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Abstract. Precision medicine, a highly disruptive paradigm shift in
healthcare targeting the personalizing treatment, heavily relies on
genomic data. However, the complexity of the biological interactions,
the important number of genes as well as the lack of substantial patient’s
clinical data consist a tremendous bottleneck on the clinical implemen-
tation of precision medicine. In this work, we introduce a generic, low
dimensional gene signature that represents adequately the tumor type.
Our gene signature is produced using LP-stability algorithm, a high
dimensional center-based unsupervised clustering algorithm working in
the dual domain, and is very versatile as it can consider any arbitrary dis-
tance metric between genes. The gene signature produced by LP-stability
reports at least 10 times better statistical significance and 35% better
biological significance than the ones produced by two referential unsuper-
vised clustering methods. Moreover, our experiments demonstrate that
our low dimensional biomarker (27 genes) surpass significantly existing
state of the art methods both in terms of qualitative and quantitative
assessment while providing better associations to tumor types than meth-
ods widely used in the literature that rely on several omics data.
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1 Introduction

Advances in omics data interpretation such as genomics, transcriptomics, pro-
teomics and metabolomics contributed to the development of personalized
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medicine at an extraordinarily detailed molecular level [7]. Major advances in
sequencing techniques [15] as well as increasing availability of patients which gave
access to a big amount of data are the backbones of precision medicine paradigm
shift. Among them, the first omics discipline, genomics, focuses on the study of
entire genomes as opposed to ’genetics’ that interrogated individual variants or
single genes [8]. Genomic studies investigate frameworks for studying specific
variants of genes, producing robust biomarkers that contribute to both complex
and mendelian diseases [5] as well as the response of patients to treatment [21].
However, these studies suffer from the curse of dimensionality and face several
statistical limits reporting instead of causality, random correlations leading to
false biomarker discoveries as stated in [4]. For these reasons the largest topics
of research on genomics is the development of robust clustering techniques that
are able to reduce the dimensionality of the genetic data, while maintaining the
important information that they contain [18,19].

Clustering algorithms are commonly used with big data sets to identify
groups of similar observations, discovering invisible to the human eye patterns
and correlations between them [6]. Cluster analysis, primitive exploration with
little or no prior knowledge, has been a prolific topic of research [23]. It aims
to group the variables in the best way that minimizes the variation within the
groups while maximizing the distance between the different groups. Among a
variety of methods, some of the most commonly used are the K-Means [17], the
agglomerative hierarchical clustering [20] and the spectral clustering [16].

Cluster analysis on RNA-seq transcriptomes is a wide spread technique [2]
aiming to identify clusters or modules of genes that have similar expression
profiles. The main goal of such techniques is to propose groups of genes which are
biologically informative such as containing genes coding for proteins interacting
together or participating to a same biological process [3]. Several studies have
investigated the use of machine learning algorithms towards powerful, compact
and predictive genes signatures [5] as biomarkers associated to e.g. tumor types.
However, most of them rely on a priori knowledge to choose the genes of the
signatures leading to redundancy and loss of information, where evidence based
methods as well as the ability to determine unknown to the humans higher
order correlations could have tremendous diagnostic, prognostic and treatment
selection impact. In [18], the authors propose a clustering algorithm, CorEx
algorithm [22], to design from scratch a predictive gene signature evaluated for
ovarian tumors. Even if this study showed that powerful gene biomarkers can
be generated, it has a lot of limitations such as the association with only one
specific tumor type and a signature with several hundred genes.

A very important step towards the generation of informative clusters is their
evaluation with independent and reliable measures for the comparison of the
parameters and methods. This task is very challenging in the case of genomic
clustering, as the clusters should also contain biological information. There are
variety of metrics that can assess the quality of the clusters in a statistical matter
as the Silhouette Value [10], the Dunn’s Index [14] or more recently the Diversity
Method [12]. As a complement, the Protein-Protein Interaction (PPI) and the
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Gene Ontology (GO) terms have been recently used to assess the biological
soundness of the clusters by using the enrichment score [18].

In this paper, we investigated a center-based clustering algorithm, in the
sense that it is based on finding the optimal set of center variables and then
assigning the variables to their nearest center. In particular, we investigate LP-
stability algorithm [13] which has already been successfully adapted on various
fields but not on genomics. More specifically, the contributions of this work are
three folds: (i) create and compare a generic, low dimensional signature using the
gene expressions of the entire annotated coding genes, (ii) use the LP-stability
algorithm, a robust clustering method and compare it with commonly used state
of the art algorithms for clustering of genomic data, (iii) assess our automatically
produced gene signature with different tumor types, reporting accuracy similar
to other methods in literature that use more omics data.

2 Methodology

Let us consider a set of n points S = {x1, ..., xn} in m dimensions where for
any point xp ∈ S: xp = (xp

1, ..., x
p
m). Depending on the algorithm, different

notions of distance/dissimilarity d are used. Now lets denote as k the number
of clusters in a clustering C = C1, ..., Ck defined such that ∀1 ≤ i, j ≤ k,
Ci ∩ Cj = ∅ and

⋃
1≤i≤k Ci = S. ∀1 ≤ i ≤ k we denote ni the number of points

in cluster Ci. The mean of the points in cluster Ci will be denoted as μi and
will be called centroid of the cluster. Finally, we get a discrete random variable
X = {X1, ...,Xb} from a point x ∈ S by binning of b bins. We denote P (X)
the probability mass function of X. We define the Shannon Entropy of X as
H(X) = −∑

1≤i≤b P (Xi) ln P (Xi).

2.1 Baselines Methods

K-Means Algorithm. K-Means [17] is one of the most popular clustering
algorithms because of its simplicity and its efficiency for convex clusters. The
algorithm starts from an initial random clustering and, iteratively, determines k
clusters centroids μi and defines new clusters by assigning points to the closest
centroid. It minimizes

k∑

i=1

∑

x∈Ci

d(x, μi). (1)

The algorithm depends only on the number of clusters k. Generally, K-Means is
used with Euclidean distance for convergence issues. The Euclidean distance is
defined as Euclidean(xp, xq) =

√∑m
i=1(x

q
i − xp

i )2 . Due to the random initial-
ization of the clusters, the optimal clusters can change.



Compact Cancer Gene Signature with High-Dimensional Clustering 465

CorEx Algorithm. CorEx [22] was successfully applied on various fields and,
also, on genes [18]. The algorithm finds a set S′ of k latent factors that describe
the data set S in the best way. Formally, let us consider the Total Correlation
of discrete random variables X1, ...,Xp as

TC(X1, ...,Xp) =
∑

1≤i≤p

H(Xi) − H(X1, ...,Xp) (2)

and the Mutual Information of two discrete random variables Xi,Xj as

MI(Xi,Xj) =
∑

Xi
p∈Xi

∑

Xj
q∈Xj

P (Xi
p,X

q
i ) log

P (Xi
p,X

j
q )

P (Xi
p)P (Xj

q )
(3)

where P (Xi
p,X

j
q ) is the joint probability function and P (Xi

p), P (Xj
q ) are

marginal probability functions. The algorithm minimizes the Total Correlation
TC(S|S′). Then, the clusters are defined by assigning each data point xp to the
latent factor f maximizing the mutual information MI(Xp, f). The algorithm
requires as an input the number k of latent factors corresponding to the number
of clusters.

2.2 LP-stability Clustering Algorithm

We present here the evaluated LP-stability clustering [13] which is a linear pro-
gramming algorithm that has been successfully used on variety of problems. It
aims to optimize the following linear system

PRIMAL ≡ min
C

∑

p,q

d(xp, xq)C(p, q)

s.t.
∑

q

C(p, q) = 1

C(p, q) ≤ C(q, q)
C(p, q) ≥ 0.

(4)

where C(p, q) represents the fact that xp belongs to the cluster of center xq. To
decide which points will be used as centers, the notion of stability is defined as

S(q) = inf{s, d(q, q) + s PRIMAL has no optimal solution with C(q, q) > 0}.

Let us denote Q the set of stable clusters centers. The algorithm solves the
clustering using the DUAL problem

DUAL ≡ max
D

D(h) =
∑

p∈V
hp

s.t. hp = min
q∈V

h(p, q)
∑

p∈V
h(p, q) =

∑

p∈V
d(xp, xq)

h(p, q) ≥ d(xp, xq).

(5)
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h(p, q) corresponds here to the minimal pseudo-distance between xp and xq,
hp corresponds to the one from xp. In particular, the algorithm formulates the
computation of clusters as

DUALQ = maxDUAL s.t. hpq = dpq,∀{p, q} ∩ Q 	= ∅. (6)

The proposed clustering approach is metric free (it can integrate any distance
function), does not make any prior assumption on the number of clusters and
their distribution, and solves the problem in a global manner seeking for an auto-
matic selection of the cluster centers as well as the assignments of each obser-
vation to the most appropriate cluster. Only one parameter has to be defined,
the penalty vector v, that turns d(q, q) in d′(q, q) = d(q, q) + vq in PRIMAL,
influencing the number of clusters.

To cope with the dimensionality of the observations as well as the low ratio
between samples and dimensions of each sample, a robust statistical distance
was adopted for our experiments. It comes from Kendall’s rank correlation [11]:

Kendall(xp, xq) = 2
NC − ND

n(n − 1)
(7)

where NC is the number of concordant pairs and ND the number of discordant
pairs. A pair of observations (xp

u, xq
v) and (xp

u, xq
v) is considered as concordant if

their ranks agree i.e. xp
u > xp

v ⇔ xq
u > xq

v . They are considered as discordant if
xp
u > xp

v ⇔ xq
u < xq

v.
The distance is then defined as: d(xp, xq) =

√
2(1 − Kendall(xp, xq)).

3 Experimental Results

3.1 Evaluation Criteria

In order to assess the performance of the proposed solution, we have adopted
joint qualitative/quantitative assessment. Biological relevance of the proposed
solution was used to assess the quality of the results, while well known statistical
methods were adopted to determine the appropriateness of the proposed solution
from mathematical view point. In particular, the criteria used are the following:

– Enrichment Score: To assess the biological information of the clusters,
enrichment is one of the most popular metrics used in the literature [18].
Enrichment corresponds to the probability of obtaining a random cluster
presenting the same amount of occurrences of a given event as in the assessed
cluster. This event for our experiments was defined as the number of PPI.
In particular, for each cluster the p-value of the enrichment is calculated and
the cluster is defined as enriched if the p-value is below a given threshold.
The enrichment score corresponds to the proportion of enriched clusters.

– Dunn’s Index: The Dunn’s Index [14] assesses if the clusters have a small
inter-cluster variance compared to the intra-cluster variance. Formally,
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Dunn(C) =
min1≤i,j≤k δ(Ci, Cj)

max1≤i≤k Δ(Ci)
where δ(C1, C2) is the distance between the

two closest points of the clusters Ci and Cj , Δ(Ci) is the diameter of the
cluster i.e. the distance between the two farthest points of the cluster Ci.
Even if Dunn’s Index is one of the commonly used metrics for evaluating the
quality of the clustering it can varies dramatically even if only one cluster is
not well formed. However, we chose this metric over the various existing ones
to show the importance of having homogeneously well formed clusters.

To assess the relevance of the results obtained, we compared the clustering
with the methods presented in Sects. 2.1 and 2.2 but also with the performance
of random clusters. This comparison is very important to prove that the infor-
mation captured by the clusters is associated with the gene interactions and it
cannot be achieved by a random selection of genes.

3.2 Data Set

For our experiments we used a data set from the TCGA data portal [1]
with tumor types that can be treated by radiotherapy and/or immunotherapy
(Table 1). It contains 4615 samples well distributed among all the ten differ-
ent tumor types. In particular, we investigate the following types of tumors,
namely: Urothelial Bladder Carcinoma (BLCA), Breast Invasive Carcinoma
(BRCA), Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma
(CESC), Glioblastoma multiforme (GBM), Head and Neck Squamous Cell Car-
cinoma (HNSC), Liver Hepatocellular Carcinoma (LIHC), Rectum Adenocarci-
noma (READ), Lung adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma
(LUSC) and Ovarian Cancer (OV). For each sample, we had the RNA-seq values
of 20 365 genes normalized by reads per kilobase per million (RPKM).

Table 1. Number of the different samples used per tumor type.

Tumor type BLCA BRCA CESC GBM HNSC LIHC READ LUAD LUSC OV

# of Samples 427 1212 309 171 566 423 72 576 552 307

3.3 Implementation Details

The optimization and selection of parameters per algorithm has been performed
by grid search, for a wide range of values. In particular, for the random clustering
and K-Means algorithm, we studied the following numbers of clusters: 5, 10,
15, 20, 25 and between 30 and 100 with an increasing step of 10 and with an
increment of 25 for CorEx algorithm because of its computational complexity.
For the LP-stability algorithm, as the number of clusters is not directly specified,
we gave the same penalty value for all the genes. We used penalty values such
that we have numbers of clusters comparable to the ones of the other algorithms.
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For the enrichment score we performed evaluations with different thresholds
values i.e. 0.005, 0.025, 0.05 and 0.1. Moreover, for the Dunn’s Index, we used
the same distance as the one used to compute each of the clustering to have the
best related score to the clustering metric.

To evaluate the clusters that we have obtained from the proposed method,
together with the other baseline algorithms, we performed sample clustering
using an automatically determined reduced number of genes. In particular, for
each method, we produced a gene signature from its best clustering by selecting
as representatives of each cluster its center. For the LP-stability clustering, the
centers were defined as the actual stable center genes computed by the algorithm.
However, for the rest of the clustering methods, we selected the medoid gene i.e.
the gene the closest to the centroid of the cluster. The sample clustering was
performed using K-Medoids method, a variant of K-Means algorithm, coupled
with Kendall’s rank correlation to determine a distance between patients accord-
ing to the genes of the signature. The evaluation of those sample clustering was
performed by assessing the distribution of the tumor types across the clusters.

3.4 Results and Discussion

In Fig. 1 and Table 2, we summarize the performance of LP-stability and the
baseline algorithms using both the enrichment and the Dunn’s Index metrics.
The Table 2 reports for each method its best clustering according respectively
to the enrichment and the average enrichment with threshold 0.005, the Dunn’s
Index and the number of clusters. We chose this threshold value because it is
the most restrictive one. In general, the evaluated algorithms reports their best
scores with a relatively small amount of clusters (less than 30).

Starting with the enrichment score, one can observe that for a small number
of clusters the enrichment is very high, reaching 100%, even in the case of the
random clustering. This can be justified by the fact that a low number of clusters
contains a large number of interactions between genes, leading to a near perfect
enrichment without any statistical significance. However, when the number of
clusters increases, in the case of the random clustering, the enrichment is dra-
matically decreased, while for the rest of the algorithms remains more stable. At
this point, it should be noted that the LP-stability method outperforms the other
algorithms in terms of enrichment, reporting very high and stable enrichment,
which is more than 90% for all cases. On the other hand, the random clustering
reports the lowest enrichment scores for more than 30 clusters, while K-Means
reports the lowest enrichment compare to the other algorithms. This poor, worse
than random performance for low number of clusters can be explained by the
very unbalanced clusters produced by K-Means in this case, for instance for the
clustering of 5 clusters, one of the cluster contain 20217 genes over 20365 and 3
clusters contain less than 10 genes. Moreover, CorEx reports high enrichment,
however is not as stable as LP-stability as it is decreased for more than 20 clus-
ters. The stability of LP-stability is also indicated from the average enrichment
for a threshold 0.005 in Table 2, where one can observe that it reports 96% while
CorEx reaches only 71%.
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(a) Random clusterings (b) LP-stability algorithm clusterings

(c) K-Means algorithm clusterings (d) CorEx algorithm clusterings

Fig. 1. Graphs indicating the PPI enrichment with the different thresholds and the
Dunn’s Index according to the number of clusters for each clustering method.

Concerning the Dunn’s Index, LP-stability outperforms the other algorithms
reporting a score always above 30%, that corresponds to one order of magnitude
improvement. For the other methods, Dunn’s Index is very low, under 5%, indi-
cating either that at least one cluster is poorly defined with high variance, or that
at least a pair of clusters is very close to each other. Thus, LP-stability seems
to define a solution without extreme ill-defined clusters. One can notice that the
best Dunn’s Index is in agreement with the best enrichment score indicating that
the most biologically informative clusters are obtained for well-defined ones.

To assess even further the performance of each clustering method, we eval-
uate the expression power of each signature by associating it with tumor types
(Table 1). The evaluation is performed by assessing the distribution of the tumors
across the clusters. As our goal is to associate 10 tumor types, we used the best
gene signature for each of the algorithms to cluster our cohort into 10 groups,
in a fully unsupervised manner. In Fig. 2, we present the distribution of the
tumor types per algorithm into the 10 clusters. The signatures from the base-
lines methods fail to define clusters associated to tumor types. This is certainly
due to the very small number of clusters, only 5, that the signature depends on.
On the other hand, LP-stability, with only 27 genes, reports very high associ-
ations with tumor types. That proves the superiority of LP-stability to define
the right number of clusters allowing a low dimensional signature minimizing



470 E. Battistella et al.

Table 2. Quantitative evaluation in terms of PPI and average PPI enrichment score
with threshold 0.005 (ES), Dunn’s Index (DI) and computational time.

Method Best ES Best DI Average
ES (%)

Time

ES (%) DI (%) Clusters ES (%) DI (%) Clusters

Random 100 1.1 10 100 1.1 10 54 -

K-Means 80 2.9 5 80 2.9 5 37 3h

CorEx 100 2.4 5 100 2.4 5 71 >5 days

LP-stability 100 40.6 27 100 40.6 27 96 1.5 h

the information loss. To better compare the proposed signatures to a baseline
signature we so performed the sample clustering using the baselines signatures
of 25 and 30 genes. The K-Means signature of 30 genes reported the highest
associations to tumor types and for this reason we used it for further analysis.

In Table 3 we present a more detailed comparison of the distribution of the
tumor types for LP-stability and K-Means. In general, LP-stability generates clus-
ters that associate better the tumor types than K-Means. In particular, LIHC type
was successfully separated in one cluster from both signatures. LUSC and LUAD
were also successfully associated in one cluster related to lung tumors (clusters 3
and 4 respectively). Moreover, both signatures associated two clusters related to
squamous tumors containing mainly BLCA CESC, LUSC and HNSC types (clus-
ters 0 & 8 and 1 & 8 respectively). Concerning the BRCA type, K-Means signature
clustered the most of the samples in one group, however the rest of the samples,
were grouped in unrelated types such as the GBM type. Whereas, LP-stability
signature clustered the BRCA samples in several small clusters that may relate
to the various molecular types of BRCA, and grouped the remaining BRCA with
the OV type which are related (cluster 3). Finally, both signatures have a clus-
ter including only tumors that can be smoking related containing mainly CESC,
HNSC, READ, LUSC and LUAD (clusters 8 & 7 respectively).

These two sample clusterings show promising results as we can relate them to
the ones obtained in [9], reporting the same kind of clusters by performing sample
clustering on a very large set of omics data. They indeed reported, as we do,
pan-squamous clusters (LUSC, HNSC, CESC, BLCA), but also pan-gynecology
clusters (BRCA, OV) and pan-lung clusters (LUAD, LUSC). They also noticed
the separation of BRCA in several clusters that they linked to basal, luminal,
Chr 8q amp or HER2-amp subtypes. However, they obtained only one third of
mostly homogeneous clusters, and even reported clusters mixing up to 75% of
the total number of tumors types they considered.

Computational Complexity and Running Times: The computation time
is an important parameter playing a significant role for the selection of an algo-
rithm. For each algorithm the approximate average time needed for the cluster-
ing is presented in Table 2. The different computation time have been computed
using Intel(R) Xeon(R) CPU E5-4650 v2 @ 2.40 GHz cores. In general, the com-
putational time augments with an increasing number of clusters. However, for
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(a) CorEx (5 genes) (b) Kmeans (30 genes) (c) LP-stability (27 genes)

Fig. 2. Evaluation of the produced signature in association with the tumor types

Table 3. Proportion of each tumor type per cluster which is higher than 10% is
reported from the LP-stability and Kmeans algorithms.

Tumor types LP-stability (27 genes) K-means (30 genes) Best

BLCA

57% BLCA ⇒ 33% cluster 8

26% BLCA ⇒ 10% cluster 0

<10% BLCA ⇒ clusters 1, 3, 7

54% BLCA ⇒ 59% cluster 7

18% BLCA ⇒ 22% cluster 1

14% BLCA ⇒ 7% cluster 8

<10% BLCA ⇒ cluster 2, 4, 9

∼

BRCA

26% BRCA ⇒ 75% cluster 1

20% BRCA ⇒ 100% cluster 2

19% BRCA ⇒ 100% cluster 6

18% BRCA ⇒ 100% cluster 9

10% BRCA ⇒ 20% cluster 3

Clusterswith related types

55% BRCA ⇒ 98% cluster 0

27% BRCA ⇒ 20% cluster 4

<10% BRCA ⇒ clusters 1, 2, 7

Clusters unrelated toGBMtype

LP

CESC

58% CESC ⇒ 15% cluster s0

38% CESC ⇒ 16% cluster 8

Squamous related clusters

54% CESC ⇒ 15% cluster 8

25% CESC ⇒ 16% cluster 1

16% CESC ⇒ 16% cluster 7

Squamousmixedwithnon squamous

LP

GBM 100% GBM ⇒ 79% cluster 7
98% GBM ⇒ 57% cluster 2

MixedwithunrelatedBRCAtypes
LP

HNSC

89% HNSC ⇒ 43% cluster 0

10% HNSC ⇒ 7% cluster 8

Squamous related clusters

86% HNSC ⇒ 62% cluster 8

11% HNSC ⇒ 18% cluster 1

Squamous related clusters

∼

LIHC 90% LIHC ⇒ 100% cluster 5 98% LIHC ⇒ 98% cluster 5 ∼

READ
82% READ ⇒ 9% cluster 8

Smoking related

55% READ ⇒ 10% cluster 7

32% READ ⇒ 5% cluster 4

Smoking related

∼

LUAD
80% LUAD ⇒ 85% cluster 4

Lung cluster

93% LUAD ⇒ 83% cluster 3

Lung cluster
∼

LUSC

54% LUSC ⇒ 25% cluster 0

23% LUSC ⇒ 18% cluster 8

15% LUSC ⇒ 15% cluster 4

Squamous and lung clusters

53% LUSC ⇒ 97% cluster 6

20% LUSC ⇒ 17% cluster 3

11% LUSC ⇒ 21% cluster 1

Squamous and lung clusters

K-Means

OV

92% OV ⇒ 60% cluster 3

<5% OV ⇒ clusters 1, 8

Clusterwith relatedBRCA

71% OV ⇒ 86% cluster 9

15% OV ⇒ 10% cluster 4

10% OV ⇒ 7% cluster 7

<10% OV ⇒ clusters 0, 2

Mixed clusters

LP
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the reported clusters of Table 2 the proposed method is by far the least compu-
tationally demanding as it converges to the optimal clustering in about 90 min.
K-Means needs approximately twice this time. In general, k-means is very fast,
however, for better stability, several iterations, in our case 100, with different
initial conditions has to be performed, making the algorithm computationally
expensive. Finally, CorEx is by far the most computationally expensive algo-
rithm as it needs more than 5 days for the clustering, making this algorithm not
efficient for data with high dimensionality.

In order to assess the significance of the results and provide a fair comparison
with the state of the art and the baseline methods a spider chart summary is
presented in Fig. 3 where six criteria were considered: (i) the clinical relevance
of the outcome with the number of tumor types where the method signature
performed best, (ii) the statistical relevance of the outcome with the average
enrichment score, (iii) the mathematical relevance of the outcome with the best
Dunn’s Index (iv) the biological relevance of the outcome with the best enrich-
ment score, (v) the running time and (vi) the compactness of the signature.
Towards eliminating the bias introduce from the compactness of the signature,
we have also compared our approach with signatures of similar compactness gen-
erated by the baseline and the state of the art method. It is clearly shown that
our approach outperforms by at least a margin of magnitude in all aspects.

Fig. 3. Spider graph comparing the different methods

4 Conclusion

In this paper we presented and compared, LP-stability algorithm, a powerful
center-based clustering algorithm towards a low-dimensional, robust, genetic
signature/biomarker shown to be highly biologically relevant. The algorithm
outperforms the baseline methods both in terms of computational time, quanti-
tative and qualitative metrics. Moreover, the obtained clusters formulate a gene
signature which has been evaluated for ten different tumor locations, proving
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causality and strong associations with them similar to the ones reported in the
literature by using a large set of omics data. In the future, we aim to extend
the proposed method towards discovering stronger gene dependencies through
higher-order correlations between gene expression data, as well as using this
biomarker for therapeutic treatment selection in the context of cancer.
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14. Kovács, F., Legány, C., Babos, A.: Cluster validity measurement techniques. In: 6th
International Symposium of Hungarian Researchers on Computational Intelligence.
Citeseer (2005)



474 E. Battistella et al.

15. Kurian, A.W., et al.: Clinical evaluation of a multiple-gene sequencing panel for
hereditary cancer risk assessment. J. Clin. Oncol. 32(19), 2001–2009 (2014)

16. Luxburg, U.V.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)
17. MacQueen, J.: Some methods for classification and analysis of multivariate observa-

tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Statistics. University of California Press (1967)

18. Pepke, S., Steeg, G.V.: Comprehensive discovery of subsample gene expression
components by information explanation: therapeutic implications in cancer. BMC
Med. Genom. 10(1), 12 (2017)

19. Ramaswamy, S., et al.: Multiclass cancer diagnosis using tumor gene expression
signatures. Proc. Natl. Acad. Sci. 98(26), 15149–15154 (2001)

20. Sibson, R.: SLINK: an optimally efficient algorithm for the single-link cluster
method. Comput. J. 16(1), 30–34 (1973)

21. Sun, R., et al.: A radiomics approach to assess tumour-infiltrating CD 8 cells
and response to anti-PD-1 or anti-PD-l1 immunotherapy: an imaging biomarker,
retrospective multicohort study. Lancet Oncol. 19(9), 1180–1191 (2018)

22. Ver Steeg, G., Galstyan, A.: Discovering structure in high-dimensional data
through correlation explanation. In: Advances in Neural Information Processing
Systems, pp. 577–585 (2014)

23. Xu, R., Wunsch II, D.: Survey of clustering algorithms. Trans. Neur. Netw. 16(3),
645–678 (2005)


	Gene Expression High-Dimensional Clustering Towards a Novel, Robust, Clinically Relevant and Highly Compact Cancer Signature
	1 Introduction
	2 Methodology
	2.1 Baselines Methods
	2.2 LP-stability Clustering Algorithm

	3 Experimental Results
	3.1 Evaluation Criteria
	3.2 Data Set
	3.3 Implementation Details
	3.4 Results and Discussion

	4 Conclusion
	References




