.2 Proof of Theorem 4

We prove now Theorem 4.

Proof (Proof of Theorem 4)We have explained above how our control system (5) fits
the abstract framework presented in Sect. 2. Furthermore, by Lemma 5, the system
is Smoothly Controllable with s(n) = 
n/2� + 1 and V = Hs(n)− 1

2 (Γ ). Moreover,
the set intV (Uad ∩ V ) is non empty, since all constants σ > 0 belong to it. This is
consequence of the continuity of Hs(n)− 1

2 (Γ ) ↪→ C0(Γ ), valid for s(n) = 
n/2� +
1. The result holds as a consequence of Theorem 7. ��

4.3 State Constraints. Proof of Theorem 5

We conclude this section proving Theorem 5 about state constraints. The following
result is needed.

Lemma 6 Let s ∈ N
∗ and T > T ∗. Take a steady state solution η0 associated to

the control v0 ∈ Hs− 1
2 (Γ ). Then, there exists v ∈ ∩s

j=0C
j ([0, T ]; Hs− 1

2 − j (Γ )) such
that the unique solution (η, ηt ) to (5) with initial datum (η0, 0) and control v is such
that (η(T, ·), ηt (T, ·)) = (0, 0). Furthermore,

s∑

j=0

‖v‖
C j ([0,T ];Hs− 1

2 − j
(Γ ))

≤ C(T )‖v0‖
Hs− 1

2 (Γ )
, (61)

the constant C being independent of η0 and v0. Finally, if s = s(n) = 
n/2� + 1,
then the control v ∈ C0([0, T ] × Γ ) and

‖v‖C0([0,T ]×Γ ) ≤ C(T )‖v0‖
Hs(n)− 1

2 (Γ )
. (62)

The above Lemma can be proved by using the techniques of Lemma 2. We now
prove our Theorem about state constraints.

Proof (of Theorem 5)
Step 1 Consequences of Lemma 6.
Let T0 > T ∗, T ∗ being the critical time given by theGeometric Control Condition.

By Lemma 6, for any ε > 0, there exists δε > 0 such that for any pair of steady states
y0 and y1 defined by regular controls ui ∈ Hs(n)− 1

2 (Γ ), such that:

‖u1 − u0‖
Hs(n)− 1

2 (Γ )
< δε (63)

we can find a control u driving (10) from y0 to y1 in time T0 and verifying
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s(n)∑

j=0

‖u − u1‖
C j ([0,T0];Hs(n)− 1

2 − j
(Γ ))

< ε, (64)

where u1 is the control defining y1. Moreover, if (y, yt ) is the unique solution to (5)
with initial datum (y0, 0) and control u, we have

‖y − y1‖C0([0,T0]×Ω) ≤ C‖y − y1‖C0([0,T0];Hs(n)(Ω))

≤ C
s(n)∑

j=0

‖u − u1‖
C j ([0,T0];Hs(n)− 1

2 − j
(Γ ))

≤ Cε,

where we have used the boundedness of the inclusion Hs(n)(Ω) ↪→ C0(Ω) and the
continuous dependence of the data

.
Step 2 Stepwise procedure and conclusion.
We consider the convex combination γ(s) = (1 − s)y0 + sy1. Then, let

zk = γ

(
k

n

)

, k = 0, . . . , n

be a finite sequence of steady states defined by the control uk = n−k
n u0 + k

n u
1. Let

δ > 0. By taking n sufficiently large,

‖uk − uk−1‖Hs(n)− 1
2 (Γ )

< δ. (65)

By the above reasonings, choosing δ small enough, for any 1 ≤ k ≤ n, we can find
a control uk joining the steady states zk−1 and zk in time T0, with

‖yk − zk‖C0([0,T0]×Ω) ≤ σ,

where (yk, (yk)t ) is the solution to (5) with initial datum zk−1 and control uk . Hence,

yk = yk − zk + zk ≥ −σ + σ = 0, on (0, T0) × Ω, (66)

where we have used the maximum principle for elliptic equations (see [2]) to assert
that zk ≥ σ because uk ≥ σ.

By taking the traces in (66), we have uk ≥ 0 for 1 ≤ k ≤ n.
In conclusion, the control u : (0, nT0) −→ Hs(n)− 1

2 (Γ ) defined as u(t) = uk(t −
(k − 1)T0) for t ∈ ((k − 1)T0, kT0) is the required one. This finishes the proof. ��
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5 The One Dimensional Wave Equation

We consider the one dimensional wave equation, controlled from the boundary

⎧
⎪⎨

⎪⎩

ytt − yxx = 0 (t, x) ∈ (0, T ) × (0, 1)

y(t, 0) = u0(t), y(t, 1) = u1(t) t ∈ (0, T )

y(0, x) = y00 (x), yt (0, x) = y10(x). x ∈ (0, 1)

(67)

As in the general case, by transposition (see [15]), for any initial datum (y00 , y
1
0) ∈

L2(0, 1) × H−1(0, 1) and controls ui ∈ L2(0, T ), the above problem admits an
unique solution (y, yt ) ∈ C0([0, T ]; L2(0, 1) × H−1(0, 1)).

We show how Theorem 4 reads in this one-dimensional setting, in the special case
where both the initial trajectory (y0, (y0)t ) and the final one (y1, (y1)t ) are constant
(independent of x) steady states.

We determine explicitly a pair of nonnegative controls steering (67) from one
positive constant to the other. The controlled solution remains nonnegative.

In this special case, we show further that

• the minimal controllability time is the same, regardless whether we impose the
positivity constraint on the control or not;

• constrained controllability holds in the minimal time.

The minimal controllability time for (67) is defined as follows.
Let (y00 , y

1
0) ∈ L2(0, 1) × H−1(0, 1)be an initial datumand (y01 , y

1
1) ∈ L2(0, 1) ×

H−1(0, 1) be a final target. Then the minimal controllability time without constraints
is defined as follows:

Tmin

def= inf
{
T > 0

∣
∣ ∃ui ∈ L2(0, T ), (y(T, ·), yt (T, ·)) = (y01 , y

1
1)

}
. (68)

Similarly, the minimal time under positivity constraints on the control is defined as:

T c
min

def= inf
{
T > 0

∣
∣ ∃ui ∈ L2(0, T )+, (y(T, ·), yt (T, ·)) = (y01 , y

1
1)

}
. (69)

Finally, we introduce the minimal time with constraints on the state and and the
control:

T s
min

def= inf
{
T > 0

∣
∣ ∃ui ∈ L2(0, T )+, (y(T, ·), yt (T, ·)) = (y01 , y

1
1), y ≥ 0

}
.

(70)

The problem of controllability of the one-dimensional wave equation under bilat-
eral constraints on the control has been studied in [12]. In the next Proposition, we
concentrate on unilateral constraints and we compute explicitly the minimal time for
the specific data considered.

Proposition 1 Let (y00 , 0) be the initial datum and (y01 , 0) be the final target, with
y00 ∈ R

+ and y01 ∈ R
+. Then,
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1. for any time T > 1, there exists two nonnegative controls

u0(t) =
{
y00 t ∈ [0, 1)
(y01 − y00 )

t−1
T−1 + y00 t ∈ (1, T ] (71)

u1(t) =
{

(y01 − y00 )
t

T−1 + y00 t ∈ [0, T − 1)

y01 t ∈ [T − 1, T ] (72)

driving (67) from (y00 , 0) to (y01 , 0) in time T . Moreover, the corresponding solu-
tion remains nonnegative, i.e.

y(t, x) ≥ 0, ∀(t, x) ∈ [0, T ] × [0, 1].

2. T s
min = T c

min = Tmin = 1;
3. the nonnegative controls û0 ≡ y00 and û1 ≡ y01 in L

2(0, 1) steers (67) from (y00 , 0)
to (y01 , 0) in the minimal time. Furthermore, the corresponding solution y ≥ 0
a.e. in (0, 1) × (0, 1);

4. the controls in the minimal time are not unique. In particular, for any λ ∈ [0, 1],
û0λ = (1 − λ)y00 + λy01 and û1λ = (1 − λ)y01 + λy00 drives (67) from (y00 , 0) to
(y01 , 0) in the minimal time.

Proof We proceed in several steps.
Step 1. Proof of the constrained controllability in time T > 1.

By D’Alembert’s formula, the solution (y, yt ) to (67) with initial datum (y00 , 0) and
controls ui defined in (71) and (72), reads as

y(t, x) = f (x + t), (t, x) ∈ [0, T ] × [0, 1],

where

f (ξ) =

⎧
⎪⎨

⎪⎩

y00 ξ ∈ [0, 1)
(y01 − y00 )

ξ−1
T−1 + y00 ξ ∈ [1, T )

y01 . ξ ∈ [T, T + 1].

This finishes the proof of (1.).
Step 2 Computation of the minimal time.
In any time T > 1, controllability under state and control constraints holds. Then,
Tmin ≤ T c

min ≤ T s
min ≤ 1.

It remains to prove that Tmin ≥ 1. This can be obtained by adapting the techniques
of [18, Proposition 4.1].
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Fig. 7 Level sets of the
solution to (67) with initial
datum (y00 , 0) and controls
ûi . In the darker region the
solution takes value y00 ,
while in the complement it
coincides with y01

Step 3 Controllability in the minimal time.
One can check (see Fig. 7) that the unique solution to (67) with initial datum (y00 , 0)
and controls ûi is

y(t, x) =
{
y00 t + x < 1

y01 t + x > 1
(73)

This concludes the argument. ��

6 Conclusions and Open Problems

In this paperwehave analyzed the controllability of thewave equationunderpositivity
constraints on the control and on the state.

1. In the general case (without assuming that the energy defines a norm), we have
shown how to steer the wave equation from one steady state to another in time
large, provided that both steady states are defined by positive controls, away from
zero;

2. in case the energy defines a norm, we have generalized the above result to data
lying on trajectories. Furthermore, the controls defining the trajectory are sup-
posed to be only nonnegative, thus allowing us to take as target (y01 , y

1
1) = (0, 0).

We present now some open problems, which as long as we know, have not been
treated in the literature so far.

• Further analysis of controllability of the wave under state constraints. As pointed
out in [16, 19], in the case of parabolic equations a state constrained result follows
from a control constrained one by means of the comparison principle. For the
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wave equation, such principle does not hold. We have proved Theorem 5, using a
“stair-case argument” but further analysis is required.

• On theminimal time for constrained controllability. Further analysis of theminimal
constrained controllability time is required. In particular, it would be interesting to
compare the minimal constrained controllability time and the unconstrained one
for any choice of initial and final data. As we have seen in Proposition 1, they
coincide for constant steady data in one space dimension.

• In the present paper, we have determined nonnegative controls by employing
results of controllability of smooth data by smooth controls. This imposes a
restriction to our analysis: the action of the control is localized by smooth cut-
off functions. In particular, when controlling (1) from an interior subset touching
the boundary, we encounter the issues discussed in Sect. 3.3 and already pointed
out in [8] and [9].
Then, it would be worth to be able to build nonnegative controls without using
smooth controllability.

• Derive the Optimality System (OS) for the controllability of the wave by nonneg-
ative controls.

• Extend our results to the semilinear setting, by employing the analysis carried out
in [4, Theorem 1.3], [5, 6, 25].

• Extend the results to more general classes of potentials c. For instance, one could
assume c to be bounded, instead of C∞ smooth.
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Appendix

Regularity results

In what follows, H is a real Hilbert space and A : D(A) ⊂ H −→ H is a generator
of a C0-semigroup.

Lemma 7 Let k ∈ N. Take y ∈ Ck([0, T ]; H) ∩ Hk+1((0, T ); H−1) solution to the
homogeneous equation:

d

dt
y = Ay, t ∈ (0, T ). (74)

Then, y ∈ ∩k
j=0C

j ([0, T ]; D(Ak− j )) and

k∑

j=0

‖y‖C j ([0,T ];D(Ak− j )) ≤ C(k)‖y‖Ck ([0,T ];H),
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the constant C(k) depending only on k.

The proof of the above Lemma can be done by using the Eq. (74) (see [2]).
We prove now Lemma 1.

Proof (Proof of Lemma 1) Step 1 Time regularity
By induction on j = 0, . . . , k, we prove that y ∈ C j ([0, T ]; H) and

‖y‖C j ([0,T ];H) ≤ C‖ f ‖H j ((0,T );H).

For j = 0, the validity of the assertion is a consequence of classical semigroup
theory (e.g. [23, Proposition 4.2.5] with control space U = H and control operator
B = I dH ). Assume now that the result hold up to j − 1. Then, let w solution to

{
d
dt w = Aw + f ′ t ∈ (0, T )

w(0) = 0.
(75)

By induction assumption, w ∈ C j−1([0, T ]; H) and the corresponding estimate
holds. Then, ỹ(t) = ∫ t

0 w(σ)dσ ∈ C j ([0, T ]; H) and

‖ỹ‖C j ([0,T ];H) ≤ C‖ f ‖H j ((0,T );H).

Then, it remains to show that y = ỹ. Now, for any t ∈ [0, T ]

ỹ(t) − ỹ(0) =
∫ t

0
[w(σ) − w(0)]dσ =

∫ t

0

∫ σ

0
[Aw(ξ) + f ′(ξ)]dξdσ

=
∫ t

0
[Aỹ(σ) + f (σ)]dσ.

By uniqueness of solution to (15), we have y = ỹ. This finishes the first step.
Step 2 Conclusion
We start observing that y solves

yt = Ay, t ∈ (τ , T ).

Then, by classical semigroup arguments (see [2, Chapter 7]), we conclude. ��
Proof of Lemma 2
We give the proof of Lemma 2.

Proof (Proof of Lemma 2) Let v be given by (18). The proof is made of two steps.
Step 1 Show that y(1; η0, v) ∈ D(As), with s given by (12)
We apply Lemma 1 with y = y(·; η0, ρv

0) − ρη0 and f = ρ′η0, getting

y(1; η0, ρv
0) − ρη0 ∈ D(As).
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Since ρη0 = 0 over (δ, 1), for some δ ∈ (0, 1), we have that

y(1; η0, ρv
0) ∈ D(As).

Step 2 Conclusion
Since y(1; η0, ρv

0) ∈ D(As), we are in position to apply the smooth controllability
(see Definition 2) and determine w ∈ L∞((1, T0 + 1); V ) steering the solution to
(10) from y(1; η0, v) at time t = 1 to 0 at time t = T0 + 1.
Hence, the desired control v reads as (18).

Finally, by similar reasonings the estimate (19) follows. This ends the proof of
this Lemma. ��
Proof of Lemma 3
We prove now Lemma 3.

Proof (Proof of Lemma 3) We split the proof in two steps.
Step 1 Proof of the inequality ‖Tt‖L (D(As ),D(As )) ≤ 1 with t ∈ R

+
Recall that

‖x‖2D(As ) =
s∑

j=0

‖A j x‖2H ∀ x ∈ D(As).

Now, for any x ∈ D(As) and t ∈ R
+, we have

‖A j
Tt x‖H = ‖Tt A

j x‖H ≤ ‖A j x‖H ∀ j = 0, . . . , s.

This yields ‖Tt‖L (D(As ),D(As )) ≤ 1 for any t ∈ R
+.

Step 2 Conclusion.
Let C > 0 be given by (2). Take

N >
C‖η0‖D(As )

ε
. (76)

Arbitrarily fix k ∈ {0, . . . , N − 1}. Consider the following equation

{
d
dt y(t) = Ay(t) + Bχ(kT0,(k+1)T0)(t)uk(t) t ∈ R

+

y(0) = 1
N η0,

(77)

where χ(kT0,(k+1)T0) is the characteristic function of the set (kT0, (k + 1)T0) and uk ∈
L2(R+, V ). From step 1 and (76), we have that

‖y(kT0; (1/N )η0, 0)‖D(As ) ≤ (1/N )‖η0‖D(As ) ≤ ε. (78)

Then, we apply smooth controllability (given by (H ′
1)) to find some control ûk ∈

L∞(R+; V ) so that the solution to (77) with control uk = ûk satisfies
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y((k + 1)T0; (1/T0)η0,χ(kT0,(k+1)T0)ûk) = 0 and ‖ûk‖L∞((kT0,(k+1)T0);V ) ≤ ε.
(79)

Now, we define:

v(t) =
N−1∑

k=0

χ(kT0,(k+1)T0)(t)uk(t) t ∈ R
+. (80)

Then, from (79) and (80), we know

y(NT0; η0, v) = 0 and ‖v‖L∞((0,NT0);V ) ≤ ε.

This leads to the conclusion where T = NT0. ��
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Asymptotic Analysis of a Cucker–Smale
System with Leadership and Distributed
Delay

Cristina Pignotti and Irene Reche Vallejo

Abstract We extend the analysis developed in Pignotti and Reche Vallejo (J Math
Anal Appl 464:1313–1332, 2018) [34] in order to prove convergence to consensus
results for a Cucker–Smale type model with hierarchical leadership and distributed
delay. Flocking estimates are obtained for a general interaction potential with diver-
gent tail. We analyze also the model when the ultimate leader can change its velocity.
In this case we give a flocking result under suitable conditions on the leader’s accel-
eration.

Keywords Cucker–Smale model · Flocking · Time delay

1 Introduction

The celebrated Cucker–Smale model has been introduced in [14, 15] as a model
for flocking, namely for phenomena where autonomous agents reach a consensus
based on limited environmental information. Let us consider N ∈ N agents and let
(xi (t), vi (t)) ∈ IR2d , i = 1, . . . , N , be their phase-space coordinates. As usual xi (t)
denotes the position of the i th agent and vi (t) the velocity. The Cucker–Smale model
reads, for t > 0,

ẋi (t) = vi (t),

v̇i (t) =
N∑

j=1

ψi j (t)(v j (t) − vi (t)), i = 1, . . . , N ,
(1.1)
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where the communication rates ψi j (t) are of the form

ψi j (t) = ψ(|xi (t) − x j (t)|) , (1.2)

being ψ : [0,+∞) → (0,+∞) a suitable non-increasing potential functional.

Definition 1.1 We say that a solution of (1.1) converges to consensus (or flocking)
if

sup
t>0

|xi (t) − x j (t)| < +∞ and lim
t→+∞ |vi (t) − v j (t)| = 0 , ∀ i, j = 1, . . . , N . (1.3)

The potential function considered by Cucker and Smale in [14, 15] is ψ(s) =
1

(1+s2)β with β � 0. They proved that there is unconditional convergence to flocking
whenever β < 1/2. In the case β � 1/2, they obtained a conditional flocking result,
namely convergence to flocking under appropriate assumptions on the initial data.
Actually, unconditional flocking can be obtained also for β = 1/2 [20].

The extension of the flocking result to cover the case of non-symmetric commu-
nication rates is due to Motsch and Tadmor [30]. Other variants and generalizations
have been proposed, e.g. more general interaction potentials, cone-vision constraints,
leadership [10, 12, 21, 29, 31, 36, 38, 40], stochastic terms [13, 18, 19], pedestrian
crowds [11, 23], infinite-dimensional kinetic models [1, 2, 4, 7, 17, 22, 37] and
control models [3, 5, 6, 33, 39].

Here, we consider the Cucker–Smale system with hierarchical leadership intro-
duced by Shen [36]. In this model the agents are ordered in a specific way, depending
onwhich other agents they are leaders of or led by. This reflects natural situations, e.g.
in animals groups, where some agents are more influential than the others. We also
add a distributed delay term (cf. [32]), namely we assume that the agent i adjusts its
velocity depending on the information received from other agents on a time interval
[t − τ , t]. Indeed, it is natural to assume that there is a time delay in the information’s
transmission from an agent to the others. The case of CS-model with hierarchical
leadership and a pointwise time delay has been recently studied by the authors [34].
Other models with (pointwise) time delay, without leadership, have been considered
in [8, 9, 28, 35], while for other extensions of Shen’s results, without delay, we refer
to [16, 24–27].

In order to present our model, we first recall some definitions from [36].

Definition 1.2 The leader set L(i) of an agent i in a flock [1, 2, . . . , N ] is the
subgroup of agents that directly influence agent i.

The Cucker–Smale system considered by Shen is then, for all i ∈ {1, . . . , N } and
t > 0,

dxi

dt
= vi ,

dvi

dt
=

∑

j∈L(i)

ψi j (t)(v j − vi ).
(1.4)
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The interaction potential ψi j , for j ∈ L(i), was analogous to the one of Cucker and
Smale’s papers, namely

ψi j (t) = 1

(1 + |xi (t) − x j (t)|2)β , j ∈ L(i) .

Note that if j /∈ L(i) then the agent j does not influence the dynamics of the agent i;
we say ψi j = 0 if j /∈ L(i). For such a model Shen proved convergence to consensus
for β < 1/2.

Definition 1.3 Aflock [1, . . . , N ] is an HL-flock, namely a flock under hierarchical
leadership, if the agents can be ordered in such a way that:

1. if j ∈ L(i) then j < i , and
2. for all i > 1, L(i) �= ∅.
Definition 1.4 For each agent i = 1, . . . , N , we define the m-th level leaders of i
as

L0(i) = {i}, L1(i) = L(i), L2(i) = L(L(i)), . . . , Lm = L(Lm−1(i)), . . .

for m ∈ N, and denote the set of all leaders of the agent i , direct or indirect, as

[L](i) = L0(i) ∪ L1(i) ∪ . . .

For a fixed positive time τ and for every t > 0, our system is the following:

dxi

dt
(t) = vi (t),

dvi

dt
(t) =

∑

j∈L(i)

∫ t

t−τ

μ(t − s)ψi j (s)[v j (s) − vi (t)] ds,
(1.5)

for all i ∈ {1, . . . , N }, with initial conditions, for s ∈ [−τ , 0],

xi (s) = x0
i (s),

vi (s) = v0
i (s),

(1.6)

for some continuous functions x0
i and v0

i , i = 1, . . . , N . The communication rates
are

ψi j (t) = ψ(|xi (t) − x j (t)|), j ∈ L(i),

for some non-increasing, positive, continuous interaction potential ψ. For further
uses we define

ψi j = 0, j /∈ L(i).
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The weight function μ : [0, τ ] → IR is assumed to be bounded and non–negative,
with ∫ τ

0
μ(s)ds = μ0 > 0. (1.7)

We will prove a flocking result under the assumption

∫ +∞

0
ψ(s)ds = +∞ . (1.8)

Then, our result extends and generalizes the one of Shen. Note that in [34] we have
proved a flocking result in the case of a pointwise time delay. We can formally obtain
the model studied in [34] if the weight μ(·) is a Dirac delta function centered at
t = τ .

The paper is organized as follows. In Sect. 2 we give some preliminary properties
of system (1.5), in particular we prove the positivity and boundedness properties for
the velocities. In Sect. 3 wewill prove the flocking result for the system (1.5). Finally,
in Sect. 4 we will consider the model under hierarchical leadership and a free-will
leader and we will prove flocking estimates under suitable growth assumptions on
the acceleration of the free-will leader.

2 Preliminary Properties

Before proving our main result, namely the convergence to consensus theorem, we
need some general properties of the Cucker–Smalemodel (1.5), such as the positivity
property and the boundedness of the velocities. The following propositions extend
analogous results of [36].

Proposition 2.1 Let us consider the system of scalar equations

dui

dt
(t) =

∑

j∈L(i)

∫ t

t−τ

μ(t − s)ψi j (s)[u j (s) − ui (t)] ds, i = 1, . . . , N , t > 0,

ui (s) = u0
i (s), i = 1, . . . , N , s ∈ [−τ , 0],

(2.1)
where u0

i (·), i = 1, . . . , N , are continuous functions. If u0
i (s) � 0 for all i =

1, . . . , N, and all s ∈ [−τ , 0], then ui (t) � 0 for all i and t > 0.

Proof Observe that if an agent j is in the leader set [L](i) of the agent i, then it is not
influenced by agents outside of [L](i). Thus, it is sufficient to prove the statement
for the system (2.1) restricted to the agents in [L](i), for each i = 1, . . . , N .

We then proceed by induction. Consider the first agent, i.e. agent 1. By definition
of an HL-flock, L(1) = ∅, which gives
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du1

dt
= 0 and so u1(t) = u1(0) = u0

1(0) � 0, ∀ t � 0. (2.2)

Using (2.2), the equation for the agent 2 becomes

du2

dt
(t) =

∫ t

t−τ
μ(t − s)ψ21(s)[u1(s) − u2(t)]ds = (u1(0) − u2(t))

∫ t

t−τ
μ(t − s)ψ21(s)ds .

Arguing by contradiction, we assume that u2(t̄) < 0 for some t̄ > 0. Then, let us
denote

t∗ = inf{t > 0 | u2(s) < 0 for s ∈ (t, t̄) }.

Hence, by definition of t∗, u2(t∗) = 0 and u2(s) < 0 for s ∈ (t∗, t̄). So, using again
(2.2),

du2

dt
(t) = (u1(0) − u2(t))

∫ t

t−τ

μ(t − s)ψ21(s)ds � 0, t ∈ [t∗, t̄),

which is in contradiction with u2(t) < 0 for t ∈ (t∗, t̄) and u2(t∗) = 0. This ensures
that u2(t) � 0 for all t ≥ 0.

Now, as the induction hypothesis, assume that ui (t) � 0 for all t > 0 and for all
i ∈ {1, . . . , k − 1}.

The equation for agent k is

duk

dt
(t) =

∑

j∈L(k)

∫ t

t−τ

μ(t − s)ψk j (s)[u j (s) − uk(t)]ds , t > 0.

As in the first step, let us assume by contradiction that uk(t̄) < 0 for some t̄ > 0
and let us denote

t∗ = inf{t > 0 | uk(s) < 0 for s ∈ (t, t̄) }.

Then, uk(t∗) = 0 and uk(s) < 0 for s ∈ (t∗, t̄). We can use the induction hypoth-
esis on the agents j ∈ L(k) ⊆ {1, . . . , k − 1}, so

duk

dt
(t) =

∑

j∈L(k)

∫ t

t−τ

μ(t − s)ψk j (s)[u j (s) − uk(t)]ds � 0, t ∈ [t∗, t̄) ,

which gives a contradiction.
Therefore, we have proved that ui (t) � 0 for all i ∈ {1, . . . , N }. �

As in the undelayed case (see Theorem 4.2 of [36]) we can now deduce from the
previous proposition the boundedness result for the velocities.
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Proposition 2.2 Let � be a convex and compact domain in IRd and let (xi , vi ) be
a solution of system (1.5). If vi (s) ∈ � for all i = 1, . . . , N and s ∈ [−τ , 0], then
vi (t) ∈ � for all i = 1, . . . , N and t > 0. In particular, if � is the ball with center
0 and radius

D0 = max
1�i�N

max
s∈[−τ ,0] |vi (s)|, (2.3)

then |vi (t)| � D0 for all t > 0 and i = 1, . . . , N.

3 Convergence to Consensus

Herewewill prove the announced flocking result for theCS-model under hierarchical
leadership with distributed delay (1.5). Our proof extends to the model at hand the
one in [34], with pointwise delay. We need a preliminary lemma.

Lemma 3.1 Let (x, v) be a trajectory in the phase-space, namely dx
dt (t) = v(t) for

t ≥ 0 . Assume that

d|v|
dt

(t) ≤ −d0ψ(|x(t)| + M)|v(t)| + ce−bt ∀ t ≥ t0, (3.1)

for some non-negative constants M, c, t0 and b, d0 > 0, where ψ : [0,+∞) →
(0,+∞) is a continuous function satisfying (1.8). Then, there exists a suitable pos-
itive constant C such that

|x(t)| ≤ C, t ≥ 0 .

Proof Let us consider the functionals (cfr. [20, 34])

F±(t) = |v(t)| ± d0ϕ(|x(t)| + M), (3.2)

where ϕ is a primitive of ψ, namely ϕ′(s) = ψ(s), s ∈ (0,+∞) .

From (3.1) we deduce

dF±
dt

(t) = d|v|
dt

(t) ± d0ψ(|x(t)| + M)
d|x |
dt

(t)

� −d0ψ(|x(t)| + M)|v(t)| ± d0ψ(|x(t)| + M)
d|x |
dt

(t) + ce−bt

= d0ψ(|x(t)| + M)

(
±d|x |

dt
(t) − |v(t)|

)
+ ce−bt � ce−bt , t ≥ t0 ,

(3.3)
where we have used ∣∣∣∣

d|x(t)|
dt

∣∣∣∣ ≤ |v(t)| . (3.4)

Now, integrating (3.3) on the time interval [t0, t], we obtain
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F±(t) − F±(t0) � c
∫ t

t0

e−bs ds = c

b
(e−bt0 − e−bt ) � c

b
,

which implies

|v(t)| − |v(t0)| � ±d0 (ϕ (|x(t0)| + M) − ϕ (|x(t)| + M)) + c

b
,

namely

|v(t)| − |v(t0)| � −d0

∣∣∣∣
∫ |x(t)|+M

|x(t0)|+M
ψ(s) ds

∣∣∣∣ + c

b
. (3.5)

In particular, from (3.5), we deduce

|v(t0)| + c

b
� d0

∣∣∣∣
∫ |x(t)|+M

|x(t0)|+M
ψ(s) ds

∣∣∣∣ . (3.6)

Then, assumption (1.8) ensures the existence of a constant xM > 0 such that

|v(t0)| + c

b
= d0

∫ xM

|x(t0)|+M
ψ(s) ds,

which, together with (3.6), implies

|x(t)| � C, ∀ t ≥ 0 ,

being ψ is a non-negative function. �

Theorem 3.2 Let (xi , vi ), i = 1, . . . , N , be a solution of the Cucker–Smale system
under hierarchical leadership with distributed delay (1.5) with initial conditions
(1.6). Assume that the potential function ψ satisfies (1.8). Then,

|vi (t) − v j (t)| = O(e−Bt ), ∀ i, j = 1, . . . , N , (3.7)

for a suitable constant B > 0 depending only on the initial configuration and the
parameters of the system.

Proof We will use induction on the number of agents in the flock. Consider first
a flock of 2 agents [1, 2]. Recall that, by definition of an HL-flock, L(2) �= ∅, i.e.
ψ21 > 0. Moreover, ψ12 = 0. Then,

dv1

dt
= 0 ⇒ v1(t) = v1(0), ∀ t > 0, (3.8)

and
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dv2

dt
(t) =

∫ t

t−τ

μ(t − s)ψ21(s)[v1(s) − v2(t)]ds (3.9)

= (v1(0) − v2(t))
∫ t

t−τ

μ(t − s)ψ21(s)ds, t ≥ τ .

We now denote

y2(t) = x2(t) − x1(t) and w2(t) = v2(t) − v1(t). (3.10)

Then, from (3.9), we obtain

dw2

dt
(t) = dv2

dt
(t) − dv1

dt
(t) =

∫ t

t−τ

μ(t − s)ψ21(s)[v1(s) − v2(t)]ds, t ≥ τ ,

(3.11)
and thus, using also (3.8),

1

2

d|w2|2
dt

(t) = −|w2(t)|2
∫ t

t−τ

μ(t − s)ψ21(s)ds ,

which implies

d|w2|
dt

(t) � −|w2(t)|
∫ t

t−τ

μ(t − s)ψ (|x2(s) − x1(s)|) ds , t ≥ τ . (3.12)

Therefore, from (3.12), we deduce that |w2(t)| is decreasing in time for t ≥ τ . Now,
observe that for t > τ and s ∈ [t − τ , t], we have

x1(s) − x2(s) = x1(t) − x2(t) +
∫ s

t
(x1 − x2)

′(σ) dσ

= x1(t) − x2(t) +
∫ t

s
w2(σ) dσ,

which gives, recalling Proposition 2.2,

|x1(s) − x2(s)| � |x1(t) − x2(t)| + 2D0τ = |y2(t)| + 2D0τ , t ≥ τ , (3.13)

with y2(t), w2(t) defined in (3.10) and D0 the bound on the initial velocities defined
in (2.3).

Using this inequality in (3.12) and recalling that the potential function ψ is not
increasing, we obtain

d|w2|
dt

(t) � −|w2(t)|
∫ t

t−τ

μ(t − s)ψ(|y2(t)| + 2τ D0)ds (3.14)

= −μ0|w2(t)|ψ(|y2(t)| + 2τ D0) , t ≥ τ ,
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where μ0 is the positive constant in (1.7). Then, the pair state-velocity (y2, w2)

satisfies the inequality (3.1) with t0 = τ , d = μ0, M = 2τ D0 and c = 0 . Therefore,
we can apply Lemma 3.1 obtaining |y2(t)| ≤ C2 for some positive constant C2. So,
for a suitable constant y2M ,

|y2(t)| + 2τ D0 � y2M , t ≥ τ . (3.15)

Now, from (3.14) and (3.15) we deduce

d|w2(t)|
dt

� −μ0ψ(y2M)|w2(t)|, t ≥ τ ,

and the Gronwall inequality implies

|w2(t)| � e−μ0ψ(y2M )(t−τ )|w2(τ )|, t ≥ τ . (3.16)

In order to complete our inductive step we will need also estimates on the distances
|vi (s) − v j (t)| and |vi (s) − v j (s)| for j = 1, 2 and s ∈ [t − τ , t].

Now, since v1(t) is constant for t ≥ τ , we easily deduce

|v1(s) − v2(t)| = |v1(t) − v2(t)| = O(e−ψ(y2M )t ). (3.17)

Observe also that, for s ∈ [t − τ , t],

|v2(s) − v2(t)| =
∣∣∣∣
∫ t

s
v2

′(σ) dσ

∣∣∣∣ =
∣∣∣∣
∫ t

s

∫ σ

σ−τ
μ(σ − r)ψ21(r)[v1(r) − v2(σ)] dr dσ

∣∣∣∣

� c
∫ t

s
e−ψ(y2M )σ dσ � cτe−ψ(y2M )(t−τ ) = cτeψ(y2M )τ e−ψ(y2M )t = O(e−ψ(y2M )t ).

(3.18)
Since

|v2(s) − v1(t)| � |v2(s) − v2(t)| + |v2(t) − v1(t)| , (3.19)

from previous estimates we thus obtain

|v2(s) − v1(t)| = O(e−ψ(y2M )t ) , t > τ , s ∈ [t − τ , t] . (3.20)

Moreover, of course, |v1(s) − v1(t)| = O(e−ψ(y2M )t ), being v1(t) constant for t ≥ τ .

We assume now, by induction, that analogous exponential estimates are satisfied
for a flock of l − 1 agents [1, . . . , l − 1] with l > 2, i.e. there exists some constant
b > 0 such that, ∀ i, j ∈ {1, . . . , l − 1},

|vi (t) − v j (t)| = O(e−bt ), (3.21)

|vi (s) − v j (t)| = O(e−bt ), t > τ , s ∈ [t − τ , t]. (3.22)
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Then, we want to prove that such estimates hold true also for a flock with l > 2
agents [1, . . . , l]. This will complete the proof. For this aim, define the average
position and velocity of the leaders of agent l,

x̂l = 1

dl

∑

i∈L(l)

xi (t) and v̂l = 1

dl

∑

i∈L(l)

vi (t), dl = #L(l). (3.23)

Also, define
yl(t) = xl(t) − x̂l(t) and wl(t) = vl(t) − v̂l(t). (3.24)

Then,

dwl

dt
(t) = dvl

dt
(t) − d v̂l

dt
(t) =

∑

j∈L(l)

∫ t

t−τ
μ(t − s)ψl j (s)[v j (s) − vl (t)]ds − d v̂l

dt
(t) .

(3.25)

By adding and subtracting
∑

j∈L(l)

∫ t
t−τ μ(t − s)ψl j (s)ds v̂l(t) in (3.25) we get

dwl

dt
= −wl (t)

∑

j∈L(l)

∫ t

t−τ
μ(t − s)ψl j (s)ds +

∑

j∈L(l)

∫ t

t−τ
μ(t − s)ψl j (s)[v j (s) − v̂l (t)]ds − d v̂l

dt
.

(3.26)
Using the induction hypothesis (3.22), since L(i),L(l) ⊆ [1, . . . , l − 1],

d v̂l

dt
= 1

dl

∑

i∈L(l)

dvi

dt
= 1

dl

∑

i∈L(l)

∑

j∈L(i)

∫ t

t−τ
μ(t − s)ψi j (s)[v j (s) − vi (t)] ds = O(e−bt ).

(3.27)
Using again the induction hypothesis (3.22),

∑

j∈L(l)

∫ t

t−τ
μ(t − s)ψl j (s)[v j (s) − v̂l (t)] ds

= 1

dl

∑

j∈L(l)

∫ t

t−τ
μ(t − s)ψl j (s)

( ∑

i∈L(l)

[v j (s) − vi (t)]
)

ds = O(e−bt ).

(3.28)
So, identity (3.26) can be rewritten as

dwl

dt
(t) = −wl(t)

∑

j∈L(l)

∫ t

t−τ

μ(t − s)ψl j (s) ds + O(e−bt ), t ≥ τ . (3.29)

with
ψl j (s) = ψ(|xl(s) − x j (s)|).

Observe that for every j ∈ L(l) it results
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|xl(s) − x j (s)| ≤ |xl(s) − x̂l(s)| + |x j (s) − x̂l(s)|
� |yl(s)| + Ml,

(3.30)

for some positive Ml , due to the induction’s assumption. Then, (3.29) gives

d|wl |
dt

(t) � −dl |wl(t)|
∫ t

t−τ

μ(t − s)ψ (|yl(s)| + Ml) ds + ce−bt , t ≥ τ .

(3.31)
Now, note that from Proposition 2.2, |vi (t)| � D0 for all i and for all t > 0, which
implies

|wl(t)| � 1

dl

∑

j∈L(l)

|v j (t) − vl(t)| � 1

dl

∑

j∈L(l)

2D0 = 2D0.

Then,
|yl(s)| � |yl(t)| + 2τ D0, t ≥ τ , s ∈ [t − τ , t] , (3.32)

which used in (3.31), recalling that ψ in not increasing, yields

d|wl |
dt

(t) � −dlμ0ψ (|yl(t)| + 2τ D0 + Ml) |wl(t)| + ce−bt . (3.33)

We can then apply Lemma 3.1 to the pair state-velocity (yl , wl) to conclude that
|yl(t)| ≤ Cl for some positive constant Cl . So, for a suitable constant yl

M ,

|yl(t)| + 2τ D0 + Ml ≤ yl
M , t ≥ τ .

Using the above estimate in (3.32) we then obtain

d|wl |
dt

� −dlμ0ψ(yl
M)|wl(t)| + ce−bt ,

and therefore, from the Gronwall’s inequality we deduce,

|wl(t)| ≤ Ce−Bl t , (3.34)

for suitable positive constants C, Bl .

Thus, from (4.5) and the induction hypothesis (3.21), for every j ∈ L(l),we have

|vl(t) − v j (t)| ≤ |vl(t) − v̂l(t)| + |v̂l(t) − v j (t)| = O(e−Bt ). (3.35)

Now, to complete the induction argument, we only have to prove that, for all t > 0
and i, j ∈ {1, . . . , l},

|vi (s) − v j (t)| = O(e−Bt ), (3.36)



244 C. Pignotti and I. Reche Vallejo

for a suitable positive constant B.

If i, j ∈ {1, . . . , l − 1}, then (4.14) is true by (3.22). Let us consider the case
i ∈ {1, . . . , l − 1} and j = l. Then,

|vi (s) − vl(t)| � |vi (s) − vi (t)| + |vi (t) − vl(t)| = O(e−Bt ),

by (3.22) and (4.13), for a suitable B.
Consider now i = j = l. Then, using previous estimates we see that

|vl (s) − vl (t)| =
∣∣∣∣
∫ t

s
vl

′(σ) dσ

∣∣∣∣ =
∣∣∣∣∣∣

∫ t

s

∑

k∈L(l)

∫ σ

σ−τ
μ(σ − r)ψl j (r) (vk(r) − vl (σ)) dr dσ

∣∣∣∣∣∣

� c̄
∫ t

s
e−Bσ dσ ≤ c̄τe−B(t−τ ) = c̄τeBτ e−Bt = O(e−Bt ).

(3.37)
Also for the last case, where j ∈ {1, . . . , l − 1} and i = l, using (4.15) we have

|vl(s) − v j (t)| � |vl(s) − vl(t)| + |vl(t) − v j (t)| = O(e−Bt ),

by the previous case and (4.13). Then, we have proved that (4.14) is satisfied for all
i, j ∈ {1, . . . , l} and this concludes the proof of the theorem. �

4 The Case of Free-Will Leader

It may happen that the leader of the flock, instead of moving at a constant velocity,
takes off or changes its rate in order to avoid a danger, for instance due to the presence
of predator species. Thus, it is important to consider this situation in themathematical
model.

The Cucker–Smale model with a free-will leader is, then,

dx1
dt

(t) = v1(t),

dv1

dt
(t) = f (t),

(4.1)

where f : [0,+∞) → IRd is a continuous integrable function, that is,

‖ f ‖1 =
∫ +∞

0
| f (t)| dt < +∞ , (4.2)

for themotion of the free-will leader, and theCucker–Smalemodel under hierarchical
leadership and distributed delay, as in the previous sections, for the other agents,
namely
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dxi

dt
(t) = vi (t),

dvi

dt
(t) =

∑

j∈L(i)

∫ t

t−τ

μ(t − s)ψi j (s)[v j (s) − vi (t)] ds,
(4.3)

for all i ∈ {2, . . . , N }. The initial data are assigned, as usual, on the time interval
[−τ , 0], i.e.

xi (s) = x0
i (s),

vi (s) = v0
i (s),

(4.4)

for some continuous functions x0
i and v0

i , for i = 1, . . . , N .

The flocking result below extends the one proved by Shen [36] for the undelayed
case. The case with pointwise delay has been studied in [34]. Here, we consider a
more general acceleration function with respect to [34, 36], for the free-will leader.
Indeed we assume

| f (t)| = o((1 + t)1−N ) and t N−2| f (t)| ∈ L1(0,+∞) (4.5)

instead of
| f (t)| = O((1 + t)−μ), μ > N − 1 . (4.6)

Then, for instance, f can be in the form

f (t) = C

(1 + t)μ
, μ > N − 1,

as in [34, 36], but also

f (t) = C

(1 + t)N−1 ln2(2 + t)
.

Note that, from (4.5) it results

t k | f (t)| = o((1 + t)1−N+k), ∀ k = 1, . . . , N − 1 . (4.7)

In order to prove our flocking result, we will need the following lemma, which is a
generalization of Lemma 3.1 above.

Lemma 4.1 Let (x, v) be a trajectory in the phase-space, namely dx
dt (t) = v(t) for

t ≥ 0 . Assume that

d|v|
dt

(t) ≤ −d0ψ(|x(t)| + M)|v(t)| + g(t) ∀ t ≥ t0, (4.8)

for some non-negative constants M, t0, a constant d0 > 0 and a continuous and
integrable function g : [t0,+∞) → (0,+∞), where ψ : [0,+∞) → (0,+∞) is a
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continuous function satisfying (1.8). Then, there exists a suitable positive constant
C such that

|x(t)| ≤ C, t ≥ 0 .

Proof Let us consider the functionals F± introduced in (3.2) with d0, M,ψ as in the
statement. From (4.8) we deduce

dF±
dt

(t) = d|v|
dt

(t) ± d0ψ(|x(t)| + M)
d|x |
dt

(t)

� −d0ψ(|x(t)| + M)|v(t)| ± d0ψ(|x(t)| + M)
d|x |
dt

(t) + g(t)

= d0ψ(|x(t)| + M)

(
±d|x |

dt
(t) − |v(t)|

)
+ g(t) � g(t) , t ≥ t0 ,

(4.9)

where we have used inequality (3.4).
Now, we integrate (4.9) on the time interval [t0, t], obtaining

F±(t) − F±(t0) � ‖g‖L1(t0,+∞),

which gives

|v(t)| � ±d0 (ϕ (|x(t0)| + M) − ϕ (|x(t)| + M)) + |v(t0)| + ‖g‖L1(t0,+∞),

namely

|v(t)| � −d0

∣∣∣∣
∫ |x(t)|+M

|x(t0)|+M
ψ(s) ds

∣∣∣∣ + |v(t0)| + ‖g‖L1(t0,+∞) . (4.10)

Therefore, from (4.10), we have

|v(t0)| + ‖g‖L1(t0,+∞) � d0

∣∣∣∣
∫ |x(t)|+M

|x(t0)|+M
ψ(s) ds

∣∣∣∣ . (4.11)

The assumption (1.8) ensures then the existence of a constant xM > 0 such that

|v(t0)| + ‖g‖L1(t0,+∞) = d0

∫ xM

|x(t0)|+M
ψ(s) ds,

which, together with (4.11), implies |x(t)| � C, ∀ t ≥ 0 . �
Theorem 4.2 Let (xi , vi ), i = 1, . . . , N , be a solution of the Cucker–Smale system
under hierarchical leadership with delay (4.1)–(4.3) with initial conditions (4.4).
Assume that (1.8) is satisfied and that the acceleration of the free-will leader satisfies
(4.5). Then, it results

|vi (t) − v j (t)| → 0, for t → +∞ , ∀ i, j = 1, . . . , N . (4.12)
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Proof As in the previous convergence to consensus result, we argue by induction.
First, we look at the first agent, i.e. the free-will leader. Equation (4.1) gives

v1(t) = v1(0) +
∫ t

0
f (s) ds ,

and so, from (4.2),

|v1(t)| ≤ |v1(0)| + ‖ f ‖1 = C1 , ∀ t ≥ 0 . (4.13)

Now, let us consider the 2-flock. As before, let us denote

w2(t) = v2(t) − v1(t) and y2(t) = x2(t) − x1(t), t ≥ 0 .

From (4.1) and (4.3)

dw2

dt
(t) = dv2

dt
(t) − dv1

dt
(t) =

∫ t

t−τ
μ(t − s)ψ21(s)[v1(s) − v2(t)] ds − f (t)

= (v1(t) − v2(t))
∫ t

t−τ
μ(t − s)ψ21(s) ds −

∫ t

t−τ
μ(t − s)ψ21(s)[v1(t) − v1(s)] ds − f (t)

= −w2(t)
∫ t

t−τ
μ(t − s)ψ21(s) ds −

∫ t

t−τ
μ(t − s)ψ21(s)

∫ t

s
f (σ) dσ ds − f (t) , t ≥ τ .

(4.14)
Now, from (4.5), it results

∣∣∣∣
∫ t

t−τ

μ(t − s)ψ21(s)
∫ t

s
f (σ) dσ ds

∣∣∣∣ + | f (t)|

≤ τμ0 max
s∈[0,+∞)

ψ(s)
∫ t

t−τ

| f (s)| ds + | f (t)| = O(| f |) .

(4.15)

Then, from (4.14) and (4.15) we obtain

d|w2|
dt

(t) ≤ −|w2(t)|
∫ t

t−τ

μ(t − s)ψ21(s) ds + f̃ (t) , t ≥ τ . (4.16)

where

f̃ (t) := τμ0 max
s∈[0,+∞)

ψ(s)
∫ t

t−τ

| f (s)| ds + | f (t)| = O(| f |) . (4.17)

Therefore,

|w2(t)| ≤ |w2(τ )| +
∫ +∞

τ

f̃ (t) dt ≤ D2, ∀ t ≥ τ , (4.18)

for some constant D2 > 0. Since
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y2(s) = y2(t) +
∫ s

t
w2(σ) dσ ,

from (4.18) we have

|y2(s)| ≤ |y2(t)| + τ D2 , ∀ s ∈ [t − τ , t] . (4.19)

From (4.16) and (4.19), we then deduce

d|w2|
dt

(t) ≤ −μ0ψ(|y2(t)| + τ D2)|w2(t)| + f̃ (t) , t ≥ τ . (4.20)

Then, we can apply Lemma 4.1 to the pair (y2, w2) with d = μ0, M = τ D2 and
g = f̃ , obtaining that

|y2(t)| + τ D2 � y2R, t ≥ 0 , (4.21)

for a suitable positive constant y2R . So, from (4.20) and (4.21) we have

d|w2|
dt

(t) � −ψ(y2R)|w2(t)| + f̃ (t), t ≥ τ ,

and thus, for every T > τ , applying Gronwall’s lemma we deduce

|w2(T )| ≤ e−ψ(y2R) T
2 |w2(T/2)| +

∫ T

T
2

e−ψ(y2R)(T −t) f̃ (t) dt

≤ e−ψ(x2
R) T

2 D2 +
∫ T

T
2

f̃ (t) dt ≤ e−ψ(x2
R) T

2 D2 + f̃2(T ) ,

(4.22)

where, recalling (4.5), f̃2, is a suitable function satisfying

f̃2(t) = O(t | f |) = o((1 + t)2−N ) . (4.23)

Thus,
|v2(t) − v1(t)| = o((1 + t)2−N ) . (4.24)

Note also that

|v1(t − τ ) − v1(t)| ≤
∫ t

t−τ

| f (t)| dt = O(| f |) , (4.25)

and then

|v2(t − τ ) − v2(t)| ≤ |v2(t − τ ) − v1(t − τ )|
+|v1(t − τ ) − v1(t)| + |v1(t) − v2(t)| = o((1 + t)2−N ) .

(4.26)

Therefore, (4.24)-(4.26) imply
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|vi (t − τ ) − v j (t)| = O( f̃2) = o((1 + t)2−N ), for i, j ∈ {1, 2} . (4.27)

Now, as induction hypothesis, assume that for a flock of l − 1 agents [1, . . . , l − 1]
with 2 < l ≤ N , we have

|vi (t) − v j (t)| = O(t l−2| f |) = o((1 + t)l−1−N ), (4.28)

|vi (t − τ ) − v j (t)| = O(t l−2| f |) = o((1 + t)l−1−N ) , (4.29)

for all i, j ∈ {1, . . . , l − 1}.
Then, we want to prove the same kind of estimates for a flock with l agents. This

will complete our theorem.
As before, we will use the average position and velocity of the leaders of agent

l, introduced in (3.23) and let yl , wl be defined as in (3.24). Then, as before we can
write

dwl

dt
= −wl (t)

∑

j∈L(l)

∫ t

t−τ
μ(t − s)ψl j (s)ds +

∑

j∈L(l)

∫ t

t−τ
μ(t − s)ψl j (s)[v j (s) − v̂l (t)]ds − d v̂l

dt
.

(4.30)

Using the induction hypothesis (4.29), since L(i),L(l) ⊆ [1, . . . , l − 1],
d v̂l

dt
= 1

dl

∑

i∈L(l)

dvi

dt
= χ1∈L(l)

1

dl
f (t) + 1

dl

∑

i∈L(l)\{1}

dvi

dt
= O(tl−2| f |) = o((1 + t)l−1−N ).

(4.31)
From the induction hypotheses (4.29) we deduce also

∑

j∈L(l)

∫ t

t−τ
μ(t − s)ψl j (s)[v j (s) − v̂l (t)] ds

= 1

dl

∑

j∈L(l)

∫ t

t−τ
μ(t − s)ψl j (s)

( ∑

i∈L(l)

[v j (s) − vi (t)]
)

ds = O(t l−2| f |) = o((1 + t)l−1−N ) .

(4.32)

Then, identity (4.30) can be rewritten as

dwl

dt
(t) = −wl(t)

∑

j∈L(l)

∫ t

t−τ

μ(t − s)ψl j (s) ds + O(t l−2| f |), t ≥ τ . (4.33)

As before one can now observe that for every j ∈ L(l) it results

|xl(s) − x j (s)| ≤ |xl(s) − x̂l(s)| + |x j (s) − x̂l(s)|
� |yl(s)| + Rl,

(4.34)

for some positive Rl , due to the induction’s assumption. Thus, (4.33) implies
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d|wl |
dt

(t) � −dl |wl(t)|
∫ t

t−τ

μ(t − s)ψ (|yl(s)| + Rl) ds + O(t l−2| f |), t ≥ τ .

(4.35)
Note that (4.35) implies

d|wl |
dt

� O(t l−2| f |) . (4.36)

So, recalling the assumptions (4.5) on the acceleration f of the free-will leader, we
deduce

|wl(t)| ≤ |wl(τ )| +
∫ +∞

τ

O(t l−2| f |) dt ≤ Cl . (4.37)

Then,

|xl(t − τ )| � |xl(t)| +
∫ t

t−τ

|vl(s)| ds ≤ |xl(t)| + Clτ , t ≥ τ , (4.38)

which, used in (4.35), gives

d|wl |
dt

(t) � −dlμ0ψ (|yl(t)| + 2τCl + Rl) |wl(t)| + O(t l−2| f |). (4.39)

We can then apply Lemma 4.1 to the pair state-velocity (yl , wl) and conclude that
|yl(t)| ≤ Cl for some positive constant Cl . So, for a suitable constant yl

M ,

|yl(t)| + 2τCl + Rl ≤ yl
M , t ≥ τ .

Using the above estimate in (4.39) we then obtain

d|wl |
dt

� −dlμ0ψ(yl
M)|wl(t)| + O(t l−2| f |) .

Thus, we can apply the Gronwall’s lemma analogously to the 2−flock case obtaining

|vl(t)| = O(t l−1| f |) = o(t l−N ) . (4.40)

Then, from (4.40) and the induction hypothesis (4.28), for every j ∈ L(l), we have

|vl(t) − v j (t)| ≤ |vl(t) − v̂l(t)| + |v̂l(t) − v j (t)| = O(t l−1| f |) = o(t l−N ).

(4.41)
Now, it remains to prove that, for all i, j ∈ {1, . . . , l},

|vi (t − τ ) − v j (t)| = O(t l−1| f |) = o(| f |l−N ). (4.42)

If i, j ∈ {1, . . . , l − 1}, then (4.42) is true by (4.29). Consider the case i ∈
{1, . . . , l − 1} and j = l. Then,
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|vi (t − τ ) − vl (t)| � |vi (t − τ ) − vi (t)| + |vi (t) − vl (t)| = O(t l−1| f |) = o(| f |l−N ),

by (4.29) and (4.41).
For the case i = j = l, using the previous estimates, we obtain

|vl (s) − vl (t)| =
∣∣∣∣
∫ t

s
vl

′(σ) dσ

∣∣∣∣ =
∣∣∣∣∣∣

∫ t

s

∑

k∈L(l)

∫ σ

σ−τ
μ(σ − r)ψlk(r) (vk(r) − vl (σ)) dr dσ

∣∣∣∣∣∣

� C
∫ t

s
O(σl−1| f (σ)|) dσ = O(t l−1| f |) , s ∈ [t − τ , t].

(4.43)
Also for the last case, where j ∈ {1, . . . , l − 1} and i = l, using (4.41) and (4.43)
we obtain

|vl (t − τ ) − v j (t)| � |vl (t − τ ) − vl (t)| + |vl (t) − v j (t)| = O(t l−1| f |) = o(| f |l−N ) .

Therefore, (4.42) is satisfied for all i, j ∈ {1, . . . , l} and so the theorem is
proved. �

Remark 4.3 Note that our generalization concerning the acceleration function f of
the free-will leader is suitable also for the problemwithout delay considered by Shen
[36] and for the problemwith pointwise delay studied by the authors [34]. Therefore,
our flocking estimates (4.13) could be obtained, under the same assumptions on f, for
the problemwith free-will leader studied in [36] and themore general one considered
in [34].
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Global Non-negative Approximate
Controllability of Parabolic Equations
with Singular Potentials

Judith Vancostenoble

Abstract In thiswork,we consider the linear 1 − d heat equationwith some singular
potential (typically the so-called inverse square potential). We investigate the global
approximate controllability via amultiplicative (or bilinear) control. Provided that the
singular potential is not super-critical, we prove that any non-zero and non-negative
initial state in L2 can be steered into any neighborhood of any non-negative target
in L2 using some static bilinear control in L∞. Besides the corresponding solution
remains non-negative at all times.

Keywords Bilinear control · Multiplicative control · Parabolic equation ·
Singular potential

1 Introduction and Main Results

1.1 Introduction

In this paper, we analyze controllability properties for parabolic equations with sin-
gular potential. Typically, we consider the following linear 1 − D heat equation with
an inverse square potential (that arises for example in the context of combustion
theory or quantum mechanics):

⎧
⎪⎪⎨

⎪⎪⎩

ut − uxx − μ

x2
u = 0 x ∈ (0, 1), t > 0,

u(0, t) = 0 = u(1, t) t > 0,

u(x, 0) = u0(x) x ∈ (0, 1),

(1.1)
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where u0 ∈ L2(0, 1) and μ is a real parameter. We concentrate on the above typical
problem to simplify the presentation. However notice that this work covers more
general cases that are mentioned later in Sect. 1.4.

Since the pioneering works by Baras and Goldstein [2, 3], we know that inverse
square potentials generate interesting phenomena. In particular, existence/blow-up
of positive solutions is determined by the value of μ with respect to the constant
μ� = 1/4 appearing in the Hardy inequality [18, 25]:

∀z ∈ H 1
0 (0, 1),

1

4

∫ 1

0

z2

x2
dx ≤

∫ 1

0
z2x dx . (1.2)

When μ < 1/4, the operator z �→ −zxx − μx−2z generates a coercive quadratic
form in H 1

0 (0, 1). This allows showing the well-posedness in the classical vari-
ational setting of the linear heat equation with smooth coefficients, that is: for
any u0 ∈ L2(0, 1), there exists a unique solution u ∈ C([0,+∞[; L2(0, 1)) ∩ L2

(0,+∞; H 1
0 (0, 1)).

For the critical value μ = 1/4, the space H 1
0 (0, 1) has to be slightly enlarged as

shown in [30] but a similar result of well-posedness occurs. (See Sect. 2 for details).
Finally, when μ > 1/4, the problem is ill-posed (due to possible instantaneous

blow-up) as proved in [2].
Recently, the null controllability properties of (1.1) began to be studied. For any

μ ≤ 1/4, it has been proved in [29] that such equations can be controlled (in any
time T > 0) by a locally distributed control: ∀μ ≤ 1/4, ∀u0 ∈ L2(0, 1), ∀T > 0,
∀0 ≤ a < b ≤ 1, there exists h ∈ L2((0, 1) × (0, T )) such that the solution of

⎧
⎪⎪⎨

⎪⎪⎩

ut − uxx − μ

x2
u = h(x, t)χ(a,b)(x) x ∈ (0, 1), t ∈ (0, T ),

u(0, t) = 0 = u(1, t) t ∈ (0, T ),

u(x, 0) = u0(x) x ∈ (0, 1),

(1.3)

satisfies u(·, T ) ≡ 0. On the contrary, when μ > μ� = 1/4, the property fails as
shown in [12].

After these first results, several other works followed extending them in various
situations. See for instance [4, 10, 24, 27, 28]. In (1.3), hχ[a,b) represents a locally
distributed control that enters the model as an additive term describing the effect of
some external force or source on the process at hand. However this is not always
realistic to act on the system in such a way.

In the presentwork,we are interested in studying the effect of other kindof controls
on problem (1.1). In the spirit of the works by Khapalov [19–22], we aim to consider
a multiplicative (also called bilinear) control. This means that the control enters
now as a multiplicative coefficient in the equation (see Sect. 1.2). The advantages
of such controls mainly rely on the fact that, instead of being some external action
on the system, they may represent changes of parameters of the considered process.
We refer to [22, Chap. 1] for a list of situations for which additive controls do not
seem realistic whereas multiplicative ones provide a precious alternative. Moreover,
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multiplicative controls also allow to steer non-negative initial states to non-negative
targets preserving the non-negativity of the solutions during the process. Even though
this last property is naturally expected in many concrete situations, this was not
guaranteed when dealing with additive controls!

Let us finally mention several other contributions to multiplicative controls of
parabolic pde’s: we refer for instance the reader to [5–8, 14, 26] and the references
therein.

1.2 Description of the Multiplicative Control Problem

Let T > 0 and let us consider the following Dirichlet boundary problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut − uxx − μ

x2
u = α(x, t)u (x, t) ∈ QT := (0, 1) × (0, T ),

u(0, t) = 0 = u(1, t) t ∈ (0, T ),

u(x, 0) = u0(x) x ∈ (0, 1).

(1.4)

Here α ∈ L∞(QT ) is a control function ofmultiplicative/bilinear form. Our goal is to
study the global approximate controllability properties of system (1.4). So following
Khapalov (see [22, Chap. 2, Definition 2.1]), we use the following notion:

Definition 1.1 System (1.4) is non-negatively globally approximately controllable
in L2(0, 1) if, for any ε > 0 and for every non-negative u0, ud ∈ L2(0, 1) with u0 
≡
0, there exist some T = T (ε, u0, ud) and some bilinear control α(x, t) ∈ L∞(QT )

such that the corresponding solution of (1.4) satisfies

‖u(·, T ) − ud‖L2(0,1) ≤ ε.

Besides, we say that the bilinear control is static if α = α(x) ∈ L∞(0, 1).

1.3 Main Result

Now we are ready to state our main result concerning the case of the inverse square
potential (proved later in Sect. 3):

Theorem 1.1 Assume that μ ≤ 1/4. Then system (1.4) is non-negatively globally
approximately controllable in L2(0, 1) by means of static controls α = α(x) in
L∞(0, 1). Moreover, the corresponding solution to (1.4) remains non-negative at
all times.



258 J. Vancostenoble

1.4 Other Results

1.4.1 Larger Class of Data

With no change in the proof of Theorem 1.1, one can actually state a result that
concerns a larger class of data (see the proof in Sect. 4.1):

Theorem 1.2 For any u0, ud ∈ L2(0, 1) such that

〈u0, ud〉L2(0,1) > 0 and ud ≥ 0,

for avery ε > 0, there exist some T = T (ε, u0, ud) and some static bilinear control
α = α(x) in L∞(0, 1) such that the corresponding solution of (1.4) satisfies

‖u(·, T ) − ud‖L2(0,1) ≤ ε.

1.4.2 General Form of Singular Potential

We considered previously the typical case of the inverse square potential V (x) =
μ/x2 with μ ≤ μ� = 1/4. Now we turn to more general singular potentials. Let V
be a locally integrable function defined on (0, 1) and assume that

0 ≤ V (x) ≤ μ

x2
with some μ ≤ μ� = 1

4
. (1.5)

For T > 0, we now consider the following Dirichlet boundary problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut − uxx − V (x)u = α(x, t)u (x, t) ∈ QT := (0, 1) × (0, T ),

u(0, t) = 0 = u(1, t) t ∈ (0, T ),

u(x, 0) = u0(x) x ∈ (0, 1).

(1.6)

And we prove (see Sect. 4.1):

Theorem 1.3 Assume that V (x) satisfies (1.5). Then system (1.6) is non-negatively
globally approximately controllable in L2(0, 1) bymeans of static controls α = α(x)
in L∞(0, 1). Moreover, the corresponding solution to (1.6) remains non-negative at
all times.
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1.5 Perpectives

1.5.1 Degenerate/Singular Heat Equation

This present work complements [5, 6, 14] where the case of the heat equation with
some degenerate diffusion coefficient

ut − (xαux )x = 0, x ∈ (0, 1), (1.7)

was investigated. Here α ≥ 0 represents the order of degeneracy of the diffusion
coefficient that may vanish at x = 0. Associated to suitable boundary conditions,
this problem is well-posed. In the first studies of its controllability properties, it has
been proved that (1.7) is controllable via additive control if an only if α < 2, see [9].
In [5, 6, 14], the authors prove that, still assuming α < 2, it can also be controlled
via multiplicative controls.

Let us now consider the following degenerate/singular equation:

ut − (xαux )x − μ

xβ
u = 0, x ∈ (0, 1). (1.8)

It has been proved in [27] that, provided that the parameters α,μ, β satisfies some
precise (and optimal) conditions, problem (1.8) is controllable via additive controls.
(See also [16, 17] to various extensions).We expect that it should also be controllable
via multiplicative controls under the same conditions on the parameters.

1.5.2 Semilinear Heat Equation with Singular Potential

Another perspective is the study of the null controllability by multiplicative control
of semilinear perturbations of the present singular heat equation. In [20], Khapalov
studied the case of the classical heat equation with a semilinear termwhereas the case
of some degenerate heat equation has been studied by Floridia in [14]. We expect
that it would be possible to get similar results as in [14, 20] in the case of the heat
equation with a singular potential.

1.5.3 Nonnegative Controllability in Small Time

In the present work, following the strategy introduced by Khapalov in [20], we got
a result of controllability in large time. In the case of the classical heat equation,
Khapalov also developed a second approach (“a qualitative approach” presented in
[21]) that allows him to get a result of controllability in small time. An open and
interesting question would be to obtain a similar result of controllability in small
time in the case of the heat equation with a singular potential. For now, the question
remains open. The proofs in [21] are strongly based on specific properties of the



260 J. Vancostenoble

classical heat operator (regularity of the solutions) which are no more true when the
operator is perturbed by a singular potential. So some new argument has to be found
to treat the singular case.

2 Functional Setting and Preliminaries

2.1 Functional Framework

For any μ ≤ 1/4, we define

H 1,μ
0 (0, 1) := {z ∈ L2(0, 1) ∩ H 1

loc((0, 1]) | z(0) = 0 = z(1)

and
∫ 1

0

(
z2x − μ

x2
z2

)
dx < +∞}.

In the case of a sub-critical parameter μ < 1/4, thanks to Hardy inequality (1.2),
it is easy to see that H 1,μ

0 (0, 1) = H 1
0 (0, 1). On the contrary, for the critical value

μ = μ� = 1/4, the space is enlarged (see [30] for a precise description of this space):

H 1
0 (0, 1)⊂


=
H 1,μ=1/4

0 (0, 1) =: H �(0, 1). (2.1)

Next we prove

Lemma 2.1 Let μ ≤ 1/4 be given. Then H 1,μ
0 (0, 1) ↪→ L2(0, 1) with compact

embedding.

Proof For any μ < 1/4, H 1,μ
0 (0, 1) = H 1

0 (0, 1) so the result is well-known. Con-
sider now μ = 1/4. Deriving some improved Hardy-Poincaré inequalities (see [30,
Theorem 2.2]), Vázquez and Zuazua noticed that

H �(0, 1) ↪→ W 1,q
0 (0, 1) if 1 ≤ q < 2.

Then, for 0 ≤ s < 1, we use the fact that W 1,q
0 (0, 1) is compactly embedded in

Hs
0 (0, 1) for suitable q = q(s) close enough to 2. It follows that

H �(0, 1) ↪→ Hs
0 (0, 1) with compact embedding if 0 ≤ s < 1. (2.2)

Finally, we conclude using the fact that Hs
0 (0, 1) is compactly embedded in L2(0, 1).

�

For any μ ≤ 1/4 and z ∈ H 1,μ
0 (0, 1), we consider the positive and negative parts

of z respectively defined by
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z+(x) := max (z(x), 0), x ∈ (0, 1),
z−(x) := −min (0, z(x)), x ∈ (0, 1),

so that z = z+ − z−. We will need the following result of regularity for z+ and z−:

Lemma 2.2 Let μ ≤ 1/4 and consider z ∈ H 1,μ
0 (0, 1). Then for any 1 ≤ q < 2, z+

and z− belong to W 1,q(0, 1). Moreover

(z+)x =
{
zx in {x ∈ (0, 1) | z(x) > 0},
0 in {x ∈ (0, 1) | z(x) ≤ 0}, (2.3)

and

(z−)x =
{
0 in {x ∈ (0, 1) | z(x) ≥ 0},
−zx in {x ∈ (0, 1) | z(x) < 0}. (2.4)

Proof Consider z ∈ H 1,μ
0 (0, 1)withμ ≤ 1/4. From (2.1) and (2.2), we deduce that,

for any 1 ≤ q < 2, z belongs to W 1,q(0, 1). Next, using Theorem 5.1 in appendix,
one deduce that z+, z− ∈ W 1,q(0, 1) and (2.3) and (2.4) hold true. �

2.2 The Unperturbed Operator

Let us describe here the unperturbed operator corresponding to the heat equation
with inverse square potential. We define it in the following way:

⎧
⎨

⎩

D(A0) :=
{
z ∈ H 2

loc((0, 1]) ∩ H 1,μ
0 (0, 1) | zxx + μ

x2
z ∈ L2(0, 1)

}
,

A0z := zxx + μ

x2
z.

(2.5)

In this context, A0 is a closed, self-adjoint, dissipative operator with dense domain
in L2(0, 1) (see [30]). Therefore A0 is the infinitesimal generator of a C0-semigroup
of contractions in L2(0, 1).

Moreover, from the spectral theory for self-adjoint operators with compact inverse
(see [30]), we have:

Lemma 2.3 Assume μ ≤ 1/4. There exists an nondecreasing sequence (λ̄k)k≥1,
λ̄k → +∞ as k → +∞, such that the eigenvalues of A0 are given by (−λ̄k)k≥1

and have finite multiplicity. Besides the corresponding eigenfunctions {ω̄k}k≥1 form
a complete orthonormal system in L2(0, 1).

Concerning, the eigenfunction associated to the first eigenvalue, we have the
following result:
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Lemma 2.4 Assume μ ≤ 1/4. The first eigenvalue −λ̄1 is simple and the corre-
sponding eigenfunction ω̄1 satisfies

ω̄1(x) > 0 for all x ∈ (0, 1) or ω̄1(x) < 0 for all x ∈ (0, 1).

Proof The expression of the eigenfunctions of A0 has been computed in [24] and we
recall it in Proposition 5.1 in appendix. So, using Proposition 5.1, the first normalized
eigenfunction is

ω̄1 = ± 1

|J ′
ν( jν,1)|

√
x Jν( jν,1x), x ∈ (0, 1),

and since jν,1 is the first positive zero of Jν , this function does not vanish in (0, 1).

�

2.3 Perturbed Operators

Next, for any α = α(x) ∈ L∞(0, 1) given, we consider now the perturbed operator

A := A0 + α I with domain D(A) := D(A0).

Then one can prove

Proposition 2.1 Let μ ≤ 1/4 and α ∈ L∞(0, 1) be given. Then the above operator
(A, D(A)) satisfies

• D(A) is compactly embedded and dense in L2(0, 1).
• A : D(A) → L2(0, 1) is the infinitesimal generator of a strongly continuous semi-
group et A of bounded linear operators on L2(0, 1).

Problem (1.4) can be rewritten in the Hilbert space L2(0, 1) in the following way

{
u′(t) = Au(t), t ∈ (0, T ),

u(0) = u0.
(2.6)

In the following, we will simply denote by ‖ · ‖ the norm in L2(0, 1) and by 〈·, ·〉
the scalar product in L2(0, 1). We recall (see [1]) that a weak solution of (2.6)
is a function u ∈ C0([0, T ]; L2(0, 1)) such that, for every v ∈ D(A�), the function
v �→ 〈u(t), v〉 is absolutely continuous on [0, T ] and

d

dt
〈u(t), v〉 = 〈u(t), A�v〉, a.e. t ∈ (0, T ).
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Theorem 2.1 Let μ ≤ 1/4 be given. For every α ∈ L∞(0, 1) and for every u0 ∈
L2(0, 1), there exists a unique weak solution

u ∈ B(0, T ) := C0([0, T ]; L2(0, 1)) ∩ L2(0, T ; H 1,μ
0 (0, 1))

to (1.4), which coincides with et Au0.

Besides, once again from the spectral theory for self-adjoint operators with com-
pact inverse, we have:

Lemma 2.5 Assume μ ≤ 1/4 and α ∈ L∞(0, 1). There exists an nondecreasing
sequence (λk)k≥1, λk → +∞ as k → +∞, such that the eigenvalues of A are given
by (−λk)k≥1 and have finite multiplicity. Besides the corresponding eigenfunctions
{ωk}k≥1 form a complete orthonormal system in L2(0, 1). Moreover, the first eigen-
value of A is given by:

λ1 = inf
z∈D(A)\{0}

−〈Az, z〉
‖z‖2 .

2.4 Maximum Principle

For perturbed operators of the form A = A0 + α I , we will also need the following
result:

Lemma 2.6 Letμ ≥ 1/4 be given. Let T > 0,α ∈ L∞(0, 1) and u0 ∈ L2(0, 1) such
that u0 ≥ 0 in (0, 1). Consider u ∈ B(0, T ) be the corresponding solution of (1.4).
Then u ≥ 0 in QT .

Proof Consider u ∈ B(0, T ) the solution of (1.4) and let us prove that u− ≡ 0 in
QT (which suffices to show that u ≥ 0 in QT ). Multiplying the equation by u− and
integrating on (0, 1), we get

∫ 1

0

(
utu

− − uxxu
− − μ

x2
uu− − αuu−

)
dx = 0.

Using u = u+ − u−, we compute each term:

∫ 1

0
utu

−dx=
∫ 1

0
(u+ − u−)t u

−dx= −
∫ 1

0
(u−)t u

−dx = −1

2

d

dt

∫ 1

0

(
u−)2 dx,

∫ 1

0
uxxu

−dx = −
∫ 1

0
ux (u

−)xdx = −
∫ 1

0
(u+ − u−)x (u

−)xdx =
∫ 1

0

(
(u−)x

)2
dx,

∫ 1

0

μ

x2
uu−dx =

∫ 1

0

μ

x2
(u+ − u−)u−dx = −

∫ 1

0

μ

x2

(
u−

)2
dx,
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∫ 1

0
αuu−dx =

∫ 1

0
α(u+ − u−)u−dx = −

∫ 1

0
α(u−)2dx .

We deduce

−1

2

d

dt

∫ 1

0

(
u−)2

dx −
∫ 1

0

(
(u−)x

)2
dx +

∫ 1

0

μ

x2
(u−)2dx +

∫ 1

0
α(u−)2dx = 0.

Hence

d

dt

∫ 1

0

(
u−)2

dx = 2
∫ 1

0
α(u−)2dx − 2

∫ 1

0

[(
(u−)x

)2 − μ

x2
(u−)2

]
dx .

From Hardy inequality (1.2) and the fact that μ ≤ 1/4, we have

∫ 1

0

μ

x2
(u−)2dx ≤ 1

4

∫ 1

0

(u−)2

x2
dx ≤

∫ 1

0

(
(u−)x

)2
dx,

so

−2
∫ 1

0

[(
(u−)x

)2 − μ

x2
(u−)2

]
dx ≤ 0.

Then we deduce

d

dt

∫ 1

0

(
u−)2

dx ≤ 2
∫ 1

0
α(u−)2dx ≤ 2‖α‖L∞(0,1)

∫ 1

0
(u−)2dx .

Using Gronwall’s inequality, it follows that

∀t ∈ (0, T ),

∫ 1

0
u−(x, t)2dx ≤

∫ 1

0
u−(x, 0)2dx e2‖α‖L∞(0,1)t .

But u0 ≥ 0 so u−(x, 0) = 0. This implies that u−(x, t) ≡ 0 for (x, t) ∈ QT . �

2.5 Specific Perturbed Operator

In this paragraph, we consider now some special perturbed operator that will be used
later in order to exhibit a suitable bilinear control. We prove:

Lemma 2.7 Let u ∈ D(A0) be given such that u > 0 on (0, 1) and such that

uxx

u
+ μ

x2
∈ L∞(0, 1).
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Next consider the operator

A := A0 + α� I with domain D(A) := D(A0),

and where α� is defined by

α�(x) := −uxx

u
− μ

x2
for x ∈ (0, 1).

Let (−λk)k≥1 and {ωk}k≥1 be the eigenvalues and eigenfunctions of A given in Lemma
2.5. Then the first eigenvalue −λ1 is simple and its value is λ1 = 0. Moreover, the
corresponding normalized eigenfunction ω1 satisfies

|ω1| = u

‖u‖ .

Besides, ω1 is the only element of {ωk}k≥1 that does not change sign on (0, 1).

Proof Let us compute

A
u

‖u‖ = uxx

‖u‖ + μ

x2
u

‖u‖ + α�(x)
u

‖u‖ = 0.

It follows that u/‖u‖ is an eigenfunction (with norm 1) of A associated to the eigen-
value λ = 0. Hence there exists k� ≥ 1 such that λk�

= 0 and

ωk�
= u

‖u‖ > 0 or ωk�
= − u

‖u‖ < 0.

By orthogonality of the family {ωk}k≥1, we have

∀l 
= k�,

∫ 1

0
ωk�

(x)ωl(x)dx = 0.

Consequently, ωk�
is the only element of {ωk}k≥1 that does not change sign in (0, 1).

Let us now prove that k� = 1, that is λ1 = 0. Since −λ = 0 is an eigenvalue and
since the sequence (−λk)k≥1 is decreasing, we have −λ1 ≥ 0 that is λ1 ≤ 0. So it is
sufficient to show that λ1 ≥ 0.

We use the characterization of the first eigenvalue of A:

λ1 = inf
z∈D(A)\{0}

−〈Az, z〉
‖z‖2 .

For any z ∈ D(A), we compute

〈Az, z〉 =
∫ 1

0

(
zxx + μ

x2
z + α�z

)
zdx =

∫ 1

0

(
zxx z + μ

x2
z2 − uxx

u
z2 − μ

x2
z2

)
dx
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=
∫ 1

0
zxx zdx −

∫ 1

0
uxx

(
z2

u

)

dx = −
∫ 1

0
z2xdx +

∫ 1

0
ux

(
z2

u

)

x

dx

= −
∫ 1

0
z2xdx + 2

∫ 1

0

(ux

u
z
)
zxdx −

∫ 1

0
u2x

z2

u2
dx

≤ −
∫ 1

0
z2xdx +

∫ 1

0

(ux

u
z
)2

dx +
∫ 1

0
z2xdx −

∫ 1

0
u2x

z2

u2
dx = 0.

It follows that 〈Az, z〉 ≤ 0 for any z ∈ D(A) which implies that λ1 ≥ 0.
It remains to prove that λ1 is simple. Observe that

∀z ∈ D(A),
−〈Az, z〉

‖z‖2 = Q(z)

where Q is the quadratic form defined by

∀z ∈ H 1,μ
0 (0, 1), Q(z) := 1

‖z‖2
∫ 1

0

(
z2x − μ

x2
z2 − α�(x)z

2
)
dx .

Another characterization of the first eigenvalue −A is

λ1 = inf
z∈H 1,μ

0 (0,1)\{0}
Q(z).

Any eigenfunction ω of A associated to λ1 is a minimizer of Q. Reciprocally, by
standard arguments of the calculus of variations, any minimizer ω of Q is an eigen-
function of A corresponding to λ1.

We argue by contradiction assuming that λ2 = λ1 so that ω2 is another eigenfunc-
tion of A associated to λ1. It follows that ω2 is a minimizer of Q. By Lemma 2.2, it
is easy to show that Q(|ω2|) = Q(ω2) so |ω2| is also a minimizer of Q. Therefore
|ω2| is an eigenfunction associated to λ1. So we get

{
A|ω2| = λ1|ω2| = 0 in (0, 1),

|ω2|(x = 0) = 0 = |ω2|(x = 1),

i.e. {
−(|ω2|)xx = μ

|x |2 |ω2| + α�(x)|ω2| in (0, 1),

|ω2|(x = 0) = 0 = |ω2|(x = 1).

We deduce
{

−(|ω2|)xx+‖α�‖L∞(0,1)|ω2| = μ

|x |2 |ω2| + (‖α�‖L∞(0,1) + α�(x))|ω2| ≥0 in (0, 1),

|ω2|(x = 0) = 0 = |ω2|(x = 1).
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Since |ω2| 
≡ 0, by strong maximum principle, we have |ω2| > 0 in (0, 1). It follows
that ω2 > 0 in (0, 1) or ω2 < 0 in (0, 1). This contradicts the fact that ω1 is the only
element of {ωk}k≥1 that does not change sign in (0, 1). �

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. The proof is divided into the following 3
steps: first of all, we show that it is sufficient to consider some well-chosen subset of
targets; secondly, for any ud in the previous subset, one exhibit someα� = α�(x) such
that ud is simply co-linear the first positive eigenfunction of the perturbed operator
A0 + α� I ; finally, one construct a small perturbation α = α� + δ of α� that solves
the question at hand.

3.1 Step 1

In a first step, we show that it is sufficient to prove the result for the following set of
non-negative target states ud :

ud ∈ D(A0), ud > 0 in (0, 1) such that
ud,xx

ud
+ μ

x2
∈ L∞(0, 1). (3.1)

Indeed let us consider ud as in Theorem 1.1, that is ud satisfying ud ∈ L2(0, 1)
and ud ≥ 0 in (0, 1). Let us fix ε > 0. Using a regularization by convolution, one
can find a function uε

d such that

uε
d ∈ C∞([0, 1]), uε

d > 0 in (0, 1) such that ‖ud − uε
d‖ ≤ ε

2
. (3.2)

Let us denote ω̄1 the first positive eigenfunction (corresponding to the eigenvalue
−λ̄1) of A0 with norm 1 that we introduced in Lemma 2.4. Of course, ω̄1 belongs to
D(A0) and is a solution of the following Sturm–Liouville problem

{
ω̄1,xx + μ

x2
ω̄1 + λ̄1ω̄1 = 0, x ∈ (0, 1),

ω̄1(0) = 0 = ω̄1(1).
(3.3)

Consider some cut-off function as follows: for σ > 0 small, ξσ ∈ C∞([0, 1]) is such
that ⎧

⎪⎨

⎪⎩

0 ≤ ξσ (x) ≤ 1, x ∈ [0, 1],
ξσ (x) = 1, x ∈ [0, σ/2],
ξσ (x) = 0, x ∈ [σ, 1].

(3.4)
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And define
ūε
d(x) := ξσ (x)ω̄1(x) + (1 − ξσ (x))uε

d(x).

Since ūε
d = ω̄1 on [0, σ/2], one can easily check that ūε

d ∈ D(A0). Moreover
ūε
d > 0 using the fact that uε

d > 0 and ω̄1 > 0.
Finally, still using the fact that ūε

d = ω̄1 on [0, σ/2], we observe that
(
ūε
d,xx

ūε
d

+ μ

x2

)

|[0,σ/2]
=

(
ω̄1,xx

ω̄1
+ μ

x2

)

|[0,σ/2]
= −λ̄1 ∈ L∞(0, σ/2).

And we can deduce that
ūε
d,xx

ūε
d

+ μ

x2
∈ L∞(0, 1).

So ūε
d belongs to the set described in (3.1).

Now let us show that it is sufficient to steer the solution near ūε
d instead of ud : we

first estimate

‖uε
d − ūε

d‖2 =
∫ 1

0
ξσ (x)2

(
ω̄1(x) − uε

d(x)
)2
dx ≤

∫ σ

0

(
ω̄1(x) − uε

d(x)
)2
dx .

Therefore it is possible to choose σ > 0 small enough so that

‖uε
d − ūε

d‖2 ≤ ε2

4
.

Finally we obtain

‖ud − ūε
d‖ ≤ ‖ud − uε

d‖ + ‖uε
d − ūε

d‖ ≤ ε

2
+ ε

2
= ε. �

3.2 Step 2

In this second step, for any ud such that (3.1) holds, we select some α� = α�(x) such
that ud becomes co-linear the first positive eigenfunction of the perturbed operator
A0 + α� I .

Indeed, let us now consider u0 non-zero and non-negative in L2(0, 1) and ud as
in (3.1). And define

α�(x) := −ud,xx

ud
− μ

x2
, x ∈ (0, 1). (3.5)

Since α� ∈ L∞(0, 1), we can define the perturbed operator A := A0 + α� I with
domain D(A) := D(A0). As in Lemma 2.5, we denote by (−λk)k≥1 and {ωk}k≥1
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the eigenvalues and the corresponding orthonormal eigenfunctions of A. Here, for
ω1, we choose the positive eigenfunction associated to the first eigenvalue. Then,
applying Lemma 2.7, we have

λ1 = 0 and ω1(x) = ud(x)

‖ud‖ > 0, x ∈ (0, 1), (3.6)

so ud and ω1 are co-linear.

3.3 Step 3

In this last step, we are now ready to choose the (static) bilinear control that allows
us to achieve our goal. It is constructed in the following way as a small perturbation
of α�: we set

α(x) := α�(x) + δ (3.7)

where δ ∈ R will be chosen later.
Observe that, adding δ to α� generates a shift on the eigenvalues corresponding to

α� (they change from (−λk)k≥1 to (−λk + δ)k≥1) whereas the eigenfunctions {ωk}k≥1

remain the same.
The solution of (1.4) corresponding to the choice of α given in (3.7) can bewritten

in Fourier series representation as

u(x, t) =
+∞∑

k=1

e(−λk+δ)t 〈u0, ωk〉ωk(x) = eδt 〈u0, ω1〉ω1(x) + r(x, t)

where

r(x, t) :=
+∞∑

k=2

e(−λk+δ)t 〈u0, ωk〉ωk(x).

Since ud = ‖ud‖ω1, we obtain

‖u(·, t) − ud‖ ≤
∥
∥
∥eδt 〈u0, ω1〉ω1(x) − ‖ud‖ω1

∥
∥
∥ + ‖r(x, t)‖

=
∣
∣
∣eδt 〈u0, ω1〉 − ‖ud‖

∣
∣
∣ + ‖r(x, t)‖.

Next we recall that −λk ≤ −λ2 for all k ≥ 2. So

‖r(x, t)‖2 =
+∞∑

k=2

e2(−λk+δ)t |〈u0, ωk〉|2 ≤ e2(−λ2+δ)t
+∞∑

k=2

|〈u0, ωk〉|2 ≤ e2(−λ2+δ)t‖u0‖2.



270 J. Vancostenoble

For ε > 0 fixed, let us choose Tε > 0 such that

e−λ2Tε = ε
〈u0, ud〉

‖u0‖‖ud‖2 i.e. Tε = −1

λ2
ln

(

ε
〈u0, ud〉

‖u0‖‖ud‖2
)

which is possible since λ1 = 0 is simple so λ2 
= 0. Since u0 ∈ L2(0, 1), u0 ≥ 0,
u0 
= 0 and ω1 > 0 (see (3.6)), we get

〈u0, ω1〉 =
∫ 1

0
u0(x)ω1(x)dx > 0. (3.8)

It is then possible to choose δε such that

eδεTε = ‖ud‖
〈u0, ω1〉 = ‖ud‖2

〈u0, ud〉 ,

that is

δε = 1

Tε

ln

( ‖ud‖2
〈u0, ud〉

)

.

We conclude that, for α(x) = α�(x) + δε,

‖u(·, Tε) − ud‖ ≤ e(−λ2+δε)Tε‖u0‖ = e−λ2Tε
‖ud‖2

〈u0, ud〉‖u0‖ = ε.

Sowe proved that system (1.4) is non-negatively globally approximately controllable
in L2(0, 1) by means of static controls α = α(x) in L∞(0, 1). Moreover, by the
maximum principle stated in Lemma 2.6, the corresponding solution to (1.4) remains
non-negative at all times. �

4 Proof of Theorems 1.2 and 1.3

4.1 Proof of Theorem 1.2

The result directly follows from the proof of Theorem 1.1. It is sufficient to observe
that inequality (3.8) of step 3 still holds true under the assumptions of Theorem 1.2.
Indeed

〈u0, ω1〉 =
∫ 1

0
u0(x)ω1(x)dx =

∫ 1

0
u0(x)

ud(x)

‖ud‖ dx = 1

‖ud‖〈u0, ud〉 > 0.

�
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4.2 Proof of Theorem 1.3

The proof of Theorem 1.3 follows the lines of the proof of Theorem 1.1. So let us
first establish the corresponding preliminar results.

Consider V (x) satisfying (1.5). We introduce the associated functional space:

H 1,V
0 (0, 1) := {z ∈ L2(0, 1) ∩ H 1

loc((0, 1]) | z(0) = 0 = z(1)

and
∫ 1

0

(
z2x − V (x)z2

)
dx < +∞}.

As for the inverse-square potential, thanks to Hardy inequality (1.2), it is easy to
see that H 1,V

0 (0, 1) = H 1
0 (0, 1) when μ < 1/4. H 1,V

0 (0, 1) defines a new functional
space only in the critical case μ = μ� = 1/4.

As for Lemma 2.1, using the improved Hardy-Poincaré inequalities in [30, The-
orem 2.2], we can prove that

Lemma 4.1 Let V (x) be given such that (1.5) holds. Then H 1,V
0 (0, 1) ↪→ L2(0, 1)

with compact embedding.

With the same argument of proof, one can also show that Lemma 2.2 is still true
for any z ∈ H 1,V

0 (0, 1).

Next we define the unperturbed operator:

{
D(A0) := {z ∈ H 2

loc((0, 1]) ∩ H 1,V
0 (0, 1) | zxx + V (x)z ∈ L2(0, 1)},

A0z := zxx + V (x)z.
(4.1)

From [30], we know that A0 is a closed, self-adjoint, dissipative operator with dense
domain in L2(0, 1) and that Lemma 2.3 still holds true.

Concerning, the eigenfunction associated to the first eigenvalue, we prove:

Lemma 4.2 Consider V (x) satisfying (1.5). The eigenfunction ω̄1 corresponding to
the first eigenvalue −λ̄1 of the above operator A0 satisfies

ω̄1(x) > 0 for all x ∈ (0, 1) or ω̄1(x) < 0 for all x ∈ (0, 1).

Proof The proof of Lemma 2.4 was based on an explicit expression of the eigen-
functions of A0 in terms of Bessel functions obtained in [24]. Here we quote a result
from Davila-Dupaigne [11]:

Proposition 4.1 Let � ⊂ Rn be a bounded smooth domain and consider a ∈
L1
loc(�), a ≥ 0. Assume that there exists r > 2 such that

γ (a) := inf
ϕ∈C1

c (�)

∫

�

(
|∇ϕ|2 − a(x)ϕ2

)

(∫

�
|ϕ|r)2/r

> 0. (4.2)
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Define H as the completion of C∞
c (�) with respect to the norm

‖ϕ‖2H :=
∫

�

(
|∇ϕ|2 − a(x)ϕ2

)
.

Then the operator L := −� − a(x)with domain D(L) := {u ∈ H | �u − a(x)u ∈
H} has a positive first eigenvalue

λ̄1 = inf
ϕ∈H\{0}

∫

�

(
|∇ϕ|2 − a(x)ϕ2

)

∫

�
ϕ2

,

which is simple. The above quotient is attained at a positive ϕ̄1 ∈ H that satisfies

{
−�ϕ̄1 − a(x)ϕ̄1 = λ̄1ϕ̄1, in �,

ϕ̄1 = 0, on ∂�.

We see that the result simply follows from Proposition 4.1 applied with n =
1, � = (0, 1) and a(x) = V (x). So it suffices to prove that a(x) = V (x) satisfies
assumption (4.2).

We recall the following improved Hardy-Poincaré inequality from [30]: for all
1 ≤ q < 2, there exists Cq > 0 such that, for all ϕ ∈ H 1

0 (0, 1),

∫ 1

0

(
|∇ϕ|2 − μ�

x2
ϕ2

)
≥ Cq‖ϕ‖2

W 1,q
0 (0,1)

.

Since a = V satisfies assumption (1.5), we deduce that, for all 1 ≤ q < 2 and for all
ϕ ∈ C1

c (�),
∫ 1

0

(
|∇ϕ|2 − a(x)ϕ2

)
≥ Cq‖ϕ‖2

W 1,q
0 (0,1)

.

Next we use classical Sobolev embeddings. For � bounded domain of Rn with
Lipschitz boundary, we have: for all q such that n < q < ∞,

W 1,q(�) ↪→ C0,1−n/q(�).

Let us now choose (for example) q = 3/2 so that 1 ≤ q < 2 and 1 = n < q < ∞
and apply this to � = (0, 1). It follows in particular that

W 1,q(0, 1) ↪→ C0(0, 1).

So there exists c > 0 such that

sup
x∈[0,1]

|ϕ(x)| ≤ c‖ϕ‖W 1,q
0 (0,1).
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Finally, fix r > 2. Then

(∫

�

|ϕ|r
)2/r

≤ sup
x∈[0,1]

|ϕ(x)| ≤ c‖ϕ‖W 1,q
0 (0,1) ≤ c

√
Cq

∫ 1

0

(
|∇ϕ|2 − a(x)ϕ2

)

and (4.2) follows. �
Next, for any α ∈ L∞(QT ) given, we consider the perturbed operator

A := A0 + α I with domain D(A) := D(A0).

One can easily see that, under assumption (1.5), Proposition 2.1 together with the
well-posedness Theorem 2.1 (replacing the space H 1,μ

0 (0, 1) by H 1,V
0 (0, 1)) and the

spectral Lemma 2.5 are still true.
With similar proofs, one can see that the maximum principle for perturbed opera-

tors stated in Lemma 2.6 holds unchanged for the solutions of (1.6) whereas Lemma
2.7 is simply replaced by

Lemma 4.3 Assume V (x) is given such that (1.5) holds. Let u ∈ D(A0) be given
such that u > 0 on (0, 1) and such that

uxx

u
+ V (x) ∈ L∞(0, 1).

Next consider the operator

A := A0 + α� I with domain D(A) := D(A0),

and where α� is defined by

α�(x) := −uxx

u
− V (x) for x ∈ (0, 1).

Let (−λk)k≥1 and {ωk}k≥1 be the eigenvalues and eigenfunctions of A given in Lemma
2.5. Then λ1 = 0 is simple and

λ1 = 0 and |ω1| = u

‖u‖ .

Moreover, u/‖u‖ and −u/‖u‖ are the only eigenfunctions of A with norm 1 that do
not change sign on (0, 1).

This concludes the generalization of all preliminaries results. Finally, it is easy to
see that the proof of Theorem 1.1 can now be rewritten replacing μ/x2 by V (x) and
leads to Theorem 1.3. �
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5 Appendix

This section is devoted to the statements of various technical results from literature
that we use throughout this paper.

Let us first of all recall the following result from [23, Appendix A] that concerns
the regularity of the negative and positive parts of a function:

Theorem 5.1 Let � ⊂ R
n and 1 ≤ s ≤ ∞. Consider v : � → R such that v ∈

W 1,s(�). Then v+, v− ∈ W 1,s(�) and, for all 1 ≤ i ≤ n,

(v+)xi =
{

vxi in {x ∈ � | v(x) > 0},
0 in {x ∈ � | v(x) ≤ 0},

and

(v−)xi =
{
0 in {x ∈ � | v(x) ≥ 0},
−vxi in {x ∈ � | v(x) < 0}.

Next we recall the following expression of the eigenfunctions of A0 (defined in
(2.5)) that have been computed in [24]:

Proposition 5.1 Assume that μ is given such that μ ≤ 1/4 and define

ν :=
√
1

4
− μ.

We denote by Jν the Bessel function of first kind of order ν and we denote 0 < jν,1 <

jν,2 < · · · < jν,n < · · · → +∞ as n → +∞ the sequence of positive zeros of Jν .
Then the admissible eigenvalues (−λ̄n)n≥1 of A0 are determined by

∀n ≥ 1, λ̄n = ( jν,n)
2

and corresponding (normalized) eigenfunctions are given by

∀n ≥ 1, �n(x) = 1

|J ′
ν( jν,n)|

√
x Jν( jν,nx), x ∈ (0, 1).

References

1. Ball, J.M.: Strongly continuous semigroups, weak solutions, and the variation of constants
formula. Proc. Am. Math. Soc. 63, 370–373 (1977)

2. Baras, P., Goldstein, J.: Remarks on the inverse square potential in quantum mechanics. Dif-
ferential Equations (Birmingham, Ala., 1983). North-Holland Mathematics Studies, vol. 92,
pp. 31–35. North-Holland, Amsterdam (1984)



Global Non-negative Approximate Controllability of Parabolic Equations … 275

3. Baras, P., Goldstein, J.: The heat equation with a singular potential. Trans. Am. Math. Soc.
284(1), 121–139 (1984)

4. Biccari, U., Zuazua, E.: Null controllability for a heat equation with a singular inverse-square
potential involving the distance to the boundary function. J. Differ. Equ. 261(5), 2809–2853
(2016)

5. Cannarsa, P., Floridia, G.: Approximate controllability for linear degenerate parabolic problems
with bilinear control. In: Proceedings of Evolution equations andMaterials withMemory 2010,
Casa Editrice Università La Sapienza Roma, pp. 19–39 (2011)

6. Cannarsa, P., Floridia, G.: Approximate multiplicative controllability for degenerate parabolic
problems with Robin boundary conditions. Commun. Appl. Ind. Math. 2(2) (2011)

7. Cannarsa, P., Floridia,A.Y.,Khapalov,G.:Multiplicative controllability for semilinear reaction-
diffusion equationswithfinitelymany changes of sign. J.Math. PuresAppl. (9)108(4), 425–458
(2017)

8. Cannarsa, P., Khapalov, A.Y.: Multiplicative controllability for reaction-diffusion equations
with target states admitting finitely many changes of sign. Discret. Contin. Dyn. Syst. Ser. B
14(4), 1293–1311 (2010)

9. Cannarsa, P., Martinez, P., Vancostenoble, J.: Carleman estimates for a class of degenerate
parabolic operators. SIAM J. Control Optim. 47(1), 1–19 (2008)

10. Cazacu, C.: Controllability of the heat equation with an inverse-square potential localized on
the boundary. SIAM J. Control Optim. 52(4), 2055–2089

11. Davila, J., Dupaigne, L.: Comparison results for PDEs with a singular potential. Proc. R. Soc.
Edinb. Sect. A Math. 133(01), 61–83 (2003)

12. Ervedoza, S.: Control and stabilization properties for a singular heat equation with an inverse-
square potential. Commun. Partial Differ. Equ. 33(10–12), 1996–2019 (2008)

13. Fernandez-Cara, E., Zuazua, E.: The cost of approximate controllability for heat equations: the
linear case. Adv. Differ. Equ. 5(4–6), 465–514 (2000)

14. Floridia, G.: Approximate controllability for nonlinear degenerate parabolic problems with
bilinear control. J. Differ. Equ. 257(9), 3382–3422 (2014)

15. Floridia,G.:Nonnegative controllability for a class of nonlinear degenerate parabolic equations,
preprint

16. Fotouhi, M., Salimi, L.: Null controllability of degenerate/singular parabolic equations. J. Dyn.
Control Syst. 18(4), 573–602 (2012)

17. Hajjaj, A., Maniar, L., Salhi, J.: Carleman estimates and null controllability of degener-
ate/singular parabolic systems. Electron. J. Differ. Equ. 2016(292), 1–25 (2016)

18. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press,
Cambridge (1952)

19. Khapalov, A.: Bilinear control for global controllability of the semilinear parabolic equations
with superlinear terms. Control of Nonlinear Dstributed Parameter Systems (College Station,
TX, 1999). Lecture Notes in Pure and Applied Mathematics, vol. 218, pp. 139–155. Dekker,
New York (2001)

20. Khapalov, A.: Global non-negative controllability of the semilinear parabolic equation gov-
erned by bilinear control. ESAIM Control Optim. Calc. Var. 7, 269–283 (2002)

21. Khapalov, A.Y.: Controllability of the semilinear parabolic equation governed by a multi-
plicative control in the reaction term: a qualitative approach. SIAM J. Control Optim. 41(6),
1886–1900 (2003)

22. Khapalov, A.Y.: Controllability of Partial Differential Equations Governed by Multiplicative
Controls. Lecture Notes in Mathematics, vol. 1995. Springer, Berlin (2010)

23. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their appli-
cations. SIAM Class. Appl. Math. (2000)

24. Martinez, P., Vancostenoble, J.: The Cost of boundary controllability for a parabolic equation
with inverse square potential (submitted)

25. Opic, B., Kufner, A.: Hardy-type Inequalities. Pitman Research Notes in Mathematics, vol.
219. Longman, Harlow (1990)



276 J. Vancostenoble

26. Ouzahra, M.: Approximate and exact controllability of a reaction-diffusion equation governed
by bilinear control. Eur. J. Control 32, 32–38 (2016)

27. Vancostenoble, J.: Improved Hardy-Poincaré inequalities and Sharp Carleman Estimates for
Degenerate/Singular Parabolic Problems.Discrete andContinuousDynamical Systems - Series
S, vol. 4(3), pp. 761–790. American Institute of Mathematical Sciences, Providence (2011)

28. Vancostenoble, J.: Lipschitz stability in inverse source problems for singular parabolic equa-
tions. Commun. Partial Differ. Equ. 36(8), 1287–1317 (2011)

29. Vancostenoble, J., Zuazua, E.: Null controllability for the heat equation with singular inverse-
square potentials. J. Funct. Anal. 254(7), 1864–1902 (2008)

30. Vázquez, J.L., Zuazua, E.: The Hardy inequality and the asymptotic behaviour of the heat
equation with an inverse-square potential. J. Funct. Anal. 173(1), 103–153 (2000)


	Preface
	Contents
	About the Editors
	Some Remarks on the Dirichlet Problem for the Degenerate Eikonal Equation
	1 Introduction and Statement of the Results
	1.1 Basic Objects

	2 Proof of Theorem 1.4
	2.1 Preliminaries
	2.2 Proof of Theorem 1.4

	References

	Lipschitz Continuity of the Value Function for the Infinite Horizon Optimal Control Problem Under State Constraints
	1 Introduction
	2 Preliminaries
	3 Uniform Distance Estimates
	4 Uniform IPC for Functional Set Constraints
	5 Lipschitz Continuity for a Class of Value Functions
	6 Applications to the Relaxation Problem
	References

	Herglotz' Generalized Variational Principle and Contact Type Hamilton-Jacobi Equations
	1 Introduction
	2 Existence of Minimizers in Herglotz' Variational Principle
	3 Necessary Conditions and Regularity of Minimizers
	3.1 Lipschitz Estimate of Minimizers
	3.2 Regularity of Minimizers-Herglotz Equations–Lie Equations

	4 Concluding Remarks
	4.1 Equivalence of Herglotz' Variational Principle and the Implicit Variational Principle
	4.2 Herglotz' Generalized Variational Principle on Manifolds
	4.3 Further Remarks

	References

	Observability Inequalities for Transport Equations through Carleman Estimates
	1 Introduction
	2 Proof of the Carleman Estimate
	2.1 Some Preliminary Lemmas 
	2.2 Derivation of the Carleman Estimate

	3 Proof of the Observability Inequality
	3.1 Energy Estimates
	3.2 The Proof

	References

	On the Weak Maximum Principle  for Degenerate Elliptic Operators
	1 Introduction
	2 The Weak Maximum Principle in Bounded Domains:  A Numerical Criterion
	3 Unbounded Domains and Uniform Ellipticity
	4 One-Directional Elliptic Operators on Special Unbounded Domains
	5 An Approximation of the Principal Eigenvalue
	References

	On the Convergence of Open Loop Nash Equilibria in Mean Field Games  with a Local Coupling
	1 Preliminaries
	1.1 Notation
	1.2 Assumption
	1.3 Regularity Estimates

	2 Open Loop Nash Equilibria
	3 Convergence
	3.1 Estimates Between vN,i and uN
	3.2 Putting the Estimates Together

	References

	Remarks on the Control of Family  of b–Equations
	1 Introduction
	2 Carleman Inequalities and Null Controllability
	3 Local Null Controllability of the b-Equations
	4 Controllability in the Limit
	5 Some Additional Results and Comments
	5.1 Exponential Decay and Large Time Null Controllability for the Burgers-α Equation
	5.2 A Boundary Controllability Result
	5.3 The Situation in Higher Spatial Dimensions

	References

	1-d Wave Equations Coupled via Viscoelastic Springs and Masses: Boundary Controllability of a Quasilinear and Exponential Stabilizability of a Linear Model
	1 Introduction
	2 Well-Posedness and Dissipativity of the Viscoeleastic Model
	2.1 Well-Posedness
	2.2 Dissipativity of the Nonlinear Model

	3 Exact Boundary Controllability for the Kelvin-Type Viscoelastic Coupling
	4 Exponential Boundary Stabilization of a Linear Kelvin–Voigt-Model
	5 Conclusion and Outlook
	References

	A Semilinear Integro-Differential Equation: Global Existence and Hidden Regularity
	1 Introduction
	2 Preliminaries
	3 Existence and Uniqueness of Mild and Strong Solutions
	4 Hidden Regularity Results
	References

	Lyapunov's Theorem via Baire Category
	1 Introduction
	2 A Dual Approach to Lyapunov's Theorem
	References

	Controllability Under Positivity Constraints of Multi-d Wave Equations
	1 Introduction
	1.1 Internal Control
	1.2 Boundary Control
	1.3 Orientation

	2 Abstract Results
	2.1 Steady State Controllability
	2.2 Controllability Between Trajectories

	3 Internal Control: Proof of Theorems 1 and 2
	3.1 Proof of Theorem 1
	3.2 Proof of Theorem 2
	3.3 Internal Controllability From a Neighborhood of the Boundary

	4 Boundary Control: Proof of Theorems 3, 4 and 5
	4.1 Proof of Theorem 3
	4.2 Proof of Theorem 4
	4.3 State Constraints. Proof of Theorem 5

	5 The One Dimensional Wave Equation
	6 Conclusions and Open Problems
	References

	Asymptotic Analysis of a Cucker–Smale System with Leadership and Distributed Delay
	1 Introduction
	2 Preliminary Properties
	3 Convergence to Consensus
	4 The Case of Free-Will Leader
	References

	Global Non-negative Approximate Controllability of Parabolic Equations with Singular Potentials
	1 Introduction and Main Results
	1.1 Introduction
	1.2 Description of the Multiplicative Control Problem
	1.3 Main Result
	1.4 Other Results
	1.5 Perpectives

	2 Functional Setting and Preliminaries
	2.1 Functional Framework
	2.2 The Unperturbed Operator
	2.3 Perturbed Operators
	2.4 Maximum Principle
	2.5 Specific Perturbed Operator

	3 Proof of Theorem 1.1
	3.1 Step 1
	3.2 Step 2
	3.3 Step 3

	4 Proof of Theorems 1.2 and 1.3
	4.1 Proof of Theorem 1.2
	4.2 Proof of Theorem 1.3

	5 Appendix
	References




